1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include "internal.h" 58 #include <net/sock.h> 59 #include <net/ip.h> 60 #include <net/tcp_memcontrol.h> 61 62 #include <asm/uaccess.h> 63 64 #include <trace/events/vmscan.h> 65 66 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 67 EXPORT_SYMBOL(mem_cgroup_subsys); 68 69 #define MEM_CGROUP_RECLAIM_RETRIES 5 70 static struct mem_cgroup *root_mem_cgroup __read_mostly; 71 72 #ifdef CONFIG_MEMCG_SWAP 73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 74 int do_swap_account __read_mostly; 75 76 /* for remember boot option*/ 77 #ifdef CONFIG_MEMCG_SWAP_ENABLED 78 static int really_do_swap_account __initdata = 1; 79 #else 80 static int really_do_swap_account __initdata = 0; 81 #endif 82 83 #else 84 #define do_swap_account 0 85 #endif 86 87 88 static const char * const mem_cgroup_stat_names[] = { 89 "cache", 90 "rss", 91 "rss_huge", 92 "mapped_file", 93 "writeback", 94 "swap", 95 }; 96 97 enum mem_cgroup_events_index { 98 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 99 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 102 MEM_CGROUP_EVENTS_NSTATS, 103 }; 104 105 static const char * const mem_cgroup_events_names[] = { 106 "pgpgin", 107 "pgpgout", 108 "pgfault", 109 "pgmajfault", 110 }; 111 112 static const char * const mem_cgroup_lru_names[] = { 113 "inactive_anon", 114 "active_anon", 115 "inactive_file", 116 "active_file", 117 "unevictable", 118 }; 119 120 /* 121 * Per memcg event counter is incremented at every pagein/pageout. With THP, 122 * it will be incremated by the number of pages. This counter is used for 123 * for trigger some periodic events. This is straightforward and better 124 * than using jiffies etc. to handle periodic memcg event. 125 */ 126 enum mem_cgroup_events_target { 127 MEM_CGROUP_TARGET_THRESH, 128 MEM_CGROUP_TARGET_SOFTLIMIT, 129 MEM_CGROUP_TARGET_NUMAINFO, 130 MEM_CGROUP_NTARGETS, 131 }; 132 #define THRESHOLDS_EVENTS_TARGET 128 133 #define SOFTLIMIT_EVENTS_TARGET 1024 134 #define NUMAINFO_EVENTS_TARGET 1024 135 136 struct mem_cgroup_stat_cpu { 137 long count[MEM_CGROUP_STAT_NSTATS]; 138 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 139 unsigned long nr_page_events; 140 unsigned long targets[MEM_CGROUP_NTARGETS]; 141 }; 142 143 struct mem_cgroup_reclaim_iter { 144 /* 145 * last scanned hierarchy member. Valid only if last_dead_count 146 * matches memcg->dead_count of the hierarchy root group. 147 */ 148 struct mem_cgroup *last_visited; 149 unsigned long last_dead_count; 150 151 /* scan generation, increased every round-trip */ 152 unsigned int generation; 153 }; 154 155 /* 156 * per-zone information in memory controller. 157 */ 158 struct mem_cgroup_per_zone { 159 struct lruvec lruvec; 160 unsigned long lru_size[NR_LRU_LISTS]; 161 162 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 163 164 struct rb_node tree_node; /* RB tree node */ 165 unsigned long long usage_in_excess;/* Set to the value by which */ 166 /* the soft limit is exceeded*/ 167 bool on_tree; 168 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 169 /* use container_of */ 170 }; 171 172 struct mem_cgroup_per_node { 173 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 174 }; 175 176 /* 177 * Cgroups above their limits are maintained in a RB-Tree, independent of 178 * their hierarchy representation 179 */ 180 181 struct mem_cgroup_tree_per_zone { 182 struct rb_root rb_root; 183 spinlock_t lock; 184 }; 185 186 struct mem_cgroup_tree_per_node { 187 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 188 }; 189 190 struct mem_cgroup_tree { 191 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 192 }; 193 194 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 195 196 struct mem_cgroup_threshold { 197 struct eventfd_ctx *eventfd; 198 u64 threshold; 199 }; 200 201 /* For threshold */ 202 struct mem_cgroup_threshold_ary { 203 /* An array index points to threshold just below or equal to usage. */ 204 int current_threshold; 205 /* Size of entries[] */ 206 unsigned int size; 207 /* Array of thresholds */ 208 struct mem_cgroup_threshold entries[0]; 209 }; 210 211 struct mem_cgroup_thresholds { 212 /* Primary thresholds array */ 213 struct mem_cgroup_threshold_ary *primary; 214 /* 215 * Spare threshold array. 216 * This is needed to make mem_cgroup_unregister_event() "never fail". 217 * It must be able to store at least primary->size - 1 entries. 218 */ 219 struct mem_cgroup_threshold_ary *spare; 220 }; 221 222 /* for OOM */ 223 struct mem_cgroup_eventfd_list { 224 struct list_head list; 225 struct eventfd_ctx *eventfd; 226 }; 227 228 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 229 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 230 231 /* 232 * The memory controller data structure. The memory controller controls both 233 * page cache and RSS per cgroup. We would eventually like to provide 234 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 235 * to help the administrator determine what knobs to tune. 236 * 237 * TODO: Add a water mark for the memory controller. Reclaim will begin when 238 * we hit the water mark. May be even add a low water mark, such that 239 * no reclaim occurs from a cgroup at it's low water mark, this is 240 * a feature that will be implemented much later in the future. 241 */ 242 struct mem_cgroup { 243 struct cgroup_subsys_state css; 244 /* 245 * the counter to account for memory usage 246 */ 247 struct res_counter res; 248 249 /* vmpressure notifications */ 250 struct vmpressure vmpressure; 251 252 /* 253 * the counter to account for mem+swap usage. 254 */ 255 struct res_counter memsw; 256 257 /* 258 * the counter to account for kernel memory usage. 259 */ 260 struct res_counter kmem; 261 /* 262 * Should the accounting and control be hierarchical, per subtree? 263 */ 264 bool use_hierarchy; 265 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 266 267 bool oom_lock; 268 atomic_t under_oom; 269 atomic_t oom_wakeups; 270 271 int swappiness; 272 /* OOM-Killer disable */ 273 int oom_kill_disable; 274 275 /* set when res.limit == memsw.limit */ 276 bool memsw_is_minimum; 277 278 /* protect arrays of thresholds */ 279 struct mutex thresholds_lock; 280 281 /* thresholds for memory usage. RCU-protected */ 282 struct mem_cgroup_thresholds thresholds; 283 284 /* thresholds for mem+swap usage. RCU-protected */ 285 struct mem_cgroup_thresholds memsw_thresholds; 286 287 /* For oom notifier event fd */ 288 struct list_head oom_notify; 289 290 /* 291 * Should we move charges of a task when a task is moved into this 292 * mem_cgroup ? And what type of charges should we move ? 293 */ 294 unsigned long move_charge_at_immigrate; 295 /* 296 * set > 0 if pages under this cgroup are moving to other cgroup. 297 */ 298 atomic_t moving_account; 299 /* taken only while moving_account > 0 */ 300 spinlock_t move_lock; 301 /* 302 * percpu counter. 303 */ 304 struct mem_cgroup_stat_cpu __percpu *stat; 305 /* 306 * used when a cpu is offlined or other synchronizations 307 * See mem_cgroup_read_stat(). 308 */ 309 struct mem_cgroup_stat_cpu nocpu_base; 310 spinlock_t pcp_counter_lock; 311 312 atomic_t dead_count; 313 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 314 struct tcp_memcontrol tcp_mem; 315 #endif 316 #if defined(CONFIG_MEMCG_KMEM) 317 /* analogous to slab_common's slab_caches list. per-memcg */ 318 struct list_head memcg_slab_caches; 319 /* Not a spinlock, we can take a lot of time walking the list */ 320 struct mutex slab_caches_mutex; 321 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 322 int kmemcg_id; 323 #endif 324 325 int last_scanned_node; 326 #if MAX_NUMNODES > 1 327 nodemask_t scan_nodes; 328 atomic_t numainfo_events; 329 atomic_t numainfo_updating; 330 #endif 331 332 struct mem_cgroup_per_node *nodeinfo[0]; 333 /* WARNING: nodeinfo must be the last member here */ 334 }; 335 336 static size_t memcg_size(void) 337 { 338 return sizeof(struct mem_cgroup) + 339 nr_node_ids * sizeof(struct mem_cgroup_per_node); 340 } 341 342 /* internal only representation about the status of kmem accounting. */ 343 enum { 344 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 345 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 346 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 347 }; 348 349 /* We account when limit is on, but only after call sites are patched */ 350 #define KMEM_ACCOUNTED_MASK \ 351 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 352 353 #ifdef CONFIG_MEMCG_KMEM 354 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 355 { 356 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 357 } 358 359 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 360 { 361 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 362 } 363 364 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 365 { 366 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 367 } 368 369 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 370 { 371 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 372 } 373 374 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 375 { 376 /* 377 * Our caller must use css_get() first, because memcg_uncharge_kmem() 378 * will call css_put() if it sees the memcg is dead. 379 */ 380 smp_wmb(); 381 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 382 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 383 } 384 385 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 386 { 387 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 388 &memcg->kmem_account_flags); 389 } 390 #endif 391 392 /* Stuffs for move charges at task migration. */ 393 /* 394 * Types of charges to be moved. "move_charge_at_immitgrate" and 395 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 396 */ 397 enum move_type { 398 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 399 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 400 NR_MOVE_TYPE, 401 }; 402 403 /* "mc" and its members are protected by cgroup_mutex */ 404 static struct move_charge_struct { 405 spinlock_t lock; /* for from, to */ 406 struct mem_cgroup *from; 407 struct mem_cgroup *to; 408 unsigned long immigrate_flags; 409 unsigned long precharge; 410 unsigned long moved_charge; 411 unsigned long moved_swap; 412 struct task_struct *moving_task; /* a task moving charges */ 413 wait_queue_head_t waitq; /* a waitq for other context */ 414 } mc = { 415 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 416 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 417 }; 418 419 static bool move_anon(void) 420 { 421 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 422 } 423 424 static bool move_file(void) 425 { 426 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 427 } 428 429 /* 430 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 431 * limit reclaim to prevent infinite loops, if they ever occur. 432 */ 433 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 434 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 435 436 enum charge_type { 437 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 438 MEM_CGROUP_CHARGE_TYPE_ANON, 439 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 440 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 441 NR_CHARGE_TYPE, 442 }; 443 444 /* for encoding cft->private value on file */ 445 enum res_type { 446 _MEM, 447 _MEMSWAP, 448 _OOM_TYPE, 449 _KMEM, 450 }; 451 452 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 453 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 454 #define MEMFILE_ATTR(val) ((val) & 0xffff) 455 /* Used for OOM nofiier */ 456 #define OOM_CONTROL (0) 457 458 /* 459 * Reclaim flags for mem_cgroup_hierarchical_reclaim 460 */ 461 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 462 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 463 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 464 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 465 466 /* 467 * The memcg_create_mutex will be held whenever a new cgroup is created. 468 * As a consequence, any change that needs to protect against new child cgroups 469 * appearing has to hold it as well. 470 */ 471 static DEFINE_MUTEX(memcg_create_mutex); 472 473 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 474 { 475 return s ? container_of(s, struct mem_cgroup, css) : NULL; 476 } 477 478 /* Some nice accessors for the vmpressure. */ 479 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 480 { 481 if (!memcg) 482 memcg = root_mem_cgroup; 483 return &memcg->vmpressure; 484 } 485 486 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 487 { 488 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 489 } 490 491 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) 492 { 493 return &mem_cgroup_from_css(css)->vmpressure; 494 } 495 496 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 497 { 498 return (memcg == root_mem_cgroup); 499 } 500 501 /* Writing them here to avoid exposing memcg's inner layout */ 502 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 503 504 void sock_update_memcg(struct sock *sk) 505 { 506 if (mem_cgroup_sockets_enabled) { 507 struct mem_cgroup *memcg; 508 struct cg_proto *cg_proto; 509 510 BUG_ON(!sk->sk_prot->proto_cgroup); 511 512 /* Socket cloning can throw us here with sk_cgrp already 513 * filled. It won't however, necessarily happen from 514 * process context. So the test for root memcg given 515 * the current task's memcg won't help us in this case. 516 * 517 * Respecting the original socket's memcg is a better 518 * decision in this case. 519 */ 520 if (sk->sk_cgrp) { 521 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 522 css_get(&sk->sk_cgrp->memcg->css); 523 return; 524 } 525 526 rcu_read_lock(); 527 memcg = mem_cgroup_from_task(current); 528 cg_proto = sk->sk_prot->proto_cgroup(memcg); 529 if (!mem_cgroup_is_root(memcg) && 530 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { 531 sk->sk_cgrp = cg_proto; 532 } 533 rcu_read_unlock(); 534 } 535 } 536 EXPORT_SYMBOL(sock_update_memcg); 537 538 void sock_release_memcg(struct sock *sk) 539 { 540 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 541 struct mem_cgroup *memcg; 542 WARN_ON(!sk->sk_cgrp->memcg); 543 memcg = sk->sk_cgrp->memcg; 544 css_put(&sk->sk_cgrp->memcg->css); 545 } 546 } 547 548 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 549 { 550 if (!memcg || mem_cgroup_is_root(memcg)) 551 return NULL; 552 553 return &memcg->tcp_mem.cg_proto; 554 } 555 EXPORT_SYMBOL(tcp_proto_cgroup); 556 557 static void disarm_sock_keys(struct mem_cgroup *memcg) 558 { 559 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 560 return; 561 static_key_slow_dec(&memcg_socket_limit_enabled); 562 } 563 #else 564 static void disarm_sock_keys(struct mem_cgroup *memcg) 565 { 566 } 567 #endif 568 569 #ifdef CONFIG_MEMCG_KMEM 570 /* 571 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 572 * There are two main reasons for not using the css_id for this: 573 * 1) this works better in sparse environments, where we have a lot of memcgs, 574 * but only a few kmem-limited. Or also, if we have, for instance, 200 575 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 576 * 200 entry array for that. 577 * 578 * 2) In order not to violate the cgroup API, we would like to do all memory 579 * allocation in ->create(). At that point, we haven't yet allocated the 580 * css_id. Having a separate index prevents us from messing with the cgroup 581 * core for this 582 * 583 * The current size of the caches array is stored in 584 * memcg_limited_groups_array_size. It will double each time we have to 585 * increase it. 586 */ 587 static DEFINE_IDA(kmem_limited_groups); 588 int memcg_limited_groups_array_size; 589 590 /* 591 * MIN_SIZE is different than 1, because we would like to avoid going through 592 * the alloc/free process all the time. In a small machine, 4 kmem-limited 593 * cgroups is a reasonable guess. In the future, it could be a parameter or 594 * tunable, but that is strictly not necessary. 595 * 596 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 597 * this constant directly from cgroup, but it is understandable that this is 598 * better kept as an internal representation in cgroup.c. In any case, the 599 * css_id space is not getting any smaller, and we don't have to necessarily 600 * increase ours as well if it increases. 601 */ 602 #define MEMCG_CACHES_MIN_SIZE 4 603 #define MEMCG_CACHES_MAX_SIZE 65535 604 605 /* 606 * A lot of the calls to the cache allocation functions are expected to be 607 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 608 * conditional to this static branch, we'll have to allow modules that does 609 * kmem_cache_alloc and the such to see this symbol as well 610 */ 611 struct static_key memcg_kmem_enabled_key; 612 EXPORT_SYMBOL(memcg_kmem_enabled_key); 613 614 static void disarm_kmem_keys(struct mem_cgroup *memcg) 615 { 616 if (memcg_kmem_is_active(memcg)) { 617 static_key_slow_dec(&memcg_kmem_enabled_key); 618 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 619 } 620 /* 621 * This check can't live in kmem destruction function, 622 * since the charges will outlive the cgroup 623 */ 624 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 625 } 626 #else 627 static void disarm_kmem_keys(struct mem_cgroup *memcg) 628 { 629 } 630 #endif /* CONFIG_MEMCG_KMEM */ 631 632 static void disarm_static_keys(struct mem_cgroup *memcg) 633 { 634 disarm_sock_keys(memcg); 635 disarm_kmem_keys(memcg); 636 } 637 638 static void drain_all_stock_async(struct mem_cgroup *memcg); 639 640 static struct mem_cgroup_per_zone * 641 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 642 { 643 VM_BUG_ON((unsigned)nid >= nr_node_ids); 644 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 645 } 646 647 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 648 { 649 return &memcg->css; 650 } 651 652 static struct mem_cgroup_per_zone * 653 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 654 { 655 int nid = page_to_nid(page); 656 int zid = page_zonenum(page); 657 658 return mem_cgroup_zoneinfo(memcg, nid, zid); 659 } 660 661 static struct mem_cgroup_tree_per_zone * 662 soft_limit_tree_node_zone(int nid, int zid) 663 { 664 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 665 } 666 667 static struct mem_cgroup_tree_per_zone * 668 soft_limit_tree_from_page(struct page *page) 669 { 670 int nid = page_to_nid(page); 671 int zid = page_zonenum(page); 672 673 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 674 } 675 676 static void 677 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 678 struct mem_cgroup_per_zone *mz, 679 struct mem_cgroup_tree_per_zone *mctz, 680 unsigned long long new_usage_in_excess) 681 { 682 struct rb_node **p = &mctz->rb_root.rb_node; 683 struct rb_node *parent = NULL; 684 struct mem_cgroup_per_zone *mz_node; 685 686 if (mz->on_tree) 687 return; 688 689 mz->usage_in_excess = new_usage_in_excess; 690 if (!mz->usage_in_excess) 691 return; 692 while (*p) { 693 parent = *p; 694 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 695 tree_node); 696 if (mz->usage_in_excess < mz_node->usage_in_excess) 697 p = &(*p)->rb_left; 698 /* 699 * We can't avoid mem cgroups that are over their soft 700 * limit by the same amount 701 */ 702 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 703 p = &(*p)->rb_right; 704 } 705 rb_link_node(&mz->tree_node, parent, p); 706 rb_insert_color(&mz->tree_node, &mctz->rb_root); 707 mz->on_tree = true; 708 } 709 710 static void 711 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 712 struct mem_cgroup_per_zone *mz, 713 struct mem_cgroup_tree_per_zone *mctz) 714 { 715 if (!mz->on_tree) 716 return; 717 rb_erase(&mz->tree_node, &mctz->rb_root); 718 mz->on_tree = false; 719 } 720 721 static void 722 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 723 struct mem_cgroup_per_zone *mz, 724 struct mem_cgroup_tree_per_zone *mctz) 725 { 726 spin_lock(&mctz->lock); 727 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 728 spin_unlock(&mctz->lock); 729 } 730 731 732 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 733 { 734 unsigned long long excess; 735 struct mem_cgroup_per_zone *mz; 736 struct mem_cgroup_tree_per_zone *mctz; 737 int nid = page_to_nid(page); 738 int zid = page_zonenum(page); 739 mctz = soft_limit_tree_from_page(page); 740 741 /* 742 * Necessary to update all ancestors when hierarchy is used. 743 * because their event counter is not touched. 744 */ 745 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 746 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 747 excess = res_counter_soft_limit_excess(&memcg->res); 748 /* 749 * We have to update the tree if mz is on RB-tree or 750 * mem is over its softlimit. 751 */ 752 if (excess || mz->on_tree) { 753 spin_lock(&mctz->lock); 754 /* if on-tree, remove it */ 755 if (mz->on_tree) 756 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 757 /* 758 * Insert again. mz->usage_in_excess will be updated. 759 * If excess is 0, no tree ops. 760 */ 761 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 762 spin_unlock(&mctz->lock); 763 } 764 } 765 } 766 767 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 768 { 769 int node, zone; 770 struct mem_cgroup_per_zone *mz; 771 struct mem_cgroup_tree_per_zone *mctz; 772 773 for_each_node(node) { 774 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 775 mz = mem_cgroup_zoneinfo(memcg, node, zone); 776 mctz = soft_limit_tree_node_zone(node, zone); 777 mem_cgroup_remove_exceeded(memcg, mz, mctz); 778 } 779 } 780 } 781 782 static struct mem_cgroup_per_zone * 783 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 784 { 785 struct rb_node *rightmost = NULL; 786 struct mem_cgroup_per_zone *mz; 787 788 retry: 789 mz = NULL; 790 rightmost = rb_last(&mctz->rb_root); 791 if (!rightmost) 792 goto done; /* Nothing to reclaim from */ 793 794 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 795 /* 796 * Remove the node now but someone else can add it back, 797 * we will to add it back at the end of reclaim to its correct 798 * position in the tree. 799 */ 800 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 801 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 802 !css_tryget(&mz->memcg->css)) 803 goto retry; 804 done: 805 return mz; 806 } 807 808 static struct mem_cgroup_per_zone * 809 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 810 { 811 struct mem_cgroup_per_zone *mz; 812 813 spin_lock(&mctz->lock); 814 mz = __mem_cgroup_largest_soft_limit_node(mctz); 815 spin_unlock(&mctz->lock); 816 return mz; 817 } 818 819 /* 820 * Implementation Note: reading percpu statistics for memcg. 821 * 822 * Both of vmstat[] and percpu_counter has threshold and do periodic 823 * synchronization to implement "quick" read. There are trade-off between 824 * reading cost and precision of value. Then, we may have a chance to implement 825 * a periodic synchronizion of counter in memcg's counter. 826 * 827 * But this _read() function is used for user interface now. The user accounts 828 * memory usage by memory cgroup and he _always_ requires exact value because 829 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 830 * have to visit all online cpus and make sum. So, for now, unnecessary 831 * synchronization is not implemented. (just implemented for cpu hotplug) 832 * 833 * If there are kernel internal actions which can make use of some not-exact 834 * value, and reading all cpu value can be performance bottleneck in some 835 * common workload, threashold and synchonization as vmstat[] should be 836 * implemented. 837 */ 838 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 839 enum mem_cgroup_stat_index idx) 840 { 841 long val = 0; 842 int cpu; 843 844 get_online_cpus(); 845 for_each_online_cpu(cpu) 846 val += per_cpu(memcg->stat->count[idx], cpu); 847 #ifdef CONFIG_HOTPLUG_CPU 848 spin_lock(&memcg->pcp_counter_lock); 849 val += memcg->nocpu_base.count[idx]; 850 spin_unlock(&memcg->pcp_counter_lock); 851 #endif 852 put_online_cpus(); 853 return val; 854 } 855 856 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 857 bool charge) 858 { 859 int val = (charge) ? 1 : -1; 860 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 861 } 862 863 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 864 enum mem_cgroup_events_index idx) 865 { 866 unsigned long val = 0; 867 int cpu; 868 869 get_online_cpus(); 870 for_each_online_cpu(cpu) 871 val += per_cpu(memcg->stat->events[idx], cpu); 872 #ifdef CONFIG_HOTPLUG_CPU 873 spin_lock(&memcg->pcp_counter_lock); 874 val += memcg->nocpu_base.events[idx]; 875 spin_unlock(&memcg->pcp_counter_lock); 876 #endif 877 put_online_cpus(); 878 return val; 879 } 880 881 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 882 struct page *page, 883 bool anon, int nr_pages) 884 { 885 preempt_disable(); 886 887 /* 888 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 889 * counted as CACHE even if it's on ANON LRU. 890 */ 891 if (anon) 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 893 nr_pages); 894 else 895 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 896 nr_pages); 897 898 if (PageTransHuge(page)) 899 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 900 nr_pages); 901 902 /* pagein of a big page is an event. So, ignore page size */ 903 if (nr_pages > 0) 904 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 905 else { 906 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 907 nr_pages = -nr_pages; /* for event */ 908 } 909 910 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 911 912 preempt_enable(); 913 } 914 915 unsigned long 916 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 917 { 918 struct mem_cgroup_per_zone *mz; 919 920 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 921 return mz->lru_size[lru]; 922 } 923 924 static unsigned long 925 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 926 unsigned int lru_mask) 927 { 928 struct mem_cgroup_per_zone *mz; 929 enum lru_list lru; 930 unsigned long ret = 0; 931 932 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 933 934 for_each_lru(lru) { 935 if (BIT(lru) & lru_mask) 936 ret += mz->lru_size[lru]; 937 } 938 return ret; 939 } 940 941 static unsigned long 942 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 943 int nid, unsigned int lru_mask) 944 { 945 u64 total = 0; 946 int zid; 947 948 for (zid = 0; zid < MAX_NR_ZONES; zid++) 949 total += mem_cgroup_zone_nr_lru_pages(memcg, 950 nid, zid, lru_mask); 951 952 return total; 953 } 954 955 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 956 unsigned int lru_mask) 957 { 958 int nid; 959 u64 total = 0; 960 961 for_each_node_state(nid, N_MEMORY) 962 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 963 return total; 964 } 965 966 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 967 enum mem_cgroup_events_target target) 968 { 969 unsigned long val, next; 970 971 val = __this_cpu_read(memcg->stat->nr_page_events); 972 next = __this_cpu_read(memcg->stat->targets[target]); 973 /* from time_after() in jiffies.h */ 974 if ((long)next - (long)val < 0) { 975 switch (target) { 976 case MEM_CGROUP_TARGET_THRESH: 977 next = val + THRESHOLDS_EVENTS_TARGET; 978 break; 979 case MEM_CGROUP_TARGET_SOFTLIMIT: 980 next = val + SOFTLIMIT_EVENTS_TARGET; 981 break; 982 case MEM_CGROUP_TARGET_NUMAINFO: 983 next = val + NUMAINFO_EVENTS_TARGET; 984 break; 985 default: 986 break; 987 } 988 __this_cpu_write(memcg->stat->targets[target], next); 989 return true; 990 } 991 return false; 992 } 993 994 /* 995 * Check events in order. 