xref: /openbmc/linux/mm/memcontrol.c (revision f5b06569)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_node {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree {
141 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143 
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145 
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 	struct list_head list;
149 	struct eventfd_ctx *eventfd;
150 };
151 
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156 	/*
157 	 * memcg which the event belongs to.
158 	 */
159 	struct mem_cgroup *memcg;
160 	/*
161 	 * eventfd to signal userspace about the event.
162 	 */
163 	struct eventfd_ctx *eventfd;
164 	/*
165 	 * Each of these stored in a list by the cgroup.
166 	 */
167 	struct list_head list;
168 	/*
169 	 * register_event() callback will be used to add new userspace
170 	 * waiter for changes related to this event.  Use eventfd_signal()
171 	 * on eventfd to send notification to userspace.
172 	 */
173 	int (*register_event)(struct mem_cgroup *memcg,
174 			      struct eventfd_ctx *eventfd, const char *args);
175 	/*
176 	 * unregister_event() callback will be called when userspace closes
177 	 * the eventfd or on cgroup removing.  This callback must be set,
178 	 * if you want provide notification functionality.
179 	 */
180 	void (*unregister_event)(struct mem_cgroup *memcg,
181 				 struct eventfd_ctx *eventfd);
182 	/*
183 	 * All fields below needed to unregister event when
184 	 * userspace closes eventfd.
185 	 */
186 	poll_table pt;
187 	wait_queue_head_t *wqh;
188 	wait_queue_t wait;
189 	struct work_struct remove;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194 
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON	0x1U
200 #define MOVE_FILE	0x2U
201 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202 
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 	spinlock_t	  lock; /* for from, to */
206 	struct mm_struct  *mm;
207 	struct mem_cgroup *from;
208 	struct mem_cgroup *to;
209 	unsigned long flags;
210 	unsigned long precharge;
211 	unsigned long moved_charge;
212 	unsigned long moved_swap;
213 	struct task_struct *moving_task;	/* a task moving charges */
214 	wait_queue_head_t waitq;		/* a waitq for other context */
215 } mc = {
216 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219 
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226 
227 enum charge_type {
228 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 	MEM_CGROUP_CHARGE_TYPE_ANON,
230 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
231 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 	NR_CHARGE_TYPE,
233 };
234 
235 /* for encoding cft->private value on file */
236 enum res_type {
237 	_MEM,
238 	_MEMSWAP,
239 	_OOM_TYPE,
240 	_KMEM,
241 	_TCP,
242 };
243 
244 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)	((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL		(0)
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 	return (memcg == root_mem_cgroup);
266 }
267 
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 #endif /* !CONFIG_SLOB */
321 
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 	struct mem_cgroup *memcg;
336 
337 	memcg = page->mem_cgroup;
338 
339 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 		memcg = root_mem_cgroup;
341 
342 	return &memcg->css;
343 }
344 
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 	struct mem_cgroup *memcg;
361 	unsigned long ino = 0;
362 
363 	rcu_read_lock();
364 	memcg = READ_ONCE(page->mem_cgroup);
365 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 		memcg = parent_mem_cgroup(memcg);
367 	if (memcg)
368 		ino = cgroup_ino(memcg->css.cgroup);
369 	rcu_read_unlock();
370 	return ino;
371 }
372 
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 	int nid = page_to_nid(page);
377 
378 	return memcg->nodeinfo[nid];
379 }
380 
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 	return soft_limit_tree.rb_tree_per_node[nid];
385 }
386 
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 	int nid = page_to_nid(page);
391 
392 	return soft_limit_tree.rb_tree_per_node[nid];
393 }
394 
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 					 struct mem_cgroup_tree_per_node *mctz,
397 					 unsigned long new_usage_in_excess)
398 {
399 	struct rb_node **p = &mctz->rb_root.rb_node;
400 	struct rb_node *parent = NULL;
401 	struct mem_cgroup_per_node *mz_node;
402 
403 	if (mz->on_tree)
404 		return;
405 
406 	mz->usage_in_excess = new_usage_in_excess;
407 	if (!mz->usage_in_excess)
408 		return;
409 	while (*p) {
410 		parent = *p;
411 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 					tree_node);
413 		if (mz->usage_in_excess < mz_node->usage_in_excess)
414 			p = &(*p)->rb_left;
415 		/*
416 		 * We can't avoid mem cgroups that are over their soft
417 		 * limit by the same amount
418 		 */
419 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 			p = &(*p)->rb_right;
421 	}
422 	rb_link_node(&mz->tree_node, parent, p);
423 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 	mz->on_tree = true;
425 }
426 
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 					 struct mem_cgroup_tree_per_node *mctz)
429 {
430 	if (!mz->on_tree)
431 		return;
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	/*
466 	 * Necessary to update all ancestors when hierarchy is used.
467 	 * because their event counter is not touched.
468 	 */
469 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 		mz = mem_cgroup_page_nodeinfo(memcg, page);
471 		excess = soft_limit_excess(memcg);
472 		/*
473 		 * We have to update the tree if mz is on RB-tree or
474 		 * mem is over its softlimit.
475 		 */
476 		if (excess || mz->on_tree) {
477 			unsigned long flags;
478 
479 			spin_lock_irqsave(&mctz->lock, flags);
480 			/* if on-tree, remove it */
481 			if (mz->on_tree)
482 				__mem_cgroup_remove_exceeded(mz, mctz);
483 			/*
484 			 * Insert again. mz->usage_in_excess will be updated.
485 			 * If excess is 0, no tree ops.
486 			 */
487 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488 			spin_unlock_irqrestore(&mctz->lock, flags);
489 		}
490 	}
491 }
492 
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 	struct mem_cgroup_tree_per_node *mctz;
496 	struct mem_cgroup_per_node *mz;
497 	int nid;
498 
499 	for_each_node(nid) {
500 		mz = mem_cgroup_nodeinfo(memcg, nid);
501 		mctz = soft_limit_tree_node(nid);
502 		mem_cgroup_remove_exceeded(mz, mctz);
503 	}
504 }
505 
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 	struct rb_node *rightmost = NULL;
510 	struct mem_cgroup_per_node *mz;
511 
512 retry:
513 	mz = NULL;
514 	rightmost = rb_last(&mctz->rb_root);
515 	if (!rightmost)
516 		goto done;		/* Nothing to reclaim from */
517 
518 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 	/*
520 	 * Remove the node now but someone else can add it back,
521 	 * we will to add it back at the end of reclaim to its correct
522 	 * position in the tree.
523 	 */
524 	__mem_cgroup_remove_exceeded(mz, mctz);
525 	if (!soft_limit_excess(mz->memcg) ||
526 	    !css_tryget_online(&mz->memcg->css))
527 		goto retry;
528 done:
529 	return mz;
530 }
531 
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 	struct mem_cgroup_per_node *mz;
536 
537 	spin_lock_irq(&mctz->lock);
538 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 	spin_unlock_irq(&mctz->lock);
540 	return mz;
541 }
542 
543 /*
544  * Return page count for single (non recursive) @memcg.
545  *
546  * Implementation Note: reading percpu statistics for memcg.
547  *
548  * Both of vmstat[] and percpu_counter has threshold and do periodic
549  * synchronization to implement "quick" read. There are trade-off between
550  * reading cost and precision of value. Then, we may have a chance to implement
551  * a periodic synchronization of counter in memcg's counter.
552  *
553  * But this _read() function is used for user interface now. The user accounts
554  * memory usage by memory cgroup and he _always_ requires exact value because
555  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556  * have to visit all online cpus and make sum. So, for now, unnecessary
557  * synchronization is not implemented. (just implemented for cpu hotplug)
558  *
559  * If there are kernel internal actions which can make use of some not-exact
560  * value, and reading all cpu value can be performance bottleneck in some
561  * common workload, threshold and synchronization as vmstat[] should be
562  * implemented.
563  */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 	long val = 0;
568 	int cpu;
569 
570 	/* Per-cpu values can be negative, use a signed accumulator */
571 	for_each_possible_cpu(cpu)
572 		val += per_cpu(memcg->stat->count[idx], cpu);
573 	/*
574 	 * Summing races with updates, so val may be negative.  Avoid exposing
575 	 * transient negative values.
576 	 */
577 	if (val < 0)
578 		val = 0;
579 	return val;
580 }
581 
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 					    enum mem_cgroup_events_index idx)
584 {
585 	unsigned long val = 0;
586 	int cpu;
587 
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->events[idx], cpu);
590 	return val;
591 }
592 
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 					 struct page *page,
595 					 bool compound, int nr_pages)
596 {
597 	/*
598 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 	 * counted as CACHE even if it's on ANON LRU.
600 	 */
601 	if (PageAnon(page))
602 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 				nr_pages);
604 	else
605 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 				nr_pages);
607 
608 	if (compound) {
609 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 				nr_pages);
612 	}
613 
614 	/* pagein of a big page is an event. So, ignore page size */
615 	if (nr_pages > 0)
616 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 	else {
618 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 		nr_pages = -nr_pages; /* for event */
620 	}
621 
622 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624 
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 					   int nid, unsigned int lru_mask)
627 {
628 	unsigned long nr = 0;
629 	struct mem_cgroup_per_node *mz;
630 	enum lru_list lru;
631 
632 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633 
634 	for_each_lru(lru) {
635 		if (!(BIT(lru) & lru_mask))
636 			continue;
637 		mz = mem_cgroup_nodeinfo(memcg, nid);
638 		nr += mz->lru_size[lru];
639 	}
640 	return nr;
641 }
642 
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 			unsigned int lru_mask)
645 {
646 	unsigned long nr = 0;
647 	int nid;
648 
649 	for_each_node_state(nid, N_MEMORY)
650 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 	return nr;
652 }
653 
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 				       enum mem_cgroup_events_target target)
656 {
657 	unsigned long val, next;
658 
659 	val = __this_cpu_read(memcg->stat->nr_page_events);
660 	next = __this_cpu_read(memcg->stat->targets[target]);
661 	/* from time_after() in jiffies.h */
662 	if ((long)next - (long)val < 0) {
663 		switch (target) {
664 		case MEM_CGROUP_TARGET_THRESH:
665 			next = val + THRESHOLDS_EVENTS_TARGET;
666 			break;
667 		case MEM_CGROUP_TARGET_SOFTLIMIT:
668 			next = val + SOFTLIMIT_EVENTS_TARGET;
669 			break;
670 		case MEM_CGROUP_TARGET_NUMAINFO:
671 			next = val + NUMAINFO_EVENTS_TARGET;
672 			break;
673 		default:
674 			break;
675 		}
676 		__this_cpu_write(memcg->stat->targets[target], next);
677 		return true;
678 	}
679 	return false;
680 }
681 
682 /*
683  * Check events in order.
684  *
685  */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 	/* threshold event is triggered in finer grain than soft limit */
689 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 						MEM_CGROUP_TARGET_THRESH))) {
691 		bool do_softlimit;
692 		bool do_numainfo __maybe_unused;
693 
694 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 						MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 						MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 		mem_cgroup_threshold(memcg);
701 		if (unlikely(do_softlimit))
702 			mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 		if (unlikely(do_numainfo))
705 			atomic_inc(&memcg->numainfo_events);
706 #endif
707 	}
708 }
709 
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 	/*
713 	 * mm_update_next_owner() may clear mm->owner to NULL
714 	 * if it races with swapoff, page migration, etc.
715 	 * So this can be called with p == NULL.
716 	 */
717 	if (unlikely(!p))
718 		return NULL;
719 
720 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723 
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 	struct mem_cgroup *memcg = NULL;
727 
728 	rcu_read_lock();
729 	do {
730 		/*
731 		 * Page cache insertions can happen withou an
732 		 * actual mm context, e.g. during disk probing
733 		 * on boot, loopback IO, acct() writes etc.
734 		 */
735 		if (unlikely(!mm))
736 			memcg = root_mem_cgroup;
737 		else {
738 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 			if (unlikely(!memcg))
740 				memcg = root_mem_cgroup;
741 		}
742 	} while (!css_tryget_online(&memcg->css));
743 	rcu_read_unlock();
744 	return memcg;
745 }
746 
747 /**
748  * mem_cgroup_iter - iterate over memory cgroup hierarchy
749  * @root: hierarchy root
750  * @prev: previously returned memcg, NULL on first invocation
751  * @reclaim: cookie for shared reclaim walks, NULL for full walks
752  *
753  * Returns references to children of the hierarchy below @root, or
754  * @root itself, or %NULL after a full round-trip.
755  *
756  * Caller must pass the return value in @prev on subsequent
757  * invocations for reference counting, or use mem_cgroup_iter_break()
758  * to cancel a hierarchy walk before the round-trip is complete.
759  *
760  * Reclaimers can specify a zone and a priority level in @reclaim to
761  * divide up the memcgs in the hierarchy among all concurrent
762  * reclaimers operating on the same zone and priority.
763  */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 				   struct mem_cgroup *prev,
766 				   struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 	struct cgroup_subsys_state *css = NULL;
770 	struct mem_cgroup *memcg = NULL;
771 	struct mem_cgroup *pos = NULL;
772 
773 	if (mem_cgroup_disabled())
774 		return NULL;
775 
776 	if (!root)
777 		root = root_mem_cgroup;
778 
779 	if (prev && !reclaim)
780 		pos = prev;
781 
782 	if (!root->use_hierarchy && root != root_mem_cgroup) {
783 		if (prev)
784 			goto out;
785 		return root;
786 	}
787 
788 	rcu_read_lock();
789 
790 	if (reclaim) {
791 		struct mem_cgroup_per_node *mz;
792 
793 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 		iter = &mz->iter[reclaim->priority];
795 
796 		if (prev && reclaim->generation != iter->generation)
797 			goto out_unlock;
798 
799 		while (1) {
800 			pos = READ_ONCE(iter->position);
801 			if (!pos || css_tryget(&pos->css))
802 				break;
803 			/*
804 			 * css reference reached zero, so iter->position will
805 			 * be cleared by ->css_released. However, we should not
806 			 * rely on this happening soon, because ->css_released
807 			 * is called from a work queue, and by busy-waiting we
808 			 * might block it. So we clear iter->position right
809 			 * away.
810 			 */
811 			(void)cmpxchg(&iter->position, pos, NULL);
812 		}
813 	}
814 
815 	if (pos)
816 		css = &pos->css;
817 
818 	for (;;) {
819 		css = css_next_descendant_pre(css, &root->css);
820 		if (!css) {
821 			/*
822 			 * Reclaimers share the hierarchy walk, and a
823 			 * new one might jump in right at the end of
824 			 * the hierarchy - make sure they see at least
825 			 * one group and restart from the beginning.
826 			 */
827 			if (!prev)
828 				continue;
829 			break;
830 		}
831 
832 		/*
833 		 * Verify the css and acquire a reference.  The root
834 		 * is provided by the caller, so we know it's alive
835 		 * and kicking, and don't take an extra reference.
836 		 */
837 		memcg = mem_cgroup_from_css(css);
838 
839 		if (css == &root->css)
840 			break;
841 
842 		if (css_tryget(css))
843 			break;
844 
845 		memcg = NULL;
846 	}
847 
848 	if (reclaim) {
849 		/*
850 		 * The position could have already been updated by a competing
851 		 * thread, so check that the value hasn't changed since we read
852 		 * it to avoid reclaiming from the same cgroup twice.
853 		 */
854 		(void)cmpxchg(&iter->position, pos, memcg);
855 
856 		if (pos)
857 			css_put(&pos->css);
858 
859 		if (!memcg)
860 			iter->generation++;
861 		else if (!prev)
862 			reclaim->generation = iter->generation;
863 	}
864 
865 out_unlock:
866 	rcu_read_unlock();
867 out:
868 	if (prev && prev != root)
869 		css_put(&prev->css);
870 
871 	return memcg;
872 }
873 
874 /**
875  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876  * @root: hierarchy root
877  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878  */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 			   struct mem_cgroup *prev)
881 {
882 	if (!root)
883 		root = root_mem_cgroup;
884 	if (prev && prev != root)
885 		css_put(&prev->css);
886 }
887 
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 	struct mem_cgroup *memcg = dead_memcg;
891 	struct mem_cgroup_reclaim_iter *iter;
892 	struct mem_cgroup_per_node *mz;
893 	int nid;
894 	int i;
895 
896 	while ((memcg = parent_mem_cgroup(memcg))) {
897 		for_each_node(nid) {
898 			mz = mem_cgroup_nodeinfo(memcg, nid);
899 			for (i = 0; i <= DEF_PRIORITY; i++) {
900 				iter = &mz->iter[i];
901 				cmpxchg(&iter->position,
902 					dead_memcg, NULL);
903 			}
904 		}
905 	}
906 }
907 
908 /*
909  * Iteration constructs for visiting all cgroups (under a tree).  If
910  * loops are exited prematurely (break), mem_cgroup_iter_break() must
911  * be used for reference counting.
912  */
913 #define for_each_mem_cgroup_tree(iter, root)		\
914 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915 	     iter != NULL;				\
916 	     iter = mem_cgroup_iter(root, iter, NULL))
917 
918 #define for_each_mem_cgroup(iter)			\
919 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920 	     iter != NULL;				\
921 	     iter = mem_cgroup_iter(NULL, iter, NULL))
922 
923 /**
924  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925  * @page: the page
926  * @zone: zone of the page
927  *
928  * This function is only safe when following the LRU page isolation
929  * and putback protocol: the LRU lock must be held, and the page must
930  * either be PageLRU() or the caller must have isolated/allocated it.
931  */
932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
933 {
934 	struct mem_cgroup_per_node *mz;
935 	struct mem_cgroup *memcg;
936 	struct lruvec *lruvec;
937 
938 	if (mem_cgroup_disabled()) {
939 		lruvec = &pgdat->lruvec;
940 		goto out;
941 	}
942 
943 	memcg = page->mem_cgroup;
944 	/*
945 	 * Swapcache readahead pages are added to the LRU - and
946 	 * possibly migrated - before they are charged.
947 	 */
948 	if (!memcg)
949 		memcg = root_mem_cgroup;
950 
951 	mz = mem_cgroup_page_nodeinfo(memcg, page);
952 	lruvec = &mz->lruvec;
953 out:
954 	/*
955 	 * Since a node can be onlined after the mem_cgroup was created,
956 	 * we have to be prepared to initialize lruvec->zone here;
957 	 * and if offlined then reonlined, we need to reinitialize it.
958 	 */
959 	if (unlikely(lruvec->pgdat != pgdat))
960 		lruvec->pgdat = pgdat;
961 	return lruvec;
962 }
963 
964 /**
965  * mem_cgroup_update_lru_size - account for adding or removing an lru page
966  * @lruvec: mem_cgroup per zone lru vector
967  * @lru: index of lru list the page is sitting on
968  * @nr_pages: positive when adding or negative when removing
969  *
970  * This function must be called under lru_lock, just before a page is added
971  * to or just after a page is removed from an lru list (that ordering being
972  * so as to allow it to check that lru_size 0 is consistent with list_empty).
973  */
974 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
975 				int nr_pages)
976 {
977 	struct mem_cgroup_per_node *mz;
978 	unsigned long *lru_size;
979 	long size;
980 	bool empty;
981 
982 	if (mem_cgroup_disabled())
983 		return;
984 
985 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986 	lru_size = mz->lru_size + lru;
987 	empty = list_empty(lruvec->lists + lru);
988 
989 	if (nr_pages < 0)
990 		*lru_size += nr_pages;
991 
992 	size = *lru_size;
993 	if (WARN_ONCE(size < 0 || empty != !size,
994 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 		VM_BUG_ON(1);
997 		*lru_size = 0;
998 	}
999 
1000 	if (nr_pages > 0)
1001 		*lru_size += nr_pages;
1002 }
1003 
1004 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1005 {
1006 	struct mem_cgroup *task_memcg;
1007 	struct task_struct *p;
1008 	bool ret;
1009 
1010 	p = find_lock_task_mm(task);
1011 	if (p) {
1012 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1013 		task_unlock(p);
1014 	} else {
1015 		/*
1016 		 * All threads may have already detached their mm's, but the oom
1017 		 * killer still needs to detect if they have already been oom
1018 		 * killed to prevent needlessly killing additional tasks.
1019 		 */
1020 		rcu_read_lock();
1021 		task_memcg = mem_cgroup_from_task(task);
1022 		css_get(&task_memcg->css);
1023 		rcu_read_unlock();
1024 	}
1025 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 	css_put(&task_memcg->css);
1027 	return ret;
1028 }
1029 
1030 /**
1031  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1032  * @memcg: the memory cgroup
1033  *
1034  * Returns the maximum amount of memory @mem can be charged with, in
1035  * pages.
1036  */
1037 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1038 {
1039 	unsigned long margin = 0;
1040 	unsigned long count;
1041 	unsigned long limit;
1042 
1043 	count = page_counter_read(&memcg->memory);
1044 	limit = READ_ONCE(memcg->memory.limit);
1045 	if (count < limit)
1046 		margin = limit - count;
1047 
1048 	if (do_memsw_account()) {
1049 		count = page_counter_read(&memcg->memsw);
1050 		limit = READ_ONCE(memcg->memsw.limit);
1051 		if (count <= limit)
1052 			margin = min(margin, limit - count);
1053 		else
1054 			margin = 0;
1055 	}
1056 
1057 	return margin;
1058 }
1059 
1060 /*
1061  * A routine for checking "mem" is under move_account() or not.
1062  *
1063  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064  * moving cgroups. This is for waiting at high-memory pressure
1065  * caused by "move".
