xref: /openbmc/linux/mm/memcontrol.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
35 
36 #include <asm/uaccess.h>
37 
38 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
39 static struct kmem_cache *page_cgroup_cache __read_mostly;
40 #define MEM_CGROUP_RECLAIM_RETRIES	5
41 
42 /*
43  * Statistics for memory cgroup.
44  */
45 enum mem_cgroup_stat_index {
46 	/*
47 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
48 	 */
49 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
50 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
51 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
52 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
53 
54 	MEM_CGROUP_STAT_NSTATS,
55 };
56 
57 struct mem_cgroup_stat_cpu {
58 	s64 count[MEM_CGROUP_STAT_NSTATS];
59 } ____cacheline_aligned_in_smp;
60 
61 struct mem_cgroup_stat {
62 	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
63 };
64 
65 /*
66  * For accounting under irq disable, no need for increment preempt count.
67  */
68 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
69 		enum mem_cgroup_stat_index idx, int val)
70 {
71 	int cpu = smp_processor_id();
72 	stat->cpustat[cpu].count[idx] += val;
73 }
74 
75 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 		enum mem_cgroup_stat_index idx)
77 {
78 	int cpu;
79 	s64 ret = 0;
80 	for_each_possible_cpu(cpu)
81 		ret += stat->cpustat[cpu].count[idx];
82 	return ret;
83 }
84 
85 /*
86  * per-zone information in memory controller.
87  */
88 
89 enum mem_cgroup_zstat_index {
90 	MEM_CGROUP_ZSTAT_ACTIVE,
91 	MEM_CGROUP_ZSTAT_INACTIVE,
92 
93 	NR_MEM_CGROUP_ZSTAT,
94 };
95 
96 struct mem_cgroup_per_zone {
97 	/*
98 	 * spin_lock to protect the per cgroup LRU
99 	 */
100 	spinlock_t		lru_lock;
101 	struct list_head	active_list;
102 	struct list_head	inactive_list;
103 	unsigned long count[NR_MEM_CGROUP_ZSTAT];
104 };
105 /* Macro for accessing counter */
106 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
107 
108 struct mem_cgroup_per_node {
109 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
110 };
111 
112 struct mem_cgroup_lru_info {
113 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
114 };
115 
116 /*
117  * The memory controller data structure. The memory controller controls both
118  * page cache and RSS per cgroup. We would eventually like to provide
119  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120  * to help the administrator determine what knobs to tune.
121  *
122  * TODO: Add a water mark for the memory controller. Reclaim will begin when
123  * we hit the water mark. May be even add a low water mark, such that
124  * no reclaim occurs from a cgroup at it's low water mark, this is
125  * a feature that will be implemented much later in the future.
126  */
127 struct mem_cgroup {
128 	struct cgroup_subsys_state css;
129 	/*
130 	 * the counter to account for memory usage
131 	 */
132 	struct res_counter res;
133 	/*
134 	 * Per cgroup active and inactive list, similar to the
135 	 * per zone LRU lists.
136 	 */
137 	struct mem_cgroup_lru_info info;
138 
139 	int	prev_priority;	/* for recording reclaim priority */
140 	/*
141 	 * statistics.
142 	 */
143 	struct mem_cgroup_stat stat;
144 };
145 static struct mem_cgroup init_mem_cgroup;
146 
147 /*
148  * We use the lower bit of the page->page_cgroup pointer as a bit spin
149  * lock.  We need to ensure that page->page_cgroup is at least two
150  * byte aligned (based on comments from Nick Piggin).  But since
151  * bit_spin_lock doesn't actually set that lock bit in a non-debug
152  * uniprocessor kernel, we should avoid setting it here too.