996 * 997 */ 998 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 999 { 1000 preempt_disable(); 1001 /* threshold event is triggered in finer grain than soft limit */ 1002 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1003 MEM_CGROUP_TARGET_THRESH))) { 1004 bool do_softlimit; 1005 bool do_numainfo __maybe_unused; 1006 1007 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1008 MEM_CGROUP_TARGET_SOFTLIMIT); 1009 #if MAX_NUMNODES > 1 1010 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1011 MEM_CGROUP_TARGET_NUMAINFO); 1012 #endif 1013 preempt_enable(); 1014 1015 mem_cgroup_threshold(memcg); 1016 if (unlikely(do_softlimit)) 1017 mem_cgroup_update_tree(memcg, page); 1018 #if MAX_NUMNODES > 1 1019 if (unlikely(do_numainfo)) 1020 atomic_inc(&memcg->numainfo_events); 1021 #endif 1022 } else 1023 preempt_enable(); 1024 } 1025 1026 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1027 { 1028 /* 1029 * mm_update_next_owner() may clear mm->owner to NULL 1030 * if it races with swapoff, page migration, etc. 1031 * So this can be called with p == NULL. 1032 */ 1033 if (unlikely(!p)) 1034 return NULL; 1035 1036 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); 1037 } 1038 1039 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1040 { 1041 struct mem_cgroup *memcg = NULL; 1042 1043 if (!mm) 1044 return NULL; 1045 /* 1046 * Because we have no locks, mm->owner's may be being moved to other 1047 * cgroup. We use css_tryget() here even if this looks 1048 * pessimistic (rather than adding locks here). 1049 */ 1050 rcu_read_lock(); 1051 do { 1052 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1053 if (unlikely(!memcg)) 1054 break; 1055 } while (!css_tryget(&memcg->css)); 1056 rcu_read_unlock(); 1057 return memcg; 1058 } 1059 1060 /* 1061 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1062 * ref. count) or NULL if the whole root's subtree has been visited. 1063 * 1064 * helper function to be used by mem_cgroup_iter 1065 */ 1066 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1067 struct mem_cgroup *last_visited) 1068 { 1069 struct cgroup_subsys_state *prev_css, *next_css; 1070 1071 prev_css = last_visited ? &last_visited->css : NULL; 1072 skip_node: 1073 next_css = css_next_descendant_pre(prev_css, &root->css); 1074 1075 /* 1076 * Even if we found a group we have to make sure it is 1077 * alive. css && !memcg means that the groups should be 1078 * skipped and we should continue the tree walk. 1079 * last_visited css is safe to use because it is 1080 * protected by css_get and the tree walk is rcu safe. 1081 */ 1082 if (next_css) { 1083 struct mem_cgroup *mem = mem_cgroup_from_css(next_css); 1084 1085 if (css_tryget(&mem->css)) 1086 return mem; 1087 else { 1088 prev_css = next_css; 1089 goto skip_node; 1090 } 1091 } 1092 1093 return NULL; 1094 } 1095 1096 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1097 { 1098 /* 1099 * When a group in the hierarchy below root is destroyed, the 1100 * hierarchy iterator can no longer be trusted since it might 1101 * have pointed to the destroyed group. Invalidate it. 1102 */ 1103 atomic_inc(&root->dead_count); 1104 } 1105 1106 static struct mem_cgroup * 1107 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1108 struct mem_cgroup *root, 1109 int *sequence) 1110 { 1111 struct mem_cgroup *position = NULL; 1112 /* 1113 * A cgroup destruction happens in two stages: offlining and 1114 * release. They are separated by a RCU grace period. 1115 * 1116 * If the iterator is valid, we may still race with an 1117 * offlining. The RCU lock ensures the object won't be 1118 * released, tryget will fail if we lost the race. 1119 */ 1120 *sequence = atomic_read(&root->dead_count); 1121 if (iter->last_dead_count == *sequence) { 1122 smp_rmb(); 1123 position = iter->last_visited; 1124 if (position && !css_tryget(&position->css)) 1125 position = NULL; 1126 } 1127 return position; 1128 } 1129 1130 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1131 struct mem_cgroup *last_visited, 1132 struct mem_cgroup *new_position, 1133 int sequence) 1134 { 1135 if (last_visited) 1136 css_put(&last_visited->css); 1137 /* 1138 * We store the sequence count from the time @last_visited was 1139 * loaded successfully instead of rereading it here so that we 1140 * don't lose destruction events in between. We could have 1141 * raced with the destruction of @new_position after all. 1142 */ 1143 iter->last_visited = new_position; 1144 smp_wmb(); 1145 iter->last_dead_count = sequence; 1146 } 1147 1148 /** 1149 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1150 * @root: hierarchy root 1151 * @prev: previously returned memcg, NULL on first invocation 1152 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1153 * 1154 * Returns references to children of the hierarchy below @root, or 1155 * @root itself, or %NULL after a full round-trip. 1156 * 1157 * Caller must pass the return value in @prev on subsequent 1158 * invocations for reference counting, or use mem_cgroup_iter_break() 1159 * to cancel a hierarchy walk before the round-trip is complete. 1160 * 1161 * Reclaimers can specify a zone and a priority level in @reclaim to 1162 * divide up the memcgs in the hierarchy among all concurrent 1163 * reclaimers operating on the same zone and priority. 1164 */ 1165 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1166 struct mem_cgroup *prev, 1167 struct mem_cgroup_reclaim_cookie *reclaim) 1168 { 1169 struct mem_cgroup *memcg = NULL; 1170 struct mem_cgroup *last_visited = NULL; 1171 1172 if (mem_cgroup_disabled()) 1173 return NULL; 1174 1175 if (!root) 1176 root = root_mem_cgroup; 1177 1178 if (prev && !reclaim) 1179 last_visited = prev; 1180 1181 if (!root->use_hierarchy && root != root_mem_cgroup) { 1182 if (prev) 1183 goto out_css_put; 1184 return root; 1185 } 1186 1187 rcu_read_lock(); 1188 while (!memcg) { 1189 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1190 int uninitialized_var(seq); 1191 1192 if (reclaim) { 1193 int nid = zone_to_nid(reclaim->zone); 1194 int zid = zone_idx(reclaim->zone); 1195 struct mem_cgroup_per_zone *mz; 1196 1197 mz = mem_cgroup_zoneinfo(root, nid, zid); 1198 iter = &mz->reclaim_iter[reclaim->priority]; 1199 if (prev && reclaim->generation != iter->generation) { 1200 iter->last_visited = NULL; 1201 goto out_unlock; 1202 } 1203 1204 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1205 } 1206 1207 memcg = __mem_cgroup_iter_next(root, last_visited); 1208 1209 if (reclaim) { 1210 mem_cgroup_iter_update(iter, last_visited, memcg, seq); 1211 1212 if (!memcg) 1213 iter->generation++; 1214 else if (!prev && memcg) 1215 reclaim->generation = iter->generation; 1216 } 1217 1218 if (prev && !memcg) 1219 goto out_unlock; 1220 } 1221 out_unlock: 1222 rcu_read_unlock(); 1223 out_css_put: 1224 if (prev && prev != root) 1225 css_put(&prev->css); 1226 1227 return memcg; 1228 } 1229 1230 /** 1231 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1232 * @root: hierarchy root 1233 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1234 */ 1235 void mem_cgroup_iter_break(struct mem_cgroup *root, 1236 struct mem_cgroup *prev) 1237 { 1238 if (!root) 1239 root = root_mem_cgroup; 1240 if (prev && prev != root) 1241 css_put(&prev->css); 1242 } 1243 1244 /* 1245 * Iteration constructs for visiting all cgroups (under a tree). If 1246 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1247 * be used for reference counting. 1248 */ 1249 #define for_each_mem_cgroup_tree(iter, root) \ 1250 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1251 iter != NULL; \ 1252 iter = mem_cgroup_iter(root, iter, NULL)) 1253 1254 #define for_each_mem_cgroup(iter) \ 1255 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1256 iter != NULL; \ 1257 iter = mem_cgroup_iter(NULL, iter, NULL)) 1258 1259 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1260 { 1261 struct mem_cgroup *memcg; 1262 1263 rcu_read_lock(); 1264 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1265 if (unlikely(!memcg)) 1266 goto out; 1267 1268 switch (idx) { 1269 case PGFAULT: 1270 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1271 break; 1272 case PGMAJFAULT: 1273 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1274 break; 1275 default: 1276 BUG(); 1277 } 1278 out: 1279 rcu_read_unlock(); 1280 } 1281 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1282 1283 /** 1284 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1285 * @zone: zone of the wanted lruvec 1286 * @memcg: memcg of the wanted lruvec 1287 * 1288 * Returns the lru list vector holding pages for the given @zone and 1289 * @mem. This can be the global zone lruvec, if the memory controller 1290 * is disabled. 1291 */ 1292 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1293 struct mem_cgroup *memcg) 1294 { 1295 struct mem_cgroup_per_zone *mz; 1296 struct lruvec *lruvec; 1297 1298 if (mem_cgroup_disabled()) { 1299 lruvec = &zone->lruvec; 1300 goto out; 1301 } 1302 1303 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1304 lruvec = &mz->lruvec; 1305 out: 1306 /* 1307 * Since a node can be onlined after the mem_cgroup was created, 1308 * we have to be prepared to initialize lruvec->zone here; 1309 * and if offlined then reonlined, we need to reinitialize it. 1310 */ 1311 if (unlikely(lruvec->zone != zone)) 1312 lruvec->zone = zone; 1313 return lruvec; 1314 } 1315 1316 /* 1317 * Following LRU functions are allowed to be used without PCG_LOCK. 1318 * Operations are called by routine of global LRU independently from memcg. 1319 * What we have to take care of here is validness of pc->mem_cgroup. 1320 * 1321 * Changes to pc->mem_cgroup happens when 1322 * 1. charge 1323 * 2. moving account 1324 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1325 * It is added to LRU before charge. 1326 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1327 * When moving account, the page is not on LRU. It's isolated. 1328 */ 1329 1330 /** 1331 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1332 * @page: the page 1333 * @zone: zone of the page 1334 */ 1335 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1336 { 1337 struct mem_cgroup_per_zone *mz; 1338 struct mem_cgroup *memcg; 1339 struct page_cgroup *pc; 1340 struct lruvec *lruvec; 1341 1342 if (mem_cgroup_disabled()) { 1343 lruvec = &zone->lruvec; 1344 goto out; 1345 } 1346 1347 pc = lookup_page_cgroup(page); 1348 memcg = pc->mem_cgroup; 1349 1350 /* 1351 * Surreptitiously switch any uncharged offlist page to root: 1352 * an uncharged page off lru does nothing to secure 1353 * its former mem_cgroup from sudden removal. 1354 * 1355 * Our caller holds lru_lock, and PageCgroupUsed is updated 1356 * under page_cgroup lock: between them, they make all uses 1357 * of pc->mem_cgroup safe. 1358 */ 1359 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1360 pc->mem_cgroup = memcg = root_mem_cgroup; 1361 1362 mz = page_cgroup_zoneinfo(memcg, page); 1363 lruvec = &mz->lruvec; 1364 out: 1365 /* 1366 * Since a node can be onlined after the mem_cgroup was created, 1367 * we have to be prepared to initialize lruvec->zone here; 1368 * and if offlined then reonlined, we need to reinitialize it. 1369 */ 1370 if (unlikely(lruvec->zone != zone)) 1371 lruvec->zone = zone; 1372 return lruvec; 1373 } 1374 1375 /** 1376 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1377 * @lruvec: mem_cgroup per zone lru vector 1378 * @lru: index of lru list the page is sitting on 1379 * @nr_pages: positive when adding or negative when removing 1380 * 1381 * This function must be called when a page is added to or removed from an 1382 * lru list. 1383 */ 1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1385 int nr_pages) 1386 { 1387 struct mem_cgroup_per_zone *mz; 1388 unsigned long *lru_size; 1389 1390 if (mem_cgroup_disabled()) 1391 return; 1392 1393 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1394 lru_size = mz->lru_size + lru; 1395 *lru_size += nr_pages; 1396 VM_BUG_ON((long)(*lru_size) < 0); 1397 } 1398 1399 /* 1400 * Checks whether given mem is same or in the root_mem_cgroup's 1401 * hierarchy subtree 1402 */ 1403 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1404 struct mem_cgroup *memcg) 1405 { 1406 if (root_memcg == memcg) 1407 return true; 1408 if (!root_memcg->use_hierarchy || !memcg) 1409 return false; 1410 return css_is_ancestor(&memcg->css, &root_memcg->css); 1411 } 1412 1413 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1414 struct mem_cgroup *memcg) 1415 { 1416 bool ret; 1417 1418 rcu_read_lock(); 1419 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1420 rcu_read_unlock(); 1421 return ret; 1422 } 1423 1424 bool task_in_mem_cgroup(struct task_struct *task, 1425 const struct mem_cgroup *memcg) 1426 { 1427 struct mem_cgroup *curr = NULL; 1428 struct task_struct *p; 1429 bool ret; 1430 1431 p = find_lock_task_mm(task); 1432 if (p) { 1433 curr = try_get_mem_cgroup_from_mm(p->mm); 1434 task_unlock(p); 1435 } else { 1436 /* 1437 * All threads may have already detached their mm's, but the oom 1438 * killer still needs to detect if they have already been oom 1439 * killed to prevent needlessly killing additional tasks. 1440 */ 1441 rcu_read_lock(); 1442 curr = mem_cgroup_from_task(task); 1443 if (curr) 1444 css_get(&curr->css); 1445 rcu_read_unlock(); 1446 } 1447 if (!curr) 1448 return false; 1449 /* 1450 * We should check use_hierarchy of "memcg" not "curr". Because checking 1451 * use_hierarchy of "curr" here make this function true if hierarchy is 1452 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1453 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1454 */ 1455 ret = mem_cgroup_same_or_subtree(memcg, curr); 1456 css_put(&curr->css); 1457 return ret; 1458 } 1459 1460 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1461 { 1462 unsigned long inactive_ratio; 1463 unsigned long inactive; 1464 unsigned long active; 1465 unsigned long gb; 1466 1467 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1468 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1469 1470 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1471 if (gb) 1472 inactive_ratio = int_sqrt(10 * gb); 1473 else 1474 inactive_ratio = 1; 1475 1476 return inactive * inactive_ratio < active; 1477 } 1478 1479 #define mem_cgroup_from_res_counter(counter, member) \ 1480 container_of(counter, struct mem_cgroup, member) 1481 1482 /** 1483 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1484 * @memcg: the memory cgroup 1485 * 1486 * Returns the maximum amount of memory @mem can be charged with, in 1487 * pages. 1488 */ 1489 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1490 { 1491 unsigned long long margin; 1492 1493 margin = res_counter_margin(&memcg->res); 1494 if (do_swap_account) 1495 margin = min(margin, res_counter_margin(&memcg->memsw)); 1496 return margin >> PAGE_SHIFT; 1497 } 1498 1499 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1500 { 1501 /* root ? */ 1502 if (!css_parent(&memcg->css)) 1503 return vm_swappiness; 1504 1505 return memcg->swappiness; 1506 } 1507 1508 /* 1509 * memcg->moving_account is used for checking possibility that some thread is 1510 * calling move_account(). When a thread on CPU-A starts moving pages under 1511 * a memcg, other threads should check memcg->moving_account under 1512 * rcu_read_lock(), like this: 1513 * 1514 * CPU-A CPU-B 1515 * rcu_read_lock() 1516 * memcg->moving_account+1 if (memcg->mocing_account) 1517 * take heavy locks. 1518 * synchronize_rcu() update something. 1519 * rcu_read_unlock() 1520 * start move here. 1521 */ 1522 1523 /* for quick checking without looking up memcg */ 1524 atomic_t memcg_moving __read_mostly; 1525 1526 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1527 { 1528 atomic_inc(&memcg_moving); 1529 atomic_inc(&memcg->moving_account); 1530 synchronize_rcu(); 1531 } 1532 1533 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1534 { 1535 /* 1536 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1537 * We check NULL in callee rather than caller. 1538 */ 1539 if (memcg) { 1540 atomic_dec(&memcg_moving); 1541 atomic_dec(&memcg->moving_account); 1542 } 1543 } 1544 1545 /* 1546 * 2 routines for checking "mem" is under move_account() or not. 1547 * 1548 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1549 * is used for avoiding races in accounting. If true, 1550 * pc->mem_cgroup may be overwritten. 1551 * 1552 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1553 * under hierarchy of moving cgroups. This is for 1554 * waiting at hith-memory prressure caused by "move". 1555 */ 1556 1557 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1558 { 1559 VM_BUG_ON(!rcu_read_lock_held()); 1560 return atomic_read(&memcg->moving_account) > 0; 1561 } 1562 1563 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1564 { 1565 struct mem_cgroup *from; 1566 struct mem_cgroup *to; 1567 bool ret = false; 1568 /* 1569 * Unlike task_move routines, we access mc.to, mc.from not under 1570 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1571 */ 1572 spin_lock(&mc.lock); 1573 from = mc.from; 1574 to = mc.to; 1575 if (!from) 1576 goto unlock; 1577 1578 ret = mem_cgroup_same_or_subtree(memcg, from) 1579 || mem_cgroup_same_or_subtree(memcg, to); 1580 unlock: 1581 spin_unlock(&mc.lock); 1582 return ret; 1583 } 1584 1585 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1586 { 1587 if (mc.moving_task && current != mc.moving_task) { 1588 if (mem_cgroup_under_move(memcg)) { 1589 DEFINE_WAIT(wait); 1590 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1591 /* moving charge context might have finished. */ 1592 if (mc.moving_task) 1593 schedule(); 1594 finish_wait(&mc.waitq, &wait); 1595 return true; 1596 } 1597 } 1598 return false; 1599 } 1600 1601 /* 1602 * Take this lock when 1603 * - a code tries to modify page's memcg while it's USED. 1604 * - a code tries to modify page state accounting in a memcg. 1605 * see mem_cgroup_stolen(), too. 1606 */ 1607 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1608 unsigned long *flags) 1609 { 1610 spin_lock_irqsave(&memcg->move_lock, *flags); 1611 } 1612 1613 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1614 unsigned long *flags) 1615 { 1616 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1617 } 1618 1619 #define K(x) ((x) << (PAGE_SHIFT-10)) 1620 /** 1621 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1622 * @memcg: The memory cgroup that went over limit 1623 * @p: Task that is going to be killed 1624 * 1625 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1626 * enabled 1627 */ 1628 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1629 { 1630 struct cgroup *task_cgrp; 1631 struct cgroup *mem_cgrp; 1632 /* 1633 * Need a buffer in BSS, can't rely on allocations. The code relies 1634 * on the assumption that OOM is serialized for memory controller. 1635 * If this assumption is broken, revisit this code. 1636 */ 1637 static char memcg_name[PATH_MAX]; 1638 int ret; 1639 struct mem_cgroup *iter; 1640 unsigned int i; 1641 1642 if (!p) 1643 return; 1644 1645 rcu_read_lock(); 1646 1647 mem_cgrp = memcg->css.cgroup; 1648 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1649 1650 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1651 if (ret < 0) { 1652 /* 1653 * Unfortunately, we are unable to convert to a useful name 1654 * But we'll still print out the usage information 1655 */ 1656 rcu_read_unlock(); 1657 goto done; 1658 } 1659 rcu_read_unlock(); 1660 1661 pr_info("Task in %s killed", memcg_name); 1662 1663 rcu_read_lock(); 1664 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1665 if (ret < 0) { 1666 rcu_read_unlock(); 1667 goto done; 1668 } 1669 rcu_read_unlock(); 1670 1671 /* 1672 * Continues from above, so we don't need an KERN_ level 1673 */ 1674 pr_cont(" as a result of limit of %s\n", memcg_name); 1675 done: 1676 1677 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1678 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1679 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1680 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1681 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1682 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1683 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1684 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1685 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1686 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1687 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1688 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1689 1690 for_each_mem_cgroup_tree(iter, memcg) { 1691 pr_info("Memory cgroup stats"); 1692 1693 rcu_read_lock(); 1694 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1695 if (!ret) 1696 pr_cont(" for %s", memcg_name); 1697 rcu_read_unlock(); 1698 pr_cont(":"); 1699 1700 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1701 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1702 continue; 1703 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1704 K(mem_cgroup_read_stat(iter, i))); 1705 } 1706 1707 for (i = 0; i < NR_LRU_LISTS; i++) 1708 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1709 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1710 1711 pr_cont("\n"); 1712 } 1713 } 1714 1715 /* 1716 * This function returns the number of memcg under hierarchy tree. Returns 1717 * 1(self count) if no children. 1718 */ 1719 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1720 { 1721 int num = 0; 1722 struct mem_cgroup *iter; 1723 1724 for_each_mem_cgroup_tree(iter, memcg) 1725 num++; 1726 return num; 1727 } 1728 1729 /* 1730 * Return the memory (and swap, if configured) limit for a memcg. 1731 */ 1732 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1733 { 1734 u64 limit; 1735 1736 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1737 1738 /* 1739 * Do not consider swap space if we cannot swap due to swappiness 1740 */ 1741 if (mem_cgroup_swappiness(memcg)) { 1742 u64 memsw; 1743 1744 limit += total_swap_pages << PAGE_SHIFT; 1745 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1746 1747 /* 1748 * If memsw is finite and limits the amount of swap space 1749 * available to this memcg, return that limit. 1750 */ 1751 limit = min(limit, memsw); 1752 } 1753 1754 return limit; 1755 } 1756 1757 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1758 int order) 1759 { 1760 struct mem_cgroup *iter; 1761 unsigned long chosen_points = 0; 1762 unsigned long totalpages; 1763 unsigned int points = 0; 1764 struct task_struct *chosen = NULL; 1765 1766 /* 1767 * If current has a pending SIGKILL or is exiting, then automatically 1768 * select it. The goal is to allow it to allocate so that it may 1769 * quickly exit and free its memory. 1770 */ 1771 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1772 set_thread_flag(TIF_MEMDIE); 1773 return; 1774 } 1775 1776 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1777 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1778 for_each_mem_cgroup_tree(iter, memcg) { 1779 struct css_task_iter it; 1780 struct task_struct *task; 1781 1782 css_task_iter_start(&iter->css, &it); 1783 while ((task = css_task_iter_next(&it))) { 1784 switch (oom_scan_process_thread(task, totalpages, NULL, 1785 false)) { 1786 case OOM_SCAN_SELECT: 1787 if (chosen) 1788 put_task_struct(chosen); 1789 chosen = task; 1790 chosen_points = ULONG_MAX; 1791 get_task_struct(chosen); 1792 /* fall through */ 1793 case OOM_SCAN_CONTINUE: 1794 continue; 1795 case OOM_SCAN_ABORT: 1796 css_task_iter_end(&it); 1797 mem_cgroup_iter_break(memcg, iter); 1798 if (chosen) 1799 put_task_struct(chosen); 1800 return; 1801 case OOM_SCAN_OK: 1802 break; 1803 }; 1804 points = oom_badness(task, memcg, NULL, totalpages); 1805 if (points > chosen_points) { 1806 if (chosen) 1807 put_task_struct(chosen); 1808 chosen = task; 1809 chosen_points = points; 1810 get_task_struct(chosen); 1811 } 1812 } 1813 css_task_iter_end(&it); 1814 } 1815 1816 if (!chosen) 1817 return; 1818 points = chosen_points * 1000 / totalpages; 1819 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1820 NULL, "Memory cgroup out of memory"); 1821 } 1822 1823 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1824 gfp_t gfp_mask, 1825 unsigned long flags) 1826 { 1827 unsigned long total = 0; 1828 bool noswap = false; 1829 int loop; 1830 1831 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1832 noswap = true; 1833 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1834 noswap = true; 1835 1836 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1837 if (loop) 1838 drain_all_stock_async(memcg); 1839 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1840 /* 1841 * Allow limit shrinkers, which are triggered directly 1842 * by userspace, to catch signals and stop reclaim 1843 * after minimal progress, regardless of the margin. 