1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/page-isolation.h> 51 #include <linux/suspend.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/kfifo.h> 58 #include "internal.h" 59 60 int sysctl_memory_failure_early_kill __read_mostly = 0; 61 62 int sysctl_memory_failure_recovery __read_mostly = 1; 63 64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 65 66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 67 68 u32 hwpoison_filter_enable = 0; 69 u32 hwpoison_filter_dev_major = ~0U; 70 u32 hwpoison_filter_dev_minor = ~0U; 71 u64 hwpoison_filter_flags_mask; 72 u64 hwpoison_filter_flags_value; 73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 78 79 static int hwpoison_filter_dev(struct page *p) 80 { 81 struct address_space *mapping; 82 dev_t dev; 83 84 if (hwpoison_filter_dev_major == ~0U && 85 hwpoison_filter_dev_minor == ~0U) 86 return 0; 87 88 /* 89 * page_mapping() does not accept slab pages. 90 */ 91 if (PageSlab(p)) 92 return -EINVAL; 93 94 mapping = page_mapping(p); 95 if (mapping == NULL || mapping->host == NULL) 96 return -EINVAL; 97 98 dev = mapping->host->i_sb->s_dev; 99 if (hwpoison_filter_dev_major != ~0U && 100 hwpoison_filter_dev_major != MAJOR(dev)) 101 return -EINVAL; 102 if (hwpoison_filter_dev_minor != ~0U && 103 hwpoison_filter_dev_minor != MINOR(dev)) 104 return -EINVAL; 105 106 return 0; 107 } 108 109 static int hwpoison_filter_flags(struct page *p) 110 { 111 if (!hwpoison_filter_flags_mask) 112 return 0; 113 114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 115 hwpoison_filter_flags_value) 116 return 0; 117 else 118 return -EINVAL; 119 } 120 121 /* 122 * This allows stress tests to limit test scope to a collection of tasks 123 * by putting them under some memcg. This prevents killing unrelated/important 124 * processes such as /sbin/init. Note that the target task may share clean 125 * pages with init (eg. libc text), which is harmless. If the target task 126 * share _dirty_ pages with another task B, the test scheme must make sure B 127 * is also included in the memcg. At last, due to race conditions this filter 128 * can only guarantee that the page either belongs to the memcg tasks, or is 129 * a freed page. 130 */ 131 #ifdef CONFIG_MEMCG_SWAP 132 u64 hwpoison_filter_memcg; 133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 134 static int hwpoison_filter_task(struct page *p) 135 { 136 struct mem_cgroup *mem; 137 struct cgroup_subsys_state *css; 138 unsigned long ino; 139 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 mem = try_get_mem_cgroup_from_page(p); 144 if (!mem) 145 return -EINVAL; 146 147 css = mem_cgroup_css(mem); 148 ino = cgroup_ino(css->cgroup); 149 css_put(css); 150 151 if (ino != hwpoison_filter_memcg) 152 return -EINVAL; 153 154 return 0; 155 } 156 #else 157 static int hwpoison_filter_task(struct page *p) { return 0; } 158 #endif 159 160 int hwpoison_filter(struct page *p) 161 { 162 if (!hwpoison_filter_enable) 163 return 0; 164 165 if (hwpoison_filter_dev(p)) 166 return -EINVAL; 167 168 if (hwpoison_filter_flags(p)) 169 return -EINVAL; 170 171 if (hwpoison_filter_task(p)) 172 return -EINVAL; 173 174 return 0; 175 } 176 #else 177 int hwpoison_filter(struct page *p) 178 { 179 return 0; 180 } 181 #endif 182 183 EXPORT_SYMBOL_GPL(hwpoison_filter); 184 185 /* 186 * Send all the processes who have the page mapped a signal. 187 * ``action optional'' if they are not immediately affected by the error 188 * ``action required'' if error happened in current execution context 189 */ 190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 191 unsigned long pfn, struct page *page, int flags) 192 { 193 struct siginfo si; 194 int ret; 195 196 printk(KERN_ERR 197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 198 pfn, t->comm, t->pid); 199 si.si_signo = SIGBUS; 200 si.si_errno = 0; 201 si.si_addr = (void *)addr; 202 #ifdef __ARCH_SI_TRAPNO 203 si.si_trapno = trapno; 204 #endif 205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 206 207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 208 si.si_code = BUS_MCEERR_AR; 209 ret = force_sig_info(SIGBUS, &si, current); 210 } else { 211 /* 212 * Don't use force here, it's convenient if the signal 213 * can be temporarily blocked. 214 * This could cause a loop when the user sets SIGBUS 215 * to SIG_IGN, but hopefully no one will do that? 216 */ 217 si.si_code = BUS_MCEERR_AO; 218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 219 } 220 if (ret < 0) 221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 222 t->comm, t->pid, ret); 223 return ret; 224 } 225 226 /* 227 * When a unknown page type is encountered drain as many buffers as possible 228 * in the hope to turn the page into a LRU or free page, which we can handle. 229 */ 230 void shake_page(struct page *p, int access) 231 { 232 if (!PageSlab(p)) { 233 lru_add_drain_all(); 234 if (PageLRU(p)) 235 return; 236 drain_all_pages(page_zone(p)); 237 if (PageLRU(p) || is_free_buddy_page(p)) 238 return; 239 } 240 241 /* 242 * Only call shrink_node_slabs here (which would also shrink 243 * other caches) if access is not potentially fatal. 244 */ 245 if (access) 246 drop_slab_node(page_to_nid(p)); 247 } 248 EXPORT_SYMBOL_GPL(shake_page); 249 250 /* 251 * Kill all processes that have a poisoned page mapped and then isolate 252 * the page. 253 * 254 * General strategy: 255 * Find all processes having the page mapped and kill them. 256 * But we keep a page reference around so that the page is not 257 * actually freed yet. 258 * Then stash the page away 259 * 260 * There's no convenient way to get back to mapped processes 261 * from the VMAs. So do a brute-force search over all 262 * running processes. 263 * 264 * Remember that machine checks are not common (or rather 265 * if they are common you have other problems), so this shouldn't 266 * be a performance issue. 267 * 268 * Also there are some races possible while we get from the 269 * error detection to actually handle it. 270 */ 271 272 struct to_kill { 273 struct list_head nd; 274 struct task_struct *tsk; 275 unsigned long addr; 276 char addr_valid; 277 }; 278 279 /* 280 * Failure handling: if we can't find or can't kill a process there's 281 * not much we can do. We just print a message and ignore otherwise. 