xref: /openbmc/linux/mm/memcontrol.c (revision e553d2a5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65 
66 #include <linux/uaccess.h>
67 
68 #include <trace/events/vmscan.h>
69 
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72 
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #define MEM_CGROUP_RECLAIM_RETRIES	5
76 
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79 
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 #ifdef CONFIG_CGROUP_WRITEBACK
91 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
92 #endif
93 
94 /* Whether legacy memory+swap accounting is active */
95 static bool do_memsw_account(void)
96 {
97 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
98 }
99 
100 static const char *const mem_cgroup_lru_names[] = {
101 	"inactive_anon",
102 	"active_anon",
103 	"inactive_file",
104 	"active_file",
105 	"unevictable",
106 };
107 
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110 #define NUMAINFO_EVENTS_TARGET	1024
111 
112 /*
113  * Cgroups above their limits are maintained in a RB-Tree, independent of
114  * their hierarchy representation
115  */
116 
117 struct mem_cgroup_tree_per_node {
118 	struct rb_root rb_root;
119 	struct rb_node *rb_rightmost;
120 	spinlock_t lock;
121 };
122 
123 struct mem_cgroup_tree {
124 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
125 };
126 
127 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
128 
129 /* for OOM */
130 struct mem_cgroup_eventfd_list {
131 	struct list_head list;
132 	struct eventfd_ctx *eventfd;
133 };
134 
135 /*
136  * cgroup_event represents events which userspace want to receive.
137  */
138 struct mem_cgroup_event {
139 	/*
140 	 * memcg which the event belongs to.
141 	 */
142 	struct mem_cgroup *memcg;
143 	/*
144 	 * eventfd to signal userspace about the event.
145 	 */
146 	struct eventfd_ctx *eventfd;
147 	/*
148 	 * Each of these stored in a list by the cgroup.
149 	 */
150 	struct list_head list;
151 	/*
152 	 * register_event() callback will be used to add new userspace
153 	 * waiter for changes related to this event.  Use eventfd_signal()
154 	 * on eventfd to send notification to userspace.
155 	 */
156 	int (*register_event)(struct mem_cgroup *memcg,
157 			      struct eventfd_ctx *eventfd, const char *args);
158 	/*
159 	 * unregister_event() callback will be called when userspace closes
160 	 * the eventfd or on cgroup removing.  This callback must be set,
161 	 * if you want provide notification functionality.
162 	 */
163 	void (*unregister_event)(struct mem_cgroup *memcg,
164 				 struct eventfd_ctx *eventfd);
165 	/*
166 	 * All fields below needed to unregister event when
167 	 * userspace closes eventfd.
168 	 */
169 	poll_table pt;
170 	wait_queue_head_t *wqh;
171 	wait_queue_entry_t wait;
172 	struct work_struct remove;
173 };
174 
175 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
176 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
177 
178 /* Stuffs for move charges at task migration. */
179 /*
180  * Types of charges to be moved.
181  */
182 #define MOVE_ANON	0x1U
183 #define MOVE_FILE	0x2U
184 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
185 
186 /* "mc" and its members are protected by cgroup_mutex */
187 static struct move_charge_struct {
188 	spinlock_t	  lock; /* for from, to */
189 	struct mm_struct  *mm;
190 	struct mem_cgroup *from;
191 	struct mem_cgroup *to;
192 	unsigned long flags;
193 	unsigned long precharge;
194 	unsigned long moved_charge;
195 	unsigned long moved_swap;
196 	struct task_struct *moving_task;	/* a task moving charges */
197 	wait_queue_head_t waitq;		/* a waitq for other context */
198 } mc = {
199 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
200 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
201 };
202 
203 /*
204  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
205  * limit reclaim to prevent infinite loops, if they ever occur.
206  */
207 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
208 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
209 
210 enum charge_type {
211 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
212 	MEM_CGROUP_CHARGE_TYPE_ANON,
213 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
214 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
215 	NR_CHARGE_TYPE,
216 };
217 
218 /* for encoding cft->private value on file */
219 enum res_type {
220 	_MEM,
221 	_MEMSWAP,
222 	_OOM_TYPE,
223 	_KMEM,
224 	_TCP,
225 };
226 
227 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
228 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
229 #define MEMFILE_ATTR(val)	((val) & 0xffff)
230 /* Used for OOM nofiier */
231 #define OOM_CONTROL		(0)
232 
233 /*
234  * Iteration constructs for visiting all cgroups (under a tree).  If
235  * loops are exited prematurely (break), mem_cgroup_iter_break() must
236  * be used for reference counting.
237  */
238 #define for_each_mem_cgroup_tree(iter, root)		\
239 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
240 	     iter != NULL;				\
241 	     iter = mem_cgroup_iter(root, iter, NULL))
242 
243 #define for_each_mem_cgroup(iter)			\
244 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
245 	     iter != NULL;				\
246 	     iter = mem_cgroup_iter(NULL, iter, NULL))
247 
248 static inline bool should_force_charge(void)
249 {
250 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
251 		(current->flags & PF_EXITING);
252 }
253 
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 	if (!memcg)
258 		memcg = root_mem_cgroup;
259 	return &memcg->vmpressure;
260 }
261 
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266 
267 #ifdef CONFIG_MEMCG_KMEM
268 /*
269  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
270  * The main reason for not using cgroup id for this:
271  *  this works better in sparse environments, where we have a lot of memcgs,
272  *  but only a few kmem-limited. Or also, if we have, for instance, 200
273  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
274  *  200 entry array for that.
275  *
276  * The current size of the caches array is stored in memcg_nr_cache_ids. It
277  * will double each time we have to increase it.
278  */
279 static DEFINE_IDA(memcg_cache_ida);
280 int memcg_nr_cache_ids;
281 
282 /* Protects memcg_nr_cache_ids */
283 static DECLARE_RWSEM(memcg_cache_ids_sem);
284 
285 void memcg_get_cache_ids(void)
286 {
287 	down_read(&memcg_cache_ids_sem);
288 }
289 
290 void memcg_put_cache_ids(void)
291 {
292 	up_read(&memcg_cache_ids_sem);
293 }
294 
295 /*
296  * MIN_SIZE is different than 1, because we would like to avoid going through
297  * the alloc/free process all the time. In a small machine, 4 kmem-limited
298  * cgroups is a reasonable guess. In the future, it could be a parameter or
299  * tunable, but that is strictly not necessary.
300  *
301  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
302  * this constant directly from cgroup, but it is understandable that this is
303  * better kept as an internal representation in cgroup.c. In any case, the
304  * cgrp_id space is not getting any smaller, and we don't have to necessarily
305  * increase ours as well if it increases.
306  */
307 #define MEMCG_CACHES_MIN_SIZE 4
308 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
309 
310 /*
311  * A lot of the calls to the cache allocation functions are expected to be
312  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
313  * conditional to this static branch, we'll have to allow modules that does
314  * kmem_cache_alloc and the such to see this symbol as well
315  */
316 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
317 EXPORT_SYMBOL(memcg_kmem_enabled_key);
318 
319 struct workqueue_struct *memcg_kmem_cache_wq;
320 
321 static int memcg_shrinker_map_size;
322 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
323 
324 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
325 {
326 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
327 }
328 
329 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
330 					 int size, int old_size)
331 {
332 	struct memcg_shrinker_map *new, *old;
333 	int nid;
334 
335 	lockdep_assert_held(&memcg_shrinker_map_mutex);
336 
337 	for_each_node(nid) {
338 		old = rcu_dereference_protected(
339 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
340 		/* Not yet online memcg */
341 		if (!old)
342 			return 0;
343 
344 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
345 		if (!new)
346 			return -ENOMEM;
347 
348 		/* Set all old bits, clear all new bits */
349 		memset(new->map, (int)0xff, old_size);
350 		memset((void *)new->map + old_size, 0, size - old_size);
351 
352 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
353 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
354 	}
355 
356 	return 0;
357 }
358 
359 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
360 {
361 	struct mem_cgroup_per_node *pn;
362 	struct memcg_shrinker_map *map;
363 	int nid;
364 
365 	if (mem_cgroup_is_root(memcg))
366 		return;
367 
368 	for_each_node(nid) {
369 		pn = mem_cgroup_nodeinfo(memcg, nid);
370 		map = rcu_dereference_protected(pn->shrinker_map, true);
371 		if (map)
372 			kvfree(map);
373 		rcu_assign_pointer(pn->shrinker_map, NULL);
374 	}
375 }
376 
377 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
378 {
379 	struct memcg_shrinker_map *map;
380 	int nid, size, ret = 0;
381 
382 	if (mem_cgroup_is_root(memcg))
383 		return 0;
384 
385 	mutex_lock(&memcg_shrinker_map_mutex);
386 	size = memcg_shrinker_map_size;
387 	for_each_node(nid) {
388 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
389 		if (!map) {
390 			memcg_free_shrinker_maps(memcg);
391 			ret = -ENOMEM;
392 			break;
393 		}
394 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
395 	}
396 	mutex_unlock(&memcg_shrinker_map_mutex);
397 
398 	return ret;
399 }
400 
401 int memcg_expand_shrinker_maps(int new_id)
402 {
403 	int size, old_size, ret = 0;
404 	struct mem_cgroup *memcg;
405 
406 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
407 	old_size = memcg_shrinker_map_size;
408 	if (size <= old_size)
409 		return 0;
410 
411 	mutex_lock(&memcg_shrinker_map_mutex);
412 	if (!root_mem_cgroup)
413 		goto unlock;
414 
415 	for_each_mem_cgroup(memcg) {
416 		if (mem_cgroup_is_root(memcg))
417 			continue;
418 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
419 		if (ret)
420 			goto unlock;
421 	}
422 unlock:
423 	if (!ret)
424 		memcg_shrinker_map_size = size;
425 	mutex_unlock(&memcg_shrinker_map_mutex);
426 	return ret;
427 }
428 
429 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
430 {
431 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
432 		struct memcg_shrinker_map *map;
433 
434 		rcu_read_lock();
435 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
436 		/* Pairs with smp mb in shrink_slab() */
437 		smp_mb__before_atomic();
438 		set_bit(shrinker_id, map->map);
439 		rcu_read_unlock();
440 	}
441 }
442 
443 #else /* CONFIG_MEMCG_KMEM */
444 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
445 {
446 	return 0;
447 }
448 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
449 #endif /* CONFIG_MEMCG_KMEM */
450 
451 /**
452  * mem_cgroup_css_from_page - css of the memcg associated with a page
453  * @page: page of interest
454  *
455  * If memcg is bound to the default hierarchy, css of the memcg associated
456  * with @page is returned.  The returned css remains associated with @page
457  * until it is released.
458  *
459  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
460  * is returned.
461  */
462 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
463 {
464 	struct mem_cgroup *memcg;
465 
466 	memcg = page->mem_cgroup;
467 
468 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
469 		memcg = root_mem_cgroup;
470 
471 	return &memcg->css;
472 }
473 
474 /**
475  * page_cgroup_ino - return inode number of the memcg a page is charged to
476  * @page: the page
477  *
478  * Look up the closest online ancestor of the memory cgroup @page is charged to
479  * and return its inode number or 0 if @page is not charged to any cgroup. It
480  * is safe to call this function without holding a reference to @page.
481  *
482  * Note, this function is inherently racy, because there is nothing to prevent
483  * the cgroup inode from getting torn down and potentially reallocated a moment
484  * after page_cgroup_ino() returns, so it only should be used by callers that
485  * do not care (such as procfs interfaces).
486  */
487 ino_t page_cgroup_ino(struct page *page)
488 {
489 	struct mem_cgroup *memcg;
490 	unsigned long ino = 0;
491 
492 	rcu_read_lock();
493 	if (PageHead(page) && PageSlab(page))
494 		memcg = memcg_from_slab_page(page);
495 	else
496 		memcg = READ_ONCE(page->mem_cgroup);
497 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
498 		memcg = parent_mem_cgroup(memcg);
499 	if (memcg)
500 		ino = cgroup_ino(memcg->css.cgroup);
501 	rcu_read_unlock();
502 	return ino;
503 }
504 
505 static struct mem_cgroup_per_node *
506 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
507 {
508 	int nid = page_to_nid(page);
509 
510 	return memcg->nodeinfo[nid];
511 }
512 
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_node(int nid)
515 {
516 	return soft_limit_tree.rb_tree_per_node[nid];
517 }
518 
519 static struct mem_cgroup_tree_per_node *
520 soft_limit_tree_from_page(struct page *page)
521 {
522 	int nid = page_to_nid(page);
523 
524 	return soft_limit_tree.rb_tree_per_node[nid];
525 }
526 
527 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
528 					 struct mem_cgroup_tree_per_node *mctz,
529 					 unsigned long new_usage_in_excess)
530 {
531 	struct rb_node **p = &mctz->rb_root.rb_node;
532 	struct rb_node *parent = NULL;
533 	struct mem_cgroup_per_node *mz_node;
534 	bool rightmost = true;
535 
536 	if (mz->on_tree)
537 		return;
538 
539 	mz->usage_in_excess = new_usage_in_excess;
540 	if (!mz->usage_in_excess)
541 		return;
542 	while (*p) {
543 		parent = *p;
544 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
545 					tree_node);
546 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
547 			p = &(*p)->rb_left;
548 			rightmost = false;
549 		}
550 
551 		/*
552 		 * We can't avoid mem cgroups that are over their soft
553 		 * limit by the same amount
554 		 */
555 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
556 			p = &(*p)->rb_right;
557 	}
558 
559 	if (rightmost)
560 		mctz->rb_rightmost = &mz->tree_node;
561 
562 	rb_link_node(&mz->tree_node, parent, p);
563 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = true;
565 }
566 
567 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 					 struct mem_cgroup_tree_per_node *mctz)
569 {
570 	if (!mz->on_tree)
571 		return;
572 
573 	if (&mz->tree_node == mctz->rb_rightmost)
574 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
575 
576 	rb_erase(&mz->tree_node, &mctz->rb_root);
577 	mz->on_tree = false;
578 }
579 
580 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
581 				       struct mem_cgroup_tree_per_node *mctz)
582 {
583 	unsigned long flags;
584 
585 	spin_lock_irqsave(&mctz->lock, flags);
586 	__mem_cgroup_remove_exceeded(mz, mctz);
587 	spin_unlock_irqrestore(&mctz->lock, flags);
588 }
589 
590 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
591 {
592 	unsigned long nr_pages = page_counter_read(&memcg->memory);
593 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
594 	unsigned long excess = 0;
595 
596 	if (nr_pages > soft_limit)
597 		excess = nr_pages - soft_limit;
598 
599 	return excess;
600 }
601 
602 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
603 {
604 	unsigned long excess;
605 	struct mem_cgroup_per_node *mz;
606 	struct mem_cgroup_tree_per_node *mctz;
607 
608 	mctz = soft_limit_tree_from_page(page);
609 	if (!mctz)
610 		return;
611 	/*
612 	 * Necessary to update all ancestors when hierarchy is used.
613 	 * because their event counter is not touched.
614 	 */
615 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
616 		mz = mem_cgroup_page_nodeinfo(memcg, page);
617 		excess = soft_limit_excess(memcg);
618 		/*
619 		 * We have to update the tree if mz is on RB-tree or
620 		 * mem is over its softlimit.
621 		 */
622 		if (excess || mz->on_tree) {
623 			unsigned long flags;
624 
625 			spin_lock_irqsave(&mctz->lock, flags);
626 			/* if on-tree, remove it */
627 			if (mz->on_tree)
628 				__mem_cgroup_remove_exceeded(mz, mctz);
629 			/*
630 			 * Insert again. mz->usage_in_excess will be updated.
631 			 * If excess is 0, no tree ops.
632 			 */
633 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
634 			spin_unlock_irqrestore(&mctz->lock, flags);
635 		}
636 	}
637 }
638 
639 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
640 {
641 	struct mem_cgroup_tree_per_node *mctz;
642 	struct mem_cgroup_per_node *mz;
643 	int nid;
644 
645 	for_each_node(nid) {
646 		mz = mem_cgroup_nodeinfo(memcg, nid);
647 		mctz = soft_limit_tree_node(nid);
648 		if (mctz)
649 			mem_cgroup_remove_exceeded(mz, mctz);
650 	}
651 }
652 
653 static struct mem_cgroup_per_node *
654 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
655 {
656 	struct mem_cgroup_per_node *mz;
657 
658 retry:
659 	mz = NULL;
660 	if (!mctz->rb_rightmost)
661 		goto done;		/* Nothing to reclaim from */
662 
663 	mz = rb_entry(mctz->rb_rightmost,
664 		      struct mem_cgroup_per_node, tree_node);
665 	/*
666 	 * Remove the node now but someone else can add it back,
667 	 * we will to add it back at the end of reclaim to its correct
668 	 * position in the tree.
669 	 */
670 	__mem_cgroup_remove_exceeded(mz, mctz);
671 	if (!soft_limit_excess(mz->memcg) ||
672 	    !css_tryget_online(&mz->memcg->css))
673 		goto retry;
674 done:
675 	return mz;
676 }
677 
678 static struct mem_cgroup_per_node *
679 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
680 {
681 	struct mem_cgroup_per_node *mz;
682 
683 	spin_lock_irq(&mctz->lock);
684 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
685 	spin_unlock_irq(&mctz->lock);
686 	return mz;
687 }
688 
689 /**
690  * __mod_memcg_state - update cgroup memory statistics
691  * @memcg: the memory cgroup
692  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
693  * @val: delta to add to the counter, can be negative
694  */
695 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
696 {
697 	long x;
698 
699 	if (mem_cgroup_disabled())
700 		return;
701 
702 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
703 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
704 		struct mem_cgroup *mi;
705 
706 		/*
707 		 * Batch local counters to keep them in sync with
708 		 * the hierarchical ones.
709 		 */
710 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
711 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
712 			atomic_long_add(x, &mi->vmstats[idx]);
713 		x = 0;
714 	}
715 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
716 }
717 
718 static struct mem_cgroup_per_node *
719 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
720 {
721 	struct mem_cgroup *parent;
722 
723 	parent = parent_mem_cgroup(pn->memcg);
724 	if (!parent)
725 		return NULL;
726 	return mem_cgroup_nodeinfo(parent, nid);
727 }
728 
729 /**
730  * __mod_lruvec_state - update lruvec memory statistics
731  * @lruvec: the lruvec
732  * @idx: the stat item
733  * @val: delta to add to the counter, can be negative
734  *
735  * The lruvec is the intersection of the NUMA node and a cgroup. This
736  * function updates the all three counters that are affected by a
737  * change of state at this level: per-node, per-cgroup, per-lruvec.
738  */
739 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
740 			int val)
741 {
742 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
743 	struct mem_cgroup_per_node *pn;
744 	struct mem_cgroup *memcg;
745 	long x;
746 
747 	/* Update node */
748 	__mod_node_page_state(pgdat, idx, val);
749 
750 	if (mem_cgroup_disabled())
751 		return;
752 
753 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
754 	memcg = pn->memcg;
755 
756 	/* Update memcg */
757 	__mod_memcg_state(memcg, idx, val);
758 
759 	/* Update lruvec */
760 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
761 
762 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
763 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
764 		struct mem_cgroup_per_node *pi;
765 
766 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
767 			atomic_long_add(x, &pi->lruvec_stat[idx]);
768 		x = 0;
769 	}
770 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
771 }
772 
773 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
774 {
775 	struct page *page = virt_to_head_page(p);
776 	pg_data_t *pgdat = page_pgdat(page);
777 	struct mem_cgroup *memcg;
778 	struct lruvec *lruvec;
779 
780 	rcu_read_lock();
781 	memcg = memcg_from_slab_page(page);
782 
783 	/* Untracked pages have no memcg, no lruvec. Update only the node */
784 	if (!memcg || memcg == root_mem_cgroup) {
785 		__mod_node_page_state(pgdat, idx, val);
786 	} else {
787 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
788 		__mod_lruvec_state(lruvec, idx, val);
789 	}
790 	rcu_read_unlock();
791 }
792 
793 /**
794  * __count_memcg_events - account VM events in a cgroup
795  * @memcg: the memory cgroup
796  * @idx: the event item
797  * @count: the number of events that occured
798  */
799 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
800 			  unsigned long count)
801 {
802 	unsigned long x;
803 
804 	if (mem_cgroup_disabled())
805 		return;
806 
807 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
808 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
809 		struct mem_cgroup *mi;
810 
811 		/*
812 		 * Batch local counters to keep them in sync with
813 		 * the hierarchical ones.
814 		 */
815 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
816 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
817 			atomic_long_add(x, &mi->vmevents[idx]);
818 		x = 0;
819 	}
820 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
821 }
822 
823 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
824 {
825 	return atomic_long_read(&memcg->vmevents[event]);
826 }
827 
828 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
829 {
830 	long x = 0;
831 	int cpu;
832 
833 	for_each_possible_cpu(cpu)
834 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
835 	return x;
836 }
837 
838 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
839 					 struct page *page,
840 					 bool compound, int nr_pages)
841 {
842 	/*
843 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
844 	 * counted as CACHE even if it's on ANON LRU.
845 	 */
846 	if (PageAnon(page))
847 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
848 	else {
849 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
850 		if (PageSwapBacked(page))
851 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
852 	}
853 
854 	if (compound) {
855 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
856 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
857 	}
858 
859 	/* pagein of a big page is an event. So, ignore page size */
860 	if (nr_pages > 0)
861 		__count_memcg_events(memcg, PGPGIN, 1);
862 	else {
863 		__count_memcg_events(memcg, PGPGOUT, 1);
864 		nr_pages = -nr_pages; /* for event */
865 	}
866 
867 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
868 }
869 
870 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
871 				       enum mem_cgroup_events_target target)
872 {
873 	unsigned long val, next;
874 
875 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
876 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
877 	/* from time_after() in jiffies.h */
878 	if ((long)(next - val) < 0) {
879 		switch (target) {
880 		case MEM_CGROUP_TARGET_THRESH:
881 			next = val + THRESHOLDS_EVENTS_TARGET;
882 			break;
883 		case MEM_CGROUP_TARGET_SOFTLIMIT:
884 			next = val + SOFTLIMIT_EVENTS_TARGET;
885 			break;
886 		case MEM_CGROUP_TARGET_NUMAINFO:
887 			next = val + NUMAINFO_EVENTS_TARGET;
888 			break;
889 		default:
890 			break;
891 		}
892 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
893 		return true;
894 	}
895 	return false;
896 }
897 
898 /*
899  * Check events in order.
900  *
901  */
902 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
903 {
904 	/* threshold event is triggered in finer grain than soft limit */
905 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
906 						MEM_CGROUP_TARGET_THRESH))) {
907 		bool do_softlimit;
908 		bool do_numainfo __maybe_unused;
909 
910 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
911 						MEM_CGROUP_TARGET_SOFTLIMIT);
912 #if MAX_NUMNODES > 1
913 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
914 						MEM_CGROUP_TARGET_NUMAINFO);
915 #endif
916 		mem_cgroup_threshold(memcg);
917 		if (unlikely(do_softlimit))
918 			mem_cgroup_update_tree(memcg, page);
919 #if MAX_NUMNODES > 1
920 		if (unlikely(do_numainfo))
921 			atomic_inc(&memcg->numainfo_events);
922 #endif
923 	}
924 }
925 
926 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
927 {
928 	/*
929 	 * mm_update_next_owner() may clear mm->owner to NULL
930 	 * if it races with swapoff, page migration, etc.
931 	 * So this can be called with p == NULL.
932 	 */
933 	if (unlikely(!p))
934 		return NULL;
935 
936 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
937 }
938 EXPORT_SYMBOL(mem_cgroup_from_task);
939 
940 /**
941  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
942  * @mm: mm from which memcg should be extracted. It can be NULL.
943  *
944  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
945  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
946  * returned.
947  */
948 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
949 {
950 	struct mem_cgroup *memcg;
951 
952 	if (mem_cgroup_disabled())
953 		return NULL;
954 
955 	rcu_read_lock();
956 	do {
957 		/*
958 		 * Page cache insertions can happen withou an
959 		 * actual mm context, e.g. during disk probing
960 		 * on boot, loopback IO, acct() writes etc.
961 		 */
962 		if (unlikely(!mm))
963 			memcg = root_mem_cgroup;
964 		else {
965 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
966 			if (unlikely(!memcg))
967 				memcg = root_mem_cgroup;
968 		}
969 	} while (!css_tryget_online(&memcg->css));
970 	rcu_read_unlock();
971 	return memcg;
972 }
973 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
974 
975 /**
976  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
977  * @page: page from which memcg should be extracted.
978  *
979  * Obtain a reference on page->memcg and returns it if successful. Otherwise
980  * root_mem_cgroup is returned.
981  */
982 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
983 {
984 	struct mem_cgroup *memcg = page->mem_cgroup;
985 
986 	if (mem_cgroup_disabled())
987 		return NULL;
988 
989 	rcu_read_lock();
990 	if (!memcg || !css_tryget_online(&memcg->css))
991 		memcg = root_mem_cgroup;
992 	rcu_read_unlock();
993 	return memcg;
994 }
995 EXPORT_SYMBOL(get_mem_cgroup_from_page);
996 
997 /**
998  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
999  */
1000 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1001 {
1002 	if (unlikely(current->active_memcg)) {
1003 		struct mem_cgroup *memcg = root_mem_cgroup;
1004 
1005 		rcu_read_lock();
1006 		if (css_tryget_online(&current->active_memcg->css))
1007 			memcg = current->active_memcg;
1008 		rcu_read_unlock();
1009 		return memcg;
1010 	}
1011 	return get_mem_cgroup_from_mm(current->mm);
1012 }
1013 
1014 /**
1015  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1016  * @root: hierarchy root
1017  * @prev: previously returned memcg, NULL on first invocation
1018  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1019  *
1020  * Returns references to children of the hierarchy below @root, or
1021  * @root itself, or %NULL after a full round-trip.
1022  *
1023  * Caller must pass the return value in @prev on subsequent
1024  * invocations for reference counting, or use mem_cgroup_iter_break()
1025  * to cancel a hierarchy walk before the round-trip is complete.
1026  *
1027  * Reclaimers can specify a node and a priority level in @reclaim to
1028  * divide up the memcgs in the hierarchy among all concurrent
1029  * reclaimers operating on the same node and priority.
