xref: /openbmc/linux/mm/memcontrol.c (revision fd589a8f)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
35 #include <linux/fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
40 #include "internal.h"
41 
42 #include <asm/uaccess.h>
43 
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES	5
46 
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51 #else
52 #define do_swap_account		(0)
53 #endif
54 
55 static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
56 
57 /*
58  * Statistics for memory cgroup.
59  */
60 enum mem_cgroup_stat_index {
61 	/*
62 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 	 */
64 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
65 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
66 	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
67 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
68 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
69 
70 	MEM_CGROUP_STAT_NSTATS,
71 };
72 
73 struct mem_cgroup_stat_cpu {
74 	s64 count[MEM_CGROUP_STAT_NSTATS];
75 } ____cacheline_aligned_in_smp;
76 
77 struct mem_cgroup_stat {
78 	struct mem_cgroup_stat_cpu cpustat[0];
79 };
80 
81 /*
82  * For accounting under irq disable, no need for increment preempt count.
83  */
84 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
85 		enum mem_cgroup_stat_index idx, int val)
86 {
87 	stat->count[idx] += val;
88 }
89 
90 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
91 		enum mem_cgroup_stat_index idx)
92 {
93 	int cpu;
94 	s64 ret = 0;
95 	for_each_possible_cpu(cpu)
96 		ret += stat->cpustat[cpu].count[idx];
97 	return ret;
98 }
99 
100 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
101 {
102 	s64 ret;
103 
104 	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
105 	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
106 	return ret;
107 }
108 
109 /*
110  * per-zone information in memory controller.
111  */
112 struct mem_cgroup_per_zone {
113 	/*
114 	 * spin_lock to protect the per cgroup LRU
115 	 */
116 	struct list_head	lists[NR_LRU_LISTS];
117 	unsigned long		count[NR_LRU_LISTS];
118 
119 	struct zone_reclaim_stat reclaim_stat;
120 };
121 /* Macro for accessing counter */
122 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
123 
124 struct mem_cgroup_per_node {
125 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
126 };
127 
128 struct mem_cgroup_lru_info {
129 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
130 };
131 
132 /*
133  * The memory controller data structure. The memory controller controls both
134  * page cache and RSS per cgroup. We would eventually like to provide
135  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
136  * to help the administrator determine what knobs to tune.
137  *
138  * TODO: Add a water mark for the memory controller. Reclaim will begin when
139  * we hit the water mark. May be even add a low water mark, such that
140  * no reclaim occurs from a cgroup at it's low water mark, this is
141  * a feature that will be implemented much later in the future.
142  */
143 struct mem_cgroup {
144 	struct cgroup_subsys_state css;
145 	/*
146 	 * the counter to account for memory usage
147 	 */
148 	struct res_counter res;
149 	/*
150 	 * the counter to account for mem+swap usage.
151 	 */
152 	struct res_counter memsw;
153 	/*
154 	 * Per cgroup active and inactive list, similar to the
155 	 * per zone LRU lists.
156 	 */
157 	struct mem_cgroup_lru_info info;
158 
159 	/*
160 	  protect against reclaim related member.
161 	*/
162 	spinlock_t reclaim_param_lock;
163 
164 	int	prev_priority;	/* for recording reclaim priority */
165 
166 	/*
167 	 * While reclaiming in a hiearchy, we cache the last child we
168 	 * reclaimed from.
169 	 */
170 	int last_scanned_child;
171 	/*
172 	 * Should the accounting and control be hierarchical, per subtree?
173 	 */
174 	bool use_hierarchy;
175 	unsigned long	last_oom_jiffies;
176 	atomic_t	refcnt;
177 
178 	unsigned int	swappiness;
179 
180 	/* set when res.limit == memsw.limit */
181 	bool		memsw_is_minimum;
182 
183 	/*
184 	 * statistics. This must be placed at the end of memcg.
185 	 */
186 	struct mem_cgroup_stat stat;
187 };
188 
189 enum charge_type {
190 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
191 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
192 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
193 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
194 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
195 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
196 	NR_CHARGE_TYPE,
197 };
198 
199 /* only for here (for easy reading.) */
200 #define PCGF_CACHE	(1UL << PCG_CACHE)
201 #define PCGF_USED	(1UL << PCG_USED)
202 #define PCGF_LOCK	(1UL << PCG_LOCK)
203 static const unsigned long
204 pcg_default_flags[NR_CHARGE_TYPE] = {
205 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
206 	PCGF_USED | PCGF_LOCK, /* Anon */
207 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
208 	0, /* FORCE */
209 };
210 
211 /* for encoding cft->private value on file */
212 #define _MEM			(0)
213 #define _MEMSWAP		(1)
214 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
215 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
216 #define MEMFILE_ATTR(val)	((val) & 0xffff)
217 
218 static void mem_cgroup_get(struct mem_cgroup *mem);
219 static void mem_cgroup_put(struct mem_cgroup *mem);
220 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
221 
222 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
223 					 struct page_cgroup *pc,
224 					 bool charge)
225 {
226 	int val = (charge)? 1 : -1;
227 	struct mem_cgroup_stat *stat = &mem->stat;
228 	struct mem_cgroup_stat_cpu *cpustat;
229 	int cpu = get_cpu();
230 
231 	cpustat = &stat->cpustat[cpu];
232 	if (PageCgroupCache(pc))
233 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
234 	else
235 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
236 
237 	if (charge)
238 		__mem_cgroup_stat_add_safe(cpustat,
239 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
240 	else
241 		__mem_cgroup_stat_add_safe(cpustat,
242 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
243 	put_cpu();
244 }
245 
246 static struct mem_cgroup_per_zone *
247 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
248 {
249 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
250 }
251 
252 static struct mem_cgroup_per_zone *
253 page_cgroup_zoneinfo(struct page_cgroup *pc)
254 {
255 	struct mem_cgroup *mem = pc->mem_cgroup;
256 	int nid = page_cgroup_nid(pc);
257 	int zid = page_cgroup_zid(pc);
258 
259 	if (!mem)
260 		return NULL;
261 
262 	return mem_cgroup_zoneinfo(mem, nid, zid);
263 }
264 
265 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
266 					enum lru_list idx)
267 {
268 	int nid, zid;
269 	struct mem_cgroup_per_zone *mz;
270 	u64 total = 0;
271 
272 	for_each_online_node(nid)
273 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
274 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
275 			total += MEM_CGROUP_ZSTAT(mz, idx);
276 		}
277 	return total;
278 }
279 
280 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
281 {
282 	return container_of(cgroup_subsys_state(cont,
283 				mem_cgroup_subsys_id), struct mem_cgroup,
284 				css);
285 }
286 
287 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
288 {
289 	/*
290 	 * mm_update_next_owner() may clear mm->owner to NULL
291 	 * if it races with swapoff, page migration, etc.
292 	 * So this can be called with p == NULL.
293 	 */
294 	if (unlikely(!p))
295 		return NULL;
296 
297 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
298 				struct mem_cgroup, css);
299 }
300 
301 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
302 {
303 	struct mem_cgroup *mem = NULL;
304 
305 	if (!mm)
306 		return NULL;
307 	/*
308 	 * Because we have no locks, mm->owner's may be being moved to other
309 	 * cgroup. We use css_tryget() here even if this looks
310 	 * pessimistic (rather than adding locks here).
311 	 */
312 	rcu_read_lock();
313 	do {
314 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
315 		if (unlikely(!mem))
316 			break;
317 	} while (!css_tryget(&mem->css));
318 	rcu_read_unlock();
319 	return mem;
320 }
321 
322 /*
323  * Call callback function against all cgroup under hierarchy tree.
324  */
325 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
326 			  int (*func)(struct mem_cgroup *, void *))
327 {
328 	int found, ret, nextid;
329 	struct cgroup_subsys_state *css;
330 	struct mem_cgroup *mem;
331 
332 	if (!root->use_hierarchy)
333 		return (*func)(root, data);
334 
335 	nextid = 1;
336 	do {
337 		ret = 0;
338 		mem = NULL;
339 
340 		rcu_read_lock();
341 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
342 				   &found);
343 		if (css && css_tryget(css))
344 			mem = container_of(css, struct mem_cgroup, css);
345 		rcu_read_unlock();
346 
347 		if (mem) {
348 			ret = (*func)(mem, data);
349 			css_put(&mem->css);
350 		}
351 		nextid = found + 1;
352 	} while (!ret && css);
353 
354 	return ret;
355 }
356 
357 /*
358  * Following LRU functions are allowed to be used without PCG_LOCK.
359  * Operations are called by routine of global LRU independently from memcg.
360  * What we have to take care of here is validness of pc->mem_cgroup.
361  *
362  * Changes to pc->mem_cgroup happens when
363  * 1. charge
364  * 2. moving account
365  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
366  * It is added to LRU before charge.
367  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
368  * When moving account, the page is not on LRU. It's isolated.
369  */
370 
371 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
372 {
373 	struct page_cgroup *pc;
374 	struct mem_cgroup *mem;
375 	struct mem_cgroup_per_zone *mz;
376 
377 	if (mem_cgroup_disabled())
378 		return;
379 	pc = lookup_page_cgroup(page);
380 	/* can happen while we handle swapcache. */
381 	if (list_empty(&pc->lru) || !pc->mem_cgroup)
382 		return;
383 	/*
384 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
385 	 * removed from global LRU.