282 */ 283 284 /* 285 * Schedule a process for later kill. 286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 287 * TBD would GFP_NOIO be enough? 288 */ 289 static void add_to_kill(struct task_struct *tsk, struct page *p, 290 struct vm_area_struct *vma, 291 struct list_head *to_kill, 292 struct to_kill **tkc) 293 { 294 struct to_kill *tk; 295 296 if (*tkc) { 297 tk = *tkc; 298 *tkc = NULL; 299 } else { 300 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 301 if (!tk) { 302 printk(KERN_ERR 303 "MCE: Out of memory while machine check handling\n"); 304 return; 305 } 306 } 307 tk->addr = page_address_in_vma(p, vma); 308 tk->addr_valid = 1; 309 310 /* 311 * In theory we don't have to kill when the page was 312 * munmaped. But it could be also a mremap. Since that's 313 * likely very rare kill anyways just out of paranoia, but use 314 * a SIGKILL because the error is not contained anymore. 315 */ 316 if (tk->addr == -EFAULT) { 317 pr_info("MCE: Unable to find user space address %lx in %s\n", 318 page_to_pfn(p), tsk->comm); 319 tk->addr_valid = 0; 320 } 321 get_task_struct(tsk); 322 tk->tsk = tsk; 323 list_add_tail(&tk->nd, to_kill); 324 } 325 326 /* 327 * Kill the processes that have been collected earlier. 328 * 329 * Only do anything when DOIT is set, otherwise just free the list 330 * (this is used for clean pages which do not need killing) 331 * Also when FAIL is set do a force kill because something went 332 * wrong earlier. 333 */ 334 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 335 int fail, struct page *page, unsigned long pfn, 336 int flags) 337 { 338 struct to_kill *tk, *next; 339 340 list_for_each_entry_safe (tk, next, to_kill, nd) { 341 if (forcekill) { 342 /* 343 * In case something went wrong with munmapping 344 * make sure the process doesn't catch the 345 * signal and then access the memory. Just kill it. 346 */ 347 if (fail || tk->addr_valid == 0) { 348 printk(KERN_ERR 349 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 350 pfn, tk->tsk->comm, tk->tsk->pid); 351 force_sig(SIGKILL, tk->tsk); 352 } 353 354 /* 355 * In theory the process could have mapped 356 * something else on the address in-between. We could 357 * check for that, but we need to tell the 358 * process anyways. 359 */ 360 else if (kill_proc(tk->tsk, tk->addr, trapno, 361 pfn, page, flags) < 0) 362 printk(KERN_ERR 363 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 364 pfn, tk->tsk->comm, tk->tsk->pid); 365 } 366 put_task_struct(tk->tsk); 367 kfree(tk); 368 } 369 } 370 371 /* 372 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 373 * on behalf of the thread group. Return task_struct of the (first found) 374 * dedicated thread if found, and return NULL otherwise. 375 * 376 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 377 * have to call rcu_read_lock/unlock() in this function. 378 */ 379 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 380 { 381 struct task_struct *t; 382 383 for_each_thread(tsk, t) 384 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 385 return t; 386 return NULL; 387 } 388 389 /* 390 * Determine whether a given process is "early kill" process which expects 391 * to be signaled when some page under the process is hwpoisoned. 392 * Return task_struct of the dedicated thread (main thread unless explicitly 393 * specified) if the process is "early kill," and otherwise returns NULL. 394 */ 395 static struct task_struct *task_early_kill(struct task_struct *tsk, 396 int force_early) 397 { 398 struct task_struct *t; 399 if (!tsk->mm) 400 return NULL; 401 if (force_early) 402 return tsk; 403 t = find_early_kill_thread(tsk); 404 if (t) 405 return t; 406 if (sysctl_memory_failure_early_kill) 407 return tsk; 408 return NULL; 409 } 410 411 /* 412 * Collect processes when the error hit an anonymous page. 413 */ 414 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 415 struct to_kill **tkc, int force_early) 416 { 417 struct vm_area_struct *vma; 418 struct task_struct *tsk; 419 struct anon_vma *av; 420 pgoff_t pgoff; 421 422 av = page_lock_anon_vma_read(page); 423 if (av == NULL) /* Not actually mapped anymore */ 424 return; 425 426 pgoff = page_to_pgoff(page); 427 read_lock(&tasklist_lock); 428 for_each_process (tsk) { 429 struct anon_vma_chain *vmac; 430 struct task_struct *t = task_early_kill(tsk, force_early); 431 432 if (!t) 433 continue; 434 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 435 pgoff, pgoff) { 436 vma = vmac->vma; 437 if (!page_mapped_in_vma(page, vma)) 438 continue; 439 if (vma->vm_mm == t->mm) 440 add_to_kill(t, page, vma, to_kill, tkc); 441 } 442 } 443 read_unlock(&tasklist_lock); 444 page_unlock_anon_vma_read(av); 445 } 446 447 /* 448 * Collect processes when the error hit a file mapped page. 449 */ 450 static void collect_procs_file(struct page *page, struct list_head *to_kill, 451 struct to_kill **tkc, int force_early) 452 { 453 struct vm_area_struct *vma; 454 struct task_struct *tsk; 455 struct address_space *mapping = page->mapping; 456 457 i_mmap_lock_read(mapping); 458 read_lock(&tasklist_lock); 459 for_each_process(tsk) { 460 pgoff_t pgoff = page_to_pgoff(page); 461 struct task_struct *t = task_early_kill(tsk, force_early); 462 463 if (!t) 464 continue; 465 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 466 pgoff) { 467 /* 468 * Send early kill signal to tasks where a vma covers 469 * the page but the corrupted page is not necessarily 470 * mapped it in its pte. 471 * Assume applications who requested early kill want 472 * to be informed of all such data corruptions. 473 */ 474 if (vma->vm_mm == t->mm) 475 add_to_kill(t, page, vma, to_kill, tkc); 476 } 477 } 478 read_unlock(&tasklist_lock); 479 i_mmap_unlock_read(mapping); 480 } 481 482 /* 483 * Collect the processes who have the corrupted page mapped to kill. 484 * This is done in two steps for locking reasons. 485 * First preallocate one tokill structure outside the spin locks, 486 * so that we can kill at least one process reasonably reliable. 487 */ 488 static void collect_procs(struct page *page, struct list_head *tokill, 489 int force_early) 490 { 491 struct to_kill *tk; 492 493 if (!page->mapping) 494 return; 495 496 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 497 if (!tk) 498 return; 499 if (PageAnon(page)) 500 collect_procs_anon(page, tokill, &tk, force_early); 501 else 502 collect_procs_file(page, tokill, &tk, force_early); 503 kfree(tk); 504 } 505 506 /* 507 * Error handlers for various types of pages. 