xref: /openbmc/linux/mm/memory-failure.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	struct siginfo si;
185 	int ret;
186 
187 	pr_err("MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
188 	       pfn, t->comm, t->pid);
189 	si.si_signo = SIGBUS;
190 	si.si_errno = 0;
191 	si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 	si.si_trapno = trapno;
194 #endif
195 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196 
197 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 		si.si_code = BUS_MCEERR_AR;
199 		ret = force_sig_info(SIGBUS, &si, current);
200 	} else {
201 		/*
202 		 * Don't use force here, it's convenient if the signal
203 		 * can be temporarily blocked.
204 		 * This could cause a loop when the user sets SIGBUS
205 		 * to SIG_IGN, but hopefully no one will do that?
206 		 */
207 		si.si_code = BUS_MCEERR_AO;
208 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209 	}
210 	if (ret < 0)
211 		pr_info("MCE: Error sending signal to %s:%d: %d\n",
212 			t->comm, t->pid, ret);
213 	return ret;
214 }
215 
216 /*
217  * When a unknown page type is encountered drain as many buffers as possible
218  * in the hope to turn the page into a LRU or free page, which we can handle.
219  */
220 void shake_page(struct page *p, int access)
221 {
222 	if (!PageSlab(p)) {
223 		lru_add_drain_all();
224 		if (PageLRU(p))
225 			return;
226 		drain_all_pages(page_zone(p));
227 		if (PageLRU(p) || is_free_buddy_page(p))
228 			return;
229 	}
230 
231 	/*
232 	 * Only call shrink_node_slabs here (which would also shrink
233 	 * other caches) if access is not potentially fatal.
234 	 */
235 	if (access)
236 		drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239 
240 /*
241  * Kill all processes that have a poisoned page mapped and then isolate
242  * the page.
243  *
244  * General strategy:
245  * Find all processes having the page mapped and kill them.
246  * But we keep a page reference around so that the page is not
247  * actually freed yet.
248  * Then stash the page away
249  *
250  * There's no convenient way to get back to mapped processes
251  * from the VMAs. So do a brute-force search over all
252  * running processes.
253  *
254  * Remember that machine checks are not common (or rather
255  * if they are common you have other problems), so this shouldn't
256  * be a performance issue.
257  *
258  * Also there are some races possible while we get from the
259  * error detection to actually handle it.
260  */
261 
262 struct to_kill {
263 	struct list_head nd;
264 	struct task_struct *tsk;
265 	unsigned long addr;
266 	char addr_valid;
267 };
268 
269 /*
270  * Failure handling: if we can't find or can't kill a process there's
271  * not much we can do.	We just print a message and ignore otherwise.
272  */
273 
274 /*
275  * Schedule a process for later kill.
276  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277  * TBD would GFP_NOIO be enough?
278  */
279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 		       struct vm_area_struct *vma,
281 		       struct list_head *to_kill,
282 		       struct to_kill **tkc)
283 {
284 	struct to_kill *tk;
285 
286 	if (*tkc) {
287 		tk = *tkc;
288 		*tkc = NULL;
289 	} else {
290 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 		if (!tk) {
292 			pr_err("MCE: Out of memory while machine check handling\n");
293 			return;
294 		}
295 	}
296 	tk->addr = page_address_in_vma(p, vma);
297 	tk->addr_valid = 1;
298 
299 	/*
300 	 * In theory we don't have to kill when the page was
301 	 * munmaped. But it could be also a mremap. Since that's
302 	 * likely very rare kill anyways just out of paranoia, but use
303 	 * a SIGKILL because the error is not contained anymore.
304 	 */
305 	if (tk->addr == -EFAULT) {
306 		pr_info("MCE: Unable to find user space address %lx in %s\n",
307 			page_to_pfn(p), tsk->comm);
308 		tk->addr_valid = 0;
309 	}
310 	get_task_struct(tsk);
311 	tk->tsk = tsk;
312 	list_add_tail(&tk->nd, to_kill);
313 }
314 
315 /*
316  * Kill the processes that have been collected earlier.
317  *
318  * Only do anything when DOIT is set, otherwise just free the list
319  * (this is used for clean pages which do not need killing)
320  * Also when FAIL is set do a force kill because something went
321  * wrong earlier.
322  */
323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 			  int fail, struct page *page, unsigned long pfn,
325 			  int flags)
326 {
327 	struct to_kill *tk, *next;
328 
329 	list_for_each_entry_safe (tk, next, to_kill, nd) {
330 		if (forcekill) {
331 			/*
332 			 * In case something went wrong with munmapping
333 			 * make sure the process doesn't catch the
334 			 * signal and then access the memory. Just kill it.
335 			 */
336 			if (fail || tk->addr_valid == 0) {
337 				pr_err("MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 				       pfn, tk->tsk->comm, tk->tsk->pid);
339 				force_sig(SIGKILL, tk->tsk);
340 			}
341 
342 			/*
343 			 * In theory the process could have mapped
344 			 * something else on the address in-between. We could
345 			 * check for that, but we need to tell the
346 			 * process anyways.
347 			 */
348 			else if (kill_proc(tk->tsk, tk->addr, trapno,
349 					      pfn, page, flags) < 0)
350 				pr_err("MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 				       pfn, tk->tsk->comm, tk->tsk->pid);
352 		}
353 		put_task_struct(tk->tsk);
354 		kfree(tk);
355 	}
356 }
357 
358 /*
359  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360  * on behalf of the thread group. Return task_struct of the (first found)
361  * dedicated thread if found, and return NULL otherwise.
362  *
363  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364  * have to call rcu_read_lock/unlock() in this function.
365  */
366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
367 {
368 	struct task_struct *t;
369 
370 	for_each_thread(tsk, t)
371 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 			return t;
373 	return NULL;
374 }
375 
376 /*
377  * Determine whether a given process is "early kill" process which expects
378  * to be signaled when some page under the process is hwpoisoned.
379  * Return task_struct of the dedicated thread (main thread unless explicitly
380  * specified) if the process is "early kill," and otherwise returns NULL.
381  */
382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 					   int force_early)
384 {
385 	struct task_struct *t;
386 	if (!tsk->mm)
387 		return NULL;
388 	if (force_early)
389 		return tsk;
390 	t = find_early_kill_thread(tsk);
391 	if (t)
392 		return t;
393 	if (sysctl_memory_failure_early_kill)
394 		return tsk;
395 	return NULL;
396 }
397 
398 /*
399  * Collect processes when the error hit an anonymous page.
