xref: /openbmc/linux/mm/memcontrol.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account		0
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103 
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108 
109 struct mem_cgroup_tree_per_node {
110 	struct rb_root rb_root;
111 	struct rb_node *rb_rightmost;
112 	spinlock_t lock;
113 };
114 
115 struct mem_cgroup_tree {
116 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118 
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120 
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 	struct list_head list;
124 	struct eventfd_ctx *eventfd;
125 };
126 
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131 	/*
132 	 * memcg which the event belongs to.
133 	 */
134 	struct mem_cgroup *memcg;
135 	/*
136 	 * eventfd to signal userspace about the event.
137 	 */
138 	struct eventfd_ctx *eventfd;
139 	/*
140 	 * Each of these stored in a list by the cgroup.
141 	 */
142 	struct list_head list;
143 	/*
144 	 * register_event() callback will be used to add new userspace
145 	 * waiter for changes related to this event.  Use eventfd_signal()
146 	 * on eventfd to send notification to userspace.
147 	 */
148 	int (*register_event)(struct mem_cgroup *memcg,
149 			      struct eventfd_ctx *eventfd, const char *args);
150 	/*
151 	 * unregister_event() callback will be called when userspace closes
152 	 * the eventfd or on cgroup removing.  This callback must be set,
153 	 * if you want provide notification functionality.
154 	 */
155 	void (*unregister_event)(struct mem_cgroup *memcg,
156 				 struct eventfd_ctx *eventfd);
157 	/*
158 	 * All fields below needed to unregister event when
159 	 * userspace closes eventfd.
160 	 */
161 	poll_table pt;
162 	wait_queue_head_t *wqh;
163 	wait_queue_entry_t wait;
164 	struct work_struct remove;
165 };
166 
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169 
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON	0x1U
175 #define MOVE_FILE	0x2U
176 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177 
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 	spinlock_t	  lock; /* for from, to */
181 	struct mm_struct  *mm;
182 	struct mem_cgroup *from;
183 	struct mem_cgroup *to;
184 	unsigned long flags;
185 	unsigned long precharge;
186 	unsigned long moved_charge;
187 	unsigned long moved_swap;
188 	struct task_struct *moving_task;	/* a task moving charges */
189 	wait_queue_head_t waitq;		/* a waitq for other context */
190 } mc = {
191 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194 
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201 
202 enum charge_type {
203 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 	MEM_CGROUP_CHARGE_TYPE_ANON,
205 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
206 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 	NR_CHARGE_TYPE,
208 };
209 
210 /* for encoding cft->private value on file */
211 enum res_type {
212 	_MEM,
213 	_MEMSWAP,
214 	_OOM_TYPE,
215 	_KMEM,
216 	_TCP,
217 };
218 
219 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
220 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val)	((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL		(0)
224 
225 /*
226  * Iteration constructs for visiting all cgroups (under a tree).  If
227  * loops are exited prematurely (break), mem_cgroup_iter_break() must
228  * be used for reference counting.
229  */
230 #define for_each_mem_cgroup_tree(iter, root)		\
231 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(root, iter, NULL))
234 
235 #define for_each_mem_cgroup(iter)			\
236 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
237 	     iter != NULL;				\
238 	     iter = mem_cgroup_iter(NULL, iter, NULL))
239 
240 static inline bool should_force_charge(void)
241 {
242 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 		(current->flags & PF_EXITING);
244 }
245 
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 	if (!memcg)
250 		memcg = root_mem_cgroup;
251 	return &memcg->vmpressure;
252 }
253 
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262  * The main reason for not using cgroup id for this:
263  *  this works better in sparse environments, where we have a lot of memcgs,
264  *  but only a few kmem-limited. Or also, if we have, for instance, 200
265  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
266  *  200 entry array for that.
267  *
268  * The current size of the caches array is stored in memcg_nr_cache_ids. It
269  * will double each time we have to increase it.
270  */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273 
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276 
277 void memcg_get_cache_ids(void)
278 {
279 	down_read(&memcg_cache_ids_sem);
280 }
281 
282 void memcg_put_cache_ids(void)
283 {
284 	up_read(&memcg_cache_ids_sem);
285 }
286 
287 /*
288  * MIN_SIZE is different than 1, because we would like to avoid going through
289  * the alloc/free process all the time. In a small machine, 4 kmem-limited
290  * cgroups is a reasonable guess. In the future, it could be a parameter or
291  * tunable, but that is strictly not necessary.
292  *
293  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294  * this constant directly from cgroup, but it is understandable that this is
295  * better kept as an internal representation in cgroup.c. In any case, the
296  * cgrp_id space is not getting any smaller, and we don't have to necessarily
297  * increase ours as well if it increases.
298  */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301 
302 /*
303  * A lot of the calls to the cache allocation functions are expected to be
304  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305  * conditional to this static branch, we'll have to allow modules that does
306  * kmem_cache_alloc and the such to see this symbol as well
307  */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310 
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313 
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316 
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321 
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 					 int size, int old_size)
324 {
325 	struct memcg_shrinker_map *new, *old;
326 	int nid;
327 
328 	lockdep_assert_held(&memcg_shrinker_map_mutex);
329 
330 	for_each_node(nid) {
331 		old = rcu_dereference_protected(
332 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 		/* Not yet online memcg */
334 		if (!old)
335 			return 0;
336 
337 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 		if (!new)
339 			return -ENOMEM;
340 
341 		/* Set all old bits, clear all new bits */
342 		memset(new->map, (int)0xff, old_size);
343 		memset((void *)new->map + old_size, 0, size - old_size);
344 
345 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 	}
348 
349 	return 0;
350 }
351 
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 	struct mem_cgroup_per_node *pn;
355 	struct memcg_shrinker_map *map;
356 	int nid;
357 
358 	if (mem_cgroup_is_root(memcg))
359 		return;
360 
361 	for_each_node(nid) {
362 		pn = mem_cgroup_nodeinfo(memcg, nid);
363 		map = rcu_dereference_protected(pn->shrinker_map, true);
364 		if (map)
365 			kvfree(map);
366 		rcu_assign_pointer(pn->shrinker_map, NULL);
367 	}
368 }
369 
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 	struct memcg_shrinker_map *map;
373 	int nid, size, ret = 0;
374 
375 	if (mem_cgroup_is_root(memcg))
376 		return 0;
377 
378 	mutex_lock(&memcg_shrinker_map_mutex);
379 	size = memcg_shrinker_map_size;
380 	for_each_node(nid) {
381 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 		if (!map) {
383 			memcg_free_shrinker_maps(memcg);
384 			ret = -ENOMEM;
385 			break;
386 		}
387 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 	}
389 	mutex_unlock(&memcg_shrinker_map_mutex);
390 
391 	return ret;
392 }
393 
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 	int size, old_size, ret = 0;
397 	struct mem_cgroup *memcg;
398 
399 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 	old_size = memcg_shrinker_map_size;
401 	if (size <= old_size)
402 		return 0;
403 
404 	mutex_lock(&memcg_shrinker_map_mutex);
405 	if (!root_mem_cgroup)
406 		goto unlock;
407 
408 	for_each_mem_cgroup(memcg) {
409 		if (mem_cgroup_is_root(memcg))
410 			continue;
411 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 		if (ret) {
413 			mem_cgroup_iter_break(NULL, memcg);
414 			goto unlock;
415 		}
416 	}
417 unlock:
418 	if (!ret)
419 		memcg_shrinker_map_size = size;
420 	mutex_unlock(&memcg_shrinker_map_mutex);
421 	return ret;
422 }
423 
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 		struct memcg_shrinker_map *map;
428 
429 		rcu_read_lock();
430 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 		/* Pairs with smp mb in shrink_slab() */
432 		smp_mb__before_atomic();
433 		set_bit(shrinker_id, map->map);
434 		rcu_read_unlock();
435 	}
436 }
437 
438 /**
439  * mem_cgroup_css_from_page - css of the memcg associated with a page
440  * @page: page of interest
441  *
442  * If memcg is bound to the default hierarchy, css of the memcg associated
443  * with @page is returned.  The returned css remains associated with @page
444  * until it is released.
445  *
446  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447  * is returned.
448  */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 	struct mem_cgroup *memcg;
452 
453 	memcg = page->mem_cgroup;
454 
455 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 		memcg = root_mem_cgroup;
457 
458 	return &memcg->css;
459 }
460 
461 /**
462  * page_cgroup_ino - return inode number of the memcg a page is charged to
463  * @page: the page
464  *
465  * Look up the closest online ancestor of the memory cgroup @page is charged to
466  * and return its inode number or 0 if @page is not charged to any cgroup. It
467  * is safe to call this function without holding a reference to @page.
468  *
469  * Note, this function is inherently racy, because there is nothing to prevent
470  * the cgroup inode from getting torn down and potentially reallocated a moment
471  * after page_cgroup_ino() returns, so it only should be used by callers that
472  * do not care (such as procfs interfaces).
473  */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 	struct mem_cgroup *memcg;
477 	unsigned long ino = 0;
478 
479 	rcu_read_lock();
480 	if (PageSlab(page) && !PageTail(page))
481 		memcg = memcg_from_slab_page(page);
482 	else
483 		memcg = READ_ONCE(page->mem_cgroup);
484 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 		memcg = parent_mem_cgroup(memcg);
486 	if (memcg)
487 		ino = cgroup_ino(memcg->css.cgroup);
488 	rcu_read_unlock();
489 	return ino;
490 }
491 
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 	int nid = page_to_nid(page);
496 
497 	return memcg->nodeinfo[nid];
498 }
499 
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 	return soft_limit_tree.rb_tree_per_node[nid];
504 }
505 
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 	int nid = page_to_nid(page);
510 
511 	return soft_limit_tree.rb_tree_per_node[nid];
512 }
513 
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 					 struct mem_cgroup_tree_per_node *mctz,
516 					 unsigned long new_usage_in_excess)
517 {
518 	struct rb_node **p = &mctz->rb_root.rb_node;
519 	struct rb_node *parent = NULL;
520 	struct mem_cgroup_per_node *mz_node;
521 	bool rightmost = true;
522 
523 	if (mz->on_tree)
524 		return;
525 
526 	mz->usage_in_excess = new_usage_in_excess;
527 	if (!mz->usage_in_excess)
528 		return;
529 	while (*p) {
530 		parent = *p;
531 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 					tree_node);
533 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 			p = &(*p)->rb_left;
535 			rightmost = false;
536 		}
537 
538 		/*
539 		 * We can't avoid mem cgroups that are over their soft
540 		 * limit by the same amount
541 		 */
542 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 			p = &(*p)->rb_right;
544 	}
545 
546 	if (rightmost)
547 		mctz->rb_rightmost = &mz->tree_node;
548 
549 	rb_link_node(&mz->tree_node, parent, p);
550 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 	mz->on_tree = true;
552 }
553 
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 					 struct mem_cgroup_tree_per_node *mctz)
556 {
557 	if (!mz->on_tree)
558 		return;
559 
560 	if (&mz->tree_node == mctz->rb_rightmost)
561 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
562 
563 	rb_erase(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = false;
565 }
566 
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 				       struct mem_cgroup_tree_per_node *mctz)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&mctz->lock, flags);
573 	__mem_cgroup_remove_exceeded(mz, mctz);
574 	spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576 
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 	unsigned long nr_pages = page_counter_read(&memcg->memory);
580 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 	unsigned long excess = 0;
582 
583 	if (nr_pages > soft_limit)
584 		excess = nr_pages - soft_limit;
585 
586 	return excess;
587 }
588 
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 	unsigned long excess;
592 	struct mem_cgroup_per_node *mz;
593 	struct mem_cgroup_tree_per_node *mctz;
594 
595 	mctz = soft_limit_tree_from_page(page);
596 	if (!mctz)
597 		return;
598 	/*
599 	 * Necessary to update all ancestors when hierarchy is used.
600 	 * because their event counter is not touched.
601 	 */
602 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 		mz = mem_cgroup_page_nodeinfo(memcg, page);
604 		excess = soft_limit_excess(memcg);
605 		/*
606 		 * We have to update the tree if mz is on RB-tree or
607 		 * mem is over its softlimit.
608 		 */
609 		if (excess || mz->on_tree) {
610 			unsigned long flags;
611 
612 			spin_lock_irqsave(&mctz->lock, flags);
613 			/* if on-tree, remove it */
614 			if (mz->on_tree)
615 				__mem_cgroup_remove_exceeded(mz, mctz);
616 			/*
617 			 * Insert again. mz->usage_in_excess will be updated.
618 			 * If excess is 0, no tree ops.
619 			 */
620 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621 			spin_unlock_irqrestore(&mctz->lock, flags);
622 		}
623 	}
624 }
625 
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 	struct mem_cgroup_tree_per_node *mctz;
629 	struct mem_cgroup_per_node *mz;
630 	int nid;
631 
632 	for_each_node(nid) {
633 		mz = mem_cgroup_nodeinfo(memcg, nid);
634 		mctz = soft_limit_tree_node(nid);
635 		if (mctz)
636 			mem_cgroup_remove_exceeded(mz, mctz);
637 	}
638 }
639 
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 	struct mem_cgroup_per_node *mz;
644 
645 retry:
646 	mz = NULL;
647 	if (!mctz->rb_rightmost)
648 		goto done;		/* Nothing to reclaim from */
649 
650 	mz = rb_entry(mctz->rb_rightmost,
651 		      struct mem_cgroup_per_node, tree_node);
652 	/*
653 	 * Remove the node now but someone else can add it back,
654 	 * we will to add it back at the end of reclaim to its correct
655 	 * position in the tree.
656 	 */
657 	__mem_cgroup_remove_exceeded(mz, mctz);
658 	if (!soft_limit_excess(mz->memcg) ||
659 	    !css_tryget(&mz->memcg->css))
660 		goto retry;
661 done:
662 	return mz;
663 }
664 
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 	struct mem_cgroup_per_node *mz;
669 
670 	spin_lock_irq(&mctz->lock);
671 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 	spin_unlock_irq(&mctz->lock);
673 	return mz;
674 }
675 
676 /**
677  * __mod_memcg_state - update cgroup memory statistics
678  * @memcg: the memory cgroup
679  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680  * @val: delta to add to the counter, can be negative
681  */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 	long x;
685 
686 	if (mem_cgroup_disabled())
687 		return;
688 
689 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 		struct mem_cgroup *mi;
692 
693 		/*
694 		 * Batch local counters to keep them in sync with
695 		 * the hierarchical ones.
696 		 */
697 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 			atomic_long_add(x, &mi->vmstats[idx]);
700 		x = 0;
701 	}
702 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704 
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 	struct mem_cgroup *parent;
709 
710 	parent = parent_mem_cgroup(pn->memcg);
711 	if (!parent)
712 		return NULL;
713 	return mem_cgroup_nodeinfo(parent, nid);
714 }
715 
716 /**
717  * __mod_lruvec_state - update lruvec memory statistics
718  * @lruvec: the lruvec
719  * @idx: the stat item
720  * @val: delta to add to the counter, can be negative
721  *
722  * The lruvec is the intersection of the NUMA node and a cgroup. This
723  * function updates the all three counters that are affected by a
724  * change of state at this level: per-node, per-cgroup, per-lruvec.
725  */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 			int val)
728 {
729 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 	struct mem_cgroup_per_node *pn;
731 	struct mem_cgroup *memcg;
732 	long x;
733 
734 	/* Update node */
735 	__mod_node_page_state(pgdat, idx, val);
736 
737 	if (mem_cgroup_disabled())
738 		return;
739 
740 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 	memcg = pn->memcg;
742 
743 	/* Update memcg */
744 	__mod_memcg_state(memcg, idx, val);
745 
746 	/* Update lruvec */
747 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748 
749 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 		struct mem_cgroup_per_node *pi;
752 
753 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 		x = 0;
756 	}
757 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759 
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 	struct mem_cgroup *memcg;
764 	struct lruvec *lruvec;
765 
766 	rcu_read_lock();
767 	memcg = mem_cgroup_from_obj(p);
768 
769 	/* Untracked pages have no memcg, no lruvec. Update only the node */
770 	if (!memcg || memcg == root_mem_cgroup) {
771 		__mod_node_page_state(pgdat, idx, val);
772 	} else {
773 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 		__mod_lruvec_state(lruvec, idx, val);
775 	}
776 	rcu_read_unlock();
777 }
778 
779 void mod_memcg_obj_state(void *p, int idx, int val)
780 {
781 	struct mem_cgroup *memcg;
782 
783 	rcu_read_lock();
784 	memcg = mem_cgroup_from_obj(p);
785 	if (memcg)
786 		mod_memcg_state(memcg, idx, val);
787 	rcu_read_unlock();
788 }
789 
790 /**
791  * __count_memcg_events - account VM events in a cgroup
792  * @memcg: the memory cgroup
793  * @idx: the event item
794  * @count: the number of events that occured
795  */
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 			  unsigned long count)
798 {
799 	unsigned long x;
800 
801 	if (mem_cgroup_disabled())
802 		return;
803 
804 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 		struct mem_cgroup *mi;
807 
808 		/*
809 		 * Batch local counters to keep them in sync with
810 		 * the hierarchical ones.
811 		 */
812 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
813 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 			atomic_long_add(x, &mi->vmevents[idx]);
815 		x = 0;
816 	}
817 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818 }
819 
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 	return atomic_long_read(&memcg->vmevents[event]);
823 }
824 
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 	long x = 0;
828 	int cpu;
829 
830 	for_each_possible_cpu(cpu)
831 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 	return x;
833 }
834 
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 					 struct page *page,
837 					 bool compound, int nr_pages)
838 {
839 	/*
840 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 	 * counted as CACHE even if it's on ANON LRU.
842 	 */
843 	if (PageAnon(page))
844 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
845 	else {
846 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847 		if (PageSwapBacked(page))
848 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
849 	}
850 
851 	if (compound) {
852 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
854 	}
855 
856 	/* pagein of a big page is an event. So, ignore page size */
857 	if (nr_pages > 0)
858 		__count_memcg_events(memcg, PGPGIN, 1);
859 	else {
860 		__count_memcg_events(memcg, PGPGOUT, 1);
861 		nr_pages = -nr_pages; /* for event */
862 	}
863 
864 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
865 }
866 
867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 				       enum mem_cgroup_events_target target)
869 {
870 	unsigned long val, next;
871 
872 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874 	/* from time_after() in jiffies.h */
875 	if ((long)(next - val) < 0) {
876 		switch (target) {
877 		case MEM_CGROUP_TARGET_THRESH:
878 			next = val + THRESHOLDS_EVENTS_TARGET;
879 			break;
880 		case MEM_CGROUP_TARGET_SOFTLIMIT:
881 			next = val + SOFTLIMIT_EVENTS_TARGET;
882 			break;
883 		default:
884 			break;
885 		}
886 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887 		return true;
888 	}
889 	return false;
890 }
891 
892 /*
893  * Check events in order.
894  *
895  */
896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 {
898 	/* threshold event is triggered in finer grain than soft limit */
899 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 						MEM_CGROUP_TARGET_THRESH))) {
901 		bool do_softlimit;
902 
903 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 						MEM_CGROUP_TARGET_SOFTLIMIT);
905 		mem_cgroup_threshold(memcg);
906 		if (unlikely(do_softlimit))
907 			mem_cgroup_update_tree(memcg, page);
908 	}
909 }
910 
911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912 {
913 	/*
914 	 * mm_update_next_owner() may clear mm->owner to NULL
915 	 * if it races with swapoff, page migration, etc.
916 	 * So this can be called with p == NULL.
917 	 */
918 	if (unlikely(!p))
919 		return NULL;
920 
921 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
922 }
923 EXPORT_SYMBOL(mem_cgroup_from_task);
924 
925 /**
926  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927  * @mm: mm from which memcg should be extracted. It can be NULL.
928  *
929  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931  * returned.
932  */
933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
934 {
935 	struct mem_cgroup *memcg;
936 
937 	if (mem_cgroup_disabled())
938 		return NULL;
939 
940 	rcu_read_lock();
941 	do {
942 		/*
943 		 * Page cache insertions can happen withou an
944 		 * actual mm context, e.g. during disk probing
945 		 * on boot, loopback IO, acct() writes etc.
946 		 */
947 		if (unlikely(!mm))
948 			memcg = root_mem_cgroup;
949 		else {
950 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 			if (unlikely(!memcg))
952 				memcg = root_mem_cgroup;
953 		}
954 	} while (!css_tryget(&memcg->css));
955 	rcu_read_unlock();
956 	return memcg;
957 }
958 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959 
960 /**
961  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962  * @page: page from which memcg should be extracted.
963  *
964  * Obtain a reference on page->memcg and returns it if successful. Otherwise
965  * root_mem_cgroup is returned.
966  */
967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968 {
969 	struct mem_cgroup *memcg = page->mem_cgroup;
970 
971 	if (mem_cgroup_disabled())
972 		return NULL;
973 
974 	rcu_read_lock();
975 	/* Page should not get uncharged and freed memcg under us. */
976 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
977 		memcg = root_mem_cgroup;
978 	rcu_read_unlock();
979 	return memcg;
980 }
981 EXPORT_SYMBOL(get_mem_cgroup_from_page);
982 
983 /**
984  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985  */
986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987 {
988 	if (unlikely(current->active_memcg)) {
989 		struct mem_cgroup *memcg;
990 
991 		rcu_read_lock();
992 		/* current->active_memcg must hold a ref. */
993 		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 			memcg = root_mem_cgroup;
995 		else
996 			memcg = current->active_memcg;
997 		rcu_read_unlock();
998 		return memcg;
999 	}
1000 	return get_mem_cgroup_from_mm(current->mm);
1001 }
1002 
1003 /**
1004  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005  * @root: hierarchy root
1006  * @prev: previously returned memcg, NULL on first invocation
1007  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1008  *
1009  * Returns references to children of the hierarchy below @root, or
1010  * @root itself, or %NULL after a full round-trip.
1011  *
1012  * Caller must pass the return value in @prev on subsequent
1013  * invocations for reference counting, or use mem_cgroup_iter_break()
1014  * to cancel a hierarchy walk before the round-trip is complete.
1015  *
1016  * Reclaimers can specify a node and a priority level in @reclaim to
1017  * divide up the memcgs in the hierarchy among all concurrent
1018  * reclaimers operating on the same node and priority.
1019  */
1020 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1021 				   struct mem_cgroup *prev,
1022 				   struct mem_cgroup_reclaim_cookie *reclaim)
1023 {
1024 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1025 	struct cgroup_subsys_state *css = NULL;
1026 	struct mem_cgroup *memcg = NULL;
1027 	struct mem_cgroup *pos = NULL;
1028 
1029 	if (mem_cgroup_disabled())
1030 		return NULL;
1031 
1032 	if (!root)
1033 		root = root_mem_cgroup;
1034 
1035 	if (prev && !reclaim)
1036 		pos = prev;
1037 
1038 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 		if (prev)
1040 			goto out;
1041 		return root;
1042 	}
1043 
1044 	rcu_read_lock();
1045 
1046 	if (reclaim) {
1047 		struct mem_cgroup_per_node *mz;
1048 
1049 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1050 		iter = &mz->iter;
1051 
1052 		if (prev && reclaim->generation != iter->generation)
1053 			goto out_unlock;
1054 
1055 		while (1) {
1056 			pos = READ_ONCE(iter->position);
1057 			if (!pos || css_tryget(&pos->css))
1058 				break;
1059 			/*
1060 			 * css reference reached zero, so iter->position will
1061 			 * be cleared by ->css_released. However, we should not
1062 			 * rely on this happening soon, because ->css_released
1063 			 * is called from a work queue, and by busy-waiting we
1064 			 * might block it. So we clear iter->position right
1065 			 * away.
1066 			 */
1067 			(void)cmpxchg(&iter->position, pos, NULL);
1068 		}
1069 	}
1070 
1071 	if (pos)
1072 		css = &pos->css;
1073 
1074 	for (;;) {
1075 		css = css_next_descendant_pre(css, &root->css);
1076 		if (!css) {
1077 			/*
1078 			 * Reclaimers share the hierarchy walk, and a
1079 			 * new one might jump in right at the end of
1080 			 * the hierarchy - make sure they see at least
1081 			 * one group and restart from the beginning.
1082 			 */
1083 			if (!prev)
1084 				continue;
1085 			break;
1086 		}
1087 
1088 		/*
1089 		 * Verify the css and acquire a reference.  The root
1090 		 * is provided by the caller, so we know it's alive
1091 		 * and kicking, and don't take an extra reference.
1092 		 */
1093 		memcg = mem_cgroup_from_css(css);
1094 
1095 		if (css == &root->css)
1096 			break;
1097 
1098 		if (css_tryget(css))
1099 			break;
1100 
1101 		memcg = NULL;
1102 	}
1103 
1104 	if (reclaim) {
1105 		/*
1106 		 * The position could have already been updated by a competing
1107 		 * thread, so check that the value hasn't changed since we read
1108 		 * it to avoid reclaiming from the same cgroup twice.
1109 		 */
1110 		(void)cmpxchg(&iter->position, pos, memcg);
1111 
1112 		if (pos)
1113 			css_put(&pos->css);
1114 
1115 		if (!memcg)
1116 			iter->generation++;
1117 		else if (!prev)
1118 			reclaim->generation = iter->generation;
1119 	}
1120 
1121 out_unlock:
1122 	rcu_read_unlock();
1123 out:
1124 	if (prev && prev != root)
1125 		css_put(&prev->css);
1126 
1127 	return memcg;
1128 }
1129 
1130 /**
1131  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132  * @root: hierarchy root
1133  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134  */
1135 void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 			   struct mem_cgroup *prev)
1137 {
1138 	if (!root)
1139 		root = root_mem_cgroup;
1140 	if (prev && prev != root)
1141 		css_put(&prev->css);
1142 }
1143 
1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 					struct mem_cgroup *dead_memcg)
1146 {
1147 	struct mem_cgroup_reclaim_iter *iter;
1148 	struct mem_cgroup_per_node *mz;
1149 	int nid;
1150 
1151 	for_each_node(nid) {
1152 		mz = mem_cgroup_nodeinfo(from, nid);
1153 		iter = &mz->iter;
1154 		cmpxchg(&iter->position, dead_memcg, NULL);
1155 	}
1156 }
1157 
1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159 {
1160 	struct mem_cgroup *memcg = dead_memcg;
1161 	struct mem_cgroup *last;
1162 
1163 	do {
1164 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1165 		last = memcg;
1166 	} while ((memcg = parent_mem_cgroup(memcg)));
1167 
1168 	/*
1169 	 * When cgruop1 non-hierarchy mode is used,
1170 	 * parent_mem_cgroup() does not walk all the way up to the
1171 	 * cgroup root (root_mem_cgroup). So we have to handle
1172 	 * dead_memcg from cgroup root separately.
