1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include <linux/pagewalk.h> 60 #include "internal.h" 61 #include "ras/ras_event.h" 62 63 int sysctl_memory_failure_early_kill __read_mostly = 0; 64 65 int sysctl_memory_failure_recovery __read_mostly = 1; 66 67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 68 69 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 70 { 71 if (hugepage_or_freepage) { 72 /* 73 * Doing this check for free pages is also fine since dissolve_free_huge_page 74 * returns 0 for non-hugetlb pages as well. 75 */ 76 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page)) 77 /* 78 * We could fail to take off the target page from buddy 79 * for example due to racy page allocation, but that's 80 * acceptable because soft-offlined page is not broken 81 * and if someone really want to use it, they should 82 * take it. 83 */ 84 return false; 85 } 86 87 SetPageHWPoison(page); 88 if (release) 89 put_page(page); 90 page_ref_inc(page); 91 num_poisoned_pages_inc(); 92 93 return true; 94 } 95 96 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 97 98 u32 hwpoison_filter_enable = 0; 99 u32 hwpoison_filter_dev_major = ~0U; 100 u32 hwpoison_filter_dev_minor = ~0U; 101 u64 hwpoison_filter_flags_mask; 102 u64 hwpoison_filter_flags_value; 103 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 105 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 107 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 108 109 static int hwpoison_filter_dev(struct page *p) 110 { 111 struct address_space *mapping; 112 dev_t dev; 113 114 if (hwpoison_filter_dev_major == ~0U && 115 hwpoison_filter_dev_minor == ~0U) 116 return 0; 117 118 /* 119 * page_mapping() does not accept slab pages. 120 */ 121 if (PageSlab(p)) 122 return -EINVAL; 123 124 mapping = page_mapping(p); 125 if (mapping == NULL || mapping->host == NULL) 126 return -EINVAL; 127 128 dev = mapping->host->i_sb->s_dev; 129 if (hwpoison_filter_dev_major != ~0U && 130 hwpoison_filter_dev_major != MAJOR(dev)) 131 return -EINVAL; 132 if (hwpoison_filter_dev_minor != ~0U && 133 hwpoison_filter_dev_minor != MINOR(dev)) 134 return -EINVAL; 135 136 return 0; 137 } 138 139 static int hwpoison_filter_flags(struct page *p) 140 { 141 if (!hwpoison_filter_flags_mask) 142 return 0; 143 144 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 145 hwpoison_filter_flags_value) 146 return 0; 147 else 148 return -EINVAL; 149 } 150 151 /* 152 * This allows stress tests to limit test scope to a collection of tasks 153 * by putting them under some memcg. This prevents killing unrelated/important 154 * processes such as /sbin/init. Note that the target task may share clean 155 * pages with init (eg. libc text), which is harmless. If the target task 156 * share _dirty_ pages with another task B, the test scheme must make sure B 157 * is also included in the memcg. At last, due to race conditions this filter 158 * can only guarantee that the page either belongs to the memcg tasks, or is 159 * a freed page. 160 */ 161 #ifdef CONFIG_MEMCG 162 u64 hwpoison_filter_memcg; 163 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 164 static int hwpoison_filter_task(struct page *p) 165 { 166 if (!hwpoison_filter_memcg) 167 return 0; 168 169 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 170 return -EINVAL; 171 172 return 0; 173 } 174 #else 175 static int hwpoison_filter_task(struct page *p) { return 0; } 176 #endif 177 178 int hwpoison_filter(struct page *p) 179 { 180 if (!hwpoison_filter_enable) 181 return 0; 182 183 if (hwpoison_filter_dev(p)) 184 return -EINVAL; 185 186 if (hwpoison_filter_flags(p)) 187 return -EINVAL; 188 189 if (hwpoison_filter_task(p)) 190 return -EINVAL; 191 192 return 0; 193 } 194 #else 195 int hwpoison_filter(struct page *p) 196 { 197 return 0; 198 } 199 #endif 200 201 EXPORT_SYMBOL_GPL(hwpoison_filter); 202 203 /* 204 * Kill all processes that have a poisoned page mapped and then isolate 205 * the page. 206 * 207 * General strategy: 208 * Find all processes having the page mapped and kill them. 209 * But we keep a page reference around so that the page is not 210 * actually freed yet. 211 * Then stash the page away 212 * 213 * There's no convenient way to get back to mapped processes 214 * from the VMAs. So do a brute-force search over all 215 * running processes. 216 * 217 * Remember that machine checks are not common (or rather 218 * if they are common you have other problems), so this shouldn't 219 * be a performance issue. 220 * 221 * Also there are some races possible while we get from the 222 * error detection to actually handle it. 223 */ 224 225 struct to_kill { 226 struct list_head nd; 227 struct task_struct *tsk; 228 unsigned long addr; 229 short size_shift; 230 }; 231 232 /* 233 * Send all the processes who have the page mapped a signal. 234 * ``action optional'' if they are not immediately affected by the error 235 * ``action required'' if error happened in current execution context 236 */ 237 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 238 { 239 struct task_struct *t = tk->tsk; 240 short addr_lsb = tk->size_shift; 241 int ret = 0; 242 243 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 244 pfn, t->comm, t->pid); 245 246 if (flags & MF_ACTION_REQUIRED) { 247 if (t == current) 248 ret = force_sig_mceerr(BUS_MCEERR_AR, 249 (void __user *)tk->addr, addr_lsb); 250 else 251 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */ 252 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 253 addr_lsb, t); 254 } else { 255 /* 256 * Don't use force here, it's convenient if the signal 257 * can be temporarily blocked. 258 * This could cause a loop when the user sets SIGBUS 259 * to SIG_IGN, but hopefully no one will do that? 260 */ 261 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 262 addr_lsb, t); /* synchronous? */ 263 } 264 if (ret < 0) 265 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 266 t->comm, t->pid, ret); 267 return ret; 268 } 269 270 /* 271 * Unknown page type encountered. Try to check whether it can turn PageLRU by 272 * lru_add_drain_all, or a free page by reclaiming slabs when possible. 273 */ 274 void shake_page(struct page *p, int access) 275 { 276 if (PageHuge(p)) 277 return; 278 279 if (!PageSlab(p)) { 280 lru_add_drain_all(); 281 if (PageLRU(p) || is_free_buddy_page(p)) 282 return; 283 } 284 285 /* 286 * Only call shrink_node_slabs here (which would also shrink 287 * other caches) if access is not potentially fatal. 288 */ 289 if (access) 290 drop_slab_node(page_to_nid(p)); 291 } 292 EXPORT_SYMBOL_GPL(shake_page); 293 294 static unsigned long dev_pagemap_mapping_shift(struct page *page, 295 struct vm_area_struct *vma) 296 { 297 unsigned long address = vma_address(page, vma); 298 pgd_t *pgd; 299 p4d_t *p4d; 300 pud_t *pud; 301 pmd_t *pmd; 302 pte_t *pte; 303 304 pgd = pgd_offset(vma->vm_mm, address); 305 if (!pgd_present(*pgd)) 306 return 0; 307 p4d = p4d_offset(pgd, address); 308 if (!p4d_present(*p4d)) 309 return 0; 310 pud = pud_offset(p4d, address); 311 if (!pud_present(*pud)) 312 return 0; 313 if (pud_devmap(*pud)) 314 return PUD_SHIFT; 315 pmd = pmd_offset(pud, address); 316 if (!pmd_present(*pmd)) 317 return 0; 318 if (pmd_devmap(*pmd)) 319 return PMD_SHIFT; 320 pte = pte_offset_map(pmd, address); 321 if (!pte_present(*pte)) 322 return 0; 323 if (pte_devmap(*pte)) 324 return PAGE_SHIFT; 325 return 0; 326 } 327 328 /* 329 * Failure handling: if we can't find or can't kill a process there's 330 * not much we can do. We just print a message and ignore otherwise. 