1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/smp.h> 43 #include <linux/page-flags.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/limits.h> 48 #include <linux/export.h> 49 #include <linux/mutex.h> 50 #include <linux/rbtree.h> 51 #include <linux/slab.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/spinlock.h> 55 #include <linux/eventfd.h> 56 #include <linux/poll.h> 57 #include <linux/sort.h> 58 #include <linux/fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/vmpressure.h> 61 #include <linux/mm_inline.h> 62 #include <linux/swap_cgroup.h> 63 #include <linux/cpu.h> 64 #include <linux/oom.h> 65 #include <linux/lockdep.h> 66 #include <linux/file.h> 67 #include <linux/tracehook.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 #define MEM_CGROUP_RECLAIM_RETRIES 5 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 int do_swap_account __read_mostly; 93 #else 94 #define do_swap_account 0 95 #endif 96 97 /* Whether legacy memory+swap accounting is active */ 98 static bool do_memsw_account(void) 99 { 100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 101 } 102 103 static const char *const mem_cgroup_lru_names[] = { 104 "inactive_anon", 105 "active_anon", 106 "inactive_file", 107 "active_file", 108 "unevictable", 109 }; 110 111 #define THRESHOLDS_EVENTS_TARGET 128 112 #define SOFTLIMIT_EVENTS_TARGET 1024 113 #define NUMAINFO_EVENTS_TARGET 1024 114 115 /* 116 * Cgroups above their limits are maintained in a RB-Tree, independent of 117 * their hierarchy representation 118 */ 119 120 struct mem_cgroup_tree_per_node { 121 struct rb_root rb_root; 122 spinlock_t lock; 123 }; 124 125 struct mem_cgroup_tree { 126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 127 }; 128 129 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 130 131 /* for OOM */ 132 struct mem_cgroup_eventfd_list { 133 struct list_head list; 134 struct eventfd_ctx *eventfd; 135 }; 136 137 /* 138 * cgroup_event represents events which userspace want to receive. 139 */ 140 struct mem_cgroup_event { 141 /* 142 * memcg which the event belongs to. 143 */ 144 struct mem_cgroup *memcg; 145 /* 146 * eventfd to signal userspace about the event. 147 */ 148 struct eventfd_ctx *eventfd; 149 /* 150 * Each of these stored in a list by the cgroup. 151 */ 152 struct list_head list; 153 /* 154 * register_event() callback will be used to add new userspace 155 * waiter for changes related to this event. Use eventfd_signal() 156 * on eventfd to send notification to userspace. 157 */ 158 int (*register_event)(struct mem_cgroup *memcg, 159 struct eventfd_ctx *eventfd, const char *args); 160 /* 161 * unregister_event() callback will be called when userspace closes 162 * the eventfd or on cgroup removing. This callback must be set, 163 * if you want provide notification functionality. 164 */ 165 void (*unregister_event)(struct mem_cgroup *memcg, 166 struct eventfd_ctx *eventfd); 167 /* 168 * All fields below needed to unregister event when 169 * userspace closes eventfd. 170 */ 171 poll_table pt; 172 wait_queue_head_t *wqh; 173 wait_queue_entry_t wait; 174 struct work_struct remove; 175 }; 176 177 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 179 180 /* Stuffs for move charges at task migration. */ 181 /* 182 * Types of charges to be moved. 183 */ 184 #define MOVE_ANON 0x1U 185 #define MOVE_FILE 0x2U 186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 187 188 /* "mc" and its members are protected by cgroup_mutex */ 189 static struct move_charge_struct { 190 spinlock_t lock; /* for from, to */ 191 struct mm_struct *mm; 192 struct mem_cgroup *from; 193 struct mem_cgroup *to; 194 unsigned long flags; 195 unsigned long precharge; 196 unsigned long moved_charge; 197 unsigned long moved_swap; 198 struct task_struct *moving_task; /* a task moving charges */ 199 wait_queue_head_t waitq; /* a waitq for other context */ 200 } mc = { 201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 203 }; 204 205 /* 206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 207 * limit reclaim to prevent infinite loops, if they ever occur. 