1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include <linux/parser.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "swap.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 /* Active memory cgroup to use from an interrupt context */ 83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 85 86 /* Socket memory accounting disabled? */ 87 static bool cgroup_memory_nosocket __ro_after_init; 88 89 /* Kernel memory accounting disabled? */ 90 static bool cgroup_memory_nokmem __ro_after_init; 91 92 #ifdef CONFIG_CGROUP_WRITEBACK 93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 94 #endif 95 96 /* Whether legacy memory+swap accounting is active */ 97 static bool do_memsw_account(void) 98 { 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 100 } 101 102 #define THRESHOLDS_EVENTS_TARGET 128 103 #define SOFTLIMIT_EVENTS_TARGET 1024 104 105 /* 106 * Cgroups above their limits are maintained in a RB-Tree, independent of 107 * their hierarchy representation 108 */ 109 110 struct mem_cgroup_tree_per_node { 111 struct rb_root rb_root; 112 struct rb_node *rb_rightmost; 113 spinlock_t lock; 114 }; 115 116 struct mem_cgroup_tree { 117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 118 }; 119 120 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 121 122 /* for OOM */ 123 struct mem_cgroup_eventfd_list { 124 struct list_head list; 125 struct eventfd_ctx *eventfd; 126 }; 127 128 /* 129 * cgroup_event represents events which userspace want to receive. 130 */ 131 struct mem_cgroup_event { 132 /* 133 * memcg which the event belongs to. 134 */ 135 struct mem_cgroup *memcg; 136 /* 137 * eventfd to signal userspace about the event. 138 */ 139 struct eventfd_ctx *eventfd; 140 /* 141 * Each of these stored in a list by the cgroup. 142 */ 143 struct list_head list; 144 /* 145 * register_event() callback will be used to add new userspace 146 * waiter for changes related to this event. Use eventfd_signal() 147 * on eventfd to send notification to userspace. 148 */ 149 int (*register_event)(struct mem_cgroup *memcg, 150 struct eventfd_ctx *eventfd, const char *args); 151 /* 152 * unregister_event() callback will be called when userspace closes 153 * the eventfd or on cgroup removing. This callback must be set, 154 * if you want provide notification functionality. 155 */ 156 void (*unregister_event)(struct mem_cgroup *memcg, 157 struct eventfd_ctx *eventfd); 158 /* 159 * All fields below needed to unregister event when 160 * userspace closes eventfd. 161 */ 162 poll_table pt; 163 wait_queue_head_t *wqh; 164 wait_queue_entry_t wait; 165 struct work_struct remove; 166 }; 167 168 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 170 171 /* Stuffs for move charges at task migration. */ 172 /* 173 * Types of charges to be moved. 174 */ 175 #define MOVE_ANON 0x1U 176 #define MOVE_FILE 0x2U 177 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 178 179 /* "mc" and its members are protected by cgroup_mutex */ 180 static struct move_charge_struct { 181 spinlock_t lock; /* for from, to */ 182 struct mm_struct *mm; 183 struct mem_cgroup *from; 184 struct mem_cgroup *to; 185 unsigned long flags; 186 unsigned long precharge; 187 unsigned long moved_charge; 188 unsigned long moved_swap; 189 struct task_struct *moving_task; /* a task moving charges */ 190 wait_queue_head_t waitq; /* a waitq for other context */ 191 } mc = { 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 194 }; 195 196 /* 197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 198 * limit reclaim to prevent infinite loops, if they ever occur. 199 */ 200 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 201 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 202 203 /* for encoding cft->private value on file */ 204 enum res_type { 205 _MEM, 206 _MEMSWAP, 207 _KMEM, 208 _TCP, 209 }; 210 211 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 212 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 213 #define MEMFILE_ATTR(val) ((val) & 0xffff) 214 215 /* 216 * Iteration constructs for visiting all cgroups (under a tree). If 217 * loops are exited prematurely (break), mem_cgroup_iter_break() must 218 * be used for reference counting. 219 */ 220 #define for_each_mem_cgroup_tree(iter, root) \ 221 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 222 iter != NULL; \ 223 iter = mem_cgroup_iter(root, iter, NULL)) 224 225 #define for_each_mem_cgroup(iter) \ 226 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 227 iter != NULL; \ 228 iter = mem_cgroup_iter(NULL, iter, NULL)) 229 230 static inline bool task_is_dying(void) 231 { 232 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 233 (current->flags & PF_EXITING); 234 } 235 236 /* Some nice accessors for the vmpressure. */ 237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 238 { 239 if (!memcg) 240 memcg = root_mem_cgroup; 241 return &memcg->vmpressure; 242 } 243 244 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 245 { 246 return container_of(vmpr, struct mem_cgroup, vmpressure); 247 } 248 249 #ifdef CONFIG_MEMCG_KMEM 250 static DEFINE_SPINLOCK(objcg_lock); 251 252 bool mem_cgroup_kmem_disabled(void) 253 { 254 return cgroup_memory_nokmem; 255 } 256 257 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 258 unsigned int nr_pages); 259 260 static void obj_cgroup_release(struct percpu_ref *ref) 261 { 262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 263 unsigned int nr_bytes; 264 unsigned int nr_pages; 265 unsigned long flags; 266 267 /* 268 * At this point all allocated objects are freed, and 269 * objcg->nr_charged_bytes can't have an arbitrary byte value. 270 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 271 * 272 * The following sequence can lead to it: 273 * 1) CPU0: objcg == stock->cached_objcg 274 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 275 * PAGE_SIZE bytes are charged 276 * 3) CPU1: a process from another memcg is allocating something, 277 * the stock if flushed, 278 * objcg->nr_charged_bytes = PAGE_SIZE - 92 279 * 5) CPU0: we do release this object, 280 * 92 bytes are added to stock->nr_bytes 281 * 6) CPU0: stock is flushed, 282 * 92 bytes are added to objcg->nr_charged_bytes 283 * 284 * In the result, nr_charged_bytes == PAGE_SIZE. 285 * This page will be uncharged in obj_cgroup_release(). 286 */ 287 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 288 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 289 nr_pages = nr_bytes >> PAGE_SHIFT; 290 291 if (nr_pages) 292 obj_cgroup_uncharge_pages(objcg, nr_pages); 293 294 spin_lock_irqsave(&objcg_lock, flags); 295 list_del(&objcg->list); 296 spin_unlock_irqrestore(&objcg_lock, flags); 297 298 percpu_ref_exit(ref); 299 kfree_rcu(objcg, rcu); 300 } 301 302 static struct obj_cgroup *obj_cgroup_alloc(void) 303 { 304 struct obj_cgroup *objcg; 305 int ret; 306 307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 308 if (!objcg) 309 return NULL; 310 311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 312 GFP_KERNEL); 313 if (ret) { 314 kfree(objcg); 315 return NULL; 316 } 317 INIT_LIST_HEAD(&objcg->list); 318 return objcg; 319 } 320 321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 322 struct mem_cgroup *parent) 323 { 324 struct obj_cgroup *objcg, *iter; 325 326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 327 328 spin_lock_irq(&objcg_lock); 329 330 /* 1) Ready to reparent active objcg. */ 331 list_add(&objcg->list, &memcg->objcg_list); 332 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 333 list_for_each_entry(iter, &memcg->objcg_list, list) 334 WRITE_ONCE(iter->memcg, parent); 335 /* 3) Move already reparented objcgs to the parent's list */ 336 list_splice(&memcg->objcg_list, &parent->objcg_list); 337 338 spin_unlock_irq(&objcg_lock); 339 340 percpu_ref_kill(&objcg->refcnt); 341 } 342 343 /* 344 * A lot of the calls to the cache allocation functions are expected to be 345 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 346 * conditional to this static branch, we'll have to allow modules that does 347 * kmem_cache_alloc and the such to see this symbol as well 348 */ 349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 350 EXPORT_SYMBOL(memcg_kmem_enabled_key); 351 #endif 352 353 /** 354 * mem_cgroup_css_from_page - css of the memcg associated with a page 355 * @page: page of interest 356 * 357 * If memcg is bound to the default hierarchy, css of the memcg associated 358 * with @page is returned. The returned css remains associated with @page 359 * until it is released. 360 * 361 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 362 * is returned. 363 */ 364 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 365 { 366 struct mem_cgroup *memcg; 367 368 memcg = page_memcg(page); 369 370 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 371 memcg = root_mem_cgroup; 372 373 return &memcg->css; 374 } 375 376 /** 377 * page_cgroup_ino - return inode number of the memcg a page is charged to 378 * @page: the page 379 * 380 * Look up the closest online ancestor of the memory cgroup @page is charged to 381 * and return its inode number or 0 if @page is not charged to any cgroup. It 382 * is safe to call this function without holding a reference to @page. 383 * 384 * Note, this function is inherently racy, because there is nothing to prevent 385 * the cgroup inode from getting torn down and potentially reallocated a moment 386 * after page_cgroup_ino() returns, so it only should be used by callers that 387 * do not care (such as procfs interfaces). 388 */ 389 ino_t page_cgroup_ino(struct page *page) 390 { 391 struct mem_cgroup *memcg; 392 unsigned long ino = 0; 393 394 rcu_read_lock(); 395 memcg = page_memcg_check(page); 396 397 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 398 memcg = parent_mem_cgroup(memcg); 399 if (memcg) 400 ino = cgroup_ino(memcg->css.cgroup); 401 rcu_read_unlock(); 402 return ino; 403 } 404 405 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 406 struct mem_cgroup_tree_per_node *mctz, 407 unsigned long new_usage_in_excess) 408 { 409 struct rb_node **p = &mctz->rb_root.rb_node; 410 struct rb_node *parent = NULL; 411 struct mem_cgroup_per_node *mz_node; 412 bool rightmost = true; 413 414 if (mz->on_tree) 415 return; 416 417 mz->usage_in_excess = new_usage_in_excess; 418 if (!mz->usage_in_excess) 419 return; 420 while (*p) { 421 parent = *p; 422 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 423 tree_node); 424 if (mz->usage_in_excess < mz_node->usage_in_excess) { 425 p = &(*p)->rb_left; 426 rightmost = false; 427 } else { 428 p = &(*p)->rb_right; 429 } 430 } 431 432 if (rightmost) 433 mctz->rb_rightmost = &mz->tree_node; 434 435 rb_link_node(&mz->tree_node, parent, p); 436 rb_insert_color(&mz->tree_node, &mctz->rb_root); 437 mz->on_tree = true; 438 } 439 440 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 441 struct mem_cgroup_tree_per_node *mctz) 442 { 443 if (!mz->on_tree) 444 return; 445 446 if (&mz->tree_node == mctz->rb_rightmost) 447 mctz->rb_rightmost = rb_prev(&mz->tree_node); 448 449 rb_erase(&mz->tree_node, &mctz->rb_root); 450 mz->on_tree = false; 451 } 452 453 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 454 struct mem_cgroup_tree_per_node *mctz) 455 { 456 unsigned long flags; 457 458 spin_lock_irqsave(&mctz->lock, flags); 459 __mem_cgroup_remove_exceeded(mz, mctz); 460 spin_unlock_irqrestore(&mctz->lock, flags); 461 } 462 463 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 464 { 465 unsigned long nr_pages = page_counter_read(&memcg->memory); 466 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 467 unsigned long excess = 0; 468 469 if (nr_pages > soft_limit) 470 excess = nr_pages - soft_limit; 471 472 return excess; 473 } 474 475 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 476 { 477 unsigned long excess; 478 struct mem_cgroup_per_node *mz; 479 struct mem_cgroup_tree_per_node *mctz; 480 481 mctz = soft_limit_tree.rb_tree_per_node[nid]; 482 if (!mctz) 483 return; 484 /* 485 * Necessary to update all ancestors when hierarchy is used. 486 * because their event counter is not touched. 487 */ 488 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 489 mz = memcg->nodeinfo[nid]; 490 excess = soft_limit_excess(memcg); 491 /* 492 * We have to update the tree if mz is on RB-tree or 493 * mem is over its softlimit. 494 */ 495 if (excess || mz->on_tree) { 496 unsigned long flags; 497 498 spin_lock_irqsave(&mctz->lock, flags); 499 /* if on-tree, remove it */ 500 if (mz->on_tree) 501 __mem_cgroup_remove_exceeded(mz, mctz); 502 /* 503 * Insert again. mz->usage_in_excess will be updated. 504 * If excess is 0, no tree ops. 505 */ 506 __mem_cgroup_insert_exceeded(mz, mctz, excess); 507 spin_unlock_irqrestore(&mctz->lock, flags); 508 } 509 } 510 } 511 512 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 513 { 514 struct mem_cgroup_tree_per_node *mctz; 515 struct mem_cgroup_per_node *mz; 516 int nid; 517 518 for_each_node(nid) { 519 mz = memcg->nodeinfo[nid]; 520 mctz = soft_limit_tree.rb_tree_per_node[nid]; 521 if (mctz) 522 mem_cgroup_remove_exceeded(mz, mctz); 523 } 524 } 525 526 static struct mem_cgroup_per_node * 527 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 528 { 529 struct mem_cgroup_per_node *mz; 530 531 retry: 532 mz = NULL; 533 if (!mctz->rb_rightmost) 534 goto done; /* Nothing to reclaim from */ 535 536 mz = rb_entry(mctz->rb_rightmost, 537 struct mem_cgroup_per_node, tree_node); 538 /* 539 * Remove the node now but someone else can add it back, 540 * we will to add it back at the end of reclaim to its correct 541 * position in the tree. 542 */ 543 __mem_cgroup_remove_exceeded(mz, mctz); 544 if (!soft_limit_excess(mz->memcg) || 545 !css_tryget(&mz->memcg->css)) 546 goto retry; 547 done: 548 return mz; 549 } 550 551 static struct mem_cgroup_per_node * 552 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 553 { 554 struct mem_cgroup_per_node *mz; 555 556 spin_lock_irq(&mctz->lock); 557 mz = __mem_cgroup_largest_soft_limit_node(mctz); 558 spin_unlock_irq(&mctz->lock); 559 return mz; 560 } 561 562 /* 563 * memcg and lruvec stats flushing 564 * 565 * Many codepaths leading to stats update or read are performance sensitive and 566 * adding stats flushing in such codepaths is not desirable. So, to optimize the 567 * flushing the kernel does: 568 * 569 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 570 * rstat update tree grow unbounded. 571 * 572 * 2) Flush the stats synchronously on reader side only when there are more than 573 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 574 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 575 * only for 2 seconds due to (1). 576 */ 577 static void flush_memcg_stats_dwork(struct work_struct *w); 578 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 579 static DEFINE_SPINLOCK(stats_flush_lock); 580 static DEFINE_PER_CPU(unsigned int, stats_updates); 581 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 582 static u64 flush_next_time; 583 584 #define FLUSH_TIME (2UL*HZ) 585 586 /* 587 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 588 * not rely on this as part of an acquired spinlock_t lock. These functions are 589 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 590 * is sufficient. 591 */ 592 static void memcg_stats_lock(void) 593 { 594 preempt_disable_nested(); 595 VM_WARN_ON_IRQS_ENABLED(); 596 } 597 598 static void __memcg_stats_lock(void) 599 { 600 preempt_disable_nested(); 601 } 602 603 static void memcg_stats_unlock(void) 604 { 605 preempt_enable_nested(); 606 } 607 608 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 609 { 610 unsigned int x; 611 612 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 613 614 x = __this_cpu_add_return(stats_updates, abs(val)); 615 if (x > MEMCG_CHARGE_BATCH) { 616 /* 617 * If stats_flush_threshold exceeds the threshold 618 * (>num_online_cpus()), cgroup stats update will be triggered 619 * in __mem_cgroup_flush_stats(). Increasing this var further 620 * is redundant and simply adds overhead in atomic update. 621 */ 622 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 623 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 624 __this_cpu_write(stats_updates, 0); 625 } 626 } 627 628 static void __mem_cgroup_flush_stats(void) 629 { 630 unsigned long flag; 631 632 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 633 return; 634 635 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 636 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 637 atomic_set(&stats_flush_threshold, 0); 638 spin_unlock_irqrestore(&stats_flush_lock, flag); 639 } 640 641 void mem_cgroup_flush_stats(void) 642 { 643 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 644 __mem_cgroup_flush_stats(); 645 } 646 647 void mem_cgroup_flush_stats_delayed(void) 648 { 649 if (time_after64(jiffies_64, flush_next_time)) 650 mem_cgroup_flush_stats(); 651 } 652 653 static void flush_memcg_stats_dwork(struct work_struct *w) 654 { 655 __mem_cgroup_flush_stats(); 656 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 657 } 658 659 /* Subset of vm_event_item to report for memcg event stats */ 660 static const unsigned int memcg_vm_event_stat[] = { 661 PGPGIN, 662 PGPGOUT, 663 PGSCAN_KSWAPD, 664 PGSCAN_DIRECT, 665 PGSCAN_KHUGEPAGED, 666 PGSTEAL_KSWAPD, 667 PGSTEAL_DIRECT, 668 PGSTEAL_KHUGEPAGED, 669 PGFAULT, 670 PGMAJFAULT, 671 PGREFILL, 672 PGACTIVATE, 673 PGDEACTIVATE, 674 PGLAZYFREE, 675 PGLAZYFREED, 676 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 677 ZSWPIN, 678 ZSWPOUT, 679 #endif 680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 681 THP_FAULT_ALLOC, 682 THP_COLLAPSE_ALLOC, 683 #endif 684 }; 685 686 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 687 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 688 689 static void init_memcg_events(void) 690 { 691 int i; 692 693 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 694 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 695 } 696 697 static inline int memcg_events_index(enum vm_event_item idx) 698 { 699 return mem_cgroup_events_index[idx] - 1; 700 } 701 702 struct memcg_vmstats_percpu { 703 /* Local (CPU and cgroup) page state & events */ 704 long state[MEMCG_NR_STAT]; 705 unsigned long events[NR_MEMCG_EVENTS]; 706 707 /* Delta calculation for lockless upward propagation */ 708 long state_prev[MEMCG_NR_STAT]; 709 unsigned long events_prev[NR_MEMCG_EVENTS]; 710 711 /* Cgroup1: threshold notifications & softlimit tree updates */ 712 unsigned long nr_page_events; 713 unsigned long targets[MEM_CGROUP_NTARGETS]; 714 }; 715 716 struct memcg_vmstats { 717 /* Aggregated (CPU and subtree) page state & events */ 718 long state[MEMCG_NR_STAT]; 719 unsigned long events[NR_MEMCG_EVENTS]; 720 721 /* Pending child counts during tree propagation */ 722 long state_pending[MEMCG_NR_STAT]; 723 unsigned long events_pending[NR_MEMCG_EVENTS]; 724 }; 725 726 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 727 { 728 long x = READ_ONCE(memcg->vmstats->state[idx]); 729 #ifdef CONFIG_SMP 730 if (x < 0) 731 x = 0; 732 #endif 733 return x; 734 } 735 736 /** 737 * __mod_memcg_state - update cgroup memory statistics 738 * @memcg: the memory cgroup 739 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 740 * @val: delta to add to the counter, can be negative 741 */ 742 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 743 { 744 if (mem_cgroup_disabled()) 745 return; 746 747 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 748 memcg_rstat_updated(memcg, val); 749 } 750 751 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 752 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 753 { 754 long x = 0; 755 int cpu; 756 757 for_each_possible_cpu(cpu) 758 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 759 #ifdef CONFIG_SMP 760 if (x < 0) 761 x = 0; 762 #endif 763 return x; 764 } 765 766 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 767 int val) 768 { 769 struct mem_cgroup_per_node *pn; 770 struct mem_cgroup *memcg; 771 772 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 773 memcg = pn->memcg; 774 775 /* 776 * The caller from rmap relay on disabled preemption becase they never 777 * update their counter from in-interrupt context. For these two 778 * counters we check that the update is never performed from an 779 * interrupt context while other caller need to have disabled interrupt. 780 */ 781 __memcg_stats_lock(); 782 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 783 switch (idx) { 784 case NR_ANON_MAPPED: 785 case NR_FILE_MAPPED: 786 case NR_ANON_THPS: 787 case NR_SHMEM_PMDMAPPED: 788 case NR_FILE_PMDMAPPED: 789 WARN_ON_ONCE(!in_task()); 790 break; 791 default: 792 VM_WARN_ON_IRQS_ENABLED(); 793 } 794 } 795 796 /* Update memcg */ 797 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 798 799 /* Update lruvec */ 800 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 801 802 memcg_rstat_updated(memcg, val); 803 memcg_stats_unlock(); 804 } 805 806 /** 807 * __mod_lruvec_state - update lruvec memory statistics 808 * @lruvec: the lruvec 809 * @idx: the stat item 810 * @val: delta to add to the counter, can be negative 811 * 812 * The lruvec is the intersection of the NUMA node and a cgroup. This 813 * function updates the all three counters that are affected by a 814 * change of state at this level: per-node, per-cgroup, per-lruvec. 815 */ 816 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 817 int val) 818 { 819 /* Update node */ 820 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 821 822 /* Update memcg and lruvec */ 823 if (!mem_cgroup_disabled()) 824 __mod_memcg_lruvec_state(lruvec, idx, val); 825 } 826 827 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 828 int val) 829 { 830 struct page *head = compound_head(page); /* rmap on tail pages */ 831 struct mem_cgroup *memcg; 832 pg_data_t *pgdat = page_pgdat(page); 833 struct lruvec *lruvec; 834 835 rcu_read_lock(); 836 memcg = page_memcg(head); 837 /* Untracked pages have no memcg, no lruvec. Update only the node */ 838 if (!memcg) { 839 rcu_read_unlock(); 840 __mod_node_page_state(pgdat, idx, val); 841 return; 842 } 843 844 lruvec = mem_cgroup_lruvec(memcg, pgdat); 845 __mod_lruvec_state(lruvec, idx, val); 846 rcu_read_unlock(); 847 } 848 EXPORT_SYMBOL(__mod_lruvec_page_state); 849 850 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 851 { 852 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 853 struct mem_cgroup *memcg; 854 struct lruvec *lruvec; 855 856 rcu_read_lock(); 857 memcg = mem_cgroup_from_slab_obj(p); 858 859 /* 860 * Untracked pages have no memcg, no lruvec. Update only the 861 * node. If we reparent the slab objects to the root memcg, 862 * when we free the slab object, we need to update the per-memcg 863 * vmstats to keep it correct for the root memcg. 864 */ 865 if (!memcg) { 866 __mod_node_page_state(pgdat, idx, val); 867 } else { 868 lruvec = mem_cgroup_lruvec(memcg, pgdat); 869 __mod_lruvec_state(lruvec, idx, val); 870 } 871 rcu_read_unlock(); 872 } 873 874 /** 875 * __count_memcg_events - account VM events in a cgroup 876 * @memcg: the memory cgroup 877 * @idx: the event item 878 * @count: the number of events that occurred 879 */ 880 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 881 unsigned long count) 882 { 883 int index = memcg_events_index(idx); 884 885 if (mem_cgroup_disabled() || index < 0) 886 return; 887 888 memcg_stats_lock(); 889 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 890 memcg_rstat_updated(memcg, count); 891 memcg_stats_unlock(); 892 } 893 894 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 895 { 896 int index = memcg_events_index(event); 897 898 if (index < 0) 899 return 0; 900 return READ_ONCE(memcg->vmstats->events[index]); 901 } 902 903 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 904 { 905 long x = 0; 906 int cpu; 907 int index = memcg_events_index(event); 908 909 if (index < 0) 910 return 0; 911 912 for_each_possible_cpu(cpu) 913 x += per_cpu(memcg->vmstats_percpu->events[index], cpu); 914 return x; 915 } 916 917 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 918 int nr_pages) 919 { 920 /* pagein of a big page is an event. So, ignore page size */ 921 if (nr_pages > 0) 922 __count_memcg_events(memcg, PGPGIN, 1); 923 else { 924 __count_memcg_events(memcg, PGPGOUT, 1); 925 nr_pages = -nr_pages; /* for event */ 926 } 927 928 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 929 } 930 931 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 932 enum mem_cgroup_events_target target) 933 { 934 unsigned long val, next; 935 936 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 937 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 938 /* from time_after() in jiffies.h */ 939 if ((long)(next - val) < 0) { 940 switch (target) { 941 case MEM_CGROUP_TARGET_THRESH: 942 next = val + THRESHOLDS_EVENTS_TARGET; 943 break; 944 case MEM_CGROUP_TARGET_SOFTLIMIT: 945 next = val + SOFTLIMIT_EVENTS_TARGET; 946 break; 947 default: 948 break; 949 } 950 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 951 return true; 952 } 953 return false; 954 } 955 956 /* 957 * Check events in order. 958 * 959 */ 960 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 961 { 962 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 963 return; 964 965 /* threshold event is triggered in finer grain than soft limit */ 966 if (unlikely(mem_cgroup_event_ratelimit(memcg, 967 MEM_CGROUP_TARGET_THRESH))) { 968 bool do_softlimit; 969 970 do_softlimit = mem_cgroup_event_ratelimit(memcg, 971 MEM_CGROUP_TARGET_SOFTLIMIT); 972 mem_cgroup_threshold(memcg); 973 if (unlikely(do_softlimit)) 974 mem_cgroup_update_tree(memcg, nid); 975 } 976 } 977 978 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 979 { 980 /* 981 * mm_update_next_owner() may clear mm->owner to NULL 982 * if it races with swapoff, page migration, etc. 983 * So this can be called with p == NULL. 984 */ 985 if (unlikely(!p)) 986 return NULL; 987 988 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 989 } 990 EXPORT_SYMBOL(mem_cgroup_from_task); 991 992 static __always_inline struct mem_cgroup *active_memcg(void) 993 { 994 if (!in_task()) 995 return this_cpu_read(int_active_memcg); 996 else 997 return current->active_memcg; 998 } 999 1000 /** 1001 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1002 * @mm: mm from which memcg should be extracted. It can be NULL. 1003 * 1004 * Obtain a reference on mm->memcg and returns it if successful. If mm 1005 * is NULL, then the memcg is chosen as follows: 1006 * 1) The active memcg, if set. 1007 * 2) current->mm->memcg, if available 1008 * 3) root memcg 1009 * If mem_cgroup is disabled, NULL is returned. 1010 */ 1011 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1012 { 1013 struct mem_cgroup *memcg; 1014 1015 if (mem_cgroup_disabled()) 1016 return NULL; 1017 1018 /* 1019 * Page cache insertions can happen without an 1020 * actual mm context, e.g. during disk probing 1021 * on boot, loopback IO, acct() writes etc. 1022 * 1023 * No need to css_get on root memcg as the reference 1024 * counting is disabled on the root level in the 1025 * cgroup core. See CSS_NO_REF. 1026 */ 1027 if (unlikely(!mm)) { 1028 memcg = active_memcg(); 1029 if (unlikely(memcg)) { 1030 /* remote memcg must hold a ref */ 1031 css_get(&memcg->css); 1032 return memcg; 1033 } 1034 mm = current->mm; 1035 if (unlikely(!mm)) 1036 return root_mem_cgroup; 1037 } 1038 1039 rcu_read_lock(); 1040 do { 1041 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1042 if (unlikely(!memcg)) 1043 memcg = root_mem_cgroup; 1044 } while (!css_tryget(&memcg->css)); 1045 rcu_read_unlock(); 1046 return memcg; 1047 } 1048 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1049 1050 static __always_inline bool memcg_kmem_bypass(void) 1051 { 1052 /* Allow remote memcg charging from any context. */ 1053 if (unlikely(active_memcg())) 1054 return false; 1055 1056 /* Memcg to charge can't be determined. */ 1057 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 1058 return true; 1059 1060 return false; 1061 } 1062 1063 /** 1064 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1065 * @root: hierarchy root 1066 * @prev: previously returned memcg, NULL on first invocation 1067 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1068 * 1069 * Returns references to children of the hierarchy below @root, or 1070 * @root itself, or %NULL after a full round-trip. 1071 * 1072 * Caller must pass the return value in @prev on subsequent 1073 * invocations for reference counting, or use mem_cgroup_iter_break() 1074 * to cancel a hierarchy walk before the round-trip is complete. 