xref: /openbmc/linux/mm/memory-failure.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include <linux/pagewalk.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
70 {
71 	if (hugepage_or_freepage) {
72 		/*
73 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
74 		 * returns 0 for non-hugetlb pages as well.
75 		 */
76 		if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
77 			/*
78 			 * We could fail to take off the target page from buddy
79 			 * for example due to racy page allocation, but that's
80 			 * acceptable because soft-offlined page is not broken
81 			 * and if someone really want to use it, they should
82 			 * take it.
83 			 */
84 			return false;
85 	}
86 
87 	SetPageHWPoison(page);
88 	if (release)
89 		put_page(page);
90 	page_ref_inc(page);
91 	num_poisoned_pages_inc();
92 
93 	return true;
94 }
95 
96 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
97 
98 u32 hwpoison_filter_enable = 0;
99 u32 hwpoison_filter_dev_major = ~0U;
100 u32 hwpoison_filter_dev_minor = ~0U;
101 u64 hwpoison_filter_flags_mask;
102 u64 hwpoison_filter_flags_value;
103 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
105 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
107 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
108 
109 static int hwpoison_filter_dev(struct page *p)
110 {
111 	struct address_space *mapping;
112 	dev_t dev;
113 
114 	if (hwpoison_filter_dev_major == ~0U &&
115 	    hwpoison_filter_dev_minor == ~0U)
116 		return 0;
117 
118 	/*
119 	 * page_mapping() does not accept slab pages.
120 	 */
121 	if (PageSlab(p))
122 		return -EINVAL;
123 
124 	mapping = page_mapping(p);
125 	if (mapping == NULL || mapping->host == NULL)
126 		return -EINVAL;
127 
128 	dev = mapping->host->i_sb->s_dev;
129 	if (hwpoison_filter_dev_major != ~0U &&
130 	    hwpoison_filter_dev_major != MAJOR(dev))
131 		return -EINVAL;
132 	if (hwpoison_filter_dev_minor != ~0U &&
133 	    hwpoison_filter_dev_minor != MINOR(dev))
134 		return -EINVAL;
135 
136 	return 0;
137 }
138 
139 static int hwpoison_filter_flags(struct page *p)
140 {
141 	if (!hwpoison_filter_flags_mask)
142 		return 0;
143 
144 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
145 				    hwpoison_filter_flags_value)
146 		return 0;
147 	else
148 		return -EINVAL;
149 }
150 
151 /*
152  * This allows stress tests to limit test scope to a collection of tasks
153  * by putting them under some memcg. This prevents killing unrelated/important
154  * processes such as /sbin/init. Note that the target task may share clean
155  * pages with init (eg. libc text), which is harmless. If the target task
156  * share _dirty_ pages with another task B, the test scheme must make sure B
157  * is also included in the memcg. At last, due to race conditions this filter
158  * can only guarantee that the page either belongs to the memcg tasks, or is
159  * a freed page.
160  */
161 #ifdef CONFIG_MEMCG
162 u64 hwpoison_filter_memcg;
163 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
164 static int hwpoison_filter_task(struct page *p)
165 {
166 	if (!hwpoison_filter_memcg)
167 		return 0;
168 
169 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
170 		return -EINVAL;
171 
172 	return 0;
173 }
174 #else
175 static int hwpoison_filter_task(struct page *p) { return 0; }
176 #endif
177 
178 int hwpoison_filter(struct page *p)
179 {
180 	if (!hwpoison_filter_enable)
181 		return 0;
182 
183 	if (hwpoison_filter_dev(p))
184 		return -EINVAL;
185 
186 	if (hwpoison_filter_flags(p))
187 		return -EINVAL;
188 
189 	if (hwpoison_filter_task(p))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 #else
195 int hwpoison_filter(struct page *p)
196 {
197 	return 0;
198 }
199 #endif
200 
201 EXPORT_SYMBOL_GPL(hwpoison_filter);
202 
203 /*
204  * Kill all processes that have a poisoned page mapped and then isolate
205  * the page.
206  *
207  * General strategy:
208  * Find all processes having the page mapped and kill them.
209  * But we keep a page reference around so that the page is not
210  * actually freed yet.
211  * Then stash the page away
212  *
213  * There's no convenient way to get back to mapped processes
214  * from the VMAs. So do a brute-force search over all
215  * running processes.
216  *
217  * Remember that machine checks are not common (or rather
218  * if they are common you have other problems), so this shouldn't
219  * be a performance issue.
220  *
221  * Also there are some races possible while we get from the
222  * error detection to actually handle it.
223  */
224 
225 struct to_kill {
226 	struct list_head nd;
227 	struct task_struct *tsk;
228 	unsigned long addr;
229 	short size_shift;
230 };
231 
232 /*
233  * Send all the processes who have the page mapped a signal.
234  * ``action optional'' if they are not immediately affected by the error
235  * ``action required'' if error happened in current execution context
236  */
237 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
238 {
239 	struct task_struct *t = tk->tsk;
240 	short addr_lsb = tk->size_shift;
241 	int ret = 0;
242 
243 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
244 			pfn, t->comm, t->pid);
245 
246 	if (flags & MF_ACTION_REQUIRED) {
247 		if (t == current)
248 			ret = force_sig_mceerr(BUS_MCEERR_AR,
249 					 (void __user *)tk->addr, addr_lsb);
250 		else
251 			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
252 			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
253 				addr_lsb, t);
254 	} else {
255 		/*
256 		 * Don't use force here, it's convenient if the signal
257 		 * can be temporarily blocked.
258 		 * This could cause a loop when the user sets SIGBUS
259 		 * to SIG_IGN, but hopefully no one will do that?
260 		 */
261 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
262 				      addr_lsb, t);  /* synchronous? */
263 	}
264 	if (ret < 0)
265 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
266 			t->comm, t->pid, ret);
267 	return ret;
268 }
269 
270 /*
271  * Unknown page type encountered. Try to check whether it can turn PageLRU by
272  * lru_add_drain_all, or a free page by reclaiming slabs when possible.
273  */
274 void shake_page(struct page *p, int access)
275 {
276 	if (PageHuge(p))
277 		return;
278 
279 	if (!PageSlab(p)) {
280 		lru_add_drain_all();
281 		if (PageLRU(p) || is_free_buddy_page(p))
282 			return;
283 	}
284 
285 	/*
286 	 * Only call shrink_node_slabs here (which would also shrink
287 	 * other caches) if access is not potentially fatal.
288 	 */
289 	if (access)
290 		drop_slab_node(page_to_nid(p));
291 }
292 EXPORT_SYMBOL_GPL(shake_page);
293 
294 static unsigned long dev_pagemap_mapping_shift(struct page *page,
295 		struct vm_area_struct *vma)
296 {
297 	unsigned long address = vma_address(page, vma);
298 	pgd_t *pgd;
299 	p4d_t *p4d;
300 	pud_t *pud;
301 	pmd_t *pmd;
302 	pte_t *pte;
303 
304 	pgd = pgd_offset(vma->vm_mm, address);
305 	if (!pgd_present(*pgd))
306 		return 0;
307 	p4d = p4d_offset(pgd, address);
308 	if (!p4d_present(*p4d))
309 		return 0;
310 	pud = pud_offset(p4d, address);
311 	if (!pud_present(*pud))
312 		return 0;
313 	if (pud_devmap(*pud))
314 		return PUD_SHIFT;
315 	pmd = pmd_offset(pud, address);
316 	if (!pmd_present(*pmd))
317 		return 0;
318 	if (pmd_devmap(*pmd))
319 		return PMD_SHIFT;
320 	pte = pte_offset_map(pmd, address);
321 	if (!pte_present(*pte))
322 		return 0;
323 	if (pte_devmap(*pte))
324 		return PAGE_SHIFT;
325 	return 0;
326 }
327 
328 /*
329  * Failure handling: if we can't find or can't kill a process there's
330  * not much we can do.	We just print a message and ignore otherwise.
331  */
332 
333 /*
334  * Schedule a process for later kill.
