xref: /openbmc/linux/mm/memory-failure.c (revision 1ab142d4)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	/* root_mem_cgroup has NULL dentries */
149 	if (!css->cgroup->dentry)
150 		return -EINVAL;
151 
152 	ino = css->cgroup->dentry->d_inode->i_ino;
153 	css_put(css);
154 
155 	if (ino != hwpoison_filter_memcg)
156 		return -EINVAL;
157 
158 	return 0;
159 }
160 #else
161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
163 
164 int hwpoison_filter(struct page *p)
165 {
166 	if (!hwpoison_filter_enable)
167 		return 0;
168 
169 	if (hwpoison_filter_dev(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_flags(p))
173 		return -EINVAL;
174 
175 	if (hwpoison_filter_task(p))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 #else
181 int hwpoison_filter(struct page *p)
182 {
183 	return 0;
184 }
185 #endif
186 
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
188 
189 /*
190  * Send all the processes who have the page mapped a signal.
191  * ``action optional'' if they are not immediately affected by the error
192  * ``action required'' if error happened in current execution context
193  */
194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 			unsigned long pfn, struct page *page, int flags)
196 {
197 	struct siginfo si;
198 	int ret;
199 
200 	printk(KERN_ERR
201 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 		pfn, t->comm, t->pid);
203 	si.si_signo = SIGBUS;
204 	si.si_errno = 0;
205 	si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 	si.si_trapno = trapno;
208 #endif
209 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210 
211 	if ((flags & MF_ACTION_REQUIRED) && t == current) {
212 		si.si_code = BUS_MCEERR_AR;
213 		ret = force_sig_info(SIGBUS, &si, t);
214 	} else {
215 		/*
216 		 * Don't use force here, it's convenient if the signal
217 		 * can be temporarily blocked.
218 		 * This could cause a loop when the user sets SIGBUS
219 		 * to SIG_IGN, but hopefully no one will do that?
220 		 */
221 		si.si_code = BUS_MCEERR_AO;
222 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
223 	}
224 	if (ret < 0)
225 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 		       t->comm, t->pid, ret);
227 	return ret;
228 }
229 
230 /*
231  * When a unknown page type is encountered drain as many buffers as possible
232  * in the hope to turn the page into a LRU or free page, which we can handle.
233  */
234 void shake_page(struct page *p, int access)
235 {
236 	if (!PageSlab(p)) {
237 		lru_add_drain_all();
238 		if (PageLRU(p))
239 			return;
240 		drain_all_pages();
241 		if (PageLRU(p) || is_free_buddy_page(p))
242 			return;
243 	}
244 
245 	/*
246 	 * Only call shrink_slab here (which would also shrink other caches) if
247 	 * access is not potentially fatal.
248 	 */
249 	if (access) {
250 		int nr;
251 		do {
252 			struct shrink_control shrink = {
253 				.gfp_mask = GFP_KERNEL,
254 			};
255 
256 			nr = shrink_slab(&shrink, 1000, 1000);
257 			if (page_count(p) == 1)
258 				break;
259 		} while (nr > 10);
260 	}
261 }
262 EXPORT_SYMBOL_GPL(shake_page);
263 
264 /*
265  * Kill all processes that have a poisoned page mapped and then isolate
266  * the page.
267  *
268  * General strategy:
269  * Find all processes having the page mapped and kill them.
270  * But we keep a page reference around so that the page is not
271  * actually freed yet.
272  * Then stash the page away
273  *
274  * There's no convenient way to get back to mapped processes
275  * from the VMAs. So do a brute-force search over all
276  * running processes.
277  *
278  * Remember that machine checks are not common (or rather
279  * if they are common you have other problems), so this shouldn't
280  * be a performance issue.
281  *
282  * Also there are some races possible while we get from the
283  * error detection to actually handle it.
284  */
285 
286 struct to_kill {
287 	struct list_head nd;
288 	struct task_struct *tsk;
289 	unsigned long addr;
290 	char addr_valid;
291 };
292 
293 /*
294  * Failure handling: if we can't find or can't kill a process there's
295  * not much we can do.	We just print a message and ignore otherwise.
296  */
297 
298 /*
299  * Schedule a process for later kill.
300  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301  * TBD would GFP_NOIO be enough?
302  */
303 static void add_to_kill(struct task_struct *tsk, struct page *p,
304 		       struct vm_area_struct *vma,
305 		       struct list_head *to_kill,
306 		       struct to_kill **tkc)
307 {
308 	struct to_kill *tk;
309 
310 	if (*tkc) {
311 		tk = *tkc;
312 		*tkc = NULL;
313 	} else {
314 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 		if (!tk) {
316 			printk(KERN_ERR
317 		"MCE: Out of memory while machine check handling\n");
318 			return;
319 		}
320 	}
321 	tk->addr = page_address_in_vma(p, vma);
322 	tk->addr_valid = 1;
323 
324 	/*
325 	 * In theory we don't have to kill when the page was
326 	 * munmaped. But it could be also a mremap. Since that's
327 	 * likely very rare kill anyways just out of paranoia, but use
328 	 * a SIGKILL because the error is not contained anymore.
329 	 */
330 	if (tk->addr == -EFAULT) {
331 		pr_info("MCE: Unable to find user space address %lx in %s\n",
332 			page_to_pfn(p), tsk->comm);
333 		tk->addr_valid = 0;
334 	}
335 	get_task_struct(tsk);
336 	tk->tsk = tsk;
337 	list_add_tail(&tk->nd, to_kill);
338 }
339 
340 /*
341  * Kill the processes that have been collected earlier.
342  *
343  * Only do anything when DOIT is set, otherwise just free the list
344  * (this is used for clean pages which do not need killing)
345  * Also when FAIL is set do a force kill because something went
346  * wrong earlier.