1173 	 */
1174 	if (last != root_mem_cgroup)
1175 		__invalidate_reclaim_iterators(root_mem_cgroup,
1176 						dead_memcg);
1177 }
1178 
1179 /**
1180  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181  * @memcg: hierarchy root
1182  * @fn: function to call for each task
1183  * @arg: argument passed to @fn
1184  *
1185  * This function iterates over tasks attached to @memcg or to any of its
1186  * descendants and calls @fn for each task. If @fn returns a non-zero
1187  * value, the function breaks the iteration loop and returns the value.
1188  * Otherwise, it will iterate over all tasks and return 0.
1189  *
1190  * This function must not be called for the root memory cgroup.
1191  */
1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 			  int (*fn)(struct task_struct *, void *), void *arg)
1194 {
1195 	struct mem_cgroup *iter;
1196 	int ret = 0;
1197 
1198 	BUG_ON(memcg == root_mem_cgroup);
1199 
1200 	for_each_mem_cgroup_tree(iter, memcg) {
1201 		struct css_task_iter it;
1202 		struct task_struct *task;
1203 
1204 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1205 		while (!ret && (task = css_task_iter_next(&it)))
1206 			ret = fn(task, arg);
1207 		css_task_iter_end(&it);
1208 		if (ret) {
1209 			mem_cgroup_iter_break(memcg, iter);
1210 			break;
1211 		}
1212 	}
1213 	return ret;
1214 }
1215 
1216 /**
1217  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1218  * @page: the page
1219  * @pgdat: pgdat of the page
1220  *
1221  * This function is only safe when following the LRU page isolation
1222  * and putback protocol: the LRU lock must be held, and the page must
1223  * either be PageLRU() or the caller must have isolated/allocated it.
1224  */
1225 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1226 {
1227 	struct mem_cgroup_per_node *mz;
1228 	struct mem_cgroup *memcg;
1229 	struct lruvec *lruvec;
1230 
1231 	if (mem_cgroup_disabled()) {
1232 		lruvec = &pgdat->__lruvec;
1233 		goto out;
1234 	}
1235 
1236 	memcg = page->mem_cgroup;
1237 	/*
1238 	 * Swapcache readahead pages are added to the LRU - and
1239 	 * possibly migrated - before they are charged.
1240 	 */
1241 	if (!memcg)
1242 		memcg = root_mem_cgroup;
1243 
1244 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1245 	lruvec = &mz->lruvec;
1246 out:
1247 	/*
1248 	 * Since a node can be onlined after the mem_cgroup was created,
1249 	 * we have to be prepared to initialize lruvec->zone here;
1250 	 * and if offlined then reonlined, we need to reinitialize it.
1251 	 */
1252 	if (unlikely(lruvec->pgdat != pgdat))
1253 		lruvec->pgdat = pgdat;
1254 	return lruvec;
1255 }
1256 
1257 /**
1258  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259  * @lruvec: mem_cgroup per zone lru vector
1260  * @lru: index of lru list the page is sitting on
1261  * @zid: zone id of the accounted pages
1262  * @nr_pages: positive when adding or negative when removing
1263  *
1264  * This function must be called under lru_lock, just before a page is added
1265  * to or just after a page is removed from an lru list (that ordering being
1266  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1267  */
1268 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1269 				int zid, int nr_pages)
1270 {
1271 	struct mem_cgroup_per_node *mz;
1272 	unsigned long *lru_size;
1273 	long size;
1274 
1275 	if (mem_cgroup_disabled())
1276 		return;
1277 
1278 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1279 	lru_size = &mz->lru_zone_size[zid][lru];
1280 
1281 	if (nr_pages < 0)
1282 		*lru_size += nr_pages;
1283 
1284 	size = *lru_size;
1285 	if (WARN_ONCE(size < 0,
1286 		"%s(%p, %d, %d): lru_size %ld\n",
1287 		__func__, lruvec, lru, nr_pages, size)) {
1288 		VM_BUG_ON(1);
1289 		*lru_size = 0;
1290 	}
1291 
1292 	if (nr_pages > 0)
1293 		*lru_size += nr_pages;
1294 }
1295 
1296 /**
1297  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1298  * @memcg: the memory cgroup
1299  *
1300  * Returns the maximum amount of memory @mem can be charged with, in
1301  * pages.
1302  */
1303 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1304 {
1305 	unsigned long margin = 0;
1306 	unsigned long count;
1307 	unsigned long limit;
1308 
1309 	count = page_counter_read(&memcg->memory);
1310 	limit = READ_ONCE(memcg->memory.max);
1311 	if (count < limit)
1312 		margin = limit - count;
1313 
1314 	if (do_memsw_account()) {
1315 		count = page_counter_read(&memcg->memsw);
1316 		limit = READ_ONCE(memcg->memsw.max);
1317 		if (count <= limit)
1318 			margin = min(margin, limit - count);
1319 		else
1320 			margin = 0;
1321 	}
1322 
1323 	return margin;
1324 }
1325 
1326 /*
1327  * A routine for checking "mem" is under move_account() or not.
1328  *
1329  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330  * moving cgroups. This is for waiting at high-memory pressure
1331  * caused by "move".
1332  */
1333 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334 {
1335 	struct mem_cgroup *from;
1336 	struct mem_cgroup *to;
1337 	bool ret = false;
1338 	/*
1339 	 * Unlike task_move routines, we access mc.to, mc.from not under
1340 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 	 */
1342 	spin_lock(&mc.lock);
1343 	from = mc.from;
1344 	to = mc.to;
1345 	if (!from)
1346 		goto unlock;
1347 
1348 	ret = mem_cgroup_is_descendant(from, memcg) ||
1349 		mem_cgroup_is_descendant(to, memcg);
1350 unlock:
1351 	spin_unlock(&mc.lock);
1352 	return ret;
1353 }
1354 
1355 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 {
1357 	if (mc.moving_task && current != mc.moving_task) {
1358 		if (mem_cgroup_under_move(memcg)) {
1359 			DEFINE_WAIT(wait);
1360 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 			/* moving charge context might have finished. */
1362 			if (mc.moving_task)
1363 				schedule();
1364 			finish_wait(&mc.waitq, &wait);
1365 			return true;
1366 		}
1367 	}
1368 	return false;
1369 }
1370 
1371 static char *memory_stat_format(struct mem_cgroup *memcg)
1372 {
1373 	struct seq_buf s;
1374 	int i;
1375 
1376 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 	if (!s.buffer)
1378 		return NULL;
1379 
1380 	/*
1381 	 * Provide statistics on the state of the memory subsystem as
1382 	 * well as cumulative event counters that show past behavior.
1383 	 *
1384 	 * This list is ordered following a combination of these gradients:
1385 	 * 1) generic big picture -> specifics and details
1386 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1387 	 *
1388 	 * Current memory state:
1389 	 */
1390 
1391 	seq_buf_printf(&s, "anon %llu\n",
1392 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 		       PAGE_SIZE);
1394 	seq_buf_printf(&s, "file %llu\n",
1395 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 		       PAGE_SIZE);
1397 	seq_buf_printf(&s, "kernel_stack %llu\n",
1398 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 		       1024);
1400 	seq_buf_printf(&s, "slab %llu\n",
1401 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 		       PAGE_SIZE);
1404 	seq_buf_printf(&s, "sock %llu\n",
1405 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 		       PAGE_SIZE);
1407 
1408 	seq_buf_printf(&s, "shmem %llu\n",
1409 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 		       PAGE_SIZE);
1411 	seq_buf_printf(&s, "file_mapped %llu\n",
1412 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 		       PAGE_SIZE);
1414 	seq_buf_printf(&s, "file_dirty %llu\n",
1415 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 		       PAGE_SIZE);
1417 	seq_buf_printf(&s, "file_writeback %llu\n",
1418 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 		       PAGE_SIZE);
1420 
1421 	/*
1422 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 	 * arse because it requires migrating the work out of rmap to a place
1425 	 * where the page->mem_cgroup is set up and stable.
1426 	 */
1427 	seq_buf_printf(&s, "anon_thp %llu\n",
1428 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 		       PAGE_SIZE);
1430 
1431 	for (i = 0; i < NR_LRU_LISTS; i++)
1432 		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1433 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 			       PAGE_SIZE);
1435 
1436 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 		       PAGE_SIZE);
1439 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 		       PAGE_SIZE);
1442 
1443 	/* Accumulated memory events */
1444 
1445 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 		       memcg_events(memcg, PGFAULT));
1447 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 		       memcg_events(memcg, PGMAJFAULT));
1449 
1450 	seq_buf_printf(&s, "workingset_refault %lu\n",
1451 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 	seq_buf_printf(&s, "workingset_activate %lu\n",
1453 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1455 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1456 
1457 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1458 		       memcg_events(memcg, PGREFILL));
1459 	seq_buf_printf(&s, "pgscan %lu\n",
1460 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1461 		       memcg_events(memcg, PGSCAN_DIRECT));
1462 	seq_buf_printf(&s, "pgsteal %lu\n",
1463 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1464 		       memcg_events(memcg, PGSTEAL_DIRECT));
1465 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1466 		       memcg_events(memcg, PGACTIVATE));
1467 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1468 		       memcg_events(memcg, PGDEACTIVATE));
1469 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1470 		       memcg_events(memcg, PGLAZYFREE));
1471 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1472 		       memcg_events(memcg, PGLAZYFREED));
1473 
1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1475 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1476 		       memcg_events(memcg, THP_FAULT_ALLOC));
1477 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1478 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1480 
1481 	/* The above should easily fit into one page */
1482 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1483 
1484 	return s.buffer;
1485 }
1486 
1487 #define K(x) ((x) << (PAGE_SHIFT-10))
1488 /**
1489  * mem_cgroup_print_oom_context: Print OOM information relevant to
1490  * memory controller.
1491  * @memcg: The memory cgroup that went over limit
1492  * @p: Task that is going to be killed
1493  *
1494  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1495  * enabled
1496  */
1497 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1498 {
1499 	rcu_read_lock();
1500 
1501 	if (memcg) {
1502 		pr_cont(",oom_memcg=");
1503 		pr_cont_cgroup_path(memcg->css.cgroup);
1504 	} else
1505 		pr_cont(",global_oom");
1506 	if (p) {
1507 		pr_cont(",task_memcg=");
1508 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1509 	}
1510 	rcu_read_unlock();
1511 }
1512 
1513 /**
1514  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1515  * memory controller.
1516  * @memcg: The memory cgroup that went over limit
1517  */
1518 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1519 {
1520 	char *buf;
1521 
1522 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1523 		K((u64)page_counter_read(&memcg->memory)),
1524 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1525 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1526 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 			K((u64)page_counter_read(&memcg->swap)),
1528 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1529 	else {
1530 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 			K((u64)page_counter_read(&memcg->memsw)),
1532 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1533 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1534 			K((u64)page_counter_read(&memcg->kmem)),
1535 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1536 	}
1537 
1538 	pr_info("Memory cgroup stats for ");
1539 	pr_cont_cgroup_path(memcg->css.cgroup);
1540 	pr_cont(":");
1541 	buf = memory_stat_format(memcg);
1542 	if (!buf)
1543 		return;
1544 	pr_info("%s", buf);
1545 	kfree(buf);
1546 }
1547 
1548 /*
1549  * Return the memory (and swap, if configured) limit for a memcg.
1550  */
1551 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1552 {
1553 	unsigned long max;
1554 
1555 	max = READ_ONCE(memcg->memory.max);
1556 	if (mem_cgroup_swappiness(memcg)) {
1557 		unsigned long memsw_max;
1558 		unsigned long swap_max;
1559 
1560 		memsw_max = memcg->memsw.max;
1561 		swap_max = READ_ONCE(memcg->swap.max);
1562 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1563 		max = min(max + swap_max, memsw_max);
1564 	}
1565 	return max;
1566 }
1567 
1568 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1569 {
1570 	return page_counter_read(&memcg->memory);
1571 }
1572 
1573 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1574 				     int order)
1575 {
1576 	struct oom_control oc = {
1577 		.zonelist = NULL,
1578 		.nodemask = NULL,
1579 		.memcg = memcg,
1580 		.gfp_mask = gfp_mask,
1581 		.order = order,
1582 	};
1583 	bool ret;
1584 
1585 	if (mutex_lock_killable(&oom_lock))
1586 		return true;
1587 	/*
1588 	 * A few threads which were not waiting at mutex_lock_killable() can
1589 	 * fail to bail out. Therefore, check again after holding oom_lock.
1590 	 */
1591 	ret = should_force_charge() || out_of_memory(&oc);
1592 	mutex_unlock(&oom_lock);
1593 	return ret;
1594 }
1595 
1596 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1597 				   pg_data_t *pgdat,
1598 				   gfp_t gfp_mask,
1599 				   unsigned long *total_scanned)
1600 {
1601 	struct mem_cgroup *victim = NULL;
1602 	int total = 0;
1603 	int loop = 0;
1604 	unsigned long excess;
1605 	unsigned long nr_scanned;
1606 	struct mem_cgroup_reclaim_cookie reclaim = {
1607 		.pgdat = pgdat,
1608 	};
1609 
1610 	excess = soft_limit_excess(root_memcg);
1611 
1612 	while (1) {
1613 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1614 		if (!victim) {
1615 			loop++;
1616 			if (loop >= 2) {
1617 				/*
1618 				 * If we have not been able to reclaim
1619 				 * anything, it might because there are
1620 				 * no reclaimable pages under this hierarchy
1621 				 */
1622 				if (!total)
1623 					break;
1624 				/*
1625 				 * We want to do more targeted reclaim.
1626 				 * excess >> 2 is not to excessive so as to
1627 				 * reclaim too much, nor too less that we keep
1628 				 * coming back to reclaim from this cgroup
1629 				 */
1630 				if (total >= (excess >> 2) ||
1631 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1632 					break;
1633 			}
1634 			continue;
1635 		}
1636 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1637 					pgdat, &nr_scanned);
1638 		*total_scanned += nr_scanned;
1639 		if (!soft_limit_excess(root_memcg))
1640 			break;
1641 	}
1642 	mem_cgroup_iter_break(root_memcg, victim);
1643 	return total;
1644 }
1645 
1646 #ifdef CONFIG_LOCKDEP
1647 static struct lockdep_map memcg_oom_lock_dep_map = {
1648 	.name = "memcg_oom_lock",
1649 };
1650 #endif
1651 
1652 static DEFINE_SPINLOCK(memcg_oom_lock);
1653 
1654 /*
1655  * Check OOM-Killer is already running under our hierarchy.
1656  * If someone is running, return false.
1657  */
1658 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1659 {
1660 	struct mem_cgroup *iter, *failed = NULL;
1661 
1662 	spin_lock(&memcg_oom_lock);
1663 
1664 	for_each_mem_cgroup_tree(iter, memcg) {
1665 		if (iter->oom_lock) {
1666 			/*
1667 			 * this subtree of our hierarchy is already locked
1668 			 * so we cannot give a lock.
1669 			 */
1670 			failed = iter;
1671 			mem_cgroup_iter_break(memcg, iter);
1672 			break;
1673 		} else
1674 			iter->oom_lock = true;
1675 	}
1676 
1677 	if (failed) {
1678 		/*
1679 		 * OK, we failed to lock the whole subtree so we have
1680 		 * to clean up what we set up to the failing subtree
1681 		 */
1682 		for_each_mem_cgroup_tree(iter, memcg) {
1683 			if (iter == failed) {
1684 				mem_cgroup_iter_break(memcg, iter);
1685 				break;
1686 			}
1687 			iter->oom_lock = false;
1688 		}
1689 	} else
1690 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1691 
1692 	spin_unlock(&memcg_oom_lock);
1693 
1694 	return !failed;
1695 }
1696 
1697 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1698 {
1699 	struct mem_cgroup *iter;
1700 
1701 	spin_lock(&memcg_oom_lock);
1702 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1703 	for_each_mem_cgroup_tree(iter, memcg)
1704 		iter->oom_lock = false;
1705 	spin_unlock(&memcg_oom_lock);
1706 }
1707 
1708 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1709 {
1710 	struct mem_cgroup *iter;
1711 
1712 	spin_lock(&memcg_oom_lock);
1713 	for_each_mem_cgroup_tree(iter, memcg)
1714 		iter->under_oom++;
1715 	spin_unlock(&memcg_oom_lock);
1716 }
1717 
1718 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1719 {
1720 	struct mem_cgroup *iter;
1721 
1722 	/*
1723 	 * When a new child is created while the hierarchy is under oom,
1724 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1725 	 */
1726 	spin_lock(&memcg_oom_lock);
1727 	for_each_mem_cgroup_tree(iter, memcg)
1728 		if (iter->under_oom > 0)
1729 			iter->under_oom--;
1730 	spin_unlock(&memcg_oom_lock);
1731 }
1732 
1733 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1734 
1735 struct oom_wait_info {
1736 	struct mem_cgroup *memcg;
1737 	wait_queue_entry_t	wait;
1738 };
1739 
1740 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1741 	unsigned mode, int sync, void *arg)
1742 {
1743 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1744 	struct mem_cgroup *oom_wait_memcg;
1745 	struct oom_wait_info *oom_wait_info;
1746 
1747 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1748 	oom_wait_memcg = oom_wait_info->memcg;
1749 
1750 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1751 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1752 		return 0;
1753 	return autoremove_wake_function(wait, mode, sync, arg);
1754 }
1755 
1756 static void memcg_oom_recover(struct mem_cgroup *memcg)
1757 {
1758 	/*
1759 	 * For the following lockless ->under_oom test, the only required
1760 	 * guarantee is that it must see the state asserted by an OOM when
1761 	 * this function is called as a result of userland actions
1762 	 * triggered by the notification of the OOM.  This is trivially
1763 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1764 	 * triggering notification.
1765 	 */
1766 	if (memcg && memcg->under_oom)
1767 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1768 }
1769 
1770 enum oom_status {
1771 	OOM_SUCCESS,
1772 	OOM_FAILED,
1773 	OOM_ASYNC,
1774 	OOM_SKIPPED
1775 };
1776 
1777 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1778 {
1779 	enum oom_status ret;
1780 	bool locked;
1781 
1782 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1783 		return OOM_SKIPPED;
1784 
1785 	memcg_memory_event(memcg, MEMCG_OOM);
1786 
1787 	/*
1788 	 * We are in the middle of the charge context here, so we
1789 	 * don't want to block when potentially sitting on a callstack
1790 	 * that holds all kinds of filesystem and mm locks.
1791 	 *
1792 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1793 	 * handling until the charge can succeed; remember the context and put
1794 	 * the task to sleep at the end of the page fault when all locks are
1795 	 * released.
1796 	 *
1797 	 * On the other hand, in-kernel OOM killer allows for an async victim
1798 	 * memory reclaim (oom_reaper) and that means that we are not solely
1799 	 * relying on the oom victim to make a forward progress and we can
1800 	 * invoke the oom killer here.
1801 	 *
1802 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1803 	 * victim and then we have to bail out from the charge path.
1804 	 */
1805 	if (memcg->oom_kill_disable) {
1806 		if (!current->in_user_fault)
1807 			return OOM_SKIPPED;
1808 		css_get(&memcg->css);
1809 		current->memcg_in_oom = memcg;
1810 		current->memcg_oom_gfp_mask = mask;
1811 		current->memcg_oom_order = order;
1812 
1813 		return OOM_ASYNC;
1814 	}
1815 
1816 	mem_cgroup_mark_under_oom(memcg);
1817 
1818 	locked = mem_cgroup_oom_trylock(memcg);
1819 
1820 	if (locked)
1821 		mem_cgroup_oom_notify(memcg);
1822 
1823 	mem_cgroup_unmark_under_oom(memcg);
1824 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1825 		ret = OOM_SUCCESS;
1826 	else
1827 		ret = OOM_FAILED;
1828 
1829 	if (locked)
1830 		mem_cgroup_oom_unlock(memcg);
1831 
1832 	return ret;
1833 }
1834 
1835 /**
1836  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1837  * @handle: actually kill/wait or just clean up the OOM state
1838  *
1839  * This has to be called at the end of a page fault if the memcg OOM
1840  * handler was enabled.
1841  *
1842  * Memcg supports userspace OOM handling where failed allocations must
1843  * sleep on a waitqueue until the userspace task resolves the
1844  * situation.  Sleeping directly in the charge context with all kinds
1845  * of locks held is not a good idea, instead we remember an OOM state
1846  * in the task and mem_cgroup_oom_synchronize() has to be called at
1847  * the end of the page fault to complete the OOM handling.
1848  *
1849  * Returns %true if an ongoing memcg OOM situation was detected and
1850  * completed, %false otherwise.
1851  */
1852 bool mem_cgroup_oom_synchronize(bool handle)
1853 {
1854 	struct mem_cgroup *memcg = current->memcg_in_oom;
1855 	struct oom_wait_info owait;
1856 	bool locked;
1857 
1858 	/* OOM is global, do not handle */
1859 	if (!memcg)
1860 		return false;
1861 
1862 	if (!handle)
1863 		goto cleanup;
1864 
1865 	owait.memcg = memcg;
1866 	owait.wait.flags = 0;
1867 	owait.wait.func = memcg_oom_wake_function;
1868 	owait.wait.private = current;
1869 	INIT_LIST_HEAD(&owait.wait.entry);
1870 
1871 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1872 	mem_cgroup_mark_under_oom(memcg);
1873 
1874 	locked = mem_cgroup_oom_trylock(memcg);
1875 
1876 	if (locked)
1877 		mem_cgroup_oom_notify(memcg);
1878 
1879 	if (locked && !memcg->oom_kill_disable) {
1880 		mem_cgroup_unmark_under_oom(memcg);
1881 		finish_wait(&memcg_oom_waitq, &owait.wait);
1882 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1883 					 current->memcg_oom_order);
1884 	} else {
1885 		schedule();
1886 		mem_cgroup_unmark_under_oom(memcg);
1887 		finish_wait(&memcg_oom_waitq, &owait.wait);
1888 	}
1889 
1890 	if (locked) {
1891 		mem_cgroup_oom_unlock(memcg);
1892 		/*
1893 		 * There is no guarantee that an OOM-lock contender
1894 		 * sees the wakeups triggered by the OOM kill
1895 		 * uncharges.  Wake any sleepers explicitely.
1896 		 */
1897 		memcg_oom_recover(memcg);
1898 	}
1899 cleanup:
1900 	current->memcg_in_oom = NULL;
1901 	css_put(&memcg->css);
1902 	return true;
1903 }
1904 
1905 /**
1906  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1907  * @victim: task to be killed by the OOM killer
1908  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1909  *
1910  * Returns a pointer to a memory cgroup, which has to be cleaned up
1911  * by killing all belonging OOM-killable tasks.
1912  *
1913  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1914  */
1915 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1916 					    struct mem_cgroup *oom_domain)
1917 {
1918 	struct mem_cgroup *oom_group = NULL;
1919 	struct mem_cgroup *memcg;
1920 
1921 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1922 		return NULL;
1923 
1924 	if (!oom_domain)
1925 		oom_domain = root_mem_cgroup;
1926 
1927 	rcu_read_lock();
1928 
1929 	memcg = mem_cgroup_from_task(victim);
1930 	if (memcg == root_mem_cgroup)
1931 		goto out;
1932 
1933 	/*
1934 	 * If the victim task has been asynchronously moved to a different
1935 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1936 	 * In this case it's better to ignore memory.group.oom.
1937 	 */
1938 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1939 		goto out;
1940 
1941 	/*
1942 	 * Traverse the memory cgroup hierarchy from the victim task's
1943 	 * cgroup up to the OOMing cgroup (or root) to find the
1944 	 * highest-level memory cgroup with oom.group set.
1945 	 */
1946 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1947 		if (memcg->oom_group)
1948 			oom_group = memcg;
1949 
1950 		if (memcg == oom_domain)
1951 			break;
1952 	}
1953 
1954 	if (oom_group)
1955 		css_get(&oom_group->css);
1956 out:
1957 	rcu_read_unlock();
1958 
1959 	return oom_group;
1960 }
1961 
1962 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1963 {
1964 	pr_info("Tasks in ");
1965 	pr_cont_cgroup_path(memcg->css.cgroup);
1966 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1967 }
1968 
1969 /**
1970  * lock_page_memcg - lock a page->mem_cgroup binding
1971  * @page: the page
1972  *
1973  * This function protects unlocked LRU pages from being moved to
1974  * another cgroup.
1975  *
1976  * It ensures lifetime of the returned memcg. Caller is responsible
1977  * for the lifetime of the page; __unlock_page_memcg() is available
1978  * when @page might get freed inside the locked section.
1979  */
1980 struct mem_cgroup *lock_page_memcg(struct page *page)
1981 {
1982 	struct mem_cgroup *memcg;
1983 	unsigned long flags;
1984 
1985 	/*
1986 	 * The RCU lock is held throughout the transaction.  The fast
1987 	 * path can get away without acquiring the memcg->move_lock
1988 	 * because page moving starts with an RCU grace period.
1989 	 *
1990 	 * The RCU lock also protects the memcg from being freed when
1991 	 * the page state that is going to change is the only thing
1992 	 * preventing the page itself from being freed. E.g. writeback
1993 	 * doesn't hold a page reference and relies on PG_writeback to
1994 	 * keep off truncation, migration and so forth.
1995          */
1996 	rcu_read_lock();
1997 
1998 	if (mem_cgroup_disabled())
1999 		return NULL;
2000 again:
2001 	memcg = page->mem_cgroup;
2002 	if (unlikely(!memcg))
2003 		return NULL;
2004 
2005 	if (atomic_read(&memcg->moving_account) <= 0)
2006 		return memcg;
2007 
2008 	spin_lock_irqsave(&memcg->move_lock, flags);
2009 	if (memcg != page->mem_cgroup) {
2010 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2011 		goto again;
2012 	}
2013 
2014 	/*
2015 	 * When charge migration first begins, we can have locked and
2016 	 * unlocked page stat updates happening concurrently.  Track
2017 	 * the task who has the lock for unlock_page_memcg().
2018 	 */
2019 	memcg->move_lock_task = current;
2020 	memcg->move_lock_flags = flags;
2021 
2022 	return memcg;
2023 }
2024 EXPORT_SYMBOL(lock_page_memcg);
2025 
2026 /**
2027  * __unlock_page_memcg - unlock and unpin a memcg
2028  * @memcg: the memcg
2029  *
2030  * Unlock and unpin a memcg returned by lock_page_memcg().