400  */
401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 			      struct to_kill **tkc, int force_early)
403 {
404 	struct vm_area_struct *vma;
405 	struct task_struct *tsk;
406 	struct anon_vma *av;
407 	pgoff_t pgoff;
408 
409 	av = page_lock_anon_vma_read(page);
410 	if (av == NULL)	/* Not actually mapped anymore */
411 		return;
412 
413 	pgoff = page_to_pgoff(page);
414 	read_lock(&tasklist_lock);
415 	for_each_process (tsk) {
416 		struct anon_vma_chain *vmac;
417 		struct task_struct *t = task_early_kill(tsk, force_early);
418 
419 		if (!t)
420 			continue;
421 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 					       pgoff, pgoff) {
423 			vma = vmac->vma;
424 			if (!page_mapped_in_vma(page, vma))
425 				continue;
426 			if (vma->vm_mm == t->mm)
427 				add_to_kill(t, page, vma, to_kill, tkc);
428 		}
429 	}
430 	read_unlock(&tasklist_lock);
431 	page_unlock_anon_vma_read(av);
432 }
433 
434 /*
435  * Collect processes when the error hit a file mapped page.
436  */
437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 			      struct to_kill **tkc, int force_early)
439 {
440 	struct vm_area_struct *vma;
441 	struct task_struct *tsk;
442 	struct address_space *mapping = page->mapping;
443 
444 	i_mmap_lock_read(mapping);
445 	read_lock(&tasklist_lock);
446 	for_each_process(tsk) {
447 		pgoff_t pgoff = page_to_pgoff(page);
448 		struct task_struct *t = task_early_kill(tsk, force_early);
449 
450 		if (!t)
451 			continue;
452 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 				      pgoff) {
454 			/*
455 			 * Send early kill signal to tasks where a vma covers
456 			 * the page but the corrupted page is not necessarily
457 			 * mapped it in its pte.
458 			 * Assume applications who requested early kill want
459 			 * to be informed of all such data corruptions.
460 			 */
461 			if (vma->vm_mm == t->mm)
462 				add_to_kill(t, page, vma, to_kill, tkc);
463 		}
464 	}
465 	read_unlock(&tasklist_lock);
466 	i_mmap_unlock_read(mapping);
467 }
468 
469 /*
470  * Collect the processes who have the corrupted page mapped to kill.
471  * This is done in two steps for locking reasons.
472  * First preallocate one tokill structure outside the spin locks,
473  * so that we can kill at least one process reasonably reliable.
474  */
475 static void collect_procs(struct page *page, struct list_head *tokill,
476 				int force_early)
477 {
478 	struct to_kill *tk;
479 
480 	if (!page->mapping)
481 		return;
482 
483 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 	if (!tk)
485 		return;
486 	if (PageAnon(page))
487 		collect_procs_anon(page, tokill, &tk, force_early);
488 	else
489 		collect_procs_file(page, tokill, &tk, force_early);
490 	kfree(tk);
491 }
492 
493 static const char *action_name[] = {
494 	[MF_IGNORED] = "Ignored",
495 	[MF_FAILED] = "Failed",
496 	[MF_DELAYED] = "Delayed",
497 	[MF_RECOVERED] = "Recovered",
498 };
499 
500 static const char * const action_page_types[] = {
501 	[MF_MSG_KERNEL]			= "reserved kernel page",
502 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
503 	[MF_MSG_SLAB]			= "kernel slab page",
504 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
505 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
506 	[MF_MSG_HUGE]			= "huge page",
507 	[MF_MSG_FREE_HUGE]		= "free huge page",
508 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
509 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
510 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
511 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
512 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
513 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
514 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
515 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
516 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
517 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
518 	[MF_MSG_BUDDY]			= "free buddy page",
519 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
520 	[MF_MSG_UNKNOWN]		= "unknown page",
521 };
522 
523 /*
524  * XXX: It is possible that a page is isolated from LRU cache,
525  * and then kept in swap cache or failed to remove from page cache.
526  * The page count will stop it from being freed by unpoison.
527  * Stress tests should be aware of this memory leak problem.
528  */
529 static int delete_from_lru_cache(struct page *p)
530 {
531 	if (!isolate_lru_page(p)) {
532 		/*
533 		 * Clear sensible page flags, so that the buddy system won't
534 		 * complain when the page is unpoison-and-freed.
535 		 */
536 		ClearPageActive(p);
537 		ClearPageUnevictable(p);
538 		/*
539 		 * drop the page count elevated by isolate_lru_page()
540 		 */
541 		put_page(p);
542 		return 0;
543 	}
544 	return -EIO;
545 }
546 
547 /*
548  * Error hit kernel page.
549  * Do nothing, try to be lucky and not touch this instead. For a few cases we
550  * could be more sophisticated.
551  */
552 static int me_kernel(struct page *p, unsigned long pfn)
553 {
554 	return MF_IGNORED;
555 }
556 
557 /*
558  * Page in unknown state. Do nothing.
559  */
560 static int me_unknown(struct page *p, unsigned long pfn)
561 {
562 	pr_err("MCE %#lx: Unknown page state\n", pfn);
563 	return MF_FAILED;
564 }
565 
566 /*
567  * Clean (or cleaned) page cache page.
568  */
569 static int me_pagecache_clean(struct page *p, unsigned long pfn)
570 {
571 	int err;
572 	int ret = MF_FAILED;
573 	struct address_space *mapping;
574 
575 	delete_from_lru_cache(p);
576 
577 	/*
578 	 * For anonymous pages we're done the only reference left
579 	 * should be the one m_f() holds.
580 	 */
581 	if (PageAnon(p))
582 		return MF_RECOVERED;
583 
584 	/*
585 	 * Now truncate the page in the page cache. This is really
586 	 * more like a "temporary hole punch"
587 	 * Don't do this for block devices when someone else
588 	 * has a reference, because it could be file system metadata
589 	 * and that's not safe to truncate.
590 	 */
591 	mapping = page_mapping(p);
592 	if (!mapping) {
593 		/*
594 		 * Page has been teared down in the meanwhile
595 		 */
596 		return MF_FAILED;
597 	}
598 
599 	/*
600 	 * Truncation is a bit tricky. Enable it per file system for now.