347  */
348 static void kill_procs(struct list_head *to_kill, int doit, int trapno,
349 			  int fail, struct page *page, unsigned long pfn,
350 			  int flags)
351 {
352 	struct to_kill *tk, *next;
353 
354 	list_for_each_entry_safe (tk, next, to_kill, nd) {
355 		if (doit) {
356 			/*
357 			 * In case something went wrong with munmapping
358 			 * make sure the process doesn't catch the
359 			 * signal and then access the memory. Just kill it.
360 			 */
361 			if (fail || tk->addr_valid == 0) {
362 				printk(KERN_ERR
363 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 					pfn, tk->tsk->comm, tk->tsk->pid);
365 				force_sig(SIGKILL, tk->tsk);
366 			}
367 
368 			/*
369 			 * In theory the process could have mapped
370 			 * something else on the address in-between. We could
371 			 * check for that, but we need to tell the
372 			 * process anyways.
373 			 */
374 			else if (kill_proc(tk->tsk, tk->addr, trapno,
375 					      pfn, page, flags) < 0)
376 				printk(KERN_ERR
377 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 					pfn, tk->tsk->comm, tk->tsk->pid);
379 		}
380 		put_task_struct(tk->tsk);
381 		kfree(tk);
382 	}
383 }
384 
385 static int task_early_kill(struct task_struct *tsk)
386 {
387 	if (!tsk->mm)
388 		return 0;
389 	if (tsk->flags & PF_MCE_PROCESS)
390 		return !!(tsk->flags & PF_MCE_EARLY);
391 	return sysctl_memory_failure_early_kill;
392 }
393 
394 /*
395  * Collect processes when the error hit an anonymous page.
396  */
397 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398 			      struct to_kill **tkc)
399 {
400 	struct vm_area_struct *vma;
401 	struct task_struct *tsk;
402 	struct anon_vma *av;
403 
404 	av = page_lock_anon_vma(page);
405 	if (av == NULL)	/* Not actually mapped anymore */
406 		return;
407 
408 	read_lock(&tasklist_lock);
409 	for_each_process (tsk) {
410 		struct anon_vma_chain *vmac;
411 
412 		if (!task_early_kill(tsk))
413 			continue;
414 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
415 			vma = vmac->vma;
416 			if (!page_mapped_in_vma(page, vma))
417 				continue;
418 			if (vma->vm_mm == tsk->mm)
419 				add_to_kill(tsk, page, vma, to_kill, tkc);
420 		}
421 	}
422 	read_unlock(&tasklist_lock);
423 	page_unlock_anon_vma(av);
424 }
425 
426 /*
427  * Collect processes when the error hit a file mapped page.
428  */
429 static void collect_procs_file(struct page *page, struct list_head *to_kill,
430 			      struct to_kill **tkc)
431 {
432 	struct vm_area_struct *vma;
433 	struct task_struct *tsk;
434 	struct prio_tree_iter iter;
435 	struct address_space *mapping = page->mapping;
436 
437 	mutex_lock(&mapping->i_mmap_mutex);
438 	read_lock(&tasklist_lock);
439 	for_each_process(tsk) {
440 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
441 
442 		if (!task_early_kill(tsk))
443 			continue;
444 
445 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
446 				      pgoff) {
447 			/*
448 			 * Send early kill signal to tasks where a vma covers
449 			 * the page but the corrupted page is not necessarily
450 			 * mapped it in its pte.
451 			 * Assume applications who requested early kill want
452 			 * to be informed of all such data corruptions.
453 			 */
454 			if (vma->vm_mm == tsk->mm)
455 				add_to_kill(tsk, page, vma, to_kill, tkc);
456 		}
457 	}
458 	read_unlock(&tasklist_lock);
459 	mutex_unlock(&mapping->i_mmap_mutex);
460 }
461 
462 /*
463  * Collect the processes who have the corrupted page mapped to kill.
464  * This is done in two steps for locking reasons.
465  * First preallocate one tokill structure outside the spin locks,
466  * so that we can kill at least one process reasonably reliable.
467  */
468 static void collect_procs(struct page *page, struct list_head *tokill)
469 {
470 	struct to_kill *tk;
471 
472 	if (!page->mapping)
473 		return;
474 
475 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
476 	if (!tk)
477 		return;
478 	if (PageAnon(page))
479 		collect_procs_anon(page, tokill, &tk);
480 	else
481 		collect_procs_file(page, tokill, &tk);
482 	kfree(tk);
483 }
484 
485 /*
486  * Error handlers for various types of pages.
487  */
488 
489 enum outcome {
490 	IGNORED,	/* Error: cannot be handled */
491 	FAILED,		/* Error: handling failed */
492 	DELAYED,	/* Will be handled later */
493 	RECOVERED,	/* Successfully recovered */
494 };
495 
496 static const char *action_name[] = {
497 	[IGNORED] = "Ignored",
498 	[FAILED] = "Failed",
499 	[DELAYED] = "Delayed",
500 	[RECOVERED] = "Recovered",
501 };
502 
503 /*
504  * XXX: It is possible that a page is isolated from LRU cache,
505  * and then kept in swap cache or failed to remove from page cache.
506  * The page count will stop it from being freed by unpoison.
507  * Stress tests should be aware of this memory leak problem.
508  */
509 static int delete_from_lru_cache(struct page *p)
510 {
511 	if (!isolate_lru_page(p)) {
512 		/*
513 		 * Clear sensible page flags, so that the buddy system won't
514 		 * complain when the page is unpoison-and-freed.
