1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66
67 static int sysctl_memory_failure_early_kill __read_mostly;
68
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72
73 static bool hw_memory_failure __read_mostly = false;
74
75 static DEFINE_MUTEX(mf_mutex);
76
num_poisoned_pages_inc(unsigned long pfn)77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 atomic_long_inc(&num_poisoned_pages);
80 memblk_nr_poison_inc(pfn);
81 }
82
num_poisoned_pages_sub(unsigned long pfn,long i)83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 atomic_long_sub(i, &num_poisoned_pages);
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
88 }
89
90 /**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94 #define MF_ATTR_RO(_name) \
95 static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
97 char *buf) \
98 { \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
102 } \
103 static DEVICE_ATTR_RO(_name)
104
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110
111 static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
117 NULL,
118 };
119
120 const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
123 };
124
125 static struct ctl_table memory_failure_table[] = {
126 {
127 .procname = "memory_failure_early_kill",
128 .data = &sysctl_memory_failure_early_kill,
129 .maxlen = sizeof(sysctl_memory_failure_early_kill),
130 .mode = 0644,
131 .proc_handler = proc_dointvec_minmax,
132 .extra1 = SYSCTL_ZERO,
133 .extra2 = SYSCTL_ONE,
134 },
135 {
136 .procname = "memory_failure_recovery",
137 .data = &sysctl_memory_failure_recovery,
138 .maxlen = sizeof(sysctl_memory_failure_recovery),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ZERO,
142 .extra2 = SYSCTL_ONE,
143 },
144 { }
145 };
146
147 /*
148 * Return values:
149 * 1: the page is dissolved (if needed) and taken off from buddy,
150 * 0: the page is dissolved (if needed) and not taken off from buddy,
151 * < 0: failed to dissolve.
152 */
__page_handle_poison(struct page * page)153 static int __page_handle_poison(struct page *page)
154 {
155 int ret;
156
157 /*
158 * zone_pcp_disable() can't be used here. It will
159 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold
160 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
161 * optimization is enabled. This will break current lock dependency
162 * chain and leads to deadlock.
163 * Disabling pcp before dissolving the page was a deterministic
164 * approach because we made sure that those pages cannot end up in any
165 * PCP list. Draining PCP lists expels those pages to the buddy system,
166 * but nothing guarantees that those pages do not get back to a PCP
167 * queue if we need to refill those.
168 */
169 ret = dissolve_free_huge_page(page);
170 if (!ret) {
171 drain_all_pages(page_zone(page));
172 ret = take_page_off_buddy(page);
173 }
174
175 return ret;
176 }
177
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)178 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
179 {
180 if (hugepage_or_freepage) {
181 /*
182 * Doing this check for free pages is also fine since dissolve_free_huge_page
183 * returns 0 for non-hugetlb pages as well.
184 */
185 if (__page_handle_poison(page) <= 0)
186 /*
187 * We could fail to take off the target page from buddy
188 * for example due to racy page allocation, but that's
189 * acceptable because soft-offlined page is not broken
190 * and if someone really want to use it, they should
191 * take it.
192 */
193 return false;
194 }
195
196 SetPageHWPoison(page);
197 if (release)
198 put_page(page);
199 page_ref_inc(page);
200 num_poisoned_pages_inc(page_to_pfn(page));
201
202 return true;
203 }
204
205 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
206
207 u32 hwpoison_filter_enable = 0;
208 u32 hwpoison_filter_dev_major = ~0U;
209 u32 hwpoison_filter_dev_minor = ~0U;
210 u64 hwpoison_filter_flags_mask;
211 u64 hwpoison_filter_flags_value;
212 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
216 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
217
hwpoison_filter_dev(struct page * p)218 static int hwpoison_filter_dev(struct page *p)
219 {
220 struct address_space *mapping;
221 dev_t dev;
222
223 if (hwpoison_filter_dev_major == ~0U &&
224 hwpoison_filter_dev_minor == ~0U)
225 return 0;
226
227 mapping = page_mapping(p);
228 if (mapping == NULL || mapping->host == NULL)
229 return -EINVAL;
230
231 dev = mapping->host->i_sb->s_dev;
232 if (hwpoison_filter_dev_major != ~0U &&
233 hwpoison_filter_dev_major != MAJOR(dev))
234 return -EINVAL;
235 if (hwpoison_filter_dev_minor != ~0U &&
236 hwpoison_filter_dev_minor != MINOR(dev))
237 return -EINVAL;
238
239 return 0;
240 }
241
hwpoison_filter_flags(struct page * p)242 static int hwpoison_filter_flags(struct page *p)
243 {
244 if (!hwpoison_filter_flags_mask)
245 return 0;
246
247 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 hwpoison_filter_flags_value)
249 return 0;
250 else
251 return -EINVAL;
252 }
253
254 /*
255 * This allows stress tests to limit test scope to a collection of tasks
256 * by putting them under some memcg. This prevents killing unrelated/important
257 * processes such as /sbin/init. Note that the target task may share clean
258 * pages with init (eg. libc text), which is harmless. If the target task
259 * share _dirty_ pages with another task B, the test scheme must make sure B
260 * is also included in the memcg. At last, due to race conditions this filter
261 * can only guarantee that the page either belongs to the memcg tasks, or is
262 * a freed page.
263 */
264 #ifdef CONFIG_MEMCG
265 u64 hwpoison_filter_memcg;
266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)267 static int hwpoison_filter_task(struct page *p)
268 {
269 if (!hwpoison_filter_memcg)
270 return 0;
271
272 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
273 return -EINVAL;
274
275 return 0;
276 }
277 #else
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p) { return 0; }
279 #endif
280
hwpoison_filter(struct page * p)281 int hwpoison_filter(struct page *p)
282 {
283 if (!hwpoison_filter_enable)
284 return 0;
285
286 if (hwpoison_filter_dev(p))
287 return -EINVAL;
288
289 if (hwpoison_filter_flags(p))
290 return -EINVAL;
291
292 if (hwpoison_filter_task(p))
293 return -EINVAL;
294
295 return 0;
296 }
297 #else
hwpoison_filter(struct page * p)298 int hwpoison_filter(struct page *p)
299 {
300 return 0;
301 }
302 #endif
303
304 EXPORT_SYMBOL_GPL(hwpoison_filter);
305
306 /*
307 * Kill all processes that have a poisoned page mapped and then isolate
308 * the page.
309 *
310 * General strategy:
311 * Find all processes having the page mapped and kill them.
312 * But we keep a page reference around so that the page is not
313 * actually freed yet.
314 * Then stash the page away
315 *
316 * There's no convenient way to get back to mapped processes
317 * from the VMAs. So do a brute-force search over all
318 * running processes.
319 *
320 * Remember that machine checks are not common (or rather
321 * if they are common you have other problems), so this shouldn't
322 * be a performance issue.
323 *
324 * Also there are some races possible while we get from the
325 * error detection to actually handle it.
326 */
327
328 struct to_kill {
329 struct list_head nd;
330 struct task_struct *tsk;
331 unsigned long addr;
332 short size_shift;
333 };
334
335 /*
336 * Send all the processes who have the page mapped a signal.
337 * ``action optional'' if they are not immediately affected by the error
338 * ``action required'' if error happened in current execution context
339 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
341 {
342 struct task_struct *t = tk->tsk;
343 short addr_lsb = tk->size_shift;
344 int ret = 0;
345
346 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347 pfn, t->comm, t->pid);
348
349 if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 ret = force_sig_mceerr(BUS_MCEERR_AR,
351 (void __user *)tk->addr, addr_lsb);
352 else
353 /*
354 * Signal other processes sharing the page if they have
355 * PF_MCE_EARLY set.
356 * Don't use force here, it's convenient if the signal
357 * can be temporarily blocked.
358 * This could cause a loop when the user sets SIGBUS
359 * to SIG_IGN, but hopefully no one will do that?
360 */
361 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362 addr_lsb, t);
363 if (ret < 0)
364 pr_info("Error sending signal to %s:%d: %d\n",
365 t->comm, t->pid, ret);
366 return ret;
367 }
368
369 /*
370 * Unknown page type encountered. Try to check whether it can turn PageLRU by
371 * lru_add_drain_all.
372 */
shake_page(struct page * p)373 void shake_page(struct page *p)
374 {
375 if (PageHuge(p))
376 return;
377 /*
378 * TODO: Could shrink slab caches here if a lightweight range-based
379 * shrinker will be available.
380 */
381 if (PageSlab(p))
382 return;
383
384 lru_add_drain_all();
385 }
386 EXPORT_SYMBOL_GPL(shake_page);
387
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)388 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
389 unsigned long address)
390 {
391 unsigned long ret = 0;
392 pgd_t *pgd;
393 p4d_t *p4d;
394 pud_t *pud;
395 pmd_t *pmd;
396 pte_t *pte;
397 pte_t ptent;
398
399 VM_BUG_ON_VMA(address == -EFAULT, vma);
400 pgd = pgd_offset(vma->vm_mm, address);
401 if (!pgd_present(*pgd))
402 return 0;
403 p4d = p4d_offset(pgd, address);
404 if (!p4d_present(*p4d))
405 return 0;
406 pud = pud_offset(p4d, address);
407 if (!pud_present(*pud))
408 return 0;
409 if (pud_devmap(*pud))
410 return PUD_SHIFT;
411 pmd = pmd_offset(pud, address);
412 if (!pmd_present(*pmd))
413 return 0;
414 if (pmd_devmap(*pmd))
415 return PMD_SHIFT;
416 pte = pte_offset_map(pmd, address);
417 if (!pte)
418 return 0;
419 ptent = ptep_get(pte);
420 if (pte_present(ptent) && pte_devmap(ptent))
421 ret = PAGE_SHIFT;
422 pte_unmap(pte);
423 return ret;
424 }
425
426 /*
427 * Failure handling: if we can't find or can't kill a process there's
428 * not much we can do. We just print a message and ignore otherwise.
429 */
430
431 #define FSDAX_INVALID_PGOFF ULONG_MAX
432
433 /*
434 * Schedule a process for later kill.
435 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
436 *
437 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
438 * filesystem with a memory failure handler has claimed the
439 * memory_failure event. In all other cases, page->index and
440 * page->mapping are sufficient for mapping the page back to its
441 * corresponding user virtual address.
