xref: /openbmc/linux/mm/memcontrol.c (revision f7777dcc)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61 
62 #include <asm/uaccess.h>
63 
64 #include <trace/events/vmscan.h>
65 
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68 
69 #define MEM_CGROUP_RECLAIM_RETRIES	5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75 
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82 
83 #else
84 #define do_swap_account		0
85 #endif
86 
87 
88 static const char * const mem_cgroup_stat_names[] = {
89 	"cache",
90 	"rss",
91 	"rss_huge",
92 	"mapped_file",
93 	"writeback",
94 	"swap",
95 };
96 
97 enum mem_cgroup_events_index {
98 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
99 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
100 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 	MEM_CGROUP_EVENTS_NSTATS,
103 };
104 
105 static const char * const mem_cgroup_events_names[] = {
106 	"pgpgin",
107 	"pgpgout",
108 	"pgfault",
109 	"pgmajfault",
110 };
111 
112 static const char * const mem_cgroup_lru_names[] = {
113 	"inactive_anon",
114 	"active_anon",
115 	"inactive_file",
116 	"active_file",
117 	"unevictable",
118 };
119 
120 /*
121  * Per memcg event counter is incremented at every pagein/pageout. With THP,
122  * it will be incremated by the number of pages. This counter is used for
123  * for trigger some periodic events. This is straightforward and better
124  * than using jiffies etc. to handle periodic memcg event.
125  */
126 enum mem_cgroup_events_target {
127 	MEM_CGROUP_TARGET_THRESH,
128 	MEM_CGROUP_TARGET_SOFTLIMIT,
129 	MEM_CGROUP_TARGET_NUMAINFO,
130 	MEM_CGROUP_NTARGETS,
131 };
132 #define THRESHOLDS_EVENTS_TARGET 128
133 #define SOFTLIMIT_EVENTS_TARGET 1024
134 #define NUMAINFO_EVENTS_TARGET	1024
135 
136 struct mem_cgroup_stat_cpu {
137 	long count[MEM_CGROUP_STAT_NSTATS];
138 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
139 	unsigned long nr_page_events;
140 	unsigned long targets[MEM_CGROUP_NTARGETS];
141 };
142 
143 struct mem_cgroup_reclaim_iter {
144 	/*
145 	 * last scanned hierarchy member. Valid only if last_dead_count
146 	 * matches memcg->dead_count of the hierarchy root group.
147 	 */
148 	struct mem_cgroup *last_visited;
149 	unsigned long last_dead_count;
150 
151 	/* scan generation, increased every round-trip */
152 	unsigned int generation;
153 };
154 
155 /*
156  * per-zone information in memory controller.
157  */
158 struct mem_cgroup_per_zone {
159 	struct lruvec		lruvec;
160 	unsigned long		lru_size[NR_LRU_LISTS];
161 
162 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
163 
164 	struct rb_node		tree_node;	/* RB tree node */
165 	unsigned long long	usage_in_excess;/* Set to the value by which */
166 						/* the soft limit is exceeded*/
167 	bool			on_tree;
168 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
169 						/* use container_of	   */
170 };
171 
172 struct mem_cgroup_per_node {
173 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
174 };
175 
176 /*
177  * Cgroups above their limits are maintained in a RB-Tree, independent of
178  * their hierarchy representation
179  */
180 
181 struct mem_cgroup_tree_per_zone {
182 	struct rb_root rb_root;
183 	spinlock_t lock;
184 };
185 
186 struct mem_cgroup_tree_per_node {
187 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
188 };
189 
190 struct mem_cgroup_tree {
191 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
192 };
193 
194 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
195 
196 struct mem_cgroup_threshold {
197 	struct eventfd_ctx *eventfd;
198 	u64 threshold;
199 };
200 
201 /* For threshold */
202 struct mem_cgroup_threshold_ary {
203 	/* An array index points to threshold just below or equal to usage. */
204 	int current_threshold;
205 	/* Size of entries[] */
206 	unsigned int size;
207 	/* Array of thresholds */
208 	struct mem_cgroup_threshold entries[0];
209 };
210 
211 struct mem_cgroup_thresholds {
212 	/* Primary thresholds array */
213 	struct mem_cgroup_threshold_ary *primary;
214 	/*
215 	 * Spare threshold array.
216 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
217 	 * It must be able to store at least primary->size - 1 entries.
218 	 */
219 	struct mem_cgroup_threshold_ary *spare;
220 };
221 
222 /* for OOM */
223 struct mem_cgroup_eventfd_list {
224 	struct list_head list;
225 	struct eventfd_ctx *eventfd;
226 };
227 
228 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
229 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
230 
231 /*
232  * The memory controller data structure. The memory controller controls both
233  * page cache and RSS per cgroup. We would eventually like to provide
234  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
235  * to help the administrator determine what knobs to tune.
236  *
237  * TODO: Add a water mark for the memory controller. Reclaim will begin when
238  * we hit the water mark. May be even add a low water mark, such that
239  * no reclaim occurs from a cgroup at it's low water mark, this is
240  * a feature that will be implemented much later in the future.
241  */
242 struct mem_cgroup {
243 	struct cgroup_subsys_state css;
244 	/*
245 	 * the counter to account for memory usage
246 	 */
247 	struct res_counter res;
248 
249 	/* vmpressure notifications */
250 	struct vmpressure vmpressure;
251 
252 	/*
253 	 * the counter to account for mem+swap usage.
254 	 */
255 	struct res_counter memsw;
256 
257 	/*
258 	 * the counter to account for kernel memory usage.
259 	 */
260 	struct res_counter kmem;
261 	/*
262 	 * Should the accounting and control be hierarchical, per subtree?
263 	 */
264 	bool use_hierarchy;
265 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
266 
267 	bool		oom_lock;
268 	atomic_t	under_oom;
269 	atomic_t	oom_wakeups;
270 
271 	int	swappiness;
272 	/* OOM-Killer disable */
273 	int		oom_kill_disable;
274 
275 	/* set when res.limit == memsw.limit */
276 	bool		memsw_is_minimum;
277 
278 	/* protect arrays of thresholds */
279 	struct mutex thresholds_lock;
280 
281 	/* thresholds for memory usage. RCU-protected */
282 	struct mem_cgroup_thresholds thresholds;
283 
284 	/* thresholds for mem+swap usage. RCU-protected */
285 	struct mem_cgroup_thresholds memsw_thresholds;
286 
287 	/* For oom notifier event fd */
288 	struct list_head oom_notify;
289 
290 	/*
291 	 * Should we move charges of a task when a task is moved into this
292 	 * mem_cgroup ? And what type of charges should we move ?
293 	 */
294 	unsigned long move_charge_at_immigrate;
295 	/*
296 	 * set > 0 if pages under this cgroup are moving to other cgroup.
297 	 */
298 	atomic_t	moving_account;
299 	/* taken only while moving_account > 0 */
300 	spinlock_t	move_lock;
301 	/*
302 	 * percpu counter.
303 	 */
304 	struct mem_cgroup_stat_cpu __percpu *stat;
305 	/*
306 	 * used when a cpu is offlined or other synchronizations
307 	 * See mem_cgroup_read_stat().
308 	 */
309 	struct mem_cgroup_stat_cpu nocpu_base;
310 	spinlock_t pcp_counter_lock;
311 
312 	atomic_t	dead_count;
313 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
314 	struct tcp_memcontrol tcp_mem;
315 #endif
316 #if defined(CONFIG_MEMCG_KMEM)
317 	/* analogous to slab_common's slab_caches list. per-memcg */
318 	struct list_head memcg_slab_caches;
319 	/* Not a spinlock, we can take a lot of time walking the list */
320 	struct mutex slab_caches_mutex;
321         /* Index in the kmem_cache->memcg_params->memcg_caches array */
322 	int kmemcg_id;
323 #endif
324 
325 	int last_scanned_node;
326 #if MAX_NUMNODES > 1
327 	nodemask_t	scan_nodes;
328 	atomic_t	numainfo_events;
329 	atomic_t	numainfo_updating;
330 #endif
331 
332 	struct mem_cgroup_per_node *nodeinfo[0];
333 	/* WARNING: nodeinfo must be the last member here */
334 };
335 
336 static size_t memcg_size(void)
337 {
338 	return sizeof(struct mem_cgroup) +
339 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
340 }
341 
342 /* internal only representation about the status of kmem accounting. */
343 enum {
344 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
345 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
346 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
347 };
348 
349 /* We account when limit is on, but only after call sites are patched */
350 #define KMEM_ACCOUNTED_MASK \
351 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
352 
353 #ifdef CONFIG_MEMCG_KMEM
354 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
355 {
356 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
357 }
358 
359 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
360 {
361 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
362 }
363 
364 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
365 {
366 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
367 }
368 
369 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
370 {
371 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
372 }
373 
374 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
375 {
376 	/*
377 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
378 	 * will call css_put() if it sees the memcg is dead.
379 	 */
380 	smp_wmb();
381 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
382 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
383 }
384 
385 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
386 {
387 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
388 				  &memcg->kmem_account_flags);
389 }
390 #endif
391 
392 /* Stuffs for move charges at task migration. */
393 /*
394  * Types of charges to be moved. "move_charge_at_immitgrate" and
395  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
396  */
397 enum move_type {
398 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
399 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
400 	NR_MOVE_TYPE,
401 };
402 
403 /* "mc" and its members are protected by cgroup_mutex */
404 static struct move_charge_struct {
405 	spinlock_t	  lock; /* for from, to */
406 	struct mem_cgroup *from;
407 	struct mem_cgroup *to;
408 	unsigned long immigrate_flags;
409 	unsigned long precharge;
410 	unsigned long moved_charge;
411 	unsigned long moved_swap;
412 	struct task_struct *moving_task;	/* a task moving charges */
413 	wait_queue_head_t waitq;		/* a waitq for other context */
414 } mc = {
415 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
416 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
417 };
418 
419 static bool move_anon(void)
420 {
421 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
422 }
423 
424 static bool move_file(void)
425 {
426 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
427 }
428 
429 /*
430  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
431  * limit reclaim to prevent infinite loops, if they ever occur.
432  */
433 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
434 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
435 
436 enum charge_type {
437 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
438 	MEM_CGROUP_CHARGE_TYPE_ANON,
439 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
440 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
441 	NR_CHARGE_TYPE,
442 };
443 
444 /* for encoding cft->private value on file */
445 enum res_type {
446 	_MEM,
447 	_MEMSWAP,
448 	_OOM_TYPE,
449 	_KMEM,
450 };
451 
452 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
453 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
454 #define MEMFILE_ATTR(val)	((val) & 0xffff)
455 /* Used for OOM nofiier */
456 #define OOM_CONTROL		(0)
457 
458 /*
459  * Reclaim flags for mem_cgroup_hierarchical_reclaim
460  */
461 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
462 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
463 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
464 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
465 
466 /*
467  * The memcg_create_mutex will be held whenever a new cgroup is created.
468  * As a consequence, any change that needs to protect against new child cgroups
469  * appearing has to hold it as well.
470  */
471 static DEFINE_MUTEX(memcg_create_mutex);
472 
473 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
474 {
475 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
476 }
477 
478 /* Some nice accessors for the vmpressure. */
479 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
480 {
481 	if (!memcg)
482 		memcg = root_mem_cgroup;
483 	return &memcg->vmpressure;
484 }
485 
486 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
487 {
488 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
489 }
490 
491 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
492 {
493 	return &mem_cgroup_from_css(css)->vmpressure;
494 }
495 
496 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
497 {
498 	return (memcg == root_mem_cgroup);
499 }
500 
501 /* Writing them here to avoid exposing memcg's inner layout */
502 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
503 
504 void sock_update_memcg(struct sock *sk)
505 {
506 	if (mem_cgroup_sockets_enabled) {
507 		struct mem_cgroup *memcg;
508 		struct cg_proto *cg_proto;
509 
510 		BUG_ON(!sk->sk_prot->proto_cgroup);
511 
512 		/* Socket cloning can throw us here with sk_cgrp already
513 		 * filled. It won't however, necessarily happen from
514 		 * process context. So the test for root memcg given
515 		 * the current task's memcg won't help us in this case.
516 		 *
517 		 * Respecting the original socket's memcg is a better
518 		 * decision in this case.
519 		 */
520 		if (sk->sk_cgrp) {
521 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
522 			css_get(&sk->sk_cgrp->memcg->css);
523 			return;
524 		}
525 
526 		rcu_read_lock();
527 		memcg = mem_cgroup_from_task(current);
528 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
529 		if (!mem_cgroup_is_root(memcg) &&
530 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
531 			sk->sk_cgrp = cg_proto;
532 		}
533 		rcu_read_unlock();
534 	}
535 }
536 EXPORT_SYMBOL(sock_update_memcg);
537 
538 void sock_release_memcg(struct sock *sk)
539 {
540 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
541 		struct mem_cgroup *memcg;
542 		WARN_ON(!sk->sk_cgrp->memcg);
543 		memcg = sk->sk_cgrp->memcg;
544 		css_put(&sk->sk_cgrp->memcg->css);
545 	}
546 }
547 
548 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
549 {
550 	if (!memcg || mem_cgroup_is_root(memcg))
551 		return NULL;
552 
553 	return &memcg->tcp_mem.cg_proto;
554 }
555 EXPORT_SYMBOL(tcp_proto_cgroup);
556 
557 static void disarm_sock_keys(struct mem_cgroup *memcg)
558 {
559 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
560 		return;
561 	static_key_slow_dec(&memcg_socket_limit_enabled);
562 }
563 #else
564 static void disarm_sock_keys(struct mem_cgroup *memcg)
565 {
566 }
567 #endif
568 
569 #ifdef CONFIG_MEMCG_KMEM
570 /*
571  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
572  * There are two main reasons for not using the css_id for this:
573  *  1) this works better in sparse environments, where we have a lot of memcgs,
574  *     but only a few kmem-limited. Or also, if we have, for instance, 200
575  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
576  *     200 entry array for that.
577  *
578  *  2) In order not to violate the cgroup API, we would like to do all memory
579  *     allocation in ->create(). At that point, we haven't yet allocated the
580  *     css_id. Having a separate index prevents us from messing with the cgroup
581  *     core for this
582  *
583  * The current size of the caches array is stored in
584  * memcg_limited_groups_array_size.  It will double each time we have to
585  * increase it.
586  */
587 static DEFINE_IDA(kmem_limited_groups);
588 int memcg_limited_groups_array_size;
589 
590 /*
591  * MIN_SIZE is different than 1, because we would like to avoid going through
592  * the alloc/free process all the time. In a small machine, 4 kmem-limited
593  * cgroups is a reasonable guess. In the future, it could be a parameter or
594  * tunable, but that is strictly not necessary.
595  *
596  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
597  * this constant directly from cgroup, but it is understandable that this is
598  * better kept as an internal representation in cgroup.c. In any case, the
599  * css_id space is not getting any smaller, and we don't have to necessarily
600  * increase ours as well if it increases.
601  */
602 #define MEMCG_CACHES_MIN_SIZE 4
603 #define MEMCG_CACHES_MAX_SIZE 65535
604 
605 /*
606  * A lot of the calls to the cache allocation functions are expected to be
607  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
608  * conditional to this static branch, we'll have to allow modules that does
609  * kmem_cache_alloc and the such to see this symbol as well
610  */
611 struct static_key memcg_kmem_enabled_key;
612 EXPORT_SYMBOL(memcg_kmem_enabled_key);
613 
614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
615 {
616 	if (memcg_kmem_is_active(memcg)) {
617 		static_key_slow_dec(&memcg_kmem_enabled_key);
618 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
619 	}
620 	/*
621 	 * This check can't live in kmem destruction function,
622 	 * since the charges will outlive the cgroup
623 	 */
624 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
625 }
626 #else
627 static void disarm_kmem_keys(struct mem_cgroup *memcg)
628 {
629 }
630 #endif /* CONFIG_MEMCG_KMEM */
631 
632 static void disarm_static_keys(struct mem_cgroup *memcg)
633 {
634 	disarm_sock_keys(memcg);
635 	disarm_kmem_keys(memcg);
636 }
637 
638 static void drain_all_stock_async(struct mem_cgroup *memcg);
639 
640 static struct mem_cgroup_per_zone *
641 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
642 {
643 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
644 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 }
646 
647 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
648 {
649 	return &memcg->css;
650 }
651 
652 static struct mem_cgroup_per_zone *
653 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
654 {
655 	int nid = page_to_nid(page);
656 	int zid = page_zonenum(page);
657 
658 	return mem_cgroup_zoneinfo(memcg, nid, zid);
659 }
660 
661 static struct mem_cgroup_tree_per_zone *
662 soft_limit_tree_node_zone(int nid, int zid)
663 {
664 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
665 }
666 
667 static struct mem_cgroup_tree_per_zone *
668 soft_limit_tree_from_page(struct page *page)
669 {
670 	int nid = page_to_nid(page);
671 	int zid = page_zonenum(page);
672 
673 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
674 }
675 
676 static void
677 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
678 				struct mem_cgroup_per_zone *mz,
679 				struct mem_cgroup_tree_per_zone *mctz,
680 				unsigned long long new_usage_in_excess)
681 {
682 	struct rb_node **p = &mctz->rb_root.rb_node;
683 	struct rb_node *parent = NULL;
684 	struct mem_cgroup_per_zone *mz_node;
685 
686 	if (mz->on_tree)
687 		return;
688 
689 	mz->usage_in_excess = new_usage_in_excess;
690 	if (!mz->usage_in_excess)
691 		return;
692 	while (*p) {
693 		parent = *p;
694 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
695 					tree_node);
696 		if (mz->usage_in_excess < mz_node->usage_in_excess)
697 			p = &(*p)->rb_left;
698 		/*
699 		 * We can't avoid mem cgroups that are over their soft
700 		 * limit by the same amount
701 		 */
702 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
703 			p = &(*p)->rb_right;
704 	}
705 	rb_link_node(&mz->tree_node, parent, p);
706 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
707 	mz->on_tree = true;
708 }
709 
710 static void
711 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
712 				struct mem_cgroup_per_zone *mz,
713 				struct mem_cgroup_tree_per_zone *mctz)
714 {
715 	if (!mz->on_tree)
716 		return;
717 	rb_erase(&mz->tree_node, &mctz->rb_root);
718 	mz->on_tree = false;
719 }
720 
721 static void
722 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
723 				struct mem_cgroup_per_zone *mz,
724 				struct mem_cgroup_tree_per_zone *mctz)
725 {
726 	spin_lock(&mctz->lock);
727 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
728 	spin_unlock(&mctz->lock);
729 }
730 
731 
732 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
733 {
734 	unsigned long long excess;
735 	struct mem_cgroup_per_zone *mz;
736 	struct mem_cgroup_tree_per_zone *mctz;
737 	int nid = page_to_nid(page);
738 	int zid = page_zonenum(page);
739 	mctz = soft_limit_tree_from_page(page);
740 
741 	/*
742 	 * Necessary to update all ancestors when hierarchy is used.
743 	 * because their event counter is not touched.
744 	 */
745 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
746 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
747 		excess = res_counter_soft_limit_excess(&memcg->res);
748 		/*
749 		 * We have to update the tree if mz is on RB-tree or
750 		 * mem is over its softlimit.
751 		 */
752 		if (excess || mz->on_tree) {
753 			spin_lock(&mctz->lock);
754 			/* if on-tree, remove it */
755 			if (mz->on_tree)
756 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
757 			/*
758 			 * Insert again. mz->usage_in_excess will be updated.
759 			 * If excess is 0, no tree ops.
760 			 */
761 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
762 			spin_unlock(&mctz->lock);
763 		}
764 	}
765 }
766 
767 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
768 {
769 	int node, zone;
770 	struct mem_cgroup_per_zone *mz;
771 	struct mem_cgroup_tree_per_zone *mctz;
772 
773 	for_each_node(node) {
774 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
775 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
776 			mctz = soft_limit_tree_node_zone(node, zone);
777 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
778 		}
779 	}
780 }
781 
782 static struct mem_cgroup_per_zone *
783 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
784 {
785 	struct rb_node *rightmost = NULL;
786 	struct mem_cgroup_per_zone *mz;
787 
788 retry:
789 	mz = NULL;
790 	rightmost = rb_last(&mctz->rb_root);
791 	if (!rightmost)
792 		goto done;		/* Nothing to reclaim from */
793 
794 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
795 	/*
796 	 * Remove the node now but someone else can add it back,
797 	 * we will to add it back at the end of reclaim to its correct
798 	 * position in the tree.
799 	 */
800 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
801 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
802 		!css_tryget(&mz->memcg->css))
803 		goto retry;
804 done:
805 	return mz;
806 }
807 
808 static struct mem_cgroup_per_zone *
809 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
810 {
811 	struct mem_cgroup_per_zone *mz;
812 
813 	spin_lock(&mctz->lock);
814 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
815 	spin_unlock(&mctz->lock);
816 	return mz;
817 }
818 
819 /*
820  * Implementation Note: reading percpu statistics for memcg.
821  *
822  * Both of vmstat[] and percpu_counter has threshold and do periodic
823  * synchronization to implement "quick" read. There are trade-off between
824  * reading cost and precision of value. Then, we may have a chance to implement
825  * a periodic synchronizion of counter in memcg's counter.
826  *
827  * But this _read() function is used for user interface now. The user accounts
828  * memory usage by memory cgroup and he _always_ requires exact value because
829  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
830  * have to visit all online cpus and make sum. So, for now, unnecessary
831  * synchronization is not implemented. (just implemented for cpu hotplug)
832  *
833  * If there are kernel internal actions which can make use of some not-exact
834  * value, and reading all cpu value can be performance bottleneck in some
835  * common workload, threashold and synchonization as vmstat[] should be
836  * implemented.
837  */
838 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
839 				 enum mem_cgroup_stat_index idx)
840 {
841 	long val = 0;
842 	int cpu;
843 
844 	get_online_cpus();
845 	for_each_online_cpu(cpu)
846 		val += per_cpu(memcg->stat->count[idx], cpu);
847 #ifdef CONFIG_HOTPLUG_CPU
848 	spin_lock(&memcg->pcp_counter_lock);
849 	val += memcg->nocpu_base.count[idx];
850 	spin_unlock(&memcg->pcp_counter_lock);
851 #endif
852 	put_online_cpus();
853 	return val;
854 }
855 
856 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
857 					 bool charge)
858 {
859 	int val = (charge) ? 1 : -1;
860 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
861 }
862 
863 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
864 					    enum mem_cgroup_events_index idx)
865 {
866 	unsigned long val = 0;
867 	int cpu;
868 
869 	get_online_cpus();
870 	for_each_online_cpu(cpu)
871 		val += per_cpu(memcg->stat->events[idx], cpu);
872 #ifdef CONFIG_HOTPLUG_CPU
873 	spin_lock(&memcg->pcp_counter_lock);
874 	val += memcg->nocpu_base.events[idx];
875 	spin_unlock(&memcg->pcp_counter_lock);
876 #endif
877 	put_online_cpus();
878 	return val;
879 }
880 
881 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
882 					 struct page *page,
883 					 bool anon, int nr_pages)
884 {
885 	preempt_disable();
886 
887 	/*
888 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
889 	 * counted as CACHE even if it's on ANON LRU.
890 	 */
891 	if (anon)
892 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
893 				nr_pages);
894 	else
895 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
896 				nr_pages);
897 
898 	if (PageTransHuge(page))
899 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
900 				nr_pages);
901 
902 	/* pagein of a big page is an event. So, ignore page size */
903 	if (nr_pages > 0)
904 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
905 	else {
906 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
907 		nr_pages = -nr_pages; /* for event */
908 	}
909 
910 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
911 
912 	preempt_enable();
913 }
914 
915 unsigned long
916 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
917 {
918 	struct mem_cgroup_per_zone *mz;
919 
920 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
921 	return mz->lru_size[lru];
922 }
923 
924 static unsigned long
925 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
926 			unsigned int lru_mask)
927 {
928 	struct mem_cgroup_per_zone *mz;
929 	enum lru_list lru;
930 	unsigned long ret = 0;
931 
932 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
933 
934 	for_each_lru(lru) {
935 		if (BIT(lru) & lru_mask)
936 			ret += mz->lru_size[lru];
937 	}
938 	return ret;
939 }
940 
941 static unsigned long
942 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
943 			int nid, unsigned int lru_mask)
944 {
945 	u64 total = 0;
946 	int zid;
947 
948 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
949 		total += mem_cgroup_zone_nr_lru_pages(memcg,
950 						nid, zid, lru_mask);
951 
952 	return total;
953 }
954 
955 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
956 			unsigned int lru_mask)
957 {
958 	int nid;
959 	u64 total = 0;
960 
961 	for_each_node_state(nid, N_MEMORY)
962 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
963 	return total;
964 }
965 
966 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
967 				       enum mem_cgroup_events_target target)
968 {
969 	unsigned long val, next;
970 
971 	val = __this_cpu_read(memcg->stat->nr_page_events);
972 	next = __this_cpu_read(memcg->stat->targets[target]);
973 	/* from time_after() in jiffies.h */
974 	if ((long)next - (long)val < 0) {
975 		switch (target) {
976 		case MEM_CGROUP_TARGET_THRESH:
977 			next = val + THRESHOLDS_EVENTS_TARGET;
978 			break;
979 		case MEM_CGROUP_TARGET_SOFTLIMIT:
980 			next = val + SOFTLIMIT_EVENTS_TARGET;
981 			break;
982 		case MEM_CGROUP_TARGET_NUMAINFO:
983 			next = val + NUMAINFO_EVENTS_TARGET;
984 			break;
985 		default:
986 			break;
987 		}
988 		__this_cpu_write(memcg->stat->targets[target], next);
989 		return true;
990 	}
991 	return false;
992 }
993 
994 /*
995  * Check events in order.
996  *
997  */
998 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
999 {
1000 	preempt_disable();
1001 	/* threshold event is triggered in finer grain than soft limit */
1002 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1003 						MEM_CGROUP_TARGET_THRESH))) {
1004 		bool do_softlimit;
1005 		bool do_numainfo __maybe_unused;
1006 
1007 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1008 						MEM_CGROUP_TARGET_SOFTLIMIT);
1009 #if MAX_NUMNODES > 1
1010 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1011 						MEM_CGROUP_TARGET_NUMAINFO);
1012 #endif
1013 		preempt_enable();
1014 
1015 		mem_cgroup_threshold(memcg);
1016 		if (unlikely(do_softlimit))
1017 			mem_cgroup_update_tree(memcg, page);
1018 #if MAX_NUMNODES > 1
1019 		if (unlikely(do_numainfo))
1020 			atomic_inc(&memcg->numainfo_events);
1021 #endif
1022 	} else
1023 		preempt_enable();
1024 }
1025 
1026 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1027 {
1028 	/*
1029 	 * mm_update_next_owner() may clear mm->owner to NULL
1030 	 * if it races with swapoff, page migration, etc.
