xref: /openbmc/linux/mm/memcontrol.c (revision eb3fcf00)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 #define MEM_CGROUP_RECLAIM_RETRIES	5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81 
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account		0
87 #endif
88 
89 static const char * const mem_cgroup_stat_names[] = {
90 	"cache",
91 	"rss",
92 	"rss_huge",
93 	"mapped_file",
94 	"dirty",
95 	"writeback",
96 	"swap",
97 };
98 
99 static const char * const mem_cgroup_events_names[] = {
100 	"pgpgin",
101 	"pgpgout",
102 	"pgfault",
103 	"pgmajfault",
104 };
105 
106 static const char * const mem_cgroup_lru_names[] = {
107 	"inactive_anon",
108 	"active_anon",
109 	"inactive_file",
110 	"active_file",
111 	"unevictable",
112 };
113 
114 #define THRESHOLDS_EVENTS_TARGET 128
115 #define SOFTLIMIT_EVENTS_TARGET 1024
116 #define NUMAINFO_EVENTS_TARGET	1024
117 
118 /*
119  * Cgroups above their limits are maintained in a RB-Tree, independent of
120  * their hierarchy representation
121  */
122 
123 struct mem_cgroup_tree_per_zone {
124 	struct rb_root rb_root;
125 	spinlock_t lock;
126 };
127 
128 struct mem_cgroup_tree_per_node {
129 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
130 };
131 
132 struct mem_cgroup_tree {
133 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
134 };
135 
136 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
137 
138 /* for OOM */
139 struct mem_cgroup_eventfd_list {
140 	struct list_head list;
141 	struct eventfd_ctx *eventfd;
142 };
143 
144 /*
145  * cgroup_event represents events which userspace want to receive.
146  */
147 struct mem_cgroup_event {
148 	/*
149 	 * memcg which the event belongs to.
150 	 */
151 	struct mem_cgroup *memcg;
152 	/*
153 	 * eventfd to signal userspace about the event.
154 	 */
155 	struct eventfd_ctx *eventfd;
156 	/*
157 	 * Each of these stored in a list by the cgroup.
158 	 */
159 	struct list_head list;
160 	/*
161 	 * register_event() callback will be used to add new userspace
162 	 * waiter for changes related to this event.  Use eventfd_signal()
163 	 * on eventfd to send notification to userspace.
164 	 */
165 	int (*register_event)(struct mem_cgroup *memcg,
166 			      struct eventfd_ctx *eventfd, const char *args);
167 	/*
168 	 * unregister_event() callback will be called when userspace closes
169 	 * the eventfd or on cgroup removing.  This callback must be set,
170 	 * if you want provide notification functionality.
171 	 */
172 	void (*unregister_event)(struct mem_cgroup *memcg,
173 				 struct eventfd_ctx *eventfd);
174 	/*
175 	 * All fields below needed to unregister event when
176 	 * userspace closes eventfd.
177 	 */
178 	poll_table pt;
179 	wait_queue_head_t *wqh;
180 	wait_queue_t wait;
181 	struct work_struct remove;
182 };
183 
184 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
185 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
186 
187 /* Stuffs for move charges at task migration. */
188 /*
189  * Types of charges to be moved.
190  */
191 #define MOVE_ANON	0x1U
192 #define MOVE_FILE	0x2U
193 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
194 
195 /* "mc" and its members are protected by cgroup_mutex */
196 static struct move_charge_struct {
197 	spinlock_t	  lock; /* for from, to */
198 	struct mem_cgroup *from;
199 	struct mem_cgroup *to;
200 	unsigned long flags;
201 	unsigned long precharge;
202 	unsigned long moved_charge;
203 	unsigned long moved_swap;
204 	struct task_struct *moving_task;	/* a task moving charges */
205 	wait_queue_head_t waitq;		/* a waitq for other context */
206 } mc = {
207 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
208 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
209 };
210 
211 /*
212  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
213  * limit reclaim to prevent infinite loops, if they ever occur.
214  */
215 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
216 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
217 
218 enum charge_type {
219 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
220 	MEM_CGROUP_CHARGE_TYPE_ANON,
221 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
222 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
223 	NR_CHARGE_TYPE,
224 };
225 
226 /* for encoding cft->private value on file */
227 enum res_type {
228 	_MEM,
229 	_MEMSWAP,
230 	_OOM_TYPE,
231 	_KMEM,
232 };
233 
234 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
235 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
236 #define MEMFILE_ATTR(val)	((val) & 0xffff)
237 /* Used for OOM nofiier */
238 #define OOM_CONTROL		(0)
239 
240 /*
241  * The memcg_create_mutex will be held whenever a new cgroup is created.
242  * As a consequence, any change that needs to protect against new child cgroups
243  * appearing has to hold it as well.
244  */
245 static DEFINE_MUTEX(memcg_create_mutex);
246 
247 /* Some nice accessors for the vmpressure. */
248 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249 {
250 	if (!memcg)
251 		memcg = root_mem_cgroup;
252 	return &memcg->vmpressure;
253 }
254 
255 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 {
257 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
258 }
259 
260 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
261 {
262 	return (memcg == root_mem_cgroup);
263 }
264 
265 /*
266  * We restrict the id in the range of [1, 65535], so it can fit into
267  * an unsigned short.
268  */
269 #define MEM_CGROUP_ID_MAX	USHRT_MAX
270 
271 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
272 {
273 	return memcg->css.id;
274 }
275 
276 /*
277  * A helper function to get mem_cgroup from ID. must be called under
278  * rcu_read_lock().  The caller is responsible for calling
279  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
280  * refcnt from swap can be called against removed memcg.)
281  */
282 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
283 {
284 	struct cgroup_subsys_state *css;
285 
286 	css = css_from_id(id, &memory_cgrp_subsys);
287 	return mem_cgroup_from_css(css);
288 }
289 
290 /* Writing them here to avoid exposing memcg's inner layout */
291 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
292 
293 void sock_update_memcg(struct sock *sk)
294 {
295 	if (mem_cgroup_sockets_enabled) {
296 		struct mem_cgroup *memcg;
297 		struct cg_proto *cg_proto;
298 
299 		BUG_ON(!sk->sk_prot->proto_cgroup);
300 
301 		/* Socket cloning can throw us here with sk_cgrp already
302 		 * filled. It won't however, necessarily happen from
303 		 * process context. So the test for root memcg given
304 		 * the current task's memcg won't help us in this case.
305 		 *
306 		 * Respecting the original socket's memcg is a better
307 		 * decision in this case.
308 		 */
309 		if (sk->sk_cgrp) {
310 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
311 			css_get(&sk->sk_cgrp->memcg->css);
312 			return;
313 		}
314 
315 		rcu_read_lock();
316 		memcg = mem_cgroup_from_task(current);
317 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
318 		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
319 		    css_tryget_online(&memcg->css)) {
320 			sk->sk_cgrp = cg_proto;
321 		}
322 		rcu_read_unlock();
323 	}
324 }
325 EXPORT_SYMBOL(sock_update_memcg);
326 
327 void sock_release_memcg(struct sock *sk)
328 {
329 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
330 		struct mem_cgroup *memcg;
331 		WARN_ON(!sk->sk_cgrp->memcg);
332 		memcg = sk->sk_cgrp->memcg;
333 		css_put(&sk->sk_cgrp->memcg->css);
334 	}
335 }
336 
337 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
338 {
339 	if (!memcg || mem_cgroup_is_root(memcg))
340 		return NULL;
341 
342 	return &memcg->tcp_mem;
343 }
344 EXPORT_SYMBOL(tcp_proto_cgroup);
345 
346 #endif
347 
348 #ifdef CONFIG_MEMCG_KMEM
349 /*
350  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
351  * The main reason for not using cgroup id for this:
352  *  this works better in sparse environments, where we have a lot of memcgs,
353  *  but only a few kmem-limited. Or also, if we have, for instance, 200
354  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
355  *  200 entry array for that.
356  *
357  * The current size of the caches array is stored in memcg_nr_cache_ids. It
358  * will double each time we have to increase it.
359  */
360 static DEFINE_IDA(memcg_cache_ida);
361 int memcg_nr_cache_ids;
362 
363 /* Protects memcg_nr_cache_ids */
364 static DECLARE_RWSEM(memcg_cache_ids_sem);
365 
366 void memcg_get_cache_ids(void)
367 {
368 	down_read(&memcg_cache_ids_sem);
369 }
370 
371 void memcg_put_cache_ids(void)
372 {
373 	up_read(&memcg_cache_ids_sem);
374 }
375 
376 /*
377  * MIN_SIZE is different than 1, because we would like to avoid going through
378  * the alloc/free process all the time. In a small machine, 4 kmem-limited
379  * cgroups is a reasonable guess. In the future, it could be a parameter or
380  * tunable, but that is strictly not necessary.
381  *
382  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
383  * this constant directly from cgroup, but it is understandable that this is
384  * better kept as an internal representation in cgroup.c. In any case, the
385  * cgrp_id space is not getting any smaller, and we don't have to necessarily
386  * increase ours as well if it increases.
387  */
388 #define MEMCG_CACHES_MIN_SIZE 4
389 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
390 
391 /*
392  * A lot of the calls to the cache allocation functions are expected to be
393  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
394  * conditional to this static branch, we'll have to allow modules that does
395  * kmem_cache_alloc and the such to see this symbol as well
396  */
397 struct static_key memcg_kmem_enabled_key;
398 EXPORT_SYMBOL(memcg_kmem_enabled_key);
399 
400 #endif /* CONFIG_MEMCG_KMEM */
401 
402 static struct mem_cgroup_per_zone *
403 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
404 {
405 	int nid = zone_to_nid(zone);
406 	int zid = zone_idx(zone);
407 
408 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
409 }
410 
411 /**
412  * mem_cgroup_css_from_page - css of the memcg associated with a page
413  * @page: page of interest
414  *
415  * If memcg is bound to the default hierarchy, css of the memcg associated
416  * with @page is returned.  The returned css remains associated with @page
417  * until it is released.
418  *
419  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
420  * is returned.
421  *
422  * XXX: The above description of behavior on the default hierarchy isn't
423  * strictly true yet as replace_page_cache_page() can modify the
424  * association before @page is released even on the default hierarchy;
425  * however, the current and planned usages don't mix the the two functions
426  * and replace_page_cache_page() will soon be updated to make the invariant
427  * actually true.
428  */
429 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
430 {
431 	struct mem_cgroup *memcg;
432 
433 	rcu_read_lock();
434 
435 	memcg = page->mem_cgroup;
436 
437 	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
438 		memcg = root_mem_cgroup;
439 
440 	rcu_read_unlock();
441 	return &memcg->css;
442 }
443 
444 /**
445  * page_cgroup_ino - return inode number of the memcg a page is charged to
446  * @page: the page
447  *
448  * Look up the closest online ancestor of the memory cgroup @page is charged to
449  * and return its inode number or 0 if @page is not charged to any cgroup. It
450  * is safe to call this function without holding a reference to @page.
451  *
452  * Note, this function is inherently racy, because there is nothing to prevent
453  * the cgroup inode from getting torn down and potentially reallocated a moment
454  * after page_cgroup_ino() returns, so it only should be used by callers that
455  * do not care (such as procfs interfaces).
456  */
457 ino_t page_cgroup_ino(struct page *page)
458 {
459 	struct mem_cgroup *memcg;
460 	unsigned long ino = 0;
461 
462 	rcu_read_lock();
463 	memcg = READ_ONCE(page->mem_cgroup);
464 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
465 		memcg = parent_mem_cgroup(memcg);
466 	if (memcg)
467 		ino = cgroup_ino(memcg->css.cgroup);
468 	rcu_read_unlock();
469 	return ino;
470 }
471 
472 static struct mem_cgroup_per_zone *
473 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
474 {
475 	int nid = page_to_nid(page);
476 	int zid = page_zonenum(page);
477 
478 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
479 }
480 
481 static struct mem_cgroup_tree_per_zone *
482 soft_limit_tree_node_zone(int nid, int zid)
483 {
484 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
485 }
486 
487 static struct mem_cgroup_tree_per_zone *
488 soft_limit_tree_from_page(struct page *page)
489 {
490 	int nid = page_to_nid(page);
491 	int zid = page_zonenum(page);
492 
493 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
494 }
495 
496 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
497 					 struct mem_cgroup_tree_per_zone *mctz,
498 					 unsigned long new_usage_in_excess)
499 {
500 	struct rb_node **p = &mctz->rb_root.rb_node;
501 	struct rb_node *parent = NULL;
502 	struct mem_cgroup_per_zone *mz_node;
503 
504 	if (mz->on_tree)
505 		return;
506 
507 	mz->usage_in_excess = new_usage_in_excess;
508 	if (!mz->usage_in_excess)
509 		return;
510 	while (*p) {
511 		parent = *p;
512 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 					tree_node);
514 		if (mz->usage_in_excess < mz_node->usage_in_excess)
515 			p = &(*p)->rb_left;
516 		/*
517 		 * We can't avoid mem cgroups that are over their soft
518 		 * limit by the same amount
519 		 */
520 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 			p = &(*p)->rb_right;
522 	}
523 	rb_link_node(&mz->tree_node, parent, p);
524 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 	mz->on_tree = true;
526 }
527 
528 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
529 					 struct mem_cgroup_tree_per_zone *mctz)
530 {
531 	if (!mz->on_tree)
532 		return;
533 	rb_erase(&mz->tree_node, &mctz->rb_root);
534 	mz->on_tree = false;
535 }
536 
537 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
538 				       struct mem_cgroup_tree_per_zone *mctz)
539 {
540 	unsigned long flags;
541 
542 	spin_lock_irqsave(&mctz->lock, flags);
543 	__mem_cgroup_remove_exceeded(mz, mctz);
544 	spin_unlock_irqrestore(&mctz->lock, flags);
545 }
546 
547 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
548 {
549 	unsigned long nr_pages = page_counter_read(&memcg->memory);
550 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
551 	unsigned long excess = 0;
552 
553 	if (nr_pages > soft_limit)
554 		excess = nr_pages - soft_limit;
555 
556 	return excess;
557 }
558 
559 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
560 {
561 	unsigned long excess;
562 	struct mem_cgroup_per_zone *mz;
563 	struct mem_cgroup_tree_per_zone *mctz;
564 
565 	mctz = soft_limit_tree_from_page(page);
566 	/*
567 	 * Necessary to update all ancestors when hierarchy is used.
568 	 * because their event counter is not touched.
569 	 */
570 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
571 		mz = mem_cgroup_page_zoneinfo(memcg, page);
572 		excess = soft_limit_excess(memcg);
573 		/*
574 		 * We have to update the tree if mz is on RB-tree or
575 		 * mem is over its softlimit.
576 		 */
577 		if (excess || mz->on_tree) {
578 			unsigned long flags;
579 
580 			spin_lock_irqsave(&mctz->lock, flags);
581 			/* if on-tree, remove it */
582 			if (mz->on_tree)
583 				__mem_cgroup_remove_exceeded(mz, mctz);
584 			/*
585 			 * Insert again. mz->usage_in_excess will be updated.
586 			 * If excess is 0, no tree ops.
587 			 */
588 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
589 			spin_unlock_irqrestore(&mctz->lock, flags);
590 		}
591 	}
592 }
593 
594 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
595 {
596 	struct mem_cgroup_tree_per_zone *mctz;
597 	struct mem_cgroup_per_zone *mz;
598 	int nid, zid;
599 
600 	for_each_node(nid) {
601 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
602 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
603 			mctz = soft_limit_tree_node_zone(nid, zid);
604 			mem_cgroup_remove_exceeded(mz, mctz);
605 		}
606 	}
607 }
608 
609 static struct mem_cgroup_per_zone *
610 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
611 {
612 	struct rb_node *rightmost = NULL;
613 	struct mem_cgroup_per_zone *mz;
614 
615 retry:
616 	mz = NULL;
617 	rightmost = rb_last(&mctz->rb_root);
618 	if (!rightmost)
619 		goto done;		/* Nothing to reclaim from */
620 
621 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
622 	/*
623 	 * Remove the node now but someone else can add it back,
624 	 * we will to add it back at the end of reclaim to its correct
625 	 * position in the tree.
626 	 */
627 	__mem_cgroup_remove_exceeded(mz, mctz);
628 	if (!soft_limit_excess(mz->memcg) ||
629 	    !css_tryget_online(&mz->memcg->css))
630 		goto retry;
631 done:
632 	return mz;
633 }
634 
635 static struct mem_cgroup_per_zone *
636 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
637 {
638 	struct mem_cgroup_per_zone *mz;
639 
640 	spin_lock_irq(&mctz->lock);
641 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
642 	spin_unlock_irq(&mctz->lock);
643 	return mz;
644 }
645 
646 /*
647  * Implementation Note: reading percpu statistics for memcg.
648  *
649  * Both of vmstat[] and percpu_counter has threshold and do periodic
650  * synchronization to implement "quick" read. There are trade-off between
651  * reading cost and precision of value. Then, we may have a chance to implement
652  * a periodic synchronizion of counter in memcg's counter.
653  *
654  * But this _read() function is used for user interface now. The user accounts
655  * memory usage by memory cgroup and he _always_ requires exact value because
656  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
657  * have to visit all online cpus and make sum. So, for now, unnecessary
658  * synchronization is not implemented. (just implemented for cpu hotplug)
659  *
660  * If there are kernel internal actions which can make use of some not-exact
661  * value, and reading all cpu value can be performance bottleneck in some
662  * common workload, threashold and synchonization as vmstat[] should be
663  * implemented.
664  */
665 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
666 				 enum mem_cgroup_stat_index idx)
667 {
668 	long val = 0;
669 	int cpu;
670 
671 	for_each_possible_cpu(cpu)
672 		val += per_cpu(memcg->stat->count[idx], cpu);
673 	return val;
674 }
675 
676 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
677 					    enum mem_cgroup_events_index idx)
678 {
679 	unsigned long val = 0;
680 	int cpu;
681 
682 	for_each_possible_cpu(cpu)
683 		val += per_cpu(memcg->stat->events[idx], cpu);
684 	return val;
685 }
686 
687 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
688 					 struct page *page,
689 					 int nr_pages)
690 {
691 	/*
692 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
693 	 * counted as CACHE even if it's on ANON LRU.
694 	 */
695 	if (PageAnon(page))
696 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
697 				nr_pages);
698 	else
699 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
700 				nr_pages);
701 
702 	if (PageTransHuge(page))
703 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
704 				nr_pages);
705 
706 	/* pagein of a big page is an event. So, ignore page size */
707 	if (nr_pages > 0)
708 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
709 	else {
710 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
711 		nr_pages = -nr_pages; /* for event */
712 	}
713 
714 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
715 }
716 
717 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 						  int nid,
719 						  unsigned int lru_mask)
720 {
721 	unsigned long nr = 0;
722 	int zid;
723 
724 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
725 
726 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
727 		struct mem_cgroup_per_zone *mz;
728 		enum lru_list lru;
729 
730 		for_each_lru(lru) {
731 			if (!(BIT(lru) & lru_mask))
732 				continue;
733 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
734 			nr += mz->lru_size[lru];
735 		}
736 	}
737 	return nr;
738 }
739 
740 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
741 			unsigned int lru_mask)
742 {
743 	unsigned long nr = 0;
744 	int nid;
745 
746 	for_each_node_state(nid, N_MEMORY)
747 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748 	return nr;
749 }
750 
751 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
752 				       enum mem_cgroup_events_target target)
753 {
754 	unsigned long val, next;
755 
756 	val = __this_cpu_read(memcg->stat->nr_page_events);
757 	next = __this_cpu_read(memcg->stat->targets[target]);
758 	/* from time_after() in jiffies.h */
759 	if ((long)next - (long)val < 0) {
760 		switch (target) {
761 		case MEM_CGROUP_TARGET_THRESH:
762 			next = val + THRESHOLDS_EVENTS_TARGET;
763 			break;
764 		case MEM_CGROUP_TARGET_SOFTLIMIT:
765 			next = val + SOFTLIMIT_EVENTS_TARGET;
766 			break;
767 		case MEM_CGROUP_TARGET_NUMAINFO:
768 			next = val + NUMAINFO_EVENTS_TARGET;
769 			break;
770 		default:
771 			break;
772 		}
773 		__this_cpu_write(memcg->stat->targets[target], next);
774 		return true;
775 	}
776 	return false;
777 }
778 
779 /*
780  * Check events in order.
781  *
782  */
783 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
784 {
785 	/* threshold event is triggered in finer grain than soft limit */
786 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
787 						MEM_CGROUP_TARGET_THRESH))) {
788 		bool do_softlimit;
789 		bool do_numainfo __maybe_unused;
790 
791 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
792 						MEM_CGROUP_TARGET_SOFTLIMIT);
793 #if MAX_NUMNODES > 1
794 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
795 						MEM_CGROUP_TARGET_NUMAINFO);
796 #endif
797 		mem_cgroup_threshold(memcg);
798 		if (unlikely(do_softlimit))
799 			mem_cgroup_update_tree(memcg, page);
800 #if MAX_NUMNODES > 1
801 		if (unlikely(do_numainfo))
802 			atomic_inc(&memcg->numainfo_events);
803 #endif
804 	}
805 }
806 
807 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808 {
809 	/*
810 	 * mm_update_next_owner() may clear mm->owner to NULL
811 	 * if it races with swapoff, page migration, etc.
812 	 * So this can be called with p == NULL.
813 	 */
814 	if (unlikely(!p))
815 		return NULL;
816 
817 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
818 }
819 EXPORT_SYMBOL(mem_cgroup_from_task);
820 
821 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
822 {
823 	struct mem_cgroup *memcg = NULL;
824 
825 	rcu_read_lock();
826 	do {
827 		/*
828 		 * Page cache insertions can happen withou an
829 		 * actual mm context, e.g. during disk probing
830 		 * on boot, loopback IO, acct() writes etc.
