1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/page-isolation.h> 51 #include <linux/suspend.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/kfifo.h> 58 #include "internal.h" 59 60 int sysctl_memory_failure_early_kill __read_mostly = 0; 61 62 int sysctl_memory_failure_recovery __read_mostly = 1; 63 64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 65 66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 67 68 u32 hwpoison_filter_enable = 0; 69 u32 hwpoison_filter_dev_major = ~0U; 70 u32 hwpoison_filter_dev_minor = ~0U; 71 u64 hwpoison_filter_flags_mask; 72 u64 hwpoison_filter_flags_value; 73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 78 79 static int hwpoison_filter_dev(struct page *p) 80 { 81 struct address_space *mapping; 82 dev_t dev; 83 84 if (hwpoison_filter_dev_major == ~0U && 85 hwpoison_filter_dev_minor == ~0U) 86 return 0; 87 88 /* 89 * page_mapping() does not accept slab pages. 90 */ 91 if (PageSlab(p)) 92 return -EINVAL; 93 94 mapping = page_mapping(p); 95 if (mapping == NULL || mapping->host == NULL) 96 return -EINVAL; 97 98 dev = mapping->host->i_sb->s_dev; 99 if (hwpoison_filter_dev_major != ~0U && 100 hwpoison_filter_dev_major != MAJOR(dev)) 101 return -EINVAL; 102 if (hwpoison_filter_dev_minor != ~0U && 103 hwpoison_filter_dev_minor != MINOR(dev)) 104 return -EINVAL; 105 106 return 0; 107 } 108 109 static int hwpoison_filter_flags(struct page *p) 110 { 111 if (!hwpoison_filter_flags_mask) 112 return 0; 113 114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 115 hwpoison_filter_flags_value) 116 return 0; 117 else 118 return -EINVAL; 119 } 120 121 /* 122 * This allows stress tests to limit test scope to a collection of tasks 123 * by putting them under some memcg. This prevents killing unrelated/important 124 * processes such as /sbin/init. Note that the target task may share clean 125 * pages with init (eg. libc text), which is harmless. If the target task 126 * share _dirty_ pages with another task B, the test scheme must make sure B 127 * is also included in the memcg. At last, due to race conditions this filter 128 * can only guarantee that the page either belongs to the memcg tasks, or is 129 * a freed page. 130 */ 131 #ifdef CONFIG_MEMCG_SWAP 132 u64 hwpoison_filter_memcg; 133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 134 static int hwpoison_filter_task(struct page *p) 135 { 136 struct mem_cgroup *mem; 137 struct cgroup_subsys_state *css; 138 unsigned long ino; 139 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 mem = try_get_mem_cgroup_from_page(p); 144 if (!mem) 145 return -EINVAL; 146 147 css = mem_cgroup_css(mem); 148 /* root_mem_cgroup has NULL dentries */ 149 if (!css->cgroup->dentry) 150 return -EINVAL; 151 152 ino = css->cgroup->dentry->d_inode->i_ino; 153 css_put(css); 154 155 if (ino != hwpoison_filter_memcg) 156 return -EINVAL; 157 158 return 0; 159 } 160 #else 161 static int hwpoison_filter_task(struct page *p) { return 0; } 162 #endif 163 164 int hwpoison_filter(struct page *p) 165 { 166 if (!hwpoison_filter_enable) 167 return 0; 168 169 if (hwpoison_filter_dev(p)) 170 return -EINVAL; 171 172 if (hwpoison_filter_flags(p)) 173 return -EINVAL; 174 175 if (hwpoison_filter_task(p)) 176 return -EINVAL; 177 178 return 0; 179 } 180 #else 181 int hwpoison_filter(struct page *p) 182 { 183 return 0; 184 } 185 #endif 186 187 EXPORT_SYMBOL_GPL(hwpoison_filter); 188 189 /* 190 * Send all the processes who have the page mapped a signal. 191 * ``action optional'' if they are not immediately affected by the error 192 * ``action required'' if error happened in current execution context 193 */ 194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 195 unsigned long pfn, struct page *page, int flags) 196 { 197 struct siginfo si; 198 int ret; 199 200 printk(KERN_ERR 201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 202 pfn, t->comm, t->pid); 203 si.si_signo = SIGBUS; 204 si.si_errno = 0; 205 si.si_addr = (void *)addr; 206 #ifdef __ARCH_SI_TRAPNO 207 si.si_trapno = trapno; 208 #endif 209 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 210 211 if ((flags & MF_ACTION_REQUIRED) && t == current) { 212 si.si_code = BUS_MCEERR_AR; 213 ret = force_sig_info(SIGBUS, &si, t); 214 } else { 215 /* 216 * Don't use force here, it's convenient if the signal 217 * can be temporarily blocked. 218 * This could cause a loop when the user sets SIGBUS 219 * to SIG_IGN, but hopefully no one will do that? 220 */ 221 si.si_code = BUS_MCEERR_AO; 222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 223 } 224 if (ret < 0) 225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 226 t->comm, t->pid, ret); 227 return ret; 228 } 229 230 /* 231 * When a unknown page type is encountered drain as many buffers as possible 232 * in the hope to turn the page into a LRU or free page, which we can handle. 233 */ 234 void shake_page(struct page *p, int access) 235 { 236 if (!PageSlab(p)) { 237 lru_add_drain_all(); 238 if (PageLRU(p)) 239 return; 240 drain_all_pages(); 241 if (PageLRU(p) || is_free_buddy_page(p)) 242 return; 243 } 244 245 /* 246 * Only call shrink_slab here (which would also shrink other caches) if 247 * access is not potentially fatal. 248 */ 249 if (access) { 250 int nr; 251 int nid = page_to_nid(p); 252 do { 253 struct shrink_control shrink = { 254 .gfp_mask = GFP_KERNEL, 255 }; 256 node_set(nid, shrink.nodes_to_scan); 257 258 nr = shrink_slab(&shrink, 1000, 1000); 259 if (page_count(p) == 1) 260 break; 261 } while (nr > 10); 262 } 263 } 264 EXPORT_SYMBOL_GPL(shake_page); 265 266 /* 267 * Kill all processes that have a poisoned page mapped and then isolate 268 * the page. 269 * 270 * General strategy: 271 * Find all processes having the page mapped and kill them. 272 * But we keep a page reference around so that the page is not 273 * actually freed yet. 274 * Then stash the page away 275 * 276 * There's no convenient way to get back to mapped processes 277 * from the VMAs. So do a brute-force search over all 278 * running processes. 