1030  */
1031 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1032 				   struct mem_cgroup *prev,
1033 				   struct mem_cgroup_reclaim_cookie *reclaim)
1034 {
1035 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1036 	struct cgroup_subsys_state *css = NULL;
1037 	struct mem_cgroup *memcg = NULL;
1038 	struct mem_cgroup *pos = NULL;
1039 
1040 	if (mem_cgroup_disabled())
1041 		return NULL;
1042 
1043 	if (!root)
1044 		root = root_mem_cgroup;
1045 
1046 	if (prev && !reclaim)
1047 		pos = prev;
1048 
1049 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1050 		if (prev)
1051 			goto out;
1052 		return root;
1053 	}
1054 
1055 	rcu_read_lock();
1056 
1057 	if (reclaim) {
1058 		struct mem_cgroup_per_node *mz;
1059 
1060 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1061 		iter = &mz->iter[reclaim->priority];
1062 
1063 		if (prev && reclaim->generation != iter->generation)
1064 			goto out_unlock;
1065 
1066 		while (1) {
1067 			pos = READ_ONCE(iter->position);
1068 			if (!pos || css_tryget(&pos->css))
1069 				break;
1070 			/*
1071 			 * css reference reached zero, so iter->position will
1072 			 * be cleared by ->css_released. However, we should not
1073 			 * rely on this happening soon, because ->css_released
1074 			 * is called from a work queue, and by busy-waiting we
1075 			 * might block it. So we clear iter->position right
1076 			 * away.
1077 			 */
1078 			(void)cmpxchg(&iter->position, pos, NULL);
1079 		}
1080 	}
1081 
1082 	if (pos)
1083 		css = &pos->css;
1084 
1085 	for (;;) {
1086 		css = css_next_descendant_pre(css, &root->css);
1087 		if (!css) {
1088 			/*
1089 			 * Reclaimers share the hierarchy walk, and a
1090 			 * new one might jump in right at the end of
1091 			 * the hierarchy - make sure they see at least
1092 			 * one group and restart from the beginning.
1093 			 */
1094 			if (!prev)
1095 				continue;
1096 			break;
1097 		}
1098 
1099 		/*
1100 		 * Verify the css and acquire a reference.  The root
1101 		 * is provided by the caller, so we know it's alive
1102 		 * and kicking, and don't take an extra reference.
1103 		 */
1104 		memcg = mem_cgroup_from_css(css);
1105 
1106 		if (css == &root->css)
1107 			break;
1108 
1109 		if (css_tryget(css))
1110 			break;
1111 
1112 		memcg = NULL;
1113 	}
1114 
1115 	if (reclaim) {
1116 		/*
1117 		 * The position could have already been updated by a competing
1118 		 * thread, so check that the value hasn't changed since we read
1119 		 * it to avoid reclaiming from the same cgroup twice.
1120 		 */
1121 		(void)cmpxchg(&iter->position, pos, memcg);
1122 
1123 		if (pos)
1124 			css_put(&pos->css);
1125 
1126 		if (!memcg)
1127 			iter->generation++;
1128 		else if (!prev)
1129 			reclaim->generation = iter->generation;
1130 	}
1131 
1132 out_unlock:
1133 	rcu_read_unlock();
1134 out:
1135 	if (prev && prev != root)
1136 		css_put(&prev->css);
1137 
1138 	return memcg;
1139 }
1140 
1141 /**
1142  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1143  * @root: hierarchy root
1144  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1145  */
1146 void mem_cgroup_iter_break(struct mem_cgroup *root,
1147 			   struct mem_cgroup *prev)
1148 {
1149 	if (!root)
1150 		root = root_mem_cgroup;
1151 	if (prev && prev != root)
1152 		css_put(&prev->css);
1153 }
1154 
1155 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1156 					struct mem_cgroup *dead_memcg)
1157 {
1158 	struct mem_cgroup_reclaim_iter *iter;
1159 	struct mem_cgroup_per_node *mz;
1160 	int nid;
1161 	int i;
1162 
1163 	for_each_node(nid) {
1164 		mz = mem_cgroup_nodeinfo(from, nid);
1165 		for (i = 0; i <= DEF_PRIORITY; i++) {
1166 			iter = &mz->iter[i];
1167 			cmpxchg(&iter->position,
1168 				dead_memcg, NULL);
1169 		}
1170 	}
1171 }
1172 
1173 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1174 {
1175 	struct mem_cgroup *memcg = dead_memcg;
1176 	struct mem_cgroup *last;
1177 
1178 	do {
1179 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1180 		last = memcg;
1181 	} while ((memcg = parent_mem_cgroup(memcg)));
1182 
1183 	/*
1184 	 * When cgruop1 non-hierarchy mode is used,
1185 	 * parent_mem_cgroup() does not walk all the way up to the
1186 	 * cgroup root (root_mem_cgroup). So we have to handle
1187 	 * dead_memcg from cgroup root separately.
1188 	 */
1189 	if (last != root_mem_cgroup)
1190 		__invalidate_reclaim_iterators(root_mem_cgroup,
1191 						dead_memcg);
1192 }
1193 
1194 /**
1195  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1196  * @memcg: hierarchy root
1197  * @fn: function to call for each task
1198  * @arg: argument passed to @fn
1199  *
1200  * This function iterates over tasks attached to @memcg or to any of its
1201  * descendants and calls @fn for each task. If @fn returns a non-zero
1202  * value, the function breaks the iteration loop and returns the value.
1203  * Otherwise, it will iterate over all tasks and return 0.
1204  *
1205  * This function must not be called for the root memory cgroup.
1206  */
1207 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1208 			  int (*fn)(struct task_struct *, void *), void *arg)
1209 {
1210 	struct mem_cgroup *iter;
1211 	int ret = 0;
1212 
1213 	BUG_ON(memcg == root_mem_cgroup);
1214 
1215 	for_each_mem_cgroup_tree(iter, memcg) {
1216 		struct css_task_iter it;
1217 		struct task_struct *task;
1218 
1219 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1220 		while (!ret && (task = css_task_iter_next(&it)))
1221 			ret = fn(task, arg);
1222 		css_task_iter_end(&it);
1223 		if (ret) {
1224 			mem_cgroup_iter_break(memcg, iter);
1225 			break;
1226 		}
1227 	}
1228 	return ret;
1229 }
1230 
1231 /**
1232  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1233  * @page: the page
1234  * @pgdat: pgdat of the page
1235  *
1236  * This function is only safe when following the LRU page isolation
1237  * and putback protocol: the LRU lock must be held, and the page must
1238  * either be PageLRU() or the caller must have isolated/allocated it.
1239  */
1240 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1241 {
1242 	struct mem_cgroup_per_node *mz;
1243 	struct mem_cgroup *memcg;
1244 	struct lruvec *lruvec;
1245 
1246 	if (mem_cgroup_disabled()) {
1247 		lruvec = &pgdat->lruvec;
1248 		goto out;
1249 	}
1250 
1251 	memcg = page->mem_cgroup;
1252 	/*
1253 	 * Swapcache readahead pages are added to the LRU - and
1254 	 * possibly migrated - before they are charged.
1255 	 */
1256 	if (!memcg)
1257 		memcg = root_mem_cgroup;
1258 
1259 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1260 	lruvec = &mz->lruvec;
1261 out:
1262 	/*
1263 	 * Since a node can be onlined after the mem_cgroup was created,
1264 	 * we have to be prepared to initialize lruvec->zone here;
1265 	 * and if offlined then reonlined, we need to reinitialize it.
1266 	 */
1267 	if (unlikely(lruvec->pgdat != pgdat))
1268 		lruvec->pgdat = pgdat;
1269 	return lruvec;
1270 }
1271 
1272 /**
1273  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1274  * @lruvec: mem_cgroup per zone lru vector
1275  * @lru: index of lru list the page is sitting on
1276  * @zid: zone id of the accounted pages
1277  * @nr_pages: positive when adding or negative when removing
1278  *
1279  * This function must be called under lru_lock, just before a page is added
1280  * to or just after a page is removed from an lru list (that ordering being
1281  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1282  */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 				int zid, int nr_pages)
1285 {
1286 	struct mem_cgroup_per_node *mz;
1287 	unsigned long *lru_size;
1288 	long size;
1289 
1290 	if (mem_cgroup_disabled())
1291 		return;
1292 
1293 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1294 	lru_size = &mz->lru_zone_size[zid][lru];
1295 
1296 	if (nr_pages < 0)
1297 		*lru_size += nr_pages;
1298 
1299 	size = *lru_size;
1300 	if (WARN_ONCE(size < 0,
1301 		"%s(%p, %d, %d): lru_size %ld\n",
1302 		__func__, lruvec, lru, nr_pages, size)) {
1303 		VM_BUG_ON(1);
1304 		*lru_size = 0;
1305 	}
1306 
1307 	if (nr_pages > 0)
1308 		*lru_size += nr_pages;
1309 }
1310 
1311 /**
1312  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313  * @memcg: the memory cgroup
1314  *
1315  * Returns the maximum amount of memory @mem can be charged with, in
1316  * pages.
1317  */
1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1319 {
1320 	unsigned long margin = 0;
1321 	unsigned long count;
1322 	unsigned long limit;
1323 
1324 	count = page_counter_read(&memcg->memory);
1325 	limit = READ_ONCE(memcg->memory.max);
1326 	if (count < limit)
1327 		margin = limit - count;
1328 
1329 	if (do_memsw_account()) {
1330 		count = page_counter_read(&memcg->memsw);
1331 		limit = READ_ONCE(memcg->memsw.max);
1332 		if (count <= limit)
1333 			margin = min(margin, limit - count);
1334 		else
1335 			margin = 0;
1336 	}
1337 
1338 	return margin;
1339 }
1340 
1341 /*
1342  * A routine for checking "mem" is under move_account() or not.
1343  *
1344  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1345  * moving cgroups. This is for waiting at high-memory pressure
1346  * caused by "move".
1347  */
1348 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1349 {
1350 	struct mem_cgroup *from;
1351 	struct mem_cgroup *to;
1352 	bool ret = false;
1353 	/*
1354 	 * Unlike task_move routines, we access mc.to, mc.from not under
1355 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1356 	 */
1357 	spin_lock(&mc.lock);
1358 	from = mc.from;
1359 	to = mc.to;
1360 	if (!from)
1361 		goto unlock;
1362 
1363 	ret = mem_cgroup_is_descendant(from, memcg) ||
1364 		mem_cgroup_is_descendant(to, memcg);
1365 unlock:
1366 	spin_unlock(&mc.lock);
1367 	return ret;
1368 }
1369 
1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1371 {
1372 	if (mc.moving_task && current != mc.moving_task) {
1373 		if (mem_cgroup_under_move(memcg)) {
1374 			DEFINE_WAIT(wait);
1375 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1376 			/* moving charge context might have finished. */
1377 			if (mc.moving_task)
1378 				schedule();
1379 			finish_wait(&mc.waitq, &wait);
1380 			return true;
1381 		}
1382 	}
1383 	return false;
1384 }
1385 
1386 static char *memory_stat_format(struct mem_cgroup *memcg)
1387 {
1388 	struct seq_buf s;
1389 	int i;
1390 
1391 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1392 	if (!s.buffer)
1393 		return NULL;
1394 
1395 	/*
1396 	 * Provide statistics on the state of the memory subsystem as
1397 	 * well as cumulative event counters that show past behavior.
1398 	 *
1399 	 * This list is ordered following a combination of these gradients:
1400 	 * 1) generic big picture -> specifics and details
1401 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1402 	 *
1403 	 * Current memory state:
1404 	 */
1405 
1406 	seq_buf_printf(&s, "anon %llu\n",
1407 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1408 		       PAGE_SIZE);
1409 	seq_buf_printf(&s, "file %llu\n",
1410 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1411 		       PAGE_SIZE);
1412 	seq_buf_printf(&s, "kernel_stack %llu\n",
1413 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1414 		       1024);
1415 	seq_buf_printf(&s, "slab %llu\n",
1416 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1417 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1418 		       PAGE_SIZE);
1419 	seq_buf_printf(&s, "sock %llu\n",
1420 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1421 		       PAGE_SIZE);
1422 
1423 	seq_buf_printf(&s, "shmem %llu\n",
1424 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1425 		       PAGE_SIZE);
1426 	seq_buf_printf(&s, "file_mapped %llu\n",
1427 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1428 		       PAGE_SIZE);
1429 	seq_buf_printf(&s, "file_dirty %llu\n",
1430 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1431 		       PAGE_SIZE);
1432 	seq_buf_printf(&s, "file_writeback %llu\n",
1433 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1434 		       PAGE_SIZE);
1435 
1436 	/*
1437 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1438 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1439 	 * arse because it requires migrating the work out of rmap to a place
1440 	 * where the page->mem_cgroup is set up and stable.
1441 	 */
1442 	seq_buf_printf(&s, "anon_thp %llu\n",
1443 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1444 		       PAGE_SIZE);
1445 
1446 	for (i = 0; i < NR_LRU_LISTS; i++)
1447 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1448 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1449 			       PAGE_SIZE);
1450 
1451 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1452 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1453 		       PAGE_SIZE);
1454 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1455 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1456 		       PAGE_SIZE);
1457 
1458 	/* Accumulated memory events */
1459 
1460 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1461 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1462 
1463 	seq_buf_printf(&s, "workingset_refault %lu\n",
1464 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1465 	seq_buf_printf(&s, "workingset_activate %lu\n",
1466 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1467 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1468 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1469 
1470 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1471 	seq_buf_printf(&s, "pgscan %lu\n",
1472 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1473 		       memcg_events(memcg, PGSCAN_DIRECT));
1474 	seq_buf_printf(&s, "pgsteal %lu\n",
1475 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1476 		       memcg_events(memcg, PGSTEAL_DIRECT));
1477 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1478 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1479 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1480 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1481 
1482 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1483 	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1484 		       memcg_events(memcg, THP_FAULT_ALLOC));
1485 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1486 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1487 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1488 
1489 	/* The above should easily fit into one page */
1490 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1491 
1492 	return s.buffer;
1493 }
1494 
1495 #define K(x) ((x) << (PAGE_SHIFT-10))
1496 /**
1497  * mem_cgroup_print_oom_context: Print OOM information relevant to
1498  * memory controller.
1499  * @memcg: The memory cgroup that went over limit
1500  * @p: Task that is going to be killed
1501  *
1502  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1503  * enabled
1504  */
1505 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1506 {
1507 	rcu_read_lock();
1508 
1509 	if (memcg) {
1510 		pr_cont(",oom_memcg=");
1511 		pr_cont_cgroup_path(memcg->css.cgroup);
1512 	} else
1513 		pr_cont(",global_oom");
1514 	if (p) {
1515 		pr_cont(",task_memcg=");
1516 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1517 	}
1518 	rcu_read_unlock();
1519 }
1520 
1521 /**
1522  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1523  * memory controller.
1524  * @memcg: The memory cgroup that went over limit
1525  */
1526 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1527 {
1528 	char *buf;
1529 
1530 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1531 		K((u64)page_counter_read(&memcg->memory)),
1532 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1533 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1534 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1535 			K((u64)page_counter_read(&memcg->swap)),
1536 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1537 	else {
1538 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1539 			K((u64)page_counter_read(&memcg->memsw)),
1540 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1541 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1542 			K((u64)page_counter_read(&memcg->kmem)),
1543 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1544 	}
1545 
1546 	pr_info("Memory cgroup stats for ");
1547 	pr_cont_cgroup_path(memcg->css.cgroup);
1548 	pr_cont(":");
1549 	buf = memory_stat_format(memcg);
1550 	if (!buf)
1551 		return;
1552 	pr_info("%s", buf);
1553 	kfree(buf);
1554 }
1555 
1556 /*
1557  * Return the memory (and swap, if configured) limit for a memcg.
1558  */
1559 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1560 {
1561 	unsigned long max;
1562 
1563 	max = memcg->memory.max;
1564 	if (mem_cgroup_swappiness(memcg)) {
1565 		unsigned long memsw_max;
1566 		unsigned long swap_max;
1567 
1568 		memsw_max = memcg->memsw.max;
1569 		swap_max = memcg->swap.max;
1570 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1571 		max = min(max + swap_max, memsw_max);
1572 	}
1573 	return max;
1574 }
1575 
1576 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1577 				     int order)
1578 {
1579 	struct oom_control oc = {
1580 		.zonelist = NULL,
1581 		.nodemask = NULL,
1582 		.memcg = memcg,
1583 		.gfp_mask = gfp_mask,
1584 		.order = order,
1585 	};
1586 	bool ret;
1587 
1588 	if (mutex_lock_killable(&oom_lock))
1589 		return true;
1590 	/*
1591 	 * A few threads which were not waiting at mutex_lock_killable() can
1592 	 * fail to bail out. Therefore, check again after holding oom_lock.
1593 	 */
1594 	ret = should_force_charge() || out_of_memory(&oc);
1595 	mutex_unlock(&oom_lock);
1596 	return ret;
1597 }
1598 
1599 #if MAX_NUMNODES > 1
1600 
1601 /**
1602  * test_mem_cgroup_node_reclaimable
1603  * @memcg: the target memcg
1604  * @nid: the node ID to be checked.
1605  * @noswap : specify true here if the user wants flle only information.
1606  *
1607  * This function returns whether the specified memcg contains any
1608  * reclaimable pages on a node. Returns true if there are any reclaimable
1609  * pages in the node.
1610  */
1611 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1612 		int nid, bool noswap)
1613 {
1614 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1615 
1616 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1617 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1618 		return true;
1619 	if (noswap || !total_swap_pages)
1620 		return false;
1621 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1622 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1623 		return true;
1624 	return false;
1625 
1626 }
1627 
1628 /*
1629  * Always updating the nodemask is not very good - even if we have an empty
1630  * list or the wrong list here, we can start from some node and traverse all
1631  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1632  *
1633  */
1634 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1635 {
1636 	int nid;
1637 	/*
1638 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1639 	 * pagein/pageout changes since the last update.
1640 	 */
1641 	if (!atomic_read(&memcg->numainfo_events))
1642 		return;
1643 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1644 		return;
1645 
1646 	/* make a nodemask where this memcg uses memory from */
1647 	memcg->scan_nodes = node_states[N_MEMORY];
1648 
1649 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1650 
1651 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1652 			node_clear(nid, memcg->scan_nodes);
1653 	}
1654 
1655 	atomic_set(&memcg->numainfo_events, 0);
1656 	atomic_set(&memcg->numainfo_updating, 0);
1657 }
1658 
1659 /*
1660  * Selecting a node where we start reclaim from. Because what we need is just
1661  * reducing usage counter, start from anywhere is O,K. Considering
1662  * memory reclaim from current node, there are pros. and cons.
1663  *
1664  * Freeing memory from current node means freeing memory from a node which
1665  * we'll use or we've used. So, it may make LRU bad. And if several threads
1666  * hit limits, it will see a contention on a node. But freeing from remote
1667  * node means more costs for memory reclaim because of memory latency.
1668  *
1669  * Now, we use round-robin. Better algorithm is welcomed.
1670  */
1671 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1672 {
1673 	int node;
1674 
1675 	mem_cgroup_may_update_nodemask(memcg);
1676 	node = memcg->last_scanned_node;
1677 
1678 	node = next_node_in(node, memcg->scan_nodes);
1679 	/*
1680 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1681 	 * last time it really checked all the LRUs due to rate limiting.
1682 	 * Fallback to the current node in that case for simplicity.
1683 	 */
1684 	if (unlikely(node == MAX_NUMNODES))
1685 		node = numa_node_id();
1686 
1687 	memcg->last_scanned_node = node;
1688 	return node;
1689 }
1690 #else
1691 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1692 {
1693 	return 0;
1694 }
1695 #endif
1696 
1697 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1698 				   pg_data_t *pgdat,
1699 				   gfp_t gfp_mask,
1700 				   unsigned long *total_scanned)
1701 {
1702 	struct mem_cgroup *victim = NULL;
1703 	int total = 0;
1704 	int loop = 0;
1705 	unsigned long excess;
1706 	unsigned long nr_scanned;
1707 	struct mem_cgroup_reclaim_cookie reclaim = {
1708 		.pgdat = pgdat,
1709 		.priority = 0,
1710 	};
1711 
1712 	excess = soft_limit_excess(root_memcg);
1713 
1714 	while (1) {
1715 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1716 		if (!victim) {
1717 			loop++;
1718 			if (loop >= 2) {
1719 				/*
1720 				 * If we have not been able to reclaim
1721 				 * anything, it might because there are
1722 				 * no reclaimable pages under this hierarchy
1723 				 */
1724 				if (!total)
1725 					break;
1726 				/*
1727 				 * We want to do more targeted reclaim.
1728 				 * excess >> 2 is not to excessive so as to
1729 				 * reclaim too much, nor too less that we keep
1730 				 * coming back to reclaim from this cgroup
1731 				 */
1732 				if (total >= (excess >> 2) ||
1733 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1734 					break;
1735 			}
1736 			continue;
1737 		}
1738 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1739 					pgdat, &nr_scanned);
1740 		*total_scanned += nr_scanned;
1741 		if (!soft_limit_excess(root_memcg))
1742 			break;
1743 	}
1744 	mem_cgroup_iter_break(root_memcg, victim);
1745 	return total;
1746 }
1747 
1748 #ifdef CONFIG_LOCKDEP
1749 static struct lockdep_map memcg_oom_lock_dep_map = {
1750 	.name = "memcg_oom_lock",
1751 };
1752 #endif
1753 
1754 static DEFINE_SPINLOCK(memcg_oom_lock);
1755 
1756 /*
1757  * Check OOM-Killer is already running under our hierarchy.
1758  * If someone is running, return false.
1759  */
1760 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1761 {
1762 	struct mem_cgroup *iter, *failed = NULL;
1763 
1764 	spin_lock(&memcg_oom_lock);
1765 
1766 	for_each_mem_cgroup_tree(iter, memcg) {
1767 		if (iter->oom_lock) {
1768 			/*
1769 			 * this subtree of our hierarchy is already locked
1770 			 * so we cannot give a lock.
1771 			 */
1772 			failed = iter;
1773 			mem_cgroup_iter_break(memcg, iter);
1774 			break;
1775 		} else
1776 			iter->oom_lock = true;
1777 	}
1778 
1779 	if (failed) {
1780 		/*
1781 		 * OK, we failed to lock the whole subtree so we have
1782 		 * to clean up what we set up to the failing subtree
1783 		 */
1784 		for_each_mem_cgroup_tree(iter, memcg) {
1785 			if (iter == failed) {
1786 				mem_cgroup_iter_break(memcg, iter);
1787 				break;
1788 			}
1789 			iter->oom_lock = false;
1790 		}
1791 	} else
1792 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1793 
1794 	spin_unlock(&memcg_oom_lock);
1795 
1796 	return !failed;
1797 }
1798 
1799 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1800 {
1801 	struct mem_cgroup *iter;
1802 
1803 	spin_lock(&memcg_oom_lock);
1804 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1805 	for_each_mem_cgroup_tree(iter, memcg)
1806 		iter->oom_lock = false;
1807 	spin_unlock(&memcg_oom_lock);
1808 }
1809 
1810 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1811 {
1812 	struct mem_cgroup *iter;
1813 
1814 	spin_lock(&memcg_oom_lock);
1815 	for_each_mem_cgroup_tree(iter, memcg)
1816 		iter->under_oom++;
1817 	spin_unlock(&memcg_oom_lock);
1818 }
1819 
1820 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1821 {
1822 	struct mem_cgroup *iter;
1823 
1824 	/*
1825 	 * When a new child is created while the hierarchy is under oom,
1826 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1827 	 */
1828 	spin_lock(&memcg_oom_lock);
1829 	for_each_mem_cgroup_tree(iter, memcg)
1830 		if (iter->under_oom > 0)
1831 			iter->under_oom--;
1832 	spin_unlock(&memcg_oom_lock);
1833 }
1834 
1835 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1836 
1837 struct oom_wait_info {
1838 	struct mem_cgroup *memcg;
1839 	wait_queue_entry_t	wait;
1840 };
1841 
1842 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1843 	unsigned mode, int sync, void *arg)
1844 {
1845 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1846 	struct mem_cgroup *oom_wait_memcg;
1847 	struct oom_wait_info *oom_wait_info;
1848 
1849 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1850 	oom_wait_memcg = oom_wait_info->memcg;
1851 
1852 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1853 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1854 		return 0;
1855 	return autoremove_wake_function(wait, mode, sync, arg);
1856 }
1857 
1858 static void memcg_oom_recover(struct mem_cgroup *memcg)
1859 {
1860 	/*
1861 	 * For the following lockless ->under_oom test, the only required
1862 	 * guarantee is that it must see the state asserted by an OOM when
1863 	 * this function is called as a result of userland actions
1864 	 * triggered by the notification of the OOM.  This is trivially
1865 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1866 	 * triggering notification.
1867 	 */
1868 	if (memcg && memcg->under_oom)
1869 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1870 }
1871 
1872 enum oom_status {
1873 	OOM_SUCCESS,
1874 	OOM_FAILED,
1875 	OOM_ASYNC,
1876 	OOM_SKIPPED
1877 };
1878 
1879 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1880 {
1881 	enum oom_status ret;
1882 	bool locked;
1883 
1884 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1885 		return OOM_SKIPPED;
1886 
1887 	memcg_memory_event(memcg, MEMCG_OOM);
1888 
1889 	/*
1890 	 * We are in the middle of the charge context here, so we
1891 	 * don't want to block when potentially sitting on a callstack
1892 	 * that holds all kinds of filesystem and mm locks.
1893 	 *
1894 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1895 	 * handling until the charge can succeed; remember the context and put
1896 	 * the task to sleep at the end of the page fault when all locks are
1897 	 * released.
1898 	 *
1899 	 * On the other hand, in-kernel OOM killer allows for an async victim
1900 	 * memory reclaim (oom_reaper) and that means that we are not solely
1901 	 * relying on the oom victim to make a forward progress and we can
1902 	 * invoke the oom killer here.
1903 	 *
1904 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1905 	 * victim and then we have to bail out from the charge path.
1906 	 */
1907 	if (memcg->oom_kill_disable) {
1908 		if (!current->in_user_fault)
1909 			return OOM_SKIPPED;
1910 		css_get(&memcg->css);
1911 		current->memcg_in_oom = memcg;
1912 		current->memcg_oom_gfp_mask = mask;
1913 		current->memcg_oom_order = order;
1914 
1915 		return OOM_ASYNC;
1916 	}
1917 
1918 	mem_cgroup_mark_under_oom(memcg);
1919 
1920 	locked = mem_cgroup_oom_trylock(memcg);
1921 
1922 	if (locked)
1923 		mem_cgroup_oom_notify(memcg);
1924 
1925 	mem_cgroup_unmark_under_oom(memcg);
1926 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1927 		ret = OOM_SUCCESS;
1928 	else
1929 		ret = OOM_FAILED;
1930 
1931 	if (locked)
1932 		mem_cgroup_oom_unlock(memcg);
1933 
1934 	return ret;
1935 }
1936 
1937 /**
1938  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1939  * @handle: actually kill/wait or just clean up the OOM state
1940  *
1941  * This has to be called at the end of a page fault if the memcg OOM
1942  * handler was enabled.
