1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include <linux/sched/isolation.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "swap.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 /* Active memory cgroup to use from an interrupt context */ 83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 85 86 /* Socket memory accounting disabled? */ 87 static bool cgroup_memory_nosocket __ro_after_init; 88 89 /* Kernel memory accounting disabled? */ 90 static bool cgroup_memory_nokmem __ro_after_init; 91 92 /* BPF memory accounting disabled? */ 93 static bool cgroup_memory_nobpf __ro_after_init; 94 95 #ifdef CONFIG_CGROUP_WRITEBACK 96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 97 #endif 98 99 /* Whether legacy memory+swap accounting is active */ 100 static bool do_memsw_account(void) 101 { 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 103 } 104 105 #define THRESHOLDS_EVENTS_TARGET 128 106 #define SOFTLIMIT_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 /* for encoding cft->private value on file */ 207 enum res_type { 208 _MEM, 209 _MEMSWAP, 210 _KMEM, 211 _TCP, 212 }; 213 214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 215 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 216 #define MEMFILE_ATTR(val) ((val) & 0xffff) 217 218 /* 219 * Iteration constructs for visiting all cgroups (under a tree). If 220 * loops are exited prematurely (break), mem_cgroup_iter_break() must 221 * be used for reference counting. 222 */ 223 #define for_each_mem_cgroup_tree(iter, root) \ 224 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 225 iter != NULL; \ 226 iter = mem_cgroup_iter(root, iter, NULL)) 227 228 #define for_each_mem_cgroup(iter) \ 229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 230 iter != NULL; \ 231 iter = mem_cgroup_iter(NULL, iter, NULL)) 232 233 static inline bool task_is_dying(void) 234 { 235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 236 (current->flags & PF_EXITING); 237 } 238 239 /* Some nice accessors for the vmpressure. */ 240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 241 { 242 if (!memcg) 243 memcg = root_mem_cgroup; 244 return &memcg->vmpressure; 245 } 246 247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 248 { 249 return container_of(vmpr, struct mem_cgroup, vmpressure); 250 } 251 252 #ifdef CONFIG_MEMCG_KMEM 253 static DEFINE_SPINLOCK(objcg_lock); 254 255 bool mem_cgroup_kmem_disabled(void) 256 { 257 return cgroup_memory_nokmem; 258 } 259 260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 261 unsigned int nr_pages); 262 263 static void obj_cgroup_release(struct percpu_ref *ref) 264 { 265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 266 unsigned int nr_bytes; 267 unsigned int nr_pages; 268 unsigned long flags; 269 270 /* 271 * At this point all allocated objects are freed, and 272 * objcg->nr_charged_bytes can't have an arbitrary byte value. 273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 274 * 275 * The following sequence can lead to it: 276 * 1) CPU0: objcg == stock->cached_objcg 277 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 278 * PAGE_SIZE bytes are charged 279 * 3) CPU1: a process from another memcg is allocating something, 280 * the stock if flushed, 281 * objcg->nr_charged_bytes = PAGE_SIZE - 92 282 * 5) CPU0: we do release this object, 283 * 92 bytes are added to stock->nr_bytes 284 * 6) CPU0: stock is flushed, 285 * 92 bytes are added to objcg->nr_charged_bytes 286 * 287 * In the result, nr_charged_bytes == PAGE_SIZE. 288 * This page will be uncharged in obj_cgroup_release(). 289 */ 290 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 292 nr_pages = nr_bytes >> PAGE_SHIFT; 293 294 if (nr_pages) 295 obj_cgroup_uncharge_pages(objcg, nr_pages); 296 297 spin_lock_irqsave(&objcg_lock, flags); 298 list_del(&objcg->list); 299 spin_unlock_irqrestore(&objcg_lock, flags); 300 301 percpu_ref_exit(ref); 302 kfree_rcu(objcg, rcu); 303 } 304 305 static struct obj_cgroup *obj_cgroup_alloc(void) 306 { 307 struct obj_cgroup *objcg; 308 int ret; 309 310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 311 if (!objcg) 312 return NULL; 313 314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 315 GFP_KERNEL); 316 if (ret) { 317 kfree(objcg); 318 return NULL; 319 } 320 INIT_LIST_HEAD(&objcg->list); 321 return objcg; 322 } 323 324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 325 struct mem_cgroup *parent) 326 { 327 struct obj_cgroup *objcg, *iter; 328 329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 330 331 spin_lock_irq(&objcg_lock); 332 333 /* 1) Ready to reparent active objcg. */ 334 list_add(&objcg->list, &memcg->objcg_list); 335 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 336 list_for_each_entry(iter, &memcg->objcg_list, list) 337 WRITE_ONCE(iter->memcg, parent); 338 /* 3) Move already reparented objcgs to the parent's list */ 339 list_splice(&memcg->objcg_list, &parent->objcg_list); 340 341 spin_unlock_irq(&objcg_lock); 342 343 percpu_ref_kill(&objcg->refcnt); 344 } 345 346 /* 347 * A lot of the calls to the cache allocation functions are expected to be 348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 349 * conditional to this static branch, we'll have to allow modules that does 350 * kmem_cache_alloc and the such to see this symbol as well 351 */ 352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 353 EXPORT_SYMBOL(memcg_kmem_online_key); 354 355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 356 EXPORT_SYMBOL(memcg_bpf_enabled_key); 357 #endif 358 359 /** 360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 361 * @folio: folio of interest 362 * 363 * If memcg is bound to the default hierarchy, css of the memcg associated 364 * with @folio is returned. The returned css remains associated with @folio 365 * until it is released. 366 * 367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 368 * is returned. 369 */ 370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 371 { 372 struct mem_cgroup *memcg = folio_memcg(folio); 373 374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 375 memcg = root_mem_cgroup; 376 377 return &memcg->css; 378 } 379 380 /** 381 * page_cgroup_ino - return inode number of the memcg a page is charged to 382 * @page: the page 383 * 384 * Look up the closest online ancestor of the memory cgroup @page is charged to 385 * and return its inode number or 0 if @page is not charged to any cgroup. It 386 * is safe to call this function without holding a reference to @page. 387 * 388 * Note, this function is inherently racy, because there is nothing to prevent 389 * the cgroup inode from getting torn down and potentially reallocated a moment 390 * after page_cgroup_ino() returns, so it only should be used by callers that 391 * do not care (such as procfs interfaces). 392 */ 393 ino_t page_cgroup_ino(struct page *page) 394 { 395 struct mem_cgroup *memcg; 396 unsigned long ino = 0; 397 398 rcu_read_lock(); 399 memcg = page_memcg_check(page); 400 401 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 402 memcg = parent_mem_cgroup(memcg); 403 if (memcg) 404 ino = cgroup_ino(memcg->css.cgroup); 405 rcu_read_unlock(); 406 return ino; 407 } 408 409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 410 struct mem_cgroup_tree_per_node *mctz, 411 unsigned long new_usage_in_excess) 412 { 413 struct rb_node **p = &mctz->rb_root.rb_node; 414 struct rb_node *parent = NULL; 415 struct mem_cgroup_per_node *mz_node; 416 bool rightmost = true; 417 418 if (mz->on_tree) 419 return; 420 421 mz->usage_in_excess = new_usage_in_excess; 422 if (!mz->usage_in_excess) 423 return; 424 while (*p) { 425 parent = *p; 426 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 427 tree_node); 428 if (mz->usage_in_excess < mz_node->usage_in_excess) { 429 p = &(*p)->rb_left; 430 rightmost = false; 431 } else { 432 p = &(*p)->rb_right; 433 } 434 } 435 436 if (rightmost) 437 mctz->rb_rightmost = &mz->tree_node; 438 439 rb_link_node(&mz->tree_node, parent, p); 440 rb_insert_color(&mz->tree_node, &mctz->rb_root); 441 mz->on_tree = true; 442 } 443 444 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 445 struct mem_cgroup_tree_per_node *mctz) 446 { 447 if (!mz->on_tree) 448 return; 449 450 if (&mz->tree_node == mctz->rb_rightmost) 451 mctz->rb_rightmost = rb_prev(&mz->tree_node); 452 453 rb_erase(&mz->tree_node, &mctz->rb_root); 454 mz->on_tree = false; 455 } 456 457 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 458 struct mem_cgroup_tree_per_node *mctz) 459 { 460 unsigned long flags; 461 462 spin_lock_irqsave(&mctz->lock, flags); 463 __mem_cgroup_remove_exceeded(mz, mctz); 464 spin_unlock_irqrestore(&mctz->lock, flags); 465 } 466 467 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 468 { 469 unsigned long nr_pages = page_counter_read(&memcg->memory); 470 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 471 unsigned long excess = 0; 472 473 if (nr_pages > soft_limit) 474 excess = nr_pages - soft_limit; 475 476 return excess; 477 } 478 479 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 480 { 481 unsigned long excess; 482 struct mem_cgroup_per_node *mz; 483 struct mem_cgroup_tree_per_node *mctz; 484 485 if (lru_gen_enabled()) { 486 if (soft_limit_excess(memcg)) 487 lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec); 488 return; 489 } 490 491 mctz = soft_limit_tree.rb_tree_per_node[nid]; 492 if (!mctz) 493 return; 494 /* 495 * Necessary to update all ancestors when hierarchy is used. 496 * because their event counter is not touched. 497 */ 498 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 499 mz = memcg->nodeinfo[nid]; 500 excess = soft_limit_excess(memcg); 501 /* 502 * We have to update the tree if mz is on RB-tree or 503 * mem is over its softlimit. 504 */ 505 if (excess || mz->on_tree) { 506 unsigned long flags; 507 508 spin_lock_irqsave(&mctz->lock, flags); 509 /* if on-tree, remove it */ 510 if (mz->on_tree) 511 __mem_cgroup_remove_exceeded(mz, mctz); 512 /* 513 * Insert again. mz->usage_in_excess will be updated. 514 * If excess is 0, no tree ops. 515 */ 516 __mem_cgroup_insert_exceeded(mz, mctz, excess); 517 spin_unlock_irqrestore(&mctz->lock, flags); 518 } 519 } 520 } 521 522 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 523 { 524 struct mem_cgroup_tree_per_node *mctz; 525 struct mem_cgroup_per_node *mz; 526 int nid; 527 528 for_each_node(nid) { 529 mz = memcg->nodeinfo[nid]; 530 mctz = soft_limit_tree.rb_tree_per_node[nid]; 531 if (mctz) 532 mem_cgroup_remove_exceeded(mz, mctz); 533 } 534 } 535 536 static struct mem_cgroup_per_node * 537 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 538 { 539 struct mem_cgroup_per_node *mz; 540 541 retry: 542 mz = NULL; 543 if (!mctz->rb_rightmost) 544 goto done; /* Nothing to reclaim from */ 545 546 mz = rb_entry(mctz->rb_rightmost, 547 struct mem_cgroup_per_node, tree_node); 548 /* 549 * Remove the node now but someone else can add it back, 550 * we will to add it back at the end of reclaim to its correct 551 * position in the tree. 552 */ 553 __mem_cgroup_remove_exceeded(mz, mctz); 554 if (!soft_limit_excess(mz->memcg) || 555 !css_tryget(&mz->memcg->css)) 556 goto retry; 557 done: 558 return mz; 559 } 560 561 static struct mem_cgroup_per_node * 562 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 563 { 564 struct mem_cgroup_per_node *mz; 565 566 spin_lock_irq(&mctz->lock); 567 mz = __mem_cgroup_largest_soft_limit_node(mctz); 568 spin_unlock_irq(&mctz->lock); 569 return mz; 570 } 571 572 /* 573 * memcg and lruvec stats flushing 574 * 575 * Many codepaths leading to stats update or read are performance sensitive and 576 * adding stats flushing in such codepaths is not desirable. So, to optimize the 577 * flushing the kernel does: 578 * 579 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 580 * rstat update tree grow unbounded. 581 * 582 * 2) Flush the stats synchronously on reader side only when there are more than 583 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 584 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 585 * only for 2 seconds due to (1). 586 */ 587 static void flush_memcg_stats_dwork(struct work_struct *w); 588 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 589 static DEFINE_SPINLOCK(stats_flush_lock); 590 static DEFINE_PER_CPU(unsigned int, stats_updates); 591 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 592 static u64 flush_next_time; 593 594 #define FLUSH_TIME (2UL*HZ) 595 596 /* 597 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 598 * not rely on this as part of an acquired spinlock_t lock. These functions are 599 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 600 * is sufficient. 601 */ 602 static void memcg_stats_lock(void) 603 { 604 preempt_disable_nested(); 605 VM_WARN_ON_IRQS_ENABLED(); 606 } 607 608 static void __memcg_stats_lock(void) 609 { 610 preempt_disable_nested(); 611 } 612 613 static void memcg_stats_unlock(void) 614 { 615 preempt_enable_nested(); 616 } 617 618 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 619 { 620 unsigned int x; 621 622 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 623 624 x = __this_cpu_add_return(stats_updates, abs(val)); 625 if (x > MEMCG_CHARGE_BATCH) { 626 /* 627 * If stats_flush_threshold exceeds the threshold 628 * (>num_online_cpus()), cgroup stats update will be triggered 629 * in __mem_cgroup_flush_stats(). Increasing this var further 630 * is redundant and simply adds overhead in atomic update. 631 */ 632 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 633 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 634 __this_cpu_write(stats_updates, 0); 635 } 636 } 637 638 static void __mem_cgroup_flush_stats(void) 639 { 640 unsigned long flag; 641 642 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 643 return; 644 645 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 646 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 647 atomic_set(&stats_flush_threshold, 0); 648 spin_unlock_irqrestore(&stats_flush_lock, flag); 649 } 650 651 void mem_cgroup_flush_stats(void) 652 { 653 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 654 __mem_cgroup_flush_stats(); 655 } 656 657 void mem_cgroup_flush_stats_delayed(void) 658 { 659 if (time_after64(jiffies_64, flush_next_time)) 660 mem_cgroup_flush_stats(); 661 } 662 663 static void flush_memcg_stats_dwork(struct work_struct *w) 664 { 665 __mem_cgroup_flush_stats(); 666 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 667 } 668 669 /* Subset of vm_event_item to report for memcg event stats */ 670 static const unsigned int memcg_vm_event_stat[] = { 671 PGPGIN, 672 PGPGOUT, 673 PGSCAN_KSWAPD, 674 PGSCAN_DIRECT, 675 PGSCAN_KHUGEPAGED, 676 PGSTEAL_KSWAPD, 677 PGSTEAL_DIRECT, 678 PGSTEAL_KHUGEPAGED, 679 PGFAULT, 680 PGMAJFAULT, 681 PGREFILL, 682 PGACTIVATE, 683 PGDEACTIVATE, 684 PGLAZYFREE, 685 PGLAZYFREED, 686 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 687 ZSWPIN, 688 ZSWPOUT, 689 #endif 690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 691 THP_FAULT_ALLOC, 692 THP_COLLAPSE_ALLOC, 693 #endif 694 }; 695 696 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 697 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 698 699 static void init_memcg_events(void) 700 { 701 int i; 702 703 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 704 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 705 } 706 707 static inline int memcg_events_index(enum vm_event_item idx) 708 { 709 return mem_cgroup_events_index[idx] - 1; 710 } 711 712 struct memcg_vmstats_percpu { 713 /* Local (CPU and cgroup) page state & events */ 714 long state[MEMCG_NR_STAT]; 715 unsigned long events[NR_MEMCG_EVENTS]; 716 717 /* Delta calculation for lockless upward propagation */ 718 long state_prev[MEMCG_NR_STAT]; 719 unsigned long events_prev[NR_MEMCG_EVENTS]; 720 721 /* Cgroup1: threshold notifications & softlimit tree updates */ 722 unsigned long nr_page_events; 723 unsigned long targets[MEM_CGROUP_NTARGETS]; 724 }; 725 726 struct memcg_vmstats { 727 /* Aggregated (CPU and subtree) page state & events */ 728 long state[MEMCG_NR_STAT]; 729 unsigned long events[NR_MEMCG_EVENTS]; 730 731 /* Pending child counts during tree propagation */ 732 long state_pending[MEMCG_NR_STAT]; 733 unsigned long events_pending[NR_MEMCG_EVENTS]; 734 }; 735 736 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 737 { 738 long x = READ_ONCE(memcg->vmstats->state[idx]); 739 #ifdef CONFIG_SMP 740 if (x < 0) 741 x = 0; 742 #endif 743 return x; 744 } 745 746 /** 747 * __mod_memcg_state - update cgroup memory statistics 748 * @memcg: the memory cgroup 749 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 750 * @val: delta to add to the counter, can be negative 751 */ 752 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 753 { 754 if (mem_cgroup_disabled()) 755 return; 756 757 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 758 memcg_rstat_updated(memcg, val); 759 } 760 761 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 762 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 763 { 764 long x = 0; 765 int cpu; 766 767 for_each_possible_cpu(cpu) 768 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 769 #ifdef CONFIG_SMP 770 if (x < 0) 771 x = 0; 772 #endif 773 return x; 774 } 775 776 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 777 int val) 778 { 779 struct mem_cgroup_per_node *pn; 780 struct mem_cgroup *memcg; 781 782 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 783 memcg = pn->memcg; 784 785 /* 786 * The caller from rmap relay on disabled preemption becase they never 787 * update their counter from in-interrupt context. For these two 788 * counters we check that the update is never performed from an 789 * interrupt context while other caller need to have disabled interrupt. 790 */ 791 __memcg_stats_lock(); 792 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 793 switch (idx) { 794 case NR_ANON_MAPPED: 795 case NR_FILE_MAPPED: 796 case NR_ANON_THPS: 797 case NR_SHMEM_PMDMAPPED: 798 case NR_FILE_PMDMAPPED: 799 WARN_ON_ONCE(!in_task()); 800 break; 801 default: 802 VM_WARN_ON_IRQS_ENABLED(); 803 } 804 } 805 806 /* Update memcg */ 807 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 808 809 /* Update lruvec */ 810 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 811 812 memcg_rstat_updated(memcg, val); 813 memcg_stats_unlock(); 814 } 815 816 /** 817 * __mod_lruvec_state - update lruvec memory statistics 818 * @lruvec: the lruvec 819 * @idx: the stat item 820 * @val: delta to add to the counter, can be negative 821 * 822 * The lruvec is the intersection of the NUMA node and a cgroup. This 823 * function updates the all three counters that are affected by a 824 * change of state at this level: per-node, per-cgroup, per-lruvec. 825 */ 826 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 827 int val) 828 { 829 /* Update node */ 830 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 831 832 /* Update memcg and lruvec */ 833 if (!mem_cgroup_disabled()) 834 __mod_memcg_lruvec_state(lruvec, idx, val); 835 } 836 837 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 838 int val) 839 { 840 struct page *head = compound_head(page); /* rmap on tail pages */ 841 struct mem_cgroup *memcg; 842 pg_data_t *pgdat = page_pgdat(page); 843 struct lruvec *lruvec; 844 845 rcu_read_lock(); 846 memcg = page_memcg(head); 847 /* Untracked pages have no memcg, no lruvec. Update only the node */ 848 if (!memcg) { 849 rcu_read_unlock(); 850 __mod_node_page_state(pgdat, idx, val); 851 return; 852 } 853 854 lruvec = mem_cgroup_lruvec(memcg, pgdat); 855 __mod_lruvec_state(lruvec, idx, val); 856 rcu_read_unlock(); 857 } 858 EXPORT_SYMBOL(__mod_lruvec_page_state); 859 860 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 861 { 862 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 863 struct mem_cgroup *memcg; 864 struct lruvec *lruvec; 865 866 rcu_read_lock(); 867 memcg = mem_cgroup_from_slab_obj(p); 868 869 /* 870 * Untracked pages have no memcg, no lruvec. Update only the 871 * node. If we reparent the slab objects to the root memcg, 872 * when we free the slab object, we need to update the per-memcg 873 * vmstats to keep it correct for the root memcg. 874 */ 875 if (!memcg) { 876 __mod_node_page_state(pgdat, idx, val); 877 } else { 878 lruvec = mem_cgroup_lruvec(memcg, pgdat); 879 __mod_lruvec_state(lruvec, idx, val); 880 } 881 rcu_read_unlock(); 882 } 883 884 /** 885 * __count_memcg_events - account VM events in a cgroup 886 * @memcg: the memory cgroup 887 * @idx: the event item 888 * @count: the number of events that occurred 889 */ 890 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 891 unsigned long count) 892 { 893 int index = memcg_events_index(idx); 894 895 if (mem_cgroup_disabled() || index < 0) 896 return; 897 898 memcg_stats_lock(); 899 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 900 memcg_rstat_updated(memcg, count); 901 memcg_stats_unlock(); 902 } 903 904 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 905 { 906 int index = memcg_events_index(event); 907 908 if (index < 0) 909 return 0; 910 return READ_ONCE(memcg->vmstats->events[index]); 911 } 912 913 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 914 { 915 long x = 0; 916 int cpu; 917 int index = memcg_events_index(event); 918 919 if (index < 0) 920 return 0; 921 922 for_each_possible_cpu(cpu) 923 x += per_cpu(memcg->vmstats_percpu->events[index], cpu); 924 return x; 925 } 926 927 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 928 int nr_pages) 929 { 930 /* pagein of a big page is an event. So, ignore page size */ 931 if (nr_pages > 0) 932 __count_memcg_events(memcg, PGPGIN, 1); 933 else { 934 __count_memcg_events(memcg, PGPGOUT, 1); 935 nr_pages = -nr_pages; /* for event */ 936 } 937 938 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 939 } 940 941 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 942 enum mem_cgroup_events_target target) 943 { 944 unsigned long val, next; 945 946 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 947 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 948 /* from time_after() in jiffies.h */ 949 if ((long)(next - val) < 0) { 950 switch (target) { 951 case MEM_CGROUP_TARGET_THRESH: 952 next = val + THRESHOLDS_EVENTS_TARGET; 953 break; 954 case MEM_CGROUP_TARGET_SOFTLIMIT: 955 next = val + SOFTLIMIT_EVENTS_TARGET; 956 break; 957 default: 958 break; 959 } 960 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 961 return true; 962 } 963 return false; 964 } 965 966 /* 967 * Check events in order. 968 * 969 */ 970 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 971 { 972 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 973 return; 974 975 /* threshold event is triggered in finer grain than soft limit */ 976 if (unlikely(mem_cgroup_event_ratelimit(memcg, 977 MEM_CGROUP_TARGET_THRESH))) { 978 bool do_softlimit; 979 980 do_softlimit = mem_cgroup_event_ratelimit(memcg, 981 MEM_CGROUP_TARGET_SOFTLIMIT); 982 mem_cgroup_threshold(memcg); 983 if (unlikely(do_softlimit)) 984 mem_cgroup_update_tree(memcg, nid); 985 } 986 } 987 988 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 989 { 990 /* 991 * mm_update_next_owner() may clear mm->owner to NULL 992 * if it races with swapoff, page migration, etc. 993 * So this can be called with p == NULL. 994 */ 995 if (unlikely(!p)) 996 return NULL; 997 998 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 999 } 1000 EXPORT_SYMBOL(mem_cgroup_from_task); 1001 1002 static __always_inline struct mem_cgroup *active_memcg(void) 1003 { 1004 if (!in_task()) 1005 return this_cpu_read(int_active_memcg); 1006 else 1007 return current->active_memcg; 1008 } 1009 1010 /** 1011 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1012 * @mm: mm from which memcg should be extracted. It can be NULL. 1013 * 1014 * Obtain a reference on mm->memcg and returns it if successful. If mm 1015 * is NULL, then the memcg is chosen as follows: 1016 * 1) The active memcg, if set. 1017 * 2) current->mm->memcg, if available 1018 * 3) root memcg 1019 * If mem_cgroup is disabled, NULL is returned. 1020 */ 1021 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1022 { 1023 struct mem_cgroup *memcg; 1024 1025 if (mem_cgroup_disabled()) 1026 return NULL; 1027 1028 /* 1029 * Page cache insertions can happen without an 1030 * actual mm context, e.g. during disk probing 1031 * on boot, loopback IO, acct() writes etc. 1032 * 1033 * No need to css_get on root memcg as the reference 1034 * counting is disabled on the root level in the 1035 * cgroup core. See CSS_NO_REF. 1036 */ 1037 if (unlikely(!mm)) { 1038 memcg = active_memcg(); 1039 if (unlikely(memcg)) { 1040 /* remote memcg must hold a ref */ 1041 css_get(&memcg->css); 1042 return memcg; 1043 } 1044 mm = current->mm; 1045 if (unlikely(!mm)) 1046 return root_mem_cgroup; 1047 } 1048 1049 rcu_read_lock(); 1050 do { 1051 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1052 if (unlikely(!memcg)) 1053 memcg = root_mem_cgroup; 1054 } while (!css_tryget(&memcg->css)); 1055 rcu_read_unlock(); 1056 return memcg; 1057 } 1058 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1059 1060 static __always_inline bool memcg_kmem_bypass(void) 1061 { 1062 /* Allow remote memcg charging from any context. */ 1063 if (unlikely(active_memcg())) 1064 return false; 1065 1066 /* Memcg to charge can't be determined. */ 1067 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 1068 return true; 1069 1070 return false; 1071 } 1072 1073 /** 1074 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1075 * @root: hierarchy root 1076 * @prev: previously returned memcg, NULL on first invocation 1077 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1078 * 1079 * Returns references to children of the hierarchy below @root, or 1080 * @root itself, or %NULL after a full round-trip. 1081 * 1082 * Caller must pass the return value in @prev on subsequent 1083 * invocations for reference counting, or use mem_cgroup_iter_break() 1084 * to cancel a hierarchy walk before the round-trip is complete. 1085 * 1086 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1087 * in the hierarchy among all concurrent reclaimers operating on the 1088 * same node. 1089 */ 1090 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1091 struct mem_cgroup *prev, 1092 struct mem_cgroup_reclaim_cookie *reclaim) 1093 { 1094 struct mem_cgroup_reclaim_iter *iter; 1095 struct cgroup_subsys_state *css = NULL; 1096 struct mem_cgroup *memcg = NULL; 1097 struct mem_cgroup *pos = NULL; 1098 1099 if (mem_cgroup_disabled()) 1100 return NULL; 1101 1102 if (!root) 1103 root = root_mem_cgroup; 1104 1105 rcu_read_lock(); 1106 1107 if (reclaim) { 1108 struct mem_cgroup_per_node *mz; 1109 1110 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1111 iter = &mz->iter; 1112 1113 /* 1114 * On start, join the current reclaim iteration cycle. 1115 * Exit when a concurrent walker completes it. 1116 */ 1117 if (!prev) 1118 reclaim->generation = iter->generation; 1119 else if (reclaim->generation != iter->generation) 1120 goto out_unlock; 1121 1122 while (1) { 1123 pos = READ_ONCE(iter->position); 1124 if (!pos || css_tryget(&pos->css)) 1125 break; 1126 /* 1127 * css reference reached zero, so iter->position will 1128 * be cleared by ->css_released. However, we should not 1129 * rely on this happening soon, because ->css_released 1130 * is called from a work queue, and by busy-waiting we 1131 * might block it. So we clear iter->position right 1132 * away. 1133 */ 1134 (void)cmpxchg(&iter->position, pos, NULL); 1135 } 1136 } else if (prev) { 1137 pos = prev; 1138 } 1139 1140 if (pos) 1141 css = &pos->css; 1142 1143 for (;;) { 1144 css = css_next_descendant_pre(css, &root->css); 1145 if (!css) { 1146 /* 1147 * Reclaimers share the hierarchy walk, and a 1148 * new one might jump in right at the end of 1149 * the hierarchy - make sure they see at least 1150 * one group and restart from the beginning. 