1031 	 * So this can be called with p == NULL.
1032 	 */
1033 	if (unlikely(!p))
1034 		return NULL;
1035 
1036 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1037 }
1038 
1039 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1040 {
1041 	struct mem_cgroup *memcg = NULL;
1042 
1043 	if (!mm)
1044 		return NULL;
1045 	/*
1046 	 * Because we have no locks, mm->owner's may be being moved to other
1047 	 * cgroup. We use css_tryget() here even if this looks
1048 	 * pessimistic (rather than adding locks here).
1049 	 */
1050 	rcu_read_lock();
1051 	do {
1052 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1053 		if (unlikely(!memcg))
1054 			break;
1055 	} while (!css_tryget(&memcg->css));
1056 	rcu_read_unlock();
1057 	return memcg;
1058 }
1059 
1060 /*
1061  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1062  * ref. count) or NULL if the whole root's subtree has been visited.
1063  *
1064  * helper function to be used by mem_cgroup_iter
1065  */
1066 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1067 		struct mem_cgroup *last_visited)
1068 {
1069 	struct cgroup_subsys_state *prev_css, *next_css;
1070 
1071 	prev_css = last_visited ? &last_visited->css : NULL;
1072 skip_node:
1073 	next_css = css_next_descendant_pre(prev_css, &root->css);
1074 
1075 	/*
1076 	 * Even if we found a group we have to make sure it is
1077 	 * alive. css && !memcg means that the groups should be
1078 	 * skipped and we should continue the tree walk.
1079 	 * last_visited css is safe to use because it is
1080 	 * protected by css_get and the tree walk is rcu safe.
1081 	 */
1082 	if (next_css) {
1083 		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1084 
1085 		if (css_tryget(&mem->css))
1086 			return mem;
1087 		else {
1088 			prev_css = next_css;
1089 			goto skip_node;
1090 		}
1091 	}
1092 
1093 	return NULL;
1094 }
1095 
1096 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1097 {
1098 	/*
1099 	 * When a group in the hierarchy below root is destroyed, the
1100 	 * hierarchy iterator can no longer be trusted since it might
1101 	 * have pointed to the destroyed group.  Invalidate it.
1102 	 */
1103 	atomic_inc(&root->dead_count);
1104 }
1105 
1106 static struct mem_cgroup *
1107 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1108 		     struct mem_cgroup *root,
1109 		     int *sequence)
1110 {
1111 	struct mem_cgroup *position = NULL;
1112 	/*
1113 	 * A cgroup destruction happens in two stages: offlining and
1114 	 * release.  They are separated by a RCU grace period.
1115 	 *
1116 	 * If the iterator is valid, we may still race with an
1117 	 * offlining.  The RCU lock ensures the object won't be
1118 	 * released, tryget will fail if we lost the race.
1119 	 */
1120 	*sequence = atomic_read(&root->dead_count);
1121 	if (iter->last_dead_count == *sequence) {
1122 		smp_rmb();
1123 		position = iter->last_visited;
1124 		if (position && !css_tryget(&position->css))
1125 			position = NULL;
1126 	}
1127 	return position;
1128 }
1129 
1130 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1131 				   struct mem_cgroup *last_visited,
1132 				   struct mem_cgroup *new_position,
1133 				   int sequence)
1134 {
1135 	if (last_visited)
1136 		css_put(&last_visited->css);
1137 	/*
1138 	 * We store the sequence count from the time @last_visited was
1139 	 * loaded successfully instead of rereading it here so that we
1140 	 * don't lose destruction events in between.  We could have
1141 	 * raced with the destruction of @new_position after all.
1142 	 */
1143 	iter->last_visited = new_position;
1144 	smp_wmb();
1145 	iter->last_dead_count = sequence;
1146 }
1147 
1148 /**
1149  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1150  * @root: hierarchy root
1151  * @prev: previously returned memcg, NULL on first invocation
1152  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1153  *
1154  * Returns references to children of the hierarchy below @root, or
1155  * @root itself, or %NULL after a full round-trip.
1156  *
1157  * Caller must pass the return value in @prev on subsequent
1158  * invocations for reference counting, or use mem_cgroup_iter_break()
1159  * to cancel a hierarchy walk before the round-trip is complete.
1160  *
1161  * Reclaimers can specify a zone and a priority level in @reclaim to
1162  * divide up the memcgs in the hierarchy among all concurrent
1163  * reclaimers operating on the same zone and priority.
1164  */
1165 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1166 				   struct mem_cgroup *prev,
1167 				   struct mem_cgroup_reclaim_cookie *reclaim)
1168 {
1169 	struct mem_cgroup *memcg = NULL;
1170 	struct mem_cgroup *last_visited = NULL;
1171 
1172 	if (mem_cgroup_disabled())
1173 		return NULL;
1174 
1175 	if (!root)
1176 		root = root_mem_cgroup;
1177 
1178 	if (prev && !reclaim)
1179 		last_visited = prev;
1180 
1181 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1182 		if (prev)
1183 			goto out_css_put;
1184 		return root;
1185 	}
1186 
1187 	rcu_read_lock();
1188 	while (!memcg) {
1189 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1190 		int uninitialized_var(seq);
1191 
1192 		if (reclaim) {
1193 			int nid = zone_to_nid(reclaim->zone);
1194 			int zid = zone_idx(reclaim->zone);
1195 			struct mem_cgroup_per_zone *mz;
1196 
1197 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1198 			iter = &mz->reclaim_iter[reclaim->priority];
1199 			if (prev && reclaim->generation != iter->generation) {
1200 				iter->last_visited = NULL;
1201 				goto out_unlock;
1202 			}
1203 
1204 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1205 		}
1206 
1207 		memcg = __mem_cgroup_iter_next(root, last_visited);
1208 
1209 		if (reclaim) {
1210 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1211 
1212 			if (!memcg)
1213 				iter->generation++;
1214 			else if (!prev && memcg)
1215 				reclaim->generation = iter->generation;
1216 		}
1217 
1218 		if (prev && !memcg)
1219 			goto out_unlock;
1220 	}
1221 out_unlock:
1222 	rcu_read_unlock();
1223 out_css_put:
1224 	if (prev && prev != root)
1225 		css_put(&prev->css);
1226 
1227 	return memcg;
1228 }
1229 
1230 /**
1231  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1232  * @root: hierarchy root
1233  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1234  */
1235 void mem_cgroup_iter_break(struct mem_cgroup *root,
1236 			   struct mem_cgroup *prev)
1237 {
1238 	if (!root)
1239 		root = root_mem_cgroup;
1240 	if (prev && prev != root)
1241 		css_put(&prev->css);
1242 }
1243 
1244 /*
1245  * Iteration constructs for visiting all cgroups (under a tree).  If
1246  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1247  * be used for reference counting.
1248  */
1249 #define for_each_mem_cgroup_tree(iter, root)		\
1250 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1251 	     iter != NULL;				\
1252 	     iter = mem_cgroup_iter(root, iter, NULL))
1253 
1254 #define for_each_mem_cgroup(iter)			\
1255 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1256 	     iter != NULL;				\
1257 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1258 
1259 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1260 {
1261 	struct mem_cgroup *memcg;
1262 
1263 	rcu_read_lock();
1264 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1265 	if (unlikely(!memcg))
1266 		goto out;
1267 
1268 	switch (idx) {
1269 	case PGFAULT:
1270 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1271 		break;
1272 	case PGMAJFAULT:
1273 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1274 		break;
1275 	default:
1276 		BUG();
1277 	}
1278 out:
1279 	rcu_read_unlock();
1280 }
1281 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1282 
1283 /**
1284  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1285  * @zone: zone of the wanted lruvec
1286  * @memcg: memcg of the wanted lruvec
1287  *
1288  * Returns the lru list vector holding pages for the given @zone and
1289  * @mem.  This can be the global zone lruvec, if the memory controller
1290  * is disabled.
1291  */
1292 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1293 				      struct mem_cgroup *memcg)
1294 {
1295 	struct mem_cgroup_per_zone *mz;
1296 	struct lruvec *lruvec;
1297 
1298 	if (mem_cgroup_disabled()) {
1299 		lruvec = &zone->lruvec;
1300 		goto out;
1301 	}
1302 
1303 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1304 	lruvec = &mz->lruvec;
1305 out:
1306 	/*
1307 	 * Since a node can be onlined after the mem_cgroup was created,
1308 	 * we have to be prepared to initialize lruvec->zone here;
1309 	 * and if offlined then reonlined, we need to reinitialize it.
1310 	 */
1311 	if (unlikely(lruvec->zone != zone))
1312 		lruvec->zone = zone;
1313 	return lruvec;
1314 }
1315 
1316 /*
1317  * Following LRU functions are allowed to be used without PCG_LOCK.
1318  * Operations are called by routine of global LRU independently from memcg.
1319  * What we have to take care of here is validness of pc->mem_cgroup.
1320  *
1321  * Changes to pc->mem_cgroup happens when
1322  * 1. charge
1323  * 2. moving account
1324  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1325  * It is added to LRU before charge.
1326  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1327  * When moving account, the page is not on LRU. It's isolated.
1328  */
1329 
1330 /**
1331  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1332  * @page: the page
1333  * @zone: zone of the page
1334  */
1335 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1336 {
1337 	struct mem_cgroup_per_zone *mz;
1338 	struct mem_cgroup *memcg;
1339 	struct page_cgroup *pc;
1340 	struct lruvec *lruvec;
1341 
1342 	if (mem_cgroup_disabled()) {
1343 		lruvec = &zone->lruvec;
1344 		goto out;
1345 	}
1346 
1347 	pc = lookup_page_cgroup(page);
1348 	memcg = pc->mem_cgroup;
1349 
1350 	/*
1351 	 * Surreptitiously switch any uncharged offlist page to root:
1352 	 * an uncharged page off lru does nothing to secure
1353 	 * its former mem_cgroup from sudden removal.
1354 	 *
1355 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1356 	 * under page_cgroup lock: between them, they make all uses
1357 	 * of pc->mem_cgroup safe.
1358 	 */
1359 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1360 		pc->mem_cgroup = memcg = root_mem_cgroup;
1361 
1362 	mz = page_cgroup_zoneinfo(memcg, page);
1363 	lruvec = &mz->lruvec;
1364 out:
1365 	/*
1366 	 * Since a node can be onlined after the mem_cgroup was created,
1367 	 * we have to be prepared to initialize lruvec->zone here;
1368 	 * and if offlined then reonlined, we need to reinitialize it.
1369 	 */
1370 	if (unlikely(lruvec->zone != zone))
1371 		lruvec->zone = zone;
1372 	return lruvec;
1373 }
1374 
1375 /**
1376  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1377  * @lruvec: mem_cgroup per zone lru vector
1378  * @lru: index of lru list the page is sitting on
1379  * @nr_pages: positive when adding or negative when removing
1380  *
1381  * This function must be called when a page is added to or removed from an
1382  * lru list.
1383  */
1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385 				int nr_pages)
1386 {
1387 	struct mem_cgroup_per_zone *mz;
1388 	unsigned long *lru_size;
1389 
1390 	if (mem_cgroup_disabled())
1391 		return;
1392 
1393 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1394 	lru_size = mz->lru_size + lru;
1395 	*lru_size += nr_pages;
1396 	VM_BUG_ON((long)(*lru_size) < 0);
1397 }
1398 
1399 /*
1400  * Checks whether given mem is same or in the root_mem_cgroup's
1401  * hierarchy subtree
1402  */
1403 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1404 				  struct mem_cgroup *memcg)
1405 {
1406 	if (root_memcg == memcg)
1407 		return true;
1408 	if (!root_memcg->use_hierarchy || !memcg)
1409 		return false;
1410 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1411 }
1412 
1413 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1414 				       struct mem_cgroup *memcg)
1415 {
1416 	bool ret;
1417 
1418 	rcu_read_lock();
1419 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1420 	rcu_read_unlock();
1421 	return ret;
1422 }
1423 
1424 bool task_in_mem_cgroup(struct task_struct *task,
1425 			const struct mem_cgroup *memcg)
1426 {
1427 	struct mem_cgroup *curr = NULL;
1428 	struct task_struct *p;
1429 	bool ret;
1430 
1431 	p = find_lock_task_mm(task);
1432 	if (p) {
1433 		curr = try_get_mem_cgroup_from_mm(p->mm);
1434 		task_unlock(p);
1435 	} else {
1436 		/*
1437 		 * All threads may have already detached their mm's, but the oom
1438 		 * killer still needs to detect if they have already been oom
1439 		 * killed to prevent needlessly killing additional tasks.
1440 		 */
1441 		rcu_read_lock();
1442 		curr = mem_cgroup_from_task(task);
1443 		if (curr)
1444 			css_get(&curr->css);
1445 		rcu_read_unlock();
1446 	}
1447 	if (!curr)
1448 		return false;
1449 	/*
1450 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1451 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1452 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1453 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1454 	 */
1455 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1456 	css_put(&curr->css);
1457 	return ret;
1458 }
1459 
1460 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1461 {
1462 	unsigned long inactive_ratio;
1463 	unsigned long inactive;
1464 	unsigned long active;
1465 	unsigned long gb;
1466 
1467 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1468 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1469 
1470 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1471 	if (gb)
1472 		inactive_ratio = int_sqrt(10 * gb);
1473 	else
1474 		inactive_ratio = 1;
1475 
1476 	return inactive * inactive_ratio < active;
1477 }
1478 
1479 #define mem_cgroup_from_res_counter(counter, member)	\
1480 	container_of(counter, struct mem_cgroup, member)
1481 
1482 /**
1483  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1484  * @memcg: the memory cgroup
1485  *
1486  * Returns the maximum amount of memory @mem can be charged with, in
1487  * pages.
1488  */
1489 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1490 {
1491 	unsigned long long margin;
1492 
1493 	margin = res_counter_margin(&memcg->res);
1494 	if (do_swap_account)
1495 		margin = min(margin, res_counter_margin(&memcg->memsw));
1496 	return margin >> PAGE_SHIFT;
1497 }
1498 
1499 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1500 {
1501 	/* root ? */
1502 	if (!css_parent(&memcg->css))
1503 		return vm_swappiness;
1504 
1505 	return memcg->swappiness;
1506 }
1507 
1508 /*
1509  * memcg->moving_account is used for checking possibility that some thread is
1510  * calling move_account(). When a thread on CPU-A starts moving pages under
1511  * a memcg, other threads should check memcg->moving_account under
1512  * rcu_read_lock(), like this:
1513  *
1514  *         CPU-A                                    CPU-B
1515  *                                              rcu_read_lock()
1516  *         memcg->moving_account+1              if (memcg->mocing_account)
1517  *                                                   take heavy locks.
1518  *         synchronize_rcu()                    update something.
1519  *                                              rcu_read_unlock()
1520  *         start move here.
1521  */
1522 
1523 /* for quick checking without looking up memcg */
1524 atomic_t memcg_moving __read_mostly;
1525 
1526 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1527 {
1528 	atomic_inc(&memcg_moving);
1529 	atomic_inc(&memcg->moving_account);
1530 	synchronize_rcu();
1531 }
1532 
1533 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1534 {
1535 	/*
1536 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1537 	 * We check NULL in callee rather than caller.
1538 	 */
1539 	if (memcg) {
1540 		atomic_dec(&memcg_moving);
1541 		atomic_dec(&memcg->moving_account);
1542 	}
1543 }
1544 
1545 /*
1546  * 2 routines for checking "mem" is under move_account() or not.
1547  *
1548  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1549  *			  is used for avoiding races in accounting.  If true,
1550  *			  pc->mem_cgroup may be overwritten.
1551  *
1552  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1553  *			  under hierarchy of moving cgroups. This is for
1554  *			  waiting at hith-memory prressure caused by "move".
1555  */
1556 
1557 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1558 {
1559 	VM_BUG_ON(!rcu_read_lock_held());
1560 	return atomic_read(&memcg->moving_account) > 0;
1561 }
1562 
1563 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564 {
1565 	struct mem_cgroup *from;
1566 	struct mem_cgroup *to;
1567 	bool ret = false;
1568 	/*
1569 	 * Unlike task_move routines, we access mc.to, mc.from not under
1570 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1571 	 */
1572 	spin_lock(&mc.lock);
1573 	from = mc.from;
1574 	to = mc.to;
1575 	if (!from)
1576 		goto unlock;
1577 
1578 	ret = mem_cgroup_same_or_subtree(memcg, from)
1579 		|| mem_cgroup_same_or_subtree(memcg, to);
1580 unlock:
1581 	spin_unlock(&mc.lock);
1582 	return ret;
1583 }
1584 
1585 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 {
1587 	if (mc.moving_task && current != mc.moving_task) {
1588 		if (mem_cgroup_under_move(memcg)) {
1589 			DEFINE_WAIT(wait);
1590 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1591 			/* moving charge context might have finished. */
1592 			if (mc.moving_task)
1593 				schedule();
1594 			finish_wait(&mc.waitq, &wait);
1595 			return true;
1596 		}
1597 	}
1598 	return false;
1599 }
1600 
1601 /*
1602  * Take this lock when
1603  * - a code tries to modify page's memcg while it's USED.
1604  * - a code tries to modify page state accounting in a memcg.
1605  * see mem_cgroup_stolen(), too.
1606  */
1607 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1608 				  unsigned long *flags)
1609 {
1610 	spin_lock_irqsave(&memcg->move_lock, *flags);
1611 }
1612 
1613 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1614 				unsigned long *flags)
1615 {
1616 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1617 }
1618 
1619 #define K(x) ((x) << (PAGE_SHIFT-10))
1620 /**
1621  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1622  * @memcg: The memory cgroup that went over limit
1623  * @p: Task that is going to be killed
1624  *
1625  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1626  * enabled
1627  */
1628 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1629 {
1630 	struct cgroup *task_cgrp;
1631 	struct cgroup *mem_cgrp;
1632 	/*
1633 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1634 	 * on the assumption that OOM is serialized for memory controller.
1635 	 * If this assumption is broken, revisit this code.
1636 	 */
1637 	static char memcg_name[PATH_MAX];
1638 	int ret;
1639 	struct mem_cgroup *iter;
1640 	unsigned int i;
1641 
1642 	if (!p)
1643 		return;
1644 
1645 	rcu_read_lock();
1646 
1647 	mem_cgrp = memcg->css.cgroup;
1648 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1649 
1650 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1651 	if (ret < 0) {
1652 		/*
1653 		 * Unfortunately, we are unable to convert to a useful name
1654 		 * But we'll still print out the usage information
1655 		 */
1656 		rcu_read_unlock();
1657 		goto done;
1658 	}
1659 	rcu_read_unlock();
1660 
1661 	pr_info("Task in %s killed", memcg_name);
1662 
1663 	rcu_read_lock();
1664 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1665 	if (ret < 0) {
1666 		rcu_read_unlock();
1667 		goto done;
1668 	}
1669 	rcu_read_unlock();
1670 
1671 	/*
1672 	 * Continues from above, so we don't need an KERN_ level
1673 	 */
1674 	pr_cont(" as a result of limit of %s\n", memcg_name);
1675 done:
1676 
1677 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1678 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1679 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1680 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1681 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1682 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1683 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1684 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1685 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1686 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1687 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1688 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1689 
1690 	for_each_mem_cgroup_tree(iter, memcg) {
1691 		pr_info("Memory cgroup stats");
1692 
1693 		rcu_read_lock();
1694 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1695 		if (!ret)
1696 			pr_cont(" for %s", memcg_name);
1697 		rcu_read_unlock();
1698 		pr_cont(":");
1699 
1700 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1701 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1702 				continue;
1703 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1704 				K(mem_cgroup_read_stat(iter, i)));
1705 		}
1706 
1707 		for (i = 0; i < NR_LRU_LISTS; i++)
1708 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1709 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1710 
1711 		pr_cont("\n");
1712 	}
1713 }
1714 
1715 /*
1716  * This function returns the number of memcg under hierarchy tree. Returns
1717  * 1(self count) if no children.
1718  */
1719 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1720 {
1721 	int num = 0;
1722 	struct mem_cgroup *iter;
1723 
1724 	for_each_mem_cgroup_tree(iter, memcg)
1725 		num++;
1726 	return num;
1727 }
1728 
1729 /*
1730  * Return the memory (and swap, if configured) limit for a memcg.
1731  */
1732 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1733 {
1734 	u64 limit;
1735 
1736 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1737 
1738 	/*
1739 	 * Do not consider swap space if we cannot swap due to swappiness
1740 	 */
1741 	if (mem_cgroup_swappiness(memcg)) {
1742 		u64 memsw;
1743 
1744 		limit += total_swap_pages << PAGE_SHIFT;
1745 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1746 
1747 		/*
1748 		 * If memsw is finite and limits the amount of swap space
1749 		 * available to this memcg, return that limit.
1750 		 */
1751 		limit = min(limit, memsw);
1752 	}
1753 
1754 	return limit;
1755 }
1756 
1757 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1758 				     int order)
1759 {
1760 	struct mem_cgroup *iter;
1761 	unsigned long chosen_points = 0;
1762 	unsigned long totalpages;
1763 	unsigned int points = 0;
1764 	struct task_struct *chosen = NULL;
1765 
1766 	/*
1767 	 * If current has a pending SIGKILL or is exiting, then automatically
1768 	 * select it.  The goal is to allow it to allocate so that it may
1769 	 * quickly exit and free its memory.
1770 	 */
1771 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1772 		set_thread_flag(TIF_MEMDIE);
1773 		return;
1774 	}
1775 
1776 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1777 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1778 	for_each_mem_cgroup_tree(iter, memcg) {
1779 		struct css_task_iter it;
1780 		struct task_struct *task;
1781 
1782 		css_task_iter_start(&iter->css, &it);
1783 		while ((task = css_task_iter_next(&it))) {
1784 			switch (oom_scan_process_thread(task, totalpages, NULL,
1785 							false)) {
1786 			case OOM_SCAN_SELECT:
1787 				if (chosen)
1788 					put_task_struct(chosen);
1789 				chosen = task;
1790 				chosen_points = ULONG_MAX;
1791 				get_task_struct(chosen);
1792 				/* fall through */
1793 			case OOM_SCAN_CONTINUE:
1794 				continue;
1795 			case OOM_SCAN_ABORT:
1796 				css_task_iter_end(&it);
1797 				mem_cgroup_iter_break(memcg, iter);
1798 				if (chosen)
1799 					put_task_struct(chosen);
1800 				return;
1801 			case OOM_SCAN_OK:
1802 				break;
1803 			};
1804 			points = oom_badness(task, memcg, NULL, totalpages);
1805 			if (points > chosen_points) {
1806 				if (chosen)
1807 					put_task_struct(chosen);
1808 				chosen = task;
1809 				chosen_points = points;
1810 				get_task_struct(chosen);
1811 			}
1812 		}
1813 		css_task_iter_end(&it);
1814 	}
1815 
1816 	if (!chosen)
1817 		return;
1818 	points = chosen_points * 1000 / totalpages;
1819 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1820 			 NULL, "Memory cgroup out of memory");
1821 }
1822 
1823 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1824 					gfp_t gfp_mask,
1825 					unsigned long flags)
1826 {
1827 	unsigned long total = 0;
1828 	bool noswap = false;
1829 	int loop;
1830 
1831 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1832 		noswap = true;
1833 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1834 		noswap = true;
1835 
1836 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1837 		if (loop)
1838 			drain_all_stock_async(memcg);
1839 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1840 		/*
1841 		 * Allow limit shrinkers, which are triggered directly
1842 		 * by userspace, to catch signals and stop reclaim
1843 		 * after minimal progress, regardless of the margin.
1844 		 */
1845 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1846 			break;
1847 		if (mem_cgroup_margin(memcg))
1848 			break;
1849 		/*
1850 		 * If nothing was reclaimed after two attempts, there
1851 		 * may be no reclaimable pages in this hierarchy.
1852 		 */
1853 		if (loop && !total)
1854 			break;
1855 	}
1856 	return total;
1857 }
1858 
1859 /**
1860  * test_mem_cgroup_node_reclaimable
1861  * @memcg: the target memcg
1862  * @nid: the node ID to be checked.
1863  * @noswap : specify true here if the user wants flle only information.
1864  *
1865  * This function returns whether the specified memcg contains any
1866  * reclaimable pages on a node. Returns true if there are any reclaimable
1867  * pages in the node.
1868  */
1869 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1870 		int nid, bool noswap)
1871 {
1872 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1873 		return true;
1874 	if (noswap || !total_swap_pages)
1875 		return false;
1876 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1877 		return true;
1878 	return false;
1879 
1880 }
1881 #if MAX_NUMNODES > 1
1882 
1883 /*
1884  * Always updating the nodemask is not very good - even if we have an empty
1885  * list or the wrong list here, we can start from some node and traverse all
1886  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1887  *
1888  */
1889 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1890 {
1891 	int nid;
1892 	/*
1893 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1894 	 * pagein/pageout changes since the last update.
1895 	 */
1896 	if (!atomic_read(&memcg->numainfo_events))
1897 		return;
1898 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1899 		return;
1900 
1901 	/* make a nodemask where this memcg uses memory from */
1902 	memcg->scan_nodes = node_states[N_MEMORY];
1903 
1904 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1905 
1906 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1907 			node_clear(nid, memcg->scan_nodes);
1908 	}
1909 
1910 	atomic_set(&memcg->numainfo_events, 0);
1911 	atomic_set(&memcg->numainfo_updating, 0);
1912 }
1913 
1914 /*
1915  * Selecting a node where we start reclaim from. Because what we need is just
1916  * reducing usage counter, start from anywhere is O,K. Considering
1917  * memory reclaim from current node, there are pros. and cons.
1918  *
1919  * Freeing memory from current node means freeing memory from a node which
1920  * we'll use or we've used. So, it may make LRU bad. And if several threads
1921  * hit limits, it will see a contention on a node. But freeing from remote
1922  * node means more costs for memory reclaim because of memory latency.
1923  *
1924  * Now, we use round-robin. Better algorithm is welcomed.
1925  */
1926 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1927 {
1928 	int node;
1929 
1930 	mem_cgroup_may_update_nodemask(memcg);
1931 	node = memcg->last_scanned_node;
1932 
1933 	node = next_node(node, memcg->scan_nodes);
1934 	if (node == MAX_NUMNODES)
1935 		node = first_node(memcg->scan_nodes);
1936 	/*
1937 	 * We call this when we hit limit, not when pages are added to LRU.