153  */
154 #define PAGE_CGROUP_LOCK_BIT 	0x0
155 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156 #define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT)
157 #else
158 #define PAGE_CGROUP_LOCK	0x0
159 #endif
160 
161 /*
162  * A page_cgroup page is associated with every page descriptor. The
163  * page_cgroup helps us identify information about the cgroup
164  */
165 struct page_cgroup {
166 	struct list_head lru;		/* per cgroup LRU list */
167 	struct page *page;
168 	struct mem_cgroup *mem_cgroup;
169 	int flags;
170 };
171 #define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
172 #define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
173 
174 static int page_cgroup_nid(struct page_cgroup *pc)
175 {
176 	return page_to_nid(pc->page);
177 }
178 
179 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
180 {
181 	return page_zonenum(pc->page);
182 }
183 
184 enum charge_type {
185 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
187 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
188 };
189 
190 /*
191  * Always modified under lru lock. Then, not necessary to preempt_disable()
192  */
193 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
194 					bool charge)
195 {
196 	int val = (charge)? 1 : -1;
197 	struct mem_cgroup_stat *stat = &mem->stat;
198 
199 	VM_BUG_ON(!irqs_disabled());
200 	if (flags & PAGE_CGROUP_FLAG_CACHE)
201 		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
202 	else
203 		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
204 
205 	if (charge)
206 		__mem_cgroup_stat_add_safe(stat,
207 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
208 	else
209 		__mem_cgroup_stat_add_safe(stat,
210 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
211 }
212 
213 static struct mem_cgroup_per_zone *
214 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
215 {
216 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
217 }
218 
219 static struct mem_cgroup_per_zone *
220 page_cgroup_zoneinfo(struct page_cgroup *pc)
221 {
222 	struct mem_cgroup *mem = pc->mem_cgroup;
223 	int nid = page_cgroup_nid(pc);
224 	int zid = page_cgroup_zid(pc);
225 
226 	return mem_cgroup_zoneinfo(mem, nid, zid);
227 }
228 
229 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
230 					enum mem_cgroup_zstat_index idx)
231 {
232 	int nid, zid;
233 	struct mem_cgroup_per_zone *mz;
234 	u64 total = 0;
235 
236 	for_each_online_node(nid)
237 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
238 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
239 			total += MEM_CGROUP_ZSTAT(mz, idx);
240 		}
241 	return total;
242 }
243 
244 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
245 {
246 	return container_of(cgroup_subsys_state(cont,
247 				mem_cgroup_subsys_id), struct mem_cgroup,
248 				css);
249 }
250 
251 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
252 {
253 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
254 				struct mem_cgroup, css);
255 }
256 
257 static inline int page_cgroup_locked(struct page *page)
258 {
259 	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
260 }
261 
262 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
263 {
264 	VM_BUG_ON(!page_cgroup_locked(page));
265 	page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
266 }
267 
268 struct page_cgroup *page_get_page_cgroup(struct page *page)
269 {
270 	return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
271 }
272 
273 static void lock_page_cgroup(struct page *page)
274 {
275 	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
276 }
277 
278 static int try_lock_page_cgroup(struct page *page)
279 {
280 	return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
281 }
282 
283 static void unlock_page_cgroup(struct page *page)
284 {
285 	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
286 }
287 
288 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
289 			struct page_cgroup *pc)
290 {
291 	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
292 
293 	if (from)
294 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
295 	else
296 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
297 
298 	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
299 	list_del(&pc->lru);
300 }
301 
302 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
303 				struct page_cgroup *pc)
304 {
305 	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
306 
307 	if (!to) {
308 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
309 		list_add(&pc->lru, &mz->inactive_list);
310 	} else {
311 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
312 		list_add(&pc->lru, &mz->active_list);
313 	}
314 	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
315 }
316 
317 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
318 {
319 	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
320 	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
321 
322 	if (from)
323 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
324 	else
325 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
326 
327 	if (active) {
328 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
329 		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
330 		list_move(&pc->lru, &mz->active_list);
331 	} else {
332 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
333 		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
334 		list_move(&pc->lru, &mz->inactive_list);
335 	}
336 }
337 
338 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
339 {
340 	int ret;
341 
342 	task_lock(task);
343 	ret = task->mm && mm_match_cgroup(task->mm, mem);
344 	task_unlock(task);
345 	return ret;
346 }
347 
348 /*
349  * This routine assumes that the appropriate zone's lru lock is already held
350  */
351 void mem_cgroup_move_lists(struct page *page, bool active)
352 {
353 	struct page_cgroup *pc;
354 	struct mem_cgroup_per_zone *mz;
355 	unsigned long flags;
356 
357 	if (mem_cgroup_subsys.disabled)
358 		return;
359 
360 	/*
361 	 * We cannot lock_page_cgroup while holding zone's lru_lock,
362 	 * because other holders of lock_page_cgroup can be interrupted
363 	 * with an attempt to rotate_reclaimable_page.  But we cannot
364 	 * safely get to page_cgroup without it, so just try_lock it:
365 	 * mem_cgroup_isolate_pages allows for page left on wrong list.