1844 */ 1845 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1846 break; 1847 if (mem_cgroup_margin(memcg)) 1848 break; 1849 /* 1850 * If nothing was reclaimed after two attempts, there 1851 * may be no reclaimable pages in this hierarchy. 1852 */ 1853 if (loop && !total) 1854 break; 1855 } 1856 return total; 1857 } 1858 1859 /** 1860 * test_mem_cgroup_node_reclaimable 1861 * @memcg: the target memcg 1862 * @nid: the node ID to be checked. 1863 * @noswap : specify true here if the user wants flle only information. 1864 * 1865 * This function returns whether the specified memcg contains any 1866 * reclaimable pages on a node. Returns true if there are any reclaimable 1867 * pages in the node. 1868 */ 1869 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1870 int nid, bool noswap) 1871 { 1872 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1873 return true; 1874 if (noswap || !total_swap_pages) 1875 return false; 1876 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1877 return true; 1878 return false; 1879 1880 } 1881 #if MAX_NUMNODES > 1 1882 1883 /* 1884 * Always updating the nodemask is not very good - even if we have an empty 1885 * list or the wrong list here, we can start from some node and traverse all 1886 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1887 * 1888 */ 1889 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1890 { 1891 int nid; 1892 /* 1893 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1894 * pagein/pageout changes since the last update. 1895 */ 1896 if (!atomic_read(&memcg->numainfo_events)) 1897 return; 1898 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1899 return; 1900 1901 /* make a nodemask where this memcg uses memory from */ 1902 memcg->scan_nodes = node_states[N_MEMORY]; 1903 1904 for_each_node_mask(nid, node_states[N_MEMORY]) { 1905 1906 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1907 node_clear(nid, memcg->scan_nodes); 1908 } 1909 1910 atomic_set(&memcg->numainfo_events, 0); 1911 atomic_set(&memcg->numainfo_updating, 0); 1912 } 1913 1914 /* 1915 * Selecting a node where we start reclaim from. Because what we need is just 1916 * reducing usage counter, start from anywhere is O,K. Considering 1917 * memory reclaim from current node, there are pros. and cons. 1918 * 1919 * Freeing memory from current node means freeing memory from a node which 1920 * we'll use or we've used. So, it may make LRU bad. And if several threads 1921 * hit limits, it will see a contention on a node. But freeing from remote 1922 * node means more costs for memory reclaim because of memory latency. 1923 * 1924 * Now, we use round-robin. Better algorithm is welcomed. 1925 */ 1926 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1927 { 1928 int node; 1929 1930 mem_cgroup_may_update_nodemask(memcg); 1931 node = memcg->last_scanned_node; 1932 1933 node = next_node(node, memcg->scan_nodes); 1934 if (node == MAX_NUMNODES) 1935 node = first_node(memcg->scan_nodes); 1936 /* 1937 * We call this when we hit limit, not when pages are added to LRU. 1938 * No LRU may hold pages because all pages are UNEVICTABLE or 1939 * memcg is too small and all pages are not on LRU. In that case, 1940 * we use curret node. 1941 */ 1942 if (unlikely(node == MAX_NUMNODES)) 1943 node = numa_node_id(); 1944 1945 memcg->last_scanned_node = node; 1946 return node; 1947 } 1948 1949 /* 1950 * Check all nodes whether it contains reclaimable pages or not. 1951 * For quick scan, we make use of scan_nodes. This will allow us to skip 1952 * unused nodes. But scan_nodes is lazily updated and may not cotain 1953 * enough new information. We need to do double check. 1954 */ 1955 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1956 { 1957 int nid; 1958 1959 /* 1960 * quick check...making use of scan_node. 1961 * We can skip unused nodes. 1962 */ 1963 if (!nodes_empty(memcg->scan_nodes)) { 1964 for (nid = first_node(memcg->scan_nodes); 1965 nid < MAX_NUMNODES; 1966 nid = next_node(nid, memcg->scan_nodes)) { 1967 1968 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1969 return true; 1970 } 1971 } 1972 /* 1973 * Check rest of nodes. 1974 */ 1975 for_each_node_state(nid, N_MEMORY) { 1976 if (node_isset(nid, memcg->scan_nodes)) 1977 continue; 1978 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1979 return true; 1980 } 1981 return false; 1982 } 1983 1984 #else 1985 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1986 { 1987 return 0; 1988 } 1989 1990 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1991 { 1992 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1993 } 1994 #endif 1995 1996 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1997 struct zone *zone, 1998 gfp_t gfp_mask, 1999 unsigned long *total_scanned) 2000 { 2001 struct mem_cgroup *victim = NULL; 2002 int total = 0; 2003 int loop = 0; 2004 unsigned long excess; 2005 unsigned long nr_scanned; 2006 struct mem_cgroup_reclaim_cookie reclaim = { 2007 .zone = zone, 2008 .priority = 0, 2009 }; 2010 2011 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2012 2013 while (1) { 2014 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2015 if (!victim) { 2016 loop++; 2017 if (loop >= 2) { 2018 /* 2019 * If we have not been able to reclaim 2020 * anything, it might because there are 2021 * no reclaimable pages under this hierarchy 2022 */ 2023 if (!total) 2024 break; 2025 /* 2026 * We want to do more targeted reclaim. 2027 * excess >> 2 is not to excessive so as to 2028 * reclaim too much, nor too less that we keep 2029 * coming back to reclaim from this cgroup 2030 */ 2031 if (total >= (excess >> 2) || 2032 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2033 break; 2034 } 2035 continue; 2036 } 2037 if (!mem_cgroup_reclaimable(victim, false)) 2038 continue; 2039 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2040 zone, &nr_scanned); 2041 *total_scanned += nr_scanned; 2042 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2043 break; 2044 } 2045 mem_cgroup_iter_break(root_memcg, victim); 2046 return total; 2047 } 2048 2049 static DEFINE_SPINLOCK(memcg_oom_lock); 2050 2051 /* 2052 * Check OOM-Killer is already running under our hierarchy. 2053 * If someone is running, return false. 2054 */ 2055 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2056 { 2057 struct mem_cgroup *iter, *failed = NULL; 2058 2059 spin_lock(&memcg_oom_lock); 2060 2061 for_each_mem_cgroup_tree(iter, memcg) { 2062 if (iter->oom_lock) { 2063 /* 2064 * this subtree of our hierarchy is already locked 2065 * so we cannot give a lock. 2066 */ 2067 failed = iter; 2068 mem_cgroup_iter_break(memcg, iter); 2069 break; 2070 } else 2071 iter->oom_lock = true; 2072 } 2073 2074 if (failed) { 2075 /* 2076 * OK, we failed to lock the whole subtree so we have 2077 * to clean up what we set up to the failing subtree 2078 */ 2079 for_each_mem_cgroup_tree(iter, memcg) { 2080 if (iter == failed) { 2081 mem_cgroup_iter_break(memcg, iter); 2082 break; 2083 } 2084 iter->oom_lock = false; 2085 } 2086 } 2087 2088 spin_unlock(&memcg_oom_lock); 2089 2090 return !failed; 2091 } 2092 2093 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2094 { 2095 struct mem_cgroup *iter; 2096 2097 spin_lock(&memcg_oom_lock); 2098 for_each_mem_cgroup_tree(iter, memcg) 2099 iter->oom_lock = false; 2100 spin_unlock(&memcg_oom_lock); 2101 } 2102 2103 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2104 { 2105 struct mem_cgroup *iter; 2106 2107 for_each_mem_cgroup_tree(iter, memcg) 2108 atomic_inc(&iter->under_oom); 2109 } 2110 2111 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2112 { 2113 struct mem_cgroup *iter; 2114 2115 /* 2116 * When a new child is created while the hierarchy is under oom, 2117 * mem_cgroup_oom_lock() may not be called. We have to use 2118 * atomic_add_unless() here. 2119 */ 2120 for_each_mem_cgroup_tree(iter, memcg) 2121 atomic_add_unless(&iter->under_oom, -1, 0); 2122 } 2123 2124 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2125 2126 struct oom_wait_info { 2127 struct mem_cgroup *memcg; 2128 wait_queue_t wait; 2129 }; 2130 2131 static int memcg_oom_wake_function(wait_queue_t *wait, 2132 unsigned mode, int sync, void *arg) 2133 { 2134 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2135 struct mem_cgroup *oom_wait_memcg; 2136 struct oom_wait_info *oom_wait_info; 2137 2138 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2139 oom_wait_memcg = oom_wait_info->memcg; 2140 2141 /* 2142 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2143 * Then we can use css_is_ancestor without taking care of RCU. 2144 */ 2145 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2146 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2147 return 0; 2148 return autoremove_wake_function(wait, mode, sync, arg); 2149 } 2150 2151 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2152 { 2153 atomic_inc(&memcg->oom_wakeups); 2154 /* for filtering, pass "memcg" as argument. */ 2155 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2156 } 2157 2158 static void memcg_oom_recover(struct mem_cgroup *memcg) 2159 { 2160 if (memcg && atomic_read(&memcg->under_oom)) 2161 memcg_wakeup_oom(memcg); 2162 } 2163 2164 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2165 { 2166 if (!current->memcg_oom.may_oom) 2167 return; 2168 /* 2169 * We are in the middle of the charge context here, so we 2170 * don't want to block when potentially sitting on a callstack 2171 * that holds all kinds of filesystem and mm locks. 2172 * 2173 * Also, the caller may handle a failed allocation gracefully 2174 * (like optional page cache readahead) and so an OOM killer 2175 * invocation might not even be necessary. 2176 * 2177 * That's why we don't do anything here except remember the 2178 * OOM context and then deal with it at the end of the page 2179 * fault when the stack is unwound, the locks are released, 2180 * and when we know whether the fault was overall successful. 2181 */ 2182 css_get(&memcg->css); 2183 current->memcg_oom.memcg = memcg; 2184 current->memcg_oom.gfp_mask = mask; 2185 current->memcg_oom.order = order; 2186 } 2187 2188 /** 2189 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2190 * @handle: actually kill/wait or just clean up the OOM state 2191 * 2192 * This has to be called at the end of a page fault if the memcg OOM 2193 * handler was enabled. 2194 * 2195 * Memcg supports userspace OOM handling where failed allocations must 2196 * sleep on a waitqueue until the userspace task resolves the 2197 * situation. Sleeping directly in the charge context with all kinds 2198 * of locks held is not a good idea, instead we remember an OOM state 2199 * in the task and mem_cgroup_oom_synchronize() has to be called at 2200 * the end of the page fault to complete the OOM handling. 2201 * 2202 * Returns %true if an ongoing memcg OOM situation was detected and 2203 * completed, %false otherwise. 2204 */ 2205 bool mem_cgroup_oom_synchronize(bool handle) 2206 { 2207 struct mem_cgroup *memcg = current->memcg_oom.memcg; 2208 struct oom_wait_info owait; 2209 bool locked; 2210 2211 /* OOM is global, do not handle */ 2212 if (!memcg) 2213 return false; 2214 2215 if (!handle) 2216 goto cleanup; 2217 2218 owait.memcg = memcg; 2219 owait.wait.flags = 0; 2220 owait.wait.func = memcg_oom_wake_function; 2221 owait.wait.private = current; 2222 INIT_LIST_HEAD(&owait.wait.task_list); 2223 2224 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2225 mem_cgroup_mark_under_oom(memcg); 2226 2227 locked = mem_cgroup_oom_trylock(memcg); 2228 2229 if (locked) 2230 mem_cgroup_oom_notify(memcg); 2231 2232 if (locked && !memcg->oom_kill_disable) { 2233 mem_cgroup_unmark_under_oom(memcg); 2234 finish_wait(&memcg_oom_waitq, &owait.wait); 2235 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 2236 current->memcg_oom.order); 2237 } else { 2238 schedule(); 2239 mem_cgroup_unmark_under_oom(memcg); 2240 finish_wait(&memcg_oom_waitq, &owait.wait); 2241 } 2242 2243 if (locked) { 2244 mem_cgroup_oom_unlock(memcg); 2245 /* 2246 * There is no guarantee that an OOM-lock contender 2247 * sees the wakeups triggered by the OOM kill 2248 * uncharges. Wake any sleepers explicitely. 2249 */ 2250 memcg_oom_recover(memcg); 2251 } 2252 cleanup: 2253 current->memcg_oom.memcg = NULL; 2254 css_put(&memcg->css); 2255 return true; 2256 } 2257 2258 /* 2259 * Currently used to update mapped file statistics, but the routine can be 2260 * generalized to update other statistics as well. 2261 * 2262 * Notes: Race condition 2263 * 2264 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2265 * it tends to be costly. But considering some conditions, we doesn't need 2266 * to do so _always_. 2267 * 2268 * Considering "charge", lock_page_cgroup() is not required because all 2269 * file-stat operations happen after a page is attached to radix-tree. There 2270 * are no race with "charge". 2271 * 2272 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2273 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2274 * if there are race with "uncharge". Statistics itself is properly handled 2275 * by flags. 2276 * 2277 * Considering "move", this is an only case we see a race. To make the race 2278 * small, we check mm->moving_account and detect there are possibility of race 2279 * If there is, we take a lock. 2280 */ 2281 2282 void __mem_cgroup_begin_update_page_stat(struct page *page, 2283 bool *locked, unsigned long *flags) 2284 { 2285 struct mem_cgroup *memcg; 2286 struct page_cgroup *pc; 2287 2288 pc = lookup_page_cgroup(page); 2289 again: 2290 memcg = pc->mem_cgroup; 2291 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2292 return; 2293 /* 2294 * If this memory cgroup is not under account moving, we don't 2295 * need to take move_lock_mem_cgroup(). Because we already hold 2296 * rcu_read_lock(), any calls to move_account will be delayed until 2297 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2298 */ 2299 if (!mem_cgroup_stolen(memcg)) 2300 return; 2301 2302 move_lock_mem_cgroup(memcg, flags); 2303 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2304 move_unlock_mem_cgroup(memcg, flags); 2305 goto again; 2306 } 2307 *locked = true; 2308 } 2309 2310 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2311 { 2312 struct page_cgroup *pc = lookup_page_cgroup(page); 2313 2314 /* 2315 * It's guaranteed that pc->mem_cgroup never changes while 2316 * lock is held because a routine modifies pc->mem_cgroup 2317 * should take move_lock_mem_cgroup(). 2318 */ 2319 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2320 } 2321 2322 void mem_cgroup_update_page_stat(struct page *page, 2323 enum mem_cgroup_stat_index idx, int val) 2324 { 2325 struct mem_cgroup *memcg; 2326 struct page_cgroup *pc = lookup_page_cgroup(page); 2327 unsigned long uninitialized_var(flags); 2328 2329 if (mem_cgroup_disabled()) 2330 return; 2331 2332 VM_BUG_ON(!rcu_read_lock_held()); 2333 memcg = pc->mem_cgroup; 2334 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2335 return; 2336 2337 this_cpu_add(memcg->stat->count[idx], val); 2338 } 2339 2340 /* 2341 * size of first charge trial. "32" comes from vmscan.c's magic value. 2342 * TODO: maybe necessary to use big numbers in big irons. 2343 */ 2344 #define CHARGE_BATCH 32U 2345 struct memcg_stock_pcp { 2346 struct mem_cgroup *cached; /* this never be root cgroup */ 2347 unsigned int nr_pages; 2348 struct work_struct work; 2349 unsigned long flags; 2350 #define FLUSHING_CACHED_CHARGE 0 2351 }; 2352 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2353 static DEFINE_MUTEX(percpu_charge_mutex); 2354 2355 /** 2356 * consume_stock: Try to consume stocked charge on this cpu. 2357 * @memcg: memcg to consume from. 2358 * @nr_pages: how many pages to charge. 2359 * 2360 * The charges will only happen if @memcg matches the current cpu's memcg 2361 * stock, and at least @nr_pages are available in that stock. Failure to 2362 * service an allocation will refill the stock. 2363 * 2364 * returns true if successful, false otherwise. 2365 */ 2366 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2367 { 2368 struct memcg_stock_pcp *stock; 2369 bool ret = true; 2370 2371 if (nr_pages > CHARGE_BATCH) 2372 return false; 2373 2374 stock = &get_cpu_var(memcg_stock); 2375 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2376 stock->nr_pages -= nr_pages; 2377 else /* need to call res_counter_charge */ 2378 ret = false; 2379 put_cpu_var(memcg_stock); 2380 return ret; 2381 } 2382 2383 /* 2384 * Returns stocks cached in percpu to res_counter and reset cached information. 2385 */ 2386 static void drain_stock(struct memcg_stock_pcp *stock) 2387 { 2388 struct mem_cgroup *old = stock->cached; 2389 2390 if (stock->nr_pages) { 2391 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2392 2393 res_counter_uncharge(&old->res, bytes); 2394 if (do_swap_account) 2395 res_counter_uncharge(&old->memsw, bytes); 2396 stock->nr_pages = 0; 2397 } 2398 stock->cached = NULL; 2399 } 2400 2401 /* 2402 * This must be called under preempt disabled or must be called by 2403 * a thread which is pinned to local cpu. 2404 */ 2405 static void drain_local_stock(struct work_struct *dummy) 2406 { 2407 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2408 drain_stock(stock); 2409 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2410 } 2411 2412 static void __init memcg_stock_init(void) 2413 { 2414 int cpu; 2415 2416 for_each_possible_cpu(cpu) { 2417 struct memcg_stock_pcp *stock = 2418 &per_cpu(memcg_stock, cpu); 2419 INIT_WORK(&stock->work, drain_local_stock); 2420 } 2421 } 2422 2423 /* 2424 * Cache charges(val) which is from res_counter, to local per_cpu area. 2425 * This will be consumed by consume_stock() function, later. 2426 */ 2427 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2428 { 2429 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2430 2431 if (stock->cached != memcg) { /* reset if necessary */ 2432 drain_stock(stock); 2433 stock->cached = memcg; 2434 } 2435 stock->nr_pages += nr_pages; 2436 put_cpu_var(memcg_stock); 2437 } 2438 2439 /* 2440 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2441 * of the hierarchy under it. sync flag says whether we should block 2442 * until the work is done. 2443 */ 2444 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2445 { 2446 int cpu, curcpu; 2447 2448 /* Notify other cpus that system-wide "drain" is running */ 2449 get_online_cpus(); 2450 curcpu = get_cpu(); 2451 for_each_online_cpu(cpu) { 2452 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2453 struct mem_cgroup *memcg; 2454 2455 memcg = stock->cached; 2456 if (!memcg || !stock->nr_pages) 2457 continue; 2458 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2459 continue; 2460 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2461 if (cpu == curcpu) 2462 drain_local_stock(&stock->work); 2463 else 2464 schedule_work_on(cpu, &stock->work); 2465 } 2466 } 2467 put_cpu(); 2468 2469 if (!sync) 2470 goto out; 2471 2472 for_each_online_cpu(cpu) { 2473 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2474 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2475 flush_work(&stock->work); 2476 } 2477 out: 2478 put_online_cpus(); 2479 } 2480 2481 /* 2482 * Tries to drain stocked charges in other cpus. This function is asynchronous 2483 * and just put a work per cpu for draining localy on each cpu. Caller can 2484 * expects some charges will be back to res_counter later but cannot wait for 2485 * it. 2486 */ 2487 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2488 { 2489 /* 2490 * If someone calls draining, avoid adding more kworker runs. 2491 */ 2492 if (!mutex_trylock(&percpu_charge_mutex)) 2493 return; 2494 drain_all_stock(root_memcg, false); 2495 mutex_unlock(&percpu_charge_mutex); 2496 } 2497 2498 /* This is a synchronous drain interface. */ 2499 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2500 { 2501 /* called when force_empty is called */ 2502 mutex_lock(&percpu_charge_mutex); 2503 drain_all_stock(root_memcg, true); 2504 mutex_unlock(&percpu_charge_mutex); 2505 } 2506 2507 /* 2508 * This function drains percpu counter value from DEAD cpu and 2509 * move it to local cpu. Note that this function can be preempted. 2510 */ 2511 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2512 { 2513 int i; 2514 2515 spin_lock(&memcg->pcp_counter_lock); 2516 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2517 long x = per_cpu(memcg->stat->count[i], cpu); 2518 2519 per_cpu(memcg->stat->count[i], cpu) = 0; 2520 memcg->nocpu_base.count[i] += x; 2521 } 2522 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2523 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2524 2525 per_cpu(memcg->stat->events[i], cpu) = 0; 2526 memcg->nocpu_base.events[i] += x; 2527 } 2528 spin_unlock(&memcg->pcp_counter_lock); 2529 } 2530 2531 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2532 unsigned long action, 2533 void *hcpu) 2534 { 2535 int cpu = (unsigned long)hcpu; 2536 struct memcg_stock_pcp *stock; 2537 struct mem_cgroup *iter; 2538 2539 if (action == CPU_ONLINE) 2540 return NOTIFY_OK; 2541 2542 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2543 return NOTIFY_OK; 2544 2545 for_each_mem_cgroup(iter) 2546 mem_cgroup_drain_pcp_counter(iter, cpu); 2547 2548 stock = &per_cpu(memcg_stock, cpu); 2549 drain_stock(stock); 2550 return NOTIFY_OK; 2551 } 2552 2553 2554 /* See __mem_cgroup_try_charge() for details */ 2555 enum { 2556 CHARGE_OK, /* success */ 2557 CHARGE_RETRY, /* need to retry but retry is not bad */ 2558 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2559 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2560 }; 2561 2562 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2563 unsigned int nr_pages, unsigned int min_pages, 2564 bool invoke_oom) 2565 { 2566 unsigned long csize = nr_pages * PAGE_SIZE; 2567 struct mem_cgroup *mem_over_limit; 2568 struct res_counter *fail_res; 2569 unsigned long flags = 0; 2570 int ret; 2571 2572 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2573 2574 if (likely(!ret)) { 2575 if (!do_swap_account) 2576 return CHARGE_OK; 2577 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2578 if (likely(!ret)) 2579 return CHARGE_OK; 2580 2581 res_counter_uncharge(&memcg->res, csize); 2582 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2583 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2584 } else 2585 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2586 /* 2587 * Never reclaim on behalf of optional batching, retry with a 2588 * single page instead. 2589 */ 2590 if (nr_pages > min_pages) 2591 return CHARGE_RETRY; 2592 2593 if (!(gfp_mask & __GFP_WAIT)) 2594 return CHARGE_WOULDBLOCK; 2595 2596 if (gfp_mask & __GFP_NORETRY) 2597 return CHARGE_NOMEM; 2598 2599 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2600 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2601 return CHARGE_RETRY; 2602 /* 2603 * Even though the limit is exceeded at this point, reclaim 2604 * may have been able to free some pages. Retry the charge 2605 * before killing the task. 2606 * 2607 * Only for regular pages, though: huge pages are rather 2608 * unlikely to succeed so close to the limit, and we fall back 2609 * to regular pages anyway in case of failure. 2610 */ 2611 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2612 return CHARGE_RETRY; 2613 2614 /* 2615 * At task move, charge accounts can be doubly counted. So, it's 2616 * better to wait until the end of task_move if something is going on. 2617 */ 2618 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2619 return CHARGE_RETRY; 2620 2621 if (invoke_oom) 2622 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); 2623 2624 return CHARGE_NOMEM; 2625 } 2626 2627 /* 2628 * __mem_cgroup_try_charge() does 2629 * 1. detect memcg to be charged against from passed *mm and *ptr, 2630 * 2. update res_counter 2631 * 3. call memory reclaim if necessary. 2632 * 2633 * In some special case, if the task is fatal, fatal_signal_pending() or 2634 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2635 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2636 * as possible without any hazards. 2: all pages should have a valid 2637 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2638 * pointer, that is treated as a charge to root_mem_cgroup. 2639 * 2640 * So __mem_cgroup_try_charge() will return 2641 * 0 ... on success, filling *ptr with a valid memcg pointer. 2642 * -ENOMEM ... charge failure because of resource limits. 2643 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2644 * 2645 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2646 * the oom-killer can be invoked. 2647 */ 2648 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2649 gfp_t gfp_mask, 2650 unsigned int nr_pages, 2651 struct mem_cgroup **ptr, 2652 bool oom) 2653 { 2654 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2655 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2656 struct mem_cgroup *memcg = NULL; 2657 int ret; 2658 2659 /* 2660 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2661 * in system level. So, allow to go ahead dying process in addition to 2662 * MEMDIE process. 2663 */ 2664 if (unlikely(test_thread_flag(TIF_MEMDIE) 2665 || fatal_signal_pending(current))) 2666 goto bypass; 2667 2668 if (unlikely(task_in_memcg_oom(current))) 2669 goto bypass; 2670 2671 /* 2672 * We always charge the cgroup the mm_struct belongs to. 2673 * The mm_struct's mem_cgroup changes on task migration if the 2674 * thread group leader migrates. It's possible that mm is not 2675 * set, if so charge the root memcg (happens for pagecache usage). 