1943  *
1944  * Memcg supports userspace OOM handling where failed allocations must
1945  * sleep on a waitqueue until the userspace task resolves the
1946  * situation.  Sleeping directly in the charge context with all kinds
1947  * of locks held is not a good idea, instead we remember an OOM state
1948  * in the task and mem_cgroup_oom_synchronize() has to be called at
1949  * the end of the page fault to complete the OOM handling.
1950  *
1951  * Returns %true if an ongoing memcg OOM situation was detected and
1952  * completed, %false otherwise.
1953  */
1954 bool mem_cgroup_oom_synchronize(bool handle)
1955 {
1956 	struct mem_cgroup *memcg = current->memcg_in_oom;
1957 	struct oom_wait_info owait;
1958 	bool locked;
1959 
1960 	/* OOM is global, do not handle */
1961 	if (!memcg)
1962 		return false;
1963 
1964 	if (!handle)
1965 		goto cleanup;
1966 
1967 	owait.memcg = memcg;
1968 	owait.wait.flags = 0;
1969 	owait.wait.func = memcg_oom_wake_function;
1970 	owait.wait.private = current;
1971 	INIT_LIST_HEAD(&owait.wait.entry);
1972 
1973 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1974 	mem_cgroup_mark_under_oom(memcg);
1975 
1976 	locked = mem_cgroup_oom_trylock(memcg);
1977 
1978 	if (locked)
1979 		mem_cgroup_oom_notify(memcg);
1980 
1981 	if (locked && !memcg->oom_kill_disable) {
1982 		mem_cgroup_unmark_under_oom(memcg);
1983 		finish_wait(&memcg_oom_waitq, &owait.wait);
1984 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1985 					 current->memcg_oom_order);
1986 	} else {
1987 		schedule();
1988 		mem_cgroup_unmark_under_oom(memcg);
1989 		finish_wait(&memcg_oom_waitq, &owait.wait);
1990 	}
1991 
1992 	if (locked) {
1993 		mem_cgroup_oom_unlock(memcg);
1994 		/*
1995 		 * There is no guarantee that an OOM-lock contender
1996 		 * sees the wakeups triggered by the OOM kill
1997 		 * uncharges.  Wake any sleepers explicitely.
1998 		 */
1999 		memcg_oom_recover(memcg);
2000 	}
2001 cleanup:
2002 	current->memcg_in_oom = NULL;
2003 	css_put(&memcg->css);
2004 	return true;
2005 }
2006 
2007 /**
2008  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2009  * @victim: task to be killed by the OOM killer
2010  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2011  *
2012  * Returns a pointer to a memory cgroup, which has to be cleaned up
2013  * by killing all belonging OOM-killable tasks.
2014  *
2015  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2016  */
2017 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2018 					    struct mem_cgroup *oom_domain)
2019 {
2020 	struct mem_cgroup *oom_group = NULL;
2021 	struct mem_cgroup *memcg;
2022 
2023 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2024 		return NULL;
2025 
2026 	if (!oom_domain)
2027 		oom_domain = root_mem_cgroup;
2028 
2029 	rcu_read_lock();
2030 
2031 	memcg = mem_cgroup_from_task(victim);
2032 	if (memcg == root_mem_cgroup)
2033 		goto out;
2034 
2035 	/*
2036 	 * Traverse the memory cgroup hierarchy from the victim task's
2037 	 * cgroup up to the OOMing cgroup (or root) to find the
2038 	 * highest-level memory cgroup with oom.group set.
2039 	 */
2040 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2041 		if (memcg->oom_group)
2042 			oom_group = memcg;
2043 
2044 		if (memcg == oom_domain)
2045 			break;
2046 	}
2047 
2048 	if (oom_group)
2049 		css_get(&oom_group->css);
2050 out:
2051 	rcu_read_unlock();
2052 
2053 	return oom_group;
2054 }
2055 
2056 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2057 {
2058 	pr_info("Tasks in ");
2059 	pr_cont_cgroup_path(memcg->css.cgroup);
2060 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2061 }
2062 
2063 /**
2064  * lock_page_memcg - lock a page->mem_cgroup binding
2065  * @page: the page
2066  *
2067  * This function protects unlocked LRU pages from being moved to
2068  * another cgroup.
2069  *
2070  * It ensures lifetime of the returned memcg. Caller is responsible
2071  * for the lifetime of the page; __unlock_page_memcg() is available
2072  * when @page might get freed inside the locked section.
2073  */
2074 struct mem_cgroup *lock_page_memcg(struct page *page)
2075 {
2076 	struct mem_cgroup *memcg;
2077 	unsigned long flags;
2078 
2079 	/*
2080 	 * The RCU lock is held throughout the transaction.  The fast
2081 	 * path can get away without acquiring the memcg->move_lock
2082 	 * because page moving starts with an RCU grace period.
2083 	 *
2084 	 * The RCU lock also protects the memcg from being freed when
2085 	 * the page state that is going to change is the only thing
2086 	 * preventing the page itself from being freed. E.g. writeback
2087 	 * doesn't hold a page reference and relies on PG_writeback to
2088 	 * keep off truncation, migration and so forth.
2089          */
2090 	rcu_read_lock();
2091 
2092 	if (mem_cgroup_disabled())
2093 		return NULL;
2094 again:
2095 	memcg = page->mem_cgroup;
2096 	if (unlikely(!memcg))
2097 		return NULL;
2098 
2099 	if (atomic_read(&memcg->moving_account) <= 0)
2100 		return memcg;
2101 
2102 	spin_lock_irqsave(&memcg->move_lock, flags);
2103 	if (memcg != page->mem_cgroup) {
2104 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2105 		goto again;
2106 	}
2107 
2108 	/*
2109 	 * When charge migration first begins, we can have locked and
2110 	 * unlocked page stat updates happening concurrently.  Track
2111 	 * the task who has the lock for unlock_page_memcg().
2112 	 */
2113 	memcg->move_lock_task = current;
2114 	memcg->move_lock_flags = flags;
2115 
2116 	return memcg;
2117 }
2118 EXPORT_SYMBOL(lock_page_memcg);
2119 
2120 /**
2121  * __unlock_page_memcg - unlock and unpin a memcg
2122  * @memcg: the memcg
2123  *
2124  * Unlock and unpin a memcg returned by lock_page_memcg().
2125  */
2126 void __unlock_page_memcg(struct mem_cgroup *memcg)
2127 {
2128 	if (memcg && memcg->move_lock_task == current) {
2129 		unsigned long flags = memcg->move_lock_flags;
2130 
2131 		memcg->move_lock_task = NULL;
2132 		memcg->move_lock_flags = 0;
2133 
2134 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2135 	}
2136 
2137 	rcu_read_unlock();
2138 }
2139 
2140 /**
2141  * unlock_page_memcg - unlock a page->mem_cgroup binding
2142  * @page: the page
2143  */
2144 void unlock_page_memcg(struct page *page)
2145 {
2146 	__unlock_page_memcg(page->mem_cgroup);
2147 }
2148 EXPORT_SYMBOL(unlock_page_memcg);
2149 
2150 struct memcg_stock_pcp {
2151 	struct mem_cgroup *cached; /* this never be root cgroup */
2152 	unsigned int nr_pages;
2153 	struct work_struct work;
2154 	unsigned long flags;
2155 #define FLUSHING_CACHED_CHARGE	0
2156 };
2157 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2158 static DEFINE_MUTEX(percpu_charge_mutex);
2159 
2160 /**
2161  * consume_stock: Try to consume stocked charge on this cpu.
2162  * @memcg: memcg to consume from.
2163  * @nr_pages: how many pages to charge.
2164  *
2165  * The charges will only happen if @memcg matches the current cpu's memcg
2166  * stock, and at least @nr_pages are available in that stock.  Failure to
2167  * service an allocation will refill the stock.
2168  *
2169  * returns true if successful, false otherwise.
2170  */
2171 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2172 {
2173 	struct memcg_stock_pcp *stock;
2174 	unsigned long flags;
2175 	bool ret = false;
2176 
2177 	if (nr_pages > MEMCG_CHARGE_BATCH)
2178 		return ret;
2179 
2180 	local_irq_save(flags);
2181 
2182 	stock = this_cpu_ptr(&memcg_stock);
2183 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2184 		stock->nr_pages -= nr_pages;
2185 		ret = true;
2186 	}
2187 
2188 	local_irq_restore(flags);
2189 
2190 	return ret;
2191 }
2192 
2193 /*
2194  * Returns stocks cached in percpu and reset cached information.
2195  */
2196 static void drain_stock(struct memcg_stock_pcp *stock)
2197 {
2198 	struct mem_cgroup *old = stock->cached;
2199 
2200 	if (stock->nr_pages) {
2201 		page_counter_uncharge(&old->memory, stock->nr_pages);
2202 		if (do_memsw_account())
2203 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2204 		css_put_many(&old->css, stock->nr_pages);
2205 		stock->nr_pages = 0;
2206 	}
2207 	stock->cached = NULL;
2208 }
2209 
2210 static void drain_local_stock(struct work_struct *dummy)
2211 {
2212 	struct memcg_stock_pcp *stock;
2213 	unsigned long flags;
2214 
2215 	/*
2216 	 * The only protection from memory hotplug vs. drain_stock races is
2217 	 * that we always operate on local CPU stock here with IRQ disabled
2218 	 */
2219 	local_irq_save(flags);
2220 
2221 	stock = this_cpu_ptr(&memcg_stock);
2222 	drain_stock(stock);
2223 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2224 
2225 	local_irq_restore(flags);
2226 }
2227 
2228 /*
2229  * Cache charges(val) to local per_cpu area.
2230  * This will be consumed by consume_stock() function, later.
2231  */
2232 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2233 {
2234 	struct memcg_stock_pcp *stock;
2235 	unsigned long flags;
2236 
2237 	local_irq_save(flags);
2238 
2239 	stock = this_cpu_ptr(&memcg_stock);
2240 	if (stock->cached != memcg) { /* reset if necessary */
2241 		drain_stock(stock);
2242 		stock->cached = memcg;
2243 	}
2244 	stock->nr_pages += nr_pages;
2245 
2246 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2247 		drain_stock(stock);
2248 
2249 	local_irq_restore(flags);
2250 }
2251 
2252 /*
2253  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2254  * of the hierarchy under it.
2255  */
2256 static void drain_all_stock(struct mem_cgroup *root_memcg)
2257 {
2258 	int cpu, curcpu;
2259 
2260 	/* If someone's already draining, avoid adding running more workers. */
2261 	if (!mutex_trylock(&percpu_charge_mutex))
2262 		return;
2263 	/*
2264 	 * Notify other cpus that system-wide "drain" is running
2265 	 * We do not care about races with the cpu hotplug because cpu down
2266 	 * as well as workers from this path always operate on the local
2267 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2268 	 */
2269 	curcpu = get_cpu();
2270 	for_each_online_cpu(cpu) {
2271 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2272 		struct mem_cgroup *memcg;
2273 
2274 		memcg = stock->cached;
2275 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2276 			continue;
2277 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2278 			css_put(&memcg->css);
2279 			continue;
2280 		}
2281 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 			if (cpu == curcpu)
2283 				drain_local_stock(&stock->work);
2284 			else
2285 				schedule_work_on(cpu, &stock->work);
2286 		}
2287 		css_put(&memcg->css);
2288 	}
2289 	put_cpu();
2290 	mutex_unlock(&percpu_charge_mutex);
2291 }
2292 
2293 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2294 {
2295 	struct memcg_stock_pcp *stock;
2296 	struct mem_cgroup *memcg, *mi;
2297 
2298 	stock = &per_cpu(memcg_stock, cpu);
2299 	drain_stock(stock);
2300 
2301 	for_each_mem_cgroup(memcg) {
2302 		int i;
2303 
2304 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2305 			int nid;
2306 			long x;
2307 
2308 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2309 			if (x)
2310 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2311 					atomic_long_add(x, &memcg->vmstats[i]);
2312 
2313 			if (i >= NR_VM_NODE_STAT_ITEMS)
2314 				continue;
2315 
2316 			for_each_node(nid) {
2317 				struct mem_cgroup_per_node *pn;
2318 
2319 				pn = mem_cgroup_nodeinfo(memcg, nid);
2320 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2321 				if (x)
2322 					do {
2323 						atomic_long_add(x, &pn->lruvec_stat[i]);
2324 					} while ((pn = parent_nodeinfo(pn, nid)));
2325 			}
2326 		}
2327 
2328 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2329 			long x;
2330 
2331 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2332 			if (x)
2333 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2334 					atomic_long_add(x, &memcg->vmevents[i]);
2335 		}
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static void reclaim_high(struct mem_cgroup *memcg,
2342 			 unsigned int nr_pages,
2343 			 gfp_t gfp_mask)
2344 {
2345 	do {
2346 		if (page_counter_read(&memcg->memory) <= memcg->high)
2347 			continue;
2348 		memcg_memory_event(memcg, MEMCG_HIGH);
2349 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2350 	} while ((memcg = parent_mem_cgroup(memcg)));
2351 }
2352 
2353 static void high_work_func(struct work_struct *work)
2354 {
2355 	struct mem_cgroup *memcg;
2356 
2357 	memcg = container_of(work, struct mem_cgroup, high_work);
2358 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2359 }
2360 
2361 /*
2362  * Scheduled by try_charge() to be executed from the userland return path
2363  * and reclaims memory over the high limit.
2364  */
2365 void mem_cgroup_handle_over_high(void)
2366 {
2367 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2368 	struct mem_cgroup *memcg;
2369 
2370 	if (likely(!nr_pages))
2371 		return;
2372 
2373 	memcg = get_mem_cgroup_from_mm(current->mm);
2374 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2375 	css_put(&memcg->css);
2376 	current->memcg_nr_pages_over_high = 0;
2377 }
2378 
2379 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2380 		      unsigned int nr_pages)
2381 {
2382 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2383 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2384 	struct mem_cgroup *mem_over_limit;
2385 	struct page_counter *counter;
2386 	unsigned long nr_reclaimed;
2387 	bool may_swap = true;
2388 	bool drained = false;
2389 	enum oom_status oom_status;
2390 
2391 	if (mem_cgroup_is_root(memcg))
2392 		return 0;
2393 retry:
2394 	if (consume_stock(memcg, nr_pages))
2395 		return 0;
2396 
2397 	if (!do_memsw_account() ||
2398 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2399 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2400 			goto done_restock;
2401 		if (do_memsw_account())
2402 			page_counter_uncharge(&memcg->memsw, batch);
2403 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2404 	} else {
2405 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2406 		may_swap = false;
2407 	}
2408 
2409 	if (batch > nr_pages) {
2410 		batch = nr_pages;
2411 		goto retry;
2412 	}
2413 
2414 	/*
2415 	 * Unlike in global OOM situations, memcg is not in a physical
2416 	 * memory shortage.  Allow dying and OOM-killed tasks to
2417 	 * bypass the last charges so that they can exit quickly and
2418 	 * free their memory.
2419 	 */
2420 	if (unlikely(should_force_charge()))
2421 		goto force;
2422 
2423 	/*
2424 	 * Prevent unbounded recursion when reclaim operations need to
2425 	 * allocate memory. This might exceed the limits temporarily,
2426 	 * but we prefer facilitating memory reclaim and getting back
2427 	 * under the limit over triggering OOM kills in these cases.
2428 	 */
2429 	if (unlikely(current->flags & PF_MEMALLOC))
2430 		goto force;
2431 
2432 	if (unlikely(task_in_memcg_oom(current)))
2433 		goto nomem;
2434 
2435 	if (!gfpflags_allow_blocking(gfp_mask))
2436 		goto nomem;
2437 
2438 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2439 
2440 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2441 						    gfp_mask, may_swap);
2442 
2443 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2444 		goto retry;
2445 
2446 	if (!drained) {
2447 		drain_all_stock(mem_over_limit);
2448 		drained = true;
2449 		goto retry;
2450 	}
2451 
2452 	if (gfp_mask & __GFP_NORETRY)
2453 		goto nomem;
2454 	/*
2455 	 * Even though the limit is exceeded at this point, reclaim
2456 	 * may have been able to free some pages.  Retry the charge
2457 	 * before killing the task.
2458 	 *
2459 	 * Only for regular pages, though: huge pages are rather
2460 	 * unlikely to succeed so close to the limit, and we fall back
2461 	 * to regular pages anyway in case of failure.
2462 	 */
2463 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2464 		goto retry;
2465 	/*
2466 	 * At task move, charge accounts can be doubly counted. So, it's
2467 	 * better to wait until the end of task_move if something is going on.
2468 	 */
2469 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2470 		goto retry;
2471 
2472 	if (nr_retries--)
2473 		goto retry;
2474 
2475 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2476 		goto nomem;
2477 
2478 	if (gfp_mask & __GFP_NOFAIL)
2479 		goto force;
2480 
2481 	if (fatal_signal_pending(current))
2482 		goto force;
2483 
2484 	/*
2485 	 * keep retrying as long as the memcg oom killer is able to make
2486 	 * a forward progress or bypass the charge if the oom killer
2487 	 * couldn't make any progress.
2488 	 */
2489 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2490 		       get_order(nr_pages * PAGE_SIZE));
2491 	switch (oom_status) {
2492 	case OOM_SUCCESS:
2493 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2494 		goto retry;
2495 	case OOM_FAILED:
2496 		goto force;
2497 	default:
2498 		goto nomem;
2499 	}
2500 nomem:
2501 	if (!(gfp_mask & __GFP_NOFAIL))
2502 		return -ENOMEM;
2503 force:
2504 	/*
2505 	 * The allocation either can't fail or will lead to more memory
2506 	 * being freed very soon.  Allow memory usage go over the limit
2507 	 * temporarily by force charging it.
2508 	 */
2509 	page_counter_charge(&memcg->memory, nr_pages);
2510 	if (do_memsw_account())
2511 		page_counter_charge(&memcg->memsw, nr_pages);
2512 	css_get_many(&memcg->css, nr_pages);
2513 
2514 	return 0;
2515 
2516 done_restock:
2517 	css_get_many(&memcg->css, batch);
2518 	if (batch > nr_pages)
2519 		refill_stock(memcg, batch - nr_pages);
2520 
2521 	/*
2522 	 * If the hierarchy is above the normal consumption range, schedule
2523 	 * reclaim on returning to userland.  We can perform reclaim here
2524 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2525 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2526 	 * not recorded as it most likely matches current's and won't
2527 	 * change in the meantime.  As high limit is checked again before
2528 	 * reclaim, the cost of mismatch is negligible.
2529 	 */
2530 	do {
2531 		if (page_counter_read(&memcg->memory) > memcg->high) {
2532 			/* Don't bother a random interrupted task */
2533 			if (in_interrupt()) {
2534 				schedule_work(&memcg->high_work);
2535 				break;
2536 			}
2537 			current->memcg_nr_pages_over_high += batch;
2538 			set_notify_resume(current);
2539 			break;
2540 		}
2541 	} while ((memcg = parent_mem_cgroup(memcg)));
2542 
2543 	return 0;
2544 }
2545 
2546 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2547 {
2548 	if (mem_cgroup_is_root(memcg))
2549 		return;
2550 
2551 	page_counter_uncharge(&memcg->memory, nr_pages);
2552 	if (do_memsw_account())
2553 		page_counter_uncharge(&memcg->memsw, nr_pages);
2554 
2555 	css_put_many(&memcg->css, nr_pages);
2556 }
2557 
2558 static void lock_page_lru(struct page *page, int *isolated)
2559 {
2560 	pg_data_t *pgdat = page_pgdat(page);
2561 
2562 	spin_lock_irq(&pgdat->lru_lock);
2563 	if (PageLRU(page)) {
2564 		struct lruvec *lruvec;
2565 
2566 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2567 		ClearPageLRU(page);
2568 		del_page_from_lru_list(page, lruvec, page_lru(page));
2569 		*isolated = 1;
2570 	} else
2571 		*isolated = 0;
2572 }
2573 
2574 static void unlock_page_lru(struct page *page, int isolated)
2575 {
2576 	pg_data_t *pgdat = page_pgdat(page);
2577 
2578 	if (isolated) {
2579 		struct lruvec *lruvec;
2580 
2581 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2582 		VM_BUG_ON_PAGE(PageLRU(page), page);
2583 		SetPageLRU(page);
2584 		add_page_to_lru_list(page, lruvec, page_lru(page));
2585 	}
2586 	spin_unlock_irq(&pgdat->lru_lock);
2587 }
2588 
2589 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2590 			  bool lrucare)
2591 {
2592 	int isolated;
2593 
2594 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2595 
2596 	/*
2597 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2598 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2599 	 */
2600 	if (lrucare)
2601 		lock_page_lru(page, &isolated);
2602 
2603 	/*
2604 	 * Nobody should be changing or seriously looking at
2605 	 * page->mem_cgroup at this point:
2606 	 *
2607 	 * - the page is uncharged
2608 	 *
2609 	 * - the page is off-LRU
2610 	 *
2611 	 * - an anonymous fault has exclusive page access, except for
2612 	 *   a locked page table
2613 	 *
2614 	 * - a page cache insertion, a swapin fault, or a migration
2615 	 *   have the page locked
2616 	 */
2617 	page->mem_cgroup = memcg;
2618 
2619 	if (lrucare)
2620 		unlock_page_lru(page, isolated);
2621 }
2622 
2623 #ifdef CONFIG_MEMCG_KMEM
2624 static int memcg_alloc_cache_id(void)
2625 {
2626 	int id, size;
2627 	int err;
2628 
2629 	id = ida_simple_get(&memcg_cache_ida,
2630 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2631 	if (id < 0)
2632 		return id;
2633 
2634 	if (id < memcg_nr_cache_ids)
2635 		return id;
2636 
2637 	/*
2638 	 * There's no space for the new id in memcg_caches arrays,
2639 	 * so we have to grow them.
2640 	 */
2641 	down_write(&memcg_cache_ids_sem);
2642 
2643 	size = 2 * (id + 1);
2644 	if (size < MEMCG_CACHES_MIN_SIZE)
2645 		size = MEMCG_CACHES_MIN_SIZE;
2646 	else if (size > MEMCG_CACHES_MAX_SIZE)
2647 		size = MEMCG_CACHES_MAX_SIZE;
2648 
2649 	err = memcg_update_all_caches(size);
2650 	if (!err)
2651 		err = memcg_update_all_list_lrus(size);
2652 	if (!err)
2653 		memcg_nr_cache_ids = size;
2654 
2655 	up_write(&memcg_cache_ids_sem);
2656 
2657 	if (err) {
2658 		ida_simple_remove(&memcg_cache_ida, id);
2659 		return err;
2660 	}
2661 	return id;
2662 }
2663 
2664 static void memcg_free_cache_id(int id)
2665 {
2666 	ida_simple_remove(&memcg_cache_ida, id);
2667 }
2668 
2669 struct memcg_kmem_cache_create_work {
2670 	struct mem_cgroup *memcg;
2671 	struct kmem_cache *cachep;
2672 	struct work_struct work;
2673 };
2674 
2675 static void memcg_kmem_cache_create_func(struct work_struct *w)
2676 {
2677 	struct memcg_kmem_cache_create_work *cw =
2678 		container_of(w, struct memcg_kmem_cache_create_work, work);
2679 	struct mem_cgroup *memcg = cw->memcg;
2680 	struct kmem_cache *cachep = cw->cachep;
2681 
2682 	memcg_create_kmem_cache(memcg, cachep);
2683 
2684 	css_put(&memcg->css);
2685 	kfree(cw);
2686 }
2687 
2688 /*
2689  * Enqueue the creation of a per-memcg kmem_cache.
2690  */
2691 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2692 					       struct kmem_cache *cachep)
2693 {
2694 	struct memcg_kmem_cache_create_work *cw;
2695 
2696 	if (!css_tryget_online(&memcg->css))
2697 		return;
2698 
2699 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2700 	if (!cw)
2701 		return;
2702 
2703 	cw->memcg = memcg;
2704 	cw->cachep = cachep;
2705 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2706 
2707 	queue_work(memcg_kmem_cache_wq, &cw->work);
2708 }
2709 
2710 static inline bool memcg_kmem_bypass(void)
2711 {
2712 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2713 		return true;
2714 	return false;
2715 }
2716 
2717 /**
2718  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2719  * @cachep: the original global kmem cache
2720  *
2721  * Return the kmem_cache we're supposed to use for a slab allocation.
2722  * We try to use the current memcg's version of the cache.
2723  *
2724  * If the cache does not exist yet, if we are the first user of it, we
2725  * create it asynchronously in a workqueue and let the current allocation
2726  * go through with the original cache.
2727  *
2728  * This function takes a reference to the cache it returns to assure it
2729  * won't get destroyed while we are working with it. Once the caller is
2730  * done with it, memcg_kmem_put_cache() must be called to release the
2731  * reference.
2732  */
2733 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2734 {
2735 	struct mem_cgroup *memcg;
2736 	struct kmem_cache *memcg_cachep;
2737 	struct memcg_cache_array *arr;
2738 	int kmemcg_id;
2739 
2740 	VM_BUG_ON(!is_root_cache(cachep));
2741 
2742 	if (memcg_kmem_bypass())
2743 		return cachep;
2744 
2745 	rcu_read_lock();
2746 
2747 	if (unlikely(current->active_memcg))
2748 		memcg = current->active_memcg;
2749 	else
2750 		memcg = mem_cgroup_from_task(current);
2751 
2752 	if (!memcg || memcg == root_mem_cgroup)
2753 		goto out_unlock;
2754 
2755 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2756 	if (kmemcg_id < 0)
2757 		goto out_unlock;
2758 
2759 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2760 
2761 	/*
2762 	 * Make sure we will access the up-to-date value. The code updating
2763 	 * memcg_caches issues a write barrier to match the data dependency
2764 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2765 	 */
2766 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2767 
2768 	/*
2769 	 * If we are in a safe context (can wait, and not in interrupt
2770 	 * context), we could be be predictable and return right away.
2771 	 * This would guarantee that the allocation being performed
2772 	 * already belongs in the new cache.
2773 	 *
2774 	 * However, there are some clashes that can arrive from locking.