1151 */ 1152 if (!prev) 1153 continue; 1154 break; 1155 } 1156 1157 /* 1158 * Verify the css and acquire a reference. The root 1159 * is provided by the caller, so we know it's alive 1160 * and kicking, and don't take an extra reference. 1161 */ 1162 if (css == &root->css || css_tryget(css)) { 1163 memcg = mem_cgroup_from_css(css); 1164 break; 1165 } 1166 } 1167 1168 if (reclaim) { 1169 /* 1170 * The position could have already been updated by a competing 1171 * thread, so check that the value hasn't changed since we read 1172 * it to avoid reclaiming from the same cgroup twice. 1173 */ 1174 (void)cmpxchg(&iter->position, pos, memcg); 1175 1176 if (pos) 1177 css_put(&pos->css); 1178 1179 if (!memcg) 1180 iter->generation++; 1181 } 1182 1183 out_unlock: 1184 rcu_read_unlock(); 1185 if (prev && prev != root) 1186 css_put(&prev->css); 1187 1188 return memcg; 1189 } 1190 1191 /** 1192 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1193 * @root: hierarchy root 1194 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1195 */ 1196 void mem_cgroup_iter_break(struct mem_cgroup *root, 1197 struct mem_cgroup *prev) 1198 { 1199 if (!root) 1200 root = root_mem_cgroup; 1201 if (prev && prev != root) 1202 css_put(&prev->css); 1203 } 1204 1205 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1206 struct mem_cgroup *dead_memcg) 1207 { 1208 struct mem_cgroup_reclaim_iter *iter; 1209 struct mem_cgroup_per_node *mz; 1210 int nid; 1211 1212 for_each_node(nid) { 1213 mz = from->nodeinfo[nid]; 1214 iter = &mz->iter; 1215 cmpxchg(&iter->position, dead_memcg, NULL); 1216 } 1217 } 1218 1219 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1220 { 1221 struct mem_cgroup *memcg = dead_memcg; 1222 struct mem_cgroup *last; 1223 1224 do { 1225 __invalidate_reclaim_iterators(memcg, dead_memcg); 1226 last = memcg; 1227 } while ((memcg = parent_mem_cgroup(memcg))); 1228 1229 /* 1230 * When cgroup1 non-hierarchy mode is used, 1231 * parent_mem_cgroup() does not walk all the way up to the 1232 * cgroup root (root_mem_cgroup). So we have to handle 1233 * dead_memcg from cgroup root separately. 1234 */ 1235 if (!mem_cgroup_is_root(last)) 1236 __invalidate_reclaim_iterators(root_mem_cgroup, 1237 dead_memcg); 1238 } 1239 1240 /** 1241 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1242 * @memcg: hierarchy root 1243 * @fn: function to call for each task 1244 * @arg: argument passed to @fn 1245 * 1246 * This function iterates over tasks attached to @memcg or to any of its 1247 * descendants and calls @fn for each task. If @fn returns a non-zero 1248 * value, the function breaks the iteration loop and returns the value. 1249 * Otherwise, it will iterate over all tasks and return 0. 1250 * 1251 * This function must not be called for the root memory cgroup. 1252 */ 1253 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1254 int (*fn)(struct task_struct *, void *), void *arg) 1255 { 1256 struct mem_cgroup *iter; 1257 int ret = 0; 1258 1259 BUG_ON(mem_cgroup_is_root(memcg)); 1260 1261 for_each_mem_cgroup_tree(iter, memcg) { 1262 struct css_task_iter it; 1263 struct task_struct *task; 1264 1265 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1266 while (!ret && (task = css_task_iter_next(&it))) 1267 ret = fn(task, arg); 1268 css_task_iter_end(&it); 1269 if (ret) { 1270 mem_cgroup_iter_break(memcg, iter); 1271 break; 1272 } 1273 } 1274 return ret; 1275 } 1276 1277 #ifdef CONFIG_DEBUG_VM 1278 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1279 { 1280 struct mem_cgroup *memcg; 1281 1282 if (mem_cgroup_disabled()) 1283 return; 1284 1285 memcg = folio_memcg(folio); 1286 1287 if (!memcg) 1288 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1289 else 1290 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1291 } 1292 #endif 1293 1294 /** 1295 * folio_lruvec_lock - Lock the lruvec for a folio. 1296 * @folio: Pointer to the folio. 1297 * 1298 * These functions are safe to use under any of the following conditions: 1299 * - folio locked 1300 * - folio_test_lru false 1301 * - folio_memcg_lock() 1302 * - folio frozen (refcount of 0) 1303 * 1304 * Return: The lruvec this folio is on with its lock held. 1305 */ 1306 struct lruvec *folio_lruvec_lock(struct folio *folio) 1307 { 1308 struct lruvec *lruvec = folio_lruvec(folio); 1309 1310 spin_lock(&lruvec->lru_lock); 1311 lruvec_memcg_debug(lruvec, folio); 1312 1313 return lruvec; 1314 } 1315 1316 /** 1317 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1318 * @folio: Pointer to the folio. 1319 * 1320 * These functions are safe to use under any of the following conditions: 1321 * - folio locked 1322 * - folio_test_lru false 1323 * - folio_memcg_lock() 1324 * - folio frozen (refcount of 0) 1325 * 1326 * Return: The lruvec this folio is on with its lock held and interrupts 1327 * disabled. 1328 */ 1329 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1330 { 1331 struct lruvec *lruvec = folio_lruvec(folio); 1332 1333 spin_lock_irq(&lruvec->lru_lock); 1334 lruvec_memcg_debug(lruvec, folio); 1335 1336 return lruvec; 1337 } 1338 1339 /** 1340 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1341 * @folio: Pointer to the folio. 1342 * @flags: Pointer to irqsave flags. 1343 * 1344 * These functions are safe to use under any of the following conditions: 1345 * - folio locked 1346 * - folio_test_lru false 1347 * - folio_memcg_lock() 1348 * - folio frozen (refcount of 0) 1349 * 1350 * Return: The lruvec this folio is on with its lock held and interrupts 1351 * disabled. 1352 */ 1353 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1354 unsigned long *flags) 1355 { 1356 struct lruvec *lruvec = folio_lruvec(folio); 1357 1358 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1359 lruvec_memcg_debug(lruvec, folio); 1360 1361 return lruvec; 1362 } 1363 1364 /** 1365 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1366 * @lruvec: mem_cgroup per zone lru vector 1367 * @lru: index of lru list the page is sitting on 1368 * @zid: zone id of the accounted pages 1369 * @nr_pages: positive when adding or negative when removing 1370 * 1371 * This function must be called under lru_lock, just before a page is added 1372 * to or just after a page is removed from an lru list. 1373 */ 1374 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1375 int zid, int nr_pages) 1376 { 1377 struct mem_cgroup_per_node *mz; 1378 unsigned long *lru_size; 1379 long size; 1380 1381 if (mem_cgroup_disabled()) 1382 return; 1383 1384 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1385 lru_size = &mz->lru_zone_size[zid][lru]; 1386 1387 if (nr_pages < 0) 1388 *lru_size += nr_pages; 1389 1390 size = *lru_size; 1391 if (WARN_ONCE(size < 0, 1392 "%s(%p, %d, %d): lru_size %ld\n", 1393 __func__, lruvec, lru, nr_pages, size)) { 1394 VM_BUG_ON(1); 1395 *lru_size = 0; 1396 } 1397 1398 if (nr_pages > 0) 1399 *lru_size += nr_pages; 1400 } 1401 1402 /** 1403 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1404 * @memcg: the memory cgroup 1405 * 1406 * Returns the maximum amount of memory @mem can be charged with, in 1407 * pages. 1408 */ 1409 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1410 { 1411 unsigned long margin = 0; 1412 unsigned long count; 1413 unsigned long limit; 1414 1415 count = page_counter_read(&memcg->memory); 1416 limit = READ_ONCE(memcg->memory.max); 1417 if (count < limit) 1418 margin = limit - count; 1419 1420 if (do_memsw_account()) { 1421 count = page_counter_read(&memcg->memsw); 1422 limit = READ_ONCE(memcg->memsw.max); 1423 if (count < limit) 1424 margin = min(margin, limit - count); 1425 else 1426 margin = 0; 1427 } 1428 1429 return margin; 1430 } 1431 1432 /* 1433 * A routine for checking "mem" is under move_account() or not. 1434 * 1435 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1436 * moving cgroups. This is for waiting at high-memory pressure 1437 * caused by "move". 1438 */ 1439 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1440 { 1441 struct mem_cgroup *from; 1442 struct mem_cgroup *to; 1443 bool ret = false; 1444 /* 1445 * Unlike task_move routines, we access mc.to, mc.from not under 1446 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1447 */ 1448 spin_lock(&mc.lock); 1449 from = mc.from; 1450 to = mc.to; 1451 if (!from) 1452 goto unlock; 1453 1454 ret = mem_cgroup_is_descendant(from, memcg) || 1455 mem_cgroup_is_descendant(to, memcg); 1456 unlock: 1457 spin_unlock(&mc.lock); 1458 return ret; 1459 } 1460 1461 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1462 { 1463 if (mc.moving_task && current != mc.moving_task) { 1464 if (mem_cgroup_under_move(memcg)) { 1465 DEFINE_WAIT(wait); 1466 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1467 /* moving charge context might have finished. */ 1468 if (mc.moving_task) 1469 schedule(); 1470 finish_wait(&mc.waitq, &wait); 1471 return true; 1472 } 1473 } 1474 return false; 1475 } 1476 1477 struct memory_stat { 1478 const char *name; 1479 unsigned int idx; 1480 }; 1481 1482 static const struct memory_stat memory_stats[] = { 1483 { "anon", NR_ANON_MAPPED }, 1484 { "file", NR_FILE_PAGES }, 1485 { "kernel", MEMCG_KMEM }, 1486 { "kernel_stack", NR_KERNEL_STACK_KB }, 1487 { "pagetables", NR_PAGETABLE }, 1488 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1489 { "percpu", MEMCG_PERCPU_B }, 1490 { "sock", MEMCG_SOCK }, 1491 { "vmalloc", MEMCG_VMALLOC }, 1492 { "shmem", NR_SHMEM }, 1493 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1494 { "zswap", MEMCG_ZSWAP_B }, 1495 { "zswapped", MEMCG_ZSWAPPED }, 1496 #endif 1497 { "file_mapped", NR_FILE_MAPPED }, 1498 { "file_dirty", NR_FILE_DIRTY }, 1499 { "file_writeback", NR_WRITEBACK }, 1500 #ifdef CONFIG_SWAP 1501 { "swapcached", NR_SWAPCACHE }, 1502 #endif 1503 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1504 { "anon_thp", NR_ANON_THPS }, 1505 { "file_thp", NR_FILE_THPS }, 1506 { "shmem_thp", NR_SHMEM_THPS }, 1507 #endif 1508 { "inactive_anon", NR_INACTIVE_ANON }, 1509 { "active_anon", NR_ACTIVE_ANON }, 1510 { "inactive_file", NR_INACTIVE_FILE }, 1511 { "active_file", NR_ACTIVE_FILE }, 1512 { "unevictable", NR_UNEVICTABLE }, 1513 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1514 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1515 1516 /* The memory events */ 1517 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1518 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1519 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1520 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1521 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1522 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1523 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1524 }; 1525 1526 /* Translate stat items to the correct unit for memory.stat output */ 1527 static int memcg_page_state_unit(int item) 1528 { 1529 switch (item) { 1530 case MEMCG_PERCPU_B: 1531 case MEMCG_ZSWAP_B: 1532 case NR_SLAB_RECLAIMABLE_B: 1533 case NR_SLAB_UNRECLAIMABLE_B: 1534 case WORKINGSET_REFAULT_ANON: 1535 case WORKINGSET_REFAULT_FILE: 1536 case WORKINGSET_ACTIVATE_ANON: 1537 case WORKINGSET_ACTIVATE_FILE: 1538 case WORKINGSET_RESTORE_ANON: 1539 case WORKINGSET_RESTORE_FILE: 1540 case WORKINGSET_NODERECLAIM: 1541 return 1; 1542 case NR_KERNEL_STACK_KB: 1543 return SZ_1K; 1544 default: 1545 return PAGE_SIZE; 1546 } 1547 } 1548 1549 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1550 int item) 1551 { 1552 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1553 } 1554 1555 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize) 1556 { 1557 struct seq_buf s; 1558 int i; 1559 1560 seq_buf_init(&s, buf, bufsize); 1561 1562 /* 1563 * Provide statistics on the state of the memory subsystem as 1564 * well as cumulative event counters that show past behavior. 1565 * 1566 * This list is ordered following a combination of these gradients: 1567 * 1) generic big picture -> specifics and details 1568 * 2) reflecting userspace activity -> reflecting kernel heuristics 1569 * 1570 * Current memory state: 1571 */ 1572 mem_cgroup_flush_stats(); 1573 1574 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1575 u64 size; 1576 1577 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1578 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1579 1580 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1581 size += memcg_page_state_output(memcg, 1582 NR_SLAB_RECLAIMABLE_B); 1583 seq_buf_printf(&s, "slab %llu\n", size); 1584 } 1585 } 1586 1587 /* Accumulated memory events */ 1588 seq_buf_printf(&s, "pgscan %lu\n", 1589 memcg_events(memcg, PGSCAN_KSWAPD) + 1590 memcg_events(memcg, PGSCAN_DIRECT) + 1591 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1592 seq_buf_printf(&s, "pgsteal %lu\n", 1593 memcg_events(memcg, PGSTEAL_KSWAPD) + 1594 memcg_events(memcg, PGSTEAL_DIRECT) + 1595 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1596 1597 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1598 if (memcg_vm_event_stat[i] == PGPGIN || 1599 memcg_vm_event_stat[i] == PGPGOUT) 1600 continue; 1601 1602 seq_buf_printf(&s, "%s %lu\n", 1603 vm_event_name(memcg_vm_event_stat[i]), 1604 memcg_events(memcg, memcg_vm_event_stat[i])); 1605 } 1606 1607 /* The above should easily fit into one page */ 1608 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1609 } 1610 1611 #define K(x) ((x) << (PAGE_SHIFT-10)) 1612 /** 1613 * mem_cgroup_print_oom_context: Print OOM information relevant to 1614 * memory controller. 1615 * @memcg: The memory cgroup that went over limit 1616 * @p: Task that is going to be killed 1617 * 1618 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1619 * enabled 1620 */ 1621 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1622 { 1623 rcu_read_lock(); 1624 1625 if (memcg) { 1626 pr_cont(",oom_memcg="); 1627 pr_cont_cgroup_path(memcg->css.cgroup); 1628 } else 1629 pr_cont(",global_oom"); 1630 if (p) { 1631 pr_cont(",task_memcg="); 1632 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1633 } 1634 rcu_read_unlock(); 1635 } 1636 1637 /** 1638 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1639 * memory controller. 1640 * @memcg: The memory cgroup that went over limit 1641 */ 1642 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1643 { 1644 /* Use static buffer, for the caller is holding oom_lock. */ 1645 static char buf[PAGE_SIZE]; 1646 1647 lockdep_assert_held(&oom_lock); 1648 1649 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1650 K((u64)page_counter_read(&memcg->memory)), 1651 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1652 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1653 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1654 K((u64)page_counter_read(&memcg->swap)), 1655 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1656 else { 1657 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1658 K((u64)page_counter_read(&memcg->memsw)), 1659 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1660 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1661 K((u64)page_counter_read(&memcg->kmem)), 1662 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1663 } 1664 1665 pr_info("Memory cgroup stats for "); 1666 pr_cont_cgroup_path(memcg->css.cgroup); 1667 pr_cont(":"); 1668 memory_stat_format(memcg, buf, sizeof(buf)); 1669 pr_info("%s", buf); 1670 } 1671 1672 /* 1673 * Return the memory (and swap, if configured) limit for a memcg. 1674 */ 1675 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1676 { 1677 unsigned long max = READ_ONCE(memcg->memory.max); 1678 1679 if (do_memsw_account()) { 1680 if (mem_cgroup_swappiness(memcg)) { 1681 /* Calculate swap excess capacity from memsw limit */ 1682 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1683 1684 max += min(swap, (unsigned long)total_swap_pages); 1685 } 1686 } else { 1687 if (mem_cgroup_swappiness(memcg)) 1688 max += min(READ_ONCE(memcg->swap.max), 1689 (unsigned long)total_swap_pages); 1690 } 1691 return max; 1692 } 1693 1694 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1695 { 1696 return page_counter_read(&memcg->memory); 1697 } 1698 1699 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1700 int order) 1701 { 1702 struct oom_control oc = { 1703 .zonelist = NULL, 1704 .nodemask = NULL, 1705 .memcg = memcg, 1706 .gfp_mask = gfp_mask, 1707 .order = order, 1708 }; 1709 bool ret = true; 1710 1711 if (mutex_lock_killable(&oom_lock)) 1712 return true; 1713 1714 if (mem_cgroup_margin(memcg) >= (1 << order)) 1715 goto unlock; 1716 1717 /* 1718 * A few threads which were not waiting at mutex_lock_killable() can 1719 * fail to bail out. Therefore, check again after holding oom_lock. 1720 */ 1721 ret = task_is_dying() || out_of_memory(&oc); 1722 1723 unlock: 1724 mutex_unlock(&oom_lock); 1725 return ret; 1726 } 1727 1728 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1729 pg_data_t *pgdat, 1730 gfp_t gfp_mask, 1731 unsigned long *total_scanned) 1732 { 1733 struct mem_cgroup *victim = NULL; 1734 int total = 0; 1735 int loop = 0; 1736 unsigned long excess; 1737 unsigned long nr_scanned; 1738 struct mem_cgroup_reclaim_cookie reclaim = { 1739 .pgdat = pgdat, 1740 }; 1741 1742 excess = soft_limit_excess(root_memcg); 1743 1744 while (1) { 1745 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1746 if (!victim) { 1747 loop++; 1748 if (loop >= 2) { 1749 /* 1750 * If we have not been able to reclaim 1751 * anything, it might because there are 1752 * no reclaimable pages under this hierarchy 1753 */ 1754 if (!total) 1755 break; 1756 /* 1757 * We want to do more targeted reclaim. 1758 * excess >> 2 is not to excessive so as to 1759 * reclaim too much, nor too less that we keep 1760 * coming back to reclaim from this cgroup 1761 */ 1762 if (total >= (excess >> 2) || 1763 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1764 break; 1765 } 1766 continue; 1767 } 1768 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1769 pgdat, &nr_scanned); 1770 *total_scanned += nr_scanned; 1771 if (!soft_limit_excess(root_memcg)) 1772 break; 1773 } 1774 mem_cgroup_iter_break(root_memcg, victim); 1775 return total; 1776 } 1777 1778 #ifdef CONFIG_LOCKDEP 1779 static struct lockdep_map memcg_oom_lock_dep_map = { 1780 .name = "memcg_oom_lock", 1781 }; 1782 #endif 1783 1784 static DEFINE_SPINLOCK(memcg_oom_lock); 1785 1786 /* 1787 * Check OOM-Killer is already running under our hierarchy. 1788 * If someone is running, return false. 1789 */ 1790 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1791 { 1792 struct mem_cgroup *iter, *failed = NULL; 1793 1794 spin_lock(&memcg_oom_lock); 1795 1796 for_each_mem_cgroup_tree(iter, memcg) { 1797 if (iter->oom_lock) { 1798 /* 1799 * this subtree of our hierarchy is already locked 1800 * so we cannot give a lock. 1801 */ 1802 failed = iter; 1803 mem_cgroup_iter_break(memcg, iter); 1804 break; 1805 } else 1806 iter->oom_lock = true; 1807 } 1808 1809 if (failed) { 1810 /* 1811 * OK, we failed to lock the whole subtree so we have 1812 * to clean up what we set up to the failing subtree 1813 */ 1814 for_each_mem_cgroup_tree(iter, memcg) { 1815 if (iter == failed) { 1816 mem_cgroup_iter_break(memcg, iter); 1817 break; 1818 } 1819 iter->oom_lock = false; 1820 } 1821 } else 1822 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1823 1824 spin_unlock(&memcg_oom_lock); 1825 1826 return !failed; 1827 } 1828 1829 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1830 { 1831 struct mem_cgroup *iter; 1832 1833 spin_lock(&memcg_oom_lock); 1834 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1835 for_each_mem_cgroup_tree(iter, memcg) 1836 iter->oom_lock = false; 1837 spin_unlock(&memcg_oom_lock); 1838 } 1839 1840 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1841 { 1842 struct mem_cgroup *iter; 1843 1844 spin_lock(&memcg_oom_lock); 1845 for_each_mem_cgroup_tree(iter, memcg) 1846 iter->under_oom++; 1847 spin_unlock(&memcg_oom_lock); 1848 } 1849 1850 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1851 { 1852 struct mem_cgroup *iter; 1853 1854 /* 1855 * Be careful about under_oom underflows because a child memcg 1856 * could have been added after mem_cgroup_mark_under_oom. 1857 */ 1858 spin_lock(&memcg_oom_lock); 1859 for_each_mem_cgroup_tree(iter, memcg) 1860 if (iter->under_oom > 0) 1861 iter->under_oom--; 1862 spin_unlock(&memcg_oom_lock); 1863 } 1864 1865 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1866 1867 struct oom_wait_info { 1868 struct mem_cgroup *memcg; 1869 wait_queue_entry_t wait; 1870 }; 1871 1872 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1873 unsigned mode, int sync, void *arg) 1874 { 1875 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1876 struct mem_cgroup *oom_wait_memcg; 1877 struct oom_wait_info *oom_wait_info; 1878 1879 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1880 oom_wait_memcg = oom_wait_info->memcg; 1881 1882 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1883 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1884 return 0; 1885 return autoremove_wake_function(wait, mode, sync, arg); 1886 } 1887 1888 static void memcg_oom_recover(struct mem_cgroup *memcg) 1889 { 1890 /* 1891 * For the following lockless ->under_oom test, the only required 1892 * guarantee is that it must see the state asserted by an OOM when 1893 * this function is called as a result of userland actions 1894 * triggered by the notification of the OOM. This is trivially 1895 * achieved by invoking mem_cgroup_mark_under_oom() before 1896 * triggering notification. 1897 */ 1898 if (memcg && memcg->under_oom) 1899 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1900 } 1901 1902 /* 1903 * Returns true if successfully killed one or more processes. Though in some 1904 * corner cases it can return true even without killing any process. 1905 */ 1906 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1907 { 1908 bool locked, ret; 1909 1910 if (order > PAGE_ALLOC_COSTLY_ORDER) 1911 return false; 1912 1913 memcg_memory_event(memcg, MEMCG_OOM); 1914 1915 /* 1916 * We are in the middle of the charge context here, so we 1917 * don't want to block when potentially sitting on a callstack 1918 * that holds all kinds of filesystem and mm locks. 1919 * 1920 * cgroup1 allows disabling the OOM killer and waiting for outside 1921 * handling until the charge can succeed; remember the context and put 1922 * the task to sleep at the end of the page fault when all locks are 1923 * released. 1924 * 1925 * On the other hand, in-kernel OOM killer allows for an async victim 1926 * memory reclaim (oom_reaper) and that means that we are not solely 1927 * relying on the oom victim to make a forward progress and we can 1928 * invoke the oom killer here. 1929 * 1930 * Please note that mem_cgroup_out_of_memory might fail to find a 1931 * victim and then we have to bail out from the charge path. 1932 */ 1933 if (READ_ONCE(memcg->oom_kill_disable)) { 1934 if (current->in_user_fault) { 1935 css_get(&memcg->css); 1936 current->memcg_in_oom = memcg; 1937 current->memcg_oom_gfp_mask = mask; 1938 current->memcg_oom_order = order; 1939 } 1940 return false; 1941 } 1942 1943 mem_cgroup_mark_under_oom(memcg); 1944 1945 locked = mem_cgroup_oom_trylock(memcg); 1946 1947 if (locked) 1948 mem_cgroup_oom_notify(memcg); 1949 1950 mem_cgroup_unmark_under_oom(memcg); 1951 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1952 1953 if (locked) 1954 mem_cgroup_oom_unlock(memcg); 1955 1956 return ret; 1957 } 1958 1959 /** 1960 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1961 * @handle: actually kill/wait or just clean up the OOM state 1962 * 1963 * This has to be called at the end of a page fault if the memcg OOM 1964 * handler was enabled. 1965 * 1966 * Memcg supports userspace OOM handling where failed allocations must 1967 * sleep on a waitqueue until the userspace task resolves the 1968 * situation. Sleeping directly in the charge context with all kinds 1969 * of locks held is not a good idea, instead we remember an OOM state 1970 * in the task and mem_cgroup_oom_synchronize() has to be called at 1971 * the end of the page fault to complete the OOM handling. 1972 * 1973 * Returns %true if an ongoing memcg OOM situation was detected and 1974 * completed, %false otherwise. 1975 */ 1976 bool mem_cgroup_oom_synchronize(bool handle) 1977 { 1978 struct mem_cgroup *memcg = current->memcg_in_oom; 1979 struct oom_wait_info owait; 1980 bool locked; 1981 1982 /* OOM is global, do not handle */ 1983 if (!memcg) 1984 return false; 1985 1986 if (!handle) 1987 goto cleanup; 1988 1989 owait.memcg = memcg; 1990 owait.wait.flags = 0; 1991 owait.wait.func = memcg_oom_wake_function; 1992 owait.wait.private = current; 1993 INIT_LIST_HEAD(&owait.wait.entry); 1994 1995 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1996 mem_cgroup_mark_under_oom(memcg); 1997 1998 locked = mem_cgroup_oom_trylock(memcg); 1999 2000 if (locked) 2001 mem_cgroup_oom_notify(memcg); 2002 2003 if (locked && !READ_ONCE(memcg->oom_kill_disable)) { 2004 mem_cgroup_unmark_under_oom(memcg); 2005 finish_wait(&memcg_oom_waitq, &owait.wait); 2006 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 2007 current->memcg_oom_order); 2008 } else { 2009 schedule(); 2010 mem_cgroup_unmark_under_oom(memcg); 2011 finish_wait(&memcg_oom_waitq, &owait.wait); 2012 } 2013 2014 if (locked) { 2015 mem_cgroup_oom_unlock(memcg); 2016 /* 2017 * There is no guarantee that an OOM-lock contender 2018 * sees the wakeups triggered by the OOM kill 2019 * uncharges. Wake any sleepers explicitly. 2020 */ 2021 memcg_oom_recover(memcg); 2022 } 2023 cleanup: 2024 current->memcg_in_oom = NULL; 2025 css_put(&memcg->css); 2026 return true; 2027 } 2028 2029 /** 2030 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2031 * @victim: task to be killed by the OOM killer 2032 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2033 * 2034 * Returns a pointer to a memory cgroup, which has to be cleaned up 2035 * by killing all belonging OOM-killable tasks. 2036 * 2037 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2038 */ 2039 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2040 struct mem_cgroup *oom_domain) 2041 { 2042 struct mem_cgroup *oom_group = NULL; 2043 struct mem_cgroup *memcg; 2044 2045 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2046 return NULL; 2047 2048 if (!oom_domain) 2049 oom_domain = root_mem_cgroup; 2050 2051 rcu_read_lock(); 2052 2053 memcg = mem_cgroup_from_task(victim); 2054 if (mem_cgroup_is_root(memcg)) 2055 goto out; 2056 2057 /* 2058 * If the victim task has been asynchronously moved to a different 2059 * memory cgroup, we might end up killing tasks outside oom_domain. 2060 * In this case it's better to ignore memory.group.oom. 2061 */ 2062 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2063 goto out; 2064 2065 /* 2066 * Traverse the memory cgroup hierarchy from the victim task's 2067 * cgroup up to the OOMing cgroup (or root) to find the 2068 * highest-level memory cgroup with oom.group set. 2069 */ 2070 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2071 if (READ_ONCE(memcg->oom_group)) 2072 oom_group = memcg; 2073 2074 if (memcg == oom_domain) 2075 break; 2076 } 2077 2078 if (oom_group) 2079 css_get(&oom_group->css); 2080 out: 2081 rcu_read_unlock(); 2082 2083 return oom_group; 2084 } 2085 2086 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2087 { 2088 pr_info("Tasks in "); 2089 pr_cont_cgroup_path(memcg->css.cgroup); 2090 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2091 } 2092 2093 /** 2094 * folio_memcg_lock - Bind a folio to its memcg. 2095 * @folio: The folio. 2096 * 2097 * This function prevents unlocked LRU folios from being moved to 2098 * another cgroup. 2099 * 2100 * It ensures lifetime of the bound memcg. The caller is responsible 2101 * for the lifetime of the folio. 