1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include <linux/parser.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "swap.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 /* Active memory cgroup to use from an interrupt context */ 83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 85 86 /* Socket memory accounting disabled? */ 87 static bool cgroup_memory_nosocket __ro_after_init; 88 89 /* Kernel memory accounting disabled? */ 90 static bool cgroup_memory_nokmem __ro_after_init; 91 92 #ifdef CONFIG_CGROUP_WRITEBACK 93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 94 #endif 95 96 /* Whether legacy memory+swap accounting is active */ 97 static bool do_memsw_account(void) 98 { 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 100 } 101 102 #define THRESHOLDS_EVENTS_TARGET 128 103 #define SOFTLIMIT_EVENTS_TARGET 1024 104 105 /* 106 * Cgroups above their limits are maintained in a RB-Tree, independent of 107 * their hierarchy representation 108 */ 109 110 struct mem_cgroup_tree_per_node { 111 struct rb_root rb_root; 112 struct rb_node *rb_rightmost; 113 spinlock_t lock; 114 }; 115 116 struct mem_cgroup_tree { 117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 118 }; 119 120 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 121 122 /* for OOM */ 123 struct mem_cgroup_eventfd_list { 124 struct list_head list; 125 struct eventfd_ctx *eventfd; 126 }; 127 128 /* 129 * cgroup_event represents events which userspace want to receive. 130 */ 131 struct mem_cgroup_event { 132 /* 133 * memcg which the event belongs to. 134 */ 135 struct mem_cgroup *memcg; 136 /* 137 * eventfd to signal userspace about the event. 138 */ 139 struct eventfd_ctx *eventfd; 140 /* 141 * Each of these stored in a list by the cgroup. 142 */ 143 struct list_head list; 144 /* 145 * register_event() callback will be used to add new userspace 146 * waiter for changes related to this event. Use eventfd_signal() 147 * on eventfd to send notification to userspace. 148 */ 149 int (*register_event)(struct mem_cgroup *memcg, 150 struct eventfd_ctx *eventfd, const char *args); 151 /* 152 * unregister_event() callback will be called when userspace closes 153 * the eventfd or on cgroup removing. This callback must be set, 154 * if you want provide notification functionality. 155 */ 156 void (*unregister_event)(struct mem_cgroup *memcg, 157 struct eventfd_ctx *eventfd); 158 /* 159 * All fields below needed to unregister event when 160 * userspace closes eventfd. 161 */ 162 poll_table pt; 163 wait_queue_head_t *wqh; 164 wait_queue_entry_t wait; 165 struct work_struct remove; 166 }; 167 168 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 170 171 /* Stuffs for move charges at task migration. */ 172 /* 173 * Types of charges to be moved. 174 */ 175 #define MOVE_ANON 0x1U 176 #define MOVE_FILE 0x2U 177 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 178 179 /* "mc" and its members are protected by cgroup_mutex */ 180 static struct move_charge_struct { 181 spinlock_t lock; /* for from, to */ 182 struct mm_struct *mm; 183 struct mem_cgroup *from; 184 struct mem_cgroup *to; 185 unsigned long flags; 186 unsigned long precharge; 187 unsigned long moved_charge; 188 unsigned long moved_swap; 189 struct task_struct *moving_task; /* a task moving charges */ 190 wait_queue_head_t waitq; /* a waitq for other context */ 191 } mc = { 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 194 }; 195 196 /* 197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 198 * limit reclaim to prevent infinite loops, if they ever occur. 199 */ 200 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 201 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 202 203 /* for encoding cft->private value on file */ 204 enum res_type { 205 _MEM, 206 _MEMSWAP, 207 _KMEM, 208 _TCP, 209 }; 210 211 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 212 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 213 #define MEMFILE_ATTR(val) ((val) & 0xffff) 214 215 /* 216 * Iteration constructs for visiting all cgroups (under a tree). If 217 * loops are exited prematurely (break), mem_cgroup_iter_break() must 218 * be used for reference counting. 219 */ 220 #define for_each_mem_cgroup_tree(iter, root) \ 221 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 222 iter != NULL; \ 223 iter = mem_cgroup_iter(root, iter, NULL)) 224 225 #define for_each_mem_cgroup(iter) \ 226 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 227 iter != NULL; \ 228 iter = mem_cgroup_iter(NULL, iter, NULL)) 229 230 static inline bool task_is_dying(void) 231 { 232 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 233 (current->flags & PF_EXITING); 234 } 235 236 /* Some nice accessors for the vmpressure. */ 237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 238 { 239 if (!memcg) 240 memcg = root_mem_cgroup; 241 return &memcg->vmpressure; 242 } 243 244 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 245 { 246 return container_of(vmpr, struct mem_cgroup, vmpressure); 247 } 248 249 #ifdef CONFIG_MEMCG_KMEM 250 static DEFINE_SPINLOCK(objcg_lock); 251 252 bool mem_cgroup_kmem_disabled(void) 253 { 254 return cgroup_memory_nokmem; 255 } 256 257 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 258 unsigned int nr_pages); 259 260 static void obj_cgroup_release(struct percpu_ref *ref) 261 { 262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 263 unsigned int nr_bytes; 264 unsigned int nr_pages; 265 unsigned long flags; 266 267 /* 268 * At this point all allocated objects are freed, and 269 * objcg->nr_charged_bytes can't have an arbitrary byte value. 270 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 271 * 272 * The following sequence can lead to it: 273 * 1) CPU0: objcg == stock->cached_objcg 274 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 275 * PAGE_SIZE bytes are charged 276 * 3) CPU1: a process from another memcg is allocating something, 277 * the stock if flushed, 278 * objcg->nr_charged_bytes = PAGE_SIZE - 92 279 * 5) CPU0: we do release this object, 280 * 92 bytes are added to stock->nr_bytes 281 * 6) CPU0: stock is flushed, 282 * 92 bytes are added to objcg->nr_charged_bytes 283 * 284 * In the result, nr_charged_bytes == PAGE_SIZE. 285 * This page will be uncharged in obj_cgroup_release(). 286 */ 287 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 288 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 289 nr_pages = nr_bytes >> PAGE_SHIFT; 290 291 if (nr_pages) 292 obj_cgroup_uncharge_pages(objcg, nr_pages); 293 294 spin_lock_irqsave(&objcg_lock, flags); 295 list_del(&objcg->list); 296 spin_unlock_irqrestore(&objcg_lock, flags); 297 298 percpu_ref_exit(ref); 299 kfree_rcu(objcg, rcu); 300 } 301 302 static struct obj_cgroup *obj_cgroup_alloc(void) 303 { 304 struct obj_cgroup *objcg; 305 int ret; 306 307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 308 if (!objcg) 309 return NULL; 310 311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 312 GFP_KERNEL); 313 if (ret) { 314 kfree(objcg); 315 return NULL; 316 } 317 INIT_LIST_HEAD(&objcg->list); 318 return objcg; 319 } 320 321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 322 struct mem_cgroup *parent) 323 { 324 struct obj_cgroup *objcg, *iter; 325 326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 327 328 spin_lock_irq(&objcg_lock); 329 330 /* 1) Ready to reparent active objcg. */ 331 list_add(&objcg->list, &memcg->objcg_list); 332 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 333 list_for_each_entry(iter, &memcg->objcg_list, list) 334 WRITE_ONCE(iter->memcg, parent); 335 /* 3) Move already reparented objcgs to the parent's list */ 336 list_splice(&memcg->objcg_list, &parent->objcg_list); 337 338 spin_unlock_irq(&objcg_lock); 339 340 percpu_ref_kill(&objcg->refcnt); 341 } 342 343 /* 344 * A lot of the calls to the cache allocation functions are expected to be 345 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 346 * conditional to this static branch, we'll have to allow modules that does 347 * kmem_cache_alloc and the such to see this symbol as well 348 */ 349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 350 EXPORT_SYMBOL(memcg_kmem_enabled_key); 351 #endif 352 353 /** 354 * mem_cgroup_css_from_page - css of the memcg associated with a page 355 * @page: page of interest 356 * 357 * If memcg is bound to the default hierarchy, css of the memcg associated 358 * with @page is returned. The returned css remains associated with @page 359 * until it is released. 360 * 361 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 362 * is returned. 363 */ 364 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 365 { 366 struct mem_cgroup *memcg; 367 368 memcg = page_memcg(page); 369 370 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 371 memcg = root_mem_cgroup; 372 373 return &memcg->css; 374 } 375 376 /** 377 * page_cgroup_ino - return inode number of the memcg a page is charged to 378 * @page: the page 379 * 380 * Look up the closest online ancestor of the memory cgroup @page is charged to 381 * and return its inode number or 0 if @page is not charged to any cgroup. It 382 * is safe to call this function without holding a reference to @page. 383 * 384 * Note, this function is inherently racy, because there is nothing to prevent 385 * the cgroup inode from getting torn down and potentially reallocated a moment 386 * after page_cgroup_ino() returns, so it only should be used by callers that 387 * do not care (such as procfs interfaces). 388 */ 389 ino_t page_cgroup_ino(struct page *page) 390 { 391 struct mem_cgroup *memcg; 392 unsigned long ino = 0; 393 394 rcu_read_lock(); 395 memcg = page_memcg_check(page); 396 397 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 398 memcg = parent_mem_cgroup(memcg); 399 if (memcg) 400 ino = cgroup_ino(memcg->css.cgroup); 401 rcu_read_unlock(); 402 return ino; 403 } 404 405 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 406 struct mem_cgroup_tree_per_node *mctz, 407 unsigned long new_usage_in_excess) 408 { 409 struct rb_node **p = &mctz->rb_root.rb_node; 410 struct rb_node *parent = NULL; 411 struct mem_cgroup_per_node *mz_node; 412 bool rightmost = true; 413 414 if (mz->on_tree) 415 return; 416 417 mz->usage_in_excess = new_usage_in_excess; 418 if (!mz->usage_in_excess) 419 return; 420 while (*p) { 421 parent = *p; 422 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 423 tree_node); 424 if (mz->usage_in_excess < mz_node->usage_in_excess) { 425 p = &(*p)->rb_left; 426 rightmost = false; 427 } else { 428 p = &(*p)->rb_right; 429 } 430 } 431 432 if (rightmost) 433 mctz->rb_rightmost = &mz->tree_node; 434 435 rb_link_node(&mz->tree_node, parent, p); 436 rb_insert_color(&mz->tree_node, &mctz->rb_root); 437 mz->on_tree = true; 438 } 439 440 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 441 struct mem_cgroup_tree_per_node *mctz) 442 { 443 if (!mz->on_tree) 444 return; 445 446 if (&mz->tree_node == mctz->rb_rightmost) 447 mctz->rb_rightmost = rb_prev(&mz->tree_node); 448 449 rb_erase(&mz->tree_node, &mctz->rb_root); 450 mz->on_tree = false; 451 } 452 453 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 454 struct mem_cgroup_tree_per_node *mctz) 455 { 456 unsigned long flags; 457 458 spin_lock_irqsave(&mctz->lock, flags); 459 __mem_cgroup_remove_exceeded(mz, mctz); 460 spin_unlock_irqrestore(&mctz->lock, flags); 461 } 462 463 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 464 { 465 unsigned long nr_pages = page_counter_read(&memcg->memory); 466 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 467 unsigned long excess = 0; 468 469 if (nr_pages > soft_limit) 470 excess = nr_pages - soft_limit; 471 472 return excess; 473 } 474 475 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 476 { 477 unsigned long excess; 478 struct mem_cgroup_per_node *mz; 479 struct mem_cgroup_tree_per_node *mctz; 480 481 if (lru_gen_enabled()) { 482 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 483 484 /* see the comment on MEMCG_NR_GENS */ 485 if (soft_limit_excess(memcg) && lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 486 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 487 488 return; 489 } 490 491 mctz = soft_limit_tree.rb_tree_per_node[nid]; 492 if (!mctz) 493 return; 494 /* 495 * Necessary to update all ancestors when hierarchy is used. 496 * because their event counter is not touched. 497 */ 498 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 499 mz = memcg->nodeinfo[nid]; 500 excess = soft_limit_excess(memcg); 501 /* 502 * We have to update the tree if mz is on RB-tree or 503 * mem is over its softlimit. 504 */ 505 if (excess || mz->on_tree) { 506 unsigned long flags; 507 508 spin_lock_irqsave(&mctz->lock, flags); 509 /* if on-tree, remove it */ 510 if (mz->on_tree) 511 __mem_cgroup_remove_exceeded(mz, mctz); 512 /* 513 * Insert again. mz->usage_in_excess will be updated. 514 * If excess is 0, no tree ops. 515 */ 516 __mem_cgroup_insert_exceeded(mz, mctz, excess); 517 spin_unlock_irqrestore(&mctz->lock, flags); 518 } 519 } 520 } 521 522 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 523 { 524 struct mem_cgroup_tree_per_node *mctz; 525 struct mem_cgroup_per_node *mz; 526 int nid; 527 528 for_each_node(nid) { 529 mz = memcg->nodeinfo[nid]; 530 mctz = soft_limit_tree.rb_tree_per_node[nid]; 531 if (mctz) 532 mem_cgroup_remove_exceeded(mz, mctz); 533 } 534 } 535 536 static struct mem_cgroup_per_node * 537 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 538 { 539 struct mem_cgroup_per_node *mz; 540 541 retry: 542 mz = NULL; 543 if (!mctz->rb_rightmost) 544 goto done; /* Nothing to reclaim from */ 545 546 mz = rb_entry(mctz->rb_rightmost, 547 struct mem_cgroup_per_node, tree_node); 548 /* 549 * Remove the node now but someone else can add it back, 550 * we will to add it back at the end of reclaim to its correct 551 * position in the tree. 552 */ 553 __mem_cgroup_remove_exceeded(mz, mctz); 554 if (!soft_limit_excess(mz->memcg) || 555 !css_tryget(&mz->memcg->css)) 556 goto retry; 557 done: 558 return mz; 559 } 560 561 static struct mem_cgroup_per_node * 562 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 563 { 564 struct mem_cgroup_per_node *mz; 565 566 spin_lock_irq(&mctz->lock); 567 mz = __mem_cgroup_largest_soft_limit_node(mctz); 568 spin_unlock_irq(&mctz->lock); 569 return mz; 570 } 571 572 /* 573 * memcg and lruvec stats flushing 574 * 575 * Many codepaths leading to stats update or read are performance sensitive and 576 * adding stats flushing in such codepaths is not desirable. So, to optimize the 577 * flushing the kernel does: 578 * 579 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 580 * rstat update tree grow unbounded. 581 * 582 * 2) Flush the stats synchronously on reader side only when there are more than 583 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 584 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 585 * only for 2 seconds due to (1). 586 */ 587 static void flush_memcg_stats_dwork(struct work_struct *w); 588 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 589 static DEFINE_SPINLOCK(stats_flush_lock); 590 static DEFINE_PER_CPU(unsigned int, stats_updates); 591 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 592 static u64 flush_next_time; 593 594 #define FLUSH_TIME (2UL*HZ) 595 596 /* 597 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 598 * not rely on this as part of an acquired spinlock_t lock. These functions are 599 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 600 * is sufficient. 601 */ 602 static void memcg_stats_lock(void) 603 { 604 preempt_disable_nested(); 605 VM_WARN_ON_IRQS_ENABLED(); 606 } 607 608 static void __memcg_stats_lock(void) 609 { 610 preempt_disable_nested(); 611 } 612 613 static void memcg_stats_unlock(void) 614 { 615 preempt_enable_nested(); 616 } 617 618 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 619 { 620 unsigned int x; 621 622 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 623 624 x = __this_cpu_add_return(stats_updates, abs(val)); 625 if (x > MEMCG_CHARGE_BATCH) { 626 /* 627 * If stats_flush_threshold exceeds the threshold 628 * (>num_online_cpus()), cgroup stats update will be triggered 629 * in __mem_cgroup_flush_stats(). Increasing this var further 630 * is redundant and simply adds overhead in atomic update. 631 */ 632 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 633 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 634 __this_cpu_write(stats_updates, 0); 635 } 636 } 637 638 static void __mem_cgroup_flush_stats(void) 639 { 640 unsigned long flag; 641 642 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 643 return; 644 645 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 646 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 647 atomic_set(&stats_flush_threshold, 0); 648 spin_unlock_irqrestore(&stats_flush_lock, flag); 649 } 650 651 void mem_cgroup_flush_stats(void) 652 { 653 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 654 __mem_cgroup_flush_stats(); 655 } 656 657 void mem_cgroup_flush_stats_delayed(void) 658 { 659 if (time_after64(jiffies_64, flush_next_time)) 660 mem_cgroup_flush_stats(); 661 } 662 663 static void flush_memcg_stats_dwork(struct work_struct *w) 664 { 665 __mem_cgroup_flush_stats(); 666 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 667 } 668 669 /* Subset of vm_event_item to report for memcg event stats */ 670 static const unsigned int memcg_vm_event_stat[] = { 671 PGPGIN, 672 PGPGOUT, 673 PGSCAN_KSWAPD, 674 PGSCAN_DIRECT, 675 PGSCAN_KHUGEPAGED, 676 PGSTEAL_KSWAPD, 677 PGSTEAL_DIRECT, 678 PGSTEAL_KHUGEPAGED, 679 PGFAULT, 680 PGMAJFAULT, 681 PGREFILL, 682 PGACTIVATE, 683 PGDEACTIVATE, 684 PGLAZYFREE, 685 PGLAZYFREED, 686 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 687 ZSWPIN, 688 ZSWPOUT, 689 #endif 690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 691 THP_FAULT_ALLOC, 692 THP_COLLAPSE_ALLOC, 693 #endif 694 }; 695 696 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 697 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 698 699 static void init_memcg_events(void) 700 { 701 int i; 702 703 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 704 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 705 } 706 707 static inline int memcg_events_index(enum vm_event_item idx) 708 { 709 return mem_cgroup_events_index[idx] - 1; 710 } 711 712 struct memcg_vmstats_percpu { 713 /* Local (CPU and cgroup) page state & events */ 714 long state[MEMCG_NR_STAT]; 715 unsigned long events[NR_MEMCG_EVENTS]; 716 717 /* Delta calculation for lockless upward propagation */ 718 long state_prev[MEMCG_NR_STAT]; 719 unsigned long events_prev[NR_MEMCG_EVENTS]; 720 721 /* Cgroup1: threshold notifications & softlimit tree updates */ 722 unsigned long nr_page_events; 723 unsigned long targets[MEM_CGROUP_NTARGETS]; 724 }; 725 726 struct memcg_vmstats { 727 /* Aggregated (CPU and subtree) page state & events */ 728 long state[MEMCG_NR_STAT]; 729 unsigned long events[NR_MEMCG_EVENTS]; 730 731 /* Pending child counts during tree propagation */ 732 long state_pending[MEMCG_NR_STAT]; 733 unsigned long events_pending[NR_MEMCG_EVENTS]; 734 }; 735 736 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 737 { 738 long x = READ_ONCE(memcg->vmstats->state[idx]); 739 #ifdef CONFIG_SMP 740 if (x < 0) 741 x = 0; 742 #endif 743 return x; 744 } 745 746 /** 747 * __mod_memcg_state - update cgroup memory statistics 748 * @memcg: the memory cgroup 749 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 750 * @val: delta to add to the counter, can be negative 751 */ 752 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 753 { 754 if (mem_cgroup_disabled()) 755 return; 756 757 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 758 memcg_rstat_updated(memcg, val); 759 } 760 761 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 762 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 763 { 764 long x = 0; 765 int cpu; 766 767 for_each_possible_cpu(cpu) 768 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 769 #ifdef CONFIG_SMP 770 if (x < 0) 771 x = 0; 772 #endif 773 return x; 774 } 775 776 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 777 int val) 778 { 779 struct mem_cgroup_per_node *pn; 780 struct mem_cgroup *memcg; 781 782 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 783 memcg = pn->memcg; 784 785 /* 786 * The caller from rmap relay on disabled preemption becase they never 787 * update their counter from in-interrupt context. For these two 788 * counters we check that the update is never performed from an 789 * interrupt context while other caller need to have disabled interrupt. 790 */ 791 __memcg_stats_lock(); 792 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 793 switch (idx) { 794 case NR_ANON_MAPPED: 795 case NR_FILE_MAPPED: 796 case NR_ANON_THPS: 797 case NR_SHMEM_PMDMAPPED: 798 case NR_FILE_PMDMAPPED: 799 WARN_ON_ONCE(!in_task()); 800 break; 801 default: 802 VM_WARN_ON_IRQS_ENABLED(); 803 } 804 } 805 806 /* Update memcg */ 807 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 808 809 /* Update lruvec */ 810 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 811 812 memcg_rstat_updated(memcg, val); 813 memcg_stats_unlock(); 814 } 815 816 /** 817 * __mod_lruvec_state - update lruvec memory statistics 818 * @lruvec: the lruvec 819 * @idx: the stat item 820 * @val: delta to add to the counter, can be negative 821 * 822 * The lruvec is the intersection of the NUMA node and a cgroup. This 823 * function updates the all three counters that are affected by a 824 * change of state at this level: per-node, per-cgroup, per-lruvec. 825 */ 826 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 827 int val) 828 { 829 /* Update node */ 830 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 831 832 /* Update memcg and lruvec */ 833 if (!mem_cgroup_disabled()) 834 __mod_memcg_lruvec_state(lruvec, idx, val); 835 } 836 837 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 838 int val) 839 { 840 struct page *head = compound_head(page); /* rmap on tail pages */ 841 struct mem_cgroup *memcg; 842 pg_data_t *pgdat = page_pgdat(page); 843 struct lruvec *lruvec; 844 845 rcu_read_lock(); 846 memcg = page_memcg(head); 847 /* Untracked pages have no memcg, no lruvec. Update only the node */ 848 if (!memcg) { 849 rcu_read_unlock(); 850 __mod_node_page_state(pgdat, idx, val); 851 return; 852 } 853 854 lruvec = mem_cgroup_lruvec(memcg, pgdat); 855 __mod_lruvec_state(lruvec, idx, val); 856 rcu_read_unlock(); 857 } 858 EXPORT_SYMBOL(__mod_lruvec_page_state); 859 860 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 861 { 862 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 863 struct mem_cgroup *memcg; 864 struct lruvec *lruvec; 865 866 rcu_read_lock(); 867 memcg = mem_cgroup_from_slab_obj(p); 868 869 /* 870 * Untracked pages have no memcg, no lruvec. Update only the 871 * node. If we reparent the slab objects to the root memcg, 872 * when we free the slab object, we need to update the per-memcg 873 * vmstats to keep it correct for the root memcg. 874 */ 875 if (!memcg) { 876 __mod_node_page_state(pgdat, idx, val); 877 } else { 878 lruvec = mem_cgroup_lruvec(memcg, pgdat); 879 __mod_lruvec_state(lruvec, idx, val); 880 } 881 rcu_read_unlock(); 882 } 883 884 /** 885 * __count_memcg_events - account VM events in a cgroup 886 * @memcg: the memory cgroup 887 * @idx: the event item 888 * @count: the number of events that occurred 889 */ 890 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 891 unsigned long count) 892 { 893 int index = memcg_events_index(idx); 894 895 if (mem_cgroup_disabled() || index < 0) 896 return; 897 898 memcg_stats_lock(); 899 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 900 memcg_rstat_updated(memcg, count); 901 memcg_stats_unlock(); 902 } 903 904 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 905 { 906 int index = memcg_events_index(event); 907 908 if (index < 0) 909 return 0; 910 return READ_ONCE(memcg->vmstats->events[index]); 911 } 912 913 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 914 { 915 long x = 0; 916 int cpu; 917 int index = memcg_events_index(event); 918 919 if (index < 0) 920 return 0; 921 922 for_each_possible_cpu(cpu) 923 x += per_cpu(memcg->vmstats_percpu->events[index], cpu); 924 return x; 925 } 926 927 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 928 int nr_pages) 929 { 930 /* pagein of a big page is an event. So, ignore page size */ 931 if (nr_pages > 0) 932 __count_memcg_events(memcg, PGPGIN, 1); 933 else { 934 __count_memcg_events(memcg, PGPGOUT, 1); 935 nr_pages = -nr_pages; /* for event */ 936 } 937 938 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 939 } 940 941 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 942 enum mem_cgroup_events_target target) 943 { 944 unsigned long val, next; 945 946 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 947 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 948 /* from time_after() in jiffies.h */ 949 if ((long)(next - val) < 0) { 950 switch (target) { 951 case MEM_CGROUP_TARGET_THRESH: 952 next = val + THRESHOLDS_EVENTS_TARGET; 953 break; 954 case MEM_CGROUP_TARGET_SOFTLIMIT: 955 next = val + SOFTLIMIT_EVENTS_TARGET; 956 break; 957 default: 958 break; 959 } 960 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 961 return true; 962 } 963 return false; 964 } 965 966 /* 967 * Check events in order. 968 * 969 */ 970 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 971 { 972 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 973 return; 974 975 /* threshold event is triggered in finer grain than soft limit */ 976 if (unlikely(mem_cgroup_event_ratelimit(memcg, 977 MEM_CGROUP_TARGET_THRESH))) { 978 bool do_softlimit; 979 980 do_softlimit = mem_cgroup_event_ratelimit(memcg, 981 MEM_CGROUP_TARGET_SOFTLIMIT); 982 mem_cgroup_threshold(memcg); 983 if (unlikely(do_softlimit)) 984 mem_cgroup_update_tree(memcg, nid); 985 } 986 } 987 988 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 989 { 990 /* 991 * mm_update_next_owner() may clear mm->owner to NULL 992 * if it races with swapoff, page migration, etc. 993 * So this can be called with p == NULL. 994 */ 995 if (unlikely(!p)) 996 return NULL; 997 998 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 999 } 1000 EXPORT_SYMBOL(mem_cgroup_from_task); 1001 1002 static __always_inline struct mem_cgroup *active_memcg(void) 1003 { 1004 if (!in_task()) 1005 return this_cpu_read(int_active_memcg); 1006 else 1007 return current->active_memcg; 1008 } 1009 1010 /** 1011 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1012 * @mm: mm from which memcg should be extracted. It can be NULL. 1013 * 1014 * Obtain a reference on mm->memcg and returns it if successful. If mm 1015 * is NULL, then the memcg is chosen as follows: 1016 * 1) The active memcg, if set. 1017 * 2) current->mm->memcg, if available 1018 * 3) root memcg 1019 * If mem_cgroup is disabled, NULL is returned. 1020 */ 1021 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1022 { 1023 struct mem_cgroup *memcg; 1024 1025 if (mem_cgroup_disabled()) 1026 return NULL; 1027 1028 /* 1029 * Page cache insertions can happen without an 1030 * actual mm context, e.g. during disk probing 1031 * on boot, loopback IO, acct() writes etc. 1032 * 1033 * No need to css_get on root memcg as the reference 1034 * counting is disabled on the root level in the 1035 * cgroup core. See CSS_NO_REF. 1036 */ 1037 if (unlikely(!mm)) { 1038 memcg = active_memcg(); 1039 if (unlikely(memcg)) { 1040 /* remote memcg must hold a ref */ 1041 css_get(&memcg->css); 1042 return memcg; 1043 } 1044 mm = current->mm; 1045 if (unlikely(!mm)) 1046 return root_mem_cgroup; 1047 } 1048 1049 rcu_read_lock(); 1050 do { 1051 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1052 if (unlikely(!memcg)) 1053 memcg = root_mem_cgroup; 1054 } while (!css_tryget(&memcg->css)); 1055 rcu_read_unlock(); 1056 return memcg; 1057 } 1058 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1059 1060 static __always_inline bool memcg_kmem_bypass(void) 1061 { 1062 /* Allow remote memcg charging from any context. */ 1063 if (unlikely(active_memcg())) 1064 return false; 1065 1066 /* Memcg to charge can't be determined. */ 1067 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 1068 return true; 1069 1070 return false; 1071 } 1072 1073 /** 1074 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1075 * @root: hierarchy root 1076 * @prev: previously returned memcg, NULL on first invocation 1077 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1078 * 1079 * Returns references to children of the hierarchy below @root, or 1080 * @root itself, or %NULL after a full round-trip. 1081 * 1082 * Caller must pass the return value in @prev on subsequent 1083 * invocations for reference counting, or use mem_cgroup_iter_break() 1084 * to cancel a hierarchy walk before the round-trip is complete. 