335  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
336  */
337 static void add_to_kill(struct task_struct *tsk, struct page *p,
338 		       struct vm_area_struct *vma,
339 		       struct list_head *to_kill)
340 {
341 	struct to_kill *tk;
342 
343 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
344 	if (!tk) {
345 		pr_err("Memory failure: Out of memory while machine check handling\n");
346 		return;
347 	}
348 
349 	tk->addr = page_address_in_vma(p, vma);
350 	if (is_zone_device_page(p))
351 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
352 	else
353 		tk->size_shift = page_shift(compound_head(p));
354 
355 	/*
356 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
357 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
358 	 * so "tk->size_shift == 0" effectively checks no mapping on
359 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
360 	 * to a process' address space, it's possible not all N VMAs
361 	 * contain mappings for the page, but at least one VMA does.
362 	 * Only deliver SIGBUS with payload derived from the VMA that
363 	 * has a mapping for the page.
364 	 */
365 	if (tk->addr == -EFAULT) {
366 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
367 			page_to_pfn(p), tsk->comm);
368 	} else if (tk->size_shift == 0) {
369 		kfree(tk);
370 		return;
371 	}
372 
373 	get_task_struct(tsk);
374 	tk->tsk = tsk;
375 	list_add_tail(&tk->nd, to_kill);
376 }
377 
378 /*
379  * Kill the processes that have been collected earlier.
380  *
381  * Only do anything when DOIT is set, otherwise just free the list
382  * (this is used for clean pages which do not need killing)
383  * Also when FAIL is set do a force kill because something went
384  * wrong earlier.
385  */
386 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
387 		unsigned long pfn, int flags)
388 {
389 	struct to_kill *tk, *next;
390 
391 	list_for_each_entry_safe (tk, next, to_kill, nd) {
392 		if (forcekill) {
393 			/*
394 			 * In case something went wrong with munmapping
395 			 * make sure the process doesn't catch the
396 			 * signal and then access the memory. Just kill it.
397 			 */
398 			if (fail || tk->addr == -EFAULT) {
399 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
400 				       pfn, tk->tsk->comm, tk->tsk->pid);
401 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
402 						 tk->tsk, PIDTYPE_PID);
403 			}
404 
405 			/*
406 			 * In theory the process could have mapped
407 			 * something else on the address in-between. We could
408 			 * check for that, but we need to tell the
409 			 * process anyways.
410 			 */
411 			else if (kill_proc(tk, pfn, flags) < 0)
412 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
413 				       pfn, tk->tsk->comm, tk->tsk->pid);
414 		}
415 		put_task_struct(tk->tsk);
416 		kfree(tk);
417 	}
418 }
419 
420 /*
421  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
422  * on behalf of the thread group. Return task_struct of the (first found)
423  * dedicated thread if found, and return NULL otherwise.
424  *
425  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
426  * have to call rcu_read_lock/unlock() in this function.
427  */
428 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
429 {
430 	struct task_struct *t;
431 
432 	for_each_thread(tsk, t) {
433 		if (t->flags & PF_MCE_PROCESS) {
434 			if (t->flags & PF_MCE_EARLY)
435 				return t;
436 		} else {
437 			if (sysctl_memory_failure_early_kill)
438 				return t;
439 		}
440 	}
441 	return NULL;
442 }
443 
444 /*
445  * Determine whether a given process is "early kill" process which expects
446  * to be signaled when some page under the process is hwpoisoned.
447  * Return task_struct of the dedicated thread (main thread unless explicitly
448  * specified) if the process is "early kill" and otherwise returns NULL.
449  *
450  * Note that the above is true for Action Optional case. For Action Required
451  * case, it's only meaningful to the current thread which need to be signaled
452  * with SIGBUS, this error is Action Optional for other non current
453  * processes sharing the same error page,if the process is "early kill", the
454  * task_struct of the dedicated thread will also be returned.
455  */
456 static struct task_struct *task_early_kill(struct task_struct *tsk,
457 					   int force_early)
458 {
459 	if (!tsk->mm)
460 		return NULL;
461 	/*
462 	 * Comparing ->mm here because current task might represent
463 	 * a subthread, while tsk always points to the main thread.
464 	 */
465 	if (force_early && tsk->mm == current->mm)
466 		return current;
467 
468 	return find_early_kill_thread(tsk);
469 }
470 
471 /*
472  * Collect processes when the error hit an anonymous page.
473  */
474 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
475 				int force_early)
476 {
477 	struct vm_area_struct *vma;
478 	struct task_struct *tsk;
479 	struct anon_vma *av;
480 	pgoff_t pgoff;
481 
482 	av = page_lock_anon_vma_read(page);
483 	if (av == NULL)	/* Not actually mapped anymore */
484 		return;
485 
486 	pgoff = page_to_pgoff(page);
487 	read_lock(&tasklist_lock);
488 	for_each_process (tsk) {
489 		struct anon_vma_chain *vmac;
490 		struct task_struct *t = task_early_kill(tsk, force_early);
491 
492 		if (!t)
493 			continue;
494 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
495 					       pgoff, pgoff) {
496 			vma = vmac->vma;
497 			if (!page_mapped_in_vma(page, vma))
498 				continue;
499 			if (vma->vm_mm == t->mm)
500 				add_to_kill(t, page, vma, to_kill);
501 		}
502 	}
503 	read_unlock(&tasklist_lock);
504 	page_unlock_anon_vma_read(av);
505 }
506 
507 /*
508  * Collect processes when the error hit a file mapped page.
509  */
510 static void collect_procs_file(struct page *page, struct list_head *to_kill,
511 				int force_early)
512 {
513 	struct vm_area_struct *vma;
514 	struct task_struct *tsk;
515 	struct address_space *mapping = page->mapping;
516 	pgoff_t pgoff;
517 
518 	i_mmap_lock_read(mapping);
519 	read_lock(&tasklist_lock);
520 	pgoff = page_to_pgoff(page);
521 	for_each_process(tsk) {
522 		struct task_struct *t = task_early_kill(tsk, force_early);
523 
524 		if (!t)
525 			continue;
526 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
527 				      pgoff) {
528 			/*
529 			 * Send early kill signal to tasks where a vma covers
530 			 * the page but the corrupted page is not necessarily
531 			 * mapped it in its pte.
532 			 * Assume applications who requested early kill want
533 			 * to be informed of all such data corruptions.
534 			 */
535 			if (vma->vm_mm == t->mm)
536 				add_to_kill(t, page, vma, to_kill);
537 		}
538 	}
539 	read_unlock(&tasklist_lock);
540 	i_mmap_unlock_read(mapping);
541 }
542 
543 /*
544  * Collect the processes who have the corrupted page mapped to kill.
545  */
546 static void collect_procs(struct page *page, struct list_head *tokill,
547 				int force_early)
548 {
549 	if (!page->mapping)
550 		return;
551 
552 	if (PageAnon(page))
553 		collect_procs_anon(page, tokill, force_early);
554 	else
555 		collect_procs_file(page, tokill, force_early);
556 }
557 
558 struct hwp_walk {
559 	struct to_kill tk;
560 	unsigned long pfn;
561 	int flags;
562 };
563 
564 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
565 {
566 	tk->addr = addr;
567 	tk->size_shift = shift;
568 }
569 
570 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
571 				unsigned long poisoned_pfn, struct to_kill *tk)
572 {
573 	unsigned long pfn = 0;
574 
575 	if (pte_present(pte)) {
576 		pfn = pte_pfn(pte);
577 	} else {
578 		swp_entry_t swp = pte_to_swp_entry(pte);
579 
580 		if (is_hwpoison_entry(swp))
581 			pfn = hwpoison_entry_to_pfn(swp);
582 	}
583 
584 	if (!pfn || pfn != poisoned_pfn)
585 		return 0;
586 
587 	set_to_kill(tk, addr, shift);
588 	return 1;
589 }
590 
591 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
592 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
593 				      struct hwp_walk *hwp)
594 {
595 	pmd_t pmd = *pmdp;
596 	unsigned long pfn;
597 	unsigned long hwpoison_vaddr;
598 
599 	if (!pmd_present(pmd))
600 		return 0;
601 	pfn = pmd_pfn(pmd);
602 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
603 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
604 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
605 		return 1;
606 	}
607 	return 0;
608 }
609 #else
610 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
611 				      struct hwp_walk *hwp)
612 {
613 	return 0;
614 }
615 #endif
616 
617 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
618 			      unsigned long end, struct mm_walk *walk)
619 {
620 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
621 	int ret = 0;
622 	pte_t *ptep;
623 	spinlock_t *ptl;
624 
625 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
626 	if (ptl) {
627 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
628 		spin_unlock(ptl);
629 		goto out;
630 	}
631 
632 	if (pmd_trans_unstable(pmdp))
633 		goto out;
634 
635 	ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
636 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
637 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
638 					     hwp->pfn, &hwp->tk);
639 		if (ret == 1)
640 			break;
641 	}
642 	pte_unmap_unlock(ptep - 1, ptl);
643 out:
644 	cond_resched();
645 	return ret;
646 }
647 
648 #ifdef CONFIG_HUGETLB_PAGE
649 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
650 			    unsigned long addr, unsigned long end,
651 			    struct mm_walk *walk)
652 {
653 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
654 	pte_t pte = huge_ptep_get(ptep);
655 	struct hstate *h = hstate_vma(walk->vma);
656 
657 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
658 				      hwp->pfn, &hwp->tk);
659 }
660 #else
661 #define hwpoison_hugetlb_range	NULL
662 #endif
663 
664 static struct mm_walk_ops hwp_walk_ops = {
665 	.pmd_entry = hwpoison_pte_range,
666 	.hugetlb_entry = hwpoison_hugetlb_range,
667 };
668 
669 /*
670  * Sends SIGBUS to the current process with error info.
