1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include <linux/sysctl.h> 66 #include "swap.h" 67 #include "internal.h" 68 #include "ras/ras_event.h" 69 70 static int sysctl_memory_failure_early_kill __read_mostly; 71 72 static int sysctl_memory_failure_recovery __read_mostly = 1; 73 74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 75 76 static bool hw_memory_failure __read_mostly = false; 77 78 inline void num_poisoned_pages_inc(unsigned long pfn) 79 { 80 atomic_long_inc(&num_poisoned_pages); 81 memblk_nr_poison_inc(pfn); 82 } 83 84 inline void num_poisoned_pages_sub(unsigned long pfn, long i) 85 { 86 atomic_long_sub(i, &num_poisoned_pages); 87 if (pfn != -1UL) 88 memblk_nr_poison_sub(pfn, i); 89 } 90 91 /** 92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 93 * @_name: name of the file in the per NUMA sysfs directory. 94 */ 95 #define MF_ATTR_RO(_name) \ 96 static ssize_t _name##_show(struct device *dev, \ 97 struct device_attribute *attr, \ 98 char *buf) \ 99 { \ 100 struct memory_failure_stats *mf_stats = \ 101 &NODE_DATA(dev->id)->mf_stats; \ 102 return sprintf(buf, "%lu\n", mf_stats->_name); \ 103 } \ 104 static DEVICE_ATTR_RO(_name) 105 106 MF_ATTR_RO(total); 107 MF_ATTR_RO(ignored); 108 MF_ATTR_RO(failed); 109 MF_ATTR_RO(delayed); 110 MF_ATTR_RO(recovered); 111 112 static struct attribute *memory_failure_attr[] = { 113 &dev_attr_total.attr, 114 &dev_attr_ignored.attr, 115 &dev_attr_failed.attr, 116 &dev_attr_delayed.attr, 117 &dev_attr_recovered.attr, 118 NULL, 119 }; 120 121 const struct attribute_group memory_failure_attr_group = { 122 .name = "memory_failure", 123 .attrs = memory_failure_attr, 124 }; 125 126 #ifdef CONFIG_SYSCTL 127 static struct ctl_table memory_failure_table[] = { 128 { 129 .procname = "memory_failure_early_kill", 130 .data = &sysctl_memory_failure_early_kill, 131 .maxlen = sizeof(sysctl_memory_failure_early_kill), 132 .mode = 0644, 133 .proc_handler = proc_dointvec_minmax, 134 .extra1 = SYSCTL_ZERO, 135 .extra2 = SYSCTL_ONE, 136 }, 137 { 138 .procname = "memory_failure_recovery", 139 .data = &sysctl_memory_failure_recovery, 140 .maxlen = sizeof(sysctl_memory_failure_recovery), 141 .mode = 0644, 142 .proc_handler = proc_dointvec_minmax, 143 .extra1 = SYSCTL_ZERO, 144 .extra2 = SYSCTL_ONE, 145 }, 146 { } 147 }; 148 149 static int __init memory_failure_sysctl_init(void) 150 { 151 register_sysctl_init("vm", memory_failure_table); 152 return 0; 153 } 154 late_initcall(memory_failure_sysctl_init); 155 #endif /* CONFIG_SYSCTL */ 156 157 /* 158 * Return values: 159 * 1: the page is dissolved (if needed) and taken off from buddy, 160 * 0: the page is dissolved (if needed) and not taken off from buddy, 161 * < 0: failed to dissolve. 162 */ 163 static int __page_handle_poison(struct page *page) 164 { 165 int ret; 166 167 zone_pcp_disable(page_zone(page)); 168 ret = dissolve_free_huge_page(page); 169 if (!ret) 170 ret = take_page_off_buddy(page); 171 zone_pcp_enable(page_zone(page)); 172 173 return ret; 174 } 175 176 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 177 { 178 if (hugepage_or_freepage) { 179 /* 180 * Doing this check for free pages is also fine since dissolve_free_huge_page 181 * returns 0 for non-hugetlb pages as well. 182 */ 183 if (__page_handle_poison(page) <= 0) 184 /* 185 * We could fail to take off the target page from buddy 186 * for example due to racy page allocation, but that's 187 * acceptable because soft-offlined page is not broken 188 * and if someone really want to use it, they should 189 * take it. 190 */ 191 return false; 192 } 193 194 SetPageHWPoison(page); 195 if (release) 196 put_page(page); 197 page_ref_inc(page); 198 num_poisoned_pages_inc(page_to_pfn(page)); 199 200 return true; 201 } 202 203 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 204 205 u32 hwpoison_filter_enable = 0; 206 u32 hwpoison_filter_dev_major = ~0U; 207 u32 hwpoison_filter_dev_minor = ~0U; 208 u64 hwpoison_filter_flags_mask; 209 u64 hwpoison_filter_flags_value; 210 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 211 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 213 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 215 216 static int hwpoison_filter_dev(struct page *p) 217 { 218 struct address_space *mapping; 219 dev_t dev; 220 221 if (hwpoison_filter_dev_major == ~0U && 222 hwpoison_filter_dev_minor == ~0U) 223 return 0; 224 225 mapping = page_mapping(p); 226 if (mapping == NULL || mapping->host == NULL) 227 return -EINVAL; 228 229 dev = mapping->host->i_sb->s_dev; 230 if (hwpoison_filter_dev_major != ~0U && 231 hwpoison_filter_dev_major != MAJOR(dev)) 232 return -EINVAL; 233 if (hwpoison_filter_dev_minor != ~0U && 234 hwpoison_filter_dev_minor != MINOR(dev)) 235 return -EINVAL; 236 237 return 0; 238 } 239 240 static int hwpoison_filter_flags(struct page *p) 241 { 242 if (!hwpoison_filter_flags_mask) 243 return 0; 244 245 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 246 hwpoison_filter_flags_value) 247 return 0; 248 else 249 return -EINVAL; 250 } 251 252 /* 253 * This allows stress tests to limit test scope to a collection of tasks 254 * by putting them under some memcg. This prevents killing unrelated/important 255 * processes such as /sbin/init. Note that the target task may share clean 256 * pages with init (eg. libc text), which is harmless. If the target task 257 * share _dirty_ pages with another task B, the test scheme must make sure B 258 * is also included in the memcg. At last, due to race conditions this filter 259 * can only guarantee that the page either belongs to the memcg tasks, or is 260 * a freed page. 261 */ 262 #ifdef CONFIG_MEMCG 263 u64 hwpoison_filter_memcg; 264 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 265 static int hwpoison_filter_task(struct page *p) 266 { 267 if (!hwpoison_filter_memcg) 268 return 0; 269 270 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 271 return -EINVAL; 272 273 return 0; 274 } 275 #else 276 static int hwpoison_filter_task(struct page *p) { return 0; } 277 #endif 278 279 int hwpoison_filter(struct page *p) 280 { 281 if (!hwpoison_filter_enable) 282 return 0; 283 284 if (hwpoison_filter_dev(p)) 285 return -EINVAL; 286 287 if (hwpoison_filter_flags(p)) 288 return -EINVAL; 289 290 if (hwpoison_filter_task(p)) 291 return -EINVAL; 292 293 return 0; 294 } 295 #else 296 int hwpoison_filter(struct page *p) 297 { 298 return 0; 299 } 300 #endif 301 302 EXPORT_SYMBOL_GPL(hwpoison_filter); 303 304 /* 305 * Kill all processes that have a poisoned page mapped and then isolate 306 * the page. 307 * 308 * General strategy: 309 * Find all processes having the page mapped and kill them. 310 * But we keep a page reference around so that the page is not 311 * actually freed yet. 312 * Then stash the page away 313 * 314 * There's no convenient way to get back to mapped processes 315 * from the VMAs. So do a brute-force search over all 316 * running processes. 317 * 318 * Remember that machine checks are not common (or rather 319 * if they are common you have other problems), so this shouldn't 320 * be a performance issue. 321 * 322 * Also there are some races possible while we get from the 323 * error detection to actually handle it. 324 */ 325 326 struct to_kill { 327 struct list_head nd; 328 struct task_struct *tsk; 329 unsigned long addr; 330 short size_shift; 331 }; 332 333 /* 334 * Send all the processes who have the page mapped a signal. 335 * ``action optional'' if they are not immediately affected by the error 336 * ``action required'' if error happened in current execution context 337 */ 338 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 339 { 340 struct task_struct *t = tk->tsk; 341 short addr_lsb = tk->size_shift; 342 int ret = 0; 343 344 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 345 pfn, t->comm, t->pid); 346 347 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 348 ret = force_sig_mceerr(BUS_MCEERR_AR, 349 (void __user *)tk->addr, addr_lsb); 350 else 351 /* 352 * Signal other processes sharing the page if they have 353 * PF_MCE_EARLY set. 354 * Don't use force here, it's convenient if the signal 355 * can be temporarily blocked. 356 * This could cause a loop when the user sets SIGBUS 357 * to SIG_IGN, but hopefully no one will do that? 358 */ 359 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 360 addr_lsb, t); 361 if (ret < 0) 362 pr_info("Error sending signal to %s:%d: %d\n", 363 t->comm, t->pid, ret); 364 return ret; 365 } 366 367 /* 368 * Unknown page type encountered. Try to check whether it can turn PageLRU by 369 * lru_add_drain_all. 370 */ 371 void shake_page(struct page *p) 372 { 373 if (PageHuge(p)) 374 return; 375 376 if (!PageSlab(p)) { 377 lru_add_drain_all(); 378 if (PageLRU(p) || is_free_buddy_page(p)) 379 return; 380 } 381 382 /* 383 * TODO: Could shrink slab caches here if a lightweight range-based 384 * shrinker will be available. 385 */ 386 } 387 EXPORT_SYMBOL_GPL(shake_page); 388 389 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 390 unsigned long address) 391 { 392 unsigned long ret = 0; 393 pgd_t *pgd; 394 p4d_t *p4d; 395 pud_t *pud; 396 pmd_t *pmd; 397 pte_t *pte; 398 399 VM_BUG_ON_VMA(address == -EFAULT, vma); 400 pgd = pgd_offset(vma->vm_mm, address); 401 if (!pgd_present(*pgd)) 402 return 0; 403 p4d = p4d_offset(pgd, address); 404 if (!p4d_present(*p4d)) 405 return 0; 406 pud = pud_offset(p4d, address); 407 if (!pud_present(*pud)) 408 return 0; 409 if (pud_devmap(*pud)) 410 return PUD_SHIFT; 411 pmd = pmd_offset(pud, address); 412 if (!pmd_present(*pmd)) 413 return 0; 414 if (pmd_devmap(*pmd)) 415 return PMD_SHIFT; 416 pte = pte_offset_map(pmd, address); 417 if (pte_present(*pte) && pte_devmap(*pte)) 418 ret = PAGE_SHIFT; 419 pte_unmap(pte); 420 return ret; 421 } 422 423 /* 424 * Failure handling: if we can't find or can't kill a process there's 425 * not much we can do. We just print a message and ignore otherwise. 