1938 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1939 	 * memcg is too small and all pages are not on LRU. In that case,
1940 	 * we use curret node.
1941 	 */
1942 	if (unlikely(node == MAX_NUMNODES))
1943 		node = numa_node_id();
1944 
1945 	memcg->last_scanned_node = node;
1946 	return node;
1947 }
1948 
1949 /*
1950  * Check all nodes whether it contains reclaimable pages or not.
1951  * For quick scan, we make use of scan_nodes. This will allow us to skip
1952  * unused nodes. But scan_nodes is lazily updated and may not cotain
1953  * enough new information. We need to do double check.
1954  */
1955 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1956 {
1957 	int nid;
1958 
1959 	/*
1960 	 * quick check...making use of scan_node.
1961 	 * We can skip unused nodes.
1962 	 */
1963 	if (!nodes_empty(memcg->scan_nodes)) {
1964 		for (nid = first_node(memcg->scan_nodes);
1965 		     nid < MAX_NUMNODES;
1966 		     nid = next_node(nid, memcg->scan_nodes)) {
1967 
1968 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1969 				return true;
1970 		}
1971 	}
1972 	/*
1973 	 * Check rest of nodes.
1974 	 */
1975 	for_each_node_state(nid, N_MEMORY) {
1976 		if (node_isset(nid, memcg->scan_nodes))
1977 			continue;
1978 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1979 			return true;
1980 	}
1981 	return false;
1982 }
1983 
1984 #else
1985 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1986 {
1987 	return 0;
1988 }
1989 
1990 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1991 {
1992 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1993 }
1994 #endif
1995 
1996 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1997 				   struct zone *zone,
1998 				   gfp_t gfp_mask,
1999 				   unsigned long *total_scanned)
2000 {
2001 	struct mem_cgroup *victim = NULL;
2002 	int total = 0;
2003 	int loop = 0;
2004 	unsigned long excess;
2005 	unsigned long nr_scanned;
2006 	struct mem_cgroup_reclaim_cookie reclaim = {
2007 		.zone = zone,
2008 		.priority = 0,
2009 	};
2010 
2011 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2012 
2013 	while (1) {
2014 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2015 		if (!victim) {
2016 			loop++;
2017 			if (loop >= 2) {
2018 				/*
2019 				 * If we have not been able to reclaim
2020 				 * anything, it might because there are
2021 				 * no reclaimable pages under this hierarchy
2022 				 */
2023 				if (!total)
2024 					break;
2025 				/*
2026 				 * We want to do more targeted reclaim.
2027 				 * excess >> 2 is not to excessive so as to
2028 				 * reclaim too much, nor too less that we keep
2029 				 * coming back to reclaim from this cgroup
2030 				 */
2031 				if (total >= (excess >> 2) ||
2032 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2033 					break;
2034 			}
2035 			continue;
2036 		}
2037 		if (!mem_cgroup_reclaimable(victim, false))
2038 			continue;
2039 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2040 						     zone, &nr_scanned);
2041 		*total_scanned += nr_scanned;
2042 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2043 			break;
2044 	}
2045 	mem_cgroup_iter_break(root_memcg, victim);
2046 	return total;
2047 }
2048 
2049 static DEFINE_SPINLOCK(memcg_oom_lock);
2050 
2051 /*
2052  * Check OOM-Killer is already running under our hierarchy.
2053  * If someone is running, return false.
2054  */
2055 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2056 {
2057 	struct mem_cgroup *iter, *failed = NULL;
2058 
2059 	spin_lock(&memcg_oom_lock);
2060 
2061 	for_each_mem_cgroup_tree(iter, memcg) {
2062 		if (iter->oom_lock) {
2063 			/*
2064 			 * this subtree of our hierarchy is already locked
2065 			 * so we cannot give a lock.
2066 			 */
2067 			failed = iter;
2068 			mem_cgroup_iter_break(memcg, iter);
2069 			break;
2070 		} else
2071 			iter->oom_lock = true;
2072 	}
2073 
2074 	if (failed) {
2075 		/*
2076 		 * OK, we failed to lock the whole subtree so we have
2077 		 * to clean up what we set up to the failing subtree
2078 		 */
2079 		for_each_mem_cgroup_tree(iter, memcg) {
2080 			if (iter == failed) {
2081 				mem_cgroup_iter_break(memcg, iter);
2082 				break;
2083 			}
2084 			iter->oom_lock = false;
2085 		}
2086 	}
2087 
2088 	spin_unlock(&memcg_oom_lock);
2089 
2090 	return !failed;
2091 }
2092 
2093 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094 {
2095 	struct mem_cgroup *iter;
2096 
2097 	spin_lock(&memcg_oom_lock);
2098 	for_each_mem_cgroup_tree(iter, memcg)
2099 		iter->oom_lock = false;
2100 	spin_unlock(&memcg_oom_lock);
2101 }
2102 
2103 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2104 {
2105 	struct mem_cgroup *iter;
2106 
2107 	for_each_mem_cgroup_tree(iter, memcg)
2108 		atomic_inc(&iter->under_oom);
2109 }
2110 
2111 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2112 {
2113 	struct mem_cgroup *iter;
2114 
2115 	/*
2116 	 * When a new child is created while the hierarchy is under oom,
2117 	 * mem_cgroup_oom_lock() may not be called. We have to use
2118 	 * atomic_add_unless() here.
2119 	 */
2120 	for_each_mem_cgroup_tree(iter, memcg)
2121 		atomic_add_unless(&iter->under_oom, -1, 0);
2122 }
2123 
2124 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2125 
2126 struct oom_wait_info {
2127 	struct mem_cgroup *memcg;
2128 	wait_queue_t	wait;
2129 };
2130 
2131 static int memcg_oom_wake_function(wait_queue_t *wait,
2132 	unsigned mode, int sync, void *arg)
2133 {
2134 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2135 	struct mem_cgroup *oom_wait_memcg;
2136 	struct oom_wait_info *oom_wait_info;
2137 
2138 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2139 	oom_wait_memcg = oom_wait_info->memcg;
2140 
2141 	/*
2142 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2143 	 * Then we can use css_is_ancestor without taking care of RCU.
2144 	 */
2145 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2146 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2147 		return 0;
2148 	return autoremove_wake_function(wait, mode, sync, arg);
2149 }
2150 
2151 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2152 {
2153 	atomic_inc(&memcg->oom_wakeups);
2154 	/* for filtering, pass "memcg" as argument. */
2155 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2156 }
2157 
2158 static void memcg_oom_recover(struct mem_cgroup *memcg)
2159 {
2160 	if (memcg && atomic_read(&memcg->under_oom))
2161 		memcg_wakeup_oom(memcg);
2162 }
2163 
2164 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2165 {
2166 	if (!current->memcg_oom.may_oom)
2167 		return;
2168 	/*
2169 	 * We are in the middle of the charge context here, so we
2170 	 * don't want to block when potentially sitting on a callstack
2171 	 * that holds all kinds of filesystem and mm locks.
2172 	 *
2173 	 * Also, the caller may handle a failed allocation gracefully
2174 	 * (like optional page cache readahead) and so an OOM killer
2175 	 * invocation might not even be necessary.
2176 	 *
2177 	 * That's why we don't do anything here except remember the
2178 	 * OOM context and then deal with it at the end of the page
2179 	 * fault when the stack is unwound, the locks are released,
2180 	 * and when we know whether the fault was overall successful.
2181 	 */
2182 	css_get(&memcg->css);
2183 	current->memcg_oom.memcg = memcg;
2184 	current->memcg_oom.gfp_mask = mask;
2185 	current->memcg_oom.order = order;
2186 }
2187 
2188 /**
2189  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2190  * @handle: actually kill/wait or just clean up the OOM state
2191  *
2192  * This has to be called at the end of a page fault if the memcg OOM
2193  * handler was enabled.
2194  *
2195  * Memcg supports userspace OOM handling where failed allocations must
2196  * sleep on a waitqueue until the userspace task resolves the
2197  * situation.  Sleeping directly in the charge context with all kinds
2198  * of locks held is not a good idea, instead we remember an OOM state
2199  * in the task and mem_cgroup_oom_synchronize() has to be called at
2200  * the end of the page fault to complete the OOM handling.
2201  *
2202  * Returns %true if an ongoing memcg OOM situation was detected and
2203  * completed, %false otherwise.
2204  */
2205 bool mem_cgroup_oom_synchronize(bool handle)
2206 {
2207 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2208 	struct oom_wait_info owait;
2209 	bool locked;
2210 
2211 	/* OOM is global, do not handle */
2212 	if (!memcg)
2213 		return false;
2214 
2215 	if (!handle)
2216 		goto cleanup;
2217 
2218 	owait.memcg = memcg;
2219 	owait.wait.flags = 0;
2220 	owait.wait.func = memcg_oom_wake_function;
2221 	owait.wait.private = current;
2222 	INIT_LIST_HEAD(&owait.wait.task_list);
2223 
2224 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2225 	mem_cgroup_mark_under_oom(memcg);
2226 
2227 	locked = mem_cgroup_oom_trylock(memcg);
2228 
2229 	if (locked)
2230 		mem_cgroup_oom_notify(memcg);
2231 
2232 	if (locked && !memcg->oom_kill_disable) {
2233 		mem_cgroup_unmark_under_oom(memcg);
2234 		finish_wait(&memcg_oom_waitq, &owait.wait);
2235 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2236 					 current->memcg_oom.order);
2237 	} else {
2238 		schedule();
2239 		mem_cgroup_unmark_under_oom(memcg);
2240 		finish_wait(&memcg_oom_waitq, &owait.wait);
2241 	}
2242 
2243 	if (locked) {
2244 		mem_cgroup_oom_unlock(memcg);
2245 		/*
2246 		 * There is no guarantee that an OOM-lock contender
2247 		 * sees the wakeups triggered by the OOM kill
2248 		 * uncharges.  Wake any sleepers explicitely.
2249 		 */
2250 		memcg_oom_recover(memcg);
2251 	}
2252 cleanup:
2253 	current->memcg_oom.memcg = NULL;
2254 	css_put(&memcg->css);
2255 	return true;
2256 }
2257 
2258 /*
2259  * Currently used to update mapped file statistics, but the routine can be
2260  * generalized to update other statistics as well.
2261  *
2262  * Notes: Race condition
2263  *
2264  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2265  * it tends to be costly. But considering some conditions, we doesn't need
2266  * to do so _always_.
2267  *
2268  * Considering "charge", lock_page_cgroup() is not required because all
2269  * file-stat operations happen after a page is attached to radix-tree. There
2270  * are no race with "charge".
2271  *
2272  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2273  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2274  * if there are race with "uncharge". Statistics itself is properly handled
2275  * by flags.
2276  *
2277  * Considering "move", this is an only case we see a race. To make the race
2278  * small, we check mm->moving_account and detect there are possibility of race
2279  * If there is, we take a lock.
2280  */
2281 
2282 void __mem_cgroup_begin_update_page_stat(struct page *page,
2283 				bool *locked, unsigned long *flags)
2284 {
2285 	struct mem_cgroup *memcg;
2286 	struct page_cgroup *pc;
2287 
2288 	pc = lookup_page_cgroup(page);
2289 again:
2290 	memcg = pc->mem_cgroup;
2291 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 		return;
2293 	/*
2294 	 * If this memory cgroup is not under account moving, we don't
2295 	 * need to take move_lock_mem_cgroup(). Because we already hold
2296 	 * rcu_read_lock(), any calls to move_account will be delayed until
2297 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2298 	 */
2299 	if (!mem_cgroup_stolen(memcg))
2300 		return;
2301 
2302 	move_lock_mem_cgroup(memcg, flags);
2303 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2304 		move_unlock_mem_cgroup(memcg, flags);
2305 		goto again;
2306 	}
2307 	*locked = true;
2308 }
2309 
2310 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2311 {
2312 	struct page_cgroup *pc = lookup_page_cgroup(page);
2313 
2314 	/*
2315 	 * It's guaranteed that pc->mem_cgroup never changes while
2316 	 * lock is held because a routine modifies pc->mem_cgroup
2317 	 * should take move_lock_mem_cgroup().
2318 	 */
2319 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2320 }
2321 
2322 void mem_cgroup_update_page_stat(struct page *page,
2323 				 enum mem_cgroup_stat_index idx, int val)
2324 {
2325 	struct mem_cgroup *memcg;
2326 	struct page_cgroup *pc = lookup_page_cgroup(page);
2327 	unsigned long uninitialized_var(flags);
2328 
2329 	if (mem_cgroup_disabled())
2330 		return;
2331 
2332 	VM_BUG_ON(!rcu_read_lock_held());
2333 	memcg = pc->mem_cgroup;
2334 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2335 		return;
2336 
2337 	this_cpu_add(memcg->stat->count[idx], val);
2338 }
2339 
2340 /*
2341  * size of first charge trial. "32" comes from vmscan.c's magic value.
2342  * TODO: maybe necessary to use big numbers in big irons.
2343  */
2344 #define CHARGE_BATCH	32U
2345 struct memcg_stock_pcp {
2346 	struct mem_cgroup *cached; /* this never be root cgroup */
2347 	unsigned int nr_pages;
2348 	struct work_struct work;
2349 	unsigned long flags;
2350 #define FLUSHING_CACHED_CHARGE	0
2351 };
2352 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2353 static DEFINE_MUTEX(percpu_charge_mutex);
2354 
2355 /**
2356  * consume_stock: Try to consume stocked charge on this cpu.
2357  * @memcg: memcg to consume from.
2358  * @nr_pages: how many pages to charge.
2359  *
2360  * The charges will only happen if @memcg matches the current cpu's memcg
2361  * stock, and at least @nr_pages are available in that stock.  Failure to
2362  * service an allocation will refill the stock.
2363  *
2364  * returns true if successful, false otherwise.
2365  */
2366 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2367 {
2368 	struct memcg_stock_pcp *stock;
2369 	bool ret = true;
2370 
2371 	if (nr_pages > CHARGE_BATCH)
2372 		return false;
2373 
2374 	stock = &get_cpu_var(memcg_stock);
2375 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2376 		stock->nr_pages -= nr_pages;
2377 	else /* need to call res_counter_charge */
2378 		ret = false;
2379 	put_cpu_var(memcg_stock);
2380 	return ret;
2381 }
2382 
2383 /*
2384  * Returns stocks cached in percpu to res_counter and reset cached information.
2385  */
2386 static void drain_stock(struct memcg_stock_pcp *stock)
2387 {
2388 	struct mem_cgroup *old = stock->cached;
2389 
2390 	if (stock->nr_pages) {
2391 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2392 
2393 		res_counter_uncharge(&old->res, bytes);
2394 		if (do_swap_account)
2395 			res_counter_uncharge(&old->memsw, bytes);
2396 		stock->nr_pages = 0;
2397 	}
2398 	stock->cached = NULL;
2399 }
2400 
2401 /*
2402  * This must be called under preempt disabled or must be called by
2403  * a thread which is pinned to local cpu.
2404  */
2405 static void drain_local_stock(struct work_struct *dummy)
2406 {
2407 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2408 	drain_stock(stock);
2409 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2410 }
2411 
2412 static void __init memcg_stock_init(void)
2413 {
2414 	int cpu;
2415 
2416 	for_each_possible_cpu(cpu) {
2417 		struct memcg_stock_pcp *stock =
2418 					&per_cpu(memcg_stock, cpu);
2419 		INIT_WORK(&stock->work, drain_local_stock);
2420 	}
2421 }
2422 
2423 /*
2424  * Cache charges(val) which is from res_counter, to local per_cpu area.
2425  * This will be consumed by consume_stock() function, later.
2426  */
2427 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2428 {
2429 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2430 
2431 	if (stock->cached != memcg) { /* reset if necessary */
2432 		drain_stock(stock);
2433 		stock->cached = memcg;
2434 	}
2435 	stock->nr_pages += nr_pages;
2436 	put_cpu_var(memcg_stock);
2437 }
2438 
2439 /*
2440  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2441  * of the hierarchy under it. sync flag says whether we should block
2442  * until the work is done.
2443  */
2444 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2445 {
2446 	int cpu, curcpu;
2447 
2448 	/* Notify other cpus that system-wide "drain" is running */
2449 	get_online_cpus();
2450 	curcpu = get_cpu();
2451 	for_each_online_cpu(cpu) {
2452 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2453 		struct mem_cgroup *memcg;
2454 
2455 		memcg = stock->cached;
2456 		if (!memcg || !stock->nr_pages)
2457 			continue;
2458 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2459 			continue;
2460 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2461 			if (cpu == curcpu)
2462 				drain_local_stock(&stock->work);
2463 			else
2464 				schedule_work_on(cpu, &stock->work);
2465 		}
2466 	}
2467 	put_cpu();
2468 
2469 	if (!sync)
2470 		goto out;
2471 
2472 	for_each_online_cpu(cpu) {
2473 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2474 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2475 			flush_work(&stock->work);
2476 	}
2477 out:
2478 	put_online_cpus();
2479 }
2480 
2481 /*
2482  * Tries to drain stocked charges in other cpus. This function is asynchronous
2483  * and just put a work per cpu for draining localy on each cpu. Caller can
2484  * expects some charges will be back to res_counter later but cannot wait for
2485  * it.
2486  */
2487 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2488 {
2489 	/*
2490 	 * If someone calls draining, avoid adding more kworker runs.
2491 	 */
2492 	if (!mutex_trylock(&percpu_charge_mutex))
2493 		return;
2494 	drain_all_stock(root_memcg, false);
2495 	mutex_unlock(&percpu_charge_mutex);
2496 }
2497 
2498 /* This is a synchronous drain interface. */
2499 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2500 {
2501 	/* called when force_empty is called */
2502 	mutex_lock(&percpu_charge_mutex);
2503 	drain_all_stock(root_memcg, true);
2504 	mutex_unlock(&percpu_charge_mutex);
2505 }
2506 
2507 /*
2508  * This function drains percpu counter value from DEAD cpu and
2509  * move it to local cpu. Note that this function can be preempted.
2510  */
2511 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2512 {
2513 	int i;
2514 
2515 	spin_lock(&memcg->pcp_counter_lock);
2516 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2517 		long x = per_cpu(memcg->stat->count[i], cpu);
2518 
2519 		per_cpu(memcg->stat->count[i], cpu) = 0;
2520 		memcg->nocpu_base.count[i] += x;
2521 	}
2522 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2523 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2524 
2525 		per_cpu(memcg->stat->events[i], cpu) = 0;
2526 		memcg->nocpu_base.events[i] += x;
2527 	}
2528 	spin_unlock(&memcg->pcp_counter_lock);
2529 }
2530 
2531 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2532 					unsigned long action,
2533 					void *hcpu)
2534 {
2535 	int cpu = (unsigned long)hcpu;
2536 	struct memcg_stock_pcp *stock;
2537 	struct mem_cgroup *iter;
2538 
2539 	if (action == CPU_ONLINE)
2540 		return NOTIFY_OK;
2541 
2542 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2543 		return NOTIFY_OK;
2544 
2545 	for_each_mem_cgroup(iter)
2546 		mem_cgroup_drain_pcp_counter(iter, cpu);
2547 
2548 	stock = &per_cpu(memcg_stock, cpu);
2549 	drain_stock(stock);
2550 	return NOTIFY_OK;
2551 }
2552 
2553 
2554 /* See __mem_cgroup_try_charge() for details */
2555 enum {
2556 	CHARGE_OK,		/* success */
2557 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2558 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2559 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2560 };
2561 
2562 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2563 				unsigned int nr_pages, unsigned int min_pages,
2564 				bool invoke_oom)
2565 {
2566 	unsigned long csize = nr_pages * PAGE_SIZE;
2567 	struct mem_cgroup *mem_over_limit;
2568 	struct res_counter *fail_res;
2569 	unsigned long flags = 0;
2570 	int ret;
2571 
2572 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2573 
2574 	if (likely(!ret)) {
2575 		if (!do_swap_account)
2576 			return CHARGE_OK;
2577 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2578 		if (likely(!ret))
2579 			return CHARGE_OK;
2580 
2581 		res_counter_uncharge(&memcg->res, csize);
2582 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2583 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2584 	} else
2585 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2586 	/*
2587 	 * Never reclaim on behalf of optional batching, retry with a
2588 	 * single page instead.
2589 	 */
2590 	if (nr_pages > min_pages)
2591 		return CHARGE_RETRY;
2592 
2593 	if (!(gfp_mask & __GFP_WAIT))
2594 		return CHARGE_WOULDBLOCK;
2595 
2596 	if (gfp_mask & __GFP_NORETRY)
2597 		return CHARGE_NOMEM;
2598 
2599 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2600 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2601 		return CHARGE_RETRY;
2602 	/*
2603 	 * Even though the limit is exceeded at this point, reclaim
2604 	 * may have been able to free some pages.  Retry the charge
2605 	 * before killing the task.
2606 	 *
2607 	 * Only for regular pages, though: huge pages are rather
2608 	 * unlikely to succeed so close to the limit, and we fall back
2609 	 * to regular pages anyway in case of failure.
2610 	 */
2611 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2612 		return CHARGE_RETRY;
2613 
2614 	/*
2615 	 * At task move, charge accounts can be doubly counted. So, it's
2616 	 * better to wait until the end of task_move if something is going on.
2617 	 */
2618 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2619 		return CHARGE_RETRY;
2620 
2621 	if (invoke_oom)
2622 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2623 
2624 	return CHARGE_NOMEM;
2625 }
2626 
2627 /*
2628  * __mem_cgroup_try_charge() does
2629  * 1. detect memcg to be charged against from passed *mm and *ptr,
2630  * 2. update res_counter
2631  * 3. call memory reclaim if necessary.
2632  *
2633  * In some special case, if the task is fatal, fatal_signal_pending() or
2634  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2635  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2636  * as possible without any hazards. 2: all pages should have a valid
2637  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2638  * pointer, that is treated as a charge to root_mem_cgroup.
2639  *
2640  * So __mem_cgroup_try_charge() will return
2641  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2642  *  -ENOMEM ...  charge failure because of resource limits.
2643  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2644  *
2645  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2646  * the oom-killer can be invoked.
2647  */
2648 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2649 				   gfp_t gfp_mask,
2650 				   unsigned int nr_pages,
2651 				   struct mem_cgroup **ptr,
2652 				   bool oom)
2653 {
2654 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2655 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2656 	struct mem_cgroup *memcg = NULL;
2657 	int ret;
2658 
2659 	/*
2660 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2661 	 * in system level. So, allow to go ahead dying process in addition to
2662 	 * MEMDIE process.
2663 	 */
2664 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2665 		     || fatal_signal_pending(current)))
2666 		goto bypass;
2667 
2668 	if (unlikely(task_in_memcg_oom(current)))
2669 		goto bypass;
2670 
2671 	/*
2672 	 * We always charge the cgroup the mm_struct belongs to.
2673 	 * The mm_struct's mem_cgroup changes on task migration if the
2674 	 * thread group leader migrates. It's possible that mm is not
2675 	 * set, if so charge the root memcg (happens for pagecache usage).
2676 	 */
2677 	if (!*ptr && !mm)
2678 		*ptr = root_mem_cgroup;
2679 again:
2680 	if (*ptr) { /* css should be a valid one */
2681 		memcg = *ptr;
2682 		if (mem_cgroup_is_root(memcg))
2683 			goto done;
2684 		if (consume_stock(memcg, nr_pages))
2685 			goto done;
2686 		css_get(&memcg->css);
2687 	} else {
2688 		struct task_struct *p;
2689 
2690 		rcu_read_lock();
2691 		p = rcu_dereference(mm->owner);
2692 		/*
2693 		 * Because we don't have task_lock(), "p" can exit.
2694 		 * In that case, "memcg" can point to root or p can be NULL with
2695 		 * race with swapoff. Then, we have small risk of mis-accouning.
2696 		 * But such kind of mis-account by race always happens because
2697 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2698 		 * small race, here.
2699 		 * (*) swapoff at el will charge against mm-struct not against
2700 		 * task-struct. So, mm->owner can be NULL.
2701 		 */
2702 		memcg = mem_cgroup_from_task(p);
2703 		if (!memcg)
2704 			memcg = root_mem_cgroup;
2705 		if (mem_cgroup_is_root(memcg)) {
2706 			rcu_read_unlock();
2707 			goto done;
2708 		}
2709 		if (consume_stock(memcg, nr_pages)) {
2710 			/*
2711 			 * It seems dagerous to access memcg without css_get().
2712 			 * But considering how consume_stok works, it's not
2713 			 * necessary. If consume_stock success, some charges
2714 			 * from this memcg are cached on this cpu. So, we
2715 			 * don't need to call css_get()/css_tryget() before
2716 			 * calling consume_stock().
2717 			 */
2718 			rcu_read_unlock();
2719 			goto done;
2720 		}
2721 		/* after here, we may be blocked. we need to get refcnt */
2722 		if (!css_tryget(&memcg->css)) {
2723 			rcu_read_unlock();
2724 			goto again;
2725 		}
2726 		rcu_read_unlock();
2727 	}
2728 
2729 	do {
2730 		bool invoke_oom = oom && !nr_oom_retries;
2731 
2732 		/* If killed, bypass charge */
2733 		if (fatal_signal_pending(current)) {
2734 			css_put(&memcg->css);
2735 			goto bypass;
2736 		}
2737 
2738 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2739 					   nr_pages, invoke_oom);
2740 		switch (ret) {
2741 		case CHARGE_OK:
2742 			break;
2743 		case CHARGE_RETRY: /* not in OOM situation but retry */
2744 			batch = nr_pages;
2745 			css_put(&memcg->css);
2746 			memcg = NULL;
2747 			goto again;
2748 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2749 			css_put(&memcg->css);
2750 			goto nomem;
2751 		case CHARGE_NOMEM: /* OOM routine works */
2752 			if (!oom || invoke_oom) {
2753 				css_put(&memcg->css);
2754 				goto nomem;
2755 			}
2756 			nr_oom_retries--;
2757 			break;
2758 		}
2759 	} while (ret != CHARGE_OK);
2760 
2761 	if (batch > nr_pages)
2762 		refill_stock(memcg, batch - nr_pages);
2763 	css_put(&memcg->css);
2764 done:
2765 	*ptr = memcg;
2766 	return 0;
2767 nomem:
2768 	*ptr = NULL;
2769 	if (gfp_mask & __GFP_NOFAIL)
2770 		return 0;
2771 	return -ENOMEM;
2772 bypass:
2773 	*ptr = root_mem_cgroup;
2774 	return -EINTR;
2775 }
2776 
2777 /*
2778  * Somemtimes we have to undo a charge we got by try_charge().