831 		 */
832 		if (unlikely(!mm))
833 			memcg = root_mem_cgroup;
834 		else {
835 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 			if (unlikely(!memcg))
837 				memcg = root_mem_cgroup;
838 		}
839 	} while (!css_tryget_online(&memcg->css));
840 	rcu_read_unlock();
841 	return memcg;
842 }
843 
844 /**
845  * mem_cgroup_iter - iterate over memory cgroup hierarchy
846  * @root: hierarchy root
847  * @prev: previously returned memcg, NULL on first invocation
848  * @reclaim: cookie for shared reclaim walks, NULL for full walks
849  *
850  * Returns references to children of the hierarchy below @root, or
851  * @root itself, or %NULL after a full round-trip.
852  *
853  * Caller must pass the return value in @prev on subsequent
854  * invocations for reference counting, or use mem_cgroup_iter_break()
855  * to cancel a hierarchy walk before the round-trip is complete.
856  *
857  * Reclaimers can specify a zone and a priority level in @reclaim to
858  * divide up the memcgs in the hierarchy among all concurrent
859  * reclaimers operating on the same zone and priority.
860  */
861 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
862 				   struct mem_cgroup *prev,
863 				   struct mem_cgroup_reclaim_cookie *reclaim)
864 {
865 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
866 	struct cgroup_subsys_state *css = NULL;
867 	struct mem_cgroup *memcg = NULL;
868 	struct mem_cgroup *pos = NULL;
869 
870 	if (mem_cgroup_disabled())
871 		return NULL;
872 
873 	if (!root)
874 		root = root_mem_cgroup;
875 
876 	if (prev && !reclaim)
877 		pos = prev;
878 
879 	if (!root->use_hierarchy && root != root_mem_cgroup) {
880 		if (prev)
881 			goto out;
882 		return root;
883 	}
884 
885 	rcu_read_lock();
886 
887 	if (reclaim) {
888 		struct mem_cgroup_per_zone *mz;
889 
890 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
891 		iter = &mz->iter[reclaim->priority];
892 
893 		if (prev && reclaim->generation != iter->generation)
894 			goto out_unlock;
895 
896 		do {
897 			pos = READ_ONCE(iter->position);
898 			/*
899 			 * A racing update may change the position and
900 			 * put the last reference, hence css_tryget(),
901 			 * or retry to see the updated position.
902 			 */
903 		} while (pos && !css_tryget(&pos->css));
904 	}
905 
906 	if (pos)
907 		css = &pos->css;
908 
909 	for (;;) {
910 		css = css_next_descendant_pre(css, &root->css);
911 		if (!css) {
912 			/*
913 			 * Reclaimers share the hierarchy walk, and a
914 			 * new one might jump in right at the end of
915 			 * the hierarchy - make sure they see at least
916 			 * one group and restart from the beginning.
917 			 */
918 			if (!prev)
919 				continue;
920 			break;
921 		}
922 
923 		/*
924 		 * Verify the css and acquire a reference.  The root
925 		 * is provided by the caller, so we know it's alive
926 		 * and kicking, and don't take an extra reference.
927 		 */
928 		memcg = mem_cgroup_from_css(css);
929 
930 		if (css == &root->css)
931 			break;
932 
933 		if (css_tryget(css)) {
934 			/*
935 			 * Make sure the memcg is initialized:
936 			 * mem_cgroup_css_online() orders the the
937 			 * initialization against setting the flag.
938 			 */
939 			if (smp_load_acquire(&memcg->initialized))
940 				break;
941 
942 			css_put(css);
943 		}
944 
945 		memcg = NULL;
946 	}
947 
948 	if (reclaim) {
949 		if (cmpxchg(&iter->position, pos, memcg) == pos) {
950 			if (memcg)
951 				css_get(&memcg->css);
952 			if (pos)
953 				css_put(&pos->css);
954 		}
955 
956 		/*
957 		 * pairs with css_tryget when dereferencing iter->position
958 		 * above.
959 		 */
960 		if (pos)
961 			css_put(&pos->css);
962 
963 		if (!memcg)
964 			iter->generation++;
965 		else if (!prev)
966 			reclaim->generation = iter->generation;
967 	}
968 
969 out_unlock:
970 	rcu_read_unlock();
971 out:
972 	if (prev && prev != root)
973 		css_put(&prev->css);
974 
975 	return memcg;
976 }
977 
978 /**
979  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
980  * @root: hierarchy root
981  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
982  */
983 void mem_cgroup_iter_break(struct mem_cgroup *root,
984 			   struct mem_cgroup *prev)
985 {
986 	if (!root)
987 		root = root_mem_cgroup;
988 	if (prev && prev != root)
989 		css_put(&prev->css);
990 }
991 
992 /*
993  * Iteration constructs for visiting all cgroups (under a tree).  If
994  * loops are exited prematurely (break), mem_cgroup_iter_break() must
995  * be used for reference counting.
996  */
997 #define for_each_mem_cgroup_tree(iter, root)		\
998 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
999 	     iter != NULL;				\
1000 	     iter = mem_cgroup_iter(root, iter, NULL))
1001 
1002 #define for_each_mem_cgroup(iter)			\
1003 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1004 	     iter != NULL;				\
1005 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1006 
1007 /**
1008  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1009  * @zone: zone of the wanted lruvec
1010  * @memcg: memcg of the wanted lruvec
1011  *
1012  * Returns the lru list vector holding pages for the given @zone and
1013  * @mem.  This can be the global zone lruvec, if the memory controller
1014  * is disabled.
1015  */
1016 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1017 				      struct mem_cgroup *memcg)
1018 {
1019 	struct mem_cgroup_per_zone *mz;
1020 	struct lruvec *lruvec;
1021 
1022 	if (mem_cgroup_disabled()) {
1023 		lruvec = &zone->lruvec;
1024 		goto out;
1025 	}
1026 
1027 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1028 	lruvec = &mz->lruvec;
1029 out:
1030 	/*
1031 	 * Since a node can be onlined after the mem_cgroup was created,
1032 	 * we have to be prepared to initialize lruvec->zone here;
1033 	 * and if offlined then reonlined, we need to reinitialize it.
1034 	 */
1035 	if (unlikely(lruvec->zone != zone))
1036 		lruvec->zone = zone;
1037 	return lruvec;
1038 }
1039 
1040 /**
1041  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1042  * @page: the page
1043  * @zone: zone of the page
1044  *
1045  * This function is only safe when following the LRU page isolation
1046  * and putback protocol: the LRU lock must be held, and the page must
1047  * either be PageLRU() or the caller must have isolated/allocated it.
1048  */
1049 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1050 {
1051 	struct mem_cgroup_per_zone *mz;
1052 	struct mem_cgroup *memcg;
1053 	struct lruvec *lruvec;
1054 
1055 	if (mem_cgroup_disabled()) {
1056 		lruvec = &zone->lruvec;
1057 		goto out;
1058 	}
1059 
1060 	memcg = page->mem_cgroup;
1061 	/*
1062 	 * Swapcache readahead pages are added to the LRU - and
1063 	 * possibly migrated - before they are charged.
1064 	 */
1065 	if (!memcg)
1066 		memcg = root_mem_cgroup;
1067 
1068 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1069 	lruvec = &mz->lruvec;
1070 out:
1071 	/*
1072 	 * Since a node can be onlined after the mem_cgroup was created,
1073 	 * we have to be prepared to initialize lruvec->zone here;
1074 	 * and if offlined then reonlined, we need to reinitialize it.
1075 	 */
1076 	if (unlikely(lruvec->zone != zone))
1077 		lruvec->zone = zone;
1078 	return lruvec;
1079 }
1080 
1081 /**
1082  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1083  * @lruvec: mem_cgroup per zone lru vector
1084  * @lru: index of lru list the page is sitting on
1085  * @nr_pages: positive when adding or negative when removing
1086  *
1087  * This function must be called when a page is added to or removed from an
1088  * lru list.
1089  */
1090 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1091 				int nr_pages)
1092 {
1093 	struct mem_cgroup_per_zone *mz;
1094 	unsigned long *lru_size;
1095 
1096 	if (mem_cgroup_disabled())
1097 		return;
1098 
1099 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1100 	lru_size = mz->lru_size + lru;
1101 	*lru_size += nr_pages;
1102 	VM_BUG_ON((long)(*lru_size) < 0);
1103 }
1104 
1105 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1106 {
1107 	struct mem_cgroup *task_memcg;
1108 	struct task_struct *p;
1109 	bool ret;
1110 
1111 	p = find_lock_task_mm(task);
1112 	if (p) {
1113 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1114 		task_unlock(p);
1115 	} else {
1116 		/*
1117 		 * All threads may have already detached their mm's, but the oom
1118 		 * killer still needs to detect if they have already been oom
1119 		 * killed to prevent needlessly killing additional tasks.
1120 		 */
1121 		rcu_read_lock();
1122 		task_memcg = mem_cgroup_from_task(task);
1123 		css_get(&task_memcg->css);
1124 		rcu_read_unlock();
1125 	}
1126 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1127 	css_put(&task_memcg->css);
1128 	return ret;
1129 }
1130 
1131 #define mem_cgroup_from_counter(counter, member)	\
1132 	container_of(counter, struct mem_cgroup, member)
1133 
1134 /**
1135  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1136  * @memcg: the memory cgroup
1137  *
1138  * Returns the maximum amount of memory @mem can be charged with, in
1139  * pages.
1140  */
1141 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1142 {
1143 	unsigned long margin = 0;
1144 	unsigned long count;
1145 	unsigned long limit;
1146 
1147 	count = page_counter_read(&memcg->memory);
1148 	limit = READ_ONCE(memcg->memory.limit);
1149 	if (count < limit)
1150 		margin = limit - count;
1151 
1152 	if (do_swap_account) {
1153 		count = page_counter_read(&memcg->memsw);
1154 		limit = READ_ONCE(memcg->memsw.limit);
1155 		if (count <= limit)
1156 			margin = min(margin, limit - count);
1157 	}
1158 
1159 	return margin;
1160 }
1161 
1162 /*
1163  * A routine for checking "mem" is under move_account() or not.
1164  *
1165  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1166  * moving cgroups. This is for waiting at high-memory pressure
1167  * caused by "move".
1168  */
1169 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1170 {
1171 	struct mem_cgroup *from;
1172 	struct mem_cgroup *to;
1173 	bool ret = false;
1174 	/*
1175 	 * Unlike task_move routines, we access mc.to, mc.from not under
1176 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1177 	 */
1178 	spin_lock(&mc.lock);
1179 	from = mc.from;
1180 	to = mc.to;
1181 	if (!from)
1182 		goto unlock;
1183 
1184 	ret = mem_cgroup_is_descendant(from, memcg) ||
1185 		mem_cgroup_is_descendant(to, memcg);
1186 unlock:
1187 	spin_unlock(&mc.lock);
1188 	return ret;
1189 }
1190 
1191 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1192 {
1193 	if (mc.moving_task && current != mc.moving_task) {
1194 		if (mem_cgroup_under_move(memcg)) {
1195 			DEFINE_WAIT(wait);
1196 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1197 			/* moving charge context might have finished. */
1198 			if (mc.moving_task)
1199 				schedule();
1200 			finish_wait(&mc.waitq, &wait);
1201 			return true;
1202 		}
1203 	}
1204 	return false;
1205 }
1206 
1207 #define K(x) ((x) << (PAGE_SHIFT-10))
1208 /**
1209  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1210  * @memcg: The memory cgroup that went over limit
1211  * @p: Task that is going to be killed
1212  *
1213  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1214  * enabled
1215  */
1216 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1217 {
1218 	/* oom_info_lock ensures that parallel ooms do not interleave */
1219 	static DEFINE_MUTEX(oom_info_lock);
1220 	struct mem_cgroup *iter;
1221 	unsigned int i;
1222 
1223 	mutex_lock(&oom_info_lock);
1224 	rcu_read_lock();
1225 
1226 	if (p) {
1227 		pr_info("Task in ");
1228 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1229 		pr_cont(" killed as a result of limit of ");
1230 	} else {
1231 		pr_info("Memory limit reached of cgroup ");
1232 	}
1233 
1234 	pr_cont_cgroup_path(memcg->css.cgroup);
1235 	pr_cont("\n");
1236 
1237 	rcu_read_unlock();
1238 
1239 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1240 		K((u64)page_counter_read(&memcg->memory)),
1241 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1242 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1243 		K((u64)page_counter_read(&memcg->memsw)),
1244 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1245 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1246 		K((u64)page_counter_read(&memcg->kmem)),
1247 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1248 
1249 	for_each_mem_cgroup_tree(iter, memcg) {
1250 		pr_info("Memory cgroup stats for ");
1251 		pr_cont_cgroup_path(iter->css.cgroup);
1252 		pr_cont(":");
1253 
1254 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1255 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1256 				continue;
1257 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1258 				K(mem_cgroup_read_stat(iter, i)));
1259 		}
1260 
1261 		for (i = 0; i < NR_LRU_LISTS; i++)
1262 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1263 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1264 
1265 		pr_cont("\n");
1266 	}
1267 	mutex_unlock(&oom_info_lock);
1268 }
1269 
1270 /*
1271  * This function returns the number of memcg under hierarchy tree. Returns
1272  * 1(self count) if no children.
1273  */
1274 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1275 {
1276 	int num = 0;
1277 	struct mem_cgroup *iter;
1278 
1279 	for_each_mem_cgroup_tree(iter, memcg)
1280 		num++;
1281 	return num;
1282 }
1283 
1284 /*
1285  * Return the memory (and swap, if configured) limit for a memcg.
1286  */
1287 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1288 {
1289 	unsigned long limit;
1290 
1291 	limit = memcg->memory.limit;
1292 	if (mem_cgroup_swappiness(memcg)) {
1293 		unsigned long memsw_limit;
1294 
1295 		memsw_limit = memcg->memsw.limit;
1296 		limit = min(limit + total_swap_pages, memsw_limit);
1297 	}
1298 	return limit;
1299 }
1300 
1301 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1302 				     int order)
1303 {
1304 	struct oom_control oc = {
1305 		.zonelist = NULL,
1306 		.nodemask = NULL,
1307 		.gfp_mask = gfp_mask,
1308 		.order = order,
1309 	};
1310 	struct mem_cgroup *iter;
1311 	unsigned long chosen_points = 0;
1312 	unsigned long totalpages;
1313 	unsigned int points = 0;
1314 	struct task_struct *chosen = NULL;
1315 
1316 	mutex_lock(&oom_lock);
1317 
1318 	/*
1319 	 * If current has a pending SIGKILL or is exiting, then automatically
1320 	 * select it.  The goal is to allow it to allocate so that it may
1321 	 * quickly exit and free its memory.
1322 	 */
1323 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1324 		mark_oom_victim(current);
1325 		goto unlock;
1326 	}
1327 
1328 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1329 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1330 	for_each_mem_cgroup_tree(iter, memcg) {
1331 		struct css_task_iter it;
1332 		struct task_struct *task;
1333 
1334 		css_task_iter_start(&iter->css, &it);
1335 		while ((task = css_task_iter_next(&it))) {
1336 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1337 			case OOM_SCAN_SELECT:
1338 				if (chosen)
1339 					put_task_struct(chosen);
1340 				chosen = task;
1341 				chosen_points = ULONG_MAX;
1342 				get_task_struct(chosen);
1343 				/* fall through */
1344 			case OOM_SCAN_CONTINUE:
1345 				continue;
1346 			case OOM_SCAN_ABORT:
1347 				css_task_iter_end(&it);
1348 				mem_cgroup_iter_break(memcg, iter);
1349 				if (chosen)
1350 					put_task_struct(chosen);
1351 				goto unlock;
1352 			case OOM_SCAN_OK:
1353 				break;
1354 			};
1355 			points = oom_badness(task, memcg, NULL, totalpages);
1356 			if (!points || points < chosen_points)
1357 				continue;
1358 			/* Prefer thread group leaders for display purposes */
1359 			if (points == chosen_points &&
1360 			    thread_group_leader(chosen))
1361 				continue;
1362 
1363 			if (chosen)
1364 				put_task_struct(chosen);
1365 			chosen = task;
1366 			chosen_points = points;
1367 			get_task_struct(chosen);
1368 		}
1369 		css_task_iter_end(&it);
1370 	}
1371 
1372 	if (chosen) {
1373 		points = chosen_points * 1000 / totalpages;
1374 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1375 				 "Memory cgroup out of memory");
1376 	}
1377 unlock:
1378 	mutex_unlock(&oom_lock);
1379 }
1380 
1381 #if MAX_NUMNODES > 1
1382 
1383 /**
1384  * test_mem_cgroup_node_reclaimable
1385  * @memcg: the target memcg
1386  * @nid: the node ID to be checked.
1387  * @noswap : specify true here if the user wants flle only information.
1388  *
1389  * This function returns whether the specified memcg contains any
1390  * reclaimable pages on a node. Returns true if there are any reclaimable
1391  * pages in the node.
1392  */
1393 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1394 		int nid, bool noswap)
1395 {
1396 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1397 		return true;
1398 	if (noswap || !total_swap_pages)
1399 		return false;
1400 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1401 		return true;
1402 	return false;
1403 
1404 }
1405 
1406 /*
1407  * Always updating the nodemask is not very good - even if we have an empty
1408  * list or the wrong list here, we can start from some node and traverse all
1409  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1410  *
1411  */
1412 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1413 {
1414 	int nid;
1415 	/*
1416 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1417 	 * pagein/pageout changes since the last update.
1418 	 */
1419 	if (!atomic_read(&memcg->numainfo_events))
1420 		return;
1421 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1422 		return;
1423 
1424 	/* make a nodemask where this memcg uses memory from */
1425 	memcg->scan_nodes = node_states[N_MEMORY];
1426 
1427 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1428 
1429 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1430 			node_clear(nid, memcg->scan_nodes);
1431 	}
1432 
1433 	atomic_set(&memcg->numainfo_events, 0);
1434 	atomic_set(&memcg->numainfo_updating, 0);
1435 }
1436 
1437 /*
1438  * Selecting a node where we start reclaim from. Because what we need is just
1439  * reducing usage counter, start from anywhere is O,K. Considering
1440  * memory reclaim from current node, there are pros. and cons.
1441  *
1442  * Freeing memory from current node means freeing memory from a node which
1443  * we'll use or we've used. So, it may make LRU bad. And if several threads
1444  * hit limits, it will see a contention on a node. But freeing from remote
1445  * node means more costs for memory reclaim because of memory latency.
1446  *
1447  * Now, we use round-robin. Better algorithm is welcomed.
1448  */
1449 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1450 {
1451 	int node;
1452 
1453 	mem_cgroup_may_update_nodemask(memcg);
1454 	node = memcg->last_scanned_node;
1455 
1456 	node = next_node(node, memcg->scan_nodes);
1457 	if (node == MAX_NUMNODES)
1458 		node = first_node(memcg->scan_nodes);
1459 	/*
1460 	 * We call this when we hit limit, not when pages are added to LRU.
1461 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1462 	 * memcg is too small and all pages are not on LRU. In that case,
1463 	 * we use curret node.
1464 	 */
1465 	if (unlikely(node == MAX_NUMNODES))
1466 		node = numa_node_id();
1467 
1468 	memcg->last_scanned_node = node;
1469 	return node;
1470 }
1471 #else
1472 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1473 {
1474 	return 0;
1475 }
1476 #endif
1477 
1478 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1479 				   struct zone *zone,
1480 				   gfp_t gfp_mask,
1481 				   unsigned long *total_scanned)
1482 {
1483 	struct mem_cgroup *victim = NULL;
1484 	int total = 0;
1485 	int loop = 0;
1486 	unsigned long excess;
1487 	unsigned long nr_scanned;
1488 	struct mem_cgroup_reclaim_cookie reclaim = {
1489 		.zone = zone,
1490 		.priority = 0,
1491 	};
1492 
1493 	excess = soft_limit_excess(root_memcg);
1494 
1495 	while (1) {
1496 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1497 		if (!victim) {
1498 			loop++;
1499 			if (loop >= 2) {
1500 				/*
1501 				 * If we have not been able to reclaim
1502 				 * anything, it might because there are
1503 				 * no reclaimable pages under this hierarchy
1504 				 */
1505 				if (!total)
1506 					break;
1507 				/*
1508 				 * We want to do more targeted reclaim.
1509 				 * excess >> 2 is not to excessive so as to
1510 				 * reclaim too much, nor too less that we keep
1511 				 * coming back to reclaim from this cgroup
1512 				 */
1513 				if (total >= (excess >> 2) ||
1514 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1515 					break;
1516 			}
1517 			continue;
1518 		}
1519 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1520 						     zone, &nr_scanned);
1521 		*total_scanned += nr_scanned;
1522 		if (!soft_limit_excess(root_memcg))
1523 			break;
1524 	}
1525 	mem_cgroup_iter_break(root_memcg, victim);
1526 	return total;
1527 }
1528 
1529 #ifdef CONFIG_LOCKDEP
1530 static struct lockdep_map memcg_oom_lock_dep_map = {
1531 	.name = "memcg_oom_lock",
1532 };
1533 #endif
1534 
1535 static DEFINE_SPINLOCK(memcg_oom_lock);
1536 
1537 /*
1538  * Check OOM-Killer is already running under our hierarchy.
1539  * If someone is running, return false.
1540  */
1541 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1542 {
1543 	struct mem_cgroup *iter, *failed = NULL;
1544 
1545 	spin_lock(&memcg_oom_lock);
1546 
1547 	for_each_mem_cgroup_tree(iter, memcg) {
1548 		if (iter->oom_lock) {
1549 			/*
1550 			 * this subtree of our hierarchy is already locked
1551 			 * so we cannot give a lock.