515 		 */
516 		ClearPageActive(p);
517 		ClearPageUnevictable(p);
518 		/*
519 		 * drop the page count elevated by isolate_lru_page()
520 		 */
521 		page_cache_release(p);
522 		return 0;
523 	}
524 	return -EIO;
525 }
526 
527 /*
528  * Error hit kernel page.
529  * Do nothing, try to be lucky and not touch this instead. For a few cases we
530  * could be more sophisticated.
531  */
532 static int me_kernel(struct page *p, unsigned long pfn)
533 {
534 	return IGNORED;
535 }
536 
537 /*
538  * Page in unknown state. Do nothing.
539  */
540 static int me_unknown(struct page *p, unsigned long pfn)
541 {
542 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
543 	return FAILED;
544 }
545 
546 /*
547  * Clean (or cleaned) page cache page.
548  */
549 static int me_pagecache_clean(struct page *p, unsigned long pfn)
550 {
551 	int err;
552 	int ret = FAILED;
553 	struct address_space *mapping;
554 
555 	delete_from_lru_cache(p);
556 
557 	/*
558 	 * For anonymous pages we're done the only reference left
559 	 * should be the one m_f() holds.
560 	 */
561 	if (PageAnon(p))
562 		return RECOVERED;
563 
564 	/*
565 	 * Now truncate the page in the page cache. This is really
566 	 * more like a "temporary hole punch"
567 	 * Don't do this for block devices when someone else
568 	 * has a reference, because it could be file system metadata
569 	 * and that's not safe to truncate.
570 	 */
571 	mapping = page_mapping(p);
572 	if (!mapping) {
573 		/*
574 		 * Page has been teared down in the meanwhile
575 		 */
576 		return FAILED;
577 	}
578 
579 	/*
580 	 * Truncation is a bit tricky. Enable it per file system for now.
581 	 *
582 	 * Open: to take i_mutex or not for this? Right now we don't.
583 	 */
584 	if (mapping->a_ops->error_remove_page) {
585 		err = mapping->a_ops->error_remove_page(mapping, p);
586 		if (err != 0) {
587 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
588 					pfn, err);
589 		} else if (page_has_private(p) &&
590 				!try_to_release_page(p, GFP_NOIO)) {
591 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
592 		} else {
593 			ret = RECOVERED;
594 		}
595 	} else {
596 		/*
597 		 * If the file system doesn't support it just invalidate
598 		 * This fails on dirty or anything with private pages
599 		 */
600 		if (invalidate_inode_page(p))
601 			ret = RECOVERED;
602 		else
603 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
604 				pfn);
605 	}
606 	return ret;
607 }
608 
609 /*
610  * Dirty cache page page
611  * Issues: when the error hit a hole page the error is not properly
612  * propagated.
613  */
614 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
615 {
616 	struct address_space *mapping = page_mapping(p);
617 
618 	SetPageError(p);
619 	/* TBD: print more information about the file. */
620 	if (mapping) {
621 		/*
622 		 * IO error will be reported by write(), fsync(), etc.
623 		 * who check the mapping.
624 		 * This way the application knows that something went
625 		 * wrong with its dirty file data.
626 		 *
627 		 * There's one open issue:
628 		 *
629 		 * The EIO will be only reported on the next IO
630 		 * operation and then cleared through the IO map.
631 		 * Normally Linux has two mechanisms to pass IO error
632 		 * first through the AS_EIO flag in the address space
633 		 * and then through the PageError flag in the page.
634 		 * Since we drop pages on memory failure handling the
635 		 * only mechanism open to use is through AS_AIO.
636 		 *
637 		 * This has the disadvantage that it gets cleared on
638 		 * the first operation that returns an error, while
639 		 * the PageError bit is more sticky and only cleared
640 		 * when the page is reread or dropped.  If an
641 		 * application assumes it will always get error on
642 		 * fsync, but does other operations on the fd before
643 		 * and the page is dropped between then the error
644 		 * will not be properly reported.
645 		 *
646 		 * This can already happen even without hwpoisoned
647 		 * pages: first on metadata IO errors (which only
648 		 * report through AS_EIO) or when the page is dropped
649 		 * at the wrong time.
650 		 *
651 		 * So right now we assume that the application DTRT on
652 		 * the first EIO, but we're not worse than other parts
653 		 * of the kernel.
654 		 */
655 		mapping_set_error(mapping, EIO);
656 	}
657 
658 	return me_pagecache_clean(p, pfn);
659 }
660 
661 /*
662  * Clean and dirty swap cache.
663  *
664  * Dirty swap cache page is tricky to handle. The page could live both in page
665  * cache and swap cache(ie. page is freshly swapped in). So it could be
666  * referenced concurrently by 2 types of PTEs:
667  * normal PTEs and swap PTEs. We try to handle them consistently by calling
668  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
669  * and then
670  *      - clear dirty bit to prevent IO
671  *      - remove from LRU
672  *      - but keep in the swap cache, so that when we return to it on
673  *        a later page fault, we know the application is accessing
674  *        corrupted data and shall be killed (we installed simple
675  *        interception code in do_swap_page to catch it).
676  *
677  * Clean swap cache pages can be directly isolated. A later page fault will
678  * bring in the known good data from disk.
679  */
680 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
681 {
682 	ClearPageDirty(p);
683 	/* Trigger EIO in shmem: */
684 	ClearPageUptodate(p);
685 
686 	if (!delete_from_lru_cache(p))
687 		return DELAYED;
688 	else
689 		return FAILED;
690 }
691 
692 static int me_swapcache_clean(struct page *p, unsigned long pfn)
693 {
694 	delete_from_swap_cache(p);
695 
696 	if (!delete_from_lru_cache(p))
697 		return RECOVERED;
698 	else
699 		return FAILED;
700 }
701 
702 /*
703  * Huge pages. Needs work.
