xref: /openbmc/linux/mm/memcontrol.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65 
66 #include <linux/uaccess.h>
67 
68 #include <trace/events/vmscan.h>
69 
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72 
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #define MEM_CGROUP_RECLAIM_RETRIES	5
76 
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79 
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
92 {
93 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94 }
95 
96 static const char *const mem_cgroup_lru_names[] = {
97 	"inactive_anon",
98 	"active_anon",
99 	"inactive_file",
100 	"active_file",
101 	"unevictable",
102 };
103 
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET	1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 enum charge_type {
207 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208 	MEM_CGROUP_CHARGE_TYPE_ANON,
209 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
210 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
211 	NR_CHARGE_TYPE,
212 };
213 
214 /* for encoding cft->private value on file */
215 enum res_type {
216 	_MEM,
217 	_MEMSWAP,
218 	_OOM_TYPE,
219 	_KMEM,
220 	_TCP,
221 };
222 
223 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
224 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val)	((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL		(0)
228 
229 /*
230  * Iteration constructs for visiting all cgroups (under a tree).  If
231  * loops are exited prematurely (break), mem_cgroup_iter_break() must
232  * be used for reference counting.
233  */
234 #define for_each_mem_cgroup_tree(iter, root)		\
235 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
236 	     iter != NULL;				\
237 	     iter = mem_cgroup_iter(root, iter, NULL))
238 
239 #define for_each_mem_cgroup(iter)			\
240 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
241 	     iter != NULL;				\
242 	     iter = mem_cgroup_iter(NULL, iter, NULL))
243 
244 static inline bool should_force_charge(void)
245 {
246 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 		(current->flags & PF_EXITING);
248 }
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 #ifdef CONFIG_MEMCG_KMEM
264 /*
265  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266  * The main reason for not using cgroup id for this:
267  *  this works better in sparse environments, where we have a lot of memcgs,
268  *  but only a few kmem-limited. Or also, if we have, for instance, 200
269  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
270  *  200 entry array for that.
271  *
272  * The current size of the caches array is stored in memcg_nr_cache_ids. It
273  * will double each time we have to increase it.
274  */
275 static DEFINE_IDA(memcg_cache_ida);
276 int memcg_nr_cache_ids;
277 
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem);
280 
281 void memcg_get_cache_ids(void)
282 {
283 	down_read(&memcg_cache_ids_sem);
284 }
285 
286 void memcg_put_cache_ids(void)
287 {
288 	up_read(&memcg_cache_ids_sem);
289 }
290 
291 /*
292  * MIN_SIZE is different than 1, because we would like to avoid going through
293  * the alloc/free process all the time. In a small machine, 4 kmem-limited
294  * cgroups is a reasonable guess. In the future, it could be a parameter or
295  * tunable, but that is strictly not necessary.
296  *
297  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298  * this constant directly from cgroup, but it is understandable that this is
299  * better kept as an internal representation in cgroup.c. In any case, the
300  * cgrp_id space is not getting any smaller, and we don't have to necessarily
301  * increase ours as well if it increases.
302  */
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305 
306 /*
307  * A lot of the calls to the cache allocation functions are expected to be
308  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309  * conditional to this static branch, we'll have to allow modules that does
310  * kmem_cache_alloc and the such to see this symbol as well
311  */
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key);
314 
315 struct workqueue_struct *memcg_kmem_cache_wq;
316 
317 static int memcg_shrinker_map_size;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319 
320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321 {
322 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323 }
324 
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 					 int size, int old_size)
327 {
328 	struct memcg_shrinker_map *new, *old;
329 	int nid;
330 
331 	lockdep_assert_held(&memcg_shrinker_map_mutex);
332 
333 	for_each_node(nid) {
334 		old = rcu_dereference_protected(
335 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 		/* Not yet online memcg */
337 		if (!old)
338 			return 0;
339 
340 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 		if (!new)
342 			return -ENOMEM;
343 
344 		/* Set all old bits, clear all new bits */
345 		memset(new->map, (int)0xff, old_size);
346 		memset((void *)new->map + old_size, 0, size - old_size);
347 
348 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 	}
351 
352 	return 0;
353 }
354 
355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356 {
357 	struct mem_cgroup_per_node *pn;
358 	struct memcg_shrinker_map *map;
359 	int nid;
360 
361 	if (mem_cgroup_is_root(memcg))
362 		return;
363 
364 	for_each_node(nid) {
365 		pn = mem_cgroup_nodeinfo(memcg, nid);
366 		map = rcu_dereference_protected(pn->shrinker_map, true);
367 		if (map)
368 			kvfree(map);
369 		rcu_assign_pointer(pn->shrinker_map, NULL);
370 	}
371 }
372 
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374 {
375 	struct memcg_shrinker_map *map;
376 	int nid, size, ret = 0;
377 
378 	if (mem_cgroup_is_root(memcg))
379 		return 0;
380 
381 	mutex_lock(&memcg_shrinker_map_mutex);
382 	size = memcg_shrinker_map_size;
383 	for_each_node(nid) {
384 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 		if (!map) {
386 			memcg_free_shrinker_maps(memcg);
387 			ret = -ENOMEM;
388 			break;
389 		}
390 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 	}
392 	mutex_unlock(&memcg_shrinker_map_mutex);
393 
394 	return ret;
395 }
396 
397 int memcg_expand_shrinker_maps(int new_id)
398 {
399 	int size, old_size, ret = 0;
400 	struct mem_cgroup *memcg;
401 
402 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 	old_size = memcg_shrinker_map_size;
404 	if (size <= old_size)
405 		return 0;
406 
407 	mutex_lock(&memcg_shrinker_map_mutex);
408 	if (!root_mem_cgroup)
409 		goto unlock;
410 
411 	for_each_mem_cgroup(memcg) {
412 		if (mem_cgroup_is_root(memcg))
413 			continue;
414 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 		if (ret)
416 			goto unlock;
417 	}
418 unlock:
419 	if (!ret)
420 		memcg_shrinker_map_size = size;
421 	mutex_unlock(&memcg_shrinker_map_mutex);
422 	return ret;
423 }
424 
425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 {
427 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 		struct memcg_shrinker_map *map;
429 
430 		rcu_read_lock();
431 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 		/* Pairs with smp mb in shrink_slab() */
433 		smp_mb__before_atomic();
434 		set_bit(shrinker_id, map->map);
435 		rcu_read_unlock();
436 	}
437 }
438 
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 	return 0;
443 }
444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445 #endif /* CONFIG_MEMCG_KMEM */
446 
447 /**
448  * mem_cgroup_css_from_page - css of the memcg associated with a page
449  * @page: page of interest
450  *
451  * If memcg is bound to the default hierarchy, css of the memcg associated
452  * with @page is returned.  The returned css remains associated with @page
453  * until it is released.
454  *
455  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456  * is returned.
457  */
458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 	struct mem_cgroup *memcg;
461 
462 	memcg = page->mem_cgroup;
463 
464 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 		memcg = root_mem_cgroup;
466 
467 	return &memcg->css;
468 }
469 
470 /**
471  * page_cgroup_ino - return inode number of the memcg a page is charged to
472  * @page: the page
473  *
474  * Look up the closest online ancestor of the memory cgroup @page is charged to
475  * and return its inode number or 0 if @page is not charged to any cgroup. It
476  * is safe to call this function without holding a reference to @page.
477  *
478  * Note, this function is inherently racy, because there is nothing to prevent
479  * the cgroup inode from getting torn down and potentially reallocated a moment
480  * after page_cgroup_ino() returns, so it only should be used by callers that
481  * do not care (such as procfs interfaces).
482  */
483 ino_t page_cgroup_ino(struct page *page)
484 {
485 	struct mem_cgroup *memcg;
486 	unsigned long ino = 0;
487 
488 	rcu_read_lock();
489 	if (PageHead(page) && PageSlab(page))
490 		memcg = memcg_from_slab_page(page);
491 	else
492 		memcg = READ_ONCE(page->mem_cgroup);
493 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 		memcg = parent_mem_cgroup(memcg);
495 	if (memcg)
496 		ino = cgroup_ino(memcg->css.cgroup);
497 	rcu_read_unlock();
498 	return ino;
499 }
500 
501 static struct mem_cgroup_per_node *
502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 	int nid = page_to_nid(page);
505 
506 	return memcg->nodeinfo[nid];
507 }
508 
509 static struct mem_cgroup_tree_per_node *
510 soft_limit_tree_node(int nid)
511 {
512 	return soft_limit_tree.rb_tree_per_node[nid];
513 }
514 
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_from_page(struct page *page)
517 {
518 	int nid = page_to_nid(page);
519 
520 	return soft_limit_tree.rb_tree_per_node[nid];
521 }
522 
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 					 struct mem_cgroup_tree_per_node *mctz,
525 					 unsigned long new_usage_in_excess)
526 {
527 	struct rb_node **p = &mctz->rb_root.rb_node;
528 	struct rb_node *parent = NULL;
529 	struct mem_cgroup_per_node *mz_node;
530 	bool rightmost = true;
531 
532 	if (mz->on_tree)
533 		return;
534 
535 	mz->usage_in_excess = new_usage_in_excess;
536 	if (!mz->usage_in_excess)
537 		return;
538 	while (*p) {
539 		parent = *p;
540 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 					tree_node);
542 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 			p = &(*p)->rb_left;
544 			rightmost = false;
545 		}
546 
547 		/*
548 		 * We can't avoid mem cgroups that are over their soft
549 		 * limit by the same amount
550 		 */
551 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 			p = &(*p)->rb_right;
553 	}
554 
555 	if (rightmost)
556 		mctz->rb_rightmost = &mz->tree_node;
557 
558 	rb_link_node(&mz->tree_node, parent, p);
559 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 	mz->on_tree = true;
561 }
562 
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 					 struct mem_cgroup_tree_per_node *mctz)
565 {
566 	if (!mz->on_tree)
567 		return;
568 
569 	if (&mz->tree_node == mctz->rb_rightmost)
570 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
571 
572 	rb_erase(&mz->tree_node, &mctz->rb_root);
573 	mz->on_tree = false;
574 }
575 
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 				       struct mem_cgroup_tree_per_node *mctz)
578 {
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(&mctz->lock, flags);
582 	__mem_cgroup_remove_exceeded(mz, mctz);
583 	spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585 
586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 	unsigned long nr_pages = page_counter_read(&memcg->memory);
589 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 	unsigned long excess = 0;
591 
592 	if (nr_pages > soft_limit)
593 		excess = nr_pages - soft_limit;
594 
595 	return excess;
596 }
597 
598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 	unsigned long excess;
601 	struct mem_cgroup_per_node *mz;
602 	struct mem_cgroup_tree_per_node *mctz;
603 
604 	mctz = soft_limit_tree_from_page(page);
605 	if (!mctz)
606 		return;
607 	/*
608 	 * Necessary to update all ancestors when hierarchy is used.
609 	 * because their event counter is not touched.
610 	 */
611 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 		mz = mem_cgroup_page_nodeinfo(memcg, page);
613 		excess = soft_limit_excess(memcg);
614 		/*
615 		 * We have to update the tree if mz is on RB-tree or
616 		 * mem is over its softlimit.
617 		 */
618 		if (excess || mz->on_tree) {
619 			unsigned long flags;
620 
621 			spin_lock_irqsave(&mctz->lock, flags);
622 			/* if on-tree, remove it */
623 			if (mz->on_tree)
624 				__mem_cgroup_remove_exceeded(mz, mctz);
625 			/*
626 			 * Insert again. mz->usage_in_excess will be updated.
627 			 * If excess is 0, no tree ops.
628 			 */
629 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
630 			spin_unlock_irqrestore(&mctz->lock, flags);
631 		}
632 	}
633 }
634 
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 	struct mem_cgroup_tree_per_node *mctz;
638 	struct mem_cgroup_per_node *mz;
639 	int nid;
640 
641 	for_each_node(nid) {
642 		mz = mem_cgroup_nodeinfo(memcg, nid);
643 		mctz = soft_limit_tree_node(nid);
644 		if (mctz)
645 			mem_cgroup_remove_exceeded(mz, mctz);
646 	}
647 }
648 
649 static struct mem_cgroup_per_node *
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 	struct mem_cgroup_per_node *mz;
653 
654 retry:
655 	mz = NULL;
656 	if (!mctz->rb_rightmost)
657 		goto done;		/* Nothing to reclaim from */
658 
659 	mz = rb_entry(mctz->rb_rightmost,
660 		      struct mem_cgroup_per_node, tree_node);
661 	/*
662 	 * Remove the node now but someone else can add it back,
663 	 * we will to add it back at the end of reclaim to its correct
664 	 * position in the tree.
665 	 */
666 	__mem_cgroup_remove_exceeded(mz, mctz);
667 	if (!soft_limit_excess(mz->memcg) ||
668 	    !css_tryget_online(&mz->memcg->css))
669 		goto retry;
670 done:
671 	return mz;
672 }
673 
674 static struct mem_cgroup_per_node *
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 	struct mem_cgroup_per_node *mz;
678 
679 	spin_lock_irq(&mctz->lock);
680 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 	spin_unlock_irq(&mctz->lock);
682 	return mz;
683 }
684 
685 /**
686  * __mod_memcg_state - update cgroup memory statistics
687  * @memcg: the memory cgroup
688  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689  * @val: delta to add to the counter, can be negative
690  */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 	long x;
694 
695 	if (mem_cgroup_disabled())
696 		return;
697 
698 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 		struct mem_cgroup *mi;
701 
702 		/*
703 		 * Batch local counters to keep them in sync with
704 		 * the hierarchical ones.
705 		 */
706 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 			atomic_long_add(x, &mi->vmstats[idx]);
709 		x = 0;
710 	}
711 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712 }
713 
714 static struct mem_cgroup_per_node *
715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716 {
717 	struct mem_cgroup *parent;
718 
719 	parent = parent_mem_cgroup(pn->memcg);
720 	if (!parent)
721 		return NULL;
722 	return mem_cgroup_nodeinfo(parent, nid);
723 }
724 
725 /**
726  * __mod_lruvec_state - update lruvec memory statistics
727  * @lruvec: the lruvec
728  * @idx: the stat item
729  * @val: delta to add to the counter, can be negative
730  *
731  * The lruvec is the intersection of the NUMA node and a cgroup. This
732  * function updates the all three counters that are affected by a
733  * change of state at this level: per-node, per-cgroup, per-lruvec.
734  */
735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 			int val)
737 {
738 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
739 	struct mem_cgroup_per_node *pn;
740 	struct mem_cgroup *memcg;
741 	long x;
742 
743 	/* Update node */
744 	__mod_node_page_state(pgdat, idx, val);
745 
746 	if (mem_cgroup_disabled())
747 		return;
748 
749 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750 	memcg = pn->memcg;
751 
752 	/* Update memcg */
753 	__mod_memcg_state(memcg, idx, val);
754 
755 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 		struct mem_cgroup_per_node *pi;
758 
759 		/*
760 		 * Batch local counters to keep them in sync with
761 		 * the hierarchical ones.
762 		 */
763 		__this_cpu_add(pn->lruvec_stat_local->count[idx], x);
764 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
765 			atomic_long_add(x, &pi->lruvec_stat[idx]);
766 		x = 0;
767 	}
768 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
769 }
770 
771 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
772 {
773 	struct page *page = virt_to_head_page(p);
774 	pg_data_t *pgdat = page_pgdat(page);
775 	struct mem_cgroup *memcg;
776 	struct lruvec *lruvec;
777 
778 	rcu_read_lock();
779 	memcg = memcg_from_slab_page(page);
780 
781 	/* Untracked pages have no memcg, no lruvec. Update only the node */
782 	if (!memcg || memcg == root_mem_cgroup) {
783 		__mod_node_page_state(pgdat, idx, val);
784 	} else {
785 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
786 		__mod_lruvec_state(lruvec, idx, val);
787 	}
788 	rcu_read_unlock();
789 }
790 
791 /**
792  * __count_memcg_events - account VM events in a cgroup
793  * @memcg: the memory cgroup
794  * @idx: the event item
795  * @count: the number of events that occured
796  */
797 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
798 			  unsigned long count)
799 {
800 	unsigned long x;
801 
802 	if (mem_cgroup_disabled())
803 		return;
804 
805 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
806 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
807 		struct mem_cgroup *mi;
808 
809 		/*
810 		 * Batch local counters to keep them in sync with
811 		 * the hierarchical ones.
812 		 */
813 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
814 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
815 			atomic_long_add(x, &mi->vmevents[idx]);
816 		x = 0;
817 	}
818 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
819 }
820 
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823 	return atomic_long_read(&memcg->vmevents[event]);
824 }
825 
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828 	long x = 0;
829 	int cpu;
830 
831 	for_each_possible_cpu(cpu)
832 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
833 	return x;
834 }
835 
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 					 struct page *page,
838 					 bool compound, int nr_pages)
839 {
840 	/*
841 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
842 	 * counted as CACHE even if it's on ANON LRU.
843 	 */
844 	if (PageAnon(page))
845 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846 	else {
847 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
848 		if (PageSwapBacked(page))
849 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
850 	}
851 
852 	if (compound) {
853 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
854 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
855 	}
856 
857 	/* pagein of a big page is an event. So, ignore page size */
858 	if (nr_pages > 0)
859 		__count_memcg_events(memcg, PGPGIN, 1);
860 	else {
861 		__count_memcg_events(memcg, PGPGOUT, 1);
862 		nr_pages = -nr_pages; /* for event */
863 	}
864 
865 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
866 }
867 
868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
869 				       enum mem_cgroup_events_target target)
870 {
871 	unsigned long val, next;
872 
873 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
874 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
875 	/* from time_after() in jiffies.h */
876 	if ((long)(next - val) < 0) {
877 		switch (target) {
878 		case MEM_CGROUP_TARGET_THRESH:
879 			next = val + THRESHOLDS_EVENTS_TARGET;
880 			break;
881 		case MEM_CGROUP_TARGET_SOFTLIMIT:
882 			next = val + SOFTLIMIT_EVENTS_TARGET;
883 			break;
884 		case MEM_CGROUP_TARGET_NUMAINFO:
885 			next = val + NUMAINFO_EVENTS_TARGET;
886 			break;
887 		default:
888 			break;
889 		}
890 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
891 		return true;
892 	}
893 	return false;
894 }
895 
896 /*
897  * Check events in order.
898  *
899  */
900 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
901 {
902 	/* threshold event is triggered in finer grain than soft limit */
903 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
904 						MEM_CGROUP_TARGET_THRESH))) {
905 		bool do_softlimit;
906 		bool do_numainfo __maybe_unused;
907 
908 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
909 						MEM_CGROUP_TARGET_SOFTLIMIT);
910 #if MAX_NUMNODES > 1
911 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
912 						MEM_CGROUP_TARGET_NUMAINFO);
913 #endif
914 		mem_cgroup_threshold(memcg);
915 		if (unlikely(do_softlimit))
916 			mem_cgroup_update_tree(memcg, page);
917 #if MAX_NUMNODES > 1
918 		if (unlikely(do_numainfo))
919 			atomic_inc(&memcg->numainfo_events);
920 #endif
921 	}
922 }
923 
924 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
925 {
926 	/*
927 	 * mm_update_next_owner() may clear mm->owner to NULL
928 	 * if it races with swapoff, page migration, etc.
929 	 * So this can be called with p == NULL.
930 	 */
931 	if (unlikely(!p))
932 		return NULL;
933 
934 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
935 }
936 EXPORT_SYMBOL(mem_cgroup_from_task);
937 
938 /**
939  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
940  * @mm: mm from which memcg should be extracted. It can be NULL.
941  *
942  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
943  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
944  * returned.
945  */
946 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
947 {
948 	struct mem_cgroup *memcg;
949 
950 	if (mem_cgroup_disabled())
951 		return NULL;
952 
953 	rcu_read_lock();
954 	do {
955 		/*
956 		 * Page cache insertions can happen withou an
957 		 * actual mm context, e.g. during disk probing
958 		 * on boot, loopback IO, acct() writes etc.
959 		 */
960 		if (unlikely(!mm))
961 			memcg = root_mem_cgroup;
962 		else {
963 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
964 			if (unlikely(!memcg))
965 				memcg = root_mem_cgroup;
966 		}
967 	} while (!css_tryget_online(&memcg->css));
968 	rcu_read_unlock();
969 	return memcg;
970 }
971 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
972 
973 /**
974  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
975  * @page: page from which memcg should be extracted.
976  *
977  * Obtain a reference on page->memcg and returns it if successful. Otherwise
978  * root_mem_cgroup is returned.
979  */
980 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
981 {
982 	struct mem_cgroup *memcg = page->mem_cgroup;
983 
984 	if (mem_cgroup_disabled())
985 		return NULL;
986 
987 	rcu_read_lock();
988 	if (!memcg || !css_tryget_online(&memcg->css))
989 		memcg = root_mem_cgroup;
990 	rcu_read_unlock();
991 	return memcg;
992 }
993 EXPORT_SYMBOL(get_mem_cgroup_from_page);
994 
995 /**
996  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
997  */
998 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
999 {
1000 	if (unlikely(current->active_memcg)) {
1001 		struct mem_cgroup *memcg = root_mem_cgroup;
1002 
1003 		rcu_read_lock();
1004 		if (css_tryget_online(&current->active_memcg->css))
1005 			memcg = current->active_memcg;
1006 		rcu_read_unlock();
1007 		return memcg;
1008 	}
1009 	return get_mem_cgroup_from_mm(current->mm);
1010 }
1011 
1012 /**
1013  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1014  * @root: hierarchy root
1015  * @prev: previously returned memcg, NULL on first invocation
1016  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1017  *
1018  * Returns references to children of the hierarchy below @root, or
1019  * @root itself, or %NULL after a full round-trip.
1020  *
1021  * Caller must pass the return value in @prev on subsequent
1022  * invocations for reference counting, or use mem_cgroup_iter_break()
1023  * to cancel a hierarchy walk before the round-trip is complete.
1024  *
1025  * Reclaimers can specify a node and a priority level in @reclaim to
1026  * divide up the memcgs in the hierarchy among all concurrent
1027  * reclaimers operating on the same node and priority.
1028  */
1029 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1030 				   struct mem_cgroup *prev,
1031 				   struct mem_cgroup_reclaim_cookie *reclaim)
1032 {
1033 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1034 	struct cgroup_subsys_state *css = NULL;
1035 	struct mem_cgroup *memcg = NULL;
1036 	struct mem_cgroup *pos = NULL;
1037 
1038 	if (mem_cgroup_disabled())
1039 		return NULL;
1040 
1041 	if (!root)
1042 		root = root_mem_cgroup;
1043 
1044 	if (prev && !reclaim)
1045 		pos = prev;
1046 
1047 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1048 		if (prev)
1049 			goto out;
1050 		return root;
1051 	}
1052 
1053 	rcu_read_lock();
1054 
1055 	if (reclaim) {
1056 		struct mem_cgroup_per_node *mz;
1057 
1058 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1059 		iter = &mz->iter[reclaim->priority];
1060 
1061 		if (prev && reclaim->generation != iter->generation)
1062 			goto out_unlock;
1063 
1064 		while (1) {
1065 			pos = READ_ONCE(iter->position);
1066 			if (!pos || css_tryget(&pos->css))
1067 				break;
1068 			/*
1069 			 * css reference reached zero, so iter->position will
1070 			 * be cleared by ->css_released. However, we should not
1071 			 * rely on this happening soon, because ->css_released
1072 			 * is called from a work queue, and by busy-waiting we
1073 			 * might block it. So we clear iter->position right
1074 			 * away.
1075 			 */
1076 			(void)cmpxchg(&iter->position, pos, NULL);
1077 		}
1078 	}
1079 
1080 	if (pos)
1081 		css = &pos->css;
1082 
1083 	for (;;) {
1084 		css = css_next_descendant_pre(css, &root->css);
1085 		if (!css) {
1086 			/*
1087 			 * Reclaimers share the hierarchy walk, and a
1088 			 * new one might jump in right at the end of
1089 			 * the hierarchy - make sure they see at least
1090 			 * one group and restart from the beginning.
1091 			 */
1092 			if (!prev)
1093 				continue;
1094 			break;
1095 		}
1096 
1097 		/*
1098 		 * Verify the css and acquire a reference.  The root
1099 		 * is provided by the caller, so we know it's alive
1100 		 * and kicking, and don't take an extra reference.
1101 		 */
1102 		memcg = mem_cgroup_from_css(css);
1103 
1104 		if (css == &root->css)
1105 			break;
1106 
1107 		if (css_tryget(css))
1108 			break;
1109 
1110 		memcg = NULL;
1111 	}
1112 
1113 	if (reclaim) {
1114 		/*
1115 		 * The position could have already been updated by a competing
1116 		 * thread, so check that the value hasn't changed since we read
1117 		 * it to avoid reclaiming from the same cgroup twice.