331 */ 332 333 /* 334 * Schedule a process for later kill. 335 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 336 */ 337 static void add_to_kill(struct task_struct *tsk, struct page *p, 338 struct vm_area_struct *vma, 339 struct list_head *to_kill) 340 { 341 struct to_kill *tk; 342 343 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 344 if (!tk) { 345 pr_err("Memory failure: Out of memory while machine check handling\n"); 346 return; 347 } 348 349 tk->addr = page_address_in_vma(p, vma); 350 if (is_zone_device_page(p)) 351 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 352 else 353 tk->size_shift = page_shift(compound_head(p)); 354 355 /* 356 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 357 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 358 * so "tk->size_shift == 0" effectively checks no mapping on 359 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 360 * to a process' address space, it's possible not all N VMAs 361 * contain mappings for the page, but at least one VMA does. 362 * Only deliver SIGBUS with payload derived from the VMA that 363 * has a mapping for the page. 364 */ 365 if (tk->addr == -EFAULT) { 366 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 367 page_to_pfn(p), tsk->comm); 368 } else if (tk->size_shift == 0) { 369 kfree(tk); 370 return; 371 } 372 373 get_task_struct(tsk); 374 tk->tsk = tsk; 375 list_add_tail(&tk->nd, to_kill); 376 } 377 378 /* 379 * Kill the processes that have been collected earlier. 380 * 381 * Only do anything when DOIT is set, otherwise just free the list 382 * (this is used for clean pages which do not need killing) 383 * Also when FAIL is set do a force kill because something went 384 * wrong earlier. 385 */ 386 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 387 unsigned long pfn, int flags) 388 { 389 struct to_kill *tk, *next; 390 391 list_for_each_entry_safe (tk, next, to_kill, nd) { 392 if (forcekill) { 393 /* 394 * In case something went wrong with munmapping 395 * make sure the process doesn't catch the 396 * signal and then access the memory. Just kill it. 397 */ 398 if (fail || tk->addr == -EFAULT) { 399 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 400 pfn, tk->tsk->comm, tk->tsk->pid); 401 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 402 tk->tsk, PIDTYPE_PID); 403 } 404 405 /* 406 * In theory the process could have mapped 407 * something else on the address in-between. We could 408 * check for that, but we need to tell the 409 * process anyways. 410 */ 411 else if (kill_proc(tk, pfn, flags) < 0) 412 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 413 pfn, tk->tsk->comm, tk->tsk->pid); 414 } 415 put_task_struct(tk->tsk); 416 kfree(tk); 417 } 418 } 419 420 /* 421 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 422 * on behalf of the thread group. Return task_struct of the (first found) 423 * dedicated thread if found, and return NULL otherwise. 424 * 425 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 426 * have to call rcu_read_lock/unlock() in this function. 427 */ 428 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 429 { 430 struct task_struct *t; 431 432 for_each_thread(tsk, t) { 433 if (t->flags & PF_MCE_PROCESS) { 434 if (t->flags & PF_MCE_EARLY) 435 return t; 436 } else { 437 if (sysctl_memory_failure_early_kill) 438 return t; 439 } 440 } 441 return NULL; 442 } 443 444 /* 445 * Determine whether a given process is "early kill" process which expects 446 * to be signaled when some page under the process is hwpoisoned. 447 * Return task_struct of the dedicated thread (main thread unless explicitly 448 * specified) if the process is "early kill" and otherwise returns NULL. 449 * 450 * Note that the above is true for Action Optional case. For Action Required 451 * case, it's only meaningful to the current thread which need to be signaled 452 * with SIGBUS, this error is Action Optional for other non current 453 * processes sharing the same error page,if the process is "early kill", the 454 * task_struct of the dedicated thread will also be returned. 455 */ 456 static struct task_struct *task_early_kill(struct task_struct *tsk, 457 int force_early) 458 { 459 if (!tsk->mm) 460 return NULL; 461 /* 462 * Comparing ->mm here because current task might represent 463 * a subthread, while tsk always points to the main thread. 464 */ 465 if (force_early && tsk->mm == current->mm) 466 return current; 467 468 return find_early_kill_thread(tsk); 469 } 470 471 /* 472 * Collect processes when the error hit an anonymous page. 473 */ 474 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 475 int force_early) 476 { 477 struct vm_area_struct *vma; 478 struct task_struct *tsk; 479 struct anon_vma *av; 480 pgoff_t pgoff; 481 482 av = page_lock_anon_vma_read(page); 483 if (av == NULL) /* Not actually mapped anymore */ 484 return; 485 486 pgoff = page_to_pgoff(page); 487 read_lock(&tasklist_lock); 488 for_each_process (tsk) { 489 struct anon_vma_chain *vmac; 490 struct task_struct *t = task_early_kill(tsk, force_early); 491 492 if (!t) 493 continue; 494 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 495 pgoff, pgoff) { 496 vma = vmac->vma; 497 if (!page_mapped_in_vma(page, vma)) 498 continue; 499 if (vma->vm_mm == t->mm) 500 add_to_kill(t, page, vma, to_kill); 501 } 502 } 503 read_unlock(&tasklist_lock); 504 page_unlock_anon_vma_read(av); 505 } 506 507 /* 508 * Collect processes when the error hit a file mapped page. 509 */ 510 static void collect_procs_file(struct page *page, struct list_head *to_kill, 511 int force_early) 512 { 513 struct vm_area_struct *vma; 514 struct task_struct *tsk; 515 struct address_space *mapping = page->mapping; 516 pgoff_t pgoff; 517 518 i_mmap_lock_read(mapping); 519 read_lock(&tasklist_lock); 520 pgoff = page_to_pgoff(page); 521 for_each_process(tsk) { 522 struct task_struct *t = task_early_kill(tsk, force_early); 523 524 if (!t) 525 continue; 526 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 527 pgoff) { 528 /* 529 * Send early kill signal to tasks where a vma covers 530 * the page but the corrupted page is not necessarily 531 * mapped it in its pte. 532 * Assume applications who requested early kill want 533 * to be informed of all such data corruptions. 534 */ 535 if (vma->vm_mm == t->mm) 536 add_to_kill(t, page, vma, to_kill); 537 } 538 } 539 read_unlock(&tasklist_lock); 540 i_mmap_unlock_read(mapping); 541 } 542 543 /* 544 * Collect the processes who have the corrupted page mapped to kill. 545 */ 546 static void collect_procs(struct page *page, struct list_head *tokill, 547 int force_early) 548 { 549 if (!page->mapping) 550 return; 551 552 if (PageAnon(page)) 553 collect_procs_anon(page, tokill, force_early); 554 else 555 collect_procs_file(page, tokill, force_early); 556 } 557 558 struct hwp_walk { 559 struct to_kill tk; 560 unsigned long pfn; 561 int flags; 562 }; 563 564 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 565 { 566 tk->addr = addr; 567 tk->size_shift = shift; 568 } 569 570 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 571 unsigned long poisoned_pfn, struct to_kill *tk) 572 { 573 unsigned long pfn = 0; 574 575 if (pte_present(pte)) { 576 pfn = pte_pfn(pte); 577 } else { 578 swp_entry_t swp = pte_to_swp_entry(pte); 579 580 if (is_hwpoison_entry(swp)) 581 pfn = hwpoison_entry_to_pfn(swp); 582 } 583 584 if (!pfn || pfn != poisoned_pfn) 585 return 0; 586 587 set_to_kill(tk, addr, shift); 588 return 1; 589 } 590 591 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 592 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 593 struct hwp_walk *hwp) 594 { 595 pmd_t pmd = *pmdp; 596 unsigned long pfn; 597 unsigned long hwpoison_vaddr; 598 599 if (!pmd_present(pmd)) 600 return 0; 601 pfn = pmd_pfn(pmd); 602 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 603 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 604 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 605 return 1; 606 } 607 return 0; 608 } 609 #else 610 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 611 struct hwp_walk *hwp) 612 { 613 return 0; 614 } 615 #endif 616 617 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 