2676 */ 2677 if (!*ptr && !mm) 2678 *ptr = root_mem_cgroup; 2679 again: 2680 if (*ptr) { /* css should be a valid one */ 2681 memcg = *ptr; 2682 if (mem_cgroup_is_root(memcg)) 2683 goto done; 2684 if (consume_stock(memcg, nr_pages)) 2685 goto done; 2686 css_get(&memcg->css); 2687 } else { 2688 struct task_struct *p; 2689 2690 rcu_read_lock(); 2691 p = rcu_dereference(mm->owner); 2692 /* 2693 * Because we don't have task_lock(), "p" can exit. 2694 * In that case, "memcg" can point to root or p can be NULL with 2695 * race with swapoff. Then, we have small risk of mis-accouning. 2696 * But such kind of mis-account by race always happens because 2697 * we don't have cgroup_mutex(). It's overkill and we allo that 2698 * small race, here. 2699 * (*) swapoff at el will charge against mm-struct not against 2700 * task-struct. So, mm->owner can be NULL. 2701 */ 2702 memcg = mem_cgroup_from_task(p); 2703 if (!memcg) 2704 memcg = root_mem_cgroup; 2705 if (mem_cgroup_is_root(memcg)) { 2706 rcu_read_unlock(); 2707 goto done; 2708 } 2709 if (consume_stock(memcg, nr_pages)) { 2710 /* 2711 * It seems dagerous to access memcg without css_get(). 2712 * But considering how consume_stok works, it's not 2713 * necessary. If consume_stock success, some charges 2714 * from this memcg are cached on this cpu. So, we 2715 * don't need to call css_get()/css_tryget() before 2716 * calling consume_stock(). 2717 */ 2718 rcu_read_unlock(); 2719 goto done; 2720 } 2721 /* after here, we may be blocked. we need to get refcnt */ 2722 if (!css_tryget(&memcg->css)) { 2723 rcu_read_unlock(); 2724 goto again; 2725 } 2726 rcu_read_unlock(); 2727 } 2728 2729 do { 2730 bool invoke_oom = oom && !nr_oom_retries; 2731 2732 /* If killed, bypass charge */ 2733 if (fatal_signal_pending(current)) { 2734 css_put(&memcg->css); 2735 goto bypass; 2736 } 2737 2738 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, 2739 nr_pages, invoke_oom); 2740 switch (ret) { 2741 case CHARGE_OK: 2742 break; 2743 case CHARGE_RETRY: /* not in OOM situation but retry */ 2744 batch = nr_pages; 2745 css_put(&memcg->css); 2746 memcg = NULL; 2747 goto again; 2748 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2749 css_put(&memcg->css); 2750 goto nomem; 2751 case CHARGE_NOMEM: /* OOM routine works */ 2752 if (!oom || invoke_oom) { 2753 css_put(&memcg->css); 2754 goto nomem; 2755 } 2756 nr_oom_retries--; 2757 break; 2758 } 2759 } while (ret != CHARGE_OK); 2760 2761 if (batch > nr_pages) 2762 refill_stock(memcg, batch - nr_pages); 2763 css_put(&memcg->css); 2764 done: 2765 *ptr = memcg; 2766 return 0; 2767 nomem: 2768 *ptr = NULL; 2769 if (gfp_mask & __GFP_NOFAIL) 2770 return 0; 2771 return -ENOMEM; 2772 bypass: 2773 *ptr = root_mem_cgroup; 2774 return -EINTR; 2775 } 2776 2777 /* 2778 * Somemtimes we have to undo a charge we got by try_charge(). 2779 * This function is for that and do uncharge, put css's refcnt. 2780 * gotten by try_charge(). 2781 */ 2782 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2783 unsigned int nr_pages) 2784 { 2785 if (!mem_cgroup_is_root(memcg)) { 2786 unsigned long bytes = nr_pages * PAGE_SIZE; 2787 2788 res_counter_uncharge(&memcg->res, bytes); 2789 if (do_swap_account) 2790 res_counter_uncharge(&memcg->memsw, bytes); 2791 } 2792 } 2793 2794 /* 2795 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2796 * This is useful when moving usage to parent cgroup. 2797 */ 2798 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2799 unsigned int nr_pages) 2800 { 2801 unsigned long bytes = nr_pages * PAGE_SIZE; 2802 2803 if (mem_cgroup_is_root(memcg)) 2804 return; 2805 2806 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2807 if (do_swap_account) 2808 res_counter_uncharge_until(&memcg->memsw, 2809 memcg->memsw.parent, bytes); 2810 } 2811 2812 /* 2813 * A helper function to get mem_cgroup from ID. must be called under 2814 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2815 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2816 * called against removed memcg.) 2817 */ 2818 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2819 { 2820 struct cgroup_subsys_state *css; 2821 2822 /* ID 0 is unused ID */ 2823 if (!id) 2824 return NULL; 2825 css = css_lookup(&mem_cgroup_subsys, id); 2826 if (!css) 2827 return NULL; 2828 return mem_cgroup_from_css(css); 2829 } 2830 2831 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2832 { 2833 struct mem_cgroup *memcg = NULL; 2834 struct page_cgroup *pc; 2835 unsigned short id; 2836 swp_entry_t ent; 2837 2838 VM_BUG_ON(!PageLocked(page)); 2839 2840 pc = lookup_page_cgroup(page); 2841 lock_page_cgroup(pc); 2842 if (PageCgroupUsed(pc)) { 2843 memcg = pc->mem_cgroup; 2844 if (memcg && !css_tryget(&memcg->css)) 2845 memcg = NULL; 2846 } else if (PageSwapCache(page)) { 2847 ent.val = page_private(page); 2848 id = lookup_swap_cgroup_id(ent); 2849 rcu_read_lock(); 2850 memcg = mem_cgroup_lookup(id); 2851 if (memcg && !css_tryget(&memcg->css)) 2852 memcg = NULL; 2853 rcu_read_unlock(); 2854 } 2855 unlock_page_cgroup(pc); 2856 return memcg; 2857 } 2858 2859 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2860 struct page *page, 2861 unsigned int nr_pages, 2862 enum charge_type ctype, 2863 bool lrucare) 2864 { 2865 struct page_cgroup *pc = lookup_page_cgroup(page); 2866 struct zone *uninitialized_var(zone); 2867 struct lruvec *lruvec; 2868 bool was_on_lru = false; 2869 bool anon; 2870 2871 lock_page_cgroup(pc); 2872 VM_BUG_ON(PageCgroupUsed(pc)); 2873 /* 2874 * we don't need page_cgroup_lock about tail pages, becase they are not 2875 * accessed by any other context at this point. 2876 */ 2877 2878 /* 2879 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2880 * may already be on some other mem_cgroup's LRU. Take care of it. 2881 */ 2882 if (lrucare) { 2883 zone = page_zone(page); 2884 spin_lock_irq(&zone->lru_lock); 2885 if (PageLRU(page)) { 2886 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2887 ClearPageLRU(page); 2888 del_page_from_lru_list(page, lruvec, page_lru(page)); 2889 was_on_lru = true; 2890 } 2891 } 2892 2893 pc->mem_cgroup = memcg; 2894 /* 2895 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2896 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2897 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2898 * before USED bit, we need memory barrier here. 2899 * See mem_cgroup_add_lru_list(), etc. 2900 */ 2901 smp_wmb(); 2902 SetPageCgroupUsed(pc); 2903 2904 if (lrucare) { 2905 if (was_on_lru) { 2906 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2907 VM_BUG_ON(PageLRU(page)); 2908 SetPageLRU(page); 2909 add_page_to_lru_list(page, lruvec, page_lru(page)); 2910 } 2911 spin_unlock_irq(&zone->lru_lock); 2912 } 2913 2914 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2915 anon = true; 2916 else 2917 anon = false; 2918 2919 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2920 unlock_page_cgroup(pc); 2921 2922 /* 2923 * "charge_statistics" updated event counter. Then, check it. 2924 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2925 * if they exceeds softlimit. 2926 */ 2927 memcg_check_events(memcg, page); 2928 } 2929 2930 static DEFINE_MUTEX(set_limit_mutex); 2931 2932 #ifdef CONFIG_MEMCG_KMEM 2933 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2934 { 2935 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2936 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2937 } 2938 2939 /* 2940 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2941 * in the memcg_cache_params struct. 2942 */ 2943 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2944 { 2945 struct kmem_cache *cachep; 2946 2947 VM_BUG_ON(p->is_root_cache); 2948 cachep = p->root_cache; 2949 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2950 } 2951 2952 #ifdef CONFIG_SLABINFO 2953 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, 2954 struct cftype *cft, struct seq_file *m) 2955 { 2956 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2957 struct memcg_cache_params *params; 2958 2959 if (!memcg_can_account_kmem(memcg)) 2960 return -EIO; 2961 2962 print_slabinfo_header(m); 2963 2964 mutex_lock(&memcg->slab_caches_mutex); 2965 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2966 cache_show(memcg_params_to_cache(params), m); 2967 mutex_unlock(&memcg->slab_caches_mutex); 2968 2969 return 0; 2970 } 2971 #endif 2972 2973 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2974 { 2975 struct res_counter *fail_res; 2976 struct mem_cgroup *_memcg; 2977 int ret = 0; 2978 bool may_oom; 2979 2980 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2981 if (ret) 2982 return ret; 2983 2984 /* 2985 * Conditions under which we can wait for the oom_killer. Those are 2986 * the same conditions tested by the core page allocator 2987 */ 2988 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2989 2990 _memcg = memcg; 2991 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2992 &_memcg, may_oom); 2993 2994 if (ret == -EINTR) { 2995 /* 2996 * __mem_cgroup_try_charge() chosed to bypass to root due to 2997 * OOM kill or fatal signal. Since our only options are to 2998 * either fail the allocation or charge it to this cgroup, do 2999 * it as a temporary condition. But we can't fail. From a 3000 * kmem/slab perspective, the cache has already been selected, 3001 * by mem_cgroup_kmem_get_cache(), so it is too late to change 3002 * our minds. 3003 * 3004 * This condition will only trigger if the task entered 3005 * memcg_charge_kmem in a sane state, but was OOM-killed during 3006 * __mem_cgroup_try_charge() above. Tasks that were already 3007 * dying when the allocation triggers should have been already 3008 * directed to the root cgroup in memcontrol.h 3009 */ 3010 res_counter_charge_nofail(&memcg->res, size, &fail_res); 3011 if (do_swap_account) 3012 res_counter_charge_nofail(&memcg->memsw, size, 3013 &fail_res); 3014 ret = 0; 3015 } else if (ret) 3016 res_counter_uncharge(&memcg->kmem, size); 3017 3018 return ret; 3019 } 3020 3021 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 3022 { 3023 res_counter_uncharge(&memcg->res, size); 3024 if (do_swap_account) 3025 res_counter_uncharge(&memcg->memsw, size); 3026 3027 /* Not down to 0 */ 3028 if (res_counter_uncharge(&memcg->kmem, size)) 3029 return; 3030 3031 /* 3032 * Releases a reference taken in kmem_cgroup_css_offline in case 3033 * this last uncharge is racing with the offlining code or it is 3034 * outliving the memcg existence. 3035 * 3036 * The memory barrier imposed by test&clear is paired with the 3037 * explicit one in memcg_kmem_mark_dead(). 3038 */ 3039 if (memcg_kmem_test_and_clear_dead(memcg)) 3040 css_put(&memcg->css); 3041 } 3042 3043 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 3044 { 3045 if (!memcg) 3046 return; 3047 3048 mutex_lock(&memcg->slab_caches_mutex); 3049 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 3050 mutex_unlock(&memcg->slab_caches_mutex); 3051 } 3052 3053 /* 3054 * helper for acessing a memcg's index. It will be used as an index in the 3055 * child cache array in kmem_cache, and also to derive its name. This function 3056 * will return -1 when this is not a kmem-limited memcg. 3057 */ 3058 int memcg_cache_id(struct mem_cgroup *memcg) 3059 { 3060 return memcg ? memcg->kmemcg_id : -1; 3061 } 3062 3063 /* 3064 * This ends up being protected by the set_limit mutex, during normal 3065 * operation, because that is its main call site. 3066 * 3067 * But when we create a new cache, we can call this as well if its parent 3068 * is kmem-limited. That will have to hold set_limit_mutex as well. 3069 */ 3070 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 3071 { 3072 int num, ret; 3073 3074 num = ida_simple_get(&kmem_limited_groups, 3075 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3076 if (num < 0) 3077 return num; 3078 /* 3079 * After this point, kmem_accounted (that we test atomically in 3080 * the beginning of this conditional), is no longer 0. This 3081 * guarantees only one process will set the following boolean 3082 * to true. We don't need test_and_set because we're protected 3083 * by the set_limit_mutex anyway. 3084 */ 3085 memcg_kmem_set_activated(memcg); 3086 3087 ret = memcg_update_all_caches(num+1); 3088 if (ret) { 3089 ida_simple_remove(&kmem_limited_groups, num); 3090 memcg_kmem_clear_activated(memcg); 3091 return ret; 3092 } 3093 3094 memcg->kmemcg_id = num; 3095 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 3096 mutex_init(&memcg->slab_caches_mutex); 3097 return 0; 3098 } 3099 3100 static size_t memcg_caches_array_size(int num_groups) 3101 { 3102 ssize_t size; 3103 if (num_groups <= 0) 3104 return 0; 3105 3106 size = 2 * num_groups; 3107 if (size < MEMCG_CACHES_MIN_SIZE) 3108 size = MEMCG_CACHES_MIN_SIZE; 3109 else if (size > MEMCG_CACHES_MAX_SIZE) 3110 size = MEMCG_CACHES_MAX_SIZE; 3111 3112 return size; 3113 } 3114 3115 /* 3116 * We should update the current array size iff all caches updates succeed. This 3117 * can only be done from the slab side. The slab mutex needs to be held when 3118 * calling this. 3119 */ 3120 void memcg_update_array_size(int num) 3121 { 3122 if (num > memcg_limited_groups_array_size) 3123 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3124 } 3125 3126 static void kmem_cache_destroy_work_func(struct work_struct *w); 3127 3128 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3129 { 3130 struct memcg_cache_params *cur_params = s->memcg_params; 3131 3132 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 3133 3134 if (num_groups > memcg_limited_groups_array_size) { 3135 int i; 3136 ssize_t size = memcg_caches_array_size(num_groups); 3137 3138 size *= sizeof(void *); 3139 size += offsetof(struct memcg_cache_params, memcg_caches); 3140 3141 s->memcg_params = kzalloc(size, GFP_KERNEL); 3142 if (!s->memcg_params) { 3143 s->memcg_params = cur_params; 3144 return -ENOMEM; 3145 } 3146 3147 s->memcg_params->is_root_cache = true; 3148 3149 /* 3150 * There is the chance it will be bigger than 3151 * memcg_limited_groups_array_size, if we failed an allocation 3152 * in a cache, in which case all caches updated before it, will 3153 * have a bigger array. 3154 * 3155 * But if that is the case, the data after 3156 * memcg_limited_groups_array_size is certainly unused 3157 */ 3158 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3159 if (!cur_params->memcg_caches[i]) 3160 continue; 3161 s->memcg_params->memcg_caches[i] = 3162 cur_params->memcg_caches[i]; 3163 } 3164 3165 /* 3166 * Ideally, we would wait until all caches succeed, and only 3167 * then free the old one. But this is not worth the extra 3168 * pointer per-cache we'd have to have for this. 3169 * 3170 * It is not a big deal if some caches are left with a size 3171 * bigger than the others. And all updates will reset this 3172 * anyway. 3173 */ 3174 kfree(cur_params); 3175 } 3176 return 0; 3177 } 3178 3179 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3180 struct kmem_cache *root_cache) 3181 { 3182 size_t size; 3183 3184 if (!memcg_kmem_enabled()) 3185 return 0; 3186 3187 if (!memcg) { 3188 size = offsetof(struct memcg_cache_params, memcg_caches); 3189 size += memcg_limited_groups_array_size * sizeof(void *); 3190 } else 3191 size = sizeof(struct memcg_cache_params); 3192 3193 s->memcg_params = kzalloc(size, GFP_KERNEL); 3194 if (!s->memcg_params) 3195 return -ENOMEM; 3196 3197 if (memcg) { 3198 s->memcg_params->memcg = memcg; 3199 s->memcg_params->root_cache = root_cache; 3200 INIT_WORK(&s->memcg_params->destroy, 3201 kmem_cache_destroy_work_func); 3202 } else 3203 s->memcg_params->is_root_cache = true; 3204 3205 return 0; 3206 } 3207 3208 void memcg_release_cache(struct kmem_cache *s) 3209 { 3210 struct kmem_cache *root; 3211 struct mem_cgroup *memcg; 3212 int id; 3213 3214 /* 3215 * This happens, for instance, when a root cache goes away before we 3216 * add any memcg. 3217 */ 3218 if (!s->memcg_params) 3219 return; 3220 3221 if (s->memcg_params->is_root_cache) 3222 goto out; 3223 3224 memcg = s->memcg_params->memcg; 3225 id = memcg_cache_id(memcg); 3226 3227 root = s->memcg_params->root_cache; 3228 root->memcg_params->memcg_caches[id] = NULL; 3229 3230 mutex_lock(&memcg->slab_caches_mutex); 3231 list_del(&s->memcg_params->list); 3232 mutex_unlock(&memcg->slab_caches_mutex); 3233 3234 css_put(&memcg->css); 3235 out: 3236 kfree(s->memcg_params); 3237 } 3238 3239 /* 3240 * During the creation a new cache, we need to disable our accounting mechanism 3241 * altogether. This is true even if we are not creating, but rather just 3242 * enqueing new caches to be created. 3243 * 3244 * This is because that process will trigger allocations; some visible, like 3245 * explicit kmallocs to auxiliary data structures, name strings and internal 3246 * cache structures; some well concealed, like INIT_WORK() that can allocate 3247 * objects during debug. 3248 * 3249 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3250 * to it. This may not be a bounded recursion: since the first cache creation 3251 * failed to complete (waiting on the allocation), we'll just try to create the 3252 * cache again, failing at the same point. 3253 * 3254 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3255 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3256 * inside the following two functions. 3257 */ 3258 static inline void memcg_stop_kmem_account(void) 3259 { 3260 VM_BUG_ON(!current->mm); 3261 current->memcg_kmem_skip_account++; 3262 } 3263 3264 static inline void memcg_resume_kmem_account(void) 3265 { 3266 VM_BUG_ON(!current->mm); 3267 current->memcg_kmem_skip_account--; 3268 } 3269 3270 static void kmem_cache_destroy_work_func(struct work_struct *w) 3271 { 3272 struct kmem_cache *cachep; 3273 struct memcg_cache_params *p; 3274 3275 p = container_of(w, struct memcg_cache_params, destroy); 3276 3277 cachep = memcg_params_to_cache(p); 3278 3279 /* 3280 * If we get down to 0 after shrink, we could delete right away. 3281 * However, memcg_release_pages() already puts us back in the workqueue 3282 * in that case. If we proceed deleting, we'll get a dangling 3283 * reference, and removing the object from the workqueue in that case 3284 * is unnecessary complication. We are not a fast path. 3285 * 3286 * Note that this case is fundamentally different from racing with 3287 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3288 * kmem_cache_shrink, not only we would be reinserting a dead cache 3289 * into the queue, but doing so from inside the worker racing to 3290 * destroy it. 3291 * 3292 * So if we aren't down to zero, we'll just schedule a worker and try 3293 * again 3294 */ 3295 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3296 kmem_cache_shrink(cachep); 3297 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3298 return; 3299 } else 3300 kmem_cache_destroy(cachep); 3301 } 3302 3303 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3304 { 3305 if (!cachep->memcg_params->dead) 3306 return; 3307 3308 /* 3309 * There are many ways in which we can get here. 3310 * 3311 * We can get to a memory-pressure situation while the delayed work is 3312 * still pending to run. The vmscan shrinkers can then release all 3313 * cache memory and get us to destruction. If this is the case, we'll 3314 * be executed twice, which is a bug (the second time will execute over 3315 * bogus data). In this case, cancelling the work should be fine. 3316 * 3317 * But we can also get here from the worker itself, if 3318 * kmem_cache_shrink is enough to shake all the remaining objects and 3319 * get the page count to 0. In this case, we'll deadlock if we try to 3320 * cancel the work (the worker runs with an internal lock held, which 3321 * is the same lock we would hold for cancel_work_sync().) 3322 * 3323 * Since we can't possibly know who got us here, just refrain from 3324 * running if there is already work pending 3325 */ 3326 if (work_pending(&cachep->memcg_params->destroy)) 3327 return; 3328 /* 3329 * We have to defer the actual destroying to a workqueue, because 3330 * we might currently be in a context that cannot sleep. 3331 */ 3332 schedule_work(&cachep->memcg_params->destroy); 3333 } 3334 3335 /* 3336 * This lock protects updaters, not readers. We want readers to be as fast as 3337 * they can, and they will either see NULL or a valid cache value. Our model 3338 * allow them to see NULL, in which case the root memcg will be selected. 3339 * 3340 * We need this lock because multiple allocations to the same cache from a non 3341 * will span more than one worker. Only one of them can create the cache. 3342 */ 3343 static DEFINE_MUTEX(memcg_cache_mutex); 3344 3345 /* 3346 * Called with memcg_cache_mutex held 3347 */ 3348 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3349 struct kmem_cache *s) 3350 { 3351 struct kmem_cache *new; 3352 static char *tmp_name = NULL; 3353 3354 lockdep_assert_held(&memcg_cache_mutex); 3355 3356 /* 3357 * kmem_cache_create_memcg duplicates the given name and 3358 * cgroup_name for this name requires RCU context. 3359 * This static temporary buffer is used to prevent from 3360 * pointless shortliving allocation. 3361 */ 3362 if (!tmp_name) { 3363 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); 3364 if (!tmp_name) 3365 return NULL; 3366 } 3367 3368 rcu_read_lock(); 3369 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, 3370 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); 3371 rcu_read_unlock(); 3372 3373 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, 3374 (s->flags & ~SLAB_PANIC), s->ctor, s); 3375 3376 if (new) 3377 new->allocflags |= __GFP_KMEMCG; 3378 3379 return new; 3380 } 3381 3382 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3383 struct kmem_cache *cachep) 3384 { 3385 struct kmem_cache *new_cachep; 3386 int idx; 3387 3388 BUG_ON(!memcg_can_account_kmem(memcg)); 3389 3390 idx = memcg_cache_id(memcg); 3391 3392 mutex_lock(&memcg_cache_mutex); 3393 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3394 if (new_cachep) { 3395 css_put(&memcg->css); 3396 goto out; 3397 } 3398 3399 new_cachep = kmem_cache_dup(memcg, cachep); 3400 if (new_cachep == NULL) { 3401 new_cachep = cachep; 3402 css_put(&memcg->css); 3403 goto out; 3404 } 3405 3406 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3407 3408 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3409 /* 3410 * the readers won't lock, make sure everybody sees the updated value, 3411 * so they won't put stuff in the queue again for no reason 3412 */ 3413 wmb(); 3414 out: 3415 mutex_unlock(&memcg_cache_mutex); 3416 return new_cachep; 3417 } 3418 3419 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3420 { 3421 struct kmem_cache *c; 3422 int i; 3423 3424 if (!s->memcg_params) 3425 return; 3426 if (!s->memcg_params->is_root_cache) 3427 return; 3428 3429 /* 3430 * If the cache is being destroyed, we trust that there is no one else 3431 * requesting objects from it. Even if there are, the sanity checks in 3432 * kmem_cache_destroy should caught this ill-case. 3433 * 3434 * Still, we don't want anyone else freeing memcg_caches under our 3435 * noses, which can happen if a new memcg comes to life. As usual, 3436 * we'll take the set_limit_mutex to protect ourselves against this. 3437 */ 3438 mutex_lock(&set_limit_mutex); 3439 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3440 c = s->memcg_params->memcg_caches[i]; 3441 if (!c) 3442 continue; 3443 3444 /* 3445 * We will now manually delete the caches, so to avoid races 3446 * we need to cancel all pending destruction workers and 3447 * proceed with destruction ourselves. 3448 * 3449 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3450 * and that could spawn the workers again: it is likely that 3451 * the cache still have active pages until this very moment. 3452 * This would lead us back to mem_cgroup_destroy_cache. 3453 * 3454 * But that will not execute at all if the "dead" flag is not 3455 * set, so flip it down to guarantee we are in control. 3456 */ 3457 c->memcg_params->dead = false; 3458 cancel_work_sync(&c->memcg_params->destroy); 3459 kmem_cache_destroy(c); 3460 } 3461 mutex_unlock(&set_limit_mutex); 3462 } 3463 3464 struct create_work { 3465 struct mem_cgroup *memcg; 3466 struct kmem_cache *cachep; 3467 struct work_struct work; 3468 }; 3469 3470 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3471 { 3472 struct kmem_cache *cachep; 3473 struct memcg_cache_params *params; 3474 3475 if (!memcg_kmem_is_active(memcg)) 3476 return; 3477 3478 mutex_lock(&memcg->slab_caches_mutex); 3479 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3480 cachep = memcg_params_to_cache(params); 3481 cachep->memcg_params->dead = true; 3482 schedule_work(&cachep->memcg_params->destroy); 3483 } 3484 mutex_unlock(&memcg->slab_caches_mutex); 3485 } 3486 3487 static void memcg_create_cache_work_func(struct work_struct *w) 3488 { 3489 struct create_work *cw; 3490 3491 cw = container_of(w, struct create_work, work); 3492 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3493 kfree(cw); 3494 } 3495 3496 /* 3497 * Enqueue the creation of a per-memcg kmem_cache. 3498 */ 3499 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3500 struct kmem_cache *cachep) 3501 { 3502 struct create_work *cw; 3503 3504 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3505 if (cw == NULL) { 3506 css_put(&memcg->css); 3507 return; 3508 } 3509 3510 cw->memcg = memcg; 3511 cw->cachep = cachep; 3512 3513 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3514 schedule_work(&cw->work); 3515 } 3516 3517 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3518 struct kmem_cache *cachep) 3519 { 3520 /* 3521 * We need to stop accounting when we kmalloc, because if the 3522 * corresponding kmalloc cache is not yet created, the first allocation 3523 * in __memcg_create_cache_enqueue will recurse. 