1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "swap.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* Whether the swap controller is active */ 92 #ifdef CONFIG_MEMCG_SWAP 93 static bool cgroup_memory_noswap __ro_after_init; 94 #else 95 #define cgroup_memory_noswap 1 96 #endif 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 /* Whether legacy memory+swap accounting is active */ 103 static bool do_memsw_account(void) 104 { 105 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 106 } 107 108 #define THRESHOLDS_EVENTS_TARGET 128 109 #define SOFTLIMIT_EVENTS_TARGET 1024 110 111 /* 112 * Cgroups above their limits are maintained in a RB-Tree, independent of 113 * their hierarchy representation 114 */ 115 116 struct mem_cgroup_tree_per_node { 117 struct rb_root rb_root; 118 struct rb_node *rb_rightmost; 119 spinlock_t lock; 120 }; 121 122 struct mem_cgroup_tree { 123 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 124 }; 125 126 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 127 128 /* for OOM */ 129 struct mem_cgroup_eventfd_list { 130 struct list_head list; 131 struct eventfd_ctx *eventfd; 132 }; 133 134 /* 135 * cgroup_event represents events which userspace want to receive. 136 */ 137 struct mem_cgroup_event { 138 /* 139 * memcg which the event belongs to. 140 */ 141 struct mem_cgroup *memcg; 142 /* 143 * eventfd to signal userspace about the event. 144 */ 145 struct eventfd_ctx *eventfd; 146 /* 147 * Each of these stored in a list by the cgroup. 148 */ 149 struct list_head list; 150 /* 151 * register_event() callback will be used to add new userspace 152 * waiter for changes related to this event. Use eventfd_signal() 153 * on eventfd to send notification to userspace. 154 */ 155 int (*register_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd, const char *args); 157 /* 158 * unregister_event() callback will be called when userspace closes 159 * the eventfd or on cgroup removing. This callback must be set, 160 * if you want provide notification functionality. 161 */ 162 void (*unregister_event)(struct mem_cgroup *memcg, 163 struct eventfd_ctx *eventfd); 164 /* 165 * All fields below needed to unregister event when 166 * userspace closes eventfd. 167 */ 168 poll_table pt; 169 wait_queue_head_t *wqh; 170 wait_queue_entry_t wait; 171 struct work_struct remove; 172 }; 173 174 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 176 177 /* Stuffs for move charges at task migration. */ 178 /* 179 * Types of charges to be moved. 180 */ 181 #define MOVE_ANON 0x1U 182 #define MOVE_FILE 0x2U 183 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 184 185 /* "mc" and its members are protected by cgroup_mutex */ 186 static struct move_charge_struct { 187 spinlock_t lock; /* for from, to */ 188 struct mm_struct *mm; 189 struct mem_cgroup *from; 190 struct mem_cgroup *to; 191 unsigned long flags; 192 unsigned long precharge; 193 unsigned long moved_charge; 194 unsigned long moved_swap; 195 struct task_struct *moving_task; /* a task moving charges */ 196 wait_queue_head_t waitq; /* a waitq for other context */ 197 } mc = { 198 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 199 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 200 }; 201 202 /* 203 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 204 * limit reclaim to prevent infinite loops, if they ever occur. 205 */ 206 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 207 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 208 209 /* for encoding cft->private value on file */ 210 enum res_type { 211 _MEM, 212 _MEMSWAP, 213 _KMEM, 214 _TCP, 215 }; 216 217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 219 #define MEMFILE_ATTR(val) ((val) & 0xffff) 220 221 /* 222 * Iteration constructs for visiting all cgroups (under a tree). If 223 * loops are exited prematurely (break), mem_cgroup_iter_break() must 224 * be used for reference counting. 225 */ 226 #define for_each_mem_cgroup_tree(iter, root) \ 227 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 228 iter != NULL; \ 229 iter = mem_cgroup_iter(root, iter, NULL)) 230 231 #define for_each_mem_cgroup(iter) \ 232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 233 iter != NULL; \ 234 iter = mem_cgroup_iter(NULL, iter, NULL)) 235 236 static inline bool task_is_dying(void) 237 { 238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 239 (current->flags & PF_EXITING); 240 } 241 242 /* Some nice accessors for the vmpressure. */ 243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 244 { 245 if (!memcg) 246 memcg = root_mem_cgroup; 247 return &memcg->vmpressure; 248 } 249 250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 251 { 252 return container_of(vmpr, struct mem_cgroup, vmpressure); 253 } 254 255 #ifdef CONFIG_MEMCG_KMEM 256 static DEFINE_SPINLOCK(objcg_lock); 257 258 bool mem_cgroup_kmem_disabled(void) 259 { 260 return cgroup_memory_nokmem; 261 } 262 263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 264 unsigned int nr_pages); 265 266 static void obj_cgroup_release(struct percpu_ref *ref) 267 { 268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 269 unsigned int nr_bytes; 270 unsigned int nr_pages; 271 unsigned long flags; 272 273 /* 274 * At this point all allocated objects are freed, and 275 * objcg->nr_charged_bytes can't have an arbitrary byte value. 276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 277 * 278 * The following sequence can lead to it: 279 * 1) CPU0: objcg == stock->cached_objcg 280 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 281 * PAGE_SIZE bytes are charged 282 * 3) CPU1: a process from another memcg is allocating something, 283 * the stock if flushed, 284 * objcg->nr_charged_bytes = PAGE_SIZE - 92 285 * 5) CPU0: we do release this object, 286 * 92 bytes are added to stock->nr_bytes 287 * 6) CPU0: stock is flushed, 288 * 92 bytes are added to objcg->nr_charged_bytes 289 * 290 * In the result, nr_charged_bytes == PAGE_SIZE. 291 * This page will be uncharged in obj_cgroup_release(). 292 */ 293 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 295 nr_pages = nr_bytes >> PAGE_SHIFT; 296 297 if (nr_pages) 298 obj_cgroup_uncharge_pages(objcg, nr_pages); 299 300 spin_lock_irqsave(&objcg_lock, flags); 301 list_del(&objcg->list); 302 spin_unlock_irqrestore(&objcg_lock, flags); 303 304 percpu_ref_exit(ref); 305 kfree_rcu(objcg, rcu); 306 } 307 308 static struct obj_cgroup *obj_cgroup_alloc(void) 309 { 310 struct obj_cgroup *objcg; 311 int ret; 312 313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 314 if (!objcg) 315 return NULL; 316 317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 318 GFP_KERNEL); 319 if (ret) { 320 kfree(objcg); 321 return NULL; 322 } 323 INIT_LIST_HEAD(&objcg->list); 324 return objcg; 325 } 326 327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 328 struct mem_cgroup *parent) 329 { 330 struct obj_cgroup *objcg, *iter; 331 332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 333 334 spin_lock_irq(&objcg_lock); 335 336 /* 1) Ready to reparent active objcg. */ 337 list_add(&objcg->list, &memcg->objcg_list); 338 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 339 list_for_each_entry(iter, &memcg->objcg_list, list) 340 WRITE_ONCE(iter->memcg, parent); 341 /* 3) Move already reparented objcgs to the parent's list */ 342 list_splice(&memcg->objcg_list, &parent->objcg_list); 343 344 spin_unlock_irq(&objcg_lock); 345 346 percpu_ref_kill(&objcg->refcnt); 347 } 348 349 /* 350 * A lot of the calls to the cache allocation functions are expected to be 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 352 * conditional to this static branch, we'll have to allow modules that does 353 * kmem_cache_alloc and the such to see this symbol as well 354 */ 355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 356 EXPORT_SYMBOL(memcg_kmem_enabled_key); 357 #endif 358 359 /** 360 * mem_cgroup_css_from_page - css of the memcg associated with a page 361 * @page: page of interest 362 * 363 * If memcg is bound to the default hierarchy, css of the memcg associated 364 * with @page is returned. The returned css remains associated with @page 365 * until it is released. 366 * 367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 368 * is returned. 369 */ 370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 371 { 372 struct mem_cgroup *memcg; 373 374 memcg = page_memcg(page); 375 376 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 377 memcg = root_mem_cgroup; 378 379 return &memcg->css; 380 } 381 382 /** 383 * page_cgroup_ino - return inode number of the memcg a page is charged to 384 * @page: the page 385 * 386 * Look up the closest online ancestor of the memory cgroup @page is charged to 387 * and return its inode number or 0 if @page is not charged to any cgroup. It 388 * is safe to call this function without holding a reference to @page. 389 * 390 * Note, this function is inherently racy, because there is nothing to prevent 391 * the cgroup inode from getting torn down and potentially reallocated a moment 392 * after page_cgroup_ino() returns, so it only should be used by callers that 393 * do not care (such as procfs interfaces). 394 */ 395 ino_t page_cgroup_ino(struct page *page) 396 { 397 struct mem_cgroup *memcg; 398 unsigned long ino = 0; 399 400 rcu_read_lock(); 401 memcg = page_memcg_check(page); 402 403 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 404 memcg = parent_mem_cgroup(memcg); 405 if (memcg) 406 ino = cgroup_ino(memcg->css.cgroup); 407 rcu_read_unlock(); 408 return ino; 409 } 410 411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 412 struct mem_cgroup_tree_per_node *mctz, 413 unsigned long new_usage_in_excess) 414 { 415 struct rb_node **p = &mctz->rb_root.rb_node; 416 struct rb_node *parent = NULL; 417 struct mem_cgroup_per_node *mz_node; 418 bool rightmost = true; 419 420 if (mz->on_tree) 421 return; 422 423 mz->usage_in_excess = new_usage_in_excess; 424 if (!mz->usage_in_excess) 425 return; 426 while (*p) { 427 parent = *p; 428 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 429 tree_node); 430 if (mz->usage_in_excess < mz_node->usage_in_excess) { 431 p = &(*p)->rb_left; 432 rightmost = false; 433 } else { 434 p = &(*p)->rb_right; 435 } 436 } 437 438 if (rightmost) 439 mctz->rb_rightmost = &mz->tree_node; 440 441 rb_link_node(&mz->tree_node, parent, p); 442 rb_insert_color(&mz->tree_node, &mctz->rb_root); 443 mz->on_tree = true; 444 } 445 446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 447 struct mem_cgroup_tree_per_node *mctz) 448 { 449 if (!mz->on_tree) 450 return; 451 452 if (&mz->tree_node == mctz->rb_rightmost) 453 mctz->rb_rightmost = rb_prev(&mz->tree_node); 454 455 rb_erase(&mz->tree_node, &mctz->rb_root); 456 mz->on_tree = false; 457 } 458 459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 460 struct mem_cgroup_tree_per_node *mctz) 461 { 462 unsigned long flags; 463 464 spin_lock_irqsave(&mctz->lock, flags); 465 __mem_cgroup_remove_exceeded(mz, mctz); 466 spin_unlock_irqrestore(&mctz->lock, flags); 467 } 468 469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 470 { 471 unsigned long nr_pages = page_counter_read(&memcg->memory); 472 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 473 unsigned long excess = 0; 474 475 if (nr_pages > soft_limit) 476 excess = nr_pages - soft_limit; 477 478 return excess; 479 } 480 481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 482 { 483 unsigned long excess; 484 struct mem_cgroup_per_node *mz; 485 struct mem_cgroup_tree_per_node *mctz; 486 487 mctz = soft_limit_tree.rb_tree_per_node[nid]; 488 if (!mctz) 489 return; 490 /* 491 * Necessary to update all ancestors when hierarchy is used. 492 * because their event counter is not touched. 493 */ 494 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 495 mz = memcg->nodeinfo[nid]; 496 excess = soft_limit_excess(memcg); 497 /* 498 * We have to update the tree if mz is on RB-tree or 499 * mem is over its softlimit. 500 */ 501 if (excess || mz->on_tree) { 502 unsigned long flags; 503 504 spin_lock_irqsave(&mctz->lock, flags); 505 /* if on-tree, remove it */ 506 if (mz->on_tree) 507 __mem_cgroup_remove_exceeded(mz, mctz); 508 /* 509 * Insert again. mz->usage_in_excess will be updated. 510 * If excess is 0, no tree ops. 511 */ 512 __mem_cgroup_insert_exceeded(mz, mctz, excess); 513 spin_unlock_irqrestore(&mctz->lock, flags); 514 } 515 } 516 } 517 518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 519 { 520 struct mem_cgroup_tree_per_node *mctz; 521 struct mem_cgroup_per_node *mz; 522 int nid; 523 524 for_each_node(nid) { 525 mz = memcg->nodeinfo[nid]; 526 mctz = soft_limit_tree.rb_tree_per_node[nid]; 527 if (mctz) 528 mem_cgroup_remove_exceeded(mz, mctz); 529 } 530 } 531 532 static struct mem_cgroup_per_node * 533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 534 { 535 struct mem_cgroup_per_node *mz; 536 537 retry: 538 mz = NULL; 539 if (!mctz->rb_rightmost) 540 goto done; /* Nothing to reclaim from */ 541 542 mz = rb_entry(mctz->rb_rightmost, 543 struct mem_cgroup_per_node, tree_node); 544 /* 545 * Remove the node now but someone else can add it back, 546 * we will to add it back at the end of reclaim to its correct 547 * position in the tree. 548 */ 549 __mem_cgroup_remove_exceeded(mz, mctz); 550 if (!soft_limit_excess(mz->memcg) || 551 !css_tryget(&mz->memcg->css)) 552 goto retry; 553 done: 554 return mz; 555 } 556 557 static struct mem_cgroup_per_node * 558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 559 { 560 struct mem_cgroup_per_node *mz; 561 562 spin_lock_irq(&mctz->lock); 563 mz = __mem_cgroup_largest_soft_limit_node(mctz); 564 spin_unlock_irq(&mctz->lock); 565 return mz; 566 } 567 568 /* 569 * memcg and lruvec stats flushing 570 * 571 * Many codepaths leading to stats update or read are performance sensitive and 572 * adding stats flushing in such codepaths is not desirable. So, to optimize the 573 * flushing the kernel does: 574 * 575 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 576 * rstat update tree grow unbounded. 577 * 578 * 2) Flush the stats synchronously on reader side only when there are more than 579 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 580 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 581 * only for 2 seconds due to (1). 582 */ 583 static void flush_memcg_stats_dwork(struct work_struct *w); 584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 585 static DEFINE_SPINLOCK(stats_flush_lock); 586 static DEFINE_PER_CPU(unsigned int, stats_updates); 587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 588 static u64 flush_next_time; 589 590 #define FLUSH_TIME (2UL*HZ) 591 592 /* 593 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 594 * not rely on this as part of an acquired spinlock_t lock. These functions are 595 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 596 * is sufficient. 597 */ 598 static void memcg_stats_lock(void) 599 { 600 #ifdef CONFIG_PREEMPT_RT 601 preempt_disable(); 602 #else 603 VM_BUG_ON(!irqs_disabled()); 604 #endif 605 } 606 607 static void __memcg_stats_lock(void) 608 { 609 #ifdef CONFIG_PREEMPT_RT 610 preempt_disable(); 611 #endif 612 } 613 614 static void memcg_stats_unlock(void) 615 { 616 #ifdef CONFIG_PREEMPT_RT 617 preempt_enable(); 618 #endif 619 } 620 621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 622 { 623 unsigned int x; 624 625 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 626 627 x = __this_cpu_add_return(stats_updates, abs(val)); 628 if (x > MEMCG_CHARGE_BATCH) { 629 /* 630 * If stats_flush_threshold exceeds the threshold 631 * (>num_online_cpus()), cgroup stats update will be triggered 632 * in __mem_cgroup_flush_stats(). Increasing this var further 633 * is redundant and simply adds overhead in atomic update. 634 */ 635 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 636 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 637 __this_cpu_write(stats_updates, 0); 638 } 639 } 640 641 static void __mem_cgroup_flush_stats(void) 642 { 643 unsigned long flag; 644 645 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 646 return; 647 648 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 649 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 650 atomic_set(&stats_flush_threshold, 0); 651 spin_unlock_irqrestore(&stats_flush_lock, flag); 652 } 653 654 void mem_cgroup_flush_stats(void) 655 { 656 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 657 __mem_cgroup_flush_stats(); 658 } 659 660 void mem_cgroup_flush_stats_delayed(void) 661 { 662 if (time_after64(jiffies_64, flush_next_time)) 663 mem_cgroup_flush_stats(); 664 } 665 666 static void flush_memcg_stats_dwork(struct work_struct *w) 667 { 668 __mem_cgroup_flush_stats(); 669 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 670 } 671 672 /** 673 * __mod_memcg_state - update cgroup memory statistics 674 * @memcg: the memory cgroup 675 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 676 * @val: delta to add to the counter, can be negative 677 */ 678 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 679 { 680 if (mem_cgroup_disabled()) 681 return; 682 683 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 684 memcg_rstat_updated(memcg, val); 685 } 686 687 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 688 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 689 { 690 long x = 0; 691 int cpu; 692 693 for_each_possible_cpu(cpu) 694 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 695 #ifdef CONFIG_SMP 696 if (x < 0) 697 x = 0; 698 #endif 699 return x; 700 } 701 702 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 703 int val) 704 { 705 struct mem_cgroup_per_node *pn; 706 struct mem_cgroup *memcg; 707 708 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 709 memcg = pn->memcg; 710 711 /* 712 * The caller from rmap relay on disabled preemption becase they never 713 * update their counter from in-interrupt context. For these two 714 * counters we check that the update is never performed from an 715 * interrupt context while other caller need to have disabled interrupt. 716 */ 717 __memcg_stats_lock(); 718 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) { 719 switch (idx) { 720 case NR_ANON_MAPPED: 721 case NR_FILE_MAPPED: 722 case NR_ANON_THPS: 723 case NR_SHMEM_PMDMAPPED: 724 case NR_FILE_PMDMAPPED: 725 WARN_ON_ONCE(!in_task()); 726 break; 727 default: 728 WARN_ON_ONCE(!irqs_disabled()); 729 } 730 } 731 732 /* Update memcg */ 733 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 734 735 /* Update lruvec */ 736 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 737 738 memcg_rstat_updated(memcg, val); 739 memcg_stats_unlock(); 740 } 741 742 /** 743 * __mod_lruvec_state - update lruvec memory statistics 744 * @lruvec: the lruvec 745 * @idx: the stat item 746 * @val: delta to add to the counter, can be negative 747 * 748 * The lruvec is the intersection of the NUMA node and a cgroup. This 749 * function updates the all three counters that are affected by a 750 * change of state at this level: per-node, per-cgroup, per-lruvec. 751 */ 752 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 753 int val) 754 { 755 /* Update node */ 756 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 757 758 /* Update memcg and lruvec */ 759 if (!mem_cgroup_disabled()) 760 __mod_memcg_lruvec_state(lruvec, idx, val); 761 } 762 763 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 764 int val) 765 { 766 struct page *head = compound_head(page); /* rmap on tail pages */ 767 struct mem_cgroup *memcg; 768 pg_data_t *pgdat = page_pgdat(page); 769 struct lruvec *lruvec; 770 771 rcu_read_lock(); 772 memcg = page_memcg(head); 773 /* Untracked pages have no memcg, no lruvec. Update only the node */ 774 if (!memcg) { 775 rcu_read_unlock(); 776 __mod_node_page_state(pgdat, idx, val); 777 return; 778 } 779 780 lruvec = mem_cgroup_lruvec(memcg, pgdat); 781 __mod_lruvec_state(lruvec, idx, val); 782 rcu_read_unlock(); 783 } 784 EXPORT_SYMBOL(__mod_lruvec_page_state); 785 786 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 787 { 788 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 789 struct mem_cgroup *memcg; 790 struct lruvec *lruvec; 791 792 rcu_read_lock(); 793 memcg = mem_cgroup_from_slab_obj(p); 794 795 /* 796 * Untracked pages have no memcg, no lruvec. Update only the 797 * node. If we reparent the slab objects to the root memcg, 798 * when we free the slab object, we need to update the per-memcg 799 * vmstats to keep it correct for the root memcg. 800 */ 801 if (!memcg) { 802 __mod_node_page_state(pgdat, idx, val); 803 } else { 804 lruvec = mem_cgroup_lruvec(memcg, pgdat); 805 __mod_lruvec_state(lruvec, idx, val); 806 } 807 rcu_read_unlock(); 808 } 809 810 /** 811 * __count_memcg_events - account VM events in a cgroup 812 * @memcg: the memory cgroup 813 * @idx: the event item 814 * @count: the number of events that occurred 815 */ 816 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 817 unsigned long count) 818 { 819 if (mem_cgroup_disabled()) 820 return; 821 822 memcg_stats_lock(); 823 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 824 memcg_rstat_updated(memcg, count); 825 memcg_stats_unlock(); 826 } 827 828 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 829 { 830 return READ_ONCE(memcg->vmstats.events[event]); 831 } 832 833 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 834 { 835 long x = 0; 836 int cpu; 837 838 for_each_possible_cpu(cpu) 839 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 840 return x; 841 } 842 843 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 844 int nr_pages) 845 { 846 /* pagein of a big page is an event. So, ignore page size */ 847 if (nr_pages > 0) 848 __count_memcg_events(memcg, PGPGIN, 1); 849 else { 850 __count_memcg_events(memcg, PGPGOUT, 1); 851 nr_pages = -nr_pages; /* for event */ 852 } 853 854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 855 } 856 857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 858 enum mem_cgroup_events_target target) 859 { 860 unsigned long val, next; 861 862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 864 /* from time_after() in jiffies.h */ 865 if ((long)(next - val) < 0) { 866 switch (target) { 867 case MEM_CGROUP_TARGET_THRESH: 868 next = val + THRESHOLDS_EVENTS_TARGET; 869 break; 870 case MEM_CGROUP_TARGET_SOFTLIMIT: 871 next = val + SOFTLIMIT_EVENTS_TARGET; 872 break; 873 default: 874 break; 875 } 876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 877 return true; 878 } 879 return false; 880 } 881 882 /* 883 * Check events in order. 884 * 885 */ 886 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 887 { 888 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 889 return; 890 891 /* threshold event is triggered in finer grain than soft limit */ 892 if (unlikely(mem_cgroup_event_ratelimit(memcg, 893 MEM_CGROUP_TARGET_THRESH))) { 894 bool do_softlimit; 895 896 do_softlimit = mem_cgroup_event_ratelimit(memcg, 897 MEM_CGROUP_TARGET_SOFTLIMIT); 898 mem_cgroup_threshold(memcg); 899 if (unlikely(do_softlimit)) 900 mem_cgroup_update_tree(memcg, nid); 901 } 902 } 903 904 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 905 { 906 /* 907 * mm_update_next_owner() may clear mm->owner to NULL 908 * if it races with swapoff, page migration, etc. 909 * So this can be called with p == NULL. 910 */ 911 if (unlikely(!p)) 912 return NULL; 913 914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 915 } 916 EXPORT_SYMBOL(mem_cgroup_from_task); 917 918 static __always_inline struct mem_cgroup *active_memcg(void) 919 { 920 if (!in_task()) 921 return this_cpu_read(int_active_memcg); 922 else 923 return current->active_memcg; 924 } 925 926 /** 927 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 928 * @mm: mm from which memcg should be extracted. It can be NULL. 929 * 930 * Obtain a reference on mm->memcg and returns it if successful. If mm 931 * is NULL, then the memcg is chosen as follows: 932 * 1) The active memcg, if set. 933 * 2) current->mm->memcg, if available 934 * 3) root memcg 935 * If mem_cgroup is disabled, NULL is returned. 936 */ 937 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 938 { 939 struct mem_cgroup *memcg; 940 941 if (mem_cgroup_disabled()) 942 return NULL; 943 944 /* 945 * Page cache insertions can happen without an 946 * actual mm context, e.g. during disk probing 947 * on boot, loopback IO, acct() writes etc. 948 * 949 * No need to css_get on root memcg as the reference 950 * counting is disabled on the root level in the 951 * cgroup core. See CSS_NO_REF. 952 */ 953 if (unlikely(!mm)) { 954 memcg = active_memcg(); 955 if (unlikely(memcg)) { 956 /* remote memcg must hold a ref */ 957 css_get(&memcg->css); 958 return memcg; 959 } 960 mm = current->mm; 961 if (unlikely(!mm)) 962 return root_mem_cgroup; 963 } 964 965 rcu_read_lock(); 966 do { 967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 968 if (unlikely(!memcg)) 969 memcg = root_mem_cgroup; 970 } while (!css_tryget(&memcg->css)); 971 rcu_read_unlock(); 972 return memcg; 973 } 974 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 975 976 static __always_inline bool memcg_kmem_bypass(void) 977 { 978 /* Allow remote memcg charging from any context. */ 979 if (unlikely(active_memcg())) 980 return false; 981 982 /* Memcg to charge can't be determined. */ 983 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 984 return true; 985 986 return false; 987 } 988 989 /** 990 * mem_cgroup_iter - iterate over memory cgroup hierarchy 991 * @root: hierarchy root 992 * @prev: previously returned memcg, NULL on first invocation 993 * @reclaim: cookie for shared reclaim walks, NULL for full walks 994 * 995 * Returns references to children of the hierarchy below @root, or 996 * @root itself, or %NULL after a full round-trip. 997 * 998 * Caller must pass the return value in @prev on subsequent 999 * invocations for reference counting, or use mem_cgroup_iter_break() 1000 * to cancel a hierarchy walk before the round-trip is complete. 1001 * 1002 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1003 * in the hierarchy among all concurrent reclaimers operating on the 1004 * same node. 1005 */ 1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1007 struct mem_cgroup *prev, 1008 struct mem_cgroup_reclaim_cookie *reclaim) 1009 { 1010 struct mem_cgroup_reclaim_iter *iter; 1011 struct cgroup_subsys_state *css = NULL; 1012 struct mem_cgroup *memcg = NULL; 1013 struct mem_cgroup *pos = NULL; 1014 1015 if (mem_cgroup_disabled()) 1016 return NULL; 1017 1018 if (!root) 1019 root = root_mem_cgroup; 1020 1021 rcu_read_lock(); 1022 1023 if (reclaim) { 1024 struct mem_cgroup_per_node *mz; 1025 1026 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1027 iter = &mz->iter; 1028 1029 /* 1030 * On start, join the current reclaim iteration cycle. 1031 * Exit when a concurrent walker completes it. 1032 */ 1033 if (!prev) 1034 reclaim->generation = iter->generation; 1035 else if (reclaim->generation != iter->generation) 1036 goto out_unlock; 1037 1038 while (1) { 1039 pos = READ_ONCE(iter->position); 1040 if (!pos || css_tryget(&pos->css)) 1041 break; 1042 /* 1043 * css reference reached zero, so iter->position will 1044 * be cleared by ->css_released. However, we should not 1045 * rely on this happening soon, because ->css_released 1046 * is called from a work queue, and by busy-waiting we 1047 * might block it. So we clear iter->position right 1048 * away. 1049 */ 1050 (void)cmpxchg(&iter->position, pos, NULL); 1051 } 1052 } else if (prev) { 1053 pos = prev; 1054 } 1055 1056 if (pos) 1057 css = &pos->css; 1058 1059 for (;;) { 1060 css = css_next_descendant_pre(css, &root->css); 1061 if (!css) { 1062 /* 1063 * Reclaimers share the hierarchy walk, and a 1064 * new one might jump in right at the end of 1065 * the hierarchy - make sure they see at least 1066 * one group and restart from the beginning. 