1552 			 */
1553 			failed = iter;
1554 			mem_cgroup_iter_break(memcg, iter);
1555 			break;
1556 		} else
1557 			iter->oom_lock = true;
1558 	}
1559 
1560 	if (failed) {
1561 		/*
1562 		 * OK, we failed to lock the whole subtree so we have
1563 		 * to clean up what we set up to the failing subtree
1564 		 */
1565 		for_each_mem_cgroup_tree(iter, memcg) {
1566 			if (iter == failed) {
1567 				mem_cgroup_iter_break(memcg, iter);
1568 				break;
1569 			}
1570 			iter->oom_lock = false;
1571 		}
1572 	} else
1573 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1574 
1575 	spin_unlock(&memcg_oom_lock);
1576 
1577 	return !failed;
1578 }
1579 
1580 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1581 {
1582 	struct mem_cgroup *iter;
1583 
1584 	spin_lock(&memcg_oom_lock);
1585 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1586 	for_each_mem_cgroup_tree(iter, memcg)
1587 		iter->oom_lock = false;
1588 	spin_unlock(&memcg_oom_lock);
1589 }
1590 
1591 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1592 {
1593 	struct mem_cgroup *iter;
1594 
1595 	spin_lock(&memcg_oom_lock);
1596 	for_each_mem_cgroup_tree(iter, memcg)
1597 		iter->under_oom++;
1598 	spin_unlock(&memcg_oom_lock);
1599 }
1600 
1601 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1602 {
1603 	struct mem_cgroup *iter;
1604 
1605 	/*
1606 	 * When a new child is created while the hierarchy is under oom,
1607 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1608 	 */
1609 	spin_lock(&memcg_oom_lock);
1610 	for_each_mem_cgroup_tree(iter, memcg)
1611 		if (iter->under_oom > 0)
1612 			iter->under_oom--;
1613 	spin_unlock(&memcg_oom_lock);
1614 }
1615 
1616 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1617 
1618 struct oom_wait_info {
1619 	struct mem_cgroup *memcg;
1620 	wait_queue_t	wait;
1621 };
1622 
1623 static int memcg_oom_wake_function(wait_queue_t *wait,
1624 	unsigned mode, int sync, void *arg)
1625 {
1626 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1627 	struct mem_cgroup *oom_wait_memcg;
1628 	struct oom_wait_info *oom_wait_info;
1629 
1630 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1631 	oom_wait_memcg = oom_wait_info->memcg;
1632 
1633 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1634 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1635 		return 0;
1636 	return autoremove_wake_function(wait, mode, sync, arg);
1637 }
1638 
1639 static void memcg_oom_recover(struct mem_cgroup *memcg)
1640 {
1641 	/*
1642 	 * For the following lockless ->under_oom test, the only required
1643 	 * guarantee is that it must see the state asserted by an OOM when
1644 	 * this function is called as a result of userland actions
1645 	 * triggered by the notification of the OOM.  This is trivially
1646 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1647 	 * triggering notification.
1648 	 */
1649 	if (memcg && memcg->under_oom)
1650 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1651 }
1652 
1653 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1654 {
1655 	if (!current->memcg_oom.may_oom)
1656 		return;
1657 	/*
1658 	 * We are in the middle of the charge context here, so we
1659 	 * don't want to block when potentially sitting on a callstack
1660 	 * that holds all kinds of filesystem and mm locks.
1661 	 *
1662 	 * Also, the caller may handle a failed allocation gracefully
1663 	 * (like optional page cache readahead) and so an OOM killer
1664 	 * invocation might not even be necessary.
1665 	 *
1666 	 * That's why we don't do anything here except remember the
1667 	 * OOM context and then deal with it at the end of the page
1668 	 * fault when the stack is unwound, the locks are released,
1669 	 * and when we know whether the fault was overall successful.
1670 	 */
1671 	css_get(&memcg->css);
1672 	current->memcg_oom.memcg = memcg;
1673 	current->memcg_oom.gfp_mask = mask;
1674 	current->memcg_oom.order = order;
1675 }
1676 
1677 /**
1678  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1679  * @handle: actually kill/wait or just clean up the OOM state
1680  *
1681  * This has to be called at the end of a page fault if the memcg OOM
1682  * handler was enabled.
1683  *
1684  * Memcg supports userspace OOM handling where failed allocations must
1685  * sleep on a waitqueue until the userspace task resolves the
1686  * situation.  Sleeping directly in the charge context with all kinds
1687  * of locks held is not a good idea, instead we remember an OOM state
1688  * in the task and mem_cgroup_oom_synchronize() has to be called at
1689  * the end of the page fault to complete the OOM handling.
1690  *
1691  * Returns %true if an ongoing memcg OOM situation was detected and
1692  * completed, %false otherwise.
1693  */
1694 bool mem_cgroup_oom_synchronize(bool handle)
1695 {
1696 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1697 	struct oom_wait_info owait;
1698 	bool locked;
1699 
1700 	/* OOM is global, do not handle */
1701 	if (!memcg)
1702 		return false;
1703 
1704 	if (!handle || oom_killer_disabled)
1705 		goto cleanup;
1706 
1707 	owait.memcg = memcg;
1708 	owait.wait.flags = 0;
1709 	owait.wait.func = memcg_oom_wake_function;
1710 	owait.wait.private = current;
1711 	INIT_LIST_HEAD(&owait.wait.task_list);
1712 
1713 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1714 	mem_cgroup_mark_under_oom(memcg);
1715 
1716 	locked = mem_cgroup_oom_trylock(memcg);
1717 
1718 	if (locked)
1719 		mem_cgroup_oom_notify(memcg);
1720 
1721 	if (locked && !memcg->oom_kill_disable) {
1722 		mem_cgroup_unmark_under_oom(memcg);
1723 		finish_wait(&memcg_oom_waitq, &owait.wait);
1724 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1725 					 current->memcg_oom.order);
1726 	} else {
1727 		schedule();
1728 		mem_cgroup_unmark_under_oom(memcg);
1729 		finish_wait(&memcg_oom_waitq, &owait.wait);
1730 	}
1731 
1732 	if (locked) {
1733 		mem_cgroup_oom_unlock(memcg);
1734 		/*
1735 		 * There is no guarantee that an OOM-lock contender
1736 		 * sees the wakeups triggered by the OOM kill
1737 		 * uncharges.  Wake any sleepers explicitely.
1738 		 */
1739 		memcg_oom_recover(memcg);
1740 	}
1741 cleanup:
1742 	current->memcg_oom.memcg = NULL;
1743 	css_put(&memcg->css);
1744 	return true;
1745 }
1746 
1747 /**
1748  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1749  * @page: page that is going to change accounted state
1750  *
1751  * This function must mark the beginning of an accounted page state
1752  * change to prevent double accounting when the page is concurrently
1753  * being moved to another memcg:
1754  *
1755  *   memcg = mem_cgroup_begin_page_stat(page);
1756  *   if (TestClearPageState(page))
1757  *     mem_cgroup_update_page_stat(memcg, state, -1);
1758  *   mem_cgroup_end_page_stat(memcg);
1759  */
1760 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1761 {
1762 	struct mem_cgroup *memcg;
1763 	unsigned long flags;
1764 
1765 	/*
1766 	 * The RCU lock is held throughout the transaction.  The fast
1767 	 * path can get away without acquiring the memcg->move_lock
1768 	 * because page moving starts with an RCU grace period.
1769 	 *
1770 	 * The RCU lock also protects the memcg from being freed when
1771 	 * the page state that is going to change is the only thing
1772 	 * preventing the page from being uncharged.
1773 	 * E.g. end-writeback clearing PageWriteback(), which allows
1774 	 * migration to go ahead and uncharge the page before the
1775 	 * account transaction might be complete.
1776 	 */
1777 	rcu_read_lock();
1778 
1779 	if (mem_cgroup_disabled())
1780 		return NULL;
1781 again:
1782 	memcg = page->mem_cgroup;
1783 	if (unlikely(!memcg))
1784 		return NULL;
1785 
1786 	if (atomic_read(&memcg->moving_account) <= 0)
1787 		return memcg;
1788 
1789 	spin_lock_irqsave(&memcg->move_lock, flags);
1790 	if (memcg != page->mem_cgroup) {
1791 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1792 		goto again;
1793 	}
1794 
1795 	/*
1796 	 * When charge migration first begins, we can have locked and
1797 	 * unlocked page stat updates happening concurrently.  Track
1798 	 * the task who has the lock for mem_cgroup_end_page_stat().
1799 	 */
1800 	memcg->move_lock_task = current;
1801 	memcg->move_lock_flags = flags;
1802 
1803 	return memcg;
1804 }
1805 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1806 
1807 /**
1808  * mem_cgroup_end_page_stat - finish a page state statistics transaction
1809  * @memcg: the memcg that was accounted against
1810  */
1811 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1812 {
1813 	if (memcg && memcg->move_lock_task == current) {
1814 		unsigned long flags = memcg->move_lock_flags;
1815 
1816 		memcg->move_lock_task = NULL;
1817 		memcg->move_lock_flags = 0;
1818 
1819 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1820 	}
1821 
1822 	rcu_read_unlock();
1823 }
1824 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1825 
1826 /*
1827  * size of first charge trial. "32" comes from vmscan.c's magic value.
1828  * TODO: maybe necessary to use big numbers in big irons.
1829  */
1830 #define CHARGE_BATCH	32U
1831 struct memcg_stock_pcp {
1832 	struct mem_cgroup *cached; /* this never be root cgroup */
1833 	unsigned int nr_pages;
1834 	struct work_struct work;
1835 	unsigned long flags;
1836 #define FLUSHING_CACHED_CHARGE	0
1837 };
1838 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1839 static DEFINE_MUTEX(percpu_charge_mutex);
1840 
1841 /**
1842  * consume_stock: Try to consume stocked charge on this cpu.
1843  * @memcg: memcg to consume from.
1844  * @nr_pages: how many pages to charge.
1845  *
1846  * The charges will only happen if @memcg matches the current cpu's memcg
1847  * stock, and at least @nr_pages are available in that stock.  Failure to
1848  * service an allocation will refill the stock.
1849  *
1850  * returns true if successful, false otherwise.
1851  */
1852 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1853 {
1854 	struct memcg_stock_pcp *stock;
1855 	bool ret = false;
1856 
1857 	if (nr_pages > CHARGE_BATCH)
1858 		return ret;
1859 
1860 	stock = &get_cpu_var(memcg_stock);
1861 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1862 		stock->nr_pages -= nr_pages;
1863 		ret = true;
1864 	}
1865 	put_cpu_var(memcg_stock);
1866 	return ret;
1867 }
1868 
1869 /*
1870  * Returns stocks cached in percpu and reset cached information.
1871  */
1872 static void drain_stock(struct memcg_stock_pcp *stock)
1873 {
1874 	struct mem_cgroup *old = stock->cached;
1875 
1876 	if (stock->nr_pages) {
1877 		page_counter_uncharge(&old->memory, stock->nr_pages);
1878 		if (do_swap_account)
1879 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1880 		css_put_many(&old->css, stock->nr_pages);
1881 		stock->nr_pages = 0;
1882 	}
1883 	stock->cached = NULL;
1884 }
1885 
1886 /*
1887  * This must be called under preempt disabled or must be called by
1888  * a thread which is pinned to local cpu.
1889  */
1890 static void drain_local_stock(struct work_struct *dummy)
1891 {
1892 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1893 	drain_stock(stock);
1894 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1895 }
1896 
1897 /*
1898  * Cache charges(val) to local per_cpu area.
1899  * This will be consumed by consume_stock() function, later.
1900  */
1901 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1902 {
1903 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1904 
1905 	if (stock->cached != memcg) { /* reset if necessary */
1906 		drain_stock(stock);
1907 		stock->cached = memcg;
1908 	}
1909 	stock->nr_pages += nr_pages;
1910 	put_cpu_var(memcg_stock);
1911 }
1912 
1913 /*
1914  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1915  * of the hierarchy under it.
1916  */
1917 static void drain_all_stock(struct mem_cgroup *root_memcg)
1918 {
1919 	int cpu, curcpu;
1920 
1921 	/* If someone's already draining, avoid adding running more workers. */
1922 	if (!mutex_trylock(&percpu_charge_mutex))
1923 		return;
1924 	/* Notify other cpus that system-wide "drain" is running */
1925 	get_online_cpus();
1926 	curcpu = get_cpu();
1927 	for_each_online_cpu(cpu) {
1928 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1929 		struct mem_cgroup *memcg;
1930 
1931 		memcg = stock->cached;
1932 		if (!memcg || !stock->nr_pages)
1933 			continue;
1934 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1935 			continue;
1936 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1937 			if (cpu == curcpu)
1938 				drain_local_stock(&stock->work);
1939 			else
1940 				schedule_work_on(cpu, &stock->work);
1941 		}
1942 	}
1943 	put_cpu();
1944 	put_online_cpus();
1945 	mutex_unlock(&percpu_charge_mutex);
1946 }
1947 
1948 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1949 					unsigned long action,
1950 					void *hcpu)
1951 {
1952 	int cpu = (unsigned long)hcpu;
1953 	struct memcg_stock_pcp *stock;
1954 
1955 	if (action == CPU_ONLINE)
1956 		return NOTIFY_OK;
1957 
1958 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1959 		return NOTIFY_OK;
1960 
1961 	stock = &per_cpu(memcg_stock, cpu);
1962 	drain_stock(stock);
1963 	return NOTIFY_OK;
1964 }
1965 
1966 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1967 		      unsigned int nr_pages)
1968 {
1969 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1970 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1971 	struct mem_cgroup *mem_over_limit;
1972 	struct page_counter *counter;
1973 	unsigned long nr_reclaimed;
1974 	bool may_swap = true;
1975 	bool drained = false;
1976 	int ret = 0;
1977 
1978 	if (mem_cgroup_is_root(memcg))
1979 		goto done;
1980 retry:
1981 	if (consume_stock(memcg, nr_pages))
1982 		goto done;
1983 
1984 	if (!do_swap_account ||
1985 	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1986 		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
1987 			goto done_restock;
1988 		if (do_swap_account)
1989 			page_counter_uncharge(&memcg->memsw, batch);
1990 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1991 	} else {
1992 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1993 		may_swap = false;
1994 	}
1995 
1996 	if (batch > nr_pages) {
1997 		batch = nr_pages;
1998 		goto retry;
1999 	}
2000 
2001 	/*
2002 	 * Unlike in global OOM situations, memcg is not in a physical
2003 	 * memory shortage.  Allow dying and OOM-killed tasks to
2004 	 * bypass the last charges so that they can exit quickly and
2005 	 * free their memory.
2006 	 */
2007 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2008 		     fatal_signal_pending(current) ||
2009 		     current->flags & PF_EXITING))
2010 		goto bypass;
2011 
2012 	if (unlikely(task_in_memcg_oom(current)))
2013 		goto nomem;
2014 
2015 	if (!(gfp_mask & __GFP_WAIT))
2016 		goto nomem;
2017 
2018 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2019 
2020 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2021 						    gfp_mask, may_swap);
2022 
2023 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2024 		goto retry;
2025 
2026 	if (!drained) {
2027 		drain_all_stock(mem_over_limit);
2028 		drained = true;
2029 		goto retry;
2030 	}
2031 
2032 	if (gfp_mask & __GFP_NORETRY)
2033 		goto nomem;
2034 	/*
2035 	 * Even though the limit is exceeded at this point, reclaim
2036 	 * may have been able to free some pages.  Retry the charge
2037 	 * before killing the task.
2038 	 *
2039 	 * Only for regular pages, though: huge pages are rather
2040 	 * unlikely to succeed so close to the limit, and we fall back
2041 	 * to regular pages anyway in case of failure.
2042 	 */
2043 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2044 		goto retry;
2045 	/*
2046 	 * At task move, charge accounts can be doubly counted. So, it's
2047 	 * better to wait until the end of task_move if something is going on.
2048 	 */
2049 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2050 		goto retry;
2051 
2052 	if (nr_retries--)
2053 		goto retry;
2054 
2055 	if (gfp_mask & __GFP_NOFAIL)
2056 		goto bypass;
2057 
2058 	if (fatal_signal_pending(current))
2059 		goto bypass;
2060 
2061 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2062 
2063 	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2064 nomem:
2065 	if (!(gfp_mask & __GFP_NOFAIL))
2066 		return -ENOMEM;
2067 bypass:
2068 	return -EINTR;
2069 
2070 done_restock:
2071 	css_get_many(&memcg->css, batch);
2072 	if (batch > nr_pages)
2073 		refill_stock(memcg, batch - nr_pages);
2074 	if (!(gfp_mask & __GFP_WAIT))
2075 		goto done;
2076 	/*
2077 	 * If the hierarchy is above the normal consumption range,
2078 	 * make the charging task trim their excess contribution.
2079 	 */
2080 	do {
2081 		if (page_counter_read(&memcg->memory) <= memcg->high)
2082 			continue;
2083 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2084 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2085 	} while ((memcg = parent_mem_cgroup(memcg)));
2086 done:
2087 	return ret;
2088 }
2089 
2090 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2091 {
2092 	if (mem_cgroup_is_root(memcg))
2093 		return;
2094 
2095 	page_counter_uncharge(&memcg->memory, nr_pages);
2096 	if (do_swap_account)
2097 		page_counter_uncharge(&memcg->memsw, nr_pages);
2098 
2099 	css_put_many(&memcg->css, nr_pages);
2100 }
2101 
2102 static void lock_page_lru(struct page *page, int *isolated)
2103 {
2104 	struct zone *zone = page_zone(page);
2105 
2106 	spin_lock_irq(&zone->lru_lock);
2107 	if (PageLRU(page)) {
2108 		struct lruvec *lruvec;
2109 
2110 		lruvec = mem_cgroup_page_lruvec(page, zone);
2111 		ClearPageLRU(page);
2112 		del_page_from_lru_list(page, lruvec, page_lru(page));
2113 		*isolated = 1;
2114 	} else
2115 		*isolated = 0;
2116 }
2117 
2118 static void unlock_page_lru(struct page *page, int isolated)
2119 {
2120 	struct zone *zone = page_zone(page);
2121 
2122 	if (isolated) {
2123 		struct lruvec *lruvec;
2124 
2125 		lruvec = mem_cgroup_page_lruvec(page, zone);
2126 		VM_BUG_ON_PAGE(PageLRU(page), page);
2127 		SetPageLRU(page);
2128 		add_page_to_lru_list(page, lruvec, page_lru(page));
2129 	}
2130 	spin_unlock_irq(&zone->lru_lock);
2131 }
2132 
2133 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2134 			  bool lrucare)
2135 {
2136 	int isolated;
2137 
2138 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2139 
2140 	/*
2141 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2142 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2143 	 */
2144 	if (lrucare)
2145 		lock_page_lru(page, &isolated);
2146 
2147 	/*
2148 	 * Nobody should be changing or seriously looking at
2149 	 * page->mem_cgroup at this point:
2150 	 *
2151 	 * - the page is uncharged
2152 	 *
2153 	 * - the page is off-LRU
2154 	 *
2155 	 * - an anonymous fault has exclusive page access, except for
2156 	 *   a locked page table
2157 	 *
2158 	 * - a page cache insertion, a swapin fault, or a migration
2159 	 *   have the page locked
2160 	 */
2161 	page->mem_cgroup = memcg;
2162 
2163 	if (lrucare)
2164 		unlock_page_lru(page, isolated);
2165 }
2166 
2167 #ifdef CONFIG_MEMCG_KMEM
2168 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2169 		      unsigned long nr_pages)
2170 {
2171 	struct page_counter *counter;
2172 	int ret = 0;
2173 
2174 	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2175 	if (ret < 0)
2176 		return ret;
2177 
2178 	ret = try_charge(memcg, gfp, nr_pages);
2179 	if (ret == -EINTR)  {
2180 		/*
2181 		 * try_charge() chose to bypass to root due to OOM kill or
2182 		 * fatal signal.  Since our only options are to either fail
2183 		 * the allocation or charge it to this cgroup, do it as a
2184 		 * temporary condition. But we can't fail. From a kmem/slab
2185 		 * perspective, the cache has already been selected, by
2186 		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2187 		 * our minds.
2188 		 *
2189 		 * This condition will only trigger if the task entered
2190 		 * memcg_charge_kmem in a sane state, but was OOM-killed
2191 		 * during try_charge() above. Tasks that were already dying
2192 		 * when the allocation triggers should have been already
2193 		 * directed to the root cgroup in memcontrol.h
2194 		 */
2195 		page_counter_charge(&memcg->memory, nr_pages);
2196 		if (do_swap_account)
2197 			page_counter_charge(&memcg->memsw, nr_pages);
2198 		css_get_many(&memcg->css, nr_pages);
2199 		ret = 0;
2200 	} else if (ret)
2201 		page_counter_uncharge(&memcg->kmem, nr_pages);
2202 
2203 	return ret;
2204 }
2205 
2206 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2207 {
2208 	page_counter_uncharge(&memcg->memory, nr_pages);
2209 	if (do_swap_account)
2210 		page_counter_uncharge(&memcg->memsw, nr_pages);
2211 
2212 	page_counter_uncharge(&memcg->kmem, nr_pages);
2213 
2214 	css_put_many(&memcg->css, nr_pages);
2215 }
2216 
2217 static int memcg_alloc_cache_id(void)
2218 {
2219 	int id, size;
2220 	int err;
2221 
2222 	id = ida_simple_get(&memcg_cache_ida,
2223 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2224 	if (id < 0)
2225 		return id;
2226 
2227 	if (id < memcg_nr_cache_ids)
2228 		return id;
2229 
2230 	/*
2231 	 * There's no space for the new id in memcg_caches arrays,
2232 	 * so we have to grow them.
