xref: /openbmc/linux/mm/memcontrol.c (revision e2f1cf25)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 #define MEM_CGROUP_RECLAIM_RETRIES	5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81 
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account		0
87 #endif
88 
89 static const char * const mem_cgroup_stat_names[] = {
90 	"cache",
91 	"rss",
92 	"rss_huge",
93 	"mapped_file",
94 	"dirty",
95 	"writeback",
96 	"swap",
97 };
98 
99 static const char * const mem_cgroup_events_names[] = {
100 	"pgpgin",
101 	"pgpgout",
102 	"pgfault",
103 	"pgmajfault",
104 };
105 
106 static const char * const mem_cgroup_lru_names[] = {
107 	"inactive_anon",
108 	"active_anon",
109 	"inactive_file",
110 	"active_file",
111 	"unevictable",
112 };
113 
114 /*
115  * Per memcg event counter is incremented at every pagein/pageout. With THP,
116  * it will be incremated by the number of pages. This counter is used for
117  * for trigger some periodic events. This is straightforward and better
118  * than using jiffies etc. to handle periodic memcg event.
119  */
120 enum mem_cgroup_events_target {
121 	MEM_CGROUP_TARGET_THRESH,
122 	MEM_CGROUP_TARGET_SOFTLIMIT,
123 	MEM_CGROUP_TARGET_NUMAINFO,
124 	MEM_CGROUP_NTARGETS,
125 };
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 struct mem_cgroup_stat_cpu {
131 	long count[MEM_CGROUP_STAT_NSTATS];
132 	unsigned long events[MEMCG_NR_EVENTS];
133 	unsigned long nr_page_events;
134 	unsigned long targets[MEM_CGROUP_NTARGETS];
135 };
136 
137 struct reclaim_iter {
138 	struct mem_cgroup *position;
139 	/* scan generation, increased every round-trip */
140 	unsigned int generation;
141 };
142 
143 /*
144  * per-zone information in memory controller.
145  */
146 struct mem_cgroup_per_zone {
147 	struct lruvec		lruvec;
148 	unsigned long		lru_size[NR_LRU_LISTS];
149 
150 	struct reclaim_iter	iter[DEF_PRIORITY + 1];
151 
152 	struct rb_node		tree_node;	/* RB tree node */
153 	unsigned long		usage_in_excess;/* Set to the value by which */
154 						/* the soft limit is exceeded*/
155 	bool			on_tree;
156 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
157 						/* use container_of	   */
158 };
159 
160 struct mem_cgroup_per_node {
161 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162 };
163 
164 /*
165  * Cgroups above their limits are maintained in a RB-Tree, independent of
166  * their hierarchy representation
167  */
168 
169 struct mem_cgroup_tree_per_zone {
170 	struct rb_root rb_root;
171 	spinlock_t lock;
172 };
173 
174 struct mem_cgroup_tree_per_node {
175 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176 };
177 
178 struct mem_cgroup_tree {
179 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180 };
181 
182 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183 
184 struct mem_cgroup_threshold {
185 	struct eventfd_ctx *eventfd;
186 	unsigned long threshold;
187 };
188 
189 /* For threshold */
190 struct mem_cgroup_threshold_ary {
191 	/* An array index points to threshold just below or equal to usage. */
192 	int current_threshold;
193 	/* Size of entries[] */
194 	unsigned int size;
195 	/* Array of thresholds */
196 	struct mem_cgroup_threshold entries[0];
197 };
198 
199 struct mem_cgroup_thresholds {
200 	/* Primary thresholds array */
201 	struct mem_cgroup_threshold_ary *primary;
202 	/*
203 	 * Spare threshold array.
204 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 	 * It must be able to store at least primary->size - 1 entries.
206 	 */
207 	struct mem_cgroup_threshold_ary *spare;
208 };
209 
210 /* for OOM */
211 struct mem_cgroup_eventfd_list {
212 	struct list_head list;
213 	struct eventfd_ctx *eventfd;
214 };
215 
216 /*
217  * cgroup_event represents events which userspace want to receive.
218  */
219 struct mem_cgroup_event {
220 	/*
221 	 * memcg which the event belongs to.
222 	 */
223 	struct mem_cgroup *memcg;
224 	/*
225 	 * eventfd to signal userspace about the event.
226 	 */
227 	struct eventfd_ctx *eventfd;
228 	/*
229 	 * Each of these stored in a list by the cgroup.
230 	 */
231 	struct list_head list;
232 	/*
233 	 * register_event() callback will be used to add new userspace
234 	 * waiter for changes related to this event.  Use eventfd_signal()
235 	 * on eventfd to send notification to userspace.
236 	 */
237 	int (*register_event)(struct mem_cgroup *memcg,
238 			      struct eventfd_ctx *eventfd, const char *args);
239 	/*
240 	 * unregister_event() callback will be called when userspace closes
241 	 * the eventfd or on cgroup removing.  This callback must be set,
242 	 * if you want provide notification functionality.
243 	 */
244 	void (*unregister_event)(struct mem_cgroup *memcg,
245 				 struct eventfd_ctx *eventfd);
246 	/*
247 	 * All fields below needed to unregister event when
248 	 * userspace closes eventfd.
249 	 */
250 	poll_table pt;
251 	wait_queue_head_t *wqh;
252 	wait_queue_t wait;
253 	struct work_struct remove;
254 };
255 
256 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
258 
259 /*
260  * The memory controller data structure. The memory controller controls both
261  * page cache and RSS per cgroup. We would eventually like to provide
262  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263  * to help the administrator determine what knobs to tune.
264  */
265 struct mem_cgroup {
266 	struct cgroup_subsys_state css;
267 
268 	/* Accounted resources */
269 	struct page_counter memory;
270 	struct page_counter memsw;
271 	struct page_counter kmem;
272 
273 	/* Normal memory consumption range */
274 	unsigned long low;
275 	unsigned long high;
276 
277 	unsigned long soft_limit;
278 
279 	/* vmpressure notifications */
280 	struct vmpressure vmpressure;
281 
282 	/* css_online() has been completed */
283 	int initialized;
284 
285 	/*
286 	 * Should the accounting and control be hierarchical, per subtree?
287 	 */
288 	bool use_hierarchy;
289 
290 	/* protected by memcg_oom_lock */
291 	bool		oom_lock;
292 	int		under_oom;
293 
294 	int	swappiness;
295 	/* OOM-Killer disable */
296 	int		oom_kill_disable;
297 
298 	/* protect arrays of thresholds */
299 	struct mutex thresholds_lock;
300 
301 	/* thresholds for memory usage. RCU-protected */
302 	struct mem_cgroup_thresholds thresholds;
303 
304 	/* thresholds for mem+swap usage. RCU-protected */
305 	struct mem_cgroup_thresholds memsw_thresholds;
306 
307 	/* For oom notifier event fd */
308 	struct list_head oom_notify;
309 
310 	/*
311 	 * Should we move charges of a task when a task is moved into this
312 	 * mem_cgroup ? And what type of charges should we move ?
313 	 */
314 	unsigned long move_charge_at_immigrate;
315 	/*
316 	 * set > 0 if pages under this cgroup are moving to other cgroup.
317 	 */
318 	atomic_t		moving_account;
319 	/* taken only while moving_account > 0 */
320 	spinlock_t		move_lock;
321 	struct task_struct	*move_lock_task;
322 	unsigned long		move_lock_flags;
323 	/*
324 	 * percpu counter.
325 	 */
326 	struct mem_cgroup_stat_cpu __percpu *stat;
327 	spinlock_t pcp_counter_lock;
328 
329 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
330 	struct cg_proto tcp_mem;
331 #endif
332 #if defined(CONFIG_MEMCG_KMEM)
333         /* Index in the kmem_cache->memcg_params.memcg_caches array */
334 	int kmemcg_id;
335 	bool kmem_acct_activated;
336 	bool kmem_acct_active;
337 #endif
338 
339 	int last_scanned_node;
340 #if MAX_NUMNODES > 1
341 	nodemask_t	scan_nodes;
342 	atomic_t	numainfo_events;
343 	atomic_t	numainfo_updating;
344 #endif
345 
346 #ifdef CONFIG_CGROUP_WRITEBACK
347 	struct list_head cgwb_list;
348 	struct wb_domain cgwb_domain;
349 #endif
350 
351 	/* List of events which userspace want to receive */
352 	struct list_head event_list;
353 	spinlock_t event_list_lock;
354 
355 	struct mem_cgroup_per_node *nodeinfo[0];
356 	/* WARNING: nodeinfo must be the last member here */
357 };
358 
359 #ifdef CONFIG_MEMCG_KMEM
360 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 	return memcg->kmem_acct_active;
363 }
364 #endif
365 
366 /* Stuffs for move charges at task migration. */
367 /*
368  * Types of charges to be moved.
369  */
370 #define MOVE_ANON	0x1U
371 #define MOVE_FILE	0x2U
372 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
373 
374 /* "mc" and its members are protected by cgroup_mutex */
375 static struct move_charge_struct {
376 	spinlock_t	  lock; /* for from, to */
377 	struct mem_cgroup *from;
378 	struct mem_cgroup *to;
379 	unsigned long flags;
380 	unsigned long precharge;
381 	unsigned long moved_charge;
382 	unsigned long moved_swap;
383 	struct task_struct *moving_task;	/* a task moving charges */
384 	wait_queue_head_t waitq;		/* a waitq for other context */
385 } mc = {
386 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
387 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388 };
389 
390 /*
391  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392  * limit reclaim to prevent infinite loops, if they ever occur.
393  */
394 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
395 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
396 
397 enum charge_type {
398 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
399 	MEM_CGROUP_CHARGE_TYPE_ANON,
400 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
401 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
402 	NR_CHARGE_TYPE,
403 };
404 
405 /* for encoding cft->private value on file */
406 enum res_type {
407 	_MEM,
408 	_MEMSWAP,
409 	_OOM_TYPE,
410 	_KMEM,
411 };
412 
413 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
414 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
415 #define MEMFILE_ATTR(val)	((val) & 0xffff)
416 /* Used for OOM nofiier */
417 #define OOM_CONTROL		(0)
418 
419 /*
420  * The memcg_create_mutex will be held whenever a new cgroup is created.
421  * As a consequence, any change that needs to protect against new child cgroups
422  * appearing has to hold it as well.
423  */
424 static DEFINE_MUTEX(memcg_create_mutex);
425 
426 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427 {
428 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
429 }
430 
431 /* Some nice accessors for the vmpressure. */
432 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433 {
434 	if (!memcg)
435 		memcg = root_mem_cgroup;
436 	return &memcg->vmpressure;
437 }
438 
439 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440 {
441 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442 }
443 
444 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445 {
446 	return (memcg == root_mem_cgroup);
447 }
448 
449 /*
450  * We restrict the id in the range of [1, 65535], so it can fit into
451  * an unsigned short.
452  */
453 #define MEM_CGROUP_ID_MAX	USHRT_MAX
454 
455 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456 {
457 	return memcg->css.id;
458 }
459 
460 /*
461  * A helper function to get mem_cgroup from ID. must be called under
462  * rcu_read_lock().  The caller is responsible for calling
463  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464  * refcnt from swap can be called against removed memcg.)
465  */
466 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467 {
468 	struct cgroup_subsys_state *css;
469 
470 	css = css_from_id(id, &memory_cgrp_subsys);
471 	return mem_cgroup_from_css(css);
472 }
473 
474 /* Writing them here to avoid exposing memcg's inner layout */
475 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
476 
477 void sock_update_memcg(struct sock *sk)
478 {
479 	if (mem_cgroup_sockets_enabled) {
480 		struct mem_cgroup *memcg;
481 		struct cg_proto *cg_proto;
482 
483 		BUG_ON(!sk->sk_prot->proto_cgroup);
484 
485 		/* Socket cloning can throw us here with sk_cgrp already
486 		 * filled. It won't however, necessarily happen from
487 		 * process context. So the test for root memcg given
488 		 * the current task's memcg won't help us in this case.
489 		 *
490 		 * Respecting the original socket's memcg is a better
491 		 * decision in this case.
492 		 */
493 		if (sk->sk_cgrp) {
494 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
495 			css_get(&sk->sk_cgrp->memcg->css);
496 			return;
497 		}
498 
499 		rcu_read_lock();
500 		memcg = mem_cgroup_from_task(current);
501 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
502 		if (!mem_cgroup_is_root(memcg) &&
503 		    memcg_proto_active(cg_proto) &&
504 		    css_tryget_online(&memcg->css)) {
505 			sk->sk_cgrp = cg_proto;
506 		}
507 		rcu_read_unlock();
508 	}
509 }
510 EXPORT_SYMBOL(sock_update_memcg);
511 
512 void sock_release_memcg(struct sock *sk)
513 {
514 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
515 		struct mem_cgroup *memcg;
516 		WARN_ON(!sk->sk_cgrp->memcg);
517 		memcg = sk->sk_cgrp->memcg;
518 		css_put(&sk->sk_cgrp->memcg->css);
519 	}
520 }
521 
522 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523 {
524 	if (!memcg || mem_cgroup_is_root(memcg))
525 		return NULL;
526 
527 	return &memcg->tcp_mem;
528 }
529 EXPORT_SYMBOL(tcp_proto_cgroup);
530 
531 #endif
532 
533 #ifdef CONFIG_MEMCG_KMEM
534 /*
535  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
536  * The main reason for not using cgroup id for this:
537  *  this works better in sparse environments, where we have a lot of memcgs,
538  *  but only a few kmem-limited. Or also, if we have, for instance, 200
539  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
540  *  200 entry array for that.
541  *
542  * The current size of the caches array is stored in memcg_nr_cache_ids. It
543  * will double each time we have to increase it.
544  */
545 static DEFINE_IDA(memcg_cache_ida);
546 int memcg_nr_cache_ids;
547 
548 /* Protects memcg_nr_cache_ids */
549 static DECLARE_RWSEM(memcg_cache_ids_sem);
550 
551 void memcg_get_cache_ids(void)
552 {
553 	down_read(&memcg_cache_ids_sem);
554 }
555 
556 void memcg_put_cache_ids(void)
557 {
558 	up_read(&memcg_cache_ids_sem);
559 }
560 
561 /*
562  * MIN_SIZE is different than 1, because we would like to avoid going through
563  * the alloc/free process all the time. In a small machine, 4 kmem-limited
564  * cgroups is a reasonable guess. In the future, it could be a parameter or
565  * tunable, but that is strictly not necessary.
566  *
567  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
568  * this constant directly from cgroup, but it is understandable that this is
569  * better kept as an internal representation in cgroup.c. In any case, the
570  * cgrp_id space is not getting any smaller, and we don't have to necessarily
571  * increase ours as well if it increases.
572  */
573 #define MEMCG_CACHES_MIN_SIZE 4
574 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
575 
576 /*
577  * A lot of the calls to the cache allocation functions are expected to be
578  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579  * conditional to this static branch, we'll have to allow modules that does
580  * kmem_cache_alloc and the such to see this symbol as well
581  */
582 struct static_key memcg_kmem_enabled_key;
583 EXPORT_SYMBOL(memcg_kmem_enabled_key);
584 
585 #endif /* CONFIG_MEMCG_KMEM */
586 
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
589 {
590 	int nid = zone_to_nid(zone);
591 	int zid = zone_idx(zone);
592 
593 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
594 }
595 
596 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
597 {
598 	return &memcg->css;
599 }
600 
601 /**
602  * mem_cgroup_css_from_page - css of the memcg associated with a page
603  * @page: page of interest
604  *
605  * If memcg is bound to the default hierarchy, css of the memcg associated
606  * with @page is returned.  The returned css remains associated with @page
607  * until it is released.
608  *
609  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
610  * is returned.
611  *
612  * XXX: The above description of behavior on the default hierarchy isn't
613  * strictly true yet as replace_page_cache_page() can modify the
614  * association before @page is released even on the default hierarchy;
615  * however, the current and planned usages don't mix the the two functions
616  * and replace_page_cache_page() will soon be updated to make the invariant
617  * actually true.
618  */
619 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
620 {
621 	struct mem_cgroup *memcg;
622 
623 	rcu_read_lock();
624 
625 	memcg = page->mem_cgroup;
626 
627 	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
628 		memcg = root_mem_cgroup;
629 
630 	rcu_read_unlock();
631 	return &memcg->css;
632 }
633 
634 static struct mem_cgroup_per_zone *
635 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
636 {
637 	int nid = page_to_nid(page);
638 	int zid = page_zonenum(page);
639 
640 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
641 }
642 
643 static struct mem_cgroup_tree_per_zone *
644 soft_limit_tree_node_zone(int nid, int zid)
645 {
646 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647 }
648 
649 static struct mem_cgroup_tree_per_zone *
650 soft_limit_tree_from_page(struct page *page)
651 {
652 	int nid = page_to_nid(page);
653 	int zid = page_zonenum(page);
654 
655 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656 }
657 
658 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 					 struct mem_cgroup_tree_per_zone *mctz,
660 					 unsigned long new_usage_in_excess)
661 {
662 	struct rb_node **p = &mctz->rb_root.rb_node;
663 	struct rb_node *parent = NULL;
664 	struct mem_cgroup_per_zone *mz_node;
665 
666 	if (mz->on_tree)
667 		return;
668 
669 	mz->usage_in_excess = new_usage_in_excess;
670 	if (!mz->usage_in_excess)
671 		return;
672 	while (*p) {
673 		parent = *p;
674 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 					tree_node);
676 		if (mz->usage_in_excess < mz_node->usage_in_excess)
677 			p = &(*p)->rb_left;
678 		/*
679 		 * We can't avoid mem cgroups that are over their soft
680 		 * limit by the same amount
681 		 */
682 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 			p = &(*p)->rb_right;
684 	}
685 	rb_link_node(&mz->tree_node, parent, p);
686 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 	mz->on_tree = true;
688 }
689 
690 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 					 struct mem_cgroup_tree_per_zone *mctz)
692 {
693 	if (!mz->on_tree)
694 		return;
695 	rb_erase(&mz->tree_node, &mctz->rb_root);
696 	mz->on_tree = false;
697 }
698 
699 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 				       struct mem_cgroup_tree_per_zone *mctz)
701 {
702 	unsigned long flags;
703 
704 	spin_lock_irqsave(&mctz->lock, flags);
705 	__mem_cgroup_remove_exceeded(mz, mctz);
706 	spin_unlock_irqrestore(&mctz->lock, flags);
707 }
708 
709 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710 {
711 	unsigned long nr_pages = page_counter_read(&memcg->memory);
712 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
713 	unsigned long excess = 0;
714 
715 	if (nr_pages > soft_limit)
716 		excess = nr_pages - soft_limit;
717 
718 	return excess;
719 }
720 
721 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722 {
723 	unsigned long excess;
724 	struct mem_cgroup_per_zone *mz;
725 	struct mem_cgroup_tree_per_zone *mctz;
726 
727 	mctz = soft_limit_tree_from_page(page);
728 	/*
729 	 * Necessary to update all ancestors when hierarchy is used.
730 	 * because their event counter is not touched.
731 	 */
732 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
733 		mz = mem_cgroup_page_zoneinfo(memcg, page);
734 		excess = soft_limit_excess(memcg);
735 		/*
736 		 * We have to update the tree if mz is on RB-tree or
737 		 * mem is over its softlimit.
738 		 */
739 		if (excess || mz->on_tree) {
740 			unsigned long flags;
741 
742 			spin_lock_irqsave(&mctz->lock, flags);
743 			/* if on-tree, remove it */
744 			if (mz->on_tree)
745 				__mem_cgroup_remove_exceeded(mz, mctz);
746 			/*
747 			 * Insert again. mz->usage_in_excess will be updated.
748 			 * If excess is 0, no tree ops.
749 			 */
750 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
751 			spin_unlock_irqrestore(&mctz->lock, flags);
752 		}
753 	}
754 }
755 
756 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757 {
758 	struct mem_cgroup_tree_per_zone *mctz;
759 	struct mem_cgroup_per_zone *mz;
760 	int nid, zid;
761 
762 	for_each_node(nid) {
763 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 			mctz = soft_limit_tree_node_zone(nid, zid);
766 			mem_cgroup_remove_exceeded(mz, mctz);
767 		}
768 	}
769 }
770 
771 static struct mem_cgroup_per_zone *
772 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773 {
774 	struct rb_node *rightmost = NULL;
775 	struct mem_cgroup_per_zone *mz;
776 
777 retry:
778 	mz = NULL;
779 	rightmost = rb_last(&mctz->rb_root);
780 	if (!rightmost)
781 		goto done;		/* Nothing to reclaim from */
782 
783 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 	/*
785 	 * Remove the node now but someone else can add it back,
786 	 * we will to add it back at the end of reclaim to its correct
787 	 * position in the tree.
788 	 */
789 	__mem_cgroup_remove_exceeded(mz, mctz);
790 	if (!soft_limit_excess(mz->memcg) ||
791 	    !css_tryget_online(&mz->memcg->css))
792 		goto retry;
793 done:
794 	return mz;
795 }
796 
797 static struct mem_cgroup_per_zone *
798 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799 {
800 	struct mem_cgroup_per_zone *mz;
801 
802 	spin_lock_irq(&mctz->lock);
803 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
804 	spin_unlock_irq(&mctz->lock);
805 	return mz;
806 }
807 
808 /*
809  * Implementation Note: reading percpu statistics for memcg.
810  *
811  * Both of vmstat[] and percpu_counter has threshold and do periodic
812  * synchronization to implement "quick" read. There are trade-off between
813  * reading cost and precision of value. Then, we may have a chance to implement
814  * a periodic synchronizion of counter in memcg's counter.
815  *
816  * But this _read() function is used for user interface now. The user accounts
817  * memory usage by memory cgroup and he _always_ requires exact value because
818  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819  * have to visit all online cpus and make sum. So, for now, unnecessary
820  * synchronization is not implemented. (just implemented for cpu hotplug)
821  *
822  * If there are kernel internal actions which can make use of some not-exact
823  * value, and reading all cpu value can be performance bottleneck in some
824  * common workload, threashold and synchonization as vmstat[] should be
825  * implemented.
826  */
827 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
828 				 enum mem_cgroup_stat_index idx)
829 {
830 	long val = 0;
831 	int cpu;
832 
833 	for_each_possible_cpu(cpu)
834 		val += per_cpu(memcg->stat->count[idx], cpu);
835 	return val;
836 }
837 
838 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
839 					    enum mem_cgroup_events_index idx)
840 {
841 	unsigned long val = 0;
842 	int cpu;
843 
844 	for_each_possible_cpu(cpu)
845 		val += per_cpu(memcg->stat->events[idx], cpu);
846 	return val;
847 }
848 
849 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
850 					 struct page *page,
851 					 int nr_pages)
852 {
853 	/*
854 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
855 	 * counted as CACHE even if it's on ANON LRU.