1066  */
1067 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1068 {
1069 	struct mem_cgroup *from;
1070 	struct mem_cgroup *to;
1071 	bool ret = false;
1072 	/*
1073 	 * Unlike task_move routines, we access mc.to, mc.from not under
1074 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 	 */
1076 	spin_lock(&mc.lock);
1077 	from = mc.from;
1078 	to = mc.to;
1079 	if (!from)
1080 		goto unlock;
1081 
1082 	ret = mem_cgroup_is_descendant(from, memcg) ||
1083 		mem_cgroup_is_descendant(to, memcg);
1084 unlock:
1085 	spin_unlock(&mc.lock);
1086 	return ret;
1087 }
1088 
1089 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1090 {
1091 	if (mc.moving_task && current != mc.moving_task) {
1092 		if (mem_cgroup_under_move(memcg)) {
1093 			DEFINE_WAIT(wait);
1094 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 			/* moving charge context might have finished. */
1096 			if (mc.moving_task)
1097 				schedule();
1098 			finish_wait(&mc.waitq, &wait);
1099 			return true;
1100 		}
1101 	}
1102 	return false;
1103 }
1104 
1105 #define K(x) ((x) << (PAGE_SHIFT-10))
1106 /**
1107  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108  * @memcg: The memory cgroup that went over limit
1109  * @p: Task that is going to be killed
1110  *
1111  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112  * enabled
1113  */
1114 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115 {
1116 	struct mem_cgroup *iter;
1117 	unsigned int i;
1118 
1119 	rcu_read_lock();
1120 
1121 	if (p) {
1122 		pr_info("Task in ");
1123 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 		pr_cont(" killed as a result of limit of ");
1125 	} else {
1126 		pr_info("Memory limit reached of cgroup ");
1127 	}
1128 
1129 	pr_cont_cgroup_path(memcg->css.cgroup);
1130 	pr_cont("\n");
1131 
1132 	rcu_read_unlock();
1133 
1134 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 		K((u64)page_counter_read(&memcg->memory)),
1136 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 		K((u64)page_counter_read(&memcg->memsw)),
1139 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 		K((u64)page_counter_read(&memcg->kmem)),
1142 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1143 
1144 	for_each_mem_cgroup_tree(iter, memcg) {
1145 		pr_info("Memory cgroup stats for ");
1146 		pr_cont_cgroup_path(iter->css.cgroup);
1147 		pr_cont(":");
1148 
1149 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1151 				continue;
1152 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 				K(mem_cgroup_read_stat(iter, i)));
1154 		}
1155 
1156 		for (i = 0; i < NR_LRU_LISTS; i++)
1157 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159 
1160 		pr_cont("\n");
1161 	}
1162 }
1163 
1164 /*
1165  * This function returns the number of memcg under hierarchy tree. Returns
1166  * 1(self count) if no children.
1167  */
1168 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1169 {
1170 	int num = 0;
1171 	struct mem_cgroup *iter;
1172 
1173 	for_each_mem_cgroup_tree(iter, memcg)
1174 		num++;
1175 	return num;
1176 }
1177 
1178 /*
1179  * Return the memory (and swap, if configured) limit for a memcg.
1180  */
1181 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1182 {
1183 	unsigned long limit;
1184 
1185 	limit = memcg->memory.limit;
1186 	if (mem_cgroup_swappiness(memcg)) {
1187 		unsigned long memsw_limit;
1188 		unsigned long swap_limit;
1189 
1190 		memsw_limit = memcg->memsw.limit;
1191 		swap_limit = memcg->swap.limit;
1192 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 		limit = min(limit + swap_limit, memsw_limit);
1194 	}
1195 	return limit;
1196 }
1197 
1198 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1199 				     int order)
1200 {
1201 	struct oom_control oc = {
1202 		.zonelist = NULL,
1203 		.nodemask = NULL,
1204 		.memcg = memcg,
1205 		.gfp_mask = gfp_mask,
1206 		.order = order,
1207 	};
1208 	struct mem_cgroup *iter;
1209 	unsigned long chosen_points = 0;
1210 	unsigned long totalpages;
1211 	unsigned int points = 0;
1212 	struct task_struct *chosen = NULL;
1213 
1214 	mutex_lock(&oom_lock);
1215 
1216 	/*
1217 	 * If current has a pending SIGKILL or is exiting, then automatically
1218 	 * select it.  The goal is to allow it to allocate so that it may
1219 	 * quickly exit and free its memory.
1220 	 */
1221 	if (task_will_free_mem(current)) {
1222 		mark_oom_victim(current);
1223 		wake_oom_reaper(current);
1224 		goto unlock;
1225 	}
1226 
1227 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229 	for_each_mem_cgroup_tree(iter, memcg) {
1230 		struct css_task_iter it;
1231 		struct task_struct *task;
1232 
1233 		css_task_iter_start(&iter->css, &it);
1234 		while ((task = css_task_iter_next(&it))) {
1235 			switch (oom_scan_process_thread(&oc, task)) {
1236 			case OOM_SCAN_SELECT:
1237 				if (chosen)
1238 					put_task_struct(chosen);
1239 				chosen = task;
1240 				chosen_points = ULONG_MAX;
1241 				get_task_struct(chosen);
1242 				/* fall through */
1243 			case OOM_SCAN_CONTINUE:
1244 				continue;
1245 			case OOM_SCAN_ABORT:
1246 				css_task_iter_end(&it);
1247 				mem_cgroup_iter_break(memcg, iter);
1248 				if (chosen)
1249 					put_task_struct(chosen);
1250 				/* Set a dummy value to return "true". */
1251 				chosen = (void *) 1;
1252 				goto unlock;
1253 			case OOM_SCAN_OK:
1254 				break;
1255 			};
1256 			points = oom_badness(task, memcg, NULL, totalpages);
1257 			if (!points || points < chosen_points)
1258 				continue;
1259 			/* Prefer thread group leaders for display purposes */
1260 			if (points == chosen_points &&
1261 			    thread_group_leader(chosen))
1262 				continue;
1263 
1264 			if (chosen)
1265 				put_task_struct(chosen);
1266 			chosen = task;
1267 			chosen_points = points;
1268 			get_task_struct(chosen);
1269 		}
1270 		css_task_iter_end(&it);
1271 	}
1272 
1273 	if (chosen) {
1274 		points = chosen_points * 1000 / totalpages;
1275 		oom_kill_process(&oc, chosen, points, totalpages,
1276 				 "Memory cgroup out of memory");
1277 	}
1278 unlock:
1279 	mutex_unlock(&oom_lock);
1280 	return chosen;
1281 }
1282 
1283 #if MAX_NUMNODES > 1
1284 
1285 /**
1286  * test_mem_cgroup_node_reclaimable
1287  * @memcg: the target memcg
1288  * @nid: the node ID to be checked.
1289  * @noswap : specify true here if the user wants flle only information.
1290  *
1291  * This function returns whether the specified memcg contains any
1292  * reclaimable pages on a node. Returns true if there are any reclaimable
1293  * pages in the node.
1294  */
1295 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 		int nid, bool noswap)
1297 {
1298 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1299 		return true;
1300 	if (noswap || !total_swap_pages)
1301 		return false;
1302 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1303 		return true;
1304 	return false;
1305 
1306 }
1307 
1308 /*
1309  * Always updating the nodemask is not very good - even if we have an empty
1310  * list or the wrong list here, we can start from some node and traverse all
1311  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312  *
1313  */
1314 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1315 {
1316 	int nid;
1317 	/*
1318 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 	 * pagein/pageout changes since the last update.
1320 	 */
1321 	if (!atomic_read(&memcg->numainfo_events))
1322 		return;
1323 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1324 		return;
1325 
1326 	/* make a nodemask where this memcg uses memory from */
1327 	memcg->scan_nodes = node_states[N_MEMORY];
1328 
1329 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1330 
1331 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 			node_clear(nid, memcg->scan_nodes);
1333 	}
1334 
1335 	atomic_set(&memcg->numainfo_events, 0);
1336 	atomic_set(&memcg->numainfo_updating, 0);
1337 }
1338 
1339 /*
1340  * Selecting a node where we start reclaim from. Because what we need is just
1341  * reducing usage counter, start from anywhere is O,K. Considering
1342  * memory reclaim from current node, there are pros. and cons.
1343  *
1344  * Freeing memory from current node means freeing memory from a node which
1345  * we'll use or we've used. So, it may make LRU bad. And if several threads
1346  * hit limits, it will see a contention on a node. But freeing from remote
1347  * node means more costs for memory reclaim because of memory latency.
1348  *
1349  * Now, we use round-robin. Better algorithm is welcomed.
1350  */
1351 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 {
1353 	int node;
1354 
1355 	mem_cgroup_may_update_nodemask(memcg);
1356 	node = memcg->last_scanned_node;
1357 
1358 	node = next_node_in(node, memcg->scan_nodes);
1359 	/*
1360 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 	 * last time it really checked all the LRUs due to rate limiting.
1362 	 * Fallback to the current node in that case for simplicity.
1363 	 */
1364 	if (unlikely(node == MAX_NUMNODES))
1365 		node = numa_node_id();
1366 
1367 	memcg->last_scanned_node = node;
1368 	return node;
1369 }
1370 #else
1371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1372 {
1373 	return 0;
1374 }
1375 #endif
1376 
1377 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1378 				   pg_data_t *pgdat,
1379 				   gfp_t gfp_mask,
1380 				   unsigned long *total_scanned)
1381 {
1382 	struct mem_cgroup *victim = NULL;
1383 	int total = 0;
1384 	int loop = 0;
1385 	unsigned long excess;
1386 	unsigned long nr_scanned;
1387 	struct mem_cgroup_reclaim_cookie reclaim = {
1388 		.pgdat = pgdat,
1389 		.priority = 0,
1390 	};
1391 
1392 	excess = soft_limit_excess(root_memcg);
1393 
1394 	while (1) {
1395 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 		if (!victim) {
1397 			loop++;
1398 			if (loop >= 2) {
1399 				/*
1400 				 * If we have not been able to reclaim
1401 				 * anything, it might because there are
1402 				 * no reclaimable pages under this hierarchy
1403 				 */
1404 				if (!total)
1405 					break;
1406 				/*
1407 				 * We want to do more targeted reclaim.
1408 				 * excess >> 2 is not to excessive so as to
1409 				 * reclaim too much, nor too less that we keep
1410 				 * coming back to reclaim from this cgroup
1411 				 */
1412 				if (total >= (excess >> 2) ||
1413 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 					break;
1415 			}
1416 			continue;
1417 		}
1418 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419 					pgdat, &nr_scanned);
1420 		*total_scanned += nr_scanned;
1421 		if (!soft_limit_excess(root_memcg))
1422 			break;
1423 	}
1424 	mem_cgroup_iter_break(root_memcg, victim);
1425 	return total;
1426 }
1427 
1428 #ifdef CONFIG_LOCKDEP
1429 static struct lockdep_map memcg_oom_lock_dep_map = {
1430 	.name = "memcg_oom_lock",
1431 };
1432 #endif
1433 
1434 static DEFINE_SPINLOCK(memcg_oom_lock);
1435 
1436 /*
1437  * Check OOM-Killer is already running under our hierarchy.
1438  * If someone is running, return false.
1439  */
1440 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1441 {
1442 	struct mem_cgroup *iter, *failed = NULL;
1443 
1444 	spin_lock(&memcg_oom_lock);
1445 
1446 	for_each_mem_cgroup_tree(iter, memcg) {
1447 		if (iter->oom_lock) {
1448 			/*
1449 			 * this subtree of our hierarchy is already locked
1450 			 * so we cannot give a lock.
1451 			 */
1452 			failed = iter;
1453 			mem_cgroup_iter_break(memcg, iter);
1454 			break;
1455 		} else
1456 			iter->oom_lock = true;
1457 	}
1458 
1459 	if (failed) {
1460 		/*
1461 		 * OK, we failed to lock the whole subtree so we have
1462 		 * to clean up what we set up to the failing subtree
1463 		 */
1464 		for_each_mem_cgroup_tree(iter, memcg) {
1465 			if (iter == failed) {
1466 				mem_cgroup_iter_break(memcg, iter);
1467 				break;
1468 			}
1469 			iter->oom_lock = false;
1470 		}
1471 	} else
1472 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1473 
1474 	spin_unlock(&memcg_oom_lock);
1475 
1476 	return !failed;
1477 }
1478 
1479 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1480 {
1481 	struct mem_cgroup *iter;
1482 
1483 	spin_lock(&memcg_oom_lock);
1484 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485 	for_each_mem_cgroup_tree(iter, memcg)
1486 		iter->oom_lock = false;
1487 	spin_unlock(&memcg_oom_lock);
1488 }
1489 
1490 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1491 {
1492 	struct mem_cgroup *iter;
1493 
1494 	spin_lock(&memcg_oom_lock);
1495 	for_each_mem_cgroup_tree(iter, memcg)
1496 		iter->under_oom++;
1497 	spin_unlock(&memcg_oom_lock);
1498 }
1499 
1500 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1501 {
1502 	struct mem_cgroup *iter;
1503 
1504 	/*
1505 	 * When a new child is created while the hierarchy is under oom,
1506 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1507 	 */
1508 	spin_lock(&memcg_oom_lock);
1509 	for_each_mem_cgroup_tree(iter, memcg)
1510 		if (iter->under_oom > 0)
1511 			iter->under_oom--;
1512 	spin_unlock(&memcg_oom_lock);
1513 }
1514 
1515 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516 
1517 struct oom_wait_info {
1518 	struct mem_cgroup *memcg;
1519 	wait_queue_t	wait;
1520 };
1521 
1522 static int memcg_oom_wake_function(wait_queue_t *wait,
1523 	unsigned mode, int sync, void *arg)
1524 {
1525 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 	struct mem_cgroup *oom_wait_memcg;
1527 	struct oom_wait_info *oom_wait_info;
1528 
1529 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530 	oom_wait_memcg = oom_wait_info->memcg;
1531 
1532 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1534 		return 0;
1535 	return autoremove_wake_function(wait, mode, sync, arg);
1536 }
1537 
1538 static void memcg_oom_recover(struct mem_cgroup *memcg)
1539 {
1540 	/*
1541 	 * For the following lockless ->under_oom test, the only required
1542 	 * guarantee is that it must see the state asserted by an OOM when
1543 	 * this function is called as a result of userland actions
1544 	 * triggered by the notification of the OOM.  This is trivially
1545 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 	 * triggering notification.
1547 	 */
1548 	if (memcg && memcg->under_oom)
1549 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1550 }
1551 
1552 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1553 {
1554 	if (!current->memcg_may_oom)
1555 		return;
1556 	/*
1557 	 * We are in the middle of the charge context here, so we
1558 	 * don't want to block when potentially sitting on a callstack
1559 	 * that holds all kinds of filesystem and mm locks.
1560 	 *
1561 	 * Also, the caller may handle a failed allocation gracefully
1562 	 * (like optional page cache readahead) and so an OOM killer
1563 	 * invocation might not even be necessary.
1564 	 *
1565 	 * That's why we don't do anything here except remember the
1566 	 * OOM context and then deal with it at the end of the page
1567 	 * fault when the stack is unwound, the locks are released,
1568 	 * and when we know whether the fault was overall successful.
1569 	 */
1570 	css_get(&memcg->css);
1571 	current->memcg_in_oom = memcg;
1572 	current->memcg_oom_gfp_mask = mask;
1573 	current->memcg_oom_order = order;
1574 }
1575 
1576 /**
1577  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578  * @handle: actually kill/wait or just clean up the OOM state
1579  *
1580  * This has to be called at the end of a page fault if the memcg OOM
1581  * handler was enabled.
1582  *
1583  * Memcg supports userspace OOM handling where failed allocations must
1584  * sleep on a waitqueue until the userspace task resolves the
1585  * situation.  Sleeping directly in the charge context with all kinds
1586  * of locks held is not a good idea, instead we remember an OOM state
1587  * in the task and mem_cgroup_oom_synchronize() has to be called at
1588  * the end of the page fault to complete the OOM handling.
1589  *
1590  * Returns %true if an ongoing memcg OOM situation was detected and
1591  * completed, %false otherwise.
1592  */
1593 bool mem_cgroup_oom_synchronize(bool handle)
1594 {
1595 	struct mem_cgroup *memcg = current->memcg_in_oom;
1596 	struct oom_wait_info owait;
1597 	bool locked;
1598 
1599 	/* OOM is global, do not handle */
1600 	if (!memcg)
1601 		return false;
1602 
1603 	if (!handle || oom_killer_disabled)
1604 		goto cleanup;
1605 
1606 	owait.memcg = memcg;
1607 	owait.wait.flags = 0;
1608 	owait.wait.func = memcg_oom_wake_function;
1609 	owait.wait.private = current;
1610 	INIT_LIST_HEAD(&owait.wait.task_list);
1611 
1612 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 	mem_cgroup_mark_under_oom(memcg);
1614 
1615 	locked = mem_cgroup_oom_trylock(memcg);
1616 
1617 	if (locked)
1618 		mem_cgroup_oom_notify(memcg);
1619 
1620 	if (locked && !memcg->oom_kill_disable) {
1621 		mem_cgroup_unmark_under_oom(memcg);
1622 		finish_wait(&memcg_oom_waitq, &owait.wait);
1623 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 					 current->memcg_oom_order);
1625 	} else {
1626 		schedule();
1627 		mem_cgroup_unmark_under_oom(memcg);
1628 		finish_wait(&memcg_oom_waitq, &owait.wait);
1629 	}
1630 
1631 	if (locked) {
1632 		mem_cgroup_oom_unlock(memcg);
1633 		/*
1634 		 * There is no guarantee that an OOM-lock contender
1635 		 * sees the wakeups triggered by the OOM kill
1636 		 * uncharges.  Wake any sleepers explicitely.
1637 		 */
1638 		memcg_oom_recover(memcg);
1639 	}
1640 cleanup:
1641 	current->memcg_in_oom = NULL;
1642 	css_put(&memcg->css);
1643 	return true;
1644 }
1645 
1646 /**
1647  * lock_page_memcg - lock a page->mem_cgroup binding
1648  * @page: the page
1649  *
1650  * This function protects unlocked LRU pages from being moved to
1651  * another cgroup and stabilizes their page->mem_cgroup binding.
1652  */
1653 void lock_page_memcg(struct page *page)
1654 {
1655 	struct mem_cgroup *memcg;
1656 	unsigned long flags;
1657 
1658 	/*
1659 	 * The RCU lock is held throughout the transaction.  The fast
1660 	 * path can get away without acquiring the memcg->move_lock
1661 	 * because page moving starts with an RCU grace period.
1662 	 */
1663 	rcu_read_lock();
1664 
1665 	if (mem_cgroup_disabled())
1666 		return;
1667 again:
1668 	memcg = page->mem_cgroup;
1669 	if (unlikely(!memcg))
1670 		return;
1671 
1672 	if (atomic_read(&memcg->moving_account) <= 0)
1673 		return;
1674 
1675 	spin_lock_irqsave(&memcg->move_lock, flags);
1676 	if (memcg != page->mem_cgroup) {
1677 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 		goto again;
1679 	}
1680 
1681 	/*
1682 	 * When charge migration first begins, we can have locked and
1683 	 * unlocked page stat updates happening concurrently.  Track
1684 	 * the task who has the lock for unlock_page_memcg().
1685 	 */
1686 	memcg->move_lock_task = current;
1687 	memcg->move_lock_flags = flags;
1688 
1689 	return;
1690 }
1691 EXPORT_SYMBOL(lock_page_memcg);
1692 
1693 /**
1694  * unlock_page_memcg - unlock a page->mem_cgroup binding
1695  * @page: the page
1696  */
1697 void unlock_page_memcg(struct page *page)
1698 {
1699 	struct mem_cgroup *memcg = page->mem_cgroup;
1700 
1701 	if (memcg && memcg->move_lock_task == current) {
1702 		unsigned long flags = memcg->move_lock_flags;
1703 
1704 		memcg->move_lock_task = NULL;
1705 		memcg->move_lock_flags = 0;
1706 
1707 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 	}
1709 
1710 	rcu_read_unlock();
1711 }
1712 EXPORT_SYMBOL(unlock_page_memcg);
1713 
1714 /*
1715  * size of first charge trial. "32" comes from vmscan.c's magic value.
1716  * TODO: maybe necessary to use big numbers in big irons.
1717  */
1718 #define CHARGE_BATCH	32U
1719 struct memcg_stock_pcp {
1720 	struct mem_cgroup *cached; /* this never be root cgroup */
1721 	unsigned int nr_pages;
1722 	struct work_struct work;
1723 	unsigned long flags;
1724 #define FLUSHING_CACHED_CHARGE	0
1725 };
1726 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727 static DEFINE_MUTEX(percpu_charge_mutex);
1728 
1729 /**
1730  * consume_stock: Try to consume stocked charge on this cpu.
1731  * @memcg: memcg to consume from.
1732  * @nr_pages: how many pages to charge.
1733  *
1734  * The charges will only happen if @memcg matches the current cpu's memcg
1735  * stock, and at least @nr_pages are available in that stock.  Failure to
1736  * service an allocation will refill the stock.
1737  *
1738  * returns true if successful, false otherwise.
1739  */
1740 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1741 {
1742 	struct memcg_stock_pcp *stock;
1743 	bool ret = false;
1744 
1745 	if (nr_pages > CHARGE_BATCH)
1746 		return ret;
1747 
1748 	stock = &get_cpu_var(memcg_stock);
1749 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1750 		stock->nr_pages -= nr_pages;
1751 		ret = true;
1752 	}
1753 	put_cpu_var(memcg_stock);
1754 	return ret;
1755 }
1756 
1757 /*
1758  * Returns stocks cached in percpu and reset cached information.
1759  */
1760 static void drain_stock(struct memcg_stock_pcp *stock)
1761 {
1762 	struct mem_cgroup *old = stock->cached;
1763 
1764 	if (stock->nr_pages) {
1765 		page_counter_uncharge(&old->memory, stock->nr_pages);
1766 		if (do_memsw_account())
1767 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1768 		css_put_many(&old->css, stock->nr_pages);
1769 		stock->nr_pages = 0;
1770 	}
1771 	stock->cached = NULL;
1772 }
1773 
1774 /*
1775  * This must be called under preempt disabled or must be called by
1776  * a thread which is pinned to local cpu.