1085 * 1086 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1087 * in the hierarchy among all concurrent reclaimers operating on the 1088 * same node. 1089 */ 1090 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1091 struct mem_cgroup *prev, 1092 struct mem_cgroup_reclaim_cookie *reclaim) 1093 { 1094 struct mem_cgroup_reclaim_iter *iter; 1095 struct cgroup_subsys_state *css = NULL; 1096 struct mem_cgroup *memcg = NULL; 1097 struct mem_cgroup *pos = NULL; 1098 1099 if (mem_cgroup_disabled()) 1100 return NULL; 1101 1102 if (!root) 1103 root = root_mem_cgroup; 1104 1105 rcu_read_lock(); 1106 1107 if (reclaim) { 1108 struct mem_cgroup_per_node *mz; 1109 1110 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1111 iter = &mz->iter; 1112 1113 /* 1114 * On start, join the current reclaim iteration cycle. 1115 * Exit when a concurrent walker completes it. 1116 */ 1117 if (!prev) 1118 reclaim->generation = iter->generation; 1119 else if (reclaim->generation != iter->generation) 1120 goto out_unlock; 1121 1122 while (1) { 1123 pos = READ_ONCE(iter->position); 1124 if (!pos || css_tryget(&pos->css)) 1125 break; 1126 /* 1127 * css reference reached zero, so iter->position will 1128 * be cleared by ->css_released. However, we should not 1129 * rely on this happening soon, because ->css_released 1130 * is called from a work queue, and by busy-waiting we 1131 * might block it. So we clear iter->position right 1132 * away. 1133 */ 1134 (void)cmpxchg(&iter->position, pos, NULL); 1135 } 1136 } else if (prev) { 1137 pos = prev; 1138 } 1139 1140 if (pos) 1141 css = &pos->css; 1142 1143 for (;;) { 1144 css = css_next_descendant_pre(css, &root->css); 1145 if (!css) { 1146 /* 1147 * Reclaimers share the hierarchy walk, and a 1148 * new one might jump in right at the end of 1149 * the hierarchy - make sure they see at least 1150 * one group and restart from the beginning. 1151 */ 1152 if (!prev) 1153 continue; 1154 break; 1155 } 1156 1157 /* 1158 * Verify the css and acquire a reference. The root 1159 * is provided by the caller, so we know it's alive 1160 * and kicking, and don't take an extra reference. 1161 */ 1162 if (css == &root->css || css_tryget(css)) { 1163 memcg = mem_cgroup_from_css(css); 1164 break; 1165 } 1166 } 1167 1168 if (reclaim) { 1169 /* 1170 * The position could have already been updated by a competing 1171 * thread, so check that the value hasn't changed since we read 1172 * it to avoid reclaiming from the same cgroup twice. 1173 */ 1174 (void)cmpxchg(&iter->position, pos, memcg); 1175 1176 if (pos) 1177 css_put(&pos->css); 1178 1179 if (!memcg) 1180 iter->generation++; 1181 } 1182 1183 out_unlock: 1184 rcu_read_unlock(); 1185 if (prev && prev != root) 1186 css_put(&prev->css); 1187 1188 return memcg; 1189 } 1190 1191 /** 1192 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1193 * @root: hierarchy root 1194 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1195 */ 1196 void mem_cgroup_iter_break(struct mem_cgroup *root, 1197 struct mem_cgroup *prev) 1198 { 1199 if (!root) 1200 root = root_mem_cgroup; 1201 if (prev && prev != root) 1202 css_put(&prev->css); 1203 } 1204 1205 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1206 struct mem_cgroup *dead_memcg) 1207 { 1208 struct mem_cgroup_reclaim_iter *iter; 1209 struct mem_cgroup_per_node *mz; 1210 int nid; 1211 1212 for_each_node(nid) { 1213 mz = from->nodeinfo[nid]; 1214 iter = &mz->iter; 1215 cmpxchg(&iter->position, dead_memcg, NULL); 1216 } 1217 } 1218 1219 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1220 { 1221 struct mem_cgroup *memcg = dead_memcg; 1222 struct mem_cgroup *last; 1223 1224 do { 1225 __invalidate_reclaim_iterators(memcg, dead_memcg); 1226 last = memcg; 1227 } while ((memcg = parent_mem_cgroup(memcg))); 1228 1229 /* 1230 * When cgroup1 non-hierarchy mode is used, 1231 * parent_mem_cgroup() does not walk all the way up to the 1232 * cgroup root (root_mem_cgroup). So we have to handle 1233 * dead_memcg from cgroup root separately. 1234 */ 1235 if (!mem_cgroup_is_root(last)) 1236 __invalidate_reclaim_iterators(root_mem_cgroup, 1237 dead_memcg); 1238 } 1239 1240 /** 1241 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1242 * @memcg: hierarchy root 1243 * @fn: function to call for each task 1244 * @arg: argument passed to @fn 1245 * 1246 * This function iterates over tasks attached to @memcg or to any of its 1247 * descendants and calls @fn for each task. If @fn returns a non-zero 1248 * value, the function breaks the iteration loop and returns the value. 1249 * Otherwise, it will iterate over all tasks and return 0. 1250 * 1251 * This function must not be called for the root memory cgroup. 1252 */ 1253 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1254 int (*fn)(struct task_struct *, void *), void *arg) 1255 { 1256 struct mem_cgroup *iter; 1257 int ret = 0; 1258 1259 BUG_ON(mem_cgroup_is_root(memcg)); 1260 1261 for_each_mem_cgroup_tree(iter, memcg) { 1262 struct css_task_iter it; 1263 struct task_struct *task; 1264 1265 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1266 while (!ret && (task = css_task_iter_next(&it))) 1267 ret = fn(task, arg); 1268 css_task_iter_end(&it); 1269 if (ret) { 1270 mem_cgroup_iter_break(memcg, iter); 1271 break; 1272 } 1273 } 1274 return ret; 1275 } 1276 1277 #ifdef CONFIG_DEBUG_VM 1278 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1279 { 1280 struct mem_cgroup *memcg; 1281 1282 if (mem_cgroup_disabled()) 1283 return; 1284 1285 memcg = folio_memcg(folio); 1286 1287 if (!memcg) 1288 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1289 else 1290 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1291 } 1292 #endif 1293 1294 /** 1295 * folio_lruvec_lock - Lock the lruvec for a folio. 1296 * @folio: Pointer to the folio. 1297 * 1298 * These functions are safe to use under any of the following conditions: 1299 * - folio locked 1300 * - folio_test_lru false 1301 * - folio_memcg_lock() 1302 * - folio frozen (refcount of 0) 1303 * 1304 * Return: The lruvec this folio is on with its lock held. 1305 */ 1306 struct lruvec *folio_lruvec_lock(struct folio *folio) 1307 { 1308 struct lruvec *lruvec = folio_lruvec(folio); 1309 1310 spin_lock(&lruvec->lru_lock); 1311 lruvec_memcg_debug(lruvec, folio); 1312 1313 return lruvec; 1314 } 1315 1316 /** 1317 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1318 * @folio: Pointer to the folio. 1319 * 1320 * These functions are safe to use under any of the following conditions: 1321 * - folio locked 1322 * - folio_test_lru false 1323 * - folio_memcg_lock() 1324 * - folio frozen (refcount of 0) 1325 * 1326 * Return: The lruvec this folio is on with its lock held and interrupts 1327 * disabled. 1328 */ 1329 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1330 { 1331 struct lruvec *lruvec = folio_lruvec(folio); 1332 1333 spin_lock_irq(&lruvec->lru_lock); 1334 lruvec_memcg_debug(lruvec, folio); 1335 1336 return lruvec; 1337 } 1338 1339 /** 1340 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1341 * @folio: Pointer to the folio. 1342 * @flags: Pointer to irqsave flags. 1343 * 1344 * These functions are safe to use under any of the following conditions: 1345 * - folio locked 1346 * - folio_test_lru false 1347 * - folio_memcg_lock() 1348 * - folio frozen (refcount of 0) 1349 * 1350 * Return: The lruvec this folio is on with its lock held and interrupts 1351 * disabled. 1352 */ 1353 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1354 unsigned long *flags) 1355 { 1356 struct lruvec *lruvec = folio_lruvec(folio); 1357 1358 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1359 lruvec_memcg_debug(lruvec, folio); 1360 1361 return lruvec; 1362 } 1363 1364 /** 1365 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1366 * @lruvec: mem_cgroup per zone lru vector 1367 * @lru: index of lru list the page is sitting on 1368 * @zid: zone id of the accounted pages 1369 * @nr_pages: positive when adding or negative when removing 1370 * 1371 * This function must be called under lru_lock, just before a page is added 1372 * to or just after a page is removed from an lru list. 1373 */ 1374 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1375 int zid, int nr_pages) 1376 { 1377 struct mem_cgroup_per_node *mz; 1378 unsigned long *lru_size; 1379 long size; 1380 1381 if (mem_cgroup_disabled()) 1382 return; 1383 1384 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1385 lru_size = &mz->lru_zone_size[zid][lru]; 1386 1387 if (nr_pages < 0) 1388 *lru_size += nr_pages; 1389 1390 size = *lru_size; 1391 if (WARN_ONCE(size < 0, 1392 "%s(%p, %d, %d): lru_size %ld\n", 1393 __func__, lruvec, lru, nr_pages, size)) { 1394 VM_BUG_ON(1); 1395 *lru_size = 0; 1396 } 1397 1398 if (nr_pages > 0) 1399 *lru_size += nr_pages; 1400 } 1401 1402 /** 1403 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1404 * @memcg: the memory cgroup 1405 * 1406 * Returns the maximum amount of memory @mem can be charged with, in 1407 * pages. 1408 */ 1409 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1410 { 1411 unsigned long margin = 0; 1412 unsigned long count; 1413 unsigned long limit; 1414 1415 count = page_counter_read(&memcg->memory); 1416 limit = READ_ONCE(memcg->memory.max); 1417 if (count < limit) 1418 margin = limit - count; 1419 1420 if (do_memsw_account()) { 1421 count = page_counter_read(&memcg->memsw); 1422 limit = READ_ONCE(memcg->memsw.max); 1423 if (count < limit) 1424 margin = min(margin, limit - count); 1425 else 1426 margin = 0; 1427 } 1428 1429 return margin; 1430 } 1431 1432 /* 1433 * A routine for checking "mem" is under move_account() or not. 1434 * 1435 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1436 * moving cgroups. This is for waiting at high-memory pressure 1437 * caused by "move". 1438 */ 1439 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1440 { 1441 struct mem_cgroup *from; 1442 struct mem_cgroup *to; 1443 bool ret = false; 1444 /* 1445 * Unlike task_move routines, we access mc.to, mc.from not under 1446 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1447 */ 1448 spin_lock(&mc.lock); 1449 from = mc.from; 1450 to = mc.to; 1451 if (!from) 1452 goto unlock; 1453 1454 ret = mem_cgroup_is_descendant(from, memcg) || 1455 mem_cgroup_is_descendant(to, memcg); 1456 unlock: 1457 spin_unlock(&mc.lock); 1458 return ret; 1459 } 1460 1461 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1462 { 1463 if (mc.moving_task && current != mc.moving_task) { 1464 if (mem_cgroup_under_move(memcg)) { 1465 DEFINE_WAIT(wait); 1466 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1467 /* moving charge context might have finished. */ 1468 if (mc.moving_task) 1469 schedule(); 1470 finish_wait(&mc.waitq, &wait); 1471 return true; 1472 } 1473 } 1474 return false; 1475 } 1476 1477 struct memory_stat { 1478 const char *name; 1479 unsigned int idx; 1480 }; 1481 1482 static const struct memory_stat memory_stats[] = { 1483 { "anon", NR_ANON_MAPPED }, 1484 { "file", NR_FILE_PAGES }, 1485 { "kernel", MEMCG_KMEM }, 1486 { "kernel_stack", NR_KERNEL_STACK_KB }, 1487 { "pagetables", NR_PAGETABLE }, 1488 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1489 { "percpu", MEMCG_PERCPU_B }, 1490 { "sock", MEMCG_SOCK }, 1491 { "vmalloc", MEMCG_VMALLOC }, 1492 { "shmem", NR_SHMEM }, 1493 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1494 { "zswap", MEMCG_ZSWAP_B }, 1495 { "zswapped", MEMCG_ZSWAPPED }, 1496 #endif 1497 { "file_mapped", NR_FILE_MAPPED }, 1498 { "file_dirty", NR_FILE_DIRTY }, 1499 { "file_writeback", NR_WRITEBACK }, 1500 #ifdef CONFIG_SWAP 1501 { "swapcached", NR_SWAPCACHE }, 1502 #endif 1503 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1504 { "anon_thp", NR_ANON_THPS }, 1505 { "file_thp", NR_FILE_THPS }, 1506 { "shmem_thp", NR_SHMEM_THPS }, 1507 #endif 1508 { "inactive_anon", NR_INACTIVE_ANON }, 1509 { "active_anon", NR_ACTIVE_ANON }, 1510 { "inactive_file", NR_INACTIVE_FILE }, 1511 { "active_file", NR_ACTIVE_FILE }, 1512 { "unevictable", NR_UNEVICTABLE }, 1513 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1514 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1515 1516 /* The memory events */ 1517 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1518 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1519 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1520 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1521 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1522 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1523 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1524 }; 1525 1526 /* Translate stat items to the correct unit for memory.stat output */ 1527 static int memcg_page_state_unit(int item) 1528 { 1529 switch (item) { 1530 case MEMCG_PERCPU_B: 1531 case MEMCG_ZSWAP_B: 1532 case NR_SLAB_RECLAIMABLE_B: 1533 case NR_SLAB_UNRECLAIMABLE_B: 1534 case WORKINGSET_REFAULT_ANON: 1535 case WORKINGSET_REFAULT_FILE: 1536 case WORKINGSET_ACTIVATE_ANON: 1537 case WORKINGSET_ACTIVATE_FILE: 1538 case WORKINGSET_RESTORE_ANON: 1539 case WORKINGSET_RESTORE_FILE: 1540 case WORKINGSET_NODERECLAIM: 1541 return 1; 1542 case NR_KERNEL_STACK_KB: 1543 return SZ_1K; 1544 default: 1545 return PAGE_SIZE; 1546 } 1547 } 1548 1549 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1550 int item) 1551 { 1552 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1553 } 1554 1555 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize) 1556 { 1557 struct seq_buf s; 1558 int i; 1559 1560 seq_buf_init(&s, buf, bufsize); 1561 1562 /* 1563 * Provide statistics on the state of the memory subsystem as 1564 * well as cumulative event counters that show past behavior. 1565 * 1566 * This list is ordered following a combination of these gradients: 1567 * 1) generic big picture -> specifics and details 1568 * 2) reflecting userspace activity -> reflecting kernel heuristics 1569 * 1570 * Current memory state: 1571 */ 1572 mem_cgroup_flush_stats(); 1573 1574 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1575 u64 size; 1576 1577 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1578 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1579 1580 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1581 size += memcg_page_state_output(memcg, 1582 NR_SLAB_RECLAIMABLE_B); 1583 seq_buf_printf(&s, "slab %llu\n", size); 1584 } 1585 } 1586 1587 /* Accumulated memory events */ 1588 seq_buf_printf(&s, "pgscan %lu\n", 1589 memcg_events(memcg, PGSCAN_KSWAPD) + 1590 memcg_events(memcg, PGSCAN_DIRECT) + 1591 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1592 seq_buf_printf(&s, "pgsteal %lu\n", 1593 memcg_events(memcg, PGSTEAL_KSWAPD) + 1594 memcg_events(memcg, PGSTEAL_DIRECT) + 1595 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1596 1597 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1598 if (memcg_vm_event_stat[i] == PGPGIN || 1599 memcg_vm_event_stat[i] == PGPGOUT) 1600 continue; 1601 1602 seq_buf_printf(&s, "%s %lu\n", 1603 vm_event_name(memcg_vm_event_stat[i]), 1604 memcg_events(memcg, memcg_vm_event_stat[i])); 1605 } 1606 1607 /* The above should easily fit into one page */ 1608 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1609 } 1610 1611 #define K(x) ((x) << (PAGE_SHIFT-10)) 1612 /** 1613 * mem_cgroup_print_oom_context: Print OOM information relevant to 1614 * memory controller. 1615 * @memcg: The memory cgroup that went over limit 1616 * @p: Task that is going to be killed 1617 * 1618 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1619 * enabled 1620 */ 1621 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1622 { 1623 rcu_read_lock(); 1624 1625 if (memcg) { 1626 pr_cont(",oom_memcg="); 1627 pr_cont_cgroup_path(memcg->css.cgroup); 1628 } else 1629 pr_cont(",global_oom"); 1630 if (p) { 1631 pr_cont(",task_memcg="); 1632 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1633 } 1634 rcu_read_unlock(); 1635 } 1636 1637 /** 1638 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1639 * memory controller. 1640 * @memcg: The memory cgroup that went over limit 1641 */ 1642 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1643 { 1644 /* Use static buffer, for the caller is holding oom_lock. */ 1645 static char buf[PAGE_SIZE]; 1646 1647 lockdep_assert_held(&oom_lock); 1648 1649 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1650 K((u64)page_counter_read(&memcg->memory)), 1651 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1652 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1653 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1654 K((u64)page_counter_read(&memcg->swap)), 1655 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1656 else { 1657 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1658 K((u64)page_counter_read(&memcg->memsw)), 1659 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1660 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1661 K((u64)page_counter_read(&memcg->kmem)), 1662 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1663 } 1664 1665 pr_info("Memory cgroup stats for "); 1666 pr_cont_cgroup_path(memcg->css.cgroup); 1667 pr_cont(":"); 1668 memory_stat_format(memcg, buf, sizeof(buf)); 1669 pr_info("%s", buf); 1670 } 1671 1672 /* 1673 * Return the memory (and swap, if configured) limit for a memcg. 1674 */ 1675 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1676 { 1677 unsigned long max = READ_ONCE(memcg->memory.max); 1678 1679 if (do_memsw_account()) { 1680 if (mem_cgroup_swappiness(memcg)) { 1681 /* Calculate swap excess capacity from memsw limit */ 1682 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1683 1684 max += min(swap, (unsigned long)total_swap_pages); 1685 } 1686 } else { 1687 if (mem_cgroup_swappiness(memcg)) 1688 max += min(READ_ONCE(memcg->swap.max), 1689 (unsigned long)total_swap_pages); 1690 } 1691 return max; 1692 } 1693 1694 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1695 { 1696 return page_counter_read(&memcg->memory); 1697 } 1698 1699 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1700 int order) 1701 { 1702 struct oom_control oc = { 1703 .zonelist = NULL, 1704 .nodemask = NULL, 1705 .memcg = memcg, 1706 .gfp_mask = gfp_mask, 1707 .order = order, 1708 }; 1709 bool ret = true; 1710 1711 if (mutex_lock_killable(&oom_lock)) 1712 return true; 1713 1714 if (mem_cgroup_margin(memcg) >= (1 << order)) 1715 goto unlock; 1716 1717 /* 1718 * A few threads which were not waiting at mutex_lock_killable() can 1719 * fail to bail out. Therefore, check again after holding oom_lock. 1720 */ 1721 ret = task_is_dying() || out_of_memory(&oc); 1722 1723 unlock: 1724 mutex_unlock(&oom_lock); 1725 return ret; 1726 } 1727 1728 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1729 pg_data_t *pgdat, 1730 gfp_t gfp_mask, 1731 unsigned long *total_scanned) 1732 { 1733 struct mem_cgroup *victim = NULL; 1734 int total = 0; 1735 int loop = 0; 1736 unsigned long excess; 1737 unsigned long nr_scanned; 1738 struct mem_cgroup_reclaim_cookie reclaim = { 1739 .pgdat = pgdat, 1740 }; 1741 1742 excess = soft_limit_excess(root_memcg); 1743 1744 while (1) { 1745 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1746 if (!victim) { 1747 loop++; 1748 if (loop >= 2) { 1749 /* 1750 * If we have not been able to reclaim 1751 * anything, it might because there are 1752 * no reclaimable pages under this hierarchy 1753 */ 1754 if (!total) 1755 break; 1756 /* 1757 * We want to do more targeted reclaim. 1758 * excess >> 2 is not to excessive so as to 1759 * reclaim too much, nor too less that we keep 1760 * coming back to reclaim from this cgroup 1761 */ 1762 if (total >= (excess >> 2) || 1763 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1764 break; 1765 } 1766 continue; 1767 } 1768 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1769 pgdat, &nr_scanned); 1770 *total_scanned += nr_scanned; 1771 if (!soft_limit_excess(root_memcg)) 1772 break; 1773 } 1774 mem_cgroup_iter_break(root_memcg, victim); 1775 return total; 1776 } 1777 1778 #ifdef CONFIG_LOCKDEP 1779 static struct lockdep_map memcg_oom_lock_dep_map = { 1780 .name = "memcg_oom_lock", 1781 }; 1782 #endif 1783 1784 static DEFINE_SPINLOCK(memcg_oom_lock); 1785 1786 /* 1787 * Check OOM-Killer is already running under our hierarchy. 1788 * If someone is running, return false. 1789 */ 1790 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1791 { 1792 struct mem_cgroup *iter, *failed = NULL; 1793 1794 spin_lock(&memcg_oom_lock); 1795 1796 for_each_mem_cgroup_tree(iter, memcg) { 1797 if (iter->oom_lock) { 1798 /* 1799 * this subtree of our hierarchy is already locked 1800 * so we cannot give a lock. 1801 */ 1802 failed = iter; 1803 mem_cgroup_iter_break(memcg, iter); 1804 break; 1805 } else 1806 iter->oom_lock = true; 1807 } 1808 1809 if (failed) { 1810 /* 1811 * OK, we failed to lock the whole subtree so we have 1812 * to clean up what we set up to the failing subtree 1813 */ 1814 for_each_mem_cgroup_tree(iter, memcg) { 1815 if (iter == failed) { 1816 mem_cgroup_iter_break(memcg, iter); 1817 break; 1818 } 1819 iter->oom_lock = false; 1820 } 1821 } else 1822 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1823 1824 spin_unlock(&memcg_oom_lock); 1825 1826 return !failed; 1827 } 1828 1829 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1830 { 1831 struct mem_cgroup *iter; 1832 1833 spin_lock(&memcg_oom_lock); 1834 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1835 for_each_mem_cgroup_tree(iter, memcg) 1836 iter->oom_lock = false; 1837 spin_unlock(&memcg_oom_lock); 1838 } 1839 1840 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1841 { 1842 struct mem_cgroup *iter; 1843 1844 spin_lock(&memcg_oom_lock); 1845 for_each_mem_cgroup_tree(iter, memcg) 1846 iter->under_oom++; 1847 spin_unlock(&memcg_oom_lock); 1848 } 1849 1850 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1851 { 1852 struct mem_cgroup *iter; 1853 1854 /* 1855 * Be careful about under_oom underflows because a child memcg 1856 * could have been added after mem_cgroup_mark_under_oom. 1857 */ 1858 spin_lock(&memcg_oom_lock); 1859 for_each_mem_cgroup_tree(iter, memcg) 1860 if (iter->under_oom > 0) 1861 iter->under_oom--; 1862 spin_unlock(&memcg_oom_lock); 1863 } 1864 1865 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1866 1867 struct oom_wait_info { 1868 struct mem_cgroup *memcg; 1869 wait_queue_entry_t wait; 1870 }; 1871 1872 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1873 unsigned mode, int sync, void *arg) 1874 { 1875 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1876 struct mem_cgroup *oom_wait_memcg; 1877 struct oom_wait_info *oom_wait_info; 1878 1879 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1880 oom_wait_memcg = oom_wait_info->memcg; 1881 1882 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1883 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1884 return 0; 1885 return autoremove_wake_function(wait, mode, sync, arg); 1886 } 1887 1888 static void memcg_oom_recover(struct mem_cgroup *memcg) 1889 { 1890 /* 1891 * For the following lockless ->under_oom test, the only required 1892 * guarantee is that it must see the state asserted by an OOM when 1893 * this function is called as a result of userland actions 1894 * triggered by the notification of the OOM. This is trivially 1895 * achieved by invoking mem_cgroup_mark_under_oom() before 1896 * triggering notification. 1897 */ 1898 if (memcg && memcg->under_oom) 1899 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1900 } 1901 1902 /* 1903 * Returns true if successfully killed one or more processes. Though in some 1904 * corner cases it can return true even without killing any process. 1905 */ 1906 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1907 { 1908 bool locked, ret; 1909 1910 if (order > PAGE_ALLOC_COSTLY_ORDER) 1911 return false; 1912 1913 memcg_memory_event(memcg, MEMCG_OOM); 1914 1915 /* 1916 * We are in the middle of the charge context here, so we 1917 * don't want to block when potentially sitting on a callstack 1918 * that holds all kinds of filesystem and mm locks. 1919 * 1920 * cgroup1 allows disabling the OOM killer and waiting for outside 1921 * handling until the charge can succeed; remember the context and put 1922 * the task to sleep at the end of the page fault when all locks are 1923 * released. 1924 * 1925 * On the other hand, in-kernel OOM killer allows for an async victim 1926 * memory reclaim (oom_reaper) and that means that we are not solely 1927 * relying on the oom victim to make a forward progress and we can 1928 * invoke the oom killer here. 1929 * 1930 * Please note that mem_cgroup_out_of_memory might fail to find a 1931 * victim and then we have to bail out from the charge path. 1932 */ 1933 if (memcg->oom_kill_disable) { 1934 if (current->in_user_fault) { 1935 css_get(&memcg->css); 1936 current->memcg_in_oom = memcg; 1937 current->memcg_oom_gfp_mask = mask; 1938 current->memcg_oom_order = order; 1939 } 1940 return false; 1941 } 1942 1943 mem_cgroup_mark_under_oom(memcg); 1944 1945 locked = mem_cgroup_oom_trylock(memcg); 1946 1947 if (locked) 1948 mem_cgroup_oom_notify(memcg); 1949 1950 mem_cgroup_unmark_under_oom(memcg); 1951 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1952 1953 if (locked) 1954 mem_cgroup_oom_unlock(memcg); 1955 1956 return ret; 1957 } 1958 1959 /** 1960 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1961 * @handle: actually kill/wait or just clean up the OOM state 1962 * 1963 * This has to be called at the end of a page fault if the memcg OOM 1964 * handler was enabled. 1965 * 1966 * Memcg supports userspace OOM handling where failed allocations must 1967 * sleep on a waitqueue until the userspace task resolves the 1968 * situation. Sleeping directly in the charge context with all kinds 1969 * of locks held is not a good idea, instead we remember an OOM state 1970 * in the task and mem_cgroup_oom_synchronize() has to be called at 1971 * the end of the page fault to complete the OOM handling. 1972 * 1973 * Returns %true if an ongoing memcg OOM situation was detected and 1974 * completed, %false otherwise. 1975 */ 1976 bool mem_cgroup_oom_synchronize(bool handle) 1977 { 1978 struct mem_cgroup *memcg = current->memcg_in_oom; 1979 struct oom_wait_info owait; 1980 bool locked; 1981 1982 /* OOM is global, do not handle */ 1983 if (!memcg) 1984 return false; 1985 1986 if (!handle) 1987 goto cleanup; 1988 1989 owait.memcg = memcg; 1990 owait.wait.flags = 0; 1991 owait.wait.func = memcg_oom_wake_function; 1992 owait.wait.private = current; 1993 INIT_LIST_HEAD(&owait.wait.entry); 1994 1995 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1996 mem_cgroup_mark_under_oom(memcg); 1997 1998 locked = mem_cgroup_oom_trylock(memcg); 1999 2000 if (locked) 2001 mem_cgroup_oom_notify(memcg); 2002 2003 if (locked && !memcg->oom_kill_disable) { 2004 mem_cgroup_unmark_under_oom(memcg); 2005 finish_wait(&memcg_oom_waitq, &owait.wait); 2006 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 2007 current->memcg_oom_order); 2008 } else { 2009 schedule(); 2010 mem_cgroup_unmark_under_oom(memcg); 2011 finish_wait(&memcg_oom_waitq, &owait.wait); 2012 } 2013 2014 if (locked) { 2015 mem_cgroup_oom_unlock(memcg); 2016 /* 2017 * There is no guarantee that an OOM-lock contender 2018 * sees the wakeups triggered by the OOM kill 2019 * uncharges. Wake any sleepers explicitly. 2020 */ 2021 memcg_oom_recover(memcg); 2022 } 2023 cleanup: 2024 current->memcg_in_oom = NULL; 2025 css_put(&memcg->css); 2026 return true; 2027 } 2028 2029 /** 2030 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2031 * @victim: task to be killed by the OOM killer 2032 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2033 * 2034 * Returns a pointer to a memory cgroup, which has to be cleaned up 2035 * by killing all belonging OOM-killable tasks. 