442 */
__add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long ksm_addr,pgoff_t fsdax_pgoff)443 static void __add_to_kill(struct task_struct *tsk, struct page *p,
444 struct vm_area_struct *vma, struct list_head *to_kill,
445 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
446 {
447 struct to_kill *tk;
448
449 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
450 if (!tk) {
451 pr_err("Out of memory while machine check handling\n");
452 return;
453 }
454
455 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
456 if (is_zone_device_page(p)) {
457 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
458 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
459 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
460 } else
461 tk->size_shift = page_shift(compound_head(p));
462
463 /*
464 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
465 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
466 * so "tk->size_shift == 0" effectively checks no mapping on
467 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
468 * to a process' address space, it's possible not all N VMAs
469 * contain mappings for the page, but at least one VMA does.
470 * Only deliver SIGBUS with payload derived from the VMA that
471 * has a mapping for the page.
472 */
473 if (tk->addr == -EFAULT) {
474 pr_info("Unable to find user space address %lx in %s\n",
475 page_to_pfn(p), tsk->comm);
476 } else if (tk->size_shift == 0) {
477 kfree(tk);
478 return;
479 }
480
481 get_task_struct(tsk);
482 tk->tsk = tsk;
483 list_add_tail(&tk->nd, to_kill);
484 }
485
add_to_kill_anon_file(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill)486 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
487 struct vm_area_struct *vma,
488 struct list_head *to_kill)
489 {
490 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
491 }
492
493 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)494 static bool task_in_to_kill_list(struct list_head *to_kill,
495 struct task_struct *tsk)
496 {
497 struct to_kill *tk, *next;
498
499 list_for_each_entry_safe(tk, next, to_kill, nd) {
500 if (tk->tsk == tsk)
501 return true;
502 }
503
504 return false;
505 }
add_to_kill_ksm(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long ksm_addr)506 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
507 struct vm_area_struct *vma, struct list_head *to_kill,
508 unsigned long ksm_addr)
509 {
510 if (!task_in_to_kill_list(to_kill, tsk))
511 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
512 }
513 #endif
514 /*
515 * Kill the processes that have been collected earlier.
516 *
517 * Only do anything when FORCEKILL is set, otherwise just free the
518 * list (this is used for clean pages which do not need killing)
519 * Also when FAIL is set do a force kill because something went
520 * wrong earlier.
521 */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)522 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
523 unsigned long pfn, int flags)
524 {
525 struct to_kill *tk, *next;
526
527 list_for_each_entry_safe(tk, next, to_kill, nd) {
528 if (forcekill) {
529 /*
530 * In case something went wrong with munmapping
531 * make sure the process doesn't catch the
532 * signal and then access the memory. Just kill it.
533 */
534 if (fail || tk->addr == -EFAULT) {
535 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
536 pfn, tk->tsk->comm, tk->tsk->pid);
537 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
538 tk->tsk, PIDTYPE_PID);
539 }
540
541 /*
542 * In theory the process could have mapped
543 * something else on the address in-between. We could
544 * check for that, but we need to tell the
545 * process anyways.
546 */
547 else if (kill_proc(tk, pfn, flags) < 0)
548 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
549 pfn, tk->tsk->comm, tk->tsk->pid);
550 }
551 list_del(&tk->nd);
552 put_task_struct(tk->tsk);
553 kfree(tk);
554 }
555 }
556
557 /*
558 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
559 * on behalf of the thread group. Return task_struct of the (first found)
560 * dedicated thread if found, and return NULL otherwise.
561 *
562 * We already hold rcu lock in the caller, so we don't have to call
563 * rcu_read_lock/unlock() in this function.
564 */
find_early_kill_thread(struct task_struct * tsk)565 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
566 {
567 struct task_struct *t;
568
569 for_each_thread(tsk, t) {
570 if (t->flags & PF_MCE_PROCESS) {
571 if (t->flags & PF_MCE_EARLY)
572 return t;
573 } else {
574 if (sysctl_memory_failure_early_kill)
575 return t;
576 }
577 }
578 return NULL;
579 }
580
581 /*
582 * Determine whether a given process is "early kill" process which expects
583 * to be signaled when some page under the process is hwpoisoned.
584 * Return task_struct of the dedicated thread (main thread unless explicitly
585 * specified) if the process is "early kill" and otherwise returns NULL.
586 *
587 * Note that the above is true for Action Optional case. For Action Required
588 * case, it's only meaningful to the current thread which need to be signaled
589 * with SIGBUS, this error is Action Optional for other non current
590 * processes sharing the same error page,if the process is "early kill", the
591 * task_struct of the dedicated thread will also be returned.
592 */
task_early_kill(struct task_struct * tsk,int force_early)593 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
594 {
595 if (!tsk->mm)
596 return NULL;
597 /*
598 * Comparing ->mm here because current task might represent
599 * a subthread, while tsk always points to the main thread.
600 */
601 if (force_early && tsk->mm == current->mm)
602 return current;
603
604 return find_early_kill_thread(tsk);
605 }
606
607 /*
608 * Collect processes when the error hit an anonymous page.
609 */
collect_procs_anon(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)610 static void collect_procs_anon(struct folio *folio, struct page *page,
611 struct list_head *to_kill, int force_early)
612 {
613 struct vm_area_struct *vma;
614 struct task_struct *tsk;
615 struct anon_vma *av;
616 pgoff_t pgoff;
617
618 av = folio_lock_anon_vma_read(folio, NULL);
619 if (av == NULL) /* Not actually mapped anymore */
620 return;
621
622 pgoff = page_to_pgoff(page);
623 rcu_read_lock();
624 for_each_process(tsk) {
625 struct anon_vma_chain *vmac;
626 struct task_struct *t = task_early_kill(tsk, force_early);
627
628 if (!t)
629 continue;
630 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 pgoff, pgoff) {
632 vma = vmac->vma;
633 if (vma->vm_mm != t->mm)
634 continue;
635 if (!page_mapped_in_vma(page, vma))
636 continue;
637 add_to_kill_anon_file(t, page, vma, to_kill);
638 }
639 }
640 rcu_read_unlock();
641 anon_vma_unlock_read(av);
642 }
643
644 /*
645 * Collect processes when the error hit a file mapped page.
646 */
collect_procs_file(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)647 static void collect_procs_file(struct folio *folio, struct page *page,
648 struct list_head *to_kill, int force_early)
649 {
650 struct vm_area_struct *vma;
651 struct task_struct *tsk;
652 struct address_space *mapping = folio->mapping;
653 pgoff_t pgoff;
654
655 i_mmap_lock_read(mapping);
656 rcu_read_lock();
657 pgoff = page_to_pgoff(page);
658 for_each_process(tsk) {
659 struct task_struct *t = task_early_kill(tsk, force_early);
660
661 if (!t)
662 continue;
663 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 pgoff) {
665 /*
666 * Send early kill signal to tasks where a vma covers
667 * the page but the corrupted page is not necessarily
668 * mapped in its pte.
669 * Assume applications who requested early kill want
670 * to be informed of all such data corruptions.
671 */
672 if (vma->vm_mm == t->mm)
673 add_to_kill_anon_file(t, page, vma, to_kill);
674 }
675 }
676 rcu_read_unlock();
677 i_mmap_unlock_read(mapping);
678 }
679
680 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)681 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
682 struct vm_area_struct *vma,
683 struct list_head *to_kill, pgoff_t pgoff)
684 {
685 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
686 }
687
688 /*
689 * Collect processes when the error hit a fsdax page.
690 */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill)691 static void collect_procs_fsdax(struct page *page,
692 struct address_space *mapping, pgoff_t pgoff,
693 struct list_head *to_kill)
694 {
695 struct vm_area_struct *vma;
696 struct task_struct *tsk;
697
698 i_mmap_lock_read(mapping);
699 rcu_read_lock();
700 for_each_process(tsk) {
701 struct task_struct *t = task_early_kill(tsk, true);
702
703 if (!t)
704 continue;
705 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
706 if (vma->vm_mm == t->mm)
707 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
708 }
709 }
710 rcu_read_unlock();
711 i_mmap_unlock_read(mapping);
712 }
713 #endif /* CONFIG_FS_DAX */
714
715 /*
716 * Collect the processes who have the corrupted page mapped to kill.
717 */
collect_procs(struct folio * folio,struct page * page,struct list_head * tokill,int force_early)718 static void collect_procs(struct folio *folio, struct page *page,
719 struct list_head *tokill, int force_early)
720 {
721 if (!folio->mapping)
722 return;
723 if (unlikely(PageKsm(page)))
724 collect_procs_ksm(page, tokill, force_early);
725 else if (PageAnon(page))
726 collect_procs_anon(folio, page, tokill, force_early);
727 else
728 collect_procs_file(folio, page, tokill, force_early);
729 }
730
731 struct hwpoison_walk {
732 struct to_kill tk;
733 unsigned long pfn;
734 int flags;
735 };
736
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)737 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
738 {
739 tk->addr = addr;
740 tk->size_shift = shift;
741 }
742
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)743 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
744 unsigned long poisoned_pfn, struct to_kill *tk)
745 {
746 unsigned long pfn = 0;
747
748 if (pte_present(pte)) {
749 pfn = pte_pfn(pte);
750 } else {
751 swp_entry_t swp = pte_to_swp_entry(pte);
752
753 if (is_hwpoison_entry(swp))
754 pfn = swp_offset_pfn(swp);
755 }
756
757 if (!pfn || pfn != poisoned_pfn)
758 return 0;
759
760 set_to_kill(tk, addr, shift);
761 return 1;
762 }
763
764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)765 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
766 struct hwpoison_walk *hwp)
767 {
768 pmd_t pmd = *pmdp;
769 unsigned long pfn;
770 unsigned long hwpoison_vaddr;
771
772 if (!pmd_present(pmd))
773 return 0;
774 pfn = pmd_pfn(pmd);
775 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
776 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
777 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
778 return 1;
779 }
780 return 0;
781 }
782 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)783 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
784 struct hwpoison_walk *hwp)
785 {
786 return 0;
787 }
788 #endif
789
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)790 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
791 unsigned long end, struct mm_walk *walk)
792 {
793 struct hwpoison_walk *hwp = walk->private;
794 int ret = 0;
795 pte_t *ptep, *mapped_pte;
796 spinlock_t *ptl;
797
798 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
799 if (ptl) {
800 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
801 spin_unlock(ptl);
802 goto out;
803 }
804
805 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
806 addr, &ptl);
807 if (!ptep)
808 goto out;
809
810 for (; addr != end; ptep++, addr += PAGE_SIZE) {
811 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
812 hwp->pfn, &hwp->tk);
813 if (ret == 1)
814 break;
815 }
816 pte_unmap_unlock(mapped_pte, ptl);
817 out:
818 cond_resched();
819 return ret;
820 }
821
822 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)823 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
824 unsigned long addr, unsigned long end,
825 struct mm_walk *walk)
826 {
827 struct hwpoison_walk *hwp = walk->private;
828 pte_t pte = huge_ptep_get(ptep);
829 struct hstate *h = hstate_vma(walk->vma);
830
831 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
832 hwp->pfn, &hwp->tk);
833 }
834 #else
835 #define hwpoison_hugetlb_range NULL
836 #endif
837
838 static const struct mm_walk_ops hwpoison_walk_ops = {
839 .pmd_entry = hwpoison_pte_range,
840 .hugetlb_entry = hwpoison_hugetlb_range,
841 .walk_lock = PGWALK_RDLOCK,
842 };
843
844 /*
845 * Sends SIGBUS to the current process with error info.