508 */ 509 510 enum outcome { 511 IGNORED, /* Error: cannot be handled */ 512 FAILED, /* Error: handling failed */ 513 DELAYED, /* Will be handled later */ 514 RECOVERED, /* Successfully recovered */ 515 }; 516 517 static const char *action_name[] = { 518 [IGNORED] = "Ignored", 519 [FAILED] = "Failed", 520 [DELAYED] = "Delayed", 521 [RECOVERED] = "Recovered", 522 }; 523 524 /* 525 * XXX: It is possible that a page is isolated from LRU cache, 526 * and then kept in swap cache or failed to remove from page cache. 527 * The page count will stop it from being freed by unpoison. 528 * Stress tests should be aware of this memory leak problem. 529 */ 530 static int delete_from_lru_cache(struct page *p) 531 { 532 if (!isolate_lru_page(p)) { 533 /* 534 * Clear sensible page flags, so that the buddy system won't 535 * complain when the page is unpoison-and-freed. 536 */ 537 ClearPageActive(p); 538 ClearPageUnevictable(p); 539 /* 540 * drop the page count elevated by isolate_lru_page() 541 */ 542 page_cache_release(p); 543 return 0; 544 } 545 return -EIO; 546 } 547 548 /* 549 * Error hit kernel page. 550 * Do nothing, try to be lucky and not touch this instead. For a few cases we 551 * could be more sophisticated. 552 */ 553 static int me_kernel(struct page *p, unsigned long pfn) 554 { 555 return IGNORED; 556 } 557 558 /* 559 * Page in unknown state. Do nothing. 560 */ 561 static int me_unknown(struct page *p, unsigned long pfn) 562 { 563 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 564 return FAILED; 565 } 566 567 /* 568 * Clean (or cleaned) page cache page. 569 */ 570 static int me_pagecache_clean(struct page *p, unsigned long pfn) 571 { 572 int err; 573 int ret = FAILED; 574 struct address_space *mapping; 575 576 delete_from_lru_cache(p); 577 578 /* 579 * For anonymous pages we're done the only reference left 580 * should be the one m_f() holds. 581 */ 582 if (PageAnon(p)) 583 return RECOVERED; 584 585 /* 586 * Now truncate the page in the page cache. This is really 587 * more like a "temporary hole punch" 588 * Don't do this for block devices when someone else 589 * has a reference, because it could be file system metadata 590 * and that's not safe to truncate. 591 */ 592 mapping = page_mapping(p); 593 if (!mapping) { 594 /* 595 * Page has been teared down in the meanwhile 596 */ 597 return FAILED; 598 } 599 600 /* 601 * Truncation is a bit tricky. Enable it per file system for now. 602 * 603 * Open: to take i_mutex or not for this? Right now we don't. 604 */ 605 if (mapping->a_ops->error_remove_page) { 606 err = mapping->a_ops->error_remove_page(mapping, p); 607 if (err != 0) { 608 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 609 pfn, err); 610 } else if (page_has_private(p) && 611 !try_to_release_page(p, GFP_NOIO)) { 612 pr_info("MCE %#lx: failed to release buffers\n", pfn); 613 } else { 614 ret = RECOVERED; 615 } 616 } else { 617 /* 618 * If the file system doesn't support it just invalidate 619 * This fails on dirty or anything with private pages 620 */ 621 if (invalidate_inode_page(p)) 622 ret = RECOVERED; 623 else 624 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 625 pfn); 626 } 627 return ret; 628 } 629 630 /* 631 * Dirty pagecache page 632 * Issues: when the error hit a hole page the error is not properly 633 * propagated. 634 */ 635 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 636 { 637 struct address_space *mapping = page_mapping(p); 638 639 SetPageError(p); 640 /* TBD: print more information about the file. */ 641 if (mapping) { 642 /* 643 * IO error will be reported by write(), fsync(), etc. 644 * who check the mapping. 645 * This way the application knows that something went 646 * wrong with its dirty file data. 647 * 648 * There's one open issue: 649 * 650 * The EIO will be only reported on the next IO 651 * operation and then cleared through the IO map. 652 * Normally Linux has two mechanisms to pass IO error 653 * first through the AS_EIO flag in the address space 654 * and then through the PageError flag in the page. 655 * Since we drop pages on memory failure handling the 656 * only mechanism open to use is through AS_AIO. 657 * 658 * This has the disadvantage that it gets cleared on 659 * the first operation that returns an error, while 660 * the PageError bit is more sticky and only cleared 661 * when the page is reread or dropped. If an 662 * application assumes it will always get error on 663 * fsync, but does other operations on the fd before 664 * and the page is dropped between then the error 665 * will not be properly reported. 666 * 667 * This can already happen even without hwpoisoned 668 * pages: first on metadata IO errors (which only 669 * report through AS_EIO) or when the page is dropped 670 * at the wrong time. 671 * 672 * So right now we assume that the application DTRT on 673 * the first EIO, but we're not worse than other parts 674 * of the kernel. 675 */ 676 mapping_set_error(mapping, EIO); 677 } 678 679 return me_pagecache_clean(p, pfn); 680 } 681 682 /* 683 * Clean and dirty swap cache. 684 * 685 * Dirty swap cache page is tricky to handle. The page could live both in page 686 * cache and swap cache(ie. page is freshly swapped in). So it could be 687 * referenced concurrently by 2 types of PTEs: 688 * normal PTEs and swap PTEs. We try to handle them consistently by calling 689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 690 * and then 691 * - clear dirty bit to prevent IO 692 * - remove from LRU 693 * - but keep in the swap cache, so that when we return to it on 694 * a later page fault, we know the application is accessing 695 * corrupted data and shall be killed (we installed simple 696 * interception code in do_swap_page to catch it). 