704  * Issues:
705  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
706  *   To narrow down kill region to one page, we need to break up pmd.
707  */
708 static int me_huge_page(struct page *p, unsigned long pfn)
709 {
710 	int res = 0;
711 	struct page *hpage = compound_head(p);
712 	/*
713 	 * We can safely recover from error on free or reserved (i.e.
714 	 * not in-use) hugepage by dequeuing it from freelist.
715 	 * To check whether a hugepage is in-use or not, we can't use
716 	 * page->lru because it can be used in other hugepage operations,
717 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
718 	 * So instead we use page_mapping() and PageAnon().
719 	 * We assume that this function is called with page lock held,
720 	 * so there is no race between isolation and mapping/unmapping.
721 	 */
722 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
723 		res = dequeue_hwpoisoned_huge_page(hpage);
724 		if (!res)
725 			return RECOVERED;
726 	}
727 	return DELAYED;
728 }
729 
730 /*
731  * Various page states we can handle.
732  *
733  * A page state is defined by its current page->flags bits.
734  * The table matches them in order and calls the right handler.
735  *
736  * This is quite tricky because we can access page at any time
737  * in its live cycle, so all accesses have to be extremely careful.
738  *
739  * This is not complete. More states could be added.
740  * For any missing state don't attempt recovery.
741  */
742 
743 #define dirty		(1UL << PG_dirty)
744 #define sc		(1UL << PG_swapcache)
745 #define unevict		(1UL << PG_unevictable)
746 #define mlock		(1UL << PG_mlocked)
747 #define writeback	(1UL << PG_writeback)
748 #define lru		(1UL << PG_lru)
749 #define swapbacked	(1UL << PG_swapbacked)
750 #define head		(1UL << PG_head)
751 #define tail		(1UL << PG_tail)
752 #define compound	(1UL << PG_compound)
753 #define slab		(1UL << PG_slab)
754 #define reserved	(1UL << PG_reserved)
755 
756 static struct page_state {
757 	unsigned long mask;
758 	unsigned long res;
759 	char *msg;
760 	int (*action)(struct page *p, unsigned long pfn);
761 } error_states[] = {
762 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
763 	/*
764 	 * free pages are specially detected outside this table:
765 	 * PG_buddy pages only make a small fraction of all free pages.
766 	 */
767 
768 	/*
769 	 * Could in theory check if slab page is free or if we can drop
770 	 * currently unused objects without touching them. But just
771 	 * treat it as standard kernel for now.
772 	 */
773 	{ slab,		slab,		"kernel slab",	me_kernel },
774 
775 #ifdef CONFIG_PAGEFLAGS_EXTENDED
776 	{ head,		head,		"huge",		me_huge_page },
777 	{ tail,		tail,		"huge",		me_huge_page },
778 #else
779 	{ compound,	compound,	"huge",		me_huge_page },
780 #endif
781 
782 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
783 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
784 
785 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
786 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
787 
788 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
789 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
790 
791 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
792 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
793 
794 	/*
795 	 * Catchall entry: must be at end.
796 	 */
797 	{ 0,		0,		"unknown page state",	me_unknown },
798 };
799 
800 #undef dirty
801 #undef sc
802 #undef unevict
803 #undef mlock
804 #undef writeback
805 #undef lru
806 #undef swapbacked
807 #undef head
808 #undef tail
809 #undef compound
810 #undef slab
811 #undef reserved
812 
813 static void action_result(unsigned long pfn, char *msg, int result)
814 {
815 	struct page *page = pfn_to_page(pfn);
816 
817 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
818 		pfn,
819 		PageDirty(page) ? "dirty " : "",
820 		msg, action_name[result]);
821 }
822 
823 static int page_action(struct page_state *ps, struct page *p,
824 			unsigned long pfn)
825 {
826 	int result;
827 	int count;
828 
829 	result = ps->action(p, pfn);
830 	action_result(pfn, ps->msg, result);
831 
832 	count = page_count(p) - 1;
833 	if (ps->action == me_swapcache_dirty && result == DELAYED)
834 		count--;
835 	if (count != 0) {
836 		printk(KERN_ERR
837 		       "MCE %#lx: %s page still referenced by %d users\n",
838 		       pfn, ps->msg, count);
839 		result = FAILED;
840 	}
841 
842 	/* Could do more checks here if page looks ok */
843 	/*
844 	 * Could adjust zone counters here to correct for the missing page.
845 	 */
846 
847 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
848 }
849 
850 /*
851  * Do all that is necessary to remove user space mappings. Unmap
852  * the pages and send SIGBUS to the processes if the data was dirty.
853  */
854 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
855 				  int trapno, int flags)
856 {
857 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
858 	struct address_space *mapping;
859 	LIST_HEAD(tokill);
860 	int ret;
861 	int kill = 1;
862 	struct page *hpage = compound_head(p);
863 	struct page *ppage;
864 
865 	if (PageReserved(p) || PageSlab(p))
866 		return SWAP_SUCCESS;
867 
868 	/*
869 	 * This check implies we don't kill processes if their pages
870 	 * are in the swap cache early. Those are always late kills.
871 	 */
872 	if (!page_mapped(hpage))
873 		return SWAP_SUCCESS;
874 
875 	if (PageKsm(p))
876 		return SWAP_FAIL;
877 
878 	if (PageSwapCache(p)) {
879 		printk(KERN_ERR
880 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
881 		ttu |= TTU_IGNORE_HWPOISON;
882 	}
883 
884 	/*
885 	 * Propagate the dirty bit from PTEs to struct page first, because we
886 	 * need this to decide if we should kill or just drop the page.
887 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
888 	 * be called inside page lock (it's recommended but not enforced).