1777  */
1778 static void drain_local_stock(struct work_struct *dummy)
1779 {
1780 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1781 	drain_stock(stock);
1782 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1783 }
1784 
1785 /*
1786  * Cache charges(val) to local per_cpu area.
1787  * This will be consumed by consume_stock() function, later.
1788  */
1789 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1790 {
1791 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1792 
1793 	if (stock->cached != memcg) { /* reset if necessary */
1794 		drain_stock(stock);
1795 		stock->cached = memcg;
1796 	}
1797 	stock->nr_pages += nr_pages;
1798 	put_cpu_var(memcg_stock);
1799 }
1800 
1801 /*
1802  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1803  * of the hierarchy under it.
1804  */
1805 static void drain_all_stock(struct mem_cgroup *root_memcg)
1806 {
1807 	int cpu, curcpu;
1808 
1809 	/* If someone's already draining, avoid adding running more workers. */
1810 	if (!mutex_trylock(&percpu_charge_mutex))
1811 		return;
1812 	/* Notify other cpus that system-wide "drain" is running */
1813 	get_online_cpus();
1814 	curcpu = get_cpu();
1815 	for_each_online_cpu(cpu) {
1816 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1817 		struct mem_cgroup *memcg;
1818 
1819 		memcg = stock->cached;
1820 		if (!memcg || !stock->nr_pages)
1821 			continue;
1822 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1823 			continue;
1824 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1825 			if (cpu == curcpu)
1826 				drain_local_stock(&stock->work);
1827 			else
1828 				schedule_work_on(cpu, &stock->work);
1829 		}
1830 	}
1831 	put_cpu();
1832 	put_online_cpus();
1833 	mutex_unlock(&percpu_charge_mutex);
1834 }
1835 
1836 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1837 					unsigned long action,
1838 					void *hcpu)
1839 {
1840 	int cpu = (unsigned long)hcpu;
1841 	struct memcg_stock_pcp *stock;
1842 
1843 	if (action == CPU_ONLINE)
1844 		return NOTIFY_OK;
1845 
1846 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1847 		return NOTIFY_OK;
1848 
1849 	stock = &per_cpu(memcg_stock, cpu);
1850 	drain_stock(stock);
1851 	return NOTIFY_OK;
1852 }
1853 
1854 static void reclaim_high(struct mem_cgroup *memcg,
1855 			 unsigned int nr_pages,
1856 			 gfp_t gfp_mask)
1857 {
1858 	do {
1859 		if (page_counter_read(&memcg->memory) <= memcg->high)
1860 			continue;
1861 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1862 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 	} while ((memcg = parent_mem_cgroup(memcg)));
1864 }
1865 
1866 static void high_work_func(struct work_struct *work)
1867 {
1868 	struct mem_cgroup *memcg;
1869 
1870 	memcg = container_of(work, struct mem_cgroup, high_work);
1871 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1872 }
1873 
1874 /*
1875  * Scheduled by try_charge() to be executed from the userland return path
1876  * and reclaims memory over the high limit.
1877  */
1878 void mem_cgroup_handle_over_high(void)
1879 {
1880 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 	struct mem_cgroup *memcg;
1882 
1883 	if (likely(!nr_pages))
1884 		return;
1885 
1886 	memcg = get_mem_cgroup_from_mm(current->mm);
1887 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 	css_put(&memcg->css);
1889 	current->memcg_nr_pages_over_high = 0;
1890 }
1891 
1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 		      unsigned int nr_pages)
1894 {
1895 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1896 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 	struct mem_cgroup *mem_over_limit;
1898 	struct page_counter *counter;
1899 	unsigned long nr_reclaimed;
1900 	bool may_swap = true;
1901 	bool drained = false;
1902 
1903 	if (mem_cgroup_is_root(memcg))
1904 		return 0;
1905 retry:
1906 	if (consume_stock(memcg, nr_pages))
1907 		return 0;
1908 
1909 	if (!do_memsw_account() ||
1910 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 			goto done_restock;
1913 		if (do_memsw_account())
1914 			page_counter_uncharge(&memcg->memsw, batch);
1915 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 	} else {
1917 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 		may_swap = false;
1919 	}
1920 
1921 	if (batch > nr_pages) {
1922 		batch = nr_pages;
1923 		goto retry;
1924 	}
1925 
1926 	/*
1927 	 * Unlike in global OOM situations, memcg is not in a physical
1928 	 * memory shortage.  Allow dying and OOM-killed tasks to
1929 	 * bypass the last charges so that they can exit quickly and
1930 	 * free their memory.
1931 	 */
1932 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1933 		     fatal_signal_pending(current) ||
1934 		     current->flags & PF_EXITING))
1935 		goto force;
1936 
1937 	if (unlikely(task_in_memcg_oom(current)))
1938 		goto nomem;
1939 
1940 	if (!gfpflags_allow_blocking(gfp_mask))
1941 		goto nomem;
1942 
1943 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1944 
1945 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1946 						    gfp_mask, may_swap);
1947 
1948 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1949 		goto retry;
1950 
1951 	if (!drained) {
1952 		drain_all_stock(mem_over_limit);
1953 		drained = true;
1954 		goto retry;
1955 	}
1956 
1957 	if (gfp_mask & __GFP_NORETRY)
1958 		goto nomem;
1959 	/*
1960 	 * Even though the limit is exceeded at this point, reclaim
1961 	 * may have been able to free some pages.  Retry the charge
1962 	 * before killing the task.
1963 	 *
1964 	 * Only for regular pages, though: huge pages are rather
1965 	 * unlikely to succeed so close to the limit, and we fall back
1966 	 * to regular pages anyway in case of failure.
1967 	 */
1968 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1969 		goto retry;
1970 	/*
1971 	 * At task move, charge accounts can be doubly counted. So, it's
1972 	 * better to wait until the end of task_move if something is going on.
1973 	 */
1974 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1975 		goto retry;
1976 
1977 	if (nr_retries--)
1978 		goto retry;
1979 
1980 	if (gfp_mask & __GFP_NOFAIL)
1981 		goto force;
1982 
1983 	if (fatal_signal_pending(current))
1984 		goto force;
1985 
1986 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1987 
1988 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1989 		       get_order(nr_pages * PAGE_SIZE));
1990 nomem:
1991 	if (!(gfp_mask & __GFP_NOFAIL))
1992 		return -ENOMEM;
1993 force:
1994 	/*
1995 	 * The allocation either can't fail or will lead to more memory
1996 	 * being freed very soon.  Allow memory usage go over the limit
1997 	 * temporarily by force charging it.
1998 	 */
1999 	page_counter_charge(&memcg->memory, nr_pages);
2000 	if (do_memsw_account())
2001 		page_counter_charge(&memcg->memsw, nr_pages);
2002 	css_get_many(&memcg->css, nr_pages);
2003 
2004 	return 0;
2005 
2006 done_restock:
2007 	css_get_many(&memcg->css, batch);
2008 	if (batch > nr_pages)
2009 		refill_stock(memcg, batch - nr_pages);
2010 
2011 	/*
2012 	 * If the hierarchy is above the normal consumption range, schedule
2013 	 * reclaim on returning to userland.  We can perform reclaim here
2014 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2015 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2016 	 * not recorded as it most likely matches current's and won't
2017 	 * change in the meantime.  As high limit is checked again before
2018 	 * reclaim, the cost of mismatch is negligible.
2019 	 */
2020 	do {
2021 		if (page_counter_read(&memcg->memory) > memcg->high) {
2022 			/* Don't bother a random interrupted task */
2023 			if (in_interrupt()) {
2024 				schedule_work(&memcg->high_work);
2025 				break;
2026 			}
2027 			current->memcg_nr_pages_over_high += batch;
2028 			set_notify_resume(current);
2029 			break;
2030 		}
2031 	} while ((memcg = parent_mem_cgroup(memcg)));
2032 
2033 	return 0;
2034 }
2035 
2036 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2037 {
2038 	if (mem_cgroup_is_root(memcg))
2039 		return;
2040 
2041 	page_counter_uncharge(&memcg->memory, nr_pages);
2042 	if (do_memsw_account())
2043 		page_counter_uncharge(&memcg->memsw, nr_pages);
2044 
2045 	css_put_many(&memcg->css, nr_pages);
2046 }
2047 
2048 static void lock_page_lru(struct page *page, int *isolated)
2049 {
2050 	struct zone *zone = page_zone(page);
2051 
2052 	spin_lock_irq(zone_lru_lock(zone));
2053 	if (PageLRU(page)) {
2054 		struct lruvec *lruvec;
2055 
2056 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2057 		ClearPageLRU(page);
2058 		del_page_from_lru_list(page, lruvec, page_lru(page));
2059 		*isolated = 1;
2060 	} else
2061 		*isolated = 0;
2062 }
2063 
2064 static void unlock_page_lru(struct page *page, int isolated)
2065 {
2066 	struct zone *zone = page_zone(page);
2067 
2068 	if (isolated) {
2069 		struct lruvec *lruvec;
2070 
2071 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2072 		VM_BUG_ON_PAGE(PageLRU(page), page);
2073 		SetPageLRU(page);
2074 		add_page_to_lru_list(page, lruvec, page_lru(page));
2075 	}
2076 	spin_unlock_irq(zone_lru_lock(zone));
2077 }
2078 
2079 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2080 			  bool lrucare)
2081 {
2082 	int isolated;
2083 
2084 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2085 
2086 	/*
2087 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2089 	 */
2090 	if (lrucare)
2091 		lock_page_lru(page, &isolated);
2092 
2093 	/*
2094 	 * Nobody should be changing or seriously looking at
2095 	 * page->mem_cgroup at this point:
2096 	 *
2097 	 * - the page is uncharged
2098 	 *
2099 	 * - the page is off-LRU
2100 	 *
2101 	 * - an anonymous fault has exclusive page access, except for
2102 	 *   a locked page table
2103 	 *
2104 	 * - a page cache insertion, a swapin fault, or a migration
2105 	 *   have the page locked
2106 	 */
2107 	page->mem_cgroup = memcg;
2108 
2109 	if (lrucare)
2110 		unlock_page_lru(page, isolated);
2111 }
2112 
2113 #ifndef CONFIG_SLOB
2114 static int memcg_alloc_cache_id(void)
2115 {
2116 	int id, size;
2117 	int err;
2118 
2119 	id = ida_simple_get(&memcg_cache_ida,
2120 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2121 	if (id < 0)
2122 		return id;
2123 
2124 	if (id < memcg_nr_cache_ids)
2125 		return id;
2126 
2127 	/*
2128 	 * There's no space for the new id in memcg_caches arrays,
2129 	 * so we have to grow them.
2130 	 */
2131 	down_write(&memcg_cache_ids_sem);
2132 
2133 	size = 2 * (id + 1);
2134 	if (size < MEMCG_CACHES_MIN_SIZE)
2135 		size = MEMCG_CACHES_MIN_SIZE;
2136 	else if (size > MEMCG_CACHES_MAX_SIZE)
2137 		size = MEMCG_CACHES_MAX_SIZE;
2138 
2139 	err = memcg_update_all_caches(size);
2140 	if (!err)
2141 		err = memcg_update_all_list_lrus(size);
2142 	if (!err)
2143 		memcg_nr_cache_ids = size;
2144 
2145 	up_write(&memcg_cache_ids_sem);
2146 
2147 	if (err) {
2148 		ida_simple_remove(&memcg_cache_ida, id);
2149 		return err;
2150 	}
2151 	return id;
2152 }
2153 
2154 static void memcg_free_cache_id(int id)
2155 {
2156 	ida_simple_remove(&memcg_cache_ida, id);
2157 }
2158 
2159 struct memcg_kmem_cache_create_work {
2160 	struct mem_cgroup *memcg;
2161 	struct kmem_cache *cachep;
2162 	struct work_struct work;
2163 };
2164 
2165 static void memcg_kmem_cache_create_func(struct work_struct *w)
2166 {
2167 	struct memcg_kmem_cache_create_work *cw =
2168 		container_of(w, struct memcg_kmem_cache_create_work, work);
2169 	struct mem_cgroup *memcg = cw->memcg;
2170 	struct kmem_cache *cachep = cw->cachep;
2171 
2172 	memcg_create_kmem_cache(memcg, cachep);
2173 
2174 	css_put(&memcg->css);
2175 	kfree(cw);
2176 }
2177 
2178 /*
2179  * Enqueue the creation of a per-memcg kmem_cache.
2180  */
2181 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2182 					       struct kmem_cache *cachep)
2183 {
2184 	struct memcg_kmem_cache_create_work *cw;
2185 
2186 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2187 	if (!cw)
2188 		return;
2189 
2190 	css_get(&memcg->css);
2191 
2192 	cw->memcg = memcg;
2193 	cw->cachep = cachep;
2194 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2195 
2196 	schedule_work(&cw->work);
2197 }
2198 
2199 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2200 					     struct kmem_cache *cachep)
2201 {
2202 	/*
2203 	 * We need to stop accounting when we kmalloc, because if the
2204 	 * corresponding kmalloc cache is not yet created, the first allocation
2205 	 * in __memcg_schedule_kmem_cache_create will recurse.
2206 	 *
2207 	 * However, it is better to enclose the whole function. Depending on
2208 	 * the debugging options enabled, INIT_WORK(), for instance, can
2209 	 * trigger an allocation. This too, will make us recurse. Because at
2210 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 	 * the safest choice is to do it like this, wrapping the whole function.
2212 	 */
2213 	current->memcg_kmem_skip_account = 1;
2214 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2215 	current->memcg_kmem_skip_account = 0;
2216 }
2217 
2218 static inline bool memcg_kmem_bypass(void)
2219 {
2220 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2221 		return true;
2222 	return false;
2223 }
2224 
2225 /**
2226  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227  * @cachep: the original global kmem cache
2228  *
2229  * Return the kmem_cache we're supposed to use for a slab allocation.
2230  * We try to use the current memcg's version of the cache.
2231  *
2232  * If the cache does not exist yet, if we are the first user of it, we
2233  * create it asynchronously in a workqueue and let the current allocation
2234  * go through with the original cache.
2235  *
2236  * This function takes a reference to the cache it returns to assure it
2237  * won't get destroyed while we are working with it. Once the caller is
2238  * done with it, memcg_kmem_put_cache() must be called to release the
2239  * reference.
2240  */
2241 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2242 {
2243 	struct mem_cgroup *memcg;
2244 	struct kmem_cache *memcg_cachep;
2245 	int kmemcg_id;
2246 
2247 	VM_BUG_ON(!is_root_cache(cachep));
2248 
2249 	if (memcg_kmem_bypass())
2250 		return cachep;
2251 
2252 	if (current->memcg_kmem_skip_account)
2253 		return cachep;
2254 
2255 	memcg = get_mem_cgroup_from_mm(current->mm);
2256 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2257 	if (kmemcg_id < 0)
2258 		goto out;
2259 
2260 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2261 	if (likely(memcg_cachep))
2262 		return memcg_cachep;
2263 
2264 	/*
2265 	 * If we are in a safe context (can wait, and not in interrupt
2266 	 * context), we could be be predictable and return right away.
2267 	 * This would guarantee that the allocation being performed
2268 	 * already belongs in the new cache.
2269 	 *
2270 	 * However, there are some clashes that can arrive from locking.
2271 	 * For instance, because we acquire the slab_mutex while doing
2272 	 * memcg_create_kmem_cache, this means no further allocation
2273 	 * could happen with the slab_mutex held. So it's better to
2274 	 * defer everything.
2275 	 */
2276 	memcg_schedule_kmem_cache_create(memcg, cachep);
2277 out:
2278 	css_put(&memcg->css);
2279 	return cachep;
2280 }
2281 
2282 /**
2283  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284  * @cachep: the cache returned by memcg_kmem_get_cache
2285  */
2286 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2287 {
2288 	if (!is_root_cache(cachep))
2289 		css_put(&cachep->memcg_params.memcg->css);
2290 }
2291 
2292 /**
2293  * memcg_kmem_charge: charge a kmem page
2294  * @page: page to charge
2295  * @gfp: reclaim mode
2296  * @order: allocation order
2297  * @memcg: memory cgroup to charge
2298  *
2299  * Returns 0 on success, an error code on failure.
2300  */
2301 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2302 			    struct mem_cgroup *memcg)
2303 {
2304 	unsigned int nr_pages = 1 << order;
2305 	struct page_counter *counter;
2306 	int ret;
2307 
2308 	ret = try_charge(memcg, gfp, nr_pages);
2309 	if (ret)
2310 		return ret;
2311 
2312 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2313 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2314 		cancel_charge(memcg, nr_pages);
2315 		return -ENOMEM;
2316 	}
2317 
2318 	page->mem_cgroup = memcg;
2319 
2320 	return 0;
2321 }
2322 
2323 /**
2324  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325  * @page: page to charge
2326  * @gfp: reclaim mode
2327  * @order: allocation order
2328  *
2329  * Returns 0 on success, an error code on failure.
2330  */
2331 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2332 {
2333 	struct mem_cgroup *memcg;
2334 	int ret = 0;
2335 
2336 	if (memcg_kmem_bypass())
2337 		return 0;
2338 
2339 	memcg = get_mem_cgroup_from_mm(current->mm);
2340 	if (!mem_cgroup_is_root(memcg)) {
2341 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2342 		if (!ret)
2343 			__SetPageKmemcg(page);
2344 	}
2345 	css_put(&memcg->css);
2346 	return ret;
2347 }
2348 /**
2349  * memcg_kmem_uncharge: uncharge a kmem page
2350  * @page: page to uncharge
2351  * @order: allocation order
2352  */
2353 void memcg_kmem_uncharge(struct page *page, int order)
2354 {
2355 	struct mem_cgroup *memcg = page->mem_cgroup;
2356 	unsigned int nr_pages = 1 << order;
2357 
2358 	if (!memcg)
2359 		return;
2360 
2361 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2362 
2363 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2364 		page_counter_uncharge(&memcg->kmem, nr_pages);
2365 
2366 	page_counter_uncharge(&memcg->memory, nr_pages);
2367 	if (do_memsw_account())
2368 		page_counter_uncharge(&memcg->memsw, nr_pages);
2369 
2370 	page->mem_cgroup = NULL;
2371 
2372 	/* slab pages do not have PageKmemcg flag set */
2373 	if (PageKmemcg(page))
2374 		__ClearPageKmemcg(page);
2375 
2376 	css_put_many(&memcg->css, nr_pages);
2377 }
2378 #endif /* !CONFIG_SLOB */
2379 
2380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2381 
2382 /*
2383  * Because tail pages are not marked as "used", set it. We're under
2384  * zone_lru_lock and migration entries setup in all page mappings.
2385  */
2386 void mem_cgroup_split_huge_fixup(struct page *head)
2387 {
2388 	int i;
2389 
2390 	if (mem_cgroup_disabled())
2391 		return;
2392 
2393 	for (i = 1; i < HPAGE_PMD_NR; i++)
2394 		head[i].mem_cgroup = head->mem_cgroup;
2395 
2396 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2397 		       HPAGE_PMD_NR);
2398 }
2399 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2400 
2401 #ifdef CONFIG_MEMCG_SWAP
2402 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2403 					 bool charge)
2404 {
2405 	int val = (charge) ? 1 : -1;
2406 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2407 }
2408 
2409 /**
2410  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2411  * @entry: swap entry to be moved
2412  * @from:  mem_cgroup which the entry is moved from
2413  * @to:  mem_cgroup which the entry is moved to
2414  *
2415  * It succeeds only when the swap_cgroup's record for this entry is the same
2416  * as the mem_cgroup's id of @from.
2417  *
2418  * Returns 0 on success, -EINVAL on failure.
2419  *
2420  * The caller must have charged to @to, IOW, called page_counter_charge() about
2421  * both res and memsw, and called css_get().
2422  */
2423 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2424 				struct mem_cgroup *from, struct mem_cgroup *to)
2425 {
2426 	unsigned short old_id, new_id;
2427 
2428 	old_id = mem_cgroup_id(from);
2429 	new_id = mem_cgroup_id(to);
2430 
2431 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2432 		mem_cgroup_swap_statistics(from, false);
2433 		mem_cgroup_swap_statistics(to, true);
2434 		return 0;
2435 	}
2436 	return -EINVAL;
2437 }
2438 #else
2439 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2440 				struct mem_cgroup *from, struct mem_cgroup *to)
2441 {
2442 	return -EINVAL;
2443 }
2444 #endif
2445 
2446 static DEFINE_MUTEX(memcg_limit_mutex);
2447 
2448 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2449 				   unsigned long limit)
2450 {
2451 	unsigned long curusage;
2452 	unsigned long oldusage;
2453 	bool enlarge = false;
2454 	int retry_count;
2455 	int ret;
2456 
2457 	/*
2458 	 * For keeping hierarchical_reclaim simple, how long we should retry
2459 	 * is depends on callers. We set our retry-count to be function
2460 	 * of # of children which we should visit in this loop.