2031  */
2032 void __unlock_page_memcg(struct mem_cgroup *memcg)
2033 {
2034 	if (memcg && memcg->move_lock_task == current) {
2035 		unsigned long flags = memcg->move_lock_flags;
2036 
2037 		memcg->move_lock_task = NULL;
2038 		memcg->move_lock_flags = 0;
2039 
2040 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2041 	}
2042 
2043 	rcu_read_unlock();
2044 }
2045 
2046 /**
2047  * unlock_page_memcg - unlock a page->mem_cgroup binding
2048  * @page: the page
2049  */
2050 void unlock_page_memcg(struct page *page)
2051 {
2052 	__unlock_page_memcg(page->mem_cgroup);
2053 }
2054 EXPORT_SYMBOL(unlock_page_memcg);
2055 
2056 struct memcg_stock_pcp {
2057 	struct mem_cgroup *cached; /* this never be root cgroup */
2058 	unsigned int nr_pages;
2059 	struct work_struct work;
2060 	unsigned long flags;
2061 #define FLUSHING_CACHED_CHARGE	0
2062 };
2063 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2064 static DEFINE_MUTEX(percpu_charge_mutex);
2065 
2066 /**
2067  * consume_stock: Try to consume stocked charge on this cpu.
2068  * @memcg: memcg to consume from.
2069  * @nr_pages: how many pages to charge.
2070  *
2071  * The charges will only happen if @memcg matches the current cpu's memcg
2072  * stock, and at least @nr_pages are available in that stock.  Failure to
2073  * service an allocation will refill the stock.
2074  *
2075  * returns true if successful, false otherwise.
2076  */
2077 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2078 {
2079 	struct memcg_stock_pcp *stock;
2080 	unsigned long flags;
2081 	bool ret = false;
2082 
2083 	if (nr_pages > MEMCG_CHARGE_BATCH)
2084 		return ret;
2085 
2086 	local_irq_save(flags);
2087 
2088 	stock = this_cpu_ptr(&memcg_stock);
2089 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2090 		stock->nr_pages -= nr_pages;
2091 		ret = true;
2092 	}
2093 
2094 	local_irq_restore(flags);
2095 
2096 	return ret;
2097 }
2098 
2099 /*
2100  * Returns stocks cached in percpu and reset cached information.
2101  */
2102 static void drain_stock(struct memcg_stock_pcp *stock)
2103 {
2104 	struct mem_cgroup *old = stock->cached;
2105 
2106 	if (stock->nr_pages) {
2107 		page_counter_uncharge(&old->memory, stock->nr_pages);
2108 		if (do_memsw_account())
2109 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2110 		css_put_many(&old->css, stock->nr_pages);
2111 		stock->nr_pages = 0;
2112 	}
2113 	stock->cached = NULL;
2114 }
2115 
2116 static void drain_local_stock(struct work_struct *dummy)
2117 {
2118 	struct memcg_stock_pcp *stock;
2119 	unsigned long flags;
2120 
2121 	/*
2122 	 * The only protection from memory hotplug vs. drain_stock races is
2123 	 * that we always operate on local CPU stock here with IRQ disabled
2124 	 */
2125 	local_irq_save(flags);
2126 
2127 	stock = this_cpu_ptr(&memcg_stock);
2128 	drain_stock(stock);
2129 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2130 
2131 	local_irq_restore(flags);
2132 }
2133 
2134 /*
2135  * Cache charges(val) to local per_cpu area.
2136  * This will be consumed by consume_stock() function, later.
2137  */
2138 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2139 {
2140 	struct memcg_stock_pcp *stock;
2141 	unsigned long flags;
2142 
2143 	local_irq_save(flags);
2144 
2145 	stock = this_cpu_ptr(&memcg_stock);
2146 	if (stock->cached != memcg) { /* reset if necessary */
2147 		drain_stock(stock);
2148 		stock->cached = memcg;
2149 	}
2150 	stock->nr_pages += nr_pages;
2151 
2152 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2153 		drain_stock(stock);
2154 
2155 	local_irq_restore(flags);
2156 }
2157 
2158 /*
2159  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2160  * of the hierarchy under it.
2161  */
2162 static void drain_all_stock(struct mem_cgroup *root_memcg)
2163 {
2164 	int cpu, curcpu;
2165 
2166 	/* If someone's already draining, avoid adding running more workers. */
2167 	if (!mutex_trylock(&percpu_charge_mutex))
2168 		return;
2169 	/*
2170 	 * Notify other cpus that system-wide "drain" is running
2171 	 * We do not care about races with the cpu hotplug because cpu down
2172 	 * as well as workers from this path always operate on the local
2173 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2174 	 */
2175 	curcpu = get_cpu();
2176 	for_each_online_cpu(cpu) {
2177 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2178 		struct mem_cgroup *memcg;
2179 		bool flush = false;
2180 
2181 		rcu_read_lock();
2182 		memcg = stock->cached;
2183 		if (memcg && stock->nr_pages &&
2184 		    mem_cgroup_is_descendant(memcg, root_memcg))
2185 			flush = true;
2186 		rcu_read_unlock();
2187 
2188 		if (flush &&
2189 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2190 			if (cpu == curcpu)
2191 				drain_local_stock(&stock->work);
2192 			else
2193 				schedule_work_on(cpu, &stock->work);
2194 		}
2195 	}
2196 	put_cpu();
2197 	mutex_unlock(&percpu_charge_mutex);
2198 }
2199 
2200 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2201 {
2202 	struct memcg_stock_pcp *stock;
2203 	struct mem_cgroup *memcg, *mi;
2204 
2205 	stock = &per_cpu(memcg_stock, cpu);
2206 	drain_stock(stock);
2207 
2208 	for_each_mem_cgroup(memcg) {
2209 		int i;
2210 
2211 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2212 			int nid;
2213 			long x;
2214 
2215 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2216 			if (x)
2217 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2218 					atomic_long_add(x, &memcg->vmstats[i]);
2219 
2220 			if (i >= NR_VM_NODE_STAT_ITEMS)
2221 				continue;
2222 
2223 			for_each_node(nid) {
2224 				struct mem_cgroup_per_node *pn;
2225 
2226 				pn = mem_cgroup_nodeinfo(memcg, nid);
2227 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2228 				if (x)
2229 					do {
2230 						atomic_long_add(x, &pn->lruvec_stat[i]);
2231 					} while ((pn = parent_nodeinfo(pn, nid)));
2232 			}
2233 		}
2234 
2235 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2236 			long x;
2237 
2238 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2239 			if (x)
2240 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2241 					atomic_long_add(x, &memcg->vmevents[i]);
2242 		}
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static void reclaim_high(struct mem_cgroup *memcg,
2249 			 unsigned int nr_pages,
2250 			 gfp_t gfp_mask)
2251 {
2252 	do {
2253 		if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high))
2254 			continue;
2255 		memcg_memory_event(memcg, MEMCG_HIGH);
2256 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2257 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2258 		 !mem_cgroup_is_root(memcg));
2259 }
2260 
2261 static void high_work_func(struct work_struct *work)
2262 {
2263 	struct mem_cgroup *memcg;
2264 
2265 	memcg = container_of(work, struct mem_cgroup, high_work);
2266 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2267 }
2268 
2269 /*
2270  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2271  * enough to still cause a significant slowdown in most cases, while still
2272  * allowing diagnostics and tracing to proceed without becoming stuck.
2273  */
2274 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2275 
2276 /*
2277  * When calculating the delay, we use these either side of the exponentiation to
2278  * maintain precision and scale to a reasonable number of jiffies (see the table
2279  * below.
2280  *
2281  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2282  *   overage ratio to a delay.
2283  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2284  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2285  *   to produce a reasonable delay curve.
2286  *
2287  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2288  * reasonable delay curve compared to precision-adjusted overage, not
2289  * penalising heavily at first, but still making sure that growth beyond the
2290  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2291  * example, with a high of 100 megabytes:
2292  *
2293  *  +-------+------------------------+
2294  *  | usage | time to allocate in ms |
2295  *  +-------+------------------------+
2296  *  | 100M  |                      0 |
2297  *  | 101M  |                      6 |
2298  *  | 102M  |                     25 |
2299  *  | 103M  |                     57 |
2300  *  | 104M  |                    102 |
2301  *  | 105M  |                    159 |
2302  *  | 106M  |                    230 |
2303  *  | 107M  |                    313 |
2304  *  | 108M  |                    409 |
2305  *  | 109M  |                    518 |
2306  *  | 110M  |                    639 |
2307  *  | 111M  |                    774 |
2308  *  | 112M  |                    921 |
2309  *  | 113M  |                   1081 |
2310  *  | 114M  |                   1254 |
2311  *  | 115M  |                   1439 |
2312  *  | 116M  |                   1638 |
2313  *  | 117M  |                   1849 |
2314  *  | 118M  |                   2000 |
2315  *  | 119M  |                   2000 |
2316  *  | 120M  |                   2000 |
2317  *  +-------+------------------------+
2318  */
2319  #define MEMCG_DELAY_PRECISION_SHIFT 20
2320  #define MEMCG_DELAY_SCALING_SHIFT 14
2321 
2322 /*
2323  * Get the number of jiffies that we should penalise a mischievous cgroup which
2324  * is exceeding its memory.high by checking both it and its ancestors.
2325  */
2326 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2327 					  unsigned int nr_pages)
2328 {
2329 	unsigned long penalty_jiffies;
2330 	u64 max_overage = 0;
2331 
2332 	do {
2333 		unsigned long usage, high;
2334 		u64 overage;
2335 
2336 		usage = page_counter_read(&memcg->memory);
2337 		high = READ_ONCE(memcg->high);
2338 
2339 		if (usage <= high)
2340 			continue;
2341 
2342 		/*
2343 		 * Prevent division by 0 in overage calculation by acting as if
2344 		 * it was a threshold of 1 page
2345 		 */
2346 		high = max(high, 1UL);
2347 
2348 		overage = usage - high;
2349 		overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2350 		overage = div64_u64(overage, high);
2351 
2352 		if (overage > max_overage)
2353 			max_overage = overage;
2354 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2355 		 !mem_cgroup_is_root(memcg));
2356 
2357 	if (!max_overage)
2358 		return 0;
2359 
2360 	/*
2361 	 * We use overage compared to memory.high to calculate the number of
2362 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2363 	 * fairly lenient on small overages, and increasingly harsh when the
2364 	 * memcg in question makes it clear that it has no intention of stopping
2365 	 * its crazy behaviour, so we exponentially increase the delay based on
2366 	 * overage amount.
2367 	 */
2368 	penalty_jiffies = max_overage * max_overage * HZ;
2369 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2370 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2371 
2372 	/*
2373 	 * Factor in the task's own contribution to the overage, such that four
2374 	 * N-sized allocations are throttled approximately the same as one
2375 	 * 4N-sized allocation.
2376 	 *
2377 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2378 	 * larger the current charge patch is than that.
2379 	 */
2380 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2381 
2382 	/*
2383 	 * Clamp the max delay per usermode return so as to still keep the
2384 	 * application moving forwards and also permit diagnostics, albeit
2385 	 * extremely slowly.
2386 	 */
2387 	return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2388 }
2389 
2390 /*
2391  * Scheduled by try_charge() to be executed from the userland return path
2392  * and reclaims memory over the high limit.
2393  */
2394 void mem_cgroup_handle_over_high(void)
2395 {
2396 	unsigned long penalty_jiffies;
2397 	unsigned long pflags;
2398 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 	struct mem_cgroup *memcg;
2400 
2401 	if (likely(!nr_pages))
2402 		return;
2403 
2404 	memcg = get_mem_cgroup_from_mm(current->mm);
2405 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 	current->memcg_nr_pages_over_high = 0;
2407 
2408 	/*
2409 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 	 * allocators proactively to slow down excessive growth.
2411 	 */
2412 	penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2413 
2414 	/*
2415 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2416 	 * that it's not even worth doing, in an attempt to be nice to those who
2417 	 * go only a small amount over their memory.high value and maybe haven't
2418 	 * been aggressively reclaimed enough yet.
2419 	 */
2420 	if (penalty_jiffies <= HZ / 100)
2421 		goto out;
2422 
2423 	/*
2424 	 * If we exit early, we're guaranteed to die (since
2425 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2426 	 * need to account for any ill-begotten jiffies to pay them off later.
2427 	 */
2428 	psi_memstall_enter(&pflags);
2429 	schedule_timeout_killable(penalty_jiffies);
2430 	psi_memstall_leave(&pflags);
2431 
2432 out:
2433 	css_put(&memcg->css);
2434 }
2435 
2436 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2437 		      unsigned int nr_pages)
2438 {
2439 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2440 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2441 	struct mem_cgroup *mem_over_limit;
2442 	struct page_counter *counter;
2443 	unsigned long nr_reclaimed;
2444 	bool may_swap = true;
2445 	bool drained = false;
2446 	enum oom_status oom_status;
2447 
2448 	if (mem_cgroup_is_root(memcg))
2449 		return 0;
2450 retry:
2451 	if (consume_stock(memcg, nr_pages))
2452 		return 0;
2453 
2454 	if (!do_memsw_account() ||
2455 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2456 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2457 			goto done_restock;
2458 		if (do_memsw_account())
2459 			page_counter_uncharge(&memcg->memsw, batch);
2460 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2461 	} else {
2462 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2463 		may_swap = false;
2464 	}
2465 
2466 	if (batch > nr_pages) {
2467 		batch = nr_pages;
2468 		goto retry;
2469 	}
2470 
2471 	/*
2472 	 * Memcg doesn't have a dedicated reserve for atomic
2473 	 * allocations. But like the global atomic pool, we need to
2474 	 * put the burden of reclaim on regular allocation requests
2475 	 * and let these go through as privileged allocations.
2476 	 */
2477 	if (gfp_mask & __GFP_ATOMIC)
2478 		goto force;
2479 
2480 	/*
2481 	 * Unlike in global OOM situations, memcg is not in a physical
2482 	 * memory shortage.  Allow dying and OOM-killed tasks to
2483 	 * bypass the last charges so that they can exit quickly and
2484 	 * free their memory.
2485 	 */
2486 	if (unlikely(should_force_charge()))
2487 		goto force;
2488 
2489 	/*
2490 	 * Prevent unbounded recursion when reclaim operations need to
2491 	 * allocate memory. This might exceed the limits temporarily,
2492 	 * but we prefer facilitating memory reclaim and getting back
2493 	 * under the limit over triggering OOM kills in these cases.
2494 	 */
2495 	if (unlikely(current->flags & PF_MEMALLOC))
2496 		goto force;
2497 
2498 	if (unlikely(task_in_memcg_oom(current)))
2499 		goto nomem;
2500 
2501 	if (!gfpflags_allow_blocking(gfp_mask))
2502 		goto nomem;
2503 
2504 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2505 
2506 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2507 						    gfp_mask, may_swap);
2508 
2509 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2510 		goto retry;
2511 
2512 	if (!drained) {
2513 		drain_all_stock(mem_over_limit);
2514 		drained = true;
2515 		goto retry;
2516 	}
2517 
2518 	if (gfp_mask & __GFP_NORETRY)
2519 		goto nomem;
2520 	/*
2521 	 * Even though the limit is exceeded at this point, reclaim
2522 	 * may have been able to free some pages.  Retry the charge
2523 	 * before killing the task.
2524 	 *
2525 	 * Only for regular pages, though: huge pages are rather
2526 	 * unlikely to succeed so close to the limit, and we fall back
2527 	 * to regular pages anyway in case of failure.
2528 	 */
2529 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2530 		goto retry;
2531 	/*
2532 	 * At task move, charge accounts can be doubly counted. So, it's
2533 	 * better to wait until the end of task_move if something is going on.
2534 	 */
2535 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2536 		goto retry;
2537 
2538 	if (nr_retries--)
2539 		goto retry;
2540 
2541 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2542 		goto nomem;
2543 
2544 	if (gfp_mask & __GFP_NOFAIL)
2545 		goto force;
2546 
2547 	if (fatal_signal_pending(current))
2548 		goto force;
2549 
2550 	/*
2551 	 * keep retrying as long as the memcg oom killer is able to make
2552 	 * a forward progress or bypass the charge if the oom killer
2553 	 * couldn't make any progress.
2554 	 */
2555 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2556 		       get_order(nr_pages * PAGE_SIZE));
2557 	switch (oom_status) {
2558 	case OOM_SUCCESS:
2559 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2560 		goto retry;
2561 	case OOM_FAILED:
2562 		goto force;
2563 	default:
2564 		goto nomem;
2565 	}
2566 nomem:
2567 	if (!(gfp_mask & __GFP_NOFAIL))
2568 		return -ENOMEM;
2569 force:
2570 	/*
2571 	 * The allocation either can't fail or will lead to more memory
2572 	 * being freed very soon.  Allow memory usage go over the limit
2573 	 * temporarily by force charging it.
2574 	 */
2575 	page_counter_charge(&memcg->memory, nr_pages);
2576 	if (do_memsw_account())
2577 		page_counter_charge(&memcg->memsw, nr_pages);
2578 	css_get_many(&memcg->css, nr_pages);
2579 
2580 	return 0;
2581 
2582 done_restock:
2583 	css_get_many(&memcg->css, batch);
2584 	if (batch > nr_pages)
2585 		refill_stock(memcg, batch - nr_pages);
2586 
2587 	/*
2588 	 * If the hierarchy is above the normal consumption range, schedule
2589 	 * reclaim on returning to userland.  We can perform reclaim here
2590 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2591 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2592 	 * not recorded as it most likely matches current's and won't
2593 	 * change in the meantime.  As high limit is checked again before
2594 	 * reclaim, the cost of mismatch is negligible.
2595 	 */
2596 	do {
2597 		if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) {
2598 			/* Don't bother a random interrupted task */
2599 			if (in_interrupt()) {
2600 				schedule_work(&memcg->high_work);
2601 				break;
2602 			}
2603 			current->memcg_nr_pages_over_high += batch;
2604 			set_notify_resume(current);
2605 			break;
2606 		}
2607 	} while ((memcg = parent_mem_cgroup(memcg)));
2608 
2609 	return 0;
2610 }
2611 
2612 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2613 {
2614 	if (mem_cgroup_is_root(memcg))
2615 		return;
2616 
2617 	page_counter_uncharge(&memcg->memory, nr_pages);
2618 	if (do_memsw_account())
2619 		page_counter_uncharge(&memcg->memsw, nr_pages);
2620 
2621 	css_put_many(&memcg->css, nr_pages);
2622 }
2623 
2624 static void lock_page_lru(struct page *page, int *isolated)
2625 {
2626 	pg_data_t *pgdat = page_pgdat(page);
2627 
2628 	spin_lock_irq(&pgdat->lru_lock);
2629 	if (PageLRU(page)) {
2630 		struct lruvec *lruvec;
2631 
2632 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2633 		ClearPageLRU(page);
2634 		del_page_from_lru_list(page, lruvec, page_lru(page));
2635 		*isolated = 1;
2636 	} else
2637 		*isolated = 0;
2638 }
2639 
2640 static void unlock_page_lru(struct page *page, int isolated)
2641 {
2642 	pg_data_t *pgdat = page_pgdat(page);
2643 
2644 	if (isolated) {
2645 		struct lruvec *lruvec;
2646 
2647 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2648 		VM_BUG_ON_PAGE(PageLRU(page), page);
2649 		SetPageLRU(page);
2650 		add_page_to_lru_list(page, lruvec, page_lru(page));
2651 	}
2652 	spin_unlock_irq(&pgdat->lru_lock);
2653 }
2654 
2655 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2656 			  bool lrucare)
2657 {
2658 	int isolated;
2659 
2660 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2661 
2662 	/*
2663 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2664 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2665 	 */
2666 	if (lrucare)
2667 		lock_page_lru(page, &isolated);
2668 
2669 	/*
2670 	 * Nobody should be changing or seriously looking at
2671 	 * page->mem_cgroup at this point:
2672 	 *
2673 	 * - the page is uncharged
2674 	 *
2675 	 * - the page is off-LRU
2676 	 *
2677 	 * - an anonymous fault has exclusive page access, except for
2678 	 *   a locked page table
2679 	 *
2680 	 * - a page cache insertion, a swapin fault, or a migration
2681 	 *   have the page locked
2682 	 */
2683 	page->mem_cgroup = memcg;
2684 
2685 	if (lrucare)
2686 		unlock_page_lru(page, isolated);
2687 }
2688 
2689 #ifdef CONFIG_MEMCG_KMEM
2690 /*
2691  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2692  *
2693  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2694  * cgroup_mutex, etc.
2695  */
2696 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2697 {
2698 	struct page *page;
2699 
2700 	if (mem_cgroup_disabled())
2701 		return NULL;
2702 
2703 	page = virt_to_head_page(p);
2704 
2705 	/*
2706 	 * Slab pages don't have page->mem_cgroup set because corresponding
2707 	 * kmem caches can be reparented during the lifetime. That's why
2708 	 * memcg_from_slab_page() should be used instead.
2709 	 */
2710 	if (PageSlab(page))
2711 		return memcg_from_slab_page(page);
2712 
2713 	/* All other pages use page->mem_cgroup */
2714 	return page->mem_cgroup;
2715 }
2716 
2717 static int memcg_alloc_cache_id(void)
2718 {
2719 	int id, size;
2720 	int err;
2721 
2722 	id = ida_simple_get(&memcg_cache_ida,
2723 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2724 	if (id < 0)
2725 		return id;
2726 
2727 	if (id < memcg_nr_cache_ids)
2728 		return id;
2729 
2730 	/*
2731 	 * There's no space for the new id in memcg_caches arrays,
2732 	 * so we have to grow them.
2733 	 */
2734 	down_write(&memcg_cache_ids_sem);
2735 
2736 	size = 2 * (id + 1);
2737 	if (size < MEMCG_CACHES_MIN_SIZE)
2738 		size = MEMCG_CACHES_MIN_SIZE;
2739 	else if (size > MEMCG_CACHES_MAX_SIZE)
2740 		size = MEMCG_CACHES_MAX_SIZE;
2741 
2742 	err = memcg_update_all_caches(size);
2743 	if (!err)
2744 		err = memcg_update_all_list_lrus(size);
2745 	if (!err)
2746 		memcg_nr_cache_ids = size;
2747 
2748 	up_write(&memcg_cache_ids_sem);
2749 
2750 	if (err) {
2751 		ida_simple_remove(&memcg_cache_ida, id);
2752 		return err;
2753 	}
2754 	return id;
2755 }
2756 
2757 static void memcg_free_cache_id(int id)
2758 {
2759 	ida_simple_remove(&memcg_cache_ida, id);
2760 }
2761 
2762 struct memcg_kmem_cache_create_work {
2763 	struct mem_cgroup *memcg;
2764 	struct kmem_cache *cachep;
2765 	struct work_struct work;
2766 };
2767 
2768 static void memcg_kmem_cache_create_func(struct work_struct *w)
2769 {
2770 	struct memcg_kmem_cache_create_work *cw =
2771 		container_of(w, struct memcg_kmem_cache_create_work, work);
2772 	struct mem_cgroup *memcg = cw->memcg;
2773 	struct kmem_cache *cachep = cw->cachep;
2774 
2775 	memcg_create_kmem_cache(memcg, cachep);
2776 
2777 	css_put(&memcg->css);
2778 	kfree(cw);
2779 }
2780 
2781 /*
2782  * Enqueue the creation of a per-memcg kmem_cache.
2783  */
2784 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2785 					       struct kmem_cache *cachep)
2786 {
2787 	struct memcg_kmem_cache_create_work *cw;
2788 
2789 	if (!css_tryget_online(&memcg->css))
2790 		return;
2791 
2792 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2793 	if (!cw)
2794 		return;
2795 
2796 	cw->memcg = memcg;
2797 	cw->cachep = cachep;
2798 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2799 
2800 	queue_work(memcg_kmem_cache_wq, &cw->work);
2801 }
2802 
2803 static inline bool memcg_kmem_bypass(void)
2804 {
2805 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2806 		return true;
2807 	return false;
2808 }
2809 
2810 /**
2811  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2812  * @cachep: the original global kmem cache
2813  *
2814  * Return the kmem_cache we're supposed to use for a slab allocation.
2815  * We try to use the current memcg's version of the cache.
2816  *
2817  * If the cache does not exist yet, if we are the first user of it, we
2818  * create it asynchronously in a workqueue and let the current allocation
2819  * go through with the original cache.
2820  *
2821  * This function takes a reference to the cache it returns to assure it
2822  * won't get destroyed while we are working with it. Once the caller is
2823  * done with it, memcg_kmem_put_cache() must be called to release the
2824  * reference.
2825  */
2826 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2827 {
2828 	struct mem_cgroup *memcg;
2829 	struct kmem_cache *memcg_cachep;
2830 	struct memcg_cache_array *arr;
2831 	int kmemcg_id;
2832 
2833 	VM_BUG_ON(!is_root_cache(cachep));
2834 
2835 	if (memcg_kmem_bypass())
2836 		return cachep;
2837 
2838 	rcu_read_lock();
2839 
2840 	if (unlikely(current->active_memcg))
2841 		memcg = current->active_memcg;
2842 	else
2843 		memcg = mem_cgroup_from_task(current);
2844 
2845 	if (!memcg || memcg == root_mem_cgroup)
2846 		goto out_unlock;
2847 
2848 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2849 	if (kmemcg_id < 0)
2850 		goto out_unlock;
2851 
2852 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2853 
2854 	/*
2855 	 * Make sure we will access the up-to-date value. The code updating
2856 	 * memcg_caches issues a write barrier to match the data dependency
2857 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2858 	 */
2859 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2860 
2861 	/*
2862 	 * If we are in a safe context (can wait, and not in interrupt
2863 	 * context), we could be be predictable and return right away.
2864 	 * This would guarantee that the allocation being performed
2865 	 * already belongs in the new cache.
2866 	 *
2867 	 * However, there are some clashes that can arrive from locking.
2868 	 * For instance, because we acquire the slab_mutex while doing
2869 	 * memcg_create_kmem_cache, this means no further allocation
2870 	 * could happen with the slab_mutex held. So it's better to
2871 	 * defer everything.
2872 	 *
2873 	 * If the memcg is dying or memcg_cache is about to be released,
2874 	 * don't bother creating new kmem_caches. Because memcg_cachep
2875 	 * is ZEROed as the fist step of kmem offlining, we don't need
2876 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2877 	 * memcg_schedule_kmem_cache_create() will prevent us from
2878 	 * creation of a new kmem_cache.