671  *
672  * This function is intended to handle "Action Required" MCEs on already
673  * hardware poisoned pages. They could happen, for example, when
674  * memory_failure() failed to unmap the error page at the first call, or
675  * when multiple local machine checks happened on different CPUs.
676  *
677  * MCE handler currently has no easy access to the error virtual address,
678  * so this function walks page table to find it. The returned virtual address
679  * is proper in most cases, but it could be wrong when the application
680  * process has multiple entries mapping the error page.
681  */
682 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
683 				  int flags)
684 {
685 	int ret;
686 	struct hwp_walk priv = {
687 		.pfn = pfn,
688 	};
689 	priv.tk.tsk = p;
690 
691 	mmap_read_lock(p->mm);
692 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
693 			      (void *)&priv);
694 	if (ret == 1 && priv.tk.addr)
695 		kill_proc(&priv.tk, pfn, flags);
696 	mmap_read_unlock(p->mm);
697 	return ret ? -EFAULT : -EHWPOISON;
698 }
699 
700 static const char *action_name[] = {
701 	[MF_IGNORED] = "Ignored",
702 	[MF_FAILED] = "Failed",
703 	[MF_DELAYED] = "Delayed",
704 	[MF_RECOVERED] = "Recovered",
705 };
706 
707 static const char * const action_page_types[] = {
708 	[MF_MSG_KERNEL]			= "reserved kernel page",
709 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
710 	[MF_MSG_SLAB]			= "kernel slab page",
711 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
712 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
713 	[MF_MSG_HUGE]			= "huge page",
714 	[MF_MSG_FREE_HUGE]		= "free huge page",
715 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
716 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
717 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
718 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
719 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
720 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
721 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
722 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
723 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
724 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
725 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
726 	[MF_MSG_BUDDY]			= "free buddy page",
727 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
728 	[MF_MSG_DAX]			= "dax page",
729 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
730 	[MF_MSG_UNKNOWN]		= "unknown page",
731 };
732 
733 /*
734  * XXX: It is possible that a page is isolated from LRU cache,
735  * and then kept in swap cache or failed to remove from page cache.
736  * The page count will stop it from being freed by unpoison.
737  * Stress tests should be aware of this memory leak problem.
738  */
739 static int delete_from_lru_cache(struct page *p)
740 {
741 	if (!isolate_lru_page(p)) {
742 		/*
743 		 * Clear sensible page flags, so that the buddy system won't
744 		 * complain when the page is unpoison-and-freed.
745 		 */
746 		ClearPageActive(p);
747 		ClearPageUnevictable(p);
748 
749 		/*
750 		 * Poisoned page might never drop its ref count to 0 so we have
751 		 * to uncharge it manually from its memcg.
752 		 */
753 		mem_cgroup_uncharge(p);
754 
755 		/*
756 		 * drop the page count elevated by isolate_lru_page()
757 		 */
758 		put_page(p);
759 		return 0;
760 	}
761 	return -EIO;
762 }
763 
764 static int truncate_error_page(struct page *p, unsigned long pfn,
765 				struct address_space *mapping)
766 {
767 	int ret = MF_FAILED;
768 
769 	if (mapping->a_ops->error_remove_page) {
770 		int err = mapping->a_ops->error_remove_page(mapping, p);
771 
772 		if (err != 0) {
773 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
774 				pfn, err);
775 		} else if (page_has_private(p) &&
776 			   !try_to_release_page(p, GFP_NOIO)) {
777 			pr_info("Memory failure: %#lx: failed to release buffers\n",
778 				pfn);
779 		} else {
780 			ret = MF_RECOVERED;
781 		}
782 	} else {
783 		/*
784 		 * If the file system doesn't support it just invalidate
785 		 * This fails on dirty or anything with private pages
786 		 */
787 		if (invalidate_inode_page(p))
788 			ret = MF_RECOVERED;
789 		else
790 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
791 				pfn);
792 	}
793 
794 	return ret;
795 }
796 
797 /*
798  * Error hit kernel page.
799  * Do nothing, try to be lucky and not touch this instead. For a few cases we
800  * could be more sophisticated.
801  */
802 static int me_kernel(struct page *p, unsigned long pfn)
803 {
804 	unlock_page(p);
805 	return MF_IGNORED;
806 }
807 
808 /*
809  * Page in unknown state. Do nothing.
810  */
811 static int me_unknown(struct page *p, unsigned long pfn)
812 {
813 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
814 	unlock_page(p);
815 	return MF_FAILED;
816 }
817 
818 /*
819  * Clean (or cleaned) page cache page.
820  */
821 static int me_pagecache_clean(struct page *p, unsigned long pfn)
822 {
823 	int ret;
824 	struct address_space *mapping;
825 
826 	delete_from_lru_cache(p);
827 
828 	/*
829 	 * For anonymous pages we're done the only reference left
830 	 * should be the one m_f() holds.
831 	 */
832 	if (PageAnon(p)) {
833 		ret = MF_RECOVERED;
834 		goto out;
835 	}
836 
837 	/*
838 	 * Now truncate the page in the page cache. This is really
839 	 * more like a "temporary hole punch"
840 	 * Don't do this for block devices when someone else
841 	 * has a reference, because it could be file system metadata
842 	 * and that's not safe to truncate.
843 	 */
844 	mapping = page_mapping(p);
845 	if (!mapping) {
846 		/*
847 		 * Page has been teared down in the meanwhile
848 		 */
849 		ret = MF_FAILED;
850 		goto out;
851 	}
852 
853 	/*
854 	 * Truncation is a bit tricky. Enable it per file system for now.
855 	 *
856 	 * Open: to take i_mutex or not for this? Right now we don't.
857 	 */
858 	ret = truncate_error_page(p, pfn, mapping);
859 out:
860 	unlock_page(p);
861 	return ret;
862 }
863 
864 /*
865  * Dirty pagecache page
866  * Issues: when the error hit a hole page the error is not properly
867  * propagated.
868  */
869 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
870 {
871 	struct address_space *mapping = page_mapping(p);
872 
873 	SetPageError(p);
874 	/* TBD: print more information about the file. */
875 	if (mapping) {
876 		/*
877 		 * IO error will be reported by write(), fsync(), etc.
878 		 * who check the mapping.
879 		 * This way the application knows that something went
880 		 * wrong with its dirty file data.
881 		 *
882 		 * There's one open issue:
883 		 *
884 		 * The EIO will be only reported on the next IO
885 		 * operation and then cleared through the IO map.
886 		 * Normally Linux has two mechanisms to pass IO error
887 		 * first through the AS_EIO flag in the address space
888 		 * and then through the PageError flag in the page.
889 		 * Since we drop pages on memory failure handling the
890 		 * only mechanism open to use is through AS_AIO.