3524 * 3525 * However, it is better to enclose the whole function. Depending on 3526 * the debugging options enabled, INIT_WORK(), for instance, can 3527 * trigger an allocation. This too, will make us recurse. Because at 3528 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3529 * the safest choice is to do it like this, wrapping the whole function. 3530 */ 3531 memcg_stop_kmem_account(); 3532 __memcg_create_cache_enqueue(memcg, cachep); 3533 memcg_resume_kmem_account(); 3534 } 3535 /* 3536 * Return the kmem_cache we're supposed to use for a slab allocation. 3537 * We try to use the current memcg's version of the cache. 3538 * 3539 * If the cache does not exist yet, if we are the first user of it, 3540 * we either create it immediately, if possible, or create it asynchronously 3541 * in a workqueue. 3542 * In the latter case, we will let the current allocation go through with 3543 * the original cache. 3544 * 3545 * Can't be called in interrupt context or from kernel threads. 3546 * This function needs to be called with rcu_read_lock() held. 3547 */ 3548 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3549 gfp_t gfp) 3550 { 3551 struct mem_cgroup *memcg; 3552 int idx; 3553 3554 VM_BUG_ON(!cachep->memcg_params); 3555 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3556 3557 if (!current->mm || current->memcg_kmem_skip_account) 3558 return cachep; 3559 3560 rcu_read_lock(); 3561 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3562 3563 if (!memcg_can_account_kmem(memcg)) 3564 goto out; 3565 3566 idx = memcg_cache_id(memcg); 3567 3568 /* 3569 * barrier to mare sure we're always seeing the up to date value. The 3570 * code updating memcg_caches will issue a write barrier to match this. 3571 */ 3572 read_barrier_depends(); 3573 if (likely(cachep->memcg_params->memcg_caches[idx])) { 3574 cachep = cachep->memcg_params->memcg_caches[idx]; 3575 goto out; 3576 } 3577 3578 /* The corresponding put will be done in the workqueue. */ 3579 if (!css_tryget(&memcg->css)) 3580 goto out; 3581 rcu_read_unlock(); 3582 3583 /* 3584 * If we are in a safe context (can wait, and not in interrupt 3585 * context), we could be be predictable and return right away. 3586 * This would guarantee that the allocation being performed 3587 * already belongs in the new cache. 3588 * 3589 * However, there are some clashes that can arrive from locking. 3590 * For instance, because we acquire the slab_mutex while doing 3591 * kmem_cache_dup, this means no further allocation could happen 3592 * with the slab_mutex held. 3593 * 3594 * Also, because cache creation issue get_online_cpus(), this 3595 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3596 * that ends up reversed during cpu hotplug. (cpuset allocates 3597 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3598 * better to defer everything. 3599 */ 3600 memcg_create_cache_enqueue(memcg, cachep); 3601 return cachep; 3602 out: 3603 rcu_read_unlock(); 3604 return cachep; 3605 } 3606 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3607 3608 /* 3609 * We need to verify if the allocation against current->mm->owner's memcg is 3610 * possible for the given order. But the page is not allocated yet, so we'll 3611 * need a further commit step to do the final arrangements. 3612 * 3613 * It is possible for the task to switch cgroups in this mean time, so at 3614 * commit time, we can't rely on task conversion any longer. We'll then use 3615 * the handle argument to return to the caller which cgroup we should commit 3616 * against. We could also return the memcg directly and avoid the pointer 3617 * passing, but a boolean return value gives better semantics considering 3618 * the compiled-out case as well. 3619 * 3620 * Returning true means the allocation is possible. 3621 */ 3622 bool 3623 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3624 { 3625 struct mem_cgroup *memcg; 3626 int ret; 3627 3628 *_memcg = NULL; 3629 3630 /* 3631 * Disabling accounting is only relevant for some specific memcg 3632 * internal allocations. Therefore we would initially not have such 3633 * check here, since direct calls to the page allocator that are marked 3634 * with GFP_KMEMCG only happen outside memcg core. We are mostly 3635 * concerned with cache allocations, and by having this test at 3636 * memcg_kmem_get_cache, we are already able to relay the allocation to 3637 * the root cache and bypass the memcg cache altogether. 3638 * 3639 * There is one exception, though: the SLUB allocator does not create 3640 * large order caches, but rather service large kmallocs directly from 3641 * the page allocator. Therefore, the following sequence when backed by 3642 * the SLUB allocator: 3643 * 3644 * memcg_stop_kmem_account(); 3645 * kmalloc(<large_number>) 3646 * memcg_resume_kmem_account(); 3647 * 3648 * would effectively ignore the fact that we should skip accounting, 3649 * since it will drive us directly to this function without passing 3650 * through the cache selector memcg_kmem_get_cache. Such large 3651 * allocations are extremely rare but can happen, for instance, for the 3652 * cache arrays. We bring this test here. 3653 */ 3654 if (!current->mm || current->memcg_kmem_skip_account) 3655 return true; 3656 3657 memcg = try_get_mem_cgroup_from_mm(current->mm); 3658 3659 /* 3660 * very rare case described in mem_cgroup_from_task. Unfortunately there 3661 * isn't much we can do without complicating this too much, and it would 3662 * be gfp-dependent anyway. Just let it go 3663 */ 3664 if (unlikely(!memcg)) 3665 return true; 3666 3667 if (!memcg_can_account_kmem(memcg)) { 3668 css_put(&memcg->css); 3669 return true; 3670 } 3671 3672 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3673 if (!ret) 3674 *_memcg = memcg; 3675 3676 css_put(&memcg->css); 3677 return (ret == 0); 3678 } 3679 3680 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3681 int order) 3682 { 3683 struct page_cgroup *pc; 3684 3685 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3686 3687 /* The page allocation failed. Revert */ 3688 if (!page) { 3689 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3690 return; 3691 } 3692 3693 pc = lookup_page_cgroup(page); 3694 lock_page_cgroup(pc); 3695 pc->mem_cgroup = memcg; 3696 SetPageCgroupUsed(pc); 3697 unlock_page_cgroup(pc); 3698 } 3699 3700 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3701 { 3702 struct mem_cgroup *memcg = NULL; 3703 struct page_cgroup *pc; 3704 3705 3706 pc = lookup_page_cgroup(page); 3707 /* 3708 * Fast unlocked return. Theoretically might have changed, have to 3709 * check again after locking. 3710 */ 3711 if (!PageCgroupUsed(pc)) 3712 return; 3713 3714 lock_page_cgroup(pc); 3715 if (PageCgroupUsed(pc)) { 3716 memcg = pc->mem_cgroup; 3717 ClearPageCgroupUsed(pc); 3718 } 3719 unlock_page_cgroup(pc); 3720 3721 /* 3722 * We trust that only if there is a memcg associated with the page, it 3723 * is a valid allocation 3724 */ 3725 if (!memcg) 3726 return; 3727 3728 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3729 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3730 } 3731 #else 3732 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3733 { 3734 } 3735 #endif /* CONFIG_MEMCG_KMEM */ 3736 3737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3738 3739 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3740 /* 3741 * Because tail pages are not marked as "used", set it. We're under 3742 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3743 * charge/uncharge will be never happen and move_account() is done under 3744 * compound_lock(), so we don't have to take care of races. 3745 */ 3746 void mem_cgroup_split_huge_fixup(struct page *head) 3747 { 3748 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3749 struct page_cgroup *pc; 3750 struct mem_cgroup *memcg; 3751 int i; 3752 3753 if (mem_cgroup_disabled()) 3754 return; 3755 3756 memcg = head_pc->mem_cgroup; 3757 for (i = 1; i < HPAGE_PMD_NR; i++) { 3758 pc = head_pc + i; 3759 pc->mem_cgroup = memcg; 3760 smp_wmb();/* see __commit_charge() */ 3761 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3762 } 3763 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3764 HPAGE_PMD_NR); 3765 } 3766 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3767 3768 static inline 3769 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from, 3770 struct mem_cgroup *to, 3771 unsigned int nr_pages, 3772 enum mem_cgroup_stat_index idx) 3773 { 3774 /* Update stat data for mem_cgroup */ 3775 preempt_disable(); 3776 WARN_ON_ONCE(from->stat->count[idx] < nr_pages); 3777 __this_cpu_add(from->stat->count[idx], -nr_pages); 3778 __this_cpu_add(to->stat->count[idx], nr_pages); 3779 preempt_enable(); 3780 } 3781 3782 /** 3783 * mem_cgroup_move_account - move account of the page 3784 * @page: the page 3785 * @nr_pages: number of regular pages (>1 for huge pages) 3786 * @pc: page_cgroup of the page. 3787 * @from: mem_cgroup which the page is moved from. 3788 * @to: mem_cgroup which the page is moved to. @from != @to. 3789 * 3790 * The caller must confirm following. 3791 * - page is not on LRU (isolate_page() is useful.) 3792 * - compound_lock is held when nr_pages > 1 3793 * 3794 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3795 * from old cgroup. 3796 */ 3797 static int mem_cgroup_move_account(struct page *page, 3798 unsigned int nr_pages, 3799 struct page_cgroup *pc, 3800 struct mem_cgroup *from, 3801 struct mem_cgroup *to) 3802 { 3803 unsigned long flags; 3804 int ret; 3805 bool anon = PageAnon(page); 3806 3807 VM_BUG_ON(from == to); 3808 VM_BUG_ON(PageLRU(page)); 3809 /* 3810 * The page is isolated from LRU. So, collapse function 3811 * will not handle this page. But page splitting can happen. 3812 * Do this check under compound_page_lock(). The caller should 3813 * hold it. 3814 */ 3815 ret = -EBUSY; 3816 if (nr_pages > 1 && !PageTransHuge(page)) 3817 goto out; 3818 3819 lock_page_cgroup(pc); 3820 3821 ret = -EINVAL; 3822 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3823 goto unlock; 3824 3825 move_lock_mem_cgroup(from, &flags); 3826 3827 if (!anon && page_mapped(page)) 3828 mem_cgroup_move_account_page_stat(from, to, nr_pages, 3829 MEM_CGROUP_STAT_FILE_MAPPED); 3830 3831 if (PageWriteback(page)) 3832 mem_cgroup_move_account_page_stat(from, to, nr_pages, 3833 MEM_CGROUP_STAT_WRITEBACK); 3834 3835 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3836 3837 /* caller should have done css_get */ 3838 pc->mem_cgroup = to; 3839 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3840 move_unlock_mem_cgroup(from, &flags); 3841 ret = 0; 3842 unlock: 3843 unlock_page_cgroup(pc); 3844 /* 3845 * check events 3846 */ 3847 memcg_check_events(to, page); 3848 memcg_check_events(from, page); 3849 out: 3850 return ret; 3851 } 3852 3853 /** 3854 * mem_cgroup_move_parent - moves page to the parent group 3855 * @page: the page to move 3856 * @pc: page_cgroup of the page 3857 * @child: page's cgroup 3858 * 3859 * move charges to its parent or the root cgroup if the group has no 3860 * parent (aka use_hierarchy==0). 3861 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3862 * mem_cgroup_move_account fails) the failure is always temporary and 3863 * it signals a race with a page removal/uncharge or migration. In the 3864 * first case the page is on the way out and it will vanish from the LRU 3865 * on the next attempt and the call should be retried later. 3866 * Isolation from the LRU fails only if page has been isolated from 3867 * the LRU since we looked at it and that usually means either global 3868 * reclaim or migration going on. The page will either get back to the 3869 * LRU or vanish. 3870 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3871 * (!PageCgroupUsed) or moved to a different group. The page will 3872 * disappear in the next attempt. 3873 */ 3874 static int mem_cgroup_move_parent(struct page *page, 3875 struct page_cgroup *pc, 3876 struct mem_cgroup *child) 3877 { 3878 struct mem_cgroup *parent; 3879 unsigned int nr_pages; 3880 unsigned long uninitialized_var(flags); 3881 int ret; 3882 3883 VM_BUG_ON(mem_cgroup_is_root(child)); 3884 3885 ret = -EBUSY; 3886 if (!get_page_unless_zero(page)) 3887 goto out; 3888 if (isolate_lru_page(page)) 3889 goto put; 3890 3891 nr_pages = hpage_nr_pages(page); 3892 3893 parent = parent_mem_cgroup(child); 3894 /* 3895 * If no parent, move charges to root cgroup. 3896 */ 3897 if (!parent) 3898 parent = root_mem_cgroup; 3899 3900 if (nr_pages > 1) { 3901 VM_BUG_ON(!PageTransHuge(page)); 3902 flags = compound_lock_irqsave(page); 3903 } 3904 3905 ret = mem_cgroup_move_account(page, nr_pages, 3906 pc, child, parent); 3907 if (!ret) 3908 __mem_cgroup_cancel_local_charge(child, nr_pages); 3909 3910 if (nr_pages > 1) 3911 compound_unlock_irqrestore(page, flags); 3912 putback_lru_page(page); 3913 put: 3914 put_page(page); 3915 out: 3916 return ret; 3917 } 3918 3919 /* 3920 * Charge the memory controller for page usage. 3921 * Return 3922 * 0 if the charge was successful 3923 * < 0 if the cgroup is over its limit 3924 */ 3925 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3926 gfp_t gfp_mask, enum charge_type ctype) 3927 { 3928 struct mem_cgroup *memcg = NULL; 3929 unsigned int nr_pages = 1; 3930 bool oom = true; 3931 int ret; 3932 3933 if (PageTransHuge(page)) { 3934 nr_pages <<= compound_order(page); 3935 VM_BUG_ON(!PageTransHuge(page)); 3936 /* 3937 * Never OOM-kill a process for a huge page. The 3938 * fault handler will fall back to regular pages. 3939 */ 3940 oom = false; 3941 } 3942 3943 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3944 if (ret == -ENOMEM) 3945 return ret; 3946 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3947 return 0; 3948 } 3949 3950 int mem_cgroup_newpage_charge(struct page *page, 3951 struct mm_struct *mm, gfp_t gfp_mask) 3952 { 3953 if (mem_cgroup_disabled()) 3954 return 0; 3955 VM_BUG_ON(page_mapped(page)); 3956 VM_BUG_ON(page->mapping && !PageAnon(page)); 3957 VM_BUG_ON(!mm); 3958 return mem_cgroup_charge_common(page, mm, gfp_mask, 3959 MEM_CGROUP_CHARGE_TYPE_ANON); 3960 } 3961 3962 /* 3963 * While swap-in, try_charge -> commit or cancel, the page is locked. 3964 * And when try_charge() successfully returns, one refcnt to memcg without 3965 * struct page_cgroup is acquired. This refcnt will be consumed by 3966 * "commit()" or removed by "cancel()" 3967 */ 3968 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3969 struct page *page, 3970 gfp_t mask, 3971 struct mem_cgroup **memcgp) 3972 { 3973 struct mem_cgroup *memcg; 3974 struct page_cgroup *pc; 3975 int ret; 3976 3977 pc = lookup_page_cgroup(page); 3978 /* 3979 * Every swap fault against a single page tries to charge the 3980 * page, bail as early as possible. shmem_unuse() encounters 3981 * already charged pages, too. The USED bit is protected by 3982 * the page lock, which serializes swap cache removal, which 3983 * in turn serializes uncharging. 3984 */ 3985 if (PageCgroupUsed(pc)) 3986 return 0; 3987 if (!do_swap_account) 3988 goto charge_cur_mm; 3989 memcg = try_get_mem_cgroup_from_page(page); 3990 if (!memcg) 3991 goto charge_cur_mm; 3992 *memcgp = memcg; 3993 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3994 css_put(&memcg->css); 3995 if (ret == -EINTR) 3996 ret = 0; 3997 return ret; 3998 charge_cur_mm: 3999 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 4000 if (ret == -EINTR) 4001 ret = 0; 4002 return ret; 4003 } 4004 4005 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 4006 gfp_t gfp_mask, struct mem_cgroup **memcgp) 4007 { 4008 *memcgp = NULL; 4009 if (mem_cgroup_disabled()) 4010 return 0; 4011 /* 4012 * A racing thread's fault, or swapoff, may have already 4013 * updated the pte, and even removed page from swap cache: in 4014 * those cases unuse_pte()'s pte_same() test will fail; but 4015 * there's also a KSM case which does need to charge the page. 4016 */ 4017 if (!PageSwapCache(page)) { 4018 int ret; 4019 4020 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 4021 if (ret == -EINTR) 4022 ret = 0; 4023 return ret; 4024 } 4025 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 4026 } 4027 4028 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 4029 { 4030 if (mem_cgroup_disabled()) 4031 return; 4032 if (!memcg) 4033 return; 4034 __mem_cgroup_cancel_charge(memcg, 1); 4035 } 4036 4037 static void 4038 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 4039 enum charge_type ctype) 4040 { 4041 if (mem_cgroup_disabled()) 4042 return; 4043 if (!memcg) 4044 return; 4045 4046 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 4047 /* 4048 * Now swap is on-memory. This means this page may be 4049 * counted both as mem and swap....double count. 4050 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 4051 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 4052 * may call delete_from_swap_cache() before reach here. 4053 */ 4054 if (do_swap_account && PageSwapCache(page)) { 4055 swp_entry_t ent = {.val = page_private(page)}; 4056 mem_cgroup_uncharge_swap(ent); 4057 } 4058 } 4059 4060 void mem_cgroup_commit_charge_swapin(struct page *page, 4061 struct mem_cgroup *memcg) 4062 { 4063 __mem_cgroup_commit_charge_swapin(page, memcg, 4064 MEM_CGROUP_CHARGE_TYPE_ANON); 4065 } 4066 4067 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 4068 gfp_t gfp_mask) 4069 { 4070 struct mem_cgroup *memcg = NULL; 4071 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4072 int ret; 4073 4074 if (mem_cgroup_disabled()) 4075 return 0; 4076 if (PageCompound(page)) 4077 return 0; 4078 4079 if (!PageSwapCache(page)) 4080 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 4081 else { /* page is swapcache/shmem */ 4082 ret = __mem_cgroup_try_charge_swapin(mm, page, 4083 gfp_mask, &memcg); 4084 if (!ret) 4085 __mem_cgroup_commit_charge_swapin(page, memcg, type); 4086 } 4087 return ret; 4088 } 4089 4090 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 4091 unsigned int nr_pages, 4092 const enum charge_type ctype) 4093 { 4094 struct memcg_batch_info *batch = NULL; 4095 bool uncharge_memsw = true; 4096 4097 /* If swapout, usage of swap doesn't decrease */ 4098 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 4099 uncharge_memsw = false; 4100 4101 batch = ¤t->memcg_batch; 4102 /* 4103 * In usual, we do css_get() when we remember memcg pointer. 4104 * But in this case, we keep res->usage until end of a series of 4105 * uncharges. Then, it's ok to ignore memcg's refcnt. 4106 */ 4107 if (!batch->memcg) 4108 batch->memcg = memcg; 4109 /* 4110 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 4111 * In those cases, all pages freed continuously can be expected to be in 4112 * the same cgroup and we have chance to coalesce uncharges. 4113 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4114 * because we want to do uncharge as soon as possible. 4115 */ 4116 4117 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4118 goto direct_uncharge; 4119 4120 if (nr_pages > 1) 4121 goto direct_uncharge; 4122 4123 /* 4124 * In typical case, batch->memcg == mem. This means we can 4125 * merge a series of uncharges to an uncharge of res_counter. 4126 * If not, we uncharge res_counter ony by one. 4127 */ 4128 if (batch->memcg != memcg) 4129 goto direct_uncharge; 4130 /* remember freed charge and uncharge it later */ 4131 batch->nr_pages++; 4132 if (uncharge_memsw) 4133 batch->memsw_nr_pages++; 4134 return; 4135 direct_uncharge: 4136 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4137 if (uncharge_memsw) 4138 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4139 if (unlikely(batch->memcg != memcg)) 4140 memcg_oom_recover(memcg); 4141 } 4142 4143 /* 4144 * uncharge if !page_mapped(page) 4145 */ 4146 static struct mem_cgroup * 4147 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4148 bool end_migration) 4149 { 4150 struct mem_cgroup *memcg = NULL; 4151 unsigned int nr_pages = 1; 4152 struct page_cgroup *pc; 4153 bool anon; 4154 4155 if (mem_cgroup_disabled()) 4156 return NULL; 4157 4158 if (PageTransHuge(page)) { 4159 nr_pages <<= compound_order(page); 4160 VM_BUG_ON(!PageTransHuge(page)); 4161 } 4162 /* 4163 * Check if our page_cgroup is valid 4164 */ 4165 pc = lookup_page_cgroup(page); 4166 if (unlikely(!PageCgroupUsed(pc))) 4167 return NULL; 4168 4169 lock_page_cgroup(pc); 4170 4171 memcg = pc->mem_cgroup; 4172 4173 if (!PageCgroupUsed(pc)) 4174 goto unlock_out; 4175 4176 anon = PageAnon(page); 4177 4178 switch (ctype) { 4179 case MEM_CGROUP_CHARGE_TYPE_ANON: 4180 /* 4181 * Generally PageAnon tells if it's the anon statistics to be 4182 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4183 * used before page reached the stage of being marked PageAnon. 4184 */ 4185 anon = true; 4186 /* fallthrough */ 4187 case MEM_CGROUP_CHARGE_TYPE_DROP: 4188 /* See mem_cgroup_prepare_migration() */ 4189 if (page_mapped(page)) 4190 goto unlock_out; 4191 /* 4192 * Pages under migration may not be uncharged. But 4193 * end_migration() /must/ be the one uncharging the 4194 * unused post-migration page and so it has to call 4195 * here with the migration bit still set. See the 4196 * res_counter handling below. 4197 */ 4198 if (!end_migration && PageCgroupMigration(pc)) 4199 goto unlock_out; 4200 break; 4201 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4202 if (!PageAnon(page)) { /* Shared memory */ 4203 if (page->mapping && !page_is_file_cache(page)) 4204 goto unlock_out; 4205 } else if (page_mapped(page)) /* Anon */ 4206 goto unlock_out; 4207 break; 4208 default: 4209 break; 4210 } 4211 4212 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4213 4214 ClearPageCgroupUsed(pc); 4215 /* 4216 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4217 * freed from LRU. This is safe because uncharged page is expected not 4218 * to be reused (freed soon). Exception is SwapCache, it's handled by 4219 * special functions. 4220 */ 4221 4222 unlock_page_cgroup(pc); 4223 /* 4224 * even after unlock, we have memcg->res.usage here and this memcg 4225 * will never be freed, so it's safe to call css_get(). 4226 */ 4227 memcg_check_events(memcg, page); 4228 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4229 mem_cgroup_swap_statistics(memcg, true); 4230 css_get(&memcg->css); 4231 } 4232 /* 4233 * Migration does not charge the res_counter for the 4234 * replacement page, so leave it alone when phasing out the 4235 * page that is unused after the migration. 4236 */ 4237 if (!end_migration && !mem_cgroup_is_root(memcg)) 4238 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4239 4240 return memcg; 4241 4242 unlock_out: 4243 unlock_page_cgroup(pc); 4244 return NULL; 4245 } 4246 4247 void mem_cgroup_uncharge_page(struct page *page) 4248 { 4249 /* early check. */ 4250 if (page_mapped(page)) 4251 return; 4252 VM_BUG_ON(page->mapping && !PageAnon(page)); 4253 /* 4254 * If the page is in swap cache, uncharge should be deferred 4255 * to the swap path, which also properly accounts swap usage 4256 * and handles memcg lifetime. 4257 * 4258 * Note that this check is not stable and reclaim may add the 4259 * page to swap cache at any time after this. However, if the 4260 * page is not in swap cache by the time page->mapcount hits 4261 * 0, there won't be any page table references to the swap 4262 * slot, and reclaim will free it and not actually write the 4263 * page to disk. 4264 */ 4265 if (PageSwapCache(page)) 4266 return; 4267 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4268 } 4269 4270 void mem_cgroup_uncharge_cache_page(struct page *page) 4271 { 4272 VM_BUG_ON(page_mapped(page)); 4273 VM_BUG_ON(page->mapping); 4274 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4275 } 4276 4277 /* 4278 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4279 * In that cases, pages are freed continuously and we can expect pages 4280 * are in the same memcg. All these calls itself limits the number of 4281 * pages freed at once, then uncharge_start/end() is called properly. 4282 * This may be called prural(2) times in a context, 4283 */ 4284 4285 void mem_cgroup_uncharge_start(void) 4286 { 4287 current->memcg_batch.do_batch++; 4288 /* We can do nest. */ 4289 if (current->memcg_batch.do_batch == 1) { 4290 current->memcg_batch.memcg = NULL; 4291 current->memcg_batch.nr_pages = 0; 4292 current->memcg_batch.memsw_nr_pages = 0; 4293 } 4294 } 4295 4296 void mem_cgroup_uncharge_end(void) 4297 { 4298 struct memcg_batch_info *batch = ¤t->memcg_batch; 4299 4300 if (!batch->do_batch) 4301 return; 4302 4303 batch->do_batch--; 4304 if (batch->do_batch) /* If stacked, do nothing. */ 4305 return; 4306 4307 if (!batch->memcg) 4308 return; 4309 /* 4310 * This "batch->memcg" is valid without any css_get/put etc... 4311 * bacause we hide charges behind us. 4312 */ 4313 if (batch->nr_pages) 4314 res_counter_uncharge(&batch->memcg->res, 4315 batch->nr_pages * PAGE_SIZE); 4316 if (batch->memsw_nr_pages) 4317 res_counter_uncharge(&batch->memcg->memsw, 4318 batch->memsw_nr_pages * PAGE_SIZE); 4319 memcg_oom_recover(batch->memcg); 4320 /* forget this pointer (for sanity check) */ 4321 batch->memcg = NULL; 4322 } 4323 4324 #ifdef CONFIG_SWAP 4325 /* 4326 * called after __delete_from_swap_cache() and drop "page" account. 4327 * memcg information is recorded to swap_cgroup of "ent" 4328 */ 4329 void 4330 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4331 { 4332 struct mem_cgroup *memcg; 4333 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4334 4335 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4336 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4337 4338 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4339 4340 /* 4341 * record memcg information, if swapout && memcg != NULL, 4342 * css_get() was called in uncharge(). 4343 */ 4344 if (do_swap_account && swapout && memcg) 4345 swap_cgroup_record(ent, css_id(&memcg->css)); 4346 } 4347 #endif 4348 4349 #ifdef CONFIG_MEMCG_SWAP 4350 /* 4351 * called from swap_entry_free(). remove record in swap_cgroup and 4352 * uncharge "memsw" account. 