2879 	 */
2880 	if (unlikely(!memcg_cachep))
2881 		memcg_schedule_kmem_cache_create(memcg, cachep);
2882 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2883 		cachep = memcg_cachep;
2884 out_unlock:
2885 	rcu_read_unlock();
2886 	return cachep;
2887 }
2888 
2889 /**
2890  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2891  * @cachep: the cache returned by memcg_kmem_get_cache
2892  */
2893 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2894 {
2895 	if (!is_root_cache(cachep))
2896 		percpu_ref_put(&cachep->memcg_params.refcnt);
2897 }
2898 
2899 /**
2900  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2901  * @memcg: memory cgroup to charge
2902  * @gfp: reclaim mode
2903  * @nr_pages: number of pages to charge
2904  *
2905  * Returns 0 on success, an error code on failure.
2906  */
2907 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2908 			unsigned int nr_pages)
2909 {
2910 	struct page_counter *counter;
2911 	int ret;
2912 
2913 	ret = try_charge(memcg, gfp, nr_pages);
2914 	if (ret)
2915 		return ret;
2916 
2917 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2918 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2919 
2920 		/*
2921 		 * Enforce __GFP_NOFAIL allocation because callers are not
2922 		 * prepared to see failures and likely do not have any failure
2923 		 * handling code.
2924 		 */
2925 		if (gfp & __GFP_NOFAIL) {
2926 			page_counter_charge(&memcg->kmem, nr_pages);
2927 			return 0;
2928 		}
2929 		cancel_charge(memcg, nr_pages);
2930 		return -ENOMEM;
2931 	}
2932 	return 0;
2933 }
2934 
2935 /**
2936  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2937  * @memcg: memcg to uncharge
2938  * @nr_pages: number of pages to uncharge
2939  */
2940 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2941 {
2942 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2943 		page_counter_uncharge(&memcg->kmem, nr_pages);
2944 
2945 	page_counter_uncharge(&memcg->memory, nr_pages);
2946 	if (do_memsw_account())
2947 		page_counter_uncharge(&memcg->memsw, nr_pages);
2948 }
2949 
2950 /**
2951  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2952  * @page: page to charge
2953  * @gfp: reclaim mode
2954  * @order: allocation order
2955  *
2956  * Returns 0 on success, an error code on failure.
2957  */
2958 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2959 {
2960 	struct mem_cgroup *memcg;
2961 	int ret = 0;
2962 
2963 	if (memcg_kmem_bypass())
2964 		return 0;
2965 
2966 	memcg = get_mem_cgroup_from_current();
2967 	if (!mem_cgroup_is_root(memcg)) {
2968 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2969 		if (!ret) {
2970 			page->mem_cgroup = memcg;
2971 			__SetPageKmemcg(page);
2972 		}
2973 	}
2974 	css_put(&memcg->css);
2975 	return ret;
2976 }
2977 
2978 /**
2979  * __memcg_kmem_uncharge_page: uncharge a kmem page
2980  * @page: page to uncharge
2981  * @order: allocation order
2982  */
2983 void __memcg_kmem_uncharge_page(struct page *page, int order)
2984 {
2985 	struct mem_cgroup *memcg = page->mem_cgroup;
2986 	unsigned int nr_pages = 1 << order;
2987 
2988 	if (!memcg)
2989 		return;
2990 
2991 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2992 	__memcg_kmem_uncharge(memcg, nr_pages);
2993 	page->mem_cgroup = NULL;
2994 
2995 	/* slab pages do not have PageKmemcg flag set */
2996 	if (PageKmemcg(page))
2997 		__ClearPageKmemcg(page);
2998 
2999 	css_put_many(&memcg->css, nr_pages);
3000 }
3001 #endif /* CONFIG_MEMCG_KMEM */
3002 
3003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3004 
3005 /*
3006  * Because tail pages are not marked as "used", set it. We're under
3007  * pgdat->lru_lock and migration entries setup in all page mappings.
3008  */
3009 void mem_cgroup_split_huge_fixup(struct page *head)
3010 {
3011 	int i;
3012 
3013 	if (mem_cgroup_disabled())
3014 		return;
3015 
3016 	for (i = 1; i < HPAGE_PMD_NR; i++)
3017 		head[i].mem_cgroup = head->mem_cgroup;
3018 
3019 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3020 }
3021 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3022 
3023 #ifdef CONFIG_MEMCG_SWAP
3024 /**
3025  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3026  * @entry: swap entry to be moved
3027  * @from:  mem_cgroup which the entry is moved from
3028  * @to:  mem_cgroup which the entry is moved to
3029  *
3030  * It succeeds only when the swap_cgroup's record for this entry is the same
3031  * as the mem_cgroup's id of @from.
3032  *
3033  * Returns 0 on success, -EINVAL on failure.
3034  *
3035  * The caller must have charged to @to, IOW, called page_counter_charge() about
3036  * both res and memsw, and called css_get().
3037  */
3038 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3039 				struct mem_cgroup *from, struct mem_cgroup *to)
3040 {
3041 	unsigned short old_id, new_id;
3042 
3043 	old_id = mem_cgroup_id(from);
3044 	new_id = mem_cgroup_id(to);
3045 
3046 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3047 		mod_memcg_state(from, MEMCG_SWAP, -1);
3048 		mod_memcg_state(to, MEMCG_SWAP, 1);
3049 		return 0;
3050 	}
3051 	return -EINVAL;
3052 }
3053 #else
3054 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3055 				struct mem_cgroup *from, struct mem_cgroup *to)
3056 {
3057 	return -EINVAL;
3058 }
3059 #endif
3060 
3061 static DEFINE_MUTEX(memcg_max_mutex);
3062 
3063 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3064 				 unsigned long max, bool memsw)
3065 {
3066 	bool enlarge = false;
3067 	bool drained = false;
3068 	int ret;
3069 	bool limits_invariant;
3070 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3071 
3072 	do {
3073 		if (signal_pending(current)) {
3074 			ret = -EINTR;
3075 			break;
3076 		}
3077 
3078 		mutex_lock(&memcg_max_mutex);
3079 		/*
3080 		 * Make sure that the new limit (memsw or memory limit) doesn't
3081 		 * break our basic invariant rule memory.max <= memsw.max.
3082 		 */
3083 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3084 					   max <= memcg->memsw.max;
3085 		if (!limits_invariant) {
3086 			mutex_unlock(&memcg_max_mutex);
3087 			ret = -EINVAL;
3088 			break;
3089 		}
3090 		if (max > counter->max)
3091 			enlarge = true;
3092 		ret = page_counter_set_max(counter, max);
3093 		mutex_unlock(&memcg_max_mutex);
3094 
3095 		if (!ret)
3096 			break;
3097 
3098 		if (!drained) {
3099 			drain_all_stock(memcg);
3100 			drained = true;
3101 			continue;
3102 		}
3103 
3104 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3105 					GFP_KERNEL, !memsw)) {
3106 			ret = -EBUSY;
3107 			break;
3108 		}
3109 	} while (true);
3110 
3111 	if (!ret && enlarge)
3112 		memcg_oom_recover(memcg);
3113 
3114 	return ret;
3115 }
3116 
3117 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3118 					    gfp_t gfp_mask,
3119 					    unsigned long *total_scanned)
3120 {
3121 	unsigned long nr_reclaimed = 0;
3122 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3123 	unsigned long reclaimed;
3124 	int loop = 0;
3125 	struct mem_cgroup_tree_per_node *mctz;
3126 	unsigned long excess;
3127 	unsigned long nr_scanned;
3128 
3129 	if (order > 0)
3130 		return 0;
3131 
3132 	mctz = soft_limit_tree_node(pgdat->node_id);
3133 
3134 	/*
3135 	 * Do not even bother to check the largest node if the root
3136 	 * is empty. Do it lockless to prevent lock bouncing. Races
3137 	 * are acceptable as soft limit is best effort anyway.
3138 	 */
3139 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3140 		return 0;
3141 
3142 	/*
3143 	 * This loop can run a while, specially if mem_cgroup's continuously
3144 	 * keep exceeding their soft limit and putting the system under
3145 	 * pressure
3146 	 */
3147 	do {
3148 		if (next_mz)
3149 			mz = next_mz;
3150 		else
3151 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3152 		if (!mz)
3153 			break;
3154 
3155 		nr_scanned = 0;
3156 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3157 						    gfp_mask, &nr_scanned);
3158 		nr_reclaimed += reclaimed;
3159 		*total_scanned += nr_scanned;
3160 		spin_lock_irq(&mctz->lock);
3161 		__mem_cgroup_remove_exceeded(mz, mctz);
3162 
3163 		/*
3164 		 * If we failed to reclaim anything from this memory cgroup
3165 		 * it is time to move on to the next cgroup
3166 		 */
3167 		next_mz = NULL;
3168 		if (!reclaimed)
3169 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3170 
3171 		excess = soft_limit_excess(mz->memcg);
3172 		/*
3173 		 * One school of thought says that we should not add
3174 		 * back the node to the tree if reclaim returns 0.
3175 		 * But our reclaim could return 0, simply because due
3176 		 * to priority we are exposing a smaller subset of
3177 		 * memory to reclaim from. Consider this as a longer
3178 		 * term TODO.
3179 		 */
3180 		/* If excess == 0, no tree ops */
3181 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3182 		spin_unlock_irq(&mctz->lock);
3183 		css_put(&mz->memcg->css);
3184 		loop++;
3185 		/*
3186 		 * Could not reclaim anything and there are no more
3187 		 * mem cgroups to try or we seem to be looping without
3188 		 * reclaiming anything.
3189 		 */
3190 		if (!nr_reclaimed &&
3191 			(next_mz == NULL ||
3192 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3193 			break;
3194 	} while (!nr_reclaimed);
3195 	if (next_mz)
3196 		css_put(&next_mz->memcg->css);
3197 	return nr_reclaimed;
3198 }
3199 
3200 /*
3201  * Test whether @memcg has children, dead or alive.  Note that this
3202  * function doesn't care whether @memcg has use_hierarchy enabled and
3203  * returns %true if there are child csses according to the cgroup
3204  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3205  */
3206 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3207 {
3208 	bool ret;
3209 
3210 	rcu_read_lock();
3211 	ret = css_next_child(NULL, &memcg->css);
3212 	rcu_read_unlock();
3213 	return ret;
3214 }
3215 
3216 /*
3217  * Reclaims as many pages from the given memcg as possible.
3218  *
3219  * Caller is responsible for holding css reference for memcg.
3220  */
3221 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3222 {
3223 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3224 
3225 	/* we call try-to-free pages for make this cgroup empty */
3226 	lru_add_drain_all();
3227 
3228 	drain_all_stock(memcg);
3229 
3230 	/* try to free all pages in this cgroup */
3231 	while (nr_retries && page_counter_read(&memcg->memory)) {
3232 		int progress;
3233 
3234 		if (signal_pending(current))
3235 			return -EINTR;
3236 
3237 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3238 							GFP_KERNEL, true);
3239 		if (!progress) {
3240 			nr_retries--;
3241 			/* maybe some writeback is necessary */
3242 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3243 		}
3244 
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3251 					    char *buf, size_t nbytes,
3252 					    loff_t off)
3253 {
3254 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3255 
3256 	if (mem_cgroup_is_root(memcg))
3257 		return -EINVAL;
3258 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3259 }
3260 
3261 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3262 				     struct cftype *cft)
3263 {
3264 	return mem_cgroup_from_css(css)->use_hierarchy;
3265 }
3266 
3267 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3268 				      struct cftype *cft, u64 val)
3269 {
3270 	int retval = 0;
3271 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3272 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3273 
3274 	if (memcg->use_hierarchy == val)
3275 		return 0;
3276 
3277 	/*
3278 	 * If parent's use_hierarchy is set, we can't make any modifications
3279 	 * in the child subtrees. If it is unset, then the change can
3280 	 * occur, provided the current cgroup has no children.
3281 	 *
3282 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3283 	 * set if there are no children.
3284 	 */
3285 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3286 				(val == 1 || val == 0)) {
3287 		if (!memcg_has_children(memcg))
3288 			memcg->use_hierarchy = val;
3289 		else
3290 			retval = -EBUSY;
3291 	} else
3292 		retval = -EINVAL;
3293 
3294 	return retval;
3295 }
3296 
3297 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3298 {
3299 	unsigned long val;
3300 
3301 	if (mem_cgroup_is_root(memcg)) {
3302 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3303 			memcg_page_state(memcg, MEMCG_RSS);
3304 		if (swap)
3305 			val += memcg_page_state(memcg, MEMCG_SWAP);
3306 	} else {
3307 		if (!swap)
3308 			val = page_counter_read(&memcg->memory);
3309 		else
3310 			val = page_counter_read(&memcg->memsw);
3311 	}
3312 	return val;
3313 }
3314 
3315 enum {
3316 	RES_USAGE,
3317 	RES_LIMIT,
3318 	RES_MAX_USAGE,
3319 	RES_FAILCNT,
3320 	RES_SOFT_LIMIT,
3321 };
3322 
3323 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3324 			       struct cftype *cft)
3325 {
3326 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3327 	struct page_counter *counter;
3328 
3329 	switch (MEMFILE_TYPE(cft->private)) {
3330 	case _MEM:
3331 		counter = &memcg->memory;
3332 		break;
3333 	case _MEMSWAP:
3334 		counter = &memcg->memsw;
3335 		break;
3336 	case _KMEM:
3337 		counter = &memcg->kmem;
3338 		break;
3339 	case _TCP:
3340 		counter = &memcg->tcpmem;
3341 		break;
3342 	default:
3343 		BUG();
3344 	}
3345 
3346 	switch (MEMFILE_ATTR(cft->private)) {
3347 	case RES_USAGE:
3348 		if (counter == &memcg->memory)
3349 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3350 		if (counter == &memcg->memsw)
3351 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3352 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3353 	case RES_LIMIT:
3354 		return (u64)counter->max * PAGE_SIZE;
3355 	case RES_MAX_USAGE:
3356 		return (u64)counter->watermark * PAGE_SIZE;
3357 	case RES_FAILCNT:
3358 		return counter->failcnt;
3359 	case RES_SOFT_LIMIT:
3360 		return (u64)memcg->soft_limit * PAGE_SIZE;
3361 	default:
3362 		BUG();
3363 	}
3364 }
3365 
3366 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3367 {
3368 	unsigned long stat[MEMCG_NR_STAT] = {0};
3369 	struct mem_cgroup *mi;
3370 	int node, cpu, i;
3371 
3372 	for_each_online_cpu(cpu)
3373 		for (i = 0; i < MEMCG_NR_STAT; i++)
3374 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3375 
3376 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3377 		for (i = 0; i < MEMCG_NR_STAT; i++)
3378 			atomic_long_add(stat[i], &mi->vmstats[i]);
3379 
3380 	for_each_node(node) {
3381 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3382 		struct mem_cgroup_per_node *pi;
3383 
3384 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3385 			stat[i] = 0;
3386 
3387 		for_each_online_cpu(cpu)
3388 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3389 				stat[i] += per_cpu(
3390 					pn->lruvec_stat_cpu->count[i], cpu);
3391 
3392 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3393 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3394 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3395 	}
3396 }
3397 
3398 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3399 {
3400 	unsigned long events[NR_VM_EVENT_ITEMS];
3401 	struct mem_cgroup *mi;
3402 	int cpu, i;
3403 
3404 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3405 		events[i] = 0;
3406 
3407 	for_each_online_cpu(cpu)
3408 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3409 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3410 					     cpu);
3411 
3412 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3413 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3414 			atomic_long_add(events[i], &mi->vmevents[i]);
3415 }
3416 
3417 #ifdef CONFIG_MEMCG_KMEM
3418 static int memcg_online_kmem(struct mem_cgroup *memcg)
3419 {
3420 	int memcg_id;
3421 
3422 	if (cgroup_memory_nokmem)
3423 		return 0;
3424 
3425 	BUG_ON(memcg->kmemcg_id >= 0);
3426 	BUG_ON(memcg->kmem_state);
3427 
3428 	memcg_id = memcg_alloc_cache_id();
3429 	if (memcg_id < 0)
3430 		return memcg_id;
3431 
3432 	static_branch_inc(&memcg_kmem_enabled_key);
3433 	/*
3434 	 * A memory cgroup is considered kmem-online as soon as it gets
3435 	 * kmemcg_id. Setting the id after enabling static branching will
3436 	 * guarantee no one starts accounting before all call sites are
3437 	 * patched.
3438 	 */
3439 	memcg->kmemcg_id = memcg_id;
3440 	memcg->kmem_state = KMEM_ONLINE;
3441 	INIT_LIST_HEAD(&memcg->kmem_caches);
3442 
3443 	return 0;
3444 }
3445 
3446 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3447 {
3448 	struct cgroup_subsys_state *css;
3449 	struct mem_cgroup *parent, *child;
3450 	int kmemcg_id;
3451 
3452 	if (memcg->kmem_state != KMEM_ONLINE)
3453 		return;
3454 	/*
3455 	 * Clear the online state before clearing memcg_caches array
3456 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3457 	 * guarantees that no cache will be created for this cgroup
3458 	 * after we are done (see memcg_create_kmem_cache()).
3459 	 */
3460 	memcg->kmem_state = KMEM_ALLOCATED;
3461 
3462 	parent = parent_mem_cgroup(memcg);
3463 	if (!parent)
3464 		parent = root_mem_cgroup;
3465 
3466 	/*
3467 	 * Deactivate and reparent kmem_caches.
3468 	 */
3469 	memcg_deactivate_kmem_caches(memcg, parent);
3470 
3471 	kmemcg_id = memcg->kmemcg_id;
3472 	BUG_ON(kmemcg_id < 0);
3473 
3474 	/*
3475 	 * Change kmemcg_id of this cgroup and all its descendants to the
3476 	 * parent's id, and then move all entries from this cgroup's list_lrus
3477 	 * to ones of the parent. After we have finished, all list_lrus
3478 	 * corresponding to this cgroup are guaranteed to remain empty. The
3479 	 * ordering is imposed by list_lru_node->lock taken by
3480 	 * memcg_drain_all_list_lrus().
3481 	 */
3482 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3483 	css_for_each_descendant_pre(css, &memcg->css) {
3484 		child = mem_cgroup_from_css(css);
3485 		BUG_ON(child->kmemcg_id != kmemcg_id);
3486 		child->kmemcg_id = parent->kmemcg_id;
3487 		if (!memcg->use_hierarchy)
3488 			break;
3489 	}
3490 	rcu_read_unlock();
3491 
3492 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3493 
3494 	memcg_free_cache_id(kmemcg_id);
3495 }
3496 
3497 static void memcg_free_kmem(struct mem_cgroup *memcg)
3498 {
3499 	/* css_alloc() failed, offlining didn't happen */
3500 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3501 		memcg_offline_kmem(memcg);
3502 
3503 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3504 		WARN_ON(!list_empty(&memcg->kmem_caches));
3505 		static_branch_dec(&memcg_kmem_enabled_key);
3506 	}
3507 }
3508 #else
3509 static int memcg_online_kmem(struct mem_cgroup *memcg)
3510 {
3511 	return 0;
3512 }
3513 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3514 {
3515 }
3516 static void memcg_free_kmem(struct mem_cgroup *memcg)
3517 {
3518 }
3519 #endif /* CONFIG_MEMCG_KMEM */
3520 
3521 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3522 				 unsigned long max)
3523 {
3524 	int ret;
3525 
3526 	mutex_lock(&memcg_max_mutex);
3527 	ret = page_counter_set_max(&memcg->kmem, max);
3528 	mutex_unlock(&memcg_max_mutex);
3529 	return ret;
3530 }
3531 
3532 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3533 {
3534 	int ret;
3535 
3536 	mutex_lock(&memcg_max_mutex);
3537 
3538 	ret = page_counter_set_max(&memcg->tcpmem, max);
3539 	if (ret)
3540 		goto out;
3541 
3542 	if (!memcg->tcpmem_active) {
3543 		/*
3544 		 * The active flag needs to be written after the static_key
3545 		 * update. This is what guarantees that the socket activation
3546 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3547 		 * for details, and note that we don't mark any socket as
3548 		 * belonging to this memcg until that flag is up.
3549 		 *
3550 		 * We need to do this, because static_keys will span multiple
3551 		 * sites, but we can't control their order. If we mark a socket
3552 		 * as accounted, but the accounting functions are not patched in
3553 		 * yet, we'll lose accounting.
3554 		 *
3555 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3556 		 * because when this value change, the code to process it is not
3557 		 * patched in yet.
3558 		 */
3559 		static_branch_inc(&memcg_sockets_enabled_key);
3560 		memcg->tcpmem_active = true;
3561 	}
3562 out:
3563 	mutex_unlock(&memcg_max_mutex);
3564 	return ret;
3565 }
3566 
3567 /*
3568  * The user of this function is...
3569  * RES_LIMIT.
3570  */
3571 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3572 				char *buf, size_t nbytes, loff_t off)
3573 {
3574 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3575 	unsigned long nr_pages;
3576 	int ret;
3577 
3578 	buf = strstrip(buf);
3579 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3580 	if (ret)
3581 		return ret;
3582 
3583 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3584 	case RES_LIMIT:
3585 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3586 			ret = -EINVAL;
3587 			break;
3588 		}
3589 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3590 		case _MEM:
3591 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3592 			break;
3593 		case _MEMSWAP:
3594 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3595 			break;
3596 		case _KMEM:
3597 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3598 				     "Please report your usecase to linux-mm@kvack.org if you "
3599 				     "depend on this functionality.\n");
3600 			ret = memcg_update_kmem_max(memcg, nr_pages);
3601 			break;
3602 		case _TCP:
3603 			ret = memcg_update_tcp_max(memcg, nr_pages);
3604 			break;
3605 		}
3606 		break;
3607 	case RES_SOFT_LIMIT:
3608 		memcg->soft_limit = nr_pages;
3609 		ret = 0;
3610 		break;
3611 	}
3612 	return ret ?: nbytes;
3613 }
3614 
3615 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3616 				size_t nbytes, loff_t off)
3617 {
3618 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3619 	struct page_counter *counter;
3620 
3621 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3622 	case _MEM:
3623 		counter = &memcg->memory;
3624 		break;
3625 	case _MEMSWAP:
3626 		counter = &memcg->memsw;
3627 		break;
3628 	case _KMEM:
3629 		counter = &memcg->kmem;
3630 		break;
3631 	case _TCP:
3632 		counter = &memcg->tcpmem;
3633 		break;
3634 	default:
3635 		BUG();
3636 	}
3637 
3638 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3639 	case RES_MAX_USAGE:
3640 		page_counter_reset_watermark(counter);
3641 		break;
3642 	case RES_FAILCNT:
3643 		counter->failcnt = 0;
3644 		break;
3645 	default:
3646 		BUG();
3647 	}
3648 
3649 	return nbytes;
3650 }
3651 
3652 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3653 					struct cftype *cft)
3654 {
3655 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3656 }
3657 
3658 #ifdef CONFIG_MMU
3659 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3660 					struct cftype *cft, u64 val)
3661 {
3662 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3663 
3664 	if (val & ~MOVE_MASK)
3665 		return -EINVAL;
3666 
3667 	/*
3668 	 * No kind of locking is needed in here, because ->can_attach() will
3669 	 * check this value once in the beginning of the process, and then carry
3670 	 * on with stale data. This means that changes to this value will only
3671 	 * affect task migrations starting after the change.
3672 	 */
3673 	memcg->move_charge_at_immigrate = val;
3674 	return 0;
3675 }
3676 #else
3677 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3678 					struct cftype *cft, u64 val)
3679 {
3680 	return -ENOSYS;
3681 }
3682 #endif
3683 
3684 #ifdef CONFIG_NUMA
3685 
3686 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3687 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3688 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3689 
3690 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3691 					   int nid, unsigned int lru_mask)
3692 {
3693 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3694 	unsigned long nr = 0;
3695 	enum lru_list lru;
3696 
3697 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3698 
3699 	for_each_lru(lru) {
3700 		if (!(BIT(lru) & lru_mask))
3701 			continue;
3702 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3703 	}
3704 	return nr;
3705 }
3706 
3707 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3708 					     unsigned int lru_mask)
3709 {
3710 	unsigned long nr = 0;
3711 	enum lru_list lru;
3712 
3713 	for_each_lru(lru) {
3714 		if (!(BIT(lru) & lru_mask))
3715 			continue;
3716 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3717 	}
3718 	return nr;
3719 }
3720 
3721 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3722 {
3723 	struct numa_stat {
3724 		const char *name;
3725 		unsigned int lru_mask;
3726 	};
3727 
3728 	static const struct numa_stat stats[] = {
3729 		{ "total", LRU_ALL },
3730 		{ "file", LRU_ALL_FILE },
3731 		{ "anon", LRU_ALL_ANON },
3732 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3733 	};
3734 	const struct numa_stat *stat;
3735 	int nid;
3736 	unsigned long nr;
3737 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3738 
3739 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3740 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3741 		seq_printf(m, "%s=%lu", stat->name, nr);
3742 		for_each_node_state(nid, N_MEMORY) {
3743 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3744 							  stat->lru_mask);
3745 			seq_printf(m, " N%d=%lu", nid, nr);
3746 		}
3747 		seq_putc(m, '\n');
3748 	}
3749 
3750 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3751 		struct mem_cgroup *iter;
3752 
3753 		nr = 0;
3754 		for_each_mem_cgroup_tree(iter, memcg)
3755 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3756 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3757 		for_each_node_state(nid, N_MEMORY) {
3758 			nr = 0;
3759 			for_each_mem_cgroup_tree(iter, memcg)
3760 				nr += mem_cgroup_node_nr_lru_pages(
3761 					iter, nid, stat->lru_mask);
3762 			seq_printf(m, " N%d=%lu", nid, nr);
3763 		}
3764 		seq_putc(m, '\n');
3765 	}
3766 
3767 	return 0;
3768 }
3769 #endif /* CONFIG_NUMA */
3770 
3771 static const unsigned int memcg1_stats[] = {
3772 	MEMCG_CACHE,
3773 	MEMCG_RSS,
3774 	MEMCG_RSS_HUGE,
3775 	NR_SHMEM,
3776 	NR_FILE_MAPPED,
3777 	NR_FILE_DIRTY,
3778 	NR_WRITEBACK,
3779 	MEMCG_SWAP,
3780 };
3781 
3782 static const char *const memcg1_stat_names[] = {
3783 	"cache",
3784 	"rss",
3785 	"rss_huge",
3786 	"shmem",
3787 	"mapped_file",
3788 	"dirty",
3789 	"writeback",
3790 	"swap",
3791 };
3792 
3793 /* Universal VM events cgroup1 shows, original sort order */
3794 static const unsigned int memcg1_events[] = {
3795 	PGPGIN,
3796 	PGPGOUT,
3797 	PGFAULT,
3798 	PGMAJFAULT,
3799 };
3800 
3801 static int memcg_stat_show(struct seq_file *m, void *v)
3802 {
3803 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3804 	unsigned long memory, memsw;
3805 	struct mem_cgroup *mi;
3806 	unsigned int i;
3807 
3808 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3809 
3810 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3811 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3812 			continue;
3813 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3814 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3815 			   PAGE_SIZE);
3816 	}
3817 
3818 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3819 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3820 			   memcg_events_local(memcg, memcg1_events[i]));
3821 
3822 	for (i = 0; i < NR_LRU_LISTS; i++)
3823 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3824 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3825 			   PAGE_SIZE);
3826 
3827 	/* Hierarchical information */
3828 	memory = memsw = PAGE_COUNTER_MAX;
3829 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3830 		memory = min(memory, READ_ONCE(mi->memory.max));
3831 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3832 	}
3833 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3834 		   (u64)memory * PAGE_SIZE);
3835 	if (do_memsw_account())
3836 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3837 			   (u64)memsw * PAGE_SIZE);
3838 
3839 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3840 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3841 			continue;
3842 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3843 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3844 			   PAGE_SIZE);
3845 	}
3846 
3847 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3848 		seq_printf(m, "total_%s %llu\n",
3849 			   vm_event_name(memcg1_events[i]),
3850 			   (u64)memcg_events(memcg, memcg1_events[i]));
3851 
3852 	for (i = 0; i < NR_LRU_LISTS; i++)
3853 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3854 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3855 			   PAGE_SIZE);
3856 
3857 #ifdef CONFIG_DEBUG_VM
3858 	{
3859 		pg_data_t *pgdat;
3860 		struct mem_cgroup_per_node *mz;
3861 		struct zone_reclaim_stat *rstat;
3862 		unsigned long recent_rotated[2] = {0, 0};
3863 		unsigned long recent_scanned[2] = {0, 0};
3864 
3865 		for_each_online_pgdat(pgdat) {
3866 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3867 			rstat = &mz->lruvec.reclaim_stat;
3868 
3869 			recent_rotated[0] += rstat->recent_rotated[0];
3870 			recent_rotated[1] += rstat->recent_rotated[1];
3871 			recent_scanned[0] += rstat->recent_scanned[0];
3872 			recent_scanned[1] += rstat->recent_scanned[1];
3873 		}
3874 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3875 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3876 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3877 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3878 	}
3879 #endif
3880 
3881 	return 0;
3882 }
3883 
3884 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3885 				      struct cftype *cft)
3886 {
3887 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3888 
3889 	return mem_cgroup_swappiness(memcg);
3890 }
3891 
3892 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3893 				       struct cftype *cft, u64 val)
3894 {
3895 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3896 
3897 	if (val > 100)
3898 		return -EINVAL;
3899 
3900 	if (css->parent)
3901 		memcg->swappiness = val;
3902 	else
3903 		vm_swappiness = val;
3904 
3905 	return 0;
3906 }
3907 
3908 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3909 {
3910 	struct mem_cgroup_threshold_ary *t;
3911 	unsigned long usage;
3912 	int i;
3913 
3914 	rcu_read_lock();
3915 	if (!swap)
3916 		t = rcu_dereference(memcg->thresholds.primary);
3917 	else
3918 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3919 
3920 	if (!t)
3921 		goto unlock;
3922 
3923 	usage = mem_cgroup_usage(memcg, swap);
3924 
3925 	/*
3926 	 * current_threshold points to threshold just below or equal to usage.