2775 	 * For instance, because we acquire the slab_mutex while doing
2776 	 * memcg_create_kmem_cache, this means no further allocation
2777 	 * could happen with the slab_mutex held. So it's better to
2778 	 * defer everything.
2779 	 *
2780 	 * If the memcg is dying or memcg_cache is about to be released,
2781 	 * don't bother creating new kmem_caches. Because memcg_cachep
2782 	 * is ZEROed as the fist step of kmem offlining, we don't need
2783 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2784 	 * memcg_schedule_kmem_cache_create() will prevent us from
2785 	 * creation of a new kmem_cache.
2786 	 */
2787 	if (unlikely(!memcg_cachep))
2788 		memcg_schedule_kmem_cache_create(memcg, cachep);
2789 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2790 		cachep = memcg_cachep;
2791 out_unlock:
2792 	rcu_read_unlock();
2793 	return cachep;
2794 }
2795 
2796 /**
2797  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2798  * @cachep: the cache returned by memcg_kmem_get_cache
2799  */
2800 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2801 {
2802 	if (!is_root_cache(cachep))
2803 		percpu_ref_put(&cachep->memcg_params.refcnt);
2804 }
2805 
2806 /**
2807  * __memcg_kmem_charge_memcg: charge a kmem page
2808  * @page: page to charge
2809  * @gfp: reclaim mode
2810  * @order: allocation order
2811  * @memcg: memory cgroup to charge
2812  *
2813  * Returns 0 on success, an error code on failure.
2814  */
2815 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2816 			    struct mem_cgroup *memcg)
2817 {
2818 	unsigned int nr_pages = 1 << order;
2819 	struct page_counter *counter;
2820 	int ret;
2821 
2822 	ret = try_charge(memcg, gfp, nr_pages);
2823 	if (ret)
2824 		return ret;
2825 
2826 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2827 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2828 		cancel_charge(memcg, nr_pages);
2829 		return -ENOMEM;
2830 	}
2831 	return 0;
2832 }
2833 
2834 /**
2835  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2836  * @page: page to charge
2837  * @gfp: reclaim mode
2838  * @order: allocation order
2839  *
2840  * Returns 0 on success, an error code on failure.
2841  */
2842 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2843 {
2844 	struct mem_cgroup *memcg;
2845 	int ret = 0;
2846 
2847 	if (memcg_kmem_bypass())
2848 		return 0;
2849 
2850 	memcg = get_mem_cgroup_from_current();
2851 	if (!mem_cgroup_is_root(memcg)) {
2852 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2853 		if (!ret) {
2854 			page->mem_cgroup = memcg;
2855 			__SetPageKmemcg(page);
2856 		}
2857 	}
2858 	css_put(&memcg->css);
2859 	return ret;
2860 }
2861 
2862 /**
2863  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2864  * @memcg: memcg to uncharge
2865  * @nr_pages: number of pages to uncharge
2866  */
2867 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2868 				 unsigned int nr_pages)
2869 {
2870 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2871 		page_counter_uncharge(&memcg->kmem, nr_pages);
2872 
2873 	page_counter_uncharge(&memcg->memory, nr_pages);
2874 	if (do_memsw_account())
2875 		page_counter_uncharge(&memcg->memsw, nr_pages);
2876 }
2877 /**
2878  * __memcg_kmem_uncharge: uncharge a kmem page
2879  * @page: page to uncharge
2880  * @order: allocation order
2881  */
2882 void __memcg_kmem_uncharge(struct page *page, int order)
2883 {
2884 	struct mem_cgroup *memcg = page->mem_cgroup;
2885 	unsigned int nr_pages = 1 << order;
2886 
2887 	if (!memcg)
2888 		return;
2889 
2890 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2891 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2892 	page->mem_cgroup = NULL;
2893 
2894 	/* slab pages do not have PageKmemcg flag set */
2895 	if (PageKmemcg(page))
2896 		__ClearPageKmemcg(page);
2897 
2898 	css_put_many(&memcg->css, nr_pages);
2899 }
2900 #endif /* CONFIG_MEMCG_KMEM */
2901 
2902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2903 
2904 /*
2905  * Because tail pages are not marked as "used", set it. We're under
2906  * pgdat->lru_lock and migration entries setup in all page mappings.
2907  */
2908 void mem_cgroup_split_huge_fixup(struct page *head)
2909 {
2910 	int i;
2911 
2912 	if (mem_cgroup_disabled())
2913 		return;
2914 
2915 	for (i = 1; i < HPAGE_PMD_NR; i++)
2916 		head[i].mem_cgroup = head->mem_cgroup;
2917 
2918 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2919 }
2920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2921 
2922 #ifdef CONFIG_MEMCG_SWAP
2923 /**
2924  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2925  * @entry: swap entry to be moved
2926  * @from:  mem_cgroup which the entry is moved from
2927  * @to:  mem_cgroup which the entry is moved to
2928  *
2929  * It succeeds only when the swap_cgroup's record for this entry is the same
2930  * as the mem_cgroup's id of @from.
2931  *
2932  * Returns 0 on success, -EINVAL on failure.
2933  *
2934  * The caller must have charged to @to, IOW, called page_counter_charge() about
2935  * both res and memsw, and called css_get().
2936  */
2937 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2938 				struct mem_cgroup *from, struct mem_cgroup *to)
2939 {
2940 	unsigned short old_id, new_id;
2941 
2942 	old_id = mem_cgroup_id(from);
2943 	new_id = mem_cgroup_id(to);
2944 
2945 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2946 		mod_memcg_state(from, MEMCG_SWAP, -1);
2947 		mod_memcg_state(to, MEMCG_SWAP, 1);
2948 		return 0;
2949 	}
2950 	return -EINVAL;
2951 }
2952 #else
2953 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2954 				struct mem_cgroup *from, struct mem_cgroup *to)
2955 {
2956 	return -EINVAL;
2957 }
2958 #endif
2959 
2960 static DEFINE_MUTEX(memcg_max_mutex);
2961 
2962 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2963 				 unsigned long max, bool memsw)
2964 {
2965 	bool enlarge = false;
2966 	bool drained = false;
2967 	int ret;
2968 	bool limits_invariant;
2969 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2970 
2971 	do {
2972 		if (signal_pending(current)) {
2973 			ret = -EINTR;
2974 			break;
2975 		}
2976 
2977 		mutex_lock(&memcg_max_mutex);
2978 		/*
2979 		 * Make sure that the new limit (memsw or memory limit) doesn't
2980 		 * break our basic invariant rule memory.max <= memsw.max.
2981 		 */
2982 		limits_invariant = memsw ? max >= memcg->memory.max :
2983 					   max <= memcg->memsw.max;
2984 		if (!limits_invariant) {
2985 			mutex_unlock(&memcg_max_mutex);
2986 			ret = -EINVAL;
2987 			break;
2988 		}
2989 		if (max > counter->max)
2990 			enlarge = true;
2991 		ret = page_counter_set_max(counter, max);
2992 		mutex_unlock(&memcg_max_mutex);
2993 
2994 		if (!ret)
2995 			break;
2996 
2997 		if (!drained) {
2998 			drain_all_stock(memcg);
2999 			drained = true;
3000 			continue;
3001 		}
3002 
3003 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3004 					GFP_KERNEL, !memsw)) {
3005 			ret = -EBUSY;
3006 			break;
3007 		}
3008 	} while (true);
3009 
3010 	if (!ret && enlarge)
3011 		memcg_oom_recover(memcg);
3012 
3013 	return ret;
3014 }
3015 
3016 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3017 					    gfp_t gfp_mask,
3018 					    unsigned long *total_scanned)
3019 {
3020 	unsigned long nr_reclaimed = 0;
3021 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3022 	unsigned long reclaimed;
3023 	int loop = 0;
3024 	struct mem_cgroup_tree_per_node *mctz;
3025 	unsigned long excess;
3026 	unsigned long nr_scanned;
3027 
3028 	if (order > 0)
3029 		return 0;
3030 
3031 	mctz = soft_limit_tree_node(pgdat->node_id);
3032 
3033 	/*
3034 	 * Do not even bother to check the largest node if the root
3035 	 * is empty. Do it lockless to prevent lock bouncing. Races
3036 	 * are acceptable as soft limit is best effort anyway.
3037 	 */
3038 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3039 		return 0;
3040 
3041 	/*
3042 	 * This loop can run a while, specially if mem_cgroup's continuously
3043 	 * keep exceeding their soft limit and putting the system under
3044 	 * pressure
3045 	 */
3046 	do {
3047 		if (next_mz)
3048 			mz = next_mz;
3049 		else
3050 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3051 		if (!mz)
3052 			break;
3053 
3054 		nr_scanned = 0;
3055 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3056 						    gfp_mask, &nr_scanned);
3057 		nr_reclaimed += reclaimed;
3058 		*total_scanned += nr_scanned;
3059 		spin_lock_irq(&mctz->lock);
3060 		__mem_cgroup_remove_exceeded(mz, mctz);
3061 
3062 		/*
3063 		 * If we failed to reclaim anything from this memory cgroup
3064 		 * it is time to move on to the next cgroup
3065 		 */
3066 		next_mz = NULL;
3067 		if (!reclaimed)
3068 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3069 
3070 		excess = soft_limit_excess(mz->memcg);
3071 		/*
3072 		 * One school of thought says that we should not add
3073 		 * back the node to the tree if reclaim returns 0.
3074 		 * But our reclaim could return 0, simply because due
3075 		 * to priority we are exposing a smaller subset of
3076 		 * memory to reclaim from. Consider this as a longer
3077 		 * term TODO.
3078 		 */
3079 		/* If excess == 0, no tree ops */
3080 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3081 		spin_unlock_irq(&mctz->lock);
3082 		css_put(&mz->memcg->css);
3083 		loop++;
3084 		/*
3085 		 * Could not reclaim anything and there are no more
3086 		 * mem cgroups to try or we seem to be looping without
3087 		 * reclaiming anything.
3088 		 */
3089 		if (!nr_reclaimed &&
3090 			(next_mz == NULL ||
3091 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3092 			break;
3093 	} while (!nr_reclaimed);
3094 	if (next_mz)
3095 		css_put(&next_mz->memcg->css);
3096 	return nr_reclaimed;
3097 }
3098 
3099 /*
3100  * Test whether @memcg has children, dead or alive.  Note that this
3101  * function doesn't care whether @memcg has use_hierarchy enabled and
3102  * returns %true if there are child csses according to the cgroup
3103  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3104  */
3105 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3106 {
3107 	bool ret;
3108 
3109 	rcu_read_lock();
3110 	ret = css_next_child(NULL, &memcg->css);
3111 	rcu_read_unlock();
3112 	return ret;
3113 }
3114 
3115 /*
3116  * Reclaims as many pages from the given memcg as possible.
3117  *
3118  * Caller is responsible for holding css reference for memcg.
3119  */
3120 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3121 {
3122 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3123 
3124 	/* we call try-to-free pages for make this cgroup empty */
3125 	lru_add_drain_all();
3126 
3127 	drain_all_stock(memcg);
3128 
3129 	/* try to free all pages in this cgroup */
3130 	while (nr_retries && page_counter_read(&memcg->memory)) {
3131 		int progress;
3132 
3133 		if (signal_pending(current))
3134 			return -EINTR;
3135 
3136 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3137 							GFP_KERNEL, true);
3138 		if (!progress) {
3139 			nr_retries--;
3140 			/* maybe some writeback is necessary */
3141 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3142 		}
3143 
3144 	}
3145 
3146 	return 0;
3147 }
3148 
3149 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3150 					    char *buf, size_t nbytes,
3151 					    loff_t off)
3152 {
3153 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3154 
3155 	if (mem_cgroup_is_root(memcg))
3156 		return -EINVAL;
3157 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3158 }
3159 
3160 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3161 				     struct cftype *cft)
3162 {
3163 	return mem_cgroup_from_css(css)->use_hierarchy;
3164 }
3165 
3166 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3167 				      struct cftype *cft, u64 val)
3168 {
3169 	int retval = 0;
3170 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3171 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3172 
3173 	if (memcg->use_hierarchy == val)
3174 		return 0;
3175 
3176 	/*
3177 	 * If parent's use_hierarchy is set, we can't make any modifications
3178 	 * in the child subtrees. If it is unset, then the change can
3179 	 * occur, provided the current cgroup has no children.
3180 	 *
3181 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3182 	 * set if there are no children.
3183 	 */
3184 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3185 				(val == 1 || val == 0)) {
3186 		if (!memcg_has_children(memcg))
3187 			memcg->use_hierarchy = val;
3188 		else
3189 			retval = -EBUSY;
3190 	} else
3191 		retval = -EINVAL;
3192 
3193 	return retval;
3194 }
3195 
3196 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3197 {
3198 	unsigned long val;
3199 
3200 	if (mem_cgroup_is_root(memcg)) {
3201 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3202 			memcg_page_state(memcg, MEMCG_RSS);
3203 		if (swap)
3204 			val += memcg_page_state(memcg, MEMCG_SWAP);
3205 	} else {
3206 		if (!swap)
3207 			val = page_counter_read(&memcg->memory);
3208 		else
3209 			val = page_counter_read(&memcg->memsw);
3210 	}
3211 	return val;
3212 }
3213 
3214 enum {
3215 	RES_USAGE,
3216 	RES_LIMIT,
3217 	RES_MAX_USAGE,
3218 	RES_FAILCNT,
3219 	RES_SOFT_LIMIT,
3220 };
3221 
3222 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3223 			       struct cftype *cft)
3224 {
3225 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226 	struct page_counter *counter;
3227 
3228 	switch (MEMFILE_TYPE(cft->private)) {
3229 	case _MEM:
3230 		counter = &memcg->memory;
3231 		break;
3232 	case _MEMSWAP:
3233 		counter = &memcg->memsw;
3234 		break;
3235 	case _KMEM:
3236 		counter = &memcg->kmem;
3237 		break;
3238 	case _TCP:
3239 		counter = &memcg->tcpmem;
3240 		break;
3241 	default:
3242 		BUG();
3243 	}
3244 
3245 	switch (MEMFILE_ATTR(cft->private)) {
3246 	case RES_USAGE:
3247 		if (counter == &memcg->memory)
3248 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3249 		if (counter == &memcg->memsw)
3250 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3251 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3252 	case RES_LIMIT:
3253 		return (u64)counter->max * PAGE_SIZE;
3254 	case RES_MAX_USAGE:
3255 		return (u64)counter->watermark * PAGE_SIZE;
3256 	case RES_FAILCNT:
3257 		return counter->failcnt;
3258 	case RES_SOFT_LIMIT:
3259 		return (u64)memcg->soft_limit * PAGE_SIZE;
3260 	default:
3261 		BUG();
3262 	}
3263 }
3264 
3265 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3266 {
3267 	unsigned long stat[MEMCG_NR_STAT];
3268 	struct mem_cgroup *mi;
3269 	int node, cpu, i;
3270 	int min_idx, max_idx;
3271 
3272 	if (slab_only) {
3273 		min_idx = NR_SLAB_RECLAIMABLE;
3274 		max_idx = NR_SLAB_UNRECLAIMABLE;
3275 	} else {
3276 		min_idx = 0;
3277 		max_idx = MEMCG_NR_STAT;
3278 	}
3279 
3280 	for (i = min_idx; i < max_idx; i++)
3281 		stat[i] = 0;
3282 
3283 	for_each_online_cpu(cpu)
3284 		for (i = min_idx; i < max_idx; i++)
3285 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3286 
3287 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3288 		for (i = min_idx; i < max_idx; i++)
3289 			atomic_long_add(stat[i], &mi->vmstats[i]);
3290 
3291 	if (!slab_only)
3292 		max_idx = NR_VM_NODE_STAT_ITEMS;
3293 
3294 	for_each_node(node) {
3295 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3296 		struct mem_cgroup_per_node *pi;
3297 
3298 		for (i = min_idx; i < max_idx; i++)
3299 			stat[i] = 0;
3300 
3301 		for_each_online_cpu(cpu)
3302 			for (i = min_idx; i < max_idx; i++)
3303 				stat[i] += per_cpu(
3304 					pn->lruvec_stat_cpu->count[i], cpu);
3305 
3306 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3307 			for (i = min_idx; i < max_idx; i++)
3308 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3309 	}
3310 }
3311 
3312 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3313 {
3314 	unsigned long events[NR_VM_EVENT_ITEMS];
3315 	struct mem_cgroup *mi;
3316 	int cpu, i;
3317 
3318 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3319 		events[i] = 0;
3320 
3321 	for_each_online_cpu(cpu)
3322 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3323 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3324 					     cpu);
3325 
3326 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3327 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3328 			atomic_long_add(events[i], &mi->vmevents[i]);
3329 }
3330 
3331 #ifdef CONFIG_MEMCG_KMEM
3332 static int memcg_online_kmem(struct mem_cgroup *memcg)
3333 {
3334 	int memcg_id;
3335 
3336 	if (cgroup_memory_nokmem)
3337 		return 0;
3338 
3339 	BUG_ON(memcg->kmemcg_id >= 0);
3340 	BUG_ON(memcg->kmem_state);
3341 
3342 	memcg_id = memcg_alloc_cache_id();
3343 	if (memcg_id < 0)
3344 		return memcg_id;
3345 
3346 	static_branch_inc(&memcg_kmem_enabled_key);
3347 	/*
3348 	 * A memory cgroup is considered kmem-online as soon as it gets
3349 	 * kmemcg_id. Setting the id after enabling static branching will
3350 	 * guarantee no one starts accounting before all call sites are
3351 	 * patched.
3352 	 */
3353 	memcg->kmemcg_id = memcg_id;
3354 	memcg->kmem_state = KMEM_ONLINE;
3355 	INIT_LIST_HEAD(&memcg->kmem_caches);
3356 
3357 	return 0;
3358 }
3359 
3360 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3361 {
3362 	struct cgroup_subsys_state *css;
3363 	struct mem_cgroup *parent, *child;
3364 	int kmemcg_id;
3365 
3366 	if (memcg->kmem_state != KMEM_ONLINE)
3367 		return;
3368 	/*
3369 	 * Clear the online state before clearing memcg_caches array
3370 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3371 	 * guarantees that no cache will be created for this cgroup
3372 	 * after we are done (see memcg_create_kmem_cache()).
3373 	 */
3374 	memcg->kmem_state = KMEM_ALLOCATED;
3375 
3376 	parent = parent_mem_cgroup(memcg);
3377 	if (!parent)
3378 		parent = root_mem_cgroup;
3379 
3380 	/*
3381 	 * Deactivate and reparent kmem_caches. Then flush percpu
3382 	 * slab statistics to have precise values at the parent and
3383 	 * all ancestor levels. It's required to keep slab stats
3384 	 * accurate after the reparenting of kmem_caches.
3385 	 */
3386 	memcg_deactivate_kmem_caches(memcg, parent);
3387 	memcg_flush_percpu_vmstats(memcg, true);
3388 
3389 	kmemcg_id = memcg->kmemcg_id;
3390 	BUG_ON(kmemcg_id < 0);
3391 
3392 	/*
3393 	 * Change kmemcg_id of this cgroup and all its descendants to the
3394 	 * parent's id, and then move all entries from this cgroup's list_lrus
3395 	 * to ones of the parent. After we have finished, all list_lrus
3396 	 * corresponding to this cgroup are guaranteed to remain empty. The
3397 	 * ordering is imposed by list_lru_node->lock taken by
3398 	 * memcg_drain_all_list_lrus().
3399 	 */
3400 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3401 	css_for_each_descendant_pre(css, &memcg->css) {
3402 		child = mem_cgroup_from_css(css);
3403 		BUG_ON(child->kmemcg_id != kmemcg_id);
3404 		child->kmemcg_id = parent->kmemcg_id;
3405 		if (!memcg->use_hierarchy)
3406 			break;
3407 	}
3408 	rcu_read_unlock();
3409 
3410 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3411 
3412 	memcg_free_cache_id(kmemcg_id);
3413 }
3414 
3415 static void memcg_free_kmem(struct mem_cgroup *memcg)
3416 {
3417 	/* css_alloc() failed, offlining didn't happen */
3418 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3419 		memcg_offline_kmem(memcg);
3420 
3421 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3422 		WARN_ON(!list_empty(&memcg->kmem_caches));
3423 		static_branch_dec(&memcg_kmem_enabled_key);
3424 	}
3425 }
3426 #else
3427 static int memcg_online_kmem(struct mem_cgroup *memcg)
3428 {
3429 	return 0;
3430 }
3431 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3432 {
3433 }
3434 static void memcg_free_kmem(struct mem_cgroup *memcg)
3435 {
3436 }
3437 #endif /* CONFIG_MEMCG_KMEM */
3438 
3439 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3440 				 unsigned long max)
3441 {
3442 	int ret;
3443 
3444 	mutex_lock(&memcg_max_mutex);
3445 	ret = page_counter_set_max(&memcg->kmem, max);
3446 	mutex_unlock(&memcg_max_mutex);
3447 	return ret;
3448 }
3449 
3450 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3451 {
3452 	int ret;
3453 
3454 	mutex_lock(&memcg_max_mutex);
3455 
3456 	ret = page_counter_set_max(&memcg->tcpmem, max);
3457 	if (ret)
3458 		goto out;
3459 
3460 	if (!memcg->tcpmem_active) {
3461 		/*
3462 		 * The active flag needs to be written after the static_key
3463 		 * update. This is what guarantees that the socket activation
3464 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3465 		 * for details, and note that we don't mark any socket as
3466 		 * belonging to this memcg until that flag is up.
3467 		 *
3468 		 * We need to do this, because static_keys will span multiple
3469 		 * sites, but we can't control their order. If we mark a socket
3470 		 * as accounted, but the accounting functions are not patched in
3471 		 * yet, we'll lose accounting.
3472 		 *
3473 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3474 		 * because when this value change, the code to process it is not
3475 		 * patched in yet.
3476 		 */
3477 		static_branch_inc(&memcg_sockets_enabled_key);
3478 		memcg->tcpmem_active = true;
3479 	}
3480 out:
3481 	mutex_unlock(&memcg_max_mutex);
3482 	return ret;
3483 }
3484 
3485 /*
3486  * The user of this function is...
3487  * RES_LIMIT.
3488  */
3489 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3490 				char *buf, size_t nbytes, loff_t off)
3491 {
3492 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3493 	unsigned long nr_pages;
3494 	int ret;
3495 
3496 	buf = strstrip(buf);
3497 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3498 	if (ret)
3499 		return ret;
3500 
3501 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3502 	case RES_LIMIT:
3503 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3504 			ret = -EINVAL;
3505 			break;
3506 		}
3507 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3508 		case _MEM:
3509 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3510 			break;
3511 		case _MEMSWAP:
3512 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3513 			break;
3514 		case _KMEM:
3515 			ret = memcg_update_kmem_max(memcg, nr_pages);
3516 			break;
3517 		case _TCP:
3518 			ret = memcg_update_tcp_max(memcg, nr_pages);
3519 			break;
3520 		}
3521 		break;
3522 	case RES_SOFT_LIMIT:
3523 		memcg->soft_limit = nr_pages;
3524 		ret = 0;
3525 		break;
3526 	}
3527 	return ret ?: nbytes;
3528 }
3529 
3530 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3531 				size_t nbytes, loff_t off)
3532 {
3533 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3534 	struct page_counter *counter;
3535 
3536 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3537 	case _MEM:
3538 		counter = &memcg->memory;
3539 		break;
3540 	case _MEMSWAP:
3541 		counter = &memcg->memsw;
3542 		break;
3543 	case _KMEM:
3544 		counter = &memcg->kmem;
3545 		break;
3546 	case _TCP:
3547 		counter = &memcg->tcpmem;
3548 		break;
3549 	default:
3550 		BUG();
3551 	}
3552 
3553 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3554 	case RES_MAX_USAGE:
3555 		page_counter_reset_watermark(counter);
3556 		break;
3557 	case RES_FAILCNT:
3558 		counter->failcnt = 0;
3559 		break;
3560 	default:
3561 		BUG();
3562 	}
3563 
3564 	return nbytes;
3565 }
3566 
3567 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3568 					struct cftype *cft)
3569 {
3570 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3571 }
3572 
3573 #ifdef CONFIG_MMU
3574 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3575 					struct cftype *cft, u64 val)
3576 {
3577 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3578 
3579 	if (val & ~MOVE_MASK)
3580 		return -EINVAL;
3581 
3582 	/*
3583 	 * No kind of locking is needed in here, because ->can_attach() will
3584 	 * check this value once in the beginning of the process, and then carry
3585 	 * on with stale data. This means that changes to this value will only
3586 	 * affect task migrations starting after the change.