208 */ 209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 211 212 enum charge_type { 213 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 214 MEM_CGROUP_CHARGE_TYPE_ANON, 215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 216 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 217 NR_CHARGE_TYPE, 218 }; 219 220 /* for encoding cft->private value on file */ 221 enum res_type { 222 _MEM, 223 _MEMSWAP, 224 _OOM_TYPE, 225 _KMEM, 226 _TCP, 227 }; 228 229 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 230 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 231 #define MEMFILE_ATTR(val) ((val) & 0xffff) 232 /* Used for OOM nofiier */ 233 #define OOM_CONTROL (0) 234 235 /* Some nice accessors for the vmpressure. */ 236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 237 { 238 if (!memcg) 239 memcg = root_mem_cgroup; 240 return &memcg->vmpressure; 241 } 242 243 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 244 { 245 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 246 } 247 248 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 249 { 250 return (memcg == root_mem_cgroup); 251 } 252 253 #ifndef CONFIG_SLOB 254 /* 255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 256 * The main reason for not using cgroup id for this: 257 * this works better in sparse environments, where we have a lot of memcgs, 258 * but only a few kmem-limited. Or also, if we have, for instance, 200 259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 260 * 200 entry array for that. 261 * 262 * The current size of the caches array is stored in memcg_nr_cache_ids. It 263 * will double each time we have to increase it. 264 */ 265 static DEFINE_IDA(memcg_cache_ida); 266 int memcg_nr_cache_ids; 267 268 /* Protects memcg_nr_cache_ids */ 269 static DECLARE_RWSEM(memcg_cache_ids_sem); 270 271 void memcg_get_cache_ids(void) 272 { 273 down_read(&memcg_cache_ids_sem); 274 } 275 276 void memcg_put_cache_ids(void) 277 { 278 up_read(&memcg_cache_ids_sem); 279 } 280 281 /* 282 * MIN_SIZE is different than 1, because we would like to avoid going through 283 * the alloc/free process all the time. In a small machine, 4 kmem-limited 284 * cgroups is a reasonable guess. In the future, it could be a parameter or 285 * tunable, but that is strictly not necessary. 286 * 287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 288 * this constant directly from cgroup, but it is understandable that this is 289 * better kept as an internal representation in cgroup.c. In any case, the 290 * cgrp_id space is not getting any smaller, and we don't have to necessarily 291 * increase ours as well if it increases. 292 */ 293 #define MEMCG_CACHES_MIN_SIZE 4 294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 295 296 /* 297 * A lot of the calls to the cache allocation functions are expected to be 298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 299 * conditional to this static branch, we'll have to allow modules that does 300 * kmem_cache_alloc and the such to see this symbol as well 301 */ 302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 303 EXPORT_SYMBOL(memcg_kmem_enabled_key); 304 305 struct workqueue_struct *memcg_kmem_cache_wq; 306 307 #endif /* !CONFIG_SLOB */ 308 309 /** 310 * mem_cgroup_css_from_page - css of the memcg associated with a page 311 * @page: page of interest 312 * 313 * If memcg is bound to the default hierarchy, css of the memcg associated 314 * with @page is returned. The returned css remains associated with @page 315 * until it is released. 316 * 317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 318 * is returned. 