426 */ 427 428 #define FSDAX_INVALID_PGOFF ULONG_MAX 429 430 /* 431 * Schedule a process for later kill. 432 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 433 * 434 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 435 * filesystem with a memory failure handler has claimed the 436 * memory_failure event. In all other cases, page->index and 437 * page->mapping are sufficient for mapping the page back to its 438 * corresponding user virtual address. 439 */ 440 static void __add_to_kill(struct task_struct *tsk, struct page *p, 441 struct vm_area_struct *vma, struct list_head *to_kill, 442 unsigned long ksm_addr, pgoff_t fsdax_pgoff) 443 { 444 struct to_kill *tk; 445 446 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 447 if (!tk) { 448 pr_err("Out of memory while machine check handling\n"); 449 return; 450 } 451 452 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); 453 if (is_zone_device_page(p)) { 454 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 455 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 456 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 457 } else 458 tk->size_shift = page_shift(compound_head(p)); 459 460 /* 461 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 462 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 463 * so "tk->size_shift == 0" effectively checks no mapping on 464 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 465 * to a process' address space, it's possible not all N VMAs 466 * contain mappings for the page, but at least one VMA does. 467 * Only deliver SIGBUS with payload derived from the VMA that 468 * has a mapping for the page. 469 */ 470 if (tk->addr == -EFAULT) { 471 pr_info("Unable to find user space address %lx in %s\n", 472 page_to_pfn(p), tsk->comm); 473 } else if (tk->size_shift == 0) { 474 kfree(tk); 475 return; 476 } 477 478 get_task_struct(tsk); 479 tk->tsk = tsk; 480 list_add_tail(&tk->nd, to_kill); 481 } 482 483 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 484 struct vm_area_struct *vma, 485 struct list_head *to_kill) 486 { 487 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); 488 } 489 490 #ifdef CONFIG_KSM 491 static bool task_in_to_kill_list(struct list_head *to_kill, 492 struct task_struct *tsk) 493 { 494 struct to_kill *tk, *next; 495 496 list_for_each_entry_safe(tk, next, to_kill, nd) { 497 if (tk->tsk == tsk) 498 return true; 499 } 500 501 return false; 502 } 503 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 504 struct vm_area_struct *vma, struct list_head *to_kill, 505 unsigned long ksm_addr) 506 { 507 if (!task_in_to_kill_list(to_kill, tsk)) 508 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); 509 } 510 #endif 511 /* 512 * Kill the processes that have been collected earlier. 513 * 514 * Only do anything when FORCEKILL is set, otherwise just free the 515 * list (this is used for clean pages which do not need killing) 516 * Also when FAIL is set do a force kill because something went 517 * wrong earlier. 518 */ 519 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 520 unsigned long pfn, int flags) 521 { 522 struct to_kill *tk, *next; 523 524 list_for_each_entry_safe(tk, next, to_kill, nd) { 525 if (forcekill) { 526 /* 527 * In case something went wrong with munmapping 528 * make sure the process doesn't catch the 529 * signal and then access the memory. Just kill it. 530 */ 531 if (fail || tk->addr == -EFAULT) { 532 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 533 pfn, tk->tsk->comm, tk->tsk->pid); 534 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 535 tk->tsk, PIDTYPE_PID); 536 } 537 538 /* 539 * In theory the process could have mapped 540 * something else on the address in-between. We could 541 * check for that, but we need to tell the 542 * process anyways. 543 */ 544 else if (kill_proc(tk, pfn, flags) < 0) 545 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 546 pfn, tk->tsk->comm, tk->tsk->pid); 547 } 548 list_del(&tk->nd); 549 put_task_struct(tk->tsk); 550 kfree(tk); 551 } 552 } 553 554 /* 555 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 556 * on behalf of the thread group. Return task_struct of the (first found) 557 * dedicated thread if found, and return NULL otherwise. 558 * 559 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 560 * have to call rcu_read_lock/unlock() in this function. 561 */ 562 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 563 { 564 struct task_struct *t; 565 566 for_each_thread(tsk, t) { 567 if (t->flags & PF_MCE_PROCESS) { 568 if (t->flags & PF_MCE_EARLY) 569 return t; 570 } else { 571 if (sysctl_memory_failure_early_kill) 572 return t; 573 } 574 } 575 return NULL; 576 } 577 578 /* 579 * Determine whether a given process is "early kill" process which expects 580 * to be signaled when some page under the process is hwpoisoned. 581 * Return task_struct of the dedicated thread (main thread unless explicitly 582 * specified) if the process is "early kill" and otherwise returns NULL. 583 * 584 * Note that the above is true for Action Optional case. For Action Required 585 * case, it's only meaningful to the current thread which need to be signaled 586 * with SIGBUS, this error is Action Optional for other non current 587 * processes sharing the same error page,if the process is "early kill", the 588 * task_struct of the dedicated thread will also be returned. 589 */ 590 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 591 { 592 if (!tsk->mm) 593 return NULL; 594 /* 595 * Comparing ->mm here because current task might represent 596 * a subthread, while tsk always points to the main thread. 597 */ 598 if (force_early && tsk->mm == current->mm) 599 return current; 600 601 return find_early_kill_thread(tsk); 602 } 603 604 /* 605 * Collect processes when the error hit an anonymous page. 606 */ 607 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 608 int force_early) 609 { 610 struct folio *folio = page_folio(page); 611 struct vm_area_struct *vma; 612 struct task_struct *tsk; 613 struct anon_vma *av; 614 pgoff_t pgoff; 615 616 av = folio_lock_anon_vma_read(folio, NULL); 617 if (av == NULL) /* Not actually mapped anymore */ 618 return; 619 620 pgoff = page_to_pgoff(page); 621 read_lock(&tasklist_lock); 622 for_each_process (tsk) { 623 struct anon_vma_chain *vmac; 624 struct task_struct *t = task_early_kill(tsk, force_early); 625 626 if (!t) 627 continue; 628 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 629 pgoff, pgoff) { 630 vma = vmac->vma; 631 if (vma->vm_mm != t->mm) 632 continue; 633 if (!page_mapped_in_vma(page, vma)) 634 continue; 635 add_to_kill_anon_file(t, page, vma, to_kill); 636 } 637 } 638 read_unlock(&tasklist_lock); 639 anon_vma_unlock_read(av); 640 } 641 642 /* 643 * Collect processes when the error hit a file mapped page. 644 */ 645 static void collect_procs_file(struct page *page, struct list_head *to_kill, 646 int force_early) 647 { 648 struct vm_area_struct *vma; 649 struct task_struct *tsk; 650 struct address_space *mapping = page->mapping; 651 pgoff_t pgoff; 652 653 i_mmap_lock_read(mapping); 654 read_lock(&tasklist_lock); 655 pgoff = page_to_pgoff(page); 656 for_each_process(tsk) { 657 struct task_struct *t = task_early_kill(tsk, force_early); 658 659 if (!t) 660 continue; 661 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 662 pgoff) { 663 /* 664 * Send early kill signal to tasks where a vma covers 665 * the page but the corrupted page is not necessarily 666 * mapped it in its pte. 667 * Assume applications who requested early kill want 668 * to be informed of all such data corruptions. 669 */ 670 if (vma->vm_mm == t->mm) 671 add_to_kill_anon_file(t, page, vma, to_kill); 672 } 673 } 674 read_unlock(&tasklist_lock); 675 i_mmap_unlock_read(mapping); 676 } 677 678 #ifdef CONFIG_FS_DAX 679 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 680 struct vm_area_struct *vma, 681 struct list_head *to_kill, pgoff_t pgoff) 682 { 683 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); 684 } 685 686 /* 687 * Collect processes when the error hit a fsdax page. 688 */ 689 static void collect_procs_fsdax(struct page *page, 690 struct address_space *mapping, pgoff_t pgoff, 691 struct list_head *to_kill) 692 { 693 struct vm_area_struct *vma; 694 struct task_struct *tsk; 695 696 i_mmap_lock_read(mapping); 697 read_lock(&tasklist_lock); 698 for_each_process(tsk) { 699 struct task_struct *t = task_early_kill(tsk, true); 700 701 if (!t) 702 continue; 703 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 704 if (vma->vm_mm == t->mm) 705 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 706 } 707 } 708 read_unlock(&tasklist_lock); 709 i_mmap_unlock_read(mapping); 710 } 711 #endif /* CONFIG_FS_DAX */ 712 713 /* 714 * Collect the processes who have the corrupted page mapped to kill. 715 */ 716 static void collect_procs(struct page *page, struct list_head *tokill, 717 int force_early) 718 { 719 if (!page->mapping) 720 return; 721 if (unlikely(PageKsm(page))) 722 collect_procs_ksm(page, tokill, force_early); 723 else if (PageAnon(page)) 724 collect_procs_anon(page, tokill, force_early); 725 else 726 collect_procs_file(page, tokill, force_early); 727 } 728 729 struct hwp_walk { 730 struct to_kill tk; 731 unsigned long pfn; 732 int flags; 733 }; 734 735 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 736 { 737 tk->addr = addr; 738 tk->size_shift = shift; 739 } 740 741 