889 	 */
890 	mapping = page_mapping(hpage);
891 	if (!PageDirty(hpage) && mapping &&
892 	    mapping_cap_writeback_dirty(mapping)) {
893 		if (page_mkclean(hpage)) {
894 			SetPageDirty(hpage);
895 		} else {
896 			kill = 0;
897 			ttu |= TTU_IGNORE_HWPOISON;
898 			printk(KERN_INFO
899 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
900 				pfn);
901 		}
902 	}
903 
904 	/*
905 	 * ppage: poisoned page
906 	 *   if p is regular page(4k page)
907 	 *        ppage == real poisoned page;
908 	 *   else p is hugetlb or THP, ppage == head page.
909 	 */
910 	ppage = hpage;
911 
912 	if (PageTransHuge(hpage)) {
913 		/*
914 		 * Verify that this isn't a hugetlbfs head page, the check for
915 		 * PageAnon is just for avoid tripping a split_huge_page
916 		 * internal debug check, as split_huge_page refuses to deal with
917 		 * anything that isn't an anon page. PageAnon can't go away fro
918 		 * under us because we hold a refcount on the hpage, without a
919 		 * refcount on the hpage. split_huge_page can't be safely called
920 		 * in the first place, having a refcount on the tail isn't
921 		 * enough * to be safe.
922 		 */
923 		if (!PageHuge(hpage) && PageAnon(hpage)) {
924 			if (unlikely(split_huge_page(hpage))) {
925 				/*
926 				 * FIXME: if splitting THP is failed, it is
927 				 * better to stop the following operation rather
928 				 * than causing panic by unmapping. System might
929 				 * survive if the page is freed later.
930 				 */
931 				printk(KERN_INFO
932 					"MCE %#lx: failed to split THP\n", pfn);
933 
934 				BUG_ON(!PageHWPoison(p));
935 				return SWAP_FAIL;
936 			}
937 			/* THP is split, so ppage should be the real poisoned page. */
938 			ppage = p;
939 		}
940 	}
941 
942 	/*
943 	 * First collect all the processes that have the page
944 	 * mapped in dirty form.  This has to be done before try_to_unmap,
945 	 * because ttu takes the rmap data structures down.
946 	 *
947 	 * Error handling: We ignore errors here because
948 	 * there's nothing that can be done.
949 	 */
950 	if (kill)
951 		collect_procs(ppage, &tokill);
952 
953 	if (hpage != ppage)
954 		lock_page(ppage);
955 
956 	ret = try_to_unmap(ppage, ttu);
957 	if (ret != SWAP_SUCCESS)
958 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
959 				pfn, page_mapcount(ppage));
960 
961 	if (hpage != ppage)
962 		unlock_page(ppage);
963 
964 	/*
965 	 * Now that the dirty bit has been propagated to the
966 	 * struct page and all unmaps done we can decide if
967 	 * killing is needed or not.  Only kill when the page
968 	 * was dirty, otherwise the tokill list is merely
969 	 * freed.  When there was a problem unmapping earlier
970 	 * use a more force-full uncatchable kill to prevent
971 	 * any accesses to the poisoned memory.
972 	 */
973 	kill_procs(&tokill, !!PageDirty(ppage), trapno,
974 		      ret != SWAP_SUCCESS, p, pfn, flags);
975 
976 	return ret;
977 }
978 
979 static void set_page_hwpoison_huge_page(struct page *hpage)
980 {
981 	int i;
982 	int nr_pages = 1 << compound_trans_order(hpage);
983 	for (i = 0; i < nr_pages; i++)
984 		SetPageHWPoison(hpage + i);
985 }
986 
987 static void clear_page_hwpoison_huge_page(struct page *hpage)
988 {
989 	int i;
990 	int nr_pages = 1 << compound_trans_order(hpage);
991 	for (i = 0; i < nr_pages; i++)
992 		ClearPageHWPoison(hpage + i);
993 }
994 
995 /**
996  * memory_failure - Handle memory failure of a page.
997  * @pfn: Page Number of the corrupted page
998  * @trapno: Trap number reported in the signal to user space.
999  * @flags: fine tune action taken
1000  *
1001  * This function is called by the low level machine check code
1002  * of an architecture when it detects hardware memory corruption
1003  * of a page. It tries its best to recover, which includes
1004  * dropping pages, killing processes etc.
1005  *
1006  * The function is primarily of use for corruptions that
1007  * happen outside the current execution context (e.g. when
1008  * detected by a background scrubber)
1009  *
1010  * Must run in process context (e.g. a work queue) with interrupts
1011  * enabled and no spinlocks hold.
1012  */
1013 int memory_failure(unsigned long pfn, int trapno, int flags)
1014 {
1015 	struct page_state *ps;
1016 	struct page *p;
1017 	struct page *hpage;
1018 	int res;
1019 	unsigned int nr_pages;
1020 
1021 	if (!sysctl_memory_failure_recovery)
1022 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1023 
1024 	if (!pfn_valid(pfn)) {
1025 		printk(KERN_ERR
1026 		       "MCE %#lx: memory outside kernel control\n",
1027 		       pfn);
1028 		return -ENXIO;
1029 	}
1030 
1031 	p = pfn_to_page(pfn);
1032 	hpage = compound_head(p);
1033 	if (TestSetPageHWPoison(p)) {
1034 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1035 		return 0;
1036 	}
1037 
1038 	nr_pages = 1 << compound_trans_order(hpage);
1039 	atomic_long_add(nr_pages, &mce_bad_pages);
1040 
1041 	/*
1042 	 * We need/can do nothing about count=0 pages.
1043 	 * 1) it's a free page, and therefore in safe hand:
1044 	 *    prep_new_page() will be the gate keeper.