4353 */ 4354 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4355 { 4356 struct mem_cgroup *memcg; 4357 unsigned short id; 4358 4359 if (!do_swap_account) 4360 return; 4361 4362 id = swap_cgroup_record(ent, 0); 4363 rcu_read_lock(); 4364 memcg = mem_cgroup_lookup(id); 4365 if (memcg) { 4366 /* 4367 * We uncharge this because swap is freed. 4368 * This memcg can be obsolete one. We avoid calling css_tryget 4369 */ 4370 if (!mem_cgroup_is_root(memcg)) 4371 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4372 mem_cgroup_swap_statistics(memcg, false); 4373 css_put(&memcg->css); 4374 } 4375 rcu_read_unlock(); 4376 } 4377 4378 /** 4379 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4380 * @entry: swap entry to be moved 4381 * @from: mem_cgroup which the entry is moved from 4382 * @to: mem_cgroup which the entry is moved to 4383 * 4384 * It succeeds only when the swap_cgroup's record for this entry is the same 4385 * as the mem_cgroup's id of @from. 4386 * 4387 * Returns 0 on success, -EINVAL on failure. 4388 * 4389 * The caller must have charged to @to, IOW, called res_counter_charge() about 4390 * both res and memsw, and called css_get(). 4391 */ 4392 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4393 struct mem_cgroup *from, struct mem_cgroup *to) 4394 { 4395 unsigned short old_id, new_id; 4396 4397 old_id = css_id(&from->css); 4398 new_id = css_id(&to->css); 4399 4400 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4401 mem_cgroup_swap_statistics(from, false); 4402 mem_cgroup_swap_statistics(to, true); 4403 /* 4404 * This function is only called from task migration context now. 4405 * It postpones res_counter and refcount handling till the end 4406 * of task migration(mem_cgroup_clear_mc()) for performance 4407 * improvement. But we cannot postpone css_get(to) because if 4408 * the process that has been moved to @to does swap-in, the 4409 * refcount of @to might be decreased to 0. 4410 * 4411 * We are in attach() phase, so the cgroup is guaranteed to be 4412 * alive, so we can just call css_get(). 4413 */ 4414 css_get(&to->css); 4415 return 0; 4416 } 4417 return -EINVAL; 4418 } 4419 #else 4420 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4421 struct mem_cgroup *from, struct mem_cgroup *to) 4422 { 4423 return -EINVAL; 4424 } 4425 #endif 4426 4427 /* 4428 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4429 * page belongs to. 4430 */ 4431 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4432 struct mem_cgroup **memcgp) 4433 { 4434 struct mem_cgroup *memcg = NULL; 4435 unsigned int nr_pages = 1; 4436 struct page_cgroup *pc; 4437 enum charge_type ctype; 4438 4439 *memcgp = NULL; 4440 4441 if (mem_cgroup_disabled()) 4442 return; 4443 4444 if (PageTransHuge(page)) 4445 nr_pages <<= compound_order(page); 4446 4447 pc = lookup_page_cgroup(page); 4448 lock_page_cgroup(pc); 4449 if (PageCgroupUsed(pc)) { 4450 memcg = pc->mem_cgroup; 4451 css_get(&memcg->css); 4452 /* 4453 * At migrating an anonymous page, its mapcount goes down 4454 * to 0 and uncharge() will be called. But, even if it's fully 4455 * unmapped, migration may fail and this page has to be 4456 * charged again. We set MIGRATION flag here and delay uncharge 4457 * until end_migration() is called 4458 * 4459 * Corner Case Thinking 4460 * A) 4461 * When the old page was mapped as Anon and it's unmap-and-freed 4462 * while migration was ongoing. 4463 * If unmap finds the old page, uncharge() of it will be delayed 4464 * until end_migration(). If unmap finds a new page, it's 4465 * uncharged when it make mapcount to be 1->0. If unmap code 4466 * finds swap_migration_entry, the new page will not be mapped 4467 * and end_migration() will find it(mapcount==0). 4468 * 4469 * B) 4470 * When the old page was mapped but migraion fails, the kernel 4471 * remaps it. A charge for it is kept by MIGRATION flag even 4472 * if mapcount goes down to 0. We can do remap successfully 4473 * without charging it again. 4474 * 4475 * C) 4476 * The "old" page is under lock_page() until the end of 4477 * migration, so, the old page itself will not be swapped-out. 4478 * If the new page is swapped out before end_migraton, our 4479 * hook to usual swap-out path will catch the event. 4480 */ 4481 if (PageAnon(page)) 4482 SetPageCgroupMigration(pc); 4483 } 4484 unlock_page_cgroup(pc); 4485 /* 4486 * If the page is not charged at this point, 4487 * we return here. 4488 */ 4489 if (!memcg) 4490 return; 4491 4492 *memcgp = memcg; 4493 /* 4494 * We charge new page before it's used/mapped. So, even if unlock_page() 4495 * is called before end_migration, we can catch all events on this new 4496 * page. In the case new page is migrated but not remapped, new page's 4497 * mapcount will be finally 0 and we call uncharge in end_migration(). 4498 */ 4499 if (PageAnon(page)) 4500 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4501 else 4502 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4503 /* 4504 * The page is committed to the memcg, but it's not actually 4505 * charged to the res_counter since we plan on replacing the 4506 * old one and only one page is going to be left afterwards. 4507 */ 4508 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4509 } 4510 4511 /* remove redundant charge if migration failed*/ 4512 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4513 struct page *oldpage, struct page *newpage, bool migration_ok) 4514 { 4515 struct page *used, *unused; 4516 struct page_cgroup *pc; 4517 bool anon; 4518 4519 if (!memcg) 4520 return; 4521 4522 if (!migration_ok) { 4523 used = oldpage; 4524 unused = newpage; 4525 } else { 4526 used = newpage; 4527 unused = oldpage; 4528 } 4529 anon = PageAnon(used); 4530 __mem_cgroup_uncharge_common(unused, 4531 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4532 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4533 true); 4534 css_put(&memcg->css); 4535 /* 4536 * We disallowed uncharge of pages under migration because mapcount 4537 * of the page goes down to zero, temporarly. 4538 * Clear the flag and check the page should be charged. 4539 */ 4540 pc = lookup_page_cgroup(oldpage); 4541 lock_page_cgroup(pc); 4542 ClearPageCgroupMigration(pc); 4543 unlock_page_cgroup(pc); 4544 4545 /* 4546 * If a page is a file cache, radix-tree replacement is very atomic 4547 * and we can skip this check. When it was an Anon page, its mapcount 4548 * goes down to 0. But because we added MIGRATION flage, it's not 4549 * uncharged yet. There are several case but page->mapcount check 4550 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4551 * check. (see prepare_charge() also) 4552 */ 4553 if (anon) 4554 mem_cgroup_uncharge_page(used); 4555 } 4556 4557 /* 4558 * At replace page cache, newpage is not under any memcg but it's on 4559 * LRU. So, this function doesn't touch res_counter but handles LRU 4560 * in correct way. Both pages are locked so we cannot race with uncharge. 4561 */ 4562 void mem_cgroup_replace_page_cache(struct page *oldpage, 4563 struct page *newpage) 4564 { 4565 struct mem_cgroup *memcg = NULL; 4566 struct page_cgroup *pc; 4567 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4568 4569 if (mem_cgroup_disabled()) 4570 return; 4571 4572 pc = lookup_page_cgroup(oldpage); 4573 /* fix accounting on old pages */ 4574 lock_page_cgroup(pc); 4575 if (PageCgroupUsed(pc)) { 4576 memcg = pc->mem_cgroup; 4577 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4578 ClearPageCgroupUsed(pc); 4579 } 4580 unlock_page_cgroup(pc); 4581 4582 /* 4583 * When called from shmem_replace_page(), in some cases the 4584 * oldpage has already been charged, and in some cases not. 4585 */ 4586 if (!memcg) 4587 return; 4588 /* 4589 * Even if newpage->mapping was NULL before starting replacement, 4590 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4591 * LRU while we overwrite pc->mem_cgroup. 4592 */ 4593 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4594 } 4595 4596 #ifdef CONFIG_DEBUG_VM 4597 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4598 { 4599 struct page_cgroup *pc; 4600 4601 pc = lookup_page_cgroup(page); 4602 /* 4603 * Can be NULL while feeding pages into the page allocator for 4604 * the first time, i.e. during boot or memory hotplug; 4605 * or when mem_cgroup_disabled(). 4606 */ 4607 if (likely(pc) && PageCgroupUsed(pc)) 4608 return pc; 4609 return NULL; 4610 } 4611 4612 bool mem_cgroup_bad_page_check(struct page *page) 4613 { 4614 if (mem_cgroup_disabled()) 4615 return false; 4616 4617 return lookup_page_cgroup_used(page) != NULL; 4618 } 4619 4620 void mem_cgroup_print_bad_page(struct page *page) 4621 { 4622 struct page_cgroup *pc; 4623 4624 pc = lookup_page_cgroup_used(page); 4625 if (pc) { 4626 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4627 pc, pc->flags, pc->mem_cgroup); 4628 } 4629 } 4630 #endif 4631 4632 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4633 unsigned long long val) 4634 { 4635 int retry_count; 4636 u64 memswlimit, memlimit; 4637 int ret = 0; 4638 int children = mem_cgroup_count_children(memcg); 4639 u64 curusage, oldusage; 4640 int enlarge; 4641 4642 /* 4643 * For keeping hierarchical_reclaim simple, how long we should retry 4644 * is depends on callers. We set our retry-count to be function 4645 * of # of children which we should visit in this loop. 4646 */ 4647 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4648 4649 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4650 4651 enlarge = 0; 4652 while (retry_count) { 4653 if (signal_pending(current)) { 4654 ret = -EINTR; 4655 break; 4656 } 4657 /* 4658 * Rather than hide all in some function, I do this in 4659 * open coded manner. You see what this really does. 4660 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4661 */ 4662 mutex_lock(&set_limit_mutex); 4663 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4664 if (memswlimit < val) { 4665 ret = -EINVAL; 4666 mutex_unlock(&set_limit_mutex); 4667 break; 4668 } 4669 4670 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4671 if (memlimit < val) 4672 enlarge = 1; 4673 4674 ret = res_counter_set_limit(&memcg->res, val); 4675 if (!ret) { 4676 if (memswlimit == val) 4677 memcg->memsw_is_minimum = true; 4678 else 4679 memcg->memsw_is_minimum = false; 4680 } 4681 mutex_unlock(&set_limit_mutex); 4682 4683 if (!ret) 4684 break; 4685 4686 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4687 MEM_CGROUP_RECLAIM_SHRINK); 4688 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4689 /* Usage is reduced ? */ 4690 if (curusage >= oldusage) 4691 retry_count--; 4692 else 4693 oldusage = curusage; 4694 } 4695 if (!ret && enlarge) 4696 memcg_oom_recover(memcg); 4697 4698 return ret; 4699 } 4700 4701 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4702 unsigned long long val) 4703 { 4704 int retry_count; 4705 u64 memlimit, memswlimit, oldusage, curusage; 4706 int children = mem_cgroup_count_children(memcg); 4707 int ret = -EBUSY; 4708 int enlarge = 0; 4709 4710 /* see mem_cgroup_resize_res_limit */ 4711 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4712 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4713 while (retry_count) { 4714 if (signal_pending(current)) { 4715 ret = -EINTR; 4716 break; 4717 } 4718 /* 4719 * Rather than hide all in some function, I do this in 4720 * open coded manner. You see what this really does. 4721 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4722 */ 4723 mutex_lock(&set_limit_mutex); 4724 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4725 if (memlimit > val) { 4726 ret = -EINVAL; 4727 mutex_unlock(&set_limit_mutex); 4728 break; 4729 } 4730 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4731 if (memswlimit < val) 4732 enlarge = 1; 4733 ret = res_counter_set_limit(&memcg->memsw, val); 4734 if (!ret) { 4735 if (memlimit == val) 4736 memcg->memsw_is_minimum = true; 4737 else 4738 memcg->memsw_is_minimum = false; 4739 } 4740 mutex_unlock(&set_limit_mutex); 4741 4742 if (!ret) 4743 break; 4744 4745 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4746 MEM_CGROUP_RECLAIM_NOSWAP | 4747 MEM_CGROUP_RECLAIM_SHRINK); 4748 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4749 /* Usage is reduced ? */ 4750 if (curusage >= oldusage) 4751 retry_count--; 4752 else 4753 oldusage = curusage; 4754 } 4755 if (!ret && enlarge) 4756 memcg_oom_recover(memcg); 4757 return ret; 4758 } 4759 4760 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4761 gfp_t gfp_mask, 4762 unsigned long *total_scanned) 4763 { 4764 unsigned long nr_reclaimed = 0; 4765 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4766 unsigned long reclaimed; 4767 int loop = 0; 4768 struct mem_cgroup_tree_per_zone *mctz; 4769 unsigned long long excess; 4770 unsigned long nr_scanned; 4771 4772 if (order > 0) 4773 return 0; 4774 4775 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4776 /* 4777 * This loop can run a while, specially if mem_cgroup's continuously 4778 * keep exceeding their soft limit and putting the system under 4779 * pressure 4780 */ 4781 do { 4782 if (next_mz) 4783 mz = next_mz; 4784 else 4785 mz = mem_cgroup_largest_soft_limit_node(mctz); 4786 if (!mz) 4787 break; 4788 4789 nr_scanned = 0; 4790 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4791 gfp_mask, &nr_scanned); 4792 nr_reclaimed += reclaimed; 4793 *total_scanned += nr_scanned; 4794 spin_lock(&mctz->lock); 4795 4796 /* 4797 * If we failed to reclaim anything from this memory cgroup 4798 * it is time to move on to the next cgroup 4799 */ 4800 next_mz = NULL; 4801 if (!reclaimed) { 4802 do { 4803 /* 4804 * Loop until we find yet another one. 4805 * 4806 * By the time we get the soft_limit lock 4807 * again, someone might have aded the 4808 * group back on the RB tree. Iterate to 4809 * make sure we get a different mem. 4810 * mem_cgroup_largest_soft_limit_node returns 4811 * NULL if no other cgroup is present on 4812 * the tree 4813 */ 4814 next_mz = 4815 __mem_cgroup_largest_soft_limit_node(mctz); 4816 if (next_mz == mz) 4817 css_put(&next_mz->memcg->css); 4818 else /* next_mz == NULL or other memcg */ 4819 break; 4820 } while (1); 4821 } 4822 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4823 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4824 /* 4825 * One school of thought says that we should not add 4826 * back the node to the tree if reclaim returns 0. 4827 * But our reclaim could return 0, simply because due 4828 * to priority we are exposing a smaller subset of 4829 * memory to reclaim from. Consider this as a longer 4830 * term TODO. 4831 */ 4832 /* If excess == 0, no tree ops */ 4833 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4834 spin_unlock(&mctz->lock); 4835 css_put(&mz->memcg->css); 4836 loop++; 4837 /* 4838 * Could not reclaim anything and there are no more 4839 * mem cgroups to try or we seem to be looping without 4840 * reclaiming anything. 4841 */ 4842 if (!nr_reclaimed && 4843 (next_mz == NULL || 4844 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4845 break; 4846 } while (!nr_reclaimed); 4847 if (next_mz) 4848 css_put(&next_mz->memcg->css); 4849 return nr_reclaimed; 4850 } 4851 4852 /** 4853 * mem_cgroup_force_empty_list - clears LRU of a group 4854 * @memcg: group to clear 4855 * @node: NUMA node 4856 * @zid: zone id 4857 * @lru: lru to to clear 4858 * 4859 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4860 * reclaim the pages page themselves - pages are moved to the parent (or root) 4861 * group. 4862 */ 4863 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4864 int node, int zid, enum lru_list lru) 4865 { 4866 struct lruvec *lruvec; 4867 unsigned long flags; 4868 struct list_head *list; 4869 struct page *busy; 4870 struct zone *zone; 4871 4872 zone = &NODE_DATA(node)->node_zones[zid]; 4873 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4874 list = &lruvec->lists[lru]; 4875 4876 busy = NULL; 4877 do { 4878 struct page_cgroup *pc; 4879 struct page *page; 4880 4881 spin_lock_irqsave(&zone->lru_lock, flags); 4882 if (list_empty(list)) { 4883 spin_unlock_irqrestore(&zone->lru_lock, flags); 4884 break; 4885 } 4886 page = list_entry(list->prev, struct page, lru); 4887 if (busy == page) { 4888 list_move(&page->lru, list); 4889 busy = NULL; 4890 spin_unlock_irqrestore(&zone->lru_lock, flags); 4891 continue; 4892 } 4893 spin_unlock_irqrestore(&zone->lru_lock, flags); 4894 4895 pc = lookup_page_cgroup(page); 4896 4897 if (mem_cgroup_move_parent(page, pc, memcg)) { 4898 /* found lock contention or "pc" is obsolete. */ 4899 busy = page; 4900 cond_resched(); 4901 } else 4902 busy = NULL; 4903 } while (!list_empty(list)); 4904 } 4905 4906 /* 4907 * make mem_cgroup's charge to be 0 if there is no task by moving 4908 * all the charges and pages to the parent. 4909 * This enables deleting this mem_cgroup. 4910 * 4911 * Caller is responsible for holding css reference on the memcg. 4912 */ 4913 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4914 { 4915 int node, zid; 4916 u64 usage; 4917 4918 do { 4919 /* This is for making all *used* pages to be on LRU. */ 4920 lru_add_drain_all(); 4921 drain_all_stock_sync(memcg); 4922 mem_cgroup_start_move(memcg); 4923 for_each_node_state(node, N_MEMORY) { 4924 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4925 enum lru_list lru; 4926 for_each_lru(lru) { 4927 mem_cgroup_force_empty_list(memcg, 4928 node, zid, lru); 4929 } 4930 } 4931 } 4932 mem_cgroup_end_move(memcg); 4933 memcg_oom_recover(memcg); 4934 cond_resched(); 4935 4936 /* 4937 * Kernel memory may not necessarily be trackable to a specific 4938 * process. So they are not migrated, and therefore we can't 4939 * expect their value to drop to 0 here. 4940 * Having res filled up with kmem only is enough. 4941 * 4942 * This is a safety check because mem_cgroup_force_empty_list 4943 * could have raced with mem_cgroup_replace_page_cache callers 4944 * so the lru seemed empty but the page could have been added 4945 * right after the check. RES_USAGE should be safe as we always 4946 * charge before adding to the LRU. 4947 */ 4948 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4949 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4950 } while (usage > 0); 4951 } 4952 4953 /* 4954 * This mainly exists for tests during the setting of set of use_hierarchy. 4955 * Since this is the very setting we are changing, the current hierarchy value 4956 * is meaningless 4957 */ 4958 static inline bool __memcg_has_children(struct mem_cgroup *memcg) 4959 { 4960 struct cgroup_subsys_state *pos; 4961 4962 /* bounce at first found */ 4963 css_for_each_child(pos, &memcg->css) 4964 return true; 4965 return false; 4966 } 4967 4968 /* 4969 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed 4970 * to be already dead (as in mem_cgroup_force_empty, for instance). This is 4971 * from mem_cgroup_count_children(), in the sense that we don't really care how 4972 * many children we have; we only need to know if we have any. It also counts 4973 * any memcg without hierarchy as infertile. 4974 */ 4975 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4976 { 4977 return memcg->use_hierarchy && __memcg_has_children(memcg); 4978 } 4979 4980 /* 4981 * Reclaims as many pages from the given memcg as possible and moves 4982 * the rest to the parent. 4983 * 4984 * Caller is responsible for holding css reference for memcg. 4985 */ 4986 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4987 { 4988 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4989 struct cgroup *cgrp = memcg->css.cgroup; 4990 4991 /* returns EBUSY if there is a task or if we come here twice. */ 4992 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4993 return -EBUSY; 4994 4995 /* we call try-to-free pages for make this cgroup empty */ 4996 lru_add_drain_all(); 4997 /* try to free all pages in this cgroup */ 4998 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4999 int progress; 5000 5001 if (signal_pending(current)) 5002 return -EINTR; 5003 5004 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 5005 false); 5006 if (!progress) { 5007 nr_retries--; 5008 /* maybe some writeback is necessary */ 5009 congestion_wait(BLK_RW_ASYNC, HZ/10); 5010 } 5011 5012 } 5013 lru_add_drain(); 5014 mem_cgroup_reparent_charges(memcg); 5015 5016 return 0; 5017 } 5018 5019 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, 5020 unsigned int event) 5021 { 5022 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5023 5024 if (mem_cgroup_is_root(memcg)) 5025 return -EINVAL; 5026 return mem_cgroup_force_empty(memcg); 5027 } 5028 5029 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 5030 struct cftype *cft) 5031 { 5032 return mem_cgroup_from_css(css)->use_hierarchy; 5033 } 5034 5035 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 5036 struct cftype *cft, u64 val) 5037 { 5038 int retval = 0; 5039 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5040 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5041 5042 mutex_lock(&memcg_create_mutex); 5043 5044 if (memcg->use_hierarchy == val) 5045 goto out; 5046 5047 /* 5048 * If parent's use_hierarchy is set, we can't make any modifications 5049 * in the child subtrees. If it is unset, then the change can 5050 * occur, provided the current cgroup has no children. 5051 * 5052 * For the root cgroup, parent_mem is NULL, we allow value to be 5053 * set if there are no children. 5054 */ 5055 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 5056 (val == 1 || val == 0)) { 5057 if (!__memcg_has_children(memcg)) 5058 memcg->use_hierarchy = val; 5059 else 5060 retval = -EBUSY; 5061 } else 5062 retval = -EINVAL; 5063 5064 out: 5065 mutex_unlock(&memcg_create_mutex); 5066 5067 return retval; 5068 } 5069 5070 5071 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 5072 enum mem_cgroup_stat_index idx) 5073 { 5074 struct mem_cgroup *iter; 5075 long val = 0; 5076 5077 /* Per-cpu values can be negative, use a signed accumulator */ 5078 for_each_mem_cgroup_tree(iter, memcg) 5079 val += mem_cgroup_read_stat(iter, idx); 5080 5081 if (val < 0) /* race ? */ 5082 val = 0; 5083 return val; 5084 } 5085 5086 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 5087 { 5088 u64 val; 5089 5090 if (!mem_cgroup_is_root(memcg)) { 5091 if (!swap) 5092 return res_counter_read_u64(&memcg->res, RES_USAGE); 5093 else 5094 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 5095 } 5096 5097 /* 5098 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 5099 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 5100 */ 5101 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 5102 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 5103 5104 if (swap) 5105 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 5106 5107 return val << PAGE_SHIFT; 5108 } 5109 5110 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, 5111 struct cftype *cft, struct file *file, 5112 char __user *buf, size_t nbytes, loff_t *ppos) 5113 { 5114 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5115 char str[64]; 5116 u64 val; 5117 int name, len; 5118 enum res_type type; 5119 5120 type = MEMFILE_TYPE(cft->private); 5121 name = MEMFILE_ATTR(cft->private); 5122 5123 switch (type) { 5124 case _MEM: 5125 if (name == RES_USAGE) 5126 val = mem_cgroup_usage(memcg, false); 5127 else 5128 val = res_counter_read_u64(&memcg->res, name); 5129 break; 5130 case _MEMSWAP: 5131 if (name == RES_USAGE) 5132 val = mem_cgroup_usage(memcg, true); 5133 else 5134 val = res_counter_read_u64(&memcg->memsw, name); 5135 break; 5136 case _KMEM: 5137 val = res_counter_read_u64(&memcg->kmem, name); 5138 break; 5139 default: 5140 BUG(); 5141 } 5142 5143 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 5144 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 5145 } 5146 5147 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) 5148 { 5149 int ret = -EINVAL; 5150 #ifdef CONFIG_MEMCG_KMEM 5151 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5152 /* 5153 * For simplicity, we won't allow this to be disabled. It also can't 5154 * be changed if the cgroup has children already, or if tasks had 5155 * already joined. 5156 * 5157 * If tasks join before we set the limit, a person looking at 5158 * kmem.usage_in_bytes will have no way to determine when it took 5159 * place, which makes the value quite meaningless. 5160 * 5161 * After it first became limited, changes in the value of the limit are 5162 * of course permitted. 5163 */ 5164 mutex_lock(&memcg_create_mutex); 5165 mutex_lock(&set_limit_mutex); 5166 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) { 5167 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { 5168 ret = -EBUSY; 5169 goto out; 5170 } 5171 ret = res_counter_set_limit(&memcg->kmem, val); 5172 VM_BUG_ON(ret); 5173 5174 ret = memcg_update_cache_sizes(memcg); 5175 if (ret) { 5176 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX); 5177 goto out; 5178 } 5179 static_key_slow_inc(&memcg_kmem_enabled_key); 5180 /* 5181 * setting the active bit after the inc will guarantee no one 5182 * starts accounting before all call sites are patched 5183 */ 5184 memcg_kmem_set_active(memcg); 5185 } else 5186 ret = res_counter_set_limit(&memcg->kmem, val); 5187 out: 5188 mutex_unlock(&set_limit_mutex); 5189 mutex_unlock(&memcg_create_mutex); 5190 #endif 5191 return ret; 5192 } 5193 5194 #ifdef CONFIG_MEMCG_KMEM 5195 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5196 { 5197 int ret = 0; 5198 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5199 if (!parent) 5200 goto out; 5201 5202 memcg->kmem_account_flags = parent->kmem_account_flags; 5203 /* 5204 * When that happen, we need to disable the static branch only on those 5205 * memcgs that enabled it. To achieve this, we would be forced to 5206 * complicate the code by keeping track of which memcgs were the ones 5207 * that actually enabled limits, and which ones got it from its 5208 * parents. 5209 * 5210 * It is a lot simpler just to do static_key_slow_inc() on every child 5211 * that is accounted. 