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 742 unsigned long poisoned_pfn, struct to_kill *tk) 743 { 744 unsigned long pfn = 0; 745 746 if (pte_present(pte)) { 747 pfn = pte_pfn(pte); 748 } else { 749 swp_entry_t swp = pte_to_swp_entry(pte); 750 751 if (is_hwpoison_entry(swp)) 752 pfn = swp_offset_pfn(swp); 753 } 754 755 if (!pfn || pfn != poisoned_pfn) 756 return 0; 757 758 set_to_kill(tk, addr, shift); 759 return 1; 760 } 761 762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 763 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 764 struct hwp_walk *hwp) 765 { 766 pmd_t pmd = *pmdp; 767 unsigned long pfn; 768 unsigned long hwpoison_vaddr; 769 770 if (!pmd_present(pmd)) 771 return 0; 772 pfn = pmd_pfn(pmd); 773 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 774 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 775 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 776 return 1; 777 } 778 return 0; 779 } 780 #else 781 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 782 struct hwp_walk *hwp) 783 { 784 return 0; 785 } 786 #endif 787 788 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 789 unsigned long end, struct mm_walk *walk) 790 { 791 struct hwp_walk *hwp = walk->private; 792 int ret = 0; 793 pte_t *ptep, *mapped_pte; 794 spinlock_t *ptl; 795 796 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 797 if (ptl) { 798 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 799 spin_unlock(ptl); 800 goto out; 801 } 802 803 if (pmd_trans_unstable(pmdp)) 804 goto out; 805 806 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 807 addr, &ptl); 808 for (; addr != end; ptep++, addr += PAGE_SIZE) { 809 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 810 hwp->pfn, &hwp->tk); 811 if (ret == 1) 812 break; 813 } 814 pte_unmap_unlock(mapped_pte, ptl); 815 out: 816 cond_resched(); 817 return ret; 818 } 819 820 #ifdef CONFIG_HUGETLB_PAGE 821 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 822 unsigned long addr, unsigned long end, 823 struct mm_walk *walk) 824 { 825 struct hwp_walk *hwp = walk->private; 826 pte_t pte = huge_ptep_get(ptep); 827 struct hstate *h = hstate_vma(walk->vma); 828 829 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 830 hwp->pfn, &hwp->tk); 831 } 832 #else 833 #define hwpoison_hugetlb_range NULL 834 #endif 835 836 static const struct mm_walk_ops hwp_walk_ops = { 837 .pmd_entry = hwpoison_pte_range, 838 .hugetlb_entry = hwpoison_hugetlb_range, 839 }; 840 841 /* 842 * Sends SIGBUS to the current process with error info. 843 * 844 * This function is intended to handle "Action Required" MCEs on already 845 * hardware poisoned pages. They could happen, for example, when 846 * memory_failure() failed to unmap the error page at the first call, or 847 * when multiple local machine checks happened on different CPUs. 848 * 849 * MCE handler currently has no easy access to the error virtual address, 850 * so this function walks page table to find it. The returned virtual address 851 * is proper in most cases, but it could be wrong when the application 852 * process has multiple entries mapping the error page. 853 */ 854 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 855 int flags) 856 { 857 int ret; 858 struct hwp_walk priv = { 859 .pfn = pfn, 860 }; 861 priv.tk.tsk = p; 862 863 if (!p->mm) 864 return -EFAULT; 865 866 mmap_read_lock(p->mm); 867 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 868 (void *)&priv); 869 if (ret == 1 && priv.tk.addr) 870 kill_proc(&priv.tk, pfn, flags); 871 else 872 ret = 0; 873 mmap_read_unlock(p->mm); 874 return ret > 0 ? -EHWPOISON : -EFAULT; 875 } 876 877 static const char *action_name[] = { 878 [MF_IGNORED] = "Ignored", 879 [MF_FAILED] = "Failed", 880 [MF_DELAYED] = "Delayed", 881 [MF_RECOVERED] = "Recovered", 882 }; 883 884 static const char * const action_page_types[] = { 885 [MF_MSG_KERNEL] = "reserved kernel page", 886 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 887 [MF_MSG_SLAB] = "kernel slab page", 888 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 889 [MF_MSG_HUGE] = "huge page", 890 [MF_MSG_FREE_HUGE] = "free huge page", 891 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 892 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 893 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 894 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 895 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 896 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 897 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 898 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 899 [MF_MSG_CLEAN_LRU] = "clean LRU page", 900 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 901 [MF_MSG_BUDDY] = "free buddy page", 902 [MF_MSG_DAX] = "dax page", 903 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 904 [MF_MSG_UNKNOWN] = "unknown page", 905 }; 906 907 /* 908 * XXX: It is possible that a page is isolated from LRU cache, 909 * and then kept in swap cache or failed to remove from page cache. 910 * The page count will stop it from being freed by unpoison. 911 * Stress tests should be aware of this memory leak problem. 912 */ 913 static int delete_from_lru_cache(struct page *p) 914 { 915 if (isolate_lru_page(p)) { 916 /* 917 * Clear sensible page flags, so that the buddy system won't 918 * complain when the page is unpoison-and-freed. 919 */ 920 ClearPageActive(p); 921 ClearPageUnevictable(p); 922 923 /* 924 * Poisoned page might never drop its ref count to 0 so we have 925 * to uncharge it manually from its memcg. 926 */ 927 mem_cgroup_uncharge(page_folio(p)); 928 929 /* 930 * drop the page count elevated by isolate_lru_page() 931 */ 932 put_page(p); 933 return 0; 934 } 935 return -EIO; 936 } 937 938 static int truncate_error_page(struct page *p, unsigned long pfn, 939 struct address_space *mapping) 940 { 941 int ret = MF_FAILED; 942 943 if (mapping->a_ops->error_remove_page) { 944 struct folio *folio = page_folio(p); 945 int err = mapping->a_ops->error_remove_page(mapping, p); 946 947 if (err != 0) { 948 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 949 } else if (folio_has_private(folio) && 950 !filemap_release_folio(folio, GFP_NOIO)) { 951 pr_info("%#lx: failed to release buffers\n", pfn); 952 } else { 953 ret = MF_RECOVERED; 954 } 955 } else { 956 /* 957 * If the file system doesn't support it just invalidate 958 * This fails on dirty or anything with private pages 959 */ 960 if (invalidate_inode_page(p)) 961 ret = MF_RECOVERED; 962 else 963 pr_info("%#lx: Failed to invalidate\n", pfn); 964 } 965 966 return ret; 967 } 968 969 struct page_state { 970 unsigned long mask; 971 unsigned long res; 972 enum mf_action_page_type type; 973 974 /* Callback ->action() has to unlock the relevant page inside it. */ 975 int (*action)(struct page_state *ps, struct page *p); 976 }; 977 978 /* 979 * Return true if page is still referenced by others, otherwise return 980 * false. 981 * 982 * The extra_pins is true when one extra refcount is expected. 983 */ 984 static bool has_extra_refcount(struct page_state *ps, struct page *p, 985 bool extra_pins) 986 { 987 int count = page_count(p) - 1; 988 989 if (extra_pins) 990 count -= 1; 991 992 if (count > 0) { 993 pr_err("%#lx: %s still referenced by %d users\n", 994 page_to_pfn(p), action_page_types[ps->type], count); 995 return true; 996 } 997 998 return false; 999 } 1000 1001 /* 1002 * Error hit kernel page. 1003 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1004 * could be more sophisticated. 1005 */ 1006 static int me_kernel(struct page_state *ps, struct page *p) 1007 { 1008 unlock_page(p); 1009 return MF_IGNORED; 1010 } 1011 1012 /* 1013 * Page in unknown state. Do nothing. 1014 */ 1015 static int me_unknown(struct page_state *ps, struct page *p) 1016 { 1017 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1018 unlock_page(p); 1019 return MF_FAILED; 1020 } 1021 1022 /* 1023 * Clean (or cleaned) page cache page. 1024 */ 1025 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1026 { 1027 int ret; 1028 struct address_space *mapping; 1029 bool extra_pins; 1030 1031 delete_from_lru_cache(p); 1032 1033 /* 1034 * For anonymous pages we're done the only reference left 1035 * should be the one m_f() holds. 1036 */ 1037 if (PageAnon(p)) { 1038 ret = MF_RECOVERED; 1039 goto out; 1040 } 1041 1042 /* 1043 * Now truncate the page in the page cache. This is really 1044 * more like a "temporary hole punch" 1045 * Don't do this for block devices when someone else 1046 * has a reference, because it could be file system metadata 1047 * and that's not safe to truncate. 1048 */ 1049 mapping = page_mapping(p); 1050 if (!mapping) { 1051 /* 1052 * Page has been teared down in the meanwhile 1053 */ 1054 ret = MF_FAILED; 1055 goto out; 1056 } 1057 1058 /* 1059 * The shmem page is kept in page cache instead of truncating 1060 * so is expected to have an extra refcount after error-handling. 1061 */ 1062 extra_pins = shmem_mapping(mapping); 1063 1064 /* 1065 * Truncation is a bit tricky. Enable it per file system for now. 1066 * 1067 * Open: to take i_rwsem or not for this? Right now we don't. 1068 */ 1069 ret = truncate_error_page(p, page_to_pfn(p), mapping); 1070 if (has_extra_refcount(ps, p, extra_pins)) 1071 ret = MF_FAILED; 1072 1073 out: 1074 unlock_page(p); 1075 1076 return ret; 1077 } 1078 1079 /* 1080 * Dirty pagecache page 1081 * Issues: when the error hit a hole page the error is not properly 1082 * propagated. 1083 */ 1084 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1085 { 1086 struct address_space *mapping = page_mapping(p); 1087 1088 SetPageError(p); 1089 /* TBD: print more information about the file. */ 1090 if (mapping) { 1091 /* 1092 * IO error will be reported by write(), fsync(), etc. 1093 * who check the mapping. 