1067 */ 1068 if (!prev) 1069 continue; 1070 break; 1071 } 1072 1073 /* 1074 * Verify the css and acquire a reference. The root 1075 * is provided by the caller, so we know it's alive 1076 * and kicking, and don't take an extra reference. 1077 */ 1078 if (css == &root->css || css_tryget(css)) { 1079 memcg = mem_cgroup_from_css(css); 1080 break; 1081 } 1082 } 1083 1084 if (reclaim) { 1085 /* 1086 * The position could have already been updated by a competing 1087 * thread, so check that the value hasn't changed since we read 1088 * it to avoid reclaiming from the same cgroup twice. 1089 */ 1090 (void)cmpxchg(&iter->position, pos, memcg); 1091 1092 if (pos) 1093 css_put(&pos->css); 1094 1095 if (!memcg) 1096 iter->generation++; 1097 } 1098 1099 out_unlock: 1100 rcu_read_unlock(); 1101 if (prev && prev != root) 1102 css_put(&prev->css); 1103 1104 return memcg; 1105 } 1106 1107 /** 1108 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1109 * @root: hierarchy root 1110 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1111 */ 1112 void mem_cgroup_iter_break(struct mem_cgroup *root, 1113 struct mem_cgroup *prev) 1114 { 1115 if (!root) 1116 root = root_mem_cgroup; 1117 if (prev && prev != root) 1118 css_put(&prev->css); 1119 } 1120 1121 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1122 struct mem_cgroup *dead_memcg) 1123 { 1124 struct mem_cgroup_reclaim_iter *iter; 1125 struct mem_cgroup_per_node *mz; 1126 int nid; 1127 1128 for_each_node(nid) { 1129 mz = from->nodeinfo[nid]; 1130 iter = &mz->iter; 1131 cmpxchg(&iter->position, dead_memcg, NULL); 1132 } 1133 } 1134 1135 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1136 { 1137 struct mem_cgroup *memcg = dead_memcg; 1138 struct mem_cgroup *last; 1139 1140 do { 1141 __invalidate_reclaim_iterators(memcg, dead_memcg); 1142 last = memcg; 1143 } while ((memcg = parent_mem_cgroup(memcg))); 1144 1145 /* 1146 * When cgruop1 non-hierarchy mode is used, 1147 * parent_mem_cgroup() does not walk all the way up to the 1148 * cgroup root (root_mem_cgroup). So we have to handle 1149 * dead_memcg from cgroup root separately. 1150 */ 1151 if (last != root_mem_cgroup) 1152 __invalidate_reclaim_iterators(root_mem_cgroup, 1153 dead_memcg); 1154 } 1155 1156 /** 1157 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1158 * @memcg: hierarchy root 1159 * @fn: function to call for each task 1160 * @arg: argument passed to @fn 1161 * 1162 * This function iterates over tasks attached to @memcg or to any of its 1163 * descendants and calls @fn for each task. If @fn returns a non-zero 1164 * value, the function breaks the iteration loop and returns the value. 1165 * Otherwise, it will iterate over all tasks and return 0. 1166 * 1167 * This function must not be called for the root memory cgroup. 1168 */ 1169 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1170 int (*fn)(struct task_struct *, void *), void *arg) 1171 { 1172 struct mem_cgroup *iter; 1173 int ret = 0; 1174 1175 BUG_ON(memcg == root_mem_cgroup); 1176 1177 for_each_mem_cgroup_tree(iter, memcg) { 1178 struct css_task_iter it; 1179 struct task_struct *task; 1180 1181 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1182 while (!ret && (task = css_task_iter_next(&it))) 1183 ret = fn(task, arg); 1184 css_task_iter_end(&it); 1185 if (ret) { 1186 mem_cgroup_iter_break(memcg, iter); 1187 break; 1188 } 1189 } 1190 return ret; 1191 } 1192 1193 #ifdef CONFIG_DEBUG_VM 1194 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1195 { 1196 struct mem_cgroup *memcg; 1197 1198 if (mem_cgroup_disabled()) 1199 return; 1200 1201 memcg = folio_memcg(folio); 1202 1203 if (!memcg) 1204 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1205 else 1206 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1207 } 1208 #endif 1209 1210 /** 1211 * folio_lruvec_lock - Lock the lruvec for a folio. 1212 * @folio: Pointer to the folio. 1213 * 1214 * These functions are safe to use under any of the following conditions: 1215 * - folio locked 1216 * - folio_test_lru false 1217 * - folio_memcg_lock() 1218 * - folio frozen (refcount of 0) 1219 * 1220 * Return: The lruvec this folio is on with its lock held. 1221 */ 1222 struct lruvec *folio_lruvec_lock(struct folio *folio) 1223 { 1224 struct lruvec *lruvec = folio_lruvec(folio); 1225 1226 spin_lock(&lruvec->lru_lock); 1227 lruvec_memcg_debug(lruvec, folio); 1228 1229 return lruvec; 1230 } 1231 1232 /** 1233 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1234 * @folio: Pointer to the folio. 1235 * 1236 * These functions are safe to use under any of the following conditions: 1237 * - folio locked 1238 * - folio_test_lru false 1239 * - folio_memcg_lock() 1240 * - folio frozen (refcount of 0) 1241 * 1242 * Return: The lruvec this folio is on with its lock held and interrupts 1243 * disabled. 1244 */ 1245 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1246 { 1247 struct lruvec *lruvec = folio_lruvec(folio); 1248 1249 spin_lock_irq(&lruvec->lru_lock); 1250 lruvec_memcg_debug(lruvec, folio); 1251 1252 return lruvec; 1253 } 1254 1255 /** 1256 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1257 * @folio: Pointer to the folio. 1258 * @flags: Pointer to irqsave flags. 1259 * 1260 * These functions are safe to use under any of the following conditions: 1261 * - folio locked 1262 * - folio_test_lru false 1263 * - folio_memcg_lock() 1264 * - folio frozen (refcount of 0) 1265 * 1266 * Return: The lruvec this folio is on with its lock held and interrupts 1267 * disabled. 1268 */ 1269 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1270 unsigned long *flags) 1271 { 1272 struct lruvec *lruvec = folio_lruvec(folio); 1273 1274 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1275 lruvec_memcg_debug(lruvec, folio); 1276 1277 return lruvec; 1278 } 1279 1280 /** 1281 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1282 * @lruvec: mem_cgroup per zone lru vector 1283 * @lru: index of lru list the page is sitting on 1284 * @zid: zone id of the accounted pages 1285 * @nr_pages: positive when adding or negative when removing 1286 * 1287 * This function must be called under lru_lock, just before a page is added 1288 * to or just after a page is removed from an lru list. 1289 */ 1290 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1291 int zid, int nr_pages) 1292 { 1293 struct mem_cgroup_per_node *mz; 1294 unsigned long *lru_size; 1295 long size; 1296 1297 if (mem_cgroup_disabled()) 1298 return; 1299 1300 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1301 lru_size = &mz->lru_zone_size[zid][lru]; 1302 1303 if (nr_pages < 0) 1304 *lru_size += nr_pages; 1305 1306 size = *lru_size; 1307 if (WARN_ONCE(size < 0, 1308 "%s(%p, %d, %d): lru_size %ld\n", 1309 __func__, lruvec, lru, nr_pages, size)) { 1310 VM_BUG_ON(1); 1311 *lru_size = 0; 1312 } 1313 1314 if (nr_pages > 0) 1315 *lru_size += nr_pages; 1316 } 1317 1318 /** 1319 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1320 * @memcg: the memory cgroup 1321 * 1322 * Returns the maximum amount of memory @mem can be charged with, in 1323 * pages. 1324 */ 1325 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1326 { 1327 unsigned long margin = 0; 1328 unsigned long count; 1329 unsigned long limit; 1330 1331 count = page_counter_read(&memcg->memory); 1332 limit = READ_ONCE(memcg->memory.max); 1333 if (count < limit) 1334 margin = limit - count; 1335 1336 if (do_memsw_account()) { 1337 count = page_counter_read(&memcg->memsw); 1338 limit = READ_ONCE(memcg->memsw.max); 1339 if (count < limit) 1340 margin = min(margin, limit - count); 1341 else 1342 margin = 0; 1343 } 1344 1345 return margin; 1346 } 1347 1348 /* 1349 * A routine for checking "mem" is under move_account() or not. 1350 * 1351 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1352 * moving cgroups. This is for waiting at high-memory pressure 1353 * caused by "move". 1354 */ 1355 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1356 { 1357 struct mem_cgroup *from; 1358 struct mem_cgroup *to; 1359 bool ret = false; 1360 /* 1361 * Unlike task_move routines, we access mc.to, mc.from not under 1362 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1363 */ 1364 spin_lock(&mc.lock); 1365 from = mc.from; 1366 to = mc.to; 1367 if (!from) 1368 goto unlock; 1369 1370 ret = mem_cgroup_is_descendant(from, memcg) || 1371 mem_cgroup_is_descendant(to, memcg); 1372 unlock: 1373 spin_unlock(&mc.lock); 1374 return ret; 1375 } 1376 1377 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1378 { 1379 if (mc.moving_task && current != mc.moving_task) { 1380 if (mem_cgroup_under_move(memcg)) { 1381 DEFINE_WAIT(wait); 1382 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1383 /* moving charge context might have finished. */ 1384 if (mc.moving_task) 1385 schedule(); 1386 finish_wait(&mc.waitq, &wait); 1387 return true; 1388 } 1389 } 1390 return false; 1391 } 1392 1393 struct memory_stat { 1394 const char *name; 1395 unsigned int idx; 1396 }; 1397 1398 static const struct memory_stat memory_stats[] = { 1399 { "anon", NR_ANON_MAPPED }, 1400 { "file", NR_FILE_PAGES }, 1401 { "kernel", MEMCG_KMEM }, 1402 { "kernel_stack", NR_KERNEL_STACK_KB }, 1403 { "pagetables", NR_PAGETABLE }, 1404 { "percpu", MEMCG_PERCPU_B }, 1405 { "sock", MEMCG_SOCK }, 1406 { "vmalloc", MEMCG_VMALLOC }, 1407 { "shmem", NR_SHMEM }, 1408 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1409 { "zswap", MEMCG_ZSWAP_B }, 1410 { "zswapped", MEMCG_ZSWAPPED }, 1411 #endif 1412 { "file_mapped", NR_FILE_MAPPED }, 1413 { "file_dirty", NR_FILE_DIRTY }, 1414 { "file_writeback", NR_WRITEBACK }, 1415 #ifdef CONFIG_SWAP 1416 { "swapcached", NR_SWAPCACHE }, 1417 #endif 1418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1419 { "anon_thp", NR_ANON_THPS }, 1420 { "file_thp", NR_FILE_THPS }, 1421 { "shmem_thp", NR_SHMEM_THPS }, 1422 #endif 1423 { "inactive_anon", NR_INACTIVE_ANON }, 1424 { "active_anon", NR_ACTIVE_ANON }, 1425 { "inactive_file", NR_INACTIVE_FILE }, 1426 { "active_file", NR_ACTIVE_FILE }, 1427 { "unevictable", NR_UNEVICTABLE }, 1428 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1429 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1430 1431 /* The memory events */ 1432 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1433 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1434 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1435 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1436 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1437 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1438 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1439 }; 1440 1441 /* Translate stat items to the correct unit for memory.stat output */ 1442 static int memcg_page_state_unit(int item) 1443 { 1444 switch (item) { 1445 case MEMCG_PERCPU_B: 1446 case MEMCG_ZSWAP_B: 1447 case NR_SLAB_RECLAIMABLE_B: 1448 case NR_SLAB_UNRECLAIMABLE_B: 1449 case WORKINGSET_REFAULT_ANON: 1450 case WORKINGSET_REFAULT_FILE: 1451 case WORKINGSET_ACTIVATE_ANON: 1452 case WORKINGSET_ACTIVATE_FILE: 1453 case WORKINGSET_RESTORE_ANON: 1454 case WORKINGSET_RESTORE_FILE: 1455 case WORKINGSET_NODERECLAIM: 1456 return 1; 1457 case NR_KERNEL_STACK_KB: 1458 return SZ_1K; 1459 default: 1460 return PAGE_SIZE; 1461 } 1462 } 1463 1464 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1465 int item) 1466 { 1467 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1468 } 1469 1470 /* Subset of vm_event_item to report for memcg event stats */ 1471 static const unsigned int memcg_vm_event_stat[] = { 1472 PGSCAN_KSWAPD, 1473 PGSCAN_DIRECT, 1474 PGSTEAL_KSWAPD, 1475 PGSTEAL_DIRECT, 1476 PGFAULT, 1477 PGMAJFAULT, 1478 PGREFILL, 1479 PGACTIVATE, 1480 PGDEACTIVATE, 1481 PGLAZYFREE, 1482 PGLAZYFREED, 1483 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1484 ZSWPIN, 1485 ZSWPOUT, 1486 #endif 1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1488 THP_FAULT_ALLOC, 1489 THP_COLLAPSE_ALLOC, 1490 #endif 1491 }; 1492 1493 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize) 1494 { 1495 struct seq_buf s; 1496 int i; 1497 1498 seq_buf_init(&s, buf, bufsize); 1499 1500 /* 1501 * Provide statistics on the state of the memory subsystem as 1502 * well as cumulative event counters that show past behavior. 1503 * 1504 * This list is ordered following a combination of these gradients: 1505 * 1) generic big picture -> specifics and details 1506 * 2) reflecting userspace activity -> reflecting kernel heuristics 1507 * 1508 * Current memory state: 1509 */ 1510 mem_cgroup_flush_stats(); 1511 1512 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1513 u64 size; 1514 1515 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1516 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1517 1518 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1519 size += memcg_page_state_output(memcg, 1520 NR_SLAB_RECLAIMABLE_B); 1521 seq_buf_printf(&s, "slab %llu\n", size); 1522 } 1523 } 1524 1525 /* Accumulated memory events */ 1526 seq_buf_printf(&s, "pgscan %lu\n", 1527 memcg_events(memcg, PGSCAN_KSWAPD) + 1528 memcg_events(memcg, PGSCAN_DIRECT)); 1529 seq_buf_printf(&s, "pgsteal %lu\n", 1530 memcg_events(memcg, PGSTEAL_KSWAPD) + 1531 memcg_events(memcg, PGSTEAL_DIRECT)); 1532 1533 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) 1534 seq_buf_printf(&s, "%s %lu\n", 1535 vm_event_name(memcg_vm_event_stat[i]), 1536 memcg_events(memcg, memcg_vm_event_stat[i])); 1537 1538 /* The above should easily fit into one page */ 1539 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1540 } 1541 1542 #define K(x) ((x) << (PAGE_SHIFT-10)) 1543 /** 1544 * mem_cgroup_print_oom_context: Print OOM information relevant to 1545 * memory controller. 1546 * @memcg: The memory cgroup that went over limit 1547 * @p: Task that is going to be killed 1548 * 1549 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1550 * enabled 1551 */ 1552 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1553 { 1554 rcu_read_lock(); 1555 1556 if (memcg) { 1557 pr_cont(",oom_memcg="); 1558 pr_cont_cgroup_path(memcg->css.cgroup); 1559 } else 1560 pr_cont(",global_oom"); 1561 if (p) { 1562 pr_cont(",task_memcg="); 1563 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1564 } 1565 rcu_read_unlock(); 1566 } 1567 1568 /** 1569 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1570 * memory controller. 1571 * @memcg: The memory cgroup that went over limit 1572 */ 1573 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1574 { 1575 /* Use static buffer, for the caller is holding oom_lock. */ 1576 static char buf[PAGE_SIZE]; 1577 1578 lockdep_assert_held(&oom_lock); 1579 1580 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1581 K((u64)page_counter_read(&memcg->memory)), 1582 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1583 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1584 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1585 K((u64)page_counter_read(&memcg->swap)), 1586 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1587 else { 1588 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1589 K((u64)page_counter_read(&memcg->memsw)), 1590 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1591 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1592 K((u64)page_counter_read(&memcg->kmem)), 1593 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1594 } 1595 1596 pr_info("Memory cgroup stats for "); 1597 pr_cont_cgroup_path(memcg->css.cgroup); 1598 pr_cont(":"); 1599 memory_stat_format(memcg, buf, sizeof(buf)); 1600 pr_info("%s", buf); 1601 } 1602 1603 /* 1604 * Return the memory (and swap, if configured) limit for a memcg. 1605 */ 1606 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1607 { 1608 unsigned long max = READ_ONCE(memcg->memory.max); 1609 1610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1611 if (mem_cgroup_swappiness(memcg)) 1612 max += min(READ_ONCE(memcg->swap.max), 1613 (unsigned long)total_swap_pages); 1614 } else { /* v1 */ 1615 if (mem_cgroup_swappiness(memcg)) { 1616 /* Calculate swap excess capacity from memsw limit */ 1617 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1618 1619 max += min(swap, (unsigned long)total_swap_pages); 1620 } 1621 } 1622 return max; 1623 } 1624 1625 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1626 { 1627 return page_counter_read(&memcg->memory); 1628 } 1629 1630 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1631 int order) 1632 { 1633 struct oom_control oc = { 1634 .zonelist = NULL, 1635 .nodemask = NULL, 1636 .memcg = memcg, 1637 .gfp_mask = gfp_mask, 1638 .order = order, 1639 }; 1640 bool ret = true; 1641 1642 if (mutex_lock_killable(&oom_lock)) 1643 return true; 1644 1645 if (mem_cgroup_margin(memcg) >= (1 << order)) 1646 goto unlock; 1647 1648 /* 1649 * A few threads which were not waiting at mutex_lock_killable() can 1650 * fail to bail out. Therefore, check again after holding oom_lock. 1651 */ 1652 ret = task_is_dying() || out_of_memory(&oc); 1653 1654 unlock: 1655 mutex_unlock(&oom_lock); 1656 return ret; 1657 } 1658 1659 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1660 pg_data_t *pgdat, 1661 gfp_t gfp_mask, 1662 unsigned long *total_scanned) 1663 { 1664 struct mem_cgroup *victim = NULL; 1665 int total = 0; 1666 int loop = 0; 1667 unsigned long excess; 1668 unsigned long nr_scanned; 1669 struct mem_cgroup_reclaim_cookie reclaim = { 1670 .pgdat = pgdat, 1671 }; 1672 1673 excess = soft_limit_excess(root_memcg); 1674 1675 while (1) { 1676 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1677 if (!victim) { 1678 loop++; 1679 if (loop >= 2) { 1680 /* 1681 * If we have not been able to reclaim 1682 * anything, it might because there are 1683 * no reclaimable pages under this hierarchy 1684 */ 1685 if (!total) 1686 break; 1687 /* 1688 * We want to do more targeted reclaim. 1689 * excess >> 2 is not to excessive so as to 1690 * reclaim too much, nor too less that we keep 1691 * coming back to reclaim from this cgroup 1692 */ 1693 if (total >= (excess >> 2) || 1694 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1695 break; 1696 } 1697 continue; 1698 } 1699 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1700 pgdat, &nr_scanned); 1701 *total_scanned += nr_scanned; 1702 if (!soft_limit_excess(root_memcg)) 1703 break; 1704 } 1705 mem_cgroup_iter_break(root_memcg, victim); 1706 return total; 1707 } 1708 1709 #ifdef CONFIG_LOCKDEP 1710 static struct lockdep_map memcg_oom_lock_dep_map = { 1711 .name = "memcg_oom_lock", 1712 }; 1713 #endif 1714 1715 static DEFINE_SPINLOCK(memcg_oom_lock); 1716 1717 /* 1718 * Check OOM-Killer is already running under our hierarchy. 1719 * If someone is running, return false. 1720 */ 1721 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1722 { 1723 struct mem_cgroup *iter, *failed = NULL; 1724 1725 spin_lock(&memcg_oom_lock); 1726 1727 for_each_mem_cgroup_tree(iter, memcg) { 1728 if (iter->oom_lock) { 1729 /* 1730 * this subtree of our hierarchy is already locked 1731 * so we cannot give a lock. 1732 */ 1733 failed = iter; 1734 mem_cgroup_iter_break(memcg, iter); 1735 break; 1736 } else 1737 iter->oom_lock = true; 1738 } 1739 1740 if (failed) { 1741 /* 1742 * OK, we failed to lock the whole subtree so we have 1743 * to clean up what we set up to the failing subtree 1744 */ 1745 for_each_mem_cgroup_tree(iter, memcg) { 1746 if (iter == failed) { 1747 mem_cgroup_iter_break(memcg, iter); 1748 break; 1749 } 1750 iter->oom_lock = false; 1751 } 1752 } else 1753 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1754 1755 spin_unlock(&memcg_oom_lock); 1756 1757 return !failed; 1758 } 1759 1760 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1761 { 1762 struct mem_cgroup *iter; 1763 1764 spin_lock(&memcg_oom_lock); 1765 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1766 for_each_mem_cgroup_tree(iter, memcg) 1767 iter->oom_lock = false; 1768 spin_unlock(&memcg_oom_lock); 1769 } 1770 1771 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1772 { 1773 struct mem_cgroup *iter; 1774 1775 spin_lock(&memcg_oom_lock); 1776 for_each_mem_cgroup_tree(iter, memcg) 1777 iter->under_oom++; 1778 spin_unlock(&memcg_oom_lock); 1779 } 1780 1781 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1782 { 1783 struct mem_cgroup *iter; 1784 1785 /* 1786 * Be careful about under_oom underflows because a child memcg 1787 * could have been added after mem_cgroup_mark_under_oom. 1788 */ 1789 spin_lock(&memcg_oom_lock); 1790 for_each_mem_cgroup_tree(iter, memcg) 1791 if (iter->under_oom > 0) 1792 iter->under_oom--; 1793 spin_unlock(&memcg_oom_lock); 1794 } 1795 1796 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1797 1798 struct oom_wait_info { 1799 struct mem_cgroup *memcg; 1800 wait_queue_entry_t wait; 1801 }; 1802 1803 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1804 unsigned mode, int sync, void *arg) 1805 { 1806 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1807 struct mem_cgroup *oom_wait_memcg; 1808 struct oom_wait_info *oom_wait_info; 1809 1810 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1811 oom_wait_memcg = oom_wait_info->memcg; 1812 1813 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1814 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1815 return 0; 1816 return autoremove_wake_function(wait, mode, sync, arg); 1817 } 1818 1819 static void memcg_oom_recover(struct mem_cgroup *memcg) 1820 { 1821 /* 1822 * For the following lockless ->under_oom test, the only required 1823 * guarantee is that it must see the state asserted by an OOM when 1824 * this function is called as a result of userland actions 1825 * triggered by the notification of the OOM. This is trivially 1826 * achieved by invoking mem_cgroup_mark_under_oom() before 1827 * triggering notification. 1828 */ 1829 if (memcg && memcg->under_oom) 1830 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1831 } 1832 1833 /* 1834 * Returns true if successfully killed one or more processes. Though in some 1835 * corner cases it can return true even without killing any process. 1836 */ 1837 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1838 { 1839 bool locked, ret; 1840 1841 if (order > PAGE_ALLOC_COSTLY_ORDER) 1842 return false; 1843 1844 memcg_memory_event(memcg, MEMCG_OOM); 1845 1846 /* 1847 * We are in the middle of the charge context here, so we 1848 * don't want to block when potentially sitting on a callstack 1849 * that holds all kinds of filesystem and mm locks. 1850 * 1851 * cgroup1 allows disabling the OOM killer and waiting for outside 1852 * handling until the charge can succeed; remember the context and put 1853 * the task to sleep at the end of the page fault when all locks are 1854 * released. 1855 * 1856 * On the other hand, in-kernel OOM killer allows for an async victim 1857 * memory reclaim (oom_reaper) and that means that we are not solely 1858 * relying on the oom victim to make a forward progress and we can 1859 * invoke the oom killer here. 1860 * 1861 * Please note that mem_cgroup_out_of_memory might fail to find a 1862 * victim and then we have to bail out from the charge path. 1863 */ 1864 if (memcg->oom_kill_disable) { 1865 if (current->in_user_fault) { 1866 css_get(&memcg->css); 1867 current->memcg_in_oom = memcg; 1868 current->memcg_oom_gfp_mask = mask; 1869 current->memcg_oom_order = order; 1870 } 1871 return false; 1872 } 1873 1874 mem_cgroup_mark_under_oom(memcg); 1875 1876 locked = mem_cgroup_oom_trylock(memcg); 1877 1878 if (locked) 1879 mem_cgroup_oom_notify(memcg); 1880 1881 mem_cgroup_unmark_under_oom(memcg); 1882 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1883 1884 if (locked) 1885 mem_cgroup_oom_unlock(memcg); 1886 1887 return ret; 1888 } 1889 1890 /** 1891 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1892 * @handle: actually kill/wait or just clean up the OOM state 1893 * 1894 * This has to be called at the end of a page fault if the memcg OOM 1895 * handler was enabled. 1896 * 1897 * Memcg supports userspace OOM handling where failed allocations must 1898 * sleep on a waitqueue until the userspace task resolves the 1899 * situation. Sleeping directly in the charge context with all kinds 1900 * of locks held is not a good idea, instead we remember an OOM state 1901 * in the task and mem_cgroup_oom_synchronize() has to be called at 1902 * the end of the page fault to complete the OOM handling. 1903 * 1904 * Returns %true if an ongoing memcg OOM situation was detected and 1905 * completed, %false otherwise. 1906 */ 1907 bool mem_cgroup_oom_synchronize(bool handle) 1908 { 1909 struct mem_cgroup *memcg = current->memcg_in_oom; 1910 struct oom_wait_info owait; 1911 bool locked; 1912 1913 /* OOM is global, do not handle */ 1914 if (!memcg) 1915 return false; 1916 1917 if (!handle) 1918 goto cleanup; 1919 1920 owait.memcg = memcg; 1921 owait.wait.flags = 0; 1922 owait.wait.func = memcg_oom_wake_function; 1923 owait.wait.private = current; 1924 INIT_LIST_HEAD(&owait.wait.entry); 1925 1926 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1927 mem_cgroup_mark_under_oom(memcg); 1928 1929 locked = mem_cgroup_oom_trylock(memcg); 1930 1931 if (locked) 1932 mem_cgroup_oom_notify(memcg); 1933 1934 if (locked && !memcg->oom_kill_disable) { 1935 mem_cgroup_unmark_under_oom(memcg); 1936 finish_wait(&memcg_oom_waitq, &owait.wait); 1937 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1938 current->memcg_oom_order); 1939 } else { 1940 schedule(); 1941 mem_cgroup_unmark_under_oom(memcg); 1942 finish_wait(&memcg_oom_waitq, &owait.wait); 1943 } 1944 1945 if (locked) { 1946 mem_cgroup_oom_unlock(memcg); 1947 /* 1948 * There is no guarantee that an OOM-lock contender 1949 * sees the wakeups triggered by the OOM kill 1950 * uncharges. Wake any sleepers explicitly. 1951 */ 1952 memcg_oom_recover(memcg); 1953 } 1954 cleanup: 1955 current->memcg_in_oom = NULL; 1956 css_put(&memcg->css); 1957 return true; 1958 } 1959 1960 /** 1961 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1962 * @victim: task to be killed by the OOM killer 1963 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1964 * 1965 * Returns a pointer to a memory cgroup, which has to be cleaned up 1966 * by killing all belonging OOM-killable tasks. 1967 * 1968 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1969 */ 1970 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1971 struct mem_cgroup *oom_domain) 1972 { 1973 struct mem_cgroup *oom_group = NULL; 1974 struct mem_cgroup *memcg; 1975 1976 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1977 return NULL; 1978 1979 if (!oom_domain) 1980 oom_domain = root_mem_cgroup; 1981 1982 rcu_read_lock(); 1983 1984 memcg = mem_cgroup_from_task(victim); 1985 if (memcg == root_mem_cgroup) 1986 goto out; 1987 1988 /* 1989 * If the victim task has been asynchronously moved to a different 1990 * memory cgroup, we might end up killing tasks outside oom_domain. 