846 *
847 * This function is intended to handle "Action Required" MCEs on already
848 * hardware poisoned pages. They could happen, for example, when
849 * memory_failure() failed to unmap the error page at the first call, or
850 * when multiple local machine checks happened on different CPUs.
851 *
852 * MCE handler currently has no easy access to the error virtual address,
853 * so this function walks page table to find it. The returned virtual address
854 * is proper in most cases, but it could be wrong when the application
855 * process has multiple entries mapping the error page.
856 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)857 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
858 int flags)
859 {
860 int ret;
861 struct hwpoison_walk priv = {
862 .pfn = pfn,
863 };
864 priv.tk.tsk = p;
865
866 if (!p->mm)
867 return -EFAULT;
868
869 mmap_read_lock(p->mm);
870 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
871 (void *)&priv);
872 if (ret == 1 && priv.tk.addr)
873 kill_proc(&priv.tk, pfn, flags);
874 else
875 ret = 0;
876 mmap_read_unlock(p->mm);
877 return ret > 0 ? -EHWPOISON : -EFAULT;
878 }
879
880 static const char *action_name[] = {
881 [MF_IGNORED] = "Ignored",
882 [MF_FAILED] = "Failed",
883 [MF_DELAYED] = "Delayed",
884 [MF_RECOVERED] = "Recovered",
885 };
886
887 static const char * const action_page_types[] = {
888 [MF_MSG_KERNEL] = "reserved kernel page",
889 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
890 [MF_MSG_SLAB] = "kernel slab page",
891 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
892 [MF_MSG_HUGE] = "huge page",
893 [MF_MSG_FREE_HUGE] = "free huge page",
894 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
895 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
896 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
897 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
898 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
899 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
900 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
901 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
902 [MF_MSG_CLEAN_LRU] = "clean LRU page",
903 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
904 [MF_MSG_BUDDY] = "free buddy page",
905 [MF_MSG_DAX] = "dax page",
906 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
907 [MF_MSG_UNKNOWN] = "unknown page",
908 };
909
910 /*
911 * XXX: It is possible that a page is isolated from LRU cache,
912 * and then kept in swap cache or failed to remove from page cache.
913 * The page count will stop it from being freed by unpoison.
914 * Stress tests should be aware of this memory leak problem.
915 */
delete_from_lru_cache(struct page * p)916 static int delete_from_lru_cache(struct page *p)
917 {
918 if (isolate_lru_page(p)) {
919 /*
920 * Clear sensible page flags, so that the buddy system won't
921 * complain when the page is unpoison-and-freed.
922 */
923 ClearPageActive(p);
924 ClearPageUnevictable(p);
925
926 /*
927 * Poisoned page might never drop its ref count to 0 so we have
928 * to uncharge it manually from its memcg.
929 */
930 mem_cgroup_uncharge(page_folio(p));
931
932 /*
933 * drop the page count elevated by isolate_lru_page()
934 */
935 put_page(p);
936 return 0;
937 }
938 return -EIO;
939 }
940
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)941 static int truncate_error_page(struct page *p, unsigned long pfn,
942 struct address_space *mapping)
943 {
944 int ret = MF_FAILED;
945
946 if (mapping->a_ops->error_remove_page) {
947 struct folio *folio = page_folio(p);
948 int err = mapping->a_ops->error_remove_page(mapping, p);
949
950 if (err != 0)
951 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
952 else if (!filemap_release_folio(folio, GFP_NOIO))
953 pr_info("%#lx: failed to release buffers\n", pfn);
954 else
955 ret = MF_RECOVERED;
956 } else {
957 /*
958 * If the file system doesn't support it just invalidate
959 * This fails on dirty or anything with private pages
960 */
961 if (invalidate_inode_page(p))
962 ret = MF_RECOVERED;
963 else
964 pr_info("%#lx: Failed to invalidate\n", pfn);
965 }
966
967 return ret;
968 }
969
970 struct page_state {
971 unsigned long mask;
972 unsigned long res;
973 enum mf_action_page_type type;
974
975 /* Callback ->action() has to unlock the relevant page inside it. */
976 int (*action)(struct page_state *ps, struct page *p);
977 };
978
979 /*
980 * Return true if page is still referenced by others, otherwise return
981 * false.
982 *
983 * The extra_pins is true when one extra refcount is expected.
984 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)985 static bool has_extra_refcount(struct page_state *ps, struct page *p,
986 bool extra_pins)
987 {
988 int count = page_count(p) - 1;
989
990 if (extra_pins)
991 count -= 1;
992
993 if (count > 0) {
994 pr_err("%#lx: %s still referenced by %d users\n",
995 page_to_pfn(p), action_page_types[ps->type], count);
996 return true;
997 }
998
999 return false;
1000 }
1001
1002 /*
1003 * Error hit kernel page.
1004 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1005 * could be more sophisticated.
1006 */
me_kernel(struct page_state * ps,struct page * p)1007 static int me_kernel(struct page_state *ps, struct page *p)
1008 {
1009 unlock_page(p);
1010 return MF_IGNORED;
1011 }
1012
1013 /*
1014 * Page in unknown state. Do nothing.
1015 */
me_unknown(struct page_state * ps,struct page * p)1016 static int me_unknown(struct page_state *ps, struct page *p)
1017 {
1018 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1019 unlock_page(p);
1020 return MF_FAILED;
1021 }
1022
1023 /*
1024 * Clean (or cleaned) page cache page.
1025 */
me_pagecache_clean(struct page_state * ps,struct page * p)1026 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1027 {
1028 int ret;
1029 struct address_space *mapping;
1030 bool extra_pins;
1031
1032 delete_from_lru_cache(p);
1033
1034 /*
1035 * For anonymous pages we're done the only reference left
1036 * should be the one m_f() holds.
1037 */
1038 if (PageAnon(p)) {
1039 ret = MF_RECOVERED;
1040 goto out;
1041 }
1042
1043 /*
1044 * Now truncate the page in the page cache. This is really
1045 * more like a "temporary hole punch"
1046 * Don't do this for block devices when someone else
1047 * has a reference, because it could be file system metadata
1048 * and that's not safe to truncate.
1049 */
1050 mapping = page_mapping(p);
1051 if (!mapping) {
1052 /*
1053 * Page has been teared down in the meanwhile
1054 */
1055 ret = MF_FAILED;
1056 goto out;
1057 }
1058
1059 /*
1060 * The shmem page is kept in page cache instead of truncating
1061 * so is expected to have an extra refcount after error-handling.
1062 */
1063 extra_pins = shmem_mapping(mapping);
1064
1065 /*
1066 * Truncation is a bit tricky. Enable it per file system for now.
1067 *
1068 * Open: to take i_rwsem or not for this? Right now we don't.
1069 */
1070 ret = truncate_error_page(p, page_to_pfn(p), mapping);
1071 if (has_extra_refcount(ps, p, extra_pins))
1072 ret = MF_FAILED;
1073
1074 out:
1075 unlock_page(p);
1076
1077 return ret;
1078 }
1079
1080 /*
1081 * Dirty pagecache page
1082 * Issues: when the error hit a hole page the error is not properly
1083 * propagated.
1084 */
me_pagecache_dirty(struct page_state * ps,struct page * p)1085 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1086 {
1087 struct address_space *mapping = page_mapping(p);
1088
1089 SetPageError(p);
1090 /* TBD: print more information about the file. */
1091 if (mapping) {
1092 /*
1093 * IO error will be reported by write(), fsync(), etc.
1094 * who check the mapping.
1095 * This way the application knows that something went
1096 * wrong with its dirty file data.
1097 *
1098 * There's one open issue:
1099 *
1100 * The EIO will be only reported on the next IO
1101 * operation and then cleared through the IO map.
1102 * Normally Linux has two mechanisms to pass IO error
1103 * first through the AS_EIO flag in the address space
1104 * and then through the PageError flag in the page.
1105 * Since we drop pages on memory failure handling the
1106 * only mechanism open to use is through AS_AIO.
1107 *
1108 * This has the disadvantage that it gets cleared on
1109 * the first operation that returns an error, while
1110 * the PageError bit is more sticky and only cleared
1111 * when the page is reread or dropped. If an
1112 * application assumes it will always get error on
1113 * fsync, but does other operations on the fd before
1114 * and the page is dropped between then the error
1115 * will not be properly reported.
1116 *
1117 * This can already happen even without hwpoisoned
1118 * pages: first on metadata IO errors (which only
1119 * report through AS_EIO) or when the page is dropped
1120 * at the wrong time.
1121 *
1122 * So right now we assume that the application DTRT on
1123 * the first EIO, but we're not worse than other parts
1124 * of the kernel.