1075 * 1076 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1077 * in the hierarchy among all concurrent reclaimers operating on the 1078 * same node. 1079 */ 1080 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1081 struct mem_cgroup *prev, 1082 struct mem_cgroup_reclaim_cookie *reclaim) 1083 { 1084 struct mem_cgroup_reclaim_iter *iter; 1085 struct cgroup_subsys_state *css = NULL; 1086 struct mem_cgroup *memcg = NULL; 1087 struct mem_cgroup *pos = NULL; 1088 1089 if (mem_cgroup_disabled()) 1090 return NULL; 1091 1092 if (!root) 1093 root = root_mem_cgroup; 1094 1095 rcu_read_lock(); 1096 1097 if (reclaim) { 1098 struct mem_cgroup_per_node *mz; 1099 1100 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1101 iter = &mz->iter; 1102 1103 /* 1104 * On start, join the current reclaim iteration cycle. 1105 * Exit when a concurrent walker completes it. 1106 */ 1107 if (!prev) 1108 reclaim->generation = iter->generation; 1109 else if (reclaim->generation != iter->generation) 1110 goto out_unlock; 1111 1112 while (1) { 1113 pos = READ_ONCE(iter->position); 1114 if (!pos || css_tryget(&pos->css)) 1115 break; 1116 /* 1117 * css reference reached zero, so iter->position will 1118 * be cleared by ->css_released. However, we should not 1119 * rely on this happening soon, because ->css_released 1120 * is called from a work queue, and by busy-waiting we 1121 * might block it. So we clear iter->position right 1122 * away. 1123 */ 1124 (void)cmpxchg(&iter->position, pos, NULL); 1125 } 1126 } else if (prev) { 1127 pos = prev; 1128 } 1129 1130 if (pos) 1131 css = &pos->css; 1132 1133 for (;;) { 1134 css = css_next_descendant_pre(css, &root->css); 1135 if (!css) { 1136 /* 1137 * Reclaimers share the hierarchy walk, and a 1138 * new one might jump in right at the end of 1139 * the hierarchy - make sure they see at least 1140 * one group and restart from the beginning. 1141 */ 1142 if (!prev) 1143 continue; 1144 break; 1145 } 1146 1147 /* 1148 * Verify the css and acquire a reference. The root 1149 * is provided by the caller, so we know it's alive 1150 * and kicking, and don't take an extra reference. 1151 */ 1152 if (css == &root->css || css_tryget(css)) { 1153 memcg = mem_cgroup_from_css(css); 1154 break; 1155 } 1156 } 1157 1158 if (reclaim) { 1159 /* 1160 * The position could have already been updated by a competing 1161 * thread, so check that the value hasn't changed since we read 1162 * it to avoid reclaiming from the same cgroup twice. 1163 */ 1164 (void)cmpxchg(&iter->position, pos, memcg); 1165 1166 if (pos) 1167 css_put(&pos->css); 1168 1169 if (!memcg) 1170 iter->generation++; 1171 } 1172 1173 out_unlock: 1174 rcu_read_unlock(); 1175 if (prev && prev != root) 1176 css_put(&prev->css); 1177 1178 return memcg; 1179 } 1180 1181 /** 1182 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1183 * @root: hierarchy root 1184 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1185 */ 1186 void mem_cgroup_iter_break(struct mem_cgroup *root, 1187 struct mem_cgroup *prev) 1188 { 1189 if (!root) 1190 root = root_mem_cgroup; 1191 if (prev && prev != root) 1192 css_put(&prev->css); 1193 } 1194 1195 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1196 struct mem_cgroup *dead_memcg) 1197 { 1198 struct mem_cgroup_reclaim_iter *iter; 1199 struct mem_cgroup_per_node *mz; 1200 int nid; 1201 1202 for_each_node(nid) { 1203 mz = from->nodeinfo[nid]; 1204 iter = &mz->iter; 1205 cmpxchg(&iter->position, dead_memcg, NULL); 1206 } 1207 } 1208 1209 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1210 { 1211 struct mem_cgroup *memcg = dead_memcg; 1212 struct mem_cgroup *last; 1213 1214 do { 1215 __invalidate_reclaim_iterators(memcg, dead_memcg); 1216 last = memcg; 1217 } while ((memcg = parent_mem_cgroup(memcg))); 1218 1219 /* 1220 * When cgroup1 non-hierarchy mode is used, 1221 * parent_mem_cgroup() does not walk all the way up to the 1222 * cgroup root (root_mem_cgroup). So we have to handle 1223 * dead_memcg from cgroup root separately. 1224 */ 1225 if (!mem_cgroup_is_root(last)) 1226 __invalidate_reclaim_iterators(root_mem_cgroup, 1227 dead_memcg); 1228 } 1229 1230 /** 1231 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1232 * @memcg: hierarchy root 1233 * @fn: function to call for each task 1234 * @arg: argument passed to @fn 1235 * 1236 * This function iterates over tasks attached to @memcg or to any of its 1237 * descendants and calls @fn for each task. If @fn returns a non-zero 1238 * value, the function breaks the iteration loop and returns the value. 1239 * Otherwise, it will iterate over all tasks and return 0. 1240 * 1241 * This function must not be called for the root memory cgroup. 1242 */ 1243 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1244 int (*fn)(struct task_struct *, void *), void *arg) 1245 { 1246 struct mem_cgroup *iter; 1247 int ret = 0; 1248 1249 BUG_ON(mem_cgroup_is_root(memcg)); 1250 1251 for_each_mem_cgroup_tree(iter, memcg) { 1252 struct css_task_iter it; 1253 struct task_struct *task; 1254 1255 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1256 while (!ret && (task = css_task_iter_next(&it))) 1257 ret = fn(task, arg); 1258 css_task_iter_end(&it); 1259 if (ret) { 1260 mem_cgroup_iter_break(memcg, iter); 1261 break; 1262 } 1263 } 1264 return ret; 1265 } 1266 1267 #ifdef CONFIG_DEBUG_VM 1268 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1269 { 1270 struct mem_cgroup *memcg; 1271 1272 if (mem_cgroup_disabled()) 1273 return; 1274 1275 memcg = folio_memcg(folio); 1276 1277 if (!memcg) 1278 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1279 else 1280 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1281 } 1282 #endif 1283 1284 /** 1285 * folio_lruvec_lock - Lock the lruvec for a folio. 1286 * @folio: Pointer to the folio. 1287 * 1288 * These functions are safe to use under any of the following conditions: 1289 * - folio locked 1290 * - folio_test_lru false 1291 * - folio_memcg_lock() 1292 * - folio frozen (refcount of 0) 1293 * 1294 * Return: The lruvec this folio is on with its lock held. 1295 */ 1296 struct lruvec *folio_lruvec_lock(struct folio *folio) 1297 { 1298 struct lruvec *lruvec = folio_lruvec(folio); 1299 1300 spin_lock(&lruvec->lru_lock); 1301 lruvec_memcg_debug(lruvec, folio); 1302 1303 return lruvec; 1304 } 1305 1306 /** 1307 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1308 * @folio: Pointer to the folio. 1309 * 1310 * These functions are safe to use under any of the following conditions: 1311 * - folio locked 1312 * - folio_test_lru false 1313 * - folio_memcg_lock() 1314 * - folio frozen (refcount of 0) 1315 * 1316 * Return: The lruvec this folio is on with its lock held and interrupts 1317 * disabled. 1318 */ 1319 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1320 { 1321 struct lruvec *lruvec = folio_lruvec(folio); 1322 1323 spin_lock_irq(&lruvec->lru_lock); 1324 lruvec_memcg_debug(lruvec, folio); 1325 1326 return lruvec; 1327 } 1328 1329 /** 1330 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1331 * @folio: Pointer to the folio. 1332 * @flags: Pointer to irqsave flags. 1333 * 1334 * These functions are safe to use under any of the following conditions: 1335 * - folio locked 1336 * - folio_test_lru false 1337 * - folio_memcg_lock() 1338 * - folio frozen (refcount of 0) 1339 * 1340 * Return: The lruvec this folio is on with its lock held and interrupts 1341 * disabled. 1342 */ 1343 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1344 unsigned long *flags) 1345 { 1346 struct lruvec *lruvec = folio_lruvec(folio); 1347 1348 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1349 lruvec_memcg_debug(lruvec, folio); 1350 1351 return lruvec; 1352 } 1353 1354 /** 1355 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1356 * @lruvec: mem_cgroup per zone lru vector 1357 * @lru: index of lru list the page is sitting on 1358 * @zid: zone id of the accounted pages 1359 * @nr_pages: positive when adding or negative when removing 1360 * 1361 * This function must be called under lru_lock, just before a page is added 1362 * to or just after a page is removed from an lru list. 1363 */ 1364 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1365 int zid, int nr_pages) 1366 { 1367 struct mem_cgroup_per_node *mz; 1368 unsigned long *lru_size; 1369 long size; 1370 1371 if (mem_cgroup_disabled()) 1372 return; 1373 1374 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1375 lru_size = &mz->lru_zone_size[zid][lru]; 1376 1377 if (nr_pages < 0) 1378 *lru_size += nr_pages; 1379 1380 size = *lru_size; 1381 if (WARN_ONCE(size < 0, 1382 "%s(%p, %d, %d): lru_size %ld\n", 1383 __func__, lruvec, lru, nr_pages, size)) { 1384 VM_BUG_ON(1); 1385 *lru_size = 0; 1386 } 1387 1388 if (nr_pages > 0) 1389 *lru_size += nr_pages; 1390 } 1391 1392 /** 1393 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1394 * @memcg: the memory cgroup 1395 * 1396 * Returns the maximum amount of memory @mem can be charged with, in 1397 * pages. 1398 */ 1399 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1400 { 1401 unsigned long margin = 0; 1402 unsigned long count; 1403 unsigned long limit; 1404 1405 count = page_counter_read(&memcg->memory); 1406 limit = READ_ONCE(memcg->memory.max); 1407 if (count < limit) 1408 margin = limit - count; 1409 1410 if (do_memsw_account()) { 1411 count = page_counter_read(&memcg->memsw); 1412 limit = READ_ONCE(memcg->memsw.max); 1413 if (count < limit) 1414 margin = min(margin, limit - count); 1415 else 1416 margin = 0; 1417 } 1418 1419 return margin; 1420 } 1421 1422 /* 1423 * A routine for checking "mem" is under move_account() or not. 1424 * 1425 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1426 * moving cgroups. This is for waiting at high-memory pressure 1427 * caused by "move". 1428 */ 1429 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1430 { 1431 struct mem_cgroup *from; 1432 struct mem_cgroup *to; 1433 bool ret = false; 1434 /* 1435 * Unlike task_move routines, we access mc.to, mc.from not under 1436 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1437 */ 1438 spin_lock(&mc.lock); 1439 from = mc.from; 1440 to = mc.to; 1441 if (!from) 1442 goto unlock; 1443 1444 ret = mem_cgroup_is_descendant(from, memcg) || 1445 mem_cgroup_is_descendant(to, memcg); 1446 unlock: 1447 spin_unlock(&mc.lock); 1448 return ret; 1449 } 1450 1451 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1452 { 1453 if (mc.moving_task && current != mc.moving_task) { 1454 if (mem_cgroup_under_move(memcg)) { 1455 DEFINE_WAIT(wait); 1456 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1457 /* moving charge context might have finished. */ 1458 if (mc.moving_task) 1459 schedule(); 1460 finish_wait(&mc.waitq, &wait); 1461 return true; 1462 } 1463 } 1464 return false; 1465 } 1466 1467 struct memory_stat { 1468 const char *name; 1469 unsigned int idx; 1470 }; 1471 1472 static const struct memory_stat memory_stats[] = { 1473 { "anon", NR_ANON_MAPPED }, 1474 { "file", NR_FILE_PAGES }, 1475 { "kernel", MEMCG_KMEM }, 1476 { "kernel_stack", NR_KERNEL_STACK_KB }, 1477 { "pagetables", NR_PAGETABLE }, 1478 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1479 { "percpu", MEMCG_PERCPU_B }, 1480 { "sock", MEMCG_SOCK }, 1481 { "vmalloc", MEMCG_VMALLOC }, 1482 { "shmem", NR_SHMEM }, 1483 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1484 { "zswap", MEMCG_ZSWAP_B }, 1485 { "zswapped", MEMCG_ZSWAPPED }, 1486 #endif 1487 { "file_mapped", NR_FILE_MAPPED }, 1488 { "file_dirty", NR_FILE_DIRTY }, 1489 { "file_writeback", NR_WRITEBACK }, 1490 #ifdef CONFIG_SWAP 1491 { "swapcached", NR_SWAPCACHE }, 1492 #endif 1493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1494 { "anon_thp", NR_ANON_THPS }, 1495 { "file_thp", NR_FILE_THPS }, 1496 { "shmem_thp", NR_SHMEM_THPS }, 1497 #endif 1498 { "inactive_anon", NR_INACTIVE_ANON }, 1499 { "active_anon", NR_ACTIVE_ANON }, 1500 { "inactive_file", NR_INACTIVE_FILE }, 1501 { "active_file", NR_ACTIVE_FILE }, 1502 { "unevictable", NR_UNEVICTABLE }, 1503 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1504 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1505 1506 /* The memory events */ 1507 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1508 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1509 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1510 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1511 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1512 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1513 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1514 }; 1515 1516 /* Translate stat items to the correct unit for memory.stat output */ 1517 static int memcg_page_state_unit(int item) 1518 { 1519 switch (item) { 1520 case MEMCG_PERCPU_B: 1521 case MEMCG_ZSWAP_B: 1522 case NR_SLAB_RECLAIMABLE_B: 1523 case NR_SLAB_UNRECLAIMABLE_B: 1524 case WORKINGSET_REFAULT_ANON: 1525 case WORKINGSET_REFAULT_FILE: 1526 case WORKINGSET_ACTIVATE_ANON: 1527 case WORKINGSET_ACTIVATE_FILE: 1528 case WORKINGSET_RESTORE_ANON: 1529 case WORKINGSET_RESTORE_FILE: 1530 case WORKINGSET_NODERECLAIM: 1531 return 1; 1532 case NR_KERNEL_STACK_KB: 1533 return SZ_1K; 1534 default: 1535 return PAGE_SIZE; 1536 } 1537 } 1538 1539 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1540 int item) 1541 { 1542 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1543 } 1544 1545 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize) 1546 { 1547 struct seq_buf s; 1548 int i; 1549 1550 seq_buf_init(&s, buf, bufsize); 1551 1552 /* 1553 * Provide statistics on the state of the memory subsystem as 1554 * well as cumulative event counters that show past behavior. 1555 * 1556 * This list is ordered following a combination of these gradients: 1557 * 1) generic big picture -> specifics and details 1558 * 2) reflecting userspace activity -> reflecting kernel heuristics 1559 * 1560 * Current memory state: 1561 */ 1562 mem_cgroup_flush_stats(); 1563 1564 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1565 u64 size; 1566 1567 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1568 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1569 1570 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1571 size += memcg_page_state_output(memcg, 1572 NR_SLAB_RECLAIMABLE_B); 1573 seq_buf_printf(&s, "slab %llu\n", size); 1574 } 1575 } 1576 1577 /* Accumulated memory events */ 1578 seq_buf_printf(&s, "pgscan %lu\n", 1579 memcg_events(memcg, PGSCAN_KSWAPD) + 1580 memcg_events(memcg, PGSCAN_DIRECT) + 1581 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1582 seq_buf_printf(&s, "pgsteal %lu\n", 1583 memcg_events(memcg, PGSTEAL_KSWAPD) + 1584 memcg_events(memcg, PGSTEAL_DIRECT) + 1585 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1586 1587 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1588 if (memcg_vm_event_stat[i] == PGPGIN || 1589 memcg_vm_event_stat[i] == PGPGOUT) 1590 continue; 1591 1592 seq_buf_printf(&s, "%s %lu\n", 1593 vm_event_name(memcg_vm_event_stat[i]), 1594 memcg_events(memcg, memcg_vm_event_stat[i])); 1595 } 1596 1597 /* The above should easily fit into one page */ 1598 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1599 } 1600 1601 #define K(x) ((x) << (PAGE_SHIFT-10)) 1602 /** 1603 * mem_cgroup_print_oom_context: Print OOM information relevant to 1604 * memory controller. 1605 * @memcg: The memory cgroup that went over limit 1606 * @p: Task that is going to be killed 1607 * 1608 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1609 * enabled 1610 */ 1611 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1612 { 1613 rcu_read_lock(); 1614 1615 if (memcg) { 1616 pr_cont(",oom_memcg="); 1617 pr_cont_cgroup_path(memcg->css.cgroup); 1618 } else 1619 pr_cont(",global_oom"); 1620 if (p) { 1621 pr_cont(",task_memcg="); 1622 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1623 } 1624 rcu_read_unlock(); 1625 } 1626 1627 /** 1628 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1629 * memory controller. 1630 * @memcg: The memory cgroup that went over limit 1631 */ 1632 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1633 { 1634 /* Use static buffer, for the caller is holding oom_lock. */ 1635 static char buf[PAGE_SIZE]; 1636 1637 lockdep_assert_held(&oom_lock); 1638 1639 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1640 K((u64)page_counter_read(&memcg->memory)), 1641 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1642 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1643 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1644 K((u64)page_counter_read(&memcg->swap)), 1645 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1646 else { 1647 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1648 K((u64)page_counter_read(&memcg->memsw)), 1649 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1650 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1651 K((u64)page_counter_read(&memcg->kmem)), 1652 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1653 } 1654 1655 pr_info("Memory cgroup stats for "); 1656 pr_cont_cgroup_path(memcg->css.cgroup); 1657 pr_cont(":"); 1658 memory_stat_format(memcg, buf, sizeof(buf)); 1659 pr_info("%s", buf); 1660 } 1661 1662 /* 1663 * Return the memory (and swap, if configured) limit for a memcg. 1664 */ 1665 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1666 { 1667 unsigned long max = READ_ONCE(memcg->memory.max); 1668 1669 if (do_memsw_account()) { 1670 if (mem_cgroup_swappiness(memcg)) { 1671 /* Calculate swap excess capacity from memsw limit */ 1672 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1673 1674 max += min(swap, (unsigned long)total_swap_pages); 1675 } 1676 } else { 1677 if (mem_cgroup_swappiness(memcg)) 1678 max += min(READ_ONCE(memcg->swap.max), 1679 (unsigned long)total_swap_pages); 1680 } 1681 return max; 1682 } 1683 1684 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1685 { 1686 return page_counter_read(&memcg->memory); 1687 } 1688 1689 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1690 int order) 1691 { 1692 struct oom_control oc = { 1693 .zonelist = NULL, 1694 .nodemask = NULL, 1695 .memcg = memcg, 1696 .gfp_mask = gfp_mask, 1697 .order = order, 1698 }; 1699 bool ret = true; 1700 1701 if (mutex_lock_killable(&oom_lock)) 1702 return true; 1703 1704 if (mem_cgroup_margin(memcg) >= (1 << order)) 1705 goto unlock; 1706 1707 /* 1708 * A few threads which were not waiting at mutex_lock_killable() can 1709 * fail to bail out. Therefore, check again after holding oom_lock. 1710 */ 1711 ret = task_is_dying() || out_of_memory(&oc); 1712 1713 unlock: 1714 mutex_unlock(&oom_lock); 1715 return ret; 1716 } 1717 1718 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1719 pg_data_t *pgdat, 1720 gfp_t gfp_mask, 1721 unsigned long *total_scanned) 1722 { 1723 struct mem_cgroup *victim = NULL; 1724 int total = 0; 1725 int loop = 0; 1726 unsigned long excess; 1727 unsigned long nr_scanned; 1728 struct mem_cgroup_reclaim_cookie reclaim = { 1729 .pgdat = pgdat, 1730 }; 1731 1732 excess = soft_limit_excess(root_memcg); 1733 1734 while (1) { 1735 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1736 if (!victim) { 1737 loop++; 1738 if (loop >= 2) { 1739 /* 1740 * If we have not been able to reclaim 1741 * anything, it might because there are 1742 * no reclaimable pages under this hierarchy 1743 */ 1744 if (!total) 1745 break; 1746 /* 1747 * We want to do more targeted reclaim. 1748 * excess >> 2 is not to excessive so as to 1749 * reclaim too much, nor too less that we keep 1750 * coming back to reclaim from this cgroup 1751 */ 1752 if (total >= (excess >> 2) || 1753 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1754 break; 1755 } 1756 continue; 1757 } 1758 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1759 pgdat, &nr_scanned); 1760 *total_scanned += nr_scanned; 1761 if (!soft_limit_excess(root_memcg)) 1762 break; 1763 } 1764 mem_cgroup_iter_break(root_memcg, victim); 1765 return total; 1766 } 1767 1768 #ifdef CONFIG_LOCKDEP 1769 static struct lockdep_map memcg_oom_lock_dep_map = { 1770 .name = "memcg_oom_lock", 1771 }; 1772 #endif 1773 1774 static DEFINE_SPINLOCK(memcg_oom_lock); 1775 1776 /* 1777 * Check OOM-Killer is already running under our hierarchy. 1778 * If someone is running, return false. 1779 */ 1780 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1781 { 1782 struct mem_cgroup *iter, *failed = NULL; 1783 1784 spin_lock(&memcg_oom_lock); 1785 1786 for_each_mem_cgroup_tree(iter, memcg) { 1787 if (iter->oom_lock) { 1788 /* 1789 * this subtree of our hierarchy is already locked 1790 * so we cannot give a lock. 1791 */ 1792 failed = iter; 1793 mem_cgroup_iter_break(memcg, iter); 1794 break; 1795 } else 1796 iter->oom_lock = true; 1797 } 1798 1799 if (failed) { 1800 /* 1801 * OK, we failed to lock the whole subtree so we have 1802 * to clean up what we set up to the failing subtree 1803 */ 1804 for_each_mem_cgroup_tree(iter, memcg) { 1805 if (iter == failed) { 1806 mem_cgroup_iter_break(memcg, iter); 1807 break; 1808 } 1809 iter->oom_lock = false; 1810 } 1811 } else 1812 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1813 1814 spin_unlock(&memcg_oom_lock); 1815 1816 return !failed; 1817 } 1818 1819 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1820 { 1821 struct mem_cgroup *iter; 1822 1823 spin_lock(&memcg_oom_lock); 1824 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1825 for_each_mem_cgroup_tree(iter, memcg) 1826 iter->oom_lock = false; 1827 spin_unlock(&memcg_oom_lock); 1828 } 1829 1830 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1831 { 1832 struct mem_cgroup *iter; 1833 1834 spin_lock(&memcg_oom_lock); 1835 for_each_mem_cgroup_tree(iter, memcg) 1836 iter->under_oom++; 1837 spin_unlock(&memcg_oom_lock); 1838 } 1839 1840 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1841 { 1842 struct mem_cgroup *iter; 1843 1844 /* 1845 * Be careful about under_oom underflows because a child memcg 1846 * could have been added after mem_cgroup_mark_under_oom. 1847 */ 1848 spin_lock(&memcg_oom_lock); 1849 for_each_mem_cgroup_tree(iter, memcg) 1850 if (iter->under_oom > 0) 1851 iter->under_oom--; 1852 spin_unlock(&memcg_oom_lock); 1853 } 1854 1855 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1856 1857 struct oom_wait_info { 1858 struct mem_cgroup *memcg; 1859 wait_queue_entry_t wait; 1860 }; 1861 1862 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1863 unsigned mode, int sync, void *arg) 1864 { 1865 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1866 struct mem_cgroup *oom_wait_memcg; 1867 struct oom_wait_info *oom_wait_info; 1868 1869 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1870 oom_wait_memcg = oom_wait_info->memcg; 1871 1872 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1873 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1874 return 0; 1875 return autoremove_wake_function(wait, mode, sync, arg); 1876 } 1877 1878 static void memcg_oom_recover(struct mem_cgroup *memcg) 1879 { 1880 /* 1881 * For the following lockless ->under_oom test, the only required 1882 * guarantee is that it must see the state asserted by an OOM when 1883 * this function is called as a result of userland actions 1884 * triggered by the notification of the OOM. This is trivially 1885 * achieved by invoking mem_cgroup_mark_under_oom() before 1886 * triggering notification. 1887 */ 1888 if (memcg && memcg->under_oom) 1889 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1890 } 1891 1892 /* 1893 * Returns true if successfully killed one or more processes. Though in some 1894 * corner cases it can return true even without killing any process. 1895 */ 1896 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1897 { 1898 bool locked, ret; 1899 1900 if (order > PAGE_ALLOC_COSTLY_ORDER) 1901 return false; 1902 1903 memcg_memory_event(memcg, MEMCG_OOM); 1904 1905 /* 1906 * We are in the middle of the charge context here, so we 1907 * don't want to block when potentially sitting on a callstack 1908 * that holds all kinds of filesystem and mm locks. 1909 * 1910 * cgroup1 allows disabling the OOM killer and waiting for outside 1911 * handling until the charge can succeed; remember the context and put 1912 * the task to sleep at the end of the page fault when all locks are 1913 * released. 1914 * 1915 * On the other hand, in-kernel OOM killer allows for an async victim 1916 * memory reclaim (oom_reaper) and that means that we are not solely 1917 * relying on the oom victim to make a forward progress and we can 1918 * invoke the oom killer here. 1919 * 1920 * Please note that mem_cgroup_out_of_memory might fail to find a 1921 * victim and then we have to bail out from the charge path. 1922 */ 1923 if (memcg->oom_kill_disable) { 1924 if (current->in_user_fault) { 1925 css_get(&memcg->css); 1926 current->memcg_in_oom = memcg; 1927 current->memcg_oom_gfp_mask = mask; 1928 current->memcg_oom_order = order; 1929 } 1930 return false; 1931 } 1932 1933 mem_cgroup_mark_under_oom(memcg); 1934 1935 locked = mem_cgroup_oom_trylock(memcg); 1936 1937 if (locked) 1938 mem_cgroup_oom_notify(memcg); 1939 1940 mem_cgroup_unmark_under_oom(memcg); 1941 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1942 1943 if (locked) 1944 mem_cgroup_oom_unlock(memcg); 1945 1946 return ret; 1947 } 1948 1949 /** 1950 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1951 * @handle: actually kill/wait or just clean up the OOM state 1952 * 1953 * This has to be called at the end of a page fault if the memcg OOM 1954 * handler was enabled. 1955 * 1956 * Memcg supports userspace OOM handling where failed allocations must 1957 * sleep on a waitqueue until the userspace task resolves the 1958 * situation. Sleeping directly in the charge context with all kinds 1959 * of locks held is not a good idea, instead we remember an OOM state 1960 * in the task and mem_cgroup_oom_synchronize() has to be called at 1961 * the end of the page fault to complete the OOM handling. 1962 * 1963 * Returns %true if an ongoing memcg OOM situation was detected and 1964 * completed, %false otherwise. 1965 */ 1966 bool mem_cgroup_oom_synchronize(bool handle) 1967 { 1968 struct mem_cgroup *memcg = current->memcg_in_oom; 1969 struct oom_wait_info owait; 1970 bool locked; 1971 1972 /* OOM is global, do not handle */ 1973 if (!memcg) 1974 return false; 1975 1976 if (!handle) 1977 goto cleanup; 1978 1979 owait.memcg = memcg; 1980 owait.wait.flags = 0; 1981 owait.wait.func = memcg_oom_wake_function; 1982 owait.wait.private = current; 1983 INIT_LIST_HEAD(&owait.wait.entry); 1984 1985 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1986 mem_cgroup_mark_under_oom(memcg); 1987 1988 locked = mem_cgroup_oom_trylock(memcg); 1989 1990 if (locked) 1991 mem_cgroup_oom_notify(memcg); 1992 1993 if (locked && !memcg->oom_kill_disable) { 1994 mem_cgroup_unmark_under_oom(memcg); 1995 finish_wait(&memcg_oom_waitq, &owait.wait); 1996 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1997 current->memcg_oom_order); 1998 } else { 1999 schedule(); 2000 mem_cgroup_unmark_under_oom(memcg); 2001 finish_wait(&memcg_oom_waitq, &owait.wait); 2002 } 2003 2004 if (locked) { 2005 mem_cgroup_oom_unlock(memcg); 2006 /* 2007 * There is no guarantee that an OOM-lock contender 2008 * sees the wakeups triggered by the OOM kill 2009 * uncharges. Wake any sleepers explicitly. 2010 */ 2011 memcg_oom_recover(memcg); 2012 } 2013 cleanup: 2014 current->memcg_in_oom = NULL; 2015 css_put(&memcg->css); 2016 return true; 2017 } 2018 2019 /** 2020 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2021 * @victim: task to be killed by the OOM killer 2022 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2023 * 2024 * Returns a pointer to a memory cgroup, which has to be cleaned up 2025 * by killing all belonging OOM-killable tasks. 