xref: /openbmc/linux/mm/memcontrol.c (revision ed1666f6)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/vm_event_item.h>
43 #include <linux/smp.h>
44 #include <linux/page-flags.h>
45 #include <linux/backing-dev.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/rcupdate.h>
48 #include <linux/limits.h>
49 #include <linux/export.h>
50 #include <linux/mutex.h>
51 #include <linux/rbtree.h>
52 #include <linux/slab.h>
53 #include <linux/swap.h>
54 #include <linux/swapops.h>
55 #include <linux/spinlock.h>
56 #include <linux/eventfd.h>
57 #include <linux/poll.h>
58 #include <linux/sort.h>
59 #include <linux/fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/vmpressure.h>
62 #include <linux/mm_inline.h>
63 #include <linux/swap_cgroup.h>
64 #include <linux/cpu.h>
65 #include <linux/oom.h>
66 #include <linux/lockdep.h>
67 #include <linux/file.h>
68 #include <linux/tracehook.h>
69 #include "internal.h"
70 #include <net/sock.h>
71 #include <net/ip.h>
72 #include "slab.h"
73 
74 #include <linux/uaccess.h>
75 
76 #include <trace/events/vmscan.h>
77 
78 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79 EXPORT_SYMBOL(memory_cgrp_subsys);
80 
81 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 
83 #define MEM_CGROUP_RECLAIM_RETRIES	5
84 
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket;
87 
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem;
90 
91 /* Whether the swap controller is active */
92 #ifdef CONFIG_MEMCG_SWAP
93 int do_swap_account __read_mostly;
94 #else
95 #define do_swap_account		0
96 #endif
97 
98 /* Whether legacy memory+swap accounting is active */
99 static bool do_memsw_account(void)
100 {
101 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
102 }
103 
104 static const char *const mem_cgroup_lru_names[] = {
105 	"inactive_anon",
106 	"active_anon",
107 	"inactive_file",
108 	"active_file",
109 	"unevictable",
110 };
111 
112 #define THRESHOLDS_EVENTS_TARGET 128
113 #define SOFTLIMIT_EVENTS_TARGET 1024
114 #define NUMAINFO_EVENTS_TARGET	1024
115 
116 /*
117  * Cgroups above their limits are maintained in a RB-Tree, independent of
118  * their hierarchy representation
119  */
120 
121 struct mem_cgroup_tree_per_node {
122 	struct rb_root rb_root;
123 	struct rb_node *rb_rightmost;
124 	spinlock_t lock;
125 };
126 
127 struct mem_cgroup_tree {
128 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
129 };
130 
131 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
132 
133 /* for OOM */
134 struct mem_cgroup_eventfd_list {
135 	struct list_head list;
136 	struct eventfd_ctx *eventfd;
137 };
138 
139 /*
140  * cgroup_event represents events which userspace want to receive.
141  */
142 struct mem_cgroup_event {
143 	/*
144 	 * memcg which the event belongs to.
145 	 */
146 	struct mem_cgroup *memcg;
147 	/*
148 	 * eventfd to signal userspace about the event.
149 	 */
150 	struct eventfd_ctx *eventfd;
151 	/*
152 	 * Each of these stored in a list by the cgroup.
153 	 */
154 	struct list_head list;
155 	/*
156 	 * register_event() callback will be used to add new userspace
157 	 * waiter for changes related to this event.  Use eventfd_signal()
158 	 * on eventfd to send notification to userspace.
159 	 */
160 	int (*register_event)(struct mem_cgroup *memcg,
161 			      struct eventfd_ctx *eventfd, const char *args);
162 	/*
163 	 * unregister_event() callback will be called when userspace closes
164 	 * the eventfd or on cgroup removing.  This callback must be set,
165 	 * if you want provide notification functionality.
166 	 */
167 	void (*unregister_event)(struct mem_cgroup *memcg,
168 				 struct eventfd_ctx *eventfd);
169 	/*
170 	 * All fields below needed to unregister event when
171 	 * userspace closes eventfd.
172 	 */
173 	poll_table pt;
174 	wait_queue_head_t *wqh;
175 	wait_queue_entry_t wait;
176 	struct work_struct remove;
177 };
178 
179 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
180 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181 
182 /* Stuffs for move charges at task migration. */
183 /*
184  * Types of charges to be moved.
185  */
186 #define MOVE_ANON	0x1U
187 #define MOVE_FILE	0x2U
188 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
189 
190 /* "mc" and its members are protected by cgroup_mutex */
191 static struct move_charge_struct {
192 	spinlock_t	  lock; /* for from, to */
193 	struct mm_struct  *mm;
194 	struct mem_cgroup *from;
195 	struct mem_cgroup *to;
196 	unsigned long flags;
197 	unsigned long precharge;
198 	unsigned long moved_charge;
199 	unsigned long moved_swap;
200 	struct task_struct *moving_task;	/* a task moving charges */
201 	wait_queue_head_t waitq;		/* a waitq for other context */
202 } mc = {
203 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
204 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
205 };
206 
207 /*
208  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
209  * limit reclaim to prevent infinite loops, if they ever occur.
210  */
211 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
212 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
213 
214 enum charge_type {
215 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
216 	MEM_CGROUP_CHARGE_TYPE_ANON,
217 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
218 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
219 	NR_CHARGE_TYPE,
220 };
221 
222 /* for encoding cft->private value on file */
223 enum res_type {
224 	_MEM,
225 	_MEMSWAP,
226 	_OOM_TYPE,
227 	_KMEM,
228 	_TCP,
229 };
230 
231 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
232 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
233 #define MEMFILE_ATTR(val)	((val) & 0xffff)
234 /* Used for OOM nofiier */
235 #define OOM_CONTROL		(0)
236 
237 /*
238  * Iteration constructs for visiting all cgroups (under a tree).  If
239  * loops are exited prematurely (break), mem_cgroup_iter_break() must
240  * be used for reference counting.
241  */
242 #define for_each_mem_cgroup_tree(iter, root)		\
243 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
244 	     iter != NULL;				\
245 	     iter = mem_cgroup_iter(root, iter, NULL))
246 
247 #define for_each_mem_cgroup(iter)			\
248 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
249 	     iter != NULL;				\
250 	     iter = mem_cgroup_iter(NULL, iter, NULL))
251 
252 static inline bool should_force_charge(void)
253 {
254 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
255 		(current->flags & PF_EXITING);
256 }
257 
258 /* Some nice accessors for the vmpressure. */
259 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
260 {
261 	if (!memcg)
262 		memcg = root_mem_cgroup;
263 	return &memcg->vmpressure;
264 }
265 
266 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
267 {
268 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
269 }
270 
271 #ifdef CONFIG_MEMCG_KMEM
272 /*
273  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274  * The main reason for not using cgroup id for this:
275  *  this works better in sparse environments, where we have a lot of memcgs,
276  *  but only a few kmem-limited. Or also, if we have, for instance, 200
277  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
278  *  200 entry array for that.
279  *
280  * The current size of the caches array is stored in memcg_nr_cache_ids. It
281  * will double each time we have to increase it.
282  */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285 
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288 
289 void memcg_get_cache_ids(void)
290 {
291 	down_read(&memcg_cache_ids_sem);
292 }
293 
294 void memcg_put_cache_ids(void)
295 {
296 	up_read(&memcg_cache_ids_sem);
297 }
298 
299 /*
300  * MIN_SIZE is different than 1, because we would like to avoid going through
301  * the alloc/free process all the time. In a small machine, 4 kmem-limited
302  * cgroups is a reasonable guess. In the future, it could be a parameter or
303  * tunable, but that is strictly not necessary.
304  *
305  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306  * this constant directly from cgroup, but it is understandable that this is
307  * better kept as an internal representation in cgroup.c. In any case, the
308  * cgrp_id space is not getting any smaller, and we don't have to necessarily
309  * increase ours as well if it increases.
310  */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313 
314 /*
315  * A lot of the calls to the cache allocation functions are expected to be
316  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317  * conditional to this static branch, we'll have to allow modules that does
318  * kmem_cache_alloc and the such to see this symbol as well
319  */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322 
323 struct workqueue_struct *memcg_kmem_cache_wq;
324 
325 static int memcg_shrinker_map_size;
326 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
327 
328 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
329 {
330 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
331 }
332 
333 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
334 					 int size, int old_size)
335 {
336 	struct memcg_shrinker_map *new, *old;
337 	int nid;
338 
339 	lockdep_assert_held(&memcg_shrinker_map_mutex);
340 
341 	for_each_node(nid) {
342 		old = rcu_dereference_protected(
343 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
344 		/* Not yet online memcg */
345 		if (!old)
346 			return 0;
347 
348 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
349 		if (!new)
350 			return -ENOMEM;
351 
352 		/* Set all old bits, clear all new bits */
353 		memset(new->map, (int)0xff, old_size);
354 		memset((void *)new->map + old_size, 0, size - old_size);
355 
356 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
357 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
358 	}
359 
360 	return 0;
361 }
362 
363 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
364 {
365 	struct mem_cgroup_per_node *pn;
366 	struct memcg_shrinker_map *map;
367 	int nid;
368 
369 	if (mem_cgroup_is_root(memcg))
370 		return;
371 
372 	for_each_node(nid) {
373 		pn = mem_cgroup_nodeinfo(memcg, nid);
374 		map = rcu_dereference_protected(pn->shrinker_map, true);
375 		if (map)
376 			kvfree(map);
377 		rcu_assign_pointer(pn->shrinker_map, NULL);
378 	}
379 }
380 
381 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
382 {
383 	struct memcg_shrinker_map *map;
384 	int nid, size, ret = 0;
385 
386 	if (mem_cgroup_is_root(memcg))
387 		return 0;
388 
389 	mutex_lock(&memcg_shrinker_map_mutex);
390 	size = memcg_shrinker_map_size;
391 	for_each_node(nid) {
392 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
393 		if (!map) {
394 			memcg_free_shrinker_maps(memcg);
395 			ret = -ENOMEM;
396 			break;
397 		}
398 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
399 	}
400 	mutex_unlock(&memcg_shrinker_map_mutex);
401 
402 	return ret;
403 }
404 
405 int memcg_expand_shrinker_maps(int new_id)
406 {
407 	int size, old_size, ret = 0;
408 	struct mem_cgroup *memcg;
409 
410 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
411 	old_size = memcg_shrinker_map_size;
412 	if (size <= old_size)
413 		return 0;
414 
415 	mutex_lock(&memcg_shrinker_map_mutex);
416 	if (!root_mem_cgroup)
417 		goto unlock;
418 
419 	for_each_mem_cgroup(memcg) {
420 		if (mem_cgroup_is_root(memcg))
421 			continue;
422 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
423 		if (ret)
424 			goto unlock;
425 	}
426 unlock:
427 	if (!ret)
428 		memcg_shrinker_map_size = size;
429 	mutex_unlock(&memcg_shrinker_map_mutex);
430 	return ret;
431 }
432 
433 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
434 {
435 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
436 		struct memcg_shrinker_map *map;
437 
438 		rcu_read_lock();
439 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
440 		/* Pairs with smp mb in shrink_slab() */
441 		smp_mb__before_atomic();
442 		set_bit(shrinker_id, map->map);
443 		rcu_read_unlock();
444 	}
445 }
446 
447 #else /* CONFIG_MEMCG_KMEM */
448 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
449 {
450 	return 0;
451 }
452 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
453 #endif /* CONFIG_MEMCG_KMEM */
454 
455 /**
456  * mem_cgroup_css_from_page - css of the memcg associated with a page
457  * @page: page of interest
458  *
459  * If memcg is bound to the default hierarchy, css of the memcg associated
460  * with @page is returned.  The returned css remains associated with @page
461  * until it is released.
462  *
463  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
464  * is returned.
465  */
466 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
467 {
468 	struct mem_cgroup *memcg;
469 
470 	memcg = page->mem_cgroup;
471 
472 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
473 		memcg = root_mem_cgroup;
474 
475 	return &memcg->css;
476 }
477 
478 /**
479  * page_cgroup_ino - return inode number of the memcg a page is charged to
480  * @page: the page
481  *
482  * Look up the closest online ancestor of the memory cgroup @page is charged to
483  * and return its inode number or 0 if @page is not charged to any cgroup. It
484  * is safe to call this function without holding a reference to @page.
485  *
486  * Note, this function is inherently racy, because there is nothing to prevent
487  * the cgroup inode from getting torn down and potentially reallocated a moment
488  * after page_cgroup_ino() returns, so it only should be used by callers that
489  * do not care (such as procfs interfaces).
490  */
491 ino_t page_cgroup_ino(struct page *page)
492 {
493 	struct mem_cgroup *memcg;
494 	unsigned long ino = 0;
495 
496 	rcu_read_lock();
497 	memcg = READ_ONCE(page->mem_cgroup);
498 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
499 		memcg = parent_mem_cgroup(memcg);
500 	if (memcg)
501 		ino = cgroup_ino(memcg->css.cgroup);
502 	rcu_read_unlock();
503 	return ino;
504 }
505 
506 static struct mem_cgroup_per_node *
507 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
508 {
509 	int nid = page_to_nid(page);
510 
511 	return memcg->nodeinfo[nid];
512 }
513 
514 static struct mem_cgroup_tree_per_node *
515 soft_limit_tree_node(int nid)
516 {
517 	return soft_limit_tree.rb_tree_per_node[nid];
518 }
519 
520 static struct mem_cgroup_tree_per_node *
521 soft_limit_tree_from_page(struct page *page)
522 {
523 	int nid = page_to_nid(page);
524 
525 	return soft_limit_tree.rb_tree_per_node[nid];
526 }
527 
528 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
529 					 struct mem_cgroup_tree_per_node *mctz,
530 					 unsigned long new_usage_in_excess)
531 {
532 	struct rb_node **p = &mctz->rb_root.rb_node;
533 	struct rb_node *parent = NULL;
534 	struct mem_cgroup_per_node *mz_node;
535 	bool rightmost = true;
536 
537 	if (mz->on_tree)
538 		return;
539 
540 	mz->usage_in_excess = new_usage_in_excess;
541 	if (!mz->usage_in_excess)
542 		return;
543 	while (*p) {
544 		parent = *p;
545 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
546 					tree_node);
547 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
548 			p = &(*p)->rb_left;
549 			rightmost = false;
550 		}
551 
552 		/*
553 		 * We can't avoid mem cgroups that are over their soft
554 		 * limit by the same amount
555 		 */
556 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
557 			p = &(*p)->rb_right;
558 	}
559 
560 	if (rightmost)
561 		mctz->rb_rightmost = &mz->tree_node;
562 
563 	rb_link_node(&mz->tree_node, parent, p);
564 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
565 	mz->on_tree = true;
566 }
567 
568 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
569 					 struct mem_cgroup_tree_per_node *mctz)
570 {
571 	if (!mz->on_tree)
572 		return;
573 
574 	if (&mz->tree_node == mctz->rb_rightmost)
575 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
576 
577 	rb_erase(&mz->tree_node, &mctz->rb_root);
578 	mz->on_tree = false;
579 }
580 
581 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
582 				       struct mem_cgroup_tree_per_node *mctz)
583 {
584 	unsigned long flags;
585 
586 	spin_lock_irqsave(&mctz->lock, flags);
587 	__mem_cgroup_remove_exceeded(mz, mctz);
588 	spin_unlock_irqrestore(&mctz->lock, flags);
589 }
590 
591 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
592 {
593 	unsigned long nr_pages = page_counter_read(&memcg->memory);
594 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
595 	unsigned long excess = 0;
596 
597 	if (nr_pages > soft_limit)
598 		excess = nr_pages - soft_limit;
599 
600 	return excess;
601 }
602 
603 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
604 {
605 	unsigned long excess;
606 	struct mem_cgroup_per_node *mz;
607 	struct mem_cgroup_tree_per_node *mctz;
608 
609 	mctz = soft_limit_tree_from_page(page);
610 	if (!mctz)
611 		return;
612 	/*
613 	 * Necessary to update all ancestors when hierarchy is used.
614 	 * because their event counter is not touched.
615 	 */
616 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
617 		mz = mem_cgroup_page_nodeinfo(memcg, page);
618 		excess = soft_limit_excess(memcg);
619 		/*
620 		 * We have to update the tree if mz is on RB-tree or
621 		 * mem is over its softlimit.
622 		 */
623 		if (excess || mz->on_tree) {
624 			unsigned long flags;
625 
626 			spin_lock_irqsave(&mctz->lock, flags);
627 			/* if on-tree, remove it */
628 			if (mz->on_tree)
629 				__mem_cgroup_remove_exceeded(mz, mctz);
630 			/*
631 			 * Insert again. mz->usage_in_excess will be updated.
632 			 * If excess is 0, no tree ops.
633 			 */
634 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
635 			spin_unlock_irqrestore(&mctz->lock, flags);
636 		}
637 	}
638 }
639 
640 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
641 {
642 	struct mem_cgroup_tree_per_node *mctz;
643 	struct mem_cgroup_per_node *mz;
644 	int nid;
645 
646 	for_each_node(nid) {
647 		mz = mem_cgroup_nodeinfo(memcg, nid);
648 		mctz = soft_limit_tree_node(nid);
649 		if (mctz)
650 			mem_cgroup_remove_exceeded(mz, mctz);
651 	}
652 }
653 
654 static struct mem_cgroup_per_node *
655 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
656 {
657 	struct mem_cgroup_per_node *mz;
658 
659 retry:
660 	mz = NULL;
661 	if (!mctz->rb_rightmost)
662 		goto done;		/* Nothing to reclaim from */
663 
664 	mz = rb_entry(mctz->rb_rightmost,
665 		      struct mem_cgroup_per_node, tree_node);
666 	/*
667 	 * Remove the node now but someone else can add it back,
668 	 * we will to add it back at the end of reclaim to its correct
669 	 * position in the tree.
670 	 */
671 	__mem_cgroup_remove_exceeded(mz, mctz);
672 	if (!soft_limit_excess(mz->memcg) ||
673 	    !css_tryget_online(&mz->memcg->css))
674 		goto retry;
675 done:
676 	return mz;
677 }
678 
679 static struct mem_cgroup_per_node *
680 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
681 {
682 	struct mem_cgroup_per_node *mz;
683 
684 	spin_lock_irq(&mctz->lock);
685 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
686 	spin_unlock_irq(&mctz->lock);
687 	return mz;
688 }
689 
690 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
691 				      int event)
692 {
693 	return atomic_long_read(&memcg->events[event]);
694 }
695 
696 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697 					 struct page *page,
698 					 bool compound, int nr_pages)
699 {
700 	/*
701 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
702 	 * counted as CACHE even if it's on ANON LRU.
703 	 */
704 	if (PageAnon(page))
705 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
706 	else {
707 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
708 		if (PageSwapBacked(page))
709 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
710 	}
711 
712 	if (compound) {
713 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
714 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
715 	}
716 
717 	/* pagein of a big page is an event. So, ignore page size */
718 	if (nr_pages > 0)
719 		__count_memcg_events(memcg, PGPGIN, 1);
720 	else {
721 		__count_memcg_events(memcg, PGPGOUT, 1);
722 		nr_pages = -nr_pages; /* for event */
723 	}
724 
725 	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
726 }
727 
728 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729 					   int nid, unsigned int lru_mask)
730 {
731 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
732 	unsigned long nr = 0;
733 	enum lru_list lru;
734 
735 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
736 
737 	for_each_lru(lru) {
738 		if (!(BIT(lru) & lru_mask))
739 			continue;
740 		nr += mem_cgroup_get_lru_size(lruvec, lru);
741 	}
742 	return nr;
743 }
744 
745 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
746 			unsigned int lru_mask)
747 {
748 	unsigned long nr = 0;
749 	int nid;
750 
751 	for_each_node_state(nid, N_MEMORY)
752 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
753 	return nr;
754 }
755 
756 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
757 				       enum mem_cgroup_events_target target)
758 {
759 	unsigned long val, next;
760 
761 	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
762 	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
763 	/* from time_after() in jiffies.h */
764 	if ((long)(next - val) < 0) {
765 		switch (target) {
766 		case MEM_CGROUP_TARGET_THRESH:
767 			next = val + THRESHOLDS_EVENTS_TARGET;
768 			break;
769 		case MEM_CGROUP_TARGET_SOFTLIMIT:
770 			next = val + SOFTLIMIT_EVENTS_TARGET;
771 			break;
772 		case MEM_CGROUP_TARGET_NUMAINFO:
773 			next = val + NUMAINFO_EVENTS_TARGET;
774 			break;
775 		default:
776 			break;
777 		}
778 		__this_cpu_write(memcg->stat_cpu->targets[target], next);
779 		return true;
780 	}
781 	return false;
782 }
783 
784 /*
785  * Check events in order.
786  *
787  */
788 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
789 {
790 	/* threshold event is triggered in finer grain than soft limit */
791 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
792 						MEM_CGROUP_TARGET_THRESH))) {
793 		bool do_softlimit;
794 		bool do_numainfo __maybe_unused;
795 
796 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
797 						MEM_CGROUP_TARGET_SOFTLIMIT);
798 #if MAX_NUMNODES > 1
799 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
800 						MEM_CGROUP_TARGET_NUMAINFO);
801 #endif
802 		mem_cgroup_threshold(memcg);
803 		if (unlikely(do_softlimit))
804 			mem_cgroup_update_tree(memcg, page);
805 #if MAX_NUMNODES > 1
806 		if (unlikely(do_numainfo))
807 			atomic_inc(&memcg->numainfo_events);
808 #endif
809 	}
810 }
811 
812 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
813 {
814 	/*
815 	 * mm_update_next_owner() may clear mm->owner to NULL
816 	 * if it races with swapoff, page migration, etc.
817 	 * So this can be called with p == NULL.
818 	 */
819 	if (unlikely(!p))
820 		return NULL;
821 
822 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
823 }
824 EXPORT_SYMBOL(mem_cgroup_from_task);
825 
826 /**
827  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
828  * @mm: mm from which memcg should be extracted. It can be NULL.
829  *
830  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
831  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
832  * returned.
833  */
834 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
835 {
836 	struct mem_cgroup *memcg;
837 
838 	if (mem_cgroup_disabled())
839 		return NULL;
840 
841 	rcu_read_lock();
842 	do {
843 		/*
844 		 * Page cache insertions can happen withou an
845 		 * actual mm context, e.g. during disk probing
846 		 * on boot, loopback IO, acct() writes etc.
847 		 */
848 		if (unlikely(!mm))
849 			memcg = root_mem_cgroup;
850 		else {
851 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
852 			if (unlikely(!memcg))
853 				memcg = root_mem_cgroup;
854 		}
855 	} while (!css_tryget_online(&memcg->css));
856 	rcu_read_unlock();
857 	return memcg;
858 }
859 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
860 
861 /**
862  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
863  * @page: page from which memcg should be extracted.
864  *
865  * Obtain a reference on page->memcg and returns it if successful. Otherwise
866  * root_mem_cgroup is returned.
867  */
868 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
869 {
870 	struct mem_cgroup *memcg = page->mem_cgroup;
871 
872 	if (mem_cgroup_disabled())
873 		return NULL;
874 
875 	rcu_read_lock();
876 	if (!memcg || !css_tryget_online(&memcg->css))
877 		memcg = root_mem_cgroup;
878 	rcu_read_unlock();
879 	return memcg;
880 }
881 EXPORT_SYMBOL(get_mem_cgroup_from_page);
882 
883 /**
884  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
885  */
886 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
887 {
888 	if (unlikely(current->active_memcg)) {
889 		struct mem_cgroup *memcg = root_mem_cgroup;
890 
891 		rcu_read_lock();
892 		if (css_tryget_online(&current->active_memcg->css))
893 			memcg = current->active_memcg;
894 		rcu_read_unlock();
895 		return memcg;
896 	}
897 	return get_mem_cgroup_from_mm(current->mm);
898 }
899 
900 /**
901  * mem_cgroup_iter - iterate over memory cgroup hierarchy
902  * @root: hierarchy root
903  * @prev: previously returned memcg, NULL on first invocation
904  * @reclaim: cookie for shared reclaim walks, NULL for full walks
905  *
906  * Returns references to children of the hierarchy below @root, or
907  * @root itself, or %NULL after a full round-trip.
908  *
909  * Caller must pass the return value in @prev on subsequent
910  * invocations for reference counting, or use mem_cgroup_iter_break()
911  * to cancel a hierarchy walk before the round-trip is complete.
912  *
913  * Reclaimers can specify a node and a priority level in @reclaim to
914  * divide up the memcgs in the hierarchy among all concurrent
915  * reclaimers operating on the same node and priority.
916  */
917 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
918 				   struct mem_cgroup *prev,
919 				   struct mem_cgroup_reclaim_cookie *reclaim)
920 {
921 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
922 	struct cgroup_subsys_state *css = NULL;
923 	struct mem_cgroup *memcg = NULL;
924 	struct mem_cgroup *pos = NULL;
925 
926 	if (mem_cgroup_disabled())
927 		return NULL;
928 
929 	if (!root)
930 		root = root_mem_cgroup;
931 
932 	if (prev && !reclaim)
933 		pos = prev;
934 
935 	if (!root->use_hierarchy && root != root_mem_cgroup) {
936 		if (prev)
937 			goto out;
938 		return root;
939 	}
940 
941 	rcu_read_lock();
942 
943 	if (reclaim) {
944 		struct mem_cgroup_per_node *mz;
945 
946 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
947 		iter = &mz->iter[reclaim->priority];
948 
949 		if (prev && reclaim->generation != iter->generation)
950 			goto out_unlock;
951 
952 		while (1) {
953 			pos = READ_ONCE(iter->position);
954 			if (!pos || css_tryget(&pos->css))
955 				break;
956 			/*
957 			 * css reference reached zero, so iter->position will
958 			 * be cleared by ->css_released. However, we should not
959 			 * rely on this happening soon, because ->css_released
960 			 * is called from a work queue, and by busy-waiting we
961 			 * might block it. So we clear iter->position right
962 			 * away.
