1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 69 70 u32 hwpoison_filter_enable = 0; 71 u32 hwpoison_filter_dev_major = ~0U; 72 u32 hwpoison_filter_dev_minor = ~0U; 73 u64 hwpoison_filter_flags_mask; 74 u64 hwpoison_filter_flags_value; 75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 80 81 static int hwpoison_filter_dev(struct page *p) 82 { 83 struct address_space *mapping; 84 dev_t dev; 85 86 if (hwpoison_filter_dev_major == ~0U && 87 hwpoison_filter_dev_minor == ~0U) 88 return 0; 89 90 /* 91 * page_mapping() does not accept slab pages. 92 */ 93 if (PageSlab(p)) 94 return -EINVAL; 95 96 mapping = page_mapping(p); 97 if (mapping == NULL || mapping->host == NULL) 98 return -EINVAL; 99 100 dev = mapping->host->i_sb->s_dev; 101 if (hwpoison_filter_dev_major != ~0U && 102 hwpoison_filter_dev_major != MAJOR(dev)) 103 return -EINVAL; 104 if (hwpoison_filter_dev_minor != ~0U && 105 hwpoison_filter_dev_minor != MINOR(dev)) 106 return -EINVAL; 107 108 return 0; 109 } 110 111 static int hwpoison_filter_flags(struct page *p) 112 { 113 if (!hwpoison_filter_flags_mask) 114 return 0; 115 116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 117 hwpoison_filter_flags_value) 118 return 0; 119 else 120 return -EINVAL; 121 } 122 123 /* 124 * This allows stress tests to limit test scope to a collection of tasks 125 * by putting them under some memcg. This prevents killing unrelated/important 126 * processes such as /sbin/init. Note that the target task may share clean 127 * pages with init (eg. libc text), which is harmless. If the target task 128 * share _dirty_ pages with another task B, the test scheme must make sure B 129 * is also included in the memcg. At last, due to race conditions this filter 130 * can only guarantee that the page either belongs to the memcg tasks, or is 131 * a freed page. 132 */ 133 #ifdef CONFIG_MEMCG 134 u64 hwpoison_filter_memcg; 135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 136 static int hwpoison_filter_task(struct page *p) 137 { 138 if (!hwpoison_filter_memcg) 139 return 0; 140 141 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 142 return -EINVAL; 143 144 return 0; 145 } 146 #else 147 static int hwpoison_filter_task(struct page *p) { return 0; } 148 #endif 149 150 int hwpoison_filter(struct page *p) 151 { 152 if (!hwpoison_filter_enable) 153 return 0; 154 155 if (hwpoison_filter_dev(p)) 156 return -EINVAL; 157 158 if (hwpoison_filter_flags(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_task(p)) 162 return -EINVAL; 163 164 return 0; 165 } 166 #else 167 int hwpoison_filter(struct page *p) 168 { 169 return 0; 170 } 171 #endif 172 173 EXPORT_SYMBOL_GPL(hwpoison_filter); 174 175 /* 176 * Kill all processes that have a poisoned page mapped and then isolate 177 * the page. 178 * 179 * General strategy: 180 * Find all processes having the page mapped and kill them. 181 * But we keep a page reference around so that the page is not 182 * actually freed yet. 183 * Then stash the page away 184 * 185 * There's no convenient way to get back to mapped processes 186 * from the VMAs. So do a brute-force search over all 187 * running processes. 188 * 189 * Remember that machine checks are not common (or rather 190 * if they are common you have other problems), so this shouldn't 191 * be a performance issue. 192 * 193 * Also there are some races possible while we get from the 194 * error detection to actually handle it. 195 */ 196 197 struct to_kill { 198 struct list_head nd; 199 struct task_struct *tsk; 200 unsigned long addr; 201 short size_shift; 202 }; 203 204 /* 205 * Send all the processes who have the page mapped a signal. 206 * ``action optional'' if they are not immediately affected by the error 207 * ``action required'' if error happened in current execution context 208 */ 209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 210 { 211 struct task_struct *t = tk->tsk; 212 short addr_lsb = tk->size_shift; 213 int ret = 0; 214 215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 216 pfn, t->comm, t->pid); 217 218 if (flags & MF_ACTION_REQUIRED) { 219 WARN_ON_ONCE(t != current); 220 ret = force_sig_mceerr(BUS_MCEERR_AR, 221 (void __user *)tk->addr, addr_lsb); 222 } else { 223 /* 224 * Don't use force here, it's convenient if the signal 225 * can be temporarily blocked. 226 * This could cause a loop when the user sets SIGBUS 227 * to SIG_IGN, but hopefully no one will do that? 228 */ 229 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 230 addr_lsb, t); /* synchronous? */ 231 } 232 if (ret < 0) 233 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 234 t->comm, t->pid, ret); 235 return ret; 236 } 237 238 /* 239 * When a unknown page type is encountered drain as many buffers as possible 240 * in the hope to turn the page into a LRU or free page, which we can handle. 241 */ 242 void shake_page(struct page *p, int access) 243 { 244 if (PageHuge(p)) 245 return; 246 247 if (!PageSlab(p)) { 248 lru_add_drain_all(); 249 if (PageLRU(p)) 250 return; 251 drain_all_pages(page_zone(p)); 252 if (PageLRU(p) || is_free_buddy_page(p)) 253 return; 254 } 255 256 /* 257 * Only call shrink_node_slabs here (which would also shrink 258 * other caches) if access is not potentially fatal. 259 */ 260 if (access) 261 drop_slab_node(page_to_nid(p)); 262 } 263 EXPORT_SYMBOL_GPL(shake_page); 264 265 static unsigned long dev_pagemap_mapping_shift(struct page *page, 266 struct vm_area_struct *vma) 267 { 268 unsigned long address = vma_address(page, vma); 269 pgd_t *pgd; 270 p4d_t *p4d; 271 pud_t *pud; 272 pmd_t *pmd; 273 pte_t *pte; 274 275 pgd = pgd_offset(vma->vm_mm, address); 276 if (!pgd_present(*pgd)) 277 return 0; 278 p4d = p4d_offset(pgd, address); 279 if (!p4d_present(*p4d)) 280 return 0; 281 pud = pud_offset(p4d, address); 282 if (!pud_present(*pud)) 283 return 0; 284 if (pud_devmap(*pud)) 285 return PUD_SHIFT; 286 pmd = pmd_offset(pud, address); 287 if (!pmd_present(*pmd)) 288 return 0; 289 if (pmd_devmap(*pmd)) 290 return PMD_SHIFT; 291 pte = pte_offset_map(pmd, address); 292 if (!pte_present(*pte)) 293 return 0; 294 if (pte_devmap(*pte)) 295 return PAGE_SHIFT; 296 return 0; 297 } 298 299 /* 300 * Failure handling: if we can't find or can't kill a process there's 301 * not much we can do. We just print a message and ignore otherwise. 