2026 * 2027 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2028 */ 2029 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2030 struct mem_cgroup *oom_domain) 2031 { 2032 struct mem_cgroup *oom_group = NULL; 2033 struct mem_cgroup *memcg; 2034 2035 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2036 return NULL; 2037 2038 if (!oom_domain) 2039 oom_domain = root_mem_cgroup; 2040 2041 rcu_read_lock(); 2042 2043 memcg = mem_cgroup_from_task(victim); 2044 if (mem_cgroup_is_root(memcg)) 2045 goto out; 2046 2047 /* 2048 * If the victim task has been asynchronously moved to a different 2049 * memory cgroup, we might end up killing tasks outside oom_domain. 2050 * In this case it's better to ignore memory.group.oom. 2051 */ 2052 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2053 goto out; 2054 2055 /* 2056 * Traverse the memory cgroup hierarchy from the victim task's 2057 * cgroup up to the OOMing cgroup (or root) to find the 2058 * highest-level memory cgroup with oom.group set. 2059 */ 2060 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2061 if (memcg->oom_group) 2062 oom_group = memcg; 2063 2064 if (memcg == oom_domain) 2065 break; 2066 } 2067 2068 if (oom_group) 2069 css_get(&oom_group->css); 2070 out: 2071 rcu_read_unlock(); 2072 2073 return oom_group; 2074 } 2075 2076 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2077 { 2078 pr_info("Tasks in "); 2079 pr_cont_cgroup_path(memcg->css.cgroup); 2080 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2081 } 2082 2083 /** 2084 * folio_memcg_lock - Bind a folio to its memcg. 2085 * @folio: The folio. 2086 * 2087 * This function prevents unlocked LRU folios from being moved to 2088 * another cgroup. 2089 * 2090 * It ensures lifetime of the bound memcg. The caller is responsible 2091 * for the lifetime of the folio. 2092 */ 2093 void folio_memcg_lock(struct folio *folio) 2094 { 2095 struct mem_cgroup *memcg; 2096 unsigned long flags; 2097 2098 /* 2099 * The RCU lock is held throughout the transaction. The fast 2100 * path can get away without acquiring the memcg->move_lock 2101 * because page moving starts with an RCU grace period. 2102 */ 2103 rcu_read_lock(); 2104 2105 if (mem_cgroup_disabled()) 2106 return; 2107 again: 2108 memcg = folio_memcg(folio); 2109 if (unlikely(!memcg)) 2110 return; 2111 2112 #ifdef CONFIG_PROVE_LOCKING 2113 local_irq_save(flags); 2114 might_lock(&memcg->move_lock); 2115 local_irq_restore(flags); 2116 #endif 2117 2118 if (atomic_read(&memcg->moving_account) <= 0) 2119 return; 2120 2121 spin_lock_irqsave(&memcg->move_lock, flags); 2122 if (memcg != folio_memcg(folio)) { 2123 spin_unlock_irqrestore(&memcg->move_lock, flags); 2124 goto again; 2125 } 2126 2127 /* 2128 * When charge migration first begins, we can have multiple 2129 * critical sections holding the fast-path RCU lock and one 2130 * holding the slowpath move_lock. Track the task who has the 2131 * move_lock for unlock_page_memcg(). 2132 */ 2133 memcg->move_lock_task = current; 2134 memcg->move_lock_flags = flags; 2135 } 2136 2137 void lock_page_memcg(struct page *page) 2138 { 2139 folio_memcg_lock(page_folio(page)); 2140 } 2141 2142 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2143 { 2144 if (memcg && memcg->move_lock_task == current) { 2145 unsigned long flags = memcg->move_lock_flags; 2146 2147 memcg->move_lock_task = NULL; 2148 memcg->move_lock_flags = 0; 2149 2150 spin_unlock_irqrestore(&memcg->move_lock, flags); 2151 } 2152 2153 rcu_read_unlock(); 2154 } 2155 2156 /** 2157 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2158 * @folio: The folio. 2159 * 2160 * This releases the binding created by folio_memcg_lock(). This does 2161 * not change the accounting of this folio to its memcg, but it does 2162 * permit others to change it. 2163 */ 2164 void folio_memcg_unlock(struct folio *folio) 2165 { 2166 __folio_memcg_unlock(folio_memcg(folio)); 2167 } 2168 2169 void unlock_page_memcg(struct page *page) 2170 { 2171 folio_memcg_unlock(page_folio(page)); 2172 } 2173 2174 struct memcg_stock_pcp { 2175 local_lock_t stock_lock; 2176 struct mem_cgroup *cached; /* this never be root cgroup */ 2177 unsigned int nr_pages; 2178 2179 #ifdef CONFIG_MEMCG_KMEM 2180 struct obj_cgroup *cached_objcg; 2181 struct pglist_data *cached_pgdat; 2182 unsigned int nr_bytes; 2183 int nr_slab_reclaimable_b; 2184 int nr_slab_unreclaimable_b; 2185 #endif 2186 2187 struct work_struct work; 2188 unsigned long flags; 2189 #define FLUSHING_CACHED_CHARGE 0 2190 }; 2191 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2192 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2193 }; 2194 static DEFINE_MUTEX(percpu_charge_mutex); 2195 2196 #ifdef CONFIG_MEMCG_KMEM 2197 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2198 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2199 struct mem_cgroup *root_memcg); 2200 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2201 2202 #else 2203 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2204 { 2205 return NULL; 2206 } 2207 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2208 struct mem_cgroup *root_memcg) 2209 { 2210 return false; 2211 } 2212 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2213 { 2214 } 2215 #endif 2216 2217 /** 2218 * consume_stock: Try to consume stocked charge on this cpu. 2219 * @memcg: memcg to consume from. 2220 * @nr_pages: how many pages to charge. 2221 * 2222 * The charges will only happen if @memcg matches the current cpu's memcg 2223 * stock, and at least @nr_pages are available in that stock. Failure to 2224 * service an allocation will refill the stock. 2225 * 2226 * returns true if successful, false otherwise. 2227 */ 2228 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2229 { 2230 struct memcg_stock_pcp *stock; 2231 unsigned long flags; 2232 bool ret = false; 2233 2234 if (nr_pages > MEMCG_CHARGE_BATCH) 2235 return ret; 2236 2237 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2238 2239 stock = this_cpu_ptr(&memcg_stock); 2240 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2241 stock->nr_pages -= nr_pages; 2242 ret = true; 2243 } 2244 2245 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2246 2247 return ret; 2248 } 2249 2250 /* 2251 * Returns stocks cached in percpu and reset cached information. 2252 */ 2253 static void drain_stock(struct memcg_stock_pcp *stock) 2254 { 2255 struct mem_cgroup *old = stock->cached; 2256 2257 if (!old) 2258 return; 2259 2260 if (stock->nr_pages) { 2261 page_counter_uncharge(&old->memory, stock->nr_pages); 2262 if (do_memsw_account()) 2263 page_counter_uncharge(&old->memsw, stock->nr_pages); 2264 stock->nr_pages = 0; 2265 } 2266 2267 css_put(&old->css); 2268 stock->cached = NULL; 2269 } 2270 2271 static void drain_local_stock(struct work_struct *dummy) 2272 { 2273 struct memcg_stock_pcp *stock; 2274 struct obj_cgroup *old = NULL; 2275 unsigned long flags; 2276 2277 /* 2278 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2279 * drain_stock races is that we always operate on local CPU stock 2280 * here with IRQ disabled 2281 */ 2282 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2283 2284 stock = this_cpu_ptr(&memcg_stock); 2285 old = drain_obj_stock(stock); 2286 drain_stock(stock); 2287 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2288 2289 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2290 if (old) 2291 obj_cgroup_put(old); 2292 } 2293 2294 /* 2295 * Cache charges(val) to local per_cpu area. 2296 * This will be consumed by consume_stock() function, later. 2297 */ 2298 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2299 { 2300 struct memcg_stock_pcp *stock; 2301 2302 stock = this_cpu_ptr(&memcg_stock); 2303 if (stock->cached != memcg) { /* reset if necessary */ 2304 drain_stock(stock); 2305 css_get(&memcg->css); 2306 stock->cached = memcg; 2307 } 2308 stock->nr_pages += nr_pages; 2309 2310 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2311 drain_stock(stock); 2312 } 2313 2314 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2315 { 2316 unsigned long flags; 2317 2318 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2319 __refill_stock(memcg, nr_pages); 2320 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2321 } 2322 2323 /* 2324 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2325 * of the hierarchy under it. 2326 */ 2327 static void drain_all_stock(struct mem_cgroup *root_memcg) 2328 { 2329 int cpu, curcpu; 2330 2331 /* If someone's already draining, avoid adding running more workers. */ 2332 if (!mutex_trylock(&percpu_charge_mutex)) 2333 return; 2334 /* 2335 * Notify other cpus that system-wide "drain" is running 2336 * We do not care about races with the cpu hotplug because cpu down 2337 * as well as workers from this path always operate on the local 2338 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2339 */ 2340 migrate_disable(); 2341 curcpu = smp_processor_id(); 2342 for_each_online_cpu(cpu) { 2343 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2344 struct mem_cgroup *memcg; 2345 bool flush = false; 2346 2347 rcu_read_lock(); 2348 memcg = stock->cached; 2349 if (memcg && stock->nr_pages && 2350 mem_cgroup_is_descendant(memcg, root_memcg)) 2351 flush = true; 2352 else if (obj_stock_flush_required(stock, root_memcg)) 2353 flush = true; 2354 rcu_read_unlock(); 2355 2356 if (flush && 2357 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2358 if (cpu == curcpu) 2359 drain_local_stock(&stock->work); 2360 else 2361 schedule_work_on(cpu, &stock->work); 2362 } 2363 } 2364 migrate_enable(); 2365 mutex_unlock(&percpu_charge_mutex); 2366 } 2367 2368 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2369 { 2370 struct memcg_stock_pcp *stock; 2371 2372 stock = &per_cpu(memcg_stock, cpu); 2373 drain_stock(stock); 2374 2375 return 0; 2376 } 2377 2378 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2379 unsigned int nr_pages, 2380 gfp_t gfp_mask) 2381 { 2382 unsigned long nr_reclaimed = 0; 2383 2384 do { 2385 unsigned long pflags; 2386 2387 if (page_counter_read(&memcg->memory) <= 2388 READ_ONCE(memcg->memory.high)) 2389 continue; 2390 2391 memcg_memory_event(memcg, MEMCG_HIGH); 2392 2393 psi_memstall_enter(&pflags); 2394 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2395 gfp_mask, 2396 MEMCG_RECLAIM_MAY_SWAP, 2397 NULL); 2398 psi_memstall_leave(&pflags); 2399 } while ((memcg = parent_mem_cgroup(memcg)) && 2400 !mem_cgroup_is_root(memcg)); 2401 2402 return nr_reclaimed; 2403 } 2404 2405 static void high_work_func(struct work_struct *work) 2406 { 2407 struct mem_cgroup *memcg; 2408 2409 memcg = container_of(work, struct mem_cgroup, high_work); 2410 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2411 } 2412 2413 /* 2414 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2415 * enough to still cause a significant slowdown in most cases, while still 2416 * allowing diagnostics and tracing to proceed without becoming stuck. 2417 */ 2418 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2419 2420 /* 2421 * When calculating the delay, we use these either side of the exponentiation to 2422 * maintain precision and scale to a reasonable number of jiffies (see the table 2423 * below. 2424 * 2425 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2426 * overage ratio to a delay. 2427 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2428 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2429 * to produce a reasonable delay curve. 2430 * 2431 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2432 * reasonable delay curve compared to precision-adjusted overage, not 2433 * penalising heavily at first, but still making sure that growth beyond the 2434 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2435 * example, with a high of 100 megabytes: 2436 * 2437 * +-------+------------------------+ 2438 * | usage | time to allocate in ms | 2439 * +-------+------------------------+ 2440 * | 100M | 0 | 2441 * | 101M | 6 | 2442 * | 102M | 25 | 2443 * | 103M | 57 | 2444 * | 104M | 102 | 2445 * | 105M | 159 | 2446 * | 106M | 230 | 2447 * | 107M | 313 | 2448 * | 108M | 409 | 2449 * | 109M | 518 | 2450 * | 110M | 639 | 2451 * | 111M | 774 | 2452 * | 112M | 921 | 2453 * | 113M | 1081 | 2454 * | 114M | 1254 | 2455 * | 115M | 1439 | 2456 * | 116M | 1638 | 2457 * | 117M | 1849 | 2458 * | 118M | 2000 | 2459 * | 119M | 2000 | 2460 * | 120M | 2000 | 2461 * +-------+------------------------+ 2462 */ 2463 #define MEMCG_DELAY_PRECISION_SHIFT 20 2464 #define MEMCG_DELAY_SCALING_SHIFT 14 2465 2466 static u64 calculate_overage(unsigned long usage, unsigned long high) 2467 { 2468 u64 overage; 2469 2470 if (usage <= high) 2471 return 0; 2472 2473 /* 2474 * Prevent division by 0 in overage calculation by acting as if 2475 * it was a threshold of 1 page 2476 */ 2477 high = max(high, 1UL); 2478 2479 overage = usage - high; 2480 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2481 return div64_u64(overage, high); 2482 } 2483 2484 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2485 { 2486 u64 overage, max_overage = 0; 2487 2488 do { 2489 overage = calculate_overage(page_counter_read(&memcg->memory), 2490 READ_ONCE(memcg->memory.high)); 2491 max_overage = max(overage, max_overage); 2492 } while ((memcg = parent_mem_cgroup(memcg)) && 2493 !mem_cgroup_is_root(memcg)); 2494 2495 return max_overage; 2496 } 2497 2498 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2499 { 2500 u64 overage, max_overage = 0; 2501 2502 do { 2503 overage = calculate_overage(page_counter_read(&memcg->swap), 2504 READ_ONCE(memcg->swap.high)); 2505 if (overage) 2506 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2507 max_overage = max(overage, max_overage); 2508 } while ((memcg = parent_mem_cgroup(memcg)) && 2509 !mem_cgroup_is_root(memcg)); 2510 2511 return max_overage; 2512 } 2513 2514 /* 2515 * Get the number of jiffies that we should penalise a mischievous cgroup which 2516 * is exceeding its memory.high by checking both it and its ancestors. 2517 */ 2518 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2519 unsigned int nr_pages, 2520 u64 max_overage) 2521 { 2522 unsigned long penalty_jiffies; 2523 2524 if (!max_overage) 2525 return 0; 2526 2527 /* 2528 * We use overage compared to memory.high to calculate the number of 2529 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2530 * fairly lenient on small overages, and increasingly harsh when the 2531 * memcg in question makes it clear that it has no intention of stopping 2532 * its crazy behaviour, so we exponentially increase the delay based on 2533 * overage amount. 2534 */ 2535 penalty_jiffies = max_overage * max_overage * HZ; 2536 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2537 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2538 2539 /* 2540 * Factor in the task's own contribution to the overage, such that four 2541 * N-sized allocations are throttled approximately the same as one 2542 * 4N-sized allocation. 2543 * 2544 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2545 * larger the current charge patch is than that. 2546 */ 2547 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2548 } 2549 2550 /* 2551 * Scheduled by try_charge() to be executed from the userland return path 2552 * and reclaims memory over the high limit. 2553 */ 2554 void mem_cgroup_handle_over_high(void) 2555 { 2556 unsigned long penalty_jiffies; 2557 unsigned long pflags; 2558 unsigned long nr_reclaimed; 2559 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2560 int nr_retries = MAX_RECLAIM_RETRIES; 2561 struct mem_cgroup *memcg; 2562 bool in_retry = false; 2563 2564 if (likely(!nr_pages)) 2565 return; 2566 2567 memcg = get_mem_cgroup_from_mm(current->mm); 2568 current->memcg_nr_pages_over_high = 0; 2569 2570 retry_reclaim: 2571 /* 2572 * The allocating task should reclaim at least the batch size, but for 2573 * subsequent retries we only want to do what's necessary to prevent oom 2574 * or breaching resource isolation. 2575 * 2576 * This is distinct from memory.max or page allocator behaviour because 2577 * memory.high is currently batched, whereas memory.max and the page 2578 * allocator run every time an allocation is made. 2579 */ 2580 nr_reclaimed = reclaim_high(memcg, 2581 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2582 GFP_KERNEL); 2583 2584 /* 2585 * memory.high is breached and reclaim is unable to keep up. Throttle 2586 * allocators proactively to slow down excessive growth. 2587 */ 2588 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2589 mem_find_max_overage(memcg)); 2590 2591 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2592 swap_find_max_overage(memcg)); 2593 2594 /* 2595 * Clamp the max delay per usermode return so as to still keep the 2596 * application moving forwards and also permit diagnostics, albeit 2597 * extremely slowly. 2598 */ 2599 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2600 2601 /* 2602 * Don't sleep if the amount of jiffies this memcg owes us is so low 2603 * that it's not even worth doing, in an attempt to be nice to those who 2604 * go only a small amount over their memory.high value and maybe haven't 2605 * been aggressively reclaimed enough yet. 2606 */ 2607 if (penalty_jiffies <= HZ / 100) 2608 goto out; 2609 2610 /* 2611 * If reclaim is making forward progress but we're still over 2612 * memory.high, we want to encourage that rather than doing allocator 2613 * throttling. 2614 */ 2615 if (nr_reclaimed || nr_retries--) { 2616 in_retry = true; 2617 goto retry_reclaim; 2618 } 2619 2620 /* 2621 * If we exit early, we're guaranteed to die (since 2622 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2623 * need to account for any ill-begotten jiffies to pay them off later. 2624 */ 2625 psi_memstall_enter(&pflags); 2626 schedule_timeout_killable(penalty_jiffies); 2627 psi_memstall_leave(&pflags); 2628 2629 out: 2630 css_put(&memcg->css); 2631 } 2632 2633 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2634 unsigned int nr_pages) 2635 { 2636 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2637 int nr_retries = MAX_RECLAIM_RETRIES; 2638 struct mem_cgroup *mem_over_limit; 2639 struct page_counter *counter; 2640 unsigned long nr_reclaimed; 2641 bool passed_oom = false; 2642 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2643 bool drained = false; 2644 bool raised_max_event = false; 2645 unsigned long pflags; 2646 2647 retry: 2648 if (consume_stock(memcg, nr_pages)) 2649 return 0; 2650 2651 if (!do_memsw_account() || 2652 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2653 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2654 goto done_restock; 2655 if (do_memsw_account()) 2656 page_counter_uncharge(&memcg->memsw, batch); 2657 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2658 } else { 2659 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2660 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2661 } 2662 2663 if (batch > nr_pages) { 2664 batch = nr_pages; 2665 goto retry; 2666 } 2667 2668 /* 2669 * Prevent unbounded recursion when reclaim operations need to 2670 * allocate memory. This might exceed the limits temporarily, 2671 * but we prefer facilitating memory reclaim and getting back 2672 * under the limit over triggering OOM kills in these cases. 2673 */ 2674 if (unlikely(current->flags & PF_MEMALLOC)) 2675 goto force; 2676 2677 if (unlikely(task_in_memcg_oom(current))) 2678 goto nomem; 2679 2680 if (!gfpflags_allow_blocking(gfp_mask)) 2681 goto nomem; 2682 2683 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2684 raised_max_event = true; 2685 2686 psi_memstall_enter(&pflags); 2687 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2688 gfp_mask, reclaim_options, 2689 NULL); 2690 psi_memstall_leave(&pflags); 2691 2692 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2693 goto retry; 2694 2695 if (!drained) { 2696 drain_all_stock(mem_over_limit); 2697 drained = true; 2698 goto retry; 2699 } 2700 2701 if (gfp_mask & __GFP_NORETRY) 2702 goto nomem; 2703 /* 2704 * Even though the limit is exceeded at this point, reclaim 2705 * may have been able to free some pages. Retry the charge 2706 * before killing the task. 2707 * 2708 * Only for regular pages, though: huge pages are rather 2709 * unlikely to succeed so close to the limit, and we fall back 2710 * to regular pages anyway in case of failure. 2711 */ 2712 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2713 goto retry; 2714 /* 2715 * At task move, charge accounts can be doubly counted. So, it's 2716 * better to wait until the end of task_move if something is going on. 2717 */ 2718 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2719 goto retry; 2720 2721 if (nr_retries--) 2722 goto retry; 2723 2724 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2725 goto nomem; 2726 2727 /* Avoid endless loop for tasks bypassed by the oom killer */ 2728 if (passed_oom && task_is_dying()) 2729 goto nomem; 2730 2731 /* 2732 * keep retrying as long as the memcg oom killer is able to make 2733 * a forward progress or bypass the charge if the oom killer 2734 * couldn't make any progress. 2735 */ 2736 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2737 get_order(nr_pages * PAGE_SIZE))) { 2738 passed_oom = true; 2739 nr_retries = MAX_RECLAIM_RETRIES; 2740 goto retry; 2741 } 2742 nomem: 2743 /* 2744 * Memcg doesn't have a dedicated reserve for atomic 2745 * allocations. But like the global atomic pool, we need to 2746 * put the burden of reclaim on regular allocation requests 2747 * and let these go through as privileged allocations. 2748 */ 2749 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2750 return -ENOMEM; 2751 force: 2752 /* 2753 * If the allocation has to be enforced, don't forget to raise 2754 * a MEMCG_MAX event. 2755 */ 2756 if (!raised_max_event) 2757 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2758 2759 /* 2760 * The allocation either can't fail or will lead to more memory 2761 * being freed very soon. Allow memory usage go over the limit 2762 * temporarily by force charging it. 2763 */ 2764 page_counter_charge(&memcg->memory, nr_pages); 2765 if (do_memsw_account()) 2766 page_counter_charge(&memcg->memsw, nr_pages); 2767 2768 return 0; 2769 2770 done_restock: 2771 if (batch > nr_pages) 2772 refill_stock(memcg, batch - nr_pages); 2773 2774 /* 2775 * If the hierarchy is above the normal consumption range, schedule 2776 * reclaim on returning to userland. We can perform reclaim here 2777 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2778 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2779 * not recorded as it most likely matches current's and won't 2780 * change in the meantime. As high limit is checked again before 2781 * reclaim, the cost of mismatch is negligible. 2782 */ 2783 do { 2784 bool mem_high, swap_high; 2785 2786 mem_high = page_counter_read(&memcg->memory) > 2787 READ_ONCE(memcg->memory.high); 2788 swap_high = page_counter_read(&memcg->swap) > 2789 READ_ONCE(memcg->swap.high); 2790 2791 /* Don't bother a random interrupted task */ 2792 if (!in_task()) { 2793 if (mem_high) { 2794 schedule_work(&memcg->high_work); 2795 break; 2796 } 2797 continue; 2798 } 2799 2800 if (mem_high || swap_high) { 2801 /* 2802 * The allocating tasks in this cgroup will need to do 2803 * reclaim or be throttled to prevent further growth 2804 * of the memory or swap footprints. 2805 * 2806 * Target some best-effort fairness between the tasks, 2807 * and distribute reclaim work and delay penalties 2808 * based on how much each task is actually allocating. 2809 */ 2810 current->memcg_nr_pages_over_high += batch; 2811 set_notify_resume(current); 2812 break; 2813 } 2814 } while ((memcg = parent_mem_cgroup(memcg))); 2815 2816 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2817 !(current->flags & PF_MEMALLOC) && 2818 gfpflags_allow_blocking(gfp_mask)) { 2819 mem_cgroup_handle_over_high(); 2820 } 2821 return 0; 2822 } 2823 2824 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2825 unsigned int nr_pages) 2826 { 2827 if (mem_cgroup_is_root(memcg)) 2828 return 0; 2829 2830 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2831 } 2832 2833 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2834 { 2835 if (mem_cgroup_is_root(memcg)) 2836 return; 2837 2838 page_counter_uncharge(&memcg->memory, nr_pages); 2839 if (do_memsw_account()) 2840 page_counter_uncharge(&memcg->memsw, nr_pages); 2841 } 2842 2843 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2844 { 2845 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2846 /* 2847 * Any of the following ensures page's memcg stability: 2848 * 2849 * - the page lock 2850 * - LRU isolation 2851 * - lock_page_memcg() 2852 * - exclusive reference 2853 * - mem_cgroup_trylock_pages() 2854 */ 2855 folio->memcg_data = (unsigned long)memcg; 2856 } 2857 2858 #ifdef CONFIG_MEMCG_KMEM 2859 /* 2860 * The allocated objcg pointers array is not accounted directly. 2861 * Moreover, it should not come from DMA buffer and is not readily 2862 * reclaimable. So those GFP bits should be masked off. 2863 */ 2864 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2865 2866 /* 2867 * mod_objcg_mlstate() may be called with irq enabled, so 2868 * mod_memcg_lruvec_state() should be used. 2869 */ 2870 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2871 struct pglist_data *pgdat, 2872 enum node_stat_item idx, int nr) 2873 { 2874 struct mem_cgroup *memcg; 2875 struct lruvec *lruvec; 2876 2877 rcu_read_lock(); 2878 memcg = obj_cgroup_memcg(objcg); 2879 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2880 mod_memcg_lruvec_state(lruvec, idx, nr); 2881 rcu_read_unlock(); 2882 } 2883 2884 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2885 gfp_t gfp, bool new_slab) 2886 { 2887 unsigned int objects = objs_per_slab(s, slab); 2888 unsigned long memcg_data; 2889 void *vec; 2890 2891 gfp &= ~OBJCGS_CLEAR_MASK; 2892 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2893 slab_nid(slab)); 2894 if (!vec) 2895 return -ENOMEM; 2896 2897 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2898 if (new_slab) { 2899 /* 2900 * If the slab is brand new and nobody can yet access its 2901 * memcg_data, no synchronization is required and memcg_data can 2902 * be simply assigned. 2903 */ 2904 slab->memcg_data = memcg_data; 2905 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2906 /* 2907 * If the slab is already in use, somebody can allocate and 2908 * assign obj_cgroups in parallel. In this case the existing 2909 * objcg vector should be reused. 2910 */ 2911 kfree(vec); 2912 return 0; 2913 } 2914 2915 kmemleak_not_leak(vec); 2916 return 0; 2917 } 2918 2919 static __always_inline 2920 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2921 { 2922 /* 2923 * Slab objects are accounted individually, not per-page. 2924 * Memcg membership data for each individual object is saved in 2925 * slab->memcg_data. 2926 */ 2927 if (folio_test_slab(folio)) { 2928 struct obj_cgroup **objcgs; 2929 struct slab *slab; 2930 unsigned int off; 2931 2932 slab = folio_slab(folio); 2933 objcgs = slab_objcgs(slab); 2934 if (!objcgs) 2935 return NULL; 2936 2937 off = obj_to_index(slab->slab_cache, slab, p); 2938 if (objcgs[off]) 2939 return obj_cgroup_memcg(objcgs[off]); 2940 2941 return NULL; 2942 } 2943 2944 /* 2945 * page_memcg_check() is used here, because in theory we can encounter 2946 * a folio where the slab flag has been cleared already, but 2947 * slab->memcg_data has not been freed yet 2948 * page_memcg_check(page) will guarantee that a proper memory 2949 * cgroup pointer or NULL will be returned. 2950 */ 2951 return page_memcg_check(folio_page(folio, 0)); 2952 } 2953 2954 /* 2955 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2956 * 2957 * A passed kernel object can be a slab object, vmalloc object or a generic 2958 * kernel page, so different mechanisms for getting the memory cgroup pointer 2959 * should be used. 2960 * 2961 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2962 * can not know for sure how the kernel object is implemented. 