3927 	 * If it's not true, a threshold was crossed after last
3928 	 * call of __mem_cgroup_threshold().
3929 	 */
3930 	i = t->current_threshold;
3931 
3932 	/*
3933 	 * Iterate backward over array of thresholds starting from
3934 	 * current_threshold and check if a threshold is crossed.
3935 	 * If none of thresholds below usage is crossed, we read
3936 	 * only one element of the array here.
3937 	 */
3938 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3939 		eventfd_signal(t->entries[i].eventfd, 1);
3940 
3941 	/* i = current_threshold + 1 */
3942 	i++;
3943 
3944 	/*
3945 	 * Iterate forward over array of thresholds starting from
3946 	 * current_threshold+1 and check if a threshold is crossed.
3947 	 * If none of thresholds above usage is crossed, we read
3948 	 * only one element of the array here.
3949 	 */
3950 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3951 		eventfd_signal(t->entries[i].eventfd, 1);
3952 
3953 	/* Update current_threshold */
3954 	t->current_threshold = i - 1;
3955 unlock:
3956 	rcu_read_unlock();
3957 }
3958 
3959 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3960 {
3961 	while (memcg) {
3962 		__mem_cgroup_threshold(memcg, false);
3963 		if (do_memsw_account())
3964 			__mem_cgroup_threshold(memcg, true);
3965 
3966 		memcg = parent_mem_cgroup(memcg);
3967 	}
3968 }
3969 
3970 static int compare_thresholds(const void *a, const void *b)
3971 {
3972 	const struct mem_cgroup_threshold *_a = a;
3973 	const struct mem_cgroup_threshold *_b = b;
3974 
3975 	if (_a->threshold > _b->threshold)
3976 		return 1;
3977 
3978 	if (_a->threshold < _b->threshold)
3979 		return -1;
3980 
3981 	return 0;
3982 }
3983 
3984 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3985 {
3986 	struct mem_cgroup_eventfd_list *ev;
3987 
3988 	spin_lock(&memcg_oom_lock);
3989 
3990 	list_for_each_entry(ev, &memcg->oom_notify, list)
3991 		eventfd_signal(ev->eventfd, 1);
3992 
3993 	spin_unlock(&memcg_oom_lock);
3994 	return 0;
3995 }
3996 
3997 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3998 {
3999 	struct mem_cgroup *iter;
4000 
4001 	for_each_mem_cgroup_tree(iter, memcg)
4002 		mem_cgroup_oom_notify_cb(iter);
4003 }
4004 
4005 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4006 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4007 {
4008 	struct mem_cgroup_thresholds *thresholds;
4009 	struct mem_cgroup_threshold_ary *new;
4010 	unsigned long threshold;
4011 	unsigned long usage;
4012 	int i, size, ret;
4013 
4014 	ret = page_counter_memparse(args, "-1", &threshold);
4015 	if (ret)
4016 		return ret;
4017 
4018 	mutex_lock(&memcg->thresholds_lock);
4019 
4020 	if (type == _MEM) {
4021 		thresholds = &memcg->thresholds;
4022 		usage = mem_cgroup_usage(memcg, false);
4023 	} else if (type == _MEMSWAP) {
4024 		thresholds = &memcg->memsw_thresholds;
4025 		usage = mem_cgroup_usage(memcg, true);
4026 	} else
4027 		BUG();
4028 
4029 	/* Check if a threshold crossed before adding a new one */
4030 	if (thresholds->primary)
4031 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4032 
4033 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4034 
4035 	/* Allocate memory for new array of thresholds */
4036 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4037 	if (!new) {
4038 		ret = -ENOMEM;
4039 		goto unlock;
4040 	}
4041 	new->size = size;
4042 
4043 	/* Copy thresholds (if any) to new array */
4044 	if (thresholds->primary) {
4045 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4046 				sizeof(struct mem_cgroup_threshold));
4047 	}
4048 
4049 	/* Add new threshold */
4050 	new->entries[size - 1].eventfd = eventfd;
4051 	new->entries[size - 1].threshold = threshold;
4052 
4053 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4054 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4055 			compare_thresholds, NULL);
4056 
4057 	/* Find current threshold */
4058 	new->current_threshold = -1;
4059 	for (i = 0; i < size; i++) {
4060 		if (new->entries[i].threshold <= usage) {
4061 			/*
4062 			 * new->current_threshold will not be used until
4063 			 * rcu_assign_pointer(), so it's safe to increment
4064 			 * it here.
4065 			 */
4066 			++new->current_threshold;
4067 		} else
4068 			break;
4069 	}
4070 
4071 	/* Free old spare buffer and save old primary buffer as spare */
4072 	kfree(thresholds->spare);
4073 	thresholds->spare = thresholds->primary;
4074 
4075 	rcu_assign_pointer(thresholds->primary, new);
4076 
4077 	/* To be sure that nobody uses thresholds */
4078 	synchronize_rcu();
4079 
4080 unlock:
4081 	mutex_unlock(&memcg->thresholds_lock);
4082 
4083 	return ret;
4084 }
4085 
4086 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4087 	struct eventfd_ctx *eventfd, const char *args)
4088 {
4089 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4090 }
4091 
4092 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4093 	struct eventfd_ctx *eventfd, const char *args)
4094 {
4095 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4096 }
4097 
4098 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4099 	struct eventfd_ctx *eventfd, enum res_type type)
4100 {
4101 	struct mem_cgroup_thresholds *thresholds;
4102 	struct mem_cgroup_threshold_ary *new;
4103 	unsigned long usage;
4104 	int i, j, size, entries;
4105 
4106 	mutex_lock(&memcg->thresholds_lock);
4107 
4108 	if (type == _MEM) {
4109 		thresholds = &memcg->thresholds;
4110 		usage = mem_cgroup_usage(memcg, false);
4111 	} else if (type == _MEMSWAP) {
4112 		thresholds = &memcg->memsw_thresholds;
4113 		usage = mem_cgroup_usage(memcg, true);
4114 	} else
4115 		BUG();
4116 
4117 	if (!thresholds->primary)
4118 		goto unlock;
4119 
4120 	/* Check if a threshold crossed before removing */
4121 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4122 
4123 	/* Calculate new number of threshold */
4124 	size = entries = 0;
4125 	for (i = 0; i < thresholds->primary->size; i++) {
4126 		if (thresholds->primary->entries[i].eventfd != eventfd)
4127 			size++;
4128 		else
4129 			entries++;
4130 	}
4131 
4132 	new = thresholds->spare;
4133 
4134 	/* If no items related to eventfd have been cleared, nothing to do */
4135 	if (!entries)
4136 		goto unlock;
4137 
4138 	/* Set thresholds array to NULL if we don't have thresholds */
4139 	if (!size) {
4140 		kfree(new);
4141 		new = NULL;
4142 		goto swap_buffers;
4143 	}
4144 
4145 	new->size = size;
4146 
4147 	/* Copy thresholds and find current threshold */
4148 	new->current_threshold = -1;
4149 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4150 		if (thresholds->primary->entries[i].eventfd == eventfd)
4151 			continue;
4152 
4153 		new->entries[j] = thresholds->primary->entries[i];
4154 		if (new->entries[j].threshold <= usage) {
4155 			/*
4156 			 * new->current_threshold will not be used
4157 			 * until rcu_assign_pointer(), so it's safe to increment
4158 			 * it here.
4159 			 */
4160 			++new->current_threshold;
4161 		}
4162 		j++;
4163 	}
4164 
4165 swap_buffers:
4166 	/* Swap primary and spare array */
4167 	thresholds->spare = thresholds->primary;
4168 
4169 	rcu_assign_pointer(thresholds->primary, new);
4170 
4171 	/* To be sure that nobody uses thresholds */
4172 	synchronize_rcu();
4173 
4174 	/* If all events are unregistered, free the spare array */
4175 	if (!new) {
4176 		kfree(thresholds->spare);
4177 		thresholds->spare = NULL;
4178 	}
4179 unlock:
4180 	mutex_unlock(&memcg->thresholds_lock);
4181 }
4182 
4183 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4184 	struct eventfd_ctx *eventfd)
4185 {
4186 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4187 }
4188 
4189 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4190 	struct eventfd_ctx *eventfd)
4191 {
4192 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4193 }
4194 
4195 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4196 	struct eventfd_ctx *eventfd, const char *args)
4197 {
4198 	struct mem_cgroup_eventfd_list *event;
4199 
4200 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4201 	if (!event)
4202 		return -ENOMEM;
4203 
4204 	spin_lock(&memcg_oom_lock);
4205 
4206 	event->eventfd = eventfd;
4207 	list_add(&event->list, &memcg->oom_notify);
4208 
4209 	/* already in OOM ? */
4210 	if (memcg->under_oom)
4211 		eventfd_signal(eventfd, 1);
4212 	spin_unlock(&memcg_oom_lock);
4213 
4214 	return 0;
4215 }
4216 
4217 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4218 	struct eventfd_ctx *eventfd)
4219 {
4220 	struct mem_cgroup_eventfd_list *ev, *tmp;
4221 
4222 	spin_lock(&memcg_oom_lock);
4223 
4224 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4225 		if (ev->eventfd == eventfd) {
4226 			list_del(&ev->list);
4227 			kfree(ev);
4228 		}
4229 	}
4230 
4231 	spin_unlock(&memcg_oom_lock);
4232 }
4233 
4234 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4235 {
4236 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4237 
4238 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4239 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4240 	seq_printf(sf, "oom_kill %lu\n",
4241 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4242 	return 0;
4243 }
4244 
4245 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4246 	struct cftype *cft, u64 val)
4247 {
4248 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249 
4250 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4251 	if (!css->parent || !((val == 0) || (val == 1)))
4252 		return -EINVAL;
4253 
4254 	memcg->oom_kill_disable = val;
4255 	if (!val)
4256 		memcg_oom_recover(memcg);
4257 
4258 	return 0;
4259 }
4260 
4261 #ifdef CONFIG_CGROUP_WRITEBACK
4262 
4263 #include <trace/events/writeback.h>
4264 
4265 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4266 {
4267 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4268 }
4269 
4270 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4271 {
4272 	wb_domain_exit(&memcg->cgwb_domain);
4273 }
4274 
4275 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4276 {
4277 	wb_domain_size_changed(&memcg->cgwb_domain);
4278 }
4279 
4280 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4281 {
4282 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4283 
4284 	if (!memcg->css.parent)
4285 		return NULL;
4286 
4287 	return &memcg->cgwb_domain;
4288 }
4289 
4290 /*
4291  * idx can be of type enum memcg_stat_item or node_stat_item.
4292  * Keep in sync with memcg_exact_page().
4293  */
4294 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4295 {
4296 	long x = atomic_long_read(&memcg->vmstats[idx]);
4297 	int cpu;
4298 
4299 	for_each_online_cpu(cpu)
4300 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4301 	if (x < 0)
4302 		x = 0;
4303 	return x;
4304 }
4305 
4306 /**
4307  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4308  * @wb: bdi_writeback in question
4309  * @pfilepages: out parameter for number of file pages
4310  * @pheadroom: out parameter for number of allocatable pages according to memcg
4311  * @pdirty: out parameter for number of dirty pages
4312  * @pwriteback: out parameter for number of pages under writeback
4313  *
4314  * Determine the numbers of file, headroom, dirty, and writeback pages in
4315  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4316  * is a bit more involved.
4317  *
4318  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4319  * headroom is calculated as the lowest headroom of itself and the
4320  * ancestors.  Note that this doesn't consider the actual amount of
4321  * available memory in the system.  The caller should further cap
4322  * *@pheadroom accordingly.
4323  */
4324 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4325 			 unsigned long *pheadroom, unsigned long *pdirty,
4326 			 unsigned long *pwriteback)
4327 {
4328 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4329 	struct mem_cgroup *parent;
4330 
4331 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4332 
4333 	/* this should eventually include NR_UNSTABLE_NFS */
4334 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4335 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4336 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4337 	*pheadroom = PAGE_COUNTER_MAX;
4338 
4339 	while ((parent = parent_mem_cgroup(memcg))) {
4340 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4341 					    READ_ONCE(memcg->high));
4342 		unsigned long used = page_counter_read(&memcg->memory);
4343 
4344 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4345 		memcg = parent;
4346 	}
4347 }
4348 
4349 /*
4350  * Foreign dirty flushing
4351  *
4352  * There's an inherent mismatch between memcg and writeback.  The former
4353  * trackes ownership per-page while the latter per-inode.  This was a
4354  * deliberate design decision because honoring per-page ownership in the
4355  * writeback path is complicated, may lead to higher CPU and IO overheads
4356  * and deemed unnecessary given that write-sharing an inode across
4357  * different cgroups isn't a common use-case.
4358  *
4359  * Combined with inode majority-writer ownership switching, this works well
4360  * enough in most cases but there are some pathological cases.  For
4361  * example, let's say there are two cgroups A and B which keep writing to
4362  * different but confined parts of the same inode.  B owns the inode and
4363  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4364  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4365  * triggering background writeback.  A will be slowed down without a way to
4366  * make writeback of the dirty pages happen.
4367  *
4368  * Conditions like the above can lead to a cgroup getting repatedly and
4369  * severely throttled after making some progress after each
4370  * dirty_expire_interval while the underyling IO device is almost
4371  * completely idle.
4372  *
4373  * Solving this problem completely requires matching the ownership tracking
4374  * granularities between memcg and writeback in either direction.  However,
4375  * the more egregious behaviors can be avoided by simply remembering the
4376  * most recent foreign dirtying events and initiating remote flushes on
4377  * them when local writeback isn't enough to keep the memory clean enough.
4378  *
4379  * The following two functions implement such mechanism.  When a foreign
4380  * page - a page whose memcg and writeback ownerships don't match - is
4381  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4382  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4383  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4384  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4385  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4386  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4387  * limited to MEMCG_CGWB_FRN_CNT.
4388  *
4389  * The mechanism only remembers IDs and doesn't hold any object references.
4390  * As being wrong occasionally doesn't matter, updates and accesses to the
4391  * records are lockless and racy.
4392  */
4393 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4394 					     struct bdi_writeback *wb)
4395 {
4396 	struct mem_cgroup *memcg = page->mem_cgroup;
4397 	struct memcg_cgwb_frn *frn;
4398 	u64 now = get_jiffies_64();
4399 	u64 oldest_at = now;
4400 	int oldest = -1;
4401 	int i;
4402 
4403 	trace_track_foreign_dirty(page, wb);
4404 
4405 	/*
4406 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4407 	 * using it.  If not replace the oldest one which isn't being
4408 	 * written out.
4409 	 */
4410 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4411 		frn = &memcg->cgwb_frn[i];
4412 		if (frn->bdi_id == wb->bdi->id &&
4413 		    frn->memcg_id == wb->memcg_css->id)
4414 			break;
4415 		if (time_before64(frn->at, oldest_at) &&
4416 		    atomic_read(&frn->done.cnt) == 1) {
4417 			oldest = i;
4418 			oldest_at = frn->at;
4419 		}
4420 	}
4421 
4422 	if (i < MEMCG_CGWB_FRN_CNT) {
4423 		/*
4424 		 * Re-using an existing one.  Update timestamp lazily to
4425 		 * avoid making the cacheline hot.  We want them to be
4426 		 * reasonably up-to-date and significantly shorter than
4427 		 * dirty_expire_interval as that's what expires the record.
4428 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4429 		 */
4430 		unsigned long update_intv =
4431 			min_t(unsigned long, HZ,
4432 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4433 
4434 		if (time_before64(frn->at, now - update_intv))
4435 			frn->at = now;
4436 	} else if (oldest >= 0) {
4437 		/* replace the oldest free one */
4438 		frn = &memcg->cgwb_frn[oldest];
4439 		frn->bdi_id = wb->bdi->id;
4440 		frn->memcg_id = wb->memcg_css->id;
4441 		frn->at = now;
4442 	}
4443 }
4444 
4445 /* issue foreign writeback flushes for recorded foreign dirtying events */
4446 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4447 {
4448 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4449 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4450 	u64 now = jiffies_64;
4451 	int i;
4452 
4453 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4454 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4455 
4456 		/*
4457 		 * If the record is older than dirty_expire_interval,
4458 		 * writeback on it has already started.  No need to kick it
4459 		 * off again.  Also, don't start a new one if there's
4460 		 * already one in flight.
4461 		 */
4462 		if (time_after64(frn->at, now - intv) &&
4463 		    atomic_read(&frn->done.cnt) == 1) {
4464 			frn->at = 0;
4465 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4466 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4467 					       WB_REASON_FOREIGN_FLUSH,
4468 					       &frn->done);
4469 		}
4470 	}
4471 }
4472 
4473 #else	/* CONFIG_CGROUP_WRITEBACK */
4474 
4475 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4476 {
4477 	return 0;
4478 }
4479 
4480 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4481 {
4482 }
4483 
4484 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4485 {
4486 }
4487 
4488 #endif	/* CONFIG_CGROUP_WRITEBACK */
4489 
4490 /*
4491  * DO NOT USE IN NEW FILES.
4492  *
4493  * "cgroup.event_control" implementation.
4494  *
4495  * This is way over-engineered.  It tries to support fully configurable
4496  * events for each user.  Such level of flexibility is completely
4497  * unnecessary especially in the light of the planned unified hierarchy.
4498  *
4499  * Please deprecate this and replace with something simpler if at all
4500  * possible.
4501  */
4502 
4503 /*
4504  * Unregister event and free resources.
4505  *
4506  * Gets called from workqueue.
4507  */
4508 static void memcg_event_remove(struct work_struct *work)
4509 {
4510 	struct mem_cgroup_event *event =
4511 		container_of(work, struct mem_cgroup_event, remove);
4512 	struct mem_cgroup *memcg = event->memcg;
4513 
4514 	remove_wait_queue(event->wqh, &event->wait);
4515 
4516 	event->unregister_event(memcg, event->eventfd);
4517 
4518 	/* Notify userspace the event is going away. */
4519 	eventfd_signal(event->eventfd, 1);
4520 
4521 	eventfd_ctx_put(event->eventfd);
4522 	kfree(event);
4523 	css_put(&memcg->css);
4524 }
4525 
4526 /*
4527  * Gets called on EPOLLHUP on eventfd when user closes it.
4528  *
4529  * Called with wqh->lock held and interrupts disabled.
4530  */
4531 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4532 			    int sync, void *key)
4533 {
4534 	struct mem_cgroup_event *event =
4535 		container_of(wait, struct mem_cgroup_event, wait);
4536 	struct mem_cgroup *memcg = event->memcg;
4537 	__poll_t flags = key_to_poll(key);
4538 
4539 	if (flags & EPOLLHUP) {
4540 		/*
4541 		 * If the event has been detached at cgroup removal, we
4542 		 * can simply return knowing the other side will cleanup
4543 		 * for us.
4544 		 *
4545 		 * We can't race against event freeing since the other
4546 		 * side will require wqh->lock via remove_wait_queue(),
4547 		 * which we hold.
4548 		 */
4549 		spin_lock(&memcg->event_list_lock);
4550 		if (!list_empty(&event->list)) {
4551 			list_del_init(&event->list);
4552 			/*
4553 			 * We are in atomic context, but cgroup_event_remove()
4554 			 * may sleep, so we have to call it in workqueue.
4555 			 */
4556 			schedule_work(&event->remove);
4557 		}
4558 		spin_unlock(&memcg->event_list_lock);
4559 	}
4560 
4561 	return 0;
4562 }
4563 
4564 static void memcg_event_ptable_queue_proc(struct file *file,
4565 		wait_queue_head_t *wqh, poll_table *pt)
4566 {
4567 	struct mem_cgroup_event *event =
4568 		container_of(pt, struct mem_cgroup_event, pt);
4569 
4570 	event->wqh = wqh;
4571 	add_wait_queue(wqh, &event->wait);
4572 }
4573 
4574 /*
4575  * DO NOT USE IN NEW FILES.
4576  *
4577  * Parse input and register new cgroup event handler.
4578  *
4579  * Input must be in format '<event_fd> <control_fd> <args>'.
4580  * Interpretation of args is defined by control file implementation.
4581  */
4582 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4583 					 char *buf, size_t nbytes, loff_t off)
4584 {
4585 	struct cgroup_subsys_state *css = of_css(of);
4586 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4587 	struct mem_cgroup_event *event;
4588 	struct cgroup_subsys_state *cfile_css;
4589 	unsigned int efd, cfd;
4590 	struct fd efile;
4591 	struct fd cfile;
4592 	const char *name;
4593 	char *endp;
4594 	int ret;
4595 
4596 	buf = strstrip(buf);
4597 
4598 	efd = simple_strtoul(buf, &endp, 10);
4599 	if (*endp != ' ')
4600 		return -EINVAL;
4601 	buf = endp + 1;
4602 
4603 	cfd = simple_strtoul(buf, &endp, 10);
4604 	if ((*endp != ' ') && (*endp != '\0'))
4605 		return -EINVAL;
4606 	buf = endp + 1;
4607 
4608 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4609 	if (!event)
4610 		return -ENOMEM;
4611 
4612 	event->memcg = memcg;
4613 	INIT_LIST_HEAD(&event->list);
4614 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4615 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4616 	INIT_WORK(&event->remove, memcg_event_remove);
4617 
4618 	efile = fdget(efd);
4619 	if (!efile.file) {
4620 		ret = -EBADF;
4621 		goto out_kfree;
4622 	}
4623 
4624 	event->eventfd = eventfd_ctx_fileget(efile.file);
4625 	if (IS_ERR(event->eventfd)) {
4626 		ret = PTR_ERR(event->eventfd);
4627 		goto out_put_efile;
4628 	}
4629 
4630 	cfile = fdget(cfd);
4631 	if (!cfile.file) {
4632 		ret = -EBADF;
4633 		goto out_put_eventfd;
4634 	}
4635 
4636 	/* the process need read permission on control file */
4637 	/* AV: shouldn't we check that it's been opened for read instead? */
4638 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4639 	if (ret < 0)
4640 		goto out_put_cfile;
4641 
4642 	/*
4643 	 * Determine the event callbacks and set them in @event.  This used
4644 	 * to be done via struct cftype but cgroup core no longer knows
4645 	 * about these events.  The following is crude but the whole thing
4646 	 * is for compatibility anyway.
4647 	 *
4648 	 * DO NOT ADD NEW FILES.
4649 	 */
4650 	name = cfile.file->f_path.dentry->d_name.name;
4651 
4652 	if (!strcmp(name, "memory.usage_in_bytes")) {
4653 		event->register_event = mem_cgroup_usage_register_event;
4654 		event->unregister_event = mem_cgroup_usage_unregister_event;
4655 	} else if (!strcmp(name, "memory.oom_control")) {
4656 		event->register_event = mem_cgroup_oom_register_event;
4657 		event->unregister_event = mem_cgroup_oom_unregister_event;
4658 	} else if (!strcmp(name, "memory.pressure_level")) {
4659 		event->register_event = vmpressure_register_event;
4660 		event->unregister_event = vmpressure_unregister_event;
4661 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4662 		event->register_event = memsw_cgroup_usage_register_event;
4663 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4664 	} else {
4665 		ret = -EINVAL;
4666 		goto out_put_cfile;
4667 	}
4668 
4669 	/*
4670 	 * Verify @cfile should belong to @css.  Also, remaining events are
4671 	 * automatically removed on cgroup destruction but the removal is
4672 	 * asynchronous, so take an extra ref on @css.
