1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 #define THRESHOLDS_EVENTS_TARGET 128 102 #define SOFTLIMIT_EVENTS_TARGET 1024 103 104 /* 105 * Cgroups above their limits are maintained in a RB-Tree, independent of 106 * their hierarchy representation 107 */ 108 109 struct mem_cgroup_tree_per_node { 110 struct rb_root rb_root; 111 struct rb_node *rb_rightmost; 112 spinlock_t lock; 113 }; 114 115 struct mem_cgroup_tree { 116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 117 }; 118 119 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 120 121 /* for OOM */ 122 struct mem_cgroup_eventfd_list { 123 struct list_head list; 124 struct eventfd_ctx *eventfd; 125 }; 126 127 /* 128 * cgroup_event represents events which userspace want to receive. 129 */ 130 struct mem_cgroup_event { 131 /* 132 * memcg which the event belongs to. 133 */ 134 struct mem_cgroup *memcg; 135 /* 136 * eventfd to signal userspace about the event. 137 */ 138 struct eventfd_ctx *eventfd; 139 /* 140 * Each of these stored in a list by the cgroup. 141 */ 142 struct list_head list; 143 /* 144 * register_event() callback will be used to add new userspace 145 * waiter for changes related to this event. Use eventfd_signal() 146 * on eventfd to send notification to userspace. 147 */ 148 int (*register_event)(struct mem_cgroup *memcg, 149 struct eventfd_ctx *eventfd, const char *args); 150 /* 151 * unregister_event() callback will be called when userspace closes 152 * the eventfd or on cgroup removing. This callback must be set, 153 * if you want provide notification functionality. 154 */ 155 void (*unregister_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd); 157 /* 158 * All fields below needed to unregister event when 159 * userspace closes eventfd. 160 */ 161 poll_table pt; 162 wait_queue_head_t *wqh; 163 wait_queue_entry_t wait; 164 struct work_struct remove; 165 }; 166 167 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 169 170 /* Stuffs for move charges at task migration. */ 171 /* 172 * Types of charges to be moved. 173 */ 174 #define MOVE_ANON 0x1U 175 #define MOVE_FILE 0x2U 176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 177 178 /* "mc" and its members are protected by cgroup_mutex */ 179 static struct move_charge_struct { 180 spinlock_t lock; /* for from, to */ 181 struct mm_struct *mm; 182 struct mem_cgroup *from; 183 struct mem_cgroup *to; 184 unsigned long flags; 185 unsigned long precharge; 186 unsigned long moved_charge; 187 unsigned long moved_swap; 188 struct task_struct *moving_task; /* a task moving charges */ 189 wait_queue_head_t waitq; /* a waitq for other context */ 190 } mc = { 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 193 }; 194 195 /* 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 197 * limit reclaim to prevent infinite loops, if they ever occur. 198 */ 199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 201 202 enum charge_type { 203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 204 MEM_CGROUP_CHARGE_TYPE_ANON, 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 207 NR_CHARGE_TYPE, 208 }; 209 210 /* for encoding cft->private value on file */ 211 enum res_type { 212 _MEM, 213 _MEMSWAP, 214 _OOM_TYPE, 215 _KMEM, 216 _TCP, 217 }; 218 219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 221 #define MEMFILE_ATTR(val) ((val) & 0xffff) 222 /* Used for OOM nofiier */ 223 #define OOM_CONTROL (0) 224 225 /* 226 * Iteration constructs for visiting all cgroups (under a tree). If 227 * loops are exited prematurely (break), mem_cgroup_iter_break() must 228 * be used for reference counting. 229 */ 230 #define for_each_mem_cgroup_tree(iter, root) \ 231 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(root, iter, NULL)) 234 235 #define for_each_mem_cgroup(iter) \ 236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(NULL, iter, NULL)) 239 240 static inline bool should_force_charge(void) 241 { 242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 243 (current->flags & PF_EXITING); 244 } 245 246 /* Some nice accessors for the vmpressure. */ 247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 248 { 249 if (!memcg) 250 memcg = root_mem_cgroup; 251 return &memcg->vmpressure; 252 } 253 254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 255 { 256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 257 } 258 259 #ifdef CONFIG_MEMCG_KMEM 260 /* 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 262 * The main reason for not using cgroup id for this: 263 * this works better in sparse environments, where we have a lot of memcgs, 264 * but only a few kmem-limited. Or also, if we have, for instance, 200 265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 266 * 200 entry array for that. 267 * 268 * The current size of the caches array is stored in memcg_nr_cache_ids. It 269 * will double each time we have to increase it. 270 */ 271 static DEFINE_IDA(memcg_cache_ida); 272 int memcg_nr_cache_ids; 273 274 /* Protects memcg_nr_cache_ids */ 275 static DECLARE_RWSEM(memcg_cache_ids_sem); 276 277 void memcg_get_cache_ids(void) 278 { 279 down_read(&memcg_cache_ids_sem); 280 } 281 282 void memcg_put_cache_ids(void) 283 { 284 up_read(&memcg_cache_ids_sem); 285 } 286 287 /* 288 * MIN_SIZE is different than 1, because we would like to avoid going through 289 * the alloc/free process all the time. In a small machine, 4 kmem-limited 290 * cgroups is a reasonable guess. In the future, it could be a parameter or 291 * tunable, but that is strictly not necessary. 292 * 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 294 * this constant directly from cgroup, but it is understandable that this is 295 * better kept as an internal representation in cgroup.c. In any case, the 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily 297 * increase ours as well if it increases. 298 */ 299 #define MEMCG_CACHES_MIN_SIZE 4 300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 301 302 /* 303 * A lot of the calls to the cache allocation functions are expected to be 304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 305 * conditional to this static branch, we'll have to allow modules that does 306 * kmem_cache_alloc and the such to see this symbol as well 307 */ 308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 309 EXPORT_SYMBOL(memcg_kmem_enabled_key); 310 311 struct workqueue_struct *memcg_kmem_cache_wq; 312 #endif 313 314 static int memcg_shrinker_map_size; 315 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 316 317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 318 { 319 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 320 } 321 322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 323 int size, int old_size) 324 { 325 struct memcg_shrinker_map *new, *old; 326 int nid; 327 328 lockdep_assert_held(&memcg_shrinker_map_mutex); 329 330 for_each_node(nid) { 331 old = rcu_dereference_protected( 332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 333 /* Not yet online memcg */ 334 if (!old) 335 return 0; 336 337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 338 if (!new) 339 return -ENOMEM; 340 341 /* Set all old bits, clear all new bits */ 342 memset(new->map, (int)0xff, old_size); 343 memset((void *)new->map + old_size, 0, size - old_size); 344 345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 347 } 348 349 return 0; 350 } 351 352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 353 { 354 struct mem_cgroup_per_node *pn; 355 struct memcg_shrinker_map *map; 356 int nid; 357 358 if (mem_cgroup_is_root(memcg)) 359 return; 360 361 for_each_node(nid) { 362 pn = mem_cgroup_nodeinfo(memcg, nid); 363 map = rcu_dereference_protected(pn->shrinker_map, true); 364 if (map) 365 kvfree(map); 366 rcu_assign_pointer(pn->shrinker_map, NULL); 367 } 368 } 369 370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 371 { 372 struct memcg_shrinker_map *map; 373 int nid, size, ret = 0; 374 375 if (mem_cgroup_is_root(memcg)) 376 return 0; 377 378 mutex_lock(&memcg_shrinker_map_mutex); 379 size = memcg_shrinker_map_size; 380 for_each_node(nid) { 381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 382 if (!map) { 383 memcg_free_shrinker_maps(memcg); 384 ret = -ENOMEM; 385 break; 386 } 387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 388 } 389 mutex_unlock(&memcg_shrinker_map_mutex); 390 391 return ret; 392 } 393 394 int memcg_expand_shrinker_maps(int new_id) 395 { 396 int size, old_size, ret = 0; 397 struct mem_cgroup *memcg; 398 399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 400 old_size = memcg_shrinker_map_size; 401 if (size <= old_size) 402 return 0; 403 404 mutex_lock(&memcg_shrinker_map_mutex); 405 if (!root_mem_cgroup) 406 goto unlock; 407 408 for_each_mem_cgroup(memcg) { 409 if (mem_cgroup_is_root(memcg)) 410 continue; 411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 412 if (ret) { 413 mem_cgroup_iter_break(NULL, memcg); 414 goto unlock; 415 } 416 } 417 unlock: 418 if (!ret) 419 memcg_shrinker_map_size = size; 420 mutex_unlock(&memcg_shrinker_map_mutex); 421 return ret; 422 } 423 424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 425 { 426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 427 struct memcg_shrinker_map *map; 428 429 rcu_read_lock(); 430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 431 /* Pairs with smp mb in shrink_slab() */ 432 smp_mb__before_atomic(); 433 set_bit(shrinker_id, map->map); 434 rcu_read_unlock(); 435 } 436 } 437 438 /** 439 * mem_cgroup_css_from_page - css of the memcg associated with a page 440 * @page: page of interest 441 * 442 * If memcg is bound to the default hierarchy, css of the memcg associated 443 * with @page is returned. The returned css remains associated with @page 444 * until it is released. 445 * 446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 447 * is returned. 448 */ 449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 450 { 451 struct mem_cgroup *memcg; 452 453 memcg = page->mem_cgroup; 454 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 memcg = root_mem_cgroup; 457 458 return &memcg->css; 459 } 460 461 /** 462 * page_cgroup_ino - return inode number of the memcg a page is charged to 463 * @page: the page 464 * 465 * Look up the closest online ancestor of the memory cgroup @page is charged to 466 * and return its inode number or 0 if @page is not charged to any cgroup. It 467 * is safe to call this function without holding a reference to @page. 468 * 469 * Note, this function is inherently racy, because there is nothing to prevent 470 * the cgroup inode from getting torn down and potentially reallocated a moment 471 * after page_cgroup_ino() returns, so it only should be used by callers that 472 * do not care (such as procfs interfaces). 473 */ 474 ino_t page_cgroup_ino(struct page *page) 475 { 476 struct mem_cgroup *memcg; 477 unsigned long ino = 0; 478 479 rcu_read_lock(); 480 if (PageSlab(page) && !PageTail(page)) 481 memcg = memcg_from_slab_page(page); 482 else 483 memcg = READ_ONCE(page->mem_cgroup); 484 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 485 memcg = parent_mem_cgroup(memcg); 486 if (memcg) 487 ino = cgroup_ino(memcg->css.cgroup); 488 rcu_read_unlock(); 489 return ino; 490 } 491 492 static struct mem_cgroup_per_node * 493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 494 { 495 int nid = page_to_nid(page); 496 497 return memcg->nodeinfo[nid]; 498 } 499 500 static struct mem_cgroup_tree_per_node * 501 soft_limit_tree_node(int nid) 502 { 503 return soft_limit_tree.rb_tree_per_node[nid]; 504 } 505 506 static struct mem_cgroup_tree_per_node * 507 soft_limit_tree_from_page(struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return soft_limit_tree.rb_tree_per_node[nid]; 512 } 513 514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 515 struct mem_cgroup_tree_per_node *mctz, 516 unsigned long new_usage_in_excess) 517 { 518 struct rb_node **p = &mctz->rb_root.rb_node; 519 struct rb_node *parent = NULL; 520 struct mem_cgroup_per_node *mz_node; 521 bool rightmost = true; 522 523 if (mz->on_tree) 524 return; 525 526 mz->usage_in_excess = new_usage_in_excess; 527 if (!mz->usage_in_excess) 528 return; 529 while (*p) { 530 parent = *p; 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 532 tree_node); 533 if (mz->usage_in_excess < mz_node->usage_in_excess) { 534 p = &(*p)->rb_left; 535 rightmost = false; 536 } 537 538 /* 539 * We can't avoid mem cgroups that are over their soft 540 * limit by the same amount 541 */ 542 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 543 p = &(*p)->rb_right; 544 } 545 546 if (rightmost) 547 mctz->rb_rightmost = &mz->tree_node; 548 549 rb_link_node(&mz->tree_node, parent, p); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 mz->on_tree = true; 552 } 553 554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 555 struct mem_cgroup_tree_per_node *mctz) 556 { 557 if (!mz->on_tree) 558 return; 559 560 if (&mz->tree_node == mctz->rb_rightmost) 561 mctz->rb_rightmost = rb_prev(&mz->tree_node); 562 563 rb_erase(&mz->tree_node, &mctz->rb_root); 564 mz->on_tree = false; 565 } 566 567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 568 struct mem_cgroup_tree_per_node *mctz) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave(&mctz->lock, flags); 573 __mem_cgroup_remove_exceeded(mz, mctz); 574 spin_unlock_irqrestore(&mctz->lock, flags); 575 } 576 577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 578 { 579 unsigned long nr_pages = page_counter_read(&memcg->memory); 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 581 unsigned long excess = 0; 582 583 if (nr_pages > soft_limit) 584 excess = nr_pages - soft_limit; 585 586 return excess; 587 } 588 589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 590 { 591 unsigned long excess; 592 struct mem_cgroup_per_node *mz; 593 struct mem_cgroup_tree_per_node *mctz; 594 595 mctz = soft_limit_tree_from_page(page); 596 if (!mctz) 597 return; 598 /* 599 * Necessary to update all ancestors when hierarchy is used. 600 * because their event counter is not touched. 601 */ 602 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 603 mz = mem_cgroup_page_nodeinfo(memcg, page); 604 excess = soft_limit_excess(memcg); 605 /* 606 * We have to update the tree if mz is on RB-tree or 607 * mem is over its softlimit. 608 */ 609 if (excess || mz->on_tree) { 610 unsigned long flags; 611 612 spin_lock_irqsave(&mctz->lock, flags); 613 /* if on-tree, remove it */ 614 if (mz->on_tree) 615 __mem_cgroup_remove_exceeded(mz, mctz); 616 /* 617 * Insert again. mz->usage_in_excess will be updated. 618 * If excess is 0, no tree ops. 619 */ 620 __mem_cgroup_insert_exceeded(mz, mctz, excess); 621 spin_unlock_irqrestore(&mctz->lock, flags); 622 } 623 } 624 } 625 626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 627 { 628 struct mem_cgroup_tree_per_node *mctz; 629 struct mem_cgroup_per_node *mz; 630 int nid; 631 632 for_each_node(nid) { 633 mz = mem_cgroup_nodeinfo(memcg, nid); 634 mctz = soft_limit_tree_node(nid); 635 if (mctz) 636 mem_cgroup_remove_exceeded(mz, mctz); 637 } 638 } 639 640 static struct mem_cgroup_per_node * 641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 642 { 643 struct mem_cgroup_per_node *mz; 644 645 retry: 646 mz = NULL; 647 if (!mctz->rb_rightmost) 648 goto done; /* Nothing to reclaim from */ 649 650 mz = rb_entry(mctz->rb_rightmost, 651 struct mem_cgroup_per_node, tree_node); 652 /* 653 * Remove the node now but someone else can add it back, 654 * we will to add it back at the end of reclaim to its correct 655 * position in the tree. 656 */ 657 __mem_cgroup_remove_exceeded(mz, mctz); 658 if (!soft_limit_excess(mz->memcg) || 659 !css_tryget_online(&mz->memcg->css)) 660 goto retry; 661 done: 662 return mz; 663 } 664 665 static struct mem_cgroup_per_node * 666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 667 { 668 struct mem_cgroup_per_node *mz; 669 670 spin_lock_irq(&mctz->lock); 671 mz = __mem_cgroup_largest_soft_limit_node(mctz); 672 spin_unlock_irq(&mctz->lock); 673 return mz; 674 } 675 676 /** 677 * __mod_memcg_state - update cgroup memory statistics 678 * @memcg: the memory cgroup 679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 680 * @val: delta to add to the counter, can be negative 681 */ 682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 683 { 684 long x; 685 686 if (mem_cgroup_disabled()) 687 return; 688 689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 691 struct mem_cgroup *mi; 692 693 /* 694 * Batch local counters to keep them in sync with 695 * the hierarchical ones. 696 */ 697 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 699 atomic_long_add(x, &mi->vmstats[idx]); 700 x = 0; 701 } 702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 703 } 704 705 static struct mem_cgroup_per_node * 706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 707 { 708 struct mem_cgroup *parent; 709 710 parent = parent_mem_cgroup(pn->memcg); 711 if (!parent) 712 return NULL; 713 return mem_cgroup_nodeinfo(parent, nid); 714 } 715 716 /** 717 * __mod_lruvec_state - update lruvec memory statistics 718 * @lruvec: the lruvec 719 * @idx: the stat item 720 * @val: delta to add to the counter, can be negative 721 * 722 * The lruvec is the intersection of the NUMA node and a cgroup. This 723 * function updates the all three counters that are affected by a 724 * change of state at this level: per-node, per-cgroup, per-lruvec. 725 */ 726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 727 int val) 728 { 729 pg_data_t *pgdat = lruvec_pgdat(lruvec); 730 struct mem_cgroup_per_node *pn; 731 struct mem_cgroup *memcg; 732 long x; 733 734 /* Update node */ 735 __mod_node_page_state(pgdat, idx, val); 736 737 if (mem_cgroup_disabled()) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 /* Update memcg */ 744 __mod_memcg_state(memcg, idx, val); 745 746 /* Update lruvec */ 747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 748 749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 751 struct mem_cgroup_per_node *pi; 752 753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 754 atomic_long_add(x, &pi->lruvec_stat[idx]); 755 x = 0; 756 } 757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 758 } 759 760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 761 { 762 struct page *page = virt_to_head_page(p); 763 pg_data_t *pgdat = page_pgdat(page); 764 struct mem_cgroup *memcg; 765 struct lruvec *lruvec; 766 767 rcu_read_lock(); 768 memcg = memcg_from_slab_page(page); 769 770 /* Untracked pages have no memcg, no lruvec. Update only the node */ 771 if (!memcg || memcg == root_mem_cgroup) { 772 __mod_node_page_state(pgdat, idx, val); 773 } else { 774 lruvec = mem_cgroup_lruvec(memcg, pgdat); 775 __mod_lruvec_state(lruvec, idx, val); 776 } 777 rcu_read_unlock(); 778 } 779 780 /** 781 * __count_memcg_events - account VM events in a cgroup 782 * @memcg: the memory cgroup 783 * @idx: the event item 784 * @count: the number of events that occured 785 */ 786 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 787 unsigned long count) 788 { 789 unsigned long x; 790 791 if (mem_cgroup_disabled()) 792 return; 793 794 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 795 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 796 struct mem_cgroup *mi; 797 798 /* 799 * Batch local counters to keep them in sync with 800 * the hierarchical ones. 801 */ 802 __this_cpu_add(memcg->vmstats_local->events[idx], x); 803 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 804 atomic_long_add(x, &mi->vmevents[idx]); 805 x = 0; 806 } 807 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 808 } 809 810 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 811 { 812 return atomic_long_read(&memcg->vmevents[event]); 813 } 814 815 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 816 { 817 long x = 0; 818 int cpu; 819 820 for_each_possible_cpu(cpu) 821 x += per_cpu(memcg->vmstats_local->events[event], cpu); 822 return x; 823 } 824 825 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 826 struct page *page, 827 bool compound, int nr_pages) 828 { 829 /* 830 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 831 * counted as CACHE even if it's on ANON LRU. 832 */ 833 if (PageAnon(page)) 834 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 835 else { 836 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 837 if (PageSwapBacked(page)) 838 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 839 } 840 841 if (compound) { 842 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 843 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 844 } 845 846 /* pagein of a big page is an event. So, ignore page size */ 847 if (nr_pages > 0) 848 __count_memcg_events(memcg, PGPGIN, 1); 849 else { 850 __count_memcg_events(memcg, PGPGOUT, 1); 851 nr_pages = -nr_pages; /* for event */ 852 } 853 854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 855 } 856 857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 858 enum mem_cgroup_events_target target) 859 { 860 unsigned long val, next; 861 862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 864 /* from time_after() in jiffies.h */ 865 if ((long)(next - val) < 0) { 866 switch (target) { 867 case MEM_CGROUP_TARGET_THRESH: 868 next = val + THRESHOLDS_EVENTS_TARGET; 869 break; 870 case MEM_CGROUP_TARGET_SOFTLIMIT: 871 next = val + SOFTLIMIT_EVENTS_TARGET; 872 break; 873 default: 874 break; 875 } 876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 877 return true; 878 } 879 return false; 880 } 881 882 /* 883 * Check events in order. 884 * 885 */ 886 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 887 { 888 /* threshold event is triggered in finer grain than soft limit */ 889 if (unlikely(mem_cgroup_event_ratelimit(memcg, 890 MEM_CGROUP_TARGET_THRESH))) { 891 bool do_softlimit; 892 893 do_softlimit = mem_cgroup_event_ratelimit(memcg, 894 MEM_CGROUP_TARGET_SOFTLIMIT); 895 mem_cgroup_threshold(memcg); 896 if (unlikely(do_softlimit)) 897 mem_cgroup_update_tree(memcg, page); 898 } 899 } 900 901 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 902 { 903 /* 904 * mm_update_next_owner() may clear mm->owner to NULL 905 * if it races with swapoff, page migration, etc. 906 * So this can be called with p == NULL. 907 */ 908 if (unlikely(!p)) 909 return NULL; 910 911 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 912 } 913 EXPORT_SYMBOL(mem_cgroup_from_task); 914 915 /** 916 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 917 * @mm: mm from which memcg should be extracted. It can be NULL. 918 * 919 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 920 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 921 * returned. 922 */ 923 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 924 { 925 struct mem_cgroup *memcg; 926 927 if (mem_cgroup_disabled()) 928 return NULL; 929 930 rcu_read_lock(); 931 do { 932 /* 933 * Page cache insertions can happen withou an 934 * actual mm context, e.g. during disk probing 935 * on boot, loopback IO, acct() writes etc. 936 */ 937 if (unlikely(!mm)) 938 memcg = root_mem_cgroup; 939 else { 940 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 941 if (unlikely(!memcg)) 942 memcg = root_mem_cgroup; 943 } 944 } while (!css_tryget(&memcg->css)); 945 rcu_read_unlock(); 946 return memcg; 947 } 948 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 949 950 /** 951 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 952 * @page: page from which memcg should be extracted. 953 * 954 * Obtain a reference on page->memcg and returns it if successful. Otherwise 955 * root_mem_cgroup is returned. 956 */ 957 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 958 { 959 struct mem_cgroup *memcg = page->mem_cgroup; 960 961 if (mem_cgroup_disabled()) 962 return NULL; 963 964 rcu_read_lock(); 965 if (!memcg || !css_tryget_online(&memcg->css)) 966 memcg = root_mem_cgroup; 967 rcu_read_unlock(); 968 return memcg; 969 } 970 EXPORT_SYMBOL(get_mem_cgroup_from_page); 971 972 /** 973 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 974 */ 975 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 976 { 977 if (unlikely(current->active_memcg)) { 978 struct mem_cgroup *memcg = root_mem_cgroup; 979 980 rcu_read_lock(); 981 if (css_tryget_online(¤t->active_memcg->css)) 982 memcg = current->active_memcg; 983 rcu_read_unlock(); 984 return memcg; 985 } 986 return get_mem_cgroup_from_mm(current->mm); 987 } 988 989 /** 990 * mem_cgroup_iter - iterate over memory cgroup hierarchy 991 * @root: hierarchy root 992 * @prev: previously returned memcg, NULL on first invocation 993 * @reclaim: cookie for shared reclaim walks, NULL for full walks 994 * 995 * Returns references to children of the hierarchy below @root, or 996 * @root itself, or %NULL after a full round-trip. 997 * 998 * Caller must pass the return value in @prev on subsequent 999 * invocations for reference counting, or use mem_cgroup_iter_break() 1000 * to cancel a hierarchy walk before the round-trip is complete. 1001 * 1002 * Reclaimers can specify a node and a priority level in @reclaim to 1003 * divide up the memcgs in the hierarchy among all concurrent 1004 * reclaimers operating on the same node and priority. 