1125 */
1126 mapping_set_error(mapping, -EIO);
1127 }
1128
1129 return me_pagecache_clean(ps, p);
1130 }
1131
1132 /*
1133 * Clean and dirty swap cache.
1134 *
1135 * Dirty swap cache page is tricky to handle. The page could live both in page
1136 * cache and swap cache(ie. page is freshly swapped in). So it could be
1137 * referenced concurrently by 2 types of PTEs:
1138 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1139 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1140 * and then
1141 * - clear dirty bit to prevent IO
1142 * - remove from LRU
1143 * - but keep in the swap cache, so that when we return to it on
1144 * a later page fault, we know the application is accessing
1145 * corrupted data and shall be killed (we installed simple
1146 * interception code in do_swap_page to catch it).
1147 *
1148 * Clean swap cache pages can be directly isolated. A later page fault will
1149 * bring in the known good data from disk.
1150 */
me_swapcache_dirty(struct page_state * ps,struct page * p)1151 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1152 {
1153 int ret;
1154 bool extra_pins = false;
1155
1156 ClearPageDirty(p);
1157 /* Trigger EIO in shmem: */
1158 ClearPageUptodate(p);
1159
1160 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1161 unlock_page(p);
1162
1163 if (ret == MF_DELAYED)
1164 extra_pins = true;
1165
1166 if (has_extra_refcount(ps, p, extra_pins))
1167 ret = MF_FAILED;
1168
1169 return ret;
1170 }
1171
me_swapcache_clean(struct page_state * ps,struct page * p)1172 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1173 {
1174 struct folio *folio = page_folio(p);
1175 int ret;
1176
1177 delete_from_swap_cache(folio);
1178
1179 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1180 folio_unlock(folio);
1181
1182 if (has_extra_refcount(ps, p, false))
1183 ret = MF_FAILED;
1184
1185 return ret;
1186 }
1187
1188 /*
1189 * Huge pages. Needs work.
1190 * Issues:
1191 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1192 * To narrow down kill region to one page, we need to break up pmd.
1193 */
me_huge_page(struct page_state * ps,struct page * p)1194 static int me_huge_page(struct page_state *ps, struct page *p)
1195 {
1196 struct folio *folio = page_folio(p);
1197 int res;
1198 struct address_space *mapping;
1199 bool extra_pins = false;
1200
1201 mapping = folio_mapping(folio);
1202 if (mapping) {
1203 res = truncate_error_page(&folio->page, page_to_pfn(p), mapping);
1204 /* The page is kept in page cache. */
1205 extra_pins = true;
1206 folio_unlock(folio);
1207 } else {
1208 folio_unlock(folio);
1209 /*
1210 * migration entry prevents later access on error hugepage,
1211 * so we can free and dissolve it into buddy to save healthy
1212 * subpages.
1213 */
1214 folio_put(folio);
1215 if (__page_handle_poison(p) > 0) {
1216 page_ref_inc(p);
1217 res = MF_RECOVERED;
1218 } else {
1219 res = MF_FAILED;
1220 }
1221 }
1222
1223 if (has_extra_refcount(ps, p, extra_pins))
1224 res = MF_FAILED;
1225
1226 return res;
1227 }
1228
1229 /*
1230 * Various page states we can handle.
1231 *
1232 * A page state is defined by its current page->flags bits.
1233 * The table matches them in order and calls the right handler.
1234 *
1235 * This is quite tricky because we can access page at any time
1236 * in its live cycle, so all accesses have to be extremely careful.
1237 *
1238 * This is not complete. More states could be added.
1239 * For any missing state don't attempt recovery.
1240 */
1241
1242 #define dirty (1UL << PG_dirty)
1243 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1244 #define unevict (1UL << PG_unevictable)
1245 #define mlock (1UL << PG_mlocked)
1246 #define lru (1UL << PG_lru)
1247 #define head (1UL << PG_head)
1248 #define slab (1UL << PG_slab)
1249 #define reserved (1UL << PG_reserved)
1250
1251 static struct page_state error_states[] = {
1252 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1253 /*
1254 * free pages are specially detected outside this table:
1255 * PG_buddy pages only make a small fraction of all free pages.
1256 */
1257
1258 /*
1259 * Could in theory check if slab page is free or if we can drop
1260 * currently unused objects without touching them. But just
1261 * treat it as standard kernel for now.
1262 */
1263 { slab, slab, MF_MSG_SLAB, me_kernel },
1264
1265 { head, head, MF_MSG_HUGE, me_huge_page },
1266
1267 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1268 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1269
1270 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1271 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1272
1273 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1274 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1275
1276 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1277 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1278
1279 /*
1280 * Catchall entry: must be at end.
1281 */
1282 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1283 };
1284
1285 #undef dirty
1286 #undef sc
1287 #undef unevict
1288 #undef mlock
1289 #undef lru
1290 #undef head
1291 #undef slab
1292 #undef reserved
1293
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1294 static void update_per_node_mf_stats(unsigned long pfn,
1295 enum mf_result result)
1296 {
1297 int nid = MAX_NUMNODES;
1298 struct memory_failure_stats *mf_stats = NULL;
1299
1300 nid = pfn_to_nid(pfn);
1301 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1302 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1303 return;
1304 }
1305
1306 mf_stats = &NODE_DATA(nid)->mf_stats;
1307 switch (result) {
1308 case MF_IGNORED:
1309 ++mf_stats->ignored;
1310 break;
1311 case MF_FAILED:
1312 ++mf_stats->failed;
1313 break;
1314 case MF_DELAYED:
1315 ++mf_stats->delayed;
1316 break;
1317 case MF_RECOVERED:
1318 ++mf_stats->recovered;
1319 break;
1320 default:
1321 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1322 break;
1323 }
1324 ++mf_stats->total;
1325 }
1326
1327 /*
1328 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1329 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1330 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1331 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1332 enum mf_result result)
1333 {
1334 trace_memory_failure_event(pfn, type, result);
1335
1336 num_poisoned_pages_inc(pfn);
1337
1338 update_per_node_mf_stats(pfn, result);
1339
1340 pr_err("%#lx: recovery action for %s: %s\n",
1341 pfn, action_page_types[type], action_name[result]);
1342
1343 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1344 }
1345
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1346 static int page_action(struct page_state *ps, struct page *p,
1347 unsigned long pfn)
1348 {
1349 int result;
1350
1351 /* page p should be unlocked after returning from ps->action(). */
1352 result = ps->action(ps, p);
1353
1354 /* Could do more checks here if page looks ok */
1355 /*
1356 * Could adjust zone counters here to correct for the missing page.
1357 */
1358
1359 return action_result(pfn, ps->type, result);
1360 }
1361
PageHWPoisonTakenOff(struct page * page)1362 static inline bool PageHWPoisonTakenOff(struct page *page)
1363 {
1364 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1365 }
1366
SetPageHWPoisonTakenOff(struct page * page)1367 void SetPageHWPoisonTakenOff(struct page *page)
1368 {
1369 set_page_private(page, MAGIC_HWPOISON);
1370 }
1371
ClearPageHWPoisonTakenOff(struct page * page)1372 void ClearPageHWPoisonTakenOff(struct page *page)
1373 {
1374 if (PageHWPoison(page))
1375 set_page_private(page, 0);
1376 }
1377
1378 /*
1379 * Return true if a page type of a given page is supported by hwpoison
1380 * mechanism (while handling could fail), otherwise false. This function
1381 * does not return true for hugetlb or device memory pages, so it's assumed
1382 * to be called only in the context where we never have such pages.
1383 */
HWPoisonHandlable(struct page * page,unsigned long flags)1384 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1385 {
1386 /* Soft offline could migrate non-LRU movable pages */
1387 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1388 return true;
1389
1390 return PageLRU(page) || is_free_buddy_page(page);
1391 }
1392
__get_hwpoison_page(struct page * page,unsigned long flags)1393 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1394 {
1395 struct folio *folio = page_folio(page);
1396 int ret = 0;
1397 bool hugetlb = false;
1398
1399 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1400 if (hugetlb) {
1401 /* Make sure hugetlb demotion did not happen from under us. */
1402 if (folio == page_folio(page))
1403 return ret;
1404 if (ret > 0) {
1405 folio_put(folio);
1406 folio = page_folio(page);
1407 }
1408 }
1409
1410 /*
1411 * This check prevents from calling folio_try_get() for any
1412 * unsupported type of folio in order to reduce the risk of unexpected
1413 * races caused by taking a folio refcount.
1414 */
1415 if (!HWPoisonHandlable(&folio->page, flags))
1416 return -EBUSY;
1417
1418 if (folio_try_get(folio)) {
1419 if (folio == page_folio(page))
1420 return 1;
1421
1422 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1423 folio_put(folio);
1424 }
1425
1426 return 0;
1427 }
1428
get_any_page(struct page * p,unsigned long flags)1429 static int get_any_page(struct page *p, unsigned long flags)
1430 {
1431 int ret = 0, pass = 0;
1432 bool count_increased = false;
1433
1434 if (flags & MF_COUNT_INCREASED)
1435 count_increased = true;
1436
1437 try_again:
1438 if (!count_increased) {
1439 ret = __get_hwpoison_page(p, flags);
1440 if (!ret) {
1441 if (page_count(p)) {
1442 /* We raced with an allocation, retry. */
1443 if (pass++ < 3)
1444 goto try_again;
1445 ret = -EBUSY;
1446 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1447 /* We raced with put_page, retry. */
1448 if (pass++ < 3)
1449 goto try_again;
1450 ret = -EIO;
1451 }
1452 goto out;
1453 } else if (ret == -EBUSY) {
1454 /*
1455 * We raced with (possibly temporary) unhandlable
1456 * page, retry.
1457 */
1458 if (pass++ < 3) {
1459 shake_page(p);
1460 goto try_again;
1461 }
1462 ret = -EIO;
1463 goto out;
1464 }
1465 }
1466
1467 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1468 ret = 1;
1469 } else {
1470 /*
1471 * A page we cannot handle. Check whether we can turn
1472 * it into something we can handle.