302 */ 303 304 /* 305 * Schedule a process for later kill. 306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 307 */ 308 static void add_to_kill(struct task_struct *tsk, struct page *p, 309 struct vm_area_struct *vma, 310 struct list_head *to_kill) 311 { 312 struct to_kill *tk; 313 314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 315 if (!tk) { 316 pr_err("Memory failure: Out of memory while machine check handling\n"); 317 return; 318 } 319 320 tk->addr = page_address_in_vma(p, vma); 321 if (is_zone_device_page(p)) 322 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 323 else 324 tk->size_shift = page_shift(compound_head(p)); 325 326 /* 327 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 328 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 329 * so "tk->size_shift == 0" effectively checks no mapping on 330 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 331 * to a process' address space, it's possible not all N VMAs 332 * contain mappings for the page, but at least one VMA does. 333 * Only deliver SIGBUS with payload derived from the VMA that 334 * has a mapping for the page. 335 */ 336 if (tk->addr == -EFAULT) { 337 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 338 page_to_pfn(p), tsk->comm); 339 } else if (tk->size_shift == 0) { 340 kfree(tk); 341 return; 342 } 343 344 get_task_struct(tsk); 345 tk->tsk = tsk; 346 list_add_tail(&tk->nd, to_kill); 347 } 348 349 /* 350 * Kill the processes that have been collected earlier. 351 * 352 * Only do anything when DOIT is set, otherwise just free the list 353 * (this is used for clean pages which do not need killing) 354 * Also when FAIL is set do a force kill because something went 355 * wrong earlier. 356 */ 357 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 358 unsigned long pfn, int flags) 359 { 360 struct to_kill *tk, *next; 361 362 list_for_each_entry_safe (tk, next, to_kill, nd) { 363 if (forcekill) { 364 /* 365 * In case something went wrong with munmapping 366 * make sure the process doesn't catch the 367 * signal and then access the memory. Just kill it. 368 */ 369 if (fail || tk->addr == -EFAULT) { 370 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 371 pfn, tk->tsk->comm, tk->tsk->pid); 372 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 373 tk->tsk, PIDTYPE_PID); 374 } 375 376 /* 377 * In theory the process could have mapped 378 * something else on the address in-between. We could 379 * check for that, but we need to tell the 380 * process anyways. 381 */ 382 else if (kill_proc(tk, pfn, flags) < 0) 383 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 384 pfn, tk->tsk->comm, tk->tsk->pid); 385 } 386 put_task_struct(tk->tsk); 387 kfree(tk); 388 } 389 } 390 391 /* 392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 393 * on behalf of the thread group. Return task_struct of the (first found) 394 * dedicated thread if found, and return NULL otherwise. 395 * 396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 397 * have to call rcu_read_lock/unlock() in this function. 398 */ 399 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 400 { 401 struct task_struct *t; 402 403 for_each_thread(tsk, t) { 404 if (t->flags & PF_MCE_PROCESS) { 405 if (t->flags & PF_MCE_EARLY) 406 return t; 407 } else { 408 if (sysctl_memory_failure_early_kill) 409 return t; 410 } 411 } 412 return NULL; 413 } 414 415 /* 416 * Determine whether a given process is "early kill" process which expects 417 * to be signaled when some page under the process is hwpoisoned. 418 * Return task_struct of the dedicated thread (main thread unless explicitly 419 * specified) if the process is "early kill," and otherwise returns NULL. 420 * 421 * Note that the above is true for Action Optional case, but not for Action 422 * Required case where SIGBUS should sent only to the current thread. 423 */ 424 static struct task_struct *task_early_kill(struct task_struct *tsk, 425 int force_early) 426 { 427 if (!tsk->mm) 428 return NULL; 429 if (force_early) { 430 /* 431 * Comparing ->mm here because current task might represent 432 * a subthread, while tsk always points to the main thread. 433 */ 434 if (tsk->mm == current->mm) 435 return current; 436 else 437 return NULL; 438 } 439 return find_early_kill_thread(tsk); 440 } 441 442 /* 443 * Collect processes when the error hit an anonymous page. 444 */ 445 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 446 int force_early) 447 { 448 struct vm_area_struct *vma; 449 struct task_struct *tsk; 450 struct anon_vma *av; 451 pgoff_t pgoff; 452 453 av = page_lock_anon_vma_read(page); 454 if (av == NULL) /* Not actually mapped anymore */ 455 return; 456 457 pgoff = page_to_pgoff(page); 458 read_lock(&tasklist_lock); 459 for_each_process (tsk) { 460 struct anon_vma_chain *vmac; 461 struct task_struct *t = task_early_kill(tsk, force_early); 462 463 if (!t) 464 continue; 465 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 466 pgoff, pgoff) { 467 vma = vmac->vma; 468 if (!page_mapped_in_vma(page, vma)) 469 continue; 470 if (vma->vm_mm == t->mm) 471 add_to_kill(t, page, vma, to_kill); 472 } 473 } 474 read_unlock(&tasklist_lock); 475 page_unlock_anon_vma_read(av); 476 } 477 478 /* 479 * Collect processes when the error hit a file mapped page. 480 */ 481 static void collect_procs_file(struct page *page, struct list_head *to_kill, 482 int force_early) 483 { 484 struct vm_area_struct *vma; 485 struct task_struct *tsk; 486 struct address_space *mapping = page->mapping; 487 488 i_mmap_lock_read(mapping); 489 read_lock(&tasklist_lock); 490 for_each_process(tsk) { 491 pgoff_t pgoff = page_to_pgoff(page); 492 struct task_struct *t = task_early_kill(tsk, force_early); 493 494 if (!t) 495 continue; 496 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 497 pgoff) { 498 /* 499 * Send early kill signal to tasks where a vma covers 500 * the page but the corrupted page is not necessarily 501 * mapped it in its pte. 502 * Assume applications who requested early kill want 503 * to be informed of all such data corruptions. 504 */ 505 if (vma->vm_mm == t->mm) 506 add_to_kill(t, page, vma, to_kill); 507 } 508 } 509 read_unlock(&tasklist_lock); 510 i_mmap_unlock_read(mapping); 511 } 512 513 /* 514 * Collect the processes who have the corrupted page mapped to kill. 515 */ 516 static void collect_procs(struct page *page, struct list_head *tokill, 517 int force_early) 518 { 519 if (!page->mapping) 520 return; 521 522 if (PageAnon(page)) 523 collect_procs_anon(page, tokill, force_early); 524 else 525 collect_procs_file(page, tokill, force_early); 526 } 527 528 static const char *action_name[] = { 529 [MF_IGNORED] = "Ignored", 530 [MF_FAILED] = "Failed", 531 [MF_DELAYED] = "Delayed", 532 [MF_RECOVERED] = "Recovered", 533 }; 534 535 static const char * const action_page_types[] = { 536 [MF_MSG_KERNEL] = "reserved kernel page", 537 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 538 [MF_MSG_SLAB] = "kernel slab page", 539 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 540 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 541 [MF_MSG_HUGE] = "huge page", 542 [MF_MSG_FREE_HUGE] = "free huge page", 543 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 544 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 545 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 546 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 547 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 548 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 549 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 550 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 551 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 552 [MF_MSG_CLEAN_LRU] = "clean LRU page", 553 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 554 [MF_MSG_BUDDY] = "free buddy page", 555 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 556 [MF_MSG_DAX] = "dax page", 557 [MF_MSG_UNKNOWN] = "unknown page", 558 }; 559 560 /* 561 * XXX: It is possible that a page is isolated from LRU cache, 562 * and then kept in swap cache or failed to remove from page cache. 