1005 */ 1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1007 struct mem_cgroup *prev, 1008 struct mem_cgroup_reclaim_cookie *reclaim) 1009 { 1010 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1011 struct cgroup_subsys_state *css = NULL; 1012 struct mem_cgroup *memcg = NULL; 1013 struct mem_cgroup *pos = NULL; 1014 1015 if (mem_cgroup_disabled()) 1016 return NULL; 1017 1018 if (!root) 1019 root = root_mem_cgroup; 1020 1021 if (prev && !reclaim) 1022 pos = prev; 1023 1024 if (!root->use_hierarchy && root != root_mem_cgroup) { 1025 if (prev) 1026 goto out; 1027 return root; 1028 } 1029 1030 rcu_read_lock(); 1031 1032 if (reclaim) { 1033 struct mem_cgroup_per_node *mz; 1034 1035 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1036 iter = &mz->iter; 1037 1038 if (prev && reclaim->generation != iter->generation) 1039 goto out_unlock; 1040 1041 while (1) { 1042 pos = READ_ONCE(iter->position); 1043 if (!pos || css_tryget(&pos->css)) 1044 break; 1045 /* 1046 * css reference reached zero, so iter->position will 1047 * be cleared by ->css_released. However, we should not 1048 * rely on this happening soon, because ->css_released 1049 * is called from a work queue, and by busy-waiting we 1050 * might block it. So we clear iter->position right 1051 * away. 1052 */ 1053 (void)cmpxchg(&iter->position, pos, NULL); 1054 } 1055 } 1056 1057 if (pos) 1058 css = &pos->css; 1059 1060 for (;;) { 1061 css = css_next_descendant_pre(css, &root->css); 1062 if (!css) { 1063 /* 1064 * Reclaimers share the hierarchy walk, and a 1065 * new one might jump in right at the end of 1066 * the hierarchy - make sure they see at least 1067 * one group and restart from the beginning. 1068 */ 1069 if (!prev) 1070 continue; 1071 break; 1072 } 1073 1074 /* 1075 * Verify the css and acquire a reference. The root 1076 * is provided by the caller, so we know it's alive 1077 * and kicking, and don't take an extra reference. 1078 */ 1079 memcg = mem_cgroup_from_css(css); 1080 1081 if (css == &root->css) 1082 break; 1083 1084 if (css_tryget(css)) 1085 break; 1086 1087 memcg = NULL; 1088 } 1089 1090 if (reclaim) { 1091 /* 1092 * The position could have already been updated by a competing 1093 * thread, so check that the value hasn't changed since we read 1094 * it to avoid reclaiming from the same cgroup twice. 1095 */ 1096 (void)cmpxchg(&iter->position, pos, memcg); 1097 1098 if (pos) 1099 css_put(&pos->css); 1100 1101 if (!memcg) 1102 iter->generation++; 1103 else if (!prev) 1104 reclaim->generation = iter->generation; 1105 } 1106 1107 out_unlock: 1108 rcu_read_unlock(); 1109 out: 1110 if (prev && prev != root) 1111 css_put(&prev->css); 1112 1113 return memcg; 1114 } 1115 1116 /** 1117 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1118 * @root: hierarchy root 1119 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1120 */ 1121 void mem_cgroup_iter_break(struct mem_cgroup *root, 1122 struct mem_cgroup *prev) 1123 { 1124 if (!root) 1125 root = root_mem_cgroup; 1126 if (prev && prev != root) 1127 css_put(&prev->css); 1128 } 1129 1130 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1131 struct mem_cgroup *dead_memcg) 1132 { 1133 struct mem_cgroup_reclaim_iter *iter; 1134 struct mem_cgroup_per_node *mz; 1135 int nid; 1136 1137 for_each_node(nid) { 1138 mz = mem_cgroup_nodeinfo(from, nid); 1139 iter = &mz->iter; 1140 cmpxchg(&iter->position, dead_memcg, NULL); 1141 } 1142 } 1143 1144 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1145 { 1146 struct mem_cgroup *memcg = dead_memcg; 1147 struct mem_cgroup *last; 1148 1149 do { 1150 __invalidate_reclaim_iterators(memcg, dead_memcg); 1151 last = memcg; 1152 } while ((memcg = parent_mem_cgroup(memcg))); 1153 1154 /* 1155 * When cgruop1 non-hierarchy mode is used, 1156 * parent_mem_cgroup() does not walk all the way up to the 1157 * cgroup root (root_mem_cgroup). So we have to handle 1158 * dead_memcg from cgroup root separately. 1159 */ 1160 if (last != root_mem_cgroup) 1161 __invalidate_reclaim_iterators(root_mem_cgroup, 1162 dead_memcg); 1163 } 1164 1165 /** 1166 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1167 * @memcg: hierarchy root 1168 * @fn: function to call for each task 1169 * @arg: argument passed to @fn 1170 * 1171 * This function iterates over tasks attached to @memcg or to any of its 1172 * descendants and calls @fn for each task. If @fn returns a non-zero 1173 * value, the function breaks the iteration loop and returns the value. 1174 * Otherwise, it will iterate over all tasks and return 0. 1175 * 1176 * This function must not be called for the root memory cgroup. 1177 */ 1178 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1179 int (*fn)(struct task_struct *, void *), void *arg) 1180 { 1181 struct mem_cgroup *iter; 1182 int ret = 0; 1183 1184 BUG_ON(memcg == root_mem_cgroup); 1185 1186 for_each_mem_cgroup_tree(iter, memcg) { 1187 struct css_task_iter it; 1188 struct task_struct *task; 1189 1190 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1191 while (!ret && (task = css_task_iter_next(&it))) 1192 ret = fn(task, arg); 1193 css_task_iter_end(&it); 1194 if (ret) { 1195 mem_cgroup_iter_break(memcg, iter); 1196 break; 1197 } 1198 } 1199 return ret; 1200 } 1201 1202 /** 1203 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1204 * @page: the page 1205 * @pgdat: pgdat of the page 1206 * 1207 * This function is only safe when following the LRU page isolation 1208 * and putback protocol: the LRU lock must be held, and the page must 1209 * either be PageLRU() or the caller must have isolated/allocated it. 1210 */ 1211 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1212 { 1213 struct mem_cgroup_per_node *mz; 1214 struct mem_cgroup *memcg; 1215 struct lruvec *lruvec; 1216 1217 if (mem_cgroup_disabled()) { 1218 lruvec = &pgdat->__lruvec; 1219 goto out; 1220 } 1221 1222 memcg = page->mem_cgroup; 1223 /* 1224 * Swapcache readahead pages are added to the LRU - and 1225 * possibly migrated - before they are charged. 1226 */ 1227 if (!memcg) 1228 memcg = root_mem_cgroup; 1229 1230 mz = mem_cgroup_page_nodeinfo(memcg, page); 1231 lruvec = &mz->lruvec; 1232 out: 1233 /* 1234 * Since a node can be onlined after the mem_cgroup was created, 1235 * we have to be prepared to initialize lruvec->zone here; 1236 * and if offlined then reonlined, we need to reinitialize it. 1237 */ 1238 if (unlikely(lruvec->pgdat != pgdat)) 1239 lruvec->pgdat = pgdat; 1240 return lruvec; 1241 } 1242 1243 /** 1244 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1245 * @lruvec: mem_cgroup per zone lru vector 1246 * @lru: index of lru list the page is sitting on 1247 * @zid: zone id of the accounted pages 1248 * @nr_pages: positive when adding or negative when removing 1249 * 1250 * This function must be called under lru_lock, just before a page is added 1251 * to or just after a page is removed from an lru list (that ordering being 1252 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1253 */ 1254 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1255 int zid, int nr_pages) 1256 { 1257 struct mem_cgroup_per_node *mz; 1258 unsigned long *lru_size; 1259 long size; 1260 1261 if (mem_cgroup_disabled()) 1262 return; 1263 1264 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1265 lru_size = &mz->lru_zone_size[zid][lru]; 1266 1267 if (nr_pages < 0) 1268 *lru_size += nr_pages; 1269 1270 size = *lru_size; 1271 if (WARN_ONCE(size < 0, 1272 "%s(%p, %d, %d): lru_size %ld\n", 1273 __func__, lruvec, lru, nr_pages, size)) { 1274 VM_BUG_ON(1); 1275 *lru_size = 0; 1276 } 1277 1278 if (nr_pages > 0) 1279 *lru_size += nr_pages; 1280 } 1281 1282 /** 1283 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1284 * @memcg: the memory cgroup 1285 * 1286 * Returns the maximum amount of memory @mem can be charged with, in 1287 * pages. 1288 */ 1289 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1290 { 1291 unsigned long margin = 0; 1292 unsigned long count; 1293 unsigned long limit; 1294 1295 count = page_counter_read(&memcg->memory); 1296 limit = READ_ONCE(memcg->memory.max); 1297 if (count < limit) 1298 margin = limit - count; 1299 1300 if (do_memsw_account()) { 1301 count = page_counter_read(&memcg->memsw); 1302 limit = READ_ONCE(memcg->memsw.max); 1303 if (count <= limit) 1304 margin = min(margin, limit - count); 1305 else 1306 margin = 0; 1307 } 1308 1309 return margin; 1310 } 1311 1312 /* 1313 * A routine for checking "mem" is under move_account() or not. 1314 * 1315 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1316 * moving cgroups. This is for waiting at high-memory pressure 1317 * caused by "move". 1318 */ 1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1320 { 1321 struct mem_cgroup *from; 1322 struct mem_cgroup *to; 1323 bool ret = false; 1324 /* 1325 * Unlike task_move routines, we access mc.to, mc.from not under 1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1327 */ 1328 spin_lock(&mc.lock); 1329 from = mc.from; 1330 to = mc.to; 1331 if (!from) 1332 goto unlock; 1333 1334 ret = mem_cgroup_is_descendant(from, memcg) || 1335 mem_cgroup_is_descendant(to, memcg); 1336 unlock: 1337 spin_unlock(&mc.lock); 1338 return ret; 1339 } 1340 1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1342 { 1343 if (mc.moving_task && current != mc.moving_task) { 1344 if (mem_cgroup_under_move(memcg)) { 1345 DEFINE_WAIT(wait); 1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1347 /* moving charge context might have finished. */ 1348 if (mc.moving_task) 1349 schedule(); 1350 finish_wait(&mc.waitq, &wait); 1351 return true; 1352 } 1353 } 1354 return false; 1355 } 1356 1357 static char *memory_stat_format(struct mem_cgroup *memcg) 1358 { 1359 struct seq_buf s; 1360 int i; 1361 1362 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1363 if (!s.buffer) 1364 return NULL; 1365 1366 /* 1367 * Provide statistics on the state of the memory subsystem as 1368 * well as cumulative event counters that show past behavior. 1369 * 1370 * This list is ordered following a combination of these gradients: 1371 * 1) generic big picture -> specifics and details 1372 * 2) reflecting userspace activity -> reflecting kernel heuristics 1373 * 1374 * Current memory state: 1375 */ 1376 1377 seq_buf_printf(&s, "anon %llu\n", 1378 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1379 PAGE_SIZE); 1380 seq_buf_printf(&s, "file %llu\n", 1381 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1382 PAGE_SIZE); 1383 seq_buf_printf(&s, "kernel_stack %llu\n", 1384 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1385 1024); 1386 seq_buf_printf(&s, "slab %llu\n", 1387 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1388 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1389 PAGE_SIZE); 1390 seq_buf_printf(&s, "sock %llu\n", 1391 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1392 PAGE_SIZE); 1393 1394 seq_buf_printf(&s, "shmem %llu\n", 1395 (u64)memcg_page_state(memcg, NR_SHMEM) * 1396 PAGE_SIZE); 1397 seq_buf_printf(&s, "file_mapped %llu\n", 1398 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1399 PAGE_SIZE); 1400 seq_buf_printf(&s, "file_dirty %llu\n", 1401 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1402 PAGE_SIZE); 1403 seq_buf_printf(&s, "file_writeback %llu\n", 1404 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1405 PAGE_SIZE); 1406 1407 /* 1408 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1409 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1410 * arse because it requires migrating the work out of rmap to a place 1411 * where the page->mem_cgroup is set up and stable. 1412 */ 1413 seq_buf_printf(&s, "anon_thp %llu\n", 1414 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1415 PAGE_SIZE); 1416 1417 for (i = 0; i < NR_LRU_LISTS; i++) 1418 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1419 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1420 PAGE_SIZE); 1421 1422 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1423 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1424 PAGE_SIZE); 1425 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1426 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1427 PAGE_SIZE); 1428 1429 /* Accumulated memory events */ 1430 1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1432 memcg_events(memcg, PGFAULT)); 1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1434 memcg_events(memcg, PGMAJFAULT)); 1435 1436 seq_buf_printf(&s, "workingset_refault %lu\n", 1437 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1438 seq_buf_printf(&s, "workingset_activate %lu\n", 1439 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1440 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1441 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1442 1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1444 memcg_events(memcg, PGREFILL)); 1445 seq_buf_printf(&s, "pgscan %lu\n", 1446 memcg_events(memcg, PGSCAN_KSWAPD) + 1447 memcg_events(memcg, PGSCAN_DIRECT)); 1448 seq_buf_printf(&s, "pgsteal %lu\n", 1449 memcg_events(memcg, PGSTEAL_KSWAPD) + 1450 memcg_events(memcg, PGSTEAL_DIRECT)); 1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1452 memcg_events(memcg, PGACTIVATE)); 1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1454 memcg_events(memcg, PGDEACTIVATE)); 1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1456 memcg_events(memcg, PGLAZYFREE)); 1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1458 memcg_events(memcg, PGLAZYFREED)); 1459 1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1462 memcg_events(memcg, THP_FAULT_ALLOC)); 1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1464 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1466 1467 /* The above should easily fit into one page */ 1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1469 1470 return s.buffer; 1471 } 1472 1473 #define K(x) ((x) << (PAGE_SHIFT-10)) 1474 /** 1475 * mem_cgroup_print_oom_context: Print OOM information relevant to 1476 * memory controller. 1477 * @memcg: The memory cgroup that went over limit 1478 * @p: Task that is going to be killed 1479 * 1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1481 * enabled 1482 */ 1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1484 { 1485 rcu_read_lock(); 1486 1487 if (memcg) { 1488 pr_cont(",oom_memcg="); 1489 pr_cont_cgroup_path(memcg->css.cgroup); 1490 } else 1491 pr_cont(",global_oom"); 1492 if (p) { 1493 pr_cont(",task_memcg="); 1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1495 } 1496 rcu_read_unlock(); 1497 } 1498 1499 /** 1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1501 * memory controller. 1502 * @memcg: The memory cgroup that went over limit 1503 */ 1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1505 { 1506 char *buf; 1507 1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1509 K((u64)page_counter_read(&memcg->memory)), 1510 K((u64)memcg->memory.max), memcg->memory.failcnt); 1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1513 K((u64)page_counter_read(&memcg->swap)), 1514 K((u64)memcg->swap.max), memcg->swap.failcnt); 1515 else { 1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1517 K((u64)page_counter_read(&memcg->memsw)), 1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1520 K((u64)page_counter_read(&memcg->kmem)), 1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1522 } 1523 1524 pr_info("Memory cgroup stats for "); 1525 pr_cont_cgroup_path(memcg->css.cgroup); 1526 pr_cont(":"); 1527 buf = memory_stat_format(memcg); 1528 if (!buf) 1529 return; 1530 pr_info("%s", buf); 1531 kfree(buf); 1532 } 1533 1534 /* 1535 * Return the memory (and swap, if configured) limit for a memcg. 1536 */ 1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1538 { 1539 unsigned long max; 1540 1541 max = memcg->memory.max; 1542 if (mem_cgroup_swappiness(memcg)) { 1543 unsigned long memsw_max; 1544 unsigned long swap_max; 1545 1546 memsw_max = memcg->memsw.max; 1547 swap_max = memcg->swap.max; 1548 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1549 max = min(max + swap_max, memsw_max); 1550 } 1551 return max; 1552 } 1553 1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1555 { 1556 return page_counter_read(&memcg->memory); 1557 } 1558 1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1560 int order) 1561 { 1562 struct oom_control oc = { 1563 .zonelist = NULL, 1564 .nodemask = NULL, 1565 .memcg = memcg, 1566 .gfp_mask = gfp_mask, 1567 .order = order, 1568 }; 1569 bool ret; 1570 1571 if (mutex_lock_killable(&oom_lock)) 1572 return true; 1573 /* 1574 * A few threads which were not waiting at mutex_lock_killable() can 1575 * fail to bail out. Therefore, check again after holding oom_lock. 1576 */ 1577 ret = should_force_charge() || out_of_memory(&oc); 1578 mutex_unlock(&oom_lock); 1579 return ret; 1580 } 1581 1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1583 pg_data_t *pgdat, 1584 gfp_t gfp_mask, 1585 unsigned long *total_scanned) 1586 { 1587 struct mem_cgroup *victim = NULL; 1588 int total = 0; 1589 int loop = 0; 1590 unsigned long excess; 1591 unsigned long nr_scanned; 1592 struct mem_cgroup_reclaim_cookie reclaim = { 1593 .pgdat = pgdat, 1594 }; 1595 1596 excess = soft_limit_excess(root_memcg); 1597 1598 while (1) { 1599 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1600 if (!victim) { 1601 loop++; 1602 if (loop >= 2) { 1603 /* 1604 * If we have not been able to reclaim 1605 * anything, it might because there are 1606 * no reclaimable pages under this hierarchy 1607 */ 1608 if (!total) 1609 break; 1610 /* 1611 * We want to do more targeted reclaim. 1612 * excess >> 2 is not to excessive so as to 1613 * reclaim too much, nor too less that we keep 1614 * coming back to reclaim from this cgroup 1615 */ 1616 if (total >= (excess >> 2) || 1617 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1618 break; 1619 } 1620 continue; 1621 } 1622 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1623 pgdat, &nr_scanned); 1624 *total_scanned += nr_scanned; 1625 if (!soft_limit_excess(root_memcg)) 1626 break; 1627 } 1628 mem_cgroup_iter_break(root_memcg, victim); 1629 return total; 1630 } 1631 1632 #ifdef CONFIG_LOCKDEP 1633 static struct lockdep_map memcg_oom_lock_dep_map = { 1634 .name = "memcg_oom_lock", 1635 }; 1636 #endif 1637 1638 static DEFINE_SPINLOCK(memcg_oom_lock); 1639 1640 /* 1641 * Check OOM-Killer is already running under our hierarchy. 1642 * If someone is running, return false. 1643 */ 1644 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1645 { 1646 struct mem_cgroup *iter, *failed = NULL; 1647 1648 spin_lock(&memcg_oom_lock); 1649 1650 for_each_mem_cgroup_tree(iter, memcg) { 1651 if (iter->oom_lock) { 1652 /* 1653 * this subtree of our hierarchy is already locked 1654 * so we cannot give a lock. 1655 */ 1656 failed = iter; 1657 mem_cgroup_iter_break(memcg, iter); 1658 break; 1659 } else 1660 iter->oom_lock = true; 1661 } 1662 1663 if (failed) { 1664 /* 1665 * OK, we failed to lock the whole subtree so we have 1666 * to clean up what we set up to the failing subtree 1667 */ 1668 for_each_mem_cgroup_tree(iter, memcg) { 1669 if (iter == failed) { 1670 mem_cgroup_iter_break(memcg, iter); 1671 break; 1672 } 1673 iter->oom_lock = false; 1674 } 1675 } else 1676 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1677 1678 spin_unlock(&memcg_oom_lock); 1679 1680 return !failed; 1681 } 1682 1683 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1684 { 1685 struct mem_cgroup *iter; 1686 1687 spin_lock(&memcg_oom_lock); 1688 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1689 for_each_mem_cgroup_tree(iter, memcg) 1690 iter->oom_lock = false; 1691 spin_unlock(&memcg_oom_lock); 1692 } 1693 1694 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1695 { 1696 struct mem_cgroup *iter; 1697 1698 spin_lock(&memcg_oom_lock); 1699 for_each_mem_cgroup_tree(iter, memcg) 1700 iter->under_oom++; 1701 spin_unlock(&memcg_oom_lock); 1702 } 1703 1704 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1705 { 1706 struct mem_cgroup *iter; 1707 1708 /* 1709 * When a new child is created while the hierarchy is under oom, 1710 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1711 */ 1712 spin_lock(&memcg_oom_lock); 1713 for_each_mem_cgroup_tree(iter, memcg) 1714 if (iter->under_oom > 0) 1715 iter->under_oom--; 1716 spin_unlock(&memcg_oom_lock); 1717 } 1718 1719 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1720 1721 struct oom_wait_info { 1722 struct mem_cgroup *memcg; 1723 wait_queue_entry_t wait; 1724 }; 1725 1726 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1727 unsigned mode, int sync, void *arg) 1728 { 1729 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1730 struct mem_cgroup *oom_wait_memcg; 1731 struct oom_wait_info *oom_wait_info; 1732 1733 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1734 oom_wait_memcg = oom_wait_info->memcg; 1735 1736 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1737 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1738 return 0; 1739 return autoremove_wake_function(wait, mode, sync, arg); 1740 } 1741 1742 static void memcg_oom_recover(struct mem_cgroup *memcg) 1743 { 1744 /* 1745 * For the following lockless ->under_oom test, the only required 1746 * guarantee is that it must see the state asserted by an OOM when 1747 * this function is called as a result of userland actions 1748 * triggered by the notification of the OOM. This is trivially 1749 * achieved by invoking mem_cgroup_mark_under_oom() before 1750 * triggering notification. 1751 */ 1752 if (memcg && memcg->under_oom) 1753 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1754 } 1755 1756 enum oom_status { 1757 OOM_SUCCESS, 1758 OOM_FAILED, 1759 OOM_ASYNC, 1760 OOM_SKIPPED 1761 }; 1762 1763 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1764 { 1765 enum oom_status ret; 1766 bool locked; 1767 1768 if (order > PAGE_ALLOC_COSTLY_ORDER) 1769 return OOM_SKIPPED; 1770 1771 memcg_memory_event(memcg, MEMCG_OOM); 1772 1773 /* 1774 * We are in the middle of the charge context here, so we 1775 * don't want to block when potentially sitting on a callstack 1776 * that holds all kinds of filesystem and mm locks. 1777 * 1778 * cgroup1 allows disabling the OOM killer and waiting for outside 1779 * handling until the charge can succeed; remember the context and put 1780 * the task to sleep at the end of the page fault when all locks are 1781 * released. 1782 * 1783 * On the other hand, in-kernel OOM killer allows for an async victim 1784 * memory reclaim (oom_reaper) and that means that we are not solely 1785 * relying on the oom victim to make a forward progress and we can 1786 * invoke the oom killer here. 1787 * 1788 * Please note that mem_cgroup_out_of_memory might fail to find a 1789 * victim and then we have to bail out from the charge path. 1790 */ 1791 if (memcg->oom_kill_disable) { 1792 if (!current->in_user_fault) 1793 return OOM_SKIPPED; 1794 css_get(&memcg->css); 1795 current->memcg_in_oom = memcg; 1796 current->memcg_oom_gfp_mask = mask; 1797 current->memcg_oom_order = order; 1798 1799 return OOM_ASYNC; 1800 } 1801 1802 mem_cgroup_mark_under_oom(memcg); 1803 1804 locked = mem_cgroup_oom_trylock(memcg); 1805 1806 if (locked) 1807 mem_cgroup_oom_notify(memcg); 1808 1809 mem_cgroup_unmark_under_oom(memcg); 1810 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1811 ret = OOM_SUCCESS; 1812 else 1813 ret = OOM_FAILED; 1814 1815 if (locked) 1816 mem_cgroup_oom_unlock(memcg); 1817 1818 return ret; 1819 } 1820 1821 /** 1822 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1823 * @handle: actually kill/wait or just clean up the OOM state 1824 * 1825 * This has to be called at the end of a page fault if the memcg OOM 1826 * handler was enabled. 1827 * 1828 * Memcg supports userspace OOM handling where failed allocations must 1829 * sleep on a waitqueue until the userspace task resolves the 1830 * situation. Sleeping directly in the charge context with all kinds 1831 * of locks held is not a good idea, instead we remember an OOM state 1832 * in the task and mem_cgroup_oom_synchronize() has to be called at 1833 * the end of the page fault to complete the OOM handling. 1834 * 1835 * Returns %true if an ongoing memcg OOM situation was detected and 1836 * completed, %false otherwise. 1837 */ 1838 bool mem_cgroup_oom_synchronize(bool handle) 1839 { 1840 struct mem_cgroup *memcg = current->memcg_in_oom; 1841 struct oom_wait_info owait; 1842 bool locked; 1843 1844 /* OOM is global, do not handle */ 1845 if (!memcg) 1846 return false; 1847 1848 if (!handle) 1849 goto cleanup; 1850 1851 owait.memcg = memcg; 1852 owait.wait.flags = 0; 1853 owait.wait.func = memcg_oom_wake_function; 1854 owait.wait.private = current; 1855 INIT_LIST_HEAD(&owait.wait.entry); 1856 1857 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1858 mem_cgroup_mark_under_oom(memcg); 1859 1860 locked = mem_cgroup_oom_trylock(memcg); 1861 1862 if (locked) 1863 mem_cgroup_oom_notify(memcg); 1864 1865 if (locked && !memcg->oom_kill_disable) { 1866 mem_cgroup_unmark_under_oom(memcg); 1867 finish_wait(&memcg_oom_waitq, &owait.wait); 1868 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1869 current->memcg_oom_order); 1870 } else { 1871 schedule(); 1872 mem_cgroup_unmark_under_oom(memcg); 1873 finish_wait(&memcg_oom_waitq, &owait.wait); 1874 } 1875 1876 if (locked) { 1877 mem_cgroup_oom_unlock(memcg); 1878 /* 1879 * There is no guarantee that an OOM-lock contender 1880 * sees the wakeups triggered by the OOM kill 1881 * uncharges. Wake any sleepers explicitely. 1882 */ 1883 memcg_oom_recover(memcg); 1884 } 1885 cleanup: 1886 current->memcg_in_oom = NULL; 1887 css_put(&memcg->css); 1888 return true; 1889 } 1890 1891 /** 1892 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1893 * @victim: task to be killed by the OOM killer 1894 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1895 * 1896 * Returns a pointer to a memory cgroup, which has to be cleaned up 1897 * by killing all belonging OOM-killable tasks. 