2233 	 */
2234 	down_write(&memcg_cache_ids_sem);
2235 
2236 	size = 2 * (id + 1);
2237 	if (size < MEMCG_CACHES_MIN_SIZE)
2238 		size = MEMCG_CACHES_MIN_SIZE;
2239 	else if (size > MEMCG_CACHES_MAX_SIZE)
2240 		size = MEMCG_CACHES_MAX_SIZE;
2241 
2242 	err = memcg_update_all_caches(size);
2243 	if (!err)
2244 		err = memcg_update_all_list_lrus(size);
2245 	if (!err)
2246 		memcg_nr_cache_ids = size;
2247 
2248 	up_write(&memcg_cache_ids_sem);
2249 
2250 	if (err) {
2251 		ida_simple_remove(&memcg_cache_ida, id);
2252 		return err;
2253 	}
2254 	return id;
2255 }
2256 
2257 static void memcg_free_cache_id(int id)
2258 {
2259 	ida_simple_remove(&memcg_cache_ida, id);
2260 }
2261 
2262 struct memcg_kmem_cache_create_work {
2263 	struct mem_cgroup *memcg;
2264 	struct kmem_cache *cachep;
2265 	struct work_struct work;
2266 };
2267 
2268 static void memcg_kmem_cache_create_func(struct work_struct *w)
2269 {
2270 	struct memcg_kmem_cache_create_work *cw =
2271 		container_of(w, struct memcg_kmem_cache_create_work, work);
2272 	struct mem_cgroup *memcg = cw->memcg;
2273 	struct kmem_cache *cachep = cw->cachep;
2274 
2275 	memcg_create_kmem_cache(memcg, cachep);
2276 
2277 	css_put(&memcg->css);
2278 	kfree(cw);
2279 }
2280 
2281 /*
2282  * Enqueue the creation of a per-memcg kmem_cache.
2283  */
2284 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2285 					       struct kmem_cache *cachep)
2286 {
2287 	struct memcg_kmem_cache_create_work *cw;
2288 
2289 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2290 	if (!cw)
2291 		return;
2292 
2293 	css_get(&memcg->css);
2294 
2295 	cw->memcg = memcg;
2296 	cw->cachep = cachep;
2297 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2298 
2299 	schedule_work(&cw->work);
2300 }
2301 
2302 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2303 					     struct kmem_cache *cachep)
2304 {
2305 	/*
2306 	 * We need to stop accounting when we kmalloc, because if the
2307 	 * corresponding kmalloc cache is not yet created, the first allocation
2308 	 * in __memcg_schedule_kmem_cache_create will recurse.
2309 	 *
2310 	 * However, it is better to enclose the whole function. Depending on
2311 	 * the debugging options enabled, INIT_WORK(), for instance, can
2312 	 * trigger an allocation. This too, will make us recurse. Because at
2313 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2314 	 * the safest choice is to do it like this, wrapping the whole function.
2315 	 */
2316 	current->memcg_kmem_skip_account = 1;
2317 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2318 	current->memcg_kmem_skip_account = 0;
2319 }
2320 
2321 /*
2322  * Return the kmem_cache we're supposed to use for a slab allocation.
2323  * We try to use the current memcg's version of the cache.
2324  *
2325  * If the cache does not exist yet, if we are the first user of it,
2326  * we either create it immediately, if possible, or create it asynchronously
2327  * in a workqueue.
2328  * In the latter case, we will let the current allocation go through with
2329  * the original cache.
2330  *
2331  * Can't be called in interrupt context or from kernel threads.
2332  * This function needs to be called with rcu_read_lock() held.
2333  */
2334 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2335 {
2336 	struct mem_cgroup *memcg;
2337 	struct kmem_cache *memcg_cachep;
2338 	int kmemcg_id;
2339 
2340 	VM_BUG_ON(!is_root_cache(cachep));
2341 
2342 	if (current->memcg_kmem_skip_account)
2343 		return cachep;
2344 
2345 	memcg = get_mem_cgroup_from_mm(current->mm);
2346 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2347 	if (kmemcg_id < 0)
2348 		goto out;
2349 
2350 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2351 	if (likely(memcg_cachep))
2352 		return memcg_cachep;
2353 
2354 	/*
2355 	 * If we are in a safe context (can wait, and not in interrupt
2356 	 * context), we could be be predictable and return right away.
2357 	 * This would guarantee that the allocation being performed
2358 	 * already belongs in the new cache.
2359 	 *
2360 	 * However, there are some clashes that can arrive from locking.
2361 	 * For instance, because we acquire the slab_mutex while doing
2362 	 * memcg_create_kmem_cache, this means no further allocation
2363 	 * could happen with the slab_mutex held. So it's better to
2364 	 * defer everything.
2365 	 */
2366 	memcg_schedule_kmem_cache_create(memcg, cachep);
2367 out:
2368 	css_put(&memcg->css);
2369 	return cachep;
2370 }
2371 
2372 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2373 {
2374 	if (!is_root_cache(cachep))
2375 		css_put(&cachep->memcg_params.memcg->css);
2376 }
2377 
2378 /*
2379  * We need to verify if the allocation against current->mm->owner's memcg is
2380  * possible for the given order. But the page is not allocated yet, so we'll
2381  * need a further commit step to do the final arrangements.
2382  *
2383  * It is possible for the task to switch cgroups in this mean time, so at
2384  * commit time, we can't rely on task conversion any longer.  We'll then use
2385  * the handle argument to return to the caller which cgroup we should commit
2386  * against. We could also return the memcg directly and avoid the pointer
2387  * passing, but a boolean return value gives better semantics considering
2388  * the compiled-out case as well.
2389  *
2390  * Returning true means the allocation is possible.
2391  */
2392 bool
2393 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2394 {
2395 	struct mem_cgroup *memcg;
2396 	int ret;
2397 
2398 	*_memcg = NULL;
2399 
2400 	memcg = get_mem_cgroup_from_mm(current->mm);
2401 
2402 	if (!memcg_kmem_is_active(memcg)) {
2403 		css_put(&memcg->css);
2404 		return true;
2405 	}
2406 
2407 	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2408 	if (!ret)
2409 		*_memcg = memcg;
2410 
2411 	css_put(&memcg->css);
2412 	return (ret == 0);
2413 }
2414 
2415 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2416 			      int order)
2417 {
2418 	VM_BUG_ON(mem_cgroup_is_root(memcg));
2419 
2420 	/* The page allocation failed. Revert */
2421 	if (!page) {
2422 		memcg_uncharge_kmem(memcg, 1 << order);
2423 		return;
2424 	}
2425 	page->mem_cgroup = memcg;
2426 }
2427 
2428 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2429 {
2430 	struct mem_cgroup *memcg = page->mem_cgroup;
2431 
2432 	if (!memcg)
2433 		return;
2434 
2435 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2436 
2437 	memcg_uncharge_kmem(memcg, 1 << order);
2438 	page->mem_cgroup = NULL;
2439 }
2440 
2441 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2442 {
2443 	struct mem_cgroup *memcg = NULL;
2444 	struct kmem_cache *cachep;
2445 	struct page *page;
2446 
2447 	page = virt_to_head_page(ptr);
2448 	if (PageSlab(page)) {
2449 		cachep = page->slab_cache;
2450 		if (!is_root_cache(cachep))
2451 			memcg = cachep->memcg_params.memcg;
2452 	} else
2453 		/* page allocated by alloc_kmem_pages */
2454 		memcg = page->mem_cgroup;
2455 
2456 	return memcg;
2457 }
2458 #endif /* CONFIG_MEMCG_KMEM */
2459 
2460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2461 
2462 /*
2463  * Because tail pages are not marked as "used", set it. We're under
2464  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2465  * charge/uncharge will be never happen and move_account() is done under
2466  * compound_lock(), so we don't have to take care of races.
2467  */
2468 void mem_cgroup_split_huge_fixup(struct page *head)
2469 {
2470 	int i;
2471 
2472 	if (mem_cgroup_disabled())
2473 		return;
2474 
2475 	for (i = 1; i < HPAGE_PMD_NR; i++)
2476 		head[i].mem_cgroup = head->mem_cgroup;
2477 
2478 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2479 		       HPAGE_PMD_NR);
2480 }
2481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2482 
2483 #ifdef CONFIG_MEMCG_SWAP
2484 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2485 					 bool charge)
2486 {
2487 	int val = (charge) ? 1 : -1;
2488 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2489 }
2490 
2491 /**
2492  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2493  * @entry: swap entry to be moved
2494  * @from:  mem_cgroup which the entry is moved from
2495  * @to:  mem_cgroup which the entry is moved to
2496  *
2497  * It succeeds only when the swap_cgroup's record for this entry is the same
2498  * as the mem_cgroup's id of @from.
2499  *
2500  * Returns 0 on success, -EINVAL on failure.
2501  *
2502  * The caller must have charged to @to, IOW, called page_counter_charge() about
2503  * both res and memsw, and called css_get().
2504  */
2505 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2506 				struct mem_cgroup *from, struct mem_cgroup *to)
2507 {
2508 	unsigned short old_id, new_id;
2509 
2510 	old_id = mem_cgroup_id(from);
2511 	new_id = mem_cgroup_id(to);
2512 
2513 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2514 		mem_cgroup_swap_statistics(from, false);
2515 		mem_cgroup_swap_statistics(to, true);
2516 		return 0;
2517 	}
2518 	return -EINVAL;
2519 }
2520 #else
2521 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2522 				struct mem_cgroup *from, struct mem_cgroup *to)
2523 {
2524 	return -EINVAL;
2525 }
2526 #endif
2527 
2528 static DEFINE_MUTEX(memcg_limit_mutex);
2529 
2530 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2531 				   unsigned long limit)
2532 {
2533 	unsigned long curusage;
2534 	unsigned long oldusage;
2535 	bool enlarge = false;
2536 	int retry_count;
2537 	int ret;
2538 
2539 	/*
2540 	 * For keeping hierarchical_reclaim simple, how long we should retry
2541 	 * is depends on callers. We set our retry-count to be function
2542 	 * of # of children which we should visit in this loop.
2543 	 */
2544 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2545 		      mem_cgroup_count_children(memcg);
2546 
2547 	oldusage = page_counter_read(&memcg->memory);
2548 
2549 	do {
2550 		if (signal_pending(current)) {
2551 			ret = -EINTR;
2552 			break;
2553 		}
2554 
2555 		mutex_lock(&memcg_limit_mutex);
2556 		if (limit > memcg->memsw.limit) {
2557 			mutex_unlock(&memcg_limit_mutex);
2558 			ret = -EINVAL;
2559 			break;
2560 		}
2561 		if (limit > memcg->memory.limit)
2562 			enlarge = true;
2563 		ret = page_counter_limit(&memcg->memory, limit);
2564 		mutex_unlock(&memcg_limit_mutex);
2565 
2566 		if (!ret)
2567 			break;
2568 
2569 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2570 
2571 		curusage = page_counter_read(&memcg->memory);
2572 		/* Usage is reduced ? */
2573 		if (curusage >= oldusage)
2574 			retry_count--;
2575 		else
2576 			oldusage = curusage;
2577 	} while (retry_count);
2578 
2579 	if (!ret && enlarge)
2580 		memcg_oom_recover(memcg);
2581 
2582 	return ret;
2583 }
2584 
2585 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2586 					 unsigned long limit)
2587 {
2588 	unsigned long curusage;
2589 	unsigned long oldusage;
2590 	bool enlarge = false;
2591 	int retry_count;
2592 	int ret;
2593 
2594 	/* see mem_cgroup_resize_res_limit */
2595 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2596 		      mem_cgroup_count_children(memcg);
2597 
2598 	oldusage = page_counter_read(&memcg->memsw);
2599 
2600 	do {
2601 		if (signal_pending(current)) {
2602 			ret = -EINTR;
2603 			break;
2604 		}
2605 
2606 		mutex_lock(&memcg_limit_mutex);
2607 		if (limit < memcg->memory.limit) {
2608 			mutex_unlock(&memcg_limit_mutex);
2609 			ret = -EINVAL;
2610 			break;
2611 		}
2612 		if (limit > memcg->memsw.limit)
2613 			enlarge = true;
2614 		ret = page_counter_limit(&memcg->memsw, limit);
2615 		mutex_unlock(&memcg_limit_mutex);
2616 
2617 		if (!ret)
2618 			break;
2619 
2620 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2621 
2622 		curusage = page_counter_read(&memcg->memsw);
2623 		/* Usage is reduced ? */
2624 		if (curusage >= oldusage)
2625 			retry_count--;
2626 		else
2627 			oldusage = curusage;
2628 	} while (retry_count);
2629 
2630 	if (!ret && enlarge)
2631 		memcg_oom_recover(memcg);
2632 
2633 	return ret;
2634 }
2635 
2636 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2637 					    gfp_t gfp_mask,
2638 					    unsigned long *total_scanned)
2639 {
2640 	unsigned long nr_reclaimed = 0;
2641 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2642 	unsigned long reclaimed;
2643 	int loop = 0;
2644 	struct mem_cgroup_tree_per_zone *mctz;
2645 	unsigned long excess;
2646 	unsigned long nr_scanned;
2647 
2648 	if (order > 0)
2649 		return 0;
2650 
2651 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2652 	/*
2653 	 * This loop can run a while, specially if mem_cgroup's continuously
2654 	 * keep exceeding their soft limit and putting the system under
2655 	 * pressure
2656 	 */
2657 	do {
2658 		if (next_mz)
2659 			mz = next_mz;
2660 		else
2661 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2662 		if (!mz)
2663 			break;
2664 
2665 		nr_scanned = 0;
2666 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2667 						    gfp_mask, &nr_scanned);
2668 		nr_reclaimed += reclaimed;
2669 		*total_scanned += nr_scanned;
2670 		spin_lock_irq(&mctz->lock);
2671 		__mem_cgroup_remove_exceeded(mz, mctz);
2672 
2673 		/*
2674 		 * If we failed to reclaim anything from this memory cgroup
2675 		 * it is time to move on to the next cgroup
2676 		 */
2677 		next_mz = NULL;
2678 		if (!reclaimed)
2679 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2680 
2681 		excess = soft_limit_excess(mz->memcg);
2682 		/*
2683 		 * One school of thought says that we should not add
2684 		 * back the node to the tree if reclaim returns 0.
2685 		 * But our reclaim could return 0, simply because due
2686 		 * to priority we are exposing a smaller subset of
2687 		 * memory to reclaim from. Consider this as a longer
2688 		 * term TODO.
2689 		 */
2690 		/* If excess == 0, no tree ops */
2691 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2692 		spin_unlock_irq(&mctz->lock);
2693 		css_put(&mz->memcg->css);
2694 		loop++;
2695 		/*
2696 		 * Could not reclaim anything and there are no more
2697 		 * mem cgroups to try or we seem to be looping without
2698 		 * reclaiming anything.
2699 		 */
2700 		if (!nr_reclaimed &&
2701 			(next_mz == NULL ||
2702 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2703 			break;
2704 	} while (!nr_reclaimed);
2705 	if (next_mz)
2706 		css_put(&next_mz->memcg->css);
2707 	return nr_reclaimed;
2708 }
2709 
2710 /*
2711  * Test whether @memcg has children, dead or alive.  Note that this
2712  * function doesn't care whether @memcg has use_hierarchy enabled and
2713  * returns %true if there are child csses according to the cgroup
2714  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2715  */
2716 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2717 {
2718 	bool ret;
2719 
2720 	/*
2721 	 * The lock does not prevent addition or deletion of children, but
2722 	 * it prevents a new child from being initialized based on this
2723 	 * parent in css_online(), so it's enough to decide whether
2724 	 * hierarchically inherited attributes can still be changed or not.
2725 	 */
2726 	lockdep_assert_held(&memcg_create_mutex);
2727 
2728 	rcu_read_lock();
2729 	ret = css_next_child(NULL, &memcg->css);
2730 	rcu_read_unlock();
2731 	return ret;
2732 }
2733 
2734 /*
2735  * Reclaims as many pages from the given memcg as possible and moves
2736  * the rest to the parent.
2737  *
2738  * Caller is responsible for holding css reference for memcg.
2739  */
2740 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2741 {
2742 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2743 
2744 	/* we call try-to-free pages for make this cgroup empty */
2745 	lru_add_drain_all();
2746 	/* try to free all pages in this cgroup */
2747 	while (nr_retries && page_counter_read(&memcg->memory)) {
2748 		int progress;
2749 
2750 		if (signal_pending(current))
2751 			return -EINTR;
2752 
2753 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2754 							GFP_KERNEL, true);
2755 		if (!progress) {
2756 			nr_retries--;
2757 			/* maybe some writeback is necessary */
2758 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2759 		}
2760 
2761 	}
2762 
2763 	return 0;
2764 }
2765 
2766 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2767 					    char *buf, size_t nbytes,
2768 					    loff_t off)
2769 {
2770 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2771 
2772 	if (mem_cgroup_is_root(memcg))
2773 		return -EINVAL;
2774 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2775 }
2776 
2777 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2778 				     struct cftype *cft)
2779 {
2780 	return mem_cgroup_from_css(css)->use_hierarchy;
2781 }
2782 
2783 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2784 				      struct cftype *cft, u64 val)
2785 {
2786 	int retval = 0;
2787 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2788 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2789 
2790 	mutex_lock(&memcg_create_mutex);
2791 
2792 	if (memcg->use_hierarchy == val)
2793 		goto out;
2794 
2795 	/*
2796 	 * If parent's use_hierarchy is set, we can't make any modifications
2797 	 * in the child subtrees. If it is unset, then the change can
2798 	 * occur, provided the current cgroup has no children.
2799 	 *
2800 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2801 	 * set if there are no children.
2802 	 */
2803 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2804 				(val == 1 || val == 0)) {
2805 		if (!memcg_has_children(memcg))
2806 			memcg->use_hierarchy = val;
2807 		else
2808 			retval = -EBUSY;
2809 	} else
2810 		retval = -EINVAL;
2811 
2812 out:
2813 	mutex_unlock(&memcg_create_mutex);
2814 
2815 	return retval;
2816 }
2817 
2818 static unsigned long tree_stat(struct mem_cgroup *memcg,
2819 			       enum mem_cgroup_stat_index idx)
2820 {
2821 	struct mem_cgroup *iter;
2822 	long val = 0;
2823 
2824 	/* Per-cpu values can be negative, use a signed accumulator */
2825 	for_each_mem_cgroup_tree(iter, memcg)
2826 		val += mem_cgroup_read_stat(iter, idx);
2827 
2828 	if (val < 0) /* race ? */
2829 		val = 0;
2830 	return val;
2831 }
2832 
2833 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2834 {
2835 	u64 val;
2836 
2837 	if (mem_cgroup_is_root(memcg)) {
2838 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2839 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2840 		if (swap)
2841 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2842 	} else {
2843 		if (!swap)
2844 			val = page_counter_read(&memcg->memory);
2845 		else
2846 			val = page_counter_read(&memcg->memsw);
2847 	}
2848 	return val << PAGE_SHIFT;
2849 }
2850 
2851 enum {
2852 	RES_USAGE,
2853 	RES_LIMIT,
2854 	RES_MAX_USAGE,
2855 	RES_FAILCNT,
2856 	RES_SOFT_LIMIT,
2857 };
2858 
2859 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2860 			       struct cftype *cft)
2861 {
2862 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2863 	struct page_counter *counter;
2864 
2865 	switch (MEMFILE_TYPE(cft->private)) {
2866 	case _MEM:
2867 		counter = &memcg->memory;
2868 		break;
2869 	case _MEMSWAP:
2870 		counter = &memcg->memsw;
2871 		break;
2872 	case _KMEM:
2873 		counter = &memcg->kmem;
2874 		break;
2875 	default:
2876 		BUG();
2877 	}
2878 
2879 	switch (MEMFILE_ATTR(cft->private)) {
2880 	case RES_USAGE:
2881 		if (counter == &memcg->memory)
2882 			return mem_cgroup_usage(memcg, false);
2883 		if (counter == &memcg->memsw)
2884 			return mem_cgroup_usage(memcg, true);
2885 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2886 	case RES_LIMIT:
2887 		return (u64)counter->limit * PAGE_SIZE;
2888 	case RES_MAX_USAGE:
2889 		return (u64)counter->watermark * PAGE_SIZE;
2890 	case RES_FAILCNT:
2891 		return counter->failcnt;
2892 	case RES_SOFT_LIMIT:
2893 		return (u64)memcg->soft_limit * PAGE_SIZE;
2894 	default:
2895 		BUG();
2896 	}
2897 }
2898 
2899 #ifdef CONFIG_MEMCG_KMEM
2900 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2901 			       unsigned long nr_pages)
2902 {
2903 	int err = 0;
2904 	int memcg_id;
2905 
2906 	BUG_ON(memcg->kmemcg_id >= 0);
2907 	BUG_ON(memcg->kmem_acct_activated);
2908 	BUG_ON(memcg->kmem_acct_active);
2909 
2910 	/*
2911 	 * For simplicity, we won't allow this to be disabled.  It also can't
2912 	 * be changed if the cgroup has children already, or if tasks had
2913 	 * already joined.
2914 	 *
2915 	 * If tasks join before we set the limit, a person looking at
2916 	 * kmem.usage_in_bytes will have no way to determine when it took
2917 	 * place, which makes the value quite meaningless.
2918 	 *
2919 	 * After it first became limited, changes in the value of the limit are
2920 	 * of course permitted.