563 * The page count will stop it from being freed by unpoison. 564 * Stress tests should be aware of this memory leak problem. 565 */ 566 static int delete_from_lru_cache(struct page *p) 567 { 568 if (!isolate_lru_page(p)) { 569 /* 570 * Clear sensible page flags, so that the buddy system won't 571 * complain when the page is unpoison-and-freed. 572 */ 573 ClearPageActive(p); 574 ClearPageUnevictable(p); 575 576 /* 577 * Poisoned page might never drop its ref count to 0 so we have 578 * to uncharge it manually from its memcg. 579 */ 580 mem_cgroup_uncharge(p); 581 582 /* 583 * drop the page count elevated by isolate_lru_page() 584 */ 585 put_page(p); 586 return 0; 587 } 588 return -EIO; 589 } 590 591 static int truncate_error_page(struct page *p, unsigned long pfn, 592 struct address_space *mapping) 593 { 594 int ret = MF_FAILED; 595 596 if (mapping->a_ops->error_remove_page) { 597 int err = mapping->a_ops->error_remove_page(mapping, p); 598 599 if (err != 0) { 600 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 601 pfn, err); 602 } else if (page_has_private(p) && 603 !try_to_release_page(p, GFP_NOIO)) { 604 pr_info("Memory failure: %#lx: failed to release buffers\n", 605 pfn); 606 } else { 607 ret = MF_RECOVERED; 608 } 609 } else { 610 /* 611 * If the file system doesn't support it just invalidate 612 * This fails on dirty or anything with private pages 613 */ 614 if (invalidate_inode_page(p)) 615 ret = MF_RECOVERED; 616 else 617 pr_info("Memory failure: %#lx: Failed to invalidate\n", 618 pfn); 619 } 620 621 return ret; 622 } 623 624 /* 625 * Error hit kernel page. 626 * Do nothing, try to be lucky and not touch this instead. For a few cases we 627 * could be more sophisticated. 628 */ 629 static int me_kernel(struct page *p, unsigned long pfn) 630 { 631 return MF_IGNORED; 632 } 633 634 /* 635 * Page in unknown state. Do nothing. 636 */ 637 static int me_unknown(struct page *p, unsigned long pfn) 638 { 639 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 640 return MF_FAILED; 641 } 642 643 /* 644 * Clean (or cleaned) page cache page. 645 */ 646 static int me_pagecache_clean(struct page *p, unsigned long pfn) 647 { 648 struct address_space *mapping; 649 650 delete_from_lru_cache(p); 651 652 /* 653 * For anonymous pages we're done the only reference left 654 * should be the one m_f() holds. 655 */ 656 if (PageAnon(p)) 657 return MF_RECOVERED; 658 659 /* 660 * Now truncate the page in the page cache. This is really 661 * more like a "temporary hole punch" 662 * Don't do this for block devices when someone else 663 * has a reference, because it could be file system metadata 664 * and that's not safe to truncate. 665 */ 666 mapping = page_mapping(p); 667 if (!mapping) { 668 /* 669 * Page has been teared down in the meanwhile 670 */ 671 return MF_FAILED; 672 } 673 674 /* 675 * Truncation is a bit tricky. Enable it per file system for now. 676 * 677 * Open: to take i_mutex or not for this? Right now we don't. 678 */ 679 return truncate_error_page(p, pfn, mapping); 680 } 681 682 /* 683 * Dirty pagecache page 684 * Issues: when the error hit a hole page the error is not properly 685 * propagated. 686 */ 687 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 688 { 689 struct address_space *mapping = page_mapping(p); 690 691 SetPageError(p); 692 /* TBD: print more information about the file. */ 693 if (mapping) { 694 /* 695 * IO error will be reported by write(), fsync(), etc. 696 * who check the mapping. 697 * This way the application knows that something went 698 * wrong with its dirty file data. 699 * 700 * There's one open issue: 701 * 702 * The EIO will be only reported on the next IO 703 * operation and then cleared through the IO map. 704 * Normally Linux has two mechanisms to pass IO error 705 * first through the AS_EIO flag in the address space 706 * and then through the PageError flag in the page. 707 * Since we drop pages on memory failure handling the 708 * only mechanism open to use is through AS_AIO. 709 * 710 * This has the disadvantage that it gets cleared on 711 * the first operation that returns an error, while 712 * the PageError bit is more sticky and only cleared 713 * when the page is reread or dropped. If an 714 * application assumes it will always get error on 715 * fsync, but does other operations on the fd before 716 * and the page is dropped between then the error 717 * will not be properly reported. 718 * 719 * This can already happen even without hwpoisoned 720 * pages: first on metadata IO errors (which only 721 * report through AS_EIO) or when the page is dropped 722 * at the wrong time. 723 * 724 * So right now we assume that the application DTRT on 725 * the first EIO, but we're not worse than other parts 726 * of the kernel. 727 */ 728 mapping_set_error(mapping, -EIO); 729 } 730 731 return me_pagecache_clean(p, pfn); 732 } 733 734 /* 735 * Clean and dirty swap cache. 736 * 737 * Dirty swap cache page is tricky to handle. The page could live both in page 738 * cache and swap cache(ie. page is freshly swapped in). So it could be 739 * referenced concurrently by 2 types of PTEs: 740 * normal PTEs and swap PTEs. We try to handle them consistently by calling 741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 742 * and then 743 * - clear dirty bit to prevent IO 744 * - remove from LRU 745 * - but keep in the swap cache, so that when we return to it on 746 * a later page fault, we know the application is accessing 747 * corrupted data and shall be killed (we installed simple 748 * interception code in do_swap_page to catch it). 749 * 750 * Clean swap cache pages can be directly isolated. A later page fault will 751 * bring in the known good data from disk. 752 */ 753 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 754 { 755 ClearPageDirty(p); 756 /* Trigger EIO in shmem: */ 757 ClearPageUptodate(p); 758 759 if (!delete_from_lru_cache(p)) 760 return MF_DELAYED; 761 else 762 return MF_FAILED; 763 } 764 765 static int me_swapcache_clean(struct page *p, unsigned long pfn) 766 { 767 delete_from_swap_cache(p); 768 769 if (!delete_from_lru_cache(p)) 770 return MF_RECOVERED; 771 else 772 return MF_FAILED; 773 } 774 775 /* 776 * Huge pages. Needs work. 777 * Issues: 778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 779 * To narrow down kill region to one page, we need to break up pmd. 780 */ 781 static int me_huge_page(struct page *p, unsigned long pfn) 782 { 783 int res = 0; 784 struct page *hpage = compound_head(p); 785 struct address_space *mapping; 786 787 if (!PageHuge(hpage)) 788 return MF_DELAYED; 789 790 mapping = page_mapping(hpage); 791 if (mapping) { 792 res = truncate_error_page(hpage, pfn, mapping); 793 } else { 794 unlock_page(hpage); 795 /* 796 * migration entry prevents later access on error anonymous 797 * hugepage, so we can free and dissolve it into buddy to 798 * save healthy subpages. 