618 unsigned long end, struct mm_walk *walk) 619 { 620 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 621 int ret = 0; 622 pte_t *ptep; 623 spinlock_t *ptl; 624 625 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 626 if (ptl) { 627 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 628 spin_unlock(ptl); 629 goto out; 630 } 631 632 if (pmd_trans_unstable(pmdp)) 633 goto out; 634 635 ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl); 636 for (; addr != end; ptep++, addr += PAGE_SIZE) { 637 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 638 hwp->pfn, &hwp->tk); 639 if (ret == 1) 640 break; 641 } 642 pte_unmap_unlock(ptep - 1, ptl); 643 out: 644 cond_resched(); 645 return ret; 646 } 647 648 #ifdef CONFIG_HUGETLB_PAGE 649 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 650 unsigned long addr, unsigned long end, 651 struct mm_walk *walk) 652 { 653 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 654 pte_t pte = huge_ptep_get(ptep); 655 struct hstate *h = hstate_vma(walk->vma); 656 657 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 658 hwp->pfn, &hwp->tk); 659 } 660 #else 661 #define hwpoison_hugetlb_range NULL 662 #endif 663 664 static struct mm_walk_ops hwp_walk_ops = { 665 .pmd_entry = hwpoison_pte_range, 666 .hugetlb_entry = hwpoison_hugetlb_range, 667 }; 668 669 /* 670 * Sends SIGBUS to the current process with error info. 671 * 672 * This function is intended to handle "Action Required" MCEs on already 673 * hardware poisoned pages. They could happen, for example, when 674 * memory_failure() failed to unmap the error page at the first call, or 675 * when multiple local machine checks happened on different CPUs. 676 * 677 * MCE handler currently has no easy access to the error virtual address, 678 * so this function walks page table to find it. The returned virtual address 679 * is proper in most cases, but it could be wrong when the application 680 * process has multiple entries mapping the error page. 681 */ 682 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 683 int flags) 684 { 685 int ret; 686 struct hwp_walk priv = { 687 .pfn = pfn, 688 }; 689 priv.tk.tsk = p; 690 691 mmap_read_lock(p->mm); 692 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 693 (void *)&priv); 694 if (ret == 1 && priv.tk.addr) 695 kill_proc(&priv.tk, pfn, flags); 696 mmap_read_unlock(p->mm); 697 return ret ? -EFAULT : -EHWPOISON; 698 } 699 700 static const char *action_name[] = { 701 [MF_IGNORED] = "Ignored", 702 [MF_FAILED] = "Failed", 703 [MF_DELAYED] = "Delayed", 704 [MF_RECOVERED] = "Recovered", 705 }; 706 707 static const char * const action_page_types[] = { 708 [MF_MSG_KERNEL] = "reserved kernel page", 709 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 710 [MF_MSG_SLAB] = "kernel slab page", 711 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 712 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 713 [MF_MSG_HUGE] = "huge page", 714 [MF_MSG_FREE_HUGE] = "free huge page", 715 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 716 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 717 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 718 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 719 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 720 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 721 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 722 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 723 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 724 [MF_MSG_CLEAN_LRU] = "clean LRU page", 725 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 726 [MF_MSG_BUDDY] = "free buddy page", 727 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 728 [MF_MSG_DAX] = "dax page", 729 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 730 [MF_MSG_UNKNOWN] = "unknown page", 731 }; 732 733 /* 734 * XXX: It is possible that a page is isolated from LRU cache, 735 * and then kept in swap cache or failed to remove from page cache. 736 * The page count will stop it from being freed by unpoison. 737 * Stress tests should be aware of this memory leak problem. 738 */ 739 static int delete_from_lru_cache(struct page *p) 740 { 741 if (!isolate_lru_page(p)) { 742 /* 743 * Clear sensible page flags, so that the buddy system won't 744 * complain when the page is unpoison-and-freed. 745 */ 746 ClearPageActive(p); 747 ClearPageUnevictable(p); 748 749 /* 750 * Poisoned page might never drop its ref count to 0 so we have 751 * to uncharge it manually from its memcg. 752 */ 753 mem_cgroup_uncharge(p); 754 755 /* 756 * drop the page count elevated by isolate_lru_page() 757 */ 758 put_page(p); 759 return 0; 760 } 761 return -EIO; 762 } 763 764 static int truncate_error_page(struct page *p, unsigned long pfn, 765 struct address_space *mapping) 766 { 767 int ret = MF_FAILED; 768 769 if (mapping->a_ops->error_remove_page) { 770 int err = mapping->a_ops->error_remove_page(mapping, p); 771 772 if (err != 0) { 773 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 774 pfn, err); 775 } else if (page_has_private(p) && 776 !try_to_release_page(p, GFP_NOIO)) { 777 pr_info("Memory failure: %#lx: failed to release buffers\n", 778 pfn); 779 } else { 780 ret = MF_RECOVERED; 781 } 782 } else { 783 /* 784 * If the file system doesn't support it just invalidate 785 * This fails on dirty or anything with private pages 786 */ 787 if (invalidate_inode_page(p)) 788 ret = MF_RECOVERED; 789 else 790 pr_info("Memory failure: %#lx: Failed to invalidate\n", 791 pfn); 792 } 793 794 return ret; 795 } 796 797 /* 798 * Error hit kernel page. 799 * Do nothing, try to be lucky and not touch this instead. For a few cases we 800 * could be more sophisticated. 801 */ 802 static int me_kernel(struct page *p, unsigned long pfn) 803 { 804 unlock_page(p); 805 return MF_IGNORED; 806 } 807 808 /* 809 * Page in unknown state. Do nothing. 810 */ 811 static int me_unknown(struct page *p, unsigned long pfn) 812 { 813 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 814 unlock_page(p); 815 return MF_FAILED; 816 } 817 818 /* 819 * Clean (or cleaned) page cache page. 820 */ 821 static int me_pagecache_clean(struct page *p, unsigned long pfn) 822 { 823 int ret; 824 struct address_space *mapping; 825 826 delete_from_lru_cache(p); 827 828 /* 829 * For anonymous pages we're done the only reference left 830 * should be the one m_f() holds. 831 */ 832 if (PageAnon(p)) { 833 ret = MF_RECOVERED; 834 goto out; 835 } 836 837 /* 838 * Now truncate the page in the page cache. This is really 839 * more like a "temporary hole punch" 840 * Don't do this for block devices when someone else 841 * has a reference, because it could be file system metadata 842 * and that's not safe to truncate. 843 */ 844 mapping = page_mapping(p); 845 if (!mapping) { 846 /* 847 * Page has been teared down in the meanwhile 848 */ 849 ret = MF_FAILED; 850 goto out; 851 } 852 853 /* 854 * Truncation is a bit tricky. Enable it per file system for now. 855 * 856 * Open: to take i_mutex or not for this? Right now we don't. 857 */ 858 ret = truncate_error_page(p, pfn, mapping); 859 out: 860 unlock_page(p); 861 return ret; 862 } 863 864 /* 865 * Dirty pagecache page 866 * Issues: when the error hit a hole page the error is not properly 867 * propagated. 868 */ 869 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 870 { 871 struct address_space *mapping = page_mapping(p); 872 873 SetPageError(p); 874 /* TBD: print more information about the file. */ 875 if (mapping) { 876 /* 877 * IO error will be reported by write(), fsync(), etc. 878 * who check the mapping. 