2921 	 */
2922 	mutex_lock(&memcg_create_mutex);
2923 	if (cgroup_has_tasks(memcg->css.cgroup) ||
2924 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2925 		err = -EBUSY;
2926 	mutex_unlock(&memcg_create_mutex);
2927 	if (err)
2928 		goto out;
2929 
2930 	memcg_id = memcg_alloc_cache_id();
2931 	if (memcg_id < 0) {
2932 		err = memcg_id;
2933 		goto out;
2934 	}
2935 
2936 	/*
2937 	 * We couldn't have accounted to this cgroup, because it hasn't got
2938 	 * activated yet, so this should succeed.
2939 	 */
2940 	err = page_counter_limit(&memcg->kmem, nr_pages);
2941 	VM_BUG_ON(err);
2942 
2943 	static_key_slow_inc(&memcg_kmem_enabled_key);
2944 	/*
2945 	 * A memory cgroup is considered kmem-active as soon as it gets
2946 	 * kmemcg_id. Setting the id after enabling static branching will
2947 	 * guarantee no one starts accounting before all call sites are
2948 	 * patched.
2949 	 */
2950 	memcg->kmemcg_id = memcg_id;
2951 	memcg->kmem_acct_activated = true;
2952 	memcg->kmem_acct_active = true;
2953 out:
2954 	return err;
2955 }
2956 
2957 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2958 				   unsigned long limit)
2959 {
2960 	int ret;
2961 
2962 	mutex_lock(&memcg_limit_mutex);
2963 	if (!memcg_kmem_is_active(memcg))
2964 		ret = memcg_activate_kmem(memcg, limit);
2965 	else
2966 		ret = page_counter_limit(&memcg->kmem, limit);
2967 	mutex_unlock(&memcg_limit_mutex);
2968 	return ret;
2969 }
2970 
2971 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2972 {
2973 	int ret = 0;
2974 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2975 
2976 	if (!parent)
2977 		return 0;
2978 
2979 	mutex_lock(&memcg_limit_mutex);
2980 	/*
2981 	 * If the parent cgroup is not kmem-active now, it cannot be activated
2982 	 * after this point, because it has at least one child already.
2983 	 */
2984 	if (memcg_kmem_is_active(parent))
2985 		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2986 	mutex_unlock(&memcg_limit_mutex);
2987 	return ret;
2988 }
2989 #else
2990 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2991 				   unsigned long limit)
2992 {
2993 	return -EINVAL;
2994 }
2995 #endif /* CONFIG_MEMCG_KMEM */
2996 
2997 /*
2998  * The user of this function is...
2999  * RES_LIMIT.
3000  */
3001 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3002 				char *buf, size_t nbytes, loff_t off)
3003 {
3004 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3005 	unsigned long nr_pages;
3006 	int ret;
3007 
3008 	buf = strstrip(buf);
3009 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3010 	if (ret)
3011 		return ret;
3012 
3013 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3014 	case RES_LIMIT:
3015 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3016 			ret = -EINVAL;
3017 			break;
3018 		}
3019 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3020 		case _MEM:
3021 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3022 			break;
3023 		case _MEMSWAP:
3024 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3025 			break;
3026 		case _KMEM:
3027 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3028 			break;
3029 		}
3030 		break;
3031 	case RES_SOFT_LIMIT:
3032 		memcg->soft_limit = nr_pages;
3033 		ret = 0;
3034 		break;
3035 	}
3036 	return ret ?: nbytes;
3037 }
3038 
3039 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3040 				size_t nbytes, loff_t off)
3041 {
3042 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3043 	struct page_counter *counter;
3044 
3045 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3046 	case _MEM:
3047 		counter = &memcg->memory;
3048 		break;
3049 	case _MEMSWAP:
3050 		counter = &memcg->memsw;
3051 		break;
3052 	case _KMEM:
3053 		counter = &memcg->kmem;
3054 		break;
3055 	default:
3056 		BUG();
3057 	}
3058 
3059 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3060 	case RES_MAX_USAGE:
3061 		page_counter_reset_watermark(counter);
3062 		break;
3063 	case RES_FAILCNT:
3064 		counter->failcnt = 0;
3065 		break;
3066 	default:
3067 		BUG();
3068 	}
3069 
3070 	return nbytes;
3071 }
3072 
3073 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3074 					struct cftype *cft)
3075 {
3076 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3077 }
3078 
3079 #ifdef CONFIG_MMU
3080 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3081 					struct cftype *cft, u64 val)
3082 {
3083 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3084 
3085 	if (val & ~MOVE_MASK)
3086 		return -EINVAL;
3087 
3088 	/*
3089 	 * No kind of locking is needed in here, because ->can_attach() will
3090 	 * check this value once in the beginning of the process, and then carry
3091 	 * on with stale data. This means that changes to this value will only
3092 	 * affect task migrations starting after the change.
3093 	 */
3094 	memcg->move_charge_at_immigrate = val;
3095 	return 0;
3096 }
3097 #else
3098 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3099 					struct cftype *cft, u64 val)
3100 {
3101 	return -ENOSYS;
3102 }
3103 #endif
3104 
3105 #ifdef CONFIG_NUMA
3106 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3107 {
3108 	struct numa_stat {
3109 		const char *name;
3110 		unsigned int lru_mask;
3111 	};
3112 
3113 	static const struct numa_stat stats[] = {
3114 		{ "total", LRU_ALL },
3115 		{ "file", LRU_ALL_FILE },
3116 		{ "anon", LRU_ALL_ANON },
3117 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3118 	};
3119 	const struct numa_stat *stat;
3120 	int nid;
3121 	unsigned long nr;
3122 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3123 
3124 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3126 		seq_printf(m, "%s=%lu", stat->name, nr);
3127 		for_each_node_state(nid, N_MEMORY) {
3128 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3129 							  stat->lru_mask);
3130 			seq_printf(m, " N%d=%lu", nid, nr);
3131 		}
3132 		seq_putc(m, '\n');
3133 	}
3134 
3135 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3136 		struct mem_cgroup *iter;
3137 
3138 		nr = 0;
3139 		for_each_mem_cgroup_tree(iter, memcg)
3140 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3141 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3142 		for_each_node_state(nid, N_MEMORY) {
3143 			nr = 0;
3144 			for_each_mem_cgroup_tree(iter, memcg)
3145 				nr += mem_cgroup_node_nr_lru_pages(
3146 					iter, nid, stat->lru_mask);
3147 			seq_printf(m, " N%d=%lu", nid, nr);
3148 		}
3149 		seq_putc(m, '\n');
3150 	}
3151 
3152 	return 0;
3153 }
3154 #endif /* CONFIG_NUMA */
3155 
3156 static int memcg_stat_show(struct seq_file *m, void *v)
3157 {
3158 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3159 	unsigned long memory, memsw;
3160 	struct mem_cgroup *mi;
3161 	unsigned int i;
3162 
3163 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3164 		     MEM_CGROUP_STAT_NSTATS);
3165 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3166 		     MEM_CGROUP_EVENTS_NSTATS);
3167 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3168 
3169 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3170 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3171 			continue;
3172 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3173 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3174 	}
3175 
3176 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3177 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3178 			   mem_cgroup_read_events(memcg, i));
3179 
3180 	for (i = 0; i < NR_LRU_LISTS; i++)
3181 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3182 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3183 
3184 	/* Hierarchical information */
3185 	memory = memsw = PAGE_COUNTER_MAX;
3186 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3187 		memory = min(memory, mi->memory.limit);
3188 		memsw = min(memsw, mi->memsw.limit);
3189 	}
3190 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3191 		   (u64)memory * PAGE_SIZE);
3192 	if (do_swap_account)
3193 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3194 			   (u64)memsw * PAGE_SIZE);
3195 
3196 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3197 		long long val = 0;
3198 
3199 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3200 			continue;
3201 		for_each_mem_cgroup_tree(mi, memcg)
3202 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3203 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3204 	}
3205 
3206 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3207 		unsigned long long val = 0;
3208 
3209 		for_each_mem_cgroup_tree(mi, memcg)
3210 			val += mem_cgroup_read_events(mi, i);
3211 		seq_printf(m, "total_%s %llu\n",
3212 			   mem_cgroup_events_names[i], val);
3213 	}
3214 
3215 	for (i = 0; i < NR_LRU_LISTS; i++) {
3216 		unsigned long long val = 0;
3217 
3218 		for_each_mem_cgroup_tree(mi, memcg)
3219 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3220 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3221 	}
3222 
3223 #ifdef CONFIG_DEBUG_VM
3224 	{
3225 		int nid, zid;
3226 		struct mem_cgroup_per_zone *mz;
3227 		struct zone_reclaim_stat *rstat;
3228 		unsigned long recent_rotated[2] = {0, 0};
3229 		unsigned long recent_scanned[2] = {0, 0};
3230 
3231 		for_each_online_node(nid)
3232 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3233 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3234 				rstat = &mz->lruvec.reclaim_stat;
3235 
3236 				recent_rotated[0] += rstat->recent_rotated[0];
3237 				recent_rotated[1] += rstat->recent_rotated[1];
3238 				recent_scanned[0] += rstat->recent_scanned[0];
3239 				recent_scanned[1] += rstat->recent_scanned[1];
3240 			}
3241 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3242 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3243 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3244 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3245 	}
3246 #endif
3247 
3248 	return 0;
3249 }
3250 
3251 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3252 				      struct cftype *cft)
3253 {
3254 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3255 
3256 	return mem_cgroup_swappiness(memcg);
3257 }
3258 
3259 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3260 				       struct cftype *cft, u64 val)
3261 {
3262 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3263 
3264 	if (val > 100)
3265 		return -EINVAL;
3266 
3267 	if (css->parent)
3268 		memcg->swappiness = val;
3269 	else
3270 		vm_swappiness = val;
3271 
3272 	return 0;
3273 }
3274 
3275 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3276 {
3277 	struct mem_cgroup_threshold_ary *t;
3278 	unsigned long usage;
3279 	int i;
3280 
3281 	rcu_read_lock();
3282 	if (!swap)
3283 		t = rcu_dereference(memcg->thresholds.primary);
3284 	else
3285 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3286 
3287 	if (!t)
3288 		goto unlock;
3289 
3290 	usage = mem_cgroup_usage(memcg, swap);
3291 
3292 	/*
3293 	 * current_threshold points to threshold just below or equal to usage.
3294 	 * If it's not true, a threshold was crossed after last
3295 	 * call of __mem_cgroup_threshold().
3296 	 */
3297 	i = t->current_threshold;
3298 
3299 	/*
3300 	 * Iterate backward over array of thresholds starting from
3301 	 * current_threshold and check if a threshold is crossed.
3302 	 * If none of thresholds below usage is crossed, we read
3303 	 * only one element of the array here.
3304 	 */
3305 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3306 		eventfd_signal(t->entries[i].eventfd, 1);
3307 
3308 	/* i = current_threshold + 1 */
3309 	i++;
3310 
3311 	/*
3312 	 * Iterate forward over array of thresholds starting from
3313 	 * current_threshold+1 and check if a threshold is crossed.
3314 	 * If none of thresholds above usage is crossed, we read
3315 	 * only one element of the array here.
3316 	 */
3317 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3318 		eventfd_signal(t->entries[i].eventfd, 1);
3319 
3320 	/* Update current_threshold */
3321 	t->current_threshold = i - 1;
3322 unlock:
3323 	rcu_read_unlock();
3324 }
3325 
3326 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3327 {
3328 	while (memcg) {
3329 		__mem_cgroup_threshold(memcg, false);
3330 		if (do_swap_account)
3331 			__mem_cgroup_threshold(memcg, true);
3332 
3333 		memcg = parent_mem_cgroup(memcg);
3334 	}
3335 }
3336 
3337 static int compare_thresholds(const void *a, const void *b)
3338 {
3339 	const struct mem_cgroup_threshold *_a = a;
3340 	const struct mem_cgroup_threshold *_b = b;
3341 
3342 	if (_a->threshold > _b->threshold)
3343 		return 1;
3344 
3345 	if (_a->threshold < _b->threshold)
3346 		return -1;
3347 
3348 	return 0;
3349 }
3350 
3351 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3352 {
3353 	struct mem_cgroup_eventfd_list *ev;
3354 
3355 	spin_lock(&memcg_oom_lock);
3356 
3357 	list_for_each_entry(ev, &memcg->oom_notify, list)
3358 		eventfd_signal(ev->eventfd, 1);
3359 
3360 	spin_unlock(&memcg_oom_lock);
3361 	return 0;
3362 }
3363 
3364 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3365 {
3366 	struct mem_cgroup *iter;
3367 
3368 	for_each_mem_cgroup_tree(iter, memcg)
3369 		mem_cgroup_oom_notify_cb(iter);
3370 }
3371 
3372 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3373 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3374 {
3375 	struct mem_cgroup_thresholds *thresholds;
3376 	struct mem_cgroup_threshold_ary *new;
3377 	unsigned long threshold;
3378 	unsigned long usage;
3379 	int i, size, ret;
3380 
3381 	ret = page_counter_memparse(args, "-1", &threshold);
3382 	if (ret)
3383 		return ret;
3384 
3385 	mutex_lock(&memcg->thresholds_lock);
3386 
3387 	if (type == _MEM) {
3388 		thresholds = &memcg->thresholds;
3389 		usage = mem_cgroup_usage(memcg, false);
3390 	} else if (type == _MEMSWAP) {
3391 		thresholds = &memcg->memsw_thresholds;
3392 		usage = mem_cgroup_usage(memcg, true);
3393 	} else
3394 		BUG();
3395 
3396 	/* Check if a threshold crossed before adding a new one */
3397 	if (thresholds->primary)
3398 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3399 
3400 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3401 
3402 	/* Allocate memory for new array of thresholds */
3403 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3404 			GFP_KERNEL);
3405 	if (!new) {
3406 		ret = -ENOMEM;
3407 		goto unlock;
3408 	}
3409 	new->size = size;
3410 
3411 	/* Copy thresholds (if any) to new array */
3412 	if (thresholds->primary) {
3413 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3414 				sizeof(struct mem_cgroup_threshold));
3415 	}
3416 
3417 	/* Add new threshold */
3418 	new->entries[size - 1].eventfd = eventfd;
3419 	new->entries[size - 1].threshold = threshold;
3420 
3421 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3422 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3423 			compare_thresholds, NULL);
3424 
3425 	/* Find current threshold */
3426 	new->current_threshold = -1;
3427 	for (i = 0; i < size; i++) {
3428 		if (new->entries[i].threshold <= usage) {
3429 			/*
3430 			 * new->current_threshold will not be used until
3431 			 * rcu_assign_pointer(), so it's safe to increment
3432 			 * it here.
3433 			 */
3434 			++new->current_threshold;
3435 		} else
3436 			break;
3437 	}
3438 
3439 	/* Free old spare buffer and save old primary buffer as spare */
3440 	kfree(thresholds->spare);
3441 	thresholds->spare = thresholds->primary;
3442 
3443 	rcu_assign_pointer(thresholds->primary, new);
3444 
3445 	/* To be sure that nobody uses thresholds */
3446 	synchronize_rcu();
3447 
3448 unlock:
3449 	mutex_unlock(&memcg->thresholds_lock);
3450 
3451 	return ret;
3452 }
3453 
3454 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3455 	struct eventfd_ctx *eventfd, const char *args)
3456 {
3457 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3458 }
3459 
3460 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3461 	struct eventfd_ctx *eventfd, const char *args)
3462 {
3463 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3464 }
3465 
3466 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3467 	struct eventfd_ctx *eventfd, enum res_type type)
3468 {
3469 	struct mem_cgroup_thresholds *thresholds;
3470 	struct mem_cgroup_threshold_ary *new;
3471 	unsigned long usage;
3472 	int i, j, size;
3473 
3474 	mutex_lock(&memcg->thresholds_lock);
3475 
3476 	if (type == _MEM) {
3477 		thresholds = &memcg->thresholds;
3478 		usage = mem_cgroup_usage(memcg, false);
3479 	} else if (type == _MEMSWAP) {
3480 		thresholds = &memcg->memsw_thresholds;
3481 		usage = mem_cgroup_usage(memcg, true);
3482 	} else
3483 		BUG();
3484 
3485 	if (!thresholds->primary)
3486 		goto unlock;
3487 
3488 	/* Check if a threshold crossed before removing */
3489 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3490 
3491 	/* Calculate new number of threshold */
3492 	size = 0;
3493 	for (i = 0; i < thresholds->primary->size; i++) {
3494 		if (thresholds->primary->entries[i].eventfd != eventfd)
3495 			size++;
3496 	}
3497 
3498 	new = thresholds->spare;
3499 
3500 	/* Set thresholds array to NULL if we don't have thresholds */
3501 	if (!size) {
3502 		kfree(new);
3503 		new = NULL;
3504 		goto swap_buffers;
3505 	}
3506 
3507 	new->size = size;
3508 
3509 	/* Copy thresholds and find current threshold */
3510 	new->current_threshold = -1;
3511 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3512 		if (thresholds->primary->entries[i].eventfd == eventfd)
3513 			continue;
3514 
3515 		new->entries[j] = thresholds->primary->entries[i];
3516 		if (new->entries[j].threshold <= usage) {
3517 			/*
3518 			 * new->current_threshold will not be used
3519 			 * until rcu_assign_pointer(), so it's safe to increment
3520 			 * it here.
3521 			 */
3522 			++new->current_threshold;
3523 		}
3524 		j++;
3525 	}
3526 
3527 swap_buffers:
3528 	/* Swap primary and spare array */
3529 	thresholds->spare = thresholds->primary;
3530 	/* If all events are unregistered, free the spare array */
3531 	if (!new) {
3532 		kfree(thresholds->spare);
3533 		thresholds->spare = NULL;
3534 	}
3535 
3536 	rcu_assign_pointer(thresholds->primary, new);
3537 
3538 	/* To be sure that nobody uses thresholds */
3539 	synchronize_rcu();
3540 unlock:
3541 	mutex_unlock(&memcg->thresholds_lock);
3542 }
3543 
3544 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3545 	struct eventfd_ctx *eventfd)
3546 {
3547 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3548 }
3549 
3550 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3551 	struct eventfd_ctx *eventfd)
3552 {
3553 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3554 }
3555 
3556 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3557 	struct eventfd_ctx *eventfd, const char *args)
3558 {
3559 	struct mem_cgroup_eventfd_list *event;
3560 
3561 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3562 	if (!event)
3563 		return -ENOMEM;
3564 
3565 	spin_lock(&memcg_oom_lock);
3566 
3567 	event->eventfd = eventfd;
3568 	list_add(&event->list, &memcg->oom_notify);
3569 
3570 	/* already in OOM ? */
3571 	if (memcg->under_oom)
3572 		eventfd_signal(eventfd, 1);
3573 	spin_unlock(&memcg_oom_lock);
3574 
3575 	return 0;
3576 }
3577 
3578 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3579 	struct eventfd_ctx *eventfd)
3580 {
3581 	struct mem_cgroup_eventfd_list *ev, *tmp;
3582 
3583 	spin_lock(&memcg_oom_lock);
3584 
3585 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3586 		if (ev->eventfd == eventfd) {
3587 			list_del(&ev->list);
3588 			kfree(ev);
3589 		}
3590 	}
3591 
3592 	spin_unlock(&memcg_oom_lock);
3593 }
3594 
3595 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3596 {
3597 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3598 
3599 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3600 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3601 	return 0;
3602 }
3603 
3604 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3605 	struct cftype *cft, u64 val)
3606 {
3607 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3608 
3609 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3610 	if (!css->parent || !((val == 0) || (val == 1)))
3611 		return -EINVAL;
3612 
3613 	memcg->oom_kill_disable = val;
3614 	if (!val)
3615 		memcg_oom_recover(memcg);
3616 
3617 	return 0;
3618 }
3619 
3620 #ifdef CONFIG_MEMCG_KMEM
3621 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3622 {
3623 	int ret;
3624 
3625 	ret = memcg_propagate_kmem(memcg);
3626 	if (ret)
3627 		return ret;
3628 
3629 	return mem_cgroup_sockets_init(memcg, ss);
3630 }
3631 
3632 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3633 {
3634 	struct cgroup_subsys_state *css;
3635 	struct mem_cgroup *parent, *child;
3636 	int kmemcg_id;
3637 
3638 	if (!memcg->kmem_acct_active)
3639 		return;
3640 
3641 	/*
3642 	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3643 	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3644 	 * guarantees no cache will be created for this cgroup after we are
3645 	 * done (see memcg_create_kmem_cache()).
3646 	 */
3647 	memcg->kmem_acct_active = false;
3648 
3649 	memcg_deactivate_kmem_caches(memcg);
3650 
3651 	kmemcg_id = memcg->kmemcg_id;
3652 	BUG_ON(kmemcg_id < 0);
3653 
3654 	parent = parent_mem_cgroup(memcg);
3655 	if (!parent)
3656 		parent = root_mem_cgroup;
3657 
3658 	/*
3659 	 * Change kmemcg_id of this cgroup and all its descendants to the
3660 	 * parent's id, and then move all entries from this cgroup's list_lrus
3661 	 * to ones of the parent. After we have finished, all list_lrus
3662 	 * corresponding to this cgroup are guaranteed to remain empty. The
3663 	 * ordering is imposed by list_lru_node->lock taken by
3664 	 * memcg_drain_all_list_lrus().