1118 		 */
1119 		(void)cmpxchg(&iter->position, pos, memcg);
1120 
1121 		if (pos)
1122 			css_put(&pos->css);
1123 
1124 		if (!memcg)
1125 			iter->generation++;
1126 		else if (!prev)
1127 			reclaim->generation = iter->generation;
1128 	}
1129 
1130 out_unlock:
1131 	rcu_read_unlock();
1132 out:
1133 	if (prev && prev != root)
1134 		css_put(&prev->css);
1135 
1136 	return memcg;
1137 }
1138 
1139 /**
1140  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1141  * @root: hierarchy root
1142  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1143  */
1144 void mem_cgroup_iter_break(struct mem_cgroup *root,
1145 			   struct mem_cgroup *prev)
1146 {
1147 	if (!root)
1148 		root = root_mem_cgroup;
1149 	if (prev && prev != root)
1150 		css_put(&prev->css);
1151 }
1152 
1153 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1154 					struct mem_cgroup *dead_memcg)
1155 {
1156 	struct mem_cgroup_reclaim_iter *iter;
1157 	struct mem_cgroup_per_node *mz;
1158 	int nid;
1159 	int i;
1160 
1161 	for_each_node(nid) {
1162 		mz = mem_cgroup_nodeinfo(from, nid);
1163 		for (i = 0; i <= DEF_PRIORITY; i++) {
1164 			iter = &mz->iter[i];
1165 			cmpxchg(&iter->position,
1166 				dead_memcg, NULL);
1167 		}
1168 	}
1169 }
1170 
1171 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1172 {
1173 	struct mem_cgroup *memcg = dead_memcg;
1174 	struct mem_cgroup *last;
1175 
1176 	do {
1177 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1178 		last = memcg;
1179 	} while ((memcg = parent_mem_cgroup(memcg)));
1180 
1181 	/*
1182 	 * When cgruop1 non-hierarchy mode is used,
1183 	 * parent_mem_cgroup() does not walk all the way up to the
1184 	 * cgroup root (root_mem_cgroup). So we have to handle
1185 	 * dead_memcg from cgroup root separately.
1186 	 */
1187 	if (last != root_mem_cgroup)
1188 		__invalidate_reclaim_iterators(root_mem_cgroup,
1189 						dead_memcg);
1190 }
1191 
1192 /**
1193  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1194  * @memcg: hierarchy root
1195  * @fn: function to call for each task
1196  * @arg: argument passed to @fn
1197  *
1198  * This function iterates over tasks attached to @memcg or to any of its
1199  * descendants and calls @fn for each task. If @fn returns a non-zero
1200  * value, the function breaks the iteration loop and returns the value.
1201  * Otherwise, it will iterate over all tasks and return 0.
1202  *
1203  * This function must not be called for the root memory cgroup.
1204  */
1205 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1206 			  int (*fn)(struct task_struct *, void *), void *arg)
1207 {
1208 	struct mem_cgroup *iter;
1209 	int ret = 0;
1210 
1211 	BUG_ON(memcg == root_mem_cgroup);
1212 
1213 	for_each_mem_cgroup_tree(iter, memcg) {
1214 		struct css_task_iter it;
1215 		struct task_struct *task;
1216 
1217 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1218 		while (!ret && (task = css_task_iter_next(&it)))
1219 			ret = fn(task, arg);
1220 		css_task_iter_end(&it);
1221 		if (ret) {
1222 			mem_cgroup_iter_break(memcg, iter);
1223 			break;
1224 		}
1225 	}
1226 	return ret;
1227 }
1228 
1229 /**
1230  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1231  * @page: the page
1232  * @pgdat: pgdat of the page
1233  *
1234  * This function is only safe when following the LRU page isolation
1235  * and putback protocol: the LRU lock must be held, and the page must
1236  * either be PageLRU() or the caller must have isolated/allocated it.
1237  */
1238 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1239 {
1240 	struct mem_cgroup_per_node *mz;
1241 	struct mem_cgroup *memcg;
1242 	struct lruvec *lruvec;
1243 
1244 	if (mem_cgroup_disabled()) {
1245 		lruvec = &pgdat->lruvec;
1246 		goto out;
1247 	}
1248 
1249 	memcg = page->mem_cgroup;
1250 	/*
1251 	 * Swapcache readahead pages are added to the LRU - and
1252 	 * possibly migrated - before they are charged.
1253 	 */
1254 	if (!memcg)
1255 		memcg = root_mem_cgroup;
1256 
1257 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1258 	lruvec = &mz->lruvec;
1259 out:
1260 	/*
1261 	 * Since a node can be onlined after the mem_cgroup was created,
1262 	 * we have to be prepared to initialize lruvec->zone here;
1263 	 * and if offlined then reonlined, we need to reinitialize it.
1264 	 */
1265 	if (unlikely(lruvec->pgdat != pgdat))
1266 		lruvec->pgdat = pgdat;
1267 	return lruvec;
1268 }
1269 
1270 /**
1271  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1272  * @lruvec: mem_cgroup per zone lru vector
1273  * @lru: index of lru list the page is sitting on
1274  * @zid: zone id of the accounted pages
1275  * @nr_pages: positive when adding or negative when removing
1276  *
1277  * This function must be called under lru_lock, just before a page is added
1278  * to or just after a page is removed from an lru list (that ordering being
1279  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1280  */
1281 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282 				int zid, int nr_pages)
1283 {
1284 	struct mem_cgroup_per_node *mz;
1285 	unsigned long *lru_size;
1286 	long size;
1287 
1288 	if (mem_cgroup_disabled())
1289 		return;
1290 
1291 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292 	lru_size = &mz->lru_zone_size[zid][lru];
1293 
1294 	if (nr_pages < 0)
1295 		*lru_size += nr_pages;
1296 
1297 	size = *lru_size;
1298 	if (WARN_ONCE(size < 0,
1299 		"%s(%p, %d, %d): lru_size %ld\n",
1300 		__func__, lruvec, lru, nr_pages, size)) {
1301 		VM_BUG_ON(1);
1302 		*lru_size = 0;
1303 	}
1304 
1305 	if (nr_pages > 0)
1306 		*lru_size += nr_pages;
1307 }
1308 
1309 /**
1310  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311  * @memcg: the memory cgroup
1312  *
1313  * Returns the maximum amount of memory @mem can be charged with, in
1314  * pages.
1315  */
1316 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317 {
1318 	unsigned long margin = 0;
1319 	unsigned long count;
1320 	unsigned long limit;
1321 
1322 	count = page_counter_read(&memcg->memory);
1323 	limit = READ_ONCE(memcg->memory.max);
1324 	if (count < limit)
1325 		margin = limit - count;
1326 
1327 	if (do_memsw_account()) {
1328 		count = page_counter_read(&memcg->memsw);
1329 		limit = READ_ONCE(memcg->memsw.max);
1330 		if (count <= limit)
1331 			margin = min(margin, limit - count);
1332 		else
1333 			margin = 0;
1334 	}
1335 
1336 	return margin;
1337 }
1338 
1339 /*
1340  * A routine for checking "mem" is under move_account() or not.
1341  *
1342  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1343  * moving cgroups. This is for waiting at high-memory pressure
1344  * caused by "move".
1345  */
1346 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1347 {
1348 	struct mem_cgroup *from;
1349 	struct mem_cgroup *to;
1350 	bool ret = false;
1351 	/*
1352 	 * Unlike task_move routines, we access mc.to, mc.from not under
1353 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1354 	 */
1355 	spin_lock(&mc.lock);
1356 	from = mc.from;
1357 	to = mc.to;
1358 	if (!from)
1359 		goto unlock;
1360 
1361 	ret = mem_cgroup_is_descendant(from, memcg) ||
1362 		mem_cgroup_is_descendant(to, memcg);
1363 unlock:
1364 	spin_unlock(&mc.lock);
1365 	return ret;
1366 }
1367 
1368 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1369 {
1370 	if (mc.moving_task && current != mc.moving_task) {
1371 		if (mem_cgroup_under_move(memcg)) {
1372 			DEFINE_WAIT(wait);
1373 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1374 			/* moving charge context might have finished. */
1375 			if (mc.moving_task)
1376 				schedule();
1377 			finish_wait(&mc.waitq, &wait);
1378 			return true;
1379 		}
1380 	}
1381 	return false;
1382 }
1383 
1384 static char *memory_stat_format(struct mem_cgroup *memcg)
1385 {
1386 	struct seq_buf s;
1387 	int i;
1388 
1389 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1390 	if (!s.buffer)
1391 		return NULL;
1392 
1393 	/*
1394 	 * Provide statistics on the state of the memory subsystem as
1395 	 * well as cumulative event counters that show past behavior.
1396 	 *
1397 	 * This list is ordered following a combination of these gradients:
1398 	 * 1) generic big picture -> specifics and details
1399 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1400 	 *
1401 	 * Current memory state:
1402 	 */
1403 
1404 	seq_buf_printf(&s, "anon %llu\n",
1405 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1406 		       PAGE_SIZE);
1407 	seq_buf_printf(&s, "file %llu\n",
1408 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1409 		       PAGE_SIZE);
1410 	seq_buf_printf(&s, "kernel_stack %llu\n",
1411 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1412 		       1024);
1413 	seq_buf_printf(&s, "slab %llu\n",
1414 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1415 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1416 		       PAGE_SIZE);
1417 	seq_buf_printf(&s, "sock %llu\n",
1418 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1419 		       PAGE_SIZE);
1420 
1421 	seq_buf_printf(&s, "shmem %llu\n",
1422 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1423 		       PAGE_SIZE);
1424 	seq_buf_printf(&s, "file_mapped %llu\n",
1425 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1426 		       PAGE_SIZE);
1427 	seq_buf_printf(&s, "file_dirty %llu\n",
1428 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1429 		       PAGE_SIZE);
1430 	seq_buf_printf(&s, "file_writeback %llu\n",
1431 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1432 		       PAGE_SIZE);
1433 
1434 	/*
1435 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1436 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1437 	 * arse because it requires migrating the work out of rmap to a place
1438 	 * where the page->mem_cgroup is set up and stable.
1439 	 */
1440 	seq_buf_printf(&s, "anon_thp %llu\n",
1441 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1442 		       PAGE_SIZE);
1443 
1444 	for (i = 0; i < NR_LRU_LISTS; i++)
1445 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1446 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1447 			       PAGE_SIZE);
1448 
1449 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1450 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1451 		       PAGE_SIZE);
1452 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1453 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1454 		       PAGE_SIZE);
1455 
1456 	/* Accumulated memory events */
1457 
1458 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1459 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1460 
1461 	seq_buf_printf(&s, "workingset_refault %lu\n",
1462 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1463 	seq_buf_printf(&s, "workingset_activate %lu\n",
1464 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1465 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1466 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1467 
1468 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1469 	seq_buf_printf(&s, "pgscan %lu\n",
1470 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1471 		       memcg_events(memcg, PGSCAN_DIRECT));
1472 	seq_buf_printf(&s, "pgsteal %lu\n",
1473 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1474 		       memcg_events(memcg, PGSTEAL_DIRECT));
1475 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1476 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1477 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1478 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1479 
1480 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1481 	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1482 		       memcg_events(memcg, THP_FAULT_ALLOC));
1483 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1484 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1485 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1486 
1487 	/* The above should easily fit into one page */
1488 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1489 
1490 	return s.buffer;
1491 }
1492 
1493 #define K(x) ((x) << (PAGE_SHIFT-10))
1494 /**
1495  * mem_cgroup_print_oom_context: Print OOM information relevant to
1496  * memory controller.
1497  * @memcg: The memory cgroup that went over limit
1498  * @p: Task that is going to be killed
1499  *
1500  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1501  * enabled
1502  */
1503 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1504 {
1505 	rcu_read_lock();
1506 
1507 	if (memcg) {
1508 		pr_cont(",oom_memcg=");
1509 		pr_cont_cgroup_path(memcg->css.cgroup);
1510 	} else
1511 		pr_cont(",global_oom");
1512 	if (p) {
1513 		pr_cont(",task_memcg=");
1514 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1515 	}
1516 	rcu_read_unlock();
1517 }
1518 
1519 /**
1520  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1521  * memory controller.
1522  * @memcg: The memory cgroup that went over limit
1523  */
1524 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1525 {
1526 	char *buf;
1527 
1528 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1529 		K((u64)page_counter_read(&memcg->memory)),
1530 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1531 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1532 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 			K((u64)page_counter_read(&memcg->swap)),
1534 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1535 	else {
1536 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1537 			K((u64)page_counter_read(&memcg->memsw)),
1538 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1539 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1540 			K((u64)page_counter_read(&memcg->kmem)),
1541 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1542 	}
1543 
1544 	pr_info("Memory cgroup stats for ");
1545 	pr_cont_cgroup_path(memcg->css.cgroup);
1546 	pr_cont(":");
1547 	buf = memory_stat_format(memcg);
1548 	if (!buf)
1549 		return;
1550 	pr_info("%s", buf);
1551 	kfree(buf);
1552 }
1553 
1554 /*
1555  * Return the memory (and swap, if configured) limit for a memcg.
1556  */
1557 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1558 {
1559 	unsigned long max;
1560 
1561 	max = memcg->memory.max;
1562 	if (mem_cgroup_swappiness(memcg)) {
1563 		unsigned long memsw_max;
1564 		unsigned long swap_max;
1565 
1566 		memsw_max = memcg->memsw.max;
1567 		swap_max = memcg->swap.max;
1568 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1569 		max = min(max + swap_max, memsw_max);
1570 	}
1571 	return max;
1572 }
1573 
1574 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1575 				     int order)
1576 {
1577 	struct oom_control oc = {
1578 		.zonelist = NULL,
1579 		.nodemask = NULL,
1580 		.memcg = memcg,
1581 		.gfp_mask = gfp_mask,
1582 		.order = order,
1583 	};
1584 	bool ret;
1585 
1586 	if (mutex_lock_killable(&oom_lock))
1587 		return true;
1588 	/*
1589 	 * A few threads which were not waiting at mutex_lock_killable() can
1590 	 * fail to bail out. Therefore, check again after holding oom_lock.
1591 	 */
1592 	ret = should_force_charge() || out_of_memory(&oc);
1593 	mutex_unlock(&oom_lock);
1594 	return ret;
1595 }
1596 
1597 #if MAX_NUMNODES > 1
1598 
1599 /**
1600  * test_mem_cgroup_node_reclaimable
1601  * @memcg: the target memcg
1602  * @nid: the node ID to be checked.
1603  * @noswap : specify true here if the user wants flle only information.
1604  *
1605  * This function returns whether the specified memcg contains any
1606  * reclaimable pages on a node. Returns true if there are any reclaimable
1607  * pages in the node.
1608  */
1609 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1610 		int nid, bool noswap)
1611 {
1612 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1613 
1614 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1615 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1616 		return true;
1617 	if (noswap || !total_swap_pages)
1618 		return false;
1619 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1620 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1621 		return true;
1622 	return false;
1623 
1624 }
1625 
1626 /*
1627  * Always updating the nodemask is not very good - even if we have an empty
1628  * list or the wrong list here, we can start from some node and traverse all
1629  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1630  *
1631  */
1632 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1633 {
1634 	int nid;
1635 	/*
1636 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1637 	 * pagein/pageout changes since the last update.
1638 	 */
1639 	if (!atomic_read(&memcg->numainfo_events))
1640 		return;
1641 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1642 		return;
1643 
1644 	/* make a nodemask where this memcg uses memory from */
1645 	memcg->scan_nodes = node_states[N_MEMORY];
1646 
1647 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1648 
1649 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1650 			node_clear(nid, memcg->scan_nodes);
1651 	}
1652 
1653 	atomic_set(&memcg->numainfo_events, 0);
1654 	atomic_set(&memcg->numainfo_updating, 0);
1655 }
1656 
1657 /*
1658  * Selecting a node where we start reclaim from. Because what we need is just
1659  * reducing usage counter, start from anywhere is O,K. Considering
1660  * memory reclaim from current node, there are pros. and cons.
1661  *
1662  * Freeing memory from current node means freeing memory from a node which
1663  * we'll use or we've used. So, it may make LRU bad. And if several threads
1664  * hit limits, it will see a contention on a node. But freeing from remote
1665  * node means more costs for memory reclaim because of memory latency.
1666  *
1667  * Now, we use round-robin. Better algorithm is welcomed.
1668  */
1669 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1670 {
1671 	int node;
1672 
1673 	mem_cgroup_may_update_nodemask(memcg);
1674 	node = memcg->last_scanned_node;
1675 
1676 	node = next_node_in(node, memcg->scan_nodes);
1677 	/*
1678 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1679 	 * last time it really checked all the LRUs due to rate limiting.
1680 	 * Fallback to the current node in that case for simplicity.
1681 	 */
1682 	if (unlikely(node == MAX_NUMNODES))
1683 		node = numa_node_id();
1684 
1685 	memcg->last_scanned_node = node;
1686 	return node;
1687 }
1688 #else
1689 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1690 {
1691 	return 0;
1692 }
1693 #endif
1694 
1695 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1696 				   pg_data_t *pgdat,
1697 				   gfp_t gfp_mask,
1698 				   unsigned long *total_scanned)
1699 {
1700 	struct mem_cgroup *victim = NULL;
1701 	int total = 0;
1702 	int loop = 0;
1703 	unsigned long excess;
1704 	unsigned long nr_scanned;
1705 	struct mem_cgroup_reclaim_cookie reclaim = {
1706 		.pgdat = pgdat,
1707 		.priority = 0,
1708 	};
1709 
1710 	excess = soft_limit_excess(root_memcg);
1711 
1712 	while (1) {
1713 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1714 		if (!victim) {
1715 			loop++;
1716 			if (loop >= 2) {
1717 				/*
1718 				 * If we have not been able to reclaim
1719 				 * anything, it might because there are
1720 				 * no reclaimable pages under this hierarchy
1721 				 */
1722 				if (!total)
1723 					break;
1724 				/*
1725 				 * We want to do more targeted reclaim.
1726 				 * excess >> 2 is not to excessive so as to
1727 				 * reclaim too much, nor too less that we keep
1728 				 * coming back to reclaim from this cgroup
1729 				 */
1730 				if (total >= (excess >> 2) ||
1731 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1732 					break;
1733 			}
1734 			continue;
1735 		}
1736 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1737 					pgdat, &nr_scanned);
1738 		*total_scanned += nr_scanned;
1739 		if (!soft_limit_excess(root_memcg))
1740 			break;
1741 	}
1742 	mem_cgroup_iter_break(root_memcg, victim);
1743 	return total;
1744 }
1745 
1746 #ifdef CONFIG_LOCKDEP
1747 static struct lockdep_map memcg_oom_lock_dep_map = {
1748 	.name = "memcg_oom_lock",
1749 };
1750 #endif
1751 
1752 static DEFINE_SPINLOCK(memcg_oom_lock);
1753 
1754 /*
1755  * Check OOM-Killer is already running under our hierarchy.
1756  * If someone is running, return false.
1757  */
1758 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1759 {
1760 	struct mem_cgroup *iter, *failed = NULL;
1761 
1762 	spin_lock(&memcg_oom_lock);
1763 
1764 	for_each_mem_cgroup_tree(iter, memcg) {
1765 		if (iter->oom_lock) {
1766 			/*
1767 			 * this subtree of our hierarchy is already locked
1768 			 * so we cannot give a lock.
1769 			 */
1770 			failed = iter;
1771 			mem_cgroup_iter_break(memcg, iter);
1772 			break;
1773 		} else
1774 			iter->oom_lock = true;
1775 	}
1776 
1777 	if (failed) {
1778 		/*
1779 		 * OK, we failed to lock the whole subtree so we have
1780 		 * to clean up what we set up to the failing subtree
1781 		 */
1782 		for_each_mem_cgroup_tree(iter, memcg) {
1783 			if (iter == failed) {
1784 				mem_cgroup_iter_break(memcg, iter);
1785 				break;
1786 			}
1787 			iter->oom_lock = false;
1788 		}
1789 	} else
1790 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1791 
1792 	spin_unlock(&memcg_oom_lock);
1793 
1794 	return !failed;
1795 }
1796 
1797 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1798 {
1799 	struct mem_cgroup *iter;
1800 
1801 	spin_lock(&memcg_oom_lock);
1802 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1803 	for_each_mem_cgroup_tree(iter, memcg)
1804 		iter->oom_lock = false;
1805 	spin_unlock(&memcg_oom_lock);
1806 }
1807 
1808 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1809 {
1810 	struct mem_cgroup *iter;
1811 
1812 	spin_lock(&memcg_oom_lock);
1813 	for_each_mem_cgroup_tree(iter, memcg)
1814 		iter->under_oom++;
1815 	spin_unlock(&memcg_oom_lock);
1816 }
1817 
1818 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1819 {
1820 	struct mem_cgroup *iter;
1821 
1822 	/*
1823 	 * When a new child is created while the hierarchy is under oom,
1824 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1825 	 */
1826 	spin_lock(&memcg_oom_lock);
1827 	for_each_mem_cgroup_tree(iter, memcg)
1828 		if (iter->under_oom > 0)
1829 			iter->under_oom--;
1830 	spin_unlock(&memcg_oom_lock);
1831 }
1832 
1833 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1834 
1835 struct oom_wait_info {
1836 	struct mem_cgroup *memcg;
1837 	wait_queue_entry_t	wait;
1838 };
1839 
1840 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1841 	unsigned mode, int sync, void *arg)
1842 {
1843 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1844 	struct mem_cgroup *oom_wait_memcg;
1845 	struct oom_wait_info *oom_wait_info;
1846 
1847 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1848 	oom_wait_memcg = oom_wait_info->memcg;
1849 
1850 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1851 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1852 		return 0;
1853 	return autoremove_wake_function(wait, mode, sync, arg);
1854 }
1855 
1856 static void memcg_oom_recover(struct mem_cgroup *memcg)
1857 {
1858 	/*
1859 	 * For the following lockless ->under_oom test, the only required
1860 	 * guarantee is that it must see the state asserted by an OOM when
1861 	 * this function is called as a result of userland actions
1862 	 * triggered by the notification of the OOM.  This is trivially
1863 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1864 	 * triggering notification.
1865 	 */
1866 	if (memcg && memcg->under_oom)
1867 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1868 }
1869 
1870 enum oom_status {
1871 	OOM_SUCCESS,
1872 	OOM_FAILED,
1873 	OOM_ASYNC,
1874 	OOM_SKIPPED
1875 };
1876 
1877 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1878 {
1879 	enum oom_status ret;
1880 	bool locked;
1881 
1882 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1883 		return OOM_SKIPPED;
1884 
1885 	memcg_memory_event(memcg, MEMCG_OOM);
1886 
1887 	/*
1888 	 * We are in the middle of the charge context here, so we
1889 	 * don't want to block when potentially sitting on a callstack
1890 	 * that holds all kinds of filesystem and mm locks.
1891 	 *
1892 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1893 	 * handling until the charge can succeed; remember the context and put
1894 	 * the task to sleep at the end of the page fault when all locks are
1895 	 * released.
1896 	 *
1897 	 * On the other hand, in-kernel OOM killer allows for an async victim
1898 	 * memory reclaim (oom_reaper) and that means that we are not solely
1899 	 * relying on the oom victim to make a forward progress and we can
1900 	 * invoke the oom killer here.
1901 	 *
1902 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1903 	 * victim and then we have to bail out from the charge path.
1904 	 */
1905 	if (memcg->oom_kill_disable) {
1906 		if (!current->in_user_fault)
1907 			return OOM_SKIPPED;
1908 		css_get(&memcg->css);
1909 		current->memcg_in_oom = memcg;
1910 		current->memcg_oom_gfp_mask = mask;
1911 		current->memcg_oom_order = order;
1912 
1913 		return OOM_ASYNC;
1914 	}
1915 
1916 	mem_cgroup_mark_under_oom(memcg);
1917 
1918 	locked = mem_cgroup_oom_trylock(memcg);
1919 
1920 	if (locked)
1921 		mem_cgroup_oom_notify(memcg);
1922 
1923 	mem_cgroup_unmark_under_oom(memcg);
1924 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1925 		ret = OOM_SUCCESS;
1926 	else
1927 		ret = OOM_FAILED;
1928 
1929 	if (locked)
1930 		mem_cgroup_oom_unlock(memcg);
1931 
1932 	return ret;
1933 }
1934 
1935 /**
1936  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1937  * @handle: actually kill/wait or just clean up the OOM state
1938  *
1939  * This has to be called at the end of a page fault if the memcg OOM
1940  * handler was enabled.
1941  *
1942  * Memcg supports userspace OOM handling where failed allocations must
1943  * sleep on a waitqueue until the userspace task resolves the
1944  * situation.  Sleeping directly in the charge context with all kinds
1945  * of locks held is not a good idea, instead we remember an OOM state
1946  * in the task and mem_cgroup_oom_synchronize() has to be called at
1947  * the end of the page fault to complete the OOM handling.
1948  *
1949  * Returns %true if an ongoing memcg OOM situation was detected and
1950  * completed, %false otherwise.
1951  */
1952 bool mem_cgroup_oom_synchronize(bool handle)
1953 {
1954 	struct mem_cgroup *memcg = current->memcg_in_oom;
1955 	struct oom_wait_info owait;
1956 	bool locked;
1957 
1958 	/* OOM is global, do not handle */
1959 	if (!memcg)
1960 		return false;
1961 
1962 	if (!handle)
1963 		goto cleanup;
1964 
1965 	owait.memcg = memcg;
1966 	owait.wait.flags = 0;
1967 	owait.wait.func = memcg_oom_wake_function;
1968 	owait.wait.private = current;
1969 	INIT_LIST_HEAD(&owait.wait.entry);
1970 
1971 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1972 	mem_cgroup_mark_under_oom(memcg);
1973 
1974 	locked = mem_cgroup_oom_trylock(memcg);
1975 
1976 	if (locked)
1977 		mem_cgroup_oom_notify(memcg);
1978 
1979 	if (locked && !memcg->oom_kill_disable) {
1980 		mem_cgroup_unmark_under_oom(memcg);
1981 		finish_wait(&memcg_oom_waitq, &owait.wait);
1982 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1983 					 current->memcg_oom_order);
1984 	} else {
1985 		schedule();
1986 		mem_cgroup_unmark_under_oom(memcg);
1987 		finish_wait(&memcg_oom_waitq, &owait.wait);
1988 	}
1989 
1990 	if (locked) {
1991 		mem_cgroup_oom_unlock(memcg);
1992 		/*
1993 		 * There is no guarantee that an OOM-lock contender
1994 		 * sees the wakeups triggered by the OOM kill
1995 		 * uncharges.  Wake any sleepers explicitely.