963 			 */
964 			(void)cmpxchg(&iter->position, pos, NULL);
965 		}
966 	}
967 
968 	if (pos)
969 		css = &pos->css;
970 
971 	for (;;) {
972 		css = css_next_descendant_pre(css, &root->css);
973 		if (!css) {
974 			/*
975 			 * Reclaimers share the hierarchy walk, and a
976 			 * new one might jump in right at the end of
977 			 * the hierarchy - make sure they see at least
978 			 * one group and restart from the beginning.
979 			 */
980 			if (!prev)
981 				continue;
982 			break;
983 		}
984 
985 		/*
986 		 * Verify the css and acquire a reference.  The root
987 		 * is provided by the caller, so we know it's alive
988 		 * and kicking, and don't take an extra reference.
989 		 */
990 		memcg = mem_cgroup_from_css(css);
991 
992 		if (css == &root->css)
993 			break;
994 
995 		if (css_tryget(css))
996 			break;
997 
998 		memcg = NULL;
999 	}
1000 
1001 	if (reclaim) {
1002 		/*
1003 		 * The position could have already been updated by a competing
1004 		 * thread, so check that the value hasn't changed since we read
1005 		 * it to avoid reclaiming from the same cgroup twice.
1006 		 */
1007 		(void)cmpxchg(&iter->position, pos, memcg);
1008 
1009 		if (pos)
1010 			css_put(&pos->css);
1011 
1012 		if (!memcg)
1013 			iter->generation++;
1014 		else if (!prev)
1015 			reclaim->generation = iter->generation;
1016 	}
1017 
1018 out_unlock:
1019 	rcu_read_unlock();
1020 out:
1021 	if (prev && prev != root)
1022 		css_put(&prev->css);
1023 
1024 	return memcg;
1025 }
1026 
1027 /**
1028  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1029  * @root: hierarchy root
1030  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1031  */
1032 void mem_cgroup_iter_break(struct mem_cgroup *root,
1033 			   struct mem_cgroup *prev)
1034 {
1035 	if (!root)
1036 		root = root_mem_cgroup;
1037 	if (prev && prev != root)
1038 		css_put(&prev->css);
1039 }
1040 
1041 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1042 {
1043 	struct mem_cgroup *memcg = dead_memcg;
1044 	struct mem_cgroup_reclaim_iter *iter;
1045 	struct mem_cgroup_per_node *mz;
1046 	int nid;
1047 	int i;
1048 
1049 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1050 		for_each_node(nid) {
1051 			mz = mem_cgroup_nodeinfo(memcg, nid);
1052 			for (i = 0; i <= DEF_PRIORITY; i++) {
1053 				iter = &mz->iter[i];
1054 				cmpxchg(&iter->position,
1055 					dead_memcg, NULL);
1056 			}
1057 		}
1058 	}
1059 }
1060 
1061 /**
1062  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1063  * @memcg: hierarchy root
1064  * @fn: function to call for each task
1065  * @arg: argument passed to @fn
1066  *
1067  * This function iterates over tasks attached to @memcg or to any of its
1068  * descendants and calls @fn for each task. If @fn returns a non-zero
1069  * value, the function breaks the iteration loop and returns the value.
1070  * Otherwise, it will iterate over all tasks and return 0.
1071  *
1072  * This function must not be called for the root memory cgroup.
1073  */
1074 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1075 			  int (*fn)(struct task_struct *, void *), void *arg)
1076 {
1077 	struct mem_cgroup *iter;
1078 	int ret = 0;
1079 
1080 	BUG_ON(memcg == root_mem_cgroup);
1081 
1082 	for_each_mem_cgroup_tree(iter, memcg) {
1083 		struct css_task_iter it;
1084 		struct task_struct *task;
1085 
1086 		css_task_iter_start(&iter->css, 0, &it);
1087 		while (!ret && (task = css_task_iter_next(&it)))
1088 			ret = fn(task, arg);
1089 		css_task_iter_end(&it);
1090 		if (ret) {
1091 			mem_cgroup_iter_break(memcg, iter);
1092 			break;
1093 		}
1094 	}
1095 	return ret;
1096 }
1097 
1098 /**
1099  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1100  * @page: the page
1101  * @pgdat: pgdat of the page
1102  *
1103  * This function is only safe when following the LRU page isolation
1104  * and putback protocol: the LRU lock must be held, and the page must
1105  * either be PageLRU() or the caller must have isolated/allocated it.
1106  */
1107 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1108 {
1109 	struct mem_cgroup_per_node *mz;
1110 	struct mem_cgroup *memcg;
1111 	struct lruvec *lruvec;
1112 
1113 	if (mem_cgroup_disabled()) {
1114 		lruvec = &pgdat->lruvec;
1115 		goto out;
1116 	}
1117 
1118 	memcg = page->mem_cgroup;
1119 	/*
1120 	 * Swapcache readahead pages are added to the LRU - and
1121 	 * possibly migrated - before they are charged.
1122 	 */
1123 	if (!memcg)
1124 		memcg = root_mem_cgroup;
1125 
1126 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1127 	lruvec = &mz->lruvec;
1128 out:
1129 	/*
1130 	 * Since a node can be onlined after the mem_cgroup was created,
1131 	 * we have to be prepared to initialize lruvec->zone here;
1132 	 * and if offlined then reonlined, we need to reinitialize it.
1133 	 */
1134 	if (unlikely(lruvec->pgdat != pgdat))
1135 		lruvec->pgdat = pgdat;
1136 	return lruvec;
1137 }
1138 
1139 /**
1140  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1141  * @lruvec: mem_cgroup per zone lru vector
1142  * @lru: index of lru list the page is sitting on
1143  * @zid: zone id of the accounted pages
1144  * @nr_pages: positive when adding or negative when removing
1145  *
1146  * This function must be called under lru_lock, just before a page is added
1147  * to or just after a page is removed from an lru list (that ordering being
1148  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1149  */
1150 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1151 				int zid, int nr_pages)
1152 {
1153 	struct mem_cgroup_per_node *mz;
1154 	unsigned long *lru_size;
1155 	long size;
1156 
1157 	if (mem_cgroup_disabled())
1158 		return;
1159 
1160 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1161 	lru_size = &mz->lru_zone_size[zid][lru];
1162 
1163 	if (nr_pages < 0)
1164 		*lru_size += nr_pages;
1165 
1166 	size = *lru_size;
1167 	if (WARN_ONCE(size < 0,
1168 		"%s(%p, %d, %d): lru_size %ld\n",
1169 		__func__, lruvec, lru, nr_pages, size)) {
1170 		VM_BUG_ON(1);
1171 		*lru_size = 0;
1172 	}
1173 
1174 	if (nr_pages > 0)
1175 		*lru_size += nr_pages;
1176 }
1177 
1178 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1179 {
1180 	struct mem_cgroup *task_memcg;
1181 	struct task_struct *p;
1182 	bool ret;
1183 
1184 	p = find_lock_task_mm(task);
1185 	if (p) {
1186 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1187 		task_unlock(p);
1188 	} else {
1189 		/*
1190 		 * All threads may have already detached their mm's, but the oom
1191 		 * killer still needs to detect if they have already been oom
1192 		 * killed to prevent needlessly killing additional tasks.
1193 		 */
1194 		rcu_read_lock();
1195 		task_memcg = mem_cgroup_from_task(task);
1196 		css_get(&task_memcg->css);
1197 		rcu_read_unlock();
1198 	}
1199 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1200 	css_put(&task_memcg->css);
1201 	return ret;
1202 }
1203 
1204 /**
1205  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1206  * @memcg: the memory cgroup
1207  *
1208  * Returns the maximum amount of memory @mem can be charged with, in
1209  * pages.
1210  */
1211 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1212 {
1213 	unsigned long margin = 0;
1214 	unsigned long count;
1215 	unsigned long limit;
1216 
1217 	count = page_counter_read(&memcg->memory);
1218 	limit = READ_ONCE(memcg->memory.max);
1219 	if (count < limit)
1220 		margin = limit - count;
1221 
1222 	if (do_memsw_account()) {
1223 		count = page_counter_read(&memcg->memsw);
1224 		limit = READ_ONCE(memcg->memsw.max);
1225 		if (count <= limit)
1226 			margin = min(margin, limit - count);
1227 		else
1228 			margin = 0;
1229 	}
1230 
1231 	return margin;
1232 }
1233 
1234 /*
1235  * A routine for checking "mem" is under move_account() or not.
1236  *
1237  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1238  * moving cgroups. This is for waiting at high-memory pressure
1239  * caused by "move".
1240  */
1241 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1242 {
1243 	struct mem_cgroup *from;
1244 	struct mem_cgroup *to;
1245 	bool ret = false;
1246 	/*
1247 	 * Unlike task_move routines, we access mc.to, mc.from not under
1248 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1249 	 */
1250 	spin_lock(&mc.lock);
1251 	from = mc.from;
1252 	to = mc.to;
1253 	if (!from)
1254 		goto unlock;
1255 
1256 	ret = mem_cgroup_is_descendant(from, memcg) ||
1257 		mem_cgroup_is_descendant(to, memcg);
1258 unlock:
1259 	spin_unlock(&mc.lock);
1260 	return ret;
1261 }
1262 
1263 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1264 {
1265 	if (mc.moving_task && current != mc.moving_task) {
1266 		if (mem_cgroup_under_move(memcg)) {
1267 			DEFINE_WAIT(wait);
1268 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1269 			/* moving charge context might have finished. */
1270 			if (mc.moving_task)
1271 				schedule();
1272 			finish_wait(&mc.waitq, &wait);
1273 			return true;
1274 		}
1275 	}
1276 	return false;
1277 }
1278 
1279 static const unsigned int memcg1_stats[] = {
1280 	MEMCG_CACHE,
1281 	MEMCG_RSS,
1282 	MEMCG_RSS_HUGE,
1283 	NR_SHMEM,
1284 	NR_FILE_MAPPED,
1285 	NR_FILE_DIRTY,
1286 	NR_WRITEBACK,
1287 	MEMCG_SWAP,
1288 };
1289 
1290 static const char *const memcg1_stat_names[] = {
1291 	"cache",
1292 	"rss",
1293 	"rss_huge",
1294 	"shmem",
1295 	"mapped_file",
1296 	"dirty",
1297 	"writeback",
1298 	"swap",
1299 };
1300 
1301 #define K(x) ((x) << (PAGE_SHIFT-10))
1302 /**
1303  * mem_cgroup_print_oom_context: Print OOM information relevant to
1304  * memory controller.
1305  * @memcg: The memory cgroup that went over limit
1306  * @p: Task that is going to be killed
1307  *
1308  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1309  * enabled
1310  */
1311 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1312 {
1313 	rcu_read_lock();
1314 
1315 	if (memcg) {
1316 		pr_cont(",oom_memcg=");
1317 		pr_cont_cgroup_path(memcg->css.cgroup);
1318 	} else
1319 		pr_cont(",global_oom");
1320 	if (p) {
1321 		pr_cont(",task_memcg=");
1322 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1323 	}
1324 	rcu_read_unlock();
1325 }
1326 
1327 /**
1328  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1329  * memory controller.
1330  * @memcg: The memory cgroup that went over limit
1331  */
1332 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1333 {
1334 	struct mem_cgroup *iter;
1335 	unsigned int i;
1336 
1337 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1338 		K((u64)page_counter_read(&memcg->memory)),
1339 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1340 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1341 		K((u64)page_counter_read(&memcg->memsw)),
1342 		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1343 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1344 		K((u64)page_counter_read(&memcg->kmem)),
1345 		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1346 
1347 	for_each_mem_cgroup_tree(iter, memcg) {
1348 		pr_info("Memory cgroup stats for ");
1349 		pr_cont_cgroup_path(iter->css.cgroup);
1350 		pr_cont(":");
1351 
1352 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1353 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1354 				continue;
1355 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1356 				K(memcg_page_state(iter, memcg1_stats[i])));
1357 		}
1358 
1359 		for (i = 0; i < NR_LRU_LISTS; i++)
1360 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1361 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1362 
1363 		pr_cont("\n");
1364 	}
1365 }
1366 
1367 /*
1368  * Return the memory (and swap, if configured) limit for a memcg.
1369  */
1370 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1371 {
1372 	unsigned long max;
1373 
1374 	max = memcg->memory.max;
1375 	if (mem_cgroup_swappiness(memcg)) {
1376 		unsigned long memsw_max;
1377 		unsigned long swap_max;
1378 
1379 		memsw_max = memcg->memsw.max;
1380 		swap_max = memcg->swap.max;
1381 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1382 		max = min(max + swap_max, memsw_max);
1383 	}
1384 	return max;
1385 }
1386 
1387 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1388 				     int order)
1389 {
1390 	struct oom_control oc = {
1391 		.zonelist = NULL,
1392 		.nodemask = NULL,
1393 		.memcg = memcg,
1394 		.gfp_mask = gfp_mask,
1395 		.order = order,
1396 	};
1397 	bool ret;
1398 
1399 	if (mutex_lock_killable(&oom_lock))
1400 		return true;
1401 	/*
1402 	 * A few threads which were not waiting at mutex_lock_killable() can
1403 	 * fail to bail out. Therefore, check again after holding oom_lock.
1404 	 */
1405 	ret = should_force_charge() || out_of_memory(&oc);
1406 	mutex_unlock(&oom_lock);
1407 	return ret;
1408 }
1409 
1410 #if MAX_NUMNODES > 1
1411 
1412 /**
1413  * test_mem_cgroup_node_reclaimable
1414  * @memcg: the target memcg
1415  * @nid: the node ID to be checked.
1416  * @noswap : specify true here if the user wants flle only information.
1417  *
1418  * This function returns whether the specified memcg contains any
1419  * reclaimable pages on a node. Returns true if there are any reclaimable
1420  * pages in the node.
1421  */
1422 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1423 		int nid, bool noswap)
1424 {
1425 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1426 		return true;
1427 	if (noswap || !total_swap_pages)
1428 		return false;
1429 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1430 		return true;
1431 	return false;
1432 
1433 }
1434 
1435 /*
1436  * Always updating the nodemask is not very good - even if we have an empty
1437  * list or the wrong list here, we can start from some node and traverse all
1438  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1439  *
1440  */
1441 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1442 {
1443 	int nid;
1444 	/*
1445 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1446 	 * pagein/pageout changes since the last update.
1447 	 */
1448 	if (!atomic_read(&memcg->numainfo_events))
1449 		return;
1450 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1451 		return;
1452 
1453 	/* make a nodemask where this memcg uses memory from */
1454 	memcg->scan_nodes = node_states[N_MEMORY];
1455 
1456 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1457 
1458 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1459 			node_clear(nid, memcg->scan_nodes);
1460 	}
1461 
1462 	atomic_set(&memcg->numainfo_events, 0);
1463 	atomic_set(&memcg->numainfo_updating, 0);
1464 }
1465 
1466 /*
1467  * Selecting a node where we start reclaim from. Because what we need is just
1468  * reducing usage counter, start from anywhere is O,K. Considering
1469  * memory reclaim from current node, there are pros. and cons.
1470  *
1471  * Freeing memory from current node means freeing memory from a node which
1472  * we'll use or we've used. So, it may make LRU bad. And if several threads
1473  * hit limits, it will see a contention on a node. But freeing from remote
1474  * node means more costs for memory reclaim because of memory latency.
1475  *
1476  * Now, we use round-robin. Better algorithm is welcomed.
1477  */
1478 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1479 {
1480 	int node;
1481 
1482 	mem_cgroup_may_update_nodemask(memcg);
1483 	node = memcg->last_scanned_node;
1484 
1485 	node = next_node_in(node, memcg->scan_nodes);
1486 	/*
1487 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1488 	 * last time it really checked all the LRUs due to rate limiting.
1489 	 * Fallback to the current node in that case for simplicity.
1490 	 */
1491 	if (unlikely(node == MAX_NUMNODES))
1492 		node = numa_node_id();
1493 
1494 	memcg->last_scanned_node = node;
1495 	return node;
1496 }
1497 #else
1498 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1499 {
1500 	return 0;
1501 }
1502 #endif
1503 
1504 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1505 				   pg_data_t *pgdat,
1506 				   gfp_t gfp_mask,
1507 				   unsigned long *total_scanned)
1508 {
1509 	struct mem_cgroup *victim = NULL;
1510 	int total = 0;
1511 	int loop = 0;
1512 	unsigned long excess;
1513 	unsigned long nr_scanned;
1514 	struct mem_cgroup_reclaim_cookie reclaim = {
1515 		.pgdat = pgdat,
1516 		.priority = 0,
1517 	};
1518 
1519 	excess = soft_limit_excess(root_memcg);
1520 
1521 	while (1) {
1522 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1523 		if (!victim) {
1524 			loop++;
1525 			if (loop >= 2) {
1526 				/*
1527 				 * If we have not been able to reclaim
1528 				 * anything, it might because there are
1529 				 * no reclaimable pages under this hierarchy
1530 				 */
1531 				if (!total)
1532 					break;
1533 				/*
1534 				 * We want to do more targeted reclaim.
1535 				 * excess >> 2 is not to excessive so as to
1536 				 * reclaim too much, nor too less that we keep
1537 				 * coming back to reclaim from this cgroup
1538 				 */
1539 				if (total >= (excess >> 2) ||
1540 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1541 					break;
1542 			}
1543 			continue;
1544 		}
1545 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1546 					pgdat, &nr_scanned);
1547 		*total_scanned += nr_scanned;
1548 		if (!soft_limit_excess(root_memcg))
1549 			break;
1550 	}
1551 	mem_cgroup_iter_break(root_memcg, victim);
1552 	return total;
1553 }
1554 
1555 #ifdef CONFIG_LOCKDEP
1556 static struct lockdep_map memcg_oom_lock_dep_map = {
1557 	.name = "memcg_oom_lock",
1558 };
1559 #endif
1560 
1561 static DEFINE_SPINLOCK(memcg_oom_lock);
1562 
1563 /*
1564  * Check OOM-Killer is already running under our hierarchy.
1565  * If someone is running, return false.
1566  */
1567 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1568 {
1569 	struct mem_cgroup *iter, *failed = NULL;
1570 
1571 	spin_lock(&memcg_oom_lock);
1572 
1573 	for_each_mem_cgroup_tree(iter, memcg) {
1574 		if (iter->oom_lock) {
1575 			/*
1576 			 * this subtree of our hierarchy is already locked
1577 			 * so we cannot give a lock.
1578 			 */
1579 			failed = iter;
1580 			mem_cgroup_iter_break(memcg, iter);
1581 			break;
1582 		} else
1583 			iter->oom_lock = true;
1584 	}
1585 
1586 	if (failed) {
1587 		/*
1588 		 * OK, we failed to lock the whole subtree so we have
1589 		 * to clean up what we set up to the failing subtree
1590 		 */
1591 		for_each_mem_cgroup_tree(iter, memcg) {
1592 			if (iter == failed) {
1593 				mem_cgroup_iter_break(memcg, iter);
1594 				break;
1595 			}
1596 			iter->oom_lock = false;
1597 		}
1598 	} else
1599 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1600 
1601 	spin_unlock(&memcg_oom_lock);
1602 
1603 	return !failed;
1604 }
1605 
1606 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1607 {
1608 	struct mem_cgroup *iter;
1609 
1610 	spin_lock(&memcg_oom_lock);
1611 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1612 	for_each_mem_cgroup_tree(iter, memcg)
1613 		iter->oom_lock = false;
1614 	spin_unlock(&memcg_oom_lock);
1615 }
1616 
1617 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1618 {
1619 	struct mem_cgroup *iter;
1620 
1621 	spin_lock(&memcg_oom_lock);
1622 	for_each_mem_cgroup_tree(iter, memcg)
1623 		iter->under_oom++;
1624 	spin_unlock(&memcg_oom_lock);
1625 }
1626 
1627 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1628 {
1629 	struct mem_cgroup *iter;
1630 
1631 	/*
1632 	 * When a new child is created while the hierarchy is under oom,
1633 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1634 	 */
1635 	spin_lock(&memcg_oom_lock);
1636 	for_each_mem_cgroup_tree(iter, memcg)
1637 		if (iter->under_oom > 0)
1638 			iter->under_oom--;
1639 	spin_unlock(&memcg_oom_lock);
1640 }
1641 
1642 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1643 
1644 struct oom_wait_info {
1645 	struct mem_cgroup *memcg;
1646 	wait_queue_entry_t	wait;
1647 };
1648 
1649 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1650 	unsigned mode, int sync, void *arg)
1651 {
1652 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1653 	struct mem_cgroup *oom_wait_memcg;
1654 	struct oom_wait_info *oom_wait_info;
1655 
1656 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1657 	oom_wait_memcg = oom_wait_info->memcg;
1658 
1659 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1660 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1661 		return 0;
1662 	return autoremove_wake_function(wait, mode, sync, arg);
1663 }
1664 
1665 static void memcg_oom_recover(struct mem_cgroup *memcg)
1666 {
1667 	/*
1668 	 * For the following lockless ->under_oom test, the only required
1669 	 * guarantee is that it must see the state asserted by an OOM when
1670 	 * this function is called as a result of userland actions
1671 	 * triggered by the notification of the OOM.  This is trivially
1672 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1673 	 * triggering notification.
1674 	 */
1675 	if (memcg && memcg->under_oom)
1676 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1677 }
1678 
1679 enum oom_status {
1680 	OOM_SUCCESS,
1681 	OOM_FAILED,
1682 	OOM_ASYNC,
1683 	OOM_SKIPPED
1684 };
1685 
1686 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1687 {
1688 	enum oom_status ret;
1689 	bool locked;
1690 
1691 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1692 		return OOM_SKIPPED;
1693 
1694 	memcg_memory_event(memcg, MEMCG_OOM);
1695 
1696 	/*
1697 	 * We are in the middle of the charge context here, so we
1698 	 * don't want to block when potentially sitting on a callstack
1699 	 * that holds all kinds of filesystem and mm locks.
1700 	 *
1701 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1702 	 * handling until the charge can succeed; remember the context and put
1703 	 * the task to sleep at the end of the page fault when all locks are
1704 	 * released.
1705 	 *
1706 	 * On the other hand, in-kernel OOM killer allows for an async victim
1707 	 * memory reclaim (oom_reaper) and that means that we are not solely
1708 	 * relying on the oom victim to make a forward progress and we can
1709 	 * invoke the oom killer here.
1710 	 *
1711 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1712 	 * victim and then we have to bail out from the charge path.
1713 	 */
1714 	if (memcg->oom_kill_disable) {
1715 		if (!current->in_user_fault)
1716 			return OOM_SKIPPED;
1717 		css_get(&memcg->css);
1718 		current->memcg_in_oom = memcg;
1719 		current->memcg_oom_gfp_mask = mask;
1720 		current->memcg_oom_order = order;
1721 
1722 		return OOM_ASYNC;
1723 	}
1724 
1725 	mem_cgroup_mark_under_oom(memcg);
1726 
1727 	locked = mem_cgroup_oom_trylock(memcg);
1728 
1729 	if (locked)
1730 		mem_cgroup_oom_notify(memcg);
1731 
1732 	mem_cgroup_unmark_under_oom(memcg);
1733 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1734 		ret = OOM_SUCCESS;
1735 	else
1736 		ret = OOM_FAILED;
1737 
1738 	if (locked)
1739 		mem_cgroup_oom_unlock(memcg);
1740 
1741 	return ret;
1742 }
1743 
1744 /**
1745  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1746  * @handle: actually kill/wait or just clean up the OOM state
1747  *
1748  * This has to be called at the end of a page fault if the memcg OOM
1749  * handler was enabled.
1750  *
1751  * Memcg supports userspace OOM handling where failed allocations must
1752  * sleep on a waitqueue until the userspace task resolves the
1753  * situation.  Sleeping directly in the charge context with all kinds
1754  * of locks held is not a good idea, instead we remember an OOM state
1755  * in the task and mem_cgroup_oom_synchronize() has to be called at
1756  * the end of the page fault to complete the OOM handling.
1757  *
1758  * Returns %true if an ongoing memcg OOM situation was detected and
1759  * completed, %false otherwise.