2036 * 2037 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2038 */ 2039 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2040 struct mem_cgroup *oom_domain) 2041 { 2042 struct mem_cgroup *oom_group = NULL; 2043 struct mem_cgroup *memcg; 2044 2045 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2046 return NULL; 2047 2048 if (!oom_domain) 2049 oom_domain = root_mem_cgroup; 2050 2051 rcu_read_lock(); 2052 2053 memcg = mem_cgroup_from_task(victim); 2054 if (mem_cgroup_is_root(memcg)) 2055 goto out; 2056 2057 /* 2058 * If the victim task has been asynchronously moved to a different 2059 * memory cgroup, we might end up killing tasks outside oom_domain. 2060 * In this case it's better to ignore memory.group.oom. 2061 */ 2062 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2063 goto out; 2064 2065 /* 2066 * Traverse the memory cgroup hierarchy from the victim task's 2067 * cgroup up to the OOMing cgroup (or root) to find the 2068 * highest-level memory cgroup with oom.group set. 2069 */ 2070 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2071 if (memcg->oom_group) 2072 oom_group = memcg; 2073 2074 if (memcg == oom_domain) 2075 break; 2076 } 2077 2078 if (oom_group) 2079 css_get(&oom_group->css); 2080 out: 2081 rcu_read_unlock(); 2082 2083 return oom_group; 2084 } 2085 2086 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2087 { 2088 pr_info("Tasks in "); 2089 pr_cont_cgroup_path(memcg->css.cgroup); 2090 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2091 } 2092 2093 /** 2094 * folio_memcg_lock - Bind a folio to its memcg. 2095 * @folio: The folio. 2096 * 2097 * This function prevents unlocked LRU folios from being moved to 2098 * another cgroup. 2099 * 2100 * It ensures lifetime of the bound memcg. The caller is responsible 2101 * for the lifetime of the folio. 2102 */ 2103 void folio_memcg_lock(struct folio *folio) 2104 { 2105 struct mem_cgroup *memcg; 2106 unsigned long flags; 2107 2108 /* 2109 * The RCU lock is held throughout the transaction. The fast 2110 * path can get away without acquiring the memcg->move_lock 2111 * because page moving starts with an RCU grace period. 2112 */ 2113 rcu_read_lock(); 2114 2115 if (mem_cgroup_disabled()) 2116 return; 2117 again: 2118 memcg = folio_memcg(folio); 2119 if (unlikely(!memcg)) 2120 return; 2121 2122 #ifdef CONFIG_PROVE_LOCKING 2123 local_irq_save(flags); 2124 might_lock(&memcg->move_lock); 2125 local_irq_restore(flags); 2126 #endif 2127 2128 if (atomic_read(&memcg->moving_account) <= 0) 2129 return; 2130 2131 spin_lock_irqsave(&memcg->move_lock, flags); 2132 if (memcg != folio_memcg(folio)) { 2133 spin_unlock_irqrestore(&memcg->move_lock, flags); 2134 goto again; 2135 } 2136 2137 /* 2138 * When charge migration first begins, we can have multiple 2139 * critical sections holding the fast-path RCU lock and one 2140 * holding the slowpath move_lock. Track the task who has the 2141 * move_lock for unlock_page_memcg(). 2142 */ 2143 memcg->move_lock_task = current; 2144 memcg->move_lock_flags = flags; 2145 } 2146 2147 void lock_page_memcg(struct page *page) 2148 { 2149 folio_memcg_lock(page_folio(page)); 2150 } 2151 2152 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2153 { 2154 if (memcg && memcg->move_lock_task == current) { 2155 unsigned long flags = memcg->move_lock_flags; 2156 2157 memcg->move_lock_task = NULL; 2158 memcg->move_lock_flags = 0; 2159 2160 spin_unlock_irqrestore(&memcg->move_lock, flags); 2161 } 2162 2163 rcu_read_unlock(); 2164 } 2165 2166 /** 2167 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2168 * @folio: The folio. 2169 * 2170 * This releases the binding created by folio_memcg_lock(). This does 2171 * not change the accounting of this folio to its memcg, but it does 2172 * permit others to change it. 2173 */ 2174 void folio_memcg_unlock(struct folio *folio) 2175 { 2176 __folio_memcg_unlock(folio_memcg(folio)); 2177 } 2178 2179 void unlock_page_memcg(struct page *page) 2180 { 2181 folio_memcg_unlock(page_folio(page)); 2182 } 2183 2184 struct memcg_stock_pcp { 2185 local_lock_t stock_lock; 2186 struct mem_cgroup *cached; /* this never be root cgroup */ 2187 unsigned int nr_pages; 2188 2189 #ifdef CONFIG_MEMCG_KMEM 2190 struct obj_cgroup *cached_objcg; 2191 struct pglist_data *cached_pgdat; 2192 unsigned int nr_bytes; 2193 int nr_slab_reclaimable_b; 2194 int nr_slab_unreclaimable_b; 2195 #endif 2196 2197 struct work_struct work; 2198 unsigned long flags; 2199 #define FLUSHING_CACHED_CHARGE 0 2200 }; 2201 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2202 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2203 }; 2204 static DEFINE_MUTEX(percpu_charge_mutex); 2205 2206 #ifdef CONFIG_MEMCG_KMEM 2207 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2208 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2209 struct mem_cgroup *root_memcg); 2210 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2211 2212 #else 2213 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2214 { 2215 return NULL; 2216 } 2217 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2218 struct mem_cgroup *root_memcg) 2219 { 2220 return false; 2221 } 2222 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2223 { 2224 } 2225 #endif 2226 2227 /** 2228 * consume_stock: Try to consume stocked charge on this cpu. 2229 * @memcg: memcg to consume from. 2230 * @nr_pages: how many pages to charge. 2231 * 2232 * The charges will only happen if @memcg matches the current cpu's memcg 2233 * stock, and at least @nr_pages are available in that stock. Failure to 2234 * service an allocation will refill the stock. 2235 * 2236 * returns true if successful, false otherwise. 2237 */ 2238 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2239 { 2240 struct memcg_stock_pcp *stock; 2241 unsigned long flags; 2242 bool ret = false; 2243 2244 if (nr_pages > MEMCG_CHARGE_BATCH) 2245 return ret; 2246 2247 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2248 2249 stock = this_cpu_ptr(&memcg_stock); 2250 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2251 stock->nr_pages -= nr_pages; 2252 ret = true; 2253 } 2254 2255 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2256 2257 return ret; 2258 } 2259 2260 /* 2261 * Returns stocks cached in percpu and reset cached information. 2262 */ 2263 static void drain_stock(struct memcg_stock_pcp *stock) 2264 { 2265 struct mem_cgroup *old = stock->cached; 2266 2267 if (!old) 2268 return; 2269 2270 if (stock->nr_pages) { 2271 page_counter_uncharge(&old->memory, stock->nr_pages); 2272 if (do_memsw_account()) 2273 page_counter_uncharge(&old->memsw, stock->nr_pages); 2274 stock->nr_pages = 0; 2275 } 2276 2277 css_put(&old->css); 2278 stock->cached = NULL; 2279 } 2280 2281 static void drain_local_stock(struct work_struct *dummy) 2282 { 2283 struct memcg_stock_pcp *stock; 2284 struct obj_cgroup *old = NULL; 2285 unsigned long flags; 2286 2287 /* 2288 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2289 * drain_stock races is that we always operate on local CPU stock 2290 * here with IRQ disabled 2291 */ 2292 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2293 2294 stock = this_cpu_ptr(&memcg_stock); 2295 old = drain_obj_stock(stock); 2296 drain_stock(stock); 2297 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2298 2299 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2300 if (old) 2301 obj_cgroup_put(old); 2302 } 2303 2304 /* 2305 * Cache charges(val) to local per_cpu area. 2306 * This will be consumed by consume_stock() function, later. 2307 */ 2308 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2309 { 2310 struct memcg_stock_pcp *stock; 2311 2312 stock = this_cpu_ptr(&memcg_stock); 2313 if (stock->cached != memcg) { /* reset if necessary */ 2314 drain_stock(stock); 2315 css_get(&memcg->css); 2316 stock->cached = memcg; 2317 } 2318 stock->nr_pages += nr_pages; 2319 2320 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2321 drain_stock(stock); 2322 } 2323 2324 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2325 { 2326 unsigned long flags; 2327 2328 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2329 __refill_stock(memcg, nr_pages); 2330 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2331 } 2332 2333 /* 2334 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2335 * of the hierarchy under it. 2336 */ 2337 static void drain_all_stock(struct mem_cgroup *root_memcg) 2338 { 2339 int cpu, curcpu; 2340 2341 /* If someone's already draining, avoid adding running more workers. */ 2342 if (!mutex_trylock(&percpu_charge_mutex)) 2343 return; 2344 /* 2345 * Notify other cpus that system-wide "drain" is running 2346 * We do not care about races with the cpu hotplug because cpu down 2347 * as well as workers from this path always operate on the local 2348 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2349 */ 2350 migrate_disable(); 2351 curcpu = smp_processor_id(); 2352 for_each_online_cpu(cpu) { 2353 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2354 struct mem_cgroup *memcg; 2355 bool flush = false; 2356 2357 rcu_read_lock(); 2358 memcg = stock->cached; 2359 if (memcg && stock->nr_pages && 2360 mem_cgroup_is_descendant(memcg, root_memcg)) 2361 flush = true; 2362 else if (obj_stock_flush_required(stock, root_memcg)) 2363 flush = true; 2364 rcu_read_unlock(); 2365 2366 if (flush && 2367 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2368 if (cpu == curcpu) 2369 drain_local_stock(&stock->work); 2370 else 2371 schedule_work_on(cpu, &stock->work); 2372 } 2373 } 2374 migrate_enable(); 2375 mutex_unlock(&percpu_charge_mutex); 2376 } 2377 2378 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2379 { 2380 struct memcg_stock_pcp *stock; 2381 2382 stock = &per_cpu(memcg_stock, cpu); 2383 drain_stock(stock); 2384 2385 return 0; 2386 } 2387 2388 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2389 unsigned int nr_pages, 2390 gfp_t gfp_mask) 2391 { 2392 unsigned long nr_reclaimed = 0; 2393 2394 do { 2395 unsigned long pflags; 2396 2397 if (page_counter_read(&memcg->memory) <= 2398 READ_ONCE(memcg->memory.high)) 2399 continue; 2400 2401 memcg_memory_event(memcg, MEMCG_HIGH); 2402 2403 psi_memstall_enter(&pflags); 2404 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2405 gfp_mask, 2406 MEMCG_RECLAIM_MAY_SWAP, 2407 NULL); 2408 psi_memstall_leave(&pflags); 2409 } while ((memcg = parent_mem_cgroup(memcg)) && 2410 !mem_cgroup_is_root(memcg)); 2411 2412 return nr_reclaimed; 2413 } 2414 2415 static void high_work_func(struct work_struct *work) 2416 { 2417 struct mem_cgroup *memcg; 2418 2419 memcg = container_of(work, struct mem_cgroup, high_work); 2420 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2421 } 2422 2423 /* 2424 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2425 * enough to still cause a significant slowdown in most cases, while still 2426 * allowing diagnostics and tracing to proceed without becoming stuck. 2427 */ 2428 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2429 2430 /* 2431 * When calculating the delay, we use these either side of the exponentiation to 2432 * maintain precision and scale to a reasonable number of jiffies (see the table 2433 * below. 2434 * 2435 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2436 * overage ratio to a delay. 2437 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2438 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2439 * to produce a reasonable delay curve. 2440 * 2441 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2442 * reasonable delay curve compared to precision-adjusted overage, not 2443 * penalising heavily at first, but still making sure that growth beyond the 2444 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2445 * example, with a high of 100 megabytes: 2446 * 2447 * +-------+------------------------+ 2448 * | usage | time to allocate in ms | 2449 * +-------+------------------------+ 2450 * | 100M | 0 | 2451 * | 101M | 6 | 2452 * | 102M | 25 | 2453 * | 103M | 57 | 2454 * | 104M | 102 | 2455 * | 105M | 159 | 2456 * | 106M | 230 | 2457 * | 107M | 313 | 2458 * | 108M | 409 | 2459 * | 109M | 518 | 2460 * | 110M | 639 | 2461 * | 111M | 774 | 2462 * | 112M | 921 | 2463 * | 113M | 1081 | 2464 * | 114M | 1254 | 2465 * | 115M | 1439 | 2466 * | 116M | 1638 | 2467 * | 117M | 1849 | 2468 * | 118M | 2000 | 2469 * | 119M | 2000 | 2470 * | 120M | 2000 | 2471 * +-------+------------------------+ 2472 */ 2473 #define MEMCG_DELAY_PRECISION_SHIFT 20 2474 #define MEMCG_DELAY_SCALING_SHIFT 14 2475 2476 static u64 calculate_overage(unsigned long usage, unsigned long high) 2477 { 2478 u64 overage; 2479 2480 if (usage <= high) 2481 return 0; 2482 2483 /* 2484 * Prevent division by 0 in overage calculation by acting as if 2485 * it was a threshold of 1 page 2486 */ 2487 high = max(high, 1UL); 2488 2489 overage = usage - high; 2490 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2491 return div64_u64(overage, high); 2492 } 2493 2494 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2495 { 2496 u64 overage, max_overage = 0; 2497 2498 do { 2499 overage = calculate_overage(page_counter_read(&memcg->memory), 2500 READ_ONCE(memcg->memory.high)); 2501 max_overage = max(overage, max_overage); 2502 } while ((memcg = parent_mem_cgroup(memcg)) && 2503 !mem_cgroup_is_root(memcg)); 2504 2505 return max_overage; 2506 } 2507 2508 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2509 { 2510 u64 overage, max_overage = 0; 2511 2512 do { 2513 overage = calculate_overage(page_counter_read(&memcg->swap), 2514 READ_ONCE(memcg->swap.high)); 2515 if (overage) 2516 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2517 max_overage = max(overage, max_overage); 2518 } while ((memcg = parent_mem_cgroup(memcg)) && 2519 !mem_cgroup_is_root(memcg)); 2520 2521 return max_overage; 2522 } 2523 2524 /* 2525 * Get the number of jiffies that we should penalise a mischievous cgroup which 2526 * is exceeding its memory.high by checking both it and its ancestors. 2527 */ 2528 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2529 unsigned int nr_pages, 2530 u64 max_overage) 2531 { 2532 unsigned long penalty_jiffies; 2533 2534 if (!max_overage) 2535 return 0; 2536 2537 /* 2538 * We use overage compared to memory.high to calculate the number of 2539 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2540 * fairly lenient on small overages, and increasingly harsh when the 2541 * memcg in question makes it clear that it has no intention of stopping 2542 * its crazy behaviour, so we exponentially increase the delay based on 2543 * overage amount. 2544 */ 2545 penalty_jiffies = max_overage * max_overage * HZ; 2546 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2547 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2548 2549 /* 2550 * Factor in the task's own contribution to the overage, such that four 2551 * N-sized allocations are throttled approximately the same as one 2552 * 4N-sized allocation. 2553 * 2554 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2555 * larger the current charge patch is than that. 2556 */ 2557 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2558 } 2559 2560 /* 2561 * Scheduled by try_charge() to be executed from the userland return path 2562 * and reclaims memory over the high limit. 2563 */ 2564 void mem_cgroup_handle_over_high(void) 2565 { 2566 unsigned long penalty_jiffies; 2567 unsigned long pflags; 2568 unsigned long nr_reclaimed; 2569 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2570 int nr_retries = MAX_RECLAIM_RETRIES; 2571 struct mem_cgroup *memcg; 2572 bool in_retry = false; 2573 2574 if (likely(!nr_pages)) 2575 return; 2576 2577 memcg = get_mem_cgroup_from_mm(current->mm); 2578 current->memcg_nr_pages_over_high = 0; 2579 2580 retry_reclaim: 2581 /* 2582 * The allocating task should reclaim at least the batch size, but for 2583 * subsequent retries we only want to do what's necessary to prevent oom 2584 * or breaching resource isolation. 2585 * 2586 * This is distinct from memory.max or page allocator behaviour because 2587 * memory.high is currently batched, whereas memory.max and the page 2588 * allocator run every time an allocation is made. 2589 */ 2590 nr_reclaimed = reclaim_high(memcg, 2591 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2592 GFP_KERNEL); 2593 2594 /* 2595 * memory.high is breached and reclaim is unable to keep up. Throttle 2596 * allocators proactively to slow down excessive growth. 2597 */ 2598 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2599 mem_find_max_overage(memcg)); 2600 2601 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2602 swap_find_max_overage(memcg)); 2603 2604 /* 2605 * Clamp the max delay per usermode return so as to still keep the 2606 * application moving forwards and also permit diagnostics, albeit 2607 * extremely slowly. 2608 */ 2609 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2610 2611 /* 2612 * Don't sleep if the amount of jiffies this memcg owes us is so low 2613 * that it's not even worth doing, in an attempt to be nice to those who 2614 * go only a small amount over their memory.high value and maybe haven't 2615 * been aggressively reclaimed enough yet. 2616 */ 2617 if (penalty_jiffies <= HZ / 100) 2618 goto out; 2619 2620 /* 2621 * If reclaim is making forward progress but we're still over 2622 * memory.high, we want to encourage that rather than doing allocator 2623 * throttling. 2624 */ 2625 if (nr_reclaimed || nr_retries--) { 2626 in_retry = true; 2627 goto retry_reclaim; 2628 } 2629 2630 /* 2631 * If we exit early, we're guaranteed to die (since 2632 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2633 * need to account for any ill-begotten jiffies to pay them off later. 2634 */ 2635 psi_memstall_enter(&pflags); 2636 schedule_timeout_killable(penalty_jiffies); 2637 psi_memstall_leave(&pflags); 2638 2639 out: 2640 css_put(&memcg->css); 2641 } 2642 2643 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2644 unsigned int nr_pages) 2645 { 2646 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2647 int nr_retries = MAX_RECLAIM_RETRIES; 2648 struct mem_cgroup *mem_over_limit; 2649 struct page_counter *counter; 2650 unsigned long nr_reclaimed; 2651 bool passed_oom = false; 2652 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2653 bool drained = false; 2654 bool raised_max_event = false; 2655 unsigned long pflags; 2656 2657 retry: 2658 if (consume_stock(memcg, nr_pages)) 2659 return 0; 2660 2661 if (!do_memsw_account() || 2662 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2663 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2664 goto done_restock; 2665 if (do_memsw_account()) 2666 page_counter_uncharge(&memcg->memsw, batch); 2667 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2668 } else { 2669 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2670 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2671 } 2672 2673 if (batch > nr_pages) { 2674 batch = nr_pages; 2675 goto retry; 2676 } 2677 2678 /* 2679 * Prevent unbounded recursion when reclaim operations need to 2680 * allocate memory. This might exceed the limits temporarily, 2681 * but we prefer facilitating memory reclaim and getting back 2682 * under the limit over triggering OOM kills in these cases. 2683 */ 2684 if (unlikely(current->flags & PF_MEMALLOC)) 2685 goto force; 2686 2687 if (unlikely(task_in_memcg_oom(current))) 2688 goto nomem; 2689 2690 if (!gfpflags_allow_blocking(gfp_mask)) 2691 goto nomem; 2692 2693 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2694 raised_max_event = true; 2695 2696 psi_memstall_enter(&pflags); 2697 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2698 gfp_mask, reclaim_options, 2699 NULL); 2700 psi_memstall_leave(&pflags); 2701 2702 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2703 goto retry; 2704 2705 if (!drained) { 2706 drain_all_stock(mem_over_limit); 2707 drained = true; 2708 goto retry; 2709 } 2710 2711 if (gfp_mask & __GFP_NORETRY) 2712 goto nomem; 2713 /* 2714 * Even though the limit is exceeded at this point, reclaim 2715 * may have been able to free some pages. Retry the charge 2716 * before killing the task. 2717 * 2718 * Only for regular pages, though: huge pages are rather 2719 * unlikely to succeed so close to the limit, and we fall back 2720 * to regular pages anyway in case of failure. 2721 */ 2722 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2723 goto retry; 2724 /* 2725 * At task move, charge accounts can be doubly counted. So, it's 2726 * better to wait until the end of task_move if something is going on. 2727 */ 2728 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2729 goto retry; 2730 2731 if (nr_retries--) 2732 goto retry; 2733 2734 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2735 goto nomem; 2736 2737 /* Avoid endless loop for tasks bypassed by the oom killer */ 2738 if (passed_oom && task_is_dying()) 2739 goto nomem; 2740 2741 /* 2742 * keep retrying as long as the memcg oom killer is able to make 2743 * a forward progress or bypass the charge if the oom killer 2744 * couldn't make any progress. 2745 */ 2746 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2747 get_order(nr_pages * PAGE_SIZE))) { 2748 passed_oom = true; 2749 nr_retries = MAX_RECLAIM_RETRIES; 2750 goto retry; 2751 } 2752 nomem: 2753 /* 2754 * Memcg doesn't have a dedicated reserve for atomic 2755 * allocations. But like the global atomic pool, we need to 2756 * put the burden of reclaim on regular allocation requests 2757 * and let these go through as privileged allocations. 2758 */ 2759 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2760 return -ENOMEM; 2761 force: 2762 /* 2763 * If the allocation has to be enforced, don't forget to raise 2764 * a MEMCG_MAX event. 2765 */ 2766 if (!raised_max_event) 2767 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2768 2769 /* 2770 * The allocation either can't fail or will lead to more memory 2771 * being freed very soon. Allow memory usage go over the limit 2772 * temporarily by force charging it. 2773 */ 2774 page_counter_charge(&memcg->memory, nr_pages); 2775 if (do_memsw_account()) 2776 page_counter_charge(&memcg->memsw, nr_pages); 2777 2778 return 0; 2779 2780 done_restock: 2781 if (batch > nr_pages) 2782 refill_stock(memcg, batch - nr_pages); 2783 2784 /* 2785 * If the hierarchy is above the normal consumption range, schedule 2786 * reclaim on returning to userland. We can perform reclaim here 2787 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2788 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2789 * not recorded as it most likely matches current's and won't 2790 * change in the meantime. As high limit is checked again before 2791 * reclaim, the cost of mismatch is negligible. 2792 */ 2793 do { 2794 bool mem_high, swap_high; 2795 2796 mem_high = page_counter_read(&memcg->memory) > 2797 READ_ONCE(memcg->memory.high); 2798 swap_high = page_counter_read(&memcg->swap) > 2799 READ_ONCE(memcg->swap.high); 2800 2801 /* Don't bother a random interrupted task */ 2802 if (!in_task()) { 2803 if (mem_high) { 2804 schedule_work(&memcg->high_work); 2805 break; 2806 } 2807 continue; 2808 } 2809 2810 if (mem_high || swap_high) { 2811 /* 2812 * The allocating tasks in this cgroup will need to do 2813 * reclaim or be throttled to prevent further growth 2814 * of the memory or swap footprints. 2815 * 2816 * Target some best-effort fairness between the tasks, 2817 * and distribute reclaim work and delay penalties 2818 * based on how much each task is actually allocating. 2819 */ 2820 current->memcg_nr_pages_over_high += batch; 2821 set_notify_resume(current); 2822 break; 2823 } 2824 } while ((memcg = parent_mem_cgroup(memcg))); 2825 2826 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2827 !(current->flags & PF_MEMALLOC) && 2828 gfpflags_allow_blocking(gfp_mask)) { 2829 mem_cgroup_handle_over_high(); 2830 } 2831 return 0; 2832 } 2833 2834 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2835 unsigned int nr_pages) 2836 { 2837 if (mem_cgroup_is_root(memcg)) 2838 return 0; 2839 2840 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2841 } 2842 2843 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2844 { 2845 if (mem_cgroup_is_root(memcg)) 2846 return; 2847 2848 page_counter_uncharge(&memcg->memory, nr_pages); 2849 if (do_memsw_account()) 2850 page_counter_uncharge(&memcg->memsw, nr_pages); 2851 } 2852 2853 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2854 { 2855 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2856 /* 2857 * Any of the following ensures page's memcg stability: 2858 * 2859 * - the page lock 2860 * - LRU isolation 2861 * - lock_page_memcg() 2862 * - exclusive reference 2863 * - mem_cgroup_trylock_pages() 2864 */ 2865 folio->memcg_data = (unsigned long)memcg; 2866 } 2867 2868 #ifdef CONFIG_MEMCG_KMEM 2869 /* 2870 * The allocated objcg pointers array is not accounted directly. 2871 * Moreover, it should not come from DMA buffer and is not readily 2872 * reclaimable. So those GFP bits should be masked off. 2873 */ 2874 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2875 2876 /* 2877 * mod_objcg_mlstate() may be called with irq enabled, so 2878 * mod_memcg_lruvec_state() should be used. 2879 */ 2880 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2881 struct pglist_data *pgdat, 2882 enum node_stat_item idx, int nr) 2883 { 2884 struct mem_cgroup *memcg; 2885 struct lruvec *lruvec; 2886 2887 rcu_read_lock(); 2888 memcg = obj_cgroup_memcg(objcg); 2889 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2890 mod_memcg_lruvec_state(lruvec, idx, nr); 2891 rcu_read_unlock(); 2892 } 2893 2894 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2895 gfp_t gfp, bool new_slab) 2896 { 2897 unsigned int objects = objs_per_slab(s, slab); 2898 unsigned long memcg_data; 2899 void *vec; 2900 2901 gfp &= ~OBJCGS_CLEAR_MASK; 2902 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2903 slab_nid(slab)); 2904 if (!vec) 2905 return -ENOMEM; 2906 2907 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2908 if (new_slab) { 2909 /* 2910 * If the slab is brand new and nobody can yet access its 2911 * memcg_data, no synchronization is required and memcg_data can 2912 * be simply assigned. 2913 */ 2914 slab->memcg_data = memcg_data; 2915 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2916 /* 2917 * If the slab is already in use, somebody can allocate and 2918 * assign obj_cgroups in parallel. In this case the existing 2919 * objcg vector should be reused. 2920 */ 2921 kfree(vec); 2922 return 0; 2923 } 2924 2925 kmemleak_not_leak(vec); 2926 return 0; 2927 } 2928 2929 static __always_inline 2930 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2931 { 2932 /* 2933 * Slab objects are accounted individually, not per-page. 2934 * Memcg membership data for each individual object is saved in 2935 * slab->memcg_data. 2936 */ 2937 if (folio_test_slab(folio)) { 2938 struct obj_cgroup **objcgs; 2939 struct slab *slab; 2940 unsigned int off; 2941 2942 slab = folio_slab(folio); 2943 objcgs = slab_objcgs(slab); 2944 if (!objcgs) 2945 return NULL; 2946 2947 off = obj_to_index(slab->slab_cache, slab, p); 2948 if (objcgs[off]) 2949 return obj_cgroup_memcg(objcgs[off]); 2950 2951 return NULL; 2952 } 2953 2954 /* 2955 * folio_memcg_check() is used here, because in theory we can encounter 2956 * a folio where the slab flag has been cleared already, but 2957 * slab->memcg_data has not been freed yet 2958 * folio_memcg_check() will guarantee that a proper memory 2959 * cgroup pointer or NULL will be returned. 2960 */ 2961 return folio_memcg_check(folio); 2962 } 2963 2964 /* 2965 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2966 * 2967 * A passed kernel object can be a slab object, vmalloc object or a generic 2968 * kernel page, so different mechanisms for getting the memory cgroup pointer 2969 * should be used. 2970 * 2971 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2972 * can not know for sure how the kernel object is implemented. 2973 * mem_cgroup_from_obj() can be safely used in such cases. 