1996 		 */
1997 		memcg_oom_recover(memcg);
1998 	}
1999 cleanup:
2000 	current->memcg_in_oom = NULL;
2001 	css_put(&memcg->css);
2002 	return true;
2003 }
2004 
2005 /**
2006  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2007  * @victim: task to be killed by the OOM killer
2008  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2009  *
2010  * Returns a pointer to a memory cgroup, which has to be cleaned up
2011  * by killing all belonging OOM-killable tasks.
2012  *
2013  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2014  */
2015 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2016 					    struct mem_cgroup *oom_domain)
2017 {
2018 	struct mem_cgroup *oom_group = NULL;
2019 	struct mem_cgroup *memcg;
2020 
2021 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2022 		return NULL;
2023 
2024 	if (!oom_domain)
2025 		oom_domain = root_mem_cgroup;
2026 
2027 	rcu_read_lock();
2028 
2029 	memcg = mem_cgroup_from_task(victim);
2030 	if (memcg == root_mem_cgroup)
2031 		goto out;
2032 
2033 	/*
2034 	 * Traverse the memory cgroup hierarchy from the victim task's
2035 	 * cgroup up to the OOMing cgroup (or root) to find the
2036 	 * highest-level memory cgroup with oom.group set.
2037 	 */
2038 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2039 		if (memcg->oom_group)
2040 			oom_group = memcg;
2041 
2042 		if (memcg == oom_domain)
2043 			break;
2044 	}
2045 
2046 	if (oom_group)
2047 		css_get(&oom_group->css);
2048 out:
2049 	rcu_read_unlock();
2050 
2051 	return oom_group;
2052 }
2053 
2054 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2055 {
2056 	pr_info("Tasks in ");
2057 	pr_cont_cgroup_path(memcg->css.cgroup);
2058 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2059 }
2060 
2061 /**
2062  * lock_page_memcg - lock a page->mem_cgroup binding
2063  * @page: the page
2064  *
2065  * This function protects unlocked LRU pages from being moved to
2066  * another cgroup.
2067  *
2068  * It ensures lifetime of the returned memcg. Caller is responsible
2069  * for the lifetime of the page; __unlock_page_memcg() is available
2070  * when @page might get freed inside the locked section.
2071  */
2072 struct mem_cgroup *lock_page_memcg(struct page *page)
2073 {
2074 	struct mem_cgroup *memcg;
2075 	unsigned long flags;
2076 
2077 	/*
2078 	 * The RCU lock is held throughout the transaction.  The fast
2079 	 * path can get away without acquiring the memcg->move_lock
2080 	 * because page moving starts with an RCU grace period.
2081 	 *
2082 	 * The RCU lock also protects the memcg from being freed when
2083 	 * the page state that is going to change is the only thing
2084 	 * preventing the page itself from being freed. E.g. writeback
2085 	 * doesn't hold a page reference and relies on PG_writeback to
2086 	 * keep off truncation, migration and so forth.
2087          */
2088 	rcu_read_lock();
2089 
2090 	if (mem_cgroup_disabled())
2091 		return NULL;
2092 again:
2093 	memcg = page->mem_cgroup;
2094 	if (unlikely(!memcg))
2095 		return NULL;
2096 
2097 	if (atomic_read(&memcg->moving_account) <= 0)
2098 		return memcg;
2099 
2100 	spin_lock_irqsave(&memcg->move_lock, flags);
2101 	if (memcg != page->mem_cgroup) {
2102 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2103 		goto again;
2104 	}
2105 
2106 	/*
2107 	 * When charge migration first begins, we can have locked and
2108 	 * unlocked page stat updates happening concurrently.  Track
2109 	 * the task who has the lock for unlock_page_memcg().
2110 	 */
2111 	memcg->move_lock_task = current;
2112 	memcg->move_lock_flags = flags;
2113 
2114 	return memcg;
2115 }
2116 EXPORT_SYMBOL(lock_page_memcg);
2117 
2118 /**
2119  * __unlock_page_memcg - unlock and unpin a memcg
2120  * @memcg: the memcg
2121  *
2122  * Unlock and unpin a memcg returned by lock_page_memcg().
2123  */
2124 void __unlock_page_memcg(struct mem_cgroup *memcg)
2125 {
2126 	if (memcg && memcg->move_lock_task == current) {
2127 		unsigned long flags = memcg->move_lock_flags;
2128 
2129 		memcg->move_lock_task = NULL;
2130 		memcg->move_lock_flags = 0;
2131 
2132 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2133 	}
2134 
2135 	rcu_read_unlock();
2136 }
2137 
2138 /**
2139  * unlock_page_memcg - unlock a page->mem_cgroup binding
2140  * @page: the page
2141  */
2142 void unlock_page_memcg(struct page *page)
2143 {
2144 	__unlock_page_memcg(page->mem_cgroup);
2145 }
2146 EXPORT_SYMBOL(unlock_page_memcg);
2147 
2148 struct memcg_stock_pcp {
2149 	struct mem_cgroup *cached; /* this never be root cgroup */
2150 	unsigned int nr_pages;
2151 	struct work_struct work;
2152 	unsigned long flags;
2153 #define FLUSHING_CACHED_CHARGE	0
2154 };
2155 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2156 static DEFINE_MUTEX(percpu_charge_mutex);
2157 
2158 /**
2159  * consume_stock: Try to consume stocked charge on this cpu.
2160  * @memcg: memcg to consume from.
2161  * @nr_pages: how many pages to charge.
2162  *
2163  * The charges will only happen if @memcg matches the current cpu's memcg
2164  * stock, and at least @nr_pages are available in that stock.  Failure to
2165  * service an allocation will refill the stock.
2166  *
2167  * returns true if successful, false otherwise.
2168  */
2169 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 {
2171 	struct memcg_stock_pcp *stock;
2172 	unsigned long flags;
2173 	bool ret = false;
2174 
2175 	if (nr_pages > MEMCG_CHARGE_BATCH)
2176 		return ret;
2177 
2178 	local_irq_save(flags);
2179 
2180 	stock = this_cpu_ptr(&memcg_stock);
2181 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2182 		stock->nr_pages -= nr_pages;
2183 		ret = true;
2184 	}
2185 
2186 	local_irq_restore(flags);
2187 
2188 	return ret;
2189 }
2190 
2191 /*
2192  * Returns stocks cached in percpu and reset cached information.
2193  */
2194 static void drain_stock(struct memcg_stock_pcp *stock)
2195 {
2196 	struct mem_cgroup *old = stock->cached;
2197 
2198 	if (stock->nr_pages) {
2199 		page_counter_uncharge(&old->memory, stock->nr_pages);
2200 		if (do_memsw_account())
2201 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2202 		css_put_many(&old->css, stock->nr_pages);
2203 		stock->nr_pages = 0;
2204 	}
2205 	stock->cached = NULL;
2206 }
2207 
2208 static void drain_local_stock(struct work_struct *dummy)
2209 {
2210 	struct memcg_stock_pcp *stock;
2211 	unsigned long flags;
2212 
2213 	/*
2214 	 * The only protection from memory hotplug vs. drain_stock races is
2215 	 * that we always operate on local CPU stock here with IRQ disabled
2216 	 */
2217 	local_irq_save(flags);
2218 
2219 	stock = this_cpu_ptr(&memcg_stock);
2220 	drain_stock(stock);
2221 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2222 
2223 	local_irq_restore(flags);
2224 }
2225 
2226 /*
2227  * Cache charges(val) to local per_cpu area.
2228  * This will be consumed by consume_stock() function, later.
2229  */
2230 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2231 {
2232 	struct memcg_stock_pcp *stock;
2233 	unsigned long flags;
2234 
2235 	local_irq_save(flags);
2236 
2237 	stock = this_cpu_ptr(&memcg_stock);
2238 	if (stock->cached != memcg) { /* reset if necessary */
2239 		drain_stock(stock);
2240 		stock->cached = memcg;
2241 	}
2242 	stock->nr_pages += nr_pages;
2243 
2244 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2245 		drain_stock(stock);
2246 
2247 	local_irq_restore(flags);
2248 }
2249 
2250 /*
2251  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2252  * of the hierarchy under it.
2253  */
2254 static void drain_all_stock(struct mem_cgroup *root_memcg)
2255 {
2256 	int cpu, curcpu;
2257 
2258 	/* If someone's already draining, avoid adding running more workers. */
2259 	if (!mutex_trylock(&percpu_charge_mutex))
2260 		return;
2261 	/*
2262 	 * Notify other cpus that system-wide "drain" is running
2263 	 * We do not care about races with the cpu hotplug because cpu down
2264 	 * as well as workers from this path always operate on the local
2265 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2266 	 */
2267 	curcpu = get_cpu();
2268 	for_each_online_cpu(cpu) {
2269 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2270 		struct mem_cgroup *memcg;
2271 
2272 		memcg = stock->cached;
2273 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2274 			continue;
2275 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2276 			css_put(&memcg->css);
2277 			continue;
2278 		}
2279 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2280 			if (cpu == curcpu)
2281 				drain_local_stock(&stock->work);
2282 			else
2283 				schedule_work_on(cpu, &stock->work);
2284 		}
2285 		css_put(&memcg->css);
2286 	}
2287 	put_cpu();
2288 	mutex_unlock(&percpu_charge_mutex);
2289 }
2290 
2291 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2292 {
2293 	struct memcg_stock_pcp *stock;
2294 	struct mem_cgroup *memcg, *mi;
2295 
2296 	stock = &per_cpu(memcg_stock, cpu);
2297 	drain_stock(stock);
2298 
2299 	for_each_mem_cgroup(memcg) {
2300 		int i;
2301 
2302 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2303 			int nid;
2304 			long x;
2305 
2306 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2307 			if (x)
2308 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2309 					atomic_long_add(x, &memcg->vmstats[i]);
2310 
2311 			if (i >= NR_VM_NODE_STAT_ITEMS)
2312 				continue;
2313 
2314 			for_each_node(nid) {
2315 				struct mem_cgroup_per_node *pn;
2316 
2317 				pn = mem_cgroup_nodeinfo(memcg, nid);
2318 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2319 				if (x)
2320 					do {
2321 						atomic_long_add(x, &pn->lruvec_stat[i]);
2322 					} while ((pn = parent_nodeinfo(pn, nid)));
2323 			}
2324 		}
2325 
2326 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2327 			long x;
2328 
2329 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2330 			if (x)
2331 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2332 					atomic_long_add(x, &memcg->vmevents[i]);
2333 		}
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 static void reclaim_high(struct mem_cgroup *memcg,
2340 			 unsigned int nr_pages,
2341 			 gfp_t gfp_mask)
2342 {
2343 	do {
2344 		if (page_counter_read(&memcg->memory) <= memcg->high)
2345 			continue;
2346 		memcg_memory_event(memcg, MEMCG_HIGH);
2347 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2348 	} while ((memcg = parent_mem_cgroup(memcg)));
2349 }
2350 
2351 static void high_work_func(struct work_struct *work)
2352 {
2353 	struct mem_cgroup *memcg;
2354 
2355 	memcg = container_of(work, struct mem_cgroup, high_work);
2356 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2357 }
2358 
2359 /*
2360  * Scheduled by try_charge() to be executed from the userland return path
2361  * and reclaims memory over the high limit.
2362  */
2363 void mem_cgroup_handle_over_high(void)
2364 {
2365 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2366 	struct mem_cgroup *memcg;
2367 
2368 	if (likely(!nr_pages))
2369 		return;
2370 
2371 	memcg = get_mem_cgroup_from_mm(current->mm);
2372 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2373 	css_put(&memcg->css);
2374 	current->memcg_nr_pages_over_high = 0;
2375 }
2376 
2377 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2378 		      unsigned int nr_pages)
2379 {
2380 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2381 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382 	struct mem_cgroup *mem_over_limit;
2383 	struct page_counter *counter;
2384 	unsigned long nr_reclaimed;
2385 	bool may_swap = true;
2386 	bool drained = false;
2387 	enum oom_status oom_status;
2388 
2389 	if (mem_cgroup_is_root(memcg))
2390 		return 0;
2391 retry:
2392 	if (consume_stock(memcg, nr_pages))
2393 		return 0;
2394 
2395 	if (!do_memsw_account() ||
2396 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2397 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2398 			goto done_restock;
2399 		if (do_memsw_account())
2400 			page_counter_uncharge(&memcg->memsw, batch);
2401 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2402 	} else {
2403 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2404 		may_swap = false;
2405 	}
2406 
2407 	if (batch > nr_pages) {
2408 		batch = nr_pages;
2409 		goto retry;
2410 	}
2411 
2412 	/*
2413 	 * Unlike in global OOM situations, memcg is not in a physical
2414 	 * memory shortage.  Allow dying and OOM-killed tasks to
2415 	 * bypass the last charges so that they can exit quickly and
2416 	 * free their memory.
2417 	 */
2418 	if (unlikely(should_force_charge()))
2419 		goto force;
2420 
2421 	/*
2422 	 * Prevent unbounded recursion when reclaim operations need to
2423 	 * allocate memory. This might exceed the limits temporarily,
2424 	 * but we prefer facilitating memory reclaim and getting back
2425 	 * under the limit over triggering OOM kills in these cases.
2426 	 */
2427 	if (unlikely(current->flags & PF_MEMALLOC))
2428 		goto force;
2429 
2430 	if (unlikely(task_in_memcg_oom(current)))
2431 		goto nomem;
2432 
2433 	if (!gfpflags_allow_blocking(gfp_mask))
2434 		goto nomem;
2435 
2436 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2437 
2438 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2439 						    gfp_mask, may_swap);
2440 
2441 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2442 		goto retry;
2443 
2444 	if (!drained) {
2445 		drain_all_stock(mem_over_limit);
2446 		drained = true;
2447 		goto retry;
2448 	}
2449 
2450 	if (gfp_mask & __GFP_NORETRY)
2451 		goto nomem;
2452 	/*
2453 	 * Even though the limit is exceeded at this point, reclaim
2454 	 * may have been able to free some pages.  Retry the charge
2455 	 * before killing the task.
2456 	 *
2457 	 * Only for regular pages, though: huge pages are rather
2458 	 * unlikely to succeed so close to the limit, and we fall back
2459 	 * to regular pages anyway in case of failure.
2460 	 */
2461 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2462 		goto retry;
2463 	/*
2464 	 * At task move, charge accounts can be doubly counted. So, it's
2465 	 * better to wait until the end of task_move if something is going on.
2466 	 */
2467 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2468 		goto retry;
2469 
2470 	if (nr_retries--)
2471 		goto retry;
2472 
2473 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2474 		goto nomem;
2475 
2476 	if (gfp_mask & __GFP_NOFAIL)
2477 		goto force;
2478 
2479 	if (fatal_signal_pending(current))
2480 		goto force;
2481 
2482 	/*
2483 	 * keep retrying as long as the memcg oom killer is able to make
2484 	 * a forward progress or bypass the charge if the oom killer
2485 	 * couldn't make any progress.
2486 	 */
2487 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2488 		       get_order(nr_pages * PAGE_SIZE));
2489 	switch (oom_status) {
2490 	case OOM_SUCCESS:
2491 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2492 		goto retry;
2493 	case OOM_FAILED:
2494 		goto force;
2495 	default:
2496 		goto nomem;
2497 	}
2498 nomem:
2499 	if (!(gfp_mask & __GFP_NOFAIL))
2500 		return -ENOMEM;
2501 force:
2502 	/*
2503 	 * The allocation either can't fail or will lead to more memory
2504 	 * being freed very soon.  Allow memory usage go over the limit
2505 	 * temporarily by force charging it.
2506 	 */
2507 	page_counter_charge(&memcg->memory, nr_pages);
2508 	if (do_memsw_account())
2509 		page_counter_charge(&memcg->memsw, nr_pages);
2510 	css_get_many(&memcg->css, nr_pages);
2511 
2512 	return 0;
2513 
2514 done_restock:
2515 	css_get_many(&memcg->css, batch);
2516 	if (batch > nr_pages)
2517 		refill_stock(memcg, batch - nr_pages);
2518 
2519 	/*
2520 	 * If the hierarchy is above the normal consumption range, schedule
2521 	 * reclaim on returning to userland.  We can perform reclaim here
2522 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2523 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2524 	 * not recorded as it most likely matches current's and won't
2525 	 * change in the meantime.  As high limit is checked again before
2526 	 * reclaim, the cost of mismatch is negligible.
2527 	 */
2528 	do {
2529 		if (page_counter_read(&memcg->memory) > memcg->high) {
2530 			/* Don't bother a random interrupted task */
2531 			if (in_interrupt()) {
2532 				schedule_work(&memcg->high_work);
2533 				break;
2534 			}
2535 			current->memcg_nr_pages_over_high += batch;
2536 			set_notify_resume(current);
2537 			break;
2538 		}
2539 	} while ((memcg = parent_mem_cgroup(memcg)));
2540 
2541 	return 0;
2542 }
2543 
2544 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2545 {
2546 	if (mem_cgroup_is_root(memcg))
2547 		return;
2548 
2549 	page_counter_uncharge(&memcg->memory, nr_pages);
2550 	if (do_memsw_account())
2551 		page_counter_uncharge(&memcg->memsw, nr_pages);
2552 
2553 	css_put_many(&memcg->css, nr_pages);
2554 }
2555 
2556 static void lock_page_lru(struct page *page, int *isolated)
2557 {
2558 	pg_data_t *pgdat = page_pgdat(page);
2559 
2560 	spin_lock_irq(&pgdat->lru_lock);
2561 	if (PageLRU(page)) {
2562 		struct lruvec *lruvec;
2563 
2564 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2565 		ClearPageLRU(page);
2566 		del_page_from_lru_list(page, lruvec, page_lru(page));
2567 		*isolated = 1;
2568 	} else
2569 		*isolated = 0;
2570 }
2571 
2572 static void unlock_page_lru(struct page *page, int isolated)
2573 {
2574 	pg_data_t *pgdat = page_pgdat(page);
2575 
2576 	if (isolated) {
2577 		struct lruvec *lruvec;
2578 
2579 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2580 		VM_BUG_ON_PAGE(PageLRU(page), page);
2581 		SetPageLRU(page);
2582 		add_page_to_lru_list(page, lruvec, page_lru(page));
2583 	}
2584 	spin_unlock_irq(&pgdat->lru_lock);
2585 }
2586 
2587 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2588 			  bool lrucare)
2589 {
2590 	int isolated;
2591 
2592 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2593 
2594 	/*
2595 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2596 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2597 	 */
2598 	if (lrucare)
2599 		lock_page_lru(page, &isolated);
2600 
2601 	/*
2602 	 * Nobody should be changing or seriously looking at
2603 	 * page->mem_cgroup at this point:
2604 	 *
2605 	 * - the page is uncharged
2606 	 *
2607 	 * - the page is off-LRU
2608 	 *
2609 	 * - an anonymous fault has exclusive page access, except for
2610 	 *   a locked page table
2611 	 *
2612 	 * - a page cache insertion, a swapin fault, or a migration
2613 	 *   have the page locked
2614 	 */
2615 	page->mem_cgroup = memcg;
2616 
2617 	if (lrucare)
2618 		unlock_page_lru(page, isolated);
2619 }
2620 
2621 #ifdef CONFIG_MEMCG_KMEM
2622 static int memcg_alloc_cache_id(void)
2623 {
2624 	int id, size;
2625 	int err;
2626 
2627 	id = ida_simple_get(&memcg_cache_ida,
2628 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2629 	if (id < 0)
2630 		return id;
2631 
2632 	if (id < memcg_nr_cache_ids)
2633 		return id;
2634 
2635 	/*
2636 	 * There's no space for the new id in memcg_caches arrays,
2637 	 * so we have to grow them.
2638 	 */
2639 	down_write(&memcg_cache_ids_sem);
2640 
2641 	size = 2 * (id + 1);
2642 	if (size < MEMCG_CACHES_MIN_SIZE)
2643 		size = MEMCG_CACHES_MIN_SIZE;
2644 	else if (size > MEMCG_CACHES_MAX_SIZE)
2645 		size = MEMCG_CACHES_MAX_SIZE;
2646 
2647 	err = memcg_update_all_caches(size);
2648 	if (!err)
2649 		err = memcg_update_all_list_lrus(size);
2650 	if (!err)
2651 		memcg_nr_cache_ids = size;
2652 
2653 	up_write(&memcg_cache_ids_sem);
2654 
2655 	if (err) {
2656 		ida_simple_remove(&memcg_cache_ida, id);
2657 		return err;
2658 	}
2659 	return id;
2660 }
2661 
2662 static void memcg_free_cache_id(int id)
2663 {
2664 	ida_simple_remove(&memcg_cache_ida, id);
2665 }
2666 
2667 struct memcg_kmem_cache_create_work {
2668 	struct mem_cgroup *memcg;
2669 	struct kmem_cache *cachep;
2670 	struct work_struct work;
2671 };
2672 
2673 static void memcg_kmem_cache_create_func(struct work_struct *w)
2674 {
2675 	struct memcg_kmem_cache_create_work *cw =
2676 		container_of(w, struct memcg_kmem_cache_create_work, work);
2677 	struct mem_cgroup *memcg = cw->memcg;
2678 	struct kmem_cache *cachep = cw->cachep;
2679 
2680 	memcg_create_kmem_cache(memcg, cachep);
2681 
2682 	css_put(&memcg->css);
2683 	kfree(cw);
2684 }
2685 
2686 /*
2687  * Enqueue the creation of a per-memcg kmem_cache.
2688  */
2689 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2690 					       struct kmem_cache *cachep)
2691 {
2692 	struct memcg_kmem_cache_create_work *cw;
2693 
2694 	if (!css_tryget_online(&memcg->css))
2695 		return;
2696 
2697 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2698 	if (!cw)
2699 		return;
2700 
2701 	cw->memcg = memcg;
2702 	cw->cachep = cachep;
2703 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2704 
2705 	queue_work(memcg_kmem_cache_wq, &cw->work);
2706 }
2707 
2708 static inline bool memcg_kmem_bypass(void)
2709 {
2710 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2711 		return true;
2712 	return false;
2713 }
2714 
2715 /**
2716  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2717  * @cachep: the original global kmem cache
2718  *
2719  * Return the kmem_cache we're supposed to use for a slab allocation.
2720  * We try to use the current memcg's version of the cache.
2721  *
2722  * If the cache does not exist yet, if we are the first user of it, we
2723  * create it asynchronously in a workqueue and let the current allocation
2724  * go through with the original cache.
2725  *
2726  * This function takes a reference to the cache it returns to assure it
2727  * won't get destroyed while we are working with it. Once the caller is
2728  * done with it, memcg_kmem_put_cache() must be called to release the
2729  * reference.
2730  */
2731 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2732 {
2733 	struct mem_cgroup *memcg;
2734 	struct kmem_cache *memcg_cachep;
2735 	struct memcg_cache_array *arr;
2736 	int kmemcg_id;
2737 
2738 	VM_BUG_ON(!is_root_cache(cachep));
2739 
2740 	if (memcg_kmem_bypass())
2741 		return cachep;
2742 
2743 	rcu_read_lock();
2744 
2745 	if (unlikely(current->active_memcg))
2746 		memcg = current->active_memcg;
2747 	else
2748 		memcg = mem_cgroup_from_task(current);
2749 
2750 	if (!memcg || memcg == root_mem_cgroup)
2751 		goto out_unlock;
2752 
2753 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2754 	if (kmemcg_id < 0)
2755 		goto out_unlock;
2756 
2757 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2758 
2759 	/*
2760 	 * Make sure we will access the up-to-date value. The code updating
2761 	 * memcg_caches issues a write barrier to match the data dependency
2762 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2763 	 */
2764 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2765 
2766 	/*
2767 	 * If we are in a safe context (can wait, and not in interrupt
2768 	 * context), we could be be predictable and return right away.
2769 	 * This would guarantee that the allocation being performed
2770 	 * already belongs in the new cache.
2771 	 *
2772 	 * However, there are some clashes that can arrive from locking.
2773 	 * For instance, because we acquire the slab_mutex while doing
2774 	 * memcg_create_kmem_cache, this means no further allocation
2775 	 * could happen with the slab_mutex held. So it's better to
2776 	 * defer everything.
2777 	 *
2778 	 * If the memcg is dying or memcg_cache is about to be released,
2779 	 * don't bother creating new kmem_caches. Because memcg_cachep
2780 	 * is ZEROed as the fist step of kmem offlining, we don't need
2781 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2782 	 * memcg_schedule_kmem_cache_create() will prevent us from
2783 	 * creation of a new kmem_cache.