799 */ 800 if (PageAnon(hpage)) 801 put_page(hpage); 802 dissolve_free_huge_page(p); 803 res = MF_RECOVERED; 804 lock_page(hpage); 805 } 806 807 return res; 808 } 809 810 /* 811 * Various page states we can handle. 812 * 813 * A page state is defined by its current page->flags bits. 814 * The table matches them in order and calls the right handler. 815 * 816 * This is quite tricky because we can access page at any time 817 * in its live cycle, so all accesses have to be extremely careful. 818 * 819 * This is not complete. More states could be added. 820 * For any missing state don't attempt recovery. 821 */ 822 823 #define dirty (1UL << PG_dirty) 824 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 825 #define unevict (1UL << PG_unevictable) 826 #define mlock (1UL << PG_mlocked) 827 #define writeback (1UL << PG_writeback) 828 #define lru (1UL << PG_lru) 829 #define head (1UL << PG_head) 830 #define slab (1UL << PG_slab) 831 #define reserved (1UL << PG_reserved) 832 833 static struct page_state { 834 unsigned long mask; 835 unsigned long res; 836 enum mf_action_page_type type; 837 int (*action)(struct page *p, unsigned long pfn); 838 } error_states[] = { 839 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 840 /* 841 * free pages are specially detected outside this table: 842 * PG_buddy pages only make a small fraction of all free pages. 843 */ 844 845 /* 846 * Could in theory check if slab page is free or if we can drop 847 * currently unused objects without touching them. But just 848 * treat it as standard kernel for now. 849 */ 850 { slab, slab, MF_MSG_SLAB, me_kernel }, 851 852 { head, head, MF_MSG_HUGE, me_huge_page }, 853 854 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 855 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 856 857 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 858 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 859 860 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 861 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 862 863 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 864 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 865 866 /* 867 * Catchall entry: must be at end. 868 */ 869 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 870 }; 871 872 #undef dirty 873 #undef sc 874 #undef unevict 875 #undef mlock 876 #undef writeback 877 #undef lru 878 #undef head 879 #undef slab 880 #undef reserved 881 882 /* 883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 884 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 885 */ 886 static void action_result(unsigned long pfn, enum mf_action_page_type type, 887 enum mf_result result) 888 { 889 trace_memory_failure_event(pfn, type, result); 890 891 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 892 pfn, action_page_types[type], action_name[result]); 893 } 894 895 static int page_action(struct page_state *ps, struct page *p, 896 unsigned long pfn) 897 { 898 int result; 899 int count; 900 901 result = ps->action(p, pfn); 902 903 count = page_count(p) - 1; 904 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 905 count--; 906 if (count > 0) { 907 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 908 pfn, action_page_types[ps->type], count); 909 result = MF_FAILED; 910 } 911 action_result(pfn, ps->type, result); 912 913 /* Could do more checks here if page looks ok */ 914 /* 915 * Could adjust zone counters here to correct for the missing page. 916 */ 917 918 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 919 } 920 921 /** 922 * get_hwpoison_page() - Get refcount for memory error handling: 923 * @page: raw error page (hit by memory error) 924 * 925 * Return: return 0 if failed to grab the refcount, otherwise true (some 926 * non-zero value.) 927 */ 928 int get_hwpoison_page(struct page *page) 929 { 930 struct page *head = compound_head(page); 931 932 if (!PageHuge(head) && PageTransHuge(head)) { 933 /* 934 * Non anonymous thp exists only in allocation/free time. We 935 * can't handle such a case correctly, so let's give it up. 936 * This should be better than triggering BUG_ON when kernel 937 * tries to touch the "partially handled" page. 938 */ 939 if (!PageAnon(head)) { 940 pr_err("Memory failure: %#lx: non anonymous thp\n", 941 page_to_pfn(page)); 942 return 0; 943 } 944 } 945 946 if (get_page_unless_zero(head)) { 947 if (head == compound_head(page)) 948 return 1; 949 950 pr_info("Memory failure: %#lx cannot catch tail\n", 951 page_to_pfn(page)); 952 put_page(head); 953 } 954 955 return 0; 956 } 957 EXPORT_SYMBOL_GPL(get_hwpoison_page); 958 959 /* 960 * Do all that is necessary to remove user space mappings. Unmap 961 * the pages and send SIGBUS to the processes if the data was dirty. 962 */ 963 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 964 int flags, struct page **hpagep) 965 { 966 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 967 struct address_space *mapping; 968 LIST_HEAD(tokill); 969 bool unmap_success = true; 970 int kill = 1, forcekill; 971 struct page *hpage = *hpagep; 972 bool mlocked = PageMlocked(hpage); 973 974 /* 975 * Here we are interested only in user-mapped pages, so skip any 976 * other types of pages. 977 */ 978 if (PageReserved(p) || PageSlab(p)) 979 return true; 980 if (!(PageLRU(hpage) || PageHuge(p))) 981 return true; 982 983 /* 984 * This check implies we don't kill processes if their pages 985 * are in the swap cache early. Those are always late kills. 986 */ 987 if (!page_mapped(hpage)) 988 return true; 989 990 if (PageKsm(p)) { 991 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 992 return false; 993 } 994 995 if (PageSwapCache(p)) { 996 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 997 pfn); 998 ttu |= TTU_IGNORE_HWPOISON; 999 } 1000 1001 /* 1002 * Propagate the dirty bit from PTEs to struct page first, because we 1003 * need this to decide if we should kill or just drop the page. 1004 * XXX: the dirty test could be racy: set_page_dirty() may not always 1005 * be called inside page lock (it's recommended but not enforced). 