2974 * 2975 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2976 * cgroup_mutex, etc. 2977 */ 2978 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2979 { 2980 struct folio *folio; 2981 2982 if (mem_cgroup_disabled()) 2983 return NULL; 2984 2985 if (unlikely(is_vmalloc_addr(p))) 2986 folio = page_folio(vmalloc_to_page(p)); 2987 else 2988 folio = virt_to_folio(p); 2989 2990 return mem_cgroup_from_obj_folio(folio, p); 2991 } 2992 2993 /* 2994 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2995 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 2996 * allocated using vmalloc(). 2997 * 2998 * A passed kernel object must be a slab object or a generic kernel page. 2999 * 3000 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3001 * cgroup_mutex, etc. 3002 */ 3003 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3004 { 3005 if (mem_cgroup_disabled()) 3006 return NULL; 3007 3008 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3009 } 3010 3011 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3012 { 3013 struct obj_cgroup *objcg = NULL; 3014 3015 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3016 objcg = rcu_dereference(memcg->objcg); 3017 if (objcg && obj_cgroup_tryget(objcg)) 3018 break; 3019 objcg = NULL; 3020 } 3021 return objcg; 3022 } 3023 3024 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 3025 { 3026 struct obj_cgroup *objcg = NULL; 3027 struct mem_cgroup *memcg; 3028 3029 if (memcg_kmem_bypass()) 3030 return NULL; 3031 3032 rcu_read_lock(); 3033 if (unlikely(active_memcg())) 3034 memcg = active_memcg(); 3035 else 3036 memcg = mem_cgroup_from_task(current); 3037 objcg = __get_obj_cgroup_from_memcg(memcg); 3038 rcu_read_unlock(); 3039 return objcg; 3040 } 3041 3042 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 3043 { 3044 struct obj_cgroup *objcg; 3045 3046 if (!memcg_kmem_enabled()) 3047 return NULL; 3048 3049 if (PageMemcgKmem(page)) { 3050 objcg = __folio_objcg(page_folio(page)); 3051 obj_cgroup_get(objcg); 3052 } else { 3053 struct mem_cgroup *memcg; 3054 3055 rcu_read_lock(); 3056 memcg = __folio_memcg(page_folio(page)); 3057 if (memcg) 3058 objcg = __get_obj_cgroup_from_memcg(memcg); 3059 else 3060 objcg = NULL; 3061 rcu_read_unlock(); 3062 } 3063 return objcg; 3064 } 3065 3066 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3067 { 3068 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3069 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3070 if (nr_pages > 0) 3071 page_counter_charge(&memcg->kmem, nr_pages); 3072 else 3073 page_counter_uncharge(&memcg->kmem, -nr_pages); 3074 } 3075 } 3076 3077 3078 /* 3079 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3080 * @objcg: object cgroup to uncharge 3081 * @nr_pages: number of pages to uncharge 3082 */ 3083 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3084 unsigned int nr_pages) 3085 { 3086 struct mem_cgroup *memcg; 3087 3088 memcg = get_mem_cgroup_from_objcg(objcg); 3089 3090 memcg_account_kmem(memcg, -nr_pages); 3091 refill_stock(memcg, nr_pages); 3092 3093 css_put(&memcg->css); 3094 } 3095 3096 /* 3097 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3098 * @objcg: object cgroup to charge 3099 * @gfp: reclaim mode 3100 * @nr_pages: number of pages to charge 3101 * 3102 * Returns 0 on success, an error code on failure. 3103 */ 3104 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3105 unsigned int nr_pages) 3106 { 3107 struct mem_cgroup *memcg; 3108 int ret; 3109 3110 memcg = get_mem_cgroup_from_objcg(objcg); 3111 3112 ret = try_charge_memcg(memcg, gfp, nr_pages); 3113 if (ret) 3114 goto out; 3115 3116 memcg_account_kmem(memcg, nr_pages); 3117 out: 3118 css_put(&memcg->css); 3119 3120 return ret; 3121 } 3122 3123 /** 3124 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3125 * @page: page to charge 3126 * @gfp: reclaim mode 3127 * @order: allocation order 3128 * 3129 * Returns 0 on success, an error code on failure. 3130 */ 3131 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3132 { 3133 struct obj_cgroup *objcg; 3134 int ret = 0; 3135 3136 objcg = get_obj_cgroup_from_current(); 3137 if (objcg) { 3138 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3139 if (!ret) { 3140 page->memcg_data = (unsigned long)objcg | 3141 MEMCG_DATA_KMEM; 3142 return 0; 3143 } 3144 obj_cgroup_put(objcg); 3145 } 3146 return ret; 3147 } 3148 3149 /** 3150 * __memcg_kmem_uncharge_page: uncharge a kmem page 3151 * @page: page to uncharge 3152 * @order: allocation order 3153 */ 3154 void __memcg_kmem_uncharge_page(struct page *page, int order) 3155 { 3156 struct folio *folio = page_folio(page); 3157 struct obj_cgroup *objcg; 3158 unsigned int nr_pages = 1 << order; 3159 3160 if (!folio_memcg_kmem(folio)) 3161 return; 3162 3163 objcg = __folio_objcg(folio); 3164 obj_cgroup_uncharge_pages(objcg, nr_pages); 3165 folio->memcg_data = 0; 3166 obj_cgroup_put(objcg); 3167 } 3168 3169 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3170 enum node_stat_item idx, int nr) 3171 { 3172 struct memcg_stock_pcp *stock; 3173 struct obj_cgroup *old = NULL; 3174 unsigned long flags; 3175 int *bytes; 3176 3177 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3178 stock = this_cpu_ptr(&memcg_stock); 3179 3180 /* 3181 * Save vmstat data in stock and skip vmstat array update unless 3182 * accumulating over a page of vmstat data or when pgdat or idx 3183 * changes. 3184 */ 3185 if (stock->cached_objcg != objcg) { 3186 old = drain_obj_stock(stock); 3187 obj_cgroup_get(objcg); 3188 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3189 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3190 stock->cached_objcg = objcg; 3191 stock->cached_pgdat = pgdat; 3192 } else if (stock->cached_pgdat != pgdat) { 3193 /* Flush the existing cached vmstat data */ 3194 struct pglist_data *oldpg = stock->cached_pgdat; 3195 3196 if (stock->nr_slab_reclaimable_b) { 3197 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3198 stock->nr_slab_reclaimable_b); 3199 stock->nr_slab_reclaimable_b = 0; 3200 } 3201 if (stock->nr_slab_unreclaimable_b) { 3202 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3203 stock->nr_slab_unreclaimable_b); 3204 stock->nr_slab_unreclaimable_b = 0; 3205 } 3206 stock->cached_pgdat = pgdat; 3207 } 3208 3209 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3210 : &stock->nr_slab_unreclaimable_b; 3211 /* 3212 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3213 * cached locally at least once before pushing it out. 3214 */ 3215 if (!*bytes) { 3216 *bytes = nr; 3217 nr = 0; 3218 } else { 3219 *bytes += nr; 3220 if (abs(*bytes) > PAGE_SIZE) { 3221 nr = *bytes; 3222 *bytes = 0; 3223 } else { 3224 nr = 0; 3225 } 3226 } 3227 if (nr) 3228 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3229 3230 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3231 if (old) 3232 obj_cgroup_put(old); 3233 } 3234 3235 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3236 { 3237 struct memcg_stock_pcp *stock; 3238 unsigned long flags; 3239 bool ret = false; 3240 3241 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3242 3243 stock = this_cpu_ptr(&memcg_stock); 3244 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3245 stock->nr_bytes -= nr_bytes; 3246 ret = true; 3247 } 3248 3249 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3250 3251 return ret; 3252 } 3253 3254 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3255 { 3256 struct obj_cgroup *old = stock->cached_objcg; 3257 3258 if (!old) 3259 return NULL; 3260 3261 if (stock->nr_bytes) { 3262 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3263 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3264 3265 if (nr_pages) { 3266 struct mem_cgroup *memcg; 3267 3268 memcg = get_mem_cgroup_from_objcg(old); 3269 3270 memcg_account_kmem(memcg, -nr_pages); 3271 __refill_stock(memcg, nr_pages); 3272 3273 css_put(&memcg->css); 3274 } 3275 3276 /* 3277 * The leftover is flushed to the centralized per-memcg value. 3278 * On the next attempt to refill obj stock it will be moved 3279 * to a per-cpu stock (probably, on an other CPU), see 3280 * refill_obj_stock(). 3281 * 3282 * How often it's flushed is a trade-off between the memory 3283 * limit enforcement accuracy and potential CPU contention, 3284 * so it might be changed in the future. 3285 */ 3286 atomic_add(nr_bytes, &old->nr_charged_bytes); 3287 stock->nr_bytes = 0; 3288 } 3289 3290 /* 3291 * Flush the vmstat data in current stock 3292 */ 3293 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3294 if (stock->nr_slab_reclaimable_b) { 3295 mod_objcg_mlstate(old, stock->cached_pgdat, 3296 NR_SLAB_RECLAIMABLE_B, 3297 stock->nr_slab_reclaimable_b); 3298 stock->nr_slab_reclaimable_b = 0; 3299 } 3300 if (stock->nr_slab_unreclaimable_b) { 3301 mod_objcg_mlstate(old, stock->cached_pgdat, 3302 NR_SLAB_UNRECLAIMABLE_B, 3303 stock->nr_slab_unreclaimable_b); 3304 stock->nr_slab_unreclaimable_b = 0; 3305 } 3306 stock->cached_pgdat = NULL; 3307 } 3308 3309 stock->cached_objcg = NULL; 3310 /* 3311 * The `old' objects needs to be released by the caller via 3312 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3313 */ 3314 return old; 3315 } 3316 3317 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3318 struct mem_cgroup *root_memcg) 3319 { 3320 struct mem_cgroup *memcg; 3321 3322 if (stock->cached_objcg) { 3323 memcg = obj_cgroup_memcg(stock->cached_objcg); 3324 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3325 return true; 3326 } 3327 3328 return false; 3329 } 3330 3331 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3332 bool allow_uncharge) 3333 { 3334 struct memcg_stock_pcp *stock; 3335 struct obj_cgroup *old = NULL; 3336 unsigned long flags; 3337 unsigned int nr_pages = 0; 3338 3339 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3340 3341 stock = this_cpu_ptr(&memcg_stock); 3342 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3343 old = drain_obj_stock(stock); 3344 obj_cgroup_get(objcg); 3345 stock->cached_objcg = objcg; 3346 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3347 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3348 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3349 } 3350 stock->nr_bytes += nr_bytes; 3351 3352 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3353 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3354 stock->nr_bytes &= (PAGE_SIZE - 1); 3355 } 3356 3357 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3358 if (old) 3359 obj_cgroup_put(old); 3360 3361 if (nr_pages) 3362 obj_cgroup_uncharge_pages(objcg, nr_pages); 3363 } 3364 3365 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3366 { 3367 unsigned int nr_pages, nr_bytes; 3368 int ret; 3369 3370 if (consume_obj_stock(objcg, size)) 3371 return 0; 3372 3373 /* 3374 * In theory, objcg->nr_charged_bytes can have enough 3375 * pre-charged bytes to satisfy the allocation. However, 3376 * flushing objcg->nr_charged_bytes requires two atomic 3377 * operations, and objcg->nr_charged_bytes can't be big. 3378 * The shared objcg->nr_charged_bytes can also become a 3379 * performance bottleneck if all tasks of the same memcg are 3380 * trying to update it. So it's better to ignore it and try 3381 * grab some new pages. The stock's nr_bytes will be flushed to 3382 * objcg->nr_charged_bytes later on when objcg changes. 3383 * 3384 * The stock's nr_bytes may contain enough pre-charged bytes 3385 * to allow one less page from being charged, but we can't rely 3386 * on the pre-charged bytes not being changed outside of 3387 * consume_obj_stock() or refill_obj_stock(). So ignore those 3388 * pre-charged bytes as well when charging pages. To avoid a 3389 * page uncharge right after a page charge, we set the 3390 * allow_uncharge flag to false when calling refill_obj_stock() 3391 * to temporarily allow the pre-charged bytes to exceed the page 3392 * size limit. The maximum reachable value of the pre-charged 3393 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3394 * race. 3395 */ 3396 nr_pages = size >> PAGE_SHIFT; 3397 nr_bytes = size & (PAGE_SIZE - 1); 3398 3399 if (nr_bytes) 3400 nr_pages += 1; 3401 3402 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3403 if (!ret && nr_bytes) 3404 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3405 3406 return ret; 3407 } 3408 3409 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3410 { 3411 refill_obj_stock(objcg, size, true); 3412 } 3413 3414 #endif /* CONFIG_MEMCG_KMEM */ 3415 3416 /* 3417 * Because page_memcg(head) is not set on tails, set it now. 3418 */ 3419 void split_page_memcg(struct page *head, unsigned int nr) 3420 { 3421 struct folio *folio = page_folio(head); 3422 struct mem_cgroup *memcg = folio_memcg(folio); 3423 int i; 3424 3425 if (mem_cgroup_disabled() || !memcg) 3426 return; 3427 3428 for (i = 1; i < nr; i++) 3429 folio_page(folio, i)->memcg_data = folio->memcg_data; 3430 3431 if (folio_memcg_kmem(folio)) 3432 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3433 else 3434 css_get_many(&memcg->css, nr - 1); 3435 } 3436 3437 #ifdef CONFIG_SWAP 3438 /** 3439 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3440 * @entry: swap entry to be moved 3441 * @from: mem_cgroup which the entry is moved from 3442 * @to: mem_cgroup which the entry is moved to 3443 * 3444 * It succeeds only when the swap_cgroup's record for this entry is the same 3445 * as the mem_cgroup's id of @from. 3446 * 3447 * Returns 0 on success, -EINVAL on failure. 3448 * 3449 * The caller must have charged to @to, IOW, called page_counter_charge() about 3450 * both res and memsw, and called css_get(). 3451 */ 3452 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3453 struct mem_cgroup *from, struct mem_cgroup *to) 3454 { 3455 unsigned short old_id, new_id; 3456 3457 old_id = mem_cgroup_id(from); 3458 new_id = mem_cgroup_id(to); 3459 3460 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3461 mod_memcg_state(from, MEMCG_SWAP, -1); 3462 mod_memcg_state(to, MEMCG_SWAP, 1); 3463 return 0; 3464 } 3465 return -EINVAL; 3466 } 3467 #else 3468 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3469 struct mem_cgroup *from, struct mem_cgroup *to) 3470 { 3471 return -EINVAL; 3472 } 3473 #endif 3474 3475 static DEFINE_MUTEX(memcg_max_mutex); 3476 3477 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3478 unsigned long max, bool memsw) 3479 { 3480 bool enlarge = false; 3481 bool drained = false; 3482 int ret; 3483 bool limits_invariant; 3484 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3485 3486 do { 3487 if (signal_pending(current)) { 3488 ret = -EINTR; 3489 break; 3490 } 3491 3492 mutex_lock(&memcg_max_mutex); 3493 /* 3494 * Make sure that the new limit (memsw or memory limit) doesn't 3495 * break our basic invariant rule memory.max <= memsw.max. 3496 */ 3497 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3498 max <= memcg->memsw.max; 3499 if (!limits_invariant) { 3500 mutex_unlock(&memcg_max_mutex); 3501 ret = -EINVAL; 3502 break; 3503 } 3504 if (max > counter->max) 3505 enlarge = true; 3506 ret = page_counter_set_max(counter, max); 3507 mutex_unlock(&memcg_max_mutex); 3508 3509 if (!ret) 3510 break; 3511 3512 if (!drained) { 3513 drain_all_stock(memcg); 3514 drained = true; 3515 continue; 3516 } 3517 3518 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3519 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, 3520 NULL)) { 3521 ret = -EBUSY; 3522 break; 3523 } 3524 } while (true); 3525 3526 if (!ret && enlarge) 3527 memcg_oom_recover(memcg); 3528 3529 return ret; 3530 } 3531 3532 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3533 gfp_t gfp_mask, 3534 unsigned long *total_scanned) 3535 { 3536 unsigned long nr_reclaimed = 0; 3537 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3538 unsigned long reclaimed; 3539 int loop = 0; 3540 struct mem_cgroup_tree_per_node *mctz; 3541 unsigned long excess; 3542 3543 if (lru_gen_enabled()) 3544 return 0; 3545 3546 if (order > 0) 3547 return 0; 3548 3549 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3550 3551 /* 3552 * Do not even bother to check the largest node if the root 3553 * is empty. Do it lockless to prevent lock bouncing. Races 3554 * are acceptable as soft limit is best effort anyway. 3555 */ 3556 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3557 return 0; 3558 3559 /* 3560 * This loop can run a while, specially if mem_cgroup's continuously 3561 * keep exceeding their soft limit and putting the system under 3562 * pressure 3563 */ 3564 do { 3565 if (next_mz) 3566 mz = next_mz; 3567 else 3568 mz = mem_cgroup_largest_soft_limit_node(mctz); 3569 if (!mz) 3570 break; 3571 3572 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3573 gfp_mask, total_scanned); 3574 nr_reclaimed += reclaimed; 3575 spin_lock_irq(&mctz->lock); 3576 3577 /* 3578 * If we failed to reclaim anything from this memory cgroup 3579 * it is time to move on to the next cgroup 3580 */ 3581 next_mz = NULL; 3582 if (!reclaimed) 3583 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3584 3585 excess = soft_limit_excess(mz->memcg); 3586 /* 3587 * One school of thought says that we should not add 3588 * back the node to the tree if reclaim returns 0. 3589 * But our reclaim could return 0, simply because due 3590 * to priority we are exposing a smaller subset of 3591 * memory to reclaim from. Consider this as a longer 3592 * term TODO. 3593 */ 3594 /* If excess == 0, no tree ops */ 3595 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3596 spin_unlock_irq(&mctz->lock); 3597 css_put(&mz->memcg->css); 3598 loop++; 3599 /* 3600 * Could not reclaim anything and there are no more 3601 * mem cgroups to try or we seem to be looping without 3602 * reclaiming anything. 3603 */ 3604 if (!nr_reclaimed && 3605 (next_mz == NULL || 3606 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3607 break; 3608 } while (!nr_reclaimed); 3609 if (next_mz) 3610 css_put(&next_mz->memcg->css); 3611 return nr_reclaimed; 3612 } 3613 3614 /* 3615 * Reclaims as many pages from the given memcg as possible. 3616 * 3617 * Caller is responsible for holding css reference for memcg. 3618 */ 3619 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3620 { 3621 int nr_retries = MAX_RECLAIM_RETRIES; 3622 3623 /* we call try-to-free pages for make this cgroup empty */ 3624 lru_add_drain_all(); 3625 3626 drain_all_stock(memcg); 3627 3628 /* try to free all pages in this cgroup */ 3629 while (nr_retries && page_counter_read(&memcg->memory)) { 3630 if (signal_pending(current)) 3631 return -EINTR; 3632 3633 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3634 MEMCG_RECLAIM_MAY_SWAP, 3635 NULL)) 3636 nr_retries--; 3637 } 3638 3639 return 0; 3640 } 3641 3642 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3643 char *buf, size_t nbytes, 3644 loff_t off) 3645 { 3646 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3647 3648 if (mem_cgroup_is_root(memcg)) 3649 return -EINVAL; 3650 return mem_cgroup_force_empty(memcg) ?: nbytes; 3651 } 3652 3653 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3654 struct cftype *cft) 3655 { 3656 return 1; 3657 } 3658 3659 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3660 struct cftype *cft, u64 val) 3661 { 3662 if (val == 1) 3663 return 0; 3664 3665 pr_warn_once("Non-hierarchical mode is deprecated. " 3666 "Please report your usecase to linux-mm@kvack.org if you " 3667 "depend on this functionality.\n"); 3668 3669 return -EINVAL; 3670 } 3671 3672 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3673 { 3674 unsigned long val; 3675 3676 if (mem_cgroup_is_root(memcg)) { 3677 mem_cgroup_flush_stats(); 3678 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3679 memcg_page_state(memcg, NR_ANON_MAPPED); 3680 if (swap) 3681 val += memcg_page_state(memcg, MEMCG_SWAP); 3682 } else { 3683 if (!swap) 3684 val = page_counter_read(&memcg->memory); 3685 else 3686 val = page_counter_read(&memcg->memsw); 3687 } 3688 return val; 3689 } 3690 3691 enum { 3692 RES_USAGE, 3693 RES_LIMIT, 3694 RES_MAX_USAGE, 3695 RES_FAILCNT, 3696 RES_SOFT_LIMIT, 3697 }; 3698 3699 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3700 struct cftype *cft) 3701 { 3702 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3703 struct page_counter *counter; 3704 3705 switch (MEMFILE_TYPE(cft->private)) { 3706 case _MEM: 3707 counter = &memcg->memory; 3708 break; 3709 case _MEMSWAP: 3710 counter = &memcg->memsw; 3711 break; 3712 case _KMEM: 3713 counter = &memcg->kmem; 3714 break; 3715 case _TCP: 3716 counter = &memcg->tcpmem; 3717 break; 3718 default: 3719 BUG(); 3720 } 3721 3722 switch (MEMFILE_ATTR(cft->private)) { 3723 case RES_USAGE: 3724 if (counter == &memcg->memory) 3725 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3726 if (counter == &memcg->memsw) 3727 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3728 return (u64)page_counter_read(counter) * PAGE_SIZE; 3729 case RES_LIMIT: 3730 return (u64)counter->max * PAGE_SIZE; 3731 case RES_MAX_USAGE: 3732 return (u64)counter->watermark * PAGE_SIZE; 3733 case RES_FAILCNT: 3734 return counter->failcnt; 3735 case RES_SOFT_LIMIT: 3736 return (u64)memcg->soft_limit * PAGE_SIZE; 3737 default: 3738 BUG(); 3739 } 3740 } 3741 3742 #ifdef CONFIG_MEMCG_KMEM 3743 static int memcg_online_kmem(struct mem_cgroup *memcg) 3744 { 3745 struct obj_cgroup *objcg; 3746 3747 if (mem_cgroup_kmem_disabled()) 3748 return 0; 3749 3750 if (unlikely(mem_cgroup_is_root(memcg))) 3751 return 0; 3752 3753 objcg = obj_cgroup_alloc(); 3754 if (!objcg) 3755 return -ENOMEM; 3756 3757 objcg->memcg = memcg; 3758 rcu_assign_pointer(memcg->objcg, objcg); 3759 3760 static_branch_enable(&memcg_kmem_enabled_key); 3761 3762 memcg->kmemcg_id = memcg->id.id; 3763 3764 return 0; 3765 } 3766 3767 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3768 { 3769 struct mem_cgroup *parent; 3770 3771 if (mem_cgroup_kmem_disabled()) 3772 return; 3773 3774 if (unlikely(mem_cgroup_is_root(memcg))) 3775 return; 3776 3777 parent = parent_mem_cgroup(memcg); 3778 if (!parent) 3779 parent = root_mem_cgroup; 3780 3781 memcg_reparent_objcgs(memcg, parent); 3782 3783 /* 3784 * After we have finished memcg_reparent_objcgs(), all list_lrus 3785 * corresponding to this cgroup are guaranteed to remain empty. 3786 * The ordering is imposed by list_lru_node->lock taken by 3787 * memcg_reparent_list_lrus(). 3788 */ 3789 memcg_reparent_list_lrus(memcg, parent); 3790 } 3791 #else 3792 static int memcg_online_kmem(struct mem_cgroup *memcg) 3793 { 3794 return 0; 3795 } 3796 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3797 { 3798 } 3799 #endif /* CONFIG_MEMCG_KMEM */ 3800 3801 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3802 { 3803 int ret; 3804 3805 mutex_lock(&memcg_max_mutex); 3806 3807 ret = page_counter_set_max(&memcg->tcpmem, max); 3808 if (ret) 3809 goto out; 3810 3811 if (!memcg->tcpmem_active) { 3812 /* 3813 * The active flag needs to be written after the static_key 3814 * update. This is what guarantees that the socket activation 3815 * function is the last one to run. See mem_cgroup_sk_alloc() 3816 * for details, and note that we don't mark any socket as 3817 * belonging to this memcg until that flag is up. 3818 * 3819 * We need to do this, because static_keys will span multiple 3820 * sites, but we can't control their order. If we mark a socket 3821 * as accounted, but the accounting functions are not patched in 3822 * yet, we'll lose accounting. 3823 * 3824 * We never race with the readers in mem_cgroup_sk_alloc(), 3825 * because when this value change, the code to process it is not 3826 * patched in yet. 3827 */ 3828 static_branch_inc(&memcg_sockets_enabled_key); 3829 memcg->tcpmem_active = true; 3830 } 3831 out: 3832 mutex_unlock(&memcg_max_mutex); 3833 return ret; 3834 } 3835 3836 /* 3837 * The user of this function is... 3838 * RES_LIMIT. 3839 */ 3840 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3841 char *buf, size_t nbytes, loff_t off) 3842 { 3843 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3844 unsigned long nr_pages; 3845 int ret; 3846 3847 buf = strstrip(buf); 3848 ret = page_counter_memparse(buf, "-1", &nr_pages); 3849 if (ret) 3850 return ret; 3851 3852 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3853 case RES_LIMIT: 3854 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3855 ret = -EINVAL; 3856 break; 3857 } 3858 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3859 case _MEM: 3860 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3861 break; 3862 case _MEMSWAP: 3863 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3864 break; 3865 case _KMEM: 3866 /* kmem.limit_in_bytes is deprecated. */ 3867 ret = -EOPNOTSUPP; 3868 break; 3869 case _TCP: 3870 ret = memcg_update_tcp_max(memcg, nr_pages); 3871 break; 3872 } 3873 break; 3874 case RES_SOFT_LIMIT: 3875 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3876 ret = -EOPNOTSUPP; 3877 } else { 3878 memcg->soft_limit = nr_pages; 3879 ret = 0; 3880 } 3881 break; 3882 } 3883 return ret ?: nbytes; 3884 } 3885 3886 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3887 size_t nbytes, loff_t off) 3888 { 3889 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3890 struct page_counter *counter; 3891 3892 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3893 case _MEM: 3894 counter = &memcg->memory; 3895 break; 3896 case _MEMSWAP: 3897 counter = &memcg->memsw; 3898 break; 3899 case _KMEM: 3900 counter = &memcg->kmem; 3901 break; 3902 case _TCP: 3903 counter = &memcg->tcpmem; 3904 break; 3905 default: 3906 BUG(); 3907 } 3908 3909 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3910 case RES_MAX_USAGE: 3911 page_counter_reset_watermark(counter); 3912 break; 3913 case RES_FAILCNT: 3914 counter->failcnt = 0; 3915 break; 3916 default: 3917 BUG(); 3918 } 3919 3920 return nbytes; 3921 } 3922 3923 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3924 struct cftype *cft) 3925 { 3926 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3927 } 3928 3929 #ifdef CONFIG_MMU 3930 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3931 struct cftype *cft, u64 val) 3932 { 3933 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3934 3935 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 3936 "Please report your usecase to linux-mm@kvack.org if you " 3937 "depend on this functionality.\n"); 3938 3939 if (val & ~MOVE_MASK) 3940 return -EINVAL; 3941 3942 /* 3943 * No kind of locking is needed in here, because ->can_attach() will 3944 * check this value once in the beginning of the process, and then carry 3945 * on with stale data. This means that changes to this value will only 3946 * affect task migrations starting after the change. 3947 */ 3948 memcg->move_charge_at_immigrate = val; 3949 return 0; 3950 } 3951 #else 3952 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3953 struct cftype *cft, u64 val) 3954 { 3955 return -ENOSYS; 3956 } 3957 #endif 3958 3959 #ifdef CONFIG_NUMA 3960 3961 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3962 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3963 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3964 3965 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3966 int nid, unsigned int lru_mask, bool tree) 3967 { 3968 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3969 unsigned long nr = 0; 3970 enum lru_list lru; 3971 3972 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3973 3974 for_each_lru(lru) { 3975 if (!(BIT(lru) & lru_mask)) 3976 continue; 3977 if (tree) 3978 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3979 else 3980 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3981 } 3982 return nr; 3983 } 3984 3985 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3986 unsigned int lru_mask, 3987 bool tree) 3988 { 3989 unsigned long nr = 0; 3990 enum lru_list lru; 3991 3992 for_each_lru(lru) { 3993 if (!