279 * 280 * Remember that machine checks are not common (or rather 281 * if they are common you have other problems), so this shouldn't 282 * be a performance issue. 283 * 284 * Also there are some races possible while we get from the 285 * error detection to actually handle it. 286 */ 287 288 struct to_kill { 289 struct list_head nd; 290 struct task_struct *tsk; 291 unsigned long addr; 292 char addr_valid; 293 }; 294 295 /* 296 * Failure handling: if we can't find or can't kill a process there's 297 * not much we can do. We just print a message and ignore otherwise. 298 */ 299 300 /* 301 * Schedule a process for later kill. 302 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 303 * TBD would GFP_NOIO be enough? 304 */ 305 static void add_to_kill(struct task_struct *tsk, struct page *p, 306 struct vm_area_struct *vma, 307 struct list_head *to_kill, 308 struct to_kill **tkc) 309 { 310 struct to_kill *tk; 311 312 if (*tkc) { 313 tk = *tkc; 314 *tkc = NULL; 315 } else { 316 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 317 if (!tk) { 318 printk(KERN_ERR 319 "MCE: Out of memory while machine check handling\n"); 320 return; 321 } 322 } 323 tk->addr = page_address_in_vma(p, vma); 324 tk->addr_valid = 1; 325 326 /* 327 * In theory we don't have to kill when the page was 328 * munmaped. But it could be also a mremap. Since that's 329 * likely very rare kill anyways just out of paranoia, but use 330 * a SIGKILL because the error is not contained anymore. 331 */ 332 if (tk->addr == -EFAULT) { 333 pr_info("MCE: Unable to find user space address %lx in %s\n", 334 page_to_pfn(p), tsk->comm); 335 tk->addr_valid = 0; 336 } 337 get_task_struct(tsk); 338 tk->tsk = tsk; 339 list_add_tail(&tk->nd, to_kill); 340 } 341 342 /* 343 * Kill the processes that have been collected earlier. 344 * 345 * Only do anything when DOIT is set, otherwise just free the list 346 * (this is used for clean pages which do not need killing) 347 * Also when FAIL is set do a force kill because something went 348 * wrong earlier. 349 */ 350 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 351 int fail, struct page *page, unsigned long pfn, 352 int flags) 353 { 354 struct to_kill *tk, *next; 355 356 list_for_each_entry_safe (tk, next, to_kill, nd) { 357 if (forcekill) { 358 /* 359 * In case something went wrong with munmapping 360 * make sure the process doesn't catch the 361 * signal and then access the memory. Just kill it. 362 */ 363 if (fail || tk->addr_valid == 0) { 364 printk(KERN_ERR 365 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 366 pfn, tk->tsk->comm, tk->tsk->pid); 367 force_sig(SIGKILL, tk->tsk); 368 } 369 370 /* 371 * In theory the process could have mapped 372 * something else on the address in-between. We could 373 * check for that, but we need to tell the 374 * process anyways. 375 */ 376 else if (kill_proc(tk->tsk, tk->addr, trapno, 377 pfn, page, flags) < 0) 378 printk(KERN_ERR 379 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 380 pfn, tk->tsk->comm, tk->tsk->pid); 381 } 382 put_task_struct(tk->tsk); 383 kfree(tk); 384 } 385 } 386 387 static int task_early_kill(struct task_struct *tsk) 388 { 389 if (!tsk->mm) 390 return 0; 391 if (tsk->flags & PF_MCE_PROCESS) 392 return !!(tsk->flags & PF_MCE_EARLY); 393 return sysctl_memory_failure_early_kill; 394 } 395 396 /* 397 * Collect processes when the error hit an anonymous page. 398 */ 399 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 400 struct to_kill **tkc) 401 { 402 struct vm_area_struct *vma; 403 struct task_struct *tsk; 404 struct anon_vma *av; 405 pgoff_t pgoff; 406 407 av = page_lock_anon_vma_read(page); 408 if (av == NULL) /* Not actually mapped anymore */ 409 return; 410 411 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 412 read_lock(&tasklist_lock); 413 for_each_process (tsk) { 414 struct anon_vma_chain *vmac; 415 416 if (!task_early_kill(tsk)) 417 continue; 418 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 419 pgoff, pgoff) { 420 vma = vmac->vma; 421 if (!page_mapped_in_vma(page, vma)) 422 continue; 423 if (vma->vm_mm == tsk->mm) 424 add_to_kill(tsk, page, vma, to_kill, tkc); 425 } 426 } 427 read_unlock(&tasklist_lock); 428 page_unlock_anon_vma_read(av); 429 } 430 431 /* 432 * Collect processes when the error hit a file mapped page. 433 */ 434 static void collect_procs_file(struct page *page, struct list_head *to_kill, 435 struct to_kill **tkc) 436 { 437 struct vm_area_struct *vma; 438 struct task_struct *tsk; 439 struct address_space *mapping = page->mapping; 440 441 mutex_lock(&mapping->i_mmap_mutex); 442 read_lock(&tasklist_lock); 443 for_each_process(tsk) { 444 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 445 446 if (!task_early_kill(tsk)) 447 continue; 448 449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 450 pgoff) { 451 /* 452 * Send early kill signal to tasks where a vma covers 453 * the page but the corrupted page is not necessarily 454 * mapped it in its pte. 455 * Assume applications who requested early kill want 456 * to be informed of all such data corruptions. 457 */ 458 if (vma->vm_mm == tsk->mm) 459 add_to_kill(tsk, page, vma, to_kill, tkc); 460 } 461 } 462 read_unlock(&tasklist_lock); 463 mutex_unlock(&mapping->i_mmap_mutex); 464 } 465 466 /* 467 * Collect the processes who have the corrupted page mapped to kill. 468 * This is done in two steps for locking reasons. 469 * First preallocate one tokill structure outside the spin locks, 470 * so that we can kill at least one process reasonably reliable. 471 */ 472 static void collect_procs(struct page *page, struct list_head *tokill) 473 { 474 struct to_kill *tk; 475 476 if (!page->mapping) 477 return; 478 479 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 480 if (!tk) 481 return; 482 if (PageAnon(page)) 483 collect_procs_anon(page, tokill, &tk); 484 else 485 collect_procs_file(page, tokill, &tk); 486 kfree(tk); 487 } 488 489 /* 490 * Error handlers for various types of pages. 