5212 */ 5213 if (!memcg_kmem_is_active(memcg)) 5214 goto out; 5215 5216 /* 5217 * __mem_cgroup_free() will issue static_key_slow_dec() because this 5218 * memcg is active already. If the later initialization fails then the 5219 * cgroup core triggers the cleanup so we do not have to do it here. 5220 */ 5221 static_key_slow_inc(&memcg_kmem_enabled_key); 5222 5223 mutex_lock(&set_limit_mutex); 5224 memcg_stop_kmem_account(); 5225 ret = memcg_update_cache_sizes(memcg); 5226 memcg_resume_kmem_account(); 5227 mutex_unlock(&set_limit_mutex); 5228 out: 5229 return ret; 5230 } 5231 #endif /* CONFIG_MEMCG_KMEM */ 5232 5233 /* 5234 * The user of this function is... 5235 * RES_LIMIT. 5236 */ 5237 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, 5238 const char *buffer) 5239 { 5240 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5241 enum res_type type; 5242 int name; 5243 unsigned long long val; 5244 int ret; 5245 5246 type = MEMFILE_TYPE(cft->private); 5247 name = MEMFILE_ATTR(cft->private); 5248 5249 switch (name) { 5250 case RES_LIMIT: 5251 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5252 ret = -EINVAL; 5253 break; 5254 } 5255 /* This function does all necessary parse...reuse it */ 5256 ret = res_counter_memparse_write_strategy(buffer, &val); 5257 if (ret) 5258 break; 5259 if (type == _MEM) 5260 ret = mem_cgroup_resize_limit(memcg, val); 5261 else if (type == _MEMSWAP) 5262 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5263 else if (type == _KMEM) 5264 ret = memcg_update_kmem_limit(css, val); 5265 else 5266 return -EINVAL; 5267 break; 5268 case RES_SOFT_LIMIT: 5269 ret = res_counter_memparse_write_strategy(buffer, &val); 5270 if (ret) 5271 break; 5272 /* 5273 * For memsw, soft limits are hard to implement in terms 5274 * of semantics, for now, we support soft limits for 5275 * control without swap 5276 */ 5277 if (type == _MEM) 5278 ret = res_counter_set_soft_limit(&memcg->res, val); 5279 else 5280 ret = -EINVAL; 5281 break; 5282 default: 5283 ret = -EINVAL; /* should be BUG() ? */ 5284 break; 5285 } 5286 return ret; 5287 } 5288 5289 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5290 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5291 { 5292 unsigned long long min_limit, min_memsw_limit, tmp; 5293 5294 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5295 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5296 if (!memcg->use_hierarchy) 5297 goto out; 5298 5299 while (css_parent(&memcg->css)) { 5300 memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5301 if (!memcg->use_hierarchy) 5302 break; 5303 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5304 min_limit = min(min_limit, tmp); 5305 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5306 min_memsw_limit = min(min_memsw_limit, tmp); 5307 } 5308 out: 5309 *mem_limit = min_limit; 5310 *memsw_limit = min_memsw_limit; 5311 } 5312 5313 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) 5314 { 5315 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5316 int name; 5317 enum res_type type; 5318 5319 type = MEMFILE_TYPE(event); 5320 name = MEMFILE_ATTR(event); 5321 5322 switch (name) { 5323 case RES_MAX_USAGE: 5324 if (type == _MEM) 5325 res_counter_reset_max(&memcg->res); 5326 else if (type == _MEMSWAP) 5327 res_counter_reset_max(&memcg->memsw); 5328 else if (type == _KMEM) 5329 res_counter_reset_max(&memcg->kmem); 5330 else 5331 return -EINVAL; 5332 break; 5333 case RES_FAILCNT: 5334 if (type == _MEM) 5335 res_counter_reset_failcnt(&memcg->res); 5336 else if (type == _MEMSWAP) 5337 res_counter_reset_failcnt(&memcg->memsw); 5338 else if (type == _KMEM) 5339 res_counter_reset_failcnt(&memcg->kmem); 5340 else 5341 return -EINVAL; 5342 break; 5343 } 5344 5345 return 0; 5346 } 5347 5348 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5349 struct cftype *cft) 5350 { 5351 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5352 } 5353 5354 #ifdef CONFIG_MMU 5355 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5356 struct cftype *cft, u64 val) 5357 { 5358 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5359 5360 if (val >= (1 << NR_MOVE_TYPE)) 5361 return -EINVAL; 5362 5363 /* 5364 * No kind of locking is needed in here, because ->can_attach() will 5365 * check this value once in the beginning of the process, and then carry 5366 * on with stale data. This means that changes to this value will only 5367 * affect task migrations starting after the change. 5368 */ 5369 memcg->move_charge_at_immigrate = val; 5370 return 0; 5371 } 5372 #else 5373 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5374 struct cftype *cft, u64 val) 5375 { 5376 return -ENOSYS; 5377 } 5378 #endif 5379 5380 #ifdef CONFIG_NUMA 5381 static int memcg_numa_stat_show(struct cgroup_subsys_state *css, 5382 struct cftype *cft, struct seq_file *m) 5383 { 5384 int nid; 5385 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5386 unsigned long node_nr; 5387 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5388 5389 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5390 seq_printf(m, "total=%lu", total_nr); 5391 for_each_node_state(nid, N_MEMORY) { 5392 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5393 seq_printf(m, " N%d=%lu", nid, node_nr); 5394 } 5395 seq_putc(m, '\n'); 5396 5397 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5398 seq_printf(m, "file=%lu", file_nr); 5399 for_each_node_state(nid, N_MEMORY) { 5400 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5401 LRU_ALL_FILE); 5402 seq_printf(m, " N%d=%lu", nid, node_nr); 5403 } 5404 seq_putc(m, '\n'); 5405 5406 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5407 seq_printf(m, "anon=%lu", anon_nr); 5408 for_each_node_state(nid, N_MEMORY) { 5409 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5410 LRU_ALL_ANON); 5411 seq_printf(m, " N%d=%lu", nid, node_nr); 5412 } 5413 seq_putc(m, '\n'); 5414 5415 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5416 seq_printf(m, "unevictable=%lu", unevictable_nr); 5417 for_each_node_state(nid, N_MEMORY) { 5418 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5419 BIT(LRU_UNEVICTABLE)); 5420 seq_printf(m, " N%d=%lu", nid, node_nr); 5421 } 5422 seq_putc(m, '\n'); 5423 return 0; 5424 } 5425 #endif /* CONFIG_NUMA */ 5426 5427 static inline void mem_cgroup_lru_names_not_uptodate(void) 5428 { 5429 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5430 } 5431 5432 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, 5433 struct seq_file *m) 5434 { 5435 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5436 struct mem_cgroup *mi; 5437 unsigned int i; 5438 5439 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5440 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5441 continue; 5442 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5443 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5444 } 5445 5446 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5447 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5448 mem_cgroup_read_events(memcg, i)); 5449 5450 for (i = 0; i < NR_LRU_LISTS; i++) 5451 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5452 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5453 5454 /* Hierarchical information */ 5455 { 5456 unsigned long long limit, memsw_limit; 5457 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5458 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5459 if (do_swap_account) 5460 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5461 memsw_limit); 5462 } 5463 5464 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5465 long long val = 0; 5466 5467 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5468 continue; 5469 for_each_mem_cgroup_tree(mi, memcg) 5470 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5471 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5472 } 5473 5474 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5475 unsigned long long val = 0; 5476 5477 for_each_mem_cgroup_tree(mi, memcg) 5478 val += mem_cgroup_read_events(mi, i); 5479 seq_printf(m, "total_%s %llu\n", 5480 mem_cgroup_events_names[i], val); 5481 } 5482 5483 for (i = 0; i < NR_LRU_LISTS; i++) { 5484 unsigned long long val = 0; 5485 5486 for_each_mem_cgroup_tree(mi, memcg) 5487 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5488 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5489 } 5490 5491 #ifdef CONFIG_DEBUG_VM 5492 { 5493 int nid, zid; 5494 struct mem_cgroup_per_zone *mz; 5495 struct zone_reclaim_stat *rstat; 5496 unsigned long recent_rotated[2] = {0, 0}; 5497 unsigned long recent_scanned[2] = {0, 0}; 5498 5499 for_each_online_node(nid) 5500 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5501 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5502 rstat = &mz->lruvec.reclaim_stat; 5503 5504 recent_rotated[0] += rstat->recent_rotated[0]; 5505 recent_rotated[1] += rstat->recent_rotated[1]; 5506 recent_scanned[0] += rstat->recent_scanned[0]; 5507 recent_scanned[1] += rstat->recent_scanned[1]; 5508 } 5509 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5510 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5511 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5512 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5513 } 5514 #endif 5515 5516 return 0; 5517 } 5518 5519 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5520 struct cftype *cft) 5521 { 5522 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5523 5524 return mem_cgroup_swappiness(memcg); 5525 } 5526 5527 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5528 struct cftype *cft, u64 val) 5529 { 5530 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5531 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5532 5533 if (val > 100 || !parent) 5534 return -EINVAL; 5535 5536 mutex_lock(&memcg_create_mutex); 5537 5538 /* If under hierarchy, only empty-root can set this value */ 5539 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5540 mutex_unlock(&memcg_create_mutex); 5541 return -EINVAL; 5542 } 5543 5544 memcg->swappiness = val; 5545 5546 mutex_unlock(&memcg_create_mutex); 5547 5548 return 0; 5549 } 5550 5551 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5552 { 5553 struct mem_cgroup_threshold_ary *t; 5554 u64 usage; 5555 int i; 5556 5557 rcu_read_lock(); 5558 if (!swap) 5559 t = rcu_dereference(memcg->thresholds.primary); 5560 else 5561 t = rcu_dereference(memcg->memsw_thresholds.primary); 5562 5563 if (!t) 5564 goto unlock; 5565 5566 usage = mem_cgroup_usage(memcg, swap); 5567 5568 /* 5569 * current_threshold points to threshold just below or equal to usage. 5570 * If it's not true, a threshold was crossed after last 5571 * call of __mem_cgroup_threshold(). 5572 */ 5573 i = t->current_threshold; 5574 5575 /* 5576 * Iterate backward over array of thresholds starting from 5577 * current_threshold and check if a threshold is crossed. 5578 * If none of thresholds below usage is crossed, we read 5579 * only one element of the array here. 5580 */ 5581 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5582 eventfd_signal(t->entries[i].eventfd, 1); 5583 5584 /* i = current_threshold + 1 */ 5585 i++; 5586 5587 /* 5588 * Iterate forward over array of thresholds starting from 5589 * current_threshold+1 and check if a threshold is crossed. 5590 * If none of thresholds above usage is crossed, we read 5591 * only one element of the array here. 5592 */ 5593 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5594 eventfd_signal(t->entries[i].eventfd, 1); 5595 5596 /* Update current_threshold */ 5597 t->current_threshold = i - 1; 5598 unlock: 5599 rcu_read_unlock(); 5600 } 5601 5602 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5603 { 5604 while (memcg) { 5605 __mem_cgroup_threshold(memcg, false); 5606 if (do_swap_account) 5607 __mem_cgroup_threshold(memcg, true); 5608 5609 memcg = parent_mem_cgroup(memcg); 5610 } 5611 } 5612 5613 static int compare_thresholds(const void *a, const void *b) 5614 { 5615 const struct mem_cgroup_threshold *_a = a; 5616 const struct mem_cgroup_threshold *_b = b; 5617 5618 if (_a->threshold > _b->threshold) 5619 return 1; 5620 5621 if (_a->threshold < _b->threshold) 5622 return -1; 5623 5624 return 0; 5625 } 5626 5627 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5628 { 5629 struct mem_cgroup_eventfd_list *ev; 5630 5631 list_for_each_entry(ev, &memcg->oom_notify, list) 5632 eventfd_signal(ev->eventfd, 1); 5633 return 0; 5634 } 5635 5636 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5637 { 5638 struct mem_cgroup *iter; 5639 5640 for_each_mem_cgroup_tree(iter, memcg) 5641 mem_cgroup_oom_notify_cb(iter); 5642 } 5643 5644 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, 5645 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5646 { 5647 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5648 struct mem_cgroup_thresholds *thresholds; 5649 struct mem_cgroup_threshold_ary *new; 5650 enum res_type type = MEMFILE_TYPE(cft->private); 5651 u64 threshold, usage; 5652 int i, size, ret; 5653 5654 ret = res_counter_memparse_write_strategy(args, &threshold); 5655 if (ret) 5656 return ret; 5657 5658 mutex_lock(&memcg->thresholds_lock); 5659 5660 if (type == _MEM) 5661 thresholds = &memcg->thresholds; 5662 else if (type == _MEMSWAP) 5663 thresholds = &memcg->memsw_thresholds; 5664 else 5665 BUG(); 5666 5667 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5668 5669 /* Check if a threshold crossed before adding a new one */ 5670 if (thresholds->primary) 5671 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5672 5673 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5674 5675 /* Allocate memory for new array of thresholds */ 5676 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5677 GFP_KERNEL); 5678 if (!new) { 5679 ret = -ENOMEM; 5680 goto unlock; 5681 } 5682 new->size = size; 5683 5684 /* Copy thresholds (if any) to new array */ 5685 if (thresholds->primary) { 5686 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5687 sizeof(struct mem_cgroup_threshold)); 5688 } 5689 5690 /* Add new threshold */ 5691 new->entries[size - 1].eventfd = eventfd; 5692 new->entries[size - 1].threshold = threshold; 5693 5694 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5695 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5696 compare_thresholds, NULL); 5697 5698 /* Find current threshold */ 5699 new->current_threshold = -1; 5700 for (i = 0; i < size; i++) { 5701 if (new->entries[i].threshold <= usage) { 5702 /* 5703 * new->current_threshold will not be used until 5704 * rcu_assign_pointer(), so it's safe to increment 5705 * it here. 5706 */ 5707 ++new->current_threshold; 5708 } else 5709 break; 5710 } 5711 5712 /* Free old spare buffer and save old primary buffer as spare */ 5713 kfree(thresholds->spare); 5714 thresholds->spare = thresholds->primary; 5715 5716 rcu_assign_pointer(thresholds->primary, new); 5717 5718 /* To be sure that nobody uses thresholds */ 5719 synchronize_rcu(); 5720 5721 unlock: 5722 mutex_unlock(&memcg->thresholds_lock); 5723 5724 return ret; 5725 } 5726 5727 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, 5728 struct cftype *cft, struct eventfd_ctx *eventfd) 5729 { 5730 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5731 struct mem_cgroup_thresholds *thresholds; 5732 struct mem_cgroup_threshold_ary *new; 5733 enum res_type type = MEMFILE_TYPE(cft->private); 5734 u64 usage; 5735 int i, j, size; 5736 5737 mutex_lock(&memcg->thresholds_lock); 5738 if (type == _MEM) 5739 thresholds = &memcg->thresholds; 5740 else if (type == _MEMSWAP) 5741 thresholds = &memcg->memsw_thresholds; 5742 else 5743 BUG(); 5744 5745 if (!thresholds->primary) 5746 goto unlock; 5747 5748 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5749 5750 /* Check if a threshold crossed before removing */ 5751 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5752 5753 /* Calculate new number of threshold */ 5754 size = 0; 5755 for (i = 0; i < thresholds->primary->size; i++) { 5756 if (thresholds->primary->entries[i].eventfd != eventfd) 5757 size++; 5758 } 5759 5760 new = thresholds->spare; 5761 5762 /* Set thresholds array to NULL if we don't have thresholds */ 5763 if (!size) { 5764 kfree(new); 5765 new = NULL; 5766 goto swap_buffers; 5767 } 5768 5769 new->size = size; 5770 5771 /* Copy thresholds and find current threshold */ 5772 new->current_threshold = -1; 5773 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5774 if (thresholds->primary->entries[i].eventfd == eventfd) 5775 continue; 5776 5777 new->entries[j] = thresholds->primary->entries[i]; 5778 if (new->entries[j].threshold <= usage) { 5779 /* 5780 * new->current_threshold will not be used 5781 * until rcu_assign_pointer(), so it's safe to increment 5782 * it here. 5783 */ 5784 ++new->current_threshold; 5785 } 5786 j++; 5787 } 5788 5789 swap_buffers: 5790 /* Swap primary and spare array */ 5791 thresholds->spare = thresholds->primary; 5792 /* If all events are unregistered, free the spare array */ 5793 if (!new) { 5794 kfree(thresholds->spare); 5795 thresholds->spare = NULL; 5796 } 5797 5798 rcu_assign_pointer(thresholds->primary, new); 5799 5800 /* To be sure that nobody uses thresholds */ 5801 synchronize_rcu(); 5802 unlock: 5803 mutex_unlock(&memcg->thresholds_lock); 5804 } 5805 5806 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, 5807 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5808 { 5809 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5810 struct mem_cgroup_eventfd_list *event; 5811 enum res_type type = MEMFILE_TYPE(cft->private); 5812 5813 BUG_ON(type != _OOM_TYPE); 5814 event = kmalloc(sizeof(*event), GFP_KERNEL); 5815 if (!event) 5816 return -ENOMEM; 5817 5818 spin_lock(&memcg_oom_lock); 5819 5820 event->eventfd = eventfd; 5821 list_add(&event->list, &memcg->oom_notify); 5822 5823 /* already in OOM ? */ 5824 if (atomic_read(&memcg->under_oom)) 5825 eventfd_signal(eventfd, 1); 5826 spin_unlock(&memcg_oom_lock); 5827 5828 return 0; 5829 } 5830 5831 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, 5832 struct cftype *cft, struct eventfd_ctx *eventfd) 5833 { 5834 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5835 struct mem_cgroup_eventfd_list *ev, *tmp; 5836 enum res_type type = MEMFILE_TYPE(cft->private); 5837 5838 BUG_ON(type != _OOM_TYPE); 5839 5840 spin_lock(&memcg_oom_lock); 5841 5842 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5843 if (ev->eventfd == eventfd) { 5844 list_del(&ev->list); 5845 kfree(ev); 5846 } 5847 } 5848 5849 spin_unlock(&memcg_oom_lock); 5850 } 5851 5852 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, 5853 struct cftype *cft, struct cgroup_map_cb *cb) 5854 { 5855 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5856 5857 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5858 5859 if (atomic_read(&memcg->under_oom)) 5860 cb->fill(cb, "under_oom", 1); 5861 else 5862 cb->fill(cb, "under_oom", 0); 5863 return 0; 5864 } 5865 5866 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5867 struct cftype *cft, u64 val) 5868 { 5869 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5870 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5871 5872 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5873 if (!parent || !((val == 0) || (val == 1))) 5874 return -EINVAL; 5875 5876 mutex_lock(&memcg_create_mutex); 5877 /* oom-kill-disable is a flag for subhierarchy. */ 5878 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5879 mutex_unlock(&memcg_create_mutex); 5880 return -EINVAL; 5881 } 5882 memcg->oom_kill_disable = val; 5883 if (!val) 5884 memcg_oom_recover(memcg); 5885 mutex_unlock(&memcg_create_mutex); 5886 return 0; 5887 } 5888 5889 #ifdef CONFIG_MEMCG_KMEM 5890 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5891 { 5892 int ret; 5893 5894 memcg->kmemcg_id = -1; 5895 ret = memcg_propagate_kmem(memcg); 5896 if (ret) 5897 return ret; 5898 5899 return mem_cgroup_sockets_init(memcg, ss); 5900 } 5901 5902 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5903 { 5904 mem_cgroup_sockets_destroy(memcg); 5905 } 5906 5907 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5908 { 5909 if (!memcg_kmem_is_active(memcg)) 5910 return; 5911 5912 /* 5913 * kmem charges can outlive the cgroup. In the case of slab 5914 * pages, for instance, a page contain objects from various 5915 * processes. As we prevent from taking a reference for every 5916 * such allocation we have to be careful when doing uncharge 5917 * (see memcg_uncharge_kmem) and here during offlining. 5918 * 5919 * The idea is that that only the _last_ uncharge which sees 5920 * the dead memcg will drop the last reference. An additional 5921 * reference is taken here before the group is marked dead 5922 * which is then paired with css_put during uncharge resp. here. 5923 * 5924 * Although this might sound strange as this path is called from 5925 * css_offline() when the referencemight have dropped down to 0 5926 * and shouldn't be incremented anymore (css_tryget would fail) 5927 * we do not have other options because of the kmem allocations 5928 * lifetime. 5929 */ 5930 css_get(&memcg->css); 5931 5932 memcg_kmem_mark_dead(memcg); 5933 5934 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5935 return; 5936 5937 if (memcg_kmem_test_and_clear_dead(memcg)) 5938 css_put(&memcg->css); 5939 } 5940 #else 5941 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5942 { 5943 return 0; 5944 } 5945 5946 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5947 { 5948 } 5949 5950 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5951 { 5952 } 5953 #endif 5954 5955 static struct cftype mem_cgroup_files[] = { 5956 { 5957 .name = "usage_in_bytes", 5958 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5959 .read = mem_cgroup_read, 5960 .register_event = mem_cgroup_usage_register_event, 5961 .unregister_event = mem_cgroup_usage_unregister_event, 5962 }, 5963 { 5964 .name = "max_usage_in_bytes", 5965 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5966 .trigger = mem_cgroup_reset, 5967 .read = mem_cgroup_read, 5968 }, 5969 { 5970 .name = "limit_in_bytes", 5971 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5972 .write_string = mem_cgroup_write, 5973 .read = mem_cgroup_read, 5974 }, 5975 { 5976 .name = "soft_limit_in_bytes", 5977 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5978 .write_string = mem_cgroup_write, 5979 .read = mem_cgroup_read, 5980 }, 5981 { 5982 .name = "failcnt", 5983 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5984 .trigger = mem_cgroup_reset, 5985 .read = mem_cgroup_read, 5986 }, 5987 { 5988 .name = "stat", 5989 .read_seq_string = memcg_stat_show, 5990 }, 5991 { 5992 .name = "force_empty", 5993 .trigger = mem_cgroup_force_empty_write, 5994 }, 5995 { 5996 .name = "use_hierarchy", 5997 .flags = CFTYPE_INSANE, 5998 .write_u64 = mem_cgroup_hierarchy_write, 5999 .read_u64 = mem_cgroup_hierarchy_read, 6000 }, 6001 { 6002 .name = "swappiness", 6003 .read_u64 = mem_cgroup_swappiness_read, 6004 .write_u64 = mem_cgroup_swappiness_write, 6005 }, 6006 { 6007 .name = "move_charge_at_immigrate", 6008 .read_u64 = mem_cgroup_move_charge_read, 6009 .write_u64 = mem_cgroup_move_charge_write, 6010 }, 6011 { 6012 .name = "oom_control", 6013 .read_map = mem_cgroup_oom_control_read, 6014 .write_u64 = mem_cgroup_oom_control_write, 6015 .register_event = mem_cgroup_oom_register_event, 6016 .unregister_event = mem_cgroup_oom_unregister_event, 6017 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 6018 }, 6019 { 6020 .name = "pressure_level", 6021 .register_event = vmpressure_register_event, 6022 .unregister_event = vmpressure_unregister_event, 6023 }, 6024 #ifdef CONFIG_NUMA 6025 { 6026 .name = "numa_stat", 6027 .read_seq_string = memcg_numa_stat_show, 6028 }, 6029 #endif 6030 #ifdef CONFIG_MEMCG_KMEM 6031 { 6032 .name = "kmem.limit_in_bytes", 6033 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 6034 .write_string = mem_cgroup_write, 6035 .read = mem_cgroup_read, 6036 }, 6037 { 6038 .name = "kmem.usage_in_bytes", 6039 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 6040 .read = mem_cgroup_read, 6041 }, 6042 { 6043 .name = "kmem.failcnt", 6044 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 6045 .trigger = mem_cgroup_reset, 6046 .read = mem_cgroup_read, 6047 }, 6048 { 6049 .name = "kmem.max_usage_in_bytes", 6050 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 6051 .trigger = mem_cgroup_reset, 6052 .read = mem_cgroup_read, 6053 }, 6054 #ifdef CONFIG_SLABINFO 6055 { 6056 .name = "kmem.slabinfo", 6057 .read_seq_string = mem_cgroup_slabinfo_read, 6058 }, 6059 #endif 6060 #endif 6061 { }, /* terminate */ 6062 }; 6063 6064 #ifdef CONFIG_MEMCG_SWAP 6065 static struct cftype memsw_cgroup_files[] = { 6066 { 6067 .name = "memsw.usage_in_bytes", 6068 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6069 .read = mem_cgroup_read, 6070 .register_event = mem_cgroup_usage_register_event, 6071 .unregister_event = mem_cgroup_usage_unregister_event, 6072 }, 6073 { 6074 .name = "memsw.max_usage_in_bytes", 6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6076 .trigger = mem_cgroup_reset, 6077 .read = mem_cgroup_read, 6078 }, 6079 { 6080 .name = "memsw.limit_in_bytes", 6081 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6082 .write_string = mem_cgroup_write, 6083 .read = mem_cgroup_read, 6084 }, 6085 { 6086 .name = "memsw.failcnt", 6087 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6088 .trigger = mem_cgroup_reset, 6089 .read = mem_cgroup_read, 6090 }, 6091 { }, /* terminate */ 6092 }; 6093 #endif 6094 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6095 { 6096 struct mem_cgroup_per_node *pn; 6097 struct mem_cgroup_per_zone *mz; 6098 int zone, tmp = node; 6099 /* 6100 * This routine is called against possible nodes. 6101 * But it's BUG to call kmalloc() against offline node. 6102 * 6103 * TODO: this routine can waste much memory for nodes which will 6104 * never be onlined. It's better to use memory hotplug callback 6105 * function. 