2784 	 */
2785 	if (unlikely(!memcg_cachep))
2786 		memcg_schedule_kmem_cache_create(memcg, cachep);
2787 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2788 		cachep = memcg_cachep;
2789 out_unlock:
2790 	rcu_read_unlock();
2791 	return cachep;
2792 }
2793 
2794 /**
2795  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2796  * @cachep: the cache returned by memcg_kmem_get_cache
2797  */
2798 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2799 {
2800 	if (!is_root_cache(cachep))
2801 		percpu_ref_put(&cachep->memcg_params.refcnt);
2802 }
2803 
2804 /**
2805  * __memcg_kmem_charge_memcg: charge a kmem page
2806  * @page: page to charge
2807  * @gfp: reclaim mode
2808  * @order: allocation order
2809  * @memcg: memory cgroup to charge
2810  *
2811  * Returns 0 on success, an error code on failure.
2812  */
2813 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2814 			    struct mem_cgroup *memcg)
2815 {
2816 	unsigned int nr_pages = 1 << order;
2817 	struct page_counter *counter;
2818 	int ret;
2819 
2820 	ret = try_charge(memcg, gfp, nr_pages);
2821 	if (ret)
2822 		return ret;
2823 
2824 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2825 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2826 		cancel_charge(memcg, nr_pages);
2827 		return -ENOMEM;
2828 	}
2829 	return 0;
2830 }
2831 
2832 /**
2833  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2834  * @page: page to charge
2835  * @gfp: reclaim mode
2836  * @order: allocation order
2837  *
2838  * Returns 0 on success, an error code on failure.
2839  */
2840 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2841 {
2842 	struct mem_cgroup *memcg;
2843 	int ret = 0;
2844 
2845 	if (memcg_kmem_bypass())
2846 		return 0;
2847 
2848 	memcg = get_mem_cgroup_from_current();
2849 	if (!mem_cgroup_is_root(memcg)) {
2850 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2851 		if (!ret) {
2852 			page->mem_cgroup = memcg;
2853 			__SetPageKmemcg(page);
2854 		}
2855 	}
2856 	css_put(&memcg->css);
2857 	return ret;
2858 }
2859 
2860 /**
2861  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2862  * @memcg: memcg to uncharge
2863  * @nr_pages: number of pages to uncharge
2864  */
2865 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2866 				 unsigned int nr_pages)
2867 {
2868 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2869 		page_counter_uncharge(&memcg->kmem, nr_pages);
2870 
2871 	page_counter_uncharge(&memcg->memory, nr_pages);
2872 	if (do_memsw_account())
2873 		page_counter_uncharge(&memcg->memsw, nr_pages);
2874 }
2875 /**
2876  * __memcg_kmem_uncharge: uncharge a kmem page
2877  * @page: page to uncharge
2878  * @order: allocation order
2879  */
2880 void __memcg_kmem_uncharge(struct page *page, int order)
2881 {
2882 	struct mem_cgroup *memcg = page->mem_cgroup;
2883 	unsigned int nr_pages = 1 << order;
2884 
2885 	if (!memcg)
2886 		return;
2887 
2888 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2889 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2890 	page->mem_cgroup = NULL;
2891 
2892 	/* slab pages do not have PageKmemcg flag set */
2893 	if (PageKmemcg(page))
2894 		__ClearPageKmemcg(page);
2895 
2896 	css_put_many(&memcg->css, nr_pages);
2897 }
2898 #endif /* CONFIG_MEMCG_KMEM */
2899 
2900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2901 
2902 /*
2903  * Because tail pages are not marked as "used", set it. We're under
2904  * pgdat->lru_lock and migration entries setup in all page mappings.
2905  */
2906 void mem_cgroup_split_huge_fixup(struct page *head)
2907 {
2908 	int i;
2909 
2910 	if (mem_cgroup_disabled())
2911 		return;
2912 
2913 	for (i = 1; i < HPAGE_PMD_NR; i++)
2914 		head[i].mem_cgroup = head->mem_cgroup;
2915 
2916 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2917 }
2918 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2919 
2920 #ifdef CONFIG_MEMCG_SWAP
2921 /**
2922  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2923  * @entry: swap entry to be moved
2924  * @from:  mem_cgroup which the entry is moved from
2925  * @to:  mem_cgroup which the entry is moved to
2926  *
2927  * It succeeds only when the swap_cgroup's record for this entry is the same
2928  * as the mem_cgroup's id of @from.
2929  *
2930  * Returns 0 on success, -EINVAL on failure.
2931  *
2932  * The caller must have charged to @to, IOW, called page_counter_charge() about
2933  * both res and memsw, and called css_get().
2934  */
2935 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2936 				struct mem_cgroup *from, struct mem_cgroup *to)
2937 {
2938 	unsigned short old_id, new_id;
2939 
2940 	old_id = mem_cgroup_id(from);
2941 	new_id = mem_cgroup_id(to);
2942 
2943 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2944 		mod_memcg_state(from, MEMCG_SWAP, -1);
2945 		mod_memcg_state(to, MEMCG_SWAP, 1);
2946 		return 0;
2947 	}
2948 	return -EINVAL;
2949 }
2950 #else
2951 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2952 				struct mem_cgroup *from, struct mem_cgroup *to)
2953 {
2954 	return -EINVAL;
2955 }
2956 #endif
2957 
2958 static DEFINE_MUTEX(memcg_max_mutex);
2959 
2960 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2961 				 unsigned long max, bool memsw)
2962 {
2963 	bool enlarge = false;
2964 	bool drained = false;
2965 	int ret;
2966 	bool limits_invariant;
2967 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2968 
2969 	do {
2970 		if (signal_pending(current)) {
2971 			ret = -EINTR;
2972 			break;
2973 		}
2974 
2975 		mutex_lock(&memcg_max_mutex);
2976 		/*
2977 		 * Make sure that the new limit (memsw or memory limit) doesn't
2978 		 * break our basic invariant rule memory.max <= memsw.max.
2979 		 */
2980 		limits_invariant = memsw ? max >= memcg->memory.max :
2981 					   max <= memcg->memsw.max;
2982 		if (!limits_invariant) {
2983 			mutex_unlock(&memcg_max_mutex);
2984 			ret = -EINVAL;
2985 			break;
2986 		}
2987 		if (max > counter->max)
2988 			enlarge = true;
2989 		ret = page_counter_set_max(counter, max);
2990 		mutex_unlock(&memcg_max_mutex);
2991 
2992 		if (!ret)
2993 			break;
2994 
2995 		if (!drained) {
2996 			drain_all_stock(memcg);
2997 			drained = true;
2998 			continue;
2999 		}
3000 
3001 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3002 					GFP_KERNEL, !memsw)) {
3003 			ret = -EBUSY;
3004 			break;
3005 		}
3006 	} while (true);
3007 
3008 	if (!ret && enlarge)
3009 		memcg_oom_recover(memcg);
3010 
3011 	return ret;
3012 }
3013 
3014 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3015 					    gfp_t gfp_mask,
3016 					    unsigned long *total_scanned)
3017 {
3018 	unsigned long nr_reclaimed = 0;
3019 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3020 	unsigned long reclaimed;
3021 	int loop = 0;
3022 	struct mem_cgroup_tree_per_node *mctz;
3023 	unsigned long excess;
3024 	unsigned long nr_scanned;
3025 
3026 	if (order > 0)
3027 		return 0;
3028 
3029 	mctz = soft_limit_tree_node(pgdat->node_id);
3030 
3031 	/*
3032 	 * Do not even bother to check the largest node if the root
3033 	 * is empty. Do it lockless to prevent lock bouncing. Races
3034 	 * are acceptable as soft limit is best effort anyway.
3035 	 */
3036 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3037 		return 0;
3038 
3039 	/*
3040 	 * This loop can run a while, specially if mem_cgroup's continuously
3041 	 * keep exceeding their soft limit and putting the system under
3042 	 * pressure
3043 	 */
3044 	do {
3045 		if (next_mz)
3046 			mz = next_mz;
3047 		else
3048 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3049 		if (!mz)
3050 			break;
3051 
3052 		nr_scanned = 0;
3053 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3054 						    gfp_mask, &nr_scanned);
3055 		nr_reclaimed += reclaimed;
3056 		*total_scanned += nr_scanned;
3057 		spin_lock_irq(&mctz->lock);
3058 		__mem_cgroup_remove_exceeded(mz, mctz);
3059 
3060 		/*
3061 		 * If we failed to reclaim anything from this memory cgroup
3062 		 * it is time to move on to the next cgroup
3063 		 */
3064 		next_mz = NULL;
3065 		if (!reclaimed)
3066 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3067 
3068 		excess = soft_limit_excess(mz->memcg);
3069 		/*
3070 		 * One school of thought says that we should not add
3071 		 * back the node to the tree if reclaim returns 0.
3072 		 * But our reclaim could return 0, simply because due
3073 		 * to priority we are exposing a smaller subset of
3074 		 * memory to reclaim from. Consider this as a longer
3075 		 * term TODO.
3076 		 */
3077 		/* If excess == 0, no tree ops */
3078 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3079 		spin_unlock_irq(&mctz->lock);
3080 		css_put(&mz->memcg->css);
3081 		loop++;
3082 		/*
3083 		 * Could not reclaim anything and there are no more
3084 		 * mem cgroups to try or we seem to be looping without
3085 		 * reclaiming anything.
3086 		 */
3087 		if (!nr_reclaimed &&
3088 			(next_mz == NULL ||
3089 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3090 			break;
3091 	} while (!nr_reclaimed);
3092 	if (next_mz)
3093 		css_put(&next_mz->memcg->css);
3094 	return nr_reclaimed;
3095 }
3096 
3097 /*
3098  * Test whether @memcg has children, dead or alive.  Note that this
3099  * function doesn't care whether @memcg has use_hierarchy enabled and
3100  * returns %true if there are child csses according to the cgroup
3101  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3102  */
3103 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3104 {
3105 	bool ret;
3106 
3107 	rcu_read_lock();
3108 	ret = css_next_child(NULL, &memcg->css);
3109 	rcu_read_unlock();
3110 	return ret;
3111 }
3112 
3113 /*
3114  * Reclaims as many pages from the given memcg as possible.
3115  *
3116  * Caller is responsible for holding css reference for memcg.
3117  */
3118 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3119 {
3120 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3121 
3122 	/* we call try-to-free pages for make this cgroup empty */
3123 	lru_add_drain_all();
3124 
3125 	drain_all_stock(memcg);
3126 
3127 	/* try to free all pages in this cgroup */
3128 	while (nr_retries && page_counter_read(&memcg->memory)) {
3129 		int progress;
3130 
3131 		if (signal_pending(current))
3132 			return -EINTR;
3133 
3134 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3135 							GFP_KERNEL, true);
3136 		if (!progress) {
3137 			nr_retries--;
3138 			/* maybe some writeback is necessary */
3139 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3140 		}
3141 
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3148 					    char *buf, size_t nbytes,
3149 					    loff_t off)
3150 {
3151 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3152 
3153 	if (mem_cgroup_is_root(memcg))
3154 		return -EINVAL;
3155 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3156 }
3157 
3158 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3159 				     struct cftype *cft)
3160 {
3161 	return mem_cgroup_from_css(css)->use_hierarchy;
3162 }
3163 
3164 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3165 				      struct cftype *cft, u64 val)
3166 {
3167 	int retval = 0;
3168 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3169 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3170 
3171 	if (memcg->use_hierarchy == val)
3172 		return 0;
3173 
3174 	/*
3175 	 * If parent's use_hierarchy is set, we can't make any modifications
3176 	 * in the child subtrees. If it is unset, then the change can
3177 	 * occur, provided the current cgroup has no children.
3178 	 *
3179 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3180 	 * set if there are no children.
3181 	 */
3182 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3183 				(val == 1 || val == 0)) {
3184 		if (!memcg_has_children(memcg))
3185 			memcg->use_hierarchy = val;
3186 		else
3187 			retval = -EBUSY;
3188 	} else
3189 		retval = -EINVAL;
3190 
3191 	return retval;
3192 }
3193 
3194 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3195 {
3196 	unsigned long val;
3197 
3198 	if (mem_cgroup_is_root(memcg)) {
3199 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3200 			memcg_page_state(memcg, MEMCG_RSS);
3201 		if (swap)
3202 			val += memcg_page_state(memcg, MEMCG_SWAP);
3203 	} else {
3204 		if (!swap)
3205 			val = page_counter_read(&memcg->memory);
3206 		else
3207 			val = page_counter_read(&memcg->memsw);
3208 	}
3209 	return val;
3210 }
3211 
3212 enum {
3213 	RES_USAGE,
3214 	RES_LIMIT,
3215 	RES_MAX_USAGE,
3216 	RES_FAILCNT,
3217 	RES_SOFT_LIMIT,
3218 };
3219 
3220 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3221 			       struct cftype *cft)
3222 {
3223 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3224 	struct page_counter *counter;
3225 
3226 	switch (MEMFILE_TYPE(cft->private)) {
3227 	case _MEM:
3228 		counter = &memcg->memory;
3229 		break;
3230 	case _MEMSWAP:
3231 		counter = &memcg->memsw;
3232 		break;
3233 	case _KMEM:
3234 		counter = &memcg->kmem;
3235 		break;
3236 	case _TCP:
3237 		counter = &memcg->tcpmem;
3238 		break;
3239 	default:
3240 		BUG();
3241 	}
3242 
3243 	switch (MEMFILE_ATTR(cft->private)) {
3244 	case RES_USAGE:
3245 		if (counter == &memcg->memory)
3246 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3247 		if (counter == &memcg->memsw)
3248 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3249 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3250 	case RES_LIMIT:
3251 		return (u64)counter->max * PAGE_SIZE;
3252 	case RES_MAX_USAGE:
3253 		return (u64)counter->watermark * PAGE_SIZE;
3254 	case RES_FAILCNT:
3255 		return counter->failcnt;
3256 	case RES_SOFT_LIMIT:
3257 		return (u64)memcg->soft_limit * PAGE_SIZE;
3258 	default:
3259 		BUG();
3260 	}
3261 }
3262 
3263 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3264 {
3265 	unsigned long stat[MEMCG_NR_STAT];
3266 	struct mem_cgroup *mi;
3267 	int node, cpu, i;
3268 
3269 	for (i = 0; i < MEMCG_NR_STAT; i++)
3270 		stat[i] = 0;
3271 
3272 	for_each_online_cpu(cpu)
3273 		for (i = 0; i < MEMCG_NR_STAT; i++)
3274 			stat[i] += raw_cpu_read(memcg->vmstats_percpu->stat[i]);
3275 
3276 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3277 		for (i = 0; i < MEMCG_NR_STAT; i++)
3278 			atomic_long_add(stat[i], &mi->vmstats[i]);
3279 
3280 	for_each_node(node) {
3281 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3282 		struct mem_cgroup_per_node *pi;
3283 
3284 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3285 			stat[i] = 0;
3286 
3287 		for_each_online_cpu(cpu)
3288 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3289 				stat[i] += raw_cpu_read(
3290 					pn->lruvec_stat_cpu->count[i]);
3291 
3292 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3293 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3294 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3295 	}
3296 }
3297 
3298 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3299 {
3300 	unsigned long events[NR_VM_EVENT_ITEMS];
3301 	struct mem_cgroup *mi;
3302 	int cpu, i;
3303 
3304 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3305 		events[i] = 0;
3306 
3307 	for_each_online_cpu(cpu)
3308 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3309 			events[i] += raw_cpu_read(
3310 				memcg->vmstats_percpu->events[i]);
3311 
3312 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3313 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3314 			atomic_long_add(events[i], &mi->vmevents[i]);
3315 }
3316 
3317 #ifdef CONFIG_MEMCG_KMEM
3318 static int memcg_online_kmem(struct mem_cgroup *memcg)
3319 {
3320 	int memcg_id;
3321 
3322 	if (cgroup_memory_nokmem)
3323 		return 0;
3324 
3325 	BUG_ON(memcg->kmemcg_id >= 0);
3326 	BUG_ON(memcg->kmem_state);
3327 
3328 	memcg_id = memcg_alloc_cache_id();
3329 	if (memcg_id < 0)
3330 		return memcg_id;
3331 
3332 	static_branch_inc(&memcg_kmem_enabled_key);
3333 	/*
3334 	 * A memory cgroup is considered kmem-online as soon as it gets
3335 	 * kmemcg_id. Setting the id after enabling static branching will
3336 	 * guarantee no one starts accounting before all call sites are
3337 	 * patched.
3338 	 */
3339 	memcg->kmemcg_id = memcg_id;
3340 	memcg->kmem_state = KMEM_ONLINE;
3341 	INIT_LIST_HEAD(&memcg->kmem_caches);
3342 
3343 	return 0;
3344 }
3345 
3346 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3347 {
3348 	struct cgroup_subsys_state *css;
3349 	struct mem_cgroup *parent, *child;
3350 	int kmemcg_id;
3351 
3352 	if (memcg->kmem_state != KMEM_ONLINE)
3353 		return;
3354 	/*
3355 	 * Clear the online state before clearing memcg_caches array
3356 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3357 	 * guarantees that no cache will be created for this cgroup
3358 	 * after we are done (see memcg_create_kmem_cache()).
3359 	 */
3360 	memcg->kmem_state = KMEM_ALLOCATED;
3361 
3362 	parent = parent_mem_cgroup(memcg);
3363 	if (!parent)
3364 		parent = root_mem_cgroup;
3365 
3366 	memcg_deactivate_kmem_caches(memcg, parent);
3367 
3368 	kmemcg_id = memcg->kmemcg_id;
3369 	BUG_ON(kmemcg_id < 0);
3370 
3371 	/*
3372 	 * Change kmemcg_id of this cgroup and all its descendants to the
3373 	 * parent's id, and then move all entries from this cgroup's list_lrus
3374 	 * to ones of the parent. After we have finished, all list_lrus
3375 	 * corresponding to this cgroup are guaranteed to remain empty. The
3376 	 * ordering is imposed by list_lru_node->lock taken by
3377 	 * memcg_drain_all_list_lrus().
3378 	 */
3379 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3380 	css_for_each_descendant_pre(css, &memcg->css) {
3381 		child = mem_cgroup_from_css(css);
3382 		BUG_ON(child->kmemcg_id != kmemcg_id);
3383 		child->kmemcg_id = parent->kmemcg_id;
3384 		if (!memcg->use_hierarchy)
3385 			break;
3386 	}
3387 	rcu_read_unlock();
3388 
3389 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3390 
3391 	memcg_free_cache_id(kmemcg_id);
3392 }
3393 
3394 static void memcg_free_kmem(struct mem_cgroup *memcg)
3395 {
3396 	/* css_alloc() failed, offlining didn't happen */
3397 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3398 		memcg_offline_kmem(memcg);
3399 
3400 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3401 		WARN_ON(!list_empty(&memcg->kmem_caches));
3402 		static_branch_dec(&memcg_kmem_enabled_key);
3403 	}
3404 }
3405 #else
3406 static int memcg_online_kmem(struct mem_cgroup *memcg)
3407 {
3408 	return 0;
3409 }
3410 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3411 {
3412 }
3413 static void memcg_free_kmem(struct mem_cgroup *memcg)
3414 {
3415 }
3416 #endif /* CONFIG_MEMCG_KMEM */
3417 
3418 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3419 				 unsigned long max)
3420 {
3421 	int ret;
3422 
3423 	mutex_lock(&memcg_max_mutex);
3424 	ret = page_counter_set_max(&memcg->kmem, max);
3425 	mutex_unlock(&memcg_max_mutex);
3426 	return ret;
3427 }
3428 
3429 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3430 {
3431 	int ret;
3432 
3433 	mutex_lock(&memcg_max_mutex);
3434 
3435 	ret = page_counter_set_max(&memcg->tcpmem, max);
3436 	if (ret)
3437 		goto out;
3438 
3439 	if (!memcg->tcpmem_active) {
3440 		/*
3441 		 * The active flag needs to be written after the static_key
3442 		 * update. This is what guarantees that the socket activation
3443 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3444 		 * for details, and note that we don't mark any socket as
3445 		 * belonging to this memcg until that flag is up.
3446 		 *
3447 		 * We need to do this, because static_keys will span multiple
3448 		 * sites, but we can't control their order. If we mark a socket
3449 		 * as accounted, but the accounting functions are not patched in
3450 		 * yet, we'll lose accounting.
3451 		 *
3452 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3453 		 * because when this value change, the code to process it is not
3454 		 * patched in yet.
3455 		 */
3456 		static_branch_inc(&memcg_sockets_enabled_key);
3457 		memcg->tcpmem_active = true;
3458 	}
3459 out:
3460 	mutex_unlock(&memcg_max_mutex);
3461 	return ret;
3462 }
3463 
3464 /*
3465  * The user of this function is...
3466  * RES_LIMIT.
3467  */
3468 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3469 				char *buf, size_t nbytes, loff_t off)
3470 {
3471 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3472 	unsigned long nr_pages;
3473 	int ret;
3474 
3475 	buf = strstrip(buf);
3476 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3477 	if (ret)
3478 		return ret;
3479 
3480 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3481 	case RES_LIMIT:
3482 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3483 			ret = -EINVAL;
3484 			break;
3485 		}
3486 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3487 		case _MEM:
3488 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3489 			break;
3490 		case _MEMSWAP:
3491 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3492 			break;
3493 		case _KMEM:
3494 			ret = memcg_update_kmem_max(memcg, nr_pages);
3495 			break;
3496 		case _TCP:
3497 			ret = memcg_update_tcp_max(memcg, nr_pages);
3498 			break;
3499 		}
3500 		break;
3501 	case RES_SOFT_LIMIT:
3502 		memcg->soft_limit = nr_pages;
3503 		ret = 0;
3504 		break;
3505 	}
3506 	return ret ?: nbytes;
3507 }
3508 
3509 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3510 				size_t nbytes, loff_t off)
3511 {
3512 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3513 	struct page_counter *counter;
3514 
3515 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3516 	case _MEM:
3517 		counter = &memcg->memory;
3518 		break;
3519 	case _MEMSWAP:
3520 		counter = &memcg->memsw;
3521 		break;
3522 	case _KMEM:
3523 		counter = &memcg->kmem;
3524 		break;
3525 	case _TCP:
3526 		counter = &memcg->tcpmem;
3527 		break;
3528 	default:
3529 		BUG();
3530 	}
3531 
3532 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3533 	case RES_MAX_USAGE:
3534 		page_counter_reset_watermark(counter);
3535 		break;
3536 	case RES_FAILCNT:
3537 		counter->failcnt = 0;
3538 		break;
3539 	default:
3540 		BUG();
3541 	}
3542 
3543 	return nbytes;
3544 }
3545 
3546 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3547 					struct cftype *cft)
3548 {
3549 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3550 }
3551 
3552 #ifdef CONFIG_MMU
3553 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3554 					struct cftype *cft, u64 val)
3555 {
3556 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3557 
3558 	if (val & ~MOVE_MASK)
3559 		return -EINVAL;
3560 
3561 	/*
3562 	 * No kind of locking is needed in here, because ->can_attach() will
3563 	 * check this value once in the beginning of the process, and then carry
3564 	 * on with stale data. This means that changes to this value will only
3565 	 * affect task migrations starting after the change.