386 	 */
387 	mz = page_cgroup_zoneinfo(pc);
388 	mem = pc->mem_cgroup;
389 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
390 	list_del_init(&pc->lru);
391 	return;
392 }
393 
394 void mem_cgroup_del_lru(struct page *page)
395 {
396 	mem_cgroup_del_lru_list(page, page_lru(page));
397 }
398 
399 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
400 {
401 	struct mem_cgroup_per_zone *mz;
402 	struct page_cgroup *pc;
403 
404 	if (mem_cgroup_disabled())
405 		return;
406 
407 	pc = lookup_page_cgroup(page);
408 	/*
409 	 * Used bit is set without atomic ops but after smp_wmb().
410 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
411 	 */
412 	smp_rmb();
413 	/* unused page is not rotated. */
414 	if (!PageCgroupUsed(pc))
415 		return;
416 	mz = page_cgroup_zoneinfo(pc);
417 	list_move(&pc->lru, &mz->lists[lru]);
418 }
419 
420 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
421 {
422 	struct page_cgroup *pc;
423 	struct mem_cgroup_per_zone *mz;
424 
425 	if (mem_cgroup_disabled())
426 		return;
427 	pc = lookup_page_cgroup(page);
428 	/*
429 	 * Used bit is set without atomic ops but after smp_wmb().
430 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
431 	 */
432 	smp_rmb();
433 	if (!PageCgroupUsed(pc))
434 		return;
435 
436 	mz = page_cgroup_zoneinfo(pc);
437 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
438 	list_add(&pc->lru, &mz->lists[lru]);
439 }
440 
441 /*
442  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
443  * lru because the page may.be reused after it's fully uncharged (because of
444  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
445  * it again. This function is only used to charge SwapCache. It's done under
446  * lock_page and expected that zone->lru_lock is never held.
447  */
448 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
449 {
450 	unsigned long flags;
451 	struct zone *zone = page_zone(page);
452 	struct page_cgroup *pc = lookup_page_cgroup(page);
453 
454 	spin_lock_irqsave(&zone->lru_lock, flags);
455 	/*
456 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
457 	 * is guarded by lock_page() because the page is SwapCache.
458 	 */
459 	if (!PageCgroupUsed(pc))
460 		mem_cgroup_del_lru_list(page, page_lru(page));
461 	spin_unlock_irqrestore(&zone->lru_lock, flags);
462 }
463 
464 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
465 {
466 	unsigned long flags;
467 	struct zone *zone = page_zone(page);
468 	struct page_cgroup *pc = lookup_page_cgroup(page);
469 
470 	spin_lock_irqsave(&zone->lru_lock, flags);
471 	/* link when the page is linked to LRU but page_cgroup isn't */
472 	if (PageLRU(page) && list_empty(&pc->lru))
473 		mem_cgroup_add_lru_list(page, page_lru(page));
474 	spin_unlock_irqrestore(&zone->lru_lock, flags);
475 }
476 
477 
478 void mem_cgroup_move_lists(struct page *page,
479 			   enum lru_list from, enum lru_list to)
480 {
481 	if (mem_cgroup_disabled())
482 		return;
483 	mem_cgroup_del_lru_list(page, from);
484 	mem_cgroup_add_lru_list(page, to);
485 }
486 
487 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
488 {
489 	int ret;
490 	struct mem_cgroup *curr = NULL;
491 
492 	task_lock(task);
493 	rcu_read_lock();
494 	curr = try_get_mem_cgroup_from_mm(task->mm);
495 	rcu_read_unlock();
496 	task_unlock(task);
497 	if (!curr)
498 		return 0;
499 	if (curr->use_hierarchy)
500 		ret = css_is_ancestor(&curr->css, &mem->css);
501 	else
502 		ret = (curr == mem);
503 	css_put(&curr->css);
504 	return ret;
505 }
506 
507 /*
508  * prev_priority control...this will be used in memory reclaim path.
509  */
510 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
511 {
512 	int prev_priority;
513 
514 	spin_lock(&mem->reclaim_param_lock);
515 	prev_priority = mem->prev_priority;
516 	spin_unlock(&mem->reclaim_param_lock);
517 
518 	return prev_priority;
519 }
520 
521 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
522 {
523 	spin_lock(&mem->reclaim_param_lock);
524 	if (priority < mem->prev_priority)
525 		mem->prev_priority = priority;
526 	spin_unlock(&mem->reclaim_param_lock);
527 }
528 
529 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
530 {
531 	spin_lock(&mem->reclaim_param_lock);
532 	mem->prev_priority = priority;
533 	spin_unlock(&mem->reclaim_param_lock);
534 }
535 
536 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
537 {
538 	unsigned long active;
539 	unsigned long inactive;
540 	unsigned long gb;
541 	unsigned long inactive_ratio;
542 
543 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
544 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
545 
546 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
547 	if (gb)
548 		inactive_ratio = int_sqrt(10 * gb);
549 	else
550 		inactive_ratio = 1;
551 
552 	if (present_pages) {
553 		present_pages[0] = inactive;
554 		present_pages[1] = active;
555 	}
556 
557 	return inactive_ratio;
558 }
559 
560 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
561 {
562 	unsigned long active;
563 	unsigned long inactive;
564 	unsigned long present_pages[2];
565 	unsigned long inactive_ratio;
566 
567 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
568 
569 	inactive = present_pages[0];
570 	active = present_pages[1];
571 
572 	if (inactive * inactive_ratio < active)
573 		return 1;
574 
575 	return 0;
576 }
577 
578 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
579 {
580 	unsigned long active;
581 	unsigned long inactive;
582 
583 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
584 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
585 
586 	return (active > inactive);
587 }
588 
589 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
590 				       struct zone *zone,
591 				       enum lru_list lru)
592 {
593 	int nid = zone->zone_pgdat->node_id;
594 	int zid = zone_idx(zone);
595 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 
597 	return MEM_CGROUP_ZSTAT(mz, lru);
598 }
599 
600 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
601 						      struct zone *zone)
602 {
603 	int nid = zone->zone_pgdat->node_id;
604 	int zid = zone_idx(zone);
605 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
606 
607 	return &mz->reclaim_stat;
608 }
609 
610 struct zone_reclaim_stat *
611 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
612 {
613 	struct page_cgroup *pc;
614 	struct mem_cgroup_per_zone *mz;
615 
616 	if (mem_cgroup_disabled())
617 		return NULL;
618 
619 	pc = lookup_page_cgroup(page);
620 	/*
621 	 * Used bit is set without atomic ops but after smp_wmb().
622 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
623 	 */
624 	smp_rmb();
625 	if (!PageCgroupUsed(pc))
626 		return NULL;
627 
628 	mz = page_cgroup_zoneinfo(pc);
629 	if (!mz)
630 		return NULL;
631 
632 	return &mz->reclaim_stat;
633 }
634 
635 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
636 					struct list_head *dst,
637 					unsigned long *scanned, int order,
638 					int mode, struct zone *z,
639 					struct mem_cgroup *mem_cont,
640 					int active, int file)
641 {
642 	unsigned long nr_taken = 0;
643 	struct page *page;
644 	unsigned long scan;
645 	LIST_HEAD(pc_list);
646 	struct list_head *src;
647 	struct page_cgroup *pc, *tmp;
648 	int nid = z->zone_pgdat->node_id;
649 	int zid = zone_idx(z);
650 	struct mem_cgroup_per_zone *mz;
651 	int lru = LRU_FILE * !!file + !!active;
652 	int ret;
653 
654 	BUG_ON(!mem_cont);
655 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
656 	src = &mz->lists[lru];
657 
658 	scan = 0;
659 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
660 		if (scan >= nr_to_scan)
661 			break;
662 
663 		page = pc->page;
664 		if (unlikely(!PageCgroupUsed(pc)))
665 			continue;
666 		if (unlikely(!PageLRU(page)))
667 			continue;
668 
669 		scan++;
670 		ret = __isolate_lru_page(page, mode, file);
671 		switch (ret) {
672 		case 0:
673 			list_move(&page->lru, dst);
674 			mem_cgroup_del_lru(page);
675 			nr_taken++;
676 			break;
677 		case -EBUSY:
678 			/* we don't affect global LRU but rotate in our LRU */
679 			mem_cgroup_rotate_lru_list(page, page_lru(page));
680 			break;
681 		default:
682 			break;
683 		}
684 	}
685 
686 	*scanned = scan;
687 	return nr_taken;
688 }
689 
690 #define mem_cgroup_from_res_counter(counter, member)	\
691 	container_of(counter, struct mem_cgroup, member)
692 
693 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
694 {
695 	if (do_swap_account) {
696 		if (res_counter_check_under_limit(&mem->res) &&
697 			res_counter_check_under_limit(&mem->memsw))
698 			return true;
699 	} else
700 		if (res_counter_check_under_limit(&mem->res))
701 			return true;
702 	return false;
703 }
704 
705 static unsigned int get_swappiness(struct mem_cgroup *memcg)
706 {
707 	struct cgroup *cgrp = memcg->css.cgroup;
708 	unsigned int swappiness;
709 
710 	/* root ? */
711 	if (cgrp->parent == NULL)
712 		return vm_swappiness;
713 
714 	spin_lock(&memcg->reclaim_param_lock);
715 	swappiness = memcg->swappiness;
716 	spin_unlock(&memcg->reclaim_param_lock);
717 
718 	return swappiness;
719 }
720 
721 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
722 {
723 	int *val = data;
724 	(*val)++;
725 	return 0;
726 }
727 
728 /**
729  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
730  * @memcg: The memory cgroup that went over limit
731  * @p: Task that is going to be killed
732  *
733  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
734  * enabled
735  */
736 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
737 {
738 	struct cgroup *task_cgrp;
739 	struct cgroup *mem_cgrp;
740 	/*
741 	 * Need a buffer in BSS, can't rely on allocations. The code relies
742 	 * on the assumption that OOM is serialized for memory controller.