1760  */
1761 bool mem_cgroup_oom_synchronize(bool handle)
1762 {
1763 	struct mem_cgroup *memcg = current->memcg_in_oom;
1764 	struct oom_wait_info owait;
1765 	bool locked;
1766 
1767 	/* OOM is global, do not handle */
1768 	if (!memcg)
1769 		return false;
1770 
1771 	if (!handle)
1772 		goto cleanup;
1773 
1774 	owait.memcg = memcg;
1775 	owait.wait.flags = 0;
1776 	owait.wait.func = memcg_oom_wake_function;
1777 	owait.wait.private = current;
1778 	INIT_LIST_HEAD(&owait.wait.entry);
1779 
1780 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1781 	mem_cgroup_mark_under_oom(memcg);
1782 
1783 	locked = mem_cgroup_oom_trylock(memcg);
1784 
1785 	if (locked)
1786 		mem_cgroup_oom_notify(memcg);
1787 
1788 	if (locked && !memcg->oom_kill_disable) {
1789 		mem_cgroup_unmark_under_oom(memcg);
1790 		finish_wait(&memcg_oom_waitq, &owait.wait);
1791 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1792 					 current->memcg_oom_order);
1793 	} else {
1794 		schedule();
1795 		mem_cgroup_unmark_under_oom(memcg);
1796 		finish_wait(&memcg_oom_waitq, &owait.wait);
1797 	}
1798 
1799 	if (locked) {
1800 		mem_cgroup_oom_unlock(memcg);
1801 		/*
1802 		 * There is no guarantee that an OOM-lock contender
1803 		 * sees the wakeups triggered by the OOM kill
1804 		 * uncharges.  Wake any sleepers explicitely.
1805 		 */
1806 		memcg_oom_recover(memcg);
1807 	}
1808 cleanup:
1809 	current->memcg_in_oom = NULL;
1810 	css_put(&memcg->css);
1811 	return true;
1812 }
1813 
1814 /**
1815  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1816  * @victim: task to be killed by the OOM killer
1817  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1818  *
1819  * Returns a pointer to a memory cgroup, which has to be cleaned up
1820  * by killing all belonging OOM-killable tasks.
1821  *
1822  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1823  */
1824 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1825 					    struct mem_cgroup *oom_domain)
1826 {
1827 	struct mem_cgroup *oom_group = NULL;
1828 	struct mem_cgroup *memcg;
1829 
1830 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1831 		return NULL;
1832 
1833 	if (!oom_domain)
1834 		oom_domain = root_mem_cgroup;
1835 
1836 	rcu_read_lock();
1837 
1838 	memcg = mem_cgroup_from_task(victim);
1839 	if (memcg == root_mem_cgroup)
1840 		goto out;
1841 
1842 	/*
1843 	 * Traverse the memory cgroup hierarchy from the victim task's
1844 	 * cgroup up to the OOMing cgroup (or root) to find the
1845 	 * highest-level memory cgroup with oom.group set.
1846 	 */
1847 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1848 		if (memcg->oom_group)
1849 			oom_group = memcg;
1850 
1851 		if (memcg == oom_domain)
1852 			break;
1853 	}
1854 
1855 	if (oom_group)
1856 		css_get(&oom_group->css);
1857 out:
1858 	rcu_read_unlock();
1859 
1860 	return oom_group;
1861 }
1862 
1863 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1864 {
1865 	pr_info("Tasks in ");
1866 	pr_cont_cgroup_path(memcg->css.cgroup);
1867 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1868 }
1869 
1870 /**
1871  * lock_page_memcg - lock a page->mem_cgroup binding
1872  * @page: the page
1873  *
1874  * This function protects unlocked LRU pages from being moved to
1875  * another cgroup.
1876  *
1877  * It ensures lifetime of the returned memcg. Caller is responsible
1878  * for the lifetime of the page; __unlock_page_memcg() is available
1879  * when @page might get freed inside the locked section.
1880  */
1881 struct mem_cgroup *lock_page_memcg(struct page *page)
1882 {
1883 	struct mem_cgroup *memcg;
1884 	unsigned long flags;
1885 
1886 	/*
1887 	 * The RCU lock is held throughout the transaction.  The fast
1888 	 * path can get away without acquiring the memcg->move_lock
1889 	 * because page moving starts with an RCU grace period.
1890 	 *
1891 	 * The RCU lock also protects the memcg from being freed when
1892 	 * the page state that is going to change is the only thing
1893 	 * preventing the page itself from being freed. E.g. writeback
1894 	 * doesn't hold a page reference and relies on PG_writeback to
1895 	 * keep off truncation, migration and so forth.
1896          */
1897 	rcu_read_lock();
1898 
1899 	if (mem_cgroup_disabled())
1900 		return NULL;
1901 again:
1902 	memcg = page->mem_cgroup;
1903 	if (unlikely(!memcg))
1904 		return NULL;
1905 
1906 	if (atomic_read(&memcg->moving_account) <= 0)
1907 		return memcg;
1908 
1909 	spin_lock_irqsave(&memcg->move_lock, flags);
1910 	if (memcg != page->mem_cgroup) {
1911 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1912 		goto again;
1913 	}
1914 
1915 	/*
1916 	 * When charge migration first begins, we can have locked and
1917 	 * unlocked page stat updates happening concurrently.  Track
1918 	 * the task who has the lock for unlock_page_memcg().
1919 	 */
1920 	memcg->move_lock_task = current;
1921 	memcg->move_lock_flags = flags;
1922 
1923 	return memcg;
1924 }
1925 EXPORT_SYMBOL(lock_page_memcg);
1926 
1927 /**
1928  * __unlock_page_memcg - unlock and unpin a memcg
1929  * @memcg: the memcg
1930  *
1931  * Unlock and unpin a memcg returned by lock_page_memcg().
1932  */
1933 void __unlock_page_memcg(struct mem_cgroup *memcg)
1934 {
1935 	if (memcg && memcg->move_lock_task == current) {
1936 		unsigned long flags = memcg->move_lock_flags;
1937 
1938 		memcg->move_lock_task = NULL;
1939 		memcg->move_lock_flags = 0;
1940 
1941 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1942 	}
1943 
1944 	rcu_read_unlock();
1945 }
1946 
1947 /**
1948  * unlock_page_memcg - unlock a page->mem_cgroup binding
1949  * @page: the page
1950  */
1951 void unlock_page_memcg(struct page *page)
1952 {
1953 	__unlock_page_memcg(page->mem_cgroup);
1954 }
1955 EXPORT_SYMBOL(unlock_page_memcg);
1956 
1957 struct memcg_stock_pcp {
1958 	struct mem_cgroup *cached; /* this never be root cgroup */
1959 	unsigned int nr_pages;
1960 	struct work_struct work;
1961 	unsigned long flags;
1962 #define FLUSHING_CACHED_CHARGE	0
1963 };
1964 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1965 static DEFINE_MUTEX(percpu_charge_mutex);
1966 
1967 /**
1968  * consume_stock: Try to consume stocked charge on this cpu.
1969  * @memcg: memcg to consume from.
1970  * @nr_pages: how many pages to charge.
1971  *
1972  * The charges will only happen if @memcg matches the current cpu's memcg
1973  * stock, and at least @nr_pages are available in that stock.  Failure to
1974  * service an allocation will refill the stock.
1975  *
1976  * returns true if successful, false otherwise.
1977  */
1978 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1979 {
1980 	struct memcg_stock_pcp *stock;
1981 	unsigned long flags;
1982 	bool ret = false;
1983 
1984 	if (nr_pages > MEMCG_CHARGE_BATCH)
1985 		return ret;
1986 
1987 	local_irq_save(flags);
1988 
1989 	stock = this_cpu_ptr(&memcg_stock);
1990 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1991 		stock->nr_pages -= nr_pages;
1992 		ret = true;
1993 	}
1994 
1995 	local_irq_restore(flags);
1996 
1997 	return ret;
1998 }
1999 
2000 /*
2001  * Returns stocks cached in percpu and reset cached information.
2002  */
2003 static void drain_stock(struct memcg_stock_pcp *stock)
2004 {
2005 	struct mem_cgroup *old = stock->cached;
2006 
2007 	if (stock->nr_pages) {
2008 		page_counter_uncharge(&old->memory, stock->nr_pages);
2009 		if (do_memsw_account())
2010 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2011 		css_put_many(&old->css, stock->nr_pages);
2012 		stock->nr_pages = 0;
2013 	}
2014 	stock->cached = NULL;
2015 }
2016 
2017 static void drain_local_stock(struct work_struct *dummy)
2018 {
2019 	struct memcg_stock_pcp *stock;
2020 	unsigned long flags;
2021 
2022 	/*
2023 	 * The only protection from memory hotplug vs. drain_stock races is
2024 	 * that we always operate on local CPU stock here with IRQ disabled
2025 	 */
2026 	local_irq_save(flags);
2027 
2028 	stock = this_cpu_ptr(&memcg_stock);
2029 	drain_stock(stock);
2030 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2031 
2032 	local_irq_restore(flags);
2033 }
2034 
2035 /*
2036  * Cache charges(val) to local per_cpu area.
2037  * This will be consumed by consume_stock() function, later.
2038  */
2039 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2040 {
2041 	struct memcg_stock_pcp *stock;
2042 	unsigned long flags;
2043 
2044 	local_irq_save(flags);
2045 
2046 	stock = this_cpu_ptr(&memcg_stock);
2047 	if (stock->cached != memcg) { /* reset if necessary */
2048 		drain_stock(stock);
2049 		stock->cached = memcg;
2050 	}
2051 	stock->nr_pages += nr_pages;
2052 
2053 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2054 		drain_stock(stock);
2055 
2056 	local_irq_restore(flags);
2057 }
2058 
2059 /*
2060  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2061  * of the hierarchy under it.
2062  */
2063 static void drain_all_stock(struct mem_cgroup *root_memcg)
2064 {
2065 	int cpu, curcpu;
2066 
2067 	/* If someone's already draining, avoid adding running more workers. */
2068 	if (!mutex_trylock(&percpu_charge_mutex))
2069 		return;
2070 	/*
2071 	 * Notify other cpus that system-wide "drain" is running
2072 	 * We do not care about races with the cpu hotplug because cpu down
2073 	 * as well as workers from this path always operate on the local
2074 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2075 	 */
2076 	curcpu = get_cpu();
2077 	for_each_online_cpu(cpu) {
2078 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2079 		struct mem_cgroup *memcg;
2080 
2081 		memcg = stock->cached;
2082 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2083 			continue;
2084 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2085 			css_put(&memcg->css);
2086 			continue;
2087 		}
2088 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2089 			if (cpu == curcpu)
2090 				drain_local_stock(&stock->work);
2091 			else
2092 				schedule_work_on(cpu, &stock->work);
2093 		}
2094 		css_put(&memcg->css);
2095 	}
2096 	put_cpu();
2097 	mutex_unlock(&percpu_charge_mutex);
2098 }
2099 
2100 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2101 {
2102 	struct memcg_stock_pcp *stock;
2103 	struct mem_cgroup *memcg;
2104 
2105 	stock = &per_cpu(memcg_stock, cpu);
2106 	drain_stock(stock);
2107 
2108 	for_each_mem_cgroup(memcg) {
2109 		int i;
2110 
2111 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2112 			int nid;
2113 			long x;
2114 
2115 			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2116 			if (x)
2117 				atomic_long_add(x, &memcg->stat[i]);
2118 
2119 			if (i >= NR_VM_NODE_STAT_ITEMS)
2120 				continue;
2121 
2122 			for_each_node(nid) {
2123 				struct mem_cgroup_per_node *pn;
2124 
2125 				pn = mem_cgroup_nodeinfo(memcg, nid);
2126 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2127 				if (x)
2128 					atomic_long_add(x, &pn->lruvec_stat[i]);
2129 			}
2130 		}
2131 
2132 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2133 			long x;
2134 
2135 			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2136 			if (x)
2137 				atomic_long_add(x, &memcg->events[i]);
2138 		}
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 static void reclaim_high(struct mem_cgroup *memcg,
2145 			 unsigned int nr_pages,
2146 			 gfp_t gfp_mask)
2147 {
2148 	do {
2149 		if (page_counter_read(&memcg->memory) <= memcg->high)
2150 			continue;
2151 		memcg_memory_event(memcg, MEMCG_HIGH);
2152 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2153 	} while ((memcg = parent_mem_cgroup(memcg)));
2154 }
2155 
2156 static void high_work_func(struct work_struct *work)
2157 {
2158 	struct mem_cgroup *memcg;
2159 
2160 	memcg = container_of(work, struct mem_cgroup, high_work);
2161 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2162 }
2163 
2164 /*
2165  * Scheduled by try_charge() to be executed from the userland return path
2166  * and reclaims memory over the high limit.
2167  */
2168 void mem_cgroup_handle_over_high(void)
2169 {
2170 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2171 	struct mem_cgroup *memcg;
2172 
2173 	if (likely(!nr_pages))
2174 		return;
2175 
2176 	memcg = get_mem_cgroup_from_mm(current->mm);
2177 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2178 	css_put(&memcg->css);
2179 	current->memcg_nr_pages_over_high = 0;
2180 }
2181 
2182 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2183 		      unsigned int nr_pages)
2184 {
2185 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2186 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2187 	struct mem_cgroup *mem_over_limit;
2188 	struct page_counter *counter;
2189 	unsigned long nr_reclaimed;
2190 	bool may_swap = true;
2191 	bool drained = false;
2192 	bool oomed = false;
2193 	enum oom_status oom_status;
2194 
2195 	if (mem_cgroup_is_root(memcg))
2196 		return 0;
2197 retry:
2198 	if (consume_stock(memcg, nr_pages))
2199 		return 0;
2200 
2201 	if (!do_memsw_account() ||
2202 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2203 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2204 			goto done_restock;
2205 		if (do_memsw_account())
2206 			page_counter_uncharge(&memcg->memsw, batch);
2207 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2208 	} else {
2209 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2210 		may_swap = false;
2211 	}
2212 
2213 	if (batch > nr_pages) {
2214 		batch = nr_pages;
2215 		goto retry;
2216 	}
2217 
2218 	/*
2219 	 * Unlike in global OOM situations, memcg is not in a physical
2220 	 * memory shortage.  Allow dying and OOM-killed tasks to
2221 	 * bypass the last charges so that they can exit quickly and
2222 	 * free their memory.
2223 	 */
2224 	if (unlikely(should_force_charge()))
2225 		goto force;
2226 
2227 	/*
2228 	 * Prevent unbounded recursion when reclaim operations need to
2229 	 * allocate memory. This might exceed the limits temporarily,
2230 	 * but we prefer facilitating memory reclaim and getting back
2231 	 * under the limit over triggering OOM kills in these cases.
2232 	 */
2233 	if (unlikely(current->flags & PF_MEMALLOC))
2234 		goto force;
2235 
2236 	if (unlikely(task_in_memcg_oom(current)))
2237 		goto nomem;
2238 
2239 	if (!gfpflags_allow_blocking(gfp_mask))
2240 		goto nomem;
2241 
2242 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2243 
2244 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2245 						    gfp_mask, may_swap);
2246 
2247 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2248 		goto retry;
2249 
2250 	if (!drained) {
2251 		drain_all_stock(mem_over_limit);
2252 		drained = true;
2253 		goto retry;
2254 	}
2255 
2256 	if (gfp_mask & __GFP_NORETRY)
2257 		goto nomem;
2258 	/*
2259 	 * Even though the limit is exceeded at this point, reclaim
2260 	 * may have been able to free some pages.  Retry the charge
2261 	 * before killing the task.
2262 	 *
2263 	 * Only for regular pages, though: huge pages are rather
2264 	 * unlikely to succeed so close to the limit, and we fall back
2265 	 * to regular pages anyway in case of failure.
2266 	 */
2267 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2268 		goto retry;
2269 	/*
2270 	 * At task move, charge accounts can be doubly counted. So, it's
2271 	 * better to wait until the end of task_move if something is going on.
2272 	 */
2273 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2274 		goto retry;
2275 
2276 	if (nr_retries--)
2277 		goto retry;
2278 
2279 	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2280 		goto nomem;
2281 
2282 	if (gfp_mask & __GFP_NOFAIL)
2283 		goto force;
2284 
2285 	if (fatal_signal_pending(current))
2286 		goto force;
2287 
2288 	/*
2289 	 * keep retrying as long as the memcg oom killer is able to make
2290 	 * a forward progress or bypass the charge if the oom killer
2291 	 * couldn't make any progress.
2292 	 */
2293 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2294 		       get_order(nr_pages * PAGE_SIZE));
2295 	switch (oom_status) {
2296 	case OOM_SUCCESS:
2297 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2298 		oomed = true;
2299 		goto retry;
2300 	case OOM_FAILED:
2301 		goto force;
2302 	default:
2303 		goto nomem;
2304 	}
2305 nomem:
2306 	if (!(gfp_mask & __GFP_NOFAIL))
2307 		return -ENOMEM;
2308 force:
2309 	/*
2310 	 * The allocation either can't fail or will lead to more memory
2311 	 * being freed very soon.  Allow memory usage go over the limit
2312 	 * temporarily by force charging it.
2313 	 */
2314 	page_counter_charge(&memcg->memory, nr_pages);
2315 	if (do_memsw_account())
2316 		page_counter_charge(&memcg->memsw, nr_pages);
2317 	css_get_many(&memcg->css, nr_pages);
2318 
2319 	return 0;
2320 
2321 done_restock:
2322 	css_get_many(&memcg->css, batch);
2323 	if (batch > nr_pages)
2324 		refill_stock(memcg, batch - nr_pages);
2325 
2326 	/*
2327 	 * If the hierarchy is above the normal consumption range, schedule
2328 	 * reclaim on returning to userland.  We can perform reclaim here
2329 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2330 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2331 	 * not recorded as it most likely matches current's and won't
2332 	 * change in the meantime.  As high limit is checked again before
2333 	 * reclaim, the cost of mismatch is negligible.
2334 	 */
2335 	do {
2336 		if (page_counter_read(&memcg->memory) > memcg->high) {
2337 			/* Don't bother a random interrupted task */
2338 			if (in_interrupt()) {
2339 				schedule_work(&memcg->high_work);
2340 				break;
2341 			}
2342 			current->memcg_nr_pages_over_high += batch;
2343 			set_notify_resume(current);
2344 			break;
2345 		}
2346 	} while ((memcg = parent_mem_cgroup(memcg)));
2347 
2348 	return 0;
2349 }
2350 
2351 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2352 {
2353 	if (mem_cgroup_is_root(memcg))
2354 		return;
2355 
2356 	page_counter_uncharge(&memcg->memory, nr_pages);
2357 	if (do_memsw_account())
2358 		page_counter_uncharge(&memcg->memsw, nr_pages);
2359 
2360 	css_put_many(&memcg->css, nr_pages);
2361 }
2362 
2363 static void lock_page_lru(struct page *page, int *isolated)
2364 {
2365 	pg_data_t *pgdat = page_pgdat(page);
2366 
2367 	spin_lock_irq(&pgdat->lru_lock);
2368 	if (PageLRU(page)) {
2369 		struct lruvec *lruvec;
2370 
2371 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2372 		ClearPageLRU(page);
2373 		del_page_from_lru_list(page, lruvec, page_lru(page));
2374 		*isolated = 1;
2375 	} else
2376 		*isolated = 0;
2377 }
2378 
2379 static void unlock_page_lru(struct page *page, int isolated)
2380 {
2381 	pg_data_t *pgdat = page_pgdat(page);
2382 
2383 	if (isolated) {
2384 		struct lruvec *lruvec;
2385 
2386 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2387 		VM_BUG_ON_PAGE(PageLRU(page), page);
2388 		SetPageLRU(page);
2389 		add_page_to_lru_list(page, lruvec, page_lru(page));
2390 	}
2391 	spin_unlock_irq(&pgdat->lru_lock);
2392 }
2393 
2394 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2395 			  bool lrucare)
2396 {
2397 	int isolated;
2398 
2399 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2400 
2401 	/*
2402 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2403 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2404 	 */
2405 	if (lrucare)
2406 		lock_page_lru(page, &isolated);
2407 
2408 	/*
2409 	 * Nobody should be changing or seriously looking at
2410 	 * page->mem_cgroup at this point:
2411 	 *
2412 	 * - the page is uncharged
2413 	 *
2414 	 * - the page is off-LRU
2415 	 *
2416 	 * - an anonymous fault has exclusive page access, except for
2417 	 *   a locked page table
2418 	 *
2419 	 * - a page cache insertion, a swapin fault, or a migration
2420 	 *   have the page locked
2421 	 */
2422 	page->mem_cgroup = memcg;
2423 
2424 	if (lrucare)
2425 		unlock_page_lru(page, isolated);
2426 }
2427 
2428 #ifdef CONFIG_MEMCG_KMEM
2429 static int memcg_alloc_cache_id(void)
2430 {
2431 	int id, size;
2432 	int err;
2433 
2434 	id = ida_simple_get(&memcg_cache_ida,
2435 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2436 	if (id < 0)
2437 		return id;
2438 
2439 	if (id < memcg_nr_cache_ids)
2440 		return id;
2441 
2442 	/*
2443 	 * There's no space for the new id in memcg_caches arrays,
2444 	 * so we have to grow them.
2445 	 */
2446 	down_write(&memcg_cache_ids_sem);
2447 
2448 	size = 2 * (id + 1);
2449 	if (size < MEMCG_CACHES_MIN_SIZE)
2450 		size = MEMCG_CACHES_MIN_SIZE;
2451 	else if (size > MEMCG_CACHES_MAX_SIZE)
2452 		size = MEMCG_CACHES_MAX_SIZE;
2453 
2454 	err = memcg_update_all_caches(size);
2455 	if (!err)
2456 		err = memcg_update_all_list_lrus(size);
2457 	if (!err)
2458 		memcg_nr_cache_ids = size;
2459 
2460 	up_write(&memcg_cache_ids_sem);
2461 
2462 	if (err) {
2463 		ida_simple_remove(&memcg_cache_ida, id);
2464 		return err;
2465 	}
2466 	return id;
2467 }
2468 
2469 static void memcg_free_cache_id(int id)
2470 {
2471 	ida_simple_remove(&memcg_cache_ida, id);
2472 }
2473 
2474 struct memcg_kmem_cache_create_work {
2475 	struct mem_cgroup *memcg;
2476 	struct kmem_cache *cachep;
2477 	struct work_struct work;
2478 };
2479 
2480 static void memcg_kmem_cache_create_func(struct work_struct *w)
2481 {
2482 	struct memcg_kmem_cache_create_work *cw =
2483 		container_of(w, struct memcg_kmem_cache_create_work, work);
2484 	struct mem_cgroup *memcg = cw->memcg;
2485 	struct kmem_cache *cachep = cw->cachep;
2486 
2487 	memcg_create_kmem_cache(memcg, cachep);
2488 
2489 	css_put(&memcg->css);
2490 	kfree(cw);
2491 }
2492 
2493 /*
2494  * Enqueue the creation of a per-memcg kmem_cache.
2495  */
2496 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2497 					       struct kmem_cache *cachep)
2498 {
2499 	struct memcg_kmem_cache_create_work *cw;
2500 
2501 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2502 	if (!cw)
2503 		return;
2504 
2505 	css_get(&memcg->css);
2506 
2507 	cw->memcg = memcg;
2508 	cw->cachep = cachep;
2509 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2510 
2511 	queue_work(memcg_kmem_cache_wq, &cw->work);
2512 }
2513 
2514 static inline bool memcg_kmem_bypass(void)
2515 {
2516 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2517 		return true;
2518 	return false;
2519 }
2520 
2521 /**
2522  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2523  * @cachep: the original global kmem cache
2524  *
2525  * Return the kmem_cache we're supposed to use for a slab allocation.
2526  * We try to use the current memcg's version of the cache.
2527  *
2528  * If the cache does not exist yet, if we are the first user of it, we
2529  * create it asynchronously in a workqueue and let the current allocation
2530  * go through with the original cache.
2531  *
2532  * This function takes a reference to the cache it returns to assure it
2533  * won't get destroyed while we are working with it. Once the caller is
2534  * done with it, memcg_kmem_put_cache() must be called to release the
2535  * reference.
2536  */
2537 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2538 {
2539 	struct mem_cgroup *memcg;
2540 	struct kmem_cache *memcg_cachep;
2541 	int kmemcg_id;
2542 
2543 	VM_BUG_ON(!is_root_cache(cachep));
2544 
2545 	if (memcg_kmem_bypass())
2546 		return cachep;
2547 
2548 	memcg = get_mem_cgroup_from_current();
2549 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2550 	if (kmemcg_id < 0)
2551 		goto out;
2552 
2553 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2554 	if (likely(memcg_cachep))
2555 		return memcg_cachep;
2556 
2557 	/*
2558 	 * If we are in a safe context (can wait, and not in interrupt
2559 	 * context), we could be be predictable and return right away.
2560 	 * This would guarantee that the allocation being performed
2561 	 * already belongs in the new cache.
2562 	 *
2563 	 * However, there are some clashes that can arrive from locking.
2564 	 * For instance, because we acquire the slab_mutex while doing
2565 	 * memcg_create_kmem_cache, this means no further allocation
2566 	 * could happen with the slab_mutex held. So it's better to
2567 	 * defer everything.
2568 	 */
2569 	memcg_schedule_kmem_cache_create(memcg, cachep);
2570 out:
2571 	css_put(&memcg->css);
2572 	return cachep;
2573 }
2574 
2575 /**
2576  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2577  * @cachep: the cache returned by memcg_kmem_get_cache
2578  */
2579 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2580 {
2581 	if (!is_root_cache(cachep))
2582 		css_put(&cachep->memcg_params.memcg->css);
2583 }
2584 
2585 /**
2586  * __memcg_kmem_charge_memcg: charge a kmem page
2587  * @page: page to charge
2588  * @gfp: reclaim mode
2589  * @order: allocation order
2590  * @memcg: memory cgroup to charge
2591  *
2592  * Returns 0 on success, an error code on failure.