601 	 *
602 	 * Open: to take i_mutex or not for this? Right now we don't.
603 	 */
604 	if (mapping->a_ops->error_remove_page) {
605 		err = mapping->a_ops->error_remove_page(mapping, p);
606 		if (err != 0) {
607 			pr_info("MCE %#lx: Failed to punch page: %d\n",
608 				pfn, err);
609 		} else if (page_has_private(p) &&
610 				!try_to_release_page(p, GFP_NOIO)) {
611 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
612 		} else {
613 			ret = MF_RECOVERED;
614 		}
615 	} else {
616 		/*
617 		 * If the file system doesn't support it just invalidate
618 		 * This fails on dirty or anything with private pages
619 		 */
620 		if (invalidate_inode_page(p))
621 			ret = MF_RECOVERED;
622 		else
623 			pr_info("MCE %#lx: Failed to invalidate\n", pfn);
624 	}
625 	return ret;
626 }
627 
628 /*
629  * Dirty pagecache page
630  * Issues: when the error hit a hole page the error is not properly
631  * propagated.
632  */
633 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
634 {
635 	struct address_space *mapping = page_mapping(p);
636 
637 	SetPageError(p);
638 	/* TBD: print more information about the file. */
639 	if (mapping) {
640 		/*
641 		 * IO error will be reported by write(), fsync(), etc.
642 		 * who check the mapping.
643 		 * This way the application knows that something went
644 		 * wrong with its dirty file data.
645 		 *
646 		 * There's one open issue:
647 		 *
648 		 * The EIO will be only reported on the next IO
649 		 * operation and then cleared through the IO map.
650 		 * Normally Linux has two mechanisms to pass IO error
651 		 * first through the AS_EIO flag in the address space
652 		 * and then through the PageError flag in the page.
653 		 * Since we drop pages on memory failure handling the
654 		 * only mechanism open to use is through AS_AIO.
655 		 *
656 		 * This has the disadvantage that it gets cleared on
657 		 * the first operation that returns an error, while
658 		 * the PageError bit is more sticky and only cleared
659 		 * when the page is reread or dropped.  If an
660 		 * application assumes it will always get error on
661 		 * fsync, but does other operations on the fd before
662 		 * and the page is dropped between then the error
663 		 * will not be properly reported.
664 		 *
665 		 * This can already happen even without hwpoisoned
666 		 * pages: first on metadata IO errors (which only
667 		 * report through AS_EIO) or when the page is dropped
668 		 * at the wrong time.
669 		 *
670 		 * So right now we assume that the application DTRT on
671 		 * the first EIO, but we're not worse than other parts
672 		 * of the kernel.
673 		 */
674 		mapping_set_error(mapping, EIO);
675 	}
676 
677 	return me_pagecache_clean(p, pfn);
678 }
679 
680 /*
681  * Clean and dirty swap cache.
682  *
683  * Dirty swap cache page is tricky to handle. The page could live both in page
684  * cache and swap cache(ie. page is freshly swapped in). So it could be
685  * referenced concurrently by 2 types of PTEs:
686  * normal PTEs and swap PTEs. We try to handle them consistently by calling
687  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
688  * and then
689  *      - clear dirty bit to prevent IO
690  *      - remove from LRU
691  *      - but keep in the swap cache, so that when we return to it on
692  *        a later page fault, we know the application is accessing
693  *        corrupted data and shall be killed (we installed simple
694  *        interception code in do_swap_page to catch it).
695  *
696  * Clean swap cache pages can be directly isolated. A later page fault will
697  * bring in the known good data from disk.
698  */
699 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
700 {
701 	ClearPageDirty(p);
702 	/* Trigger EIO in shmem: */
703 	ClearPageUptodate(p);
704 
705 	if (!delete_from_lru_cache(p))
706 		return MF_DELAYED;
707 	else
708 		return MF_FAILED;
709 }
710 
711 static int me_swapcache_clean(struct page *p, unsigned long pfn)
712 {
713 	delete_from_swap_cache(p);
714 
715 	if (!delete_from_lru_cache(p))
716 		return MF_RECOVERED;
717 	else
718 		return MF_FAILED;
719 }
720 
721 /*
722  * Huge pages. Needs work.
723  * Issues:
724  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
725  *   To narrow down kill region to one page, we need to break up pmd.
726  */
727 static int me_huge_page(struct page *p, unsigned long pfn)
728 {
729 	int res = 0;
730 	struct page *hpage = compound_head(p);
731 
732 	if (!PageHuge(hpage))
733 		return MF_DELAYED;
734 
735 	/*
736 	 * We can safely recover from error on free or reserved (i.e.
737 	 * not in-use) hugepage by dequeuing it from freelist.
738 	 * To check whether a hugepage is in-use or not, we can't use
739 	 * page->lru because it can be used in other hugepage operations,
740 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
741 	 * So instead we use page_mapping() and PageAnon().
742 	 * We assume that this function is called with page lock held,
743 	 * so there is no race between isolation and mapping/unmapping.
744 	 */
745 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
746 		res = dequeue_hwpoisoned_huge_page(hpage);
747 		if (!res)
748 			return MF_RECOVERED;
749 	}
750 	return MF_DELAYED;
751 }
752 
753 /*
754  * Various page states we can handle.
755  *
756  * A page state is defined by its current page->flags bits.
757  * The table matches them in order and calls the right handler.
758  *
759  * This is quite tricky because we can access page at any time
760  * in its live cycle, so all accesses have to be extremely careful.
761  *
762  * This is not complete. More states could be added.
763  * For any missing state don't attempt recovery.
764  */
765 
766 #define dirty		(1UL << PG_dirty)
767 #define sc		(1UL << PG_swapcache)
768 #define unevict		(1UL << PG_unevictable)
769 #define mlock		(1UL << PG_mlocked)
770 #define writeback	(1UL << PG_writeback)
771 #define lru		(1UL << PG_lru)
772 #define swapbacked	(1UL << PG_swapbacked)
773 #define head		(1UL << PG_head)
774 #define slab		(1UL << PG_slab)
775 #define reserved	(1UL << PG_reserved)
776 
777 static struct page_state {
778 	unsigned long mask;
779 	unsigned long res;
780 	enum mf_action_page_type type;
781 	int (*action)(struct page *p, unsigned long pfn);
782 } error_states[] = {
783 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
784 	/*
785 	 * free pages are specially detected outside this table:
786 	 * PG_buddy pages only make a small fraction of all free pages.
