1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/res_counter.h> 21 #include <linux/memcontrol.h> 22 #include <linux/cgroup.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/smp.h> 26 #include <linux/page-flags.h> 27 #include <linux/backing-dev.h> 28 #include <linux/bit_spinlock.h> 29 #include <linux/rcupdate.h> 30 #include <linux/limits.h> 31 #include <linux/mutex.h> 32 #include <linux/slab.h> 33 #include <linux/swap.h> 34 #include <linux/spinlock.h> 35 #include <linux/fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mm_inline.h> 39 #include <linux/page_cgroup.h> 40 #include "internal.h" 41 42 #include <asm/uaccess.h> 43 44 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 45 #define MEM_CGROUP_RECLAIM_RETRIES 5 46 47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 49 int do_swap_account __read_mostly; 50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/ 51 #else 52 #define do_swap_account (0) 53 #endif 54 55 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */ 56 57 /* 58 * Statistics for memory cgroup. 59 */ 60 enum mem_cgroup_stat_index { 61 /* 62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 63 */ 64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 65 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 66 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */ 67 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ 68 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ 69 70 MEM_CGROUP_STAT_NSTATS, 71 }; 72 73 struct mem_cgroup_stat_cpu { 74 s64 count[MEM_CGROUP_STAT_NSTATS]; 75 } ____cacheline_aligned_in_smp; 76 77 struct mem_cgroup_stat { 78 struct mem_cgroup_stat_cpu cpustat[0]; 79 }; 80 81 /* 82 * For accounting under irq disable, no need for increment preempt count. 83 */ 84 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat, 85 enum mem_cgroup_stat_index idx, int val) 86 { 87 stat->count[idx] += val; 88 } 89 90 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, 91 enum mem_cgroup_stat_index idx) 92 { 93 int cpu; 94 s64 ret = 0; 95 for_each_possible_cpu(cpu) 96 ret += stat->cpustat[cpu].count[idx]; 97 return ret; 98 } 99 100 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat) 101 { 102 s64 ret; 103 104 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE); 105 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS); 106 return ret; 107 } 108 109 /* 110 * per-zone information in memory controller. 111 */ 112 struct mem_cgroup_per_zone { 113 /* 114 * spin_lock to protect the per cgroup LRU 115 */ 116 struct list_head lists[NR_LRU_LISTS]; 117 unsigned long count[NR_LRU_LISTS]; 118 119 struct zone_reclaim_stat reclaim_stat; 120 }; 121 /* Macro for accessing counter */ 122 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 123 124 struct mem_cgroup_per_node { 125 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 126 }; 127 128 struct mem_cgroup_lru_info { 129 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 130 }; 131 132 /* 133 * The memory controller data structure. The memory controller controls both 134 * page cache and RSS per cgroup. We would eventually like to provide 135 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 136 * to help the administrator determine what knobs to tune. 137 * 138 * TODO: Add a water mark for the memory controller. Reclaim will begin when 139 * we hit the water mark. May be even add a low water mark, such that 140 * no reclaim occurs from a cgroup at it's low water mark, this is 141 * a feature that will be implemented much later in the future. 142 */ 143 struct mem_cgroup { 144 struct cgroup_subsys_state css; 145 /* 146 * the counter to account for memory usage 147 */ 148 struct res_counter res; 149 /* 150 * the counter to account for mem+swap usage. 151 */ 152 struct res_counter memsw; 153 /* 154 * Per cgroup active and inactive list, similar to the 155 * per zone LRU lists. 156 */ 157 struct mem_cgroup_lru_info info; 158 159 /* 160 protect against reclaim related member. 161 */ 162 spinlock_t reclaim_param_lock; 163 164 int prev_priority; /* for recording reclaim priority */ 165 166 /* 167 * While reclaiming in a hiearchy, we cache the last child we 168 * reclaimed from. 169 */ 170 int last_scanned_child; 171 /* 172 * Should the accounting and control be hierarchical, per subtree? 173 */ 174 bool use_hierarchy; 175 unsigned long last_oom_jiffies; 176 atomic_t refcnt; 177 178 unsigned int swappiness; 179 180 /* set when res.limit == memsw.limit */ 181 bool memsw_is_minimum; 182 183 /* 184 * statistics. This must be placed at the end of memcg. 185 */ 186 struct mem_cgroup_stat stat; 187 }; 188 189 enum charge_type { 190 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 191 MEM_CGROUP_CHARGE_TYPE_MAPPED, 192 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 193 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 194 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 195 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 196 NR_CHARGE_TYPE, 197 }; 198 199 /* only for here (for easy reading.) */ 200 #define PCGF_CACHE (1UL << PCG_CACHE) 201 #define PCGF_USED (1UL << PCG_USED) 202 #define PCGF_LOCK (1UL << PCG_LOCK) 203 static const unsigned long 204 pcg_default_flags[NR_CHARGE_TYPE] = { 205 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */ 206 PCGF_USED | PCGF_LOCK, /* Anon */ 207 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ 208 0, /* FORCE */ 209 }; 210 211 /* for encoding cft->private value on file */ 212 #define _MEM (0) 213 #define _MEMSWAP (1) 214 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 215 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 216 #define MEMFILE_ATTR(val) ((val) & 0xffff) 217 218 static void mem_cgroup_get(struct mem_cgroup *mem); 219 static void mem_cgroup_put(struct mem_cgroup *mem); 220 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 221 222 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 223 struct page_cgroup *pc, 224 bool charge) 225 { 226 int val = (charge)? 1 : -1; 227 struct mem_cgroup_stat *stat = &mem->stat; 228 struct mem_cgroup_stat_cpu *cpustat; 229 int cpu = get_cpu(); 230 231 cpustat = &stat->cpustat[cpu]; 232 if (PageCgroupCache(pc)) 233 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); 234 else 235 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val); 236 237 if (charge) 238 __mem_cgroup_stat_add_safe(cpustat, 239 MEM_CGROUP_STAT_PGPGIN_COUNT, 1); 240 else 241 __mem_cgroup_stat_add_safe(cpustat, 242 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); 243 put_cpu(); 244 } 245 246 static struct mem_cgroup_per_zone * 247 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 248 { 249 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 250 } 251 252 static struct mem_cgroup_per_zone * 253 page_cgroup_zoneinfo(struct page_cgroup *pc) 254 { 255 struct mem_cgroup *mem = pc->mem_cgroup; 256 int nid = page_cgroup_nid(pc); 257 int zid = page_cgroup_zid(pc); 258 259 if (!mem) 260 return NULL; 261 262 return mem_cgroup_zoneinfo(mem, nid, zid); 263 } 264 265 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, 266 enum lru_list idx) 267 { 268 int nid, zid; 269 struct mem_cgroup_per_zone *mz; 270 u64 total = 0; 271 272 for_each_online_node(nid) 273 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 274 mz = mem_cgroup_zoneinfo(mem, nid, zid); 275 total += MEM_CGROUP_ZSTAT(mz, idx); 276 } 277 return total; 278 } 279 280 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 281 { 282 return container_of(cgroup_subsys_state(cont, 283 mem_cgroup_subsys_id), struct mem_cgroup, 284 css); 285 } 286 287 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 288 { 289 /* 290 * mm_update_next_owner() may clear mm->owner to NULL 291 * if it races with swapoff, page migration, etc. 292 * So this can be called with p == NULL. 293 */ 294 if (unlikely(!p)) 295 return NULL; 296 297 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 298 struct mem_cgroup, css); 299 } 300 301 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 302 { 303 struct mem_cgroup *mem = NULL; 304 305 if (!mm) 306 return NULL; 307 /* 308 * Because we have no locks, mm->owner's may be being moved to other 309 * cgroup. We use css_tryget() here even if this looks 310 * pessimistic (rather than adding locks here). 311 */ 312 rcu_read_lock(); 313 do { 314 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 315 if (unlikely(!mem)) 316 break; 317 } while (!css_tryget(&mem->css)); 318 rcu_read_unlock(); 319 return mem; 320 } 321 322 /* 323 * Call callback function against all cgroup under hierarchy tree. 324 */ 325 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, 326 int (*func)(struct mem_cgroup *, void *)) 327 { 328 int found, ret, nextid; 329 struct cgroup_subsys_state *css; 330 struct mem_cgroup *mem; 331 332 if (!root->use_hierarchy) 333 return (*func)(root, data); 334 335 nextid = 1; 336 do { 337 ret = 0; 338 mem = NULL; 339 340 rcu_read_lock(); 341 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, 342 &found); 343 if (css && css_tryget(css)) 344 mem = container_of(css, struct mem_cgroup, css); 345 rcu_read_unlock(); 346 347 if (mem) { 348 ret = (*func)(mem, data); 349 css_put(&mem->css); 350 } 351 nextid = found + 1; 352 } while (!ret && css); 353 354 return ret; 355 } 356 357 /* 358 * Following LRU functions are allowed to be used without PCG_LOCK. 359 * Operations are called by routine of global LRU independently from memcg. 