1006 */ 1007 mapping = page_mapping(hpage); 1008 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1009 mapping_cap_writeback_dirty(mapping)) { 1010 if (page_mkclean(hpage)) { 1011 SetPageDirty(hpage); 1012 } else { 1013 kill = 0; 1014 ttu |= TTU_IGNORE_HWPOISON; 1015 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1016 pfn); 1017 } 1018 } 1019 1020 /* 1021 * First collect all the processes that have the page 1022 * mapped in dirty form. This has to be done before try_to_unmap, 1023 * because ttu takes the rmap data structures down. 1024 * 1025 * Error handling: We ignore errors here because 1026 * there's nothing that can be done. 1027 */ 1028 if (kill) 1029 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1030 1031 if (!PageHuge(hpage)) { 1032 unmap_success = try_to_unmap(hpage, ttu); 1033 } else { 1034 /* 1035 * For hugetlb pages, try_to_unmap could potentially call 1036 * huge_pmd_unshare. Because of this, take semaphore in 1037 * write mode here and set TTU_RMAP_LOCKED to indicate we 1038 * have taken the lock at this higer level. 1039 * 1040 * Note that the call to hugetlb_page_mapping_lock_write 1041 * is necessary even if mapping is already set. It handles 1042 * ugliness of potentially having to drop page lock to obtain 1043 * i_mmap_rwsem. 1044 */ 1045 mapping = hugetlb_page_mapping_lock_write(hpage); 1046 1047 if (mapping) { 1048 unmap_success = try_to_unmap(hpage, 1049 ttu|TTU_RMAP_LOCKED); 1050 i_mmap_unlock_write(mapping); 1051 } else { 1052 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n", 1053 pfn); 1054 unmap_success = false; 1055 } 1056 } 1057 if (!unmap_success) 1058 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1059 pfn, page_mapcount(hpage)); 1060 1061 /* 1062 * try_to_unmap() might put mlocked page in lru cache, so call 1063 * shake_page() again to ensure that it's flushed. 1064 */ 1065 if (mlocked) 1066 shake_page(hpage, 0); 1067 1068 /* 1069 * Now that the dirty bit has been propagated to the 1070 * struct page and all unmaps done we can decide if 1071 * killing is needed or not. Only kill when the page 1072 * was dirty or the process is not restartable, 1073 * otherwise the tokill list is merely 1074 * freed. When there was a problem unmapping earlier 1075 * use a more force-full uncatchable kill to prevent 1076 * any accesses to the poisoned memory. 1077 */ 1078 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1079 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1080 1081 return unmap_success; 1082 } 1083 1084 static int identify_page_state(unsigned long pfn, struct page *p, 1085 unsigned long page_flags) 1086 { 1087 struct page_state *ps; 1088 1089 /* 1090 * The first check uses the current page flags which may not have any 1091 * relevant information. The second check with the saved page flags is 1092 * carried out only if the first check can't determine the page status. 1093 */ 1094 for (ps = error_states;; ps++) 1095 if ((p->flags & ps->mask) == ps->res) 1096 break; 1097 1098 page_flags |= (p->flags & (1UL << PG_dirty)); 1099 1100 if (!ps->mask) 1101 for (ps = error_states;; ps++) 1102 if ((page_flags & ps->mask) == ps->res) 1103 break; 1104 return page_action(ps, p, pfn); 1105 } 1106 1107 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1108 { 1109 struct page *p = pfn_to_page(pfn); 1110 struct page *head = compound_head(p); 1111 int res; 1112 unsigned long page_flags; 1113 1114 if (TestSetPageHWPoison(head)) { 1115 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1116 pfn); 1117 return 0; 1118 } 1119 1120 num_poisoned_pages_inc(); 1121 1122 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1123 /* 1124 * Check "filter hit" and "race with other subpage." 1125 */ 1126 lock_page(head); 1127 if (PageHWPoison(head)) { 1128 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1129 || (p != head && TestSetPageHWPoison(head))) { 1130 num_poisoned_pages_dec(); 1131 unlock_page(head); 1132 return 0; 1133 } 1134 } 1135 unlock_page(head); 1136 dissolve_free_huge_page(p); 1137 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1138 return 0; 1139 } 1140 1141 lock_page(head); 1142 page_flags = head->flags; 1143 1144 if (!PageHWPoison(head)) { 1145 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1146 num_poisoned_pages_dec(); 1147 unlock_page(head); 1148 put_hwpoison_page(head); 1149 return 0; 1150 } 1151 1152 /* 1153 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1154 * simply disable it. In order to make it work properly, we need 1155 * make sure that: 1156 * - conversion of a pud that maps an error hugetlb into hwpoison 1157 * entry properly works, and 1158 * - other mm code walking over page table is aware of pud-aligned 1159 * hwpoison entries. 1160 */ 1161 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1162 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1163 res = -EBUSY; 1164 goto out; 1165 } 1166 1167 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1168 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1169 res = -EBUSY; 1170 goto out; 1171 } 1172 1173 res = identify_page_state(pfn, p, page_flags); 1174 out: 1175 unlock_page(head); 1176 return res; 1177 } 1178 1179 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1180 struct dev_pagemap *pgmap) 1181 { 1182 struct page *page = pfn_to_page(pfn); 1183 const bool unmap_success = true; 1184 unsigned long size = 0; 1185 struct to_kill *tk; 1186 LIST_HEAD(tokill); 1187 int rc = -EBUSY; 1188 loff_t start; 1189 dax_entry_t cookie; 1190 1191 /* 1192 * Prevent the inode from being freed while we are interrogating 1193 * the address_space, typically this would be handled by 1194 * lock_page(), but dax pages do not use the page lock. This 1195 * also prevents changes to the mapping of this pfn until 1196 * poison signaling is complete. 1197 */ 1198 cookie = dax_lock_page(page); 1199 if (!cookie) 1200 goto out; 1201 1202 if (hwpoison_filter(page)) { 1203 rc = 0; 1204 goto unlock; 1205 } 1206 1207 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1208 /* 1209 * TODO: Handle HMM pages which may need coordination 1210 * with device-side memory. 1211 */ 1212 goto unlock; 1213 } 1214 1215 /* 1216 * Use this flag as an indication that the dax page has been 1217 * remapped UC to prevent speculative consumption of poison. 1218 */ 1219 SetPageHWPoison(page); 1220 1221 /* 1222 * Unlike System-RAM there is no possibility to swap in a 1223 * different physical page at a given virtual address, so all 1224 * userspace consumption of ZONE_DEVICE memory necessitates 1225 * SIGBUS (i.e. MF_MUST_KILL) 1226 */ 1227 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1228 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1229 1230 list_for_each_entry(tk, &tokill, nd) 1231 if (tk->size_shift) 1232 size = max(size, 1UL << tk->size_shift); 1233 if (size) { 1234 /* 1235 * Unmap the largest mapping to avoid breaking up 1236 * device-dax mappings which are constant size. The 1237 * actual size of the mapping being torn down is 1238 * communicated in siginfo, see kill_proc() 1239 */ 1240 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1241 unmap_mapping_range(page->mapping, start, start + size, 0); 1242 } 1243 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1244 rc = 0; 1245 unlock: 1246 dax_unlock_page(page, cookie); 1247 out: 1248 /* drop pgmap ref acquired in caller */ 1249 put_dev_pagemap(pgmap); 1250 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1251 return rc; 1252 } 1253 1254 /** 1255 * memory_failure - Handle memory failure of a page. 1256 * @pfn: Page Number of the corrupted page 1257 * @flags: fine tune action taken 1258 * 1259 * This function is called by the low level machine check code 1260 * of an architecture when it detects hardware memory corruption 1261 * of a page. It tries its best to recover, which includes 1262 * dropping pages, killing processes etc. 1263 * 1264 * The function is primarily of use for corruptions that 1265 * happen outside the current execution context (e.g. when 1266 * detected by a background scrubber) 1267 * 1268 * Must run in process context (e.g. a work queue) with interrupts 1269 * enabled and no spinlocks hold. 1270 */ 1271 int memory_failure(unsigned long pfn, int flags) 1272 { 1273 struct page *p; 1274 struct page *hpage; 1275 struct page *orig_head; 1276 struct dev_pagemap *pgmap; 1277 int res; 1278 unsigned long page_flags; 1279 1280 if (!sysctl_memory_failure_recovery) 1281 panic("Memory failure on page %lx", pfn); 1282 1283 p = pfn_to_online_page(pfn); 1284 if (!p) { 1285 if (pfn_valid(pfn)) { 1286 pgmap = get_dev_pagemap(pfn, NULL); 1287 if (pgmap) 1288 return memory_failure_dev_pagemap(pfn, flags, 1289 pgmap); 1290 } 1291 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1292 pfn); 1293 return -ENXIO; 1294 } 1295 1296 if (PageHuge(p)) 1297 return memory_failure_hugetlb(pfn, flags); 1298 if (TestSetPageHWPoison(p)) { 1299 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1300 pfn); 1301 return 0; 1302 } 1303 1304 orig_head = hpage = compound_head(p); 1305 num_poisoned_pages_inc(); 1306 1307 /* 1308 * We need/can do nothing about count=0 pages. 1309 * 1) it's a free page, and therefore in safe hand: 1310 * prep_new_page() will be the gate keeper. 1311 * 2) it's part of a non-compound high order page. 1312 * Implies some kernel user: cannot stop them from 1313 * R/W the page; let's pray that the page has been 1314 * used and will be freed some time later. 1315 * In fact it's dangerous to directly bump up page count from 0, 1316 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1317 */ 1318 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1319 if (is_free_buddy_page(p)) { 1320 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1321 return 0; 1322 } else { 1323 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1324 return -EBUSY; 1325 } 1326 } 1327 1328 if (PageTransHuge(hpage)) { 1329 lock_page(p); 1330 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1331 unlock_page(p); 1332 if (!PageAnon(p)) 1333 pr_err("Memory failure: %#lx: non anonymous thp\n", 1334 pfn); 1335 else 1336 pr_err("Memory failure: %#lx: thp split failed\n", 1337 pfn); 1338 if (TestClearPageHWPoison(p)) 1339 num_poisoned_pages_dec(); 1340 put_hwpoison_page(p); 1341 return -EBUSY; 1342 } 1343 unlock_page(p); 1344 VM_BUG_ON_PAGE(!page_count(p), p); 1345 hpage = compound_head(p); 1346 } 1347 1348 /* 1349 * We ignore non-LRU pages for good reasons. 1350 * - PG_locked is only well defined for LRU pages and a few others 1351 * - to avoid races with __SetPageLocked() 1352 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1353 * The check (unnecessarily) ignores LRU pages being isolated and 1354 * walked by the page reclaim code, however that's not a big loss. 1355 */ 1356 shake_page(p, 0); 1357 /* shake_page could have turned it free. */ 1358 if (!PageLRU(p) && is_free_buddy_page(p)) { 1359 if (flags & MF_COUNT_INCREASED) 1360 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1361 else 1362 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1363 return 0; 1364 } 1365 1366 lock_page(p); 1367 1368 /* 1369 * The page could have changed compound pages during the locking. 1370 * If this happens just bail out. 1371 */ 1372 if (PageCompound(p) && compound_head(p) != orig_head) { 1373 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1374 res = -EBUSY; 1375 goto out; 1376 } 1377 1378 /* 1379 * We use page flags to determine what action should be taken, but 1380 * the flags can be modified by the error containment action. One 1381 * example is an mlocked page, where PG_mlocked is cleared by 1382 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1383 * correctly, we save a copy of the page flags at this time. 1384 */ 1385 if (PageHuge(p)) 1386 page_flags = hpage->flags; 1387 else 1388 page_flags = p->flags; 1389 1390 /* 1391 * unpoison always clear PG_hwpoison inside page lock 1392 */ 1393 if (!PageHWPoison(p)) { 1394 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1395 num_poisoned_pages_dec(); 1396 unlock_page(p); 1397 put_hwpoison_page(p); 1398 return 0; 1399 } 1400 if (hwpoison_filter(p)) { 1401 if (TestClearPageHWPoison(p)) 1402 num_poisoned_pages_dec(); 1403 unlock_page(p); 1404 put_hwpoison_page(p); 1405 return 0; 1406 } 1407 1408 if (!PageTransTail(p) && !PageLRU(p)) 1409 goto identify_page_state; 1410 1411 /* 1412 * It's very difficult to mess with pages currently under IO 1413 * and in many cases impossible, so we just avoid it here. 1414 */ 1415 wait_on_page_writeback(p); 1416 1417 /* 1418 * Now take care of user space mappings. 1419 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1420 * 1421 * When the raw error page is thp tail page, hpage points to the raw 1422 * page after thp split. 1423 */ 1424 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1425 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1426 res = -EBUSY; 1427 goto out; 1428 } 1429 1430 /* 1431 * Torn down by someone else? 1432 */ 1433 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1434 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1435 res = -EBUSY; 1436 goto out; 1437 } 1438 1439 identify_page_state: 1440 res = identify_page_state(pfn, p, page_flags); 1441 out: 1442 unlock_page(p); 1443 return res; 1444 } 1445 EXPORT_SYMBOL_GPL(memory_failure); 1446 1447 #define MEMORY_FAILURE_FIFO_ORDER 4 1448 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1449 1450 struct memory_failure_entry { 1451 unsigned long pfn; 1452 int flags; 1453 }; 1454 1455 struct memory_failure_cpu { 1456 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1457 MEMORY_FAILURE_FIFO_SIZE); 1458 spinlock_t lock; 1459 struct work_struct work; 1460 }; 1461 1462 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1463 1464 /** 1465 * memory_failure_queue - Schedule handling memory failure of a page. 1466 * @pfn: Page Number of the corrupted page 1467 * @flags: Flags for memory failure handling 1468 * 1469 * This function is called by the low level hardware error handler 1470 * when it detects hardware memory corruption of a page. It schedules 1471 * the recovering of error page, including dropping pages, killing 1472 * processes etc. 1473 * 1474 * The function is primarily of use for corruptions that 1475 * happen outside the current execution context (e.g. when 1476 * detected by a background scrubber) 1477 * 1478 * Can run in IRQ context. 