891 		 *
892 		 * This has the disadvantage that it gets cleared on
893 		 * the first operation that returns an error, while
894 		 * the PageError bit is more sticky and only cleared
895 		 * when the page is reread or dropped.  If an
896 		 * application assumes it will always get error on
897 		 * fsync, but does other operations on the fd before
898 		 * and the page is dropped between then the error
899 		 * will not be properly reported.
900 		 *
901 		 * This can already happen even without hwpoisoned
902 		 * pages: first on metadata IO errors (which only
903 		 * report through AS_EIO) or when the page is dropped
904 		 * at the wrong time.
905 		 *
906 		 * So right now we assume that the application DTRT on
907 		 * the first EIO, but we're not worse than other parts
908 		 * of the kernel.
909 		 */
910 		mapping_set_error(mapping, -EIO);
911 	}
912 
913 	return me_pagecache_clean(p, pfn);
914 }
915 
916 /*
917  * Clean and dirty swap cache.
918  *
919  * Dirty swap cache page is tricky to handle. The page could live both in page
920  * cache and swap cache(ie. page is freshly swapped in). So it could be
921  * referenced concurrently by 2 types of PTEs:
922  * normal PTEs and swap PTEs. We try to handle them consistently by calling
923  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
924  * and then
925  *      - clear dirty bit to prevent IO
926  *      - remove from LRU
927  *      - but keep in the swap cache, so that when we return to it on
928  *        a later page fault, we know the application is accessing
929  *        corrupted data and shall be killed (we installed simple
930  *        interception code in do_swap_page to catch it).
931  *
932  * Clean swap cache pages can be directly isolated. A later page fault will
933  * bring in the known good data from disk.
934  */
935 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
936 {
937 	int ret;
938 
939 	ClearPageDirty(p);
940 	/* Trigger EIO in shmem: */
941 	ClearPageUptodate(p);
942 
943 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
944 	unlock_page(p);
945 	return ret;
946 }
947 
948 static int me_swapcache_clean(struct page *p, unsigned long pfn)
949 {
950 	int ret;
951 
952 	delete_from_swap_cache(p);
953 
954 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
955 	unlock_page(p);
956 	return ret;
957 }
958 
959 /*
960  * Huge pages. Needs work.
961  * Issues:
962  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
963  *   To narrow down kill region to one page, we need to break up pmd.
964  */
965 static int me_huge_page(struct page *p, unsigned long pfn)
966 {
967 	int res;
968 	struct page *hpage = compound_head(p);
969 	struct address_space *mapping;
970 
971 	if (!PageHuge(hpage))
972 		return MF_DELAYED;
973 
974 	mapping = page_mapping(hpage);
975 	if (mapping) {
976 		res = truncate_error_page(hpage, pfn, mapping);
977 		unlock_page(hpage);
978 	} else {
979 		res = MF_FAILED;
980 		unlock_page(hpage);
981 		/*
982 		 * migration entry prevents later access on error anonymous
983 		 * hugepage, so we can free and dissolve it into buddy to
984 		 * save healthy subpages.
985 		 */
986 		if (PageAnon(hpage))
987 			put_page(hpage);
988 		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
989 			page_ref_inc(p);
990 			res = MF_RECOVERED;
991 		}
992 	}
993 
994 	return res;
995 }
996 
997 /*
998  * Various page states we can handle.
999  *
1000  * A page state is defined by its current page->flags bits.
1001  * The table matches them in order and calls the right handler.
1002  *
1003  * This is quite tricky because we can access page at any time
1004  * in its live cycle, so all accesses have to be extremely careful.
1005  *
1006  * This is not complete. More states could be added.
1007  * For any missing state don't attempt recovery.
1008  */
1009 
1010 #define dirty		(1UL << PG_dirty)
1011 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1012 #define unevict		(1UL << PG_unevictable)
1013 #define mlock		(1UL << PG_mlocked)
1014 #define lru		(1UL << PG_lru)
1015 #define head		(1UL << PG_head)
1016 #define slab		(1UL << PG_slab)
1017 #define reserved	(1UL << PG_reserved)
1018 
1019 static struct page_state {
1020 	unsigned long mask;
1021 	unsigned long res;
1022 	enum mf_action_page_type type;
1023 
1024 	/* Callback ->action() has to unlock the relevant page inside it. */
1025 	int (*action)(struct page *p, unsigned long pfn);
1026 } error_states[] = {
1027 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1028 	/*
1029 	 * free pages are specially detected outside this table:
1030 	 * PG_buddy pages only make a small fraction of all free pages.
1031 	 */
1032 
1033 	/*
1034 	 * Could in theory check if slab page is free or if we can drop
1035 	 * currently unused objects without touching them. But just
1036 	 * treat it as standard kernel for now.
1037 	 */
1038 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1039 
1040 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1041 
1042 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1043 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1044 
1045 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1046 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1047 
1048 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1049 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1050 
1051 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1052 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1053 
1054 	/*
1055 	 * Catchall entry: must be at end.
1056 	 */
1057 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1058 };
1059 
1060 #undef dirty
1061 #undef sc
1062 #undef unevict
1063 #undef mlock
1064 #undef lru
1065 #undef head
1066 #undef slab
1067 #undef reserved
1068 
1069 /*
1070  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1071  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1072  */
1073 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1074 			  enum mf_result result)
1075 {
1076 	trace_memory_failure_event(pfn, type, result);
1077 
1078 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1079 		pfn, action_page_types[type], action_name[result]);
1080 }
1081 
1082 static int page_action(struct page_state *ps, struct page *p,
1083 			unsigned long pfn)
1084 {
1085 	int result;
1086 	int count;
1087 
1088 	/* page p should be unlocked after returning from ps->action().  */
1089 	result = ps->action(p, pfn);
1090 
1091 	count = page_count(p) - 1;
1092 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1093 		count--;
1094 	if (count > 0) {
1095 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1096 		       pfn, action_page_types[ps->type], count);
1097 		result = MF_FAILED;
1098 	}
1099 	action_result(pfn, ps->type, result);
1100 
1101 	/* Could do more checks here if page looks ok */
1102 	/*
1103 	 * Could adjust zone counters here to correct for the missing page.
1104 	 */
1105 
1106 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1107 }
1108 
1109 /*
1110  * Return true if a page type of a given page is supported by hwpoison
1111  * mechanism (while handling could fail), otherwise false.  This function
1112  * does not return true for hugetlb or device memory pages, so it's assumed
1113  * to be called only in the context where we never have such pages.
1114  */
1115 static inline bool HWPoisonHandlable(struct page *page)
1116 {
1117 	return PageLRU(page) || __PageMovable(page);
1118 }
1119 
1120 static int __get_hwpoison_page(struct page *page)
1121 {
1122 	struct page *head = compound_head(page);
1123 	int ret = 0;
1124 	bool hugetlb = false;
1125 
1126 	ret = get_hwpoison_huge_page(head, &hugetlb);
1127 	if (hugetlb)
1128 		return ret;
1129 
1130 	/*
1131 	 * This check prevents from calling get_hwpoison_unless_zero()
1132 	 * for any unsupported type of page in order to reduce the risk of
1133 	 * unexpected races caused by taking a page refcount.
1134 	 */
1135 	if (!HWPoisonHandlable(head))
1136 		return 0;
1137 
1138 	if (PageTransHuge(head)) {
1139 		/*
1140 		 * Non anonymous thp exists only in allocation/free time. We
1141 		 * can't handle such a case correctly, so let's give it up.
1142 		 * This should be better than triggering BUG_ON when kernel
1143 		 * tries to touch the "partially handled" page.