2102 */ 2103 void folio_memcg_lock(struct folio *folio) 2104 { 2105 struct mem_cgroup *memcg; 2106 unsigned long flags; 2107 2108 /* 2109 * The RCU lock is held throughout the transaction. The fast 2110 * path can get away without acquiring the memcg->move_lock 2111 * because page moving starts with an RCU grace period. 2112 */ 2113 rcu_read_lock(); 2114 2115 if (mem_cgroup_disabled()) 2116 return; 2117 again: 2118 memcg = folio_memcg(folio); 2119 if (unlikely(!memcg)) 2120 return; 2121 2122 #ifdef CONFIG_PROVE_LOCKING 2123 local_irq_save(flags); 2124 might_lock(&memcg->move_lock); 2125 local_irq_restore(flags); 2126 #endif 2127 2128 if (atomic_read(&memcg->moving_account) <= 0) 2129 return; 2130 2131 spin_lock_irqsave(&memcg->move_lock, flags); 2132 if (memcg != folio_memcg(folio)) { 2133 spin_unlock_irqrestore(&memcg->move_lock, flags); 2134 goto again; 2135 } 2136 2137 /* 2138 * When charge migration first begins, we can have multiple 2139 * critical sections holding the fast-path RCU lock and one 2140 * holding the slowpath move_lock. Track the task who has the 2141 * move_lock for unlock_page_memcg(). 2142 */ 2143 memcg->move_lock_task = current; 2144 memcg->move_lock_flags = flags; 2145 } 2146 2147 void lock_page_memcg(struct page *page) 2148 { 2149 folio_memcg_lock(page_folio(page)); 2150 } 2151 2152 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2153 { 2154 if (memcg && memcg->move_lock_task == current) { 2155 unsigned long flags = memcg->move_lock_flags; 2156 2157 memcg->move_lock_task = NULL; 2158 memcg->move_lock_flags = 0; 2159 2160 spin_unlock_irqrestore(&memcg->move_lock, flags); 2161 } 2162 2163 rcu_read_unlock(); 2164 } 2165 2166 /** 2167 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2168 * @folio: The folio. 2169 * 2170 * This releases the binding created by folio_memcg_lock(). This does 2171 * not change the accounting of this folio to its memcg, but it does 2172 * permit others to change it. 2173 */ 2174 void folio_memcg_unlock(struct folio *folio) 2175 { 2176 __folio_memcg_unlock(folio_memcg(folio)); 2177 } 2178 2179 void unlock_page_memcg(struct page *page) 2180 { 2181 folio_memcg_unlock(page_folio(page)); 2182 } 2183 2184 struct memcg_stock_pcp { 2185 local_lock_t stock_lock; 2186 struct mem_cgroup *cached; /* this never be root cgroup */ 2187 unsigned int nr_pages; 2188 2189 #ifdef CONFIG_MEMCG_KMEM 2190 struct obj_cgroup *cached_objcg; 2191 struct pglist_data *cached_pgdat; 2192 unsigned int nr_bytes; 2193 int nr_slab_reclaimable_b; 2194 int nr_slab_unreclaimable_b; 2195 #endif 2196 2197 struct work_struct work; 2198 unsigned long flags; 2199 #define FLUSHING_CACHED_CHARGE 0 2200 }; 2201 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2202 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2203 }; 2204 static DEFINE_MUTEX(percpu_charge_mutex); 2205 2206 #ifdef CONFIG_MEMCG_KMEM 2207 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2208 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2209 struct mem_cgroup *root_memcg); 2210 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2211 2212 #else 2213 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2214 { 2215 return NULL; 2216 } 2217 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2218 struct mem_cgroup *root_memcg) 2219 { 2220 return false; 2221 } 2222 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2223 { 2224 } 2225 #endif 2226 2227 /** 2228 * consume_stock: Try to consume stocked charge on this cpu. 2229 * @memcg: memcg to consume from. 2230 * @nr_pages: how many pages to charge. 2231 * 2232 * The charges will only happen if @memcg matches the current cpu's memcg 2233 * stock, and at least @nr_pages are available in that stock. Failure to 2234 * service an allocation will refill the stock. 2235 * 2236 * returns true if successful, false otherwise. 2237 */ 2238 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2239 { 2240 struct memcg_stock_pcp *stock; 2241 unsigned long flags; 2242 bool ret = false; 2243 2244 if (nr_pages > MEMCG_CHARGE_BATCH) 2245 return ret; 2246 2247 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2248 2249 stock = this_cpu_ptr(&memcg_stock); 2250 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2251 stock->nr_pages -= nr_pages; 2252 ret = true; 2253 } 2254 2255 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2256 2257 return ret; 2258 } 2259 2260 /* 2261 * Returns stocks cached in percpu and reset cached information. 2262 */ 2263 static void drain_stock(struct memcg_stock_pcp *stock) 2264 { 2265 struct mem_cgroup *old = stock->cached; 2266 2267 if (!old) 2268 return; 2269 2270 if (stock->nr_pages) { 2271 page_counter_uncharge(&old->memory, stock->nr_pages); 2272 if (do_memsw_account()) 2273 page_counter_uncharge(&old->memsw, stock->nr_pages); 2274 stock->nr_pages = 0; 2275 } 2276 2277 css_put(&old->css); 2278 stock->cached = NULL; 2279 } 2280 2281 static void drain_local_stock(struct work_struct *dummy) 2282 { 2283 struct memcg_stock_pcp *stock; 2284 struct obj_cgroup *old = NULL; 2285 unsigned long flags; 2286 2287 /* 2288 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2289 * drain_stock races is that we always operate on local CPU stock 2290 * here with IRQ disabled 2291 */ 2292 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2293 2294 stock = this_cpu_ptr(&memcg_stock); 2295 old = drain_obj_stock(stock); 2296 drain_stock(stock); 2297 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2298 2299 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2300 if (old) 2301 obj_cgroup_put(old); 2302 } 2303 2304 /* 2305 * Cache charges(val) to local per_cpu area. 2306 * This will be consumed by consume_stock() function, later. 2307 */ 2308 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2309 { 2310 struct memcg_stock_pcp *stock; 2311 2312 stock = this_cpu_ptr(&memcg_stock); 2313 if (stock->cached != memcg) { /* reset if necessary */ 2314 drain_stock(stock); 2315 css_get(&memcg->css); 2316 stock->cached = memcg; 2317 } 2318 stock->nr_pages += nr_pages; 2319 2320 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2321 drain_stock(stock); 2322 } 2323 2324 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2325 { 2326 unsigned long flags; 2327 2328 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2329 __refill_stock(memcg, nr_pages); 2330 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2331 } 2332 2333 /* 2334 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2335 * of the hierarchy under it. 2336 */ 2337 static void drain_all_stock(struct mem_cgroup *root_memcg) 2338 { 2339 int cpu, curcpu; 2340 2341 /* If someone's already draining, avoid adding running more workers. */ 2342 if (!mutex_trylock(&percpu_charge_mutex)) 2343 return; 2344 /* 2345 * Notify other cpus that system-wide "drain" is running 2346 * We do not care about races with the cpu hotplug because cpu down 2347 * as well as workers from this path always operate on the local 2348 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2349 */ 2350 migrate_disable(); 2351 curcpu = smp_processor_id(); 2352 for_each_online_cpu(cpu) { 2353 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2354 struct mem_cgroup *memcg; 2355 bool flush = false; 2356 2357 rcu_read_lock(); 2358 memcg = stock->cached; 2359 if (memcg && stock->nr_pages && 2360 mem_cgroup_is_descendant(memcg, root_memcg)) 2361 flush = true; 2362 else if (obj_stock_flush_required(stock, root_memcg)) 2363 flush = true; 2364 rcu_read_unlock(); 2365 2366 if (flush && 2367 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2368 if (cpu == curcpu) 2369 drain_local_stock(&stock->work); 2370 else if (!cpu_is_isolated(cpu)) 2371 schedule_work_on(cpu, &stock->work); 2372 } 2373 } 2374 migrate_enable(); 2375 mutex_unlock(&percpu_charge_mutex); 2376 } 2377 2378 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2379 { 2380 struct memcg_stock_pcp *stock; 2381 2382 stock = &per_cpu(memcg_stock, cpu); 2383 drain_stock(stock); 2384 2385 return 0; 2386 } 2387 2388 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2389 unsigned int nr_pages, 2390 gfp_t gfp_mask) 2391 { 2392 unsigned long nr_reclaimed = 0; 2393 2394 do { 2395 unsigned long pflags; 2396 2397 if (page_counter_read(&memcg->memory) <= 2398 READ_ONCE(memcg->memory.high)) 2399 continue; 2400 2401 memcg_memory_event(memcg, MEMCG_HIGH); 2402 2403 psi_memstall_enter(&pflags); 2404 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2405 gfp_mask, 2406 MEMCG_RECLAIM_MAY_SWAP); 2407 psi_memstall_leave(&pflags); 2408 } while ((memcg = parent_mem_cgroup(memcg)) && 2409 !mem_cgroup_is_root(memcg)); 2410 2411 return nr_reclaimed; 2412 } 2413 2414 static void high_work_func(struct work_struct *work) 2415 { 2416 struct mem_cgroup *memcg; 2417 2418 memcg = container_of(work, struct mem_cgroup, high_work); 2419 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2420 } 2421 2422 /* 2423 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2424 * enough to still cause a significant slowdown in most cases, while still 2425 * allowing diagnostics and tracing to proceed without becoming stuck. 2426 */ 2427 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2428 2429 /* 2430 * When calculating the delay, we use these either side of the exponentiation to 2431 * maintain precision and scale to a reasonable number of jiffies (see the table 2432 * below. 2433 * 2434 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2435 * overage ratio to a delay. 2436 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2437 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2438 * to produce a reasonable delay curve. 2439 * 2440 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2441 * reasonable delay curve compared to precision-adjusted overage, not 2442 * penalising heavily at first, but still making sure that growth beyond the 2443 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2444 * example, with a high of 100 megabytes: 2445 * 2446 * +-------+------------------------+ 2447 * | usage | time to allocate in ms | 2448 * +-------+------------------------+ 2449 * | 100M | 0 | 2450 * | 101M | 6 | 2451 * | 102M | 25 | 2452 * | 103M | 57 | 2453 * | 104M | 102 | 2454 * | 105M | 159 | 2455 * | 106M | 230 | 2456 * | 107M | 313 | 2457 * | 108M | 409 | 2458 * | 109M | 518 | 2459 * | 110M | 639 | 2460 * | 111M | 774 | 2461 * | 112M | 921 | 2462 * | 113M | 1081 | 2463 * | 114M | 1254 | 2464 * | 115M | 1439 | 2465 * | 116M | 1638 | 2466 * | 117M | 1849 | 2467 * | 118M | 2000 | 2468 * | 119M | 2000 | 2469 * | 120M | 2000 | 2470 * +-------+------------------------+ 2471 */ 2472 #define MEMCG_DELAY_PRECISION_SHIFT 20 2473 #define MEMCG_DELAY_SCALING_SHIFT 14 2474 2475 static u64 calculate_overage(unsigned long usage, unsigned long high) 2476 { 2477 u64 overage; 2478 2479 if (usage <= high) 2480 return 0; 2481 2482 /* 2483 * Prevent division by 0 in overage calculation by acting as if 2484 * it was a threshold of 1 page 2485 */ 2486 high = max(high, 1UL); 2487 2488 overage = usage - high; 2489 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2490 return div64_u64(overage, high); 2491 } 2492 2493 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2494 { 2495 u64 overage, max_overage = 0; 2496 2497 do { 2498 overage = calculate_overage(page_counter_read(&memcg->memory), 2499 READ_ONCE(memcg->memory.high)); 2500 max_overage = max(overage, max_overage); 2501 } while ((memcg = parent_mem_cgroup(memcg)) && 2502 !mem_cgroup_is_root(memcg)); 2503 2504 return max_overage; 2505 } 2506 2507 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2508 { 2509 u64 overage, max_overage = 0; 2510 2511 do { 2512 overage = calculate_overage(page_counter_read(&memcg->swap), 2513 READ_ONCE(memcg->swap.high)); 2514 if (overage) 2515 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2516 max_overage = max(overage, max_overage); 2517 } while ((memcg = parent_mem_cgroup(memcg)) && 2518 !mem_cgroup_is_root(memcg)); 2519 2520 return max_overage; 2521 } 2522 2523 /* 2524 * Get the number of jiffies that we should penalise a mischievous cgroup which 2525 * is exceeding its memory.high by checking both it and its ancestors. 2526 */ 2527 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2528 unsigned int nr_pages, 2529 u64 max_overage) 2530 { 2531 unsigned long penalty_jiffies; 2532 2533 if (!max_overage) 2534 return 0; 2535 2536 /* 2537 * We use overage compared to memory.high to calculate the number of 2538 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2539 * fairly lenient on small overages, and increasingly harsh when the 2540 * memcg in question makes it clear that it has no intention of stopping 2541 * its crazy behaviour, so we exponentially increase the delay based on 2542 * overage amount. 2543 */ 2544 penalty_jiffies = max_overage * max_overage * HZ; 2545 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2546 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2547 2548 /* 2549 * Factor in the task's own contribution to the overage, such that four 2550 * N-sized allocations are throttled approximately the same as one 2551 * 4N-sized allocation. 2552 * 2553 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2554 * larger the current charge patch is than that. 2555 */ 2556 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2557 } 2558 2559 /* 2560 * Scheduled by try_charge() to be executed from the userland return path 2561 * and reclaims memory over the high limit. 2562 */ 2563 void mem_cgroup_handle_over_high(void) 2564 { 2565 unsigned long penalty_jiffies; 2566 unsigned long pflags; 2567 unsigned long nr_reclaimed; 2568 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2569 int nr_retries = MAX_RECLAIM_RETRIES; 2570 struct mem_cgroup *memcg; 2571 bool in_retry = false; 2572 2573 if (likely(!nr_pages)) 2574 return; 2575 2576 memcg = get_mem_cgroup_from_mm(current->mm); 2577 current->memcg_nr_pages_over_high = 0; 2578 2579 retry_reclaim: 2580 /* 2581 * The allocating task should reclaim at least the batch size, but for 2582 * subsequent retries we only want to do what's necessary to prevent oom 2583 * or breaching resource isolation. 2584 * 2585 * This is distinct from memory.max or page allocator behaviour because 2586 * memory.high is currently batched, whereas memory.max and the page 2587 * allocator run every time an allocation is made. 2588 */ 2589 nr_reclaimed = reclaim_high(memcg, 2590 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2591 GFP_KERNEL); 2592 2593 /* 2594 * memory.high is breached and reclaim is unable to keep up. Throttle 2595 * allocators proactively to slow down excessive growth. 2596 */ 2597 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2598 mem_find_max_overage(memcg)); 2599 2600 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2601 swap_find_max_overage(memcg)); 2602 2603 /* 2604 * Clamp the max delay per usermode return so as to still keep the 2605 * application moving forwards and also permit diagnostics, albeit 2606 * extremely slowly. 2607 */ 2608 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2609 2610 /* 2611 * Don't sleep if the amount of jiffies this memcg owes us is so low 2612 * that it's not even worth doing, in an attempt to be nice to those who 2613 * go only a small amount over their memory.high value and maybe haven't 2614 * been aggressively reclaimed enough yet. 2615 */ 2616 if (penalty_jiffies <= HZ / 100) 2617 goto out; 2618 2619 /* 2620 * If reclaim is making forward progress but we're still over 2621 * memory.high, we want to encourage that rather than doing allocator 2622 * throttling. 2623 */ 2624 if (nr_reclaimed || nr_retries--) { 2625 in_retry = true; 2626 goto retry_reclaim; 2627 } 2628 2629 /* 2630 * If we exit early, we're guaranteed to die (since 2631 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2632 * need to account for any ill-begotten jiffies to pay them off later. 2633 */ 2634 psi_memstall_enter(&pflags); 2635 schedule_timeout_killable(penalty_jiffies); 2636 psi_memstall_leave(&pflags); 2637 2638 out: 2639 css_put(&memcg->css); 2640 } 2641 2642 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2643 unsigned int nr_pages) 2644 { 2645 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2646 int nr_retries = MAX_RECLAIM_RETRIES; 2647 struct mem_cgroup *mem_over_limit; 2648 struct page_counter *counter; 2649 unsigned long nr_reclaimed; 2650 bool passed_oom = false; 2651 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2652 bool drained = false; 2653 bool raised_max_event = false; 2654 unsigned long pflags; 2655 2656 retry: 2657 if (consume_stock(memcg, nr_pages)) 2658 return 0; 2659 2660 if (!do_memsw_account() || 2661 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2662 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2663 goto done_restock; 2664 if (do_memsw_account()) 2665 page_counter_uncharge(&memcg->memsw, batch); 2666 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2667 } else { 2668 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2669 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2670 } 2671 2672 if (batch > nr_pages) { 2673 batch = nr_pages; 2674 goto retry; 2675 } 2676 2677 /* 2678 * Prevent unbounded recursion when reclaim operations need to 2679 * allocate memory. This might exceed the limits temporarily, 2680 * but we prefer facilitating memory reclaim and getting back 2681 * under the limit over triggering OOM kills in these cases. 2682 */ 2683 if (unlikely(current->flags & PF_MEMALLOC)) 2684 goto force; 2685 2686 if (unlikely(task_in_memcg_oom(current))) 2687 goto nomem; 2688 2689 if (!gfpflags_allow_blocking(gfp_mask)) 2690 goto nomem; 2691 2692 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2693 raised_max_event = true; 2694 2695 psi_memstall_enter(&pflags); 2696 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2697 gfp_mask, reclaim_options); 2698 psi_memstall_leave(&pflags); 2699 2700 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2701 goto retry; 2702 2703 if (!drained) { 2704 drain_all_stock(mem_over_limit); 2705 drained = true; 2706 goto retry; 2707 } 2708 2709 if (gfp_mask & __GFP_NORETRY) 2710 goto nomem; 2711 /* 2712 * Even though the limit is exceeded at this point, reclaim 2713 * may have been able to free some pages. Retry the charge 2714 * before killing the task. 2715 * 2716 * Only for regular pages, though: huge pages are rather 2717 * unlikely to succeed so close to the limit, and we fall back 2718 * to regular pages anyway in case of failure. 2719 */ 2720 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2721 goto retry; 2722 /* 2723 * At task move, charge accounts can be doubly counted. So, it's 2724 * better to wait until the end of task_move if something is going on. 2725 */ 2726 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2727 goto retry; 2728 2729 if (nr_retries--) 2730 goto retry; 2731 2732 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2733 goto nomem; 2734 2735 /* Avoid endless loop for tasks bypassed by the oom killer */ 2736 if (passed_oom && task_is_dying()) 2737 goto nomem; 2738 2739 /* 2740 * keep retrying as long as the memcg oom killer is able to make 2741 * a forward progress or bypass the charge if the oom killer 2742 * couldn't make any progress. 2743 */ 2744 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2745 get_order(nr_pages * PAGE_SIZE))) { 2746 passed_oom = true; 2747 nr_retries = MAX_RECLAIM_RETRIES; 2748 goto retry; 2749 } 2750 nomem: 2751 /* 2752 * Memcg doesn't have a dedicated reserve for atomic 2753 * allocations. But like the global atomic pool, we need to 2754 * put the burden of reclaim on regular allocation requests 2755 * and let these go through as privileged allocations. 2756 */ 2757 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2758 return -ENOMEM; 2759 force: 2760 /* 2761 * If the allocation has to be enforced, don't forget to raise 2762 * a MEMCG_MAX event. 2763 */ 2764 if (!raised_max_event) 2765 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2766 2767 /* 2768 * The allocation either can't fail or will lead to more memory 2769 * being freed very soon. Allow memory usage go over the limit 2770 * temporarily by force charging it. 2771 */ 2772 page_counter_charge(&memcg->memory, nr_pages); 2773 if (do_memsw_account()) 2774 page_counter_charge(&memcg->memsw, nr_pages); 2775 2776 return 0; 2777 2778 done_restock: 2779 if (batch > nr_pages) 2780 refill_stock(memcg, batch - nr_pages); 2781 2782 /* 2783 * If the hierarchy is above the normal consumption range, schedule 2784 * reclaim on returning to userland. We can perform reclaim here 2785 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2786 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2787 * not recorded as it most likely matches current's and won't 2788 * change in the meantime. As high limit is checked again before 2789 * reclaim, the cost of mismatch is negligible. 2790 */ 2791 do { 2792 bool mem_high, swap_high; 2793 2794 mem_high = page_counter_read(&memcg->memory) > 2795 READ_ONCE(memcg->memory.high); 2796 swap_high = page_counter_read(&memcg->swap) > 2797 READ_ONCE(memcg->swap.high); 2798 2799 /* Don't bother a random interrupted task */ 2800 if (!in_task()) { 2801 if (mem_high) { 2802 schedule_work(&memcg->high_work); 2803 break; 2804 } 2805 continue; 2806 } 2807 2808 if (mem_high || swap_high) { 2809 /* 2810 * The allocating tasks in this cgroup will need to do 2811 * reclaim or be throttled to prevent further growth 2812 * of the memory or swap footprints. 2813 * 2814 * Target some best-effort fairness between the tasks, 2815 * and distribute reclaim work and delay penalties 2816 * based on how much each task is actually allocating. 2817 */ 2818 current->memcg_nr_pages_over_high += batch; 2819 set_notify_resume(current); 2820 break; 2821 } 2822 } while ((memcg = parent_mem_cgroup(memcg))); 2823 2824 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2825 !(current->flags & PF_MEMALLOC) && 2826 gfpflags_allow_blocking(gfp_mask)) { 2827 mem_cgroup_handle_over_high(); 2828 } 2829 return 0; 2830 } 2831 2832 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2833 unsigned int nr_pages) 2834 { 2835 if (mem_cgroup_is_root(memcg)) 2836 return 0; 2837 2838 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2839 } 2840 2841 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2842 { 2843 if (mem_cgroup_is_root(memcg)) 2844 return; 2845 2846 page_counter_uncharge(&memcg->memory, nr_pages); 2847 if (do_memsw_account()) 2848 page_counter_uncharge(&memcg->memsw, nr_pages); 2849 } 2850 2851 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2852 { 2853 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2854 /* 2855 * Any of the following ensures page's memcg stability: 2856 * 2857 * - the page lock 2858 * - LRU isolation 2859 * - lock_page_memcg() 2860 * - exclusive reference 2861 * - mem_cgroup_trylock_pages() 2862 */ 2863 folio->memcg_data = (unsigned long)memcg; 2864 } 2865 2866 #ifdef CONFIG_MEMCG_KMEM 2867 /* 2868 * The allocated objcg pointers array is not accounted directly. 2869 * Moreover, it should not come from DMA buffer and is not readily 2870 * reclaimable. So those GFP bits should be masked off. 2871 */ 2872 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2873 2874 /* 2875 * mod_objcg_mlstate() may be called with irq enabled, so 2876 * mod_memcg_lruvec_state() should be used. 2877 */ 2878 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2879 struct pglist_data *pgdat, 2880 enum node_stat_item idx, int nr) 2881 { 2882 struct mem_cgroup *memcg; 2883 struct lruvec *lruvec; 2884 2885 rcu_read_lock(); 2886 memcg = obj_cgroup_memcg(objcg); 2887 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2888 mod_memcg_lruvec_state(lruvec, idx, nr); 2889 rcu_read_unlock(); 2890 } 2891 2892 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2893 gfp_t gfp, bool new_slab) 2894 { 2895 unsigned int objects = objs_per_slab(s, slab); 2896 unsigned long memcg_data; 2897 void *vec; 2898 2899 gfp &= ~OBJCGS_CLEAR_MASK; 2900 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2901 slab_nid(slab)); 2902 if (!vec) 2903 return -ENOMEM; 2904 2905 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2906 if (new_slab) { 2907 /* 2908 * If the slab is brand new and nobody can yet access its 2909 * memcg_data, no synchronization is required and memcg_data can 2910 * be simply assigned. 2911 */ 2912 slab->memcg_data = memcg_data; 2913 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2914 /* 2915 * If the slab is already in use, somebody can allocate and 2916 * assign obj_cgroups in parallel. In this case the existing 2917 * objcg vector should be reused. 2918 */ 2919 kfree(vec); 2920 return 0; 2921 } 2922 2923 kmemleak_not_leak(vec); 2924 return 0; 2925 } 2926 2927 static __always_inline 2928 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2929 { 2930 /* 2931 * Slab objects are accounted individually, not per-page. 2932 * Memcg membership data for each individual object is saved in 2933 * slab->memcg_data. 2934 */ 2935 if (folio_test_slab(folio)) { 2936 struct obj_cgroup **objcgs; 2937 struct slab *slab; 2938 unsigned int off; 2939 2940 slab = folio_slab(folio); 2941 objcgs = slab_objcgs(slab); 2942 if (!objcgs) 2943 return NULL; 2944 2945 off = obj_to_index(slab->slab_cache, slab, p); 2946 if (objcgs[off]) 2947 return obj_cgroup_memcg(objcgs[off]); 2948 2949 return NULL; 2950 } 2951 2952 /* 2953 * folio_memcg_check() is used here, because in theory we can encounter 2954 * a folio where the slab flag has been cleared already, but 2955 * slab->memcg_data has not been freed yet 2956 * folio_memcg_check() will guarantee that a proper memory 2957 * cgroup pointer or NULL will be returned. 2958 */ 2959 return folio_memcg_check(folio); 2960 } 2961 2962 /* 2963 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2964 * 2965 * A passed kernel object can be a slab object, vmalloc object or a generic 2966 * kernel page, so different mechanisms for getting the memory cgroup pointer 2967 * should be used. 2968 * 2969 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2970 * can not know for sure how the kernel object is implemented. 2971 * mem_cgroup_from_obj() can be safely used in such cases. 2972 * 2973 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2974 * cgroup_mutex, etc. 2975 */ 2976 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2977 { 2978 struct folio *folio; 2979 2980 if (mem_cgroup_disabled()) 2981 return NULL; 2982 2983 if (unlikely(is_vmalloc_addr(p))) 2984 folio = page_folio(vmalloc_to_page(p)); 2985 else 2986 folio = virt_to_folio(p); 2987 2988 return mem_cgroup_from_obj_folio(folio, p); 2989 } 2990 2991 /* 2992 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2993 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 2994 * allocated using vmalloc(). 