3566 	 */
3567 	memcg->move_charge_at_immigrate = val;
3568 	return 0;
3569 }
3570 #else
3571 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3572 					struct cftype *cft, u64 val)
3573 {
3574 	return -ENOSYS;
3575 }
3576 #endif
3577 
3578 #ifdef CONFIG_NUMA
3579 
3580 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3581 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3582 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3583 
3584 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3585 					   int nid, unsigned int lru_mask)
3586 {
3587 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3588 	unsigned long nr = 0;
3589 	enum lru_list lru;
3590 
3591 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3592 
3593 	for_each_lru(lru) {
3594 		if (!(BIT(lru) & lru_mask))
3595 			continue;
3596 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3597 	}
3598 	return nr;
3599 }
3600 
3601 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3602 					     unsigned int lru_mask)
3603 {
3604 	unsigned long nr = 0;
3605 	enum lru_list lru;
3606 
3607 	for_each_lru(lru) {
3608 		if (!(BIT(lru) & lru_mask))
3609 			continue;
3610 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3611 	}
3612 	return nr;
3613 }
3614 
3615 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3616 {
3617 	struct numa_stat {
3618 		const char *name;
3619 		unsigned int lru_mask;
3620 	};
3621 
3622 	static const struct numa_stat stats[] = {
3623 		{ "total", LRU_ALL },
3624 		{ "file", LRU_ALL_FILE },
3625 		{ "anon", LRU_ALL_ANON },
3626 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3627 	};
3628 	const struct numa_stat *stat;
3629 	int nid;
3630 	unsigned long nr;
3631 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3632 
3633 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3634 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3635 		seq_printf(m, "%s=%lu", stat->name, nr);
3636 		for_each_node_state(nid, N_MEMORY) {
3637 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3638 							  stat->lru_mask);
3639 			seq_printf(m, " N%d=%lu", nid, nr);
3640 		}
3641 		seq_putc(m, '\n');
3642 	}
3643 
3644 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3645 		struct mem_cgroup *iter;
3646 
3647 		nr = 0;
3648 		for_each_mem_cgroup_tree(iter, memcg)
3649 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3650 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3651 		for_each_node_state(nid, N_MEMORY) {
3652 			nr = 0;
3653 			for_each_mem_cgroup_tree(iter, memcg)
3654 				nr += mem_cgroup_node_nr_lru_pages(
3655 					iter, nid, stat->lru_mask);
3656 			seq_printf(m, " N%d=%lu", nid, nr);
3657 		}
3658 		seq_putc(m, '\n');
3659 	}
3660 
3661 	return 0;
3662 }
3663 #endif /* CONFIG_NUMA */
3664 
3665 static const unsigned int memcg1_stats[] = {
3666 	MEMCG_CACHE,
3667 	MEMCG_RSS,
3668 	MEMCG_RSS_HUGE,
3669 	NR_SHMEM,
3670 	NR_FILE_MAPPED,
3671 	NR_FILE_DIRTY,
3672 	NR_WRITEBACK,
3673 	MEMCG_SWAP,
3674 };
3675 
3676 static const char *const memcg1_stat_names[] = {
3677 	"cache",
3678 	"rss",
3679 	"rss_huge",
3680 	"shmem",
3681 	"mapped_file",
3682 	"dirty",
3683 	"writeback",
3684 	"swap",
3685 };
3686 
3687 /* Universal VM events cgroup1 shows, original sort order */
3688 static const unsigned int memcg1_events[] = {
3689 	PGPGIN,
3690 	PGPGOUT,
3691 	PGFAULT,
3692 	PGMAJFAULT,
3693 };
3694 
3695 static const char *const memcg1_event_names[] = {
3696 	"pgpgin",
3697 	"pgpgout",
3698 	"pgfault",
3699 	"pgmajfault",
3700 };
3701 
3702 static int memcg_stat_show(struct seq_file *m, void *v)
3703 {
3704 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3705 	unsigned long memory, memsw;
3706 	struct mem_cgroup *mi;
3707 	unsigned int i;
3708 
3709 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3710 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3711 
3712 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3713 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3714 			continue;
3715 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3716 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3717 			   PAGE_SIZE);
3718 	}
3719 
3720 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3721 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3722 			   memcg_events_local(memcg, memcg1_events[i]));
3723 
3724 	for (i = 0; i < NR_LRU_LISTS; i++)
3725 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3726 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3727 			   PAGE_SIZE);
3728 
3729 	/* Hierarchical information */
3730 	memory = memsw = PAGE_COUNTER_MAX;
3731 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3732 		memory = min(memory, mi->memory.max);
3733 		memsw = min(memsw, mi->memsw.max);
3734 	}
3735 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3736 		   (u64)memory * PAGE_SIZE);
3737 	if (do_memsw_account())
3738 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3739 			   (u64)memsw * PAGE_SIZE);
3740 
3741 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3742 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3743 			continue;
3744 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3745 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3746 			   PAGE_SIZE);
3747 	}
3748 
3749 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3750 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3751 			   (u64)memcg_events(memcg, memcg1_events[i]));
3752 
3753 	for (i = 0; i < NR_LRU_LISTS; i++)
3754 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3755 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3756 			   PAGE_SIZE);
3757 
3758 #ifdef CONFIG_DEBUG_VM
3759 	{
3760 		pg_data_t *pgdat;
3761 		struct mem_cgroup_per_node *mz;
3762 		struct zone_reclaim_stat *rstat;
3763 		unsigned long recent_rotated[2] = {0, 0};
3764 		unsigned long recent_scanned[2] = {0, 0};
3765 
3766 		for_each_online_pgdat(pgdat) {
3767 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3768 			rstat = &mz->lruvec.reclaim_stat;
3769 
3770 			recent_rotated[0] += rstat->recent_rotated[0];
3771 			recent_rotated[1] += rstat->recent_rotated[1];
3772 			recent_scanned[0] += rstat->recent_scanned[0];
3773 			recent_scanned[1] += rstat->recent_scanned[1];
3774 		}
3775 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3776 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3777 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3778 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3779 	}
3780 #endif
3781 
3782 	return 0;
3783 }
3784 
3785 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3786 				      struct cftype *cft)
3787 {
3788 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3789 
3790 	return mem_cgroup_swappiness(memcg);
3791 }
3792 
3793 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3794 				       struct cftype *cft, u64 val)
3795 {
3796 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797 
3798 	if (val > 100)
3799 		return -EINVAL;
3800 
3801 	if (css->parent)
3802 		memcg->swappiness = val;
3803 	else
3804 		vm_swappiness = val;
3805 
3806 	return 0;
3807 }
3808 
3809 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3810 {
3811 	struct mem_cgroup_threshold_ary *t;
3812 	unsigned long usage;
3813 	int i;
3814 
3815 	rcu_read_lock();
3816 	if (!swap)
3817 		t = rcu_dereference(memcg->thresholds.primary);
3818 	else
3819 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3820 
3821 	if (!t)
3822 		goto unlock;
3823 
3824 	usage = mem_cgroup_usage(memcg, swap);
3825 
3826 	/*
3827 	 * current_threshold points to threshold just below or equal to usage.
3828 	 * If it's not true, a threshold was crossed after last
3829 	 * call of __mem_cgroup_threshold().
3830 	 */
3831 	i = t->current_threshold;
3832 
3833 	/*
3834 	 * Iterate backward over array of thresholds starting from
3835 	 * current_threshold and check if a threshold is crossed.
3836 	 * If none of thresholds below usage is crossed, we read
3837 	 * only one element of the array here.
3838 	 */
3839 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3840 		eventfd_signal(t->entries[i].eventfd, 1);
3841 
3842 	/* i = current_threshold + 1 */
3843 	i++;
3844 
3845 	/*
3846 	 * Iterate forward over array of thresholds starting from
3847 	 * current_threshold+1 and check if a threshold is crossed.
3848 	 * If none of thresholds above usage is crossed, we read
3849 	 * only one element of the array here.
3850 	 */
3851 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3852 		eventfd_signal(t->entries[i].eventfd, 1);
3853 
3854 	/* Update current_threshold */
3855 	t->current_threshold = i - 1;
3856 unlock:
3857 	rcu_read_unlock();
3858 }
3859 
3860 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3861 {
3862 	while (memcg) {
3863 		__mem_cgroup_threshold(memcg, false);
3864 		if (do_memsw_account())
3865 			__mem_cgroup_threshold(memcg, true);
3866 
3867 		memcg = parent_mem_cgroup(memcg);
3868 	}
3869 }
3870 
3871 static int compare_thresholds(const void *a, const void *b)
3872 {
3873 	const struct mem_cgroup_threshold *_a = a;
3874 	const struct mem_cgroup_threshold *_b = b;
3875 
3876 	if (_a->threshold > _b->threshold)
3877 		return 1;
3878 
3879 	if (_a->threshold < _b->threshold)
3880 		return -1;
3881 
3882 	return 0;
3883 }
3884 
3885 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3886 {
3887 	struct mem_cgroup_eventfd_list *ev;
3888 
3889 	spin_lock(&memcg_oom_lock);
3890 
3891 	list_for_each_entry(ev, &memcg->oom_notify, list)
3892 		eventfd_signal(ev->eventfd, 1);
3893 
3894 	spin_unlock(&memcg_oom_lock);
3895 	return 0;
3896 }
3897 
3898 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3899 {
3900 	struct mem_cgroup *iter;
3901 
3902 	for_each_mem_cgroup_tree(iter, memcg)
3903 		mem_cgroup_oom_notify_cb(iter);
3904 }
3905 
3906 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3907 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3908 {
3909 	struct mem_cgroup_thresholds *thresholds;
3910 	struct mem_cgroup_threshold_ary *new;
3911 	unsigned long threshold;
3912 	unsigned long usage;
3913 	int i, size, ret;
3914 
3915 	ret = page_counter_memparse(args, "-1", &threshold);
3916 	if (ret)
3917 		return ret;
3918 
3919 	mutex_lock(&memcg->thresholds_lock);
3920 
3921 	if (type == _MEM) {
3922 		thresholds = &memcg->thresholds;
3923 		usage = mem_cgroup_usage(memcg, false);
3924 	} else if (type == _MEMSWAP) {
3925 		thresholds = &memcg->memsw_thresholds;
3926 		usage = mem_cgroup_usage(memcg, true);
3927 	} else
3928 		BUG();
3929 
3930 	/* Check if a threshold crossed before adding a new one */
3931 	if (thresholds->primary)
3932 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3933 
3934 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3935 
3936 	/* Allocate memory for new array of thresholds */
3937 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3938 	if (!new) {
3939 		ret = -ENOMEM;
3940 		goto unlock;
3941 	}
3942 	new->size = size;
3943 
3944 	/* Copy thresholds (if any) to new array */
3945 	if (thresholds->primary) {
3946 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3947 				sizeof(struct mem_cgroup_threshold));
3948 	}
3949 
3950 	/* Add new threshold */
3951 	new->entries[size - 1].eventfd = eventfd;
3952 	new->entries[size - 1].threshold = threshold;
3953 
3954 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3955 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3956 			compare_thresholds, NULL);
3957 
3958 	/* Find current threshold */
3959 	new->current_threshold = -1;
3960 	for (i = 0; i < size; i++) {
3961 		if (new->entries[i].threshold <= usage) {
3962 			/*
3963 			 * new->current_threshold will not be used until
3964 			 * rcu_assign_pointer(), so it's safe to increment
3965 			 * it here.
3966 			 */
3967 			++new->current_threshold;
3968 		} else
3969 			break;
3970 	}
3971 
3972 	/* Free old spare buffer and save old primary buffer as spare */
3973 	kfree(thresholds->spare);
3974 	thresholds->spare = thresholds->primary;
3975 
3976 	rcu_assign_pointer(thresholds->primary, new);
3977 
3978 	/* To be sure that nobody uses thresholds */
3979 	synchronize_rcu();
3980 
3981 unlock:
3982 	mutex_unlock(&memcg->thresholds_lock);
3983 
3984 	return ret;
3985 }
3986 
3987 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3988 	struct eventfd_ctx *eventfd, const char *args)
3989 {
3990 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3991 }
3992 
3993 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3994 	struct eventfd_ctx *eventfd, const char *args)
3995 {
3996 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3997 }
3998 
3999 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4000 	struct eventfd_ctx *eventfd, enum res_type type)
4001 {
4002 	struct mem_cgroup_thresholds *thresholds;
4003 	struct mem_cgroup_threshold_ary *new;
4004 	unsigned long usage;
4005 	int i, j, size;
4006 
4007 	mutex_lock(&memcg->thresholds_lock);
4008 
4009 	if (type == _MEM) {
4010 		thresholds = &memcg->thresholds;
4011 		usage = mem_cgroup_usage(memcg, false);
4012 	} else if (type == _MEMSWAP) {
4013 		thresholds = &memcg->memsw_thresholds;
4014 		usage = mem_cgroup_usage(memcg, true);
4015 	} else
4016 		BUG();
4017 
4018 	if (!thresholds->primary)
4019 		goto unlock;
4020 
4021 	/* Check if a threshold crossed before removing */
4022 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4023 
4024 	/* Calculate new number of threshold */
4025 	size = 0;
4026 	for (i = 0; i < thresholds->primary->size; i++) {
4027 		if (thresholds->primary->entries[i].eventfd != eventfd)
4028 			size++;
4029 	}
4030 
4031 	new = thresholds->spare;
4032 
4033 	/* Set thresholds array to NULL if we don't have thresholds */
4034 	if (!size) {
4035 		kfree(new);
4036 		new = NULL;
4037 		goto swap_buffers;
4038 	}
4039 
4040 	new->size = size;
4041 
4042 	/* Copy thresholds and find current threshold */
4043 	new->current_threshold = -1;
4044 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4045 		if (thresholds->primary->entries[i].eventfd == eventfd)
4046 			continue;
4047 
4048 		new->entries[j] = thresholds->primary->entries[i];
4049 		if (new->entries[j].threshold <= usage) {
4050 			/*
4051 			 * new->current_threshold will not be used
4052 			 * until rcu_assign_pointer(), so it's safe to increment
4053 			 * it here.
4054 			 */
4055 			++new->current_threshold;
4056 		}
4057 		j++;
4058 	}
4059 
4060 swap_buffers:
4061 	/* Swap primary and spare array */
4062 	thresholds->spare = thresholds->primary;
4063 
4064 	rcu_assign_pointer(thresholds->primary, new);
4065 
4066 	/* To be sure that nobody uses thresholds */
4067 	synchronize_rcu();
4068 
4069 	/* If all events are unregistered, free the spare array */
4070 	if (!new) {
4071 		kfree(thresholds->spare);
4072 		thresholds->spare = NULL;
4073 	}
4074 unlock:
4075 	mutex_unlock(&memcg->thresholds_lock);
4076 }
4077 
4078 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4079 	struct eventfd_ctx *eventfd)
4080 {
4081 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4082 }
4083 
4084 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4085 	struct eventfd_ctx *eventfd)
4086 {
4087 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4088 }
4089 
4090 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4091 	struct eventfd_ctx *eventfd, const char *args)
4092 {
4093 	struct mem_cgroup_eventfd_list *event;
4094 
4095 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4096 	if (!event)
4097 		return -ENOMEM;
4098 
4099 	spin_lock(&memcg_oom_lock);
4100 
4101 	event->eventfd = eventfd;
4102 	list_add(&event->list, &memcg->oom_notify);
4103 
4104 	/* already in OOM ? */
4105 	if (memcg->under_oom)
4106 		eventfd_signal(eventfd, 1);
4107 	spin_unlock(&memcg_oom_lock);
4108 
4109 	return 0;
4110 }
4111 
4112 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4113 	struct eventfd_ctx *eventfd)
4114 {
4115 	struct mem_cgroup_eventfd_list *ev, *tmp;
4116 
4117 	spin_lock(&memcg_oom_lock);
4118 
4119 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4120 		if (ev->eventfd == eventfd) {
4121 			list_del(&ev->list);
4122 			kfree(ev);
4123 		}
4124 	}
4125 
4126 	spin_unlock(&memcg_oom_lock);
4127 }
4128 
4129 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4130 {
4131 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4132 
4133 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4134 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4135 	seq_printf(sf, "oom_kill %lu\n",
4136 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4137 	return 0;
4138 }
4139 
4140 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4141 	struct cftype *cft, u64 val)
4142 {
4143 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4144 
4145 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4146 	if (!css->parent || !((val == 0) || (val == 1)))
4147 		return -EINVAL;
4148 
4149 	memcg->oom_kill_disable = val;
4150 	if (!val)
4151 		memcg_oom_recover(memcg);
4152 
4153 	return 0;
4154 }
4155 
4156 #ifdef CONFIG_CGROUP_WRITEBACK
4157 
4158 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4159 {
4160 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4161 }
4162 
4163 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4164 {
4165 	wb_domain_exit(&memcg->cgwb_domain);
4166 }
4167 
4168 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4169 {
4170 	wb_domain_size_changed(&memcg->cgwb_domain);
4171 }
4172 
4173 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4174 {
4175 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4176 
4177 	if (!memcg->css.parent)
4178 		return NULL;
4179 
4180 	return &memcg->cgwb_domain;
4181 }
4182 
4183 /*
4184  * idx can be of type enum memcg_stat_item or node_stat_item.
4185  * Keep in sync with memcg_exact_page().
4186  */
4187 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4188 {
4189 	long x = atomic_long_read(&memcg->vmstats[idx]);
4190 	int cpu;
4191 
4192 	for_each_online_cpu(cpu)
4193 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4194 	if (x < 0)
4195 		x = 0;
4196 	return x;
4197 }
4198 
4199 /**
4200  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4201  * @wb: bdi_writeback in question
4202  * @pfilepages: out parameter for number of file pages
4203  * @pheadroom: out parameter for number of allocatable pages according to memcg
4204  * @pdirty: out parameter for number of dirty pages
4205  * @pwriteback: out parameter for number of pages under writeback
4206  *
4207  * Determine the numbers of file, headroom, dirty, and writeback pages in
4208  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4209  * is a bit more involved.
4210  *
4211  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4212  * headroom is calculated as the lowest headroom of itself and the
4213  * ancestors.  Note that this doesn't consider the actual amount of
4214  * available memory in the system.  The caller should further cap
4215  * *@pheadroom accordingly.
4216  */
4217 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4218 			 unsigned long *pheadroom, unsigned long *pdirty,
4219 			 unsigned long *pwriteback)
4220 {
4221 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4222 	struct mem_cgroup *parent;
4223 
4224 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4225 
4226 	/* this should eventually include NR_UNSTABLE_NFS */
4227 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4228 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4229 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4230 	*pheadroom = PAGE_COUNTER_MAX;
4231 
4232 	while ((parent = parent_mem_cgroup(memcg))) {
4233 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4234 		unsigned long used = page_counter_read(&memcg->memory);
4235 
4236 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4237 		memcg = parent;
4238 	}
4239 }
4240 
4241 #else	/* CONFIG_CGROUP_WRITEBACK */
4242 
4243 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4244 {
4245 	return 0;
4246 }
4247 
4248 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4249 {
4250 }
4251 
4252 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4253 {
4254 }
4255 
4256 #endif	/* CONFIG_CGROUP_WRITEBACK */
4257 
4258 /*
4259  * DO NOT USE IN NEW FILES.
4260  *
4261  * "cgroup.event_control" implementation.
4262  *
4263  * This is way over-engineered.  It tries to support fully configurable
4264  * events for each user.  Such level of flexibility is completely
4265  * unnecessary especially in the light of the planned unified hierarchy.
4266  *
4267  * Please deprecate this and replace with something simpler if at all
4268  * possible.
4269  */
4270 
4271 /*
4272  * Unregister event and free resources.
4273  *
4274  * Gets called from workqueue.
4275  */
4276 static void memcg_event_remove(struct work_struct *work)
4277 {
4278 	struct mem_cgroup_event *event =
4279 		container_of(work, struct mem_cgroup_event, remove);
4280 	struct mem_cgroup *memcg = event->memcg;
4281 
4282 	remove_wait_queue(event->wqh, &event->wait);
4283 
4284 	event->unregister_event(memcg, event->eventfd);
4285 
4286 	/* Notify userspace the event is going away. */
4287 	eventfd_signal(event->eventfd, 1);
4288 
4289 	eventfd_ctx_put(event->eventfd);
4290 	kfree(event);
4291 	css_put(&memcg->css);
4292 }
4293 
4294 /*
4295  * Gets called on EPOLLHUP on eventfd when user closes it.
4296  *
4297  * Called with wqh->lock held and interrupts disabled.
4298  */
4299 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4300 			    int sync, void *key)
4301 {
4302 	struct mem_cgroup_event *event =
4303 		container_of(wait, struct mem_cgroup_event, wait);
4304 	struct mem_cgroup *memcg = event->memcg;
4305 	__poll_t flags = key_to_poll(key);
4306 
4307 	if (flags & EPOLLHUP) {
4308 		/*
4309 		 * If the event has been detached at cgroup removal, we
4310 		 * can simply return knowing the other side will cleanup
4311 		 * for us.
4312 		 *
4313 		 * We can't race against event freeing since the other
4314 		 * side will require wqh->lock via remove_wait_queue(),
4315 		 * which we hold.
4316 		 */
4317 		spin_lock(&memcg->event_list_lock);
4318 		if (!list_empty(&event->list)) {
4319 			list_del_init(&event->list);
4320 			/*
4321 			 * We are in atomic context, but cgroup_event_remove()
4322 			 * may sleep, so we have to call it in workqueue.
4323 			 */
4324 			schedule_work(&event->remove);
4325 		}
4326 		spin_unlock(&memcg->event_list_lock);
4327 	}
4328 
4329 	return 0;
4330 }
4331 
4332 static void memcg_event_ptable_queue_proc(struct file *file,
4333 		wait_queue_head_t *wqh, poll_table *pt)
4334 {
4335 	struct mem_cgroup_event *event =
4336 		container_of(pt, struct mem_cgroup_event, pt);
4337 
4338 	event->wqh = wqh;
4339 	add_wait_queue(wqh, &event->wait);
4340 }
4341 
4342 /*
4343  * DO NOT USE IN NEW FILES.
4344  *
4345  * Parse input and register new cgroup event handler.
4346  *
4347  * Input must be in format '<event_fd> <control_fd> <args>'.
4348  * Interpretation of args is defined by control file implementation.
4349  */
4350 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4351 					 char *buf, size_t nbytes, loff_t off)
4352 {
4353 	struct cgroup_subsys_state *css = of_css(of);
4354 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4355 	struct mem_cgroup_event *event;
4356 	struct cgroup_subsys_state *cfile_css;
4357 	unsigned int efd, cfd;
4358 	struct fd efile;
4359 	struct fd cfile;
4360 	const char *name;
4361 	char *endp;
4362 	int ret;
4363 
4364 	buf = strstrip(buf);
4365 
4366 	efd = simple_strtoul(buf, &endp, 10);
4367 	if (*endp != ' ')
4368 		return -EINVAL;
4369 	buf = endp + 1;
4370 
4371 	cfd = simple_strtoul(buf, &endp, 10);
4372 	if ((*endp != ' ') && (*endp != '\0'))
4373 		return -EINVAL;
4374 	buf = endp + 1;
4375 
4376 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4377 	if (!event)
4378 		return -ENOMEM;
4379 
4380 	event->memcg = memcg;
4381 	INIT_LIST_HEAD(&event->list);
4382 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4383 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4384 	INIT_WORK(&event->remove, memcg_event_remove);
4385 
4386 	efile = fdget(efd);
4387 	if (!efile.file) {
4388 		ret = -EBADF;
4389 		goto out_kfree;
4390 	}
4391 
4392 	event->eventfd = eventfd_ctx_fileget(efile.file);
4393 	if (IS_ERR(event->eventfd)) {
4394 		ret = PTR_ERR(event->eventfd);
4395 		goto out_put_efile;
4396 	}
4397 
4398 	cfile = fdget(cfd);
4399 	if (!cfile.file) {
4400 		ret = -EBADF;
4401 		goto out_put_eventfd;
4402 	}
4403 
4404 	/* the process need read permission on control file */
4405 	/* AV: shouldn't we check that it's been opened for read instead? */
4406 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4407 	if (ret < 0)
4408 		goto out_put_cfile;
4409 
4410 	/*
4411 	 * Determine the event callbacks and set them in @event.  This used
4412 	 * to be done via struct cftype but cgroup core no longer knows
4413 	 * about these events.  The following is crude but the whole thing
4414 	 * is for compatibility anyway.
4415 	 *
4416 	 * DO NOT ADD NEW FILES.
4417 	 */
4418 	name = cfile.file->f_path.dentry->d_name.name;
4419 
4420 	if (!strcmp(name, "memory.usage_in_bytes")) {
4421 		event->register_event = mem_cgroup_usage_register_event;
4422 		event->unregister_event = mem_cgroup_usage_unregister_event;
4423 	} else if (!strcmp(name, "memory.oom_control")) {
4424 		event->register_event = mem_cgroup_oom_register_event;
4425 		event->unregister_event = mem_cgroup_oom_unregister_event;
4426 	} else if (!strcmp(name, "memory.pressure_level")) {
4427 		event->register_event = vmpressure_register_event;
4428 		event->unregister_event = vmpressure_unregister_event;
4429 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4430 		event->register_event = memsw_cgroup_usage_register_event;
4431 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4432 	} else {
4433 		ret = -EINVAL;
4434 		goto out_put_cfile;
4435 	}
4436 
4437 	/*
4438 	 * Verify @cfile should belong to @css.  Also, remaining events are
4439 	 * automatically removed on cgroup destruction but the removal is
4440 	 * asynchronous, so take an extra ref on @css.