319 */ 320 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 321 { 322 struct mem_cgroup *memcg; 323 324 memcg = page->mem_cgroup; 325 326 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 327 memcg = root_mem_cgroup; 328 329 return &memcg->css; 330 } 331 332 /** 333 * page_cgroup_ino - return inode number of the memcg a page is charged to 334 * @page: the page 335 * 336 * Look up the closest online ancestor of the memory cgroup @page is charged to 337 * and return its inode number or 0 if @page is not charged to any cgroup. It 338 * is safe to call this function without holding a reference to @page. 339 * 340 * Note, this function is inherently racy, because there is nothing to prevent 341 * the cgroup inode from getting torn down and potentially reallocated a moment 342 * after page_cgroup_ino() returns, so it only should be used by callers that 343 * do not care (such as procfs interfaces). 344 */ 345 ino_t page_cgroup_ino(struct page *page) 346 { 347 struct mem_cgroup *memcg; 348 unsigned long ino = 0; 349 350 rcu_read_lock(); 351 memcg = READ_ONCE(page->mem_cgroup); 352 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 353 memcg = parent_mem_cgroup(memcg); 354 if (memcg) 355 ino = cgroup_ino(memcg->css.cgroup); 356 rcu_read_unlock(); 357 return ino; 358 } 359 360 static struct mem_cgroup_per_node * 361 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 362 { 363 int nid = page_to_nid(page); 364 365 return memcg->nodeinfo[nid]; 366 } 367 368 static struct mem_cgroup_tree_per_node * 369 soft_limit_tree_node(int nid) 370 { 371 return soft_limit_tree.rb_tree_per_node[nid]; 372 } 373 374 static struct mem_cgroup_tree_per_node * 375 soft_limit_tree_from_page(struct page *page) 376 { 377 int nid = page_to_nid(page); 378 379 return soft_limit_tree.rb_tree_per_node[nid]; 380 } 381 382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 383 struct mem_cgroup_tree_per_node *mctz, 384 unsigned long new_usage_in_excess) 385 { 386 struct rb_node **p = &mctz->rb_root.rb_node; 387 struct rb_node *parent = NULL; 388 struct mem_cgroup_per_node *mz_node; 389 390 if (mz->on_tree) 391 return; 392 393 mz->usage_in_excess = new_usage_in_excess; 394 if (!mz->usage_in_excess) 395 return; 396 while (*p) { 397 parent = *p; 398 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 399 tree_node); 400 if (mz->usage_in_excess < mz_node->usage_in_excess) 401 p = &(*p)->rb_left; 402 /* 403 * We can't avoid mem cgroups that are over their soft 404 * limit by the same amount 405 */ 406 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 407 p = &(*p)->rb_right; 408 } 409 rb_link_node(&mz->tree_node, parent, p); 410 rb_insert_color(&mz->tree_node, &mctz->rb_root); 411 mz->on_tree = true; 412 } 413 414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 415 struct mem_cgroup_tree_per_node *mctz) 416 { 417 if (!mz->on_tree) 418 return; 419 rb_erase(&mz->tree_node, &mctz->rb_root); 420 mz->on_tree = false; 421 } 422 423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 424 struct mem_cgroup_tree_per_node *mctz) 425 { 426 unsigned long flags; 427 428 spin_lock_irqsave(&mctz->lock, flags); 429 __mem_cgroup_remove_exceeded(mz, mctz); 430 spin_unlock_irqrestore(&mctz->lock, flags); 431 } 432 433 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 434 { 435 unsigned long nr_pages = page_counter_read(&memcg->memory); 436 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 437 unsigned long excess = 0; 438 439 if (nr_pages > soft_limit) 440 excess = nr_pages - soft_limit; 441 442 return excess; 443 } 444 445 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 446 { 447 unsigned long excess; 448 struct mem_cgroup_per_node *mz; 449 struct mem_cgroup_tree_per_node *mctz; 450 451 mctz = soft_limit_tree_from_page(page); 452 if (!mctz) 453 return; 454 /* 455 * Necessary to update all ancestors when hierarchy is used. 456 * because their event counter is not touched. 