360 * What we have to take care of here is validness of pc->mem_cgroup. 361 * 362 * Changes to pc->mem_cgroup happens when 363 * 1. charge 364 * 2. moving account 365 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 366 * It is added to LRU before charge. 367 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 368 * When moving account, the page is not on LRU. It's isolated. 369 */ 370 371 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) 372 { 373 struct page_cgroup *pc; 374 struct mem_cgroup *mem; 375 struct mem_cgroup_per_zone *mz; 376 377 if (mem_cgroup_disabled()) 378 return; 379 pc = lookup_page_cgroup(page); 380 /* can happen while we handle swapcache. */ 381 if (list_empty(&pc->lru) || !pc->mem_cgroup) 382 return; 383 /* 384 * We don't check PCG_USED bit. It's cleared when the "page" is finally 385 * removed from global LRU. 386 */ 387 mz = page_cgroup_zoneinfo(pc); 388 mem = pc->mem_cgroup; 389 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 390 list_del_init(&pc->lru); 391 return; 392 } 393 394 void mem_cgroup_del_lru(struct page *page) 395 { 396 mem_cgroup_del_lru_list(page, page_lru(page)); 397 } 398 399 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) 400 { 401 struct mem_cgroup_per_zone *mz; 402 struct page_cgroup *pc; 403 404 if (mem_cgroup_disabled()) 405 return; 406 407 pc = lookup_page_cgroup(page); 408 /* 409 * Used bit is set without atomic ops but after smp_wmb(). 410 * For making pc->mem_cgroup visible, insert smp_rmb() here. 411 */ 412 smp_rmb(); 413 /* unused page is not rotated. */ 414 if (!PageCgroupUsed(pc)) 415 return; 416 mz = page_cgroup_zoneinfo(pc); 417 list_move(&pc->lru, &mz->lists[lru]); 418 } 419 420 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) 421 { 422 struct page_cgroup *pc; 423 struct mem_cgroup_per_zone *mz; 424 425 if (mem_cgroup_disabled()) 426 return; 427 pc = lookup_page_cgroup(page); 428 /* 429 * Used bit is set without atomic ops but after smp_wmb(). 430 * For making pc->mem_cgroup visible, insert smp_rmb() here. 431 */ 432 smp_rmb(); 433 if (!PageCgroupUsed(pc)) 434 return; 435 436 mz = page_cgroup_zoneinfo(pc); 437 MEM_CGROUP_ZSTAT(mz, lru) += 1; 438 list_add(&pc->lru, &mz->lists[lru]); 439 } 440 441 /* 442 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to 443 * lru because the page may.be reused after it's fully uncharged (because of 444 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge 445 * it again. This function is only used to charge SwapCache. It's done under 446 * lock_page and expected that zone->lru_lock is never held. 447 */ 448 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) 449 { 450 unsigned long flags; 451 struct zone *zone = page_zone(page); 452 struct page_cgroup *pc = lookup_page_cgroup(page); 453 454 spin_lock_irqsave(&zone->lru_lock, flags); 455 /* 456 * Forget old LRU when this page_cgroup is *not* used. This Used bit 457 * is guarded by lock_page() because the page is SwapCache. 458 */ 459 if (!PageCgroupUsed(pc)) 460 mem_cgroup_del_lru_list(page, page_lru(page)); 461 spin_unlock_irqrestore(&zone->lru_lock, flags); 462 } 463 464 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) 465 { 466 unsigned long flags; 467 struct zone *zone = page_zone(page); 468 struct page_cgroup *pc = lookup_page_cgroup(page); 469 470 spin_lock_irqsave(&zone->lru_lock, flags); 471 /* link when the page is linked to LRU but page_cgroup isn't */ 472 if (PageLRU(page) && list_empty(&pc->lru)) 473 mem_cgroup_add_lru_list(page, page_lru(page)); 474 spin_unlock_irqrestore(&zone->lru_lock, flags); 475 } 476 477 478 void mem_cgroup_move_lists(struct page *page, 479 enum lru_list from, enum lru_list to) 480 { 481 if (mem_cgroup_disabled()) 482 return; 483 mem_cgroup_del_lru_list(page, from); 484 mem_cgroup_add_lru_list(page, to); 485 } 486 487 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 488 { 489 int ret; 490 struct mem_cgroup *curr = NULL; 491 492 task_lock(task); 493 rcu_read_lock(); 494 curr = try_get_mem_cgroup_from_mm(task->mm); 495 rcu_read_unlock(); 496 task_unlock(task); 497 if (!curr) 498 return 0; 499 if (curr->use_hierarchy) 500 ret = css_is_ancestor(&curr->css, &mem->css); 501 else 502 ret = (curr == mem); 503 css_put(&curr->css); 504 return ret; 505 } 506 507 /* 508 * prev_priority control...this will be used in memory reclaim path. 509 */ 510 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) 511 { 512 int prev_priority; 513 514 spin_lock(&mem->reclaim_param_lock); 515 prev_priority = mem->prev_priority; 516 spin_unlock(&mem->reclaim_param_lock); 517 518 return prev_priority; 519 } 520 521 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) 522 { 523 spin_lock(&mem->reclaim_param_lock); 524 if (priority < mem->prev_priority) 525 mem->prev_priority = priority; 526 spin_unlock(&mem->reclaim_param_lock); 527 } 528 529 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) 530 { 531 spin_lock(&mem->reclaim_param_lock); 532 mem->prev_priority = priority; 533 spin_unlock(&mem->reclaim_param_lock); 534 } 535 536 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) 537 { 538 unsigned long active; 539 unsigned long inactive; 540 unsigned long gb; 541 unsigned long inactive_ratio; 542 543 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); 544 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); 545 546 gb = (inactive + active) >> (30 - PAGE_SHIFT); 547 if (gb) 548 inactive_ratio = int_sqrt(10 * gb); 549 else 550 inactive_ratio = 1; 551 552 if (present_pages) { 553 present_pages[0] = inactive; 554 present_pages[1] = active; 555 } 556 557 return inactive_ratio; 558 } 559 560 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) 561 { 562 unsigned long active; 563 unsigned long inactive; 564 unsigned long present_pages[2]; 565 unsigned long inactive_ratio; 566 567 inactive_ratio = calc_inactive_ratio(memcg, present_pages); 568 569 inactive = present_pages[0]; 570 active = present_pages[1]; 571 572 if (inactive * inactive_ratio < active) 573 return 1; 574 575 return 0; 576 } 577 578 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) 579 { 580 unsigned long active; 581 unsigned long inactive; 582 583 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); 584 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); 585 586 return (active > inactive); 587 } 588 589 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, 590 struct zone *zone, 591 enum lru_list lru) 592 { 593 int nid = zone->zone_pgdat->node_id; 594 int zid = zone_idx(zone); 595 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 596 597 return MEM_CGROUP_ZSTAT(mz, lru); 598 } 599 600 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 601 struct zone *zone) 602 { 603 int nid = zone->zone_pgdat->node_id; 604 int zid = zone_idx(zone); 605 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 606 607 return &mz->reclaim_stat; 608 } 609 610 struct zone_reclaim_stat * 611 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 612 { 613 struct page_cgroup *pc; 614 struct mem_cgroup_per_zone *mz; 615 616 if (mem_cgroup_disabled()) 617 return NULL; 618 619 pc = lookup_page_cgroup(page); 620 /* 621 * Used bit is set without atomic ops but after smp_wmb(). 622 * For making pc->mem_cgroup visible, insert smp_rmb() here. 623 */ 624 smp_rmb(); 625 if (!PageCgroupUsed(pc)) 626 return NULL; 627 628 mz = page_cgroup_zoneinfo(pc); 629 if (!mz) 630 return NULL; 631 632 return &mz->reclaim_stat; 633 } 634 635 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 636 struct list_head *dst, 637 unsigned long *scanned, int order, 638 int mode, struct zone *z, 639 struct mem_cgroup *mem_cont, 640 int active, int file) 641 { 642 unsigned long nr_taken = 0; 643 struct page *page; 644 unsigned long scan; 645 LIST_HEAD(pc_list); 646 struct list_head *src; 647 struct page_cgroup *pc, *tmp; 648 int nid = z->zone_pgdat->node_id; 649 int zid = zone_idx(z); 650 struct mem_cgroup_per_zone *mz; 651 int lru = LRU_FILE * !!file + !!active; 652 int ret; 653 654 BUG_ON(!mem_cont); 655 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 656 src = &mz->lists[lru]; 657 658 scan = 0; 659 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 660 if (scan >= nr_to_scan) 661 break; 662 663 page = pc->page; 664 if (unlikely(!PageCgroupUsed(pc))) 665 continue; 666 if (unlikely(!PageLRU(page))) 667 continue; 668 669 scan++; 670 ret = __isolate_lru_page(page, mode, file); 671 switch (ret) { 672 case 0: 673 list_move(&page->lru, dst); 674 mem_cgroup_del_lru(page); 675 nr_taken++; 676 break; 677 case -EBUSY: 678 /* we don't affect global LRU but rotate in our LRU */ 679 mem_cgroup_rotate_lru_list(page, page_lru(page)); 680 break; 681 default: 682 break; 683 } 684 } 685 686 *scanned = scan; 