879 * This way the application knows that something went 880 * wrong with its dirty file data. 881 * 882 * There's one open issue: 883 * 884 * The EIO will be only reported on the next IO 885 * operation and then cleared through the IO map. 886 * Normally Linux has two mechanisms to pass IO error 887 * first through the AS_EIO flag in the address space 888 * and then through the PageError flag in the page. 889 * Since we drop pages on memory failure handling the 890 * only mechanism open to use is through AS_AIO. 891 * 892 * This has the disadvantage that it gets cleared on 893 * the first operation that returns an error, while 894 * the PageError bit is more sticky and only cleared 895 * when the page is reread or dropped. If an 896 * application assumes it will always get error on 897 * fsync, but does other operations on the fd before 898 * and the page is dropped between then the error 899 * will not be properly reported. 900 * 901 * This can already happen even without hwpoisoned 902 * pages: first on metadata IO errors (which only 903 * report through AS_EIO) or when the page is dropped 904 * at the wrong time. 905 * 906 * So right now we assume that the application DTRT on 907 * the first EIO, but we're not worse than other parts 908 * of the kernel. 909 */ 910 mapping_set_error(mapping, -EIO); 911 } 912 913 return me_pagecache_clean(p, pfn); 914 } 915 916 /* 917 * Clean and dirty swap cache. 918 * 919 * Dirty swap cache page is tricky to handle. The page could live both in page 920 * cache and swap cache(ie. page is freshly swapped in). So it could be 921 * referenced concurrently by 2 types of PTEs: 922 * normal PTEs and swap PTEs. We try to handle them consistently by calling 923 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 924 * and then 925 * - clear dirty bit to prevent IO 926 * - remove from LRU 927 * - but keep in the swap cache, so that when we return to it on 928 * a later page fault, we know the application is accessing 929 * corrupted data and shall be killed (we installed simple 930 * interception code in do_swap_page to catch it). 931 * 932 * Clean swap cache pages can be directly isolated. A later page fault will 933 * bring in the known good data from disk. 934 */ 935 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 936 { 937 int ret; 938 939 ClearPageDirty(p); 940 /* Trigger EIO in shmem: */ 941 ClearPageUptodate(p); 942 943 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 944 unlock_page(p); 945 return ret; 946 } 947 948 static int me_swapcache_clean(struct page *p, unsigned long pfn) 949 { 950 int ret; 951 952 delete_from_swap_cache(p); 953 954 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 955 unlock_page(p); 956 return ret; 957 } 958 959 /* 960 * Huge pages. Needs work. 961 * Issues: 962 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 963 * To narrow down kill region to one page, we need to break up pmd. 964 */ 965 static int me_huge_page(struct page *p, unsigned long pfn) 966 { 967 int res; 968 struct page *hpage = compound_head(p); 969 struct address_space *mapping; 970 971 if (!PageHuge(hpage)) 972 return MF_DELAYED; 973 974 mapping = page_mapping(hpage); 975 if (mapping) { 976 res = truncate_error_page(hpage, pfn, mapping); 977 unlock_page(hpage); 978 } else { 979 res = MF_FAILED; 980 unlock_page(hpage); 981 /* 982 * migration entry prevents later access on error anonymous 983 * hugepage, so we can free and dissolve it into buddy to 984 * save healthy subpages. 985 */ 986 if (PageAnon(hpage)) 987 put_page(hpage); 988 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) { 989 page_ref_inc(p); 990 res = MF_RECOVERED; 991 } 992 } 993 994 return res; 995 } 996 997 /* 998 * Various page states we can handle. 999 * 1000 * A page state is defined by its current page->flags bits. 1001 * The table matches them in order and calls the right handler. 1002 * 1003 * This is quite tricky because we can access page at any time 1004 * in its live cycle, so all accesses have to be extremely careful. 1005 * 1006 * This is not complete. More states could be added. 1007 * For any missing state don't attempt recovery. 1008 */ 1009 1010 #define dirty (1UL << PG_dirty) 1011 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1012 #define unevict (1UL << PG_unevictable) 1013 #define mlock (1UL << PG_mlocked) 1014 #define lru (1UL << PG_lru) 1015 #define head (1UL << PG_head) 1016 #define slab (1UL << PG_slab) 1017 #define reserved (1UL << PG_reserved) 1018 1019 static struct page_state { 1020 unsigned long mask; 1021 unsigned long res; 1022 enum mf_action_page_type type; 1023 1024 /* Callback ->action() has to unlock the relevant page inside it. */ 1025 int (*action)(struct page *p, unsigned long pfn); 1026 } error_states[] = { 1027 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1028 /* 1029 * free pages are specially detected outside this table: 1030 * PG_buddy pages only make a small fraction of all free pages. 1031 */ 1032 1033 /* 1034 * Could in theory check if slab page is free or if we can drop 1035 * currently unused objects without touching them. But just 1036 * treat it as standard kernel for now. 1037 */ 1038 { slab, slab, MF_MSG_SLAB, me_kernel }, 1039 1040 { head, head, MF_MSG_HUGE, me_huge_page }, 1041 1042 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1043 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1044 1045 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1046 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1047 1048 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1049 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1050 1051 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1052 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1053 1054 /* 1055 * Catchall entry: must be at end. 1056 */ 1057 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1058 }; 1059 1060 #undef dirty 1061 #undef sc 1062 #undef unevict 1063 #undef mlock 1064 #undef lru 1065 #undef head 1066 #undef slab 1067 #undef reserved 1068 1069 /* 1070 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1071 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1072 */ 1073 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1074 enum mf_result result) 1075 { 1076 trace_memory_failure_event(pfn, type, result); 1077 1078 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 1079 pfn, action_page_types[type], action_name[result]); 1080 } 1081 1082 static int page_action(struct page_state *ps, struct page *p, 1083 unsigned long pfn) 1084 { 1085 int result; 1086 int count; 1087 1088 /* page p should be unlocked after returning from ps->action(). */ 1089 result = ps->action(p, pfn); 1090 1091 count = page_count(p) - 1; 1092 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 1093 count--; 1094 if (count > 0) { 1095 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 1096 pfn, action_page_types[ps->type], count); 1097 result = MF_FAILED; 1098 } 1099 action_result(pfn, ps->type, result); 1100 1101 /* Could do more checks here if page looks ok */ 1102 /* 1103 * Could adjust zone counters here to correct for the missing page. 1104 */ 1105 1106 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1107 } 1108 1109 /* 1110 * Return true if a page type of a given page is supported by hwpoison 1111 * mechanism (while handling could fail), otherwise false. This function 1112 * does not return true for hugetlb or device memory pages, so it's assumed 1113 * to be called only in the context where we never have such pages. 1114 */ 1115 static inline bool HWPoisonHandlable(struct page *page) 1116 { 1117 return PageLRU(page) || __PageMovable(page); 1118 } 1119 1120 static int __get_hwpoison_page(struct page *page) 1121 { 1122 struct page *head = compound_head(page); 1123 int ret = 0; 1124 bool hugetlb = false; 1125 1126 ret = get_hwpoison_huge_page(head, &hugetlb); 1127 if (hugetlb) 1128 return ret; 1129 1130 /* 1131 * This check prevents from calling get_hwpoison_unless_zero() 1132 * for any unsupported type of page in order to reduce the risk of 1133 * unexpected races caused by taking a page refcount. 