2963 * mem_cgroup_from_obj() can be safely used in such cases. 2964 * 2965 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2966 * cgroup_mutex, etc. 2967 */ 2968 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2969 { 2970 struct folio *folio; 2971 2972 if (mem_cgroup_disabled()) 2973 return NULL; 2974 2975 if (unlikely(is_vmalloc_addr(p))) 2976 folio = page_folio(vmalloc_to_page(p)); 2977 else 2978 folio = virt_to_folio(p); 2979 2980 return mem_cgroup_from_obj_folio(folio, p); 2981 } 2982 2983 /* 2984 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2985 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 2986 * allocated using vmalloc(). 2987 * 2988 * A passed kernel object must be a slab object or a generic kernel page. 2989 * 2990 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2991 * cgroup_mutex, etc. 2992 */ 2993 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2994 { 2995 if (mem_cgroup_disabled()) 2996 return NULL; 2997 2998 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2999 } 3000 3001 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3002 { 3003 struct obj_cgroup *objcg = NULL; 3004 3005 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3006 objcg = rcu_dereference(memcg->objcg); 3007 if (objcg && obj_cgroup_tryget(objcg)) 3008 break; 3009 objcg = NULL; 3010 } 3011 return objcg; 3012 } 3013 3014 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 3015 { 3016 struct obj_cgroup *objcg = NULL; 3017 struct mem_cgroup *memcg; 3018 3019 if (memcg_kmem_bypass()) 3020 return NULL; 3021 3022 rcu_read_lock(); 3023 if (unlikely(active_memcg())) 3024 memcg = active_memcg(); 3025 else 3026 memcg = mem_cgroup_from_task(current); 3027 objcg = __get_obj_cgroup_from_memcg(memcg); 3028 rcu_read_unlock(); 3029 return objcg; 3030 } 3031 3032 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 3033 { 3034 struct obj_cgroup *objcg; 3035 3036 if (!memcg_kmem_enabled()) 3037 return NULL; 3038 3039 if (PageMemcgKmem(page)) { 3040 objcg = __folio_objcg(page_folio(page)); 3041 obj_cgroup_get(objcg); 3042 } else { 3043 struct mem_cgroup *memcg; 3044 3045 rcu_read_lock(); 3046 memcg = __folio_memcg(page_folio(page)); 3047 if (memcg) 3048 objcg = __get_obj_cgroup_from_memcg(memcg); 3049 else 3050 objcg = NULL; 3051 rcu_read_unlock(); 3052 } 3053 return objcg; 3054 } 3055 3056 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3057 { 3058 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3059 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3060 if (nr_pages > 0) 3061 page_counter_charge(&memcg->kmem, nr_pages); 3062 else 3063 page_counter_uncharge(&memcg->kmem, -nr_pages); 3064 } 3065 } 3066 3067 3068 /* 3069 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3070 * @objcg: object cgroup to uncharge 3071 * @nr_pages: number of pages to uncharge 3072 */ 3073 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3074 unsigned int nr_pages) 3075 { 3076 struct mem_cgroup *memcg; 3077 3078 memcg = get_mem_cgroup_from_objcg(objcg); 3079 3080 memcg_account_kmem(memcg, -nr_pages); 3081 refill_stock(memcg, nr_pages); 3082 3083 css_put(&memcg->css); 3084 } 3085 3086 /* 3087 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3088 * @objcg: object cgroup to charge 3089 * @gfp: reclaim mode 3090 * @nr_pages: number of pages to charge 3091 * 3092 * Returns 0 on success, an error code on failure. 3093 */ 3094 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3095 unsigned int nr_pages) 3096 { 3097 struct mem_cgroup *memcg; 3098 int ret; 3099 3100 memcg = get_mem_cgroup_from_objcg(objcg); 3101 3102 ret = try_charge_memcg(memcg, gfp, nr_pages); 3103 if (ret) 3104 goto out; 3105 3106 memcg_account_kmem(memcg, nr_pages); 3107 out: 3108 css_put(&memcg->css); 3109 3110 return ret; 3111 } 3112 3113 /** 3114 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3115 * @page: page to charge 3116 * @gfp: reclaim mode 3117 * @order: allocation order 3118 * 3119 * Returns 0 on success, an error code on failure. 3120 */ 3121 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3122 { 3123 struct obj_cgroup *objcg; 3124 int ret = 0; 3125 3126 objcg = get_obj_cgroup_from_current(); 3127 if (objcg) { 3128 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3129 if (!ret) { 3130 page->memcg_data = (unsigned long)objcg | 3131 MEMCG_DATA_KMEM; 3132 return 0; 3133 } 3134 obj_cgroup_put(objcg); 3135 } 3136 return ret; 3137 } 3138 3139 /** 3140 * __memcg_kmem_uncharge_page: uncharge a kmem page 3141 * @page: page to uncharge 3142 * @order: allocation order 3143 */ 3144 void __memcg_kmem_uncharge_page(struct page *page, int order) 3145 { 3146 struct folio *folio = page_folio(page); 3147 struct obj_cgroup *objcg; 3148 unsigned int nr_pages = 1 << order; 3149 3150 if (!folio_memcg_kmem(folio)) 3151 return; 3152 3153 objcg = __folio_objcg(folio); 3154 obj_cgroup_uncharge_pages(objcg, nr_pages); 3155 folio->memcg_data = 0; 3156 obj_cgroup_put(objcg); 3157 } 3158 3159 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3160 enum node_stat_item idx, int nr) 3161 { 3162 struct memcg_stock_pcp *stock; 3163 struct obj_cgroup *old = NULL; 3164 unsigned long flags; 3165 int *bytes; 3166 3167 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3168 stock = this_cpu_ptr(&memcg_stock); 3169 3170 /* 3171 * Save vmstat data in stock and skip vmstat array update unless 3172 * accumulating over a page of vmstat data or when pgdat or idx 3173 * changes. 3174 */ 3175 if (stock->cached_objcg != objcg) { 3176 old = drain_obj_stock(stock); 3177 obj_cgroup_get(objcg); 3178 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3179 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3180 stock->cached_objcg = objcg; 3181 stock->cached_pgdat = pgdat; 3182 } else if (stock->cached_pgdat != pgdat) { 3183 /* Flush the existing cached vmstat data */ 3184 struct pglist_data *oldpg = stock->cached_pgdat; 3185 3186 if (stock->nr_slab_reclaimable_b) { 3187 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3188 stock->nr_slab_reclaimable_b); 3189 stock->nr_slab_reclaimable_b = 0; 3190 } 3191 if (stock->nr_slab_unreclaimable_b) { 3192 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3193 stock->nr_slab_unreclaimable_b); 3194 stock->nr_slab_unreclaimable_b = 0; 3195 } 3196 stock->cached_pgdat = pgdat; 3197 } 3198 3199 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3200 : &stock->nr_slab_unreclaimable_b; 3201 /* 3202 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3203 * cached locally at least once before pushing it out. 3204 */ 3205 if (!*bytes) { 3206 *bytes = nr; 3207 nr = 0; 3208 } else { 3209 *bytes += nr; 3210 if (abs(*bytes) > PAGE_SIZE) { 3211 nr = *bytes; 3212 *bytes = 0; 3213 } else { 3214 nr = 0; 3215 } 3216 } 3217 if (nr) 3218 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3219 3220 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3221 if (old) 3222 obj_cgroup_put(old); 3223 } 3224 3225 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3226 { 3227 struct memcg_stock_pcp *stock; 3228 unsigned long flags; 3229 bool ret = false; 3230 3231 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3232 3233 stock = this_cpu_ptr(&memcg_stock); 3234 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3235 stock->nr_bytes -= nr_bytes; 3236 ret = true; 3237 } 3238 3239 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3240 3241 return ret; 3242 } 3243 3244 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3245 { 3246 struct obj_cgroup *old = stock->cached_objcg; 3247 3248 if (!old) 3249 return NULL; 3250 3251 if (stock->nr_bytes) { 3252 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3253 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3254 3255 if (nr_pages) { 3256 struct mem_cgroup *memcg; 3257 3258 memcg = get_mem_cgroup_from_objcg(old); 3259 3260 memcg_account_kmem(memcg, -nr_pages); 3261 __refill_stock(memcg, nr_pages); 3262 3263 css_put(&memcg->css); 3264 } 3265 3266 /* 3267 * The leftover is flushed to the centralized per-memcg value. 3268 * On the next attempt to refill obj stock it will be moved 3269 * to a per-cpu stock (probably, on an other CPU), see 3270 * refill_obj_stock(). 3271 * 3272 * How often it's flushed is a trade-off between the memory 3273 * limit enforcement accuracy and potential CPU contention, 3274 * so it might be changed in the future. 3275 */ 3276 atomic_add(nr_bytes, &old->nr_charged_bytes); 3277 stock->nr_bytes = 0; 3278 } 3279 3280 /* 3281 * Flush the vmstat data in current stock 3282 */ 3283 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3284 if (stock->nr_slab_reclaimable_b) { 3285 mod_objcg_mlstate(old, stock->cached_pgdat, 3286 NR_SLAB_RECLAIMABLE_B, 3287 stock->nr_slab_reclaimable_b); 3288 stock->nr_slab_reclaimable_b = 0; 3289 } 3290 if (stock->nr_slab_unreclaimable_b) { 3291 mod_objcg_mlstate(old, stock->cached_pgdat, 3292 NR_SLAB_UNRECLAIMABLE_B, 3293 stock->nr_slab_unreclaimable_b); 3294 stock->nr_slab_unreclaimable_b = 0; 3295 } 3296 stock->cached_pgdat = NULL; 3297 } 3298 3299 stock->cached_objcg = NULL; 3300 /* 3301 * The `old' objects needs to be released by the caller via 3302 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3303 */ 3304 return old; 3305 } 3306 3307 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3308 struct mem_cgroup *root_memcg) 3309 { 3310 struct mem_cgroup *memcg; 3311 3312 if (stock->cached_objcg) { 3313 memcg = obj_cgroup_memcg(stock->cached_objcg); 3314 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3315 return true; 3316 } 3317 3318 return false; 3319 } 3320 3321 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3322 bool allow_uncharge) 3323 { 3324 struct memcg_stock_pcp *stock; 3325 struct obj_cgroup *old = NULL; 3326 unsigned long flags; 3327 unsigned int nr_pages = 0; 3328 3329 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3330 3331 stock = this_cpu_ptr(&memcg_stock); 3332 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3333 old = drain_obj_stock(stock); 3334 obj_cgroup_get(objcg); 3335 stock->cached_objcg = objcg; 3336 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3337 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3338 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3339 } 3340 stock->nr_bytes += nr_bytes; 3341 3342 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3343 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3344 stock->nr_bytes &= (PAGE_SIZE - 1); 3345 } 3346 3347 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3348 if (old) 3349 obj_cgroup_put(old); 3350 3351 if (nr_pages) 3352 obj_cgroup_uncharge_pages(objcg, nr_pages); 3353 } 3354 3355 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3356 { 3357 unsigned int nr_pages, nr_bytes; 3358 int ret; 3359 3360 if (consume_obj_stock(objcg, size)) 3361 return 0; 3362 3363 /* 3364 * In theory, objcg->nr_charged_bytes can have enough 3365 * pre-charged bytes to satisfy the allocation. However, 3366 * flushing objcg->nr_charged_bytes requires two atomic 3367 * operations, and objcg->nr_charged_bytes can't be big. 3368 * The shared objcg->nr_charged_bytes can also become a 3369 * performance bottleneck if all tasks of the same memcg are 3370 * trying to update it. So it's better to ignore it and try 3371 * grab some new pages. The stock's nr_bytes will be flushed to 3372 * objcg->nr_charged_bytes later on when objcg changes. 3373 * 3374 * The stock's nr_bytes may contain enough pre-charged bytes 3375 * to allow one less page from being charged, but we can't rely 3376 * on the pre-charged bytes not being changed outside of 3377 * consume_obj_stock() or refill_obj_stock(). So ignore those 3378 * pre-charged bytes as well when charging pages. To avoid a 3379 * page uncharge right after a page charge, we set the 3380 * allow_uncharge flag to false when calling refill_obj_stock() 3381 * to temporarily allow the pre-charged bytes to exceed the page 3382 * size limit. The maximum reachable value of the pre-charged 3383 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3384 * race. 3385 */ 3386 nr_pages = size >> PAGE_SHIFT; 3387 nr_bytes = size & (PAGE_SIZE - 1); 3388 3389 if (nr_bytes) 3390 nr_pages += 1; 3391 3392 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3393 if (!ret && nr_bytes) 3394 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3395 3396 return ret; 3397 } 3398 3399 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3400 { 3401 refill_obj_stock(objcg, size, true); 3402 } 3403 3404 #endif /* CONFIG_MEMCG_KMEM */ 3405 3406 /* 3407 * Because page_memcg(head) is not set on tails, set it now. 3408 */ 3409 void split_page_memcg(struct page *head, unsigned int nr) 3410 { 3411 struct folio *folio = page_folio(head); 3412 struct mem_cgroup *memcg = folio_memcg(folio); 3413 int i; 3414 3415 if (mem_cgroup_disabled() || !memcg) 3416 return; 3417 3418 for (i = 1; i < nr; i++) 3419 folio_page(folio, i)->memcg_data = folio->memcg_data; 3420 3421 if (folio_memcg_kmem(folio)) 3422 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3423 else 3424 css_get_many(&memcg->css, nr - 1); 3425 } 3426 3427 #ifdef CONFIG_SWAP 3428 /** 3429 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3430 * @entry: swap entry to be moved 3431 * @from: mem_cgroup which the entry is moved from 3432 * @to: mem_cgroup which the entry is moved to 3433 * 3434 * It succeeds only when the swap_cgroup's record for this entry is the same 3435 * as the mem_cgroup's id of @from. 3436 * 3437 * Returns 0 on success, -EINVAL on failure. 3438 * 3439 * The caller must have charged to @to, IOW, called page_counter_charge() about 3440 * both res and memsw, and called css_get(). 3441 */ 3442 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3443 struct mem_cgroup *from, struct mem_cgroup *to) 3444 { 3445 unsigned short old_id, new_id; 3446 3447 old_id = mem_cgroup_id(from); 3448 new_id = mem_cgroup_id(to); 3449 3450 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3451 mod_memcg_state(from, MEMCG_SWAP, -1); 3452 mod_memcg_state(to, MEMCG_SWAP, 1); 3453 return 0; 3454 } 3455 return -EINVAL; 3456 } 3457 #else 3458 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3459 struct mem_cgroup *from, struct mem_cgroup *to) 3460 { 3461 return -EINVAL; 3462 } 3463 #endif 3464 3465 static DEFINE_MUTEX(memcg_max_mutex); 3466 3467 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3468 unsigned long max, bool memsw) 3469 { 3470 bool enlarge = false; 3471 bool drained = false; 3472 int ret; 3473 bool limits_invariant; 3474 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3475 3476 do { 3477 if (signal_pending(current)) { 3478 ret = -EINTR; 3479 break; 3480 } 3481 3482 mutex_lock(&memcg_max_mutex); 3483 /* 3484 * Make sure that the new limit (memsw or memory limit) doesn't 3485 * break our basic invariant rule memory.max <= memsw.max. 3486 */ 3487 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3488 max <= memcg->memsw.max; 3489 if (!limits_invariant) { 3490 mutex_unlock(&memcg_max_mutex); 3491 ret = -EINVAL; 3492 break; 3493 } 3494 if (max > counter->max) 3495 enlarge = true; 3496 ret = page_counter_set_max(counter, max); 3497 mutex_unlock(&memcg_max_mutex); 3498 3499 if (!ret) 3500 break; 3501 3502 if (!drained) { 3503 drain_all_stock(memcg); 3504 drained = true; 3505 continue; 3506 } 3507 3508 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3509 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, 3510 NULL)) { 3511 ret = -EBUSY; 3512 break; 3513 } 3514 } while (true); 3515 3516 if (!ret && enlarge) 3517 memcg_oom_recover(memcg); 3518 3519 return ret; 3520 } 3521 3522 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3523 gfp_t gfp_mask, 3524 unsigned long *total_scanned) 3525 { 3526 unsigned long nr_reclaimed = 0; 3527 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3528 unsigned long reclaimed; 3529 int loop = 0; 3530 struct mem_cgroup_tree_per_node *mctz; 3531 unsigned long excess; 3532 3533 if (order > 0) 3534 return 0; 3535 3536 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3537 3538 /* 3539 * Do not even bother to check the largest node if the root 3540 * is empty. Do it lockless to prevent lock bouncing. Races 3541 * are acceptable as soft limit is best effort anyway. 3542 */ 3543 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3544 return 0; 3545 3546 /* 3547 * This loop can run a while, specially if mem_cgroup's continuously 3548 * keep exceeding their soft limit and putting the system under 3549 * pressure 3550 */ 3551 do { 3552 if (next_mz) 3553 mz = next_mz; 3554 else 3555 mz = mem_cgroup_largest_soft_limit_node(mctz); 3556 if (!mz) 3557 break; 3558 3559 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3560 gfp_mask, total_scanned); 3561 nr_reclaimed += reclaimed; 3562 spin_lock_irq(&mctz->lock); 3563 3564 /* 3565 * If we failed to reclaim anything from this memory cgroup 3566 * it is time to move on to the next cgroup 3567 */ 3568 next_mz = NULL; 3569 if (!reclaimed) 3570 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3571 3572 excess = soft_limit_excess(mz->memcg); 3573 /* 3574 * One school of thought says that we should not add 3575 * back the node to the tree if reclaim returns 0. 3576 * But our reclaim could return 0, simply because due 3577 * to priority we are exposing a smaller subset of 3578 * memory to reclaim from. Consider this as a longer 3579 * term TODO. 3580 */ 3581 /* If excess == 0, no tree ops */ 3582 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3583 spin_unlock_irq(&mctz->lock); 3584 css_put(&mz->memcg->css); 3585 loop++; 3586 /* 3587 * Could not reclaim anything and there are no more 3588 * mem cgroups to try or we seem to be looping without 3589 * reclaiming anything. 3590 */ 3591 if (!nr_reclaimed && 3592 (next_mz == NULL || 3593 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3594 break; 3595 } while (!nr_reclaimed); 3596 if (next_mz) 3597 css_put(&next_mz->memcg->css); 3598 return nr_reclaimed; 3599 } 3600 3601 /* 3602 * Reclaims as many pages from the given memcg as possible. 3603 * 3604 * Caller is responsible for holding css reference for memcg. 3605 */ 3606 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3607 { 3608 int nr_retries = MAX_RECLAIM_RETRIES; 3609 3610 /* we call try-to-free pages for make this cgroup empty */ 3611 lru_add_drain_all(); 3612 3613 drain_all_stock(memcg); 3614 3615 /* try to free all pages in this cgroup */ 3616 while (nr_retries && page_counter_read(&memcg->memory)) { 3617 if (signal_pending(current)) 3618 return -EINTR; 3619 3620 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3621 MEMCG_RECLAIM_MAY_SWAP, 3622 NULL)) 3623 nr_retries--; 3624 } 3625 3626 return 0; 3627 } 3628 3629 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3630 char *buf, size_t nbytes, 3631 loff_t off) 3632 { 3633 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3634 3635 if (mem_cgroup_is_root(memcg)) 3636 return -EINVAL; 3637 return mem_cgroup_force_empty(memcg) ?: nbytes; 3638 } 3639 3640 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3641 struct cftype *cft) 3642 { 3643 return 1; 3644 } 3645 3646 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3647 struct cftype *cft, u64 val) 3648 { 3649 if (val == 1) 3650 return 0; 3651 3652 pr_warn_once("Non-hierarchical mode is deprecated. " 3653 "Please report your usecase to linux-mm@kvack.org if you " 3654 "depend on this functionality.\n"); 3655 3656 return -EINVAL; 3657 } 3658 3659 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3660 { 3661 unsigned long val; 3662 3663 if (mem_cgroup_is_root(memcg)) { 3664 mem_cgroup_flush_stats(); 3665 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3666 memcg_page_state(memcg, NR_ANON_MAPPED); 3667 if (swap) 3668 val += memcg_page_state(memcg, MEMCG_SWAP); 3669 } else { 3670 if (!swap) 3671 val = page_counter_read(&memcg->memory); 3672 else 3673 val = page_counter_read(&memcg->memsw); 3674 } 3675 return val; 3676 } 3677 3678 enum { 3679 RES_USAGE, 3680 RES_LIMIT, 3681 RES_MAX_USAGE, 3682 RES_FAILCNT, 3683 RES_SOFT_LIMIT, 3684 }; 3685 3686 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3687 struct cftype *cft) 3688 { 3689 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3690 struct page_counter *counter; 3691 3692 switch (MEMFILE_TYPE(cft->private)) { 3693 case _MEM: 3694 counter = &memcg->memory; 3695 break; 3696 case _MEMSWAP: 3697 counter = &memcg->memsw; 3698 break; 3699 case _KMEM: 3700 counter = &memcg->kmem; 3701 break; 3702 case _TCP: 3703 counter = &memcg->tcpmem; 3704 break; 3705 default: 3706 BUG(); 3707 } 3708 3709 switch (MEMFILE_ATTR(cft->private)) { 3710 case RES_USAGE: 3711 if (counter == &memcg->memory) 3712 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3713 if (counter == &memcg->memsw) 3714 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3715 return (u64)page_counter_read(counter) * PAGE_SIZE; 3716 case RES_LIMIT: 3717 return (u64)counter->max * PAGE_SIZE; 3718 case RES_MAX_USAGE: 3719 return (u64)counter->watermark * PAGE_SIZE; 3720 case RES_FAILCNT: 3721 return counter->failcnt; 3722 case RES_SOFT_LIMIT: 3723 return (u64)memcg->soft_limit * PAGE_SIZE; 3724 default: 3725 BUG(); 3726 } 3727 } 3728 3729 #ifdef CONFIG_MEMCG_KMEM 3730 static int memcg_online_kmem(struct mem_cgroup *memcg) 3731 { 3732 struct obj_cgroup *objcg; 3733 3734 if (mem_cgroup_kmem_disabled()) 3735 return 0; 3736 3737 if (unlikely(mem_cgroup_is_root(memcg))) 3738 return 0; 3739 3740 objcg = obj_cgroup_alloc(); 3741 if (!objcg) 3742 return -ENOMEM; 3743 3744 objcg->memcg = memcg; 3745 rcu_assign_pointer(memcg->objcg, objcg); 3746 3747 static_branch_enable(&memcg_kmem_enabled_key); 3748 3749 memcg->kmemcg_id = memcg->id.id; 3750 3751 return 0; 3752 } 3753 3754 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3755 { 3756 struct mem_cgroup *parent; 3757 3758 if (mem_cgroup_kmem_disabled()) 3759 return; 3760 3761 if (unlikely(mem_cgroup_is_root(memcg))) 3762 return; 3763 3764 parent = parent_mem_cgroup(memcg); 3765 if (!parent) 3766 parent = root_mem_cgroup; 3767 3768 memcg_reparent_objcgs(memcg, parent); 3769 3770 /* 3771 * After we have finished memcg_reparent_objcgs(), all list_lrus 3772 * corresponding to this cgroup are guaranteed to remain empty. 3773 * The ordering is imposed by list_lru_node->lock taken by 3774 * memcg_reparent_list_lrus(). 3775 */ 3776 memcg_reparent_list_lrus(memcg, parent); 3777 } 3778 #else 3779 static int memcg_online_kmem(struct mem_cgroup *memcg) 3780 { 3781 return 0; 3782 } 3783 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3784 { 3785 } 3786 #endif /* CONFIG_MEMCG_KMEM */ 3787 3788 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3789 { 3790 int ret; 3791 3792 mutex_lock(&memcg_max_mutex); 3793 3794 ret = page_counter_set_max(&memcg->tcpmem, max); 3795 if (ret) 3796 goto out; 3797 3798 if (!memcg->tcpmem_active) { 3799 /* 3800 * The active flag needs to be written after the static_key 3801 * update. This is what guarantees that the socket activation 3802 * function is the last one to run. See mem_cgroup_sk_alloc() 3803 * for details, and note that we don't mark any socket as 3804 * belonging to this memcg until that flag is up. 3805 * 3806 * We need to do this, because static_keys will span multiple 3807 * sites, but we can't control their order. If we mark a socket 3808 * as accounted, but the accounting functions are not patched in 3809 * yet, we'll lose accounting. 3810 * 3811 * We never race with the readers in mem_cgroup_sk_alloc(), 3812 * because when this value change, the code to process it is not 3813 * patched in yet. 3814 */ 3815 static_branch_inc(&memcg_sockets_enabled_key); 3816 memcg->tcpmem_active = true; 3817 } 3818 out: 3819 mutex_unlock(&memcg_max_mutex); 3820 return ret; 3821 } 3822 3823 /* 3824 * The user of this function is... 3825 * RES_LIMIT. 3826 */ 3827 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3828 char *buf, size_t nbytes, loff_t off) 3829 { 3830 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3831 unsigned long nr_pages; 3832 int ret; 3833 3834 buf = strstrip(buf); 3835 ret = page_counter_memparse(buf, "-1", &nr_pages); 3836 if (ret) 3837 return ret; 3838 3839 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3840 case RES_LIMIT: 3841 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3842 ret = -EINVAL; 3843 break; 3844 } 3845 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3846 case _MEM: 3847 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3848 break; 3849 case _MEMSWAP: 3850 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3851 break; 3852 case _KMEM: 3853 /* kmem.limit_in_bytes is deprecated. */ 3854 ret = -EOPNOTSUPP; 3855 break; 3856 case _TCP: 3857 ret = memcg_update_tcp_max(memcg, nr_pages); 3858 break; 3859 } 3860 break; 3861 case RES_SOFT_LIMIT: 3862 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3863 ret = -EOPNOTSUPP; 3864 } else { 3865 memcg->soft_limit = nr_pages; 3866 ret = 0; 3867 } 3868 break; 3869 } 3870 return ret ?: nbytes; 3871 } 3872 3873 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3874 size_t nbytes, loff_t off) 3875 { 3876 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3877 struct page_counter *counter; 3878 3879 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3880 case _MEM: 3881 counter = &memcg->memory; 3882 break; 3883 case _MEMSWAP: 3884 counter = &memcg->memsw; 3885 break; 3886 case _KMEM: 3887 counter = &memcg->kmem; 3888 break; 3889 case _TCP: 3890 counter = &memcg->tcpmem; 3891 break; 3892 default: 3893 BUG(); 3894 } 3895 3896 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3897 case RES_MAX_USAGE: 3898 page_counter_reset_watermark(counter); 3899 break; 3900 case RES_FAILCNT: 3901 counter->failcnt = 0; 3902 break; 3903 default: 3904 BUG(); 3905 } 3906 3907 return nbytes; 3908 } 3909 3910 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3911 struct cftype *cft) 3912 { 3913 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3914 } 3915 3916 #ifdef CONFIG_MMU 3917 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3918 struct cftype *cft, u64 val) 3919 { 3920 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3921 3922 if (val & ~MOVE_MASK) 3923 return -EINVAL; 3924 3925 /* 3926 * No kind of locking is needed in here, because ->can_attach() will 3927 * check this value once in the beginning of the process, and then carry 3928 * on with stale data. This means that changes to this value will only 3929 * affect task migrations starting after the change. 3930 */ 3931 memcg->move_charge_at_immigrate = val; 3932 return 0; 3933 } 3934 #else 3935 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3936 struct cftype *cft, u64 val) 3937 { 3938 return -ENOSYS; 3939 } 3940 #endif 3941 3942 #ifdef CONFIG_NUMA 3943 3944 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3945 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3946 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3947 3948 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3949 int nid, unsigned int lru_mask, bool tree) 3950 { 3951 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3952 unsigned long nr = 0; 3953 enum lru_list lru; 3954 3955 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3956 3957 for_each_lru(lru) { 3958 if (!(BIT(lru) & lru_mask)) 3959 continue; 3960 if (tree) 3961 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3962 else 3963 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3964 } 3965 return nr; 3966 } 3967 3968 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3969 unsigned int lru_mask, 3970 bool tree) 3971 { 3972 unsigned long nr = 0; 3973 enum lru_list lru; 3974 3975 for_each_lru(lru) { 3976 if (!