1094 * This way the application knows that something went 1095 * wrong with its dirty file data. 1096 * 1097 * There's one open issue: 1098 * 1099 * The EIO will be only reported on the next IO 1100 * operation and then cleared through the IO map. 1101 * Normally Linux has two mechanisms to pass IO error 1102 * first through the AS_EIO flag in the address space 1103 * and then through the PageError flag in the page. 1104 * Since we drop pages on memory failure handling the 1105 * only mechanism open to use is through AS_AIO. 1106 * 1107 * This has the disadvantage that it gets cleared on 1108 * the first operation that returns an error, while 1109 * the PageError bit is more sticky and only cleared 1110 * when the page is reread or dropped. If an 1111 * application assumes it will always get error on 1112 * fsync, but does other operations on the fd before 1113 * and the page is dropped between then the error 1114 * will not be properly reported. 1115 * 1116 * This can already happen even without hwpoisoned 1117 * pages: first on metadata IO errors (which only 1118 * report through AS_EIO) or when the page is dropped 1119 * at the wrong time. 1120 * 1121 * So right now we assume that the application DTRT on 1122 * the first EIO, but we're not worse than other parts 1123 * of the kernel. 1124 */ 1125 mapping_set_error(mapping, -EIO); 1126 } 1127 1128 return me_pagecache_clean(ps, p); 1129 } 1130 1131 /* 1132 * Clean and dirty swap cache. 1133 * 1134 * Dirty swap cache page is tricky to handle. The page could live both in page 1135 * cache and swap cache(ie. page is freshly swapped in). So it could be 1136 * referenced concurrently by 2 types of PTEs: 1137 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1138 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1139 * and then 1140 * - clear dirty bit to prevent IO 1141 * - remove from LRU 1142 * - but keep in the swap cache, so that when we return to it on 1143 * a later page fault, we know the application is accessing 1144 * corrupted data and shall be killed (we installed simple 1145 * interception code in do_swap_page to catch it). 1146 * 1147 * Clean swap cache pages can be directly isolated. A later page fault will 1148 * bring in the known good data from disk. 1149 */ 1150 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1151 { 1152 int ret; 1153 bool extra_pins = false; 1154 1155 ClearPageDirty(p); 1156 /* Trigger EIO in shmem: */ 1157 ClearPageUptodate(p); 1158 1159 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1160 unlock_page(p); 1161 1162 if (ret == MF_DELAYED) 1163 extra_pins = true; 1164 1165 if (has_extra_refcount(ps, p, extra_pins)) 1166 ret = MF_FAILED; 1167 1168 return ret; 1169 } 1170 1171 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1172 { 1173 struct folio *folio = page_folio(p); 1174 int ret; 1175 1176 delete_from_swap_cache(folio); 1177 1178 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1179 folio_unlock(folio); 1180 1181 if (has_extra_refcount(ps, p, false)) 1182 ret = MF_FAILED; 1183 1184 return ret; 1185 } 1186 1187 /* 1188 * Huge pages. Needs work. 1189 * Issues: 1190 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1191 * To narrow down kill region to one page, we need to break up pmd. 1192 */ 1193 static int me_huge_page(struct page_state *ps, struct page *p) 1194 { 1195 int res; 1196 struct page *hpage = compound_head(p); 1197 struct address_space *mapping; 1198 bool extra_pins = false; 1199 1200 if (!PageHuge(hpage)) 1201 return MF_DELAYED; 1202 1203 mapping = page_mapping(hpage); 1204 if (mapping) { 1205 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1206 /* The page is kept in page cache. */ 1207 extra_pins = true; 1208 unlock_page(hpage); 1209 } else { 1210 unlock_page(hpage); 1211 /* 1212 * migration entry prevents later access on error hugepage, 1213 * so we can free and dissolve it into buddy to save healthy 1214 * subpages. 1215 */ 1216 put_page(hpage); 1217 if (__page_handle_poison(p) >= 0) { 1218 page_ref_inc(p); 1219 res = MF_RECOVERED; 1220 } else { 1221 res = MF_FAILED; 1222 } 1223 } 1224 1225 if (has_extra_refcount(ps, p, extra_pins)) 1226 res = MF_FAILED; 1227 1228 return res; 1229 } 1230 1231 /* 1232 * Various page states we can handle. 1233 * 1234 * A page state is defined by its current page->flags bits. 1235 * The table matches them in order and calls the right handler. 1236 * 1237 * This is quite tricky because we can access page at any time 1238 * in its live cycle, so all accesses have to be extremely careful. 1239 * 1240 * This is not complete. More states could be added. 1241 * For any missing state don't attempt recovery. 1242 */ 1243 1244 #define dirty (1UL << PG_dirty) 1245 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1246 #define unevict (1UL << PG_unevictable) 1247 #define mlock (1UL << PG_mlocked) 1248 #define lru (1UL << PG_lru) 1249 #define head (1UL << PG_head) 1250 #define slab (1UL << PG_slab) 1251 #define reserved (1UL << PG_reserved) 1252 1253 static struct page_state error_states[] = { 1254 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1255 /* 1256 * free pages are specially detected outside this table: 1257 * PG_buddy pages only make a small fraction of all free pages. 1258 */ 1259 1260 /* 1261 * Could in theory check if slab page is free or if we can drop 1262 * currently unused objects without touching them. But just 1263 * treat it as standard kernel for now. 1264 */ 1265 { slab, slab, MF_MSG_SLAB, me_kernel }, 1266 1267 { head, head, MF_MSG_HUGE, me_huge_page }, 1268 1269 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1270 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1271 1272 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1273 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1274 1275 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1276 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1277 1278 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1279 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1280 1281 /* 1282 * Catchall entry: must be at end. 1283 */ 1284 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1285 }; 1286 1287 #undef dirty 1288 #undef sc 1289 #undef unevict 1290 #undef mlock 1291 #undef lru 1292 #undef head 1293 #undef slab 1294 #undef reserved 1295 1296 static void update_per_node_mf_stats(unsigned long pfn, 1297 enum mf_result result) 1298 { 1299 int nid = MAX_NUMNODES; 1300 struct memory_failure_stats *mf_stats = NULL; 1301 1302 nid = pfn_to_nid(pfn); 1303 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1304 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1305 return; 1306 } 1307 1308 mf_stats = &NODE_DATA(nid)->mf_stats; 1309 switch (result) { 1310 case MF_IGNORED: 1311 ++mf_stats->ignored; 1312 break; 1313 case MF_FAILED: 1314 ++mf_stats->failed; 1315 break; 1316 case MF_DELAYED: 1317 ++mf_stats->delayed; 1318 break; 1319 case MF_RECOVERED: 1320 ++mf_stats->recovered; 1321 break; 1322 default: 1323 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1324 break; 1325 } 1326 ++mf_stats->total; 1327 } 1328 1329 /* 1330 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1331 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1332 */ 1333 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1334 enum mf_result result) 1335 { 1336 trace_memory_failure_event(pfn, type, result); 1337 1338 num_poisoned_pages_inc(pfn); 1339 1340 update_per_node_mf_stats(pfn, result); 1341 1342 pr_err("%#lx: recovery action for %s: %s\n", 1343 pfn, action_page_types[type], action_name[result]); 1344 1345 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1346 } 1347 1348 static int page_action(struct page_state *ps, struct page *p, 1349 unsigned long pfn) 1350 { 1351 int result; 1352 1353 /* page p should be unlocked after returning from ps->action(). */ 1354 result = ps->action(ps, p); 1355 1356 /* Could do more checks here if page looks ok */ 1357 /* 1358 * Could adjust zone counters here to correct for the missing page. 1359 */ 1360 1361 return action_result(pfn, ps->type, result); 1362 } 1363 1364 static inline bool PageHWPoisonTakenOff(struct page *page) 1365 { 1366 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1367 } 1368 1369 void SetPageHWPoisonTakenOff(struct page *page) 1370 { 1371 set_page_private(page, MAGIC_HWPOISON); 1372 } 1373 1374 void ClearPageHWPoisonTakenOff(struct page *page) 1375 { 1376 if (PageHWPoison(page)) 1377 set_page_private(page, 0); 1378 } 1379 1380 /* 1381 * Return true if a page type of a given page is supported by hwpoison 1382 * mechanism (while handling could fail), otherwise false. This function 1383 * does not return true for hugetlb or device memory pages, so it's assumed 1384 * to be called only in the context where we never have such pages. 1385 */ 1386 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1387 { 1388 /* Soft offline could migrate non-LRU movable pages */ 1389 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1390 return true; 1391 1392 return PageLRU(page) || is_free_buddy_page(page); 1393 } 1394 1395 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1396 { 1397 struct folio *folio = page_folio(page); 1398 int ret = 0; 1399 bool hugetlb = false; 1400 1401 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1402 if (hugetlb) 1403 return ret; 1404 1405 /* 1406 * This check prevents from calling folio_try_get() for any 1407 * unsupported type of folio in order to reduce the risk of unexpected 1408 * races caused by taking a folio refcount. 