1991 * In this case it's better to ignore memory.group.oom. 1992 */ 1993 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1994 goto out; 1995 1996 /* 1997 * Traverse the memory cgroup hierarchy from the victim task's 1998 * cgroup up to the OOMing cgroup (or root) to find the 1999 * highest-level memory cgroup with oom.group set. 2000 */ 2001 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2002 if (memcg->oom_group) 2003 oom_group = memcg; 2004 2005 if (memcg == oom_domain) 2006 break; 2007 } 2008 2009 if (oom_group) 2010 css_get(&oom_group->css); 2011 out: 2012 rcu_read_unlock(); 2013 2014 return oom_group; 2015 } 2016 2017 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2018 { 2019 pr_info("Tasks in "); 2020 pr_cont_cgroup_path(memcg->css.cgroup); 2021 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2022 } 2023 2024 /** 2025 * folio_memcg_lock - Bind a folio to its memcg. 2026 * @folio: The folio. 2027 * 2028 * This function prevents unlocked LRU folios from being moved to 2029 * another cgroup. 2030 * 2031 * It ensures lifetime of the bound memcg. The caller is responsible 2032 * for the lifetime of the folio. 2033 */ 2034 void folio_memcg_lock(struct folio *folio) 2035 { 2036 struct mem_cgroup *memcg; 2037 unsigned long flags; 2038 2039 /* 2040 * The RCU lock is held throughout the transaction. The fast 2041 * path can get away without acquiring the memcg->move_lock 2042 * because page moving starts with an RCU grace period. 2043 */ 2044 rcu_read_lock(); 2045 2046 if (mem_cgroup_disabled()) 2047 return; 2048 again: 2049 memcg = folio_memcg(folio); 2050 if (unlikely(!memcg)) 2051 return; 2052 2053 #ifdef CONFIG_PROVE_LOCKING 2054 local_irq_save(flags); 2055 might_lock(&memcg->move_lock); 2056 local_irq_restore(flags); 2057 #endif 2058 2059 if (atomic_read(&memcg->moving_account) <= 0) 2060 return; 2061 2062 spin_lock_irqsave(&memcg->move_lock, flags); 2063 if (memcg != folio_memcg(folio)) { 2064 spin_unlock_irqrestore(&memcg->move_lock, flags); 2065 goto again; 2066 } 2067 2068 /* 2069 * When charge migration first begins, we can have multiple 2070 * critical sections holding the fast-path RCU lock and one 2071 * holding the slowpath move_lock. Track the task who has the 2072 * move_lock for unlock_page_memcg(). 2073 */ 2074 memcg->move_lock_task = current; 2075 memcg->move_lock_flags = flags; 2076 } 2077 2078 void lock_page_memcg(struct page *page) 2079 { 2080 folio_memcg_lock(page_folio(page)); 2081 } 2082 2083 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2084 { 2085 if (memcg && memcg->move_lock_task == current) { 2086 unsigned long flags = memcg->move_lock_flags; 2087 2088 memcg->move_lock_task = NULL; 2089 memcg->move_lock_flags = 0; 2090 2091 spin_unlock_irqrestore(&memcg->move_lock, flags); 2092 } 2093 2094 rcu_read_unlock(); 2095 } 2096 2097 /** 2098 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2099 * @folio: The folio. 2100 * 2101 * This releases the binding created by folio_memcg_lock(). This does 2102 * not change the accounting of this folio to its memcg, but it does 2103 * permit others to change it. 2104 */ 2105 void folio_memcg_unlock(struct folio *folio) 2106 { 2107 __folio_memcg_unlock(folio_memcg(folio)); 2108 } 2109 2110 void unlock_page_memcg(struct page *page) 2111 { 2112 folio_memcg_unlock(page_folio(page)); 2113 } 2114 2115 struct memcg_stock_pcp { 2116 local_lock_t stock_lock; 2117 struct mem_cgroup *cached; /* this never be root cgroup */ 2118 unsigned int nr_pages; 2119 2120 #ifdef CONFIG_MEMCG_KMEM 2121 struct obj_cgroup *cached_objcg; 2122 struct pglist_data *cached_pgdat; 2123 unsigned int nr_bytes; 2124 int nr_slab_reclaimable_b; 2125 int nr_slab_unreclaimable_b; 2126 #endif 2127 2128 struct work_struct work; 2129 unsigned long flags; 2130 #define FLUSHING_CACHED_CHARGE 0 2131 }; 2132 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2133 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2134 }; 2135 static DEFINE_MUTEX(percpu_charge_mutex); 2136 2137 #ifdef CONFIG_MEMCG_KMEM 2138 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2139 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2140 struct mem_cgroup *root_memcg); 2141 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2142 2143 #else 2144 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2145 { 2146 return NULL; 2147 } 2148 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2149 struct mem_cgroup *root_memcg) 2150 { 2151 return false; 2152 } 2153 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2154 { 2155 } 2156 #endif 2157 2158 /** 2159 * consume_stock: Try to consume stocked charge on this cpu. 2160 * @memcg: memcg to consume from. 2161 * @nr_pages: how many pages to charge. 2162 * 2163 * The charges will only happen if @memcg matches the current cpu's memcg 2164 * stock, and at least @nr_pages are available in that stock. Failure to 2165 * service an allocation will refill the stock. 2166 * 2167 * returns true if successful, false otherwise. 2168 */ 2169 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2170 { 2171 struct memcg_stock_pcp *stock; 2172 unsigned long flags; 2173 bool ret = false; 2174 2175 if (nr_pages > MEMCG_CHARGE_BATCH) 2176 return ret; 2177 2178 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2179 2180 stock = this_cpu_ptr(&memcg_stock); 2181 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2182 stock->nr_pages -= nr_pages; 2183 ret = true; 2184 } 2185 2186 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2187 2188 return ret; 2189 } 2190 2191 /* 2192 * Returns stocks cached in percpu and reset cached information. 2193 */ 2194 static void drain_stock(struct memcg_stock_pcp *stock) 2195 { 2196 struct mem_cgroup *old = stock->cached; 2197 2198 if (!old) 2199 return; 2200 2201 if (stock->nr_pages) { 2202 page_counter_uncharge(&old->memory, stock->nr_pages); 2203 if (do_memsw_account()) 2204 page_counter_uncharge(&old->memsw, stock->nr_pages); 2205 stock->nr_pages = 0; 2206 } 2207 2208 css_put(&old->css); 2209 stock->cached = NULL; 2210 } 2211 2212 static void drain_local_stock(struct work_struct *dummy) 2213 { 2214 struct memcg_stock_pcp *stock; 2215 struct obj_cgroup *old = NULL; 2216 unsigned long flags; 2217 2218 /* 2219 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2220 * drain_stock races is that we always operate on local CPU stock 2221 * here with IRQ disabled 2222 */ 2223 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2224 2225 stock = this_cpu_ptr(&memcg_stock); 2226 old = drain_obj_stock(stock); 2227 drain_stock(stock); 2228 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2229 2230 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2231 if (old) 2232 obj_cgroup_put(old); 2233 } 2234 2235 /* 2236 * Cache charges(val) to local per_cpu area. 2237 * This will be consumed by consume_stock() function, later. 2238 */ 2239 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2240 { 2241 struct memcg_stock_pcp *stock; 2242 2243 stock = this_cpu_ptr(&memcg_stock); 2244 if (stock->cached != memcg) { /* reset if necessary */ 2245 drain_stock(stock); 2246 css_get(&memcg->css); 2247 stock->cached = memcg; 2248 } 2249 stock->nr_pages += nr_pages; 2250 2251 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2252 drain_stock(stock); 2253 } 2254 2255 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2256 { 2257 unsigned long flags; 2258 2259 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2260 __refill_stock(memcg, nr_pages); 2261 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2262 } 2263 2264 /* 2265 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2266 * of the hierarchy under it. 2267 */ 2268 static void drain_all_stock(struct mem_cgroup *root_memcg) 2269 { 2270 int cpu, curcpu; 2271 2272 /* If someone's already draining, avoid adding running more workers. */ 2273 if (!mutex_trylock(&percpu_charge_mutex)) 2274 return; 2275 /* 2276 * Notify other cpus that system-wide "drain" is running 2277 * We do not care about races with the cpu hotplug because cpu down 2278 * as well as workers from this path always operate on the local 2279 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2280 */ 2281 migrate_disable(); 2282 curcpu = smp_processor_id(); 2283 for_each_online_cpu(cpu) { 2284 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2285 struct mem_cgroup *memcg; 2286 bool flush = false; 2287 2288 rcu_read_lock(); 2289 memcg = stock->cached; 2290 if (memcg && stock->nr_pages && 2291 mem_cgroup_is_descendant(memcg, root_memcg)) 2292 flush = true; 2293 else if (obj_stock_flush_required(stock, root_memcg)) 2294 flush = true; 2295 rcu_read_unlock(); 2296 2297 if (flush && 2298 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2299 if (cpu == curcpu) 2300 drain_local_stock(&stock->work); 2301 else 2302 schedule_work_on(cpu, &stock->work); 2303 } 2304 } 2305 migrate_enable(); 2306 mutex_unlock(&percpu_charge_mutex); 2307 } 2308 2309 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2310 { 2311 struct memcg_stock_pcp *stock; 2312 2313 stock = &per_cpu(memcg_stock, cpu); 2314 drain_stock(stock); 2315 2316 return 0; 2317 } 2318 2319 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2320 unsigned int nr_pages, 2321 gfp_t gfp_mask) 2322 { 2323 unsigned long nr_reclaimed = 0; 2324 2325 do { 2326 unsigned long pflags; 2327 2328 if (page_counter_read(&memcg->memory) <= 2329 READ_ONCE(memcg->memory.high)) 2330 continue; 2331 2332 memcg_memory_event(memcg, MEMCG_HIGH); 2333 2334 psi_memstall_enter(&pflags); 2335 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2336 gfp_mask, 2337 MEMCG_RECLAIM_MAY_SWAP); 2338 psi_memstall_leave(&pflags); 2339 } while ((memcg = parent_mem_cgroup(memcg)) && 2340 !mem_cgroup_is_root(memcg)); 2341 2342 return nr_reclaimed; 2343 } 2344 2345 static void high_work_func(struct work_struct *work) 2346 { 2347 struct mem_cgroup *memcg; 2348 2349 memcg = container_of(work, struct mem_cgroup, high_work); 2350 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2351 } 2352 2353 /* 2354 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2355 * enough to still cause a significant slowdown in most cases, while still 2356 * allowing diagnostics and tracing to proceed without becoming stuck. 2357 */ 2358 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2359 2360 /* 2361 * When calculating the delay, we use these either side of the exponentiation to 2362 * maintain precision and scale to a reasonable number of jiffies (see the table 2363 * below. 2364 * 2365 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2366 * overage ratio to a delay. 2367 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2368 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2369 * to produce a reasonable delay curve. 2370 * 2371 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2372 * reasonable delay curve compared to precision-adjusted overage, not 2373 * penalising heavily at first, but still making sure that growth beyond the 2374 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2375 * example, with a high of 100 megabytes: 2376 * 2377 * +-------+------------------------+ 2378 * | usage | time to allocate in ms | 2379 * +-------+------------------------+ 2380 * | 100M | 0 | 2381 * | 101M | 6 | 2382 * | 102M | 25 | 2383 * | 103M | 57 | 2384 * | 104M | 102 | 2385 * | 105M | 159 | 2386 * | 106M | 230 | 2387 * | 107M | 313 | 2388 * | 108M | 409 | 2389 * | 109M | 518 | 2390 * | 110M | 639 | 2391 * | 111M | 774 | 2392 * | 112M | 921 | 2393 * | 113M | 1081 | 2394 * | 114M | 1254 | 2395 * | 115M | 1439 | 2396 * | 116M | 1638 | 2397 * | 117M | 1849 | 2398 * | 118M | 2000 | 2399 * | 119M | 2000 | 2400 * | 120M | 2000 | 2401 * +-------+------------------------+ 2402 */ 2403 #define MEMCG_DELAY_PRECISION_SHIFT 20 2404 #define MEMCG_DELAY_SCALING_SHIFT 14 2405 2406 static u64 calculate_overage(unsigned long usage, unsigned long high) 2407 { 2408 u64 overage; 2409 2410 if (usage <= high) 2411 return 0; 2412 2413 /* 2414 * Prevent division by 0 in overage calculation by acting as if 2415 * it was a threshold of 1 page 2416 */ 2417 high = max(high, 1UL); 2418 2419 overage = usage - high; 2420 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2421 return div64_u64(overage, high); 2422 } 2423 2424 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2425 { 2426 u64 overage, max_overage = 0; 2427 2428 do { 2429 overage = calculate_overage(page_counter_read(&memcg->memory), 2430 READ_ONCE(memcg->memory.high)); 2431 max_overage = max(overage, max_overage); 2432 } while ((memcg = parent_mem_cgroup(memcg)) && 2433 !mem_cgroup_is_root(memcg)); 2434 2435 return max_overage; 2436 } 2437 2438 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2439 { 2440 u64 overage, max_overage = 0; 2441 2442 do { 2443 overage = calculate_overage(page_counter_read(&memcg->swap), 2444 READ_ONCE(memcg->swap.high)); 2445 if (overage) 2446 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2447 max_overage = max(overage, max_overage); 2448 } while ((memcg = parent_mem_cgroup(memcg)) && 2449 !mem_cgroup_is_root(memcg)); 2450 2451 return max_overage; 2452 } 2453 2454 /* 2455 * Get the number of jiffies that we should penalise a mischievous cgroup which 2456 * is exceeding its memory.high by checking both it and its ancestors. 2457 */ 2458 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2459 unsigned int nr_pages, 2460 u64 max_overage) 2461 { 2462 unsigned long penalty_jiffies; 2463 2464 if (!max_overage) 2465 return 0; 2466 2467 /* 2468 * We use overage compared to memory.high to calculate the number of 2469 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2470 * fairly lenient on small overages, and increasingly harsh when the 2471 * memcg in question makes it clear that it has no intention of stopping 2472 * its crazy behaviour, so we exponentially increase the delay based on 2473 * overage amount. 2474 */ 2475 penalty_jiffies = max_overage * max_overage * HZ; 2476 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2477 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2478 2479 /* 2480 * Factor in the task's own contribution to the overage, such that four 2481 * N-sized allocations are throttled approximately the same as one 2482 * 4N-sized allocation. 2483 * 2484 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2485 * larger the current charge patch is than that. 2486 */ 2487 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2488 } 2489 2490 /* 2491 * Scheduled by try_charge() to be executed from the userland return path 2492 * and reclaims memory over the high limit. 2493 */ 2494 void mem_cgroup_handle_over_high(void) 2495 { 2496 unsigned long penalty_jiffies; 2497 unsigned long pflags; 2498 unsigned long nr_reclaimed; 2499 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2500 int nr_retries = MAX_RECLAIM_RETRIES; 2501 struct mem_cgroup *memcg; 2502 bool in_retry = false; 2503 2504 if (likely(!nr_pages)) 2505 return; 2506 2507 memcg = get_mem_cgroup_from_mm(current->mm); 2508 current->memcg_nr_pages_over_high = 0; 2509 2510 retry_reclaim: 2511 /* 2512 * The allocating task should reclaim at least the batch size, but for 2513 * subsequent retries we only want to do what's necessary to prevent oom 2514 * or breaching resource isolation. 2515 * 2516 * This is distinct from memory.max or page allocator behaviour because 2517 * memory.high is currently batched, whereas memory.max and the page 2518 * allocator run every time an allocation is made. 2519 */ 2520 nr_reclaimed = reclaim_high(memcg, 2521 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2522 GFP_KERNEL); 2523 2524 /* 2525 * memory.high is breached and reclaim is unable to keep up. Throttle 2526 * allocators proactively to slow down excessive growth. 2527 */ 2528 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2529 mem_find_max_overage(memcg)); 2530 2531 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2532 swap_find_max_overage(memcg)); 2533 2534 /* 2535 * Clamp the max delay per usermode return so as to still keep the 2536 * application moving forwards and also permit diagnostics, albeit 2537 * extremely slowly. 2538 */ 2539 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2540 2541 /* 2542 * Don't sleep if the amount of jiffies this memcg owes us is so low 2543 * that it's not even worth doing, in an attempt to be nice to those who 2544 * go only a small amount over their memory.high value and maybe haven't 2545 * been aggressively reclaimed enough yet. 2546 */ 2547 if (penalty_jiffies <= HZ / 100) 2548 goto out; 2549 2550 /* 2551 * If reclaim is making forward progress but we're still over 2552 * memory.high, we want to encourage that rather than doing allocator 2553 * throttling. 2554 */ 2555 if (nr_reclaimed || nr_retries--) { 2556 in_retry = true; 2557 goto retry_reclaim; 2558 } 2559 2560 /* 2561 * If we exit early, we're guaranteed to die (since 2562 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2563 * need to account for any ill-begotten jiffies to pay them off later. 2564 */ 2565 psi_memstall_enter(&pflags); 2566 schedule_timeout_killable(penalty_jiffies); 2567 psi_memstall_leave(&pflags); 2568 2569 out: 2570 css_put(&memcg->css); 2571 } 2572 2573 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2574 unsigned int nr_pages) 2575 { 2576 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2577 int nr_retries = MAX_RECLAIM_RETRIES; 2578 struct mem_cgroup *mem_over_limit; 2579 struct page_counter *counter; 2580 unsigned long nr_reclaimed; 2581 bool passed_oom = false; 2582 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2583 bool drained = false; 2584 bool raised_max_event = false; 2585 unsigned long pflags; 2586 2587 retry: 2588 if (consume_stock(memcg, nr_pages)) 2589 return 0; 2590 2591 if (!do_memsw_account() || 2592 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2593 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2594 goto done_restock; 2595 if (do_memsw_account()) 2596 page_counter_uncharge(&memcg->memsw, batch); 2597 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2598 } else { 2599 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2600 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2601 } 2602 2603 if (batch > nr_pages) { 2604 batch = nr_pages; 2605 goto retry; 2606 } 2607 2608 /* 2609 * Prevent unbounded recursion when reclaim operations need to 2610 * allocate memory. This might exceed the limits temporarily, 2611 * but we prefer facilitating memory reclaim and getting back 2612 * under the limit over triggering OOM kills in these cases. 2613 */ 2614 if (unlikely(current->flags & PF_MEMALLOC)) 2615 goto force; 2616 2617 if (unlikely(task_in_memcg_oom(current))) 2618 goto nomem; 2619 2620 if (!gfpflags_allow_blocking(gfp_mask)) 2621 goto nomem; 2622 2623 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2624 raised_max_event = true; 2625 2626 psi_memstall_enter(&pflags); 2627 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2628 gfp_mask, reclaim_options); 2629 psi_memstall_leave(&pflags); 2630 2631 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2632 goto retry; 2633 2634 if (!drained) { 2635 drain_all_stock(mem_over_limit); 2636 drained = true; 2637 goto retry; 2638 } 2639 2640 if (gfp_mask & __GFP_NORETRY) 2641 goto nomem; 2642 /* 2643 * Even though the limit is exceeded at this point, reclaim 2644 * may have been able to free some pages. Retry the charge 2645 * before killing the task. 2646 * 2647 * Only for regular pages, though: huge pages are rather 2648 * unlikely to succeed so close to the limit, and we fall back 2649 * to regular pages anyway in case of failure. 2650 */ 2651 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2652 goto retry; 2653 /* 2654 * At task move, charge accounts can be doubly counted. So, it's 2655 * better to wait until the end of task_move if something is going on. 2656 */ 2657 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2658 goto retry; 2659 2660 if (nr_retries--) 2661 goto retry; 2662 2663 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2664 goto nomem; 2665 2666 /* Avoid endless loop for tasks bypassed by the oom killer */ 2667 if (passed_oom && task_is_dying()) 2668 goto nomem; 2669 2670 /* 2671 * keep retrying as long as the memcg oom killer is able to make 2672 * a forward progress or bypass the charge if the oom killer 2673 * couldn't make any progress. 2674 */ 2675 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2676 get_order(nr_pages * PAGE_SIZE))) { 2677 passed_oom = true; 2678 nr_retries = MAX_RECLAIM_RETRIES; 2679 goto retry; 2680 } 2681 nomem: 2682 /* 2683 * Memcg doesn't have a dedicated reserve for atomic 2684 * allocations. But like the global atomic pool, we need to 2685 * put the burden of reclaim on regular allocation requests 2686 * and let these go through as privileged allocations. 2687 */ 2688 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2689 return -ENOMEM; 2690 force: 2691 /* 2692 * If the allocation has to be enforced, don't forget to raise 2693 * a MEMCG_MAX event. 2694 */ 2695 if (!raised_max_event) 2696 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2697 2698 /* 2699 * The allocation either can't fail or will lead to more memory 2700 * being freed very soon. Allow memory usage go over the limit 2701 * temporarily by force charging it. 2702 */ 2703 page_counter_charge(&memcg->memory, nr_pages); 2704 if (do_memsw_account()) 2705 page_counter_charge(&memcg->memsw, nr_pages); 2706 2707 return 0; 2708 2709 done_restock: 2710 if (batch > nr_pages) 2711 refill_stock(memcg, batch - nr_pages); 2712 2713 /* 2714 * If the hierarchy is above the normal consumption range, schedule 2715 * reclaim on returning to userland. We can perform reclaim here 2716 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2717 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2718 * not recorded as it most likely matches current's and won't 2719 * change in the meantime. As high limit is checked again before 2720 * reclaim, the cost of mismatch is negligible. 2721 */ 2722 do { 2723 bool mem_high, swap_high; 2724 2725 mem_high = page_counter_read(&memcg->memory) > 2726 READ_ONCE(memcg->memory.high); 2727 swap_high = page_counter_read(&memcg->swap) > 2728 READ_ONCE(memcg->swap.high); 2729 2730 /* Don't bother a random interrupted task */ 2731 if (!in_task()) { 2732 if (mem_high) { 2733 schedule_work(&memcg->high_work); 2734 break; 2735 } 2736 continue; 2737 } 2738 2739 if (mem_high || swap_high) { 2740 /* 2741 * The allocating tasks in this cgroup will need to do 2742 * reclaim or be throttled to prevent further growth 2743 * of the memory or swap footprints. 2744 * 2745 * Target some best-effort fairness between the tasks, 2746 * and distribute reclaim work and delay penalties 2747 * based on how much each task is actually allocating. 2748 */ 2749 current->memcg_nr_pages_over_high += batch; 2750 set_notify_resume(current); 2751 break; 2752 } 2753 } while ((memcg = parent_mem_cgroup(memcg))); 2754 2755 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2756 !(current->flags & PF_MEMALLOC) && 2757 gfpflags_allow_blocking(gfp_mask)) { 2758 mem_cgroup_handle_over_high(); 2759 } 2760 return 0; 2761 } 2762 2763 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2764 unsigned int nr_pages) 2765 { 2766 if (mem_cgroup_is_root(memcg)) 2767 return 0; 2768 2769 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2770 } 2771 2772 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2773 { 2774 if (mem_cgroup_is_root(memcg)) 2775 return; 2776 2777 page_counter_uncharge(&memcg->memory, nr_pages); 2778 if (do_memsw_account()) 2779 page_counter_uncharge(&memcg->memsw, nr_pages); 2780 } 2781 2782 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2783 { 2784 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2785 /* 2786 * Any of the following ensures page's memcg stability: 2787 * 2788 * - the page lock 2789 * - LRU isolation 2790 * - lock_page_memcg() 2791 * - exclusive reference 2792 */ 2793 folio->memcg_data = (unsigned long)memcg; 2794 } 2795 2796 #ifdef CONFIG_MEMCG_KMEM 2797 /* 2798 * The allocated objcg pointers array is not accounted directly. 2799 * Moreover, it should not come from DMA buffer and is not readily 2800 * reclaimable. So those GFP bits should be masked off. 2801 */ 2802 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2803 2804 /* 2805 * mod_objcg_mlstate() may be called with irq enabled, so 2806 * mod_memcg_lruvec_state() should be used. 2807 */ 2808 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2809 struct pglist_data *pgdat, 2810 enum node_stat_item idx, int nr) 2811 { 2812 struct mem_cgroup *memcg; 2813 struct lruvec *lruvec; 2814 2815 rcu_read_lock(); 2816 memcg = obj_cgroup_memcg(objcg); 2817 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2818 mod_memcg_lruvec_state(lruvec, idx, nr); 2819 rcu_read_unlock(); 2820 } 2821 2822 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2823 gfp_t gfp, bool new_slab) 2824 { 2825 unsigned int objects = objs_per_slab(s, slab); 2826 unsigned long memcg_data; 2827 void *vec; 2828 2829 gfp &= ~OBJCGS_CLEAR_MASK; 2830 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2831 slab_nid(slab)); 2832 if (!vec) 2833 return -ENOMEM; 2834 2835 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2836 if (new_slab) { 2837 /* 2838 * If the slab is brand new and nobody can yet access its 2839 * memcg_data, no synchronization is required and memcg_data can 2840 * be simply assigned. 2841 */ 2842 slab->memcg_data = memcg_data; 2843 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2844 /* 2845 * If the slab is already in use, somebody can allocate and 2846 * assign obj_cgroups in parallel. In this case the existing 2847 * objcg vector should be reused. 2848 */ 2849 kfree(vec); 2850 return 0; 2851 } 2852 2853 kmemleak_not_leak(vec); 2854 return 0; 2855 } 2856 2857 static __always_inline 2858 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2859 { 2860 /* 2861 * Slab objects are accounted individually, not per-page. 2862 * Memcg membership data for each individual object is saved in 2863 * slab->memcg_data. 2864 */ 2865 if (folio_test_slab(folio)) { 2866 struct obj_cgroup **objcgs; 2867 struct slab *slab; 2868 unsigned int off; 2869 2870 slab = folio_slab(folio); 2871 objcgs = slab_objcgs(slab); 2872 if (!objcgs) 2873 return NULL; 2874 2875 off = obj_to_index(slab->slab_cache, slab, p); 2876 if (objcgs[off]) 2877 return obj_cgroup_memcg(objcgs[off]); 2878 2879 return NULL; 2880 } 2881 2882 /* 2883 * page_memcg_check() is used here, because in theory we can encounter 2884 * a folio where the slab flag has been cleared already, but 2885 * slab->memcg_data has not been freed yet 2886 * page_memcg_check(page) will guarantee that a proper memory 2887 * cgroup pointer or NULL will be returned. 2888 */ 2889 return page_memcg_check(folio_page(folio, 0)); 2890 } 2891 2892 /* 2893 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2894 * 2895 * A passed kernel object can be a slab object, vmalloc object or a generic 2896 * kernel page, so different mechanisms for getting the memory cgroup pointer 2897 * should be used. 2898 * 2899 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2900 * can not know for sure how the kernel object is implemented. 2901 * mem_cgroup_from_obj() can be safely used in such cases. 2902 * 2903 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2904 * cgroup_mutex, etc. 2905 */ 2906 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2907 { 2908 struct folio *folio; 2909 2910 if (mem_cgroup_disabled()) 2911 return NULL; 2912 2913 if (unlikely(is_vmalloc_addr(p))) 2914 folio = page_folio(vmalloc_to_page(p)); 2915 else 2916 folio = virt_to_folio(p); 2917 2918 return mem_cgroup_from_obj_folio(folio, p); 2919 } 2920 2921 /* 2922 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2923 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 2924 * allocated using vmalloc(). 