366 	 */
367 	if (!try_lock_page_cgroup(page))
368 		return;
369 
370 	pc = page_get_page_cgroup(page);
371 	if (pc) {
372 		mz = page_cgroup_zoneinfo(pc);
373 		spin_lock_irqsave(&mz->lru_lock, flags);
374 		__mem_cgroup_move_lists(pc, active);
375 		spin_unlock_irqrestore(&mz->lru_lock, flags);
376 	}
377 	unlock_page_cgroup(page);
378 }
379 
380 /*
381  * Calculate mapped_ratio under memory controller. This will be used in
382  * vmscan.c for deteremining we have to reclaim mapped pages.
383  */
384 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
385 {
386 	long total, rss;
387 
388 	/*
389 	 * usage is recorded in bytes. But, here, we assume the number of
390 	 * physical pages can be represented by "long" on any arch.
391 	 */
392 	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
393 	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
394 	return (int)((rss * 100L) / total);
395 }
396 
397 /*
398  * This function is called from vmscan.c. In page reclaiming loop. balance
399  * between active and inactive list is calculated. For memory controller
400  * page reclaiming, we should use using mem_cgroup's imbalance rather than
401  * zone's global lru imbalance.
402  */
403 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
404 {
405 	unsigned long active, inactive;
406 	/* active and inactive are the number of pages. 'long' is ok.*/
407 	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
408 	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
409 	return (long) (active / (inactive + 1));
410 }
411 
412 /*
413  * prev_priority control...this will be used in memory reclaim path.
414  */
415 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
416 {
417 	return mem->prev_priority;
418 }
419 
420 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
421 {
422 	if (priority < mem->prev_priority)
423 		mem->prev_priority = priority;
424 }
425 
426 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
427 {
428 	mem->prev_priority = priority;
429 }
430 
431 /*
432  * Calculate # of pages to be scanned in this priority/zone.
433  * See also vmscan.c
434  *
435  * priority starts from "DEF_PRIORITY" and decremented in each loop.
436  * (see include/linux/mmzone.h)
437  */
438 
439 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
440 				   struct zone *zone, int priority)
441 {
442 	long nr_active;
443 	int nid = zone->zone_pgdat->node_id;
444 	int zid = zone_idx(zone);
445 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
446 
447 	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
448 	return (nr_active >> priority);
449 }
450 
451 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
452 					struct zone *zone, int priority)
453 {
454 	long nr_inactive;
455 	int nid = zone->zone_pgdat->node_id;
456 	int zid = zone_idx(zone);
457 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
458 
459 	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
460 	return (nr_inactive >> priority);
461 }
462 
463 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
464 					struct list_head *dst,
465 					unsigned long *scanned, int order,
466 					int mode, struct zone *z,
467 					struct mem_cgroup *mem_cont,
468 					int active)
469 {
470 	unsigned long nr_taken = 0;
471 	struct page *page;
472 	unsigned long scan;
473 	LIST_HEAD(pc_list);
474 	struct list_head *src;
475 	struct page_cgroup *pc, *tmp;
476 	int nid = z->zone_pgdat->node_id;
477 	int zid = zone_idx(z);
478 	struct mem_cgroup_per_zone *mz;
479 
480 	BUG_ON(!mem_cont);
481 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
482 	if (active)
483 		src = &mz->active_list;
484 	else
485 		src = &mz->inactive_list;
486 
487 
488 	spin_lock(&mz->lru_lock);
489 	scan = 0;
490 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
491 		if (scan >= nr_to_scan)
492 			break;
493 		page = pc->page;
494 
495 		if (unlikely(!PageLRU(page)))
496 			continue;
497 
498 		if (PageActive(page) && !active) {
499 			__mem_cgroup_move_lists(pc, true);
500 			continue;
501 		}
502 		if (!PageActive(page) && active) {
503 			__mem_cgroup_move_lists(pc, false);
504 			continue;
505 		}
506 
507 		scan++;
508 		list_move(&pc->lru, &pc_list);
509 
510 		if (__isolate_lru_page(page, mode) == 0) {
511 			list_move(&page->lru, dst);
512 			nr_taken++;
513 		}
514 	}
515 
516 	list_splice(&pc_list, src);
517 	spin_unlock(&mz->lru_lock);
518 
519 	*scanned = scan;
520 	return nr_taken;
521 }
522 
523 /*
524  * Charge the memory controller for page usage.