697 * 698 * Clean swap cache pages can be directly isolated. A later page fault will 699 * bring in the known good data from disk. 700 */ 701 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 702 { 703 ClearPageDirty(p); 704 /* Trigger EIO in shmem: */ 705 ClearPageUptodate(p); 706 707 if (!delete_from_lru_cache(p)) 708 return DELAYED; 709 else 710 return FAILED; 711 } 712 713 static int me_swapcache_clean(struct page *p, unsigned long pfn) 714 { 715 delete_from_swap_cache(p); 716 717 if (!delete_from_lru_cache(p)) 718 return RECOVERED; 719 else 720 return FAILED; 721 } 722 723 /* 724 * Huge pages. Needs work. 725 * Issues: 726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 727 * To narrow down kill region to one page, we need to break up pmd. 728 */ 729 static int me_huge_page(struct page *p, unsigned long pfn) 730 { 731 int res = 0; 732 struct page *hpage = compound_head(p); 733 /* 734 * We can safely recover from error on free or reserved (i.e. 735 * not in-use) hugepage by dequeuing it from freelist. 736 * To check whether a hugepage is in-use or not, we can't use 737 * page->lru because it can be used in other hugepage operations, 738 * such as __unmap_hugepage_range() and gather_surplus_pages(). 739 * So instead we use page_mapping() and PageAnon(). 740 * We assume that this function is called with page lock held, 741 * so there is no race between isolation and mapping/unmapping. 742 */ 743 if (!(page_mapping(hpage) || PageAnon(hpage))) { 744 res = dequeue_hwpoisoned_huge_page(hpage); 745 if (!res) 746 return RECOVERED; 747 } 748 return DELAYED; 749 } 750 751 /* 752 * Various page states we can handle. 753 * 754 * A page state is defined by its current page->flags bits. 755 * The table matches them in order and calls the right handler. 756 * 757 * This is quite tricky because we can access page at any time 758 * in its live cycle, so all accesses have to be extremely careful. 759 * 760 * This is not complete. More states could be added. 761 * For any missing state don't attempt recovery. 762 */ 763 764 #define dirty (1UL << PG_dirty) 765 #define sc (1UL << PG_swapcache) 766 #define unevict (1UL << PG_unevictable) 767 #define mlock (1UL << PG_mlocked) 768 #define writeback (1UL << PG_writeback) 769 #define lru (1UL << PG_lru) 770 #define swapbacked (1UL << PG_swapbacked) 771 #define head (1UL << PG_head) 772 #define tail (1UL << PG_tail) 773 #define compound (1UL << PG_compound) 774 #define slab (1UL << PG_slab) 775 #define reserved (1UL << PG_reserved) 776 777 static struct page_state { 778 unsigned long mask; 779 unsigned long res; 780 char *msg; 781 int (*action)(struct page *p, unsigned long pfn); 782 } error_states[] = { 783 { reserved, reserved, "reserved kernel", me_kernel }, 784 /* 785 * free pages are specially detected outside this table: 786 * PG_buddy pages only make a small fraction of all free pages. 787 */ 788 789 /* 790 * Could in theory check if slab page is free or if we can drop 791 * currently unused objects without touching them. But just 792 * treat it as standard kernel for now. 793 */ 794 { slab, slab, "kernel slab", me_kernel }, 795 796 #ifdef CONFIG_PAGEFLAGS_EXTENDED 797 { head, head, "huge", me_huge_page }, 798 { tail, tail, "huge", me_huge_page }, 799 #else 800 { compound, compound, "huge", me_huge_page }, 801 #endif 802 803 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty }, 804 { sc|dirty, sc, "clean swapcache", me_swapcache_clean }, 805 806 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty }, 807 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean }, 808 809 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty }, 810 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean }, 811 812 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty }, 813 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 814 815 /* 816 * Catchall entry: must be at end. 817 */ 818 { 0, 0, "unknown page state", me_unknown }, 819 }; 820 821 #undef dirty 822 #undef sc 823 #undef unevict 824 #undef mlock 825 #undef writeback 826 #undef lru 827 #undef swapbacked 828 #undef head 829 #undef tail 830 #undef compound 831 #undef slab 832 #undef reserved 833 834 /* 835 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 836 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 837 */ 838 static void action_result(unsigned long pfn, char *msg, int result) 839 { 840 pr_err("MCE %#lx: %s page recovery: %s\n", 841 pfn, msg, action_name[result]); 842 } 843 844 static int page_action(struct page_state *ps, struct page *p, 845 unsigned long pfn) 846 { 847 int result; 848 int count; 849 850 result = ps->action(p, pfn); 851 852 count = page_count(p) - 1; 853 if (ps->action == me_swapcache_dirty && result == DELAYED) 854 count--; 855 if (count != 0) { 856 printk(KERN_ERR 857 "MCE %#lx: %s page still referenced by %d users\n", 858 pfn, ps->msg, count); 859 result = FAILED; 860 } 861 action_result(pfn, ps->msg, result); 862 863 /* Could do more checks here if page looks ok */ 864 /* 865 * Could adjust zone counters here to correct for the missing page. 866 */ 867 868 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 869 } 870 871 /* 872 * Do all that is necessary to remove user space mappings. Unmap 873 * the pages and send SIGBUS to the processes if the data was dirty. 874 */ 875 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 876 int trapno, int flags, struct page **hpagep) 877 { 878 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 879 struct address_space *mapping; 880 LIST_HEAD(tokill); 881 int ret; 882 int kill = 1, forcekill; 883 struct page *hpage = *hpagep; 884 struct page *ppage; 885 886 /* 887 * Here we are interested only in user-mapped pages, so skip any 888 * other types of pages. 889 */ 890 if (PageReserved(p) || PageSlab(p)) 891 return SWAP_SUCCESS; 892 if (!(PageLRU(hpage) || PageHuge(p))) 893 return SWAP_SUCCESS; 894 895 /* 896 * This check implies we don't kill processes if their pages 897 * are in the swap cache early. Those are always late kills. 898 */ 899 if (!page_mapped(hpage)) 900 return SWAP_SUCCESS; 901 902 if (PageKsm(p)) { 903 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn); 904 return SWAP_FAIL; 905 } 906 907 if (PageSwapCache(p)) { 908 printk(KERN_ERR 909 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 910 ttu |= TTU_IGNORE_HWPOISON; 911 } 912 913 /* 914 * Propagate the dirty bit from PTEs to struct page first, because we 915 * need this to decide if we should kill or just drop the page. 916 * XXX: the dirty test could be racy: set_page_dirty() may not always 917 * be called inside page lock (it's recommended but not enforced). 