856 	 */
857 	if (PageAnon(page))
858 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
859 				nr_pages);
860 	else
861 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
862 				nr_pages);
863 
864 	if (PageTransHuge(page))
865 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
866 				nr_pages);
867 
868 	/* pagein of a big page is an event. So, ignore page size */
869 	if (nr_pages > 0)
870 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
871 	else {
872 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
873 		nr_pages = -nr_pages; /* for event */
874 	}
875 
876 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
877 }
878 
879 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
880 {
881 	struct mem_cgroup_per_zone *mz;
882 
883 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
884 	return mz->lru_size[lru];
885 }
886 
887 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
888 						  int nid,
889 						  unsigned int lru_mask)
890 {
891 	unsigned long nr = 0;
892 	int zid;
893 
894 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
895 
896 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 		struct mem_cgroup_per_zone *mz;
898 		enum lru_list lru;
899 
900 		for_each_lru(lru) {
901 			if (!(BIT(lru) & lru_mask))
902 				continue;
903 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
904 			nr += mz->lru_size[lru];
905 		}
906 	}
907 	return nr;
908 }
909 
910 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
911 			unsigned int lru_mask)
912 {
913 	unsigned long nr = 0;
914 	int nid;
915 
916 	for_each_node_state(nid, N_MEMORY)
917 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
918 	return nr;
919 }
920 
921 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
922 				       enum mem_cgroup_events_target target)
923 {
924 	unsigned long val, next;
925 
926 	val = __this_cpu_read(memcg->stat->nr_page_events);
927 	next = __this_cpu_read(memcg->stat->targets[target]);
928 	/* from time_after() in jiffies.h */
929 	if ((long)next - (long)val < 0) {
930 		switch (target) {
931 		case MEM_CGROUP_TARGET_THRESH:
932 			next = val + THRESHOLDS_EVENTS_TARGET;
933 			break;
934 		case MEM_CGROUP_TARGET_SOFTLIMIT:
935 			next = val + SOFTLIMIT_EVENTS_TARGET;
936 			break;
937 		case MEM_CGROUP_TARGET_NUMAINFO:
938 			next = val + NUMAINFO_EVENTS_TARGET;
939 			break;
940 		default:
941 			break;
942 		}
943 		__this_cpu_write(memcg->stat->targets[target], next);
944 		return true;
945 	}
946 	return false;
947 }
948 
949 /*
950  * Check events in order.
951  *
952  */
953 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
954 {
955 	/* threshold event is triggered in finer grain than soft limit */
956 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
957 						MEM_CGROUP_TARGET_THRESH))) {
958 		bool do_softlimit;
959 		bool do_numainfo __maybe_unused;
960 
961 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
962 						MEM_CGROUP_TARGET_SOFTLIMIT);
963 #if MAX_NUMNODES > 1
964 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
965 						MEM_CGROUP_TARGET_NUMAINFO);
966 #endif
967 		mem_cgroup_threshold(memcg);
968 		if (unlikely(do_softlimit))
969 			mem_cgroup_update_tree(memcg, page);
970 #if MAX_NUMNODES > 1
971 		if (unlikely(do_numainfo))
972 			atomic_inc(&memcg->numainfo_events);
973 #endif
974 	}
975 }
976 
977 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978 {
979 	/*
980 	 * mm_update_next_owner() may clear mm->owner to NULL
981 	 * if it races with swapoff, page migration, etc.
982 	 * So this can be called with p == NULL.
983 	 */
984 	if (unlikely(!p))
985 		return NULL;
986 
987 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988 }
989 
990 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
991 {
992 	struct mem_cgroup *memcg = NULL;
993 
994 	rcu_read_lock();
995 	do {
996 		/*
997 		 * Page cache insertions can happen withou an
998 		 * actual mm context, e.g. during disk probing
999 		 * on boot, loopback IO, acct() writes etc.
1000 		 */
1001 		if (unlikely(!mm))
1002 			memcg = root_mem_cgroup;
1003 		else {
1004 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1005 			if (unlikely(!memcg))
1006 				memcg = root_mem_cgroup;
1007 		}
1008 	} while (!css_tryget_online(&memcg->css));
1009 	rcu_read_unlock();
1010 	return memcg;
1011 }
1012 
1013 /**
1014  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1015  * @root: hierarchy root
1016  * @prev: previously returned memcg, NULL on first invocation
1017  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1018  *
1019  * Returns references to children of the hierarchy below @root, or
1020  * @root itself, or %NULL after a full round-trip.
1021  *
1022  * Caller must pass the return value in @prev on subsequent
1023  * invocations for reference counting, or use mem_cgroup_iter_break()
1024  * to cancel a hierarchy walk before the round-trip is complete.
1025  *
1026  * Reclaimers can specify a zone and a priority level in @reclaim to
1027  * divide up the memcgs in the hierarchy among all concurrent
1028  * reclaimers operating on the same zone and priority.
1029  */
1030 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1031 				   struct mem_cgroup *prev,
1032 				   struct mem_cgroup_reclaim_cookie *reclaim)
1033 {
1034 	struct reclaim_iter *uninitialized_var(iter);
1035 	struct cgroup_subsys_state *css = NULL;
1036 	struct mem_cgroup *memcg = NULL;
1037 	struct mem_cgroup *pos = NULL;
1038 
1039 	if (mem_cgroup_disabled())
1040 		return NULL;
1041 
1042 	if (!root)
1043 		root = root_mem_cgroup;
1044 
1045 	if (prev && !reclaim)
1046 		pos = prev;
1047 
1048 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1049 		if (prev)
1050 			goto out;
1051 		return root;
1052 	}
1053 
1054 	rcu_read_lock();
1055 
1056 	if (reclaim) {
1057 		struct mem_cgroup_per_zone *mz;
1058 
1059 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1060 		iter = &mz->iter[reclaim->priority];
1061 
1062 		if (prev && reclaim->generation != iter->generation)
1063 			goto out_unlock;
1064 
1065 		do {
1066 			pos = READ_ONCE(iter->position);
1067 			/*
1068 			 * A racing update may change the position and
1069 			 * put the last reference, hence css_tryget(),
1070 			 * or retry to see the updated position.
1071 			 */
1072 		} while (pos && !css_tryget(&pos->css));
1073 	}
1074 
1075 	if (pos)
1076 		css = &pos->css;
1077 
1078 	for (;;) {
1079 		css = css_next_descendant_pre(css, &root->css);
1080 		if (!css) {
1081 			/*
1082 			 * Reclaimers share the hierarchy walk, and a
1083 			 * new one might jump in right at the end of
1084 			 * the hierarchy - make sure they see at least
1085 			 * one group and restart from the beginning.
1086 			 */
1087 			if (!prev)
1088 				continue;
1089 			break;
1090 		}
1091 
1092 		/*
1093 		 * Verify the css and acquire a reference.  The root
1094 		 * is provided by the caller, so we know it's alive
1095 		 * and kicking, and don't take an extra reference.
1096 		 */
1097 		memcg = mem_cgroup_from_css(css);
1098 
1099 		if (css == &root->css)
1100 			break;
1101 
1102 		if (css_tryget(css)) {
1103 			/*
1104 			 * Make sure the memcg is initialized:
1105 			 * mem_cgroup_css_online() orders the the
1106 			 * initialization against setting the flag.
1107 			 */
1108 			if (smp_load_acquire(&memcg->initialized))
1109 				break;
1110 
1111 			css_put(css);
1112 		}
1113 
1114 		memcg = NULL;
1115 	}
1116 
1117 	if (reclaim) {
1118 		if (cmpxchg(&iter->position, pos, memcg) == pos) {
1119 			if (memcg)
1120 				css_get(&memcg->css);
1121 			if (pos)
1122 				css_put(&pos->css);
1123 		}
1124 
1125 		/*
1126 		 * pairs with css_tryget when dereferencing iter->position
1127 		 * above.
1128 		 */
1129 		if (pos)
1130 			css_put(&pos->css);
1131 
1132 		if (!memcg)
1133 			iter->generation++;
1134 		else if (!prev)
1135 			reclaim->generation = iter->generation;
1136 	}
1137 
1138 out_unlock:
1139 	rcu_read_unlock();
1140 out:
1141 	if (prev && prev != root)
1142 		css_put(&prev->css);
1143 
1144 	return memcg;
1145 }
1146 
1147 /**
1148  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1149  * @root: hierarchy root
1150  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1151  */
1152 void mem_cgroup_iter_break(struct mem_cgroup *root,
1153 			   struct mem_cgroup *prev)
1154 {
1155 	if (!root)
1156 		root = root_mem_cgroup;
1157 	if (prev && prev != root)
1158 		css_put(&prev->css);
1159 }
1160 
1161 /*
1162  * Iteration constructs for visiting all cgroups (under a tree).  If
1163  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1164  * be used for reference counting.
1165  */
1166 #define for_each_mem_cgroup_tree(iter, root)		\
1167 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1168 	     iter != NULL;				\
1169 	     iter = mem_cgroup_iter(root, iter, NULL))
1170 
1171 #define for_each_mem_cgroup(iter)			\
1172 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1173 	     iter != NULL;				\
1174 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1175 
1176 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1177 {
1178 	struct mem_cgroup *memcg;
1179 
1180 	rcu_read_lock();
1181 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1182 	if (unlikely(!memcg))
1183 		goto out;
1184 
1185 	switch (idx) {
1186 	case PGFAULT:
1187 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1188 		break;
1189 	case PGMAJFAULT:
1190 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1191 		break;
1192 	default:
1193 		BUG();
1194 	}
1195 out:
1196 	rcu_read_unlock();
1197 }
1198 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1199 
1200 /**
1201  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1202  * @zone: zone of the wanted lruvec
1203  * @memcg: memcg of the wanted lruvec
1204  *
1205  * Returns the lru list vector holding pages for the given @zone and
1206  * @mem.  This can be the global zone lruvec, if the memory controller
1207  * is disabled.
1208  */
1209 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1210 				      struct mem_cgroup *memcg)
1211 {
1212 	struct mem_cgroup_per_zone *mz;
1213 	struct lruvec *lruvec;
1214 
1215 	if (mem_cgroup_disabled()) {
1216 		lruvec = &zone->lruvec;
1217 		goto out;
1218 	}
1219 
1220 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1221 	lruvec = &mz->lruvec;
1222 out:
1223 	/*
1224 	 * Since a node can be onlined after the mem_cgroup was created,
1225 	 * we have to be prepared to initialize lruvec->zone here;
1226 	 * and if offlined then reonlined, we need to reinitialize it.
1227 	 */
1228 	if (unlikely(lruvec->zone != zone))
1229 		lruvec->zone = zone;
1230 	return lruvec;
1231 }
1232 
1233 /**
1234  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1235  * @page: the page
1236  * @zone: zone of the page
1237  *
1238  * This function is only safe when following the LRU page isolation
1239  * and putback protocol: the LRU lock must be held, and the page must
1240  * either be PageLRU() or the caller must have isolated/allocated it.
1241  */
1242 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1243 {
1244 	struct mem_cgroup_per_zone *mz;
1245 	struct mem_cgroup *memcg;
1246 	struct lruvec *lruvec;
1247 
1248 	if (mem_cgroup_disabled()) {
1249 		lruvec = &zone->lruvec;
1250 		goto out;
1251 	}
1252 
1253 	memcg = page->mem_cgroup;
1254 	/*
1255 	 * Swapcache readahead pages are added to the LRU - and
1256 	 * possibly migrated - before they are charged.
1257 	 */
1258 	if (!memcg)
1259 		memcg = root_mem_cgroup;
1260 
1261 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1262 	lruvec = &mz->lruvec;
1263 out:
1264 	/*
1265 	 * Since a node can be onlined after the mem_cgroup was created,
1266 	 * we have to be prepared to initialize lruvec->zone here;
1267 	 * and if offlined then reonlined, we need to reinitialize it.
1268 	 */
1269 	if (unlikely(lruvec->zone != zone))
1270 		lruvec->zone = zone;
1271 	return lruvec;
1272 }
1273 
1274 /**
1275  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1276  * @lruvec: mem_cgroup per zone lru vector
1277  * @lru: index of lru list the page is sitting on
1278  * @nr_pages: positive when adding or negative when removing
1279  *
1280  * This function must be called when a page is added to or removed from an
1281  * lru list.
1282  */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 				int nr_pages)
1285 {
1286 	struct mem_cgroup_per_zone *mz;
1287 	unsigned long *lru_size;
1288 
1289 	if (mem_cgroup_disabled())
1290 		return;
1291 
1292 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1293 	lru_size = mz->lru_size + lru;
1294 	*lru_size += nr_pages;
1295 	VM_BUG_ON((long)(*lru_size) < 0);
1296 }
1297 
1298 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1299 {
1300 	if (root == memcg)
1301 		return true;
1302 	if (!root->use_hierarchy)
1303 		return false;
1304 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1305 }
1306 
1307 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1308 {
1309 	struct mem_cgroup *task_memcg;
1310 	struct task_struct *p;
1311 	bool ret;
1312 
1313 	p = find_lock_task_mm(task);
1314 	if (p) {
1315 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1316 		task_unlock(p);
1317 	} else {
1318 		/*
1319 		 * All threads may have already detached their mm's, but the oom
1320 		 * killer still needs to detect if they have already been oom
1321 		 * killed to prevent needlessly killing additional tasks.
1322 		 */
1323 		rcu_read_lock();
1324 		task_memcg = mem_cgroup_from_task(task);
1325 		css_get(&task_memcg->css);
1326 		rcu_read_unlock();
1327 	}
1328 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1329 	css_put(&task_memcg->css);
1330 	return ret;
1331 }
1332 
1333 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1334 {
1335 	unsigned long inactive_ratio;
1336 	unsigned long inactive;
1337 	unsigned long active;
1338 	unsigned long gb;
1339 
1340 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1341 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1342 
1343 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1344 	if (gb)
1345 		inactive_ratio = int_sqrt(10 * gb);
1346 	else
1347 		inactive_ratio = 1;
1348 
1349 	return inactive * inactive_ratio < active;
1350 }
1351 
1352 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1353 {
1354 	struct mem_cgroup_per_zone *mz;
1355 	struct mem_cgroup *memcg;
1356 
1357 	if (mem_cgroup_disabled())
1358 		return true;
1359 
1360 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1361 	memcg = mz->memcg;
1362 
1363 	return !!(memcg->css.flags & CSS_ONLINE);
1364 }
1365 
1366 #define mem_cgroup_from_counter(counter, member)	\
1367 	container_of(counter, struct mem_cgroup, member)
1368 
1369 /**
1370  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1371  * @memcg: the memory cgroup
1372  *
1373  * Returns the maximum amount of memory @mem can be charged with, in
1374  * pages.
1375  */
1376 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1377 {
1378 	unsigned long margin = 0;
1379 	unsigned long count;
1380 	unsigned long limit;
1381 
1382 	count = page_counter_read(&memcg->memory);
1383 	limit = READ_ONCE(memcg->memory.limit);
1384 	if (count < limit)
1385 		margin = limit - count;
1386 
1387 	if (do_swap_account) {
1388 		count = page_counter_read(&memcg->memsw);
1389 		limit = READ_ONCE(memcg->memsw.limit);
1390 		if (count <= limit)
1391 			margin = min(margin, limit - count);
1392 	}
1393 
1394 	return margin;
1395 }
1396 
1397 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1398 {
1399 	/* root ? */
1400 	if (mem_cgroup_disabled() || !memcg->css.parent)
1401 		return vm_swappiness;
1402 
1403 	return memcg->swappiness;
1404 }
1405 
1406 /*
1407  * A routine for checking "mem" is under move_account() or not.
1408  *
1409  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1410  * moving cgroups. This is for waiting at high-memory pressure
1411  * caused by "move".
1412  */
1413 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414 {
1415 	struct mem_cgroup *from;
1416 	struct mem_cgroup *to;
1417 	bool ret = false;
1418 	/*
1419 	 * Unlike task_move routines, we access mc.to, mc.from not under
1420 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421 	 */
1422 	spin_lock(&mc.lock);
1423 	from = mc.from;
1424 	to = mc.to;
1425 	if (!from)
1426 		goto unlock;
1427 
1428 	ret = mem_cgroup_is_descendant(from, memcg) ||
1429 		mem_cgroup_is_descendant(to, memcg);
1430 unlock:
1431 	spin_unlock(&mc.lock);
1432 	return ret;
1433 }
1434 
1435 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 {
1437 	if (mc.moving_task && current != mc.moving_task) {
1438 		if (mem_cgroup_under_move(memcg)) {
1439 			DEFINE_WAIT(wait);
1440 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1441 			/* moving charge context might have finished. */
1442 			if (mc.moving_task)
1443 				schedule();
1444 			finish_wait(&mc.waitq, &wait);
1445 			return true;
1446 		}
1447 	}
1448 	return false;
1449 }
1450 
1451 #define K(x) ((x) << (PAGE_SHIFT-10))
1452 /**
1453  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1454  * @memcg: The memory cgroup that went over limit
1455  * @p: Task that is going to be killed
1456  *
1457  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1458  * enabled
1459  */
1460 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1461 {
1462 	/* oom_info_lock ensures that parallel ooms do not interleave */
1463 	static DEFINE_MUTEX(oom_info_lock);
1464 	struct mem_cgroup *iter;
1465 	unsigned int i;
1466 
1467 	mutex_lock(&oom_info_lock);
1468 	rcu_read_lock();
1469 
1470 	if (p) {
1471 		pr_info("Task in ");
1472 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1473 		pr_cont(" killed as a result of limit of ");
1474 	} else {
1475 		pr_info("Memory limit reached of cgroup ");
1476 	}
1477 
1478 	pr_cont_cgroup_path(memcg->css.cgroup);
1479 	pr_cont("\n");
1480 
1481 	rcu_read_unlock();
1482 
1483 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1484 		K((u64)page_counter_read(&memcg->memory)),
1485 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1486 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1487 		K((u64)page_counter_read(&memcg->memsw)),
1488 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1489 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1490 		K((u64)page_counter_read(&memcg->kmem)),
1491 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1492 
1493 	for_each_mem_cgroup_tree(iter, memcg) {
1494 		pr_info("Memory cgroup stats for ");
1495 		pr_cont_cgroup_path(iter->css.cgroup);
1496 		pr_cont(":");
1497 
1498 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1499 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1500 				continue;
1501 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1502 				K(mem_cgroup_read_stat(iter, i)));
1503 		}
1504 
1505 		for (i = 0; i < NR_LRU_LISTS; i++)
1506 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1507 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1508 
1509 		pr_cont("\n");
1510 	}
1511 	mutex_unlock(&oom_info_lock);
1512 }
1513 
1514 /*
1515  * This function returns the number of memcg under hierarchy tree. Returns
1516  * 1(self count) if no children.
1517  */
1518 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1519 {
1520 	int num = 0;
1521 	struct mem_cgroup *iter;
1522 
1523 	for_each_mem_cgroup_tree(iter, memcg)
1524 		num++;
1525 	return num;
1526 }
1527 
1528 /*
1529  * Return the memory (and swap, if configured) limit for a memcg.
1530  */
1531 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1532 {
1533 	unsigned long limit;
1534 
1535 	limit = memcg->memory.limit;
1536 	if (mem_cgroup_swappiness(memcg)) {
1537 		unsigned long memsw_limit;
1538 
1539 		memsw_limit = memcg->memsw.limit;
1540 		limit = min(limit + total_swap_pages, memsw_limit);
1541 	}
1542 	return limit;
1543 }
1544 
1545 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1546 				     int order)
1547 {
1548 	struct mem_cgroup *iter;
1549 	unsigned long chosen_points = 0;
1550 	unsigned long totalpages;
1551 	unsigned int points = 0;
1552 	struct task_struct *chosen = NULL;
1553 
1554 	mutex_lock(&oom_lock);
1555 
1556 	/*
1557 	 * If current has a pending SIGKILL or is exiting, then automatically
1558 	 * select it.  The goal is to allow it to allocate so that it may
1559 	 * quickly exit and free its memory.
1560 	 */
1561 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1562 		mark_oom_victim(current);
1563 		goto unlock;
1564 	}
1565 
1566 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1567 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1568 	for_each_mem_cgroup_tree(iter, memcg) {
1569 		struct css_task_iter it;
1570 		struct task_struct *task;
1571 
1572 		css_task_iter_start(&iter->css, &it);
1573 		while ((task = css_task_iter_next(&it))) {
1574 			switch (oom_scan_process_thread(task, totalpages, NULL,
1575 							false)) {
1576 			case OOM_SCAN_SELECT:
1577 				if (chosen)
1578 					put_task_struct(chosen);
1579 				chosen = task;
1580 				chosen_points = ULONG_MAX;
1581 				get_task_struct(chosen);
1582 				/* fall through */
1583 			case OOM_SCAN_CONTINUE:
1584 				continue;
1585 			case OOM_SCAN_ABORT:
1586 				css_task_iter_end(&it);
1587 				mem_cgroup_iter_break(memcg, iter);
1588 				if (chosen)
1589 					put_task_struct(chosen);
1590 				goto unlock;
1591 			case OOM_SCAN_OK:
1592 				break;
1593 			};
1594 			points = oom_badness(task, memcg, NULL, totalpages);
1595 			if (!points || points < chosen_points)
1596 				continue;
1597 			/* Prefer thread group leaders for display purposes */
1598 			if (points == chosen_points &&
1599 			    thread_group_leader(chosen))
1600 				continue;
1601 
1602 			if (chosen)
1603 				put_task_struct(chosen);
1604 			chosen = task;
1605 			chosen_points = points;
1606 			get_task_struct(chosen);
1607 		}
1608 		css_task_iter_end(&it);
1609 	}
1610 
1611 	if (chosen) {
1612 		points = chosen_points * 1000 / totalpages;
1613 		oom_kill_process(chosen, gfp_mask, order, points, totalpages,
1614 				 memcg, NULL, "Memory cgroup out of memory");
1615 	}
1616 unlock:
1617 	mutex_unlock(&oom_lock);
1618 }
1619 
1620 #if MAX_NUMNODES > 1
1621 
1622 /**
1623  * test_mem_cgroup_node_reclaimable
1624  * @memcg: the target memcg
1625  * @nid: the node ID to be checked.
1626  * @noswap : specify true here if the user wants flle only information.
1627  *
1628  * This function returns whether the specified memcg contains any
1629  * reclaimable pages on a node. Returns true if there are any reclaimable
1630  * pages in the node.
1631  */
1632 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1633 		int nid, bool noswap)
1634 {
1635 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1636 		return true;
1637 	if (noswap || !total_swap_pages)
1638 		return false;
1639 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1640 		return true;
1641 	return false;
1642 
1643 }
1644 
1645 /*
1646  * Always updating the nodemask is not very good - even if we have an empty
1647  * list or the wrong list here, we can start from some node and traverse all
1648  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1649  *
1650  */
1651 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1652 {
1653 	int nid;
1654 	/*
1655 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1656 	 * pagein/pageout changes since the last update.