1409 */ 1410 if (!HWPoisonHandlable(&folio->page, flags)) 1411 return -EBUSY; 1412 1413 if (folio_try_get(folio)) { 1414 if (folio == page_folio(page)) 1415 return 1; 1416 1417 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1418 folio_put(folio); 1419 } 1420 1421 return 0; 1422 } 1423 1424 static int get_any_page(struct page *p, unsigned long flags) 1425 { 1426 int ret = 0, pass = 0; 1427 bool count_increased = false; 1428 1429 if (flags & MF_COUNT_INCREASED) 1430 count_increased = true; 1431 1432 try_again: 1433 if (!count_increased) { 1434 ret = __get_hwpoison_page(p, flags); 1435 if (!ret) { 1436 if (page_count(p)) { 1437 /* We raced with an allocation, retry. */ 1438 if (pass++ < 3) 1439 goto try_again; 1440 ret = -EBUSY; 1441 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1442 /* We raced with put_page, retry. */ 1443 if (pass++ < 3) 1444 goto try_again; 1445 ret = -EIO; 1446 } 1447 goto out; 1448 } else if (ret == -EBUSY) { 1449 /* 1450 * We raced with (possibly temporary) unhandlable 1451 * page, retry. 1452 */ 1453 if (pass++ < 3) { 1454 shake_page(p); 1455 goto try_again; 1456 } 1457 ret = -EIO; 1458 goto out; 1459 } 1460 } 1461 1462 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1463 ret = 1; 1464 } else { 1465 /* 1466 * A page we cannot handle. Check whether we can turn 1467 * it into something we can handle. 1468 */ 1469 if (pass++ < 3) { 1470 put_page(p); 1471 shake_page(p); 1472 count_increased = false; 1473 goto try_again; 1474 } 1475 put_page(p); 1476 ret = -EIO; 1477 } 1478 out: 1479 if (ret == -EIO) 1480 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1481 1482 return ret; 1483 } 1484 1485 static int __get_unpoison_page(struct page *page) 1486 { 1487 struct folio *folio = page_folio(page); 1488 int ret = 0; 1489 bool hugetlb = false; 1490 1491 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1492 if (hugetlb) 1493 return ret; 1494 1495 /* 1496 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1497 * but also isolated from buddy freelist, so need to identify the 1498 * state and have to cancel both operations to unpoison. 1499 */ 1500 if (PageHWPoisonTakenOff(page)) 1501 return -EHWPOISON; 1502 1503 return get_page_unless_zero(page) ? 1 : 0; 1504 } 1505 1506 /** 1507 * get_hwpoison_page() - Get refcount for memory error handling 1508 * @p: Raw error page (hit by memory error) 1509 * @flags: Flags controlling behavior of error handling 1510 * 1511 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1512 * error on it, after checking that the error page is in a well-defined state 1513 * (defined as a page-type we can successfully handle the memory error on it, 1514 * such as LRU page and hugetlb page). 1515 * 1516 * Memory error handling could be triggered at any time on any type of page, 1517 * so it's prone to race with typical memory management lifecycle (like 1518 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1519 * extra care for the error page's state (as done in __get_hwpoison_page()), 1520 * and has some retry logic in get_any_page(). 1521 * 1522 * When called from unpoison_memory(), the caller should already ensure that 1523 * the given page has PG_hwpoison. So it's never reused for other page 1524 * allocations, and __get_unpoison_page() never races with them. 1525 * 1526 * Return: 0 on failure, 1527 * 1 on success for in-use pages in a well-defined state, 1528 * -EIO for pages on which we can not handle memory errors, 1529 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1530 * operations like allocation and free, 1531 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1532 */ 1533 static int get_hwpoison_page(struct page *p, unsigned long flags) 1534 { 1535 int ret; 1536 1537 zone_pcp_disable(page_zone(p)); 1538 if (flags & MF_UNPOISON) 1539 ret = __get_unpoison_page(p); 1540 else 1541 ret = get_any_page(p, flags); 1542 zone_pcp_enable(page_zone(p)); 1543 1544 return ret; 1545 } 1546 1547 /* 1548 * Do all that is necessary to remove user space mappings. Unmap 1549 * the pages and send SIGBUS to the processes if the data was dirty. 1550 */ 1551 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1552 int flags, struct page *hpage) 1553 { 1554 struct folio *folio = page_folio(hpage); 1555 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1556 struct address_space *mapping; 1557 LIST_HEAD(tokill); 1558 bool unmap_success; 1559 int forcekill; 1560 bool mlocked = PageMlocked(hpage); 1561 1562 /* 1563 * Here we are interested only in user-mapped pages, so skip any 1564 * other types of pages. 1565 */ 1566 if (PageReserved(p) || PageSlab(p) || PageTable(p)) 1567 return true; 1568 if (!(PageLRU(hpage) || PageHuge(p))) 1569 return true; 1570 1571 /* 1572 * This check implies we don't kill processes if their pages 1573 * are in the swap cache early. Those are always late kills. 1574 */ 1575 if (!page_mapped(hpage)) 1576 return true; 1577 1578 if (PageSwapCache(p)) { 1579 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1580 ttu &= ~TTU_HWPOISON; 1581 } 1582 1583 /* 1584 * Propagate the dirty bit from PTEs to struct page first, because we 1585 * need this to decide if we should kill or just drop the page. 1586 * XXX: the dirty test could be racy: set_page_dirty() may not always 1587 * be called inside page lock (it's recommended but not enforced). 1588 */ 1589 mapping = page_mapping(hpage); 1590 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1591 mapping_can_writeback(mapping)) { 1592 if (page_mkclean(hpage)) { 1593 SetPageDirty(hpage); 1594 } else { 1595 ttu &= ~TTU_HWPOISON; 1596 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1597 pfn); 1598 } 1599 } 1600 1601 /* 1602 * First collect all the processes that have the page 1603 * mapped in dirty form. This has to be done before try_to_unmap, 1604 * because ttu takes the rmap data structures down. 1605 */ 1606 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1607 1608 if (PageHuge(hpage) && !PageAnon(hpage)) { 1609 /* 1610 * For hugetlb pages in shared mappings, try_to_unmap 1611 * could potentially call huge_pmd_unshare. Because of 1612 * this, take semaphore in write mode here and set 1613 * TTU_RMAP_LOCKED to indicate we have taken the lock 1614 * at this higher level. 1615 */ 1616 mapping = hugetlb_page_mapping_lock_write(hpage); 1617 if (mapping) { 1618 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1619 i_mmap_unlock_write(mapping); 1620 } else 1621 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1622 } else { 1623 try_to_unmap(folio, ttu); 1624 } 1625 1626 unmap_success = !page_mapped(hpage); 1627 if (!unmap_success) 1628 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1629 pfn, page_mapcount(hpage)); 1630 1631 /* 1632 * try_to_unmap() might put mlocked page in lru cache, so call 1633 * shake_page() again to ensure that it's flushed. 1634 */ 1635 if (mlocked) 1636 shake_page(hpage); 1637 1638 /* 1639 * Now that the dirty bit has been propagated to the 1640 * struct page and all unmaps done we can decide if 1641 * killing is needed or not. Only kill when the page 1642 * was dirty or the process is not restartable, 1643 * otherwise the tokill list is merely 1644 * freed. When there was a problem unmapping earlier 1645 * use a more force-full uncatchable kill to prevent 1646 * any accesses to the poisoned memory. 1647 */ 1648 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1649 !unmap_success; 1650 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1651 1652 return unmap_success; 1653 } 1654 1655 static int identify_page_state(unsigned long pfn, struct page *p, 1656 unsigned long page_flags) 1657 { 1658 struct page_state *ps; 1659 1660 /* 1661 * The first check uses the current page flags which may not have any 1662 * relevant information. The second check with the saved page flags is 1663 * carried out only if the first check can't determine the page status. 1664 */ 1665 for (ps = error_states;; ps++) 1666 if ((p->flags & ps->mask) == ps->res) 1667 break; 1668 1669 page_flags |= (p->flags & (1UL << PG_dirty)); 1670 1671 if (!ps->mask) 1672 for (ps = error_states;; ps++) 1673 if ((page_flags & ps->mask) == ps->res) 1674 break; 1675 return page_action(ps, p, pfn); 1676 } 1677 1678 static int try_to_split_thp_page(struct page *page) 1679 { 1680 int ret; 1681 1682 lock_page(page); 1683 ret = split_huge_page(page); 1684 unlock_page(page); 1685 1686 if (unlikely(ret)) 1687 put_page(page); 1688 1689 return ret; 1690 } 1691 1692 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1693 struct address_space *mapping, pgoff_t index, int flags) 1694 { 1695 struct to_kill *tk; 1696 unsigned long size = 0; 1697 1698 list_for_each_entry(tk, to_kill, nd) 1699 if (tk->size_shift) 1700 size = max(size, 1UL << tk->size_shift); 1701 1702 if (size) { 1703 /* 1704 * Unmap the largest mapping to avoid breaking up device-dax 1705 * mappings which are constant size. The actual size of the 1706 * mapping being torn down is communicated in siginfo, see 1707 * kill_proc() 1708 */ 1709 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1710 1711 unmap_mapping_range(mapping, start, size, 0); 1712 } 1713 1714 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1715 } 1716 1717 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1718 struct dev_pagemap *pgmap) 1719 { 1720 struct page *page = pfn_to_page(pfn); 1721 LIST_HEAD(to_kill); 1722 dax_entry_t cookie; 1723 int rc = 0; 1724 1725 /* 1726 * Pages instantiated by device-dax (not filesystem-dax) 1727 * may be compound pages. 