743 	 * If this assumption is broken, revisit this code.
744 	 */
745 	static char memcg_name[PATH_MAX];
746 	int ret;
747 
748 	if (!memcg)
749 		return;
750 
751 
752 	rcu_read_lock();
753 
754 	mem_cgrp = memcg->css.cgroup;
755 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
756 
757 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
758 	if (ret < 0) {
759 		/*
760 		 * Unfortunately, we are unable to convert to a useful name
761 		 * But we'll still print out the usage information
762 		 */
763 		rcu_read_unlock();
764 		goto done;
765 	}
766 	rcu_read_unlock();
767 
768 	printk(KERN_INFO "Task in %s killed", memcg_name);
769 
770 	rcu_read_lock();
771 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
772 	if (ret < 0) {
773 		rcu_read_unlock();
774 		goto done;
775 	}
776 	rcu_read_unlock();
777 
778 	/*
779 	 * Continues from above, so we don't need an KERN_ level
780 	 */
781 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
782 done:
783 
784 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
785 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
786 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
787 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
788 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
789 		"failcnt %llu\n",
790 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
791 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
792 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
793 }
794 
795 /*
796  * This function returns the number of memcg under hierarchy tree. Returns
797  * 1(self count) if no children.
798  */
799 static int mem_cgroup_count_children(struct mem_cgroup *mem)
800 {
801 	int num = 0;
802  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
803 	return num;
804 }
805 
806 /*
807  * Visit the first child (need not be the first child as per the ordering
808  * of the cgroup list, since we track last_scanned_child) of @mem and use
809  * that to reclaim free pages from.
810  */
811 static struct mem_cgroup *
812 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
813 {
814 	struct mem_cgroup *ret = NULL;
815 	struct cgroup_subsys_state *css;
816 	int nextid, found;
817 
818 	if (!root_mem->use_hierarchy) {
819 		css_get(&root_mem->css);
820 		ret = root_mem;
821 	}
822 
823 	while (!ret) {
824 		rcu_read_lock();
825 		nextid = root_mem->last_scanned_child + 1;
826 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
827 				   &found);
828 		if (css && css_tryget(css))
829 			ret = container_of(css, struct mem_cgroup, css);
830 
831 		rcu_read_unlock();
832 		/* Updates scanning parameter */
833 		spin_lock(&root_mem->reclaim_param_lock);
834 		if (!css) {
835 			/* this means start scan from ID:1 */
836 			root_mem->last_scanned_child = 0;
837 		} else
838 			root_mem->last_scanned_child = found;
839 		spin_unlock(&root_mem->reclaim_param_lock);
840 	}
841 
842 	return ret;
843 }
844 
845 /*
846  * Scan the hierarchy if needed to reclaim memory. We remember the last child
847  * we reclaimed from, so that we don't end up penalizing one child extensively
848  * based on its position in the children list.
849  *
850  * root_mem is the original ancestor that we've been reclaim from.
851  *
852  * We give up and return to the caller when we visit root_mem twice.
853  * (other groups can be removed while we're walking....)
854  *
855  * If shrink==true, for avoiding to free too much, this returns immedieately.
856  */
857 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
858 				   gfp_t gfp_mask, bool noswap, bool shrink)
859 {
860 	struct mem_cgroup *victim;
861 	int ret, total = 0;
862 	int loop = 0;
863 
864 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
865 	if (root_mem->memsw_is_minimum)
866 		noswap = true;
867 
868 	while (loop < 2) {
869 		victim = mem_cgroup_select_victim(root_mem);
870 		if (victim == root_mem)
871 			loop++;
872 		if (!mem_cgroup_local_usage(&victim->stat)) {
873 			/* this cgroup's local usage == 0 */
874 			css_put(&victim->css);
875 			continue;
876 		}
877 		/* we use swappiness of local cgroup */
878 		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
879 						   get_swappiness(victim));
880 		css_put(&victim->css);
881 		/*
882 		 * At shrinking usage, we can't check we should stop here or
883 		 * reclaim more. It's depends on callers. last_scanned_child
884 		 * will work enough for keeping fairness under tree.
885 		 */
886 		if (shrink)
887 			return ret;
888 		total += ret;
889 		if (mem_cgroup_check_under_limit(root_mem))
890 			return 1 + total;
891 	}
892 	return total;
893 }
894 
895 bool mem_cgroup_oom_called(struct task_struct *task)
896 {
897 	bool ret = false;
898 	struct mem_cgroup *mem;
899 	struct mm_struct *mm;
900 
901 	rcu_read_lock();
902 	mm = task->mm;
903 	if (!mm)
904 		mm = &init_mm;
905 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
906 	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
907 		ret = true;
908 	rcu_read_unlock();
909 	return ret;
910 }
911 
912 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
913 {
914 	mem->last_oom_jiffies = jiffies;
915 	return 0;
916 }
917 
918 static void record_last_oom(struct mem_cgroup *mem)
919 {
920 	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
921 }
922 
923 /*
924  * Currently used to update mapped file statistics, but the routine can be
925  * generalized to update other statistics as well.
926  */
927 void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
928 {
929 	struct mem_cgroup *mem;
930 	struct mem_cgroup_stat *stat;
931 	struct mem_cgroup_stat_cpu *cpustat;
932 	int cpu;
933 	struct page_cgroup *pc;
934 
935 	if (!page_is_file_cache(page))
936 		return;
937 
938 	pc = lookup_page_cgroup(page);
939 	if (unlikely(!pc))
940 		return;
941 
942 	lock_page_cgroup(pc);
943 	mem = pc->mem_cgroup;
944 	if (!mem)
945 		goto done;
946 
947 	if (!PageCgroupUsed(pc))
948 		goto done;
949 
950 	/*
951 	 * Preemption is already disabled, we don't need get_cpu()
952 	 */
953 	cpu = smp_processor_id();
954 	stat = &mem->stat;
955 	cpustat = &stat->cpustat[cpu];
956 
957 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
958 done:
959 	unlock_page_cgroup(pc);
960 }
961 
962 /*
963  * Unlike exported interface, "oom" parameter is added. if oom==true,
964  * oom-killer can be invoked.
965  */
966 static int __mem_cgroup_try_charge(struct mm_struct *mm,
967 			gfp_t gfp_mask, struct mem_cgroup **memcg,
968 			bool oom)
969 {
970 	struct mem_cgroup *mem, *mem_over_limit;
971 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
972 	struct res_counter *fail_res;
973 
974 	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
975 		/* Don't account this! */
976 		*memcg = NULL;
977 		return 0;
978 	}
979 
980 	/*
981 	 * We always charge the cgroup the mm_struct belongs to.
982 	 * The mm_struct's mem_cgroup changes on task migration if the
983 	 * thread group leader migrates. It's possible that mm is not
984 	 * set, if so charge the init_mm (happens for pagecache usage).
985 	 */
986 	mem = *memcg;
987 	if (likely(!mem)) {
988 		mem = try_get_mem_cgroup_from_mm(mm);
989 		*memcg = mem;
990 	} else {
991 		css_get(&mem->css);
992 	}
993 	if (unlikely(!mem))
994 		return 0;
995 
996 	VM_BUG_ON(css_is_removed(&mem->css));
997 
998 	while (1) {
999 		int ret;
1000 		bool noswap = false;
1001 
1002 		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1003 		if (likely(!ret)) {
1004 			if (!do_swap_account)
1005 				break;
1006 			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1007 							&fail_res);
1008 			if (likely(!ret))
1009 				break;
1010 			/* mem+swap counter fails */
1011 			res_counter_uncharge(&mem->res, PAGE_SIZE);
1012 			noswap = true;
1013 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1014 									memsw);
1015 		} else
1016 			/* mem counter fails */
1017 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1018 									res);
1019 
1020 		if (!(gfp_mask & __GFP_WAIT))
1021 			goto nomem;
1022 
1023 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
1024 							noswap, false);
1025 		if (ret)
1026 			continue;
1027 
1028 		/*
1029 		 * try_to_free_mem_cgroup_pages() might not give us a full
1030 		 * picture of reclaim. Some pages are reclaimed and might be
1031 		 * moved to swap cache or just unmapped from the cgroup.
1032 		 * Check the limit again to see if the reclaim reduced the
1033 		 * current usage of the cgroup before giving up
1034 		 *
1035 		 */
1036 		if (mem_cgroup_check_under_limit(mem_over_limit))
1037 			continue;
1038 
1039 		if (!nr_retries--) {
1040 			if (oom) {
1041 				mutex_lock(&memcg_tasklist);
1042 				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1043 				mutex_unlock(&memcg_tasklist);
1044 				record_last_oom(mem_over_limit);
1045 			}
1046 			goto nomem;
1047 		}
1048 	}
1049 	return 0;
1050 nomem:
1051 	css_put(&mem->css);
1052 	return -ENOMEM;
1053 }
1054 
1055 
1056 /*
1057  * A helper function to get mem_cgroup from ID. must be called under
1058  * rcu_read_lock(). The caller must check css_is_removed() or some if
1059  * it's concern. (dropping refcnt from swap can be called against removed
1060  * memcg.)