918 */ 919 mapping = page_mapping(hpage); 920 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 921 mapping_cap_writeback_dirty(mapping)) { 922 if (page_mkclean(hpage)) { 923 SetPageDirty(hpage); 924 } else { 925 kill = 0; 926 ttu |= TTU_IGNORE_HWPOISON; 927 printk(KERN_INFO 928 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 929 pfn); 930 } 931 } 932 933 /* 934 * ppage: poisoned page 935 * if p is regular page(4k page) 936 * ppage == real poisoned page; 937 * else p is hugetlb or THP, ppage == head page. 938 */ 939 ppage = hpage; 940 941 if (PageTransHuge(hpage)) { 942 /* 943 * Verify that this isn't a hugetlbfs head page, the check for 944 * PageAnon is just for avoid tripping a split_huge_page 945 * internal debug check, as split_huge_page refuses to deal with 946 * anything that isn't an anon page. PageAnon can't go away fro 947 * under us because we hold a refcount on the hpage, without a 948 * refcount on the hpage. split_huge_page can't be safely called 949 * in the first place, having a refcount on the tail isn't 950 * enough * to be safe. 951 */ 952 if (!PageHuge(hpage) && PageAnon(hpage)) { 953 if (unlikely(split_huge_page(hpage))) { 954 /* 955 * FIXME: if splitting THP is failed, it is 956 * better to stop the following operation rather 957 * than causing panic by unmapping. System might 958 * survive if the page is freed later. 959 */ 960 printk(KERN_INFO 961 "MCE %#lx: failed to split THP\n", pfn); 962 963 BUG_ON(!PageHWPoison(p)); 964 return SWAP_FAIL; 965 } 966 /* 967 * We pinned the head page for hwpoison handling, 968 * now we split the thp and we are interested in 969 * the hwpoisoned raw page, so move the refcount 970 * to it. Similarly, page lock is shifted. 971 */ 972 if (hpage != p) { 973 if (!(flags & MF_COUNT_INCREASED)) { 974 put_page(hpage); 975 get_page(p); 976 } 977 lock_page(p); 978 unlock_page(hpage); 979 *hpagep = p; 980 } 981 /* THP is split, so ppage should be the real poisoned page. */ 982 ppage = p; 983 } 984 } 985 986 /* 987 * First collect all the processes that have the page 988 * mapped in dirty form. This has to be done before try_to_unmap, 989 * because ttu takes the rmap data structures down. 990 * 991 * Error handling: We ignore errors here because 992 * there's nothing that can be done. 993 */ 994 if (kill) 995 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED); 996 997 ret = try_to_unmap(ppage, ttu); 998 if (ret != SWAP_SUCCESS) 999 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 1000 pfn, page_mapcount(ppage)); 1001 1002 /* 1003 * Now that the dirty bit has been propagated to the 1004 * struct page and all unmaps done we can decide if 1005 * killing is needed or not. Only kill when the page 1006 * was dirty or the process is not restartable, 1007 * otherwise the tokill list is merely 1008 * freed. When there was a problem unmapping earlier 1009 * use a more force-full uncatchable kill to prevent 1010 * any accesses to the poisoned memory. 1011 */ 1012 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL); 1013 kill_procs(&tokill, forcekill, trapno, 1014 ret != SWAP_SUCCESS, p, pfn, flags); 1015 1016 return ret; 1017 } 1018 1019 static void set_page_hwpoison_huge_page(struct page *hpage) 1020 { 1021 int i; 1022 int nr_pages = 1 << compound_order(hpage); 1023 for (i = 0; i < nr_pages; i++) 1024 SetPageHWPoison(hpage + i); 1025 } 1026 1027 static void clear_page_hwpoison_huge_page(struct page *hpage) 1028 { 1029 int i; 1030 int nr_pages = 1 << compound_order(hpage); 1031 for (i = 0; i < nr_pages; i++) 1032 ClearPageHWPoison(hpage + i); 1033 } 1034 1035 /** 1036 * memory_failure - Handle memory failure of a page. 1037 * @pfn: Page Number of the corrupted page 1038 * @trapno: Trap number reported in the signal to user space. 1039 * @flags: fine tune action taken 1040 * 1041 * This function is called by the low level machine check code 1042 * of an architecture when it detects hardware memory corruption 1043 * of a page. It tries its best to recover, which includes 1044 * dropping pages, killing processes etc. 1045 * 1046 * The function is primarily of use for corruptions that 1047 * happen outside the current execution context (e.g. when 1048 * detected by a background scrubber) 1049 * 1050 * Must run in process context (e.g. a work queue) with interrupts 1051 * enabled and no spinlocks hold. 1052 */ 1053 int memory_failure(unsigned long pfn, int trapno, int flags) 1054 { 1055 struct page_state *ps; 1056 struct page *p; 1057 struct page *hpage; 1058 int res; 1059 unsigned int nr_pages; 1060 unsigned long page_flags; 1061 1062 if (!sysctl_memory_failure_recovery) 1063 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1064 1065 if (!pfn_valid(pfn)) { 1066 printk(KERN_ERR 1067 "MCE %#lx: memory outside kernel control\n", 1068 pfn); 1069 return -ENXIO; 1070 } 1071 1072 p = pfn_to_page(pfn); 1073 hpage = compound_head(p); 1074 if (TestSetPageHWPoison(p)) { 1075 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1076 return 0; 1077 } 1078 1079 /* 1080 * Currently errors on hugetlbfs pages are measured in hugepage units, 1081 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1082 * transparent hugepages, they are supposed to be split and error 1083 * measurement is done in normal page units. So nr_pages should be one 1084 * in this case. 1085 */ 1086 if (PageHuge(p)) 1087 nr_pages = 1 << compound_order(hpage); 1088 else /* normal page or thp */ 1089 nr_pages = 1; 1090 atomic_long_add(nr_pages, &num_poisoned_pages); 1091 1092 /* 1093 * We need/can do nothing about count=0 pages. 1094 * 1) it's a free page, and therefore in safe hand: 1095 * prep_new_page() will be the gate keeper. 1096 * 2) it's a free hugepage, which is also safe: 1097 * an affected hugepage will be dequeued from hugepage freelist, 1098 * so there's no concern about reusing it ever after. 1099 * 3) it's part of a non-compound high order page. 1100 * Implies some kernel user: cannot stop them from 1101 * R/W the page; let's pray that the page has been 1102 * used and will be freed some time later. 1103 * In fact it's dangerous to directly bump up page count from 0, 1104 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1105 */ 1106 if (!(flags & MF_COUNT_INCREASED) && 1107 !get_page_unless_zero(hpage)) { 1108 if (is_free_buddy_page(p)) { 1109 action_result(pfn, "free buddy", DELAYED); 1110 return 0; 1111 } else if (PageHuge(hpage)) { 1112 /* 1113 * Check "filter hit" and "race with other subpage." 