4441 	 */
4442 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4443 					       &memory_cgrp_subsys);
4444 	ret = -EINVAL;
4445 	if (IS_ERR(cfile_css))
4446 		goto out_put_cfile;
4447 	if (cfile_css != css) {
4448 		css_put(cfile_css);
4449 		goto out_put_cfile;
4450 	}
4451 
4452 	ret = event->register_event(memcg, event->eventfd, buf);
4453 	if (ret)
4454 		goto out_put_css;
4455 
4456 	vfs_poll(efile.file, &event->pt);
4457 
4458 	spin_lock(&memcg->event_list_lock);
4459 	list_add(&event->list, &memcg->event_list);
4460 	spin_unlock(&memcg->event_list_lock);
4461 
4462 	fdput(cfile);
4463 	fdput(efile);
4464 
4465 	return nbytes;
4466 
4467 out_put_css:
4468 	css_put(css);
4469 out_put_cfile:
4470 	fdput(cfile);
4471 out_put_eventfd:
4472 	eventfd_ctx_put(event->eventfd);
4473 out_put_efile:
4474 	fdput(efile);
4475 out_kfree:
4476 	kfree(event);
4477 
4478 	return ret;
4479 }
4480 
4481 static struct cftype mem_cgroup_legacy_files[] = {
4482 	{
4483 		.name = "usage_in_bytes",
4484 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4485 		.read_u64 = mem_cgroup_read_u64,
4486 	},
4487 	{
4488 		.name = "max_usage_in_bytes",
4489 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4490 		.write = mem_cgroup_reset,
4491 		.read_u64 = mem_cgroup_read_u64,
4492 	},
4493 	{
4494 		.name = "limit_in_bytes",
4495 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4496 		.write = mem_cgroup_write,
4497 		.read_u64 = mem_cgroup_read_u64,
4498 	},
4499 	{
4500 		.name = "soft_limit_in_bytes",
4501 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4502 		.write = mem_cgroup_write,
4503 		.read_u64 = mem_cgroup_read_u64,
4504 	},
4505 	{
4506 		.name = "failcnt",
4507 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4508 		.write = mem_cgroup_reset,
4509 		.read_u64 = mem_cgroup_read_u64,
4510 	},
4511 	{
4512 		.name = "stat",
4513 		.seq_show = memcg_stat_show,
4514 	},
4515 	{
4516 		.name = "force_empty",
4517 		.write = mem_cgroup_force_empty_write,
4518 	},
4519 	{
4520 		.name = "use_hierarchy",
4521 		.write_u64 = mem_cgroup_hierarchy_write,
4522 		.read_u64 = mem_cgroup_hierarchy_read,
4523 	},
4524 	{
4525 		.name = "cgroup.event_control",		/* XXX: for compat */
4526 		.write = memcg_write_event_control,
4527 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4528 	},
4529 	{
4530 		.name = "swappiness",
4531 		.read_u64 = mem_cgroup_swappiness_read,
4532 		.write_u64 = mem_cgroup_swappiness_write,
4533 	},
4534 	{
4535 		.name = "move_charge_at_immigrate",
4536 		.read_u64 = mem_cgroup_move_charge_read,
4537 		.write_u64 = mem_cgroup_move_charge_write,
4538 	},
4539 	{
4540 		.name = "oom_control",
4541 		.seq_show = mem_cgroup_oom_control_read,
4542 		.write_u64 = mem_cgroup_oom_control_write,
4543 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4544 	},
4545 	{
4546 		.name = "pressure_level",
4547 	},
4548 #ifdef CONFIG_NUMA
4549 	{
4550 		.name = "numa_stat",
4551 		.seq_show = memcg_numa_stat_show,
4552 	},
4553 #endif
4554 	{
4555 		.name = "kmem.limit_in_bytes",
4556 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4557 		.write = mem_cgroup_write,
4558 		.read_u64 = mem_cgroup_read_u64,
4559 	},
4560 	{
4561 		.name = "kmem.usage_in_bytes",
4562 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4563 		.read_u64 = mem_cgroup_read_u64,
4564 	},
4565 	{
4566 		.name = "kmem.failcnt",
4567 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4568 		.write = mem_cgroup_reset,
4569 		.read_u64 = mem_cgroup_read_u64,
4570 	},
4571 	{
4572 		.name = "kmem.max_usage_in_bytes",
4573 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4574 		.write = mem_cgroup_reset,
4575 		.read_u64 = mem_cgroup_read_u64,
4576 	},
4577 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4578 	{
4579 		.name = "kmem.slabinfo",
4580 		.seq_start = memcg_slab_start,
4581 		.seq_next = memcg_slab_next,
4582 		.seq_stop = memcg_slab_stop,
4583 		.seq_show = memcg_slab_show,
4584 	},
4585 #endif
4586 	{
4587 		.name = "kmem.tcp.limit_in_bytes",
4588 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4589 		.write = mem_cgroup_write,
4590 		.read_u64 = mem_cgroup_read_u64,
4591 	},
4592 	{
4593 		.name = "kmem.tcp.usage_in_bytes",
4594 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4595 		.read_u64 = mem_cgroup_read_u64,
4596 	},
4597 	{
4598 		.name = "kmem.tcp.failcnt",
4599 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4600 		.write = mem_cgroup_reset,
4601 		.read_u64 = mem_cgroup_read_u64,
4602 	},
4603 	{
4604 		.name = "kmem.tcp.max_usage_in_bytes",
4605 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4606 		.write = mem_cgroup_reset,
4607 		.read_u64 = mem_cgroup_read_u64,
4608 	},
4609 	{ },	/* terminate */
4610 };
4611 
4612 /*
4613  * Private memory cgroup IDR
4614  *
4615  * Swap-out records and page cache shadow entries need to store memcg
4616  * references in constrained space, so we maintain an ID space that is
4617  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4618  * memory-controlled cgroups to 64k.
4619  *
4620  * However, there usually are many references to the oflline CSS after
4621  * the cgroup has been destroyed, such as page cache or reclaimable
4622  * slab objects, that don't need to hang on to the ID. We want to keep
4623  * those dead CSS from occupying IDs, or we might quickly exhaust the
4624  * relatively small ID space and prevent the creation of new cgroups
4625  * even when there are much fewer than 64k cgroups - possibly none.
4626  *
4627  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4628  * be freed and recycled when it's no longer needed, which is usually
4629  * when the CSS is offlined.
4630  *
4631  * The only exception to that are records of swapped out tmpfs/shmem
4632  * pages that need to be attributed to live ancestors on swapin. But
4633  * those references are manageable from userspace.
4634  */
4635 
4636 static DEFINE_IDR(mem_cgroup_idr);
4637 
4638 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4639 {
4640 	if (memcg->id.id > 0) {
4641 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4642 		memcg->id.id = 0;
4643 	}
4644 }
4645 
4646 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4647 {
4648 	refcount_add(n, &memcg->id.ref);
4649 }
4650 
4651 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4652 {
4653 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4654 		mem_cgroup_id_remove(memcg);
4655 
4656 		/* Memcg ID pins CSS */
4657 		css_put(&memcg->css);
4658 	}
4659 }
4660 
4661 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4662 {
4663 	mem_cgroup_id_get_many(memcg, 1);
4664 }
4665 
4666 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4667 {
4668 	mem_cgroup_id_put_many(memcg, 1);
4669 }
4670 
4671 /**
4672  * mem_cgroup_from_id - look up a memcg from a memcg id
4673  * @id: the memcg id to look up
4674  *
4675  * Caller must hold rcu_read_lock().
4676  */
4677 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4678 {
4679 	WARN_ON_ONCE(!rcu_read_lock_held());
4680 	return idr_find(&mem_cgroup_idr, id);
4681 }
4682 
4683 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4684 {
4685 	struct mem_cgroup_per_node *pn;
4686 	int tmp = node;
4687 	/*
4688 	 * This routine is called against possible nodes.
4689 	 * But it's BUG to call kmalloc() against offline node.
4690 	 *
4691 	 * TODO: this routine can waste much memory for nodes which will
4692 	 *       never be onlined. It's better to use memory hotplug callback
4693 	 *       function.
4694 	 */
4695 	if (!node_state(node, N_NORMAL_MEMORY))
4696 		tmp = -1;
4697 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4698 	if (!pn)
4699 		return 1;
4700 
4701 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4702 	if (!pn->lruvec_stat_local) {
4703 		kfree(pn);
4704 		return 1;
4705 	}
4706 
4707 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4708 	if (!pn->lruvec_stat_cpu) {
4709 		free_percpu(pn->lruvec_stat_local);
4710 		kfree(pn);
4711 		return 1;
4712 	}
4713 
4714 	lruvec_init(&pn->lruvec);
4715 	pn->usage_in_excess = 0;
4716 	pn->on_tree = false;
4717 	pn->memcg = memcg;
4718 
4719 	memcg->nodeinfo[node] = pn;
4720 	return 0;
4721 }
4722 
4723 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4724 {
4725 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4726 
4727 	if (!pn)
4728 		return;
4729 
4730 	free_percpu(pn->lruvec_stat_cpu);
4731 	free_percpu(pn->lruvec_stat_local);
4732 	kfree(pn);
4733 }
4734 
4735 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4736 {
4737 	int node;
4738 
4739 	/*
4740 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4741 	 * on parent's and all ancestor levels.
4742 	 */
4743 	memcg_flush_percpu_vmstats(memcg);
4744 	memcg_flush_percpu_vmevents(memcg);
4745 	for_each_node(node)
4746 		free_mem_cgroup_per_node_info(memcg, node);
4747 	free_percpu(memcg->vmstats_percpu);
4748 	free_percpu(memcg->vmstats_local);
4749 	kfree(memcg);
4750 }
4751 
4752 static void mem_cgroup_free(struct mem_cgroup *memcg)
4753 {
4754 	memcg_wb_domain_exit(memcg);
4755 	__mem_cgroup_free(memcg);
4756 }
4757 
4758 static struct mem_cgroup *mem_cgroup_alloc(void)
4759 {
4760 	struct mem_cgroup *memcg;
4761 	unsigned int size;
4762 	int node;
4763 
4764 	size = sizeof(struct mem_cgroup);
4765 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4766 
4767 	memcg = kzalloc(size, GFP_KERNEL);
4768 	if (!memcg)
4769 		return NULL;
4770 
4771 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4772 				 1, MEM_CGROUP_ID_MAX,
4773 				 GFP_KERNEL);
4774 	if (memcg->id.id < 0)
4775 		goto fail;
4776 
4777 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4778 	if (!memcg->vmstats_local)
4779 		goto fail;
4780 
4781 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4782 	if (!memcg->vmstats_percpu)
4783 		goto fail;
4784 
4785 	for_each_node(node)
4786 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4787 			goto fail;
4788 
4789 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4790 		goto fail;
4791 
4792 	INIT_WORK(&memcg->high_work, high_work_func);
4793 	memcg->last_scanned_node = MAX_NUMNODES;
4794 	INIT_LIST_HEAD(&memcg->oom_notify);
4795 	mutex_init(&memcg->thresholds_lock);
4796 	spin_lock_init(&memcg->move_lock);
4797 	vmpressure_init(&memcg->vmpressure);
4798 	INIT_LIST_HEAD(&memcg->event_list);
4799 	spin_lock_init(&memcg->event_list_lock);
4800 	memcg->socket_pressure = jiffies;
4801 #ifdef CONFIG_MEMCG_KMEM
4802 	memcg->kmemcg_id = -1;
4803 #endif
4804 #ifdef CONFIG_CGROUP_WRITEBACK
4805 	INIT_LIST_HEAD(&memcg->cgwb_list);
4806 #endif
4807 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4808 	return memcg;
4809 fail:
4810 	mem_cgroup_id_remove(memcg);
4811 	__mem_cgroup_free(memcg);
4812 	return NULL;
4813 }
4814 
4815 static struct cgroup_subsys_state * __ref
4816 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4817 {
4818 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4819 	struct mem_cgroup *memcg;
4820 	long error = -ENOMEM;
4821 
4822 	memcg = mem_cgroup_alloc();
4823 	if (!memcg)
4824 		return ERR_PTR(error);
4825 
4826 	memcg->high = PAGE_COUNTER_MAX;
4827 	memcg->soft_limit = PAGE_COUNTER_MAX;
4828 	if (parent) {
4829 		memcg->swappiness = mem_cgroup_swappiness(parent);
4830 		memcg->oom_kill_disable = parent->oom_kill_disable;
4831 	}
4832 	if (parent && parent->use_hierarchy) {
4833 		memcg->use_hierarchy = true;
4834 		page_counter_init(&memcg->memory, &parent->memory);
4835 		page_counter_init(&memcg->swap, &parent->swap);
4836 		page_counter_init(&memcg->memsw, &parent->memsw);
4837 		page_counter_init(&memcg->kmem, &parent->kmem);
4838 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4839 	} else {
4840 		page_counter_init(&memcg->memory, NULL);
4841 		page_counter_init(&memcg->swap, NULL);
4842 		page_counter_init(&memcg->memsw, NULL);
4843 		page_counter_init(&memcg->kmem, NULL);
4844 		page_counter_init(&memcg->tcpmem, NULL);
4845 		/*
4846 		 * Deeper hierachy with use_hierarchy == false doesn't make
4847 		 * much sense so let cgroup subsystem know about this
4848 		 * unfortunate state in our controller.
4849 		 */
4850 		if (parent != root_mem_cgroup)
4851 			memory_cgrp_subsys.broken_hierarchy = true;
4852 	}
4853 
4854 	/* The following stuff does not apply to the root */
4855 	if (!parent) {
4856 #ifdef CONFIG_MEMCG_KMEM
4857 		INIT_LIST_HEAD(&memcg->kmem_caches);
4858 #endif
4859 		root_mem_cgroup = memcg;
4860 		return &memcg->css;
4861 	}
4862 
4863 	error = memcg_online_kmem(memcg);
4864 	if (error)
4865 		goto fail;
4866 
4867 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4868 		static_branch_inc(&memcg_sockets_enabled_key);
4869 
4870 	return &memcg->css;
4871 fail:
4872 	mem_cgroup_id_remove(memcg);
4873 	mem_cgroup_free(memcg);
4874 	return ERR_PTR(-ENOMEM);
4875 }
4876 
4877 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4878 {
4879 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4880 
4881 	/*
4882 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4883 	 * by the time the maps are allocated. So, we allocate maps
4884 	 * here, when for_each_mem_cgroup() can't skip it.
4885 	 */
4886 	if (memcg_alloc_shrinker_maps(memcg)) {
4887 		mem_cgroup_id_remove(memcg);
4888 		return -ENOMEM;
4889 	}
4890 
4891 	/* Online state pins memcg ID, memcg ID pins CSS */
4892 	refcount_set(&memcg->id.ref, 1);
4893 	css_get(css);
4894 	return 0;
4895 }
4896 
4897 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4898 {
4899 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4900 	struct mem_cgroup_event *event, *tmp;
4901 
4902 	/*
4903 	 * Unregister events and notify userspace.
4904 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4905 	 * directory to avoid race between userspace and kernelspace.
4906 	 */
4907 	spin_lock(&memcg->event_list_lock);
4908 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4909 		list_del_init(&event->list);
4910 		schedule_work(&event->remove);
4911 	}
4912 	spin_unlock(&memcg->event_list_lock);
4913 
4914 	page_counter_set_min(&memcg->memory, 0);
4915 	page_counter_set_low(&memcg->memory, 0);
4916 
4917 	memcg_offline_kmem(memcg);
4918 	wb_memcg_offline(memcg);
4919 
4920 	drain_all_stock(memcg);
4921 
4922 	mem_cgroup_id_put(memcg);
4923 }
4924 
4925 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4926 {
4927 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4928 
4929 	invalidate_reclaim_iterators(memcg);
4930 }
4931 
4932 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4933 {
4934 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4935 
4936 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4937 		static_branch_dec(&memcg_sockets_enabled_key);
4938 
4939 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4940 		static_branch_dec(&memcg_sockets_enabled_key);
4941 
4942 	vmpressure_cleanup(&memcg->vmpressure);
4943 	cancel_work_sync(&memcg->high_work);
4944 	mem_cgroup_remove_from_trees(memcg);
4945 	memcg_free_shrinker_maps(memcg);
4946 	memcg_free_kmem(memcg);
4947 	mem_cgroup_free(memcg);
4948 }
4949 
4950 /**
4951  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4952  * @css: the target css
4953  *
4954  * Reset the states of the mem_cgroup associated with @css.  This is
4955  * invoked when the userland requests disabling on the default hierarchy
4956  * but the memcg is pinned through dependency.  The memcg should stop
4957  * applying policies and should revert to the vanilla state as it may be
4958  * made visible again.
4959  *
4960  * The current implementation only resets the essential configurations.
4961  * This needs to be expanded to cover all the visible parts.
4962  */
4963 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4964 {
4965 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4966 
4967 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4968 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4969 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4970 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4971 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4972 	page_counter_set_min(&memcg->memory, 0);
4973 	page_counter_set_low(&memcg->memory, 0);
4974 	memcg->high = PAGE_COUNTER_MAX;
4975 	memcg->soft_limit = PAGE_COUNTER_MAX;
4976 	memcg_wb_domain_size_changed(memcg);
4977 }
4978 
4979 #ifdef CONFIG_MMU
4980 /* Handlers for move charge at task migration. */
4981 static int mem_cgroup_do_precharge(unsigned long count)
4982 {
4983 	int ret;
4984 
4985 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4986 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4987 	if (!ret) {
4988 		mc.precharge += count;
4989 		return ret;
4990 	}
4991 
4992 	/* Try charges one by one with reclaim, but do not retry */
4993 	while (count--) {
4994 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4995 		if (ret)
4996 			return ret;
4997 		mc.precharge++;
4998 		cond_resched();
4999 	}
5000 	return 0;
5001 }
5002 
5003 union mc_target {
5004 	struct page	*page;
5005 	swp_entry_t	ent;
5006 };
5007 
5008 enum mc_target_type {
5009 	MC_TARGET_NONE = 0,
5010 	MC_TARGET_PAGE,
5011 	MC_TARGET_SWAP,
5012 	MC_TARGET_DEVICE,
5013 };
5014 
5015 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5016 						unsigned long addr, pte_t ptent)
5017 {
5018 	struct page *page = vm_normal_page(vma, addr, ptent);
5019 
5020 	if (!page || !page_mapped(page))
5021 		return NULL;
5022 	if (PageAnon(page)) {
5023 		if (!(mc.flags & MOVE_ANON))
5024 			return NULL;
5025 	} else {
5026 		if (!(mc.flags & MOVE_FILE))
5027 			return NULL;
5028 	}
5029 	if (!get_page_unless_zero(page))
5030 		return NULL;
5031 
5032 	return page;
5033 }
5034 
5035 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5036 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5037 			pte_t ptent, swp_entry_t *entry)
5038 {
5039 	struct page *page = NULL;
5040 	swp_entry_t ent = pte_to_swp_entry(ptent);
5041 
5042 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5043 		return NULL;
5044 
5045 	/*
5046 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5047 	 * a device and because they are not accessible by CPU they are store
5048 	 * as special swap entry in the CPU page table.
5049 	 */
5050 	if (is_device_private_entry(ent)) {
5051 		page = device_private_entry_to_page(ent);
5052 		/*
5053 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5054 		 * a refcount of 1 when free (unlike normal page)
5055 		 */
5056 		if (!page_ref_add_unless(page, 1, 1))
5057 			return NULL;
5058 		return page;
5059 	}
5060 
5061 	/*
5062 	 * Because lookup_swap_cache() updates some statistics counter,
5063 	 * we call find_get_page() with swapper_space directly.
5064 	 */
5065 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5066 	if (do_memsw_account())
5067 		entry->val = ent.val;
5068 
5069 	return page;
5070 }
5071 #else
5072 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5073 			pte_t ptent, swp_entry_t *entry)
5074 {
5075 	return NULL;
5076 }
5077 #endif
5078 
5079 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5080 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5081 {
5082 	struct page *page = NULL;
5083 	struct address_space *mapping;
5084 	pgoff_t pgoff;
5085 
5086 	if (!vma->vm_file) /* anonymous vma */
5087 		return NULL;
5088 	if (!(mc.flags & MOVE_FILE))
5089 		return NULL;
5090 
5091 	mapping = vma->vm_file->f_mapping;
5092 	pgoff = linear_page_index(vma, addr);
5093 
5094 	/* page is moved even if it's not RSS of this task(page-faulted). */
5095 #ifdef CONFIG_SWAP
5096 	/* shmem/tmpfs may report page out on swap: account for that too. */
5097 	if (shmem_mapping(mapping)) {
5098 		page = find_get_entry(mapping, pgoff);
5099 		if (xa_is_value(page)) {
5100 			swp_entry_t swp = radix_to_swp_entry(page);
5101 			if (do_memsw_account())
5102 				*entry = swp;
5103 			page = find_get_page(swap_address_space(swp),
5104 					     swp_offset(swp));
5105 		}
5106 	} else
5107 		page = find_get_page(mapping, pgoff);
5108 #else
5109 	page = find_get_page(mapping, pgoff);
5110 #endif
5111 	return page;
5112 }
5113 
5114 /**
5115  * mem_cgroup_move_account - move account of the page
5116  * @page: the page
5117  * @compound: charge the page as compound or small page
5118  * @from: mem_cgroup which the page is moved from.
5119  * @to:	mem_cgroup which the page is moved to. @from != @to.
5120  *
5121  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5122  *
5123  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5124  * from old cgroup.
5125  */
5126 static int mem_cgroup_move_account(struct page *page,
5127 				   bool compound,
5128 				   struct mem_cgroup *from,
5129 				   struct mem_cgroup *to)
5130 {
5131 	unsigned long flags;
5132 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5133 	int ret;
5134 	bool anon;
5135 
5136 	VM_BUG_ON(from == to);
5137 	VM_BUG_ON_PAGE(PageLRU(page), page);
5138 	VM_BUG_ON(compound && !PageTransHuge(page));
5139 
5140 	/*
5141 	 * Prevent mem_cgroup_migrate() from looking at
5142 	 * page->mem_cgroup of its source page while we change it.
5143 	 */
5144 	ret = -EBUSY;
5145 	if (!trylock_page(page))
5146 		goto out;
5147 
5148 	ret = -EINVAL;
5149 	if (page->mem_cgroup != from)
5150 		goto out_unlock;
5151 
5152 	anon = PageAnon(page);
5153 
5154 	spin_lock_irqsave(&from->move_lock, flags);
5155 
5156 	if (!anon && page_mapped(page)) {
5157 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5158 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5159 	}
5160 
5161 	/*
5162 	 * move_lock grabbed above and caller set from->moving_account, so
5163 	 * mod_memcg_page_state will serialize updates to PageDirty.
5164 	 * So mapping should be stable for dirty pages.
5165 	 */
5166 	if (!anon && PageDirty(page)) {
5167 		struct address_space *mapping = page_mapping(page);
5168 
5169 		if (mapping_cap_account_dirty(mapping)) {
5170 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5171 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5172 		}
5173 	}
5174 
5175 	if (PageWriteback(page)) {
5176 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5177 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5178 	}
5179 
5180 	/*
5181 	 * It is safe to change page->mem_cgroup here because the page
5182 	 * is referenced, charged, and isolated - we can't race with
5183 	 * uncharging, charging, migration, or LRU putback.
5184 	 */
5185 
5186 	/* caller should have done css_get */
5187 	page->mem_cgroup = to;
5188 	spin_unlock_irqrestore(&from->move_lock, flags);
5189 
5190 	ret = 0;
5191 
5192 	local_irq_disable();
5193 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5194 	memcg_check_events(to, page);
5195 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5196 	memcg_check_events(from, page);
5197 	local_irq_enable();
5198 out_unlock:
5199 	unlock_page(page);
5200 out:
5201 	return ret;
5202 }
5203 
5204 /**
5205  * get_mctgt_type - get target type of moving charge
5206  * @vma: the vma the pte to be checked belongs
5207  * @addr: the address corresponding to the pte to be checked
5208  * @ptent: the pte to be checked
5209  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5210  *
5211  * Returns
5212  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5213  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5214  *     move charge. if @target is not NULL, the page is stored in target->page
5215  *     with extra refcnt got(Callers should handle it).
5216  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5217  *     target for charge migration. if @target is not NULL, the entry is stored
5218  *     in target->ent.
5219  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5220  *     (so ZONE_DEVICE page and thus not on the lru).
5221  *     For now we such page is charge like a regular page would be as for all
5222  *     intent and purposes it is just special memory taking the place of a
5223  *     regular page.
5224  *
5225  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5226  *
5227  * Called with pte lock held.
5228  */
5229 
5230 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5231 		unsigned long addr, pte_t ptent, union mc_target *target)
5232 {
5233 	struct page *page = NULL;
5234 	enum mc_target_type ret = MC_TARGET_NONE;
5235 	swp_entry_t ent = { .val = 0 };
5236 
5237 	if (pte_present(ptent))
5238 		page = mc_handle_present_pte(vma, addr, ptent);
5239 	else if (is_swap_pte(ptent))
5240 		page = mc_handle_swap_pte(vma, ptent, &ent);
5241 	else if (pte_none(ptent))
5242 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5243 
5244 	if (!page && !ent.val)
5245 		return ret;
5246 	if (page) {
5247 		/*
5248 		 * Do only loose check w/o serialization.
5249 		 * mem_cgroup_move_account() checks the page is valid or
5250 		 * not under LRU exclusion.
5251 		 */
5252 		if (page->mem_cgroup == mc.from) {
5253 			ret = MC_TARGET_PAGE;
5254 			if (is_device_private_page(page))
5255 				ret = MC_TARGET_DEVICE;
5256 			if (target)
5257 				target->page = page;
5258 		}
5259 		if (!ret || !target)
5260 			put_page(page);
5261 	}
5262 	/*
5263 	 * There is a swap entry and a page doesn't exist or isn't charged.
5264 	 * But we cannot move a tail-page in a THP.
5265 	 */
5266 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5267 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5268 		ret = MC_TARGET_SWAP;
5269 		if (target)
5270 			target->ent = ent;
5271 	}
5272 	return ret;
5273 }
5274 
5275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5276 /*
5277  * We don't consider PMD mapped swapping or file mapped pages because THP does
5278  * not support them for now.
5279  * Caller should make sure that pmd_trans_huge(pmd) is true.
5280  */
5281 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5282 		unsigned long addr, pmd_t pmd, union mc_target *target)
5283 {
5284 	struct page *page = NULL;
5285 	enum mc_target_type ret = MC_TARGET_NONE;
5286 
5287 	if (unlikely(is_swap_pmd(pmd))) {
5288 		VM_BUG_ON(thp_migration_supported() &&
5289 				  !is_pmd_migration_entry(pmd));
5290 		return ret;
5291 	}
5292 	page = pmd_page(pmd);
5293 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5294 	if (!(mc.flags & MOVE_ANON))
5295 		return ret;
5296 	if (page->mem_cgroup == mc.from) {
5297 		ret = MC_TARGET_PAGE;
5298 		if (target) {
5299 			get_page(page);
5300 			target->page = page;
5301 		}
5302 	}
5303 	return ret;
5304 }
5305 #else
5306 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5307 		unsigned long addr, pmd_t pmd, union mc_target *target)
5308 {
5309 	return MC_TARGET_NONE;
5310 }
5311 #endif
5312 
5313 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5314 					unsigned long addr, unsigned long end,
5315 					struct mm_walk *walk)
5316 {
5317 	struct vm_area_struct *vma = walk->vma;
5318 	pte_t *pte;
5319 	spinlock_t *ptl;
5320 
5321 	ptl = pmd_trans_huge_lock(pmd, vma);
5322 	if (ptl) {
5323 		/*
5324 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5325 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5326 		 * this might change.