491 */ 492 493 enum outcome { 494 IGNORED, /* Error: cannot be handled */ 495 FAILED, /* Error: handling failed */ 496 DELAYED, /* Will be handled later */ 497 RECOVERED, /* Successfully recovered */ 498 }; 499 500 static const char *action_name[] = { 501 [IGNORED] = "Ignored", 502 [FAILED] = "Failed", 503 [DELAYED] = "Delayed", 504 [RECOVERED] = "Recovered", 505 }; 506 507 /* 508 * XXX: It is possible that a page is isolated from LRU cache, 509 * and then kept in swap cache or failed to remove from page cache. 510 * The page count will stop it from being freed by unpoison. 511 * Stress tests should be aware of this memory leak problem. 512 */ 513 static int delete_from_lru_cache(struct page *p) 514 { 515 if (!isolate_lru_page(p)) { 516 /* 517 * Clear sensible page flags, so that the buddy system won't 518 * complain when the page is unpoison-and-freed. 519 */ 520 ClearPageActive(p); 521 ClearPageUnevictable(p); 522 /* 523 * drop the page count elevated by isolate_lru_page() 524 */ 525 page_cache_release(p); 526 return 0; 527 } 528 return -EIO; 529 } 530 531 /* 532 * Error hit kernel page. 533 * Do nothing, try to be lucky and not touch this instead. For a few cases we 534 * could be more sophisticated. 535 */ 536 static int me_kernel(struct page *p, unsigned long pfn) 537 { 538 return IGNORED; 539 } 540 541 /* 542 * Page in unknown state. Do nothing. 543 */ 544 static int me_unknown(struct page *p, unsigned long pfn) 545 { 546 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 547 return FAILED; 548 } 549 550 /* 551 * Clean (or cleaned) page cache page. 552 */ 553 static int me_pagecache_clean(struct page *p, unsigned long pfn) 554 { 555 int err; 556 int ret = FAILED; 557 struct address_space *mapping; 558 559 delete_from_lru_cache(p); 560 561 /* 562 * For anonymous pages we're done the only reference left 563 * should be the one m_f() holds. 564 */ 565 if (PageAnon(p)) 566 return RECOVERED; 567 568 /* 569 * Now truncate the page in the page cache. This is really 570 * more like a "temporary hole punch" 571 * Don't do this for block devices when someone else 572 * has a reference, because it could be file system metadata 573 * and that's not safe to truncate. 574 */ 575 mapping = page_mapping(p); 576 if (!mapping) { 577 /* 578 * Page has been teared down in the meanwhile 579 */ 580 return FAILED; 581 } 582 583 /* 584 * Truncation is a bit tricky. Enable it per file system for now. 585 * 586 * Open: to take i_mutex or not for this? Right now we don't. 587 */ 588 if (mapping->a_ops->error_remove_page) { 589 err = mapping->a_ops->error_remove_page(mapping, p); 590 if (err != 0) { 591 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 592 pfn, err); 593 } else if (page_has_private(p) && 594 !try_to_release_page(p, GFP_NOIO)) { 595 pr_info("MCE %#lx: failed to release buffers\n", pfn); 596 } else { 597 ret = RECOVERED; 598 } 599 } else { 600 /* 601 * If the file system doesn't support it just invalidate 602 * This fails on dirty or anything with private pages 603 */ 604 if (invalidate_inode_page(p)) 605 ret = RECOVERED; 606 else 607 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 608 pfn); 609 } 610 return ret; 611 } 612 613 /* 614 * Dirty cache page page 615 * Issues: when the error hit a hole page the error is not properly 616 * propagated. 617 */ 618 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 619 { 620 struct address_space *mapping = page_mapping(p); 621 622 SetPageError(p); 623 /* TBD: print more information about the file. */ 624 if (mapping) { 625 /* 626 * IO error will be reported by write(), fsync(), etc. 627 * who check the mapping. 628 * This way the application knows that something went 629 * wrong with its dirty file data. 630 * 631 * There's one open issue: 632 * 633 * The EIO will be only reported on the next IO 634 * operation and then cleared through the IO map. 635 * Normally Linux has two mechanisms to pass IO error 636 * first through the AS_EIO flag in the address space 637 * and then through the PageError flag in the page. 638 * Since we drop pages on memory failure handling the 639 * only mechanism open to use is through AS_AIO. 640 * 641 * This has the disadvantage that it gets cleared on 642 * the first operation that returns an error, while 643 * the PageError bit is more sticky and only cleared 644 * when the page is reread or dropped. If an 645 * application assumes it will always get error on 646 * fsync, but does other operations on the fd before 647 * and the page is dropped between then the error 648 * will not be properly reported. 649 * 650 * This can already happen even without hwpoisoned 651 * pages: first on metadata IO errors (which only 652 * report through AS_EIO) or when the page is dropped 653 * at the wrong time. 654 * 655 * So right now we assume that the application DTRT on 656 * the first EIO, but we're not worse than other parts 657 * of the kernel. 658 */ 659 mapping_set_error(mapping, EIO); 660 } 661 662 return me_pagecache_clean(p, pfn); 663 } 664 665 /* 666 * Clean and dirty swap cache. 667 * 668 * Dirty swap cache page is tricky to handle. The page could live both in page 669 * cache and swap cache(ie. page is freshly swapped in). So it could be 670 * referenced concurrently by 2 types of PTEs: 671 * normal PTEs and swap PTEs. We try to handle them consistently by calling 672 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 673 * and then 674 * - clear dirty bit to prevent IO 675 * - remove from LRU 676 * - but keep in the swap cache, so that when we return to it on 677 * a later page fault, we know the application is accessing 678 * corrupted data and shall be killed (we installed simple 679 * interception code in do_swap_page to catch it). 