1898 * 1899 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1900 */ 1901 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1902 struct mem_cgroup *oom_domain) 1903 { 1904 struct mem_cgroup *oom_group = NULL; 1905 struct mem_cgroup *memcg; 1906 1907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1908 return NULL; 1909 1910 if (!oom_domain) 1911 oom_domain = root_mem_cgroup; 1912 1913 rcu_read_lock(); 1914 1915 memcg = mem_cgroup_from_task(victim); 1916 if (memcg == root_mem_cgroup) 1917 goto out; 1918 1919 /* 1920 * Traverse the memory cgroup hierarchy from the victim task's 1921 * cgroup up to the OOMing cgroup (or root) to find the 1922 * highest-level memory cgroup with oom.group set. 1923 */ 1924 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1925 if (memcg->oom_group) 1926 oom_group = memcg; 1927 1928 if (memcg == oom_domain) 1929 break; 1930 } 1931 1932 if (oom_group) 1933 css_get(&oom_group->css); 1934 out: 1935 rcu_read_unlock(); 1936 1937 return oom_group; 1938 } 1939 1940 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1941 { 1942 pr_info("Tasks in "); 1943 pr_cont_cgroup_path(memcg->css.cgroup); 1944 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1945 } 1946 1947 /** 1948 * lock_page_memcg - lock a page->mem_cgroup binding 1949 * @page: the page 1950 * 1951 * This function protects unlocked LRU pages from being moved to 1952 * another cgroup. 1953 * 1954 * It ensures lifetime of the returned memcg. Caller is responsible 1955 * for the lifetime of the page; __unlock_page_memcg() is available 1956 * when @page might get freed inside the locked section. 1957 */ 1958 struct mem_cgroup *lock_page_memcg(struct page *page) 1959 { 1960 struct mem_cgroup *memcg; 1961 unsigned long flags; 1962 1963 /* 1964 * The RCU lock is held throughout the transaction. The fast 1965 * path can get away without acquiring the memcg->move_lock 1966 * because page moving starts with an RCU grace period. 1967 * 1968 * The RCU lock also protects the memcg from being freed when 1969 * the page state that is going to change is the only thing 1970 * preventing the page itself from being freed. E.g. writeback 1971 * doesn't hold a page reference and relies on PG_writeback to 1972 * keep off truncation, migration and so forth. 1973 */ 1974 rcu_read_lock(); 1975 1976 if (mem_cgroup_disabled()) 1977 return NULL; 1978 again: 1979 memcg = page->mem_cgroup; 1980 if (unlikely(!memcg)) 1981 return NULL; 1982 1983 if (atomic_read(&memcg->moving_account) <= 0) 1984 return memcg; 1985 1986 spin_lock_irqsave(&memcg->move_lock, flags); 1987 if (memcg != page->mem_cgroup) { 1988 spin_unlock_irqrestore(&memcg->move_lock, flags); 1989 goto again; 1990 } 1991 1992 /* 1993 * When charge migration first begins, we can have locked and 1994 * unlocked page stat updates happening concurrently. Track 1995 * the task who has the lock for unlock_page_memcg(). 1996 */ 1997 memcg->move_lock_task = current; 1998 memcg->move_lock_flags = flags; 1999 2000 return memcg; 2001 } 2002 EXPORT_SYMBOL(lock_page_memcg); 2003 2004 /** 2005 * __unlock_page_memcg - unlock and unpin a memcg 2006 * @memcg: the memcg 2007 * 2008 * Unlock and unpin a memcg returned by lock_page_memcg(). 2009 */ 2010 void __unlock_page_memcg(struct mem_cgroup *memcg) 2011 { 2012 if (memcg && memcg->move_lock_task == current) { 2013 unsigned long flags = memcg->move_lock_flags; 2014 2015 memcg->move_lock_task = NULL; 2016 memcg->move_lock_flags = 0; 2017 2018 spin_unlock_irqrestore(&memcg->move_lock, flags); 2019 } 2020 2021 rcu_read_unlock(); 2022 } 2023 2024 /** 2025 * unlock_page_memcg - unlock a page->mem_cgroup binding 2026 * @page: the page 2027 */ 2028 void unlock_page_memcg(struct page *page) 2029 { 2030 __unlock_page_memcg(page->mem_cgroup); 2031 } 2032 EXPORT_SYMBOL(unlock_page_memcg); 2033 2034 struct memcg_stock_pcp { 2035 struct mem_cgroup *cached; /* this never be root cgroup */ 2036 unsigned int nr_pages; 2037 struct work_struct work; 2038 unsigned long flags; 2039 #define FLUSHING_CACHED_CHARGE 0 2040 }; 2041 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2042 static DEFINE_MUTEX(percpu_charge_mutex); 2043 2044 /** 2045 * consume_stock: Try to consume stocked charge on this cpu. 2046 * @memcg: memcg to consume from. 2047 * @nr_pages: how many pages to charge. 2048 * 2049 * The charges will only happen if @memcg matches the current cpu's memcg 2050 * stock, and at least @nr_pages are available in that stock. Failure to 2051 * service an allocation will refill the stock. 2052 * 2053 * returns true if successful, false otherwise. 2054 */ 2055 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2056 { 2057 struct memcg_stock_pcp *stock; 2058 unsigned long flags; 2059 bool ret = false; 2060 2061 if (nr_pages > MEMCG_CHARGE_BATCH) 2062 return ret; 2063 2064 local_irq_save(flags); 2065 2066 stock = this_cpu_ptr(&memcg_stock); 2067 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2068 stock->nr_pages -= nr_pages; 2069 ret = true; 2070 } 2071 2072 local_irq_restore(flags); 2073 2074 return ret; 2075 } 2076 2077 /* 2078 * Returns stocks cached in percpu and reset cached information. 2079 */ 2080 static void drain_stock(struct memcg_stock_pcp *stock) 2081 { 2082 struct mem_cgroup *old = stock->cached; 2083 2084 if (stock->nr_pages) { 2085 page_counter_uncharge(&old->memory, stock->nr_pages); 2086 if (do_memsw_account()) 2087 page_counter_uncharge(&old->memsw, stock->nr_pages); 2088 css_put_many(&old->css, stock->nr_pages); 2089 stock->nr_pages = 0; 2090 } 2091 stock->cached = NULL; 2092 } 2093 2094 static void drain_local_stock(struct work_struct *dummy) 2095 { 2096 struct memcg_stock_pcp *stock; 2097 unsigned long flags; 2098 2099 /* 2100 * The only protection from memory hotplug vs. drain_stock races is 2101 * that we always operate on local CPU stock here with IRQ disabled 2102 */ 2103 local_irq_save(flags); 2104 2105 stock = this_cpu_ptr(&memcg_stock); 2106 drain_stock(stock); 2107 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2108 2109 local_irq_restore(flags); 2110 } 2111 2112 /* 2113 * Cache charges(val) to local per_cpu area. 2114 * This will be consumed by consume_stock() function, later. 2115 */ 2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2117 { 2118 struct memcg_stock_pcp *stock; 2119 unsigned long flags; 2120 2121 local_irq_save(flags); 2122 2123 stock = this_cpu_ptr(&memcg_stock); 2124 if (stock->cached != memcg) { /* reset if necessary */ 2125 drain_stock(stock); 2126 stock->cached = memcg; 2127 } 2128 stock->nr_pages += nr_pages; 2129 2130 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2131 drain_stock(stock); 2132 2133 local_irq_restore(flags); 2134 } 2135 2136 /* 2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2138 * of the hierarchy under it. 2139 */ 2140 static void drain_all_stock(struct mem_cgroup *root_memcg) 2141 { 2142 int cpu, curcpu; 2143 2144 /* If someone's already draining, avoid adding running more workers. */ 2145 if (!mutex_trylock(&percpu_charge_mutex)) 2146 return; 2147 /* 2148 * Notify other cpus that system-wide "drain" is running 2149 * We do not care about races with the cpu hotplug because cpu down 2150 * as well as workers from this path always operate on the local 2151 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2152 */ 2153 curcpu = get_cpu(); 2154 for_each_online_cpu(cpu) { 2155 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2156 struct mem_cgroup *memcg; 2157 bool flush = false; 2158 2159 rcu_read_lock(); 2160 memcg = stock->cached; 2161 if (memcg && stock->nr_pages && 2162 mem_cgroup_is_descendant(memcg, root_memcg)) 2163 flush = true; 2164 rcu_read_unlock(); 2165 2166 if (flush && 2167 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2168 if (cpu == curcpu) 2169 drain_local_stock(&stock->work); 2170 else 2171 schedule_work_on(cpu, &stock->work); 2172 } 2173 } 2174 put_cpu(); 2175 mutex_unlock(&percpu_charge_mutex); 2176 } 2177 2178 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2179 { 2180 struct memcg_stock_pcp *stock; 2181 struct mem_cgroup *memcg, *mi; 2182 2183 stock = &per_cpu(memcg_stock, cpu); 2184 drain_stock(stock); 2185 2186 for_each_mem_cgroup(memcg) { 2187 int i; 2188 2189 for (i = 0; i < MEMCG_NR_STAT; i++) { 2190 int nid; 2191 long x; 2192 2193 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2194 if (x) 2195 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2196 atomic_long_add(x, &memcg->vmstats[i]); 2197 2198 if (i >= NR_VM_NODE_STAT_ITEMS) 2199 continue; 2200 2201 for_each_node(nid) { 2202 struct mem_cgroup_per_node *pn; 2203 2204 pn = mem_cgroup_nodeinfo(memcg, nid); 2205 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2206 if (x) 2207 do { 2208 atomic_long_add(x, &pn->lruvec_stat[i]); 2209 } while ((pn = parent_nodeinfo(pn, nid))); 2210 } 2211 } 2212 2213 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2214 long x; 2215 2216 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2217 if (x) 2218 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2219 atomic_long_add(x, &memcg->vmevents[i]); 2220 } 2221 } 2222 2223 return 0; 2224 } 2225 2226 static void reclaim_high(struct mem_cgroup *memcg, 2227 unsigned int nr_pages, 2228 gfp_t gfp_mask) 2229 { 2230 do { 2231 if (page_counter_read(&memcg->memory) <= memcg->high) 2232 continue; 2233 memcg_memory_event(memcg, MEMCG_HIGH); 2234 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2235 } while ((memcg = parent_mem_cgroup(memcg))); 2236 } 2237 2238 static void high_work_func(struct work_struct *work) 2239 { 2240 struct mem_cgroup *memcg; 2241 2242 memcg = container_of(work, struct mem_cgroup, high_work); 2243 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2244 } 2245 2246 /* 2247 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2248 * enough to still cause a significant slowdown in most cases, while still 2249 * allowing diagnostics and tracing to proceed without becoming stuck. 2250 */ 2251 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2252 2253 /* 2254 * When calculating the delay, we use these either side of the exponentiation to 2255 * maintain precision and scale to a reasonable number of jiffies (see the table 2256 * below. 2257 * 2258 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2259 * overage ratio to a delay. 2260 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2261 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2262 * to produce a reasonable delay curve. 2263 * 2264 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2265 * reasonable delay curve compared to precision-adjusted overage, not 2266 * penalising heavily at first, but still making sure that growth beyond the 2267 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2268 * example, with a high of 100 megabytes: 2269 * 2270 * +-------+------------------------+ 2271 * | usage | time to allocate in ms | 2272 * +-------+------------------------+ 2273 * | 100M | 0 | 2274 * | 101M | 6 | 2275 * | 102M | 25 | 2276 * | 103M | 57 | 2277 * | 104M | 102 | 2278 * | 105M | 159 | 2279 * | 106M | 230 | 2280 * | 107M | 313 | 2281 * | 108M | 409 | 2282 * | 109M | 518 | 2283 * | 110M | 639 | 2284 * | 111M | 774 | 2285 * | 112M | 921 | 2286 * | 113M | 1081 | 2287 * | 114M | 1254 | 2288 * | 115M | 1439 | 2289 * | 116M | 1638 | 2290 * | 117M | 1849 | 2291 * | 118M | 2000 | 2292 * | 119M | 2000 | 2293 * | 120M | 2000 | 2294 * +-------+------------------------+ 2295 */ 2296 #define MEMCG_DELAY_PRECISION_SHIFT 20 2297 #define MEMCG_DELAY_SCALING_SHIFT 14 2298 2299 /* 2300 * Scheduled by try_charge() to be executed from the userland return path 2301 * and reclaims memory over the high limit. 2302 */ 2303 void mem_cgroup_handle_over_high(void) 2304 { 2305 unsigned long usage, high, clamped_high; 2306 unsigned long pflags; 2307 unsigned long penalty_jiffies, overage; 2308 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2309 struct mem_cgroup *memcg; 2310 2311 if (likely(!nr_pages)) 2312 return; 2313 2314 memcg = get_mem_cgroup_from_mm(current->mm); 2315 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2316 current->memcg_nr_pages_over_high = 0; 2317 2318 /* 2319 * memory.high is breached and reclaim is unable to keep up. Throttle 2320 * allocators proactively to slow down excessive growth. 2321 * 2322 * We use overage compared to memory.high to calculate the number of 2323 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2324 * fairly lenient on small overages, and increasingly harsh when the 2325 * memcg in question makes it clear that it has no intention of stopping 2326 * its crazy behaviour, so we exponentially increase the delay based on 2327 * overage amount. 2328 */ 2329 2330 usage = page_counter_read(&memcg->memory); 2331 high = READ_ONCE(memcg->high); 2332 2333 if (usage <= high) 2334 goto out; 2335 2336 /* 2337 * Prevent division by 0 in overage calculation by acting as if it was a 2338 * threshold of 1 page 2339 */ 2340 clamped_high = max(high, 1UL); 2341 2342 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT, 2343 clamped_high); 2344 2345 penalty_jiffies = ((u64)overage * overage * HZ) 2346 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT); 2347 2348 /* 2349 * Factor in the task's own contribution to the overage, such that four 2350 * N-sized allocations are throttled approximately the same as one 2351 * 4N-sized allocation. 2352 * 2353 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2354 * larger the current charge patch is than that. 2355 */ 2356 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2357 2358 /* 2359 * Clamp the max delay per usermode return so as to still keep the 2360 * application moving forwards and also permit diagnostics, albeit 2361 * extremely slowly. 2362 */ 2363 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2364 2365 /* 2366 * Don't sleep if the amount of jiffies this memcg owes us is so low 2367 * that it's not even worth doing, in an attempt to be nice to those who 2368 * go only a small amount over their memory.high value and maybe haven't 2369 * been aggressively reclaimed enough yet. 2370 */ 2371 if (penalty_jiffies <= HZ / 100) 2372 goto out; 2373 2374 /* 2375 * If we exit early, we're guaranteed to die (since 2376 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2377 * need to account for any ill-begotten jiffies to pay them off later. 2378 */ 2379 psi_memstall_enter(&pflags); 2380 schedule_timeout_killable(penalty_jiffies); 2381 psi_memstall_leave(&pflags); 2382 2383 out: 2384 css_put(&memcg->css); 2385 } 2386 2387 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2388 unsigned int nr_pages) 2389 { 2390 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2391 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2392 struct mem_cgroup *mem_over_limit; 2393 struct page_counter *counter; 2394 unsigned long nr_reclaimed; 2395 bool may_swap = true; 2396 bool drained = false; 2397 enum oom_status oom_status; 2398 2399 if (mem_cgroup_is_root(memcg)) 2400 return 0; 2401 retry: 2402 if (consume_stock(memcg, nr_pages)) 2403 return 0; 2404 2405 if (!do_memsw_account() || 2406 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2407 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2408 goto done_restock; 2409 if (do_memsw_account()) 2410 page_counter_uncharge(&memcg->memsw, batch); 2411 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2412 } else { 2413 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2414 may_swap = false; 2415 } 2416 2417 if (batch > nr_pages) { 2418 batch = nr_pages; 2419 goto retry; 2420 } 2421 2422 /* 2423 * Memcg doesn't have a dedicated reserve for atomic 2424 * allocations. But like the global atomic pool, we need to 2425 * put the burden of reclaim on regular allocation requests 2426 * and let these go through as privileged allocations. 2427 */ 2428 if (gfp_mask & __GFP_ATOMIC) 2429 goto force; 2430 2431 /* 2432 * Unlike in global OOM situations, memcg is not in a physical 2433 * memory shortage. Allow dying and OOM-killed tasks to 2434 * bypass the last charges so that they can exit quickly and 2435 * free their memory. 2436 */ 2437 if (unlikely(should_force_charge())) 2438 goto force; 2439 2440 /* 2441 * Prevent unbounded recursion when reclaim operations need to 2442 * allocate memory. This might exceed the limits temporarily, 2443 * but we prefer facilitating memory reclaim and getting back 2444 * under the limit over triggering OOM kills in these cases. 2445 */ 2446 if (unlikely(current->flags & PF_MEMALLOC)) 2447 goto force; 2448 2449 if (unlikely(task_in_memcg_oom(current))) 2450 goto nomem; 2451 2452 if (!gfpflags_allow_blocking(gfp_mask)) 2453 goto nomem; 2454 2455 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2456 2457 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2458 gfp_mask, may_swap); 2459 2460 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2461 goto retry; 2462 2463 if (!drained) { 2464 drain_all_stock(mem_over_limit); 2465 drained = true; 2466 goto retry; 2467 } 2468 2469 if (gfp_mask & __GFP_NORETRY) 2470 goto nomem; 2471 /* 2472 * Even though the limit is exceeded at this point, reclaim 2473 * may have been able to free some pages. Retry the charge 2474 * before killing the task. 2475 * 2476 * Only for regular pages, though: huge pages are rather 2477 * unlikely to succeed so close to the limit, and we fall back 2478 * to regular pages anyway in case of failure. 2479 */ 2480 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2481 goto retry; 2482 /* 2483 * At task move, charge accounts can be doubly counted. So, it's 2484 * better to wait until the end of task_move if something is going on. 2485 */ 2486 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2487 goto retry; 2488 2489 if (nr_retries--) 2490 goto retry; 2491 2492 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2493 goto nomem; 2494 2495 if (gfp_mask & __GFP_NOFAIL) 2496 goto force; 2497 2498 if (fatal_signal_pending(current)) 2499 goto force; 2500 2501 /* 2502 * keep retrying as long as the memcg oom killer is able to make 2503 * a forward progress or bypass the charge if the oom killer 2504 * couldn't make any progress. 2505 */ 2506 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2507 get_order(nr_pages * PAGE_SIZE)); 2508 switch (oom_status) { 2509 case OOM_SUCCESS: 2510 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2511 goto retry; 2512 case OOM_FAILED: 2513 goto force; 2514 default: 2515 goto nomem; 2516 } 2517 nomem: 2518 if (!(gfp_mask & __GFP_NOFAIL)) 2519 return -ENOMEM; 2520 force: 2521 /* 2522 * The allocation either can't fail or will lead to more memory 2523 * being freed very soon. Allow memory usage go over the limit 2524 * temporarily by force charging it. 2525 */ 2526 page_counter_charge(&memcg->memory, nr_pages); 2527 if (do_memsw_account()) 2528 page_counter_charge(&memcg->memsw, nr_pages); 2529 css_get_many(&memcg->css, nr_pages); 2530 2531 return 0; 2532 2533 done_restock: 2534 css_get_many(&memcg->css, batch); 2535 if (batch > nr_pages) 2536 refill_stock(memcg, batch - nr_pages); 2537 2538 /* 2539 * If the hierarchy is above the normal consumption range, schedule 2540 * reclaim on returning to userland. We can perform reclaim here 2541 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2542 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2543 * not recorded as it most likely matches current's and won't 2544 * change in the meantime. As high limit is checked again before 2545 * reclaim, the cost of mismatch is negligible. 2546 */ 2547 do { 2548 if (page_counter_read(&memcg->memory) > memcg->high) { 2549 /* Don't bother a random interrupted task */ 2550 if (in_interrupt()) { 2551 schedule_work(&memcg->high_work); 2552 break; 2553 } 2554 current->memcg_nr_pages_over_high += batch; 2555 set_notify_resume(current); 2556 break; 2557 } 2558 } while ((memcg = parent_mem_cgroup(memcg))); 2559 2560 return 0; 2561 } 2562 2563 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2564 { 2565 if (mem_cgroup_is_root(memcg)) 2566 return; 2567 2568 page_counter_uncharge(&memcg->memory, nr_pages); 2569 if (do_memsw_account()) 2570 page_counter_uncharge(&memcg->memsw, nr_pages); 2571 2572 css_put_many(&memcg->css, nr_pages); 2573 } 2574 2575 static void lock_page_lru(struct page *page, int *isolated) 2576 { 2577 pg_data_t *pgdat = page_pgdat(page); 2578 2579 spin_lock_irq(&pgdat->lru_lock); 2580 if (PageLRU(page)) { 2581 struct lruvec *lruvec; 2582 2583 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2584 ClearPageLRU(page); 2585 del_page_from_lru_list(page, lruvec, page_lru(page)); 2586 *isolated = 1; 2587 } else 2588 *isolated = 0; 2589 } 2590 2591 static void unlock_page_lru(struct page *page, int isolated) 2592 { 2593 pg_data_t *pgdat = page_pgdat(page); 2594 2595 if (isolated) { 2596 struct lruvec *lruvec; 2597 2598 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2599 VM_BUG_ON_PAGE(PageLRU(page), page); 2600 SetPageLRU(page); 2601 add_page_to_lru_list(page, lruvec, page_lru(page)); 2602 } 2603 spin_unlock_irq(&pgdat->lru_lock); 2604 } 2605 2606 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2607 bool lrucare) 2608 { 2609 int isolated; 2610 2611 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2612 2613 /* 2614 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2615 * may already be on some other mem_cgroup's LRU. Take care of it. 2616 */ 2617 if (lrucare) 2618 lock_page_lru(page, &isolated); 2619 2620 /* 2621 * Nobody should be changing or seriously looking at 2622 * page->mem_cgroup at this point: 2623 * 2624 * - the page is uncharged 2625 * 2626 * - the page is off-LRU 2627 * 2628 * - an anonymous fault has exclusive page access, except for 2629 * a locked page table 2630 * 2631 * - a page cache insertion, a swapin fault, or a migration 2632 * have the page locked 2633 */ 2634 page->mem_cgroup = memcg; 2635 2636 if (lrucare) 2637 unlock_page_lru(page, isolated); 2638 } 2639 2640 #ifdef CONFIG_MEMCG_KMEM 2641 static int memcg_alloc_cache_id(void) 2642 { 2643 int id, size; 2644 int err; 2645 2646 id = ida_simple_get(&memcg_cache_ida, 2647 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2648 if (id < 0) 2649 return id; 2650 2651 if (id < memcg_nr_cache_ids) 2652 return id; 2653 2654 /* 2655 * There's no space for the new id in memcg_caches arrays, 2656 * so we have to grow them. 2657 */ 2658 down_write(&memcg_cache_ids_sem); 2659 2660 size = 2 * (id + 1); 2661 if (size < MEMCG_CACHES_MIN_SIZE) 2662 size = MEMCG_CACHES_MIN_SIZE; 2663 else if (size > MEMCG_CACHES_MAX_SIZE) 2664 size = MEMCG_CACHES_MAX_SIZE; 2665 2666 err = memcg_update_all_caches(size); 2667 if (!err) 2668 err = memcg_update_all_list_lrus(size); 2669 if (!err) 2670 memcg_nr_cache_ids = size; 2671 2672 up_write(&memcg_cache_ids_sem); 2673 2674 if (err) { 2675 ida_simple_remove(&memcg_cache_ida, id); 2676 return err; 2677 } 2678 return id; 2679 } 2680 2681 static void memcg_free_cache_id(int id) 2682 { 2683 ida_simple_remove(&memcg_cache_ida, id); 2684 } 2685 2686 struct memcg_kmem_cache_create_work { 2687 struct mem_cgroup *memcg; 2688 struct kmem_cache *cachep; 2689 struct work_struct work; 2690 }; 2691 2692 static void memcg_kmem_cache_create_func(struct work_struct *w) 2693 { 2694 struct memcg_kmem_cache_create_work *cw = 2695 container_of(w, struct memcg_kmem_cache_create_work, work); 2696 struct mem_cgroup *memcg = cw->memcg; 2697 struct kmem_cache *cachep = cw->cachep; 2698 2699 memcg_create_kmem_cache(memcg, cachep); 2700 2701 css_put(&memcg->css); 2702 kfree(cw); 2703 } 2704 2705 /* 2706 * Enqueue the creation of a per-memcg kmem_cache. 2707 */ 2708 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2709 struct kmem_cache *cachep) 2710 { 2711 struct memcg_kmem_cache_create_work *cw; 2712 2713 if (!css_tryget_online(&memcg->css)) 2714 return; 2715 2716 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2717 if (!cw) 2718 return; 2719 2720 cw->memcg = memcg; 2721 cw->cachep = cachep; 2722 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2723 2724 queue_work(memcg_kmem_cache_wq, &cw->work); 2725 } 2726 2727 static inline bool memcg_kmem_bypass(void) 2728 { 2729 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2730 return true; 2731 return false; 2732 } 2733 2734 /** 2735 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2736 * @cachep: the original global kmem cache 2737 * 2738 * Return the kmem_cache we're supposed to use for a slab allocation. 2739 * We try to use the current memcg's version of the cache. 2740 * 2741 * If the cache does not exist yet, if we are the first user of it, we 2742 * create it asynchronously in a workqueue and let the current allocation 2743 * go through with the original cache. 2744 * 2745 * This function takes a reference to the cache it returns to assure it 2746 * won't get destroyed while we are working with it. Once the caller is 2747 * done with it, memcg_kmem_put_cache() must be called to release the 2748 * reference. 