(BIT(lru) & lru_mask)) 3977 continue; 3978 if (tree) 3979 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3980 else 3981 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3982 } 3983 return nr; 3984 } 3985 3986 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3987 { 3988 struct numa_stat { 3989 const char *name; 3990 unsigned int lru_mask; 3991 }; 3992 3993 static const struct numa_stat stats[] = { 3994 { "total", LRU_ALL }, 3995 { "file", LRU_ALL_FILE }, 3996 { "anon", LRU_ALL_ANON }, 3997 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3998 }; 3999 const struct numa_stat *stat; 4000 int nid; 4001 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4002 4003 mem_cgroup_flush_stats(); 4004 4005 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4006 seq_printf(m, "%s=%lu", stat->name, 4007 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4008 false)); 4009 for_each_node_state(nid, N_MEMORY) 4010 seq_printf(m, " N%d=%lu", nid, 4011 mem_cgroup_node_nr_lru_pages(memcg, nid, 4012 stat->lru_mask, false)); 4013 seq_putc(m, '\n'); 4014 } 4015 4016 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4017 4018 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4019 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4020 true)); 4021 for_each_node_state(nid, N_MEMORY) 4022 seq_printf(m, " N%d=%lu", nid, 4023 mem_cgroup_node_nr_lru_pages(memcg, nid, 4024 stat->lru_mask, true)); 4025 seq_putc(m, '\n'); 4026 } 4027 4028 return 0; 4029 } 4030 #endif /* CONFIG_NUMA */ 4031 4032 static const unsigned int memcg1_stats[] = { 4033 NR_FILE_PAGES, 4034 NR_ANON_MAPPED, 4035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4036 NR_ANON_THPS, 4037 #endif 4038 NR_SHMEM, 4039 NR_FILE_MAPPED, 4040 NR_FILE_DIRTY, 4041 NR_WRITEBACK, 4042 WORKINGSET_REFAULT_ANON, 4043 WORKINGSET_REFAULT_FILE, 4044 MEMCG_SWAP, 4045 }; 4046 4047 static const char *const memcg1_stat_names[] = { 4048 "cache", 4049 "rss", 4050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4051 "rss_huge", 4052 #endif 4053 "shmem", 4054 "mapped_file", 4055 "dirty", 4056 "writeback", 4057 "workingset_refault_anon", 4058 "workingset_refault_file", 4059 "swap", 4060 }; 4061 4062 /* Universal VM events cgroup1 shows, original sort order */ 4063 static const unsigned int memcg1_events[] = { 4064 PGPGIN, 4065 PGPGOUT, 4066 PGFAULT, 4067 PGMAJFAULT, 4068 }; 4069 4070 static int memcg_stat_show(struct seq_file *m, void *v) 4071 { 4072 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4073 unsigned long memory, memsw; 4074 struct mem_cgroup *mi; 4075 unsigned int i; 4076 4077 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4078 4079 mem_cgroup_flush_stats(); 4080 4081 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4082 unsigned long nr; 4083 4084 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4085 continue; 4086 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4087 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 4088 nr * memcg_page_state_unit(memcg1_stats[i])); 4089 } 4090 4091 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4092 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4093 memcg_events_local(memcg, memcg1_events[i])); 4094 4095 for (i = 0; i < NR_LRU_LISTS; i++) 4096 seq_printf(m, "%s %lu\n", lru_list_name(i), 4097 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4098 PAGE_SIZE); 4099 4100 /* Hierarchical information */ 4101 memory = memsw = PAGE_COUNTER_MAX; 4102 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4103 memory = min(memory, READ_ONCE(mi->memory.max)); 4104 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4105 } 4106 seq_printf(m, "hierarchical_memory_limit %llu\n", 4107 (u64)memory * PAGE_SIZE); 4108 if (do_memsw_account()) 4109 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4110 (u64)memsw * PAGE_SIZE); 4111 4112 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4113 unsigned long nr; 4114 4115 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4116 continue; 4117 nr = memcg_page_state(memcg, memcg1_stats[i]); 4118 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4119 (u64)nr * memcg_page_state_unit(memcg1_stats[i])); 4120 } 4121 4122 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4123 seq_printf(m, "total_%s %llu\n", 4124 vm_event_name(memcg1_events[i]), 4125 (u64)memcg_events(memcg, memcg1_events[i])); 4126 4127 for (i = 0; i < NR_LRU_LISTS; i++) 4128 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4129 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4130 PAGE_SIZE); 4131 4132 #ifdef CONFIG_DEBUG_VM 4133 { 4134 pg_data_t *pgdat; 4135 struct mem_cgroup_per_node *mz; 4136 unsigned long anon_cost = 0; 4137 unsigned long file_cost = 0; 4138 4139 for_each_online_pgdat(pgdat) { 4140 mz = memcg->nodeinfo[pgdat->node_id]; 4141 4142 anon_cost += mz->lruvec.anon_cost; 4143 file_cost += mz->lruvec.file_cost; 4144 } 4145 seq_printf(m, "anon_cost %lu\n", anon_cost); 4146 seq_printf(m, "file_cost %lu\n", file_cost); 4147 } 4148 #endif 4149 4150 return 0; 4151 } 4152 4153 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4154 struct cftype *cft) 4155 { 4156 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4157 4158 return mem_cgroup_swappiness(memcg); 4159 } 4160 4161 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4162 struct cftype *cft, u64 val) 4163 { 4164 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4165 4166 if (val > 200) 4167 return -EINVAL; 4168 4169 if (!mem_cgroup_is_root(memcg)) 4170 memcg->swappiness = val; 4171 else 4172 vm_swappiness = val; 4173 4174 return 0; 4175 } 4176 4177 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4178 { 4179 struct mem_cgroup_threshold_ary *t; 4180 unsigned long usage; 4181 int i; 4182 4183 rcu_read_lock(); 4184 if (!swap) 4185 t = rcu_dereference(memcg->thresholds.primary); 4186 else 4187 t = rcu_dereference(memcg->memsw_thresholds.primary); 4188 4189 if (!t) 4190 goto unlock; 4191 4192 usage = mem_cgroup_usage(memcg, swap); 4193 4194 /* 4195 * current_threshold points to threshold just below or equal to usage. 4196 * If it's not true, a threshold was crossed after last 4197 * call of __mem_cgroup_threshold(). 4198 */ 4199 i = t->current_threshold; 4200 4201 /* 4202 * Iterate backward over array of thresholds starting from 4203 * current_threshold and check if a threshold is crossed. 4204 * If none of thresholds below usage is crossed, we read 4205 * only one element of the array here. 4206 */ 4207 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4208 eventfd_signal(t->entries[i].eventfd, 1); 4209 4210 /* i = current_threshold + 1 */ 4211 i++; 4212 4213 /* 4214 * Iterate forward over array of thresholds starting from 4215 * current_threshold+1 and check if a threshold is crossed. 4216 * If none of thresholds above usage is crossed, we read 4217 * only one element of the array here. 4218 */ 4219 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4220 eventfd_signal(t->entries[i].eventfd, 1); 4221 4222 /* Update current_threshold */ 4223 t->current_threshold = i - 1; 4224 unlock: 4225 rcu_read_unlock(); 4226 } 4227 4228 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4229 { 4230 while (memcg) { 4231 __mem_cgroup_threshold(memcg, false); 4232 if (do_memsw_account()) 4233 __mem_cgroup_threshold(memcg, true); 4234 4235 memcg = parent_mem_cgroup(memcg); 4236 } 4237 } 4238 4239 static int compare_thresholds(const void *a, const void *b) 4240 { 4241 const struct mem_cgroup_threshold *_a = a; 4242 const struct mem_cgroup_threshold *_b = b; 4243 4244 if (_a->threshold > _b->threshold) 4245 return 1; 4246 4247 if (_a->threshold < _b->threshold) 4248 return -1; 4249 4250 return 0; 4251 } 4252 4253 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4254 { 4255 struct mem_cgroup_eventfd_list *ev; 4256 4257 spin_lock(&memcg_oom_lock); 4258 4259 list_for_each_entry(ev, &memcg->oom_notify, list) 4260 eventfd_signal(ev->eventfd, 1); 4261 4262 spin_unlock(&memcg_oom_lock); 4263 return 0; 4264 } 4265 4266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4267 { 4268 struct mem_cgroup *iter; 4269 4270 for_each_mem_cgroup_tree(iter, memcg) 4271 mem_cgroup_oom_notify_cb(iter); 4272 } 4273 4274 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4275 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4276 { 4277 struct mem_cgroup_thresholds *thresholds; 4278 struct mem_cgroup_threshold_ary *new; 4279 unsigned long threshold; 4280 unsigned long usage; 4281 int i, size, ret; 4282 4283 ret = page_counter_memparse(args, "-1", &threshold); 4284 if (ret) 4285 return ret; 4286 4287 mutex_lock(&memcg->thresholds_lock); 4288 4289 if (type == _MEM) { 4290 thresholds = &memcg->thresholds; 4291 usage = mem_cgroup_usage(memcg, false); 4292 } else if (type == _MEMSWAP) { 4293 thresholds = &memcg->memsw_thresholds; 4294 usage = mem_cgroup_usage(memcg, true); 4295 } else 4296 BUG(); 4297 4298 /* Check if a threshold crossed before adding a new one */ 4299 if (thresholds->primary) 4300 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4301 4302 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4303 4304 /* Allocate memory for new array of thresholds */ 4305 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4306 if (!new) { 4307 ret = -ENOMEM; 4308 goto unlock; 4309 } 4310 new->size = size; 4311 4312 /* Copy thresholds (if any) to new array */ 4313 if (thresholds->primary) 4314 memcpy(new->entries, thresholds->primary->entries, 4315 flex_array_size(new, entries, size - 1)); 4316 4317 /* Add new threshold */ 4318 new->entries[size - 1].eventfd = eventfd; 4319 new->entries[size - 1].threshold = threshold; 4320 4321 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4322 sort(new->entries, size, sizeof(*new->entries), 4323 compare_thresholds, NULL); 4324 4325 /* Find current threshold */ 4326 new->current_threshold = -1; 4327 for (i = 0; i < size; i++) { 4328 if (new->entries[i].threshold <= usage) { 4329 /* 4330 * new->current_threshold will not be used until 4331 * rcu_assign_pointer(), so it's safe to increment 4332 * it here. 4333 */ 4334 ++new->current_threshold; 4335 } else 4336 break; 4337 } 4338 4339 /* Free old spare buffer and save old primary buffer as spare */ 4340 kfree(thresholds->spare); 4341 thresholds->spare = thresholds->primary; 4342 4343 rcu_assign_pointer(thresholds->primary, new); 4344 4345 /* To be sure that nobody uses thresholds */ 4346 synchronize_rcu(); 4347 4348 unlock: 4349 mutex_unlock(&memcg->thresholds_lock); 4350 4351 return ret; 4352 } 4353 4354 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4355 struct eventfd_ctx *eventfd, const char *args) 4356 { 4357 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4358 } 4359 4360 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4361 struct eventfd_ctx *eventfd, const char *args) 4362 { 4363 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4364 } 4365 4366 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4367 struct eventfd_ctx *eventfd, enum res_type type) 4368 { 4369 struct mem_cgroup_thresholds *thresholds; 4370 struct mem_cgroup_threshold_ary *new; 4371 unsigned long usage; 4372 int i, j, size, entries; 4373 4374 mutex_lock(&memcg->thresholds_lock); 4375 4376 if (type == _MEM) { 4377 thresholds = &memcg->thresholds; 4378 usage = mem_cgroup_usage(memcg, false); 4379 } else if (type == _MEMSWAP) { 4380 thresholds = &memcg->memsw_thresholds; 4381 usage = mem_cgroup_usage(memcg, true); 4382 } else 4383 BUG(); 4384 4385 if (!thresholds->primary) 4386 goto unlock; 4387 4388 /* Check if a threshold crossed before removing */ 4389 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4390 4391 /* Calculate new number of threshold */ 4392 size = entries = 0; 4393 for (i = 0; i < thresholds->primary->size; i++) { 4394 if (thresholds->primary->entries[i].eventfd != eventfd) 4395 size++; 4396 else 4397 entries++; 4398 } 4399 4400 new = thresholds->spare; 4401 4402 /* If no items related to eventfd have been cleared, nothing to do */ 4403 if (!entries) 4404 goto unlock; 4405 4406 /* Set thresholds array to NULL if we don't have thresholds */ 4407 if (!size) { 4408 kfree(new); 4409 new = NULL; 4410 goto swap_buffers; 4411 } 4412 4413 new->size = size; 4414 4415 /* Copy thresholds and find current threshold */ 4416 new->current_threshold = -1; 4417 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4418 if (thresholds->primary->entries[i].eventfd == eventfd) 4419 continue; 4420 4421 new->entries[j] = thresholds->primary->entries[i]; 4422 if (new->entries[j].threshold <= usage) { 4423 /* 4424 * new->current_threshold will not be used 4425 * until rcu_assign_pointer(), so it's safe to increment 4426 * it here. 4427 */ 4428 ++new->current_threshold; 4429 } 4430 j++; 4431 } 4432 4433 swap_buffers: 4434 /* Swap primary and spare array */ 4435 thresholds->spare = thresholds->primary; 4436 4437 rcu_assign_pointer(thresholds->primary, new); 4438 4439 /* To be sure that nobody uses thresholds */ 4440 synchronize_rcu(); 4441 4442 /* If all events are unregistered, free the spare array */ 4443 if (!new) { 4444 kfree(thresholds->spare); 4445 thresholds->spare = NULL; 4446 } 4447 unlock: 4448 mutex_unlock(&memcg->thresholds_lock); 4449 } 4450 4451 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4452 struct eventfd_ctx *eventfd) 4453 { 4454 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4455 } 4456 4457 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4458 struct eventfd_ctx *eventfd) 4459 { 4460 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4461 } 4462 4463 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4464 struct eventfd_ctx *eventfd, const char *args) 4465 { 4466 struct mem_cgroup_eventfd_list *event; 4467 4468 event = kmalloc(sizeof(*event), GFP_KERNEL); 4469 if (!event) 4470 return -ENOMEM; 4471 4472 spin_lock(&memcg_oom_lock); 4473 4474 event->eventfd = eventfd; 4475 list_add(&event->list, &memcg->oom_notify); 4476 4477 /* already in OOM ? */ 4478 if (memcg->under_oom) 4479 eventfd_signal(eventfd, 1); 4480 spin_unlock(&memcg_oom_lock); 4481 4482 return 0; 4483 } 4484 4485 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4486 struct eventfd_ctx *eventfd) 4487 { 4488 struct mem_cgroup_eventfd_list *ev, *tmp; 4489 4490 spin_lock(&memcg_oom_lock); 4491 4492 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4493 if (ev->eventfd == eventfd) { 4494 list_del(&ev->list); 4495 kfree(ev); 4496 } 4497 } 4498 4499 spin_unlock(&memcg_oom_lock); 4500 } 4501 4502 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4503 { 4504 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4505 4506 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4507 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4508 seq_printf(sf, "oom_kill %lu\n", 4509 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4510 return 0; 4511 } 4512 4513 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4514 struct cftype *cft, u64 val) 4515 { 4516 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4517 4518 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4519 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4520 return -EINVAL; 4521 4522 memcg->oom_kill_disable = val; 4523 if (!val) 4524 memcg_oom_recover(memcg); 4525 4526 return 0; 4527 } 4528 4529 #ifdef CONFIG_CGROUP_WRITEBACK 4530 4531 #include <trace/events/writeback.h> 4532 4533 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4534 { 4535 return wb_domain_init(&memcg->cgwb_domain, gfp); 4536 } 4537 4538 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4539 { 4540 wb_domain_exit(&memcg->cgwb_domain); 4541 } 4542 4543 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4544 { 4545 wb_domain_size_changed(&memcg->cgwb_domain); 4546 } 4547 4548 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4549 { 4550 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4551 4552 if (!memcg->css.parent) 4553 return NULL; 4554 4555 return &memcg->cgwb_domain; 4556 } 4557 4558 /** 4559 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4560 * @wb: bdi_writeback in question 4561 * @pfilepages: out parameter for number of file pages 4562 * @pheadroom: out parameter for number of allocatable pages according to memcg 4563 * @pdirty: out parameter for number of dirty pages 4564 * @pwriteback: out parameter for number of pages under writeback 4565 * 4566 * Determine the numbers of file, headroom, dirty, and writeback pages in 4567 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4568 * is a bit more involved. 4569 * 4570 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4571 * headroom is calculated as the lowest headroom of itself and the 4572 * ancestors. Note that this doesn't consider the actual amount of 4573 * available memory in the system. The caller should further cap 4574 * *@pheadroom accordingly. 4575 */ 4576 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4577 unsigned long *pheadroom, unsigned long *pdirty, 4578 unsigned long *pwriteback) 4579 { 4580 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4581 struct mem_cgroup *parent; 4582 4583 mem_cgroup_flush_stats(); 4584 4585 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4586 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4587 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4588 memcg_page_state(memcg, NR_ACTIVE_FILE); 4589 4590 *pheadroom = PAGE_COUNTER_MAX; 4591 while ((parent = parent_mem_cgroup(memcg))) { 4592 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4593 READ_ONCE(memcg->memory.high)); 4594 unsigned long used = page_counter_read(&memcg->memory); 4595 4596 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4597 memcg = parent; 4598 } 4599 } 4600 4601 /* 4602 * Foreign dirty flushing 4603 * 4604 * There's an inherent mismatch between memcg and writeback. The former 4605 * tracks ownership per-page while the latter per-inode. This was a 4606 * deliberate design decision because honoring per-page ownership in the 4607 * writeback path is complicated, may lead to higher CPU and IO overheads 4608 * and deemed unnecessary given that write-sharing an inode across 4609 * different cgroups isn't a common use-case. 4610 * 4611 * Combined with inode majority-writer ownership switching, this works well 4612 * enough in most cases but there are some pathological cases. For 4613 * example, let's say there are two cgroups A and B which keep writing to 4614 * different but confined parts of the same inode. B owns the inode and 4615 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4616 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4617 * triggering background writeback. A will be slowed down without a way to 4618 * make writeback of the dirty pages happen. 4619 * 4620 * Conditions like the above can lead to a cgroup getting repeatedly and 4621 * severely throttled after making some progress after each 4622 * dirty_expire_interval while the underlying IO device is almost 4623 * completely idle. 4624 * 4625 * Solving this problem completely requires matching the ownership tracking 4626 * granularities between memcg and writeback in either direction. However, 4627 * the more egregious behaviors can be avoided by simply remembering the 4628 * most recent foreign dirtying events and initiating remote flushes on 4629 * them when local writeback isn't enough to keep the memory clean enough. 4630 * 4631 * The following two functions implement such mechanism. When a foreign 4632 * page - a page whose memcg and writeback ownerships don't match - is 4633 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4634 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4635 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4636 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4637 * foreign bdi_writebacks which haven't expired. Both the numbers of 4638 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4639 * limited to MEMCG_CGWB_FRN_CNT. 4640 * 4641 * The mechanism only remembers IDs and doesn't hold any object references. 4642 * As being wrong occasionally doesn't matter, updates and accesses to the 4643 * records are lockless and racy. 4644 */ 4645 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4646 struct bdi_writeback *wb) 4647 { 4648 struct mem_cgroup *memcg = folio_memcg(folio); 4649 struct memcg_cgwb_frn *frn; 4650 u64 now = get_jiffies_64(); 4651 u64 oldest_at = now; 4652 int oldest = -1; 4653 int i; 4654 4655 trace_track_foreign_dirty(folio, wb); 4656 4657 /* 4658 * Pick the slot to use. If there is already a slot for @wb, keep 4659 * using it. If not replace the oldest one which isn't being 4660 * written out. 4661 */ 4662 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4663 frn = &memcg->cgwb_frn[i]; 4664 if (frn->bdi_id == wb->bdi->id && 4665 frn->memcg_id == wb->memcg_css->id) 4666 break; 4667 if (time_before64(frn->at, oldest_at) && 4668 atomic_read(&frn->done.cnt) == 1) { 4669 oldest = i; 4670 oldest_at = frn->at; 4671 } 4672 } 4673 4674 if (i < MEMCG_CGWB_FRN_CNT) { 4675 /* 4676 * Re-using an existing one. Update timestamp lazily to 4677 * avoid making the cacheline hot. We want them to be 4678 * reasonably up-to-date and significantly shorter than 4679 * dirty_expire_interval as that's what expires the record. 4680 * Use the shorter of 1s and dirty_expire_interval / 8. 4681 */ 4682 unsigned long update_intv = 4683 min_t(unsigned long, HZ, 4684 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4685 4686 if (time_before64(frn->at, now - update_intv)) 4687 frn->at = now; 4688 } else if (oldest >= 0) { 4689 /* replace the oldest free one */ 4690 frn = &memcg->cgwb_frn[oldest]; 4691 frn->bdi_id = wb->bdi->id; 4692 frn->memcg_id = wb->memcg_css->id; 4693 frn->at = now; 4694 } 4695 } 4696 4697 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4698 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4699 { 4700 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4701 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4702 u64 now = jiffies_64; 4703 int i; 4704 4705 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4706 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4707 4708 /* 4709 * If the record is older than dirty_expire_interval, 4710 * writeback on it has already started. No need to kick it 4711 * off again. Also, don't start a new one if there's 4712 * already one in flight. 4713 */ 4714 if (time_after64(frn->at, now - intv) && 4715 atomic_read(&frn->done.cnt) == 1) { 4716 frn->at = 0; 4717 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4718 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4719 WB_REASON_FOREIGN_FLUSH, 4720 &frn->done); 4721 } 4722 } 4723 } 4724 4725 #else /* CONFIG_CGROUP_WRITEBACK */ 4726 4727 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4728 { 4729 return 0; 4730 } 4731 4732 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4733 { 4734 } 4735 4736 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4737 { 4738 } 4739 4740 #endif /* CONFIG_CGROUP_WRITEBACK */ 4741 4742 /* 4743 * DO NOT USE IN NEW FILES. 4744 * 4745 * "cgroup.event_control" implementation. 4746 * 4747 * This is way over-engineered. It tries to support fully configurable 4748 * events for each user. Such level of flexibility is completely 4749 * unnecessary especially in the light of the planned unified hierarchy. 4750 * 4751 * Please deprecate this and replace with something simpler if at all 4752 * possible. 4753 */ 4754 4755 /* 4756 * Unregister event and free resources. 4757 * 4758 * Gets called from workqueue. 4759 */ 4760 static void memcg_event_remove(struct work_struct *work) 4761 { 4762 struct mem_cgroup_event *event = 4763 container_of(work, struct mem_cgroup_event, remove); 4764 struct mem_cgroup *memcg = event->memcg; 4765 4766 remove_wait_queue(event->wqh, &event->wait); 4767 4768 event->unregister_event(memcg, event->eventfd); 4769 4770 /* Notify userspace the event is going away. */ 4771 eventfd_signal(event->eventfd, 1); 4772 4773 eventfd_ctx_put(event->eventfd); 4774 kfree(event); 4775 css_put(&memcg->css); 4776 } 4777 4778 /* 4779 * Gets called on EPOLLHUP on eventfd when user closes it. 4780 * 4781 * Called with wqh->lock held and interrupts disabled. 4782 */ 4783 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4784 int sync, void *key) 4785 { 4786 struct mem_cgroup_event *event = 4787 container_of(wait, struct mem_cgroup_event, wait); 4788 struct mem_cgroup *memcg = event->memcg; 4789 __poll_t flags = key_to_poll(key); 4790 4791 if (flags & EPOLLHUP) { 4792 /* 4793 * If the event has been detached at cgroup removal, we 4794 * can simply return knowing the other side will cleanup 4795 * for us. 4796 * 4797 * We can't race against event freeing since the other 4798 * side will require wqh->lock via remove_wait_queue(), 4799 * which we hold. 4800 */ 4801 spin_lock(&memcg->event_list_lock); 4802 if (!list_empty(&event->list)) { 4803 list_del_init(&event->list); 4804 /* 4805 * We are in atomic context, but cgroup_event_remove() 4806 * may sleep, so we have to call it in workqueue. 4807 */ 4808 schedule_work(&event->remove); 4809 } 4810 spin_unlock(&memcg->event_list_lock); 4811 } 4812 4813 return 0; 4814 } 4815 4816 static void memcg_event_ptable_queue_proc(struct file *file, 4817 wait_queue_head_t *wqh, poll_table *pt) 4818 { 4819 struct mem_cgroup_event *event = 4820 container_of(pt, struct mem_cgroup_event, pt); 4821 4822 event->wqh = wqh; 4823 add_wait_queue(wqh, &event->wait); 4824 } 4825 4826 /* 4827 * DO NOT USE IN NEW FILES. 4828 * 4829 * Parse input and register new cgroup event handler. 4830 * 4831 * Input must be in format '<event_fd> <control_fd> <args>'. 4832 * Interpretation of args is defined by control file implementation. 4833 */ 4834 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4835 char *buf, size_t nbytes, loff_t off) 4836 { 4837 struct cgroup_subsys_state *css = of_css(of); 4838 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4839 struct mem_cgroup_event *event; 4840 struct cgroup_subsys_state *cfile_css; 4841 unsigned int efd, cfd; 4842 struct fd efile; 4843 struct fd cfile; 4844 struct dentry *cdentry; 4845 const char *name; 4846 char *endp; 4847 int ret; 4848 4849 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4850 return -EOPNOTSUPP; 4851 4852 buf = strstrip(buf); 4853 4854 efd = simple_strtoul(buf, &endp, 10); 4855 if (*endp != ' ') 4856 return -EINVAL; 4857 buf = endp + 1; 4858 4859 cfd = simple_strtoul(buf, &endp, 10); 4860 if ((*endp != ' ') && (*endp != '\0')) 4861 return -EINVAL; 4862 buf = endp + 1; 4863 4864 event = kzalloc(sizeof(*event), GFP_KERNEL); 4865 if (!event) 4866 return -ENOMEM; 4867 4868 event->memcg = memcg; 4869 INIT_LIST_HEAD(&event->list); 4870 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4871 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4872 INIT_WORK(&event->remove, memcg_event_remove); 4873 4874 efile = fdget(efd); 4875 if (!efile.file) { 4876 ret = -EBADF; 4877 goto out_kfree; 4878 } 4879 4880 event->eventfd = eventfd_ctx_fileget(efile.file); 4881 if (IS_ERR(event->eventfd)) { 4882 ret = PTR_ERR(event->eventfd); 4883 goto out_put_efile; 4884 } 4885 4886 cfile = fdget(cfd); 4887 if (!cfile.file) { 4888 ret = -EBADF; 4889 goto out_put_eventfd; 4890 } 4891 4892 /* the process need read permission on control file */ 4893 /* AV: shouldn't we check that it's been opened for read instead? */ 4894 ret = file_permission(cfile.file, MAY_READ); 4895 if (ret < 0) 4896 goto out_put_cfile; 4897 4898 /* 4899 * The control file must be a regular cgroup1 file. As a regular cgroup 4900 * file can't be renamed, it's safe to access its name afterwards. 4901 */ 4902 cdentry = cfile.file->f_path.dentry; 4903 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 4904 ret = -EINVAL; 4905 goto out_put_cfile; 4906 } 4907 4908 /* 4909 * Determine the event callbacks and set them in @event. This used 4910 * to be done via struct cftype but cgroup core no longer knows 4911 * about these events. The following is crude but the whole thing 4912 * is for compatibility anyway. 4913 * 4914 * DO NOT ADD NEW FILES. 