3587 	 */
3588 	memcg->move_charge_at_immigrate = val;
3589 	return 0;
3590 }
3591 #else
3592 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3593 					struct cftype *cft, u64 val)
3594 {
3595 	return -ENOSYS;
3596 }
3597 #endif
3598 
3599 #ifdef CONFIG_NUMA
3600 
3601 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3602 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3603 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3604 
3605 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3606 					   int nid, unsigned int lru_mask)
3607 {
3608 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3609 	unsigned long nr = 0;
3610 	enum lru_list lru;
3611 
3612 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3613 
3614 	for_each_lru(lru) {
3615 		if (!(BIT(lru) & lru_mask))
3616 			continue;
3617 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3618 	}
3619 	return nr;
3620 }
3621 
3622 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3623 					     unsigned int lru_mask)
3624 {
3625 	unsigned long nr = 0;
3626 	enum lru_list lru;
3627 
3628 	for_each_lru(lru) {
3629 		if (!(BIT(lru) & lru_mask))
3630 			continue;
3631 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3632 	}
3633 	return nr;
3634 }
3635 
3636 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3637 {
3638 	struct numa_stat {
3639 		const char *name;
3640 		unsigned int lru_mask;
3641 	};
3642 
3643 	static const struct numa_stat stats[] = {
3644 		{ "total", LRU_ALL },
3645 		{ "file", LRU_ALL_FILE },
3646 		{ "anon", LRU_ALL_ANON },
3647 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3648 	};
3649 	const struct numa_stat *stat;
3650 	int nid;
3651 	unsigned long nr;
3652 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3653 
3654 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3655 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3656 		seq_printf(m, "%s=%lu", stat->name, nr);
3657 		for_each_node_state(nid, N_MEMORY) {
3658 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3659 							  stat->lru_mask);
3660 			seq_printf(m, " N%d=%lu", nid, nr);
3661 		}
3662 		seq_putc(m, '\n');
3663 	}
3664 
3665 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3666 		struct mem_cgroup *iter;
3667 
3668 		nr = 0;
3669 		for_each_mem_cgroup_tree(iter, memcg)
3670 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3671 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3672 		for_each_node_state(nid, N_MEMORY) {
3673 			nr = 0;
3674 			for_each_mem_cgroup_tree(iter, memcg)
3675 				nr += mem_cgroup_node_nr_lru_pages(
3676 					iter, nid, stat->lru_mask);
3677 			seq_printf(m, " N%d=%lu", nid, nr);
3678 		}
3679 		seq_putc(m, '\n');
3680 	}
3681 
3682 	return 0;
3683 }
3684 #endif /* CONFIG_NUMA */
3685 
3686 static const unsigned int memcg1_stats[] = {
3687 	MEMCG_CACHE,
3688 	MEMCG_RSS,
3689 	MEMCG_RSS_HUGE,
3690 	NR_SHMEM,
3691 	NR_FILE_MAPPED,
3692 	NR_FILE_DIRTY,
3693 	NR_WRITEBACK,
3694 	MEMCG_SWAP,
3695 };
3696 
3697 static const char *const memcg1_stat_names[] = {
3698 	"cache",
3699 	"rss",
3700 	"rss_huge",
3701 	"shmem",
3702 	"mapped_file",
3703 	"dirty",
3704 	"writeback",
3705 	"swap",
3706 };
3707 
3708 /* Universal VM events cgroup1 shows, original sort order */
3709 static const unsigned int memcg1_events[] = {
3710 	PGPGIN,
3711 	PGPGOUT,
3712 	PGFAULT,
3713 	PGMAJFAULT,
3714 };
3715 
3716 static const char *const memcg1_event_names[] = {
3717 	"pgpgin",
3718 	"pgpgout",
3719 	"pgfault",
3720 	"pgmajfault",
3721 };
3722 
3723 static int memcg_stat_show(struct seq_file *m, void *v)
3724 {
3725 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3726 	unsigned long memory, memsw;
3727 	struct mem_cgroup *mi;
3728 	unsigned int i;
3729 
3730 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3731 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3732 
3733 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3734 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3735 			continue;
3736 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3737 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3738 			   PAGE_SIZE);
3739 	}
3740 
3741 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3742 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3743 			   memcg_events_local(memcg, memcg1_events[i]));
3744 
3745 	for (i = 0; i < NR_LRU_LISTS; i++)
3746 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3747 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3748 			   PAGE_SIZE);
3749 
3750 	/* Hierarchical information */
3751 	memory = memsw = PAGE_COUNTER_MAX;
3752 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3753 		memory = min(memory, mi->memory.max);
3754 		memsw = min(memsw, mi->memsw.max);
3755 	}
3756 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3757 		   (u64)memory * PAGE_SIZE);
3758 	if (do_memsw_account())
3759 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3760 			   (u64)memsw * PAGE_SIZE);
3761 
3762 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3763 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3764 			continue;
3765 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3766 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3767 			   PAGE_SIZE);
3768 	}
3769 
3770 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3771 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3772 			   (u64)memcg_events(memcg, memcg1_events[i]));
3773 
3774 	for (i = 0; i < NR_LRU_LISTS; i++)
3775 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3776 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3777 			   PAGE_SIZE);
3778 
3779 #ifdef CONFIG_DEBUG_VM
3780 	{
3781 		pg_data_t *pgdat;
3782 		struct mem_cgroup_per_node *mz;
3783 		struct zone_reclaim_stat *rstat;
3784 		unsigned long recent_rotated[2] = {0, 0};
3785 		unsigned long recent_scanned[2] = {0, 0};
3786 
3787 		for_each_online_pgdat(pgdat) {
3788 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3789 			rstat = &mz->lruvec.reclaim_stat;
3790 
3791 			recent_rotated[0] += rstat->recent_rotated[0];
3792 			recent_rotated[1] += rstat->recent_rotated[1];
3793 			recent_scanned[0] += rstat->recent_scanned[0];
3794 			recent_scanned[1] += rstat->recent_scanned[1];
3795 		}
3796 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3797 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3798 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3799 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3800 	}
3801 #endif
3802 
3803 	return 0;
3804 }
3805 
3806 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3807 				      struct cftype *cft)
3808 {
3809 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3810 
3811 	return mem_cgroup_swappiness(memcg);
3812 }
3813 
3814 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3815 				       struct cftype *cft, u64 val)
3816 {
3817 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3818 
3819 	if (val > 100)
3820 		return -EINVAL;
3821 
3822 	if (css->parent)
3823 		memcg->swappiness = val;
3824 	else
3825 		vm_swappiness = val;
3826 
3827 	return 0;
3828 }
3829 
3830 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3831 {
3832 	struct mem_cgroup_threshold_ary *t;
3833 	unsigned long usage;
3834 	int i;
3835 
3836 	rcu_read_lock();
3837 	if (!swap)
3838 		t = rcu_dereference(memcg->thresholds.primary);
3839 	else
3840 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3841 
3842 	if (!t)
3843 		goto unlock;
3844 
3845 	usage = mem_cgroup_usage(memcg, swap);
3846 
3847 	/*
3848 	 * current_threshold points to threshold just below or equal to usage.
3849 	 * If it's not true, a threshold was crossed after last
3850 	 * call of __mem_cgroup_threshold().
3851 	 */
3852 	i = t->current_threshold;
3853 
3854 	/*
3855 	 * Iterate backward over array of thresholds starting from
3856 	 * current_threshold and check if a threshold is crossed.
3857 	 * If none of thresholds below usage is crossed, we read
3858 	 * only one element of the array here.
3859 	 */
3860 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3861 		eventfd_signal(t->entries[i].eventfd, 1);
3862 
3863 	/* i = current_threshold + 1 */
3864 	i++;
3865 
3866 	/*
3867 	 * Iterate forward over array of thresholds starting from
3868 	 * current_threshold+1 and check if a threshold is crossed.
3869 	 * If none of thresholds above usage is crossed, we read
3870 	 * only one element of the array here.
3871 	 */
3872 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3873 		eventfd_signal(t->entries[i].eventfd, 1);
3874 
3875 	/* Update current_threshold */
3876 	t->current_threshold = i - 1;
3877 unlock:
3878 	rcu_read_unlock();
3879 }
3880 
3881 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3882 {
3883 	while (memcg) {
3884 		__mem_cgroup_threshold(memcg, false);
3885 		if (do_memsw_account())
3886 			__mem_cgroup_threshold(memcg, true);
3887 
3888 		memcg = parent_mem_cgroup(memcg);
3889 	}
3890 }
3891 
3892 static int compare_thresholds(const void *a, const void *b)
3893 {
3894 	const struct mem_cgroup_threshold *_a = a;
3895 	const struct mem_cgroup_threshold *_b = b;
3896 
3897 	if (_a->threshold > _b->threshold)
3898 		return 1;
3899 
3900 	if (_a->threshold < _b->threshold)
3901 		return -1;
3902 
3903 	return 0;
3904 }
3905 
3906 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3907 {
3908 	struct mem_cgroup_eventfd_list *ev;
3909 
3910 	spin_lock(&memcg_oom_lock);
3911 
3912 	list_for_each_entry(ev, &memcg->oom_notify, list)
3913 		eventfd_signal(ev->eventfd, 1);
3914 
3915 	spin_unlock(&memcg_oom_lock);
3916 	return 0;
3917 }
3918 
3919 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3920 {
3921 	struct mem_cgroup *iter;
3922 
3923 	for_each_mem_cgroup_tree(iter, memcg)
3924 		mem_cgroup_oom_notify_cb(iter);
3925 }
3926 
3927 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3928 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3929 {
3930 	struct mem_cgroup_thresholds *thresholds;
3931 	struct mem_cgroup_threshold_ary *new;
3932 	unsigned long threshold;
3933 	unsigned long usage;
3934 	int i, size, ret;
3935 
3936 	ret = page_counter_memparse(args, "-1", &threshold);
3937 	if (ret)
3938 		return ret;
3939 
3940 	mutex_lock(&memcg->thresholds_lock);
3941 
3942 	if (type == _MEM) {
3943 		thresholds = &memcg->thresholds;
3944 		usage = mem_cgroup_usage(memcg, false);
3945 	} else if (type == _MEMSWAP) {
3946 		thresholds = &memcg->memsw_thresholds;
3947 		usage = mem_cgroup_usage(memcg, true);
3948 	} else
3949 		BUG();
3950 
3951 	/* Check if a threshold crossed before adding a new one */
3952 	if (thresholds->primary)
3953 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3954 
3955 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3956 
3957 	/* Allocate memory for new array of thresholds */
3958 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3959 	if (!new) {
3960 		ret = -ENOMEM;
3961 		goto unlock;
3962 	}
3963 	new->size = size;
3964 
3965 	/* Copy thresholds (if any) to new array */
3966 	if (thresholds->primary) {
3967 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3968 				sizeof(struct mem_cgroup_threshold));
3969 	}
3970 
3971 	/* Add new threshold */
3972 	new->entries[size - 1].eventfd = eventfd;
3973 	new->entries[size - 1].threshold = threshold;
3974 
3975 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3976 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3977 			compare_thresholds, NULL);
3978 
3979 	/* Find current threshold */
3980 	new->current_threshold = -1;
3981 	for (i = 0; i < size; i++) {
3982 		if (new->entries[i].threshold <= usage) {
3983 			/*
3984 			 * new->current_threshold will not be used until
3985 			 * rcu_assign_pointer(), so it's safe to increment
3986 			 * it here.
3987 			 */
3988 			++new->current_threshold;
3989 		} else
3990 			break;
3991 	}
3992 
3993 	/* Free old spare buffer and save old primary buffer as spare */
3994 	kfree(thresholds->spare);
3995 	thresholds->spare = thresholds->primary;
3996 
3997 	rcu_assign_pointer(thresholds->primary, new);
3998 
3999 	/* To be sure that nobody uses thresholds */
4000 	synchronize_rcu();
4001 
4002 unlock:
4003 	mutex_unlock(&memcg->thresholds_lock);
4004 
4005 	return ret;
4006 }
4007 
4008 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4009 	struct eventfd_ctx *eventfd, const char *args)
4010 {
4011 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4012 }
4013 
4014 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4015 	struct eventfd_ctx *eventfd, const char *args)
4016 {
4017 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4018 }
4019 
4020 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4021 	struct eventfd_ctx *eventfd, enum res_type type)
4022 {
4023 	struct mem_cgroup_thresholds *thresholds;
4024 	struct mem_cgroup_threshold_ary *new;
4025 	unsigned long usage;
4026 	int i, j, size;
4027 
4028 	mutex_lock(&memcg->thresholds_lock);
4029 
4030 	if (type == _MEM) {
4031 		thresholds = &memcg->thresholds;
4032 		usage = mem_cgroup_usage(memcg, false);
4033 	} else if (type == _MEMSWAP) {
4034 		thresholds = &memcg->memsw_thresholds;
4035 		usage = mem_cgroup_usage(memcg, true);
4036 	} else
4037 		BUG();
4038 
4039 	if (!thresholds->primary)
4040 		goto unlock;
4041 
4042 	/* Check if a threshold crossed before removing */
4043 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4044 
4045 	/* Calculate new number of threshold */
4046 	size = 0;
4047 	for (i = 0; i < thresholds->primary->size; i++) {
4048 		if (thresholds->primary->entries[i].eventfd != eventfd)
4049 			size++;
4050 	}
4051 
4052 	new = thresholds->spare;
4053 
4054 	/* Set thresholds array to NULL if we don't have thresholds */
4055 	if (!size) {
4056 		kfree(new);
4057 		new = NULL;
4058 		goto swap_buffers;
4059 	}
4060 
4061 	new->size = size;
4062 
4063 	/* Copy thresholds and find current threshold */
4064 	new->current_threshold = -1;
4065 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4066 		if (thresholds->primary->entries[i].eventfd == eventfd)
4067 			continue;
4068 
4069 		new->entries[j] = thresholds->primary->entries[i];
4070 		if (new->entries[j].threshold <= usage) {
4071 			/*
4072 			 * new->current_threshold will not be used
4073 			 * until rcu_assign_pointer(), so it's safe to increment
4074 			 * it here.
4075 			 */
4076 			++new->current_threshold;
4077 		}
4078 		j++;
4079 	}
4080 
4081 swap_buffers:
4082 	/* Swap primary and spare array */
4083 	thresholds->spare = thresholds->primary;
4084 
4085 	rcu_assign_pointer(thresholds->primary, new);
4086 
4087 	/* To be sure that nobody uses thresholds */
4088 	synchronize_rcu();
4089 
4090 	/* If all events are unregistered, free the spare array */
4091 	if (!new) {
4092 		kfree(thresholds->spare);
4093 		thresholds->spare = NULL;
4094 	}
4095 unlock:
4096 	mutex_unlock(&memcg->thresholds_lock);
4097 }
4098 
4099 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4100 	struct eventfd_ctx *eventfd)
4101 {
4102 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4103 }
4104 
4105 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4106 	struct eventfd_ctx *eventfd)
4107 {
4108 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4109 }
4110 
4111 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4112 	struct eventfd_ctx *eventfd, const char *args)
4113 {
4114 	struct mem_cgroup_eventfd_list *event;
4115 
4116 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4117 	if (!event)
4118 		return -ENOMEM;
4119 
4120 	spin_lock(&memcg_oom_lock);
4121 
4122 	event->eventfd = eventfd;
4123 	list_add(&event->list, &memcg->oom_notify);
4124 
4125 	/* already in OOM ? */
4126 	if (memcg->under_oom)
4127 		eventfd_signal(eventfd, 1);
4128 	spin_unlock(&memcg_oom_lock);
4129 
4130 	return 0;
4131 }
4132 
4133 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4134 	struct eventfd_ctx *eventfd)
4135 {
4136 	struct mem_cgroup_eventfd_list *ev, *tmp;
4137 
4138 	spin_lock(&memcg_oom_lock);
4139 
4140 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4141 		if (ev->eventfd == eventfd) {
4142 			list_del(&ev->list);
4143 			kfree(ev);
4144 		}
4145 	}
4146 
4147 	spin_unlock(&memcg_oom_lock);
4148 }
4149 
4150 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4151 {
4152 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4153 
4154 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4155 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4156 	seq_printf(sf, "oom_kill %lu\n",
4157 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4158 	return 0;
4159 }
4160 
4161 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4162 	struct cftype *cft, u64 val)
4163 {
4164 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4165 
4166 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4167 	if (!css->parent || !((val == 0) || (val == 1)))
4168 		return -EINVAL;
4169 
4170 	memcg->oom_kill_disable = val;
4171 	if (!val)
4172 		memcg_oom_recover(memcg);
4173 
4174 	return 0;
4175 }
4176 
4177 #ifdef CONFIG_CGROUP_WRITEBACK
4178 
4179 #include <trace/events/writeback.h>
4180 
4181 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4182 {
4183 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4184 }
4185 
4186 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4187 {
4188 	wb_domain_exit(&memcg->cgwb_domain);
4189 }
4190 
4191 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4192 {
4193 	wb_domain_size_changed(&memcg->cgwb_domain);
4194 }
4195 
4196 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4197 {
4198 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4199 
4200 	if (!memcg->css.parent)
4201 		return NULL;
4202 
4203 	return &memcg->cgwb_domain;
4204 }
4205 
4206 /*
4207  * idx can be of type enum memcg_stat_item or node_stat_item.
4208  * Keep in sync with memcg_exact_page().
4209  */
4210 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4211 {
4212 	long x = atomic_long_read(&memcg->vmstats[idx]);
4213 	int cpu;
4214 
4215 	for_each_online_cpu(cpu)
4216 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4217 	if (x < 0)
4218 		x = 0;
4219 	return x;
4220 }
4221 
4222 /**
4223  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4224  * @wb: bdi_writeback in question
4225  * @pfilepages: out parameter for number of file pages
4226  * @pheadroom: out parameter for number of allocatable pages according to memcg
4227  * @pdirty: out parameter for number of dirty pages
4228  * @pwriteback: out parameter for number of pages under writeback
4229  *
4230  * Determine the numbers of file, headroom, dirty, and writeback pages in
4231  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4232  * is a bit more involved.
4233  *
4234  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4235  * headroom is calculated as the lowest headroom of itself and the
4236  * ancestors.  Note that this doesn't consider the actual amount of
4237  * available memory in the system.  The caller should further cap
4238  * *@pheadroom accordingly.
4239  */
4240 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4241 			 unsigned long *pheadroom, unsigned long *pdirty,
4242 			 unsigned long *pwriteback)
4243 {
4244 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4245 	struct mem_cgroup *parent;
4246 
4247 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4248 
4249 	/* this should eventually include NR_UNSTABLE_NFS */
4250 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4251 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4252 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4253 	*pheadroom = PAGE_COUNTER_MAX;
4254 
4255 	while ((parent = parent_mem_cgroup(memcg))) {
4256 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4257 		unsigned long used = page_counter_read(&memcg->memory);
4258 
4259 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4260 		memcg = parent;
4261 	}
4262 }
4263 
4264 /*
4265  * Foreign dirty flushing
4266  *
4267  * There's an inherent mismatch between memcg and writeback.  The former
4268  * trackes ownership per-page while the latter per-inode.  This was a
4269  * deliberate design decision because honoring per-page ownership in the
4270  * writeback path is complicated, may lead to higher CPU and IO overheads
4271  * and deemed unnecessary given that write-sharing an inode across
4272  * different cgroups isn't a common use-case.
4273  *
4274  * Combined with inode majority-writer ownership switching, this works well
4275  * enough in most cases but there are some pathological cases.  For
4276  * example, let's say there are two cgroups A and B which keep writing to
4277  * different but confined parts of the same inode.  B owns the inode and
4278  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4279  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4280  * triggering background writeback.  A will be slowed down without a way to
4281  * make writeback of the dirty pages happen.
4282  *
4283  * Conditions like the above can lead to a cgroup getting repatedly and
4284  * severely throttled after making some progress after each
4285  * dirty_expire_interval while the underyling IO device is almost
4286  * completely idle.
4287  *
4288  * Solving this problem completely requires matching the ownership tracking
4289  * granularities between memcg and writeback in either direction.  However,
4290  * the more egregious behaviors can be avoided by simply remembering the
4291  * most recent foreign dirtying events and initiating remote flushes on
4292  * them when local writeback isn't enough to keep the memory clean enough.
4293  *
4294  * The following two functions implement such mechanism.  When a foreign
4295  * page - a page whose memcg and writeback ownerships don't match - is
4296  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4297  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4298  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4299  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4300  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4301  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4302  * limited to MEMCG_CGWB_FRN_CNT.
4303  *
4304  * The mechanism only remembers IDs and doesn't hold any object references.
4305  * As being wrong occasionally doesn't matter, updates and accesses to the
4306  * records are lockless and racy.
4307  */
4308 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4309 					     struct bdi_writeback *wb)
4310 {
4311 	struct mem_cgroup *memcg = page->mem_cgroup;
4312 	struct memcg_cgwb_frn *frn;
4313 	u64 now = get_jiffies_64();
4314 	u64 oldest_at = now;
4315 	int oldest = -1;
4316 	int i;
4317 
4318 	trace_track_foreign_dirty(page, wb);
4319 
4320 	/*
4321 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4322 	 * using it.  If not replace the oldest one which isn't being
4323 	 * written out.
4324 	 */
4325 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4326 		frn = &memcg->cgwb_frn[i];
4327 		if (frn->bdi_id == wb->bdi->id &&
4328 		    frn->memcg_id == wb->memcg_css->id)
4329 			break;
4330 		if (time_before64(frn->at, oldest_at) &&
4331 		    atomic_read(&frn->done.cnt) == 1) {
4332 			oldest = i;
4333 			oldest_at = frn->at;
4334 		}
4335 	}
4336 
4337 	if (i < MEMCG_CGWB_FRN_CNT) {
4338 		/*
4339 		 * Re-using an existing one.  Update timestamp lazily to
4340 		 * avoid making the cacheline hot.  We want them to be
4341 		 * reasonably up-to-date and significantly shorter than
4342 		 * dirty_expire_interval as that's what expires the record.
4343 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4344 		 */
4345 		unsigned long update_intv =
4346 			min_t(unsigned long, HZ,
4347 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4348 
4349 		if (time_before64(frn->at, now - update_intv))
4350 			frn->at = now;
4351 	} else if (oldest >= 0) {
4352 		/* replace the oldest free one */
4353 		frn = &memcg->cgwb_frn[oldest];
4354 		frn->bdi_id = wb->bdi->id;
4355 		frn->memcg_id = wb->memcg_css->id;
4356 		frn->at = now;
4357 	}
4358 }
4359 
4360 /* issue foreign writeback flushes for recorded foreign dirtying events */
4361 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4362 {
4363 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4364 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4365 	u64 now = jiffies_64;
4366 	int i;
4367 
4368 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4369 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4370 
4371 		/*
4372 		 * If the record is older than dirty_expire_interval,
4373 		 * writeback on it has already started.  No need to kick it
4374 		 * off again.  Also, don't start a new one if there's
4375 		 * already one in flight.
4376 		 */
4377 		if (time_after64(frn->at, now - intv) &&
4378 		    atomic_read(&frn->done.cnt) == 1) {
4379 			frn->at = 0;
4380 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4381 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4382 					       WB_REASON_FOREIGN_FLUSH,
4383 					       &frn->done);
4384 		}
4385 	}
4386 }
4387 
4388 #else	/* CONFIG_CGROUP_WRITEBACK */
4389 
4390 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4391 {
4392 	return 0;
4393 }
4394 
4395 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4396 {
4397 }
4398 
4399 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4400 {
4401 }
4402 
4403 #endif	/* CONFIG_CGROUP_WRITEBACK */
4404 
4405 /*
4406  * DO NOT USE IN NEW FILES.
4407  *
4408  * "cgroup.event_control" implementation.
4409  *
4410  * This is way over-engineered.  It tries to support fully configurable
4411  * events for each user.  Such level of flexibility is completely
4412  * unnecessary especially in the light of the planned unified hierarchy.
4413  *
4414  * Please deprecate this and replace with something simpler if at all
4415  * possible.
4416  */
4417 
4418 /*
4419  * Unregister event and free resources.
4420  *
4421  * Gets called from workqueue.
4422  */
4423 static void memcg_event_remove(struct work_struct *work)
4424 {
4425 	struct mem_cgroup_event *event =
4426 		container_of(work, struct mem_cgroup_event, remove);
4427 	struct mem_cgroup *memcg = event->memcg;
4428 
4429 	remove_wait_queue(event->wqh, &event->wait);
4430 
4431 	event->unregister_event(memcg, event->eventfd);
4432 
4433 	/* Notify userspace the event is going away. */
4434 	eventfd_signal(event->eventfd, 1);
4435 
4436 	eventfd_ctx_put(event->eventfd);
4437 	kfree(event);
4438 	css_put(&memcg->css);
4439 }
4440 
4441 /*
4442  * Gets called on EPOLLHUP on eventfd when user closes it.
4443  *
4444  * Called with wqh->lock held and interrupts disabled.
4445  */
4446 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4447 			    int sync, void *key)
4448 {
4449 	struct mem_cgroup_event *event =
4450 		container_of(wait, struct mem_cgroup_event, wait);
4451 	struct mem_cgroup *memcg = event->memcg;
4452 	__poll_t flags = key_to_poll(key);
4453 
4454 	if (flags & EPOLLHUP) {
4455 		/*
4456 		 * If the event has been detached at cgroup removal, we
4457 		 * can simply return knowing the other side will cleanup
4458 		 * for us.
4459 		 *
4460 		 * We can't race against event freeing since the other
4461 		 * side will require wqh->lock via remove_wait_queue(),
4462 		 * which we hold.
4463 		 */
4464 		spin_lock(&memcg->event_list_lock);
4465 		if (!list_empty(&event->list)) {
4466 			list_del_init(&event->list);
4467 			/*
4468 			 * We are in atomic context, but cgroup_event_remove()
4469 			 * may sleep, so we have to call it in workqueue.
4470 			 */
4471 			schedule_work(&event->remove);
4472 		}
4473 		spin_unlock(&memcg->event_list_lock);
4474 	}
4475 
4476 	return 0;
4477 }
4478 
4479 static void memcg_event_ptable_queue_proc(struct file *file,
4480 		wait_queue_head_t *wqh, poll_table *pt)
4481 {
4482 	struct mem_cgroup_event *event =
4483 		container_of(pt, struct mem_cgroup_event, pt);
4484 
4485 	event->wqh = wqh;
4486 	add_wait_queue(wqh, &event->wait);
4487 }
4488 
4489 /*
4490  * DO NOT USE IN NEW FILES.
4491  *
4492  * Parse input and register new cgroup event handler.
4493  *
4494  * Input must be in format '<event_fd> <control_fd> <args>'.
4495  * Interpretation of args is defined by control file implementation.
4496  */
4497 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4498 					 char *buf, size_t nbytes, loff_t off)
4499 {
4500 	struct cgroup_subsys_state *css = of_css(of);
4501 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4502 	struct mem_cgroup_event *event;
4503 	struct cgroup_subsys_state *cfile_css;
4504 	unsigned int efd, cfd;
4505 	struct fd efile;
4506 	struct fd cfile;
4507 	const char *name;
4508 	char *endp;
4509 	int ret;
4510 
4511 	buf = strstrip(buf);
4512 
4513 	efd = simple_strtoul(buf, &endp, 10);
4514 	if (*endp != ' ')
4515 		return -EINVAL;
4516 	buf = endp + 1;
4517 
4518 	cfd = simple_strtoul(buf, &endp, 10);
4519 	if ((*endp != ' ') && (*endp != '\0'))
4520 		return -EINVAL;
4521 	buf = endp + 1;
4522 
4523 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4524 	if (!event)
4525 		return -ENOMEM;
4526 
4527 	event->memcg = memcg;
4528 	INIT_LIST_HEAD(&event->list);
4529 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4530 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4531 	INIT_WORK(&event->remove, memcg_event_remove);
4532 
4533 	efile = fdget(efd);
4534 	if (!efile.file) {
4535 		ret = -EBADF;
4536 		goto out_kfree;
4537 	}
4538 
4539 	event->eventfd = eventfd_ctx_fileget(efile.file);
4540 	if (IS_ERR(event->eventfd)) {
4541 		ret = PTR_ERR(event->eventfd);
4542 		goto out_put_efile;
4543 	}
4544 
4545 	cfile = fdget(cfd);
4546 	if (!cfile.file) {
4547 		ret = -EBADF;
4548 		goto out_put_eventfd;
4549 	}
4550 
4551 	/* the process need read permission on control file */
4552 	/* AV: shouldn't we check that it's been opened for read instead? */
4553 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4554 	if (ret < 0)
4555 		goto out_put_cfile;
4556 
4557 	/*
4558 	 * Determine the event callbacks and set them in @event.  This used
4559 	 * to be done via struct cftype but cgroup core no longer knows
4560 	 * about these events.  The following is crude but the whole thing
4561 	 * is for compatibility anyway.