680 * 681 * Clean swap cache pages can be directly isolated. A later page fault will 682 * bring in the known good data from disk. 683 */ 684 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 685 { 686 ClearPageDirty(p); 687 /* Trigger EIO in shmem: */ 688 ClearPageUptodate(p); 689 690 if (!delete_from_lru_cache(p)) 691 return DELAYED; 692 else 693 return FAILED; 694 } 695 696 static int me_swapcache_clean(struct page *p, unsigned long pfn) 697 { 698 delete_from_swap_cache(p); 699 700 if (!delete_from_lru_cache(p)) 701 return RECOVERED; 702 else 703 return FAILED; 704 } 705 706 /* 707 * Huge pages. Needs work. 708 * Issues: 709 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 710 * To narrow down kill region to one page, we need to break up pmd. 711 */ 712 static int me_huge_page(struct page *p, unsigned long pfn) 713 { 714 int res = 0; 715 struct page *hpage = compound_head(p); 716 /* 717 * We can safely recover from error on free or reserved (i.e. 718 * not in-use) hugepage by dequeuing it from freelist. 719 * To check whether a hugepage is in-use or not, we can't use 720 * page->lru because it can be used in other hugepage operations, 721 * such as __unmap_hugepage_range() and gather_surplus_pages(). 722 * So instead we use page_mapping() and PageAnon(). 723 * We assume that this function is called with page lock held, 724 * so there is no race between isolation and mapping/unmapping. 725 */ 726 if (!(page_mapping(hpage) || PageAnon(hpage))) { 727 res = dequeue_hwpoisoned_huge_page(hpage); 728 if (!res) 729 return RECOVERED; 730 } 731 return DELAYED; 732 } 733 734 /* 735 * Various page states we can handle. 736 * 737 * A page state is defined by its current page->flags bits. 738 * The table matches them in order and calls the right handler. 739 * 740 * This is quite tricky because we can access page at any time 741 * in its live cycle, so all accesses have to be extremely careful. 742 * 743 * This is not complete. More states could be added. 744 * For any missing state don't attempt recovery. 745 */ 746 747 #define dirty (1UL << PG_dirty) 748 #define sc (1UL << PG_swapcache) 749 #define unevict (1UL << PG_unevictable) 750 #define mlock (1UL << PG_mlocked) 751 #define writeback (1UL << PG_writeback) 752 #define lru (1UL << PG_lru) 753 #define swapbacked (1UL << PG_swapbacked) 754 #define head (1UL << PG_head) 755 #define tail (1UL << PG_tail) 756 #define compound (1UL << PG_compound) 757 #define slab (1UL << PG_slab) 758 #define reserved (1UL << PG_reserved) 759 760 static struct page_state { 761 unsigned long mask; 762 unsigned long res; 763 char *msg; 764 int (*action)(struct page *p, unsigned long pfn); 765 } error_states[] = { 766 { reserved, reserved, "reserved kernel", me_kernel }, 767 /* 768 * free pages are specially detected outside this table: 769 * PG_buddy pages only make a small fraction of all free pages. 770 */ 771 772 /* 773 * Could in theory check if slab page is free or if we can drop 774 * currently unused objects without touching them. But just 775 * treat it as standard kernel for now. 776 */ 777 { slab, slab, "kernel slab", me_kernel }, 778 779 #ifdef CONFIG_PAGEFLAGS_EXTENDED 780 { head, head, "huge", me_huge_page }, 781 { tail, tail, "huge", me_huge_page }, 782 #else 783 { compound, compound, "huge", me_huge_page }, 784 #endif 785 786 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty }, 787 { sc|dirty, sc, "clean swapcache", me_swapcache_clean }, 788 789 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty }, 790 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean }, 791 792 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty }, 793 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean }, 794 795 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty }, 796 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 797 798 /* 799 * Catchall entry: must be at end. 800 */ 801 { 0, 0, "unknown page state", me_unknown }, 802 }; 803 804 #undef dirty 805 #undef sc 806 #undef unevict 807 #undef mlock 808 #undef writeback 809 #undef lru 810 #undef swapbacked 811 #undef head 812 #undef tail 813 #undef compound 814 #undef slab 815 #undef reserved 816 817 /* 818 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 819 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 820 */ 821 static void action_result(unsigned long pfn, char *msg, int result) 822 { 823 pr_err("MCE %#lx: %s page recovery: %s\n", 824 pfn, msg, action_name[result]); 825 } 826 827 static int page_action(struct page_state *ps, struct page *p, 828 unsigned long pfn) 829 { 830 int result; 831 int count; 832 833 result = ps->action(p, pfn); 834 action_result(pfn, ps->msg, result); 835 836 count = page_count(p) - 1; 837 if (ps->action == me_swapcache_dirty && result == DELAYED) 838 count--; 839 if (count != 0) { 840 printk(KERN_ERR 841 "MCE %#lx: %s page still referenced by %d users\n", 842 pfn, ps->msg, count); 843 result = FAILED; 844 } 845 846 /* Could do more checks here if page looks ok */ 847 /* 848 * Could adjust zone counters here to correct for the missing page. 849 */ 850 851 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 852 } 853 854 /* 855 * Do all that is necessary to remove user space mappings. Unmap 856 * the pages and send SIGBUS to the processes if the data was dirty. 857 */ 858 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 859 int trapno, int flags) 860 { 861 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 862 struct address_space *mapping; 863 LIST_HEAD(tokill); 864 int ret; 865 int kill = 1, forcekill; 866 struct page *hpage = compound_head(p); 867 struct page *ppage; 868 869 if (PageReserved(p) || PageSlab(p)) 870 return SWAP_SUCCESS; 871 872 /* 873 * This check implies we don't kill processes if their pages 874 * are in the swap cache early. Those are always late kills. 875 */ 876 if (!page_mapped(hpage)) 877 return SWAP_SUCCESS; 878 879 if (PageKsm(p)) 880 return SWAP_FAIL; 881 882 if (PageSwapCache(p)) { 883 printk(KERN_ERR 884 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 885 ttu |= TTU_IGNORE_HWPOISON; 886 } 887 888 /* 889 * Propagate the dirty bit from PTEs to struct page first, because we 890 * need this to decide if we should kill or just drop the page. 891 * XXX: the dirty test could be racy: set_page_dirty() may not always 892 * be called inside page lock (it's recommended but not enforced). 