457 */ 458 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 459 mz = mem_cgroup_page_nodeinfo(memcg, page); 460 excess = soft_limit_excess(memcg); 461 /* 462 * We have to update the tree if mz is on RB-tree or 463 * mem is over its softlimit. 464 */ 465 if (excess || mz->on_tree) { 466 unsigned long flags; 467 468 spin_lock_irqsave(&mctz->lock, flags); 469 /* if on-tree, remove it */ 470 if (mz->on_tree) 471 __mem_cgroup_remove_exceeded(mz, mctz); 472 /* 473 * Insert again. mz->usage_in_excess will be updated. 474 * If excess is 0, no tree ops. 475 */ 476 __mem_cgroup_insert_exceeded(mz, mctz, excess); 477 spin_unlock_irqrestore(&mctz->lock, flags); 478 } 479 } 480 } 481 482 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 483 { 484 struct mem_cgroup_tree_per_node *mctz; 485 struct mem_cgroup_per_node *mz; 486 int nid; 487 488 for_each_node(nid) { 489 mz = mem_cgroup_nodeinfo(memcg, nid); 490 mctz = soft_limit_tree_node(nid); 491 if (mctz) 492 mem_cgroup_remove_exceeded(mz, mctz); 493 } 494 } 495 496 static struct mem_cgroup_per_node * 497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 498 { 499 struct rb_node *rightmost = NULL; 500 struct mem_cgroup_per_node *mz; 501 502 retry: 503 mz = NULL; 504 rightmost = rb_last(&mctz->rb_root); 505 if (!rightmost) 506 goto done; /* Nothing to reclaim from */ 507 508 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node); 509 /* 510 * Remove the node now but someone else can add it back, 511 * we will to add it back at the end of reclaim to its correct 512 * position in the tree. 513 */ 514 __mem_cgroup_remove_exceeded(mz, mctz); 515 if (!soft_limit_excess(mz->memcg) || 516 !css_tryget_online(&mz->memcg->css)) 517 goto retry; 518 done: 519 return mz; 520 } 521 522 static struct mem_cgroup_per_node * 523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 524 { 525 struct mem_cgroup_per_node *mz; 526 527 spin_lock_irq(&mctz->lock); 528 mz = __mem_cgroup_largest_soft_limit_node(mctz); 529 spin_unlock_irq(&mctz->lock); 530 return mz; 531 } 532 533 /* 534 * Return page count for single (non recursive) @memcg. 535 * 536 * Implementation Note: reading percpu statistics for memcg. 537 * 538 * Both of vmstat[] and percpu_counter has threshold and do periodic 539 * synchronization to implement "quick" read. There are trade-off between 540 * reading cost and precision of value. Then, we may have a chance to implement 541 * a periodic synchronization of counter in memcg's counter. 542 * 543 * But this _read() function is used for user interface now. The user accounts 544 * memory usage by memory cgroup and he _always_ requires exact value because 545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 546 * have to visit all online cpus and make sum. So, for now, unnecessary 547 * synchronization is not implemented. (just implemented for cpu hotplug) 548 * 549 * If there are kernel internal actions which can make use of some not-exact 550 * value, and reading all cpu value can be performance bottleneck in some 551 * common workload, threshold and synchronization as vmstat[] should be 552 * implemented. 553 */ 554 555 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 556 enum memcg_event_item event) 557 { 558 unsigned long val = 0; 559 int cpu; 560 561 for_each_possible_cpu(cpu) 562 val += per_cpu(memcg->stat->events[event], cpu); 563 return val; 564 } 565 566 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 567 struct page *page, 568 bool compound, int nr_pages) 569 { 570 /* 571 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 572 * counted as CACHE even if it's on ANON LRU. 573 */ 574 if (PageAnon(page)) 575 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages); 576 else { 577 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages); 578 if (PageSwapBacked(page)) 579 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages); 580 } 581 582 if (compound) { 583 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 584 