1473 */
1474 if (pass++ < 3) {
1475 put_page(p);
1476 shake_page(p);
1477 count_increased = false;
1478 goto try_again;
1479 }
1480 put_page(p);
1481 ret = -EIO;
1482 }
1483 out:
1484 if (ret == -EIO)
1485 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1486
1487 return ret;
1488 }
1489
__get_unpoison_page(struct page * page)1490 static int __get_unpoison_page(struct page *page)
1491 {
1492 struct folio *folio = page_folio(page);
1493 int ret = 0;
1494 bool hugetlb = false;
1495
1496 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1497 if (hugetlb) {
1498 /* Make sure hugetlb demotion did not happen from under us. */
1499 if (folio == page_folio(page))
1500 return ret;
1501 if (ret > 0)
1502 folio_put(folio);
1503 }
1504
1505 /*
1506 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1507 * but also isolated from buddy freelist, so need to identify the
1508 * state and have to cancel both operations to unpoison.
1509 */
1510 if (PageHWPoisonTakenOff(page))
1511 return -EHWPOISON;
1512
1513 return get_page_unless_zero(page) ? 1 : 0;
1514 }
1515
1516 /**
1517 * get_hwpoison_page() - Get refcount for memory error handling
1518 * @p: Raw error page (hit by memory error)
1519 * @flags: Flags controlling behavior of error handling
1520 *
1521 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1522 * error on it, after checking that the error page is in a well-defined state
1523 * (defined as a page-type we can successfully handle the memory error on it,
1524 * such as LRU page and hugetlb page).
1525 *
1526 * Memory error handling could be triggered at any time on any type of page,
1527 * so it's prone to race with typical memory management lifecycle (like
1528 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1529 * extra care for the error page's state (as done in __get_hwpoison_page()),
1530 * and has some retry logic in get_any_page().
1531 *
1532 * When called from unpoison_memory(), the caller should already ensure that
1533 * the given page has PG_hwpoison. So it's never reused for other page
1534 * allocations, and __get_unpoison_page() never races with them.
1535 *
1536 * Return: 0 on failure,
1537 * 1 on success for in-use pages in a well-defined state,
1538 * -EIO for pages on which we can not handle memory errors,
1539 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1540 * operations like allocation and free,
1541 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1542 */
get_hwpoison_page(struct page * p,unsigned long flags)1543 static int get_hwpoison_page(struct page *p, unsigned long flags)
1544 {
1545 int ret;
1546
1547 zone_pcp_disable(page_zone(p));
1548 if (flags & MF_UNPOISON)
1549 ret = __get_unpoison_page(p);
1550 else
1551 ret = get_any_page(p, flags);
1552 zone_pcp_enable(page_zone(p));
1553
1554 return ret;
1555 }
1556
1557 /*
1558 * Do all that is necessary to remove user space mappings. Unmap
1559 * the pages and send SIGBUS to the processes if the data was dirty.
1560 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page * hpage)1561 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1562 int flags, struct page *hpage)
1563 {
1564 struct folio *folio = page_folio(hpage);
1565 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1566 struct address_space *mapping;
1567 LIST_HEAD(tokill);
1568 bool unmap_success;
1569 int forcekill;
1570 bool mlocked = PageMlocked(hpage);
1571
1572 /*
1573 * Here we are interested only in user-mapped pages, so skip any
1574 * other types of pages.
1575 */
1576 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1577 return true;
1578 if (!(PageLRU(hpage) || PageHuge(p)))
1579 return true;
1580
1581 /*
1582 * This check implies we don't kill processes if their pages
1583 * are in the swap cache early. Those are always late kills.
1584 */
1585 if (!page_mapped(p))
1586 return true;
1587
1588 if (PageSwapCache(p)) {
1589 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1590 ttu &= ~TTU_HWPOISON;
1591 }
1592
1593 /*
1594 * Propagate the dirty bit from PTEs to struct page first, because we
1595 * need this to decide if we should kill or just drop the page.
1596 * XXX: the dirty test could be racy: set_page_dirty() may not always
1597 * be called inside page lock (it's recommended but not enforced).
1598 */
1599 mapping = page_mapping(hpage);
1600 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1601 mapping_can_writeback(mapping)) {
1602 if (page_mkclean(hpage)) {
1603 SetPageDirty(hpage);
1604 } else {
1605 ttu &= ~TTU_HWPOISON;
1606 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1607 pfn);
1608 }
1609 }
1610
1611 /*
1612 * First collect all the processes that have the page
1613 * mapped in dirty form. This has to be done before try_to_unmap,
1614 * because ttu takes the rmap data structures down.
1615 */
1616 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1617
1618 if (PageHuge(hpage) && !PageAnon(hpage)) {
1619 /*
1620 * For hugetlb pages in shared mappings, try_to_unmap
1621 * could potentially call huge_pmd_unshare. Because of
1622 * this, take semaphore in write mode here and set
1623 * TTU_RMAP_LOCKED to indicate we have taken the lock
1624 * at this higher level.
1625 */
1626 mapping = hugetlb_page_mapping_lock_write(hpage);
1627 if (mapping) {
1628 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1629 i_mmap_unlock_write(mapping);
1630 } else
1631 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1632 } else {
1633 try_to_unmap(folio, ttu);
1634 }
1635
1636 unmap_success = !page_mapped(p);
1637 if (!unmap_success)
1638 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1639 pfn, page_mapcount(p));
1640
1641 /*
1642 * try_to_unmap() might put mlocked page in lru cache, so call
1643 * shake_page() again to ensure that it's flushed.
1644 */
1645 if (mlocked)
1646 shake_page(hpage);
1647
1648 /*
1649 * Now that the dirty bit has been propagated to the
1650 * struct page and all unmaps done we can decide if
1651 * killing is needed or not. Only kill when the page
1652 * was dirty or the process is not restartable,
1653 * otherwise the tokill list is merely
1654 * freed. When there was a problem unmapping earlier
1655 * use a more force-full uncatchable kill to prevent
1656 * any accesses to the poisoned memory.
1657 */
1658 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1659 !unmap_success;
1660 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1661
1662 return unmap_success;
1663 }
1664
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1665 static int identify_page_state(unsigned long pfn, struct page *p,
1666 unsigned long page_flags)
1667 {
1668 struct page_state *ps;
1669
1670 /*
1671 * The first check uses the current page flags which may not have any
1672 * relevant information. The second check with the saved page flags is
1673 * carried out only if the first check can't determine the page status.
1674 */
1675 for (ps = error_states;; ps++)
1676 if ((p->flags & ps->mask) == ps->res)
1677 break;
1678
1679 page_flags |= (p->flags & (1UL << PG_dirty));
1680
1681 if (!ps->mask)
1682 for (ps = error_states;; ps++)
1683 if ((page_flags & ps->mask) == ps->res)
1684 break;
1685 return page_action(ps, p, pfn);
1686 }
1687
try_to_split_thp_page(struct page * page)1688 static int try_to_split_thp_page(struct page *page)
1689 {
1690 int ret;
1691
1692 lock_page(page);
1693 ret = split_huge_page(page);
1694 unlock_page(page);
1695
1696 if (unlikely(ret))
1697 put_page(page);
1698
1699 return ret;
1700 }
1701
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1702 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1703 struct address_space *mapping, pgoff_t index, int flags)
1704 {
1705 struct to_kill *tk;
1706 unsigned long size = 0;
1707
1708 list_for_each_entry(tk, to_kill, nd)
1709 if (tk->size_shift)
1710 size = max(size, 1UL << tk->size_shift);
1711
1712 if (size) {
1713 /*
1714 * Unmap the largest mapping to avoid breaking up device-dax
1715 * mappings which are constant size. The actual size of the
1716 * mapping being torn down is communicated in siginfo, see
1717 * kill_proc()
1718 */
1719 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1720
1721 unmap_mapping_range(mapping, start, size, 0);
1722 }
1723
1724 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1725 }
1726
1727 /*
1728 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1729 * either do not claim or fails to claim a hwpoison event, or devdax.
1730 * The fsdax pages are initialized per base page, and the devdax pages
1731 * could be initialized either as base pages, or as compound pages with
1732 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1733 * hwpoison, such that, if a subpage of a compound page is poisoned,
1734 * simply mark the compound head page is by far sufficient.
1735 */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1736 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1737 struct dev_pagemap *pgmap)
1738 {
1739 struct folio *folio = pfn_folio(pfn);
1740 LIST_HEAD(to_kill);
1741 dax_entry_t cookie;
1742 int rc = 0;
1743
1744 /*
1745 * Prevent the inode from being freed while we are interrogating
1746 * the address_space, typically this would be handled by
1747 * lock_page(), but dax pages do not use the page lock. This
1748 * also prevents changes to the mapping of this pfn until
1749 * poison signaling is complete.
1750 */
1751 cookie = dax_lock_folio(folio);
1752 if (!cookie)
1753 return -EBUSY;
1754
1755 if (hwpoison_filter(&folio->page)) {
1756 rc = -EOPNOTSUPP;
1757 goto unlock;
1758 }
1759
1760 switch (pgmap->type) {
1761 case MEMORY_DEVICE_PRIVATE:
1762 case MEMORY_DEVICE_COHERENT:
1763 /*
1764 * TODO: Handle device pages which may need coordination
1765 * with device-side memory.
1766 */
1767 rc = -ENXIO;
1768 goto unlock;
1769 default:
1770 break;
1771 }
1772
1773 /*
1774 * Use this flag as an indication that the dax page has been
1775 * remapped UC to prevent speculative consumption of poison.