4562 	 *
4563 	 * DO NOT ADD NEW FILES.
4564 	 */
4565 	name = cfile.file->f_path.dentry->d_name.name;
4566 
4567 	if (!strcmp(name, "memory.usage_in_bytes")) {
4568 		event->register_event = mem_cgroup_usage_register_event;
4569 		event->unregister_event = mem_cgroup_usage_unregister_event;
4570 	} else if (!strcmp(name, "memory.oom_control")) {
4571 		event->register_event = mem_cgroup_oom_register_event;
4572 		event->unregister_event = mem_cgroup_oom_unregister_event;
4573 	} else if (!strcmp(name, "memory.pressure_level")) {
4574 		event->register_event = vmpressure_register_event;
4575 		event->unregister_event = vmpressure_unregister_event;
4576 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4577 		event->register_event = memsw_cgroup_usage_register_event;
4578 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4579 	} else {
4580 		ret = -EINVAL;
4581 		goto out_put_cfile;
4582 	}
4583 
4584 	/*
4585 	 * Verify @cfile should belong to @css.  Also, remaining events are
4586 	 * automatically removed on cgroup destruction but the removal is
4587 	 * asynchronous, so take an extra ref on @css.
4588 	 */
4589 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4590 					       &memory_cgrp_subsys);
4591 	ret = -EINVAL;
4592 	if (IS_ERR(cfile_css))
4593 		goto out_put_cfile;
4594 	if (cfile_css != css) {
4595 		css_put(cfile_css);
4596 		goto out_put_cfile;
4597 	}
4598 
4599 	ret = event->register_event(memcg, event->eventfd, buf);
4600 	if (ret)
4601 		goto out_put_css;
4602 
4603 	vfs_poll(efile.file, &event->pt);
4604 
4605 	spin_lock(&memcg->event_list_lock);
4606 	list_add(&event->list, &memcg->event_list);
4607 	spin_unlock(&memcg->event_list_lock);
4608 
4609 	fdput(cfile);
4610 	fdput(efile);
4611 
4612 	return nbytes;
4613 
4614 out_put_css:
4615 	css_put(css);
4616 out_put_cfile:
4617 	fdput(cfile);
4618 out_put_eventfd:
4619 	eventfd_ctx_put(event->eventfd);
4620 out_put_efile:
4621 	fdput(efile);
4622 out_kfree:
4623 	kfree(event);
4624 
4625 	return ret;
4626 }
4627 
4628 static struct cftype mem_cgroup_legacy_files[] = {
4629 	{
4630 		.name = "usage_in_bytes",
4631 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4632 		.read_u64 = mem_cgroup_read_u64,
4633 	},
4634 	{
4635 		.name = "max_usage_in_bytes",
4636 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4637 		.write = mem_cgroup_reset,
4638 		.read_u64 = mem_cgroup_read_u64,
4639 	},
4640 	{
4641 		.name = "limit_in_bytes",
4642 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4643 		.write = mem_cgroup_write,
4644 		.read_u64 = mem_cgroup_read_u64,
4645 	},
4646 	{
4647 		.name = "soft_limit_in_bytes",
4648 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4649 		.write = mem_cgroup_write,
4650 		.read_u64 = mem_cgroup_read_u64,
4651 	},
4652 	{
4653 		.name = "failcnt",
4654 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4655 		.write = mem_cgroup_reset,
4656 		.read_u64 = mem_cgroup_read_u64,
4657 	},
4658 	{
4659 		.name = "stat",
4660 		.seq_show = memcg_stat_show,
4661 	},
4662 	{
4663 		.name = "force_empty",
4664 		.write = mem_cgroup_force_empty_write,
4665 	},
4666 	{
4667 		.name = "use_hierarchy",
4668 		.write_u64 = mem_cgroup_hierarchy_write,
4669 		.read_u64 = mem_cgroup_hierarchy_read,
4670 	},
4671 	{
4672 		.name = "cgroup.event_control",		/* XXX: for compat */
4673 		.write = memcg_write_event_control,
4674 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4675 	},
4676 	{
4677 		.name = "swappiness",
4678 		.read_u64 = mem_cgroup_swappiness_read,
4679 		.write_u64 = mem_cgroup_swappiness_write,
4680 	},
4681 	{
4682 		.name = "move_charge_at_immigrate",
4683 		.read_u64 = mem_cgroup_move_charge_read,
4684 		.write_u64 = mem_cgroup_move_charge_write,
4685 	},
4686 	{
4687 		.name = "oom_control",
4688 		.seq_show = mem_cgroup_oom_control_read,
4689 		.write_u64 = mem_cgroup_oom_control_write,
4690 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4691 	},
4692 	{
4693 		.name = "pressure_level",
4694 	},
4695 #ifdef CONFIG_NUMA
4696 	{
4697 		.name = "numa_stat",
4698 		.seq_show = memcg_numa_stat_show,
4699 	},
4700 #endif
4701 	{
4702 		.name = "kmem.limit_in_bytes",
4703 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4704 		.write = mem_cgroup_write,
4705 		.read_u64 = mem_cgroup_read_u64,
4706 	},
4707 	{
4708 		.name = "kmem.usage_in_bytes",
4709 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4710 		.read_u64 = mem_cgroup_read_u64,
4711 	},
4712 	{
4713 		.name = "kmem.failcnt",
4714 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4715 		.write = mem_cgroup_reset,
4716 		.read_u64 = mem_cgroup_read_u64,
4717 	},
4718 	{
4719 		.name = "kmem.max_usage_in_bytes",
4720 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4721 		.write = mem_cgroup_reset,
4722 		.read_u64 = mem_cgroup_read_u64,
4723 	},
4724 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4725 	{
4726 		.name = "kmem.slabinfo",
4727 		.seq_start = memcg_slab_start,
4728 		.seq_next = memcg_slab_next,
4729 		.seq_stop = memcg_slab_stop,
4730 		.seq_show = memcg_slab_show,
4731 	},
4732 #endif
4733 	{
4734 		.name = "kmem.tcp.limit_in_bytes",
4735 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4736 		.write = mem_cgroup_write,
4737 		.read_u64 = mem_cgroup_read_u64,
4738 	},
4739 	{
4740 		.name = "kmem.tcp.usage_in_bytes",
4741 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4742 		.read_u64 = mem_cgroup_read_u64,
4743 	},
4744 	{
4745 		.name = "kmem.tcp.failcnt",
4746 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4747 		.write = mem_cgroup_reset,
4748 		.read_u64 = mem_cgroup_read_u64,
4749 	},
4750 	{
4751 		.name = "kmem.tcp.max_usage_in_bytes",
4752 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4753 		.write = mem_cgroup_reset,
4754 		.read_u64 = mem_cgroup_read_u64,
4755 	},
4756 	{ },	/* terminate */
4757 };
4758 
4759 /*
4760  * Private memory cgroup IDR
4761  *
4762  * Swap-out records and page cache shadow entries need to store memcg
4763  * references in constrained space, so we maintain an ID space that is
4764  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4765  * memory-controlled cgroups to 64k.
4766  *
4767  * However, there usually are many references to the oflline CSS after
4768  * the cgroup has been destroyed, such as page cache or reclaimable
4769  * slab objects, that don't need to hang on to the ID. We want to keep
4770  * those dead CSS from occupying IDs, or we might quickly exhaust the
4771  * relatively small ID space and prevent the creation of new cgroups
4772  * even when there are much fewer than 64k cgroups - possibly none.
4773  *
4774  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4775  * be freed and recycled when it's no longer needed, which is usually
4776  * when the CSS is offlined.
4777  *
4778  * The only exception to that are records of swapped out tmpfs/shmem
4779  * pages that need to be attributed to live ancestors on swapin. But
4780  * those references are manageable from userspace.
4781  */
4782 
4783 static DEFINE_IDR(mem_cgroup_idr);
4784 
4785 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4786 {
4787 	if (memcg->id.id > 0) {
4788 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4789 		memcg->id.id = 0;
4790 	}
4791 }
4792 
4793 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4794 {
4795 	refcount_add(n, &memcg->id.ref);
4796 }
4797 
4798 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4799 {
4800 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4801 		mem_cgroup_id_remove(memcg);
4802 
4803 		/* Memcg ID pins CSS */
4804 		css_put(&memcg->css);
4805 	}
4806 }
4807 
4808 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4809 {
4810 	mem_cgroup_id_get_many(memcg, 1);
4811 }
4812 
4813 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4814 {
4815 	mem_cgroup_id_put_many(memcg, 1);
4816 }
4817 
4818 /**
4819  * mem_cgroup_from_id - look up a memcg from a memcg id
4820  * @id: the memcg id to look up
4821  *
4822  * Caller must hold rcu_read_lock().
4823  */
4824 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4825 {
4826 	WARN_ON_ONCE(!rcu_read_lock_held());
4827 	return idr_find(&mem_cgroup_idr, id);
4828 }
4829 
4830 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4831 {
4832 	struct mem_cgroup_per_node *pn;
4833 	int tmp = node;
4834 	/*
4835 	 * This routine is called against possible nodes.
4836 	 * But it's BUG to call kmalloc() against offline node.
4837 	 *
4838 	 * TODO: this routine can waste much memory for nodes which will
4839 	 *       never be onlined. It's better to use memory hotplug callback
4840 	 *       function.
4841 	 */
4842 	if (!node_state(node, N_NORMAL_MEMORY))
4843 		tmp = -1;
4844 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4845 	if (!pn)
4846 		return 1;
4847 
4848 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4849 	if (!pn->lruvec_stat_local) {
4850 		kfree(pn);
4851 		return 1;
4852 	}
4853 
4854 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4855 	if (!pn->lruvec_stat_cpu) {
4856 		free_percpu(pn->lruvec_stat_local);
4857 		kfree(pn);
4858 		return 1;
4859 	}
4860 
4861 	lruvec_init(&pn->lruvec);
4862 	pn->usage_in_excess = 0;
4863 	pn->on_tree = false;
4864 	pn->memcg = memcg;
4865 
4866 	memcg->nodeinfo[node] = pn;
4867 	return 0;
4868 }
4869 
4870 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4871 {
4872 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4873 
4874 	if (!pn)
4875 		return;
4876 
4877 	free_percpu(pn->lruvec_stat_cpu);
4878 	free_percpu(pn->lruvec_stat_local);
4879 	kfree(pn);
4880 }
4881 
4882 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4883 {
4884 	int node;
4885 
4886 	/*
4887 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4888 	 * on parent's and all ancestor levels.
4889 	 */
4890 	memcg_flush_percpu_vmstats(memcg, false);
4891 	memcg_flush_percpu_vmevents(memcg);
4892 	for_each_node(node)
4893 		free_mem_cgroup_per_node_info(memcg, node);
4894 	free_percpu(memcg->vmstats_percpu);
4895 	free_percpu(memcg->vmstats_local);
4896 	kfree(memcg);
4897 }
4898 
4899 static void mem_cgroup_free(struct mem_cgroup *memcg)
4900 {
4901 	memcg_wb_domain_exit(memcg);
4902 	__mem_cgroup_free(memcg);
4903 }
4904 
4905 static struct mem_cgroup *mem_cgroup_alloc(void)
4906 {
4907 	struct mem_cgroup *memcg;
4908 	unsigned int size;
4909 	int node;
4910 	int __maybe_unused i;
4911 
4912 	size = sizeof(struct mem_cgroup);
4913 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4914 
4915 	memcg = kzalloc(size, GFP_KERNEL);
4916 	if (!memcg)
4917 		return NULL;
4918 
4919 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4920 				 1, MEM_CGROUP_ID_MAX,
4921 				 GFP_KERNEL);
4922 	if (memcg->id.id < 0)
4923 		goto fail;
4924 
4925 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4926 	if (!memcg->vmstats_local)
4927 		goto fail;
4928 
4929 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4930 	if (!memcg->vmstats_percpu)
4931 		goto fail;
4932 
4933 	for_each_node(node)
4934 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4935 			goto fail;
4936 
4937 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4938 		goto fail;
4939 
4940 	INIT_WORK(&memcg->high_work, high_work_func);
4941 	memcg->last_scanned_node = MAX_NUMNODES;
4942 	INIT_LIST_HEAD(&memcg->oom_notify);
4943 	mutex_init(&memcg->thresholds_lock);
4944 	spin_lock_init(&memcg->move_lock);
4945 	vmpressure_init(&memcg->vmpressure);
4946 	INIT_LIST_HEAD(&memcg->event_list);
4947 	spin_lock_init(&memcg->event_list_lock);
4948 	memcg->socket_pressure = jiffies;
4949 #ifdef CONFIG_MEMCG_KMEM
4950 	memcg->kmemcg_id = -1;
4951 #endif
4952 #ifdef CONFIG_CGROUP_WRITEBACK
4953 	INIT_LIST_HEAD(&memcg->cgwb_list);
4954 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4955 		memcg->cgwb_frn[i].done =
4956 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4957 #endif
4958 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4959 	return memcg;
4960 fail:
4961 	mem_cgroup_id_remove(memcg);
4962 	__mem_cgroup_free(memcg);
4963 	return NULL;
4964 }
4965 
4966 static struct cgroup_subsys_state * __ref
4967 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4968 {
4969 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4970 	struct mem_cgroup *memcg;
4971 	long error = -ENOMEM;
4972 
4973 	memcg = mem_cgroup_alloc();
4974 	if (!memcg)
4975 		return ERR_PTR(error);
4976 
4977 	memcg->high = PAGE_COUNTER_MAX;
4978 	memcg->soft_limit = PAGE_COUNTER_MAX;
4979 	if (parent) {
4980 		memcg->swappiness = mem_cgroup_swappiness(parent);
4981 		memcg->oom_kill_disable = parent->oom_kill_disable;
4982 	}
4983 	if (parent && parent->use_hierarchy) {
4984 		memcg->use_hierarchy = true;
4985 		page_counter_init(&memcg->memory, &parent->memory);
4986 		page_counter_init(&memcg->swap, &parent->swap);
4987 		page_counter_init(&memcg->memsw, &parent->memsw);
4988 		page_counter_init(&memcg->kmem, &parent->kmem);
4989 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4990 	} else {
4991 		page_counter_init(&memcg->memory, NULL);
4992 		page_counter_init(&memcg->swap, NULL);
4993 		page_counter_init(&memcg->memsw, NULL);
4994 		page_counter_init(&memcg->kmem, NULL);
4995 		page_counter_init(&memcg->tcpmem, NULL);
4996 		/*
4997 		 * Deeper hierachy with use_hierarchy == false doesn't make
4998 		 * much sense so let cgroup subsystem know about this
4999 		 * unfortunate state in our controller.
5000 		 */
5001 		if (parent != root_mem_cgroup)
5002 			memory_cgrp_subsys.broken_hierarchy = true;
5003 	}
5004 
5005 	/* The following stuff does not apply to the root */
5006 	if (!parent) {
5007 #ifdef CONFIG_MEMCG_KMEM
5008 		INIT_LIST_HEAD(&memcg->kmem_caches);
5009 #endif
5010 		root_mem_cgroup = memcg;
5011 		return &memcg->css;
5012 	}
5013 
5014 	error = memcg_online_kmem(memcg);
5015 	if (error)
5016 		goto fail;
5017 
5018 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5019 		static_branch_inc(&memcg_sockets_enabled_key);
5020 
5021 	return &memcg->css;
5022 fail:
5023 	mem_cgroup_id_remove(memcg);
5024 	mem_cgroup_free(memcg);
5025 	return ERR_PTR(-ENOMEM);
5026 }
5027 
5028 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5029 {
5030 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5031 
5032 	/*
5033 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5034 	 * by the time the maps are allocated. So, we allocate maps
5035 	 * here, when for_each_mem_cgroup() can't skip it.
5036 	 */
5037 	if (memcg_alloc_shrinker_maps(memcg)) {
5038 		mem_cgroup_id_remove(memcg);
5039 		return -ENOMEM;
5040 	}
5041 
5042 	/* Online state pins memcg ID, memcg ID pins CSS */
5043 	refcount_set(&memcg->id.ref, 1);
5044 	css_get(css);
5045 	return 0;
5046 }
5047 
5048 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5049 {
5050 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5051 	struct mem_cgroup_event *event, *tmp;
5052 
5053 	/*
5054 	 * Unregister events and notify userspace.
5055 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5056 	 * directory to avoid race between userspace and kernelspace.
5057 	 */
5058 	spin_lock(&memcg->event_list_lock);
5059 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5060 		list_del_init(&event->list);
5061 		schedule_work(&event->remove);
5062 	}
5063 	spin_unlock(&memcg->event_list_lock);
5064 
5065 	page_counter_set_min(&memcg->memory, 0);
5066 	page_counter_set_low(&memcg->memory, 0);
5067 
5068 	memcg_offline_kmem(memcg);
5069 	wb_memcg_offline(memcg);
5070 
5071 	drain_all_stock(memcg);
5072 
5073 	mem_cgroup_id_put(memcg);
5074 }
5075 
5076 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5077 {
5078 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5079 
5080 	invalidate_reclaim_iterators(memcg);
5081 }
5082 
5083 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5084 {
5085 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5086 	int __maybe_unused i;
5087 
5088 #ifdef CONFIG_CGROUP_WRITEBACK
5089 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5090 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5091 #endif
5092 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5093 		static_branch_dec(&memcg_sockets_enabled_key);
5094 
5095 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5096 		static_branch_dec(&memcg_sockets_enabled_key);
5097 
5098 	vmpressure_cleanup(&memcg->vmpressure);
5099 	cancel_work_sync(&memcg->high_work);
5100 	mem_cgroup_remove_from_trees(memcg);
5101 	memcg_free_shrinker_maps(memcg);
5102 	memcg_free_kmem(memcg);
5103 	mem_cgroup_free(memcg);
5104 }
5105 
5106 /**
5107  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5108  * @css: the target css
5109  *
5110  * Reset the states of the mem_cgroup associated with @css.  This is
5111  * invoked when the userland requests disabling on the default hierarchy
5112  * but the memcg is pinned through dependency.  The memcg should stop
5113  * applying policies and should revert to the vanilla state as it may be
5114  * made visible again.
5115  *
5116  * The current implementation only resets the essential configurations.
5117  * This needs to be expanded to cover all the visible parts.
5118  */
5119 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5120 {
5121 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5122 
5123 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5124 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5125 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5126 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5127 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5128 	page_counter_set_min(&memcg->memory, 0);
5129 	page_counter_set_low(&memcg->memory, 0);
5130 	memcg->high = PAGE_COUNTER_MAX;
5131 	memcg->soft_limit = PAGE_COUNTER_MAX;
5132 	memcg_wb_domain_size_changed(memcg);
5133 }
5134 
5135 #ifdef CONFIG_MMU
5136 /* Handlers for move charge at task migration. */
5137 static int mem_cgroup_do_precharge(unsigned long count)
5138 {
5139 	int ret;
5140 
5141 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5142 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5143 	if (!ret) {
5144 		mc.precharge += count;
5145 		return ret;
5146 	}
5147 
5148 	/* Try charges one by one with reclaim, but do not retry */
5149 	while (count--) {
5150 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5151 		if (ret)
5152 			return ret;
5153 		mc.precharge++;
5154 		cond_resched();
5155 	}
5156 	return 0;
5157 }
5158 
5159 union mc_target {
5160 	struct page	*page;
5161 	swp_entry_t	ent;
5162 };
5163 
5164 enum mc_target_type {
5165 	MC_TARGET_NONE = 0,
5166 	MC_TARGET_PAGE,
5167 	MC_TARGET_SWAP,
5168 	MC_TARGET_DEVICE,
5169 };
5170 
5171 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5172 						unsigned long addr, pte_t ptent)
5173 {
5174 	struct page *page = vm_normal_page(vma, addr, ptent);
5175 
5176 	if (!page || !page_mapped(page))
5177 		return NULL;
5178 	if (PageAnon(page)) {
5179 		if (!(mc.flags & MOVE_ANON))
5180 			return NULL;
5181 	} else {
5182 		if (!(mc.flags & MOVE_FILE))
5183 			return NULL;
5184 	}
5185 	if (!get_page_unless_zero(page))
5186 		return NULL;
5187 
5188 	return page;
5189 }
5190 
5191 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5192 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5193 			pte_t ptent, swp_entry_t *entry)
5194 {
5195 	struct page *page = NULL;
5196 	swp_entry_t ent = pte_to_swp_entry(ptent);
5197 
5198 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5199 		return NULL;
5200 
5201 	/*
5202 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5203 	 * a device and because they are not accessible by CPU they are store
5204 	 * as special swap entry in the CPU page table.
5205 	 */
5206 	if (is_device_private_entry(ent)) {
5207 		page = device_private_entry_to_page(ent);
5208 		/*
5209 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5210 		 * a refcount of 1 when free (unlike normal page)
5211 		 */
5212 		if (!page_ref_add_unless(page, 1, 1))
5213 			return NULL;
5214 		return page;
5215 	}
5216 
5217 	/*
5218 	 * Because lookup_swap_cache() updates some statistics counter,
5219 	 * we call find_get_page() with swapper_space directly.
5220 	 */
5221 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5222 	if (do_memsw_account())
5223 		entry->val = ent.val;
5224 
5225 	return page;
5226 }
5227 #else
5228 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5229 			pte_t ptent, swp_entry_t *entry)
5230 {
5231 	return NULL;
5232 }
5233 #endif
5234 
5235 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5236 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5237 {
5238 	struct page *page = NULL;
5239 	struct address_space *mapping;
5240 	pgoff_t pgoff;
5241 
5242 	if (!vma->vm_file) /* anonymous vma */
5243 		return NULL;
5244 	if (!(mc.flags & MOVE_FILE))
5245 		return NULL;
5246 
5247 	mapping = vma->vm_file->f_mapping;
5248 	pgoff = linear_page_index(vma, addr);
5249 
5250 	/* page is moved even if it's not RSS of this task(page-faulted). */
5251 #ifdef CONFIG_SWAP
5252 	/* shmem/tmpfs may report page out on swap: account for that too. */
5253 	if (shmem_mapping(mapping)) {
5254 		page = find_get_entry(mapping, pgoff);
5255 		if (xa_is_value(page)) {
5256 			swp_entry_t swp = radix_to_swp_entry(page);
5257 			if (do_memsw_account())
5258 				*entry = swp;
5259 			page = find_get_page(swap_address_space(swp),
5260 					     swp_offset(swp));
5261 		}
5262 	} else
5263 		page = find_get_page(mapping, pgoff);
5264 #else
5265 	page = find_get_page(mapping, pgoff);
5266 #endif
5267 	return page;
5268 }
5269 
5270 /**
5271  * mem_cgroup_move_account - move account of the page
5272  * @page: the page
5273  * @compound: charge the page as compound or small page
5274  * @from: mem_cgroup which the page is moved from.
5275  * @to:	mem_cgroup which the page is moved to. @from != @to.
5276  *
5277  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5278  *
5279  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5280  * from old cgroup.
5281  */
5282 static int mem_cgroup_move_account(struct page *page,
5283 				   bool compound,
5284 				   struct mem_cgroup *from,
5285 				   struct mem_cgroup *to)
5286 {
5287 	unsigned long flags;
5288 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5289 	int ret;
5290 	bool anon;
5291 
5292 	VM_BUG_ON(from == to);
5293 	VM_BUG_ON_PAGE(PageLRU(page), page);
5294 	VM_BUG_ON(compound && !PageTransHuge(page));
5295 
5296 	/*
5297 	 * Prevent mem_cgroup_migrate() from looking at
5298 	 * page->mem_cgroup of its source page while we change it.
5299 	 */
5300 	ret = -EBUSY;
5301 	if (!trylock_page(page))
5302 		goto out;
5303 
5304 	ret = -EINVAL;
5305 	if (page->mem_cgroup != from)
5306 		goto out_unlock;
5307 
5308 	anon = PageAnon(page);
5309 
5310 	spin_lock_irqsave(&from->move_lock, flags);
5311 
5312 	if (!anon && page_mapped(page)) {
5313 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5314 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5315 	}
5316 
5317 	/*
5318 	 * move_lock grabbed above and caller set from->moving_account, so
5319 	 * mod_memcg_page_state will serialize updates to PageDirty.
5320 	 * So mapping should be stable for dirty pages.
5321 	 */
5322 	if (!anon && PageDirty(page)) {
5323 		struct address_space *mapping = page_mapping(page);
5324 
5325 		if (mapping_cap_account_dirty(mapping)) {
5326 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5327 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5328 		}
5329 	}
5330 
5331 	if (PageWriteback(page)) {
5332 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5333 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5334 	}
5335 
5336 	/*
5337 	 * It is safe to change page->mem_cgroup here because the page
5338 	 * is referenced, charged, and isolated - we can't race with
5339 	 * uncharging, charging, migration, or LRU putback.
5340 	 */
5341 
5342 	/* caller should have done css_get */
5343 	page->mem_cgroup = to;
5344 	spin_unlock_irqrestore(&from->move_lock, flags);
5345 
5346 	ret = 0;
5347 
5348 	local_irq_disable();
5349 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5350 	memcg_check_events(to, page);
5351 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5352 	memcg_check_events(from, page);
5353 	local_irq_enable();
5354 out_unlock:
5355 	unlock_page(page);
5356 out:
5357 	return ret;
5358 }
5359 
5360 /**
5361  * get_mctgt_type - get target type of moving charge
5362  * @vma: the vma the pte to be checked belongs
5363  * @addr: the address corresponding to the pte to be checked
5364  * @ptent: the pte to be checked
5365  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5366  *
5367  * Returns
5368  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5369  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5370  *     move charge. if @target is not NULL, the page is stored in target->page
5371  *     with extra refcnt got(Callers should handle it).
5372  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5373  *     target for charge migration. if @target is not NULL, the entry is stored
5374  *     in target->ent.
5375  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5376  *     (so ZONE_DEVICE page and thus not on the lru).
5377  *     For now we such page is charge like a regular page would be as for all
5378  *     intent and purposes it is just special memory taking the place of a
5379  *     regular page.
5380  *
5381  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5382  *
5383  * Called with pte lock held.