2593  */
2594 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2595 			    struct mem_cgroup *memcg)
2596 {
2597 	unsigned int nr_pages = 1 << order;
2598 	struct page_counter *counter;
2599 	int ret;
2600 
2601 	ret = try_charge(memcg, gfp, nr_pages);
2602 	if (ret)
2603 		return ret;
2604 
2605 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2606 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2607 		cancel_charge(memcg, nr_pages);
2608 		return -ENOMEM;
2609 	}
2610 
2611 	page->mem_cgroup = memcg;
2612 
2613 	return 0;
2614 }
2615 
2616 /**
2617  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2618  * @page: page to charge
2619  * @gfp: reclaim mode
2620  * @order: allocation order
2621  *
2622  * Returns 0 on success, an error code on failure.
2623  */
2624 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2625 {
2626 	struct mem_cgroup *memcg;
2627 	int ret = 0;
2628 
2629 	if (memcg_kmem_bypass())
2630 		return 0;
2631 
2632 	memcg = get_mem_cgroup_from_current();
2633 	if (!mem_cgroup_is_root(memcg)) {
2634 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2635 		if (!ret)
2636 			__SetPageKmemcg(page);
2637 	}
2638 	css_put(&memcg->css);
2639 	return ret;
2640 }
2641 /**
2642  * __memcg_kmem_uncharge: uncharge a kmem page
2643  * @page: page to uncharge
2644  * @order: allocation order
2645  */
2646 void __memcg_kmem_uncharge(struct page *page, int order)
2647 {
2648 	struct mem_cgroup *memcg = page->mem_cgroup;
2649 	unsigned int nr_pages = 1 << order;
2650 
2651 	if (!memcg)
2652 		return;
2653 
2654 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2655 
2656 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2657 		page_counter_uncharge(&memcg->kmem, nr_pages);
2658 
2659 	page_counter_uncharge(&memcg->memory, nr_pages);
2660 	if (do_memsw_account())
2661 		page_counter_uncharge(&memcg->memsw, nr_pages);
2662 
2663 	page->mem_cgroup = NULL;
2664 
2665 	/* slab pages do not have PageKmemcg flag set */
2666 	if (PageKmemcg(page))
2667 		__ClearPageKmemcg(page);
2668 
2669 	css_put_many(&memcg->css, nr_pages);
2670 }
2671 #endif /* CONFIG_MEMCG_KMEM */
2672 
2673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2674 
2675 /*
2676  * Because tail pages are not marked as "used", set it. We're under
2677  * pgdat->lru_lock and migration entries setup in all page mappings.
2678  */
2679 void mem_cgroup_split_huge_fixup(struct page *head)
2680 {
2681 	int i;
2682 
2683 	if (mem_cgroup_disabled())
2684 		return;
2685 
2686 	for (i = 1; i < HPAGE_PMD_NR; i++)
2687 		head[i].mem_cgroup = head->mem_cgroup;
2688 
2689 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2690 }
2691 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2692 
2693 #ifdef CONFIG_MEMCG_SWAP
2694 /**
2695  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2696  * @entry: swap entry to be moved
2697  * @from:  mem_cgroup which the entry is moved from
2698  * @to:  mem_cgroup which the entry is moved to
2699  *
2700  * It succeeds only when the swap_cgroup's record for this entry is the same
2701  * as the mem_cgroup's id of @from.
2702  *
2703  * Returns 0 on success, -EINVAL on failure.
2704  *
2705  * The caller must have charged to @to, IOW, called page_counter_charge() about
2706  * both res and memsw, and called css_get().
2707  */
2708 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2709 				struct mem_cgroup *from, struct mem_cgroup *to)
2710 {
2711 	unsigned short old_id, new_id;
2712 
2713 	old_id = mem_cgroup_id(from);
2714 	new_id = mem_cgroup_id(to);
2715 
2716 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2717 		mod_memcg_state(from, MEMCG_SWAP, -1);
2718 		mod_memcg_state(to, MEMCG_SWAP, 1);
2719 		return 0;
2720 	}
2721 	return -EINVAL;
2722 }
2723 #else
2724 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2725 				struct mem_cgroup *from, struct mem_cgroup *to)
2726 {
2727 	return -EINVAL;
2728 }
2729 #endif
2730 
2731 static DEFINE_MUTEX(memcg_max_mutex);
2732 
2733 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2734 				 unsigned long max, bool memsw)
2735 {
2736 	bool enlarge = false;
2737 	bool drained = false;
2738 	int ret;
2739 	bool limits_invariant;
2740 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2741 
2742 	do {
2743 		if (signal_pending(current)) {
2744 			ret = -EINTR;
2745 			break;
2746 		}
2747 
2748 		mutex_lock(&memcg_max_mutex);
2749 		/*
2750 		 * Make sure that the new limit (memsw or memory limit) doesn't
2751 		 * break our basic invariant rule memory.max <= memsw.max.
2752 		 */
2753 		limits_invariant = memsw ? max >= memcg->memory.max :
2754 					   max <= memcg->memsw.max;
2755 		if (!limits_invariant) {
2756 			mutex_unlock(&memcg_max_mutex);
2757 			ret = -EINVAL;
2758 			break;
2759 		}
2760 		if (max > counter->max)
2761 			enlarge = true;
2762 		ret = page_counter_set_max(counter, max);
2763 		mutex_unlock(&memcg_max_mutex);
2764 
2765 		if (!ret)
2766 			break;
2767 
2768 		if (!drained) {
2769 			drain_all_stock(memcg);
2770 			drained = true;
2771 			continue;
2772 		}
2773 
2774 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2775 					GFP_KERNEL, !memsw)) {
2776 			ret = -EBUSY;
2777 			break;
2778 		}
2779 	} while (true);
2780 
2781 	if (!ret && enlarge)
2782 		memcg_oom_recover(memcg);
2783 
2784 	return ret;
2785 }
2786 
2787 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2788 					    gfp_t gfp_mask,
2789 					    unsigned long *total_scanned)
2790 {
2791 	unsigned long nr_reclaimed = 0;
2792 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2793 	unsigned long reclaimed;
2794 	int loop = 0;
2795 	struct mem_cgroup_tree_per_node *mctz;
2796 	unsigned long excess;
2797 	unsigned long nr_scanned;
2798 
2799 	if (order > 0)
2800 		return 0;
2801 
2802 	mctz = soft_limit_tree_node(pgdat->node_id);
2803 
2804 	/*
2805 	 * Do not even bother to check the largest node if the root
2806 	 * is empty. Do it lockless to prevent lock bouncing. Races
2807 	 * are acceptable as soft limit is best effort anyway.
2808 	 */
2809 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2810 		return 0;
2811 
2812 	/*
2813 	 * This loop can run a while, specially if mem_cgroup's continuously
2814 	 * keep exceeding their soft limit and putting the system under
2815 	 * pressure
2816 	 */
2817 	do {
2818 		if (next_mz)
2819 			mz = next_mz;
2820 		else
2821 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2822 		if (!mz)
2823 			break;
2824 
2825 		nr_scanned = 0;
2826 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2827 						    gfp_mask, &nr_scanned);
2828 		nr_reclaimed += reclaimed;
2829 		*total_scanned += nr_scanned;
2830 		spin_lock_irq(&mctz->lock);
2831 		__mem_cgroup_remove_exceeded(mz, mctz);
2832 
2833 		/*
2834 		 * If we failed to reclaim anything from this memory cgroup
2835 		 * it is time to move on to the next cgroup
2836 		 */
2837 		next_mz = NULL;
2838 		if (!reclaimed)
2839 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2840 
2841 		excess = soft_limit_excess(mz->memcg);
2842 		/*
2843 		 * One school of thought says that we should not add
2844 		 * back the node to the tree if reclaim returns 0.
2845 		 * But our reclaim could return 0, simply because due
2846 		 * to priority we are exposing a smaller subset of
2847 		 * memory to reclaim from. Consider this as a longer
2848 		 * term TODO.
2849 		 */
2850 		/* If excess == 0, no tree ops */
2851 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2852 		spin_unlock_irq(&mctz->lock);
2853 		css_put(&mz->memcg->css);
2854 		loop++;
2855 		/*
2856 		 * Could not reclaim anything and there are no more
2857 		 * mem cgroups to try or we seem to be looping without
2858 		 * reclaiming anything.
2859 		 */
2860 		if (!nr_reclaimed &&
2861 			(next_mz == NULL ||
2862 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2863 			break;
2864 	} while (!nr_reclaimed);
2865 	if (next_mz)
2866 		css_put(&next_mz->memcg->css);
2867 	return nr_reclaimed;
2868 }
2869 
2870 /*
2871  * Test whether @memcg has children, dead or alive.  Note that this
2872  * function doesn't care whether @memcg has use_hierarchy enabled and
2873  * returns %true if there are child csses according to the cgroup
2874  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2875  */
2876 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2877 {
2878 	bool ret;
2879 
2880 	rcu_read_lock();
2881 	ret = css_next_child(NULL, &memcg->css);
2882 	rcu_read_unlock();
2883 	return ret;
2884 }
2885 
2886 /*
2887  * Reclaims as many pages from the given memcg as possible.
2888  *
2889  * Caller is responsible for holding css reference for memcg.
2890  */
2891 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2892 {
2893 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2894 
2895 	/* we call try-to-free pages for make this cgroup empty */
2896 	lru_add_drain_all();
2897 
2898 	drain_all_stock(memcg);
2899 
2900 	/* try to free all pages in this cgroup */
2901 	while (nr_retries && page_counter_read(&memcg->memory)) {
2902 		int progress;
2903 
2904 		if (signal_pending(current))
2905 			return -EINTR;
2906 
2907 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2908 							GFP_KERNEL, true);
2909 		if (!progress) {
2910 			nr_retries--;
2911 			/* maybe some writeback is necessary */
2912 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2913 		}
2914 
2915 	}
2916 
2917 	return 0;
2918 }
2919 
2920 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2921 					    char *buf, size_t nbytes,
2922 					    loff_t off)
2923 {
2924 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2925 
2926 	if (mem_cgroup_is_root(memcg))
2927 		return -EINVAL;
2928 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2929 }
2930 
2931 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2932 				     struct cftype *cft)
2933 {
2934 	return mem_cgroup_from_css(css)->use_hierarchy;
2935 }
2936 
2937 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2938 				      struct cftype *cft, u64 val)
2939 {
2940 	int retval = 0;
2941 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2942 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2943 
2944 	if (memcg->use_hierarchy == val)
2945 		return 0;
2946 
2947 	/*
2948 	 * If parent's use_hierarchy is set, we can't make any modifications
2949 	 * in the child subtrees. If it is unset, then the change can
2950 	 * occur, provided the current cgroup has no children.
2951 	 *
2952 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2953 	 * set if there are no children.
2954 	 */
2955 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2956 				(val == 1 || val == 0)) {
2957 		if (!memcg_has_children(memcg))
2958 			memcg->use_hierarchy = val;
2959 		else
2960 			retval = -EBUSY;
2961 	} else
2962 		retval = -EINVAL;
2963 
2964 	return retval;
2965 }
2966 
2967 struct accumulated_stats {
2968 	unsigned long stat[MEMCG_NR_STAT];
2969 	unsigned long events[NR_VM_EVENT_ITEMS];
2970 	unsigned long lru_pages[NR_LRU_LISTS];
2971 	const unsigned int *stats_array;
2972 	const unsigned int *events_array;
2973 	int stats_size;
2974 	int events_size;
2975 };
2976 
2977 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2978 				  struct accumulated_stats *acc)
2979 {
2980 	struct mem_cgroup *mi;
2981 	int i;
2982 
2983 	for_each_mem_cgroup_tree(mi, memcg) {
2984 		for (i = 0; i < acc->stats_size; i++)
2985 			acc->stat[i] += memcg_page_state(mi,
2986 				acc->stats_array ? acc->stats_array[i] : i);
2987 
2988 		for (i = 0; i < acc->events_size; i++)
2989 			acc->events[i] += memcg_sum_events(mi,
2990 				acc->events_array ? acc->events_array[i] : i);
2991 
2992 		for (i = 0; i < NR_LRU_LISTS; i++)
2993 			acc->lru_pages[i] +=
2994 				mem_cgroup_nr_lru_pages(mi, BIT(i));
2995 	}
2996 }
2997 
2998 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2999 {
3000 	unsigned long val = 0;
3001 
3002 	if (mem_cgroup_is_root(memcg)) {
3003 		struct mem_cgroup *iter;
3004 
3005 		for_each_mem_cgroup_tree(iter, memcg) {
3006 			val += memcg_page_state(iter, MEMCG_CACHE);
3007 			val += memcg_page_state(iter, MEMCG_RSS);
3008 			if (swap)
3009 				val += memcg_page_state(iter, MEMCG_SWAP);
3010 		}
3011 	} else {
3012 		if (!swap)
3013 			val = page_counter_read(&memcg->memory);
3014 		else
3015 			val = page_counter_read(&memcg->memsw);
3016 	}
3017 	return val;
3018 }
3019 
3020 enum {
3021 	RES_USAGE,
3022 	RES_LIMIT,
3023 	RES_MAX_USAGE,
3024 	RES_FAILCNT,
3025 	RES_SOFT_LIMIT,
3026 };
3027 
3028 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3029 			       struct cftype *cft)
3030 {
3031 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3032 	struct page_counter *counter;
3033 
3034 	switch (MEMFILE_TYPE(cft->private)) {
3035 	case _MEM:
3036 		counter = &memcg->memory;
3037 		break;
3038 	case _MEMSWAP:
3039 		counter = &memcg->memsw;
3040 		break;
3041 	case _KMEM:
3042 		counter = &memcg->kmem;
3043 		break;
3044 	case _TCP:
3045 		counter = &memcg->tcpmem;
3046 		break;
3047 	default:
3048 		BUG();
3049 	}
3050 
3051 	switch (MEMFILE_ATTR(cft->private)) {
3052 	case RES_USAGE:
3053 		if (counter == &memcg->memory)
3054 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3055 		if (counter == &memcg->memsw)
3056 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3057 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3058 	case RES_LIMIT:
3059 		return (u64)counter->max * PAGE_SIZE;
3060 	case RES_MAX_USAGE:
3061 		return (u64)counter->watermark * PAGE_SIZE;
3062 	case RES_FAILCNT:
3063 		return counter->failcnt;
3064 	case RES_SOFT_LIMIT:
3065 		return (u64)memcg->soft_limit * PAGE_SIZE;
3066 	default:
3067 		BUG();
3068 	}
3069 }
3070 
3071 #ifdef CONFIG_MEMCG_KMEM
3072 static int memcg_online_kmem(struct mem_cgroup *memcg)
3073 {
3074 	int memcg_id;
3075 
3076 	if (cgroup_memory_nokmem)
3077 		return 0;
3078 
3079 	BUG_ON(memcg->kmemcg_id >= 0);
3080 	BUG_ON(memcg->kmem_state);
3081 
3082 	memcg_id = memcg_alloc_cache_id();
3083 	if (memcg_id < 0)
3084 		return memcg_id;
3085 
3086 	static_branch_inc(&memcg_kmem_enabled_key);
3087 	/*
3088 	 * A memory cgroup is considered kmem-online as soon as it gets
3089 	 * kmemcg_id. Setting the id after enabling static branching will
3090 	 * guarantee no one starts accounting before all call sites are
3091 	 * patched.
3092 	 */
3093 	memcg->kmemcg_id = memcg_id;
3094 	memcg->kmem_state = KMEM_ONLINE;
3095 	INIT_LIST_HEAD(&memcg->kmem_caches);
3096 
3097 	return 0;
3098 }
3099 
3100 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3101 {
3102 	struct cgroup_subsys_state *css;
3103 	struct mem_cgroup *parent, *child;
3104 	int kmemcg_id;
3105 
3106 	if (memcg->kmem_state != KMEM_ONLINE)
3107 		return;
3108 	/*
3109 	 * Clear the online state before clearing memcg_caches array
3110 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3111 	 * guarantees that no cache will be created for this cgroup
3112 	 * after we are done (see memcg_create_kmem_cache()).
3113 	 */
3114 	memcg->kmem_state = KMEM_ALLOCATED;
3115 
3116 	memcg_deactivate_kmem_caches(memcg);
3117 
3118 	kmemcg_id = memcg->kmemcg_id;
3119 	BUG_ON(kmemcg_id < 0);
3120 
3121 	parent = parent_mem_cgroup(memcg);
3122 	if (!parent)
3123 		parent = root_mem_cgroup;
3124 
3125 	/*
3126 	 * Change kmemcg_id of this cgroup and all its descendants to the
3127 	 * parent's id, and then move all entries from this cgroup's list_lrus
3128 	 * to ones of the parent. After we have finished, all list_lrus
3129 	 * corresponding to this cgroup are guaranteed to remain empty. The
3130 	 * ordering is imposed by list_lru_node->lock taken by
3131 	 * memcg_drain_all_list_lrus().
3132 	 */
3133 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3134 	css_for_each_descendant_pre(css, &memcg->css) {
3135 		child = mem_cgroup_from_css(css);
3136 		BUG_ON(child->kmemcg_id != kmemcg_id);
3137 		child->kmemcg_id = parent->kmemcg_id;
3138 		if (!memcg->use_hierarchy)
3139 			break;
3140 	}
3141 	rcu_read_unlock();
3142 
3143 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3144 
3145 	memcg_free_cache_id(kmemcg_id);
3146 }
3147 
3148 static void memcg_free_kmem(struct mem_cgroup *memcg)
3149 {
3150 	/* css_alloc() failed, offlining didn't happen */
3151 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3152 		memcg_offline_kmem(memcg);
3153 
3154 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3155 		memcg_destroy_kmem_caches(memcg);
3156 		static_branch_dec(&memcg_kmem_enabled_key);
3157 		WARN_ON(page_counter_read(&memcg->kmem));
3158 	}
3159 }
3160 #else
3161 static int memcg_online_kmem(struct mem_cgroup *memcg)
3162 {
3163 	return 0;
3164 }
3165 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3166 {
3167 }
3168 static void memcg_free_kmem(struct mem_cgroup *memcg)
3169 {
3170 }
3171 #endif /* CONFIG_MEMCG_KMEM */
3172 
3173 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3174 				 unsigned long max)
3175 {
3176 	int ret;
3177 
3178 	mutex_lock(&memcg_max_mutex);
3179 	ret = page_counter_set_max(&memcg->kmem, max);
3180 	mutex_unlock(&memcg_max_mutex);
3181 	return ret;
3182 }
3183 
3184 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3185 {
3186 	int ret;
3187 
3188 	mutex_lock(&memcg_max_mutex);
3189 
3190 	ret = page_counter_set_max(&memcg->tcpmem, max);
3191 	if (ret)
3192 		goto out;
3193 
3194 	if (!memcg->tcpmem_active) {
3195 		/*
3196 		 * The active flag needs to be written after the static_key
3197 		 * update. This is what guarantees that the socket activation
3198 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3199 		 * for details, and note that we don't mark any socket as
3200 		 * belonging to this memcg until that flag is up.
3201 		 *
3202 		 * We need to do this, because static_keys will span multiple
3203 		 * sites, but we can't control their order. If we mark a socket
3204 		 * as accounted, but the accounting functions are not patched in
3205 		 * yet, we'll lose accounting.
3206 		 *
3207 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3208 		 * because when this value change, the code to process it is not
3209 		 * patched in yet.
3210 		 */
3211 		static_branch_inc(&memcg_sockets_enabled_key);
3212 		memcg->tcpmem_active = true;
3213 	}
3214 out:
3215 	mutex_unlock(&memcg_max_mutex);
3216 	return ret;
3217 }
3218 
3219 /*
3220  * The user of this function is...
3221  * RES_LIMIT.
3222  */
3223 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3224 				char *buf, size_t nbytes, loff_t off)
3225 {
3226 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3227 	unsigned long nr_pages;
3228 	int ret;
3229 
3230 	buf = strstrip(buf);
3231 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3232 	if (ret)
3233 		return ret;
3234 
3235 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3236 	case RES_LIMIT:
3237 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3238 			ret = -EINVAL;
3239 			break;
3240 		}
3241 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3242 		case _MEM:
3243 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3244 			break;
3245 		case _MEMSWAP:
3246 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3247 			break;
3248 		case _KMEM:
3249 			ret = memcg_update_kmem_max(memcg, nr_pages);
3250 			break;
3251 		case _TCP:
3252 			ret = memcg_update_tcp_max(memcg, nr_pages);
3253 			break;
3254 		}
3255 		break;
3256 	case RES_SOFT_LIMIT:
3257 		memcg->soft_limit = nr_pages;
3258 		ret = 0;
3259 		break;
3260 	}
3261 	return ret ?: nbytes;
3262 }
3263 
3264 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3265 				size_t nbytes, loff_t off)
3266 {
3267 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3268 	struct page_counter *counter;
3269 
3270 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3271 	case _MEM:
3272 		counter = &memcg->memory;
3273 		break;
3274 	case _MEMSWAP:
3275 		counter = &memcg->memsw;
3276 		break;
3277 	case _KMEM:
3278 		counter = &memcg->kmem;
3279 		break;
3280 	case _TCP:
3281 		counter = &memcg->tcpmem;
3282 		break;
3283 	default:
3284 		BUG();
3285 	}
3286 
3287 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3288 	case RES_MAX_USAGE:
3289 		page_counter_reset_watermark(counter);
3290 		break;
3291 	case RES_FAILCNT:
3292 		counter->failcnt = 0;
3293 		break;
3294 	default:
3295 		BUG();
3296 	}
3297 
3298 	return nbytes;
3299 }
3300 
3301 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3302 					struct cftype *cft)
3303 {
3304 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3305 }
3306 
3307 #ifdef CONFIG_MMU
3308 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3309 					struct cftype *cft, u64 val)
3310 {
3311 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3312 
3313 	if (val & ~MOVE_MASK)
3314 		return -EINVAL;
3315 
3316 	/*
3317 	 * No kind of locking is needed in here, because ->can_attach() will
3318 	 * check this value once in the beginning of the process, and then carry
3319 	 * on with stale data. This means that changes to this value will only
3320 	 * affect task migrations starting after the change.