1134 */ 1135 if (!HWPoisonHandlable(head)) 1136 return 0; 1137 1138 if (PageTransHuge(head)) { 1139 /* 1140 * Non anonymous thp exists only in allocation/free time. We 1141 * can't handle such a case correctly, so let's give it up. 1142 * This should be better than triggering BUG_ON when kernel 1143 * tries to touch the "partially handled" page. 1144 */ 1145 if (!PageAnon(head)) { 1146 pr_err("Memory failure: %#lx: non anonymous thp\n", 1147 page_to_pfn(page)); 1148 return 0; 1149 } 1150 } 1151 1152 if (get_page_unless_zero(head)) { 1153 if (head == compound_head(page)) 1154 return 1; 1155 1156 pr_info("Memory failure: %#lx cannot catch tail\n", 1157 page_to_pfn(page)); 1158 put_page(head); 1159 } 1160 1161 return 0; 1162 } 1163 1164 static int get_any_page(struct page *p, unsigned long flags) 1165 { 1166 int ret = 0, pass = 0; 1167 bool count_increased = false; 1168 1169 if (flags & MF_COUNT_INCREASED) 1170 count_increased = true; 1171 1172 try_again: 1173 if (!count_increased) { 1174 ret = __get_hwpoison_page(p); 1175 if (!ret) { 1176 if (page_count(p)) { 1177 /* We raced with an allocation, retry. */ 1178 if (pass++ < 3) 1179 goto try_again; 1180 ret = -EBUSY; 1181 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1182 /* We raced with put_page, retry. */ 1183 if (pass++ < 3) 1184 goto try_again; 1185 ret = -EIO; 1186 } 1187 goto out; 1188 } else if (ret == -EBUSY) { 1189 /* We raced with freeing huge page to buddy, retry. */ 1190 if (pass++ < 3) 1191 goto try_again; 1192 goto out; 1193 } 1194 } 1195 1196 if (PageHuge(p) || HWPoisonHandlable(p)) { 1197 ret = 1; 1198 } else { 1199 /* 1200 * A page we cannot handle. Check whether we can turn 1201 * it into something we can handle. 1202 */ 1203 if (pass++ < 3) { 1204 put_page(p); 1205 shake_page(p, 1); 1206 count_increased = false; 1207 goto try_again; 1208 } 1209 put_page(p); 1210 ret = -EIO; 1211 } 1212 out: 1213 return ret; 1214 } 1215 1216 /** 1217 * get_hwpoison_page() - Get refcount for memory error handling 1218 * @p: Raw error page (hit by memory error) 1219 * @flags: Flags controlling behavior of error handling 1220 * 1221 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1222 * error on it, after checking that the error page is in a well-defined state 1223 * (defined as a page-type we can successfully handle the memor error on it, 1224 * such as LRU page and hugetlb page). 1225 * 1226 * Memory error handling could be triggered at any time on any type of page, 1227 * so it's prone to race with typical memory management lifecycle (like 1228 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1229 * extra care for the error page's state (as done in __get_hwpoison_page()), 1230 * and has some retry logic in get_any_page(). 1231 * 1232 * Return: 0 on failure, 1233 * 1 on success for in-use pages in a well-defined state, 1234 * -EIO for pages on which we can not handle memory errors, 1235 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1236 * operations like allocation and free. 1237 */ 1238 static int get_hwpoison_page(struct page *p, unsigned long flags) 1239 { 1240 int ret; 1241 1242 zone_pcp_disable(page_zone(p)); 1243 ret = get_any_page(p, flags); 1244 zone_pcp_enable(page_zone(p)); 1245 1246 return ret; 1247 } 1248 1249 /* 1250 * Do all that is necessary to remove user space mappings. Unmap 1251 * the pages and send SIGBUS to the processes if the data was dirty. 1252 */ 1253 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1254 int flags, struct page **hpagep) 1255 { 1256 enum ttu_flags ttu = TTU_IGNORE_MLOCK; 1257 struct address_space *mapping; 1258 LIST_HEAD(tokill); 1259 bool unmap_success = true; 1260 int kill = 1, forcekill; 1261 struct page *hpage = *hpagep; 1262 bool mlocked = PageMlocked(hpage); 1263 1264 /* 1265 * Here we are interested only in user-mapped pages, so skip any 1266 * other types of pages. 1267 */ 1268 if (PageReserved(p) || PageSlab(p)) 1269 return true; 1270 if (!(PageLRU(hpage) || PageHuge(p))) 1271 return true; 1272 1273 /* 1274 * This check implies we don't kill processes if their pages 1275 * are in the swap cache early. Those are always late kills. 1276 */ 1277 if (!page_mapped(hpage)) 1278 return true; 1279 1280 if (PageKsm(p)) { 1281 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1282 return false; 1283 } 1284 1285 if (PageSwapCache(p)) { 1286 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1287 pfn); 1288 ttu |= TTU_IGNORE_HWPOISON; 1289 } 1290 1291 /* 1292 * Propagate the dirty bit from PTEs to struct page first, because we 1293 * need this to decide if we should kill or just drop the page. 1294 * XXX: the dirty test could be racy: set_page_dirty() may not always 1295 * be called inside page lock (it's recommended but not enforced). 1296 */ 1297 mapping = page_mapping(hpage); 1298 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1299 mapping_can_writeback(mapping)) { 1300 if (page_mkclean(hpage)) { 1301 SetPageDirty(hpage); 1302 } else { 1303 kill = 0; 1304 ttu |= TTU_IGNORE_HWPOISON; 1305 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1306 pfn); 1307 } 1308 } 1309 1310 /* 1311 * First collect all the processes that have the page 1312 * mapped in dirty form. This has to be done before try_to_unmap, 1313 * because ttu takes the rmap data structures down. 1314 * 1315 * Error handling: We ignore errors here because 1316 * there's nothing that can be done. 1317 */ 1318 if (kill) 1319 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1320 1321 if (!PageHuge(hpage)) { 1322 unmap_success = try_to_unmap(hpage, ttu); 1323 } else { 1324 if (!PageAnon(hpage)) { 1325 /* 1326 * For hugetlb pages in shared mappings, try_to_unmap 1327 * could potentially call huge_pmd_unshare. Because of 1328 * this, take semaphore in write mode here and set 1329 * TTU_RMAP_LOCKED to indicate we have taken the lock 1330 * at this higer level. 1331 */ 1332 mapping = hugetlb_page_mapping_lock_write(hpage); 1333 if (mapping) { 1334 unmap_success = try_to_unmap(hpage, 1335 ttu|TTU_RMAP_LOCKED); 1336 i_mmap_unlock_write(mapping); 1337 } else { 1338 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1339 unmap_success = false; 1340 } 1341 } else { 1342 unmap_success = try_to_unmap(hpage, ttu); 1343 } 1344 } 1345 if (!unmap_success) 1346 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1347 pfn, page_mapcount(hpage)); 1348 1349 /* 1350 * try_to_unmap() might put mlocked page in lru cache, so call 1351 * shake_page() again to ensure that it's flushed. 1352 */ 1353 if (mlocked) 1354 shake_page(hpage, 0); 1355 1356 /* 1357 * Now that the dirty bit has been propagated to the 1358 * struct page and all unmaps done we can decide if 1359 * killing is needed or not. Only kill when the page 1360 * was dirty or the process is not restartable, 1361 * otherwise the tokill list is merely 1362 * freed. When there was a problem unmapping earlier 1363 * use a more force-full uncatchable kill to prevent 1364 * any accesses to the poisoned memory. 1365 */ 1366 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1367 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1368 1369 return unmap_success; 1370 } 1371 1372 static int identify_page_state(unsigned long pfn, struct page *p, 1373 unsigned long page_flags) 1374 { 1375 struct page_state *ps; 1376 1377 /* 1378 * The first check uses the current page flags which may not have any 1379 * relevant information. The second check with the saved page flags is 1380 * carried out only if the first check can't determine the page status. 