3665 	 */
3666 	css_for_each_descendant_pre(css, &memcg->css) {
3667 		child = mem_cgroup_from_css(css);
3668 		BUG_ON(child->kmemcg_id != kmemcg_id);
3669 		child->kmemcg_id = parent->kmemcg_id;
3670 		if (!memcg->use_hierarchy)
3671 			break;
3672 	}
3673 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3674 
3675 	memcg_free_cache_id(kmemcg_id);
3676 }
3677 
3678 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3679 {
3680 	if (memcg->kmem_acct_activated) {
3681 		memcg_destroy_kmem_caches(memcg);
3682 		static_key_slow_dec(&memcg_kmem_enabled_key);
3683 		WARN_ON(page_counter_read(&memcg->kmem));
3684 	}
3685 	mem_cgroup_sockets_destroy(memcg);
3686 }
3687 #else
3688 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3689 {
3690 	return 0;
3691 }
3692 
3693 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3694 {
3695 }
3696 
3697 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3698 {
3699 }
3700 #endif
3701 
3702 #ifdef CONFIG_CGROUP_WRITEBACK
3703 
3704 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3705 {
3706 	return &memcg->cgwb_list;
3707 }
3708 
3709 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3710 {
3711 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3712 }
3713 
3714 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3715 {
3716 	wb_domain_exit(&memcg->cgwb_domain);
3717 }
3718 
3719 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3720 {
3721 	wb_domain_size_changed(&memcg->cgwb_domain);
3722 }
3723 
3724 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3725 {
3726 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3727 
3728 	if (!memcg->css.parent)
3729 		return NULL;
3730 
3731 	return &memcg->cgwb_domain;
3732 }
3733 
3734 /**
3735  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3736  * @wb: bdi_writeback in question
3737  * @pavail: out parameter for number of available pages
3738  * @pdirty: out parameter for number of dirty pages
3739  * @pwriteback: out parameter for number of pages under writeback
3740  *
3741  * Determine the numbers of available, dirty, and writeback pages in @wb's
3742  * memcg.  Dirty and writeback are self-explanatory.  Available is a bit
3743  * more involved.
3744  *
3745  * A memcg's headroom is "min(max, high) - used".  The available memory is
3746  * calculated as the lowest headroom of itself and the ancestors plus the
3747  * number of pages already being used for file pages.  Note that this
3748  * doesn't consider the actual amount of available memory in the system.
3749  * The caller should further cap *@pavail accordingly.
3750  */
3751 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
3752 			 unsigned long *pdirty, unsigned long *pwriteback)
3753 {
3754 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3755 	struct mem_cgroup *parent;
3756 	unsigned long head_room = PAGE_COUNTER_MAX;
3757 	unsigned long file_pages;
3758 
3759 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3760 
3761 	/* this should eventually include NR_UNSTABLE_NFS */
3762 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3763 
3764 	file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3765 						    (1 << LRU_ACTIVE_FILE));
3766 	while ((parent = parent_mem_cgroup(memcg))) {
3767 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3768 		unsigned long used = page_counter_read(&memcg->memory);
3769 
3770 		head_room = min(head_room, ceiling - min(ceiling, used));
3771 		memcg = parent;
3772 	}
3773 
3774 	*pavail = file_pages + head_room;
3775 }
3776 
3777 #else	/* CONFIG_CGROUP_WRITEBACK */
3778 
3779 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3780 {
3781 	return 0;
3782 }
3783 
3784 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3785 {
3786 }
3787 
3788 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3789 {
3790 }
3791 
3792 #endif	/* CONFIG_CGROUP_WRITEBACK */
3793 
3794 /*
3795  * DO NOT USE IN NEW FILES.
3796  *
3797  * "cgroup.event_control" implementation.
3798  *
3799  * This is way over-engineered.  It tries to support fully configurable
3800  * events for each user.  Such level of flexibility is completely
3801  * unnecessary especially in the light of the planned unified hierarchy.
3802  *
3803  * Please deprecate this and replace with something simpler if at all
3804  * possible.
3805  */
3806 
3807 /*
3808  * Unregister event and free resources.
3809  *
3810  * Gets called from workqueue.
3811  */
3812 static void memcg_event_remove(struct work_struct *work)
3813 {
3814 	struct mem_cgroup_event *event =
3815 		container_of(work, struct mem_cgroup_event, remove);
3816 	struct mem_cgroup *memcg = event->memcg;
3817 
3818 	remove_wait_queue(event->wqh, &event->wait);
3819 
3820 	event->unregister_event(memcg, event->eventfd);
3821 
3822 	/* Notify userspace the event is going away. */
3823 	eventfd_signal(event->eventfd, 1);
3824 
3825 	eventfd_ctx_put(event->eventfd);
3826 	kfree(event);
3827 	css_put(&memcg->css);
3828 }
3829 
3830 /*
3831  * Gets called on POLLHUP on eventfd when user closes it.
3832  *
3833  * Called with wqh->lock held and interrupts disabled.
3834  */
3835 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3836 			    int sync, void *key)
3837 {
3838 	struct mem_cgroup_event *event =
3839 		container_of(wait, struct mem_cgroup_event, wait);
3840 	struct mem_cgroup *memcg = event->memcg;
3841 	unsigned long flags = (unsigned long)key;
3842 
3843 	if (flags & POLLHUP) {
3844 		/*
3845 		 * If the event has been detached at cgroup removal, we
3846 		 * can simply return knowing the other side will cleanup
3847 		 * for us.
3848 		 *
3849 		 * We can't race against event freeing since the other
3850 		 * side will require wqh->lock via remove_wait_queue(),
3851 		 * which we hold.
3852 		 */
3853 		spin_lock(&memcg->event_list_lock);
3854 		if (!list_empty(&event->list)) {
3855 			list_del_init(&event->list);
3856 			/*
3857 			 * We are in atomic context, but cgroup_event_remove()
3858 			 * may sleep, so we have to call it in workqueue.
3859 			 */
3860 			schedule_work(&event->remove);
3861 		}
3862 		spin_unlock(&memcg->event_list_lock);
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static void memcg_event_ptable_queue_proc(struct file *file,
3869 		wait_queue_head_t *wqh, poll_table *pt)
3870 {
3871 	struct mem_cgroup_event *event =
3872 		container_of(pt, struct mem_cgroup_event, pt);
3873 
3874 	event->wqh = wqh;
3875 	add_wait_queue(wqh, &event->wait);
3876 }
3877 
3878 /*
3879  * DO NOT USE IN NEW FILES.
3880  *
3881  * Parse input and register new cgroup event handler.
3882  *
3883  * Input must be in format '<event_fd> <control_fd> <args>'.
3884  * Interpretation of args is defined by control file implementation.
3885  */
3886 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3887 					 char *buf, size_t nbytes, loff_t off)
3888 {
3889 	struct cgroup_subsys_state *css = of_css(of);
3890 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891 	struct mem_cgroup_event *event;
3892 	struct cgroup_subsys_state *cfile_css;
3893 	unsigned int efd, cfd;
3894 	struct fd efile;
3895 	struct fd cfile;
3896 	const char *name;
3897 	char *endp;
3898 	int ret;
3899 
3900 	buf = strstrip(buf);
3901 
3902 	efd = simple_strtoul(buf, &endp, 10);
3903 	if (*endp != ' ')
3904 		return -EINVAL;
3905 	buf = endp + 1;
3906 
3907 	cfd = simple_strtoul(buf, &endp, 10);
3908 	if ((*endp != ' ') && (*endp != '\0'))
3909 		return -EINVAL;
3910 	buf = endp + 1;
3911 
3912 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3913 	if (!event)
3914 		return -ENOMEM;
3915 
3916 	event->memcg = memcg;
3917 	INIT_LIST_HEAD(&event->list);
3918 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3919 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3920 	INIT_WORK(&event->remove, memcg_event_remove);
3921 
3922 	efile = fdget(efd);
3923 	if (!efile.file) {
3924 		ret = -EBADF;
3925 		goto out_kfree;
3926 	}
3927 
3928 	event->eventfd = eventfd_ctx_fileget(efile.file);
3929 	if (IS_ERR(event->eventfd)) {
3930 		ret = PTR_ERR(event->eventfd);
3931 		goto out_put_efile;
3932 	}
3933 
3934 	cfile = fdget(cfd);
3935 	if (!cfile.file) {
3936 		ret = -EBADF;
3937 		goto out_put_eventfd;
3938 	}
3939 
3940 	/* the process need read permission on control file */
3941 	/* AV: shouldn't we check that it's been opened for read instead? */
3942 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3943 	if (ret < 0)
3944 		goto out_put_cfile;
3945 
3946 	/*
3947 	 * Determine the event callbacks and set them in @event.  This used
3948 	 * to be done via struct cftype but cgroup core no longer knows
3949 	 * about these events.  The following is crude but the whole thing
3950 	 * is for compatibility anyway.
3951 	 *
3952 	 * DO NOT ADD NEW FILES.
3953 	 */
3954 	name = cfile.file->f_path.dentry->d_name.name;
3955 
3956 	if (!strcmp(name, "memory.usage_in_bytes")) {
3957 		event->register_event = mem_cgroup_usage_register_event;
3958 		event->unregister_event = mem_cgroup_usage_unregister_event;
3959 	} else if (!strcmp(name, "memory.oom_control")) {
3960 		event->register_event = mem_cgroup_oom_register_event;
3961 		event->unregister_event = mem_cgroup_oom_unregister_event;
3962 	} else if (!strcmp(name, "memory.pressure_level")) {
3963 		event->register_event = vmpressure_register_event;
3964 		event->unregister_event = vmpressure_unregister_event;
3965 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3966 		event->register_event = memsw_cgroup_usage_register_event;
3967 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3968 	} else {
3969 		ret = -EINVAL;
3970 		goto out_put_cfile;
3971 	}
3972 
3973 	/*
3974 	 * Verify @cfile should belong to @css.  Also, remaining events are
3975 	 * automatically removed on cgroup destruction but the removal is
3976 	 * asynchronous, so take an extra ref on @css.
3977 	 */
3978 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3979 					       &memory_cgrp_subsys);
3980 	ret = -EINVAL;
3981 	if (IS_ERR(cfile_css))
3982 		goto out_put_cfile;
3983 	if (cfile_css != css) {
3984 		css_put(cfile_css);
3985 		goto out_put_cfile;
3986 	}
3987 
3988 	ret = event->register_event(memcg, event->eventfd, buf);
3989 	if (ret)
3990 		goto out_put_css;
3991 
3992 	efile.file->f_op->poll(efile.file, &event->pt);
3993 
3994 	spin_lock(&memcg->event_list_lock);
3995 	list_add(&event->list, &memcg->event_list);
3996 	spin_unlock(&memcg->event_list_lock);
3997 
3998 	fdput(cfile);
3999 	fdput(efile);
4000 
4001 	return nbytes;
4002 
4003 out_put_css:
4004 	css_put(css);
4005 out_put_cfile:
4006 	fdput(cfile);
4007 out_put_eventfd:
4008 	eventfd_ctx_put(event->eventfd);
4009 out_put_efile:
4010 	fdput(efile);
4011 out_kfree:
4012 	kfree(event);
4013 
4014 	return ret;
4015 }
4016 
4017 static struct cftype mem_cgroup_legacy_files[] = {
4018 	{
4019 		.name = "usage_in_bytes",
4020 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4021 		.read_u64 = mem_cgroup_read_u64,
4022 	},
4023 	{
4024 		.name = "max_usage_in_bytes",
4025 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4026 		.write = mem_cgroup_reset,
4027 		.read_u64 = mem_cgroup_read_u64,
4028 	},
4029 	{
4030 		.name = "limit_in_bytes",
4031 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4032 		.write = mem_cgroup_write,
4033 		.read_u64 = mem_cgroup_read_u64,
4034 	},
4035 	{
4036 		.name = "soft_limit_in_bytes",
4037 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4038 		.write = mem_cgroup_write,
4039 		.read_u64 = mem_cgroup_read_u64,
4040 	},
4041 	{
4042 		.name = "failcnt",
4043 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4044 		.write = mem_cgroup_reset,
4045 		.read_u64 = mem_cgroup_read_u64,
4046 	},
4047 	{
4048 		.name = "stat",
4049 		.seq_show = memcg_stat_show,
4050 	},
4051 	{
4052 		.name = "force_empty",
4053 		.write = mem_cgroup_force_empty_write,
4054 	},
4055 	{
4056 		.name = "use_hierarchy",
4057 		.write_u64 = mem_cgroup_hierarchy_write,
4058 		.read_u64 = mem_cgroup_hierarchy_read,
4059 	},
4060 	{
4061 		.name = "cgroup.event_control",		/* XXX: for compat */
4062 		.write = memcg_write_event_control,
4063 		.flags = CFTYPE_NO_PREFIX,
4064 		.mode = S_IWUGO,
4065 	},
4066 	{
4067 		.name = "swappiness",
4068 		.read_u64 = mem_cgroup_swappiness_read,
4069 		.write_u64 = mem_cgroup_swappiness_write,
4070 	},
4071 	{
4072 		.name = "move_charge_at_immigrate",
4073 		.read_u64 = mem_cgroup_move_charge_read,
4074 		.write_u64 = mem_cgroup_move_charge_write,
4075 	},
4076 	{
4077 		.name = "oom_control",
4078 		.seq_show = mem_cgroup_oom_control_read,
4079 		.write_u64 = mem_cgroup_oom_control_write,
4080 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4081 	},
4082 	{
4083 		.name = "pressure_level",
4084 	},
4085 #ifdef CONFIG_NUMA
4086 	{
4087 		.name = "numa_stat",
4088 		.seq_show = memcg_numa_stat_show,
4089 	},
4090 #endif
4091 #ifdef CONFIG_MEMCG_KMEM
4092 	{
4093 		.name = "kmem.limit_in_bytes",
4094 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4095 		.write = mem_cgroup_write,
4096 		.read_u64 = mem_cgroup_read_u64,
4097 	},
4098 	{
4099 		.name = "kmem.usage_in_bytes",
4100 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4101 		.read_u64 = mem_cgroup_read_u64,
4102 	},
4103 	{
4104 		.name = "kmem.failcnt",
4105 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4106 		.write = mem_cgroup_reset,
4107 		.read_u64 = mem_cgroup_read_u64,
4108 	},
4109 	{
4110 		.name = "kmem.max_usage_in_bytes",
4111 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4112 		.write = mem_cgroup_reset,
4113 		.read_u64 = mem_cgroup_read_u64,
4114 	},
4115 #ifdef CONFIG_SLABINFO
4116 	{
4117 		.name = "kmem.slabinfo",
4118 		.seq_start = slab_start,
4119 		.seq_next = slab_next,
4120 		.seq_stop = slab_stop,
4121 		.seq_show = memcg_slab_show,
4122 	},
4123 #endif
4124 #endif
4125 	{ },	/* terminate */
4126 };
4127 
4128 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4129 {
4130 	struct mem_cgroup_per_node *pn;
4131 	struct mem_cgroup_per_zone *mz;
4132 	int zone, tmp = node;
4133 	/*
4134 	 * This routine is called against possible nodes.
4135 	 * But it's BUG to call kmalloc() against offline node.
4136 	 *
4137 	 * TODO: this routine can waste much memory for nodes which will
4138 	 *       never be onlined. It's better to use memory hotplug callback
4139 	 *       function.
4140 	 */
4141 	if (!node_state(node, N_NORMAL_MEMORY))
4142 		tmp = -1;
4143 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4144 	if (!pn)
4145 		return 1;
4146 
4147 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4148 		mz = &pn->zoneinfo[zone];
4149 		lruvec_init(&mz->lruvec);
4150 		mz->usage_in_excess = 0;
4151 		mz->on_tree = false;
4152 		mz->memcg = memcg;
4153 	}
4154 	memcg->nodeinfo[node] = pn;
4155 	return 0;
4156 }
4157 
4158 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4159 {
4160 	kfree(memcg->nodeinfo[node]);
4161 }
4162 
4163 static struct mem_cgroup *mem_cgroup_alloc(void)
4164 {
4165 	struct mem_cgroup *memcg;
4166 	size_t size;
4167 
4168 	size = sizeof(struct mem_cgroup);
4169 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4170 
4171 	memcg = kzalloc(size, GFP_KERNEL);
4172 	if (!memcg)
4173 		return NULL;
4174 
4175 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4176 	if (!memcg->stat)
4177 		goto out_free;
4178 
4179 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4180 		goto out_free_stat;
4181 
4182 	spin_lock_init(&memcg->pcp_counter_lock);
4183 	return memcg;
4184 
4185 out_free_stat:
4186 	free_percpu(memcg->stat);
4187 out_free:
4188 	kfree(memcg);
4189 	return NULL;
4190 }
4191 
4192 /*
4193  * At destroying mem_cgroup, references from swap_cgroup can remain.
4194  * (scanning all at force_empty is too costly...)
4195  *
4196  * Instead of clearing all references at force_empty, we remember
4197  * the number of reference from swap_cgroup and free mem_cgroup when
4198  * it goes down to 0.
4199  *
4200  * Removal of cgroup itself succeeds regardless of refs from swap.
4201  */
4202 
4203 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4204 {
4205 	int node;
4206 
4207 	mem_cgroup_remove_from_trees(memcg);
4208 
4209 	for_each_node(node)
4210 		free_mem_cgroup_per_zone_info(memcg, node);
4211 
4212 	free_percpu(memcg->stat);
4213 	memcg_wb_domain_exit(memcg);
4214 	kfree(memcg);
4215 }
4216 
4217 /*
4218  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4219  */
4220 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4221 {
4222 	if (!memcg->memory.parent)
4223 		return NULL;
4224 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4225 }
4226 EXPORT_SYMBOL(parent_mem_cgroup);
4227 
4228 static struct cgroup_subsys_state * __ref
4229 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4230 {
4231 	struct mem_cgroup *memcg;
4232 	long error = -ENOMEM;
4233 	int node;
4234 
4235 	memcg = mem_cgroup_alloc();
4236 	if (!memcg)
4237 		return ERR_PTR(error);
4238 
4239 	for_each_node(node)
4240 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4241 			goto free_out;
4242 
4243 	/* root ? */
4244 	if (parent_css == NULL) {
4245 		root_mem_cgroup = memcg;
4246 		mem_cgroup_root_css = &memcg->css;
4247 		page_counter_init(&memcg->memory, NULL);
4248 		memcg->high = PAGE_COUNTER_MAX;
4249 		memcg->soft_limit = PAGE_COUNTER_MAX;
4250 		page_counter_init(&memcg->memsw, NULL);
4251 		page_counter_init(&memcg->kmem, NULL);
4252 	}
4253 
4254 	memcg->last_scanned_node = MAX_NUMNODES;
4255 	INIT_LIST_HEAD(&memcg->oom_notify);
4256 	memcg->move_charge_at_immigrate = 0;
4257 	mutex_init(&memcg->thresholds_lock);
4258 	spin_lock_init(&memcg->move_lock);
4259 	vmpressure_init(&memcg->vmpressure);
4260 	INIT_LIST_HEAD(&memcg->event_list);
4261 	spin_lock_init(&memcg->event_list_lock);
4262 #ifdef CONFIG_MEMCG_KMEM
4263 	memcg->kmemcg_id = -1;
4264 #endif
4265 #ifdef CONFIG_CGROUP_WRITEBACK
4266 	INIT_LIST_HEAD(&memcg->cgwb_list);
4267 #endif
4268 	return &memcg->css;
4269 
4270 free_out:
4271 	__mem_cgroup_free(memcg);
4272 	return ERR_PTR(error);
4273 }
4274 
4275 static int
4276 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4277 {
4278 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4280 	int ret;
4281 
4282 	if (css->id > MEM_CGROUP_ID_MAX)
4283 		return -ENOSPC;
4284 
4285 	if (!parent)
4286 		return 0;
4287 
4288 	mutex_lock(&memcg_create_mutex);
4289 
4290 	memcg->use_hierarchy = parent->use_hierarchy;
4291 	memcg->oom_kill_disable = parent->oom_kill_disable;
4292 	memcg->swappiness = mem_cgroup_swappiness(parent);
4293 
4294 	if (parent->use_hierarchy) {
4295 		page_counter_init(&memcg->memory, &parent->memory);
4296 		memcg->high = PAGE_COUNTER_MAX;
4297 		memcg->soft_limit = PAGE_COUNTER_MAX;
4298 		page_counter_init(&memcg->memsw, &parent->memsw);
4299 		page_counter_init(&memcg->kmem, &parent->kmem);
4300 
4301 		/*
4302 		 * No need to take a reference to the parent because cgroup
4303 		 * core guarantees its existence.
4304 		 */
4305 	} else {
4306 		page_counter_init(&memcg->memory, NULL);
4307 		memcg->high = PAGE_COUNTER_MAX;
4308 		memcg->soft_limit = PAGE_COUNTER_MAX;
4309 		page_counter_init(&memcg->memsw, NULL);
4310 		page_counter_init(&memcg->kmem, NULL);
4311 		/*
4312 		 * Deeper hierachy with use_hierarchy == false doesn't make
4313 		 * much sense so let cgroup subsystem know about this
4314 		 * unfortunate state in our controller.
4315 		 */
4316 		if (parent != root_mem_cgroup)
4317 			memory_cgrp_subsys.broken_hierarchy = true;
4318 	}
4319 	mutex_unlock(&memcg_create_mutex);
4320 
4321 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4322 	if (ret)
4323 		return ret;
4324 
4325 	/*
4326 	 * Make sure the memcg is initialized: mem_cgroup_iter()
4327 	 * orders reading memcg->initialized against its callers
4328 	 * reading the memcg members.
4329 	 */
4330 	smp_store_release(&memcg->initialized, 1);
4331 
4332 	return 0;
4333 }
4334 
4335 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4336 {
4337 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338 	struct mem_cgroup_event *event, *tmp;
4339 
4340 	/*
4341 	 * Unregister events and notify userspace.
4342 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4343 	 * directory to avoid race between userspace and kernelspace.