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages); 585 } 586 587 /* pagein of a big page is an event. So, ignore page size */ 588 if (nr_pages > 0) 589 __this_cpu_inc(memcg->stat->events[PGPGIN]); 590 else { 591 __this_cpu_inc(memcg->stat->events[PGPGOUT]); 592 nr_pages = -nr_pages; /* for event */ 593 } 594 595 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 596 } 597 598 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 599 int nid, unsigned int lru_mask) 600 { 601 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 602 unsigned long nr = 0; 603 enum lru_list lru; 604 605 VM_BUG_ON((unsigned)nid >= nr_node_ids); 606 607 for_each_lru(lru) { 608 if (!(BIT(lru) & lru_mask)) 609 continue; 610 nr += mem_cgroup_get_lru_size(lruvec, lru); 611 } 612 return nr; 613 } 614 615 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 616 unsigned int lru_mask) 617 { 618 unsigned long nr = 0; 619 int nid; 620 621 for_each_node_state(nid, N_MEMORY) 622 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 623 return nr; 624 } 625 626 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 627 enum mem_cgroup_events_target target) 628 { 629 unsigned long val, next; 630 631 val = __this_cpu_read(memcg->stat->nr_page_events); 632 next = __this_cpu_read(memcg->stat->targets[target]); 633 /* from time_after() in jiffies.h */ 634 if ((long)(next - val) < 0) { 635 switch (target) { 636 case MEM_CGROUP_TARGET_THRESH: 637 next = val + THRESHOLDS_EVENTS_TARGET; 638 break; 639 case MEM_CGROUP_TARGET_SOFTLIMIT: 640 next = val + SOFTLIMIT_EVENTS_TARGET; 641 break; 642 case MEM_CGROUP_TARGET_NUMAINFO: 643 next = val + NUMAINFO_EVENTS_TARGET; 644 break; 645 default: 646 break; 647 } 648 __this_cpu_write(memcg->stat->targets[target], next); 649 return true; 650 } 651 return false; 652 } 653 654 /* 655 * Check events in order. 656 * 657 */ 658 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 659 { 660 /* threshold event is triggered in finer grain than soft limit */ 661 if (unlikely(mem_cgroup_event_ratelimit(memcg, 662 MEM_CGROUP_TARGET_THRESH))) { 663 bool do_softlimit; 664 bool do_numainfo __maybe_unused; 665 666 do_softlimit = mem_cgroup_event_ratelimit(memcg, 667 MEM_CGROUP_TARGET_SOFTLIMIT); 668 #if MAX_NUMNODES > 1 669 do_numainfo = mem_cgroup_event_ratelimit(memcg, 670 MEM_CGROUP_TARGET_NUMAINFO); 671 #endif 672 mem_cgroup_threshold(memcg); 673 if (unlikely(do_softlimit)) 674 mem_cgroup_update_tree(memcg, page); 675 #if MAX_NUMNODES > 1 676 if (unlikely(do_numainfo)) 677 atomic_inc(&memcg->numainfo_events); 678 #endif 679 } 680 } 681 682 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 683 { 684 /* 685 * mm_update_next_owner() may clear mm->owner to NULL 686 * if it races with swapoff, page migration, etc. 687 * So this can be called with p == NULL. 688 */ 689 if (unlikely(!p)) 690 return NULL; 691 692 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 693 } 694 EXPORT_SYMBOL(mem_cgroup_from_task); 695 696 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 697 { 698 struct mem_cgroup *memcg = NULL; 699 700 rcu_read_lock(); 701 do { 702 /* 703 * Page cache insertions can happen withou an 704 * actual mm context, e.g. during disk probing 705 * on boot, loopback IO, acct() writes etc. 706 */ 707 if (unlikely(!mm)) 708 memcg = root_mem_cgroup; 709 else { 710 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 711 if (unlikely(!memcg)) 712 memcg = root_mem_cgroup; 713 } 714 } while (!css_tryget_online(&memcg->css)); 715 rcu_read_unlock(); 716 return memcg; 717 } 718 719 /** 720 * mem_cgroup_iter - iterate over memory cgroup hierarchy 721 * @root: hierarchy root 722 * @prev: previously returned memcg, NULL on first invocation 723 * @reclaim: cookie for shared reclaim walks, NULL for full walks 724 * 725 * Returns references to children of the hierarchy below @root, or 726 * @root itself, or %NULL after a full round-trip. 727 * 728 * Caller must pass the return value in @prev on subsequent 729 * invocations for reference counting, or use mem_cgroup_iter_break() 730 * to cancel a hierarchy walk before the round-trip is complete. 