6106 */ 6107 if (!node_state(node, N_NORMAL_MEMORY)) 6108 tmp = -1; 6109 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6110 if (!pn) 6111 return 1; 6112 6113 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6114 mz = &pn->zoneinfo[zone]; 6115 lruvec_init(&mz->lruvec); 6116 mz->usage_in_excess = 0; 6117 mz->on_tree = false; 6118 mz->memcg = memcg; 6119 } 6120 memcg->nodeinfo[node] = pn; 6121 return 0; 6122 } 6123 6124 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6125 { 6126 kfree(memcg->nodeinfo[node]); 6127 } 6128 6129 static struct mem_cgroup *mem_cgroup_alloc(void) 6130 { 6131 struct mem_cgroup *memcg; 6132 size_t size = memcg_size(); 6133 6134 /* Can be very big if nr_node_ids is very big */ 6135 if (size < PAGE_SIZE) 6136 memcg = kzalloc(size, GFP_KERNEL); 6137 else 6138 memcg = vzalloc(size); 6139 6140 if (!memcg) 6141 return NULL; 6142 6143 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6144 if (!memcg->stat) 6145 goto out_free; 6146 spin_lock_init(&memcg->pcp_counter_lock); 6147 return memcg; 6148 6149 out_free: 6150 if (size < PAGE_SIZE) 6151 kfree(memcg); 6152 else 6153 vfree(memcg); 6154 return NULL; 6155 } 6156 6157 /* 6158 * At destroying mem_cgroup, references from swap_cgroup can remain. 6159 * (scanning all at force_empty is too costly...) 6160 * 6161 * Instead of clearing all references at force_empty, we remember 6162 * the number of reference from swap_cgroup and free mem_cgroup when 6163 * it goes down to 0. 6164 * 6165 * Removal of cgroup itself succeeds regardless of refs from swap. 6166 */ 6167 6168 static void __mem_cgroup_free(struct mem_cgroup *memcg) 6169 { 6170 int node; 6171 size_t size = memcg_size(); 6172 6173 mem_cgroup_remove_from_trees(memcg); 6174 free_css_id(&mem_cgroup_subsys, &memcg->css); 6175 6176 for_each_node(node) 6177 free_mem_cgroup_per_zone_info(memcg, node); 6178 6179 free_percpu(memcg->stat); 6180 6181 /* 6182 * We need to make sure that (at least for now), the jump label 6183 * destruction code runs outside of the cgroup lock. This is because 6184 * get_online_cpus(), which is called from the static_branch update, 6185 * can't be called inside the cgroup_lock. cpusets are the ones 6186 * enforcing this dependency, so if they ever change, we might as well. 6187 * 6188 * schedule_work() will guarantee this happens. Be careful if you need 6189 * to move this code around, and make sure it is outside 6190 * the cgroup_lock. 6191 */ 6192 disarm_static_keys(memcg); 6193 if (size < PAGE_SIZE) 6194 kfree(memcg); 6195 else 6196 vfree(memcg); 6197 } 6198 6199 /* 6200 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6201 */ 6202 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6203 { 6204 if (!memcg->res.parent) 6205 return NULL; 6206 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6207 } 6208 EXPORT_SYMBOL(parent_mem_cgroup); 6209 6210 static void __init mem_cgroup_soft_limit_tree_init(void) 6211 { 6212 struct mem_cgroup_tree_per_node *rtpn; 6213 struct mem_cgroup_tree_per_zone *rtpz; 6214 int tmp, node, zone; 6215 6216 for_each_node(node) { 6217 tmp = node; 6218 if (!node_state(node, N_NORMAL_MEMORY)) 6219 tmp = -1; 6220 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6221 BUG_ON(!rtpn); 6222 6223 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6224 6225 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6226 rtpz = &rtpn->rb_tree_per_zone[zone]; 6227 rtpz->rb_root = RB_ROOT; 6228 spin_lock_init(&rtpz->lock); 6229 } 6230 } 6231 } 6232 6233 static struct cgroup_subsys_state * __ref 6234 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6235 { 6236 struct mem_cgroup *memcg; 6237 long error = -ENOMEM; 6238 int node; 6239 6240 memcg = mem_cgroup_alloc(); 6241 if (!memcg) 6242 return ERR_PTR(error); 6243 6244 for_each_node(node) 6245 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6246 goto free_out; 6247 6248 /* root ? */ 6249 if (parent_css == NULL) { 6250 root_mem_cgroup = memcg; 6251 res_counter_init(&memcg->res, NULL); 6252 res_counter_init(&memcg->memsw, NULL); 6253 res_counter_init(&memcg->kmem, NULL); 6254 } 6255 6256 memcg->last_scanned_node = MAX_NUMNODES; 6257 INIT_LIST_HEAD(&memcg->oom_notify); 6258 memcg->move_charge_at_immigrate = 0; 6259 mutex_init(&memcg->thresholds_lock); 6260 spin_lock_init(&memcg->move_lock); 6261 vmpressure_init(&memcg->vmpressure); 6262 6263 return &memcg->css; 6264 6265 free_out: 6266 __mem_cgroup_free(memcg); 6267 return ERR_PTR(error); 6268 } 6269 6270 static int 6271 mem_cgroup_css_online(struct cgroup_subsys_state *css) 6272 { 6273 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6274 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); 6275 int error = 0; 6276 6277 if (!parent) 6278 return 0; 6279 6280 mutex_lock(&memcg_create_mutex); 6281 6282 memcg->use_hierarchy = parent->use_hierarchy; 6283 memcg->oom_kill_disable = parent->oom_kill_disable; 6284 memcg->swappiness = mem_cgroup_swappiness(parent); 6285 6286 if (parent->use_hierarchy) { 6287 res_counter_init(&memcg->res, &parent->res); 6288 res_counter_init(&memcg->memsw, &parent->memsw); 6289 res_counter_init(&memcg->kmem, &parent->kmem); 6290 6291 /* 6292 * No need to take a reference to the parent because cgroup 6293 * core guarantees its existence. 6294 */ 6295 } else { 6296 res_counter_init(&memcg->res, NULL); 6297 res_counter_init(&memcg->memsw, NULL); 6298 res_counter_init(&memcg->kmem, NULL); 6299 /* 6300 * Deeper hierachy with use_hierarchy == false doesn't make 6301 * much sense so let cgroup subsystem know about this 6302 * unfortunate state in our controller. 6303 */ 6304 if (parent != root_mem_cgroup) 6305 mem_cgroup_subsys.broken_hierarchy = true; 6306 } 6307 6308 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6309 mutex_unlock(&memcg_create_mutex); 6310 return error; 6311 } 6312 6313 /* 6314 * Announce all parents that a group from their hierarchy is gone. 6315 */ 6316 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6317 { 6318 struct mem_cgroup *parent = memcg; 6319 6320 while ((parent = parent_mem_cgroup(parent))) 6321 mem_cgroup_iter_invalidate(parent); 6322 6323 /* 6324 * if the root memcg is not hierarchical we have to check it 6325 * explicitely. 6326 */ 6327 if (!root_mem_cgroup->use_hierarchy) 6328 mem_cgroup_iter_invalidate(root_mem_cgroup); 6329 } 6330 6331 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6332 { 6333 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6334 6335 kmem_cgroup_css_offline(memcg); 6336 6337 mem_cgroup_invalidate_reclaim_iterators(memcg); 6338 mem_cgroup_reparent_charges(memcg); 6339 mem_cgroup_destroy_all_caches(memcg); 6340 vmpressure_cleanup(&memcg->vmpressure); 6341 } 6342 6343 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6344 { 6345 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6346 6347 memcg_destroy_kmem(memcg); 6348 __mem_cgroup_free(memcg); 6349 } 6350 6351 #ifdef CONFIG_MMU 6352 /* Handlers for move charge at task migration. */ 6353 #define PRECHARGE_COUNT_AT_ONCE 256 6354 static int mem_cgroup_do_precharge(unsigned long count) 6355 { 6356 int ret = 0; 6357 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6358 struct mem_cgroup *memcg = mc.to; 6359 6360 if (mem_cgroup_is_root(memcg)) { 6361 mc.precharge += count; 6362 /* we don't need css_get for root */ 6363 return ret; 6364 } 6365 /* try to charge at once */ 6366 if (count > 1) { 6367 struct res_counter *dummy; 6368 /* 6369 * "memcg" cannot be under rmdir() because we've already checked 6370 * by cgroup_lock_live_cgroup() that it is not removed and we 6371 * are still under the same cgroup_mutex. So we can postpone 6372 * css_get(). 6373 */ 6374 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6375 goto one_by_one; 6376 if (do_swap_account && res_counter_charge(&memcg->memsw, 6377 PAGE_SIZE * count, &dummy)) { 6378 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6379 goto one_by_one; 6380 } 6381 mc.precharge += count; 6382 return ret; 6383 } 6384 one_by_one: 6385 /* fall back to one by one charge */ 6386 while (count--) { 6387 if (signal_pending(current)) { 6388 ret = -EINTR; 6389 break; 6390 } 6391 if (!batch_count--) { 6392 batch_count = PRECHARGE_COUNT_AT_ONCE; 6393 cond_resched(); 6394 } 6395 ret = __mem_cgroup_try_charge(NULL, 6396 GFP_KERNEL, 1, &memcg, false); 6397 if (ret) 6398 /* mem_cgroup_clear_mc() will do uncharge later */ 6399 return ret; 6400 mc.precharge++; 6401 } 6402 return ret; 6403 } 6404 6405 /** 6406 * get_mctgt_type - get target type of moving charge 6407 * @vma: the vma the pte to be checked belongs 6408 * @addr: the address corresponding to the pte to be checked 6409 * @ptent: the pte to be checked 6410 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6411 * 6412 * Returns 6413 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6414 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6415 * move charge. if @target is not NULL, the page is stored in target->page 6416 * with extra refcnt got(Callers should handle it). 6417 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6418 * target for charge migration. if @target is not NULL, the entry is stored 6419 * in target->ent. 6420 * 6421 * Called with pte lock held. 6422 */ 6423 union mc_target { 6424 struct page *page; 6425 swp_entry_t ent; 6426 }; 6427 6428 enum mc_target_type { 6429 MC_TARGET_NONE = 0, 6430 MC_TARGET_PAGE, 6431 MC_TARGET_SWAP, 6432 }; 6433 6434 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6435 unsigned long addr, pte_t ptent) 6436 { 6437 struct page *page = vm_normal_page(vma, addr, ptent); 6438 6439 if (!page || !page_mapped(page)) 6440 return NULL; 6441 if (PageAnon(page)) { 6442 /* we don't move shared anon */ 6443 if (!move_anon()) 6444 return NULL; 6445 } else if (!move_file()) 6446 /* we ignore mapcount for file pages */ 6447 return NULL; 6448 if (!get_page_unless_zero(page)) 6449 return NULL; 6450 6451 return page; 6452 } 6453 6454 #ifdef CONFIG_SWAP 6455 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6456 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6457 { 6458 struct page *page = NULL; 6459 swp_entry_t ent = pte_to_swp_entry(ptent); 6460 6461 if (!move_anon() || non_swap_entry(ent)) 6462 return NULL; 6463 /* 6464 * Because lookup_swap_cache() updates some statistics counter, 6465 * we call find_get_page() with swapper_space directly. 6466 */ 6467 page = find_get_page(swap_address_space(ent), ent.val); 6468 if (do_swap_account) 6469 entry->val = ent.val; 6470 6471 return page; 6472 } 6473 #else 6474 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6475 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6476 { 6477 return NULL; 6478 } 6479 #endif 6480 6481 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6482 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6483 { 6484 struct page *page = NULL; 6485 struct address_space *mapping; 6486 pgoff_t pgoff; 6487 6488 if (!vma->vm_file) /* anonymous vma */ 6489 return NULL; 6490 if (!move_file()) 6491 return NULL; 6492 6493 mapping = vma->vm_file->f_mapping; 6494 if (pte_none(ptent)) 6495 pgoff = linear_page_index(vma, addr); 6496 else /* pte_file(ptent) is true */ 6497 pgoff = pte_to_pgoff(ptent); 6498 6499 /* page is moved even if it's not RSS of this task(page-faulted). */ 6500 page = find_get_page(mapping, pgoff); 6501 6502 #ifdef CONFIG_SWAP 6503 /* shmem/tmpfs may report page out on swap: account for that too. */ 6504 if (radix_tree_exceptional_entry(page)) { 6505 swp_entry_t swap = radix_to_swp_entry(page); 6506 if (do_swap_account) 6507 *entry = swap; 6508 page = find_get_page(swap_address_space(swap), swap.val); 6509 } 6510 #endif 6511 return page; 6512 } 6513 6514 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6515 unsigned long addr, pte_t ptent, union mc_target *target) 6516 { 6517 struct page *page = NULL; 6518 struct page_cgroup *pc; 6519 enum mc_target_type ret = MC_TARGET_NONE; 6520 swp_entry_t ent = { .val = 0 }; 6521 6522 if (pte_present(ptent)) 6523 page = mc_handle_present_pte(vma, addr, ptent); 6524 else if (is_swap_pte(ptent)) 6525 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6526 else if (pte_none(ptent) || pte_file(ptent)) 6527 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6528 6529 if (!page && !ent.val) 6530 return ret; 6531 if (page) { 6532 pc = lookup_page_cgroup(page); 6533 /* 6534 * Do only loose check w/o page_cgroup lock. 6535 * mem_cgroup_move_account() checks the pc is valid or not under 6536 * the lock. 6537 */ 6538 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6539 ret = MC_TARGET_PAGE; 6540 if (target) 6541 target->page = page; 6542 } 6543 if (!ret || !target) 6544 put_page(page); 6545 } 6546 /* There is a swap entry and a page doesn't exist or isn't charged */ 6547 if (ent.val && !ret && 6548 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6549 ret = MC_TARGET_SWAP; 6550 if (target) 6551 target->ent = ent; 6552 } 6553 return ret; 6554 } 6555 6556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6557 /* 6558 * We don't consider swapping or file mapped pages because THP does not 6559 * support them for now. 6560 * Caller should make sure that pmd_trans_huge(pmd) is true. 6561 */ 6562 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6563 unsigned long addr, pmd_t pmd, union mc_target *target) 6564 { 6565 struct page *page = NULL; 6566 struct page_cgroup *pc; 6567 enum mc_target_type ret = MC_TARGET_NONE; 6568 6569 page = pmd_page(pmd); 6570 VM_BUG_ON(!page || !PageHead(page)); 6571 if (!move_anon()) 6572 return ret; 6573 pc = lookup_page_cgroup(page); 6574 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6575 ret = MC_TARGET_PAGE; 6576 if (target) { 6577 get_page(page); 6578 target->page = page; 6579 } 6580 } 6581 return ret; 6582 } 6583 #else 6584 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6585 unsigned long addr, pmd_t pmd, union mc_target *target) 6586 { 6587 return MC_TARGET_NONE; 6588 } 6589 #endif 6590 6591 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6592 unsigned long addr, unsigned long end, 6593 struct mm_walk *walk) 6594 { 6595 struct vm_area_struct *vma = walk->private; 6596 pte_t *pte; 6597 spinlock_t *ptl; 6598 6599 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6600 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6601 mc.precharge += HPAGE_PMD_NR; 6602 spin_unlock(&vma->vm_mm->page_table_lock); 6603 return 0; 6604 } 6605 6606 if (pmd_trans_unstable(pmd)) 6607 return 0; 6608 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6609 for (; addr != end; pte++, addr += PAGE_SIZE) 6610 if (get_mctgt_type(vma, addr, *pte, NULL)) 6611 mc.precharge++; /* increment precharge temporarily */ 6612 pte_unmap_unlock(pte - 1, ptl); 6613 cond_resched(); 6614 6615 return 0; 6616 } 6617 6618 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6619 { 6620 unsigned long precharge; 6621 struct vm_area_struct *vma; 6622 6623 down_read(&mm->mmap_sem); 6624 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6625 struct mm_walk mem_cgroup_count_precharge_walk = { 6626 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6627 .mm = mm, 6628 .private = vma, 6629 }; 6630 if (is_vm_hugetlb_page(vma)) 6631 continue; 6632 walk_page_range(vma->vm_start, vma->vm_end, 6633 &mem_cgroup_count_precharge_walk); 6634 } 6635 up_read(&mm->mmap_sem); 6636 6637 precharge = mc.precharge; 6638 mc.precharge = 0; 6639 6640 return precharge; 6641 } 6642 6643 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6644 { 6645 unsigned long precharge = mem_cgroup_count_precharge(mm); 6646 6647 VM_BUG_ON(mc.moving_task); 6648 mc.moving_task = current; 6649 return mem_cgroup_do_precharge(precharge); 6650 } 6651 6652 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6653 static void __mem_cgroup_clear_mc(void) 6654 { 6655 struct mem_cgroup *from = mc.from; 6656 struct mem_cgroup *to = mc.to; 6657 int i; 6658 6659 /* we must uncharge all the leftover precharges from mc.to */ 6660 if (mc.precharge) { 6661 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6662 mc.precharge = 0; 6663 } 6664 /* 6665 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6666 * we must uncharge here. 6667 */ 6668 if (mc.moved_charge) { 6669 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6670 mc.moved_charge = 0; 6671 } 6672 /* we must fixup refcnts and charges */ 6673 if (mc.moved_swap) { 6674 /* uncharge swap account from the old cgroup */ 6675 if (!mem_cgroup_is_root(mc.from)) 6676 res_counter_uncharge(&mc.from->memsw, 6677 PAGE_SIZE * mc.moved_swap); 6678 6679 for (i = 0; i < mc.moved_swap; i++) 6680 css_put(&mc.from->css); 6681 6682 if (!mem_cgroup_is_root(mc.to)) { 6683 /* 6684 * we charged both to->res and to->memsw, so we should 6685 * uncharge to->res. 6686 */ 6687 res_counter_uncharge(&mc.to->res, 6688 PAGE_SIZE * mc.moved_swap); 6689 } 6690 /* we've already done css_get(mc.to) */ 6691 mc.moved_swap = 0; 6692 } 6693 memcg_oom_recover(from); 6694 memcg_oom_recover(to); 6695 wake_up_all(&mc.waitq); 6696 } 6697 6698 static void mem_cgroup_clear_mc(void) 6699 { 6700 struct mem_cgroup *from = mc.from; 6701 6702 /* 6703 * we must clear moving_task before waking up waiters at the end of 6704 * task migration. 6705 */ 6706 mc.moving_task = NULL; 6707 __mem_cgroup_clear_mc(); 6708 spin_lock(&mc.lock); 6709 mc.from = NULL; 6710 mc.to = NULL; 6711 spin_unlock(&mc.lock); 6712 mem_cgroup_end_move(from); 6713 } 6714 6715 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6716 struct cgroup_taskset *tset) 6717 { 6718 struct task_struct *p = cgroup_taskset_first(tset); 6719 int ret = 0; 6720 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6721 unsigned long move_charge_at_immigrate; 6722 6723 /* 6724 * We are now commited to this value whatever it is. Changes in this 6725 * tunable will only affect upcoming migrations, not the current one. 6726 * So we need to save it, and keep it going. 6727 */ 6728 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6729 if (move_charge_at_immigrate) { 6730 struct mm_struct *mm; 6731 struct mem_cgroup *from = mem_cgroup_from_task(p); 6732 6733 VM_BUG_ON(from == memcg); 6734 6735 mm = get_task_mm(p); 6736 if (!mm) 6737 return 0; 6738 /* We move charges only when we move a owner of the mm */ 6739 if (mm->owner == p) { 6740 VM_BUG_ON(mc.from); 6741 VM_BUG_ON(mc.to); 6742 VM_BUG_ON(mc.precharge); 6743 VM_BUG_ON(mc.moved_charge); 6744 VM_BUG_ON(mc.moved_swap); 6745 mem_cgroup_start_move(from); 6746 spin_lock(&mc.lock); 6747 mc.from = from; 6748 mc.to = memcg; 6749 mc.immigrate_flags = move_charge_at_immigrate; 6750 spin_unlock(&mc.lock); 6751 /* We set mc.moving_task later */ 6752 6753 ret = mem_cgroup_precharge_mc(mm); 6754 if (ret) 6755 mem_cgroup_clear_mc(); 6756 } 6757 mmput(mm); 6758 } 6759 return ret; 6760 } 6761 6762 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6763 struct cgroup_taskset *tset) 6764 { 6765 mem_cgroup_clear_mc(); 6766 } 6767 6768 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6769 unsigned long addr, unsigned long end, 6770 struct mm_walk *walk) 6771 { 6772 int ret = 0; 6773 struct vm_area_struct *vma = walk->private; 6774 pte_t *pte; 6775 spinlock_t *ptl; 6776 enum mc_target_type target_type; 6777 union mc_target target; 6778 struct page *page; 6779 struct page_cgroup *pc; 6780 6781 /* 6782 * We don't take compound_lock() here but no race with splitting thp 6783 * happens because: 6784 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6785 * under splitting, which means there's no concurrent thp split, 6786 * - if another thread runs into split_huge_page() just after we 6787 * entered this if-block, the thread must wait for page table lock 6788 * to be unlocked in __split_huge_page_splitting(), where the main 6789 * part of thp split is not executed yet. 6790 */ 6791 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6792 if (mc.precharge < HPAGE_PMD_NR) { 6793 spin_unlock(&vma->vm_mm->page_table_lock); 6794 return 0; 6795 } 6796 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6797 if (target_type == MC_TARGET_PAGE) { 6798 page = target.page; 6799 if (!isolate_lru_page(page)) { 6800 pc = lookup_page_cgroup(page); 6801 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6802 pc, mc.from, mc.to)) { 6803 mc.precharge -= HPAGE_PMD_NR; 6804 mc.moved_charge += HPAGE_PMD_NR; 6805 } 6806 putback_lru_page(page); 6807 } 6808 put_page(page); 6809 } 6810 spin_unlock(&vma->vm_mm->page_table_lock); 6811 return 0; 6812 } 6813 6814 if (pmd_trans_unstable(pmd)) 6815 return 0; 6816 retry: 6817 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6818 for (; addr != end; addr += PAGE_SIZE) { 6819 pte_t ptent = *(pte++); 6820 swp_entry_t ent; 6821 6822 if (!mc.precharge) 6823 break; 6824 6825 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6826 case MC_TARGET_PAGE: 6827 page = target.page; 6828 if (isolate_lru_page(page)) 6829 goto put; 6830 pc = lookup_page_cgroup(page); 6831 if (!mem_cgroup_move_account(page, 1, pc, 6832 mc.from, mc.to)) { 6833 mc.precharge--; 6834 /* we uncharge from mc.from later. */ 6835 mc.moved_charge++; 6836 } 6837 putback_lru_page(page); 6838 put: /* get_mctgt_type() gets the page */ 6839 put_page(page); 6840 break; 6841 case MC_TARGET_SWAP: 6842 ent = target.ent; 6843 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6844 mc.precharge--; 6845 /* we fixup refcnts and charges later. */ 6846 mc.moved_swap++; 6847 } 6848 break; 6849 default: 6850 break; 6851 } 6852 } 6853 pte_unmap_unlock(pte - 1, ptl); 6854 cond_resched(); 6855 6856 if (addr != end) { 6857 /* 6858 * We have consumed all precharges we got in can_attach(). 6859 * We try charge one by one, but don't do any additional 6860 * charges to mc.to if we have failed in charge once in attach() 6861 * phase. 6862 */ 6863 ret = mem_cgroup_do_precharge(1); 6864 if (!ret) 6865 goto retry; 6866 } 6867 6868 return ret; 6869 } 6870 6871 static void mem_cgroup_move_charge(struct mm_struct *mm) 6872 { 6873 struct vm_area_struct *vma; 6874 6875 lru_add_drain_all(); 6876 retry: 6877 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6878 /* 6879 * Someone who are holding the mmap_sem might be waiting in 6880 * waitq. So we cancel all extra charges, wake up all waiters, 6881 * and retry. Because we cancel precharges, we might not be able 6882 * to move enough charges, but moving charge is a best-effort 6883 * feature anyway, so it wouldn't be a big problem. 6884 */ 6885 __mem_cgroup_clear_mc(); 6886 cond_resched(); 6887 goto retry; 6888 } 6889 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6890 int ret; 6891 struct mm_walk mem_cgroup_move_charge_walk = { 6892 .pmd_entry = mem_cgroup_move_charge_pte_range, 6893 .mm = mm, 6894 .private = vma, 6895 }; 6896 if (is_vm_hugetlb_page(vma)) 6897 continue; 6898 ret = walk_page_range(vma->vm_start, vma->vm_end, 6899 &mem_cgroup_move_charge_walk); 6900 if (ret) 6901 /* 6902 * means we have consumed all precharges and failed in 6903 * doing additional charge. Just abandon here. 6904 */ 6905 break; 6906 } 6907 up_read(&mm->mmap_sem); 6908 } 6909 6910 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6911 struct cgroup_taskset *tset) 6912 { 6913 struct task_struct *p = cgroup_taskset_first(tset); 6914 struct mm_struct *mm = get_task_mm(p); 6915 6916 if (mm) { 6917 if (mc.to) 6918 mem_cgroup_move_charge(mm); 6919 mmput(mm); 6920 } 6921 if (mc.to) 6922 mem_cgroup_clear_mc(); 6923 } 6924 #else /* !CONFIG_MMU */ 6925 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6926 struct cgroup_taskset *tset) 6927 { 6928 return 0; 6929 } 6930 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6931 struct cgroup_taskset *tset) 6932 { 6933 } 6934 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6935 struct cgroup_taskset *tset) 6936 { 6937 } 6938 #endif 6939 6940 /* 6941 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6942 * to verify sane_behavior flag on each mount attempt. 6943 */ 6944 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6945 { 6946 /* 6947 * use_hierarchy is forced with sane_behavior. cgroup core 6948 * guarantees that @root doesn't have any children, so turning it 6949 * on for the root memcg is enough. 6950 */ 6951 if (cgroup_sane_behavior(root_css->cgroup)) 6952 mem_cgroup_from_css(root_css)->use_hierarchy = true; 6953 } 6954 6955 struct cgroup_subsys mem_cgroup_subsys = { 6956 .name = "memory", 6957 .subsys_id = mem_cgroup_subsys_id, 6958 .css_alloc = mem_cgroup_css_alloc, 6959 .css_online = mem_cgroup_css_online, 6960 .css_offline = mem_cgroup_css_offline, 6961 .css_free = mem_cgroup_css_free, 6962 .can_attach = mem_cgroup_can_attach, 6963 .cancel_attach = mem_cgroup_cancel_attach, 6964 .attach = mem_cgroup_move_task, 6965 .bind = mem_cgroup_bind, 6966 .base_cftypes = mem_cgroup_files, 6967 .early_init = 0, 6968 .use_id = 1, 6969 }; 6970 6971 #ifdef CONFIG_MEMCG_SWAP 6972 static int __init enable_swap_account(char *s) 6973 { 6974 if (!strcmp(s, "1")) 6975 really_do_swap_account = 1; 6976 else if (!strcmp(s, "0")) 6977 really_do_swap_account = 0; 6978 return 1; 6979 } 6980 __setup("swapaccount=", enable_swap_account); 6981 6982 static void __init memsw_file_init(void) 6983 { 6984 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6985 } 6986 6987 static void __init enable_swap_cgroup(void) 6988 { 6989 if (!mem_cgroup_disabled() && really_do_swap_account) { 6990 do_swap_account = 1; 6991 memsw_file_init(); 6992 } 6993 } 6994 6995 #else 6996 static void __init enable_swap_cgroup(void) 6997 { 6998 } 6999 #endif 7000 7001 /* 7002 * subsys_initcall() for memory controller. 7003 * 7004 * Some parts like hotcpu_notifier() have to be initialized from this context 7005 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 7006 * everything that doesn't depend on a specific mem_cgroup structure should 7007 * be initialized from here. 7008 */ 7009 static int __init mem_cgroup_init(void) 7010 { 7011 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 7012 enable_swap_cgroup(); 7013 mem_cgroup_soft_limit_tree_init(); 7014 memcg_stock_init(); 7015 return 0; 7016 } 7017 subsys_initcall(mem_cgroup_init); 7018