787 	 */
788 
789 	/*
790 	 * Could in theory check if slab page is free or if we can drop
791 	 * currently unused objects without touching them. But just
792 	 * treat it as standard kernel for now.
793 	 */
794 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
795 
796 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
797 
798 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
799 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
800 
801 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
802 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
803 
804 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
805 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
806 
807 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
808 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
809 
810 	/*
811 	 * Catchall entry: must be at end.
812 	 */
813 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
814 };
815 
816 #undef dirty
817 #undef sc
818 #undef unevict
819 #undef mlock
820 #undef writeback
821 #undef lru
822 #undef swapbacked
823 #undef head
824 #undef slab
825 #undef reserved
826 
827 /*
828  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
829  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
830  */
831 static void action_result(unsigned long pfn, enum mf_action_page_type type,
832 			  enum mf_result result)
833 {
834 	trace_memory_failure_event(pfn, type, result);
835 
836 	pr_err("MCE %#lx: recovery action for %s: %s\n",
837 		pfn, action_page_types[type], action_name[result]);
838 }
839 
840 static int page_action(struct page_state *ps, struct page *p,
841 			unsigned long pfn)
842 {
843 	int result;
844 	int count;
845 
846 	result = ps->action(p, pfn);
847 
848 	count = page_count(p) - 1;
849 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
850 		count--;
851 	if (count != 0) {
852 		pr_err("MCE %#lx: %s still referenced by %d users\n",
853 		       pfn, action_page_types[ps->type], count);
854 		result = MF_FAILED;
855 	}
856 	action_result(pfn, ps->type, result);
857 
858 	/* Could do more checks here if page looks ok */
859 	/*
860 	 * Could adjust zone counters here to correct for the missing page.
861 	 */
862 
863 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
864 }
865 
866 /**
867  * get_hwpoison_page() - Get refcount for memory error handling:
868  * @page:	raw error page (hit by memory error)
869  *
870  * Return: return 0 if failed to grab the refcount, otherwise true (some
871  * non-zero value.)
872  */
873 int get_hwpoison_page(struct page *page)
874 {
875 	struct page *head = compound_head(page);
876 
877 	if (!PageHuge(head) && PageTransHuge(head)) {
878 		/*
879 		 * Non anonymous thp exists only in allocation/free time. We
880 		 * can't handle such a case correctly, so let's give it up.
881 		 * This should be better than triggering BUG_ON when kernel
882 		 * tries to touch the "partially handled" page.
883 		 */
884 		if (!PageAnon(head)) {
885 			pr_err("MCE: %#lx: non anonymous thp\n",
886 				page_to_pfn(page));
887 			return 0;
888 		}
889 	}
890 
891 	return get_page_unless_zero(head);
892 }
893 EXPORT_SYMBOL_GPL(get_hwpoison_page);
894 
895 /*
896  * Do all that is necessary to remove user space mappings. Unmap
897  * the pages and send SIGBUS to the processes if the data was dirty.
898  */
899 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
900 				  int trapno, int flags, struct page **hpagep)
901 {
902 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
903 	struct address_space *mapping;
904 	LIST_HEAD(tokill);
905 	int ret;
906 	int kill = 1, forcekill;
907 	struct page *hpage = *hpagep;
908 
909 	/*
910 	 * Here we are interested only in user-mapped pages, so skip any
911 	 * other types of pages.
912 	 */
913 	if (PageReserved(p) || PageSlab(p))
914 		return SWAP_SUCCESS;
915 	if (!(PageLRU(hpage) || PageHuge(p)))
916 		return SWAP_SUCCESS;
917 
918 	/*
919 	 * This check implies we don't kill processes if their pages
920 	 * are in the swap cache early. Those are always late kills.
921 	 */
922 	if (!page_mapped(hpage))
923 		return SWAP_SUCCESS;
924 
925 	if (PageKsm(p)) {
926 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
927 		return SWAP_FAIL;
928 	}
929 
930 	if (PageSwapCache(p)) {
931 		pr_err("MCE %#lx: keeping poisoned page in swap cache\n", pfn);
932 		ttu |= TTU_IGNORE_HWPOISON;
933 	}
934 
935 	/*
936 	 * Propagate the dirty bit from PTEs to struct page first, because we
937 	 * need this to decide if we should kill or just drop the page.
938 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
939 	 * be called inside page lock (it's recommended but not enforced).
940 	 */
941 	mapping = page_mapping(hpage);
942 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
943 	    mapping_cap_writeback_dirty(mapping)) {
944 		if (page_mkclean(hpage)) {
945 			SetPageDirty(hpage);
946 		} else {
947 			kill = 0;
948 			ttu |= TTU_IGNORE_HWPOISON;
949 			pr_info("MCE %#lx: corrupted page was clean: dropped without side effects\n",
950 				pfn);
951 		}
952 	}
953 
954 	/*
955 	 * First collect all the processes that have the page
956 	 * mapped in dirty form.  This has to be done before try_to_unmap,
957 	 * because ttu takes the rmap data structures down.
958 	 *
959 	 * Error handling: We ignore errors here because
960 	 * there's nothing that can be done.
961 	 */
962 	if (kill)
963 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
964 
965 	ret = try_to_unmap(hpage, ttu);
966 	if (ret != SWAP_SUCCESS)
967 		pr_err("MCE %#lx: failed to unmap page (mapcount=%d)\n",
968 		       pfn, page_mapcount(hpage));
969 
970 	/*
971 	 * Now that the dirty bit has been propagated to the
972 	 * struct page and all unmaps done we can decide if
973 	 * killing is needed or not.  Only kill when the page
974 	 * was dirty or the process is not restartable,
975 	 * otherwise the tokill list is merely
976 	 * freed.  When there was a problem unmapping earlier
977 	 * use a more force-full uncatchable kill to prevent
978 	 * any accesses to the poisoned memory.