687 return nr_taken; 688 } 689 690 #define mem_cgroup_from_res_counter(counter, member) \ 691 container_of(counter, struct mem_cgroup, member) 692 693 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) 694 { 695 if (do_swap_account) { 696 if (res_counter_check_under_limit(&mem->res) && 697 res_counter_check_under_limit(&mem->memsw)) 698 return true; 699 } else 700 if (res_counter_check_under_limit(&mem->res)) 701 return true; 702 return false; 703 } 704 705 static unsigned int get_swappiness(struct mem_cgroup *memcg) 706 { 707 struct cgroup *cgrp = memcg->css.cgroup; 708 unsigned int swappiness; 709 710 /* root ? */ 711 if (cgrp->parent == NULL) 712 return vm_swappiness; 713 714 spin_lock(&memcg->reclaim_param_lock); 715 swappiness = memcg->swappiness; 716 spin_unlock(&memcg->reclaim_param_lock); 717 718 return swappiness; 719 } 720 721 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) 722 { 723 int *val = data; 724 (*val)++; 725 return 0; 726 } 727 728 /** 729 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode. 730 * @memcg: The memory cgroup that went over limit 731 * @p: Task that is going to be killed 732 * 733 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 734 * enabled 735 */ 736 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 737 { 738 struct cgroup *task_cgrp; 739 struct cgroup *mem_cgrp; 740 /* 741 * Need a buffer in BSS, can't rely on allocations. The code relies 742 * on the assumption that OOM is serialized for memory controller. 743 * If this assumption is broken, revisit this code. 744 */ 745 static char memcg_name[PATH_MAX]; 746 int ret; 747 748 if (!memcg) 749 return; 750 751 752 rcu_read_lock(); 753 754 mem_cgrp = memcg->css.cgroup; 755 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 756 757 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 758 if (ret < 0) { 759 /* 760 * Unfortunately, we are unable to convert to a useful name 761 * But we'll still print out the usage information 762 */ 763 rcu_read_unlock(); 764 goto done; 765 } 766 rcu_read_unlock(); 767 768 printk(KERN_INFO "Task in %s killed", memcg_name); 769 770 rcu_read_lock(); 771 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 772 if (ret < 0) { 773 rcu_read_unlock(); 774 goto done; 775 } 776 rcu_read_unlock(); 777 778 /* 779 * Continues from above, so we don't need an KERN_ level 780 */ 781 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 782 done: 783 784 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 785 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 786 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 787 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 788 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 789 "failcnt %llu\n", 790 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 791 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 792 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 793 } 794 795 /* 796 * This function returns the number of memcg under hierarchy tree. Returns 797 * 1(self count) if no children. 798 */ 799 static int mem_cgroup_count_children(struct mem_cgroup *mem) 800 { 801 int num = 0; 802 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); 803 return num; 804 } 805 806 /* 807 * Visit the first child (need not be the first child as per the ordering 808 * of the cgroup list, since we track last_scanned_child) of @mem and use 809 * that to reclaim free pages from. 810 */ 811 static struct mem_cgroup * 812 mem_cgroup_select_victim(struct mem_cgroup *root_mem) 813 { 814 struct mem_cgroup *ret = NULL; 815 struct cgroup_subsys_state *css; 816 int nextid, found; 817 818 if (!root_mem->use_hierarchy) { 819 css_get(&root_mem->css); 820 ret = root_mem; 821 } 822 823 while (!ret) { 824 rcu_read_lock(); 825 nextid = root_mem->last_scanned_child + 1; 826 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 827 &found); 828 if (css && css_tryget(css)) 829 ret = container_of(css, struct mem_cgroup, css); 830 831 rcu_read_unlock(); 832 /* Updates scanning parameter */ 833 spin_lock(&root_mem->reclaim_param_lock); 834 if (!css) { 835 /* this means start scan from ID:1 */ 836 root_mem->last_scanned_child = 0; 837 } else 838 root_mem->last_scanned_child = found; 839 spin_unlock(&root_mem->reclaim_param_lock); 840 } 841 842 return ret; 843 } 844 845 /* 846 * Scan the hierarchy if needed to reclaim memory. We remember the last child 847 * we reclaimed from, so that we don't end up penalizing one child extensively 848 * based on its position in the children list. 849 * 850 * root_mem is the original ancestor that we've been reclaim from. 851 * 852 * We give up and return to the caller when we visit root_mem twice. 853 * (other groups can be removed while we're walking....) 854 * 855 * If shrink==true, for avoiding to free too much, this returns immedieately. 856 */ 857 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 858 gfp_t gfp_mask, bool noswap, bool shrink) 859 { 860 struct mem_cgroup *victim; 861 int ret, total = 0; 862 int loop = 0; 863 864 /* If memsw_is_minimum==1, swap-out is of-no-use. */ 865 if (root_mem->memsw_is_minimum) 866 noswap = true; 867 868 while (loop < 2) { 869 victim = mem_cgroup_select_victim(root_mem); 870 if (victim == root_mem) 871 loop++; 872 if (!mem_cgroup_local_usage(&victim->stat)) { 873 /* this cgroup's local usage == 0 */ 874 css_put(&victim->css); 875 continue; 876 } 877 /* we use swappiness of local cgroup */ 878 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap, 879 get_swappiness(victim)); 880 css_put(&victim->css); 881 /* 882 * At shrinking usage, we can't check we should stop here or 883 * reclaim more. It's depends on callers. last_scanned_child 884 * will work enough for keeping fairness under tree. 885 */ 886 if (shrink) 887 return ret; 888 total += ret; 889 if (mem_cgroup_check_under_limit(root_mem)) 890 return 1 + total; 891 } 892 return total; 893 } 894 895 bool mem_cgroup_oom_called(struct task_struct *task) 896 { 897 bool ret = false; 898 struct mem_cgroup *mem; 899 struct mm_struct *mm; 900 901 rcu_read_lock(); 902 mm = task->mm; 903 if (!mm) 904 mm = &init_mm; 905 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 906 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) 907 ret = true; 908 rcu_read_unlock(); 909 return ret; 910 } 911 912 static int record_last_oom_cb(struct mem_cgroup *mem, void *data) 913 { 914 mem->last_oom_jiffies = jiffies; 915 return 0; 916 } 917 918 static void record_last_oom(struct mem_cgroup *mem) 919 { 920 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb); 921 } 922 923 /* 924 * Currently used to update mapped file statistics, but the routine can be 925 * generalized to update other statistics as well. 926 */ 927 void mem_cgroup_update_mapped_file_stat(struct page *page, int val) 928 { 929 struct mem_cgroup *mem; 930 struct mem_cgroup_stat *stat; 931 struct mem_cgroup_stat_cpu *cpustat; 932 int cpu; 933 struct page_cgroup *pc; 934 935 if (!page_is_file_cache(page)) 936 return; 937 938 pc = lookup_page_cgroup(page); 939 if (unlikely(!pc)) 940 return; 941 942 lock_page_cgroup(pc); 943 mem = pc->mem_cgroup; 944 if (!mem) 945 goto done; 946 947 if (!PageCgroupUsed(pc)) 948 goto done; 949 950 /* 951 * Preemption is already disabled, we don't need get_cpu() 952 */ 953 cpu = smp_processor_id(); 954 stat = &mem->stat; 955 cpustat = &stat->cpustat[cpu]; 956 957 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val); 958 done: 959 unlock_page_cgroup(pc); 960 } 961 962 /* 963 * Unlike exported interface, "oom" parameter is added. if oom==true, 964 * oom-killer can be invoked. 965 */ 966 static int __mem_cgroup_try_charge(struct mm_struct *mm, 967 gfp_t gfp_mask, struct mem_cgroup **memcg, 968 bool oom) 969 { 970 struct mem_cgroup *mem, *mem_over_limit; 971 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 972 struct res_counter *fail_res; 973 974 if (unlikely(test_thread_flag(TIF_MEMDIE))) { 975 /* Don't account this! */ 976 *memcg = NULL; 977 return 0; 978 } 979 980 /* 981 * We always charge the cgroup the mm_struct belongs to. 982 * The mm_struct's mem_cgroup changes on task migration if the 983 * thread group leader migrates. It's possible that mm is not 984 * set, if so charge the init_mm (happens for pagecache usage). 985 */ 986 mem = *memcg; 987 if (likely(!mem)) { 988 mem = try_get_mem_cgroup_from_mm(mm); 989 *memcg = mem; 990 } else { 991 css_get(&mem->css); 992 } 993 if (unlikely(!mem)) 994 return 0; 995 996 VM_BUG_ON(css_is_removed(&mem->css)); 997 998 while (1) { 999 int ret; 1000 bool noswap = false; 1001 1002 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res); 1003 if (likely(!ret)) { 1004 if (!do_swap_account) 1005 break; 1006 ret = res_counter_charge(&mem->memsw, PAGE_SIZE, 1007 &fail_res); 1008 if (likely(!ret)) 1009 break; 1010 /* mem+swap counter fails */ 1011 res_counter_uncharge(&mem->res, PAGE_SIZE); 1012 noswap = true; 1013 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 1014 memsw); 1015 } else 1016 /* mem counter fails */ 1017 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 1018 res); 1019 1020 if (!