1657 	 */
1658 	if (!atomic_read(&memcg->numainfo_events))
1659 		return;
1660 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1661 		return;
1662 
1663 	/* make a nodemask where this memcg uses memory from */
1664 	memcg->scan_nodes = node_states[N_MEMORY];
1665 
1666 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1667 
1668 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1669 			node_clear(nid, memcg->scan_nodes);
1670 	}
1671 
1672 	atomic_set(&memcg->numainfo_events, 0);
1673 	atomic_set(&memcg->numainfo_updating, 0);
1674 }
1675 
1676 /*
1677  * Selecting a node where we start reclaim from. Because what we need is just
1678  * reducing usage counter, start from anywhere is O,K. Considering
1679  * memory reclaim from current node, there are pros. and cons.
1680  *
1681  * Freeing memory from current node means freeing memory from a node which
1682  * we'll use or we've used. So, it may make LRU bad. And if several threads
1683  * hit limits, it will see a contention on a node. But freeing from remote
1684  * node means more costs for memory reclaim because of memory latency.
1685  *
1686  * Now, we use round-robin. Better algorithm is welcomed.
1687  */
1688 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1689 {
1690 	int node;
1691 
1692 	mem_cgroup_may_update_nodemask(memcg);
1693 	node = memcg->last_scanned_node;
1694 
1695 	node = next_node(node, memcg->scan_nodes);
1696 	if (node == MAX_NUMNODES)
1697 		node = first_node(memcg->scan_nodes);
1698 	/*
1699 	 * We call this when we hit limit, not when pages are added to LRU.
1700 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1701 	 * memcg is too small and all pages are not on LRU. In that case,
1702 	 * we use curret node.
1703 	 */
1704 	if (unlikely(node == MAX_NUMNODES))
1705 		node = numa_node_id();
1706 
1707 	memcg->last_scanned_node = node;
1708 	return node;
1709 }
1710 #else
1711 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1712 {
1713 	return 0;
1714 }
1715 #endif
1716 
1717 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718 				   struct zone *zone,
1719 				   gfp_t gfp_mask,
1720 				   unsigned long *total_scanned)
1721 {
1722 	struct mem_cgroup *victim = NULL;
1723 	int total = 0;
1724 	int loop = 0;
1725 	unsigned long excess;
1726 	unsigned long nr_scanned;
1727 	struct mem_cgroup_reclaim_cookie reclaim = {
1728 		.zone = zone,
1729 		.priority = 0,
1730 	};
1731 
1732 	excess = soft_limit_excess(root_memcg);
1733 
1734 	while (1) {
1735 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1736 		if (!victim) {
1737 			loop++;
1738 			if (loop >= 2) {
1739 				/*
1740 				 * If we have not been able to reclaim
1741 				 * anything, it might because there are
1742 				 * no reclaimable pages under this hierarchy
1743 				 */
1744 				if (!total)
1745 					break;
1746 				/*
1747 				 * We want to do more targeted reclaim.
1748 				 * excess >> 2 is not to excessive so as to
1749 				 * reclaim too much, nor too less that we keep
1750 				 * coming back to reclaim from this cgroup
1751 				 */
1752 				if (total >= (excess >> 2) ||
1753 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1754 					break;
1755 			}
1756 			continue;
1757 		}
1758 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1759 						     zone, &nr_scanned);
1760 		*total_scanned += nr_scanned;
1761 		if (!soft_limit_excess(root_memcg))
1762 			break;
1763 	}
1764 	mem_cgroup_iter_break(root_memcg, victim);
1765 	return total;
1766 }
1767 
1768 #ifdef CONFIG_LOCKDEP
1769 static struct lockdep_map memcg_oom_lock_dep_map = {
1770 	.name = "memcg_oom_lock",
1771 };
1772 #endif
1773 
1774 static DEFINE_SPINLOCK(memcg_oom_lock);
1775 
1776 /*
1777  * Check OOM-Killer is already running under our hierarchy.
1778  * If someone is running, return false.
1779  */
1780 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1781 {
1782 	struct mem_cgroup *iter, *failed = NULL;
1783 
1784 	spin_lock(&memcg_oom_lock);
1785 
1786 	for_each_mem_cgroup_tree(iter, memcg) {
1787 		if (iter->oom_lock) {
1788 			/*
1789 			 * this subtree of our hierarchy is already locked
1790 			 * so we cannot give a lock.
1791 			 */
1792 			failed = iter;
1793 			mem_cgroup_iter_break(memcg, iter);
1794 			break;
1795 		} else
1796 			iter->oom_lock = true;
1797 	}
1798 
1799 	if (failed) {
1800 		/*
1801 		 * OK, we failed to lock the whole subtree so we have
1802 		 * to clean up what we set up to the failing subtree
1803 		 */
1804 		for_each_mem_cgroup_tree(iter, memcg) {
1805 			if (iter == failed) {
1806 				mem_cgroup_iter_break(memcg, iter);
1807 				break;
1808 			}
1809 			iter->oom_lock = false;
1810 		}
1811 	} else
1812 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1813 
1814 	spin_unlock(&memcg_oom_lock);
1815 
1816 	return !failed;
1817 }
1818 
1819 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1820 {
1821 	struct mem_cgroup *iter;
1822 
1823 	spin_lock(&memcg_oom_lock);
1824 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1825 	for_each_mem_cgroup_tree(iter, memcg)
1826 		iter->oom_lock = false;
1827 	spin_unlock(&memcg_oom_lock);
1828 }
1829 
1830 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1831 {
1832 	struct mem_cgroup *iter;
1833 
1834 	spin_lock(&memcg_oom_lock);
1835 	for_each_mem_cgroup_tree(iter, memcg)
1836 		iter->under_oom++;
1837 	spin_unlock(&memcg_oom_lock);
1838 }
1839 
1840 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1841 {
1842 	struct mem_cgroup *iter;
1843 
1844 	/*
1845 	 * When a new child is created while the hierarchy is under oom,
1846 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1847 	 */
1848 	spin_lock(&memcg_oom_lock);
1849 	for_each_mem_cgroup_tree(iter, memcg)
1850 		if (iter->under_oom > 0)
1851 			iter->under_oom--;
1852 	spin_unlock(&memcg_oom_lock);
1853 }
1854 
1855 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1856 
1857 struct oom_wait_info {
1858 	struct mem_cgroup *memcg;
1859 	wait_queue_t	wait;
1860 };
1861 
1862 static int memcg_oom_wake_function(wait_queue_t *wait,
1863 	unsigned mode, int sync, void *arg)
1864 {
1865 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1866 	struct mem_cgroup *oom_wait_memcg;
1867 	struct oom_wait_info *oom_wait_info;
1868 
1869 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1870 	oom_wait_memcg = oom_wait_info->memcg;
1871 
1872 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1873 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1874 		return 0;
1875 	return autoremove_wake_function(wait, mode, sync, arg);
1876 }
1877 
1878 static void memcg_oom_recover(struct mem_cgroup *memcg)
1879 {
1880 	/*
1881 	 * For the following lockless ->under_oom test, the only required
1882 	 * guarantee is that it must see the state asserted by an OOM when
1883 	 * this function is called as a result of userland actions
1884 	 * triggered by the notification of the OOM.  This is trivially
1885 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1886 	 * triggering notification.
1887 	 */
1888 	if (memcg && memcg->under_oom)
1889 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1890 }
1891 
1892 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1893 {
1894 	if (!current->memcg_oom.may_oom)
1895 		return;
1896 	/*
1897 	 * We are in the middle of the charge context here, so we
1898 	 * don't want to block when potentially sitting on a callstack
1899 	 * that holds all kinds of filesystem and mm locks.
1900 	 *
1901 	 * Also, the caller may handle a failed allocation gracefully
1902 	 * (like optional page cache readahead) and so an OOM killer
1903 	 * invocation might not even be necessary.
1904 	 *
1905 	 * That's why we don't do anything here except remember the
1906 	 * OOM context and then deal with it at the end of the page
1907 	 * fault when the stack is unwound, the locks are released,
1908 	 * and when we know whether the fault was overall successful.
1909 	 */
1910 	css_get(&memcg->css);
1911 	current->memcg_oom.memcg = memcg;
1912 	current->memcg_oom.gfp_mask = mask;
1913 	current->memcg_oom.order = order;
1914 }
1915 
1916 /**
1917  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1918  * @handle: actually kill/wait or just clean up the OOM state
1919  *
1920  * This has to be called at the end of a page fault if the memcg OOM
1921  * handler was enabled.
1922  *
1923  * Memcg supports userspace OOM handling where failed allocations must
1924  * sleep on a waitqueue until the userspace task resolves the
1925  * situation.  Sleeping directly in the charge context with all kinds
1926  * of locks held is not a good idea, instead we remember an OOM state
1927  * in the task and mem_cgroup_oom_synchronize() has to be called at
1928  * the end of the page fault to complete the OOM handling.
1929  *
1930  * Returns %true if an ongoing memcg OOM situation was detected and
1931  * completed, %false otherwise.
1932  */
1933 bool mem_cgroup_oom_synchronize(bool handle)
1934 {
1935 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1936 	struct oom_wait_info owait;
1937 	bool locked;
1938 
1939 	/* OOM is global, do not handle */
1940 	if (!memcg)
1941 		return false;
1942 
1943 	if (!handle || oom_killer_disabled)
1944 		goto cleanup;
1945 
1946 	owait.memcg = memcg;
1947 	owait.wait.flags = 0;
1948 	owait.wait.func = memcg_oom_wake_function;
1949 	owait.wait.private = current;
1950 	INIT_LIST_HEAD(&owait.wait.task_list);
1951 
1952 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1953 	mem_cgroup_mark_under_oom(memcg);
1954 
1955 	locked = mem_cgroup_oom_trylock(memcg);
1956 
1957 	if (locked)
1958 		mem_cgroup_oom_notify(memcg);
1959 
1960 	if (locked && !memcg->oom_kill_disable) {
1961 		mem_cgroup_unmark_under_oom(memcg);
1962 		finish_wait(&memcg_oom_waitq, &owait.wait);
1963 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1964 					 current->memcg_oom.order);
1965 	} else {
1966 		schedule();
1967 		mem_cgroup_unmark_under_oom(memcg);
1968 		finish_wait(&memcg_oom_waitq, &owait.wait);
1969 	}
1970 
1971 	if (locked) {
1972 		mem_cgroup_oom_unlock(memcg);
1973 		/*
1974 		 * There is no guarantee that an OOM-lock contender
1975 		 * sees the wakeups triggered by the OOM kill
1976 		 * uncharges.  Wake any sleepers explicitely.
1977 		 */
1978 		memcg_oom_recover(memcg);
1979 	}
1980 cleanup:
1981 	current->memcg_oom.memcg = NULL;
1982 	css_put(&memcg->css);
1983 	return true;
1984 }
1985 
1986 /**
1987  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1988  * @page: page that is going to change accounted state
1989  *
1990  * This function must mark the beginning of an accounted page state
1991  * change to prevent double accounting when the page is concurrently
1992  * being moved to another memcg:
1993  *
1994  *   memcg = mem_cgroup_begin_page_stat(page);
1995  *   if (TestClearPageState(page))
1996  *     mem_cgroup_update_page_stat(memcg, state, -1);
1997  *   mem_cgroup_end_page_stat(memcg);
1998  */
1999 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
2000 {
2001 	struct mem_cgroup *memcg;
2002 	unsigned long flags;
2003 
2004 	/*
2005 	 * The RCU lock is held throughout the transaction.  The fast
2006 	 * path can get away without acquiring the memcg->move_lock
2007 	 * because page moving starts with an RCU grace period.
2008 	 *
2009 	 * The RCU lock also protects the memcg from being freed when
2010 	 * the page state that is going to change is the only thing
2011 	 * preventing the page from being uncharged.
2012 	 * E.g. end-writeback clearing PageWriteback(), which allows
2013 	 * migration to go ahead and uncharge the page before the
2014 	 * account transaction might be complete.
2015 	 */
2016 	rcu_read_lock();
2017 
2018 	if (mem_cgroup_disabled())
2019 		return NULL;
2020 again:
2021 	memcg = page->mem_cgroup;
2022 	if (unlikely(!memcg))
2023 		return NULL;
2024 
2025 	if (atomic_read(&memcg->moving_account) <= 0)
2026 		return memcg;
2027 
2028 	spin_lock_irqsave(&memcg->move_lock, flags);
2029 	if (memcg != page->mem_cgroup) {
2030 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2031 		goto again;
2032 	}
2033 
2034 	/*
2035 	 * When charge migration first begins, we can have locked and
2036 	 * unlocked page stat updates happening concurrently.  Track
2037 	 * the task who has the lock for mem_cgroup_end_page_stat().
2038 	 */
2039 	memcg->move_lock_task = current;
2040 	memcg->move_lock_flags = flags;
2041 
2042 	return memcg;
2043 }
2044 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
2045 
2046 /**
2047  * mem_cgroup_end_page_stat - finish a page state statistics transaction
2048  * @memcg: the memcg that was accounted against
2049  */
2050 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2051 {
2052 	if (memcg && memcg->move_lock_task == current) {
2053 		unsigned long flags = memcg->move_lock_flags;
2054 
2055 		memcg->move_lock_task = NULL;
2056 		memcg->move_lock_flags = 0;
2057 
2058 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2059 	}
2060 
2061 	rcu_read_unlock();
2062 }
2063 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
2064 
2065 /**
2066  * mem_cgroup_update_page_stat - update page state statistics
2067  * @memcg: memcg to account against
2068  * @idx: page state item to account
2069  * @val: number of pages (positive or negative)
2070  *
2071  * See mem_cgroup_begin_page_stat() for locking requirements.
2072  */
2073 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2074 				 enum mem_cgroup_stat_index idx, int val)
2075 {
2076 	VM_BUG_ON(!rcu_read_lock_held());
2077 
2078 	if (memcg)
2079 		this_cpu_add(memcg->stat->count[idx], val);
2080 }
2081 
2082 /*
2083  * size of first charge trial. "32" comes from vmscan.c's magic value.
2084  * TODO: maybe necessary to use big numbers in big irons.
2085  */
2086 #define CHARGE_BATCH	32U
2087 struct memcg_stock_pcp {
2088 	struct mem_cgroup *cached; /* this never be root cgroup */
2089 	unsigned int nr_pages;
2090 	struct work_struct work;
2091 	unsigned long flags;
2092 #define FLUSHING_CACHED_CHARGE	0
2093 };
2094 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095 static DEFINE_MUTEX(percpu_charge_mutex);
2096 
2097 /**
2098  * consume_stock: Try to consume stocked charge on this cpu.
2099  * @memcg: memcg to consume from.
2100  * @nr_pages: how many pages to charge.
2101  *
2102  * The charges will only happen if @memcg matches the current cpu's memcg
2103  * stock, and at least @nr_pages are available in that stock.  Failure to
2104  * service an allocation will refill the stock.
2105  *
2106  * returns true if successful, false otherwise.
2107  */
2108 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2109 {
2110 	struct memcg_stock_pcp *stock;
2111 	bool ret = false;
2112 
2113 	if (nr_pages > CHARGE_BATCH)
2114 		return ret;
2115 
2116 	stock = &get_cpu_var(memcg_stock);
2117 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2118 		stock->nr_pages -= nr_pages;
2119 		ret = true;
2120 	}
2121 	put_cpu_var(memcg_stock);
2122 	return ret;
2123 }
2124 
2125 /*
2126  * Returns stocks cached in percpu and reset cached information.
2127  */
2128 static void drain_stock(struct memcg_stock_pcp *stock)
2129 {
2130 	struct mem_cgroup *old = stock->cached;
2131 
2132 	if (stock->nr_pages) {
2133 		page_counter_uncharge(&old->memory, stock->nr_pages);
2134 		if (do_swap_account)
2135 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2136 		css_put_many(&old->css, stock->nr_pages);
2137 		stock->nr_pages = 0;
2138 	}
2139 	stock->cached = NULL;
2140 }
2141 
2142 /*
2143  * This must be called under preempt disabled or must be called by
2144  * a thread which is pinned to local cpu.
2145  */
2146 static void drain_local_stock(struct work_struct *dummy)
2147 {
2148 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2149 	drain_stock(stock);
2150 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2151 }
2152 
2153 /*
2154  * Cache charges(val) to local per_cpu area.
2155  * This will be consumed by consume_stock() function, later.
2156  */
2157 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2158 {
2159 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2160 
2161 	if (stock->cached != memcg) { /* reset if necessary */
2162 		drain_stock(stock);
2163 		stock->cached = memcg;
2164 	}
2165 	stock->nr_pages += nr_pages;
2166 	put_cpu_var(memcg_stock);
2167 }
2168 
2169 /*
2170  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2171  * of the hierarchy under it.
2172  */
2173 static void drain_all_stock(struct mem_cgroup *root_memcg)
2174 {
2175 	int cpu, curcpu;
2176 
2177 	/* If someone's already draining, avoid adding running more workers. */
2178 	if (!mutex_trylock(&percpu_charge_mutex))
2179 		return;
2180 	/* Notify other cpus that system-wide "drain" is running */
2181 	get_online_cpus();
2182 	curcpu = get_cpu();
2183 	for_each_online_cpu(cpu) {
2184 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2185 		struct mem_cgroup *memcg;
2186 
2187 		memcg = stock->cached;
2188 		if (!memcg || !stock->nr_pages)
2189 			continue;
2190 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2191 			continue;
2192 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2193 			if (cpu == curcpu)
2194 				drain_local_stock(&stock->work);
2195 			else
2196 				schedule_work_on(cpu, &stock->work);
2197 		}
2198 	}
2199 	put_cpu();
2200 	put_online_cpus();
2201 	mutex_unlock(&percpu_charge_mutex);
2202 }
2203 
2204 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2205 					unsigned long action,
2206 					void *hcpu)
2207 {
2208 	int cpu = (unsigned long)hcpu;
2209 	struct memcg_stock_pcp *stock;
2210 
2211 	if (action == CPU_ONLINE)
2212 		return NOTIFY_OK;
2213 
2214 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2215 		return NOTIFY_OK;
2216 
2217 	stock = &per_cpu(memcg_stock, cpu);
2218 	drain_stock(stock);
2219 	return NOTIFY_OK;
2220 }
2221 
2222 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2223 		      unsigned int nr_pages)
2224 {
2225 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2226 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2227 	struct mem_cgroup *mem_over_limit;
2228 	struct page_counter *counter;
2229 	unsigned long nr_reclaimed;
2230 	bool may_swap = true;
2231 	bool drained = false;
2232 	int ret = 0;
2233 
2234 	if (mem_cgroup_is_root(memcg))
2235 		goto done;
2236 retry:
2237 	if (consume_stock(memcg, nr_pages))
2238 		goto done;
2239 
2240 	if (!do_swap_account ||
2241 	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2242 		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2243 			goto done_restock;
2244 		if (do_swap_account)
2245 			page_counter_uncharge(&memcg->memsw, batch);
2246 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2247 	} else {
2248 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2249 		may_swap = false;
2250 	}
2251 
2252 	if (batch > nr_pages) {
2253 		batch = nr_pages;
2254 		goto retry;
2255 	}
2256 
2257 	/*
2258 	 * Unlike in global OOM situations, memcg is not in a physical
2259 	 * memory shortage.  Allow dying and OOM-killed tasks to
2260 	 * bypass the last charges so that they can exit quickly and
2261 	 * free their memory.
2262 	 */
2263 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2264 		     fatal_signal_pending(current) ||
2265 		     current->flags & PF_EXITING))
2266 		goto bypass;
2267 
2268 	if (unlikely(task_in_memcg_oom(current)))
2269 		goto nomem;
2270 
2271 	if (!(gfp_mask & __GFP_WAIT))
2272 		goto nomem;
2273 
2274 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2275 
2276 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2277 						    gfp_mask, may_swap);
2278 
2279 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2280 		goto retry;
2281 
2282 	if (!drained) {
2283 		drain_all_stock(mem_over_limit);
2284 		drained = true;
2285 		goto retry;
2286 	}
2287 
2288 	if (gfp_mask & __GFP_NORETRY)
2289 		goto nomem;
2290 	/*
2291 	 * Even though the limit is exceeded at this point, reclaim
2292 	 * may have been able to free some pages.  Retry the charge
2293 	 * before killing the task.
2294 	 *
2295 	 * Only for regular pages, though: huge pages are rather
2296 	 * unlikely to succeed so close to the limit, and we fall back
2297 	 * to regular pages anyway in case of failure.
2298 	 */
2299 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2300 		goto retry;
2301 	/*
2302 	 * At task move, charge accounts can be doubly counted. So, it's
2303 	 * better to wait until the end of task_move if something is going on.
2304 	 */
2305 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2306 		goto retry;
2307 
2308 	if (nr_retries--)
2309 		goto retry;
2310 
2311 	if (gfp_mask & __GFP_NOFAIL)
2312 		goto bypass;
2313 
2314 	if (fatal_signal_pending(current))
2315 		goto bypass;
2316 
2317 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2318 
2319 	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2320 nomem:
2321 	if (!(gfp_mask & __GFP_NOFAIL))
2322 		return -ENOMEM;
2323 bypass:
2324 	return -EINTR;
2325 
2326 done_restock:
2327 	css_get_many(&memcg->css, batch);
2328 	if (batch > nr_pages)
2329 		refill_stock(memcg, batch - nr_pages);
2330 	if (!(gfp_mask & __GFP_WAIT))
2331 		goto done;
2332 	/*
2333 	 * If the hierarchy is above the normal consumption range,
2334 	 * make the charging task trim their excess contribution.
2335 	 */
2336 	do {
2337 		if (page_counter_read(&memcg->memory) <= memcg->high)
2338 			continue;
2339 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2340 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2341 	} while ((memcg = parent_mem_cgroup(memcg)));
2342 done:
2343 	return ret;
2344 }
2345 
2346 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2347 {
2348 	if (mem_cgroup_is_root(memcg))
2349 		return;
2350 
2351 	page_counter_uncharge(&memcg->memory, nr_pages);
2352 	if (do_swap_account)
2353 		page_counter_uncharge(&memcg->memsw, nr_pages);
2354 
2355 	css_put_many(&memcg->css, nr_pages);
2356 }
2357 
2358 /*
2359  * try_get_mem_cgroup_from_page - look up page's memcg association
2360  * @page: the page
2361  *
2362  * Look up, get a css reference, and return the memcg that owns @page.
2363  *
2364  * The page must be locked to prevent racing with swap-in and page
2365  * cache charges.  If coming from an unlocked page table, the caller
2366  * must ensure the page is on the LRU or this can race with charging.