2995 * 2996 * A passed kernel object must be a slab object or a generic kernel page. 2997 * 2998 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2999 * cgroup_mutex, etc. 3000 */ 3001 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3002 { 3003 if (mem_cgroup_disabled()) 3004 return NULL; 3005 3006 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3007 } 3008 3009 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3010 { 3011 struct obj_cgroup *objcg = NULL; 3012 3013 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3014 objcg = rcu_dereference(memcg->objcg); 3015 if (objcg && obj_cgroup_tryget(objcg)) 3016 break; 3017 objcg = NULL; 3018 } 3019 return objcg; 3020 } 3021 3022 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 3023 { 3024 struct obj_cgroup *objcg = NULL; 3025 struct mem_cgroup *memcg; 3026 3027 if (memcg_kmem_bypass()) 3028 return NULL; 3029 3030 rcu_read_lock(); 3031 if (unlikely(active_memcg())) 3032 memcg = active_memcg(); 3033 else 3034 memcg = mem_cgroup_from_task(current); 3035 objcg = __get_obj_cgroup_from_memcg(memcg); 3036 rcu_read_unlock(); 3037 return objcg; 3038 } 3039 3040 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 3041 { 3042 struct obj_cgroup *objcg; 3043 3044 if (!memcg_kmem_online()) 3045 return NULL; 3046 3047 if (PageMemcgKmem(page)) { 3048 objcg = __folio_objcg(page_folio(page)); 3049 obj_cgroup_get(objcg); 3050 } else { 3051 struct mem_cgroup *memcg; 3052 3053 rcu_read_lock(); 3054 memcg = __folio_memcg(page_folio(page)); 3055 if (memcg) 3056 objcg = __get_obj_cgroup_from_memcg(memcg); 3057 else 3058 objcg = NULL; 3059 rcu_read_unlock(); 3060 } 3061 return objcg; 3062 } 3063 3064 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3065 { 3066 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3067 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3068 if (nr_pages > 0) 3069 page_counter_charge(&memcg->kmem, nr_pages); 3070 else 3071 page_counter_uncharge(&memcg->kmem, -nr_pages); 3072 } 3073 } 3074 3075 3076 /* 3077 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3078 * @objcg: object cgroup to uncharge 3079 * @nr_pages: number of pages to uncharge 3080 */ 3081 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3082 unsigned int nr_pages) 3083 { 3084 struct mem_cgroup *memcg; 3085 3086 memcg = get_mem_cgroup_from_objcg(objcg); 3087 3088 memcg_account_kmem(memcg, -nr_pages); 3089 refill_stock(memcg, nr_pages); 3090 3091 css_put(&memcg->css); 3092 } 3093 3094 /* 3095 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3096 * @objcg: object cgroup to charge 3097 * @gfp: reclaim mode 3098 * @nr_pages: number of pages to charge 3099 * 3100 * Returns 0 on success, an error code on failure. 3101 */ 3102 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3103 unsigned int nr_pages) 3104 { 3105 struct mem_cgroup *memcg; 3106 int ret; 3107 3108 memcg = get_mem_cgroup_from_objcg(objcg); 3109 3110 ret = try_charge_memcg(memcg, gfp, nr_pages); 3111 if (ret) 3112 goto out; 3113 3114 memcg_account_kmem(memcg, nr_pages); 3115 out: 3116 css_put(&memcg->css); 3117 3118 return ret; 3119 } 3120 3121 /** 3122 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3123 * @page: page to charge 3124 * @gfp: reclaim mode 3125 * @order: allocation order 3126 * 3127 * Returns 0 on success, an error code on failure. 3128 */ 3129 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3130 { 3131 struct obj_cgroup *objcg; 3132 int ret = 0; 3133 3134 objcg = get_obj_cgroup_from_current(); 3135 if (objcg) { 3136 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3137 if (!ret) { 3138 page->memcg_data = (unsigned long)objcg | 3139 MEMCG_DATA_KMEM; 3140 return 0; 3141 } 3142 obj_cgroup_put(objcg); 3143 } 3144 return ret; 3145 } 3146 3147 /** 3148 * __memcg_kmem_uncharge_page: uncharge a kmem page 3149 * @page: page to uncharge 3150 * @order: allocation order 3151 */ 3152 void __memcg_kmem_uncharge_page(struct page *page, int order) 3153 { 3154 struct folio *folio = page_folio(page); 3155 struct obj_cgroup *objcg; 3156 unsigned int nr_pages = 1 << order; 3157 3158 if (!folio_memcg_kmem(folio)) 3159 return; 3160 3161 objcg = __folio_objcg(folio); 3162 obj_cgroup_uncharge_pages(objcg, nr_pages); 3163 folio->memcg_data = 0; 3164 obj_cgroup_put(objcg); 3165 } 3166 3167 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3168 enum node_stat_item idx, int nr) 3169 { 3170 struct memcg_stock_pcp *stock; 3171 struct obj_cgroup *old = NULL; 3172 unsigned long flags; 3173 int *bytes; 3174 3175 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3176 stock = this_cpu_ptr(&memcg_stock); 3177 3178 /* 3179 * Save vmstat data in stock and skip vmstat array update unless 3180 * accumulating over a page of vmstat data or when pgdat or idx 3181 * changes. 3182 */ 3183 if (stock->cached_objcg != objcg) { 3184 old = drain_obj_stock(stock); 3185 obj_cgroup_get(objcg); 3186 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3187 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3188 stock->cached_objcg = objcg; 3189 stock->cached_pgdat = pgdat; 3190 } else if (stock->cached_pgdat != pgdat) { 3191 /* Flush the existing cached vmstat data */ 3192 struct pglist_data *oldpg = stock->cached_pgdat; 3193 3194 if (stock->nr_slab_reclaimable_b) { 3195 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3196 stock->nr_slab_reclaimable_b); 3197 stock->nr_slab_reclaimable_b = 0; 3198 } 3199 if (stock->nr_slab_unreclaimable_b) { 3200 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3201 stock->nr_slab_unreclaimable_b); 3202 stock->nr_slab_unreclaimable_b = 0; 3203 } 3204 stock->cached_pgdat = pgdat; 3205 } 3206 3207 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3208 : &stock->nr_slab_unreclaimable_b; 3209 /* 3210 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3211 * cached locally at least once before pushing it out. 3212 */ 3213 if (!*bytes) { 3214 *bytes = nr; 3215 nr = 0; 3216 } else { 3217 *bytes += nr; 3218 if (abs(*bytes) > PAGE_SIZE) { 3219 nr = *bytes; 3220 *bytes = 0; 3221 } else { 3222 nr = 0; 3223 } 3224 } 3225 if (nr) 3226 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3227 3228 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3229 if (old) 3230 obj_cgroup_put(old); 3231 } 3232 3233 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3234 { 3235 struct memcg_stock_pcp *stock; 3236 unsigned long flags; 3237 bool ret = false; 3238 3239 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3240 3241 stock = this_cpu_ptr(&memcg_stock); 3242 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3243 stock->nr_bytes -= nr_bytes; 3244 ret = true; 3245 } 3246 3247 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3248 3249 return ret; 3250 } 3251 3252 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3253 { 3254 struct obj_cgroup *old = stock->cached_objcg; 3255 3256 if (!old) 3257 return NULL; 3258 3259 if (stock->nr_bytes) { 3260 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3261 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3262 3263 if (nr_pages) { 3264 struct mem_cgroup *memcg; 3265 3266 memcg = get_mem_cgroup_from_objcg(old); 3267 3268 memcg_account_kmem(memcg, -nr_pages); 3269 __refill_stock(memcg, nr_pages); 3270 3271 css_put(&memcg->css); 3272 } 3273 3274 /* 3275 * The leftover is flushed to the centralized per-memcg value. 3276 * On the next attempt to refill obj stock it will be moved 3277 * to a per-cpu stock (probably, on an other CPU), see 3278 * refill_obj_stock(). 3279 * 3280 * How often it's flushed is a trade-off between the memory 3281 * limit enforcement accuracy and potential CPU contention, 3282 * so it might be changed in the future. 3283 */ 3284 atomic_add(nr_bytes, &old->nr_charged_bytes); 3285 stock->nr_bytes = 0; 3286 } 3287 3288 /* 3289 * Flush the vmstat data in current stock 3290 */ 3291 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3292 if (stock->nr_slab_reclaimable_b) { 3293 mod_objcg_mlstate(old, stock->cached_pgdat, 3294 NR_SLAB_RECLAIMABLE_B, 3295 stock->nr_slab_reclaimable_b); 3296 stock->nr_slab_reclaimable_b = 0; 3297 } 3298 if (stock->nr_slab_unreclaimable_b) { 3299 mod_objcg_mlstate(old, stock->cached_pgdat, 3300 NR_SLAB_UNRECLAIMABLE_B, 3301 stock->nr_slab_unreclaimable_b); 3302 stock->nr_slab_unreclaimable_b = 0; 3303 } 3304 stock->cached_pgdat = NULL; 3305 } 3306 3307 stock->cached_objcg = NULL; 3308 /* 3309 * The `old' objects needs to be released by the caller via 3310 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3311 */ 3312 return old; 3313 } 3314 3315 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3316 struct mem_cgroup *root_memcg) 3317 { 3318 struct mem_cgroup *memcg; 3319 3320 if (stock->cached_objcg) { 3321 memcg = obj_cgroup_memcg(stock->cached_objcg); 3322 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3323 return true; 3324 } 3325 3326 return false; 3327 } 3328 3329 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3330 bool allow_uncharge) 3331 { 3332 struct memcg_stock_pcp *stock; 3333 struct obj_cgroup *old = NULL; 3334 unsigned long flags; 3335 unsigned int nr_pages = 0; 3336 3337 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3338 3339 stock = this_cpu_ptr(&memcg_stock); 3340 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3341 old = drain_obj_stock(stock); 3342 obj_cgroup_get(objcg); 3343 stock->cached_objcg = objcg; 3344 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3345 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3346 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3347 } 3348 stock->nr_bytes += nr_bytes; 3349 3350 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3351 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3352 stock->nr_bytes &= (PAGE_SIZE - 1); 3353 } 3354 3355 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3356 if (old) 3357 obj_cgroup_put(old); 3358 3359 if (nr_pages) 3360 obj_cgroup_uncharge_pages(objcg, nr_pages); 3361 } 3362 3363 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3364 { 3365 unsigned int nr_pages, nr_bytes; 3366 int ret; 3367 3368 if (consume_obj_stock(objcg, size)) 3369 return 0; 3370 3371 /* 3372 * In theory, objcg->nr_charged_bytes can have enough 3373 * pre-charged bytes to satisfy the allocation. However, 3374 * flushing objcg->nr_charged_bytes requires two atomic 3375 * operations, and objcg->nr_charged_bytes can't be big. 3376 * The shared objcg->nr_charged_bytes can also become a 3377 * performance bottleneck if all tasks of the same memcg are 3378 * trying to update it. So it's better to ignore it and try 3379 * grab some new pages. The stock's nr_bytes will be flushed to 3380 * objcg->nr_charged_bytes later on when objcg changes. 3381 * 3382 * The stock's nr_bytes may contain enough pre-charged bytes 3383 * to allow one less page from being charged, but we can't rely 3384 * on the pre-charged bytes not being changed outside of 3385 * consume_obj_stock() or refill_obj_stock(). So ignore those 3386 * pre-charged bytes as well when charging pages. To avoid a 3387 * page uncharge right after a page charge, we set the 3388 * allow_uncharge flag to false when calling refill_obj_stock() 3389 * to temporarily allow the pre-charged bytes to exceed the page 3390 * size limit. The maximum reachable value of the pre-charged 3391 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3392 * race. 3393 */ 3394 nr_pages = size >> PAGE_SHIFT; 3395 nr_bytes = size & (PAGE_SIZE - 1); 3396 3397 if (nr_bytes) 3398 nr_pages += 1; 3399 3400 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3401 if (!ret && nr_bytes) 3402 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3403 3404 return ret; 3405 } 3406 3407 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3408 { 3409 refill_obj_stock(objcg, size, true); 3410 } 3411 3412 #endif /* CONFIG_MEMCG_KMEM */ 3413 3414 /* 3415 * Because page_memcg(head) is not set on tails, set it now. 3416 */ 3417 void split_page_memcg(struct page *head, unsigned int nr) 3418 { 3419 struct folio *folio = page_folio(head); 3420 struct mem_cgroup *memcg = folio_memcg(folio); 3421 int i; 3422 3423 if (mem_cgroup_disabled() || !memcg) 3424 return; 3425 3426 for (i = 1; i < nr; i++) 3427 folio_page(folio, i)->memcg_data = folio->memcg_data; 3428 3429 if (folio_memcg_kmem(folio)) 3430 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3431 else 3432 css_get_many(&memcg->css, nr - 1); 3433 } 3434 3435 #ifdef CONFIG_SWAP 3436 /** 3437 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3438 * @entry: swap entry to be moved 3439 * @from: mem_cgroup which the entry is moved from 3440 * @to: mem_cgroup which the entry is moved to 3441 * 3442 * It succeeds only when the swap_cgroup's record for this entry is the same 3443 * as the mem_cgroup's id of @from. 3444 * 3445 * Returns 0 on success, -EINVAL on failure. 3446 * 3447 * The caller must have charged to @to, IOW, called page_counter_charge() about 3448 * both res and memsw, and called css_get(). 3449 */ 3450 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3451 struct mem_cgroup *from, struct mem_cgroup *to) 3452 { 3453 unsigned short old_id, new_id; 3454 3455 old_id = mem_cgroup_id(from); 3456 new_id = mem_cgroup_id(to); 3457 3458 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3459 mod_memcg_state(from, MEMCG_SWAP, -1); 3460 mod_memcg_state(to, MEMCG_SWAP, 1); 3461 return 0; 3462 } 3463 return -EINVAL; 3464 } 3465 #else 3466 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3467 struct mem_cgroup *from, struct mem_cgroup *to) 3468 { 3469 return -EINVAL; 3470 } 3471 #endif 3472 3473 static DEFINE_MUTEX(memcg_max_mutex); 3474 3475 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3476 unsigned long max, bool memsw) 3477 { 3478 bool enlarge = false; 3479 bool drained = false; 3480 int ret; 3481 bool limits_invariant; 3482 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3483 3484 do { 3485 if (signal_pending(current)) { 3486 ret = -EINTR; 3487 break; 3488 } 3489 3490 mutex_lock(&memcg_max_mutex); 3491 /* 3492 * Make sure that the new limit (memsw or memory limit) doesn't 3493 * break our basic invariant rule memory.max <= memsw.max. 3494 */ 3495 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3496 max <= memcg->memsw.max; 3497 if (!limits_invariant) { 3498 mutex_unlock(&memcg_max_mutex); 3499 ret = -EINVAL; 3500 break; 3501 } 3502 if (max > counter->max) 3503 enlarge = true; 3504 ret = page_counter_set_max(counter, max); 3505 mutex_unlock(&memcg_max_mutex); 3506 3507 if (!ret) 3508 break; 3509 3510 if (!drained) { 3511 drain_all_stock(memcg); 3512 drained = true; 3513 continue; 3514 } 3515 3516 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3517 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3518 ret = -EBUSY; 3519 break; 3520 } 3521 } while (true); 3522 3523 if (!ret && enlarge) 3524 memcg_oom_recover(memcg); 3525 3526 return ret; 3527 } 3528 3529 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3530 gfp_t gfp_mask, 3531 unsigned long *total_scanned) 3532 { 3533 unsigned long nr_reclaimed = 0; 3534 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3535 unsigned long reclaimed; 3536 int loop = 0; 3537 struct mem_cgroup_tree_per_node *mctz; 3538 unsigned long excess; 3539 3540 if (lru_gen_enabled()) 3541 return 0; 3542 3543 if (order > 0) 3544 return 0; 3545 3546 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3547 3548 /* 3549 * Do not even bother to check the largest node if the root 3550 * is empty. Do it lockless to prevent lock bouncing. Races 3551 * are acceptable as soft limit is best effort anyway. 3552 */ 3553 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3554 return 0; 3555 3556 /* 3557 * This loop can run a while, specially if mem_cgroup's continuously 3558 * keep exceeding their soft limit and putting the system under 3559 * pressure 3560 */ 3561 do { 3562 if (next_mz) 3563 mz = next_mz; 3564 else 3565 mz = mem_cgroup_largest_soft_limit_node(mctz); 3566 if (!mz) 3567 break; 3568 3569 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3570 gfp_mask, total_scanned); 3571 nr_reclaimed += reclaimed; 3572 spin_lock_irq(&mctz->lock); 3573 3574 /* 3575 * If we failed to reclaim anything from this memory cgroup 3576 * it is time to move on to the next cgroup 3577 */ 3578 next_mz = NULL; 3579 if (!reclaimed) 3580 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3581 3582 excess = soft_limit_excess(mz->memcg); 3583 /* 3584 * One school of thought says that we should not add 3585 * back the node to the tree if reclaim returns 0. 3586 * But our reclaim could return 0, simply because due 3587 * to priority we are exposing a smaller subset of 3588 * memory to reclaim from. Consider this as a longer 3589 * term TODO. 3590 */ 3591 /* If excess == 0, no tree ops */ 3592 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3593 spin_unlock_irq(&mctz->lock); 3594 css_put(&mz->memcg->css); 3595 loop++; 3596 /* 3597 * Could not reclaim anything and there are no more 3598 * mem cgroups to try or we seem to be looping without 3599 * reclaiming anything. 3600 */ 3601 if (!nr_reclaimed && 3602 (next_mz == NULL || 3603 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3604 break; 3605 } while (!nr_reclaimed); 3606 if (next_mz) 3607 css_put(&next_mz->memcg->css); 3608 return nr_reclaimed; 3609 } 3610 3611 /* 3612 * Reclaims as many pages from the given memcg as possible. 3613 * 3614 * Caller is responsible for holding css reference for memcg. 3615 */ 3616 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3617 { 3618 int nr_retries = MAX_RECLAIM_RETRIES; 3619 3620 /* we call try-to-free pages for make this cgroup empty */ 3621 lru_add_drain_all(); 3622 3623 drain_all_stock(memcg); 3624 3625 /* try to free all pages in this cgroup */ 3626 while (nr_retries && page_counter_read(&memcg->memory)) { 3627 if (signal_pending(current)) 3628 return -EINTR; 3629 3630 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3631 MEMCG_RECLAIM_MAY_SWAP)) 3632 nr_retries--; 3633 } 3634 3635 return 0; 3636 } 3637 3638 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3639 char *buf, size_t nbytes, 3640 loff_t off) 3641 { 3642 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3643 3644 if (mem_cgroup_is_root(memcg)) 3645 return -EINVAL; 3646 return mem_cgroup_force_empty(memcg) ?: nbytes; 3647 } 3648 3649 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3650 struct cftype *cft) 3651 { 3652 return 1; 3653 } 3654 3655 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3656 struct cftype *cft, u64 val) 3657 { 3658 if (val == 1) 3659 return 0; 3660 3661 pr_warn_once("Non-hierarchical mode is deprecated. " 3662 "Please report your usecase to linux-mm@kvack.org if you " 3663 "depend on this functionality.\n"); 3664 3665 return -EINVAL; 3666 } 3667 3668 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3669 { 3670 unsigned long val; 3671 3672 if (mem_cgroup_is_root(memcg)) { 3673 mem_cgroup_flush_stats(); 3674 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3675 memcg_page_state(memcg, NR_ANON_MAPPED); 3676 if (swap) 3677 val += memcg_page_state(memcg, MEMCG_SWAP); 3678 } else { 3679 if (!swap) 3680 val = page_counter_read(&memcg->memory); 3681 else 3682 val = page_counter_read(&memcg->memsw); 3683 } 3684 return val; 3685 } 3686 3687 enum { 3688 RES_USAGE, 3689 RES_LIMIT, 3690 RES_MAX_USAGE, 3691 RES_FAILCNT, 3692 RES_SOFT_LIMIT, 3693 }; 3694 3695 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3696 struct cftype *cft) 3697 { 3698 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3699 struct page_counter *counter; 3700 3701 switch (MEMFILE_TYPE(cft->private)) { 3702 case _MEM: 3703 counter = &memcg->memory; 3704 break; 3705 case _MEMSWAP: 3706 counter = &memcg->memsw; 3707 break; 3708 case _KMEM: 3709 counter = &memcg->kmem; 3710 break; 3711 case _TCP: 3712 counter = &memcg->tcpmem; 3713 break; 3714 default: 3715 BUG(); 3716 } 3717 3718 switch (MEMFILE_ATTR(cft->private)) { 3719 case RES_USAGE: 3720 if (counter == &memcg->memory) 3721 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3722 if (counter == &memcg->memsw) 3723 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3724 return (u64)page_counter_read(counter) * PAGE_SIZE; 3725 case RES_LIMIT: 3726 return (u64)counter->max * PAGE_SIZE; 3727 case RES_MAX_USAGE: 3728 return (u64)counter->watermark * PAGE_SIZE; 3729 case RES_FAILCNT: 3730 return counter->failcnt; 3731 case RES_SOFT_LIMIT: 3732 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 3733 default: 3734 BUG(); 3735 } 3736 } 3737 3738 #ifdef CONFIG_MEMCG_KMEM 3739 static int memcg_online_kmem(struct mem_cgroup *memcg) 3740 { 3741 struct obj_cgroup *objcg; 3742 3743 if (mem_cgroup_kmem_disabled()) 3744 return 0; 3745 3746 if (unlikely(mem_cgroup_is_root(memcg))) 3747 return 0; 3748 3749 objcg = obj_cgroup_alloc(); 3750 if (!objcg) 3751 return -ENOMEM; 3752 3753 objcg->memcg = memcg; 3754 rcu_assign_pointer(memcg->objcg, objcg); 3755 3756 static_branch_enable(&memcg_kmem_online_key); 3757 3758 memcg->kmemcg_id = memcg->id.id; 3759 3760 return 0; 3761 } 3762 3763 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3764 { 3765 struct mem_cgroup *parent; 3766 3767 if (mem_cgroup_kmem_disabled()) 3768 return; 3769 3770 if (unlikely(mem_cgroup_is_root(memcg))) 3771 return; 3772 3773 parent = parent_mem_cgroup(memcg); 3774 if (!parent) 3775 parent = root_mem_cgroup; 3776 3777 memcg_reparent_objcgs(memcg, parent); 3778 3779 /* 3780 * After we have finished memcg_reparent_objcgs(), all list_lrus 3781 * corresponding to this cgroup are guaranteed to remain empty. 3782 * The ordering is imposed by list_lru_node->lock taken by 3783 * memcg_reparent_list_lrus(). 3784 */ 3785 memcg_reparent_list_lrus(memcg, parent); 3786 } 3787 #else 3788 static int memcg_online_kmem(struct mem_cgroup *memcg) 3789 { 3790 return 0; 3791 } 3792 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3793 { 3794 } 3795 #endif /* CONFIG_MEMCG_KMEM */ 3796 3797 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3798 { 3799 int ret; 3800 3801 mutex_lock(&memcg_max_mutex); 3802 3803 ret = page_counter_set_max(&memcg->tcpmem, max); 3804 if (ret) 3805 goto out; 3806 3807 if (!memcg->tcpmem_active) { 3808 /* 3809 * The active flag needs to be written after the static_key 3810 * update. This is what guarantees that the socket activation 3811 * function is the last one to run. See mem_cgroup_sk_alloc() 3812 * for details, and note that we don't mark any socket as 3813 * belonging to this memcg until that flag is up. 3814 * 3815 * We need to do this, because static_keys will span multiple 3816 * sites, but we can't control their order. If we mark a socket 3817 * as accounted, but the accounting functions are not patched in 3818 * yet, we'll lose accounting. 3819 * 3820 * We never race with the readers in mem_cgroup_sk_alloc(), 3821 * because when this value change, the code to process it is not 3822 * patched in yet. 3823 */ 3824 static_branch_inc(&memcg_sockets_enabled_key); 3825 memcg->tcpmem_active = true; 3826 } 3827 out: 3828 mutex_unlock(&memcg_max_mutex); 3829 return ret; 3830 } 3831 3832 /* 3833 * The user of this function is... 3834 * RES_LIMIT. 3835 */ 3836 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3837 char *buf, size_t nbytes, loff_t off) 3838 { 3839 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3840 unsigned long nr_pages; 3841 int ret; 3842 3843 buf = strstrip(buf); 3844 ret = page_counter_memparse(buf, "-1", &nr_pages); 3845 if (ret) 3846 return ret; 3847 3848 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3849 case RES_LIMIT: 3850 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3851 ret = -EINVAL; 3852 break; 3853 } 3854 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3855 case _MEM: 3856 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3857 break; 3858 case _MEMSWAP: 3859 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3860 break; 3861 case _KMEM: 3862 /* kmem.limit_in_bytes is deprecated. */ 3863 ret = -EOPNOTSUPP; 3864 break; 3865 case _TCP: 3866 ret = memcg_update_tcp_max(memcg, nr_pages); 3867 break; 3868 } 3869 break; 3870 case RES_SOFT_LIMIT: 3871 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3872 ret = -EOPNOTSUPP; 3873 } else { 3874 WRITE_ONCE(memcg->soft_limit, nr_pages); 3875 ret = 0; 3876 } 3877 break; 3878 } 3879 return ret ?: nbytes; 3880 } 3881 3882 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3883 size_t nbytes, loff_t off) 3884 { 3885 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3886 struct page_counter *counter; 3887 3888 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3889 case _MEM: 3890 counter = &memcg->memory; 3891 break; 3892 case _MEMSWAP: 3893 counter = &memcg->memsw; 3894 break; 3895 case _KMEM: 3896 counter = &memcg->kmem; 3897 break; 3898 case _TCP: 3899 counter = &memcg->tcpmem; 3900 break; 3901 default: 3902 BUG(); 3903 } 3904 3905 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3906 case RES_MAX_USAGE: 3907 page_counter_reset_watermark(counter); 3908 break; 3909 case RES_FAILCNT: 3910 counter->failcnt = 0; 3911 break; 3912 default: 3913 BUG(); 3914 } 3915 3916 return nbytes; 3917 } 3918 3919 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3920 struct cftype *cft) 3921 { 3922 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3923 } 3924 3925 #ifdef CONFIG_MMU 3926 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3927 struct cftype *cft, u64 val) 3928 { 3929 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3930 3931 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 3932 "Please report your usecase to linux-mm@kvack.org if you " 3933 "depend on this functionality.\n"); 3934 3935 if (val & ~MOVE_MASK) 3936 return -EINVAL; 3937 3938 /* 3939 * No kind of locking is needed in here, because ->can_attach() will 3940 * check this value once in the beginning of the process, and then carry 3941 * on with stale data. This means that changes to this value will only 3942 * affect task migrations starting after the change. 3943 */ 3944 memcg->move_charge_at_immigrate = val; 3945 return 0; 3946 } 3947 #else 3948 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3949 struct cftype *cft, u64 val) 3950 { 3951 return -ENOSYS; 3952 } 3953 #endif 3954 3955 #ifdef CONFIG_NUMA 3956 3957 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3958 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3959 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3960 3961 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3962 int nid, unsigned int lru_mask, bool tree) 3963 { 3964 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3965 unsigned long nr = 0; 3966 enum lru_list lru; 3967 3968 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3969 3970 for_each_lru(lru) { 3971 if (!(BIT(lru) & lru_mask)) 3972 continue; 3973 if (tree) 3974 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3975 else 3976 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3977 } 3978 return nr; 3979 } 3980 3981 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3982 unsigned int lru_mask, 3983 bool tree) 3984 { 3985 unsigned long nr = 0; 3986 enum lru_list lru; 3987 3988 for_each_lru(lru) { 3989 if (!