1045 	 * 2) it's a free hugepage, which is also safe:
1046 	 *    an affected hugepage will be dequeued from hugepage freelist,
1047 	 *    so there's no concern about reusing it ever after.
1048 	 * 3) it's part of a non-compound high order page.
1049 	 *    Implies some kernel user: cannot stop them from
1050 	 *    R/W the page; let's pray that the page has been
1051 	 *    used and will be freed some time later.
1052 	 * In fact it's dangerous to directly bump up page count from 0,
1053 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1054 	 */
1055 	if (!(flags & MF_COUNT_INCREASED) &&
1056 		!get_page_unless_zero(hpage)) {
1057 		if (is_free_buddy_page(p)) {
1058 			action_result(pfn, "free buddy", DELAYED);
1059 			return 0;
1060 		} else if (PageHuge(hpage)) {
1061 			/*
1062 			 * Check "just unpoisoned", "filter hit", and
1063 			 * "race with other subpage."
1064 			 */
1065 			lock_page(hpage);
1066 			if (!PageHWPoison(hpage)
1067 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1068 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1069 				atomic_long_sub(nr_pages, &mce_bad_pages);
1070 				return 0;
1071 			}
1072 			set_page_hwpoison_huge_page(hpage);
1073 			res = dequeue_hwpoisoned_huge_page(hpage);
1074 			action_result(pfn, "free huge",
1075 				      res ? IGNORED : DELAYED);
1076 			unlock_page(hpage);
1077 			return res;
1078 		} else {
1079 			action_result(pfn, "high order kernel", IGNORED);
1080 			return -EBUSY;
1081 		}
1082 	}
1083 
1084 	/*
1085 	 * We ignore non-LRU pages for good reasons.
1086 	 * - PG_locked is only well defined for LRU pages and a few others
1087 	 * - to avoid races with __set_page_locked()
1088 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1089 	 * The check (unnecessarily) ignores LRU pages being isolated and
1090 	 * walked by the page reclaim code, however that's not a big loss.
1091 	 */
1092 	if (!PageHuge(p) && !PageTransTail(p)) {
1093 		if (!PageLRU(p))
1094 			shake_page(p, 0);
1095 		if (!PageLRU(p)) {
1096 			/*
1097 			 * shake_page could have turned it free.
1098 			 */
1099 			if (is_free_buddy_page(p)) {
1100 				action_result(pfn, "free buddy, 2nd try",
1101 						DELAYED);
1102 				return 0;
1103 			}
1104 			action_result(pfn, "non LRU", IGNORED);
1105 			put_page(p);
1106 			return -EBUSY;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Lock the page and wait for writeback to finish.
1112 	 * It's very difficult to mess with pages currently under IO
1113 	 * and in many cases impossible, so we just avoid it here.
1114 	 */
1115 	lock_page(hpage);
1116 
1117 	/*
1118 	 * unpoison always clear PG_hwpoison inside page lock
1119 	 */
1120 	if (!PageHWPoison(p)) {
1121 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1122 		res = 0;
1123 		goto out;
1124 	}
1125 	if (hwpoison_filter(p)) {
1126 		if (TestClearPageHWPoison(p))
1127 			atomic_long_sub(nr_pages, &mce_bad_pages);
1128 		unlock_page(hpage);
1129 		put_page(hpage);
1130 		return 0;
1131 	}
1132 
1133 	/*
1134 	 * For error on the tail page, we should set PG_hwpoison
1135 	 * on the head page to show that the hugepage is hwpoisoned
1136 	 */
1137 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1138 		action_result(pfn, "hugepage already hardware poisoned",
1139 				IGNORED);
1140 		unlock_page(hpage);
1141 		put_page(hpage);
1142 		return 0;
1143 	}
1144 	/*
1145 	 * Set PG_hwpoison on all pages in an error hugepage,
1146 	 * because containment is done in hugepage unit for now.
1147 	 * Since we have done TestSetPageHWPoison() for the head page with
1148 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1149 	 */
1150 	if (PageHuge(p))
1151 		set_page_hwpoison_huge_page(hpage);
1152 
1153 	wait_on_page_writeback(p);
1154 
1155 	/*
1156 	 * Now take care of user space mappings.
1157 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1158 	 */
1159 	if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
1160 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1161 		res = -EBUSY;
1162 		goto out;
1163 	}
1164 
1165 	/*
1166 	 * Torn down by someone else?
1167 	 */
1168 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1169 		action_result(pfn, "already truncated LRU", IGNORED);
1170 		res = -EBUSY;
1171 		goto out;
1172 	}
1173 
1174 	res = -EBUSY;
1175 	for (ps = error_states;; ps++) {
1176 		if ((p->flags & ps->mask) == ps->res) {
1177 			res = page_action(ps, p, pfn);
1178 			break;
1179 		}
1180 	}
1181 out:
1182 	unlock_page(hpage);
1183 	return res;
1184 }
1185 EXPORT_SYMBOL_GPL(memory_failure);
1186 
1187 #define MEMORY_FAILURE_FIFO_ORDER	4
1188 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1189 
1190 struct memory_failure_entry {
1191 	unsigned long pfn;
1192 	int trapno;
1193 	int flags;
1194 };
1195 
1196 struct memory_failure_cpu {
1197 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1198 		      MEMORY_FAILURE_FIFO_SIZE);
1199 	spinlock_t lock;
1200 	struct work_struct work;
1201 };
1202 
1203 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1204 
1205 /**
1206  * memory_failure_queue - Schedule handling memory failure of a page.
1207  * @pfn: Page Number of the corrupted page
1208  * @trapno: Trap number reported in the signal to user space.
1209  * @flags: Flags for memory failure handling
1210  *
1211  * This function is called by the low level hardware error handler
1212  * when it detects hardware memory corruption of a page. It schedules
1213  * the recovering of error page, including dropping pages, killing
1214  * processes etc.