3321 	 */
3322 	memcg->move_charge_at_immigrate = val;
3323 	return 0;
3324 }
3325 #else
3326 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3327 					struct cftype *cft, u64 val)
3328 {
3329 	return -ENOSYS;
3330 }
3331 #endif
3332 
3333 #ifdef CONFIG_NUMA
3334 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3335 {
3336 	struct numa_stat {
3337 		const char *name;
3338 		unsigned int lru_mask;
3339 	};
3340 
3341 	static const struct numa_stat stats[] = {
3342 		{ "total", LRU_ALL },
3343 		{ "file", LRU_ALL_FILE },
3344 		{ "anon", LRU_ALL_ANON },
3345 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3346 	};
3347 	const struct numa_stat *stat;
3348 	int nid;
3349 	unsigned long nr;
3350 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3351 
3352 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3353 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3354 		seq_printf(m, "%s=%lu", stat->name, nr);
3355 		for_each_node_state(nid, N_MEMORY) {
3356 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3357 							  stat->lru_mask);
3358 			seq_printf(m, " N%d=%lu", nid, nr);
3359 		}
3360 		seq_putc(m, '\n');
3361 	}
3362 
3363 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3364 		struct mem_cgroup *iter;
3365 
3366 		nr = 0;
3367 		for_each_mem_cgroup_tree(iter, memcg)
3368 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3369 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3370 		for_each_node_state(nid, N_MEMORY) {
3371 			nr = 0;
3372 			for_each_mem_cgroup_tree(iter, memcg)
3373 				nr += mem_cgroup_node_nr_lru_pages(
3374 					iter, nid, stat->lru_mask);
3375 			seq_printf(m, " N%d=%lu", nid, nr);
3376 		}
3377 		seq_putc(m, '\n');
3378 	}
3379 
3380 	return 0;
3381 }
3382 #endif /* CONFIG_NUMA */
3383 
3384 /* Universal VM events cgroup1 shows, original sort order */
3385 static const unsigned int memcg1_events[] = {
3386 	PGPGIN,
3387 	PGPGOUT,
3388 	PGFAULT,
3389 	PGMAJFAULT,
3390 };
3391 
3392 static const char *const memcg1_event_names[] = {
3393 	"pgpgin",
3394 	"pgpgout",
3395 	"pgfault",
3396 	"pgmajfault",
3397 };
3398 
3399 static int memcg_stat_show(struct seq_file *m, void *v)
3400 {
3401 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3402 	unsigned long memory, memsw;
3403 	struct mem_cgroup *mi;
3404 	unsigned int i;
3405 	struct accumulated_stats acc;
3406 
3407 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3408 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3409 
3410 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3411 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3412 			continue;
3413 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3414 			   memcg_page_state(memcg, memcg1_stats[i]) *
3415 			   PAGE_SIZE);
3416 	}
3417 
3418 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3419 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3420 			   memcg_sum_events(memcg, memcg1_events[i]));
3421 
3422 	for (i = 0; i < NR_LRU_LISTS; i++)
3423 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3424 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3425 
3426 	/* Hierarchical information */
3427 	memory = memsw = PAGE_COUNTER_MAX;
3428 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3429 		memory = min(memory, mi->memory.max);
3430 		memsw = min(memsw, mi->memsw.max);
3431 	}
3432 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3433 		   (u64)memory * PAGE_SIZE);
3434 	if (do_memsw_account())
3435 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3436 			   (u64)memsw * PAGE_SIZE);
3437 
3438 	memset(&acc, 0, sizeof(acc));
3439 	acc.stats_size = ARRAY_SIZE(memcg1_stats);
3440 	acc.stats_array = memcg1_stats;
3441 	acc.events_size = ARRAY_SIZE(memcg1_events);
3442 	acc.events_array = memcg1_events;
3443 	accumulate_memcg_tree(memcg, &acc);
3444 
3445 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3446 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3447 			continue;
3448 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3449 			   (u64)acc.stat[i] * PAGE_SIZE);
3450 	}
3451 
3452 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3453 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3454 			   (u64)acc.events[i]);
3455 
3456 	for (i = 0; i < NR_LRU_LISTS; i++)
3457 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3458 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
3459 
3460 #ifdef CONFIG_DEBUG_VM
3461 	{
3462 		pg_data_t *pgdat;
3463 		struct mem_cgroup_per_node *mz;
3464 		struct zone_reclaim_stat *rstat;
3465 		unsigned long recent_rotated[2] = {0, 0};
3466 		unsigned long recent_scanned[2] = {0, 0};
3467 
3468 		for_each_online_pgdat(pgdat) {
3469 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3470 			rstat = &mz->lruvec.reclaim_stat;
3471 
3472 			recent_rotated[0] += rstat->recent_rotated[0];
3473 			recent_rotated[1] += rstat->recent_rotated[1];
3474 			recent_scanned[0] += rstat->recent_scanned[0];
3475 			recent_scanned[1] += rstat->recent_scanned[1];
3476 		}
3477 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3478 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3479 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3480 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3481 	}
3482 #endif
3483 
3484 	return 0;
3485 }
3486 
3487 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3488 				      struct cftype *cft)
3489 {
3490 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3491 
3492 	return mem_cgroup_swappiness(memcg);
3493 }
3494 
3495 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3496 				       struct cftype *cft, u64 val)
3497 {
3498 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3499 
3500 	if (val > 100)
3501 		return -EINVAL;
3502 
3503 	if (css->parent)
3504 		memcg->swappiness = val;
3505 	else
3506 		vm_swappiness = val;
3507 
3508 	return 0;
3509 }
3510 
3511 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3512 {
3513 	struct mem_cgroup_threshold_ary *t;
3514 	unsigned long usage;
3515 	int i;
3516 
3517 	rcu_read_lock();
3518 	if (!swap)
3519 		t = rcu_dereference(memcg->thresholds.primary);
3520 	else
3521 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3522 
3523 	if (!t)
3524 		goto unlock;
3525 
3526 	usage = mem_cgroup_usage(memcg, swap);
3527 
3528 	/*
3529 	 * current_threshold points to threshold just below or equal to usage.
3530 	 * If it's not true, a threshold was crossed after last
3531 	 * call of __mem_cgroup_threshold().
3532 	 */
3533 	i = t->current_threshold;
3534 
3535 	/*
3536 	 * Iterate backward over array of thresholds starting from
3537 	 * current_threshold and check if a threshold is crossed.
3538 	 * If none of thresholds below usage is crossed, we read
3539 	 * only one element of the array here.
3540 	 */
3541 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3542 		eventfd_signal(t->entries[i].eventfd, 1);
3543 
3544 	/* i = current_threshold + 1 */
3545 	i++;
3546 
3547 	/*
3548 	 * Iterate forward over array of thresholds starting from
3549 	 * current_threshold+1 and check if a threshold is crossed.
3550 	 * If none of thresholds above usage is crossed, we read
3551 	 * only one element of the array here.
3552 	 */
3553 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3554 		eventfd_signal(t->entries[i].eventfd, 1);
3555 
3556 	/* Update current_threshold */
3557 	t->current_threshold = i - 1;
3558 unlock:
3559 	rcu_read_unlock();
3560 }
3561 
3562 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3563 {
3564 	while (memcg) {
3565 		__mem_cgroup_threshold(memcg, false);
3566 		if (do_memsw_account())
3567 			__mem_cgroup_threshold(memcg, true);
3568 
3569 		memcg = parent_mem_cgroup(memcg);
3570 	}
3571 }
3572 
3573 static int compare_thresholds(const void *a, const void *b)
3574 {
3575 	const struct mem_cgroup_threshold *_a = a;
3576 	const struct mem_cgroup_threshold *_b = b;
3577 
3578 	if (_a->threshold > _b->threshold)
3579 		return 1;
3580 
3581 	if (_a->threshold < _b->threshold)
3582 		return -1;
3583 
3584 	return 0;
3585 }
3586 
3587 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3588 {
3589 	struct mem_cgroup_eventfd_list *ev;
3590 
3591 	spin_lock(&memcg_oom_lock);
3592 
3593 	list_for_each_entry(ev, &memcg->oom_notify, list)
3594 		eventfd_signal(ev->eventfd, 1);
3595 
3596 	spin_unlock(&memcg_oom_lock);
3597 	return 0;
3598 }
3599 
3600 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3601 {
3602 	struct mem_cgroup *iter;
3603 
3604 	for_each_mem_cgroup_tree(iter, memcg)
3605 		mem_cgroup_oom_notify_cb(iter);
3606 }
3607 
3608 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3609 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3610 {
3611 	struct mem_cgroup_thresholds *thresholds;
3612 	struct mem_cgroup_threshold_ary *new;
3613 	unsigned long threshold;
3614 	unsigned long usage;
3615 	int i, size, ret;
3616 
3617 	ret = page_counter_memparse(args, "-1", &threshold);
3618 	if (ret)
3619 		return ret;
3620 
3621 	mutex_lock(&memcg->thresholds_lock);
3622 
3623 	if (type == _MEM) {
3624 		thresholds = &memcg->thresholds;
3625 		usage = mem_cgroup_usage(memcg, false);
3626 	} else if (type == _MEMSWAP) {
3627 		thresholds = &memcg->memsw_thresholds;
3628 		usage = mem_cgroup_usage(memcg, true);
3629 	} else
3630 		BUG();
3631 
3632 	/* Check if a threshold crossed before adding a new one */
3633 	if (thresholds->primary)
3634 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3635 
3636 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3637 
3638 	/* Allocate memory for new array of thresholds */
3639 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3640 	if (!new) {
3641 		ret = -ENOMEM;
3642 		goto unlock;
3643 	}
3644 	new->size = size;
3645 
3646 	/* Copy thresholds (if any) to new array */
3647 	if (thresholds->primary) {
3648 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3649 				sizeof(struct mem_cgroup_threshold));
3650 	}
3651 
3652 	/* Add new threshold */
3653 	new->entries[size - 1].eventfd = eventfd;
3654 	new->entries[size - 1].threshold = threshold;
3655 
3656 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3657 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3658 			compare_thresholds, NULL);
3659 
3660 	/* Find current threshold */
3661 	new->current_threshold = -1;
3662 	for (i = 0; i < size; i++) {
3663 		if (new->entries[i].threshold <= usage) {
3664 			/*
3665 			 * new->current_threshold will not be used until
3666 			 * rcu_assign_pointer(), so it's safe to increment
3667 			 * it here.
3668 			 */
3669 			++new->current_threshold;
3670 		} else
3671 			break;
3672 	}
3673 
3674 	/* Free old spare buffer and save old primary buffer as spare */
3675 	kfree(thresholds->spare);
3676 	thresholds->spare = thresholds->primary;
3677 
3678 	rcu_assign_pointer(thresholds->primary, new);
3679 
3680 	/* To be sure that nobody uses thresholds */
3681 	synchronize_rcu();
3682 
3683 unlock:
3684 	mutex_unlock(&memcg->thresholds_lock);
3685 
3686 	return ret;
3687 }
3688 
3689 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3690 	struct eventfd_ctx *eventfd, const char *args)
3691 {
3692 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3693 }
3694 
3695 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3696 	struct eventfd_ctx *eventfd, const char *args)
3697 {
3698 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3699 }
3700 
3701 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3702 	struct eventfd_ctx *eventfd, enum res_type type)
3703 {
3704 	struct mem_cgroup_thresholds *thresholds;
3705 	struct mem_cgroup_threshold_ary *new;
3706 	unsigned long usage;
3707 	int i, j, size;
3708 
3709 	mutex_lock(&memcg->thresholds_lock);
3710 
3711 	if (type == _MEM) {
3712 		thresholds = &memcg->thresholds;
3713 		usage = mem_cgroup_usage(memcg, false);
3714 	} else if (type == _MEMSWAP) {
3715 		thresholds = &memcg->memsw_thresholds;
3716 		usage = mem_cgroup_usage(memcg, true);
3717 	} else
3718 		BUG();
3719 
3720 	if (!thresholds->primary)
3721 		goto unlock;
3722 
3723 	/* Check if a threshold crossed before removing */
3724 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3725 
3726 	/* Calculate new number of threshold */
3727 	size = 0;
3728 	for (i = 0; i < thresholds->primary->size; i++) {
3729 		if (thresholds->primary->entries[i].eventfd != eventfd)
3730 			size++;
3731 	}
3732 
3733 	new = thresholds->spare;
3734 
3735 	/* Set thresholds array to NULL if we don't have thresholds */
3736 	if (!size) {
3737 		kfree(new);
3738 		new = NULL;
3739 		goto swap_buffers;
3740 	}
3741 
3742 	new->size = size;
3743 
3744 	/* Copy thresholds and find current threshold */
3745 	new->current_threshold = -1;
3746 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3747 		if (thresholds->primary->entries[i].eventfd == eventfd)
3748 			continue;
3749 
3750 		new->entries[j] = thresholds->primary->entries[i];
3751 		if (new->entries[j].threshold <= usage) {
3752 			/*
3753 			 * new->current_threshold will not be used
3754 			 * until rcu_assign_pointer(), so it's safe to increment
3755 			 * it here.
3756 			 */
3757 			++new->current_threshold;
3758 		}
3759 		j++;
3760 	}
3761 
3762 swap_buffers:
3763 	/* Swap primary and spare array */
3764 	thresholds->spare = thresholds->primary;
3765 
3766 	rcu_assign_pointer(thresholds->primary, new);
3767 
3768 	/* To be sure that nobody uses thresholds */
3769 	synchronize_rcu();
3770 
3771 	/* If all events are unregistered, free the spare array */
3772 	if (!new) {
3773 		kfree(thresholds->spare);
3774 		thresholds->spare = NULL;
3775 	}
3776 unlock:
3777 	mutex_unlock(&memcg->thresholds_lock);
3778 }
3779 
3780 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3781 	struct eventfd_ctx *eventfd)
3782 {
3783 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3784 }
3785 
3786 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3787 	struct eventfd_ctx *eventfd)
3788 {
3789 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3790 }
3791 
3792 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3793 	struct eventfd_ctx *eventfd, const char *args)
3794 {
3795 	struct mem_cgroup_eventfd_list *event;
3796 
3797 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3798 	if (!event)
3799 		return -ENOMEM;
3800 
3801 	spin_lock(&memcg_oom_lock);
3802 
3803 	event->eventfd = eventfd;
3804 	list_add(&event->list, &memcg->oom_notify);
3805 
3806 	/* already in OOM ? */
3807 	if (memcg->under_oom)
3808 		eventfd_signal(eventfd, 1);
3809 	spin_unlock(&memcg_oom_lock);
3810 
3811 	return 0;
3812 }
3813 
3814 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3815 	struct eventfd_ctx *eventfd)
3816 {
3817 	struct mem_cgroup_eventfd_list *ev, *tmp;
3818 
3819 	spin_lock(&memcg_oom_lock);
3820 
3821 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3822 		if (ev->eventfd == eventfd) {
3823 			list_del(&ev->list);
3824 			kfree(ev);
3825 		}
3826 	}
3827 
3828 	spin_unlock(&memcg_oom_lock);
3829 }
3830 
3831 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3832 {
3833 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3834 
3835 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3836 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3837 	seq_printf(sf, "oom_kill %lu\n",
3838 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3839 	return 0;
3840 }
3841 
3842 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3843 	struct cftype *cft, u64 val)
3844 {
3845 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3846 
3847 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3848 	if (!css->parent || !((val == 0) || (val == 1)))
3849 		return -EINVAL;
3850 
3851 	memcg->oom_kill_disable = val;
3852 	if (!val)
3853 		memcg_oom_recover(memcg);
3854 
3855 	return 0;
3856 }
3857 
3858 #ifdef CONFIG_CGROUP_WRITEBACK
3859 
3860 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3861 {
3862 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3863 }
3864 
3865 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3866 {
3867 	wb_domain_exit(&memcg->cgwb_domain);
3868 }
3869 
3870 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3871 {
3872 	wb_domain_size_changed(&memcg->cgwb_domain);
3873 }
3874 
3875 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3876 {
3877 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3878 
3879 	if (!memcg->css.parent)
3880 		return NULL;
3881 
3882 	return &memcg->cgwb_domain;
3883 }
3884 
3885 /**
3886  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3887  * @wb: bdi_writeback in question
3888  * @pfilepages: out parameter for number of file pages
3889  * @pheadroom: out parameter for number of allocatable pages according to memcg
3890  * @pdirty: out parameter for number of dirty pages
3891  * @pwriteback: out parameter for number of pages under writeback
3892  *
3893  * Determine the numbers of file, headroom, dirty, and writeback pages in
3894  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3895  * is a bit more involved.
3896  *
3897  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3898  * headroom is calculated as the lowest headroom of itself and the
3899  * ancestors.  Note that this doesn't consider the actual amount of
3900  * available memory in the system.  The caller should further cap
3901  * *@pheadroom accordingly.
3902  */
3903 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3904 			 unsigned long *pheadroom, unsigned long *pdirty,
3905 			 unsigned long *pwriteback)
3906 {
3907 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3908 	struct mem_cgroup *parent;
3909 
3910 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3911 
3912 	/* this should eventually include NR_UNSTABLE_NFS */
3913 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3914 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3915 						     (1 << LRU_ACTIVE_FILE));
3916 	*pheadroom = PAGE_COUNTER_MAX;
3917 
3918 	while ((parent = parent_mem_cgroup(memcg))) {
3919 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3920 		unsigned long used = page_counter_read(&memcg->memory);
3921 
3922 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3923 		memcg = parent;
3924 	}
3925 }
3926 
3927 #else	/* CONFIG_CGROUP_WRITEBACK */
3928 
3929 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3930 {
3931 	return 0;
3932 }
3933 
3934 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3935 {
3936 }
3937 
3938 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3939 {
3940 }
3941 
3942 #endif	/* CONFIG_CGROUP_WRITEBACK */
3943 
3944 /*
3945  * DO NOT USE IN NEW FILES.
3946  *
3947  * "cgroup.event_control" implementation.
3948  *
3949  * This is way over-engineered.  It tries to support fully configurable
3950  * events for each user.  Such level of flexibility is completely
3951  * unnecessary especially in the light of the planned unified hierarchy.
3952  *
3953  * Please deprecate this and replace with something simpler if at all
3954  * possible.
3955  */
3956 
3957 /*
3958  * Unregister event and free resources.
3959  *
3960  * Gets called from workqueue.
3961  */
3962 static void memcg_event_remove(struct work_struct *work)
3963 {
3964 	struct mem_cgroup_event *event =
3965 		container_of(work, struct mem_cgroup_event, remove);
3966 	struct mem_cgroup *memcg = event->memcg;
3967 
3968 	remove_wait_queue(event->wqh, &event->wait);
3969 
3970 	event->unregister_event(memcg, event->eventfd);
3971 
3972 	/* Notify userspace the event is going away. */
3973 	eventfd_signal(event->eventfd, 1);
3974 
3975 	eventfd_ctx_put(event->eventfd);
3976 	kfree(event);
3977 	css_put(&memcg->css);
3978 }
3979 
3980 /*
3981  * Gets called on EPOLLHUP on eventfd when user closes it.
3982  *
3983  * Called with wqh->lock held and interrupts disabled.
3984  */
3985 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3986 			    int sync, void *key)
3987 {
3988 	struct mem_cgroup_event *event =
3989 		container_of(wait, struct mem_cgroup_event, wait);
3990 	struct mem_cgroup *memcg = event->memcg;
3991 	__poll_t flags = key_to_poll(key);
3992 
3993 	if (flags & EPOLLHUP) {
3994 		/*
3995 		 * If the event has been detached at cgroup removal, we
3996 		 * can simply return knowing the other side will cleanup
3997 		 * for us.
3998 		 *
3999 		 * We can't race against event freeing since the other
4000 		 * side will require wqh->lock via remove_wait_queue(),
4001 		 * which we hold.
4002 		 */
4003 		spin_lock(&memcg->event_list_lock);
4004 		if (!list_empty(&event->list)) {
4005 			list_del_init(&event->list);
4006 			/*
4007 			 * We are in atomic context, but cgroup_event_remove()
4008 			 * may sleep, so we have to call it in workqueue.
4009 			 */
4010 			schedule_work(&event->remove);
4011 		}
4012 		spin_unlock(&memcg->event_list_lock);
4013 	}
4014 
4015 	return 0;
4016 }
4017 
4018 static void memcg_event_ptable_queue_proc(struct file *file,
4019 		wait_queue_head_t *wqh, poll_table *pt)
4020 {
4021 	struct mem_cgroup_event *event =
4022 		container_of(pt, struct mem_cgroup_event, pt);
4023 
4024 	event->wqh = wqh;
4025 	add_wait_queue(wqh, &event->wait);
4026 }
4027 
4028 /*
4029  * DO NOT USE IN NEW FILES.
4030  *
4031  * Parse input and register new cgroup event handler.
4032  *
4033  * Input must be in format '<event_fd> <control_fd> <args>'.
4034  * Interpretation of args is defined by control file implementation.
4035  */
4036 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4037 					 char *buf, size_t nbytes, loff_t off)
4038 {
4039 	struct cgroup_subsys_state *css = of_css(of);
4040 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4041 	struct mem_cgroup_event *event;
4042 	struct cgroup_subsys_state *cfile_css;
4043 	unsigned int efd, cfd;
4044 	struct fd efile;
4045 	struct fd cfile;
4046 	const char *name;
4047 	char *endp;
4048 	int ret;
4049 
4050 	buf = strstrip(buf);
4051 
4052 	efd = simple_strtoul(buf, &endp, 10);
4053 	if (*endp != ' ')
4054 		return -EINVAL;
4055 	buf = endp + 1;
4056 
4057 	cfd = simple_strtoul(buf, &endp, 10);
4058 	if ((*endp != ' ') && (*endp != '\0'))
4059 		return -EINVAL;
4060 	buf = endp + 1;
4061 
4062 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4063 	if (!event)
4064 		return -ENOMEM;
4065 
4066 	event->memcg = memcg;
4067 	INIT_LIST_HEAD(&event->list);
4068 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4069 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4070 	INIT_WORK(&event->remove, memcg_event_remove);
4071 
4072 	efile = fdget(efd);
4073 	if (!efile.file) {
4074 		ret = -EBADF;
4075 		goto out_kfree;
4076 	}
4077 
4078 	event->eventfd = eventfd_ctx_fileget(efile.file);
4079 	if (IS_ERR(event->eventfd)) {
4080 		ret = PTR_ERR(event->eventfd);
4081 		goto out_put_efile;
4082 	}
4083 
4084 	cfile = fdget(cfd);
4085 	if (!cfile.file) {
4086 		ret = -EBADF;
4087 		goto out_put_eventfd;
4088 	}
4089 
4090 	/* the process need read permission on control file */
4091 	/* AV: shouldn't we check that it's been opened for read instead? */
4092 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4093 	if (ret < 0)
4094 		goto out_put_cfile;
4095 
4096 	/*
4097 	 * Determine the event callbacks and set them in @event.  This used
4098 	 * to be done via struct cftype but cgroup core no longer knows
4099 	 * about these events.  The following is crude but the whole thing
4100 	 * is for compatibility anyway.
4101 	 *
4102 	 * DO NOT ADD NEW FILES.
4103 	 */
4104 	name = cfile.file->f_path.dentry->d_name.name;
4105 
4106 	if (!strcmp(name, "memory.usage_in_bytes")) {
4107 		event->register_event = mem_cgroup_usage_register_event;
4108 		event->unregister_event = mem_cgroup_usage_unregister_event;
4109 	} else if (!strcmp(name, "memory.oom_control")) {
4110 		event->register_event = mem_cgroup_oom_register_event;
4111 		event->unregister_event = mem_cgroup_oom_unregister_event;
4112 	} else if (!strcmp(name, "memory.pressure_level")) {
4113 		event->register_event = vmpressure_register_event;
4114 		event->unregister_event = vmpressure_unregister_event;
4115 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4116 		event->register_event = memsw_cgroup_usage_register_event;
4117 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4118 	} else {
4119 		ret = -EINVAL;
4120 		goto out_put_cfile;
4121 	}
4122 
4123 	/*
4124 	 * Verify @cfile should belong to @css.  Also, remaining events are
4125 	 * automatically removed on cgroup destruction but the removal is
4126 	 * asynchronous, so take an extra ref on @css.
4127 	 */
4128 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4129 					       &memory_cgrp_subsys);
4130 	ret = -EINVAL;
4131 	if (IS_ERR(cfile_css))
4132 		goto out_put_cfile;
4133 	if (cfile_css != css) {
4134 		css_put(cfile_css);
4135 		goto out_put_cfile;
4136 	}
4137 
4138 	ret = event->register_event(memcg, event->eventfd, buf);
4139 	if (ret)
4140 		goto out_put_css;
4141 
4142 	vfs_poll(efile.file, &event->pt);
4143 
4144 	spin_lock(&memcg->event_list_lock);
4145 	list_add(&event->list, &memcg->event_list);
4146 	spin_unlock(&memcg->event_list_lock);
4147 
4148 	fdput(cfile);
4149 	fdput(efile);
4150 
4151 	return nbytes;
4152 
4153 out_put_css:
4154 	css_put(css);
4155 out_put_cfile:
4156 	fdput(cfile);
4157 out_put_eventfd:
4158 	eventfd_ctx_put(event->eventfd);
4159 out_put_efile:
4160 	fdput(efile);
4161 out_kfree:
4162 	kfree(event);
4163 
4164 	return ret;
4165 }
4166 
4167 static struct cftype mem_cgroup_legacy_files[] = {
4168 	{
4169 		.name = "usage_in_bytes",
4170 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4171 		.read_u64 = mem_cgroup_read_u64,
4172 	},
4173 	{
4174 		.name = "max_usage_in_bytes",
4175 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4176 		.write = mem_cgroup_reset,
4177 		.read_u64 = mem_cgroup_read_u64,
4178 	},
4179 	{
4180 		.name = "limit_in_bytes",
4181 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4182 		.write = mem_cgroup_write,
4183 		.read_u64 = mem_cgroup_read_u64,
4184 	},
4185 	{
4186 		.name = "soft_limit_in_bytes",
4187 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4188 		.write = mem_cgroup_write,
4189 		.read_u64 = mem_cgroup_read_u64,
4190 	},
4191 	{
4192 		.name = "failcnt",
4193 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4194 		.write = mem_cgroup_reset,
4195 		.read_u64 = mem_cgroup_read_u64,
4196 	},
4197 	{
4198 		.name = "stat",
4199 		.seq_show = memcg_stat_show,
4200 	},
4201 	{
4202 		.name = "force_empty",
4203 		.write = mem_cgroup_force_empty_write,
4204 	},
4205 	{
4206 		.name = "use_hierarchy",
4207 		.write_u64 = mem_cgroup_hierarchy_write,
4208 		.read_u64 = mem_cgroup_hierarchy_read,
4209 	},
4210 	{
4211 		.name = "cgroup.event_control",		/* XXX: for compat */
4212 		.write = memcg_write_event_control,
4213 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4214 	},
4215 	{
4216 		.name = "swappiness",
4217 		.read_u64 = mem_cgroup_swappiness_read,
4218 		.write_u64 = mem_cgroup_swappiness_write,
4219 	},
4220 	{
4221 		.name = "move_charge_at_immigrate",
4222 		.read_u64 = mem_cgroup_move_charge_read,
4223 		.write_u64 = mem_cgroup_move_charge_write,
4224 	},
4225 	{
4226 		.name = "oom_control",
4227 		.seq_show = mem_cgroup_oom_control_read,
4228 		.write_u64 = mem_cgroup_oom_control_write,
4229 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4230 	},
4231 	{
4232 		.name = "pressure_level",
4233 	},
4234 #ifdef CONFIG_NUMA
4235 	{
4236 		.name = "numa_stat",
4237 		.seq_show = memcg_numa_stat_show,
4238 	},
4239 #endif
4240 	{
4241 		.name = "kmem.limit_in_bytes",
4242 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4243 		.write = mem_cgroup_write,
4244 		.read_u64 = mem_cgroup_read_u64,
4245 	},
4246 	{
4247 		.name = "kmem.usage_in_bytes",
4248 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4249 		.read_u64 = mem_cgroup_read_u64,
4250 	},
4251 	{
4252 		.name = "kmem.failcnt",
4253 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4254 		.write = mem_cgroup_reset,
4255 		.read_u64 = mem_cgroup_read_u64,
4256 	},
4257 	{
4258 		.name = "kmem.max_usage_in_bytes",
4259 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4260 		.write = mem_cgroup_reset,
4261 		.read_u64 = mem_cgroup_read_u64,
4262 	},
4263 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4264 	{
4265 		.name = "kmem.slabinfo",
4266 		.seq_start = memcg_slab_start,
4267 		.seq_next = memcg_slab_next,
4268 		.seq_stop = memcg_slab_stop,
4269 		.seq_show = memcg_slab_show,
4270 	},
4271 #endif
4272 	{
4273 		.name = "kmem.tcp.limit_in_bytes",
4274 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4275 		.write = mem_cgroup_write,
4276 		.read_u64 = mem_cgroup_read_u64,
4277 	},
4278 	{
4279 		.name = "kmem.tcp.usage_in_bytes",
4280 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4281 		.read_u64 = mem_cgroup_read_u64,
4282 	},
4283 	{
4284 		.name = "kmem.tcp.failcnt",
4285 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4286 		.write = mem_cgroup_reset,
4287 		.read_u64 = mem_cgroup_read_u64,
4288 	},
4289 	{
4290 		.name = "kmem.tcp.max_usage_in_bytes",
4291 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4292 		.write = mem_cgroup_reset,
4293 		.read_u64 = mem_cgroup_read_u64,
4294 	},
4295 	{ },	/* terminate */
4296 };
4297 
4298 /*
4299  * Private memory cgroup IDR
4300  *
4301  * Swap-out records and page cache shadow entries need to store memcg
4302  * references in constrained space, so we maintain an ID space that is
4303  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4304  * memory-controlled cgroups to 64k.