4673 	 */
4674 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4675 					       &memory_cgrp_subsys);
4676 	ret = -EINVAL;
4677 	if (IS_ERR(cfile_css))
4678 		goto out_put_cfile;
4679 	if (cfile_css != css) {
4680 		css_put(cfile_css);
4681 		goto out_put_cfile;
4682 	}
4683 
4684 	ret = event->register_event(memcg, event->eventfd, buf);
4685 	if (ret)
4686 		goto out_put_css;
4687 
4688 	vfs_poll(efile.file, &event->pt);
4689 
4690 	spin_lock(&memcg->event_list_lock);
4691 	list_add(&event->list, &memcg->event_list);
4692 	spin_unlock(&memcg->event_list_lock);
4693 
4694 	fdput(cfile);
4695 	fdput(efile);
4696 
4697 	return nbytes;
4698 
4699 out_put_css:
4700 	css_put(css);
4701 out_put_cfile:
4702 	fdput(cfile);
4703 out_put_eventfd:
4704 	eventfd_ctx_put(event->eventfd);
4705 out_put_efile:
4706 	fdput(efile);
4707 out_kfree:
4708 	kfree(event);
4709 
4710 	return ret;
4711 }
4712 
4713 static struct cftype mem_cgroup_legacy_files[] = {
4714 	{
4715 		.name = "usage_in_bytes",
4716 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4717 		.read_u64 = mem_cgroup_read_u64,
4718 	},
4719 	{
4720 		.name = "max_usage_in_bytes",
4721 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4722 		.write = mem_cgroup_reset,
4723 		.read_u64 = mem_cgroup_read_u64,
4724 	},
4725 	{
4726 		.name = "limit_in_bytes",
4727 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4728 		.write = mem_cgroup_write,
4729 		.read_u64 = mem_cgroup_read_u64,
4730 	},
4731 	{
4732 		.name = "soft_limit_in_bytes",
4733 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4734 		.write = mem_cgroup_write,
4735 		.read_u64 = mem_cgroup_read_u64,
4736 	},
4737 	{
4738 		.name = "failcnt",
4739 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4740 		.write = mem_cgroup_reset,
4741 		.read_u64 = mem_cgroup_read_u64,
4742 	},
4743 	{
4744 		.name = "stat",
4745 		.seq_show = memcg_stat_show,
4746 	},
4747 	{
4748 		.name = "force_empty",
4749 		.write = mem_cgroup_force_empty_write,
4750 	},
4751 	{
4752 		.name = "use_hierarchy",
4753 		.write_u64 = mem_cgroup_hierarchy_write,
4754 		.read_u64 = mem_cgroup_hierarchy_read,
4755 	},
4756 	{
4757 		.name = "cgroup.event_control",		/* XXX: for compat */
4758 		.write = memcg_write_event_control,
4759 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4760 	},
4761 	{
4762 		.name = "swappiness",
4763 		.read_u64 = mem_cgroup_swappiness_read,
4764 		.write_u64 = mem_cgroup_swappiness_write,
4765 	},
4766 	{
4767 		.name = "move_charge_at_immigrate",
4768 		.read_u64 = mem_cgroup_move_charge_read,
4769 		.write_u64 = mem_cgroup_move_charge_write,
4770 	},
4771 	{
4772 		.name = "oom_control",
4773 		.seq_show = mem_cgroup_oom_control_read,
4774 		.write_u64 = mem_cgroup_oom_control_write,
4775 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4776 	},
4777 	{
4778 		.name = "pressure_level",
4779 	},
4780 #ifdef CONFIG_NUMA
4781 	{
4782 		.name = "numa_stat",
4783 		.seq_show = memcg_numa_stat_show,
4784 	},
4785 #endif
4786 	{
4787 		.name = "kmem.limit_in_bytes",
4788 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4789 		.write = mem_cgroup_write,
4790 		.read_u64 = mem_cgroup_read_u64,
4791 	},
4792 	{
4793 		.name = "kmem.usage_in_bytes",
4794 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4795 		.read_u64 = mem_cgroup_read_u64,
4796 	},
4797 	{
4798 		.name = "kmem.failcnt",
4799 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4800 		.write = mem_cgroup_reset,
4801 		.read_u64 = mem_cgroup_read_u64,
4802 	},
4803 	{
4804 		.name = "kmem.max_usage_in_bytes",
4805 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4806 		.write = mem_cgroup_reset,
4807 		.read_u64 = mem_cgroup_read_u64,
4808 	},
4809 #if defined(CONFIG_MEMCG_KMEM) && \
4810 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4811 	{
4812 		.name = "kmem.slabinfo",
4813 		.seq_start = memcg_slab_start,
4814 		.seq_next = memcg_slab_next,
4815 		.seq_stop = memcg_slab_stop,
4816 		.seq_show = memcg_slab_show,
4817 	},
4818 #endif
4819 	{
4820 		.name = "kmem.tcp.limit_in_bytes",
4821 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4822 		.write = mem_cgroup_write,
4823 		.read_u64 = mem_cgroup_read_u64,
4824 	},
4825 	{
4826 		.name = "kmem.tcp.usage_in_bytes",
4827 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4828 		.read_u64 = mem_cgroup_read_u64,
4829 	},
4830 	{
4831 		.name = "kmem.tcp.failcnt",
4832 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4833 		.write = mem_cgroup_reset,
4834 		.read_u64 = mem_cgroup_read_u64,
4835 	},
4836 	{
4837 		.name = "kmem.tcp.max_usage_in_bytes",
4838 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4839 		.write = mem_cgroup_reset,
4840 		.read_u64 = mem_cgroup_read_u64,
4841 	},
4842 	{ },	/* terminate */
4843 };
4844 
4845 /*
4846  * Private memory cgroup IDR
4847  *
4848  * Swap-out records and page cache shadow entries need to store memcg
4849  * references in constrained space, so we maintain an ID space that is
4850  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4851  * memory-controlled cgroups to 64k.
4852  *
4853  * However, there usually are many references to the oflline CSS after
4854  * the cgroup has been destroyed, such as page cache or reclaimable
4855  * slab objects, that don't need to hang on to the ID. We want to keep
4856  * those dead CSS from occupying IDs, or we might quickly exhaust the
4857  * relatively small ID space and prevent the creation of new cgroups
4858  * even when there are much fewer than 64k cgroups - possibly none.
4859  *
4860  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4861  * be freed and recycled when it's no longer needed, which is usually
4862  * when the CSS is offlined.
4863  *
4864  * The only exception to that are records of swapped out tmpfs/shmem
4865  * pages that need to be attributed to live ancestors on swapin. But
4866  * those references are manageable from userspace.
4867  */
4868 
4869 static DEFINE_IDR(mem_cgroup_idr);
4870 
4871 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4872 {
4873 	if (memcg->id.id > 0) {
4874 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4875 		memcg->id.id = 0;
4876 	}
4877 }
4878 
4879 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4880 						  unsigned int n)
4881 {
4882 	refcount_add(n, &memcg->id.ref);
4883 }
4884 
4885 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4886 {
4887 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4888 		mem_cgroup_id_remove(memcg);
4889 
4890 		/* Memcg ID pins CSS */
4891 		css_put(&memcg->css);
4892 	}
4893 }
4894 
4895 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4896 {
4897 	mem_cgroup_id_put_many(memcg, 1);
4898 }
4899 
4900 /**
4901  * mem_cgroup_from_id - look up a memcg from a memcg id
4902  * @id: the memcg id to look up
4903  *
4904  * Caller must hold rcu_read_lock().
4905  */
4906 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4907 {
4908 	WARN_ON_ONCE(!rcu_read_lock_held());
4909 	return idr_find(&mem_cgroup_idr, id);
4910 }
4911 
4912 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4913 {
4914 	struct mem_cgroup_per_node *pn;
4915 	int tmp = node;
4916 	/*
4917 	 * This routine is called against possible nodes.
4918 	 * But it's BUG to call kmalloc() against offline node.
4919 	 *
4920 	 * TODO: this routine can waste much memory for nodes which will
4921 	 *       never be onlined. It's better to use memory hotplug callback
4922 	 *       function.
4923 	 */
4924 	if (!node_state(node, N_NORMAL_MEMORY))
4925 		tmp = -1;
4926 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4927 	if (!pn)
4928 		return 1;
4929 
4930 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4931 	if (!pn->lruvec_stat_local) {
4932 		kfree(pn);
4933 		return 1;
4934 	}
4935 
4936 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4937 	if (!pn->lruvec_stat_cpu) {
4938 		free_percpu(pn->lruvec_stat_local);
4939 		kfree(pn);
4940 		return 1;
4941 	}
4942 
4943 	lruvec_init(&pn->lruvec);
4944 	pn->usage_in_excess = 0;
4945 	pn->on_tree = false;
4946 	pn->memcg = memcg;
4947 
4948 	memcg->nodeinfo[node] = pn;
4949 	return 0;
4950 }
4951 
4952 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4953 {
4954 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4955 
4956 	if (!pn)
4957 		return;
4958 
4959 	free_percpu(pn->lruvec_stat_cpu);
4960 	free_percpu(pn->lruvec_stat_local);
4961 	kfree(pn);
4962 }
4963 
4964 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4965 {
4966 	int node;
4967 
4968 	for_each_node(node)
4969 		free_mem_cgroup_per_node_info(memcg, node);
4970 	free_percpu(memcg->vmstats_percpu);
4971 	free_percpu(memcg->vmstats_local);
4972 	kfree(memcg);
4973 }
4974 
4975 static void mem_cgroup_free(struct mem_cgroup *memcg)
4976 {
4977 	memcg_wb_domain_exit(memcg);
4978 	/*
4979 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4980 	 * on parent's and all ancestor levels.
4981 	 */
4982 	memcg_flush_percpu_vmstats(memcg);
4983 	memcg_flush_percpu_vmevents(memcg);
4984 	__mem_cgroup_free(memcg);
4985 }
4986 
4987 static struct mem_cgroup *mem_cgroup_alloc(void)
4988 {
4989 	struct mem_cgroup *memcg;
4990 	unsigned int size;
4991 	int node;
4992 	int __maybe_unused i;
4993 
4994 	size = sizeof(struct mem_cgroup);
4995 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4996 
4997 	memcg = kzalloc(size, GFP_KERNEL);
4998 	if (!memcg)
4999 		return NULL;
5000 
5001 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5002 				 1, MEM_CGROUP_ID_MAX,
5003 				 GFP_KERNEL);
5004 	if (memcg->id.id < 0)
5005 		goto fail;
5006 
5007 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5008 	if (!memcg->vmstats_local)
5009 		goto fail;
5010 
5011 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5012 	if (!memcg->vmstats_percpu)
5013 		goto fail;
5014 
5015 	for_each_node(node)
5016 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5017 			goto fail;
5018 
5019 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5020 		goto fail;
5021 
5022 	INIT_WORK(&memcg->high_work, high_work_func);
5023 	INIT_LIST_HEAD(&memcg->oom_notify);
5024 	mutex_init(&memcg->thresholds_lock);
5025 	spin_lock_init(&memcg->move_lock);
5026 	vmpressure_init(&memcg->vmpressure);
5027 	INIT_LIST_HEAD(&memcg->event_list);
5028 	spin_lock_init(&memcg->event_list_lock);
5029 	memcg->socket_pressure = jiffies;
5030 #ifdef CONFIG_MEMCG_KMEM
5031 	memcg->kmemcg_id = -1;
5032 #endif
5033 #ifdef CONFIG_CGROUP_WRITEBACK
5034 	INIT_LIST_HEAD(&memcg->cgwb_list);
5035 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5036 		memcg->cgwb_frn[i].done =
5037 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5038 #endif
5039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5040 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5041 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5042 	memcg->deferred_split_queue.split_queue_len = 0;
5043 #endif
5044 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5045 	return memcg;
5046 fail:
5047 	mem_cgroup_id_remove(memcg);
5048 	__mem_cgroup_free(memcg);
5049 	return NULL;
5050 }
5051 
5052 static struct cgroup_subsys_state * __ref
5053 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5054 {
5055 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5056 	struct mem_cgroup *memcg;
5057 	long error = -ENOMEM;
5058 
5059 	memcg = mem_cgroup_alloc();
5060 	if (!memcg)
5061 		return ERR_PTR(error);
5062 
5063 	WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5064 	memcg->soft_limit = PAGE_COUNTER_MAX;
5065 	if (parent) {
5066 		memcg->swappiness = mem_cgroup_swappiness(parent);
5067 		memcg->oom_kill_disable = parent->oom_kill_disable;
5068 	}
5069 	if (parent && parent->use_hierarchy) {
5070 		memcg->use_hierarchy = true;
5071 		page_counter_init(&memcg->memory, &parent->memory);
5072 		page_counter_init(&memcg->swap, &parent->swap);
5073 		page_counter_init(&memcg->memsw, &parent->memsw);
5074 		page_counter_init(&memcg->kmem, &parent->kmem);
5075 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5076 	} else {
5077 		page_counter_init(&memcg->memory, NULL);
5078 		page_counter_init(&memcg->swap, NULL);
5079 		page_counter_init(&memcg->memsw, NULL);
5080 		page_counter_init(&memcg->kmem, NULL);
5081 		page_counter_init(&memcg->tcpmem, NULL);
5082 		/*
5083 		 * Deeper hierachy with use_hierarchy == false doesn't make
5084 		 * much sense so let cgroup subsystem know about this
5085 		 * unfortunate state in our controller.
5086 		 */
5087 		if (parent != root_mem_cgroup)
5088 			memory_cgrp_subsys.broken_hierarchy = true;
5089 	}
5090 
5091 	/* The following stuff does not apply to the root */
5092 	if (!parent) {
5093 #ifdef CONFIG_MEMCG_KMEM
5094 		INIT_LIST_HEAD(&memcg->kmem_caches);
5095 #endif
5096 		root_mem_cgroup = memcg;
5097 		return &memcg->css;
5098 	}
5099 
5100 	error = memcg_online_kmem(memcg);
5101 	if (error)
5102 		goto fail;
5103 
5104 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5105 		static_branch_inc(&memcg_sockets_enabled_key);
5106 
5107 	return &memcg->css;
5108 fail:
5109 	mem_cgroup_id_remove(memcg);
5110 	mem_cgroup_free(memcg);
5111 	return ERR_PTR(-ENOMEM);
5112 }
5113 
5114 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5115 {
5116 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5117 
5118 	/*
5119 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5120 	 * by the time the maps are allocated. So, we allocate maps
5121 	 * here, when for_each_mem_cgroup() can't skip it.
5122 	 */
5123 	if (memcg_alloc_shrinker_maps(memcg)) {
5124 		mem_cgroup_id_remove(memcg);
5125 		return -ENOMEM;
5126 	}
5127 
5128 	/* Online state pins memcg ID, memcg ID pins CSS */
5129 	refcount_set(&memcg->id.ref, 1);
5130 	css_get(css);
5131 	return 0;
5132 }
5133 
5134 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5135 {
5136 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5137 	struct mem_cgroup_event *event, *tmp;
5138 
5139 	/*
5140 	 * Unregister events and notify userspace.
5141 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5142 	 * directory to avoid race between userspace and kernelspace.
5143 	 */
5144 	spin_lock(&memcg->event_list_lock);
5145 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5146 		list_del_init(&event->list);
5147 		schedule_work(&event->remove);
5148 	}
5149 	spin_unlock(&memcg->event_list_lock);
5150 
5151 	page_counter_set_min(&memcg->memory, 0);
5152 	page_counter_set_low(&memcg->memory, 0);
5153 
5154 	memcg_offline_kmem(memcg);
5155 	wb_memcg_offline(memcg);
5156 
5157 	drain_all_stock(memcg);
5158 
5159 	mem_cgroup_id_put(memcg);
5160 }
5161 
5162 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5163 {
5164 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5165 
5166 	invalidate_reclaim_iterators(memcg);
5167 }
5168 
5169 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5170 {
5171 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5172 	int __maybe_unused i;
5173 
5174 #ifdef CONFIG_CGROUP_WRITEBACK
5175 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5176 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5177 #endif
5178 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5179 		static_branch_dec(&memcg_sockets_enabled_key);
5180 
5181 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5182 		static_branch_dec(&memcg_sockets_enabled_key);
5183 
5184 	vmpressure_cleanup(&memcg->vmpressure);
5185 	cancel_work_sync(&memcg->high_work);
5186 	mem_cgroup_remove_from_trees(memcg);
5187 	memcg_free_shrinker_maps(memcg);
5188 	memcg_free_kmem(memcg);
5189 	mem_cgroup_free(memcg);
5190 }
5191 
5192 /**
5193  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5194  * @css: the target css
5195  *
5196  * Reset the states of the mem_cgroup associated with @css.  This is
5197  * invoked when the userland requests disabling on the default hierarchy
5198  * but the memcg is pinned through dependency.  The memcg should stop
5199  * applying policies and should revert to the vanilla state as it may be
5200  * made visible again.
5201  *
5202  * The current implementation only resets the essential configurations.
5203  * This needs to be expanded to cover all the visible parts.
5204  */
5205 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5206 {
5207 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5208 
5209 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5210 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5211 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5212 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5213 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5214 	page_counter_set_min(&memcg->memory, 0);
5215 	page_counter_set_low(&memcg->memory, 0);
5216 	WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5217 	memcg->soft_limit = PAGE_COUNTER_MAX;
5218 	memcg_wb_domain_size_changed(memcg);
5219 }
5220 
5221 #ifdef CONFIG_MMU
5222 /* Handlers for move charge at task migration. */
5223 static int mem_cgroup_do_precharge(unsigned long count)
5224 {
5225 	int ret;
5226 
5227 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5228 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5229 	if (!ret) {
5230 		mc.precharge += count;
5231 		return ret;
5232 	}
5233 
5234 	/* Try charges one by one with reclaim, but do not retry */
5235 	while (count--) {
5236 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5237 		if (ret)
5238 			return ret;
5239 		mc.precharge++;
5240 		cond_resched();
5241 	}
5242 	return 0;
5243 }
5244 
5245 union mc_target {
5246 	struct page	*page;
5247 	swp_entry_t	ent;
5248 };
5249 
5250 enum mc_target_type {
5251 	MC_TARGET_NONE = 0,
5252 	MC_TARGET_PAGE,
5253 	MC_TARGET_SWAP,
5254 	MC_TARGET_DEVICE,
5255 };
5256 
5257 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5258 						unsigned long addr, pte_t ptent)
5259 {
5260 	struct page *page = vm_normal_page(vma, addr, ptent);
5261 
5262 	if (!page || !page_mapped(page))
5263 		return NULL;
5264 	if (PageAnon(page)) {
5265 		if (!(mc.flags & MOVE_ANON))
5266 			return NULL;
5267 	} else {
5268 		if (!(mc.flags & MOVE_FILE))
5269 			return NULL;
5270 	}
5271 	if (!get_page_unless_zero(page))
5272 		return NULL;
5273 
5274 	return page;
5275 }
5276 
5277 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5278 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5279 			pte_t ptent, swp_entry_t *entry)
5280 {
5281 	struct page *page = NULL;
5282 	swp_entry_t ent = pte_to_swp_entry(ptent);
5283 
5284 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5285 		return NULL;
5286 
5287 	/*
5288 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5289 	 * a device and because they are not accessible by CPU they are store
5290 	 * as special swap entry in the CPU page table.
5291 	 */
5292 	if (is_device_private_entry(ent)) {
5293 		page = device_private_entry_to_page(ent);
5294 		/*
5295 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5296 		 * a refcount of 1 when free (unlike normal page)
5297 		 */
5298 		if (!page_ref_add_unless(page, 1, 1))
5299 			return NULL;
5300 		return page;
5301 	}
5302 
5303 	/*
5304 	 * Because lookup_swap_cache() updates some statistics counter,
5305 	 * we call find_get_page() with swapper_space directly.
5306 	 */
5307 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5308 	if (do_memsw_account())
5309 		entry->val = ent.val;
5310 
5311 	return page;
5312 }
5313 #else
5314 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5315 			pte_t ptent, swp_entry_t *entry)
5316 {
5317 	return NULL;
5318 }
5319 #endif
5320 
5321 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5322 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5323 {
5324 	struct page *page = NULL;
5325 	struct address_space *mapping;
5326 	pgoff_t pgoff;
5327 
5328 	if (!vma->vm_file) /* anonymous vma */
5329 		return NULL;
5330 	if (!(mc.flags & MOVE_FILE))
5331 		return NULL;
5332 
5333 	mapping = vma->vm_file->f_mapping;
5334 	pgoff = linear_page_index(vma, addr);
5335 
5336 	/* page is moved even if it's not RSS of this task(page-faulted). */
5337 #ifdef CONFIG_SWAP
5338 	/* shmem/tmpfs may report page out on swap: account for that too. */
5339 	if (shmem_mapping(mapping)) {
5340 		page = find_get_entry(mapping, pgoff);
5341 		if (xa_is_value(page)) {
5342 			swp_entry_t swp = radix_to_swp_entry(page);
5343 			if (do_memsw_account())
5344 				*entry = swp;
5345 			page = find_get_page(swap_address_space(swp),
5346 					     swp_offset(swp));
5347 		}
5348 	} else
5349 		page = find_get_page(mapping, pgoff);
5350 #else
5351 	page = find_get_page(mapping, pgoff);
5352 #endif
5353 	return page;
5354 }
5355 
5356 /**
5357  * mem_cgroup_move_account - move account of the page
5358  * @page: the page
5359  * @compound: charge the page as compound or small page
5360  * @from: mem_cgroup which the page is moved from.
5361  * @to:	mem_cgroup which the page is moved to. @from != @to.
5362  *
5363  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5364  *
5365  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5366  * from old cgroup.
5367  */
5368 static int mem_cgroup_move_account(struct page *page,
5369 				   bool compound,
5370 				   struct mem_cgroup *from,
5371 				   struct mem_cgroup *to)
5372 {
5373 	struct lruvec *from_vec, *to_vec;
5374 	struct pglist_data *pgdat;
5375 	unsigned long flags;
5376 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5377 	int ret;
5378 	bool anon;
5379 
5380 	VM_BUG_ON(from == to);
5381 	VM_BUG_ON_PAGE(PageLRU(page), page);
5382 	VM_BUG_ON(compound && !PageTransHuge(page));
5383 
5384 	/*
5385 	 * Prevent mem_cgroup_migrate() from looking at
5386 	 * page->mem_cgroup of its source page while we change it.
5387 	 */
5388 	ret = -EBUSY;
5389 	if (!trylock_page(page))
5390 		goto out;
5391 
5392 	ret = -EINVAL;
5393 	if (page->mem_cgroup != from)
5394 		goto out_unlock;
5395 
5396 	anon = PageAnon(page);
5397 
5398 	pgdat = page_pgdat(page);
5399 	from_vec = mem_cgroup_lruvec(from, pgdat);
5400 	to_vec = mem_cgroup_lruvec(to, pgdat);
5401 
5402 	spin_lock_irqsave(&from->move_lock, flags);
5403 
5404 	if (!anon && page_mapped(page)) {
5405 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5406 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5407 	}
5408 
5409 	/*
5410 	 * move_lock grabbed above and caller set from->moving_account, so
5411 	 * mod_memcg_page_state will serialize updates to PageDirty.
5412 	 * So mapping should be stable for dirty pages.
5413 	 */
5414 	if (!anon && PageDirty(page)) {
5415 		struct address_space *mapping = page_mapping(page);
5416 
5417 		if (mapping_cap_account_dirty(mapping)) {
5418 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5419 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5420 		}
5421 	}
5422 
5423 	if (PageWriteback(page)) {
5424 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5425 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5426 	}
5427 
5428 	/*
5429 	 * It is safe to change page->mem_cgroup here because the page
5430 	 * is referenced, charged, and isolated - we can't race with
5431 	 * uncharging, charging, migration, or LRU putback.
5432 	 */
5433 
5434 	/* caller should have done css_get */
5435 	page->mem_cgroup = to;
5436 
5437 	spin_unlock_irqrestore(&from->move_lock, flags);
5438 
5439 	ret = 0;
5440 
5441 	local_irq_disable();
5442 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5443 	memcg_check_events(to, page);
5444 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5445 	memcg_check_events(from, page);
5446 	local_irq_enable();
5447 out_unlock:
5448 	unlock_page(page);
5449 out:
5450 	return ret;
5451 }
5452 
5453 /**
5454  * get_mctgt_type - get target type of moving charge
5455  * @vma: the vma the pte to be checked belongs
5456  * @addr: the address corresponding to the pte to be checked
5457  * @ptent: the pte to be checked
5458  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5459  *
5460  * Returns
5461  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5462  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5463  *     move charge. if @target is not NULL, the page is stored in target->page
5464  *     with extra refcnt got(Callers should handle it).
5465  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5466  *     target for charge migration. if @target is not NULL, the entry is stored
5467  *     in target->ent.
5468  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5469  *     (so ZONE_DEVICE page and thus not on the lru).
5470  *     For now we such page is charge like a regular page would be as for all
5471  *     intent and purposes it is just special memory taking the place of a
5472  *     regular page.
5473  *
5474  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5475  *
5476  * Called with pte lock held.
5477  */
5478 
5479 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5480 		unsigned long addr, pte_t ptent, union mc_target *target)
5481 {
5482 	struct page *page = NULL;
5483 	enum mc_target_type ret = MC_TARGET_NONE;
5484 	swp_entry_t ent = { .val = 0 };
5485 
5486 	if (pte_present(ptent))
5487 		page = mc_handle_present_pte(vma, addr, ptent);
5488 	else if (is_swap_pte(ptent))
5489 		page = mc_handle_swap_pte(vma, ptent, &ent);
5490 	else if (pte_none(ptent))
5491 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5492 
5493 	if (!page && !ent.val)
5494 		return ret;
5495 	if (page) {
5496 		/*
5497 		 * Do only loose check w/o serialization.
5498 		 * mem_cgroup_move_account() checks the page is valid or
5499 		 * not under LRU exclusion.
5500 		 */
5501 		if (page->mem_cgroup == mc.from) {
5502 			ret = MC_TARGET_PAGE;
5503 			if (is_device_private_page(page))
5504 				ret = MC_TARGET_DEVICE;
5505 			if (target)
5506 				target->page = page;
5507 		}
5508 		if (!ret || !target)
5509 			put_page(page);
5510 	}
5511 	/*
5512 	 * There is a swap entry and a page doesn't exist or isn't charged.
5513 	 * But we cannot move a tail-page in a THP.