2925 * 2926 * A passed kernel object must be a slab object or a generic kernel page. 2927 * 2928 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2929 * cgroup_mutex, etc. 2930 */ 2931 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2932 { 2933 if (mem_cgroup_disabled()) 2934 return NULL; 2935 2936 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2937 } 2938 2939 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2940 { 2941 struct obj_cgroup *objcg = NULL; 2942 2943 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2944 objcg = rcu_dereference(memcg->objcg); 2945 if (objcg && obj_cgroup_tryget(objcg)) 2946 break; 2947 objcg = NULL; 2948 } 2949 return objcg; 2950 } 2951 2952 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2953 { 2954 struct obj_cgroup *objcg = NULL; 2955 struct mem_cgroup *memcg; 2956 2957 if (memcg_kmem_bypass()) 2958 return NULL; 2959 2960 rcu_read_lock(); 2961 if (unlikely(active_memcg())) 2962 memcg = active_memcg(); 2963 else 2964 memcg = mem_cgroup_from_task(current); 2965 objcg = __get_obj_cgroup_from_memcg(memcg); 2966 rcu_read_unlock(); 2967 return objcg; 2968 } 2969 2970 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 2971 { 2972 struct obj_cgroup *objcg; 2973 2974 if (!memcg_kmem_enabled() || memcg_kmem_bypass()) 2975 return NULL; 2976 2977 if (PageMemcgKmem(page)) { 2978 objcg = __folio_objcg(page_folio(page)); 2979 obj_cgroup_get(objcg); 2980 } else { 2981 struct mem_cgroup *memcg; 2982 2983 rcu_read_lock(); 2984 memcg = __folio_memcg(page_folio(page)); 2985 if (memcg) 2986 objcg = __get_obj_cgroup_from_memcg(memcg); 2987 else 2988 objcg = NULL; 2989 rcu_read_unlock(); 2990 } 2991 return objcg; 2992 } 2993 2994 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2995 { 2996 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2997 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 2998 if (nr_pages > 0) 2999 page_counter_charge(&memcg->kmem, nr_pages); 3000 else 3001 page_counter_uncharge(&memcg->kmem, -nr_pages); 3002 } 3003 } 3004 3005 3006 /* 3007 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3008 * @objcg: object cgroup to uncharge 3009 * @nr_pages: number of pages to uncharge 3010 */ 3011 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3012 unsigned int nr_pages) 3013 { 3014 struct mem_cgroup *memcg; 3015 3016 memcg = get_mem_cgroup_from_objcg(objcg); 3017 3018 memcg_account_kmem(memcg, -nr_pages); 3019 refill_stock(memcg, nr_pages); 3020 3021 css_put(&memcg->css); 3022 } 3023 3024 /* 3025 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3026 * @objcg: object cgroup to charge 3027 * @gfp: reclaim mode 3028 * @nr_pages: number of pages to charge 3029 * 3030 * Returns 0 on success, an error code on failure. 3031 */ 3032 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3033 unsigned int nr_pages) 3034 { 3035 struct mem_cgroup *memcg; 3036 int ret; 3037 3038 memcg = get_mem_cgroup_from_objcg(objcg); 3039 3040 ret = try_charge_memcg(memcg, gfp, nr_pages); 3041 if (ret) 3042 goto out; 3043 3044 memcg_account_kmem(memcg, nr_pages); 3045 out: 3046 css_put(&memcg->css); 3047 3048 return ret; 3049 } 3050 3051 /** 3052 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3053 * @page: page to charge 3054 * @gfp: reclaim mode 3055 * @order: allocation order 3056 * 3057 * Returns 0 on success, an error code on failure. 3058 */ 3059 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3060 { 3061 struct obj_cgroup *objcg; 3062 int ret = 0; 3063 3064 objcg = get_obj_cgroup_from_current(); 3065 if (objcg) { 3066 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3067 if (!ret) { 3068 page->memcg_data = (unsigned long)objcg | 3069 MEMCG_DATA_KMEM; 3070 return 0; 3071 } 3072 obj_cgroup_put(objcg); 3073 } 3074 return ret; 3075 } 3076 3077 /** 3078 * __memcg_kmem_uncharge_page: uncharge a kmem page 3079 * @page: page to uncharge 3080 * @order: allocation order 3081 */ 3082 void __memcg_kmem_uncharge_page(struct page *page, int order) 3083 { 3084 struct folio *folio = page_folio(page); 3085 struct obj_cgroup *objcg; 3086 unsigned int nr_pages = 1 << order; 3087 3088 if (!folio_memcg_kmem(folio)) 3089 return; 3090 3091 objcg = __folio_objcg(folio); 3092 obj_cgroup_uncharge_pages(objcg, nr_pages); 3093 folio->memcg_data = 0; 3094 obj_cgroup_put(objcg); 3095 } 3096 3097 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3098 enum node_stat_item idx, int nr) 3099 { 3100 struct memcg_stock_pcp *stock; 3101 struct obj_cgroup *old = NULL; 3102 unsigned long flags; 3103 int *bytes; 3104 3105 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3106 stock = this_cpu_ptr(&memcg_stock); 3107 3108 /* 3109 * Save vmstat data in stock and skip vmstat array update unless 3110 * accumulating over a page of vmstat data or when pgdat or idx 3111 * changes. 3112 */ 3113 if (stock->cached_objcg != objcg) { 3114 old = drain_obj_stock(stock); 3115 obj_cgroup_get(objcg); 3116 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3117 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3118 stock->cached_objcg = objcg; 3119 stock->cached_pgdat = pgdat; 3120 } else if (stock->cached_pgdat != pgdat) { 3121 /* Flush the existing cached vmstat data */ 3122 struct pglist_data *oldpg = stock->cached_pgdat; 3123 3124 if (stock->nr_slab_reclaimable_b) { 3125 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3126 stock->nr_slab_reclaimable_b); 3127 stock->nr_slab_reclaimable_b = 0; 3128 } 3129 if (stock->nr_slab_unreclaimable_b) { 3130 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3131 stock->nr_slab_unreclaimable_b); 3132 stock->nr_slab_unreclaimable_b = 0; 3133 } 3134 stock->cached_pgdat = pgdat; 3135 } 3136 3137 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3138 : &stock->nr_slab_unreclaimable_b; 3139 /* 3140 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3141 * cached locally at least once before pushing it out. 3142 */ 3143 if (!*bytes) { 3144 *bytes = nr; 3145 nr = 0; 3146 } else { 3147 *bytes += nr; 3148 if (abs(*bytes) > PAGE_SIZE) { 3149 nr = *bytes; 3150 *bytes = 0; 3151 } else { 3152 nr = 0; 3153 } 3154 } 3155 if (nr) 3156 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3157 3158 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3159 if (old) 3160 obj_cgroup_put(old); 3161 } 3162 3163 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3164 { 3165 struct memcg_stock_pcp *stock; 3166 unsigned long flags; 3167 bool ret = false; 3168 3169 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3170 3171 stock = this_cpu_ptr(&memcg_stock); 3172 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3173 stock->nr_bytes -= nr_bytes; 3174 ret = true; 3175 } 3176 3177 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3178 3179 return ret; 3180 } 3181 3182 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3183 { 3184 struct obj_cgroup *old = stock->cached_objcg; 3185 3186 if (!old) 3187 return NULL; 3188 3189 if (stock->nr_bytes) { 3190 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3191 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3192 3193 if (nr_pages) { 3194 struct mem_cgroup *memcg; 3195 3196 memcg = get_mem_cgroup_from_objcg(old); 3197 3198 memcg_account_kmem(memcg, -nr_pages); 3199 __refill_stock(memcg, nr_pages); 3200 3201 css_put(&memcg->css); 3202 } 3203 3204 /* 3205 * The leftover is flushed to the centralized per-memcg value. 3206 * On the next attempt to refill obj stock it will be moved 3207 * to a per-cpu stock (probably, on an other CPU), see 3208 * refill_obj_stock(). 3209 * 3210 * How often it's flushed is a trade-off between the memory 3211 * limit enforcement accuracy and potential CPU contention, 3212 * so it might be changed in the future. 3213 */ 3214 atomic_add(nr_bytes, &old->nr_charged_bytes); 3215 stock->nr_bytes = 0; 3216 } 3217 3218 /* 3219 * Flush the vmstat data in current stock 3220 */ 3221 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3222 if (stock->nr_slab_reclaimable_b) { 3223 mod_objcg_mlstate(old, stock->cached_pgdat, 3224 NR_SLAB_RECLAIMABLE_B, 3225 stock->nr_slab_reclaimable_b); 3226 stock->nr_slab_reclaimable_b = 0; 3227 } 3228 if (stock->nr_slab_unreclaimable_b) { 3229 mod_objcg_mlstate(old, stock->cached_pgdat, 3230 NR_SLAB_UNRECLAIMABLE_B, 3231 stock->nr_slab_unreclaimable_b); 3232 stock->nr_slab_unreclaimable_b = 0; 3233 } 3234 stock->cached_pgdat = NULL; 3235 } 3236 3237 stock->cached_objcg = NULL; 3238 /* 3239 * The `old' objects needs to be released by the caller via 3240 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3241 */ 3242 return old; 3243 } 3244 3245 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3246 struct mem_cgroup *root_memcg) 3247 { 3248 struct mem_cgroup *memcg; 3249 3250 if (stock->cached_objcg) { 3251 memcg = obj_cgroup_memcg(stock->cached_objcg); 3252 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3253 return true; 3254 } 3255 3256 return false; 3257 } 3258 3259 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3260 bool allow_uncharge) 3261 { 3262 struct memcg_stock_pcp *stock; 3263 struct obj_cgroup *old = NULL; 3264 unsigned long flags; 3265 unsigned int nr_pages = 0; 3266 3267 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3268 3269 stock = this_cpu_ptr(&memcg_stock); 3270 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3271 old = drain_obj_stock(stock); 3272 obj_cgroup_get(objcg); 3273 stock->cached_objcg = objcg; 3274 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3275 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3276 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3277 } 3278 stock->nr_bytes += nr_bytes; 3279 3280 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3281 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3282 stock->nr_bytes &= (PAGE_SIZE - 1); 3283 } 3284 3285 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3286 if (old) 3287 obj_cgroup_put(old); 3288 3289 if (nr_pages) 3290 obj_cgroup_uncharge_pages(objcg, nr_pages); 3291 } 3292 3293 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3294 { 3295 unsigned int nr_pages, nr_bytes; 3296 int ret; 3297 3298 if (consume_obj_stock(objcg, size)) 3299 return 0; 3300 3301 /* 3302 * In theory, objcg->nr_charged_bytes can have enough 3303 * pre-charged bytes to satisfy the allocation. However, 3304 * flushing objcg->nr_charged_bytes requires two atomic 3305 * operations, and objcg->nr_charged_bytes can't be big. 3306 * The shared objcg->nr_charged_bytes can also become a 3307 * performance bottleneck if all tasks of the same memcg are 3308 * trying to update it. So it's better to ignore it and try 3309 * grab some new pages. The stock's nr_bytes will be flushed to 3310 * objcg->nr_charged_bytes later on when objcg changes. 3311 * 3312 * The stock's nr_bytes may contain enough pre-charged bytes 3313 * to allow one less page from being charged, but we can't rely 3314 * on the pre-charged bytes not being changed outside of 3315 * consume_obj_stock() or refill_obj_stock(). So ignore those 3316 * pre-charged bytes as well when charging pages. To avoid a 3317 * page uncharge right after a page charge, we set the 3318 * allow_uncharge flag to false when calling refill_obj_stock() 3319 * to temporarily allow the pre-charged bytes to exceed the page 3320 * size limit. The maximum reachable value of the pre-charged 3321 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3322 * race. 3323 */ 3324 nr_pages = size >> PAGE_SHIFT; 3325 nr_bytes = size & (PAGE_SIZE - 1); 3326 3327 if (nr_bytes) 3328 nr_pages += 1; 3329 3330 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3331 if (!ret && nr_bytes) 3332 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3333 3334 return ret; 3335 } 3336 3337 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3338 { 3339 refill_obj_stock(objcg, size, true); 3340 } 3341 3342 #endif /* CONFIG_MEMCG_KMEM */ 3343 3344 /* 3345 * Because page_memcg(head) is not set on tails, set it now. 3346 */ 3347 void split_page_memcg(struct page *head, unsigned int nr) 3348 { 3349 struct folio *folio = page_folio(head); 3350 struct mem_cgroup *memcg = folio_memcg(folio); 3351 int i; 3352 3353 if (mem_cgroup_disabled() || !memcg) 3354 return; 3355 3356 for (i = 1; i < nr; i++) 3357 folio_page(folio, i)->memcg_data = folio->memcg_data; 3358 3359 if (folio_memcg_kmem(folio)) 3360 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3361 else 3362 css_get_many(&memcg->css, nr - 1); 3363 } 3364 3365 #ifdef CONFIG_MEMCG_SWAP 3366 /** 3367 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3368 * @entry: swap entry to be moved 3369 * @from: mem_cgroup which the entry is moved from 3370 * @to: mem_cgroup which the entry is moved to 3371 * 3372 * It succeeds only when the swap_cgroup's record for this entry is the same 3373 * as the mem_cgroup's id of @from. 3374 * 3375 * Returns 0 on success, -EINVAL on failure. 3376 * 3377 * The caller must have charged to @to, IOW, called page_counter_charge() about 3378 * both res and memsw, and called css_get(). 3379 */ 3380 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3381 struct mem_cgroup *from, struct mem_cgroup *to) 3382 { 3383 unsigned short old_id, new_id; 3384 3385 old_id = mem_cgroup_id(from); 3386 new_id = mem_cgroup_id(to); 3387 3388 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3389 mod_memcg_state(from, MEMCG_SWAP, -1); 3390 mod_memcg_state(to, MEMCG_SWAP, 1); 3391 return 0; 3392 } 3393 return -EINVAL; 3394 } 3395 #else 3396 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3397 struct mem_cgroup *from, struct mem_cgroup *to) 3398 { 3399 return -EINVAL; 3400 } 3401 #endif 3402 3403 static DEFINE_MUTEX(memcg_max_mutex); 3404 3405 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3406 unsigned long max, bool memsw) 3407 { 3408 bool enlarge = false; 3409 bool drained = false; 3410 int ret; 3411 bool limits_invariant; 3412 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3413 3414 do { 3415 if (signal_pending(current)) { 3416 ret = -EINTR; 3417 break; 3418 } 3419 3420 mutex_lock(&memcg_max_mutex); 3421 /* 3422 * Make sure that the new limit (memsw or memory limit) doesn't 3423 * break our basic invariant rule memory.max <= memsw.max. 3424 */ 3425 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3426 max <= memcg->memsw.max; 3427 if (!limits_invariant) { 3428 mutex_unlock(&memcg_max_mutex); 3429 ret = -EINVAL; 3430 break; 3431 } 3432 if (max > counter->max) 3433 enlarge = true; 3434 ret = page_counter_set_max(counter, max); 3435 mutex_unlock(&memcg_max_mutex); 3436 3437 if (!ret) 3438 break; 3439 3440 if (!drained) { 3441 drain_all_stock(memcg); 3442 drained = true; 3443 continue; 3444 } 3445 3446 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3447 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3448 ret = -EBUSY; 3449 break; 3450 } 3451 } while (true); 3452 3453 if (!ret && enlarge) 3454 memcg_oom_recover(memcg); 3455 3456 return ret; 3457 } 3458 3459 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3460 gfp_t gfp_mask, 3461 unsigned long *total_scanned) 3462 { 3463 unsigned long nr_reclaimed = 0; 3464 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3465 unsigned long reclaimed; 3466 int loop = 0; 3467 struct mem_cgroup_tree_per_node *mctz; 3468 unsigned long excess; 3469 3470 if (order > 0) 3471 return 0; 3472 3473 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3474 3475 /* 3476 * Do not even bother to check the largest node if the root 3477 * is empty. Do it lockless to prevent lock bouncing. Races 3478 * are acceptable as soft limit is best effort anyway. 3479 */ 3480 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3481 return 0; 3482 3483 /* 3484 * This loop can run a while, specially if mem_cgroup's continuously 3485 * keep exceeding their soft limit and putting the system under 3486 * pressure 3487 */ 3488 do { 3489 if (next_mz) 3490 mz = next_mz; 3491 else 3492 mz = mem_cgroup_largest_soft_limit_node(mctz); 3493 if (!mz) 3494 break; 3495 3496 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3497 gfp_mask, total_scanned); 3498 nr_reclaimed += reclaimed; 3499 spin_lock_irq(&mctz->lock); 3500 3501 /* 3502 * If we failed to reclaim anything from this memory cgroup 3503 * it is time to move on to the next cgroup 3504 */ 3505 next_mz = NULL; 3506 if (!reclaimed) 3507 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3508 3509 excess = soft_limit_excess(mz->memcg); 3510 /* 3511 * One school of thought says that we should not add 3512 * back the node to the tree if reclaim returns 0. 3513 * But our reclaim could return 0, simply because due 3514 * to priority we are exposing a smaller subset of 3515 * memory to reclaim from. Consider this as a longer 3516 * term TODO. 3517 */ 3518 /* If excess == 0, no tree ops */ 3519 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3520 spin_unlock_irq(&mctz->lock); 3521 css_put(&mz->memcg->css); 3522 loop++; 3523 /* 3524 * Could not reclaim anything and there are no more 3525 * mem cgroups to try or we seem to be looping without 3526 * reclaiming anything. 3527 */ 3528 if (!nr_reclaimed && 3529 (next_mz == NULL || 3530 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3531 break; 3532 } while (!nr_reclaimed); 3533 if (next_mz) 3534 css_put(&next_mz->memcg->css); 3535 return nr_reclaimed; 3536 } 3537 3538 /* 3539 * Reclaims as many pages from the given memcg as possible. 3540 * 3541 * Caller is responsible for holding css reference for memcg. 3542 */ 3543 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3544 { 3545 int nr_retries = MAX_RECLAIM_RETRIES; 3546 3547 /* we call try-to-free pages for make this cgroup empty */ 3548 lru_add_drain_all(); 3549 3550 drain_all_stock(memcg); 3551 3552 /* try to free all pages in this cgroup */ 3553 while (nr_retries && page_counter_read(&memcg->memory)) { 3554 if (signal_pending(current)) 3555 return -EINTR; 3556 3557 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3558 MEMCG_RECLAIM_MAY_SWAP)) 3559 nr_retries--; 3560 } 3561 3562 return 0; 3563 } 3564 3565 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3566 char *buf, size_t nbytes, 3567 loff_t off) 3568 { 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3570 3571 if (mem_cgroup_is_root(memcg)) 3572 return -EINVAL; 3573 return mem_cgroup_force_empty(memcg) ?: nbytes; 3574 } 3575 3576 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3577 struct cftype *cft) 3578 { 3579 return 1; 3580 } 3581 3582 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3583 struct cftype *cft, u64 val) 3584 { 3585 if (val == 1) 3586 return 0; 3587 3588 pr_warn_once("Non-hierarchical mode is deprecated. " 3589 "Please report your usecase to linux-mm@kvack.org if you " 3590 "depend on this functionality.\n"); 3591 3592 return -EINVAL; 3593 } 3594 3595 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3596 { 3597 unsigned long val; 3598 3599 if (mem_cgroup_is_root(memcg)) { 3600 mem_cgroup_flush_stats(); 3601 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3602 memcg_page_state(memcg, NR_ANON_MAPPED); 3603 if (swap) 3604 val += memcg_page_state(memcg, MEMCG_SWAP); 3605 } else { 3606 if (!swap) 3607 val = page_counter_read(&memcg->memory); 3608 else 3609 val = page_counter_read(&memcg->memsw); 3610 } 3611 return val; 3612 } 3613 3614 enum { 3615 RES_USAGE, 3616 RES_LIMIT, 3617 RES_MAX_USAGE, 3618 RES_FAILCNT, 3619 RES_SOFT_LIMIT, 3620 }; 3621 3622 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3623 struct cftype *cft) 3624 { 3625 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3626 struct page_counter *counter; 3627 3628 switch (MEMFILE_TYPE(cft->private)) { 3629 case _MEM: 3630 counter = &memcg->memory; 3631 break; 3632 case _MEMSWAP: 3633 counter = &memcg->memsw; 3634 break; 3635 case _KMEM: 3636 counter = &memcg->kmem; 3637 break; 3638 case _TCP: 3639 counter = &memcg->tcpmem; 3640 break; 3641 default: 3642 BUG(); 3643 } 3644 3645 switch (MEMFILE_ATTR(cft->private)) { 3646 case RES_USAGE: 3647 if (counter == &memcg->memory) 3648 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3649 if (counter == &memcg->memsw) 3650 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3651 return (u64)page_counter_read(counter) * PAGE_SIZE; 3652 case RES_LIMIT: 3653 return (u64)counter->max * PAGE_SIZE; 3654 case RES_MAX_USAGE: 3655 return (u64)counter->watermark * PAGE_SIZE; 3656 case RES_FAILCNT: 3657 return counter->failcnt; 3658 case RES_SOFT_LIMIT: 3659 return (u64)memcg->soft_limit * PAGE_SIZE; 3660 default: 3661 BUG(); 3662 } 3663 } 3664 3665 #ifdef CONFIG_MEMCG_KMEM 3666 static int memcg_online_kmem(struct mem_cgroup *memcg) 3667 { 3668 struct obj_cgroup *objcg; 3669 3670 if (mem_cgroup_kmem_disabled()) 3671 return 0; 3672 3673 if (unlikely(mem_cgroup_is_root(memcg))) 3674 return 0; 3675 3676 objcg = obj_cgroup_alloc(); 3677 if (!objcg) 3678 return -ENOMEM; 3679 3680 objcg->memcg = memcg; 3681 rcu_assign_pointer(memcg->objcg, objcg); 3682 3683 static_branch_enable(&memcg_kmem_enabled_key); 3684 3685 memcg->kmemcg_id = memcg->id.id; 3686 3687 return 0; 3688 } 3689 3690 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3691 { 3692 struct mem_cgroup *parent; 3693 3694 if (mem_cgroup_kmem_disabled()) 3695 return; 3696 3697 if (unlikely(mem_cgroup_is_root(memcg))) 3698 return; 3699 3700 parent = parent_mem_cgroup(memcg); 3701 if (!parent) 3702 parent = root_mem_cgroup; 3703 3704 memcg_reparent_objcgs(memcg, parent); 3705 3706 /* 3707 * After we have finished memcg_reparent_objcgs(), all list_lrus 3708 * corresponding to this cgroup are guaranteed to remain empty. 3709 * The ordering is imposed by list_lru_node->lock taken by 3710 * memcg_reparent_list_lrus(). 3711 */ 3712 memcg_reparent_list_lrus(memcg, parent); 3713 } 3714 #else 3715 static int memcg_online_kmem(struct mem_cgroup *memcg) 3716 { 3717 return 0; 3718 } 3719 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3720 { 3721 } 3722 #endif /* CONFIG_MEMCG_KMEM */ 3723 3724 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3725 { 3726 int ret; 3727 3728 mutex_lock(&memcg_max_mutex); 3729 3730 ret = page_counter_set_max(&memcg->tcpmem, max); 3731 if (ret) 3732 goto out; 3733 3734 if (!memcg->tcpmem_active) { 3735 /* 3736 * The active flag needs to be written after the static_key 3737 * update. This is what guarantees that the socket activation 3738 * function is the last one to run. See mem_cgroup_sk_alloc() 3739 * for details, and note that we don't mark any socket as 3740 * belonging to this memcg until that flag is up. 3741 * 3742 * We need to do this, because static_keys will span multiple 3743 * sites, but we can't control their order. If we mark a socket 3744 * as accounted, but the accounting functions are not patched in 3745 * yet, we'll lose accounting. 3746 * 3747 * We never race with the readers in mem_cgroup_sk_alloc(), 3748 * because when this value change, the code to process it is not 3749 * patched in yet. 3750 */ 3751 static_branch_inc(&memcg_sockets_enabled_key); 3752 memcg->tcpmem_active = true; 3753 } 3754 out: 3755 mutex_unlock(&memcg_max_mutex); 3756 return ret; 3757 } 3758 3759 /* 3760 * The user of this function is... 3761 * RES_LIMIT. 3762 */ 3763 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3764 char *buf, size_t nbytes, loff_t off) 3765 { 3766 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3767 unsigned long nr_pages; 3768 int ret; 3769 3770 buf = strstrip(buf); 3771 ret = page_counter_memparse(buf, "-1", &nr_pages); 3772 if (ret) 3773 return ret; 3774 3775 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3776 case RES_LIMIT: 3777 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3778 ret = -EINVAL; 3779 break; 3780 } 3781 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3782 case _MEM: 3783 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3784 break; 3785 case _MEMSWAP: 3786 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3787 break; 3788 case _KMEM: 3789 /* kmem.limit_in_bytes is deprecated. */ 3790 ret = -EOPNOTSUPP; 3791 break; 3792 case _TCP: 3793 ret = memcg_update_tcp_max(memcg, nr_pages); 3794 break; 3795 } 3796 break; 3797 case RES_SOFT_LIMIT: 3798 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3799 ret = -EOPNOTSUPP; 3800 } else { 3801 memcg->soft_limit = nr_pages; 3802 ret = 0; 3803 } 3804 break; 3805 } 3806 return ret ?: nbytes; 3807 } 3808 3809 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3810 size_t nbytes, loff_t off) 3811 { 3812 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3813 struct page_counter *counter; 3814 3815 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3816 case _MEM: 3817 counter = &memcg->memory; 3818 break; 3819 case _MEMSWAP: 3820 counter = &memcg->memsw; 3821 break; 3822 case _KMEM: 3823 counter = &memcg->kmem; 3824 break; 3825 case _TCP: 3826 counter = &memcg->tcpmem; 3827 break; 3828 default: 3829 BUG(); 3830 } 3831 3832 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3833 case RES_MAX_USAGE: 3834 page_counter_reset_watermark(counter); 3835 break; 3836 case RES_FAILCNT: 3837 counter->failcnt = 0; 3838 break; 3839 default: 3840 BUG(); 3841 } 3842 3843 return nbytes; 3844 } 3845 3846 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3847 struct cftype *cft) 3848 { 3849 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3850 } 3851 3852 #ifdef CONFIG_MMU 3853 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3854 struct cftype *cft, u64 val) 3855 { 3856 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3857 3858 if (val & ~MOVE_MASK) 3859 return -EINVAL; 3860 3861 /* 3862 * No kind of locking is needed in here, because ->can_attach() will 3863 * check this value once in the beginning of the process, and then carry 3864 * on with stale data. This means that changes to this value will only 3865 * affect task migrations starting after the change. 3866 */ 3867 memcg->move_charge_at_immigrate = val; 3868 return 0; 3869 } 3870 #else 3871 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3872 struct cftype *cft, u64 val) 3873 { 3874 return -ENOSYS; 3875 } 3876 #endif 3877 3878 #ifdef CONFIG_NUMA 3879 3880 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3881 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3882 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3883 3884 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3885 int nid, unsigned int lru_mask, bool tree) 3886 { 3887 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3888 unsigned long nr = 0; 3889 enum lru_list lru; 3890 3891 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3892 3893 for_each_lru(lru) { 3894 if (!(BIT(lru) & lru_mask)) 3895 continue; 3896 if (tree) 3897 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3898 else 3899 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3900 } 3901 return nr; 3902 } 3903 3904 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3905 unsigned int lru_mask, 3906 bool tree) 3907 { 3908 unsigned long nr = 0; 3909 enum lru_list lru; 3910 3911 for_each_lru(lru) { 3912 if (!