(BIT(lru) & lru_mask)) 3994 continue; 3995 if (tree) 3996 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3997 else 3998 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3999 } 4000 return nr; 4001 } 4002 4003 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4004 { 4005 struct numa_stat { 4006 const char *name; 4007 unsigned int lru_mask; 4008 }; 4009 4010 static const struct numa_stat stats[] = { 4011 { "total", LRU_ALL }, 4012 { "file", LRU_ALL_FILE }, 4013 { "anon", LRU_ALL_ANON }, 4014 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4015 }; 4016 const struct numa_stat *stat; 4017 int nid; 4018 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4019 4020 mem_cgroup_flush_stats(); 4021 4022 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4023 seq_printf(m, "%s=%lu", stat->name, 4024 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4025 false)); 4026 for_each_node_state(nid, N_MEMORY) 4027 seq_printf(m, " N%d=%lu", nid, 4028 mem_cgroup_node_nr_lru_pages(memcg, nid, 4029 stat->lru_mask, false)); 4030 seq_putc(m, '\n'); 4031 } 4032 4033 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4034 4035 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4036 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4037 true)); 4038 for_each_node_state(nid, N_MEMORY) 4039 seq_printf(m, " N%d=%lu", nid, 4040 mem_cgroup_node_nr_lru_pages(memcg, nid, 4041 stat->lru_mask, true)); 4042 seq_putc(m, '\n'); 4043 } 4044 4045 return 0; 4046 } 4047 #endif /* CONFIG_NUMA */ 4048 4049 static const unsigned int memcg1_stats[] = { 4050 NR_FILE_PAGES, 4051 NR_ANON_MAPPED, 4052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4053 NR_ANON_THPS, 4054 #endif 4055 NR_SHMEM, 4056 NR_FILE_MAPPED, 4057 NR_FILE_DIRTY, 4058 NR_WRITEBACK, 4059 WORKINGSET_REFAULT_ANON, 4060 WORKINGSET_REFAULT_FILE, 4061 MEMCG_SWAP, 4062 }; 4063 4064 static const char *const memcg1_stat_names[] = { 4065 "cache", 4066 "rss", 4067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4068 "rss_huge", 4069 #endif 4070 "shmem", 4071 "mapped_file", 4072 "dirty", 4073 "writeback", 4074 "workingset_refault_anon", 4075 "workingset_refault_file", 4076 "swap", 4077 }; 4078 4079 /* Universal VM events cgroup1 shows, original sort order */ 4080 static const unsigned int memcg1_events[] = { 4081 PGPGIN, 4082 PGPGOUT, 4083 PGFAULT, 4084 PGMAJFAULT, 4085 }; 4086 4087 static int memcg_stat_show(struct seq_file *m, void *v) 4088 { 4089 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4090 unsigned long memory, memsw; 4091 struct mem_cgroup *mi; 4092 unsigned int i; 4093 4094 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4095 4096 mem_cgroup_flush_stats(); 4097 4098 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4099 unsigned long nr; 4100 4101 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4102 continue; 4103 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4104 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 4105 nr * memcg_page_state_unit(memcg1_stats[i])); 4106 } 4107 4108 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4109 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4110 memcg_events_local(memcg, memcg1_events[i])); 4111 4112 for (i = 0; i < NR_LRU_LISTS; i++) 4113 seq_printf(m, "%s %lu\n", lru_list_name(i), 4114 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4115 PAGE_SIZE); 4116 4117 /* Hierarchical information */ 4118 memory = memsw = PAGE_COUNTER_MAX; 4119 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4120 memory = min(memory, READ_ONCE(mi->memory.max)); 4121 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4122 } 4123 seq_printf(m, "hierarchical_memory_limit %llu\n", 4124 (u64)memory * PAGE_SIZE); 4125 if (do_memsw_account()) 4126 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4127 (u64)memsw * PAGE_SIZE); 4128 4129 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4130 unsigned long nr; 4131 4132 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4133 continue; 4134 nr = memcg_page_state(memcg, memcg1_stats[i]); 4135 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4136 (u64)nr * memcg_page_state_unit(memcg1_stats[i])); 4137 } 4138 4139 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4140 seq_printf(m, "total_%s %llu\n", 4141 vm_event_name(memcg1_events[i]), 4142 (u64)memcg_events(memcg, memcg1_events[i])); 4143 4144 for (i = 0; i < NR_LRU_LISTS; i++) 4145 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4146 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4147 PAGE_SIZE); 4148 4149 #ifdef CONFIG_DEBUG_VM 4150 { 4151 pg_data_t *pgdat; 4152 struct mem_cgroup_per_node *mz; 4153 unsigned long anon_cost = 0; 4154 unsigned long file_cost = 0; 4155 4156 for_each_online_pgdat(pgdat) { 4157 mz = memcg->nodeinfo[pgdat->node_id]; 4158 4159 anon_cost += mz->lruvec.anon_cost; 4160 file_cost += mz->lruvec.file_cost; 4161 } 4162 seq_printf(m, "anon_cost %lu\n", anon_cost); 4163 seq_printf(m, "file_cost %lu\n", file_cost); 4164 } 4165 #endif 4166 4167 return 0; 4168 } 4169 4170 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4171 struct cftype *cft) 4172 { 4173 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4174 4175 return mem_cgroup_swappiness(memcg); 4176 } 4177 4178 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4179 struct cftype *cft, u64 val) 4180 { 4181 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4182 4183 if (val > 200) 4184 return -EINVAL; 4185 4186 if (!mem_cgroup_is_root(memcg)) 4187 memcg->swappiness = val; 4188 else 4189 vm_swappiness = val; 4190 4191 return 0; 4192 } 4193 4194 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4195 { 4196 struct mem_cgroup_threshold_ary *t; 4197 unsigned long usage; 4198 int i; 4199 4200 rcu_read_lock(); 4201 if (!swap) 4202 t = rcu_dereference(memcg->thresholds.primary); 4203 else 4204 t = rcu_dereference(memcg->memsw_thresholds.primary); 4205 4206 if (!t) 4207 goto unlock; 4208 4209 usage = mem_cgroup_usage(memcg, swap); 4210 4211 /* 4212 * current_threshold points to threshold just below or equal to usage. 4213 * If it's not true, a threshold was crossed after last 4214 * call of __mem_cgroup_threshold(). 4215 */ 4216 i = t->current_threshold; 4217 4218 /* 4219 * Iterate backward over array of thresholds starting from 4220 * current_threshold and check if a threshold is crossed. 4221 * If none of thresholds below usage is crossed, we read 4222 * only one element of the array here. 4223 */ 4224 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4225 eventfd_signal(t->entries[i].eventfd, 1); 4226 4227 /* i = current_threshold + 1 */ 4228 i++; 4229 4230 /* 4231 * Iterate forward over array of thresholds starting from 4232 * current_threshold+1 and check if a threshold is crossed. 4233 * If none of thresholds above usage is crossed, we read 4234 * only one element of the array here. 4235 */ 4236 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4237 eventfd_signal(t->entries[i].eventfd, 1); 4238 4239 /* Update current_threshold */ 4240 t->current_threshold = i - 1; 4241 unlock: 4242 rcu_read_unlock(); 4243 } 4244 4245 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4246 { 4247 while (memcg) { 4248 __mem_cgroup_threshold(memcg, false); 4249 if (do_memsw_account()) 4250 __mem_cgroup_threshold(memcg, true); 4251 4252 memcg = parent_mem_cgroup(memcg); 4253 } 4254 } 4255 4256 static int compare_thresholds(const void *a, const void *b) 4257 { 4258 const struct mem_cgroup_threshold *_a = a; 4259 const struct mem_cgroup_threshold *_b = b; 4260 4261 if (_a->threshold > _b->threshold) 4262 return 1; 4263 4264 if (_a->threshold < _b->threshold) 4265 return -1; 4266 4267 return 0; 4268 } 4269 4270 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4271 { 4272 struct mem_cgroup_eventfd_list *ev; 4273 4274 spin_lock(&memcg_oom_lock); 4275 4276 list_for_each_entry(ev, &memcg->oom_notify, list) 4277 eventfd_signal(ev->eventfd, 1); 4278 4279 spin_unlock(&memcg_oom_lock); 4280 return 0; 4281 } 4282 4283 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4284 { 4285 struct mem_cgroup *iter; 4286 4287 for_each_mem_cgroup_tree(iter, memcg) 4288 mem_cgroup_oom_notify_cb(iter); 4289 } 4290 4291 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4292 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4293 { 4294 struct mem_cgroup_thresholds *thresholds; 4295 struct mem_cgroup_threshold_ary *new; 4296 unsigned long threshold; 4297 unsigned long usage; 4298 int i, size, ret; 4299 4300 ret = page_counter_memparse(args, "-1", &threshold); 4301 if (ret) 4302 return ret; 4303 4304 mutex_lock(&memcg->thresholds_lock); 4305 4306 if (type == _MEM) { 4307 thresholds = &memcg->thresholds; 4308 usage = mem_cgroup_usage(memcg, false); 4309 } else if (type == _MEMSWAP) { 4310 thresholds = &memcg->memsw_thresholds; 4311 usage = mem_cgroup_usage(memcg, true); 4312 } else 4313 BUG(); 4314 4315 /* Check if a threshold crossed before adding a new one */ 4316 if (thresholds->primary) 4317 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4318 4319 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4320 4321 /* Allocate memory for new array of thresholds */ 4322 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4323 if (!new) { 4324 ret = -ENOMEM; 4325 goto unlock; 4326 } 4327 new->size = size; 4328 4329 /* Copy thresholds (if any) to new array */ 4330 if (thresholds->primary) 4331 memcpy(new->entries, thresholds->primary->entries, 4332 flex_array_size(new, entries, size - 1)); 4333 4334 /* Add new threshold */ 4335 new->entries[size - 1].eventfd = eventfd; 4336 new->entries[size - 1].threshold = threshold; 4337 4338 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4339 sort(new->entries, size, sizeof(*new->entries), 4340 compare_thresholds, NULL); 4341 4342 /* Find current threshold */ 4343 new->current_threshold = -1; 4344 for (i = 0; i < size; i++) { 4345 if (new->entries[i].threshold <= usage) { 4346 /* 4347 * new->current_threshold will not be used until 4348 * rcu_assign_pointer(), so it's safe to increment 4349 * it here. 4350 */ 4351 ++new->current_threshold; 4352 } else 4353 break; 4354 } 4355 4356 /* Free old spare buffer and save old primary buffer as spare */ 4357 kfree(thresholds->spare); 4358 thresholds->spare = thresholds->primary; 4359 4360 rcu_assign_pointer(thresholds->primary, new); 4361 4362 /* To be sure that nobody uses thresholds */ 4363 synchronize_rcu(); 4364 4365 unlock: 4366 mutex_unlock(&memcg->thresholds_lock); 4367 4368 return ret; 4369 } 4370 4371 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4372 struct eventfd_ctx *eventfd, const char *args) 4373 { 4374 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4375 } 4376 4377 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4378 struct eventfd_ctx *eventfd, const char *args) 4379 { 4380 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4381 } 4382 4383 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4384 struct eventfd_ctx *eventfd, enum res_type type) 4385 { 4386 struct mem_cgroup_thresholds *thresholds; 4387 struct mem_cgroup_threshold_ary *new; 4388 unsigned long usage; 4389 int i, j, size, entries; 4390 4391 mutex_lock(&memcg->thresholds_lock); 4392 4393 if (type == _MEM) { 4394 thresholds = &memcg->thresholds; 4395 usage = mem_cgroup_usage(memcg, false); 4396 } else if (type == _MEMSWAP) { 4397 thresholds = &memcg->memsw_thresholds; 4398 usage = mem_cgroup_usage(memcg, true); 4399 } else 4400 BUG(); 4401 4402 if (!thresholds->primary) 4403 goto unlock; 4404 4405 /* Check if a threshold crossed before removing */ 4406 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4407 4408 /* Calculate new number of threshold */ 4409 size = entries = 0; 4410 for (i = 0; i < thresholds->primary->size; i++) { 4411 if (thresholds->primary->entries[i].eventfd != eventfd) 4412 size++; 4413 else 4414 entries++; 4415 } 4416 4417 new = thresholds->spare; 4418 4419 /* If no items related to eventfd have been cleared, nothing to do */ 4420 if (!entries) 4421 goto unlock; 4422 4423 /* Set thresholds array to NULL if we don't have thresholds */ 4424 if (!size) { 4425 kfree(new); 4426 new = NULL; 4427 goto swap_buffers; 4428 } 4429 4430 new->size = size; 4431 4432 /* Copy thresholds and find current threshold */ 4433 new->current_threshold = -1; 4434 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4435 if (thresholds->primary->entries[i].eventfd == eventfd) 4436 continue; 4437 4438 new->entries[j] = thresholds->primary->entries[i]; 4439 if (new->entries[j].threshold <= usage) { 4440 /* 4441 * new->current_threshold will not be used 4442 * until rcu_assign_pointer(), so it's safe to increment 4443 * it here. 4444 */ 4445 ++new->current_threshold; 4446 } 4447 j++; 4448 } 4449 4450 swap_buffers: 4451 /* Swap primary and spare array */ 4452 thresholds->spare = thresholds->primary; 4453 4454 rcu_assign_pointer(thresholds->primary, new); 4455 4456 /* To be sure that nobody uses thresholds */ 4457 synchronize_rcu(); 4458 4459 /* If all events are unregistered, free the spare array */ 4460 if (!new) { 4461 kfree(thresholds->spare); 4462 thresholds->spare = NULL; 4463 } 4464 unlock: 4465 mutex_unlock(&memcg->thresholds_lock); 4466 } 4467 4468 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4469 struct eventfd_ctx *eventfd) 4470 { 4471 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4472 } 4473 4474 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4475 struct eventfd_ctx *eventfd) 4476 { 4477 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4478 } 4479 4480 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4481 struct eventfd_ctx *eventfd, const char *args) 4482 { 4483 struct mem_cgroup_eventfd_list *event; 4484 4485 event = kmalloc(sizeof(*event), GFP_KERNEL); 4486 if (!event) 4487 return -ENOMEM; 4488 4489 spin_lock(&memcg_oom_lock); 4490 4491 event->eventfd = eventfd; 4492 list_add(&event->list, &memcg->oom_notify); 4493 4494 /* already in OOM ? */ 4495 if (memcg->under_oom) 4496 eventfd_signal(eventfd, 1); 4497 spin_unlock(&memcg_oom_lock); 4498 4499 return 0; 4500 } 4501 4502 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4503 struct eventfd_ctx *eventfd) 4504 { 4505 struct mem_cgroup_eventfd_list *ev, *tmp; 4506 4507 spin_lock(&memcg_oom_lock); 4508 4509 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4510 if (ev->eventfd == eventfd) { 4511 list_del(&ev->list); 4512 kfree(ev); 4513 } 4514 } 4515 4516 spin_unlock(&memcg_oom_lock); 4517 } 4518 4519 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4520 { 4521 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4522 4523 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4524 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4525 seq_printf(sf, "oom_kill %lu\n", 4526 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4527 return 0; 4528 } 4529 4530 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4531 struct cftype *cft, u64 val) 4532 { 4533 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4534 4535 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4536 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4537 return -EINVAL; 4538 4539 memcg->oom_kill_disable = val; 4540 if (!val) 4541 memcg_oom_recover(memcg); 4542 4543 return 0; 4544 } 4545 4546 #ifdef CONFIG_CGROUP_WRITEBACK 4547 4548 #include <trace/events/writeback.h> 4549 4550 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4551 { 4552 return wb_domain_init(&memcg->cgwb_domain, gfp); 4553 } 4554 4555 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4556 { 4557 wb_domain_exit(&memcg->cgwb_domain); 4558 } 4559 4560 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4561 { 4562 wb_domain_size_changed(&memcg->cgwb_domain); 4563 } 4564 4565 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4566 { 4567 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4568 4569 if (!memcg->css.parent) 4570 return NULL; 4571 4572 return &memcg->cgwb_domain; 4573 } 4574 4575 /** 4576 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4577 * @wb: bdi_writeback in question 4578 * @pfilepages: out parameter for number of file pages 4579 * @pheadroom: out parameter for number of allocatable pages according to memcg 4580 * @pdirty: out parameter for number of dirty pages 4581 * @pwriteback: out parameter for number of pages under writeback 4582 * 4583 * Determine the numbers of file, headroom, dirty, and writeback pages in 4584 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4585 * is a bit more involved. 4586 * 4587 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4588 * headroom is calculated as the lowest headroom of itself and the 4589 * ancestors. Note that this doesn't consider the actual amount of 4590 * available memory in the system. The caller should further cap 4591 * *@pheadroom accordingly. 4592 */ 4593 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4594 unsigned long *pheadroom, unsigned long *pdirty, 4595 unsigned long *pwriteback) 4596 { 4597 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4598 struct mem_cgroup *parent; 4599 4600 mem_cgroup_flush_stats(); 4601 4602 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4603 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4604 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4605 memcg_page_state(memcg, NR_ACTIVE_FILE); 4606 4607 *pheadroom = PAGE_COUNTER_MAX; 4608 while ((parent = parent_mem_cgroup(memcg))) { 4609 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4610 READ_ONCE(memcg->memory.high)); 4611 unsigned long used = page_counter_read(&memcg->memory); 4612 4613 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4614 memcg = parent; 4615 } 4616 } 4617 4618 /* 4619 * Foreign dirty flushing 4620 * 4621 * There's an inherent mismatch between memcg and writeback. The former 4622 * tracks ownership per-page while the latter per-inode. This was a 4623 * deliberate design decision because honoring per-page ownership in the 4624 * writeback path is complicated, may lead to higher CPU and IO overheads 4625 * and deemed unnecessary given that write-sharing an inode across 4626 * different cgroups isn't a common use-case. 4627 * 4628 * Combined with inode majority-writer ownership switching, this works well 4629 * enough in most cases but there are some pathological cases. For 4630 * example, let's say there are two cgroups A and B which keep writing to 4631 * different but confined parts of the same inode. B owns the inode and 4632 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4633 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4634 * triggering background writeback. A will be slowed down without a way to 4635 * make writeback of the dirty pages happen. 4636 * 4637 * Conditions like the above can lead to a cgroup getting repeatedly and 4638 * severely throttled after making some progress after each 4639 * dirty_expire_interval while the underlying IO device is almost 4640 * completely idle. 4641 * 4642 * Solving this problem completely requires matching the ownership tracking 4643 * granularities between memcg and writeback in either direction. However, 4644 * the more egregious behaviors can be avoided by simply remembering the 4645 * most recent foreign dirtying events and initiating remote flushes on 4646 * them when local writeback isn't enough to keep the memory clean enough. 4647 * 4648 * The following two functions implement such mechanism. When a foreign 4649 * page - a page whose memcg and writeback ownerships don't match - is 4650 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4651 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4652 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4653 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4654 * foreign bdi_writebacks which haven't expired. Both the numbers of 4655 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4656 * limited to MEMCG_CGWB_FRN_CNT. 4657 * 4658 * The mechanism only remembers IDs and doesn't hold any object references. 4659 * As being wrong occasionally doesn't matter, updates and accesses to the 4660 * records are lockless and racy. 4661 */ 4662 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4663 struct bdi_writeback *wb) 4664 { 4665 struct mem_cgroup *memcg = folio_memcg(folio); 4666 struct memcg_cgwb_frn *frn; 4667 u64 now = get_jiffies_64(); 4668 u64 oldest_at = now; 4669 int oldest = -1; 4670 int i; 4671 4672 trace_track_foreign_dirty(folio, wb); 4673 4674 /* 4675 * Pick the slot to use. If there is already a slot for @wb, keep 4676 * using it. If not replace the oldest one which isn't being 4677 * written out. 4678 */ 4679 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4680 frn = &memcg->cgwb_frn[i]; 4681 if (frn->bdi_id == wb->bdi->id && 4682 frn->memcg_id == wb->memcg_css->id) 4683 break; 4684 if (time_before64(frn->at, oldest_at) && 4685 atomic_read(&frn->done.cnt) == 1) { 4686 oldest = i; 4687 oldest_at = frn->at; 4688 } 4689 } 4690 4691 if (i < MEMCG_CGWB_FRN_CNT) { 4692 /* 4693 * Re-using an existing one. Update timestamp lazily to 4694 * avoid making the cacheline hot. We want them to be 4695 * reasonably up-to-date and significantly shorter than 4696 * dirty_expire_interval as that's what expires the record. 4697 * Use the shorter of 1s and dirty_expire_interval / 8. 4698 */ 4699 unsigned long update_intv = 4700 min_t(unsigned long, HZ, 4701 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4702 4703 if (time_before64(frn->at, now - update_intv)) 4704 frn->at = now; 4705 } else if (oldest >= 0) { 4706 /* replace the oldest free one */ 4707 frn = &memcg->cgwb_frn[oldest]; 4708 frn->bdi_id = wb->bdi->id; 4709 frn->memcg_id = wb->memcg_css->id; 4710 frn->at = now; 4711 } 4712 } 4713 4714 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4715 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4716 { 4717 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4718 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4719 u64 now = jiffies_64; 4720 int i; 4721 4722 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4723 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4724 4725 /* 4726 * If the record is older than dirty_expire_interval, 4727 * writeback on it has already started. No need to kick it 4728 * off again. Also, don't start a new one if there's 4729 * already one in flight. 4730 */ 4731 if (time_after64(frn->at, now - intv) && 4732 atomic_read(&frn->done.cnt) == 1) { 4733 frn->at = 0; 4734 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4735 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4736 WB_REASON_FOREIGN_FLUSH, 4737 &frn->done); 4738 } 4739 } 4740 } 4741 4742 #else /* CONFIG_CGROUP_WRITEBACK */ 4743 4744 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4745 { 4746 return 0; 4747 } 4748 4749 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4750 { 4751 } 4752 4753 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4754 { 4755 } 4756 4757 #endif /* CONFIG_CGROUP_WRITEBACK */ 4758 4759 /* 4760 * DO NOT USE IN NEW FILES. 4761 * 4762 * "cgroup.event_control" implementation. 4763 * 4764 * This is way over-engineered. It tries to support fully configurable 4765 * events for each user. Such level of flexibility is completely 4766 * unnecessary especially in the light of the planned unified hierarchy. 4767 * 4768 * Please deprecate this and replace with something simpler if at all 4769 * possible. 4770 */ 4771 4772 /* 4773 * Unregister event and free resources. 4774 * 4775 * Gets called from workqueue. 4776 */ 4777 static void memcg_event_remove(struct work_struct *work) 4778 { 4779 struct mem_cgroup_event *event = 4780 container_of(work, struct mem_cgroup_event, remove); 4781 struct mem_cgroup *memcg = event->memcg; 4782 4783 remove_wait_queue(event->wqh, &event->wait); 4784 4785 event->unregister_event(memcg, event->eventfd); 4786 4787 /* Notify userspace the event is going away. */ 4788 eventfd_signal(event->eventfd, 1); 4789 4790 eventfd_ctx_put(event->eventfd); 4791 kfree(event); 4792 css_put(&memcg->css); 4793 } 4794 4795 /* 4796 * Gets called on EPOLLHUP on eventfd when user closes it. 4797 * 4798 * Called with wqh->lock held and interrupts disabled. 4799 */ 4800 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4801 int sync, void *key) 4802 { 4803 struct mem_cgroup_event *event = 4804 container_of(wait, struct mem_cgroup_event, wait); 4805 struct mem_cgroup *memcg = event->memcg; 4806 __poll_t flags = key_to_poll(key); 4807 4808 if (flags & EPOLLHUP) { 4809 /* 4810 * If the event has been detached at cgroup removal, we 4811 * can simply return knowing the other side will cleanup 4812 * for us. 4813 * 4814 * We can't race against event freeing since the other 4815 * side will require wqh->lock via remove_wait_queue(), 4816 * which we hold. 4817 */ 4818 spin_lock(&memcg->event_list_lock); 4819 if (!list_empty(&event->list)) { 4820 list_del_init(&event->list); 4821 /* 4822 * We are in atomic context, but cgroup_event_remove() 4823 * may sleep, so we have to call it in workqueue. 4824 */ 4825 schedule_work(&event->remove); 4826 } 4827 spin_unlock(&memcg->event_list_lock); 4828 } 4829 4830 return 0; 4831 } 4832 4833 static void memcg_event_ptable_queue_proc(struct file *file, 4834 wait_queue_head_t *wqh, poll_table *pt) 4835 { 4836 struct mem_cgroup_event *event = 4837 container_of(pt, struct mem_cgroup_event, pt); 4838 4839 event->wqh = wqh; 4840 add_wait_queue(wqh, &event->wait); 4841 } 4842 4843 /* 4844 * DO NOT USE IN NEW FILES. 4845 * 4846 * Parse input and register new cgroup event handler. 4847 * 4848 * Input must be in format '<event_fd> <control_fd> <args>'. 4849 * Interpretation of args is defined by control file implementation. 4850 */ 4851 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4852 char *buf, size_t nbytes, loff_t off) 4853 { 4854 struct cgroup_subsys_state *css = of_css(of); 4855 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4856 struct mem_cgroup_event *event; 4857 struct cgroup_subsys_state *cfile_css; 4858 unsigned int efd, cfd; 4859 struct fd efile; 4860 struct fd cfile; 4861 struct dentry *cdentry; 4862 const char *name; 4863 char *endp; 4864 int ret; 4865 4866 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4867 return -EOPNOTSUPP; 4868 4869 buf = strstrip(buf); 4870 4871 efd = simple_strtoul(buf, &endp, 10); 4872 if (*endp != ' ') 4873 return -EINVAL; 4874 buf = endp + 1; 4875 4876 cfd = simple_strtoul(buf, &endp, 10); 4877 if ((*endp != ' ') && (*endp != '\0')) 4878 return -EINVAL; 4879 buf = endp + 1; 4880 4881 event = kzalloc(sizeof(*event), GFP_KERNEL); 4882 if (!event) 4883 return -ENOMEM; 4884 4885 event->memcg = memcg; 4886 INIT_LIST_HEAD(&event->list); 4887 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4888 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4889 INIT_WORK(&event->remove, memcg_event_remove); 4890 4891 efile = fdget(efd); 4892 if (!efile.file) { 4893 ret = -EBADF; 4894 goto out_kfree; 4895 } 4896 4897 event->eventfd = eventfd_ctx_fileget(efile.file); 4898 if (IS_ERR(event->eventfd)) { 4899 ret = PTR_ERR(event->eventfd); 4900 goto out_put_efile; 4901 } 4902 4903 cfile = fdget(cfd); 4904 if (!cfile.file) { 4905 ret = -EBADF; 4906 goto out_put_eventfd; 4907 } 4908 4909 /* the process need read permission on control file */ 4910 /* AV: shouldn't we check that it's been opened for read instead? */ 4911 ret = file_permission(cfile.file, MAY_READ); 4912 if (ret < 0) 4913 goto out_put_cfile; 4914 4915 /* 4916 * The control file must be a regular cgroup1 file. As a regular cgroup 4917 * file can't be renamed, it's safe to access its name afterwards. 4918 */ 4919 cdentry = cfile.file->f_path.dentry; 4920 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 4921 ret = -EINVAL; 4922 goto out_put_cfile; 4923 } 4924 4925 /* 4926 * Determine the event callbacks and set them in @event. This used 4927 * to be done via struct cftype but cgroup core no longer knows 4928 * about these events. The following is crude but the whole thing 4929 * is for compatibility anyway. 4930 * 4931 * DO NOT ADD NEW FILES. 