2367  */
2368 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2369 {
2370 	struct mem_cgroup *memcg;
2371 	unsigned short id;
2372 	swp_entry_t ent;
2373 
2374 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2375 
2376 	memcg = page->mem_cgroup;
2377 	if (memcg) {
2378 		if (!css_tryget_online(&memcg->css))
2379 			memcg = NULL;
2380 	} else if (PageSwapCache(page)) {
2381 		ent.val = page_private(page);
2382 		id = lookup_swap_cgroup_id(ent);
2383 		rcu_read_lock();
2384 		memcg = mem_cgroup_from_id(id);
2385 		if (memcg && !css_tryget_online(&memcg->css))
2386 			memcg = NULL;
2387 		rcu_read_unlock();
2388 	}
2389 	return memcg;
2390 }
2391 
2392 static void lock_page_lru(struct page *page, int *isolated)
2393 {
2394 	struct zone *zone = page_zone(page);
2395 
2396 	spin_lock_irq(&zone->lru_lock);
2397 	if (PageLRU(page)) {
2398 		struct lruvec *lruvec;
2399 
2400 		lruvec = mem_cgroup_page_lruvec(page, zone);
2401 		ClearPageLRU(page);
2402 		del_page_from_lru_list(page, lruvec, page_lru(page));
2403 		*isolated = 1;
2404 	} else
2405 		*isolated = 0;
2406 }
2407 
2408 static void unlock_page_lru(struct page *page, int isolated)
2409 {
2410 	struct zone *zone = page_zone(page);
2411 
2412 	if (isolated) {
2413 		struct lruvec *lruvec;
2414 
2415 		lruvec = mem_cgroup_page_lruvec(page, zone);
2416 		VM_BUG_ON_PAGE(PageLRU(page), page);
2417 		SetPageLRU(page);
2418 		add_page_to_lru_list(page, lruvec, page_lru(page));
2419 	}
2420 	spin_unlock_irq(&zone->lru_lock);
2421 }
2422 
2423 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2424 			  bool lrucare)
2425 {
2426 	int isolated;
2427 
2428 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2429 
2430 	/*
2431 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2432 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2433 	 */
2434 	if (lrucare)
2435 		lock_page_lru(page, &isolated);
2436 
2437 	/*
2438 	 * Nobody should be changing or seriously looking at
2439 	 * page->mem_cgroup at this point:
2440 	 *
2441 	 * - the page is uncharged
2442 	 *
2443 	 * - the page is off-LRU
2444 	 *
2445 	 * - an anonymous fault has exclusive page access, except for
2446 	 *   a locked page table
2447 	 *
2448 	 * - a page cache insertion, a swapin fault, or a migration
2449 	 *   have the page locked
2450 	 */
2451 	page->mem_cgroup = memcg;
2452 
2453 	if (lrucare)
2454 		unlock_page_lru(page, isolated);
2455 }
2456 
2457 #ifdef CONFIG_MEMCG_KMEM
2458 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2459 		      unsigned long nr_pages)
2460 {
2461 	struct page_counter *counter;
2462 	int ret = 0;
2463 
2464 	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2465 	if (ret < 0)
2466 		return ret;
2467 
2468 	ret = try_charge(memcg, gfp, nr_pages);
2469 	if (ret == -EINTR)  {
2470 		/*
2471 		 * try_charge() chose to bypass to root due to OOM kill or
2472 		 * fatal signal.  Since our only options are to either fail
2473 		 * the allocation or charge it to this cgroup, do it as a
2474 		 * temporary condition. But we can't fail. From a kmem/slab
2475 		 * perspective, the cache has already been selected, by
2476 		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2477 		 * our minds.
2478 		 *
2479 		 * This condition will only trigger if the task entered
2480 		 * memcg_charge_kmem in a sane state, but was OOM-killed
2481 		 * during try_charge() above. Tasks that were already dying
2482 		 * when the allocation triggers should have been already
2483 		 * directed to the root cgroup in memcontrol.h
2484 		 */
2485 		page_counter_charge(&memcg->memory, nr_pages);
2486 		if (do_swap_account)
2487 			page_counter_charge(&memcg->memsw, nr_pages);
2488 		css_get_many(&memcg->css, nr_pages);
2489 		ret = 0;
2490 	} else if (ret)
2491 		page_counter_uncharge(&memcg->kmem, nr_pages);
2492 
2493 	return ret;
2494 }
2495 
2496 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2497 {
2498 	page_counter_uncharge(&memcg->memory, nr_pages);
2499 	if (do_swap_account)
2500 		page_counter_uncharge(&memcg->memsw, nr_pages);
2501 
2502 	page_counter_uncharge(&memcg->kmem, nr_pages);
2503 
2504 	css_put_many(&memcg->css, nr_pages);
2505 }
2506 
2507 /*
2508  * helper for acessing a memcg's index. It will be used as an index in the
2509  * child cache array in kmem_cache, and also to derive its name. This function
2510  * will return -1 when this is not a kmem-limited memcg.
2511  */
2512 int memcg_cache_id(struct mem_cgroup *memcg)
2513 {
2514 	return memcg ? memcg->kmemcg_id : -1;
2515 }
2516 
2517 static int memcg_alloc_cache_id(void)
2518 {
2519 	int id, size;
2520 	int err;
2521 
2522 	id = ida_simple_get(&memcg_cache_ida,
2523 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2524 	if (id < 0)
2525 		return id;
2526 
2527 	if (id < memcg_nr_cache_ids)
2528 		return id;
2529 
2530 	/*
2531 	 * There's no space for the new id in memcg_caches arrays,
2532 	 * so we have to grow them.
2533 	 */
2534 	down_write(&memcg_cache_ids_sem);
2535 
2536 	size = 2 * (id + 1);
2537 	if (size < MEMCG_CACHES_MIN_SIZE)
2538 		size = MEMCG_CACHES_MIN_SIZE;
2539 	else if (size > MEMCG_CACHES_MAX_SIZE)
2540 		size = MEMCG_CACHES_MAX_SIZE;
2541 
2542 	err = memcg_update_all_caches(size);
2543 	if (!err)
2544 		err = memcg_update_all_list_lrus(size);
2545 	if (!err)
2546 		memcg_nr_cache_ids = size;
2547 
2548 	up_write(&memcg_cache_ids_sem);
2549 
2550 	if (err) {
2551 		ida_simple_remove(&memcg_cache_ida, id);
2552 		return err;
2553 	}
2554 	return id;
2555 }
2556 
2557 static void memcg_free_cache_id(int id)
2558 {
2559 	ida_simple_remove(&memcg_cache_ida, id);
2560 }
2561 
2562 struct memcg_kmem_cache_create_work {
2563 	struct mem_cgroup *memcg;
2564 	struct kmem_cache *cachep;
2565 	struct work_struct work;
2566 };
2567 
2568 static void memcg_kmem_cache_create_func(struct work_struct *w)
2569 {
2570 	struct memcg_kmem_cache_create_work *cw =
2571 		container_of(w, struct memcg_kmem_cache_create_work, work);
2572 	struct mem_cgroup *memcg = cw->memcg;
2573 	struct kmem_cache *cachep = cw->cachep;
2574 
2575 	memcg_create_kmem_cache(memcg, cachep);
2576 
2577 	css_put(&memcg->css);
2578 	kfree(cw);
2579 }
2580 
2581 /*
2582  * Enqueue the creation of a per-memcg kmem_cache.
2583  */
2584 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2585 					       struct kmem_cache *cachep)
2586 {
2587 	struct memcg_kmem_cache_create_work *cw;
2588 
2589 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2590 	if (!cw)
2591 		return;
2592 
2593 	css_get(&memcg->css);
2594 
2595 	cw->memcg = memcg;
2596 	cw->cachep = cachep;
2597 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2598 
2599 	schedule_work(&cw->work);
2600 }
2601 
2602 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2603 					     struct kmem_cache *cachep)
2604 {
2605 	/*
2606 	 * We need to stop accounting when we kmalloc, because if the
2607 	 * corresponding kmalloc cache is not yet created, the first allocation
2608 	 * in __memcg_schedule_kmem_cache_create will recurse.
2609 	 *
2610 	 * However, it is better to enclose the whole function. Depending on
2611 	 * the debugging options enabled, INIT_WORK(), for instance, can
2612 	 * trigger an allocation. This too, will make us recurse. Because at
2613 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2614 	 * the safest choice is to do it like this, wrapping the whole function.
2615 	 */
2616 	current->memcg_kmem_skip_account = 1;
2617 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2618 	current->memcg_kmem_skip_account = 0;
2619 }
2620 
2621 /*
2622  * Return the kmem_cache we're supposed to use for a slab allocation.
2623  * We try to use the current memcg's version of the cache.
2624  *
2625  * If the cache does not exist yet, if we are the first user of it,
2626  * we either create it immediately, if possible, or create it asynchronously
2627  * in a workqueue.
2628  * In the latter case, we will let the current allocation go through with
2629  * the original cache.
2630  *
2631  * Can't be called in interrupt context or from kernel threads.
2632  * This function needs to be called with rcu_read_lock() held.
2633  */
2634 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2635 {
2636 	struct mem_cgroup *memcg;
2637 	struct kmem_cache *memcg_cachep;
2638 	int kmemcg_id;
2639 
2640 	VM_BUG_ON(!is_root_cache(cachep));
2641 
2642 	if (current->memcg_kmem_skip_account)
2643 		return cachep;
2644 
2645 	memcg = get_mem_cgroup_from_mm(current->mm);
2646 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2647 	if (kmemcg_id < 0)
2648 		goto out;
2649 
2650 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2651 	if (likely(memcg_cachep))
2652 		return memcg_cachep;
2653 
2654 	/*
2655 	 * If we are in a safe context (can wait, and not in interrupt
2656 	 * context), we could be be predictable and return right away.
2657 	 * This would guarantee that the allocation being performed
2658 	 * already belongs in the new cache.
2659 	 *
2660 	 * However, there are some clashes that can arrive from locking.
2661 	 * For instance, because we acquire the slab_mutex while doing
2662 	 * memcg_create_kmem_cache, this means no further allocation
2663 	 * could happen with the slab_mutex held. So it's better to
2664 	 * defer everything.
2665 	 */
2666 	memcg_schedule_kmem_cache_create(memcg, cachep);
2667 out:
2668 	css_put(&memcg->css);
2669 	return cachep;
2670 }
2671 
2672 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2673 {
2674 	if (!is_root_cache(cachep))
2675 		css_put(&cachep->memcg_params.memcg->css);
2676 }
2677 
2678 /*
2679  * We need to verify if the allocation against current->mm->owner's memcg is
2680  * possible for the given order. But the page is not allocated yet, so we'll
2681  * need a further commit step to do the final arrangements.
2682  *
2683  * It is possible for the task to switch cgroups in this mean time, so at
2684  * commit time, we can't rely on task conversion any longer.  We'll then use
2685  * the handle argument to return to the caller which cgroup we should commit
2686  * against. We could also return the memcg directly and avoid the pointer
2687  * passing, but a boolean return value gives better semantics considering
2688  * the compiled-out case as well.
2689  *
2690  * Returning true means the allocation is possible.
2691  */
2692 bool
2693 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2694 {
2695 	struct mem_cgroup *memcg;
2696 	int ret;
2697 
2698 	*_memcg = NULL;
2699 
2700 	memcg = get_mem_cgroup_from_mm(current->mm);
2701 
2702 	if (!memcg_kmem_is_active(memcg)) {
2703 		css_put(&memcg->css);
2704 		return true;
2705 	}
2706 
2707 	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2708 	if (!ret)
2709 		*_memcg = memcg;
2710 
2711 	css_put(&memcg->css);
2712 	return (ret == 0);
2713 }
2714 
2715 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2716 			      int order)
2717 {
2718 	VM_BUG_ON(mem_cgroup_is_root(memcg));
2719 
2720 	/* The page allocation failed. Revert */
2721 	if (!page) {
2722 		memcg_uncharge_kmem(memcg, 1 << order);
2723 		return;
2724 	}
2725 	page->mem_cgroup = memcg;
2726 }
2727 
2728 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2729 {
2730 	struct mem_cgroup *memcg = page->mem_cgroup;
2731 
2732 	if (!memcg)
2733 		return;
2734 
2735 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2736 
2737 	memcg_uncharge_kmem(memcg, 1 << order);
2738 	page->mem_cgroup = NULL;
2739 }
2740 
2741 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2742 {
2743 	struct mem_cgroup *memcg = NULL;
2744 	struct kmem_cache *cachep;
2745 	struct page *page;
2746 
2747 	page = virt_to_head_page(ptr);
2748 	if (PageSlab(page)) {
2749 		cachep = page->slab_cache;
2750 		if (!is_root_cache(cachep))
2751 			memcg = cachep->memcg_params.memcg;
2752 	} else
2753 		/* page allocated by alloc_kmem_pages */
2754 		memcg = page->mem_cgroup;
2755 
2756 	return memcg;
2757 }
2758 #endif /* CONFIG_MEMCG_KMEM */
2759 
2760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2761 
2762 /*
2763  * Because tail pages are not marked as "used", set it. We're under
2764  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2765  * charge/uncharge will be never happen and move_account() is done under
2766  * compound_lock(), so we don't have to take care of races.
2767  */
2768 void mem_cgroup_split_huge_fixup(struct page *head)
2769 {
2770 	int i;
2771 
2772 	if (mem_cgroup_disabled())
2773 		return;
2774 
2775 	for (i = 1; i < HPAGE_PMD_NR; i++)
2776 		head[i].mem_cgroup = head->mem_cgroup;
2777 
2778 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2779 		       HPAGE_PMD_NR);
2780 }
2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2782 
2783 #ifdef CONFIG_MEMCG_SWAP
2784 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2785 					 bool charge)
2786 {
2787 	int val = (charge) ? 1 : -1;
2788 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2789 }
2790 
2791 /**
2792  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2793  * @entry: swap entry to be moved
2794  * @from:  mem_cgroup which the entry is moved from
2795  * @to:  mem_cgroup which the entry is moved to
2796  *
2797  * It succeeds only when the swap_cgroup's record for this entry is the same
2798  * as the mem_cgroup's id of @from.
2799  *
2800  * Returns 0 on success, -EINVAL on failure.
2801  *
2802  * The caller must have charged to @to, IOW, called page_counter_charge() about
2803  * both res and memsw, and called css_get().
2804  */
2805 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2806 				struct mem_cgroup *from, struct mem_cgroup *to)
2807 {
2808 	unsigned short old_id, new_id;
2809 
2810 	old_id = mem_cgroup_id(from);
2811 	new_id = mem_cgroup_id(to);
2812 
2813 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2814 		mem_cgroup_swap_statistics(from, false);
2815 		mem_cgroup_swap_statistics(to, true);
2816 		return 0;
2817 	}
2818 	return -EINVAL;
2819 }
2820 #else
2821 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2822 				struct mem_cgroup *from, struct mem_cgroup *to)
2823 {
2824 	return -EINVAL;
2825 }
2826 #endif
2827 
2828 static DEFINE_MUTEX(memcg_limit_mutex);
2829 
2830 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2831 				   unsigned long limit)
2832 {
2833 	unsigned long curusage;
2834 	unsigned long oldusage;
2835 	bool enlarge = false;
2836 	int retry_count;
2837 	int ret;
2838 
2839 	/*
2840 	 * For keeping hierarchical_reclaim simple, how long we should retry
2841 	 * is depends on callers. We set our retry-count to be function
2842 	 * of # of children which we should visit in this loop.
2843 	 */
2844 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2845 		      mem_cgroup_count_children(memcg);
2846 
2847 	oldusage = page_counter_read(&memcg->memory);
2848 
2849 	do {
2850 		if (signal_pending(current)) {
2851 			ret = -EINTR;
2852 			break;
2853 		}
2854 
2855 		mutex_lock(&memcg_limit_mutex);
2856 		if (limit > memcg->memsw.limit) {
2857 			mutex_unlock(&memcg_limit_mutex);
2858 			ret = -EINVAL;
2859 			break;
2860 		}
2861 		if (limit > memcg->memory.limit)
2862 			enlarge = true;
2863 		ret = page_counter_limit(&memcg->memory, limit);
2864 		mutex_unlock(&memcg_limit_mutex);
2865 
2866 		if (!ret)
2867 			break;
2868 
2869 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2870 
2871 		curusage = page_counter_read(&memcg->memory);
2872 		/* Usage is reduced ? */
2873 		if (curusage >= oldusage)
2874 			retry_count--;
2875 		else
2876 			oldusage = curusage;
2877 	} while (retry_count);
2878 
2879 	if (!ret && enlarge)
2880 		memcg_oom_recover(memcg);
2881 
2882 	return ret;
2883 }
2884 
2885 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2886 					 unsigned long limit)
2887 {
2888 	unsigned long curusage;
2889 	unsigned long oldusage;
2890 	bool enlarge = false;
2891 	int retry_count;
2892 	int ret;
2893 
2894 	/* see mem_cgroup_resize_res_limit */
2895 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2896 		      mem_cgroup_count_children(memcg);
2897 
2898 	oldusage = page_counter_read(&memcg->memsw);
2899 
2900 	do {
2901 		if (signal_pending(current)) {
2902 			ret = -EINTR;
2903 			break;
2904 		}
2905 
2906 		mutex_lock(&memcg_limit_mutex);
2907 		if (limit < memcg->memory.limit) {
2908 			mutex_unlock(&memcg_limit_mutex);
2909 			ret = -EINVAL;
2910 			break;
2911 		}
2912 		if (limit > memcg->memsw.limit)
2913 			enlarge = true;
2914 		ret = page_counter_limit(&memcg->memsw, limit);
2915 		mutex_unlock(&memcg_limit_mutex);
2916 
2917 		if (!ret)
2918 			break;
2919 
2920 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2921 
2922 		curusage = page_counter_read(&memcg->memsw);
2923 		/* Usage is reduced ? */
2924 		if (curusage >= oldusage)
2925 			retry_count--;
2926 		else
2927 			oldusage = curusage;
2928 	} while (retry_count);
2929 
2930 	if (!ret && enlarge)
2931 		memcg_oom_recover(memcg);
2932 
2933 	return ret;
2934 }
2935 
2936 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2937 					    gfp_t gfp_mask,
2938 					    unsigned long *total_scanned)
2939 {
2940 	unsigned long nr_reclaimed = 0;
2941 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2942 	unsigned long reclaimed;
2943 	int loop = 0;
2944 	struct mem_cgroup_tree_per_zone *mctz;
2945 	unsigned long excess;
2946 	unsigned long nr_scanned;
2947 
2948 	if (order > 0)
2949 		return 0;
2950 
2951 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2952 	/*
2953 	 * This loop can run a while, specially if mem_cgroup's continuously
2954 	 * keep exceeding their soft limit and putting the system under
2955 	 * pressure
2956 	 */
2957 	do {
2958 		if (next_mz)
2959 			mz = next_mz;
2960 		else
2961 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2962 		if (!mz)
2963 			break;
2964 
2965 		nr_scanned = 0;
2966 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2967 						    gfp_mask, &nr_scanned);
2968 		nr_reclaimed += reclaimed;
2969 		*total_scanned += nr_scanned;
2970 		spin_lock_irq(&mctz->lock);
2971 		__mem_cgroup_remove_exceeded(mz, mctz);
2972 
2973 		/*
2974 		 * If we failed to reclaim anything from this memory cgroup
2975 		 * it is time to move on to the next cgroup
2976 		 */
2977 		next_mz = NULL;
2978 		if (!reclaimed)
2979 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2980 
2981 		excess = soft_limit_excess(mz->memcg);
2982 		/*
2983 		 * One school of thought says that we should not add
2984 		 * back the node to the tree if reclaim returns 0.
2985 		 * But our reclaim could return 0, simply because due
2986 		 * to priority we are exposing a smaller subset of
2987 		 * memory to reclaim from. Consider this as a longer
2988 		 * term TODO.
2989 		 */
2990 		/* If excess == 0, no tree ops */
2991 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2992 		spin_unlock_irq(&mctz->lock);
2993 		css_put(&mz->memcg->css);
2994 		loop++;
2995 		/*
2996 		 * Could not reclaim anything and there are no more
2997 		 * mem cgroups to try or we seem to be looping without
2998 		 * reclaiming anything.
2999 		 */
3000 		if (!nr_reclaimed &&
3001 			(next_mz == NULL ||
3002 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3003 			break;
3004 	} while (!nr_reclaimed);
3005 	if (next_mz)
3006 		css_put(&next_mz->memcg->css);
3007 	return nr_reclaimed;
3008 }
3009 
3010 /*
3011  * Test whether @memcg has children, dead or alive.  Note that this
3012  * function doesn't care whether @memcg has use_hierarchy enabled and
3013  * returns %true if there are child csses according to the cgroup
3014  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3015  */
3016 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3017 {
3018 	bool ret;
3019 
3020 	/*
3021 	 * The lock does not prevent addition or deletion of children, but
3022 	 * it prevents a new child from being initialized based on this
3023 	 * parent in css_online(), so it's enough to decide whether
3024 	 * hierarchically inherited attributes can still be changed or not.
3025 	 */
3026 	lockdep_assert_held(&memcg_create_mutex);
3027 
3028 	rcu_read_lock();
3029 	ret = css_next_child(NULL, &memcg->css);
3030 	rcu_read_unlock();
3031 	return ret;
3032 }
3033 
3034 /*
3035  * Reclaims as many pages from the given memcg as possible and moves
3036  * the rest to the parent.
3037  *
3038  * Caller is responsible for holding css reference for memcg.
3039  */
3040 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3041 {
3042 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3043 
3044 	/* we call try-to-free pages for make this cgroup empty */
3045 	lru_add_drain_all();
3046 	/* try to free all pages in this cgroup */
3047 	while (nr_retries && page_counter_read(&memcg->memory)) {
3048 		int progress;
3049 
3050 		if (signal_pending(current))
3051 			return -EINTR;
3052 
3053 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3054 							GFP_KERNEL, true);
3055 		if (!progress) {
3056 			nr_retries--;
3057 			/* maybe some writeback is necessary */
3058 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3059 		}
3060 
3061 	}
3062 
3063 	return 0;
3064 }
3065 
3066 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3067 					    char *buf, size_t nbytes,
3068 					    loff_t off)
3069 {
3070 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3071 
3072 	if (mem_cgroup_is_root(memcg))
3073 		return -EINVAL;
3074 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3075 }
3076 
3077 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3078 				     struct cftype *cft)
3079 {
3080 	return mem_cgroup_from_css(css)->use_hierarchy;
3081 }
3082 
3083 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3084 				      struct cftype *cft, u64 val)
3085 {
3086 	int retval = 0;
3087 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3088 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3089 
3090 	mutex_lock(&memcg_create_mutex);
3091 
3092 	if (memcg->use_hierarchy == val)
3093 		goto out;
3094 
3095 	/*
3096 	 * If parent's use_hierarchy is set, we can't make any modifications
3097 	 * in the child subtrees. If it is unset, then the change can
3098 	 * occur, provided the current cgroup has no children.