(BIT(lru) & lru_mask)) 3913 continue; 3914 if (tree) 3915 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3916 else 3917 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3918 } 3919 return nr; 3920 } 3921 3922 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3923 { 3924 struct numa_stat { 3925 const char *name; 3926 unsigned int lru_mask; 3927 }; 3928 3929 static const struct numa_stat stats[] = { 3930 { "total", LRU_ALL }, 3931 { "file", LRU_ALL_FILE }, 3932 { "anon", LRU_ALL_ANON }, 3933 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3934 }; 3935 const struct numa_stat *stat; 3936 int nid; 3937 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3938 3939 mem_cgroup_flush_stats(); 3940 3941 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3942 seq_printf(m, "%s=%lu", stat->name, 3943 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3944 false)); 3945 for_each_node_state(nid, N_MEMORY) 3946 seq_printf(m, " N%d=%lu", nid, 3947 mem_cgroup_node_nr_lru_pages(memcg, nid, 3948 stat->lru_mask, false)); 3949 seq_putc(m, '\n'); 3950 } 3951 3952 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3953 3954 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3955 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3956 true)); 3957 for_each_node_state(nid, N_MEMORY) 3958 seq_printf(m, " N%d=%lu", nid, 3959 mem_cgroup_node_nr_lru_pages(memcg, nid, 3960 stat->lru_mask, true)); 3961 seq_putc(m, '\n'); 3962 } 3963 3964 return 0; 3965 } 3966 #endif /* CONFIG_NUMA */ 3967 3968 static const unsigned int memcg1_stats[] = { 3969 NR_FILE_PAGES, 3970 NR_ANON_MAPPED, 3971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3972 NR_ANON_THPS, 3973 #endif 3974 NR_SHMEM, 3975 NR_FILE_MAPPED, 3976 NR_FILE_DIRTY, 3977 NR_WRITEBACK, 3978 MEMCG_SWAP, 3979 }; 3980 3981 static const char *const memcg1_stat_names[] = { 3982 "cache", 3983 "rss", 3984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3985 "rss_huge", 3986 #endif 3987 "shmem", 3988 "mapped_file", 3989 "dirty", 3990 "writeback", 3991 "swap", 3992 }; 3993 3994 /* Universal VM events cgroup1 shows, original sort order */ 3995 static const unsigned int memcg1_events[] = { 3996 PGPGIN, 3997 PGPGOUT, 3998 PGFAULT, 3999 PGMAJFAULT, 4000 }; 4001 4002 static int memcg_stat_show(struct seq_file *m, void *v) 4003 { 4004 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4005 unsigned long memory, memsw; 4006 struct mem_cgroup *mi; 4007 unsigned int i; 4008 4009 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4010 4011 mem_cgroup_flush_stats(); 4012 4013 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4014 unsigned long nr; 4015 4016 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4017 continue; 4018 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4019 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 4020 } 4021 4022 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4023 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4024 memcg_events_local(memcg, memcg1_events[i])); 4025 4026 for (i = 0; i < NR_LRU_LISTS; i++) 4027 seq_printf(m, "%s %lu\n", lru_list_name(i), 4028 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4029 PAGE_SIZE); 4030 4031 /* Hierarchical information */ 4032 memory = memsw = PAGE_COUNTER_MAX; 4033 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4034 memory = min(memory, READ_ONCE(mi->memory.max)); 4035 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4036 } 4037 seq_printf(m, "hierarchical_memory_limit %llu\n", 4038 (u64)memory * PAGE_SIZE); 4039 if (do_memsw_account()) 4040 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4041 (u64)memsw * PAGE_SIZE); 4042 4043 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4044 unsigned long nr; 4045 4046 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4047 continue; 4048 nr = memcg_page_state(memcg, memcg1_stats[i]); 4049 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4050 (u64)nr * PAGE_SIZE); 4051 } 4052 4053 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4054 seq_printf(m, "total_%s %llu\n", 4055 vm_event_name(memcg1_events[i]), 4056 (u64)memcg_events(memcg, memcg1_events[i])); 4057 4058 for (i = 0; i < NR_LRU_LISTS; i++) 4059 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4060 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4061 PAGE_SIZE); 4062 4063 #ifdef CONFIG_DEBUG_VM 4064 { 4065 pg_data_t *pgdat; 4066 struct mem_cgroup_per_node *mz; 4067 unsigned long anon_cost = 0; 4068 unsigned long file_cost = 0; 4069 4070 for_each_online_pgdat(pgdat) { 4071 mz = memcg->nodeinfo[pgdat->node_id]; 4072 4073 anon_cost += mz->lruvec.anon_cost; 4074 file_cost += mz->lruvec.file_cost; 4075 } 4076 seq_printf(m, "anon_cost %lu\n", anon_cost); 4077 seq_printf(m, "file_cost %lu\n", file_cost); 4078 } 4079 #endif 4080 4081 return 0; 4082 } 4083 4084 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4085 struct cftype *cft) 4086 { 4087 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4088 4089 return mem_cgroup_swappiness(memcg); 4090 } 4091 4092 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4093 struct cftype *cft, u64 val) 4094 { 4095 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4096 4097 if (val > 200) 4098 return -EINVAL; 4099 4100 if (!mem_cgroup_is_root(memcg)) 4101 memcg->swappiness = val; 4102 else 4103 vm_swappiness = val; 4104 4105 return 0; 4106 } 4107 4108 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4109 { 4110 struct mem_cgroup_threshold_ary *t; 4111 unsigned long usage; 4112 int i; 4113 4114 rcu_read_lock(); 4115 if (!swap) 4116 t = rcu_dereference(memcg->thresholds.primary); 4117 else 4118 t = rcu_dereference(memcg->memsw_thresholds.primary); 4119 4120 if (!t) 4121 goto unlock; 4122 4123 usage = mem_cgroup_usage(memcg, swap); 4124 4125 /* 4126 * current_threshold points to threshold just below or equal to usage. 4127 * If it's not true, a threshold was crossed after last 4128 * call of __mem_cgroup_threshold(). 4129 */ 4130 i = t->current_threshold; 4131 4132 /* 4133 * Iterate backward over array of thresholds starting from 4134 * current_threshold and check if a threshold is crossed. 4135 * If none of thresholds below usage is crossed, we read 4136 * only one element of the array here. 4137 */ 4138 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4139 eventfd_signal(t->entries[i].eventfd, 1); 4140 4141 /* i = current_threshold + 1 */ 4142 i++; 4143 4144 /* 4145 * Iterate forward over array of thresholds starting from 4146 * current_threshold+1 and check if a threshold is crossed. 4147 * If none of thresholds above usage is crossed, we read 4148 * only one element of the array here. 4149 */ 4150 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4151 eventfd_signal(t->entries[i].eventfd, 1); 4152 4153 /* Update current_threshold */ 4154 t->current_threshold = i - 1; 4155 unlock: 4156 rcu_read_unlock(); 4157 } 4158 4159 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4160 { 4161 while (memcg) { 4162 __mem_cgroup_threshold(memcg, false); 4163 if (do_memsw_account()) 4164 __mem_cgroup_threshold(memcg, true); 4165 4166 memcg = parent_mem_cgroup(memcg); 4167 } 4168 } 4169 4170 static int compare_thresholds(const void *a, const void *b) 4171 { 4172 const struct mem_cgroup_threshold *_a = a; 4173 const struct mem_cgroup_threshold *_b = b; 4174 4175 if (_a->threshold > _b->threshold) 4176 return 1; 4177 4178 if (_a->threshold < _b->threshold) 4179 return -1; 4180 4181 return 0; 4182 } 4183 4184 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4185 { 4186 struct mem_cgroup_eventfd_list *ev; 4187 4188 spin_lock(&memcg_oom_lock); 4189 4190 list_for_each_entry(ev, &memcg->oom_notify, list) 4191 eventfd_signal(ev->eventfd, 1); 4192 4193 spin_unlock(&memcg_oom_lock); 4194 return 0; 4195 } 4196 4197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4198 { 4199 struct mem_cgroup *iter; 4200 4201 for_each_mem_cgroup_tree(iter, memcg) 4202 mem_cgroup_oom_notify_cb(iter); 4203 } 4204 4205 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4206 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4207 { 4208 struct mem_cgroup_thresholds *thresholds; 4209 struct mem_cgroup_threshold_ary *new; 4210 unsigned long threshold; 4211 unsigned long usage; 4212 int i, size, ret; 4213 4214 ret = page_counter_memparse(args, "-1", &threshold); 4215 if (ret) 4216 return ret; 4217 4218 mutex_lock(&memcg->thresholds_lock); 4219 4220 if (type == _MEM) { 4221 thresholds = &memcg->thresholds; 4222 usage = mem_cgroup_usage(memcg, false); 4223 } else if (type == _MEMSWAP) { 4224 thresholds = &memcg->memsw_thresholds; 4225 usage = mem_cgroup_usage(memcg, true); 4226 } else 4227 BUG(); 4228 4229 /* Check if a threshold crossed before adding a new one */ 4230 if (thresholds->primary) 4231 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4232 4233 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4234 4235 /* Allocate memory for new array of thresholds */ 4236 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4237 if (!new) { 4238 ret = -ENOMEM; 4239 goto unlock; 4240 } 4241 new->size = size; 4242 4243 /* Copy thresholds (if any) to new array */ 4244 if (thresholds->primary) 4245 memcpy(new->entries, thresholds->primary->entries, 4246 flex_array_size(new, entries, size - 1)); 4247 4248 /* Add new threshold */ 4249 new->entries[size - 1].eventfd = eventfd; 4250 new->entries[size - 1].threshold = threshold; 4251 4252 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4253 sort(new->entries, size, sizeof(*new->entries), 4254 compare_thresholds, NULL); 4255 4256 /* Find current threshold */ 4257 new->current_threshold = -1; 4258 for (i = 0; i < size; i++) { 4259 if (new->entries[i].threshold <= usage) { 4260 /* 4261 * new->current_threshold will not be used until 4262 * rcu_assign_pointer(), so it's safe to increment 4263 * it here. 4264 */ 4265 ++new->current_threshold; 4266 } else 4267 break; 4268 } 4269 4270 /* Free old spare buffer and save old primary buffer as spare */ 4271 kfree(thresholds->spare); 4272 thresholds->spare = thresholds->primary; 4273 4274 rcu_assign_pointer(thresholds->primary, new); 4275 4276 /* To be sure that nobody uses thresholds */ 4277 synchronize_rcu(); 4278 4279 unlock: 4280 mutex_unlock(&memcg->thresholds_lock); 4281 4282 return ret; 4283 } 4284 4285 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4286 struct eventfd_ctx *eventfd, const char *args) 4287 { 4288 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4289 } 4290 4291 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4292 struct eventfd_ctx *eventfd, const char *args) 4293 { 4294 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4295 } 4296 4297 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4298 struct eventfd_ctx *eventfd, enum res_type type) 4299 { 4300 struct mem_cgroup_thresholds *thresholds; 4301 struct mem_cgroup_threshold_ary *new; 4302 unsigned long usage; 4303 int i, j, size, entries; 4304 4305 mutex_lock(&memcg->thresholds_lock); 4306 4307 if (type == _MEM) { 4308 thresholds = &memcg->thresholds; 4309 usage = mem_cgroup_usage(memcg, false); 4310 } else if (type == _MEMSWAP) { 4311 thresholds = &memcg->memsw_thresholds; 4312 usage = mem_cgroup_usage(memcg, true); 4313 } else 4314 BUG(); 4315 4316 if (!thresholds->primary) 4317 goto unlock; 4318 4319 /* Check if a threshold crossed before removing */ 4320 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4321 4322 /* Calculate new number of threshold */ 4323 size = entries = 0; 4324 for (i = 0; i < thresholds->primary->size; i++) { 4325 if (thresholds->primary->entries[i].eventfd != eventfd) 4326 size++; 4327 else 4328 entries++; 4329 } 4330 4331 new = thresholds->spare; 4332 4333 /* If no items related to eventfd have been cleared, nothing to do */ 4334 if (!entries) 4335 goto unlock; 4336 4337 /* Set thresholds array to NULL if we don't have thresholds */ 4338 if (!size) { 4339 kfree(new); 4340 new = NULL; 4341 goto swap_buffers; 4342 } 4343 4344 new->size = size; 4345 4346 /* Copy thresholds and find current threshold */ 4347 new->current_threshold = -1; 4348 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4349 if (thresholds->primary->entries[i].eventfd == eventfd) 4350 continue; 4351 4352 new->entries[j] = thresholds->primary->entries[i]; 4353 if (new->entries[j].threshold <= usage) { 4354 /* 4355 * new->current_threshold will not be used 4356 * until rcu_assign_pointer(), so it's safe to increment 4357 * it here. 4358 */ 4359 ++new->current_threshold; 4360 } 4361 j++; 4362 } 4363 4364 swap_buffers: 4365 /* Swap primary and spare array */ 4366 thresholds->spare = thresholds->primary; 4367 4368 rcu_assign_pointer(thresholds->primary, new); 4369 4370 /* To be sure that nobody uses thresholds */ 4371 synchronize_rcu(); 4372 4373 /* If all events are unregistered, free the spare array */ 4374 if (!new) { 4375 kfree(thresholds->spare); 4376 thresholds->spare = NULL; 4377 } 4378 unlock: 4379 mutex_unlock(&memcg->thresholds_lock); 4380 } 4381 4382 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4383 struct eventfd_ctx *eventfd) 4384 { 4385 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4386 } 4387 4388 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4389 struct eventfd_ctx *eventfd) 4390 { 4391 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4392 } 4393 4394 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4395 struct eventfd_ctx *eventfd, const char *args) 4396 { 4397 struct mem_cgroup_eventfd_list *event; 4398 4399 event = kmalloc(sizeof(*event), GFP_KERNEL); 4400 if (!event) 4401 return -ENOMEM; 4402 4403 spin_lock(&memcg_oom_lock); 4404 4405 event->eventfd = eventfd; 4406 list_add(&event->list, &memcg->oom_notify); 4407 4408 /* already in OOM ? */ 4409 if (memcg->under_oom) 4410 eventfd_signal(eventfd, 1); 4411 spin_unlock(&memcg_oom_lock); 4412 4413 return 0; 4414 } 4415 4416 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4417 struct eventfd_ctx *eventfd) 4418 { 4419 struct mem_cgroup_eventfd_list *ev, *tmp; 4420 4421 spin_lock(&memcg_oom_lock); 4422 4423 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4424 if (ev->eventfd == eventfd) { 4425 list_del(&ev->list); 4426 kfree(ev); 4427 } 4428 } 4429 4430 spin_unlock(&memcg_oom_lock); 4431 } 4432 4433 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4434 { 4435 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4436 4437 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4438 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4439 seq_printf(sf, "oom_kill %lu\n", 4440 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4441 return 0; 4442 } 4443 4444 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4445 struct cftype *cft, u64 val) 4446 { 4447 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4448 4449 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4450 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4451 return -EINVAL; 4452 4453 memcg->oom_kill_disable = val; 4454 if (!val) 4455 memcg_oom_recover(memcg); 4456 4457 return 0; 4458 } 4459 4460 #ifdef CONFIG_CGROUP_WRITEBACK 4461 4462 #include <trace/events/writeback.h> 4463 4464 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4465 { 4466 return wb_domain_init(&memcg->cgwb_domain, gfp); 4467 } 4468 4469 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4470 { 4471 wb_domain_exit(&memcg->cgwb_domain); 4472 } 4473 4474 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4475 { 4476 wb_domain_size_changed(&memcg->cgwb_domain); 4477 } 4478 4479 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4480 { 4481 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4482 4483 if (!memcg->css.parent) 4484 return NULL; 4485 4486 return &memcg->cgwb_domain; 4487 } 4488 4489 /** 4490 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4491 * @wb: bdi_writeback in question 4492 * @pfilepages: out parameter for number of file pages 4493 * @pheadroom: out parameter for number of allocatable pages according to memcg 4494 * @pdirty: out parameter for number of dirty pages 4495 * @pwriteback: out parameter for number of pages under writeback 4496 * 4497 * Determine the numbers of file, headroom, dirty, and writeback pages in 4498 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4499 * is a bit more involved. 4500 * 4501 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4502 * headroom is calculated as the lowest headroom of itself and the 4503 * ancestors. Note that this doesn't consider the actual amount of 4504 * available memory in the system. The caller should further cap 4505 * *@pheadroom accordingly. 4506 */ 4507 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4508 unsigned long *pheadroom, unsigned long *pdirty, 4509 unsigned long *pwriteback) 4510 { 4511 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4512 struct mem_cgroup *parent; 4513 4514 mem_cgroup_flush_stats(); 4515 4516 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4517 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4518 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4519 memcg_page_state(memcg, NR_ACTIVE_FILE); 4520 4521 *pheadroom = PAGE_COUNTER_MAX; 4522 while ((parent = parent_mem_cgroup(memcg))) { 4523 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4524 READ_ONCE(memcg->memory.high)); 4525 unsigned long used = page_counter_read(&memcg->memory); 4526 4527 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4528 memcg = parent; 4529 } 4530 } 4531 4532 /* 4533 * Foreign dirty flushing 4534 * 4535 * There's an inherent mismatch between memcg and writeback. The former 4536 * tracks ownership per-page while the latter per-inode. This was a 4537 * deliberate design decision because honoring per-page ownership in the 4538 * writeback path is complicated, may lead to higher CPU and IO overheads 4539 * and deemed unnecessary given that write-sharing an inode across 4540 * different cgroups isn't a common use-case. 4541 * 4542 * Combined with inode majority-writer ownership switching, this works well 4543 * enough in most cases but there are some pathological cases. For 4544 * example, let's say there are two cgroups A and B which keep writing to 4545 * different but confined parts of the same inode. B owns the inode and 4546 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4547 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4548 * triggering background writeback. A will be slowed down without a way to 4549 * make writeback of the dirty pages happen. 4550 * 4551 * Conditions like the above can lead to a cgroup getting repeatedly and 4552 * severely throttled after making some progress after each 4553 * dirty_expire_interval while the underlying IO device is almost 4554 * completely idle. 4555 * 4556 * Solving this problem completely requires matching the ownership tracking 4557 * granularities between memcg and writeback in either direction. However, 4558 * the more egregious behaviors can be avoided by simply remembering the 4559 * most recent foreign dirtying events and initiating remote flushes on 4560 * them when local writeback isn't enough to keep the memory clean enough. 4561 * 4562 * The following two functions implement such mechanism. When a foreign 4563 * page - a page whose memcg and writeback ownerships don't match - is 4564 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4565 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4566 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4567 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4568 * foreign bdi_writebacks which haven't expired. Both the numbers of 4569 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4570 * limited to MEMCG_CGWB_FRN_CNT. 4571 * 4572 * The mechanism only remembers IDs and doesn't hold any object references. 4573 * As being wrong occasionally doesn't matter, updates and accesses to the 4574 * records are lockless and racy. 4575 */ 4576 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4577 struct bdi_writeback *wb) 4578 { 4579 struct mem_cgroup *memcg = folio_memcg(folio); 4580 struct memcg_cgwb_frn *frn; 4581 u64 now = get_jiffies_64(); 4582 u64 oldest_at = now; 4583 int oldest = -1; 4584 int i; 4585 4586 trace_track_foreign_dirty(folio, wb); 4587 4588 /* 4589 * Pick the slot to use. If there is already a slot for @wb, keep 4590 * using it. If not replace the oldest one which isn't being 4591 * written out. 4592 */ 4593 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4594 frn = &memcg->cgwb_frn[i]; 4595 if (frn->bdi_id == wb->bdi->id && 4596 frn->memcg_id == wb->memcg_css->id) 4597 break; 4598 if (time_before64(frn->at, oldest_at) && 4599 atomic_read(&frn->done.cnt) == 1) { 4600 oldest = i; 4601 oldest_at = frn->at; 4602 } 4603 } 4604 4605 if (i < MEMCG_CGWB_FRN_CNT) { 4606 /* 4607 * Re-using an existing one. Update timestamp lazily to 4608 * avoid making the cacheline hot. We want them to be 4609 * reasonably up-to-date and significantly shorter than 4610 * dirty_expire_interval as that's what expires the record. 4611 * Use the shorter of 1s and dirty_expire_interval / 8. 4612 */ 4613 unsigned long update_intv = 4614 min_t(unsigned long, HZ, 4615 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4616 4617 if (time_before64(frn->at, now - update_intv)) 4618 frn->at = now; 4619 } else if (oldest >= 0) { 4620 /* replace the oldest free one */ 4621 frn = &memcg->cgwb_frn[oldest]; 4622 frn->bdi_id = wb->bdi->id; 4623 frn->memcg_id = wb->memcg_css->id; 4624 frn->at = now; 4625 } 4626 } 4627 4628 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4629 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4630 { 4631 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4632 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4633 u64 now = jiffies_64; 4634 int i; 4635 4636 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4637 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4638 4639 /* 4640 * If the record is older than dirty_expire_interval, 4641 * writeback on it has already started. No need to kick it 4642 * off again. Also, don't start a new one if there's 4643 * already one in flight. 4644 */ 4645 if (time_after64(frn->at, now - intv) && 4646 atomic_read(&frn->done.cnt) == 1) { 4647 frn->at = 0; 4648 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4649 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4650 WB_REASON_FOREIGN_FLUSH, 4651 &frn->done); 4652 } 4653 } 4654 } 4655 4656 #else /* CONFIG_CGROUP_WRITEBACK */ 4657 4658 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4659 { 4660 return 0; 4661 } 4662 4663 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4664 { 4665 } 4666 4667 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4668 { 4669 } 4670 4671 #endif /* CONFIG_CGROUP_WRITEBACK */ 4672 4673 /* 4674 * DO NOT USE IN NEW FILES. 4675 * 4676 * "cgroup.event_control" implementation. 4677 * 4678 * This is way over-engineered. It tries to support fully configurable 4679 * events for each user. Such level of flexibility is completely 4680 * unnecessary especially in the light of the planned unified hierarchy. 4681 * 4682 * Please deprecate this and replace with something simpler if at all 4683 * possible. 4684 */ 4685 4686 /* 4687 * Unregister event and free resources. 4688 * 4689 * Gets called from workqueue. 4690 */ 4691 static void memcg_event_remove(struct work_struct *work) 4692 { 4693 struct mem_cgroup_event *event = 4694 container_of(work, struct mem_cgroup_event, remove); 4695 struct mem_cgroup *memcg = event->memcg; 4696 4697 remove_wait_queue(event->wqh, &event->wait); 4698 4699 event->unregister_event(memcg, event->eventfd); 4700 4701 /* Notify userspace the event is going away. */ 4702 eventfd_signal(event->eventfd, 1); 4703 4704 eventfd_ctx_put(event->eventfd); 4705 kfree(event); 4706 css_put(&memcg->css); 4707 } 4708 4709 /* 4710 * Gets called on EPOLLHUP on eventfd when user closes it. 4711 * 4712 * Called with wqh->lock held and interrupts disabled. 4713 */ 4714 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4715 int sync, void *key) 4716 { 4717 struct mem_cgroup_event *event = 4718 container_of(wait, struct mem_cgroup_event, wait); 4719 struct mem_cgroup *memcg = event->memcg; 4720 __poll_t flags = key_to_poll(key); 4721 4722 if (flags & EPOLLHUP) { 4723 /* 4724 * If the event has been detached at cgroup removal, we 4725 * can simply return knowing the other side will cleanup 4726 * for us. 4727 * 4728 * We can't race against event freeing since the other 4729 * side will require wqh->lock via remove_wait_queue(), 4730 * which we hold. 4731 */ 4732 spin_lock(&memcg->event_list_lock); 4733 if (!list_empty(&event->list)) { 4734 list_del_init(&event->list); 4735 /* 4736 * We are in atomic context, but cgroup_event_remove() 4737 * may sleep, so we have to call it in workqueue. 4738 */ 4739 schedule_work(&event->remove); 4740 } 4741 spin_unlock(&memcg->event_list_lock); 4742 } 4743 4744 return 0; 4745 } 4746 4747 static void memcg_event_ptable_queue_proc(struct file *file, 4748 wait_queue_head_t *wqh, poll_table *pt) 4749 { 4750 struct mem_cgroup_event *event = 4751 container_of(pt, struct mem_cgroup_event, pt); 4752 4753 event->wqh = wqh; 4754 add_wait_queue(wqh, &event->wait); 4755 } 4756 4757 /* 4758 * DO NOT USE IN NEW FILES. 4759 * 4760 * Parse input and register new cgroup event handler. 4761 * 4762 * Input must be in format '<event_fd> <control_fd> <args>'. 4763 * Interpretation of args is defined by control file implementation. 4764 */ 4765 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4766 char *buf, size_t nbytes, loff_t off) 4767 { 4768 struct cgroup_subsys_state *css = of_css(of); 4769 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4770 struct mem_cgroup_event *event; 4771 struct cgroup_subsys_state *cfile_css; 4772 unsigned int efd, cfd; 4773 struct fd efile; 4774 struct fd cfile; 4775 const char *name; 4776 char *endp; 4777 int ret; 4778 4779 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4780 return -EOPNOTSUPP; 4781 4782 buf = strstrip(buf); 4783 4784 efd = simple_strtoul(buf, &endp, 10); 4785 if (*endp != ' ') 4786 return -EINVAL; 4787 buf = endp + 1; 4788 4789 cfd = simple_strtoul(buf, &endp, 10); 4790 if ((*endp != ' ') && (*endp != '\0')) 4791 return -EINVAL; 4792 buf = endp + 1; 4793 4794 event = kzalloc(sizeof(*event), GFP_KERNEL); 4795 if (!event) 4796 return -ENOMEM; 4797 4798 event->memcg = memcg; 4799 INIT_LIST_HEAD(&event->list); 4800 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4801 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4802 INIT_WORK(&event->remove, memcg_event_remove); 4803 4804 efile = fdget(efd); 4805 if (!efile.file) { 4806 ret = -EBADF; 4807 goto out_kfree; 4808 } 4809 4810 event->eventfd = eventfd_ctx_fileget(efile.file); 4811 if (IS_ERR(event->eventfd)) { 4812 ret = PTR_ERR(event->eventfd); 4813 goto out_put_efile; 4814 } 4815 4816 cfile = fdget(cfd); 4817 if (!cfile.file) { 4818 ret = -EBADF; 4819 goto out_put_eventfd; 4820 } 4821 4822 /* the process need read permission on control file */ 4823 /* AV: shouldn't we check that it's been opened for read instead? */ 4824 ret = file_permission(cfile.file, MAY_READ); 4825 if (ret < 0) 4826 goto out_put_cfile; 4827 4828 /* 4829 * Determine the event callbacks and set them in @event. This used 4830 * to be done via struct cftype but cgroup core no longer knows 4831 * about these events. The following is crude but the whole thing 4832 * is for compatibility anyway. 4833 * 4834 * DO NOT ADD NEW FILES. 