1381 */ 1382 for (ps = error_states;; ps++) 1383 if ((p->flags & ps->mask) == ps->res) 1384 break; 1385 1386 page_flags |= (p->flags & (1UL << PG_dirty)); 1387 1388 if (!ps->mask) 1389 for (ps = error_states;; ps++) 1390 if ((page_flags & ps->mask) == ps->res) 1391 break; 1392 return page_action(ps, p, pfn); 1393 } 1394 1395 static int try_to_split_thp_page(struct page *page, const char *msg) 1396 { 1397 lock_page(page); 1398 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1399 unsigned long pfn = page_to_pfn(page); 1400 1401 unlock_page(page); 1402 if (!PageAnon(page)) 1403 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn); 1404 else 1405 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1406 put_page(page); 1407 return -EBUSY; 1408 } 1409 unlock_page(page); 1410 1411 return 0; 1412 } 1413 1414 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1415 { 1416 struct page *p = pfn_to_page(pfn); 1417 struct page *head = compound_head(p); 1418 int res; 1419 unsigned long page_flags; 1420 1421 if (TestSetPageHWPoison(head)) { 1422 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1423 pfn); 1424 res = -EHWPOISON; 1425 if (flags & MF_ACTION_REQUIRED) 1426 res = kill_accessing_process(current, page_to_pfn(head), flags); 1427 return res; 1428 } 1429 1430 num_poisoned_pages_inc(); 1431 1432 if (!(flags & MF_COUNT_INCREASED)) { 1433 res = get_hwpoison_page(p, flags); 1434 if (!res) { 1435 /* 1436 * Check "filter hit" and "race with other subpage." 1437 */ 1438 lock_page(head); 1439 if (PageHWPoison(head)) { 1440 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1441 || (p != head && TestSetPageHWPoison(head))) { 1442 num_poisoned_pages_dec(); 1443 unlock_page(head); 1444 return 0; 1445 } 1446 } 1447 unlock_page(head); 1448 res = MF_FAILED; 1449 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) { 1450 page_ref_inc(p); 1451 res = MF_RECOVERED; 1452 } 1453 action_result(pfn, MF_MSG_FREE_HUGE, res); 1454 return res == MF_RECOVERED ? 0 : -EBUSY; 1455 } else if (res < 0) { 1456 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1457 return -EBUSY; 1458 } 1459 } 1460 1461 lock_page(head); 1462 page_flags = head->flags; 1463 1464 if (!PageHWPoison(head)) { 1465 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1466 num_poisoned_pages_dec(); 1467 unlock_page(head); 1468 put_page(head); 1469 return 0; 1470 } 1471 1472 /* 1473 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1474 * simply disable it. In order to make it work properly, we need 1475 * make sure that: 1476 * - conversion of a pud that maps an error hugetlb into hwpoison 1477 * entry properly works, and 1478 * - other mm code walking over page table is aware of pud-aligned 1479 * hwpoison entries. 1480 */ 1481 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1482 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1483 res = -EBUSY; 1484 goto out; 1485 } 1486 1487 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1488 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1489 res = -EBUSY; 1490 goto out; 1491 } 1492 1493 return identify_page_state(pfn, p, page_flags); 1494 out: 1495 unlock_page(head); 1496 return res; 1497 } 1498 1499 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1500 struct dev_pagemap *pgmap) 1501 { 1502 struct page *page = pfn_to_page(pfn); 1503 const bool unmap_success = true; 1504 unsigned long size = 0; 1505 struct to_kill *tk; 1506 LIST_HEAD(tokill); 1507 int rc = -EBUSY; 1508 loff_t start; 1509 dax_entry_t cookie; 1510 1511 if (flags & MF_COUNT_INCREASED) 1512 /* 1513 * Drop the extra refcount in case we come from madvise(). 1514 */ 1515 put_page(page); 1516 1517 /* device metadata space is not recoverable */ 1518 if (!pgmap_pfn_valid(pgmap, pfn)) { 1519 rc = -ENXIO; 1520 goto out; 1521 } 1522 1523 /* 1524 * Prevent the inode from being freed while we are interrogating 1525 * the address_space, typically this would be handled by 1526 * lock_page(), but dax pages do not use the page lock. This 1527 * also prevents changes to the mapping of this pfn until 1528 * poison signaling is complete. 1529 */ 1530 cookie = dax_lock_page(page); 1531 if (!cookie) 1532 goto out; 1533 1534 if (hwpoison_filter(page)) { 1535 rc = 0; 1536 goto unlock; 1537 } 1538 1539 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1540 /* 1541 * TODO: Handle HMM pages which may need coordination 1542 * with device-side memory. 1543 */ 1544 goto unlock; 1545 } 1546 1547 /* 1548 * Use this flag as an indication that the dax page has been 1549 * remapped UC to prevent speculative consumption of poison. 1550 */ 1551 SetPageHWPoison(page); 1552 1553 /* 1554 * Unlike System-RAM there is no possibility to swap in a 1555 * different physical page at a given virtual address, so all 1556 * userspace consumption of ZONE_DEVICE memory necessitates 1557 * SIGBUS (i.e. MF_MUST_KILL) 1558 */ 1559 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1560 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1561 1562 list_for_each_entry(tk, &tokill, nd) 1563 if (tk->size_shift) 1564 size = max(size, 1UL << tk->size_shift); 1565 if (size) { 1566 /* 1567 * Unmap the largest mapping to avoid breaking up 1568 * device-dax mappings which are constant size. The 1569 * actual size of the mapping being torn down is 1570 * communicated in siginfo, see kill_proc() 1571 */ 1572 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1573 unmap_mapping_range(page->mapping, start, size, 0); 1574 } 1575 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1576 rc = 0; 1577 unlock: 1578 dax_unlock_page(page, cookie); 1579 out: 1580 /* drop pgmap ref acquired in caller */ 1581 put_dev_pagemap(pgmap); 1582 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1583 return rc; 1584 } 1585 1586 /** 1587 * memory_failure - Handle memory failure of a page. 1588 * @pfn: Page Number of the corrupted page 1589 * @flags: fine tune action taken 1590 * 1591 * This function is called by the low level machine check code 1592 * of an architecture when it detects hardware memory corruption 1593 * of a page. It tries its best to recover, which includes 1594 * dropping pages, killing processes etc. 1595 * 1596 * The function is primarily of use for corruptions that 1597 * happen outside the current execution context (e.g. when 1598 * detected by a background scrubber) 1599 * 1600 * Must run in process context (e.g. a work queue) with interrupts 1601 * enabled and no spinlocks hold. 1602 */ 1603 int memory_failure(unsigned long pfn, int flags) 1604 { 1605 struct page *p; 1606 struct page *hpage; 1607 struct page *orig_head; 1608 struct dev_pagemap *pgmap; 1609 int res = 0; 1610 unsigned long page_flags; 1611 bool retry = true; 1612 static DEFINE_MUTEX(mf_mutex); 1613 1614 if (!sysctl_memory_failure_recovery) 1615 panic("Memory failure on page %lx", pfn); 1616 1617 p = pfn_to_online_page(pfn); 1618 if (!p) { 1619 if (pfn_valid(pfn)) { 1620 pgmap = get_dev_pagemap(pfn, NULL); 1621 if (pgmap) 1622 return memory_failure_dev_pagemap(pfn, flags, 1623 pgmap); 1624 } 1625 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1626 pfn); 1627 return -ENXIO; 1628 } 1629 1630 mutex_lock(&mf_mutex); 1631 1632 try_again: 1633 if (PageHuge(p)) { 1634 res = memory_failure_hugetlb(pfn, flags); 1635 goto unlock_mutex; 1636 } 1637 1638 if (TestSetPageHWPoison(p)) { 1639 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1640 pfn); 1641 res = -EHWPOISON; 1642 if (flags & MF_ACTION_REQUIRED) 1643 res = kill_accessing_process(current, pfn, flags); 1644 goto unlock_mutex; 1645 } 1646 1647 orig_head = hpage = compound_head(p); 1648 num_poisoned_pages_inc(); 1649 1650 /* 1651 * We need/can do nothing about count=0 pages. 1652 * 1) it's a free page, and therefore in safe hand: 1653 * prep_new_page() will be the gate keeper. 1654 * 2) it's part of a non-compound high order page. 1655 * Implies some kernel user: cannot stop them from 1656 * R/W the page; let's pray that the page has been 1657 * used and will be freed some time later. 1658 * In fact it's dangerous to directly bump up page count from 0, 1659 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1660 */ 1661 if (!