1215  *
1216  * The function is primarily of use for corruptions that
1217  * happen outside the current execution context (e.g. when
1218  * detected by a background scrubber)
1219  *
1220  * Can run in IRQ context.
1221  */
1222 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1223 {
1224 	struct memory_failure_cpu *mf_cpu;
1225 	unsigned long proc_flags;
1226 	struct memory_failure_entry entry = {
1227 		.pfn =		pfn,
1228 		.trapno =	trapno,
1229 		.flags =	flags,
1230 	};
1231 
1232 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1233 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1234 	if (kfifo_put(&mf_cpu->fifo, &entry))
1235 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1236 	else
1237 		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1238 		       pfn);
1239 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1240 	put_cpu_var(memory_failure_cpu);
1241 }
1242 EXPORT_SYMBOL_GPL(memory_failure_queue);
1243 
1244 static void memory_failure_work_func(struct work_struct *work)
1245 {
1246 	struct memory_failure_cpu *mf_cpu;
1247 	struct memory_failure_entry entry = { 0, };
1248 	unsigned long proc_flags;
1249 	int gotten;
1250 
1251 	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1252 	for (;;) {
1253 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1254 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1255 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1256 		if (!gotten)
1257 			break;
1258 		memory_failure(entry.pfn, entry.trapno, entry.flags);
1259 	}
1260 }
1261 
1262 static int __init memory_failure_init(void)
1263 {
1264 	struct memory_failure_cpu *mf_cpu;
1265 	int cpu;
1266 
1267 	for_each_possible_cpu(cpu) {
1268 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1269 		spin_lock_init(&mf_cpu->lock);
1270 		INIT_KFIFO(mf_cpu->fifo);
1271 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1272 	}
1273 
1274 	return 0;
1275 }
1276 core_initcall(memory_failure_init);
1277 
1278 /**
1279  * unpoison_memory - Unpoison a previously poisoned page
1280  * @pfn: Page number of the to be unpoisoned page
1281  *
1282  * Software-unpoison a page that has been poisoned by
1283  * memory_failure() earlier.
1284  *
1285  * This is only done on the software-level, so it only works
1286  * for linux injected failures, not real hardware failures
1287  *
1288  * Returns 0 for success, otherwise -errno.
1289  */
1290 int unpoison_memory(unsigned long pfn)
1291 {
1292 	struct page *page;
1293 	struct page *p;
1294 	int freeit = 0;
1295 	unsigned int nr_pages;
1296 
1297 	if (!pfn_valid(pfn))
1298 		return -ENXIO;
1299 
1300 	p = pfn_to_page(pfn);
1301 	page = compound_head(p);
1302 
1303 	if (!PageHWPoison(p)) {
1304 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1305 		return 0;
1306 	}
1307 
1308 	nr_pages = 1 << compound_trans_order(page);
1309 
1310 	if (!get_page_unless_zero(page)) {
1311 		/*
1312 		 * Since HWPoisoned hugepage should have non-zero refcount,
1313 		 * race between memory failure and unpoison seems to happen.
1314 		 * In such case unpoison fails and memory failure runs
1315 		 * to the end.
1316 		 */
1317 		if (PageHuge(page)) {
1318 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1319 			return 0;
1320 		}
1321 		if (TestClearPageHWPoison(p))
1322 			atomic_long_sub(nr_pages, &mce_bad_pages);
1323 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1324 		return 0;
1325 	}
1326 
1327 	lock_page(page);
1328 	/*
1329 	 * This test is racy because PG_hwpoison is set outside of page lock.
1330 	 * That's acceptable because that won't trigger kernel panic. Instead,
1331 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1332 	 * the free buddy page pool.
1333 	 */
1334 	if (TestClearPageHWPoison(page)) {
1335 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1336 		atomic_long_sub(nr_pages, &mce_bad_pages);
1337 		freeit = 1;
1338 		if (PageHuge(page))
1339 			clear_page_hwpoison_huge_page(page);
1340 	}
1341 	unlock_page(page);
1342 
1343 	put_page(page);
1344 	if (freeit)
1345 		put_page(page);
1346 
1347 	return 0;
1348 }
1349 EXPORT_SYMBOL(unpoison_memory);
1350 
1351 static struct page *new_page(struct page *p, unsigned long private, int **x)
1352 {
1353 	int nid = page_to_nid(p);
1354 	if (PageHuge(p))
1355 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1356 						   nid);
1357 	else
1358 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1359 }
1360 
1361 /*
1362  * Safely get reference count of an arbitrary page.
1363  * Returns 0 for a free page, -EIO for a zero refcount page
1364  * that is not free, and 1 for any other page type.
1365  * For 1 the page is returned with increased page count, otherwise not.
1366  */
1367 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1368 {
1369 	int ret;
1370 
1371 	if (flags & MF_COUNT_INCREASED)
1372 		return 1;
1373 
1374 	/*
1375 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1376 	 * This is a big hammer, a better would be nicer.
1377 	 */
1378 	lock_memory_hotplug();
1379 
1380 	/*
1381 	 * Isolate the page, so that it doesn't get reallocated if it
1382 	 * was free.
1383 	 */
1384 	set_migratetype_isolate(p);
1385 	/*
1386 	 * When the target page is a free hugepage, just remove it
1387 	 * from free hugepage list.