3099 	 *
3100 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3101 	 * set if there are no children.
3102 	 */
3103 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3104 				(val == 1 || val == 0)) {
3105 		if (!memcg_has_children(memcg))
3106 			memcg->use_hierarchy = val;
3107 		else
3108 			retval = -EBUSY;
3109 	} else
3110 		retval = -EINVAL;
3111 
3112 out:
3113 	mutex_unlock(&memcg_create_mutex);
3114 
3115 	return retval;
3116 }
3117 
3118 static unsigned long tree_stat(struct mem_cgroup *memcg,
3119 			       enum mem_cgroup_stat_index idx)
3120 {
3121 	struct mem_cgroup *iter;
3122 	long val = 0;
3123 
3124 	/* Per-cpu values can be negative, use a signed accumulator */
3125 	for_each_mem_cgroup_tree(iter, memcg)
3126 		val += mem_cgroup_read_stat(iter, idx);
3127 
3128 	if (val < 0) /* race ? */
3129 		val = 0;
3130 	return val;
3131 }
3132 
3133 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3134 {
3135 	u64 val;
3136 
3137 	if (mem_cgroup_is_root(memcg)) {
3138 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3139 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3140 		if (swap)
3141 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3142 	} else {
3143 		if (!swap)
3144 			val = page_counter_read(&memcg->memory);
3145 		else
3146 			val = page_counter_read(&memcg->memsw);
3147 	}
3148 	return val << PAGE_SHIFT;
3149 }
3150 
3151 enum {
3152 	RES_USAGE,
3153 	RES_LIMIT,
3154 	RES_MAX_USAGE,
3155 	RES_FAILCNT,
3156 	RES_SOFT_LIMIT,
3157 };
3158 
3159 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3160 			       struct cftype *cft)
3161 {
3162 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3163 	struct page_counter *counter;
3164 
3165 	switch (MEMFILE_TYPE(cft->private)) {
3166 	case _MEM:
3167 		counter = &memcg->memory;
3168 		break;
3169 	case _MEMSWAP:
3170 		counter = &memcg->memsw;
3171 		break;
3172 	case _KMEM:
3173 		counter = &memcg->kmem;
3174 		break;
3175 	default:
3176 		BUG();
3177 	}
3178 
3179 	switch (MEMFILE_ATTR(cft->private)) {
3180 	case RES_USAGE:
3181 		if (counter == &memcg->memory)
3182 			return mem_cgroup_usage(memcg, false);
3183 		if (counter == &memcg->memsw)
3184 			return mem_cgroup_usage(memcg, true);
3185 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3186 	case RES_LIMIT:
3187 		return (u64)counter->limit * PAGE_SIZE;
3188 	case RES_MAX_USAGE:
3189 		return (u64)counter->watermark * PAGE_SIZE;
3190 	case RES_FAILCNT:
3191 		return counter->failcnt;
3192 	case RES_SOFT_LIMIT:
3193 		return (u64)memcg->soft_limit * PAGE_SIZE;
3194 	default:
3195 		BUG();
3196 	}
3197 }
3198 
3199 #ifdef CONFIG_MEMCG_KMEM
3200 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3201 			       unsigned long nr_pages)
3202 {
3203 	int err = 0;
3204 	int memcg_id;
3205 
3206 	BUG_ON(memcg->kmemcg_id >= 0);
3207 	BUG_ON(memcg->kmem_acct_activated);
3208 	BUG_ON(memcg->kmem_acct_active);
3209 
3210 	/*
3211 	 * For simplicity, we won't allow this to be disabled.  It also can't
3212 	 * be changed if the cgroup has children already, or if tasks had
3213 	 * already joined.
3214 	 *
3215 	 * If tasks join before we set the limit, a person looking at
3216 	 * kmem.usage_in_bytes will have no way to determine when it took
3217 	 * place, which makes the value quite meaningless.
3218 	 *
3219 	 * After it first became limited, changes in the value of the limit are
3220 	 * of course permitted.
3221 	 */
3222 	mutex_lock(&memcg_create_mutex);
3223 	if (cgroup_has_tasks(memcg->css.cgroup) ||
3224 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3225 		err = -EBUSY;
3226 	mutex_unlock(&memcg_create_mutex);
3227 	if (err)
3228 		goto out;
3229 
3230 	memcg_id = memcg_alloc_cache_id();
3231 	if (memcg_id < 0) {
3232 		err = memcg_id;
3233 		goto out;
3234 	}
3235 
3236 	/*
3237 	 * We couldn't have accounted to this cgroup, because it hasn't got
3238 	 * activated yet, so this should succeed.
3239 	 */
3240 	err = page_counter_limit(&memcg->kmem, nr_pages);
3241 	VM_BUG_ON(err);
3242 
3243 	static_key_slow_inc(&memcg_kmem_enabled_key);
3244 	/*
3245 	 * A memory cgroup is considered kmem-active as soon as it gets
3246 	 * kmemcg_id. Setting the id after enabling static branching will
3247 	 * guarantee no one starts accounting before all call sites are
3248 	 * patched.
3249 	 */
3250 	memcg->kmemcg_id = memcg_id;
3251 	memcg->kmem_acct_activated = true;
3252 	memcg->kmem_acct_active = true;
3253 out:
3254 	return err;
3255 }
3256 
3257 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3258 				   unsigned long limit)
3259 {
3260 	int ret;
3261 
3262 	mutex_lock(&memcg_limit_mutex);
3263 	if (!memcg_kmem_is_active(memcg))
3264 		ret = memcg_activate_kmem(memcg, limit);
3265 	else
3266 		ret = page_counter_limit(&memcg->kmem, limit);
3267 	mutex_unlock(&memcg_limit_mutex);
3268 	return ret;
3269 }
3270 
3271 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3272 {
3273 	int ret = 0;
3274 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3275 
3276 	if (!parent)
3277 		return 0;
3278 
3279 	mutex_lock(&memcg_limit_mutex);
3280 	/*
3281 	 * If the parent cgroup is not kmem-active now, it cannot be activated
3282 	 * after this point, because it has at least one child already.
3283 	 */
3284 	if (memcg_kmem_is_active(parent))
3285 		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3286 	mutex_unlock(&memcg_limit_mutex);
3287 	return ret;
3288 }
3289 #else
3290 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3291 				   unsigned long limit)
3292 {
3293 	return -EINVAL;
3294 }
3295 #endif /* CONFIG_MEMCG_KMEM */
3296 
3297 /*
3298  * The user of this function is...
3299  * RES_LIMIT.
3300  */
3301 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3302 				char *buf, size_t nbytes, loff_t off)
3303 {
3304 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3305 	unsigned long nr_pages;
3306 	int ret;
3307 
3308 	buf = strstrip(buf);
3309 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3310 	if (ret)
3311 		return ret;
3312 
3313 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3314 	case RES_LIMIT:
3315 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3316 			ret = -EINVAL;
3317 			break;
3318 		}
3319 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3320 		case _MEM:
3321 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3322 			break;
3323 		case _MEMSWAP:
3324 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3325 			break;
3326 		case _KMEM:
3327 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3328 			break;
3329 		}
3330 		break;
3331 	case RES_SOFT_LIMIT:
3332 		memcg->soft_limit = nr_pages;
3333 		ret = 0;
3334 		break;
3335 	}
3336 	return ret ?: nbytes;
3337 }
3338 
3339 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3340 				size_t nbytes, loff_t off)
3341 {
3342 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3343 	struct page_counter *counter;
3344 
3345 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3346 	case _MEM:
3347 		counter = &memcg->memory;
3348 		break;
3349 	case _MEMSWAP:
3350 		counter = &memcg->memsw;
3351 		break;
3352 	case _KMEM:
3353 		counter = &memcg->kmem;
3354 		break;
3355 	default:
3356 		BUG();
3357 	}
3358 
3359 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3360 	case RES_MAX_USAGE:
3361 		page_counter_reset_watermark(counter);
3362 		break;
3363 	case RES_FAILCNT:
3364 		counter->failcnt = 0;
3365 		break;
3366 	default:
3367 		BUG();
3368 	}
3369 
3370 	return nbytes;
3371 }
3372 
3373 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3374 					struct cftype *cft)
3375 {
3376 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3377 }
3378 
3379 #ifdef CONFIG_MMU
3380 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3381 					struct cftype *cft, u64 val)
3382 {
3383 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3384 
3385 	if (val & ~MOVE_MASK)
3386 		return -EINVAL;
3387 
3388 	/*
3389 	 * No kind of locking is needed in here, because ->can_attach() will
3390 	 * check this value once in the beginning of the process, and then carry
3391 	 * on with stale data. This means that changes to this value will only
3392 	 * affect task migrations starting after the change.
3393 	 */
3394 	memcg->move_charge_at_immigrate = val;
3395 	return 0;
3396 }
3397 #else
3398 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3399 					struct cftype *cft, u64 val)
3400 {
3401 	return -ENOSYS;
3402 }
3403 #endif
3404 
3405 #ifdef CONFIG_NUMA
3406 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3407 {
3408 	struct numa_stat {
3409 		const char *name;
3410 		unsigned int lru_mask;
3411 	};
3412 
3413 	static const struct numa_stat stats[] = {
3414 		{ "total", LRU_ALL },
3415 		{ "file", LRU_ALL_FILE },
3416 		{ "anon", LRU_ALL_ANON },
3417 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3418 	};
3419 	const struct numa_stat *stat;
3420 	int nid;
3421 	unsigned long nr;
3422 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3423 
3424 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3425 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3426 		seq_printf(m, "%s=%lu", stat->name, nr);
3427 		for_each_node_state(nid, N_MEMORY) {
3428 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3429 							  stat->lru_mask);
3430 			seq_printf(m, " N%d=%lu", nid, nr);
3431 		}
3432 		seq_putc(m, '\n');
3433 	}
3434 
3435 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3436 		struct mem_cgroup *iter;
3437 
3438 		nr = 0;
3439 		for_each_mem_cgroup_tree(iter, memcg)
3440 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3441 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3442 		for_each_node_state(nid, N_MEMORY) {
3443 			nr = 0;
3444 			for_each_mem_cgroup_tree(iter, memcg)
3445 				nr += mem_cgroup_node_nr_lru_pages(
3446 					iter, nid, stat->lru_mask);
3447 			seq_printf(m, " N%d=%lu", nid, nr);
3448 		}
3449 		seq_putc(m, '\n');
3450 	}
3451 
3452 	return 0;
3453 }
3454 #endif /* CONFIG_NUMA */
3455 
3456 static int memcg_stat_show(struct seq_file *m, void *v)
3457 {
3458 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3459 	unsigned long memory, memsw;
3460 	struct mem_cgroup *mi;
3461 	unsigned int i;
3462 
3463 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3464 		     MEM_CGROUP_STAT_NSTATS);
3465 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3466 		     MEM_CGROUP_EVENTS_NSTATS);
3467 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3468 
3469 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3470 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3471 			continue;
3472 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3473 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3474 	}
3475 
3476 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3477 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3478 			   mem_cgroup_read_events(memcg, i));
3479 
3480 	for (i = 0; i < NR_LRU_LISTS; i++)
3481 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3482 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3483 
3484 	/* Hierarchical information */
3485 	memory = memsw = PAGE_COUNTER_MAX;
3486 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3487 		memory = min(memory, mi->memory.limit);
3488 		memsw = min(memsw, mi->memsw.limit);
3489 	}
3490 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3491 		   (u64)memory * PAGE_SIZE);
3492 	if (do_swap_account)
3493 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3494 			   (u64)memsw * PAGE_SIZE);
3495 
3496 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3497 		long long val = 0;
3498 
3499 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3500 			continue;
3501 		for_each_mem_cgroup_tree(mi, memcg)
3502 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3503 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3504 	}
3505 
3506 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3507 		unsigned long long val = 0;
3508 
3509 		for_each_mem_cgroup_tree(mi, memcg)
3510 			val += mem_cgroup_read_events(mi, i);
3511 		seq_printf(m, "total_%s %llu\n",
3512 			   mem_cgroup_events_names[i], val);
3513 	}
3514 
3515 	for (i = 0; i < NR_LRU_LISTS; i++) {
3516 		unsigned long long val = 0;
3517 
3518 		for_each_mem_cgroup_tree(mi, memcg)
3519 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3520 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3521 	}
3522 
3523 #ifdef CONFIG_DEBUG_VM
3524 	{
3525 		int nid, zid;
3526 		struct mem_cgroup_per_zone *mz;
3527 		struct zone_reclaim_stat *rstat;
3528 		unsigned long recent_rotated[2] = {0, 0};
3529 		unsigned long recent_scanned[2] = {0, 0};
3530 
3531 		for_each_online_node(nid)
3532 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3533 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3534 				rstat = &mz->lruvec.reclaim_stat;
3535 
3536 				recent_rotated[0] += rstat->recent_rotated[0];
3537 				recent_rotated[1] += rstat->recent_rotated[1];
3538 				recent_scanned[0] += rstat->recent_scanned[0];
3539 				recent_scanned[1] += rstat->recent_scanned[1];
3540 			}
3541 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3542 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3543 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3544 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3545 	}
3546 #endif
3547 
3548 	return 0;
3549 }
3550 
3551 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3552 				      struct cftype *cft)
3553 {
3554 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3555 
3556 	return mem_cgroup_swappiness(memcg);
3557 }
3558 
3559 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3560 				       struct cftype *cft, u64 val)
3561 {
3562 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3563 
3564 	if (val > 100)
3565 		return -EINVAL;
3566 
3567 	if (css->parent)
3568 		memcg->swappiness = val;
3569 	else
3570 		vm_swappiness = val;
3571 
3572 	return 0;
3573 }
3574 
3575 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3576 {
3577 	struct mem_cgroup_threshold_ary *t;
3578 	unsigned long usage;
3579 	int i;
3580 
3581 	rcu_read_lock();
3582 	if (!swap)
3583 		t = rcu_dereference(memcg->thresholds.primary);
3584 	else
3585 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3586 
3587 	if (!t)
3588 		goto unlock;
3589 
3590 	usage = mem_cgroup_usage(memcg, swap);
3591 
3592 	/*
3593 	 * current_threshold points to threshold just below or equal to usage.
3594 	 * If it's not true, a threshold was crossed after last
3595 	 * call of __mem_cgroup_threshold().
3596 	 */
3597 	i = t->current_threshold;
3598 
3599 	/*
3600 	 * Iterate backward over array of thresholds starting from
3601 	 * current_threshold and check if a threshold is crossed.
3602 	 * If none of thresholds below usage is crossed, we read
3603 	 * only one element of the array here.
3604 	 */
3605 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3606 		eventfd_signal(t->entries[i].eventfd, 1);
3607 
3608 	/* i = current_threshold + 1 */
3609 	i++;
3610 
3611 	/*
3612 	 * Iterate forward over array of thresholds starting from
3613 	 * current_threshold+1 and check if a threshold is crossed.
3614 	 * If none of thresholds above usage is crossed, we read
3615 	 * only one element of the array here.
3616 	 */
3617 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3618 		eventfd_signal(t->entries[i].eventfd, 1);
3619 
3620 	/* Update current_threshold */
3621 	t->current_threshold = i - 1;
3622 unlock:
3623 	rcu_read_unlock();
3624 }
3625 
3626 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3627 {
3628 	while (memcg) {
3629 		__mem_cgroup_threshold(memcg, false);
3630 		if (do_swap_account)
3631 			__mem_cgroup_threshold(memcg, true);
3632 
3633 		memcg = parent_mem_cgroup(memcg);
3634 	}
3635 }
3636 
3637 static int compare_thresholds(const void *a, const void *b)
3638 {
3639 	const struct mem_cgroup_threshold *_a = a;
3640 	const struct mem_cgroup_threshold *_b = b;
3641 
3642 	if (_a->threshold > _b->threshold)
3643 		return 1;
3644 
3645 	if (_a->threshold < _b->threshold)
3646 		return -1;
3647 
3648 	return 0;
3649 }
3650 
3651 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3652 {
3653 	struct mem_cgroup_eventfd_list *ev;
3654 
3655 	spin_lock(&memcg_oom_lock);
3656 
3657 	list_for_each_entry(ev, &memcg->oom_notify, list)
3658 		eventfd_signal(ev->eventfd, 1);
3659 
3660 	spin_unlock(&memcg_oom_lock);
3661 	return 0;
3662 }
3663 
3664 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3665 {
3666 	struct mem_cgroup *iter;
3667 
3668 	for_each_mem_cgroup_tree(iter, memcg)
3669 		mem_cgroup_oom_notify_cb(iter);
3670 }
3671 
3672 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3673 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3674 {
3675 	struct mem_cgroup_thresholds *thresholds;
3676 	struct mem_cgroup_threshold_ary *new;
3677 	unsigned long threshold;
3678 	unsigned long usage;
3679 	int i, size, ret;
3680 
3681 	ret = page_counter_memparse(args, "-1", &threshold);
3682 	if (ret)
3683 		return ret;
3684 
3685 	mutex_lock(&memcg->thresholds_lock);
3686 
3687 	if (type == _MEM) {
3688 		thresholds = &memcg->thresholds;
3689 		usage = mem_cgroup_usage(memcg, false);
3690 	} else if (type == _MEMSWAP) {
3691 		thresholds = &memcg->memsw_thresholds;
3692 		usage = mem_cgroup_usage(memcg, true);
3693 	} else
3694 		BUG();
3695 
3696 	/* Check if a threshold crossed before adding a new one */
3697 	if (thresholds->primary)
3698 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3699 
3700 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3701 
3702 	/* Allocate memory for new array of thresholds */
3703 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3704 			GFP_KERNEL);
3705 	if (!new) {
3706 		ret = -ENOMEM;
3707 		goto unlock;
3708 	}
3709 	new->size = size;
3710 
3711 	/* Copy thresholds (if any) to new array */
3712 	if (thresholds->primary) {
3713 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3714 				sizeof(struct mem_cgroup_threshold));
3715 	}
3716 
3717 	/* Add new threshold */
3718 	new->entries[size - 1].eventfd = eventfd;
3719 	new->entries[size - 1].threshold = threshold;
3720 
3721 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3722 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3723 			compare_thresholds, NULL);
3724 
3725 	/* Find current threshold */
3726 	new->current_threshold = -1;
3727 	for (i = 0; i < size; i++) {
3728 		if (new->entries[i].threshold <= usage) {
3729 			/*
3730 			 * new->current_threshold will not be used until
3731 			 * rcu_assign_pointer(), so it's safe to increment
3732 			 * it here.
3733 			 */
3734 			++new->current_threshold;
3735 		} else
3736 			break;
3737 	}
3738 
3739 	/* Free old spare buffer and save old primary buffer as spare */
3740 	kfree(thresholds->spare);
3741 	thresholds->spare = thresholds->primary;
3742 
3743 	rcu_assign_pointer(thresholds->primary, new);
3744 
3745 	/* To be sure that nobody uses thresholds */
3746 	synchronize_rcu();
3747 
3748 unlock:
3749 	mutex_unlock(&memcg->thresholds_lock);
3750 
3751 	return ret;
3752 }
3753 
3754 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3755 	struct eventfd_ctx *eventfd, const char *args)
3756 {
3757 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3758 }
3759 
3760 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3761 	struct eventfd_ctx *eventfd, const char *args)
3762 {
3763 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3764 }
3765 
3766 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3767 	struct eventfd_ctx *eventfd, enum res_type type)
3768 {
3769 	struct mem_cgroup_thresholds *thresholds;
3770 	struct mem_cgroup_threshold_ary *new;
3771 	unsigned long usage;
3772 	int i, j, size;
3773 
3774 	mutex_lock(&memcg->thresholds_lock);
3775 
3776 	if (type == _MEM) {
3777 		thresholds = &memcg->thresholds;
3778 		usage = mem_cgroup_usage(memcg, false);
3779 	} else if (type == _MEMSWAP) {
3780 		thresholds = &memcg->memsw_thresholds;
3781 		usage = mem_cgroup_usage(memcg, true);
3782 	} else
3783 		BUG();
3784 
3785 	if (!thresholds->primary)
3786 		goto unlock;
3787 
3788 	/* Check if a threshold crossed before removing */
3789 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3790 
3791 	/* Calculate new number of threshold */
3792 	size = 0;
3793 	for (i = 0; i < thresholds->primary->size; i++) {
3794 		if (thresholds->primary->entries[i].eventfd != eventfd)
3795 			size++;
3796 	}
3797 
3798 	new = thresholds->spare;
3799 
3800 	/* Set thresholds array to NULL if we don't have thresholds */
3801 	if (!size) {
3802 		kfree(new);
3803 		new = NULL;
3804 		goto swap_buffers;
3805 	}
3806 
3807 	new->size = size;
3808 
3809 	/* Copy thresholds and find current threshold */
3810 	new->current_threshold = -1;
3811 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3812 		if (thresholds->primary->entries[i].eventfd == eventfd)
3813 			continue;
3814 
3815 		new->entries[j] = thresholds->primary->entries[i];
3816 		if (new->entries[j].threshold <= usage) {
3817 			/*
3818 			 * new->current_threshold will not be used
3819 			 * until rcu_assign_pointer(), so it's safe to increment
3820 			 * it here.