4305  *
4306  * However, there usually are many references to the oflline CSS after
4307  * the cgroup has been destroyed, such as page cache or reclaimable
4308  * slab objects, that don't need to hang on to the ID. We want to keep
4309  * those dead CSS from occupying IDs, or we might quickly exhaust the
4310  * relatively small ID space and prevent the creation of new cgroups
4311  * even when there are much fewer than 64k cgroups - possibly none.
4312  *
4313  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4314  * be freed and recycled when it's no longer needed, which is usually
4315  * when the CSS is offlined.
4316  *
4317  * The only exception to that are records of swapped out tmpfs/shmem
4318  * pages that need to be attributed to live ancestors on swapin. But
4319  * those references are manageable from userspace.
4320  */
4321 
4322 static DEFINE_IDR(mem_cgroup_idr);
4323 
4324 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4325 {
4326 	if (memcg->id.id > 0) {
4327 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4328 		memcg->id.id = 0;
4329 	}
4330 }
4331 
4332 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4333 {
4334 	refcount_add(n, &memcg->id.ref);
4335 }
4336 
4337 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4338 {
4339 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4340 		mem_cgroup_id_remove(memcg);
4341 
4342 		/* Memcg ID pins CSS */
4343 		css_put(&memcg->css);
4344 	}
4345 }
4346 
4347 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4348 {
4349 	mem_cgroup_id_get_many(memcg, 1);
4350 }
4351 
4352 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4353 {
4354 	mem_cgroup_id_put_many(memcg, 1);
4355 }
4356 
4357 /**
4358  * mem_cgroup_from_id - look up a memcg from a memcg id
4359  * @id: the memcg id to look up
4360  *
4361  * Caller must hold rcu_read_lock().
4362  */
4363 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4364 {
4365 	WARN_ON_ONCE(!rcu_read_lock_held());
4366 	return idr_find(&mem_cgroup_idr, id);
4367 }
4368 
4369 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4370 {
4371 	struct mem_cgroup_per_node *pn;
4372 	int tmp = node;
4373 	/*
4374 	 * This routine is called against possible nodes.
4375 	 * But it's BUG to call kmalloc() against offline node.
4376 	 *
4377 	 * TODO: this routine can waste much memory for nodes which will
4378 	 *       never be onlined. It's better to use memory hotplug callback
4379 	 *       function.
4380 	 */
4381 	if (!node_state(node, N_NORMAL_MEMORY))
4382 		tmp = -1;
4383 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4384 	if (!pn)
4385 		return 1;
4386 
4387 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4388 	if (!pn->lruvec_stat_cpu) {
4389 		kfree(pn);
4390 		return 1;
4391 	}
4392 
4393 	lruvec_init(&pn->lruvec);
4394 	pn->usage_in_excess = 0;
4395 	pn->on_tree = false;
4396 	pn->memcg = memcg;
4397 
4398 	memcg->nodeinfo[node] = pn;
4399 	return 0;
4400 }
4401 
4402 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4403 {
4404 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4405 
4406 	if (!pn)
4407 		return;
4408 
4409 	free_percpu(pn->lruvec_stat_cpu);
4410 	kfree(pn);
4411 }
4412 
4413 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4414 {
4415 	int node;
4416 
4417 	for_each_node(node)
4418 		free_mem_cgroup_per_node_info(memcg, node);
4419 	free_percpu(memcg->stat_cpu);
4420 	kfree(memcg);
4421 }
4422 
4423 static void mem_cgroup_free(struct mem_cgroup *memcg)
4424 {
4425 	memcg_wb_domain_exit(memcg);
4426 	__mem_cgroup_free(memcg);
4427 }
4428 
4429 static struct mem_cgroup *mem_cgroup_alloc(void)
4430 {
4431 	struct mem_cgroup *memcg;
4432 	unsigned int size;
4433 	int node;
4434 
4435 	size = sizeof(struct mem_cgroup);
4436 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4437 
4438 	memcg = kzalloc(size, GFP_KERNEL);
4439 	if (!memcg)
4440 		return NULL;
4441 
4442 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4443 				 1, MEM_CGROUP_ID_MAX,
4444 				 GFP_KERNEL);
4445 	if (memcg->id.id < 0)
4446 		goto fail;
4447 
4448 	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4449 	if (!memcg->stat_cpu)
4450 		goto fail;
4451 
4452 	for_each_node(node)
4453 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4454 			goto fail;
4455 
4456 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4457 		goto fail;
4458 
4459 	INIT_WORK(&memcg->high_work, high_work_func);
4460 	memcg->last_scanned_node = MAX_NUMNODES;
4461 	INIT_LIST_HEAD(&memcg->oom_notify);
4462 	mutex_init(&memcg->thresholds_lock);
4463 	spin_lock_init(&memcg->move_lock);
4464 	vmpressure_init(&memcg->vmpressure);
4465 	INIT_LIST_HEAD(&memcg->event_list);
4466 	spin_lock_init(&memcg->event_list_lock);
4467 	memcg->socket_pressure = jiffies;
4468 #ifdef CONFIG_MEMCG_KMEM
4469 	memcg->kmemcg_id = -1;
4470 #endif
4471 #ifdef CONFIG_CGROUP_WRITEBACK
4472 	INIT_LIST_HEAD(&memcg->cgwb_list);
4473 #endif
4474 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4475 	return memcg;
4476 fail:
4477 	mem_cgroup_id_remove(memcg);
4478 	__mem_cgroup_free(memcg);
4479 	return NULL;
4480 }
4481 
4482 static struct cgroup_subsys_state * __ref
4483 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4484 {
4485 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4486 	struct mem_cgroup *memcg;
4487 	long error = -ENOMEM;
4488 
4489 	memcg = mem_cgroup_alloc();
4490 	if (!memcg)
4491 		return ERR_PTR(error);
4492 
4493 	memcg->high = PAGE_COUNTER_MAX;
4494 	memcg->soft_limit = PAGE_COUNTER_MAX;
4495 	if (parent) {
4496 		memcg->swappiness = mem_cgroup_swappiness(parent);
4497 		memcg->oom_kill_disable = parent->oom_kill_disable;
4498 	}
4499 	if (parent && parent->use_hierarchy) {
4500 		memcg->use_hierarchy = true;
4501 		page_counter_init(&memcg->memory, &parent->memory);
4502 		page_counter_init(&memcg->swap, &parent->swap);
4503 		page_counter_init(&memcg->memsw, &parent->memsw);
4504 		page_counter_init(&memcg->kmem, &parent->kmem);
4505 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4506 	} else {
4507 		page_counter_init(&memcg->memory, NULL);
4508 		page_counter_init(&memcg->swap, NULL);
4509 		page_counter_init(&memcg->memsw, NULL);
4510 		page_counter_init(&memcg->kmem, NULL);
4511 		page_counter_init(&memcg->tcpmem, NULL);
4512 		/*
4513 		 * Deeper hierachy with use_hierarchy == false doesn't make
4514 		 * much sense so let cgroup subsystem know about this
4515 		 * unfortunate state in our controller.
4516 		 */
4517 		if (parent != root_mem_cgroup)
4518 			memory_cgrp_subsys.broken_hierarchy = true;
4519 	}
4520 
4521 	/* The following stuff does not apply to the root */
4522 	if (!parent) {
4523 		root_mem_cgroup = memcg;
4524 		return &memcg->css;
4525 	}
4526 
4527 	error = memcg_online_kmem(memcg);
4528 	if (error)
4529 		goto fail;
4530 
4531 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4532 		static_branch_inc(&memcg_sockets_enabled_key);
4533 
4534 	return &memcg->css;
4535 fail:
4536 	mem_cgroup_id_remove(memcg);
4537 	mem_cgroup_free(memcg);
4538 	return ERR_PTR(-ENOMEM);
4539 }
4540 
4541 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4542 {
4543 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4544 
4545 	/*
4546 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4547 	 * by the time the maps are allocated. So, we allocate maps
4548 	 * here, when for_each_mem_cgroup() can't skip it.
4549 	 */
4550 	if (memcg_alloc_shrinker_maps(memcg)) {
4551 		mem_cgroup_id_remove(memcg);
4552 		return -ENOMEM;
4553 	}
4554 
4555 	/* Online state pins memcg ID, memcg ID pins CSS */
4556 	refcount_set(&memcg->id.ref, 1);
4557 	css_get(css);
4558 	return 0;
4559 }
4560 
4561 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4562 {
4563 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4564 	struct mem_cgroup_event *event, *tmp;
4565 
4566 	/*
4567 	 * Unregister events and notify userspace.
4568 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4569 	 * directory to avoid race between userspace and kernelspace.
4570 	 */
4571 	spin_lock(&memcg->event_list_lock);
4572 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4573 		list_del_init(&event->list);
4574 		schedule_work(&event->remove);
4575 	}
4576 	spin_unlock(&memcg->event_list_lock);
4577 
4578 	page_counter_set_min(&memcg->memory, 0);
4579 	page_counter_set_low(&memcg->memory, 0);
4580 
4581 	memcg_offline_kmem(memcg);
4582 	wb_memcg_offline(memcg);
4583 
4584 	drain_all_stock(memcg);
4585 
4586 	mem_cgroup_id_put(memcg);
4587 }
4588 
4589 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4590 {
4591 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4592 
4593 	invalidate_reclaim_iterators(memcg);
4594 }
4595 
4596 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4597 {
4598 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4599 
4600 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4601 		static_branch_dec(&memcg_sockets_enabled_key);
4602 
4603 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4604 		static_branch_dec(&memcg_sockets_enabled_key);
4605 
4606 	vmpressure_cleanup(&memcg->vmpressure);
4607 	cancel_work_sync(&memcg->high_work);
4608 	mem_cgroup_remove_from_trees(memcg);
4609 	memcg_free_shrinker_maps(memcg);
4610 	memcg_free_kmem(memcg);
4611 	mem_cgroup_free(memcg);
4612 }
4613 
4614 /**
4615  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4616  * @css: the target css
4617  *
4618  * Reset the states of the mem_cgroup associated with @css.  This is
4619  * invoked when the userland requests disabling on the default hierarchy
4620  * but the memcg is pinned through dependency.  The memcg should stop
4621  * applying policies and should revert to the vanilla state as it may be
4622  * made visible again.
4623  *
4624  * The current implementation only resets the essential configurations.
4625  * This needs to be expanded to cover all the visible parts.
4626  */
4627 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4628 {
4629 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4630 
4631 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4632 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4633 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4634 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4635 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4636 	page_counter_set_min(&memcg->memory, 0);
4637 	page_counter_set_low(&memcg->memory, 0);
4638 	memcg->high = PAGE_COUNTER_MAX;
4639 	memcg->soft_limit = PAGE_COUNTER_MAX;
4640 	memcg_wb_domain_size_changed(memcg);
4641 }
4642 
4643 #ifdef CONFIG_MMU
4644 /* Handlers for move charge at task migration. */
4645 static int mem_cgroup_do_precharge(unsigned long count)
4646 {
4647 	int ret;
4648 
4649 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4650 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4651 	if (!ret) {
4652 		mc.precharge += count;
4653 		return ret;
4654 	}
4655 
4656 	/* Try charges one by one with reclaim, but do not retry */
4657 	while (count--) {
4658 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4659 		if (ret)
4660 			return ret;
4661 		mc.precharge++;
4662 		cond_resched();
4663 	}
4664 	return 0;
4665 }
4666 
4667 union mc_target {
4668 	struct page	*page;
4669 	swp_entry_t	ent;
4670 };
4671 
4672 enum mc_target_type {
4673 	MC_TARGET_NONE = 0,
4674 	MC_TARGET_PAGE,
4675 	MC_TARGET_SWAP,
4676 	MC_TARGET_DEVICE,
4677 };
4678 
4679 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4680 						unsigned long addr, pte_t ptent)
4681 {
4682 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4683 
4684 	if (!page || !page_mapped(page))
4685 		return NULL;
4686 	if (PageAnon(page)) {
4687 		if (!(mc.flags & MOVE_ANON))
4688 			return NULL;
4689 	} else {
4690 		if (!(mc.flags & MOVE_FILE))
4691 			return NULL;
4692 	}
4693 	if (!get_page_unless_zero(page))
4694 		return NULL;
4695 
4696 	return page;
4697 }
4698 
4699 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4700 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4701 			pte_t ptent, swp_entry_t *entry)
4702 {
4703 	struct page *page = NULL;
4704 	swp_entry_t ent = pte_to_swp_entry(ptent);
4705 
4706 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4707 		return NULL;
4708 
4709 	/*
4710 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4711 	 * a device and because they are not accessible by CPU they are store
4712 	 * as special swap entry in the CPU page table.
4713 	 */
4714 	if (is_device_private_entry(ent)) {
4715 		page = device_private_entry_to_page(ent);
4716 		/*
4717 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4718 		 * a refcount of 1 when free (unlike normal page)
4719 		 */
4720 		if (!page_ref_add_unless(page, 1, 1))
4721 			return NULL;
4722 		return page;
4723 	}
4724 
4725 	/*
4726 	 * Because lookup_swap_cache() updates some statistics counter,
4727 	 * we call find_get_page() with swapper_space directly.
4728 	 */
4729 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4730 	if (do_memsw_account())
4731 		entry->val = ent.val;
4732 
4733 	return page;
4734 }
4735 #else
4736 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4737 			pte_t ptent, swp_entry_t *entry)
4738 {
4739 	return NULL;
4740 }
4741 #endif
4742 
4743 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4744 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4745 {
4746 	struct page *page = NULL;
4747 	struct address_space *mapping;
4748 	pgoff_t pgoff;
4749 
4750 	if (!vma->vm_file) /* anonymous vma */
4751 		return NULL;
4752 	if (!(mc.flags & MOVE_FILE))
4753 		return NULL;
4754 
4755 	mapping = vma->vm_file->f_mapping;
4756 	pgoff = linear_page_index(vma, addr);
4757 
4758 	/* page is moved even if it's not RSS of this task(page-faulted). */
4759 #ifdef CONFIG_SWAP
4760 	/* shmem/tmpfs may report page out on swap: account for that too. */
4761 	if (shmem_mapping(mapping)) {
4762 		page = find_get_entry(mapping, pgoff);
4763 		if (xa_is_value(page)) {
4764 			swp_entry_t swp = radix_to_swp_entry(page);
4765 			if (do_memsw_account())
4766 				*entry = swp;
4767 			page = find_get_page(swap_address_space(swp),
4768 					     swp_offset(swp));
4769 		}
4770 	} else
4771 		page = find_get_page(mapping, pgoff);
4772 #else
4773 	page = find_get_page(mapping, pgoff);
4774 #endif
4775 	return page;
4776 }
4777 
4778 /**
4779  * mem_cgroup_move_account - move account of the page
4780  * @page: the page
4781  * @compound: charge the page as compound or small page
4782  * @from: mem_cgroup which the page is moved from.
4783  * @to:	mem_cgroup which the page is moved to. @from != @to.
4784  *
4785  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4786  *
4787  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4788  * from old cgroup.
4789  */
4790 static int mem_cgroup_move_account(struct page *page,
4791 				   bool compound,
4792 				   struct mem_cgroup *from,
4793 				   struct mem_cgroup *to)
4794 {
4795 	unsigned long flags;
4796 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4797 	int ret;
4798 	bool anon;
4799 
4800 	VM_BUG_ON(from == to);
4801 	VM_BUG_ON_PAGE(PageLRU(page), page);
4802 	VM_BUG_ON(compound && !PageTransHuge(page));
4803 
4804 	/*
4805 	 * Prevent mem_cgroup_migrate() from looking at
4806 	 * page->mem_cgroup of its source page while we change it.
4807 	 */
4808 	ret = -EBUSY;
4809 	if (!trylock_page(page))
4810 		goto out;
4811 
4812 	ret = -EINVAL;
4813 	if (page->mem_cgroup != from)
4814 		goto out_unlock;
4815 
4816 	anon = PageAnon(page);
4817 
4818 	spin_lock_irqsave(&from->move_lock, flags);
4819 
4820 	if (!anon && page_mapped(page)) {
4821 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4822 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4823 	}
4824 
4825 	/*
4826 	 * move_lock grabbed above and caller set from->moving_account, so
4827 	 * mod_memcg_page_state will serialize updates to PageDirty.
4828 	 * So mapping should be stable for dirty pages.
4829 	 */
4830 	if (!anon && PageDirty(page)) {
4831 		struct address_space *mapping = page_mapping(page);
4832 
4833 		if (mapping_cap_account_dirty(mapping)) {
4834 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4835 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4836 		}
4837 	}
4838 
4839 	if (PageWriteback(page)) {
4840 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4841 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4842 	}
4843 
4844 	/*
4845 	 * It is safe to change page->mem_cgroup here because the page
4846 	 * is referenced, charged, and isolated - we can't race with
4847 	 * uncharging, charging, migration, or LRU putback.
4848 	 */
4849 
4850 	/* caller should have done css_get */
4851 	page->mem_cgroup = to;
4852 	spin_unlock_irqrestore(&from->move_lock, flags);
4853 
4854 	ret = 0;
4855 
4856 	local_irq_disable();
4857 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4858 	memcg_check_events(to, page);
4859 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4860 	memcg_check_events(from, page);
4861 	local_irq_enable();
4862 out_unlock:
4863 	unlock_page(page);
4864 out:
4865 	return ret;
4866 }
4867 
4868 /**
4869  * get_mctgt_type - get target type of moving charge
4870  * @vma: the vma the pte to be checked belongs
4871  * @addr: the address corresponding to the pte to be checked
4872  * @ptent: the pte to be checked
4873  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4874  *
4875  * Returns
4876  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4877  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4878  *     move charge. if @target is not NULL, the page is stored in target->page
4879  *     with extra refcnt got(Callers should handle it).
4880  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4881  *     target for charge migration. if @target is not NULL, the entry is stored
4882  *     in target->ent.
4883  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4884  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4885  *     For now we such page is charge like a regular page would be as for all
4886  *     intent and purposes it is just special memory taking the place of a
4887  *     regular page.
4888  *
4889  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4890  *
4891  * Called with pte lock held.
4892  */
4893 
4894 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4895 		unsigned long addr, pte_t ptent, union mc_target *target)
4896 {
4897 	struct page *page = NULL;
4898 	enum mc_target_type ret = MC_TARGET_NONE;
4899 	swp_entry_t ent = { .val = 0 };
4900 
4901 	if (pte_present(ptent))
4902 		page = mc_handle_present_pte(vma, addr, ptent);
4903 	else if (is_swap_pte(ptent))
4904 		page = mc_handle_swap_pte(vma, ptent, &ent);
4905 	else if (pte_none(ptent))
4906 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4907 
4908 	if (!page && !ent.val)
4909 		return ret;
4910 	if (page) {
4911 		/*
4912 		 * Do only loose check w/o serialization.
4913 		 * mem_cgroup_move_account() checks the page is valid or
4914 		 * not under LRU exclusion.
4915 		 */
4916 		if (page->mem_cgroup == mc.from) {
4917 			ret = MC_TARGET_PAGE;
4918 			if (is_device_private_page(page) ||
4919 			    is_device_public_page(page))
4920 				ret = MC_TARGET_DEVICE;
4921 			if (target)
4922 				target->page = page;
4923 		}
4924 		if (!ret || !target)
4925 			put_page(page);
4926 	}
4927 	/*
4928 	 * There is a swap entry and a page doesn't exist or isn't charged.
4929 	 * But we cannot move a tail-page in a THP.
4930 	 */
4931 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4932 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4933 		ret = MC_TARGET_SWAP;
4934 		if (target)
4935 			target->ent = ent;
4936 	}
4937 	return ret;
4938 }
4939 
4940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4941 /*
4942  * We don't consider PMD mapped swapping or file mapped pages because THP does
4943  * not support them for now.
4944  * Caller should make sure that pmd_trans_huge(pmd) is true.
4945  */
4946 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4947 		unsigned long addr, pmd_t pmd, union mc_target *target)
4948 {
4949 	struct page *page = NULL;
4950 	enum mc_target_type ret = MC_TARGET_NONE;
4951 
4952 	if (unlikely(is_swap_pmd(pmd))) {
4953 		VM_BUG_ON(thp_migration_supported() &&
4954 				  !is_pmd_migration_entry(pmd));
4955 		return ret;
4956 	}
4957 	page = pmd_page(pmd);
4958 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4959 	if (!(mc.flags & MOVE_ANON))
4960 		return ret;
4961 	if (page->mem_cgroup == mc.from) {
4962 		ret = MC_TARGET_PAGE;
4963 		if (target) {
4964 			get_page(page);
4965 			target->page = page;
4966 		}
4967 	}
4968 	return ret;
4969 }
4970 #else
4971 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4972 		unsigned long addr, pmd_t pmd, union mc_target *target)
4973 {
4974 	return MC_TARGET_NONE;
4975 }
4976 #endif
4977 
4978 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4979 					unsigned long addr, unsigned long end,
4980 					struct mm_walk *walk)
4981 {
4982 	struct vm_area_struct *vma = walk->vma;
4983 	pte_t *pte;
4984 	spinlock_t *ptl;
4985 
4986 	ptl = pmd_trans_huge_lock(pmd, vma);
4987 	if (ptl) {
4988 		/*
4989 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4990 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4991 		 * MEMORY_DEVICE_PRIVATE but this might change.
4992 		 */
4993 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4994 			mc.precharge += HPAGE_PMD_NR;
4995 		spin_unlock(ptl);
4996 		return 0;
4997 	}
4998 
4999 	if (pmd_trans_unstable(pmd))
5000 		return 0;
5001 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5002 	for (; addr != end; pte++, addr += PAGE_SIZE)
5003 		if (get_mctgt_type(vma, addr, *pte, NULL))
5004 			mc.precharge++;	/* increment precharge temporarily */
5005 	pte_unmap_unlock(pte - 1, ptl);
5006 	cond_resched();
5007 
5008 	return 0;
5009 }
5010 
5011 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5012 {
5013 	unsigned long precharge;
5014 
5015 	struct mm_walk mem_cgroup_count_precharge_walk = {
5016 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5017 		.mm = mm,
5018 	};
5019 	down_read(&mm->mmap_sem);
5020 	walk_page_range(0, mm->highest_vm_end,
5021 			&mem_cgroup_count_precharge_walk);
5022 	up_read(&mm->mmap_sem);
5023 
5024 	precharge = mc.precharge;
5025 	mc.precharge = 0;
5026 
5027 	return precharge;
5028 }
5029 
5030 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5031 {
5032 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5033 
5034 	VM_BUG_ON(mc.moving_task);
5035 	mc.moving_task = current;
5036 	return mem_cgroup_do_precharge(precharge);
5037 }
5038 
5039 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5040 static void __mem_cgroup_clear_mc(void)
5041 {
5042 	struct mem_cgroup *from = mc.from;
5043 	struct mem_cgroup *to = mc.to;
5044 
5045 	/* we must uncharge all the leftover precharges from mc.to */
5046 	if (mc.precharge) {
5047 		cancel_charge(mc.to, mc.precharge);
5048 		mc.precharge = 0;
5049 	}
5050 	/*
5051 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5052 	 * we must uncharge here.
5053 	 */
5054 	if (mc.moved_charge) {
5055 		cancel_charge(mc.from, mc.moved_charge);
5056 		mc.moved_charge = 0;
5057 	}
5058 	/* we must fixup refcnts and charges */
5059 	if (mc.moved_swap) {
5060 		/* uncharge swap account from the old cgroup */
5061 		if (!mem_cgroup_is_root(mc.from))
5062 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5063 
5064 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5065 
5066 		/*
5067 		 * we charged both to->memory and to->memsw, so we
5068 		 * should uncharge to->memory.