893 */ 894 mapping = page_mapping(hpage); 895 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 896 mapping_cap_writeback_dirty(mapping)) { 897 if (page_mkclean(hpage)) { 898 SetPageDirty(hpage); 899 } else { 900 kill = 0; 901 ttu |= TTU_IGNORE_HWPOISON; 902 printk(KERN_INFO 903 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 904 pfn); 905 } 906 } 907 908 /* 909 * ppage: poisoned page 910 * if p is regular page(4k page) 911 * ppage == real poisoned page; 912 * else p is hugetlb or THP, ppage == head page. 913 */ 914 ppage = hpage; 915 916 if (PageTransHuge(hpage)) { 917 /* 918 * Verify that this isn't a hugetlbfs head page, the check for 919 * PageAnon is just for avoid tripping a split_huge_page 920 * internal debug check, as split_huge_page refuses to deal with 921 * anything that isn't an anon page. PageAnon can't go away fro 922 * under us because we hold a refcount on the hpage, without a 923 * refcount on the hpage. split_huge_page can't be safely called 924 * in the first place, having a refcount on the tail isn't 925 * enough * to be safe. 926 */ 927 if (!PageHuge(hpage) && PageAnon(hpage)) { 928 if (unlikely(split_huge_page(hpage))) { 929 /* 930 * FIXME: if splitting THP is failed, it is 931 * better to stop the following operation rather 932 * than causing panic by unmapping. System might 933 * survive if the page is freed later. 934 */ 935 printk(KERN_INFO 936 "MCE %#lx: failed to split THP\n", pfn); 937 938 BUG_ON(!PageHWPoison(p)); 939 return SWAP_FAIL; 940 } 941 /* THP is split, so ppage should be the real poisoned page. */ 942 ppage = p; 943 } 944 } 945 946 /* 947 * First collect all the processes that have the page 948 * mapped in dirty form. This has to be done before try_to_unmap, 949 * because ttu takes the rmap data structures down. 950 * 951 * Error handling: We ignore errors here because 952 * there's nothing that can be done. 953 */ 954 if (kill) 955 collect_procs(ppage, &tokill); 956 957 if (hpage != ppage) 958 lock_page(ppage); 959 960 ret = try_to_unmap(ppage, ttu); 961 if (ret != SWAP_SUCCESS) 962 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 963 pfn, page_mapcount(ppage)); 964 965 if (hpage != ppage) 966 unlock_page(ppage); 967 968 /* 969 * Now that the dirty bit has been propagated to the 970 * struct page and all unmaps done we can decide if 971 * killing is needed or not. Only kill when the page 972 * was dirty or the process is not restartable, 973 * otherwise the tokill list is merely 974 * freed. When there was a problem unmapping earlier 975 * use a more force-full uncatchable kill to prevent 976 * any accesses to the poisoned memory. 977 */ 978 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL); 979 kill_procs(&tokill, forcekill, trapno, 980 ret != SWAP_SUCCESS, p, pfn, flags); 981 982 return ret; 983 } 984 985 static void set_page_hwpoison_huge_page(struct page *hpage) 986 { 987 int i; 988 int nr_pages = 1 << compound_order(hpage); 989 for (i = 0; i < nr_pages; i++) 990 SetPageHWPoison(hpage + i); 991 } 992 993 static void clear_page_hwpoison_huge_page(struct page *hpage) 994 { 995 int i; 996 int nr_pages = 1 << compound_order(hpage); 997 for (i = 0; i < nr_pages; i++) 998 ClearPageHWPoison(hpage + i); 999 } 1000 1001 /** 1002 * memory_failure - Handle memory failure of a page. 1003 * @pfn: Page Number of the corrupted page 1004 * @trapno: Trap number reported in the signal to user space. 1005 * @flags: fine tune action taken 1006 * 1007 * This function is called by the low level machine check code 1008 * of an architecture when it detects hardware memory corruption 1009 * of a page. It tries its best to recover, which includes 1010 * dropping pages, killing processes etc. 1011 * 1012 * The function is primarily of use for corruptions that 1013 * happen outside the current execution context (e.g. when 1014 * detected by a background scrubber) 1015 * 1016 * Must run in process context (e.g. a work queue) with interrupts 1017 * enabled and no spinlocks hold. 1018 */ 1019 int memory_failure(unsigned long pfn, int trapno, int flags) 1020 { 1021 struct page_state *ps; 1022 struct page *p; 1023 struct page *hpage; 1024 int res; 1025 unsigned int nr_pages; 1026 unsigned long page_flags; 1027 1028 if (!sysctl_memory_failure_recovery) 1029 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1030 1031 if (!pfn_valid(pfn)) { 1032 printk(KERN_ERR 1033 "MCE %#lx: memory outside kernel control\n", 1034 pfn); 1035 return -ENXIO; 1036 } 1037 1038 p = pfn_to_page(pfn); 1039 hpage = compound_head(p); 1040 if (TestSetPageHWPoison(p)) { 1041 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1042 return 0; 1043 } 1044 1045 /* 1046 * Currently errors on hugetlbfs pages are measured in hugepage units, 1047 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1048 * transparent hugepages, they are supposed to be split and error 1049 * measurement is done in normal page units. So nr_pages should be one 1050 * in this case. 1051 */ 1052 if (PageHuge(p)) 1053 nr_pages = 1 << compound_order(hpage); 1054 else /* normal page or thp */ 1055 nr_pages = 1; 1056 atomic_long_add(nr_pages, &num_poisoned_pages); 1057 1058 /* 1059 * We need/can do nothing about count=0 pages. 1060 * 1) it's a free page, and therefore in safe hand: 1061 * prep_new_page() will be the gate keeper. 1062 * 2) it's a free hugepage, which is also safe: 1063 * an affected hugepage will be dequeued from hugepage freelist, 1064 * so there's no concern about reusing it ever after. 1065 * 3) it's part of a non-compound high order page. 1066 * Implies some kernel user: cannot stop them from 1067 * R/W the page; let's pray that the page has been 1068 * used and will be freed some time later. 1069 * In fact it's dangerous to directly bump up page count from 0, 1070 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1071 */ 1072 if (!(flags & MF_COUNT_INCREASED) && 1073 !get_page_unless_zero(hpage)) { 1074 if (is_free_buddy_page(p)) { 1075 action_result(pfn, "free buddy", DELAYED); 1076 return 0; 1077 } else if (PageHuge(hpage)) { 1078 /* 1079 * Check "just unpoisoned", "filter hit", and 1080 * "race with other subpage." 