3821 			 */
3822 			++new->current_threshold;
3823 		}
3824 		j++;
3825 	}
3826 
3827 swap_buffers:
3828 	/* Swap primary and spare array */
3829 	thresholds->spare = thresholds->primary;
3830 	/* If all events are unregistered, free the spare array */
3831 	if (!new) {
3832 		kfree(thresholds->spare);
3833 		thresholds->spare = NULL;
3834 	}
3835 
3836 	rcu_assign_pointer(thresholds->primary, new);
3837 
3838 	/* To be sure that nobody uses thresholds */
3839 	synchronize_rcu();
3840 unlock:
3841 	mutex_unlock(&memcg->thresholds_lock);
3842 }
3843 
3844 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3845 	struct eventfd_ctx *eventfd)
3846 {
3847 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3848 }
3849 
3850 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3851 	struct eventfd_ctx *eventfd)
3852 {
3853 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3854 }
3855 
3856 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3857 	struct eventfd_ctx *eventfd, const char *args)
3858 {
3859 	struct mem_cgroup_eventfd_list *event;
3860 
3861 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3862 	if (!event)
3863 		return -ENOMEM;
3864 
3865 	spin_lock(&memcg_oom_lock);
3866 
3867 	event->eventfd = eventfd;
3868 	list_add(&event->list, &memcg->oom_notify);
3869 
3870 	/* already in OOM ? */
3871 	if (memcg->under_oom)
3872 		eventfd_signal(eventfd, 1);
3873 	spin_unlock(&memcg_oom_lock);
3874 
3875 	return 0;
3876 }
3877 
3878 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3879 	struct eventfd_ctx *eventfd)
3880 {
3881 	struct mem_cgroup_eventfd_list *ev, *tmp;
3882 
3883 	spin_lock(&memcg_oom_lock);
3884 
3885 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3886 		if (ev->eventfd == eventfd) {
3887 			list_del(&ev->list);
3888 			kfree(ev);
3889 		}
3890 	}
3891 
3892 	spin_unlock(&memcg_oom_lock);
3893 }
3894 
3895 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3896 {
3897 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3898 
3899 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3900 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3901 	return 0;
3902 }
3903 
3904 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3905 	struct cftype *cft, u64 val)
3906 {
3907 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3908 
3909 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3910 	if (!css->parent || !((val == 0) || (val == 1)))
3911 		return -EINVAL;
3912 
3913 	memcg->oom_kill_disable = val;
3914 	if (!val)
3915 		memcg_oom_recover(memcg);
3916 
3917 	return 0;
3918 }
3919 
3920 #ifdef CONFIG_MEMCG_KMEM
3921 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3922 {
3923 	int ret;
3924 
3925 	ret = memcg_propagate_kmem(memcg);
3926 	if (ret)
3927 		return ret;
3928 
3929 	return mem_cgroup_sockets_init(memcg, ss);
3930 }
3931 
3932 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3933 {
3934 	struct cgroup_subsys_state *css;
3935 	struct mem_cgroup *parent, *child;
3936 	int kmemcg_id;
3937 
3938 	if (!memcg->kmem_acct_active)
3939 		return;
3940 
3941 	/*
3942 	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3943 	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3944 	 * guarantees no cache will be created for this cgroup after we are
3945 	 * done (see memcg_create_kmem_cache()).
3946 	 */
3947 	memcg->kmem_acct_active = false;
3948 
3949 	memcg_deactivate_kmem_caches(memcg);
3950 
3951 	kmemcg_id = memcg->kmemcg_id;
3952 	BUG_ON(kmemcg_id < 0);
3953 
3954 	parent = parent_mem_cgroup(memcg);
3955 	if (!parent)
3956 		parent = root_mem_cgroup;
3957 
3958 	/*
3959 	 * Change kmemcg_id of this cgroup and all its descendants to the
3960 	 * parent's id, and then move all entries from this cgroup's list_lrus
3961 	 * to ones of the parent. After we have finished, all list_lrus
3962 	 * corresponding to this cgroup are guaranteed to remain empty. The
3963 	 * ordering is imposed by list_lru_node->lock taken by
3964 	 * memcg_drain_all_list_lrus().
3965 	 */
3966 	css_for_each_descendant_pre(css, &memcg->css) {
3967 		child = mem_cgroup_from_css(css);
3968 		BUG_ON(child->kmemcg_id != kmemcg_id);
3969 		child->kmemcg_id = parent->kmemcg_id;
3970 		if (!memcg->use_hierarchy)
3971 			break;
3972 	}
3973 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3974 
3975 	memcg_free_cache_id(kmemcg_id);
3976 }
3977 
3978 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3979 {
3980 	if (memcg->kmem_acct_activated) {
3981 		memcg_destroy_kmem_caches(memcg);
3982 		static_key_slow_dec(&memcg_kmem_enabled_key);
3983 		WARN_ON(page_counter_read(&memcg->kmem));
3984 	}
3985 	mem_cgroup_sockets_destroy(memcg);
3986 }
3987 #else
3988 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3989 {
3990 	return 0;
3991 }
3992 
3993 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3994 {
3995 }
3996 
3997 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3998 {
3999 }
4000 #endif
4001 
4002 #ifdef CONFIG_CGROUP_WRITEBACK
4003 
4004 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
4005 {
4006 	return &memcg->cgwb_list;
4007 }
4008 
4009 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4010 {
4011 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4012 }
4013 
4014 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4015 {
4016 	wb_domain_exit(&memcg->cgwb_domain);
4017 }
4018 
4019 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4020 {
4021 	wb_domain_size_changed(&memcg->cgwb_domain);
4022 }
4023 
4024 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4025 {
4026 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4027 
4028 	if (!memcg->css.parent)
4029 		return NULL;
4030 
4031 	return &memcg->cgwb_domain;
4032 }
4033 
4034 /**
4035  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4036  * @wb: bdi_writeback in question
4037  * @pavail: out parameter for number of available pages
4038  * @pdirty: out parameter for number of dirty pages
4039  * @pwriteback: out parameter for number of pages under writeback
4040  *
4041  * Determine the numbers of available, dirty, and writeback pages in @wb's
4042  * memcg.  Dirty and writeback are self-explanatory.  Available is a bit
4043  * more involved.
4044  *
4045  * A memcg's headroom is "min(max, high) - used".  The available memory is
4046  * calculated as the lowest headroom of itself and the ancestors plus the
4047  * number of pages already being used for file pages.  Note that this
4048  * doesn't consider the actual amount of available memory in the system.
4049  * The caller should further cap *@pavail accordingly.
4050  */
4051 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
4052 			 unsigned long *pdirty, unsigned long *pwriteback)
4053 {
4054 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4055 	struct mem_cgroup *parent;
4056 	unsigned long head_room = PAGE_COUNTER_MAX;
4057 	unsigned long file_pages;
4058 
4059 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
4060 
4061 	/* this should eventually include NR_UNSTABLE_NFS */
4062 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
4063 
4064 	file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
4065 						    (1 << LRU_ACTIVE_FILE));
4066 	while ((parent = parent_mem_cgroup(memcg))) {
4067 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
4068 		unsigned long used = page_counter_read(&memcg->memory);
4069 
4070 		head_room = min(head_room, ceiling - min(ceiling, used));
4071 		memcg = parent;
4072 	}
4073 
4074 	*pavail = file_pages + head_room;
4075 }
4076 
4077 #else	/* CONFIG_CGROUP_WRITEBACK */
4078 
4079 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4080 {
4081 	return 0;
4082 }
4083 
4084 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4085 {
4086 }
4087 
4088 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4089 {
4090 }
4091 
4092 #endif	/* CONFIG_CGROUP_WRITEBACK */
4093 
4094 /*
4095  * DO NOT USE IN NEW FILES.
4096  *
4097  * "cgroup.event_control" implementation.
4098  *
4099  * This is way over-engineered.  It tries to support fully configurable
4100  * events for each user.  Such level of flexibility is completely
4101  * unnecessary especially in the light of the planned unified hierarchy.
4102  *
4103  * Please deprecate this and replace with something simpler if at all
4104  * possible.
4105  */
4106 
4107 /*
4108  * Unregister event and free resources.
4109  *
4110  * Gets called from workqueue.
4111  */
4112 static void memcg_event_remove(struct work_struct *work)
4113 {
4114 	struct mem_cgroup_event *event =
4115 		container_of(work, struct mem_cgroup_event, remove);
4116 	struct mem_cgroup *memcg = event->memcg;
4117 
4118 	remove_wait_queue(event->wqh, &event->wait);
4119 
4120 	event->unregister_event(memcg, event->eventfd);
4121 
4122 	/* Notify userspace the event is going away. */
4123 	eventfd_signal(event->eventfd, 1);
4124 
4125 	eventfd_ctx_put(event->eventfd);
4126 	kfree(event);
4127 	css_put(&memcg->css);
4128 }
4129 
4130 /*
4131  * Gets called on POLLHUP on eventfd when user closes it.
4132  *
4133  * Called with wqh->lock held and interrupts disabled.
4134  */
4135 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4136 			    int sync, void *key)
4137 {
4138 	struct mem_cgroup_event *event =
4139 		container_of(wait, struct mem_cgroup_event, wait);
4140 	struct mem_cgroup *memcg = event->memcg;
4141 	unsigned long flags = (unsigned long)key;
4142 
4143 	if (flags & POLLHUP) {
4144 		/*
4145 		 * If the event has been detached at cgroup removal, we
4146 		 * can simply return knowing the other side will cleanup
4147 		 * for us.
4148 		 *
4149 		 * We can't race against event freeing since the other
4150 		 * side will require wqh->lock via remove_wait_queue(),
4151 		 * which we hold.
4152 		 */
4153 		spin_lock(&memcg->event_list_lock);
4154 		if (!list_empty(&event->list)) {
4155 			list_del_init(&event->list);
4156 			/*
4157 			 * We are in atomic context, but cgroup_event_remove()
4158 			 * may sleep, so we have to call it in workqueue.
4159 			 */
4160 			schedule_work(&event->remove);
4161 		}
4162 		spin_unlock(&memcg->event_list_lock);
4163 	}
4164 
4165 	return 0;
4166 }
4167 
4168 static void memcg_event_ptable_queue_proc(struct file *file,
4169 		wait_queue_head_t *wqh, poll_table *pt)
4170 {
4171 	struct mem_cgroup_event *event =
4172 		container_of(pt, struct mem_cgroup_event, pt);
4173 
4174 	event->wqh = wqh;
4175 	add_wait_queue(wqh, &event->wait);
4176 }
4177 
4178 /*
4179  * DO NOT USE IN NEW FILES.
4180  *
4181  * Parse input and register new cgroup event handler.
4182  *
4183  * Input must be in format '<event_fd> <control_fd> <args>'.
4184  * Interpretation of args is defined by control file implementation.
4185  */
4186 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4187 					 char *buf, size_t nbytes, loff_t off)
4188 {
4189 	struct cgroup_subsys_state *css = of_css(of);
4190 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4191 	struct mem_cgroup_event *event;
4192 	struct cgroup_subsys_state *cfile_css;
4193 	unsigned int efd, cfd;
4194 	struct fd efile;
4195 	struct fd cfile;
4196 	const char *name;
4197 	char *endp;
4198 	int ret;
4199 
4200 	buf = strstrip(buf);
4201 
4202 	efd = simple_strtoul(buf, &endp, 10);
4203 	if (*endp != ' ')
4204 		return -EINVAL;
4205 	buf = endp + 1;
4206 
4207 	cfd = simple_strtoul(buf, &endp, 10);
4208 	if ((*endp != ' ') && (*endp != '\0'))
4209 		return -EINVAL;
4210 	buf = endp + 1;
4211 
4212 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4213 	if (!event)
4214 		return -ENOMEM;
4215 
4216 	event->memcg = memcg;
4217 	INIT_LIST_HEAD(&event->list);
4218 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4219 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4220 	INIT_WORK(&event->remove, memcg_event_remove);
4221 
4222 	efile = fdget(efd);
4223 	if (!efile.file) {
4224 		ret = -EBADF;
4225 		goto out_kfree;
4226 	}
4227 
4228 	event->eventfd = eventfd_ctx_fileget(efile.file);
4229 	if (IS_ERR(event->eventfd)) {
4230 		ret = PTR_ERR(event->eventfd);
4231 		goto out_put_efile;
4232 	}
4233 
4234 	cfile = fdget(cfd);
4235 	if (!cfile.file) {
4236 		ret = -EBADF;
4237 		goto out_put_eventfd;
4238 	}
4239 
4240 	/* the process need read permission on control file */
4241 	/* AV: shouldn't we check that it's been opened for read instead? */
4242 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4243 	if (ret < 0)
4244 		goto out_put_cfile;
4245 
4246 	/*
4247 	 * Determine the event callbacks and set them in @event.  This used
4248 	 * to be done via struct cftype but cgroup core no longer knows
4249 	 * about these events.  The following is crude but the whole thing
4250 	 * is for compatibility anyway.
4251 	 *
4252 	 * DO NOT ADD NEW FILES.
4253 	 */
4254 	name = cfile.file->f_path.dentry->d_name.name;
4255 
4256 	if (!strcmp(name, "memory.usage_in_bytes")) {
4257 		event->register_event = mem_cgroup_usage_register_event;
4258 		event->unregister_event = mem_cgroup_usage_unregister_event;
4259 	} else if (!strcmp(name, "memory.oom_control")) {
4260 		event->register_event = mem_cgroup_oom_register_event;
4261 		event->unregister_event = mem_cgroup_oom_unregister_event;
4262 	} else if (!strcmp(name, "memory.pressure_level")) {
4263 		event->register_event = vmpressure_register_event;
4264 		event->unregister_event = vmpressure_unregister_event;
4265 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4266 		event->register_event = memsw_cgroup_usage_register_event;
4267 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4268 	} else {
4269 		ret = -EINVAL;
4270 		goto out_put_cfile;
4271 	}
4272 
4273 	/*
4274 	 * Verify @cfile should belong to @css.  Also, remaining events are
4275 	 * automatically removed on cgroup destruction but the removal is
4276 	 * asynchronous, so take an extra ref on @css.
4277 	 */
4278 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4279 					       &memory_cgrp_subsys);
4280 	ret = -EINVAL;
4281 	if (IS_ERR(cfile_css))
4282 		goto out_put_cfile;
4283 	if (cfile_css != css) {
4284 		css_put(cfile_css);
4285 		goto out_put_cfile;
4286 	}
4287 
4288 	ret = event->register_event(memcg, event->eventfd, buf);
4289 	if (ret)
4290 		goto out_put_css;
4291 
4292 	efile.file->f_op->poll(efile.file, &event->pt);
4293 
4294 	spin_lock(&memcg->event_list_lock);
4295 	list_add(&event->list, &memcg->event_list);
4296 	spin_unlock(&memcg->event_list_lock);
4297 
4298 	fdput(cfile);
4299 	fdput(efile);
4300 
4301 	return nbytes;
4302 
4303 out_put_css:
4304 	css_put(css);
4305 out_put_cfile:
4306 	fdput(cfile);
4307 out_put_eventfd:
4308 	eventfd_ctx_put(event->eventfd);
4309 out_put_efile:
4310 	fdput(efile);
4311 out_kfree:
4312 	kfree(event);
4313 
4314 	return ret;
4315 }
4316 
4317 static struct cftype mem_cgroup_legacy_files[] = {
4318 	{
4319 		.name = "usage_in_bytes",
4320 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4321 		.read_u64 = mem_cgroup_read_u64,
4322 	},
4323 	{
4324 		.name = "max_usage_in_bytes",
4325 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4326 		.write = mem_cgroup_reset,
4327 		.read_u64 = mem_cgroup_read_u64,
4328 	},
4329 	{
4330 		.name = "limit_in_bytes",
4331 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4332 		.write = mem_cgroup_write,
4333 		.read_u64 = mem_cgroup_read_u64,
4334 	},
4335 	{
4336 		.name = "soft_limit_in_bytes",
4337 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4338 		.write = mem_cgroup_write,
4339 		.read_u64 = mem_cgroup_read_u64,
4340 	},
4341 	{
4342 		.name = "failcnt",
4343 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4344 		.write = mem_cgroup_reset,
4345 		.read_u64 = mem_cgroup_read_u64,
4346 	},
4347 	{
4348 		.name = "stat",
4349 		.seq_show = memcg_stat_show,
4350 	},
4351 	{
4352 		.name = "force_empty",
4353 		.write = mem_cgroup_force_empty_write,
4354 	},
4355 	{
4356 		.name = "use_hierarchy",
4357 		.write_u64 = mem_cgroup_hierarchy_write,
4358 		.read_u64 = mem_cgroup_hierarchy_read,
4359 	},
4360 	{
4361 		.name = "cgroup.event_control",		/* XXX: for compat */
4362 		.write = memcg_write_event_control,
4363 		.flags = CFTYPE_NO_PREFIX,
4364 		.mode = S_IWUGO,
4365 	},
4366 	{
4367 		.name = "swappiness",
4368 		.read_u64 = mem_cgroup_swappiness_read,
4369 		.write_u64 = mem_cgroup_swappiness_write,
4370 	},
4371 	{
4372 		.name = "move_charge_at_immigrate",
4373 		.read_u64 = mem_cgroup_move_charge_read,
4374 		.write_u64 = mem_cgroup_move_charge_write,
4375 	},
4376 	{
4377 		.name = "oom_control",
4378 		.seq_show = mem_cgroup_oom_control_read,
4379 		.write_u64 = mem_cgroup_oom_control_write,
4380 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4381 	},
4382 	{
4383 		.name = "pressure_level",
4384 	},
4385 #ifdef CONFIG_NUMA
4386 	{
4387 		.name = "numa_stat",
4388 		.seq_show = memcg_numa_stat_show,
4389 	},
4390 #endif
4391 #ifdef CONFIG_MEMCG_KMEM
4392 	{
4393 		.name = "kmem.limit_in_bytes",
4394 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4395 		.write = mem_cgroup_write,
4396 		.read_u64 = mem_cgroup_read_u64,
4397 	},
4398 	{
4399 		.name = "kmem.usage_in_bytes",
4400 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4401 		.read_u64 = mem_cgroup_read_u64,
4402 	},
4403 	{
4404 		.name = "kmem.failcnt",
4405 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4406 		.write = mem_cgroup_reset,
4407 		.read_u64 = mem_cgroup_read_u64,
4408 	},
4409 	{
4410 		.name = "kmem.max_usage_in_bytes",
4411 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4412 		.write = mem_cgroup_reset,
4413 		.read_u64 = mem_cgroup_read_u64,
4414 	},
4415 #ifdef CONFIG_SLABINFO
4416 	{
4417 		.name = "kmem.slabinfo",
4418 		.seq_start = slab_start,
4419 		.seq_next = slab_next,
4420 		.seq_stop = slab_stop,
4421 		.seq_show = memcg_slab_show,
4422 	},
4423 #endif
4424 #endif
4425 	{ },	/* terminate */
4426 };
4427 
4428 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4429 {
4430 	struct mem_cgroup_per_node *pn;
4431 	struct mem_cgroup_per_zone *mz;
4432 	int zone, tmp = node;
4433 	/*
4434 	 * This routine is called against possible nodes.
4435 	 * But it's BUG to call kmalloc() against offline node.
4436 	 *
4437 	 * TODO: this routine can waste much memory for nodes which will
4438 	 *       never be onlined. It's better to use memory hotplug callback
4439 	 *       function.
4440 	 */
4441 	if (!node_state(node, N_NORMAL_MEMORY))
4442 		tmp = -1;
4443 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4444 	if (!pn)
4445 		return 1;
4446 
4447 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4448 		mz = &pn->zoneinfo[zone];
4449 		lruvec_init(&mz->lruvec);
4450 		mz->usage_in_excess = 0;
4451 		mz->on_tree = false;
4452 		mz->memcg = memcg;
4453 	}
4454 	memcg->nodeinfo[node] = pn;
4455 	return 0;
4456 }
4457 
4458 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4459 {
4460 	kfree(memcg->nodeinfo[node]);
4461 }
4462 
4463 static struct mem_cgroup *mem_cgroup_alloc(void)
4464 {
4465 	struct mem_cgroup *memcg;
4466 	size_t size;
4467 
4468 	size = sizeof(struct mem_cgroup);
4469 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4470 
4471 	memcg = kzalloc(size, GFP_KERNEL);
4472 	if (!memcg)
4473 		return NULL;
4474 
4475 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4476 	if (!memcg->stat)
4477 		goto out_free;
4478 
4479 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4480 		goto out_free_stat;
4481 
4482 	spin_lock_init(&memcg->pcp_counter_lock);
4483 	return memcg;
4484 
4485 out_free_stat:
4486 	free_percpu(memcg->stat);
4487 out_free:
4488 	kfree(memcg);
4489 	return NULL;
4490 }
4491 
4492 /*
4493  * At destroying mem_cgroup, references from swap_cgroup can remain.
4494  * (scanning all at force_empty is too costly...)
4495  *
4496  * Instead of clearing all references at force_empty, we remember
4497  * the number of reference from swap_cgroup and free mem_cgroup when
4498  * it goes down to 0.
4499  *
4500  * Removal of cgroup itself succeeds regardless of refs from swap.
4501  */
4502 
4503 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4504 {
4505 	int node;
4506 
4507 	mem_cgroup_remove_from_trees(memcg);
4508 
4509 	for_each_node(node)
4510 		free_mem_cgroup_per_zone_info(memcg, node);
4511 
4512 	free_percpu(memcg->stat);
4513 	memcg_wb_domain_exit(memcg);
4514 	kfree(memcg);
4515 }
4516 
4517 /*
4518  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4519  */
4520 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4521 {
4522 	if (!memcg->memory.parent)
4523 		return NULL;
4524 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4525 }
4526 EXPORT_SYMBOL(parent_mem_cgroup);
4527 
4528 static struct cgroup_subsys_state * __ref
4529 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4530 {
4531 	struct mem_cgroup *memcg;
4532 	long error = -ENOMEM;
4533 	int node;
4534 
4535 	memcg = mem_cgroup_alloc();
4536 	if (!memcg)
4537 		return ERR_PTR(error);
4538 
4539 	for_each_node(node)
4540 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4541 			goto free_out;
4542 
4543 	/* root ? */
4544 	if (parent_css == NULL) {
4545 		root_mem_cgroup = memcg;
4546 		mem_cgroup_root_css = &memcg->css;
4547 		page_counter_init(&memcg->memory, NULL);
4548 		memcg->high = PAGE_COUNTER_MAX;
4549 		memcg->soft_limit = PAGE_COUNTER_MAX;
4550 		page_counter_init(&memcg->memsw, NULL);
4551 		page_counter_init(&memcg->kmem, NULL);
4552 	}
4553 
4554 	memcg->last_scanned_node = MAX_NUMNODES;
4555 	INIT_LIST_HEAD(&memcg->oom_notify);
4556 	memcg->move_charge_at_immigrate = 0;
4557 	mutex_init(&memcg->thresholds_lock);
4558 	spin_lock_init(&memcg->move_lock);
4559 	vmpressure_init(&memcg->vmpressure);
4560 	INIT_LIST_HEAD(&memcg->event_list);
4561 	spin_lock_init(&memcg->event_list_lock);
4562 #ifdef CONFIG_MEMCG_KMEM
4563 	memcg->kmemcg_id = -1;
4564 #endif
4565 #ifdef CONFIG_CGROUP_WRITEBACK
4566 	INIT_LIST_HEAD(&memcg->cgwb_list);
4567 #endif
4568 	return &memcg->css;
4569 
4570 free_out:
4571 	__mem_cgroup_free(memcg);
4572 	return ERR_PTR(error);
4573 }
4574 
4575 static int
4576 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4577 {
4578 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4579 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4580 	int ret;
4581 
4582 	if (css->id > MEM_CGROUP_ID_MAX)
4583 		return -ENOSPC;
4584 
4585 	if (!parent)
4586 		return 0;
4587 
4588 	mutex_lock(&memcg_create_mutex);
4589 
4590 	memcg->use_hierarchy = parent->use_hierarchy;
4591 	memcg->oom_kill_disable = parent->oom_kill_disable;
4592 	memcg->swappiness = mem_cgroup_swappiness(parent);
4593 
4594 	if (parent->use_hierarchy) {
4595 		page_counter_init(&memcg->memory, &parent->memory);
4596 		memcg->high = PAGE_COUNTER_MAX;
4597 		memcg->soft_limit = PAGE_COUNTER_MAX;
4598 		page_counter_init(&memcg->memsw, &parent->memsw);
4599 		page_counter_init(&memcg->kmem, &parent->kmem);
4600 
4601 		/*
4602 		 * No need to take a reference to the parent because cgroup
4603 		 * core guarantees its existence.