525  * Return
526  * 0 if the charge was successful
527  * < 0 if the cgroup is over its limit
528  */
529 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
530 				gfp_t gfp_mask, enum charge_type ctype,
531 				struct mem_cgroup *memcg)
532 {
533 	struct mem_cgroup *mem;
534 	struct page_cgroup *pc;
535 	unsigned long flags;
536 	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
537 	struct mem_cgroup_per_zone *mz;
538 
539 	pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
540 	if (unlikely(pc == NULL))
541 		goto err;
542 
543 	/*
544 	 * We always charge the cgroup the mm_struct belongs to.
545 	 * The mm_struct's mem_cgroup changes on task migration if the
546 	 * thread group leader migrates. It's possible that mm is not
547 	 * set, if so charge the init_mm (happens for pagecache usage).
548 	 */
549 	if (likely(!memcg)) {
550 		rcu_read_lock();
551 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
552 		/*
553 		 * For every charge from the cgroup, increment reference count
554 		 */
555 		css_get(&mem->css);
556 		rcu_read_unlock();
557 	} else {
558 		mem = memcg;
559 		css_get(&memcg->css);
560 	}
561 
562 	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
563 		if (!(gfp_mask & __GFP_WAIT))
564 			goto out;
565 
566 		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
567 			continue;
568 
569 		/*
570 		 * try_to_free_mem_cgroup_pages() might not give us a full
571 		 * picture of reclaim. Some pages are reclaimed and might be
572 		 * moved to swap cache or just unmapped from the cgroup.
573 		 * Check the limit again to see if the reclaim reduced the
574 		 * current usage of the cgroup before giving up
575 		 */
576 		if (res_counter_check_under_limit(&mem->res))
577 			continue;
578 
579 		if (!nr_retries--) {
580 			mem_cgroup_out_of_memory(mem, gfp_mask);
581 			goto out;
582 		}
583 	}
584 
585 	pc->mem_cgroup = mem;
586 	pc->page = page;
587 	/*
588 	 * If a page is accounted as a page cache, insert to inactive list.
589 	 * If anon, insert to active list.
590 	 */
591 	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
592 		pc->flags = PAGE_CGROUP_FLAG_CACHE;
593 	else
594 		pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
595 
596 	lock_page_cgroup(page);
597 	if (unlikely(page_get_page_cgroup(page))) {
598 		unlock_page_cgroup(page);
599 		res_counter_uncharge(&mem->res, PAGE_SIZE);
600 		css_put(&mem->css);
601 		kmem_cache_free(page_cgroup_cache, pc);
602 		goto done;
603 	}
604 	page_assign_page_cgroup(page, pc);
605 
606 	mz = page_cgroup_zoneinfo(pc);
607 	spin_lock_irqsave(&mz->lru_lock, flags);
608 	__mem_cgroup_add_list(mz, pc);
609 	spin_unlock_irqrestore(&mz->lru_lock, flags);
610 
611 	unlock_page_cgroup(page);
612 done:
613 	return 0;
614 out:
615 	css_put(&mem->css);
616 	kmem_cache_free(page_cgroup_cache, pc);
617 err:
618 	return -ENOMEM;
619 }
620 
621 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
622 {
623 	if (mem_cgroup_subsys.disabled)
624 		return 0;
625 
626 	/*
627 	 * If already mapped, we don't have to account.
628 	 * If page cache, page->mapping has address_space.
629 	 * But page->mapping may have out-of-use anon_vma pointer,
630 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
631 	 * is NULL.
632   	 */
633 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
634 		return 0;
635 	if (unlikely(!mm))
636 		mm = &init_mm;
637 	return mem_cgroup_charge_common(page, mm, gfp_mask,
638 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
639 }
640 
641 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
642 				gfp_t gfp_mask)
643 {
644 	if (mem_cgroup_subsys.disabled)
645 		return 0;
646 
647 	/*
648 	 * Corner case handling. This is called from add_to_page_cache()
649 	 * in usual. But some FS (shmem) precharges this page before calling it
650 	 * and call add_to_page_cache() with GFP_NOWAIT.