979 	 */
980 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
981 	kill_procs(&tokill, forcekill, trapno,
982 		      ret != SWAP_SUCCESS, p, pfn, flags);
983 
984 	return ret;
985 }
986 
987 static void set_page_hwpoison_huge_page(struct page *hpage)
988 {
989 	int i;
990 	int nr_pages = 1 << compound_order(hpage);
991 	for (i = 0; i < nr_pages; i++)
992 		SetPageHWPoison(hpage + i);
993 }
994 
995 static void clear_page_hwpoison_huge_page(struct page *hpage)
996 {
997 	int i;
998 	int nr_pages = 1 << compound_order(hpage);
999 	for (i = 0; i < nr_pages; i++)
1000 		ClearPageHWPoison(hpage + i);
1001 }
1002 
1003 /**
1004  * memory_failure - Handle memory failure of a page.
1005  * @pfn: Page Number of the corrupted page
1006  * @trapno: Trap number reported in the signal to user space.
1007  * @flags: fine tune action taken
1008  *
1009  * This function is called by the low level machine check code
1010  * of an architecture when it detects hardware memory corruption
1011  * of a page. It tries its best to recover, which includes
1012  * dropping pages, killing processes etc.
1013  *
1014  * The function is primarily of use for corruptions that
1015  * happen outside the current execution context (e.g. when
1016  * detected by a background scrubber)
1017  *
1018  * Must run in process context (e.g. a work queue) with interrupts
1019  * enabled and no spinlocks hold.
1020  */
1021 int memory_failure(unsigned long pfn, int trapno, int flags)
1022 {
1023 	struct page_state *ps;
1024 	struct page *p;
1025 	struct page *hpage;
1026 	struct page *orig_head;
1027 	int res;
1028 	unsigned int nr_pages;
1029 	unsigned long page_flags;
1030 
1031 	if (!sysctl_memory_failure_recovery)
1032 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1033 
1034 	if (!pfn_valid(pfn)) {
1035 		pr_err("MCE %#lx: memory outside kernel control\n", pfn);
1036 		return -ENXIO;
1037 	}
1038 
1039 	p = pfn_to_page(pfn);
1040 	orig_head = hpage = compound_head(p);
1041 	if (TestSetPageHWPoison(p)) {
1042 		pr_err("MCE %#lx: already hardware poisoned\n", pfn);
1043 		return 0;
1044 	}
1045 
1046 	/*
1047 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1048 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1049 	 * transparent hugepages, they are supposed to be split and error
1050 	 * measurement is done in normal page units.  So nr_pages should be one
1051 	 * in this case.
1052 	 */
1053 	if (PageHuge(p))
1054 		nr_pages = 1 << compound_order(hpage);
1055 	else /* normal page or thp */
1056 		nr_pages = 1;
1057 	num_poisoned_pages_add(nr_pages);
1058 
1059 	/*
1060 	 * We need/can do nothing about count=0 pages.
1061 	 * 1) it's a free page, and therefore in safe hand:
1062 	 *    prep_new_page() will be the gate keeper.
1063 	 * 2) it's a free hugepage, which is also safe:
1064 	 *    an affected hugepage will be dequeued from hugepage freelist,
1065 	 *    so there's no concern about reusing it ever after.
1066 	 * 3) it's part of a non-compound high order page.
1067 	 *    Implies some kernel user: cannot stop them from
1068 	 *    R/W the page; let's pray that the page has been
1069 	 *    used and will be freed some time later.
1070 	 * In fact it's dangerous to directly bump up page count from 0,
1071 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1072 	 */
1073 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1074 		if (is_free_buddy_page(p)) {
1075 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1076 			return 0;
1077 		} else if (PageHuge(hpage)) {
1078 			/*
1079 			 * Check "filter hit" and "race with other subpage."
1080 			 */
1081 			lock_page(hpage);
1082 			if (PageHWPoison(hpage)) {
1083 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1084 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1085 					num_poisoned_pages_sub(nr_pages);
1086 					unlock_page(hpage);
1087 					return 0;
1088 				}
1089 			}
1090 			set_page_hwpoison_huge_page(hpage);
1091 			res = dequeue_hwpoisoned_huge_page(hpage);
1092 			action_result(pfn, MF_MSG_FREE_HUGE,
1093 				      res ? MF_IGNORED : MF_DELAYED);
1094 			unlock_page(hpage);
1095 			return res;
1096 		} else {
1097 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1098 			return -EBUSY;
1099 		}
1100 	}
1101 
1102 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1103 		lock_page(hpage);
1104 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1105 			unlock_page(hpage);
1106 			if (!PageAnon(hpage))
1107 				pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1108 			else
1109 				pr_err("MCE: %#lx: thp split failed\n", pfn);
1110 			if (TestClearPageHWPoison(p))
1111 				num_poisoned_pages_sub(nr_pages);
1112 			put_hwpoison_page(p);
1113 			return -EBUSY;
1114 		}
1115 		unlock_page(hpage);
1116 		get_hwpoison_page(p);
1117 		put_hwpoison_page(hpage);
1118 		VM_BUG_ON_PAGE(!page_count(p), p);
1119 		hpage = compound_head(p);
1120 	}
1121 
1122 	/*
1123 	 * We ignore non-LRU pages for good reasons.
1124 	 * - PG_locked is only well defined for LRU pages and a few others
1125 	 * - to avoid races with __SetPageLocked()
1126 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1127 	 * The check (unnecessarily) ignores LRU pages being isolated and
1128 	 * walked by the page reclaim code, however that's not a big loss.
1129 	 */
1130 	if (!PageHuge(p)) {
1131 		if (!PageLRU(p))
1132 			shake_page(p, 0);
1133 		if (!PageLRU(p)) {
1134 			/*
1135 			 * shake_page could have turned it free.
1136 			 */
1137 			if (is_free_buddy_page(p)) {
1138 				if (flags & MF_COUNT_INCREASED)
1139 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1140 				else
1141 					action_result(pfn, MF_MSG_BUDDY_2ND,
1142 						      MF_DELAYED);
1143 				return 0;
1144 			}
1145 		}
1146 	}
1147 
1148 	lock_page(hpage);
1149 
1150 	/*
1151 	 * The page could have changed compound pages during the locking.
1152 	 * If this happens just bail out.
1153 	 */
1154 	if (PageCompound(p) && compound_head(p) != orig_head) {
1155 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1156 		res = -EBUSY;
1157 		goto out;
1158 	}
1159 
1160 	/*
1161 	 * We use page flags to determine what action should be taken, but
1162 	 * the flags can be modified by the error containment action.  One
1163 	 * example is an mlocked page, where PG_mlocked is cleared by
1164 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1165 	 * correctly, we save a copy of the page flags at this time.