4604 		 */
4605 	} else {
4606 		page_counter_init(&memcg->memory, NULL);
4607 		memcg->high = PAGE_COUNTER_MAX;
4608 		memcg->soft_limit = PAGE_COUNTER_MAX;
4609 		page_counter_init(&memcg->memsw, NULL);
4610 		page_counter_init(&memcg->kmem, NULL);
4611 		/*
4612 		 * Deeper hierachy with use_hierarchy == false doesn't make
4613 		 * much sense so let cgroup subsystem know about this
4614 		 * unfortunate state in our controller.
4615 		 */
4616 		if (parent != root_mem_cgroup)
4617 			memory_cgrp_subsys.broken_hierarchy = true;
4618 	}
4619 	mutex_unlock(&memcg_create_mutex);
4620 
4621 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4622 	if (ret)
4623 		return ret;
4624 
4625 	/*
4626 	 * Make sure the memcg is initialized: mem_cgroup_iter()
4627 	 * orders reading memcg->initialized against its callers
4628 	 * reading the memcg members.
4629 	 */
4630 	smp_store_release(&memcg->initialized, 1);
4631 
4632 	return 0;
4633 }
4634 
4635 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4636 {
4637 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4638 	struct mem_cgroup_event *event, *tmp;
4639 
4640 	/*
4641 	 * Unregister events and notify userspace.
4642 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4643 	 * directory to avoid race between userspace and kernelspace.
4644 	 */
4645 	spin_lock(&memcg->event_list_lock);
4646 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4647 		list_del_init(&event->list);
4648 		schedule_work(&event->remove);
4649 	}
4650 	spin_unlock(&memcg->event_list_lock);
4651 
4652 	vmpressure_cleanup(&memcg->vmpressure);
4653 
4654 	memcg_deactivate_kmem(memcg);
4655 
4656 	wb_memcg_offline(memcg);
4657 }
4658 
4659 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4660 {
4661 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4662 
4663 	memcg_destroy_kmem(memcg);
4664 	__mem_cgroup_free(memcg);
4665 }
4666 
4667 /**
4668  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4669  * @css: the target css
4670  *
4671  * Reset the states of the mem_cgroup associated with @css.  This is
4672  * invoked when the userland requests disabling on the default hierarchy
4673  * but the memcg is pinned through dependency.  The memcg should stop
4674  * applying policies and should revert to the vanilla state as it may be
4675  * made visible again.
4676  *
4677  * The current implementation only resets the essential configurations.
4678  * This needs to be expanded to cover all the visible parts.
4679  */
4680 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4681 {
4682 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4683 
4684 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4685 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4686 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4687 	memcg->low = 0;
4688 	memcg->high = PAGE_COUNTER_MAX;
4689 	memcg->soft_limit = PAGE_COUNTER_MAX;
4690 	memcg_wb_domain_size_changed(memcg);
4691 }
4692 
4693 #ifdef CONFIG_MMU
4694 /* Handlers for move charge at task migration. */
4695 static int mem_cgroup_do_precharge(unsigned long count)
4696 {
4697 	int ret;
4698 
4699 	/* Try a single bulk charge without reclaim first */
4700 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4701 	if (!ret) {
4702 		mc.precharge += count;
4703 		return ret;
4704 	}
4705 	if (ret == -EINTR) {
4706 		cancel_charge(root_mem_cgroup, count);
4707 		return ret;
4708 	}
4709 
4710 	/* Try charges one by one with reclaim */
4711 	while (count--) {
4712 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4713 		/*
4714 		 * In case of failure, any residual charges against
4715 		 * mc.to will be dropped by mem_cgroup_clear_mc()
4716 		 * later on.  However, cancel any charges that are
4717 		 * bypassed to root right away or they'll be lost.
4718 		 */
4719 		if (ret == -EINTR)
4720 			cancel_charge(root_mem_cgroup, 1);
4721 		if (ret)
4722 			return ret;
4723 		mc.precharge++;
4724 		cond_resched();
4725 	}
4726 	return 0;
4727 }
4728 
4729 /**
4730  * get_mctgt_type - get target type of moving charge
4731  * @vma: the vma the pte to be checked belongs
4732  * @addr: the address corresponding to the pte to be checked
4733  * @ptent: the pte to be checked
4734  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4735  *
4736  * Returns
4737  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4738  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4739  *     move charge. if @target is not NULL, the page is stored in target->page
4740  *     with extra refcnt got(Callers should handle it).
4741  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4742  *     target for charge migration. if @target is not NULL, the entry is stored
4743  *     in target->ent.
4744  *
4745  * Called with pte lock held.
4746  */
4747 union mc_target {
4748 	struct page	*page;
4749 	swp_entry_t	ent;
4750 };
4751 
4752 enum mc_target_type {
4753 	MC_TARGET_NONE = 0,
4754 	MC_TARGET_PAGE,
4755 	MC_TARGET_SWAP,
4756 };
4757 
4758 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4759 						unsigned long addr, pte_t ptent)
4760 {
4761 	struct page *page = vm_normal_page(vma, addr, ptent);
4762 
4763 	if (!page || !page_mapped(page))
4764 		return NULL;
4765 	if (PageAnon(page)) {
4766 		if (!(mc.flags & MOVE_ANON))
4767 			return NULL;
4768 	} else {
4769 		if (!(mc.flags & MOVE_FILE))
4770 			return NULL;
4771 	}
4772 	if (!get_page_unless_zero(page))
4773 		return NULL;
4774 
4775 	return page;
4776 }
4777 
4778 #ifdef CONFIG_SWAP
4779 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4780 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4781 {
4782 	struct page *page = NULL;
4783 	swp_entry_t ent = pte_to_swp_entry(ptent);
4784 
4785 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4786 		return NULL;
4787 	/*
4788 	 * Because lookup_swap_cache() updates some statistics counter,
4789 	 * we call find_get_page() with swapper_space directly.
4790 	 */
4791 	page = find_get_page(swap_address_space(ent), ent.val);
4792 	if (do_swap_account)
4793 		entry->val = ent.val;
4794 
4795 	return page;
4796 }
4797 #else
4798 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4799 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4800 {
4801 	return NULL;
4802 }
4803 #endif
4804 
4805 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4806 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4807 {
4808 	struct page *page = NULL;
4809 	struct address_space *mapping;
4810 	pgoff_t pgoff;
4811 
4812 	if (!vma->vm_file) /* anonymous vma */
4813 		return NULL;
4814 	if (!(mc.flags & MOVE_FILE))
4815 		return NULL;
4816 
4817 	mapping = vma->vm_file->f_mapping;
4818 	pgoff = linear_page_index(vma, addr);
4819 
4820 	/* page is moved even if it's not RSS of this task(page-faulted). */
4821 #ifdef CONFIG_SWAP
4822 	/* shmem/tmpfs may report page out on swap: account for that too. */
4823 	if (shmem_mapping(mapping)) {
4824 		page = find_get_entry(mapping, pgoff);
4825 		if (radix_tree_exceptional_entry(page)) {
4826 			swp_entry_t swp = radix_to_swp_entry(page);
4827 			if (do_swap_account)
4828 				*entry = swp;
4829 			page = find_get_page(swap_address_space(swp), swp.val);
4830 		}
4831 	} else
4832 		page = find_get_page(mapping, pgoff);
4833 #else
4834 	page = find_get_page(mapping, pgoff);
4835 #endif
4836 	return page;
4837 }
4838 
4839 /**
4840  * mem_cgroup_move_account - move account of the page
4841  * @page: the page
4842  * @nr_pages: number of regular pages (>1 for huge pages)
4843  * @from: mem_cgroup which the page is moved from.
4844  * @to:	mem_cgroup which the page is moved to. @from != @to.
4845  *
4846  * The caller must confirm following.
4847  * - page is not on LRU (isolate_page() is useful.)
4848  * - compound_lock is held when nr_pages > 1
4849  *
4850  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4851  * from old cgroup.
4852  */
4853 static int mem_cgroup_move_account(struct page *page,
4854 				   unsigned int nr_pages,
4855 				   struct mem_cgroup *from,
4856 				   struct mem_cgroup *to)
4857 {
4858 	unsigned long flags;
4859 	int ret;
4860 	bool anon;
4861 
4862 	VM_BUG_ON(from == to);
4863 	VM_BUG_ON_PAGE(PageLRU(page), page);
4864 	/*
4865 	 * The page is isolated from LRU. So, collapse function
4866 	 * will not handle this page. But page splitting can happen.
4867 	 * Do this check under compound_page_lock(). The caller should
4868 	 * hold it.
4869 	 */
4870 	ret = -EBUSY;
4871 	if (nr_pages > 1 && !PageTransHuge(page))
4872 		goto out;
4873 
4874 	/*
4875 	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4876 	 * of its source page while we change it: page migration takes
4877 	 * both pages off the LRU, but page cache replacement doesn't.
4878 	 */
4879 	if (!trylock_page(page))
4880 		goto out;
4881 
4882 	ret = -EINVAL;
4883 	if (page->mem_cgroup != from)
4884 		goto out_unlock;
4885 
4886 	anon = PageAnon(page);
4887 
4888 	spin_lock_irqsave(&from->move_lock, flags);
4889 
4890 	if (!anon && page_mapped(page)) {
4891 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4892 			       nr_pages);
4893 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4894 			       nr_pages);
4895 	}
4896 
4897 	/*
4898 	 * move_lock grabbed above and caller set from->moving_account, so
4899 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4900 	 * So mapping should be stable for dirty pages.
4901 	 */
4902 	if (!anon && PageDirty(page)) {
4903 		struct address_space *mapping = page_mapping(page);
4904 
4905 		if (mapping_cap_account_dirty(mapping)) {
4906 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4907 				       nr_pages);
4908 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4909 				       nr_pages);
4910 		}
4911 	}
4912 
4913 	if (PageWriteback(page)) {
4914 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4915 			       nr_pages);
4916 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4917 			       nr_pages);
4918 	}
4919 
4920 	/*
4921 	 * It is safe to change page->mem_cgroup here because the page
4922 	 * is referenced, charged, and isolated - we can't race with
4923 	 * uncharging, charging, migration, or LRU putback.
4924 	 */
4925 
4926 	/* caller should have done css_get */
4927 	page->mem_cgroup = to;
4928 	spin_unlock_irqrestore(&from->move_lock, flags);
4929 
4930 	ret = 0;
4931 
4932 	local_irq_disable();
4933 	mem_cgroup_charge_statistics(to, page, nr_pages);
4934 	memcg_check_events(to, page);
4935 	mem_cgroup_charge_statistics(from, page, -nr_pages);
4936 	memcg_check_events(from, page);
4937 	local_irq_enable();
4938 out_unlock:
4939 	unlock_page(page);
4940 out:
4941 	return ret;
4942 }
4943 
4944 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4945 		unsigned long addr, pte_t ptent, union mc_target *target)
4946 {
4947 	struct page *page = NULL;
4948 	enum mc_target_type ret = MC_TARGET_NONE;
4949 	swp_entry_t ent = { .val = 0 };
4950 
4951 	if (pte_present(ptent))
4952 		page = mc_handle_present_pte(vma, addr, ptent);
4953 	else if (is_swap_pte(ptent))
4954 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4955 	else if (pte_none(ptent))
4956 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4957 
4958 	if (!page && !ent.val)
4959 		return ret;
4960 	if (page) {
4961 		/*
4962 		 * Do only loose check w/o serialization.
4963 		 * mem_cgroup_move_account() checks the page is valid or
4964 		 * not under LRU exclusion.
4965 		 */
4966 		if (page->mem_cgroup == mc.from) {
4967 			ret = MC_TARGET_PAGE;
4968 			if (target)
4969 				target->page = page;
4970 		}
4971 		if (!ret || !target)
4972 			put_page(page);
4973 	}
4974 	/* There is a swap entry and a page doesn't exist or isn't charged */
4975 	if (ent.val && !ret &&
4976 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4977 		ret = MC_TARGET_SWAP;
4978 		if (target)
4979 			target->ent = ent;
4980 	}
4981 	return ret;
4982 }
4983 
4984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4985 /*
4986  * We don't consider swapping or file mapped pages because THP does not
4987  * support them for now.
4988  * Caller should make sure that pmd_trans_huge(pmd) is true.
4989  */
4990 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4991 		unsigned long addr, pmd_t pmd, union mc_target *target)
4992 {
4993 	struct page *page = NULL;
4994 	enum mc_target_type ret = MC_TARGET_NONE;
4995 
4996 	page = pmd_page(pmd);
4997 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4998 	if (!(mc.flags & MOVE_ANON))
4999 		return ret;
5000 	if (page->mem_cgroup == mc.from) {
5001 		ret = MC_TARGET_PAGE;
5002 		if (target) {
5003 			get_page(page);
5004 			target->page = page;
5005 		}
5006 	}
5007 	return ret;
5008 }
5009 #else
5010 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5011 		unsigned long addr, pmd_t pmd, union mc_target *target)
5012 {
5013 	return MC_TARGET_NONE;
5014 }
5015 #endif
5016 
5017 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5018 					unsigned long addr, unsigned long end,
5019 					struct mm_walk *walk)
5020 {
5021 	struct vm_area_struct *vma = walk->vma;
5022 	pte_t *pte;
5023 	spinlock_t *ptl;
5024 
5025 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5026 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5027 			mc.precharge += HPAGE_PMD_NR;
5028 		spin_unlock(ptl);
5029 		return 0;
5030 	}
5031 
5032 	if (pmd_trans_unstable(pmd))
5033 		return 0;
5034 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5035 	for (; addr != end; pte++, addr += PAGE_SIZE)
5036 		if (get_mctgt_type(vma, addr, *pte, NULL))
5037 			mc.precharge++;	/* increment precharge temporarily */
5038 	pte_unmap_unlock(pte - 1, ptl);
5039 	cond_resched();
5040 
5041 	return 0;
5042 }
5043 
5044 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5045 {
5046 	unsigned long precharge;
5047 
5048 	struct mm_walk mem_cgroup_count_precharge_walk = {
5049 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5050 		.mm = mm,
5051 	};
5052 	down_read(&mm->mmap_sem);
5053 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
5054 	up_read(&mm->mmap_sem);
5055 
5056 	precharge = mc.precharge;
5057 	mc.precharge = 0;
5058 
5059 	return precharge;
5060 }
5061 
5062 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5063 {
5064 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5065 
5066 	VM_BUG_ON(mc.moving_task);
5067 	mc.moving_task = current;
5068 	return mem_cgroup_do_precharge(precharge);
5069 }
5070 
5071 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5072 static void __mem_cgroup_clear_mc(void)
5073 {
5074 	struct mem_cgroup *from = mc.from;
5075 	struct mem_cgroup *to = mc.to;
5076 
5077 	/* we must uncharge all the leftover precharges from mc.to */
5078 	if (mc.precharge) {
5079 		cancel_charge(mc.to, mc.precharge);
5080 		mc.precharge = 0;
5081 	}
5082 	/*
5083 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5084 	 * we must uncharge here.
5085 	 */
5086 	if (mc.moved_charge) {
5087 		cancel_charge(mc.from, mc.moved_charge);
5088 		mc.moved_charge = 0;
5089 	}
5090 	/* we must fixup refcnts and charges */
5091 	if (mc.moved_swap) {
5092 		/* uncharge swap account from the old cgroup */
5093 		if (!mem_cgroup_is_root(mc.from))
5094 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5095 
5096 		/*
5097 		 * we charged both to->memory and to->memsw, so we
5098 		 * should uncharge to->memory.
5099 		 */
5100 		if (!mem_cgroup_is_root(mc.to))
5101 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5102 
5103 		css_put_many(&mc.from->css, mc.moved_swap);
5104 
5105 		/* we've already done css_get(mc.to) */
5106 		mc.moved_swap = 0;
5107 	}
5108 	memcg_oom_recover(from);
5109 	memcg_oom_recover(to);
5110 	wake_up_all(&mc.waitq);
5111 }
5112 
5113 static void mem_cgroup_clear_mc(void)
5114 {
5115 	/*
5116 	 * we must clear moving_task before waking up waiters at the end of
5117 	 * task migration.
5118 	 */
5119 	mc.moving_task = NULL;
5120 	__mem_cgroup_clear_mc();
5121 	spin_lock(&mc.lock);
5122 	mc.from = NULL;
5123 	mc.to = NULL;
5124 	spin_unlock(&mc.lock);
5125 }
5126 
5127 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5128 				 struct cgroup_taskset *tset)
5129 {
5130 	struct task_struct *p = cgroup_taskset_first(tset);
5131 	int ret = 0;
5132 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5133 	unsigned long move_flags;
5134 
5135 	/*
5136 	 * We are now commited to this value whatever it is. Changes in this
5137 	 * tunable will only affect upcoming migrations, not the current one.
5138 	 * So we need to save it, and keep it going.
5139 	 */
5140 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5141 	if (move_flags) {
5142 		struct mm_struct *mm;
5143 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5144 
5145 		VM_BUG_ON(from == memcg);
5146 
5147 		mm = get_task_mm(p);
5148 		if (!mm)
5149 			return 0;
5150 		/* We move charges only when we move a owner of the mm */
5151 		if (mm->owner == p) {
5152 			VM_BUG_ON(mc.from);
5153 			VM_BUG_ON(mc.to);
5154 			VM_BUG_ON(mc.precharge);
5155 			VM_BUG_ON(mc.moved_charge);
5156 			VM_BUG_ON(mc.moved_swap);
5157 
5158 			spin_lock(&mc.lock);
5159 			mc.from = from;
5160 			mc.to = memcg;
5161 			mc.flags = move_flags;
5162 			spin_unlock(&mc.lock);
5163 			/* We set mc.moving_task later */
5164 
5165 			ret = mem_cgroup_precharge_mc(mm);
5166 			if (ret)
5167 				mem_cgroup_clear_mc();
5168 		}
5169 		mmput(mm);
5170 	}
5171 	return ret;
5172 }
5173 
5174 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5175 				     struct cgroup_taskset *tset)
5176 {
5177 	if (mc.to)
5178 		mem_cgroup_clear_mc();
5179 }
5180 
5181 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5182 				unsigned long addr, unsigned long end,
5183 				struct mm_walk *walk)
5184 {
5185 	int ret = 0;
5186 	struct vm_area_struct *vma = walk->vma;
5187 	pte_t *pte;
5188 	spinlock_t *ptl;
5189 	enum mc_target_type target_type;
5190 	union mc_target target;
5191 	struct page *page;
5192 
5193 	/*
5194 	 * We don't take compound_lock() here but no race with splitting thp
5195 	 * happens because:
5196 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5197 	 *    under splitting, which means there's no concurrent thp split,
5198 	 *  - if another thread runs into split_huge_page() just after we
5199 	 *    entered this if-block, the thread must wait for page table lock
5200 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5201 	 *    part of thp split is not executed yet.
5202 	 */
5203 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5204 		if (mc.precharge < HPAGE_PMD_NR) {
5205 			spin_unlock(ptl);
5206 			return 0;
5207 		}
5208 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5209 		if (target_type == MC_TARGET_PAGE) {
5210 			page = target.page;
5211 			if (!isolate_lru_page(page)) {
5212 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5213 							     mc.from, mc.to)) {
5214 					mc.precharge -= HPAGE_PMD_NR;
5215 					mc.moved_charge += HPAGE_PMD_NR;
5216 				}
5217 				putback_lru_page(page);
5218 			}
5219 			put_page(page);
5220 		}
5221 		spin_unlock(ptl);
5222 		return 0;
5223 	}
5224 
5225 	if (pmd_trans_unstable(pmd))
5226 		return 0;
5227 retry:
5228 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5229 	for (; addr != end; addr += PAGE_SIZE) {
5230 		pte_t ptent = *(pte++);
5231 		swp_entry_t ent;
5232 
5233 		if (!mc.precharge)
5234 			break;
5235 
5236 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5237 		case MC_TARGET_PAGE:
5238 			page = target.page;
5239 			if (isolate_lru_page(page))
5240 				goto put;
5241 			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5242 				mc.precharge--;
5243 				/* we uncharge from mc.from later. */
5244 				mc.moved_charge++;
5245 			}
5246 			putback_lru_page(page);
5247 put:			/* get_mctgt_type() gets the page */
5248 			put_page(page);
5249 			break;
5250 		case MC_TARGET_SWAP:
5251 			ent = target.ent;
5252 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5253 				mc.precharge--;
5254 				/* we fixup refcnts and charges later. */
5255 				mc.moved_swap++;
5256 			}
5257 			break;
5258 		default:
5259 			break;
5260 		}
5261 	}
5262 	pte_unmap_unlock(pte - 1, ptl);
5263 	cond_resched();
5264 
5265 	if (addr != end) {
5266 		/*
5267 		 * We have consumed all precharges we got in can_attach().
5268 		 * We try charge one by one, but don't do any additional
5269 		 * charges to mc.to if we have failed in charge once in attach()
5270 		 * phase.
5271 		 */
5272 		ret = mem_cgroup_do_precharge(1);
5273 		if (!ret)
5274 			goto retry;
5275 	}
5276 
5277 	return ret;
5278 }
5279 
5280 static void mem_cgroup_move_charge(struct mm_struct *mm)
5281 {
5282 	struct mm_walk mem_cgroup_move_charge_walk = {
5283 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5284 		.mm = mm,
5285 	};
5286 
5287 	lru_add_drain_all();
5288 	/*
5289 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5290 	 * move_lock while we're moving its pages to another memcg.
5291 	 * Then wait for already started RCU-only updates to finish.
5292 	 */
5293 	atomic_inc(&mc.from->moving_account);
5294 	synchronize_rcu();
5295 retry:
5296 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5297 		/*
5298 		 * Someone who are holding the mmap_sem might be waiting in
5299 		 * waitq. So we cancel all extra charges, wake up all waiters,
5300 		 * and retry. Because we cancel precharges, we might not be able
5301 		 * to move enough charges, but moving charge is a best-effort
5302 		 * feature anyway, so it wouldn't be a big problem.
5303 		 */
5304 		__mem_cgroup_clear_mc();
5305 		cond_resched();
5306 		goto retry;
5307 	}
5308 	/*
5309 	 * When we have consumed all precharges and failed in doing
5310 	 * additional charge, the page walk just aborts.