4915 */ 4916 name = cdentry->d_name.name; 4917 4918 if (!strcmp(name, "memory.usage_in_bytes")) { 4919 event->register_event = mem_cgroup_usage_register_event; 4920 event->unregister_event = mem_cgroup_usage_unregister_event; 4921 } else if (!strcmp(name, "memory.oom_control")) { 4922 event->register_event = mem_cgroup_oom_register_event; 4923 event->unregister_event = mem_cgroup_oom_unregister_event; 4924 } else if (!strcmp(name, "memory.pressure_level")) { 4925 event->register_event = vmpressure_register_event; 4926 event->unregister_event = vmpressure_unregister_event; 4927 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4928 event->register_event = memsw_cgroup_usage_register_event; 4929 event->unregister_event = memsw_cgroup_usage_unregister_event; 4930 } else { 4931 ret = -EINVAL; 4932 goto out_put_cfile; 4933 } 4934 4935 /* 4936 * Verify @cfile should belong to @css. Also, remaining events are 4937 * automatically removed on cgroup destruction but the removal is 4938 * asynchronous, so take an extra ref on @css. 4939 */ 4940 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 4941 &memory_cgrp_subsys); 4942 ret = -EINVAL; 4943 if (IS_ERR(cfile_css)) 4944 goto out_put_cfile; 4945 if (cfile_css != css) { 4946 css_put(cfile_css); 4947 goto out_put_cfile; 4948 } 4949 4950 ret = event->register_event(memcg, event->eventfd, buf); 4951 if (ret) 4952 goto out_put_css; 4953 4954 vfs_poll(efile.file, &event->pt); 4955 4956 spin_lock_irq(&memcg->event_list_lock); 4957 list_add(&event->list, &memcg->event_list); 4958 spin_unlock_irq(&memcg->event_list_lock); 4959 4960 fdput(cfile); 4961 fdput(efile); 4962 4963 return nbytes; 4964 4965 out_put_css: 4966 css_put(css); 4967 out_put_cfile: 4968 fdput(cfile); 4969 out_put_eventfd: 4970 eventfd_ctx_put(event->eventfd); 4971 out_put_efile: 4972 fdput(efile); 4973 out_kfree: 4974 kfree(event); 4975 4976 return ret; 4977 } 4978 4979 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4980 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4981 { 4982 /* 4983 * Deprecated. 4984 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 4985 */ 4986 return 0; 4987 } 4988 #endif 4989 4990 static struct cftype mem_cgroup_legacy_files[] = { 4991 { 4992 .name = "usage_in_bytes", 4993 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4994 .read_u64 = mem_cgroup_read_u64, 4995 }, 4996 { 4997 .name = "max_usage_in_bytes", 4998 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4999 .write = mem_cgroup_reset, 5000 .read_u64 = mem_cgroup_read_u64, 5001 }, 5002 { 5003 .name = "limit_in_bytes", 5004 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5005 .write = mem_cgroup_write, 5006 .read_u64 = mem_cgroup_read_u64, 5007 }, 5008 { 5009 .name = "soft_limit_in_bytes", 5010 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5011 .write = mem_cgroup_write, 5012 .read_u64 = mem_cgroup_read_u64, 5013 }, 5014 { 5015 .name = "failcnt", 5016 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5017 .write = mem_cgroup_reset, 5018 .read_u64 = mem_cgroup_read_u64, 5019 }, 5020 { 5021 .name = "stat", 5022 .seq_show = memcg_stat_show, 5023 }, 5024 { 5025 .name = "force_empty", 5026 .write = mem_cgroup_force_empty_write, 5027 }, 5028 { 5029 .name = "use_hierarchy", 5030 .write_u64 = mem_cgroup_hierarchy_write, 5031 .read_u64 = mem_cgroup_hierarchy_read, 5032 }, 5033 { 5034 .name = "cgroup.event_control", /* XXX: for compat */ 5035 .write = memcg_write_event_control, 5036 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5037 }, 5038 { 5039 .name = "swappiness", 5040 .read_u64 = mem_cgroup_swappiness_read, 5041 .write_u64 = mem_cgroup_swappiness_write, 5042 }, 5043 { 5044 .name = "move_charge_at_immigrate", 5045 .read_u64 = mem_cgroup_move_charge_read, 5046 .write_u64 = mem_cgroup_move_charge_write, 5047 }, 5048 { 5049 .name = "oom_control", 5050 .seq_show = mem_cgroup_oom_control_read, 5051 .write_u64 = mem_cgroup_oom_control_write, 5052 }, 5053 { 5054 .name = "pressure_level", 5055 }, 5056 #ifdef CONFIG_NUMA 5057 { 5058 .name = "numa_stat", 5059 .seq_show = memcg_numa_stat_show, 5060 }, 5061 #endif 5062 { 5063 .name = "kmem.limit_in_bytes", 5064 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5065 .write = mem_cgroup_write, 5066 .read_u64 = mem_cgroup_read_u64, 5067 }, 5068 { 5069 .name = "kmem.usage_in_bytes", 5070 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5071 .read_u64 = mem_cgroup_read_u64, 5072 }, 5073 { 5074 .name = "kmem.failcnt", 5075 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5076 .write = mem_cgroup_reset, 5077 .read_u64 = mem_cgroup_read_u64, 5078 }, 5079 { 5080 .name = "kmem.max_usage_in_bytes", 5081 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5082 .write = mem_cgroup_reset, 5083 .read_u64 = mem_cgroup_read_u64, 5084 }, 5085 #if defined(CONFIG_MEMCG_KMEM) && \ 5086 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5087 { 5088 .name = "kmem.slabinfo", 5089 .seq_show = mem_cgroup_slab_show, 5090 }, 5091 #endif 5092 { 5093 .name = "kmem.tcp.limit_in_bytes", 5094 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5095 .write = mem_cgroup_write, 5096 .read_u64 = mem_cgroup_read_u64, 5097 }, 5098 { 5099 .name = "kmem.tcp.usage_in_bytes", 5100 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5101 .read_u64 = mem_cgroup_read_u64, 5102 }, 5103 { 5104 .name = "kmem.tcp.failcnt", 5105 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5106 .write = mem_cgroup_reset, 5107 .read_u64 = mem_cgroup_read_u64, 5108 }, 5109 { 5110 .name = "kmem.tcp.max_usage_in_bytes", 5111 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5112 .write = mem_cgroup_reset, 5113 .read_u64 = mem_cgroup_read_u64, 5114 }, 5115 { }, /* terminate */ 5116 }; 5117 5118 /* 5119 * Private memory cgroup IDR 5120 * 5121 * Swap-out records and page cache shadow entries need to store memcg 5122 * references in constrained space, so we maintain an ID space that is 5123 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5124 * memory-controlled cgroups to 64k. 5125 * 5126 * However, there usually are many references to the offline CSS after 5127 * the cgroup has been destroyed, such as page cache or reclaimable 5128 * slab objects, that don't need to hang on to the ID. We want to keep 5129 * those dead CSS from occupying IDs, or we might quickly exhaust the 5130 * relatively small ID space and prevent the creation of new cgroups 5131 * even when there are much fewer than 64k cgroups - possibly none. 5132 * 5133 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5134 * be freed and recycled when it's no longer needed, which is usually 5135 * when the CSS is offlined. 5136 * 5137 * The only exception to that are records of swapped out tmpfs/shmem 5138 * pages that need to be attributed to live ancestors on swapin. But 5139 * those references are manageable from userspace. 5140 */ 5141 5142 static DEFINE_IDR(mem_cgroup_idr); 5143 5144 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5145 { 5146 if (memcg->id.id > 0) { 5147 idr_remove(&mem_cgroup_idr, memcg->id.id); 5148 memcg->id.id = 0; 5149 } 5150 } 5151 5152 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5153 unsigned int n) 5154 { 5155 refcount_add(n, &memcg->id.ref); 5156 } 5157 5158 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5159 { 5160 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5161 mem_cgroup_id_remove(memcg); 5162 5163 /* Memcg ID pins CSS */ 5164 css_put(&memcg->css); 5165 } 5166 } 5167 5168 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5169 { 5170 mem_cgroup_id_put_many(memcg, 1); 5171 } 5172 5173 /** 5174 * mem_cgroup_from_id - look up a memcg from a memcg id 5175 * @id: the memcg id to look up 5176 * 5177 * Caller must hold rcu_read_lock(). 5178 */ 5179 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5180 { 5181 WARN_ON_ONCE(!rcu_read_lock_held()); 5182 return idr_find(&mem_cgroup_idr, id); 5183 } 5184 5185 #ifdef CONFIG_SHRINKER_DEBUG 5186 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5187 { 5188 struct cgroup *cgrp; 5189 struct cgroup_subsys_state *css; 5190 struct mem_cgroup *memcg; 5191 5192 cgrp = cgroup_get_from_id(ino); 5193 if (IS_ERR(cgrp)) 5194 return ERR_CAST(cgrp); 5195 5196 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5197 if (css) 5198 memcg = container_of(css, struct mem_cgroup, css); 5199 else 5200 memcg = ERR_PTR(-ENOENT); 5201 5202 cgroup_put(cgrp); 5203 5204 return memcg; 5205 } 5206 #endif 5207 5208 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5209 { 5210 struct mem_cgroup_per_node *pn; 5211 5212 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5213 if (!pn) 5214 return 1; 5215 5216 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5217 GFP_KERNEL_ACCOUNT); 5218 if (!pn->lruvec_stats_percpu) { 5219 kfree(pn); 5220 return 1; 5221 } 5222 5223 lruvec_init(&pn->lruvec); 5224 pn->memcg = memcg; 5225 5226 memcg->nodeinfo[node] = pn; 5227 return 0; 5228 } 5229 5230 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5231 { 5232 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5233 5234 if (!pn) 5235 return; 5236 5237 free_percpu(pn->lruvec_stats_percpu); 5238 kfree(pn); 5239 } 5240 5241 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5242 { 5243 int node; 5244 5245 for_each_node(node) 5246 free_mem_cgroup_per_node_info(memcg, node); 5247 kfree(memcg->vmstats); 5248 free_percpu(memcg->vmstats_percpu); 5249 kfree(memcg); 5250 } 5251 5252 static void mem_cgroup_free(struct mem_cgroup *memcg) 5253 { 5254 lru_gen_exit_memcg(memcg); 5255 memcg_wb_domain_exit(memcg); 5256 __mem_cgroup_free(memcg); 5257 } 5258 5259 static struct mem_cgroup *mem_cgroup_alloc(void) 5260 { 5261 struct mem_cgroup *memcg; 5262 int node; 5263 int __maybe_unused i; 5264 long error = -ENOMEM; 5265 5266 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5267 if (!memcg) 5268 return ERR_PTR(error); 5269 5270 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5271 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5272 if (memcg->id.id < 0) { 5273 error = memcg->id.id; 5274 goto fail; 5275 } 5276 5277 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5278 if (!memcg->vmstats) 5279 goto fail; 5280 5281 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5282 GFP_KERNEL_ACCOUNT); 5283 if (!memcg->vmstats_percpu) 5284 goto fail; 5285 5286 for_each_node(node) 5287 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5288 goto fail; 5289 5290 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5291 goto fail; 5292 5293 INIT_WORK(&memcg->high_work, high_work_func); 5294 INIT_LIST_HEAD(&memcg->oom_notify); 5295 mutex_init(&memcg->thresholds_lock); 5296 spin_lock_init(&memcg->move_lock); 5297 vmpressure_init(&memcg->vmpressure); 5298 INIT_LIST_HEAD(&memcg->event_list); 5299 spin_lock_init(&memcg->event_list_lock); 5300 memcg->socket_pressure = jiffies; 5301 #ifdef CONFIG_MEMCG_KMEM 5302 memcg->kmemcg_id = -1; 5303 INIT_LIST_HEAD(&memcg->objcg_list); 5304 #endif 5305 #ifdef CONFIG_CGROUP_WRITEBACK 5306 INIT_LIST_HEAD(&memcg->cgwb_list); 5307 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5308 memcg->cgwb_frn[i].done = 5309 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5310 #endif 5311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5312 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5313 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5314 memcg->deferred_split_queue.split_queue_len = 0; 5315 #endif 5316 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5317 lru_gen_init_memcg(memcg); 5318 return memcg; 5319 fail: 5320 mem_cgroup_id_remove(memcg); 5321 __mem_cgroup_free(memcg); 5322 return ERR_PTR(error); 5323 } 5324 5325 static struct cgroup_subsys_state * __ref 5326 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5327 { 5328 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5329 struct mem_cgroup *memcg, *old_memcg; 5330 5331 old_memcg = set_active_memcg(parent); 5332 memcg = mem_cgroup_alloc(); 5333 set_active_memcg(old_memcg); 5334 if (IS_ERR(memcg)) 5335 return ERR_CAST(memcg); 5336 5337 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5338 memcg->soft_limit = PAGE_COUNTER_MAX; 5339 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5340 memcg->zswap_max = PAGE_COUNTER_MAX; 5341 #endif 5342 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5343 if (parent) { 5344 memcg->swappiness = mem_cgroup_swappiness(parent); 5345 memcg->oom_kill_disable = parent->oom_kill_disable; 5346 5347 page_counter_init(&memcg->memory, &parent->memory); 5348 page_counter_init(&memcg->swap, &parent->swap); 5349 page_counter_init(&memcg->kmem, &parent->kmem); 5350 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5351 } else { 5352 init_memcg_events(); 5353 page_counter_init(&memcg->memory, NULL); 5354 page_counter_init(&memcg->swap, NULL); 5355 page_counter_init(&memcg->kmem, NULL); 5356 page_counter_init(&memcg->tcpmem, NULL); 5357 5358 root_mem_cgroup = memcg; 5359 return &memcg->css; 5360 } 5361 5362 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5363 static_branch_inc(&memcg_sockets_enabled_key); 5364 5365 return &memcg->css; 5366 } 5367 5368 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5369 { 5370 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5371 5372 if (memcg_online_kmem(memcg)) 5373 goto remove_id; 5374 5375 /* 5376 * A memcg must be visible for expand_shrinker_info() 5377 * by the time the maps are allocated. So, we allocate maps 5378 * here, when for_each_mem_cgroup() can't skip it. 5379 */ 5380 if (alloc_shrinker_info(memcg)) 5381 goto offline_kmem; 5382 5383 /* Online state pins memcg ID, memcg ID pins CSS */ 5384 refcount_set(&memcg->id.ref, 1); 5385 css_get(css); 5386 5387 if (unlikely(mem_cgroup_is_root(memcg))) 5388 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5389 2UL*HZ); 5390 return 0; 5391 offline_kmem: 5392 memcg_offline_kmem(memcg); 5393 remove_id: 5394 mem_cgroup_id_remove(memcg); 5395 return -ENOMEM; 5396 } 5397 5398 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5399 { 5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5401 struct mem_cgroup_event *event, *tmp; 5402 5403 /* 5404 * Unregister events and notify userspace. 5405 * Notify userspace about cgroup removing only after rmdir of cgroup 5406 * directory to avoid race between userspace and kernelspace. 5407 */ 5408 spin_lock_irq(&memcg->event_list_lock); 5409 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5410 list_del_init(&event->list); 5411 schedule_work(&event->remove); 5412 } 5413 spin_unlock_irq(&memcg->event_list_lock); 5414 5415 page_counter_set_min(&memcg->memory, 0); 5416 page_counter_set_low(&memcg->memory, 0); 5417 5418 memcg_offline_kmem(memcg); 5419 reparent_shrinker_deferred(memcg); 5420 wb_memcg_offline(memcg); 5421 5422 drain_all_stock(memcg); 5423 5424 mem_cgroup_id_put(memcg); 5425 } 5426 5427 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5428 { 5429 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5430 5431 invalidate_reclaim_iterators(memcg); 5432 } 5433 5434 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5435 { 5436 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5437 int __maybe_unused i; 5438 5439 #ifdef CONFIG_CGROUP_WRITEBACK 5440 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5441 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5442 #endif 5443 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5444 static_branch_dec(&memcg_sockets_enabled_key); 5445 5446 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5447 static_branch_dec(&memcg_sockets_enabled_key); 5448 5449 vmpressure_cleanup(&memcg->vmpressure); 5450 cancel_work_sync(&memcg->high_work); 5451 mem_cgroup_remove_from_trees(memcg); 5452 free_shrinker_info(memcg); 5453 mem_cgroup_free(memcg); 5454 } 5455 5456 /** 5457 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5458 * @css: the target css 5459 * 5460 * Reset the states of the mem_cgroup associated with @css. This is 5461 * invoked when the userland requests disabling on the default hierarchy 5462 * but the memcg is pinned through dependency. The memcg should stop 5463 * applying policies and should revert to the vanilla state as it may be 5464 * made visible again. 5465 * 5466 * The current implementation only resets the essential configurations. 5467 * This needs to be expanded to cover all the visible parts. 5468 */ 5469 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5470 { 5471 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5472 5473 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5474 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5475 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5476 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5477 page_counter_set_min(&memcg->memory, 0); 5478 page_counter_set_low(&memcg->memory, 0); 5479 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5480 memcg->soft_limit = PAGE_COUNTER_MAX; 5481 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5482 memcg_wb_domain_size_changed(memcg); 5483 } 5484 5485 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5486 { 5487 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5488 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5489 struct memcg_vmstats_percpu *statc; 5490 long delta, v; 5491 int i, nid; 5492 5493 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5494 5495 for (i = 0; i < MEMCG_NR_STAT; i++) { 5496 /* 5497 * Collect the aggregated propagation counts of groups 5498 * below us. We're in a per-cpu loop here and this is 5499 * a global counter, so the first cycle will get them. 5500 */ 5501 delta = memcg->vmstats->state_pending[i]; 5502 if (delta) 5503 memcg->vmstats->state_pending[i] = 0; 5504 5505 /* Add CPU changes on this level since the last flush */ 5506 v = READ_ONCE(statc->state[i]); 5507 if (v != statc->state_prev[i]) { 5508 delta += v - statc->state_prev[i]; 5509 statc->state_prev[i] = v; 5510 } 5511 5512 if (!delta) 5513 continue; 5514 5515 /* Aggregate counts on this level and propagate upwards */ 5516 memcg->vmstats->state[i] += delta; 5517 if (parent) 5518 parent->vmstats->state_pending[i] += delta; 5519 } 5520 5521 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5522 delta = memcg->vmstats->events_pending[i]; 5523 if (delta) 5524 memcg->vmstats->events_pending[i] = 0; 5525 5526 v = READ_ONCE(statc->events[i]); 5527 if (v != statc->events_prev[i]) { 5528 delta += v - statc->events_prev[i]; 5529 statc->events_prev[i] = v; 5530 } 5531 5532 if (!delta) 5533 continue; 5534 5535 memcg->vmstats->events[i] += delta; 5536 if (parent) 5537 parent->vmstats->events_pending[i] += delta; 5538 } 5539 5540 for_each_node_state(nid, N_MEMORY) { 5541 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5542 struct mem_cgroup_per_node *ppn = NULL; 5543 struct lruvec_stats_percpu *lstatc; 5544 5545 if (parent) 5546 ppn = parent->nodeinfo[nid]; 5547 5548 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5549 5550 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5551 delta = pn->lruvec_stats.state_pending[i]; 5552 if (delta) 5553 pn->lruvec_stats.state_pending[i] = 0; 5554 5555 v = READ_ONCE(lstatc->state[i]); 5556 if (v != lstatc->state_prev[i]) { 5557 delta += v - lstatc->state_prev[i]; 5558 lstatc->state_prev[i] = v; 5559 } 5560 5561 if (!delta) 5562 continue; 5563 5564 pn->lruvec_stats.state[i] += delta; 5565 if (ppn) 5566 ppn->lruvec_stats.state_pending[i] += delta; 5567 } 5568 } 5569 } 5570 5571 #ifdef CONFIG_MMU 5572 /* Handlers for move charge at task migration. */ 5573 static int mem_cgroup_do_precharge(unsigned long count) 5574 { 5575 int ret; 5576 5577 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5578 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5579 if (!ret) { 5580 mc.precharge += count; 5581 return ret; 5582 } 5583 5584 /* Try charges one by one with reclaim, but do not retry */ 5585 while (count--) { 5586 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5587 if (ret) 5588 return ret; 5589 mc.precharge++; 5590 cond_resched(); 5591 } 5592 return 0; 5593 } 5594 5595 union mc_target { 5596 struct page *page; 5597 swp_entry_t ent; 5598 }; 5599 5600 enum mc_target_type { 5601 MC_TARGET_NONE = 0, 5602 MC_TARGET_PAGE, 5603 MC_TARGET_SWAP, 5604 MC_TARGET_DEVICE, 5605 }; 5606 5607 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5608 unsigned long addr, pte_t ptent) 5609 { 5610 struct page *page = vm_normal_page(vma, addr, ptent); 5611 5612 if (!page || !page_mapped(page)) 5613 return NULL; 5614 if (PageAnon(page)) { 5615 if (!(mc.flags & MOVE_ANON)) 5616 return NULL; 5617 } else { 5618 if (!(mc.flags & MOVE_FILE)) 5619 return NULL; 5620 } 5621 if (!get_page_unless_zero(page)) 5622 return NULL; 5623 5624 return page; 5625 } 5626 5627 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5628 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5629 pte_t ptent, swp_entry_t *entry) 5630 { 5631 struct page *page = NULL; 5632 swp_entry_t ent = pte_to_swp_entry(ptent); 5633 5634 if (!(mc.flags & MOVE_ANON)) 5635 return NULL; 5636 5637 /* 5638 * Handle device private pages that are not accessible by the CPU, but 5639 * stored as special swap entries in the page table. 5640 */ 5641 if (is_device_private_entry(ent)) { 5642 page = pfn_swap_entry_to_page(ent); 5643 if (!get_page_unless_zero(page)) 5644 return NULL; 5645 return page; 5646 } 5647 5648 if (non_swap_entry(ent)) 5649 return NULL; 5650 5651 /* 5652 * Because swap_cache_get_folio() updates some statistics counter, 5653 * we call find_get_page() with swapper_space directly. 5654 */ 5655 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5656 entry->val = ent.val; 5657 5658 return page; 5659 } 5660 #else 5661 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5662 pte_t ptent, swp_entry_t *entry) 5663 { 5664 return NULL; 5665 } 5666 #endif 5667 5668 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5669 unsigned long addr, pte_t ptent) 5670 { 5671 unsigned long index; 5672 struct folio *folio; 5673 5674 if (!vma->vm_file) /* anonymous vma */ 5675 return NULL; 5676 if (!(mc.flags & MOVE_FILE)) 5677 return NULL; 5678 5679 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5680 /* shmem/tmpfs may report page out on swap: account for that too. */ 5681 index = linear_page_index(vma, addr); 5682 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5683 if (!folio) 5684 return NULL; 5685 return folio_file_page(folio, index); 5686 } 5687 5688 /** 5689 * mem_cgroup_move_account - move account of the page 5690 * @page: the page 5691 * @compound: charge the page as compound or small page 5692 * @from: mem_cgroup which the page is moved from. 5693 * @to: mem_cgroup which the page is moved to. @from != @to. 5694 * 5695 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5696 * 5697 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5698 * from old cgroup. 5699 */ 5700 static int mem_cgroup_move_account(struct page *page, 5701 bool compound, 5702 struct mem_cgroup *from, 5703 struct mem_cgroup *to) 5704 { 5705 struct folio *folio = page_folio(page); 5706 struct lruvec *from_vec, *to_vec; 5707 struct pglist_data *pgdat; 5708 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5709 int nid, ret; 5710 5711 VM_BUG_ON(from == to); 5712 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5713 VM_BUG_ON(compound && !folio_test_large(folio)); 5714 5715 /* 5716 * Prevent mem_cgroup_migrate() from looking at 5717 * page's memory cgroup of its source page while we change it. 5718 */ 5719 ret = -EBUSY; 5720 if (!folio_trylock(folio)) 5721 goto out; 5722 5723 ret = -EINVAL; 5724 if (folio_memcg(folio) != from) 5725 goto out_unlock; 5726 5727 pgdat = folio_pgdat(folio); 5728 from_vec = mem_cgroup_lruvec(from, pgdat); 5729 to_vec = mem_cgroup_lruvec(to, pgdat); 5730 5731 folio_memcg_lock(folio); 5732 5733 if (folio_test_anon(folio)) { 5734 if (folio_mapped(folio)) { 5735 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5736 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5737 if (folio_test_transhuge(folio)) { 5738 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5739 -nr_pages); 5740 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5741 nr_pages); 5742 } 5743 } 5744 } else { 5745 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5746 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5747 5748 if (folio_test_swapbacked(folio)) { 5749 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5750 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5751 } 5752 5753 if (folio_mapped(folio)) { 5754 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5755 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5756 } 5757 5758 if (folio_test_dirty(folio)) { 5759 struct address_space *mapping = folio_mapping(folio); 5760 5761 if (mapping_can_writeback(mapping)) { 5762 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5763 -nr_pages); 5764 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5765 nr_pages); 5766 } 5767 } 5768 } 5769 5770 #ifdef CONFIG_SWAP 5771 if (folio_test_swapcache(folio)) { 5772 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 5773 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 5774 } 5775 #endif 5776 if (folio_test_writeback(folio)) { 5777 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5778 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5779 } 5780 5781 /* 5782 * All state has been migrated, let's switch to the new memcg. 5783 * 5784 * It is safe to change page's memcg here because the page 5785 * is referenced, charged, isolated, and locked: we can't race 5786 * with (un)charging, migration, LRU putback, or anything else 5787 * that would rely on a stable page's memory cgroup. 5788 * 5789 * Note that lock_page_memcg is a memcg lock, not a page lock, 5790 * to save space. As soon as we switch page's memory cgroup to a 5791 * new memcg that isn't locked, the above state can change 5792 * concurrently again. Make sure we're truly done with it. 5793 */ 5794 smp_mb(); 5795 5796 css_get(&to->css); 5797 css_put(&from->css); 5798 5799 folio->memcg_data = (unsigned long)to; 5800 5801 __folio_memcg_unlock(from); 5802 5803 ret = 0; 5804 nid = folio_nid(folio); 5805 5806 local_irq_disable(); 5807 mem_cgroup_charge_statistics(to, nr_pages); 5808 memcg_check_events(to, nid); 5809 mem_cgroup_charge_statistics(from, -nr_pages); 5810 memcg_check_events(from, nid); 5811 local_irq_enable(); 5812 out_unlock: 5813 folio_unlock(folio); 5814 out: 5815 return ret; 5816 } 5817 5818 /** 5819 * get_mctgt_type - get target type of moving charge 5820 * @vma: the vma the pte to be checked belongs 5821 * @addr: the address corresponding to the pte to be checked 5822 * @ptent: the pte to be checked 5823 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5824 * 5825 * Returns 5826 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5827 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5828 * move charge. if @target is not NULL, the page is stored in target->page 5829 * with extra refcnt got(Callers should handle it). 5830 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5831 * target for charge migration. if @target is not NULL, the entry is stored 5832 * in target->ent. 5833 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and 5834 * thus not on the lru. 5835 * For now we such page is charge like a regular page would be as for all 5836 * intent and purposes it is just special memory taking the place of a 5837 * regular page. 5838 * 5839 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5840 * 5841 * Called with pte lock held. 5842 */ 5843 5844 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5845 unsigned long addr, pte_t ptent, union mc_target *target) 5846 { 5847 struct page *page = NULL; 5848 enum mc_target_type ret = MC_TARGET_NONE; 5849 swp_entry_t ent = { .val = 0 }; 5850 5851 if (pte_present(ptent)) 5852 page = mc_handle_present_pte(vma, addr, ptent); 5853 else if (pte_none_mostly(ptent)) 5854 /* 5855 * PTE markers should be treated as a none pte here, separated 5856 * from other swap handling below. 5857 */ 5858 page = mc_handle_file_pte(vma, addr, ptent); 5859 else if (is_swap_pte(ptent)) 5860 page = mc_handle_swap_pte(vma, ptent, &ent); 5861 5862 if (!page && !ent.val) 5863 return ret; 5864 if (page) { 5865 /* 5866 * Do only loose check w/o serialization. 5867 * mem_cgroup_move_account() checks the page is valid or 5868 * not under LRU exclusion. 