2461 	 */
2462 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2463 		      mem_cgroup_count_children(memcg);
2464 
2465 	oldusage = page_counter_read(&memcg->memory);
2466 
2467 	do {
2468 		if (signal_pending(current)) {
2469 			ret = -EINTR;
2470 			break;
2471 		}
2472 
2473 		mutex_lock(&memcg_limit_mutex);
2474 		if (limit > memcg->memsw.limit) {
2475 			mutex_unlock(&memcg_limit_mutex);
2476 			ret = -EINVAL;
2477 			break;
2478 		}
2479 		if (limit > memcg->memory.limit)
2480 			enlarge = true;
2481 		ret = page_counter_limit(&memcg->memory, limit);
2482 		mutex_unlock(&memcg_limit_mutex);
2483 
2484 		if (!ret)
2485 			break;
2486 
2487 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2488 
2489 		curusage = page_counter_read(&memcg->memory);
2490 		/* Usage is reduced ? */
2491 		if (curusage >= oldusage)
2492 			retry_count--;
2493 		else
2494 			oldusage = curusage;
2495 	} while (retry_count);
2496 
2497 	if (!ret && enlarge)
2498 		memcg_oom_recover(memcg);
2499 
2500 	return ret;
2501 }
2502 
2503 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2504 					 unsigned long limit)
2505 {
2506 	unsigned long curusage;
2507 	unsigned long oldusage;
2508 	bool enlarge = false;
2509 	int retry_count;
2510 	int ret;
2511 
2512 	/* see mem_cgroup_resize_res_limit */
2513 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2514 		      mem_cgroup_count_children(memcg);
2515 
2516 	oldusage = page_counter_read(&memcg->memsw);
2517 
2518 	do {
2519 		if (signal_pending(current)) {
2520 			ret = -EINTR;
2521 			break;
2522 		}
2523 
2524 		mutex_lock(&memcg_limit_mutex);
2525 		if (limit < memcg->memory.limit) {
2526 			mutex_unlock(&memcg_limit_mutex);
2527 			ret = -EINVAL;
2528 			break;
2529 		}
2530 		if (limit > memcg->memsw.limit)
2531 			enlarge = true;
2532 		ret = page_counter_limit(&memcg->memsw, limit);
2533 		mutex_unlock(&memcg_limit_mutex);
2534 
2535 		if (!ret)
2536 			break;
2537 
2538 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2539 
2540 		curusage = page_counter_read(&memcg->memsw);
2541 		/* Usage is reduced ? */
2542 		if (curusage >= oldusage)
2543 			retry_count--;
2544 		else
2545 			oldusage = curusage;
2546 	} while (retry_count);
2547 
2548 	if (!ret && enlarge)
2549 		memcg_oom_recover(memcg);
2550 
2551 	return ret;
2552 }
2553 
2554 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2555 					    gfp_t gfp_mask,
2556 					    unsigned long *total_scanned)
2557 {
2558 	unsigned long nr_reclaimed = 0;
2559 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2560 	unsigned long reclaimed;
2561 	int loop = 0;
2562 	struct mem_cgroup_tree_per_node *mctz;
2563 	unsigned long excess;
2564 	unsigned long nr_scanned;
2565 
2566 	if (order > 0)
2567 		return 0;
2568 
2569 	mctz = soft_limit_tree_node(pgdat->node_id);
2570 
2571 	/*
2572 	 * Do not even bother to check the largest node if the root
2573 	 * is empty. Do it lockless to prevent lock bouncing. Races
2574 	 * are acceptable as soft limit is best effort anyway.
2575 	 */
2576 	if (RB_EMPTY_ROOT(&mctz->rb_root))
2577 		return 0;
2578 
2579 	/*
2580 	 * This loop can run a while, specially if mem_cgroup's continuously
2581 	 * keep exceeding their soft limit and putting the system under
2582 	 * pressure
2583 	 */
2584 	do {
2585 		if (next_mz)
2586 			mz = next_mz;
2587 		else
2588 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2589 		if (!mz)
2590 			break;
2591 
2592 		nr_scanned = 0;
2593 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2594 						    gfp_mask, &nr_scanned);
2595 		nr_reclaimed += reclaimed;
2596 		*total_scanned += nr_scanned;
2597 		spin_lock_irq(&mctz->lock);
2598 		__mem_cgroup_remove_exceeded(mz, mctz);
2599 
2600 		/*
2601 		 * If we failed to reclaim anything from this memory cgroup
2602 		 * it is time to move on to the next cgroup
2603 		 */
2604 		next_mz = NULL;
2605 		if (!reclaimed)
2606 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2607 
2608 		excess = soft_limit_excess(mz->memcg);
2609 		/*
2610 		 * One school of thought says that we should not add
2611 		 * back the node to the tree if reclaim returns 0.
2612 		 * But our reclaim could return 0, simply because due
2613 		 * to priority we are exposing a smaller subset of
2614 		 * memory to reclaim from. Consider this as a longer
2615 		 * term TODO.
2616 		 */
2617 		/* If excess == 0, no tree ops */
2618 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2619 		spin_unlock_irq(&mctz->lock);
2620 		css_put(&mz->memcg->css);
2621 		loop++;
2622 		/*
2623 		 * Could not reclaim anything and there are no more
2624 		 * mem cgroups to try or we seem to be looping without
2625 		 * reclaiming anything.
2626 		 */
2627 		if (!nr_reclaimed &&
2628 			(next_mz == NULL ||
2629 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2630 			break;
2631 	} while (!nr_reclaimed);
2632 	if (next_mz)
2633 		css_put(&next_mz->memcg->css);
2634 	return nr_reclaimed;
2635 }
2636 
2637 /*
2638  * Test whether @memcg has children, dead or alive.  Note that this
2639  * function doesn't care whether @memcg has use_hierarchy enabled and
2640  * returns %true if there are child csses according to the cgroup
2641  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2642  */
2643 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2644 {
2645 	bool ret;
2646 
2647 	rcu_read_lock();
2648 	ret = css_next_child(NULL, &memcg->css);
2649 	rcu_read_unlock();
2650 	return ret;
2651 }
2652 
2653 /*
2654  * Reclaims as many pages from the given memcg as possible.
2655  *
2656  * Caller is responsible for holding css reference for memcg.
2657  */
2658 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2659 {
2660 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2661 
2662 	/* we call try-to-free pages for make this cgroup empty */
2663 	lru_add_drain_all();
2664 	/* try to free all pages in this cgroup */
2665 	while (nr_retries && page_counter_read(&memcg->memory)) {
2666 		int progress;
2667 
2668 		if (signal_pending(current))
2669 			return -EINTR;
2670 
2671 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2672 							GFP_KERNEL, true);
2673 		if (!progress) {
2674 			nr_retries--;
2675 			/* maybe some writeback is necessary */
2676 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2677 		}
2678 
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2685 					    char *buf, size_t nbytes,
2686 					    loff_t off)
2687 {
2688 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2689 
2690 	if (mem_cgroup_is_root(memcg))
2691 		return -EINVAL;
2692 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2693 }
2694 
2695 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2696 				     struct cftype *cft)
2697 {
2698 	return mem_cgroup_from_css(css)->use_hierarchy;
2699 }
2700 
2701 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2702 				      struct cftype *cft, u64 val)
2703 {
2704 	int retval = 0;
2705 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2706 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2707 
2708 	if (memcg->use_hierarchy == val)
2709 		return 0;
2710 
2711 	/*
2712 	 * If parent's use_hierarchy is set, we can't make any modifications
2713 	 * in the child subtrees. If it is unset, then the change can
2714 	 * occur, provided the current cgroup has no children.
2715 	 *
2716 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2717 	 * set if there are no children.
2718 	 */
2719 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2720 				(val == 1 || val == 0)) {
2721 		if (!memcg_has_children(memcg))
2722 			memcg->use_hierarchy = val;
2723 		else
2724 			retval = -EBUSY;
2725 	} else
2726 		retval = -EINVAL;
2727 
2728 	return retval;
2729 }
2730 
2731 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2732 {
2733 	struct mem_cgroup *iter;
2734 	int i;
2735 
2736 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2737 
2738 	for_each_mem_cgroup_tree(iter, memcg) {
2739 		for (i = 0; i < MEMCG_NR_STAT; i++)
2740 			stat[i] += mem_cgroup_read_stat(iter, i);
2741 	}
2742 }
2743 
2744 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2745 {
2746 	struct mem_cgroup *iter;
2747 	int i;
2748 
2749 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2750 
2751 	for_each_mem_cgroup_tree(iter, memcg) {
2752 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2753 			events[i] += mem_cgroup_read_events(iter, i);
2754 	}
2755 }
2756 
2757 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2758 {
2759 	unsigned long val = 0;
2760 
2761 	if (mem_cgroup_is_root(memcg)) {
2762 		struct mem_cgroup *iter;
2763 
2764 		for_each_mem_cgroup_tree(iter, memcg) {
2765 			val += mem_cgroup_read_stat(iter,
2766 					MEM_CGROUP_STAT_CACHE);
2767 			val += mem_cgroup_read_stat(iter,
2768 					MEM_CGROUP_STAT_RSS);
2769 			if (swap)
2770 				val += mem_cgroup_read_stat(iter,
2771 						MEM_CGROUP_STAT_SWAP);
2772 		}
2773 	} else {
2774 		if (!swap)
2775 			val = page_counter_read(&memcg->memory);
2776 		else
2777 			val = page_counter_read(&memcg->memsw);
2778 	}
2779 	return val;
2780 }
2781 
2782 enum {
2783 	RES_USAGE,
2784 	RES_LIMIT,
2785 	RES_MAX_USAGE,
2786 	RES_FAILCNT,
2787 	RES_SOFT_LIMIT,
2788 };
2789 
2790 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2791 			       struct cftype *cft)
2792 {
2793 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2794 	struct page_counter *counter;
2795 
2796 	switch (MEMFILE_TYPE(cft->private)) {
2797 	case _MEM:
2798 		counter = &memcg->memory;
2799 		break;
2800 	case _MEMSWAP:
2801 		counter = &memcg->memsw;
2802 		break;
2803 	case _KMEM:
2804 		counter = &memcg->kmem;
2805 		break;
2806 	case _TCP:
2807 		counter = &memcg->tcpmem;
2808 		break;
2809 	default:
2810 		BUG();
2811 	}
2812 
2813 	switch (MEMFILE_ATTR(cft->private)) {
2814 	case RES_USAGE:
2815 		if (counter == &memcg->memory)
2816 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2817 		if (counter == &memcg->memsw)
2818 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2819 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2820 	case RES_LIMIT:
2821 		return (u64)counter->limit * PAGE_SIZE;
2822 	case RES_MAX_USAGE:
2823 		return (u64)counter->watermark * PAGE_SIZE;
2824 	case RES_FAILCNT:
2825 		return counter->failcnt;
2826 	case RES_SOFT_LIMIT:
2827 		return (u64)memcg->soft_limit * PAGE_SIZE;
2828 	default:
2829 		BUG();
2830 	}
2831 }
2832 
2833 #ifndef CONFIG_SLOB
2834 static int memcg_online_kmem(struct mem_cgroup *memcg)
2835 {
2836 	int memcg_id;
2837 
2838 	if (cgroup_memory_nokmem)
2839 		return 0;
2840 
2841 	BUG_ON(memcg->kmemcg_id >= 0);
2842 	BUG_ON(memcg->kmem_state);
2843 
2844 	memcg_id = memcg_alloc_cache_id();
2845 	if (memcg_id < 0)
2846 		return memcg_id;
2847 
2848 	static_branch_inc(&memcg_kmem_enabled_key);
2849 	/*
2850 	 * A memory cgroup is considered kmem-online as soon as it gets
2851 	 * kmemcg_id. Setting the id after enabling static branching will
2852 	 * guarantee no one starts accounting before all call sites are
2853 	 * patched.
2854 	 */
2855 	memcg->kmemcg_id = memcg_id;
2856 	memcg->kmem_state = KMEM_ONLINE;
2857 
2858 	return 0;
2859 }
2860 
2861 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2862 {
2863 	struct cgroup_subsys_state *css;
2864 	struct mem_cgroup *parent, *child;
2865 	int kmemcg_id;
2866 
2867 	if (memcg->kmem_state != KMEM_ONLINE)
2868 		return;
2869 	/*
2870 	 * Clear the online state before clearing memcg_caches array
2871 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2872 	 * guarantees that no cache will be created for this cgroup
2873 	 * after we are done (see memcg_create_kmem_cache()).
2874 	 */
2875 	memcg->kmem_state = KMEM_ALLOCATED;
2876 
2877 	memcg_deactivate_kmem_caches(memcg);
2878 
2879 	kmemcg_id = memcg->kmemcg_id;
2880 	BUG_ON(kmemcg_id < 0);
2881 
2882 	parent = parent_mem_cgroup(memcg);
2883 	if (!parent)
2884 		parent = root_mem_cgroup;
2885 
2886 	/*
2887 	 * Change kmemcg_id of this cgroup and all its descendants to the
2888 	 * parent's id, and then move all entries from this cgroup's list_lrus
2889 	 * to ones of the parent. After we have finished, all list_lrus
2890 	 * corresponding to this cgroup are guaranteed to remain empty. The
2891 	 * ordering is imposed by list_lru_node->lock taken by
2892 	 * memcg_drain_all_list_lrus().
2893 	 */
2894 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2895 	css_for_each_descendant_pre(css, &memcg->css) {
2896 		child = mem_cgroup_from_css(css);
2897 		BUG_ON(child->kmemcg_id != kmemcg_id);
2898 		child->kmemcg_id = parent->kmemcg_id;
2899 		if (!memcg->use_hierarchy)
2900 			break;
2901 	}
2902 	rcu_read_unlock();
2903 
2904 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2905 
2906 	memcg_free_cache_id(kmemcg_id);
2907 }
2908 
2909 static void memcg_free_kmem(struct mem_cgroup *memcg)
2910 {
2911 	/* css_alloc() failed, offlining didn't happen */
2912 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2913 		memcg_offline_kmem(memcg);
2914 
2915 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2916 		memcg_destroy_kmem_caches(memcg);
2917 		static_branch_dec(&memcg_kmem_enabled_key);
2918 		WARN_ON(page_counter_read(&memcg->kmem));
2919 	}
2920 }
2921 #else
2922 static int memcg_online_kmem(struct mem_cgroup *memcg)
2923 {
2924 	return 0;
2925 }
2926 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2927 {
2928 }
2929 static void memcg_free_kmem(struct mem_cgroup *memcg)
2930 {
2931 }
2932 #endif /* !CONFIG_SLOB */
2933 
2934 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2935 				   unsigned long limit)
2936 {
2937 	int ret;
2938 
2939 	mutex_lock(&memcg_limit_mutex);
2940 	ret = page_counter_limit(&memcg->kmem, limit);
2941 	mutex_unlock(&memcg_limit_mutex);
2942 	return ret;
2943 }
2944 
2945 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2946 {
2947 	int ret;
2948 
2949 	mutex_lock(&memcg_limit_mutex);
2950 
2951 	ret = page_counter_limit(&memcg->tcpmem, limit);
2952 	if (ret)
2953 		goto out;
2954 
2955 	if (!memcg->tcpmem_active) {
2956 		/*
2957 		 * The active flag needs to be written after the static_key
2958 		 * update. This is what guarantees that the socket activation
2959 		 * function is the last one to run. See sock_update_memcg() for
2960 		 * details, and note that we don't mark any socket as belonging
2961 		 * to this memcg until that flag is up.
2962 		 *
2963 		 * We need to do this, because static_keys will span multiple
2964 		 * sites, but we can't control their order. If we mark a socket
2965 		 * as accounted, but the accounting functions are not patched in
2966 		 * yet, we'll lose accounting.
2967 		 *
2968 		 * We never race with the readers in sock_update_memcg(),
2969 		 * because when this value change, the code to process it is not
2970 		 * patched in yet.
2971 		 */
2972 		static_branch_inc(&memcg_sockets_enabled_key);
2973 		memcg->tcpmem_active = true;
2974 	}
2975 out:
2976 	mutex_unlock(&memcg_limit_mutex);
2977 	return ret;
2978 }
2979 
2980 /*
2981  * The user of this function is...
2982  * RES_LIMIT.
2983  */
2984 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 				char *buf, size_t nbytes, loff_t off)
2986 {
2987 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988 	unsigned long nr_pages;
2989 	int ret;
2990 
2991 	buf = strstrip(buf);
2992 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2993 	if (ret)
2994 		return ret;
2995 
2996 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997 	case RES_LIMIT:
2998 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 			ret = -EINVAL;
3000 			break;
3001 		}
3002 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 		case _MEM:
3004 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005 			break;
3006 		case _MEMSWAP:
3007 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008 			break;
3009 		case _KMEM:
3010 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 			break;
3012 		case _TCP:
3013 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3014 			break;
3015 		}
3016 		break;
3017 	case RES_SOFT_LIMIT:
3018 		memcg->soft_limit = nr_pages;
3019 		ret = 0;
3020 		break;
3021 	}
3022 	return ret ?: nbytes;
3023 }
3024 
3025 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3026 				size_t nbytes, loff_t off)
3027 {
3028 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029 	struct page_counter *counter;
3030 
3031 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3032 	case _MEM:
3033 		counter = &memcg->memory;
3034 		break;
3035 	case _MEMSWAP:
3036 		counter = &memcg->memsw;
3037 		break;
3038 	case _KMEM:
3039 		counter = &memcg->kmem;
3040 		break;
3041 	case _TCP:
3042 		counter = &memcg->tcpmem;
3043 		break;
3044 	default:
3045 		BUG();
3046 	}
3047 
3048 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3049 	case RES_MAX_USAGE:
3050 		page_counter_reset_watermark(counter);
3051 		break;
3052 	case RES_FAILCNT:
3053 		counter->failcnt = 0;
3054 		break;
3055 	default:
3056 		BUG();
3057 	}
3058 
3059 	return nbytes;
3060 }
3061 
3062 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3063 					struct cftype *cft)
3064 {
3065 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3066 }
3067 
3068 #ifdef CONFIG_MMU
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 					struct cftype *cft, u64 val)
3071 {
3072 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3073 
3074 	if (val & ~MOVE_MASK)
3075 		return -EINVAL;
3076 
3077 	/*
3078 	 * No kind of locking is needed in here, because ->can_attach() will
3079 	 * check this value once in the beginning of the process, and then carry
3080 	 * on with stale data. This means that changes to this value will only
3081 	 * affect task migrations starting after the change.
3082 	 */
3083 	memcg->move_charge_at_immigrate = val;
3084 	return 0;
3085 }
3086 #else
3087 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 					struct cftype *cft, u64 val)
3089 {
3090 	return -ENOSYS;
3091 }
3092 #endif
3093 
3094 #ifdef CONFIG_NUMA
3095 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3096 {
3097 	struct numa_stat {
3098 		const char *name;
3099 		unsigned int lru_mask;
3100 	};
3101 
3102 	static const struct numa_stat stats[] = {
3103 		{ "total", LRU_ALL },
3104 		{ "file", LRU_ALL_FILE },
3105 		{ "anon", LRU_ALL_ANON },
3106 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3107 	};
3108 	const struct numa_stat *stat;
3109 	int nid;
3110 	unsigned long nr;
3111 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3112 
3113 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3115 		seq_printf(m, "%s=%lu", stat->name, nr);
3116 		for_each_node_state(nid, N_MEMORY) {
3117 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3118 							  stat->lru_mask);
3119 			seq_printf(m, " N%d=%lu", nid, nr);
3120 		}
3121 		seq_putc(m, '\n');
3122 	}
3123 
3124 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 		struct mem_cgroup *iter;
3126 
3127 		nr = 0;
3128 		for_each_mem_cgroup_tree(iter, memcg)
3129 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3130 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3131 		for_each_node_state(nid, N_MEMORY) {
3132 			nr = 0;
3133 			for_each_mem_cgroup_tree(iter, memcg)
3134 				nr += mem_cgroup_node_nr_lru_pages(
3135 					iter, nid, stat->lru_mask);
3136 			seq_printf(m, " N%d=%lu", nid, nr);
3137 		}
3138 		seq_putc(m, '\n');
3139 	}
3140 
3141 	return 0;
3142 }
3143 #endif /* CONFIG_NUMA */
3144 
3145 static int memcg_stat_show(struct seq_file *m, void *v)
3146 {
3147 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148 	unsigned long memory, memsw;
3149 	struct mem_cgroup *mi;
3150 	unsigned int i;
3151 
3152 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3153 		     MEM_CGROUP_STAT_NSTATS);
3154 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3155 		     MEM_CGROUP_EVENTS_NSTATS);
3156 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3157 
3158 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3159 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160 			continue;
3161 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3162 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3163 	}
3164 
3165 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3166 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3167 			   mem_cgroup_read_events(memcg, i));
3168 
3169 	for (i = 0; i < NR_LRU_LISTS; i++)
3170 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3171 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3172 
3173 	/* Hierarchical information */
3174 	memory = memsw = PAGE_COUNTER_MAX;
3175 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3176 		memory = min(memory, mi->memory.limit);
3177 		memsw = min(memsw, mi->memsw.limit);
3178 	}
3179 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3180 		   (u64)memory * PAGE_SIZE);
3181 	if (do_memsw_account())
3182 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3183 			   (u64)memsw * PAGE_SIZE);
3184 
3185 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186 		unsigned long long val = 0;
3187 
3188 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3189 			continue;
3190 		for_each_mem_cgroup_tree(mi, memcg)
3191 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3192 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3193 	}
3194 
3195 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3196 		unsigned long long val = 0;
3197 
3198 		for_each_mem_cgroup_tree(mi, memcg)
3199 			val += mem_cgroup_read_events(mi, i);
3200 		seq_printf(m, "total_%s %llu\n",
3201 			   mem_cgroup_events_names[i], val);
3202 	}
3203 
3204 	for (i = 0; i < NR_LRU_LISTS; i++) {
3205 		unsigned long long val = 0;
3206 
3207 		for_each_mem_cgroup_tree(mi, memcg)
3208 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3209 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3210 	}
3211 
3212 #ifdef CONFIG_DEBUG_VM
3213 	{
3214 		pg_data_t *pgdat;
3215 		struct mem_cgroup_per_node *mz;
3216 		struct zone_reclaim_stat *rstat;
3217 		unsigned long recent_rotated[2] = {0, 0};
3218 		unsigned long recent_scanned[2] = {0, 0};
3219 
3220 		for_each_online_pgdat(pgdat) {
3221 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3222 			rstat = &mz->lruvec.reclaim_stat;
3223 
3224 			recent_rotated[0] += rstat->recent_rotated[0];
3225 			recent_rotated[1] += rstat->recent_rotated[1];
3226 			recent_scanned[0] += rstat->recent_scanned[0];
3227 			recent_scanned[1] += rstat->recent_scanned[1];
3228 		}
3229 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3230 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3231 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3232 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3233 	}
3234 #endif
3235 
3236 	return 0;
3237 }
3238 
3239 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3240 				      struct cftype *cft)
3241 {
3242 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3243 
3244 	return mem_cgroup_swappiness(memcg);
3245 }
3246 
3247 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3248 				       struct cftype *cft, u64 val)
3249 {
3250 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251 
3252 	if (val > 100)
3253 		return -EINVAL;
3254 
3255 	if (css->parent)
3256 		memcg->swappiness = val;
3257 	else
3258 		vm_swappiness = val;
3259 
3260 	return 0;
3261 }
3262 
3263 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3264 {
3265 	struct mem_cgroup_threshold_ary *t;
3266 	unsigned long usage;
3267 	int i;
3268 
3269 	rcu_read_lock();
3270 	if (!swap)
3271 		t = rcu_dereference(memcg->thresholds.primary);
3272 	else
3273 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3274 
3275 	if (!t)
3276 		goto unlock;
3277 
3278 	usage = mem_cgroup_usage(memcg, swap);
3279 
3280 	/*
3281 	 * current_threshold points to threshold just below or equal to usage.