2749 */ 2750 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2751 { 2752 struct mem_cgroup *memcg; 2753 struct kmem_cache *memcg_cachep; 2754 struct memcg_cache_array *arr; 2755 int kmemcg_id; 2756 2757 VM_BUG_ON(!is_root_cache(cachep)); 2758 2759 if (memcg_kmem_bypass()) 2760 return cachep; 2761 2762 rcu_read_lock(); 2763 2764 if (unlikely(current->active_memcg)) 2765 memcg = current->active_memcg; 2766 else 2767 memcg = mem_cgroup_from_task(current); 2768 2769 if (!memcg || memcg == root_mem_cgroup) 2770 goto out_unlock; 2771 2772 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2773 if (kmemcg_id < 0) 2774 goto out_unlock; 2775 2776 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2777 2778 /* 2779 * Make sure we will access the up-to-date value. The code updating 2780 * memcg_caches issues a write barrier to match the data dependency 2781 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2782 */ 2783 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2784 2785 /* 2786 * If we are in a safe context (can wait, and not in interrupt 2787 * context), we could be be predictable and return right away. 2788 * This would guarantee that the allocation being performed 2789 * already belongs in the new cache. 2790 * 2791 * However, there are some clashes that can arrive from locking. 2792 * For instance, because we acquire the slab_mutex while doing 2793 * memcg_create_kmem_cache, this means no further allocation 2794 * could happen with the slab_mutex held. So it's better to 2795 * defer everything. 2796 * 2797 * If the memcg is dying or memcg_cache is about to be released, 2798 * don't bother creating new kmem_caches. Because memcg_cachep 2799 * is ZEROed as the fist step of kmem offlining, we don't need 2800 * percpu_ref_tryget_live() here. css_tryget_online() check in 2801 * memcg_schedule_kmem_cache_create() will prevent us from 2802 * creation of a new kmem_cache. 2803 */ 2804 if (unlikely(!memcg_cachep)) 2805 memcg_schedule_kmem_cache_create(memcg, cachep); 2806 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2807 cachep = memcg_cachep; 2808 out_unlock: 2809 rcu_read_unlock(); 2810 return cachep; 2811 } 2812 2813 /** 2814 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2815 * @cachep: the cache returned by memcg_kmem_get_cache 2816 */ 2817 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2818 { 2819 if (!is_root_cache(cachep)) 2820 percpu_ref_put(&cachep->memcg_params.refcnt); 2821 } 2822 2823 /** 2824 * __memcg_kmem_charge_memcg: charge a kmem page 2825 * @page: page to charge 2826 * @gfp: reclaim mode 2827 * @order: allocation order 2828 * @memcg: memory cgroup to charge 2829 * 2830 * Returns 0 on success, an error code on failure. 2831 */ 2832 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2833 struct mem_cgroup *memcg) 2834 { 2835 unsigned int nr_pages = 1 << order; 2836 struct page_counter *counter; 2837 int ret; 2838 2839 ret = try_charge(memcg, gfp, nr_pages); 2840 if (ret) 2841 return ret; 2842 2843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2844 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2845 2846 /* 2847 * Enforce __GFP_NOFAIL allocation because callers are not 2848 * prepared to see failures and likely do not have any failure 2849 * handling code. 2850 */ 2851 if (gfp & __GFP_NOFAIL) { 2852 page_counter_charge(&memcg->kmem, nr_pages); 2853 return 0; 2854 } 2855 cancel_charge(memcg, nr_pages); 2856 return -ENOMEM; 2857 } 2858 return 0; 2859 } 2860 2861 /** 2862 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2863 * @page: page to charge 2864 * @gfp: reclaim mode 2865 * @order: allocation order 2866 * 2867 * Returns 0 on success, an error code on failure. 2868 */ 2869 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2870 { 2871 struct mem_cgroup *memcg; 2872 int ret = 0; 2873 2874 if (memcg_kmem_bypass()) 2875 return 0; 2876 2877 memcg = get_mem_cgroup_from_current(); 2878 if (!mem_cgroup_is_root(memcg)) { 2879 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2880 if (!ret) { 2881 page->mem_cgroup = memcg; 2882 __SetPageKmemcg(page); 2883 } 2884 } 2885 css_put(&memcg->css); 2886 return ret; 2887 } 2888 2889 /** 2890 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2891 * @memcg: memcg to uncharge 2892 * @nr_pages: number of pages to uncharge 2893 */ 2894 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2895 unsigned int nr_pages) 2896 { 2897 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2898 page_counter_uncharge(&memcg->kmem, nr_pages); 2899 2900 page_counter_uncharge(&memcg->memory, nr_pages); 2901 if (do_memsw_account()) 2902 page_counter_uncharge(&memcg->memsw, nr_pages); 2903 } 2904 /** 2905 * __memcg_kmem_uncharge: uncharge a kmem page 2906 * @page: page to uncharge 2907 * @order: allocation order 2908 */ 2909 void __memcg_kmem_uncharge(struct page *page, int order) 2910 { 2911 struct mem_cgroup *memcg = page->mem_cgroup; 2912 unsigned int nr_pages = 1 << order; 2913 2914 if (!memcg) 2915 return; 2916 2917 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2918 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2919 page->mem_cgroup = NULL; 2920 2921 /* slab pages do not have PageKmemcg flag set */ 2922 if (PageKmemcg(page)) 2923 __ClearPageKmemcg(page); 2924 2925 css_put_many(&memcg->css, nr_pages); 2926 } 2927 #endif /* CONFIG_MEMCG_KMEM */ 2928 2929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2930 2931 /* 2932 * Because tail pages are not marked as "used", set it. We're under 2933 * pgdat->lru_lock and migration entries setup in all page mappings. 2934 */ 2935 void mem_cgroup_split_huge_fixup(struct page *head) 2936 { 2937 int i; 2938 2939 if (mem_cgroup_disabled()) 2940 return; 2941 2942 for (i = 1; i < HPAGE_PMD_NR; i++) 2943 head[i].mem_cgroup = head->mem_cgroup; 2944 2945 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2946 } 2947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2948 2949 #ifdef CONFIG_MEMCG_SWAP 2950 /** 2951 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2952 * @entry: swap entry to be moved 2953 * @from: mem_cgroup which the entry is moved from 2954 * @to: mem_cgroup which the entry is moved to 2955 * 2956 * It succeeds only when the swap_cgroup's record for this entry is the same 2957 * as the mem_cgroup's id of @from. 2958 * 2959 * Returns 0 on success, -EINVAL on failure. 2960 * 2961 * The caller must have charged to @to, IOW, called page_counter_charge() about 2962 * both res and memsw, and called css_get(). 2963 */ 2964 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2965 struct mem_cgroup *from, struct mem_cgroup *to) 2966 { 2967 unsigned short old_id, new_id; 2968 2969 old_id = mem_cgroup_id(from); 2970 new_id = mem_cgroup_id(to); 2971 2972 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2973 mod_memcg_state(from, MEMCG_SWAP, -1); 2974 mod_memcg_state(to, MEMCG_SWAP, 1); 2975 return 0; 2976 } 2977 return -EINVAL; 2978 } 2979 #else 2980 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2981 struct mem_cgroup *from, struct mem_cgroup *to) 2982 { 2983 return -EINVAL; 2984 } 2985 #endif 2986 2987 static DEFINE_MUTEX(memcg_max_mutex); 2988 2989 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2990 unsigned long max, bool memsw) 2991 { 2992 bool enlarge = false; 2993 bool drained = false; 2994 int ret; 2995 bool limits_invariant; 2996 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2997 2998 do { 2999 if (signal_pending(current)) { 3000 ret = -EINTR; 3001 break; 3002 } 3003 3004 mutex_lock(&memcg_max_mutex); 3005 /* 3006 * Make sure that the new limit (memsw or memory limit) doesn't 3007 * break our basic invariant rule memory.max <= memsw.max. 3008 */ 3009 limits_invariant = memsw ? max >= memcg->memory.max : 3010 max <= memcg->memsw.max; 3011 if (!limits_invariant) { 3012 mutex_unlock(&memcg_max_mutex); 3013 ret = -EINVAL; 3014 break; 3015 } 3016 if (max > counter->max) 3017 enlarge = true; 3018 ret = page_counter_set_max(counter, max); 3019 mutex_unlock(&memcg_max_mutex); 3020 3021 if (!ret) 3022 break; 3023 3024 if (!drained) { 3025 drain_all_stock(memcg); 3026 drained = true; 3027 continue; 3028 } 3029 3030 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3031 GFP_KERNEL, !memsw)) { 3032 ret = -EBUSY; 3033 break; 3034 } 3035 } while (true); 3036 3037 if (!ret && enlarge) 3038 memcg_oom_recover(memcg); 3039 3040 return ret; 3041 } 3042 3043 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3044 gfp_t gfp_mask, 3045 unsigned long *total_scanned) 3046 { 3047 unsigned long nr_reclaimed = 0; 3048 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3049 unsigned long reclaimed; 3050 int loop = 0; 3051 struct mem_cgroup_tree_per_node *mctz; 3052 unsigned long excess; 3053 unsigned long nr_scanned; 3054 3055 if (order > 0) 3056 return 0; 3057 3058 mctz = soft_limit_tree_node(pgdat->node_id); 3059 3060 /* 3061 * Do not even bother to check the largest node if the root 3062 * is empty. Do it lockless to prevent lock bouncing. Races 3063 * are acceptable as soft limit is best effort anyway. 3064 */ 3065 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3066 return 0; 3067 3068 /* 3069 * This loop can run a while, specially if mem_cgroup's continuously 3070 * keep exceeding their soft limit and putting the system under 3071 * pressure 3072 */ 3073 do { 3074 if (next_mz) 3075 mz = next_mz; 3076 else 3077 mz = mem_cgroup_largest_soft_limit_node(mctz); 3078 if (!mz) 3079 break; 3080 3081 nr_scanned = 0; 3082 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3083 gfp_mask, &nr_scanned); 3084 nr_reclaimed += reclaimed; 3085 *total_scanned += nr_scanned; 3086 spin_lock_irq(&mctz->lock); 3087 __mem_cgroup_remove_exceeded(mz, mctz); 3088 3089 /* 3090 * If we failed to reclaim anything from this memory cgroup 3091 * it is time to move on to the next cgroup 3092 */ 3093 next_mz = NULL; 3094 if (!reclaimed) 3095 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3096 3097 excess = soft_limit_excess(mz->memcg); 3098 /* 3099 * One school of thought says that we should not add 3100 * back the node to the tree if reclaim returns 0. 3101 * But our reclaim could return 0, simply because due 3102 * to priority we are exposing a smaller subset of 3103 * memory to reclaim from. Consider this as a longer 3104 * term TODO. 3105 */ 3106 /* If excess == 0, no tree ops */ 3107 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3108 spin_unlock_irq(&mctz->lock); 3109 css_put(&mz->memcg->css); 3110 loop++; 3111 /* 3112 * Could not reclaim anything and there are no more 3113 * mem cgroups to try or we seem to be looping without 3114 * reclaiming anything. 3115 */ 3116 if (!nr_reclaimed && 3117 (next_mz == NULL || 3118 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3119 break; 3120 } while (!nr_reclaimed); 3121 if (next_mz) 3122 css_put(&next_mz->memcg->css); 3123 return nr_reclaimed; 3124 } 3125 3126 /* 3127 * Test whether @memcg has children, dead or alive. Note that this 3128 * function doesn't care whether @memcg has use_hierarchy enabled and 3129 * returns %true if there are child csses according to the cgroup 3130 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3131 */ 3132 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3133 { 3134 bool ret; 3135 3136 rcu_read_lock(); 3137 ret = css_next_child(NULL, &memcg->css); 3138 rcu_read_unlock(); 3139 return ret; 3140 } 3141 3142 /* 3143 * Reclaims as many pages from the given memcg as possible. 3144 * 3145 * Caller is responsible for holding css reference for memcg. 3146 */ 3147 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3148 { 3149 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3150 3151 /* we call try-to-free pages for make this cgroup empty */ 3152 lru_add_drain_all(); 3153 3154 drain_all_stock(memcg); 3155 3156 /* try to free all pages in this cgroup */ 3157 while (nr_retries && page_counter_read(&memcg->memory)) { 3158 int progress; 3159 3160 if (signal_pending(current)) 3161 return -EINTR; 3162 3163 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3164 GFP_KERNEL, true); 3165 if (!progress) { 3166 nr_retries--; 3167 /* maybe some writeback is necessary */ 3168 congestion_wait(BLK_RW_ASYNC, HZ/10); 3169 } 3170 3171 } 3172 3173 return 0; 3174 } 3175 3176 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3177 char *buf, size_t nbytes, 3178 loff_t off) 3179 { 3180 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3181 3182 if (mem_cgroup_is_root(memcg)) 3183 return -EINVAL; 3184 return mem_cgroup_force_empty(memcg) ?: nbytes; 3185 } 3186 3187 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3188 struct cftype *cft) 3189 { 3190 return mem_cgroup_from_css(css)->use_hierarchy; 3191 } 3192 3193 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3194 struct cftype *cft, u64 val) 3195 { 3196 int retval = 0; 3197 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3198 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3199 3200 if (memcg->use_hierarchy == val) 3201 return 0; 3202 3203 /* 3204 * If parent's use_hierarchy is set, we can't make any modifications 3205 * in the child subtrees. If it is unset, then the change can 3206 * occur, provided the current cgroup has no children. 3207 * 3208 * For the root cgroup, parent_mem is NULL, we allow value to be 3209 * set if there are no children. 3210 */ 3211 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3212 (val == 1 || val == 0)) { 3213 if (!memcg_has_children(memcg)) 3214 memcg->use_hierarchy = val; 3215 else 3216 retval = -EBUSY; 3217 } else 3218 retval = -EINVAL; 3219 3220 return retval; 3221 } 3222 3223 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3224 { 3225 unsigned long val; 3226 3227 if (mem_cgroup_is_root(memcg)) { 3228 val = memcg_page_state(memcg, MEMCG_CACHE) + 3229 memcg_page_state(memcg, MEMCG_RSS); 3230 if (swap) 3231 val += memcg_page_state(memcg, MEMCG_SWAP); 3232 } else { 3233 if (!swap) 3234 val = page_counter_read(&memcg->memory); 3235 else 3236 val = page_counter_read(&memcg->memsw); 3237 } 3238 return val; 3239 } 3240 3241 enum { 3242 RES_USAGE, 3243 RES_LIMIT, 3244 RES_MAX_USAGE, 3245 RES_FAILCNT, 3246 RES_SOFT_LIMIT, 3247 }; 3248 3249 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3250 struct cftype *cft) 3251 { 3252 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3253 struct page_counter *counter; 3254 3255 switch (MEMFILE_TYPE(cft->private)) { 3256 case _MEM: 3257 counter = &memcg->memory; 3258 break; 3259 case _MEMSWAP: 3260 counter = &memcg->memsw; 3261 break; 3262 case _KMEM: 3263 counter = &memcg->kmem; 3264 break; 3265 case _TCP: 3266 counter = &memcg->tcpmem; 3267 break; 3268 default: 3269 BUG(); 3270 } 3271 3272 switch (MEMFILE_ATTR(cft->private)) { 3273 case RES_USAGE: 3274 if (counter == &memcg->memory) 3275 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3276 if (counter == &memcg->memsw) 3277 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3278 return (u64)page_counter_read(counter) * PAGE_SIZE; 3279 case RES_LIMIT: 3280 return (u64)counter->max * PAGE_SIZE; 3281 case RES_MAX_USAGE: 3282 return (u64)counter->watermark * PAGE_SIZE; 3283 case RES_FAILCNT: 3284 return counter->failcnt; 3285 case RES_SOFT_LIMIT: 3286 return (u64)memcg->soft_limit * PAGE_SIZE; 3287 default: 3288 BUG(); 3289 } 3290 } 3291 3292 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3293 { 3294 unsigned long stat[MEMCG_NR_STAT] = {0}; 3295 struct mem_cgroup *mi; 3296 int node, cpu, i; 3297 3298 for_each_online_cpu(cpu) 3299 for (i = 0; i < MEMCG_NR_STAT; i++) 3300 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3301 3302 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3303 for (i = 0; i < MEMCG_NR_STAT; i++) 3304 atomic_long_add(stat[i], &mi->vmstats[i]); 3305 3306 for_each_node(node) { 3307 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3308 struct mem_cgroup_per_node *pi; 3309 3310 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3311 stat[i] = 0; 3312 3313 for_each_online_cpu(cpu) 3314 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3315 stat[i] += per_cpu( 3316 pn->lruvec_stat_cpu->count[i], cpu); 3317 3318 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3319 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3320 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3321 } 3322 } 3323 3324 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3325 { 3326 unsigned long events[NR_VM_EVENT_ITEMS]; 3327 struct mem_cgroup *mi; 3328 int cpu, i; 3329 3330 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3331 events[i] = 0; 3332 3333 for_each_online_cpu(cpu) 3334 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3335 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3336 cpu); 3337 3338 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3339 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3340 atomic_long_add(events[i], &mi->vmevents[i]); 3341 } 3342 3343 #ifdef CONFIG_MEMCG_KMEM 3344 static int memcg_online_kmem(struct mem_cgroup *memcg) 3345 { 3346 int memcg_id; 3347 3348 if (cgroup_memory_nokmem) 3349 return 0; 3350 3351 BUG_ON(memcg->kmemcg_id >= 0); 3352 BUG_ON(memcg->kmem_state); 3353 3354 memcg_id = memcg_alloc_cache_id(); 3355 if (memcg_id < 0) 3356 return memcg_id; 3357 3358 static_branch_inc(&memcg_kmem_enabled_key); 3359 /* 3360 * A memory cgroup is considered kmem-online as soon as it gets 3361 * kmemcg_id. Setting the id after enabling static branching will 3362 * guarantee no one starts accounting before all call sites are 3363 * patched. 3364 */ 3365 memcg->kmemcg_id = memcg_id; 3366 memcg->kmem_state = KMEM_ONLINE; 3367 INIT_LIST_HEAD(&memcg->kmem_caches); 3368 3369 return 0; 3370 } 3371 3372 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3373 { 3374 struct cgroup_subsys_state *css; 3375 struct mem_cgroup *parent, *child; 3376 int kmemcg_id; 3377 3378 if (memcg->kmem_state != KMEM_ONLINE) 3379 return; 3380 /* 3381 * Clear the online state before clearing memcg_caches array 3382 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3383 * guarantees that no cache will be created for this cgroup 3384 * after we are done (see memcg_create_kmem_cache()). 3385 */ 3386 memcg->kmem_state = KMEM_ALLOCATED; 3387 3388 parent = parent_mem_cgroup(memcg); 3389 if (!parent) 3390 parent = root_mem_cgroup; 3391 3392 /* 3393 * Deactivate and reparent kmem_caches. 3394 */ 3395 memcg_deactivate_kmem_caches(memcg, parent); 3396 3397 kmemcg_id = memcg->kmemcg_id; 3398 BUG_ON(kmemcg_id < 0); 3399 3400 /* 3401 * Change kmemcg_id of this cgroup and all its descendants to the 3402 * parent's id, and then move all entries from this cgroup's list_lrus 3403 * to ones of the parent. After we have finished, all list_lrus 3404 * corresponding to this cgroup are guaranteed to remain empty. The 3405 * ordering is imposed by list_lru_node->lock taken by 3406 * memcg_drain_all_list_lrus(). 3407 */ 3408 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3409 css_for_each_descendant_pre(css, &memcg->css) { 3410 child = mem_cgroup_from_css(css); 3411 BUG_ON(child->kmemcg_id != kmemcg_id); 3412 child->kmemcg_id = parent->kmemcg_id; 3413 if (!memcg->use_hierarchy) 3414 break; 3415 } 3416 rcu_read_unlock(); 3417 3418 memcg_drain_all_list_lrus(kmemcg_id, parent); 3419 3420 memcg_free_cache_id(kmemcg_id); 3421 } 3422 3423 static void memcg_free_kmem(struct mem_cgroup *memcg) 3424 { 3425 /* css_alloc() failed, offlining didn't happen */ 3426 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3427 memcg_offline_kmem(memcg); 3428 3429 if (memcg->kmem_state == KMEM_ALLOCATED) { 3430 WARN_ON(!list_empty(&memcg->kmem_caches)); 3431 static_branch_dec(&memcg_kmem_enabled_key); 3432 } 3433 } 3434 #else 3435 static int memcg_online_kmem(struct mem_cgroup *memcg) 3436 { 3437 return 0; 3438 } 3439 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3440 { 3441 } 3442 static void memcg_free_kmem(struct mem_cgroup *memcg) 3443 { 3444 } 3445 #endif /* CONFIG_MEMCG_KMEM */ 3446 3447 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3448 unsigned long max) 3449 { 3450 int ret; 3451 3452 mutex_lock(&memcg_max_mutex); 3453 ret = page_counter_set_max(&memcg->kmem, max); 3454 mutex_unlock(&memcg_max_mutex); 3455 return ret; 3456 } 3457 3458 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3459 { 3460 int ret; 3461 3462 mutex_lock(&memcg_max_mutex); 3463 3464 ret = page_counter_set_max(&memcg->tcpmem, max); 3465 if (ret) 3466 goto out; 3467 3468 if (!memcg->tcpmem_active) { 3469 /* 3470 * The active flag needs to be written after the static_key 3471 * update. This is what guarantees that the socket activation 3472 * function is the last one to run. See mem_cgroup_sk_alloc() 3473 * for details, and note that we don't mark any socket as 3474 * belonging to this memcg until that flag is up. 3475 * 3476 * We need to do this, because static_keys will span multiple 3477 * sites, but we can't control their order. If we mark a socket 3478 * as accounted, but the accounting functions are not patched in 3479 * yet, we'll lose accounting. 3480 * 3481 * We never race with the readers in mem_cgroup_sk_alloc(), 3482 * because when this value change, the code to process it is not 3483 * patched in yet. 3484 */ 3485 static_branch_inc(&memcg_sockets_enabled_key); 3486 memcg->tcpmem_active = true; 3487 } 3488 out: 3489 mutex_unlock(&memcg_max_mutex); 3490 return ret; 3491 } 3492 3493 /* 3494 * The user of this function is... 3495 * RES_LIMIT. 3496 */ 3497 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3498 char *buf, size_t nbytes, loff_t off) 3499 { 3500 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3501 unsigned long nr_pages; 3502 int ret; 3503 3504 buf = strstrip(buf); 3505 ret = page_counter_memparse(buf, "-1", &nr_pages); 3506 if (ret) 3507 return ret; 3508 3509 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3510 case RES_LIMIT: 3511 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3512 ret = -EINVAL; 3513 break; 3514 } 3515 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3516 case _MEM: 3517 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3518 break; 3519 case _MEMSWAP: 3520 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3521 break; 3522 case _KMEM: 3523 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3524 "Please report your usecase to linux-mm@kvack.org if you " 3525 "depend on this functionality.\n"); 3526 ret = memcg_update_kmem_max(memcg, nr_pages); 3527 break; 3528 case _TCP: 3529 ret = memcg_update_tcp_max(memcg, nr_pages); 3530 break; 3531 } 3532 break; 3533 case RES_SOFT_LIMIT: 3534 memcg->soft_limit = nr_pages; 3535 ret = 0; 3536 break; 3537 } 3538 return ret ?: nbytes; 3539 } 3540 3541 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3542 size_t nbytes, loff_t off) 3543 { 3544 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3545 struct page_counter *counter; 3546 3547 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3548 case _MEM: 3549 counter = &memcg->memory; 3550 break; 3551 case _MEMSWAP: 3552 counter = &memcg->memsw; 3553 break; 3554 case _KMEM: 3555 counter = &memcg->kmem; 3556 break; 3557 case _TCP: 3558 counter = &memcg->tcpmem; 3559 break; 3560 default: 3561 BUG(); 3562 } 3563 3564 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3565 case RES_MAX_USAGE: 3566 page_counter_reset_watermark(counter); 3567 break; 3568 case RES_FAILCNT: 3569 counter->failcnt = 0; 3570 break; 3571 default: 3572 BUG(); 3573 } 3574 3575 return nbytes; 3576 } 3577 3578 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3579 struct cftype *cft) 3580 { 3581 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3582 } 3583 3584 #ifdef CONFIG_MMU 3585 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3586 struct cftype *cft, u64 val) 3587 { 3588 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3589 3590 if (val & ~MOVE_MASK) 3591 return -EINVAL; 3592 3593 /* 3594 * No kind of locking is needed in here, because ->can_attach() will 3595 * check this value once in the beginning of the process, and then carry 3596 * on with stale data. This means that changes to this value will only 3597 * affect task migrations starting after the change. 3598 */ 3599 memcg->move_charge_at_immigrate = val; 3600 return 0; 3601 } 3602 #else 3603 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3604 struct cftype *cft, u64 val) 3605 { 3606 return -ENOSYS; 3607 } 3608 #endif 3609 3610 #ifdef CONFIG_NUMA 3611 3612 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3613 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3614 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3615 3616 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3617 int nid, unsigned int lru_mask) 3618 { 3619 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3620 unsigned long nr = 0; 3621 enum lru_list lru; 3622 3623 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3624 3625 for_each_lru(lru) { 3626 if (!(BIT(lru) & lru_mask)) 3627 continue; 3628 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3629 } 3630 return nr; 3631 } 3632 3633 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3634 unsigned int lru_mask) 3635 { 3636 unsigned long nr = 0; 3637 enum lru_list lru; 3638 3639 for_each_lru(lru) { 3640 if (!