(gfp_mask & __GFP_WAIT)) 1021 goto nomem; 1022 1023 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, 1024 noswap, false); 1025 if (ret) 1026 continue; 1027 1028 /* 1029 * try_to_free_mem_cgroup_pages() might not give us a full 1030 * picture of reclaim. Some pages are reclaimed and might be 1031 * moved to swap cache or just unmapped from the cgroup. 1032 * Check the limit again to see if the reclaim reduced the 1033 * current usage of the cgroup before giving up 1034 * 1035 */ 1036 if (mem_cgroup_check_under_limit(mem_over_limit)) 1037 continue; 1038 1039 if (!nr_retries--) { 1040 if (oom) { 1041 mutex_lock(&memcg_tasklist); 1042 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); 1043 mutex_unlock(&memcg_tasklist); 1044 record_last_oom(mem_over_limit); 1045 } 1046 goto nomem; 1047 } 1048 } 1049 return 0; 1050 nomem: 1051 css_put(&mem->css); 1052 return -ENOMEM; 1053 } 1054 1055 1056 /* 1057 * A helper function to get mem_cgroup from ID. must be called under 1058 * rcu_read_lock(). The caller must check css_is_removed() or some if 1059 * it's concern. (dropping refcnt from swap can be called against removed 1060 * memcg.) 1061 */ 1062 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 1063 { 1064 struct cgroup_subsys_state *css; 1065 1066 /* ID 0 is unused ID */ 1067 if (!id) 1068 return NULL; 1069 css = css_lookup(&mem_cgroup_subsys, id); 1070 if (!css) 1071 return NULL; 1072 return container_of(css, struct mem_cgroup, css); 1073 } 1074 1075 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) 1076 { 1077 struct mem_cgroup *mem; 1078 struct page_cgroup *pc; 1079 unsigned short id; 1080 swp_entry_t ent; 1081 1082 VM_BUG_ON(!PageLocked(page)); 1083 1084 if (!PageSwapCache(page)) 1085 return NULL; 1086 1087 pc = lookup_page_cgroup(page); 1088 lock_page_cgroup(pc); 1089 if (PageCgroupUsed(pc)) { 1090 mem = pc->mem_cgroup; 1091 if (mem && !css_tryget(&mem->css)) 1092 mem = NULL; 1093 } else { 1094 ent.val = page_private(page); 1095 id = lookup_swap_cgroup(ent); 1096 rcu_read_lock(); 1097 mem = mem_cgroup_lookup(id); 1098 if (mem && !css_tryget(&mem->css)) 1099 mem = NULL; 1100 rcu_read_unlock(); 1101 } 1102 unlock_page_cgroup(pc); 1103 return mem; 1104 } 1105 1106 /* 1107 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be 1108 * USED state. If already USED, uncharge and return. 1109 */ 1110 1111 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 1112 struct page_cgroup *pc, 1113 enum charge_type ctype) 1114 { 1115 /* try_charge() can return NULL to *memcg, taking care of it. */ 1116 if (!mem) 1117 return; 1118 1119 lock_page_cgroup(pc); 1120 if (unlikely(PageCgroupUsed(pc))) { 1121 unlock_page_cgroup(pc); 1122 res_counter_uncharge(&mem->res, PAGE_SIZE); 1123 if (do_swap_account) 1124 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1125 css_put(&mem->css); 1126 return; 1127 } 1128 pc->mem_cgroup = mem; 1129 smp_wmb(); 1130 pc->flags = pcg_default_flags[ctype]; 1131 1132 mem_cgroup_charge_statistics(mem, pc, true); 1133 1134 unlock_page_cgroup(pc); 1135 } 1136 1137 /** 1138 * mem_cgroup_move_account - move account of the page 1139 * @pc: page_cgroup of the page. 1140 * @from: mem_cgroup which the page is moved from. 1141 * @to: mem_cgroup which the page is moved to. @from != @to. 1142 * 1143 * The caller must confirm following. 1144 * - page is not on LRU (isolate_page() is useful.) 1145 * 1146 * returns 0 at success, 1147 * returns -EBUSY when lock is busy or "pc" is unstable. 1148 * 1149 * This function does "uncharge" from old cgroup but doesn't do "charge" to 1150 * new cgroup. It should be done by a caller. 1151 */ 1152 1153 static int mem_cgroup_move_account(struct page_cgroup *pc, 1154 struct mem_cgroup *from, struct mem_cgroup *to) 1155 { 1156 struct mem_cgroup_per_zone *from_mz, *to_mz; 1157 int nid, zid; 1158 int ret = -EBUSY; 1159 struct page *page; 1160 int cpu; 1161 struct mem_cgroup_stat *stat; 1162 struct mem_cgroup_stat_cpu *cpustat; 1163 1164 VM_BUG_ON(from == to); 1165 VM_BUG_ON(PageLRU(pc->page)); 1166 1167 nid = page_cgroup_nid(pc); 1168 zid = page_cgroup_zid(pc); 1169 from_mz = mem_cgroup_zoneinfo(from, nid, zid); 1170 to_mz = mem_cgroup_zoneinfo(to, nid, zid); 1171 1172 if (!trylock_page_cgroup(pc)) 1173 return ret; 1174 1175 if (!PageCgroupUsed(pc)) 1176 goto out; 1177 1178 if (pc->mem_cgroup != from) 1179 goto out; 1180 1181 res_counter_uncharge(&from->res, PAGE_SIZE); 1182 mem_cgroup_charge_statistics(from, pc, false); 1183 1184 page = pc->page; 1185 if (page_is_file_cache(page) && page_mapped(page)) { 1186 cpu = smp_processor_id(); 1187 /* Update mapped_file data for mem_cgroup "from" */ 1188 stat = &from->stat; 1189 cpustat = &stat->cpustat[cpu]; 1190 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, 1191 -1); 1192 1193 /* Update mapped_file data for mem_cgroup "to" */ 1194 stat = &to->stat; 1195 cpustat = &stat->cpustat[cpu]; 1196 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, 1197 1); 1198 } 1199 1200 if (do_swap_account) 1201 res_counter_uncharge(&from->memsw, PAGE_SIZE); 1202 css_put(&from->css); 1203 1204 css_get(&to->css); 1205 pc->mem_cgroup = to; 1206 mem_cgroup_charge_statistics(to, pc, true); 1207 ret = 0; 1208 out: 1209 unlock_page_cgroup(pc); 1210 /* 1211 * We charges against "to" which may not have any tasks. Then, "to" 1212 * can be under rmdir(). But in current implementation, caller of 1213 * this function is just force_empty() and it's garanteed that 1214 * "to" is never removed. So, we don't check rmdir status here. 1215 */ 1216 return ret; 1217 } 1218 1219 /* 1220 * move charges to its parent. 1221 */ 1222 1223 static int mem_cgroup_move_parent(struct page_cgroup *pc, 1224 struct mem_cgroup *child, 1225 gfp_t gfp_mask) 1226 { 1227 struct page *page = pc->page; 1228 struct cgroup *cg = child->css.cgroup; 1229 struct cgroup *pcg = cg->parent; 1230 struct mem_cgroup *parent; 1231 int ret; 1232 1233 /* Is ROOT ? */ 1234 if (!pcg) 1235 return -EINVAL; 1236 1237 1238 parent = mem_cgroup_from_cont(pcg); 1239 1240 1241 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); 1242 if (ret || !parent) 1243 return ret; 1244 1245 if (!get_page_unless_zero(page)) { 1246 ret = -EBUSY; 1247 goto uncharge; 1248 } 1249 1250 ret = isolate_lru_page(page); 1251 1252 if (ret) 1253 goto cancel; 1254 1255 ret = mem_cgroup_move_account(pc, child, parent); 1256 1257 putback_lru_page(page); 1258 if (!ret) { 1259 put_page(page); 1260 /* drop extra refcnt by try_charge() */ 1261 css_put(&parent->css); 1262 return 0; 1263 } 1264 1265 cancel: 1266 put_page(page); 1267 uncharge: 1268 /* drop extra refcnt by try_charge() */ 1269 css_put(&parent->css); 1270 /* uncharge if move fails */ 1271 res_counter_uncharge(&parent->res, PAGE_SIZE); 1272 if (do_swap_account) 1273 res_counter_uncharge(&parent->memsw, PAGE_SIZE); 1274 return ret; 1275 } 1276 1277 /* 1278 * Charge the memory controller for page usage. 1279 * Return 1280 * 0 if the charge was successful 1281 * < 0 if the cgroup is over its limit 1282 */ 1283 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 1284 gfp_t gfp_mask, enum charge_type ctype, 1285 struct mem_cgroup *memcg) 1286 { 1287 struct mem_cgroup *mem; 1288 struct page_cgroup *pc; 1289 int ret; 1290 1291 pc = lookup_page_cgroup(page); 1292 /* can happen at boot */ 1293 if (unlikely(!pc)) 1294 return 0; 1295 prefetchw(pc); 1296 1297 mem = memcg; 1298 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); 1299 if (ret || !mem) 1300 return ret; 1301 1302 __mem_cgroup_commit_charge(mem, pc, ctype); 1303 return 0; 1304 } 1305 1306 int mem_cgroup_newpage_charge(struct page *page, 1307 struct mm_struct *mm, gfp_t gfp_mask) 1308 { 1309 if (mem_cgroup_disabled()) 1310 return 0; 1311 if (PageCompound(page)) 1312 return 0; 1313 /* 1314 * If already mapped, we don't have to account. 1315 * If page cache, page->mapping has address_space. 1316 * But page->mapping may have out-of-use anon_vma pointer, 1317 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping 1318 * is NULL. 1319 */ 1320 if (page_mapped(page) || (page->mapping && !PageAnon(page))) 1321 return 0; 1322 if (unlikely(!mm)) 1323 mm = &init_mm; 1324 return mem_cgroup_charge_common(page, mm, gfp_mask, 1325 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); 1326 } 1327 1328 static void 1329 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1330 enum charge_type ctype); 1331 1332 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 1333 gfp_t gfp_mask) 1334 { 1335 struct mem_cgroup *mem = NULL; 1336 int ret; 1337 1338 if (mem_cgroup_disabled()) 1339 return 0; 1340 if (PageCompound(page)) 1341 return 0; 1342 /* 1343 * Corner case handling. This is called from add_to_page_cache() 1344 * in usual. But some FS (shmem) precharges this page before calling it 1345 * and call add_to_page_cache() with GFP_NOWAIT. 1346 * 1347 * For GFP_NOWAIT case, the page may be pre-charged before calling 1348 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 1349 * charge twice. (It works but has to pay a bit larger cost.) 1350 * And when the page is SwapCache, it should take swap information 1351 * into account. This is under lock_page() now. 1352 */ 1353 if (!