3282 	 * If it's not true, a threshold was crossed after last
3283 	 * call of __mem_cgroup_threshold().
3284 	 */
3285 	i = t->current_threshold;
3286 
3287 	/*
3288 	 * Iterate backward over array of thresholds starting from
3289 	 * current_threshold and check if a threshold is crossed.
3290 	 * If none of thresholds below usage is crossed, we read
3291 	 * only one element of the array here.
3292 	 */
3293 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3294 		eventfd_signal(t->entries[i].eventfd, 1);
3295 
3296 	/* i = current_threshold + 1 */
3297 	i++;
3298 
3299 	/*
3300 	 * Iterate forward over array of thresholds starting from
3301 	 * current_threshold+1 and check if a threshold is crossed.
3302 	 * If none of thresholds above usage is crossed, we read
3303 	 * only one element of the array here.
3304 	 */
3305 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3306 		eventfd_signal(t->entries[i].eventfd, 1);
3307 
3308 	/* Update current_threshold */
3309 	t->current_threshold = i - 1;
3310 unlock:
3311 	rcu_read_unlock();
3312 }
3313 
3314 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3315 {
3316 	while (memcg) {
3317 		__mem_cgroup_threshold(memcg, false);
3318 		if (do_memsw_account())
3319 			__mem_cgroup_threshold(memcg, true);
3320 
3321 		memcg = parent_mem_cgroup(memcg);
3322 	}
3323 }
3324 
3325 static int compare_thresholds(const void *a, const void *b)
3326 {
3327 	const struct mem_cgroup_threshold *_a = a;
3328 	const struct mem_cgroup_threshold *_b = b;
3329 
3330 	if (_a->threshold > _b->threshold)
3331 		return 1;
3332 
3333 	if (_a->threshold < _b->threshold)
3334 		return -1;
3335 
3336 	return 0;
3337 }
3338 
3339 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3340 {
3341 	struct mem_cgroup_eventfd_list *ev;
3342 
3343 	spin_lock(&memcg_oom_lock);
3344 
3345 	list_for_each_entry(ev, &memcg->oom_notify, list)
3346 		eventfd_signal(ev->eventfd, 1);
3347 
3348 	spin_unlock(&memcg_oom_lock);
3349 	return 0;
3350 }
3351 
3352 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3353 {
3354 	struct mem_cgroup *iter;
3355 
3356 	for_each_mem_cgroup_tree(iter, memcg)
3357 		mem_cgroup_oom_notify_cb(iter);
3358 }
3359 
3360 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3361 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3362 {
3363 	struct mem_cgroup_thresholds *thresholds;
3364 	struct mem_cgroup_threshold_ary *new;
3365 	unsigned long threshold;
3366 	unsigned long usage;
3367 	int i, size, ret;
3368 
3369 	ret = page_counter_memparse(args, "-1", &threshold);
3370 	if (ret)
3371 		return ret;
3372 
3373 	mutex_lock(&memcg->thresholds_lock);
3374 
3375 	if (type == _MEM) {
3376 		thresholds = &memcg->thresholds;
3377 		usage = mem_cgroup_usage(memcg, false);
3378 	} else if (type == _MEMSWAP) {
3379 		thresholds = &memcg->memsw_thresholds;
3380 		usage = mem_cgroup_usage(memcg, true);
3381 	} else
3382 		BUG();
3383 
3384 	/* Check if a threshold crossed before adding a new one */
3385 	if (thresholds->primary)
3386 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3387 
3388 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3389 
3390 	/* Allocate memory for new array of thresholds */
3391 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3392 			GFP_KERNEL);
3393 	if (!new) {
3394 		ret = -ENOMEM;
3395 		goto unlock;
3396 	}
3397 	new->size = size;
3398 
3399 	/* Copy thresholds (if any) to new array */
3400 	if (thresholds->primary) {
3401 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3402 				sizeof(struct mem_cgroup_threshold));
3403 	}
3404 
3405 	/* Add new threshold */
3406 	new->entries[size - 1].eventfd = eventfd;
3407 	new->entries[size - 1].threshold = threshold;
3408 
3409 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3410 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3411 			compare_thresholds, NULL);
3412 
3413 	/* Find current threshold */
3414 	new->current_threshold = -1;
3415 	for (i = 0; i < size; i++) {
3416 		if (new->entries[i].threshold <= usage) {
3417 			/*
3418 			 * new->current_threshold will not be used until
3419 			 * rcu_assign_pointer(), so it's safe to increment
3420 			 * it here.
3421 			 */
3422 			++new->current_threshold;
3423 		} else
3424 			break;
3425 	}
3426 
3427 	/* Free old spare buffer and save old primary buffer as spare */
3428 	kfree(thresholds->spare);
3429 	thresholds->spare = thresholds->primary;
3430 
3431 	rcu_assign_pointer(thresholds->primary, new);
3432 
3433 	/* To be sure that nobody uses thresholds */
3434 	synchronize_rcu();
3435 
3436 unlock:
3437 	mutex_unlock(&memcg->thresholds_lock);
3438 
3439 	return ret;
3440 }
3441 
3442 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3443 	struct eventfd_ctx *eventfd, const char *args)
3444 {
3445 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3446 }
3447 
3448 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3449 	struct eventfd_ctx *eventfd, const char *args)
3450 {
3451 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3452 }
3453 
3454 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3455 	struct eventfd_ctx *eventfd, enum res_type type)
3456 {
3457 	struct mem_cgroup_thresholds *thresholds;
3458 	struct mem_cgroup_threshold_ary *new;
3459 	unsigned long usage;
3460 	int i, j, size;
3461 
3462 	mutex_lock(&memcg->thresholds_lock);
3463 
3464 	if (type == _MEM) {
3465 		thresholds = &memcg->thresholds;
3466 		usage = mem_cgroup_usage(memcg, false);
3467 	} else if (type == _MEMSWAP) {
3468 		thresholds = &memcg->memsw_thresholds;
3469 		usage = mem_cgroup_usage(memcg, true);
3470 	} else
3471 		BUG();
3472 
3473 	if (!thresholds->primary)
3474 		goto unlock;
3475 
3476 	/* Check if a threshold crossed before removing */
3477 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3478 
3479 	/* Calculate new number of threshold */
3480 	size = 0;
3481 	for (i = 0; i < thresholds->primary->size; i++) {
3482 		if (thresholds->primary->entries[i].eventfd != eventfd)
3483 			size++;
3484 	}
3485 
3486 	new = thresholds->spare;
3487 
3488 	/* Set thresholds array to NULL if we don't have thresholds */
3489 	if (!size) {
3490 		kfree(new);
3491 		new = NULL;
3492 		goto swap_buffers;
3493 	}
3494 
3495 	new->size = size;
3496 
3497 	/* Copy thresholds and find current threshold */
3498 	new->current_threshold = -1;
3499 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3500 		if (thresholds->primary->entries[i].eventfd == eventfd)
3501 			continue;
3502 
3503 		new->entries[j] = thresholds->primary->entries[i];
3504 		if (new->entries[j].threshold <= usage) {
3505 			/*
3506 			 * new->current_threshold will not be used
3507 			 * until rcu_assign_pointer(), so it's safe to increment
3508 			 * it here.
3509 			 */
3510 			++new->current_threshold;
3511 		}
3512 		j++;
3513 	}
3514 
3515 swap_buffers:
3516 	/* Swap primary and spare array */
3517 	thresholds->spare = thresholds->primary;
3518 
3519 	rcu_assign_pointer(thresholds->primary, new);
3520 
3521 	/* To be sure that nobody uses thresholds */
3522 	synchronize_rcu();
3523 
3524 	/* If all events are unregistered, free the spare array */
3525 	if (!new) {
3526 		kfree(thresholds->spare);
3527 		thresholds->spare = NULL;
3528 	}
3529 unlock:
3530 	mutex_unlock(&memcg->thresholds_lock);
3531 }
3532 
3533 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3534 	struct eventfd_ctx *eventfd)
3535 {
3536 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3537 }
3538 
3539 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3540 	struct eventfd_ctx *eventfd)
3541 {
3542 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3543 }
3544 
3545 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3546 	struct eventfd_ctx *eventfd, const char *args)
3547 {
3548 	struct mem_cgroup_eventfd_list *event;
3549 
3550 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3551 	if (!event)
3552 		return -ENOMEM;
3553 
3554 	spin_lock(&memcg_oom_lock);
3555 
3556 	event->eventfd = eventfd;
3557 	list_add(&event->list, &memcg->oom_notify);
3558 
3559 	/* already in OOM ? */
3560 	if (memcg->under_oom)
3561 		eventfd_signal(eventfd, 1);
3562 	spin_unlock(&memcg_oom_lock);
3563 
3564 	return 0;
3565 }
3566 
3567 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3568 	struct eventfd_ctx *eventfd)
3569 {
3570 	struct mem_cgroup_eventfd_list *ev, *tmp;
3571 
3572 	spin_lock(&memcg_oom_lock);
3573 
3574 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3575 		if (ev->eventfd == eventfd) {
3576 			list_del(&ev->list);
3577 			kfree(ev);
3578 		}
3579 	}
3580 
3581 	spin_unlock(&memcg_oom_lock);
3582 }
3583 
3584 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3585 {
3586 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3587 
3588 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3589 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3590 	return 0;
3591 }
3592 
3593 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3594 	struct cftype *cft, u64 val)
3595 {
3596 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3597 
3598 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3599 	if (!css->parent || !((val == 0) || (val == 1)))
3600 		return -EINVAL;
3601 
3602 	memcg->oom_kill_disable = val;
3603 	if (!val)
3604 		memcg_oom_recover(memcg);
3605 
3606 	return 0;
3607 }
3608 
3609 #ifdef CONFIG_CGROUP_WRITEBACK
3610 
3611 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3612 {
3613 	return &memcg->cgwb_list;
3614 }
3615 
3616 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3617 {
3618 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3619 }
3620 
3621 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3622 {
3623 	wb_domain_exit(&memcg->cgwb_domain);
3624 }
3625 
3626 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3627 {
3628 	wb_domain_size_changed(&memcg->cgwb_domain);
3629 }
3630 
3631 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3632 {
3633 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634 
3635 	if (!memcg->css.parent)
3636 		return NULL;
3637 
3638 	return &memcg->cgwb_domain;
3639 }
3640 
3641 /**
3642  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3643  * @wb: bdi_writeback in question
3644  * @pfilepages: out parameter for number of file pages
3645  * @pheadroom: out parameter for number of allocatable pages according to memcg
3646  * @pdirty: out parameter for number of dirty pages
3647  * @pwriteback: out parameter for number of pages under writeback
3648  *
3649  * Determine the numbers of file, headroom, dirty, and writeback pages in
3650  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3651  * is a bit more involved.
3652  *
3653  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3654  * headroom is calculated as the lowest headroom of itself and the
3655  * ancestors.  Note that this doesn't consider the actual amount of
3656  * available memory in the system.  The caller should further cap
3657  * *@pheadroom accordingly.
3658  */
3659 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3660 			 unsigned long *pheadroom, unsigned long *pdirty,
3661 			 unsigned long *pwriteback)
3662 {
3663 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3664 	struct mem_cgroup *parent;
3665 
3666 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3667 
3668 	/* this should eventually include NR_UNSTABLE_NFS */
3669 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3670 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3671 						     (1 << LRU_ACTIVE_FILE));
3672 	*pheadroom = PAGE_COUNTER_MAX;
3673 
3674 	while ((parent = parent_mem_cgroup(memcg))) {
3675 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3676 		unsigned long used = page_counter_read(&memcg->memory);
3677 
3678 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3679 		memcg = parent;
3680 	}
3681 }
3682 
3683 #else	/* CONFIG_CGROUP_WRITEBACK */
3684 
3685 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3686 {
3687 	return 0;
3688 }
3689 
3690 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3691 {
3692 }
3693 
3694 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3695 {
3696 }
3697 
3698 #endif	/* CONFIG_CGROUP_WRITEBACK */
3699 
3700 /*
3701  * DO NOT USE IN NEW FILES.
3702  *
3703  * "cgroup.event_control" implementation.
3704  *
3705  * This is way over-engineered.  It tries to support fully configurable
3706  * events for each user.  Such level of flexibility is completely
3707  * unnecessary especially in the light of the planned unified hierarchy.
3708  *
3709  * Please deprecate this and replace with something simpler if at all
3710  * possible.
3711  */
3712 
3713 /*
3714  * Unregister event and free resources.
3715  *
3716  * Gets called from workqueue.
3717  */
3718 static void memcg_event_remove(struct work_struct *work)
3719 {
3720 	struct mem_cgroup_event *event =
3721 		container_of(work, struct mem_cgroup_event, remove);
3722 	struct mem_cgroup *memcg = event->memcg;
3723 
3724 	remove_wait_queue(event->wqh, &event->wait);
3725 
3726 	event->unregister_event(memcg, event->eventfd);
3727 
3728 	/* Notify userspace the event is going away. */
3729 	eventfd_signal(event->eventfd, 1);
3730 
3731 	eventfd_ctx_put(event->eventfd);
3732 	kfree(event);
3733 	css_put(&memcg->css);
3734 }
3735 
3736 /*
3737  * Gets called on POLLHUP on eventfd when user closes it.
3738  *
3739  * Called with wqh->lock held and interrupts disabled.
3740  */
3741 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3742 			    int sync, void *key)
3743 {
3744 	struct mem_cgroup_event *event =
3745 		container_of(wait, struct mem_cgroup_event, wait);
3746 	struct mem_cgroup *memcg = event->memcg;
3747 	unsigned long flags = (unsigned long)key;
3748 
3749 	if (flags & POLLHUP) {
3750 		/*
3751 		 * If the event has been detached at cgroup removal, we
3752 		 * can simply return knowing the other side will cleanup
3753 		 * for us.
3754 		 *
3755 		 * We can't race against event freeing since the other
3756 		 * side will require wqh->lock via remove_wait_queue(),
3757 		 * which we hold.
3758 		 */
3759 		spin_lock(&memcg->event_list_lock);
3760 		if (!list_empty(&event->list)) {
3761 			list_del_init(&event->list);
3762 			/*
3763 			 * We are in atomic context, but cgroup_event_remove()
3764 			 * may sleep, so we have to call it in workqueue.
3765 			 */
3766 			schedule_work(&event->remove);
3767 		}
3768 		spin_unlock(&memcg->event_list_lock);
3769 	}
3770 
3771 	return 0;
3772 }
3773 
3774 static void memcg_event_ptable_queue_proc(struct file *file,
3775 		wait_queue_head_t *wqh, poll_table *pt)
3776 {
3777 	struct mem_cgroup_event *event =
3778 		container_of(pt, struct mem_cgroup_event, pt);
3779 
3780 	event->wqh = wqh;
3781 	add_wait_queue(wqh, &event->wait);
3782 }
3783 
3784 /*
3785  * DO NOT USE IN NEW FILES.
3786  *
3787  * Parse input and register new cgroup event handler.
3788  *
3789  * Input must be in format '<event_fd> <control_fd> <args>'.
3790  * Interpretation of args is defined by control file implementation.
3791  */
3792 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3793 					 char *buf, size_t nbytes, loff_t off)
3794 {
3795 	struct cgroup_subsys_state *css = of_css(of);
3796 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797 	struct mem_cgroup_event *event;
3798 	struct cgroup_subsys_state *cfile_css;
3799 	unsigned int efd, cfd;
3800 	struct fd efile;
3801 	struct fd cfile;
3802 	const char *name;
3803 	char *endp;
3804 	int ret;
3805 
3806 	buf = strstrip(buf);
3807 
3808 	efd = simple_strtoul(buf, &endp, 10);
3809 	if (*endp != ' ')
3810 		return -EINVAL;
3811 	buf = endp + 1;
3812 
3813 	cfd = simple_strtoul(buf, &endp, 10);
3814 	if ((*endp != ' ') && (*endp != '\0'))
3815 		return -EINVAL;
3816 	buf = endp + 1;
3817 
3818 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3819 	if (!event)
3820 		return -ENOMEM;
3821 
3822 	event->memcg = memcg;
3823 	INIT_LIST_HEAD(&event->list);
3824 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3825 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3826 	INIT_WORK(&event->remove, memcg_event_remove);
3827 
3828 	efile = fdget(efd);
3829 	if (!efile.file) {
3830 		ret = -EBADF;
3831 		goto out_kfree;
3832 	}
3833 
3834 	event->eventfd = eventfd_ctx_fileget(efile.file);
3835 	if (IS_ERR(event->eventfd)) {
3836 		ret = PTR_ERR(event->eventfd);
3837 		goto out_put_efile;
3838 	}
3839 
3840 	cfile = fdget(cfd);
3841 	if (!cfile.file) {
3842 		ret = -EBADF;
3843 		goto out_put_eventfd;
3844 	}
3845 
3846 	/* the process need read permission on control file */
3847 	/* AV: shouldn't we check that it's been opened for read instead? */
3848 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3849 	if (ret < 0)
3850 		goto out_put_cfile;
3851 
3852 	/*
3853 	 * Determine the event callbacks and set them in @event.  This used
3854 	 * to be done via struct cftype but cgroup core no longer knows
3855 	 * about these events.  The following is crude but the whole thing
3856 	 * is for compatibility anyway.
3857 	 *
3858 	 * DO NOT ADD NEW FILES.
3859 	 */
3860 	name = cfile.file->f_path.dentry->d_name.name;
3861 
3862 	if (!strcmp(name, "memory.usage_in_bytes")) {
3863 		event->register_event = mem_cgroup_usage_register_event;
3864 		event->unregister_event = mem_cgroup_usage_unregister_event;
3865 	} else if (!strcmp(name, "memory.oom_control")) {
3866 		event->register_event = mem_cgroup_oom_register_event;
3867 		event->unregister_event = mem_cgroup_oom_unregister_event;
3868 	} else if (!strcmp(name, "memory.pressure_level")) {
3869 		event->register_event = vmpressure_register_event;
3870 		event->unregister_event = vmpressure_unregister_event;
3871 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3872 		event->register_event = memsw_cgroup_usage_register_event;
3873 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3874 	} else {
3875 		ret = -EINVAL;
3876 		goto out_put_cfile;
3877 	}
3878 
3879 	/*
3880 	 * Verify @cfile should belong to @css.  Also, remaining events are
3881 	 * automatically removed on cgroup destruction but the removal is
3882 	 * asynchronous, so take an extra ref on @css.