(BIT(lru) & lru_mask)) 3990 continue; 3991 if (tree) 3992 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3993 else 3994 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3995 } 3996 return nr; 3997 } 3998 3999 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4000 { 4001 struct numa_stat { 4002 const char *name; 4003 unsigned int lru_mask; 4004 }; 4005 4006 static const struct numa_stat stats[] = { 4007 { "total", LRU_ALL }, 4008 { "file", LRU_ALL_FILE }, 4009 { "anon", LRU_ALL_ANON }, 4010 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4011 }; 4012 const struct numa_stat *stat; 4013 int nid; 4014 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4015 4016 mem_cgroup_flush_stats(); 4017 4018 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4019 seq_printf(m, "%s=%lu", stat->name, 4020 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4021 false)); 4022 for_each_node_state(nid, N_MEMORY) 4023 seq_printf(m, " N%d=%lu", nid, 4024 mem_cgroup_node_nr_lru_pages(memcg, nid, 4025 stat->lru_mask, false)); 4026 seq_putc(m, '\n'); 4027 } 4028 4029 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4030 4031 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4032 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4033 true)); 4034 for_each_node_state(nid, N_MEMORY) 4035 seq_printf(m, " N%d=%lu", nid, 4036 mem_cgroup_node_nr_lru_pages(memcg, nid, 4037 stat->lru_mask, true)); 4038 seq_putc(m, '\n'); 4039 } 4040 4041 return 0; 4042 } 4043 #endif /* CONFIG_NUMA */ 4044 4045 static const unsigned int memcg1_stats[] = { 4046 NR_FILE_PAGES, 4047 NR_ANON_MAPPED, 4048 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4049 NR_ANON_THPS, 4050 #endif 4051 NR_SHMEM, 4052 NR_FILE_MAPPED, 4053 NR_FILE_DIRTY, 4054 NR_WRITEBACK, 4055 WORKINGSET_REFAULT_ANON, 4056 WORKINGSET_REFAULT_FILE, 4057 MEMCG_SWAP, 4058 }; 4059 4060 static const char *const memcg1_stat_names[] = { 4061 "cache", 4062 "rss", 4063 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4064 "rss_huge", 4065 #endif 4066 "shmem", 4067 "mapped_file", 4068 "dirty", 4069 "writeback", 4070 "workingset_refault_anon", 4071 "workingset_refault_file", 4072 "swap", 4073 }; 4074 4075 /* Universal VM events cgroup1 shows, original sort order */ 4076 static const unsigned int memcg1_events[] = { 4077 PGPGIN, 4078 PGPGOUT, 4079 PGFAULT, 4080 PGMAJFAULT, 4081 }; 4082 4083 static int memcg_stat_show(struct seq_file *m, void *v) 4084 { 4085 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4086 unsigned long memory, memsw; 4087 struct mem_cgroup *mi; 4088 unsigned int i; 4089 4090 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4091 4092 mem_cgroup_flush_stats(); 4093 4094 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4095 unsigned long nr; 4096 4097 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4098 continue; 4099 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4100 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 4101 nr * memcg_page_state_unit(memcg1_stats[i])); 4102 } 4103 4104 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4105 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4106 memcg_events_local(memcg, memcg1_events[i])); 4107 4108 for (i = 0; i < NR_LRU_LISTS; i++) 4109 seq_printf(m, "%s %lu\n", lru_list_name(i), 4110 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4111 PAGE_SIZE); 4112 4113 /* Hierarchical information */ 4114 memory = memsw = PAGE_COUNTER_MAX; 4115 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4116 memory = min(memory, READ_ONCE(mi->memory.max)); 4117 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4118 } 4119 seq_printf(m, "hierarchical_memory_limit %llu\n", 4120 (u64)memory * PAGE_SIZE); 4121 if (do_memsw_account()) 4122 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4123 (u64)memsw * PAGE_SIZE); 4124 4125 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4126 unsigned long nr; 4127 4128 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4129 continue; 4130 nr = memcg_page_state(memcg, memcg1_stats[i]); 4131 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4132 (u64)nr * memcg_page_state_unit(memcg1_stats[i])); 4133 } 4134 4135 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4136 seq_printf(m, "total_%s %llu\n", 4137 vm_event_name(memcg1_events[i]), 4138 (u64)memcg_events(memcg, memcg1_events[i])); 4139 4140 for (i = 0; i < NR_LRU_LISTS; i++) 4141 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4142 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4143 PAGE_SIZE); 4144 4145 #ifdef CONFIG_DEBUG_VM 4146 { 4147 pg_data_t *pgdat; 4148 struct mem_cgroup_per_node *mz; 4149 unsigned long anon_cost = 0; 4150 unsigned long file_cost = 0; 4151 4152 for_each_online_pgdat(pgdat) { 4153 mz = memcg->nodeinfo[pgdat->node_id]; 4154 4155 anon_cost += mz->lruvec.anon_cost; 4156 file_cost += mz->lruvec.file_cost; 4157 } 4158 seq_printf(m, "anon_cost %lu\n", anon_cost); 4159 seq_printf(m, "file_cost %lu\n", file_cost); 4160 } 4161 #endif 4162 4163 return 0; 4164 } 4165 4166 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4167 struct cftype *cft) 4168 { 4169 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4170 4171 return mem_cgroup_swappiness(memcg); 4172 } 4173 4174 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4175 struct cftype *cft, u64 val) 4176 { 4177 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4178 4179 if (val > 200) 4180 return -EINVAL; 4181 4182 if (!mem_cgroup_is_root(memcg)) 4183 WRITE_ONCE(memcg->swappiness, val); 4184 else 4185 WRITE_ONCE(vm_swappiness, val); 4186 4187 return 0; 4188 } 4189 4190 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4191 { 4192 struct mem_cgroup_threshold_ary *t; 4193 unsigned long usage; 4194 int i; 4195 4196 rcu_read_lock(); 4197 if (!swap) 4198 t = rcu_dereference(memcg->thresholds.primary); 4199 else 4200 t = rcu_dereference(memcg->memsw_thresholds.primary); 4201 4202 if (!t) 4203 goto unlock; 4204 4205 usage = mem_cgroup_usage(memcg, swap); 4206 4207 /* 4208 * current_threshold points to threshold just below or equal to usage. 4209 * If it's not true, a threshold was crossed after last 4210 * call of __mem_cgroup_threshold(). 4211 */ 4212 i = t->current_threshold; 4213 4214 /* 4215 * Iterate backward over array of thresholds starting from 4216 * current_threshold and check if a threshold is crossed. 4217 * If none of thresholds below usage is crossed, we read 4218 * only one element of the array here. 4219 */ 4220 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4221 eventfd_signal(t->entries[i].eventfd, 1); 4222 4223 /* i = current_threshold + 1 */ 4224 i++; 4225 4226 /* 4227 * Iterate forward over array of thresholds starting from 4228 * current_threshold+1 and check if a threshold is crossed. 4229 * If none of thresholds above usage is crossed, we read 4230 * only one element of the array here. 4231 */ 4232 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4233 eventfd_signal(t->entries[i].eventfd, 1); 4234 4235 /* Update current_threshold */ 4236 t->current_threshold = i - 1; 4237 unlock: 4238 rcu_read_unlock(); 4239 } 4240 4241 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4242 { 4243 while (memcg) { 4244 __mem_cgroup_threshold(memcg, false); 4245 if (do_memsw_account()) 4246 __mem_cgroup_threshold(memcg, true); 4247 4248 memcg = parent_mem_cgroup(memcg); 4249 } 4250 } 4251 4252 static int compare_thresholds(const void *a, const void *b) 4253 { 4254 const struct mem_cgroup_threshold *_a = a; 4255 const struct mem_cgroup_threshold *_b = b; 4256 4257 if (_a->threshold > _b->threshold) 4258 return 1; 4259 4260 if (_a->threshold < _b->threshold) 4261 return -1; 4262 4263 return 0; 4264 } 4265 4266 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4267 { 4268 struct mem_cgroup_eventfd_list *ev; 4269 4270 spin_lock(&memcg_oom_lock); 4271 4272 list_for_each_entry(ev, &memcg->oom_notify, list) 4273 eventfd_signal(ev->eventfd, 1); 4274 4275 spin_unlock(&memcg_oom_lock); 4276 return 0; 4277 } 4278 4279 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4280 { 4281 struct mem_cgroup *iter; 4282 4283 for_each_mem_cgroup_tree(iter, memcg) 4284 mem_cgroup_oom_notify_cb(iter); 4285 } 4286 4287 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4288 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4289 { 4290 struct mem_cgroup_thresholds *thresholds; 4291 struct mem_cgroup_threshold_ary *new; 4292 unsigned long threshold; 4293 unsigned long usage; 4294 int i, size, ret; 4295 4296 ret = page_counter_memparse(args, "-1", &threshold); 4297 if (ret) 4298 return ret; 4299 4300 mutex_lock(&memcg->thresholds_lock); 4301 4302 if (type == _MEM) { 4303 thresholds = &memcg->thresholds; 4304 usage = mem_cgroup_usage(memcg, false); 4305 } else if (type == _MEMSWAP) { 4306 thresholds = &memcg->memsw_thresholds; 4307 usage = mem_cgroup_usage(memcg, true); 4308 } else 4309 BUG(); 4310 4311 /* Check if a threshold crossed before adding a new one */ 4312 if (thresholds->primary) 4313 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4314 4315 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4316 4317 /* Allocate memory for new array of thresholds */ 4318 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4319 if (!new) { 4320 ret = -ENOMEM; 4321 goto unlock; 4322 } 4323 new->size = size; 4324 4325 /* Copy thresholds (if any) to new array */ 4326 if (thresholds->primary) 4327 memcpy(new->entries, thresholds->primary->entries, 4328 flex_array_size(new, entries, size - 1)); 4329 4330 /* Add new threshold */ 4331 new->entries[size - 1].eventfd = eventfd; 4332 new->entries[size - 1].threshold = threshold; 4333 4334 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4335 sort(new->entries, size, sizeof(*new->entries), 4336 compare_thresholds, NULL); 4337 4338 /* Find current threshold */ 4339 new->current_threshold = -1; 4340 for (i = 0; i < size; i++) { 4341 if (new->entries[i].threshold <= usage) { 4342 /* 4343 * new->current_threshold will not be used until 4344 * rcu_assign_pointer(), so it's safe to increment 4345 * it here. 4346 */ 4347 ++new->current_threshold; 4348 } else 4349 break; 4350 } 4351 4352 /* Free old spare buffer and save old primary buffer as spare */ 4353 kfree(thresholds->spare); 4354 thresholds->spare = thresholds->primary; 4355 4356 rcu_assign_pointer(thresholds->primary, new); 4357 4358 /* To be sure that nobody uses thresholds */ 4359 synchronize_rcu(); 4360 4361 unlock: 4362 mutex_unlock(&memcg->thresholds_lock); 4363 4364 return ret; 4365 } 4366 4367 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4368 struct eventfd_ctx *eventfd, const char *args) 4369 { 4370 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4371 } 4372 4373 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4374 struct eventfd_ctx *eventfd, const char *args) 4375 { 4376 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4377 } 4378 4379 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4380 struct eventfd_ctx *eventfd, enum res_type type) 4381 { 4382 struct mem_cgroup_thresholds *thresholds; 4383 struct mem_cgroup_threshold_ary *new; 4384 unsigned long usage; 4385 int i, j, size, entries; 4386 4387 mutex_lock(&memcg->thresholds_lock); 4388 4389 if (type == _MEM) { 4390 thresholds = &memcg->thresholds; 4391 usage = mem_cgroup_usage(memcg, false); 4392 } else if (type == _MEMSWAP) { 4393 thresholds = &memcg->memsw_thresholds; 4394 usage = mem_cgroup_usage(memcg, true); 4395 } else 4396 BUG(); 4397 4398 if (!thresholds->primary) 4399 goto unlock; 4400 4401 /* Check if a threshold crossed before removing */ 4402 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4403 4404 /* Calculate new number of threshold */ 4405 size = entries = 0; 4406 for (i = 0; i < thresholds->primary->size; i++) { 4407 if (thresholds->primary->entries[i].eventfd != eventfd) 4408 size++; 4409 else 4410 entries++; 4411 } 4412 4413 new = thresholds->spare; 4414 4415 /* If no items related to eventfd have been cleared, nothing to do */ 4416 if (!entries) 4417 goto unlock; 4418 4419 /* Set thresholds array to NULL if we don't have thresholds */ 4420 if (!size) { 4421 kfree(new); 4422 new = NULL; 4423 goto swap_buffers; 4424 } 4425 4426 new->size = size; 4427 4428 /* Copy thresholds and find current threshold */ 4429 new->current_threshold = -1; 4430 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4431 if (thresholds->primary->entries[i].eventfd == eventfd) 4432 continue; 4433 4434 new->entries[j] = thresholds->primary->entries[i]; 4435 if (new->entries[j].threshold <= usage) { 4436 /* 4437 * new->current_threshold will not be used 4438 * until rcu_assign_pointer(), so it's safe to increment 4439 * it here. 4440 */ 4441 ++new->current_threshold; 4442 } 4443 j++; 4444 } 4445 4446 swap_buffers: 4447 /* Swap primary and spare array */ 4448 thresholds->spare = thresholds->primary; 4449 4450 rcu_assign_pointer(thresholds->primary, new); 4451 4452 /* To be sure that nobody uses thresholds */ 4453 synchronize_rcu(); 4454 4455 /* If all events are unregistered, free the spare array */ 4456 if (!new) { 4457 kfree(thresholds->spare); 4458 thresholds->spare = NULL; 4459 } 4460 unlock: 4461 mutex_unlock(&memcg->thresholds_lock); 4462 } 4463 4464 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4465 struct eventfd_ctx *eventfd) 4466 { 4467 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4468 } 4469 4470 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4471 struct eventfd_ctx *eventfd) 4472 { 4473 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4474 } 4475 4476 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4477 struct eventfd_ctx *eventfd, const char *args) 4478 { 4479 struct mem_cgroup_eventfd_list *event; 4480 4481 event = kmalloc(sizeof(*event), GFP_KERNEL); 4482 if (!event) 4483 return -ENOMEM; 4484 4485 spin_lock(&memcg_oom_lock); 4486 4487 event->eventfd = eventfd; 4488 list_add(&event->list, &memcg->oom_notify); 4489 4490 /* already in OOM ? */ 4491 if (memcg->under_oom) 4492 eventfd_signal(eventfd, 1); 4493 spin_unlock(&memcg_oom_lock); 4494 4495 return 0; 4496 } 4497 4498 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4499 struct eventfd_ctx *eventfd) 4500 { 4501 struct mem_cgroup_eventfd_list *ev, *tmp; 4502 4503 spin_lock(&memcg_oom_lock); 4504 4505 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4506 if (ev->eventfd == eventfd) { 4507 list_del(&ev->list); 4508 kfree(ev); 4509 } 4510 } 4511 4512 spin_unlock(&memcg_oom_lock); 4513 } 4514 4515 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4516 { 4517 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4518 4519 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 4520 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4521 seq_printf(sf, "oom_kill %lu\n", 4522 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4523 return 0; 4524 } 4525 4526 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4527 struct cftype *cft, u64 val) 4528 { 4529 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4530 4531 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4532 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4533 return -EINVAL; 4534 4535 WRITE_ONCE(memcg->oom_kill_disable, val); 4536 if (!val) 4537 memcg_oom_recover(memcg); 4538 4539 return 0; 4540 } 4541 4542 #ifdef CONFIG_CGROUP_WRITEBACK 4543 4544 #include <trace/events/writeback.h> 4545 4546 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4547 { 4548 return wb_domain_init(&memcg->cgwb_domain, gfp); 4549 } 4550 4551 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4552 { 4553 wb_domain_exit(&memcg->cgwb_domain); 4554 } 4555 4556 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4557 { 4558 wb_domain_size_changed(&memcg->cgwb_domain); 4559 } 4560 4561 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4562 { 4563 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4564 4565 if (!memcg->css.parent) 4566 return NULL; 4567 4568 return &memcg->cgwb_domain; 4569 } 4570 4571 /** 4572 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4573 * @wb: bdi_writeback in question 4574 * @pfilepages: out parameter for number of file pages 4575 * @pheadroom: out parameter for number of allocatable pages according to memcg 4576 * @pdirty: out parameter for number of dirty pages 4577 * @pwriteback: out parameter for number of pages under writeback 4578 * 4579 * Determine the numbers of file, headroom, dirty, and writeback pages in 4580 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4581 * is a bit more involved. 4582 * 4583 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4584 * headroom is calculated as the lowest headroom of itself and the 4585 * ancestors. Note that this doesn't consider the actual amount of 4586 * available memory in the system. The caller should further cap 4587 * *@pheadroom accordingly. 4588 */ 4589 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4590 unsigned long *pheadroom, unsigned long *pdirty, 4591 unsigned long *pwriteback) 4592 { 4593 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4594 struct mem_cgroup *parent; 4595 4596 mem_cgroup_flush_stats(); 4597 4598 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4599 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4600 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4601 memcg_page_state(memcg, NR_ACTIVE_FILE); 4602 4603 *pheadroom = PAGE_COUNTER_MAX; 4604 while ((parent = parent_mem_cgroup(memcg))) { 4605 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4606 READ_ONCE(memcg->memory.high)); 4607 unsigned long used = page_counter_read(&memcg->memory); 4608 4609 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4610 memcg = parent; 4611 } 4612 } 4613 4614 /* 4615 * Foreign dirty flushing 4616 * 4617 * There's an inherent mismatch between memcg and writeback. The former 4618 * tracks ownership per-page while the latter per-inode. This was a 4619 * deliberate design decision because honoring per-page ownership in the 4620 * writeback path is complicated, may lead to higher CPU and IO overheads 4621 * and deemed unnecessary given that write-sharing an inode across 4622 * different cgroups isn't a common use-case. 4623 * 4624 * Combined with inode majority-writer ownership switching, this works well 4625 * enough in most cases but there are some pathological cases. For 4626 * example, let's say there are two cgroups A and B which keep writing to 4627 * different but confined parts of the same inode. B owns the inode and 4628 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4629 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4630 * triggering background writeback. A will be slowed down without a way to 4631 * make writeback of the dirty pages happen. 4632 * 4633 * Conditions like the above can lead to a cgroup getting repeatedly and 4634 * severely throttled after making some progress after each 4635 * dirty_expire_interval while the underlying IO device is almost 4636 * completely idle. 4637 * 4638 * Solving this problem completely requires matching the ownership tracking 4639 * granularities between memcg and writeback in either direction. However, 4640 * the more egregious behaviors can be avoided by simply remembering the 4641 * most recent foreign dirtying events and initiating remote flushes on 4642 * them when local writeback isn't enough to keep the memory clean enough. 4643 * 4644 * The following two functions implement such mechanism. When a foreign 4645 * page - a page whose memcg and writeback ownerships don't match - is 4646 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4647 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4648 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4649 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4650 * foreign bdi_writebacks which haven't expired. Both the numbers of 4651 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4652 * limited to MEMCG_CGWB_FRN_CNT. 4653 * 4654 * The mechanism only remembers IDs and doesn't hold any object references. 4655 * As being wrong occasionally doesn't matter, updates and accesses to the 4656 * records are lockless and racy. 4657 */ 4658 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4659 struct bdi_writeback *wb) 4660 { 4661 struct mem_cgroup *memcg = folio_memcg(folio); 4662 struct memcg_cgwb_frn *frn; 4663 u64 now = get_jiffies_64(); 4664 u64 oldest_at = now; 4665 int oldest = -1; 4666 int i; 4667 4668 trace_track_foreign_dirty(folio, wb); 4669 4670 /* 4671 * Pick the slot to use. If there is already a slot for @wb, keep 4672 * using it. If not replace the oldest one which isn't being 4673 * written out. 4674 */ 4675 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4676 frn = &memcg->cgwb_frn[i]; 4677 if (frn->bdi_id == wb->bdi->id && 4678 frn->memcg_id == wb->memcg_css->id) 4679 break; 4680 if (time_before64(frn->at, oldest_at) && 4681 atomic_read(&frn->done.cnt) == 1) { 4682 oldest = i; 4683 oldest_at = frn->at; 4684 } 4685 } 4686 4687 if (i < MEMCG_CGWB_FRN_CNT) { 4688 /* 4689 * Re-using an existing one. Update timestamp lazily to 4690 * avoid making the cacheline hot. We want them to be 4691 * reasonably up-to-date and significantly shorter than 4692 * dirty_expire_interval as that's what expires the record. 4693 * Use the shorter of 1s and dirty_expire_interval / 8. 4694 */ 4695 unsigned long update_intv = 4696 min_t(unsigned long, HZ, 4697 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4698 4699 if (time_before64(frn->at, now - update_intv)) 4700 frn->at = now; 4701 } else if (oldest >= 0) { 4702 /* replace the oldest free one */ 4703 frn = &memcg->cgwb_frn[oldest]; 4704 frn->bdi_id = wb->bdi->id; 4705 frn->memcg_id = wb->memcg_css->id; 4706 frn->at = now; 4707 } 4708 } 4709 4710 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4711 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4712 { 4713 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4714 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4715 u64 now = jiffies_64; 4716 int i; 4717 4718 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4719 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4720 4721 /* 4722 * If the record is older than dirty_expire_interval, 4723 * writeback on it has already started. No need to kick it 4724 * off again. Also, don't start a new one if there's 4725 * already one in flight. 4726 */ 4727 if (time_after64(frn->at, now - intv) && 4728 atomic_read(&frn->done.cnt) == 1) { 4729 frn->at = 0; 4730 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4731 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4732 WB_REASON_FOREIGN_FLUSH, 4733 &frn->done); 4734 } 4735 } 4736 } 4737 4738 #else /* CONFIG_CGROUP_WRITEBACK */ 4739 4740 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4741 { 4742 return 0; 4743 } 4744 4745 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4746 { 4747 } 4748 4749 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4750 { 4751 } 4752 4753 #endif /* CONFIG_CGROUP_WRITEBACK */ 4754 4755 /* 4756 * DO NOT USE IN NEW FILES. 4757 * 4758 * "cgroup.event_control" implementation. 4759 * 4760 * This is way over-engineered. It tries to support fully configurable 4761 * events for each user. Such level of flexibility is completely 4762 * unnecessary especially in the light of the planned unified hierarchy. 4763 * 4764 * Please deprecate this and replace with something simpler if at all 4765 * possible. 4766 */ 4767 4768 /* 4769 * Unregister event and free resources. 4770 * 4771 * Gets called from workqueue. 4772 */ 4773 static void memcg_event_remove(struct work_struct *work) 4774 { 4775 struct mem_cgroup_event *event = 4776 container_of(work, struct mem_cgroup_event, remove); 4777 struct mem_cgroup *memcg = event->memcg; 4778 4779 remove_wait_queue(event->wqh, &event->wait); 4780 4781 event->unregister_event(memcg, event->eventfd); 4782 4783 /* Notify userspace the event is going away. */ 4784 eventfd_signal(event->eventfd, 1); 4785 4786 eventfd_ctx_put(event->eventfd); 4787 kfree(event); 4788 css_put(&memcg->css); 4789 } 4790 4791 /* 4792 * Gets called on EPOLLHUP on eventfd when user closes it. 4793 * 4794 * Called with wqh->lock held and interrupts disabled. 4795 */ 4796 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4797 int sync, void *key) 4798 { 4799 struct mem_cgroup_event *event = 4800 container_of(wait, struct mem_cgroup_event, wait); 4801 struct mem_cgroup *memcg = event->memcg; 4802 __poll_t flags = key_to_poll(key); 4803 4804 if (flags & EPOLLHUP) { 4805 /* 4806 * If the event has been detached at cgroup removal, we 4807 * can simply return knowing the other side will cleanup 4808 * for us. 4809 * 4810 * We can't race against event freeing since the other 4811 * side will require wqh->lock via remove_wait_queue(), 4812 * which we hold. 4813 */ 4814 spin_lock(&memcg->event_list_lock); 4815 if (!list_empty(&event->list)) { 4816 list_del_init(&event->list); 4817 /* 4818 * We are in atomic context, but cgroup_event_remove() 4819 * may sleep, so we have to call it in workqueue. 4820 */ 4821 schedule_work(&event->remove); 4822 } 4823 spin_unlock(&memcg->event_list_lock); 4824 } 4825 4826 return 0; 4827 } 4828 4829 static void memcg_event_ptable_queue_proc(struct file *file, 4830 wait_queue_head_t *wqh, poll_table *pt) 4831 { 4832 struct mem_cgroup_event *event = 4833 container_of(pt, struct mem_cgroup_event, pt); 4834 4835 event->wqh = wqh; 4836 add_wait_queue(wqh, &event->wait); 4837 } 4838 4839 /* 4840 * DO NOT USE IN NEW FILES. 4841 * 4842 * Parse input and register new cgroup event handler. 4843 * 4844 * Input must be in format '<event_fd> <control_fd> <args>'. 4845 * Interpretation of args is defined by control file implementation. 4846 */ 4847 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4848 char *buf, size_t nbytes, loff_t off) 4849 { 4850 struct cgroup_subsys_state *css = of_css(of); 4851 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4852 struct mem_cgroup_event *event; 4853 struct cgroup_subsys_state *cfile_css; 4854 unsigned int efd, cfd; 4855 struct fd efile; 4856 struct fd cfile; 4857 struct dentry *cdentry; 4858 const char *name; 4859 char *endp; 4860 int ret; 4861 4862 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4863 return -EOPNOTSUPP; 4864 4865 buf = strstrip(buf); 4866 4867 efd = simple_strtoul(buf, &endp, 10); 4868 if (*endp != ' ') 4869 return -EINVAL; 4870 buf = endp + 1; 4871 4872 cfd = simple_strtoul(buf, &endp, 10); 4873 if ((*endp != ' ') && (*endp != '\0')) 4874 return -EINVAL; 4875 buf = endp + 1; 4876 4877 event = kzalloc(sizeof(*event), GFP_KERNEL); 4878 if (!event) 4879 return -ENOMEM; 4880 4881 event->memcg = memcg; 4882 INIT_LIST_HEAD(&event->list); 4883 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4884 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4885 INIT_WORK(&event->remove, memcg_event_remove); 4886 4887 efile = fdget(efd); 4888 if (!efile.file) { 4889 ret = -EBADF; 4890 goto out_kfree; 4891 } 4892 4893 event->eventfd = eventfd_ctx_fileget(efile.file); 4894 if (IS_ERR(event->eventfd)) { 4895 ret = PTR_ERR(event->eventfd); 4896 goto out_put_efile; 4897 } 4898 4899 cfile = fdget(cfd); 4900 if (!cfile.file) { 4901 ret = -EBADF; 4902 goto out_put_eventfd; 4903 } 4904 4905 /* the process need read permission on control file */ 4906 /* AV: shouldn't we check that it's been opened for read instead? */ 4907 ret = file_permission(cfile.file, MAY_READ); 4908 if (ret < 0) 4909 goto out_put_cfile; 4910 4911 /* 4912 * The control file must be a regular cgroup1 file. As a regular cgroup 4913 * file can't be renamed, it's safe to access its name afterwards. 4914 */ 4915 cdentry = cfile.file->f_path.dentry; 4916 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 4917 ret = -EINVAL; 4918 goto out_put_cfile; 4919 } 4920 4921 /* 4922 * Determine the event callbacks and set them in @event. This used 4923 * to be done via struct cftype but cgroup core no longer knows 4924 * about these events. The following is crude but the whole thing 4925 * is for compatibility anyway. 4926 * 4927 * DO NOT ADD NEW FILES. 4928 */ 4929 name = cdentry->d_name.name; 4930 4931 if (!strcmp(name, "memory.usage_in_bytes")) { 4932 event->register_event = mem_cgroup_usage_register_event; 4933 event->unregister_event = mem_cgroup_usage_unregister_event; 4934 } else if (!strcmp(name, "memory.oom_control")) { 4935 event->register_event = mem_cgroup_oom_register_event; 4936 event->unregister_event = mem_cgroup_oom_unregister_event; 4937 } else if (!strcmp(name, "memory.pressure_level")) { 4938 event->register_event = vmpressure_register_event; 4939 event->unregister_event = vmpressure_unregister_event; 4940 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4941 event->register_event = memsw_cgroup_usage_register_event; 4942 event->unregister_event = memsw_cgroup_usage_unregister_event; 4943 } else { 4944 ret = -EINVAL; 4945 goto out_put_cfile; 4946 } 4947 4948 /* 4949 * Verify @cfile should belong to @css. Also, remaining events are 4950 * automatically removed on cgroup destruction but the removal is 4951 * asynchronous, so take an extra ref on @css. 4952 */ 4953 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 4954 &memory_cgrp_subsys); 4955 ret = -EINVAL; 4956 if (IS_ERR(cfile_css)) 4957 goto out_put_cfile; 4958 if (cfile_css != css) { 4959 css_put(cfile_css); 4960 goto out_put_cfile; 4961 } 4962 4963 ret = event->register_event(memcg, event->eventfd, buf); 4964 if (ret) 4965 goto out_put_css; 4966 4967 vfs_poll(efile.file, &event->pt); 4968 4969 spin_lock_irq(&memcg->event_list_lock); 4970 list_add(&event->list, &memcg->event_list); 4971 spin_unlock_irq(&memcg->event_list_lock); 4972 4973 fdput(cfile); 4974 fdput(efile); 4975 4976 return nbytes; 4977 4978 out_put_css: 4979 css_put(css); 4980 out_put_cfile: 4981 fdput(cfile); 4982 out_put_eventfd: 4983 eventfd_ctx_put(event->eventfd); 4984 out_put_efile: 4985 fdput(efile); 4986 out_kfree: 4987 kfree(event); 4988 4989 return ret; 4990 } 4991 4992 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4993 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4994 { 4995 /* 4996 * Deprecated. 