4344 	 */
4345 	spin_lock(&memcg->event_list_lock);
4346 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4347 		list_del_init(&event->list);
4348 		schedule_work(&event->remove);
4349 	}
4350 	spin_unlock(&memcg->event_list_lock);
4351 
4352 	vmpressure_cleanup(&memcg->vmpressure);
4353 
4354 	memcg_deactivate_kmem(memcg);
4355 
4356 	wb_memcg_offline(memcg);
4357 }
4358 
4359 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4360 {
4361 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4362 
4363 	memcg_destroy_kmem(memcg);
4364 	__mem_cgroup_free(memcg);
4365 }
4366 
4367 /**
4368  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4369  * @css: the target css
4370  *
4371  * Reset the states of the mem_cgroup associated with @css.  This is
4372  * invoked when the userland requests disabling on the default hierarchy
4373  * but the memcg is pinned through dependency.  The memcg should stop
4374  * applying policies and should revert to the vanilla state as it may be
4375  * made visible again.
4376  *
4377  * The current implementation only resets the essential configurations.
4378  * This needs to be expanded to cover all the visible parts.
4379  */
4380 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4381 {
4382 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4383 
4384 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4385 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4386 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4387 	memcg->low = 0;
4388 	memcg->high = PAGE_COUNTER_MAX;
4389 	memcg->soft_limit = PAGE_COUNTER_MAX;
4390 	memcg_wb_domain_size_changed(memcg);
4391 }
4392 
4393 #ifdef CONFIG_MMU
4394 /* Handlers for move charge at task migration. */
4395 static int mem_cgroup_do_precharge(unsigned long count)
4396 {
4397 	int ret;
4398 
4399 	/* Try a single bulk charge without reclaim first */
4400 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4401 	if (!ret) {
4402 		mc.precharge += count;
4403 		return ret;
4404 	}
4405 	if (ret == -EINTR) {
4406 		cancel_charge(root_mem_cgroup, count);
4407 		return ret;
4408 	}
4409 
4410 	/* Try charges one by one with reclaim */
4411 	while (count--) {
4412 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4413 		/*
4414 		 * In case of failure, any residual charges against
4415 		 * mc.to will be dropped by mem_cgroup_clear_mc()
4416 		 * later on.  However, cancel any charges that are
4417 		 * bypassed to root right away or they'll be lost.
4418 		 */
4419 		if (ret == -EINTR)
4420 			cancel_charge(root_mem_cgroup, 1);
4421 		if (ret)
4422 			return ret;
4423 		mc.precharge++;
4424 		cond_resched();
4425 	}
4426 	return 0;
4427 }
4428 
4429 /**
4430  * get_mctgt_type - get target type of moving charge
4431  * @vma: the vma the pte to be checked belongs
4432  * @addr: the address corresponding to the pte to be checked
4433  * @ptent: the pte to be checked
4434  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4435  *
4436  * Returns
4437  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4438  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4439  *     move charge. if @target is not NULL, the page is stored in target->page
4440  *     with extra refcnt got(Callers should handle it).
4441  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4442  *     target for charge migration. if @target is not NULL, the entry is stored
4443  *     in target->ent.
4444  *
4445  * Called with pte lock held.
4446  */
4447 union mc_target {
4448 	struct page	*page;
4449 	swp_entry_t	ent;
4450 };
4451 
4452 enum mc_target_type {
4453 	MC_TARGET_NONE = 0,
4454 	MC_TARGET_PAGE,
4455 	MC_TARGET_SWAP,
4456 };
4457 
4458 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4459 						unsigned long addr, pte_t ptent)
4460 {
4461 	struct page *page = vm_normal_page(vma, addr, ptent);
4462 
4463 	if (!page || !page_mapped(page))
4464 		return NULL;
4465 	if (PageAnon(page)) {
4466 		if (!(mc.flags & MOVE_ANON))
4467 			return NULL;
4468 	} else {
4469 		if (!(mc.flags & MOVE_FILE))
4470 			return NULL;
4471 	}
4472 	if (!get_page_unless_zero(page))
4473 		return NULL;
4474 
4475 	return page;
4476 }
4477 
4478 #ifdef CONFIG_SWAP
4479 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4480 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4481 {
4482 	struct page *page = NULL;
4483 	swp_entry_t ent = pte_to_swp_entry(ptent);
4484 
4485 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4486 		return NULL;
4487 	/*
4488 	 * Because lookup_swap_cache() updates some statistics counter,
4489 	 * we call find_get_page() with swapper_space directly.
4490 	 */
4491 	page = find_get_page(swap_address_space(ent), ent.val);
4492 	if (do_swap_account)
4493 		entry->val = ent.val;
4494 
4495 	return page;
4496 }
4497 #else
4498 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4499 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4500 {
4501 	return NULL;
4502 }
4503 #endif
4504 
4505 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4506 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4507 {
4508 	struct page *page = NULL;
4509 	struct address_space *mapping;
4510 	pgoff_t pgoff;
4511 
4512 	if (!vma->vm_file) /* anonymous vma */
4513 		return NULL;
4514 	if (!(mc.flags & MOVE_FILE))
4515 		return NULL;
4516 
4517 	mapping = vma->vm_file->f_mapping;
4518 	pgoff = linear_page_index(vma, addr);
4519 
4520 	/* page is moved even if it's not RSS of this task(page-faulted). */
4521 #ifdef CONFIG_SWAP
4522 	/* shmem/tmpfs may report page out on swap: account for that too. */
4523 	if (shmem_mapping(mapping)) {
4524 		page = find_get_entry(mapping, pgoff);
4525 		if (radix_tree_exceptional_entry(page)) {
4526 			swp_entry_t swp = radix_to_swp_entry(page);
4527 			if (do_swap_account)
4528 				*entry = swp;
4529 			page = find_get_page(swap_address_space(swp), swp.val);
4530 		}
4531 	} else
4532 		page = find_get_page(mapping, pgoff);
4533 #else
4534 	page = find_get_page(mapping, pgoff);
4535 #endif
4536 	return page;
4537 }
4538 
4539 /**
4540  * mem_cgroup_move_account - move account of the page
4541  * @page: the page
4542  * @nr_pages: number of regular pages (>1 for huge pages)
4543  * @from: mem_cgroup which the page is moved from.
4544  * @to:	mem_cgroup which the page is moved to. @from != @to.
4545  *
4546  * The caller must confirm following.
4547  * - page is not on LRU (isolate_page() is useful.)
4548  * - compound_lock is held when nr_pages > 1
4549  *
4550  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4551  * from old cgroup.
4552  */
4553 static int mem_cgroup_move_account(struct page *page,
4554 				   unsigned int nr_pages,
4555 				   struct mem_cgroup *from,
4556 				   struct mem_cgroup *to)
4557 {
4558 	unsigned long flags;
4559 	int ret;
4560 	bool anon;
4561 
4562 	VM_BUG_ON(from == to);
4563 	VM_BUG_ON_PAGE(PageLRU(page), page);
4564 	/*
4565 	 * The page is isolated from LRU. So, collapse function
4566 	 * will not handle this page. But page splitting can happen.
4567 	 * Do this check under compound_page_lock(). The caller should
4568 	 * hold it.
4569 	 */
4570 	ret = -EBUSY;
4571 	if (nr_pages > 1 && !PageTransHuge(page))
4572 		goto out;
4573 
4574 	/*
4575 	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4576 	 * of its source page while we change it: page migration takes
4577 	 * both pages off the LRU, but page cache replacement doesn't.
4578 	 */
4579 	if (!trylock_page(page))
4580 		goto out;
4581 
4582 	ret = -EINVAL;
4583 	if (page->mem_cgroup != from)
4584 		goto out_unlock;
4585 
4586 	anon = PageAnon(page);
4587 
4588 	spin_lock_irqsave(&from->move_lock, flags);
4589 
4590 	if (!anon && page_mapped(page)) {
4591 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4592 			       nr_pages);
4593 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4594 			       nr_pages);
4595 	}
4596 
4597 	/*
4598 	 * move_lock grabbed above and caller set from->moving_account, so
4599 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4600 	 * So mapping should be stable for dirty pages.
4601 	 */
4602 	if (!anon && PageDirty(page)) {
4603 		struct address_space *mapping = page_mapping(page);
4604 
4605 		if (mapping_cap_account_dirty(mapping)) {
4606 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4607 				       nr_pages);
4608 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4609 				       nr_pages);
4610 		}
4611 	}
4612 
4613 	if (PageWriteback(page)) {
4614 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4615 			       nr_pages);
4616 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4617 			       nr_pages);
4618 	}
4619 
4620 	/*
4621 	 * It is safe to change page->mem_cgroup here because the page
4622 	 * is referenced, charged, and isolated - we can't race with
4623 	 * uncharging, charging, migration, or LRU putback.
4624 	 */
4625 
4626 	/* caller should have done css_get */
4627 	page->mem_cgroup = to;
4628 	spin_unlock_irqrestore(&from->move_lock, flags);
4629 
4630 	ret = 0;
4631 
4632 	local_irq_disable();
4633 	mem_cgroup_charge_statistics(to, page, nr_pages);
4634 	memcg_check_events(to, page);
4635 	mem_cgroup_charge_statistics(from, page, -nr_pages);
4636 	memcg_check_events(from, page);
4637 	local_irq_enable();
4638 out_unlock:
4639 	unlock_page(page);
4640 out:
4641 	return ret;
4642 }
4643 
4644 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4645 		unsigned long addr, pte_t ptent, union mc_target *target)
4646 {
4647 	struct page *page = NULL;
4648 	enum mc_target_type ret = MC_TARGET_NONE;
4649 	swp_entry_t ent = { .val = 0 };
4650 
4651 	if (pte_present(ptent))
4652 		page = mc_handle_present_pte(vma, addr, ptent);
4653 	else if (is_swap_pte(ptent))
4654 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4655 	else if (pte_none(ptent))
4656 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4657 
4658 	if (!page && !ent.val)
4659 		return ret;
4660 	if (page) {
4661 		/*
4662 		 * Do only loose check w/o serialization.
4663 		 * mem_cgroup_move_account() checks the page is valid or
4664 		 * not under LRU exclusion.
4665 		 */
4666 		if (page->mem_cgroup == mc.from) {
4667 			ret = MC_TARGET_PAGE;
4668 			if (target)
4669 				target->page = page;
4670 		}
4671 		if (!ret || !target)
4672 			put_page(page);
4673 	}
4674 	/* There is a swap entry and a page doesn't exist or isn't charged */
4675 	if (ent.val && !ret &&
4676 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4677 		ret = MC_TARGET_SWAP;
4678 		if (target)
4679 			target->ent = ent;
4680 	}
4681 	return ret;
4682 }
4683 
4684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4685 /*
4686  * We don't consider swapping or file mapped pages because THP does not
4687  * support them for now.
4688  * Caller should make sure that pmd_trans_huge(pmd) is true.
4689  */
4690 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4691 		unsigned long addr, pmd_t pmd, union mc_target *target)
4692 {
4693 	struct page *page = NULL;
4694 	enum mc_target_type ret = MC_TARGET_NONE;
4695 
4696 	page = pmd_page(pmd);
4697 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4698 	if (!(mc.flags & MOVE_ANON))
4699 		return ret;
4700 	if (page->mem_cgroup == mc.from) {
4701 		ret = MC_TARGET_PAGE;
4702 		if (target) {
4703 			get_page(page);
4704 			target->page = page;
4705 		}
4706 	}
4707 	return ret;
4708 }
4709 #else
4710 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4711 		unsigned long addr, pmd_t pmd, union mc_target *target)
4712 {
4713 	return MC_TARGET_NONE;
4714 }
4715 #endif
4716 
4717 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4718 					unsigned long addr, unsigned long end,
4719 					struct mm_walk *walk)
4720 {
4721 	struct vm_area_struct *vma = walk->vma;
4722 	pte_t *pte;
4723 	spinlock_t *ptl;
4724 
4725 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4726 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4727 			mc.precharge += HPAGE_PMD_NR;
4728 		spin_unlock(ptl);
4729 		return 0;
4730 	}
4731 
4732 	if (pmd_trans_unstable(pmd))
4733 		return 0;
4734 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4735 	for (; addr != end; pte++, addr += PAGE_SIZE)
4736 		if (get_mctgt_type(vma, addr, *pte, NULL))
4737 			mc.precharge++;	/* increment precharge temporarily */
4738 	pte_unmap_unlock(pte - 1, ptl);
4739 	cond_resched();
4740 
4741 	return 0;
4742 }
4743 
4744 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4745 {
4746 	unsigned long precharge;
4747 
4748 	struct mm_walk mem_cgroup_count_precharge_walk = {
4749 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4750 		.mm = mm,
4751 	};
4752 	down_read(&mm->mmap_sem);
4753 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4754 	up_read(&mm->mmap_sem);
4755 
4756 	precharge = mc.precharge;
4757 	mc.precharge = 0;
4758 
4759 	return precharge;
4760 }
4761 
4762 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4763 {
4764 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4765 
4766 	VM_BUG_ON(mc.moving_task);
4767 	mc.moving_task = current;
4768 	return mem_cgroup_do_precharge(precharge);
4769 }
4770 
4771 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4772 static void __mem_cgroup_clear_mc(void)
4773 {
4774 	struct mem_cgroup *from = mc.from;
4775 	struct mem_cgroup *to = mc.to;
4776 
4777 	/* we must uncharge all the leftover precharges from mc.to */
4778 	if (mc.precharge) {
4779 		cancel_charge(mc.to, mc.precharge);
4780 		mc.precharge = 0;
4781 	}
4782 	/*
4783 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4784 	 * we must uncharge here.
4785 	 */
4786 	if (mc.moved_charge) {
4787 		cancel_charge(mc.from, mc.moved_charge);
4788 		mc.moved_charge = 0;
4789 	}
4790 	/* we must fixup refcnts and charges */
4791 	if (mc.moved_swap) {
4792 		/* uncharge swap account from the old cgroup */
4793 		if (!mem_cgroup_is_root(mc.from))
4794 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4795 
4796 		/*
4797 		 * we charged both to->memory and to->memsw, so we
4798 		 * should uncharge to->memory.
4799 		 */
4800 		if (!mem_cgroup_is_root(mc.to))
4801 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4802 
4803 		css_put_many(&mc.from->css, mc.moved_swap);
4804 
4805 		/* we've already done css_get(mc.to) */
4806 		mc.moved_swap = 0;
4807 	}
4808 	memcg_oom_recover(from);
4809 	memcg_oom_recover(to);
4810 	wake_up_all(&mc.waitq);
4811 }
4812 
4813 static void mem_cgroup_clear_mc(void)
4814 {
4815 	/*
4816 	 * we must clear moving_task before waking up waiters at the end of
4817 	 * task migration.
4818 	 */
4819 	mc.moving_task = NULL;
4820 	__mem_cgroup_clear_mc();
4821 	spin_lock(&mc.lock);
4822 	mc.from = NULL;
4823 	mc.to = NULL;
4824 	spin_unlock(&mc.lock);
4825 }
4826 
4827 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4828 				 struct cgroup_taskset *tset)
4829 {
4830 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4831 	struct mem_cgroup *from;
4832 	struct task_struct *p;
4833 	struct mm_struct *mm;
4834 	unsigned long move_flags;
4835 	int ret = 0;
4836 
4837 	/*
4838 	 * We are now commited to this value whatever it is. Changes in this
4839 	 * tunable will only affect upcoming migrations, not the current one.
4840 	 * So we need to save it, and keep it going.
4841 	 */
4842 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4843 	if (!move_flags)
4844 		return 0;
4845 
4846 	p = cgroup_taskset_first(tset);
4847 	from = mem_cgroup_from_task(p);
4848 
4849 	VM_BUG_ON(from == memcg);
4850 
4851 	mm = get_task_mm(p);
4852 	if (!mm)
4853 		return 0;
4854 	/* We move charges only when we move a owner of the mm */
4855 	if (mm->owner == p) {
4856 		VM_BUG_ON(mc.from);
4857 		VM_BUG_ON(mc.to);
4858 		VM_BUG_ON(mc.precharge);
4859 		VM_BUG_ON(mc.moved_charge);
4860 		VM_BUG_ON(mc.moved_swap);
4861 
4862 		spin_lock(&mc.lock);
4863 		mc.from = from;
4864 		mc.to = memcg;
4865 		mc.flags = move_flags;
4866 		spin_unlock(&mc.lock);
4867 		/* We set mc.moving_task later */
4868 
4869 		ret = mem_cgroup_precharge_mc(mm);
4870 		if (ret)
4871 			mem_cgroup_clear_mc();
4872 	}
4873 	mmput(mm);
4874 	return ret;
4875 }
4876 
4877 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4878 				     struct cgroup_taskset *tset)
4879 {
4880 	if (mc.to)
4881 		mem_cgroup_clear_mc();
4882 }
4883 
4884 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4885 				unsigned long addr, unsigned long end,
4886 				struct mm_walk *walk)
4887 {
4888 	int ret = 0;
4889 	struct vm_area_struct *vma = walk->vma;
4890 	pte_t *pte;
4891 	spinlock_t *ptl;
4892 	enum mc_target_type target_type;
4893 	union mc_target target;
4894 	struct page *page;
4895 
4896 	/*
4897 	 * We don't take compound_lock() here but no race with splitting thp
4898 	 * happens because:
4899 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4900 	 *    under splitting, which means there's no concurrent thp split,
4901 	 *  - if another thread runs into split_huge_page() just after we
4902 	 *    entered this if-block, the thread must wait for page table lock
4903 	 *    to be unlocked in __split_huge_page_splitting(), where the main
4904 	 *    part of thp split is not executed yet.
4905 	 */
4906 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4907 		if (mc.precharge < HPAGE_PMD_NR) {
4908 			spin_unlock(ptl);
4909 			return 0;
4910 		}
4911 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4912 		if (target_type == MC_TARGET_PAGE) {
4913 			page = target.page;
4914 			if (!isolate_lru_page(page)) {
4915 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4916 							     mc.from, mc.to)) {
4917 					mc.precharge -= HPAGE_PMD_NR;
4918 					mc.moved_charge += HPAGE_PMD_NR;
4919 				}
4920 				putback_lru_page(page);
4921 			}
4922 			put_page(page);
4923 		}
4924 		spin_unlock(ptl);
4925 		return 0;
4926 	}
4927 
4928 	if (pmd_trans_unstable(pmd))
4929 		return 0;
4930 retry:
4931 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4932 	for (; addr != end; addr += PAGE_SIZE) {
4933 		pte_t ptent = *(pte++);
4934 		swp_entry_t ent;
4935 
4936 		if (!mc.precharge)
4937 			break;
4938 
4939 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4940 		case MC_TARGET_PAGE:
4941 			page = target.page;
4942 			if (isolate_lru_page(page))
4943 				goto put;
4944 			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4945 				mc.precharge--;
4946 				/* we uncharge from mc.from later. */
4947 				mc.moved_charge++;
4948 			}
4949 			putback_lru_page(page);
4950 put:			/* get_mctgt_type() gets the page */
4951 			put_page(page);
4952 			break;
4953 		case MC_TARGET_SWAP:
4954 			ent = target.ent;
4955 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4956 				mc.precharge--;
4957 				/* we fixup refcnts and charges later. */
4958 				mc.moved_swap++;
4959 			}
4960 			break;
4961 		default:
4962 			break;
4963 		}
4964 	}
4965 	pte_unmap_unlock(pte - 1, ptl);
4966 	cond_resched();
4967 
4968 	if (addr != end) {
4969 		/*
4970 		 * We have consumed all precharges we got in can_attach().
4971 		 * We try charge one by one, but don't do any additional
4972 		 * charges to mc.to if we have failed in charge once in attach()
4973 		 * phase.
4974 		 */
4975 		ret = mem_cgroup_do_precharge(1);
4976 		if (!ret)
4977 			goto retry;
4978 	}
4979 
4980 	return ret;
4981 }
4982 
4983 static void mem_cgroup_move_charge(struct mm_struct *mm)
4984 {
4985 	struct mm_walk mem_cgroup_move_charge_walk = {
4986 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4987 		.mm = mm,
4988 	};
4989 
4990 	lru_add_drain_all();
4991 	/*
4992 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4993 	 * move_lock while we're moving its pages to another memcg.
4994 	 * Then wait for already started RCU-only updates to finish.
4995 	 */
4996 	atomic_inc(&mc.from->moving_account);
4997 	synchronize_rcu();
4998 retry:
4999 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5000 		/*
5001 		 * Someone who are holding the mmap_sem might be waiting in
5002 		 * waitq. So we cancel all extra charges, wake up all waiters,
5003 		 * and retry. Because we cancel precharges, we might not be able
5004 		 * to move enough charges, but moving charge is a best-effort
5005 		 * feature anyway, so it wouldn't be a big problem.
5006 		 */
5007 		__mem_cgroup_clear_mc();
5008 		cond_resched();
5009 		goto retry;
5010 	}
5011 	/*
5012 	 * When we have consumed all precharges and failed in doing
5013 	 * additional charge, the page walk just aborts.
5014 	 */
5015 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5016 	up_read(&mm->mmap_sem);
5017 	atomic_dec(&mc.from->moving_account);
5018 }
5019 
5020 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5021 				 struct cgroup_taskset *tset)
5022 {
5023 	struct task_struct *p = cgroup_taskset_first(tset);
5024 	struct mm_struct *mm = get_task_mm(p);
5025 
5026 	if (mm) {
5027 		if (mc.to)
5028 			mem_cgroup_move_charge(mm);
5029 		mmput(mm);
5030 	}
5031 	if (mc.to)
5032 		mem_cgroup_clear_mc();
5033 }
5034 #else	/* !CONFIG_MMU */
5035 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5036 				 struct cgroup_taskset *tset)
5037 {
5038 	return 0;
5039 }
5040 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5041 				     struct cgroup_taskset *tset)
5042 {
5043 }
5044 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5045 				 struct cgroup_taskset *tset)
5046 {
5047 }
5048 #endif
5049 
5050 /*
5051  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5052  * to verify whether we're attached to the default hierarchy on each mount
5053  * attempt.