1144 		 */
1145 		if (!PageAnon(head)) {
1146 			pr_err("Memory failure: %#lx: non anonymous thp\n",
1147 				page_to_pfn(page));
1148 			return 0;
1149 		}
1150 	}
1151 
1152 	if (get_page_unless_zero(head)) {
1153 		if (head == compound_head(page))
1154 			return 1;
1155 
1156 		pr_info("Memory failure: %#lx cannot catch tail\n",
1157 			page_to_pfn(page));
1158 		put_page(head);
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 static int get_any_page(struct page *p, unsigned long flags)
1165 {
1166 	int ret = 0, pass = 0;
1167 	bool count_increased = false;
1168 
1169 	if (flags & MF_COUNT_INCREASED)
1170 		count_increased = true;
1171 
1172 try_again:
1173 	if (!count_increased) {
1174 		ret = __get_hwpoison_page(p);
1175 		if (!ret) {
1176 			if (page_count(p)) {
1177 				/* We raced with an allocation, retry. */
1178 				if (pass++ < 3)
1179 					goto try_again;
1180 				ret = -EBUSY;
1181 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1182 				/* We raced with put_page, retry. */
1183 				if (pass++ < 3)
1184 					goto try_again;
1185 				ret = -EIO;
1186 			}
1187 			goto out;
1188 		} else if (ret == -EBUSY) {
1189 			/* We raced with freeing huge page to buddy, retry. */
1190 			if (pass++ < 3)
1191 				goto try_again;
1192 			goto out;
1193 		}
1194 	}
1195 
1196 	if (PageHuge(p) || HWPoisonHandlable(p)) {
1197 		ret = 1;
1198 	} else {
1199 		/*
1200 		 * A page we cannot handle. Check whether we can turn
1201 		 * it into something we can handle.
1202 		 */
1203 		if (pass++ < 3) {
1204 			put_page(p);
1205 			shake_page(p, 1);
1206 			count_increased = false;
1207 			goto try_again;
1208 		}
1209 		put_page(p);
1210 		ret = -EIO;
1211 	}
1212 out:
1213 	return ret;
1214 }
1215 
1216 /**
1217  * get_hwpoison_page() - Get refcount for memory error handling
1218  * @p:		Raw error page (hit by memory error)
1219  * @flags:	Flags controlling behavior of error handling
1220  *
1221  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1222  * error on it, after checking that the error page is in a well-defined state
1223  * (defined as a page-type we can successfully handle the memor error on it,
1224  * such as LRU page and hugetlb page).
1225  *
1226  * Memory error handling could be triggered at any time on any type of page,
1227  * so it's prone to race with typical memory management lifecycle (like
1228  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1229  * extra care for the error page's state (as done in __get_hwpoison_page()),
1230  * and has some retry logic in get_any_page().
1231  *
1232  * Return: 0 on failure,
1233  *         1 on success for in-use pages in a well-defined state,
1234  *         -EIO for pages on which we can not handle memory errors,
1235  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1236  *         operations like allocation and free.
1237  */
1238 static int get_hwpoison_page(struct page *p, unsigned long flags)
1239 {
1240 	int ret;
1241 
1242 	zone_pcp_disable(page_zone(p));
1243 	ret = get_any_page(p, flags);
1244 	zone_pcp_enable(page_zone(p));
1245 
1246 	return ret;
1247 }
1248 
1249 /*
1250  * Do all that is necessary to remove user space mappings. Unmap
1251  * the pages and send SIGBUS to the processes if the data was dirty.
1252  */
1253 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1254 				  int flags, struct page **hpagep)
1255 {
1256 	enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1257 	struct address_space *mapping;
1258 	LIST_HEAD(tokill);
1259 	bool unmap_success = true;
1260 	int kill = 1, forcekill;
1261 	struct page *hpage = *hpagep;
1262 	bool mlocked = PageMlocked(hpage);
1263 
1264 	/*
1265 	 * Here we are interested only in user-mapped pages, so skip any
1266 	 * other types of pages.
1267 	 */
1268 	if (PageReserved(p) || PageSlab(p))
1269 		return true;
1270 	if (!(PageLRU(hpage) || PageHuge(p)))
1271 		return true;
1272 
1273 	/*
1274 	 * This check implies we don't kill processes if their pages
1275 	 * are in the swap cache early. Those are always late kills.
1276 	 */
1277 	if (!page_mapped(hpage))
1278 		return true;
1279 
1280 	if (PageKsm(p)) {
1281 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1282 		return false;
1283 	}
1284 
1285 	if (PageSwapCache(p)) {
1286 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1287 			pfn);
1288 		ttu |= TTU_IGNORE_HWPOISON;
1289 	}
1290 
1291 	/*
1292 	 * Propagate the dirty bit from PTEs to struct page first, because we
1293 	 * need this to decide if we should kill or just drop the page.
1294 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1295 	 * be called inside page lock (it's recommended but not enforced).
1296 	 */
1297 	mapping = page_mapping(hpage);
1298 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1299 	    mapping_can_writeback(mapping)) {
1300 		if (page_mkclean(hpage)) {
1301 			SetPageDirty(hpage);
1302 		} else {
1303 			kill = 0;
1304 			ttu |= TTU_IGNORE_HWPOISON;
1305 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1306 				pfn);
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * First collect all the processes that have the page
1312 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1313 	 * because ttu takes the rmap data structures down.
1314 	 *
1315 	 * Error handling: We ignore errors here because
1316 	 * there's nothing that can be done.
1317 	 */
1318 	if (kill)
1319 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1320 
1321 	if (!PageHuge(hpage)) {
1322 		unmap_success = try_to_unmap(hpage, ttu);
1323 	} else {
1324 		if (!PageAnon(hpage)) {
1325 			/*
1326 			 * For hugetlb pages in shared mappings, try_to_unmap
1327 			 * could potentially call huge_pmd_unshare.  Because of
1328 			 * this, take semaphore in write mode here and set
1329 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1330 			 * at this higer level.
1331 			 */
1332 			mapping = hugetlb_page_mapping_lock_write(hpage);
1333 			if (mapping) {
1334 				unmap_success = try_to_unmap(hpage,
1335 						     ttu|TTU_RMAP_LOCKED);
1336 				i_mmap_unlock_write(mapping);
1337 			} else {
1338 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1339 				unmap_success = false;
1340 			}
1341 		} else {
1342 			unmap_success = try_to_unmap(hpage, ttu);
1343 		}
1344 	}
1345 	if (!unmap_success)
1346 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1347 		       pfn, page_mapcount(hpage));
1348 
1349 	/*
1350 	 * try_to_unmap() might put mlocked page in lru cache, so call
1351 	 * shake_page() again to ensure that it's flushed.
1352 	 */
1353 	if (mlocked)
1354 		shake_page(hpage, 0);
1355 
1356 	/*
1357 	 * Now that the dirty bit has been propagated to the
1358 	 * struct page and all unmaps done we can decide if
1359 	 * killing is needed or not.  Only kill when the page
1360 	 * was dirty or the process is not restartable,
1361 	 * otherwise the tokill list is merely
1362 	 * freed.  When there was a problem unmapping earlier
1363 	 * use a more force-full uncatchable kill to prevent
1364 	 * any accesses to the poisoned memory.
1365 	 */
1366 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1367 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1368 
1369 	return unmap_success;
1370 }
1371 
1372 static int identify_page_state(unsigned long pfn, struct page *p,
1373 				unsigned long page_flags)
1374 {
1375 	struct page_state *ps;
1376 
1377 	/*
1378 	 * The first check uses the current page flags which may not have any
1379 	 * relevant information. The second check with the saved page flags is
1380 	 * carried out only if the first check can't determine the page status.
1381 	 */
1382 	for (ps = error_states;; ps++)
1383 		if ((p->flags & ps->mask) == ps->res)
1384 			break;
1385 
1386 	page_flags |= (p->flags & (1UL << PG_dirty));
1387 
1388 	if (!ps->mask)
1389 		for (ps = error_states;; ps++)
1390 			if ((page_flags & ps->mask) == ps->res)
1391 				break;
1392 	return page_action(ps, p, pfn);
1393 }
1394 
1395 static int try_to_split_thp_page(struct page *page, const char *msg)
1396 {
1397 	lock_page(page);
1398 	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1399 		unsigned long pfn = page_to_pfn(page);
1400 
1401 		unlock_page(page);
1402 		if (!PageAnon(page))
1403 			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1404 		else
1405 			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1406 		put_page(page);
1407 		return -EBUSY;
1408 	}
1409 	unlock_page(page);
1410 
1411 	return 0;
1412 }
1413 
1414 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1415 {
1416 	struct page *p = pfn_to_page(pfn);
1417 	struct page *head = compound_head(p);
1418 	int res;
1419 	unsigned long page_flags;
1420 
1421 	if (TestSetPageHWPoison(head)) {
1422 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1423 		       pfn);
1424 		res = -EHWPOISON;
1425 		if (flags & MF_ACTION_REQUIRED)
1426 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1427 		return res;
1428 	}
1429 
1430 	num_poisoned_pages_inc();
1431 
1432 	if (!(flags & MF_COUNT_INCREASED)) {
1433 		res = get_hwpoison_page(p, flags);
1434 		if (!res) {
1435 			/*
1436 			 * Check "filter hit" and "race with other subpage."