5311 	 */
5312 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5313 	up_read(&mm->mmap_sem);
5314 	atomic_dec(&mc.from->moving_account);
5315 }
5316 
5317 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5318 				 struct cgroup_taskset *tset)
5319 {
5320 	struct task_struct *p = cgroup_taskset_first(tset);
5321 	struct mm_struct *mm = get_task_mm(p);
5322 
5323 	if (mm) {
5324 		if (mc.to)
5325 			mem_cgroup_move_charge(mm);
5326 		mmput(mm);
5327 	}
5328 	if (mc.to)
5329 		mem_cgroup_clear_mc();
5330 }
5331 #else	/* !CONFIG_MMU */
5332 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5333 				 struct cgroup_taskset *tset)
5334 {
5335 	return 0;
5336 }
5337 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5338 				     struct cgroup_taskset *tset)
5339 {
5340 }
5341 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5342 				 struct cgroup_taskset *tset)
5343 {
5344 }
5345 #endif
5346 
5347 /*
5348  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5349  * to verify whether we're attached to the default hierarchy on each mount
5350  * attempt.
5351  */
5352 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5353 {
5354 	/*
5355 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5356 	 * guarantees that @root doesn't have any children, so turning it
5357 	 * on for the root memcg is enough.
5358 	 */
5359 	if (cgroup_on_dfl(root_css->cgroup))
5360 		root_mem_cgroup->use_hierarchy = true;
5361 	else
5362 		root_mem_cgroup->use_hierarchy = false;
5363 }
5364 
5365 static u64 memory_current_read(struct cgroup_subsys_state *css,
5366 			       struct cftype *cft)
5367 {
5368 	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5369 }
5370 
5371 static int memory_low_show(struct seq_file *m, void *v)
5372 {
5373 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5374 	unsigned long low = READ_ONCE(memcg->low);
5375 
5376 	if (low == PAGE_COUNTER_MAX)
5377 		seq_puts(m, "max\n");
5378 	else
5379 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5380 
5381 	return 0;
5382 }
5383 
5384 static ssize_t memory_low_write(struct kernfs_open_file *of,
5385 				char *buf, size_t nbytes, loff_t off)
5386 {
5387 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5388 	unsigned long low;
5389 	int err;
5390 
5391 	buf = strstrip(buf);
5392 	err = page_counter_memparse(buf, "max", &low);
5393 	if (err)
5394 		return err;
5395 
5396 	memcg->low = low;
5397 
5398 	return nbytes;
5399 }
5400 
5401 static int memory_high_show(struct seq_file *m, void *v)
5402 {
5403 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5404 	unsigned long high = READ_ONCE(memcg->high);
5405 
5406 	if (high == PAGE_COUNTER_MAX)
5407 		seq_puts(m, "max\n");
5408 	else
5409 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5410 
5411 	return 0;
5412 }
5413 
5414 static ssize_t memory_high_write(struct kernfs_open_file *of,
5415 				 char *buf, size_t nbytes, loff_t off)
5416 {
5417 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5418 	unsigned long high;
5419 	int err;
5420 
5421 	buf = strstrip(buf);
5422 	err = page_counter_memparse(buf, "max", &high);
5423 	if (err)
5424 		return err;
5425 
5426 	memcg->high = high;
5427 
5428 	memcg_wb_domain_size_changed(memcg);
5429 	return nbytes;
5430 }
5431 
5432 static int memory_max_show(struct seq_file *m, void *v)
5433 {
5434 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5435 	unsigned long max = READ_ONCE(memcg->memory.limit);
5436 
5437 	if (max == PAGE_COUNTER_MAX)
5438 		seq_puts(m, "max\n");
5439 	else
5440 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5441 
5442 	return 0;
5443 }
5444 
5445 static ssize_t memory_max_write(struct kernfs_open_file *of,
5446 				char *buf, size_t nbytes, loff_t off)
5447 {
5448 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5449 	unsigned long max;
5450 	int err;
5451 
5452 	buf = strstrip(buf);
5453 	err = page_counter_memparse(buf, "max", &max);
5454 	if (err)
5455 		return err;
5456 
5457 	err = mem_cgroup_resize_limit(memcg, max);
5458 	if (err)
5459 		return err;
5460 
5461 	memcg_wb_domain_size_changed(memcg);
5462 	return nbytes;
5463 }
5464 
5465 static int memory_events_show(struct seq_file *m, void *v)
5466 {
5467 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5468 
5469 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5470 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5471 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5472 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5473 
5474 	return 0;
5475 }
5476 
5477 static struct cftype memory_files[] = {
5478 	{
5479 		.name = "current",
5480 		.read_u64 = memory_current_read,
5481 	},
5482 	{
5483 		.name = "low",
5484 		.flags = CFTYPE_NOT_ON_ROOT,
5485 		.seq_show = memory_low_show,
5486 		.write = memory_low_write,
5487 	},
5488 	{
5489 		.name = "high",
5490 		.flags = CFTYPE_NOT_ON_ROOT,
5491 		.seq_show = memory_high_show,
5492 		.write = memory_high_write,
5493 	},
5494 	{
5495 		.name = "max",
5496 		.flags = CFTYPE_NOT_ON_ROOT,
5497 		.seq_show = memory_max_show,
5498 		.write = memory_max_write,
5499 	},
5500 	{
5501 		.name = "events",
5502 		.flags = CFTYPE_NOT_ON_ROOT,
5503 		.seq_show = memory_events_show,
5504 	},
5505 	{ }	/* terminate */
5506 };
5507 
5508 struct cgroup_subsys memory_cgrp_subsys = {
5509 	.css_alloc = mem_cgroup_css_alloc,
5510 	.css_online = mem_cgroup_css_online,
5511 	.css_offline = mem_cgroup_css_offline,
5512 	.css_free = mem_cgroup_css_free,
5513 	.css_reset = mem_cgroup_css_reset,
5514 	.can_attach = mem_cgroup_can_attach,
5515 	.cancel_attach = mem_cgroup_cancel_attach,
5516 	.attach = mem_cgroup_move_task,
5517 	.bind = mem_cgroup_bind,
5518 	.dfl_cftypes = memory_files,
5519 	.legacy_cftypes = mem_cgroup_legacy_files,
5520 	.early_init = 0,
5521 };
5522 
5523 /**
5524  * mem_cgroup_events - count memory events against a cgroup
5525  * @memcg: the memory cgroup
5526  * @idx: the event index
5527  * @nr: the number of events to account for
5528  */
5529 void mem_cgroup_events(struct mem_cgroup *memcg,
5530 		       enum mem_cgroup_events_index idx,
5531 		       unsigned int nr)
5532 {
5533 	this_cpu_add(memcg->stat->events[idx], nr);
5534 }
5535 
5536 /**
5537  * mem_cgroup_low - check if memory consumption is below the normal range
5538  * @root: the highest ancestor to consider
5539  * @memcg: the memory cgroup to check
5540  *
5541  * Returns %true if memory consumption of @memcg, and that of all
5542  * configurable ancestors up to @root, is below the normal range.
5543  */
5544 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5545 {
5546 	if (mem_cgroup_disabled())
5547 		return false;
5548 
5549 	/*
5550 	 * The toplevel group doesn't have a configurable range, so
5551 	 * it's never low when looked at directly, and it is not
5552 	 * considered an ancestor when assessing the hierarchy.
5553 	 */
5554 
5555 	if (memcg == root_mem_cgroup)
5556 		return false;
5557 
5558 	if (page_counter_read(&memcg->memory) >= memcg->low)
5559 		return false;
5560 
5561 	while (memcg != root) {
5562 		memcg = parent_mem_cgroup(memcg);
5563 
5564 		if (memcg == root_mem_cgroup)
5565 			break;
5566 
5567 		if (page_counter_read(&memcg->memory) >= memcg->low)
5568 			return false;
5569 	}
5570 	return true;
5571 }
5572 
5573 /**
5574  * mem_cgroup_try_charge - try charging a page
5575  * @page: page to charge
5576  * @mm: mm context of the victim
5577  * @gfp_mask: reclaim mode
5578  * @memcgp: charged memcg return
5579  *
5580  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5581  * pages according to @gfp_mask if necessary.
5582  *
5583  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5584  * Otherwise, an error code is returned.
5585  *
5586  * After page->mapping has been set up, the caller must finalize the
5587  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5588  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5589  */
5590 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5591 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5592 {
5593 	struct mem_cgroup *memcg = NULL;
5594 	unsigned int nr_pages = 1;
5595 	int ret = 0;
5596 
5597 	if (mem_cgroup_disabled())
5598 		goto out;
5599 
5600 	if (PageSwapCache(page)) {
5601 		/*
5602 		 * Every swap fault against a single page tries to charge the
5603 		 * page, bail as early as possible.  shmem_unuse() encounters
5604 		 * already charged pages, too.  The USED bit is protected by
5605 		 * the page lock, which serializes swap cache removal, which
5606 		 * in turn serializes uncharging.
5607 		 */
5608 		if (page->mem_cgroup)
5609 			goto out;
5610 	}
5611 
5612 	if (PageTransHuge(page)) {
5613 		nr_pages <<= compound_order(page);
5614 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5615 	}
5616 
5617 	if (do_swap_account && PageSwapCache(page))
5618 		memcg = try_get_mem_cgroup_from_page(page);
5619 	if (!memcg)
5620 		memcg = get_mem_cgroup_from_mm(mm);
5621 
5622 	ret = try_charge(memcg, gfp_mask, nr_pages);
5623 
5624 	css_put(&memcg->css);
5625 
5626 	if (ret == -EINTR) {
5627 		memcg = root_mem_cgroup;
5628 		ret = 0;
5629 	}
5630 out:
5631 	*memcgp = memcg;
5632 	return ret;
5633 }
5634 
5635 /**
5636  * mem_cgroup_commit_charge - commit a page charge
5637  * @page: page to charge
5638  * @memcg: memcg to charge the page to
5639  * @lrucare: page might be on LRU already
5640  *
5641  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5642  * after page->mapping has been set up.  This must happen atomically
5643  * as part of the page instantiation, i.e. under the page table lock
5644  * for anonymous pages, under the page lock for page and swap cache.
5645  *
5646  * In addition, the page must not be on the LRU during the commit, to
5647  * prevent racing with task migration.  If it might be, use @lrucare.
5648  *
5649  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5650  */
5651 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5652 			      bool lrucare)
5653 {
5654 	unsigned int nr_pages = 1;
5655 
5656 	VM_BUG_ON_PAGE(!page->mapping, page);
5657 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5658 
5659 	if (mem_cgroup_disabled())
5660 		return;
5661 	/*
5662 	 * Swap faults will attempt to charge the same page multiple
5663 	 * times.  But reuse_swap_page() might have removed the page
5664 	 * from swapcache already, so we can't check PageSwapCache().
5665 	 */
5666 	if (!memcg)
5667 		return;
5668 
5669 	commit_charge(page, memcg, lrucare);
5670 
5671 	if (PageTransHuge(page)) {
5672 		nr_pages <<= compound_order(page);
5673 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5674 	}
5675 
5676 	local_irq_disable();
5677 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5678 	memcg_check_events(memcg, page);
5679 	local_irq_enable();
5680 
5681 	if (do_swap_account && PageSwapCache(page)) {
5682 		swp_entry_t entry = { .val = page_private(page) };
5683 		/*
5684 		 * The swap entry might not get freed for a long time,
5685 		 * let's not wait for it.  The page already received a
5686 		 * memory+swap charge, drop the swap entry duplicate.
5687 		 */
5688 		mem_cgroup_uncharge_swap(entry);
5689 	}
5690 }
5691 
5692 /**
5693  * mem_cgroup_cancel_charge - cancel a page charge
5694  * @page: page to charge
5695  * @memcg: memcg to charge the page to
5696  *
5697  * Cancel a charge transaction started by mem_cgroup_try_charge().
5698  */
5699 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5700 {
5701 	unsigned int nr_pages = 1;
5702 
5703 	if (mem_cgroup_disabled())
5704 		return;
5705 	/*
5706 	 * Swap faults will attempt to charge the same page multiple
5707 	 * times.  But reuse_swap_page() might have removed the page
5708 	 * from swapcache already, so we can't check PageSwapCache().
5709 	 */
5710 	if (!memcg)
5711 		return;
5712 
5713 	if (PageTransHuge(page)) {
5714 		nr_pages <<= compound_order(page);
5715 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5716 	}
5717 
5718 	cancel_charge(memcg, nr_pages);
5719 }
5720 
5721 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5722 			   unsigned long nr_anon, unsigned long nr_file,
5723 			   unsigned long nr_huge, struct page *dummy_page)
5724 {
5725 	unsigned long nr_pages = nr_anon + nr_file;
5726 	unsigned long flags;
5727 
5728 	if (!mem_cgroup_is_root(memcg)) {
5729 		page_counter_uncharge(&memcg->memory, nr_pages);
5730 		if (do_swap_account)
5731 			page_counter_uncharge(&memcg->memsw, nr_pages);
5732 		memcg_oom_recover(memcg);
5733 	}
5734 
5735 	local_irq_save(flags);
5736 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5737 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5738 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5739 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5740 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5741 	memcg_check_events(memcg, dummy_page);
5742 	local_irq_restore(flags);
5743 
5744 	if (!mem_cgroup_is_root(memcg))
5745 		css_put_many(&memcg->css, nr_pages);
5746 }
5747 
5748 static void uncharge_list(struct list_head *page_list)
5749 {
5750 	struct mem_cgroup *memcg = NULL;
5751 	unsigned long nr_anon = 0;
5752 	unsigned long nr_file = 0;
5753 	unsigned long nr_huge = 0;
5754 	unsigned long pgpgout = 0;
5755 	struct list_head *next;
5756 	struct page *page;
5757 
5758 	next = page_list->next;
5759 	do {
5760 		unsigned int nr_pages = 1;
5761 
5762 		page = list_entry(next, struct page, lru);
5763 		next = page->lru.next;
5764 
5765 		VM_BUG_ON_PAGE(PageLRU(page), page);
5766 		VM_BUG_ON_PAGE(page_count(page), page);
5767 
5768 		if (!page->mem_cgroup)
5769 			continue;
5770 
5771 		/*
5772 		 * Nobody should be changing or seriously looking at
5773 		 * page->mem_cgroup at this point, we have fully
5774 		 * exclusive access to the page.
5775 		 */
5776 
5777 		if (memcg != page->mem_cgroup) {
5778 			if (memcg) {
5779 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5780 					       nr_huge, page);
5781 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5782 			}
5783 			memcg = page->mem_cgroup;
5784 		}
5785 
5786 		if (PageTransHuge(page)) {
5787 			nr_pages <<= compound_order(page);
5788 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5789 			nr_huge += nr_pages;
5790 		}
5791 
5792 		if (PageAnon(page))
5793 			nr_anon += nr_pages;
5794 		else
5795 			nr_file += nr_pages;
5796 
5797 		page->mem_cgroup = NULL;
5798 
5799 		pgpgout++;
5800 	} while (next != page_list);
5801 
5802 	if (memcg)
5803 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5804 			       nr_huge, page);
5805 }
5806 
5807 /**
5808  * mem_cgroup_uncharge - uncharge a page
5809  * @page: page to uncharge
5810  *
5811  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5812  * mem_cgroup_commit_charge().
5813  */
5814 void mem_cgroup_uncharge(struct page *page)
5815 {
5816 	if (mem_cgroup_disabled())
5817 		return;
5818 
5819 	/* Don't touch page->lru of any random page, pre-check: */
5820 	if (!page->mem_cgroup)
5821 		return;
5822 
5823 	INIT_LIST_HEAD(&page->lru);
5824 	uncharge_list(&page->lru);
5825 }
5826 
5827 /**
5828  * mem_cgroup_uncharge_list - uncharge a list of page
5829  * @page_list: list of pages to uncharge
5830  *
5831  * Uncharge a list of pages previously charged with
5832  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5833  */
5834 void mem_cgroup_uncharge_list(struct list_head *page_list)
5835 {
5836 	if (mem_cgroup_disabled())
5837 		return;
5838 
5839 	if (!list_empty(page_list))
5840 		uncharge_list(page_list);
5841 }
5842 
5843 /**
5844  * mem_cgroup_migrate - migrate a charge to another page
5845  * @oldpage: currently charged page
5846  * @newpage: page to transfer the charge to
5847  * @lrucare: either or both pages might be on the LRU already
5848  *
5849  * Migrate the charge from @oldpage to @newpage.
5850  *
5851  * Both pages must be locked, @newpage->mapping must be set up.
5852  */
5853 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5854 			bool lrucare)
5855 {
5856 	struct mem_cgroup *memcg;
5857 	int isolated;
5858 
5859 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5860 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5861 	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5862 	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5863 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5864 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5865 		       newpage);
5866 
5867 	if (mem_cgroup_disabled())
5868 		return;
5869 
5870 	/* Page cache replacement: new page already charged? */
5871 	if (newpage->mem_cgroup)
5872 		return;
5873 
5874 	/*
5875 	 * Swapcache readahead pages can get migrated before being
5876 	 * charged, and migration from compaction can happen to an
5877 	 * uncharged page when the PFN walker finds a page that
5878 	 * reclaim just put back on the LRU but has not released yet.
5879 	 */
5880 	memcg = oldpage->mem_cgroup;
5881 	if (!memcg)
5882 		return;
5883 
5884 	if (lrucare)
5885 		lock_page_lru(oldpage, &isolated);
5886 
5887 	oldpage->mem_cgroup = NULL;
5888 
5889 	if (lrucare)
5890 		unlock_page_lru(oldpage, isolated);
5891 
5892 	commit_charge(newpage, memcg, lrucare);
5893 }
5894 
5895 /*
5896  * subsys_initcall() for memory controller.
5897  *
5898  * Some parts like hotcpu_notifier() have to be initialized from this context
5899  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5900  * everything that doesn't depend on a specific mem_cgroup structure should
5901  * be initialized from here.
5902  */
5903 static int __init mem_cgroup_init(void)
5904 {
5905 	int cpu, node;
5906 
5907 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5908 
5909 	for_each_possible_cpu(cpu)
5910 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5911 			  drain_local_stock);
5912 
5913 	for_each_node(node) {
5914 		struct mem_cgroup_tree_per_node *rtpn;
5915 		int zone;
5916 
5917 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5918 				    node_online(node) ? node : NUMA_NO_NODE);
5919 
5920 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5921 			struct mem_cgroup_tree_per_zone *rtpz;
5922 
5923 			rtpz = &rtpn->rb_tree_per_zone[zone];
5924 			rtpz->rb_root = RB_ROOT;
5925 			spin_lock_init(&rtpz->lock);
5926 		}
5927 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5928 	}
5929 
5930 	return 0;
5931 }
5932 subsys_initcall(mem_cgroup_init);
5933 
5934 #ifdef CONFIG_MEMCG_SWAP
5935 /**
5936  * mem_cgroup_swapout - transfer a memsw charge to swap
5937  * @page: page whose memsw charge to transfer
5938  * @entry: swap entry to move the charge to
5939  *
5940  * Transfer the memsw charge of @page to @entry.
5941  */
5942 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5943 {
5944 	struct mem_cgroup *memcg;
5945 	unsigned short oldid;
5946 
5947 	VM_BUG_ON_PAGE(PageLRU(page), page);
5948 	VM_BUG_ON_PAGE(page_count(page), page);
5949 
5950 	if (!do_swap_account)
5951 		return;
5952 
5953 	memcg = page->mem_cgroup;
5954 
5955 	/* Readahead page, never charged */
5956 	if (!memcg)
5957 		return;
5958 
5959 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5960 	VM_BUG_ON_PAGE(oldid, page);
5961 	mem_cgroup_swap_statistics(memcg, true);
5962 
5963 	page->mem_cgroup = NULL;
5964 
5965 	if (!mem_cgroup_is_root(memcg))
5966 		page_counter_uncharge(&memcg->memory, 1);
5967 
5968 	/* Caller disabled preemption with mapping->tree_lock */
5969 	mem_cgroup_charge_statistics(memcg, page, -1);
5970 	memcg_check_events(memcg, page);
5971 }
5972 
5973 /**
5974  * mem_cgroup_uncharge_swap - uncharge a swap entry
5975  * @entry: swap entry to uncharge
5976  *
5977  * Drop the memsw charge associated with @entry.
5978  */
5979 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5980 {
5981 	struct mem_cgroup *memcg;
5982 	unsigned short id;
5983 
5984 	if (!do_swap_account)
5985 		return;
5986 
5987 	id = swap_cgroup_record(entry, 0);
5988 	rcu_read_lock();
5989 	memcg = mem_cgroup_from_id(id);
5990 	if (memcg) {
5991 		if (!mem_cgroup_is_root(memcg))
5992 			page_counter_uncharge(&memcg->memsw, 1);
5993 		mem_cgroup_swap_statistics(memcg, false);
5994 		css_put(&memcg->css);
5995 	}
5996 	rcu_read_unlock();
5997 }
5998 
5999 /* for remember boot option*/
6000 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6001 static int really_do_swap_account __initdata = 1;
6002 #else
6003 static int really_do_swap_account __initdata;
6004 #endif
6005 
6006 static int __init enable_swap_account(char *s)
6007 {
6008 	if (!strcmp(s, "1"))
6009 		really_do_swap_account = 1;
6010 	else if (!strcmp(s, "0"))
6011 		really_do_swap_account = 0;
6012 	return 1;
6013 }
6014 __setup("swapaccount=", enable_swap_account);
6015 
6016 static struct cftype memsw_cgroup_files[] = {
6017 	{
6018 		.name = "memsw.usage_in_bytes",
6019 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6020 		.read_u64 = mem_cgroup_read_u64,
6021 	},
6022 	{
6023 		.name = "memsw.max_usage_in_bytes",
6024 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6025 		.write = mem_cgroup_reset,
6026 		.read_u64 = mem_cgroup_read_u64,
6027 	},
6028 	{
6029 		.name = "memsw.limit_in_bytes",
6030 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6031 		.write = mem_cgroup_write,
6032 		.read_u64 = mem_cgroup_read_u64,
6033 	},
6034 	{
6035 		.name = "memsw.failcnt",
6036 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6037 		.write = mem_cgroup_reset,
6038 		.read_u64 = mem_cgroup_read_u64,
6039 	},
6040 	{ },	/* terminate */
6041 };
6042 
6043 static int __init mem_cgroup_swap_init(void)
6044 {
6045 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6046 		do_swap_account = 1;
6047 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6048 						  memsw_cgroup_files));
6049 	}
6050 	return 0;
6051 }
6052 subsys_initcall(mem_cgroup_swap_init);
6053 
6054 #endif /* CONFIG_MEMCG_SWAP */
6055