1166 	 */
1167 	page_flags = p->flags;
1168 
1169 	/*
1170 	 * unpoison always clear PG_hwpoison inside page lock
1171 	 */
1172 	if (!PageHWPoison(p)) {
1173 		pr_err("MCE %#lx: just unpoisoned\n", pfn);
1174 		num_poisoned_pages_sub(nr_pages);
1175 		unlock_page(hpage);
1176 		put_hwpoison_page(hpage);
1177 		return 0;
1178 	}
1179 	if (hwpoison_filter(p)) {
1180 		if (TestClearPageHWPoison(p))
1181 			num_poisoned_pages_sub(nr_pages);
1182 		unlock_page(hpage);
1183 		put_hwpoison_page(hpage);
1184 		return 0;
1185 	}
1186 
1187 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1188 		goto identify_page_state;
1189 
1190 	/*
1191 	 * For error on the tail page, we should set PG_hwpoison
1192 	 * on the head page to show that the hugepage is hwpoisoned
1193 	 */
1194 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1195 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1196 		unlock_page(hpage);
1197 		put_hwpoison_page(hpage);
1198 		return 0;
1199 	}
1200 	/*
1201 	 * Set PG_hwpoison on all pages in an error hugepage,
1202 	 * because containment is done in hugepage unit for now.
1203 	 * Since we have done TestSetPageHWPoison() for the head page with
1204 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1205 	 */
1206 	if (PageHuge(p))
1207 		set_page_hwpoison_huge_page(hpage);
1208 
1209 	/*
1210 	 * It's very difficult to mess with pages currently under IO
1211 	 * and in many cases impossible, so we just avoid it here.
1212 	 */
1213 	wait_on_page_writeback(p);
1214 
1215 	/*
1216 	 * Now take care of user space mappings.
1217 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1218 	 *
1219 	 * When the raw error page is thp tail page, hpage points to the raw
1220 	 * page after thp split.
1221 	 */
1222 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1223 	    != SWAP_SUCCESS) {
1224 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1225 		res = -EBUSY;
1226 		goto out;
1227 	}
1228 
1229 	/*
1230 	 * Torn down by someone else?
1231 	 */
1232 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1233 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1234 		res = -EBUSY;
1235 		goto out;
1236 	}
1237 
1238 identify_page_state:
1239 	res = -EBUSY;
1240 	/*
1241 	 * The first check uses the current page flags which may not have any
1242 	 * relevant information. The second check with the saved page flagss is
1243 	 * carried out only if the first check can't determine the page status.
1244 	 */
1245 	for (ps = error_states;; ps++)
1246 		if ((p->flags & ps->mask) == ps->res)
1247 			break;
1248 
1249 	page_flags |= (p->flags & (1UL << PG_dirty));
1250 
1251 	if (!ps->mask)
1252 		for (ps = error_states;; ps++)
1253 			if ((page_flags & ps->mask) == ps->res)
1254 				break;
1255 	res = page_action(ps, p, pfn);
1256 out:
1257 	unlock_page(hpage);
1258 	return res;
1259 }
1260 EXPORT_SYMBOL_GPL(memory_failure);
1261 
1262 #define MEMORY_FAILURE_FIFO_ORDER	4
1263 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1264 
1265 struct memory_failure_entry {
1266 	unsigned long pfn;
1267 	int trapno;
1268 	int flags;
1269 };
1270 
1271 struct memory_failure_cpu {
1272 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1273 		      MEMORY_FAILURE_FIFO_SIZE);
1274 	spinlock_t lock;
1275 	struct work_struct work;
1276 };
1277 
1278 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1279 
1280 /**
1281  * memory_failure_queue - Schedule handling memory failure of a page.
1282  * @pfn: Page Number of the corrupted page
1283  * @trapno: Trap number reported in the signal to user space.
1284  * @flags: Flags for memory failure handling
1285  *
1286  * This function is called by the low level hardware error handler
1287  * when it detects hardware memory corruption of a page. It schedules
1288  * the recovering of error page, including dropping pages, killing
1289  * processes etc.
1290  *
1291  * The function is primarily of use for corruptions that
1292  * happen outside the current execution context (e.g. when
1293  * detected by a background scrubber)
1294  *
1295  * Can run in IRQ context.
1296  */
1297 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1298 {
1299 	struct memory_failure_cpu *mf_cpu;
1300 	unsigned long proc_flags;
1301 	struct memory_failure_entry entry = {
1302 		.pfn =		pfn,
1303 		.trapno =	trapno,
1304 		.flags =	flags,
1305 	};
1306 
1307 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1308 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1309 	if (kfifo_put(&mf_cpu->fifo, entry))
1310 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1311 	else
1312 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1313 		       pfn);
1314 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1315 	put_cpu_var(memory_failure_cpu);
1316 }
1317 EXPORT_SYMBOL_GPL(memory_failure_queue);
1318 
1319 static void memory_failure_work_func(struct work_struct *work)
1320 {
1321 	struct memory_failure_cpu *mf_cpu;
1322 	struct memory_failure_entry entry = { 0, };
1323 	unsigned long proc_flags;
1324 	int gotten;
1325 
1326 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1327 	for (;;) {
1328 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1329 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1330 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1331 		if (!gotten)
1332 			break;
1333 		if (entry.flags & MF_SOFT_OFFLINE)
1334 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1335 		else
1336 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1337 	}
1338 }
1339 
1340 static int __init memory_failure_init(void)
1341 {
1342 	struct memory_failure_cpu *mf_cpu;
1343 	int cpu;
1344 
1345 	for_each_possible_cpu(cpu) {
1346 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1347 		spin_lock_init(&mf_cpu->lock);
1348 		INIT_KFIFO(mf_cpu->fifo);
1349 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1350 	}
1351 
1352 	return 0;
1353 }
1354 core_initcall(memory_failure_init);
1355 
1356 #define unpoison_pr_info(fmt, pfn, rs)			\
1357 ({							\
1358 	if (__ratelimit(rs))				\
1359 		pr_info(fmt, pfn);			\
1360 })
1361 
1362 /**
1363  * unpoison_memory - Unpoison a previously poisoned page
1364  * @pfn: Page number of the to be unpoisoned page
1365  *
1366  * Software-unpoison a page that has been poisoned by
1367  * memory_failure() earlier.