1776 */
1777 SetPageHWPoison(&folio->page);
1778
1779 /*
1780 * Unlike System-RAM there is no possibility to swap in a
1781 * different physical page at a given virtual address, so all
1782 * userspace consumption of ZONE_DEVICE memory necessitates
1783 * SIGBUS (i.e. MF_MUST_KILL)
1784 */
1785 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1786 collect_procs(folio, &folio->page, &to_kill, true);
1787
1788 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1789 unlock:
1790 dax_unlock_folio(folio, cookie);
1791 return rc;
1792 }
1793
1794 #ifdef CONFIG_FS_DAX
1795 /**
1796 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1797 * @mapping: address_space of the file in use
1798 * @index: start pgoff of the range within the file
1799 * @count: length of the range, in unit of PAGE_SIZE
1800 * @mf_flags: memory failure flags
1801 */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1802 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1803 unsigned long count, int mf_flags)
1804 {
1805 LIST_HEAD(to_kill);
1806 dax_entry_t cookie;
1807 struct page *page;
1808 size_t end = index + count;
1809
1810 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1811
1812 for (; index < end; index++) {
1813 page = NULL;
1814 cookie = dax_lock_mapping_entry(mapping, index, &page);
1815 if (!cookie)
1816 return -EBUSY;
1817 if (!page)
1818 goto unlock;
1819
1820 SetPageHWPoison(page);
1821
1822 collect_procs_fsdax(page, mapping, index, &to_kill);
1823 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1824 index, mf_flags);
1825 unlock:
1826 dax_unlock_mapping_entry(mapping, index, cookie);
1827 }
1828 return 0;
1829 }
1830 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1831 #endif /* CONFIG_FS_DAX */
1832
1833 #ifdef CONFIG_HUGETLB_PAGE
1834
1835 /*
1836 * Struct raw_hwp_page represents information about "raw error page",
1837 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1838 */
1839 struct raw_hwp_page {
1840 struct llist_node node;
1841 struct page *page;
1842 };
1843
raw_hwp_list_head(struct folio * folio)1844 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1845 {
1846 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1847 }
1848
is_raw_hwpoison_page_in_hugepage(struct page * page)1849 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1850 {
1851 struct llist_head *raw_hwp_head;
1852 struct raw_hwp_page *p;
1853 struct folio *folio = page_folio(page);
1854 bool ret = false;
1855
1856 if (!folio_test_hwpoison(folio))
1857 return false;
1858
1859 if (!folio_test_hugetlb(folio))
1860 return PageHWPoison(page);
1861
1862 /*
1863 * When RawHwpUnreliable is set, kernel lost track of which subpages
1864 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1865 */
1866 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1867 return true;
1868
1869 mutex_lock(&mf_mutex);
1870
1871 raw_hwp_head = raw_hwp_list_head(folio);
1872 llist_for_each_entry(p, raw_hwp_head->first, node) {
1873 if (page == p->page) {
1874 ret = true;
1875 break;
1876 }
1877 }
1878
1879 mutex_unlock(&mf_mutex);
1880
1881 return ret;
1882 }
1883
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1884 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1885 {
1886 struct llist_node *head;
1887 struct raw_hwp_page *p, *next;
1888 unsigned long count = 0;
1889
1890 head = llist_del_all(raw_hwp_list_head(folio));
1891 llist_for_each_entry_safe(p, next, head, node) {
1892 if (move_flag)
1893 SetPageHWPoison(p->page);
1894 else
1895 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1896 kfree(p);
1897 count++;
1898 }
1899 return count;
1900 }
1901
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1902 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1903 {
1904 struct llist_head *head;
1905 struct raw_hwp_page *raw_hwp;
1906 struct raw_hwp_page *p, *next;
1907 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1908
1909 /*
1910 * Once the hwpoison hugepage has lost reliable raw error info,
1911 * there is little meaning to keep additional error info precisely,
1912 * so skip to add additional raw error info.
1913 */
1914 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1915 return -EHWPOISON;
1916 head = raw_hwp_list_head(folio);
1917 llist_for_each_entry_safe(p, next, head->first, node) {
1918 if (p->page == page)
1919 return -EHWPOISON;
1920 }
1921
1922 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1923 if (raw_hwp) {
1924 raw_hwp->page = page;
1925 llist_add(&raw_hwp->node, head);
1926 /* the first error event will be counted in action_result(). */
1927 if (ret)
1928 num_poisoned_pages_inc(page_to_pfn(page));
1929 } else {
1930 /*
1931 * Failed to save raw error info. We no longer trace all
1932 * hwpoisoned subpages, and we need refuse to free/dissolve
1933 * this hwpoisoned hugepage.
1934 */
1935 folio_set_hugetlb_raw_hwp_unreliable(folio);
1936 /*
1937 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1938 * used any more, so free it.
1939 */
1940 __folio_free_raw_hwp(folio, false);
1941 }
1942 return ret;
1943 }
1944
folio_free_raw_hwp(struct folio * folio,bool move_flag)1945 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1946 {
1947 /*
1948 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1949 * pages for tail pages are required but they don't exist.
1950 */
1951 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1952 return 0;
1953
1954 /*
1955 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1956 * definition.
1957 */
1958 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1959 return 0;
1960
1961 return __folio_free_raw_hwp(folio, move_flag);
1962 }
1963
folio_clear_hugetlb_hwpoison(struct folio * folio)1964 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1965 {
1966 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1967 return;
1968 if (folio_test_hugetlb_vmemmap_optimized(folio))
1969 return;
1970 folio_clear_hwpoison(folio);
1971 folio_free_raw_hwp(folio, true);
1972 }
1973
1974 /*
1975 * Called from hugetlb code with hugetlb_lock held.
1976 *
1977 * Return values:
1978 * 0 - free hugepage
1979 * 1 - in-use hugepage
1980 * 2 - not a hugepage
1981 * -EBUSY - the hugepage is busy (try to retry)
1982 * -EHWPOISON - the hugepage is already hwpoisoned
1983 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)1984 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1985 bool *migratable_cleared)
1986 {
1987 struct page *page = pfn_to_page(pfn);
1988 struct folio *folio = page_folio(page);
1989 int ret = 2; /* fallback to normal page handling */
1990 bool count_increased = false;
1991
1992 if (!folio_test_hugetlb(folio))
1993 goto out;
1994
1995 if (flags & MF_COUNT_INCREASED) {
1996 ret = 1;
1997 count_increased = true;
1998 } else if (folio_test_hugetlb_freed(folio)) {
1999 ret = 0;
2000 } else if (folio_test_hugetlb_migratable(folio)) {
2001 ret = folio_try_get(folio);
2002 if (ret)
2003 count_increased = true;
2004 } else {
2005 ret = -EBUSY;
2006 if (!(flags & MF_NO_RETRY))
2007 goto out;
2008 }
2009
2010 if (folio_set_hugetlb_hwpoison(folio, page)) {
2011 ret = -EHWPOISON;
2012 goto out;
2013 }
2014
2015 /*
2016 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2017 * from being migrated by memory hotremove.
2018 */
2019 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2020 folio_clear_hugetlb_migratable(folio);
2021 *migratable_cleared = true;
2022 }
2023
2024 return ret;
2025 out:
2026 if (count_increased)
2027 folio_put(folio);
2028 return ret;
2029 }
2030
2031 /*
2032 * Taking refcount of hugetlb pages needs extra care about race conditions
2033 * with basic operations like hugepage allocation/free/demotion.
2034 * So some of prechecks for hwpoison (pinning, and testing/setting
2035 * PageHWPoison) should be done in single hugetlb_lock range.
2036 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2037 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2038 {
2039 int res;
2040 struct page *p = pfn_to_page(pfn);
2041 struct folio *folio;
2042 unsigned long page_flags;
2043 bool migratable_cleared = false;
2044
2045 *hugetlb = 1;
2046 retry:
2047 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2048 if (res == 2) { /* fallback to normal page handling */
2049 *hugetlb = 0;
2050 return 0;
2051 } else if (res == -EHWPOISON) {
2052 pr_err("%#lx: already hardware poisoned\n", pfn);
2053 if (flags & MF_ACTION_REQUIRED) {
2054 folio = page_folio(p);
2055 res = kill_accessing_process(current, folio_pfn(folio), flags);
2056 }
2057 return res;
2058 } else if (res == -EBUSY) {
2059 if (!(flags & MF_NO_RETRY)) {
2060 flags |= MF_NO_RETRY;
2061 goto retry;
2062 }
2063 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2064 }
2065
2066 folio = page_folio(p);
2067 folio_lock(folio);
2068
2069 if (hwpoison_filter(p)) {
2070 folio_clear_hugetlb_hwpoison(folio);
2071 if (migratable_cleared)
2072 folio_set_hugetlb_migratable(folio);
2073 folio_unlock(folio);
2074 if (res == 1)
2075 folio_put(folio);
2076 return -EOPNOTSUPP;
2077 }
2078
2079 /*
2080 * Handling free hugepage. The possible race with hugepage allocation
2081 * or demotion can be prevented by PageHWPoison flag.
2082 */
2083 if (res == 0) {
2084 folio_unlock(folio);
2085 if (__page_handle_poison(p) > 0) {
2086 page_ref_inc(p);
2087 res = MF_RECOVERED;
2088 } else {
2089 res = MF_FAILED;
2090 }
2091 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2092 }
2093
2094 page_flags = folio->flags;
2095
2096 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2097 folio_unlock(folio);
2098 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2099 }
2100
2101 return identify_page_state(pfn, p, page_flags);
2102 }
2103
2104 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2105 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2106 {
2107 return 0;
2108 }
2109
folio_free_raw_hwp(struct folio * folio,bool flag)2110 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2111 {
2112 return 0;
2113 }
2114 #endif /* CONFIG_HUGETLB_PAGE */
2115
2116 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2117 static void put_ref_page(unsigned long pfn, int flags)
2118 {
2119 struct page *page;
2120
2121 if (!(flags & MF_COUNT_INCREASED))
2122 return;
2123
2124 page = pfn_to_page(pfn);
2125 if (page)
2126 put_page(page);
2127 }
2128
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2129 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2130 struct dev_pagemap *pgmap)
2131 {
2132 int rc = -ENXIO;
2133
2134 /* device metadata space is not recoverable */
2135 if (!pgmap_pfn_valid(pgmap, pfn))
2136 goto out;
2137
2138 /*
2139 * Call driver's implementation to handle the memory failure, otherwise
2140 * fall back to generic handler.
2141 */
2142 if (pgmap_has_memory_failure(pgmap)) {
2143 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2144 /*
2145 * Fall back to generic handler too if operation is not
2146 * supported inside the driver/device/filesystem.
2147 */
2148 if (rc != -EOPNOTSUPP)
2149 goto out;
2150 }
2151
2152 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2153 out:
2154 /* drop pgmap ref acquired in caller */
2155 put_dev_pagemap(pgmap);
2156 if (rc != -EOPNOTSUPP)
2157 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2158 return rc;
2159 }
2160
2161 /**
2162 * memory_failure - Handle memory failure of a page.