(BIT(lru) & lru_mask)) 3641 continue; 3642 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3643 } 3644 return nr; 3645 } 3646 3647 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3648 { 3649 struct numa_stat { 3650 const char *name; 3651 unsigned int lru_mask; 3652 }; 3653 3654 static const struct numa_stat stats[] = { 3655 { "total", LRU_ALL }, 3656 { "file", LRU_ALL_FILE }, 3657 { "anon", LRU_ALL_ANON }, 3658 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3659 }; 3660 const struct numa_stat *stat; 3661 int nid; 3662 unsigned long nr; 3663 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3664 3665 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3666 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3667 seq_printf(m, "%s=%lu", stat->name, nr); 3668 for_each_node_state(nid, N_MEMORY) { 3669 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3670 stat->lru_mask); 3671 seq_printf(m, " N%d=%lu", nid, nr); 3672 } 3673 seq_putc(m, '\n'); 3674 } 3675 3676 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3677 struct mem_cgroup *iter; 3678 3679 nr = 0; 3680 for_each_mem_cgroup_tree(iter, memcg) 3681 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3682 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3683 for_each_node_state(nid, N_MEMORY) { 3684 nr = 0; 3685 for_each_mem_cgroup_tree(iter, memcg) 3686 nr += mem_cgroup_node_nr_lru_pages( 3687 iter, nid, stat->lru_mask); 3688 seq_printf(m, " N%d=%lu", nid, nr); 3689 } 3690 seq_putc(m, '\n'); 3691 } 3692 3693 return 0; 3694 } 3695 #endif /* CONFIG_NUMA */ 3696 3697 static const unsigned int memcg1_stats[] = { 3698 MEMCG_CACHE, 3699 MEMCG_RSS, 3700 MEMCG_RSS_HUGE, 3701 NR_SHMEM, 3702 NR_FILE_MAPPED, 3703 NR_FILE_DIRTY, 3704 NR_WRITEBACK, 3705 MEMCG_SWAP, 3706 }; 3707 3708 static const char *const memcg1_stat_names[] = { 3709 "cache", 3710 "rss", 3711 "rss_huge", 3712 "shmem", 3713 "mapped_file", 3714 "dirty", 3715 "writeback", 3716 "swap", 3717 }; 3718 3719 /* Universal VM events cgroup1 shows, original sort order */ 3720 static const unsigned int memcg1_events[] = { 3721 PGPGIN, 3722 PGPGOUT, 3723 PGFAULT, 3724 PGMAJFAULT, 3725 }; 3726 3727 static int memcg_stat_show(struct seq_file *m, void *v) 3728 { 3729 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3730 unsigned long memory, memsw; 3731 struct mem_cgroup *mi; 3732 unsigned int i; 3733 3734 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3735 3736 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3737 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3738 continue; 3739 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3740 memcg_page_state_local(memcg, memcg1_stats[i]) * 3741 PAGE_SIZE); 3742 } 3743 3744 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3745 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3746 memcg_events_local(memcg, memcg1_events[i])); 3747 3748 for (i = 0; i < NR_LRU_LISTS; i++) 3749 seq_printf(m, "%s %lu\n", lru_list_name(i), 3750 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3751 PAGE_SIZE); 3752 3753 /* Hierarchical information */ 3754 memory = memsw = PAGE_COUNTER_MAX; 3755 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3756 memory = min(memory, mi->memory.max); 3757 memsw = min(memsw, mi->memsw.max); 3758 } 3759 seq_printf(m, "hierarchical_memory_limit %llu\n", 3760 (u64)memory * PAGE_SIZE); 3761 if (do_memsw_account()) 3762 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3763 (u64)memsw * PAGE_SIZE); 3764 3765 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3766 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3767 continue; 3768 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3769 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3770 PAGE_SIZE); 3771 } 3772 3773 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3774 seq_printf(m, "total_%s %llu\n", 3775 vm_event_name(memcg1_events[i]), 3776 (u64)memcg_events(memcg, memcg1_events[i])); 3777 3778 for (i = 0; i < NR_LRU_LISTS; i++) 3779 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3780 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3781 PAGE_SIZE); 3782 3783 #ifdef CONFIG_DEBUG_VM 3784 { 3785 pg_data_t *pgdat; 3786 struct mem_cgroup_per_node *mz; 3787 struct zone_reclaim_stat *rstat; 3788 unsigned long recent_rotated[2] = {0, 0}; 3789 unsigned long recent_scanned[2] = {0, 0}; 3790 3791 for_each_online_pgdat(pgdat) { 3792 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3793 rstat = &mz->lruvec.reclaim_stat; 3794 3795 recent_rotated[0] += rstat->recent_rotated[0]; 3796 recent_rotated[1] += rstat->recent_rotated[1]; 3797 recent_scanned[0] += rstat->recent_scanned[0]; 3798 recent_scanned[1] += rstat->recent_scanned[1]; 3799 } 3800 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3801 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3802 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3803 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3804 } 3805 #endif 3806 3807 return 0; 3808 } 3809 3810 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3811 struct cftype *cft) 3812 { 3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3814 3815 return mem_cgroup_swappiness(memcg); 3816 } 3817 3818 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3819 struct cftype *cft, u64 val) 3820 { 3821 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3822 3823 if (val > 100) 3824 return -EINVAL; 3825 3826 if (css->parent) 3827 memcg->swappiness = val; 3828 else 3829 vm_swappiness = val; 3830 3831 return 0; 3832 } 3833 3834 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3835 { 3836 struct mem_cgroup_threshold_ary *t; 3837 unsigned long usage; 3838 int i; 3839 3840 rcu_read_lock(); 3841 if (!swap) 3842 t = rcu_dereference(memcg->thresholds.primary); 3843 else 3844 t = rcu_dereference(memcg->memsw_thresholds.primary); 3845 3846 if (!t) 3847 goto unlock; 3848 3849 usage = mem_cgroup_usage(memcg, swap); 3850 3851 /* 3852 * current_threshold points to threshold just below or equal to usage. 3853 * If it's not true, a threshold was crossed after last 3854 * call of __mem_cgroup_threshold(). 3855 */ 3856 i = t->current_threshold; 3857 3858 /* 3859 * Iterate backward over array of thresholds starting from 3860 * current_threshold and check if a threshold is crossed. 3861 * If none of thresholds below usage is crossed, we read 3862 * only one element of the array here. 3863 */ 3864 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3865 eventfd_signal(t->entries[i].eventfd, 1); 3866 3867 /* i = current_threshold + 1 */ 3868 i++; 3869 3870 /* 3871 * Iterate forward over array of thresholds starting from 3872 * current_threshold+1 and check if a threshold is crossed. 3873 * If none of thresholds above usage is crossed, we read 3874 * only one element of the array here. 3875 */ 3876 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3877 eventfd_signal(t->entries[i].eventfd, 1); 3878 3879 /* Update current_threshold */ 3880 t->current_threshold = i - 1; 3881 unlock: 3882 rcu_read_unlock(); 3883 } 3884 3885 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3886 { 3887 while (memcg) { 3888 __mem_cgroup_threshold(memcg, false); 3889 if (do_memsw_account()) 3890 __mem_cgroup_threshold(memcg, true); 3891 3892 memcg = parent_mem_cgroup(memcg); 3893 } 3894 } 3895 3896 static int compare_thresholds(const void *a, const void *b) 3897 { 3898 const struct mem_cgroup_threshold *_a = a; 3899 const struct mem_cgroup_threshold *_b = b; 3900 3901 if (_a->threshold > _b->threshold) 3902 return 1; 3903 3904 if (_a->threshold < _b->threshold) 3905 return -1; 3906 3907 return 0; 3908 } 3909 3910 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3911 { 3912 struct mem_cgroup_eventfd_list *ev; 3913 3914 spin_lock(&memcg_oom_lock); 3915 3916 list_for_each_entry(ev, &memcg->oom_notify, list) 3917 eventfd_signal(ev->eventfd, 1); 3918 3919 spin_unlock(&memcg_oom_lock); 3920 return 0; 3921 } 3922 3923 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3924 { 3925 struct mem_cgroup *iter; 3926 3927 for_each_mem_cgroup_tree(iter, memcg) 3928 mem_cgroup_oom_notify_cb(iter); 3929 } 3930 3931 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3932 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3933 { 3934 struct mem_cgroup_thresholds *thresholds; 3935 struct mem_cgroup_threshold_ary *new; 3936 unsigned long threshold; 3937 unsigned long usage; 3938 int i, size, ret; 3939 3940 ret = page_counter_memparse(args, "-1", &threshold); 3941 if (ret) 3942 return ret; 3943 3944 mutex_lock(&memcg->thresholds_lock); 3945 3946 if (type == _MEM) { 3947 thresholds = &memcg->thresholds; 3948 usage = mem_cgroup_usage(memcg, false); 3949 } else if (type == _MEMSWAP) { 3950 thresholds = &memcg->memsw_thresholds; 3951 usage = mem_cgroup_usage(memcg, true); 3952 } else 3953 BUG(); 3954 3955 /* Check if a threshold crossed before adding a new one */ 3956 if (thresholds->primary) 3957 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3958 3959 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3960 3961 /* Allocate memory for new array of thresholds */ 3962 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3963 if (!new) { 3964 ret = -ENOMEM; 3965 goto unlock; 3966 } 3967 new->size = size; 3968 3969 /* Copy thresholds (if any) to new array */ 3970 if (thresholds->primary) { 3971 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3972 sizeof(struct mem_cgroup_threshold)); 3973 } 3974 3975 /* Add new threshold */ 3976 new->entries[size - 1].eventfd = eventfd; 3977 new->entries[size - 1].threshold = threshold; 3978 3979 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3980 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3981 compare_thresholds, NULL); 3982 3983 /* Find current threshold */ 3984 new->current_threshold = -1; 3985 for (i = 0; i < size; i++) { 3986 if (new->entries[i].threshold <= usage) { 3987 /* 3988 * new->current_threshold will not be used until 3989 * rcu_assign_pointer(), so it's safe to increment 3990 * it here. 3991 */ 3992 ++new->current_threshold; 3993 } else 3994 break; 3995 } 3996 3997 /* Free old spare buffer and save old primary buffer as spare */ 3998 kfree(thresholds->spare); 3999 thresholds->spare = thresholds->primary; 4000 4001 rcu_assign_pointer(thresholds->primary, new); 4002 4003 /* To be sure that nobody uses thresholds */ 4004 synchronize_rcu(); 4005 4006 unlock: 4007 mutex_unlock(&memcg->thresholds_lock); 4008 4009 return ret; 4010 } 4011 4012 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4013 struct eventfd_ctx *eventfd, const char *args) 4014 { 4015 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4016 } 4017 4018 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4019 struct eventfd_ctx *eventfd, const char *args) 4020 { 4021 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4022 } 4023 4024 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4025 struct eventfd_ctx *eventfd, enum res_type type) 4026 { 4027 struct mem_cgroup_thresholds *thresholds; 4028 struct mem_cgroup_threshold_ary *new; 4029 unsigned long usage; 4030 int i, j, size; 4031 4032 mutex_lock(&memcg->thresholds_lock); 4033 4034 if (type == _MEM) { 4035 thresholds = &memcg->thresholds; 4036 usage = mem_cgroup_usage(memcg, false); 4037 } else if (type == _MEMSWAP) { 4038 thresholds = &memcg->memsw_thresholds; 4039 usage = mem_cgroup_usage(memcg, true); 4040 } else 4041 BUG(); 4042 4043 if (!thresholds->primary) 4044 goto unlock; 4045 4046 /* Check if a threshold crossed before removing */ 4047 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4048 4049 /* Calculate new number of threshold */ 4050 size = 0; 4051 for (i = 0; i < thresholds->primary->size; i++) { 4052 if (thresholds->primary->entries[i].eventfd != eventfd) 4053 size++; 4054 } 4055 4056 new = thresholds->spare; 4057 4058 /* Set thresholds array to NULL if we don't have thresholds */ 4059 if (!size) { 4060 kfree(new); 4061 new = NULL; 4062 goto swap_buffers; 4063 } 4064 4065 new->size = size; 4066 4067 /* Copy thresholds and find current threshold */ 4068 new->current_threshold = -1; 4069 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4070 if (thresholds->primary->entries[i].eventfd == eventfd) 4071 continue; 4072 4073 new->entries[j] = thresholds->primary->entries[i]; 4074 if (new->entries[j].threshold <= usage) { 4075 /* 4076 * new->current_threshold will not be used 4077 * until rcu_assign_pointer(), so it's safe to increment 4078 * it here. 4079 */ 4080 ++new->current_threshold; 4081 } 4082 j++; 4083 } 4084 4085 swap_buffers: 4086 /* Swap primary and spare array */ 4087 thresholds->spare = thresholds->primary; 4088 4089 rcu_assign_pointer(thresholds->primary, new); 4090 4091 /* To be sure that nobody uses thresholds */ 4092 synchronize_rcu(); 4093 4094 /* If all events are unregistered, free the spare array */ 4095 if (!new) { 4096 kfree(thresholds->spare); 4097 thresholds->spare = NULL; 4098 } 4099 unlock: 4100 mutex_unlock(&memcg->thresholds_lock); 4101 } 4102 4103 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4104 struct eventfd_ctx *eventfd) 4105 { 4106 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4107 } 4108 4109 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4110 struct eventfd_ctx *eventfd) 4111 { 4112 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4113 } 4114 4115 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4116 struct eventfd_ctx *eventfd, const char *args) 4117 { 4118 struct mem_cgroup_eventfd_list *event; 4119 4120 event = kmalloc(sizeof(*event), GFP_KERNEL); 4121 if (!event) 4122 return -ENOMEM; 4123 4124 spin_lock(&memcg_oom_lock); 4125 4126 event->eventfd = eventfd; 4127 list_add(&event->list, &memcg->oom_notify); 4128 4129 /* already in OOM ? */ 4130 if (memcg->under_oom) 4131 eventfd_signal(eventfd, 1); 4132 spin_unlock(&memcg_oom_lock); 4133 4134 return 0; 4135 } 4136 4137 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4138 struct eventfd_ctx *eventfd) 4139 { 4140 struct mem_cgroup_eventfd_list *ev, *tmp; 4141 4142 spin_lock(&memcg_oom_lock); 4143 4144 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4145 if (ev->eventfd == eventfd) { 4146 list_del(&ev->list); 4147 kfree(ev); 4148 } 4149 } 4150 4151 spin_unlock(&memcg_oom_lock); 4152 } 4153 4154 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4155 { 4156 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4157 4158 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4159 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4160 seq_printf(sf, "oom_kill %lu\n", 4161 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4162 return 0; 4163 } 4164 4165 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4166 struct cftype *cft, u64 val) 4167 { 4168 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4169 4170 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4171 if (!css->parent || !((val == 0) || (val == 1))) 4172 return -EINVAL; 4173 4174 memcg->oom_kill_disable = val; 4175 if (!val) 4176 memcg_oom_recover(memcg); 4177 4178 return 0; 4179 } 4180 4181 #ifdef CONFIG_CGROUP_WRITEBACK 4182 4183 #include <trace/events/writeback.h> 4184 4185 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4186 { 4187 return wb_domain_init(&memcg->cgwb_domain, gfp); 4188 } 4189 4190 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4191 { 4192 wb_domain_exit(&memcg->cgwb_domain); 4193 } 4194 4195 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4196 { 4197 wb_domain_size_changed(&memcg->cgwb_domain); 4198 } 4199 4200 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4201 { 4202 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4203 4204 if (!memcg->css.parent) 4205 return NULL; 4206 4207 return &memcg->cgwb_domain; 4208 } 4209 4210 /* 4211 * idx can be of type enum memcg_stat_item or node_stat_item. 4212 * Keep in sync with memcg_exact_page(). 4213 */ 4214 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4215 { 4216 long x = atomic_long_read(&memcg->vmstats[idx]); 4217 int cpu; 4218 4219 for_each_online_cpu(cpu) 4220 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4221 if (x < 0) 4222 x = 0; 4223 return x; 4224 } 4225 4226 /** 4227 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4228 * @wb: bdi_writeback in question 4229 * @pfilepages: out parameter for number of file pages 4230 * @pheadroom: out parameter for number of allocatable pages according to memcg 4231 * @pdirty: out parameter for number of dirty pages 4232 * @pwriteback: out parameter for number of pages under writeback 4233 * 4234 * Determine the numbers of file, headroom, dirty, and writeback pages in 4235 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4236 * is a bit more involved. 4237 * 4238 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4239 * headroom is calculated as the lowest headroom of itself and the 4240 * ancestors. Note that this doesn't consider the actual amount of 4241 * available memory in the system. The caller should further cap 4242 * *@pheadroom accordingly. 4243 */ 4244 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4245 unsigned long *pheadroom, unsigned long *pdirty, 4246 unsigned long *pwriteback) 4247 { 4248 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4249 struct mem_cgroup *parent; 4250 4251 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4252 4253 /* this should eventually include NR_UNSTABLE_NFS */ 4254 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4255 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4256 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4257 *pheadroom = PAGE_COUNTER_MAX; 4258 4259 while ((parent = parent_mem_cgroup(memcg))) { 4260 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4261 unsigned long used = page_counter_read(&memcg->memory); 4262 4263 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4264 memcg = parent; 4265 } 4266 } 4267 4268 /* 4269 * Foreign dirty flushing 4270 * 4271 * There's an inherent mismatch between memcg and writeback. The former 4272 * trackes ownership per-page while the latter per-inode. This was a 4273 * deliberate design decision because honoring per-page ownership in the 4274 * writeback path is complicated, may lead to higher CPU and IO overheads 4275 * and deemed unnecessary given that write-sharing an inode across 4276 * different cgroups isn't a common use-case. 4277 * 4278 * Combined with inode majority-writer ownership switching, this works well 4279 * enough in most cases but there are some pathological cases. For 4280 * example, let's say there are two cgroups A and B which keep writing to 4281 * different but confined parts of the same inode. B owns the inode and 4282 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4283 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4284 * triggering background writeback. A will be slowed down without a way to 4285 * make writeback of the dirty pages happen. 4286 * 4287 * Conditions like the above can lead to a cgroup getting repatedly and 4288 * severely throttled after making some progress after each 4289 * dirty_expire_interval while the underyling IO device is almost 4290 * completely idle. 4291 * 4292 * Solving this problem completely requires matching the ownership tracking 4293 * granularities between memcg and writeback in either direction. However, 4294 * the more egregious behaviors can be avoided by simply remembering the 4295 * most recent foreign dirtying events and initiating remote flushes on 4296 * them when local writeback isn't enough to keep the memory clean enough. 4297 * 4298 * The following two functions implement such mechanism. When a foreign 4299 * page - a page whose memcg and writeback ownerships don't match - is 4300 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4301 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4302 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4303 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4304 * foreign bdi_writebacks which haven't expired. Both the numbers of 4305 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4306 * limited to MEMCG_CGWB_FRN_CNT. 4307 * 4308 * The mechanism only remembers IDs and doesn't hold any object references. 4309 * As being wrong occasionally doesn't matter, updates and accesses to the 4310 * records are lockless and racy. 4311 */ 4312 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4313 struct bdi_writeback *wb) 4314 { 4315 struct mem_cgroup *memcg = page->mem_cgroup; 4316 struct memcg_cgwb_frn *frn; 4317 u64 now = get_jiffies_64(); 4318 u64 oldest_at = now; 4319 int oldest = -1; 4320 int i; 4321 4322 trace_track_foreign_dirty(page, wb); 4323 4324 /* 4325 * Pick the slot to use. If there is already a slot for @wb, keep 4326 * using it. If not replace the oldest one which isn't being 4327 * written out. 4328 */ 4329 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4330 frn = &memcg->cgwb_frn[i]; 4331 if (frn->bdi_id == wb->bdi->id && 4332 frn->memcg_id == wb->memcg_css->id) 4333 break; 4334 if (time_before64(frn->at, oldest_at) && 4335 atomic_read(&frn->done.cnt) == 1) { 4336 oldest = i; 4337 oldest_at = frn->at; 4338 } 4339 } 4340 4341 if (i < MEMCG_CGWB_FRN_CNT) { 4342 /* 4343 * Re-using an existing one. Update timestamp lazily to 4344 * avoid making the cacheline hot. We want them to be 4345 * reasonably up-to-date and significantly shorter than 4346 * dirty_expire_interval as that's what expires the record. 4347 * Use the shorter of 1s and dirty_expire_interval / 8. 4348 */ 4349 unsigned long update_intv = 4350 min_t(unsigned long, HZ, 4351 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4352 4353 if (time_before64(frn->at, now - update_intv)) 4354 frn->at = now; 4355 } else if (oldest >= 0) { 4356 /* replace the oldest free one */ 4357 frn = &memcg->cgwb_frn[oldest]; 4358 frn->bdi_id = wb->bdi->id; 4359 frn->memcg_id = wb->memcg_css->id; 4360 frn->at = now; 4361 } 4362 } 4363 4364 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4365 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4366 { 4367 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4368 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4369 u64 now = jiffies_64; 4370 int i; 4371 4372 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4373 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4374 4375 /* 4376 * If the record is older than dirty_expire_interval, 4377 * writeback on it has already started. No need to kick it 4378 * off again. Also, don't start a new one if there's 4379 * already one in flight. 4380 */ 4381 if (time_after64(frn->at, now - intv) && 4382 atomic_read(&frn->done.cnt) == 1) { 4383 frn->at = 0; 4384 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4385 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4386 WB_REASON_FOREIGN_FLUSH, 4387 &frn->done); 4388 } 4389 } 4390 } 4391 4392 #else /* CONFIG_CGROUP_WRITEBACK */ 4393 4394 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4395 { 4396 return 0; 4397 } 4398 4399 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4400 { 4401 } 4402 4403 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4404 { 4405 } 4406 4407 #endif /* CONFIG_CGROUP_WRITEBACK */ 4408 4409 /* 4410 * DO NOT USE IN NEW FILES. 4411 * 4412 * "cgroup.event_control" implementation. 4413 * 4414 * This is way over-engineered. It tries to support fully configurable 4415 * events for each user. Such level of flexibility is completely 4416 * unnecessary especially in the light of the planned unified hierarchy. 4417 * 4418 * Please deprecate this and replace with something simpler if at all 4419 * possible. 4420 */ 4421 4422 /* 4423 * Unregister event and free resources. 4424 * 4425 * Gets called from workqueue. 4426 */ 4427 static void memcg_event_remove(struct work_struct *work) 4428 { 4429 struct mem_cgroup_event *event = 4430 container_of(work, struct mem_cgroup_event, remove); 4431 struct mem_cgroup *memcg = event->memcg; 4432 4433 remove_wait_queue(event->wqh, &event->wait); 4434 4435 event->unregister_event(memcg, event->eventfd); 4436 4437 /* Notify userspace the event is going away. */ 4438 eventfd_signal(event->eventfd, 1); 4439 4440 eventfd_ctx_put(event->eventfd); 4441 kfree(event); 4442 css_put(&memcg->css); 4443 } 4444 4445 /* 4446 * Gets called on EPOLLHUP on eventfd when user closes it. 4447 * 4448 * Called with wqh->lock held and interrupts disabled. 4449 */ 4450 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4451 int sync, void *key) 4452 { 4453 struct mem_cgroup_event *event = 4454 container_of(wait, struct mem_cgroup_event, wait); 4455 struct mem_cgroup *memcg = event->memcg; 4456 __poll_t flags = key_to_poll(key); 4457 4458 if (flags & EPOLLHUP) { 4459 /* 4460 * If the event has been detached at cgroup removal, we 4461 * can simply return knowing the other side will cleanup 4462 * for us. 4463 * 4464 * We can't race against event freeing since the other 4465 * side will require wqh->lock via remove_wait_queue(), 4466 * which we hold. 4467 */ 4468 spin_lock(&memcg->event_list_lock); 4469 if (!list_empty(&event->list)) { 4470 list_del_init(&event->list); 4471 /* 4472 * We are in atomic context, but cgroup_event_remove() 4473 * may sleep, so we have to call it in workqueue. 4474 */ 4475 schedule_work(&event->remove); 4476 } 4477 spin_unlock(&memcg->event_list_lock); 4478 } 4479 4480 return 0; 4481 } 4482 4483 static void memcg_event_ptable_queue_proc(struct file *file, 4484 wait_queue_head_t *wqh, poll_table *pt) 4485 { 4486 struct mem_cgroup_event *event = 4487 container_of(pt, struct mem_cgroup_event, pt); 4488 4489 event->wqh = wqh; 4490 add_wait_queue(wqh, &event->wait); 4491 } 4492 4493 /* 4494 * DO NOT USE IN NEW FILES. 4495 * 4496 * Parse input and register new cgroup event handler. 4497 * 4498 * Input must be in format '<event_fd> <control_fd> <args>'. 4499 * Interpretation of args is defined by control file implementation. 