1437 			 */
1438 			lock_page(head);
1439 			if (PageHWPoison(head)) {
1440 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1441 				    || (p != head && TestSetPageHWPoison(head))) {
1442 					num_poisoned_pages_dec();
1443 					unlock_page(head);
1444 					return 0;
1445 				}
1446 			}
1447 			unlock_page(head);
1448 			res = MF_FAILED;
1449 			if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1450 				page_ref_inc(p);
1451 				res = MF_RECOVERED;
1452 			}
1453 			action_result(pfn, MF_MSG_FREE_HUGE, res);
1454 			return res == MF_RECOVERED ? 0 : -EBUSY;
1455 		} else if (res < 0) {
1456 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1457 			return -EBUSY;
1458 		}
1459 	}
1460 
1461 	lock_page(head);
1462 	page_flags = head->flags;
1463 
1464 	if (!PageHWPoison(head)) {
1465 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1466 		num_poisoned_pages_dec();
1467 		unlock_page(head);
1468 		put_page(head);
1469 		return 0;
1470 	}
1471 
1472 	/*
1473 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1474 	 * simply disable it. In order to make it work properly, we need
1475 	 * make sure that:
1476 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1477 	 *    entry properly works, and
1478 	 *  - other mm code walking over page table is aware of pud-aligned
1479 	 *    hwpoison entries.
1480 	 */
1481 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1482 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1483 		res = -EBUSY;
1484 		goto out;
1485 	}
1486 
1487 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1488 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1489 		res = -EBUSY;
1490 		goto out;
1491 	}
1492 
1493 	return identify_page_state(pfn, p, page_flags);
1494 out:
1495 	unlock_page(head);
1496 	return res;
1497 }
1498 
1499 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1500 		struct dev_pagemap *pgmap)
1501 {
1502 	struct page *page = pfn_to_page(pfn);
1503 	const bool unmap_success = true;
1504 	unsigned long size = 0;
1505 	struct to_kill *tk;
1506 	LIST_HEAD(tokill);
1507 	int rc = -EBUSY;
1508 	loff_t start;
1509 	dax_entry_t cookie;
1510 
1511 	if (flags & MF_COUNT_INCREASED)
1512 		/*
1513 		 * Drop the extra refcount in case we come from madvise().
1514 		 */
1515 		put_page(page);
1516 
1517 	/* device metadata space is not recoverable */
1518 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1519 		rc = -ENXIO;
1520 		goto out;
1521 	}
1522 
1523 	/*
1524 	 * Prevent the inode from being freed while we are interrogating
1525 	 * the address_space, typically this would be handled by
1526 	 * lock_page(), but dax pages do not use the page lock. This
1527 	 * also prevents changes to the mapping of this pfn until
1528 	 * poison signaling is complete.
1529 	 */
1530 	cookie = dax_lock_page(page);
1531 	if (!cookie)
1532 		goto out;
1533 
1534 	if (hwpoison_filter(page)) {
1535 		rc = 0;
1536 		goto unlock;
1537 	}
1538 
1539 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1540 		/*
1541 		 * TODO: Handle HMM pages which may need coordination
1542 		 * with device-side memory.
1543 		 */
1544 		goto unlock;
1545 	}
1546 
1547 	/*
1548 	 * Use this flag as an indication that the dax page has been
1549 	 * remapped UC to prevent speculative consumption of poison.
1550 	 */
1551 	SetPageHWPoison(page);
1552 
1553 	/*
1554 	 * Unlike System-RAM there is no possibility to swap in a
1555 	 * different physical page at a given virtual address, so all
1556 	 * userspace consumption of ZONE_DEVICE memory necessitates
1557 	 * SIGBUS (i.e. MF_MUST_KILL)
1558 	 */
1559 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1560 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1561 
1562 	list_for_each_entry(tk, &tokill, nd)
1563 		if (tk->size_shift)
1564 			size = max(size, 1UL << tk->size_shift);
1565 	if (size) {
1566 		/*
1567 		 * Unmap the largest mapping to avoid breaking up
1568 		 * device-dax mappings which are constant size. The
1569 		 * actual size of the mapping being torn down is
1570 		 * communicated in siginfo, see kill_proc()
1571 		 */
1572 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1573 		unmap_mapping_range(page->mapping, start, size, 0);
1574 	}
1575 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1576 	rc = 0;
1577 unlock:
1578 	dax_unlock_page(page, cookie);
1579 out:
1580 	/* drop pgmap ref acquired in caller */
1581 	put_dev_pagemap(pgmap);
1582 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1583 	return rc;
1584 }
1585 
1586 /**
1587  * memory_failure - Handle memory failure of a page.
1588  * @pfn: Page Number of the corrupted page
1589  * @flags: fine tune action taken
1590  *
1591  * This function is called by the low level machine check code
1592  * of an architecture when it detects hardware memory corruption
1593  * of a page. It tries its best to recover, which includes
1594  * dropping pages, killing processes etc.
1595  *
1596  * The function is primarily of use for corruptions that
1597  * happen outside the current execution context (e.g. when
1598  * detected by a background scrubber)
1599  *
1600  * Must run in process context (e.g. a work queue) with interrupts
1601  * enabled and no spinlocks hold.
1602  */
1603 int memory_failure(unsigned long pfn, int flags)
1604 {
1605 	struct page *p;
1606 	struct page *hpage;
1607 	struct page *orig_head;
1608 	struct dev_pagemap *pgmap;
1609 	int res = 0;
1610 	unsigned long page_flags;
1611 	bool retry = true;
1612 	static DEFINE_MUTEX(mf_mutex);
1613 
1614 	if (!sysctl_memory_failure_recovery)
1615 		panic("Memory failure on page %lx", pfn);
1616 
1617 	p = pfn_to_online_page(pfn);
1618 	if (!p) {
1619 		if (pfn_valid(pfn)) {
1620 			pgmap = get_dev_pagemap(pfn, NULL);
1621 			if (pgmap)
1622 				return memory_failure_dev_pagemap(pfn, flags,
1623 								  pgmap);
1624 		}
1625 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1626 			pfn);
1627 		return -ENXIO;
1628 	}
1629 
1630 	mutex_lock(&mf_mutex);
1631 
1632 try_again:
1633 	if (PageHuge(p)) {
1634 		res = memory_failure_hugetlb(pfn, flags);
1635 		goto unlock_mutex;
1636 	}
1637 
1638 	if (TestSetPageHWPoison(p)) {
1639 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1640 			pfn);
1641 		res = -EHWPOISON;
1642 		if (flags & MF_ACTION_REQUIRED)
1643 			res = kill_accessing_process(current, pfn, flags);
1644 		goto unlock_mutex;
1645 	}
1646 
1647 	orig_head = hpage = compound_head(p);
1648 	num_poisoned_pages_inc();
1649 
1650 	/*
1651 	 * We need/can do nothing about count=0 pages.
1652 	 * 1) it's a free page, and therefore in safe hand:
1653 	 *    prep_new_page() will be the gate keeper.
1654 	 * 2) it's part of a non-compound high order page.
1655 	 *    Implies some kernel user: cannot stop them from
1656 	 *    R/W the page; let's pray that the page has been
1657 	 *    used and will be freed some time later.