5327 		 */
5328 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5329 			mc.precharge += HPAGE_PMD_NR;
5330 		spin_unlock(ptl);
5331 		return 0;
5332 	}
5333 
5334 	if (pmd_trans_unstable(pmd))
5335 		return 0;
5336 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5337 	for (; addr != end; pte++, addr += PAGE_SIZE)
5338 		if (get_mctgt_type(vma, addr, *pte, NULL))
5339 			mc.precharge++;	/* increment precharge temporarily */
5340 	pte_unmap_unlock(pte - 1, ptl);
5341 	cond_resched();
5342 
5343 	return 0;
5344 }
5345 
5346 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5347 {
5348 	unsigned long precharge;
5349 
5350 	struct mm_walk mem_cgroup_count_precharge_walk = {
5351 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5352 		.mm = mm,
5353 	};
5354 	down_read(&mm->mmap_sem);
5355 	walk_page_range(0, mm->highest_vm_end,
5356 			&mem_cgroup_count_precharge_walk);
5357 	up_read(&mm->mmap_sem);
5358 
5359 	precharge = mc.precharge;
5360 	mc.precharge = 0;
5361 
5362 	return precharge;
5363 }
5364 
5365 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5366 {
5367 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5368 
5369 	VM_BUG_ON(mc.moving_task);
5370 	mc.moving_task = current;
5371 	return mem_cgroup_do_precharge(precharge);
5372 }
5373 
5374 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5375 static void __mem_cgroup_clear_mc(void)
5376 {
5377 	struct mem_cgroup *from = mc.from;
5378 	struct mem_cgroup *to = mc.to;
5379 
5380 	/* we must uncharge all the leftover precharges from mc.to */
5381 	if (mc.precharge) {
5382 		cancel_charge(mc.to, mc.precharge);
5383 		mc.precharge = 0;
5384 	}
5385 	/*
5386 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5387 	 * we must uncharge here.
5388 	 */
5389 	if (mc.moved_charge) {
5390 		cancel_charge(mc.from, mc.moved_charge);
5391 		mc.moved_charge = 0;
5392 	}
5393 	/* we must fixup refcnts and charges */
5394 	if (mc.moved_swap) {
5395 		/* uncharge swap account from the old cgroup */
5396 		if (!mem_cgroup_is_root(mc.from))
5397 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5398 
5399 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5400 
5401 		/*
5402 		 * we charged both to->memory and to->memsw, so we
5403 		 * should uncharge to->memory.
5404 		 */
5405 		if (!mem_cgroup_is_root(mc.to))
5406 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5407 
5408 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5409 		css_put_many(&mc.to->css, mc.moved_swap);
5410 
5411 		mc.moved_swap = 0;
5412 	}
5413 	memcg_oom_recover(from);
5414 	memcg_oom_recover(to);
5415 	wake_up_all(&mc.waitq);
5416 }
5417 
5418 static void mem_cgroup_clear_mc(void)
5419 {
5420 	struct mm_struct *mm = mc.mm;
5421 
5422 	/*
5423 	 * we must clear moving_task before waking up waiters at the end of
5424 	 * task migration.
5425 	 */
5426 	mc.moving_task = NULL;
5427 	__mem_cgroup_clear_mc();
5428 	spin_lock(&mc.lock);
5429 	mc.from = NULL;
5430 	mc.to = NULL;
5431 	mc.mm = NULL;
5432 	spin_unlock(&mc.lock);
5433 
5434 	mmput(mm);
5435 }
5436 
5437 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5438 {
5439 	struct cgroup_subsys_state *css;
5440 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5441 	struct mem_cgroup *from;
5442 	struct task_struct *leader, *p;
5443 	struct mm_struct *mm;
5444 	unsigned long move_flags;
5445 	int ret = 0;
5446 
5447 	/* charge immigration isn't supported on the default hierarchy */
5448 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5449 		return 0;
5450 
5451 	/*
5452 	 * Multi-process migrations only happen on the default hierarchy
5453 	 * where charge immigration is not used.  Perform charge
5454 	 * immigration if @tset contains a leader and whine if there are
5455 	 * multiple.
5456 	 */
5457 	p = NULL;
5458 	cgroup_taskset_for_each_leader(leader, css, tset) {
5459 		WARN_ON_ONCE(p);
5460 		p = leader;
5461 		memcg = mem_cgroup_from_css(css);
5462 	}
5463 	if (!p)
5464 		return 0;
5465 
5466 	/*
5467 	 * We are now commited to this value whatever it is. Changes in this
5468 	 * tunable will only affect upcoming migrations, not the current one.
5469 	 * So we need to save it, and keep it going.
5470 	 */
5471 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5472 	if (!move_flags)
5473 		return 0;
5474 
5475 	from = mem_cgroup_from_task(p);
5476 
5477 	VM_BUG_ON(from == memcg);
5478 
5479 	mm = get_task_mm(p);
5480 	if (!mm)
5481 		return 0;
5482 	/* We move charges only when we move a owner of the mm */
5483 	if (mm->owner == p) {
5484 		VM_BUG_ON(mc.from);
5485 		VM_BUG_ON(mc.to);
5486 		VM_BUG_ON(mc.precharge);
5487 		VM_BUG_ON(mc.moved_charge);
5488 		VM_BUG_ON(mc.moved_swap);
5489 
5490 		spin_lock(&mc.lock);
5491 		mc.mm = mm;
5492 		mc.from = from;
5493 		mc.to = memcg;
5494 		mc.flags = move_flags;
5495 		spin_unlock(&mc.lock);
5496 		/* We set mc.moving_task later */
5497 
5498 		ret = mem_cgroup_precharge_mc(mm);
5499 		if (ret)
5500 			mem_cgroup_clear_mc();
5501 	} else {
5502 		mmput(mm);
5503 	}
5504 	return ret;
5505 }
5506 
5507 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5508 {
5509 	if (mc.to)
5510 		mem_cgroup_clear_mc();
5511 }
5512 
5513 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5514 				unsigned long addr, unsigned long end,
5515 				struct mm_walk *walk)
5516 {
5517 	int ret = 0;
5518 	struct vm_area_struct *vma = walk->vma;
5519 	pte_t *pte;
5520 	spinlock_t *ptl;
5521 	enum mc_target_type target_type;
5522 	union mc_target target;
5523 	struct page *page;
5524 
5525 	ptl = pmd_trans_huge_lock(pmd, vma);
5526 	if (ptl) {
5527 		if (mc.precharge < HPAGE_PMD_NR) {
5528 			spin_unlock(ptl);
5529 			return 0;
5530 		}
5531 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5532 		if (target_type == MC_TARGET_PAGE) {
5533 			page = target.page;
5534 			if (!isolate_lru_page(page)) {
5535 				if (!mem_cgroup_move_account(page, true,
5536 							     mc.from, mc.to)) {
5537 					mc.precharge -= HPAGE_PMD_NR;
5538 					mc.moved_charge += HPAGE_PMD_NR;
5539 				}
5540 				putback_lru_page(page);
5541 			}
5542 			put_page(page);
5543 		} else if (target_type == MC_TARGET_DEVICE) {
5544 			page = target.page;
5545 			if (!mem_cgroup_move_account(page, true,
5546 						     mc.from, mc.to)) {
5547 				mc.precharge -= HPAGE_PMD_NR;
5548 				mc.moved_charge += HPAGE_PMD_NR;
5549 			}
5550 			put_page(page);
5551 		}
5552 		spin_unlock(ptl);
5553 		return 0;
5554 	}
5555 
5556 	if (pmd_trans_unstable(pmd))
5557 		return 0;
5558 retry:
5559 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5560 	for (; addr != end; addr += PAGE_SIZE) {
5561 		pte_t ptent = *(pte++);
5562 		bool device = false;
5563 		swp_entry_t ent;
5564 
5565 		if (!mc.precharge)
5566 			break;
5567 
5568 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5569 		case MC_TARGET_DEVICE:
5570 			device = true;
5571 			/* fall through */
5572 		case MC_TARGET_PAGE:
5573 			page = target.page;
5574 			/*
5575 			 * We can have a part of the split pmd here. Moving it
5576 			 * can be done but it would be too convoluted so simply
5577 			 * ignore such a partial THP and keep it in original
5578 			 * memcg. There should be somebody mapping the head.
5579 			 */
5580 			if (PageTransCompound(page))
5581 				goto put;
5582 			if (!device && isolate_lru_page(page))
5583 				goto put;
5584 			if (!mem_cgroup_move_account(page, false,
5585 						mc.from, mc.to)) {
5586 				mc.precharge--;
5587 				/* we uncharge from mc.from later. */
5588 				mc.moved_charge++;
5589 			}
5590 			if (!device)
5591 				putback_lru_page(page);
5592 put:			/* get_mctgt_type() gets the page */
5593 			put_page(page);
5594 			break;
5595 		case MC_TARGET_SWAP:
5596 			ent = target.ent;
5597 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5598 				mc.precharge--;
5599 				/* we fixup refcnts and charges later. */
5600 				mc.moved_swap++;
5601 			}
5602 			break;
5603 		default:
5604 			break;
5605 		}
5606 	}
5607 	pte_unmap_unlock(pte - 1, ptl);
5608 	cond_resched();
5609 
5610 	if (addr != end) {
5611 		/*
5612 		 * We have consumed all precharges we got in can_attach().
5613 		 * We try charge one by one, but don't do any additional
5614 		 * charges to mc.to if we have failed in charge once in attach()
5615 		 * phase.
5616 		 */
5617 		ret = mem_cgroup_do_precharge(1);
5618 		if (!ret)
5619 			goto retry;
5620 	}
5621 
5622 	return ret;
5623 }
5624 
5625 static void mem_cgroup_move_charge(void)
5626 {
5627 	struct mm_walk mem_cgroup_move_charge_walk = {
5628 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5629 		.mm = mc.mm,
5630 	};
5631 
5632 	lru_add_drain_all();
5633 	/*
5634 	 * Signal lock_page_memcg() to take the memcg's move_lock
5635 	 * while we're moving its pages to another memcg. Then wait
5636 	 * for already started RCU-only updates to finish.
5637 	 */
5638 	atomic_inc(&mc.from->moving_account);
5639 	synchronize_rcu();
5640 retry:
5641 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5642 		/*
5643 		 * Someone who are holding the mmap_sem might be waiting in
5644 		 * waitq. So we cancel all extra charges, wake up all waiters,
5645 		 * and retry. Because we cancel precharges, we might not be able
5646 		 * to move enough charges, but moving charge is a best-effort
5647 		 * feature anyway, so it wouldn't be a big problem.
5648 		 */
5649 		__mem_cgroup_clear_mc();
5650 		cond_resched();
5651 		goto retry;
5652 	}
5653 	/*
5654 	 * When we have consumed all precharges and failed in doing
5655 	 * additional charge, the page walk just aborts.
5656 	 */
5657 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5658 
5659 	up_read(&mc.mm->mmap_sem);
5660 	atomic_dec(&mc.from->moving_account);
5661 }
5662 
5663 static void mem_cgroup_move_task(void)
5664 {
5665 	if (mc.to) {
5666 		mem_cgroup_move_charge();
5667 		mem_cgroup_clear_mc();
5668 	}
5669 }
5670 #else	/* !CONFIG_MMU */
5671 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5672 {
5673 	return 0;
5674 }
5675 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5676 {
5677 }
5678 static void mem_cgroup_move_task(void)
5679 {
5680 }
5681 #endif
5682 
5683 /*
5684  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5685  * to verify whether we're attached to the default hierarchy on each mount
5686  * attempt.
5687  */
5688 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5689 {
5690 	/*
5691 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5692 	 * guarantees that @root doesn't have any children, so turning it
5693 	 * on for the root memcg is enough.
5694 	 */
5695 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5696 		root_mem_cgroup->use_hierarchy = true;
5697 	else
5698 		root_mem_cgroup->use_hierarchy = false;
5699 }
5700 
5701 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5702 {
5703 	if (value == PAGE_COUNTER_MAX)
5704 		seq_puts(m, "max\n");
5705 	else
5706 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5707 
5708 	return 0;
5709 }
5710 
5711 static u64 memory_current_read(struct cgroup_subsys_state *css,
5712 			       struct cftype *cft)
5713 {
5714 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5715 
5716 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5717 }
5718 
5719 static int memory_min_show(struct seq_file *m, void *v)
5720 {
5721 	return seq_puts_memcg_tunable(m,
5722 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5723 }
5724 
5725 static ssize_t memory_min_write(struct kernfs_open_file *of,
5726 				char *buf, size_t nbytes, loff_t off)
5727 {
5728 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5729 	unsigned long min;
5730 	int err;
5731 
5732 	buf = strstrip(buf);
5733 	err = page_counter_memparse(buf, "max", &min);
5734 	if (err)
5735 		return err;
5736 
5737 	page_counter_set_min(&memcg->memory, min);
5738 
5739 	return nbytes;
5740 }
5741 
5742 static int memory_low_show(struct seq_file *m, void *v)
5743 {
5744 	return seq_puts_memcg_tunable(m,
5745 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5746 }
5747 
5748 static ssize_t memory_low_write(struct kernfs_open_file *of,
5749 				char *buf, size_t nbytes, loff_t off)
5750 {
5751 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5752 	unsigned long low;
5753 	int err;
5754 
5755 	buf = strstrip(buf);
5756 	err = page_counter_memparse(buf, "max", &low);
5757 	if (err)
5758 		return err;
5759 
5760 	page_counter_set_low(&memcg->memory, low);
5761 
5762 	return nbytes;
5763 }
5764 
5765 static int memory_high_show(struct seq_file *m, void *v)
5766 {
5767 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5768 }
5769 
5770 static ssize_t memory_high_write(struct kernfs_open_file *of,
5771 				 char *buf, size_t nbytes, loff_t off)
5772 {
5773 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5774 	unsigned long nr_pages;
5775 	unsigned long high;
5776 	int err;
5777 
5778 	buf = strstrip(buf);
5779 	err = page_counter_memparse(buf, "max", &high);
5780 	if (err)
5781 		return err;
5782 
5783 	memcg->high = high;
5784 
5785 	nr_pages = page_counter_read(&memcg->memory);
5786 	if (nr_pages > high)
5787 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5788 					     GFP_KERNEL, true);
5789 
5790 	memcg_wb_domain_size_changed(memcg);
5791 	return nbytes;
5792 }
5793 
5794 static int memory_max_show(struct seq_file *m, void *v)
5795 {
5796 	return seq_puts_memcg_tunable(m,
5797 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5798 }
5799 
5800 static ssize_t memory_max_write(struct kernfs_open_file *of,
5801 				char *buf, size_t nbytes, loff_t off)
5802 {
5803 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5804 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5805 	bool drained = false;
5806 	unsigned long max;
5807 	int err;
5808 
5809 	buf = strstrip(buf);
5810 	err = page_counter_memparse(buf, "max", &max);
5811 	if (err)
5812 		return err;
5813 
5814 	xchg(&memcg->memory.max, max);
5815 
5816 	for (;;) {
5817 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5818 
5819 		if (nr_pages <= max)
5820 			break;
5821 
5822 		if (signal_pending(current)) {
5823 			err = -EINTR;
5824 			break;
5825 		}
5826 
5827 		if (!drained) {
5828 			drain_all_stock(memcg);
5829 			drained = true;
5830 			continue;
5831 		}
5832 
5833 		if (nr_reclaims) {
5834 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5835 							  GFP_KERNEL, true))
5836 				nr_reclaims--;
5837 			continue;
5838 		}
5839 
5840 		memcg_memory_event(memcg, MEMCG_OOM);
5841 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5842 			break;
5843 	}
5844 
5845 	memcg_wb_domain_size_changed(memcg);
5846 	return nbytes;
5847 }
5848 
5849 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5850 {
5851 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5852 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5853 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5854 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5855 	seq_printf(m, "oom_kill %lu\n",
5856 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
5857 }
5858 
5859 static int memory_events_show(struct seq_file *m, void *v)
5860 {
5861 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5862 
5863 	__memory_events_show(m, memcg->memory_events);
5864 	return 0;
5865 }
5866 
5867 static int memory_events_local_show(struct seq_file *m, void *v)
5868 {
5869 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5870 
5871 	__memory_events_show(m, memcg->memory_events_local);
5872 	return 0;
5873 }
5874 
5875 static int memory_stat_show(struct seq_file *m, void *v)
5876 {
5877 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5878 	char *buf;
5879 
5880 	buf = memory_stat_format(memcg);
5881 	if (!buf)
5882 		return -ENOMEM;
5883 	seq_puts(m, buf);
5884 	kfree(buf);
5885 	return 0;
5886 }
5887 
5888 static int memory_oom_group_show(struct seq_file *m, void *v)
5889 {
5890 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5891 
5892 	seq_printf(m, "%d\n", memcg->oom_group);
5893 
5894 	return 0;
5895 }
5896 
5897 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5898 				      char *buf, size_t nbytes, loff_t off)
5899 {
5900 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5901 	int ret, oom_group;
5902 
5903 	buf = strstrip(buf);
5904 	if (!buf)
5905 		return -EINVAL;
5906 
5907 	ret = kstrtoint(buf, 0, &oom_group);
5908 	if (ret)
5909 		return ret;
5910 
5911 	if (oom_group != 0 && oom_group != 1)
5912 		return -EINVAL;
5913 
5914 	memcg->oom_group = oom_group;
5915 
5916 	return nbytes;
5917 }
5918 
5919 static struct cftype memory_files[] = {
5920 	{
5921 		.name = "current",
5922 		.flags = CFTYPE_NOT_ON_ROOT,
5923 		.read_u64 = memory_current_read,
5924 	},
5925 	{
5926 		.name = "min",
5927 		.flags = CFTYPE_NOT_ON_ROOT,
5928 		.seq_show = memory_min_show,
5929 		.write = memory_min_write,
5930 	},
5931 	{
5932 		.name = "low",
5933 		.flags = CFTYPE_NOT_ON_ROOT,
5934 		.seq_show = memory_low_show,
5935 		.write = memory_low_write,
5936 	},
5937 	{
5938 		.name = "high",
5939 		.flags = CFTYPE_NOT_ON_ROOT,
5940 		.seq_show = memory_high_show,
5941 		.write = memory_high_write,
5942 	},
5943 	{
5944 		.name = "max",
5945 		.flags = CFTYPE_NOT_ON_ROOT,
5946 		.seq_show = memory_max_show,
5947 		.write = memory_max_write,
5948 	},
5949 	{
5950 		.name = "events",
5951 		.flags = CFTYPE_NOT_ON_ROOT,
5952 		.file_offset = offsetof(struct mem_cgroup, events_file),
5953 		.seq_show = memory_events_show,
5954 	},
5955 	{
5956 		.name = "events.local",
5957 		.flags = CFTYPE_NOT_ON_ROOT,
5958 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
5959 		.seq_show = memory_events_local_show,
5960 	},
5961 	{
5962 		.name = "stat",
5963 		.flags = CFTYPE_NOT_ON_ROOT,
5964 		.seq_show = memory_stat_show,
5965 	},
5966 	{
5967 		.name = "oom.group",
5968 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5969 		.seq_show = memory_oom_group_show,
5970 		.write = memory_oom_group_write,
5971 	},
5972 	{ }	/* terminate */
5973 };
5974 
5975 struct cgroup_subsys memory_cgrp_subsys = {
5976 	.css_alloc = mem_cgroup_css_alloc,
5977 	.css_online = mem_cgroup_css_online,
5978 	.css_offline = mem_cgroup_css_offline,
5979 	.css_released = mem_cgroup_css_released,
5980 	.css_free = mem_cgroup_css_free,
5981 	.css_reset = mem_cgroup_css_reset,
5982 	.can_attach = mem_cgroup_can_attach,
5983 	.cancel_attach = mem_cgroup_cancel_attach,
5984 	.post_attach = mem_cgroup_move_task,
5985 	.bind = mem_cgroup_bind,
5986 	.dfl_cftypes = memory_files,
5987 	.legacy_cftypes = mem_cgroup_legacy_files,
5988 	.early_init = 0,
5989 };
5990 
5991 /**
5992  * mem_cgroup_protected - check if memory consumption is in the normal range
5993  * @root: the top ancestor of the sub-tree being checked
5994  * @memcg: the memory cgroup to check
5995  *
5996  * WARNING: This function is not stateless! It can only be used as part
5997  *          of a top-down tree iteration, not for isolated queries.
5998  *
5999  * Returns one of the following:
6000  *   MEMCG_PROT_NONE: cgroup memory is not protected
6001  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6002  *     an unprotected supply of reclaimable memory from other cgroups.
6003  *   MEMCG_PROT_MIN: cgroup memory is protected
6004  *
6005  * @root is exclusive; it is never protected when looked at directly
6006  *
6007  * To provide a proper hierarchical behavior, effective memory.min/low values
6008  * are used. Below is the description of how effective memory.low is calculated.
6009  * Effective memory.min values is calculated in the same way.
6010  *
6011  * Effective memory.low is always equal or less than the original memory.low.
6012  * If there is no memory.low overcommittment (which is always true for
6013  * top-level memory cgroups), these two values are equal.
6014  * Otherwise, it's a part of parent's effective memory.low,
6015  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6016  * memory.low usages, where memory.low usage is the size of actually
6017  * protected memory.
6018  *
6019  *                                             low_usage
6020  * elow = min( memory.low, parent->elow * ------------------ ),
6021  *                                        siblings_low_usage
6022  *
6023  *             | memory.current, if memory.current < memory.low
6024  * low_usage = |
6025  *	       | 0, otherwise.
6026  *
6027  *
6028  * Such definition of the effective memory.low provides the expected
6029  * hierarchical behavior: parent's memory.low value is limiting
6030  * children, unprotected memory is reclaimed first and cgroups,
6031  * which are not using their guarantee do not affect actual memory
6032  * distribution.
6033  *
6034  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6035  *
6036  *     A      A/memory.low = 2G, A/memory.current = 6G
6037  *    //\\
6038  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6039  *            C/memory.low = 1G  C/memory.current = 2G
6040  *            D/memory.low = 0   D/memory.current = 2G
6041  *            E/memory.low = 10G E/memory.current = 0
6042  *
6043  * and the memory pressure is applied, the following memory distribution
6044  * is expected (approximately):
6045  *
6046  *     A/memory.current = 2G
6047  *
6048  *     B/memory.current = 1.3G
6049  *     C/memory.current = 0.6G
6050  *     D/memory.current = 0
6051  *     E/memory.current = 0
6052  *
6053  * These calculations require constant tracking of the actual low usages
6054  * (see propagate_protected_usage()), as well as recursive calculation of
6055  * effective memory.low values. But as we do call mem_cgroup_protected()
6056  * path for each memory cgroup top-down from the reclaim,
6057  * it's possible to optimize this part, and save calculated elow
6058  * for next usage. This part is intentionally racy, but it's ok,
6059  * as memory.low is a best-effort mechanism.
6060  */
6061 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6062 						struct mem_cgroup *memcg)
6063 {
6064 	struct mem_cgroup *parent;
6065 	unsigned long emin, parent_emin;
6066 	unsigned long elow, parent_elow;
6067 	unsigned long usage;
6068 
6069 	if (mem_cgroup_disabled())
6070 		return MEMCG_PROT_NONE;
6071 
6072 	if (!root)
6073 		root = root_mem_cgroup;
6074 	if (memcg == root)
6075 		return MEMCG_PROT_NONE;
6076 
6077 	usage = page_counter_read(&memcg->memory);
6078 	if (!usage)
6079 		return MEMCG_PROT_NONE;
6080 
6081 	emin = memcg->memory.min;
6082 	elow = memcg->memory.low;
6083 
6084 	parent = parent_mem_cgroup(memcg);
6085 	/* No parent means a non-hierarchical mode on v1 memcg */
6086 	if (!parent)
6087 		return MEMCG_PROT_NONE;
6088 
6089 	if (parent == root)
6090 		goto exit;
6091 
6092 	parent_emin = READ_ONCE(parent->memory.emin);
6093 	emin = min(emin, parent_emin);
6094 	if (emin && parent_emin) {
6095 		unsigned long min_usage, siblings_min_usage;
6096 
6097 		min_usage = min(usage, memcg->memory.min);
6098 		siblings_min_usage = atomic_long_read(
6099 			&parent->memory.children_min_usage);
6100 
6101 		if (min_usage && siblings_min_usage)
6102 			emin = min(emin, parent_emin * min_usage /
6103 				   siblings_min_usage);
6104 	}
6105 
6106 	parent_elow = READ_ONCE(parent->memory.elow);
6107 	elow = min(elow, parent_elow);
6108 	if (elow && parent_elow) {
6109 		unsigned long low_usage, siblings_low_usage;
6110 
6111 		low_usage = min(usage, memcg->memory.low);
6112 		siblings_low_usage = atomic_long_read(
6113 			&parent->memory.children_low_usage);
6114 
6115 		if (low_usage && siblings_low_usage)
6116 			elow = min(elow, parent_elow * low_usage /
6117 				   siblings_low_usage);
6118 	}
6119 
6120 exit:
6121 	memcg->memory.emin = emin;
6122 	memcg->memory.elow = elow;
6123 
6124 	if (usage <= emin)
6125 		return MEMCG_PROT_MIN;
6126 	else if (usage <= elow)
6127 		return MEMCG_PROT_LOW;
6128 	else
6129 		return MEMCG_PROT_NONE;
6130 }
6131 
6132 /**
6133  * mem_cgroup_try_charge - try charging a page
6134  * @page: page to charge
6135  * @mm: mm context of the victim
6136  * @gfp_mask: reclaim mode
6137  * @memcgp: charged memcg return
6138  * @compound: charge the page as compound or small page
6139  *
6140  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6141  * pages according to @gfp_mask if necessary.