1114 */ 1115 lock_page(hpage); 1116 if (PageHWPoison(hpage)) { 1117 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1118 || (p != hpage && TestSetPageHWPoison(hpage))) { 1119 atomic_long_sub(nr_pages, &num_poisoned_pages); 1120 unlock_page(hpage); 1121 return 0; 1122 } 1123 } 1124 set_page_hwpoison_huge_page(hpage); 1125 res = dequeue_hwpoisoned_huge_page(hpage); 1126 action_result(pfn, "free huge", 1127 res ? IGNORED : DELAYED); 1128 unlock_page(hpage); 1129 return res; 1130 } else { 1131 action_result(pfn, "high order kernel", IGNORED); 1132 return -EBUSY; 1133 } 1134 } 1135 1136 /* 1137 * We ignore non-LRU pages for good reasons. 1138 * - PG_locked is only well defined for LRU pages and a few others 1139 * - to avoid races with __set_page_locked() 1140 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1141 * The check (unnecessarily) ignores LRU pages being isolated and 1142 * walked by the page reclaim code, however that's not a big loss. 1143 */ 1144 if (!PageHuge(p) && !PageTransTail(p)) { 1145 if (!PageLRU(p)) 1146 shake_page(p, 0); 1147 if (!PageLRU(p)) { 1148 /* 1149 * shake_page could have turned it free. 1150 */ 1151 if (is_free_buddy_page(p)) { 1152 if (flags & MF_COUNT_INCREASED) 1153 action_result(pfn, "free buddy", DELAYED); 1154 else 1155 action_result(pfn, "free buddy, 2nd try", DELAYED); 1156 return 0; 1157 } 1158 } 1159 } 1160 1161 lock_page(hpage); 1162 1163 /* 1164 * The page could have changed compound pages during the locking. 1165 * If this happens just bail out. 1166 */ 1167 if (compound_head(p) != hpage) { 1168 action_result(pfn, "different compound page after locking", IGNORED); 1169 res = -EBUSY; 1170 goto out; 1171 } 1172 1173 /* 1174 * We use page flags to determine what action should be taken, but 1175 * the flags can be modified by the error containment action. One 1176 * example is an mlocked page, where PG_mlocked is cleared by 1177 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1178 * correctly, we save a copy of the page flags at this time. 1179 */ 1180 page_flags = p->flags; 1181 1182 /* 1183 * unpoison always clear PG_hwpoison inside page lock 1184 */ 1185 if (!PageHWPoison(p)) { 1186 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1187 atomic_long_sub(nr_pages, &num_poisoned_pages); 1188 put_page(hpage); 1189 res = 0; 1190 goto out; 1191 } 1192 if (hwpoison_filter(p)) { 1193 if (TestClearPageHWPoison(p)) 1194 atomic_long_sub(nr_pages, &num_poisoned_pages); 1195 unlock_page(hpage); 1196 put_page(hpage); 1197 return 0; 1198 } 1199 1200 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1201 goto identify_page_state; 1202 1203 /* 1204 * For error on the tail page, we should set PG_hwpoison 1205 * on the head page to show that the hugepage is hwpoisoned 1206 */ 1207 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1208 action_result(pfn, "hugepage already hardware poisoned", 1209 IGNORED); 1210 unlock_page(hpage); 1211 put_page(hpage); 1212 return 0; 1213 } 1214 /* 1215 * Set PG_hwpoison on all pages in an error hugepage, 1216 * because containment is done in hugepage unit for now. 1217 * Since we have done TestSetPageHWPoison() for the head page with 1218 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1219 */ 1220 if (PageHuge(p)) 1221 set_page_hwpoison_huge_page(hpage); 1222 1223 /* 1224 * It's very difficult to mess with pages currently under IO 1225 * and in many cases impossible, so we just avoid it here. 1226 */ 1227 wait_on_page_writeback(p); 1228 1229 /* 1230 * Now take care of user space mappings. 1231 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1232 * 1233 * When the raw error page is thp tail page, hpage points to the raw 1234 * page after thp split. 1235 */ 1236 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) 1237 != SWAP_SUCCESS) { 1238 action_result(pfn, "unmapping failed", IGNORED); 1239 res = -EBUSY; 1240 goto out; 1241 } 1242 1243 /* 1244 * Torn down by someone else? 1245 */ 1246 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1247 action_result(pfn, "already truncated LRU", IGNORED); 1248 res = -EBUSY; 1249 goto out; 1250 } 1251 1252 identify_page_state: 1253 res = -EBUSY; 1254 /* 1255 * The first check uses the current page flags which may not have any 1256 * relevant information. The second check with the saved page flagss is 1257 * carried out only if the first check can't determine the page status. 1258 */ 1259 for (ps = error_states;; ps++) 1260 if ((p->flags & ps->mask) == ps->res) 1261 break; 1262 1263 page_flags |= (p->flags & (1UL << PG_dirty)); 1264 1265 if (!ps->mask) 1266 for (ps = error_states;; ps++) 1267 if ((page_flags & ps->mask) == ps->res) 1268 break; 1269 res = page_action(ps, p, pfn); 1270 out: 1271 unlock_page(hpage); 1272 return res; 1273 } 1274 EXPORT_SYMBOL_GPL(memory_failure); 1275 1276 #define MEMORY_FAILURE_FIFO_ORDER 4 1277 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1278 1279 struct memory_failure_entry { 1280 unsigned long pfn; 1281 int trapno; 1282 int flags; 1283 }; 1284 1285 struct memory_failure_cpu { 1286 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1287 MEMORY_FAILURE_FIFO_SIZE); 1288 spinlock_t lock; 1289 struct work_struct work; 1290 }; 1291 1292 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1293 1294 /** 1295 * memory_failure_queue - Schedule handling memory failure of a page. 1296 * @pfn: Page Number of the corrupted page 1297 * @trapno: Trap number reported in the signal to user space. 1298 * @flags: Flags for memory failure handling 1299 * 1300 * This function is called by the low level hardware error handler 1301 * when it detects hardware memory corruption of a page. It schedules 1302 * the recovering of error page, including dropping pages, killing 1303 * processes etc. 1304 * 1305 * The function is primarily of use for corruptions that 1306 * happen outside the current execution context (e.g. when 1307 * detected by a background scrubber) 1308 * 1309 * Can run in IRQ context. 