5069 		 */
5070 		if (!mem_cgroup_is_root(mc.to))
5071 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5072 
5073 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5074 		css_put_many(&mc.to->css, mc.moved_swap);
5075 
5076 		mc.moved_swap = 0;
5077 	}
5078 	memcg_oom_recover(from);
5079 	memcg_oom_recover(to);
5080 	wake_up_all(&mc.waitq);
5081 }
5082 
5083 static void mem_cgroup_clear_mc(void)
5084 {
5085 	struct mm_struct *mm = mc.mm;
5086 
5087 	/*
5088 	 * we must clear moving_task before waking up waiters at the end of
5089 	 * task migration.
5090 	 */
5091 	mc.moving_task = NULL;
5092 	__mem_cgroup_clear_mc();
5093 	spin_lock(&mc.lock);
5094 	mc.from = NULL;
5095 	mc.to = NULL;
5096 	mc.mm = NULL;
5097 	spin_unlock(&mc.lock);
5098 
5099 	mmput(mm);
5100 }
5101 
5102 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5103 {
5104 	struct cgroup_subsys_state *css;
5105 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5106 	struct mem_cgroup *from;
5107 	struct task_struct *leader, *p;
5108 	struct mm_struct *mm;
5109 	unsigned long move_flags;
5110 	int ret = 0;
5111 
5112 	/* charge immigration isn't supported on the default hierarchy */
5113 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5114 		return 0;
5115 
5116 	/*
5117 	 * Multi-process migrations only happen on the default hierarchy
5118 	 * where charge immigration is not used.  Perform charge
5119 	 * immigration if @tset contains a leader and whine if there are
5120 	 * multiple.
5121 	 */
5122 	p = NULL;
5123 	cgroup_taskset_for_each_leader(leader, css, tset) {
5124 		WARN_ON_ONCE(p);
5125 		p = leader;
5126 		memcg = mem_cgroup_from_css(css);
5127 	}
5128 	if (!p)
5129 		return 0;
5130 
5131 	/*
5132 	 * We are now commited to this value whatever it is. Changes in this
5133 	 * tunable will only affect upcoming migrations, not the current one.
5134 	 * So we need to save it, and keep it going.
5135 	 */
5136 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5137 	if (!move_flags)
5138 		return 0;
5139 
5140 	from = mem_cgroup_from_task(p);
5141 
5142 	VM_BUG_ON(from == memcg);
5143 
5144 	mm = get_task_mm(p);
5145 	if (!mm)
5146 		return 0;
5147 	/* We move charges only when we move a owner of the mm */
5148 	if (mm->owner == p) {
5149 		VM_BUG_ON(mc.from);
5150 		VM_BUG_ON(mc.to);
5151 		VM_BUG_ON(mc.precharge);
5152 		VM_BUG_ON(mc.moved_charge);
5153 		VM_BUG_ON(mc.moved_swap);
5154 
5155 		spin_lock(&mc.lock);
5156 		mc.mm = mm;
5157 		mc.from = from;
5158 		mc.to = memcg;
5159 		mc.flags = move_flags;
5160 		spin_unlock(&mc.lock);
5161 		/* We set mc.moving_task later */
5162 
5163 		ret = mem_cgroup_precharge_mc(mm);
5164 		if (ret)
5165 			mem_cgroup_clear_mc();
5166 	} else {
5167 		mmput(mm);
5168 	}
5169 	return ret;
5170 }
5171 
5172 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5173 {
5174 	if (mc.to)
5175 		mem_cgroup_clear_mc();
5176 }
5177 
5178 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5179 				unsigned long addr, unsigned long end,
5180 				struct mm_walk *walk)
5181 {
5182 	int ret = 0;
5183 	struct vm_area_struct *vma = walk->vma;
5184 	pte_t *pte;
5185 	spinlock_t *ptl;
5186 	enum mc_target_type target_type;
5187 	union mc_target target;
5188 	struct page *page;
5189 
5190 	ptl = pmd_trans_huge_lock(pmd, vma);
5191 	if (ptl) {
5192 		if (mc.precharge < HPAGE_PMD_NR) {
5193 			spin_unlock(ptl);
5194 			return 0;
5195 		}
5196 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5197 		if (target_type == MC_TARGET_PAGE) {
5198 			page = target.page;
5199 			if (!isolate_lru_page(page)) {
5200 				if (!mem_cgroup_move_account(page, true,
5201 							     mc.from, mc.to)) {
5202 					mc.precharge -= HPAGE_PMD_NR;
5203 					mc.moved_charge += HPAGE_PMD_NR;
5204 				}
5205 				putback_lru_page(page);
5206 			}
5207 			put_page(page);
5208 		} else if (target_type == MC_TARGET_DEVICE) {
5209 			page = target.page;
5210 			if (!mem_cgroup_move_account(page, true,
5211 						     mc.from, mc.to)) {
5212 				mc.precharge -= HPAGE_PMD_NR;
5213 				mc.moved_charge += HPAGE_PMD_NR;
5214 			}
5215 			put_page(page);
5216 		}
5217 		spin_unlock(ptl);
5218 		return 0;
5219 	}
5220 
5221 	if (pmd_trans_unstable(pmd))
5222 		return 0;
5223 retry:
5224 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5225 	for (; addr != end; addr += PAGE_SIZE) {
5226 		pte_t ptent = *(pte++);
5227 		bool device = false;
5228 		swp_entry_t ent;
5229 
5230 		if (!mc.precharge)
5231 			break;
5232 
5233 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5234 		case MC_TARGET_DEVICE:
5235 			device = true;
5236 			/* fall through */
5237 		case MC_TARGET_PAGE:
5238 			page = target.page;
5239 			/*
5240 			 * We can have a part of the split pmd here. Moving it
5241 			 * can be done but it would be too convoluted so simply
5242 			 * ignore such a partial THP and keep it in original
5243 			 * memcg. There should be somebody mapping the head.
5244 			 */
5245 			if (PageTransCompound(page))
5246 				goto put;
5247 			if (!device && isolate_lru_page(page))
5248 				goto put;
5249 			if (!mem_cgroup_move_account(page, false,
5250 						mc.from, mc.to)) {
5251 				mc.precharge--;
5252 				/* we uncharge from mc.from later. */
5253 				mc.moved_charge++;
5254 			}
5255 			if (!device)
5256 				putback_lru_page(page);
5257 put:			/* get_mctgt_type() gets the page */
5258 			put_page(page);
5259 			break;
5260 		case MC_TARGET_SWAP:
5261 			ent = target.ent;
5262 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5263 				mc.precharge--;
5264 				/* we fixup refcnts and charges later. */
5265 				mc.moved_swap++;
5266 			}
5267 			break;
5268 		default:
5269 			break;
5270 		}
5271 	}
5272 	pte_unmap_unlock(pte - 1, ptl);
5273 	cond_resched();
5274 
5275 	if (addr != end) {
5276 		/*
5277 		 * We have consumed all precharges we got in can_attach().
5278 		 * We try charge one by one, but don't do any additional
5279 		 * charges to mc.to if we have failed in charge once in attach()
5280 		 * phase.
5281 		 */
5282 		ret = mem_cgroup_do_precharge(1);
5283 		if (!ret)
5284 			goto retry;
5285 	}
5286 
5287 	return ret;
5288 }
5289 
5290 static void mem_cgroup_move_charge(void)
5291 {
5292 	struct mm_walk mem_cgroup_move_charge_walk = {
5293 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5294 		.mm = mc.mm,
5295 	};
5296 
5297 	lru_add_drain_all();
5298 	/*
5299 	 * Signal lock_page_memcg() to take the memcg's move_lock
5300 	 * while we're moving its pages to another memcg. Then wait
5301 	 * for already started RCU-only updates to finish.
5302 	 */
5303 	atomic_inc(&mc.from->moving_account);
5304 	synchronize_rcu();
5305 retry:
5306 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5307 		/*
5308 		 * Someone who are holding the mmap_sem might be waiting in
5309 		 * waitq. So we cancel all extra charges, wake up all waiters,
5310 		 * and retry. Because we cancel precharges, we might not be able
5311 		 * to move enough charges, but moving charge is a best-effort
5312 		 * feature anyway, so it wouldn't be a big problem.
5313 		 */
5314 		__mem_cgroup_clear_mc();
5315 		cond_resched();
5316 		goto retry;
5317 	}
5318 	/*
5319 	 * When we have consumed all precharges and failed in doing
5320 	 * additional charge, the page walk just aborts.
5321 	 */
5322 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5323 
5324 	up_read(&mc.mm->mmap_sem);
5325 	atomic_dec(&mc.from->moving_account);
5326 }
5327 
5328 static void mem_cgroup_move_task(void)
5329 {
5330 	if (mc.to) {
5331 		mem_cgroup_move_charge();
5332 		mem_cgroup_clear_mc();
5333 	}
5334 }
5335 #else	/* !CONFIG_MMU */
5336 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5337 {
5338 	return 0;
5339 }
5340 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5341 {
5342 }
5343 static void mem_cgroup_move_task(void)
5344 {
5345 }
5346 #endif
5347 
5348 /*
5349  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5350  * to verify whether we're attached to the default hierarchy on each mount
5351  * attempt.
5352  */
5353 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5354 {
5355 	/*
5356 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5357 	 * guarantees that @root doesn't have any children, so turning it
5358 	 * on for the root memcg is enough.
5359 	 */
5360 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5361 		root_mem_cgroup->use_hierarchy = true;
5362 	else
5363 		root_mem_cgroup->use_hierarchy = false;
5364 }
5365 
5366 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5367 {
5368 	if (value == PAGE_COUNTER_MAX)
5369 		seq_puts(m, "max\n");
5370 	else
5371 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5372 
5373 	return 0;
5374 }
5375 
5376 static u64 memory_current_read(struct cgroup_subsys_state *css,
5377 			       struct cftype *cft)
5378 {
5379 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5380 
5381 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5382 }
5383 
5384 static int memory_min_show(struct seq_file *m, void *v)
5385 {
5386 	return seq_puts_memcg_tunable(m,
5387 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5388 }
5389 
5390 static ssize_t memory_min_write(struct kernfs_open_file *of,
5391 				char *buf, size_t nbytes, loff_t off)
5392 {
5393 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5394 	unsigned long min;
5395 	int err;
5396 
5397 	buf = strstrip(buf);
5398 	err = page_counter_memparse(buf, "max", &min);
5399 	if (err)
5400 		return err;
5401 
5402 	page_counter_set_min(&memcg->memory, min);
5403 
5404 	return nbytes;
5405 }
5406 
5407 static int memory_low_show(struct seq_file *m, void *v)
5408 {
5409 	return seq_puts_memcg_tunable(m,
5410 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5411 }
5412 
5413 static ssize_t memory_low_write(struct kernfs_open_file *of,
5414 				char *buf, size_t nbytes, loff_t off)
5415 {
5416 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5417 	unsigned long low;
5418 	int err;
5419 
5420 	buf = strstrip(buf);
5421 	err = page_counter_memparse(buf, "max", &low);
5422 	if (err)
5423 		return err;
5424 
5425 	page_counter_set_low(&memcg->memory, low);
5426 
5427 	return nbytes;
5428 }
5429 
5430 static int memory_high_show(struct seq_file *m, void *v)
5431 {
5432 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5433 }
5434 
5435 static ssize_t memory_high_write(struct kernfs_open_file *of,
5436 				 char *buf, size_t nbytes, loff_t off)
5437 {
5438 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5439 	unsigned long nr_pages;
5440 	unsigned long high;
5441 	int err;
5442 
5443 	buf = strstrip(buf);
5444 	err = page_counter_memparse(buf, "max", &high);
5445 	if (err)
5446 		return err;
5447 
5448 	memcg->high = high;
5449 
5450 	nr_pages = page_counter_read(&memcg->memory);
5451 	if (nr_pages > high)
5452 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5453 					     GFP_KERNEL, true);
5454 
5455 	memcg_wb_domain_size_changed(memcg);
5456 	return nbytes;
5457 }
5458 
5459 static int memory_max_show(struct seq_file *m, void *v)
5460 {
5461 	return seq_puts_memcg_tunable(m,
5462 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5463 }
5464 
5465 static ssize_t memory_max_write(struct kernfs_open_file *of,
5466 				char *buf, size_t nbytes, loff_t off)
5467 {
5468 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5469 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5470 	bool drained = false;
5471 	unsigned long max;
5472 	int err;
5473 
5474 	buf = strstrip(buf);
5475 	err = page_counter_memparse(buf, "max", &max);
5476 	if (err)
5477 		return err;
5478 
5479 	xchg(&memcg->memory.max, max);
5480 
5481 	for (;;) {
5482 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5483 
5484 		if (nr_pages <= max)
5485 			break;
5486 
5487 		if (signal_pending(current)) {
5488 			err = -EINTR;
5489 			break;
5490 		}
5491 
5492 		if (!drained) {
5493 			drain_all_stock(memcg);
5494 			drained = true;
5495 			continue;
5496 		}
5497 
5498 		if (nr_reclaims) {
5499 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5500 							  GFP_KERNEL, true))
5501 				nr_reclaims--;
5502 			continue;
5503 		}
5504 
5505 		memcg_memory_event(memcg, MEMCG_OOM);
5506 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5507 			break;
5508 	}
5509 
5510 	memcg_wb_domain_size_changed(memcg);
5511 	return nbytes;
5512 }
5513 
5514 static int memory_events_show(struct seq_file *m, void *v)
5515 {
5516 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5517 
5518 	seq_printf(m, "low %lu\n",
5519 		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5520 	seq_printf(m, "high %lu\n",
5521 		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5522 	seq_printf(m, "max %lu\n",
5523 		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5524 	seq_printf(m, "oom %lu\n",
5525 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5526 	seq_printf(m, "oom_kill %lu\n",
5527 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5528 
5529 	return 0;
5530 }
5531 
5532 static int memory_stat_show(struct seq_file *m, void *v)
5533 {
5534 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5535 	struct accumulated_stats acc;
5536 	int i;
5537 
5538 	/*
5539 	 * Provide statistics on the state of the memory subsystem as
5540 	 * well as cumulative event counters that show past behavior.
5541 	 *
5542 	 * This list is ordered following a combination of these gradients:
5543 	 * 1) generic big picture -> specifics and details
5544 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5545 	 *
5546 	 * Current memory state:
5547 	 */
5548 
5549 	memset(&acc, 0, sizeof(acc));
5550 	acc.stats_size = MEMCG_NR_STAT;
5551 	acc.events_size = NR_VM_EVENT_ITEMS;
5552 	accumulate_memcg_tree(memcg, &acc);
5553 
5554 	seq_printf(m, "anon %llu\n",
5555 		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5556 	seq_printf(m, "file %llu\n",
5557 		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5558 	seq_printf(m, "kernel_stack %llu\n",
5559 		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5560 	seq_printf(m, "slab %llu\n",
5561 		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5562 			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5563 	seq_printf(m, "sock %llu\n",
5564 		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5565 
5566 	seq_printf(m, "shmem %llu\n",
5567 		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5568 	seq_printf(m, "file_mapped %llu\n",
5569 		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5570 	seq_printf(m, "file_dirty %llu\n",
5571 		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5572 	seq_printf(m, "file_writeback %llu\n",
5573 		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5574 
5575 	/*
5576 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5577 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5578 	 * arse because it requires migrating the work out of rmap to a place
5579 	 * where the page->mem_cgroup is set up and stable.
5580 	 */
5581 	seq_printf(m, "anon_thp %llu\n",
5582 		   (u64)acc.stat[MEMCG_RSS_HUGE] * PAGE_SIZE);
5583 
5584 	for (i = 0; i < NR_LRU_LISTS; i++)
5585 		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5586 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5587 
5588 	seq_printf(m, "slab_reclaimable %llu\n",
5589 		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5590 	seq_printf(m, "slab_unreclaimable %llu\n",
5591 		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5592 
5593 	/* Accumulated memory events */
5594 
5595 	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5596 	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5597 
5598 	seq_printf(m, "workingset_refault %lu\n",
5599 		   acc.stat[WORKINGSET_REFAULT]);
5600 	seq_printf(m, "workingset_activate %lu\n",
5601 		   acc.stat[WORKINGSET_ACTIVATE]);
5602 	seq_printf(m, "workingset_nodereclaim %lu\n",
5603 		   acc.stat[WORKINGSET_NODERECLAIM]);
5604 
5605 	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5606 	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5607 		   acc.events[PGSCAN_DIRECT]);
5608 	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5609 		   acc.events[PGSTEAL_DIRECT]);
5610 	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5611 	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5612 	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5613 	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5614 
5615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5616 	seq_printf(m, "thp_fault_alloc %lu\n", acc.events[THP_FAULT_ALLOC]);
5617 	seq_printf(m, "thp_collapse_alloc %lu\n",
5618 		   acc.events[THP_COLLAPSE_ALLOC]);
5619 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5620 
5621 	return 0;
5622 }
5623 
5624 static int memory_oom_group_show(struct seq_file *m, void *v)
5625 {
5626 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5627 
5628 	seq_printf(m, "%d\n", memcg->oom_group);
5629 
5630 	return 0;
5631 }
5632 
5633 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5634 				      char *buf, size_t nbytes, loff_t off)
5635 {
5636 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5637 	int ret, oom_group;
5638 
5639 	buf = strstrip(buf);
5640 	if (!buf)
5641 		return -EINVAL;
5642 
5643 	ret = kstrtoint(buf, 0, &oom_group);
5644 	if (ret)
5645 		return ret;
5646 
5647 	if (oom_group != 0 && oom_group != 1)
5648 		return -EINVAL;
5649 
5650 	memcg->oom_group = oom_group;
5651 
5652 	return nbytes;
5653 }
5654 
5655 static struct cftype memory_files[] = {
5656 	{
5657 		.name = "current",
5658 		.flags = CFTYPE_NOT_ON_ROOT,
5659 		.read_u64 = memory_current_read,
5660 	},
5661 	{
5662 		.name = "min",
5663 		.flags = CFTYPE_NOT_ON_ROOT,
5664 		.seq_show = memory_min_show,
5665 		.write = memory_min_write,
5666 	},
5667 	{
5668 		.name = "low",
5669 		.flags = CFTYPE_NOT_ON_ROOT,
5670 		.seq_show = memory_low_show,
5671 		.write = memory_low_write,
5672 	},
5673 	{
5674 		.name = "high",
5675 		.flags = CFTYPE_NOT_ON_ROOT,
5676 		.seq_show = memory_high_show,
5677 		.write = memory_high_write,
5678 	},
5679 	{
5680 		.name = "max",
5681 		.flags = CFTYPE_NOT_ON_ROOT,
5682 		.seq_show = memory_max_show,
5683 		.write = memory_max_write,
5684 	},
5685 	{
5686 		.name = "events",
5687 		.flags = CFTYPE_NOT_ON_ROOT,
5688 		.file_offset = offsetof(struct mem_cgroup, events_file),
5689 		.seq_show = memory_events_show,
5690 	},
5691 	{
5692 		.name = "stat",
5693 		.flags = CFTYPE_NOT_ON_ROOT,
5694 		.seq_show = memory_stat_show,
5695 	},
5696 	{
5697 		.name = "oom.group",
5698 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5699 		.seq_show = memory_oom_group_show,
5700 		.write = memory_oom_group_write,
5701 	},
5702 	{ }	/* terminate */
5703 };
5704 
5705 struct cgroup_subsys memory_cgrp_subsys = {
5706 	.css_alloc = mem_cgroup_css_alloc,
5707 	.css_online = mem_cgroup_css_online,
5708 	.css_offline = mem_cgroup_css_offline,
5709 	.css_released = mem_cgroup_css_released,
5710 	.css_free = mem_cgroup_css_free,
5711 	.css_reset = mem_cgroup_css_reset,
5712 	.can_attach = mem_cgroup_can_attach,
5713 	.cancel_attach = mem_cgroup_cancel_attach,
5714 	.post_attach = mem_cgroup_move_task,
5715 	.bind = mem_cgroup_bind,
5716 	.dfl_cftypes = memory_files,
5717 	.legacy_cftypes = mem_cgroup_legacy_files,
5718 	.early_init = 0,
5719 };
5720 
5721 /**
5722  * mem_cgroup_protected - check if memory consumption is in the normal range
5723  * @root: the top ancestor of the sub-tree being checked
5724  * @memcg: the memory cgroup to check
5725  *
5726  * WARNING: This function is not stateless! It can only be used as part
5727  *          of a top-down tree iteration, not for isolated queries.
5728  *
5729  * Returns one of the following:
5730  *   MEMCG_PROT_NONE: cgroup memory is not protected
5731  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5732  *     an unprotected supply of reclaimable memory from other cgroups.
5733  *   MEMCG_PROT_MIN: cgroup memory is protected
5734  *
5735  * @root is exclusive; it is never protected when looked at directly
5736  *
5737  * To provide a proper hierarchical behavior, effective memory.min/low values
5738  * are used. Below is the description of how effective memory.low is calculated.
5739  * Effective memory.min values is calculated in the same way.
5740  *
5741  * Effective memory.low is always equal or less than the original memory.low.
5742  * If there is no memory.low overcommittment (which is always true for
5743  * top-level memory cgroups), these two values are equal.
5744  * Otherwise, it's a part of parent's effective memory.low,
5745  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5746  * memory.low usages, where memory.low usage is the size of actually
5747  * protected memory.
5748  *
5749  *                                             low_usage
5750  * elow = min( memory.low, parent->elow * ------------------ ),
5751  *                                        siblings_low_usage
5752  *
5753  *             | memory.current, if memory.current < memory.low
5754  * low_usage = |
5755  *	       | 0, otherwise.
5756  *
5757  *
5758  * Such definition of the effective memory.low provides the expected
5759  * hierarchical behavior: parent's memory.low value is limiting
5760  * children, unprotected memory is reclaimed first and cgroups,
5761  * which are not using their guarantee do not affect actual memory
5762  * distribution.
5763  *
5764  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5765  *
5766  *     A      A/memory.low = 2G, A/memory.current = 6G
5767  *    //\\
5768  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5769  *            C/memory.low = 1G  C/memory.current = 2G
5770  *            D/memory.low = 0   D/memory.current = 2G
5771  *            E/memory.low = 10G E/memory.current = 0
5772  *
5773  * and the memory pressure is applied, the following memory distribution
5774  * is expected (approximately):
5775  *
5776  *     A/memory.current = 2G
5777  *
5778  *     B/memory.current = 1.3G
5779  *     C/memory.current = 0.6G
5780  *     D/memory.current = 0
5781  *     E/memory.current = 0
5782  *
5783  * These calculations require constant tracking of the actual low usages
5784  * (see propagate_protected_usage()), as well as recursive calculation of
5785  * effective memory.low values. But as we do call mem_cgroup_protected()
5786  * path for each memory cgroup top-down from the reclaim,
5787  * it's possible to optimize this part, and save calculated elow
5788  * for next usage. This part is intentionally racy, but it's ok,
5789  * as memory.low is a best-effort mechanism.
5790  */
5791 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5792 						struct mem_cgroup *memcg)
5793 {
5794 	struct mem_cgroup *parent;
5795 	unsigned long emin, parent_emin;
5796 	unsigned long elow, parent_elow;
5797 	unsigned long usage;
5798 
5799 	if (mem_cgroup_disabled())
5800 		return MEMCG_PROT_NONE;
5801 
5802 	if (!root)
5803 		root = root_mem_cgroup;
5804 	if (memcg == root)
5805 		return MEMCG_PROT_NONE;
5806 
5807 	usage = page_counter_read(&memcg->memory);
5808 	if (!usage)
5809 		return MEMCG_PROT_NONE;
5810 
5811 	emin = memcg->memory.min;
5812 	elow = memcg->memory.low;
5813 
5814 	parent = parent_mem_cgroup(memcg);
5815 	/* No parent means a non-hierarchical mode on v1 memcg */
5816 	if (!parent)
5817 		return MEMCG_PROT_NONE;
5818 
5819 	if (parent == root)
5820 		goto exit;
5821 
5822 	parent_emin = READ_ONCE(parent->memory.emin);
5823 	emin = min(emin, parent_emin);
5824 	if (emin && parent_emin) {
5825 		unsigned long min_usage, siblings_min_usage;
5826 
5827 		min_usage = min(usage, memcg->memory.min);
5828 		siblings_min_usage = atomic_long_read(
5829 			&parent->memory.children_min_usage);
5830 
5831 		if (min_usage && siblings_min_usage)
5832 			emin = min(emin, parent_emin * min_usage /
5833 				   siblings_min_usage);
5834 	}
5835 
5836 	parent_elow = READ_ONCE(parent->memory.elow);
5837 	elow = min(elow, parent_elow);
5838 	if (elow && parent_elow) {
5839 		unsigned long low_usage, siblings_low_usage;
5840 
5841 		low_usage = min(usage, memcg->memory.low);
5842 		siblings_low_usage = atomic_long_read(
5843 			&parent->memory.children_low_usage);
5844 
5845 		if (low_usage && siblings_low_usage)
5846 			elow = min(elow, parent_elow * low_usage /
5847 				   siblings_low_usage);
5848 	}
5849 
5850 exit:
5851 	memcg->memory.emin = emin;
5852 	memcg->memory.elow = elow;
5853 
5854 	if (usage <= emin)
5855 		return MEMCG_PROT_MIN;
5856 	else if (usage <= elow)
5857 		return MEMCG_PROT_LOW;
5858 	else
5859 		return MEMCG_PROT_NONE;
5860 }
5861 
5862 /**
5863  * mem_cgroup_try_charge - try charging a page
5864  * @page: page to charge
5865  * @mm: mm context of the victim
5866  * @gfp_mask: reclaim mode
5867  * @memcgp: charged memcg return
5868  * @compound: charge the page as compound or small page
5869  *
5870  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5871  * pages according to @gfp_mask if necessary.