1081 */ 1082 lock_page(hpage); 1083 if (!PageHWPoison(hpage) 1084 || (hwpoison_filter(p) && TestClearPageHWPoison(p)) 1085 || (p != hpage && TestSetPageHWPoison(hpage))) { 1086 atomic_long_sub(nr_pages, &num_poisoned_pages); 1087 return 0; 1088 } 1089 set_page_hwpoison_huge_page(hpage); 1090 res = dequeue_hwpoisoned_huge_page(hpage); 1091 action_result(pfn, "free huge", 1092 res ? IGNORED : DELAYED); 1093 unlock_page(hpage); 1094 return res; 1095 } else { 1096 action_result(pfn, "high order kernel", IGNORED); 1097 return -EBUSY; 1098 } 1099 } 1100 1101 /* 1102 * We ignore non-LRU pages for good reasons. 1103 * - PG_locked is only well defined for LRU pages and a few others 1104 * - to avoid races with __set_page_locked() 1105 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1106 * The check (unnecessarily) ignores LRU pages being isolated and 1107 * walked by the page reclaim code, however that's not a big loss. 1108 */ 1109 if (!PageHuge(p) && !PageTransTail(p)) { 1110 if (!PageLRU(p)) 1111 shake_page(p, 0); 1112 if (!PageLRU(p)) { 1113 /* 1114 * shake_page could have turned it free. 1115 */ 1116 if (is_free_buddy_page(p)) { 1117 if (flags & MF_COUNT_INCREASED) 1118 action_result(pfn, "free buddy", DELAYED); 1119 else 1120 action_result(pfn, "free buddy, 2nd try", DELAYED); 1121 return 0; 1122 } 1123 action_result(pfn, "non LRU", IGNORED); 1124 put_page(p); 1125 return -EBUSY; 1126 } 1127 } 1128 1129 /* 1130 * Lock the page and wait for writeback to finish. 1131 * It's very difficult to mess with pages currently under IO 1132 * and in many cases impossible, so we just avoid it here. 1133 */ 1134 lock_page(hpage); 1135 1136 /* 1137 * We use page flags to determine what action should be taken, but 1138 * the flags can be modified by the error containment action. One 1139 * example is an mlocked page, where PG_mlocked is cleared by 1140 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1141 * correctly, we save a copy of the page flags at this time. 1142 */ 1143 page_flags = p->flags; 1144 1145 /* 1146 * unpoison always clear PG_hwpoison inside page lock 1147 */ 1148 if (!PageHWPoison(p)) { 1149 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1150 res = 0; 1151 goto out; 1152 } 1153 if (hwpoison_filter(p)) { 1154 if (TestClearPageHWPoison(p)) 1155 atomic_long_sub(nr_pages, &num_poisoned_pages); 1156 unlock_page(hpage); 1157 put_page(hpage); 1158 return 0; 1159 } 1160 1161 /* 1162 * For error on the tail page, we should set PG_hwpoison 1163 * on the head page to show that the hugepage is hwpoisoned 1164 */ 1165 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1166 action_result(pfn, "hugepage already hardware poisoned", 1167 IGNORED); 1168 unlock_page(hpage); 1169 put_page(hpage); 1170 return 0; 1171 } 1172 /* 1173 * Set PG_hwpoison on all pages in an error hugepage, 1174 * because containment is done in hugepage unit for now. 1175 * Since we have done TestSetPageHWPoison() for the head page with 1176 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1177 */ 1178 if (PageHuge(p)) 1179 set_page_hwpoison_huge_page(hpage); 1180 1181 wait_on_page_writeback(p); 1182 1183 /* 1184 * Now take care of user space mappings. 1185 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1186 */ 1187 if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) { 1188 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1189 res = -EBUSY; 1190 goto out; 1191 } 1192 1193 /* 1194 * Torn down by someone else? 1195 */ 1196 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1197 action_result(pfn, "already truncated LRU", IGNORED); 1198 res = -EBUSY; 1199 goto out; 1200 } 1201 1202 res = -EBUSY; 1203 /* 1204 * The first check uses the current page flags which may not have any 1205 * relevant information. The second check with the saved page flagss is 1206 * carried out only if the first check can't determine the page status. 1207 */ 1208 for (ps = error_states;; ps++) 1209 if ((p->flags & ps->mask) == ps->res) 1210 break; 1211 1212 page_flags |= (p->flags & (1UL << PG_dirty)); 1213 1214 if (!ps->mask) 1215 for (ps = error_states;; ps++) 1216 if ((page_flags & ps->mask) == ps->res) 1217 break; 1218 res = page_action(ps, p, pfn); 1219 out: 1220 unlock_page(hpage); 1221 return res; 1222 } 1223 EXPORT_SYMBOL_GPL(memory_failure); 1224 1225 #define MEMORY_FAILURE_FIFO_ORDER 4 1226 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1227 1228 struct memory_failure_entry { 1229 unsigned long pfn; 1230 int trapno; 1231 int flags; 1232 }; 1233 1234 struct memory_failure_cpu { 1235 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1236 MEMORY_FAILURE_FIFO_SIZE); 1237 spinlock_t lock; 1238 struct work_struct work; 1239 }; 1240 1241 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1242 1243 /** 1244 * memory_failure_queue - Schedule handling memory failure of a page. 1245 * @pfn: Page Number of the corrupted page 1246 * @trapno: Trap number reported in the signal to user space. 1247 * @flags: Flags for memory failure handling 1248 * 1249 * This function is called by the low level hardware error handler 1250 * when it detects hardware memory corruption of a page. It schedules 1251 * the recovering of error page, including dropping pages, killing 1252 * processes etc. 1253 * 1254 * The function is primarily of use for corruptions that 1255 * happen outside the current execution context (e.g. when 1256 * detected by a background scrubber) 1257 * 1258 * Can run in IRQ context. 