(gfp_mask & __GFP_WAIT)) { 1354 struct page_cgroup *pc; 1355 1356 1357 pc = lookup_page_cgroup(page); 1358 if (!pc) 1359 return 0; 1360 lock_page_cgroup(pc); 1361 if (PageCgroupUsed(pc)) { 1362 unlock_page_cgroup(pc); 1363 return 0; 1364 } 1365 unlock_page_cgroup(pc); 1366 } 1367 1368 if (unlikely(!mm && !mem)) 1369 mm = &init_mm; 1370 1371 if (page_is_file_cache(page)) 1372 return mem_cgroup_charge_common(page, mm, gfp_mask, 1373 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); 1374 1375 /* shmem */ 1376 if (PageSwapCache(page)) { 1377 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1378 if (!ret) 1379 __mem_cgroup_commit_charge_swapin(page, mem, 1380 MEM_CGROUP_CHARGE_TYPE_SHMEM); 1381 } else 1382 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 1383 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); 1384 1385 return ret; 1386 } 1387 1388 /* 1389 * While swap-in, try_charge -> commit or cancel, the page is locked. 1390 * And when try_charge() successfully returns, one refcnt to memcg without 1391 * struct page_cgroup is aquired. This refcnt will be cumsumed by 1392 * "commit()" or removed by "cancel()" 1393 */ 1394 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 1395 struct page *page, 1396 gfp_t mask, struct mem_cgroup **ptr) 1397 { 1398 struct mem_cgroup *mem; 1399 int ret; 1400 1401 if (mem_cgroup_disabled()) 1402 return 0; 1403 1404 if (!do_swap_account) 1405 goto charge_cur_mm; 1406 /* 1407 * A racing thread's fault, or swapoff, may have already updated 1408 * the pte, and even removed page from swap cache: return success 1409 * to go on to do_swap_page()'s pte_same() test, which should fail. 1410 */ 1411 if (!PageSwapCache(page)) 1412 return 0; 1413 mem = try_get_mem_cgroup_from_swapcache(page); 1414 if (!mem) 1415 goto charge_cur_mm; 1416 *ptr = mem; 1417 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); 1418 /* drop extra refcnt from tryget */ 1419 css_put(&mem->css); 1420 return ret; 1421 charge_cur_mm: 1422 if (unlikely(!mm)) 1423 mm = &init_mm; 1424 return __mem_cgroup_try_charge(mm, mask, ptr, true); 1425 } 1426 1427 static void 1428 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1429 enum charge_type ctype) 1430 { 1431 struct page_cgroup *pc; 1432 1433 if (mem_cgroup_disabled()) 1434 return; 1435 if (!ptr) 1436 return; 1437 cgroup_exclude_rmdir(&ptr->css); 1438 pc = lookup_page_cgroup(page); 1439 mem_cgroup_lru_del_before_commit_swapcache(page); 1440 __mem_cgroup_commit_charge(ptr, pc, ctype); 1441 mem_cgroup_lru_add_after_commit_swapcache(page); 1442 /* 1443 * Now swap is on-memory. This means this page may be 1444 * counted both as mem and swap....double count. 1445 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 1446 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 1447 * may call delete_from_swap_cache() before reach here. 1448 */ 1449 if (do_swap_account && PageSwapCache(page)) { 1450 swp_entry_t ent = {.val = page_private(page)}; 1451 unsigned short id; 1452 struct mem_cgroup *memcg; 1453 1454 id = swap_cgroup_record(ent, 0); 1455 rcu_read_lock(); 1456 memcg = mem_cgroup_lookup(id); 1457 if (memcg) { 1458 /* 1459 * This recorded memcg can be obsolete one. So, avoid 1460 * calling css_tryget 1461 */ 1462 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1463 mem_cgroup_put(memcg); 1464 } 1465 rcu_read_unlock(); 1466 } 1467 /* 1468 * At swapin, we may charge account against cgroup which has no tasks. 1469 * So, rmdir()->pre_destroy() can be called while we do this charge. 1470 * In that case, we need to call pre_destroy() again. check it here. 1471 */ 1472 cgroup_release_and_wakeup_rmdir(&ptr->css); 1473 } 1474 1475 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 1476 { 1477 __mem_cgroup_commit_charge_swapin(page, ptr, 1478 MEM_CGROUP_CHARGE_TYPE_MAPPED); 1479 } 1480 1481 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 1482 { 1483 if (mem_cgroup_disabled()) 1484 return; 1485 if (!mem) 1486 return; 1487 res_counter_uncharge(&mem->res, PAGE_SIZE); 1488 if (do_swap_account) 1489 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1490 css_put(&mem->css); 1491 } 1492 1493 1494 /* 1495 * uncharge if !page_mapped(page) 1496 */ 1497 static struct mem_cgroup * 1498 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 1499 { 1500 struct page_cgroup *pc; 1501 struct mem_cgroup *mem = NULL; 1502 struct mem_cgroup_per_zone *mz; 1503 1504 if (mem_cgroup_disabled()) 1505 return NULL; 1506 1507 if (PageSwapCache(page)) 1508 return NULL; 1509 1510 /* 1511 * Check if our page_cgroup is valid 1512 */ 1513 pc = lookup_page_cgroup(page); 1514 if (unlikely(!pc || !PageCgroupUsed(pc))) 1515 return NULL; 1516 1517 lock_page_cgroup(pc); 1518 1519 mem = pc->mem_cgroup; 1520 1521 if (!PageCgroupUsed(pc)) 1522 goto unlock_out; 1523 1524 switch (ctype) { 1525 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 1526 case MEM_CGROUP_CHARGE_TYPE_DROP: 1527 if (page_mapped(page)) 1528 goto unlock_out; 1529 break; 1530 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 1531 if (!PageAnon(page)) { /* Shared memory */ 1532 if (page->mapping && !page_is_file_cache(page)) 1533 goto unlock_out; 1534 } else if (page_mapped(page)) /* Anon */ 1535 goto unlock_out; 1536 break; 1537 default: 1538 break; 1539 } 1540 1541 res_counter_uncharge(&mem->res, PAGE_SIZE); 1542 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) 1543 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1544 mem_cgroup_charge_statistics(mem, pc, false); 1545 1546 ClearPageCgroupUsed(pc); 1547 /* 1548 * pc->mem_cgroup is not cleared here. It will be accessed when it's 1549 * freed from LRU. This is safe because uncharged page is expected not 1550 * to be reused (freed soon). Exception is SwapCache, it's handled by 1551 * special functions. 1552 */ 1553 1554 mz = page_cgroup_zoneinfo(pc); 1555 unlock_page_cgroup(pc); 1556 1557 /* at swapout, this memcg will be accessed to record to swap */ 1558 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 1559 css_put(&mem->css); 1560 1561 return mem; 1562 1563 unlock_out: 1564 unlock_page_cgroup(pc); 1565 return NULL; 1566 } 1567 1568 void mem_cgroup_uncharge_page(struct page *page) 1569 { 1570 /* early check. */ 1571 if (page_mapped(page)) 1572 return; 1573 if (page->mapping && !PageAnon(page)) 1574 return; 1575 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 1576 } 1577 1578 void mem_cgroup_uncharge_cache_page(struct page *page) 1579 { 1580 VM_BUG_ON(page_mapped(page)); 1581 VM_BUG_ON(page->mapping); 1582 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 1583 } 1584 1585 #ifdef CONFIG_SWAP 1586 /* 1587 * called after __delete_from_swap_cache() and drop "page" account. 1588 * memcg information is recorded to swap_cgroup of "ent" 1589 */ 1590 void 1591 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 1592 { 1593 struct mem_cgroup *memcg; 1594 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 1595 1596 if (!swapout) /* this was a swap cache but the swap is unused ! */ 1597 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 1598 1599 memcg = __mem_cgroup_uncharge_common(page, ctype); 1600 1601 /* record memcg information */ 1602 if (do_swap_account && swapout && memcg) { 1603 swap_cgroup_record(ent, css_id(&memcg->css)); 1604 mem_cgroup_get(memcg); 1605 } 1606 if (swapout && memcg) 1607 css_put(&memcg->css); 1608 } 1609 #endif 1610 1611 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 1612 /* 1613 * called from swap_entry_free(). remove record in swap_cgroup and 1614 * uncharge "memsw" account. 1615 */ 1616 void mem_cgroup_uncharge_swap(swp_entry_t ent) 1617 { 1618 struct mem_cgroup *memcg; 1619 unsigned short id; 1620 1621 if (!do_swap_account) 1622 return; 1623 1624 id = swap_cgroup_record(ent, 0); 1625 rcu_read_lock(); 1626 memcg = mem_cgroup_lookup(id); 1627 if (memcg) { 1628 /* 1629 * We uncharge this because swap is freed. 1630 * This memcg can be obsolete one. We avoid calling css_tryget 1631 */ 1632 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1633 mem_cgroup_put(memcg); 1634 } 1635 rcu_read_unlock(); 1636 } 1637 #endif 1638 1639 /* 1640 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 1641 * page belongs to. 1642 */ 1643 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) 1644 { 1645 struct page_cgroup *pc; 1646 struct mem_cgroup *mem = NULL; 1647 int ret = 0; 1648 1649 if (mem_cgroup_disabled()) 1650 return 0; 1651 1652 pc = lookup_page_cgroup(page); 1653 lock_page_cgroup(pc); 1654 if (PageCgroupUsed(pc)) { 1655 mem = pc->mem_cgroup; 1656 css_get(&mem->css); 1657 } 1658 unlock_page_cgroup(pc); 1659 1660 if (mem) { 1661 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); 1662 css_put(&mem->css); 1663 } 1664 *ptr = mem; 1665 return ret; 1666 } 1667 1668 /* remove redundant charge if migration failed*/ 1669 void mem_cgroup_end_migration(struct mem_cgroup *mem, 1670 struct page *oldpage, struct page *newpage) 1671 { 1672 struct page *target, *unused; 1673 struct page_cgroup *pc; 1674 enum charge_type ctype; 1675 1676 if (!mem) 1677 return; 1678 cgroup_exclude_rmdir(&mem->css); 1679 /* at migration success, oldpage->mapping is NULL. */ 1680 if (oldpage->mapping) { 1681 target = oldpage; 1682 unused = NULL; 1683 } else { 1684 target = newpage; 1685 unused = oldpage; 1686 } 1687 1688 if (PageAnon(target)) 1689 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 1690 else if (page_is_file_cache(target)) 1691 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 1692 else 1693 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 1694 1695 /* unused page is not on radix-tree now. */ 1696 if (unused) 1697 __mem_cgroup_uncharge_common(unused, ctype); 1698 1699 pc = lookup_page_cgroup(target); 1700 /* 1701 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. 