3883 	 */
3884 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3885 					       &memory_cgrp_subsys);
3886 	ret = -EINVAL;
3887 	if (IS_ERR(cfile_css))
3888 		goto out_put_cfile;
3889 	if (cfile_css != css) {
3890 		css_put(cfile_css);
3891 		goto out_put_cfile;
3892 	}
3893 
3894 	ret = event->register_event(memcg, event->eventfd, buf);
3895 	if (ret)
3896 		goto out_put_css;
3897 
3898 	efile.file->f_op->poll(efile.file, &event->pt);
3899 
3900 	spin_lock(&memcg->event_list_lock);
3901 	list_add(&event->list, &memcg->event_list);
3902 	spin_unlock(&memcg->event_list_lock);
3903 
3904 	fdput(cfile);
3905 	fdput(efile);
3906 
3907 	return nbytes;
3908 
3909 out_put_css:
3910 	css_put(css);
3911 out_put_cfile:
3912 	fdput(cfile);
3913 out_put_eventfd:
3914 	eventfd_ctx_put(event->eventfd);
3915 out_put_efile:
3916 	fdput(efile);
3917 out_kfree:
3918 	kfree(event);
3919 
3920 	return ret;
3921 }
3922 
3923 static struct cftype mem_cgroup_legacy_files[] = {
3924 	{
3925 		.name = "usage_in_bytes",
3926 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3927 		.read_u64 = mem_cgroup_read_u64,
3928 	},
3929 	{
3930 		.name = "max_usage_in_bytes",
3931 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3932 		.write = mem_cgroup_reset,
3933 		.read_u64 = mem_cgroup_read_u64,
3934 	},
3935 	{
3936 		.name = "limit_in_bytes",
3937 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3938 		.write = mem_cgroup_write,
3939 		.read_u64 = mem_cgroup_read_u64,
3940 	},
3941 	{
3942 		.name = "soft_limit_in_bytes",
3943 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3944 		.write = mem_cgroup_write,
3945 		.read_u64 = mem_cgroup_read_u64,
3946 	},
3947 	{
3948 		.name = "failcnt",
3949 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3950 		.write = mem_cgroup_reset,
3951 		.read_u64 = mem_cgroup_read_u64,
3952 	},
3953 	{
3954 		.name = "stat",
3955 		.seq_show = memcg_stat_show,
3956 	},
3957 	{
3958 		.name = "force_empty",
3959 		.write = mem_cgroup_force_empty_write,
3960 	},
3961 	{
3962 		.name = "use_hierarchy",
3963 		.write_u64 = mem_cgroup_hierarchy_write,
3964 		.read_u64 = mem_cgroup_hierarchy_read,
3965 	},
3966 	{
3967 		.name = "cgroup.event_control",		/* XXX: for compat */
3968 		.write = memcg_write_event_control,
3969 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3970 	},
3971 	{
3972 		.name = "swappiness",
3973 		.read_u64 = mem_cgroup_swappiness_read,
3974 		.write_u64 = mem_cgroup_swappiness_write,
3975 	},
3976 	{
3977 		.name = "move_charge_at_immigrate",
3978 		.read_u64 = mem_cgroup_move_charge_read,
3979 		.write_u64 = mem_cgroup_move_charge_write,
3980 	},
3981 	{
3982 		.name = "oom_control",
3983 		.seq_show = mem_cgroup_oom_control_read,
3984 		.write_u64 = mem_cgroup_oom_control_write,
3985 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3986 	},
3987 	{
3988 		.name = "pressure_level",
3989 	},
3990 #ifdef CONFIG_NUMA
3991 	{
3992 		.name = "numa_stat",
3993 		.seq_show = memcg_numa_stat_show,
3994 	},
3995 #endif
3996 	{
3997 		.name = "kmem.limit_in_bytes",
3998 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3999 		.write = mem_cgroup_write,
4000 		.read_u64 = mem_cgroup_read_u64,
4001 	},
4002 	{
4003 		.name = "kmem.usage_in_bytes",
4004 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4005 		.read_u64 = mem_cgroup_read_u64,
4006 	},
4007 	{
4008 		.name = "kmem.failcnt",
4009 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4010 		.write = mem_cgroup_reset,
4011 		.read_u64 = mem_cgroup_read_u64,
4012 	},
4013 	{
4014 		.name = "kmem.max_usage_in_bytes",
4015 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4016 		.write = mem_cgroup_reset,
4017 		.read_u64 = mem_cgroup_read_u64,
4018 	},
4019 #ifdef CONFIG_SLABINFO
4020 	{
4021 		.name = "kmem.slabinfo",
4022 		.seq_start = slab_start,
4023 		.seq_next = slab_next,
4024 		.seq_stop = slab_stop,
4025 		.seq_show = memcg_slab_show,
4026 	},
4027 #endif
4028 	{
4029 		.name = "kmem.tcp.limit_in_bytes",
4030 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4031 		.write = mem_cgroup_write,
4032 		.read_u64 = mem_cgroup_read_u64,
4033 	},
4034 	{
4035 		.name = "kmem.tcp.usage_in_bytes",
4036 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4037 		.read_u64 = mem_cgroup_read_u64,
4038 	},
4039 	{
4040 		.name = "kmem.tcp.failcnt",
4041 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4042 		.write = mem_cgroup_reset,
4043 		.read_u64 = mem_cgroup_read_u64,
4044 	},
4045 	{
4046 		.name = "kmem.tcp.max_usage_in_bytes",
4047 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4048 		.write = mem_cgroup_reset,
4049 		.read_u64 = mem_cgroup_read_u64,
4050 	},
4051 	{ },	/* terminate */
4052 };
4053 
4054 /*
4055  * Private memory cgroup IDR
4056  *
4057  * Swap-out records and page cache shadow entries need to store memcg
4058  * references in constrained space, so we maintain an ID space that is
4059  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4060  * memory-controlled cgroups to 64k.
4061  *
4062  * However, there usually are many references to the oflline CSS after
4063  * the cgroup has been destroyed, such as page cache or reclaimable
4064  * slab objects, that don't need to hang on to the ID. We want to keep
4065  * those dead CSS from occupying IDs, or we might quickly exhaust the
4066  * relatively small ID space and prevent the creation of new cgroups
4067  * even when there are much fewer than 64k cgroups - possibly none.
4068  *
4069  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4070  * be freed and recycled when it's no longer needed, which is usually
4071  * when the CSS is offlined.
4072  *
4073  * The only exception to that are records of swapped out tmpfs/shmem
4074  * pages that need to be attributed to live ancestors on swapin. But
4075  * those references are manageable from userspace.
4076  */
4077 
4078 static DEFINE_IDR(mem_cgroup_idr);
4079 
4080 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4081 {
4082 	atomic_add(n, &memcg->id.ref);
4083 }
4084 
4085 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4086 {
4087 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4088 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4089 		memcg->id.id = 0;
4090 
4091 		/* Memcg ID pins CSS */
4092 		css_put(&memcg->css);
4093 	}
4094 }
4095 
4096 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4097 {
4098 	mem_cgroup_id_get_many(memcg, 1);
4099 }
4100 
4101 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4102 {
4103 	mem_cgroup_id_put_many(memcg, 1);
4104 }
4105 
4106 /**
4107  * mem_cgroup_from_id - look up a memcg from a memcg id
4108  * @id: the memcg id to look up
4109  *
4110  * Caller must hold rcu_read_lock().
4111  */
4112 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4113 {
4114 	WARN_ON_ONCE(!rcu_read_lock_held());
4115 	return idr_find(&mem_cgroup_idr, id);
4116 }
4117 
4118 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4119 {
4120 	struct mem_cgroup_per_node *pn;
4121 	int tmp = node;
4122 	/*
4123 	 * This routine is called against possible nodes.
4124 	 * But it's BUG to call kmalloc() against offline node.
4125 	 *
4126 	 * TODO: this routine can waste much memory for nodes which will
4127 	 *       never be onlined. It's better to use memory hotplug callback
4128 	 *       function.
4129 	 */
4130 	if (!node_state(node, N_NORMAL_MEMORY))
4131 		tmp = -1;
4132 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4133 	if (!pn)
4134 		return 1;
4135 
4136 	lruvec_init(&pn->lruvec);
4137 	pn->usage_in_excess = 0;
4138 	pn->on_tree = false;
4139 	pn->memcg = memcg;
4140 
4141 	memcg->nodeinfo[node] = pn;
4142 	return 0;
4143 }
4144 
4145 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4146 {
4147 	kfree(memcg->nodeinfo[node]);
4148 }
4149 
4150 static void mem_cgroup_free(struct mem_cgroup *memcg)
4151 {
4152 	int node;
4153 
4154 	memcg_wb_domain_exit(memcg);
4155 	for_each_node(node)
4156 		free_mem_cgroup_per_node_info(memcg, node);
4157 	free_percpu(memcg->stat);
4158 	kfree(memcg);
4159 }
4160 
4161 static struct mem_cgroup *mem_cgroup_alloc(void)
4162 {
4163 	struct mem_cgroup *memcg;
4164 	size_t size;
4165 	int node;
4166 
4167 	size = sizeof(struct mem_cgroup);
4168 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4169 
4170 	memcg = kzalloc(size, GFP_KERNEL);
4171 	if (!memcg)
4172 		return NULL;
4173 
4174 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4175 				 1, MEM_CGROUP_ID_MAX,
4176 				 GFP_KERNEL);
4177 	if (memcg->id.id < 0)
4178 		goto fail;
4179 
4180 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4181 	if (!memcg->stat)
4182 		goto fail;
4183 
4184 	for_each_node(node)
4185 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4186 			goto fail;
4187 
4188 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4189 		goto fail;
4190 
4191 	INIT_WORK(&memcg->high_work, high_work_func);
4192 	memcg->last_scanned_node = MAX_NUMNODES;
4193 	INIT_LIST_HEAD(&memcg->oom_notify);
4194 	mutex_init(&memcg->thresholds_lock);
4195 	spin_lock_init(&memcg->move_lock);
4196 	vmpressure_init(&memcg->vmpressure);
4197 	INIT_LIST_HEAD(&memcg->event_list);
4198 	spin_lock_init(&memcg->event_list_lock);
4199 	memcg->socket_pressure = jiffies;
4200 #ifndef CONFIG_SLOB
4201 	memcg->kmemcg_id = -1;
4202 #endif
4203 #ifdef CONFIG_CGROUP_WRITEBACK
4204 	INIT_LIST_HEAD(&memcg->cgwb_list);
4205 #endif
4206 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4207 	return memcg;
4208 fail:
4209 	if (memcg->id.id > 0)
4210 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4211 	mem_cgroup_free(memcg);
4212 	return NULL;
4213 }
4214 
4215 static struct cgroup_subsys_state * __ref
4216 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4217 {
4218 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4219 	struct mem_cgroup *memcg;
4220 	long error = -ENOMEM;
4221 
4222 	memcg = mem_cgroup_alloc();
4223 	if (!memcg)
4224 		return ERR_PTR(error);
4225 
4226 	memcg->high = PAGE_COUNTER_MAX;
4227 	memcg->soft_limit = PAGE_COUNTER_MAX;
4228 	if (parent) {
4229 		memcg->swappiness = mem_cgroup_swappiness(parent);
4230 		memcg->oom_kill_disable = parent->oom_kill_disable;
4231 	}
4232 	if (parent && parent->use_hierarchy) {
4233 		memcg->use_hierarchy = true;
4234 		page_counter_init(&memcg->memory, &parent->memory);
4235 		page_counter_init(&memcg->swap, &parent->swap);
4236 		page_counter_init(&memcg->memsw, &parent->memsw);
4237 		page_counter_init(&memcg->kmem, &parent->kmem);
4238 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4239 	} else {
4240 		page_counter_init(&memcg->memory, NULL);
4241 		page_counter_init(&memcg->swap, NULL);
4242 		page_counter_init(&memcg->memsw, NULL);
4243 		page_counter_init(&memcg->kmem, NULL);
4244 		page_counter_init(&memcg->tcpmem, NULL);
4245 		/*
4246 		 * Deeper hierachy with use_hierarchy == false doesn't make
4247 		 * much sense so let cgroup subsystem know about this
4248 		 * unfortunate state in our controller.
4249 		 */
4250 		if (parent != root_mem_cgroup)
4251 			memory_cgrp_subsys.broken_hierarchy = true;
4252 	}
4253 
4254 	/* The following stuff does not apply to the root */
4255 	if (!parent) {
4256 		root_mem_cgroup = memcg;
4257 		return &memcg->css;
4258 	}
4259 
4260 	error = memcg_online_kmem(memcg);
4261 	if (error)
4262 		goto fail;
4263 
4264 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4265 		static_branch_inc(&memcg_sockets_enabled_key);
4266 
4267 	return &memcg->css;
4268 fail:
4269 	mem_cgroup_free(memcg);
4270 	return ERR_PTR(-ENOMEM);
4271 }
4272 
4273 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4274 {
4275 	/* Online state pins memcg ID, memcg ID pins CSS */
4276 	mem_cgroup_id_get(mem_cgroup_from_css(css));
4277 	css_get(css);
4278 	return 0;
4279 }
4280 
4281 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4282 {
4283 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284 	struct mem_cgroup_event *event, *tmp;
4285 
4286 	/*
4287 	 * Unregister events and notify userspace.
4288 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4289 	 * directory to avoid race between userspace and kernelspace.
4290 	 */
4291 	spin_lock(&memcg->event_list_lock);
4292 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4293 		list_del_init(&event->list);
4294 		schedule_work(&event->remove);
4295 	}
4296 	spin_unlock(&memcg->event_list_lock);
4297 
4298 	memcg_offline_kmem(memcg);
4299 	wb_memcg_offline(memcg);
4300 
4301 	mem_cgroup_id_put(memcg);
4302 }
4303 
4304 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4305 {
4306 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4307 
4308 	invalidate_reclaim_iterators(memcg);
4309 }
4310 
4311 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4312 {
4313 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4314 
4315 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4316 		static_branch_dec(&memcg_sockets_enabled_key);
4317 
4318 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4319 		static_branch_dec(&memcg_sockets_enabled_key);
4320 
4321 	vmpressure_cleanup(&memcg->vmpressure);
4322 	cancel_work_sync(&memcg->high_work);
4323 	mem_cgroup_remove_from_trees(memcg);
4324 	memcg_free_kmem(memcg);
4325 	mem_cgroup_free(memcg);
4326 }
4327 
4328 /**
4329  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4330  * @css: the target css
4331  *
4332  * Reset the states of the mem_cgroup associated with @css.  This is
4333  * invoked when the userland requests disabling on the default hierarchy
4334  * but the memcg is pinned through dependency.  The memcg should stop
4335  * applying policies and should revert to the vanilla state as it may be
4336  * made visible again.
4337  *
4338  * The current implementation only resets the essential configurations.
4339  * This needs to be expanded to cover all the visible parts.
4340  */
4341 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4342 {
4343 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4344 
4345 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4346 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4347 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4348 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4349 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4350 	memcg->low = 0;
4351 	memcg->high = PAGE_COUNTER_MAX;
4352 	memcg->soft_limit = PAGE_COUNTER_MAX;
4353 	memcg_wb_domain_size_changed(memcg);
4354 }
4355 
4356 #ifdef CONFIG_MMU
4357 /* Handlers for move charge at task migration. */
4358 static int mem_cgroup_do_precharge(unsigned long count)
4359 {
4360 	int ret;
4361 
4362 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4363 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4364 	if (!ret) {
4365 		mc.precharge += count;
4366 		return ret;
4367 	}
4368 
4369 	/* Try charges one by one with reclaim */
4370 	while (count--) {
4371 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4372 		if (ret)
4373 			return ret;
4374 		mc.precharge++;
4375 		cond_resched();
4376 	}
4377 	return 0;
4378 }
4379 
4380 union mc_target {
4381 	struct page	*page;
4382 	swp_entry_t	ent;
4383 };
4384 
4385 enum mc_target_type {
4386 	MC_TARGET_NONE = 0,
4387 	MC_TARGET_PAGE,
4388 	MC_TARGET_SWAP,
4389 };
4390 
4391 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4392 						unsigned long addr, pte_t ptent)
4393 {
4394 	struct page *page = vm_normal_page(vma, addr, ptent);
4395 
4396 	if (!page || !page_mapped(page))
4397 		return NULL;
4398 	if (PageAnon(page)) {
4399 		if (!(mc.flags & MOVE_ANON))
4400 			return NULL;
4401 	} else {
4402 		if (!(mc.flags & MOVE_FILE))
4403 			return NULL;
4404 	}
4405 	if (!get_page_unless_zero(page))
4406 		return NULL;
4407 
4408 	return page;
4409 }
4410 
4411 #ifdef CONFIG_SWAP
4412 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4413 			pte_t ptent, swp_entry_t *entry)
4414 {
4415 	struct page *page = NULL;
4416 	swp_entry_t ent = pte_to_swp_entry(ptent);
4417 
4418 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4419 		return NULL;
4420 	/*
4421 	 * Because lookup_swap_cache() updates some statistics counter,
4422 	 * we call find_get_page() with swapper_space directly.
4423 	 */
4424 	page = find_get_page(swap_address_space(ent), ent.val);
4425 	if (do_memsw_account())
4426 		entry->val = ent.val;
4427 
4428 	return page;
4429 }
4430 #else
4431 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4432 			pte_t ptent, swp_entry_t *entry)
4433 {
4434 	return NULL;
4435 }
4436 #endif
4437 
4438 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4439 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4440 {
4441 	struct page *page = NULL;
4442 	struct address_space *mapping;
4443 	pgoff_t pgoff;
4444 
4445 	if (!vma->vm_file) /* anonymous vma */
4446 		return NULL;
4447 	if (!(mc.flags & MOVE_FILE))
4448 		return NULL;
4449 
4450 	mapping = vma->vm_file->f_mapping;
4451 	pgoff = linear_page_index(vma, addr);
4452 
4453 	/* page is moved even if it's not RSS of this task(page-faulted). */
4454 #ifdef CONFIG_SWAP
4455 	/* shmem/tmpfs may report page out on swap: account for that too. */
4456 	if (shmem_mapping(mapping)) {
4457 		page = find_get_entry(mapping, pgoff);
4458 		if (radix_tree_exceptional_entry(page)) {
4459 			swp_entry_t swp = radix_to_swp_entry(page);
4460 			if (do_memsw_account())
4461 				*entry = swp;
4462 			page = find_get_page(swap_address_space(swp), swp.val);
4463 		}
4464 	} else
4465 		page = find_get_page(mapping, pgoff);
4466 #else
4467 	page = find_get_page(mapping, pgoff);
4468 #endif
4469 	return page;
4470 }
4471 
4472 /**
4473  * mem_cgroup_move_account - move account of the page
4474  * @page: the page
4475  * @compound: charge the page as compound or small page
4476  * @from: mem_cgroup which the page is moved from.
4477  * @to:	mem_cgroup which the page is moved to. @from != @to.
4478  *
4479  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4480  *
4481  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4482  * from old cgroup.
4483  */
4484 static int mem_cgroup_move_account(struct page *page,
4485 				   bool compound,
4486 				   struct mem_cgroup *from,
4487 				   struct mem_cgroup *to)
4488 {
4489 	unsigned long flags;
4490 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4491 	int ret;
4492 	bool anon;
4493 
4494 	VM_BUG_ON(from == to);
4495 	VM_BUG_ON_PAGE(PageLRU(page), page);
4496 	VM_BUG_ON(compound && !PageTransHuge(page));
4497 
4498 	/*
4499 	 * Prevent mem_cgroup_migrate() from looking at
4500 	 * page->mem_cgroup of its source page while we change it.
4501 	 */
4502 	ret = -EBUSY;
4503 	if (!trylock_page(page))
4504 		goto out;
4505 
4506 	ret = -EINVAL;
4507 	if (page->mem_cgroup != from)
4508 		goto out_unlock;
4509 
4510 	anon = PageAnon(page);
4511 
4512 	spin_lock_irqsave(&from->move_lock, flags);
4513 
4514 	if (!anon && page_mapped(page)) {
4515 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4516 			       nr_pages);
4517 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4518 			       nr_pages);
4519 	}
4520 
4521 	/*
4522 	 * move_lock grabbed above and caller set from->moving_account, so
4523 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4524 	 * So mapping should be stable for dirty pages.
4525 	 */
4526 	if (!anon && PageDirty(page)) {
4527 		struct address_space *mapping = page_mapping(page);
4528 
4529 		if (mapping_cap_account_dirty(mapping)) {
4530 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4531 				       nr_pages);
4532 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4533 				       nr_pages);
4534 		}
4535 	}
4536 
4537 	if (PageWriteback(page)) {
4538 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4539 			       nr_pages);
4540 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4541 			       nr_pages);
4542 	}
4543 
4544 	/*
4545 	 * It is safe to change page->mem_cgroup here because the page
4546 	 * is referenced, charged, and isolated - we can't race with
4547 	 * uncharging, charging, migration, or LRU putback.
4548 	 */
4549 
4550 	/* caller should have done css_get */
4551 	page->mem_cgroup = to;
4552 	spin_unlock_irqrestore(&from->move_lock, flags);
4553 
4554 	ret = 0;
4555 
4556 	local_irq_disable();
4557 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4558 	memcg_check_events(to, page);
4559 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4560 	memcg_check_events(from, page);
4561 	local_irq_enable();
4562 out_unlock:
4563 	unlock_page(page);
4564 out:
4565 	return ret;
4566 }
4567 
4568 /**
4569  * get_mctgt_type - get target type of moving charge
4570  * @vma: the vma the pte to be checked belongs
4571  * @addr: the address corresponding to the pte to be checked
4572  * @ptent: the pte to be checked
4573  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4574  *
4575  * Returns
4576  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4577  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4578  *     move charge. if @target is not NULL, the page is stored in target->page
4579  *     with extra refcnt got(Callers should handle it).
4580  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4581  *     target for charge migration. if @target is not NULL, the entry is stored
4582  *     in target->ent.
4583  *
4584  * Called with pte lock held.
4585  */
4586 
4587 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4588 		unsigned long addr, pte_t ptent, union mc_target *target)
4589 {
4590 	struct page *page = NULL;
4591 	enum mc_target_type ret = MC_TARGET_NONE;
4592 	swp_entry_t ent = { .val = 0 };
4593 
4594 	if (pte_present(ptent))
4595 		page = mc_handle_present_pte(vma, addr, ptent);
4596 	else if (is_swap_pte(ptent))
4597 		page = mc_handle_swap_pte(vma, ptent, &ent);
4598 	else if (pte_none(ptent))
4599 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4600 
4601 	if (!page && !ent.val)
4602 		return ret;
4603 	if (page) {
4604 		/*
4605 		 * Do only loose check w/o serialization.
4606 		 * mem_cgroup_move_account() checks the page is valid or
4607 		 * not under LRU exclusion.
4608 		 */
4609 		if (page->mem_cgroup == mc.from) {
4610 			ret = MC_TARGET_PAGE;
4611 			if (target)
4612 				target->page = page;
4613 		}
4614 		if (!ret || !target)
4615 			put_page(page);
4616 	}
4617 	/* There is a swap entry and a page doesn't exist or isn't charged */
4618 	if (ent.val && !ret &&
4619 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4620 		ret = MC_TARGET_SWAP;
4621 		if (target)
4622 			target->ent = ent;
4623 	}
4624 	return ret;
4625 }
4626 
4627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4628 /*
4629  * We don't consider swapping or file mapped pages because THP does not
4630  * support them for now.
4631  * Caller should make sure that pmd_trans_huge(pmd) is true.