1728 */ 1729 page = compound_head(page); 1730 1731 /* 1732 * Prevent the inode from being freed while we are interrogating 1733 * the address_space, typically this would be handled by 1734 * lock_page(), but dax pages do not use the page lock. This 1735 * also prevents changes to the mapping of this pfn until 1736 * poison signaling is complete. 1737 */ 1738 cookie = dax_lock_page(page); 1739 if (!cookie) 1740 return -EBUSY; 1741 1742 if (hwpoison_filter(page)) { 1743 rc = -EOPNOTSUPP; 1744 goto unlock; 1745 } 1746 1747 switch (pgmap->type) { 1748 case MEMORY_DEVICE_PRIVATE: 1749 case MEMORY_DEVICE_COHERENT: 1750 /* 1751 * TODO: Handle device pages which may need coordination 1752 * with device-side memory. 1753 */ 1754 rc = -ENXIO; 1755 goto unlock; 1756 default: 1757 break; 1758 } 1759 1760 /* 1761 * Use this flag as an indication that the dax page has been 1762 * remapped UC to prevent speculative consumption of poison. 1763 */ 1764 SetPageHWPoison(page); 1765 1766 /* 1767 * Unlike System-RAM there is no possibility to swap in a 1768 * different physical page at a given virtual address, so all 1769 * userspace consumption of ZONE_DEVICE memory necessitates 1770 * SIGBUS (i.e. MF_MUST_KILL) 1771 */ 1772 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1773 collect_procs(page, &to_kill, true); 1774 1775 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1776 unlock: 1777 dax_unlock_page(page, cookie); 1778 return rc; 1779 } 1780 1781 #ifdef CONFIG_FS_DAX 1782 /** 1783 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1784 * @mapping: address_space of the file in use 1785 * @index: start pgoff of the range within the file 1786 * @count: length of the range, in unit of PAGE_SIZE 1787 * @mf_flags: memory failure flags 1788 */ 1789 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1790 unsigned long count, int mf_flags) 1791 { 1792 LIST_HEAD(to_kill); 1793 dax_entry_t cookie; 1794 struct page *page; 1795 size_t end = index + count; 1796 1797 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1798 1799 for (; index < end; index++) { 1800 page = NULL; 1801 cookie = dax_lock_mapping_entry(mapping, index, &page); 1802 if (!cookie) 1803 return -EBUSY; 1804 if (!page) 1805 goto unlock; 1806 1807 SetPageHWPoison(page); 1808 1809 collect_procs_fsdax(page, mapping, index, &to_kill); 1810 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1811 index, mf_flags); 1812 unlock: 1813 dax_unlock_mapping_entry(mapping, index, cookie); 1814 } 1815 return 0; 1816 } 1817 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1818 #endif /* CONFIG_FS_DAX */ 1819 1820 #ifdef CONFIG_HUGETLB_PAGE 1821 /* 1822 * Struct raw_hwp_page represents information about "raw error page", 1823 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1824 */ 1825 struct raw_hwp_page { 1826 struct llist_node node; 1827 struct page *page; 1828 }; 1829 1830 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1831 { 1832 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1833 } 1834 1835 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1836 { 1837 struct llist_head *head; 1838 struct llist_node *t, *tnode; 1839 unsigned long count = 0; 1840 1841 head = raw_hwp_list_head(folio); 1842 llist_for_each_safe(tnode, t, head->first) { 1843 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1844 1845 if (move_flag) 1846 SetPageHWPoison(p->page); 1847 else 1848 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1849 kfree(p); 1850 count++; 1851 } 1852 llist_del_all(head); 1853 return count; 1854 } 1855 1856 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1857 { 1858 struct llist_head *head; 1859 struct raw_hwp_page *raw_hwp; 1860 struct llist_node *t, *tnode; 1861 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1862 1863 /* 1864 * Once the hwpoison hugepage has lost reliable raw error info, 1865 * there is little meaning to keep additional error info precisely, 1866 * so skip to add additional raw error info. 1867 */ 1868 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1869 return -EHWPOISON; 1870 head = raw_hwp_list_head(folio); 1871 llist_for_each_safe(tnode, t, head->first) { 1872 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1873 1874 if (p->page == page) 1875 return -EHWPOISON; 1876 } 1877 1878 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1879 if (raw_hwp) { 1880 raw_hwp->page = page; 1881 llist_add(&raw_hwp->node, head); 1882 /* the first error event will be counted in action_result(). */ 1883 if (ret) 1884 num_poisoned_pages_inc(page_to_pfn(page)); 1885 } else { 1886 /* 1887 * Failed to save raw error info. We no longer trace all 1888 * hwpoisoned subpages, and we need refuse to free/dissolve 1889 * this hwpoisoned hugepage. 1890 */ 1891 folio_set_hugetlb_raw_hwp_unreliable(folio); 1892 /* 1893 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1894 * used any more, so free it. 1895 */ 1896 __folio_free_raw_hwp(folio, false); 1897 } 1898 return ret; 1899 } 1900 1901 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1902 { 1903 /* 1904 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1905 * pages for tail pages are required but they don't exist. 1906 */ 1907 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1908 return 0; 1909 1910 /* 1911 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1912 * definition. 1913 */ 1914 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1915 return 0; 1916 1917 return __folio_free_raw_hwp(folio, move_flag); 1918 } 1919 1920 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1921 { 1922 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1923 return; 1924 folio_clear_hwpoison(folio); 1925 folio_free_raw_hwp(folio, true); 1926 } 1927 1928 /* 1929 * Called from hugetlb code with hugetlb_lock held. 1930 * 1931 * Return values: 1932 * 0 - free hugepage 1933 * 1 - in-use hugepage 1934 * 2 - not a hugepage 1935 * -EBUSY - the hugepage is busy (try to retry) 1936 * -EHWPOISON - the hugepage is already hwpoisoned 1937 */ 1938 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1939 bool *migratable_cleared) 1940 { 1941 struct page *page = pfn_to_page(pfn); 1942 struct folio *folio = page_folio(page); 1943 int ret = 2; /* fallback to normal page handling */ 1944 bool count_increased = false; 1945 1946 if (!folio_test_hugetlb(folio)) 1947 goto out; 1948 1949 if (flags & MF_COUNT_INCREASED) { 1950 ret = 1; 1951 count_increased = true; 1952 } else if (folio_test_hugetlb_freed(folio)) { 1953 ret = 0; 1954 } else if (folio_test_hugetlb_migratable(folio)) { 1955 ret = folio_try_get(folio); 1956 if (ret) 1957 count_increased = true; 1958 } else { 1959 ret = -EBUSY; 1960 if (!(flags & MF_NO_RETRY)) 1961 goto out; 1962 } 1963 1964 if (folio_set_hugetlb_hwpoison(folio, page)) { 1965 ret = -EHWPOISON; 1966 goto out; 1967 } 1968 1969 /* 1970 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 1971 * from being migrated by memory hotremove. 1972 */ 1973 if (count_increased && folio_test_hugetlb_migratable(folio)) { 1974 folio_clear_hugetlb_migratable(folio); 1975 *migratable_cleared = true; 1976 } 1977 1978 return ret; 1979 out: 1980 if (count_increased) 1981 folio_put(folio); 1982 return ret; 1983 } 1984 1985 /* 1986 * Taking refcount of hugetlb pages needs extra care about race conditions 1987 * with basic operations like hugepage allocation/free/demotion. 1988 * So some of prechecks for hwpoison (pinning, and testing/setting 1989 * PageHWPoison) should be done in single hugetlb_lock range. 1990 */ 1991 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1992 { 1993 int res; 1994 struct page *p = pfn_to_page(pfn); 1995 struct folio *folio; 1996 unsigned long page_flags; 1997 bool migratable_cleared = false; 1998 1999 *hugetlb = 1; 2000 retry: 2001 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2002 if (res == 2) { /* fallback to normal page handling */ 2003 *hugetlb = 0; 2004 return 0; 2005 } else if (res == -EHWPOISON) { 2006 pr_err("%#lx: already hardware poisoned\n", pfn); 2007 if (flags & MF_ACTION_REQUIRED) { 2008 folio = page_folio(p); 2009 res = kill_accessing_process(current, folio_pfn(folio), flags); 2010 } 2011 return res; 2012 } else if (res == -EBUSY) { 2013 if (!(flags & MF_NO_RETRY)) { 2014 flags |= MF_NO_RETRY; 2015 goto retry; 2016 } 2017 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2018 } 2019 2020 folio = page_folio(p); 2021 folio_lock(folio); 2022 2023 if (hwpoison_filter(p)) { 2024 folio_clear_hugetlb_hwpoison(folio); 2025 if (migratable_cleared) 2026 folio_set_hugetlb_migratable(folio); 2027 folio_unlock(folio); 2028 if (res == 1) 2029 folio_put(folio); 2030 return -EOPNOTSUPP; 2031 } 2032 2033 /* 2034 * Handling free hugepage. The possible race with hugepage allocation 2035 * or demotion can be prevented by PageHWPoison flag. 2036 */ 2037 if (res == 0) { 2038 folio_unlock(folio); 2039 if (__page_handle_poison(p) >= 0) { 2040 page_ref_inc(p); 2041 res = MF_RECOVERED; 2042 } else { 2043 res = MF_FAILED; 2044 } 2045 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2046 } 2047 2048 page_flags = folio->flags; 2049 2050 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 2051 folio_unlock(folio); 2052 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2053 } 2054 2055 return identify_page_state(pfn, p, page_flags); 2056 } 2057 2058 #else 2059 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2060 { 2061 return 0; 2062 } 2063 2064 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2065 { 2066 return 0; 2067 } 2068 #endif /* CONFIG_HUGETLB_PAGE */ 2069 2070 /* Drop the extra refcount in case we come from madvise() */ 2071 static void put_ref_page(unsigned long pfn, int flags) 2072 { 2073 struct page *page; 2074 2075 if (!