1061  */
1062 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1063 {
1064 	struct cgroup_subsys_state *css;
1065 
1066 	/* ID 0 is unused ID */
1067 	if (!id)
1068 		return NULL;
1069 	css = css_lookup(&mem_cgroup_subsys, id);
1070 	if (!css)
1071 		return NULL;
1072 	return container_of(css, struct mem_cgroup, css);
1073 }
1074 
1075 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1076 {
1077 	struct mem_cgroup *mem;
1078 	struct page_cgroup *pc;
1079 	unsigned short id;
1080 	swp_entry_t ent;
1081 
1082 	VM_BUG_ON(!PageLocked(page));
1083 
1084 	if (!PageSwapCache(page))
1085 		return NULL;
1086 
1087 	pc = lookup_page_cgroup(page);
1088 	lock_page_cgroup(pc);
1089 	if (PageCgroupUsed(pc)) {
1090 		mem = pc->mem_cgroup;
1091 		if (mem && !css_tryget(&mem->css))
1092 			mem = NULL;
1093 	} else {
1094 		ent.val = page_private(page);
1095 		id = lookup_swap_cgroup(ent);
1096 		rcu_read_lock();
1097 		mem = mem_cgroup_lookup(id);
1098 		if (mem && !css_tryget(&mem->css))
1099 			mem = NULL;
1100 		rcu_read_unlock();
1101 	}
1102 	unlock_page_cgroup(pc);
1103 	return mem;
1104 }
1105 
1106 /*
1107  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1108  * USED state. If already USED, uncharge and return.
1109  */
1110 
1111 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1112 				     struct page_cgroup *pc,
1113 				     enum charge_type ctype)
1114 {
1115 	/* try_charge() can return NULL to *memcg, taking care of it. */
1116 	if (!mem)
1117 		return;
1118 
1119 	lock_page_cgroup(pc);
1120 	if (unlikely(PageCgroupUsed(pc))) {
1121 		unlock_page_cgroup(pc);
1122 		res_counter_uncharge(&mem->res, PAGE_SIZE);
1123 		if (do_swap_account)
1124 			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1125 		css_put(&mem->css);
1126 		return;
1127 	}
1128 	pc->mem_cgroup = mem;
1129 	smp_wmb();
1130 	pc->flags = pcg_default_flags[ctype];
1131 
1132 	mem_cgroup_charge_statistics(mem, pc, true);
1133 
1134 	unlock_page_cgroup(pc);
1135 }
1136 
1137 /**
1138  * mem_cgroup_move_account - move account of the page
1139  * @pc:	page_cgroup of the page.
1140  * @from: mem_cgroup which the page is moved from.
1141  * @to:	mem_cgroup which the page is moved to. @from != @to.
1142  *
1143  * The caller must confirm following.
1144  * - page is not on LRU (isolate_page() is useful.)
1145  *
1146  * returns 0 at success,
1147  * returns -EBUSY when lock is busy or "pc" is unstable.
1148  *
1149  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1150  * new cgroup. It should be done by a caller.
1151  */
1152 
1153 static int mem_cgroup_move_account(struct page_cgroup *pc,
1154 	struct mem_cgroup *from, struct mem_cgroup *to)
1155 {
1156 	struct mem_cgroup_per_zone *from_mz, *to_mz;
1157 	int nid, zid;
1158 	int ret = -EBUSY;
1159 	struct page *page;
1160 	int cpu;
1161 	struct mem_cgroup_stat *stat;
1162 	struct mem_cgroup_stat_cpu *cpustat;
1163 
1164 	VM_BUG_ON(from == to);
1165 	VM_BUG_ON(PageLRU(pc->page));
1166 
1167 	nid = page_cgroup_nid(pc);
1168 	zid = page_cgroup_zid(pc);
1169 	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1170 	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1171 
1172 	if (!trylock_page_cgroup(pc))
1173 		return ret;
1174 
1175 	if (!PageCgroupUsed(pc))
1176 		goto out;
1177 
1178 	if (pc->mem_cgroup != from)
1179 		goto out;
1180 
1181 	res_counter_uncharge(&from->res, PAGE_SIZE);
1182 	mem_cgroup_charge_statistics(from, pc, false);
1183 
1184 	page = pc->page;
1185 	if (page_is_file_cache(page) && page_mapped(page)) {
1186 		cpu = smp_processor_id();
1187 		/* Update mapped_file data for mem_cgroup "from" */
1188 		stat = &from->stat;
1189 		cpustat = &stat->cpustat[cpu];
1190 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1191 						-1);
1192 
1193 		/* Update mapped_file data for mem_cgroup "to" */
1194 		stat = &to->stat;
1195 		cpustat = &stat->cpustat[cpu];
1196 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1197 						1);
1198 	}
1199 
1200 	if (do_swap_account)
1201 		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1202 	css_put(&from->css);
1203 
1204 	css_get(&to->css);
1205 	pc->mem_cgroup = to;
1206 	mem_cgroup_charge_statistics(to, pc, true);
1207 	ret = 0;
1208 out:
1209 	unlock_page_cgroup(pc);
1210 	/*
1211 	 * We charges against "to" which may not have any tasks. Then, "to"
1212 	 * can be under rmdir(). But in current implementation, caller of
1213 	 * this function is just force_empty() and it's garanteed that
1214 	 * "to" is never removed. So, we don't check rmdir status here.
1215 	 */
1216 	return ret;
1217 }
1218 
1219 /*
1220  * move charges to its parent.
1221  */
1222 
1223 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1224 				  struct mem_cgroup *child,
1225 				  gfp_t gfp_mask)
1226 {
1227 	struct page *page = pc->page;
1228 	struct cgroup *cg = child->css.cgroup;
1229 	struct cgroup *pcg = cg->parent;
1230 	struct mem_cgroup *parent;
1231 	int ret;
1232 
1233 	/* Is ROOT ? */
1234 	if (!pcg)
1235 		return -EINVAL;
1236 
1237 
1238 	parent = mem_cgroup_from_cont(pcg);
1239 
1240 
1241 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1242 	if (ret || !parent)
1243 		return ret;
1244 
1245 	if (!get_page_unless_zero(page)) {
1246 		ret = -EBUSY;
1247 		goto uncharge;
1248 	}
1249 
1250 	ret = isolate_lru_page(page);
1251 
1252 	if (ret)
1253 		goto cancel;
1254 
1255 	ret = mem_cgroup_move_account(pc, child, parent);
1256 
1257 	putback_lru_page(page);
1258 	if (!ret) {
1259 		put_page(page);
1260 		/* drop extra refcnt by try_charge() */
1261 		css_put(&parent->css);
1262 		return 0;
1263 	}
1264 
1265 cancel:
1266 	put_page(page);
1267 uncharge:
1268 	/* drop extra refcnt by try_charge() */
1269 	css_put(&parent->css);
1270 	/* uncharge if move fails */
1271 	res_counter_uncharge(&parent->res, PAGE_SIZE);
1272 	if (do_swap_account)
1273 		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1274 	return ret;
1275 }
1276 
1277 /*
1278  * Charge the memory controller for page usage.
1279  * Return
1280  * 0 if the charge was successful
1281  * < 0 if the cgroup is over its limit
1282  */
1283 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1284 				gfp_t gfp_mask, enum charge_type ctype,
1285 				struct mem_cgroup *memcg)
1286 {
1287 	struct mem_cgroup *mem;
1288 	struct page_cgroup *pc;
1289 	int ret;
1290 
1291 	pc = lookup_page_cgroup(page);
1292 	/* can happen at boot */
1293 	if (unlikely(!pc))
1294 		return 0;
1295 	prefetchw(pc);
1296 
1297 	mem = memcg;
1298 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1299 	if (ret || !mem)
1300 		return ret;
1301 
1302 	__mem_cgroup_commit_charge(mem, pc, ctype);
1303 	return 0;
1304 }
1305 
1306 int mem_cgroup_newpage_charge(struct page *page,
1307 			      struct mm_struct *mm, gfp_t gfp_mask)
1308 {
1309 	if (mem_cgroup_disabled())
1310 		return 0;
1311 	if (PageCompound(page))
1312 		return 0;
1313 	/*
1314 	 * If already mapped, we don't have to account.
1315 	 * If page cache, page->mapping has address_space.
1316 	 * But page->mapping may have out-of-use anon_vma pointer,
1317 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1318 	 * is NULL.
1319   	 */
1320 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1321 		return 0;
1322 	if (unlikely(!mm))
1323 		mm = &init_mm;
1324 	return mem_cgroup_charge_common(page, mm, gfp_mask,
1325 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1326 }
1327 
1328 static void
1329 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1330 					enum charge_type ctype);
1331 
1332 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1333 				gfp_t gfp_mask)
1334 {
1335 	struct mem_cgroup *mem = NULL;
1336 	int ret;
1337 
1338 	if (mem_cgroup_disabled())
1339 		return 0;
1340 	if (PageCompound(page))
1341 		return 0;
1342 	/*
1343 	 * Corner case handling. This is called from add_to_page_cache()
1344 	 * in usual. But some FS (shmem) precharges this page before calling it
1345 	 * and call add_to_page_cache() with GFP_NOWAIT.
1346 	 *
1347 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1348 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1349 	 * charge twice. (It works but has to pay a bit larger cost.)
1350 	 * And when the page is SwapCache, it should take swap information
1351 	 * into account. This is under lock_page() now.
1352 	 */
1353 	if (!(gfp_mask & __GFP_WAIT)) {
1354 		struct page_cgroup *pc;
1355 
1356 
1357 		pc = lookup_page_cgroup(page);
1358 		if (!pc)
1359 			return 0;
1360 		lock_page_cgroup(pc);
1361 		if (PageCgroupUsed(pc)) {
1362 			unlock_page_cgroup(pc);
1363 			return 0;
1364 		}
1365 		unlock_page_cgroup(pc);
1366 	}
1367 
1368 	if (unlikely(!mm && !mem))
1369 		mm = &init_mm;
1370 
1371 	if (page_is_file_cache(page))
1372 		return mem_cgroup_charge_common(page, mm, gfp_mask,
1373 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1374 
1375 	/* shmem */
1376 	if (PageSwapCache(page)) {
1377 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1378 		if (!ret)
1379 			__mem_cgroup_commit_charge_swapin(page, mem,
1380 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1381 	} else
1382 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1383 					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1384 
1385 	return ret;
1386 }
1387 
1388 /*
1389  * While swap-in, try_charge -> commit or cancel, the page is locked.