1310 */ 1311 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1312 { 1313 struct memory_failure_cpu *mf_cpu; 1314 unsigned long proc_flags; 1315 struct memory_failure_entry entry = { 1316 .pfn = pfn, 1317 .trapno = trapno, 1318 .flags = flags, 1319 }; 1320 1321 mf_cpu = &get_cpu_var(memory_failure_cpu); 1322 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1323 if (kfifo_put(&mf_cpu->fifo, entry)) 1324 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1325 else 1326 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1327 pfn); 1328 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1329 put_cpu_var(memory_failure_cpu); 1330 } 1331 EXPORT_SYMBOL_GPL(memory_failure_queue); 1332 1333 static void memory_failure_work_func(struct work_struct *work) 1334 { 1335 struct memory_failure_cpu *mf_cpu; 1336 struct memory_failure_entry entry = { 0, }; 1337 unsigned long proc_flags; 1338 int gotten; 1339 1340 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1341 for (;;) { 1342 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1343 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1344 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1345 if (!gotten) 1346 break; 1347 if (entry.flags & MF_SOFT_OFFLINE) 1348 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1349 else 1350 memory_failure(entry.pfn, entry.trapno, entry.flags); 1351 } 1352 } 1353 1354 static int __init memory_failure_init(void) 1355 { 1356 struct memory_failure_cpu *mf_cpu; 1357 int cpu; 1358 1359 for_each_possible_cpu(cpu) { 1360 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1361 spin_lock_init(&mf_cpu->lock); 1362 INIT_KFIFO(mf_cpu->fifo); 1363 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1364 } 1365 1366 return 0; 1367 } 1368 core_initcall(memory_failure_init); 1369 1370 /** 1371 * unpoison_memory - Unpoison a previously poisoned page 1372 * @pfn: Page number of the to be unpoisoned page 1373 * 1374 * Software-unpoison a page that has been poisoned by 1375 * memory_failure() earlier. 1376 * 1377 * This is only done on the software-level, so it only works 1378 * for linux injected failures, not real hardware failures 1379 * 1380 * Returns 0 for success, otherwise -errno. 1381 */ 1382 int unpoison_memory(unsigned long pfn) 1383 { 1384 struct page *page; 1385 struct page *p; 1386 int freeit = 0; 1387 unsigned int nr_pages; 1388 1389 if (!pfn_valid(pfn)) 1390 return -ENXIO; 1391 1392 p = pfn_to_page(pfn); 1393 page = compound_head(p); 1394 1395 if (!PageHWPoison(p)) { 1396 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1397 return 0; 1398 } 1399 1400 /* 1401 * unpoison_memory() can encounter thp only when the thp is being 1402 * worked by memory_failure() and the page lock is not held yet. 1403 * In such case, we yield to memory_failure() and make unpoison fail. 1404 */ 1405 if (!PageHuge(page) && PageTransHuge(page)) { 1406 pr_info("MCE: Memory failure is now running on %#lx\n", pfn); 1407 return 0; 1408 } 1409 1410 nr_pages = 1 << compound_order(page); 1411 1412 if (!get_page_unless_zero(page)) { 1413 /* 1414 * Since HWPoisoned hugepage should have non-zero refcount, 1415 * race between memory failure and unpoison seems to happen. 1416 * In such case unpoison fails and memory failure runs 1417 * to the end. 1418 */ 1419 if (PageHuge(page)) { 1420 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1421 return 0; 1422 } 1423 if (TestClearPageHWPoison(p)) 1424 atomic_long_dec(&num_poisoned_pages); 1425 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1426 return 0; 1427 } 1428 1429 lock_page(page); 1430 /* 1431 * This test is racy because PG_hwpoison is set outside of page lock. 1432 * That's acceptable because that won't trigger kernel panic. Instead, 1433 * the PG_hwpoison page will be caught and isolated on the entrance to 1434 * the free buddy page pool. 1435 */ 1436 if (TestClearPageHWPoison(page)) { 1437 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1438 atomic_long_sub(nr_pages, &num_poisoned_pages); 1439 freeit = 1; 1440 if (PageHuge(page)) 1441 clear_page_hwpoison_huge_page(page); 1442 } 1443 unlock_page(page); 1444 1445 put_page(page); 1446 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1447 put_page(page); 1448 1449 return 0; 1450 } 1451 EXPORT_SYMBOL(unpoison_memory); 1452 1453 static struct page *new_page(struct page *p, unsigned long private, int **x) 1454 { 1455 int nid = page_to_nid(p); 1456 if (PageHuge(p)) 1457 return alloc_huge_page_node(page_hstate(compound_head(p)), 1458 nid); 1459 else 1460 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1461 } 1462 1463 /* 1464 * Safely get reference count of an arbitrary page. 1465 * Returns 0 for a free page, -EIO for a zero refcount page 1466 * that is not free, and 1 for any other page type. 1467 * For 1 the page is returned with increased page count, otherwise not. 1468 */ 1469 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1470 { 1471 int ret; 1472 1473 if (flags & MF_COUNT_INCREASED) 1474 return 1; 1475 1476 /* 1477 * When the target page is a free hugepage, just remove it 1478 * from free hugepage list. 1479 */ 1480 if (!get_page_unless_zero(compound_head(p))) { 1481 if (PageHuge(p)) { 1482 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1483 ret = 0; 1484 } else if (is_free_buddy_page(p)) { 1485 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1486 ret = 0; 1487 } else { 1488 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1489 __func__, pfn, p->flags); 1490 ret = -EIO; 1491 } 1492 } else { 1493 /* Not a free page */ 1494 ret = 1; 1495 } 1496 return ret; 1497 } 1498 1499 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1500 { 1501 int ret = __get_any_page(page, pfn, flags); 1502 1503 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1504 /* 1505 * Try to free it. 1506 */ 1507 put_page(page); 1508 shake_page(page, 1); 1509 1510 /* 1511 * Did it turn free? 1512 */ 1513 ret = __get_any_page(page, pfn, 0); 1514 if (!PageLRU(page)) { 1515 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1516 pfn, page->flags); 1517 return -EIO; 1518 } 1519 } 1520 return ret; 1521 } 1522 1523 static int soft_offline_huge_page(struct page *page, int flags) 1524 { 1525 int ret; 1526 unsigned long pfn = page_to_pfn(page); 1527 struct page *hpage = compound_head(page); 1528 LIST_HEAD(pagelist); 1529 1530 /* 1531 * This double-check of PageHWPoison is to avoid the race with 1532 * memory_failure(). See also comment in __soft_offline_page(). 