(flags & MF_COUNT_INCREASED)) { 1662 res = get_hwpoison_page(p, flags); 1663 if (!res) { 1664 if (is_free_buddy_page(p)) { 1665 if (take_page_off_buddy(p)) { 1666 page_ref_inc(p); 1667 res = MF_RECOVERED; 1668 } else { 1669 /* We lost the race, try again */ 1670 if (retry) { 1671 ClearPageHWPoison(p); 1672 num_poisoned_pages_dec(); 1673 retry = false; 1674 goto try_again; 1675 } 1676 res = MF_FAILED; 1677 } 1678 action_result(pfn, MF_MSG_BUDDY, res); 1679 res = res == MF_RECOVERED ? 0 : -EBUSY; 1680 } else { 1681 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1682 res = -EBUSY; 1683 } 1684 goto unlock_mutex; 1685 } else if (res < 0) { 1686 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1687 res = -EBUSY; 1688 goto unlock_mutex; 1689 } 1690 } 1691 1692 if (PageTransHuge(hpage)) { 1693 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1694 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1695 res = -EBUSY; 1696 goto unlock_mutex; 1697 } 1698 VM_BUG_ON_PAGE(!page_count(p), p); 1699 } 1700 1701 /* 1702 * We ignore non-LRU pages for good reasons. 1703 * - PG_locked is only well defined for LRU pages and a few others 1704 * - to avoid races with __SetPageLocked() 1705 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1706 * The check (unnecessarily) ignores LRU pages being isolated and 1707 * walked by the page reclaim code, however that's not a big loss. 1708 */ 1709 shake_page(p, 0); 1710 1711 lock_page(p); 1712 1713 /* 1714 * The page could have changed compound pages during the locking. 1715 * If this happens just bail out. 1716 */ 1717 if (PageCompound(p) && compound_head(p) != orig_head) { 1718 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1719 res = -EBUSY; 1720 goto unlock_page; 1721 } 1722 1723 /* 1724 * We use page flags to determine what action should be taken, but 1725 * the flags can be modified by the error containment action. One 1726 * example is an mlocked page, where PG_mlocked is cleared by 1727 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1728 * correctly, we save a copy of the page flags at this time. 1729 */ 1730 page_flags = p->flags; 1731 1732 /* 1733 * unpoison always clear PG_hwpoison inside page lock 1734 */ 1735 if (!PageHWPoison(p)) { 1736 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1737 num_poisoned_pages_dec(); 1738 unlock_page(p); 1739 put_page(p); 1740 goto unlock_mutex; 1741 } 1742 if (hwpoison_filter(p)) { 1743 if (TestClearPageHWPoison(p)) 1744 num_poisoned_pages_dec(); 1745 unlock_page(p); 1746 put_page(p); 1747 goto unlock_mutex; 1748 } 1749 1750 /* 1751 * __munlock_pagevec may clear a writeback page's LRU flag without 1752 * page_lock. We need wait writeback completion for this page or it 1753 * may trigger vfs BUG while evict inode. 1754 */ 1755 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p)) 1756 goto identify_page_state; 1757 1758 /* 1759 * It's very difficult to mess with pages currently under IO 1760 * and in many cases impossible, so we just avoid it here. 1761 */ 1762 wait_on_page_writeback(p); 1763 1764 /* 1765 * Now take care of user space mappings. 1766 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1767 */ 1768 if (!hwpoison_user_mappings(p, pfn, flags, &p)) { 1769 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1770 res = -EBUSY; 1771 goto unlock_page; 1772 } 1773 1774 /* 1775 * Torn down by someone else? 1776 */ 1777 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1778 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1779 res = -EBUSY; 1780 goto unlock_page; 1781 } 1782 1783 identify_page_state: 1784 res = identify_page_state(pfn, p, page_flags); 1785 mutex_unlock(&mf_mutex); 1786 return res; 1787 unlock_page: 1788 unlock_page(p); 1789 unlock_mutex: 1790 mutex_unlock(&mf_mutex); 1791 return res; 1792 } 1793 EXPORT_SYMBOL_GPL(memory_failure); 1794 1795 #define MEMORY_FAILURE_FIFO_ORDER 4 1796 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1797 1798 struct memory_failure_entry { 1799 unsigned long pfn; 1800 int flags; 1801 }; 1802 1803 struct memory_failure_cpu { 1804 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1805 MEMORY_FAILURE_FIFO_SIZE); 1806 spinlock_t lock; 1807 struct work_struct work; 1808 }; 1809 1810 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1811 1812 /** 1813 * memory_failure_queue - Schedule handling memory failure of a page. 1814 * @pfn: Page Number of the corrupted page 1815 * @flags: Flags for memory failure handling 1816 * 1817 * This function is called by the low level hardware error handler 1818 * when it detects hardware memory corruption of a page. It schedules 1819 * the recovering of error page, including dropping pages, killing 1820 * processes etc. 1821 * 1822 * The function is primarily of use for corruptions that 1823 * happen outside the current execution context (e.g. when 1824 * detected by a background scrubber) 1825 * 1826 * Can run in IRQ context. 1827 */ 1828 void memory_failure_queue(unsigned long pfn, int flags) 1829 { 1830 struct memory_failure_cpu *mf_cpu; 1831 unsigned long proc_flags; 1832 struct memory_failure_entry entry = { 1833 .pfn = pfn, 1834 .flags = flags, 1835 }; 1836 1837 mf_cpu = &get_cpu_var(memory_failure_cpu); 1838 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1839 if (kfifo_put(&mf_cpu->fifo, entry)) 1840 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1841 else 1842 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1843 pfn); 1844 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1845 put_cpu_var(memory_failure_cpu); 1846 } 1847 EXPORT_SYMBOL_GPL(memory_failure_queue); 1848 1849 static void memory_failure_work_func(struct work_struct *work) 1850 { 1851 struct memory_failure_cpu *mf_cpu; 1852 struct memory_failure_entry entry = { 0, }; 1853 unsigned long proc_flags; 1854 int gotten; 1855 1856 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1857 for (;;) { 1858 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1859 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1860 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1861 if (!gotten) 1862 break; 1863 if (entry.flags & MF_SOFT_OFFLINE) 1864 soft_offline_page(entry.pfn, entry.flags); 1865 else 1866 memory_failure(entry.pfn, entry.flags); 1867 } 1868 } 1869 1870 /* 1871 * Process memory_failure work queued on the specified CPU. 1872 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1873 */ 1874 void memory_failure_queue_kick(int cpu) 1875 { 1876 struct memory_failure_cpu *mf_cpu; 1877 1878 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1879 cancel_work_sync(&mf_cpu->work); 1880 memory_failure_work_func(&mf_cpu->work); 1881 } 1882 1883 static int __init memory_failure_init(void) 1884 { 1885 struct memory_failure_cpu *mf_cpu; 1886 int cpu; 1887 1888 for_each_possible_cpu(cpu) { 1889 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1890 spin_lock_init(&mf_cpu->lock); 1891 INIT_KFIFO(mf_cpu->fifo); 1892 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1893 } 1894 1895 return 0; 1896 } 1897 core_initcall(memory_failure_init); 1898 1899 #define unpoison_pr_info(fmt, pfn, rs) \ 1900 ({ \ 1901 if (__ratelimit(rs)) \ 1902 pr_info(fmt, pfn); \ 1903 }) 1904 1905 /** 1906 * unpoison_memory - Unpoison a previously poisoned page 1907 * @pfn: Page number of the to be unpoisoned page 1908 * 1909 * Software-unpoison a page that has been poisoned by 1910 * memory_failure() earlier. 1911 * 1912 * This is only done on the software-level, so it only works 1913 * for linux injected failures, not real hardware failures 1914 * 1915 * Returns 0 for success, otherwise -errno. 