1658 	 * In fact it's dangerous to directly bump up page count from 0,
1659 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1660 	 */
1661 	if (!(flags & MF_COUNT_INCREASED)) {
1662 		res = get_hwpoison_page(p, flags);
1663 		if (!res) {
1664 			if (is_free_buddy_page(p)) {
1665 				if (take_page_off_buddy(p)) {
1666 					page_ref_inc(p);
1667 					res = MF_RECOVERED;
1668 				} else {
1669 					/* We lost the race, try again */
1670 					if (retry) {
1671 						ClearPageHWPoison(p);
1672 						num_poisoned_pages_dec();
1673 						retry = false;
1674 						goto try_again;
1675 					}
1676 					res = MF_FAILED;
1677 				}
1678 				action_result(pfn, MF_MSG_BUDDY, res);
1679 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1680 			} else {
1681 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1682 				res = -EBUSY;
1683 			}
1684 			goto unlock_mutex;
1685 		} else if (res < 0) {
1686 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1687 			res = -EBUSY;
1688 			goto unlock_mutex;
1689 		}
1690 	}
1691 
1692 	if (PageTransHuge(hpage)) {
1693 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1694 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1695 			res = -EBUSY;
1696 			goto unlock_mutex;
1697 		}
1698 		VM_BUG_ON_PAGE(!page_count(p), p);
1699 	}
1700 
1701 	/*
1702 	 * We ignore non-LRU pages for good reasons.
1703 	 * - PG_locked is only well defined for LRU pages and a few others
1704 	 * - to avoid races with __SetPageLocked()
1705 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1706 	 * The check (unnecessarily) ignores LRU pages being isolated and
1707 	 * walked by the page reclaim code, however that's not a big loss.
1708 	 */
1709 	shake_page(p, 0);
1710 
1711 	lock_page(p);
1712 
1713 	/*
1714 	 * The page could have changed compound pages during the locking.
1715 	 * If this happens just bail out.
1716 	 */
1717 	if (PageCompound(p) && compound_head(p) != orig_head) {
1718 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1719 		res = -EBUSY;
1720 		goto unlock_page;
1721 	}
1722 
1723 	/*
1724 	 * We use page flags to determine what action should be taken, but
1725 	 * the flags can be modified by the error containment action.  One
1726 	 * example is an mlocked page, where PG_mlocked is cleared by
1727 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1728 	 * correctly, we save a copy of the page flags at this time.
1729 	 */
1730 	page_flags = p->flags;
1731 
1732 	/*
1733 	 * unpoison always clear PG_hwpoison inside page lock
1734 	 */
1735 	if (!PageHWPoison(p)) {
1736 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1737 		num_poisoned_pages_dec();
1738 		unlock_page(p);
1739 		put_page(p);
1740 		goto unlock_mutex;
1741 	}
1742 	if (hwpoison_filter(p)) {
1743 		if (TestClearPageHWPoison(p))
1744 			num_poisoned_pages_dec();
1745 		unlock_page(p);
1746 		put_page(p);
1747 		goto unlock_mutex;
1748 	}
1749 
1750 	/*
1751 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1752 	 * page_lock. We need wait writeback completion for this page or it
1753 	 * may trigger vfs BUG while evict inode.
1754 	 */
1755 	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1756 		goto identify_page_state;
1757 
1758 	/*
1759 	 * It's very difficult to mess with pages currently under IO
1760 	 * and in many cases impossible, so we just avoid it here.
1761 	 */
1762 	wait_on_page_writeback(p);
1763 
1764 	/*
1765 	 * Now take care of user space mappings.
1766 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1767 	 */
1768 	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1769 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1770 		res = -EBUSY;
1771 		goto unlock_page;
1772 	}
1773 
1774 	/*
1775 	 * Torn down by someone else?
1776 	 */
1777 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1778 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1779 		res = -EBUSY;
1780 		goto unlock_page;
1781 	}
1782 
1783 identify_page_state:
1784 	res = identify_page_state(pfn, p, page_flags);
1785 	mutex_unlock(&mf_mutex);
1786 	return res;
1787 unlock_page:
1788 	unlock_page(p);
1789 unlock_mutex:
1790 	mutex_unlock(&mf_mutex);
1791 	return res;
1792 }
1793 EXPORT_SYMBOL_GPL(memory_failure);
1794 
1795 #define MEMORY_FAILURE_FIFO_ORDER	4
1796 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1797 
1798 struct memory_failure_entry {
1799 	unsigned long pfn;
1800 	int flags;
1801 };
1802 
1803 struct memory_failure_cpu {
1804 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1805 		      MEMORY_FAILURE_FIFO_SIZE);
1806 	spinlock_t lock;
1807 	struct work_struct work;
1808 };
1809 
1810 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1811 
1812 /**
1813  * memory_failure_queue - Schedule handling memory failure of a page.
1814  * @pfn: Page Number of the corrupted page
1815  * @flags: Flags for memory failure handling
1816  *
1817  * This function is called by the low level hardware error handler
1818  * when it detects hardware memory corruption of a page. It schedules
1819  * the recovering of error page, including dropping pages, killing
1820  * processes etc.
1821  *
1822  * The function is primarily of use for corruptions that
1823  * happen outside the current execution context (e.g. when
1824  * detected by a background scrubber)
1825  *
1826  * Can run in IRQ context.
1827  */
1828 void memory_failure_queue(unsigned long pfn, int flags)
1829 {
1830 	struct memory_failure_cpu *mf_cpu;
1831 	unsigned long proc_flags;
1832 	struct memory_failure_entry entry = {
1833 		.pfn =		pfn,
1834 		.flags =	flags,
1835 	};
1836 
1837 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1838 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1839 	if (kfifo_put(&mf_cpu->fifo, entry))
1840 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1841 	else
1842 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1843 		       pfn);
1844 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1845 	put_cpu_var(memory_failure_cpu);
1846 }
1847 EXPORT_SYMBOL_GPL(memory_failure_queue);
1848 
1849 static void memory_failure_work_func(struct work_struct *work)
1850 {
1851 	struct memory_failure_cpu *mf_cpu;
1852 	struct memory_failure_entry entry = { 0, };
1853 	unsigned long proc_flags;
1854 	int gotten;
1855 
1856 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1857 	for (;;) {
1858 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1859 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1860 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1861 		if (!gotten)
1862 			break;
1863 		if (entry.flags & MF_SOFT_OFFLINE)
1864 			soft_offline_page(entry.pfn, entry.flags);
1865 		else
1866 			memory_failure(entry.pfn, entry.flags);
1867 	}
1868 }
1869 
1870 /*
1871  * Process memory_failure work queued on the specified CPU.
1872  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1873  */
1874 void memory_failure_queue_kick(int cpu)
1875 {
1876 	struct memory_failure_cpu *mf_cpu;
1877 
1878 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1879 	cancel_work_sync(&mf_cpu->work);
1880 	memory_failure_work_func(&mf_cpu->work);
1881 }
1882 
1883 static int __init memory_failure_init(void)
1884 {
1885 	struct memory_failure_cpu *mf_cpu;
1886 	int cpu;
1887 
1888 	for_each_possible_cpu(cpu) {
1889 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1890 		spin_lock_init(&mf_cpu->lock);
1891 		INIT_KFIFO(mf_cpu->fifo);
1892 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1893 	}
1894 
1895 	return 0;
1896 }
1897 core_initcall(memory_failure_init);
1898 
1899 #define unpoison_pr_info(fmt, pfn, rs)			\
1900 ({							\
1901 	if (__ratelimit(rs))				\
1902 		pr_info(fmt, pfn);			\
1903 })
1904 
1905 /**
1906  * unpoison_memory - Unpoison a previously poisoned page
1907  * @pfn: Page number of the to be unpoisoned page
1908  *
1909  * Software-unpoison a page that has been poisoned by
1910  * memory_failure() earlier.
1911  *
1912  * This is only done on the software-level, so it only works
1913  * for linux injected failures, not real hardware failures
1914  *
1915  * Returns 0 for success, otherwise -errno.
1916  */
1917 int unpoison_memory(unsigned long pfn)
1918 {
1919 	struct page *page;
1920 	struct page *p;
1921 	int freeit = 0;
1922 	unsigned long flags = 0;
1923 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1924 					DEFAULT_RATELIMIT_BURST);
1925 
1926 	if (!pfn_valid(pfn))
1927 		return -ENXIO;
1928 
1929 	p = pfn_to_page(pfn);
1930 	page = compound_head(p);
1931 
1932 	if (!PageHWPoison(p)) {
1933 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1934 				 pfn, &unpoison_rs);
1935 		return 0;
1936 	}
1937 
1938 	if (page_count(page) > 1) {
1939 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1940 				 pfn, &unpoison_rs);
1941 		return 0;
1942 	}
1943 
1944 	if (page_mapped(page)) {
1945 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1946 				 pfn, &unpoison_rs);
1947 		return 0;
1948 	}
1949 
1950 	if (page_mapping(page)) {
1951 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1952 				 pfn, &unpoison_rs);
1953 		return 0;
1954 	}
1955 
1956 	/*
1957 	 * unpoison_memory() can encounter thp only when the thp is being
1958 	 * worked by memory_failure() and the page lock is not held yet.