1368  *
1369  * This is only done on the software-level, so it only works
1370  * for linux injected failures, not real hardware failures
1371  *
1372  * Returns 0 for success, otherwise -errno.
1373  */
1374 int unpoison_memory(unsigned long pfn)
1375 {
1376 	struct page *page;
1377 	struct page *p;
1378 	int freeit = 0;
1379 	unsigned int nr_pages;
1380 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1381 					DEFAULT_RATELIMIT_BURST);
1382 
1383 	if (!pfn_valid(pfn))
1384 		return -ENXIO;
1385 
1386 	p = pfn_to_page(pfn);
1387 	page = compound_head(p);
1388 
1389 	if (!PageHWPoison(p)) {
1390 		unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1391 				 pfn, &unpoison_rs);
1392 		return 0;
1393 	}
1394 
1395 	if (page_count(page) > 1) {
1396 		unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1397 				 pfn, &unpoison_rs);
1398 		return 0;
1399 	}
1400 
1401 	if (page_mapped(page)) {
1402 		unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1403 				 pfn, &unpoison_rs);
1404 		return 0;
1405 	}
1406 
1407 	if (page_mapping(page)) {
1408 		unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1409 				 pfn, &unpoison_rs);
1410 		return 0;
1411 	}
1412 
1413 	/*
1414 	 * unpoison_memory() can encounter thp only when the thp is being
1415 	 * worked by memory_failure() and the page lock is not held yet.
1416 	 * In such case, we yield to memory_failure() and make unpoison fail.
1417 	 */
1418 	if (!PageHuge(page) && PageTransHuge(page)) {
1419 		unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1420 				 pfn, &unpoison_rs);
1421 		return 0;
1422 	}
1423 
1424 	nr_pages = 1 << compound_order(page);
1425 
1426 	if (!get_hwpoison_page(p)) {
1427 		/*
1428 		 * Since HWPoisoned hugepage should have non-zero refcount,
1429 		 * race between memory failure and unpoison seems to happen.
1430 		 * In such case unpoison fails and memory failure runs
1431 		 * to the end.
1432 		 */
1433 		if (PageHuge(page)) {
1434 			unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1435 					 pfn, &unpoison_rs);
1436 			return 0;
1437 		}
1438 		if (TestClearPageHWPoison(p))
1439 			num_poisoned_pages_dec();
1440 		unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1441 				 pfn, &unpoison_rs);
1442 		return 0;
1443 	}
1444 
1445 	lock_page(page);
1446 	/*
1447 	 * This test is racy because PG_hwpoison is set outside of page lock.
1448 	 * That's acceptable because that won't trigger kernel panic. Instead,
1449 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1450 	 * the free buddy page pool.
1451 	 */
1452 	if (TestClearPageHWPoison(page)) {
1453 		unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1454 				 pfn, &unpoison_rs);
1455 		num_poisoned_pages_sub(nr_pages);
1456 		freeit = 1;
1457 		if (PageHuge(page))
1458 			clear_page_hwpoison_huge_page(page);
1459 	}
1460 	unlock_page(page);
1461 
1462 	put_hwpoison_page(page);
1463 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1464 		put_hwpoison_page(page);
1465 
1466 	return 0;
1467 }
1468 EXPORT_SYMBOL(unpoison_memory);
1469 
1470 static struct page *new_page(struct page *p, unsigned long private, int **x)
1471 {
1472 	int nid = page_to_nid(p);
1473 	if (PageHuge(p))
1474 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1475 						   nid);
1476 	else
1477 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1478 }
1479 
1480 /*
1481  * Safely get reference count of an arbitrary page.
1482  * Returns 0 for a free page, -EIO for a zero refcount page
1483  * that is not free, and 1 for any other page type.
1484  * For 1 the page is returned with increased page count, otherwise not.
1485  */
1486 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1487 {
1488 	int ret;
1489 
1490 	if (flags & MF_COUNT_INCREASED)
1491 		return 1;
1492 
1493 	/*
1494 	 * When the target page is a free hugepage, just remove it
1495 	 * from free hugepage list.
1496 	 */
1497 	if (!get_hwpoison_page(p)) {
1498 		if (PageHuge(p)) {
1499 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1500 			ret = 0;
1501 		} else if (is_free_buddy_page(p)) {
1502 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1503 			ret = 0;
1504 		} else {
1505 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1506 				__func__, pfn, p->flags);
1507 			ret = -EIO;
1508 		}
1509 	} else {
1510 		/* Not a free page */
1511 		ret = 1;
1512 	}
1513 	return ret;
1514 }
1515 
1516 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1517 {
1518 	int ret = __get_any_page(page, pfn, flags);
1519 
1520 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1521 		/*
1522 		 * Try to free it.
1523 		 */
1524 		put_hwpoison_page(page);
1525 		shake_page(page, 1);
1526 
1527 		/*
1528 		 * Did it turn free?
1529 		 */
1530 		ret = __get_any_page(page, pfn, 0);
1531 		if (ret == 1 && !PageLRU(page)) {
1532 			/* Drop page reference which is from __get_any_page() */
1533 			put_hwpoison_page(page);
1534 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1535 				pfn, page->flags);
1536 			return -EIO;
1537 		}
1538 	}
1539 	return ret;
1540 }
1541 
1542 static int soft_offline_huge_page(struct page *page, int flags)
1543 {
1544 	int ret;
1545 	unsigned long pfn = page_to_pfn(page);
1546 	struct page *hpage = compound_head(page);
1547 	LIST_HEAD(pagelist);
1548 
1549 	/*
1550 	 * This double-check of PageHWPoison is to avoid the race with
1551 	 * memory_failure(). See also comment in __soft_offline_page().
1552 	 */
1553 	lock_page(hpage);
1554 	if (PageHWPoison(hpage)) {
1555 		unlock_page(hpage);
1556 		put_hwpoison_page(hpage);
1557 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1558 		return -EBUSY;
1559 	}
1560 	unlock_page(hpage);
1561 
1562 	ret = isolate_huge_page(hpage, &pagelist);
1563 	/*
1564 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1565 	 * so need to drop one here.