2779  * This function is for that and do uncharge, put css's refcnt.
2780  * gotten by try_charge().
2781  */
2782 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2783 				       unsigned int nr_pages)
2784 {
2785 	if (!mem_cgroup_is_root(memcg)) {
2786 		unsigned long bytes = nr_pages * PAGE_SIZE;
2787 
2788 		res_counter_uncharge(&memcg->res, bytes);
2789 		if (do_swap_account)
2790 			res_counter_uncharge(&memcg->memsw, bytes);
2791 	}
2792 }
2793 
2794 /*
2795  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2796  * This is useful when moving usage to parent cgroup.
2797  */
2798 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2799 					unsigned int nr_pages)
2800 {
2801 	unsigned long bytes = nr_pages * PAGE_SIZE;
2802 
2803 	if (mem_cgroup_is_root(memcg))
2804 		return;
2805 
2806 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2807 	if (do_swap_account)
2808 		res_counter_uncharge_until(&memcg->memsw,
2809 						memcg->memsw.parent, bytes);
2810 }
2811 
2812 /*
2813  * A helper function to get mem_cgroup from ID. must be called under
2814  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2815  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2816  * called against removed memcg.)
2817  */
2818 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2819 {
2820 	struct cgroup_subsys_state *css;
2821 
2822 	/* ID 0 is unused ID */
2823 	if (!id)
2824 		return NULL;
2825 	css = css_lookup(&mem_cgroup_subsys, id);
2826 	if (!css)
2827 		return NULL;
2828 	return mem_cgroup_from_css(css);
2829 }
2830 
2831 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2832 {
2833 	struct mem_cgroup *memcg = NULL;
2834 	struct page_cgroup *pc;
2835 	unsigned short id;
2836 	swp_entry_t ent;
2837 
2838 	VM_BUG_ON(!PageLocked(page));
2839 
2840 	pc = lookup_page_cgroup(page);
2841 	lock_page_cgroup(pc);
2842 	if (PageCgroupUsed(pc)) {
2843 		memcg = pc->mem_cgroup;
2844 		if (memcg && !css_tryget(&memcg->css))
2845 			memcg = NULL;
2846 	} else if (PageSwapCache(page)) {
2847 		ent.val = page_private(page);
2848 		id = lookup_swap_cgroup_id(ent);
2849 		rcu_read_lock();
2850 		memcg = mem_cgroup_lookup(id);
2851 		if (memcg && !css_tryget(&memcg->css))
2852 			memcg = NULL;
2853 		rcu_read_unlock();
2854 	}
2855 	unlock_page_cgroup(pc);
2856 	return memcg;
2857 }
2858 
2859 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2860 				       struct page *page,
2861 				       unsigned int nr_pages,
2862 				       enum charge_type ctype,
2863 				       bool lrucare)
2864 {
2865 	struct page_cgroup *pc = lookup_page_cgroup(page);
2866 	struct zone *uninitialized_var(zone);
2867 	struct lruvec *lruvec;
2868 	bool was_on_lru = false;
2869 	bool anon;
2870 
2871 	lock_page_cgroup(pc);
2872 	VM_BUG_ON(PageCgroupUsed(pc));
2873 	/*
2874 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2875 	 * accessed by any other context at this point.
2876 	 */
2877 
2878 	/*
2879 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2880 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2881 	 */
2882 	if (lrucare) {
2883 		zone = page_zone(page);
2884 		spin_lock_irq(&zone->lru_lock);
2885 		if (PageLRU(page)) {
2886 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2887 			ClearPageLRU(page);
2888 			del_page_from_lru_list(page, lruvec, page_lru(page));
2889 			was_on_lru = true;
2890 		}
2891 	}
2892 
2893 	pc->mem_cgroup = memcg;
2894 	/*
2895 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2896 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2897 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2898 	 * before USED bit, we need memory barrier here.
2899 	 * See mem_cgroup_add_lru_list(), etc.
2900 	 */
2901 	smp_wmb();
2902 	SetPageCgroupUsed(pc);
2903 
2904 	if (lrucare) {
2905 		if (was_on_lru) {
2906 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2907 			VM_BUG_ON(PageLRU(page));
2908 			SetPageLRU(page);
2909 			add_page_to_lru_list(page, lruvec, page_lru(page));
2910 		}
2911 		spin_unlock_irq(&zone->lru_lock);
2912 	}
2913 
2914 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2915 		anon = true;
2916 	else
2917 		anon = false;
2918 
2919 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2920 	unlock_page_cgroup(pc);
2921 
2922 	/*
2923 	 * "charge_statistics" updated event counter. Then, check it.
2924 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2925 	 * if they exceeds softlimit.
2926 	 */
2927 	memcg_check_events(memcg, page);
2928 }
2929 
2930 static DEFINE_MUTEX(set_limit_mutex);
2931 
2932 #ifdef CONFIG_MEMCG_KMEM
2933 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2934 {
2935 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2936 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2937 }
2938 
2939 /*
2940  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2941  * in the memcg_cache_params struct.
2942  */
2943 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2944 {
2945 	struct kmem_cache *cachep;
2946 
2947 	VM_BUG_ON(p->is_root_cache);
2948 	cachep = p->root_cache;
2949 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2950 }
2951 
2952 #ifdef CONFIG_SLABINFO
2953 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2954 				    struct cftype *cft, struct seq_file *m)
2955 {
2956 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2957 	struct memcg_cache_params *params;
2958 
2959 	if (!memcg_can_account_kmem(memcg))
2960 		return -EIO;
2961 
2962 	print_slabinfo_header(m);
2963 
2964 	mutex_lock(&memcg->slab_caches_mutex);
2965 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2966 		cache_show(memcg_params_to_cache(params), m);
2967 	mutex_unlock(&memcg->slab_caches_mutex);
2968 
2969 	return 0;
2970 }
2971 #endif
2972 
2973 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2974 {
2975 	struct res_counter *fail_res;
2976 	struct mem_cgroup *_memcg;
2977 	int ret = 0;
2978 	bool may_oom;
2979 
2980 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2981 	if (ret)
2982 		return ret;
2983 
2984 	/*
2985 	 * Conditions under which we can wait for the oom_killer. Those are
2986 	 * the same conditions tested by the core page allocator
2987 	 */
2988 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2989 
2990 	_memcg = memcg;
2991 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2992 				      &_memcg, may_oom);
2993 
2994 	if (ret == -EINTR)  {
2995 		/*
2996 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
2997 		 * OOM kill or fatal signal.  Since our only options are to
2998 		 * either fail the allocation or charge it to this cgroup, do
2999 		 * it as a temporary condition. But we can't fail. From a
3000 		 * kmem/slab perspective, the cache has already been selected,
3001 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3002 		 * our minds.
3003 		 *
3004 		 * This condition will only trigger if the task entered
3005 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3006 		 * __mem_cgroup_try_charge() above. Tasks that were already
3007 		 * dying when the allocation triggers should have been already
3008 		 * directed to the root cgroup in memcontrol.h
3009 		 */
3010 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3011 		if (do_swap_account)
3012 			res_counter_charge_nofail(&memcg->memsw, size,
3013 						  &fail_res);
3014 		ret = 0;
3015 	} else if (ret)
3016 		res_counter_uncharge(&memcg->kmem, size);
3017 
3018 	return ret;
3019 }
3020 
3021 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3022 {
3023 	res_counter_uncharge(&memcg->res, size);
3024 	if (do_swap_account)
3025 		res_counter_uncharge(&memcg->memsw, size);
3026 
3027 	/* Not down to 0 */
3028 	if (res_counter_uncharge(&memcg->kmem, size))
3029 		return;
3030 
3031 	/*
3032 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3033 	 * this last uncharge is racing with the offlining code or it is
3034 	 * outliving the memcg existence.
3035 	 *
3036 	 * The memory barrier imposed by test&clear is paired with the
3037 	 * explicit one in memcg_kmem_mark_dead().
3038 	 */
3039 	if (memcg_kmem_test_and_clear_dead(memcg))
3040 		css_put(&memcg->css);
3041 }
3042 
3043 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3044 {
3045 	if (!memcg)
3046 		return;
3047 
3048 	mutex_lock(&memcg->slab_caches_mutex);
3049 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3050 	mutex_unlock(&memcg->slab_caches_mutex);
3051 }
3052 
3053 /*
3054  * helper for acessing a memcg's index. It will be used as an index in the
3055  * child cache array in kmem_cache, and also to derive its name. This function
3056  * will return -1 when this is not a kmem-limited memcg.
3057  */
3058 int memcg_cache_id(struct mem_cgroup *memcg)
3059 {
3060 	return memcg ? memcg->kmemcg_id : -1;
3061 }
3062 
3063 /*
3064  * This ends up being protected by the set_limit mutex, during normal
3065  * operation, because that is its main call site.
3066  *
3067  * But when we create a new cache, we can call this as well if its parent
3068  * is kmem-limited. That will have to hold set_limit_mutex as well.
3069  */
3070 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3071 {
3072 	int num, ret;
3073 
3074 	num = ida_simple_get(&kmem_limited_groups,
3075 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3076 	if (num < 0)
3077 		return num;
3078 	/*
3079 	 * After this point, kmem_accounted (that we test atomically in
3080 	 * the beginning of this conditional), is no longer 0. This
3081 	 * guarantees only one process will set the following boolean
3082 	 * to true. We don't need test_and_set because we're protected
3083 	 * by the set_limit_mutex anyway.
3084 	 */
3085 	memcg_kmem_set_activated(memcg);
3086 
3087 	ret = memcg_update_all_caches(num+1);
3088 	if (ret) {
3089 		ida_simple_remove(&kmem_limited_groups, num);
3090 		memcg_kmem_clear_activated(memcg);
3091 		return ret;
3092 	}
3093 
3094 	memcg->kmemcg_id = num;
3095 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3096 	mutex_init(&memcg->slab_caches_mutex);
3097 	return 0;
3098 }
3099 
3100 static size_t memcg_caches_array_size(int num_groups)
3101 {
3102 	ssize_t size;
3103 	if (num_groups <= 0)
3104 		return 0;
3105 
3106 	size = 2 * num_groups;
3107 	if (size < MEMCG_CACHES_MIN_SIZE)
3108 		size = MEMCG_CACHES_MIN_SIZE;
3109 	else if (size > MEMCG_CACHES_MAX_SIZE)
3110 		size = MEMCG_CACHES_MAX_SIZE;
3111 
3112 	return size;
3113 }
3114 
3115 /*
3116  * We should update the current array size iff all caches updates succeed. This
3117  * can only be done from the slab side. The slab mutex needs to be held when
3118  * calling this.
3119  */
3120 void memcg_update_array_size(int num)
3121 {
3122 	if (num > memcg_limited_groups_array_size)
3123 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3124 }
3125 
3126 static void kmem_cache_destroy_work_func(struct work_struct *w);
3127 
3128 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3129 {
3130 	struct memcg_cache_params *cur_params = s->memcg_params;
3131 
3132 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3133 
3134 	if (num_groups > memcg_limited_groups_array_size) {
3135 		int i;
3136 		ssize_t size = memcg_caches_array_size(num_groups);
3137 
3138 		size *= sizeof(void *);
3139 		size += offsetof(struct memcg_cache_params, memcg_caches);
3140 
3141 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3142 		if (!s->memcg_params) {
3143 			s->memcg_params = cur_params;
3144 			return -ENOMEM;
3145 		}
3146 
3147 		s->memcg_params->is_root_cache = true;
3148 
3149 		/*
3150 		 * There is the chance it will be bigger than
3151 		 * memcg_limited_groups_array_size, if we failed an allocation
3152 		 * in a cache, in which case all caches updated before it, will
3153 		 * have a bigger array.
3154 		 *
3155 		 * But if that is the case, the data after
3156 		 * memcg_limited_groups_array_size is certainly unused
3157 		 */
3158 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3159 			if (!cur_params->memcg_caches[i])
3160 				continue;
3161 			s->memcg_params->memcg_caches[i] =
3162 						cur_params->memcg_caches[i];
3163 		}
3164 
3165 		/*
3166 		 * Ideally, we would wait until all caches succeed, and only
3167 		 * then free the old one. But this is not worth the extra
3168 		 * pointer per-cache we'd have to have for this.
3169 		 *
3170 		 * It is not a big deal if some caches are left with a size
3171 		 * bigger than the others. And all updates will reset this
3172 		 * anyway.
3173 		 */
3174 		kfree(cur_params);
3175 	}
3176 	return 0;
3177 }
3178 
3179 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3180 			 struct kmem_cache *root_cache)
3181 {
3182 	size_t size;
3183 
3184 	if (!memcg_kmem_enabled())
3185 		return 0;
3186 
3187 	if (!memcg) {
3188 		size = offsetof(struct memcg_cache_params, memcg_caches);
3189 		size += memcg_limited_groups_array_size * sizeof(void *);
3190 	} else
3191 		size = sizeof(struct memcg_cache_params);
3192 
3193 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3194 	if (!s->memcg_params)
3195 		return -ENOMEM;
3196 
3197 	if (memcg) {
3198 		s->memcg_params->memcg = memcg;
3199 		s->memcg_params->root_cache = root_cache;
3200 		INIT_WORK(&s->memcg_params->destroy,
3201 				kmem_cache_destroy_work_func);
3202 	} else
3203 		s->memcg_params->is_root_cache = true;
3204 
3205 	return 0;
3206 }
3207 
3208 void memcg_release_cache(struct kmem_cache *s)
3209 {
3210 	struct kmem_cache *root;
3211 	struct mem_cgroup *memcg;
3212 	int id;
3213 
3214 	/*
3215 	 * This happens, for instance, when a root cache goes away before we
3216 	 * add any memcg.
3217 	 */
3218 	if (!s->memcg_params)
3219 		return;
3220 
3221 	if (s->memcg_params->is_root_cache)
3222 		goto out;
3223 
3224 	memcg = s->memcg_params->memcg;
3225 	id  = memcg_cache_id(memcg);
3226 
3227 	root = s->memcg_params->root_cache;
3228 	root->memcg_params->memcg_caches[id] = NULL;
3229 
3230 	mutex_lock(&memcg->slab_caches_mutex);
3231 	list_del(&s->memcg_params->list);
3232 	mutex_unlock(&memcg->slab_caches_mutex);
3233 
3234 	css_put(&memcg->css);
3235 out:
3236 	kfree(s->memcg_params);
3237 }
3238 
3239 /*
3240  * During the creation a new cache, we need to disable our accounting mechanism
3241  * altogether. This is true even if we are not creating, but rather just
3242  * enqueing new caches to be created.
3243  *
3244  * This is because that process will trigger allocations; some visible, like
3245  * explicit kmallocs to auxiliary data structures, name strings and internal
3246  * cache structures; some well concealed, like INIT_WORK() that can allocate
3247  * objects during debug.
3248  *
3249  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3250  * to it. This may not be a bounded recursion: since the first cache creation
3251  * failed to complete (waiting on the allocation), we'll just try to create the
3252  * cache again, failing at the same point.
3253  *
3254  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3255  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3256  * inside the following two functions.
3257  */
3258 static inline void memcg_stop_kmem_account(void)
3259 {
3260 	VM_BUG_ON(!current->mm);
3261 	current->memcg_kmem_skip_account++;
3262 }
3263 
3264 static inline void memcg_resume_kmem_account(void)
3265 {
3266 	VM_BUG_ON(!current->mm);
3267 	current->memcg_kmem_skip_account--;
3268 }
3269 
3270 static void kmem_cache_destroy_work_func(struct work_struct *w)
3271 {
3272 	struct kmem_cache *cachep;
3273 	struct memcg_cache_params *p;
3274 
3275 	p = container_of(w, struct memcg_cache_params, destroy);
3276 
3277 	cachep = memcg_params_to_cache(p);
3278 
3279 	/*
3280 	 * If we get down to 0 after shrink, we could delete right away.
3281 	 * However, memcg_release_pages() already puts us back in the workqueue
3282 	 * in that case. If we proceed deleting, we'll get a dangling
3283 	 * reference, and removing the object from the workqueue in that case
3284 	 * is unnecessary complication. We are not a fast path.
3285 	 *
3286 	 * Note that this case is fundamentally different from racing with
3287 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3288 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3289 	 * into the queue, but doing so from inside the worker racing to
3290 	 * destroy it.
3291 	 *
3292 	 * So if we aren't down to zero, we'll just schedule a worker and try
3293 	 * again
3294 	 */
3295 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3296 		kmem_cache_shrink(cachep);
3297 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3298 			return;
3299 	} else
3300 		kmem_cache_destroy(cachep);
3301 }
3302 
3303 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3304 {
3305 	if (!cachep->memcg_params->dead)
3306 		return;
3307 
3308 	/*
3309 	 * There are many ways in which we can get here.
3310 	 *
3311 	 * We can get to a memory-pressure situation while the delayed work is
3312 	 * still pending to run. The vmscan shrinkers can then release all
3313 	 * cache memory and get us to destruction. If this is the case, we'll
3314 	 * be executed twice, which is a bug (the second time will execute over
3315 	 * bogus data). In this case, cancelling the work should be fine.
3316 	 *
3317 	 * But we can also get here from the worker itself, if
3318 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3319 	 * get the page count to 0. In this case, we'll deadlock if we try to
3320 	 * cancel the work (the worker runs with an internal lock held, which
3321 	 * is the same lock we would hold for cancel_work_sync().)
3322 	 *
3323 	 * Since we can't possibly know who got us here, just refrain from
3324 	 * running if there is already work pending
3325 	 */
3326 	if (work_pending(&cachep->memcg_params->destroy))
3327 		return;
3328 	/*
3329 	 * We have to defer the actual destroying to a workqueue, because
3330 	 * we might currently be in a context that cannot sleep.
3331 	 */
3332 	schedule_work(&cachep->memcg_params->destroy);
3333 }
3334 
3335 /*
3336  * This lock protects updaters, not readers. We want readers to be as fast as
3337  * they can, and they will either see NULL or a valid cache value. Our model
3338  * allow them to see NULL, in which case the root memcg will be selected.
3339  *
3340  * We need this lock because multiple allocations to the same cache from a non
3341  * will span more than one worker. Only one of them can create the cache.
3342  */
3343 static DEFINE_MUTEX(memcg_cache_mutex);
3344 
3345 /*
3346  * Called with memcg_cache_mutex held
3347  */
3348 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3349 					 struct kmem_cache *s)
3350 {
3351 	struct kmem_cache *new;
3352 	static char *tmp_name = NULL;
3353 
3354 	lockdep_assert_held(&memcg_cache_mutex);
3355 
3356 	/*
3357 	 * kmem_cache_create_memcg duplicates the given name and
3358 	 * cgroup_name for this name requires RCU context.
3359 	 * This static temporary buffer is used to prevent from
3360 	 * pointless shortliving allocation.
3361 	 */
3362 	if (!tmp_name) {
3363 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3364 		if (!tmp_name)
3365 			return NULL;
3366 	}
3367 
3368 	rcu_read_lock();
3369 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3370 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3371 	rcu_read_unlock();
3372 
3373 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3374 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3375 
3376 	if (new)
3377 		new->allocflags |= __GFP_KMEMCG;
3378 
3379 	return new;
3380 }
3381 
3382 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3383 						  struct kmem_cache *cachep)
3384 {
3385 	struct kmem_cache *new_cachep;
3386 	int idx;
3387 
3388 	BUG_ON(!memcg_can_account_kmem(memcg));
3389 
3390 	idx = memcg_cache_id(memcg);
3391 
3392 	mutex_lock(&memcg_cache_mutex);
3393 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3394 	if (new_cachep) {
3395 		css_put(&memcg->css);
3396 		goto out;
3397 	}
3398 
3399 	new_cachep = kmem_cache_dup(memcg, cachep);
3400 	if (new_cachep == NULL) {
3401 		new_cachep = cachep;
3402 		css_put(&memcg->css);
3403 		goto out;
3404 	}
3405 
3406 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3407 
3408 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3409 	/*
3410 	 * the readers won't lock, make sure everybody sees the updated value,
3411 	 * so they won't put stuff in the queue again for no reason
3412 	 */
3413 	wmb();
3414 out:
3415 	mutex_unlock(&memcg_cache_mutex);
3416 	return new_cachep;
3417 }
3418 
3419 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3420 {
3421 	struct kmem_cache *c;
3422 	int i;
3423 
3424 	if (!s->memcg_params)
3425 		return;
3426 	if (!s->memcg_params->is_root_cache)
3427 		return;
3428 
3429 	/*
3430 	 * If the cache is being destroyed, we trust that there is no one else
3431 	 * requesting objects from it. Even if there are, the sanity checks in
3432 	 * kmem_cache_destroy should caught this ill-case.
3433 	 *
3434 	 * Still, we don't want anyone else freeing memcg_caches under our
3435 	 * noses, which can happen if a new memcg comes to life. As usual,
3436 	 * we'll take the set_limit_mutex to protect ourselves against this.
3437 	 */
3438 	mutex_lock(&set_limit_mutex);
3439 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3440 		c = s->memcg_params->memcg_caches[i];
3441 		if (!c)
3442 			continue;
3443 
3444 		/*
3445 		 * We will now manually delete the caches, so to avoid races
3446 		 * we need to cancel all pending destruction workers and
3447 		 * proceed with destruction ourselves.
3448 		 *
3449 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3450 		 * and that could spawn the workers again: it is likely that
3451 		 * the cache still have active pages until this very moment.
3452 		 * This would lead us back to mem_cgroup_destroy_cache.
3453 		 *
3454 		 * But that will not execute at all if the "dead" flag is not
3455 		 * set, so flip it down to guarantee we are in control.
3456 		 */
3457 		c->memcg_params->dead = false;
3458 		cancel_work_sync(&c->memcg_params->destroy);
3459 		kmem_cache_destroy(c);
3460 	}
3461 	mutex_unlock(&set_limit_mutex);
3462 }
3463 
3464 struct create_work {
3465 	struct mem_cgroup *memcg;
3466 	struct kmem_cache *cachep;
3467 	struct work_struct work;
3468 };
3469 
3470 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3471 {
3472 	struct kmem_cache *cachep;
3473 	struct memcg_cache_params *params;
3474 
3475 	if (!memcg_kmem_is_active(memcg))
3476 		return;
3477 
3478 	mutex_lock(&memcg->slab_caches_mutex);
3479 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3480 		cachep = memcg_params_to_cache(params);
3481 		cachep->memcg_params->dead = true;
3482 		schedule_work(&cachep->memcg_params->destroy);
3483 	}
3484 	mutex_unlock(&memcg->slab_caches_mutex);
3485 }
3486 
3487 static void memcg_create_cache_work_func(struct work_struct *w)
3488 {
3489 	struct create_work *cw;
3490 
3491 	cw = container_of(w, struct create_work, work);
3492 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3493 	kfree(cw);
3494 }
3495 
3496 /*
3497  * Enqueue the creation of a per-memcg kmem_cache.
3498  */
3499 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3500 					 struct kmem_cache *cachep)
3501 {
3502 	struct create_work *cw;
3503 
3504 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3505 	if (cw == NULL) {
3506 		css_put(&memcg->css);
3507 		return;
3508 	}
3509 
3510 	cw->memcg = memcg;
3511 	cw->cachep = cachep;
3512 
3513 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3514 	schedule_work(&cw->work);
3515 }
3516 
3517 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3518 				       struct kmem_cache *cachep)
3519 {
3520 	/*
3521 	 * We need to stop accounting when we kmalloc, because if the
3522 	 * corresponding kmalloc cache is not yet created, the first allocation
3523 	 * in __memcg_create_cache_enqueue will recurse.
3524 	 *
3525 	 * However, it is better to enclose the whole function. Depending on
3526 	 * the debugging options enabled, INIT_WORK(), for instance, can
3527 	 * trigger an allocation. This too, will make us recurse. Because at
3528 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3529 	 * the safest choice is to do it like this, wrapping the whole function.
3530 	 */
3531 	memcg_stop_kmem_account();
3532 	__memcg_create_cache_enqueue(memcg, cachep);
3533 	memcg_resume_kmem_account();
3534 }
3535 /*
3536  * Return the kmem_cache we're supposed to use for a slab allocation.
3537  * We try to use the current memcg's version of the cache.
3538  *
3539  * If the cache does not exist yet, if we are the first user of it,
3540  * we either create it immediately, if possible, or create it asynchronously
3541  * in a workqueue.
3542  * In the latter case, we will let the current allocation go through with
3543  * the original cache.
3544  *
3545  * Can't be called in interrupt context or from kernel threads.
3546  * This function needs to be called with rcu_read_lock() held.
3547  */
3548 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3549 					  gfp_t gfp)
3550 {
3551 	struct mem_cgroup *memcg;
3552 	int idx;
3553 
3554 	VM_BUG_ON(!cachep->memcg_params);
3555 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3556 
3557 	if (!current->mm || current->memcg_kmem_skip_account)
3558 		return cachep;
3559 
3560 	rcu_read_lock();
3561 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3562 
3563 	if (!memcg_can_account_kmem(memcg))
3564 		goto out;
3565 
3566 	idx = memcg_cache_id(memcg);
3567 
3568 	/*
3569 	 * barrier to mare sure we're always seeing the up to date value.  The
3570 	 * code updating memcg_caches will issue a write barrier to match this.
3571 	 */
3572 	read_barrier_depends();
3573 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3574 		cachep = cachep->memcg_params->memcg_caches[idx];
3575 		goto out;
3576 	}
3577 
3578 	/* The corresponding put will be done in the workqueue. */
3579 	if (!css_tryget(&memcg->css))
3580 		goto out;
3581 	rcu_read_unlock();
3582 
3583 	/*
3584 	 * If we are in a safe context (can wait, and not in interrupt
3585 	 * context), we could be be predictable and return right away.
3586 	 * This would guarantee that the allocation being performed
3587 	 * already belongs in the new cache.
3588 	 *
3589 	 * However, there are some clashes that can arrive from locking.
3590 	 * For instance, because we acquire the slab_mutex while doing
3591 	 * kmem_cache_dup, this means no further allocation could happen
3592 	 * with the slab_mutex held.
3593 	 *
3594 	 * Also, because cache creation issue get_online_cpus(), this
3595 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3596 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3597 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3598 	 * better to defer everything.