2163 * @pfn: Page Number of the corrupted page
2164 * @flags: fine tune action taken
2165 *
2166 * This function is called by the low level machine check code
2167 * of an architecture when it detects hardware memory corruption
2168 * of a page. It tries its best to recover, which includes
2169 * dropping pages, killing processes etc.
2170 *
2171 * The function is primarily of use for corruptions that
2172 * happen outside the current execution context (e.g. when
2173 * detected by a background scrubber)
2174 *
2175 * Must run in process context (e.g. a work queue) with interrupts
2176 * enabled and no spinlocks held.
2177 *
2178 * Return: 0 for successfully handled the memory error,
2179 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2180 * < 0(except -EOPNOTSUPP) on failure.
2181 */
memory_failure(unsigned long pfn,int flags)2182 int memory_failure(unsigned long pfn, int flags)
2183 {
2184 struct page *p;
2185 struct page *hpage;
2186 struct dev_pagemap *pgmap;
2187 int res = 0;
2188 unsigned long page_flags;
2189 bool retry = true;
2190 int hugetlb = 0;
2191
2192 if (!sysctl_memory_failure_recovery)
2193 panic("Memory failure on page %lx", pfn);
2194
2195 mutex_lock(&mf_mutex);
2196
2197 if (!(flags & MF_SW_SIMULATED))
2198 hw_memory_failure = true;
2199
2200 p = pfn_to_online_page(pfn);
2201 if (!p) {
2202 res = arch_memory_failure(pfn, flags);
2203 if (res == 0)
2204 goto unlock_mutex;
2205
2206 if (pfn_valid(pfn)) {
2207 pgmap = get_dev_pagemap(pfn, NULL);
2208 put_ref_page(pfn, flags);
2209 if (pgmap) {
2210 res = memory_failure_dev_pagemap(pfn, flags,
2211 pgmap);
2212 goto unlock_mutex;
2213 }
2214 }
2215 pr_err("%#lx: memory outside kernel control\n", pfn);
2216 res = -ENXIO;
2217 goto unlock_mutex;
2218 }
2219
2220 try_again:
2221 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2222 if (hugetlb)
2223 goto unlock_mutex;
2224
2225 if (TestSetPageHWPoison(p)) {
2226 pr_err("%#lx: already hardware poisoned\n", pfn);
2227 res = -EHWPOISON;
2228 if (flags & MF_ACTION_REQUIRED)
2229 res = kill_accessing_process(current, pfn, flags);
2230 if (flags & MF_COUNT_INCREASED)
2231 put_page(p);
2232 goto unlock_mutex;
2233 }
2234
2235 /*
2236 * We need/can do nothing about count=0 pages.
2237 * 1) it's a free page, and therefore in safe hand:
2238 * check_new_page() will be the gate keeper.
2239 * 2) it's part of a non-compound high order page.
2240 * Implies some kernel user: cannot stop them from
2241 * R/W the page; let's pray that the page has been
2242 * used and will be freed some time later.
2243 * In fact it's dangerous to directly bump up page count from 0,
2244 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2245 */
2246 if (!(flags & MF_COUNT_INCREASED)) {
2247 res = get_hwpoison_page(p, flags);
2248 if (!res) {
2249 if (is_free_buddy_page(p)) {
2250 if (take_page_off_buddy(p)) {
2251 page_ref_inc(p);
2252 res = MF_RECOVERED;
2253 } else {
2254 /* We lost the race, try again */
2255 if (retry) {
2256 ClearPageHWPoison(p);
2257 retry = false;
2258 goto try_again;
2259 }
2260 res = MF_FAILED;
2261 }
2262 res = action_result(pfn, MF_MSG_BUDDY, res);
2263 } else {
2264 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2265 }
2266 goto unlock_mutex;
2267 } else if (res < 0) {
2268 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2269 goto unlock_mutex;
2270 }
2271 }
2272
2273 hpage = compound_head(p);
2274 if (PageTransHuge(hpage)) {
2275 /*
2276 * The flag must be set after the refcount is bumped
2277 * otherwise it may race with THP split.
2278 * And the flag can't be set in get_hwpoison_page() since
2279 * it is called by soft offline too and it is just called
2280 * for !MF_COUNT_INCREASED. So here seems to be the best
2281 * place.
2282 *
2283 * Don't need care about the above error handling paths for
2284 * get_hwpoison_page() since they handle either free page
2285 * or unhandlable page. The refcount is bumped iff the
2286 * page is a valid handlable page.
2287 */
2288 SetPageHasHWPoisoned(hpage);
2289 if (try_to_split_thp_page(p) < 0) {
2290 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2291 goto unlock_mutex;
2292 }
2293 VM_BUG_ON_PAGE(!page_count(p), p);
2294 }
2295
2296 /*
2297 * We ignore non-LRU pages for good reasons.
2298 * - PG_locked is only well defined for LRU pages and a few others
2299 * - to avoid races with __SetPageLocked()
2300 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2301 * The check (unnecessarily) ignores LRU pages being isolated and
2302 * walked by the page reclaim code, however that's not a big loss.
2303 */
2304 shake_page(p);
2305
2306 lock_page(p);
2307
2308 /*
2309 * We're only intended to deal with the non-Compound page here.
2310 * However, the page could have changed compound pages due to
2311 * race window. If this happens, we could try again to hopefully
2312 * handle the page next round.
2313 */
2314 if (PageCompound(p)) {
2315 if (retry) {
2316 ClearPageHWPoison(p);
2317 unlock_page(p);
2318 put_page(p);
2319 flags &= ~MF_COUNT_INCREASED;
2320 retry = false;
2321 goto try_again;
2322 }
2323 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2324 goto unlock_page;
2325 }
2326
2327 /*
2328 * We use page flags to determine what action should be taken, but
2329 * the flags can be modified by the error containment action. One
2330 * example is an mlocked page, where PG_mlocked is cleared by
2331 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2332 * correctly, we save a copy of the page flags at this time.
2333 */
2334 page_flags = p->flags;
2335
2336 if (hwpoison_filter(p)) {
2337 ClearPageHWPoison(p);
2338 unlock_page(p);
2339 put_page(p);
2340 res = -EOPNOTSUPP;
2341 goto unlock_mutex;
2342 }
2343
2344 /*
2345 * __munlock_folio() may clear a writeback page's LRU flag without
2346 * page_lock. We need wait writeback completion for this page or it
2347 * may trigger vfs BUG while evict inode.
2348 */
2349 if (!PageLRU(p) && !PageWriteback(p))
2350 goto identify_page_state;
2351
2352 /*
2353 * It's very difficult to mess with pages currently under IO
2354 * and in many cases impossible, so we just avoid it here.
2355 */
2356 wait_on_page_writeback(p);
2357
2358 /*
2359 * Now take care of user space mappings.
2360 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2361 */
2362 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2363 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2364 goto unlock_page;
2365 }
2366
2367 /*
2368 * Torn down by someone else?
2369 */
2370 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2371 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2372 goto unlock_page;
2373 }
2374
2375 identify_page_state:
2376 res = identify_page_state(pfn, p, page_flags);
2377 mutex_unlock(&mf_mutex);
2378 return res;
2379 unlock_page:
2380 unlock_page(p);
2381 unlock_mutex:
2382 mutex_unlock(&mf_mutex);
2383 return res;
2384 }
2385 EXPORT_SYMBOL_GPL(memory_failure);
2386
2387 #define MEMORY_FAILURE_FIFO_ORDER 4
2388 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2389
2390 struct memory_failure_entry {
2391 unsigned long pfn;
2392 int flags;
2393 };
2394
2395 struct memory_failure_cpu {
2396 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2397 MEMORY_FAILURE_FIFO_SIZE);
2398 raw_spinlock_t lock;
2399 struct work_struct work;
2400 };
2401
2402 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2403
2404 /**
2405 * memory_failure_queue - Schedule handling memory failure of a page.
2406 * @pfn: Page Number of the corrupted page
2407 * @flags: Flags for memory failure handling
2408 *
2409 * This function is called by the low level hardware error handler
2410 * when it detects hardware memory corruption of a page. It schedules
2411 * the recovering of error page, including dropping pages, killing
2412 * processes etc.
2413 *
2414 * The function is primarily of use for corruptions that
2415 * happen outside the current execution context (e.g. when
2416 * detected by a background scrubber)
2417 *
2418 * Can run in IRQ context.
2419 */
memory_failure_queue(unsigned long pfn,int flags)2420 void memory_failure_queue(unsigned long pfn, int flags)
2421 {
2422 struct memory_failure_cpu *mf_cpu;
2423 unsigned long proc_flags;
2424 bool buffer_overflow;
2425 struct memory_failure_entry entry = {
2426 .pfn = pfn,
2427 .flags = flags,
2428 };
2429
2430 mf_cpu = &get_cpu_var(memory_failure_cpu);
2431 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2432 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2433 if (!buffer_overflow)
2434 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2435 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2436 put_cpu_var(memory_failure_cpu);
2437 if (buffer_overflow)
2438 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2439 pfn);
2440 }
2441 EXPORT_SYMBOL_GPL(memory_failure_queue);
2442
memory_failure_work_func(struct work_struct * work)2443 static void memory_failure_work_func(struct work_struct *work)
2444 {
2445 struct memory_failure_cpu *mf_cpu;
2446 struct memory_failure_entry entry = { 0, };
2447 unsigned long proc_flags;
2448 int gotten;
2449
2450 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2451 for (;;) {
2452 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2453 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2454 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2455 if (!gotten)
2456 break;
2457 if (entry.flags & MF_SOFT_OFFLINE)
2458 soft_offline_page(entry.pfn, entry.flags);
2459 else
2460 memory_failure(entry.pfn, entry.flags);
2461 }
2462 }
2463
2464 /*
2465 * Process memory_failure work queued on the specified CPU.