1390  * And when try_charge() successfully returns, one refcnt to memcg without
1391  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1392  * "commit()" or removed by "cancel()"
1393  */
1394 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1395 				 struct page *page,
1396 				 gfp_t mask, struct mem_cgroup **ptr)
1397 {
1398 	struct mem_cgroup *mem;
1399 	int ret;
1400 
1401 	if (mem_cgroup_disabled())
1402 		return 0;
1403 
1404 	if (!do_swap_account)
1405 		goto charge_cur_mm;
1406 	/*
1407 	 * A racing thread's fault, or swapoff, may have already updated
1408 	 * the pte, and even removed page from swap cache: return success
1409 	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1410 	 */
1411 	if (!PageSwapCache(page))
1412 		return 0;
1413 	mem = try_get_mem_cgroup_from_swapcache(page);
1414 	if (!mem)
1415 		goto charge_cur_mm;
1416 	*ptr = mem;
1417 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1418 	/* drop extra refcnt from tryget */
1419 	css_put(&mem->css);
1420 	return ret;
1421 charge_cur_mm:
1422 	if (unlikely(!mm))
1423 		mm = &init_mm;
1424 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
1425 }
1426 
1427 static void
1428 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1429 					enum charge_type ctype)
1430 {
1431 	struct page_cgroup *pc;
1432 
1433 	if (mem_cgroup_disabled())
1434 		return;
1435 	if (!ptr)
1436 		return;
1437 	cgroup_exclude_rmdir(&ptr->css);
1438 	pc = lookup_page_cgroup(page);
1439 	mem_cgroup_lru_del_before_commit_swapcache(page);
1440 	__mem_cgroup_commit_charge(ptr, pc, ctype);
1441 	mem_cgroup_lru_add_after_commit_swapcache(page);
1442 	/*
1443 	 * Now swap is on-memory. This means this page may be
1444 	 * counted both as mem and swap....double count.
1445 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1446 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1447 	 * may call delete_from_swap_cache() before reach here.
1448 	 */
1449 	if (do_swap_account && PageSwapCache(page)) {
1450 		swp_entry_t ent = {.val = page_private(page)};
1451 		unsigned short id;
1452 		struct mem_cgroup *memcg;
1453 
1454 		id = swap_cgroup_record(ent, 0);
1455 		rcu_read_lock();
1456 		memcg = mem_cgroup_lookup(id);
1457 		if (memcg) {
1458 			/*
1459 			 * This recorded memcg can be obsolete one. So, avoid
1460 			 * calling css_tryget
1461 			 */
1462 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1463 			mem_cgroup_put(memcg);
1464 		}
1465 		rcu_read_unlock();
1466 	}
1467 	/*
1468 	 * At swapin, we may charge account against cgroup which has no tasks.
1469 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
1470 	 * In that case, we need to call pre_destroy() again. check it here.
1471 	 */
1472 	cgroup_release_and_wakeup_rmdir(&ptr->css);
1473 }
1474 
1475 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1476 {
1477 	__mem_cgroup_commit_charge_swapin(page, ptr,
1478 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1479 }
1480 
1481 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1482 {
1483 	if (mem_cgroup_disabled())
1484 		return;
1485 	if (!mem)
1486 		return;
1487 	res_counter_uncharge(&mem->res, PAGE_SIZE);
1488 	if (do_swap_account)
1489 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1490 	css_put(&mem->css);
1491 }
1492 
1493 
1494 /*
1495  * uncharge if !page_mapped(page)
1496  */
1497 static struct mem_cgroup *
1498 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1499 {
1500 	struct page_cgroup *pc;
1501 	struct mem_cgroup *mem = NULL;
1502 	struct mem_cgroup_per_zone *mz;
1503 
1504 	if (mem_cgroup_disabled())
1505 		return NULL;
1506 
1507 	if (PageSwapCache(page))
1508 		return NULL;
1509 
1510 	/*
1511 	 * Check if our page_cgroup is valid
1512 	 */
1513 	pc = lookup_page_cgroup(page);
1514 	if (unlikely(!pc || !PageCgroupUsed(pc)))
1515 		return NULL;
1516 
1517 	lock_page_cgroup(pc);
1518 
1519 	mem = pc->mem_cgroup;
1520 
1521 	if (!PageCgroupUsed(pc))
1522 		goto unlock_out;
1523 
1524 	switch (ctype) {
1525 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1526 	case MEM_CGROUP_CHARGE_TYPE_DROP:
1527 		if (page_mapped(page))
1528 			goto unlock_out;
1529 		break;
1530 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1531 		if (!PageAnon(page)) {	/* Shared memory */
1532 			if (page->mapping && !page_is_file_cache(page))
1533 				goto unlock_out;
1534 		} else if (page_mapped(page)) /* Anon */
1535 				goto unlock_out;
1536 		break;
1537 	default:
1538 		break;
1539 	}
1540 
1541 	res_counter_uncharge(&mem->res, PAGE_SIZE);
1542 	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1543 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1544 	mem_cgroup_charge_statistics(mem, pc, false);
1545 
1546 	ClearPageCgroupUsed(pc);
1547 	/*
1548 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1549 	 * freed from LRU. This is safe because uncharged page is expected not
1550 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1551 	 * special functions.
1552 	 */
1553 
1554 	mz = page_cgroup_zoneinfo(pc);
1555 	unlock_page_cgroup(pc);
1556 
1557 	/* at swapout, this memcg will be accessed to record to swap */
1558 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1559 		css_put(&mem->css);
1560 
1561 	return mem;
1562 
1563 unlock_out:
1564 	unlock_page_cgroup(pc);
1565 	return NULL;
1566 }
1567 
1568 void mem_cgroup_uncharge_page(struct page *page)
1569 {
1570 	/* early check. */
1571 	if (page_mapped(page))
1572 		return;
1573 	if (page->mapping && !PageAnon(page))
1574 		return;
1575 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1576 }
1577 
1578 void mem_cgroup_uncharge_cache_page(struct page *page)
1579 {
1580 	VM_BUG_ON(page_mapped(page));
1581 	VM_BUG_ON(page->mapping);
1582 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1583 }
1584 
1585 #ifdef CONFIG_SWAP
1586 /*
1587  * called after __delete_from_swap_cache() and drop "page" account.
1588  * memcg information is recorded to swap_cgroup of "ent"
1589  */
1590 void
1591 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1592 {
1593 	struct mem_cgroup *memcg;
1594 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1595 
1596 	if (!swapout) /* this was a swap cache but the swap is unused ! */
1597 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1598 
1599 	memcg = __mem_cgroup_uncharge_common(page, ctype);
1600 
1601 	/* record memcg information */
1602 	if (do_swap_account && swapout && memcg) {
1603 		swap_cgroup_record(ent, css_id(&memcg->css));
1604 		mem_cgroup_get(memcg);
1605 	}
1606 	if (swapout && memcg)
1607 		css_put(&memcg->css);
1608 }
1609 #endif
1610 
1611 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1612 /*
1613  * called from swap_entry_free(). remove record in swap_cgroup and
1614  * uncharge "memsw" account.
1615  */
1616 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1617 {
1618 	struct mem_cgroup *memcg;
1619 	unsigned short id;
1620 
1621 	if (!do_swap_account)
1622 		return;
1623 
1624 	id = swap_cgroup_record(ent, 0);
1625 	rcu_read_lock();
1626 	memcg = mem_cgroup_lookup(id);
1627 	if (memcg) {
1628 		/*
1629 		 * We uncharge this because swap is freed.
1630 		 * This memcg can be obsolete one. We avoid calling css_tryget
1631 		 */
1632 		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1633 		mem_cgroup_put(memcg);
1634 	}
1635 	rcu_read_unlock();
1636 }
1637 #endif
1638 
1639 /*
1640  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1641  * page belongs to.
1642  */
1643 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1644 {
1645 	struct page_cgroup *pc;
1646 	struct mem_cgroup *mem = NULL;
1647 	int ret = 0;
1648 
1649 	if (mem_cgroup_disabled())
1650 		return 0;
1651 
1652 	pc = lookup_page_cgroup(page);
1653 	lock_page_cgroup(pc);
1654 	if (PageCgroupUsed(pc)) {
1655 		mem = pc->mem_cgroup;
1656 		css_get(&mem->css);
1657 	}
1658 	unlock_page_cgroup(pc);
1659 
1660 	if (mem) {
1661 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1662 		css_put(&mem->css);
1663 	}
1664 	*ptr = mem;
1665 	return ret;
1666 }
1667 
1668 /* remove redundant charge if migration failed*/
1669 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1670 		struct page *oldpage, struct page *newpage)
1671 {
1672 	struct page *target, *unused;
1673 	struct page_cgroup *pc;
1674 	enum charge_type ctype;
1675 
1676 	if (!mem)
1677 		return;
1678 	cgroup_exclude_rmdir(&mem->css);
1679 	/* at migration success, oldpage->mapping is NULL. */
1680 	if (oldpage->mapping) {
1681 		target = oldpage;
1682 		unused = NULL;
1683 	} else {
1684 		target = newpage;
1685 		unused = oldpage;
1686 	}
1687 
1688 	if (PageAnon(target))
1689 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1690 	else if (page_is_file_cache(target))
1691 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1692 	else
1693 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1694 
1695 	/* unused page is not on radix-tree now. */
1696 	if (unused)
1697 		__mem_cgroup_uncharge_common(unused, ctype);
1698 
1699 	pc = lookup_page_cgroup(target);
1700 	/*
1701 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1702 	 * So, double-counting is effectively avoided.