1479 */ 1480 void memory_failure_queue(unsigned long pfn, int flags) 1481 { 1482 struct memory_failure_cpu *mf_cpu; 1483 unsigned long proc_flags; 1484 struct memory_failure_entry entry = { 1485 .pfn = pfn, 1486 .flags = flags, 1487 }; 1488 1489 mf_cpu = &get_cpu_var(memory_failure_cpu); 1490 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1491 if (kfifo_put(&mf_cpu->fifo, entry)) 1492 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1493 else 1494 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1495 pfn); 1496 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1497 put_cpu_var(memory_failure_cpu); 1498 } 1499 EXPORT_SYMBOL_GPL(memory_failure_queue); 1500 1501 static void memory_failure_work_func(struct work_struct *work) 1502 { 1503 struct memory_failure_cpu *mf_cpu; 1504 struct memory_failure_entry entry = { 0, }; 1505 unsigned long proc_flags; 1506 int gotten; 1507 1508 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1509 for (;;) { 1510 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1511 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1512 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1513 if (!gotten) 1514 break; 1515 if (entry.flags & MF_SOFT_OFFLINE) 1516 soft_offline_page(entry.pfn, entry.flags); 1517 else 1518 memory_failure(entry.pfn, entry.flags); 1519 } 1520 } 1521 1522 /* 1523 * Process memory_failure work queued on the specified CPU. 1524 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1525 */ 1526 void memory_failure_queue_kick(int cpu) 1527 { 1528 struct memory_failure_cpu *mf_cpu; 1529 1530 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1531 cancel_work_sync(&mf_cpu->work); 1532 memory_failure_work_func(&mf_cpu->work); 1533 } 1534 1535 static int __init memory_failure_init(void) 1536 { 1537 struct memory_failure_cpu *mf_cpu; 1538 int cpu; 1539 1540 for_each_possible_cpu(cpu) { 1541 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1542 spin_lock_init(&mf_cpu->lock); 1543 INIT_KFIFO(mf_cpu->fifo); 1544 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1545 } 1546 1547 return 0; 1548 } 1549 core_initcall(memory_failure_init); 1550 1551 #define unpoison_pr_info(fmt, pfn, rs) \ 1552 ({ \ 1553 if (__ratelimit(rs)) \ 1554 pr_info(fmt, pfn); \ 1555 }) 1556 1557 /** 1558 * unpoison_memory - Unpoison a previously poisoned page 1559 * @pfn: Page number of the to be unpoisoned page 1560 * 1561 * Software-unpoison a page that has been poisoned by 1562 * memory_failure() earlier. 1563 * 1564 * This is only done on the software-level, so it only works 1565 * for linux injected failures, not real hardware failures 1566 * 1567 * Returns 0 for success, otherwise -errno. 1568 */ 1569 int unpoison_memory(unsigned long pfn) 1570 { 1571 struct page *page; 1572 struct page *p; 1573 int freeit = 0; 1574 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1575 DEFAULT_RATELIMIT_BURST); 1576 1577 if (!pfn_valid(pfn)) 1578 return -ENXIO; 1579 1580 p = pfn_to_page(pfn); 1581 page = compound_head(p); 1582 1583 if (!PageHWPoison(p)) { 1584 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1585 pfn, &unpoison_rs); 1586 return 0; 1587 } 1588 1589 if (page_count(page) > 1) { 1590 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1591 pfn, &unpoison_rs); 1592 return 0; 1593 } 1594 1595 if (page_mapped(page)) { 1596 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1597 pfn, &unpoison_rs); 1598 return 0; 1599 } 1600 1601 if (page_mapping(page)) { 1602 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1603 pfn, &unpoison_rs); 1604 return 0; 1605 } 1606 1607 /* 1608 * unpoison_memory() can encounter thp only when the thp is being 1609 * worked by memory_failure() and the page lock is not held yet. 1610 * In such case, we yield to memory_failure() and make unpoison fail. 1611 */ 1612 if (!PageHuge(page) && PageTransHuge(page)) { 1613 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1614 pfn, &unpoison_rs); 1615 return 0; 1616 } 1617 1618 if (!get_hwpoison_page(p)) { 1619 if (TestClearPageHWPoison(p)) 1620 num_poisoned_pages_dec(); 1621 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1622 pfn, &unpoison_rs); 1623 return 0; 1624 } 1625 1626 lock_page(page); 1627 /* 1628 * This test is racy because PG_hwpoison is set outside of page lock. 1629 * That's acceptable because that won't trigger kernel panic. Instead, 1630 * the PG_hwpoison page will be caught and isolated on the entrance to 1631 * the free buddy page pool. 1632 */ 1633 if (TestClearPageHWPoison(page)) { 1634 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1635 pfn, &unpoison_rs); 1636 num_poisoned_pages_dec(); 1637 freeit = 1; 1638 } 1639 unlock_page(page); 1640 1641 put_hwpoison_page(page); 1642 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1643 put_hwpoison_page(page); 1644 1645 return 0; 1646 } 1647 EXPORT_SYMBOL(unpoison_memory); 1648 1649 static struct page *new_page(struct page *p, unsigned long private) 1650 { 1651 int nid = page_to_nid(p); 1652 1653 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1654 } 1655 1656 /* 1657 * Safely get reference count of an arbitrary page. 1658 * Returns 0 for a free page, -EIO for a zero refcount page 1659 * that is not free, and 1 for any other page type. 1660 * For 1 the page is returned with increased page count, otherwise not. 1661 */ 1662 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1663 { 1664 int ret; 1665 1666 if (flags & MF_COUNT_INCREASED) 1667 return 1; 1668 1669 /* 1670 * When the target page is a free hugepage, just remove it 1671 * from free hugepage list. 1672 */ 1673 if (!get_hwpoison_page(p)) { 1674 if (PageHuge(p)) { 1675 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1676 ret = 0; 1677 } else if (is_free_buddy_page(p)) { 1678 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1679 ret = 0; 1680 } else { 1681 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1682 __func__, pfn, p->flags); 1683 ret = -EIO; 1684 } 1685 } else { 1686 /* Not a free page */ 1687 ret = 1; 1688 } 1689 return ret; 1690 } 1691 1692 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1693 { 1694 int ret = __get_any_page(page, pfn, flags); 1695 1696 if (ret == 1 && !PageHuge(page) && 1697 !PageLRU(page) && !__PageMovable(page)) { 1698 /* 1699 * Try to free it. 1700 */ 1701 put_hwpoison_page(page); 1702 shake_page(page, 1); 1703 1704 /* 1705 * Did it turn free? 1706 */ 1707 ret = __get_any_page(page, pfn, 0); 1708 if (ret == 1 && !PageLRU(page)) { 1709 /* Drop page reference which is from __get_any_page() */ 1710 put_hwpoison_page(page); 1711 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1712 pfn, page->flags, &page->flags); 1713 return -EIO; 1714 } 1715 } 1716 return ret; 1717 } 1718 1719 static int soft_offline_huge_page(struct page *page, int flags) 1720 { 1721 int ret; 1722 unsigned long pfn = page_to_pfn(page); 1723 struct page *hpage = compound_head(page); 1724 LIST_HEAD(pagelist); 1725 1726 /* 1727 * This double-check of PageHWPoison is to avoid the race with 1728 * memory_failure(). See also comment in __soft_offline_page(). 