1566 	 */
1567 	put_hwpoison_page(hpage);
1568 	if (!ret) {
1569 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1570 		return -EBUSY;
1571 	}
1572 
1573 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1574 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1575 	if (ret) {
1576 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1577 			pfn, ret, page->flags);
1578 		/*
1579 		 * We know that soft_offline_huge_page() tries to migrate
1580 		 * only one hugepage pointed to by hpage, so we need not
1581 		 * run through the pagelist here.
1582 		 */
1583 		putback_active_hugepage(hpage);
1584 		if (ret > 0)
1585 			ret = -EIO;
1586 	} else {
1587 		/* overcommit hugetlb page will be freed to buddy */
1588 		if (PageHuge(page)) {
1589 			set_page_hwpoison_huge_page(hpage);
1590 			dequeue_hwpoisoned_huge_page(hpage);
1591 			num_poisoned_pages_add(1 << compound_order(hpage));
1592 		} else {
1593 			SetPageHWPoison(page);
1594 			num_poisoned_pages_inc();
1595 		}
1596 	}
1597 	return ret;
1598 }
1599 
1600 static int __soft_offline_page(struct page *page, int flags)
1601 {
1602 	int ret;
1603 	unsigned long pfn = page_to_pfn(page);
1604 
1605 	/*
1606 	 * Check PageHWPoison again inside page lock because PageHWPoison
1607 	 * is set by memory_failure() outside page lock. Note that
1608 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1609 	 * so there's no race between soft_offline_page() and memory_failure().
1610 	 */
1611 	lock_page(page);
1612 	wait_on_page_writeback(page);
1613 	if (PageHWPoison(page)) {
1614 		unlock_page(page);
1615 		put_hwpoison_page(page);
1616 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1617 		return -EBUSY;
1618 	}
1619 	/*
1620 	 * Try to invalidate first. This should work for
1621 	 * non dirty unmapped page cache pages.
1622 	 */
1623 	ret = invalidate_inode_page(page);
1624 	unlock_page(page);
1625 	/*
1626 	 * RED-PEN would be better to keep it isolated here, but we
1627 	 * would need to fix isolation locking first.
1628 	 */
1629 	if (ret == 1) {
1630 		put_hwpoison_page(page);
1631 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1632 		SetPageHWPoison(page);
1633 		num_poisoned_pages_inc();
1634 		return 0;
1635 	}
1636 
1637 	/*
1638 	 * Simple invalidation didn't work.
1639 	 * Try to migrate to a new page instead. migrate.c
1640 	 * handles a large number of cases for us.
1641 	 */
1642 	ret = isolate_lru_page(page);
1643 	/*
1644 	 * Drop page reference which is came from get_any_page()
1645 	 * successful isolate_lru_page() already took another one.
1646 	 */
1647 	put_hwpoison_page(page);
1648 	if (!ret) {
1649 		LIST_HEAD(pagelist);
1650 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1651 					page_is_file_cache(page));
1652 		list_add(&page->lru, &pagelist);
1653 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1654 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1655 		if (ret) {
1656 			if (!list_empty(&pagelist)) {
1657 				list_del(&page->lru);
1658 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1659 						page_is_file_cache(page));
1660 				putback_lru_page(page);
1661 			}
1662 
1663 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1664 				pfn, ret, page->flags);
1665 			if (ret > 0)
1666 				ret = -EIO;
1667 		}
1668 	} else {
1669 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1670 			pfn, ret, page_count(page), page->flags);
1671 	}
1672 	return ret;
1673 }
1674 
1675 static int soft_offline_in_use_page(struct page *page, int flags)
1676 {
1677 	int ret;
1678 	struct page *hpage = compound_head(page);
1679 
1680 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1681 		lock_page(hpage);
1682 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1683 			unlock_page(hpage);
1684 			if (!PageAnon(hpage))
1685 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1686 			else
1687 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1688 			put_hwpoison_page(hpage);
1689 			return -EBUSY;
1690 		}
1691 		unlock_page(hpage);
1692 		get_hwpoison_page(page);
1693 		put_hwpoison_page(hpage);
1694 	}
1695 
1696 	if (PageHuge(page))
1697 		ret = soft_offline_huge_page(page, flags);
1698 	else
1699 		ret = __soft_offline_page(page, flags);
1700 
1701 	return ret;
1702 }
1703 
1704 static void soft_offline_free_page(struct page *page)
1705 {
1706 	if (PageHuge(page)) {
1707 		struct page *hpage = compound_head(page);
1708 
1709 		set_page_hwpoison_huge_page(hpage);
1710 		if (!dequeue_hwpoisoned_huge_page(hpage))
1711 			num_poisoned_pages_add(1 << compound_order(hpage));
1712 	} else {
1713 		if (!TestSetPageHWPoison(page))
1714 			num_poisoned_pages_inc();
1715 	}
1716 }
1717 
1718 /**
1719  * soft_offline_page - Soft offline a page.
1720  * @page: page to offline
1721  * @flags: flags. Same as memory_failure().
1722  *
1723  * Returns 0 on success, otherwise negated errno.
1724  *
1725  * Soft offline a page, by migration or invalidation,
1726  * without killing anything. This is for the case when
1727  * a page is not corrupted yet (so it's still valid to access),
1728  * but has had a number of corrected errors and is better taken
1729  * out.
1730  *
1731  * The actual policy on when to do that is maintained by
1732  * user space.
1733  *
1734  * This should never impact any application or cause data loss,
1735  * however it might take some time.
1736  *
1737  * This is not a 100% solution for all memory, but tries to be
1738  * ``good enough'' for the majority of memory.
1739  */
1740 int soft_offline_page(struct page *page, int flags)
1741 {
1742 	int ret;
1743 	unsigned long pfn = page_to_pfn(page);
1744 
1745 	if (PageHWPoison(page)) {
1746 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1747 		if (flags & MF_COUNT_INCREASED)
1748 			put_hwpoison_page(page);
1749 		return -EBUSY;
1750 	}
1751 
1752 	get_online_mems();
1753 	ret = get_any_page(page, pfn, flags);
1754 	put_online_mems();
1755 
1756 	if (ret > 0)
1757 		ret = soft_offline_in_use_page(page, flags);
1758 	else if (ret == 0)
1759 		soft_offline_free_page(page);
1760 
1761 	return ret;
1762 }
1763