5054  */
5055 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5056 {
5057 	/*
5058 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5059 	 * guarantees that @root doesn't have any children, so turning it
5060 	 * on for the root memcg is enough.
5061 	 */
5062 	if (cgroup_on_dfl(root_css->cgroup))
5063 		root_mem_cgroup->use_hierarchy = true;
5064 	else
5065 		root_mem_cgroup->use_hierarchy = false;
5066 }
5067 
5068 static u64 memory_current_read(struct cgroup_subsys_state *css,
5069 			       struct cftype *cft)
5070 {
5071 	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5072 }
5073 
5074 static int memory_low_show(struct seq_file *m, void *v)
5075 {
5076 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5077 	unsigned long low = READ_ONCE(memcg->low);
5078 
5079 	if (low == PAGE_COUNTER_MAX)
5080 		seq_puts(m, "max\n");
5081 	else
5082 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5083 
5084 	return 0;
5085 }
5086 
5087 static ssize_t memory_low_write(struct kernfs_open_file *of,
5088 				char *buf, size_t nbytes, loff_t off)
5089 {
5090 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5091 	unsigned long low;
5092 	int err;
5093 
5094 	buf = strstrip(buf);
5095 	err = page_counter_memparse(buf, "max", &low);
5096 	if (err)
5097 		return err;
5098 
5099 	memcg->low = low;
5100 
5101 	return nbytes;
5102 }
5103 
5104 static int memory_high_show(struct seq_file *m, void *v)
5105 {
5106 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5107 	unsigned long high = READ_ONCE(memcg->high);
5108 
5109 	if (high == PAGE_COUNTER_MAX)
5110 		seq_puts(m, "max\n");
5111 	else
5112 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5113 
5114 	return 0;
5115 }
5116 
5117 static ssize_t memory_high_write(struct kernfs_open_file *of,
5118 				 char *buf, size_t nbytes, loff_t off)
5119 {
5120 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5121 	unsigned long high;
5122 	int err;
5123 
5124 	buf = strstrip(buf);
5125 	err = page_counter_memparse(buf, "max", &high);
5126 	if (err)
5127 		return err;
5128 
5129 	memcg->high = high;
5130 
5131 	memcg_wb_domain_size_changed(memcg);
5132 	return nbytes;
5133 }
5134 
5135 static int memory_max_show(struct seq_file *m, void *v)
5136 {
5137 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5138 	unsigned long max = READ_ONCE(memcg->memory.limit);
5139 
5140 	if (max == PAGE_COUNTER_MAX)
5141 		seq_puts(m, "max\n");
5142 	else
5143 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5144 
5145 	return 0;
5146 }
5147 
5148 static ssize_t memory_max_write(struct kernfs_open_file *of,
5149 				char *buf, size_t nbytes, loff_t off)
5150 {
5151 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5152 	unsigned long max;
5153 	int err;
5154 
5155 	buf = strstrip(buf);
5156 	err = page_counter_memparse(buf, "max", &max);
5157 	if (err)
5158 		return err;
5159 
5160 	err = mem_cgroup_resize_limit(memcg, max);
5161 	if (err)
5162 		return err;
5163 
5164 	memcg_wb_domain_size_changed(memcg);
5165 	return nbytes;
5166 }
5167 
5168 static int memory_events_show(struct seq_file *m, void *v)
5169 {
5170 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5171 
5172 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5173 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5174 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5175 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5176 
5177 	return 0;
5178 }
5179 
5180 static struct cftype memory_files[] = {
5181 	{
5182 		.name = "current",
5183 		.read_u64 = memory_current_read,
5184 	},
5185 	{
5186 		.name = "low",
5187 		.flags = CFTYPE_NOT_ON_ROOT,
5188 		.seq_show = memory_low_show,
5189 		.write = memory_low_write,
5190 	},
5191 	{
5192 		.name = "high",
5193 		.flags = CFTYPE_NOT_ON_ROOT,
5194 		.seq_show = memory_high_show,
5195 		.write = memory_high_write,
5196 	},
5197 	{
5198 		.name = "max",
5199 		.flags = CFTYPE_NOT_ON_ROOT,
5200 		.seq_show = memory_max_show,
5201 		.write = memory_max_write,
5202 	},
5203 	{
5204 		.name = "events",
5205 		.flags = CFTYPE_NOT_ON_ROOT,
5206 		.seq_show = memory_events_show,
5207 	},
5208 	{ }	/* terminate */
5209 };
5210 
5211 struct cgroup_subsys memory_cgrp_subsys = {
5212 	.css_alloc = mem_cgroup_css_alloc,
5213 	.css_online = mem_cgroup_css_online,
5214 	.css_offline = mem_cgroup_css_offline,
5215 	.css_free = mem_cgroup_css_free,
5216 	.css_reset = mem_cgroup_css_reset,
5217 	.can_attach = mem_cgroup_can_attach,
5218 	.cancel_attach = mem_cgroup_cancel_attach,
5219 	.attach = mem_cgroup_move_task,
5220 	.bind = mem_cgroup_bind,
5221 	.dfl_cftypes = memory_files,
5222 	.legacy_cftypes = mem_cgroup_legacy_files,
5223 	.early_init = 0,
5224 };
5225 
5226 /**
5227  * mem_cgroup_low - check if memory consumption is below the normal range
5228  * @root: the highest ancestor to consider
5229  * @memcg: the memory cgroup to check
5230  *
5231  * Returns %true if memory consumption of @memcg, and that of all
5232  * configurable ancestors up to @root, is below the normal range.
5233  */
5234 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5235 {
5236 	if (mem_cgroup_disabled())
5237 		return false;
5238 
5239 	/*
5240 	 * The toplevel group doesn't have a configurable range, so
5241 	 * it's never low when looked at directly, and it is not
5242 	 * considered an ancestor when assessing the hierarchy.
5243 	 */
5244 
5245 	if (memcg == root_mem_cgroup)
5246 		return false;
5247 
5248 	if (page_counter_read(&memcg->memory) >= memcg->low)
5249 		return false;
5250 
5251 	while (memcg != root) {
5252 		memcg = parent_mem_cgroup(memcg);
5253 
5254 		if (memcg == root_mem_cgroup)
5255 			break;
5256 
5257 		if (page_counter_read(&memcg->memory) >= memcg->low)
5258 			return false;
5259 	}
5260 	return true;
5261 }
5262 
5263 /**
5264  * mem_cgroup_try_charge - try charging a page
5265  * @page: page to charge
5266  * @mm: mm context of the victim
5267  * @gfp_mask: reclaim mode
5268  * @memcgp: charged memcg return
5269  *
5270  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5271  * pages according to @gfp_mask if necessary.
5272  *
5273  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5274  * Otherwise, an error code is returned.
5275  *
5276  * After page->mapping has been set up, the caller must finalize the
5277  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5278  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5279  */
5280 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5281 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5282 {
5283 	struct mem_cgroup *memcg = NULL;
5284 	unsigned int nr_pages = 1;
5285 	int ret = 0;
5286 
5287 	if (mem_cgroup_disabled())
5288 		goto out;
5289 
5290 	if (PageSwapCache(page)) {
5291 		/*
5292 		 * Every swap fault against a single page tries to charge the
5293 		 * page, bail as early as possible.  shmem_unuse() encounters
5294 		 * already charged pages, too.  The USED bit is protected by
5295 		 * the page lock, which serializes swap cache removal, which
5296 		 * in turn serializes uncharging.
5297 		 */
5298 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5299 		if (page->mem_cgroup)
5300 			goto out;
5301 
5302 		if (do_swap_account) {
5303 			swp_entry_t ent = { .val = page_private(page), };
5304 			unsigned short id = lookup_swap_cgroup_id(ent);
5305 
5306 			rcu_read_lock();
5307 			memcg = mem_cgroup_from_id(id);
5308 			if (memcg && !css_tryget_online(&memcg->css))
5309 				memcg = NULL;
5310 			rcu_read_unlock();
5311 		}
5312 	}
5313 
5314 	if (PageTransHuge(page)) {
5315 		nr_pages <<= compound_order(page);
5316 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5317 	}
5318 
5319 	if (!memcg)
5320 		memcg = get_mem_cgroup_from_mm(mm);
5321 
5322 	ret = try_charge(memcg, gfp_mask, nr_pages);
5323 
5324 	css_put(&memcg->css);
5325 
5326 	if (ret == -EINTR) {
5327 		memcg = root_mem_cgroup;
5328 		ret = 0;
5329 	}
5330 out:
5331 	*memcgp = memcg;
5332 	return ret;
5333 }
5334 
5335 /**
5336  * mem_cgroup_commit_charge - commit a page charge
5337  * @page: page to charge
5338  * @memcg: memcg to charge the page to
5339  * @lrucare: page might be on LRU already
5340  *
5341  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5342  * after page->mapping has been set up.  This must happen atomically
5343  * as part of the page instantiation, i.e. under the page table lock
5344  * for anonymous pages, under the page lock for page and swap cache.
5345  *
5346  * In addition, the page must not be on the LRU during the commit, to
5347  * prevent racing with task migration.  If it might be, use @lrucare.
5348  *
5349  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5350  */
5351 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5352 			      bool lrucare)
5353 {
5354 	unsigned int nr_pages = 1;
5355 
5356 	VM_BUG_ON_PAGE(!page->mapping, page);
5357 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5358 
5359 	if (mem_cgroup_disabled())
5360 		return;
5361 	/*
5362 	 * Swap faults will attempt to charge the same page multiple
5363 	 * times.  But reuse_swap_page() might have removed the page
5364 	 * from swapcache already, so we can't check PageSwapCache().
5365 	 */
5366 	if (!memcg)
5367 		return;
5368 
5369 	commit_charge(page, memcg, lrucare);
5370 
5371 	if (PageTransHuge(page)) {
5372 		nr_pages <<= compound_order(page);
5373 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5374 	}
5375 
5376 	local_irq_disable();
5377 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5378 	memcg_check_events(memcg, page);
5379 	local_irq_enable();
5380 
5381 	if (do_swap_account && PageSwapCache(page)) {
5382 		swp_entry_t entry = { .val = page_private(page) };
5383 		/*
5384 		 * The swap entry might not get freed for a long time,
5385 		 * let's not wait for it.  The page already received a
5386 		 * memory+swap charge, drop the swap entry duplicate.
5387 		 */
5388 		mem_cgroup_uncharge_swap(entry);
5389 	}
5390 }
5391 
5392 /**
5393  * mem_cgroup_cancel_charge - cancel a page charge
5394  * @page: page to charge
5395  * @memcg: memcg to charge the page to
5396  *
5397  * Cancel a charge transaction started by mem_cgroup_try_charge().
5398  */
5399 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5400 {
5401 	unsigned int nr_pages = 1;
5402 
5403 	if (mem_cgroup_disabled())
5404 		return;
5405 	/*
5406 	 * Swap faults will attempt to charge the same page multiple
5407 	 * times.  But reuse_swap_page() might have removed the page
5408 	 * from swapcache already, so we can't check PageSwapCache().
5409 	 */
5410 	if (!memcg)
5411 		return;
5412 
5413 	if (PageTransHuge(page)) {
5414 		nr_pages <<= compound_order(page);
5415 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5416 	}
5417 
5418 	cancel_charge(memcg, nr_pages);
5419 }
5420 
5421 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5422 			   unsigned long nr_anon, unsigned long nr_file,
5423 			   unsigned long nr_huge, struct page *dummy_page)
5424 {
5425 	unsigned long nr_pages = nr_anon + nr_file;
5426 	unsigned long flags;
5427 
5428 	if (!mem_cgroup_is_root(memcg)) {
5429 		page_counter_uncharge(&memcg->memory, nr_pages);
5430 		if (do_swap_account)
5431 			page_counter_uncharge(&memcg->memsw, nr_pages);
5432 		memcg_oom_recover(memcg);
5433 	}
5434 
5435 	local_irq_save(flags);
5436 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5437 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5438 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5439 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5440 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5441 	memcg_check_events(memcg, dummy_page);
5442 	local_irq_restore(flags);
5443 
5444 	if (!mem_cgroup_is_root(memcg))
5445 		css_put_many(&memcg->css, nr_pages);
5446 }
5447 
5448 static void uncharge_list(struct list_head *page_list)
5449 {
5450 	struct mem_cgroup *memcg = NULL;
5451 	unsigned long nr_anon = 0;
5452 	unsigned long nr_file = 0;
5453 	unsigned long nr_huge = 0;
5454 	unsigned long pgpgout = 0;
5455 	struct list_head *next;
5456 	struct page *page;
5457 
5458 	next = page_list->next;
5459 	do {
5460 		unsigned int nr_pages = 1;
5461 
5462 		page = list_entry(next, struct page, lru);
5463 		next = page->lru.next;
5464 
5465 		VM_BUG_ON_PAGE(PageLRU(page), page);
5466 		VM_BUG_ON_PAGE(page_count(page), page);
5467 
5468 		if (!page->mem_cgroup)
5469 			continue;
5470 
5471 		/*
5472 		 * Nobody should be changing or seriously looking at
5473 		 * page->mem_cgroup at this point, we have fully
5474 		 * exclusive access to the page.
5475 		 */
5476 
5477 		if (memcg != page->mem_cgroup) {
5478 			if (memcg) {
5479 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5480 					       nr_huge, page);
5481 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5482 			}
5483 			memcg = page->mem_cgroup;
5484 		}
5485 
5486 		if (PageTransHuge(page)) {
5487 			nr_pages <<= compound_order(page);
5488 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5489 			nr_huge += nr_pages;
5490 		}
5491 
5492 		if (PageAnon(page))
5493 			nr_anon += nr_pages;
5494 		else
5495 			nr_file += nr_pages;
5496 
5497 		page->mem_cgroup = NULL;
5498 
5499 		pgpgout++;
5500 	} while (next != page_list);
5501 
5502 	if (memcg)
5503 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5504 			       nr_huge, page);
5505 }
5506 
5507 /**
5508  * mem_cgroup_uncharge - uncharge a page
5509  * @page: page to uncharge
5510  *
5511  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5512  * mem_cgroup_commit_charge().
5513  */
5514 void mem_cgroup_uncharge(struct page *page)
5515 {
5516 	if (mem_cgroup_disabled())
5517 		return;
5518 
5519 	/* Don't touch page->lru of any random page, pre-check: */
5520 	if (!page->mem_cgroup)
5521 		return;
5522 
5523 	INIT_LIST_HEAD(&page->lru);
5524 	uncharge_list(&page->lru);
5525 }
5526 
5527 /**
5528  * mem_cgroup_uncharge_list - uncharge a list of page
5529  * @page_list: list of pages to uncharge
5530  *
5531  * Uncharge a list of pages previously charged with
5532  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5533  */
5534 void mem_cgroup_uncharge_list(struct list_head *page_list)
5535 {
5536 	if (mem_cgroup_disabled())
5537 		return;
5538 
5539 	if (!list_empty(page_list))
5540 		uncharge_list(page_list);
5541 }
5542 
5543 /**
5544  * mem_cgroup_migrate - migrate a charge to another page
5545  * @oldpage: currently charged page
5546  * @newpage: page to transfer the charge to
5547  * @lrucare: either or both pages might be on the LRU already
5548  *
5549  * Migrate the charge from @oldpage to @newpage.
5550  *
5551  * Both pages must be locked, @newpage->mapping must be set up.
5552  */
5553 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5554 			bool lrucare)
5555 {
5556 	struct mem_cgroup *memcg;
5557 	int isolated;
5558 
5559 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5560 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5561 	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5562 	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5563 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5564 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5565 		       newpage);
5566 
5567 	if (mem_cgroup_disabled())
5568 		return;
5569 
5570 	/* Page cache replacement: new page already charged? */
5571 	if (newpage->mem_cgroup)
5572 		return;
5573 
5574 	/*
5575 	 * Swapcache readahead pages can get migrated before being
5576 	 * charged, and migration from compaction can happen to an
5577 	 * uncharged page when the PFN walker finds a page that
5578 	 * reclaim just put back on the LRU but has not released yet.
5579 	 */
5580 	memcg = oldpage->mem_cgroup;
5581 	if (!memcg)
5582 		return;
5583 
5584 	if (lrucare)
5585 		lock_page_lru(oldpage, &isolated);
5586 
5587 	oldpage->mem_cgroup = NULL;
5588 
5589 	if (lrucare)
5590 		unlock_page_lru(oldpage, isolated);
5591 
5592 	commit_charge(newpage, memcg, lrucare);
5593 }
5594 
5595 /*
5596  * subsys_initcall() for memory controller.
5597  *
5598  * Some parts like hotcpu_notifier() have to be initialized from this context
5599  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5600  * everything that doesn't depend on a specific mem_cgroup structure should
5601  * be initialized from here.
5602  */
5603 static int __init mem_cgroup_init(void)
5604 {
5605 	int cpu, node;
5606 
5607 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5608 
5609 	for_each_possible_cpu(cpu)
5610 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5611 			  drain_local_stock);
5612 
5613 	for_each_node(node) {
5614 		struct mem_cgroup_tree_per_node *rtpn;
5615 		int zone;
5616 
5617 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5618 				    node_online(node) ? node : NUMA_NO_NODE);
5619 
5620 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5621 			struct mem_cgroup_tree_per_zone *rtpz;
5622 
5623 			rtpz = &rtpn->rb_tree_per_zone[zone];
5624 			rtpz->rb_root = RB_ROOT;
5625 			spin_lock_init(&rtpz->lock);
5626 		}
5627 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5628 	}
5629 
5630 	return 0;
5631 }
5632 subsys_initcall(mem_cgroup_init);
5633 
5634 #ifdef CONFIG_MEMCG_SWAP
5635 /**
5636  * mem_cgroup_swapout - transfer a memsw charge to swap
5637  * @page: page whose memsw charge to transfer
5638  * @entry: swap entry to move the charge to
5639  *
5640  * Transfer the memsw charge of @page to @entry.
5641  */
5642 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5643 {
5644 	struct mem_cgroup *memcg;
5645 	unsigned short oldid;
5646 
5647 	VM_BUG_ON_PAGE(PageLRU(page), page);
5648 	VM_BUG_ON_PAGE(page_count(page), page);
5649 
5650 	if (!do_swap_account)
5651 		return;
5652 
5653 	memcg = page->mem_cgroup;
5654 
5655 	/* Readahead page, never charged */
5656 	if (!memcg)
5657 		return;
5658 
5659 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5660 	VM_BUG_ON_PAGE(oldid, page);
5661 	mem_cgroup_swap_statistics(memcg, true);
5662 
5663 	page->mem_cgroup = NULL;
5664 
5665 	if (!mem_cgroup_is_root(memcg))
5666 		page_counter_uncharge(&memcg->memory, 1);
5667 
5668 	/*
5669 	 * Interrupts should be disabled here because the caller holds the
5670 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5671 	 * important here to have the interrupts disabled because it is the
5672 	 * only synchronisation we have for udpating the per-CPU variables.
5673 	 */
5674 	VM_BUG_ON(!irqs_disabled());
5675 	mem_cgroup_charge_statistics(memcg, page, -1);
5676 	memcg_check_events(memcg, page);
5677 }
5678 
5679 /**
5680  * mem_cgroup_uncharge_swap - uncharge a swap entry
5681  * @entry: swap entry to uncharge
5682  *
5683  * Drop the memsw charge associated with @entry.
5684  */
5685 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5686 {
5687 	struct mem_cgroup *memcg;
5688 	unsigned short id;
5689 
5690 	if (!do_swap_account)
5691 		return;
5692 
5693 	id = swap_cgroup_record(entry, 0);
5694 	rcu_read_lock();
5695 	memcg = mem_cgroup_from_id(id);
5696 	if (memcg) {
5697 		if (!mem_cgroup_is_root(memcg))
5698 			page_counter_uncharge(&memcg->memsw, 1);
5699 		mem_cgroup_swap_statistics(memcg, false);
5700 		css_put(&memcg->css);
5701 	}
5702 	rcu_read_unlock();
5703 }
5704 
5705 /* for remember boot option*/
5706 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5707 static int really_do_swap_account __initdata = 1;
5708 #else
5709 static int really_do_swap_account __initdata;
5710 #endif
5711 
5712 static int __init enable_swap_account(char *s)
5713 {
5714 	if (!strcmp(s, "1"))
5715 		really_do_swap_account = 1;
5716 	else if (!strcmp(s, "0"))
5717 		really_do_swap_account = 0;
5718 	return 1;
5719 }
5720 __setup("swapaccount=", enable_swap_account);
5721 
5722 static struct cftype memsw_cgroup_files[] = {
5723 	{
5724 		.name = "memsw.usage_in_bytes",
5725 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5726 		.read_u64 = mem_cgroup_read_u64,
5727 	},
5728 	{
5729 		.name = "memsw.max_usage_in_bytes",
5730 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5731 		.write = mem_cgroup_reset,
5732 		.read_u64 = mem_cgroup_read_u64,
5733 	},
5734 	{
5735 		.name = "memsw.limit_in_bytes",
5736 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5737 		.write = mem_cgroup_write,
5738 		.read_u64 = mem_cgroup_read_u64,
5739 	},
5740 	{
5741 		.name = "memsw.failcnt",
5742 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5743 		.write = mem_cgroup_reset,
5744 		.read_u64 = mem_cgroup_read_u64,
5745 	},
5746 	{ },	/* terminate */
5747 };
5748 
5749 static int __init mem_cgroup_swap_init(void)
5750 {
5751 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5752 		do_swap_account = 1;
5753 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5754 						  memsw_cgroup_files));
5755 	}
5756 	return 0;
5757 }
5758 subsys_initcall(mem_cgroup_swap_init);
5759 
5760 #endif /* CONFIG_MEMCG_SWAP */
5761