1703 	 */
1704 	__mem_cgroup_commit_charge(mem, pc, ctype);
1705 
1706 	/*
1707 	 * Both of oldpage and newpage are still under lock_page().
1708 	 * Then, we don't have to care about race in radix-tree.
1709 	 * But we have to be careful that this page is unmapped or not.
1710 	 *
1711 	 * There is a case for !page_mapped(). At the start of
1712 	 * migration, oldpage was mapped. But now, it's zapped.
1713 	 * But we know *target* page is not freed/reused under us.
1714 	 * mem_cgroup_uncharge_page() does all necessary checks.
1715 	 */
1716 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1717 		mem_cgroup_uncharge_page(target);
1718 	/*
1719 	 * At migration, we may charge account against cgroup which has no tasks
1720 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
1721 	 * In that case, we need to call pre_destroy() again. check it here.
1722 	 */
1723 	cgroup_release_and_wakeup_rmdir(&mem->css);
1724 }
1725 
1726 /*
1727  * A call to try to shrink memory usage on charge failure at shmem's swapin.
1728  * Calling hierarchical_reclaim is not enough because we should update
1729  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1730  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1731  * not from the memcg which this page would be charged to.
1732  * try_charge_swapin does all of these works properly.
1733  */
1734 int mem_cgroup_shmem_charge_fallback(struct page *page,
1735 			    struct mm_struct *mm,
1736 			    gfp_t gfp_mask)
1737 {
1738 	struct mem_cgroup *mem = NULL;
1739 	int ret;
1740 
1741 	if (mem_cgroup_disabled())
1742 		return 0;
1743 
1744 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1745 	if (!ret)
1746 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1747 
1748 	return ret;
1749 }
1750 
1751 static DEFINE_MUTEX(set_limit_mutex);
1752 
1753 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1754 				unsigned long long val)
1755 {
1756 	int retry_count;
1757 	int progress;
1758 	u64 memswlimit;
1759 	int ret = 0;
1760 	int children = mem_cgroup_count_children(memcg);
1761 	u64 curusage, oldusage;
1762 
1763 	/*
1764 	 * For keeping hierarchical_reclaim simple, how long we should retry
1765 	 * is depends on callers. We set our retry-count to be function
1766 	 * of # of children which we should visit in this loop.
1767 	 */
1768 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1769 
1770 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1771 
1772 	while (retry_count) {
1773 		if (signal_pending(current)) {
1774 			ret = -EINTR;
1775 			break;
1776 		}
1777 		/*
1778 		 * Rather than hide all in some function, I do this in
1779 		 * open coded manner. You see what this really does.
1780 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1781 		 */
1782 		mutex_lock(&set_limit_mutex);
1783 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1784 		if (memswlimit < val) {
1785 			ret = -EINVAL;
1786 			mutex_unlock(&set_limit_mutex);
1787 			break;
1788 		}
1789 		ret = res_counter_set_limit(&memcg->res, val);
1790 		if (!ret) {
1791 			if (memswlimit == val)
1792 				memcg->memsw_is_minimum = true;
1793 			else
1794 				memcg->memsw_is_minimum = false;
1795 		}
1796 		mutex_unlock(&set_limit_mutex);
1797 
1798 		if (!ret)
1799 			break;
1800 
1801 		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1802 						   false, true);
1803 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1804 		/* Usage is reduced ? */
1805   		if (curusage >= oldusage)
1806 			retry_count--;
1807 		else
1808 			oldusage = curusage;
1809 	}
1810 
1811 	return ret;
1812 }
1813 
1814 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1815 					unsigned long long val)
1816 {
1817 	int retry_count;
1818 	u64 memlimit, oldusage, curusage;
1819 	int children = mem_cgroup_count_children(memcg);
1820 	int ret = -EBUSY;
1821 
1822 	/* see mem_cgroup_resize_res_limit */
1823  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1824 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1825 	while (retry_count) {
1826 		if (signal_pending(current)) {
1827 			ret = -EINTR;
1828 			break;
1829 		}
1830 		/*
1831 		 * Rather than hide all in some function, I do this in
1832 		 * open coded manner. You see what this really does.
1833 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1834 		 */
1835 		mutex_lock(&set_limit_mutex);
1836 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1837 		if (memlimit > val) {
1838 			ret = -EINVAL;
1839 			mutex_unlock(&set_limit_mutex);
1840 			break;
1841 		}
1842 		ret = res_counter_set_limit(&memcg->memsw, val);
1843 		if (!ret) {
1844 			if (memlimit == val)
1845 				memcg->memsw_is_minimum = true;
1846 			else
1847 				memcg->memsw_is_minimum = false;
1848 		}
1849 		mutex_unlock(&set_limit_mutex);
1850 
1851 		if (!ret)
1852 			break;
1853 
1854 		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1855 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1856 		/* Usage is reduced ? */
1857 		if (curusage >= oldusage)
1858 			retry_count--;
1859 		else
1860 			oldusage = curusage;
1861 	}
1862 	return ret;
1863 }
1864 
1865 /*
1866  * This routine traverse page_cgroup in given list and drop them all.
1867  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1868  */
1869 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1870 				int node, int zid, enum lru_list lru)
1871 {
1872 	struct zone *zone;
1873 	struct mem_cgroup_per_zone *mz;
1874 	struct page_cgroup *pc, *busy;
1875 	unsigned long flags, loop;
1876 	struct list_head *list;
1877 	int ret = 0;
1878 
1879 	zone = &NODE_DATA(node)->node_zones[zid];
1880 	mz = mem_cgroup_zoneinfo(mem, node, zid);
1881 	list = &mz->lists[lru];
1882 
1883 	loop = MEM_CGROUP_ZSTAT(mz, lru);
1884 	/* give some margin against EBUSY etc...*/
1885 	loop += 256;
1886 	busy = NULL;
1887 	while (loop--) {
1888 		ret = 0;
1889 		spin_lock_irqsave(&zone->lru_lock, flags);
1890 		if (list_empty(list)) {
1891 			spin_unlock_irqrestore(&zone->lru_lock, flags);
1892 			break;
1893 		}
1894 		pc = list_entry(list->prev, struct page_cgroup, lru);
1895 		if (busy == pc) {
1896 			list_move(&pc->lru, list);
1897 			busy = 0;
1898 			spin_unlock_irqrestore(&zone->lru_lock, flags);
1899 			continue;
1900 		}
1901 		spin_unlock_irqrestore(&zone->lru_lock, flags);
1902 
1903 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1904 		if (ret == -ENOMEM)
1905 			break;
1906 
1907 		if (ret == -EBUSY || ret == -EINVAL) {
1908 			/* found lock contention or "pc" is obsolete. */
1909 			busy = pc;
1910 			cond_resched();
1911 		} else
1912 			busy = NULL;
1913 	}
1914 
1915 	if (!ret && !list_empty(list))
1916 		return -EBUSY;
1917 	return ret;
1918 }
1919 
1920 /*
1921  * make mem_cgroup's charge to be 0 if there is no task.
1922  * This enables deleting this mem_cgroup.
1923  */
1924 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1925 {
1926 	int ret;
1927 	int node, zid, shrink;
1928 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1929 	struct cgroup *cgrp = mem->css.cgroup;
1930 
1931 	css_get(&mem->css);
1932 
1933 	shrink = 0;
1934 	/* should free all ? */
1935 	if (free_all)
1936 		goto try_to_free;
1937 move_account:
1938 	while (mem->res.usage > 0) {
1939 		ret = -EBUSY;
1940 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1941 			goto out;
1942 		ret = -EINTR;
1943 		if (signal_pending(current))
1944 			goto out;
1945 		/* This is for making all *used* pages to be on LRU. */
1946 		lru_add_drain_all();
1947 		ret = 0;
1948 		for_each_node_state(node, N_HIGH_MEMORY) {
1949 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1950 				enum lru_list l;
1951 				for_each_lru(l) {
1952 					ret = mem_cgroup_force_empty_list(mem,
1953 							node, zid, l);
1954 					if (ret)
1955 						break;
1956 				}
1957 			}
1958 			if (ret)
1959 				break;
1960 		}
1961 		/* it seems parent cgroup doesn't have enough mem */
1962 		if (ret == -ENOMEM)
1963 			goto try_to_free;
1964 		cond_resched();
1965 	}
1966 	ret = 0;
1967 out:
1968 	css_put(&mem->css);
1969 	return ret;
1970 
1971 try_to_free:
1972 	/* returns EBUSY if there is a task or if we come here twice. */
1973 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1974 		ret = -EBUSY;
1975 		goto out;
1976 	}
1977 	/* we call try-to-free pages for make this cgroup empty */
1978 	lru_add_drain_all();
1979 	/* try to free all pages in this cgroup */
1980 	shrink = 1;
1981 	while (nr_retries && mem->res.usage > 0) {
1982 		int progress;
1983 
1984 		if (signal_pending(current)) {
1985 			ret = -EINTR;
1986 			goto out;
1987 		}
1988 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1989 						false, get_swappiness(mem));
1990 		if (!progress) {
1991 			nr_retries--;
1992 			/* maybe some writeback is necessary */
1993 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1994 		}
1995 
1996 	}
1997 	lru_add_drain();
1998 	/* try move_account...there may be some *locked* pages. */
1999 	if (mem->res.usage)
2000 		goto move_account;
2001 	ret = 0;
2002 	goto out;
2003 }
2004 
2005 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2006 {
2007 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2008 }
2009 
2010 
2011 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2012 {
2013 	return mem_cgroup_from_cont(cont)->use_hierarchy;
2014 }
2015 
2016 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2017 					u64 val)
2018 {
2019 	int retval = 0;
2020 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2021 	struct cgroup *parent = cont->parent;
2022 	struct mem_cgroup *parent_mem = NULL;
2023 
2024 	if (parent)
2025 		parent_mem = mem_cgroup_from_cont(parent);
2026 
2027 	cgroup_lock();
2028 	/*
2029 	 * If parent's use_hiearchy is set, we can't make any modifications
2030 	 * in the child subtrees. If it is unset, then the change can
2031 	 * occur, provided the current cgroup has no children.