1959 	 * In such case, we yield to memory_failure() and make unpoison fail.
1960 	 */
1961 	if (!PageHuge(page) && PageTransHuge(page)) {
1962 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1963 				 pfn, &unpoison_rs);
1964 		return 0;
1965 	}
1966 
1967 	if (!get_hwpoison_page(p, flags)) {
1968 		if (TestClearPageHWPoison(p))
1969 			num_poisoned_pages_dec();
1970 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1971 				 pfn, &unpoison_rs);
1972 		return 0;
1973 	}
1974 
1975 	lock_page(page);
1976 	/*
1977 	 * This test is racy because PG_hwpoison is set outside of page lock.
1978 	 * That's acceptable because that won't trigger kernel panic. Instead,
1979 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1980 	 * the free buddy page pool.
1981 	 */
1982 	if (TestClearPageHWPoison(page)) {
1983 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1984 				 pfn, &unpoison_rs);
1985 		num_poisoned_pages_dec();
1986 		freeit = 1;
1987 	}
1988 	unlock_page(page);
1989 
1990 	put_page(page);
1991 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1992 		put_page(page);
1993 
1994 	return 0;
1995 }
1996 EXPORT_SYMBOL(unpoison_memory);
1997 
1998 static bool isolate_page(struct page *page, struct list_head *pagelist)
1999 {
2000 	bool isolated = false;
2001 	bool lru = PageLRU(page);
2002 
2003 	if (PageHuge(page)) {
2004 		isolated = isolate_huge_page(page, pagelist);
2005 	} else {
2006 		if (lru)
2007 			isolated = !isolate_lru_page(page);
2008 		else
2009 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2010 
2011 		if (isolated)
2012 			list_add(&page->lru, pagelist);
2013 	}
2014 
2015 	if (isolated && lru)
2016 		inc_node_page_state(page, NR_ISOLATED_ANON +
2017 				    page_is_file_lru(page));
2018 
2019 	/*
2020 	 * If we succeed to isolate the page, we grabbed another refcount on
2021 	 * the page, so we can safely drop the one we got from get_any_pages().
2022 	 * If we failed to isolate the page, it means that we cannot go further
2023 	 * and we will return an error, so drop the reference we got from
2024 	 * get_any_pages() as well.
2025 	 */
2026 	put_page(page);
2027 	return isolated;
2028 }
2029 
2030 /*
2031  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2032  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2033  * If the page is mapped, it migrates the contents over.
2034  */
2035 static int __soft_offline_page(struct page *page)
2036 {
2037 	int ret = 0;
2038 	unsigned long pfn = page_to_pfn(page);
2039 	struct page *hpage = compound_head(page);
2040 	char const *msg_page[] = {"page", "hugepage"};
2041 	bool huge = PageHuge(page);
2042 	LIST_HEAD(pagelist);
2043 	struct migration_target_control mtc = {
2044 		.nid = NUMA_NO_NODE,
2045 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2046 	};
2047 
2048 	/*
2049 	 * Check PageHWPoison again inside page lock because PageHWPoison
2050 	 * is set by memory_failure() outside page lock. Note that
2051 	 * memory_failure() also double-checks PageHWPoison inside page lock,
2052 	 * so there's no race between soft_offline_page() and memory_failure().
2053 	 */
2054 	lock_page(page);
2055 	if (!PageHuge(page))
2056 		wait_on_page_writeback(page);
2057 	if (PageHWPoison(page)) {
2058 		unlock_page(page);
2059 		put_page(page);
2060 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2061 		return 0;
2062 	}
2063 
2064 	if (!PageHuge(page))
2065 		/*
2066 		 * Try to invalidate first. This should work for
2067 		 * non dirty unmapped page cache pages.
2068 		 */
2069 		ret = invalidate_inode_page(page);
2070 	unlock_page(page);
2071 
2072 	/*
2073 	 * RED-PEN would be better to keep it isolated here, but we
2074 	 * would need to fix isolation locking first.
2075 	 */
2076 	if (ret) {
2077 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2078 		page_handle_poison(page, false, true);
2079 		return 0;
2080 	}
2081 
2082 	if (isolate_page(hpage, &pagelist)) {
2083 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2084 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2085 		if (!ret) {
2086 			bool release = !huge;
2087 
2088 			if (!page_handle_poison(page, huge, release))
2089 				ret = -EBUSY;
2090 		} else {
2091 			if (!list_empty(&pagelist))
2092 				putback_movable_pages(&pagelist);
2093 
2094 			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2095 				pfn, msg_page[huge], ret, page->flags, &page->flags);
2096 			if (ret > 0)
2097 				ret = -EBUSY;
2098 		}
2099 	} else {
2100 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2101 			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2102 		ret = -EBUSY;
2103 	}
2104 	return ret;
2105 }
2106 
2107 static int soft_offline_in_use_page(struct page *page)
2108 {
2109 	struct page *hpage = compound_head(page);
2110 
2111 	if (!PageHuge(page) && PageTransHuge(hpage))
2112 		if (try_to_split_thp_page(page, "soft offline") < 0)
2113 			return -EBUSY;
2114 	return __soft_offline_page(page);
2115 }
2116 
2117 static int soft_offline_free_page(struct page *page)
2118 {
2119 	int rc = 0;
2120 
2121 	if (!page_handle_poison(page, true, false))
2122 		rc = -EBUSY;
2123 
2124 	return rc;
2125 }
2126 
2127 static void put_ref_page(struct page *page)
2128 {
2129 	if (page)
2130 		put_page(page);
2131 }
2132 
2133 /**
2134  * soft_offline_page - Soft offline a page.
2135  * @pfn: pfn to soft-offline
2136  * @flags: flags. Same as memory_failure().
2137  *
2138  * Returns 0 on success, otherwise negated errno.
2139  *
2140  * Soft offline a page, by migration or invalidation,
2141  * without killing anything. This is for the case when
2142  * a page is not corrupted yet (so it's still valid to access),
2143  * but has had a number of corrected errors and is better taken
2144  * out.
2145  *
2146  * The actual policy on when to do that is maintained by
2147  * user space.
2148  *
2149  * This should never impact any application or cause data loss,
2150  * however it might take some time.
2151  *
2152  * This is not a 100% solution for all memory, but tries to be
2153  * ``good enough'' for the majority of memory.
2154  */
2155 int soft_offline_page(unsigned long pfn, int flags)
2156 {
2157 	int ret;
2158 	bool try_again = true;
2159 	struct page *page, *ref_page = NULL;
2160 
2161 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2162 
2163 	if (!pfn_valid(pfn))
2164 		return -ENXIO;
2165 	if (flags & MF_COUNT_INCREASED)
2166 		ref_page = pfn_to_page(pfn);
2167 
2168 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2169 	page = pfn_to_online_page(pfn);
2170 	if (!page) {
2171 		put_ref_page(ref_page);
2172 		return -EIO;
2173 	}
2174 
2175 	if (PageHWPoison(page)) {
2176 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2177 		put_ref_page(ref_page);
2178 		return 0;
2179 	}
2180 
2181 retry:
2182 	get_online_mems();
2183 	ret = get_hwpoison_page(page, flags);
2184 	put_online_mems();
2185 
2186 	if (ret > 0) {
2187 		ret = soft_offline_in_use_page(page);
2188 	} else if (ret == 0) {
2189 		if (soft_offline_free_page(page) && try_again) {
2190 			try_again = false;
2191 			goto retry;
2192 		}
2193 	} else if (ret == -EIO) {
2194 		pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2195 			 __func__, pfn, page->flags, &page->flags);
2196 	}
2197 
2198 	return ret;
2199 }
2200