2466 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2467 */
memory_failure_queue_kick(int cpu)2468 void memory_failure_queue_kick(int cpu)
2469 {
2470 struct memory_failure_cpu *mf_cpu;
2471
2472 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2473 cancel_work_sync(&mf_cpu->work);
2474 memory_failure_work_func(&mf_cpu->work);
2475 }
2476
memory_failure_init(void)2477 static int __init memory_failure_init(void)
2478 {
2479 struct memory_failure_cpu *mf_cpu;
2480 int cpu;
2481
2482 for_each_possible_cpu(cpu) {
2483 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2484 raw_spin_lock_init(&mf_cpu->lock);
2485 INIT_KFIFO(mf_cpu->fifo);
2486 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2487 }
2488
2489 register_sysctl_init("vm", memory_failure_table);
2490
2491 return 0;
2492 }
2493 core_initcall(memory_failure_init);
2494
2495 #undef pr_fmt
2496 #define pr_fmt(fmt) "" fmt
2497 #define unpoison_pr_info(fmt, pfn, rs) \
2498 ({ \
2499 if (__ratelimit(rs)) \
2500 pr_info(fmt, pfn); \
2501 })
2502
2503 /**
2504 * unpoison_memory - Unpoison a previously poisoned page
2505 * @pfn: Page number of the to be unpoisoned page
2506 *
2507 * Software-unpoison a page that has been poisoned by
2508 * memory_failure() earlier.
2509 *
2510 * This is only done on the software-level, so it only works
2511 * for linux injected failures, not real hardware failures
2512 *
2513 * Returns 0 for success, otherwise -errno.
2514 */
unpoison_memory(unsigned long pfn)2515 int unpoison_memory(unsigned long pfn)
2516 {
2517 struct folio *folio;
2518 struct page *p;
2519 int ret = -EBUSY, ghp;
2520 unsigned long count = 1;
2521 bool huge = false;
2522 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2523 DEFAULT_RATELIMIT_BURST);
2524
2525 if (!pfn_valid(pfn))
2526 return -ENXIO;
2527
2528 p = pfn_to_page(pfn);
2529 folio = page_folio(p);
2530
2531 mutex_lock(&mf_mutex);
2532
2533 if (hw_memory_failure) {
2534 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2535 pfn, &unpoison_rs);
2536 ret = -EOPNOTSUPP;
2537 goto unlock_mutex;
2538 }
2539
2540 if (is_huge_zero_page(&folio->page)) {
2541 unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n",
2542 pfn, &unpoison_rs);
2543 ret = -EOPNOTSUPP;
2544 goto unlock_mutex;
2545 }
2546
2547 if (!PageHWPoison(p)) {
2548 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2549 pfn, &unpoison_rs);
2550 goto unlock_mutex;
2551 }
2552
2553 if (folio_ref_count(folio) > 1) {
2554 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2555 pfn, &unpoison_rs);
2556 goto unlock_mutex;
2557 }
2558
2559 if (folio_test_slab(folio) || PageTable(&folio->page) ||
2560 folio_test_reserved(folio) || PageOffline(&folio->page))
2561 goto unlock_mutex;
2562
2563 /*
2564 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2565 * in folio_mapped() has to be done after folio_test_slab() is checked.
2566 */
2567 if (folio_mapped(folio)) {
2568 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2569 pfn, &unpoison_rs);
2570 goto unlock_mutex;
2571 }
2572
2573 if (folio_mapping(folio)) {
2574 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2575 pfn, &unpoison_rs);
2576 goto unlock_mutex;
2577 }
2578
2579 ghp = get_hwpoison_page(p, MF_UNPOISON);
2580 if (!ghp) {
2581 if (PageHuge(p)) {
2582 huge = true;
2583 count = folio_free_raw_hwp(folio, false);
2584 if (count == 0)
2585 goto unlock_mutex;
2586 }
2587 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2588 } else if (ghp < 0) {
2589 if (ghp == -EHWPOISON) {
2590 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2591 } else {
2592 ret = ghp;
2593 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2594 pfn, &unpoison_rs);
2595 }
2596 } else {
2597 if (PageHuge(p)) {
2598 huge = true;
2599 count = folio_free_raw_hwp(folio, false);
2600 if (count == 0) {
2601 folio_put(folio);
2602 goto unlock_mutex;
2603 }
2604 }
2605
2606 folio_put(folio);
2607 if (TestClearPageHWPoison(p)) {
2608 folio_put(folio);
2609 ret = 0;
2610 }
2611 }
2612
2613 unlock_mutex:
2614 mutex_unlock(&mf_mutex);
2615 if (!ret) {
2616 if (!huge)
2617 num_poisoned_pages_sub(pfn, 1);
2618 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2619 page_to_pfn(p), &unpoison_rs);
2620 }
2621 return ret;
2622 }
2623 EXPORT_SYMBOL(unpoison_memory);
2624
isolate_page(struct page * page,struct list_head * pagelist)2625 static bool isolate_page(struct page *page, struct list_head *pagelist)
2626 {
2627 bool isolated = false;
2628
2629 if (PageHuge(page)) {
2630 isolated = isolate_hugetlb(page_folio(page), pagelist);
2631 } else {
2632 bool lru = !__PageMovable(page);
2633
2634 if (lru)
2635 isolated = isolate_lru_page(page);
2636 else
2637 isolated = isolate_movable_page(page,
2638 ISOLATE_UNEVICTABLE);
2639
2640 if (isolated) {
2641 list_add(&page->lru, pagelist);
2642 if (lru)
2643 inc_node_page_state(page, NR_ISOLATED_ANON +
2644 page_is_file_lru(page));
2645 }
2646 }
2647
2648 /*
2649 * If we succeed to isolate the page, we grabbed another refcount on
2650 * the page, so we can safely drop the one we got from get_any_page().
2651 * If we failed to isolate the page, it means that we cannot go further
2652 * and we will return an error, so drop the reference we got from
2653 * get_any_page() as well.
2654 */
2655 put_page(page);
2656 return isolated;
2657 }
2658
2659 /*
2660 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2661 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2662 * If the page is mapped, it migrates the contents over.
2663 */
soft_offline_in_use_page(struct page * page)2664 static int soft_offline_in_use_page(struct page *page)
2665 {
2666 long ret = 0;
2667 unsigned long pfn = page_to_pfn(page);
2668 struct page *hpage = compound_head(page);
2669 char const *msg_page[] = {"page", "hugepage"};
2670 bool huge = PageHuge(page);
2671 LIST_HEAD(pagelist);
2672 struct migration_target_control mtc = {
2673 .nid = NUMA_NO_NODE,
2674 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2675 };
2676
2677 if (!huge && PageTransHuge(hpage)) {
2678 if (try_to_split_thp_page(page)) {
2679 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2680 return -EBUSY;
2681 }
2682 hpage = page;
2683 }
2684
2685 lock_page(page);
2686 if (!huge)
2687 wait_on_page_writeback(page);
2688 if (PageHWPoison(page)) {
2689 unlock_page(page);
2690 put_page(page);
2691 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2692 return 0;
2693 }
2694
2695 if (!huge && PageLRU(page) && !PageSwapCache(page))
2696 /*
2697 * Try to invalidate first. This should work for
2698 * non dirty unmapped page cache pages.
2699 */
2700 ret = invalidate_inode_page(page);
2701 unlock_page(page);
2702
2703 if (ret) {
2704 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2705 page_handle_poison(page, false, true);
2706 return 0;
2707 }
2708
2709 if (isolate_page(hpage, &pagelist)) {
2710 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2711 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2712 if (!ret) {
2713 bool release = !huge;
2714
2715 if (!page_handle_poison(page, huge, release))
2716 ret = -EBUSY;
2717 } else {
2718 if (!list_empty(&pagelist))
2719 putback_movable_pages(&pagelist);
2720
2721 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2722 pfn, msg_page[huge], ret, &page->flags);
2723 if (ret > 0)
2724 ret = -EBUSY;
2725 }
2726 } else {
2727 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2728 pfn, msg_page[huge], page_count(page), &page->flags);
2729 ret = -EBUSY;
2730 }
2731 return ret;
2732 }
2733
2734 /**
2735 * soft_offline_page - Soft offline a page.
2736 * @pfn: pfn to soft-offline
2737 * @flags: flags. Same as memory_failure().
2738 *
2739 * Returns 0 on success
2740 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2741 * < 0 otherwise negated errno.
2742 *
2743 * Soft offline a page, by migration or invalidation,
2744 * without killing anything. This is for the case when
2745 * a page is not corrupted yet (so it's still valid to access),
2746 * but has had a number of corrected errors and is better taken
2747 * out.
2748 *
2749 * The actual policy on when to do that is maintained by
2750 * user space.
2751 *
2752 * This should never impact any application or cause data loss,
2753 * however it might take some time.
2754 *
2755 * This is not a 100% solution for all memory, but tries to be
2756 * ``good enough'' for the majority of memory.
2757 */
soft_offline_page(unsigned long pfn,int flags)2758 int soft_offline_page(unsigned long pfn, int flags)
2759 {
2760 int ret;
2761 bool try_again = true;
2762 struct page *page;
2763
2764 if (!pfn_valid(pfn)) {
2765 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2766 return -ENXIO;
2767 }
2768
2769 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2770 page = pfn_to_online_page(pfn);
2771 if (!page) {
2772 put_ref_page(pfn, flags);
2773 return -EIO;
2774 }
2775
2776 mutex_lock(&mf_mutex);
2777
2778 if (PageHWPoison(page)) {
2779 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2780 put_ref_page(pfn, flags);
2781 mutex_unlock(&mf_mutex);
2782 return 0;
2783 }
2784
2785 retry:
2786 get_online_mems();
2787 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2788 put_online_mems();
2789
2790 if (hwpoison_filter(page)) {
2791 if (ret > 0)
2792 put_page(page);
2793
2794 mutex_unlock(&mf_mutex);
2795 return -EOPNOTSUPP;
2796 }
2797
2798 if (ret > 0) {
2799 ret = soft_offline_in_use_page(page);
2800 } else if (ret == 0) {
2801 if (!page_handle_poison(page, true, false)) {
2802 if (try_again) {
2803 try_again = false;
2804 flags &= ~MF_COUNT_INCREASED;
2805 goto retry;
2806 }
2807 ret = -EBUSY;
2808 }
2809 }
2810
2811 mutex_unlock(&mf_mutex);
2812
2813 return ret;
2814 }
2815