4997 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 4998 */ 4999 return 0; 5000 } 5001 #endif 5002 5003 static struct cftype mem_cgroup_legacy_files[] = { 5004 { 5005 .name = "usage_in_bytes", 5006 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5007 .read_u64 = mem_cgroup_read_u64, 5008 }, 5009 { 5010 .name = "max_usage_in_bytes", 5011 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5012 .write = mem_cgroup_reset, 5013 .read_u64 = mem_cgroup_read_u64, 5014 }, 5015 { 5016 .name = "limit_in_bytes", 5017 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5018 .write = mem_cgroup_write, 5019 .read_u64 = mem_cgroup_read_u64, 5020 }, 5021 { 5022 .name = "soft_limit_in_bytes", 5023 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5024 .write = mem_cgroup_write, 5025 .read_u64 = mem_cgroup_read_u64, 5026 }, 5027 { 5028 .name = "failcnt", 5029 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5030 .write = mem_cgroup_reset, 5031 .read_u64 = mem_cgroup_read_u64, 5032 }, 5033 { 5034 .name = "stat", 5035 .seq_show = memcg_stat_show, 5036 }, 5037 { 5038 .name = "force_empty", 5039 .write = mem_cgroup_force_empty_write, 5040 }, 5041 { 5042 .name = "use_hierarchy", 5043 .write_u64 = mem_cgroup_hierarchy_write, 5044 .read_u64 = mem_cgroup_hierarchy_read, 5045 }, 5046 { 5047 .name = "cgroup.event_control", /* XXX: for compat */ 5048 .write = memcg_write_event_control, 5049 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5050 }, 5051 { 5052 .name = "swappiness", 5053 .read_u64 = mem_cgroup_swappiness_read, 5054 .write_u64 = mem_cgroup_swappiness_write, 5055 }, 5056 { 5057 .name = "move_charge_at_immigrate", 5058 .read_u64 = mem_cgroup_move_charge_read, 5059 .write_u64 = mem_cgroup_move_charge_write, 5060 }, 5061 { 5062 .name = "oom_control", 5063 .seq_show = mem_cgroup_oom_control_read, 5064 .write_u64 = mem_cgroup_oom_control_write, 5065 }, 5066 { 5067 .name = "pressure_level", 5068 }, 5069 #ifdef CONFIG_NUMA 5070 { 5071 .name = "numa_stat", 5072 .seq_show = memcg_numa_stat_show, 5073 }, 5074 #endif 5075 { 5076 .name = "kmem.limit_in_bytes", 5077 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5078 .write = mem_cgroup_write, 5079 .read_u64 = mem_cgroup_read_u64, 5080 }, 5081 { 5082 .name = "kmem.usage_in_bytes", 5083 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5084 .read_u64 = mem_cgroup_read_u64, 5085 }, 5086 { 5087 .name = "kmem.failcnt", 5088 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5089 .write = mem_cgroup_reset, 5090 .read_u64 = mem_cgroup_read_u64, 5091 }, 5092 { 5093 .name = "kmem.max_usage_in_bytes", 5094 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5095 .write = mem_cgroup_reset, 5096 .read_u64 = mem_cgroup_read_u64, 5097 }, 5098 #if defined(CONFIG_MEMCG_KMEM) && \ 5099 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5100 { 5101 .name = "kmem.slabinfo", 5102 .seq_show = mem_cgroup_slab_show, 5103 }, 5104 #endif 5105 { 5106 .name = "kmem.tcp.limit_in_bytes", 5107 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5108 .write = mem_cgroup_write, 5109 .read_u64 = mem_cgroup_read_u64, 5110 }, 5111 { 5112 .name = "kmem.tcp.usage_in_bytes", 5113 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5114 .read_u64 = mem_cgroup_read_u64, 5115 }, 5116 { 5117 .name = "kmem.tcp.failcnt", 5118 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5119 .write = mem_cgroup_reset, 5120 .read_u64 = mem_cgroup_read_u64, 5121 }, 5122 { 5123 .name = "kmem.tcp.max_usage_in_bytes", 5124 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5125 .write = mem_cgroup_reset, 5126 .read_u64 = mem_cgroup_read_u64, 5127 }, 5128 { }, /* terminate */ 5129 }; 5130 5131 /* 5132 * Private memory cgroup IDR 5133 * 5134 * Swap-out records and page cache shadow entries need to store memcg 5135 * references in constrained space, so we maintain an ID space that is 5136 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5137 * memory-controlled cgroups to 64k. 5138 * 5139 * However, there usually are many references to the offline CSS after 5140 * the cgroup has been destroyed, such as page cache or reclaimable 5141 * slab objects, that don't need to hang on to the ID. We want to keep 5142 * those dead CSS from occupying IDs, or we might quickly exhaust the 5143 * relatively small ID space and prevent the creation of new cgroups 5144 * even when there are much fewer than 64k cgroups - possibly none. 5145 * 5146 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5147 * be freed and recycled when it's no longer needed, which is usually 5148 * when the CSS is offlined. 5149 * 5150 * The only exception to that are records of swapped out tmpfs/shmem 5151 * pages that need to be attributed to live ancestors on swapin. But 5152 * those references are manageable from userspace. 5153 */ 5154 5155 static DEFINE_IDR(mem_cgroup_idr); 5156 5157 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5158 { 5159 if (memcg->id.id > 0) { 5160 idr_remove(&mem_cgroup_idr, memcg->id.id); 5161 memcg->id.id = 0; 5162 } 5163 } 5164 5165 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5166 unsigned int n) 5167 { 5168 refcount_add(n, &memcg->id.ref); 5169 } 5170 5171 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5172 { 5173 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5174 mem_cgroup_id_remove(memcg); 5175 5176 /* Memcg ID pins CSS */ 5177 css_put(&memcg->css); 5178 } 5179 } 5180 5181 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5182 { 5183 mem_cgroup_id_put_many(memcg, 1); 5184 } 5185 5186 /** 5187 * mem_cgroup_from_id - look up a memcg from a memcg id 5188 * @id: the memcg id to look up 5189 * 5190 * Caller must hold rcu_read_lock(). 5191 */ 5192 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5193 { 5194 WARN_ON_ONCE(!rcu_read_lock_held()); 5195 return idr_find(&mem_cgroup_idr, id); 5196 } 5197 5198 #ifdef CONFIG_SHRINKER_DEBUG 5199 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5200 { 5201 struct cgroup *cgrp; 5202 struct cgroup_subsys_state *css; 5203 struct mem_cgroup *memcg; 5204 5205 cgrp = cgroup_get_from_id(ino); 5206 if (IS_ERR(cgrp)) 5207 return ERR_CAST(cgrp); 5208 5209 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5210 if (css) 5211 memcg = container_of(css, struct mem_cgroup, css); 5212 else 5213 memcg = ERR_PTR(-ENOENT); 5214 5215 cgroup_put(cgrp); 5216 5217 return memcg; 5218 } 5219 #endif 5220 5221 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5222 { 5223 struct mem_cgroup_per_node *pn; 5224 5225 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5226 if (!pn) 5227 return 1; 5228 5229 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5230 GFP_KERNEL_ACCOUNT); 5231 if (!pn->lruvec_stats_percpu) { 5232 kfree(pn); 5233 return 1; 5234 } 5235 5236 lruvec_init(&pn->lruvec); 5237 pn->memcg = memcg; 5238 5239 memcg->nodeinfo[node] = pn; 5240 return 0; 5241 } 5242 5243 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5244 { 5245 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5246 5247 if (!pn) 5248 return; 5249 5250 free_percpu(pn->lruvec_stats_percpu); 5251 kfree(pn); 5252 } 5253 5254 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5255 { 5256 int node; 5257 5258 for_each_node(node) 5259 free_mem_cgroup_per_node_info(memcg, node); 5260 kfree(memcg->vmstats); 5261 free_percpu(memcg->vmstats_percpu); 5262 kfree(memcg); 5263 } 5264 5265 static void mem_cgroup_free(struct mem_cgroup *memcg) 5266 { 5267 lru_gen_exit_memcg(memcg); 5268 memcg_wb_domain_exit(memcg); 5269 __mem_cgroup_free(memcg); 5270 } 5271 5272 static struct mem_cgroup *mem_cgroup_alloc(void) 5273 { 5274 struct mem_cgroup *memcg; 5275 int node; 5276 int __maybe_unused i; 5277 long error = -ENOMEM; 5278 5279 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5280 if (!memcg) 5281 return ERR_PTR(error); 5282 5283 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5284 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5285 if (memcg->id.id < 0) { 5286 error = memcg->id.id; 5287 goto fail; 5288 } 5289 5290 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5291 if (!memcg->vmstats) 5292 goto fail; 5293 5294 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5295 GFP_KERNEL_ACCOUNT); 5296 if (!memcg->vmstats_percpu) 5297 goto fail; 5298 5299 for_each_node(node) 5300 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5301 goto fail; 5302 5303 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5304 goto fail; 5305 5306 INIT_WORK(&memcg->high_work, high_work_func); 5307 INIT_LIST_HEAD(&memcg->oom_notify); 5308 mutex_init(&memcg->thresholds_lock); 5309 spin_lock_init(&memcg->move_lock); 5310 vmpressure_init(&memcg->vmpressure); 5311 INIT_LIST_HEAD(&memcg->event_list); 5312 spin_lock_init(&memcg->event_list_lock); 5313 memcg->socket_pressure = jiffies; 5314 #ifdef CONFIG_MEMCG_KMEM 5315 memcg->kmemcg_id = -1; 5316 INIT_LIST_HEAD(&memcg->objcg_list); 5317 #endif 5318 #ifdef CONFIG_CGROUP_WRITEBACK 5319 INIT_LIST_HEAD(&memcg->cgwb_list); 5320 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5321 memcg->cgwb_frn[i].done = 5322 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5323 #endif 5324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5325 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5326 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5327 memcg->deferred_split_queue.split_queue_len = 0; 5328 #endif 5329 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5330 lru_gen_init_memcg(memcg); 5331 return memcg; 5332 fail: 5333 mem_cgroup_id_remove(memcg); 5334 __mem_cgroup_free(memcg); 5335 return ERR_PTR(error); 5336 } 5337 5338 static struct cgroup_subsys_state * __ref 5339 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5340 { 5341 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5342 struct mem_cgroup *memcg, *old_memcg; 5343 5344 old_memcg = set_active_memcg(parent); 5345 memcg = mem_cgroup_alloc(); 5346 set_active_memcg(old_memcg); 5347 if (IS_ERR(memcg)) 5348 return ERR_CAST(memcg); 5349 5350 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5351 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5352 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5353 memcg->zswap_max = PAGE_COUNTER_MAX; 5354 #endif 5355 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5356 if (parent) { 5357 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 5358 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 5359 5360 page_counter_init(&memcg->memory, &parent->memory); 5361 page_counter_init(&memcg->swap, &parent->swap); 5362 page_counter_init(&memcg->kmem, &parent->kmem); 5363 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5364 } else { 5365 init_memcg_events(); 5366 page_counter_init(&memcg->memory, NULL); 5367 page_counter_init(&memcg->swap, NULL); 5368 page_counter_init(&memcg->kmem, NULL); 5369 page_counter_init(&memcg->tcpmem, NULL); 5370 5371 root_mem_cgroup = memcg; 5372 return &memcg->css; 5373 } 5374 5375 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5376 static_branch_inc(&memcg_sockets_enabled_key); 5377 5378 #if defined(CONFIG_MEMCG_KMEM) 5379 if (!cgroup_memory_nobpf) 5380 static_branch_inc(&memcg_bpf_enabled_key); 5381 #endif 5382 5383 return &memcg->css; 5384 } 5385 5386 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5387 { 5388 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5389 5390 if (memcg_online_kmem(memcg)) 5391 goto remove_id; 5392 5393 /* 5394 * A memcg must be visible for expand_shrinker_info() 5395 * by the time the maps are allocated. So, we allocate maps 5396 * here, when for_each_mem_cgroup() can't skip it. 5397 */ 5398 if (alloc_shrinker_info(memcg)) 5399 goto offline_kmem; 5400 5401 /* Online state pins memcg ID, memcg ID pins CSS */ 5402 refcount_set(&memcg->id.ref, 1); 5403 css_get(css); 5404 5405 if (unlikely(mem_cgroup_is_root(memcg))) 5406 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5407 2UL*HZ); 5408 lru_gen_online_memcg(memcg); 5409 return 0; 5410 offline_kmem: 5411 memcg_offline_kmem(memcg); 5412 remove_id: 5413 mem_cgroup_id_remove(memcg); 5414 return -ENOMEM; 5415 } 5416 5417 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5418 { 5419 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5420 struct mem_cgroup_event *event, *tmp; 5421 5422 /* 5423 * Unregister events and notify userspace. 5424 * Notify userspace about cgroup removing only after rmdir of cgroup 5425 * directory to avoid race between userspace and kernelspace. 5426 */ 5427 spin_lock_irq(&memcg->event_list_lock); 5428 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5429 list_del_init(&event->list); 5430 schedule_work(&event->remove); 5431 } 5432 spin_unlock_irq(&memcg->event_list_lock); 5433 5434 page_counter_set_min(&memcg->memory, 0); 5435 page_counter_set_low(&memcg->memory, 0); 5436 5437 memcg_offline_kmem(memcg); 5438 reparent_shrinker_deferred(memcg); 5439 wb_memcg_offline(memcg); 5440 lru_gen_offline_memcg(memcg); 5441 5442 drain_all_stock(memcg); 5443 5444 mem_cgroup_id_put(memcg); 5445 } 5446 5447 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5448 { 5449 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5450 5451 invalidate_reclaim_iterators(memcg); 5452 lru_gen_release_memcg(memcg); 5453 } 5454 5455 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5456 { 5457 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5458 int __maybe_unused i; 5459 5460 #ifdef CONFIG_CGROUP_WRITEBACK 5461 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5462 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5463 #endif 5464 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5465 static_branch_dec(&memcg_sockets_enabled_key); 5466 5467 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5468 static_branch_dec(&memcg_sockets_enabled_key); 5469 5470 #if defined(CONFIG_MEMCG_KMEM) 5471 if (!cgroup_memory_nobpf) 5472 static_branch_dec(&memcg_bpf_enabled_key); 5473 #endif 5474 5475 vmpressure_cleanup(&memcg->vmpressure); 5476 cancel_work_sync(&memcg->high_work); 5477 mem_cgroup_remove_from_trees(memcg); 5478 free_shrinker_info(memcg); 5479 mem_cgroup_free(memcg); 5480 } 5481 5482 /** 5483 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5484 * @css: the target css 5485 * 5486 * Reset the states of the mem_cgroup associated with @css. This is 5487 * invoked when the userland requests disabling on the default hierarchy 5488 * but the memcg is pinned through dependency. The memcg should stop 5489 * applying policies and should revert to the vanilla state as it may be 5490 * made visible again. 5491 * 5492 * The current implementation only resets the essential configurations. 5493 * This needs to be expanded to cover all the visible parts. 5494 */ 5495 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5496 { 5497 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5498 5499 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5500 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5501 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5502 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5503 page_counter_set_min(&memcg->memory, 0); 5504 page_counter_set_low(&memcg->memory, 0); 5505 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5506 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5507 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5508 memcg_wb_domain_size_changed(memcg); 5509 } 5510 5511 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5512 { 5513 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5514 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5515 struct memcg_vmstats_percpu *statc; 5516 long delta, v; 5517 int i, nid; 5518 5519 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5520 5521 for (i = 0; i < MEMCG_NR_STAT; i++) { 5522 /* 5523 * Collect the aggregated propagation counts of groups 5524 * below us. We're in a per-cpu loop here and this is 5525 * a global counter, so the first cycle will get them. 5526 */ 5527 delta = memcg->vmstats->state_pending[i]; 5528 if (delta) 5529 memcg->vmstats->state_pending[i] = 0; 5530 5531 /* Add CPU changes on this level since the last flush */ 5532 v = READ_ONCE(statc->state[i]); 5533 if (v != statc->state_prev[i]) { 5534 delta += v - statc->state_prev[i]; 5535 statc->state_prev[i] = v; 5536 } 5537 5538 if (!delta) 5539 continue; 5540 5541 /* Aggregate counts on this level and propagate upwards */ 5542 memcg->vmstats->state[i] += delta; 5543 if (parent) 5544 parent->vmstats->state_pending[i] += delta; 5545 } 5546 5547 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5548 delta = memcg->vmstats->events_pending[i]; 5549 if (delta) 5550 memcg->vmstats->events_pending[i] = 0; 5551 5552 v = READ_ONCE(statc->events[i]); 5553 if (v != statc->events_prev[i]) { 5554 delta += v - statc->events_prev[i]; 5555 statc->events_prev[i] = v; 5556 } 5557 5558 if (!delta) 5559 continue; 5560 5561 memcg->vmstats->events[i] += delta; 5562 if (parent) 5563 parent->vmstats->events_pending[i] += delta; 5564 } 5565 5566 for_each_node_state(nid, N_MEMORY) { 5567 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5568 struct mem_cgroup_per_node *ppn = NULL; 5569 struct lruvec_stats_percpu *lstatc; 5570 5571 if (parent) 5572 ppn = parent->nodeinfo[nid]; 5573 5574 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5575 5576 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5577 delta = pn->lruvec_stats.state_pending[i]; 5578 if (delta) 5579 pn->lruvec_stats.state_pending[i] = 0; 5580 5581 v = READ_ONCE(lstatc->state[i]); 5582 if (v != lstatc->state_prev[i]) { 5583 delta += v - lstatc->state_prev[i]; 5584 lstatc->state_prev[i] = v; 5585 } 5586 5587 if (!delta) 5588 continue; 5589 5590 pn->lruvec_stats.state[i] += delta; 5591 if (ppn) 5592 ppn->lruvec_stats.state_pending[i] += delta; 5593 } 5594 } 5595 } 5596 5597 #ifdef CONFIG_MMU 5598 /* Handlers for move charge at task migration. */ 5599 static int mem_cgroup_do_precharge(unsigned long count) 5600 { 5601 int ret; 5602 5603 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5604 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5605 if (!ret) { 5606 mc.precharge += count; 5607 return ret; 5608 } 5609 5610 /* Try charges one by one with reclaim, but do not retry */ 5611 while (count--) { 5612 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5613 if (ret) 5614 return ret; 5615 mc.precharge++; 5616 cond_resched(); 5617 } 5618 return 0; 5619 } 5620 5621 union mc_target { 5622 struct page *page; 5623 swp_entry_t ent; 5624 }; 5625 5626 enum mc_target_type { 5627 MC_TARGET_NONE = 0, 5628 MC_TARGET_PAGE, 5629 MC_TARGET_SWAP, 5630 MC_TARGET_DEVICE, 5631 }; 5632 5633 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5634 unsigned long addr, pte_t ptent) 5635 { 5636 struct page *page = vm_normal_page(vma, addr, ptent); 5637 5638 if (!page || !page_mapped(page)) 5639 return NULL; 5640 if (PageAnon(page)) { 5641 if (!(mc.flags & MOVE_ANON)) 5642 return NULL; 5643 } else { 5644 if (!(mc.flags & MOVE_FILE)) 5645 return NULL; 5646 } 5647 if (!get_page_unless_zero(page)) 5648 return NULL; 5649 5650 return page; 5651 } 5652 5653 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5654 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5655 pte_t ptent, swp_entry_t *entry) 5656 { 5657 struct page *page = NULL; 5658 swp_entry_t ent = pte_to_swp_entry(ptent); 5659 5660 if (!(mc.flags & MOVE_ANON)) 5661 return NULL; 5662 5663 /* 5664 * Handle device private pages that are not accessible by the CPU, but 5665 * stored as special swap entries in the page table. 5666 */ 5667 if (is_device_private_entry(ent)) { 5668 page = pfn_swap_entry_to_page(ent); 5669 if (!get_page_unless_zero(page)) 5670 return NULL; 5671 return page; 5672 } 5673 5674 if (non_swap_entry(ent)) 5675 return NULL; 5676 5677 /* 5678 * Because swap_cache_get_folio() updates some statistics counter, 5679 * we call find_get_page() with swapper_space directly. 5680 */ 5681 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5682 entry->val = ent.val; 5683 5684 return page; 5685 } 5686 #else 5687 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5688 pte_t ptent, swp_entry_t *entry) 5689 { 5690 return NULL; 5691 } 5692 #endif 5693 5694 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5695 unsigned long addr, pte_t ptent) 5696 { 5697 unsigned long index; 5698 struct folio *folio; 5699 5700 if (!vma->vm_file) /* anonymous vma */ 5701 return NULL; 5702 if (!(mc.flags & MOVE_FILE)) 5703 return NULL; 5704 5705 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5706 /* shmem/tmpfs may report page out on swap: account for that too. */ 5707 index = linear_page_index(vma, addr); 5708 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5709 if (IS_ERR(folio)) 5710 return NULL; 5711 return folio_file_page(folio, index); 5712 } 5713 5714 /** 5715 * mem_cgroup_move_account - move account of the page 5716 * @page: the page 5717 * @compound: charge the page as compound or small page 5718 * @from: mem_cgroup which the page is moved from. 5719 * @to: mem_cgroup which the page is moved to. @from != @to. 5720 * 5721 * The page must be locked and not on the LRU. 5722 * 5723 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5724 * from old cgroup. 5725 */ 5726 static int mem_cgroup_move_account(struct page *page, 5727 bool compound, 5728 struct mem_cgroup *from, 5729 struct mem_cgroup *to) 5730 { 5731 struct folio *folio = page_folio(page); 5732 struct lruvec *from_vec, *to_vec; 5733 struct pglist_data *pgdat; 5734 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5735 int nid, ret; 5736 5737 VM_BUG_ON(from == to); 5738 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5739 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5740 VM_BUG_ON(compound && !folio_test_large(folio)); 5741 5742 ret = -EINVAL; 5743 if (folio_memcg(folio) != from) 5744 goto out; 5745 5746 pgdat = folio_pgdat(folio); 5747 from_vec = mem_cgroup_lruvec(from, pgdat); 5748 to_vec = mem_cgroup_lruvec(to, pgdat); 5749 5750 folio_memcg_lock(folio); 5751 5752 if (folio_test_anon(folio)) { 5753 if (folio_mapped(folio)) { 5754 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5755 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5756 if (folio_test_transhuge(folio)) { 5757 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5758 -nr_pages); 5759 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5760 nr_pages); 5761 } 5762 } 5763 } else { 5764 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5765 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5766 5767 if (folio_test_swapbacked(folio)) { 5768 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5769 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5770 } 5771 5772 if (folio_mapped(folio)) { 5773 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5774 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5775 } 5776 5777 if (folio_test_dirty(folio)) { 5778 struct address_space *mapping = folio_mapping(folio); 5779 5780 if (mapping_can_writeback(mapping)) { 5781 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5782 -nr_pages); 5783 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5784 nr_pages); 5785 } 5786 } 5787 } 5788 5789 #ifdef CONFIG_SWAP 5790 if (folio_test_swapcache(folio)) { 5791 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 5792 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 5793 } 5794 #endif 5795 if (folio_test_writeback(folio)) { 5796 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5797 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5798 } 5799 5800 /* 5801 * All state has been migrated, let's switch to the new memcg. 5802 * 5803 * It is safe to change page's memcg here because the page 5804 * is referenced, charged, isolated, and locked: we can't race 5805 * with (un)charging, migration, LRU putback, or anything else 5806 * that would rely on a stable page's memory cgroup. 5807 * 5808 * Note that lock_page_memcg is a memcg lock, not a page lock, 5809 * to save space. As soon as we switch page's memory cgroup to a 5810 * new memcg that isn't locked, the above state can change 5811 * concurrently again. Make sure we're truly done with it. 5812 */ 5813 smp_mb(); 5814 5815 css_get(&to->css); 5816 css_put(&from->css); 5817 5818 folio->memcg_data = (unsigned long)to; 5819 5820 __folio_memcg_unlock(from); 5821 5822 ret = 0; 5823 nid = folio_nid(folio); 5824 5825 local_irq_disable(); 5826 mem_cgroup_charge_statistics(to, nr_pages); 5827 memcg_check_events(to, nid); 5828 mem_cgroup_charge_statistics(from, -nr_pages); 5829 memcg_check_events(from, nid); 5830 local_irq_enable(); 5831 out: 5832 return ret; 5833 } 5834 5835 /** 5836 * get_mctgt_type - get target type of moving charge 5837 * @vma: the vma the pte to be checked belongs 5838 * @addr: the address corresponding to the pte to be checked 5839 * @ptent: the pte to be checked 5840 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5841 * 5842 * Returns 5843 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5844 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5845 * move charge. if @target is not NULL, the page is stored in target->page 5846 * with extra refcnt got(Callers should handle it). 5847 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5848 * target for charge migration. if @target is not NULL, the entry is stored 5849 * in target->ent. 5850 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and 5851 * thus not on the lru. 5852 * For now we such page is charge like a regular page would be as for all 5853 * intent and purposes it is just special memory taking the place of a 5854 * regular page. 5855 * 5856 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5857 * 5858 * Called with pte lock held. 5859 */ 5860 5861 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5862 unsigned long addr, pte_t ptent, union mc_target *target) 5863 { 5864 struct page *page = NULL; 5865 enum mc_target_type ret = MC_TARGET_NONE; 5866 swp_entry_t ent = { .val = 0 }; 5867 5868 if (pte_present(ptent)) 5869 page = mc_handle_present_pte(vma, addr, ptent); 5870 else if (pte_none_mostly(ptent)) 5871 /* 5872 * PTE markers should be treated as a none pte here, separated 5873 * from other swap handling below. 5874 */ 5875 page = mc_handle_file_pte(vma, addr, ptent); 5876 else if (is_swap_pte(ptent)) 5877 page = mc_handle_swap_pte(vma, ptent, &ent); 5878 5879 if (target && page) { 5880 if (!trylock_page(page)) { 5881 put_page(page); 5882 return ret; 5883 } 5884 /* 5885 * page_mapped() must be stable during the move. This 5886 * pte is locked, so if it's present, the page cannot 5887 * become unmapped. If it isn't, we have only partial 5888 * control over the mapped state: the page lock will 5889 * prevent new faults against pagecache and swapcache, 5890 * so an unmapped page cannot become mapped. However, 5891 * if the page is already mapped elsewhere, it can 5892 * unmap, and there is nothing we can do about it. 5893 * Alas, skip moving the page in this case. 5894 */ 5895 if (!pte_present(ptent) && page_mapped(page)) { 5896 unlock_page(page); 5897 put_page(page); 5898 return ret; 5899 } 5900 } 5901 5902 if (!page && !ent.val) 5903 return ret; 5904 if (page) { 5905 /* 5906 * Do only loose check w/o serialization. 5907 * mem_cgroup_move_account() checks the page is valid or 5908 * not under LRU exclusion. 