731 * 732 * Reclaimers can specify a zone and a priority level in @reclaim to 733 * divide up the memcgs in the hierarchy among all concurrent 734 * reclaimers operating on the same zone and priority. 735 */ 736 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 737 struct mem_cgroup *prev, 738 struct mem_cgroup_reclaim_cookie *reclaim) 739 { 740 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 741 struct cgroup_subsys_state *css = NULL; 742 struct mem_cgroup *memcg = NULL; 743 struct mem_cgroup *pos = NULL; 744 745 if (mem_cgroup_disabled()) 746 return NULL; 747 748 if (!root) 749 root = root_mem_cgroup; 750 751 if (prev && !reclaim) 752 pos = prev; 753 754 if (!root->use_hierarchy && root != root_mem_cgroup) { 755 if (prev) 756 goto out; 757 return root; 758 } 759 760 rcu_read_lock(); 761 762 if (reclaim) { 763 struct mem_cgroup_per_node *mz; 764 765 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 766 iter = &mz->iter[reclaim->priority]; 767 768 if (prev && reclaim->generation != iter->generation) 769 goto out_unlock; 770 771 while (1) { 772 pos = READ_ONCE(iter->position); 773 if (!pos || css_tryget(&pos->css)) 774 break; 775 /* 776 * css reference reached zero, so iter->position will 777 * be cleared by ->css_released. However, we should not 778 * rely on this happening soon, because ->css_released 779 * is called from a work queue, and by busy-waiting we 780 * might block it. So we clear iter->position right 781 * away. 782 */ 783 (void)cmpxchg(&iter->position, pos, NULL); 784 } 785 } 786 787 if (pos) 788 css = &pos->css; 789 790 for (;;) { 791 css = css_next_descendant_pre(css, &root->css); 792 if (!css) { 793 /* 794 * Reclaimers share the hierarchy walk, and a 795 * new one might jump in right at the end of 796 * the hierarchy - make sure they see at least 797 * one group and restart from the beginning. 798 */ 799 if (!prev) 800 continue; 801 break; 802 } 803 804 /* 805 * Verify the css and acquire a reference. The root 806 * is provided by the caller, so we know it's alive 807 * and kicking, and don't take an extra reference. 808 */ 809 memcg = mem_cgroup_from_css(css); 810 811 if (css == &root->css) 812 break; 813 814 if (css_tryget(css)) 815 break; 816 817 memcg = NULL; 818 } 819 820 if (reclaim) { 821 /* 822 * The position could have already been updated by a competing 823 * thread, so check that the value hasn't changed since we read 824 * it to avoid reclaiming from the same cgroup twice. 825 */ 826 (void)cmpxchg(&iter->position, pos, memcg); 827 828 if (pos) 829 css_put(&pos->css); 830 831 if (!memcg) 832 iter->generation++; 833 else if (!prev) 834 reclaim->generation = iter->generation; 835 } 836 837 out_unlock: 838 rcu_read_unlock(); 839 out: 840 if (prev && prev != root) 841 css_put(&prev->css); 842 843 return memcg; 844 } 845 846 /** 847 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 848 * @root: hierarchy root 849 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 850 */ 851 void mem_cgroup_iter_break(struct mem_cgroup *root, 852 struct mem_cgroup *prev) 853 { 854 if (!root) 855 root = root_mem_cgroup; 856 if (prev && prev != root) 857 css_put(&prev->css); 858 } 859 860 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 861 { 862 struct mem_cgroup *memcg = dead_memcg; 863 struct mem_cgroup_reclaim_iter *iter; 864 struct mem_cgroup_per_node *mz; 865 int nid; 866 int i; 867 868 while ((memcg = parent_mem_cgroup(memcg))) { 869 for_each_node(nid) { 870 mz = mem_cgroup_nodeinfo(memcg, nid); 871 for (i = 0; i <= DEF_PRIORITY; i++) { 872 iter = &mz->iter[i]; 873 cmpxchg(&iter->position, 874 dead_memcg, NULL); 875 } 876 } 877 } 878 } 879 880 /* 881 * Iteration constructs for visiting all cgroups (under a tree). If 882 * loops are exited prematurely (break), mem_cgroup_iter_break() must 883 * be used for reference counting. 