4835 */ 4836 name = cfile.file->f_path.dentry->d_name.name; 4837 4838 if (!strcmp(name, "memory.usage_in_bytes")) { 4839 event->register_event = mem_cgroup_usage_register_event; 4840 event->unregister_event = mem_cgroup_usage_unregister_event; 4841 } else if (!strcmp(name, "memory.oom_control")) { 4842 event->register_event = mem_cgroup_oom_register_event; 4843 event->unregister_event = mem_cgroup_oom_unregister_event; 4844 } else if (!strcmp(name, "memory.pressure_level")) { 4845 event->register_event = vmpressure_register_event; 4846 event->unregister_event = vmpressure_unregister_event; 4847 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4848 event->register_event = memsw_cgroup_usage_register_event; 4849 event->unregister_event = memsw_cgroup_usage_unregister_event; 4850 } else { 4851 ret = -EINVAL; 4852 goto out_put_cfile; 4853 } 4854 4855 /* 4856 * Verify @cfile should belong to @css. Also, remaining events are 4857 * automatically removed on cgroup destruction but the removal is 4858 * asynchronous, so take an extra ref on @css. 4859 */ 4860 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4861 &memory_cgrp_subsys); 4862 ret = -EINVAL; 4863 if (IS_ERR(cfile_css)) 4864 goto out_put_cfile; 4865 if (cfile_css != css) { 4866 css_put(cfile_css); 4867 goto out_put_cfile; 4868 } 4869 4870 ret = event->register_event(memcg, event->eventfd, buf); 4871 if (ret) 4872 goto out_put_css; 4873 4874 vfs_poll(efile.file, &event->pt); 4875 4876 spin_lock_irq(&memcg->event_list_lock); 4877 list_add(&event->list, &memcg->event_list); 4878 spin_unlock_irq(&memcg->event_list_lock); 4879 4880 fdput(cfile); 4881 fdput(efile); 4882 4883 return nbytes; 4884 4885 out_put_css: 4886 css_put(css); 4887 out_put_cfile: 4888 fdput(cfile); 4889 out_put_eventfd: 4890 eventfd_ctx_put(event->eventfd); 4891 out_put_efile: 4892 fdput(efile); 4893 out_kfree: 4894 kfree(event); 4895 4896 return ret; 4897 } 4898 4899 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4900 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4901 { 4902 /* 4903 * Deprecated. 4904 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 4905 */ 4906 return 0; 4907 } 4908 #endif 4909 4910 static struct cftype mem_cgroup_legacy_files[] = { 4911 { 4912 .name = "usage_in_bytes", 4913 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4914 .read_u64 = mem_cgroup_read_u64, 4915 }, 4916 { 4917 .name = "max_usage_in_bytes", 4918 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4919 .write = mem_cgroup_reset, 4920 .read_u64 = mem_cgroup_read_u64, 4921 }, 4922 { 4923 .name = "limit_in_bytes", 4924 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4925 .write = mem_cgroup_write, 4926 .read_u64 = mem_cgroup_read_u64, 4927 }, 4928 { 4929 .name = "soft_limit_in_bytes", 4930 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4931 .write = mem_cgroup_write, 4932 .read_u64 = mem_cgroup_read_u64, 4933 }, 4934 { 4935 .name = "failcnt", 4936 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4937 .write = mem_cgroup_reset, 4938 .read_u64 = mem_cgroup_read_u64, 4939 }, 4940 { 4941 .name = "stat", 4942 .seq_show = memcg_stat_show, 4943 }, 4944 { 4945 .name = "force_empty", 4946 .write = mem_cgroup_force_empty_write, 4947 }, 4948 { 4949 .name = "use_hierarchy", 4950 .write_u64 = mem_cgroup_hierarchy_write, 4951 .read_u64 = mem_cgroup_hierarchy_read, 4952 }, 4953 { 4954 .name = "cgroup.event_control", /* XXX: for compat */ 4955 .write = memcg_write_event_control, 4956 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4957 }, 4958 { 4959 .name = "swappiness", 4960 .read_u64 = mem_cgroup_swappiness_read, 4961 .write_u64 = mem_cgroup_swappiness_write, 4962 }, 4963 { 4964 .name = "move_charge_at_immigrate", 4965 .read_u64 = mem_cgroup_move_charge_read, 4966 .write_u64 = mem_cgroup_move_charge_write, 4967 }, 4968 { 4969 .name = "oom_control", 4970 .seq_show = mem_cgroup_oom_control_read, 4971 .write_u64 = mem_cgroup_oom_control_write, 4972 }, 4973 { 4974 .name = "pressure_level", 4975 }, 4976 #ifdef CONFIG_NUMA 4977 { 4978 .name = "numa_stat", 4979 .seq_show = memcg_numa_stat_show, 4980 }, 4981 #endif 4982 { 4983 .name = "kmem.limit_in_bytes", 4984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4985 .write = mem_cgroup_write, 4986 .read_u64 = mem_cgroup_read_u64, 4987 }, 4988 { 4989 .name = "kmem.usage_in_bytes", 4990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4991 .read_u64 = mem_cgroup_read_u64, 4992 }, 4993 { 4994 .name = "kmem.failcnt", 4995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4996 .write = mem_cgroup_reset, 4997 .read_u64 = mem_cgroup_read_u64, 4998 }, 4999 { 5000 .name = "kmem.max_usage_in_bytes", 5001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5002 .write = mem_cgroup_reset, 5003 .read_u64 = mem_cgroup_read_u64, 5004 }, 5005 #if defined(CONFIG_MEMCG_KMEM) && \ 5006 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5007 { 5008 .name = "kmem.slabinfo", 5009 .seq_show = mem_cgroup_slab_show, 5010 }, 5011 #endif 5012 { 5013 .name = "kmem.tcp.limit_in_bytes", 5014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5015 .write = mem_cgroup_write, 5016 .read_u64 = mem_cgroup_read_u64, 5017 }, 5018 { 5019 .name = "kmem.tcp.usage_in_bytes", 5020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5021 .read_u64 = mem_cgroup_read_u64, 5022 }, 5023 { 5024 .name = "kmem.tcp.failcnt", 5025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5026 .write = mem_cgroup_reset, 5027 .read_u64 = mem_cgroup_read_u64, 5028 }, 5029 { 5030 .name = "kmem.tcp.max_usage_in_bytes", 5031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5032 .write = mem_cgroup_reset, 5033 .read_u64 = mem_cgroup_read_u64, 5034 }, 5035 { }, /* terminate */ 5036 }; 5037 5038 /* 5039 * Private memory cgroup IDR 5040 * 5041 * Swap-out records and page cache shadow entries need to store memcg 5042 * references in constrained space, so we maintain an ID space that is 5043 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5044 * memory-controlled cgroups to 64k. 5045 * 5046 * However, there usually are many references to the offline CSS after 5047 * the cgroup has been destroyed, such as page cache or reclaimable 5048 * slab objects, that don't need to hang on to the ID. We want to keep 5049 * those dead CSS from occupying IDs, or we might quickly exhaust the 5050 * relatively small ID space and prevent the creation of new cgroups 5051 * even when there are much fewer than 64k cgroups - possibly none. 5052 * 5053 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5054 * be freed and recycled when it's no longer needed, which is usually 5055 * when the CSS is offlined. 5056 * 5057 * The only exception to that are records of swapped out tmpfs/shmem 5058 * pages that need to be attributed to live ancestors on swapin. But 5059 * those references are manageable from userspace. 5060 */ 5061 5062 static DEFINE_IDR(mem_cgroup_idr); 5063 5064 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5065 { 5066 if (memcg->id.id > 0) { 5067 idr_remove(&mem_cgroup_idr, memcg->id.id); 5068 memcg->id.id = 0; 5069 } 5070 } 5071 5072 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5073 unsigned int n) 5074 { 5075 refcount_add(n, &memcg->id.ref); 5076 } 5077 5078 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5079 { 5080 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5081 mem_cgroup_id_remove(memcg); 5082 5083 /* Memcg ID pins CSS */ 5084 css_put(&memcg->css); 5085 } 5086 } 5087 5088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5089 { 5090 mem_cgroup_id_put_many(memcg, 1); 5091 } 5092 5093 /** 5094 * mem_cgroup_from_id - look up a memcg from a memcg id 5095 * @id: the memcg id to look up 5096 * 5097 * Caller must hold rcu_read_lock(). 5098 */ 5099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5100 { 5101 WARN_ON_ONCE(!rcu_read_lock_held()); 5102 return idr_find(&mem_cgroup_idr, id); 5103 } 5104 5105 #ifdef CONFIG_SHRINKER_DEBUG 5106 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5107 { 5108 struct cgroup *cgrp; 5109 struct cgroup_subsys_state *css; 5110 struct mem_cgroup *memcg; 5111 5112 cgrp = cgroup_get_from_id(ino); 5113 if (!cgrp) 5114 return ERR_PTR(-ENOENT); 5115 5116 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5117 if (css) 5118 memcg = container_of(css, struct mem_cgroup, css); 5119 else 5120 memcg = ERR_PTR(-ENOENT); 5121 5122 cgroup_put(cgrp); 5123 5124 return memcg; 5125 } 5126 #endif 5127 5128 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5129 { 5130 struct mem_cgroup_per_node *pn; 5131 5132 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5133 if (!pn) 5134 return 1; 5135 5136 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5137 GFP_KERNEL_ACCOUNT); 5138 if (!pn->lruvec_stats_percpu) { 5139 kfree(pn); 5140 return 1; 5141 } 5142 5143 lruvec_init(&pn->lruvec); 5144 pn->memcg = memcg; 5145 5146 memcg->nodeinfo[node] = pn; 5147 return 0; 5148 } 5149 5150 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5151 { 5152 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5153 5154 if (!pn) 5155 return; 5156 5157 free_percpu(pn->lruvec_stats_percpu); 5158 kfree(pn); 5159 } 5160 5161 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5162 { 5163 int node; 5164 5165 for_each_node(node) 5166 free_mem_cgroup_per_node_info(memcg, node); 5167 free_percpu(memcg->vmstats_percpu); 5168 kfree(memcg); 5169 } 5170 5171 static void mem_cgroup_free(struct mem_cgroup *memcg) 5172 { 5173 memcg_wb_domain_exit(memcg); 5174 __mem_cgroup_free(memcg); 5175 } 5176 5177 static struct mem_cgroup *mem_cgroup_alloc(void) 5178 { 5179 struct mem_cgroup *memcg; 5180 int node; 5181 int __maybe_unused i; 5182 long error = -ENOMEM; 5183 5184 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5185 if (!memcg) 5186 return ERR_PTR(error); 5187 5188 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5189 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5190 if (memcg->id.id < 0) { 5191 error = memcg->id.id; 5192 goto fail; 5193 } 5194 5195 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5196 GFP_KERNEL_ACCOUNT); 5197 if (!memcg->vmstats_percpu) 5198 goto fail; 5199 5200 for_each_node(node) 5201 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5202 goto fail; 5203 5204 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5205 goto fail; 5206 5207 INIT_WORK(&memcg->high_work, high_work_func); 5208 INIT_LIST_HEAD(&memcg->oom_notify); 5209 mutex_init(&memcg->thresholds_lock); 5210 spin_lock_init(&memcg->move_lock); 5211 vmpressure_init(&memcg->vmpressure); 5212 INIT_LIST_HEAD(&memcg->event_list); 5213 spin_lock_init(&memcg->event_list_lock); 5214 memcg->socket_pressure = jiffies; 5215 #ifdef CONFIG_MEMCG_KMEM 5216 memcg->kmemcg_id = -1; 5217 INIT_LIST_HEAD(&memcg->objcg_list); 5218 #endif 5219 #ifdef CONFIG_CGROUP_WRITEBACK 5220 INIT_LIST_HEAD(&memcg->cgwb_list); 5221 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5222 memcg->cgwb_frn[i].done = 5223 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5224 #endif 5225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5226 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5227 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5228 memcg->deferred_split_queue.split_queue_len = 0; 5229 #endif 5230 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5231 return memcg; 5232 fail: 5233 mem_cgroup_id_remove(memcg); 5234 __mem_cgroup_free(memcg); 5235 return ERR_PTR(error); 5236 } 5237 5238 static struct cgroup_subsys_state * __ref 5239 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5240 { 5241 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5242 struct mem_cgroup *memcg, *old_memcg; 5243 5244 old_memcg = set_active_memcg(parent); 5245 memcg = mem_cgroup_alloc(); 5246 set_active_memcg(old_memcg); 5247 if (IS_ERR(memcg)) 5248 return ERR_CAST(memcg); 5249 5250 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5251 memcg->soft_limit = PAGE_COUNTER_MAX; 5252 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5253 memcg->zswap_max = PAGE_COUNTER_MAX; 5254 #endif 5255 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5256 if (parent) { 5257 memcg->swappiness = mem_cgroup_swappiness(parent); 5258 memcg->oom_kill_disable = parent->oom_kill_disable; 5259 5260 page_counter_init(&memcg->memory, &parent->memory); 5261 page_counter_init(&memcg->swap, &parent->swap); 5262 page_counter_init(&memcg->kmem, &parent->kmem); 5263 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5264 } else { 5265 page_counter_init(&memcg->memory, NULL); 5266 page_counter_init(&memcg->swap, NULL); 5267 page_counter_init(&memcg->kmem, NULL); 5268 page_counter_init(&memcg->tcpmem, NULL); 5269 5270 root_mem_cgroup = memcg; 5271 return &memcg->css; 5272 } 5273 5274 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5275 static_branch_inc(&memcg_sockets_enabled_key); 5276 5277 return &memcg->css; 5278 } 5279 5280 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5281 { 5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5283 5284 if (memcg_online_kmem(memcg)) 5285 goto remove_id; 5286 5287 /* 5288 * A memcg must be visible for expand_shrinker_info() 5289 * by the time the maps are allocated. So, we allocate maps 5290 * here, when for_each_mem_cgroup() can't skip it. 5291 */ 5292 if (alloc_shrinker_info(memcg)) 5293 goto offline_kmem; 5294 5295 /* Online state pins memcg ID, memcg ID pins CSS */ 5296 refcount_set(&memcg->id.ref, 1); 5297 css_get(css); 5298 5299 if (unlikely(mem_cgroup_is_root(memcg))) 5300 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5301 2UL*HZ); 5302 return 0; 5303 offline_kmem: 5304 memcg_offline_kmem(memcg); 5305 remove_id: 5306 mem_cgroup_id_remove(memcg); 5307 return -ENOMEM; 5308 } 5309 5310 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5311 { 5312 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5313 struct mem_cgroup_event *event, *tmp; 5314 5315 /* 5316 * Unregister events and notify userspace. 5317 * Notify userspace about cgroup removing only after rmdir of cgroup 5318 * directory to avoid race between userspace and kernelspace. 5319 */ 5320 spin_lock_irq(&memcg->event_list_lock); 5321 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5322 list_del_init(&event->list); 5323 schedule_work(&event->remove); 5324 } 5325 spin_unlock_irq(&memcg->event_list_lock); 5326 5327 page_counter_set_min(&memcg->memory, 0); 5328 page_counter_set_low(&memcg->memory, 0); 5329 5330 memcg_offline_kmem(memcg); 5331 reparent_shrinker_deferred(memcg); 5332 wb_memcg_offline(memcg); 5333 5334 drain_all_stock(memcg); 5335 5336 mem_cgroup_id_put(memcg); 5337 } 5338 5339 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5340 { 5341 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5342 5343 invalidate_reclaim_iterators(memcg); 5344 } 5345 5346 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5347 { 5348 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5349 int __maybe_unused i; 5350 5351 #ifdef CONFIG_CGROUP_WRITEBACK 5352 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5353 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5354 #endif 5355 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5356 static_branch_dec(&memcg_sockets_enabled_key); 5357 5358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5359 static_branch_dec(&memcg_sockets_enabled_key); 5360 5361 vmpressure_cleanup(&memcg->vmpressure); 5362 cancel_work_sync(&memcg->high_work); 5363 mem_cgroup_remove_from_trees(memcg); 5364 free_shrinker_info(memcg); 5365 mem_cgroup_free(memcg); 5366 } 5367 5368 /** 5369 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5370 * @css: the target css 5371 * 5372 * Reset the states of the mem_cgroup associated with @css. This is 5373 * invoked when the userland requests disabling on the default hierarchy 5374 * but the memcg is pinned through dependency. The memcg should stop 5375 * applying policies and should revert to the vanilla state as it may be 5376 * made visible again. 5377 * 5378 * The current implementation only resets the essential configurations. 5379 * This needs to be expanded to cover all the visible parts. 5380 */ 5381 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5382 { 5383 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5384 5385 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5386 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5387 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5388 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5389 page_counter_set_min(&memcg->memory, 0); 5390 page_counter_set_low(&memcg->memory, 0); 5391 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5392 memcg->soft_limit = PAGE_COUNTER_MAX; 5393 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5394 memcg_wb_domain_size_changed(memcg); 5395 } 5396 5397 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5398 { 5399 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5400 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5401 struct memcg_vmstats_percpu *statc; 5402 long delta, v; 5403 int i, nid; 5404 5405 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5406 5407 for (i = 0; i < MEMCG_NR_STAT; i++) { 5408 /* 5409 * Collect the aggregated propagation counts of groups 5410 * below us. We're in a per-cpu loop here and this is 5411 * a global counter, so the first cycle will get them. 5412 */ 5413 delta = memcg->vmstats.state_pending[i]; 5414 if (delta) 5415 memcg->vmstats.state_pending[i] = 0; 5416 5417 /* Add CPU changes on this level since the last flush */ 5418 v = READ_ONCE(statc->state[i]); 5419 if (v != statc->state_prev[i]) { 5420 delta += v - statc->state_prev[i]; 5421 statc->state_prev[i] = v; 5422 } 5423 5424 if (!delta) 5425 continue; 5426 5427 /* Aggregate counts on this level and propagate upwards */ 5428 memcg->vmstats.state[i] += delta; 5429 if (parent) 5430 parent->vmstats.state_pending[i] += delta; 5431 } 5432 5433 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5434 delta = memcg->vmstats.events_pending[i]; 5435 if (delta) 5436 memcg->vmstats.events_pending[i] = 0; 5437 5438 v = READ_ONCE(statc->events[i]); 5439 if (v != statc->events_prev[i]) { 5440 delta += v - statc->events_prev[i]; 5441 statc->events_prev[i] = v; 5442 } 5443 5444 if (!delta) 5445 continue; 5446 5447 memcg->vmstats.events[i] += delta; 5448 if (parent) 5449 parent->vmstats.events_pending[i] += delta; 5450 } 5451 5452 for_each_node_state(nid, N_MEMORY) { 5453 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5454 struct mem_cgroup_per_node *ppn = NULL; 5455 struct lruvec_stats_percpu *lstatc; 5456 5457 if (parent) 5458 ppn = parent->nodeinfo[nid]; 5459 5460 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5461 5462 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5463 delta = pn->lruvec_stats.state_pending[i]; 5464 if (delta) 5465 pn->lruvec_stats.state_pending[i] = 0; 5466 5467 v = READ_ONCE(lstatc->state[i]); 5468 if (v != lstatc->state_prev[i]) { 5469 delta += v - lstatc->state_prev[i]; 5470 lstatc->state_prev[i] = v; 5471 } 5472 5473 if (!delta) 5474 continue; 5475 5476 pn->lruvec_stats.state[i] += delta; 5477 if (ppn) 5478 ppn->lruvec_stats.state_pending[i] += delta; 5479 } 5480 } 5481 } 5482 5483 #ifdef CONFIG_MMU 5484 /* Handlers for move charge at task migration. */ 5485 static int mem_cgroup_do_precharge(unsigned long count) 5486 { 5487 int ret; 5488 5489 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5490 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5491 if (!ret) { 5492 mc.precharge += count; 5493 return ret; 5494 } 5495 5496 /* Try charges one by one with reclaim, but do not retry */ 5497 while (count--) { 5498 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5499 if (ret) 5500 return ret; 5501 mc.precharge++; 5502 cond_resched(); 5503 } 5504 return 0; 5505 } 5506 5507 union mc_target { 5508 struct page *page; 5509 swp_entry_t ent; 5510 }; 5511 5512 enum mc_target_type { 5513 MC_TARGET_NONE = 0, 5514 MC_TARGET_PAGE, 5515 MC_TARGET_SWAP, 5516 MC_TARGET_DEVICE, 5517 }; 5518 5519 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5520 unsigned long addr, pte_t ptent) 5521 { 5522 struct page *page = vm_normal_page(vma, addr, ptent); 5523 5524 if (!page || !page_mapped(page)) 5525 return NULL; 5526 if (PageAnon(page)) { 5527 if (!(mc.flags & MOVE_ANON)) 5528 return NULL; 5529 } else { 5530 if (!(mc.flags & MOVE_FILE)) 5531 return NULL; 5532 } 5533 if (!get_page_unless_zero(page)) 5534 return NULL; 5535 5536 return page; 5537 } 5538 5539 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5540 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5541 pte_t ptent, swp_entry_t *entry) 5542 { 5543 struct page *page = NULL; 5544 swp_entry_t ent = pte_to_swp_entry(ptent); 5545 5546 if (!(mc.flags & MOVE_ANON)) 5547 return NULL; 5548 5549 /* 5550 * Handle device private pages that are not accessible by the CPU, but 5551 * stored as special swap entries in the page table. 5552 */ 5553 if (is_device_private_entry(ent)) { 5554 page = pfn_swap_entry_to_page(ent); 5555 if (!get_page_unless_zero(page)) 5556 return NULL; 5557 return page; 5558 } 5559 5560 if (non_swap_entry(ent)) 5561 return NULL; 5562 5563 /* 5564 * Because lookup_swap_cache() updates some statistics counter, 5565 * we call find_get_page() with swapper_space directly. 5566 */ 5567 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5568 entry->val = ent.val; 5569 5570 return page; 5571 } 5572 #else 5573 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5574 pte_t ptent, swp_entry_t *entry) 5575 { 5576 return NULL; 5577 } 5578 #endif 5579 5580 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5581 unsigned long addr, pte_t ptent) 5582 { 5583 if (!vma->vm_file) /* anonymous vma */ 5584 return NULL; 5585 if (!(mc.flags & MOVE_FILE)) 5586 return NULL; 5587 5588 /* page is moved even if it's not RSS of this task(page-faulted). */ 5589 /* shmem/tmpfs may report page out on swap: account for that too. */ 5590 return find_get_incore_page(vma->vm_file->f_mapping, 5591 linear_page_index(vma, addr)); 5592 } 5593 5594 /** 5595 * mem_cgroup_move_account - move account of the page 5596 * @page: the page 5597 * @compound: charge the page as compound or small page 5598 * @from: mem_cgroup which the page is moved from. 5599 * @to: mem_cgroup which the page is moved to. @from != @to. 5600 * 5601 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5602 * 5603 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5604 * from old cgroup. 5605 */ 5606 static int mem_cgroup_move_account(struct page *page, 5607 bool compound, 5608 struct mem_cgroup *from, 5609 struct mem_cgroup *to) 5610 { 5611 struct folio *folio = page_folio(page); 5612 struct lruvec *from_vec, *to_vec; 5613 struct pglist_data *pgdat; 5614 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5615 int nid, ret; 5616 5617 VM_BUG_ON(from == to); 5618 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5619 VM_BUG_ON(compound && !folio_test_large(folio)); 5620 5621 /* 5622 * Prevent mem_cgroup_migrate() from looking at 5623 * page's memory cgroup of its source page while we change it. 5624 */ 5625 ret = -EBUSY; 5626 if (!folio_trylock(folio)) 5627 goto out; 5628 5629 ret = -EINVAL; 5630 if (folio_memcg(folio) != from) 5631 goto out_unlock; 5632 5633 pgdat = folio_pgdat(folio); 5634 from_vec = mem_cgroup_lruvec(from, pgdat); 5635 to_vec = mem_cgroup_lruvec(to, pgdat); 5636 5637 folio_memcg_lock(folio); 5638 5639 if (folio_test_anon(folio)) { 5640 if (folio_mapped(folio)) { 5641 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5642 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5643 if (folio_test_transhuge(folio)) { 5644 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5645 -nr_pages); 5646 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5647 nr_pages); 5648 } 5649 } 5650 } else { 5651 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5652 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5653 5654 if (folio_test_swapbacked(folio)) { 5655 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5656 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5657 } 5658 5659 if (folio_mapped(folio)) { 5660 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5661 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5662 } 5663 5664 if (folio_test_dirty(folio)) { 5665 struct address_space *mapping = folio_mapping(folio); 5666 5667 if (mapping_can_writeback(mapping)) { 5668 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5669 -nr_pages); 5670 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5671 nr_pages); 5672 } 5673 } 5674 } 5675 5676 if (folio_test_writeback(folio)) { 5677 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5678 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5679 } 5680 5681 /* 5682 * All state has been migrated, let's switch to the new memcg. 5683 * 5684 * It is safe to change page's memcg here because the page 5685 * is referenced, charged, isolated, and locked: we can't race 5686 * with (un)charging, migration, LRU putback, or anything else 5687 * that would rely on a stable page's memory cgroup. 5688 * 5689 * Note that lock_page_memcg is a memcg lock, not a page lock, 5690 * to save space. As soon as we switch page's memory cgroup to a 5691 * new memcg that isn't locked, the above state can change 5692 * concurrently again. Make sure we're truly done with it. 5693 */ 5694 smp_mb(); 5695 5696 css_get(&to->css); 5697 css_put(&from->css); 5698 5699 folio->memcg_data = (unsigned long)to; 5700 5701 __folio_memcg_unlock(from); 5702 5703 ret = 0; 5704 nid = folio_nid(folio); 5705 5706 local_irq_disable(); 5707 mem_cgroup_charge_statistics(to, nr_pages); 5708 memcg_check_events(to, nid); 5709 mem_cgroup_charge_statistics(from, -nr_pages); 5710 memcg_check_events(from, nid); 5711 local_irq_enable(); 5712 out_unlock: 5713 folio_unlock(folio); 5714 out: 5715 return ret; 5716 } 5717 5718 /** 5719 * get_mctgt_type - get target type of moving charge 5720 * @vma: the vma the pte to be checked belongs 5721 * @addr: the address corresponding to the pte to be checked 5722 * @ptent: the pte to be checked 5723 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5724 * 5725 * Returns 5726 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5727 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5728 * move charge. if @target is not NULL, the page is stored in target->page 5729 * with extra refcnt got(Callers should handle it). 5730 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5731 * target for charge migration. if @target is not NULL, the entry is stored 5732 * in target->ent. 5733 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and 5734 * thus not on the lru. 5735 * For now we such page is charge like a regular page would be as for all 5736 * intent and purposes it is just special memory taking the place of a 5737 * regular page. 5738 * 5739 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5740 * 5741 * Called with pte lock held. 5742 */ 5743 5744 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5745 unsigned long addr, pte_t ptent, union mc_target *target) 5746 { 5747 struct page *page = NULL; 5748 enum mc_target_type ret = MC_TARGET_NONE; 5749 swp_entry_t ent = { .val = 0 }; 5750 5751 if (pte_present(ptent)) 5752 page = mc_handle_present_pte(vma, addr, ptent); 5753 else if (pte_none_mostly(ptent)) 5754 /* 5755 * PTE markers should be treated as a none pte here, separated 5756 * from other swap handling below. 5757 */ 5758 page = mc_handle_file_pte(vma, addr, ptent); 5759 else if (is_swap_pte(ptent)) 5760 page = mc_handle_swap_pte(vma, ptent, &ent); 5761 5762 if (!page && !ent.val) 5763 return ret; 5764 if (page) { 5765 /* 5766 * Do only loose check w/o serialization. 5767 * mem_cgroup_move_account() checks the page is valid or 5768 * not under LRU exclusion. 5769 */ 5770 if (page_memcg(page) == mc.from) { 5771 ret = MC_TARGET_PAGE; 5772 if (is_device_private_page(page) || 5773 is_device_coherent_page(page)) 5774 ret = MC_TARGET_DEVICE; 5775 if (target) 5776 target->page = page; 5777 } 5778 if (!ret || !target) 5779 put_page(page); 5780 } 5781 /* 5782 * There is a swap entry and a page doesn't exist or isn't charged. 