3599 	 */
3600 	memcg_create_cache_enqueue(memcg, cachep);
3601 	return cachep;
3602 out:
3603 	rcu_read_unlock();
3604 	return cachep;
3605 }
3606 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3607 
3608 /*
3609  * We need to verify if the allocation against current->mm->owner's memcg is
3610  * possible for the given order. But the page is not allocated yet, so we'll
3611  * need a further commit step to do the final arrangements.
3612  *
3613  * It is possible for the task to switch cgroups in this mean time, so at
3614  * commit time, we can't rely on task conversion any longer.  We'll then use
3615  * the handle argument to return to the caller which cgroup we should commit
3616  * against. We could also return the memcg directly and avoid the pointer
3617  * passing, but a boolean return value gives better semantics considering
3618  * the compiled-out case as well.
3619  *
3620  * Returning true means the allocation is possible.
3621  */
3622 bool
3623 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3624 {
3625 	struct mem_cgroup *memcg;
3626 	int ret;
3627 
3628 	*_memcg = NULL;
3629 
3630 	/*
3631 	 * Disabling accounting is only relevant for some specific memcg
3632 	 * internal allocations. Therefore we would initially not have such
3633 	 * check here, since direct calls to the page allocator that are marked
3634 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3635 	 * concerned with cache allocations, and by having this test at
3636 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3637 	 * the root cache and bypass the memcg cache altogether.
3638 	 *
3639 	 * There is one exception, though: the SLUB allocator does not create
3640 	 * large order caches, but rather service large kmallocs directly from
3641 	 * the page allocator. Therefore, the following sequence when backed by
3642 	 * the SLUB allocator:
3643 	 *
3644 	 *	memcg_stop_kmem_account();
3645 	 *	kmalloc(<large_number>)
3646 	 *	memcg_resume_kmem_account();
3647 	 *
3648 	 * would effectively ignore the fact that we should skip accounting,
3649 	 * since it will drive us directly to this function without passing
3650 	 * through the cache selector memcg_kmem_get_cache. Such large
3651 	 * allocations are extremely rare but can happen, for instance, for the
3652 	 * cache arrays. We bring this test here.
3653 	 */
3654 	if (!current->mm || current->memcg_kmem_skip_account)
3655 		return true;
3656 
3657 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3658 
3659 	/*
3660 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3661 	 * isn't much we can do without complicating this too much, and it would
3662 	 * be gfp-dependent anyway. Just let it go
3663 	 */
3664 	if (unlikely(!memcg))
3665 		return true;
3666 
3667 	if (!memcg_can_account_kmem(memcg)) {
3668 		css_put(&memcg->css);
3669 		return true;
3670 	}
3671 
3672 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3673 	if (!ret)
3674 		*_memcg = memcg;
3675 
3676 	css_put(&memcg->css);
3677 	return (ret == 0);
3678 }
3679 
3680 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3681 			      int order)
3682 {
3683 	struct page_cgroup *pc;
3684 
3685 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3686 
3687 	/* The page allocation failed. Revert */
3688 	if (!page) {
3689 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3690 		return;
3691 	}
3692 
3693 	pc = lookup_page_cgroup(page);
3694 	lock_page_cgroup(pc);
3695 	pc->mem_cgroup = memcg;
3696 	SetPageCgroupUsed(pc);
3697 	unlock_page_cgroup(pc);
3698 }
3699 
3700 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3701 {
3702 	struct mem_cgroup *memcg = NULL;
3703 	struct page_cgroup *pc;
3704 
3705 
3706 	pc = lookup_page_cgroup(page);
3707 	/*
3708 	 * Fast unlocked return. Theoretically might have changed, have to
3709 	 * check again after locking.
3710 	 */
3711 	if (!PageCgroupUsed(pc))
3712 		return;
3713 
3714 	lock_page_cgroup(pc);
3715 	if (PageCgroupUsed(pc)) {
3716 		memcg = pc->mem_cgroup;
3717 		ClearPageCgroupUsed(pc);
3718 	}
3719 	unlock_page_cgroup(pc);
3720 
3721 	/*
3722 	 * We trust that only if there is a memcg associated with the page, it
3723 	 * is a valid allocation
3724 	 */
3725 	if (!memcg)
3726 		return;
3727 
3728 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3729 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3730 }
3731 #else
3732 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3733 {
3734 }
3735 #endif /* CONFIG_MEMCG_KMEM */
3736 
3737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3738 
3739 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3740 /*
3741  * Because tail pages are not marked as "used", set it. We're under
3742  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3743  * charge/uncharge will be never happen and move_account() is done under
3744  * compound_lock(), so we don't have to take care of races.
3745  */
3746 void mem_cgroup_split_huge_fixup(struct page *head)
3747 {
3748 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3749 	struct page_cgroup *pc;
3750 	struct mem_cgroup *memcg;
3751 	int i;
3752 
3753 	if (mem_cgroup_disabled())
3754 		return;
3755 
3756 	memcg = head_pc->mem_cgroup;
3757 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3758 		pc = head_pc + i;
3759 		pc->mem_cgroup = memcg;
3760 		smp_wmb();/* see __commit_charge() */
3761 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3762 	}
3763 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3764 		       HPAGE_PMD_NR);
3765 }
3766 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3767 
3768 static inline
3769 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3770 					struct mem_cgroup *to,
3771 					unsigned int nr_pages,
3772 					enum mem_cgroup_stat_index idx)
3773 {
3774 	/* Update stat data for mem_cgroup */
3775 	preempt_disable();
3776 	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3777 	__this_cpu_add(from->stat->count[idx], -nr_pages);
3778 	__this_cpu_add(to->stat->count[idx], nr_pages);
3779 	preempt_enable();
3780 }
3781 
3782 /**
3783  * mem_cgroup_move_account - move account of the page
3784  * @page: the page
3785  * @nr_pages: number of regular pages (>1 for huge pages)
3786  * @pc:	page_cgroup of the page.
3787  * @from: mem_cgroup which the page is moved from.
3788  * @to:	mem_cgroup which the page is moved to. @from != @to.
3789  *
3790  * The caller must confirm following.
3791  * - page is not on LRU (isolate_page() is useful.)
3792  * - compound_lock is held when nr_pages > 1
3793  *
3794  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3795  * from old cgroup.
3796  */
3797 static int mem_cgroup_move_account(struct page *page,
3798 				   unsigned int nr_pages,
3799 				   struct page_cgroup *pc,
3800 				   struct mem_cgroup *from,
3801 				   struct mem_cgroup *to)
3802 {
3803 	unsigned long flags;
3804 	int ret;
3805 	bool anon = PageAnon(page);
3806 
3807 	VM_BUG_ON(from == to);
3808 	VM_BUG_ON(PageLRU(page));
3809 	/*
3810 	 * The page is isolated from LRU. So, collapse function
3811 	 * will not handle this page. But page splitting can happen.
3812 	 * Do this check under compound_page_lock(). The caller should
3813 	 * hold it.
3814 	 */
3815 	ret = -EBUSY;
3816 	if (nr_pages > 1 && !PageTransHuge(page))
3817 		goto out;
3818 
3819 	lock_page_cgroup(pc);
3820 
3821 	ret = -EINVAL;
3822 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3823 		goto unlock;
3824 
3825 	move_lock_mem_cgroup(from, &flags);
3826 
3827 	if (!anon && page_mapped(page))
3828 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3829 			MEM_CGROUP_STAT_FILE_MAPPED);
3830 
3831 	if (PageWriteback(page))
3832 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3833 			MEM_CGROUP_STAT_WRITEBACK);
3834 
3835 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3836 
3837 	/* caller should have done css_get */
3838 	pc->mem_cgroup = to;
3839 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3840 	move_unlock_mem_cgroup(from, &flags);
3841 	ret = 0;
3842 unlock:
3843 	unlock_page_cgroup(pc);
3844 	/*
3845 	 * check events
3846 	 */
3847 	memcg_check_events(to, page);
3848 	memcg_check_events(from, page);
3849 out:
3850 	return ret;
3851 }
3852 
3853 /**
3854  * mem_cgroup_move_parent - moves page to the parent group
3855  * @page: the page to move
3856  * @pc: page_cgroup of the page
3857  * @child: page's cgroup
3858  *
3859  * move charges to its parent or the root cgroup if the group has no
3860  * parent (aka use_hierarchy==0).
3861  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3862  * mem_cgroup_move_account fails) the failure is always temporary and
3863  * it signals a race with a page removal/uncharge or migration. In the
3864  * first case the page is on the way out and it will vanish from the LRU
3865  * on the next attempt and the call should be retried later.
3866  * Isolation from the LRU fails only if page has been isolated from
3867  * the LRU since we looked at it and that usually means either global
3868  * reclaim or migration going on. The page will either get back to the
3869  * LRU or vanish.
3870  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3871  * (!PageCgroupUsed) or moved to a different group. The page will
3872  * disappear in the next attempt.
3873  */
3874 static int mem_cgroup_move_parent(struct page *page,
3875 				  struct page_cgroup *pc,
3876 				  struct mem_cgroup *child)
3877 {
3878 	struct mem_cgroup *parent;
3879 	unsigned int nr_pages;
3880 	unsigned long uninitialized_var(flags);
3881 	int ret;
3882 
3883 	VM_BUG_ON(mem_cgroup_is_root(child));
3884 
3885 	ret = -EBUSY;
3886 	if (!get_page_unless_zero(page))
3887 		goto out;
3888 	if (isolate_lru_page(page))
3889 		goto put;
3890 
3891 	nr_pages = hpage_nr_pages(page);
3892 
3893 	parent = parent_mem_cgroup(child);
3894 	/*
3895 	 * If no parent, move charges to root cgroup.
3896 	 */
3897 	if (!parent)
3898 		parent = root_mem_cgroup;
3899 
3900 	if (nr_pages > 1) {
3901 		VM_BUG_ON(!PageTransHuge(page));
3902 		flags = compound_lock_irqsave(page);
3903 	}
3904 
3905 	ret = mem_cgroup_move_account(page, nr_pages,
3906 				pc, child, parent);
3907 	if (!ret)
3908 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3909 
3910 	if (nr_pages > 1)
3911 		compound_unlock_irqrestore(page, flags);
3912 	putback_lru_page(page);
3913 put:
3914 	put_page(page);
3915 out:
3916 	return ret;
3917 }
3918 
3919 /*
3920  * Charge the memory controller for page usage.
3921  * Return
3922  * 0 if the charge was successful
3923  * < 0 if the cgroup is over its limit
3924  */
3925 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3926 				gfp_t gfp_mask, enum charge_type ctype)
3927 {
3928 	struct mem_cgroup *memcg = NULL;
3929 	unsigned int nr_pages = 1;
3930 	bool oom = true;
3931 	int ret;
3932 
3933 	if (PageTransHuge(page)) {
3934 		nr_pages <<= compound_order(page);
3935 		VM_BUG_ON(!PageTransHuge(page));
3936 		/*
3937 		 * Never OOM-kill a process for a huge page.  The
3938 		 * fault handler will fall back to regular pages.
3939 		 */
3940 		oom = false;
3941 	}
3942 
3943 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3944 	if (ret == -ENOMEM)
3945 		return ret;
3946 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3947 	return 0;
3948 }
3949 
3950 int mem_cgroup_newpage_charge(struct page *page,
3951 			      struct mm_struct *mm, gfp_t gfp_mask)
3952 {
3953 	if (mem_cgroup_disabled())
3954 		return 0;
3955 	VM_BUG_ON(page_mapped(page));
3956 	VM_BUG_ON(page->mapping && !PageAnon(page));
3957 	VM_BUG_ON(!mm);
3958 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3959 					MEM_CGROUP_CHARGE_TYPE_ANON);
3960 }
3961 
3962 /*
3963  * While swap-in, try_charge -> commit or cancel, the page is locked.
3964  * And when try_charge() successfully returns, one refcnt to memcg without
3965  * struct page_cgroup is acquired. This refcnt will be consumed by
3966  * "commit()" or removed by "cancel()"
3967  */
3968 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3969 					  struct page *page,
3970 					  gfp_t mask,
3971 					  struct mem_cgroup **memcgp)
3972 {
3973 	struct mem_cgroup *memcg;
3974 	struct page_cgroup *pc;
3975 	int ret;
3976 
3977 	pc = lookup_page_cgroup(page);
3978 	/*
3979 	 * Every swap fault against a single page tries to charge the
3980 	 * page, bail as early as possible.  shmem_unuse() encounters
3981 	 * already charged pages, too.  The USED bit is protected by
3982 	 * the page lock, which serializes swap cache removal, which
3983 	 * in turn serializes uncharging.
3984 	 */
3985 	if (PageCgroupUsed(pc))
3986 		return 0;
3987 	if (!do_swap_account)
3988 		goto charge_cur_mm;
3989 	memcg = try_get_mem_cgroup_from_page(page);
3990 	if (!memcg)
3991 		goto charge_cur_mm;
3992 	*memcgp = memcg;
3993 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3994 	css_put(&memcg->css);
3995 	if (ret == -EINTR)
3996 		ret = 0;
3997 	return ret;
3998 charge_cur_mm:
3999 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4000 	if (ret == -EINTR)
4001 		ret = 0;
4002 	return ret;
4003 }
4004 
4005 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4006 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4007 {
4008 	*memcgp = NULL;
4009 	if (mem_cgroup_disabled())
4010 		return 0;
4011 	/*
4012 	 * A racing thread's fault, or swapoff, may have already
4013 	 * updated the pte, and even removed page from swap cache: in
4014 	 * those cases unuse_pte()'s pte_same() test will fail; but
4015 	 * there's also a KSM case which does need to charge the page.
4016 	 */
4017 	if (!PageSwapCache(page)) {
4018 		int ret;
4019 
4020 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4021 		if (ret == -EINTR)
4022 			ret = 0;
4023 		return ret;
4024 	}
4025 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4026 }
4027 
4028 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4029 {
4030 	if (mem_cgroup_disabled())
4031 		return;
4032 	if (!memcg)
4033 		return;
4034 	__mem_cgroup_cancel_charge(memcg, 1);
4035 }
4036 
4037 static void
4038 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4039 					enum charge_type ctype)
4040 {
4041 	if (mem_cgroup_disabled())
4042 		return;
4043 	if (!memcg)
4044 		return;
4045 
4046 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4047 	/*
4048 	 * Now swap is on-memory. This means this page may be
4049 	 * counted both as mem and swap....double count.
4050 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4051 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4052 	 * may call delete_from_swap_cache() before reach here.
4053 	 */
4054 	if (do_swap_account && PageSwapCache(page)) {
4055 		swp_entry_t ent = {.val = page_private(page)};
4056 		mem_cgroup_uncharge_swap(ent);
4057 	}
4058 }
4059 
4060 void mem_cgroup_commit_charge_swapin(struct page *page,
4061 				     struct mem_cgroup *memcg)
4062 {
4063 	__mem_cgroup_commit_charge_swapin(page, memcg,
4064 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4065 }
4066 
4067 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4068 				gfp_t gfp_mask)
4069 {
4070 	struct mem_cgroup *memcg = NULL;
4071 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4072 	int ret;
4073 
4074 	if (mem_cgroup_disabled())
4075 		return 0;
4076 	if (PageCompound(page))
4077 		return 0;
4078 
4079 	if (!PageSwapCache(page))
4080 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4081 	else { /* page is swapcache/shmem */
4082 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4083 						     gfp_mask, &memcg);
4084 		if (!ret)
4085 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4086 	}
4087 	return ret;
4088 }
4089 
4090 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4091 				   unsigned int nr_pages,
4092 				   const enum charge_type ctype)
4093 {
4094 	struct memcg_batch_info *batch = NULL;
4095 	bool uncharge_memsw = true;
4096 
4097 	/* If swapout, usage of swap doesn't decrease */
4098 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4099 		uncharge_memsw = false;
4100 
4101 	batch = &current->memcg_batch;
4102 	/*
4103 	 * In usual, we do css_get() when we remember memcg pointer.
4104 	 * But in this case, we keep res->usage until end of a series of
4105 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4106 	 */
4107 	if (!batch->memcg)
4108 		batch->memcg = memcg;
4109 	/*
4110 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4111 	 * In those cases, all pages freed continuously can be expected to be in
4112 	 * the same cgroup and we have chance to coalesce uncharges.
4113 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4114 	 * because we want to do uncharge as soon as possible.
4115 	 */
4116 
4117 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4118 		goto direct_uncharge;
4119 
4120 	if (nr_pages > 1)
4121 		goto direct_uncharge;
4122 
4123 	/*
4124 	 * In typical case, batch->memcg == mem. This means we can
4125 	 * merge a series of uncharges to an uncharge of res_counter.
4126 	 * If not, we uncharge res_counter ony by one.
4127 	 */
4128 	if (batch->memcg != memcg)
4129 		goto direct_uncharge;
4130 	/* remember freed charge and uncharge it later */
4131 	batch->nr_pages++;
4132 	if (uncharge_memsw)
4133 		batch->memsw_nr_pages++;
4134 	return;
4135 direct_uncharge:
4136 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4137 	if (uncharge_memsw)
4138 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4139 	if (unlikely(batch->memcg != memcg))
4140 		memcg_oom_recover(memcg);
4141 }
4142 
4143 /*
4144  * uncharge if !page_mapped(page)
4145  */
4146 static struct mem_cgroup *
4147 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4148 			     bool end_migration)
4149 {
4150 	struct mem_cgroup *memcg = NULL;
4151 	unsigned int nr_pages = 1;
4152 	struct page_cgroup *pc;
4153 	bool anon;
4154 
4155 	if (mem_cgroup_disabled())
4156 		return NULL;
4157 
4158 	if (PageTransHuge(page)) {
4159 		nr_pages <<= compound_order(page);
4160 		VM_BUG_ON(!PageTransHuge(page));
4161 	}
4162 	/*
4163 	 * Check if our page_cgroup is valid
4164 	 */
4165 	pc = lookup_page_cgroup(page);
4166 	if (unlikely(!PageCgroupUsed(pc)))
4167 		return NULL;
4168 
4169 	lock_page_cgroup(pc);
4170 
4171 	memcg = pc->mem_cgroup;
4172 
4173 	if (!PageCgroupUsed(pc))
4174 		goto unlock_out;
4175 
4176 	anon = PageAnon(page);
4177 
4178 	switch (ctype) {
4179 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4180 		/*
4181 		 * Generally PageAnon tells if it's the anon statistics to be
4182 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4183 		 * used before page reached the stage of being marked PageAnon.
4184 		 */
4185 		anon = true;
4186 		/* fallthrough */
4187 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4188 		/* See mem_cgroup_prepare_migration() */
4189 		if (page_mapped(page))
4190 			goto unlock_out;
4191 		/*
4192 		 * Pages under migration may not be uncharged.  But
4193 		 * end_migration() /must/ be the one uncharging the
4194 		 * unused post-migration page and so it has to call
4195 		 * here with the migration bit still set.  See the
4196 		 * res_counter handling below.
4197 		 */
4198 		if (!end_migration && PageCgroupMigration(pc))
4199 			goto unlock_out;
4200 		break;
4201 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4202 		if (!PageAnon(page)) {	/* Shared memory */
4203 			if (page->mapping && !page_is_file_cache(page))
4204 				goto unlock_out;
4205 		} else if (page_mapped(page)) /* Anon */
4206 				goto unlock_out;
4207 		break;
4208 	default:
4209 		break;
4210 	}
4211 
4212 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4213 
4214 	ClearPageCgroupUsed(pc);
4215 	/*
4216 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4217 	 * freed from LRU. This is safe because uncharged page is expected not
4218 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4219 	 * special functions.
4220 	 */
4221 
4222 	unlock_page_cgroup(pc);
4223 	/*
4224 	 * even after unlock, we have memcg->res.usage here and this memcg
4225 	 * will never be freed, so it's safe to call css_get().
4226 	 */
4227 	memcg_check_events(memcg, page);
4228 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4229 		mem_cgroup_swap_statistics(memcg, true);
4230 		css_get(&memcg->css);
4231 	}
4232 	/*
4233 	 * Migration does not charge the res_counter for the
4234 	 * replacement page, so leave it alone when phasing out the
4235 	 * page that is unused after the migration.
4236 	 */
4237 	if (!end_migration && !mem_cgroup_is_root(memcg))
4238 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4239 
4240 	return memcg;
4241 
4242 unlock_out:
4243 	unlock_page_cgroup(pc);
4244 	return NULL;
4245 }
4246 
4247 void mem_cgroup_uncharge_page(struct page *page)
4248 {
4249 	/* early check. */
4250 	if (page_mapped(page))
4251 		return;
4252 	VM_BUG_ON(page->mapping && !PageAnon(page));
4253 	/*
4254 	 * If the page is in swap cache, uncharge should be deferred
4255 	 * to the swap path, which also properly accounts swap usage
4256 	 * and handles memcg lifetime.
4257 	 *
4258 	 * Note that this check is not stable and reclaim may add the
4259 	 * page to swap cache at any time after this.  However, if the
4260 	 * page is not in swap cache by the time page->mapcount hits
4261 	 * 0, there won't be any page table references to the swap
4262 	 * slot, and reclaim will free it and not actually write the
4263 	 * page to disk.
4264 	 */
4265 	if (PageSwapCache(page))
4266 		return;
4267 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4268 }
4269 
4270 void mem_cgroup_uncharge_cache_page(struct page *page)
4271 {
4272 	VM_BUG_ON(page_mapped(page));
4273 	VM_BUG_ON(page->mapping);
4274 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4275 }
4276 
4277 /*
4278  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4279  * In that cases, pages are freed continuously and we can expect pages
4280  * are in the same memcg. All these calls itself limits the number of
4281  * pages freed at once, then uncharge_start/end() is called properly.
4282  * This may be called prural(2) times in a context,
4283  */
4284 
4285 void mem_cgroup_uncharge_start(void)
4286 {
4287 	current->memcg_batch.do_batch++;
4288 	/* We can do nest. */
4289 	if (current->memcg_batch.do_batch == 1) {
4290 		current->memcg_batch.memcg = NULL;
4291 		current->memcg_batch.nr_pages = 0;
4292 		current->memcg_batch.memsw_nr_pages = 0;
4293 	}
4294 }
4295 
4296 void mem_cgroup_uncharge_end(void)
4297 {
4298 	struct memcg_batch_info *batch = &current->memcg_batch;
4299 
4300 	if (!batch->do_batch)
4301 		return;
4302 
4303 	batch->do_batch--;
4304 	if (batch->do_batch) /* If stacked, do nothing. */
4305 		return;
4306 
4307 	if (!batch->memcg)
4308 		return;
4309 	/*
4310 	 * This "batch->memcg" is valid without any css_get/put etc...
4311 	 * bacause we hide charges behind us.
4312 	 */
4313 	if (batch->nr_pages)
4314 		res_counter_uncharge(&batch->memcg->res,
4315 				     batch->nr_pages * PAGE_SIZE);
4316 	if (batch->memsw_nr_pages)
4317 		res_counter_uncharge(&batch->memcg->memsw,
4318 				     batch->memsw_nr_pages * PAGE_SIZE);
4319 	memcg_oom_recover(batch->memcg);
4320 	/* forget this pointer (for sanity check) */
4321 	batch->memcg = NULL;
4322 }
4323 
4324 #ifdef CONFIG_SWAP
4325 /*
4326  * called after __delete_from_swap_cache() and drop "page" account.
4327  * memcg information is recorded to swap_cgroup of "ent"
4328  */
4329 void
4330 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4331 {
4332 	struct mem_cgroup *memcg;
4333 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4334 
4335 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4336 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4337 
4338 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4339 
4340 	/*
4341 	 * record memcg information,  if swapout && memcg != NULL,
4342 	 * css_get() was called in uncharge().
4343 	 */
4344 	if (do_swap_account && swapout && memcg)
4345 		swap_cgroup_record(ent, css_id(&memcg->css));
4346 }
4347 #endif
4348 
4349 #ifdef CONFIG_MEMCG_SWAP
4350 /*
4351  * called from swap_entry_free(). remove record in swap_cgroup and
4352  * uncharge "memsw" account.
4353  */
4354 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4355 {
4356 	struct mem_cgroup *memcg;
4357 	unsigned short id;
4358 
4359 	if (!do_swap_account)
4360 		return;
4361 
4362 	id = swap_cgroup_record(ent, 0);
4363 	rcu_read_lock();
4364 	memcg = mem_cgroup_lookup(id);
4365 	if (memcg) {
4366 		/*
4367 		 * We uncharge this because swap is freed.
4368 		 * This memcg can be obsolete one. We avoid calling css_tryget
4369 		 */
4370 		if (!mem_cgroup_is_root(memcg))
4371 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4372 		mem_cgroup_swap_statistics(memcg, false);
4373 		css_put(&memcg->css);
4374 	}
4375 	rcu_read_unlock();
4376 }
4377 
4378 /**
4379  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4380  * @entry: swap entry to be moved
4381  * @from:  mem_cgroup which the entry is moved from
4382  * @to:  mem_cgroup which the entry is moved to
4383  *
4384  * It succeeds only when the swap_cgroup's record for this entry is the same
4385  * as the mem_cgroup's id of @from.
4386  *
4387  * Returns 0 on success, -EINVAL on failure.
4388  *
4389  * The caller must have charged to @to, IOW, called res_counter_charge() about
4390  * both res and memsw, and called css_get().
4391  */
4392 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4393 				struct mem_cgroup *from, struct mem_cgroup *to)
4394 {
4395 	unsigned short old_id, new_id;
4396 
4397 	old_id = css_id(&from->css);
4398 	new_id = css_id(&to->css);
4399 
4400 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4401 		mem_cgroup_swap_statistics(from, false);
4402 		mem_cgroup_swap_statistics(to, true);
4403 		/*
4404 		 * This function is only called from task migration context now.
4405 		 * It postpones res_counter and refcount handling till the end
4406 		 * of task migration(mem_cgroup_clear_mc()) for performance
4407 		 * improvement. But we cannot postpone css_get(to)  because if
4408 		 * the process that has been moved to @to does swap-in, the
4409 		 * refcount of @to might be decreased to 0.
4410 		 *
4411 		 * We are in attach() phase, so the cgroup is guaranteed to be
4412 		 * alive, so we can just call css_get().
4413 		 */
4414 		css_get(&to->css);
4415 		return 0;
4416 	}
4417 	return -EINVAL;
4418 }
4419 #else
4420 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4421 				struct mem_cgroup *from, struct mem_cgroup *to)
4422 {
4423 	return -EINVAL;
4424 }
4425 #endif
4426 
4427 /*
4428  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4429  * page belongs to.