4932 */ 4933 name = cdentry->d_name.name; 4934 4935 if (!strcmp(name, "memory.usage_in_bytes")) { 4936 event->register_event = mem_cgroup_usage_register_event; 4937 event->unregister_event = mem_cgroup_usage_unregister_event; 4938 } else if (!strcmp(name, "memory.oom_control")) { 4939 event->register_event = mem_cgroup_oom_register_event; 4940 event->unregister_event = mem_cgroup_oom_unregister_event; 4941 } else if (!strcmp(name, "memory.pressure_level")) { 4942 event->register_event = vmpressure_register_event; 4943 event->unregister_event = vmpressure_unregister_event; 4944 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4945 event->register_event = memsw_cgroup_usage_register_event; 4946 event->unregister_event = memsw_cgroup_usage_unregister_event; 4947 } else { 4948 ret = -EINVAL; 4949 goto out_put_cfile; 4950 } 4951 4952 /* 4953 * Verify @cfile should belong to @css. Also, remaining events are 4954 * automatically removed on cgroup destruction but the removal is 4955 * asynchronous, so take an extra ref on @css. 4956 */ 4957 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 4958 &memory_cgrp_subsys); 4959 ret = -EINVAL; 4960 if (IS_ERR(cfile_css)) 4961 goto out_put_cfile; 4962 if (cfile_css != css) { 4963 css_put(cfile_css); 4964 goto out_put_cfile; 4965 } 4966 4967 ret = event->register_event(memcg, event->eventfd, buf); 4968 if (ret) 4969 goto out_put_css; 4970 4971 vfs_poll(efile.file, &event->pt); 4972 4973 spin_lock_irq(&memcg->event_list_lock); 4974 list_add(&event->list, &memcg->event_list); 4975 spin_unlock_irq(&memcg->event_list_lock); 4976 4977 fdput(cfile); 4978 fdput(efile); 4979 4980 return nbytes; 4981 4982 out_put_css: 4983 css_put(css); 4984 out_put_cfile: 4985 fdput(cfile); 4986 out_put_eventfd: 4987 eventfd_ctx_put(event->eventfd); 4988 out_put_efile: 4989 fdput(efile); 4990 out_kfree: 4991 kfree(event); 4992 4993 return ret; 4994 } 4995 4996 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4997 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4998 { 4999 /* 5000 * Deprecated. 5001 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 5002 */ 5003 return 0; 5004 } 5005 #endif 5006 5007 static struct cftype mem_cgroup_legacy_files[] = { 5008 { 5009 .name = "usage_in_bytes", 5010 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5011 .read_u64 = mem_cgroup_read_u64, 5012 }, 5013 { 5014 .name = "max_usage_in_bytes", 5015 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5016 .write = mem_cgroup_reset, 5017 .read_u64 = mem_cgroup_read_u64, 5018 }, 5019 { 5020 .name = "limit_in_bytes", 5021 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5022 .write = mem_cgroup_write, 5023 .read_u64 = mem_cgroup_read_u64, 5024 }, 5025 { 5026 .name = "soft_limit_in_bytes", 5027 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5028 .write = mem_cgroup_write, 5029 .read_u64 = mem_cgroup_read_u64, 5030 }, 5031 { 5032 .name = "failcnt", 5033 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5034 .write = mem_cgroup_reset, 5035 .read_u64 = mem_cgroup_read_u64, 5036 }, 5037 { 5038 .name = "stat", 5039 .seq_show = memcg_stat_show, 5040 }, 5041 { 5042 .name = "force_empty", 5043 .write = mem_cgroup_force_empty_write, 5044 }, 5045 { 5046 .name = "use_hierarchy", 5047 .write_u64 = mem_cgroup_hierarchy_write, 5048 .read_u64 = mem_cgroup_hierarchy_read, 5049 }, 5050 { 5051 .name = "cgroup.event_control", /* XXX: for compat */ 5052 .write = memcg_write_event_control, 5053 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5054 }, 5055 { 5056 .name = "swappiness", 5057 .read_u64 = mem_cgroup_swappiness_read, 5058 .write_u64 = mem_cgroup_swappiness_write, 5059 }, 5060 { 5061 .name = "move_charge_at_immigrate", 5062 .read_u64 = mem_cgroup_move_charge_read, 5063 .write_u64 = mem_cgroup_move_charge_write, 5064 }, 5065 { 5066 .name = "oom_control", 5067 .seq_show = mem_cgroup_oom_control_read, 5068 .write_u64 = mem_cgroup_oom_control_write, 5069 }, 5070 { 5071 .name = "pressure_level", 5072 }, 5073 #ifdef CONFIG_NUMA 5074 { 5075 .name = "numa_stat", 5076 .seq_show = memcg_numa_stat_show, 5077 }, 5078 #endif 5079 { 5080 .name = "kmem.limit_in_bytes", 5081 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5082 .write = mem_cgroup_write, 5083 .read_u64 = mem_cgroup_read_u64, 5084 }, 5085 { 5086 .name = "kmem.usage_in_bytes", 5087 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5088 .read_u64 = mem_cgroup_read_u64, 5089 }, 5090 { 5091 .name = "kmem.failcnt", 5092 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5093 .write = mem_cgroup_reset, 5094 .read_u64 = mem_cgroup_read_u64, 5095 }, 5096 { 5097 .name = "kmem.max_usage_in_bytes", 5098 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5099 .write = mem_cgroup_reset, 5100 .read_u64 = mem_cgroup_read_u64, 5101 }, 5102 #if defined(CONFIG_MEMCG_KMEM) && \ 5103 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5104 { 5105 .name = "kmem.slabinfo", 5106 .seq_show = mem_cgroup_slab_show, 5107 }, 5108 #endif 5109 { 5110 .name = "kmem.tcp.limit_in_bytes", 5111 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5112 .write = mem_cgroup_write, 5113 .read_u64 = mem_cgroup_read_u64, 5114 }, 5115 { 5116 .name = "kmem.tcp.usage_in_bytes", 5117 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5118 .read_u64 = mem_cgroup_read_u64, 5119 }, 5120 { 5121 .name = "kmem.tcp.failcnt", 5122 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5123 .write = mem_cgroup_reset, 5124 .read_u64 = mem_cgroup_read_u64, 5125 }, 5126 { 5127 .name = "kmem.tcp.max_usage_in_bytes", 5128 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5129 .write = mem_cgroup_reset, 5130 .read_u64 = mem_cgroup_read_u64, 5131 }, 5132 { }, /* terminate */ 5133 }; 5134 5135 /* 5136 * Private memory cgroup IDR 5137 * 5138 * Swap-out records and page cache shadow entries need to store memcg 5139 * references in constrained space, so we maintain an ID space that is 5140 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5141 * memory-controlled cgroups to 64k. 5142 * 5143 * However, there usually are many references to the offline CSS after 5144 * the cgroup has been destroyed, such as page cache or reclaimable 5145 * slab objects, that don't need to hang on to the ID. We want to keep 5146 * those dead CSS from occupying IDs, or we might quickly exhaust the 5147 * relatively small ID space and prevent the creation of new cgroups 5148 * even when there are much fewer than 64k cgroups - possibly none. 5149 * 5150 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5151 * be freed and recycled when it's no longer needed, which is usually 5152 * when the CSS is offlined. 5153 * 5154 * The only exception to that are records of swapped out tmpfs/shmem 5155 * pages that need to be attributed to live ancestors on swapin. But 5156 * those references are manageable from userspace. 5157 */ 5158 5159 static DEFINE_IDR(mem_cgroup_idr); 5160 5161 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5162 { 5163 if (memcg->id.id > 0) { 5164 idr_remove(&mem_cgroup_idr, memcg->id.id); 5165 memcg->id.id = 0; 5166 } 5167 } 5168 5169 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5170 unsigned int n) 5171 { 5172 refcount_add(n, &memcg->id.ref); 5173 } 5174 5175 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5176 { 5177 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5178 mem_cgroup_id_remove(memcg); 5179 5180 /* Memcg ID pins CSS */ 5181 css_put(&memcg->css); 5182 } 5183 } 5184 5185 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5186 { 5187 mem_cgroup_id_put_many(memcg, 1); 5188 } 5189 5190 /** 5191 * mem_cgroup_from_id - look up a memcg from a memcg id 5192 * @id: the memcg id to look up 5193 * 5194 * Caller must hold rcu_read_lock(). 5195 */ 5196 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5197 { 5198 WARN_ON_ONCE(!rcu_read_lock_held()); 5199 return idr_find(&mem_cgroup_idr, id); 5200 } 5201 5202 #ifdef CONFIG_SHRINKER_DEBUG 5203 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5204 { 5205 struct cgroup *cgrp; 5206 struct cgroup_subsys_state *css; 5207 struct mem_cgroup *memcg; 5208 5209 cgrp = cgroup_get_from_id(ino); 5210 if (IS_ERR(cgrp)) 5211 return ERR_CAST(cgrp); 5212 5213 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5214 if (css) 5215 memcg = container_of(css, struct mem_cgroup, css); 5216 else 5217 memcg = ERR_PTR(-ENOENT); 5218 5219 cgroup_put(cgrp); 5220 5221 return memcg; 5222 } 5223 #endif 5224 5225 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5226 { 5227 struct mem_cgroup_per_node *pn; 5228 5229 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5230 if (!pn) 5231 return 1; 5232 5233 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5234 GFP_KERNEL_ACCOUNT); 5235 if (!pn->lruvec_stats_percpu) { 5236 kfree(pn); 5237 return 1; 5238 } 5239 5240 lruvec_init(&pn->lruvec); 5241 pn->memcg = memcg; 5242 5243 memcg->nodeinfo[node] = pn; 5244 return 0; 5245 } 5246 5247 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5248 { 5249 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5250 5251 if (!pn) 5252 return; 5253 5254 free_percpu(pn->lruvec_stats_percpu); 5255 kfree(pn); 5256 } 5257 5258 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5259 { 5260 int node; 5261 5262 for_each_node(node) 5263 free_mem_cgroup_per_node_info(memcg, node); 5264 kfree(memcg->vmstats); 5265 free_percpu(memcg->vmstats_percpu); 5266 kfree(memcg); 5267 } 5268 5269 static void mem_cgroup_free(struct mem_cgroup *memcg) 5270 { 5271 lru_gen_exit_memcg(memcg); 5272 memcg_wb_domain_exit(memcg); 5273 __mem_cgroup_free(memcg); 5274 } 5275 5276 static struct mem_cgroup *mem_cgroup_alloc(void) 5277 { 5278 struct mem_cgroup *memcg; 5279 int node; 5280 int __maybe_unused i; 5281 long error = -ENOMEM; 5282 5283 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5284 if (!memcg) 5285 return ERR_PTR(error); 5286 5287 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5288 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5289 if (memcg->id.id < 0) { 5290 error = memcg->id.id; 5291 goto fail; 5292 } 5293 5294 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5295 if (!memcg->vmstats) 5296 goto fail; 5297 5298 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5299 GFP_KERNEL_ACCOUNT); 5300 if (!memcg->vmstats_percpu) 5301 goto fail; 5302 5303 for_each_node(node) 5304 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5305 goto fail; 5306 5307 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5308 goto fail; 5309 5310 INIT_WORK(&memcg->high_work, high_work_func); 5311 INIT_LIST_HEAD(&memcg->oom_notify); 5312 mutex_init(&memcg->thresholds_lock); 5313 spin_lock_init(&memcg->move_lock); 5314 vmpressure_init(&memcg->vmpressure); 5315 INIT_LIST_HEAD(&memcg->event_list); 5316 spin_lock_init(&memcg->event_list_lock); 5317 memcg->socket_pressure = jiffies; 5318 #ifdef CONFIG_MEMCG_KMEM 5319 memcg->kmemcg_id = -1; 5320 INIT_LIST_HEAD(&memcg->objcg_list); 5321 #endif 5322 #ifdef CONFIG_CGROUP_WRITEBACK 5323 INIT_LIST_HEAD(&memcg->cgwb_list); 5324 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5325 memcg->cgwb_frn[i].done = 5326 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5327 #endif 5328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5329 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5330 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5331 memcg->deferred_split_queue.split_queue_len = 0; 5332 #endif 5333 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5334 lru_gen_init_memcg(memcg); 5335 return memcg; 5336 fail: 5337 mem_cgroup_id_remove(memcg); 5338 __mem_cgroup_free(memcg); 5339 return ERR_PTR(error); 5340 } 5341 5342 static struct cgroup_subsys_state * __ref 5343 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5344 { 5345 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5346 struct mem_cgroup *memcg, *old_memcg; 5347 5348 old_memcg = set_active_memcg(parent); 5349 memcg = mem_cgroup_alloc(); 5350 set_active_memcg(old_memcg); 5351 if (IS_ERR(memcg)) 5352 return ERR_CAST(memcg); 5353 5354 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5355 memcg->soft_limit = PAGE_COUNTER_MAX; 5356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5357 memcg->zswap_max = PAGE_COUNTER_MAX; 5358 #endif 5359 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5360 if (parent) { 5361 memcg->swappiness = mem_cgroup_swappiness(parent); 5362 memcg->oom_kill_disable = parent->oom_kill_disable; 5363 5364 page_counter_init(&memcg->memory, &parent->memory); 5365 page_counter_init(&memcg->swap, &parent->swap); 5366 page_counter_init(&memcg->kmem, &parent->kmem); 5367 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5368 } else { 5369 init_memcg_events(); 5370 page_counter_init(&memcg->memory, NULL); 5371 page_counter_init(&memcg->swap, NULL); 5372 page_counter_init(&memcg->kmem, NULL); 5373 page_counter_init(&memcg->tcpmem, NULL); 5374 5375 root_mem_cgroup = memcg; 5376 return &memcg->css; 5377 } 5378 5379 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5380 static_branch_inc(&memcg_sockets_enabled_key); 5381 5382 return &memcg->css; 5383 } 5384 5385 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5386 { 5387 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5388 5389 if (memcg_online_kmem(memcg)) 5390 goto remove_id; 5391 5392 /* 5393 * A memcg must be visible for expand_shrinker_info() 5394 * by the time the maps are allocated. So, we allocate maps 5395 * here, when for_each_mem_cgroup() can't skip it. 5396 */ 5397 if (alloc_shrinker_info(memcg)) 5398 goto offline_kmem; 5399 5400 /* Online state pins memcg ID, memcg ID pins CSS */ 5401 refcount_set(&memcg->id.ref, 1); 5402 css_get(css); 5403 5404 if (unlikely(mem_cgroup_is_root(memcg))) 5405 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5406 2UL*HZ); 5407 lru_gen_online_memcg(memcg); 5408 return 0; 5409 offline_kmem: 5410 memcg_offline_kmem(memcg); 5411 remove_id: 5412 mem_cgroup_id_remove(memcg); 5413 return -ENOMEM; 5414 } 5415 5416 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5417 { 5418 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5419 struct mem_cgroup_event *event, *tmp; 5420 5421 /* 5422 * Unregister events and notify userspace. 5423 * Notify userspace about cgroup removing only after rmdir of cgroup 5424 * directory to avoid race between userspace and kernelspace. 5425 */ 5426 spin_lock_irq(&memcg->event_list_lock); 5427 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5428 list_del_init(&event->list); 5429 schedule_work(&event->remove); 5430 } 5431 spin_unlock_irq(&memcg->event_list_lock); 5432 5433 page_counter_set_min(&memcg->memory, 0); 5434 page_counter_set_low(&memcg->memory, 0); 5435 5436 memcg_offline_kmem(memcg); 5437 reparent_shrinker_deferred(memcg); 5438 wb_memcg_offline(memcg); 5439 lru_gen_offline_memcg(memcg); 5440 5441 drain_all_stock(memcg); 5442 5443 mem_cgroup_id_put(memcg); 5444 } 5445 5446 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5447 { 5448 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5449 5450 invalidate_reclaim_iterators(memcg); 5451 lru_gen_release_memcg(memcg); 5452 } 5453 5454 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5455 { 5456 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5457 int __maybe_unused i; 5458 5459 #ifdef CONFIG_CGROUP_WRITEBACK 5460 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5461 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5462 #endif 5463 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5464 static_branch_dec(&memcg_sockets_enabled_key); 5465 5466 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5467 static_branch_dec(&memcg_sockets_enabled_key); 5468 5469 vmpressure_cleanup(&memcg->vmpressure); 5470 cancel_work_sync(&memcg->high_work); 5471 mem_cgroup_remove_from_trees(memcg); 5472 free_shrinker_info(memcg); 5473 mem_cgroup_free(memcg); 5474 } 5475 5476 /** 5477 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5478 * @css: the target css 5479 * 5480 * Reset the states of the mem_cgroup associated with @css. This is 5481 * invoked when the userland requests disabling on the default hierarchy 5482 * but the memcg is pinned through dependency. The memcg should stop 5483 * applying policies and should revert to the vanilla state as it may be 5484 * made visible again. 5485 * 5486 * The current implementation only resets the essential configurations. 5487 * This needs to be expanded to cover all the visible parts. 5488 */ 5489 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5490 { 5491 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5492 5493 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5494 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5495 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5496 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5497 page_counter_set_min(&memcg->memory, 0); 5498 page_counter_set_low(&memcg->memory, 0); 5499 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5500 memcg->soft_limit = PAGE_COUNTER_MAX; 5501 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5502 memcg_wb_domain_size_changed(memcg); 5503 } 5504 5505 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5506 { 5507 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5508 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5509 struct memcg_vmstats_percpu *statc; 5510 long delta, v; 5511 int i, nid; 5512 5513 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5514 5515 for (i = 0; i < MEMCG_NR_STAT; i++) { 5516 /* 5517 * Collect the aggregated propagation counts of groups 5518 * below us. We're in a per-cpu loop here and this is 5519 * a global counter, so the first cycle will get them. 5520 */ 5521 delta = memcg->vmstats->state_pending[i]; 5522 if (delta) 5523 memcg->vmstats->state_pending[i] = 0; 5524 5525 /* Add CPU changes on this level since the last flush */ 5526 v = READ_ONCE(statc->state[i]); 5527 if (v != statc->state_prev[i]) { 5528 delta += v - statc->state_prev[i]; 5529 statc->state_prev[i] = v; 5530 } 5531 5532 if (!delta) 5533 continue; 5534 5535 /* Aggregate counts on this level and propagate upwards */ 5536 memcg->vmstats->state[i] += delta; 5537 if (parent) 5538 parent->vmstats->state_pending[i] += delta; 5539 } 5540 5541 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5542 delta = memcg->vmstats->events_pending[i]; 5543 if (delta) 5544 memcg->vmstats->events_pending[i] = 0; 5545 5546 v = READ_ONCE(statc->events[i]); 5547 if (v != statc->events_prev[i]) { 5548 delta += v - statc->events_prev[i]; 5549 statc->events_prev[i] = v; 5550 } 5551 5552 if (!delta) 5553 continue; 5554 5555 memcg->vmstats->events[i] += delta; 5556 if (parent) 5557 parent->vmstats->events_pending[i] += delta; 5558 } 5559 5560 for_each_node_state(nid, N_MEMORY) { 5561 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5562 struct mem_cgroup_per_node *ppn = NULL; 5563 struct lruvec_stats_percpu *lstatc; 5564 5565 if (parent) 5566 ppn = parent->nodeinfo[nid]; 5567 5568 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5569 5570 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5571 delta = pn->lruvec_stats.state_pending[i]; 5572 if (delta) 5573 pn->lruvec_stats.state_pending[i] = 0; 5574 5575 v = READ_ONCE(lstatc->state[i]); 5576 if (v != lstatc->state_prev[i]) { 5577 delta += v - lstatc->state_prev[i]; 5578 lstatc->state_prev[i] = v; 5579 } 5580 5581 if (!delta) 5582 continue; 5583 5584 pn->lruvec_stats.state[i] += delta; 5585 if (ppn) 5586 ppn->lruvec_stats.state_pending[i] += delta; 5587 } 5588 } 5589 } 5590 5591 #ifdef CONFIG_MMU 5592 /* Handlers for move charge at task migration. */ 5593 static int mem_cgroup_do_precharge(unsigned long count) 5594 { 5595 int ret; 5596 5597 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5598 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5599 if (!ret) { 5600 mc.precharge += count; 5601 return ret; 5602 } 5603 5604 /* Try charges one by one with reclaim, but do not retry */ 5605 while (count--) { 5606 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5607 if (ret) 5608 return ret; 5609 mc.precharge++; 5610 cond_resched(); 5611 } 5612 return 0; 5613 } 5614 5615 union mc_target { 5616 struct page *page; 5617 swp_entry_t ent; 5618 }; 5619 5620 enum mc_target_type { 5621 MC_TARGET_NONE = 0, 5622 MC_TARGET_PAGE, 5623 MC_TARGET_SWAP, 5624 MC_TARGET_DEVICE, 5625 }; 5626 5627 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5628 unsigned long addr, pte_t ptent) 5629 { 5630 struct page *page = vm_normal_page(vma, addr, ptent); 5631 5632 if (!page || !page_mapped(page)) 5633 return NULL; 5634 if (PageAnon(page)) { 5635 if (!(mc.flags & MOVE_ANON)) 5636 return NULL; 5637 } else { 5638 if (!(mc.flags & MOVE_FILE)) 5639 return NULL; 5640 } 5641 if (!get_page_unless_zero(page)) 5642 return NULL; 5643 5644 return page; 5645 } 5646 5647 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5648 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5649 pte_t ptent, swp_entry_t *entry) 5650 { 5651 struct page *page = NULL; 5652 swp_entry_t ent = pte_to_swp_entry(ptent); 5653 5654 if (!(mc.flags & MOVE_ANON)) 5655 return NULL; 5656 5657 /* 5658 * Handle device private pages that are not accessible by the CPU, but 5659 * stored as special swap entries in the page table. 5660 */ 5661 if (is_device_private_entry(ent)) { 5662 page = pfn_swap_entry_to_page(ent); 5663 if (!get_page_unless_zero(page)) 5664 return NULL; 5665 return page; 5666 } 5667 5668 if (non_swap_entry(ent)) 5669 return NULL; 5670 5671 /* 5672 * Because swap_cache_get_folio() updates some statistics counter, 5673 * we call find_get_page() with swapper_space directly. 5674 */ 5675 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5676 entry->val = ent.val; 5677 5678 return page; 5679 } 5680 #else 5681 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5682 pte_t ptent, swp_entry_t *entry) 5683 { 5684 return NULL; 5685 } 5686 #endif 5687 5688 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5689 unsigned long addr, pte_t ptent) 5690 { 5691 unsigned long index; 5692 struct folio *folio; 5693 5694 if (!vma->vm_file) /* anonymous vma */ 5695 return NULL; 5696 if (!(mc.flags & MOVE_FILE)) 5697 return NULL; 5698 5699 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5700 /* shmem/tmpfs may report page out on swap: account for that too. */ 5701 index = linear_page_index(vma, addr); 5702 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5703 if (!folio) 5704 return NULL; 5705 return folio_file_page(folio, index); 5706 } 5707 5708 /** 5709 * mem_cgroup_move_account - move account of the page 5710 * @page: the page 5711 * @compound: charge the page as compound or small page 5712 * @from: mem_cgroup which the page is moved from. 5713 * @to: mem_cgroup which the page is moved to. @from != @to. 5714 * 5715 * The page must be locked and not on the LRU. 5716 * 5717 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5718 * from old cgroup. 5719 */ 5720 static int mem_cgroup_move_account(struct page *page, 5721 bool compound, 5722 struct mem_cgroup *from, 5723 struct mem_cgroup *to) 5724 { 5725 struct folio *folio = page_folio(page); 5726 struct lruvec *from_vec, *to_vec; 5727 struct pglist_data *pgdat; 5728 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5729 int nid, ret; 5730 5731 VM_BUG_ON(from == to); 5732 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5733 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5734 VM_BUG_ON(compound && !folio_test_large(folio)); 5735 5736 ret = -EINVAL; 5737 if (folio_memcg(folio) != from) 5738 goto out; 5739 5740 pgdat = folio_pgdat(folio); 5741 from_vec = mem_cgroup_lruvec(from, pgdat); 5742 to_vec = mem_cgroup_lruvec(to, pgdat); 5743 5744 folio_memcg_lock(folio); 5745 5746 if (folio_test_anon(folio)) { 5747 if (folio_mapped(folio)) { 5748 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5749 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5750 if (folio_test_transhuge(folio)) { 5751 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5752 -nr_pages); 5753 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5754 nr_pages); 5755 } 5756 } 5757 } else { 5758 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5759 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5760 5761 if (folio_test_swapbacked(folio)) { 5762 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5763 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5764 } 5765 5766 if (folio_mapped(folio)) { 5767 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5768 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5769 } 5770 5771 if (folio_test_dirty(folio)) { 5772 struct address_space *mapping = folio_mapping(folio); 5773 5774 if (mapping_can_writeback(mapping)) { 5775 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5776 -nr_pages); 5777 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5778 nr_pages); 5779 } 5780 } 5781 } 5782 5783 #ifdef CONFIG_SWAP 5784 if (folio_test_swapcache(folio)) { 5785 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 5786 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 5787 } 5788 #endif 5789 if (folio_test_writeback(folio)) { 5790 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5791 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5792 } 5793 5794 /* 5795 * All state has been migrated, let's switch to the new memcg. 5796 * 5797 * It is safe to change page's memcg here because the page 5798 * is referenced, charged, isolated, and locked: we can't race 5799 * with (un)charging, migration, LRU putback, or anything else 5800 * that would rely on a stable page's memory cgroup. 5801 * 5802 * Note that lock_page_memcg is a memcg lock, not a page lock, 5803 * to save space. As soon as we switch page's memory cgroup to a 5804 * new memcg that isn't locked, the above state can change 5805 * concurrently again. Make sure we're truly done with it. 5806 */ 5807 smp_mb(); 5808 5809 css_get(&to->css); 5810 css_put(&from->css); 5811 5812 folio->memcg_data = (unsigned long)to; 5813 5814 __folio_memcg_unlock(from); 5815 5816 ret = 0; 5817 nid = folio_nid(folio); 5818 5819 local_irq_disable(); 5820 mem_cgroup_charge_statistics(to, nr_pages); 5821 memcg_check_events(to, nid); 5822 mem_cgroup_charge_statistics(from, -nr_pages); 5823 memcg_check_events(from, nid); 5824 local_irq_enable(); 5825 out: 5826 return ret; 5827 } 5828 5829 /** 5830 * get_mctgt_type - get target type of moving charge 5831 * @vma: the vma the pte to be checked belongs 5832 * @addr: the address corresponding to the pte to be checked 5833 * @ptent: the pte to be checked 5834 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5835 * 5836 * Returns 5837 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5838 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5839 * move charge. if @target is not NULL, the page is stored in target->page 5840 * with extra refcnt got(Callers should handle it). 5841 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5842 * target for charge migration. if @target is not NULL, the entry is stored 5843 * in target->ent. 5844 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and 5845 * thus not on the lru. 5846 * For now we such page is charge like a regular page would be as for all 5847 * intent and purposes it is just special memory taking the place of a 5848 * regular page. 5849 * 5850 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5851 * 5852 * Called with pte lock held. 5853 */ 5854 5855 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5856 unsigned long addr, pte_t ptent, union mc_target *target) 5857 { 5858 struct page *page = NULL; 5859 enum mc_target_type ret = MC_TARGET_NONE; 5860 swp_entry_t ent = { .val = 0 }; 5861 5862 if (pte_present(ptent)) 5863 page = mc_handle_present_pte(vma, addr, ptent); 5864 else if (pte_none_mostly(ptent)) 5865 /* 5866 * PTE markers should be treated as a none pte here, separated 5867 * from other swap handling below. 5868 */ 5869 page = mc_handle_file_pte(vma, addr, ptent); 5870 else if (is_swap_pte(ptent)) 5871 page = mc_handle_swap_pte(vma, ptent, &ent); 5872 5873 if (target && page) { 5874 if (!trylock_page(page)) { 5875 put_page(page); 5876 return ret; 5877 } 5878 /* 5879 * page_mapped() must be stable during the move. This 5880 * pte is locked, so if it's present, the page cannot 5881 * become unmapped. If it isn't, we have only partial 5882 * control over the mapped state: the page lock will 5883 * prevent new faults against pagecache and swapcache, 5884 * so an unmapped page cannot become mapped. However, 5885 * if the page is already mapped elsewhere, it can 5886 * unmap, and there is nothing we can do about it. 5887 * Alas, skip moving the page in this case. 5888 */ 5889 if (!pte_present(ptent) && page_mapped(page)) { 5890 unlock_page(page); 5891 put_page(page); 5892 return ret; 5893 } 5894 } 5895 5896 if (!page && !ent.val) 5897 return ret; 5898 if (page) { 5899 /* 5900 * Do only loose check w/o serialization. 