1729 */ 1730 lock_page(hpage); 1731 if (PageHWPoison(hpage)) { 1732 unlock_page(hpage); 1733 put_hwpoison_page(hpage); 1734 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1735 return -EBUSY; 1736 } 1737 unlock_page(hpage); 1738 1739 ret = isolate_huge_page(hpage, &pagelist); 1740 /* 1741 * get_any_page() and isolate_huge_page() takes a refcount each, 1742 * so need to drop one here. 1743 */ 1744 put_hwpoison_page(hpage); 1745 if (!ret) { 1746 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1747 return -EBUSY; 1748 } 1749 1750 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1751 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1752 if (ret) { 1753 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1754 pfn, ret, page->flags, &page->flags); 1755 if (!list_empty(&pagelist)) 1756 putback_movable_pages(&pagelist); 1757 if (ret > 0) 1758 ret = -EIO; 1759 } else { 1760 /* 1761 * We set PG_hwpoison only when the migration source hugepage 1762 * was successfully dissolved, because otherwise hwpoisoned 1763 * hugepage remains on free hugepage list, then userspace will 1764 * find it as SIGBUS by allocation failure. That's not expected 1765 * in soft-offlining. 1766 */ 1767 ret = dissolve_free_huge_page(page); 1768 if (!ret) { 1769 if (set_hwpoison_free_buddy_page(page)) 1770 num_poisoned_pages_inc(); 1771 else 1772 ret = -EBUSY; 1773 } 1774 } 1775 return ret; 1776 } 1777 1778 static int __soft_offline_page(struct page *page, int flags) 1779 { 1780 int ret; 1781 unsigned long pfn = page_to_pfn(page); 1782 1783 /* 1784 * Check PageHWPoison again inside page lock because PageHWPoison 1785 * is set by memory_failure() outside page lock. Note that 1786 * memory_failure() also double-checks PageHWPoison inside page lock, 1787 * so there's no race between soft_offline_page() and memory_failure(). 1788 */ 1789 lock_page(page); 1790 wait_on_page_writeback(page); 1791 if (PageHWPoison(page)) { 1792 unlock_page(page); 1793 put_hwpoison_page(page); 1794 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1795 return -EBUSY; 1796 } 1797 /* 1798 * Try to invalidate first. This should work for 1799 * non dirty unmapped page cache pages. 1800 */ 1801 ret = invalidate_inode_page(page); 1802 unlock_page(page); 1803 /* 1804 * RED-PEN would be better to keep it isolated here, but we 1805 * would need to fix isolation locking first. 1806 */ 1807 if (ret == 1) { 1808 put_hwpoison_page(page); 1809 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1810 SetPageHWPoison(page); 1811 num_poisoned_pages_inc(); 1812 return 0; 1813 } 1814 1815 /* 1816 * Simple invalidation didn't work. 1817 * Try to migrate to a new page instead. migrate.c 1818 * handles a large number of cases for us. 1819 */ 1820 if (PageLRU(page)) 1821 ret = isolate_lru_page(page); 1822 else 1823 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1824 /* 1825 * Drop page reference which is came from get_any_page() 1826 * successful isolate_lru_page() already took another one. 1827 */ 1828 put_hwpoison_page(page); 1829 if (!ret) { 1830 LIST_HEAD(pagelist); 1831 /* 1832 * After isolated lru page, the PageLRU will be cleared, 1833 * so use !__PageMovable instead for LRU page's mapping 1834 * cannot have PAGE_MAPPING_MOVABLE. 1835 */ 1836 if (!__PageMovable(page)) 1837 inc_node_page_state(page, NR_ISOLATED_ANON + 1838 page_is_file_lru(page)); 1839 list_add(&page->lru, &pagelist); 1840 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1841 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1842 if (ret) { 1843 if (!list_empty(&pagelist)) 1844 putback_movable_pages(&pagelist); 1845 1846 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1847 pfn, ret, page->flags, &page->flags); 1848 if (ret > 0) 1849 ret = -EIO; 1850 } 1851 } else { 1852 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1853 pfn, ret, page_count(page), page->flags, &page->flags); 1854 } 1855 return ret; 1856 } 1857 1858 static int soft_offline_in_use_page(struct page *page, int flags) 1859 { 1860 int ret; 1861 int mt; 1862 struct page *hpage = compound_head(page); 1863 1864 if (!PageHuge(page) && PageTransHuge(hpage)) { 1865 lock_page(page); 1866 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1867 unlock_page(page); 1868 if (!PageAnon(page)) 1869 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1870 else 1871 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1872 put_hwpoison_page(page); 1873 return -EBUSY; 1874 } 1875 unlock_page(page); 1876 } 1877 1878 /* 1879 * Setting MIGRATE_ISOLATE here ensures that the page will be linked 1880 * to free list immediately (not via pcplist) when released after 1881 * successful page migration. Otherwise we can't guarantee that the 1882 * page is really free after put_page() returns, so 1883 * set_hwpoison_free_buddy_page() highly likely fails. 1884 */ 1885 mt = get_pageblock_migratetype(page); 1886 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 1887 if (PageHuge(page)) 1888 ret = soft_offline_huge_page(page, flags); 1889 else 1890 ret = __soft_offline_page(page, flags); 1891 set_pageblock_migratetype(page, mt); 1892 return ret; 1893 } 1894 1895 static int soft_offline_free_page(struct page *page) 1896 { 1897 int rc = dissolve_free_huge_page(page); 1898 1899 if (!rc) { 1900 if (set_hwpoison_free_buddy_page(page)) 1901 num_poisoned_pages_inc(); 1902 else 1903 rc = -EBUSY; 1904 } 1905 return rc; 1906 } 1907 1908 /** 1909 * soft_offline_page - Soft offline a page. 1910 * @pfn: pfn to soft-offline 1911 * @flags: flags. Same as memory_failure(). 1912 * 1913 * Returns 0 on success, otherwise negated errno. 1914 * 1915 * Soft offline a page, by migration or invalidation, 1916 * without killing anything. This is for the case when 1917 * a page is not corrupted yet (so it's still valid to access), 1918 * but has had a number of corrected errors and is better taken 1919 * out. 1920 * 1921 * The actual policy on when to do that is maintained by 1922 * user space. 1923 * 1924 * This should never impact any application or cause data loss, 1925 * however it might take some time. 1926 * 1927 * This is not a 100% solution for all memory, but tries to be 1928 * ``good enough'' for the majority of memory. 1929 */ 1930 int soft_offline_page(unsigned long pfn, int flags) 1931 { 1932 int ret; 1933 struct page *page; 1934 1935 if (!pfn_valid(pfn)) 1936 return -ENXIO; 1937 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 1938 page = pfn_to_online_page(pfn); 1939 if (!page) 1940 return -EIO; 1941 1942 if (PageHWPoison(page)) { 1943 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1944 if (flags & MF_COUNT_INCREASED) 1945 put_hwpoison_page(page); 1946 return -EBUSY; 1947 } 1948 1949 get_online_mems(); 1950 ret = get_any_page(page, pfn, flags); 1951 put_online_mems(); 1952 1953 if (ret > 0) 1954 ret = soft_offline_in_use_page(page, flags); 1955 else if (ret == 0) 1956 ret = soft_offline_free_page(page); 1957 1958 return ret; 1959 } 1960