5783 * But we cannot move a tail-page in a THP. 5784 */ 5785 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5786 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5787 ret = MC_TARGET_SWAP; 5788 if (target) 5789 target->ent = ent; 5790 } 5791 return ret; 5792 } 5793 5794 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5795 /* 5796 * We don't consider PMD mapped swapping or file mapped pages because THP does 5797 * not support them for now. 5798 * Caller should make sure that pmd_trans_huge(pmd) is true. 5799 */ 5800 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5801 unsigned long addr, pmd_t pmd, union mc_target *target) 5802 { 5803 struct page *page = NULL; 5804 enum mc_target_type ret = MC_TARGET_NONE; 5805 5806 if (unlikely(is_swap_pmd(pmd))) { 5807 VM_BUG_ON(thp_migration_supported() && 5808 !is_pmd_migration_entry(pmd)); 5809 return ret; 5810 } 5811 page = pmd_page(pmd); 5812 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5813 if (!(mc.flags & MOVE_ANON)) 5814 return ret; 5815 if (page_memcg(page) == mc.from) { 5816 ret = MC_TARGET_PAGE; 5817 if (target) { 5818 get_page(page); 5819 target->page = page; 5820 } 5821 } 5822 return ret; 5823 } 5824 #else 5825 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5826 unsigned long addr, pmd_t pmd, union mc_target *target) 5827 { 5828 return MC_TARGET_NONE; 5829 } 5830 #endif 5831 5832 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5833 unsigned long addr, unsigned long end, 5834 struct mm_walk *walk) 5835 { 5836 struct vm_area_struct *vma = walk->vma; 5837 pte_t *pte; 5838 spinlock_t *ptl; 5839 5840 ptl = pmd_trans_huge_lock(pmd, vma); 5841 if (ptl) { 5842 /* 5843 * Note their can not be MC_TARGET_DEVICE for now as we do not 5844 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5845 * this might change. 5846 */ 5847 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5848 mc.precharge += HPAGE_PMD_NR; 5849 spin_unlock(ptl); 5850 return 0; 5851 } 5852 5853 if (pmd_trans_unstable(pmd)) 5854 return 0; 5855 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5856 for (; addr != end; pte++, addr += PAGE_SIZE) 5857 if (get_mctgt_type(vma, addr, *pte, NULL)) 5858 mc.precharge++; /* increment precharge temporarily */ 5859 pte_unmap_unlock(pte - 1, ptl); 5860 cond_resched(); 5861 5862 return 0; 5863 } 5864 5865 static const struct mm_walk_ops precharge_walk_ops = { 5866 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5867 }; 5868 5869 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5870 { 5871 unsigned long precharge; 5872 5873 mmap_read_lock(mm); 5874 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5875 mmap_read_unlock(mm); 5876 5877 precharge = mc.precharge; 5878 mc.precharge = 0; 5879 5880 return precharge; 5881 } 5882 5883 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5884 { 5885 unsigned long precharge = mem_cgroup_count_precharge(mm); 5886 5887 VM_BUG_ON(mc.moving_task); 5888 mc.moving_task = current; 5889 return mem_cgroup_do_precharge(precharge); 5890 } 5891 5892 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5893 static void __mem_cgroup_clear_mc(void) 5894 { 5895 struct mem_cgroup *from = mc.from; 5896 struct mem_cgroup *to = mc.to; 5897 5898 /* we must uncharge all the leftover precharges from mc.to */ 5899 if (mc.precharge) { 5900 cancel_charge(mc.to, mc.precharge); 5901 mc.precharge = 0; 5902 } 5903 /* 5904 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5905 * we must uncharge here. 5906 */ 5907 if (mc.moved_charge) { 5908 cancel_charge(mc.from, mc.moved_charge); 5909 mc.moved_charge = 0; 5910 } 5911 /* we must fixup refcnts and charges */ 5912 if (mc.moved_swap) { 5913 /* uncharge swap account from the old cgroup */ 5914 if (!mem_cgroup_is_root(mc.from)) 5915 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5916 5917 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5918 5919 /* 5920 * we charged both to->memory and to->memsw, so we 5921 * should uncharge to->memory. 5922 */ 5923 if (!mem_cgroup_is_root(mc.to)) 5924 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5925 5926 mc.moved_swap = 0; 5927 } 5928 memcg_oom_recover(from); 5929 memcg_oom_recover(to); 5930 wake_up_all(&mc.waitq); 5931 } 5932 5933 static void mem_cgroup_clear_mc(void) 5934 { 5935 struct mm_struct *mm = mc.mm; 5936 5937 /* 5938 * we must clear moving_task before waking up waiters at the end of 5939 * task migration. 5940 */ 5941 mc.moving_task = NULL; 5942 __mem_cgroup_clear_mc(); 5943 spin_lock(&mc.lock); 5944 mc.from = NULL; 5945 mc.to = NULL; 5946 mc.mm = NULL; 5947 spin_unlock(&mc.lock); 5948 5949 mmput(mm); 5950 } 5951 5952 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5953 { 5954 struct cgroup_subsys_state *css; 5955 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5956 struct mem_cgroup *from; 5957 struct task_struct *leader, *p; 5958 struct mm_struct *mm; 5959 unsigned long move_flags; 5960 int ret = 0; 5961 5962 /* charge immigration isn't supported on the default hierarchy */ 5963 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5964 return 0; 5965 5966 /* 5967 * Multi-process migrations only happen on the default hierarchy 5968 * where charge immigration is not used. Perform charge 5969 * immigration if @tset contains a leader and whine if there are 5970 * multiple. 5971 */ 5972 p = NULL; 5973 cgroup_taskset_for_each_leader(leader, css, tset) { 5974 WARN_ON_ONCE(p); 5975 p = leader; 5976 memcg = mem_cgroup_from_css(css); 5977 } 5978 if (!p) 5979 return 0; 5980 5981 /* 5982 * We are now committed to this value whatever it is. Changes in this 5983 * tunable will only affect upcoming migrations, not the current one. 5984 * So we need to save it, and keep it going. 5985 */ 5986 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5987 if (!move_flags) 5988 return 0; 5989 5990 from = mem_cgroup_from_task(p); 5991 5992 VM_BUG_ON(from == memcg); 5993 5994 mm = get_task_mm(p); 5995 if (!mm) 5996 return 0; 5997 /* We move charges only when we move a owner of the mm */ 5998 if (mm->owner == p) { 5999 VM_BUG_ON(mc.from); 6000 VM_BUG_ON(mc.to); 6001 VM_BUG_ON(mc.precharge); 6002 VM_BUG_ON(mc.moved_charge); 6003 VM_BUG_ON(mc.moved_swap); 6004 6005 spin_lock(&mc.lock); 6006 mc.mm = mm; 6007 mc.from = from; 6008 mc.to = memcg; 6009 mc.flags = move_flags; 6010 spin_unlock(&mc.lock); 6011 /* We set mc.moving_task later */ 6012 6013 ret = mem_cgroup_precharge_mc(mm); 6014 if (ret) 6015 mem_cgroup_clear_mc(); 6016 } else { 6017 mmput(mm); 6018 } 6019 return ret; 6020 } 6021 6022 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6023 { 6024 if (mc.to) 6025 mem_cgroup_clear_mc(); 6026 } 6027 6028 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6029 unsigned long addr, unsigned long end, 6030 struct mm_walk *walk) 6031 { 6032 int ret = 0; 6033 struct vm_area_struct *vma = walk->vma; 6034 pte_t *pte; 6035 spinlock_t *ptl; 6036 enum mc_target_type target_type; 6037 union mc_target target; 6038 struct page *page; 6039 6040 ptl = pmd_trans_huge_lock(pmd, vma); 6041 if (ptl) { 6042 if (mc.precharge < HPAGE_PMD_NR) { 6043 spin_unlock(ptl); 6044 return 0; 6045 } 6046 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6047 if (target_type == MC_TARGET_PAGE) { 6048 page = target.page; 6049 if (!isolate_lru_page(page)) { 6050 if (!mem_cgroup_move_account(page, true, 6051 mc.from, mc.to)) { 6052 mc.precharge -= HPAGE_PMD_NR; 6053 mc.moved_charge += HPAGE_PMD_NR; 6054 } 6055 putback_lru_page(page); 6056 } 6057 put_page(page); 6058 } else if (target_type == MC_TARGET_DEVICE) { 6059 page = target.page; 6060 if (!mem_cgroup_move_account(page, true, 6061 mc.from, mc.to)) { 6062 mc.precharge -= HPAGE_PMD_NR; 6063 mc.moved_charge += HPAGE_PMD_NR; 6064 } 6065 put_page(page); 6066 } 6067 spin_unlock(ptl); 6068 return 0; 6069 } 6070 6071 if (pmd_trans_unstable(pmd)) 6072 return 0; 6073 retry: 6074 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6075 for (; addr != end; addr += PAGE_SIZE) { 6076 pte_t ptent = *(pte++); 6077 bool device = false; 6078 swp_entry_t ent; 6079 6080 if (!mc.precharge) 6081 break; 6082 6083 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6084 case MC_TARGET_DEVICE: 6085 device = true; 6086 fallthrough; 6087 case MC_TARGET_PAGE: 6088 page = target.page; 6089 /* 6090 * We can have a part of the split pmd here. Moving it 6091 * can be done but it would be too convoluted so simply 6092 * ignore such a partial THP and keep it in original 6093 * memcg. There should be somebody mapping the head. 6094 */ 6095 if (PageTransCompound(page)) 6096 goto put; 6097 if (!device && isolate_lru_page(page)) 6098 goto put; 6099 if (!mem_cgroup_move_account(page, false, 6100 mc.from, mc.to)) { 6101 mc.precharge--; 6102 /* we uncharge from mc.from later. */ 6103 mc.moved_charge++; 6104 } 6105 if (!device) 6106 putback_lru_page(page); 6107 put: /* get_mctgt_type() gets the page */ 6108 put_page(page); 6109 break; 6110 case MC_TARGET_SWAP: 6111 ent = target.ent; 6112 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6113 mc.precharge--; 6114 mem_cgroup_id_get_many(mc.to, 1); 6115 /* we fixup other refcnts and charges later. */ 6116 mc.moved_swap++; 6117 } 6118 break; 6119 default: 6120 break; 6121 } 6122 } 6123 pte_unmap_unlock(pte - 1, ptl); 6124 cond_resched(); 6125 6126 if (addr != end) { 6127 /* 6128 * We have consumed all precharges we got in can_attach(). 6129 * We try charge one by one, but don't do any additional 6130 * charges to mc.to if we have failed in charge once in attach() 6131 * phase. 6132 */ 6133 ret = mem_cgroup_do_precharge(1); 6134 if (!ret) 6135 goto retry; 6136 } 6137 6138 return ret; 6139 } 6140 6141 static const struct mm_walk_ops charge_walk_ops = { 6142 .pmd_entry = mem_cgroup_move_charge_pte_range, 6143 }; 6144 6145 static void mem_cgroup_move_charge(void) 6146 { 6147 lru_add_drain_all(); 6148 /* 6149 * Signal lock_page_memcg() to take the memcg's move_lock 6150 * while we're moving its pages to another memcg. Then wait 6151 * for already started RCU-only updates to finish. 6152 */ 6153 atomic_inc(&mc.from->moving_account); 6154 synchronize_rcu(); 6155 retry: 6156 if (unlikely(!mmap_read_trylock(mc.mm))) { 6157 /* 6158 * Someone who are holding the mmap_lock might be waiting in 6159 * waitq. So we cancel all extra charges, wake up all waiters, 6160 * and retry. Because we cancel precharges, we might not be able 6161 * to move enough charges, but moving charge is a best-effort 6162 * feature anyway, so it wouldn't be a big problem. 6163 */ 6164 __mem_cgroup_clear_mc(); 6165 cond_resched(); 6166 goto retry; 6167 } 6168 /* 6169 * When we have consumed all precharges and failed in doing 6170 * additional charge, the page walk just aborts. 6171 */ 6172 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6173 NULL); 6174 6175 mmap_read_unlock(mc.mm); 6176 atomic_dec(&mc.from->moving_account); 6177 } 6178 6179 static void mem_cgroup_move_task(void) 6180 { 6181 if (mc.to) { 6182 mem_cgroup_move_charge(); 6183 mem_cgroup_clear_mc(); 6184 } 6185 } 6186 #else /* !CONFIG_MMU */ 6187 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6188 { 6189 return 0; 6190 } 6191 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6192 { 6193 } 6194 static void mem_cgroup_move_task(void) 6195 { 6196 } 6197 #endif 6198 6199 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6200 { 6201 if (value == PAGE_COUNTER_MAX) 6202 seq_puts(m, "max\n"); 6203 else 6204 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6205 6206 return 0; 6207 } 6208 6209 static u64 memory_current_read(struct cgroup_subsys_state *css, 6210 struct cftype *cft) 6211 { 6212 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6213 6214 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6215 } 6216 6217 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6218 struct cftype *cft) 6219 { 6220 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6221 6222 return (u64)memcg->memory.watermark * PAGE_SIZE; 6223 } 6224 6225 static int memory_min_show(struct seq_file *m, void *v) 6226 { 6227 return seq_puts_memcg_tunable(m, 6228 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6229 } 6230 6231 static ssize_t memory_min_write(struct kernfs_open_file *of, 6232 char *buf, size_t nbytes, loff_t off) 6233 { 6234 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6235 unsigned long min; 6236 int err; 6237 6238 buf = strstrip(buf); 6239 err = page_counter_memparse(buf, "max", &min); 6240 if (err) 6241 return err; 6242 6243 page_counter_set_min(&memcg->memory, min); 6244 6245 return nbytes; 6246 } 6247 6248 static int memory_low_show(struct seq_file *m, void *v) 6249 { 6250 return seq_puts_memcg_tunable(m, 6251 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6252 } 6253 6254 static ssize_t memory_low_write(struct kernfs_open_file *of, 6255 char *buf, size_t nbytes, loff_t off) 6256 { 6257 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6258 unsigned long low; 6259 int err; 6260 6261 buf = strstrip(buf); 6262 err = page_counter_memparse(buf, "max", &low); 6263 if (err) 6264 return err; 6265 6266 page_counter_set_low(&memcg->memory, low); 6267 6268 return nbytes; 6269 } 6270 6271 static int memory_high_show(struct seq_file *m, void *v) 6272 { 6273 return seq_puts_memcg_tunable(m, 6274 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6275 } 6276 6277 static ssize_t memory_high_write(struct kernfs_open_file *of, 6278 char *buf, size_t nbytes, loff_t off) 6279 { 6280 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6281 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6282 bool drained = false; 6283 unsigned long high; 6284 int err; 6285 6286 buf = strstrip(buf); 6287 err = page_counter_memparse(buf, "max", &high); 6288 if (err) 6289 return err; 6290 6291 page_counter_set_high(&memcg->memory, high); 6292 6293 for (;;) { 6294 unsigned long nr_pages = page_counter_read(&memcg->memory); 6295 unsigned long reclaimed; 6296 6297 if (nr_pages <= high) 6298 break; 6299 6300 if (signal_pending(current)) 6301 break; 6302 6303 if (!drained) { 6304 drain_all_stock(memcg); 6305 drained = true; 6306 continue; 6307 } 6308 6309 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6310 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6311 6312 if (!reclaimed && !nr_retries--) 6313 break; 6314 } 6315 6316 memcg_wb_domain_size_changed(memcg); 6317 return nbytes; 6318 } 6319 6320 static int memory_max_show(struct seq_file *m, void *v) 6321 { 6322 return seq_puts_memcg_tunable(m, 6323 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6324 } 6325 6326 static ssize_t memory_max_write(struct kernfs_open_file *of, 6327 char *buf, size_t nbytes, loff_t off) 6328 { 6329 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6330 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6331 bool drained = false; 6332 unsigned long max; 6333 int err; 6334 6335 buf = strstrip(buf); 6336 err = page_counter_memparse(buf, "max", &max); 6337 if (err) 6338 return err; 6339 6340 xchg(&memcg->memory.max, max); 6341 6342 for (;;) { 6343 unsigned long nr_pages = page_counter_read(&memcg->memory); 6344 6345 if (nr_pages <= max) 6346 break; 6347 6348 if (signal_pending(current)) 6349 break; 6350 6351 if (!drained) { 6352 drain_all_stock(memcg); 6353 drained = true; 6354 continue; 6355 } 6356 6357 if (nr_reclaims) { 6358 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6359 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6360 nr_reclaims--; 6361 continue; 6362 } 6363 6364 memcg_memory_event(memcg, MEMCG_OOM); 6365 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6366 break; 6367 } 6368 6369 memcg_wb_domain_size_changed(memcg); 6370 return nbytes; 6371 } 6372 6373 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6374 { 6375 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6376 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6377 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6378 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6379 seq_printf(m, "oom_kill %lu\n", 6380 atomic_long_read(&events[MEMCG_OOM_KILL])); 6381 seq_printf(m, "oom_group_kill %lu\n", 6382 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6383 } 6384 6385 static int memory_events_show(struct seq_file *m, void *v) 6386 { 6387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6388 6389 __memory_events_show(m, memcg->memory_events); 6390 return 0; 6391 } 6392 6393 static int memory_events_local_show(struct seq_file *m, void *v) 6394 { 6395 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6396 6397 __memory_events_show(m, memcg->memory_events_local); 6398 return 0; 6399 } 6400 6401 static int memory_stat_show(struct seq_file *m, void *v) 6402 { 6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6404 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6405 6406 if (!buf) 6407 return -ENOMEM; 6408 memory_stat_format(memcg, buf, PAGE_SIZE); 6409 seq_puts(m, buf); 6410 kfree(buf); 6411 return 0; 6412 } 6413 6414 #ifdef CONFIG_NUMA 6415 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6416 int item) 6417 { 6418 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6419 } 6420 6421 static int memory_numa_stat_show(struct seq_file *m, void *v) 6422 { 6423 int i; 6424 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6425 6426 mem_cgroup_flush_stats(); 6427 6428 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6429 int nid; 6430 6431 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6432 continue; 6433 6434 seq_printf(m, "%s", memory_stats[i].name); 6435 for_each_node_state(nid, N_MEMORY) { 6436 u64 size; 6437 struct lruvec *lruvec; 6438 6439 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6440 size = lruvec_page_state_output(lruvec, 6441 memory_stats[i].idx); 6442 seq_printf(m, " N%d=%llu", nid, size); 6443 } 6444 seq_putc(m, '\n'); 6445 } 6446 6447 return 0; 6448 } 6449 #endif 6450 6451 static int memory_oom_group_show(struct seq_file *m, void *v) 6452 { 6453 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6454 6455 seq_printf(m, "%d\n", memcg->oom_group); 6456 6457 return 0; 6458 } 6459 6460 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6461 char *buf, size_t nbytes, loff_t off) 6462 { 6463 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6464 int ret, oom_group; 6465 6466 buf = strstrip(buf); 6467 if (!buf) 6468 return -EINVAL; 6469 6470 ret = kstrtoint(buf, 0, &oom_group); 6471 if (ret) 6472 return ret; 6473 6474 if (oom_group != 0 && oom_group != 1) 6475 return -EINVAL; 6476 6477 memcg->oom_group = oom_group; 6478 6479 return nbytes; 6480 } 6481 6482 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6483 size_t nbytes, loff_t off) 6484 { 6485 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6486 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6487 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6488 unsigned int reclaim_options; 6489 int err; 6490 6491 buf = strstrip(buf); 6492 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6493 if (err) 6494 return err; 6495 6496 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6497 while (nr_reclaimed < nr_to_reclaim) { 6498 unsigned long reclaimed; 6499 6500 if (signal_pending(current)) 6501 return -EINTR; 6502 6503 /* 6504 * This is the final attempt, drain percpu lru caches in the 6505 * hope of introducing more evictable pages for 6506 * try_to_free_mem_cgroup_pages(). 6507 */ 6508 if (!nr_retries) 6509 lru_add_drain_all(); 6510 6511 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6512 nr_to_reclaim - nr_reclaimed, 6513 GFP_KERNEL, reclaim_options); 6514 6515 if (!reclaimed && !nr_retries--) 6516 return -EAGAIN; 6517 6518 nr_reclaimed += reclaimed; 6519 } 6520 6521 return nbytes; 6522 } 6523 6524 static struct cftype memory_files[] = { 6525 { 6526 .name = "current", 6527 .flags = CFTYPE_NOT_ON_ROOT, 6528 .read_u64 = memory_current_read, 6529 }, 6530 { 6531 .name = "peak", 6532 .flags = CFTYPE_NOT_ON_ROOT, 6533 .read_u64 = memory_peak_read, 6534 }, 6535 { 6536 .name = "min", 6537 .flags = CFTYPE_NOT_ON_ROOT, 6538 .seq_show = memory_min_show, 6539 .write = memory_min_write, 6540 }, 6541 { 6542 .name = "low", 6543 .flags = CFTYPE_NOT_ON_ROOT, 6544 .seq_show = memory_low_show, 6545 .write = memory_low_write, 6546 }, 6547 { 6548 .name = "high", 6549 .flags = CFTYPE_NOT_ON_ROOT, 6550 .seq_show = memory_high_show, 6551 .write = memory_high_write, 6552 }, 6553 { 6554 .name = "max", 6555 .flags = CFTYPE_NOT_ON_ROOT, 6556 .seq_show = memory_max_show, 6557 .write = memory_max_write, 6558 }, 6559 { 6560 .name = "events", 6561 .flags = CFTYPE_NOT_ON_ROOT, 6562 .file_offset = offsetof(struct mem_cgroup, events_file), 6563 .seq_show = memory_events_show, 6564 }, 6565 { 6566 .name = "events.local", 6567 .flags = CFTYPE_NOT_ON_ROOT, 6568 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6569 .seq_show = memory_events_local_show, 6570 }, 6571 { 6572 .name = "stat", 6573 .seq_show = memory_stat_show, 6574 }, 6575 #ifdef CONFIG_NUMA 6576 { 6577 .name = "numa_stat", 6578 .seq_show = memory_numa_stat_show, 6579 }, 6580 #endif 6581 { 6582 .name = "oom.group", 6583 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6584 .seq_show = memory_oom_group_show, 6585 .write = memory_oom_group_write, 6586 }, 6587 { 6588 .name = "reclaim", 6589 .flags = CFTYPE_NS_DELEGATABLE, 6590 .write = memory_reclaim, 6591 }, 6592 { } /* terminate */ 6593 }; 6594 6595 struct cgroup_subsys memory_cgrp_subsys = { 6596 .css_alloc = mem_cgroup_css_alloc, 6597 .css_online = mem_cgroup_css_online, 6598 .css_offline = mem_cgroup_css_offline, 6599 .css_released = mem_cgroup_css_released, 6600 .css_free = mem_cgroup_css_free, 6601 .css_reset = mem_cgroup_css_reset, 6602 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6603 .can_attach = mem_cgroup_can_attach, 6604 .cancel_attach = mem_cgroup_cancel_attach, 6605 .post_attach = mem_cgroup_move_task, 6606 .dfl_cftypes = memory_files, 6607 .legacy_cftypes = mem_cgroup_legacy_files, 6608 .early_init = 0, 6609 }; 6610 6611 /* 6612 * This function calculates an individual cgroup's effective 6613 * protection which is derived from its own memory.min/low, its 6614 * parent's and siblings' settings, as well as the actual memory 6615 * distribution in the tree. 6616 * 6617 * The following rules apply to the effective protection values: 6618 * 6619 * 1. At the first level of reclaim, effective protection is equal to 6620 * the declared protection in memory.min and memory.low. 6621 * 6622 * 2. To enable safe delegation of the protection configuration, at 6623 * subsequent levels the effective protection is capped to the 6624 * parent's effective protection. 6625 * 6626 * 3. To make complex and dynamic subtrees easier to configure, the 6627 * user is allowed to overcommit the declared protection at a given 6628 * level. If that is the case, the parent's effective protection is 6629 * distributed to the children in proportion to how much protection 6630 * they have declared and how much of it they are utilizing. 6631 * 6632 * This makes distribution proportional, but also work-conserving: 6633 * if one cgroup claims much more protection than it uses memory, 6634 * the unused remainder is available to its siblings. 6635 * 6636 * 4. Conversely, when the declared protection is undercommitted at a 6637 * given level, the distribution of the larger parental protection 6638 * budget is NOT proportional. A cgroup's protection from a sibling 6639 * is capped to its own memory.min/low setting. 6640 * 6641 * 5. However, to allow protecting recursive subtrees from each other 6642 * without having to declare each individual cgroup's fixed share 6643 * of the ancestor's claim to protection, any unutilized - 6644 * "floating" - protection from up the tree is distributed in 6645 * proportion to each cgroup's *usage*. This makes the protection 6646 * neutral wrt sibling cgroups and lets them compete freely over 6647 * the shared parental protection budget, but it protects the 6648 * subtree as a whole from neighboring subtrees. 6649 * 6650 * Note that 4. and 5. are not in conflict: 4. is about protecting 6651 * against immediate siblings whereas 5. is about protecting against 6652 * neighboring subtrees. 6653 */ 6654 static unsigned long effective_protection(unsigned long usage, 6655 unsigned long parent_usage, 6656 unsigned long setting, 6657 unsigned long parent_effective, 6658 unsigned long siblings_protected) 6659 { 6660 unsigned long protected; 6661 unsigned long ep; 6662 6663 protected = min(usage, setting); 6664 /* 6665 * If all cgroups at this level combined claim and use more 6666 * protection then what the parent affords them, distribute 6667 * shares in proportion to utilization. 6668 * 6669 * We are using actual utilization rather than the statically 6670 * claimed protection in order to be work-conserving: claimed 6671 * but unused protection is available to siblings that would 6672 * otherwise get a smaller chunk than what they claimed. 6673 */ 6674 if (siblings_protected > parent_effective) 6675 return protected * parent_effective / siblings_protected; 6676 6677 /* 6678 * Ok, utilized protection of all children is within what the 6679 * parent affords them, so we know whatever this child claims 6680 * and utilizes is effectively protected. 6681 * 6682 * If there is unprotected usage beyond this value, reclaim 6683 * will apply pressure in proportion to that amount. 6684 * 6685 * If there is unutilized protection, the cgroup will be fully 6686 * shielded from reclaim, but we do return a smaller value for 6687 * protection than what the group could enjoy in theory. This 6688 * is okay. With the overcommit distribution above, effective 6689 * protection is always dependent on how memory is actually 6690 * consumed among the siblings anyway. 6691 */ 6692 ep = protected; 6693 6694 /* 6695 * If the children aren't claiming (all of) the protection 6696 * afforded to them by the parent, distribute the remainder in 6697 * proportion to the (unprotected) memory of each cgroup. That 6698 * way, cgroups that aren't explicitly prioritized wrt each 6699 * other compete freely over the allowance, but they are 6700 * collectively protected from neighboring trees. 6701 * 6702 * We're using unprotected memory for the weight so that if 6703 * some cgroups DO claim explicit protection, we don't protect 6704 * the same bytes twice. 6705 * 6706 * Check both usage and parent_usage against the respective 6707 * protected values. One should imply the other, but they 6708 * aren't read atomically - make sure the division is sane. 6709 */ 6710 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6711 return ep; 6712 if (parent_effective > siblings_protected && 6713 parent_usage > siblings_protected && 6714 usage > protected) { 6715 unsigned long unclaimed; 6716 6717 unclaimed = parent_effective - siblings_protected; 6718 unclaimed *= usage - protected; 6719 unclaimed /= parent_usage - siblings_protected; 6720 6721 ep += unclaimed; 6722 } 6723 6724 return ep; 6725 } 6726 6727 /** 6728 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6729 * @root: the top ancestor of the sub-tree being checked 6730 * @memcg: the memory cgroup to check 6731 * 6732 * WARNING: This function is not stateless! It can only be used as part 6733 * of a top-down tree iteration, not for isolated queries. 