5872  *
5873  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5874  * Otherwise, an error code is returned.
5875  *
5876  * After page->mapping has been set up, the caller must finalize the
5877  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5878  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5879  */
5880 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5881 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5882 			  bool compound)
5883 {
5884 	struct mem_cgroup *memcg = NULL;
5885 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5886 	int ret = 0;
5887 
5888 	if (mem_cgroup_disabled())
5889 		goto out;
5890 
5891 	if (PageSwapCache(page)) {
5892 		/*
5893 		 * Every swap fault against a single page tries to charge the
5894 		 * page, bail as early as possible.  shmem_unuse() encounters
5895 		 * already charged pages, too.  The USED bit is protected by
5896 		 * the page lock, which serializes swap cache removal, which
5897 		 * in turn serializes uncharging.
5898 		 */
5899 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5900 		if (compound_head(page)->mem_cgroup)
5901 			goto out;
5902 
5903 		if (do_swap_account) {
5904 			swp_entry_t ent = { .val = page_private(page), };
5905 			unsigned short id = lookup_swap_cgroup_id(ent);
5906 
5907 			rcu_read_lock();
5908 			memcg = mem_cgroup_from_id(id);
5909 			if (memcg && !css_tryget_online(&memcg->css))
5910 				memcg = NULL;
5911 			rcu_read_unlock();
5912 		}
5913 	}
5914 
5915 	if (!memcg)
5916 		memcg = get_mem_cgroup_from_mm(mm);
5917 
5918 	ret = try_charge(memcg, gfp_mask, nr_pages);
5919 
5920 	css_put(&memcg->css);
5921 out:
5922 	*memcgp = memcg;
5923 	return ret;
5924 }
5925 
5926 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5927 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5928 			  bool compound)
5929 {
5930 	struct mem_cgroup *memcg;
5931 	int ret;
5932 
5933 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5934 	memcg = *memcgp;
5935 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5936 	return ret;
5937 }
5938 
5939 /**
5940  * mem_cgroup_commit_charge - commit a page charge
5941  * @page: page to charge
5942  * @memcg: memcg to charge the page to
5943  * @lrucare: page might be on LRU already
5944  * @compound: charge the page as compound or small page
5945  *
5946  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5947  * after page->mapping has been set up.  This must happen atomically
5948  * as part of the page instantiation, i.e. under the page table lock
5949  * for anonymous pages, under the page lock for page and swap cache.
5950  *
5951  * In addition, the page must not be on the LRU during the commit, to
5952  * prevent racing with task migration.  If it might be, use @lrucare.
5953  *
5954  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5955  */
5956 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5957 			      bool lrucare, bool compound)
5958 {
5959 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5960 
5961 	VM_BUG_ON_PAGE(!page->mapping, page);
5962 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5963 
5964 	if (mem_cgroup_disabled())
5965 		return;
5966 	/*
5967 	 * Swap faults will attempt to charge the same page multiple
5968 	 * times.  But reuse_swap_page() might have removed the page
5969 	 * from swapcache already, so we can't check PageSwapCache().
5970 	 */
5971 	if (!memcg)
5972 		return;
5973 
5974 	commit_charge(page, memcg, lrucare);
5975 
5976 	local_irq_disable();
5977 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5978 	memcg_check_events(memcg, page);
5979 	local_irq_enable();
5980 
5981 	if (do_memsw_account() && PageSwapCache(page)) {
5982 		swp_entry_t entry = { .val = page_private(page) };
5983 		/*
5984 		 * The swap entry might not get freed for a long time,
5985 		 * let's not wait for it.  The page already received a
5986 		 * memory+swap charge, drop the swap entry duplicate.
5987 		 */
5988 		mem_cgroup_uncharge_swap(entry, nr_pages);
5989 	}
5990 }
5991 
5992 /**
5993  * mem_cgroup_cancel_charge - cancel a page charge
5994  * @page: page to charge
5995  * @memcg: memcg to charge the page to
5996  * @compound: charge the page as compound or small page
5997  *
5998  * Cancel a charge transaction started by mem_cgroup_try_charge().
5999  */
6000 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6001 		bool compound)
6002 {
6003 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6004 
6005 	if (mem_cgroup_disabled())
6006 		return;
6007 	/*
6008 	 * Swap faults will attempt to charge the same page multiple
6009 	 * times.  But reuse_swap_page() might have removed the page
6010 	 * from swapcache already, so we can't check PageSwapCache().
6011 	 */
6012 	if (!memcg)
6013 		return;
6014 
6015 	cancel_charge(memcg, nr_pages);
6016 }
6017 
6018 struct uncharge_gather {
6019 	struct mem_cgroup *memcg;
6020 	unsigned long pgpgout;
6021 	unsigned long nr_anon;
6022 	unsigned long nr_file;
6023 	unsigned long nr_kmem;
6024 	unsigned long nr_huge;
6025 	unsigned long nr_shmem;
6026 	struct page *dummy_page;
6027 };
6028 
6029 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6030 {
6031 	memset(ug, 0, sizeof(*ug));
6032 }
6033 
6034 static void uncharge_batch(const struct uncharge_gather *ug)
6035 {
6036 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6037 	unsigned long flags;
6038 
6039 	if (!mem_cgroup_is_root(ug->memcg)) {
6040 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6041 		if (do_memsw_account())
6042 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6043 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6044 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6045 		memcg_oom_recover(ug->memcg);
6046 	}
6047 
6048 	local_irq_save(flags);
6049 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6050 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6051 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6052 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6053 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6054 	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6055 	memcg_check_events(ug->memcg, ug->dummy_page);
6056 	local_irq_restore(flags);
6057 
6058 	if (!mem_cgroup_is_root(ug->memcg))
6059 		css_put_many(&ug->memcg->css, nr_pages);
6060 }
6061 
6062 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6063 {
6064 	VM_BUG_ON_PAGE(PageLRU(page), page);
6065 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6066 			!PageHWPoison(page) , page);
6067 
6068 	if (!page->mem_cgroup)
6069 		return;
6070 
6071 	/*
6072 	 * Nobody should be changing or seriously looking at
6073 	 * page->mem_cgroup at this point, we have fully
6074 	 * exclusive access to the page.
6075 	 */
6076 
6077 	if (ug->memcg != page->mem_cgroup) {
6078 		if (ug->memcg) {
6079 			uncharge_batch(ug);
6080 			uncharge_gather_clear(ug);
6081 		}
6082 		ug->memcg = page->mem_cgroup;
6083 	}
6084 
6085 	if (!PageKmemcg(page)) {
6086 		unsigned int nr_pages = 1;
6087 
6088 		if (PageTransHuge(page)) {
6089 			nr_pages <<= compound_order(page);
6090 			ug->nr_huge += nr_pages;
6091 		}
6092 		if (PageAnon(page))
6093 			ug->nr_anon += nr_pages;
6094 		else {
6095 			ug->nr_file += nr_pages;
6096 			if (PageSwapBacked(page))
6097 				ug->nr_shmem += nr_pages;
6098 		}
6099 		ug->pgpgout++;
6100 	} else {
6101 		ug->nr_kmem += 1 << compound_order(page);
6102 		__ClearPageKmemcg(page);
6103 	}
6104 
6105 	ug->dummy_page = page;
6106 	page->mem_cgroup = NULL;
6107 }
6108 
6109 static void uncharge_list(struct list_head *page_list)
6110 {
6111 	struct uncharge_gather ug;
6112 	struct list_head *next;
6113 
6114 	uncharge_gather_clear(&ug);
6115 
6116 	/*
6117 	 * Note that the list can be a single page->lru; hence the
6118 	 * do-while loop instead of a simple list_for_each_entry().
6119 	 */
6120 	next = page_list->next;
6121 	do {
6122 		struct page *page;
6123 
6124 		page = list_entry(next, struct page, lru);
6125 		next = page->lru.next;
6126 
6127 		uncharge_page(page, &ug);
6128 	} while (next != page_list);
6129 
6130 	if (ug.memcg)
6131 		uncharge_batch(&ug);
6132 }
6133 
6134 /**
6135  * mem_cgroup_uncharge - uncharge a page
6136  * @page: page to uncharge
6137  *
6138  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6139  * mem_cgroup_commit_charge().
6140  */
6141 void mem_cgroup_uncharge(struct page *page)
6142 {
6143 	struct uncharge_gather ug;
6144 
6145 	if (mem_cgroup_disabled())
6146 		return;
6147 
6148 	/* Don't touch page->lru of any random page, pre-check: */
6149 	if (!page->mem_cgroup)
6150 		return;
6151 
6152 	uncharge_gather_clear(&ug);
6153 	uncharge_page(page, &ug);
6154 	uncharge_batch(&ug);
6155 }
6156 
6157 /**
6158  * mem_cgroup_uncharge_list - uncharge a list of page
6159  * @page_list: list of pages to uncharge
6160  *
6161  * Uncharge a list of pages previously charged with
6162  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6163  */
6164 void mem_cgroup_uncharge_list(struct list_head *page_list)
6165 {
6166 	if (mem_cgroup_disabled())
6167 		return;
6168 
6169 	if (!list_empty(page_list))
6170 		uncharge_list(page_list);
6171 }
6172 
6173 /**
6174  * mem_cgroup_migrate - charge a page's replacement
6175  * @oldpage: currently circulating page
6176  * @newpage: replacement page
6177  *
6178  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6179  * be uncharged upon free.
6180  *
6181  * Both pages must be locked, @newpage->mapping must be set up.
6182  */
6183 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6184 {
6185 	struct mem_cgroup *memcg;
6186 	unsigned int nr_pages;
6187 	bool compound;
6188 	unsigned long flags;
6189 
6190 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6191 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6192 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6193 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6194 		       newpage);
6195 
6196 	if (mem_cgroup_disabled())
6197 		return;
6198 
6199 	/* Page cache replacement: new page already charged? */
6200 	if (newpage->mem_cgroup)
6201 		return;
6202 
6203 	/* Swapcache readahead pages can get replaced before being charged */
6204 	memcg = oldpage->mem_cgroup;
6205 	if (!memcg)
6206 		return;
6207 
6208 	/* Force-charge the new page. The old one will be freed soon */
6209 	compound = PageTransHuge(newpage);
6210 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6211 
6212 	page_counter_charge(&memcg->memory, nr_pages);
6213 	if (do_memsw_account())
6214 		page_counter_charge(&memcg->memsw, nr_pages);
6215 	css_get_many(&memcg->css, nr_pages);
6216 
6217 	commit_charge(newpage, memcg, false);
6218 
6219 	local_irq_save(flags);
6220 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6221 	memcg_check_events(memcg, newpage);
6222 	local_irq_restore(flags);
6223 }
6224 
6225 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6226 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6227 
6228 void mem_cgroup_sk_alloc(struct sock *sk)
6229 {
6230 	struct mem_cgroup *memcg;
6231 
6232 	if (!mem_cgroup_sockets_enabled)
6233 		return;
6234 
6235 	/*
6236 	 * Socket cloning can throw us here with sk_memcg already
6237 	 * filled. It won't however, necessarily happen from
6238 	 * process context. So the test for root memcg given
6239 	 * the current task's memcg won't help us in this case.
6240 	 *
6241 	 * Respecting the original socket's memcg is a better
6242 	 * decision in this case.
6243 	 */
6244 	if (sk->sk_memcg) {
6245 		css_get(&sk->sk_memcg->css);
6246 		return;
6247 	}
6248 
6249 	rcu_read_lock();
6250 	memcg = mem_cgroup_from_task(current);
6251 	if (memcg == root_mem_cgroup)
6252 		goto out;
6253 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6254 		goto out;
6255 	if (css_tryget_online(&memcg->css))
6256 		sk->sk_memcg = memcg;
6257 out:
6258 	rcu_read_unlock();
6259 }
6260 
6261 void mem_cgroup_sk_free(struct sock *sk)
6262 {
6263 	if (sk->sk_memcg)
6264 		css_put(&sk->sk_memcg->css);
6265 }
6266 
6267 /**
6268  * mem_cgroup_charge_skmem - charge socket memory
6269  * @memcg: memcg to charge
6270  * @nr_pages: number of pages to charge
6271  *
6272  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6273  * @memcg's configured limit, %false if the charge had to be forced.
6274  */
6275 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6276 {
6277 	gfp_t gfp_mask = GFP_KERNEL;
6278 
6279 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6280 		struct page_counter *fail;
6281 
6282 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6283 			memcg->tcpmem_pressure = 0;
6284 			return true;
6285 		}
6286 		page_counter_charge(&memcg->tcpmem, nr_pages);
6287 		memcg->tcpmem_pressure = 1;
6288 		return false;
6289 	}
6290 
6291 	/* Don't block in the packet receive path */
6292 	if (in_softirq())
6293 		gfp_mask = GFP_NOWAIT;
6294 
6295 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6296 
6297 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6298 		return true;
6299 
6300 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6301 	return false;
6302 }
6303 
6304 /**
6305  * mem_cgroup_uncharge_skmem - uncharge socket memory
6306  * @memcg: memcg to uncharge
6307  * @nr_pages: number of pages to uncharge
6308  */
6309 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6310 {
6311 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6312 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6313 		return;
6314 	}
6315 
6316 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6317 
6318 	refill_stock(memcg, nr_pages);
6319 }
6320 
6321 static int __init cgroup_memory(char *s)
6322 {
6323 	char *token;
6324 
6325 	while ((token = strsep(&s, ",")) != NULL) {
6326 		if (!*token)
6327 			continue;
6328 		if (!strcmp(token, "nosocket"))
6329 			cgroup_memory_nosocket = true;
6330 		if (!strcmp(token, "nokmem"))
6331 			cgroup_memory_nokmem = true;
6332 	}
6333 	return 0;
6334 }
6335 __setup("cgroup.memory=", cgroup_memory);
6336 
6337 /*
6338  * subsys_initcall() for memory controller.
6339  *
6340  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6341  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6342  * basically everything that doesn't depend on a specific mem_cgroup structure
6343  * should be initialized from here.
6344  */
6345 static int __init mem_cgroup_init(void)
6346 {
6347 	int cpu, node;
6348 
6349 #ifdef CONFIG_MEMCG_KMEM
6350 	/*
6351 	 * Kmem cache creation is mostly done with the slab_mutex held,
6352 	 * so use a workqueue with limited concurrency to avoid stalling
6353 	 * all worker threads in case lots of cgroups are created and
6354 	 * destroyed simultaneously.
6355 	 */
6356 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6357 	BUG_ON(!memcg_kmem_cache_wq);
6358 #endif
6359 
6360 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6361 				  memcg_hotplug_cpu_dead);
6362 
6363 	for_each_possible_cpu(cpu)
6364 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6365 			  drain_local_stock);
6366 
6367 	for_each_node(node) {
6368 		struct mem_cgroup_tree_per_node *rtpn;
6369 
6370 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6371 				    node_online(node) ? node : NUMA_NO_NODE);
6372 
6373 		rtpn->rb_root = RB_ROOT;
6374 		rtpn->rb_rightmost = NULL;
6375 		spin_lock_init(&rtpn->lock);
6376 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6377 	}
6378 
6379 	return 0;
6380 }
6381 subsys_initcall(mem_cgroup_init);
6382 
6383 #ifdef CONFIG_MEMCG_SWAP
6384 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6385 {
6386 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6387 		/*
6388 		 * The root cgroup cannot be destroyed, so it's refcount must
6389 		 * always be >= 1.
6390 		 */
6391 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6392 			VM_BUG_ON(1);
6393 			break;
6394 		}
6395 		memcg = parent_mem_cgroup(memcg);
6396 		if (!memcg)
6397 			memcg = root_mem_cgroup;
6398 	}
6399 	return memcg;
6400 }
6401 
6402 /**
6403  * mem_cgroup_swapout - transfer a memsw charge to swap
6404  * @page: page whose memsw charge to transfer
6405  * @entry: swap entry to move the charge to
6406  *
6407  * Transfer the memsw charge of @page to @entry.
6408  */
6409 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6410 {
6411 	struct mem_cgroup *memcg, *swap_memcg;
6412 	unsigned int nr_entries;
6413 	unsigned short oldid;
6414 
6415 	VM_BUG_ON_PAGE(PageLRU(page), page);
6416 	VM_BUG_ON_PAGE(page_count(page), page);
6417 
6418 	if (!do_memsw_account())
6419 		return;
6420 
6421 	memcg = page->mem_cgroup;
6422 
6423 	/* Readahead page, never charged */
6424 	if (!memcg)
6425 		return;
6426 
6427 	/*
6428 	 * In case the memcg owning these pages has been offlined and doesn't
6429 	 * have an ID allocated to it anymore, charge the closest online
6430 	 * ancestor for the swap instead and transfer the memory+swap charge.
6431 	 */
6432 	swap_memcg = mem_cgroup_id_get_online(memcg);
6433 	nr_entries = hpage_nr_pages(page);
6434 	/* Get references for the tail pages, too */
6435 	if (nr_entries > 1)
6436 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6437 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6438 				   nr_entries);
6439 	VM_BUG_ON_PAGE(oldid, page);
6440 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6441 
6442 	page->mem_cgroup = NULL;
6443 
6444 	if (!mem_cgroup_is_root(memcg))
6445 		page_counter_uncharge(&memcg->memory, nr_entries);
6446 
6447 	if (memcg != swap_memcg) {
6448 		if (!mem_cgroup_is_root(swap_memcg))
6449 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6450 		page_counter_uncharge(&memcg->memsw, nr_entries);
6451 	}
6452 
6453 	/*
6454 	 * Interrupts should be disabled here because the caller holds the
6455 	 * i_pages lock which is taken with interrupts-off. It is
6456 	 * important here to have the interrupts disabled because it is the
6457 	 * only synchronisation we have for updating the per-CPU variables.
6458 	 */
6459 	VM_BUG_ON(!irqs_disabled());
6460 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6461 				     -nr_entries);
6462 	memcg_check_events(memcg, page);
6463 
6464 	if (!mem_cgroup_is_root(memcg))
6465 		css_put_many(&memcg->css, nr_entries);
6466 }
6467 
6468 /**
6469  * mem_cgroup_try_charge_swap - try charging swap space for a page
6470  * @page: page being added to swap
6471  * @entry: swap entry to charge
6472  *
6473  * Try to charge @page's memcg for the swap space at @entry.
6474  *
6475  * Returns 0 on success, -ENOMEM on failure.
6476  */
6477 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6478 {
6479 	unsigned int nr_pages = hpage_nr_pages(page);
6480 	struct page_counter *counter;
6481 	struct mem_cgroup *memcg;
6482 	unsigned short oldid;
6483 
6484 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6485 		return 0;
6486 
6487 	memcg = page->mem_cgroup;
6488 
6489 	/* Readahead page, never charged */
6490 	if (!memcg)
6491 		return 0;
6492 
6493 	if (!entry.val) {
6494 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6495 		return 0;
6496 	}
6497 
6498 	memcg = mem_cgroup_id_get_online(memcg);
6499 
6500 	if (!mem_cgroup_is_root(memcg) &&
6501 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6502 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6503 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6504 		mem_cgroup_id_put(memcg);
6505 		return -ENOMEM;
6506 	}
6507 
6508 	/* Get references for the tail pages, too */
6509 	if (nr_pages > 1)
6510 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6511 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6512 	VM_BUG_ON_PAGE(oldid, page);
6513 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6514 
6515 	return 0;
6516 }
6517 
6518 /**
6519  * mem_cgroup_uncharge_swap - uncharge swap space
6520  * @entry: swap entry to uncharge
6521  * @nr_pages: the amount of swap space to uncharge
6522  */
6523 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6524 {
6525 	struct mem_cgroup *memcg;
6526 	unsigned short id;
6527 
6528 	if (!do_swap_account)
6529 		return;
6530 
6531 	id = swap_cgroup_record(entry, 0, nr_pages);
6532 	rcu_read_lock();
6533 	memcg = mem_cgroup_from_id(id);
6534 	if (memcg) {
6535 		if (!mem_cgroup_is_root(memcg)) {
6536 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6537 				page_counter_uncharge(&memcg->swap, nr_pages);
6538 			else
6539 				page_counter_uncharge(&memcg->memsw, nr_pages);
6540 		}
6541 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6542 		mem_cgroup_id_put_many(memcg, nr_pages);
6543 	}
6544 	rcu_read_unlock();
6545 }
6546 
6547 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6548 {
6549 	long nr_swap_pages = get_nr_swap_pages();
6550 
6551 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6552 		return nr_swap_pages;
6553 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6554 		nr_swap_pages = min_t(long, nr_swap_pages,
6555 				      READ_ONCE(memcg->swap.max) -
6556 				      page_counter_read(&memcg->swap));
6557 	return nr_swap_pages;
6558 }
6559 
6560 bool mem_cgroup_swap_full(struct page *page)
6561 {
6562 	struct mem_cgroup *memcg;
6563 
6564 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6565 
6566 	if (vm_swap_full())
6567 		return true;
6568 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6569 		return false;
6570 
6571 	memcg = page->mem_cgroup;
6572 	if (!memcg)
6573 		return false;
6574 
6575 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6576 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6577 			return true;
6578 
6579 	return false;
6580 }
6581 
6582 /* for remember boot option*/
6583 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6584 static int really_do_swap_account __initdata = 1;
6585 #else
6586 static int really_do_swap_account __initdata;
6587 #endif
6588 
6589 static int __init enable_swap_account(char *s)
6590 {
6591 	if (!strcmp(s, "1"))
6592 		really_do_swap_account = 1;
6593 	else if (!strcmp(s, "0"))
6594 		really_do_swap_account = 0;
6595 	return 1;
6596 }
6597 __setup("swapaccount=", enable_swap_account);
6598 
6599 static u64 swap_current_read(struct cgroup_subsys_state *css,
6600 			     struct cftype *cft)
6601 {
6602 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6603 
6604 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6605 }
6606 
6607 static int swap_max_show(struct seq_file *m, void *v)
6608 {
6609 	return seq_puts_memcg_tunable(m,
6610 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6611 }
6612 
6613 static ssize_t swap_max_write(struct kernfs_open_file *of,
6614 			      char *buf, size_t nbytes, loff_t off)
6615 {
6616 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6617 	unsigned long max;
6618 	int err;
6619 
6620 	buf = strstrip(buf);
6621 	err = page_counter_memparse(buf, "max", &max);
6622 	if (err)
6623 		return err;
6624 
6625 	xchg(&memcg->swap.max, max);
6626 
6627 	return nbytes;
6628 }
6629 
6630 static int swap_events_show(struct seq_file *m, void *v)
6631 {
6632 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6633 
6634 	seq_printf(m, "max %lu\n",
6635 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6636 	seq_printf(m, "fail %lu\n",
6637 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6638 
6639 	return 0;
6640 }
6641 
6642 static struct cftype swap_files[] = {
6643 	{
6644 		.name = "swap.current",
6645 		.flags = CFTYPE_NOT_ON_ROOT,
6646 		.read_u64 = swap_current_read,
6647 	},
6648 	{
6649 		.name = "swap.max",
6650 		.flags = CFTYPE_NOT_ON_ROOT,
6651 		.seq_show = swap_max_show,
6652 		.write = swap_max_write,
6653 	},
6654 	{
6655 		.name = "swap.events",
6656 		.flags = CFTYPE_NOT_ON_ROOT,
6657 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6658 		.seq_show = swap_events_show,
6659 	},
6660 	{ }	/* terminate */
6661 };
6662 
6663 static struct cftype memsw_cgroup_files[] = {
6664 	{
6665 		.name = "memsw.usage_in_bytes",
6666 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6667 		.read_u64 = mem_cgroup_read_u64,
6668 	},
6669 	{
6670 		.name = "memsw.max_usage_in_bytes",
6671 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6672 		.write = mem_cgroup_reset,
6673 		.read_u64 = mem_cgroup_read_u64,
6674 	},
6675 	{
6676 		.name = "memsw.limit_in_bytes",
6677 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6678 		.write = mem_cgroup_write,
6679 		.read_u64 = mem_cgroup_read_u64,
6680 	},
6681 	{
6682 		.name = "memsw.failcnt",
6683 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6684 		.write = mem_cgroup_reset,
6685 		.read_u64 = mem_cgroup_read_u64,
6686 	},
6687 	{ },	/* terminate */
6688 };
6689 
6690 static int __init mem_cgroup_swap_init(void)
6691 {
6692 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6693 		do_swap_account = 1;
6694 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6695 					       swap_files));
6696 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6697 						  memsw_cgroup_files));
6698 	}
6699 	return 0;
6700 }
6701 subsys_initcall(mem_cgroup_swap_init);
6702 
6703 #endif /* CONFIG_MEMCG_SWAP */
6704