2032 	 *
2033 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2034 	 * set if there are no children.
2035 	 */
2036 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2037 				(val == 1 || val == 0)) {
2038 		if (list_empty(&cont->children))
2039 			mem->use_hierarchy = val;
2040 		else
2041 			retval = -EBUSY;
2042 	} else
2043 		retval = -EINVAL;
2044 	cgroup_unlock();
2045 
2046 	return retval;
2047 }
2048 
2049 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2050 {
2051 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2052 	u64 val = 0;
2053 	int type, name;
2054 
2055 	type = MEMFILE_TYPE(cft->private);
2056 	name = MEMFILE_ATTR(cft->private);
2057 	switch (type) {
2058 	case _MEM:
2059 		val = res_counter_read_u64(&mem->res, name);
2060 		break;
2061 	case _MEMSWAP:
2062 		val = res_counter_read_u64(&mem->memsw, name);
2063 		break;
2064 	default:
2065 		BUG();
2066 		break;
2067 	}
2068 	return val;
2069 }
2070 /*
2071  * The user of this function is...
2072  * RES_LIMIT.
2073  */
2074 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2075 			    const char *buffer)
2076 {
2077 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2078 	int type, name;
2079 	unsigned long long val;
2080 	int ret;
2081 
2082 	type = MEMFILE_TYPE(cft->private);
2083 	name = MEMFILE_ATTR(cft->private);
2084 	switch (name) {
2085 	case RES_LIMIT:
2086 		/* This function does all necessary parse...reuse it */
2087 		ret = res_counter_memparse_write_strategy(buffer, &val);
2088 		if (ret)
2089 			break;
2090 		if (type == _MEM)
2091 			ret = mem_cgroup_resize_limit(memcg, val);
2092 		else
2093 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2094 		break;
2095 	default:
2096 		ret = -EINVAL; /* should be BUG() ? */
2097 		break;
2098 	}
2099 	return ret;
2100 }
2101 
2102 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2103 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
2104 {
2105 	struct cgroup *cgroup;
2106 	unsigned long long min_limit, min_memsw_limit, tmp;
2107 
2108 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2109 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2110 	cgroup = memcg->css.cgroup;
2111 	if (!memcg->use_hierarchy)
2112 		goto out;
2113 
2114 	while (cgroup->parent) {
2115 		cgroup = cgroup->parent;
2116 		memcg = mem_cgroup_from_cont(cgroup);
2117 		if (!memcg->use_hierarchy)
2118 			break;
2119 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2120 		min_limit = min(min_limit, tmp);
2121 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2122 		min_memsw_limit = min(min_memsw_limit, tmp);
2123 	}
2124 out:
2125 	*mem_limit = min_limit;
2126 	*memsw_limit = min_memsw_limit;
2127 	return;
2128 }
2129 
2130 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2131 {
2132 	struct mem_cgroup *mem;
2133 	int type, name;
2134 
2135 	mem = mem_cgroup_from_cont(cont);
2136 	type = MEMFILE_TYPE(event);
2137 	name = MEMFILE_ATTR(event);
2138 	switch (name) {
2139 	case RES_MAX_USAGE:
2140 		if (type == _MEM)
2141 			res_counter_reset_max(&mem->res);
2142 		else
2143 			res_counter_reset_max(&mem->memsw);
2144 		break;
2145 	case RES_FAILCNT:
2146 		if (type == _MEM)
2147 			res_counter_reset_failcnt(&mem->res);
2148 		else
2149 			res_counter_reset_failcnt(&mem->memsw);
2150 		break;
2151 	}
2152 	return 0;
2153 }
2154 
2155 
2156 /* For read statistics */
2157 enum {
2158 	MCS_CACHE,
2159 	MCS_RSS,
2160 	MCS_MAPPED_FILE,
2161 	MCS_PGPGIN,
2162 	MCS_PGPGOUT,
2163 	MCS_INACTIVE_ANON,
2164 	MCS_ACTIVE_ANON,
2165 	MCS_INACTIVE_FILE,
2166 	MCS_ACTIVE_FILE,
2167 	MCS_UNEVICTABLE,
2168 	NR_MCS_STAT,
2169 };
2170 
2171 struct mcs_total_stat {
2172 	s64 stat[NR_MCS_STAT];
2173 };
2174 
2175 struct {
2176 	char *local_name;
2177 	char *total_name;
2178 } memcg_stat_strings[NR_MCS_STAT] = {
2179 	{"cache", "total_cache"},
2180 	{"rss", "total_rss"},
2181 	{"mapped_file", "total_mapped_file"},
2182 	{"pgpgin", "total_pgpgin"},
2183 	{"pgpgout", "total_pgpgout"},
2184 	{"inactive_anon", "total_inactive_anon"},
2185 	{"active_anon", "total_active_anon"},
2186 	{"inactive_file", "total_inactive_file"},
2187 	{"active_file", "total_active_file"},
2188 	{"unevictable", "total_unevictable"}
2189 };
2190 
2191 
2192 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2193 {
2194 	struct mcs_total_stat *s = data;
2195 	s64 val;
2196 
2197 	/* per cpu stat */
2198 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2199 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2200 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2201 	s->stat[MCS_RSS] += val * PAGE_SIZE;
2202 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2203 	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2204 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2205 	s->stat[MCS_PGPGIN] += val;
2206 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2207 	s->stat[MCS_PGPGOUT] += val;
2208 
2209 	/* per zone stat */
2210 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2211 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2212 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2213 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2214 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2215 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2216 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2217 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2218 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2219 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2220 	return 0;
2221 }
2222 
2223 static void
2224 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2225 {
2226 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2227 }
2228 
2229 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2230 				 struct cgroup_map_cb *cb)
2231 {
2232 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2233 	struct mcs_total_stat mystat;
2234 	int i;
2235 
2236 	memset(&mystat, 0, sizeof(mystat));
2237 	mem_cgroup_get_local_stat(mem_cont, &mystat);
2238 
2239 	for (i = 0; i < NR_MCS_STAT; i++)
2240 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2241 
2242 	/* Hierarchical information */
2243 	{
2244 		unsigned long long limit, memsw_limit;
2245 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2246 		cb->fill(cb, "hierarchical_memory_limit", limit);
2247 		if (do_swap_account)
2248 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2249 	}
2250 
2251 	memset(&mystat, 0, sizeof(mystat));
2252 	mem_cgroup_get_total_stat(mem_cont, &mystat);
2253 	for (i = 0; i < NR_MCS_STAT; i++)
2254 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2255 
2256 
2257 #ifdef CONFIG_DEBUG_VM
2258 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2259 
2260 	{
2261 		int nid, zid;
2262 		struct mem_cgroup_per_zone *mz;
2263 		unsigned long recent_rotated[2] = {0, 0};
2264 		unsigned long recent_scanned[2] = {0, 0};
2265 
2266 		for_each_online_node(nid)
2267 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2268 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2269 
2270 				recent_rotated[0] +=
2271 					mz->reclaim_stat.recent_rotated[0];
2272 				recent_rotated[1] +=
2273 					mz->reclaim_stat.recent_rotated[1];
2274 				recent_scanned[0] +=
2275 					mz->reclaim_stat.recent_scanned[0];
2276 				recent_scanned[1] +=
2277 					mz->reclaim_stat.recent_scanned[1];
2278 			}
2279 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2280 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2281 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2282 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2283 	}
2284 #endif
2285 
2286 	return 0;
2287 }
2288 
2289 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2290 {
2291 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2292 
2293 	return get_swappiness(memcg);
2294 }
2295 
2296 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2297 				       u64 val)
2298 {
2299 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2300 	struct mem_cgroup *parent;
2301 
2302 	if (val > 100)
2303 		return -EINVAL;
2304 
2305 	if (cgrp->parent == NULL)
2306 		return -EINVAL;
2307 
2308 	parent = mem_cgroup_from_cont(cgrp->parent);
2309 
2310 	cgroup_lock();
2311 
2312 	/* If under hierarchy, only empty-root can set this value */
2313 	if ((parent->use_hierarchy) ||
2314 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2315 		cgroup_unlock();
2316 		return -EINVAL;
2317 	}
2318 
2319 	spin_lock(&memcg->reclaim_param_lock);
2320 	memcg->swappiness = val;
2321 	spin_unlock(&memcg->reclaim_param_lock);
2322 
2323 	cgroup_unlock();
2324 
2325 	return 0;
2326 }
2327 
2328 
2329 static struct cftype mem_cgroup_files[] = {
2330 	{
2331 		.name = "usage_in_bytes",
2332 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2333 		.read_u64 = mem_cgroup_read,
2334 	},
2335 	{
2336 		.name = "max_usage_in_bytes",
2337 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2338 		.trigger = mem_cgroup_reset,
2339 		.read_u64 = mem_cgroup_read,
2340 	},
2341 	{
2342 		.name = "limit_in_bytes",
2343 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2344 		.write_string = mem_cgroup_write,
2345 		.read_u64 = mem_cgroup_read,
2346 	},
2347 	{
2348 		.name = "failcnt",
2349 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2350 		.trigger = mem_cgroup_reset,
2351 		.read_u64 = mem_cgroup_read,
2352 	},
2353 	{
2354 		.name = "stat",
2355 		.read_map = mem_control_stat_show,
2356 	},
2357 	{
2358 		.name = "force_empty",
2359 		.trigger = mem_cgroup_force_empty_write,
2360 	},
2361 	{
2362 		.name = "use_hierarchy",
2363 		.write_u64 = mem_cgroup_hierarchy_write,
2364 		.read_u64 = mem_cgroup_hierarchy_read,
2365 	},
2366 	{
2367 		.name = "swappiness",
2368 		.read_u64 = mem_cgroup_swappiness_read,
2369 		.write_u64 = mem_cgroup_swappiness_write,
2370 	},
2371 };
2372 
2373 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2374 static struct cftype memsw_cgroup_files[] = {
2375 	{
2376 		.name = "memsw.usage_in_bytes",
2377 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2378 		.read_u64 = mem_cgroup_read,
2379 	},
2380 	{
2381 		.name = "memsw.max_usage_in_bytes",
2382 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2383 		.trigger = mem_cgroup_reset,
2384 		.read_u64 = mem_cgroup_read,
2385 	},
2386 	{
2387 		.name = "memsw.limit_in_bytes",
2388 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2389 		.write_string = mem_cgroup_write,
2390 		.read_u64 = mem_cgroup_read,
2391 	},
2392 	{
2393 		.name = "memsw.failcnt",
2394 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2395 		.trigger = mem_cgroup_reset,
2396 		.read_u64 = mem_cgroup_read,
2397 	},
2398 };
2399 
2400 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2401 {
2402 	if (!do_swap_account)
2403 		return 0;
2404 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2405 				ARRAY_SIZE(memsw_cgroup_files));
2406 };
2407 #else
2408 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2409 {
2410 	return 0;
2411 }
2412 #endif
2413 
2414 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2415 {
2416 	struct mem_cgroup_per_node *pn;
2417 	struct mem_cgroup_per_zone *mz;
2418 	enum lru_list l;
2419 	int zone, tmp = node;
2420 	/*
2421 	 * This routine is called against possible nodes.