4430  */
4431 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4432 				  struct mem_cgroup **memcgp)
4433 {
4434 	struct mem_cgroup *memcg = NULL;
4435 	unsigned int nr_pages = 1;
4436 	struct page_cgroup *pc;
4437 	enum charge_type ctype;
4438 
4439 	*memcgp = NULL;
4440 
4441 	if (mem_cgroup_disabled())
4442 		return;
4443 
4444 	if (PageTransHuge(page))
4445 		nr_pages <<= compound_order(page);
4446 
4447 	pc = lookup_page_cgroup(page);
4448 	lock_page_cgroup(pc);
4449 	if (PageCgroupUsed(pc)) {
4450 		memcg = pc->mem_cgroup;
4451 		css_get(&memcg->css);
4452 		/*
4453 		 * At migrating an anonymous page, its mapcount goes down
4454 		 * to 0 and uncharge() will be called. But, even if it's fully
4455 		 * unmapped, migration may fail and this page has to be
4456 		 * charged again. We set MIGRATION flag here and delay uncharge
4457 		 * until end_migration() is called
4458 		 *
4459 		 * Corner Case Thinking
4460 		 * A)
4461 		 * When the old page was mapped as Anon and it's unmap-and-freed
4462 		 * while migration was ongoing.
4463 		 * If unmap finds the old page, uncharge() of it will be delayed
4464 		 * until end_migration(). If unmap finds a new page, it's
4465 		 * uncharged when it make mapcount to be 1->0. If unmap code
4466 		 * finds swap_migration_entry, the new page will not be mapped
4467 		 * and end_migration() will find it(mapcount==0).
4468 		 *
4469 		 * B)
4470 		 * When the old page was mapped but migraion fails, the kernel
4471 		 * remaps it. A charge for it is kept by MIGRATION flag even
4472 		 * if mapcount goes down to 0. We can do remap successfully
4473 		 * without charging it again.
4474 		 *
4475 		 * C)
4476 		 * The "old" page is under lock_page() until the end of
4477 		 * migration, so, the old page itself will not be swapped-out.
4478 		 * If the new page is swapped out before end_migraton, our
4479 		 * hook to usual swap-out path will catch the event.
4480 		 */
4481 		if (PageAnon(page))
4482 			SetPageCgroupMigration(pc);
4483 	}
4484 	unlock_page_cgroup(pc);
4485 	/*
4486 	 * If the page is not charged at this point,
4487 	 * we return here.
4488 	 */
4489 	if (!memcg)
4490 		return;
4491 
4492 	*memcgp = memcg;
4493 	/*
4494 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4495 	 * is called before end_migration, we can catch all events on this new
4496 	 * page. In the case new page is migrated but not remapped, new page's
4497 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4498 	 */
4499 	if (PageAnon(page))
4500 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4501 	else
4502 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4503 	/*
4504 	 * The page is committed to the memcg, but it's not actually
4505 	 * charged to the res_counter since we plan on replacing the
4506 	 * old one and only one page is going to be left afterwards.
4507 	 */
4508 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4509 }
4510 
4511 /* remove redundant charge if migration failed*/
4512 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4513 	struct page *oldpage, struct page *newpage, bool migration_ok)
4514 {
4515 	struct page *used, *unused;
4516 	struct page_cgroup *pc;
4517 	bool anon;
4518 
4519 	if (!memcg)
4520 		return;
4521 
4522 	if (!migration_ok) {
4523 		used = oldpage;
4524 		unused = newpage;
4525 	} else {
4526 		used = newpage;
4527 		unused = oldpage;
4528 	}
4529 	anon = PageAnon(used);
4530 	__mem_cgroup_uncharge_common(unused,
4531 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4532 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4533 				     true);
4534 	css_put(&memcg->css);
4535 	/*
4536 	 * We disallowed uncharge of pages under migration because mapcount
4537 	 * of the page goes down to zero, temporarly.
4538 	 * Clear the flag and check the page should be charged.
4539 	 */
4540 	pc = lookup_page_cgroup(oldpage);
4541 	lock_page_cgroup(pc);
4542 	ClearPageCgroupMigration(pc);
4543 	unlock_page_cgroup(pc);
4544 
4545 	/*
4546 	 * If a page is a file cache, radix-tree replacement is very atomic
4547 	 * and we can skip this check. When it was an Anon page, its mapcount
4548 	 * goes down to 0. But because we added MIGRATION flage, it's not
4549 	 * uncharged yet. There are several case but page->mapcount check
4550 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4551 	 * check. (see prepare_charge() also)
4552 	 */
4553 	if (anon)
4554 		mem_cgroup_uncharge_page(used);
4555 }
4556 
4557 /*
4558  * At replace page cache, newpage is not under any memcg but it's on
4559  * LRU. So, this function doesn't touch res_counter but handles LRU
4560  * in correct way. Both pages are locked so we cannot race with uncharge.
4561  */
4562 void mem_cgroup_replace_page_cache(struct page *oldpage,
4563 				  struct page *newpage)
4564 {
4565 	struct mem_cgroup *memcg = NULL;
4566 	struct page_cgroup *pc;
4567 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4568 
4569 	if (mem_cgroup_disabled())
4570 		return;
4571 
4572 	pc = lookup_page_cgroup(oldpage);
4573 	/* fix accounting on old pages */
4574 	lock_page_cgroup(pc);
4575 	if (PageCgroupUsed(pc)) {
4576 		memcg = pc->mem_cgroup;
4577 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4578 		ClearPageCgroupUsed(pc);
4579 	}
4580 	unlock_page_cgroup(pc);
4581 
4582 	/*
4583 	 * When called from shmem_replace_page(), in some cases the
4584 	 * oldpage has already been charged, and in some cases not.
4585 	 */
4586 	if (!memcg)
4587 		return;
4588 	/*
4589 	 * Even if newpage->mapping was NULL before starting replacement,
4590 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4591 	 * LRU while we overwrite pc->mem_cgroup.
4592 	 */
4593 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4594 }
4595 
4596 #ifdef CONFIG_DEBUG_VM
4597 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4598 {
4599 	struct page_cgroup *pc;
4600 
4601 	pc = lookup_page_cgroup(page);
4602 	/*
4603 	 * Can be NULL while feeding pages into the page allocator for
4604 	 * the first time, i.e. during boot or memory hotplug;
4605 	 * or when mem_cgroup_disabled().
4606 	 */
4607 	if (likely(pc) && PageCgroupUsed(pc))
4608 		return pc;
4609 	return NULL;
4610 }
4611 
4612 bool mem_cgroup_bad_page_check(struct page *page)
4613 {
4614 	if (mem_cgroup_disabled())
4615 		return false;
4616 
4617 	return lookup_page_cgroup_used(page) != NULL;
4618 }
4619 
4620 void mem_cgroup_print_bad_page(struct page *page)
4621 {
4622 	struct page_cgroup *pc;
4623 
4624 	pc = lookup_page_cgroup_used(page);
4625 	if (pc) {
4626 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4627 			 pc, pc->flags, pc->mem_cgroup);
4628 	}
4629 }
4630 #endif
4631 
4632 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4633 				unsigned long long val)
4634 {
4635 	int retry_count;
4636 	u64 memswlimit, memlimit;
4637 	int ret = 0;
4638 	int children = mem_cgroup_count_children(memcg);
4639 	u64 curusage, oldusage;
4640 	int enlarge;
4641 
4642 	/*
4643 	 * For keeping hierarchical_reclaim simple, how long we should retry
4644 	 * is depends on callers. We set our retry-count to be function
4645 	 * of # of children which we should visit in this loop.
4646 	 */
4647 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4648 
4649 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4650 
4651 	enlarge = 0;
4652 	while (retry_count) {
4653 		if (signal_pending(current)) {
4654 			ret = -EINTR;
4655 			break;
4656 		}
4657 		/*
4658 		 * Rather than hide all in some function, I do this in
4659 		 * open coded manner. You see what this really does.
4660 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4661 		 */
4662 		mutex_lock(&set_limit_mutex);
4663 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4664 		if (memswlimit < val) {
4665 			ret = -EINVAL;
4666 			mutex_unlock(&set_limit_mutex);
4667 			break;
4668 		}
4669 
4670 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4671 		if (memlimit < val)
4672 			enlarge = 1;
4673 
4674 		ret = res_counter_set_limit(&memcg->res, val);
4675 		if (!ret) {
4676 			if (memswlimit == val)
4677 				memcg->memsw_is_minimum = true;
4678 			else
4679 				memcg->memsw_is_minimum = false;
4680 		}
4681 		mutex_unlock(&set_limit_mutex);
4682 
4683 		if (!ret)
4684 			break;
4685 
4686 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4687 				   MEM_CGROUP_RECLAIM_SHRINK);
4688 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4689 		/* Usage is reduced ? */
4690 		if (curusage >= oldusage)
4691 			retry_count--;
4692 		else
4693 			oldusage = curusage;
4694 	}
4695 	if (!ret && enlarge)
4696 		memcg_oom_recover(memcg);
4697 
4698 	return ret;
4699 }
4700 
4701 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4702 					unsigned long long val)
4703 {
4704 	int retry_count;
4705 	u64 memlimit, memswlimit, oldusage, curusage;
4706 	int children = mem_cgroup_count_children(memcg);
4707 	int ret = -EBUSY;
4708 	int enlarge = 0;
4709 
4710 	/* see mem_cgroup_resize_res_limit */
4711 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4712 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4713 	while (retry_count) {
4714 		if (signal_pending(current)) {
4715 			ret = -EINTR;
4716 			break;
4717 		}
4718 		/*
4719 		 * Rather than hide all in some function, I do this in
4720 		 * open coded manner. You see what this really does.
4721 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4722 		 */
4723 		mutex_lock(&set_limit_mutex);
4724 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4725 		if (memlimit > val) {
4726 			ret = -EINVAL;
4727 			mutex_unlock(&set_limit_mutex);
4728 			break;
4729 		}
4730 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4731 		if (memswlimit < val)
4732 			enlarge = 1;
4733 		ret = res_counter_set_limit(&memcg->memsw, val);
4734 		if (!ret) {
4735 			if (memlimit == val)
4736 				memcg->memsw_is_minimum = true;
4737 			else
4738 				memcg->memsw_is_minimum = false;
4739 		}
4740 		mutex_unlock(&set_limit_mutex);
4741 
4742 		if (!ret)
4743 			break;
4744 
4745 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4746 				   MEM_CGROUP_RECLAIM_NOSWAP |
4747 				   MEM_CGROUP_RECLAIM_SHRINK);
4748 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4749 		/* Usage is reduced ? */
4750 		if (curusage >= oldusage)
4751 			retry_count--;
4752 		else
4753 			oldusage = curusage;
4754 	}
4755 	if (!ret && enlarge)
4756 		memcg_oom_recover(memcg);
4757 	return ret;
4758 }
4759 
4760 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4761 					    gfp_t gfp_mask,
4762 					    unsigned long *total_scanned)
4763 {
4764 	unsigned long nr_reclaimed = 0;
4765 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4766 	unsigned long reclaimed;
4767 	int loop = 0;
4768 	struct mem_cgroup_tree_per_zone *mctz;
4769 	unsigned long long excess;
4770 	unsigned long nr_scanned;
4771 
4772 	if (order > 0)
4773 		return 0;
4774 
4775 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4776 	/*
4777 	 * This loop can run a while, specially if mem_cgroup's continuously
4778 	 * keep exceeding their soft limit and putting the system under
4779 	 * pressure
4780 	 */
4781 	do {
4782 		if (next_mz)
4783 			mz = next_mz;
4784 		else
4785 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4786 		if (!mz)
4787 			break;
4788 
4789 		nr_scanned = 0;
4790 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4791 						    gfp_mask, &nr_scanned);
4792 		nr_reclaimed += reclaimed;
4793 		*total_scanned += nr_scanned;
4794 		spin_lock(&mctz->lock);
4795 
4796 		/*
4797 		 * If we failed to reclaim anything from this memory cgroup
4798 		 * it is time to move on to the next cgroup
4799 		 */
4800 		next_mz = NULL;
4801 		if (!reclaimed) {
4802 			do {
4803 				/*
4804 				 * Loop until we find yet another one.
4805 				 *
4806 				 * By the time we get the soft_limit lock
4807 				 * again, someone might have aded the
4808 				 * group back on the RB tree. Iterate to
4809 				 * make sure we get a different mem.
4810 				 * mem_cgroup_largest_soft_limit_node returns
4811 				 * NULL if no other cgroup is present on
4812 				 * the tree
4813 				 */
4814 				next_mz =
4815 				__mem_cgroup_largest_soft_limit_node(mctz);
4816 				if (next_mz == mz)
4817 					css_put(&next_mz->memcg->css);
4818 				else /* next_mz == NULL or other memcg */
4819 					break;
4820 			} while (1);
4821 		}
4822 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4823 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4824 		/*
4825 		 * One school of thought says that we should not add
4826 		 * back the node to the tree if reclaim returns 0.
4827 		 * But our reclaim could return 0, simply because due
4828 		 * to priority we are exposing a smaller subset of
4829 		 * memory to reclaim from. Consider this as a longer
4830 		 * term TODO.
4831 		 */
4832 		/* If excess == 0, no tree ops */
4833 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4834 		spin_unlock(&mctz->lock);
4835 		css_put(&mz->memcg->css);
4836 		loop++;
4837 		/*
4838 		 * Could not reclaim anything and there are no more
4839 		 * mem cgroups to try or we seem to be looping without
4840 		 * reclaiming anything.
4841 		 */
4842 		if (!nr_reclaimed &&
4843 			(next_mz == NULL ||
4844 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4845 			break;
4846 	} while (!nr_reclaimed);
4847 	if (next_mz)
4848 		css_put(&next_mz->memcg->css);
4849 	return nr_reclaimed;
4850 }
4851 
4852 /**
4853  * mem_cgroup_force_empty_list - clears LRU of a group
4854  * @memcg: group to clear
4855  * @node: NUMA node
4856  * @zid: zone id
4857  * @lru: lru to to clear
4858  *
4859  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4860  * reclaim the pages page themselves - pages are moved to the parent (or root)
4861  * group.
4862  */
4863 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4864 				int node, int zid, enum lru_list lru)
4865 {
4866 	struct lruvec *lruvec;
4867 	unsigned long flags;
4868 	struct list_head *list;
4869 	struct page *busy;
4870 	struct zone *zone;
4871 
4872 	zone = &NODE_DATA(node)->node_zones[zid];
4873 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4874 	list = &lruvec->lists[lru];
4875 
4876 	busy = NULL;
4877 	do {
4878 		struct page_cgroup *pc;
4879 		struct page *page;
4880 
4881 		spin_lock_irqsave(&zone->lru_lock, flags);
4882 		if (list_empty(list)) {
4883 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4884 			break;
4885 		}
4886 		page = list_entry(list->prev, struct page, lru);
4887 		if (busy == page) {
4888 			list_move(&page->lru, list);
4889 			busy = NULL;
4890 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4891 			continue;
4892 		}
4893 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4894 
4895 		pc = lookup_page_cgroup(page);
4896 
4897 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4898 			/* found lock contention or "pc" is obsolete. */
4899 			busy = page;
4900 			cond_resched();
4901 		} else
4902 			busy = NULL;
4903 	} while (!list_empty(list));
4904 }
4905 
4906 /*
4907  * make mem_cgroup's charge to be 0 if there is no task by moving
4908  * all the charges and pages to the parent.
4909  * This enables deleting this mem_cgroup.
4910  *
4911  * Caller is responsible for holding css reference on the memcg.
4912  */
4913 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4914 {
4915 	int node, zid;
4916 	u64 usage;
4917 
4918 	do {
4919 		/* This is for making all *used* pages to be on LRU. */
4920 		lru_add_drain_all();
4921 		drain_all_stock_sync(memcg);
4922 		mem_cgroup_start_move(memcg);
4923 		for_each_node_state(node, N_MEMORY) {
4924 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4925 				enum lru_list lru;
4926 				for_each_lru(lru) {
4927 					mem_cgroup_force_empty_list(memcg,
4928 							node, zid, lru);
4929 				}
4930 			}
4931 		}
4932 		mem_cgroup_end_move(memcg);
4933 		memcg_oom_recover(memcg);
4934 		cond_resched();
4935 
4936 		/*
4937 		 * Kernel memory may not necessarily be trackable to a specific
4938 		 * process. So they are not migrated, and therefore we can't
4939 		 * expect their value to drop to 0 here.
4940 		 * Having res filled up with kmem only is enough.
4941 		 *
4942 		 * This is a safety check because mem_cgroup_force_empty_list
4943 		 * could have raced with mem_cgroup_replace_page_cache callers
4944 		 * so the lru seemed empty but the page could have been added
4945 		 * right after the check. RES_USAGE should be safe as we always
4946 		 * charge before adding to the LRU.
4947 		 */
4948 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4949 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4950 	} while (usage > 0);
4951 }
4952 
4953 /*
4954  * This mainly exists for tests during the setting of set of use_hierarchy.
4955  * Since this is the very setting we are changing, the current hierarchy value
4956  * is meaningless
4957  */
4958 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4959 {
4960 	struct cgroup_subsys_state *pos;
4961 
4962 	/* bounce at first found */
4963 	css_for_each_child(pos, &memcg->css)
4964 		return true;
4965 	return false;
4966 }
4967 
4968 /*
4969  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4970  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4971  * from mem_cgroup_count_children(), in the sense that we don't really care how
4972  * many children we have; we only need to know if we have any.  It also counts
4973  * any memcg without hierarchy as infertile.
4974  */
4975 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4976 {
4977 	return memcg->use_hierarchy && __memcg_has_children(memcg);
4978 }
4979 
4980 /*
4981  * Reclaims as many pages from the given memcg as possible and moves
4982  * the rest to the parent.
4983  *
4984  * Caller is responsible for holding css reference for memcg.
4985  */
4986 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4987 {
4988 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4989 	struct cgroup *cgrp = memcg->css.cgroup;
4990 
4991 	/* returns EBUSY if there is a task or if we come here twice. */
4992 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4993 		return -EBUSY;
4994 
4995 	/* we call try-to-free pages for make this cgroup empty */
4996 	lru_add_drain_all();
4997 	/* try to free all pages in this cgroup */
4998 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4999 		int progress;
5000 
5001 		if (signal_pending(current))
5002 			return -EINTR;
5003 
5004 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5005 						false);
5006 		if (!progress) {
5007 			nr_retries--;
5008 			/* maybe some writeback is necessary */
5009 			congestion_wait(BLK_RW_ASYNC, HZ/10);
5010 		}
5011 
5012 	}
5013 	lru_add_drain();
5014 	mem_cgroup_reparent_charges(memcg);
5015 
5016 	return 0;
5017 }
5018 
5019 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5020 					unsigned int event)
5021 {
5022 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5023 
5024 	if (mem_cgroup_is_root(memcg))
5025 		return -EINVAL;
5026 	return mem_cgroup_force_empty(memcg);
5027 }
5028 
5029 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5030 				     struct cftype *cft)
5031 {
5032 	return mem_cgroup_from_css(css)->use_hierarchy;
5033 }
5034 
5035 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5036 				      struct cftype *cft, u64 val)
5037 {
5038 	int retval = 0;
5039 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5040 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5041 
5042 	mutex_lock(&memcg_create_mutex);
5043 
5044 	if (memcg->use_hierarchy == val)
5045 		goto out;
5046 
5047 	/*
5048 	 * If parent's use_hierarchy is set, we can't make any modifications
5049 	 * in the child subtrees. If it is unset, then the change can
5050 	 * occur, provided the current cgroup has no children.
5051 	 *
5052 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5053 	 * set if there are no children.
5054 	 */
5055 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5056 				(val == 1 || val == 0)) {
5057 		if (!__memcg_has_children(memcg))
5058 			memcg->use_hierarchy = val;
5059 		else
5060 			retval = -EBUSY;
5061 	} else
5062 		retval = -EINVAL;
5063 
5064 out:
5065 	mutex_unlock(&memcg_create_mutex);
5066 
5067 	return retval;
5068 }
5069 
5070 
5071 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5072 					       enum mem_cgroup_stat_index idx)
5073 {
5074 	struct mem_cgroup *iter;
5075 	long val = 0;
5076 
5077 	/* Per-cpu values can be negative, use a signed accumulator */
5078 	for_each_mem_cgroup_tree(iter, memcg)
5079 		val += mem_cgroup_read_stat(iter, idx);
5080 
5081 	if (val < 0) /* race ? */
5082 		val = 0;
5083 	return val;
5084 }
5085 
5086 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5087 {
5088 	u64 val;
5089 
5090 	if (!mem_cgroup_is_root(memcg)) {
5091 		if (!swap)
5092 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5093 		else
5094 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5095 	}
5096 
5097 	/*
5098 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5099 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5100 	 */
5101 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5102 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5103 
5104 	if (swap)
5105 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5106 
5107 	return val << PAGE_SHIFT;
5108 }
5109 
5110 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5111 			       struct cftype *cft, struct file *file,
5112 			       char __user *buf, size_t nbytes, loff_t *ppos)
5113 {
5114 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5115 	char str[64];
5116 	u64 val;
5117 	int name, len;
5118 	enum res_type type;
5119 
5120 	type = MEMFILE_TYPE(cft->private);
5121 	name = MEMFILE_ATTR(cft->private);
5122 
5123 	switch (type) {
5124 	case _MEM:
5125 		if (name == RES_USAGE)
5126 			val = mem_cgroup_usage(memcg, false);
5127 		else
5128 			val = res_counter_read_u64(&memcg->res, name);
5129 		break;
5130 	case _MEMSWAP:
5131 		if (name == RES_USAGE)
5132 			val = mem_cgroup_usage(memcg, true);
5133 		else
5134 			val = res_counter_read_u64(&memcg->memsw, name);
5135 		break;
5136 	case _KMEM:
5137 		val = res_counter_read_u64(&memcg->kmem, name);
5138 		break;
5139 	default:
5140 		BUG();
5141 	}
5142 
5143 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5144 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5145 }
5146 
5147 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5148 {
5149 	int ret = -EINVAL;
5150 #ifdef CONFIG_MEMCG_KMEM
5151 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5152 	/*
5153 	 * For simplicity, we won't allow this to be disabled.  It also can't
5154 	 * be changed if the cgroup has children already, or if tasks had
5155 	 * already joined.
5156 	 *
5157 	 * If tasks join before we set the limit, a person looking at
5158 	 * kmem.usage_in_bytes will have no way to determine when it took
5159 	 * place, which makes the value quite meaningless.
5160 	 *
5161 	 * After it first became limited, changes in the value of the limit are
5162 	 * of course permitted.
5163 	 */
5164 	mutex_lock(&memcg_create_mutex);
5165 	mutex_lock(&set_limit_mutex);
5166 	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5167 		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5168 			ret = -EBUSY;
5169 			goto out;
5170 		}
5171 		ret = res_counter_set_limit(&memcg->kmem, val);
5172 		VM_BUG_ON(ret);
5173 
5174 		ret = memcg_update_cache_sizes(memcg);
5175 		if (ret) {
5176 			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5177 			goto out;
5178 		}
5179 		static_key_slow_inc(&memcg_kmem_enabled_key);
5180 		/*
5181 		 * setting the active bit after the inc will guarantee no one
5182 		 * starts accounting before all call sites are patched
5183 		 */
5184 		memcg_kmem_set_active(memcg);
5185 	} else
5186 		ret = res_counter_set_limit(&memcg->kmem, val);
5187 out:
5188 	mutex_unlock(&set_limit_mutex);
5189 	mutex_unlock(&memcg_create_mutex);
5190 #endif
5191 	return ret;
5192 }
5193 
5194 #ifdef CONFIG_MEMCG_KMEM
5195 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5196 {
5197 	int ret = 0;
5198 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5199 	if (!parent)
5200 		goto out;
5201 
5202 	memcg->kmem_account_flags = parent->kmem_account_flags;
5203 	/*
5204 	 * When that happen, we need to disable the static branch only on those
5205 	 * memcgs that enabled it. To achieve this, we would be forced to
5206 	 * complicate the code by keeping track of which memcgs were the ones
5207 	 * that actually enabled limits, and which ones got it from its
5208 	 * parents.
5209 	 *
5210 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5211 	 * that is accounted.
5212 	 */
5213 	if (!memcg_kmem_is_active(memcg))
5214 		goto out;
5215 
5216 	/*
5217 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5218 	 * memcg is active already. If the later initialization fails then the
5219 	 * cgroup core triggers the cleanup so we do not have to do it here.
5220 	 */
5221 	static_key_slow_inc(&memcg_kmem_enabled_key);
5222 
5223 	mutex_lock(&set_limit_mutex);
5224 	memcg_stop_kmem_account();
5225 	ret = memcg_update_cache_sizes(memcg);
5226 	memcg_resume_kmem_account();
5227 	mutex_unlock(&set_limit_mutex);
5228 out:
5229 	return ret;
5230 }
5231 #endif /* CONFIG_MEMCG_KMEM */
5232 
5233 /*
5234  * The user of this function is...
5235  * RES_LIMIT.