5901 * mem_cgroup_move_account() checks the page is valid or 5902 * not under LRU exclusion. 5903 */ 5904 if (page_memcg(page) == mc.from) { 5905 ret = MC_TARGET_PAGE; 5906 if (is_device_private_page(page) || 5907 is_device_coherent_page(page)) 5908 ret = MC_TARGET_DEVICE; 5909 if (target) 5910 target->page = page; 5911 } 5912 if (!ret || !target) { 5913 if (target) 5914 unlock_page(page); 5915 put_page(page); 5916 } 5917 } 5918 /* 5919 * There is a swap entry and a page doesn't exist or isn't charged. 5920 * But we cannot move a tail-page in a THP. 5921 */ 5922 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5923 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5924 ret = MC_TARGET_SWAP; 5925 if (target) 5926 target->ent = ent; 5927 } 5928 return ret; 5929 } 5930 5931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5932 /* 5933 * We don't consider PMD mapped swapping or file mapped pages because THP does 5934 * not support them for now. 5935 * Caller should make sure that pmd_trans_huge(pmd) is true. 5936 */ 5937 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5938 unsigned long addr, pmd_t pmd, union mc_target *target) 5939 { 5940 struct page *page = NULL; 5941 enum mc_target_type ret = MC_TARGET_NONE; 5942 5943 if (unlikely(is_swap_pmd(pmd))) { 5944 VM_BUG_ON(thp_migration_supported() && 5945 !is_pmd_migration_entry(pmd)); 5946 return ret; 5947 } 5948 page = pmd_page(pmd); 5949 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5950 if (!(mc.flags & MOVE_ANON)) 5951 return ret; 5952 if (page_memcg(page) == mc.from) { 5953 ret = MC_TARGET_PAGE; 5954 if (target) { 5955 get_page(page); 5956 if (!trylock_page(page)) { 5957 put_page(page); 5958 return MC_TARGET_NONE; 5959 } 5960 target->page = page; 5961 } 5962 } 5963 return ret; 5964 } 5965 #else 5966 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5967 unsigned long addr, pmd_t pmd, union mc_target *target) 5968 { 5969 return MC_TARGET_NONE; 5970 } 5971 #endif 5972 5973 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5974 unsigned long addr, unsigned long end, 5975 struct mm_walk *walk) 5976 { 5977 struct vm_area_struct *vma = walk->vma; 5978 pte_t *pte; 5979 spinlock_t *ptl; 5980 5981 ptl = pmd_trans_huge_lock(pmd, vma); 5982 if (ptl) { 5983 /* 5984 * Note their can not be MC_TARGET_DEVICE for now as we do not 5985 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5986 * this might change. 5987 */ 5988 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5989 mc.precharge += HPAGE_PMD_NR; 5990 spin_unlock(ptl); 5991 return 0; 5992 } 5993 5994 if (pmd_trans_unstable(pmd)) 5995 return 0; 5996 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5997 for (; addr != end; pte++, addr += PAGE_SIZE) 5998 if (get_mctgt_type(vma, addr, *pte, NULL)) 5999 mc.precharge++; /* increment precharge temporarily */ 6000 pte_unmap_unlock(pte - 1, ptl); 6001 cond_resched(); 6002 6003 return 0; 6004 } 6005 6006 static const struct mm_walk_ops precharge_walk_ops = { 6007 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6008 }; 6009 6010 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6011 { 6012 unsigned long precharge; 6013 6014 mmap_read_lock(mm); 6015 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6016 mmap_read_unlock(mm); 6017 6018 precharge = mc.precharge; 6019 mc.precharge = 0; 6020 6021 return precharge; 6022 } 6023 6024 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6025 { 6026 unsigned long precharge = mem_cgroup_count_precharge(mm); 6027 6028 VM_BUG_ON(mc.moving_task); 6029 mc.moving_task = current; 6030 return mem_cgroup_do_precharge(precharge); 6031 } 6032 6033 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6034 static void __mem_cgroup_clear_mc(void) 6035 { 6036 struct mem_cgroup *from = mc.from; 6037 struct mem_cgroup *to = mc.to; 6038 6039 /* we must uncharge all the leftover precharges from mc.to */ 6040 if (mc.precharge) { 6041 cancel_charge(mc.to, mc.precharge); 6042 mc.precharge = 0; 6043 } 6044 /* 6045 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6046 * we must uncharge here. 6047 */ 6048 if (mc.moved_charge) { 6049 cancel_charge(mc.from, mc.moved_charge); 6050 mc.moved_charge = 0; 6051 } 6052 /* we must fixup refcnts and charges */ 6053 if (mc.moved_swap) { 6054 /* uncharge swap account from the old cgroup */ 6055 if (!mem_cgroup_is_root(mc.from)) 6056 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6057 6058 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6059 6060 /* 6061 * we charged both to->memory and to->memsw, so we 6062 * should uncharge to->memory. 6063 */ 6064 if (!mem_cgroup_is_root(mc.to)) 6065 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6066 6067 mc.moved_swap = 0; 6068 } 6069 memcg_oom_recover(from); 6070 memcg_oom_recover(to); 6071 wake_up_all(&mc.waitq); 6072 } 6073 6074 static void mem_cgroup_clear_mc(void) 6075 { 6076 struct mm_struct *mm = mc.mm; 6077 6078 /* 6079 * we must clear moving_task before waking up waiters at the end of 6080 * task migration. 6081 */ 6082 mc.moving_task = NULL; 6083 __mem_cgroup_clear_mc(); 6084 spin_lock(&mc.lock); 6085 mc.from = NULL; 6086 mc.to = NULL; 6087 mc.mm = NULL; 6088 spin_unlock(&mc.lock); 6089 6090 mmput(mm); 6091 } 6092 6093 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6094 { 6095 struct cgroup_subsys_state *css; 6096 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6097 struct mem_cgroup *from; 6098 struct task_struct *leader, *p; 6099 struct mm_struct *mm; 6100 unsigned long move_flags; 6101 int ret = 0; 6102 6103 /* charge immigration isn't supported on the default hierarchy */ 6104 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6105 return 0; 6106 6107 /* 6108 * Multi-process migrations only happen on the default hierarchy 6109 * where charge immigration is not used. Perform charge 6110 * immigration if @tset contains a leader and whine if there are 6111 * multiple. 6112 */ 6113 p = NULL; 6114 cgroup_taskset_for_each_leader(leader, css, tset) { 6115 WARN_ON_ONCE(p); 6116 p = leader; 6117 memcg = mem_cgroup_from_css(css); 6118 } 6119 if (!p) 6120 return 0; 6121 6122 /* 6123 * We are now committed to this value whatever it is. Changes in this 6124 * tunable will only affect upcoming migrations, not the current one. 6125 * So we need to save it, and keep it going. 6126 */ 6127 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6128 if (!move_flags) 6129 return 0; 6130 6131 from = mem_cgroup_from_task(p); 6132 6133 VM_BUG_ON(from == memcg); 6134 6135 mm = get_task_mm(p); 6136 if (!mm) 6137 return 0; 6138 /* We move charges only when we move a owner of the mm */ 6139 if (mm->owner == p) { 6140 VM_BUG_ON(mc.from); 6141 VM_BUG_ON(mc.to); 6142 VM_BUG_ON(mc.precharge); 6143 VM_BUG_ON(mc.moved_charge); 6144 VM_BUG_ON(mc.moved_swap); 6145 6146 spin_lock(&mc.lock); 6147 mc.mm = mm; 6148 mc.from = from; 6149 mc.to = memcg; 6150 mc.flags = move_flags; 6151 spin_unlock(&mc.lock); 6152 /* We set mc.moving_task later */ 6153 6154 ret = mem_cgroup_precharge_mc(mm); 6155 if (ret) 6156 mem_cgroup_clear_mc(); 6157 } else { 6158 mmput(mm); 6159 } 6160 return ret; 6161 } 6162 6163 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6164 { 6165 if (mc.to) 6166 mem_cgroup_clear_mc(); 6167 } 6168 6169 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6170 unsigned long addr, unsigned long end, 6171 struct mm_walk *walk) 6172 { 6173 int ret = 0; 6174 struct vm_area_struct *vma = walk->vma; 6175 pte_t *pte; 6176 spinlock_t *ptl; 6177 enum mc_target_type target_type; 6178 union mc_target target; 6179 struct page *page; 6180 6181 ptl = pmd_trans_huge_lock(pmd, vma); 6182 if (ptl) { 6183 if (mc.precharge < HPAGE_PMD_NR) { 6184 spin_unlock(ptl); 6185 return 0; 6186 } 6187 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6188 if (target_type == MC_TARGET_PAGE) { 6189 page = target.page; 6190 if (!isolate_lru_page(page)) { 6191 if (!mem_cgroup_move_account(page, true, 6192 mc.from, mc.to)) { 6193 mc.precharge -= HPAGE_PMD_NR; 6194 mc.moved_charge += HPAGE_PMD_NR; 6195 } 6196 putback_lru_page(page); 6197 } 6198 unlock_page(page); 6199 put_page(page); 6200 } else if (target_type == MC_TARGET_DEVICE) { 6201 page = target.page; 6202 if (!mem_cgroup_move_account(page, true, 6203 mc.from, mc.to)) { 6204 mc.precharge -= HPAGE_PMD_NR; 6205 mc.moved_charge += HPAGE_PMD_NR; 6206 } 6207 unlock_page(page); 6208 put_page(page); 6209 } 6210 spin_unlock(ptl); 6211 return 0; 6212 } 6213 6214 if (pmd_trans_unstable(pmd)) 6215 return 0; 6216 retry: 6217 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6218 for (; addr != end; addr += PAGE_SIZE) { 6219 pte_t ptent = *(pte++); 6220 bool device = false; 6221 swp_entry_t ent; 6222 6223 if (!mc.precharge) 6224 break; 6225 6226 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6227 case MC_TARGET_DEVICE: 6228 device = true; 6229 fallthrough; 6230 case MC_TARGET_PAGE: 6231 page = target.page; 6232 /* 6233 * We can have a part of the split pmd here. Moving it 6234 * can be done but it would be too convoluted so simply 6235 * ignore such a partial THP and keep it in original 6236 * memcg. There should be somebody mapping the head. 6237 */ 6238 if (PageTransCompound(page)) 6239 goto put; 6240 if (!device && isolate_lru_page(page)) 6241 goto put; 6242 if (!mem_cgroup_move_account(page, false, 6243 mc.from, mc.to)) { 6244 mc.precharge--; 6245 /* we uncharge from mc.from later. */ 6246 mc.moved_charge++; 6247 } 6248 if (!device) 6249 putback_lru_page(page); 6250 put: /* get_mctgt_type() gets & locks the page */ 6251 unlock_page(page); 6252 put_page(page); 6253 break; 6254 case MC_TARGET_SWAP: 6255 ent = target.ent; 6256 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6257 mc.precharge--; 6258 mem_cgroup_id_get_many(mc.to, 1); 6259 /* we fixup other refcnts and charges later. */ 6260 mc.moved_swap++; 6261 } 6262 break; 6263 default: 6264 break; 6265 } 6266 } 6267 pte_unmap_unlock(pte - 1, ptl); 6268 cond_resched(); 6269 6270 if (addr != end) { 6271 /* 6272 * We have consumed all precharges we got in can_attach(). 6273 * We try charge one by one, but don't do any additional 6274 * charges to mc.to if we have failed in charge once in attach() 6275 * phase. 6276 */ 6277 ret = mem_cgroup_do_precharge(1); 6278 if (!ret) 6279 goto retry; 6280 } 6281 6282 return ret; 6283 } 6284 6285 static const struct mm_walk_ops charge_walk_ops = { 6286 .pmd_entry = mem_cgroup_move_charge_pte_range, 6287 }; 6288 6289 static void mem_cgroup_move_charge(void) 6290 { 6291 lru_add_drain_all(); 6292 /* 6293 * Signal lock_page_memcg() to take the memcg's move_lock 6294 * while we're moving its pages to another memcg. Then wait 6295 * for already started RCU-only updates to finish. 6296 */ 6297 atomic_inc(&mc.from->moving_account); 6298 synchronize_rcu(); 6299 retry: 6300 if (unlikely(!mmap_read_trylock(mc.mm))) { 6301 /* 6302 * Someone who are holding the mmap_lock might be waiting in 6303 * waitq. So we cancel all extra charges, wake up all waiters, 6304 * and retry. Because we cancel precharges, we might not be able 6305 * to move enough charges, but moving charge is a best-effort 6306 * feature anyway, so it wouldn't be a big problem. 6307 */ 6308 __mem_cgroup_clear_mc(); 6309 cond_resched(); 6310 goto retry; 6311 } 6312 /* 6313 * When we have consumed all precharges and failed in doing 6314 * additional charge, the page walk just aborts. 6315 */ 6316 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6317 mmap_read_unlock(mc.mm); 6318 atomic_dec(&mc.from->moving_account); 6319 } 6320 6321 static void mem_cgroup_move_task(void) 6322 { 6323 if (mc.to) { 6324 mem_cgroup_move_charge(); 6325 mem_cgroup_clear_mc(); 6326 } 6327 } 6328 #else /* !CONFIG_MMU */ 6329 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6330 { 6331 return 0; 6332 } 6333 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6334 { 6335 } 6336 static void mem_cgroup_move_task(void) 6337 { 6338 } 6339 #endif 6340 6341 #ifdef CONFIG_LRU_GEN 6342 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6343 { 6344 struct task_struct *task; 6345 struct cgroup_subsys_state *css; 6346 6347 /* find the first leader if there is any */ 6348 cgroup_taskset_for_each_leader(task, css, tset) 6349 break; 6350 6351 if (!task) 6352 return; 6353 6354 task_lock(task); 6355 if (task->mm && READ_ONCE(task->mm->owner) == task) 6356 lru_gen_migrate_mm(task->mm); 6357 task_unlock(task); 6358 } 6359 #else 6360 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6361 { 6362 } 6363 #endif /* CONFIG_LRU_GEN */ 6364 6365 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6366 { 6367 if (value == PAGE_COUNTER_MAX) 6368 seq_puts(m, "max\n"); 6369 else 6370 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6371 6372 return 0; 6373 } 6374 6375 static u64 memory_current_read(struct cgroup_subsys_state *css, 6376 struct cftype *cft) 6377 { 6378 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6379 6380 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6381 } 6382 6383 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6384 struct cftype *cft) 6385 { 6386 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6387 6388 return (u64)memcg->memory.watermark * PAGE_SIZE; 6389 } 6390 6391 static int memory_min_show(struct seq_file *m, void *v) 6392 { 6393 return seq_puts_memcg_tunable(m, 6394 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6395 } 6396 6397 static ssize_t memory_min_write(struct kernfs_open_file *of, 6398 char *buf, size_t nbytes, loff_t off) 6399 { 6400 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6401 unsigned long min; 6402 int err; 6403 6404 buf = strstrip(buf); 6405 err = page_counter_memparse(buf, "max", &min); 6406 if (err) 6407 return err; 6408 6409 page_counter_set_min(&memcg->memory, min); 6410 6411 return nbytes; 6412 } 6413 6414 static int memory_low_show(struct seq_file *m, void *v) 6415 { 6416 return seq_puts_memcg_tunable(m, 6417 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6418 } 6419 6420 static ssize_t memory_low_write(struct kernfs_open_file *of, 6421 char *buf, size_t nbytes, loff_t off) 6422 { 6423 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6424 unsigned long low; 6425 int err; 6426 6427 buf = strstrip(buf); 6428 err = page_counter_memparse(buf, "max", &low); 6429 if (err) 6430 return err; 6431 6432 page_counter_set_low(&memcg->memory, low); 6433 6434 return nbytes; 6435 } 6436 6437 static int memory_high_show(struct seq_file *m, void *v) 6438 { 6439 return seq_puts_memcg_tunable(m, 6440 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6441 } 6442 6443 static ssize_t memory_high_write(struct kernfs_open_file *of, 6444 char *buf, size_t nbytes, loff_t off) 6445 { 6446 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6447 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6448 bool drained = false; 6449 unsigned long high; 6450 int err; 6451 6452 buf = strstrip(buf); 6453 err = page_counter_memparse(buf, "max", &high); 6454 if (err) 6455 return err; 6456 6457 page_counter_set_high(&memcg->memory, high); 6458 6459 for (;;) { 6460 unsigned long nr_pages = page_counter_read(&memcg->memory); 6461 unsigned long reclaimed; 6462 6463 if (nr_pages <= high) 6464 break; 6465 6466 if (signal_pending(current)) 6467 break; 6468 6469 if (!drained) { 6470 drain_all_stock(memcg); 6471 drained = true; 6472 continue; 6473 } 6474 6475 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6476 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, 6477 NULL); 6478 6479 if (!reclaimed && !nr_retries--) 6480 break; 6481 } 6482 6483 memcg_wb_domain_size_changed(memcg); 6484 return nbytes; 6485 } 6486 6487 static int memory_max_show(struct seq_file *m, void *v) 6488 { 6489 return seq_puts_memcg_tunable(m, 6490 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6491 } 6492 6493 static ssize_t memory_max_write(struct kernfs_open_file *of, 6494 char *buf, size_t nbytes, loff_t off) 6495 { 6496 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6497 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6498 bool drained = false; 6499 unsigned long max; 6500 int err; 6501 6502 buf = strstrip(buf); 6503 err = page_counter_memparse(buf, "max", &max); 6504 if (err) 6505 return err; 6506 6507 xchg(&memcg->memory.max, max); 6508 6509 for (;;) { 6510 unsigned long nr_pages = page_counter_read(&memcg->memory); 6511 6512 if (nr_pages <= max) 6513 break; 6514 6515 if (signal_pending(current)) 6516 break; 6517 6518 if (!drained) { 6519 drain_all_stock(memcg); 6520 drained = true; 6521 continue; 6522 } 6523 6524 if (nr_reclaims) { 6525 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6526 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, 6527 NULL)) 6528 nr_reclaims--; 6529 continue; 6530 } 6531 6532 memcg_memory_event(memcg, MEMCG_OOM); 6533 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6534 break; 6535 } 6536 6537 memcg_wb_domain_size_changed(memcg); 6538 return nbytes; 6539 } 6540 6541 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6542 { 6543 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6544 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6545 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6546 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6547 seq_printf(m, "oom_kill %lu\n", 6548 atomic_long_read(&events[MEMCG_OOM_KILL])); 6549 seq_printf(m, "oom_group_kill %lu\n", 6550 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6551 } 6552 6553 static int memory_events_show(struct seq_file *m, void *v) 6554 { 6555 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6556 6557 __memory_events_show(m, memcg->memory_events); 6558 return 0; 6559 } 6560 6561 static int memory_events_local_show(struct seq_file *m, void *v) 6562 { 6563 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6564 6565 __memory_events_show(m, memcg->memory_events_local); 6566 return 0; 6567 } 6568 6569 static int memory_stat_show(struct seq_file *m, void *v) 6570 { 6571 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6572 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6573 6574 if (!buf) 6575 return -ENOMEM; 6576 memory_stat_format(memcg, buf, PAGE_SIZE); 6577 seq_puts(m, buf); 6578 kfree(buf); 6579 return 0; 6580 } 6581 6582 #ifdef CONFIG_NUMA 6583 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6584 int item) 6585 { 6586 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6587 } 6588 6589 static int memory_numa_stat_show(struct seq_file *m, void *v) 6590 { 6591 int i; 6592 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6593 6594 mem_cgroup_flush_stats(); 6595 6596 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6597 int nid; 6598 6599 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6600 continue; 6601 6602 seq_printf(m, "%s", memory_stats[i].name); 6603 for_each_node_state(nid, N_MEMORY) { 6604 u64 size; 6605 struct lruvec *lruvec; 6606 6607 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6608 size = lruvec_page_state_output(lruvec, 6609 memory_stats[i].idx); 6610 seq_printf(m, " N%d=%llu", nid, size); 6611 } 6612 seq_putc(m, '\n'); 6613 } 6614 6615 return 0; 6616 } 6617 #endif 6618 6619 static int memory_oom_group_show(struct seq_file *m, void *v) 6620 { 6621 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6622 6623 seq_printf(m, "%d\n", memcg->oom_group); 6624 6625 return 0; 6626 } 6627 6628 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6629 char *buf, size_t nbytes, loff_t off) 6630 { 6631 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6632 int ret, oom_group; 6633 6634 buf = strstrip(buf); 6635 if (!buf) 6636 return -EINVAL; 6637 6638 ret = kstrtoint(buf, 0, &oom_group); 6639 if (ret) 6640 return ret; 6641 6642 if (oom_group != 0 && oom_group != 1) 6643 return -EINVAL; 6644 6645 memcg->oom_group = oom_group; 6646 6647 return nbytes; 6648 } 6649 6650 enum { 6651 MEMORY_RECLAIM_NODES = 0, 6652 MEMORY_RECLAIM_NULL, 6653 }; 6654 6655 static const match_table_t if_tokens = { 6656 { MEMORY_RECLAIM_NODES, "nodes=%s" }, 6657 { MEMORY_RECLAIM_NULL, NULL }, 6658 }; 6659 6660 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6661 size_t nbytes, loff_t off) 6662 { 6663 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6664 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6665 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6666 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP | 6667 MEMCG_RECLAIM_PROACTIVE; 6668 char *old_buf, *start; 6669 substring_t args[MAX_OPT_ARGS]; 6670 int token; 6671 char value[256]; 6672 nodemask_t nodemask = NODE_MASK_ALL; 6673 6674 buf = strstrip(buf); 6675 6676 old_buf = buf; 6677 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 6678 if (buf == old_buf) 6679 return -EINVAL; 6680 6681 buf = strstrip(buf); 6682 6683 while ((start = strsep(&buf, " ")) != NULL) { 6684 if (!strlen(start)) 6685 continue; 6686 token = match_token(start, if_tokens, args); 6687 match_strlcpy(value, args, sizeof(value)); 6688 switch (token) { 6689 case MEMORY_RECLAIM_NODES: 6690 if (nodelist_parse(value, nodemask) < 0) 6691 return -EINVAL; 6692 break; 6693 default: 6694 return -EINVAL; 6695 } 6696 } 6697 6698 while (nr_reclaimed < nr_to_reclaim) { 6699 unsigned long reclaimed; 6700 6701 if (signal_pending(current)) 6702 return -EINTR; 6703 6704 /* 6705 * This is the final attempt, drain percpu lru caches in the 6706 * hope of introducing more evictable pages for 6707 * try_to_free_mem_cgroup_pages(). 6708 */ 6709 if (!nr_retries) 6710 lru_add_drain_all(); 6711 6712 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6713 nr_to_reclaim - nr_reclaimed, 6714 GFP_KERNEL, reclaim_options, 6715 &nodemask); 6716 6717 if (!reclaimed && !nr_retries--) 6718 return -EAGAIN; 6719 6720 nr_reclaimed += reclaimed; 6721 } 6722 6723 return nbytes; 6724 } 6725 6726 static struct cftype memory_files[] = { 6727 { 6728 .name = "current", 6729 .flags = CFTYPE_NOT_ON_ROOT, 6730 .read_u64 = memory_current_read, 6731 }, 6732 { 6733 .name = "peak", 6734 .flags = CFTYPE_NOT_ON_ROOT, 6735 .read_u64 = memory_peak_read, 6736 }, 6737 { 6738 .name = "min", 6739 .flags = CFTYPE_NOT_ON_ROOT, 6740 .seq_show = memory_min_show, 6741 .write = memory_min_write, 6742 }, 6743 { 6744 .name = "low", 6745 .flags = CFTYPE_NOT_ON_ROOT, 6746 .seq_show = memory_low_show, 6747 .write = memory_low_write, 6748 }, 6749 { 6750 .name = "high", 6751 .flags = CFTYPE_NOT_ON_ROOT, 6752 .seq_show = memory_high_show, 6753 .write = memory_high_write, 6754 }, 6755 { 6756 .name = "max", 6757 .flags = CFTYPE_NOT_ON_ROOT, 6758 .seq_show = memory_max_show, 6759 .write = memory_max_write, 6760 }, 6761 { 6762 .name = "events", 6763 .flags = CFTYPE_NOT_ON_ROOT, 6764 .file_offset = offsetof(struct mem_cgroup, events_file), 6765 .seq_show = memory_events_show, 6766 }, 6767 { 6768 .name = "events.local", 6769 .flags = CFTYPE_NOT_ON_ROOT, 6770 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6771 .seq_show = memory_events_local_show, 6772 }, 6773 { 6774 .name = "stat", 6775 .seq_show = memory_stat_show, 6776 }, 6777 #ifdef CONFIG_NUMA 6778 { 6779 .name = "numa_stat", 6780 .seq_show = memory_numa_stat_show, 6781 }, 6782 #endif 6783 { 6784 .name = "oom.group", 6785 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6786 .seq_show = memory_oom_group_show, 6787 .write = memory_oom_group_write, 6788 }, 6789 { 6790 .name = "reclaim", 6791 .flags = CFTYPE_NS_DELEGATABLE, 6792 .write = memory_reclaim, 6793 }, 6794 { } /* terminate */ 6795 }; 6796 6797 struct cgroup_subsys memory_cgrp_subsys = { 6798 .css_alloc = mem_cgroup_css_alloc, 6799 .css_online = mem_cgroup_css_online, 6800 .css_offline = mem_cgroup_css_offline, 6801 .css_released = mem_cgroup_css_released, 6802 .css_free = mem_cgroup_css_free, 6803 .css_reset = mem_cgroup_css_reset, 6804 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6805 .can_attach = mem_cgroup_can_attach, 6806 .attach = mem_cgroup_attach, 6807 .cancel_attach = mem_cgroup_cancel_attach, 6808 .post_attach = mem_cgroup_move_task, 6809 .dfl_cftypes = memory_files, 6810 .legacy_cftypes = mem_cgroup_legacy_files, 6811 .early_init = 0, 6812 }; 6813 6814 /* 6815 * This function calculates an individual cgroup's effective 6816 * protection which is derived from its own memory.min/low, its 6817 * parent's and siblings' settings, as well as the actual memory 6818 * distribution in the tree. 6819 * 6820 * The following rules apply to the effective protection values: 6821 * 6822 * 1. At the first level of reclaim, effective protection is equal to 6823 * the declared protection in memory.min and memory.low. 6824 * 6825 * 2. To enable safe delegation of the protection configuration, at 6826 * subsequent levels the effective protection is capped to the 6827 * parent's effective protection. 6828 * 6829 * 3. To make complex and dynamic subtrees easier to configure, the 6830 * user is allowed to overcommit the declared protection at a given 6831 * level. If that is the case, the parent's effective protection is 6832 * distributed to the children in proportion to how much protection 6833 * they have declared and how much of it they are utilizing. 6834 * 6835 * This makes distribution proportional, but also work-conserving: 6836 * if one cgroup claims much more protection than it uses memory, 6837 * the unused remainder is available to its siblings. 6838 * 6839 * 4. Conversely, when the declared protection is undercommitted at a 6840 * given level, the distribution of the larger parental protection 6841 * budget is NOT proportional. A cgroup's protection from a sibling 6842 * is capped to its own memory.min/low setting. 6843 * 6844 * 5. However, to allow protecting recursive subtrees from each other 6845 * without having to declare each individual cgroup's fixed share 6846 * of the ancestor's claim to protection, any unutilized - 6847 * "floating" - protection from up the tree is distributed in 6848 * proportion to each cgroup's *usage*. This makes the protection 6849 * neutral wrt sibling cgroups and lets them compete freely over 6850 * the shared parental protection budget, but it protects the 6851 * subtree as a whole from neighboring subtrees. 6852 * 6853 * Note that 4. and 5. are not in conflict: 4. is about protecting 6854 * against immediate siblings whereas 5. is about protecting against 6855 * neighboring subtrees. 6856 */ 6857 static unsigned long effective_protection(unsigned long usage, 6858 unsigned long parent_usage, 6859 unsigned long setting, 6860 unsigned long parent_effective, 6861 unsigned long siblings_protected) 6862 { 6863 unsigned long protected; 6864 unsigned long ep; 6865 6866 protected = min(usage, setting); 6867 /* 6868 * If all cgroups at this level combined claim and use more 6869 * protection then what the parent affords them, distribute 6870 * shares in proportion to utilization. 6871 * 6872 * We are using actual utilization rather than the statically 6873 * claimed protection in order to be work-conserving: claimed 6874 * but unused protection is available to siblings that would 6875 * otherwise get a smaller chunk than what they claimed. 6876 */ 6877 if (siblings_protected > parent_effective) 6878 return protected * parent_effective / siblings_protected; 6879 6880 /* 6881 * Ok, utilized protection of all children is within what the 6882 * parent affords them, so we know whatever this child claims 6883 * and utilizes is effectively protected. 6884 * 6885 * If there is unprotected usage beyond this value, reclaim 6886 * will apply pressure in proportion to that amount. 6887 * 6888 * If there is unutilized protection, the cgroup will be fully 6889 * shielded from reclaim, but we do return a smaller value for 6890 * protection than what the group could enjoy in theory. This 6891 * is okay. With the overcommit distribution above, effective 6892 * protection is always dependent on how memory is actually 6893 * consumed among the siblings anyway. 6894 */ 6895 ep = protected; 6896 6897 /* 6898 * If the children aren't claiming (all of) the protection 6899 * afforded to them by the parent, distribute the remainder in 6900 * proportion to the (unprotected) memory of each cgroup. That 6901 * way, cgroups that aren't explicitly prioritized wrt each 6902 * other compete freely over the allowance, but they are 6903 * collectively protected from neighboring trees. 