1259 */ 1260 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1261 { 1262 struct memory_failure_cpu *mf_cpu; 1263 unsigned long proc_flags; 1264 struct memory_failure_entry entry = { 1265 .pfn = pfn, 1266 .trapno = trapno, 1267 .flags = flags, 1268 }; 1269 1270 mf_cpu = &get_cpu_var(memory_failure_cpu); 1271 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1272 if (kfifo_put(&mf_cpu->fifo, entry)) 1273 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1274 else 1275 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1276 pfn); 1277 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1278 put_cpu_var(memory_failure_cpu); 1279 } 1280 EXPORT_SYMBOL_GPL(memory_failure_queue); 1281 1282 static void memory_failure_work_func(struct work_struct *work) 1283 { 1284 struct memory_failure_cpu *mf_cpu; 1285 struct memory_failure_entry entry = { 0, }; 1286 unsigned long proc_flags; 1287 int gotten; 1288 1289 mf_cpu = &__get_cpu_var(memory_failure_cpu); 1290 for (;;) { 1291 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1292 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1293 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1294 if (!gotten) 1295 break; 1296 if (entry.flags & MF_SOFT_OFFLINE) 1297 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1298 else 1299 memory_failure(entry.pfn, entry.trapno, entry.flags); 1300 } 1301 } 1302 1303 static int __init memory_failure_init(void) 1304 { 1305 struct memory_failure_cpu *mf_cpu; 1306 int cpu; 1307 1308 for_each_possible_cpu(cpu) { 1309 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1310 spin_lock_init(&mf_cpu->lock); 1311 INIT_KFIFO(mf_cpu->fifo); 1312 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1313 } 1314 1315 return 0; 1316 } 1317 core_initcall(memory_failure_init); 1318 1319 /** 1320 * unpoison_memory - Unpoison a previously poisoned page 1321 * @pfn: Page number of the to be unpoisoned page 1322 * 1323 * Software-unpoison a page that has been poisoned by 1324 * memory_failure() earlier. 1325 * 1326 * This is only done on the software-level, so it only works 1327 * for linux injected failures, not real hardware failures 1328 * 1329 * Returns 0 for success, otherwise -errno. 1330 */ 1331 int unpoison_memory(unsigned long pfn) 1332 { 1333 struct page *page; 1334 struct page *p; 1335 int freeit = 0; 1336 unsigned int nr_pages; 1337 1338 if (!pfn_valid(pfn)) 1339 return -ENXIO; 1340 1341 p = pfn_to_page(pfn); 1342 page = compound_head(p); 1343 1344 if (!PageHWPoison(p)) { 1345 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1346 return 0; 1347 } 1348 1349 /* 1350 * unpoison_memory() can encounter thp only when the thp is being 1351 * worked by memory_failure() and the page lock is not held yet. 1352 * In such case, we yield to memory_failure() and make unpoison fail. 1353 */ 1354 if (!PageHuge(page) && PageTransHuge(page)) { 1355 pr_info("MCE: Memory failure is now running on %#lx\n", pfn); 1356 return 0; 1357 } 1358 1359 nr_pages = 1 << compound_order(page); 1360 1361 if (!get_page_unless_zero(page)) { 1362 /* 1363 * Since HWPoisoned hugepage should have non-zero refcount, 1364 * race between memory failure and unpoison seems to happen. 1365 * In such case unpoison fails and memory failure runs 1366 * to the end. 1367 */ 1368 if (PageHuge(page)) { 1369 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1370 return 0; 1371 } 1372 if (TestClearPageHWPoison(p)) 1373 atomic_long_dec(&num_poisoned_pages); 1374 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1375 return 0; 1376 } 1377 1378 lock_page(page); 1379 /* 1380 * This test is racy because PG_hwpoison is set outside of page lock. 1381 * That's acceptable because that won't trigger kernel panic. Instead, 1382 * the PG_hwpoison page will be caught and isolated on the entrance to 1383 * the free buddy page pool. 1384 */ 1385 if (TestClearPageHWPoison(page)) { 1386 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1387 atomic_long_sub(nr_pages, &num_poisoned_pages); 1388 freeit = 1; 1389 if (PageHuge(page)) 1390 clear_page_hwpoison_huge_page(page); 1391 } 1392 unlock_page(page); 1393 1394 put_page(page); 1395 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1396 put_page(page); 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL(unpoison_memory); 1401 1402 static struct page *new_page(struct page *p, unsigned long private, int **x) 1403 { 1404 int nid = page_to_nid(p); 1405 if (PageHuge(p)) 1406 return alloc_huge_page_node(page_hstate(compound_head(p)), 1407 nid); 1408 else 1409 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1410 } 1411 1412 /* 1413 * Safely get reference count of an arbitrary page. 1414 * Returns 0 for a free page, -EIO for a zero refcount page 1415 * that is not free, and 1 for any other page type. 1416 * For 1 the page is returned with increased page count, otherwise not. 1417 */ 1418 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1419 { 1420 int ret; 1421 1422 if (flags & MF_COUNT_INCREASED) 1423 return 1; 1424 1425 /* 1426 * When the target page is a free hugepage, just remove it 1427 * from free hugepage list. 1428 */ 1429 if (!get_page_unless_zero(compound_head(p))) { 1430 if (PageHuge(p)) { 1431 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1432 ret = 0; 1433 } else if (is_free_buddy_page(p)) { 1434 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1435 ret = 0; 1436 } else { 1437 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1438 __func__, pfn, p->flags); 1439 ret = -EIO; 1440 } 1441 } else { 1442 /* Not a free page */ 1443 ret = 1; 1444 } 1445 return ret; 1446 } 1447 1448 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1449 { 1450 int ret = __get_any_page(page, pfn, flags); 1451 1452 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1453 /* 1454 * Try to free it. 1455 */ 1456 put_page(page); 1457 shake_page(page, 1); 1458 1459 /* 1460 * Did it turn free? 1461 */ 1462 ret = __get_any_page(page, pfn, 0); 1463 if (!PageLRU(page)) { 1464 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1465 pfn, page->flags); 1466 return -EIO; 1467 } 1468 } 1469 return ret; 1470 } 1471 1472 static int soft_offline_huge_page(struct page *page, int flags) 1473 { 1474 int ret; 1475 unsigned long pfn = page_to_pfn(page); 1476 struct page *hpage = compound_head(page); 1477 LIST_HEAD(pagelist); 1478 1479 /* 1480 * This double-check of PageHWPoison is to avoid the race with 1481 * memory_failure(). See also comment in __soft_offline_page(). 