5236  */
5237 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5238 			    const char *buffer)
5239 {
5240 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5241 	enum res_type type;
5242 	int name;
5243 	unsigned long long val;
5244 	int ret;
5245 
5246 	type = MEMFILE_TYPE(cft->private);
5247 	name = MEMFILE_ATTR(cft->private);
5248 
5249 	switch (name) {
5250 	case RES_LIMIT:
5251 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5252 			ret = -EINVAL;
5253 			break;
5254 		}
5255 		/* This function does all necessary parse...reuse it */
5256 		ret = res_counter_memparse_write_strategy(buffer, &val);
5257 		if (ret)
5258 			break;
5259 		if (type == _MEM)
5260 			ret = mem_cgroup_resize_limit(memcg, val);
5261 		else if (type == _MEMSWAP)
5262 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5263 		else if (type == _KMEM)
5264 			ret = memcg_update_kmem_limit(css, val);
5265 		else
5266 			return -EINVAL;
5267 		break;
5268 	case RES_SOFT_LIMIT:
5269 		ret = res_counter_memparse_write_strategy(buffer, &val);
5270 		if (ret)
5271 			break;
5272 		/*
5273 		 * For memsw, soft limits are hard to implement in terms
5274 		 * of semantics, for now, we support soft limits for
5275 		 * control without swap
5276 		 */
5277 		if (type == _MEM)
5278 			ret = res_counter_set_soft_limit(&memcg->res, val);
5279 		else
5280 			ret = -EINVAL;
5281 		break;
5282 	default:
5283 		ret = -EINVAL; /* should be BUG() ? */
5284 		break;
5285 	}
5286 	return ret;
5287 }
5288 
5289 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5290 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5291 {
5292 	unsigned long long min_limit, min_memsw_limit, tmp;
5293 
5294 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5295 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5296 	if (!memcg->use_hierarchy)
5297 		goto out;
5298 
5299 	while (css_parent(&memcg->css)) {
5300 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5301 		if (!memcg->use_hierarchy)
5302 			break;
5303 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5304 		min_limit = min(min_limit, tmp);
5305 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5306 		min_memsw_limit = min(min_memsw_limit, tmp);
5307 	}
5308 out:
5309 	*mem_limit = min_limit;
5310 	*memsw_limit = min_memsw_limit;
5311 }
5312 
5313 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5314 {
5315 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5316 	int name;
5317 	enum res_type type;
5318 
5319 	type = MEMFILE_TYPE(event);
5320 	name = MEMFILE_ATTR(event);
5321 
5322 	switch (name) {
5323 	case RES_MAX_USAGE:
5324 		if (type == _MEM)
5325 			res_counter_reset_max(&memcg->res);
5326 		else if (type == _MEMSWAP)
5327 			res_counter_reset_max(&memcg->memsw);
5328 		else if (type == _KMEM)
5329 			res_counter_reset_max(&memcg->kmem);
5330 		else
5331 			return -EINVAL;
5332 		break;
5333 	case RES_FAILCNT:
5334 		if (type == _MEM)
5335 			res_counter_reset_failcnt(&memcg->res);
5336 		else if (type == _MEMSWAP)
5337 			res_counter_reset_failcnt(&memcg->memsw);
5338 		else if (type == _KMEM)
5339 			res_counter_reset_failcnt(&memcg->kmem);
5340 		else
5341 			return -EINVAL;
5342 		break;
5343 	}
5344 
5345 	return 0;
5346 }
5347 
5348 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5349 					struct cftype *cft)
5350 {
5351 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5352 }
5353 
5354 #ifdef CONFIG_MMU
5355 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5356 					struct cftype *cft, u64 val)
5357 {
5358 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359 
5360 	if (val >= (1 << NR_MOVE_TYPE))
5361 		return -EINVAL;
5362 
5363 	/*
5364 	 * No kind of locking is needed in here, because ->can_attach() will
5365 	 * check this value once in the beginning of the process, and then carry
5366 	 * on with stale data. This means that changes to this value will only
5367 	 * affect task migrations starting after the change.
5368 	 */
5369 	memcg->move_charge_at_immigrate = val;
5370 	return 0;
5371 }
5372 #else
5373 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5374 					struct cftype *cft, u64 val)
5375 {
5376 	return -ENOSYS;
5377 }
5378 #endif
5379 
5380 #ifdef CONFIG_NUMA
5381 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5382 				struct cftype *cft, struct seq_file *m)
5383 {
5384 	int nid;
5385 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5386 	unsigned long node_nr;
5387 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5388 
5389 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5390 	seq_printf(m, "total=%lu", total_nr);
5391 	for_each_node_state(nid, N_MEMORY) {
5392 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5393 		seq_printf(m, " N%d=%lu", nid, node_nr);
5394 	}
5395 	seq_putc(m, '\n');
5396 
5397 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5398 	seq_printf(m, "file=%lu", file_nr);
5399 	for_each_node_state(nid, N_MEMORY) {
5400 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5401 				LRU_ALL_FILE);
5402 		seq_printf(m, " N%d=%lu", nid, node_nr);
5403 	}
5404 	seq_putc(m, '\n');
5405 
5406 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5407 	seq_printf(m, "anon=%lu", anon_nr);
5408 	for_each_node_state(nid, N_MEMORY) {
5409 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5410 				LRU_ALL_ANON);
5411 		seq_printf(m, " N%d=%lu", nid, node_nr);
5412 	}
5413 	seq_putc(m, '\n');
5414 
5415 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5416 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5417 	for_each_node_state(nid, N_MEMORY) {
5418 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5419 				BIT(LRU_UNEVICTABLE));
5420 		seq_printf(m, " N%d=%lu", nid, node_nr);
5421 	}
5422 	seq_putc(m, '\n');
5423 	return 0;
5424 }
5425 #endif /* CONFIG_NUMA */
5426 
5427 static inline void mem_cgroup_lru_names_not_uptodate(void)
5428 {
5429 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5430 }
5431 
5432 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5433 				 struct seq_file *m)
5434 {
5435 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5436 	struct mem_cgroup *mi;
5437 	unsigned int i;
5438 
5439 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5440 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5441 			continue;
5442 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5443 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5444 	}
5445 
5446 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5447 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5448 			   mem_cgroup_read_events(memcg, i));
5449 
5450 	for (i = 0; i < NR_LRU_LISTS; i++)
5451 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5452 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5453 
5454 	/* Hierarchical information */
5455 	{
5456 		unsigned long long limit, memsw_limit;
5457 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5458 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5459 		if (do_swap_account)
5460 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5461 				   memsw_limit);
5462 	}
5463 
5464 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5465 		long long val = 0;
5466 
5467 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5468 			continue;
5469 		for_each_mem_cgroup_tree(mi, memcg)
5470 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5471 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5472 	}
5473 
5474 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5475 		unsigned long long val = 0;
5476 
5477 		for_each_mem_cgroup_tree(mi, memcg)
5478 			val += mem_cgroup_read_events(mi, i);
5479 		seq_printf(m, "total_%s %llu\n",
5480 			   mem_cgroup_events_names[i], val);
5481 	}
5482 
5483 	for (i = 0; i < NR_LRU_LISTS; i++) {
5484 		unsigned long long val = 0;
5485 
5486 		for_each_mem_cgroup_tree(mi, memcg)
5487 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5488 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5489 	}
5490 
5491 #ifdef CONFIG_DEBUG_VM
5492 	{
5493 		int nid, zid;
5494 		struct mem_cgroup_per_zone *mz;
5495 		struct zone_reclaim_stat *rstat;
5496 		unsigned long recent_rotated[2] = {0, 0};
5497 		unsigned long recent_scanned[2] = {0, 0};
5498 
5499 		for_each_online_node(nid)
5500 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5501 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5502 				rstat = &mz->lruvec.reclaim_stat;
5503 
5504 				recent_rotated[0] += rstat->recent_rotated[0];
5505 				recent_rotated[1] += rstat->recent_rotated[1];
5506 				recent_scanned[0] += rstat->recent_scanned[0];
5507 				recent_scanned[1] += rstat->recent_scanned[1];
5508 			}
5509 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5510 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5511 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5512 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5513 	}
5514 #endif
5515 
5516 	return 0;
5517 }
5518 
5519 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5520 				      struct cftype *cft)
5521 {
5522 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5523 
5524 	return mem_cgroup_swappiness(memcg);
5525 }
5526 
5527 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5528 				       struct cftype *cft, u64 val)
5529 {
5530 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5531 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5532 
5533 	if (val > 100 || !parent)
5534 		return -EINVAL;
5535 
5536 	mutex_lock(&memcg_create_mutex);
5537 
5538 	/* If under hierarchy, only empty-root can set this value */
5539 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5540 		mutex_unlock(&memcg_create_mutex);
5541 		return -EINVAL;
5542 	}
5543 
5544 	memcg->swappiness = val;
5545 
5546 	mutex_unlock(&memcg_create_mutex);
5547 
5548 	return 0;
5549 }
5550 
5551 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5552 {
5553 	struct mem_cgroup_threshold_ary *t;
5554 	u64 usage;
5555 	int i;
5556 
5557 	rcu_read_lock();
5558 	if (!swap)
5559 		t = rcu_dereference(memcg->thresholds.primary);
5560 	else
5561 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5562 
5563 	if (!t)
5564 		goto unlock;
5565 
5566 	usage = mem_cgroup_usage(memcg, swap);
5567 
5568 	/*
5569 	 * current_threshold points to threshold just below or equal to usage.
5570 	 * If it's not true, a threshold was crossed after last
5571 	 * call of __mem_cgroup_threshold().
5572 	 */
5573 	i = t->current_threshold;
5574 
5575 	/*
5576 	 * Iterate backward over array of thresholds starting from
5577 	 * current_threshold and check if a threshold is crossed.
5578 	 * If none of thresholds below usage is crossed, we read
5579 	 * only one element of the array here.
5580 	 */
5581 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5582 		eventfd_signal(t->entries[i].eventfd, 1);
5583 
5584 	/* i = current_threshold + 1 */
5585 	i++;
5586 
5587 	/*
5588 	 * Iterate forward over array of thresholds starting from
5589 	 * current_threshold+1 and check if a threshold is crossed.
5590 	 * If none of thresholds above usage is crossed, we read
5591 	 * only one element of the array here.
5592 	 */
5593 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5594 		eventfd_signal(t->entries[i].eventfd, 1);
5595 
5596 	/* Update current_threshold */
5597 	t->current_threshold = i - 1;
5598 unlock:
5599 	rcu_read_unlock();
5600 }
5601 
5602 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5603 {
5604 	while (memcg) {
5605 		__mem_cgroup_threshold(memcg, false);
5606 		if (do_swap_account)
5607 			__mem_cgroup_threshold(memcg, true);
5608 
5609 		memcg = parent_mem_cgroup(memcg);
5610 	}
5611 }
5612 
5613 static int compare_thresholds(const void *a, const void *b)
5614 {
5615 	const struct mem_cgroup_threshold *_a = a;
5616 	const struct mem_cgroup_threshold *_b = b;
5617 
5618 	if (_a->threshold > _b->threshold)
5619 		return 1;
5620 
5621 	if (_a->threshold < _b->threshold)
5622 		return -1;
5623 
5624 	return 0;
5625 }
5626 
5627 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5628 {
5629 	struct mem_cgroup_eventfd_list *ev;
5630 
5631 	list_for_each_entry(ev, &memcg->oom_notify, list)
5632 		eventfd_signal(ev->eventfd, 1);
5633 	return 0;
5634 }
5635 
5636 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5637 {
5638 	struct mem_cgroup *iter;
5639 
5640 	for_each_mem_cgroup_tree(iter, memcg)
5641 		mem_cgroup_oom_notify_cb(iter);
5642 }
5643 
5644 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5645 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5646 {
5647 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5648 	struct mem_cgroup_thresholds *thresholds;
5649 	struct mem_cgroup_threshold_ary *new;
5650 	enum res_type type = MEMFILE_TYPE(cft->private);
5651 	u64 threshold, usage;
5652 	int i, size, ret;
5653 
5654 	ret = res_counter_memparse_write_strategy(args, &threshold);
5655 	if (ret)
5656 		return ret;
5657 
5658 	mutex_lock(&memcg->thresholds_lock);
5659 
5660 	if (type == _MEM)
5661 		thresholds = &memcg->thresholds;
5662 	else if (type == _MEMSWAP)
5663 		thresholds = &memcg->memsw_thresholds;
5664 	else
5665 		BUG();
5666 
5667 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5668 
5669 	/* Check if a threshold crossed before adding a new one */
5670 	if (thresholds->primary)
5671 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5672 
5673 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5674 
5675 	/* Allocate memory for new array of thresholds */
5676 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5677 			GFP_KERNEL);
5678 	if (!new) {
5679 		ret = -ENOMEM;
5680 		goto unlock;
5681 	}
5682 	new->size = size;
5683 
5684 	/* Copy thresholds (if any) to new array */
5685 	if (thresholds->primary) {
5686 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5687 				sizeof(struct mem_cgroup_threshold));
5688 	}
5689 
5690 	/* Add new threshold */
5691 	new->entries[size - 1].eventfd = eventfd;
5692 	new->entries[size - 1].threshold = threshold;
5693 
5694 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5695 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5696 			compare_thresholds, NULL);
5697 
5698 	/* Find current threshold */
5699 	new->current_threshold = -1;
5700 	for (i = 0; i < size; i++) {
5701 		if (new->entries[i].threshold <= usage) {
5702 			/*
5703 			 * new->current_threshold will not be used until
5704 			 * rcu_assign_pointer(), so it's safe to increment
5705 			 * it here.
5706 			 */
5707 			++new->current_threshold;
5708 		} else
5709 			break;
5710 	}
5711 
5712 	/* Free old spare buffer and save old primary buffer as spare */
5713 	kfree(thresholds->spare);
5714 	thresholds->spare = thresholds->primary;
5715 
5716 	rcu_assign_pointer(thresholds->primary, new);
5717 
5718 	/* To be sure that nobody uses thresholds */
5719 	synchronize_rcu();
5720 
5721 unlock:
5722 	mutex_unlock(&memcg->thresholds_lock);
5723 
5724 	return ret;
5725 }
5726 
5727 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5728 	struct cftype *cft, struct eventfd_ctx *eventfd)
5729 {
5730 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5731 	struct mem_cgroup_thresholds *thresholds;
5732 	struct mem_cgroup_threshold_ary *new;
5733 	enum res_type type = MEMFILE_TYPE(cft->private);
5734 	u64 usage;
5735 	int i, j, size;
5736 
5737 	mutex_lock(&memcg->thresholds_lock);
5738 	if (type == _MEM)
5739 		thresholds = &memcg->thresholds;
5740 	else if (type == _MEMSWAP)
5741 		thresholds = &memcg->memsw_thresholds;
5742 	else
5743 		BUG();
5744 
5745 	if (!thresholds->primary)
5746 		goto unlock;
5747 
5748 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5749 
5750 	/* Check if a threshold crossed before removing */
5751 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5752 
5753 	/* Calculate new number of threshold */
5754 	size = 0;
5755 	for (i = 0; i < thresholds->primary->size; i++) {
5756 		if (thresholds->primary->entries[i].eventfd != eventfd)
5757 			size++;
5758 	}
5759 
5760 	new = thresholds->spare;
5761 
5762 	/* Set thresholds array to NULL if we don't have thresholds */
5763 	if (!size) {
5764 		kfree(new);
5765 		new = NULL;
5766 		goto swap_buffers;
5767 	}
5768 
5769 	new->size = size;
5770 
5771 	/* Copy thresholds and find current threshold */
5772 	new->current_threshold = -1;
5773 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5774 		if (thresholds->primary->entries[i].eventfd == eventfd)
5775 			continue;
5776 
5777 		new->entries[j] = thresholds->primary->entries[i];
5778 		if (new->entries[j].threshold <= usage) {
5779 			/*
5780 			 * new->current_threshold will not be used
5781 			 * until rcu_assign_pointer(), so it's safe to increment
5782 			 * it here.
5783 			 */
5784 			++new->current_threshold;
5785 		}
5786 		j++;
5787 	}
5788 
5789 swap_buffers:
5790 	/* Swap primary and spare array */
5791 	thresholds->spare = thresholds->primary;
5792 	/* If all events are unregistered, free the spare array */
5793 	if (!new) {
5794 		kfree(thresholds->spare);
5795 		thresholds->spare = NULL;
5796 	}
5797 
5798 	rcu_assign_pointer(thresholds->primary, new);
5799 
5800 	/* To be sure that nobody uses thresholds */
5801 	synchronize_rcu();
5802 unlock:
5803 	mutex_unlock(&memcg->thresholds_lock);
5804 }
5805 
5806 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5807 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5808 {
5809 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5810 	struct mem_cgroup_eventfd_list *event;
5811 	enum res_type type = MEMFILE_TYPE(cft->private);
5812 
5813 	BUG_ON(type != _OOM_TYPE);
5814 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5815 	if (!event)
5816 		return -ENOMEM;
5817 
5818 	spin_lock(&memcg_oom_lock);
5819 
5820 	event->eventfd = eventfd;
5821 	list_add(&event->list, &memcg->oom_notify);
5822 
5823 	/* already in OOM ? */
5824 	if (atomic_read(&memcg->under_oom))
5825 		eventfd_signal(eventfd, 1);
5826 	spin_unlock(&memcg_oom_lock);
5827 
5828 	return 0;
5829 }
5830 
5831 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5832 	struct cftype *cft, struct eventfd_ctx *eventfd)
5833 {
5834 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5835 	struct mem_cgroup_eventfd_list *ev, *tmp;
5836 	enum res_type type = MEMFILE_TYPE(cft->private);
5837 
5838 	BUG_ON(type != _OOM_TYPE);
5839 
5840 	spin_lock(&memcg_oom_lock);
5841 
5842 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5843 		if (ev->eventfd == eventfd) {
5844 			list_del(&ev->list);
5845 			kfree(ev);
5846 		}
5847 	}
5848 
5849 	spin_unlock(&memcg_oom_lock);
5850 }
5851 
5852 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5853 	struct cftype *cft,  struct cgroup_map_cb *cb)
5854 {
5855 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5856 
5857 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5858 
5859 	if (atomic_read(&memcg->under_oom))
5860 		cb->fill(cb, "under_oom", 1);
5861 	else
5862 		cb->fill(cb, "under_oom", 0);
5863 	return 0;
5864 }
5865 
5866 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5867 	struct cftype *cft, u64 val)
5868 {
5869 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5870 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5871 
5872 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5873 	if (!parent || !((val == 0) || (val == 1)))
5874 		return -EINVAL;
5875 
5876 	mutex_lock(&memcg_create_mutex);
5877 	/* oom-kill-disable is a flag for subhierarchy. */
5878 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5879 		mutex_unlock(&memcg_create_mutex);
5880 		return -EINVAL;
5881 	}
5882 	memcg->oom_kill_disable = val;
5883 	if (!val)
5884 		memcg_oom_recover(memcg);
5885 	mutex_unlock(&memcg_create_mutex);
5886 	return 0;
5887 }
5888 
5889 #ifdef CONFIG_MEMCG_KMEM
5890 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5891 {
5892 	int ret;
5893 
5894 	memcg->kmemcg_id = -1;
5895 	ret = memcg_propagate_kmem(memcg);
5896 	if (ret)
5897 		return ret;
5898 
5899 	return mem_cgroup_sockets_init(memcg, ss);
5900 }
5901 
5902 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5903 {
5904 	mem_cgroup_sockets_destroy(memcg);
5905 }
5906 
5907 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5908 {
5909 	if (!memcg_kmem_is_active(memcg))
5910 		return;
5911 
5912 	/*
5913 	 * kmem charges can outlive the cgroup. In the case of slab
5914 	 * pages, for instance, a page contain objects from various
5915 	 * processes. As we prevent from taking a reference for every
5916 	 * such allocation we have to be careful when doing uncharge
5917 	 * (see memcg_uncharge_kmem) and here during offlining.
5918 	 *
5919 	 * The idea is that that only the _last_ uncharge which sees
5920 	 * the dead memcg will drop the last reference. An additional
5921 	 * reference is taken here before the group is marked dead
5922 	 * which is then paired with css_put during uncharge resp. here.
5923 	 *
5924 	 * Although this might sound strange as this path is called from
5925 	 * css_offline() when the referencemight have dropped down to 0
5926 	 * and shouldn't be incremented anymore (css_tryget would fail)
5927 	 * we do not have other options because of the kmem allocations
5928 	 * lifetime.
5929 	 */
5930 	css_get(&memcg->css);
5931 
5932 	memcg_kmem_mark_dead(memcg);
5933 
5934 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5935 		return;
5936 
5937 	if (memcg_kmem_test_and_clear_dead(memcg))
5938 		css_put(&memcg->css);
5939 }
5940 #else
5941 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5942 {
5943 	return 0;
5944 }
5945 
5946 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5947 {
5948 }
5949 
5950 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5951 {
5952 }
5953 #endif
5954 
5955 static struct cftype mem_cgroup_files[] = {
5956 	{
5957 		.name = "usage_in_bytes",
5958 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5959 		.read = mem_cgroup_read,
5960 		.register_event = mem_cgroup_usage_register_event,
5961 		.unregister_event = mem_cgroup_usage_unregister_event,
5962 	},
5963 	{
5964 		.name = "max_usage_in_bytes",
5965 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5966 		.trigger = mem_cgroup_reset,
5967 		.read = mem_cgroup_read,
5968 	},
5969 	{
5970 		.name = "limit_in_bytes",
5971 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5972 		.write_string = mem_cgroup_write,
5973 		.read = mem_cgroup_read,
5974 	},
5975 	{
5976 		.name = "soft_limit_in_bytes",
5977 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5978 		.write_string = mem_cgroup_write,
5979 		.read = mem_cgroup_read,
5980 	},
5981 	{
5982 		.name = "failcnt",
5983 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5984 		.trigger = mem_cgroup_reset,
5985 		.read = mem_cgroup_read,
5986 	},
5987 	{
5988 		.name = "stat",
5989 		.read_seq_string = memcg_stat_show,
5990 	},
5991 	{
5992 		.name = "force_empty",
5993 		.trigger = mem_cgroup_force_empty_write,
5994 	},
5995 	{
5996 		.name = "use_hierarchy",
5997 		.flags = CFTYPE_INSANE,
5998 		.write_u64 = mem_cgroup_hierarchy_write,
5999 		.read_u64 = mem_cgroup_hierarchy_read,
6000 	},
6001 	{
6002 		.name = "swappiness",
6003 		.read_u64 = mem_cgroup_swappiness_read,
6004 		.write_u64 = mem_cgroup_swappiness_write,
6005 	},
6006 	{
6007 		.name = "move_charge_at_immigrate",
6008 		.read_u64 = mem_cgroup_move_charge_read,
6009 		.write_u64 = mem_cgroup_move_charge_write,
6010 	},
6011 	{
6012 		.name = "oom_control",
6013 		.read_map = mem_cgroup_oom_control_read,
6014 		.write_u64 = mem_cgroup_oom_control_write,
6015 		.register_event = mem_cgroup_oom_register_event,
6016 		.unregister_event = mem_cgroup_oom_unregister_event,
6017 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6018 	},
6019 	{
6020 		.name = "pressure_level",
6021 		.register_event = vmpressure_register_event,
6022 		.unregister_event = vmpressure_unregister_event,
6023 	},
6024 #ifdef CONFIG_NUMA
6025 	{
6026 		.name = "numa_stat",
6027 		.read_seq_string = memcg_numa_stat_show,
6028 	},
6029 #endif
6030 #ifdef CONFIG_MEMCG_KMEM
6031 	{
6032 		.name = "kmem.limit_in_bytes",
6033 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6034 		.write_string = mem_cgroup_write,
6035 		.read = mem_cgroup_read,
6036 	},
6037 	{
6038 		.name = "kmem.usage_in_bytes",
6039 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6040 		.read = mem_cgroup_read,
6041 	},
6042 	{
6043 		.name = "kmem.failcnt",
6044 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6045 		.trigger = mem_cgroup_reset,
6046 		.read = mem_cgroup_read,
6047 	},
6048 	{
6049 		.name = "kmem.max_usage_in_bytes",
6050 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6051 		.trigger = mem_cgroup_reset,
6052 		.read = mem_cgroup_read,
6053 	},
6054 #ifdef CONFIG_SLABINFO
6055 	{
6056 		.name = "kmem.slabinfo",
6057 		.read_seq_string = mem_cgroup_slabinfo_read,
6058 	},
6059 #endif
6060 #endif
6061 	{ },	/* terminate */
6062 };
6063 
6064 #ifdef CONFIG_MEMCG_SWAP
6065 static struct cftype memsw_cgroup_files[] = {
6066 	{
6067 		.name = "memsw.usage_in_bytes",
6068 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6069 		.read = mem_cgroup_read,
6070 		.register_event = mem_cgroup_usage_register_event,
6071 		.unregister_event = mem_cgroup_usage_unregister_event,
6072 	},
6073 	{
6074 		.name = "memsw.max_usage_in_bytes",
6075 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6076 		.trigger = mem_cgroup_reset,
6077 		.read = mem_cgroup_read,
6078 	},
6079 	{
6080 		.name = "memsw.limit_in_bytes",
6081 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6082 		.write_string = mem_cgroup_write,
6083 		.read = mem_cgroup_read,
6084 	},
6085 	{
6086 		.name = "memsw.failcnt",
6087 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6088 		.trigger = mem_cgroup_reset,
6089 		.read = mem_cgroup_read,
6090 	},
6091 	{ },	/* terminate */
6092 };
6093 #endif
6094 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6095 {
6096 	struct mem_cgroup_per_node *pn;
6097 	struct mem_cgroup_per_zone *mz;
6098 	int zone, tmp = node;
6099 	/*
6100 	 * This routine is called against possible nodes.
6101 	 * But it's BUG to call kmalloc() against offline node.
6102 	 *
6103 	 * TODO: this routine can waste much memory for nodes which will
6104 	 *       never be onlined. It's better to use memory hotplug callback
6105 	 *       function.
6106 	 */
6107 	if (!node_state(node, N_NORMAL_MEMORY))
6108 		tmp = -1;
6109 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6110 	if (!pn)
6111 		return 1;
6112 
6113 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6114 		mz = &pn->zoneinfo[zone];
6115 		lruvec_init(&mz->lruvec);
6116 		mz->usage_in_excess = 0;
6117 		mz->on_tree = false;
6118 		mz->memcg = memcg;
6119 	}
6120 	memcg->nodeinfo[node] = pn;
6121 	return 0;
6122 }
6123 
6124 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6125 {
6126 	kfree(memcg->nodeinfo[node]);
6127 }
6128 
6129 static struct mem_cgroup *mem_cgroup_alloc(void)
6130 {
6131 	struct mem_cgroup *memcg;
6132 	size_t size = memcg_size();
6133 
6134 	/* Can be very big if nr_node_ids is very big */
6135 	if (size < PAGE_SIZE)
6136 		memcg = kzalloc(size, GFP_KERNEL);
6137 	else
6138 		memcg = vzalloc(size);
6139 
6140 	if (!memcg)
6141 		return NULL;
6142 
6143 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6144 	if (!memcg->stat)
6145 		goto out_free;
6146 	spin_lock_init(&memcg->pcp_counter_lock);
6147 	return memcg;
6148 
6149 out_free:
6150 	if (size < PAGE_SIZE)
6151 		kfree(memcg);
6152 	else
6153 		vfree(memcg);
6154 	return NULL;
6155 }
6156 
6157 /*
6158  * At destroying mem_cgroup, references from swap_cgroup can remain.
6159  * (scanning all at force_empty is too costly...)
6160  *
6161  * Instead of clearing all references at force_empty, we remember
6162  * the number of reference from swap_cgroup and free mem_cgroup when
6163  * it goes down to 0.
6164  *
6165  * Removal of cgroup itself succeeds regardless of refs from swap.