651 	 *
652 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
653 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
654 	 * charge twice. (It works but has to pay a bit larger cost.)
655 	 */
656 	if (!(gfp_mask & __GFP_WAIT)) {
657 		struct page_cgroup *pc;
658 
659 		lock_page_cgroup(page);
660 		pc = page_get_page_cgroup(page);
661 		if (pc) {
662 			VM_BUG_ON(pc->page != page);
663 			VM_BUG_ON(!pc->mem_cgroup);
664 			unlock_page_cgroup(page);
665 			return 0;
666 		}
667 		unlock_page_cgroup(page);
668 	}
669 
670 	if (unlikely(!mm))
671 		mm = &init_mm;
672 
673 	return mem_cgroup_charge_common(page, mm, gfp_mask,
674 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
675 }
676 
677 /*
678  * uncharge if !page_mapped(page)
679  */
680 static void
681 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
682 {
683 	struct page_cgroup *pc;
684 	struct mem_cgroup *mem;
685 	struct mem_cgroup_per_zone *mz;
686 	unsigned long flags;
687 
688 	if (mem_cgroup_subsys.disabled)
689 		return;
690 
691 	/*
692 	 * Check if our page_cgroup is valid
693 	 */
694 	lock_page_cgroup(page);
695 	pc = page_get_page_cgroup(page);
696 	if (unlikely(!pc))
697 		goto unlock;
698 
699 	VM_BUG_ON(pc->page != page);
700 
701 	if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
702 	    && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
703 		|| page_mapped(page)))
704 		goto unlock;
705 
706 	mz = page_cgroup_zoneinfo(pc);
707 	spin_lock_irqsave(&mz->lru_lock, flags);
708 	__mem_cgroup_remove_list(mz, pc);
709 	spin_unlock_irqrestore(&mz->lru_lock, flags);
710 
711 	page_assign_page_cgroup(page, NULL);
712 	unlock_page_cgroup(page);
713 
714 	mem = pc->mem_cgroup;
715 	res_counter_uncharge(&mem->res, PAGE_SIZE);
716 	css_put(&mem->css);
717 
718 	kmem_cache_free(page_cgroup_cache, pc);
719 	return;
720 unlock:
721 	unlock_page_cgroup(page);
722 }
723 
724 void mem_cgroup_uncharge_page(struct page *page)
725 {
726 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
727 }
728 
729 void mem_cgroup_uncharge_cache_page(struct page *page)
730 {
731 	VM_BUG_ON(page_mapped(page));
732 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
733 }
734 
735 /*
736  * Before starting migration, account against new page.
737  */
738 int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
739 {
740 	struct page_cgroup *pc;
741 	struct mem_cgroup *mem = NULL;
742 	enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
743 	int ret = 0;
744 
745 	if (mem_cgroup_subsys.disabled)
746 		return 0;
747 
748 	lock_page_cgroup(page);
749 	pc = page_get_page_cgroup(page);
750 	if (pc) {
751 		mem = pc->mem_cgroup;
752 		css_get(&mem->css);
753 		if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
754 			ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
755 	}
756 	unlock_page_cgroup(page);
757 	if (mem) {
758 		ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
759 			ctype, mem);
760 		css_put(&mem->css);
761 	}
762 	return ret;
763 }
764 
765 /* remove redundant charge if migration failed*/
766 void mem_cgroup_end_migration(struct page *newpage)
767 {
768 	/*
769 	 * At success, page->mapping is not NULL.
770 	 * special rollback care is necessary when
771 	 * 1. at migration failure. (newpage->mapping is cleared in this case)
772 	 * 2. the newpage was moved but not remapped again because the task
773 	 *    exits and the newpage is obsolete. In this case, the new page
774 	 *    may be a swapcache. So, we just call mem_cgroup_uncharge_page()
775 	 *    always for avoiding mess. The  page_cgroup will be removed if
776 	 *    unnecessary. File cache pages is still on radix-tree. Don't
777 	 *    care it.