5869 */ 5870 if (page_memcg(page) == mc.from) { 5871 ret = MC_TARGET_PAGE; 5872 if (is_device_private_page(page) || 5873 is_device_coherent_page(page)) 5874 ret = MC_TARGET_DEVICE; 5875 if (target) 5876 target->page = page; 5877 } 5878 if (!ret || !target) 5879 put_page(page); 5880 } 5881 /* 5882 * There is a swap entry and a page doesn't exist or isn't charged. 5883 * But we cannot move a tail-page in a THP. 5884 */ 5885 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5886 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5887 ret = MC_TARGET_SWAP; 5888 if (target) 5889 target->ent = ent; 5890 } 5891 return ret; 5892 } 5893 5894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5895 /* 5896 * We don't consider PMD mapped swapping or file mapped pages because THP does 5897 * not support them for now. 5898 * Caller should make sure that pmd_trans_huge(pmd) is true. 5899 */ 5900 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5901 unsigned long addr, pmd_t pmd, union mc_target *target) 5902 { 5903 struct page *page = NULL; 5904 enum mc_target_type ret = MC_TARGET_NONE; 5905 5906 if (unlikely(is_swap_pmd(pmd))) { 5907 VM_BUG_ON(thp_migration_supported() && 5908 !is_pmd_migration_entry(pmd)); 5909 return ret; 5910 } 5911 page = pmd_page(pmd); 5912 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5913 if (!(mc.flags & MOVE_ANON)) 5914 return ret; 5915 if (page_memcg(page) == mc.from) { 5916 ret = MC_TARGET_PAGE; 5917 if (target) { 5918 get_page(page); 5919 target->page = page; 5920 } 5921 } 5922 return ret; 5923 } 5924 #else 5925 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5926 unsigned long addr, pmd_t pmd, union mc_target *target) 5927 { 5928 return MC_TARGET_NONE; 5929 } 5930 #endif 5931 5932 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5933 unsigned long addr, unsigned long end, 5934 struct mm_walk *walk) 5935 { 5936 struct vm_area_struct *vma = walk->vma; 5937 pte_t *pte; 5938 spinlock_t *ptl; 5939 5940 ptl = pmd_trans_huge_lock(pmd, vma); 5941 if (ptl) { 5942 /* 5943 * Note their can not be MC_TARGET_DEVICE for now as we do not 5944 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5945 * this might change. 5946 */ 5947 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5948 mc.precharge += HPAGE_PMD_NR; 5949 spin_unlock(ptl); 5950 return 0; 5951 } 5952 5953 if (pmd_trans_unstable(pmd)) 5954 return 0; 5955 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5956 for (; addr != end; pte++, addr += PAGE_SIZE) 5957 if (get_mctgt_type(vma, addr, *pte, NULL)) 5958 mc.precharge++; /* increment precharge temporarily */ 5959 pte_unmap_unlock(pte - 1, ptl); 5960 cond_resched(); 5961 5962 return 0; 5963 } 5964 5965 static const struct mm_walk_ops precharge_walk_ops = { 5966 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5967 }; 5968 5969 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5970 { 5971 unsigned long precharge; 5972 5973 mmap_read_lock(mm); 5974 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 5975 mmap_read_unlock(mm); 5976 5977 precharge = mc.precharge; 5978 mc.precharge = 0; 5979 5980 return precharge; 5981 } 5982 5983 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5984 { 5985 unsigned long precharge = mem_cgroup_count_precharge(mm); 5986 5987 VM_BUG_ON(mc.moving_task); 5988 mc.moving_task = current; 5989 return mem_cgroup_do_precharge(precharge); 5990 } 5991 5992 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5993 static void __mem_cgroup_clear_mc(void) 5994 { 5995 struct mem_cgroup *from = mc.from; 5996 struct mem_cgroup *to = mc.to; 5997 5998 /* we must uncharge all the leftover precharges from mc.to */ 5999 if (mc.precharge) { 6000 cancel_charge(mc.to, mc.precharge); 6001 mc.precharge = 0; 6002 } 6003 /* 6004 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6005 * we must uncharge here. 6006 */ 6007 if (mc.moved_charge) { 6008 cancel_charge(mc.from, mc.moved_charge); 6009 mc.moved_charge = 0; 6010 } 6011 /* we must fixup refcnts and charges */ 6012 if (mc.moved_swap) { 6013 /* uncharge swap account from the old cgroup */ 6014 if (!mem_cgroup_is_root(mc.from)) 6015 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6016 6017 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6018 6019 /* 6020 * we charged both to->memory and to->memsw, so we 6021 * should uncharge to->memory. 6022 */ 6023 if (!mem_cgroup_is_root(mc.to)) 6024 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6025 6026 mc.moved_swap = 0; 6027 } 6028 memcg_oom_recover(from); 6029 memcg_oom_recover(to); 6030 wake_up_all(&mc.waitq); 6031 } 6032 6033 static void mem_cgroup_clear_mc(void) 6034 { 6035 struct mm_struct *mm = mc.mm; 6036 6037 /* 6038 * we must clear moving_task before waking up waiters at the end of 6039 * task migration. 6040 */ 6041 mc.moving_task = NULL; 6042 __mem_cgroup_clear_mc(); 6043 spin_lock(&mc.lock); 6044 mc.from = NULL; 6045 mc.to = NULL; 6046 mc.mm = NULL; 6047 spin_unlock(&mc.lock); 6048 6049 mmput(mm); 6050 } 6051 6052 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6053 { 6054 struct cgroup_subsys_state *css; 6055 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6056 struct mem_cgroup *from; 6057 struct task_struct *leader, *p; 6058 struct mm_struct *mm; 6059 unsigned long move_flags; 6060 int ret = 0; 6061 6062 /* charge immigration isn't supported on the default hierarchy */ 6063 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6064 return 0; 6065 6066 /* 6067 * Multi-process migrations only happen on the default hierarchy 6068 * where charge immigration is not used. Perform charge 6069 * immigration if @tset contains a leader and whine if there are 6070 * multiple. 6071 */ 6072 p = NULL; 6073 cgroup_taskset_for_each_leader(leader, css, tset) { 6074 WARN_ON_ONCE(p); 6075 p = leader; 6076 memcg = mem_cgroup_from_css(css); 6077 } 6078 if (!p) 6079 return 0; 6080 6081 /* 6082 * We are now committed to this value whatever it is. Changes in this 6083 * tunable will only affect upcoming migrations, not the current one. 6084 * So we need to save it, and keep it going. 6085 */ 6086 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6087 if (!move_flags) 6088 return 0; 6089 6090 from = mem_cgroup_from_task(p); 6091 6092 VM_BUG_ON(from == memcg); 6093 6094 mm = get_task_mm(p); 6095 if (!mm) 6096 return 0; 6097 /* We move charges only when we move a owner of the mm */ 6098 if (mm->owner == p) { 6099 VM_BUG_ON(mc.from); 6100 VM_BUG_ON(mc.to); 6101 VM_BUG_ON(mc.precharge); 6102 VM_BUG_ON(mc.moved_charge); 6103 VM_BUG_ON(mc.moved_swap); 6104 6105 spin_lock(&mc.lock); 6106 mc.mm = mm; 6107 mc.from = from; 6108 mc.to = memcg; 6109 mc.flags = move_flags; 6110 spin_unlock(&mc.lock); 6111 /* We set mc.moving_task later */ 6112 6113 ret = mem_cgroup_precharge_mc(mm); 6114 if (ret) 6115 mem_cgroup_clear_mc(); 6116 } else { 6117 mmput(mm); 6118 } 6119 return ret; 6120 } 6121 6122 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6123 { 6124 if (mc.to) 6125 mem_cgroup_clear_mc(); 6126 } 6127 6128 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6129 unsigned long addr, unsigned long end, 6130 struct mm_walk *walk) 6131 { 6132 int ret = 0; 6133 struct vm_area_struct *vma = walk->vma; 6134 pte_t *pte; 6135 spinlock_t *ptl; 6136 enum mc_target_type target_type; 6137 union mc_target target; 6138 struct page *page; 6139 6140 ptl = pmd_trans_huge_lock(pmd, vma); 6141 if (ptl) { 6142 if (mc.precharge < HPAGE_PMD_NR) { 6143 spin_unlock(ptl); 6144 return 0; 6145 } 6146 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6147 if (target_type == MC_TARGET_PAGE) { 6148 page = target.page; 6149 if (!isolate_lru_page(page)) { 6150 if (!mem_cgroup_move_account(page, true, 6151 mc.from, mc.to)) { 6152 mc.precharge -= HPAGE_PMD_NR; 6153 mc.moved_charge += HPAGE_PMD_NR; 6154 } 6155 putback_lru_page(page); 6156 } 6157 put_page(page); 6158 } else if (target_type == MC_TARGET_DEVICE) { 6159 page = target.page; 6160 if (!mem_cgroup_move_account(page, true, 6161 mc.from, mc.to)) { 6162 mc.precharge -= HPAGE_PMD_NR; 6163 mc.moved_charge += HPAGE_PMD_NR; 6164 } 6165 put_page(page); 6166 } 6167 spin_unlock(ptl); 6168 return 0; 6169 } 6170 6171 if (pmd_trans_unstable(pmd)) 6172 return 0; 6173 retry: 6174 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6175 for (; addr != end; addr += PAGE_SIZE) { 6176 pte_t ptent = *(pte++); 6177 bool device = false; 6178 swp_entry_t ent; 6179 6180 if (!mc.precharge) 6181 break; 6182 6183 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6184 case MC_TARGET_DEVICE: 6185 device = true; 6186 fallthrough; 6187 case MC_TARGET_PAGE: 6188 page = target.page; 6189 /* 6190 * We can have a part of the split pmd here. Moving it 6191 * can be done but it would be too convoluted so simply 6192 * ignore such a partial THP and keep it in original 6193 * memcg. There should be somebody mapping the head. 6194 */ 6195 if (PageTransCompound(page)) 6196 goto put; 6197 if (!device && isolate_lru_page(page)) 6198 goto put; 6199 if (!mem_cgroup_move_account(page, false, 6200 mc.from, mc.to)) { 6201 mc.precharge--; 6202 /* we uncharge from mc.from later. */ 6203 mc.moved_charge++; 6204 } 6205 if (!device) 6206 putback_lru_page(page); 6207 put: /* get_mctgt_type() gets the page */ 6208 put_page(page); 6209 break; 6210 case MC_TARGET_SWAP: 6211 ent = target.ent; 6212 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6213 mc.precharge--; 6214 mem_cgroup_id_get_many(mc.to, 1); 6215 /* we fixup other refcnts and charges later. */ 6216 mc.moved_swap++; 6217 } 6218 break; 6219 default: 6220 break; 6221 } 6222 } 6223 pte_unmap_unlock(pte - 1, ptl); 6224 cond_resched(); 6225 6226 if (addr != end) { 6227 /* 6228 * We have consumed all precharges we got in can_attach(). 6229 * We try charge one by one, but don't do any additional 6230 * charges to mc.to if we have failed in charge once in attach() 6231 * phase. 6232 */ 6233 ret = mem_cgroup_do_precharge(1); 6234 if (!ret) 6235 goto retry; 6236 } 6237 6238 return ret; 6239 } 6240 6241 static const struct mm_walk_ops charge_walk_ops = { 6242 .pmd_entry = mem_cgroup_move_charge_pte_range, 6243 }; 6244 6245 static void mem_cgroup_move_charge(void) 6246 { 6247 lru_add_drain_all(); 6248 /* 6249 * Signal lock_page_memcg() to take the memcg's move_lock 6250 * while we're moving its pages to another memcg. Then wait 6251 * for already started RCU-only updates to finish. 6252 */ 6253 atomic_inc(&mc.from->moving_account); 6254 synchronize_rcu(); 6255 retry: 6256 if (unlikely(!mmap_read_trylock(mc.mm))) { 6257 /* 6258 * Someone who are holding the mmap_lock might be waiting in 6259 * waitq. So we cancel all extra charges, wake up all waiters, 6260 * and retry. Because we cancel precharges, we might not be able 6261 * to move enough charges, but moving charge is a best-effort 6262 * feature anyway, so it wouldn't be a big problem. 6263 */ 6264 __mem_cgroup_clear_mc(); 6265 cond_resched(); 6266 goto retry; 6267 } 6268 /* 6269 * When we have consumed all precharges and failed in doing 6270 * additional charge, the page walk just aborts. 6271 */ 6272 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6273 mmap_read_unlock(mc.mm); 6274 atomic_dec(&mc.from->moving_account); 6275 } 6276 6277 static void mem_cgroup_move_task(void) 6278 { 6279 if (mc.to) { 6280 mem_cgroup_move_charge(); 6281 mem_cgroup_clear_mc(); 6282 } 6283 } 6284 #else /* !CONFIG_MMU */ 6285 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6286 { 6287 return 0; 6288 } 6289 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6290 { 6291 } 6292 static void mem_cgroup_move_task(void) 6293 { 6294 } 6295 #endif 6296 6297 #ifdef CONFIG_LRU_GEN 6298 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6299 { 6300 struct task_struct *task; 6301 struct cgroup_subsys_state *css; 6302 6303 /* find the first leader if there is any */ 6304 cgroup_taskset_for_each_leader(task, css, tset) 6305 break; 6306 6307 if (!task) 6308 return; 6309 6310 task_lock(task); 6311 if (task->mm && READ_ONCE(task->mm->owner) == task) 6312 lru_gen_migrate_mm(task->mm); 6313 task_unlock(task); 6314 } 6315 #else 6316 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6317 { 6318 } 6319 #endif /* CONFIG_LRU_GEN */ 6320 6321 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6322 { 6323 if (value == PAGE_COUNTER_MAX) 6324 seq_puts(m, "max\n"); 6325 else 6326 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6327 6328 return 0; 6329 } 6330 6331 static u64 memory_current_read(struct cgroup_subsys_state *css, 6332 struct cftype *cft) 6333 { 6334 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6335 6336 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6337 } 6338 6339 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6340 struct cftype *cft) 6341 { 6342 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6343 6344 return (u64)memcg->memory.watermark * PAGE_SIZE; 6345 } 6346 6347 static int memory_min_show(struct seq_file *m, void *v) 6348 { 6349 return seq_puts_memcg_tunable(m, 6350 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6351 } 6352 6353 static ssize_t memory_min_write(struct kernfs_open_file *of, 6354 char *buf, size_t nbytes, loff_t off) 6355 { 6356 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6357 unsigned long min; 6358 int err; 6359 6360 buf = strstrip(buf); 6361 err = page_counter_memparse(buf, "max", &min); 6362 if (err) 6363 return err; 6364 6365 page_counter_set_min(&memcg->memory, min); 6366 6367 return nbytes; 6368 } 6369 6370 static int memory_low_show(struct seq_file *m, void *v) 6371 { 6372 return seq_puts_memcg_tunable(m, 6373 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6374 } 6375 6376 static ssize_t memory_low_write(struct kernfs_open_file *of, 6377 char *buf, size_t nbytes, loff_t off) 6378 { 6379 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6380 unsigned long low; 6381 int err; 6382 6383 buf = strstrip(buf); 6384 err = page_counter_memparse(buf, "max", &low); 6385 if (err) 6386 return err; 6387 6388 page_counter_set_low(&memcg->memory, low); 6389 6390 return nbytes; 6391 } 6392 6393 static int memory_high_show(struct seq_file *m, void *v) 6394 { 6395 return seq_puts_memcg_tunable(m, 6396 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6397 } 6398 6399 static ssize_t memory_high_write(struct kernfs_open_file *of, 6400 char *buf, size_t nbytes, loff_t off) 6401 { 6402 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6403 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6404 bool drained = false; 6405 unsigned long high; 6406 int err; 6407 6408 buf = strstrip(buf); 6409 err = page_counter_memparse(buf, "max", &high); 6410 if (err) 6411 return err; 6412 6413 page_counter_set_high(&memcg->memory, high); 6414 6415 for (;;) { 6416 unsigned long nr_pages = page_counter_read(&memcg->memory); 6417 unsigned long reclaimed; 6418 6419 if (nr_pages <= high) 6420 break; 6421 6422 if (signal_pending(current)) 6423 break; 6424 6425 if (!drained) { 6426 drain_all_stock(memcg); 6427 drained = true; 6428 continue; 6429 } 6430 6431 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6432 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, 6433 NULL); 6434 6435 if (!reclaimed && !nr_retries--) 6436 break; 6437 } 6438 6439 memcg_wb_domain_size_changed(memcg); 6440 return nbytes; 6441 } 6442 6443 static int memory_max_show(struct seq_file *m, void *v) 6444 { 6445 return seq_puts_memcg_tunable(m, 6446 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6447 } 6448 6449 static ssize_t memory_max_write(struct kernfs_open_file *of, 6450 char *buf, size_t nbytes, loff_t off) 6451 { 6452 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6453 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6454 bool drained = false; 6455 unsigned long max; 6456 int err; 6457 6458 buf = strstrip(buf); 6459 err = page_counter_memparse(buf, "max", &max); 6460 if (err) 6461 return err; 6462 6463 xchg(&memcg->memory.max, max); 6464 6465 for (;;) { 6466 unsigned long nr_pages = page_counter_read(&memcg->memory); 6467 6468 if (nr_pages <= max) 6469 break; 6470 6471 if (signal_pending(current)) 6472 break; 6473 6474 if (!drained) { 6475 drain_all_stock(memcg); 6476 drained = true; 6477 continue; 6478 } 6479 6480 if (nr_reclaims) { 6481 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6482 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, 6483 NULL)) 6484 nr_reclaims--; 6485 continue; 6486 } 6487 6488 memcg_memory_event(memcg, MEMCG_OOM); 6489 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6490 break; 6491 } 6492 6493 memcg_wb_domain_size_changed(memcg); 6494 return nbytes; 6495 } 6496 6497 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6498 { 6499 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6500 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6501 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6502 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6503 seq_printf(m, "oom_kill %lu\n", 6504 atomic_long_read(&events[MEMCG_OOM_KILL])); 6505 seq_printf(m, "oom_group_kill %lu\n", 6506 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6507 } 6508 6509 static int memory_events_show(struct seq_file *m, void *v) 6510 { 6511 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6512 6513 __memory_events_show(m, memcg->memory_events); 6514 return 0; 6515 } 6516 6517 static int memory_events_local_show(struct seq_file *m, void *v) 6518 { 6519 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6520 6521 __memory_events_show(m, memcg->memory_events_local); 6522 return 0; 6523 } 6524 6525 static int memory_stat_show(struct seq_file *m, void *v) 6526 { 6527 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6528 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6529 6530 if (!buf) 6531 return -ENOMEM; 6532 memory_stat_format(memcg, buf, PAGE_SIZE); 6533 seq_puts(m, buf); 6534 kfree(buf); 6535 return 0; 6536 } 6537 6538 #ifdef CONFIG_NUMA 6539 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6540 int item) 6541 { 6542 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6543 } 6544 6545 static int memory_numa_stat_show(struct seq_file *m, void *v) 6546 { 6547 int i; 6548 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6549 6550 mem_cgroup_flush_stats(); 6551 6552 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6553 int nid; 6554 6555 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6556 continue; 6557 6558 seq_printf(m, "%s", memory_stats[i].name); 6559 for_each_node_state(nid, N_MEMORY) { 6560 u64 size; 6561 struct lruvec *lruvec; 6562 6563 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6564 size = lruvec_page_state_output(lruvec, 6565 memory_stats[i].idx); 6566 seq_printf(m, " N%d=%llu", nid, size); 6567 } 6568 seq_putc(m, '\n'); 6569 } 6570 6571 return 0; 6572 } 6573 #endif 6574 6575 static int memory_oom_group_show(struct seq_file *m, void *v) 6576 { 6577 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6578 6579 seq_printf(m, "%d\n", memcg->oom_group); 6580 6581 return 0; 6582 } 6583 6584 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6585 char *buf, size_t nbytes, loff_t off) 6586 { 6587 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6588 int ret, oom_group; 6589 6590 buf = strstrip(buf); 6591 if (!buf) 6592 return -EINVAL; 6593 6594 ret = kstrtoint(buf, 0, &oom_group); 6595 if (ret) 6596 return ret; 6597 6598 if (oom_group != 0 && oom_group != 1) 6599 return -EINVAL; 6600 6601 memcg->oom_group = oom_group; 6602 6603 return nbytes; 6604 } 6605 6606 enum { 6607 MEMORY_RECLAIM_NODES = 0, 6608 MEMORY_RECLAIM_NULL, 6609 }; 6610 6611 static const match_table_t if_tokens = { 6612 { MEMORY_RECLAIM_NODES, "nodes=%s" }, 6613 { MEMORY_RECLAIM_NULL, NULL }, 6614 }; 6615 6616 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6617 size_t nbytes, loff_t off) 6618 { 6619 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6620 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6621 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6622 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP | 6623 MEMCG_RECLAIM_PROACTIVE; 6624 char *old_buf, *start; 6625 substring_t args[MAX_OPT_ARGS]; 6626 int token; 6627 char value[256]; 6628 nodemask_t nodemask = NODE_MASK_ALL; 6629 6630 buf = strstrip(buf); 6631 6632 old_buf = buf; 6633 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 6634 if (buf == old_buf) 6635 return -EINVAL; 6636 6637 buf = strstrip(buf); 6638 6639 while ((start = strsep(&buf, " ")) != NULL) { 6640 if (!strlen(start)) 6641 continue; 6642 token = match_token(start, if_tokens, args); 6643 match_strlcpy(value, args, sizeof(value)); 6644 switch (token) { 6645 case MEMORY_RECLAIM_NODES: 6646 if (nodelist_parse(value, nodemask) < 0) 6647 return -EINVAL; 6648 break; 6649 default: 6650 return -EINVAL; 6651 } 6652 } 6653 6654 while (nr_reclaimed < nr_to_reclaim) { 6655 unsigned long reclaimed; 6656 6657 if (signal_pending(current)) 6658 return -EINTR; 6659 6660 /* 6661 * This is the final attempt, drain percpu lru caches in the 6662 * hope of introducing more evictable pages for 6663 * try_to_free_mem_cgroup_pages(). 6664 */ 6665 if (!nr_retries) 6666 lru_add_drain_all(); 6667 6668 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6669 nr_to_reclaim - nr_reclaimed, 6670 GFP_KERNEL, reclaim_options, 6671 &nodemask); 6672 6673 if (!reclaimed && !nr_retries--) 6674 return -EAGAIN; 6675 6676 nr_reclaimed += reclaimed; 6677 } 6678 6679 return nbytes; 6680 } 6681 6682 static struct cftype memory_files[] = { 6683 { 6684 .name = "current", 6685 .flags = CFTYPE_NOT_ON_ROOT, 6686 .read_u64 = memory_current_read, 6687 }, 6688 { 6689 .name = "peak", 6690 .flags = CFTYPE_NOT_ON_ROOT, 6691 .read_u64 = memory_peak_read, 6692 }, 6693 { 6694 .name = "min", 6695 .flags = CFTYPE_NOT_ON_ROOT, 6696 .seq_show = memory_min_show, 6697 .write = memory_min_write, 6698 }, 6699 { 6700 .name = "low", 6701 .flags = CFTYPE_NOT_ON_ROOT, 6702 .seq_show = memory_low_show, 6703 .write = memory_low_write, 6704 }, 6705 { 6706 .name = "high", 6707 .flags = CFTYPE_NOT_ON_ROOT, 6708 .seq_show = memory_high_show, 6709 .write = memory_high_write, 6710 }, 6711 { 6712 .name = "max", 6713 .flags = CFTYPE_NOT_ON_ROOT, 6714 .seq_show = memory_max_show, 6715 .write = memory_max_write, 6716 }, 6717 { 6718 .name = "events", 6719 .flags = CFTYPE_NOT_ON_ROOT, 6720 .file_offset = offsetof(struct mem_cgroup, events_file), 6721 .seq_show = memory_events_show, 6722 }, 6723 { 6724 .name = "events.local", 6725 .flags = CFTYPE_NOT_ON_ROOT, 6726 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6727 .seq_show = memory_events_local_show, 6728 }, 6729 { 6730 .name = "stat", 6731 .seq_show = memory_stat_show, 6732 }, 6733 #ifdef CONFIG_NUMA 6734 { 6735 .name = "numa_stat", 6736 .seq_show = memory_numa_stat_show, 6737 }, 6738 #endif 6739 { 6740 .name = "oom.group", 6741 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6742 .seq_show = memory_oom_group_show, 6743 .write = memory_oom_group_write, 6744 }, 6745 { 6746 .name = "reclaim", 6747 .flags = CFTYPE_NS_DELEGATABLE, 6748 .write = memory_reclaim, 6749 }, 6750 { } /* terminate */ 6751 }; 6752 6753 struct cgroup_subsys memory_cgrp_subsys = { 6754 .css_alloc = mem_cgroup_css_alloc, 6755 .css_online = mem_cgroup_css_online, 6756 .css_offline = mem_cgroup_css_offline, 6757 .css_released = mem_cgroup_css_released, 6758 .css_free = mem_cgroup_css_free, 6759 .css_reset = mem_cgroup_css_reset, 6760 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6761 .can_attach = mem_cgroup_can_attach, 6762 .attach = mem_cgroup_attach, 6763 .cancel_attach = mem_cgroup_cancel_attach, 6764 .post_attach = mem_cgroup_move_task, 6765 .dfl_cftypes = memory_files, 6766 .legacy_cftypes = mem_cgroup_legacy_files, 6767 .early_init = 0, 6768 }; 6769 6770 /* 6771 * This function calculates an individual cgroup's effective 6772 * protection which is derived from its own memory.min/low, its 6773 * parent's and siblings' settings, as well as the actual memory 6774 * distribution in the tree. 6775 * 6776 * The following rules apply to the effective protection values: 6777 * 6778 * 1. At the first level of reclaim, effective protection is equal to 6779 * the declared protection in memory.min and memory.low. 6780 * 6781 * 2. To enable safe delegation of the protection configuration, at 6782 * subsequent levels the effective protection is capped to the 6783 * parent's effective protection. 6784 * 6785 * 3. To make complex and dynamic subtrees easier to configure, the 6786 * user is allowed to overcommit the declared protection at a given 6787 * level. If that is the case, the parent's effective protection is 6788 * distributed to the children in proportion to how much protection 6789 * they have declared and how much of it they are utilizing. 6790 * 6791 * This makes distribution proportional, but also work-conserving: 6792 * if one cgroup claims much more protection than it uses memory, 6793 * the unused remainder is available to its siblings. 6794 * 6795 * 4. Conversely, when the declared protection is undercommitted at a 6796 * given level, the distribution of the larger parental protection 6797 * budget is NOT proportional. A cgroup's protection from a sibling 6798 * is capped to its own memory.min/low setting. 6799 * 6800 * 5. However, to allow protecting recursive subtrees from each other 6801 * without having to declare each individual cgroup's fixed share 6802 * of the ancestor's claim to protection, any unutilized - 6803 * "floating" - protection from up the tree is distributed in 6804 * proportion to each cgroup's *usage*. This makes the protection 6805 * neutral wrt sibling cgroups and lets them compete freely over 6806 * the shared parental protection budget, but it protects the 6807 * subtree as a whole from neighboring subtrees. 6808 * 6809 * Note that 4. and 5. are not in conflict: 4. is about protecting 6810 * against immediate siblings whereas 5. is about protecting against 6811 * neighboring subtrees. 6812 */ 6813 static unsigned long effective_protection(unsigned long usage, 6814 unsigned long parent_usage, 6815 unsigned long setting, 6816 unsigned long parent_effective, 6817 unsigned long siblings_protected) 6818 { 6819 unsigned long protected; 6820 unsigned long ep; 6821 6822 protected = min(usage, setting); 6823 /* 6824 * If all cgroups at this level combined claim and use more 6825 * protection then what the parent affords them, distribute 6826 * shares in proportion to utilization. 6827 * 6828 * We are using actual utilization rather than the statically 6829 * claimed protection in order to be work-conserving: claimed 6830 * but unused protection is available to siblings that would 6831 * otherwise get a smaller chunk than what they claimed. 6832 */ 6833 if (siblings_protected > parent_effective) 6834 return protected * parent_effective / siblings_protected; 6835 6836 /* 6837 * Ok, utilized protection of all children is within what the 6838 * parent affords them, so we know whatever this child claims 6839 * and utilizes is effectively protected. 6840 * 6841 * If there is unprotected usage beyond this value, reclaim 6842 * will apply pressure in proportion to that amount. 6843 * 6844 * If there is unutilized protection, the cgroup will be fully 6845 * shielded from reclaim, but we do return a smaller value for 6846 * protection than what the group could enjoy in theory. This 6847 * is okay. With the overcommit distribution above, effective 6848 * protection is always dependent on how memory is actually 6849 * consumed among the siblings anyway. 6850 */ 6851 ep = protected; 6852 6853 /* 6854 * If the children aren't claiming (all of) the protection 6855 * afforded to them by the parent, distribute the remainder in 6856 * proportion to the (unprotected) memory of each cgroup. That 6857 * way, cgroups that aren't explicitly prioritized wrt each 6858 * other compete freely over the allowance, but they are 6859 * collectively protected from neighboring trees. 6860 * 6861 * We're using unprotected memory for the weight so that if 6862 * some cgroups DO claim explicit protection, we don't protect 6863 * the same bytes twice. 