5514 	 */
5515 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5516 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5517 		ret = MC_TARGET_SWAP;
5518 		if (target)
5519 			target->ent = ent;
5520 	}
5521 	return ret;
5522 }
5523 
5524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5525 /*
5526  * We don't consider PMD mapped swapping or file mapped pages because THP does
5527  * not support them for now.
5528  * Caller should make sure that pmd_trans_huge(pmd) is true.
5529  */
5530 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5531 		unsigned long addr, pmd_t pmd, union mc_target *target)
5532 {
5533 	struct page *page = NULL;
5534 	enum mc_target_type ret = MC_TARGET_NONE;
5535 
5536 	if (unlikely(is_swap_pmd(pmd))) {
5537 		VM_BUG_ON(thp_migration_supported() &&
5538 				  !is_pmd_migration_entry(pmd));
5539 		return ret;
5540 	}
5541 	page = pmd_page(pmd);
5542 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5543 	if (!(mc.flags & MOVE_ANON))
5544 		return ret;
5545 	if (page->mem_cgroup == mc.from) {
5546 		ret = MC_TARGET_PAGE;
5547 		if (target) {
5548 			get_page(page);
5549 			target->page = page;
5550 		}
5551 	}
5552 	return ret;
5553 }
5554 #else
5555 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5556 		unsigned long addr, pmd_t pmd, union mc_target *target)
5557 {
5558 	return MC_TARGET_NONE;
5559 }
5560 #endif
5561 
5562 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5563 					unsigned long addr, unsigned long end,
5564 					struct mm_walk *walk)
5565 {
5566 	struct vm_area_struct *vma = walk->vma;
5567 	pte_t *pte;
5568 	spinlock_t *ptl;
5569 
5570 	ptl = pmd_trans_huge_lock(pmd, vma);
5571 	if (ptl) {
5572 		/*
5573 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5574 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5575 		 * this might change.
5576 		 */
5577 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5578 			mc.precharge += HPAGE_PMD_NR;
5579 		spin_unlock(ptl);
5580 		return 0;
5581 	}
5582 
5583 	if (pmd_trans_unstable(pmd))
5584 		return 0;
5585 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5586 	for (; addr != end; pte++, addr += PAGE_SIZE)
5587 		if (get_mctgt_type(vma, addr, *pte, NULL))
5588 			mc.precharge++;	/* increment precharge temporarily */
5589 	pte_unmap_unlock(pte - 1, ptl);
5590 	cond_resched();
5591 
5592 	return 0;
5593 }
5594 
5595 static const struct mm_walk_ops precharge_walk_ops = {
5596 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5597 };
5598 
5599 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5600 {
5601 	unsigned long precharge;
5602 
5603 	down_read(&mm->mmap_sem);
5604 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5605 	up_read(&mm->mmap_sem);
5606 
5607 	precharge = mc.precharge;
5608 	mc.precharge = 0;
5609 
5610 	return precharge;
5611 }
5612 
5613 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5614 {
5615 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5616 
5617 	VM_BUG_ON(mc.moving_task);
5618 	mc.moving_task = current;
5619 	return mem_cgroup_do_precharge(precharge);
5620 }
5621 
5622 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5623 static void __mem_cgroup_clear_mc(void)
5624 {
5625 	struct mem_cgroup *from = mc.from;
5626 	struct mem_cgroup *to = mc.to;
5627 
5628 	/* we must uncharge all the leftover precharges from mc.to */
5629 	if (mc.precharge) {
5630 		cancel_charge(mc.to, mc.precharge);
5631 		mc.precharge = 0;
5632 	}
5633 	/*
5634 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5635 	 * we must uncharge here.
5636 	 */
5637 	if (mc.moved_charge) {
5638 		cancel_charge(mc.from, mc.moved_charge);
5639 		mc.moved_charge = 0;
5640 	}
5641 	/* we must fixup refcnts and charges */
5642 	if (mc.moved_swap) {
5643 		/* uncharge swap account from the old cgroup */
5644 		if (!mem_cgroup_is_root(mc.from))
5645 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5646 
5647 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5648 
5649 		/*
5650 		 * we charged both to->memory and to->memsw, so we
5651 		 * should uncharge to->memory.
5652 		 */
5653 		if (!mem_cgroup_is_root(mc.to))
5654 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5655 
5656 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5657 		css_put_many(&mc.to->css, mc.moved_swap);
5658 
5659 		mc.moved_swap = 0;
5660 	}
5661 	memcg_oom_recover(from);
5662 	memcg_oom_recover(to);
5663 	wake_up_all(&mc.waitq);
5664 }
5665 
5666 static void mem_cgroup_clear_mc(void)
5667 {
5668 	struct mm_struct *mm = mc.mm;
5669 
5670 	/*
5671 	 * we must clear moving_task before waking up waiters at the end of
5672 	 * task migration.
5673 	 */
5674 	mc.moving_task = NULL;
5675 	__mem_cgroup_clear_mc();
5676 	spin_lock(&mc.lock);
5677 	mc.from = NULL;
5678 	mc.to = NULL;
5679 	mc.mm = NULL;
5680 	spin_unlock(&mc.lock);
5681 
5682 	mmput(mm);
5683 }
5684 
5685 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5686 {
5687 	struct cgroup_subsys_state *css;
5688 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5689 	struct mem_cgroup *from;
5690 	struct task_struct *leader, *p;
5691 	struct mm_struct *mm;
5692 	unsigned long move_flags;
5693 	int ret = 0;
5694 
5695 	/* charge immigration isn't supported on the default hierarchy */
5696 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5697 		return 0;
5698 
5699 	/*
5700 	 * Multi-process migrations only happen on the default hierarchy
5701 	 * where charge immigration is not used.  Perform charge
5702 	 * immigration if @tset contains a leader and whine if there are
5703 	 * multiple.
5704 	 */
5705 	p = NULL;
5706 	cgroup_taskset_for_each_leader(leader, css, tset) {
5707 		WARN_ON_ONCE(p);
5708 		p = leader;
5709 		memcg = mem_cgroup_from_css(css);
5710 	}
5711 	if (!p)
5712 		return 0;
5713 
5714 	/*
5715 	 * We are now commited to this value whatever it is. Changes in this
5716 	 * tunable will only affect upcoming migrations, not the current one.
5717 	 * So we need to save it, and keep it going.
5718 	 */
5719 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5720 	if (!move_flags)
5721 		return 0;
5722 
5723 	from = mem_cgroup_from_task(p);
5724 
5725 	VM_BUG_ON(from == memcg);
5726 
5727 	mm = get_task_mm(p);
5728 	if (!mm)
5729 		return 0;
5730 	/* We move charges only when we move a owner of the mm */
5731 	if (mm->owner == p) {
5732 		VM_BUG_ON(mc.from);
5733 		VM_BUG_ON(mc.to);
5734 		VM_BUG_ON(mc.precharge);
5735 		VM_BUG_ON(mc.moved_charge);
5736 		VM_BUG_ON(mc.moved_swap);
5737 
5738 		spin_lock(&mc.lock);
5739 		mc.mm = mm;
5740 		mc.from = from;
5741 		mc.to = memcg;
5742 		mc.flags = move_flags;
5743 		spin_unlock(&mc.lock);
5744 		/* We set mc.moving_task later */
5745 
5746 		ret = mem_cgroup_precharge_mc(mm);
5747 		if (ret)
5748 			mem_cgroup_clear_mc();
5749 	} else {
5750 		mmput(mm);
5751 	}
5752 	return ret;
5753 }
5754 
5755 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5756 {
5757 	if (mc.to)
5758 		mem_cgroup_clear_mc();
5759 }
5760 
5761 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5762 				unsigned long addr, unsigned long end,
5763 				struct mm_walk *walk)
5764 {
5765 	int ret = 0;
5766 	struct vm_area_struct *vma = walk->vma;
5767 	pte_t *pte;
5768 	spinlock_t *ptl;
5769 	enum mc_target_type target_type;
5770 	union mc_target target;
5771 	struct page *page;
5772 
5773 	ptl = pmd_trans_huge_lock(pmd, vma);
5774 	if (ptl) {
5775 		if (mc.precharge < HPAGE_PMD_NR) {
5776 			spin_unlock(ptl);
5777 			return 0;
5778 		}
5779 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5780 		if (target_type == MC_TARGET_PAGE) {
5781 			page = target.page;
5782 			if (!isolate_lru_page(page)) {
5783 				if (!mem_cgroup_move_account(page, true,
5784 							     mc.from, mc.to)) {
5785 					mc.precharge -= HPAGE_PMD_NR;
5786 					mc.moved_charge += HPAGE_PMD_NR;
5787 				}
5788 				putback_lru_page(page);
5789 			}
5790 			put_page(page);
5791 		} else if (target_type == MC_TARGET_DEVICE) {
5792 			page = target.page;
5793 			if (!mem_cgroup_move_account(page, true,
5794 						     mc.from, mc.to)) {
5795 				mc.precharge -= HPAGE_PMD_NR;
5796 				mc.moved_charge += HPAGE_PMD_NR;
5797 			}
5798 			put_page(page);
5799 		}
5800 		spin_unlock(ptl);
5801 		return 0;
5802 	}
5803 
5804 	if (pmd_trans_unstable(pmd))
5805 		return 0;
5806 retry:
5807 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5808 	for (; addr != end; addr += PAGE_SIZE) {
5809 		pte_t ptent = *(pte++);
5810 		bool device = false;
5811 		swp_entry_t ent;
5812 
5813 		if (!mc.precharge)
5814 			break;
5815 
5816 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5817 		case MC_TARGET_DEVICE:
5818 			device = true;
5819 			fallthrough;
5820 		case MC_TARGET_PAGE:
5821 			page = target.page;
5822 			/*
5823 			 * We can have a part of the split pmd here. Moving it
5824 			 * can be done but it would be too convoluted so simply
5825 			 * ignore such a partial THP and keep it in original
5826 			 * memcg. There should be somebody mapping the head.
5827 			 */
5828 			if (PageTransCompound(page))
5829 				goto put;
5830 			if (!device && isolate_lru_page(page))
5831 				goto put;
5832 			if (!mem_cgroup_move_account(page, false,
5833 						mc.from, mc.to)) {
5834 				mc.precharge--;
5835 				/* we uncharge from mc.from later. */
5836 				mc.moved_charge++;
5837 			}
5838 			if (!device)
5839 				putback_lru_page(page);
5840 put:			/* get_mctgt_type() gets the page */
5841 			put_page(page);
5842 			break;
5843 		case MC_TARGET_SWAP:
5844 			ent = target.ent;
5845 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5846 				mc.precharge--;
5847 				/* we fixup refcnts and charges later. */
5848 				mc.moved_swap++;
5849 			}
5850 			break;
5851 		default:
5852 			break;
5853 		}
5854 	}
5855 	pte_unmap_unlock(pte - 1, ptl);
5856 	cond_resched();
5857 
5858 	if (addr != end) {
5859 		/*
5860 		 * We have consumed all precharges we got in can_attach().
5861 		 * We try charge one by one, but don't do any additional
5862 		 * charges to mc.to if we have failed in charge once in attach()
5863 		 * phase.
5864 		 */
5865 		ret = mem_cgroup_do_precharge(1);
5866 		if (!ret)
5867 			goto retry;
5868 	}
5869 
5870 	return ret;
5871 }
5872 
5873 static const struct mm_walk_ops charge_walk_ops = {
5874 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5875 };
5876 
5877 static void mem_cgroup_move_charge(void)
5878 {
5879 	lru_add_drain_all();
5880 	/*
5881 	 * Signal lock_page_memcg() to take the memcg's move_lock
5882 	 * while we're moving its pages to another memcg. Then wait
5883 	 * for already started RCU-only updates to finish.
5884 	 */
5885 	atomic_inc(&mc.from->moving_account);
5886 	synchronize_rcu();
5887 retry:
5888 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5889 		/*
5890 		 * Someone who are holding the mmap_sem might be waiting in
5891 		 * waitq. So we cancel all extra charges, wake up all waiters,
5892 		 * and retry. Because we cancel precharges, we might not be able
5893 		 * to move enough charges, but moving charge is a best-effort
5894 		 * feature anyway, so it wouldn't be a big problem.
5895 		 */
5896 		__mem_cgroup_clear_mc();
5897 		cond_resched();
5898 		goto retry;
5899 	}
5900 	/*
5901 	 * When we have consumed all precharges and failed in doing
5902 	 * additional charge, the page walk just aborts.
5903 	 */
5904 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5905 			NULL);
5906 
5907 	up_read(&mc.mm->mmap_sem);
5908 	atomic_dec(&mc.from->moving_account);
5909 }
5910 
5911 static void mem_cgroup_move_task(void)
5912 {
5913 	if (mc.to) {
5914 		mem_cgroup_move_charge();
5915 		mem_cgroup_clear_mc();
5916 	}
5917 }
5918 #else	/* !CONFIG_MMU */
5919 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5920 {
5921 	return 0;
5922 }
5923 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5924 {
5925 }
5926 static void mem_cgroup_move_task(void)
5927 {
5928 }
5929 #endif
5930 
5931 /*
5932  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5933  * to verify whether we're attached to the default hierarchy on each mount
5934  * attempt.
5935  */
5936 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5937 {
5938 	/*
5939 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5940 	 * guarantees that @root doesn't have any children, so turning it
5941 	 * on for the root memcg is enough.
5942 	 */
5943 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5944 		root_mem_cgroup->use_hierarchy = true;
5945 	else
5946 		root_mem_cgroup->use_hierarchy = false;
5947 }
5948 
5949 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5950 {
5951 	if (value == PAGE_COUNTER_MAX)
5952 		seq_puts(m, "max\n");
5953 	else
5954 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5955 
5956 	return 0;
5957 }
5958 
5959 static u64 memory_current_read(struct cgroup_subsys_state *css,
5960 			       struct cftype *cft)
5961 {
5962 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5963 
5964 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5965 }
5966 
5967 static int memory_min_show(struct seq_file *m, void *v)
5968 {
5969 	return seq_puts_memcg_tunable(m,
5970 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5971 }
5972 
5973 static ssize_t memory_min_write(struct kernfs_open_file *of,
5974 				char *buf, size_t nbytes, loff_t off)
5975 {
5976 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5977 	unsigned long min;
5978 	int err;
5979 
5980 	buf = strstrip(buf);
5981 	err = page_counter_memparse(buf, "max", &min);
5982 	if (err)
5983 		return err;
5984 
5985 	page_counter_set_min(&memcg->memory, min);
5986 
5987 	return nbytes;
5988 }
5989 
5990 static int memory_low_show(struct seq_file *m, void *v)
5991 {
5992 	return seq_puts_memcg_tunable(m,
5993 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5994 }
5995 
5996 static ssize_t memory_low_write(struct kernfs_open_file *of,
5997 				char *buf, size_t nbytes, loff_t off)
5998 {
5999 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6000 	unsigned long low;
6001 	int err;
6002 
6003 	buf = strstrip(buf);
6004 	err = page_counter_memparse(buf, "max", &low);
6005 	if (err)
6006 		return err;
6007 
6008 	page_counter_set_low(&memcg->memory, low);
6009 
6010 	return nbytes;
6011 }
6012 
6013 static int memory_high_show(struct seq_file *m, void *v)
6014 {
6015 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6016 }
6017 
6018 static ssize_t memory_high_write(struct kernfs_open_file *of,
6019 				 char *buf, size_t nbytes, loff_t off)
6020 {
6021 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6022 	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6023 	bool drained = false;
6024 	unsigned long high;
6025 	int err;
6026 
6027 	buf = strstrip(buf);
6028 	err = page_counter_memparse(buf, "max", &high);
6029 	if (err)
6030 		return err;
6031 
6032 	WRITE_ONCE(memcg->high, high);
6033 
6034 	for (;;) {
6035 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6036 		unsigned long reclaimed;
6037 
6038 		if (nr_pages <= high)
6039 			break;
6040 
6041 		if (signal_pending(current))
6042 			break;
6043 
6044 		if (!drained) {
6045 			drain_all_stock(memcg);
6046 			drained = true;
6047 			continue;
6048 		}
6049 
6050 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6051 							 GFP_KERNEL, true);
6052 
6053 		if (!reclaimed && !nr_retries--)
6054 			break;
6055 	}
6056 
6057 	return nbytes;
6058 }
6059 
6060 static int memory_max_show(struct seq_file *m, void *v)
6061 {
6062 	return seq_puts_memcg_tunable(m,
6063 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6064 }
6065 
6066 static ssize_t memory_max_write(struct kernfs_open_file *of,
6067 				char *buf, size_t nbytes, loff_t off)
6068 {
6069 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6070 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6071 	bool drained = false;
6072 	unsigned long max;
6073 	int err;
6074 
6075 	buf = strstrip(buf);
6076 	err = page_counter_memparse(buf, "max", &max);
6077 	if (err)
6078 		return err;
6079 
6080 	xchg(&memcg->memory.max, max);
6081 
6082 	for (;;) {
6083 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6084 
6085 		if (nr_pages <= max)
6086 			break;
6087 
6088 		if (signal_pending(current))
6089 			break;
6090 
6091 		if (!drained) {
6092 			drain_all_stock(memcg);
6093 			drained = true;
6094 			continue;
6095 		}
6096 
6097 		if (nr_reclaims) {
6098 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6099 							  GFP_KERNEL, true))
6100 				nr_reclaims--;
6101 			continue;
6102 		}
6103 
6104 		memcg_memory_event(memcg, MEMCG_OOM);
6105 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6106 			break;
6107 	}
6108 
6109 	memcg_wb_domain_size_changed(memcg);
6110 	return nbytes;
6111 }
6112 
6113 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6114 {
6115 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6116 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6117 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6118 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6119 	seq_printf(m, "oom_kill %lu\n",
6120 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6121 }
6122 
6123 static int memory_events_show(struct seq_file *m, void *v)
6124 {
6125 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6126 
6127 	__memory_events_show(m, memcg->memory_events);
6128 	return 0;
6129 }
6130 
6131 static int memory_events_local_show(struct seq_file *m, void *v)
6132 {
6133 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6134 
6135 	__memory_events_show(m, memcg->memory_events_local);
6136 	return 0;
6137 }
6138 
6139 static int memory_stat_show(struct seq_file *m, void *v)
6140 {
6141 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6142 	char *buf;
6143 
6144 	buf = memory_stat_format(memcg);
6145 	if (!buf)
6146 		return -ENOMEM;
6147 	seq_puts(m, buf);
6148 	kfree(buf);
6149 	return 0;
6150 }
6151 
6152 static int memory_oom_group_show(struct seq_file *m, void *v)
6153 {
6154 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6155 
6156 	seq_printf(m, "%d\n", memcg->oom_group);
6157 
6158 	return 0;
6159 }
6160 
6161 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6162 				      char *buf, size_t nbytes, loff_t off)
6163 {
6164 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6165 	int ret, oom_group;
6166 
6167 	buf = strstrip(buf);
6168 	if (!buf)
6169 		return -EINVAL;
6170 
6171 	ret = kstrtoint(buf, 0, &oom_group);
6172 	if (ret)
6173 		return ret;
6174 
6175 	if (oom_group != 0 && oom_group != 1)
6176 		return -EINVAL;
6177 
6178 	memcg->oom_group = oom_group;
6179 
6180 	return nbytes;
6181 }
6182 
6183 static struct cftype memory_files[] = {
6184 	{
6185 		.name = "current",
6186 		.flags = CFTYPE_NOT_ON_ROOT,
6187 		.read_u64 = memory_current_read,
6188 	},
6189 	{
6190 		.name = "min",
6191 		.flags = CFTYPE_NOT_ON_ROOT,
6192 		.seq_show = memory_min_show,
6193 		.write = memory_min_write,
6194 	},
6195 	{
6196 		.name = "low",
6197 		.flags = CFTYPE_NOT_ON_ROOT,
6198 		.seq_show = memory_low_show,
6199 		.write = memory_low_write,
6200 	},
6201 	{
6202 		.name = "high",
6203 		.flags = CFTYPE_NOT_ON_ROOT,
6204 		.seq_show = memory_high_show,
6205 		.write = memory_high_write,
6206 	},
6207 	{
6208 		.name = "max",
6209 		.flags = CFTYPE_NOT_ON_ROOT,
6210 		.seq_show = memory_max_show,
6211 		.write = memory_max_write,
6212 	},
6213 	{
6214 		.name = "events",
6215 		.flags = CFTYPE_NOT_ON_ROOT,
6216 		.file_offset = offsetof(struct mem_cgroup, events_file),
6217 		.seq_show = memory_events_show,
6218 	},
6219 	{
6220 		.name = "events.local",
6221 		.flags = CFTYPE_NOT_ON_ROOT,
6222 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6223 		.seq_show = memory_events_local_show,
6224 	},
6225 	{
6226 		.name = "stat",
6227 		.flags = CFTYPE_NOT_ON_ROOT,
6228 		.seq_show = memory_stat_show,
6229 	},
6230 	{
6231 		.name = "oom.group",
6232 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6233 		.seq_show = memory_oom_group_show,
6234 		.write = memory_oom_group_write,
6235 	},
6236 	{ }	/* terminate */
6237 };
6238 
6239 struct cgroup_subsys memory_cgrp_subsys = {
6240 	.css_alloc = mem_cgroup_css_alloc,
6241 	.css_online = mem_cgroup_css_online,
6242 	.css_offline = mem_cgroup_css_offline,
6243 	.css_released = mem_cgroup_css_released,
6244 	.css_free = mem_cgroup_css_free,
6245 	.css_reset = mem_cgroup_css_reset,
6246 	.can_attach = mem_cgroup_can_attach,
6247 	.cancel_attach = mem_cgroup_cancel_attach,
6248 	.post_attach = mem_cgroup_move_task,
6249 	.bind = mem_cgroup_bind,
6250 	.dfl_cftypes = memory_files,
6251 	.legacy_cftypes = mem_cgroup_legacy_files,
6252 	.early_init = 0,
6253 };
6254 
6255 /*
6256  * This function calculates an individual cgroup's effective
6257  * protection which is derived from its own memory.min/low, its
6258  * parent's and siblings' settings, as well as the actual memory
6259  * distribution in the tree.
6260  *
6261  * The following rules apply to the effective protection values:
6262  *
6263  * 1. At the first level of reclaim, effective protection is equal to
6264  *    the declared protection in memory.min and memory.low.
6265  *
6266  * 2. To enable safe delegation of the protection configuration, at
6267  *    subsequent levels the effective protection is capped to the
6268  *    parent's effective protection.
6269  *
6270  * 3. To make complex and dynamic subtrees easier to configure, the
6271  *    user is allowed to overcommit the declared protection at a given
6272  *    level. If that is the case, the parent's effective protection is
6273  *    distributed to the children in proportion to how much protection
6274  *    they have declared and how much of it they are utilizing.
6275  *
6276  *    This makes distribution proportional, but also work-conserving:
6277  *    if one cgroup claims much more protection than it uses memory,
6278  *    the unused remainder is available to its siblings.
6279  *
6280  * 4. Conversely, when the declared protection is undercommitted at a
6281  *    given level, the distribution of the larger parental protection
6282  *    budget is NOT proportional. A cgroup's protection from a sibling
6283  *    is capped to its own memory.min/low setting.
6284  *
6285  * 5. However, to allow protecting recursive subtrees from each other
6286  *    without having to declare each individual cgroup's fixed share
6287  *    of the ancestor's claim to protection, any unutilized -
6288  *    "floating" - protection from up the tree is distributed in
6289  *    proportion to each cgroup's *usage*. This makes the protection
6290  *    neutral wrt sibling cgroups and lets them compete freely over
6291  *    the shared parental protection budget, but it protects the
6292  *    subtree as a whole from neighboring subtrees.
6293  *
6294  * Note that 4. and 5. are not in conflict: 4. is about protecting
6295  * against immediate siblings whereas 5. is about protecting against
6296  * neighboring subtrees.
6297  */
6298 static unsigned long effective_protection(unsigned long usage,
6299 					  unsigned long parent_usage,
6300 					  unsigned long setting,
6301 					  unsigned long parent_effective,
6302 					  unsigned long siblings_protected)
6303 {
6304 	unsigned long protected;
6305 	unsigned long ep;
6306 
6307 	protected = min(usage, setting);
6308 	/*
6309 	 * If all cgroups at this level combined claim and use more
6310 	 * protection then what the parent affords them, distribute
6311 	 * shares in proportion to utilization.
6312 	 *
6313 	 * We are using actual utilization rather than the statically
6314 	 * claimed protection in order to be work-conserving: claimed
6315 	 * but unused protection is available to siblings that would
6316 	 * otherwise get a smaller chunk than what they claimed.
6317 	 */
6318 	if (siblings_protected > parent_effective)
6319 		return protected * parent_effective / siblings_protected;
6320 
6321 	/*
6322 	 * Ok, utilized protection of all children is within what the
6323 	 * parent affords them, so we know whatever this child claims
6324 	 * and utilizes is effectively protected.
6325 	 *
6326 	 * If there is unprotected usage beyond this value, reclaim
6327 	 * will apply pressure in proportion to that amount.
6328 	 *
6329 	 * If there is unutilized protection, the cgroup will be fully
6330 	 * shielded from reclaim, but we do return a smaller value for
6331 	 * protection than what the group could enjoy in theory. This
6332 	 * is okay. With the overcommit distribution above, effective
6333 	 * protection is always dependent on how memory is actually
6334 	 * consumed among the siblings anyway.
6335 	 */
6336 	ep = protected;
6337 
6338 	/*
6339 	 * If the children aren't claiming (all of) the protection
6340 	 * afforded to them by the parent, distribute the remainder in
6341 	 * proportion to the (unprotected) memory of each cgroup. That
6342 	 * way, cgroups that aren't explicitly prioritized wrt each
6343 	 * other compete freely over the allowance, but they are
6344 	 * collectively protected from neighboring trees.
6345 	 *
6346 	 * We're using unprotected memory for the weight so that if
6347 	 * some cgroups DO claim explicit protection, we don't protect
6348 	 * the same bytes twice.
6349 	 */
6350 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6351 		return ep;
6352 
6353 	if (parent_effective > siblings_protected && usage > protected) {
6354 		unsigned long unclaimed;
6355 
6356 		unclaimed = parent_effective - siblings_protected;
6357 		unclaimed *= usage - protected;
6358 		unclaimed /= parent_usage - siblings_protected;
6359 
6360 		ep += unclaimed;
6361 	}
6362 
6363 	return ep;
6364 }
6365 
6366 /**
6367  * mem_cgroup_protected - check if memory consumption is in the normal range
6368  * @root: the top ancestor of the sub-tree being checked
6369  * @memcg: the memory cgroup to check
6370  *
6371  * WARNING: This function is not stateless! It can only be used as part
6372  *          of a top-down tree iteration, not for isolated queries.