(flags & MF_COUNT_INCREASED)) 2076 return; 2077 2078 page = pfn_to_page(pfn); 2079 if (page) 2080 put_page(page); 2081 } 2082 2083 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2084 struct dev_pagemap *pgmap) 2085 { 2086 int rc = -ENXIO; 2087 2088 put_ref_page(pfn, flags); 2089 2090 /* device metadata space is not recoverable */ 2091 if (!pgmap_pfn_valid(pgmap, pfn)) 2092 goto out; 2093 2094 /* 2095 * Call driver's implementation to handle the memory failure, otherwise 2096 * fall back to generic handler. 2097 */ 2098 if (pgmap_has_memory_failure(pgmap)) { 2099 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2100 /* 2101 * Fall back to generic handler too if operation is not 2102 * supported inside the driver/device/filesystem. 2103 */ 2104 if (rc != -EOPNOTSUPP) 2105 goto out; 2106 } 2107 2108 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2109 out: 2110 /* drop pgmap ref acquired in caller */ 2111 put_dev_pagemap(pgmap); 2112 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2113 return rc; 2114 } 2115 2116 static DEFINE_MUTEX(mf_mutex); 2117 2118 /** 2119 * memory_failure - Handle memory failure of a page. 2120 * @pfn: Page Number of the corrupted page 2121 * @flags: fine tune action taken 2122 * 2123 * This function is called by the low level machine check code 2124 * of an architecture when it detects hardware memory corruption 2125 * of a page. It tries its best to recover, which includes 2126 * dropping pages, killing processes etc. 2127 * 2128 * The function is primarily of use for corruptions that 2129 * happen outside the current execution context (e.g. when 2130 * detected by a background scrubber) 2131 * 2132 * Must run in process context (e.g. a work queue) with interrupts 2133 * enabled and no spinlocks hold. 2134 * 2135 * Return: 0 for successfully handled the memory error, 2136 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2137 * < 0(except -EOPNOTSUPP) on failure. 2138 */ 2139 int memory_failure(unsigned long pfn, int flags) 2140 { 2141 struct page *p; 2142 struct page *hpage; 2143 struct dev_pagemap *pgmap; 2144 int res = 0; 2145 unsigned long page_flags; 2146 bool retry = true; 2147 int hugetlb = 0; 2148 2149 if (!sysctl_memory_failure_recovery) 2150 panic("Memory failure on page %lx", pfn); 2151 2152 mutex_lock(&mf_mutex); 2153 2154 if (!(flags & MF_SW_SIMULATED)) 2155 hw_memory_failure = true; 2156 2157 p = pfn_to_online_page(pfn); 2158 if (!p) { 2159 res = arch_memory_failure(pfn, flags); 2160 if (res == 0) 2161 goto unlock_mutex; 2162 2163 if (pfn_valid(pfn)) { 2164 pgmap = get_dev_pagemap(pfn, NULL); 2165 if (pgmap) { 2166 res = memory_failure_dev_pagemap(pfn, flags, 2167 pgmap); 2168 goto unlock_mutex; 2169 } 2170 } 2171 pr_err("%#lx: memory outside kernel control\n", pfn); 2172 res = -ENXIO; 2173 goto unlock_mutex; 2174 } 2175 2176 try_again: 2177 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2178 if (hugetlb) 2179 goto unlock_mutex; 2180 2181 if (TestSetPageHWPoison(p)) { 2182 pr_err("%#lx: already hardware poisoned\n", pfn); 2183 res = -EHWPOISON; 2184 if (flags & MF_ACTION_REQUIRED) 2185 res = kill_accessing_process(current, pfn, flags); 2186 if (flags & MF_COUNT_INCREASED) 2187 put_page(p); 2188 goto unlock_mutex; 2189 } 2190 2191 hpage = compound_head(p); 2192 2193 /* 2194 * We need/can do nothing about count=0 pages. 2195 * 1) it's a free page, and therefore in safe hand: 2196 * check_new_page() will be the gate keeper. 2197 * 2) it's part of a non-compound high order page. 2198 * Implies some kernel user: cannot stop them from 2199 * R/W the page; let's pray that the page has been 2200 * used and will be freed some time later. 2201 * In fact it's dangerous to directly bump up page count from 0, 2202 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2203 */ 2204 if (!(flags & MF_COUNT_INCREASED)) { 2205 res = get_hwpoison_page(p, flags); 2206 if (!res) { 2207 if (is_free_buddy_page(p)) { 2208 if (take_page_off_buddy(p)) { 2209 page_ref_inc(p); 2210 res = MF_RECOVERED; 2211 } else { 2212 /* We lost the race, try again */ 2213 if (retry) { 2214 ClearPageHWPoison(p); 2215 retry = false; 2216 goto try_again; 2217 } 2218 res = MF_FAILED; 2219 } 2220 res = action_result(pfn, MF_MSG_BUDDY, res); 2221 } else { 2222 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2223 } 2224 goto unlock_mutex; 2225 } else if (res < 0) { 2226 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2227 goto unlock_mutex; 2228 } 2229 } 2230 2231 if (PageTransHuge(hpage)) { 2232 /* 2233 * The flag must be set after the refcount is bumped 2234 * otherwise it may race with THP split. 2235 * And the flag can't be set in get_hwpoison_page() since 2236 * it is called by soft offline too and it is just called 2237 * for !MF_COUNT_INCREASE. So here seems to be the best 2238 * place. 2239 * 2240 * Don't need care about the above error handling paths for 2241 * get_hwpoison_page() since they handle either free page 2242 * or unhandlable page. The refcount is bumped iff the 2243 * page is a valid handlable page. 2244 */ 2245 SetPageHasHWPoisoned(hpage); 2246 if (try_to_split_thp_page(p) < 0) { 2247 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2248 goto unlock_mutex; 2249 } 2250 VM_BUG_ON_PAGE(!page_count(p), p); 2251 } 2252 2253 /* 2254 * We ignore non-LRU pages for good reasons. 2255 * - PG_locked is only well defined for LRU pages and a few others 2256 * - to avoid races with __SetPageLocked() 2257 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2258 * The check (unnecessarily) ignores LRU pages being isolated and 2259 * walked by the page reclaim code, however that's not a big loss. 2260 */ 2261 shake_page(p); 2262 2263 lock_page(p); 2264 2265 /* 2266 * We're only intended to deal with the non-Compound page here. 2267 * However, the page could have changed compound pages due to 2268 * race window. If this happens, we could try again to hopefully 2269 * handle the page next round. 2270 */ 2271 if (PageCompound(p)) { 2272 if (retry) { 2273 ClearPageHWPoison(p); 2274 unlock_page(p); 2275 put_page(p); 2276 flags &= ~MF_COUNT_INCREASED; 2277 retry = false; 2278 goto try_again; 2279 } 2280 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2281 goto unlock_page; 2282 } 2283 2284 /* 2285 * We use page flags to determine what action should be taken, but 2286 * the flags can be modified by the error containment action. One 2287 * example is an mlocked page, where PG_mlocked is cleared by 2288 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2289 * correctly, we save a copy of the page flags at this time. 2290 */ 2291 page_flags = p->flags; 2292 2293 if (hwpoison_filter(p)) { 2294 ClearPageHWPoison(p); 2295 unlock_page(p); 2296 put_page(p); 2297 res = -EOPNOTSUPP; 2298 goto unlock_mutex; 2299 } 2300 2301 /* 2302 * __munlock_folio() may clear a writeback page's LRU flag without 2303 * page_lock. We need wait writeback completion for this page or it 2304 * may trigger vfs BUG while evict inode. 2305 */ 2306 if (!PageLRU(p) && !PageWriteback(p)) 2307 goto identify_page_state; 2308 2309 /* 2310 * It's very difficult to mess with pages currently under IO 2311 * and in many cases impossible, so we just avoid it here. 2312 */ 2313 wait_on_page_writeback(p); 2314 2315 /* 2316 * Now take care of user space mappings. 2317 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2318 */ 2319 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2320 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2321 goto unlock_page; 2322 } 2323 2324 /* 2325 * Torn down by someone else? 2326 */ 2327 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2328 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2329 goto unlock_page; 2330 } 2331 2332 identify_page_state: 2333 res = identify_page_state(pfn, p, page_flags); 2334 mutex_unlock(&mf_mutex); 2335 return res; 2336 unlock_page: 2337 unlock_page(p); 2338 unlock_mutex: 2339 mutex_unlock(&mf_mutex); 2340 return res; 2341 } 2342 EXPORT_SYMBOL_GPL(memory_failure); 2343 2344 #define MEMORY_FAILURE_FIFO_ORDER 4 2345 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2346 2347 struct memory_failure_entry { 2348 unsigned long pfn; 2349 int flags; 2350 }; 2351 2352 struct memory_failure_cpu { 2353 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2354 MEMORY_FAILURE_FIFO_SIZE); 2355 spinlock_t lock; 2356 struct work_struct work; 2357 }; 2358 2359 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2360 2361 /** 2362 * memory_failure_queue - Schedule handling memory failure of a page. 2363 * @pfn: Page Number of the corrupted page 2364 * @flags: Flags for memory failure handling 2365 * 2366 * This function is called by the low level hardware error handler 2367 * when it detects hardware memory corruption of a page. It schedules 2368 * the recovering of error page, including dropping pages, killing 2369 * processes etc. 2370 * 2371 * The function is primarily of use for corruptions that 2372 * happen outside the current execution context (e.g. when 2373 * detected by a background scrubber) 2374 * 2375 * Can run in IRQ context. 