5384  */
5385 
5386 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5387 		unsigned long addr, pte_t ptent, union mc_target *target)
5388 {
5389 	struct page *page = NULL;
5390 	enum mc_target_type ret = MC_TARGET_NONE;
5391 	swp_entry_t ent = { .val = 0 };
5392 
5393 	if (pte_present(ptent))
5394 		page = mc_handle_present_pte(vma, addr, ptent);
5395 	else if (is_swap_pte(ptent))
5396 		page = mc_handle_swap_pte(vma, ptent, &ent);
5397 	else if (pte_none(ptent))
5398 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5399 
5400 	if (!page && !ent.val)
5401 		return ret;
5402 	if (page) {
5403 		/*
5404 		 * Do only loose check w/o serialization.
5405 		 * mem_cgroup_move_account() checks the page is valid or
5406 		 * not under LRU exclusion.
5407 		 */
5408 		if (page->mem_cgroup == mc.from) {
5409 			ret = MC_TARGET_PAGE;
5410 			if (is_device_private_page(page))
5411 				ret = MC_TARGET_DEVICE;
5412 			if (target)
5413 				target->page = page;
5414 		}
5415 		if (!ret || !target)
5416 			put_page(page);
5417 	}
5418 	/*
5419 	 * There is a swap entry and a page doesn't exist or isn't charged.
5420 	 * But we cannot move a tail-page in a THP.
5421 	 */
5422 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5423 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5424 		ret = MC_TARGET_SWAP;
5425 		if (target)
5426 			target->ent = ent;
5427 	}
5428 	return ret;
5429 }
5430 
5431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5432 /*
5433  * We don't consider PMD mapped swapping or file mapped pages because THP does
5434  * not support them for now.
5435  * Caller should make sure that pmd_trans_huge(pmd) is true.
5436  */
5437 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5438 		unsigned long addr, pmd_t pmd, union mc_target *target)
5439 {
5440 	struct page *page = NULL;
5441 	enum mc_target_type ret = MC_TARGET_NONE;
5442 
5443 	if (unlikely(is_swap_pmd(pmd))) {
5444 		VM_BUG_ON(thp_migration_supported() &&
5445 				  !is_pmd_migration_entry(pmd));
5446 		return ret;
5447 	}
5448 	page = pmd_page(pmd);
5449 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5450 	if (!(mc.flags & MOVE_ANON))
5451 		return ret;
5452 	if (page->mem_cgroup == mc.from) {
5453 		ret = MC_TARGET_PAGE;
5454 		if (target) {
5455 			get_page(page);
5456 			target->page = page;
5457 		}
5458 	}
5459 	return ret;
5460 }
5461 #else
5462 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5463 		unsigned long addr, pmd_t pmd, union mc_target *target)
5464 {
5465 	return MC_TARGET_NONE;
5466 }
5467 #endif
5468 
5469 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5470 					unsigned long addr, unsigned long end,
5471 					struct mm_walk *walk)
5472 {
5473 	struct vm_area_struct *vma = walk->vma;
5474 	pte_t *pte;
5475 	spinlock_t *ptl;
5476 
5477 	ptl = pmd_trans_huge_lock(pmd, vma);
5478 	if (ptl) {
5479 		/*
5480 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5481 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5482 		 * this might change.
5483 		 */
5484 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5485 			mc.precharge += HPAGE_PMD_NR;
5486 		spin_unlock(ptl);
5487 		return 0;
5488 	}
5489 
5490 	if (pmd_trans_unstable(pmd))
5491 		return 0;
5492 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5493 	for (; addr != end; pte++, addr += PAGE_SIZE)
5494 		if (get_mctgt_type(vma, addr, *pte, NULL))
5495 			mc.precharge++;	/* increment precharge temporarily */
5496 	pte_unmap_unlock(pte - 1, ptl);
5497 	cond_resched();
5498 
5499 	return 0;
5500 }
5501 
5502 static const struct mm_walk_ops precharge_walk_ops = {
5503 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5504 };
5505 
5506 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5507 {
5508 	unsigned long precharge;
5509 
5510 	down_read(&mm->mmap_sem);
5511 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5512 	up_read(&mm->mmap_sem);
5513 
5514 	precharge = mc.precharge;
5515 	mc.precharge = 0;
5516 
5517 	return precharge;
5518 }
5519 
5520 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5521 {
5522 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5523 
5524 	VM_BUG_ON(mc.moving_task);
5525 	mc.moving_task = current;
5526 	return mem_cgroup_do_precharge(precharge);
5527 }
5528 
5529 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5530 static void __mem_cgroup_clear_mc(void)
5531 {
5532 	struct mem_cgroup *from = mc.from;
5533 	struct mem_cgroup *to = mc.to;
5534 
5535 	/* we must uncharge all the leftover precharges from mc.to */
5536 	if (mc.precharge) {
5537 		cancel_charge(mc.to, mc.precharge);
5538 		mc.precharge = 0;
5539 	}
5540 	/*
5541 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5542 	 * we must uncharge here.
5543 	 */
5544 	if (mc.moved_charge) {
5545 		cancel_charge(mc.from, mc.moved_charge);
5546 		mc.moved_charge = 0;
5547 	}
5548 	/* we must fixup refcnts and charges */
5549 	if (mc.moved_swap) {
5550 		/* uncharge swap account from the old cgroup */
5551 		if (!mem_cgroup_is_root(mc.from))
5552 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5553 
5554 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5555 
5556 		/*
5557 		 * we charged both to->memory and to->memsw, so we
5558 		 * should uncharge to->memory.
5559 		 */
5560 		if (!mem_cgroup_is_root(mc.to))
5561 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5562 
5563 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5564 		css_put_many(&mc.to->css, mc.moved_swap);
5565 
5566 		mc.moved_swap = 0;
5567 	}
5568 	memcg_oom_recover(from);
5569 	memcg_oom_recover(to);
5570 	wake_up_all(&mc.waitq);
5571 }
5572 
5573 static void mem_cgroup_clear_mc(void)
5574 {
5575 	struct mm_struct *mm = mc.mm;
5576 
5577 	/*
5578 	 * we must clear moving_task before waking up waiters at the end of
5579 	 * task migration.
5580 	 */
5581 	mc.moving_task = NULL;
5582 	__mem_cgroup_clear_mc();
5583 	spin_lock(&mc.lock);
5584 	mc.from = NULL;
5585 	mc.to = NULL;
5586 	mc.mm = NULL;
5587 	spin_unlock(&mc.lock);
5588 
5589 	mmput(mm);
5590 }
5591 
5592 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5593 {
5594 	struct cgroup_subsys_state *css;
5595 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5596 	struct mem_cgroup *from;
5597 	struct task_struct *leader, *p;
5598 	struct mm_struct *mm;
5599 	unsigned long move_flags;
5600 	int ret = 0;
5601 
5602 	/* charge immigration isn't supported on the default hierarchy */
5603 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5604 		return 0;
5605 
5606 	/*
5607 	 * Multi-process migrations only happen on the default hierarchy
5608 	 * where charge immigration is not used.  Perform charge
5609 	 * immigration if @tset contains a leader and whine if there are
5610 	 * multiple.
5611 	 */
5612 	p = NULL;
5613 	cgroup_taskset_for_each_leader(leader, css, tset) {
5614 		WARN_ON_ONCE(p);
5615 		p = leader;
5616 		memcg = mem_cgroup_from_css(css);
5617 	}
5618 	if (!p)
5619 		return 0;
5620 
5621 	/*
5622 	 * We are now commited to this value whatever it is. Changes in this
5623 	 * tunable will only affect upcoming migrations, not the current one.
5624 	 * So we need to save it, and keep it going.
5625 	 */
5626 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5627 	if (!move_flags)
5628 		return 0;
5629 
5630 	from = mem_cgroup_from_task(p);
5631 
5632 	VM_BUG_ON(from == memcg);
5633 
5634 	mm = get_task_mm(p);
5635 	if (!mm)
5636 		return 0;
5637 	/* We move charges only when we move a owner of the mm */
5638 	if (mm->owner == p) {
5639 		VM_BUG_ON(mc.from);
5640 		VM_BUG_ON(mc.to);
5641 		VM_BUG_ON(mc.precharge);
5642 		VM_BUG_ON(mc.moved_charge);
5643 		VM_BUG_ON(mc.moved_swap);
5644 
5645 		spin_lock(&mc.lock);
5646 		mc.mm = mm;
5647 		mc.from = from;
5648 		mc.to = memcg;
5649 		mc.flags = move_flags;
5650 		spin_unlock(&mc.lock);
5651 		/* We set mc.moving_task later */
5652 
5653 		ret = mem_cgroup_precharge_mc(mm);
5654 		if (ret)
5655 			mem_cgroup_clear_mc();
5656 	} else {
5657 		mmput(mm);
5658 	}
5659 	return ret;
5660 }
5661 
5662 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5663 {
5664 	if (mc.to)
5665 		mem_cgroup_clear_mc();
5666 }
5667 
5668 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5669 				unsigned long addr, unsigned long end,
5670 				struct mm_walk *walk)
5671 {
5672 	int ret = 0;
5673 	struct vm_area_struct *vma = walk->vma;
5674 	pte_t *pte;
5675 	spinlock_t *ptl;
5676 	enum mc_target_type target_type;
5677 	union mc_target target;
5678 	struct page *page;
5679 
5680 	ptl = pmd_trans_huge_lock(pmd, vma);
5681 	if (ptl) {
5682 		if (mc.precharge < HPAGE_PMD_NR) {
5683 			spin_unlock(ptl);
5684 			return 0;
5685 		}
5686 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5687 		if (target_type == MC_TARGET_PAGE) {
5688 			page = target.page;
5689 			if (!isolate_lru_page(page)) {
5690 				if (!mem_cgroup_move_account(page, true,
5691 							     mc.from, mc.to)) {
5692 					mc.precharge -= HPAGE_PMD_NR;
5693 					mc.moved_charge += HPAGE_PMD_NR;
5694 				}
5695 				putback_lru_page(page);
5696 			}
5697 			put_page(page);
5698 		} else if (target_type == MC_TARGET_DEVICE) {
5699 			page = target.page;
5700 			if (!mem_cgroup_move_account(page, true,
5701 						     mc.from, mc.to)) {
5702 				mc.precharge -= HPAGE_PMD_NR;
5703 				mc.moved_charge += HPAGE_PMD_NR;
5704 			}
5705 			put_page(page);
5706 		}
5707 		spin_unlock(ptl);
5708 		return 0;
5709 	}
5710 
5711 	if (pmd_trans_unstable(pmd))
5712 		return 0;
5713 retry:
5714 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5715 	for (; addr != end; addr += PAGE_SIZE) {
5716 		pte_t ptent = *(pte++);
5717 		bool device = false;
5718 		swp_entry_t ent;
5719 
5720 		if (!mc.precharge)
5721 			break;
5722 
5723 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5724 		case MC_TARGET_DEVICE:
5725 			device = true;
5726 			/* fall through */
5727 		case MC_TARGET_PAGE:
5728 			page = target.page;
5729 			/*
5730 			 * We can have a part of the split pmd here. Moving it
5731 			 * can be done but it would be too convoluted so simply
5732 			 * ignore such a partial THP and keep it in original
5733 			 * memcg. There should be somebody mapping the head.
5734 			 */
5735 			if (PageTransCompound(page))
5736 				goto put;
5737 			if (!device && isolate_lru_page(page))
5738 				goto put;
5739 			if (!mem_cgroup_move_account(page, false,
5740 						mc.from, mc.to)) {
5741 				mc.precharge--;
5742 				/* we uncharge from mc.from later. */
5743 				mc.moved_charge++;
5744 			}
5745 			if (!device)
5746 				putback_lru_page(page);
5747 put:			/* get_mctgt_type() gets the page */
5748 			put_page(page);
5749 			break;
5750 		case MC_TARGET_SWAP:
5751 			ent = target.ent;
5752 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5753 				mc.precharge--;
5754 				/* we fixup refcnts and charges later. */
5755 				mc.moved_swap++;
5756 			}
5757 			break;
5758 		default:
5759 			break;
5760 		}
5761 	}
5762 	pte_unmap_unlock(pte - 1, ptl);
5763 	cond_resched();
5764 
5765 	if (addr != end) {
5766 		/*
5767 		 * We have consumed all precharges we got in can_attach().
5768 		 * We try charge one by one, but don't do any additional
5769 		 * charges to mc.to if we have failed in charge once in attach()
5770 		 * phase.
5771 		 */
5772 		ret = mem_cgroup_do_precharge(1);
5773 		if (!ret)
5774 			goto retry;
5775 	}
5776 
5777 	return ret;
5778 }
5779 
5780 static const struct mm_walk_ops charge_walk_ops = {
5781 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5782 };
5783 
5784 static void mem_cgroup_move_charge(void)
5785 {
5786 	lru_add_drain_all();
5787 	/*
5788 	 * Signal lock_page_memcg() to take the memcg's move_lock
5789 	 * while we're moving its pages to another memcg. Then wait
5790 	 * for already started RCU-only updates to finish.
5791 	 */
5792 	atomic_inc(&mc.from->moving_account);
5793 	synchronize_rcu();
5794 retry:
5795 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5796 		/*
5797 		 * Someone who are holding the mmap_sem might be waiting in
5798 		 * waitq. So we cancel all extra charges, wake up all waiters,
5799 		 * and retry. Because we cancel precharges, we might not be able
5800 		 * to move enough charges, but moving charge is a best-effort
5801 		 * feature anyway, so it wouldn't be a big problem.
5802 		 */
5803 		__mem_cgroup_clear_mc();
5804 		cond_resched();
5805 		goto retry;
5806 	}
5807 	/*
5808 	 * When we have consumed all precharges and failed in doing
5809 	 * additional charge, the page walk just aborts.
5810 	 */
5811 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5812 			NULL);
5813 
5814 	up_read(&mc.mm->mmap_sem);
5815 	atomic_dec(&mc.from->moving_account);
5816 }
5817 
5818 static void mem_cgroup_move_task(void)
5819 {
5820 	if (mc.to) {
5821 		mem_cgroup_move_charge();
5822 		mem_cgroup_clear_mc();
5823 	}
5824 }
5825 #else	/* !CONFIG_MMU */
5826 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5827 {
5828 	return 0;
5829 }
5830 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5831 {
5832 }
5833 static void mem_cgroup_move_task(void)
5834 {
5835 }
5836 #endif
5837 
5838 /*
5839  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5840  * to verify whether we're attached to the default hierarchy on each mount
5841  * attempt.
5842  */
5843 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5844 {
5845 	/*
5846 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5847 	 * guarantees that @root doesn't have any children, so turning it
5848 	 * on for the root memcg is enough.
5849 	 */
5850 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5851 		root_mem_cgroup->use_hierarchy = true;
5852 	else
5853 		root_mem_cgroup->use_hierarchy = false;
5854 }
5855 
5856 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5857 {
5858 	if (value == PAGE_COUNTER_MAX)
5859 		seq_puts(m, "max\n");
5860 	else
5861 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5862 
5863 	return 0;
5864 }
5865 
5866 static u64 memory_current_read(struct cgroup_subsys_state *css,
5867 			       struct cftype *cft)
5868 {
5869 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5870 
5871 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5872 }
5873 
5874 static int memory_min_show(struct seq_file *m, void *v)
5875 {
5876 	return seq_puts_memcg_tunable(m,
5877 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5878 }
5879 
5880 static ssize_t memory_min_write(struct kernfs_open_file *of,
5881 				char *buf, size_t nbytes, loff_t off)
5882 {
5883 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5884 	unsigned long min;
5885 	int err;
5886 
5887 	buf = strstrip(buf);
5888 	err = page_counter_memparse(buf, "max", &min);
5889 	if (err)
5890 		return err;
5891 
5892 	page_counter_set_min(&memcg->memory, min);
5893 
5894 	return nbytes;
5895 }
5896 
5897 static int memory_low_show(struct seq_file *m, void *v)
5898 {
5899 	return seq_puts_memcg_tunable(m,
5900 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5901 }
5902 
5903 static ssize_t memory_low_write(struct kernfs_open_file *of,
5904 				char *buf, size_t nbytes, loff_t off)
5905 {
5906 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5907 	unsigned long low;
5908 	int err;
5909 
5910 	buf = strstrip(buf);
5911 	err = page_counter_memparse(buf, "max", &low);
5912 	if (err)
5913 		return err;
5914 
5915 	page_counter_set_low(&memcg->memory, low);
5916 
5917 	return nbytes;
5918 }
5919 
5920 static int memory_high_show(struct seq_file *m, void *v)
5921 {
5922 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5923 }
5924 
5925 static ssize_t memory_high_write(struct kernfs_open_file *of,
5926 				 char *buf, size_t nbytes, loff_t off)
5927 {
5928 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5929 	unsigned long nr_pages;
5930 	unsigned long high;
5931 	int err;
5932 
5933 	buf = strstrip(buf);
5934 	err = page_counter_memparse(buf, "max", &high);
5935 	if (err)
5936 		return err;
5937 
5938 	memcg->high = high;
5939 
5940 	nr_pages = page_counter_read(&memcg->memory);
5941 	if (nr_pages > high)
5942 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5943 					     GFP_KERNEL, true);
5944 
5945 	memcg_wb_domain_size_changed(memcg);
5946 	return nbytes;
5947 }
5948 
5949 static int memory_max_show(struct seq_file *m, void *v)
5950 {
5951 	return seq_puts_memcg_tunable(m,
5952 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5953 }
5954 
5955 static ssize_t memory_max_write(struct kernfs_open_file *of,
5956 				char *buf, size_t nbytes, loff_t off)
5957 {
5958 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5959 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5960 	bool drained = false;
5961 	unsigned long max;
5962 	int err;
5963 
5964 	buf = strstrip(buf);
5965 	err = page_counter_memparse(buf, "max", &max);
5966 	if (err)
5967 		return err;
5968 
5969 	xchg(&memcg->memory.max, max);
5970 
5971 	for (;;) {
5972 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5973 
5974 		if (nr_pages <= max)
5975 			break;
5976 
5977 		if (signal_pending(current)) {
5978 			err = -EINTR;
5979 			break;
5980 		}
5981 
5982 		if (!drained) {
5983 			drain_all_stock(memcg);
5984 			drained = true;
5985 			continue;
5986 		}
5987 
5988 		if (nr_reclaims) {
5989 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5990 							  GFP_KERNEL, true))
5991 				nr_reclaims--;
5992 			continue;
5993 		}
5994 
5995 		memcg_memory_event(memcg, MEMCG_OOM);
5996 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5997 			break;
5998 	}
5999 
6000 	memcg_wb_domain_size_changed(memcg);
6001 	return nbytes;
6002 }
6003 
6004 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6005 {
6006 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6007 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6008 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6009 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6010 	seq_printf(m, "oom_kill %lu\n",
6011 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6012 }
6013 
6014 static int memory_events_show(struct seq_file *m, void *v)
6015 {
6016 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6017 
6018 	__memory_events_show(m, memcg->memory_events);
6019 	return 0;
6020 }
6021 
6022 static int memory_events_local_show(struct seq_file *m, void *v)
6023 {
6024 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6025 
6026 	__memory_events_show(m, memcg->memory_events_local);
6027 	return 0;
6028 }
6029 
6030 static int memory_stat_show(struct seq_file *m, void *v)
6031 {
6032 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6033 	char *buf;
6034 
6035 	buf = memory_stat_format(memcg);
6036 	if (!buf)
6037 		return -ENOMEM;
6038 	seq_puts(m, buf);
6039 	kfree(buf);
6040 	return 0;
6041 }
6042 
6043 static int memory_oom_group_show(struct seq_file *m, void *v)
6044 {
6045 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6046 
6047 	seq_printf(m, "%d\n", memcg->oom_group);
6048 
6049 	return 0;
6050 }
6051 
6052 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6053 				      char *buf, size_t nbytes, loff_t off)
6054 {
6055 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6056 	int ret, oom_group;
6057 
6058 	buf = strstrip(buf);
6059 	if (!buf)
6060 		return -EINVAL;
6061 
6062 	ret = kstrtoint(buf, 0, &oom_group);
6063 	if (ret)
6064 		return ret;
6065 
6066 	if (oom_group != 0 && oom_group != 1)
6067 		return -EINVAL;
6068 
6069 	memcg->oom_group = oom_group;
6070 
6071 	return nbytes;
6072 }
6073 
6074 static struct cftype memory_files[] = {
6075 	{
6076 		.name = "current",
6077 		.flags = CFTYPE_NOT_ON_ROOT,
6078 		.read_u64 = memory_current_read,
6079 	},
6080 	{
6081 		.name = "min",
6082 		.flags = CFTYPE_NOT_ON_ROOT,
6083 		.seq_show = memory_min_show,
6084 		.write = memory_min_write,
6085 	},
6086 	{
6087 		.name = "low",
6088 		.flags = CFTYPE_NOT_ON_ROOT,
6089 		.seq_show = memory_low_show,
6090 		.write = memory_low_write,
6091 	},
6092 	{
6093 		.name = "high",
6094 		.flags = CFTYPE_NOT_ON_ROOT,
6095 		.seq_show = memory_high_show,
6096 		.write = memory_high_write,
6097 	},
6098 	{
6099 		.name = "max",
6100 		.flags = CFTYPE_NOT_ON_ROOT,
6101 		.seq_show = memory_max_show,
6102 		.write = memory_max_write,
6103 	},
6104 	{
6105 		.name = "events",
6106 		.flags = CFTYPE_NOT_ON_ROOT,
6107 		.file_offset = offsetof(struct mem_cgroup, events_file),
6108 		.seq_show = memory_events_show,
6109 	},
6110 	{
6111 		.name = "events.local",
6112 		.flags = CFTYPE_NOT_ON_ROOT,
6113 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6114 		.seq_show = memory_events_local_show,
6115 	},
6116 	{
6117 		.name = "stat",
6118 		.flags = CFTYPE_NOT_ON_ROOT,
6119 		.seq_show = memory_stat_show,
6120 	},
6121 	{
6122 		.name = "oom.group",
6123 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6124 		.seq_show = memory_oom_group_show,
6125 		.write = memory_oom_group_write,
6126 	},
6127 	{ }	/* terminate */
6128 };
6129 
6130 struct cgroup_subsys memory_cgrp_subsys = {
6131 	.css_alloc = mem_cgroup_css_alloc,
6132 	.css_online = mem_cgroup_css_online,
6133 	.css_offline = mem_cgroup_css_offline,
6134 	.css_released = mem_cgroup_css_released,
6135 	.css_free = mem_cgroup_css_free,
6136 	.css_reset = mem_cgroup_css_reset,
6137 	.can_attach = mem_cgroup_can_attach,
6138 	.cancel_attach = mem_cgroup_cancel_attach,
6139 	.post_attach = mem_cgroup_move_task,
6140 	.bind = mem_cgroup_bind,
6141 	.dfl_cftypes = memory_files,
6142 	.legacy_cftypes = mem_cgroup_legacy_files,
6143 	.early_init = 0,
6144 };
6145 
6146 /**
6147  * mem_cgroup_protected - check if memory consumption is in the normal range
6148  * @root: the top ancestor of the sub-tree being checked
6149  * @memcg: the memory cgroup to check
6150  *
6151  * WARNING: This function is not stateless! It can only be used as part
6152  *          of a top-down tree iteration, not for isolated queries.
6153  *
6154  * Returns one of the following:
6155  *   MEMCG_PROT_NONE: cgroup memory is not protected
6156  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6157  *     an unprotected supply of reclaimable memory from other cgroups.
6158  *   MEMCG_PROT_MIN: cgroup memory is protected
6159  *
6160  * @root is exclusive; it is never protected when looked at directly
6161  *
6162  * To provide a proper hierarchical behavior, effective memory.min/low values
6163  * are used. Below is the description of how effective memory.low is calculated.
6164  * Effective memory.min values is calculated in the same way.
6165  *
6166  * Effective memory.low is always equal or less than the original memory.low.
6167  * If there is no memory.low overcommittment (which is always true for
6168  * top-level memory cgroups), these two values are equal.
6169  * Otherwise, it's a part of parent's effective memory.low,
6170  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6171  * memory.low usages, where memory.low usage is the size of actually
6172  * protected memory.
6173  *
6174  *                                             low_usage
6175  * elow = min( memory.low, parent->elow * ------------------ ),
6176  *                                        siblings_low_usage
6177  *
6178  *             | memory.current, if memory.current < memory.low
6179  * low_usage = |
6180  *	       | 0, otherwise.
6181  *
6182  *
6183  * Such definition of the effective memory.low provides the expected
6184  * hierarchical behavior: parent's memory.low value is limiting
6185  * children, unprotected memory is reclaimed first and cgroups,
6186  * which are not using their guarantee do not affect actual memory
6187  * distribution.
6188  *
6189  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6190  *
6191  *     A      A/memory.low = 2G, A/memory.current = 6G
6192  *    //\\
6193  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6194  *            C/memory.low = 1G  C/memory.current = 2G
6195  *            D/memory.low = 0   D/memory.current = 2G
6196  *            E/memory.low = 10G E/memory.current = 0
6197  *
6198  * and the memory pressure is applied, the following memory distribution
6199  * is expected (approximately):
6200  *
6201  *     A/memory.current = 2G
6202  *
6203  *     B/memory.current = 1.3G
6204  *     C/memory.current = 0.6G
6205  *     D/memory.current = 0
6206  *     E/memory.current = 0
6207  *
6208  * These calculations require constant tracking of the actual low usages
6209  * (see propagate_protected_usage()), as well as recursive calculation of
6210  * effective memory.low values. But as we do call mem_cgroup_protected()
6211  * path for each memory cgroup top-down from the reclaim,
6212  * it's possible to optimize this part, and save calculated elow
6213  * for next usage. This part is intentionally racy, but it's ok,
6214  * as memory.low is a best-effort mechanism.