6373  *
6374  * Returns one of the following:
6375  *   MEMCG_PROT_NONE: cgroup memory is not protected
6376  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6377  *     an unprotected supply of reclaimable memory from other cgroups.
6378  *   MEMCG_PROT_MIN: cgroup memory is protected
6379  */
6380 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6381 						struct mem_cgroup *memcg)
6382 {
6383 	unsigned long usage, parent_usage;
6384 	struct mem_cgroup *parent;
6385 
6386 	if (mem_cgroup_disabled())
6387 		return MEMCG_PROT_NONE;
6388 
6389 	if (!root)
6390 		root = root_mem_cgroup;
6391 	if (memcg == root)
6392 		return MEMCG_PROT_NONE;
6393 
6394 	usage = page_counter_read(&memcg->memory);
6395 	if (!usage)
6396 		return MEMCG_PROT_NONE;
6397 
6398 	parent = parent_mem_cgroup(memcg);
6399 	/* No parent means a non-hierarchical mode on v1 memcg */
6400 	if (!parent)
6401 		return MEMCG_PROT_NONE;
6402 
6403 	if (parent == root) {
6404 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6405 		memcg->memory.elow = memcg->memory.low;
6406 		goto out;
6407 	}
6408 
6409 	parent_usage = page_counter_read(&parent->memory);
6410 
6411 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6412 			READ_ONCE(memcg->memory.min),
6413 			READ_ONCE(parent->memory.emin),
6414 			atomic_long_read(&parent->memory.children_min_usage)));
6415 
6416 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6417 			memcg->memory.low, READ_ONCE(parent->memory.elow),
6418 			atomic_long_read(&parent->memory.children_low_usage)));
6419 
6420 out:
6421 	if (usage <= memcg->memory.emin)
6422 		return MEMCG_PROT_MIN;
6423 	else if (usage <= memcg->memory.elow)
6424 		return MEMCG_PROT_LOW;
6425 	else
6426 		return MEMCG_PROT_NONE;
6427 }
6428 
6429 /**
6430  * mem_cgroup_try_charge - try charging a page
6431  * @page: page to charge
6432  * @mm: mm context of the victim
6433  * @gfp_mask: reclaim mode
6434  * @memcgp: charged memcg return
6435  * @compound: charge the page as compound or small page
6436  *
6437  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6438  * pages according to @gfp_mask if necessary.
6439  *
6440  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6441  * Otherwise, an error code is returned.
6442  *
6443  * After page->mapping has been set up, the caller must finalize the
6444  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6445  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6446  */
6447 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6448 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6449 			  bool compound)
6450 {
6451 	struct mem_cgroup *memcg = NULL;
6452 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6453 	int ret = 0;
6454 
6455 	if (mem_cgroup_disabled())
6456 		goto out;
6457 
6458 	if (PageSwapCache(page)) {
6459 		/*
6460 		 * Every swap fault against a single page tries to charge the
6461 		 * page, bail as early as possible.  shmem_unuse() encounters
6462 		 * already charged pages, too.  The USED bit is protected by
6463 		 * the page lock, which serializes swap cache removal, which
6464 		 * in turn serializes uncharging.
6465 		 */
6466 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6467 		if (compound_head(page)->mem_cgroup)
6468 			goto out;
6469 
6470 		if (do_swap_account) {
6471 			swp_entry_t ent = { .val = page_private(page), };
6472 			unsigned short id = lookup_swap_cgroup_id(ent);
6473 
6474 			rcu_read_lock();
6475 			memcg = mem_cgroup_from_id(id);
6476 			if (memcg && !css_tryget_online(&memcg->css))
6477 				memcg = NULL;
6478 			rcu_read_unlock();
6479 		}
6480 	}
6481 
6482 	if (!memcg)
6483 		memcg = get_mem_cgroup_from_mm(mm);
6484 
6485 	ret = try_charge(memcg, gfp_mask, nr_pages);
6486 
6487 	css_put(&memcg->css);
6488 out:
6489 	*memcgp = memcg;
6490 	return ret;
6491 }
6492 
6493 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6494 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6495 			  bool compound)
6496 {
6497 	struct mem_cgroup *memcg;
6498 	int ret;
6499 
6500 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6501 	memcg = *memcgp;
6502 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6503 	return ret;
6504 }
6505 
6506 /**
6507  * mem_cgroup_commit_charge - commit a page charge
6508  * @page: page to charge
6509  * @memcg: memcg to charge the page to
6510  * @lrucare: page might be on LRU already
6511  * @compound: charge the page as compound or small page
6512  *
6513  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6514  * after page->mapping has been set up.  This must happen atomically
6515  * as part of the page instantiation, i.e. under the page table lock
6516  * for anonymous pages, under the page lock for page and swap cache.
6517  *
6518  * In addition, the page must not be on the LRU during the commit, to
6519  * prevent racing with task migration.  If it might be, use @lrucare.
6520  *
6521  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6522  */
6523 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6524 			      bool lrucare, bool compound)
6525 {
6526 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6527 
6528 	VM_BUG_ON_PAGE(!page->mapping, page);
6529 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6530 
6531 	if (mem_cgroup_disabled())
6532 		return;
6533 	/*
6534 	 * Swap faults will attempt to charge the same page multiple
6535 	 * times.  But reuse_swap_page() might have removed the page
6536 	 * from swapcache already, so we can't check PageSwapCache().
6537 	 */
6538 	if (!memcg)
6539 		return;
6540 
6541 	commit_charge(page, memcg, lrucare);
6542 
6543 	local_irq_disable();
6544 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6545 	memcg_check_events(memcg, page);
6546 	local_irq_enable();
6547 
6548 	if (do_memsw_account() && PageSwapCache(page)) {
6549 		swp_entry_t entry = { .val = page_private(page) };
6550 		/*
6551 		 * The swap entry might not get freed for a long time,
6552 		 * let's not wait for it.  The page already received a
6553 		 * memory+swap charge, drop the swap entry duplicate.
6554 		 */
6555 		mem_cgroup_uncharge_swap(entry, nr_pages);
6556 	}
6557 }
6558 
6559 /**
6560  * mem_cgroup_cancel_charge - cancel a page charge
6561  * @page: page to charge
6562  * @memcg: memcg to charge the page to
6563  * @compound: charge the page as compound or small page
6564  *
6565  * Cancel a charge transaction started by mem_cgroup_try_charge().
6566  */
6567 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6568 		bool compound)
6569 {
6570 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6571 
6572 	if (mem_cgroup_disabled())
6573 		return;
6574 	/*
6575 	 * Swap faults will attempt to charge the same page multiple
6576 	 * times.  But reuse_swap_page() might have removed the page
6577 	 * from swapcache already, so we can't check PageSwapCache().
6578 	 */
6579 	if (!memcg)
6580 		return;
6581 
6582 	cancel_charge(memcg, nr_pages);
6583 }
6584 
6585 struct uncharge_gather {
6586 	struct mem_cgroup *memcg;
6587 	unsigned long pgpgout;
6588 	unsigned long nr_anon;
6589 	unsigned long nr_file;
6590 	unsigned long nr_kmem;
6591 	unsigned long nr_huge;
6592 	unsigned long nr_shmem;
6593 	struct page *dummy_page;
6594 };
6595 
6596 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6597 {
6598 	memset(ug, 0, sizeof(*ug));
6599 }
6600 
6601 static void uncharge_batch(const struct uncharge_gather *ug)
6602 {
6603 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6604 	unsigned long flags;
6605 
6606 	if (!mem_cgroup_is_root(ug->memcg)) {
6607 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6608 		if (do_memsw_account())
6609 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6610 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6611 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6612 		memcg_oom_recover(ug->memcg);
6613 	}
6614 
6615 	local_irq_save(flags);
6616 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6617 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6618 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6619 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6620 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6621 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6622 	memcg_check_events(ug->memcg, ug->dummy_page);
6623 	local_irq_restore(flags);
6624 
6625 	if (!mem_cgroup_is_root(ug->memcg))
6626 		css_put_many(&ug->memcg->css, nr_pages);
6627 }
6628 
6629 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6630 {
6631 	VM_BUG_ON_PAGE(PageLRU(page), page);
6632 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6633 			!PageHWPoison(page) , page);
6634 
6635 	if (!page->mem_cgroup)
6636 		return;
6637 
6638 	/*
6639 	 * Nobody should be changing or seriously looking at
6640 	 * page->mem_cgroup at this point, we have fully
6641 	 * exclusive access to the page.
6642 	 */
6643 
6644 	if (ug->memcg != page->mem_cgroup) {
6645 		if (ug->memcg) {
6646 			uncharge_batch(ug);
6647 			uncharge_gather_clear(ug);
6648 		}
6649 		ug->memcg = page->mem_cgroup;
6650 	}
6651 
6652 	if (!PageKmemcg(page)) {
6653 		unsigned int nr_pages = 1;
6654 
6655 		if (PageTransHuge(page)) {
6656 			nr_pages = compound_nr(page);
6657 			ug->nr_huge += nr_pages;
6658 		}
6659 		if (PageAnon(page))
6660 			ug->nr_anon += nr_pages;
6661 		else {
6662 			ug->nr_file += nr_pages;
6663 			if (PageSwapBacked(page))
6664 				ug->nr_shmem += nr_pages;
6665 		}
6666 		ug->pgpgout++;
6667 	} else {
6668 		ug->nr_kmem += compound_nr(page);
6669 		__ClearPageKmemcg(page);
6670 	}
6671 
6672 	ug->dummy_page = page;
6673 	page->mem_cgroup = NULL;
6674 }
6675 
6676 static void uncharge_list(struct list_head *page_list)
6677 {
6678 	struct uncharge_gather ug;
6679 	struct list_head *next;
6680 
6681 	uncharge_gather_clear(&ug);
6682 
6683 	/*
6684 	 * Note that the list can be a single page->lru; hence the
6685 	 * do-while loop instead of a simple list_for_each_entry().
6686 	 */
6687 	next = page_list->next;
6688 	do {
6689 		struct page *page;
6690 
6691 		page = list_entry(next, struct page, lru);
6692 		next = page->lru.next;
6693 
6694 		uncharge_page(page, &ug);
6695 	} while (next != page_list);
6696 
6697 	if (ug.memcg)
6698 		uncharge_batch(&ug);
6699 }
6700 
6701 /**
6702  * mem_cgroup_uncharge - uncharge a page
6703  * @page: page to uncharge
6704  *
6705  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6706  * mem_cgroup_commit_charge().
6707  */
6708 void mem_cgroup_uncharge(struct page *page)
6709 {
6710 	struct uncharge_gather ug;
6711 
6712 	if (mem_cgroup_disabled())
6713 		return;
6714 
6715 	/* Don't touch page->lru of any random page, pre-check: */
6716 	if (!page->mem_cgroup)
6717 		return;
6718 
6719 	uncharge_gather_clear(&ug);
6720 	uncharge_page(page, &ug);
6721 	uncharge_batch(&ug);
6722 }
6723 
6724 /**
6725  * mem_cgroup_uncharge_list - uncharge a list of page
6726  * @page_list: list of pages to uncharge
6727  *
6728  * Uncharge a list of pages previously charged with
6729  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6730  */
6731 void mem_cgroup_uncharge_list(struct list_head *page_list)
6732 {
6733 	if (mem_cgroup_disabled())
6734 		return;
6735 
6736 	if (!list_empty(page_list))
6737 		uncharge_list(page_list);
6738 }
6739 
6740 /**
6741  * mem_cgroup_migrate - charge a page's replacement
6742  * @oldpage: currently circulating page
6743  * @newpage: replacement page
6744  *
6745  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6746  * be uncharged upon free.
6747  *
6748  * Both pages must be locked, @newpage->mapping must be set up.
6749  */
6750 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6751 {
6752 	struct mem_cgroup *memcg;
6753 	unsigned int nr_pages;
6754 	unsigned long flags;
6755 
6756 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6757 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6758 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6759 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6760 		       newpage);
6761 
6762 	if (mem_cgroup_disabled())
6763 		return;
6764 
6765 	/* Page cache replacement: new page already charged? */
6766 	if (newpage->mem_cgroup)
6767 		return;
6768 
6769 	/* Swapcache readahead pages can get replaced before being charged */
6770 	memcg = oldpage->mem_cgroup;
6771 	if (!memcg)
6772 		return;
6773 
6774 	/* Force-charge the new page. The old one will be freed soon */
6775 	nr_pages = hpage_nr_pages(newpage);
6776 
6777 	page_counter_charge(&memcg->memory, nr_pages);
6778 	if (do_memsw_account())
6779 		page_counter_charge(&memcg->memsw, nr_pages);
6780 	css_get_many(&memcg->css, nr_pages);
6781 
6782 	commit_charge(newpage, memcg, false);
6783 
6784 	local_irq_save(flags);
6785 	mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6786 			nr_pages);
6787 	memcg_check_events(memcg, newpage);
6788 	local_irq_restore(flags);
6789 }
6790 
6791 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6792 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6793 
6794 void mem_cgroup_sk_alloc(struct sock *sk)
6795 {
6796 	struct mem_cgroup *memcg;
6797 
6798 	if (!mem_cgroup_sockets_enabled)
6799 		return;
6800 
6801 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6802 	if (in_interrupt())
6803 		return;
6804 
6805 	rcu_read_lock();
6806 	memcg = mem_cgroup_from_task(current);
6807 	if (memcg == root_mem_cgroup)
6808 		goto out;
6809 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6810 		goto out;
6811 	if (css_tryget(&memcg->css))
6812 		sk->sk_memcg = memcg;
6813 out:
6814 	rcu_read_unlock();
6815 }
6816 
6817 void mem_cgroup_sk_free(struct sock *sk)
6818 {
6819 	if (sk->sk_memcg)
6820 		css_put(&sk->sk_memcg->css);
6821 }
6822 
6823 /**
6824  * mem_cgroup_charge_skmem - charge socket memory
6825  * @memcg: memcg to charge
6826  * @nr_pages: number of pages to charge
6827  *
6828  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6829  * @memcg's configured limit, %false if the charge had to be forced.
6830  */
6831 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6832 {
6833 	gfp_t gfp_mask = GFP_KERNEL;
6834 
6835 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6836 		struct page_counter *fail;
6837 
6838 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6839 			memcg->tcpmem_pressure = 0;
6840 			return true;
6841 		}
6842 		page_counter_charge(&memcg->tcpmem, nr_pages);
6843 		memcg->tcpmem_pressure = 1;
6844 		return false;
6845 	}
6846 
6847 	/* Don't block in the packet receive path */
6848 	if (in_softirq())
6849 		gfp_mask = GFP_NOWAIT;
6850 
6851 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6852 
6853 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6854 		return true;
6855 
6856 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6857 	return false;
6858 }
6859 
6860 /**
6861  * mem_cgroup_uncharge_skmem - uncharge socket memory
6862  * @memcg: memcg to uncharge
6863  * @nr_pages: number of pages to uncharge
6864  */
6865 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6866 {
6867 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6868 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6869 		return;
6870 	}
6871 
6872 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6873 
6874 	refill_stock(memcg, nr_pages);
6875 }
6876 
6877 static int __init cgroup_memory(char *s)
6878 {
6879 	char *token;
6880 
6881 	while ((token = strsep(&s, ",")) != NULL) {
6882 		if (!*token)
6883 			continue;
6884 		if (!strcmp(token, "nosocket"))
6885 			cgroup_memory_nosocket = true;
6886 		if (!strcmp(token, "nokmem"))
6887 			cgroup_memory_nokmem = true;
6888 	}
6889 	return 0;
6890 }
6891 __setup("cgroup.memory=", cgroup_memory);
6892 
6893 /*
6894  * subsys_initcall() for memory controller.
6895  *
6896  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6897  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6898  * basically everything that doesn't depend on a specific mem_cgroup structure
6899  * should be initialized from here.
6900  */
6901 static int __init mem_cgroup_init(void)
6902 {
6903 	int cpu, node;
6904 
6905 #ifdef CONFIG_MEMCG_KMEM
6906 	/*
6907 	 * Kmem cache creation is mostly done with the slab_mutex held,
6908 	 * so use a workqueue with limited concurrency to avoid stalling
6909 	 * all worker threads in case lots of cgroups are created and
6910 	 * destroyed simultaneously.
6911 	 */
6912 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6913 	BUG_ON(!memcg_kmem_cache_wq);
6914 #endif
6915 
6916 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6917 				  memcg_hotplug_cpu_dead);
6918 
6919 	for_each_possible_cpu(cpu)
6920 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6921 			  drain_local_stock);
6922 
6923 	for_each_node(node) {
6924 		struct mem_cgroup_tree_per_node *rtpn;
6925 
6926 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6927 				    node_online(node) ? node : NUMA_NO_NODE);
6928 
6929 		rtpn->rb_root = RB_ROOT;
6930 		rtpn->rb_rightmost = NULL;
6931 		spin_lock_init(&rtpn->lock);
6932 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6933 	}
6934 
6935 	return 0;
6936 }
6937 subsys_initcall(mem_cgroup_init);
6938 
6939 #ifdef CONFIG_MEMCG_SWAP
6940 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6941 {
6942 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6943 		/*
6944 		 * The root cgroup cannot be destroyed, so it's refcount must
6945 		 * always be >= 1.
6946 		 */
6947 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6948 			VM_BUG_ON(1);
6949 			break;
6950 		}
6951 		memcg = parent_mem_cgroup(memcg);
6952 		if (!memcg)
6953 			memcg = root_mem_cgroup;
6954 	}
6955 	return memcg;
6956 }
6957 
6958 /**
6959  * mem_cgroup_swapout - transfer a memsw charge to swap
6960  * @page: page whose memsw charge to transfer
6961  * @entry: swap entry to move the charge to
6962  *
6963  * Transfer the memsw charge of @page to @entry.
6964  */
6965 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6966 {
6967 	struct mem_cgroup *memcg, *swap_memcg;
6968 	unsigned int nr_entries;
6969 	unsigned short oldid;
6970 
6971 	VM_BUG_ON_PAGE(PageLRU(page), page);
6972 	VM_BUG_ON_PAGE(page_count(page), page);
6973 
6974 	if (!do_memsw_account())
6975 		return;
6976 
6977 	memcg = page->mem_cgroup;
6978 
6979 	/* Readahead page, never charged */
6980 	if (!memcg)
6981 		return;
6982 
6983 	/*
6984 	 * In case the memcg owning these pages has been offlined and doesn't
6985 	 * have an ID allocated to it anymore, charge the closest online
6986 	 * ancestor for the swap instead and transfer the memory+swap charge.
6987 	 */
6988 	swap_memcg = mem_cgroup_id_get_online(memcg);
6989 	nr_entries = hpage_nr_pages(page);
6990 	/* Get references for the tail pages, too */
6991 	if (nr_entries > 1)
6992 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6993 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6994 				   nr_entries);
6995 	VM_BUG_ON_PAGE(oldid, page);
6996 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6997 
6998 	page->mem_cgroup = NULL;
6999 
7000 	if (!mem_cgroup_is_root(memcg))
7001 		page_counter_uncharge(&memcg->memory, nr_entries);
7002 
7003 	if (memcg != swap_memcg) {
7004 		if (!mem_cgroup_is_root(swap_memcg))
7005 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7006 		page_counter_uncharge(&memcg->memsw, nr_entries);
7007 	}
7008 
7009 	/*
7010 	 * Interrupts should be disabled here because the caller holds the
7011 	 * i_pages lock which is taken with interrupts-off. It is
7012 	 * important here to have the interrupts disabled because it is the
7013 	 * only synchronisation we have for updating the per-CPU variables.
7014 	 */
7015 	VM_BUG_ON(!irqs_disabled());
7016 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7017 				     -nr_entries);
7018 	memcg_check_events(memcg, page);
7019 
7020 	if (!mem_cgroup_is_root(memcg))
7021 		css_put_many(&memcg->css, nr_entries);
7022 }
7023 
7024 /**
7025  * mem_cgroup_try_charge_swap - try charging swap space for a page
7026  * @page: page being added to swap
7027  * @entry: swap entry to charge
7028  *
7029  * Try to charge @page's memcg for the swap space at @entry.
7030  *
7031  * Returns 0 on success, -ENOMEM on failure.
7032  */
7033 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7034 {
7035 	unsigned int nr_pages = hpage_nr_pages(page);
7036 	struct page_counter *counter;
7037 	struct mem_cgroup *memcg;
7038 	unsigned short oldid;
7039 
7040 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7041 		return 0;
7042 
7043 	memcg = page->mem_cgroup;
7044 
7045 	/* Readahead page, never charged */
7046 	if (!memcg)
7047 		return 0;
7048 
7049 	if (!entry.val) {
7050 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7051 		return 0;
7052 	}
7053 
7054 	memcg = mem_cgroup_id_get_online(memcg);
7055 
7056 	if (!mem_cgroup_is_root(memcg) &&
7057 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7058 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7059 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7060 		mem_cgroup_id_put(memcg);
7061 		return -ENOMEM;
7062 	}
7063 
7064 	/* Get references for the tail pages, too */
7065 	if (nr_pages > 1)
7066 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7067 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7068 	VM_BUG_ON_PAGE(oldid, page);
7069 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7070 
7071 	return 0;
7072 }
7073 
7074 /**
7075  * mem_cgroup_uncharge_swap - uncharge swap space
7076  * @entry: swap entry to uncharge
7077  * @nr_pages: the amount of swap space to uncharge
7078  */
7079 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7080 {
7081 	struct mem_cgroup *memcg;
7082 	unsigned short id;
7083 
7084 	if (!do_swap_account)
7085 		return;
7086 
7087 	id = swap_cgroup_record(entry, 0, nr_pages);
7088 	rcu_read_lock();
7089 	memcg = mem_cgroup_from_id(id);
7090 	if (memcg) {
7091 		if (!mem_cgroup_is_root(memcg)) {
7092 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7093 				page_counter_uncharge(&memcg->swap, nr_pages);
7094 			else
7095 				page_counter_uncharge(&memcg->memsw, nr_pages);
7096 		}
7097 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7098 		mem_cgroup_id_put_many(memcg, nr_pages);
7099 	}
7100 	rcu_read_unlock();
7101 }
7102 
7103 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7104 {
7105 	long nr_swap_pages = get_nr_swap_pages();
7106 
7107 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7108 		return nr_swap_pages;
7109 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7110 		nr_swap_pages = min_t(long, nr_swap_pages,
7111 				      READ_ONCE(memcg->swap.max) -
7112 				      page_counter_read(&memcg->swap));
7113 	return nr_swap_pages;
7114 }
7115 
7116 bool mem_cgroup_swap_full(struct page *page)
7117 {
7118 	struct mem_cgroup *memcg;
7119 
7120 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7121 
7122 	if (vm_swap_full())
7123 		return true;
7124 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7125 		return false;
7126 
7127 	memcg = page->mem_cgroup;
7128 	if (!memcg)
7129 		return false;
7130 
7131 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7132 		if (page_counter_read(&memcg->swap) * 2 >=
7133 		    READ_ONCE(memcg->swap.max))
7134 			return true;
7135 
7136 	return false;
7137 }
7138 
7139 /* for remember boot option*/
7140 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7141 static int really_do_swap_account __initdata = 1;
7142 #else
7143 static int really_do_swap_account __initdata;
7144 #endif
7145 
7146 static int __init enable_swap_account(char *s)
7147 {
7148 	if (!strcmp(s, "1"))
7149 		really_do_swap_account = 1;
7150 	else if (!strcmp(s, "0"))
7151 		really_do_swap_account = 0;
7152 	return 1;
7153 }
7154 __setup("swapaccount=", enable_swap_account);
7155 
7156 static u64 swap_current_read(struct cgroup_subsys_state *css,
7157 			     struct cftype *cft)
7158 {
7159 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7160 
7161 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7162 }
7163 
7164 static int swap_max_show(struct seq_file *m, void *v)
7165 {
7166 	return seq_puts_memcg_tunable(m,
7167 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7168 }
7169 
7170 static ssize_t swap_max_write(struct kernfs_open_file *of,
7171 			      char *buf, size_t nbytes, loff_t off)
7172 {
7173 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7174 	unsigned long max;
7175 	int err;
7176 
7177 	buf = strstrip(buf);
7178 	err = page_counter_memparse(buf, "max", &max);
7179 	if (err)
7180 		return err;
7181 
7182 	xchg(&memcg->swap.max, max);
7183 
7184 	return nbytes;
7185 }
7186 
7187 static int swap_events_show(struct seq_file *m, void *v)
7188 {
7189 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7190 
7191 	seq_printf(m, "max %lu\n",
7192 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7193 	seq_printf(m, "fail %lu\n",
7194 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7195 
7196 	return 0;
7197 }
7198 
7199 static struct cftype swap_files[] = {
7200 	{
7201 		.name = "swap.current",
7202 		.flags = CFTYPE_NOT_ON_ROOT,
7203 		.read_u64 = swap_current_read,
7204 	},
7205 	{
7206 		.name = "swap.max",
7207 		.flags = CFTYPE_NOT_ON_ROOT,
7208 		.seq_show = swap_max_show,
7209 		.write = swap_max_write,
7210 	},
7211 	{
7212 		.name = "swap.events",
7213 		.flags = CFTYPE_NOT_ON_ROOT,
7214 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7215 		.seq_show = swap_events_show,
7216 	},
7217 	{ }	/* terminate */
7218 };
7219 
7220 static struct cftype memsw_cgroup_files[] = {
7221 	{
7222 		.name = "memsw.usage_in_bytes",
7223 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7224 		.read_u64 = mem_cgroup_read_u64,
7225 	},
7226 	{
7227 		.name = "memsw.max_usage_in_bytes",
7228 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7229 		.write = mem_cgroup_reset,
7230 		.read_u64 = mem_cgroup_read_u64,
7231 	},
7232 	{
7233 		.name = "memsw.limit_in_bytes",
7234 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7235 		.write = mem_cgroup_write,
7236 		.read_u64 = mem_cgroup_read_u64,
7237 	},
7238 	{
7239 		.name = "memsw.failcnt",
7240 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7241 		.write = mem_cgroup_reset,
7242 		.read_u64 = mem_cgroup_read_u64,
7243 	},
7244 	{ },	/* terminate */
7245 };
7246 
7247 static int __init mem_cgroup_swap_init(void)
7248 {
7249 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7250 		do_swap_account = 1;
7251 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7252 					       swap_files));
7253 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7254 						  memsw_cgroup_files));
7255 	}
7256 	return 0;
7257 }
7258 subsys_initcall(mem_cgroup_swap_init);
7259 
7260 #endif /* CONFIG_MEMCG_SWAP */
7261