4500 */ 4501 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4502 char *buf, size_t nbytes, loff_t off) 4503 { 4504 struct cgroup_subsys_state *css = of_css(of); 4505 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4506 struct mem_cgroup_event *event; 4507 struct cgroup_subsys_state *cfile_css; 4508 unsigned int efd, cfd; 4509 struct fd efile; 4510 struct fd cfile; 4511 const char *name; 4512 char *endp; 4513 int ret; 4514 4515 buf = strstrip(buf); 4516 4517 efd = simple_strtoul(buf, &endp, 10); 4518 if (*endp != ' ') 4519 return -EINVAL; 4520 buf = endp + 1; 4521 4522 cfd = simple_strtoul(buf, &endp, 10); 4523 if ((*endp != ' ') && (*endp != '\0')) 4524 return -EINVAL; 4525 buf = endp + 1; 4526 4527 event = kzalloc(sizeof(*event), GFP_KERNEL); 4528 if (!event) 4529 return -ENOMEM; 4530 4531 event->memcg = memcg; 4532 INIT_LIST_HEAD(&event->list); 4533 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4534 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4535 INIT_WORK(&event->remove, memcg_event_remove); 4536 4537 efile = fdget(efd); 4538 if (!efile.file) { 4539 ret = -EBADF; 4540 goto out_kfree; 4541 } 4542 4543 event->eventfd = eventfd_ctx_fileget(efile.file); 4544 if (IS_ERR(event->eventfd)) { 4545 ret = PTR_ERR(event->eventfd); 4546 goto out_put_efile; 4547 } 4548 4549 cfile = fdget(cfd); 4550 if (!cfile.file) { 4551 ret = -EBADF; 4552 goto out_put_eventfd; 4553 } 4554 4555 /* the process need read permission on control file */ 4556 /* AV: shouldn't we check that it's been opened for read instead? */ 4557 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4558 if (ret < 0) 4559 goto out_put_cfile; 4560 4561 /* 4562 * Determine the event callbacks and set them in @event. This used 4563 * to be done via struct cftype but cgroup core no longer knows 4564 * about these events. The following is crude but the whole thing 4565 * is for compatibility anyway. 4566 * 4567 * DO NOT ADD NEW FILES. 4568 */ 4569 name = cfile.file->f_path.dentry->d_name.name; 4570 4571 if (!strcmp(name, "memory.usage_in_bytes")) { 4572 event->register_event = mem_cgroup_usage_register_event; 4573 event->unregister_event = mem_cgroup_usage_unregister_event; 4574 } else if (!strcmp(name, "memory.oom_control")) { 4575 event->register_event = mem_cgroup_oom_register_event; 4576 event->unregister_event = mem_cgroup_oom_unregister_event; 4577 } else if (!strcmp(name, "memory.pressure_level")) { 4578 event->register_event = vmpressure_register_event; 4579 event->unregister_event = vmpressure_unregister_event; 4580 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4581 event->register_event = memsw_cgroup_usage_register_event; 4582 event->unregister_event = memsw_cgroup_usage_unregister_event; 4583 } else { 4584 ret = -EINVAL; 4585 goto out_put_cfile; 4586 } 4587 4588 /* 4589 * Verify @cfile should belong to @css. Also, remaining events are 4590 * automatically removed on cgroup destruction but the removal is 4591 * asynchronous, so take an extra ref on @css. 4592 */ 4593 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4594 &memory_cgrp_subsys); 4595 ret = -EINVAL; 4596 if (IS_ERR(cfile_css)) 4597 goto out_put_cfile; 4598 if (cfile_css != css) { 4599 css_put(cfile_css); 4600 goto out_put_cfile; 4601 } 4602 4603 ret = event->register_event(memcg, event->eventfd, buf); 4604 if (ret) 4605 goto out_put_css; 4606 4607 vfs_poll(efile.file, &event->pt); 4608 4609 spin_lock(&memcg->event_list_lock); 4610 list_add(&event->list, &memcg->event_list); 4611 spin_unlock(&memcg->event_list_lock); 4612 4613 fdput(cfile); 4614 fdput(efile); 4615 4616 return nbytes; 4617 4618 out_put_css: 4619 css_put(css); 4620 out_put_cfile: 4621 fdput(cfile); 4622 out_put_eventfd: 4623 eventfd_ctx_put(event->eventfd); 4624 out_put_efile: 4625 fdput(efile); 4626 out_kfree: 4627 kfree(event); 4628 4629 return ret; 4630 } 4631 4632 static struct cftype mem_cgroup_legacy_files[] = { 4633 { 4634 .name = "usage_in_bytes", 4635 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4636 .read_u64 = mem_cgroup_read_u64, 4637 }, 4638 { 4639 .name = "max_usage_in_bytes", 4640 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4641 .write = mem_cgroup_reset, 4642 .read_u64 = mem_cgroup_read_u64, 4643 }, 4644 { 4645 .name = "limit_in_bytes", 4646 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4647 .write = mem_cgroup_write, 4648 .read_u64 = mem_cgroup_read_u64, 4649 }, 4650 { 4651 .name = "soft_limit_in_bytes", 4652 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4653 .write = mem_cgroup_write, 4654 .read_u64 = mem_cgroup_read_u64, 4655 }, 4656 { 4657 .name = "failcnt", 4658 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4659 .write = mem_cgroup_reset, 4660 .read_u64 = mem_cgroup_read_u64, 4661 }, 4662 { 4663 .name = "stat", 4664 .seq_show = memcg_stat_show, 4665 }, 4666 { 4667 .name = "force_empty", 4668 .write = mem_cgroup_force_empty_write, 4669 }, 4670 { 4671 .name = "use_hierarchy", 4672 .write_u64 = mem_cgroup_hierarchy_write, 4673 .read_u64 = mem_cgroup_hierarchy_read, 4674 }, 4675 { 4676 .name = "cgroup.event_control", /* XXX: for compat */ 4677 .write = memcg_write_event_control, 4678 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4679 }, 4680 { 4681 .name = "swappiness", 4682 .read_u64 = mem_cgroup_swappiness_read, 4683 .write_u64 = mem_cgroup_swappiness_write, 4684 }, 4685 { 4686 .name = "move_charge_at_immigrate", 4687 .read_u64 = mem_cgroup_move_charge_read, 4688 .write_u64 = mem_cgroup_move_charge_write, 4689 }, 4690 { 4691 .name = "oom_control", 4692 .seq_show = mem_cgroup_oom_control_read, 4693 .write_u64 = mem_cgroup_oom_control_write, 4694 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4695 }, 4696 { 4697 .name = "pressure_level", 4698 }, 4699 #ifdef CONFIG_NUMA 4700 { 4701 .name = "numa_stat", 4702 .seq_show = memcg_numa_stat_show, 4703 }, 4704 #endif 4705 { 4706 .name = "kmem.limit_in_bytes", 4707 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4708 .write = mem_cgroup_write, 4709 .read_u64 = mem_cgroup_read_u64, 4710 }, 4711 { 4712 .name = "kmem.usage_in_bytes", 4713 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4714 .read_u64 = mem_cgroup_read_u64, 4715 }, 4716 { 4717 .name = "kmem.failcnt", 4718 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4719 .write = mem_cgroup_reset, 4720 .read_u64 = mem_cgroup_read_u64, 4721 }, 4722 { 4723 .name = "kmem.max_usage_in_bytes", 4724 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4725 .write = mem_cgroup_reset, 4726 .read_u64 = mem_cgroup_read_u64, 4727 }, 4728 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4729 { 4730 .name = "kmem.slabinfo", 4731 .seq_start = memcg_slab_start, 4732 .seq_next = memcg_slab_next, 4733 .seq_stop = memcg_slab_stop, 4734 .seq_show = memcg_slab_show, 4735 }, 4736 #endif 4737 { 4738 .name = "kmem.tcp.limit_in_bytes", 4739 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4740 .write = mem_cgroup_write, 4741 .read_u64 = mem_cgroup_read_u64, 4742 }, 4743 { 4744 .name = "kmem.tcp.usage_in_bytes", 4745 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4746 .read_u64 = mem_cgroup_read_u64, 4747 }, 4748 { 4749 .name = "kmem.tcp.failcnt", 4750 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4751 .write = mem_cgroup_reset, 4752 .read_u64 = mem_cgroup_read_u64, 4753 }, 4754 { 4755 .name = "kmem.tcp.max_usage_in_bytes", 4756 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4757 .write = mem_cgroup_reset, 4758 .read_u64 = mem_cgroup_read_u64, 4759 }, 4760 { }, /* terminate */ 4761 }; 4762 4763 /* 4764 * Private memory cgroup IDR 4765 * 4766 * Swap-out records and page cache shadow entries need to store memcg 4767 * references in constrained space, so we maintain an ID space that is 4768 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4769 * memory-controlled cgroups to 64k. 4770 * 4771 * However, there usually are many references to the oflline CSS after 4772 * the cgroup has been destroyed, such as page cache or reclaimable 4773 * slab objects, that don't need to hang on to the ID. We want to keep 4774 * those dead CSS from occupying IDs, or we might quickly exhaust the 4775 * relatively small ID space and prevent the creation of new cgroups 4776 * even when there are much fewer than 64k cgroups - possibly none. 4777 * 4778 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4779 * be freed and recycled when it's no longer needed, which is usually 4780 * when the CSS is offlined. 4781 * 4782 * The only exception to that are records of swapped out tmpfs/shmem 4783 * pages that need to be attributed to live ancestors on swapin. But 4784 * those references are manageable from userspace. 4785 */ 4786 4787 static DEFINE_IDR(mem_cgroup_idr); 4788 4789 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4790 { 4791 if (memcg->id.id > 0) { 4792 idr_remove(&mem_cgroup_idr, memcg->id.id); 4793 memcg->id.id = 0; 4794 } 4795 } 4796 4797 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4798 { 4799 refcount_add(n, &memcg->id.ref); 4800 } 4801 4802 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4803 { 4804 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4805 mem_cgroup_id_remove(memcg); 4806 4807 /* Memcg ID pins CSS */ 4808 css_put(&memcg->css); 4809 } 4810 } 4811 4812 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4813 { 4814 mem_cgroup_id_put_many(memcg, 1); 4815 } 4816 4817 /** 4818 * mem_cgroup_from_id - look up a memcg from a memcg id 4819 * @id: the memcg id to look up 4820 * 4821 * Caller must hold rcu_read_lock(). 4822 */ 4823 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4824 { 4825 WARN_ON_ONCE(!rcu_read_lock_held()); 4826 return idr_find(&mem_cgroup_idr, id); 4827 } 4828 4829 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4830 { 4831 struct mem_cgroup_per_node *pn; 4832 int tmp = node; 4833 /* 4834 * This routine is called against possible nodes. 4835 * But it's BUG to call kmalloc() against offline node. 4836 * 4837 * TODO: this routine can waste much memory for nodes which will 4838 * never be onlined. It's better to use memory hotplug callback 4839 * function. 4840 */ 4841 if (!node_state(node, N_NORMAL_MEMORY)) 4842 tmp = -1; 4843 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4844 if (!pn) 4845 return 1; 4846 4847 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4848 if (!pn->lruvec_stat_local) { 4849 kfree(pn); 4850 return 1; 4851 } 4852 4853 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4854 if (!pn->lruvec_stat_cpu) { 4855 free_percpu(pn->lruvec_stat_local); 4856 kfree(pn); 4857 return 1; 4858 } 4859 4860 lruvec_init(&pn->lruvec); 4861 pn->usage_in_excess = 0; 4862 pn->on_tree = false; 4863 pn->memcg = memcg; 4864 4865 memcg->nodeinfo[node] = pn; 4866 return 0; 4867 } 4868 4869 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4870 { 4871 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4872 4873 if (!pn) 4874 return; 4875 4876 free_percpu(pn->lruvec_stat_cpu); 4877 free_percpu(pn->lruvec_stat_local); 4878 kfree(pn); 4879 } 4880 4881 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4882 { 4883 int node; 4884 4885 for_each_node(node) 4886 free_mem_cgroup_per_node_info(memcg, node); 4887 free_percpu(memcg->vmstats_percpu); 4888 free_percpu(memcg->vmstats_local); 4889 kfree(memcg); 4890 } 4891 4892 static void mem_cgroup_free(struct mem_cgroup *memcg) 4893 { 4894 memcg_wb_domain_exit(memcg); 4895 /* 4896 * Flush percpu vmstats and vmevents to guarantee the value correctness 4897 * on parent's and all ancestor levels. 4898 */ 4899 memcg_flush_percpu_vmstats(memcg); 4900 memcg_flush_percpu_vmevents(memcg); 4901 __mem_cgroup_free(memcg); 4902 } 4903 4904 static struct mem_cgroup *mem_cgroup_alloc(void) 4905 { 4906 struct mem_cgroup *memcg; 4907 unsigned int size; 4908 int node; 4909 int __maybe_unused i; 4910 4911 size = sizeof(struct mem_cgroup); 4912 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4913 4914 memcg = kzalloc(size, GFP_KERNEL); 4915 if (!memcg) 4916 return NULL; 4917 4918 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4919 1, MEM_CGROUP_ID_MAX, 4920 GFP_KERNEL); 4921 if (memcg->id.id < 0) 4922 goto fail; 4923 4924 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4925 if (!memcg->vmstats_local) 4926 goto fail; 4927 4928 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4929 if (!memcg->vmstats_percpu) 4930 goto fail; 4931 4932 for_each_node(node) 4933 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4934 goto fail; 4935 4936 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4937 goto fail; 4938 4939 INIT_WORK(&memcg->high_work, high_work_func); 4940 INIT_LIST_HEAD(&memcg->oom_notify); 4941 mutex_init(&memcg->thresholds_lock); 4942 spin_lock_init(&memcg->move_lock); 4943 vmpressure_init(&memcg->vmpressure); 4944 INIT_LIST_HEAD(&memcg->event_list); 4945 spin_lock_init(&memcg->event_list_lock); 4946 memcg->socket_pressure = jiffies; 4947 #ifdef CONFIG_MEMCG_KMEM 4948 memcg->kmemcg_id = -1; 4949 #endif 4950 #ifdef CONFIG_CGROUP_WRITEBACK 4951 INIT_LIST_HEAD(&memcg->cgwb_list); 4952 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 4953 memcg->cgwb_frn[i].done = 4954 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 4955 #endif 4956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4957 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 4958 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 4959 memcg->deferred_split_queue.split_queue_len = 0; 4960 #endif 4961 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4962 return memcg; 4963 fail: 4964 mem_cgroup_id_remove(memcg); 4965 __mem_cgroup_free(memcg); 4966 return NULL; 4967 } 4968 4969 static struct cgroup_subsys_state * __ref 4970 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4971 { 4972 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4973 struct mem_cgroup *memcg; 4974 long error = -ENOMEM; 4975 4976 memcg = mem_cgroup_alloc(); 4977 if (!memcg) 4978 return ERR_PTR(error); 4979 4980 memcg->high = PAGE_COUNTER_MAX; 4981 memcg->soft_limit = PAGE_COUNTER_MAX; 4982 if (parent) { 4983 memcg->swappiness = mem_cgroup_swappiness(parent); 4984 memcg->oom_kill_disable = parent->oom_kill_disable; 4985 } 4986 if (parent && parent->use_hierarchy) { 4987 memcg->use_hierarchy = true; 4988 page_counter_init(&memcg->memory, &parent->memory); 4989 page_counter_init(&memcg->swap, &parent->swap); 4990 page_counter_init(&memcg->memsw, &parent->memsw); 4991 page_counter_init(&memcg->kmem, &parent->kmem); 4992 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4993 } else { 4994 page_counter_init(&memcg->memory, NULL); 4995 page_counter_init(&memcg->swap, NULL); 4996 page_counter_init(&memcg->memsw, NULL); 4997 page_counter_init(&memcg->kmem, NULL); 4998 page_counter_init(&memcg->tcpmem, NULL); 4999 /* 5000 * Deeper hierachy with use_hierarchy == false doesn't make 5001 * much sense so let cgroup subsystem know about this 5002 * unfortunate state in our controller. 5003 */ 5004 if (parent != root_mem_cgroup) 5005 memory_cgrp_subsys.broken_hierarchy = true; 5006 } 5007 5008 /* The following stuff does not apply to the root */ 5009 if (!parent) { 5010 #ifdef CONFIG_MEMCG_KMEM 5011 INIT_LIST_HEAD(&memcg->kmem_caches); 5012 #endif 5013 root_mem_cgroup = memcg; 5014 return &memcg->css; 5015 } 5016 5017 error = memcg_online_kmem(memcg); 5018 if (error) 5019 goto fail; 5020 5021 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5022 static_branch_inc(&memcg_sockets_enabled_key); 5023 5024 return &memcg->css; 5025 fail: 5026 mem_cgroup_id_remove(memcg); 5027 mem_cgroup_free(memcg); 5028 return ERR_PTR(-ENOMEM); 5029 } 5030 5031 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5032 { 5033 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5034 5035 /* 5036 * A memcg must be visible for memcg_expand_shrinker_maps() 5037 * by the time the maps are allocated. So, we allocate maps 5038 * here, when for_each_mem_cgroup() can't skip it. 5039 */ 5040 if (memcg_alloc_shrinker_maps(memcg)) { 5041 mem_cgroup_id_remove(memcg); 5042 return -ENOMEM; 5043 } 5044 5045 /* Online state pins memcg ID, memcg ID pins CSS */ 5046 refcount_set(&memcg->id.ref, 1); 5047 css_get(css); 5048 return 0; 5049 } 5050 5051 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5052 { 5053 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5054 struct mem_cgroup_event *event, *tmp; 5055 5056 /* 5057 * Unregister events and notify userspace. 5058 * Notify userspace about cgroup removing only after rmdir of cgroup 5059 * directory to avoid race between userspace and kernelspace. 5060 */ 5061 spin_lock(&memcg->event_list_lock); 5062 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5063 list_del_init(&event->list); 5064 schedule_work(&event->remove); 5065 } 5066 spin_unlock(&memcg->event_list_lock); 5067 5068 page_counter_set_min(&memcg->memory, 0); 5069 page_counter_set_low(&memcg->memory, 0); 5070 5071 memcg_offline_kmem(memcg); 5072 wb_memcg_offline(memcg); 5073 5074 drain_all_stock(memcg); 5075 5076 mem_cgroup_id_put(memcg); 5077 } 5078 5079 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5080 { 5081 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5082 5083 invalidate_reclaim_iterators(memcg); 5084 } 5085 5086 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5087 { 5088 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5089 int __maybe_unused i; 5090 5091 #ifdef CONFIG_CGROUP_WRITEBACK 5092 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5093 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5094 #endif 5095 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5096 static_branch_dec(&memcg_sockets_enabled_key); 5097 5098 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5099 static_branch_dec(&memcg_sockets_enabled_key); 5100 5101 vmpressure_cleanup(&memcg->vmpressure); 5102 cancel_work_sync(&memcg->high_work); 5103 mem_cgroup_remove_from_trees(memcg); 5104 memcg_free_shrinker_maps(memcg); 5105 memcg_free_kmem(memcg); 5106 mem_cgroup_free(memcg); 5107 } 5108 5109 /** 5110 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5111 * @css: the target css 5112 * 5113 * Reset the states of the mem_cgroup associated with @css. This is 5114 * invoked when the userland requests disabling on the default hierarchy 5115 * but the memcg is pinned through dependency. The memcg should stop 5116 * applying policies and should revert to the vanilla state as it may be 5117 * made visible again. 5118 * 5119 * The current implementation only resets the essential configurations. 5120 * This needs to be expanded to cover all the visible parts. 5121 */ 5122 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5123 { 5124 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5125 5126 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5127 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5128 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5129 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5130 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5131 page_counter_set_min(&memcg->memory, 0); 5132 page_counter_set_low(&memcg->memory, 0); 5133 memcg->high = PAGE_COUNTER_MAX; 5134 memcg->soft_limit = PAGE_COUNTER_MAX; 5135 memcg_wb_domain_size_changed(memcg); 5136 } 5137 5138 #ifdef CONFIG_MMU 5139 /* Handlers for move charge at task migration. */ 5140 static int mem_cgroup_do_precharge(unsigned long count) 5141 { 5142 int ret; 5143 5144 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5145 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5146 if (!ret) { 5147 mc.precharge += count; 5148 return ret; 5149 } 5150 5151 /* Try charges one by one with reclaim, but do not retry */ 5152 while (count--) { 5153 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5154 if (ret) 5155 return ret; 5156 mc.precharge++; 5157 cond_resched(); 5158 } 5159 return 0; 5160 } 5161 5162 union mc_target { 5163 struct page *page; 5164 swp_entry_t ent; 5165 }; 5166 5167 enum mc_target_type { 5168 MC_TARGET_NONE = 0, 5169 MC_TARGET_PAGE, 5170 MC_TARGET_SWAP, 5171 MC_TARGET_DEVICE, 5172 }; 5173 5174 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5175 unsigned long addr, pte_t ptent) 5176 { 5177 struct page *page = vm_normal_page(vma, addr, ptent); 5178 5179 if (!page || !page_mapped(page)) 5180 return NULL; 5181 if (PageAnon(page)) { 5182 if (!(mc.flags & MOVE_ANON)) 5183 return NULL; 5184 } else { 5185 if (!(mc.flags & MOVE_FILE)) 5186 return NULL; 5187 } 5188 if (!get_page_unless_zero(page)) 5189 return NULL; 5190 5191 return page; 5192 } 5193 5194 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5195 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5196 pte_t ptent, swp_entry_t *entry) 5197 { 5198 struct page *page = NULL; 5199 swp_entry_t ent = pte_to_swp_entry(ptent); 5200 5201 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5202 return NULL; 5203 5204 /* 5205 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5206 * a device and because they are not accessible by CPU they are store 5207 * as special swap entry in the CPU page table. 5208 */ 5209 if (is_device_private_entry(ent)) { 5210 page = device_private_entry_to_page(ent); 5211 /* 5212 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5213 * a refcount of 1 when free (unlike normal page) 5214 */ 5215 if (!page_ref_add_unless(page, 1, 1)) 5216 return NULL; 5217 return page; 5218 } 5219 5220 /* 5221 * Because lookup_swap_cache() updates some statistics counter, 5222 * we call find_get_page() with swapper_space directly. 5223 */ 5224 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5225 if (do_memsw_account()) 5226 entry->val = ent.val; 5227 5228 return page; 5229 } 5230 #else 5231 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5232 pte_t ptent, swp_entry_t *entry) 5233 { 5234 return NULL; 5235 } 5236 #endif 5237 5238 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5239 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5240 { 5241 struct page *page = NULL; 5242 struct address_space *mapping; 5243 pgoff_t pgoff; 5244 5245 if (!vma->vm_file) /* anonymous vma */ 5246 return NULL; 5247 if (!(mc.flags & MOVE_FILE)) 5248 return NULL; 5249 5250 mapping = vma->vm_file->f_mapping; 5251 pgoff = linear_page_index(vma, addr); 5252 5253 /* page is moved even if it's not RSS of this task(page-faulted). */ 5254 #ifdef CONFIG_SWAP 5255 /* shmem/tmpfs may report page out on swap: account for that too. */ 5256 if (shmem_mapping(mapping)) { 5257 page = find_get_entry(mapping, pgoff); 5258 if (xa_is_value(page)) { 5259 swp_entry_t swp = radix_to_swp_entry(page); 5260 if (do_memsw_account()) 5261 *entry = swp; 5262 page = find_get_page(swap_address_space(swp), 5263 swp_offset(swp)); 5264 } 5265 } else 5266 page = find_get_page(mapping, pgoff); 5267 #else 5268 page = find_get_page(mapping, pgoff); 5269 #endif 5270 return page; 5271 } 5272 5273 /** 5274 * mem_cgroup_move_account - move account of the page 5275 * @page: the page 5276 * @compound: charge the page as compound or small page 5277 * @from: mem_cgroup which the page is moved from. 5278 * @to: mem_cgroup which the page is moved to. @from != @to. 5279 * 5280 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5281 * 5282 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5283 * from old cgroup. 5284 */ 5285 static int mem_cgroup_move_account(struct page *page, 5286 bool compound, 5287 struct mem_cgroup *from, 5288 struct mem_cgroup *to) 5289 { 5290 struct lruvec *from_vec, *to_vec; 5291 struct pglist_data *pgdat; 5292 unsigned long flags; 5293 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5294 int ret; 5295 bool anon; 5296 5297 VM_BUG_ON(from == to); 5298 VM_BUG_ON_PAGE(PageLRU(page), page); 5299 VM_BUG_ON(compound && !PageTransHuge(page)); 5300 5301 /* 5302 * Prevent mem_cgroup_migrate() from looking at 5303 * page->mem_cgroup of its source page while we change it. 5304 */ 5305 ret = -EBUSY; 5306 if (!trylock_page(page)) 5307 goto out; 5308 5309 ret = -EINVAL; 5310 if (page->mem_cgroup != from) 5311 goto out_unlock; 5312 5313 anon = PageAnon(page); 5314 5315 pgdat = page_pgdat(page); 5316 from_vec = mem_cgroup_lruvec(from, pgdat); 5317 to_vec = mem_cgroup_lruvec(to, pgdat); 5318 5319 spin_lock_irqsave(&from->move_lock, flags); 5320 5321 if (!anon && page_mapped(page)) { 5322 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5323 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5324 } 5325 5326 /* 5327 * move_lock grabbed above and caller set from->moving_account, so 5328 * mod_memcg_page_state will serialize updates to PageDirty. 5329 * So mapping should be stable for dirty pages. 5330 */ 5331 if (!anon && PageDirty(page)) { 5332 struct address_space *mapping = page_mapping(page); 5333 5334 if (mapping_cap_account_dirty(mapping)) { 5335 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5336 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5337 } 5338 } 5339 5340 if (PageWriteback(page)) { 5341 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5342 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5343 } 5344 5345 /* 5346 * It is safe to change page->mem_cgroup here because the page 5347 * is referenced, charged, and isolated - we can't race with 5348 * uncharging, charging, migration, or LRU putback. 5349 */ 5350 5351 /* caller should have done css_get */ 5352 page->mem_cgroup = to; 5353 5354 spin_unlock_irqrestore(&from->move_lock, flags); 5355 5356 ret = 0; 5357 5358 local_irq_disable(); 5359 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5360 memcg_check_events(to, page); 5361 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5362 memcg_check_events(from, page); 5363 local_irq_enable(); 5364 out_unlock: 5365 unlock_page(page); 5366 out: 5367 return ret; 5368 } 5369 5370 /** 5371 * get_mctgt_type - get target type of moving charge 5372 * @vma: the vma the pte to be checked belongs 5373 * @addr: the address corresponding to the pte to be checked 5374 * @ptent: the pte to be checked 5375 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5376 * 5377 * Returns 5378 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5379 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5380 * move charge. if @target is not NULL, the page is stored in target->page 5381 * with extra refcnt got(Callers should handle it). 