6215  */
6216 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6217 						struct mem_cgroup *memcg)
6218 {
6219 	struct mem_cgroup *parent;
6220 	unsigned long emin, parent_emin;
6221 	unsigned long elow, parent_elow;
6222 	unsigned long usage;
6223 
6224 	if (mem_cgroup_disabled())
6225 		return MEMCG_PROT_NONE;
6226 
6227 	if (!root)
6228 		root = root_mem_cgroup;
6229 	if (memcg == root)
6230 		return MEMCG_PROT_NONE;
6231 
6232 	usage = page_counter_read(&memcg->memory);
6233 	if (!usage)
6234 		return MEMCG_PROT_NONE;
6235 
6236 	emin = memcg->memory.min;
6237 	elow = memcg->memory.low;
6238 
6239 	parent = parent_mem_cgroup(memcg);
6240 	/* No parent means a non-hierarchical mode on v1 memcg */
6241 	if (!parent)
6242 		return MEMCG_PROT_NONE;
6243 
6244 	if (parent == root)
6245 		goto exit;
6246 
6247 	parent_emin = READ_ONCE(parent->memory.emin);
6248 	emin = min(emin, parent_emin);
6249 	if (emin && parent_emin) {
6250 		unsigned long min_usage, siblings_min_usage;
6251 
6252 		min_usage = min(usage, memcg->memory.min);
6253 		siblings_min_usage = atomic_long_read(
6254 			&parent->memory.children_min_usage);
6255 
6256 		if (min_usage && siblings_min_usage)
6257 			emin = min(emin, parent_emin * min_usage /
6258 				   siblings_min_usage);
6259 	}
6260 
6261 	parent_elow = READ_ONCE(parent->memory.elow);
6262 	elow = min(elow, parent_elow);
6263 	if (elow && parent_elow) {
6264 		unsigned long low_usage, siblings_low_usage;
6265 
6266 		low_usage = min(usage, memcg->memory.low);
6267 		siblings_low_usage = atomic_long_read(
6268 			&parent->memory.children_low_usage);
6269 
6270 		if (low_usage && siblings_low_usage)
6271 			elow = min(elow, parent_elow * low_usage /
6272 				   siblings_low_usage);
6273 	}
6274 
6275 exit:
6276 	memcg->memory.emin = emin;
6277 	memcg->memory.elow = elow;
6278 
6279 	if (usage <= emin)
6280 		return MEMCG_PROT_MIN;
6281 	else if (usage <= elow)
6282 		return MEMCG_PROT_LOW;
6283 	else
6284 		return MEMCG_PROT_NONE;
6285 }
6286 
6287 /**
6288  * mem_cgroup_try_charge - try charging a page
6289  * @page: page to charge
6290  * @mm: mm context of the victim
6291  * @gfp_mask: reclaim mode
6292  * @memcgp: charged memcg return
6293  * @compound: charge the page as compound or small page
6294  *
6295  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6296  * pages according to @gfp_mask if necessary.
6297  *
6298  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6299  * Otherwise, an error code is returned.
6300  *
6301  * After page->mapping has been set up, the caller must finalize the
6302  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6303  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6304  */
6305 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6306 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6307 			  bool compound)
6308 {
6309 	struct mem_cgroup *memcg = NULL;
6310 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6311 	int ret = 0;
6312 
6313 	if (mem_cgroup_disabled())
6314 		goto out;
6315 
6316 	if (PageSwapCache(page)) {
6317 		/*
6318 		 * Every swap fault against a single page tries to charge the
6319 		 * page, bail as early as possible.  shmem_unuse() encounters
6320 		 * already charged pages, too.  The USED bit is protected by
6321 		 * the page lock, which serializes swap cache removal, which
6322 		 * in turn serializes uncharging.
6323 		 */
6324 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6325 		if (compound_head(page)->mem_cgroup)
6326 			goto out;
6327 
6328 		if (do_swap_account) {
6329 			swp_entry_t ent = { .val = page_private(page), };
6330 			unsigned short id = lookup_swap_cgroup_id(ent);
6331 
6332 			rcu_read_lock();
6333 			memcg = mem_cgroup_from_id(id);
6334 			if (memcg && !css_tryget_online(&memcg->css))
6335 				memcg = NULL;
6336 			rcu_read_unlock();
6337 		}
6338 	}
6339 
6340 	if (!memcg)
6341 		memcg = get_mem_cgroup_from_mm(mm);
6342 
6343 	ret = try_charge(memcg, gfp_mask, nr_pages);
6344 
6345 	css_put(&memcg->css);
6346 out:
6347 	*memcgp = memcg;
6348 	return ret;
6349 }
6350 
6351 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6352 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6353 			  bool compound)
6354 {
6355 	struct mem_cgroup *memcg;
6356 	int ret;
6357 
6358 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6359 	memcg = *memcgp;
6360 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6361 	return ret;
6362 }
6363 
6364 /**
6365  * mem_cgroup_commit_charge - commit a page charge
6366  * @page: page to charge
6367  * @memcg: memcg to charge the page to
6368  * @lrucare: page might be on LRU already
6369  * @compound: charge the page as compound or small page
6370  *
6371  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6372  * after page->mapping has been set up.  This must happen atomically
6373  * as part of the page instantiation, i.e. under the page table lock
6374  * for anonymous pages, under the page lock for page and swap cache.
6375  *
6376  * In addition, the page must not be on the LRU during the commit, to
6377  * prevent racing with task migration.  If it might be, use @lrucare.
6378  *
6379  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6380  */
6381 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6382 			      bool lrucare, bool compound)
6383 {
6384 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6385 
6386 	VM_BUG_ON_PAGE(!page->mapping, page);
6387 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6388 
6389 	if (mem_cgroup_disabled())
6390 		return;
6391 	/*
6392 	 * Swap faults will attempt to charge the same page multiple
6393 	 * times.  But reuse_swap_page() might have removed the page
6394 	 * from swapcache already, so we can't check PageSwapCache().
6395 	 */
6396 	if (!memcg)
6397 		return;
6398 
6399 	commit_charge(page, memcg, lrucare);
6400 
6401 	local_irq_disable();
6402 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6403 	memcg_check_events(memcg, page);
6404 	local_irq_enable();
6405 
6406 	if (do_memsw_account() && PageSwapCache(page)) {
6407 		swp_entry_t entry = { .val = page_private(page) };
6408 		/*
6409 		 * The swap entry might not get freed for a long time,
6410 		 * let's not wait for it.  The page already received a
6411 		 * memory+swap charge, drop the swap entry duplicate.
6412 		 */
6413 		mem_cgroup_uncharge_swap(entry, nr_pages);
6414 	}
6415 }
6416 
6417 /**
6418  * mem_cgroup_cancel_charge - cancel a page charge
6419  * @page: page to charge
6420  * @memcg: memcg to charge the page to
6421  * @compound: charge the page as compound or small page
6422  *
6423  * Cancel a charge transaction started by mem_cgroup_try_charge().
6424  */
6425 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6426 		bool compound)
6427 {
6428 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6429 
6430 	if (mem_cgroup_disabled())
6431 		return;
6432 	/*
6433 	 * Swap faults will attempt to charge the same page multiple
6434 	 * times.  But reuse_swap_page() might have removed the page
6435 	 * from swapcache already, so we can't check PageSwapCache().
6436 	 */
6437 	if (!memcg)
6438 		return;
6439 
6440 	cancel_charge(memcg, nr_pages);
6441 }
6442 
6443 struct uncharge_gather {
6444 	struct mem_cgroup *memcg;
6445 	unsigned long pgpgout;
6446 	unsigned long nr_anon;
6447 	unsigned long nr_file;
6448 	unsigned long nr_kmem;
6449 	unsigned long nr_huge;
6450 	unsigned long nr_shmem;
6451 	struct page *dummy_page;
6452 };
6453 
6454 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6455 {
6456 	memset(ug, 0, sizeof(*ug));
6457 }
6458 
6459 static void uncharge_batch(const struct uncharge_gather *ug)
6460 {
6461 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6462 	unsigned long flags;
6463 
6464 	if (!mem_cgroup_is_root(ug->memcg)) {
6465 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6466 		if (do_memsw_account())
6467 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6468 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6469 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6470 		memcg_oom_recover(ug->memcg);
6471 	}
6472 
6473 	local_irq_save(flags);
6474 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6475 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6476 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6477 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6478 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6479 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6480 	memcg_check_events(ug->memcg, ug->dummy_page);
6481 	local_irq_restore(flags);
6482 
6483 	if (!mem_cgroup_is_root(ug->memcg))
6484 		css_put_many(&ug->memcg->css, nr_pages);
6485 }
6486 
6487 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6488 {
6489 	VM_BUG_ON_PAGE(PageLRU(page), page);
6490 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6491 			!PageHWPoison(page) , page);
6492 
6493 	if (!page->mem_cgroup)
6494 		return;
6495 
6496 	/*
6497 	 * Nobody should be changing or seriously looking at
6498 	 * page->mem_cgroup at this point, we have fully
6499 	 * exclusive access to the page.
6500 	 */
6501 
6502 	if (ug->memcg != page->mem_cgroup) {
6503 		if (ug->memcg) {
6504 			uncharge_batch(ug);
6505 			uncharge_gather_clear(ug);
6506 		}
6507 		ug->memcg = page->mem_cgroup;
6508 	}
6509 
6510 	if (!PageKmemcg(page)) {
6511 		unsigned int nr_pages = 1;
6512 
6513 		if (PageTransHuge(page)) {
6514 			nr_pages <<= compound_order(page);
6515 			ug->nr_huge += nr_pages;
6516 		}
6517 		if (PageAnon(page))
6518 			ug->nr_anon += nr_pages;
6519 		else {
6520 			ug->nr_file += nr_pages;
6521 			if (PageSwapBacked(page))
6522 				ug->nr_shmem += nr_pages;
6523 		}
6524 		ug->pgpgout++;
6525 	} else {
6526 		ug->nr_kmem += 1 << compound_order(page);
6527 		__ClearPageKmemcg(page);
6528 	}
6529 
6530 	ug->dummy_page = page;
6531 	page->mem_cgroup = NULL;
6532 }
6533 
6534 static void uncharge_list(struct list_head *page_list)
6535 {
6536 	struct uncharge_gather ug;
6537 	struct list_head *next;
6538 
6539 	uncharge_gather_clear(&ug);
6540 
6541 	/*
6542 	 * Note that the list can be a single page->lru; hence the
6543 	 * do-while loop instead of a simple list_for_each_entry().
6544 	 */
6545 	next = page_list->next;
6546 	do {
6547 		struct page *page;
6548 
6549 		page = list_entry(next, struct page, lru);
6550 		next = page->lru.next;
6551 
6552 		uncharge_page(page, &ug);
6553 	} while (next != page_list);
6554 
6555 	if (ug.memcg)
6556 		uncharge_batch(&ug);
6557 }
6558 
6559 /**
6560  * mem_cgroup_uncharge - uncharge a page
6561  * @page: page to uncharge
6562  *
6563  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6564  * mem_cgroup_commit_charge().
6565  */
6566 void mem_cgroup_uncharge(struct page *page)
6567 {
6568 	struct uncharge_gather ug;
6569 
6570 	if (mem_cgroup_disabled())
6571 		return;
6572 
6573 	/* Don't touch page->lru of any random page, pre-check: */
6574 	if (!page->mem_cgroup)
6575 		return;
6576 
6577 	uncharge_gather_clear(&ug);
6578 	uncharge_page(page, &ug);
6579 	uncharge_batch(&ug);
6580 }
6581 
6582 /**
6583  * mem_cgroup_uncharge_list - uncharge a list of page
6584  * @page_list: list of pages to uncharge
6585  *
6586  * Uncharge a list of pages previously charged with
6587  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6588  */
6589 void mem_cgroup_uncharge_list(struct list_head *page_list)
6590 {
6591 	if (mem_cgroup_disabled())
6592 		return;
6593 
6594 	if (!list_empty(page_list))
6595 		uncharge_list(page_list);
6596 }
6597 
6598 /**
6599  * mem_cgroup_migrate - charge a page's replacement
6600  * @oldpage: currently circulating page
6601  * @newpage: replacement page
6602  *
6603  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6604  * be uncharged upon free.
6605  *
6606  * Both pages must be locked, @newpage->mapping must be set up.
6607  */
6608 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6609 {
6610 	struct mem_cgroup *memcg;
6611 	unsigned int nr_pages;
6612 	bool compound;
6613 	unsigned long flags;
6614 
6615 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6616 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6617 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6618 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6619 		       newpage);
6620 
6621 	if (mem_cgroup_disabled())
6622 		return;
6623 
6624 	/* Page cache replacement: new page already charged? */
6625 	if (newpage->mem_cgroup)
6626 		return;
6627 
6628 	/* Swapcache readahead pages can get replaced before being charged */
6629 	memcg = oldpage->mem_cgroup;
6630 	if (!memcg)
6631 		return;
6632 
6633 	/* Force-charge the new page. The old one will be freed soon */
6634 	compound = PageTransHuge(newpage);
6635 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6636 
6637 	page_counter_charge(&memcg->memory, nr_pages);
6638 	if (do_memsw_account())
6639 		page_counter_charge(&memcg->memsw, nr_pages);
6640 	css_get_many(&memcg->css, nr_pages);
6641 
6642 	commit_charge(newpage, memcg, false);
6643 
6644 	local_irq_save(flags);
6645 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6646 	memcg_check_events(memcg, newpage);
6647 	local_irq_restore(flags);
6648 }
6649 
6650 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6651 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6652 
6653 void mem_cgroup_sk_alloc(struct sock *sk)
6654 {
6655 	struct mem_cgroup *memcg;
6656 
6657 	if (!mem_cgroup_sockets_enabled)
6658 		return;
6659 
6660 	/*
6661 	 * Socket cloning can throw us here with sk_memcg already
6662 	 * filled. It won't however, necessarily happen from
6663 	 * process context. So the test for root memcg given
6664 	 * the current task's memcg won't help us in this case.
6665 	 *
6666 	 * Respecting the original socket's memcg is a better
6667 	 * decision in this case.
6668 	 */
6669 	if (sk->sk_memcg) {
6670 		css_get(&sk->sk_memcg->css);
6671 		return;
6672 	}
6673 
6674 	rcu_read_lock();
6675 	memcg = mem_cgroup_from_task(current);
6676 	if (memcg == root_mem_cgroup)
6677 		goto out;
6678 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6679 		goto out;
6680 	if (css_tryget_online(&memcg->css))
6681 		sk->sk_memcg = memcg;
6682 out:
6683 	rcu_read_unlock();
6684 }
6685 
6686 void mem_cgroup_sk_free(struct sock *sk)
6687 {
6688 	if (sk->sk_memcg)
6689 		css_put(&sk->sk_memcg->css);
6690 }
6691 
6692 /**
6693  * mem_cgroup_charge_skmem - charge socket memory
6694  * @memcg: memcg to charge
6695  * @nr_pages: number of pages to charge
6696  *
6697  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6698  * @memcg's configured limit, %false if the charge had to be forced.
6699  */
6700 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6701 {
6702 	gfp_t gfp_mask = GFP_KERNEL;
6703 
6704 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6705 		struct page_counter *fail;
6706 
6707 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6708 			memcg->tcpmem_pressure = 0;
6709 			return true;
6710 		}
6711 		page_counter_charge(&memcg->tcpmem, nr_pages);
6712 		memcg->tcpmem_pressure = 1;
6713 		return false;
6714 	}
6715 
6716 	/* Don't block in the packet receive path */
6717 	if (in_softirq())
6718 		gfp_mask = GFP_NOWAIT;
6719 
6720 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6721 
6722 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6723 		return true;
6724 
6725 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6726 	return false;
6727 }
6728 
6729 /**
6730  * mem_cgroup_uncharge_skmem - uncharge socket memory
6731  * @memcg: memcg to uncharge
6732  * @nr_pages: number of pages to uncharge
6733  */
6734 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6735 {
6736 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6737 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6738 		return;
6739 	}
6740 
6741 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6742 
6743 	refill_stock(memcg, nr_pages);
6744 }
6745 
6746 static int __init cgroup_memory(char *s)
6747 {
6748 	char *token;
6749 
6750 	while ((token = strsep(&s, ",")) != NULL) {
6751 		if (!*token)
6752 			continue;
6753 		if (!strcmp(token, "nosocket"))
6754 			cgroup_memory_nosocket = true;
6755 		if (!strcmp(token, "nokmem"))
6756 			cgroup_memory_nokmem = true;
6757 	}
6758 	return 0;
6759 }
6760 __setup("cgroup.memory=", cgroup_memory);
6761 
6762 /*
6763  * subsys_initcall() for memory controller.
6764  *
6765  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6766  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6767  * basically everything that doesn't depend on a specific mem_cgroup structure
6768  * should be initialized from here.
6769  */
6770 static int __init mem_cgroup_init(void)
6771 {
6772 	int cpu, node;
6773 
6774 #ifdef CONFIG_MEMCG_KMEM
6775 	/*
6776 	 * Kmem cache creation is mostly done with the slab_mutex held,
6777 	 * so use a workqueue with limited concurrency to avoid stalling
6778 	 * all worker threads in case lots of cgroups are created and
6779 	 * destroyed simultaneously.
6780 	 */
6781 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6782 	BUG_ON(!memcg_kmem_cache_wq);
6783 #endif
6784 
6785 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6786 				  memcg_hotplug_cpu_dead);
6787 
6788 	for_each_possible_cpu(cpu)
6789 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6790 			  drain_local_stock);
6791 
6792 	for_each_node(node) {
6793 		struct mem_cgroup_tree_per_node *rtpn;
6794 
6795 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6796 				    node_online(node) ? node : NUMA_NO_NODE);
6797 
6798 		rtpn->rb_root = RB_ROOT;
6799 		rtpn->rb_rightmost = NULL;
6800 		spin_lock_init(&rtpn->lock);
6801 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6802 	}
6803 
6804 	return 0;
6805 }
6806 subsys_initcall(mem_cgroup_init);
6807 
6808 #ifdef CONFIG_MEMCG_SWAP
6809 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6810 {
6811 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6812 		/*
6813 		 * The root cgroup cannot be destroyed, so it's refcount must
6814 		 * always be >= 1.
6815 		 */
6816 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6817 			VM_BUG_ON(1);
6818 			break;
6819 		}
6820 		memcg = parent_mem_cgroup(memcg);
6821 		if (!memcg)
6822 			memcg = root_mem_cgroup;
6823 	}
6824 	return memcg;
6825 }
6826 
6827 /**
6828  * mem_cgroup_swapout - transfer a memsw charge to swap
6829  * @page: page whose memsw charge to transfer
6830  * @entry: swap entry to move the charge to
6831  *
6832  * Transfer the memsw charge of @page to @entry.
6833  */
6834 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6835 {
6836 	struct mem_cgroup *memcg, *swap_memcg;
6837 	unsigned int nr_entries;
6838 	unsigned short oldid;
6839 
6840 	VM_BUG_ON_PAGE(PageLRU(page), page);
6841 	VM_BUG_ON_PAGE(page_count(page), page);
6842 
6843 	if (!do_memsw_account())
6844 		return;
6845 
6846 	memcg = page->mem_cgroup;
6847 
6848 	/* Readahead page, never charged */
6849 	if (!memcg)
6850 		return;
6851 
6852 	/*
6853 	 * In case the memcg owning these pages has been offlined and doesn't
6854 	 * have an ID allocated to it anymore, charge the closest online
6855 	 * ancestor for the swap instead and transfer the memory+swap charge.
6856 	 */
6857 	swap_memcg = mem_cgroup_id_get_online(memcg);
6858 	nr_entries = hpage_nr_pages(page);
6859 	/* Get references for the tail pages, too */
6860 	if (nr_entries > 1)
6861 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6862 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6863 				   nr_entries);
6864 	VM_BUG_ON_PAGE(oldid, page);
6865 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6866 
6867 	page->mem_cgroup = NULL;
6868 
6869 	if (!mem_cgroup_is_root(memcg))
6870 		page_counter_uncharge(&memcg->memory, nr_entries);
6871 
6872 	if (memcg != swap_memcg) {
6873 		if (!mem_cgroup_is_root(swap_memcg))
6874 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6875 		page_counter_uncharge(&memcg->memsw, nr_entries);
6876 	}
6877 
6878 	/*
6879 	 * Interrupts should be disabled here because the caller holds the
6880 	 * i_pages lock which is taken with interrupts-off. It is
6881 	 * important here to have the interrupts disabled because it is the
6882 	 * only synchronisation we have for updating the per-CPU variables.
6883 	 */
6884 	VM_BUG_ON(!irqs_disabled());
6885 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6886 				     -nr_entries);
6887 	memcg_check_events(memcg, page);
6888 
6889 	if (!mem_cgroup_is_root(memcg))
6890 		css_put_many(&memcg->css, nr_entries);
6891 }
6892 
6893 /**
6894  * mem_cgroup_try_charge_swap - try charging swap space for a page
6895  * @page: page being added to swap
6896  * @entry: swap entry to charge
6897  *
6898  * Try to charge @page's memcg for the swap space at @entry.
6899  *
6900  * Returns 0 on success, -ENOMEM on failure.
6901  */
6902 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6903 {
6904 	unsigned int nr_pages = hpage_nr_pages(page);
6905 	struct page_counter *counter;
6906 	struct mem_cgroup *memcg;
6907 	unsigned short oldid;
6908 
6909 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6910 		return 0;
6911 
6912 	memcg = page->mem_cgroup;
6913 
6914 	/* Readahead page, never charged */
6915 	if (!memcg)
6916 		return 0;
6917 
6918 	if (!entry.val) {
6919 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6920 		return 0;
6921 	}
6922 
6923 	memcg = mem_cgroup_id_get_online(memcg);
6924 
6925 	if (!mem_cgroup_is_root(memcg) &&
6926 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6927 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6928 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6929 		mem_cgroup_id_put(memcg);
6930 		return -ENOMEM;
6931 	}
6932 
6933 	/* Get references for the tail pages, too */
6934 	if (nr_pages > 1)
6935 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6936 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6937 	VM_BUG_ON_PAGE(oldid, page);
6938 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6939 
6940 	return 0;
6941 }
6942 
6943 /**
6944  * mem_cgroup_uncharge_swap - uncharge swap space
6945  * @entry: swap entry to uncharge
6946  * @nr_pages: the amount of swap space to uncharge
6947  */
6948 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6949 {
6950 	struct mem_cgroup *memcg;
6951 	unsigned short id;
6952 
6953 	if (!do_swap_account)
6954 		return;
6955 
6956 	id = swap_cgroup_record(entry, 0, nr_pages);
6957 	rcu_read_lock();
6958 	memcg = mem_cgroup_from_id(id);
6959 	if (memcg) {
6960 		if (!mem_cgroup_is_root(memcg)) {
6961 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6962 				page_counter_uncharge(&memcg->swap, nr_pages);
6963 			else
6964 				page_counter_uncharge(&memcg->memsw, nr_pages);
6965 		}
6966 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6967 		mem_cgroup_id_put_many(memcg, nr_pages);
6968 	}
6969 	rcu_read_unlock();
6970 }
6971 
6972 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6973 {
6974 	long nr_swap_pages = get_nr_swap_pages();
6975 
6976 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6977 		return nr_swap_pages;
6978 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6979 		nr_swap_pages = min_t(long, nr_swap_pages,
6980 				      READ_ONCE(memcg->swap.max) -
6981 				      page_counter_read(&memcg->swap));
6982 	return nr_swap_pages;
6983 }
6984 
6985 bool mem_cgroup_swap_full(struct page *page)
6986 {
6987 	struct mem_cgroup *memcg;
6988 
6989 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6990 
6991 	if (vm_swap_full())
6992 		return true;
6993 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6994 		return false;
6995 
6996 	memcg = page->mem_cgroup;
6997 	if (!memcg)
6998 		return false;
6999 
7000 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7001 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7002 			return true;
7003 
7004 	return false;
7005 }
7006 
7007 /* for remember boot option*/
7008 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7009 static int really_do_swap_account __initdata = 1;
7010 #else
7011 static int really_do_swap_account __initdata;
7012 #endif
7013 
7014 static int __init enable_swap_account(char *s)
7015 {
7016 	if (!strcmp(s, "1"))
7017 		really_do_swap_account = 1;
7018 	else if (!strcmp(s, "0"))
7019 		really_do_swap_account = 0;
7020 	return 1;
7021 }
7022 __setup("swapaccount=", enable_swap_account);
7023 
7024 static u64 swap_current_read(struct cgroup_subsys_state *css,
7025 			     struct cftype *cft)
7026 {
7027 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7028 
7029 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7030 }
7031 
7032 static int swap_max_show(struct seq_file *m, void *v)
7033 {
7034 	return seq_puts_memcg_tunable(m,
7035 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7036 }
7037 
7038 static ssize_t swap_max_write(struct kernfs_open_file *of,
7039 			      char *buf, size_t nbytes, loff_t off)
7040 {
7041 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7042 	unsigned long max;
7043 	int err;
7044 
7045 	buf = strstrip(buf);
7046 	err = page_counter_memparse(buf, "max", &max);
7047 	if (err)
7048 		return err;
7049 
7050 	xchg(&memcg->swap.max, max);
7051 
7052 	return nbytes;
7053 }
7054 
7055 static int swap_events_show(struct seq_file *m, void *v)
7056 {
7057 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7058 
7059 	seq_printf(m, "max %lu\n",
7060 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7061 	seq_printf(m, "fail %lu\n",
7062 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7063 
7064 	return 0;
7065 }
7066 
7067 static struct cftype swap_files[] = {
7068 	{
7069 		.name = "swap.current",
7070 		.flags = CFTYPE_NOT_ON_ROOT,
7071 		.read_u64 = swap_current_read,
7072 	},
7073 	{
7074 		.name = "swap.max",
7075 		.flags = CFTYPE_NOT_ON_ROOT,
7076 		.seq_show = swap_max_show,
7077 		.write = swap_max_write,
7078 	},
7079 	{
7080 		.name = "swap.events",
7081 		.flags = CFTYPE_NOT_ON_ROOT,
7082 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7083 		.seq_show = swap_events_show,
7084 	},
7085 	{ }	/* terminate */
7086 };
7087 
7088 static struct cftype memsw_cgroup_files[] = {
7089 	{
7090 		.name = "memsw.usage_in_bytes",
7091 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7092 		.read_u64 = mem_cgroup_read_u64,
7093 	},
7094 	{
7095 		.name = "memsw.max_usage_in_bytes",
7096 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7097 		.write = mem_cgroup_reset,
7098 		.read_u64 = mem_cgroup_read_u64,
7099 	},
7100 	{
7101 		.name = "memsw.limit_in_bytes",
7102 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7103 		.write = mem_cgroup_write,
7104 		.read_u64 = mem_cgroup_read_u64,
7105 	},
7106 	{
7107 		.name = "memsw.failcnt",
7108 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7109 		.write = mem_cgroup_reset,
7110 		.read_u64 = mem_cgroup_read_u64,
7111 	},
7112 	{ },	/* terminate */
7113 };
7114 
7115 static int __init mem_cgroup_swap_init(void)
7116 {
7117 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7118 		do_swap_account = 1;
7119 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7120 					       swap_files));
7121 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7122 						  memsw_cgroup_files));
7123 	}
7124 	return 0;
7125 }
7126 subsys_initcall(mem_cgroup_swap_init);
7127 
7128 #endif /* CONFIG_MEMCG_SWAP */
7129