6864 * 6865 * Check both usage and parent_usage against the respective 6866 * protected values. One should imply the other, but they 6867 * aren't read atomically - make sure the division is sane. 6868 */ 6869 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6870 return ep; 6871 if (parent_effective > siblings_protected && 6872 parent_usage > siblings_protected && 6873 usage > protected) { 6874 unsigned long unclaimed; 6875 6876 unclaimed = parent_effective - siblings_protected; 6877 unclaimed *= usage - protected; 6878 unclaimed /= parent_usage - siblings_protected; 6879 6880 ep += unclaimed; 6881 } 6882 6883 return ep; 6884 } 6885 6886 /** 6887 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6888 * @root: the top ancestor of the sub-tree being checked 6889 * @memcg: the memory cgroup to check 6890 * 6891 * WARNING: This function is not stateless! It can only be used as part 6892 * of a top-down tree iteration, not for isolated queries. 6893 */ 6894 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6895 struct mem_cgroup *memcg) 6896 { 6897 unsigned long usage, parent_usage; 6898 struct mem_cgroup *parent; 6899 6900 if (mem_cgroup_disabled()) 6901 return; 6902 6903 if (!root) 6904 root = root_mem_cgroup; 6905 6906 /* 6907 * Effective values of the reclaim targets are ignored so they 6908 * can be stale. Have a look at mem_cgroup_protection for more 6909 * details. 6910 * TODO: calculation should be more robust so that we do not need 6911 * that special casing. 6912 */ 6913 if (memcg == root) 6914 return; 6915 6916 usage = page_counter_read(&memcg->memory); 6917 if (!usage) 6918 return; 6919 6920 parent = parent_mem_cgroup(memcg); 6921 6922 if (parent == root) { 6923 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6924 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6925 return; 6926 } 6927 6928 parent_usage = page_counter_read(&parent->memory); 6929 6930 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6931 READ_ONCE(memcg->memory.min), 6932 READ_ONCE(parent->memory.emin), 6933 atomic_long_read(&parent->memory.children_min_usage))); 6934 6935 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6936 READ_ONCE(memcg->memory.low), 6937 READ_ONCE(parent->memory.elow), 6938 atomic_long_read(&parent->memory.children_low_usage))); 6939 } 6940 6941 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6942 gfp_t gfp) 6943 { 6944 long nr_pages = folio_nr_pages(folio); 6945 int ret; 6946 6947 ret = try_charge(memcg, gfp, nr_pages); 6948 if (ret) 6949 goto out; 6950 6951 css_get(&memcg->css); 6952 commit_charge(folio, memcg); 6953 6954 local_irq_disable(); 6955 mem_cgroup_charge_statistics(memcg, nr_pages); 6956 memcg_check_events(memcg, folio_nid(folio)); 6957 local_irq_enable(); 6958 out: 6959 return ret; 6960 } 6961 6962 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6963 { 6964 struct mem_cgroup *memcg; 6965 int ret; 6966 6967 memcg = get_mem_cgroup_from_mm(mm); 6968 ret = charge_memcg(folio, memcg, gfp); 6969 css_put(&memcg->css); 6970 6971 return ret; 6972 } 6973 6974 /** 6975 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 6976 * @folio: folio to charge. 6977 * @mm: mm context of the victim 6978 * @gfp: reclaim mode 6979 * @entry: swap entry for which the folio is allocated 6980 * 6981 * This function charges a folio allocated for swapin. Please call this before 6982 * adding the folio to the swapcache. 6983 * 6984 * Returns 0 on success. Otherwise, an error code is returned. 6985 */ 6986 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 6987 gfp_t gfp, swp_entry_t entry) 6988 { 6989 struct mem_cgroup *memcg; 6990 unsigned short id; 6991 int ret; 6992 6993 if (mem_cgroup_disabled()) 6994 return 0; 6995 6996 id = lookup_swap_cgroup_id(entry); 6997 rcu_read_lock(); 6998 memcg = mem_cgroup_from_id(id); 6999 if (!memcg || !css_tryget_online(&memcg->css)) 7000 memcg = get_mem_cgroup_from_mm(mm); 7001 rcu_read_unlock(); 7002 7003 ret = charge_memcg(folio, memcg, gfp); 7004 7005 css_put(&memcg->css); 7006 return ret; 7007 } 7008 7009 /* 7010 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7011 * @entry: swap entry for which the page is charged 7012 * 7013 * Call this function after successfully adding the charged page to swapcache. 7014 * 7015 * Note: This function assumes the page for which swap slot is being uncharged 7016 * is order 0 page. 7017 */ 7018 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7019 { 7020 /* 7021 * Cgroup1's unified memory+swap counter has been charged with the 7022 * new swapcache page, finish the transfer by uncharging the swap 7023 * slot. The swap slot would also get uncharged when it dies, but 7024 * it can stick around indefinitely and we'd count the page twice 7025 * the entire time. 7026 * 7027 * Cgroup2 has separate resource counters for memory and swap, 7028 * so this is a non-issue here. Memory and swap charge lifetimes 7029 * correspond 1:1 to page and swap slot lifetimes: we charge the 7030 * page to memory here, and uncharge swap when the slot is freed. 7031 */ 7032 if (!mem_cgroup_disabled() && do_memsw_account()) { 7033 /* 7034 * The swap entry might not get freed for a long time, 7035 * let's not wait for it. The page already received a 7036 * memory+swap charge, drop the swap entry duplicate. 7037 */ 7038 mem_cgroup_uncharge_swap(entry, 1); 7039 } 7040 } 7041 7042 struct uncharge_gather { 7043 struct mem_cgroup *memcg; 7044 unsigned long nr_memory; 7045 unsigned long pgpgout; 7046 unsigned long nr_kmem; 7047 int nid; 7048 }; 7049 7050 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7051 { 7052 memset(ug, 0, sizeof(*ug)); 7053 } 7054 7055 static void uncharge_batch(const struct uncharge_gather *ug) 7056 { 7057 unsigned long flags; 7058 7059 if (ug->nr_memory) { 7060 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7061 if (do_memsw_account()) 7062 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7063 if (ug->nr_kmem) 7064 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7065 memcg_oom_recover(ug->memcg); 7066 } 7067 7068 local_irq_save(flags); 7069 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7070 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7071 memcg_check_events(ug->memcg, ug->nid); 7072 local_irq_restore(flags); 7073 7074 /* drop reference from uncharge_folio */ 7075 css_put(&ug->memcg->css); 7076 } 7077 7078 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7079 { 7080 long nr_pages; 7081 struct mem_cgroup *memcg; 7082 struct obj_cgroup *objcg; 7083 7084 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7085 7086 /* 7087 * Nobody should be changing or seriously looking at 7088 * folio memcg or objcg at this point, we have fully 7089 * exclusive access to the folio. 7090 */ 7091 if (folio_memcg_kmem(folio)) { 7092 objcg = __folio_objcg(folio); 7093 /* 7094 * This get matches the put at the end of the function and 7095 * kmem pages do not hold memcg references anymore. 7096 */ 7097 memcg = get_mem_cgroup_from_objcg(objcg); 7098 } else { 7099 memcg = __folio_memcg(folio); 7100 } 7101 7102 if (!memcg) 7103 return; 7104 7105 if (ug->memcg != memcg) { 7106 if (ug->memcg) { 7107 uncharge_batch(ug); 7108 uncharge_gather_clear(ug); 7109 } 7110 ug->memcg = memcg; 7111 ug->nid = folio_nid(folio); 7112 7113 /* pairs with css_put in uncharge_batch */ 7114 css_get(&memcg->css); 7115 } 7116 7117 nr_pages = folio_nr_pages(folio); 7118 7119 if (folio_memcg_kmem(folio)) { 7120 ug->nr_memory += nr_pages; 7121 ug->nr_kmem += nr_pages; 7122 7123 folio->memcg_data = 0; 7124 obj_cgroup_put(objcg); 7125 } else { 7126 /* LRU pages aren't accounted at the root level */ 7127 if (!mem_cgroup_is_root(memcg)) 7128 ug->nr_memory += nr_pages; 7129 ug->pgpgout++; 7130 7131 folio->memcg_data = 0; 7132 } 7133 7134 css_put(&memcg->css); 7135 } 7136 7137 void __mem_cgroup_uncharge(struct folio *folio) 7138 { 7139 struct uncharge_gather ug; 7140 7141 /* Don't touch folio->lru of any random page, pre-check: */ 7142 if (!folio_memcg(folio)) 7143 return; 7144 7145 uncharge_gather_clear(&ug); 7146 uncharge_folio(folio, &ug); 7147 uncharge_batch(&ug); 7148 } 7149 7150 /** 7151 * __mem_cgroup_uncharge_list - uncharge a list of page 7152 * @page_list: list of pages to uncharge 7153 * 7154 * Uncharge a list of pages previously charged with 7155 * __mem_cgroup_charge(). 7156 */ 7157 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7158 { 7159 struct uncharge_gather ug; 7160 struct folio *folio; 7161 7162 uncharge_gather_clear(&ug); 7163 list_for_each_entry(folio, page_list, lru) 7164 uncharge_folio(folio, &ug); 7165 if (ug.memcg) 7166 uncharge_batch(&ug); 7167 } 7168 7169 /** 7170 * mem_cgroup_migrate - Charge a folio's replacement. 7171 * @old: Currently circulating folio. 7172 * @new: Replacement folio. 7173 * 7174 * Charge @new as a replacement folio for @old. @old will 7175 * be uncharged upon free. 7176 * 7177 * Both folios must be locked, @new->mapping must be set up. 7178 */ 7179 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7180 { 7181 struct mem_cgroup *memcg; 7182 long nr_pages = folio_nr_pages(new); 7183 unsigned long flags; 7184 7185 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7186 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7187 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7188 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7189 7190 if (mem_cgroup_disabled()) 7191 return; 7192 7193 /* Page cache replacement: new folio already charged? */ 7194 if (folio_memcg(new)) 7195 return; 7196 7197 memcg = folio_memcg(old); 7198 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7199 if (!memcg) 7200 return; 7201 7202 /* Force-charge the new page. The old one will be freed soon */ 7203 if (!mem_cgroup_is_root(memcg)) { 7204 page_counter_charge(&memcg->memory, nr_pages); 7205 if (do_memsw_account()) 7206 page_counter_charge(&memcg->memsw, nr_pages); 7207 } 7208 7209 css_get(&memcg->css); 7210 commit_charge(new, memcg); 7211 7212 local_irq_save(flags); 7213 mem_cgroup_charge_statistics(memcg, nr_pages); 7214 memcg_check_events(memcg, folio_nid(new)); 7215 local_irq_restore(flags); 7216 } 7217 7218 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7219 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7220 7221 void mem_cgroup_sk_alloc(struct sock *sk) 7222 { 7223 struct mem_cgroup *memcg; 7224 7225 if (!mem_cgroup_sockets_enabled) 7226 return; 7227 7228 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7229 if (!in_task()) 7230 return; 7231 7232 rcu_read_lock(); 7233 memcg = mem_cgroup_from_task(current); 7234 if (mem_cgroup_is_root(memcg)) 7235 goto out; 7236 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7237 goto out; 7238 if (css_tryget(&memcg->css)) 7239 sk->sk_memcg = memcg; 7240 out: 7241 rcu_read_unlock(); 7242 } 7243 7244 void mem_cgroup_sk_free(struct sock *sk) 7245 { 7246 if (sk->sk_memcg) 7247 css_put(&sk->sk_memcg->css); 7248 } 7249 7250 /** 7251 * mem_cgroup_charge_skmem - charge socket memory 7252 * @memcg: memcg to charge 7253 * @nr_pages: number of pages to charge 7254 * @gfp_mask: reclaim mode 7255 * 7256 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7257 * @memcg's configured limit, %false if it doesn't. 7258 */ 7259 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7260 gfp_t gfp_mask) 7261 { 7262 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7263 struct page_counter *fail; 7264 7265 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7266 memcg->tcpmem_pressure = 0; 7267 return true; 7268 } 7269 memcg->tcpmem_pressure = 1; 7270 if (gfp_mask & __GFP_NOFAIL) { 7271 page_counter_charge(&memcg->tcpmem, nr_pages); 7272 return true; 7273 } 7274 return false; 7275 } 7276 7277 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7278 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7279 return true; 7280 } 7281 7282 return false; 7283 } 7284 7285 /** 7286 * mem_cgroup_uncharge_skmem - uncharge socket memory 7287 * @memcg: memcg to uncharge 7288 * @nr_pages: number of pages to uncharge 7289 */ 7290 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7291 { 7292 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7293 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7294 return; 7295 } 7296 7297 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7298 7299 refill_stock(memcg, nr_pages); 7300 } 7301 7302 static int __init cgroup_memory(char *s) 7303 { 7304 char *token; 7305 7306 while ((token = strsep(&s, ",")) != NULL) { 7307 if (!*token) 7308 continue; 7309 if (!strcmp(token, "nosocket")) 7310 cgroup_memory_nosocket = true; 7311 if (!strcmp(token, "nokmem")) 7312 cgroup_memory_nokmem = true; 7313 } 7314 return 1; 7315 } 7316 __setup("cgroup.memory=", cgroup_memory); 7317 7318 /* 7319 * subsys_initcall() for memory controller. 7320 * 7321 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7322 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7323 * basically everything that doesn't depend on a specific mem_cgroup structure 7324 * should be initialized from here. 7325 */ 7326 static int __init mem_cgroup_init(void) 7327 { 7328 int cpu, node; 7329 7330 /* 7331 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7332 * used for per-memcg-per-cpu caching of per-node statistics. In order 7333 * to work fine, we should make sure that the overfill threshold can't 7334 * exceed S32_MAX / PAGE_SIZE. 7335 */ 7336 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7337 7338 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7339 memcg_hotplug_cpu_dead); 7340 7341 for_each_possible_cpu(cpu) 7342 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7343 drain_local_stock); 7344 7345 for_each_node(node) { 7346 struct mem_cgroup_tree_per_node *rtpn; 7347 7348 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7349 node_online(node) ? node : NUMA_NO_NODE); 7350 7351 rtpn->rb_root = RB_ROOT; 7352 rtpn->rb_rightmost = NULL; 7353 spin_lock_init(&rtpn->lock); 7354 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7355 } 7356 7357 return 0; 7358 } 7359 subsys_initcall(mem_cgroup_init); 7360 7361 #ifdef CONFIG_SWAP 7362 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7363 { 7364 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7365 /* 7366 * The root cgroup cannot be destroyed, so it's refcount must 7367 * always be >= 1. 7368 */ 7369 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7370 VM_BUG_ON(1); 7371 break; 7372 } 7373 memcg = parent_mem_cgroup(memcg); 7374 if (!memcg) 7375 memcg = root_mem_cgroup; 7376 } 7377 return memcg; 7378 } 7379 7380 /** 7381 * mem_cgroup_swapout - transfer a memsw charge to swap 7382 * @folio: folio whose memsw charge to transfer 7383 * @entry: swap entry to move the charge to 7384 * 7385 * Transfer the memsw charge of @folio to @entry. 7386 */ 7387 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7388 { 7389 struct mem_cgroup *memcg, *swap_memcg; 7390 unsigned int nr_entries; 7391 unsigned short oldid; 7392 7393 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7394 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7395 7396 if (mem_cgroup_disabled()) 7397 return; 7398 7399 if (!do_memsw_account()) 7400 return; 7401 7402 memcg = folio_memcg(folio); 7403 7404 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7405 if (!memcg) 7406 return; 7407 7408 /* 7409 * In case the memcg owning these pages has been offlined and doesn't 7410 * have an ID allocated to it anymore, charge the closest online 7411 * ancestor for the swap instead and transfer the memory+swap charge. 7412 */ 7413 swap_memcg = mem_cgroup_id_get_online(memcg); 7414 nr_entries = folio_nr_pages(folio); 7415 /* Get references for the tail pages, too */ 7416 if (nr_entries > 1) 7417 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7418 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7419 nr_entries); 7420 VM_BUG_ON_FOLIO(oldid, folio); 7421 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7422 7423 folio->memcg_data = 0; 7424 7425 if (!mem_cgroup_is_root(memcg)) 7426 page_counter_uncharge(&memcg->memory, nr_entries); 7427 7428 if (memcg != swap_memcg) { 7429 if (!mem_cgroup_is_root(swap_memcg)) 7430 page_counter_charge(&swap_memcg->memsw, nr_entries); 7431 page_counter_uncharge(&memcg->memsw, nr_entries); 7432 } 7433 7434 /* 7435 * Interrupts should be disabled here because the caller holds the 7436 * i_pages lock which is taken with interrupts-off. It is 7437 * important here to have the interrupts disabled because it is the 7438 * only synchronisation we have for updating the per-CPU variables. 7439 */ 7440 memcg_stats_lock(); 7441 mem_cgroup_charge_statistics(memcg, -nr_entries); 7442 memcg_stats_unlock(); 7443 memcg_check_events(memcg, folio_nid(folio)); 7444 7445 css_put(&memcg->css); 7446 } 7447 7448 /** 7449 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7450 * @folio: folio being added to swap 7451 * @entry: swap entry to charge 7452 * 7453 * Try to charge @folio's memcg for the swap space at @entry. 7454 * 7455 * Returns 0 on success, -ENOMEM on failure. 7456 */ 7457 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7458 { 7459 unsigned int nr_pages = folio_nr_pages(folio); 7460 struct page_counter *counter; 7461 struct mem_cgroup *memcg; 7462 unsigned short oldid; 7463 7464 if (do_memsw_account()) 7465 return 0; 7466 7467 memcg = folio_memcg(folio); 7468 7469 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7470 if (!memcg) 7471 return 0; 7472 7473 if (!entry.val) { 7474 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7475 return 0; 7476 } 7477 7478 memcg = mem_cgroup_id_get_online(memcg); 7479 7480 if (!mem_cgroup_is_root(memcg) && 7481 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7482 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7483 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7484 mem_cgroup_id_put(memcg); 7485 return -ENOMEM; 7486 } 7487 7488 /* Get references for the tail pages, too */ 7489 if (nr_pages > 1) 7490 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7491 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7492 VM_BUG_ON_FOLIO(oldid, folio); 7493 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7494 7495 return 0; 7496 } 7497 7498 /** 7499 * __mem_cgroup_uncharge_swap - uncharge swap space 7500 * @entry: swap entry to uncharge 7501 * @nr_pages: the amount of swap space to uncharge 7502 */ 7503 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7504 { 7505 struct mem_cgroup *memcg; 7506 unsigned short id; 7507 7508 if (mem_cgroup_disabled()) 7509 return; 7510 7511 id = swap_cgroup_record(entry, 0, nr_pages); 7512 rcu_read_lock(); 7513 memcg = mem_cgroup_from_id(id); 7514 if (memcg) { 7515 if (!mem_cgroup_is_root(memcg)) { 7516 if (do_memsw_account()) 7517 page_counter_uncharge(&memcg->memsw, nr_pages); 7518 else 7519 page_counter_uncharge(&memcg->swap, nr_pages); 7520 } 7521 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7522 mem_cgroup_id_put_many(memcg, nr_pages); 7523 } 7524 rcu_read_unlock(); 7525 } 7526 7527 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7528 { 7529 long nr_swap_pages = get_nr_swap_pages(); 7530 7531 if (mem_cgroup_disabled() || do_memsw_account()) 7532 return nr_swap_pages; 7533 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7534 nr_swap_pages = min_t(long, nr_swap_pages, 7535 READ_ONCE(memcg->swap.max) - 7536 page_counter_read(&memcg->swap)); 7537 return nr_swap_pages; 7538 } 7539 7540 bool mem_cgroup_swap_full(struct folio *folio) 7541 { 7542 struct mem_cgroup *memcg; 7543 7544 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7545 7546 if (vm_swap_full()) 7547 return true; 7548 if (do_memsw_account()) 7549 return false; 7550 7551 memcg = folio_memcg(folio); 7552 if (!memcg) 7553 return false; 7554 7555 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7556 unsigned long usage = page_counter_read(&memcg->swap); 7557 7558 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7559 usage * 2 >= READ_ONCE(memcg->swap.max)) 7560 return true; 7561 } 7562 7563 return false; 7564 } 7565 7566 static int __init setup_swap_account(char *s) 7567 { 7568 pr_warn_once("The swapaccount= commandline option is deprecated. " 7569 "Please report your usecase to linux-mm@kvack.org if you " 7570 "depend on this functionality.\n"); 7571 return 1; 7572 } 7573 __setup("swapaccount=", setup_swap_account); 7574 7575 static u64 swap_current_read(struct cgroup_subsys_state *css, 7576 struct cftype *cft) 7577 { 7578 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7579 7580 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7581 } 7582 7583 static int swap_high_show(struct seq_file *m, void *v) 7584 { 7585 return seq_puts_memcg_tunable(m, 7586 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7587 } 7588 7589 static ssize_t swap_high_write(struct kernfs_open_file *of, 7590 char *buf, size_t nbytes, loff_t off) 7591 { 7592 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7593 unsigned long high; 7594 int err; 7595 7596 buf = strstrip(buf); 7597 err = page_counter_memparse(buf, "max", &high); 7598 if (err) 7599 return err; 7600 7601 page_counter_set_high(&memcg->swap, high); 7602 7603 return nbytes; 7604 } 7605 7606 static int swap_max_show(struct seq_file *m, void *v) 7607 { 7608 return seq_puts_memcg_tunable(m, 7609 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7610 } 7611 7612 static ssize_t swap_max_write(struct kernfs_open_file *of, 7613 char *buf, size_t nbytes, loff_t off) 7614 { 7615 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7616 unsigned long max; 7617 int err; 7618 7619 buf = strstrip(buf); 7620 err = page_counter_memparse(buf, "max", &max); 7621 if (err) 7622 return err; 7623 7624 xchg(&memcg->swap.max, max); 7625 7626 return nbytes; 7627 } 7628 7629 static int swap_events_show(struct seq_file *m, void *v) 7630 { 7631 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7632 7633 seq_printf(m, "high %lu\n", 7634 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7635 seq_printf(m, "max %lu\n", 7636 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7637 seq_printf(m, "fail %lu\n", 7638 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7639 7640 return 0; 7641 } 7642 7643 static struct cftype swap_files[] = { 7644 { 7645 .name = "swap.current", 7646 .flags = CFTYPE_NOT_ON_ROOT, 7647 .read_u64 = swap_current_read, 7648 }, 7649 { 7650 .name = "swap.high", 7651 .flags = CFTYPE_NOT_ON_ROOT, 7652 .seq_show = swap_high_show, 7653 .write = swap_high_write, 7654 }, 7655 { 7656 .name = "swap.max", 7657 .flags = CFTYPE_NOT_ON_ROOT, 7658 .seq_show = swap_max_show, 7659 .write = swap_max_write, 7660 }, 7661 { 7662 .name = "swap.events", 7663 .flags = CFTYPE_NOT_ON_ROOT, 7664 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7665 .seq_show = swap_events_show, 7666 }, 7667 { } /* terminate */ 7668 }; 7669 7670 static struct cftype memsw_files[] = { 7671 { 7672 .name = "memsw.usage_in_bytes", 7673 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7674 .read_u64 = mem_cgroup_read_u64, 7675 }, 7676 { 7677 .name = "memsw.max_usage_in_bytes", 7678 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7679 .write = mem_cgroup_reset, 7680 .read_u64 = mem_cgroup_read_u64, 7681 }, 7682 { 7683 .name = "memsw.limit_in_bytes", 7684 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7685 .write = mem_cgroup_write, 7686 .read_u64 = mem_cgroup_read_u64, 7687 }, 7688 { 7689 .name = "memsw.failcnt", 7690 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7691 .write = mem_cgroup_reset, 7692 .read_u64 = mem_cgroup_read_u64, 7693 }, 7694 { }, /* terminate */ 7695 }; 7696 7697 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7698 /** 7699 * obj_cgroup_may_zswap - check if this cgroup can zswap 7700 * @objcg: the object cgroup 7701 * 7702 * Check if the hierarchical zswap limit has been reached. 7703 * 7704 * This doesn't check for specific headroom, and it is not atomic 7705 * either. But with zswap, the size of the allocation is only known 7706 * once compression has occured, and this optimistic pre-check avoids 7707 * spending cycles on compression when there is already no room left 7708 * or zswap is disabled altogether somewhere in the hierarchy. 7709 */ 7710 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7711 { 7712 struct mem_cgroup *memcg, *original_memcg; 7713 bool ret = true; 7714 7715 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7716 return true; 7717 7718 original_memcg = get_mem_cgroup_from_objcg(objcg); 7719 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 7720 memcg = parent_mem_cgroup(memcg)) { 7721 unsigned long max = READ_ONCE(memcg->zswap_max); 7722 unsigned long pages; 7723 7724 if (max == PAGE_COUNTER_MAX) 7725 continue; 7726 if (max == 0) { 7727 ret = false; 7728 break; 7729 } 7730 7731 cgroup_rstat_flush(memcg->css.cgroup); 7732 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7733 if (pages < max) 7734 continue; 7735 ret = false; 7736 break; 7737 } 7738 mem_cgroup_put(original_memcg); 7739 return ret; 7740 } 7741 7742 /** 7743 * obj_cgroup_charge_zswap - charge compression backend memory 7744 * @objcg: the object cgroup 7745 * @size: size of compressed object 7746 * 7747 * This forces the charge after obj_cgroup_may_swap() allowed 7748 * compression and storage in zwap for this cgroup to go ahead. 7749 */ 7750 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7751 { 7752 struct mem_cgroup *memcg; 7753 7754 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7755 return; 7756 7757 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7758 7759 /* PF_MEMALLOC context, charging must succeed */ 7760 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7761 VM_WARN_ON_ONCE(1); 7762 7763 rcu_read_lock(); 7764 memcg = obj_cgroup_memcg(objcg); 7765 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7766 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7767 rcu_read_unlock(); 7768 } 7769 7770 /** 7771 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7772 * @objcg: the object cgroup 7773 * @size: size of compressed object 7774 * 7775 * Uncharges zswap memory on page in. 7776 */ 7777 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7778 { 7779 struct mem_cgroup *memcg; 7780 7781 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7782 return; 7783 7784 obj_cgroup_uncharge(objcg, size); 7785 7786 rcu_read_lock(); 7787 memcg = obj_cgroup_memcg(objcg); 7788 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7789 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7790 rcu_read_unlock(); 7791 } 7792 7793 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7794 struct cftype *cft) 7795 { 7796 cgroup_rstat_flush(css->cgroup); 7797 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7798 } 7799 7800 static int zswap_max_show(struct seq_file *m, void *v) 7801 { 7802 return seq_puts_memcg_tunable(m, 7803 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7804 } 7805 7806 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7807 char *buf, size_t nbytes, loff_t off) 7808 { 7809 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7810 unsigned long max; 7811 int err; 7812 7813 buf = strstrip(buf); 7814 err = page_counter_memparse(buf, "max", &max); 7815 if (err) 7816 return err; 7817 7818 xchg(&memcg->zswap_max, max); 7819 7820 return nbytes; 7821 } 7822 7823 static struct cftype zswap_files[] = { 7824 { 7825 .name = "zswap.current", 7826 .flags = CFTYPE_NOT_ON_ROOT, 7827 .read_u64 = zswap_current_read, 7828 }, 7829 { 7830 .name = "zswap.max", 7831 .flags = CFTYPE_NOT_ON_ROOT, 7832 .seq_show = zswap_max_show, 7833 .write = zswap_max_write, 7834 }, 7835 { } /* terminate */ 7836 }; 7837 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7838 7839 static int __init mem_cgroup_swap_init(void) 7840 { 7841 if (mem_cgroup_disabled()) 7842 return 0; 7843 7844 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7845 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7846 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7847 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7848 #endif 7849 return 0; 7850 } 7851 subsys_initcall(mem_cgroup_swap_init); 7852 7853 #endif /* CONFIG_SWAP */ 7854