5382 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5383 * target for charge migration. if @target is not NULL, the entry is stored 5384 * in target->ent. 5385 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5386 * (so ZONE_DEVICE page and thus not on the lru). 5387 * For now we such page is charge like a regular page would be as for all 5388 * intent and purposes it is just special memory taking the place of a 5389 * regular page. 5390 * 5391 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5392 * 5393 * Called with pte lock held. 5394 */ 5395 5396 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5397 unsigned long addr, pte_t ptent, union mc_target *target) 5398 { 5399 struct page *page = NULL; 5400 enum mc_target_type ret = MC_TARGET_NONE; 5401 swp_entry_t ent = { .val = 0 }; 5402 5403 if (pte_present(ptent)) 5404 page = mc_handle_present_pte(vma, addr, ptent); 5405 else if (is_swap_pte(ptent)) 5406 page = mc_handle_swap_pte(vma, ptent, &ent); 5407 else if (pte_none(ptent)) 5408 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5409 5410 if (!page && !ent.val) 5411 return ret; 5412 if (page) { 5413 /* 5414 * Do only loose check w/o serialization. 5415 * mem_cgroup_move_account() checks the page is valid or 5416 * not under LRU exclusion. 5417 */ 5418 if (page->mem_cgroup == mc.from) { 5419 ret = MC_TARGET_PAGE; 5420 if (is_device_private_page(page)) 5421 ret = MC_TARGET_DEVICE; 5422 if (target) 5423 target->page = page; 5424 } 5425 if (!ret || !target) 5426 put_page(page); 5427 } 5428 /* 5429 * There is a swap entry and a page doesn't exist or isn't charged. 5430 * But we cannot move a tail-page in a THP. 5431 */ 5432 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5433 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5434 ret = MC_TARGET_SWAP; 5435 if (target) 5436 target->ent = ent; 5437 } 5438 return ret; 5439 } 5440 5441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5442 /* 5443 * We don't consider PMD mapped swapping or file mapped pages because THP does 5444 * not support them for now. 5445 * Caller should make sure that pmd_trans_huge(pmd) is true. 5446 */ 5447 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5448 unsigned long addr, pmd_t pmd, union mc_target *target) 5449 { 5450 struct page *page = NULL; 5451 enum mc_target_type ret = MC_TARGET_NONE; 5452 5453 if (unlikely(is_swap_pmd(pmd))) { 5454 VM_BUG_ON(thp_migration_supported() && 5455 !is_pmd_migration_entry(pmd)); 5456 return ret; 5457 } 5458 page = pmd_page(pmd); 5459 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5460 if (!(mc.flags & MOVE_ANON)) 5461 return ret; 5462 if (page->mem_cgroup == mc.from) { 5463 ret = MC_TARGET_PAGE; 5464 if (target) { 5465 get_page(page); 5466 target->page = page; 5467 } 5468 } 5469 return ret; 5470 } 5471 #else 5472 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5473 unsigned long addr, pmd_t pmd, union mc_target *target) 5474 { 5475 return MC_TARGET_NONE; 5476 } 5477 #endif 5478 5479 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5480 unsigned long addr, unsigned long end, 5481 struct mm_walk *walk) 5482 { 5483 struct vm_area_struct *vma = walk->vma; 5484 pte_t *pte; 5485 spinlock_t *ptl; 5486 5487 ptl = pmd_trans_huge_lock(pmd, vma); 5488 if (ptl) { 5489 /* 5490 * Note their can not be MC_TARGET_DEVICE for now as we do not 5491 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5492 * this might change. 5493 */ 5494 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5495 mc.precharge += HPAGE_PMD_NR; 5496 spin_unlock(ptl); 5497 return 0; 5498 } 5499 5500 if (pmd_trans_unstable(pmd)) 5501 return 0; 5502 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5503 for (; addr != end; pte++, addr += PAGE_SIZE) 5504 if (get_mctgt_type(vma, addr, *pte, NULL)) 5505 mc.precharge++; /* increment precharge temporarily */ 5506 pte_unmap_unlock(pte - 1, ptl); 5507 cond_resched(); 5508 5509 return 0; 5510 } 5511 5512 static const struct mm_walk_ops precharge_walk_ops = { 5513 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5514 }; 5515 5516 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5517 { 5518 unsigned long precharge; 5519 5520 down_read(&mm->mmap_sem); 5521 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5522 up_read(&mm->mmap_sem); 5523 5524 precharge = mc.precharge; 5525 mc.precharge = 0; 5526 5527 return precharge; 5528 } 5529 5530 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5531 { 5532 unsigned long precharge = mem_cgroup_count_precharge(mm); 5533 5534 VM_BUG_ON(mc.moving_task); 5535 mc.moving_task = current; 5536 return mem_cgroup_do_precharge(precharge); 5537 } 5538 5539 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5540 static void __mem_cgroup_clear_mc(void) 5541 { 5542 struct mem_cgroup *from = mc.from; 5543 struct mem_cgroup *to = mc.to; 5544 5545 /* we must uncharge all the leftover precharges from mc.to */ 5546 if (mc.precharge) { 5547 cancel_charge(mc.to, mc.precharge); 5548 mc.precharge = 0; 5549 } 5550 /* 5551 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5552 * we must uncharge here. 5553 */ 5554 if (mc.moved_charge) { 5555 cancel_charge(mc.from, mc.moved_charge); 5556 mc.moved_charge = 0; 5557 } 5558 /* we must fixup refcnts and charges */ 5559 if (mc.moved_swap) { 5560 /* uncharge swap account from the old cgroup */ 5561 if (!mem_cgroup_is_root(mc.from)) 5562 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5563 5564 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5565 5566 /* 5567 * we charged both to->memory and to->memsw, so we 5568 * should uncharge to->memory. 5569 */ 5570 if (!mem_cgroup_is_root(mc.to)) 5571 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5572 5573 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5574 css_put_many(&mc.to->css, mc.moved_swap); 5575 5576 mc.moved_swap = 0; 5577 } 5578 memcg_oom_recover(from); 5579 memcg_oom_recover(to); 5580 wake_up_all(&mc.waitq); 5581 } 5582 5583 static void mem_cgroup_clear_mc(void) 5584 { 5585 struct mm_struct *mm = mc.mm; 5586 5587 /* 5588 * we must clear moving_task before waking up waiters at the end of 5589 * task migration. 5590 */ 5591 mc.moving_task = NULL; 5592 __mem_cgroup_clear_mc(); 5593 spin_lock(&mc.lock); 5594 mc.from = NULL; 5595 mc.to = NULL; 5596 mc.mm = NULL; 5597 spin_unlock(&mc.lock); 5598 5599 mmput(mm); 5600 } 5601 5602 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5603 { 5604 struct cgroup_subsys_state *css; 5605 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5606 struct mem_cgroup *from; 5607 struct task_struct *leader, *p; 5608 struct mm_struct *mm; 5609 unsigned long move_flags; 5610 int ret = 0; 5611 5612 /* charge immigration isn't supported on the default hierarchy */ 5613 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5614 return 0; 5615 5616 /* 5617 * Multi-process migrations only happen on the default hierarchy 5618 * where charge immigration is not used. Perform charge 5619 * immigration if @tset contains a leader and whine if there are 5620 * multiple. 5621 */ 5622 p = NULL; 5623 cgroup_taskset_for_each_leader(leader, css, tset) { 5624 WARN_ON_ONCE(p); 5625 p = leader; 5626 memcg = mem_cgroup_from_css(css); 5627 } 5628 if (!p) 5629 return 0; 5630 5631 /* 5632 * We are now commited to this value whatever it is. Changes in this 5633 * tunable will only affect upcoming migrations, not the current one. 5634 * So we need to save it, and keep it going. 5635 */ 5636 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5637 if (!move_flags) 5638 return 0; 5639 5640 from = mem_cgroup_from_task(p); 5641 5642 VM_BUG_ON(from == memcg); 5643 5644 mm = get_task_mm(p); 5645 if (!mm) 5646 return 0; 5647 /* We move charges only when we move a owner of the mm */ 5648 if (mm->owner == p) { 5649 VM_BUG_ON(mc.from); 5650 VM_BUG_ON(mc.to); 5651 VM_BUG_ON(mc.precharge); 5652 VM_BUG_ON(mc.moved_charge); 5653 VM_BUG_ON(mc.moved_swap); 5654 5655 spin_lock(&mc.lock); 5656 mc.mm = mm; 5657 mc.from = from; 5658 mc.to = memcg; 5659 mc.flags = move_flags; 5660 spin_unlock(&mc.lock); 5661 /* We set mc.moving_task later */ 5662 5663 ret = mem_cgroup_precharge_mc(mm); 5664 if (ret) 5665 mem_cgroup_clear_mc(); 5666 } else { 5667 mmput(mm); 5668 } 5669 return ret; 5670 } 5671 5672 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5673 { 5674 if (mc.to) 5675 mem_cgroup_clear_mc(); 5676 } 5677 5678 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5679 unsigned long addr, unsigned long end, 5680 struct mm_walk *walk) 5681 { 5682 int ret = 0; 5683 struct vm_area_struct *vma = walk->vma; 5684 pte_t *pte; 5685 spinlock_t *ptl; 5686 enum mc_target_type target_type; 5687 union mc_target target; 5688 struct page *page; 5689 5690 ptl = pmd_trans_huge_lock(pmd, vma); 5691 if (ptl) { 5692 if (mc.precharge < HPAGE_PMD_NR) { 5693 spin_unlock(ptl); 5694 return 0; 5695 } 5696 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5697 if (target_type == MC_TARGET_PAGE) { 5698 page = target.page; 5699 if (!isolate_lru_page(page)) { 5700 if (!mem_cgroup_move_account(page, true, 5701 mc.from, mc.to)) { 5702 mc.precharge -= HPAGE_PMD_NR; 5703 mc.moved_charge += HPAGE_PMD_NR; 5704 } 5705 putback_lru_page(page); 5706 } 5707 put_page(page); 5708 } else if (target_type == MC_TARGET_DEVICE) { 5709 page = target.page; 5710 if (!mem_cgroup_move_account(page, true, 5711 mc.from, mc.to)) { 5712 mc.precharge -= HPAGE_PMD_NR; 5713 mc.moved_charge += HPAGE_PMD_NR; 5714 } 5715 put_page(page); 5716 } 5717 spin_unlock(ptl); 5718 return 0; 5719 } 5720 5721 if (pmd_trans_unstable(pmd)) 5722 return 0; 5723 retry: 5724 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5725 for (; addr != end; addr += PAGE_SIZE) { 5726 pte_t ptent = *(pte++); 5727 bool device = false; 5728 swp_entry_t ent; 5729 5730 if (!mc.precharge) 5731 break; 5732 5733 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5734 case MC_TARGET_DEVICE: 5735 device = true; 5736 /* fall through */ 5737 case MC_TARGET_PAGE: 5738 page = target.page; 5739 /* 5740 * We can have a part of the split pmd here. Moving it 5741 * can be done but it would be too convoluted so simply 5742 * ignore such a partial THP and keep it in original 5743 * memcg. There should be somebody mapping the head. 5744 */ 5745 if (PageTransCompound(page)) 5746 goto put; 5747 if (!device && isolate_lru_page(page)) 5748 goto put; 5749 if (!mem_cgroup_move_account(page, false, 5750 mc.from, mc.to)) { 5751 mc.precharge--; 5752 /* we uncharge from mc.from later. */ 5753 mc.moved_charge++; 5754 } 5755 if (!device) 5756 putback_lru_page(page); 5757 put: /* get_mctgt_type() gets the page */ 5758 put_page(page); 5759 break; 5760 case MC_TARGET_SWAP: 5761 ent = target.ent; 5762 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5763 mc.precharge--; 5764 /* we fixup refcnts and charges later. */ 5765 mc.moved_swap++; 5766 } 5767 break; 5768 default: 5769 break; 5770 } 5771 } 5772 pte_unmap_unlock(pte - 1, ptl); 5773 cond_resched(); 5774 5775 if (addr != end) { 5776 /* 5777 * We have consumed all precharges we got in can_attach(). 5778 * We try charge one by one, but don't do any additional 5779 * charges to mc.to if we have failed in charge once in attach() 5780 * phase. 5781 */ 5782 ret = mem_cgroup_do_precharge(1); 5783 if (!ret) 5784 goto retry; 5785 } 5786 5787 return ret; 5788 } 5789 5790 static const struct mm_walk_ops charge_walk_ops = { 5791 .pmd_entry = mem_cgroup_move_charge_pte_range, 5792 }; 5793 5794 static void mem_cgroup_move_charge(void) 5795 { 5796 lru_add_drain_all(); 5797 /* 5798 * Signal lock_page_memcg() to take the memcg's move_lock 5799 * while we're moving its pages to another memcg. Then wait 5800 * for already started RCU-only updates to finish. 5801 */ 5802 atomic_inc(&mc.from->moving_account); 5803 synchronize_rcu(); 5804 retry: 5805 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5806 /* 5807 * Someone who are holding the mmap_sem might be waiting in 5808 * waitq. So we cancel all extra charges, wake up all waiters, 5809 * and retry. Because we cancel precharges, we might not be able 5810 * to move enough charges, but moving charge is a best-effort 5811 * feature anyway, so it wouldn't be a big problem. 5812 */ 5813 __mem_cgroup_clear_mc(); 5814 cond_resched(); 5815 goto retry; 5816 } 5817 /* 5818 * When we have consumed all precharges and failed in doing 5819 * additional charge, the page walk just aborts. 5820 */ 5821 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5822 NULL); 5823 5824 up_read(&mc.mm->mmap_sem); 5825 atomic_dec(&mc.from->moving_account); 5826 } 5827 5828 static void mem_cgroup_move_task(void) 5829 { 5830 if (mc.to) { 5831 mem_cgroup_move_charge(); 5832 mem_cgroup_clear_mc(); 5833 } 5834 } 5835 #else /* !CONFIG_MMU */ 5836 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5837 { 5838 return 0; 5839 } 5840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5841 { 5842 } 5843 static void mem_cgroup_move_task(void) 5844 { 5845 } 5846 #endif 5847 5848 /* 5849 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5850 * to verify whether we're attached to the default hierarchy on each mount 5851 * attempt. 5852 */ 5853 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5854 { 5855 /* 5856 * use_hierarchy is forced on the default hierarchy. cgroup core 5857 * guarantees that @root doesn't have any children, so turning it 5858 * on for the root memcg is enough. 5859 */ 5860 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5861 root_mem_cgroup->use_hierarchy = true; 5862 else 5863 root_mem_cgroup->use_hierarchy = false; 5864 } 5865 5866 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5867 { 5868 if (value == PAGE_COUNTER_MAX) 5869 seq_puts(m, "max\n"); 5870 else 5871 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5872 5873 return 0; 5874 } 5875 5876 static u64 memory_current_read(struct cgroup_subsys_state *css, 5877 struct cftype *cft) 5878 { 5879 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5880 5881 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5882 } 5883 5884 static int memory_min_show(struct seq_file *m, void *v) 5885 { 5886 return seq_puts_memcg_tunable(m, 5887 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5888 } 5889 5890 static ssize_t memory_min_write(struct kernfs_open_file *of, 5891 char *buf, size_t nbytes, loff_t off) 5892 { 5893 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5894 unsigned long min; 5895 int err; 5896 5897 buf = strstrip(buf); 5898 err = page_counter_memparse(buf, "max", &min); 5899 if (err) 5900 return err; 5901 5902 page_counter_set_min(&memcg->memory, min); 5903 5904 return nbytes; 5905 } 5906 5907 static int memory_low_show(struct seq_file *m, void *v) 5908 { 5909 return seq_puts_memcg_tunable(m, 5910 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5911 } 5912 5913 static ssize_t memory_low_write(struct kernfs_open_file *of, 5914 char *buf, size_t nbytes, loff_t off) 5915 { 5916 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5917 unsigned long low; 5918 int err; 5919 5920 buf = strstrip(buf); 5921 err = page_counter_memparse(buf, "max", &low); 5922 if (err) 5923 return err; 5924 5925 page_counter_set_low(&memcg->memory, low); 5926 5927 return nbytes; 5928 } 5929 5930 static int memory_high_show(struct seq_file *m, void *v) 5931 { 5932 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5933 } 5934 5935 static ssize_t memory_high_write(struct kernfs_open_file *of, 5936 char *buf, size_t nbytes, loff_t off) 5937 { 5938 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5939 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 5940 bool drained = false; 5941 unsigned long high; 5942 int err; 5943 5944 buf = strstrip(buf); 5945 err = page_counter_memparse(buf, "max", &high); 5946 if (err) 5947 return err; 5948 5949 memcg->high = high; 5950 5951 for (;;) { 5952 unsigned long nr_pages = page_counter_read(&memcg->memory); 5953 unsigned long reclaimed; 5954 5955 if (nr_pages <= high) 5956 break; 5957 5958 if (signal_pending(current)) 5959 break; 5960 5961 if (!drained) { 5962 drain_all_stock(memcg); 5963 drained = true; 5964 continue; 5965 } 5966 5967 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5968 GFP_KERNEL, true); 5969 5970 if (!reclaimed && !nr_retries--) 5971 break; 5972 } 5973 5974 return nbytes; 5975 } 5976 5977 static int memory_max_show(struct seq_file *m, void *v) 5978 { 5979 return seq_puts_memcg_tunable(m, 5980 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5981 } 5982 5983 static ssize_t memory_max_write(struct kernfs_open_file *of, 5984 char *buf, size_t nbytes, loff_t off) 5985 { 5986 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5987 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5988 bool drained = false; 5989 unsigned long max; 5990 int err; 5991 5992 buf = strstrip(buf); 5993 err = page_counter_memparse(buf, "max", &max); 5994 if (err) 5995 return err; 5996 5997 xchg(&memcg->memory.max, max); 5998 5999 for (;;) { 6000 unsigned long nr_pages = page_counter_read(&memcg->memory); 6001 6002 if (nr_pages <= max) 6003 break; 6004 6005 if (signal_pending(current)) 6006 break; 6007 6008 if (!drained) { 6009 drain_all_stock(memcg); 6010 drained = true; 6011 continue; 6012 } 6013 6014 if (nr_reclaims) { 6015 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6016 GFP_KERNEL, true)) 6017 nr_reclaims--; 6018 continue; 6019 } 6020 6021 memcg_memory_event(memcg, MEMCG_OOM); 6022 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6023 break; 6024 } 6025 6026 memcg_wb_domain_size_changed(memcg); 6027 return nbytes; 6028 } 6029 6030 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6031 { 6032 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6033 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6034 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6035 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6036 seq_printf(m, "oom_kill %lu\n", 6037 atomic_long_read(&events[MEMCG_OOM_KILL])); 6038 } 6039 6040 static int memory_events_show(struct seq_file *m, void *v) 6041 { 6042 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6043 6044 __memory_events_show(m, memcg->memory_events); 6045 return 0; 6046 } 6047 6048 static int memory_events_local_show(struct seq_file *m, void *v) 6049 { 6050 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6051 6052 __memory_events_show(m, memcg->memory_events_local); 6053 return 0; 6054 } 6055 6056 static int memory_stat_show(struct seq_file *m, void *v) 6057 { 6058 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6059 char *buf; 6060 6061 buf = memory_stat_format(memcg); 6062 if (!buf) 6063 return -ENOMEM; 6064 seq_puts(m, buf); 6065 kfree(buf); 6066 return 0; 6067 } 6068 6069 static int memory_oom_group_show(struct seq_file *m, void *v) 6070 { 6071 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6072 6073 seq_printf(m, "%d\n", memcg->oom_group); 6074 6075 return 0; 6076 } 6077 6078 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6079 char *buf, size_t nbytes, loff_t off) 6080 { 6081 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6082 int ret, oom_group; 6083 6084 buf = strstrip(buf); 6085 if (!buf) 6086 return -EINVAL; 6087 6088 ret = kstrtoint(buf, 0, &oom_group); 6089 if (ret) 6090 return ret; 6091 6092 if (oom_group != 0 && oom_group != 1) 6093 return -EINVAL; 6094 6095 memcg->oom_group = oom_group; 6096 6097 return nbytes; 6098 } 6099 6100 static struct cftype memory_files[] = { 6101 { 6102 .name = "current", 6103 .flags = CFTYPE_NOT_ON_ROOT, 6104 .read_u64 = memory_current_read, 6105 }, 6106 { 6107 .name = "min", 6108 .flags = CFTYPE_NOT_ON_ROOT, 6109 .seq_show = memory_min_show, 6110 .write = memory_min_write, 6111 }, 6112 { 6113 .name = "low", 6114 .flags = CFTYPE_NOT_ON_ROOT, 6115 .seq_show = memory_low_show, 6116 .write = memory_low_write, 6117 }, 6118 { 6119 .name = "high", 6120 .flags = CFTYPE_NOT_ON_ROOT, 6121 .seq_show = memory_high_show, 6122 .write = memory_high_write, 6123 }, 6124 { 6125 .name = "max", 6126 .flags = CFTYPE_NOT_ON_ROOT, 6127 .seq_show = memory_max_show, 6128 .write = memory_max_write, 6129 }, 6130 { 6131 .name = "events", 6132 .flags = CFTYPE_NOT_ON_ROOT, 6133 .file_offset = offsetof(struct mem_cgroup, events_file), 6134 .seq_show = memory_events_show, 6135 }, 6136 { 6137 .name = "events.local", 6138 .flags = CFTYPE_NOT_ON_ROOT, 6139 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6140 .seq_show = memory_events_local_show, 6141 }, 6142 { 6143 .name = "stat", 6144 .flags = CFTYPE_NOT_ON_ROOT, 6145 .seq_show = memory_stat_show, 6146 }, 6147 { 6148 .name = "oom.group", 6149 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6150 .seq_show = memory_oom_group_show, 6151 .write = memory_oom_group_write, 6152 }, 6153 { } /* terminate */ 6154 }; 6155 6156 struct cgroup_subsys memory_cgrp_subsys = { 6157 .css_alloc = mem_cgroup_css_alloc, 6158 .css_online = mem_cgroup_css_online, 6159 .css_offline = mem_cgroup_css_offline, 6160 .css_released = mem_cgroup_css_released, 6161 .css_free = mem_cgroup_css_free, 6162 .css_reset = mem_cgroup_css_reset, 6163 .can_attach = mem_cgroup_can_attach, 6164 .cancel_attach = mem_cgroup_cancel_attach, 6165 .post_attach = mem_cgroup_move_task, 6166 .bind = mem_cgroup_bind, 6167 .dfl_cftypes = memory_files, 6168 .legacy_cftypes = mem_cgroup_legacy_files, 6169 .early_init = 0, 6170 }; 6171 6172 /** 6173 * mem_cgroup_protected - check if memory consumption is in the normal range 6174 * @root: the top ancestor of the sub-tree being checked 6175 * @memcg: the memory cgroup to check 6176 * 6177 * WARNING: This function is not stateless! It can only be used as part 6178 * of a top-down tree iteration, not for isolated queries. 6179 * 6180 * Returns one of the following: 6181 * MEMCG_PROT_NONE: cgroup memory is not protected 6182 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6183 * an unprotected supply of reclaimable memory from other cgroups. 6184 * MEMCG_PROT_MIN: cgroup memory is protected 6185 * 6186 * @root is exclusive; it is never protected when looked at directly 6187 * 6188 * To provide a proper hierarchical behavior, effective memory.min/low values 6189 * are used. Below is the description of how effective memory.low is calculated. 6190 * Effective memory.min values is calculated in the same way. 6191 * 6192 * Effective memory.low is always equal or less than the original memory.low. 6193 * If there is no memory.low overcommittment (which is always true for 6194 * top-level memory cgroups), these two values are equal. 6195 * Otherwise, it's a part of parent's effective memory.low, 6196 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6197 * memory.low usages, where memory.low usage is the size of actually 6198 * protected memory. 6199 * 6200 * low_usage 6201 * elow = min( memory.low, parent->elow * ------------------ ), 6202 * siblings_low_usage 6203 * 6204 * | memory.current, if memory.current < memory.low 6205 * low_usage = | 6206 * | 0, otherwise. 6207 * 6208 * 6209 * Such definition of the effective memory.low provides the expected 6210 * hierarchical behavior: parent's memory.low value is limiting 6211 * children, unprotected memory is reclaimed first and cgroups, 6212 * which are not using their guarantee do not affect actual memory 6213 * distribution. 6214 * 6215 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6216 * 6217 * A A/memory.low = 2G, A/memory.current = 6G 6218 * //\\ 6219 * BC DE B/memory.low = 3G B/memory.current = 2G 6220 * C/memory.low = 1G C/memory.current = 2G 6221 * D/memory.low = 0 D/memory.current = 2G 6222 * E/memory.low = 10G E/memory.current = 0 6223 * 6224 * and the memory pressure is applied, the following memory distribution 6225 * is expected (approximately): 6226 * 6227 * A/memory.current = 2G 6228 * 6229 * B/memory.current = 1.3G 6230 * C/memory.current = 0.6G 6231 * D/memory.current = 0 6232 * E/memory.current = 0 6233 * 6234 * These calculations require constant tracking of the actual low usages 6235 * (see propagate_protected_usage()), as well as recursive calculation of 6236 * effective memory.low values. But as we do call mem_cgroup_protected() 6237 * path for each memory cgroup top-down from the reclaim, 6238 * it's possible to optimize this part, and save calculated elow 6239 * for next usage. This part is intentionally racy, but it's ok, 6240 * as memory.low is a best-effort mechanism. 