778 	 */
779 	if (!newpage->mapping)
780 		__mem_cgroup_uncharge_common(newpage,
781 					 MEM_CGROUP_CHARGE_TYPE_FORCE);
782 	else if (PageAnon(newpage))
783 		mem_cgroup_uncharge_page(newpage);
784 }
785 
786 /*
787  * A call to try to shrink memory usage under specified resource controller.
788  * This is typically used for page reclaiming for shmem for reducing side
789  * effect of page allocation from shmem, which is used by some mem_cgroup.
790  */
791 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
792 {
793 	struct mem_cgroup *mem;
794 	int progress = 0;
795 	int retry = MEM_CGROUP_RECLAIM_RETRIES;
796 
797 	if (mem_cgroup_subsys.disabled)
798 		return 0;
799 
800 	rcu_read_lock();
801 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
802 	css_get(&mem->css);
803 	rcu_read_unlock();
804 
805 	do {
806 		progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
807 	} while (!progress && --retry);
808 
809 	css_put(&mem->css);
810 	if (!retry)
811 		return -ENOMEM;
812 	return 0;
813 }
814 
815 int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val)
816 {
817 
818 	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
819 	int progress;
820 	int ret = 0;
821 
822 	while (res_counter_set_limit(&memcg->res, val)) {
823 		if (signal_pending(current)) {
824 			ret = -EINTR;
825 			break;
826 		}
827 		if (!retry_count) {
828 			ret = -EBUSY;
829 			break;
830 		}
831 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
832 		if (!progress)
833 			retry_count--;
834 	}
835 	return ret;
836 }
837 
838 
839 /*
840  * This routine traverse page_cgroup in given list and drop them all.
841  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
842  */
843 #define FORCE_UNCHARGE_BATCH	(128)
844 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
845 			    struct mem_cgroup_per_zone *mz,
846 			    int active)
847 {
848 	struct page_cgroup *pc;
849 	struct page *page;
850 	int count = FORCE_UNCHARGE_BATCH;
851 	unsigned long flags;
852 	struct list_head *list;
853 
854 	if (active)
855 		list = &mz->active_list;
856 	else
857 		list = &mz->inactive_list;
858 
859 	spin_lock_irqsave(&mz->lru_lock, flags);
860 	while (!list_empty(list)) {
861 		pc = list_entry(list->prev, struct page_cgroup, lru);
862 		page = pc->page;
863 		get_page(page);
864 		spin_unlock_irqrestore(&mz->lru_lock, flags);
865 		/*
866 		 * Check if this page is on LRU. !LRU page can be found
867 		 * if it's under page migration.
868 		 */
869 		if (PageLRU(page)) {
870 			__mem_cgroup_uncharge_common(page,
871 					MEM_CGROUP_CHARGE_TYPE_FORCE);
872 			put_page(page);
873 			if (--count <= 0) {
874 				count = FORCE_UNCHARGE_BATCH;
875 				cond_resched();
876 			}
877 		} else
878 			cond_resched();
879 		spin_lock_irqsave(&mz->lru_lock, flags);
880 	}
881 	spin_unlock_irqrestore(&mz->lru_lock, flags);
882 }
883 
884 /*
885  * make mem_cgroup's charge to be 0 if there is no task.
886  * This enables deleting this mem_cgroup.
887  */
888 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
889 {
890 	int ret = -EBUSY;
891 	int node, zid;
892 
893 	css_get(&mem->css);
894 	/*
895 	 * page reclaim code (kswapd etc..) will move pages between
896 	 * active_list <-> inactive_list while we don't take a lock.
897 	 * So, we have to do loop here until all lists are empty.
898 	 */
899 	while (mem->res.usage > 0) {
900 		if (atomic_read(&mem->css.cgroup->count) > 0)
901 			goto out;
902 		for_each_node_state(node, N_POSSIBLE)
903 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
904 				struct mem_cgroup_per_zone *mz;
905 				mz = mem_cgroup_zoneinfo(mem, node, zid);
906 				/* drop all page_cgroup in active_list */
907 				mem_cgroup_force_empty_list(mem, mz, 1);
908 				/* drop all page_cgroup in inactive_list */
909 				mem_cgroup_force_empty_list(mem, mz, 0);
910 			}
911 	}
912 	ret = 0;
913 out:
914 	css_put(&mem->css);
915 	return ret;
916 }
917 
918 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
919 {
920 	return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
921 				    cft->private);
922 }
923 /*
924  * The user of this function is...