4632  */
4633 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4634 		unsigned long addr, pmd_t pmd, union mc_target *target)
4635 {
4636 	struct page *page = NULL;
4637 	enum mc_target_type ret = MC_TARGET_NONE;
4638 
4639 	page = pmd_page(pmd);
4640 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4641 	if (!(mc.flags & MOVE_ANON))
4642 		return ret;
4643 	if (page->mem_cgroup == mc.from) {
4644 		ret = MC_TARGET_PAGE;
4645 		if (target) {
4646 			get_page(page);
4647 			target->page = page;
4648 		}
4649 	}
4650 	return ret;
4651 }
4652 #else
4653 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4654 		unsigned long addr, pmd_t pmd, union mc_target *target)
4655 {
4656 	return MC_TARGET_NONE;
4657 }
4658 #endif
4659 
4660 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4661 					unsigned long addr, unsigned long end,
4662 					struct mm_walk *walk)
4663 {
4664 	struct vm_area_struct *vma = walk->vma;
4665 	pte_t *pte;
4666 	spinlock_t *ptl;
4667 
4668 	ptl = pmd_trans_huge_lock(pmd, vma);
4669 	if (ptl) {
4670 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4671 			mc.precharge += HPAGE_PMD_NR;
4672 		spin_unlock(ptl);
4673 		return 0;
4674 	}
4675 
4676 	if (pmd_trans_unstable(pmd))
4677 		return 0;
4678 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4679 	for (; addr != end; pte++, addr += PAGE_SIZE)
4680 		if (get_mctgt_type(vma, addr, *pte, NULL))
4681 			mc.precharge++;	/* increment precharge temporarily */
4682 	pte_unmap_unlock(pte - 1, ptl);
4683 	cond_resched();
4684 
4685 	return 0;
4686 }
4687 
4688 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4689 {
4690 	unsigned long precharge;
4691 
4692 	struct mm_walk mem_cgroup_count_precharge_walk = {
4693 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4694 		.mm = mm,
4695 	};
4696 	down_read(&mm->mmap_sem);
4697 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4698 	up_read(&mm->mmap_sem);
4699 
4700 	precharge = mc.precharge;
4701 	mc.precharge = 0;
4702 
4703 	return precharge;
4704 }
4705 
4706 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4707 {
4708 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4709 
4710 	VM_BUG_ON(mc.moving_task);
4711 	mc.moving_task = current;
4712 	return mem_cgroup_do_precharge(precharge);
4713 }
4714 
4715 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4716 static void __mem_cgroup_clear_mc(void)
4717 {
4718 	struct mem_cgroup *from = mc.from;
4719 	struct mem_cgroup *to = mc.to;
4720 
4721 	/* we must uncharge all the leftover precharges from mc.to */
4722 	if (mc.precharge) {
4723 		cancel_charge(mc.to, mc.precharge);
4724 		mc.precharge = 0;
4725 	}
4726 	/*
4727 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4728 	 * we must uncharge here.
4729 	 */
4730 	if (mc.moved_charge) {
4731 		cancel_charge(mc.from, mc.moved_charge);
4732 		mc.moved_charge = 0;
4733 	}
4734 	/* we must fixup refcnts and charges */
4735 	if (mc.moved_swap) {
4736 		/* uncharge swap account from the old cgroup */
4737 		if (!mem_cgroup_is_root(mc.from))
4738 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4739 
4740 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4741 
4742 		/*
4743 		 * we charged both to->memory and to->memsw, so we
4744 		 * should uncharge to->memory.
4745 		 */
4746 		if (!mem_cgroup_is_root(mc.to))
4747 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4748 
4749 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4750 		css_put_many(&mc.to->css, mc.moved_swap);
4751 
4752 		mc.moved_swap = 0;
4753 	}
4754 	memcg_oom_recover(from);
4755 	memcg_oom_recover(to);
4756 	wake_up_all(&mc.waitq);
4757 }
4758 
4759 static void mem_cgroup_clear_mc(void)
4760 {
4761 	struct mm_struct *mm = mc.mm;
4762 
4763 	/*
4764 	 * we must clear moving_task before waking up waiters at the end of
4765 	 * task migration.
4766 	 */
4767 	mc.moving_task = NULL;
4768 	__mem_cgroup_clear_mc();
4769 	spin_lock(&mc.lock);
4770 	mc.from = NULL;
4771 	mc.to = NULL;
4772 	mc.mm = NULL;
4773 	spin_unlock(&mc.lock);
4774 
4775 	mmput(mm);
4776 }
4777 
4778 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4779 {
4780 	struct cgroup_subsys_state *css;
4781 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4782 	struct mem_cgroup *from;
4783 	struct task_struct *leader, *p;
4784 	struct mm_struct *mm;
4785 	unsigned long move_flags;
4786 	int ret = 0;
4787 
4788 	/* charge immigration isn't supported on the default hierarchy */
4789 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4790 		return 0;
4791 
4792 	/*
4793 	 * Multi-process migrations only happen on the default hierarchy
4794 	 * where charge immigration is not used.  Perform charge
4795 	 * immigration if @tset contains a leader and whine if there are
4796 	 * multiple.
4797 	 */
4798 	p = NULL;
4799 	cgroup_taskset_for_each_leader(leader, css, tset) {
4800 		WARN_ON_ONCE(p);
4801 		p = leader;
4802 		memcg = mem_cgroup_from_css(css);
4803 	}
4804 	if (!p)
4805 		return 0;
4806 
4807 	/*
4808 	 * We are now commited to this value whatever it is. Changes in this
4809 	 * tunable will only affect upcoming migrations, not the current one.
4810 	 * So we need to save it, and keep it going.
4811 	 */
4812 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4813 	if (!move_flags)
4814 		return 0;
4815 
4816 	from = mem_cgroup_from_task(p);
4817 
4818 	VM_BUG_ON(from == memcg);
4819 
4820 	mm = get_task_mm(p);
4821 	if (!mm)
4822 		return 0;
4823 	/* We move charges only when we move a owner of the mm */
4824 	if (mm->owner == p) {
4825 		VM_BUG_ON(mc.from);
4826 		VM_BUG_ON(mc.to);
4827 		VM_BUG_ON(mc.precharge);
4828 		VM_BUG_ON(mc.moved_charge);
4829 		VM_BUG_ON(mc.moved_swap);
4830 
4831 		spin_lock(&mc.lock);
4832 		mc.mm = mm;
4833 		mc.from = from;
4834 		mc.to = memcg;
4835 		mc.flags = move_flags;
4836 		spin_unlock(&mc.lock);
4837 		/* We set mc.moving_task later */
4838 
4839 		ret = mem_cgroup_precharge_mc(mm);
4840 		if (ret)
4841 			mem_cgroup_clear_mc();
4842 	} else {
4843 		mmput(mm);
4844 	}
4845 	return ret;
4846 }
4847 
4848 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4849 {
4850 	if (mc.to)
4851 		mem_cgroup_clear_mc();
4852 }
4853 
4854 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4855 				unsigned long addr, unsigned long end,
4856 				struct mm_walk *walk)
4857 {
4858 	int ret = 0;
4859 	struct vm_area_struct *vma = walk->vma;
4860 	pte_t *pte;
4861 	spinlock_t *ptl;
4862 	enum mc_target_type target_type;
4863 	union mc_target target;
4864 	struct page *page;
4865 
4866 	ptl = pmd_trans_huge_lock(pmd, vma);
4867 	if (ptl) {
4868 		if (mc.precharge < HPAGE_PMD_NR) {
4869 			spin_unlock(ptl);
4870 			return 0;
4871 		}
4872 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4873 		if (target_type == MC_TARGET_PAGE) {
4874 			page = target.page;
4875 			if (!isolate_lru_page(page)) {
4876 				if (!mem_cgroup_move_account(page, true,
4877 							     mc.from, mc.to)) {
4878 					mc.precharge -= HPAGE_PMD_NR;
4879 					mc.moved_charge += HPAGE_PMD_NR;
4880 				}
4881 				putback_lru_page(page);
4882 			}
4883 			put_page(page);
4884 		}
4885 		spin_unlock(ptl);
4886 		return 0;
4887 	}
4888 
4889 	if (pmd_trans_unstable(pmd))
4890 		return 0;
4891 retry:
4892 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4893 	for (; addr != end; addr += PAGE_SIZE) {
4894 		pte_t ptent = *(pte++);
4895 		swp_entry_t ent;
4896 
4897 		if (!mc.precharge)
4898 			break;
4899 
4900 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4901 		case MC_TARGET_PAGE:
4902 			page = target.page;
4903 			/*
4904 			 * We can have a part of the split pmd here. Moving it
4905 			 * can be done but it would be too convoluted so simply
4906 			 * ignore such a partial THP and keep it in original
4907 			 * memcg. There should be somebody mapping the head.
4908 			 */
4909 			if (PageTransCompound(page))
4910 				goto put;
4911 			if (isolate_lru_page(page))
4912 				goto put;
4913 			if (!mem_cgroup_move_account(page, false,
4914 						mc.from, mc.to)) {
4915 				mc.precharge--;
4916 				/* we uncharge from mc.from later. */
4917 				mc.moved_charge++;
4918 			}
4919 			putback_lru_page(page);
4920 put:			/* get_mctgt_type() gets the page */
4921 			put_page(page);
4922 			break;
4923 		case MC_TARGET_SWAP:
4924 			ent = target.ent;
4925 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4926 				mc.precharge--;
4927 				/* we fixup refcnts and charges later. */
4928 				mc.moved_swap++;
4929 			}
4930 			break;
4931 		default:
4932 			break;
4933 		}
4934 	}
4935 	pte_unmap_unlock(pte - 1, ptl);
4936 	cond_resched();
4937 
4938 	if (addr != end) {
4939 		/*
4940 		 * We have consumed all precharges we got in can_attach().
4941 		 * We try charge one by one, but don't do any additional
4942 		 * charges to mc.to if we have failed in charge once in attach()
4943 		 * phase.
4944 		 */
4945 		ret = mem_cgroup_do_precharge(1);
4946 		if (!ret)
4947 			goto retry;
4948 	}
4949 
4950 	return ret;
4951 }
4952 
4953 static void mem_cgroup_move_charge(void)
4954 {
4955 	struct mm_walk mem_cgroup_move_charge_walk = {
4956 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4957 		.mm = mc.mm,
4958 	};
4959 
4960 	lru_add_drain_all();
4961 	/*
4962 	 * Signal lock_page_memcg() to take the memcg's move_lock
4963 	 * while we're moving its pages to another memcg. Then wait
4964 	 * for already started RCU-only updates to finish.
4965 	 */
4966 	atomic_inc(&mc.from->moving_account);
4967 	synchronize_rcu();
4968 retry:
4969 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4970 		/*
4971 		 * Someone who are holding the mmap_sem might be waiting in
4972 		 * waitq. So we cancel all extra charges, wake up all waiters,
4973 		 * and retry. Because we cancel precharges, we might not be able
4974 		 * to move enough charges, but moving charge is a best-effort
4975 		 * feature anyway, so it wouldn't be a big problem.
4976 		 */
4977 		__mem_cgroup_clear_mc();
4978 		cond_resched();
4979 		goto retry;
4980 	}
4981 	/*
4982 	 * When we have consumed all precharges and failed in doing
4983 	 * additional charge, the page walk just aborts.
4984 	 */
4985 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4986 	up_read(&mc.mm->mmap_sem);
4987 	atomic_dec(&mc.from->moving_account);
4988 }
4989 
4990 static void mem_cgroup_move_task(void)
4991 {
4992 	if (mc.to) {
4993 		mem_cgroup_move_charge();
4994 		mem_cgroup_clear_mc();
4995 	}
4996 }
4997 #else	/* !CONFIG_MMU */
4998 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4999 {
5000 	return 0;
5001 }
5002 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5003 {
5004 }
5005 static void mem_cgroup_move_task(void)
5006 {
5007 }
5008 #endif
5009 
5010 /*
5011  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5012  * to verify whether we're attached to the default hierarchy on each mount
5013  * attempt.
5014  */
5015 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5016 {
5017 	/*
5018 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5019 	 * guarantees that @root doesn't have any children, so turning it
5020 	 * on for the root memcg is enough.
5021 	 */
5022 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5023 		root_mem_cgroup->use_hierarchy = true;
5024 	else
5025 		root_mem_cgroup->use_hierarchy = false;
5026 }
5027 
5028 static u64 memory_current_read(struct cgroup_subsys_state *css,
5029 			       struct cftype *cft)
5030 {
5031 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5032 
5033 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5034 }
5035 
5036 static int memory_low_show(struct seq_file *m, void *v)
5037 {
5038 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5039 	unsigned long low = READ_ONCE(memcg->low);
5040 
5041 	if (low == PAGE_COUNTER_MAX)
5042 		seq_puts(m, "max\n");
5043 	else
5044 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5045 
5046 	return 0;
5047 }
5048 
5049 static ssize_t memory_low_write(struct kernfs_open_file *of,
5050 				char *buf, size_t nbytes, loff_t off)
5051 {
5052 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5053 	unsigned long low;
5054 	int err;
5055 
5056 	buf = strstrip(buf);
5057 	err = page_counter_memparse(buf, "max", &low);
5058 	if (err)
5059 		return err;
5060 
5061 	memcg->low = low;
5062 
5063 	return nbytes;
5064 }
5065 
5066 static int memory_high_show(struct seq_file *m, void *v)
5067 {
5068 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5069 	unsigned long high = READ_ONCE(memcg->high);
5070 
5071 	if (high == PAGE_COUNTER_MAX)
5072 		seq_puts(m, "max\n");
5073 	else
5074 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5075 
5076 	return 0;
5077 }
5078 
5079 static ssize_t memory_high_write(struct kernfs_open_file *of,
5080 				 char *buf, size_t nbytes, loff_t off)
5081 {
5082 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5083 	unsigned long nr_pages;
5084 	unsigned long high;
5085 	int err;
5086 
5087 	buf = strstrip(buf);
5088 	err = page_counter_memparse(buf, "max", &high);
5089 	if (err)
5090 		return err;
5091 
5092 	memcg->high = high;
5093 
5094 	nr_pages = page_counter_read(&memcg->memory);
5095 	if (nr_pages > high)
5096 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5097 					     GFP_KERNEL, true);
5098 
5099 	memcg_wb_domain_size_changed(memcg);
5100 	return nbytes;
5101 }
5102 
5103 static int memory_max_show(struct seq_file *m, void *v)
5104 {
5105 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5106 	unsigned long max = READ_ONCE(memcg->memory.limit);
5107 
5108 	if (max == PAGE_COUNTER_MAX)
5109 		seq_puts(m, "max\n");
5110 	else
5111 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5112 
5113 	return 0;
5114 }
5115 
5116 static ssize_t memory_max_write(struct kernfs_open_file *of,
5117 				char *buf, size_t nbytes, loff_t off)
5118 {
5119 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5120 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5121 	bool drained = false;
5122 	unsigned long max;
5123 	int err;
5124 
5125 	buf = strstrip(buf);
5126 	err = page_counter_memparse(buf, "max", &max);
5127 	if (err)
5128 		return err;
5129 
5130 	xchg(&memcg->memory.limit, max);
5131 
5132 	for (;;) {
5133 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5134 
5135 		if (nr_pages <= max)
5136 			break;
5137 
5138 		if (signal_pending(current)) {
5139 			err = -EINTR;
5140 			break;
5141 		}
5142 
5143 		if (!drained) {
5144 			drain_all_stock(memcg);
5145 			drained = true;
5146 			continue;
5147 		}
5148 
5149 		if (nr_reclaims) {
5150 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5151 							  GFP_KERNEL, true))
5152 				nr_reclaims--;
5153 			continue;
5154 		}
5155 
5156 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5157 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5158 			break;
5159 	}
5160 
5161 	memcg_wb_domain_size_changed(memcg);
5162 	return nbytes;
5163 }
5164 
5165 static int memory_events_show(struct seq_file *m, void *v)
5166 {
5167 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5168 
5169 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5170 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5171 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5172 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5173 
5174 	return 0;
5175 }
5176 
5177 static int memory_stat_show(struct seq_file *m, void *v)
5178 {
5179 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5180 	unsigned long stat[MEMCG_NR_STAT];
5181 	unsigned long events[MEMCG_NR_EVENTS];
5182 	int i;
5183 
5184 	/*
5185 	 * Provide statistics on the state of the memory subsystem as
5186 	 * well as cumulative event counters that show past behavior.
5187 	 *
5188 	 * This list is ordered following a combination of these gradients:
5189 	 * 1) generic big picture -> specifics and details
5190 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5191 	 *
5192 	 * Current memory state:
5193 	 */
5194 
5195 	tree_stat(memcg, stat);
5196 	tree_events(memcg, events);
5197 
5198 	seq_printf(m, "anon %llu\n",
5199 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5200 	seq_printf(m, "file %llu\n",
5201 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5202 	seq_printf(m, "kernel_stack %llu\n",
5203 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5204 	seq_printf(m, "slab %llu\n",
5205 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5206 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5207 	seq_printf(m, "sock %llu\n",
5208 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5209 
5210 	seq_printf(m, "file_mapped %llu\n",
5211 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5212 	seq_printf(m, "file_dirty %llu\n",
5213 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5214 	seq_printf(m, "file_writeback %llu\n",
5215 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5216 
5217 	for (i = 0; i < NR_LRU_LISTS; i++) {
5218 		struct mem_cgroup *mi;
5219 		unsigned long val = 0;
5220 
5221 		for_each_mem_cgroup_tree(mi, memcg)
5222 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5223 		seq_printf(m, "%s %llu\n",
5224 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5225 	}
5226 
5227 	seq_printf(m, "slab_reclaimable %llu\n",
5228 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5229 	seq_printf(m, "slab_unreclaimable %llu\n",
5230 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5231 
5232 	/* Accumulated memory events */
5233 
5234 	seq_printf(m, "pgfault %lu\n",
5235 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5236 	seq_printf(m, "pgmajfault %lu\n",
5237 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5238 
5239 	return 0;
5240 }
5241 
5242 static struct cftype memory_files[] = {
5243 	{
5244 		.name = "current",
5245 		.flags = CFTYPE_NOT_ON_ROOT,
5246 		.read_u64 = memory_current_read,
5247 	},
5248 	{
5249 		.name = "low",
5250 		.flags = CFTYPE_NOT_ON_ROOT,
5251 		.seq_show = memory_low_show,
5252 		.write = memory_low_write,
5253 	},
5254 	{
5255 		.name = "high",
5256 		.flags = CFTYPE_NOT_ON_ROOT,
5257 		.seq_show = memory_high_show,
5258 		.write = memory_high_write,
5259 	},
5260 	{
5261 		.name = "max",
5262 		.flags = CFTYPE_NOT_ON_ROOT,
5263 		.seq_show = memory_max_show,
5264 		.write = memory_max_write,
5265 	},
5266 	{
5267 		.name = "events",
5268 		.flags = CFTYPE_NOT_ON_ROOT,
5269 		.file_offset = offsetof(struct mem_cgroup, events_file),
5270 		.seq_show = memory_events_show,
5271 	},
5272 	{
5273 		.name = "stat",
5274 		.flags = CFTYPE_NOT_ON_ROOT,
5275 		.seq_show = memory_stat_show,
5276 	},
5277 	{ }	/* terminate */
5278 };
5279 
5280 struct cgroup_subsys memory_cgrp_subsys = {
5281 	.css_alloc = mem_cgroup_css_alloc,
5282 	.css_online = mem_cgroup_css_online,
5283 	.css_offline = mem_cgroup_css_offline,
5284 	.css_released = mem_cgroup_css_released,
5285 	.css_free = mem_cgroup_css_free,
5286 	.css_reset = mem_cgroup_css_reset,
5287 	.can_attach = mem_cgroup_can_attach,
5288 	.cancel_attach = mem_cgroup_cancel_attach,
5289 	.post_attach = mem_cgroup_move_task,
5290 	.bind = mem_cgroup_bind,
5291 	.dfl_cftypes = memory_files,
5292 	.legacy_cftypes = mem_cgroup_legacy_files,
5293 	.early_init = 0,
5294 };
5295 
5296 /**
5297  * mem_cgroup_low - check if memory consumption is below the normal range
5298  * @root: the highest ancestor to consider
5299  * @memcg: the memory cgroup to check
5300  *
5301  * Returns %true if memory consumption of @memcg, and that of all
5302  * configurable ancestors up to @root, is below the normal range.
5303  */
5304 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5305 {
5306 	if (mem_cgroup_disabled())
5307 		return false;
5308 
5309 	/*
5310 	 * The toplevel group doesn't have a configurable range, so
5311 	 * it's never low when looked at directly, and it is not
5312 	 * considered an ancestor when assessing the hierarchy.
5313 	 */
5314 
5315 	if (memcg == root_mem_cgroup)
5316 		return false;
5317 
5318 	if (page_counter_read(&memcg->memory) >= memcg->low)
5319 		return false;
5320 
5321 	while (memcg != root) {
5322 		memcg = parent_mem_cgroup(memcg);
5323 
5324 		if (memcg == root_mem_cgroup)
5325 			break;
5326 
5327 		if (page_counter_read(&memcg->memory) >= memcg->low)
5328 			return false;
5329 	}
5330 	return true;
5331 }
5332 
5333 /**
5334  * mem_cgroup_try_charge - try charging a page
5335  * @page: page to charge
5336  * @mm: mm context of the victim
5337  * @gfp_mask: reclaim mode
5338  * @memcgp: charged memcg return
5339  * @compound: charge the page as compound or small page
5340  *
5341  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5342  * pages according to @gfp_mask if necessary.
5343  *
5344  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5345  * Otherwise, an error code is returned.
5346  *
5347  * After page->mapping has been set up, the caller must finalize the
5348  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5349  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5350  */
5351 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5352 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5353 			  bool compound)
5354 {
5355 	struct mem_cgroup *memcg = NULL;
5356 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5357 	int ret = 0;
5358 
5359 	if (mem_cgroup_disabled())
5360 		goto out;
5361 
5362 	if (PageSwapCache(page)) {
5363 		/*
5364 		 * Every swap fault against a single page tries to charge the
5365 		 * page, bail as early as possible.  shmem_unuse() encounters
5366 		 * already charged pages, too.  The USED bit is protected by
5367 		 * the page lock, which serializes swap cache removal, which
5368 		 * in turn serializes uncharging.