6904 * 6905 * We're using unprotected memory for the weight so that if 6906 * some cgroups DO claim explicit protection, we don't protect 6907 * the same bytes twice. 6908 * 6909 * Check both usage and parent_usage against the respective 6910 * protected values. One should imply the other, but they 6911 * aren't read atomically - make sure the division is sane. 6912 */ 6913 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6914 return ep; 6915 if (parent_effective > siblings_protected && 6916 parent_usage > siblings_protected && 6917 usage > protected) { 6918 unsigned long unclaimed; 6919 6920 unclaimed = parent_effective - siblings_protected; 6921 unclaimed *= usage - protected; 6922 unclaimed /= parent_usage - siblings_protected; 6923 6924 ep += unclaimed; 6925 } 6926 6927 return ep; 6928 } 6929 6930 /** 6931 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6932 * @root: the top ancestor of the sub-tree being checked 6933 * @memcg: the memory cgroup to check 6934 * 6935 * WARNING: This function is not stateless! It can only be used as part 6936 * of a top-down tree iteration, not for isolated queries. 6937 */ 6938 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6939 struct mem_cgroup *memcg) 6940 { 6941 unsigned long usage, parent_usage; 6942 struct mem_cgroup *parent; 6943 6944 if (mem_cgroup_disabled()) 6945 return; 6946 6947 if (!root) 6948 root = root_mem_cgroup; 6949 6950 /* 6951 * Effective values of the reclaim targets are ignored so they 6952 * can be stale. Have a look at mem_cgroup_protection for more 6953 * details. 6954 * TODO: calculation should be more robust so that we do not need 6955 * that special casing. 6956 */ 6957 if (memcg == root) 6958 return; 6959 6960 usage = page_counter_read(&memcg->memory); 6961 if (!usage) 6962 return; 6963 6964 parent = parent_mem_cgroup(memcg); 6965 6966 if (parent == root) { 6967 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6968 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6969 return; 6970 } 6971 6972 parent_usage = page_counter_read(&parent->memory); 6973 6974 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6975 READ_ONCE(memcg->memory.min), 6976 READ_ONCE(parent->memory.emin), 6977 atomic_long_read(&parent->memory.children_min_usage))); 6978 6979 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6980 READ_ONCE(memcg->memory.low), 6981 READ_ONCE(parent->memory.elow), 6982 atomic_long_read(&parent->memory.children_low_usage))); 6983 } 6984 6985 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6986 gfp_t gfp) 6987 { 6988 long nr_pages = folio_nr_pages(folio); 6989 int ret; 6990 6991 ret = try_charge(memcg, gfp, nr_pages); 6992 if (ret) 6993 goto out; 6994 6995 css_get(&memcg->css); 6996 commit_charge(folio, memcg); 6997 6998 local_irq_disable(); 6999 mem_cgroup_charge_statistics(memcg, nr_pages); 7000 memcg_check_events(memcg, folio_nid(folio)); 7001 local_irq_enable(); 7002 out: 7003 return ret; 7004 } 7005 7006 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 7007 { 7008 struct mem_cgroup *memcg; 7009 int ret; 7010 7011 memcg = get_mem_cgroup_from_mm(mm); 7012 ret = charge_memcg(folio, memcg, gfp); 7013 css_put(&memcg->css); 7014 7015 return ret; 7016 } 7017 7018 /** 7019 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 7020 * @folio: folio to charge. 7021 * @mm: mm context of the victim 7022 * @gfp: reclaim mode 7023 * @entry: swap entry for which the folio is allocated 7024 * 7025 * This function charges a folio allocated for swapin. Please call this before 7026 * adding the folio to the swapcache. 7027 * 7028 * Returns 0 on success. Otherwise, an error code is returned. 7029 */ 7030 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7031 gfp_t gfp, swp_entry_t entry) 7032 { 7033 struct mem_cgroup *memcg; 7034 unsigned short id; 7035 int ret; 7036 7037 if (mem_cgroup_disabled()) 7038 return 0; 7039 7040 id = lookup_swap_cgroup_id(entry); 7041 rcu_read_lock(); 7042 memcg = mem_cgroup_from_id(id); 7043 if (!memcg || !css_tryget_online(&memcg->css)) 7044 memcg = get_mem_cgroup_from_mm(mm); 7045 rcu_read_unlock(); 7046 7047 ret = charge_memcg(folio, memcg, gfp); 7048 7049 css_put(&memcg->css); 7050 return ret; 7051 } 7052 7053 /* 7054 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7055 * @entry: swap entry for which the page is charged 7056 * 7057 * Call this function after successfully adding the charged page to swapcache. 7058 * 7059 * Note: This function assumes the page for which swap slot is being uncharged 7060 * is order 0 page. 7061 */ 7062 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7063 { 7064 /* 7065 * Cgroup1's unified memory+swap counter has been charged with the 7066 * new swapcache page, finish the transfer by uncharging the swap 7067 * slot. The swap slot would also get uncharged when it dies, but 7068 * it can stick around indefinitely and we'd count the page twice 7069 * the entire time. 7070 * 7071 * Cgroup2 has separate resource counters for memory and swap, 7072 * so this is a non-issue here. Memory and swap charge lifetimes 7073 * correspond 1:1 to page and swap slot lifetimes: we charge the 7074 * page to memory here, and uncharge swap when the slot is freed. 7075 */ 7076 if (!mem_cgroup_disabled() && do_memsw_account()) { 7077 /* 7078 * The swap entry might not get freed for a long time, 7079 * let's not wait for it. The page already received a 7080 * memory+swap charge, drop the swap entry duplicate. 7081 */ 7082 mem_cgroup_uncharge_swap(entry, 1); 7083 } 7084 } 7085 7086 struct uncharge_gather { 7087 struct mem_cgroup *memcg; 7088 unsigned long nr_memory; 7089 unsigned long pgpgout; 7090 unsigned long nr_kmem; 7091 int nid; 7092 }; 7093 7094 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7095 { 7096 memset(ug, 0, sizeof(*ug)); 7097 } 7098 7099 static void uncharge_batch(const struct uncharge_gather *ug) 7100 { 7101 unsigned long flags; 7102 7103 if (ug->nr_memory) { 7104 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7105 if (do_memsw_account()) 7106 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7107 if (ug->nr_kmem) 7108 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7109 memcg_oom_recover(ug->memcg); 7110 } 7111 7112 local_irq_save(flags); 7113 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7114 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7115 memcg_check_events(ug->memcg, ug->nid); 7116 local_irq_restore(flags); 7117 7118 /* drop reference from uncharge_folio */ 7119 css_put(&ug->memcg->css); 7120 } 7121 7122 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7123 { 7124 long nr_pages; 7125 struct mem_cgroup *memcg; 7126 struct obj_cgroup *objcg; 7127 7128 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7129 7130 /* 7131 * Nobody should be changing or seriously looking at 7132 * folio memcg or objcg at this point, we have fully 7133 * exclusive access to the folio. 7134 */ 7135 if (folio_memcg_kmem(folio)) { 7136 objcg = __folio_objcg(folio); 7137 /* 7138 * This get matches the put at the end of the function and 7139 * kmem pages do not hold memcg references anymore. 7140 */ 7141 memcg = get_mem_cgroup_from_objcg(objcg); 7142 } else { 7143 memcg = __folio_memcg(folio); 7144 } 7145 7146 if (!memcg) 7147 return; 7148 7149 if (ug->memcg != memcg) { 7150 if (ug->memcg) { 7151 uncharge_batch(ug); 7152 uncharge_gather_clear(ug); 7153 } 7154 ug->memcg = memcg; 7155 ug->nid = folio_nid(folio); 7156 7157 /* pairs with css_put in uncharge_batch */ 7158 css_get(&memcg->css); 7159 } 7160 7161 nr_pages = folio_nr_pages(folio); 7162 7163 if (folio_memcg_kmem(folio)) { 7164 ug->nr_memory += nr_pages; 7165 ug->nr_kmem += nr_pages; 7166 7167 folio->memcg_data = 0; 7168 obj_cgroup_put(objcg); 7169 } else { 7170 /* LRU pages aren't accounted at the root level */ 7171 if (!mem_cgroup_is_root(memcg)) 7172 ug->nr_memory += nr_pages; 7173 ug->pgpgout++; 7174 7175 folio->memcg_data = 0; 7176 } 7177 7178 css_put(&memcg->css); 7179 } 7180 7181 void __mem_cgroup_uncharge(struct folio *folio) 7182 { 7183 struct uncharge_gather ug; 7184 7185 /* Don't touch folio->lru of any random page, pre-check: */ 7186 if (!folio_memcg(folio)) 7187 return; 7188 7189 uncharge_gather_clear(&ug); 7190 uncharge_folio(folio, &ug); 7191 uncharge_batch(&ug); 7192 } 7193 7194 /** 7195 * __mem_cgroup_uncharge_list - uncharge a list of page 7196 * @page_list: list of pages to uncharge 7197 * 7198 * Uncharge a list of pages previously charged with 7199 * __mem_cgroup_charge(). 7200 */ 7201 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7202 { 7203 struct uncharge_gather ug; 7204 struct folio *folio; 7205 7206 uncharge_gather_clear(&ug); 7207 list_for_each_entry(folio, page_list, lru) 7208 uncharge_folio(folio, &ug); 7209 if (ug.memcg) 7210 uncharge_batch(&ug); 7211 } 7212 7213 /** 7214 * mem_cgroup_migrate - Charge a folio's replacement. 7215 * @old: Currently circulating folio. 7216 * @new: Replacement folio. 7217 * 7218 * Charge @new as a replacement folio for @old. @old will 7219 * be uncharged upon free. 7220 * 7221 * Both folios must be locked, @new->mapping must be set up. 7222 */ 7223 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7224 { 7225 struct mem_cgroup *memcg; 7226 long nr_pages = folio_nr_pages(new); 7227 unsigned long flags; 7228 7229 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7230 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7231 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7232 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7233 7234 if (mem_cgroup_disabled()) 7235 return; 7236 7237 /* Page cache replacement: new folio already charged? */ 7238 if (folio_memcg(new)) 7239 return; 7240 7241 memcg = folio_memcg(old); 7242 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7243 if (!memcg) 7244 return; 7245 7246 /* Force-charge the new page. The old one will be freed soon */ 7247 if (!mem_cgroup_is_root(memcg)) { 7248 page_counter_charge(&memcg->memory, nr_pages); 7249 if (do_memsw_account()) 7250 page_counter_charge(&memcg->memsw, nr_pages); 7251 } 7252 7253 css_get(&memcg->css); 7254 commit_charge(new, memcg); 7255 7256 local_irq_save(flags); 7257 mem_cgroup_charge_statistics(memcg, nr_pages); 7258 memcg_check_events(memcg, folio_nid(new)); 7259 local_irq_restore(flags); 7260 } 7261 7262 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7263 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7264 7265 void mem_cgroup_sk_alloc(struct sock *sk) 7266 { 7267 struct mem_cgroup *memcg; 7268 7269 if (!mem_cgroup_sockets_enabled) 7270 return; 7271 7272 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7273 if (!in_task()) 7274 return; 7275 7276 rcu_read_lock(); 7277 memcg = mem_cgroup_from_task(current); 7278 if (mem_cgroup_is_root(memcg)) 7279 goto out; 7280 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7281 goto out; 7282 if (css_tryget(&memcg->css)) 7283 sk->sk_memcg = memcg; 7284 out: 7285 rcu_read_unlock(); 7286 } 7287 7288 void mem_cgroup_sk_free(struct sock *sk) 7289 { 7290 if (sk->sk_memcg) 7291 css_put(&sk->sk_memcg->css); 7292 } 7293 7294 /** 7295 * mem_cgroup_charge_skmem - charge socket memory 7296 * @memcg: memcg to charge 7297 * @nr_pages: number of pages to charge 7298 * @gfp_mask: reclaim mode 7299 * 7300 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7301 * @memcg's configured limit, %false if it doesn't. 7302 */ 7303 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7304 gfp_t gfp_mask) 7305 { 7306 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7307 struct page_counter *fail; 7308 7309 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7310 memcg->tcpmem_pressure = 0; 7311 return true; 7312 } 7313 memcg->tcpmem_pressure = 1; 7314 if (gfp_mask & __GFP_NOFAIL) { 7315 page_counter_charge(&memcg->tcpmem, nr_pages); 7316 return true; 7317 } 7318 return false; 7319 } 7320 7321 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7322 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7323 return true; 7324 } 7325 7326 return false; 7327 } 7328 7329 /** 7330 * mem_cgroup_uncharge_skmem - uncharge socket memory 7331 * @memcg: memcg to uncharge 7332 * @nr_pages: number of pages to uncharge 7333 */ 7334 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7335 { 7336 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7337 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7338 return; 7339 } 7340 7341 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7342 7343 refill_stock(memcg, nr_pages); 7344 } 7345 7346 static int __init cgroup_memory(char *s) 7347 { 7348 char *token; 7349 7350 while ((token = strsep(&s, ",")) != NULL) { 7351 if (!*token) 7352 continue; 7353 if (!strcmp(token, "nosocket")) 7354 cgroup_memory_nosocket = true; 7355 if (!strcmp(token, "nokmem")) 7356 cgroup_memory_nokmem = true; 7357 } 7358 return 1; 7359 } 7360 __setup("cgroup.memory=", cgroup_memory); 7361 7362 /* 7363 * subsys_initcall() for memory controller. 7364 * 7365 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7366 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7367 * basically everything that doesn't depend on a specific mem_cgroup structure 7368 * should be initialized from here. 7369 */ 7370 static int __init mem_cgroup_init(void) 7371 { 7372 int cpu, node; 7373 7374 /* 7375 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7376 * used for per-memcg-per-cpu caching of per-node statistics. In order 7377 * to work fine, we should make sure that the overfill threshold can't 7378 * exceed S32_MAX / PAGE_SIZE. 7379 */ 7380 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7381 7382 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7383 memcg_hotplug_cpu_dead); 7384 7385 for_each_possible_cpu(cpu) 7386 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7387 drain_local_stock); 7388 7389 for_each_node(node) { 7390 struct mem_cgroup_tree_per_node *rtpn; 7391 7392 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7393 node_online(node) ? node : NUMA_NO_NODE); 7394 7395 rtpn->rb_root = RB_ROOT; 7396 rtpn->rb_rightmost = NULL; 7397 spin_lock_init(&rtpn->lock); 7398 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7399 } 7400 7401 return 0; 7402 } 7403 subsys_initcall(mem_cgroup_init); 7404 7405 #ifdef CONFIG_SWAP 7406 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7407 { 7408 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7409 /* 7410 * The root cgroup cannot be destroyed, so it's refcount must 7411 * always be >= 1. 7412 */ 7413 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7414 VM_BUG_ON(1); 7415 break; 7416 } 7417 memcg = parent_mem_cgroup(memcg); 7418 if (!memcg) 7419 memcg = root_mem_cgroup; 7420 } 7421 return memcg; 7422 } 7423 7424 /** 7425 * mem_cgroup_swapout - transfer a memsw charge to swap 7426 * @folio: folio whose memsw charge to transfer 7427 * @entry: swap entry to move the charge to 7428 * 7429 * Transfer the memsw charge of @folio to @entry. 7430 */ 7431 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7432 { 7433 struct mem_cgroup *memcg, *swap_memcg; 7434 unsigned int nr_entries; 7435 unsigned short oldid; 7436 7437 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7438 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7439 7440 if (mem_cgroup_disabled()) 7441 return; 7442 7443 if (!do_memsw_account()) 7444 return; 7445 7446 memcg = folio_memcg(folio); 7447 7448 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7449 if (!memcg) 7450 return; 7451 7452 /* 7453 * In case the memcg owning these pages has been offlined and doesn't 7454 * have an ID allocated to it anymore, charge the closest online 7455 * ancestor for the swap instead and transfer the memory+swap charge. 7456 */ 7457 swap_memcg = mem_cgroup_id_get_online(memcg); 7458 nr_entries = folio_nr_pages(folio); 7459 /* Get references for the tail pages, too */ 7460 if (nr_entries > 1) 7461 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7462 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7463 nr_entries); 7464 VM_BUG_ON_FOLIO(oldid, folio); 7465 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7466 7467 folio->memcg_data = 0; 7468 7469 if (!mem_cgroup_is_root(memcg)) 7470 page_counter_uncharge(&memcg->memory, nr_entries); 7471 7472 if (memcg != swap_memcg) { 7473 if (!mem_cgroup_is_root(swap_memcg)) 7474 page_counter_charge(&swap_memcg->memsw, nr_entries); 7475 page_counter_uncharge(&memcg->memsw, nr_entries); 7476 } 7477 7478 /* 7479 * Interrupts should be disabled here because the caller holds the 7480 * i_pages lock which is taken with interrupts-off. It is 7481 * important here to have the interrupts disabled because it is the 7482 * only synchronisation we have for updating the per-CPU variables. 7483 */ 7484 memcg_stats_lock(); 7485 mem_cgroup_charge_statistics(memcg, -nr_entries); 7486 memcg_stats_unlock(); 7487 memcg_check_events(memcg, folio_nid(folio)); 7488 7489 css_put(&memcg->css); 7490 } 7491 7492 /** 7493 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7494 * @folio: folio being added to swap 7495 * @entry: swap entry to charge 7496 * 7497 * Try to charge @folio's memcg for the swap space at @entry. 7498 * 7499 * Returns 0 on success, -ENOMEM on failure. 7500 */ 7501 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7502 { 7503 unsigned int nr_pages = folio_nr_pages(folio); 7504 struct page_counter *counter; 7505 struct mem_cgroup *memcg; 7506 unsigned short oldid; 7507 7508 if (do_memsw_account()) 7509 return 0; 7510 7511 memcg = folio_memcg(folio); 7512 7513 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7514 if (!memcg) 7515 return 0; 7516 7517 if (!entry.val) { 7518 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7519 return 0; 7520 } 7521 7522 memcg = mem_cgroup_id_get_online(memcg); 7523 7524 if (!mem_cgroup_is_root(memcg) && 7525 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7526 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7527 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7528 mem_cgroup_id_put(memcg); 7529 return -ENOMEM; 7530 } 7531 7532 /* Get references for the tail pages, too */ 7533 if (nr_pages > 1) 7534 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7535 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7536 VM_BUG_ON_FOLIO(oldid, folio); 7537 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7538 7539 return 0; 7540 } 7541 7542 /** 7543 * __mem_cgroup_uncharge_swap - uncharge swap space 7544 * @entry: swap entry to uncharge 7545 * @nr_pages: the amount of swap space to uncharge 7546 */ 7547 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7548 { 7549 struct mem_cgroup *memcg; 7550 unsigned short id; 7551 7552 if (mem_cgroup_disabled()) 7553 return; 7554 7555 id = swap_cgroup_record(entry, 0, nr_pages); 7556 rcu_read_lock(); 7557 memcg = mem_cgroup_from_id(id); 7558 if (memcg) { 7559 if (!mem_cgroup_is_root(memcg)) { 7560 if (do_memsw_account()) 7561 page_counter_uncharge(&memcg->memsw, nr_pages); 7562 else 7563 page_counter_uncharge(&memcg->swap, nr_pages); 7564 } 7565 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7566 mem_cgroup_id_put_many(memcg, nr_pages); 7567 } 7568 rcu_read_unlock(); 7569 } 7570 7571 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7572 { 7573 long nr_swap_pages = get_nr_swap_pages(); 7574 7575 if (mem_cgroup_disabled() || do_memsw_account()) 7576 return nr_swap_pages; 7577 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7578 nr_swap_pages = min_t(long, nr_swap_pages, 7579 READ_ONCE(memcg->swap.max) - 7580 page_counter_read(&memcg->swap)); 7581 return nr_swap_pages; 7582 } 7583 7584 bool mem_cgroup_swap_full(struct folio *folio) 7585 { 7586 struct mem_cgroup *memcg; 7587 7588 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7589 7590 if (vm_swap_full()) 7591 return true; 7592 if (do_memsw_account()) 7593 return false; 7594 7595 memcg = folio_memcg(folio); 7596 if (!memcg) 7597 return false; 7598 7599 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7600 unsigned long usage = page_counter_read(&memcg->swap); 7601 7602 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7603 usage * 2 >= READ_ONCE(memcg->swap.max)) 7604 return true; 7605 } 7606 7607 return false; 7608 } 7609 7610 static int __init setup_swap_account(char *s) 7611 { 7612 pr_warn_once("The swapaccount= commandline option is deprecated. " 7613 "Please report your usecase to linux-mm@kvack.org if you " 7614 "depend on this functionality.\n"); 7615 return 1; 7616 } 7617 __setup("swapaccount=", setup_swap_account); 7618 7619 static u64 swap_current_read(struct cgroup_subsys_state *css, 7620 struct cftype *cft) 7621 { 7622 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7623 7624 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7625 } 7626 7627 static int swap_high_show(struct seq_file *m, void *v) 7628 { 7629 return seq_puts_memcg_tunable(m, 7630 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7631 } 7632 7633 static ssize_t swap_high_write(struct kernfs_open_file *of, 7634 char *buf, size_t nbytes, loff_t off) 7635 { 7636 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7637 unsigned long high; 7638 int err; 7639 7640 buf = strstrip(buf); 7641 err = page_counter_memparse(buf, "max", &high); 7642 if (err) 7643 return err; 7644 7645 page_counter_set_high(&memcg->swap, high); 7646 7647 return nbytes; 7648 } 7649 7650 static int swap_max_show(struct seq_file *m, void *v) 7651 { 7652 return seq_puts_memcg_tunable(m, 7653 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7654 } 7655 7656 static ssize_t swap_max_write(struct kernfs_open_file *of, 7657 char *buf, size_t nbytes, loff_t off) 7658 { 7659 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7660 unsigned long max; 7661 int err; 7662 7663 buf = strstrip(buf); 7664 err = page_counter_memparse(buf, "max", &max); 7665 if (err) 7666 return err; 7667 7668 xchg(&memcg->swap.max, max); 7669 7670 return nbytes; 7671 } 7672 7673 static int swap_events_show(struct seq_file *m, void *v) 7674 { 7675 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7676 7677 seq_printf(m, "high %lu\n", 7678 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7679 seq_printf(m, "max %lu\n", 7680 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7681 seq_printf(m, "fail %lu\n", 7682 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7683 7684 return 0; 7685 } 7686 7687 static struct cftype swap_files[] = { 7688 { 7689 .name = "swap.current", 7690 .flags = CFTYPE_NOT_ON_ROOT, 7691 .read_u64 = swap_current_read, 7692 }, 7693 { 7694 .name = "swap.high", 7695 .flags = CFTYPE_NOT_ON_ROOT, 7696 .seq_show = swap_high_show, 7697 .write = swap_high_write, 7698 }, 7699 { 7700 .name = "swap.max", 7701 .flags = CFTYPE_NOT_ON_ROOT, 7702 .seq_show = swap_max_show, 7703 .write = swap_max_write, 7704 }, 7705 { 7706 .name = "swap.events", 7707 .flags = CFTYPE_NOT_ON_ROOT, 7708 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7709 .seq_show = swap_events_show, 7710 }, 7711 { } /* terminate */ 7712 }; 7713 7714 static struct cftype memsw_files[] = { 7715 { 7716 .name = "memsw.usage_in_bytes", 7717 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7718 .read_u64 = mem_cgroup_read_u64, 7719 }, 7720 { 7721 .name = "memsw.max_usage_in_bytes", 7722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7723 .write = mem_cgroup_reset, 7724 .read_u64 = mem_cgroup_read_u64, 7725 }, 7726 { 7727 .name = "memsw.limit_in_bytes", 7728 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7729 .write = mem_cgroup_write, 7730 .read_u64 = mem_cgroup_read_u64, 7731 }, 7732 { 7733 .name = "memsw.failcnt", 7734 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7735 .write = mem_cgroup_reset, 7736 .read_u64 = mem_cgroup_read_u64, 7737 }, 7738 { }, /* terminate */ 7739 }; 7740 7741 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7742 /** 7743 * obj_cgroup_may_zswap - check if this cgroup can zswap 7744 * @objcg: the object cgroup 7745 * 7746 * Check if the hierarchical zswap limit has been reached. 7747 * 7748 * This doesn't check for specific headroom, and it is not atomic 7749 * either. But with zswap, the size of the allocation is only known 7750 * once compression has occured, and this optimistic pre-check avoids 7751 * spending cycles on compression when there is already no room left 7752 * or zswap is disabled altogether somewhere in the hierarchy. 7753 */ 7754 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7755 { 7756 struct mem_cgroup *memcg, *original_memcg; 7757 bool ret = true; 7758 7759 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7760 return true; 7761 7762 original_memcg = get_mem_cgroup_from_objcg(objcg); 7763 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 7764 memcg = parent_mem_cgroup(memcg)) { 7765 unsigned long max = READ_ONCE(memcg->zswap_max); 7766 unsigned long pages; 7767 7768 if (max == PAGE_COUNTER_MAX) 7769 continue; 7770 if (max == 0) { 7771 ret = false; 7772 break; 7773 } 7774 7775 cgroup_rstat_flush(memcg->css.cgroup); 7776 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7777 if (pages < max) 7778 continue; 7779 ret = false; 7780 break; 7781 } 7782 mem_cgroup_put(original_memcg); 7783 return ret; 7784 } 7785 7786 /** 7787 * obj_cgroup_charge_zswap - charge compression backend memory 7788 * @objcg: the object cgroup 7789 * @size: size of compressed object 7790 * 7791 * This forces the charge after obj_cgroup_may_swap() allowed 7792 * compression and storage in zwap for this cgroup to go ahead. 7793 */ 7794 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7795 { 7796 struct mem_cgroup *memcg; 7797 7798 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7799 return; 7800 7801 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7802 7803 /* PF_MEMALLOC context, charging must succeed */ 7804 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7805 VM_WARN_ON_ONCE(1); 7806 7807 rcu_read_lock(); 7808 memcg = obj_cgroup_memcg(objcg); 7809 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7810 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7811 rcu_read_unlock(); 7812 } 7813 7814 /** 7815 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7816 * @objcg: the object cgroup 7817 * @size: size of compressed object 7818 * 7819 * Uncharges zswap memory on page in. 7820 */ 7821 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7822 { 7823 struct mem_cgroup *memcg; 7824 7825 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7826 return; 7827 7828 obj_cgroup_uncharge(objcg, size); 7829 7830 rcu_read_lock(); 7831 memcg = obj_cgroup_memcg(objcg); 7832 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7833 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7834 rcu_read_unlock(); 7835 } 7836 7837 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7838 struct cftype *cft) 7839 { 7840 cgroup_rstat_flush(css->cgroup); 7841 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7842 } 7843 7844 static int zswap_max_show(struct seq_file *m, void *v) 7845 { 7846 return seq_puts_memcg_tunable(m, 7847 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7848 } 7849 7850 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7851 char *buf, size_t nbytes, loff_t off) 7852 { 7853 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7854 unsigned long max; 7855 int err; 7856 7857 buf = strstrip(buf); 7858 err = page_counter_memparse(buf, "max", &max); 7859 if (err) 7860 return err; 7861 7862 xchg(&memcg->zswap_max, max); 7863 7864 return nbytes; 7865 } 7866 7867 static struct cftype zswap_files[] = { 7868 { 7869 .name = "zswap.current", 7870 .flags = CFTYPE_NOT_ON_ROOT, 7871 .read_u64 = zswap_current_read, 7872 }, 7873 { 7874 .name = "zswap.max", 7875 .flags = CFTYPE_NOT_ON_ROOT, 7876 .seq_show = zswap_max_show, 7877 .write = zswap_max_write, 7878 }, 7879 { } /* terminate */ 7880 }; 7881 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7882 7883 static int __init mem_cgroup_swap_init(void) 7884 { 7885 if (mem_cgroup_disabled()) 7886 return 0; 7887 7888 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7889 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7890 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7891 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7892 #endif 7893 return 0; 7894 } 7895 subsys_initcall(mem_cgroup_swap_init); 7896 7897 #endif /* CONFIG_SWAP */ 7898