925  * RES_LIMIT.
926  */
927 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
928 			    const char *buffer)
929 {
930 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
931 	unsigned long long val;
932 	int ret;
933 
934 	switch (cft->private) {
935 	case RES_LIMIT:
936 		/* This function does all necessary parse...reuse it */
937 		ret = res_counter_memparse_write_strategy(buffer, &val);
938 		if (!ret)
939 			ret = mem_cgroup_resize_limit(memcg, val);
940 		break;
941 	default:
942 		ret = -EINVAL; /* should be BUG() ? */
943 		break;
944 	}
945 	return ret;
946 }
947 
948 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
949 {
950 	struct mem_cgroup *mem;
951 
952 	mem = mem_cgroup_from_cont(cont);
953 	switch (event) {
954 	case RES_MAX_USAGE:
955 		res_counter_reset_max(&mem->res);
956 		break;
957 	case RES_FAILCNT:
958 		res_counter_reset_failcnt(&mem->res);
959 		break;
960 	}
961 	return 0;
962 }
963 
964 static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
965 {
966 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
967 }
968 
969 static const struct mem_cgroup_stat_desc {
970 	const char *msg;
971 	u64 unit;
972 } mem_cgroup_stat_desc[] = {
973 	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
974 	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
975 	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
976 	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
977 };
978 
979 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
980 				 struct cgroup_map_cb *cb)
981 {
982 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
983 	struct mem_cgroup_stat *stat = &mem_cont->stat;
984 	int i;
985 
986 	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
987 		s64 val;
988 
989 		val = mem_cgroup_read_stat(stat, i);
990 		val *= mem_cgroup_stat_desc[i].unit;
991 		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
992 	}
993 	/* showing # of active pages */
994 	{
995 		unsigned long active, inactive;
996 
997 		inactive = mem_cgroup_get_all_zonestat(mem_cont,
998 						MEM_CGROUP_ZSTAT_INACTIVE);
999 		active = mem_cgroup_get_all_zonestat(mem_cont,
1000 						MEM_CGROUP_ZSTAT_ACTIVE);
1001 		cb->fill(cb, "active", (active) * PAGE_SIZE);
1002 		cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
1003 	}
1004 	return 0;
1005 }
1006 
1007 static struct cftype mem_cgroup_files[] = {
1008 	{
1009 		.name = "usage_in_bytes",
1010 		.private = RES_USAGE,
1011 		.read_u64 = mem_cgroup_read,
1012 	},
1013 	{
1014 		.name = "max_usage_in_bytes",
1015 		.private = RES_MAX_USAGE,
1016 		.trigger = mem_cgroup_reset,
1017 		.read_u64 = mem_cgroup_read,
1018 	},
1019 	{
1020 		.name = "limit_in_bytes",
1021 		.private = RES_LIMIT,
1022 		.write_string = mem_cgroup_write,
1023 		.read_u64 = mem_cgroup_read,
1024 	},
1025 	{
1026 		.name = "failcnt",
1027 		.private = RES_FAILCNT,
1028 		.trigger = mem_cgroup_reset,
1029 		.read_u64 = mem_cgroup_read,
1030 	},
1031 	{
1032 		.name = "force_empty",
1033 		.trigger = mem_force_empty_write,
1034 	},
1035 	{
1036 		.name = "stat",
1037 		.read_map = mem_control_stat_show,
1038 	},
1039 };
1040 
1041 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1042 {
1043 	struct mem_cgroup_per_node *pn;
1044 	struct mem_cgroup_per_zone *mz;
1045 	int zone, tmp = node;
1046 	/*
1047 	 * This routine is called against possible nodes.
1048 	 * But it's BUG to call kmalloc() against offline node.
1049 	 *
1050 	 * TODO: this routine can waste much memory for nodes which will
1051 	 *       never be onlined. It's better to use memory hotplug callback
1052 	 *       function.