6734 */ 6735 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6736 struct mem_cgroup *memcg) 6737 { 6738 unsigned long usage, parent_usage; 6739 struct mem_cgroup *parent; 6740 6741 if (mem_cgroup_disabled()) 6742 return; 6743 6744 if (!root) 6745 root = root_mem_cgroup; 6746 6747 /* 6748 * Effective values of the reclaim targets are ignored so they 6749 * can be stale. Have a look at mem_cgroup_protection for more 6750 * details. 6751 * TODO: calculation should be more robust so that we do not need 6752 * that special casing. 6753 */ 6754 if (memcg == root) 6755 return; 6756 6757 usage = page_counter_read(&memcg->memory); 6758 if (!usage) 6759 return; 6760 6761 parent = parent_mem_cgroup(memcg); 6762 6763 if (parent == root) { 6764 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6765 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6766 return; 6767 } 6768 6769 parent_usage = page_counter_read(&parent->memory); 6770 6771 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6772 READ_ONCE(memcg->memory.min), 6773 READ_ONCE(parent->memory.emin), 6774 atomic_long_read(&parent->memory.children_min_usage))); 6775 6776 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6777 READ_ONCE(memcg->memory.low), 6778 READ_ONCE(parent->memory.elow), 6779 atomic_long_read(&parent->memory.children_low_usage))); 6780 } 6781 6782 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6783 gfp_t gfp) 6784 { 6785 long nr_pages = folio_nr_pages(folio); 6786 int ret; 6787 6788 ret = try_charge(memcg, gfp, nr_pages); 6789 if (ret) 6790 goto out; 6791 6792 css_get(&memcg->css); 6793 commit_charge(folio, memcg); 6794 6795 local_irq_disable(); 6796 mem_cgroup_charge_statistics(memcg, nr_pages); 6797 memcg_check_events(memcg, folio_nid(folio)); 6798 local_irq_enable(); 6799 out: 6800 return ret; 6801 } 6802 6803 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6804 { 6805 struct mem_cgroup *memcg; 6806 int ret; 6807 6808 memcg = get_mem_cgroup_from_mm(mm); 6809 ret = charge_memcg(folio, memcg, gfp); 6810 css_put(&memcg->css); 6811 6812 return ret; 6813 } 6814 6815 /** 6816 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6817 * @page: page to charge 6818 * @mm: mm context of the victim 6819 * @gfp: reclaim mode 6820 * @entry: swap entry for which the page is allocated 6821 * 6822 * This function charges a page allocated for swapin. Please call this before 6823 * adding the page to the swapcache. 6824 * 6825 * Returns 0 on success. Otherwise, an error code is returned. 6826 */ 6827 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6828 gfp_t gfp, swp_entry_t entry) 6829 { 6830 struct folio *folio = page_folio(page); 6831 struct mem_cgroup *memcg; 6832 unsigned short id; 6833 int ret; 6834 6835 if (mem_cgroup_disabled()) 6836 return 0; 6837 6838 id = lookup_swap_cgroup_id(entry); 6839 rcu_read_lock(); 6840 memcg = mem_cgroup_from_id(id); 6841 if (!memcg || !css_tryget_online(&memcg->css)) 6842 memcg = get_mem_cgroup_from_mm(mm); 6843 rcu_read_unlock(); 6844 6845 ret = charge_memcg(folio, memcg, gfp); 6846 6847 css_put(&memcg->css); 6848 return ret; 6849 } 6850 6851 /* 6852 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6853 * @entry: swap entry for which the page is charged 6854 * 6855 * Call this function after successfully adding the charged page to swapcache. 6856 * 6857 * Note: This function assumes the page for which swap slot is being uncharged 6858 * is order 0 page. 6859 */ 6860 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6861 { 6862 /* 6863 * Cgroup1's unified memory+swap counter has been charged with the 6864 * new swapcache page, finish the transfer by uncharging the swap 6865 * slot. The swap slot would also get uncharged when it dies, but 6866 * it can stick around indefinitely and we'd count the page twice 6867 * the entire time. 6868 * 6869 * Cgroup2 has separate resource counters for memory and swap, 6870 * so this is a non-issue here. Memory and swap charge lifetimes 6871 * correspond 1:1 to page and swap slot lifetimes: we charge the 6872 * page to memory here, and uncharge swap when the slot is freed. 6873 */ 6874 if (!mem_cgroup_disabled() && do_memsw_account()) { 6875 /* 6876 * The swap entry might not get freed for a long time, 6877 * let's not wait for it. The page already received a 6878 * memory+swap charge, drop the swap entry duplicate. 6879 */ 6880 mem_cgroup_uncharge_swap(entry, 1); 6881 } 6882 } 6883 6884 struct uncharge_gather { 6885 struct mem_cgroup *memcg; 6886 unsigned long nr_memory; 6887 unsigned long pgpgout; 6888 unsigned long nr_kmem; 6889 int nid; 6890 }; 6891 6892 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6893 { 6894 memset(ug, 0, sizeof(*ug)); 6895 } 6896 6897 static void uncharge_batch(const struct uncharge_gather *ug) 6898 { 6899 unsigned long flags; 6900 6901 if (ug->nr_memory) { 6902 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6903 if (do_memsw_account()) 6904 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6905 if (ug->nr_kmem) 6906 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 6907 memcg_oom_recover(ug->memcg); 6908 } 6909 6910 local_irq_save(flags); 6911 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6912 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6913 memcg_check_events(ug->memcg, ug->nid); 6914 local_irq_restore(flags); 6915 6916 /* drop reference from uncharge_folio */ 6917 css_put(&ug->memcg->css); 6918 } 6919 6920 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6921 { 6922 long nr_pages; 6923 struct mem_cgroup *memcg; 6924 struct obj_cgroup *objcg; 6925 6926 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6927 6928 /* 6929 * Nobody should be changing or seriously looking at 6930 * folio memcg or objcg at this point, we have fully 6931 * exclusive access to the folio. 6932 */ 6933 if (folio_memcg_kmem(folio)) { 6934 objcg = __folio_objcg(folio); 6935 /* 6936 * This get matches the put at the end of the function and 6937 * kmem pages do not hold memcg references anymore. 6938 */ 6939 memcg = get_mem_cgroup_from_objcg(objcg); 6940 } else { 6941 memcg = __folio_memcg(folio); 6942 } 6943 6944 if (!memcg) 6945 return; 6946 6947 if (ug->memcg != memcg) { 6948 if (ug->memcg) { 6949 uncharge_batch(ug); 6950 uncharge_gather_clear(ug); 6951 } 6952 ug->memcg = memcg; 6953 ug->nid = folio_nid(folio); 6954 6955 /* pairs with css_put in uncharge_batch */ 6956 css_get(&memcg->css); 6957 } 6958 6959 nr_pages = folio_nr_pages(folio); 6960 6961 if (folio_memcg_kmem(folio)) { 6962 ug->nr_memory += nr_pages; 6963 ug->nr_kmem += nr_pages; 6964 6965 folio->memcg_data = 0; 6966 obj_cgroup_put(objcg); 6967 } else { 6968 /* LRU pages aren't accounted at the root level */ 6969 if (!mem_cgroup_is_root(memcg)) 6970 ug->nr_memory += nr_pages; 6971 ug->pgpgout++; 6972 6973 folio->memcg_data = 0; 6974 } 6975 6976 css_put(&memcg->css); 6977 } 6978 6979 void __mem_cgroup_uncharge(struct folio *folio) 6980 { 6981 struct uncharge_gather ug; 6982 6983 /* Don't touch folio->lru of any random page, pre-check: */ 6984 if (!folio_memcg(folio)) 6985 return; 6986 6987 uncharge_gather_clear(&ug); 6988 uncharge_folio(folio, &ug); 6989 uncharge_batch(&ug); 6990 } 6991 6992 /** 6993 * __mem_cgroup_uncharge_list - uncharge a list of page 6994 * @page_list: list of pages to uncharge 6995 * 6996 * Uncharge a list of pages previously charged with 6997 * __mem_cgroup_charge(). 6998 */ 6999 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7000 { 7001 struct uncharge_gather ug; 7002 struct folio *folio; 7003 7004 uncharge_gather_clear(&ug); 7005 list_for_each_entry(folio, page_list, lru) 7006 uncharge_folio(folio, &ug); 7007 if (ug.memcg) 7008 uncharge_batch(&ug); 7009 } 7010 7011 /** 7012 * mem_cgroup_migrate - Charge a folio's replacement. 7013 * @old: Currently circulating folio. 7014 * @new: Replacement folio. 7015 * 7016 * Charge @new as a replacement folio for @old. @old will 7017 * be uncharged upon free. 7018 * 7019 * Both folios must be locked, @new->mapping must be set up. 7020 */ 7021 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7022 { 7023 struct mem_cgroup *memcg; 7024 long nr_pages = folio_nr_pages(new); 7025 unsigned long flags; 7026 7027 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7028 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7029 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7030 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7031 7032 if (mem_cgroup_disabled()) 7033 return; 7034 7035 /* Page cache replacement: new folio already charged? */ 7036 if (folio_memcg(new)) 7037 return; 7038 7039 memcg = folio_memcg(old); 7040 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7041 if (!memcg) 7042 return; 7043 7044 /* Force-charge the new page. The old one will be freed soon */ 7045 if (!mem_cgroup_is_root(memcg)) { 7046 page_counter_charge(&memcg->memory, nr_pages); 7047 if (do_memsw_account()) 7048 page_counter_charge(&memcg->memsw, nr_pages); 7049 } 7050 7051 css_get(&memcg->css); 7052 commit_charge(new, memcg); 7053 7054 local_irq_save(flags); 7055 mem_cgroup_charge_statistics(memcg, nr_pages); 7056 memcg_check_events(memcg, folio_nid(new)); 7057 local_irq_restore(flags); 7058 } 7059 7060 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7061 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7062 7063 void mem_cgroup_sk_alloc(struct sock *sk) 7064 { 7065 struct mem_cgroup *memcg; 7066 7067 if (!mem_cgroup_sockets_enabled) 7068 return; 7069 7070 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7071 if (!in_task()) 7072 return; 7073 7074 rcu_read_lock(); 7075 memcg = mem_cgroup_from_task(current); 7076 if (memcg == root_mem_cgroup) 7077 goto out; 7078 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7079 goto out; 7080 if (css_tryget(&memcg->css)) 7081 sk->sk_memcg = memcg; 7082 out: 7083 rcu_read_unlock(); 7084 } 7085 7086 void mem_cgroup_sk_free(struct sock *sk) 7087 { 7088 if (sk->sk_memcg) 7089 css_put(&sk->sk_memcg->css); 7090 } 7091 7092 /** 7093 * mem_cgroup_charge_skmem - charge socket memory 7094 * @memcg: memcg to charge 7095 * @nr_pages: number of pages to charge 7096 * @gfp_mask: reclaim mode 7097 * 7098 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7099 * @memcg's configured limit, %false if it doesn't. 7100 */ 7101 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7102 gfp_t gfp_mask) 7103 { 7104 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7105 struct page_counter *fail; 7106 7107 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7108 memcg->tcpmem_pressure = 0; 7109 return true; 7110 } 7111 memcg->tcpmem_pressure = 1; 7112 if (gfp_mask & __GFP_NOFAIL) { 7113 page_counter_charge(&memcg->tcpmem, nr_pages); 7114 return true; 7115 } 7116 return false; 7117 } 7118 7119 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7120 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7121 return true; 7122 } 7123 7124 return false; 7125 } 7126 7127 /** 7128 * mem_cgroup_uncharge_skmem - uncharge socket memory 7129 * @memcg: memcg to uncharge 7130 * @nr_pages: number of pages to uncharge 7131 */ 7132 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7133 { 7134 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7135 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7136 return; 7137 } 7138 7139 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7140 7141 refill_stock(memcg, nr_pages); 7142 } 7143 7144 static int __init cgroup_memory(char *s) 7145 { 7146 char *token; 7147 7148 while ((token = strsep(&s, ",")) != NULL) { 7149 if (!*token) 7150 continue; 7151 if (!strcmp(token, "nosocket")) 7152 cgroup_memory_nosocket = true; 7153 if (!strcmp(token, "nokmem")) 7154 cgroup_memory_nokmem = true; 7155 } 7156 return 1; 7157 } 7158 __setup("cgroup.memory=", cgroup_memory); 7159 7160 /* 7161 * subsys_initcall() for memory controller. 7162 * 7163 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7164 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7165 * basically everything that doesn't depend on a specific mem_cgroup structure 7166 * should be initialized from here. 7167 */ 7168 static int __init mem_cgroup_init(void) 7169 { 7170 int cpu, node; 7171 7172 /* 7173 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7174 * used for per-memcg-per-cpu caching of per-node statistics. In order 7175 * to work fine, we should make sure that the overfill threshold can't 7176 * exceed S32_MAX / PAGE_SIZE. 7177 */ 7178 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7179 7180 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7181 memcg_hotplug_cpu_dead); 7182 7183 for_each_possible_cpu(cpu) 7184 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7185 drain_local_stock); 7186 7187 for_each_node(node) { 7188 struct mem_cgroup_tree_per_node *rtpn; 7189 7190 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7191 node_online(node) ? node : NUMA_NO_NODE); 7192 7193 rtpn->rb_root = RB_ROOT; 7194 rtpn->rb_rightmost = NULL; 7195 spin_lock_init(&rtpn->lock); 7196 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7197 } 7198 7199 return 0; 7200 } 7201 subsys_initcall(mem_cgroup_init); 7202 7203 #ifdef CONFIG_MEMCG_SWAP 7204 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7205 { 7206 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7207 /* 7208 * The root cgroup cannot be destroyed, so it's refcount must 7209 * always be >= 1. 7210 */ 7211 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7212 VM_BUG_ON(1); 7213 break; 7214 } 7215 memcg = parent_mem_cgroup(memcg); 7216 if (!memcg) 7217 memcg = root_mem_cgroup; 7218 } 7219 return memcg; 7220 } 7221 7222 /** 7223 * mem_cgroup_swapout - transfer a memsw charge to swap 7224 * @folio: folio whose memsw charge to transfer 7225 * @entry: swap entry to move the charge to 7226 * 7227 * Transfer the memsw charge of @folio to @entry. 7228 */ 7229 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7230 { 7231 struct mem_cgroup *memcg, *swap_memcg; 7232 unsigned int nr_entries; 7233 unsigned short oldid; 7234 7235 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7236 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7237 7238 if (mem_cgroup_disabled()) 7239 return; 7240 7241 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7242 return; 7243 7244 memcg = folio_memcg(folio); 7245 7246 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7247 if (!memcg) 7248 return; 7249 7250 /* 7251 * In case the memcg owning these pages has been offlined and doesn't 7252 * have an ID allocated to it anymore, charge the closest online 7253 * ancestor for the swap instead and transfer the memory+swap charge. 7254 */ 7255 swap_memcg = mem_cgroup_id_get_online(memcg); 7256 nr_entries = folio_nr_pages(folio); 7257 /* Get references for the tail pages, too */ 7258 if (nr_entries > 1) 7259 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7260 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7261 nr_entries); 7262 VM_BUG_ON_FOLIO(oldid, folio); 7263 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7264 7265 folio->memcg_data = 0; 7266 7267 if (!mem_cgroup_is_root(memcg)) 7268 page_counter_uncharge(&memcg->memory, nr_entries); 7269 7270 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7271 if (!mem_cgroup_is_root(swap_memcg)) 7272 page_counter_charge(&swap_memcg->memsw, nr_entries); 7273 page_counter_uncharge(&memcg->memsw, nr_entries); 7274 } 7275 7276 /* 7277 * Interrupts should be disabled here because the caller holds the 7278 * i_pages lock which is taken with interrupts-off. It is 7279 * important here to have the interrupts disabled because it is the 7280 * only synchronisation we have for updating the per-CPU variables. 7281 */ 7282 memcg_stats_lock(); 7283 mem_cgroup_charge_statistics(memcg, -nr_entries); 7284 memcg_stats_unlock(); 7285 memcg_check_events(memcg, folio_nid(folio)); 7286 7287 css_put(&memcg->css); 7288 } 7289 7290 /** 7291 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7292 * @folio: folio being added to swap 7293 * @entry: swap entry to charge 7294 * 7295 * Try to charge @folio's memcg for the swap space at @entry. 7296 * 7297 * Returns 0 on success, -ENOMEM on failure. 7298 */ 7299 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7300 { 7301 unsigned int nr_pages = folio_nr_pages(folio); 7302 struct page_counter *counter; 7303 struct mem_cgroup *memcg; 7304 unsigned short oldid; 7305 7306 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7307 return 0; 7308 7309 memcg = folio_memcg(folio); 7310 7311 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7312 if (!memcg) 7313 return 0; 7314 7315 if (!entry.val) { 7316 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7317 return 0; 7318 } 7319 7320 memcg = mem_cgroup_id_get_online(memcg); 7321 7322 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7323 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7324 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7325 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7326 mem_cgroup_id_put(memcg); 7327 return -ENOMEM; 7328 } 7329 7330 /* Get references for the tail pages, too */ 7331 if (nr_pages > 1) 7332 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7333 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7334 VM_BUG_ON_FOLIO(oldid, folio); 7335 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7336 7337 return 0; 7338 } 7339 7340 /** 7341 * __mem_cgroup_uncharge_swap - uncharge swap space 7342 * @entry: swap entry to uncharge 7343 * @nr_pages: the amount of swap space to uncharge 7344 */ 7345 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7346 { 7347 struct mem_cgroup *memcg; 7348 unsigned short id; 7349 7350 id = swap_cgroup_record(entry, 0, nr_pages); 7351 rcu_read_lock(); 7352 memcg = mem_cgroup_from_id(id); 7353 if (memcg) { 7354 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7355 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7356 page_counter_uncharge(&memcg->swap, nr_pages); 7357 else 7358 page_counter_uncharge(&memcg->memsw, nr_pages); 7359 } 7360 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7361 mem_cgroup_id_put_many(memcg, nr_pages); 7362 } 7363 rcu_read_unlock(); 7364 } 7365 7366 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7367 { 7368 long nr_swap_pages = get_nr_swap_pages(); 7369 7370 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7371 return nr_swap_pages; 7372 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7373 nr_swap_pages = min_t(long, nr_swap_pages, 7374 READ_ONCE(memcg->swap.max) - 7375 page_counter_read(&memcg->swap)); 7376 return nr_swap_pages; 7377 } 7378 7379 bool mem_cgroup_swap_full(struct page *page) 7380 { 7381 struct mem_cgroup *memcg; 7382 7383 VM_BUG_ON_PAGE(!PageLocked(page), page); 7384 7385 if (vm_swap_full()) 7386 return true; 7387 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7388 return false; 7389 7390 memcg = page_memcg(page); 7391 if (!memcg) 7392 return false; 7393 7394 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7395 unsigned long usage = page_counter_read(&memcg->swap); 7396 7397 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7398 usage * 2 >= READ_ONCE(memcg->swap.max)) 7399 return true; 7400 } 7401 7402 return false; 7403 } 7404 7405 static int __init setup_swap_account(char *s) 7406 { 7407 if (!strcmp(s, "1")) 7408 cgroup_memory_noswap = false; 7409 else if (!strcmp(s, "0")) 7410 cgroup_memory_noswap = true; 7411 return 1; 7412 } 7413 __setup("swapaccount=", setup_swap_account); 7414 7415 static u64 swap_current_read(struct cgroup_subsys_state *css, 7416 struct cftype *cft) 7417 { 7418 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7419 7420 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7421 } 7422 7423 static int swap_high_show(struct seq_file *m, void *v) 7424 { 7425 return seq_puts_memcg_tunable(m, 7426 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7427 } 7428 7429 static ssize_t swap_high_write(struct kernfs_open_file *of, 7430 char *buf, size_t nbytes, loff_t off) 7431 { 7432 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7433 unsigned long high; 7434 int err; 7435 7436 buf = strstrip(buf); 7437 err = page_counter_memparse(buf, "max", &high); 7438 if (err) 7439 return err; 7440 7441 page_counter_set_high(&memcg->swap, high); 7442 7443 return nbytes; 7444 } 7445 7446 static int swap_max_show(struct seq_file *m, void *v) 7447 { 7448 return seq_puts_memcg_tunable(m, 7449 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7450 } 7451 7452 static ssize_t swap_max_write(struct kernfs_open_file *of, 7453 char *buf, size_t nbytes, loff_t off) 7454 { 7455 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7456 unsigned long max; 7457 int err; 7458 7459 buf = strstrip(buf); 7460 err = page_counter_memparse(buf, "max", &max); 7461 if (err) 7462 return err; 7463 7464 xchg(&memcg->swap.max, max); 7465 7466 return nbytes; 7467 } 7468 7469 static int swap_events_show(struct seq_file *m, void *v) 7470 { 7471 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7472 7473 seq_printf(m, "high %lu\n", 7474 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7475 seq_printf(m, "max %lu\n", 7476 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7477 seq_printf(m, "fail %lu\n", 7478 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7479 7480 return 0; 7481 } 7482 7483 static struct cftype swap_files[] = { 7484 { 7485 .name = "swap.current", 7486 .flags = CFTYPE_NOT_ON_ROOT, 7487 .read_u64 = swap_current_read, 7488 }, 7489 { 7490 .name = "swap.high", 7491 .flags = CFTYPE_NOT_ON_ROOT, 7492 .seq_show = swap_high_show, 7493 .write = swap_high_write, 7494 }, 7495 { 7496 .name = "swap.max", 7497 .flags = CFTYPE_NOT_ON_ROOT, 7498 .seq_show = swap_max_show, 7499 .write = swap_max_write, 7500 }, 7501 { 7502 .name = "swap.events", 7503 .flags = CFTYPE_NOT_ON_ROOT, 7504 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7505 .seq_show = swap_events_show, 7506 }, 7507 { } /* terminate */ 7508 }; 7509 7510 static struct cftype memsw_files[] = { 7511 { 7512 .name = "memsw.usage_in_bytes", 7513 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7514 .read_u64 = mem_cgroup_read_u64, 7515 }, 7516 { 7517 .name = "memsw.max_usage_in_bytes", 7518 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7519 .write = mem_cgroup_reset, 7520 .read_u64 = mem_cgroup_read_u64, 7521 }, 7522 { 7523 .name = "memsw.limit_in_bytes", 7524 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7525 .write = mem_cgroup_write, 7526 .read_u64 = mem_cgroup_read_u64, 7527 }, 7528 { 7529 .name = "memsw.failcnt", 7530 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7531 .write = mem_cgroup_reset, 7532 .read_u64 = mem_cgroup_read_u64, 7533 }, 7534 { }, /* terminate */ 7535 }; 7536 7537 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7538 /** 7539 * obj_cgroup_may_zswap - check if this cgroup can zswap 7540 * @objcg: the object cgroup 7541 * 7542 * Check if the hierarchical zswap limit has been reached. 7543 * 7544 * This doesn't check for specific headroom, and it is not atomic 7545 * either. But with zswap, the size of the allocation is only known 7546 * once compression has occured, and this optimistic pre-check avoids 7547 * spending cycles on compression when there is already no room left 7548 * or zswap is disabled altogether somewhere in the hierarchy. 7549 */ 7550 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7551 { 7552 struct mem_cgroup *memcg, *original_memcg; 7553 bool ret = true; 7554 7555 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7556 return true; 7557 7558 original_memcg = get_mem_cgroup_from_objcg(objcg); 7559 for (memcg = original_memcg; memcg != root_mem_cgroup; 7560 memcg = parent_mem_cgroup(memcg)) { 7561 unsigned long max = READ_ONCE(memcg->zswap_max); 7562 unsigned long pages; 7563 7564 if (max == PAGE_COUNTER_MAX) 7565 continue; 7566 if (max == 0) { 7567 ret = false; 7568 break; 7569 } 7570 7571 cgroup_rstat_flush(memcg->css.cgroup); 7572 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7573 if (pages < max) 7574 continue; 7575 ret = false; 7576 break; 7577 } 7578 mem_cgroup_put(original_memcg); 7579 return ret; 7580 } 7581 7582 /** 7583 * obj_cgroup_charge_zswap - charge compression backend memory 7584 * @objcg: the object cgroup 7585 * @size: size of compressed object 7586 * 7587 * This forces the charge after obj_cgroup_may_swap() allowed 7588 * compression and storage in zwap for this cgroup to go ahead. 7589 */ 7590 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7591 { 7592 struct mem_cgroup *memcg; 7593 7594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7595 return; 7596 7597 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7598 7599 /* PF_MEMALLOC context, charging must succeed */ 7600 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7601 VM_WARN_ON_ONCE(1); 7602 7603 rcu_read_lock(); 7604 memcg = obj_cgroup_memcg(objcg); 7605 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7606 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7607 rcu_read_unlock(); 7608 } 7609 7610 /** 7611 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7612 * @objcg: the object cgroup 7613 * @size: size of compressed object 7614 * 7615 * Uncharges zswap memory on page in. 7616 */ 7617 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7618 { 7619 struct mem_cgroup *memcg; 7620 7621 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7622 return; 7623 7624 obj_cgroup_uncharge(objcg, size); 7625 7626 rcu_read_lock(); 7627 memcg = obj_cgroup_memcg(objcg); 7628 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7629 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7630 rcu_read_unlock(); 7631 } 7632 7633 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7634 struct cftype *cft) 7635 { 7636 cgroup_rstat_flush(css->cgroup); 7637 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7638 } 7639 7640 static int zswap_max_show(struct seq_file *m, void *v) 7641 { 7642 return seq_puts_memcg_tunable(m, 7643 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7644 } 7645 7646 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7647 char *buf, size_t nbytes, loff_t off) 7648 { 7649 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7650 unsigned long max; 7651 int err; 7652 7653 buf = strstrip(buf); 7654 err = page_counter_memparse(buf, "max", &max); 7655 if (err) 7656 return err; 7657 7658 xchg(&memcg->zswap_max, max); 7659 7660 return nbytes; 7661 } 7662 7663 static struct cftype zswap_files[] = { 7664 { 7665 .name = "zswap.current", 7666 .flags = CFTYPE_NOT_ON_ROOT, 7667 .read_u64 = zswap_current_read, 7668 }, 7669 { 7670 .name = "zswap.max", 7671 .flags = CFTYPE_NOT_ON_ROOT, 7672 .seq_show = zswap_max_show, 7673 .write = zswap_max_write, 7674 }, 7675 { } /* terminate */ 7676 }; 7677 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7678 7679 /* 7680 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7681 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7682 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7683 * boot parameter. This may result in premature OOPS inside 7684 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7685 */ 7686 static int __init mem_cgroup_swap_init(void) 7687 { 7688 /* No memory control -> no swap control */ 7689 if (mem_cgroup_disabled()) 7690 cgroup_memory_noswap = true; 7691 7692 if (cgroup_memory_noswap) 7693 return 0; 7694 7695 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7696 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7697 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7698 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7699 #endif 7700 return 0; 7701 } 7702 core_initcall(mem_cgroup_swap_init); 7703 7704 #endif /* CONFIG_MEMCG_SWAP */ 7705