1916 */ 1917 int unpoison_memory(unsigned long pfn) 1918 { 1919 struct page *page; 1920 struct page *p; 1921 int freeit = 0; 1922 unsigned long flags = 0; 1923 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1924 DEFAULT_RATELIMIT_BURST); 1925 1926 if (!pfn_valid(pfn)) 1927 return -ENXIO; 1928 1929 p = pfn_to_page(pfn); 1930 page = compound_head(p); 1931 1932 if (!PageHWPoison(p)) { 1933 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1934 pfn, &unpoison_rs); 1935 return 0; 1936 } 1937 1938 if (page_count(page) > 1) { 1939 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1940 pfn, &unpoison_rs); 1941 return 0; 1942 } 1943 1944 if (page_mapped(page)) { 1945 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1946 pfn, &unpoison_rs); 1947 return 0; 1948 } 1949 1950 if (page_mapping(page)) { 1951 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1952 pfn, &unpoison_rs); 1953 return 0; 1954 } 1955 1956 /* 1957 * unpoison_memory() can encounter thp only when the thp is being 1958 * worked by memory_failure() and the page lock is not held yet. 1959 * In such case, we yield to memory_failure() and make unpoison fail. 1960 */ 1961 if (!PageHuge(page) && PageTransHuge(page)) { 1962 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1963 pfn, &unpoison_rs); 1964 return 0; 1965 } 1966 1967 if (!get_hwpoison_page(p, flags)) { 1968 if (TestClearPageHWPoison(p)) 1969 num_poisoned_pages_dec(); 1970 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1971 pfn, &unpoison_rs); 1972 return 0; 1973 } 1974 1975 lock_page(page); 1976 /* 1977 * This test is racy because PG_hwpoison is set outside of page lock. 1978 * That's acceptable because that won't trigger kernel panic. Instead, 1979 * the PG_hwpoison page will be caught and isolated on the entrance to 1980 * the free buddy page pool. 1981 */ 1982 if (TestClearPageHWPoison(page)) { 1983 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1984 pfn, &unpoison_rs); 1985 num_poisoned_pages_dec(); 1986 freeit = 1; 1987 } 1988 unlock_page(page); 1989 1990 put_page(page); 1991 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1992 put_page(page); 1993 1994 return 0; 1995 } 1996 EXPORT_SYMBOL(unpoison_memory); 1997 1998 static bool isolate_page(struct page *page, struct list_head *pagelist) 1999 { 2000 bool isolated = false; 2001 bool lru = PageLRU(page); 2002 2003 if (PageHuge(page)) { 2004 isolated = isolate_huge_page(page, pagelist); 2005 } else { 2006 if (lru) 2007 isolated = !isolate_lru_page(page); 2008 else 2009 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2010 2011 if (isolated) 2012 list_add(&page->lru, pagelist); 2013 } 2014 2015 if (isolated && lru) 2016 inc_node_page_state(page, NR_ISOLATED_ANON + 2017 page_is_file_lru(page)); 2018 2019 /* 2020 * If we succeed to isolate the page, we grabbed another refcount on 2021 * the page, so we can safely drop the one we got from get_any_pages(). 2022 * If we failed to isolate the page, it means that we cannot go further 2023 * and we will return an error, so drop the reference we got from 2024 * get_any_pages() as well. 2025 */ 2026 put_page(page); 2027 return isolated; 2028 } 2029 2030 /* 2031 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2032 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2033 * If the page is mapped, it migrates the contents over. 2034 */ 2035 static int __soft_offline_page(struct page *page) 2036 { 2037 int ret = 0; 2038 unsigned long pfn = page_to_pfn(page); 2039 struct page *hpage = compound_head(page); 2040 char const *msg_page[] = {"page", "hugepage"}; 2041 bool huge = PageHuge(page); 2042 LIST_HEAD(pagelist); 2043 struct migration_target_control mtc = { 2044 .nid = NUMA_NO_NODE, 2045 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2046 }; 2047 2048 /* 2049 * Check PageHWPoison again inside page lock because PageHWPoison 2050 * is set by memory_failure() outside page lock. Note that 2051 * memory_failure() also double-checks PageHWPoison inside page lock, 2052 * so there's no race between soft_offline_page() and memory_failure(). 2053 */ 2054 lock_page(page); 2055 if (!PageHuge(page)) 2056 wait_on_page_writeback(page); 2057 if (PageHWPoison(page)) { 2058 unlock_page(page); 2059 put_page(page); 2060 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2061 return 0; 2062 } 2063 2064 if (!PageHuge(page)) 2065 /* 2066 * Try to invalidate first. This should work for 2067 * non dirty unmapped page cache pages. 2068 */ 2069 ret = invalidate_inode_page(page); 2070 unlock_page(page); 2071 2072 /* 2073 * RED-PEN would be better to keep it isolated here, but we 2074 * would need to fix isolation locking first. 2075 */ 2076 if (ret) { 2077 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2078 page_handle_poison(page, false, true); 2079 return 0; 2080 } 2081 2082 if (isolate_page(hpage, &pagelist)) { 2083 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2084 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE); 2085 if (!ret) { 2086 bool release = !huge; 2087 2088 if (!page_handle_poison(page, huge, release)) 2089 ret = -EBUSY; 2090 } else { 2091 if (!list_empty(&pagelist)) 2092 putback_movable_pages(&pagelist); 2093 2094 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n", 2095 pfn, msg_page[huge], ret, page->flags, &page->flags); 2096 if (ret > 0) 2097 ret = -EBUSY; 2098 } 2099 } else { 2100 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n", 2101 pfn, msg_page[huge], page_count(page), page->flags, &page->flags); 2102 ret = -EBUSY; 2103 } 2104 return ret; 2105 } 2106 2107 static int soft_offline_in_use_page(struct page *page) 2108 { 2109 struct page *hpage = compound_head(page); 2110 2111 if (!PageHuge(page) && PageTransHuge(hpage)) 2112 if (try_to_split_thp_page(page, "soft offline") < 0) 2113 return -EBUSY; 2114 return __soft_offline_page(page); 2115 } 2116 2117 static int soft_offline_free_page(struct page *page) 2118 { 2119 int rc = 0; 2120 2121 if (!page_handle_poison(page, true, false)) 2122 rc = -EBUSY; 2123 2124 return rc; 2125 } 2126 2127 static void put_ref_page(struct page *page) 2128 { 2129 if (page) 2130 put_page(page); 2131 } 2132 2133 /** 2134 * soft_offline_page - Soft offline a page. 2135 * @pfn: pfn to soft-offline 2136 * @flags: flags. Same as memory_failure(). 2137 * 2138 * Returns 0 on success, otherwise negated errno. 2139 * 2140 * Soft offline a page, by migration or invalidation, 2141 * without killing anything. This is for the case when 2142 * a page is not corrupted yet (so it's still valid to access), 2143 * but has had a number of corrected errors and is better taken 2144 * out. 2145 * 2146 * The actual policy on when to do that is maintained by 2147 * user space. 2148 * 2149 * This should never impact any application or cause data loss, 2150 * however it might take some time. 2151 * 2152 * This is not a 100% solution for all memory, but tries to be 2153 * ``good enough'' for the majority of memory. 2154 */ 2155 int soft_offline_page(unsigned long pfn, int flags) 2156 { 2157 int ret; 2158 bool try_again = true; 2159 struct page *page, *ref_page = NULL; 2160 2161 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2162 2163 if (!pfn_valid(pfn)) 2164 return -ENXIO; 2165 if (flags & MF_COUNT_INCREASED) 2166 ref_page = pfn_to_page(pfn); 2167 2168 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2169 page = pfn_to_online_page(pfn); 2170 if (!page) { 2171 put_ref_page(ref_page); 2172 return -EIO; 2173 } 2174 2175 if (PageHWPoison(page)) { 2176 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2177 put_ref_page(ref_page); 2178 return 0; 2179 } 2180 2181 retry: 2182 get_online_mems(); 2183 ret = get_hwpoison_page(page, flags); 2184 put_online_mems(); 2185 2186 if (ret > 0) { 2187 ret = soft_offline_in_use_page(page); 2188 } else if (ret == 0) { 2189 if (soft_offline_free_page(page) && try_again) { 2190 try_again = false; 2191 goto retry; 2192 } 2193 } else if (ret == -EIO) { 2194 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n", 2195 __func__, pfn, page->flags, &page->flags); 2196 } 2197 2198 return ret; 2199 } 2200