6142  *
6143  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6144  * Otherwise, an error code is returned.
6145  *
6146  * After page->mapping has been set up, the caller must finalize the
6147  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6148  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6149  */
6150 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6151 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6152 			  bool compound)
6153 {
6154 	struct mem_cgroup *memcg = NULL;
6155 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6156 	int ret = 0;
6157 
6158 	if (mem_cgroup_disabled())
6159 		goto out;
6160 
6161 	if (PageSwapCache(page)) {
6162 		/*
6163 		 * Every swap fault against a single page tries to charge the
6164 		 * page, bail as early as possible.  shmem_unuse() encounters
6165 		 * already charged pages, too.  The USED bit is protected by
6166 		 * the page lock, which serializes swap cache removal, which
6167 		 * in turn serializes uncharging.
6168 		 */
6169 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6170 		if (compound_head(page)->mem_cgroup)
6171 			goto out;
6172 
6173 		if (do_swap_account) {
6174 			swp_entry_t ent = { .val = page_private(page), };
6175 			unsigned short id = lookup_swap_cgroup_id(ent);
6176 
6177 			rcu_read_lock();
6178 			memcg = mem_cgroup_from_id(id);
6179 			if (memcg && !css_tryget_online(&memcg->css))
6180 				memcg = NULL;
6181 			rcu_read_unlock();
6182 		}
6183 	}
6184 
6185 	if (!memcg)
6186 		memcg = get_mem_cgroup_from_mm(mm);
6187 
6188 	ret = try_charge(memcg, gfp_mask, nr_pages);
6189 
6190 	css_put(&memcg->css);
6191 out:
6192 	*memcgp = memcg;
6193 	return ret;
6194 }
6195 
6196 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6197 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6198 			  bool compound)
6199 {
6200 	struct mem_cgroup *memcg;
6201 	int ret;
6202 
6203 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6204 	memcg = *memcgp;
6205 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6206 	return ret;
6207 }
6208 
6209 /**
6210  * mem_cgroup_commit_charge - commit a page charge
6211  * @page: page to charge
6212  * @memcg: memcg to charge the page to
6213  * @lrucare: page might be on LRU already
6214  * @compound: charge the page as compound or small page
6215  *
6216  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6217  * after page->mapping has been set up.  This must happen atomically
6218  * as part of the page instantiation, i.e. under the page table lock
6219  * for anonymous pages, under the page lock for page and swap cache.
6220  *
6221  * In addition, the page must not be on the LRU during the commit, to
6222  * prevent racing with task migration.  If it might be, use @lrucare.
6223  *
6224  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6225  */
6226 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6227 			      bool lrucare, bool compound)
6228 {
6229 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6230 
6231 	VM_BUG_ON_PAGE(!page->mapping, page);
6232 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6233 
6234 	if (mem_cgroup_disabled())
6235 		return;
6236 	/*
6237 	 * Swap faults will attempt to charge the same page multiple
6238 	 * times.  But reuse_swap_page() might have removed the page
6239 	 * from swapcache already, so we can't check PageSwapCache().
6240 	 */
6241 	if (!memcg)
6242 		return;
6243 
6244 	commit_charge(page, memcg, lrucare);
6245 
6246 	local_irq_disable();
6247 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6248 	memcg_check_events(memcg, page);
6249 	local_irq_enable();
6250 
6251 	if (do_memsw_account() && PageSwapCache(page)) {
6252 		swp_entry_t entry = { .val = page_private(page) };
6253 		/*
6254 		 * The swap entry might not get freed for a long time,
6255 		 * let's not wait for it.  The page already received a
6256 		 * memory+swap charge, drop the swap entry duplicate.
6257 		 */
6258 		mem_cgroup_uncharge_swap(entry, nr_pages);
6259 	}
6260 }
6261 
6262 /**
6263  * mem_cgroup_cancel_charge - cancel a page charge
6264  * @page: page to charge
6265  * @memcg: memcg to charge the page to
6266  * @compound: charge the page as compound or small page
6267  *
6268  * Cancel a charge transaction started by mem_cgroup_try_charge().
6269  */
6270 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6271 		bool compound)
6272 {
6273 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6274 
6275 	if (mem_cgroup_disabled())
6276 		return;
6277 	/*
6278 	 * Swap faults will attempt to charge the same page multiple
6279 	 * times.  But reuse_swap_page() might have removed the page
6280 	 * from swapcache already, so we can't check PageSwapCache().
6281 	 */
6282 	if (!memcg)
6283 		return;
6284 
6285 	cancel_charge(memcg, nr_pages);
6286 }
6287 
6288 struct uncharge_gather {
6289 	struct mem_cgroup *memcg;
6290 	unsigned long pgpgout;
6291 	unsigned long nr_anon;
6292 	unsigned long nr_file;
6293 	unsigned long nr_kmem;
6294 	unsigned long nr_huge;
6295 	unsigned long nr_shmem;
6296 	struct page *dummy_page;
6297 };
6298 
6299 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6300 {
6301 	memset(ug, 0, sizeof(*ug));
6302 }
6303 
6304 static void uncharge_batch(const struct uncharge_gather *ug)
6305 {
6306 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6307 	unsigned long flags;
6308 
6309 	if (!mem_cgroup_is_root(ug->memcg)) {
6310 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6311 		if (do_memsw_account())
6312 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6313 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6314 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6315 		memcg_oom_recover(ug->memcg);
6316 	}
6317 
6318 	local_irq_save(flags);
6319 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6320 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6321 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6322 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6323 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6324 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6325 	memcg_check_events(ug->memcg, ug->dummy_page);
6326 	local_irq_restore(flags);
6327 
6328 	if (!mem_cgroup_is_root(ug->memcg))
6329 		css_put_many(&ug->memcg->css, nr_pages);
6330 }
6331 
6332 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6333 {
6334 	VM_BUG_ON_PAGE(PageLRU(page), page);
6335 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6336 			!PageHWPoison(page) , page);
6337 
6338 	if (!page->mem_cgroup)
6339 		return;
6340 
6341 	/*
6342 	 * Nobody should be changing or seriously looking at
6343 	 * page->mem_cgroup at this point, we have fully
6344 	 * exclusive access to the page.
6345 	 */
6346 
6347 	if (ug->memcg != page->mem_cgroup) {
6348 		if (ug->memcg) {
6349 			uncharge_batch(ug);
6350 			uncharge_gather_clear(ug);
6351 		}
6352 		ug->memcg = page->mem_cgroup;
6353 	}
6354 
6355 	if (!PageKmemcg(page)) {
6356 		unsigned int nr_pages = 1;
6357 
6358 		if (PageTransHuge(page)) {
6359 			nr_pages <<= compound_order(page);
6360 			ug->nr_huge += nr_pages;
6361 		}
6362 		if (PageAnon(page))
6363 			ug->nr_anon += nr_pages;
6364 		else {
6365 			ug->nr_file += nr_pages;
6366 			if (PageSwapBacked(page))
6367 				ug->nr_shmem += nr_pages;
6368 		}
6369 		ug->pgpgout++;
6370 	} else {
6371 		ug->nr_kmem += 1 << compound_order(page);
6372 		__ClearPageKmemcg(page);
6373 	}
6374 
6375 	ug->dummy_page = page;
6376 	page->mem_cgroup = NULL;
6377 }
6378 
6379 static void uncharge_list(struct list_head *page_list)
6380 {
6381 	struct uncharge_gather ug;
6382 	struct list_head *next;
6383 
6384 	uncharge_gather_clear(&ug);
6385 
6386 	/*
6387 	 * Note that the list can be a single page->lru; hence the
6388 	 * do-while loop instead of a simple list_for_each_entry().
6389 	 */
6390 	next = page_list->next;
6391 	do {
6392 		struct page *page;
6393 
6394 		page = list_entry(next, struct page, lru);
6395 		next = page->lru.next;
6396 
6397 		uncharge_page(page, &ug);
6398 	} while (next != page_list);
6399 
6400 	if (ug.memcg)
6401 		uncharge_batch(&ug);
6402 }
6403 
6404 /**
6405  * mem_cgroup_uncharge - uncharge a page
6406  * @page: page to uncharge
6407  *
6408  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6409  * mem_cgroup_commit_charge().
6410  */
6411 void mem_cgroup_uncharge(struct page *page)
6412 {
6413 	struct uncharge_gather ug;
6414 
6415 	if (mem_cgroup_disabled())
6416 		return;
6417 
6418 	/* Don't touch page->lru of any random page, pre-check: */
6419 	if (!page->mem_cgroup)
6420 		return;
6421 
6422 	uncharge_gather_clear(&ug);
6423 	uncharge_page(page, &ug);
6424 	uncharge_batch(&ug);
6425 }
6426 
6427 /**
6428  * mem_cgroup_uncharge_list - uncharge a list of page
6429  * @page_list: list of pages to uncharge
6430  *
6431  * Uncharge a list of pages previously charged with
6432  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6433  */
6434 void mem_cgroup_uncharge_list(struct list_head *page_list)
6435 {
6436 	if (mem_cgroup_disabled())
6437 		return;
6438 
6439 	if (!list_empty(page_list))
6440 		uncharge_list(page_list);
6441 }
6442 
6443 /**
6444  * mem_cgroup_migrate - charge a page's replacement
6445  * @oldpage: currently circulating page
6446  * @newpage: replacement page
6447  *
6448  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6449  * be uncharged upon free.
6450  *
6451  * Both pages must be locked, @newpage->mapping must be set up.
6452  */
6453 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6454 {
6455 	struct mem_cgroup *memcg;
6456 	unsigned int nr_pages;
6457 	bool compound;
6458 	unsigned long flags;
6459 
6460 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6461 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6462 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6463 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6464 		       newpage);
6465 
6466 	if (mem_cgroup_disabled())
6467 		return;
6468 
6469 	/* Page cache replacement: new page already charged? */
6470 	if (newpage->mem_cgroup)
6471 		return;
6472 
6473 	/* Swapcache readahead pages can get replaced before being charged */
6474 	memcg = oldpage->mem_cgroup;
6475 	if (!memcg)
6476 		return;
6477 
6478 	/* Force-charge the new page. The old one will be freed soon */
6479 	compound = PageTransHuge(newpage);
6480 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6481 
6482 	page_counter_charge(&memcg->memory, nr_pages);
6483 	if (do_memsw_account())
6484 		page_counter_charge(&memcg->memsw, nr_pages);
6485 	css_get_many(&memcg->css, nr_pages);
6486 
6487 	commit_charge(newpage, memcg, false);
6488 
6489 	local_irq_save(flags);
6490 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6491 	memcg_check_events(memcg, newpage);
6492 	local_irq_restore(flags);
6493 }
6494 
6495 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6496 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6497 
6498 void mem_cgroup_sk_alloc(struct sock *sk)
6499 {
6500 	struct mem_cgroup *memcg;
6501 
6502 	if (!mem_cgroup_sockets_enabled)
6503 		return;
6504 
6505 	/*
6506 	 * Socket cloning can throw us here with sk_memcg already
6507 	 * filled. It won't however, necessarily happen from
6508 	 * process context. So the test for root memcg given
6509 	 * the current task's memcg won't help us in this case.
6510 	 *
6511 	 * Respecting the original socket's memcg is a better
6512 	 * decision in this case.
6513 	 */
6514 	if (sk->sk_memcg) {
6515 		css_get(&sk->sk_memcg->css);
6516 		return;
6517 	}
6518 
6519 	rcu_read_lock();
6520 	memcg = mem_cgroup_from_task(current);
6521 	if (memcg == root_mem_cgroup)
6522 		goto out;
6523 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6524 		goto out;
6525 	if (css_tryget_online(&memcg->css))
6526 		sk->sk_memcg = memcg;
6527 out:
6528 	rcu_read_unlock();
6529 }
6530 
6531 void mem_cgroup_sk_free(struct sock *sk)
6532 {
6533 	if (sk->sk_memcg)
6534 		css_put(&sk->sk_memcg->css);
6535 }
6536 
6537 /**
6538  * mem_cgroup_charge_skmem - charge socket memory
6539  * @memcg: memcg to charge
6540  * @nr_pages: number of pages to charge
6541  *
6542  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6543  * @memcg's configured limit, %false if the charge had to be forced.
6544  */
6545 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6546 {
6547 	gfp_t gfp_mask = GFP_KERNEL;
6548 
6549 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6550 		struct page_counter *fail;
6551 
6552 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6553 			memcg->tcpmem_pressure = 0;
6554 			return true;
6555 		}
6556 		page_counter_charge(&memcg->tcpmem, nr_pages);
6557 		memcg->tcpmem_pressure = 1;
6558 		return false;
6559 	}
6560 
6561 	/* Don't block in the packet receive path */
6562 	if (in_softirq())
6563 		gfp_mask = GFP_NOWAIT;
6564 
6565 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6566 
6567 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6568 		return true;
6569 
6570 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6571 	return false;
6572 }
6573 
6574 /**
6575  * mem_cgroup_uncharge_skmem - uncharge socket memory
6576  * @memcg: memcg to uncharge
6577  * @nr_pages: number of pages to uncharge
6578  */
6579 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6580 {
6581 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6582 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6583 		return;
6584 	}
6585 
6586 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6587 
6588 	refill_stock(memcg, nr_pages);
6589 }
6590 
6591 static int __init cgroup_memory(char *s)
6592 {
6593 	char *token;
6594 
6595 	while ((token = strsep(&s, ",")) != NULL) {
6596 		if (!*token)
6597 			continue;
6598 		if (!strcmp(token, "nosocket"))
6599 			cgroup_memory_nosocket = true;
6600 		if (!strcmp(token, "nokmem"))
6601 			cgroup_memory_nokmem = true;
6602 	}
6603 	return 0;
6604 }
6605 __setup("cgroup.memory=", cgroup_memory);
6606 
6607 /*
6608  * subsys_initcall() for memory controller.
6609  *
6610  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6611  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6612  * basically everything that doesn't depend on a specific mem_cgroup structure
6613  * should be initialized from here.
6614  */
6615 static int __init mem_cgroup_init(void)
6616 {
6617 	int cpu, node;
6618 
6619 #ifdef CONFIG_MEMCG_KMEM
6620 	/*
6621 	 * Kmem cache creation is mostly done with the slab_mutex held,
6622 	 * so use a workqueue with limited concurrency to avoid stalling
6623 	 * all worker threads in case lots of cgroups are created and
6624 	 * destroyed simultaneously.
6625 	 */
6626 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6627 	BUG_ON(!memcg_kmem_cache_wq);
6628 #endif
6629 
6630 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6631 				  memcg_hotplug_cpu_dead);
6632 
6633 	for_each_possible_cpu(cpu)
6634 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6635 			  drain_local_stock);
6636 
6637 	for_each_node(node) {
6638 		struct mem_cgroup_tree_per_node *rtpn;
6639 
6640 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6641 				    node_online(node) ? node : NUMA_NO_NODE);
6642 
6643 		rtpn->rb_root = RB_ROOT;
6644 		rtpn->rb_rightmost = NULL;
6645 		spin_lock_init(&rtpn->lock);
6646 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6647 	}
6648 
6649 	return 0;
6650 }
6651 subsys_initcall(mem_cgroup_init);
6652 
6653 #ifdef CONFIG_MEMCG_SWAP
6654 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6655 {
6656 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6657 		/*
6658 		 * The root cgroup cannot be destroyed, so it's refcount must
6659 		 * always be >= 1.
6660 		 */
6661 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6662 			VM_BUG_ON(1);
6663 			break;
6664 		}
6665 		memcg = parent_mem_cgroup(memcg);
6666 		if (!memcg)
6667 			memcg = root_mem_cgroup;
6668 	}
6669 	return memcg;
6670 }
6671 
6672 /**
6673  * mem_cgroup_swapout - transfer a memsw charge to swap
6674  * @page: page whose memsw charge to transfer
6675  * @entry: swap entry to move the charge to
6676  *
6677  * Transfer the memsw charge of @page to @entry.
6678  */
6679 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6680 {
6681 	struct mem_cgroup *memcg, *swap_memcg;
6682 	unsigned int nr_entries;
6683 	unsigned short oldid;
6684 
6685 	VM_BUG_ON_PAGE(PageLRU(page), page);
6686 	VM_BUG_ON_PAGE(page_count(page), page);
6687 
6688 	if (!do_memsw_account())
6689 		return;
6690 
6691 	memcg = page->mem_cgroup;
6692 
6693 	/* Readahead page, never charged */
6694 	if (!memcg)
6695 		return;
6696 
6697 	/*
6698 	 * In case the memcg owning these pages has been offlined and doesn't
6699 	 * have an ID allocated to it anymore, charge the closest online
6700 	 * ancestor for the swap instead and transfer the memory+swap charge.
6701 	 */
6702 	swap_memcg = mem_cgroup_id_get_online(memcg);
6703 	nr_entries = hpage_nr_pages(page);
6704 	/* Get references for the tail pages, too */
6705 	if (nr_entries > 1)
6706 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6707 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6708 				   nr_entries);
6709 	VM_BUG_ON_PAGE(oldid, page);
6710 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6711 
6712 	page->mem_cgroup = NULL;
6713 
6714 	if (!mem_cgroup_is_root(memcg))
6715 		page_counter_uncharge(&memcg->memory, nr_entries);
6716 
6717 	if (memcg != swap_memcg) {
6718 		if (!mem_cgroup_is_root(swap_memcg))
6719 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6720 		page_counter_uncharge(&memcg->memsw, nr_entries);
6721 	}
6722 
6723 	/*
6724 	 * Interrupts should be disabled here because the caller holds the
6725 	 * i_pages lock which is taken with interrupts-off. It is
6726 	 * important here to have the interrupts disabled because it is the
6727 	 * only synchronisation we have for updating the per-CPU variables.
6728 	 */
6729 	VM_BUG_ON(!irqs_disabled());
6730 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6731 				     -nr_entries);
6732 	memcg_check_events(memcg, page);
6733 
6734 	if (!mem_cgroup_is_root(memcg))
6735 		css_put_many(&memcg->css, nr_entries);
6736 }
6737 
6738 /**
6739  * mem_cgroup_try_charge_swap - try charging swap space for a page
6740  * @page: page being added to swap
6741  * @entry: swap entry to charge
6742  *
6743  * Try to charge @page's memcg for the swap space at @entry.
6744  *
6745  * Returns 0 on success, -ENOMEM on failure.
6746  */
6747 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6748 {
6749 	unsigned int nr_pages = hpage_nr_pages(page);
6750 	struct page_counter *counter;
6751 	struct mem_cgroup *memcg;
6752 	unsigned short oldid;
6753 
6754 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6755 		return 0;
6756 
6757 	memcg = page->mem_cgroup;
6758 
6759 	/* Readahead page, never charged */
6760 	if (!memcg)
6761 		return 0;
6762 
6763 	if (!entry.val) {
6764 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6765 		return 0;
6766 	}
6767 
6768 	memcg = mem_cgroup_id_get_online(memcg);
6769 
6770 	if (!mem_cgroup_is_root(memcg) &&
6771 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6772 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6773 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6774 		mem_cgroup_id_put(memcg);
6775 		return -ENOMEM;
6776 	}
6777 
6778 	/* Get references for the tail pages, too */
6779 	if (nr_pages > 1)
6780 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6781 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6782 	VM_BUG_ON_PAGE(oldid, page);
6783 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6784 
6785 	return 0;
6786 }
6787 
6788 /**
6789  * mem_cgroup_uncharge_swap - uncharge swap space
6790  * @entry: swap entry to uncharge
6791  * @nr_pages: the amount of swap space to uncharge
6792  */
6793 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6794 {
6795 	struct mem_cgroup *memcg;
6796 	unsigned short id;
6797 
6798 	if (!do_swap_account)
6799 		return;
6800 
6801 	id = swap_cgroup_record(entry, 0, nr_pages);
6802 	rcu_read_lock();
6803 	memcg = mem_cgroup_from_id(id);
6804 	if (memcg) {
6805 		if (!mem_cgroup_is_root(memcg)) {
6806 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6807 				page_counter_uncharge(&memcg->swap, nr_pages);
6808 			else
6809 				page_counter_uncharge(&memcg->memsw, nr_pages);
6810 		}
6811 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6812 		mem_cgroup_id_put_many(memcg, nr_pages);
6813 	}
6814 	rcu_read_unlock();
6815 }
6816 
6817 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6818 {
6819 	long nr_swap_pages = get_nr_swap_pages();
6820 
6821 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6822 		return nr_swap_pages;
6823 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6824 		nr_swap_pages = min_t(long, nr_swap_pages,
6825 				      READ_ONCE(memcg->swap.max) -
6826 				      page_counter_read(&memcg->swap));
6827 	return nr_swap_pages;
6828 }
6829 
6830 bool mem_cgroup_swap_full(struct page *page)
6831 {
6832 	struct mem_cgroup *memcg;
6833 
6834 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6835 
6836 	if (vm_swap_full())
6837 		return true;
6838 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6839 		return false;
6840 
6841 	memcg = page->mem_cgroup;
6842 	if (!memcg)
6843 		return false;
6844 
6845 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6846 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6847 			return true;
6848 
6849 	return false;
6850 }
6851 
6852 /* for remember boot option*/
6853 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6854 static int really_do_swap_account __initdata = 1;
6855 #else
6856 static int really_do_swap_account __initdata;
6857 #endif
6858 
6859 static int __init enable_swap_account(char *s)
6860 {
6861 	if (!strcmp(s, "1"))
6862 		really_do_swap_account = 1;
6863 	else if (!strcmp(s, "0"))
6864 		really_do_swap_account = 0;
6865 	return 1;
6866 }
6867 __setup("swapaccount=", enable_swap_account);
6868 
6869 static u64 swap_current_read(struct cgroup_subsys_state *css,
6870 			     struct cftype *cft)
6871 {
6872 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6873 
6874 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6875 }
6876 
6877 static int swap_max_show(struct seq_file *m, void *v)
6878 {
6879 	return seq_puts_memcg_tunable(m,
6880 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6881 }
6882 
6883 static ssize_t swap_max_write(struct kernfs_open_file *of,
6884 			      char *buf, size_t nbytes, loff_t off)
6885 {
6886 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6887 	unsigned long max;
6888 	int err;
6889 
6890 	buf = strstrip(buf);
6891 	err = page_counter_memparse(buf, "max", &max);
6892 	if (err)
6893 		return err;
6894 
6895 	xchg(&memcg->swap.max, max);
6896 
6897 	return nbytes;
6898 }
6899 
6900 static int swap_events_show(struct seq_file *m, void *v)
6901 {
6902 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6903 
6904 	seq_printf(m, "max %lu\n",
6905 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6906 	seq_printf(m, "fail %lu\n",
6907 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6908 
6909 	return 0;
6910 }
6911 
6912 static struct cftype swap_files[] = {
6913 	{
6914 		.name = "swap.current",
6915 		.flags = CFTYPE_NOT_ON_ROOT,
6916 		.read_u64 = swap_current_read,
6917 	},
6918 	{
6919 		.name = "swap.max",
6920 		.flags = CFTYPE_NOT_ON_ROOT,
6921 		.seq_show = swap_max_show,
6922 		.write = swap_max_write,
6923 	},
6924 	{
6925 		.name = "swap.events",
6926 		.flags = CFTYPE_NOT_ON_ROOT,
6927 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6928 		.seq_show = swap_events_show,
6929 	},
6930 	{ }	/* terminate */
6931 };
6932 
6933 static struct cftype memsw_cgroup_files[] = {
6934 	{
6935 		.name = "memsw.usage_in_bytes",
6936 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6937 		.read_u64 = mem_cgroup_read_u64,
6938 	},
6939 	{
6940 		.name = "memsw.max_usage_in_bytes",
6941 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6942 		.write = mem_cgroup_reset,
6943 		.read_u64 = mem_cgroup_read_u64,
6944 	},
6945 	{
6946 		.name = "memsw.limit_in_bytes",
6947 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6948 		.write = mem_cgroup_write,
6949 		.read_u64 = mem_cgroup_read_u64,
6950 	},
6951 	{
6952 		.name = "memsw.failcnt",
6953 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6954 		.write = mem_cgroup_reset,
6955 		.read_u64 = mem_cgroup_read_u64,
6956 	},
6957 	{ },	/* terminate */
6958 };
6959 
6960 static int __init mem_cgroup_swap_init(void)
6961 {
6962 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6963 		do_swap_account = 1;
6964 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6965 					       swap_files));
6966 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6967 						  memsw_cgroup_files));
6968 	}
6969 	return 0;
6970 }
6971 subsys_initcall(mem_cgroup_swap_init);
6972 
6973 #endif /* CONFIG_MEMCG_SWAP */
6974