1702 * So, double-counting is effectively avoided. 1703 */ 1704 __mem_cgroup_commit_charge(mem, pc, ctype); 1705 1706 /* 1707 * Both of oldpage and newpage are still under lock_page(). 1708 * Then, we don't have to care about race in radix-tree. 1709 * But we have to be careful that this page is unmapped or not. 1710 * 1711 * There is a case for !page_mapped(). At the start of 1712 * migration, oldpage was mapped. But now, it's zapped. 1713 * But we know *target* page is not freed/reused under us. 1714 * mem_cgroup_uncharge_page() does all necessary checks. 1715 */ 1716 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) 1717 mem_cgroup_uncharge_page(target); 1718 /* 1719 * At migration, we may charge account against cgroup which has no tasks 1720 * So, rmdir()->pre_destroy() can be called while we do this charge. 1721 * In that case, we need to call pre_destroy() again. check it here. 1722 */ 1723 cgroup_release_and_wakeup_rmdir(&mem->css); 1724 } 1725 1726 /* 1727 * A call to try to shrink memory usage on charge failure at shmem's swapin. 1728 * Calling hierarchical_reclaim is not enough because we should update 1729 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. 1730 * Moreover considering hierarchy, we should reclaim from the mem_over_limit, 1731 * not from the memcg which this page would be charged to. 1732 * try_charge_swapin does all of these works properly. 1733 */ 1734 int mem_cgroup_shmem_charge_fallback(struct page *page, 1735 struct mm_struct *mm, 1736 gfp_t gfp_mask) 1737 { 1738 struct mem_cgroup *mem = NULL; 1739 int ret; 1740 1741 if (mem_cgroup_disabled()) 1742 return 0; 1743 1744 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1745 if (!ret) 1746 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ 1747 1748 return ret; 1749 } 1750 1751 static DEFINE_MUTEX(set_limit_mutex); 1752 1753 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 1754 unsigned long long val) 1755 { 1756 int retry_count; 1757 int progress; 1758 u64 memswlimit; 1759 int ret = 0; 1760 int children = mem_cgroup_count_children(memcg); 1761 u64 curusage, oldusage; 1762 1763 /* 1764 * For keeping hierarchical_reclaim simple, how long we should retry 1765 * is depends on callers. We set our retry-count to be function 1766 * of # of children which we should visit in this loop. 1767 */ 1768 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 1769 1770 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 1771 1772 while (retry_count) { 1773 if (signal_pending(current)) { 1774 ret = -EINTR; 1775 break; 1776 } 1777 /* 1778 * Rather than hide all in some function, I do this in 1779 * open coded manner. You see what this really does. 1780 * We have to guarantee mem->res.limit < mem->memsw.limit. 1781 */ 1782 mutex_lock(&set_limit_mutex); 1783 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1784 if (memswlimit < val) { 1785 ret = -EINVAL; 1786 mutex_unlock(&set_limit_mutex); 1787 break; 1788 } 1789 ret = res_counter_set_limit(&memcg->res, val); 1790 if (!ret) { 1791 if (memswlimit == val) 1792 memcg->memsw_is_minimum = true; 1793 else 1794 memcg->memsw_is_minimum = false; 1795 } 1796 mutex_unlock(&set_limit_mutex); 1797 1798 if (!ret) 1799 break; 1800 1801 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, 1802 false, true); 1803 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 1804 /* Usage is reduced ? */ 1805 if (curusage >= oldusage) 1806 retry_count--; 1807 else 1808 oldusage = curusage; 1809 } 1810 1811 return ret; 1812 } 1813 1814 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 1815 unsigned long long val) 1816 { 1817 int retry_count; 1818 u64 memlimit, oldusage, curusage; 1819 int children = mem_cgroup_count_children(memcg); 1820 int ret = -EBUSY; 1821 1822 /* see mem_cgroup_resize_res_limit */ 1823 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 1824 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1825 while (retry_count) { 1826 if (signal_pending(current)) { 1827 ret = -EINTR; 1828 break; 1829 } 1830 /* 1831 * Rather than hide all in some function, I do this in 1832 * open coded manner. You see what this really does. 1833 * We have to guarantee mem->res.limit < mem->memsw.limit. 1834 */ 1835 mutex_lock(&set_limit_mutex); 1836 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1837 if (memlimit > val) { 1838 ret = -EINVAL; 1839 mutex_unlock(&set_limit_mutex); 1840 break; 1841 } 1842 ret = res_counter_set_limit(&memcg->memsw, val); 1843 if (!ret) { 1844 if (memlimit == val) 1845 memcg->memsw_is_minimum = true; 1846 else 1847 memcg->memsw_is_minimum = false; 1848 } 1849 mutex_unlock(&set_limit_mutex); 1850 1851 if (!ret) 1852 break; 1853 1854 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true); 1855 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1856 /* Usage is reduced ? */ 1857 if (curusage >= oldusage) 1858 retry_count--; 1859 else 1860 oldusage = curusage; 1861 } 1862 return ret; 1863 } 1864 1865 /* 1866 * This routine traverse page_cgroup in given list and drop them all. 1867 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 1868 */ 1869 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 1870 int node, int zid, enum lru_list lru) 1871 { 1872 struct zone *zone; 1873 struct mem_cgroup_per_zone *mz; 1874 struct page_cgroup *pc, *busy; 1875 unsigned long flags, loop; 1876 struct list_head *list; 1877 int ret = 0; 1878 1879 zone = &NODE_DATA(node)->node_zones[zid]; 1880 mz = mem_cgroup_zoneinfo(mem, node, zid); 1881 list = &mz->lists[lru]; 1882 1883 loop = MEM_CGROUP_ZSTAT(mz, lru); 1884 /* give some margin against EBUSY etc...*/ 1885 loop += 256; 1886 busy = NULL; 1887 while (loop--) { 1888 ret = 0; 1889 spin_lock_irqsave(&zone->lru_lock, flags); 1890 if (list_empty(list)) { 1891 spin_unlock_irqrestore(&zone->lru_lock, flags); 1892 break; 1893 } 1894 pc = list_entry(list->prev, struct page_cgroup, lru); 1895 if (busy == pc) { 1896 list_move(&pc->lru, list); 1897 busy = 0; 1898 spin_unlock_irqrestore(&zone->lru_lock, flags); 1899 continue; 1900 } 1901 spin_unlock_irqrestore(&zone->lru_lock, flags); 1902 1903 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); 1904 if (ret == -ENOMEM) 1905 break; 1906 1907 if (ret == -EBUSY || ret == -EINVAL) { 1908 /* found lock contention or "pc" is obsolete. */ 1909 busy = pc; 1910 cond_resched(); 1911 } else 1912 busy = NULL; 1913 } 1914 1915 if (!ret && !list_empty(list)) 1916 return -EBUSY; 1917 return ret; 1918 } 1919 1920 /* 1921 * make mem_cgroup's charge to be 0 if there is no task. 1922 * This enables deleting this mem_cgroup. 1923 */ 1924 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 1925 { 1926 int ret; 1927 int node, zid, shrink; 1928 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1929 struct cgroup *cgrp = mem->css.cgroup; 1930 1931 css_get(&mem->css); 1932 1933 shrink = 0; 1934 /* should free all ? */ 1935 if (free_all) 1936 goto try_to_free; 1937 move_account: 1938 while (mem->res.usage > 0) { 1939 ret = -EBUSY; 1940 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 1941 goto out; 1942 ret = -EINTR; 1943 if (signal_pending(current)) 1944 goto out; 1945 /* This is for making all *used* pages to be on LRU. */ 1946 lru_add_drain_all(); 1947 ret = 0; 1948 for_each_node_state(node, N_HIGH_MEMORY) { 1949 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 1950 enum lru_list l; 1951 for_each_lru(l) { 1952 ret = mem_cgroup_force_empty_list(mem, 1953 node, zid, l); 1954 if (ret) 1955 break; 1956 } 1957 } 1958 if (ret) 1959 break; 1960 } 1961 /* it seems parent cgroup doesn't have enough mem */ 1962 if (ret == -ENOMEM) 1963 goto try_to_free; 1964 cond_resched(); 1965 } 1966 ret = 0; 1967 out: 1968 css_put(&mem->css); 1969 return ret; 1970 1971 try_to_free: 1972 /* returns EBUSY if there is a task or if we come here twice. */ 1973 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 1974 ret = -EBUSY; 1975 goto out; 1976 } 1977 /* we call try-to-free pages for make this cgroup empty */ 1978 lru_add_drain_all(); 1979 /* try to free all pages in this cgroup */ 1980 shrink = 1; 1981 while (nr_retries && mem->res.usage > 0) { 1982 int progress; 1983 1984 if (signal_pending(current)) { 1985 ret = -EINTR; 1986 goto out; 1987 } 1988 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 1989 false, get_swappiness(mem)); 1990 if (!progress) { 1991 nr_retries--; 1992 /* maybe some writeback is necessary */ 1993 congestion_wait(BLK_RW_ASYNC, HZ/10); 1994 } 1995 1996 } 1997 lru_add_drain(); 1998 /* try move_account...there may be some *locked* pages. */ 1999 if (mem->res.usage) 2000 goto move_account; 2001 ret = 0; 2002 goto out; 2003 } 2004 2005 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 2006 { 2007 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 2008 } 2009 2010 2011 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 2012 { 2013 return mem_cgroup_from_cont(cont)->use_hierarchy; 2014 } 2015 2016 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 2017 u64 val) 2018 { 2019 int retval = 0; 2020 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2021 struct cgroup *parent = cont->parent; 2022 struct mem_cgroup *parent_mem = NULL; 2023 2024 if (parent) 2025 parent_mem = mem_cgroup_from_cont(parent); 2026 2027 cgroup_lock(); 2028 /* 2029 * If parent's use_hiearchy is set, we can't make any modifications 2030 * in the child subtrees. If it is unset, then the change can 2031 * occur, provided the current cgroup has no children. 