1482 */ 1483 lock_page(hpage); 1484 if (PageHWPoison(hpage)) { 1485 unlock_page(hpage); 1486 put_page(hpage); 1487 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1488 return -EBUSY; 1489 } 1490 unlock_page(hpage); 1491 1492 /* Keep page count to indicate a given hugepage is isolated. */ 1493 list_move(&hpage->lru, &pagelist); 1494 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1495 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1496 if (ret) { 1497 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1498 pfn, ret, page->flags); 1499 /* 1500 * We know that soft_offline_huge_page() tries to migrate 1501 * only one hugepage pointed to by hpage, so we need not 1502 * run through the pagelist here. 1503 */ 1504 putback_active_hugepage(hpage); 1505 if (ret > 0) 1506 ret = -EIO; 1507 } else { 1508 set_page_hwpoison_huge_page(hpage); 1509 dequeue_hwpoisoned_huge_page(hpage); 1510 atomic_long_add(1 << compound_order(hpage), 1511 &num_poisoned_pages); 1512 } 1513 return ret; 1514 } 1515 1516 static int __soft_offline_page(struct page *page, int flags) 1517 { 1518 int ret; 1519 unsigned long pfn = page_to_pfn(page); 1520 1521 /* 1522 * Check PageHWPoison again inside page lock because PageHWPoison 1523 * is set by memory_failure() outside page lock. Note that 1524 * memory_failure() also double-checks PageHWPoison inside page lock, 1525 * so there's no race between soft_offline_page() and memory_failure(). 1526 */ 1527 lock_page(page); 1528 wait_on_page_writeback(page); 1529 if (PageHWPoison(page)) { 1530 unlock_page(page); 1531 put_page(page); 1532 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1533 return -EBUSY; 1534 } 1535 /* 1536 * Try to invalidate first. This should work for 1537 * non dirty unmapped page cache pages. 1538 */ 1539 ret = invalidate_inode_page(page); 1540 unlock_page(page); 1541 /* 1542 * RED-PEN would be better to keep it isolated here, but we 1543 * would need to fix isolation locking first. 1544 */ 1545 if (ret == 1) { 1546 put_page(page); 1547 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1548 SetPageHWPoison(page); 1549 atomic_long_inc(&num_poisoned_pages); 1550 return 0; 1551 } 1552 1553 /* 1554 * Simple invalidation didn't work. 1555 * Try to migrate to a new page instead. migrate.c 1556 * handles a large number of cases for us. 1557 */ 1558 ret = isolate_lru_page(page); 1559 /* 1560 * Drop page reference which is came from get_any_page() 1561 * successful isolate_lru_page() already took another one. 1562 */ 1563 put_page(page); 1564 if (!ret) { 1565 LIST_HEAD(pagelist); 1566 inc_zone_page_state(page, NR_ISOLATED_ANON + 1567 page_is_file_cache(page)); 1568 list_add(&page->lru, &pagelist); 1569 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1570 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1571 if (ret) { 1572 putback_lru_pages(&pagelist); 1573 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1574 pfn, ret, page->flags); 1575 if (ret > 0) 1576 ret = -EIO; 1577 } else { 1578 /* 1579 * After page migration succeeds, the source page can 1580 * be trapped in pagevec and actual freeing is delayed. 1581 * Freeing code works differently based on PG_hwpoison, 1582 * so there's a race. We need to make sure that the 1583 * source page should be freed back to buddy before 1584 * setting PG_hwpoison. 1585 */ 1586 if (!is_free_buddy_page(page)) 1587 lru_add_drain_all(); 1588 if (!is_free_buddy_page(page)) 1589 drain_all_pages(); 1590 SetPageHWPoison(page); 1591 if (!is_free_buddy_page(page)) 1592 pr_info("soft offline: %#lx: page leaked\n", 1593 pfn); 1594 atomic_long_inc(&num_poisoned_pages); 1595 } 1596 } else { 1597 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1598 pfn, ret, page_count(page), page->flags); 1599 } 1600 return ret; 1601 } 1602 1603 /** 1604 * soft_offline_page - Soft offline a page. 1605 * @page: page to offline 1606 * @flags: flags. Same as memory_failure(). 1607 * 1608 * Returns 0 on success, otherwise negated errno. 1609 * 1610 * Soft offline a page, by migration or invalidation, 1611 * without killing anything. This is for the case when 1612 * a page is not corrupted yet (so it's still valid to access), 1613 * but has had a number of corrected errors and is better taken 1614 * out. 1615 * 1616 * The actual policy on when to do that is maintained by 1617 * user space. 1618 * 1619 * This should never impact any application or cause data loss, 1620 * however it might take some time. 1621 * 1622 * This is not a 100% solution for all memory, but tries to be 1623 * ``good enough'' for the majority of memory. 1624 */ 1625 int soft_offline_page(struct page *page, int flags) 1626 { 1627 int ret; 1628 unsigned long pfn = page_to_pfn(page); 1629 struct page *hpage = compound_trans_head(page); 1630 1631 if (PageHWPoison(page)) { 1632 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1633 return -EBUSY; 1634 } 1635 if (!PageHuge(page) && PageTransHuge(hpage)) { 1636 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { 1637 pr_info("soft offline: %#lx: failed to split THP\n", 1638 pfn); 1639 return -EBUSY; 1640 } 1641 } 1642 1643 /* 1644 * The lock_memory_hotplug prevents a race with memory hotplug. 1645 * This is a big hammer, a better would be nicer. 1646 */ 1647 lock_memory_hotplug(); 1648 1649 /* 1650 * Isolate the page, so that it doesn't get reallocated if it 1651 * was free. This flag should be kept set until the source page 1652 * is freed and PG_hwpoison on it is set. 1653 */ 1654 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 1655 set_migratetype_isolate(page, true); 1656 1657 ret = get_any_page(page, pfn, flags); 1658 unlock_memory_hotplug(); 1659 if (ret > 0) { /* for in-use pages */ 1660 if (PageHuge(page)) 1661 ret = soft_offline_huge_page(page, flags); 1662 else 1663 ret = __soft_offline_page(page, flags); 1664 } else if (ret == 0) { /* for free pages */ 1665 if (PageHuge(page)) { 1666 set_page_hwpoison_huge_page(hpage); 1667 dequeue_hwpoisoned_huge_page(hpage); 1668 atomic_long_add(1 << compound_order(hpage), 1669 &num_poisoned_pages); 1670 } else { 1671 SetPageHWPoison(page); 1672 atomic_long_inc(&num_poisoned_pages); 1673 } 1674 } 1675 unset_migratetype_isolate(page, MIGRATE_MOVABLE); 1676 return ret; 1677 } 1678