5909 */ 5910 if (page_memcg(page) == mc.from) { 5911 ret = MC_TARGET_PAGE; 5912 if (is_device_private_page(page) || 5913 is_device_coherent_page(page)) 5914 ret = MC_TARGET_DEVICE; 5915 if (target) 5916 target->page = page; 5917 } 5918 if (!ret || !target) { 5919 if (target) 5920 unlock_page(page); 5921 put_page(page); 5922 } 5923 } 5924 /* 5925 * There is a swap entry and a page doesn't exist or isn't charged. 5926 * But we cannot move a tail-page in a THP. 5927 */ 5928 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5929 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5930 ret = MC_TARGET_SWAP; 5931 if (target) 5932 target->ent = ent; 5933 } 5934 return ret; 5935 } 5936 5937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5938 /* 5939 * We don't consider PMD mapped swapping or file mapped pages because THP does 5940 * not support them for now. 5941 * Caller should make sure that pmd_trans_huge(pmd) is true. 5942 */ 5943 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5944 unsigned long addr, pmd_t pmd, union mc_target *target) 5945 { 5946 struct page *page = NULL; 5947 enum mc_target_type ret = MC_TARGET_NONE; 5948 5949 if (unlikely(is_swap_pmd(pmd))) { 5950 VM_BUG_ON(thp_migration_supported() && 5951 !is_pmd_migration_entry(pmd)); 5952 return ret; 5953 } 5954 page = pmd_page(pmd); 5955 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5956 if (!(mc.flags & MOVE_ANON)) 5957 return ret; 5958 if (page_memcg(page) == mc.from) { 5959 ret = MC_TARGET_PAGE; 5960 if (target) { 5961 get_page(page); 5962 if (!trylock_page(page)) { 5963 put_page(page); 5964 return MC_TARGET_NONE; 5965 } 5966 target->page = page; 5967 } 5968 } 5969 return ret; 5970 } 5971 #else 5972 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5973 unsigned long addr, pmd_t pmd, union mc_target *target) 5974 { 5975 return MC_TARGET_NONE; 5976 } 5977 #endif 5978 5979 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5980 unsigned long addr, unsigned long end, 5981 struct mm_walk *walk) 5982 { 5983 struct vm_area_struct *vma = walk->vma; 5984 pte_t *pte; 5985 spinlock_t *ptl; 5986 5987 ptl = pmd_trans_huge_lock(pmd, vma); 5988 if (ptl) { 5989 /* 5990 * Note their can not be MC_TARGET_DEVICE for now as we do not 5991 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5992 * this might change. 5993 */ 5994 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5995 mc.precharge += HPAGE_PMD_NR; 5996 spin_unlock(ptl); 5997 return 0; 5998 } 5999 6000 if (pmd_trans_unstable(pmd)) 6001 return 0; 6002 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6003 for (; addr != end; pte++, addr += PAGE_SIZE) 6004 if (get_mctgt_type(vma, addr, *pte, NULL)) 6005 mc.precharge++; /* increment precharge temporarily */ 6006 pte_unmap_unlock(pte - 1, ptl); 6007 cond_resched(); 6008 6009 return 0; 6010 } 6011 6012 static const struct mm_walk_ops precharge_walk_ops = { 6013 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6014 }; 6015 6016 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6017 { 6018 unsigned long precharge; 6019 6020 mmap_read_lock(mm); 6021 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6022 mmap_read_unlock(mm); 6023 6024 precharge = mc.precharge; 6025 mc.precharge = 0; 6026 6027 return precharge; 6028 } 6029 6030 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6031 { 6032 unsigned long precharge = mem_cgroup_count_precharge(mm); 6033 6034 VM_BUG_ON(mc.moving_task); 6035 mc.moving_task = current; 6036 return mem_cgroup_do_precharge(precharge); 6037 } 6038 6039 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6040 static void __mem_cgroup_clear_mc(void) 6041 { 6042 struct mem_cgroup *from = mc.from; 6043 struct mem_cgroup *to = mc.to; 6044 6045 /* we must uncharge all the leftover precharges from mc.to */ 6046 if (mc.precharge) { 6047 cancel_charge(mc.to, mc.precharge); 6048 mc.precharge = 0; 6049 } 6050 /* 6051 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6052 * we must uncharge here. 6053 */ 6054 if (mc.moved_charge) { 6055 cancel_charge(mc.from, mc.moved_charge); 6056 mc.moved_charge = 0; 6057 } 6058 /* we must fixup refcnts and charges */ 6059 if (mc.moved_swap) { 6060 /* uncharge swap account from the old cgroup */ 6061 if (!mem_cgroup_is_root(mc.from)) 6062 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6063 6064 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6065 6066 /* 6067 * we charged both to->memory and to->memsw, so we 6068 * should uncharge to->memory. 6069 */ 6070 if (!mem_cgroup_is_root(mc.to)) 6071 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6072 6073 mc.moved_swap = 0; 6074 } 6075 memcg_oom_recover(from); 6076 memcg_oom_recover(to); 6077 wake_up_all(&mc.waitq); 6078 } 6079 6080 static void mem_cgroup_clear_mc(void) 6081 { 6082 struct mm_struct *mm = mc.mm; 6083 6084 /* 6085 * we must clear moving_task before waking up waiters at the end of 6086 * task migration. 6087 */ 6088 mc.moving_task = NULL; 6089 __mem_cgroup_clear_mc(); 6090 spin_lock(&mc.lock); 6091 mc.from = NULL; 6092 mc.to = NULL; 6093 mc.mm = NULL; 6094 spin_unlock(&mc.lock); 6095 6096 mmput(mm); 6097 } 6098 6099 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6100 { 6101 struct cgroup_subsys_state *css; 6102 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6103 struct mem_cgroup *from; 6104 struct task_struct *leader, *p; 6105 struct mm_struct *mm; 6106 unsigned long move_flags; 6107 int ret = 0; 6108 6109 /* charge immigration isn't supported on the default hierarchy */ 6110 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6111 return 0; 6112 6113 /* 6114 * Multi-process migrations only happen on the default hierarchy 6115 * where charge immigration is not used. Perform charge 6116 * immigration if @tset contains a leader and whine if there are 6117 * multiple. 6118 */ 6119 p = NULL; 6120 cgroup_taskset_for_each_leader(leader, css, tset) { 6121 WARN_ON_ONCE(p); 6122 p = leader; 6123 memcg = mem_cgroup_from_css(css); 6124 } 6125 if (!p) 6126 return 0; 6127 6128 /* 6129 * We are now committed to this value whatever it is. Changes in this 6130 * tunable will only affect upcoming migrations, not the current one. 6131 * So we need to save it, and keep it going. 6132 */ 6133 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6134 if (!move_flags) 6135 return 0; 6136 6137 from = mem_cgroup_from_task(p); 6138 6139 VM_BUG_ON(from == memcg); 6140 6141 mm = get_task_mm(p); 6142 if (!mm) 6143 return 0; 6144 /* We move charges only when we move a owner of the mm */ 6145 if (mm->owner == p) { 6146 VM_BUG_ON(mc.from); 6147 VM_BUG_ON(mc.to); 6148 VM_BUG_ON(mc.precharge); 6149 VM_BUG_ON(mc.moved_charge); 6150 VM_BUG_ON(mc.moved_swap); 6151 6152 spin_lock(&mc.lock); 6153 mc.mm = mm; 6154 mc.from = from; 6155 mc.to = memcg; 6156 mc.flags = move_flags; 6157 spin_unlock(&mc.lock); 6158 /* We set mc.moving_task later */ 6159 6160 ret = mem_cgroup_precharge_mc(mm); 6161 if (ret) 6162 mem_cgroup_clear_mc(); 6163 } else { 6164 mmput(mm); 6165 } 6166 return ret; 6167 } 6168 6169 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6170 { 6171 if (mc.to) 6172 mem_cgroup_clear_mc(); 6173 } 6174 6175 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6176 unsigned long addr, unsigned long end, 6177 struct mm_walk *walk) 6178 { 6179 int ret = 0; 6180 struct vm_area_struct *vma = walk->vma; 6181 pte_t *pte; 6182 spinlock_t *ptl; 6183 enum mc_target_type target_type; 6184 union mc_target target; 6185 struct page *page; 6186 6187 ptl = pmd_trans_huge_lock(pmd, vma); 6188 if (ptl) { 6189 if (mc.precharge < HPAGE_PMD_NR) { 6190 spin_unlock(ptl); 6191 return 0; 6192 } 6193 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6194 if (target_type == MC_TARGET_PAGE) { 6195 page = target.page; 6196 if (isolate_lru_page(page)) { 6197 if (!mem_cgroup_move_account(page, true, 6198 mc.from, mc.to)) { 6199 mc.precharge -= HPAGE_PMD_NR; 6200 mc.moved_charge += HPAGE_PMD_NR; 6201 } 6202 putback_lru_page(page); 6203 } 6204 unlock_page(page); 6205 put_page(page); 6206 } else if (target_type == MC_TARGET_DEVICE) { 6207 page = target.page; 6208 if (!mem_cgroup_move_account(page, true, 6209 mc.from, mc.to)) { 6210 mc.precharge -= HPAGE_PMD_NR; 6211 mc.moved_charge += HPAGE_PMD_NR; 6212 } 6213 unlock_page(page); 6214 put_page(page); 6215 } 6216 spin_unlock(ptl); 6217 return 0; 6218 } 6219 6220 if (pmd_trans_unstable(pmd)) 6221 return 0; 6222 retry: 6223 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6224 for (; addr != end; addr += PAGE_SIZE) { 6225 pte_t ptent = *(pte++); 6226 bool device = false; 6227 swp_entry_t ent; 6228 6229 if (!mc.precharge) 6230 break; 6231 6232 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6233 case MC_TARGET_DEVICE: 6234 device = true; 6235 fallthrough; 6236 case MC_TARGET_PAGE: 6237 page = target.page; 6238 /* 6239 * We can have a part of the split pmd here. Moving it 6240 * can be done but it would be too convoluted so simply 6241 * ignore such a partial THP and keep it in original 6242 * memcg. There should be somebody mapping the head. 6243 */ 6244 if (PageTransCompound(page)) 6245 goto put; 6246 if (!device && !isolate_lru_page(page)) 6247 goto put; 6248 if (!mem_cgroup_move_account(page, false, 6249 mc.from, mc.to)) { 6250 mc.precharge--; 6251 /* we uncharge from mc.from later. */ 6252 mc.moved_charge++; 6253 } 6254 if (!device) 6255 putback_lru_page(page); 6256 put: /* get_mctgt_type() gets & locks the page */ 6257 unlock_page(page); 6258 put_page(page); 6259 break; 6260 case MC_TARGET_SWAP: 6261 ent = target.ent; 6262 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6263 mc.precharge--; 6264 mem_cgroup_id_get_many(mc.to, 1); 6265 /* we fixup other refcnts and charges later. */ 6266 mc.moved_swap++; 6267 } 6268 break; 6269 default: 6270 break; 6271 } 6272 } 6273 pte_unmap_unlock(pte - 1, ptl); 6274 cond_resched(); 6275 6276 if (addr != end) { 6277 /* 6278 * We have consumed all precharges we got in can_attach(). 6279 * We try charge one by one, but don't do any additional 6280 * charges to mc.to if we have failed in charge once in attach() 6281 * phase. 6282 */ 6283 ret = mem_cgroup_do_precharge(1); 6284 if (!ret) 6285 goto retry; 6286 } 6287 6288 return ret; 6289 } 6290 6291 static const struct mm_walk_ops charge_walk_ops = { 6292 .pmd_entry = mem_cgroup_move_charge_pte_range, 6293 }; 6294 6295 static void mem_cgroup_move_charge(void) 6296 { 6297 lru_add_drain_all(); 6298 /* 6299 * Signal lock_page_memcg() to take the memcg's move_lock 6300 * while we're moving its pages to another memcg. Then wait 6301 * for already started RCU-only updates to finish. 6302 */ 6303 atomic_inc(&mc.from->moving_account); 6304 synchronize_rcu(); 6305 retry: 6306 if (unlikely(!mmap_read_trylock(mc.mm))) { 6307 /* 6308 * Someone who are holding the mmap_lock might be waiting in 6309 * waitq. So we cancel all extra charges, wake up all waiters, 6310 * and retry. Because we cancel precharges, we might not be able 6311 * to move enough charges, but moving charge is a best-effort 6312 * feature anyway, so it wouldn't be a big problem. 6313 */ 6314 __mem_cgroup_clear_mc(); 6315 cond_resched(); 6316 goto retry; 6317 } 6318 /* 6319 * When we have consumed all precharges and failed in doing 6320 * additional charge, the page walk just aborts. 6321 */ 6322 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6323 mmap_read_unlock(mc.mm); 6324 atomic_dec(&mc.from->moving_account); 6325 } 6326 6327 static void mem_cgroup_move_task(void) 6328 { 6329 if (mc.to) { 6330 mem_cgroup_move_charge(); 6331 mem_cgroup_clear_mc(); 6332 } 6333 } 6334 #else /* !CONFIG_MMU */ 6335 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6336 { 6337 return 0; 6338 } 6339 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6340 { 6341 } 6342 static void mem_cgroup_move_task(void) 6343 { 6344 } 6345 #endif 6346 6347 #ifdef CONFIG_LRU_GEN 6348 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6349 { 6350 struct task_struct *task; 6351 struct cgroup_subsys_state *css; 6352 6353 /* find the first leader if there is any */ 6354 cgroup_taskset_for_each_leader(task, css, tset) 6355 break; 6356 6357 if (!task) 6358 return; 6359 6360 task_lock(task); 6361 if (task->mm && READ_ONCE(task->mm->owner) == task) 6362 lru_gen_migrate_mm(task->mm); 6363 task_unlock(task); 6364 } 6365 #else 6366 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6367 { 6368 } 6369 #endif /* CONFIG_LRU_GEN */ 6370 6371 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6372 { 6373 if (value == PAGE_COUNTER_MAX) 6374 seq_puts(m, "max\n"); 6375 else 6376 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6377 6378 return 0; 6379 } 6380 6381 static u64 memory_current_read(struct cgroup_subsys_state *css, 6382 struct cftype *cft) 6383 { 6384 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6385 6386 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6387 } 6388 6389 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6390 struct cftype *cft) 6391 { 6392 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6393 6394 return (u64)memcg->memory.watermark * PAGE_SIZE; 6395 } 6396 6397 static int memory_min_show(struct seq_file *m, void *v) 6398 { 6399 return seq_puts_memcg_tunable(m, 6400 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6401 } 6402 6403 static ssize_t memory_min_write(struct kernfs_open_file *of, 6404 char *buf, size_t nbytes, loff_t off) 6405 { 6406 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6407 unsigned long min; 6408 int err; 6409 6410 buf = strstrip(buf); 6411 err = page_counter_memparse(buf, "max", &min); 6412 if (err) 6413 return err; 6414 6415 page_counter_set_min(&memcg->memory, min); 6416 6417 return nbytes; 6418 } 6419 6420 static int memory_low_show(struct seq_file *m, void *v) 6421 { 6422 return seq_puts_memcg_tunable(m, 6423 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6424 } 6425 6426 static ssize_t memory_low_write(struct kernfs_open_file *of, 6427 char *buf, size_t nbytes, loff_t off) 6428 { 6429 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6430 unsigned long low; 6431 int err; 6432 6433 buf = strstrip(buf); 6434 err = page_counter_memparse(buf, "max", &low); 6435 if (err) 6436 return err; 6437 6438 page_counter_set_low(&memcg->memory, low); 6439 6440 return nbytes; 6441 } 6442 6443 static int memory_high_show(struct seq_file *m, void *v) 6444 { 6445 return seq_puts_memcg_tunable(m, 6446 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6447 } 6448 6449 static ssize_t memory_high_write(struct kernfs_open_file *of, 6450 char *buf, size_t nbytes, loff_t off) 6451 { 6452 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6453 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6454 bool drained = false; 6455 unsigned long high; 6456 int err; 6457 6458 buf = strstrip(buf); 6459 err = page_counter_memparse(buf, "max", &high); 6460 if (err) 6461 return err; 6462 6463 page_counter_set_high(&memcg->memory, high); 6464 6465 for (;;) { 6466 unsigned long nr_pages = page_counter_read(&memcg->memory); 6467 unsigned long reclaimed; 6468 6469 if (nr_pages <= high) 6470 break; 6471 6472 if (signal_pending(current)) 6473 break; 6474 6475 if (!drained) { 6476 drain_all_stock(memcg); 6477 drained = true; 6478 continue; 6479 } 6480 6481 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6482 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6483 6484 if (!reclaimed && !nr_retries--) 6485 break; 6486 } 6487 6488 memcg_wb_domain_size_changed(memcg); 6489 return nbytes; 6490 } 6491 6492 static int memory_max_show(struct seq_file *m, void *v) 6493 { 6494 return seq_puts_memcg_tunable(m, 6495 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6496 } 6497 6498 static ssize_t memory_max_write(struct kernfs_open_file *of, 6499 char *buf, size_t nbytes, loff_t off) 6500 { 6501 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6502 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6503 bool drained = false; 6504 unsigned long max; 6505 int err; 6506 6507 buf = strstrip(buf); 6508 err = page_counter_memparse(buf, "max", &max); 6509 if (err) 6510 return err; 6511 6512 xchg(&memcg->memory.max, max); 6513 6514 for (;;) { 6515 unsigned long nr_pages = page_counter_read(&memcg->memory); 6516 6517 if (nr_pages <= max) 6518 break; 6519 6520 if (signal_pending(current)) 6521 break; 6522 6523 if (!drained) { 6524 drain_all_stock(memcg); 6525 drained = true; 6526 continue; 6527 } 6528 6529 if (nr_reclaims) { 6530 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6531 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6532 nr_reclaims--; 6533 continue; 6534 } 6535 6536 memcg_memory_event(memcg, MEMCG_OOM); 6537 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6538 break; 6539 } 6540 6541 memcg_wb_domain_size_changed(memcg); 6542 return nbytes; 6543 } 6544 6545 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6546 { 6547 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6548 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6549 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6550 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6551 seq_printf(m, "oom_kill %lu\n", 6552 atomic_long_read(&events[MEMCG_OOM_KILL])); 6553 seq_printf(m, "oom_group_kill %lu\n", 6554 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6555 } 6556 6557 static int memory_events_show(struct seq_file *m, void *v) 6558 { 6559 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6560 6561 __memory_events_show(m, memcg->memory_events); 6562 return 0; 6563 } 6564 6565 static int memory_events_local_show(struct seq_file *m, void *v) 6566 { 6567 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6568 6569 __memory_events_show(m, memcg->memory_events_local); 6570 return 0; 6571 } 6572 6573 static int memory_stat_show(struct seq_file *m, void *v) 6574 { 6575 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6576 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6577 6578 if (!buf) 6579 return -ENOMEM; 6580 memory_stat_format(memcg, buf, PAGE_SIZE); 6581 seq_puts(m, buf); 6582 kfree(buf); 6583 return 0; 6584 } 6585 6586 #ifdef CONFIG_NUMA 6587 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6588 int item) 6589 { 6590 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6591 } 6592 6593 static int memory_numa_stat_show(struct seq_file *m, void *v) 6594 { 6595 int i; 6596 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6597 6598 mem_cgroup_flush_stats(); 6599 6600 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6601 int nid; 6602 6603 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6604 continue; 6605 6606 seq_printf(m, "%s", memory_stats[i].name); 6607 for_each_node_state(nid, N_MEMORY) { 6608 u64 size; 6609 struct lruvec *lruvec; 6610 6611 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6612 size = lruvec_page_state_output(lruvec, 6613 memory_stats[i].idx); 6614 seq_printf(m, " N%d=%llu", nid, size); 6615 } 6616 seq_putc(m, '\n'); 6617 } 6618 6619 return 0; 6620 } 6621 #endif 6622 6623 static int memory_oom_group_show(struct seq_file *m, void *v) 6624 { 6625 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6626 6627 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 6628 6629 return 0; 6630 } 6631 6632 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6633 char *buf, size_t nbytes, loff_t off) 6634 { 6635 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6636 int ret, oom_group; 6637 6638 buf = strstrip(buf); 6639 if (!buf) 6640 return -EINVAL; 6641 6642 ret = kstrtoint(buf, 0, &oom_group); 6643 if (ret) 6644 return ret; 6645 6646 if (oom_group != 0 && oom_group != 1) 6647 return -EINVAL; 6648 6649 WRITE_ONCE(memcg->oom_group, oom_group); 6650 6651 return nbytes; 6652 } 6653 6654 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6655 size_t nbytes, loff_t off) 6656 { 6657 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6658 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6659 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6660 unsigned int reclaim_options; 6661 int err; 6662 6663 buf = strstrip(buf); 6664 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6665 if (err) 6666 return err; 6667 6668 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6669 while (nr_reclaimed < nr_to_reclaim) { 6670 unsigned long reclaimed; 6671 6672 if (signal_pending(current)) 6673 return -EINTR; 6674 6675 /* 6676 * This is the final attempt, drain percpu lru caches in the 6677 * hope of introducing more evictable pages for 6678 * try_to_free_mem_cgroup_pages(). 6679 */ 6680 if (!nr_retries) 6681 lru_add_drain_all(); 6682 6683 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6684 nr_to_reclaim - nr_reclaimed, 6685 GFP_KERNEL, reclaim_options); 6686 6687 if (!reclaimed && !nr_retries--) 6688 return -EAGAIN; 6689 6690 nr_reclaimed += reclaimed; 6691 } 6692 6693 return nbytes; 6694 } 6695 6696 static struct cftype memory_files[] = { 6697 { 6698 .name = "current", 6699 .flags = CFTYPE_NOT_ON_ROOT, 6700 .read_u64 = memory_current_read, 6701 }, 6702 { 6703 .name = "peak", 6704 .flags = CFTYPE_NOT_ON_ROOT, 6705 .read_u64 = memory_peak_read, 6706 }, 6707 { 6708 .name = "min", 6709 .flags = CFTYPE_NOT_ON_ROOT, 6710 .seq_show = memory_min_show, 6711 .write = memory_min_write, 6712 }, 6713 { 6714 .name = "low", 6715 .flags = CFTYPE_NOT_ON_ROOT, 6716 .seq_show = memory_low_show, 6717 .write = memory_low_write, 6718 }, 6719 { 6720 .name = "high", 6721 .flags = CFTYPE_NOT_ON_ROOT, 6722 .seq_show = memory_high_show, 6723 .write = memory_high_write, 6724 }, 6725 { 6726 .name = "max", 6727 .flags = CFTYPE_NOT_ON_ROOT, 6728 .seq_show = memory_max_show, 6729 .write = memory_max_write, 6730 }, 6731 { 6732 .name = "events", 6733 .flags = CFTYPE_NOT_ON_ROOT, 6734 .file_offset = offsetof(struct mem_cgroup, events_file), 6735 .seq_show = memory_events_show, 6736 }, 6737 { 6738 .name = "events.local", 6739 .flags = CFTYPE_NOT_ON_ROOT, 6740 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6741 .seq_show = memory_events_local_show, 6742 }, 6743 { 6744 .name = "stat", 6745 .seq_show = memory_stat_show, 6746 }, 6747 #ifdef CONFIG_NUMA 6748 { 6749 .name = "numa_stat", 6750 .seq_show = memory_numa_stat_show, 6751 }, 6752 #endif 6753 { 6754 .name = "oom.group", 6755 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6756 .seq_show = memory_oom_group_show, 6757 .write = memory_oom_group_write, 6758 }, 6759 { 6760 .name = "reclaim", 6761 .flags = CFTYPE_NS_DELEGATABLE, 6762 .write = memory_reclaim, 6763 }, 6764 { } /* terminate */ 6765 }; 6766 6767 struct cgroup_subsys memory_cgrp_subsys = { 6768 .css_alloc = mem_cgroup_css_alloc, 6769 .css_online = mem_cgroup_css_online, 6770 .css_offline = mem_cgroup_css_offline, 6771 .css_released = mem_cgroup_css_released, 6772 .css_free = mem_cgroup_css_free, 6773 .css_reset = mem_cgroup_css_reset, 6774 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6775 .can_attach = mem_cgroup_can_attach, 6776 .attach = mem_cgroup_attach, 6777 .cancel_attach = mem_cgroup_cancel_attach, 6778 .post_attach = mem_cgroup_move_task, 6779 .dfl_cftypes = memory_files, 6780 .legacy_cftypes = mem_cgroup_legacy_files, 6781 .early_init = 0, 6782 }; 6783 6784 /* 6785 * This function calculates an individual cgroup's effective 6786 * protection which is derived from its own memory.min/low, its 6787 * parent's and siblings' settings, as well as the actual memory 6788 * distribution in the tree. 6789 * 6790 * The following rules apply to the effective protection values: 6791 * 6792 * 1. At the first level of reclaim, effective protection is equal to 6793 * the declared protection in memory.min and memory.low. 6794 * 6795 * 2. To enable safe delegation of the protection configuration, at 6796 * subsequent levels the effective protection is capped to the 6797 * parent's effective protection. 6798 * 6799 * 3. To make complex and dynamic subtrees easier to configure, the 6800 * user is allowed to overcommit the declared protection at a given 6801 * level. If that is the case, the parent's effective protection is 6802 * distributed to the children in proportion to how much protection 6803 * they have declared and how much of it they are utilizing. 6804 * 6805 * This makes distribution proportional, but also work-conserving: 6806 * if one cgroup claims much more protection than it uses memory, 6807 * the unused remainder is available to its siblings. 6808 * 6809 * 4. Conversely, when the declared protection is undercommitted at a 6810 * given level, the distribution of the larger parental protection 6811 * budget is NOT proportional. A cgroup's protection from a sibling 6812 * is capped to its own memory.min/low setting. 6813 * 6814 * 5. However, to allow protecting recursive subtrees from each other 6815 * without having to declare each individual cgroup's fixed share 6816 * of the ancestor's claim to protection, any unutilized - 6817 * "floating" - protection from up the tree is distributed in 6818 * proportion to each cgroup's *usage*. This makes the protection 6819 * neutral wrt sibling cgroups and lets them compete freely over 6820 * the shared parental protection budget, but it protects the 6821 * subtree as a whole from neighboring subtrees. 6822 * 6823 * Note that 4. and 5. are not in conflict: 4. is about protecting 6824 * against immediate siblings whereas 5. is about protecting against 6825 * neighboring subtrees. 6826 */ 6827 static unsigned long effective_protection(unsigned long usage, 6828 unsigned long parent_usage, 6829 unsigned long setting, 6830 unsigned long parent_effective, 6831 unsigned long siblings_protected) 6832 { 6833 unsigned long protected; 6834 unsigned long ep; 6835 6836 protected = min(usage, setting); 6837 /* 6838 * If all cgroups at this level combined claim and use more 6839 * protection then what the parent affords them, distribute 6840 * shares in proportion to utilization. 6841 * 6842 * We are using actual utilization rather than the statically 6843 * claimed protection in order to be work-conserving: claimed 6844 * but unused protection is available to siblings that would 6845 * otherwise get a smaller chunk than what they claimed. 6846 */ 6847 if (siblings_protected > parent_effective) 6848 return protected * parent_effective / siblings_protected; 6849 6850 /* 6851 * Ok, utilized protection of all children is within what the 6852 * parent affords them, so we know whatever this child claims 6853 * and utilizes is effectively protected. 6854 * 6855 * If there is unprotected usage beyond this value, reclaim 6856 * will apply pressure in proportion to that amount. 6857 * 6858 * If there is unutilized protection, the cgroup will be fully 6859 * shielded from reclaim, but we do return a smaller value for 6860 * protection than what the group could enjoy in theory. This 6861 * is okay. With the overcommit distribution above, effective 6862 * protection is always dependent on how memory is actually 6863 * consumed among the siblings anyway. 6864 */ 6865 ep = protected; 6866 6867 /* 6868 * If the children aren't claiming (all of) the protection 6869 * afforded to them by the parent, distribute the remainder in 6870 * proportion to the (unprotected) memory of each cgroup. That 6871 * way, cgroups that aren't explicitly prioritized wrt each 6872 * other compete freely over the allowance, but they are 6873 * collectively protected from neighboring trees. 6874 * 6875 * We're using unprotected memory for the weight so that if 6876 * some cgroups DO claim explicit protection, we don't protect 6877 * the same bytes twice. 