6166  */
6167 
6168 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6169 {
6170 	int node;
6171 	size_t size = memcg_size();
6172 
6173 	mem_cgroup_remove_from_trees(memcg);
6174 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6175 
6176 	for_each_node(node)
6177 		free_mem_cgroup_per_zone_info(memcg, node);
6178 
6179 	free_percpu(memcg->stat);
6180 
6181 	/*
6182 	 * We need to make sure that (at least for now), the jump label
6183 	 * destruction code runs outside of the cgroup lock. This is because
6184 	 * get_online_cpus(), which is called from the static_branch update,
6185 	 * can't be called inside the cgroup_lock. cpusets are the ones
6186 	 * enforcing this dependency, so if they ever change, we might as well.
6187 	 *
6188 	 * schedule_work() will guarantee this happens. Be careful if you need
6189 	 * to move this code around, and make sure it is outside
6190 	 * the cgroup_lock.
6191 	 */
6192 	disarm_static_keys(memcg);
6193 	if (size < PAGE_SIZE)
6194 		kfree(memcg);
6195 	else
6196 		vfree(memcg);
6197 }
6198 
6199 /*
6200  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6201  */
6202 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6203 {
6204 	if (!memcg->res.parent)
6205 		return NULL;
6206 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6207 }
6208 EXPORT_SYMBOL(parent_mem_cgroup);
6209 
6210 static void __init mem_cgroup_soft_limit_tree_init(void)
6211 {
6212 	struct mem_cgroup_tree_per_node *rtpn;
6213 	struct mem_cgroup_tree_per_zone *rtpz;
6214 	int tmp, node, zone;
6215 
6216 	for_each_node(node) {
6217 		tmp = node;
6218 		if (!node_state(node, N_NORMAL_MEMORY))
6219 			tmp = -1;
6220 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6221 		BUG_ON(!rtpn);
6222 
6223 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6224 
6225 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6226 			rtpz = &rtpn->rb_tree_per_zone[zone];
6227 			rtpz->rb_root = RB_ROOT;
6228 			spin_lock_init(&rtpz->lock);
6229 		}
6230 	}
6231 }
6232 
6233 static struct cgroup_subsys_state * __ref
6234 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6235 {
6236 	struct mem_cgroup *memcg;
6237 	long error = -ENOMEM;
6238 	int node;
6239 
6240 	memcg = mem_cgroup_alloc();
6241 	if (!memcg)
6242 		return ERR_PTR(error);
6243 
6244 	for_each_node(node)
6245 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6246 			goto free_out;
6247 
6248 	/* root ? */
6249 	if (parent_css == NULL) {
6250 		root_mem_cgroup = memcg;
6251 		res_counter_init(&memcg->res, NULL);
6252 		res_counter_init(&memcg->memsw, NULL);
6253 		res_counter_init(&memcg->kmem, NULL);
6254 	}
6255 
6256 	memcg->last_scanned_node = MAX_NUMNODES;
6257 	INIT_LIST_HEAD(&memcg->oom_notify);
6258 	memcg->move_charge_at_immigrate = 0;
6259 	mutex_init(&memcg->thresholds_lock);
6260 	spin_lock_init(&memcg->move_lock);
6261 	vmpressure_init(&memcg->vmpressure);
6262 
6263 	return &memcg->css;
6264 
6265 free_out:
6266 	__mem_cgroup_free(memcg);
6267 	return ERR_PTR(error);
6268 }
6269 
6270 static int
6271 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6272 {
6273 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6274 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6275 	int error = 0;
6276 
6277 	if (!parent)
6278 		return 0;
6279 
6280 	mutex_lock(&memcg_create_mutex);
6281 
6282 	memcg->use_hierarchy = parent->use_hierarchy;
6283 	memcg->oom_kill_disable = parent->oom_kill_disable;
6284 	memcg->swappiness = mem_cgroup_swappiness(parent);
6285 
6286 	if (parent->use_hierarchy) {
6287 		res_counter_init(&memcg->res, &parent->res);
6288 		res_counter_init(&memcg->memsw, &parent->memsw);
6289 		res_counter_init(&memcg->kmem, &parent->kmem);
6290 
6291 		/*
6292 		 * No need to take a reference to the parent because cgroup
6293 		 * core guarantees its existence.
6294 		 */
6295 	} else {
6296 		res_counter_init(&memcg->res, NULL);
6297 		res_counter_init(&memcg->memsw, NULL);
6298 		res_counter_init(&memcg->kmem, NULL);
6299 		/*
6300 		 * Deeper hierachy with use_hierarchy == false doesn't make
6301 		 * much sense so let cgroup subsystem know about this
6302 		 * unfortunate state in our controller.
6303 		 */
6304 		if (parent != root_mem_cgroup)
6305 			mem_cgroup_subsys.broken_hierarchy = true;
6306 	}
6307 
6308 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6309 	mutex_unlock(&memcg_create_mutex);
6310 	return error;
6311 }
6312 
6313 /*
6314  * Announce all parents that a group from their hierarchy is gone.
6315  */
6316 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6317 {
6318 	struct mem_cgroup *parent = memcg;
6319 
6320 	while ((parent = parent_mem_cgroup(parent)))
6321 		mem_cgroup_iter_invalidate(parent);
6322 
6323 	/*
6324 	 * if the root memcg is not hierarchical we have to check it
6325 	 * explicitely.
6326 	 */
6327 	if (!root_mem_cgroup->use_hierarchy)
6328 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6329 }
6330 
6331 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6332 {
6333 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6334 
6335 	kmem_cgroup_css_offline(memcg);
6336 
6337 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6338 	mem_cgroup_reparent_charges(memcg);
6339 	mem_cgroup_destroy_all_caches(memcg);
6340 	vmpressure_cleanup(&memcg->vmpressure);
6341 }
6342 
6343 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6344 {
6345 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6346 
6347 	memcg_destroy_kmem(memcg);
6348 	__mem_cgroup_free(memcg);
6349 }
6350 
6351 #ifdef CONFIG_MMU
6352 /* Handlers for move charge at task migration. */
6353 #define PRECHARGE_COUNT_AT_ONCE	256
6354 static int mem_cgroup_do_precharge(unsigned long count)
6355 {
6356 	int ret = 0;
6357 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6358 	struct mem_cgroup *memcg = mc.to;
6359 
6360 	if (mem_cgroup_is_root(memcg)) {
6361 		mc.precharge += count;
6362 		/* we don't need css_get for root */
6363 		return ret;
6364 	}
6365 	/* try to charge at once */
6366 	if (count > 1) {
6367 		struct res_counter *dummy;
6368 		/*
6369 		 * "memcg" cannot be under rmdir() because we've already checked
6370 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6371 		 * are still under the same cgroup_mutex. So we can postpone
6372 		 * css_get().
6373 		 */
6374 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6375 			goto one_by_one;
6376 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6377 						PAGE_SIZE * count, &dummy)) {
6378 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6379 			goto one_by_one;
6380 		}
6381 		mc.precharge += count;
6382 		return ret;
6383 	}
6384 one_by_one:
6385 	/* fall back to one by one charge */
6386 	while (count--) {
6387 		if (signal_pending(current)) {
6388 			ret = -EINTR;
6389 			break;
6390 		}
6391 		if (!batch_count--) {
6392 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6393 			cond_resched();
6394 		}
6395 		ret = __mem_cgroup_try_charge(NULL,
6396 					GFP_KERNEL, 1, &memcg, false);
6397 		if (ret)
6398 			/* mem_cgroup_clear_mc() will do uncharge later */
6399 			return ret;
6400 		mc.precharge++;
6401 	}
6402 	return ret;
6403 }
6404 
6405 /**
6406  * get_mctgt_type - get target type of moving charge
6407  * @vma: the vma the pte to be checked belongs
6408  * @addr: the address corresponding to the pte to be checked
6409  * @ptent: the pte to be checked
6410  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6411  *
6412  * Returns
6413  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6414  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6415  *     move charge. if @target is not NULL, the page is stored in target->page
6416  *     with extra refcnt got(Callers should handle it).
6417  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6418  *     target for charge migration. if @target is not NULL, the entry is stored
6419  *     in target->ent.
6420  *
6421  * Called with pte lock held.
6422  */
6423 union mc_target {
6424 	struct page	*page;
6425 	swp_entry_t	ent;
6426 };
6427 
6428 enum mc_target_type {
6429 	MC_TARGET_NONE = 0,
6430 	MC_TARGET_PAGE,
6431 	MC_TARGET_SWAP,
6432 };
6433 
6434 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6435 						unsigned long addr, pte_t ptent)
6436 {
6437 	struct page *page = vm_normal_page(vma, addr, ptent);
6438 
6439 	if (!page || !page_mapped(page))
6440 		return NULL;
6441 	if (PageAnon(page)) {
6442 		/* we don't move shared anon */
6443 		if (!move_anon())
6444 			return NULL;
6445 	} else if (!move_file())
6446 		/* we ignore mapcount for file pages */
6447 		return NULL;
6448 	if (!get_page_unless_zero(page))
6449 		return NULL;
6450 
6451 	return page;
6452 }
6453 
6454 #ifdef CONFIG_SWAP
6455 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6456 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6457 {
6458 	struct page *page = NULL;
6459 	swp_entry_t ent = pte_to_swp_entry(ptent);
6460 
6461 	if (!move_anon() || non_swap_entry(ent))
6462 		return NULL;
6463 	/*
6464 	 * Because lookup_swap_cache() updates some statistics counter,
6465 	 * we call find_get_page() with swapper_space directly.
6466 	 */
6467 	page = find_get_page(swap_address_space(ent), ent.val);
6468 	if (do_swap_account)
6469 		entry->val = ent.val;
6470 
6471 	return page;
6472 }
6473 #else
6474 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6475 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6476 {
6477 	return NULL;
6478 }
6479 #endif
6480 
6481 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6482 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6483 {
6484 	struct page *page = NULL;
6485 	struct address_space *mapping;
6486 	pgoff_t pgoff;
6487 
6488 	if (!vma->vm_file) /* anonymous vma */
6489 		return NULL;
6490 	if (!move_file())
6491 		return NULL;
6492 
6493 	mapping = vma->vm_file->f_mapping;
6494 	if (pte_none(ptent))
6495 		pgoff = linear_page_index(vma, addr);
6496 	else /* pte_file(ptent) is true */
6497 		pgoff = pte_to_pgoff(ptent);
6498 
6499 	/* page is moved even if it's not RSS of this task(page-faulted). */
6500 	page = find_get_page(mapping, pgoff);
6501 
6502 #ifdef CONFIG_SWAP
6503 	/* shmem/tmpfs may report page out on swap: account for that too. */
6504 	if (radix_tree_exceptional_entry(page)) {
6505 		swp_entry_t swap = radix_to_swp_entry(page);
6506 		if (do_swap_account)
6507 			*entry = swap;
6508 		page = find_get_page(swap_address_space(swap), swap.val);
6509 	}
6510 #endif
6511 	return page;
6512 }
6513 
6514 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6515 		unsigned long addr, pte_t ptent, union mc_target *target)
6516 {
6517 	struct page *page = NULL;
6518 	struct page_cgroup *pc;
6519 	enum mc_target_type ret = MC_TARGET_NONE;
6520 	swp_entry_t ent = { .val = 0 };
6521 
6522 	if (pte_present(ptent))
6523 		page = mc_handle_present_pte(vma, addr, ptent);
6524 	else if (is_swap_pte(ptent))
6525 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6526 	else if (pte_none(ptent) || pte_file(ptent))
6527 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6528 
6529 	if (!page && !ent.val)
6530 		return ret;
6531 	if (page) {
6532 		pc = lookup_page_cgroup(page);
6533 		/*
6534 		 * Do only loose check w/o page_cgroup lock.
6535 		 * mem_cgroup_move_account() checks the pc is valid or not under
6536 		 * the lock.
6537 		 */
6538 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6539 			ret = MC_TARGET_PAGE;
6540 			if (target)
6541 				target->page = page;
6542 		}
6543 		if (!ret || !target)
6544 			put_page(page);
6545 	}
6546 	/* There is a swap entry and a page doesn't exist or isn't charged */
6547 	if (ent.val && !ret &&
6548 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6549 		ret = MC_TARGET_SWAP;
6550 		if (target)
6551 			target->ent = ent;
6552 	}
6553 	return ret;
6554 }
6555 
6556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6557 /*
6558  * We don't consider swapping or file mapped pages because THP does not
6559  * support them for now.
6560  * Caller should make sure that pmd_trans_huge(pmd) is true.
6561  */
6562 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6563 		unsigned long addr, pmd_t pmd, union mc_target *target)
6564 {
6565 	struct page *page = NULL;
6566 	struct page_cgroup *pc;
6567 	enum mc_target_type ret = MC_TARGET_NONE;
6568 
6569 	page = pmd_page(pmd);
6570 	VM_BUG_ON(!page || !PageHead(page));
6571 	if (!move_anon())
6572 		return ret;
6573 	pc = lookup_page_cgroup(page);
6574 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6575 		ret = MC_TARGET_PAGE;
6576 		if (target) {
6577 			get_page(page);
6578 			target->page = page;
6579 		}
6580 	}
6581 	return ret;
6582 }
6583 #else
6584 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6585 		unsigned long addr, pmd_t pmd, union mc_target *target)
6586 {
6587 	return MC_TARGET_NONE;
6588 }
6589 #endif
6590 
6591 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6592 					unsigned long addr, unsigned long end,
6593 					struct mm_walk *walk)
6594 {
6595 	struct vm_area_struct *vma = walk->private;
6596 	pte_t *pte;
6597 	spinlock_t *ptl;
6598 
6599 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6600 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6601 			mc.precharge += HPAGE_PMD_NR;
6602 		spin_unlock(&vma->vm_mm->page_table_lock);
6603 		return 0;
6604 	}
6605 
6606 	if (pmd_trans_unstable(pmd))
6607 		return 0;
6608 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6609 	for (; addr != end; pte++, addr += PAGE_SIZE)
6610 		if (get_mctgt_type(vma, addr, *pte, NULL))
6611 			mc.precharge++;	/* increment precharge temporarily */
6612 	pte_unmap_unlock(pte - 1, ptl);
6613 	cond_resched();
6614 
6615 	return 0;
6616 }
6617 
6618 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6619 {
6620 	unsigned long precharge;
6621 	struct vm_area_struct *vma;
6622 
6623 	down_read(&mm->mmap_sem);
6624 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6625 		struct mm_walk mem_cgroup_count_precharge_walk = {
6626 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6627 			.mm = mm,
6628 			.private = vma,
6629 		};
6630 		if (is_vm_hugetlb_page(vma))
6631 			continue;
6632 		walk_page_range(vma->vm_start, vma->vm_end,
6633 					&mem_cgroup_count_precharge_walk);
6634 	}
6635 	up_read(&mm->mmap_sem);
6636 
6637 	precharge = mc.precharge;
6638 	mc.precharge = 0;
6639 
6640 	return precharge;
6641 }
6642 
6643 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6644 {
6645 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6646 
6647 	VM_BUG_ON(mc.moving_task);
6648 	mc.moving_task = current;
6649 	return mem_cgroup_do_precharge(precharge);
6650 }
6651 
6652 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6653 static void __mem_cgroup_clear_mc(void)
6654 {
6655 	struct mem_cgroup *from = mc.from;
6656 	struct mem_cgroup *to = mc.to;
6657 	int i;
6658 
6659 	/* we must uncharge all the leftover precharges from mc.to */
6660 	if (mc.precharge) {
6661 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6662 		mc.precharge = 0;
6663 	}
6664 	/*
6665 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6666 	 * we must uncharge here.
6667 	 */
6668 	if (mc.moved_charge) {
6669 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6670 		mc.moved_charge = 0;
6671 	}
6672 	/* we must fixup refcnts and charges */
6673 	if (mc.moved_swap) {
6674 		/* uncharge swap account from the old cgroup */
6675 		if (!mem_cgroup_is_root(mc.from))
6676 			res_counter_uncharge(&mc.from->memsw,
6677 						PAGE_SIZE * mc.moved_swap);
6678 
6679 		for (i = 0; i < mc.moved_swap; i++)
6680 			css_put(&mc.from->css);
6681 
6682 		if (!mem_cgroup_is_root(mc.to)) {
6683 			/*
6684 			 * we charged both to->res and to->memsw, so we should
6685 			 * uncharge to->res.
6686 			 */
6687 			res_counter_uncharge(&mc.to->res,
6688 						PAGE_SIZE * mc.moved_swap);
6689 		}
6690 		/* we've already done css_get(mc.to) */
6691 		mc.moved_swap = 0;
6692 	}
6693 	memcg_oom_recover(from);
6694 	memcg_oom_recover(to);
6695 	wake_up_all(&mc.waitq);
6696 }
6697 
6698 static void mem_cgroup_clear_mc(void)
6699 {
6700 	struct mem_cgroup *from = mc.from;
6701 
6702 	/*
6703 	 * we must clear moving_task before waking up waiters at the end of
6704 	 * task migration.
6705 	 */
6706 	mc.moving_task = NULL;
6707 	__mem_cgroup_clear_mc();
6708 	spin_lock(&mc.lock);
6709 	mc.from = NULL;
6710 	mc.to = NULL;
6711 	spin_unlock(&mc.lock);
6712 	mem_cgroup_end_move(from);
6713 }
6714 
6715 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6716 				 struct cgroup_taskset *tset)
6717 {
6718 	struct task_struct *p = cgroup_taskset_first(tset);
6719 	int ret = 0;
6720 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6721 	unsigned long move_charge_at_immigrate;
6722 
6723 	/*
6724 	 * We are now commited to this value whatever it is. Changes in this
6725 	 * tunable will only affect upcoming migrations, not the current one.
6726 	 * So we need to save it, and keep it going.
6727 	 */
6728 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6729 	if (move_charge_at_immigrate) {
6730 		struct mm_struct *mm;
6731 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6732 
6733 		VM_BUG_ON(from == memcg);
6734 
6735 		mm = get_task_mm(p);
6736 		if (!mm)
6737 			return 0;
6738 		/* We move charges only when we move a owner of the mm */
6739 		if (mm->owner == p) {
6740 			VM_BUG_ON(mc.from);
6741 			VM_BUG_ON(mc.to);
6742 			VM_BUG_ON(mc.precharge);
6743 			VM_BUG_ON(mc.moved_charge);
6744 			VM_BUG_ON(mc.moved_swap);
6745 			mem_cgroup_start_move(from);
6746 			spin_lock(&mc.lock);
6747 			mc.from = from;
6748 			mc.to = memcg;
6749 			mc.immigrate_flags = move_charge_at_immigrate;
6750 			spin_unlock(&mc.lock);
6751 			/* We set mc.moving_task later */
6752 
6753 			ret = mem_cgroup_precharge_mc(mm);
6754 			if (ret)
6755 				mem_cgroup_clear_mc();
6756 		}
6757 		mmput(mm);
6758 	}
6759 	return ret;
6760 }
6761 
6762 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6763 				     struct cgroup_taskset *tset)
6764 {
6765 	mem_cgroup_clear_mc();
6766 }
6767 
6768 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6769 				unsigned long addr, unsigned long end,
6770 				struct mm_walk *walk)
6771 {
6772 	int ret = 0;
6773 	struct vm_area_struct *vma = walk->private;
6774 	pte_t *pte;
6775 	spinlock_t *ptl;
6776 	enum mc_target_type target_type;
6777 	union mc_target target;
6778 	struct page *page;
6779 	struct page_cgroup *pc;
6780 
6781 	/*
6782 	 * We don't take compound_lock() here but no race with splitting thp
6783 	 * happens because:
6784 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6785 	 *    under splitting, which means there's no concurrent thp split,
6786 	 *  - if another thread runs into split_huge_page() just after we
6787 	 *    entered this if-block, the thread must wait for page table lock
6788 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6789 	 *    part of thp split is not executed yet.
6790 	 */
6791 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6792 		if (mc.precharge < HPAGE_PMD_NR) {
6793 			spin_unlock(&vma->vm_mm->page_table_lock);
6794 			return 0;
6795 		}
6796 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6797 		if (target_type == MC_TARGET_PAGE) {
6798 			page = target.page;
6799 			if (!isolate_lru_page(page)) {
6800 				pc = lookup_page_cgroup(page);
6801 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6802 							pc, mc.from, mc.to)) {
6803 					mc.precharge -= HPAGE_PMD_NR;
6804 					mc.moved_charge += HPAGE_PMD_NR;
6805 				}
6806 				putback_lru_page(page);
6807 			}
6808 			put_page(page);
6809 		}
6810 		spin_unlock(&vma->vm_mm->page_table_lock);
6811 		return 0;
6812 	}
6813 
6814 	if (pmd_trans_unstable(pmd))
6815 		return 0;
6816 retry:
6817 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6818 	for (; addr != end; addr += PAGE_SIZE) {
6819 		pte_t ptent = *(pte++);
6820 		swp_entry_t ent;
6821 
6822 		if (!mc.precharge)
6823 			break;
6824 
6825 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6826 		case MC_TARGET_PAGE:
6827 			page = target.page;
6828 			if (isolate_lru_page(page))
6829 				goto put;
6830 			pc = lookup_page_cgroup(page);
6831 			if (!mem_cgroup_move_account(page, 1, pc,
6832 						     mc.from, mc.to)) {
6833 				mc.precharge--;
6834 				/* we uncharge from mc.from later. */
6835 				mc.moved_charge++;
6836 			}
6837 			putback_lru_page(page);
6838 put:			/* get_mctgt_type() gets the page */
6839 			put_page(page);
6840 			break;
6841 		case MC_TARGET_SWAP:
6842 			ent = target.ent;
6843 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6844 				mc.precharge--;
6845 				/* we fixup refcnts and charges later. */
6846 				mc.moved_swap++;
6847 			}
6848 			break;
6849 		default:
6850 			break;
6851 		}
6852 	}
6853 	pte_unmap_unlock(pte - 1, ptl);
6854 	cond_resched();
6855 
6856 	if (addr != end) {
6857 		/*
6858 		 * We have consumed all precharges we got in can_attach().
6859 		 * We try charge one by one, but don't do any additional
6860 		 * charges to mc.to if we have failed in charge once in attach()
6861 		 * phase.
6862 		 */
6863 		ret = mem_cgroup_do_precharge(1);
6864 		if (!ret)
6865 			goto retry;
6866 	}
6867 
6868 	return ret;
6869 }
6870 
6871 static void mem_cgroup_move_charge(struct mm_struct *mm)
6872 {
6873 	struct vm_area_struct *vma;
6874 
6875 	lru_add_drain_all();
6876 retry:
6877 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6878 		/*
6879 		 * Someone who are holding the mmap_sem might be waiting in
6880 		 * waitq. So we cancel all extra charges, wake up all waiters,
6881 		 * and retry. Because we cancel precharges, we might not be able
6882 		 * to move enough charges, but moving charge is a best-effort
6883 		 * feature anyway, so it wouldn't be a big problem.
6884 		 */
6885 		__mem_cgroup_clear_mc();
6886 		cond_resched();
6887 		goto retry;
6888 	}
6889 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6890 		int ret;
6891 		struct mm_walk mem_cgroup_move_charge_walk = {
6892 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6893 			.mm = mm,
6894 			.private = vma,
6895 		};
6896 		if (is_vm_hugetlb_page(vma))
6897 			continue;
6898 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6899 						&mem_cgroup_move_charge_walk);
6900 		if (ret)
6901 			/*
6902 			 * means we have consumed all precharges and failed in
6903 			 * doing additional charge. Just abandon here.
6904 			 */
6905 			break;
6906 	}
6907 	up_read(&mm->mmap_sem);
6908 }
6909 
6910 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6911 				 struct cgroup_taskset *tset)
6912 {
6913 	struct task_struct *p = cgroup_taskset_first(tset);
6914 	struct mm_struct *mm = get_task_mm(p);
6915 
6916 	if (mm) {
6917 		if (mc.to)
6918 			mem_cgroup_move_charge(mm);
6919 		mmput(mm);
6920 	}
6921 	if (mc.to)
6922 		mem_cgroup_clear_mc();
6923 }
6924 #else	/* !CONFIG_MMU */
6925 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6926 				 struct cgroup_taskset *tset)
6927 {
6928 	return 0;
6929 }
6930 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6931 				     struct cgroup_taskset *tset)
6932 {
6933 }
6934 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6935 				 struct cgroup_taskset *tset)
6936 {
6937 }
6938 #endif
6939 
6940 /*
6941  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6942  * to verify sane_behavior flag on each mount attempt.
6943  */
6944 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6945 {
6946 	/*
6947 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6948 	 * guarantees that @root doesn't have any children, so turning it
6949 	 * on for the root memcg is enough.
6950 	 */
6951 	if (cgroup_sane_behavior(root_css->cgroup))
6952 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6953 }
6954 
6955 struct cgroup_subsys mem_cgroup_subsys = {
6956 	.name = "memory",
6957 	.subsys_id = mem_cgroup_subsys_id,
6958 	.css_alloc = mem_cgroup_css_alloc,
6959 	.css_online = mem_cgroup_css_online,
6960 	.css_offline = mem_cgroup_css_offline,
6961 	.css_free = mem_cgroup_css_free,
6962 	.can_attach = mem_cgroup_can_attach,
6963 	.cancel_attach = mem_cgroup_cancel_attach,
6964 	.attach = mem_cgroup_move_task,
6965 	.bind = mem_cgroup_bind,
6966 	.base_cftypes = mem_cgroup_files,
6967 	.early_init = 0,
6968 	.use_id = 1,
6969 };
6970 
6971 #ifdef CONFIG_MEMCG_SWAP
6972 static int __init enable_swap_account(char *s)
6973 {
6974 	if (!strcmp(s, "1"))
6975 		really_do_swap_account = 1;
6976 	else if (!strcmp(s, "0"))
6977 		really_do_swap_account = 0;
6978 	return 1;
6979 }
6980 __setup("swapaccount=", enable_swap_account);
6981 
6982 static void __init memsw_file_init(void)
6983 {
6984 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6985 }
6986 
6987 static void __init enable_swap_cgroup(void)
6988 {
6989 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6990 		do_swap_account = 1;
6991 		memsw_file_init();
6992 	}
6993 }
6994 
6995 #else
6996 static void __init enable_swap_cgroup(void)
6997 {
6998 }
6999 #endif
7000 
7001 /*
7002  * subsys_initcall() for memory controller.
7003  *
7004  * Some parts like hotcpu_notifier() have to be initialized from this context
7005  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7006  * everything that doesn't depend on a specific mem_cgroup structure should
7007  * be initialized from here.
7008  */
7009 static int __init mem_cgroup_init(void)
7010 {
7011 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7012 	enable_swap_cgroup();
7013 	mem_cgroup_soft_limit_tree_init();
7014 	memcg_stock_init();
7015 	return 0;
7016 }
7017 subsys_initcall(mem_cgroup_init);
7018