1388 	 */
1389 	if (!get_page_unless_zero(compound_head(p))) {
1390 		if (PageHuge(p)) {
1391 			pr_info("get_any_page: %#lx free huge page\n", pfn);
1392 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1393 		} else if (is_free_buddy_page(p)) {
1394 			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1395 			/* Set hwpoison bit while page is still isolated */
1396 			SetPageHWPoison(p);
1397 			ret = 0;
1398 		} else {
1399 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1400 				pfn, p->flags);
1401 			ret = -EIO;
1402 		}
1403 	} else {
1404 		/* Not a free page */
1405 		ret = 1;
1406 	}
1407 	unset_migratetype_isolate(p);
1408 	unlock_memory_hotplug();
1409 	return ret;
1410 }
1411 
1412 static int soft_offline_huge_page(struct page *page, int flags)
1413 {
1414 	int ret;
1415 	unsigned long pfn = page_to_pfn(page);
1416 	struct page *hpage = compound_head(page);
1417 	LIST_HEAD(pagelist);
1418 
1419 	ret = get_any_page(page, pfn, flags);
1420 	if (ret < 0)
1421 		return ret;
1422 	if (ret == 0)
1423 		goto done;
1424 
1425 	if (PageHWPoison(hpage)) {
1426 		put_page(hpage);
1427 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1428 		return -EBUSY;
1429 	}
1430 
1431 	/* Keep page count to indicate a given hugepage is isolated. */
1432 
1433 	list_add(&hpage->lru, &pagelist);
1434 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1435 				true);
1436 	if (ret) {
1437 		struct page *page1, *page2;
1438 		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1439 			put_page(page1);
1440 
1441 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1442 			pfn, ret, page->flags);
1443 		if (ret > 0)
1444 			ret = -EIO;
1445 		return ret;
1446 	}
1447 done:
1448 	if (!PageHWPoison(hpage))
1449 		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1450 	set_page_hwpoison_huge_page(hpage);
1451 	dequeue_hwpoisoned_huge_page(hpage);
1452 	/* keep elevated page count for bad page */
1453 	return ret;
1454 }
1455 
1456 /**
1457  * soft_offline_page - Soft offline a page.
1458  * @page: page to offline
1459  * @flags: flags. Same as memory_failure().
1460  *
1461  * Returns 0 on success, otherwise negated errno.
1462  *
1463  * Soft offline a page, by migration or invalidation,
1464  * without killing anything. This is for the case when
1465  * a page is not corrupted yet (so it's still valid to access),
1466  * but has had a number of corrected errors and is better taken
1467  * out.
1468  *
1469  * The actual policy on when to do that is maintained by
1470  * user space.
1471  *
1472  * This should never impact any application or cause data loss,
1473  * however it might take some time.
1474  *
1475  * This is not a 100% solution for all memory, but tries to be
1476  * ``good enough'' for the majority of memory.
1477  */
1478 int soft_offline_page(struct page *page, int flags)
1479 {
1480 	int ret;
1481 	unsigned long pfn = page_to_pfn(page);
1482 
1483 	if (PageHuge(page))
1484 		return soft_offline_huge_page(page, flags);
1485 
1486 	ret = get_any_page(page, pfn, flags);
1487 	if (ret < 0)
1488 		return ret;
1489 	if (ret == 0)
1490 		goto done;
1491 
1492 	/*
1493 	 * Page cache page we can handle?
1494 	 */
1495 	if (!PageLRU(page)) {
1496 		/*
1497 		 * Try to free it.
1498 		 */
1499 		put_page(page);
1500 		shake_page(page, 1);
1501 
1502 		/*
1503 		 * Did it turn free?
1504 		 */
1505 		ret = get_any_page(page, pfn, 0);
1506 		if (ret < 0)
1507 			return ret;
1508 		if (ret == 0)
1509 			goto done;
1510 	}
1511 	if (!PageLRU(page)) {
1512 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1513 			pfn, page->flags);
1514 		return -EIO;
1515 	}
1516 
1517 	lock_page(page);
1518 	wait_on_page_writeback(page);
1519 
1520 	/*
1521 	 * Synchronized using the page lock with memory_failure()
1522 	 */
1523 	if (PageHWPoison(page)) {
1524 		unlock_page(page);
1525 		put_page(page);
1526 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1527 		return -EBUSY;
1528 	}
1529 
1530 	/*
1531 	 * Try to invalidate first. This should work for
1532 	 * non dirty unmapped page cache pages.
1533 	 */
1534 	ret = invalidate_inode_page(page);
1535 	unlock_page(page);
1536 	/*
1537 	 * RED-PEN would be better to keep it isolated here, but we
1538 	 * would need to fix isolation locking first.
1539 	 */
1540 	if (ret == 1) {
1541 		put_page(page);
1542 		ret = 0;
1543 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1544 		goto done;
1545 	}
1546 
1547 	/*
1548 	 * Simple invalidation didn't work.
1549 	 * Try to migrate to a new page instead. migrate.c
1550 	 * handles a large number of cases for us.
1551 	 */
1552 	ret = isolate_lru_page(page);
1553 	/*
1554 	 * Drop page reference which is came from get_any_page()
1555 	 * successful isolate_lru_page() already took another one.
1556 	 */
1557 	put_page(page);
1558 	if (!ret) {
1559 		LIST_HEAD(pagelist);
1560 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1561 					    page_is_file_cache(page));
1562 		list_add(&page->lru, &pagelist);
1563 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1564 							0, MIGRATE_SYNC);
1565 		if (ret) {
1566 			putback_lru_pages(&pagelist);
1567 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1568 				pfn, ret, page->flags);
1569 			if (ret > 0)
1570 				ret = -EIO;
1571 		}
1572 	} else {
1573 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1574 			pfn, ret, page_count(page), page->flags);
1575 	}
1576 	if (ret)
1577 		return ret;
1578 
1579 done:
1580 	atomic_long_add(1, &mce_bad_pages);
1581 	SetPageHWPoison(page);
1582 	/* keep elevated page count for bad page */
1583 	return ret;
1584 }
1585