6878 * 6879 * Check both usage and parent_usage against the respective 6880 * protected values. One should imply the other, but they 6881 * aren't read atomically - make sure the division is sane. 6882 */ 6883 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6884 return ep; 6885 if (parent_effective > siblings_protected && 6886 parent_usage > siblings_protected && 6887 usage > protected) { 6888 unsigned long unclaimed; 6889 6890 unclaimed = parent_effective - siblings_protected; 6891 unclaimed *= usage - protected; 6892 unclaimed /= parent_usage - siblings_protected; 6893 6894 ep += unclaimed; 6895 } 6896 6897 return ep; 6898 } 6899 6900 /** 6901 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6902 * @root: the top ancestor of the sub-tree being checked 6903 * @memcg: the memory cgroup to check 6904 * 6905 * WARNING: This function is not stateless! It can only be used as part 6906 * of a top-down tree iteration, not for isolated queries. 6907 */ 6908 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6909 struct mem_cgroup *memcg) 6910 { 6911 unsigned long usage, parent_usage; 6912 struct mem_cgroup *parent; 6913 6914 if (mem_cgroup_disabled()) 6915 return; 6916 6917 if (!root) 6918 root = root_mem_cgroup; 6919 6920 /* 6921 * Effective values of the reclaim targets are ignored so they 6922 * can be stale. Have a look at mem_cgroup_protection for more 6923 * details. 6924 * TODO: calculation should be more robust so that we do not need 6925 * that special casing. 6926 */ 6927 if (memcg == root) 6928 return; 6929 6930 usage = page_counter_read(&memcg->memory); 6931 if (!usage) 6932 return; 6933 6934 parent = parent_mem_cgroup(memcg); 6935 6936 if (parent == root) { 6937 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6938 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6939 return; 6940 } 6941 6942 parent_usage = page_counter_read(&parent->memory); 6943 6944 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6945 READ_ONCE(memcg->memory.min), 6946 READ_ONCE(parent->memory.emin), 6947 atomic_long_read(&parent->memory.children_min_usage))); 6948 6949 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6950 READ_ONCE(memcg->memory.low), 6951 READ_ONCE(parent->memory.elow), 6952 atomic_long_read(&parent->memory.children_low_usage))); 6953 } 6954 6955 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6956 gfp_t gfp) 6957 { 6958 long nr_pages = folio_nr_pages(folio); 6959 int ret; 6960 6961 ret = try_charge(memcg, gfp, nr_pages); 6962 if (ret) 6963 goto out; 6964 6965 css_get(&memcg->css); 6966 commit_charge(folio, memcg); 6967 6968 local_irq_disable(); 6969 mem_cgroup_charge_statistics(memcg, nr_pages); 6970 memcg_check_events(memcg, folio_nid(folio)); 6971 local_irq_enable(); 6972 out: 6973 return ret; 6974 } 6975 6976 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6977 { 6978 struct mem_cgroup *memcg; 6979 int ret; 6980 6981 memcg = get_mem_cgroup_from_mm(mm); 6982 ret = charge_memcg(folio, memcg, gfp); 6983 css_put(&memcg->css); 6984 6985 return ret; 6986 } 6987 6988 /** 6989 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 6990 * @folio: folio to charge. 6991 * @mm: mm context of the victim 6992 * @gfp: reclaim mode 6993 * @entry: swap entry for which the folio is allocated 6994 * 6995 * This function charges a folio allocated for swapin. Please call this before 6996 * adding the folio to the swapcache. 6997 * 6998 * Returns 0 on success. Otherwise, an error code is returned. 6999 */ 7000 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7001 gfp_t gfp, swp_entry_t entry) 7002 { 7003 struct mem_cgroup *memcg; 7004 unsigned short id; 7005 int ret; 7006 7007 if (mem_cgroup_disabled()) 7008 return 0; 7009 7010 id = lookup_swap_cgroup_id(entry); 7011 rcu_read_lock(); 7012 memcg = mem_cgroup_from_id(id); 7013 if (!memcg || !css_tryget_online(&memcg->css)) 7014 memcg = get_mem_cgroup_from_mm(mm); 7015 rcu_read_unlock(); 7016 7017 ret = charge_memcg(folio, memcg, gfp); 7018 7019 css_put(&memcg->css); 7020 return ret; 7021 } 7022 7023 /* 7024 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7025 * @entry: swap entry for which the page is charged 7026 * 7027 * Call this function after successfully adding the charged page to swapcache. 7028 * 7029 * Note: This function assumes the page for which swap slot is being uncharged 7030 * is order 0 page. 7031 */ 7032 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7033 { 7034 /* 7035 * Cgroup1's unified memory+swap counter has been charged with the 7036 * new swapcache page, finish the transfer by uncharging the swap 7037 * slot. The swap slot would also get uncharged when it dies, but 7038 * it can stick around indefinitely and we'd count the page twice 7039 * the entire time. 7040 * 7041 * Cgroup2 has separate resource counters for memory and swap, 7042 * so this is a non-issue here. Memory and swap charge lifetimes 7043 * correspond 1:1 to page and swap slot lifetimes: we charge the 7044 * page to memory here, and uncharge swap when the slot is freed. 7045 */ 7046 if (!mem_cgroup_disabled() && do_memsw_account()) { 7047 /* 7048 * The swap entry might not get freed for a long time, 7049 * let's not wait for it. The page already received a 7050 * memory+swap charge, drop the swap entry duplicate. 7051 */ 7052 mem_cgroup_uncharge_swap(entry, 1); 7053 } 7054 } 7055 7056 struct uncharge_gather { 7057 struct mem_cgroup *memcg; 7058 unsigned long nr_memory; 7059 unsigned long pgpgout; 7060 unsigned long nr_kmem; 7061 int nid; 7062 }; 7063 7064 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7065 { 7066 memset(ug, 0, sizeof(*ug)); 7067 } 7068 7069 static void uncharge_batch(const struct uncharge_gather *ug) 7070 { 7071 unsigned long flags; 7072 7073 if (ug->nr_memory) { 7074 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7075 if (do_memsw_account()) 7076 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7077 if (ug->nr_kmem) 7078 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7079 memcg_oom_recover(ug->memcg); 7080 } 7081 7082 local_irq_save(flags); 7083 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7084 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7085 memcg_check_events(ug->memcg, ug->nid); 7086 local_irq_restore(flags); 7087 7088 /* drop reference from uncharge_folio */ 7089 css_put(&ug->memcg->css); 7090 } 7091 7092 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7093 { 7094 long nr_pages; 7095 struct mem_cgroup *memcg; 7096 struct obj_cgroup *objcg; 7097 7098 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7099 7100 /* 7101 * Nobody should be changing or seriously looking at 7102 * folio memcg or objcg at this point, we have fully 7103 * exclusive access to the folio. 7104 */ 7105 if (folio_memcg_kmem(folio)) { 7106 objcg = __folio_objcg(folio); 7107 /* 7108 * This get matches the put at the end of the function and 7109 * kmem pages do not hold memcg references anymore. 7110 */ 7111 memcg = get_mem_cgroup_from_objcg(objcg); 7112 } else { 7113 memcg = __folio_memcg(folio); 7114 } 7115 7116 if (!memcg) 7117 return; 7118 7119 if (ug->memcg != memcg) { 7120 if (ug->memcg) { 7121 uncharge_batch(ug); 7122 uncharge_gather_clear(ug); 7123 } 7124 ug->memcg = memcg; 7125 ug->nid = folio_nid(folio); 7126 7127 /* pairs with css_put in uncharge_batch */ 7128 css_get(&memcg->css); 7129 } 7130 7131 nr_pages = folio_nr_pages(folio); 7132 7133 if (folio_memcg_kmem(folio)) { 7134 ug->nr_memory += nr_pages; 7135 ug->nr_kmem += nr_pages; 7136 7137 folio->memcg_data = 0; 7138 obj_cgroup_put(objcg); 7139 } else { 7140 /* LRU pages aren't accounted at the root level */ 7141 if (!mem_cgroup_is_root(memcg)) 7142 ug->nr_memory += nr_pages; 7143 ug->pgpgout++; 7144 7145 folio->memcg_data = 0; 7146 } 7147 7148 css_put(&memcg->css); 7149 } 7150 7151 void __mem_cgroup_uncharge(struct folio *folio) 7152 { 7153 struct uncharge_gather ug; 7154 7155 /* Don't touch folio->lru of any random page, pre-check: */ 7156 if (!folio_memcg(folio)) 7157 return; 7158 7159 uncharge_gather_clear(&ug); 7160 uncharge_folio(folio, &ug); 7161 uncharge_batch(&ug); 7162 } 7163 7164 /** 7165 * __mem_cgroup_uncharge_list - uncharge a list of page 7166 * @page_list: list of pages to uncharge 7167 * 7168 * Uncharge a list of pages previously charged with 7169 * __mem_cgroup_charge(). 7170 */ 7171 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7172 { 7173 struct uncharge_gather ug; 7174 struct folio *folio; 7175 7176 uncharge_gather_clear(&ug); 7177 list_for_each_entry(folio, page_list, lru) 7178 uncharge_folio(folio, &ug); 7179 if (ug.memcg) 7180 uncharge_batch(&ug); 7181 } 7182 7183 /** 7184 * mem_cgroup_migrate - Charge a folio's replacement. 7185 * @old: Currently circulating folio. 7186 * @new: Replacement folio. 7187 * 7188 * Charge @new as a replacement folio for @old. @old will 7189 * be uncharged upon free. 7190 * 7191 * Both folios must be locked, @new->mapping must be set up. 7192 */ 7193 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7194 { 7195 struct mem_cgroup *memcg; 7196 long nr_pages = folio_nr_pages(new); 7197 unsigned long flags; 7198 7199 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7200 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7201 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7202 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7203 7204 if (mem_cgroup_disabled()) 7205 return; 7206 7207 /* Page cache replacement: new folio already charged? */ 7208 if (folio_memcg(new)) 7209 return; 7210 7211 memcg = folio_memcg(old); 7212 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7213 if (!memcg) 7214 return; 7215 7216 /* Force-charge the new page. The old one will be freed soon */ 7217 if (!mem_cgroup_is_root(memcg)) { 7218 page_counter_charge(&memcg->memory, nr_pages); 7219 if (do_memsw_account()) 7220 page_counter_charge(&memcg->memsw, nr_pages); 7221 } 7222 7223 css_get(&memcg->css); 7224 commit_charge(new, memcg); 7225 7226 local_irq_save(flags); 7227 mem_cgroup_charge_statistics(memcg, nr_pages); 7228 memcg_check_events(memcg, folio_nid(new)); 7229 local_irq_restore(flags); 7230 } 7231 7232 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7233 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7234 7235 void mem_cgroup_sk_alloc(struct sock *sk) 7236 { 7237 struct mem_cgroup *memcg; 7238 7239 if (!mem_cgroup_sockets_enabled) 7240 return; 7241 7242 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7243 if (!in_task()) 7244 return; 7245 7246 rcu_read_lock(); 7247 memcg = mem_cgroup_from_task(current); 7248 if (mem_cgroup_is_root(memcg)) 7249 goto out; 7250 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7251 goto out; 7252 if (css_tryget(&memcg->css)) 7253 sk->sk_memcg = memcg; 7254 out: 7255 rcu_read_unlock(); 7256 } 7257 7258 void mem_cgroup_sk_free(struct sock *sk) 7259 { 7260 if (sk->sk_memcg) 7261 css_put(&sk->sk_memcg->css); 7262 } 7263 7264 /** 7265 * mem_cgroup_charge_skmem - charge socket memory 7266 * @memcg: memcg to charge 7267 * @nr_pages: number of pages to charge 7268 * @gfp_mask: reclaim mode 7269 * 7270 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7271 * @memcg's configured limit, %false if it doesn't. 7272 */ 7273 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7274 gfp_t gfp_mask) 7275 { 7276 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7277 struct page_counter *fail; 7278 7279 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7280 memcg->tcpmem_pressure = 0; 7281 return true; 7282 } 7283 memcg->tcpmem_pressure = 1; 7284 if (gfp_mask & __GFP_NOFAIL) { 7285 page_counter_charge(&memcg->tcpmem, nr_pages); 7286 return true; 7287 } 7288 return false; 7289 } 7290 7291 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7292 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7293 return true; 7294 } 7295 7296 return false; 7297 } 7298 7299 /** 7300 * mem_cgroup_uncharge_skmem - uncharge socket memory 7301 * @memcg: memcg to uncharge 7302 * @nr_pages: number of pages to uncharge 7303 */ 7304 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7305 { 7306 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7307 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7308 return; 7309 } 7310 7311 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7312 7313 refill_stock(memcg, nr_pages); 7314 } 7315 7316 static int __init cgroup_memory(char *s) 7317 { 7318 char *token; 7319 7320 while ((token = strsep(&s, ",")) != NULL) { 7321 if (!*token) 7322 continue; 7323 if (!strcmp(token, "nosocket")) 7324 cgroup_memory_nosocket = true; 7325 if (!strcmp(token, "nokmem")) 7326 cgroup_memory_nokmem = true; 7327 if (!strcmp(token, "nobpf")) 7328 cgroup_memory_nobpf = true; 7329 } 7330 return 1; 7331 } 7332 __setup("cgroup.memory=", cgroup_memory); 7333 7334 /* 7335 * subsys_initcall() for memory controller. 7336 * 7337 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7338 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7339 * basically everything that doesn't depend on a specific mem_cgroup structure 7340 * should be initialized from here. 7341 */ 7342 static int __init mem_cgroup_init(void) 7343 { 7344 int cpu, node; 7345 7346 /* 7347 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7348 * used for per-memcg-per-cpu caching of per-node statistics. In order 7349 * to work fine, we should make sure that the overfill threshold can't 7350 * exceed S32_MAX / PAGE_SIZE. 7351 */ 7352 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7353 7354 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7355 memcg_hotplug_cpu_dead); 7356 7357 for_each_possible_cpu(cpu) 7358 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7359 drain_local_stock); 7360 7361 for_each_node(node) { 7362 struct mem_cgroup_tree_per_node *rtpn; 7363 7364 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7365 node_online(node) ? node : NUMA_NO_NODE); 7366 7367 rtpn->rb_root = RB_ROOT; 7368 rtpn->rb_rightmost = NULL; 7369 spin_lock_init(&rtpn->lock); 7370 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7371 } 7372 7373 return 0; 7374 } 7375 subsys_initcall(mem_cgroup_init); 7376 7377 #ifdef CONFIG_SWAP 7378 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7379 { 7380 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7381 /* 7382 * The root cgroup cannot be destroyed, so it's refcount must 7383 * always be >= 1. 7384 */ 7385 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7386 VM_BUG_ON(1); 7387 break; 7388 } 7389 memcg = parent_mem_cgroup(memcg); 7390 if (!memcg) 7391 memcg = root_mem_cgroup; 7392 } 7393 return memcg; 7394 } 7395 7396 /** 7397 * mem_cgroup_swapout - transfer a memsw charge to swap 7398 * @folio: folio whose memsw charge to transfer 7399 * @entry: swap entry to move the charge to 7400 * 7401 * Transfer the memsw charge of @folio to @entry. 7402 */ 7403 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7404 { 7405 struct mem_cgroup *memcg, *swap_memcg; 7406 unsigned int nr_entries; 7407 unsigned short oldid; 7408 7409 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7410 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7411 7412 if (mem_cgroup_disabled()) 7413 return; 7414 7415 if (!do_memsw_account()) 7416 return; 7417 7418 memcg = folio_memcg(folio); 7419 7420 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7421 if (!memcg) 7422 return; 7423 7424 /* 7425 * In case the memcg owning these pages has been offlined and doesn't 7426 * have an ID allocated to it anymore, charge the closest online 7427 * ancestor for the swap instead and transfer the memory+swap charge. 7428 */ 7429 swap_memcg = mem_cgroup_id_get_online(memcg); 7430 nr_entries = folio_nr_pages(folio); 7431 /* Get references for the tail pages, too */ 7432 if (nr_entries > 1) 7433 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7434 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7435 nr_entries); 7436 VM_BUG_ON_FOLIO(oldid, folio); 7437 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7438 7439 folio->memcg_data = 0; 7440 7441 if (!mem_cgroup_is_root(memcg)) 7442 page_counter_uncharge(&memcg->memory, nr_entries); 7443 7444 if (memcg != swap_memcg) { 7445 if (!mem_cgroup_is_root(swap_memcg)) 7446 page_counter_charge(&swap_memcg->memsw, nr_entries); 7447 page_counter_uncharge(&memcg->memsw, nr_entries); 7448 } 7449 7450 /* 7451 * Interrupts should be disabled here because the caller holds the 7452 * i_pages lock which is taken with interrupts-off. It is 7453 * important here to have the interrupts disabled because it is the 7454 * only synchronisation we have for updating the per-CPU variables. 7455 */ 7456 memcg_stats_lock(); 7457 mem_cgroup_charge_statistics(memcg, -nr_entries); 7458 memcg_stats_unlock(); 7459 memcg_check_events(memcg, folio_nid(folio)); 7460 7461 css_put(&memcg->css); 7462 } 7463 7464 /** 7465 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7466 * @folio: folio being added to swap 7467 * @entry: swap entry to charge 7468 * 7469 * Try to charge @folio's memcg for the swap space at @entry. 7470 * 7471 * Returns 0 on success, -ENOMEM on failure. 7472 */ 7473 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7474 { 7475 unsigned int nr_pages = folio_nr_pages(folio); 7476 struct page_counter *counter; 7477 struct mem_cgroup *memcg; 7478 unsigned short oldid; 7479 7480 if (do_memsw_account()) 7481 return 0; 7482 7483 memcg = folio_memcg(folio); 7484 7485 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7486 if (!memcg) 7487 return 0; 7488 7489 if (!entry.val) { 7490 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7491 return 0; 7492 } 7493 7494 memcg = mem_cgroup_id_get_online(memcg); 7495 7496 if (!mem_cgroup_is_root(memcg) && 7497 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7498 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7499 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7500 mem_cgroup_id_put(memcg); 7501 return -ENOMEM; 7502 } 7503 7504 /* Get references for the tail pages, too */ 7505 if (nr_pages > 1) 7506 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7507 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7508 VM_BUG_ON_FOLIO(oldid, folio); 7509 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7510 7511 return 0; 7512 } 7513 7514 /** 7515 * __mem_cgroup_uncharge_swap - uncharge swap space 7516 * @entry: swap entry to uncharge 7517 * @nr_pages: the amount of swap space to uncharge 7518 */ 7519 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7520 { 7521 struct mem_cgroup *memcg; 7522 unsigned short id; 7523 7524 if (mem_cgroup_disabled()) 7525 return; 7526 7527 id = swap_cgroup_record(entry, 0, nr_pages); 7528 rcu_read_lock(); 7529 memcg = mem_cgroup_from_id(id); 7530 if (memcg) { 7531 if (!mem_cgroup_is_root(memcg)) { 7532 if (do_memsw_account()) 7533 page_counter_uncharge(&memcg->memsw, nr_pages); 7534 else 7535 page_counter_uncharge(&memcg->swap, nr_pages); 7536 } 7537 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7538 mem_cgroup_id_put_many(memcg, nr_pages); 7539 } 7540 rcu_read_unlock(); 7541 } 7542 7543 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7544 { 7545 long nr_swap_pages = get_nr_swap_pages(); 7546 7547 if (mem_cgroup_disabled() || do_memsw_account()) 7548 return nr_swap_pages; 7549 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7550 nr_swap_pages = min_t(long, nr_swap_pages, 7551 READ_ONCE(memcg->swap.max) - 7552 page_counter_read(&memcg->swap)); 7553 return nr_swap_pages; 7554 } 7555 7556 bool mem_cgroup_swap_full(struct folio *folio) 7557 { 7558 struct mem_cgroup *memcg; 7559 7560 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7561 7562 if (vm_swap_full()) 7563 return true; 7564 if (do_memsw_account()) 7565 return false; 7566 7567 memcg = folio_memcg(folio); 7568 if (!memcg) 7569 return false; 7570 7571 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7572 unsigned long usage = page_counter_read(&memcg->swap); 7573 7574 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7575 usage * 2 >= READ_ONCE(memcg->swap.max)) 7576 return true; 7577 } 7578 7579 return false; 7580 } 7581 7582 static int __init setup_swap_account(char *s) 7583 { 7584 pr_warn_once("The swapaccount= commandline option is deprecated. " 7585 "Please report your usecase to linux-mm@kvack.org if you " 7586 "depend on this functionality.\n"); 7587 return 1; 7588 } 7589 __setup("swapaccount=", setup_swap_account); 7590 7591 static u64 swap_current_read(struct cgroup_subsys_state *css, 7592 struct cftype *cft) 7593 { 7594 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7595 7596 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7597 } 7598 7599 static int swap_high_show(struct seq_file *m, void *v) 7600 { 7601 return seq_puts_memcg_tunable(m, 7602 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7603 } 7604 7605 static ssize_t swap_high_write(struct kernfs_open_file *of, 7606 char *buf, size_t nbytes, loff_t off) 7607 { 7608 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7609 unsigned long high; 7610 int err; 7611 7612 buf = strstrip(buf); 7613 err = page_counter_memparse(buf, "max", &high); 7614 if (err) 7615 return err; 7616 7617 page_counter_set_high(&memcg->swap, high); 7618 7619 return nbytes; 7620 } 7621 7622 static int swap_max_show(struct seq_file *m, void *v) 7623 { 7624 return seq_puts_memcg_tunable(m, 7625 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7626 } 7627 7628 static ssize_t swap_max_write(struct kernfs_open_file *of, 7629 char *buf, size_t nbytes, loff_t off) 7630 { 7631 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7632 unsigned long max; 7633 int err; 7634 7635 buf = strstrip(buf); 7636 err = page_counter_memparse(buf, "max", &max); 7637 if (err) 7638 return err; 7639 7640 xchg(&memcg->swap.max, max); 7641 7642 return nbytes; 7643 } 7644 7645 static int swap_events_show(struct seq_file *m, void *v) 7646 { 7647 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7648 7649 seq_printf(m, "high %lu\n", 7650 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7651 seq_printf(m, "max %lu\n", 7652 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7653 seq_printf(m, "fail %lu\n", 7654 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7655 7656 return 0; 7657 } 7658 7659 static struct cftype swap_files[] = { 7660 { 7661 .name = "swap.current", 7662 .flags = CFTYPE_NOT_ON_ROOT, 7663 .read_u64 = swap_current_read, 7664 }, 7665 { 7666 .name = "swap.high", 7667 .flags = CFTYPE_NOT_ON_ROOT, 7668 .seq_show = swap_high_show, 7669 .write = swap_high_write, 7670 }, 7671 { 7672 .name = "swap.max", 7673 .flags = CFTYPE_NOT_ON_ROOT, 7674 .seq_show = swap_max_show, 7675 .write = swap_max_write, 7676 }, 7677 { 7678 .name = "swap.events", 7679 .flags = CFTYPE_NOT_ON_ROOT, 7680 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7681 .seq_show = swap_events_show, 7682 }, 7683 { } /* terminate */ 7684 }; 7685 7686 static struct cftype memsw_files[] = { 7687 { 7688 .name = "memsw.usage_in_bytes", 7689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7690 .read_u64 = mem_cgroup_read_u64, 7691 }, 7692 { 7693 .name = "memsw.max_usage_in_bytes", 7694 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7695 .write = mem_cgroup_reset, 7696 .read_u64 = mem_cgroup_read_u64, 7697 }, 7698 { 7699 .name = "memsw.limit_in_bytes", 7700 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7701 .write = mem_cgroup_write, 7702 .read_u64 = mem_cgroup_read_u64, 7703 }, 7704 { 7705 .name = "memsw.failcnt", 7706 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7707 .write = mem_cgroup_reset, 7708 .read_u64 = mem_cgroup_read_u64, 7709 }, 7710 { }, /* terminate */ 7711 }; 7712 7713 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7714 /** 7715 * obj_cgroup_may_zswap - check if this cgroup can zswap 7716 * @objcg: the object cgroup 7717 * 7718 * Check if the hierarchical zswap limit has been reached. 7719 * 7720 * This doesn't check for specific headroom, and it is not atomic 7721 * either. But with zswap, the size of the allocation is only known 7722 * once compression has occured, and this optimistic pre-check avoids 7723 * spending cycles on compression when there is already no room left 7724 * or zswap is disabled altogether somewhere in the hierarchy. 7725 */ 7726 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7727 { 7728 struct mem_cgroup *memcg, *original_memcg; 7729 bool ret = true; 7730 7731 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7732 return true; 7733 7734 original_memcg = get_mem_cgroup_from_objcg(objcg); 7735 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 7736 memcg = parent_mem_cgroup(memcg)) { 7737 unsigned long max = READ_ONCE(memcg->zswap_max); 7738 unsigned long pages; 7739 7740 if (max == PAGE_COUNTER_MAX) 7741 continue; 7742 if (max == 0) { 7743 ret = false; 7744 break; 7745 } 7746 7747 cgroup_rstat_flush(memcg->css.cgroup); 7748 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7749 if (pages < max) 7750 continue; 7751 ret = false; 7752 break; 7753 } 7754 mem_cgroup_put(original_memcg); 7755 return ret; 7756 } 7757 7758 /** 7759 * obj_cgroup_charge_zswap - charge compression backend memory 7760 * @objcg: the object cgroup 7761 * @size: size of compressed object 7762 * 7763 * This forces the charge after obj_cgroup_may_swap() allowed 7764 * compression and storage in zwap for this cgroup to go ahead. 7765 */ 7766 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7767 { 7768 struct mem_cgroup *memcg; 7769 7770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7771 return; 7772 7773 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7774 7775 /* PF_MEMALLOC context, charging must succeed */ 7776 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7777 VM_WARN_ON_ONCE(1); 7778 7779 rcu_read_lock(); 7780 memcg = obj_cgroup_memcg(objcg); 7781 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7782 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7783 rcu_read_unlock(); 7784 } 7785 7786 /** 7787 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7788 * @objcg: the object cgroup 7789 * @size: size of compressed object 7790 * 7791 * Uncharges zswap memory on page in. 7792 */ 7793 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7794 { 7795 struct mem_cgroup *memcg; 7796 7797 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7798 return; 7799 7800 obj_cgroup_uncharge(objcg, size); 7801 7802 rcu_read_lock(); 7803 memcg = obj_cgroup_memcg(objcg); 7804 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7805 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7806 rcu_read_unlock(); 7807 } 7808 7809 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7810 struct cftype *cft) 7811 { 7812 cgroup_rstat_flush(css->cgroup); 7813 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7814 } 7815 7816 static int zswap_max_show(struct seq_file *m, void *v) 7817 { 7818 return seq_puts_memcg_tunable(m, 7819 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7820 } 7821 7822 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7823 char *buf, size_t nbytes, loff_t off) 7824 { 7825 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7826 unsigned long max; 7827 int err; 7828 7829 buf = strstrip(buf); 7830 err = page_counter_memparse(buf, "max", &max); 7831 if (err) 7832 return err; 7833 7834 xchg(&memcg->zswap_max, max); 7835 7836 return nbytes; 7837 } 7838 7839 static struct cftype zswap_files[] = { 7840 { 7841 .name = "zswap.current", 7842 .flags = CFTYPE_NOT_ON_ROOT, 7843 .read_u64 = zswap_current_read, 7844 }, 7845 { 7846 .name = "zswap.max", 7847 .flags = CFTYPE_NOT_ON_ROOT, 7848 .seq_show = zswap_max_show, 7849 .write = zswap_max_write, 7850 }, 7851 { } /* terminate */ 7852 }; 7853 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7854 7855 static int __init mem_cgroup_swap_init(void) 7856 { 7857 if (mem_cgroup_disabled()) 7858 return 0; 7859 7860 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7861 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7862 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7863 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7864 #endif 7865 return 0; 7866 } 7867 subsys_initcall(mem_cgroup_swap_init); 7868 7869 #endif /* CONFIG_SWAP */ 7870