2032 * 2033 * For the root cgroup, parent_mem is NULL, we allow value to be 2034 * set if there are no children. 2035 */ 2036 if ((!parent_mem || !parent_mem->use_hierarchy) && 2037 (val == 1 || val == 0)) { 2038 if (list_empty(&cont->children)) 2039 mem->use_hierarchy = val; 2040 else 2041 retval = -EBUSY; 2042 } else 2043 retval = -EINVAL; 2044 cgroup_unlock(); 2045 2046 return retval; 2047 } 2048 2049 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 2050 { 2051 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2052 u64 val = 0; 2053 int type, name; 2054 2055 type = MEMFILE_TYPE(cft->private); 2056 name = MEMFILE_ATTR(cft->private); 2057 switch (type) { 2058 case _MEM: 2059 val = res_counter_read_u64(&mem->res, name); 2060 break; 2061 case _MEMSWAP: 2062 val = res_counter_read_u64(&mem->memsw, name); 2063 break; 2064 default: 2065 BUG(); 2066 break; 2067 } 2068 return val; 2069 } 2070 /* 2071 * The user of this function is... 2072 * RES_LIMIT. 2073 */ 2074 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 2075 const char *buffer) 2076 { 2077 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 2078 int type, name; 2079 unsigned long long val; 2080 int ret; 2081 2082 type = MEMFILE_TYPE(cft->private); 2083 name = MEMFILE_ATTR(cft->private); 2084 switch (name) { 2085 case RES_LIMIT: 2086 /* This function does all necessary parse...reuse it */ 2087 ret = res_counter_memparse_write_strategy(buffer, &val); 2088 if (ret) 2089 break; 2090 if (type == _MEM) 2091 ret = mem_cgroup_resize_limit(memcg, val); 2092 else 2093 ret = mem_cgroup_resize_memsw_limit(memcg, val); 2094 break; 2095 default: 2096 ret = -EINVAL; /* should be BUG() ? */ 2097 break; 2098 } 2099 return ret; 2100 } 2101 2102 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 2103 unsigned long long *mem_limit, unsigned long long *memsw_limit) 2104 { 2105 struct cgroup *cgroup; 2106 unsigned long long min_limit, min_memsw_limit, tmp; 2107 2108 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 2109 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2110 cgroup = memcg->css.cgroup; 2111 if (!memcg->use_hierarchy) 2112 goto out; 2113 2114 while (cgroup->parent) { 2115 cgroup = cgroup->parent; 2116 memcg = mem_cgroup_from_cont(cgroup); 2117 if (!memcg->use_hierarchy) 2118 break; 2119 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 2120 min_limit = min(min_limit, tmp); 2121 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2122 min_memsw_limit = min(min_memsw_limit, tmp); 2123 } 2124 out: 2125 *mem_limit = min_limit; 2126 *memsw_limit = min_memsw_limit; 2127 return; 2128 } 2129 2130 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 2131 { 2132 struct mem_cgroup *mem; 2133 int type, name; 2134 2135 mem = mem_cgroup_from_cont(cont); 2136 type = MEMFILE_TYPE(event); 2137 name = MEMFILE_ATTR(event); 2138 switch (name) { 2139 case RES_MAX_USAGE: 2140 if (type == _MEM) 2141 res_counter_reset_max(&mem->res); 2142 else 2143 res_counter_reset_max(&mem->memsw); 2144 break; 2145 case RES_FAILCNT: 2146 if (type == _MEM) 2147 res_counter_reset_failcnt(&mem->res); 2148 else 2149 res_counter_reset_failcnt(&mem->memsw); 2150 break; 2151 } 2152 return 0; 2153 } 2154 2155 2156 /* For read statistics */ 2157 enum { 2158 MCS_CACHE, 2159 MCS_RSS, 2160 MCS_MAPPED_FILE, 2161 MCS_PGPGIN, 2162 MCS_PGPGOUT, 2163 MCS_INACTIVE_ANON, 2164 MCS_ACTIVE_ANON, 2165 MCS_INACTIVE_FILE, 2166 MCS_ACTIVE_FILE, 2167 MCS_UNEVICTABLE, 2168 NR_MCS_STAT, 2169 }; 2170 2171 struct mcs_total_stat { 2172 s64 stat[NR_MCS_STAT]; 2173 }; 2174 2175 struct { 2176 char *local_name; 2177 char *total_name; 2178 } memcg_stat_strings[NR_MCS_STAT] = { 2179 {"cache", "total_cache"}, 2180 {"rss", "total_rss"}, 2181 {"mapped_file", "total_mapped_file"}, 2182 {"pgpgin", "total_pgpgin"}, 2183 {"pgpgout", "total_pgpgout"}, 2184 {"inactive_anon", "total_inactive_anon"}, 2185 {"active_anon", "total_active_anon"}, 2186 {"inactive_file", "total_inactive_file"}, 2187 {"active_file", "total_active_file"}, 2188 {"unevictable", "total_unevictable"} 2189 }; 2190 2191 2192 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) 2193 { 2194 struct mcs_total_stat *s = data; 2195 s64 val; 2196 2197 /* per cpu stat */ 2198 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE); 2199 s->stat[MCS_CACHE] += val * PAGE_SIZE; 2200 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); 2201 s->stat[MCS_RSS] += val * PAGE_SIZE; 2202 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE); 2203 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE; 2204 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT); 2205 s->stat[MCS_PGPGIN] += val; 2206 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT); 2207 s->stat[MCS_PGPGOUT] += val; 2208 2209 /* per zone stat */ 2210 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); 2211 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 2212 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); 2213 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 2214 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); 2215 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 2216 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); 2217 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 2218 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); 2219 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 2220 return 0; 2221 } 2222 2223 static void 2224 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 2225 { 2226 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); 2227 } 2228 2229 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 2230 struct cgroup_map_cb *cb) 2231 { 2232 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 2233 struct mcs_total_stat mystat; 2234 int i; 2235 2236 memset(&mystat, 0, sizeof(mystat)); 2237 mem_cgroup_get_local_stat(mem_cont, &mystat); 2238 2239 for (i = 0; i < NR_MCS_STAT; i++) 2240 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 2241 2242 /* Hierarchical information */ 2243 { 2244 unsigned long long limit, memsw_limit; 2245 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 2246 cb->fill(cb, "hierarchical_memory_limit", limit); 2247 if (do_swap_account) 2248 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 2249 } 2250 2251 memset(&mystat, 0, sizeof(mystat)); 2252 mem_cgroup_get_total_stat(mem_cont, &mystat); 2253 for (i = 0; i < NR_MCS_STAT; i++) 2254 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 2255 2256 2257 #ifdef CONFIG_DEBUG_VM 2258 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 2259 2260 { 2261 int nid, zid; 2262 struct mem_cgroup_per_zone *mz; 2263 unsigned long recent_rotated[2] = {0, 0}; 2264 unsigned long recent_scanned[2] = {0, 0}; 2265 2266 for_each_online_node(nid) 2267 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2268 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 2269 2270 recent_rotated[0] += 2271 mz->reclaim_stat.recent_rotated[0]; 2272 recent_rotated[1] += 2273 mz->reclaim_stat.recent_rotated[1]; 2274 recent_scanned[0] += 2275 mz->reclaim_stat.recent_scanned[0]; 2276 recent_scanned[1] += 2277 mz->reclaim_stat.recent_scanned[1]; 2278 } 2279 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 2280 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 2281 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 2282 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 2283 } 2284 #endif 2285 2286 return 0; 2287 } 2288 2289 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 2290 { 2291 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 2292 2293 return get_swappiness(memcg); 2294 } 2295 2296 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 2297 u64 val) 2298 { 2299 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 2300 struct mem_cgroup *parent; 2301 2302 if (val > 100) 2303 return -EINVAL; 2304 2305 if (cgrp->parent == NULL) 2306 return -EINVAL; 2307 2308 parent = mem_cgroup_from_cont(cgrp->parent); 2309 2310 cgroup_lock(); 2311 2312 /* If under hierarchy, only empty-root can set this value */ 2313 if ((parent->use_hierarchy) || 2314 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 2315 cgroup_unlock(); 2316 return -EINVAL; 2317 } 2318 2319 spin_lock(&memcg->reclaim_param_lock); 2320 memcg->swappiness = val; 2321 spin_unlock(&memcg->reclaim_param_lock); 2322 2323 cgroup_unlock(); 2324 2325 return 0; 2326 } 2327 2328 2329 static struct cftype mem_cgroup_files[] = { 2330 { 2331 .name = "usage_in_bytes", 2332 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 2333 .read_u64 = mem_cgroup_read, 2334 }, 2335 { 2336 .name = "max_usage_in_bytes", 2337 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 2338 .trigger = mem_cgroup_reset, 2339 .read_u64 = mem_cgroup_read, 2340 }, 2341 { 2342 .name = "limit_in_bytes", 2343 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 2344 .write_string = mem_cgroup_write, 2345 .read_u64 = mem_cgroup_read, 2346 }, 2347 { 2348 .name = "failcnt", 2349 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 2350 .trigger = mem_cgroup_reset, 2351 .read_u64 = mem_cgroup_read, 2352 }, 2353 { 2354 .name = "stat", 2355 .read_map = mem_control_stat_show, 2356 }, 2357 { 2358 .name = "force_empty", 2359 .trigger = mem_cgroup_force_empty_write, 2360 }, 2361 { 2362 .name = "use_hierarchy", 2363 .write_u64 = mem_cgroup_hierarchy_write, 2364 .read_u64 = mem_cgroup_hierarchy_read, 2365 }, 2366 { 2367 .name = "swappiness", 2368 .read_u64 = mem_cgroup_swappiness_read, 2369 .write_u64 = mem_cgroup_swappiness_write, 2370 }, 2371 }; 2372 2373 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2374 static struct cftype memsw_cgroup_files[] = { 2375 { 2376 .name = "memsw.usage_in_bytes", 2377 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 2378 .read_u64 = mem_cgroup_read, 2379 }, 2380 { 2381 .name = "memsw.max_usage_in_bytes", 2382 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 2383 .trigger = mem_cgroup_reset, 2384 .read_u64 = mem_cgroup_read, 2385 }, 2386 { 2387 .name = "memsw.limit_in_bytes", 2388 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 2389 .write_string = mem_cgroup_write, 2390 .read_u64 = mem_cgroup_read, 2391 }, 2392 { 2393 .name = "memsw.failcnt", 2394 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 2395 .trigger = mem_cgroup_reset, 2396 .read_u64 = mem_cgroup_read, 2397 }, 2398 }; 2399 2400 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 2401 { 2402 if (!do_swap_account) 2403 return 0; 2404 return cgroup_add_files(cont, ss, memsw_cgroup_files, 2405 ARRAY_SIZE(memsw_cgroup_files)); 2406 }; 2407 #else 2408 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 2409 { 2410 return 0; 2411 } 2412 #endif 2413 2414 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2415 { 2416 struct mem_cgroup_per_node *pn; 2417 struct mem_cgroup_per_zone *mz; 2418 enum lru_list l; 2419 int zone, tmp = node; 2420 /* 2421 * This routine is called against possible nodes. 2422 * But it's BUG to call kmalloc() against offline node. 2423 * 2424 * TODO: this routine can waste much memory for nodes which will 2425 * never be onlined. It's better to use memory hotplug callback 2426 * function. 2427 */ 2428 if (!node_state(node, N_NORMAL_MEMORY)) 2429 tmp = -1; 2430 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 2431 if (!pn) 2432 return 1; 2433 2434 mem->info.nodeinfo[node] = pn; 2435 memset(pn, 0, sizeof(*pn)); 2436 2437 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 2438 mz = &pn->zoneinfo[zone]; 2439 for_each_lru(l) 2440 INIT_LIST_HEAD(&mz->lists[l]); 2441 } 2442 return 0; 2443 } 2444 2445 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2446 { 2447 kfree(mem->info.nodeinfo[node]); 2448 } 2449 2450 static int mem_cgroup_size(void) 2451 { 2452 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); 2453 return sizeof(struct mem_cgroup) + cpustat_size; 2454 } 2455 2456 static struct mem_cgroup *mem_cgroup_alloc(void) 2457 { 2458 struct mem_cgroup *mem; 2459 int size = mem_cgroup_size(); 2460 2461 if (size < PAGE_SIZE) 2462 mem = kmalloc(size, GFP_KERNEL); 2463 else 2464 mem = vmalloc(size); 2465 2466 if (mem) 2467 memset(mem, 0, size); 2468 return mem; 2469 } 2470 2471 /* 2472 * At destroying mem_cgroup, references from swap_cgroup can remain. 2473 * (scanning all at force_empty is too costly...) 2474 * 2475 * Instead of clearing all references at force_empty, we remember 2476 * the number of reference from swap_cgroup and free mem_cgroup when 2477 * it goes down to 0. 2478 * 2479 * Removal of cgroup itself succeeds regardless of refs from swap. 2480 */ 2481 2482 static void __mem_cgroup_free(struct mem_cgroup *mem) 2483 { 2484 int node; 2485 2486 free_css_id(&mem_cgroup_subsys, &mem->css); 2487 2488 for_each_node_state(node, N_POSSIBLE) 2489 free_mem_cgroup_per_zone_info(mem, node); 2490 2491 if (mem_cgroup_size() < PAGE_SIZE) 2492 kfree(mem); 2493 else 2494 vfree(mem); 2495 } 2496 2497 static void mem_cgroup_get(struct mem_cgroup *mem) 2498 { 2499 atomic_inc(&mem->refcnt); 2500 } 2501 2502 static void mem_cgroup_put(struct mem_cgroup *mem) 2503 { 2504 if (atomic_dec_and_test(&mem->refcnt)) { 2505 struct mem_cgroup *parent = parent_mem_cgroup(mem); 2506 __mem_cgroup_free(mem); 2507 if (parent) 2508 mem_cgroup_put(parent); 2509 } 2510 } 2511 2512 /* 2513 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 2514 */ 2515 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 2516 { 2517 if (!mem->res.parent) 2518 return NULL; 2519 return mem_cgroup_from_res_counter(mem->res.parent, res); 2520 } 2521 2522 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2523 static void __init enable_swap_cgroup(void) 2524 { 2525 if (!mem_cgroup_disabled() && really_do_swap_account) 2526 do_swap_account = 1; 2527 } 2528 #else 2529 static void __init enable_swap_cgroup(void) 2530 { 2531 } 2532 #endif 2533 2534 static struct cgroup_subsys_state * __ref 2535 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 2536 { 2537 struct mem_cgroup *mem, *parent; 2538 long error = -ENOMEM; 2539 int node; 2540 2541 mem = mem_cgroup_alloc(); 2542 if (!mem) 2543 return ERR_PTR(error); 2544 2545 for_each_node_state(node, N_POSSIBLE) 2546 if (alloc_mem_cgroup_per_zone_info(mem, node)) 2547 goto free_out; 2548 /* root ? */ 2549 if (cont->parent == NULL) { 2550 enable_swap_cgroup(); 2551 parent = NULL; 2552 } else { 2553 parent = mem_cgroup_from_cont(cont->parent); 2554 mem->use_hierarchy = parent->use_hierarchy; 2555 } 2556 2557 if (parent && parent->use_hierarchy) { 2558 res_counter_init(&mem->res, &parent->res); 2559 res_counter_init(&mem->memsw, &parent->memsw); 2560 /* 2561 * We increment refcnt of the parent to ensure that we can 2562 * safely access it on res_counter_charge/uncharge. 2563 * This refcnt will be decremented when freeing this 2564 * mem_cgroup(see mem_cgroup_put). 2565 */ 2566 mem_cgroup_get(parent); 2567 } else { 2568 res_counter_init(&mem->res, NULL); 2569 res_counter_init(&mem->memsw, NULL); 2570 } 2571 mem->last_scanned_child = 0; 2572 spin_lock_init(&mem->reclaim_param_lock); 2573 2574 if (parent) 2575 mem->swappiness = get_swappiness(parent); 2576 atomic_set(&mem->refcnt, 1); 2577 return &mem->css; 2578 free_out: 2579 __mem_cgroup_free(mem); 2580 return ERR_PTR(error); 2581 } 2582 2583 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 2584 struct cgroup *cont) 2585 { 2586 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2587 2588 return mem_cgroup_force_empty(mem, false); 2589 } 2590 2591 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 2592 struct cgroup *cont) 2593 { 2594 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2595 2596 mem_cgroup_put(mem); 2597 } 2598 2599 static int mem_cgroup_populate(struct cgroup_subsys *ss, 2600 struct cgroup *cont) 2601 { 2602 int ret; 2603 2604 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 2605 ARRAY_SIZE(mem_cgroup_files)); 2606 2607 if (!ret) 2608 ret = register_memsw_files(cont, ss); 2609 return ret; 2610 } 2611 2612 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 2613 struct cgroup *cont, 2614 struct cgroup *old_cont, 2615 struct task_struct *p) 2616 { 2617 mutex_lock(&memcg_tasklist); 2618 /* 2619 * FIXME: It's better to move charges of this process from old 2620 * memcg to new memcg. But it's just on TODO-List now. 2621 */ 2622 mutex_unlock(&memcg_tasklist); 2623 } 2624 2625 struct cgroup_subsys mem_cgroup_subsys = { 2626 .name = "memory", 2627 .subsys_id = mem_cgroup_subsys_id, 2628 .create = mem_cgroup_create, 2629 .pre_destroy = mem_cgroup_pre_destroy, 2630 .destroy = mem_cgroup_destroy, 2631 .populate = mem_cgroup_populate, 2632 .attach = mem_cgroup_move_task, 2633 .early_init = 0, 2634 .use_id = 1, 2635 }; 2636 2637 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2638 2639 static int __init disable_swap_account(char *s) 2640 { 2641 really_do_swap_account = 0; 2642 return 1; 2643 } 2644 __setup("noswapaccount", disable_swap_account); 2645 #endif 2646