2376 */ 2377 void memory_failure_queue(unsigned long pfn, int flags) 2378 { 2379 struct memory_failure_cpu *mf_cpu; 2380 unsigned long proc_flags; 2381 struct memory_failure_entry entry = { 2382 .pfn = pfn, 2383 .flags = flags, 2384 }; 2385 2386 mf_cpu = &get_cpu_var(memory_failure_cpu); 2387 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2388 if (kfifo_put(&mf_cpu->fifo, entry)) 2389 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2390 else 2391 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2392 pfn); 2393 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2394 put_cpu_var(memory_failure_cpu); 2395 } 2396 EXPORT_SYMBOL_GPL(memory_failure_queue); 2397 2398 static void memory_failure_work_func(struct work_struct *work) 2399 { 2400 struct memory_failure_cpu *mf_cpu; 2401 struct memory_failure_entry entry = { 0, }; 2402 unsigned long proc_flags; 2403 int gotten; 2404 2405 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2406 for (;;) { 2407 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2408 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2409 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2410 if (!gotten) 2411 break; 2412 if (entry.flags & MF_SOFT_OFFLINE) 2413 soft_offline_page(entry.pfn, entry.flags); 2414 else 2415 memory_failure(entry.pfn, entry.flags); 2416 } 2417 } 2418 2419 /* 2420 * Process memory_failure work queued on the specified CPU. 2421 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2422 */ 2423 void memory_failure_queue_kick(int cpu) 2424 { 2425 struct memory_failure_cpu *mf_cpu; 2426 2427 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2428 cancel_work_sync(&mf_cpu->work); 2429 memory_failure_work_func(&mf_cpu->work); 2430 } 2431 2432 static int __init memory_failure_init(void) 2433 { 2434 struct memory_failure_cpu *mf_cpu; 2435 int cpu; 2436 2437 for_each_possible_cpu(cpu) { 2438 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2439 spin_lock_init(&mf_cpu->lock); 2440 INIT_KFIFO(mf_cpu->fifo); 2441 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2442 } 2443 2444 return 0; 2445 } 2446 core_initcall(memory_failure_init); 2447 2448 #undef pr_fmt 2449 #define pr_fmt(fmt) "" fmt 2450 #define unpoison_pr_info(fmt, pfn, rs) \ 2451 ({ \ 2452 if (__ratelimit(rs)) \ 2453 pr_info(fmt, pfn); \ 2454 }) 2455 2456 /** 2457 * unpoison_memory - Unpoison a previously poisoned page 2458 * @pfn: Page number of the to be unpoisoned page 2459 * 2460 * Software-unpoison a page that has been poisoned by 2461 * memory_failure() earlier. 2462 * 2463 * This is only done on the software-level, so it only works 2464 * for linux injected failures, not real hardware failures 2465 * 2466 * Returns 0 for success, otherwise -errno. 2467 */ 2468 int unpoison_memory(unsigned long pfn) 2469 { 2470 struct folio *folio; 2471 struct page *p; 2472 int ret = -EBUSY; 2473 unsigned long count = 1; 2474 bool huge = false; 2475 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2476 DEFAULT_RATELIMIT_BURST); 2477 2478 if (!pfn_valid(pfn)) 2479 return -ENXIO; 2480 2481 p = pfn_to_page(pfn); 2482 folio = page_folio(p); 2483 2484 mutex_lock(&mf_mutex); 2485 2486 if (hw_memory_failure) { 2487 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2488 pfn, &unpoison_rs); 2489 ret = -EOPNOTSUPP; 2490 goto unlock_mutex; 2491 } 2492 2493 if (!folio_test_hwpoison(folio)) { 2494 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2495 pfn, &unpoison_rs); 2496 goto unlock_mutex; 2497 } 2498 2499 if (folio_ref_count(folio) > 1) { 2500 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2501 pfn, &unpoison_rs); 2502 goto unlock_mutex; 2503 } 2504 2505 if (folio_mapped(folio)) { 2506 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2507 pfn, &unpoison_rs); 2508 goto unlock_mutex; 2509 } 2510 2511 if (folio_mapping(folio)) { 2512 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2513 pfn, &unpoison_rs); 2514 goto unlock_mutex; 2515 } 2516 2517 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio)) 2518 goto unlock_mutex; 2519 2520 ret = get_hwpoison_page(p, MF_UNPOISON); 2521 if (!ret) { 2522 if (PageHuge(p)) { 2523 huge = true; 2524 count = folio_free_raw_hwp(folio, false); 2525 if (count == 0) { 2526 ret = -EBUSY; 2527 goto unlock_mutex; 2528 } 2529 } 2530 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2531 } else if (ret < 0) { 2532 if (ret == -EHWPOISON) { 2533 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2534 } else 2535 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2536 pfn, &unpoison_rs); 2537 } else { 2538 if (PageHuge(p)) { 2539 huge = true; 2540 count = folio_free_raw_hwp(folio, false); 2541 if (count == 0) { 2542 ret = -EBUSY; 2543 folio_put(folio); 2544 goto unlock_mutex; 2545 } 2546 } 2547 2548 folio_put(folio); 2549 if (TestClearPageHWPoison(p)) { 2550 folio_put(folio); 2551 ret = 0; 2552 } 2553 } 2554 2555 unlock_mutex: 2556 mutex_unlock(&mf_mutex); 2557 if (!ret) { 2558 if (!huge) 2559 num_poisoned_pages_sub(pfn, 1); 2560 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2561 page_to_pfn(p), &unpoison_rs); 2562 } 2563 return ret; 2564 } 2565 EXPORT_SYMBOL(unpoison_memory); 2566 2567 static bool isolate_page(struct page *page, struct list_head *pagelist) 2568 { 2569 bool isolated = false; 2570 2571 if (PageHuge(page)) { 2572 isolated = isolate_hugetlb(page_folio(page), pagelist); 2573 } else { 2574 bool lru = !__PageMovable(page); 2575 2576 if (lru) 2577 isolated = isolate_lru_page(page); 2578 else 2579 isolated = isolate_movable_page(page, 2580 ISOLATE_UNEVICTABLE); 2581 2582 if (isolated) { 2583 list_add(&page->lru, pagelist); 2584 if (lru) 2585 inc_node_page_state(page, NR_ISOLATED_ANON + 2586 page_is_file_lru(page)); 2587 } 2588 } 2589 2590 /* 2591 * If we succeed to isolate the page, we grabbed another refcount on 2592 * the page, so we can safely drop the one we got from get_any_pages(). 2593 * If we failed to isolate the page, it means that we cannot go further 2594 * and we will return an error, so drop the reference we got from 2595 * get_any_pages() as well. 2596 */ 2597 put_page(page); 2598 return isolated; 2599 } 2600 2601 /* 2602 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2603 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2604 * If the page is mapped, it migrates the contents over. 2605 */ 2606 static int soft_offline_in_use_page(struct page *page) 2607 { 2608 long ret = 0; 2609 unsigned long pfn = page_to_pfn(page); 2610 struct page *hpage = compound_head(page); 2611 char const *msg_page[] = {"page", "hugepage"}; 2612 bool huge = PageHuge(page); 2613 LIST_HEAD(pagelist); 2614 struct migration_target_control mtc = { 2615 .nid = NUMA_NO_NODE, 2616 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2617 }; 2618 2619 if (!huge && PageTransHuge(hpage)) { 2620 if (try_to_split_thp_page(page)) { 2621 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2622 return -EBUSY; 2623 } 2624 hpage = page; 2625 } 2626 2627 lock_page(page); 2628 if (!PageHuge(page)) 2629 wait_on_page_writeback(page); 2630 if (PageHWPoison(page)) { 2631 unlock_page(page); 2632 put_page(page); 2633 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2634 return 0; 2635 } 2636 2637 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2638 /* 2639 * Try to invalidate first. This should work for 2640 * non dirty unmapped page cache pages. 2641 */ 2642 ret = invalidate_inode_page(page); 2643 unlock_page(page); 2644 2645 if (ret) { 2646 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2647 page_handle_poison(page, false, true); 2648 return 0; 2649 } 2650 2651 if (isolate_page(hpage, &pagelist)) { 2652 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2653 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2654 if (!ret) { 2655 bool release = !huge; 2656 2657 if (!page_handle_poison(page, huge, release)) 2658 ret = -EBUSY; 2659 } else { 2660 if (!list_empty(&pagelist)) 2661 putback_movable_pages(&pagelist); 2662 2663 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2664 pfn, msg_page[huge], ret, &page->flags); 2665 if (ret > 0) 2666 ret = -EBUSY; 2667 } 2668 } else { 2669 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2670 pfn, msg_page[huge], page_count(page), &page->flags); 2671 ret = -EBUSY; 2672 } 2673 return ret; 2674 } 2675 2676 /** 2677 * soft_offline_page - Soft offline a page. 2678 * @pfn: pfn to soft-offline 2679 * @flags: flags. Same as memory_failure(). 2680 * 2681 * Returns 0 on success 2682 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2683 * < 0 otherwise negated errno. 2684 * 2685 * Soft offline a page, by migration or invalidation, 2686 * without killing anything. This is for the case when 2687 * a page is not corrupted yet (so it's still valid to access), 2688 * but has had a number of corrected errors and is better taken 2689 * out. 2690 * 2691 * The actual policy on when to do that is maintained by 2692 * user space. 2693 * 2694 * This should never impact any application or cause data loss, 2695 * however it might take some time. 2696 * 2697 * This is not a 100% solution for all memory, but tries to be 2698 * ``good enough'' for the majority of memory. 2699 */ 2700 int soft_offline_page(unsigned long pfn, int flags) 2701 { 2702 int ret; 2703 bool try_again = true; 2704 struct page *page; 2705 2706 if (!pfn_valid(pfn)) { 2707 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2708 return -ENXIO; 2709 } 2710 2711 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2712 page = pfn_to_online_page(pfn); 2713 if (!page) { 2714 put_ref_page(pfn, flags); 2715 return -EIO; 2716 } 2717 2718 mutex_lock(&mf_mutex); 2719 2720 if (PageHWPoison(page)) { 2721 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2722 put_ref_page(pfn, flags); 2723 mutex_unlock(&mf_mutex); 2724 return 0; 2725 } 2726 2727 retry: 2728 get_online_mems(); 2729 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2730 put_online_mems(); 2731 2732 if (hwpoison_filter(page)) { 2733 if (ret > 0) 2734 put_page(page); 2735 2736 mutex_unlock(&mf_mutex); 2737 return -EOPNOTSUPP; 2738 } 2739 2740 if (ret > 0) { 2741 ret = soft_offline_in_use_page(page); 2742 } else if (ret == 0) { 2743 if (!page_handle_poison(page, true, false) && try_again) { 2744 try_again = false; 2745 flags &= ~MF_COUNT_INCREASED; 2746 goto retry; 2747 } 2748 } 2749 2750 mutex_unlock(&mf_mutex); 2751 2752 return ret; 2753 } 2754