6241 */ 6242 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6243 struct mem_cgroup *memcg) 6244 { 6245 struct mem_cgroup *parent; 6246 unsigned long emin, parent_emin; 6247 unsigned long elow, parent_elow; 6248 unsigned long usage; 6249 6250 if (mem_cgroup_disabled()) 6251 return MEMCG_PROT_NONE; 6252 6253 if (!root) 6254 root = root_mem_cgroup; 6255 if (memcg == root) 6256 return MEMCG_PROT_NONE; 6257 6258 usage = page_counter_read(&memcg->memory); 6259 if (!usage) 6260 return MEMCG_PROT_NONE; 6261 6262 emin = memcg->memory.min; 6263 elow = memcg->memory.low; 6264 6265 parent = parent_mem_cgroup(memcg); 6266 /* No parent means a non-hierarchical mode on v1 memcg */ 6267 if (!parent) 6268 return MEMCG_PROT_NONE; 6269 6270 if (parent == root) 6271 goto exit; 6272 6273 parent_emin = READ_ONCE(parent->memory.emin); 6274 emin = min(emin, parent_emin); 6275 if (emin && parent_emin) { 6276 unsigned long min_usage, siblings_min_usage; 6277 6278 min_usage = min(usage, memcg->memory.min); 6279 siblings_min_usage = atomic_long_read( 6280 &parent->memory.children_min_usage); 6281 6282 if (min_usage && siblings_min_usage) 6283 emin = min(emin, parent_emin * min_usage / 6284 siblings_min_usage); 6285 } 6286 6287 parent_elow = READ_ONCE(parent->memory.elow); 6288 elow = min(elow, parent_elow); 6289 if (elow && parent_elow) { 6290 unsigned long low_usage, siblings_low_usage; 6291 6292 low_usage = min(usage, memcg->memory.low); 6293 siblings_low_usage = atomic_long_read( 6294 &parent->memory.children_low_usage); 6295 6296 if (low_usage && siblings_low_usage) 6297 elow = min(elow, parent_elow * low_usage / 6298 siblings_low_usage); 6299 } 6300 6301 exit: 6302 memcg->memory.emin = emin; 6303 memcg->memory.elow = elow; 6304 6305 if (usage <= emin) 6306 return MEMCG_PROT_MIN; 6307 else if (usage <= elow) 6308 return MEMCG_PROT_LOW; 6309 else 6310 return MEMCG_PROT_NONE; 6311 } 6312 6313 /** 6314 * mem_cgroup_try_charge - try charging a page 6315 * @page: page to charge 6316 * @mm: mm context of the victim 6317 * @gfp_mask: reclaim mode 6318 * @memcgp: charged memcg return 6319 * @compound: charge the page as compound or small page 6320 * 6321 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6322 * pages according to @gfp_mask if necessary. 6323 * 6324 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6325 * Otherwise, an error code is returned. 6326 * 6327 * After page->mapping has been set up, the caller must finalize the 6328 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6329 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6330 */ 6331 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6332 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6333 bool compound) 6334 { 6335 struct mem_cgroup *memcg = NULL; 6336 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6337 int ret = 0; 6338 6339 if (mem_cgroup_disabled()) 6340 goto out; 6341 6342 if (PageSwapCache(page)) { 6343 /* 6344 * Every swap fault against a single page tries to charge the 6345 * page, bail as early as possible. shmem_unuse() encounters 6346 * already charged pages, too. The USED bit is protected by 6347 * the page lock, which serializes swap cache removal, which 6348 * in turn serializes uncharging. 6349 */ 6350 VM_BUG_ON_PAGE(!PageLocked(page), page); 6351 if (compound_head(page)->mem_cgroup) 6352 goto out; 6353 6354 if (do_swap_account) { 6355 swp_entry_t ent = { .val = page_private(page), }; 6356 unsigned short id = lookup_swap_cgroup_id(ent); 6357 6358 rcu_read_lock(); 6359 memcg = mem_cgroup_from_id(id); 6360 if (memcg && !css_tryget_online(&memcg->css)) 6361 memcg = NULL; 6362 rcu_read_unlock(); 6363 } 6364 } 6365 6366 if (!memcg) 6367 memcg = get_mem_cgroup_from_mm(mm); 6368 6369 ret = try_charge(memcg, gfp_mask, nr_pages); 6370 6371 css_put(&memcg->css); 6372 out: 6373 *memcgp = memcg; 6374 return ret; 6375 } 6376 6377 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6378 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6379 bool compound) 6380 { 6381 struct mem_cgroup *memcg; 6382 int ret; 6383 6384 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6385 memcg = *memcgp; 6386 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6387 return ret; 6388 } 6389 6390 /** 6391 * mem_cgroup_commit_charge - commit a page charge 6392 * @page: page to charge 6393 * @memcg: memcg to charge the page to 6394 * @lrucare: page might be on LRU already 6395 * @compound: charge the page as compound or small page 6396 * 6397 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6398 * after page->mapping has been set up. This must happen atomically 6399 * as part of the page instantiation, i.e. under the page table lock 6400 * for anonymous pages, under the page lock for page and swap cache. 6401 * 6402 * In addition, the page must not be on the LRU during the commit, to 6403 * prevent racing with task migration. If it might be, use @lrucare. 6404 * 6405 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6406 */ 6407 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6408 bool lrucare, bool compound) 6409 { 6410 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6411 6412 VM_BUG_ON_PAGE(!page->mapping, page); 6413 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6414 6415 if (mem_cgroup_disabled()) 6416 return; 6417 /* 6418 * Swap faults will attempt to charge the same page multiple 6419 * times. But reuse_swap_page() might have removed the page 6420 * from swapcache already, so we can't check PageSwapCache(). 6421 */ 6422 if (!memcg) 6423 return; 6424 6425 commit_charge(page, memcg, lrucare); 6426 6427 local_irq_disable(); 6428 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6429 memcg_check_events(memcg, page); 6430 local_irq_enable(); 6431 6432 if (do_memsw_account() && PageSwapCache(page)) { 6433 swp_entry_t entry = { .val = page_private(page) }; 6434 /* 6435 * The swap entry might not get freed for a long time, 6436 * let's not wait for it. The page already received a 6437 * memory+swap charge, drop the swap entry duplicate. 6438 */ 6439 mem_cgroup_uncharge_swap(entry, nr_pages); 6440 } 6441 } 6442 6443 /** 6444 * mem_cgroup_cancel_charge - cancel a page charge 6445 * @page: page to charge 6446 * @memcg: memcg to charge the page to 6447 * @compound: charge the page as compound or small page 6448 * 6449 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6450 */ 6451 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6452 bool compound) 6453 { 6454 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6455 6456 if (mem_cgroup_disabled()) 6457 return; 6458 /* 6459 * Swap faults will attempt to charge the same page multiple 6460 * times. But reuse_swap_page() might have removed the page 6461 * from swapcache already, so we can't check PageSwapCache(). 6462 */ 6463 if (!memcg) 6464 return; 6465 6466 cancel_charge(memcg, nr_pages); 6467 } 6468 6469 struct uncharge_gather { 6470 struct mem_cgroup *memcg; 6471 unsigned long pgpgout; 6472 unsigned long nr_anon; 6473 unsigned long nr_file; 6474 unsigned long nr_kmem; 6475 unsigned long nr_huge; 6476 unsigned long nr_shmem; 6477 struct page *dummy_page; 6478 }; 6479 6480 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6481 { 6482 memset(ug, 0, sizeof(*ug)); 6483 } 6484 6485 static void uncharge_batch(const struct uncharge_gather *ug) 6486 { 6487 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6488 unsigned long flags; 6489 6490 if (!mem_cgroup_is_root(ug->memcg)) { 6491 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6492 if (do_memsw_account()) 6493 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6494 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6495 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6496 memcg_oom_recover(ug->memcg); 6497 } 6498 6499 local_irq_save(flags); 6500 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6501 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6502 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6503 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6504 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6505 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6506 memcg_check_events(ug->memcg, ug->dummy_page); 6507 local_irq_restore(flags); 6508 6509 if (!mem_cgroup_is_root(ug->memcg)) 6510 css_put_many(&ug->memcg->css, nr_pages); 6511 } 6512 6513 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6514 { 6515 VM_BUG_ON_PAGE(PageLRU(page), page); 6516 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6517 !PageHWPoison(page) , page); 6518 6519 if (!page->mem_cgroup) 6520 return; 6521 6522 /* 6523 * Nobody should be changing or seriously looking at 6524 * page->mem_cgroup at this point, we have fully 6525 * exclusive access to the page. 6526 */ 6527 6528 if (ug->memcg != page->mem_cgroup) { 6529 if (ug->memcg) { 6530 uncharge_batch(ug); 6531 uncharge_gather_clear(ug); 6532 } 6533 ug->memcg = page->mem_cgroup; 6534 } 6535 6536 if (!PageKmemcg(page)) { 6537 unsigned int nr_pages = 1; 6538 6539 if (PageTransHuge(page)) { 6540 nr_pages = compound_nr(page); 6541 ug->nr_huge += nr_pages; 6542 } 6543 if (PageAnon(page)) 6544 ug->nr_anon += nr_pages; 6545 else { 6546 ug->nr_file += nr_pages; 6547 if (PageSwapBacked(page)) 6548 ug->nr_shmem += nr_pages; 6549 } 6550 ug->pgpgout++; 6551 } else { 6552 ug->nr_kmem += compound_nr(page); 6553 __ClearPageKmemcg(page); 6554 } 6555 6556 ug->dummy_page = page; 6557 page->mem_cgroup = NULL; 6558 } 6559 6560 static void uncharge_list(struct list_head *page_list) 6561 { 6562 struct uncharge_gather ug; 6563 struct list_head *next; 6564 6565 uncharge_gather_clear(&ug); 6566 6567 /* 6568 * Note that the list can be a single page->lru; hence the 6569 * do-while loop instead of a simple list_for_each_entry(). 6570 */ 6571 next = page_list->next; 6572 do { 6573 struct page *page; 6574 6575 page = list_entry(next, struct page, lru); 6576 next = page->lru.next; 6577 6578 uncharge_page(page, &ug); 6579 } while (next != page_list); 6580 6581 if (ug.memcg) 6582 uncharge_batch(&ug); 6583 } 6584 6585 /** 6586 * mem_cgroup_uncharge - uncharge a page 6587 * @page: page to uncharge 6588 * 6589 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6590 * mem_cgroup_commit_charge(). 6591 */ 6592 void mem_cgroup_uncharge(struct page *page) 6593 { 6594 struct uncharge_gather ug; 6595 6596 if (mem_cgroup_disabled()) 6597 return; 6598 6599 /* Don't touch page->lru of any random page, pre-check: */ 6600 if (!page->mem_cgroup) 6601 return; 6602 6603 uncharge_gather_clear(&ug); 6604 uncharge_page(page, &ug); 6605 uncharge_batch(&ug); 6606 } 6607 6608 /** 6609 * mem_cgroup_uncharge_list - uncharge a list of page 6610 * @page_list: list of pages to uncharge 6611 * 6612 * Uncharge a list of pages previously charged with 6613 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6614 */ 6615 void mem_cgroup_uncharge_list(struct list_head *page_list) 6616 { 6617 if (mem_cgroup_disabled()) 6618 return; 6619 6620 if (!list_empty(page_list)) 6621 uncharge_list(page_list); 6622 } 6623 6624 /** 6625 * mem_cgroup_migrate - charge a page's replacement 6626 * @oldpage: currently circulating page 6627 * @newpage: replacement page 6628 * 6629 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6630 * be uncharged upon free. 6631 * 6632 * Both pages must be locked, @newpage->mapping must be set up. 6633 */ 6634 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6635 { 6636 struct mem_cgroup *memcg; 6637 unsigned int nr_pages; 6638 unsigned long flags; 6639 6640 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6641 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6642 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6643 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6644 newpage); 6645 6646 if (mem_cgroup_disabled()) 6647 return; 6648 6649 /* Page cache replacement: new page already charged? */ 6650 if (newpage->mem_cgroup) 6651 return; 6652 6653 /* Swapcache readahead pages can get replaced before being charged */ 6654 memcg = oldpage->mem_cgroup; 6655 if (!memcg) 6656 return; 6657 6658 /* Force-charge the new page. The old one will be freed soon */ 6659 nr_pages = hpage_nr_pages(newpage); 6660 6661 page_counter_charge(&memcg->memory, nr_pages); 6662 if (do_memsw_account()) 6663 page_counter_charge(&memcg->memsw, nr_pages); 6664 css_get_many(&memcg->css, nr_pages); 6665 6666 commit_charge(newpage, memcg, false); 6667 6668 local_irq_save(flags); 6669 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage), 6670 nr_pages); 6671 memcg_check_events(memcg, newpage); 6672 local_irq_restore(flags); 6673 } 6674 6675 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6676 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6677 6678 void mem_cgroup_sk_alloc(struct sock *sk) 6679 { 6680 struct mem_cgroup *memcg; 6681 6682 if (!mem_cgroup_sockets_enabled) 6683 return; 6684 6685 /* 6686 * Socket cloning can throw us here with sk_memcg already 6687 * filled. It won't however, necessarily happen from 6688 * process context. So the test for root memcg given 6689 * the current task's memcg won't help us in this case. 6690 * 6691 * Respecting the original socket's memcg is a better 6692 * decision in this case. 6693 */ 6694 if (sk->sk_memcg) { 6695 css_get(&sk->sk_memcg->css); 6696 return; 6697 } 6698 6699 rcu_read_lock(); 6700 memcg = mem_cgroup_from_task(current); 6701 if (memcg == root_mem_cgroup) 6702 goto out; 6703 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6704 goto out; 6705 if (css_tryget_online(&memcg->css)) 6706 sk->sk_memcg = memcg; 6707 out: 6708 rcu_read_unlock(); 6709 } 6710 6711 void mem_cgroup_sk_free(struct sock *sk) 6712 { 6713 if (sk->sk_memcg) 6714 css_put(&sk->sk_memcg->css); 6715 } 6716 6717 /** 6718 * mem_cgroup_charge_skmem - charge socket memory 6719 * @memcg: memcg to charge 6720 * @nr_pages: number of pages to charge 6721 * 6722 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6723 * @memcg's configured limit, %false if the charge had to be forced. 6724 */ 6725 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6726 { 6727 gfp_t gfp_mask = GFP_KERNEL; 6728 6729 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6730 struct page_counter *fail; 6731 6732 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6733 memcg->tcpmem_pressure = 0; 6734 return true; 6735 } 6736 page_counter_charge(&memcg->tcpmem, nr_pages); 6737 memcg->tcpmem_pressure = 1; 6738 return false; 6739 } 6740 6741 /* Don't block in the packet receive path */ 6742 if (in_softirq()) 6743 gfp_mask = GFP_NOWAIT; 6744 6745 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6746 6747 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6748 return true; 6749 6750 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6751 return false; 6752 } 6753 6754 /** 6755 * mem_cgroup_uncharge_skmem - uncharge socket memory 6756 * @memcg: memcg to uncharge 6757 * @nr_pages: number of pages to uncharge 6758 */ 6759 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6760 { 6761 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6762 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6763 return; 6764 } 6765 6766 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6767 6768 refill_stock(memcg, nr_pages); 6769 } 6770 6771 static int __init cgroup_memory(char *s) 6772 { 6773 char *token; 6774 6775 while ((token = strsep(&s, ",")) != NULL) { 6776 if (!*token) 6777 continue; 6778 if (!strcmp(token, "nosocket")) 6779 cgroup_memory_nosocket = true; 6780 if (!strcmp(token, "nokmem")) 6781 cgroup_memory_nokmem = true; 6782 } 6783 return 0; 6784 } 6785 __setup("cgroup.memory=", cgroup_memory); 6786 6787 /* 6788 * subsys_initcall() for memory controller. 6789 * 6790 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6791 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6792 * basically everything that doesn't depend on a specific mem_cgroup structure 6793 * should be initialized from here. 6794 */ 6795 static int __init mem_cgroup_init(void) 6796 { 6797 int cpu, node; 6798 6799 #ifdef CONFIG_MEMCG_KMEM 6800 /* 6801 * Kmem cache creation is mostly done with the slab_mutex held, 6802 * so use a workqueue with limited concurrency to avoid stalling 6803 * all worker threads in case lots of cgroups are created and 6804 * destroyed simultaneously. 6805 */ 6806 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6807 BUG_ON(!memcg_kmem_cache_wq); 6808 #endif 6809 6810 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6811 memcg_hotplug_cpu_dead); 6812 6813 for_each_possible_cpu(cpu) 6814 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6815 drain_local_stock); 6816 6817 for_each_node(node) { 6818 struct mem_cgroup_tree_per_node *rtpn; 6819 6820 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6821 node_online(node) ? node : NUMA_NO_NODE); 6822 6823 rtpn->rb_root = RB_ROOT; 6824 rtpn->rb_rightmost = NULL; 6825 spin_lock_init(&rtpn->lock); 6826 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6827 } 6828 6829 return 0; 6830 } 6831 subsys_initcall(mem_cgroup_init); 6832 6833 #ifdef CONFIG_MEMCG_SWAP 6834 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6835 { 6836 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6837 /* 6838 * The root cgroup cannot be destroyed, so it's refcount must 6839 * always be >= 1. 6840 */ 6841 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6842 VM_BUG_ON(1); 6843 break; 6844 } 6845 memcg = parent_mem_cgroup(memcg); 6846 if (!memcg) 6847 memcg = root_mem_cgroup; 6848 } 6849 return memcg; 6850 } 6851 6852 /** 6853 * mem_cgroup_swapout - transfer a memsw charge to swap 6854 * @page: page whose memsw charge to transfer 6855 * @entry: swap entry to move the charge to 6856 * 6857 * Transfer the memsw charge of @page to @entry. 6858 */ 6859 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6860 { 6861 struct mem_cgroup *memcg, *swap_memcg; 6862 unsigned int nr_entries; 6863 unsigned short oldid; 6864 6865 VM_BUG_ON_PAGE(PageLRU(page), page); 6866 VM_BUG_ON_PAGE(page_count(page), page); 6867 6868 if (!do_memsw_account()) 6869 return; 6870 6871 memcg = page->mem_cgroup; 6872 6873 /* Readahead page, never charged */ 6874 if (!memcg) 6875 return; 6876 6877 /* 6878 * In case the memcg owning these pages has been offlined and doesn't 6879 * have an ID allocated to it anymore, charge the closest online 6880 * ancestor for the swap instead and transfer the memory+swap charge. 6881 */ 6882 swap_memcg = mem_cgroup_id_get_online(memcg); 6883 nr_entries = hpage_nr_pages(page); 6884 /* Get references for the tail pages, too */ 6885 if (nr_entries > 1) 6886 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6887 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6888 nr_entries); 6889 VM_BUG_ON_PAGE(oldid, page); 6890 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6891 6892 page->mem_cgroup = NULL; 6893 6894 if (!mem_cgroup_is_root(memcg)) 6895 page_counter_uncharge(&memcg->memory, nr_entries); 6896 6897 if (memcg != swap_memcg) { 6898 if (!mem_cgroup_is_root(swap_memcg)) 6899 page_counter_charge(&swap_memcg->memsw, nr_entries); 6900 page_counter_uncharge(&memcg->memsw, nr_entries); 6901 } 6902 6903 /* 6904 * Interrupts should be disabled here because the caller holds the 6905 * i_pages lock which is taken with interrupts-off. It is 6906 * important here to have the interrupts disabled because it is the 6907 * only synchronisation we have for updating the per-CPU variables. 6908 */ 6909 VM_BUG_ON(!irqs_disabled()); 6910 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6911 -nr_entries); 6912 memcg_check_events(memcg, page); 6913 6914 if (!mem_cgroup_is_root(memcg)) 6915 css_put_many(&memcg->css, nr_entries); 6916 } 6917 6918 /** 6919 * mem_cgroup_try_charge_swap - try charging swap space for a page 6920 * @page: page being added to swap 6921 * @entry: swap entry to charge 6922 * 6923 * Try to charge @page's memcg for the swap space at @entry. 6924 * 6925 * Returns 0 on success, -ENOMEM on failure. 6926 */ 6927 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6928 { 6929 unsigned int nr_pages = hpage_nr_pages(page); 6930 struct page_counter *counter; 6931 struct mem_cgroup *memcg; 6932 unsigned short oldid; 6933 6934 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6935 return 0; 6936 6937 memcg = page->mem_cgroup; 6938 6939 /* Readahead page, never charged */ 6940 if (!memcg) 6941 return 0; 6942 6943 if (!entry.val) { 6944 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6945 return 0; 6946 } 6947 6948 memcg = mem_cgroup_id_get_online(memcg); 6949 6950 if (!mem_cgroup_is_root(memcg) && 6951 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6952 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6953 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6954 mem_cgroup_id_put(memcg); 6955 return -ENOMEM; 6956 } 6957 6958 /* Get references for the tail pages, too */ 6959 if (nr_pages > 1) 6960 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6961 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6962 VM_BUG_ON_PAGE(oldid, page); 6963 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6964 6965 return 0; 6966 } 6967 6968 /** 6969 * mem_cgroup_uncharge_swap - uncharge swap space 6970 * @entry: swap entry to uncharge 6971 * @nr_pages: the amount of swap space to uncharge 6972 */ 6973 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6974 { 6975 struct mem_cgroup *memcg; 6976 unsigned short id; 6977 6978 if (!do_swap_account) 6979 return; 6980 6981 id = swap_cgroup_record(entry, 0, nr_pages); 6982 rcu_read_lock(); 6983 memcg = mem_cgroup_from_id(id); 6984 if (memcg) { 6985 if (!mem_cgroup_is_root(memcg)) { 6986 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6987 page_counter_uncharge(&memcg->swap, nr_pages); 6988 else 6989 page_counter_uncharge(&memcg->memsw, nr_pages); 6990 } 6991 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6992 mem_cgroup_id_put_many(memcg, nr_pages); 6993 } 6994 rcu_read_unlock(); 6995 } 6996 6997 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6998 { 6999 long nr_swap_pages = get_nr_swap_pages(); 7000 7001 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7002 return nr_swap_pages; 7003 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7004 nr_swap_pages = min_t(long, nr_swap_pages, 7005 READ_ONCE(memcg->swap.max) - 7006 page_counter_read(&memcg->swap)); 7007 return nr_swap_pages; 7008 } 7009 7010 bool mem_cgroup_swap_full(struct page *page) 7011 { 7012 struct mem_cgroup *memcg; 7013 7014 VM_BUG_ON_PAGE(!PageLocked(page), page); 7015 7016 if (vm_swap_full()) 7017 return true; 7018 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7019 return false; 7020 7021 memcg = page->mem_cgroup; 7022 if (!memcg) 7023 return false; 7024 7025 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7026 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 7027 return true; 7028 7029 return false; 7030 } 7031 7032 /* for remember boot option*/ 7033 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7034 static int really_do_swap_account __initdata = 1; 7035 #else 7036 static int really_do_swap_account __initdata; 7037 #endif 7038 7039 static int __init enable_swap_account(char *s) 7040 { 7041 if (!strcmp(s, "1")) 7042 really_do_swap_account = 1; 7043 else if (!strcmp(s, "0")) 7044 really_do_swap_account = 0; 7045 return 1; 7046 } 7047 __setup("swapaccount=", enable_swap_account); 7048 7049 static u64 swap_current_read(struct cgroup_subsys_state *css, 7050 struct cftype *cft) 7051 { 7052 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7053 7054 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7055 } 7056 7057 static int swap_max_show(struct seq_file *m, void *v) 7058 { 7059 return seq_puts_memcg_tunable(m, 7060 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7061 } 7062 7063 static ssize_t swap_max_write(struct kernfs_open_file *of, 7064 char *buf, size_t nbytes, loff_t off) 7065 { 7066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7067 unsigned long max; 7068 int err; 7069 7070 buf = strstrip(buf); 7071 err = page_counter_memparse(buf, "max", &max); 7072 if (err) 7073 return err; 7074 7075 xchg(&memcg->swap.max, max); 7076 7077 return nbytes; 7078 } 7079 7080 static int swap_events_show(struct seq_file *m, void *v) 7081 { 7082 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7083 7084 seq_printf(m, "max %lu\n", 7085 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7086 seq_printf(m, "fail %lu\n", 7087 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7088 7089 return 0; 7090 } 7091 7092 static struct cftype swap_files[] = { 7093 { 7094 .name = "swap.current", 7095 .flags = CFTYPE_NOT_ON_ROOT, 7096 .read_u64 = swap_current_read, 7097 }, 7098 { 7099 .name = "swap.max", 7100 .flags = CFTYPE_NOT_ON_ROOT, 7101 .seq_show = swap_max_show, 7102 .write = swap_max_write, 7103 }, 7104 { 7105 .name = "swap.events", 7106 .flags = CFTYPE_NOT_ON_ROOT, 7107 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7108 .seq_show = swap_events_show, 7109 }, 7110 { } /* terminate */ 7111 }; 7112 7113 static struct cftype memsw_cgroup_files[] = { 7114 { 7115 .name = "memsw.usage_in_bytes", 7116 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7117 .read_u64 = mem_cgroup_read_u64, 7118 }, 7119 { 7120 .name = "memsw.max_usage_in_bytes", 7121 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7122 .write = mem_cgroup_reset, 7123 .read_u64 = mem_cgroup_read_u64, 7124 }, 7125 { 7126 .name = "memsw.limit_in_bytes", 7127 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7128 .write = mem_cgroup_write, 7129 .read_u64 = mem_cgroup_read_u64, 7130 }, 7131 { 7132 .name = "memsw.failcnt", 7133 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7134 .write = mem_cgroup_reset, 7135 .read_u64 = mem_cgroup_read_u64, 7136 }, 7137 { }, /* terminate */ 7138 }; 7139 7140 static int __init mem_cgroup_swap_init(void) 7141 { 7142 if (!mem_cgroup_disabled() && really_do_swap_account) { 7143 do_swap_account = 1; 7144 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7145 swap_files)); 7146 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7147 memsw_cgroup_files)); 7148 } 7149 return 0; 7150 } 7151 subsys_initcall(mem_cgroup_swap_init); 7152 7153 #endif /* CONFIG_MEMCG_SWAP */ 7154