1053 	 */
1054 	if (!node_state(node, N_NORMAL_MEMORY))
1055 		tmp = -1;
1056 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1057 	if (!pn)
1058 		return 1;
1059 
1060 	mem->info.nodeinfo[node] = pn;
1061 	memset(pn, 0, sizeof(*pn));
1062 
1063 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1064 		mz = &pn->zoneinfo[zone];
1065 		INIT_LIST_HEAD(&mz->active_list);
1066 		INIT_LIST_HEAD(&mz->inactive_list);
1067 		spin_lock_init(&mz->lru_lock);
1068 	}
1069 	return 0;
1070 }
1071 
1072 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1073 {
1074 	kfree(mem->info.nodeinfo[node]);
1075 }
1076 
1077 static struct mem_cgroup *mem_cgroup_alloc(void)
1078 {
1079 	struct mem_cgroup *mem;
1080 
1081 	if (sizeof(*mem) < PAGE_SIZE)
1082 		mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1083 	else
1084 		mem = vmalloc(sizeof(*mem));
1085 
1086 	if (mem)
1087 		memset(mem, 0, sizeof(*mem));
1088 	return mem;
1089 }
1090 
1091 static void mem_cgroup_free(struct mem_cgroup *mem)
1092 {
1093 	if (sizeof(*mem) < PAGE_SIZE)
1094 		kfree(mem);
1095 	else
1096 		vfree(mem);
1097 }
1098 
1099 
1100 static struct cgroup_subsys_state *
1101 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1102 {
1103 	struct mem_cgroup *mem;
1104 	int node;
1105 
1106 	if (unlikely((cont->parent) == NULL)) {
1107 		mem = &init_mem_cgroup;
1108 		page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1109 	} else {
1110 		mem = mem_cgroup_alloc();
1111 		if (!mem)
1112 			return ERR_PTR(-ENOMEM);
1113 	}
1114 
1115 	res_counter_init(&mem->res);
1116 
1117 	for_each_node_state(node, N_POSSIBLE)
1118 		if (alloc_mem_cgroup_per_zone_info(mem, node))
1119 			goto free_out;
1120 
1121 	return &mem->css;
1122 free_out:
1123 	for_each_node_state(node, N_POSSIBLE)
1124 		free_mem_cgroup_per_zone_info(mem, node);
1125 	if (cont->parent != NULL)
1126 		mem_cgroup_free(mem);
1127 	return ERR_PTR(-ENOMEM);
1128 }
1129 
1130 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1131 					struct cgroup *cont)
1132 {
1133 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1134 	mem_cgroup_force_empty(mem);
1135 }
1136 
1137 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1138 				struct cgroup *cont)
1139 {
1140 	int node;
1141 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1142 
1143 	for_each_node_state(node, N_POSSIBLE)
1144 		free_mem_cgroup_per_zone_info(mem, node);
1145 
1146 	mem_cgroup_free(mem_cgroup_from_cont(cont));
1147 }
1148 
1149 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1150 				struct cgroup *cont)
1151 {
1152 	return cgroup_add_files(cont, ss, mem_cgroup_files,
1153 					ARRAY_SIZE(mem_cgroup_files));
1154 }
1155 
1156 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1157 				struct cgroup *cont,
1158 				struct cgroup *old_cont,
1159 				struct task_struct *p)
1160 {
1161 	struct mm_struct *mm;
1162 	struct mem_cgroup *mem, *old_mem;
1163 
1164 	mm = get_task_mm(p);
1165 	if (mm == NULL)
1166 		return;
1167 
1168 	mem = mem_cgroup_from_cont(cont);
1169 	old_mem = mem_cgroup_from_cont(old_cont);
1170 
1171 	if (mem == old_mem)
1172 		goto out;
1173 
1174 	/*
1175 	 * Only thread group leaders are allowed to migrate, the mm_struct is
1176 	 * in effect owned by the leader
1177 	 */
1178 	if (!thread_group_leader(p))
1179 		goto out;
1180 
1181 out:
1182 	mmput(mm);
1183 }
1184 
1185 struct cgroup_subsys mem_cgroup_subsys = {
1186 	.name = "memory",
1187 	.subsys_id = mem_cgroup_subsys_id,
1188 	.create = mem_cgroup_create,
1189 	.pre_destroy = mem_cgroup_pre_destroy,
1190 	.destroy = mem_cgroup_destroy,
1191 	.populate = mem_cgroup_populate,
1192 	.attach = mem_cgroup_move_task,
1193 	.early_init = 0,
1194 };
1195