5369 		 */
5370 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5371 		if (page->mem_cgroup)
5372 			goto out;
5373 
5374 		if (do_swap_account) {
5375 			swp_entry_t ent = { .val = page_private(page), };
5376 			unsigned short id = lookup_swap_cgroup_id(ent);
5377 
5378 			rcu_read_lock();
5379 			memcg = mem_cgroup_from_id(id);
5380 			if (memcg && !css_tryget_online(&memcg->css))
5381 				memcg = NULL;
5382 			rcu_read_unlock();
5383 		}
5384 	}
5385 
5386 	if (!memcg)
5387 		memcg = get_mem_cgroup_from_mm(mm);
5388 
5389 	ret = try_charge(memcg, gfp_mask, nr_pages);
5390 
5391 	css_put(&memcg->css);
5392 out:
5393 	*memcgp = memcg;
5394 	return ret;
5395 }
5396 
5397 /**
5398  * mem_cgroup_commit_charge - commit a page charge
5399  * @page: page to charge
5400  * @memcg: memcg to charge the page to
5401  * @lrucare: page might be on LRU already
5402  * @compound: charge the page as compound or small page
5403  *
5404  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5405  * after page->mapping has been set up.  This must happen atomically
5406  * as part of the page instantiation, i.e. under the page table lock
5407  * for anonymous pages, under the page lock for page and swap cache.
5408  *
5409  * In addition, the page must not be on the LRU during the commit, to
5410  * prevent racing with task migration.  If it might be, use @lrucare.
5411  *
5412  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5413  */
5414 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5415 			      bool lrucare, bool compound)
5416 {
5417 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5418 
5419 	VM_BUG_ON_PAGE(!page->mapping, page);
5420 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5421 
5422 	if (mem_cgroup_disabled())
5423 		return;
5424 	/*
5425 	 * Swap faults will attempt to charge the same page multiple
5426 	 * times.  But reuse_swap_page() might have removed the page
5427 	 * from swapcache already, so we can't check PageSwapCache().
5428 	 */
5429 	if (!memcg)
5430 		return;
5431 
5432 	commit_charge(page, memcg, lrucare);
5433 
5434 	local_irq_disable();
5435 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5436 	memcg_check_events(memcg, page);
5437 	local_irq_enable();
5438 
5439 	if (do_memsw_account() && PageSwapCache(page)) {
5440 		swp_entry_t entry = { .val = page_private(page) };
5441 		/*
5442 		 * The swap entry might not get freed for a long time,
5443 		 * let's not wait for it.  The page already received a
5444 		 * memory+swap charge, drop the swap entry duplicate.
5445 		 */
5446 		mem_cgroup_uncharge_swap(entry);
5447 	}
5448 }
5449 
5450 /**
5451  * mem_cgroup_cancel_charge - cancel a page charge
5452  * @page: page to charge
5453  * @memcg: memcg to charge the page to
5454  * @compound: charge the page as compound or small page
5455  *
5456  * Cancel a charge transaction started by mem_cgroup_try_charge().
5457  */
5458 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5459 		bool compound)
5460 {
5461 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5462 
5463 	if (mem_cgroup_disabled())
5464 		return;
5465 	/*
5466 	 * Swap faults will attempt to charge the same page multiple
5467 	 * times.  But reuse_swap_page() might have removed the page
5468 	 * from swapcache already, so we can't check PageSwapCache().
5469 	 */
5470 	if (!memcg)
5471 		return;
5472 
5473 	cancel_charge(memcg, nr_pages);
5474 }
5475 
5476 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5477 			   unsigned long nr_anon, unsigned long nr_file,
5478 			   unsigned long nr_huge, unsigned long nr_kmem,
5479 			   struct page *dummy_page)
5480 {
5481 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5482 	unsigned long flags;
5483 
5484 	if (!mem_cgroup_is_root(memcg)) {
5485 		page_counter_uncharge(&memcg->memory, nr_pages);
5486 		if (do_memsw_account())
5487 			page_counter_uncharge(&memcg->memsw, nr_pages);
5488 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5489 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5490 		memcg_oom_recover(memcg);
5491 	}
5492 
5493 	local_irq_save(flags);
5494 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5495 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5496 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5497 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5498 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5499 	memcg_check_events(memcg, dummy_page);
5500 	local_irq_restore(flags);
5501 
5502 	if (!mem_cgroup_is_root(memcg))
5503 		css_put_many(&memcg->css, nr_pages);
5504 }
5505 
5506 static void uncharge_list(struct list_head *page_list)
5507 {
5508 	struct mem_cgroup *memcg = NULL;
5509 	unsigned long nr_anon = 0;
5510 	unsigned long nr_file = 0;
5511 	unsigned long nr_huge = 0;
5512 	unsigned long nr_kmem = 0;
5513 	unsigned long pgpgout = 0;
5514 	struct list_head *next;
5515 	struct page *page;
5516 
5517 	/*
5518 	 * Note that the list can be a single page->lru; hence the
5519 	 * do-while loop instead of a simple list_for_each_entry().
5520 	 */
5521 	next = page_list->next;
5522 	do {
5523 		page = list_entry(next, struct page, lru);
5524 		next = page->lru.next;
5525 
5526 		VM_BUG_ON_PAGE(PageLRU(page), page);
5527 		VM_BUG_ON_PAGE(page_count(page), page);
5528 
5529 		if (!page->mem_cgroup)
5530 			continue;
5531 
5532 		/*
5533 		 * Nobody should be changing or seriously looking at
5534 		 * page->mem_cgroup at this point, we have fully
5535 		 * exclusive access to the page.
5536 		 */
5537 
5538 		if (memcg != page->mem_cgroup) {
5539 			if (memcg) {
5540 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5541 					       nr_huge, nr_kmem, page);
5542 				pgpgout = nr_anon = nr_file =
5543 					nr_huge = nr_kmem = 0;
5544 			}
5545 			memcg = page->mem_cgroup;
5546 		}
5547 
5548 		if (!PageKmemcg(page)) {
5549 			unsigned int nr_pages = 1;
5550 
5551 			if (PageTransHuge(page)) {
5552 				nr_pages <<= compound_order(page);
5553 				nr_huge += nr_pages;
5554 			}
5555 			if (PageAnon(page))
5556 				nr_anon += nr_pages;
5557 			else
5558 				nr_file += nr_pages;
5559 			pgpgout++;
5560 		} else {
5561 			nr_kmem += 1 << compound_order(page);
5562 			__ClearPageKmemcg(page);
5563 		}
5564 
5565 		page->mem_cgroup = NULL;
5566 	} while (next != page_list);
5567 
5568 	if (memcg)
5569 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5570 			       nr_huge, nr_kmem, page);
5571 }
5572 
5573 /**
5574  * mem_cgroup_uncharge - uncharge a page
5575  * @page: page to uncharge
5576  *
5577  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5578  * mem_cgroup_commit_charge().
5579  */
5580 void mem_cgroup_uncharge(struct page *page)
5581 {
5582 	if (mem_cgroup_disabled())
5583 		return;
5584 
5585 	/* Don't touch page->lru of any random page, pre-check: */
5586 	if (!page->mem_cgroup)
5587 		return;
5588 
5589 	INIT_LIST_HEAD(&page->lru);
5590 	uncharge_list(&page->lru);
5591 }
5592 
5593 /**
5594  * mem_cgroup_uncharge_list - uncharge a list of page
5595  * @page_list: list of pages to uncharge
5596  *
5597  * Uncharge a list of pages previously charged with
5598  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5599  */
5600 void mem_cgroup_uncharge_list(struct list_head *page_list)
5601 {
5602 	if (mem_cgroup_disabled())
5603 		return;
5604 
5605 	if (!list_empty(page_list))
5606 		uncharge_list(page_list);
5607 }
5608 
5609 /**
5610  * mem_cgroup_migrate - charge a page's replacement
5611  * @oldpage: currently circulating page
5612  * @newpage: replacement page
5613  *
5614  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5615  * be uncharged upon free.
5616  *
5617  * Both pages must be locked, @newpage->mapping must be set up.
5618  */
5619 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5620 {
5621 	struct mem_cgroup *memcg;
5622 	unsigned int nr_pages;
5623 	bool compound;
5624 	unsigned long flags;
5625 
5626 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5627 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5628 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5629 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5630 		       newpage);
5631 
5632 	if (mem_cgroup_disabled())
5633 		return;
5634 
5635 	/* Page cache replacement: new page already charged? */
5636 	if (newpage->mem_cgroup)
5637 		return;
5638 
5639 	/* Swapcache readahead pages can get replaced before being charged */
5640 	memcg = oldpage->mem_cgroup;
5641 	if (!memcg)
5642 		return;
5643 
5644 	/* Force-charge the new page. The old one will be freed soon */
5645 	compound = PageTransHuge(newpage);
5646 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5647 
5648 	page_counter_charge(&memcg->memory, nr_pages);
5649 	if (do_memsw_account())
5650 		page_counter_charge(&memcg->memsw, nr_pages);
5651 	css_get_many(&memcg->css, nr_pages);
5652 
5653 	commit_charge(newpage, memcg, false);
5654 
5655 	local_irq_save(flags);
5656 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5657 	memcg_check_events(memcg, newpage);
5658 	local_irq_restore(flags);
5659 }
5660 
5661 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5662 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5663 
5664 void sock_update_memcg(struct sock *sk)
5665 {
5666 	struct mem_cgroup *memcg;
5667 
5668 	/* Socket cloning can throw us here with sk_cgrp already
5669 	 * filled. It won't however, necessarily happen from
5670 	 * process context. So the test for root memcg given
5671 	 * the current task's memcg won't help us in this case.
5672 	 *
5673 	 * Respecting the original socket's memcg is a better
5674 	 * decision in this case.
5675 	 */
5676 	if (sk->sk_memcg) {
5677 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5678 		css_get(&sk->sk_memcg->css);
5679 		return;
5680 	}
5681 
5682 	rcu_read_lock();
5683 	memcg = mem_cgroup_from_task(current);
5684 	if (memcg == root_mem_cgroup)
5685 		goto out;
5686 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5687 		goto out;
5688 	if (css_tryget_online(&memcg->css))
5689 		sk->sk_memcg = memcg;
5690 out:
5691 	rcu_read_unlock();
5692 }
5693 EXPORT_SYMBOL(sock_update_memcg);
5694 
5695 void sock_release_memcg(struct sock *sk)
5696 {
5697 	WARN_ON(!sk->sk_memcg);
5698 	css_put(&sk->sk_memcg->css);
5699 }
5700 
5701 /**
5702  * mem_cgroup_charge_skmem - charge socket memory
5703  * @memcg: memcg to charge
5704  * @nr_pages: number of pages to charge
5705  *
5706  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5707  * @memcg's configured limit, %false if the charge had to be forced.
5708  */
5709 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5710 {
5711 	gfp_t gfp_mask = GFP_KERNEL;
5712 
5713 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5714 		struct page_counter *fail;
5715 
5716 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5717 			memcg->tcpmem_pressure = 0;
5718 			return true;
5719 		}
5720 		page_counter_charge(&memcg->tcpmem, nr_pages);
5721 		memcg->tcpmem_pressure = 1;
5722 		return false;
5723 	}
5724 
5725 	/* Don't block in the packet receive path */
5726 	if (in_softirq())
5727 		gfp_mask = GFP_NOWAIT;
5728 
5729 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5730 
5731 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5732 		return true;
5733 
5734 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5735 	return false;
5736 }
5737 
5738 /**
5739  * mem_cgroup_uncharge_skmem - uncharge socket memory
5740  * @memcg - memcg to uncharge
5741  * @nr_pages - number of pages to uncharge
5742  */
5743 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5744 {
5745 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5746 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5747 		return;
5748 	}
5749 
5750 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5751 
5752 	page_counter_uncharge(&memcg->memory, nr_pages);
5753 	css_put_many(&memcg->css, nr_pages);
5754 }
5755 
5756 static int __init cgroup_memory(char *s)
5757 {
5758 	char *token;
5759 
5760 	while ((token = strsep(&s, ",")) != NULL) {
5761 		if (!*token)
5762 			continue;
5763 		if (!strcmp(token, "nosocket"))
5764 			cgroup_memory_nosocket = true;
5765 		if (!strcmp(token, "nokmem"))
5766 			cgroup_memory_nokmem = true;
5767 	}
5768 	return 0;
5769 }
5770 __setup("cgroup.memory=", cgroup_memory);
5771 
5772 /*
5773  * subsys_initcall() for memory controller.
5774  *
5775  * Some parts like hotcpu_notifier() have to be initialized from this context
5776  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5777  * everything that doesn't depend on a specific mem_cgroup structure should
5778  * be initialized from here.
5779  */
5780 static int __init mem_cgroup_init(void)
5781 {
5782 	int cpu, node;
5783 
5784 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5785 
5786 	for_each_possible_cpu(cpu)
5787 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5788 			  drain_local_stock);
5789 
5790 	for_each_node(node) {
5791 		struct mem_cgroup_tree_per_node *rtpn;
5792 
5793 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5794 				    node_online(node) ? node : NUMA_NO_NODE);
5795 
5796 		rtpn->rb_root = RB_ROOT;
5797 		spin_lock_init(&rtpn->lock);
5798 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5799 	}
5800 
5801 	return 0;
5802 }
5803 subsys_initcall(mem_cgroup_init);
5804 
5805 #ifdef CONFIG_MEMCG_SWAP
5806 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5807 {
5808 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5809 		/*
5810 		 * The root cgroup cannot be destroyed, so it's refcount must
5811 		 * always be >= 1.
5812 		 */
5813 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5814 			VM_BUG_ON(1);
5815 			break;
5816 		}
5817 		memcg = parent_mem_cgroup(memcg);
5818 		if (!memcg)
5819 			memcg = root_mem_cgroup;
5820 	}
5821 	return memcg;
5822 }
5823 
5824 /**
5825  * mem_cgroup_swapout - transfer a memsw charge to swap
5826  * @page: page whose memsw charge to transfer
5827  * @entry: swap entry to move the charge to
5828  *
5829  * Transfer the memsw charge of @page to @entry.
5830  */
5831 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5832 {
5833 	struct mem_cgroup *memcg, *swap_memcg;
5834 	unsigned short oldid;
5835 
5836 	VM_BUG_ON_PAGE(PageLRU(page), page);
5837 	VM_BUG_ON_PAGE(page_count(page), page);
5838 
5839 	if (!do_memsw_account())
5840 		return;
5841 
5842 	memcg = page->mem_cgroup;
5843 
5844 	/* Readahead page, never charged */
5845 	if (!memcg)
5846 		return;
5847 
5848 	/*
5849 	 * In case the memcg owning these pages has been offlined and doesn't
5850 	 * have an ID allocated to it anymore, charge the closest online
5851 	 * ancestor for the swap instead and transfer the memory+swap charge.
5852 	 */
5853 	swap_memcg = mem_cgroup_id_get_online(memcg);
5854 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5855 	VM_BUG_ON_PAGE(oldid, page);
5856 	mem_cgroup_swap_statistics(swap_memcg, true);
5857 
5858 	page->mem_cgroup = NULL;
5859 
5860 	if (!mem_cgroup_is_root(memcg))
5861 		page_counter_uncharge(&memcg->memory, 1);
5862 
5863 	if (memcg != swap_memcg) {
5864 		if (!mem_cgroup_is_root(swap_memcg))
5865 			page_counter_charge(&swap_memcg->memsw, 1);
5866 		page_counter_uncharge(&memcg->memsw, 1);
5867 	}
5868 
5869 	/*
5870 	 * Interrupts should be disabled here because the caller holds the
5871 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5872 	 * important here to have the interrupts disabled because it is the
5873 	 * only synchronisation we have for udpating the per-CPU variables.
5874 	 */
5875 	VM_BUG_ON(!irqs_disabled());
5876 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5877 	memcg_check_events(memcg, page);
5878 
5879 	if (!mem_cgroup_is_root(memcg))
5880 		css_put(&memcg->css);
5881 }
5882 
5883 /*
5884  * mem_cgroup_try_charge_swap - try charging a swap entry
5885  * @page: page being added to swap
5886  * @entry: swap entry to charge
5887  *
5888  * Try to charge @entry to the memcg that @page belongs to.
5889  *
5890  * Returns 0 on success, -ENOMEM on failure.
5891  */
5892 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5893 {
5894 	struct mem_cgroup *memcg;
5895 	struct page_counter *counter;
5896 	unsigned short oldid;
5897 
5898 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5899 		return 0;
5900 
5901 	memcg = page->mem_cgroup;
5902 
5903 	/* Readahead page, never charged */
5904 	if (!memcg)
5905 		return 0;
5906 
5907 	memcg = mem_cgroup_id_get_online(memcg);
5908 
5909 	if (!mem_cgroup_is_root(memcg) &&
5910 	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5911 		mem_cgroup_id_put(memcg);
5912 		return -ENOMEM;
5913 	}
5914 
5915 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5916 	VM_BUG_ON_PAGE(oldid, page);
5917 	mem_cgroup_swap_statistics(memcg, true);
5918 
5919 	return 0;
5920 }
5921 
5922 /**
5923  * mem_cgroup_uncharge_swap - uncharge a swap entry
5924  * @entry: swap entry to uncharge
5925  *
5926  * Drop the swap charge associated with @entry.
5927  */
5928 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5929 {
5930 	struct mem_cgroup *memcg;
5931 	unsigned short id;
5932 
5933 	if (!do_swap_account)
5934 		return;
5935 
5936 	id = swap_cgroup_record(entry, 0);
5937 	rcu_read_lock();
5938 	memcg = mem_cgroup_from_id(id);
5939 	if (memcg) {
5940 		if (!mem_cgroup_is_root(memcg)) {
5941 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5942 				page_counter_uncharge(&memcg->swap, 1);
5943 			else
5944 				page_counter_uncharge(&memcg->memsw, 1);
5945 		}
5946 		mem_cgroup_swap_statistics(memcg, false);
5947 		mem_cgroup_id_put(memcg);
5948 	}
5949 	rcu_read_unlock();
5950 }
5951 
5952 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5953 {
5954 	long nr_swap_pages = get_nr_swap_pages();
5955 
5956 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5957 		return nr_swap_pages;
5958 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5959 		nr_swap_pages = min_t(long, nr_swap_pages,
5960 				      READ_ONCE(memcg->swap.limit) -
5961 				      page_counter_read(&memcg->swap));
5962 	return nr_swap_pages;
5963 }
5964 
5965 bool mem_cgroup_swap_full(struct page *page)
5966 {
5967 	struct mem_cgroup *memcg;
5968 
5969 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5970 
5971 	if (vm_swap_full())
5972 		return true;
5973 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5974 		return false;
5975 
5976 	memcg = page->mem_cgroup;
5977 	if (!memcg)
5978 		return false;
5979 
5980 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5981 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5982 			return true;
5983 
5984 	return false;
5985 }
5986 
5987 /* for remember boot option*/
5988 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5989 static int really_do_swap_account __initdata = 1;
5990 #else
5991 static int really_do_swap_account __initdata;
5992 #endif
5993 
5994 static int __init enable_swap_account(char *s)
5995 {
5996 	if (!strcmp(s, "1"))
5997 		really_do_swap_account = 1;
5998 	else if (!strcmp(s, "0"))
5999 		really_do_swap_account = 0;
6000 	return 1;
6001 }
6002 __setup("swapaccount=", enable_swap_account);
6003 
6004 static u64 swap_current_read(struct cgroup_subsys_state *css,
6005 			     struct cftype *cft)
6006 {
6007 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6008 
6009 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6010 }
6011 
6012 static int swap_max_show(struct seq_file *m, void *v)
6013 {
6014 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6015 	unsigned long max = READ_ONCE(memcg->swap.limit);
6016 
6017 	if (max == PAGE_COUNTER_MAX)
6018 		seq_puts(m, "max\n");
6019 	else
6020 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6021 
6022 	return 0;
6023 }
6024 
6025 static ssize_t swap_max_write(struct kernfs_open_file *of,
6026 			      char *buf, size_t nbytes, loff_t off)
6027 {
6028 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6029 	unsigned long max;
6030 	int err;
6031 
6032 	buf = strstrip(buf);
6033 	err = page_counter_memparse(buf, "max", &max);
6034 	if (err)
6035 		return err;
6036 
6037 	mutex_lock(&memcg_limit_mutex);
6038 	err = page_counter_limit(&memcg->swap, max);
6039 	mutex_unlock(&memcg_limit_mutex);
6040 	if (err)
6041 		return err;
6042 
6043 	return nbytes;
6044 }
6045 
6046 static struct cftype swap_files[] = {
6047 	{
6048 		.name = "swap.current",
6049 		.flags = CFTYPE_NOT_ON_ROOT,
6050 		.read_u64 = swap_current_read,
6051 	},
6052 	{
6053 		.name = "swap.max",
6054 		.flags = CFTYPE_NOT_ON_ROOT,
6055 		.seq_show = swap_max_show,
6056 		.write = swap_max_write,
6057 	},
6058 	{ }	/* terminate */
6059 };
6060 
6061 static struct cftype memsw_cgroup_files[] = {
6062 	{
6063 		.name = "memsw.usage_in_bytes",
6064 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6065 		.read_u64 = mem_cgroup_read_u64,
6066 	},
6067 	{
6068 		.name = "memsw.max_usage_in_bytes",
6069 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6070 		.write = mem_cgroup_reset,
6071 		.read_u64 = mem_cgroup_read_u64,
6072 	},
6073 	{
6074 		.name = "memsw.limit_in_bytes",
6075 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6076 		.write = mem_cgroup_write,
6077 		.read_u64 = mem_cgroup_read_u64,
6078 	},
6079 	{
6080 		.name = "memsw.failcnt",
6081 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6082 		.write = mem_cgroup_reset,
6083 		.read_u64 = mem_cgroup_read_u64,
6084 	},
6085 	{ },	/* terminate */
6086 };
6087 
6088 static int __init mem_cgroup_swap_init(void)
6089 {
6090 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6091 		do_swap_account = 1;
6092 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6093 					       swap_files));
6094 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6095 						  memsw_cgroup_files));
6096 	}
6097 	return 0;
6098 }
6099 subsys_initcall(mem_cgroup_swap_init);
6100 
6101 #endif /* CONFIG_MEMCG_SWAP */
6102