1533 */ 1534 lock_page(hpage); 1535 if (PageHWPoison(hpage)) { 1536 unlock_page(hpage); 1537 put_page(hpage); 1538 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1539 return -EBUSY; 1540 } 1541 unlock_page(hpage); 1542 1543 /* Keep page count to indicate a given hugepage is isolated. */ 1544 list_move(&hpage->lru, &pagelist); 1545 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1546 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1547 if (ret) { 1548 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1549 pfn, ret, page->flags); 1550 /* 1551 * We know that soft_offline_huge_page() tries to migrate 1552 * only one hugepage pointed to by hpage, so we need not 1553 * run through the pagelist here. 1554 */ 1555 putback_active_hugepage(hpage); 1556 if (ret > 0) 1557 ret = -EIO; 1558 } else { 1559 /* overcommit hugetlb page will be freed to buddy */ 1560 if (PageHuge(page)) { 1561 set_page_hwpoison_huge_page(hpage); 1562 dequeue_hwpoisoned_huge_page(hpage); 1563 atomic_long_add(1 << compound_order(hpage), 1564 &num_poisoned_pages); 1565 } else { 1566 SetPageHWPoison(page); 1567 atomic_long_inc(&num_poisoned_pages); 1568 } 1569 } 1570 return ret; 1571 } 1572 1573 static int __soft_offline_page(struct page *page, int flags) 1574 { 1575 int ret; 1576 unsigned long pfn = page_to_pfn(page); 1577 1578 /* 1579 * Check PageHWPoison again inside page lock because PageHWPoison 1580 * is set by memory_failure() outside page lock. Note that 1581 * memory_failure() also double-checks PageHWPoison inside page lock, 1582 * so there's no race between soft_offline_page() and memory_failure(). 1583 */ 1584 lock_page(page); 1585 wait_on_page_writeback(page); 1586 if (PageHWPoison(page)) { 1587 unlock_page(page); 1588 put_page(page); 1589 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1590 return -EBUSY; 1591 } 1592 /* 1593 * Try to invalidate first. This should work for 1594 * non dirty unmapped page cache pages. 1595 */ 1596 ret = invalidate_inode_page(page); 1597 unlock_page(page); 1598 /* 1599 * RED-PEN would be better to keep it isolated here, but we 1600 * would need to fix isolation locking first. 1601 */ 1602 if (ret == 1) { 1603 put_page(page); 1604 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1605 SetPageHWPoison(page); 1606 atomic_long_inc(&num_poisoned_pages); 1607 return 0; 1608 } 1609 1610 /* 1611 * Simple invalidation didn't work. 1612 * Try to migrate to a new page instead. migrate.c 1613 * handles a large number of cases for us. 1614 */ 1615 ret = isolate_lru_page(page); 1616 /* 1617 * Drop page reference which is came from get_any_page() 1618 * successful isolate_lru_page() already took another one. 1619 */ 1620 put_page(page); 1621 if (!ret) { 1622 LIST_HEAD(pagelist); 1623 inc_zone_page_state(page, NR_ISOLATED_ANON + 1624 page_is_file_cache(page)); 1625 list_add(&page->lru, &pagelist); 1626 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1627 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1628 if (ret) { 1629 if (!list_empty(&pagelist)) { 1630 list_del(&page->lru); 1631 dec_zone_page_state(page, NR_ISOLATED_ANON + 1632 page_is_file_cache(page)); 1633 putback_lru_page(page); 1634 } 1635 1636 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1637 pfn, ret, page->flags); 1638 if (ret > 0) 1639 ret = -EIO; 1640 } else { 1641 /* 1642 * After page migration succeeds, the source page can 1643 * be trapped in pagevec and actual freeing is delayed. 1644 * Freeing code works differently based on PG_hwpoison, 1645 * so there's a race. We need to make sure that the 1646 * source page should be freed back to buddy before 1647 * setting PG_hwpoison. 1648 */ 1649 if (!is_free_buddy_page(page)) 1650 drain_all_pages(page_zone(page)); 1651 SetPageHWPoison(page); 1652 if (!is_free_buddy_page(page)) 1653 pr_info("soft offline: %#lx: page leaked\n", 1654 pfn); 1655 atomic_long_inc(&num_poisoned_pages); 1656 } 1657 } else { 1658 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1659 pfn, ret, page_count(page), page->flags); 1660 } 1661 return ret; 1662 } 1663 1664 /** 1665 * soft_offline_page - Soft offline a page. 1666 * @page: page to offline 1667 * @flags: flags. Same as memory_failure(). 1668 * 1669 * Returns 0 on success, otherwise negated errno. 1670 * 1671 * Soft offline a page, by migration or invalidation, 1672 * without killing anything. This is for the case when 1673 * a page is not corrupted yet (so it's still valid to access), 1674 * but has had a number of corrected errors and is better taken 1675 * out. 1676 * 1677 * The actual policy on when to do that is maintained by 1678 * user space. 1679 * 1680 * This should never impact any application or cause data loss, 1681 * however it might take some time. 1682 * 1683 * This is not a 100% solution for all memory, but tries to be 1684 * ``good enough'' for the majority of memory. 1685 */ 1686 int soft_offline_page(struct page *page, int flags) 1687 { 1688 int ret; 1689 unsigned long pfn = page_to_pfn(page); 1690 struct page *hpage = compound_head(page); 1691 1692 if (PageHWPoison(page)) { 1693 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1694 return -EBUSY; 1695 } 1696 if (!PageHuge(page) && PageTransHuge(hpage)) { 1697 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { 1698 pr_info("soft offline: %#lx: failed to split THP\n", 1699 pfn); 1700 return -EBUSY; 1701 } 1702 } 1703 1704 get_online_mems(); 1705 1706 /* 1707 * Isolate the page, so that it doesn't get reallocated if it 1708 * was free. This flag should be kept set until the source page 1709 * is freed and PG_hwpoison on it is set. 1710 */ 1711 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 1712 set_migratetype_isolate(page, true); 1713 1714 ret = get_any_page(page, pfn, flags); 1715 put_online_mems(); 1716 if (ret > 0) { /* for in-use pages */ 1717 if (PageHuge(page)) 1718 ret = soft_offline_huge_page(page, flags); 1719 else 1720 ret = __soft_offline_page(page, flags); 1721 } else if (ret == 0) { /* for free pages */ 1722 if (PageHuge(page)) { 1723 set_page_hwpoison_huge_page(hpage); 1724 dequeue_hwpoisoned_huge_page(hpage); 1725 atomic_long_add(1 << compound_order(hpage), 1726 &num_poisoned_pages); 1727 } else { 1728 SetPageHWPoison(page); 1729 atomic_long_inc(&num_poisoned_pages); 1730 } 1731 } 1732 unset_migratetype_isolate(page, MIGRATE_MOVABLE); 1733 return ret; 1734 } 1735