2422 	 * But it's BUG to call kmalloc() against offline node.
2423 	 *
2424 	 * TODO: this routine can waste much memory for nodes which will
2425 	 *       never be onlined. It's better to use memory hotplug callback
2426 	 *       function.
2427 	 */
2428 	if (!node_state(node, N_NORMAL_MEMORY))
2429 		tmp = -1;
2430 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2431 	if (!pn)
2432 		return 1;
2433 
2434 	mem->info.nodeinfo[node] = pn;
2435 	memset(pn, 0, sizeof(*pn));
2436 
2437 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2438 		mz = &pn->zoneinfo[zone];
2439 		for_each_lru(l)
2440 			INIT_LIST_HEAD(&mz->lists[l]);
2441 	}
2442 	return 0;
2443 }
2444 
2445 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2446 {
2447 	kfree(mem->info.nodeinfo[node]);
2448 }
2449 
2450 static int mem_cgroup_size(void)
2451 {
2452 	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2453 	return sizeof(struct mem_cgroup) + cpustat_size;
2454 }
2455 
2456 static struct mem_cgroup *mem_cgroup_alloc(void)
2457 {
2458 	struct mem_cgroup *mem;
2459 	int size = mem_cgroup_size();
2460 
2461 	if (size < PAGE_SIZE)
2462 		mem = kmalloc(size, GFP_KERNEL);
2463 	else
2464 		mem = vmalloc(size);
2465 
2466 	if (mem)
2467 		memset(mem, 0, size);
2468 	return mem;
2469 }
2470 
2471 /*
2472  * At destroying mem_cgroup, references from swap_cgroup can remain.
2473  * (scanning all at force_empty is too costly...)
2474  *
2475  * Instead of clearing all references at force_empty, we remember
2476  * the number of reference from swap_cgroup and free mem_cgroup when
2477  * it goes down to 0.
2478  *
2479  * Removal of cgroup itself succeeds regardless of refs from swap.
2480  */
2481 
2482 static void __mem_cgroup_free(struct mem_cgroup *mem)
2483 {
2484 	int node;
2485 
2486 	free_css_id(&mem_cgroup_subsys, &mem->css);
2487 
2488 	for_each_node_state(node, N_POSSIBLE)
2489 		free_mem_cgroup_per_zone_info(mem, node);
2490 
2491 	if (mem_cgroup_size() < PAGE_SIZE)
2492 		kfree(mem);
2493 	else
2494 		vfree(mem);
2495 }
2496 
2497 static void mem_cgroup_get(struct mem_cgroup *mem)
2498 {
2499 	atomic_inc(&mem->refcnt);
2500 }
2501 
2502 static void mem_cgroup_put(struct mem_cgroup *mem)
2503 {
2504 	if (atomic_dec_and_test(&mem->refcnt)) {
2505 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2506 		__mem_cgroup_free(mem);
2507 		if (parent)
2508 			mem_cgroup_put(parent);
2509 	}
2510 }
2511 
2512 /*
2513  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2514  */
2515 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2516 {
2517 	if (!mem->res.parent)
2518 		return NULL;
2519 	return mem_cgroup_from_res_counter(mem->res.parent, res);
2520 }
2521 
2522 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2523 static void __init enable_swap_cgroup(void)
2524 {
2525 	if (!mem_cgroup_disabled() && really_do_swap_account)
2526 		do_swap_account = 1;
2527 }
2528 #else
2529 static void __init enable_swap_cgroup(void)
2530 {
2531 }
2532 #endif
2533 
2534 static struct cgroup_subsys_state * __ref
2535 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2536 {
2537 	struct mem_cgroup *mem, *parent;
2538 	long error = -ENOMEM;
2539 	int node;
2540 
2541 	mem = mem_cgroup_alloc();
2542 	if (!mem)
2543 		return ERR_PTR(error);
2544 
2545 	for_each_node_state(node, N_POSSIBLE)
2546 		if (alloc_mem_cgroup_per_zone_info(mem, node))
2547 			goto free_out;
2548 	/* root ? */
2549 	if (cont->parent == NULL) {
2550 		enable_swap_cgroup();
2551 		parent = NULL;
2552 	} else {
2553 		parent = mem_cgroup_from_cont(cont->parent);
2554 		mem->use_hierarchy = parent->use_hierarchy;
2555 	}
2556 
2557 	if (parent && parent->use_hierarchy) {
2558 		res_counter_init(&mem->res, &parent->res);
2559 		res_counter_init(&mem->memsw, &parent->memsw);
2560 		/*
2561 		 * We increment refcnt of the parent to ensure that we can
2562 		 * safely access it on res_counter_charge/uncharge.
2563 		 * This refcnt will be decremented when freeing this
2564 		 * mem_cgroup(see mem_cgroup_put).
2565 		 */
2566 		mem_cgroup_get(parent);
2567 	} else {
2568 		res_counter_init(&mem->res, NULL);
2569 		res_counter_init(&mem->memsw, NULL);
2570 	}
2571 	mem->last_scanned_child = 0;
2572 	spin_lock_init(&mem->reclaim_param_lock);
2573 
2574 	if (parent)
2575 		mem->swappiness = get_swappiness(parent);
2576 	atomic_set(&mem->refcnt, 1);
2577 	return &mem->css;
2578 free_out:
2579 	__mem_cgroup_free(mem);
2580 	return ERR_PTR(error);
2581 }
2582 
2583 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2584 					struct cgroup *cont)
2585 {
2586 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2587 
2588 	return mem_cgroup_force_empty(mem, false);
2589 }
2590 
2591 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2592 				struct cgroup *cont)
2593 {
2594 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2595 
2596 	mem_cgroup_put(mem);
2597 }
2598 
2599 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2600 				struct cgroup *cont)
2601 {
2602 	int ret;
2603 
2604 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2605 				ARRAY_SIZE(mem_cgroup_files));
2606 
2607 	if (!ret)
2608 		ret = register_memsw_files(cont, ss);
2609 	return ret;
2610 }
2611 
2612 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2613 				struct cgroup *cont,
2614 				struct cgroup *old_cont,
2615 				struct task_struct *p)
2616 {
2617 	mutex_lock(&memcg_tasklist);
2618 	/*
2619 	 * FIXME: It's better to move charges of this process from old
2620 	 * memcg to new memcg. But it's just on TODO-List now.
2621 	 */
2622 	mutex_unlock(&memcg_tasklist);
2623 }
2624 
2625 struct cgroup_subsys mem_cgroup_subsys = {
2626 	.name = "memory",
2627 	.subsys_id = mem_cgroup_subsys_id,
2628 	.create = mem_cgroup_create,
2629 	.pre_destroy = mem_cgroup_pre_destroy,
2630 	.destroy = mem_cgroup_destroy,
2631 	.populate = mem_cgroup_populate,
2632 	.attach = mem_cgroup_move_task,
2633 	.early_init = 0,
2634 	.use_id = 1,
2635 };
2636 
2637 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2638 
2639 static int __init disable_swap_account(char *s)
2640 {
2641 	really_do_swap_account = 0;
2642 	return 1;
2643 }
2644 __setup("noswapaccount", disable_swap_account);
2645 #endif
2646