884 */ 885 #define for_each_mem_cgroup_tree(iter, root) \ 886 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 887 iter != NULL; \ 888 iter = mem_cgroup_iter(root, iter, NULL)) 889 890 #define for_each_mem_cgroup(iter) \ 891 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 892 iter != NULL; \ 893 iter = mem_cgroup_iter(NULL, iter, NULL)) 894 895 /** 896 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 897 * @memcg: hierarchy root 898 * @fn: function to call for each task 899 * @arg: argument passed to @fn 900 * 901 * This function iterates over tasks attached to @memcg or to any of its 902 * descendants and calls @fn for each task. If @fn returns a non-zero 903 * value, the function breaks the iteration loop and returns the value. 904 * Otherwise, it will iterate over all tasks and return 0. 905 * 906 * This function must not be called for the root memory cgroup. 907 */ 908 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 909 int (*fn)(struct task_struct *, void *), void *arg) 910 { 911 struct mem_cgroup *iter; 912 int ret = 0; 913 914 BUG_ON(memcg == root_mem_cgroup); 915 916 for_each_mem_cgroup_tree(iter, memcg) { 917 struct css_task_iter it; 918 struct task_struct *task; 919 920 css_task_iter_start(&iter->css, &it); 921 while (!ret && (task = css_task_iter_next(&it))) 922 ret = fn(task, arg); 923 css_task_iter_end(&it); 924 if (ret) { 925 mem_cgroup_iter_break(memcg, iter); 926 break; 927 } 928 } 929 return ret; 930 } 931 932 /** 933 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 934 * @page: the page 935 * @zone: zone of the page 936 * 937 * This function is only safe when following the LRU page isolation 938 * and putback protocol: the LRU lock must be held, and the page must 939 * either be PageLRU() or the caller must have isolated/allocated it. 940 */ 941 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 942 { 943 struct mem_cgroup_per_node *mz; 944 struct mem_cgroup *memcg; 945 struct lruvec *lruvec; 946 947 if (mem_cgroup_disabled()) { 948 lruvec = &pgdat->lruvec; 949 goto out; 950 } 951 952 memcg = page->mem_cgroup; 953 /* 954 * Swapcache readahead pages are added to the LRU - and 955 * possibly migrated - before they are charged. 956 */ 957 if (!memcg) 958 memcg = root_mem_cgroup; 959 960 mz = mem_cgroup_page_nodeinfo(memcg, page); 961 lruvec = &mz->lruvec; 962 out: 963 /* 964 * Since a node can be onlined after the mem_cgroup was created, 965 * we have to be prepared to initialize lruvec->zone here; 966 * and if offlined then reonlined, we need to reinitialize it. 967 */ 968 if (unlikely(lruvec->pgdat != pgdat)) 969 lruvec->pgdat = pgdat; 970 return lruvec; 971 } 972 973 /** 974 * mem_cgroup_update_lru_size - account for adding or removing an lru page 975 * @lruvec: mem_cgroup per zone lru vector 976 * @lru: index of lru list the page is sitting on 977 * @zid: zone id of the accounted pages 978 * @nr_pages: positive when adding or negative when removing 979 * 980 * This function must be called under lru_lock, just before a page is added 981 * to or just after a page is removed from an lru list (that ordering being 982 * so as to allow it to check that lru_size 0 is consistent with list_empty). 983 */ 984 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 985 int zid, int nr_pages) 986 { 987 struct mem_cgroup_per_node *mz; 988 unsigned long *lru_size; 989 long size; 990 991 if (mem_cgroup_disabled()) 992 return; 993 994 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 995 lru_size = &mz->lru_zone_size[zid][lru]; 996 997 if (nr_pages < 0) 998 *lru_size += nr_pages; 999 1000 size = *lru_size; 1001 if (WARN_ONCE(size < 0, 1002 "%s(%p, %d, %d): lru_size %ld\n", 1003 __func__, lruvec, lru, nr_pages, size)) { 1004 VM_BUG_ON(1); 1005 *lru_size = 0; 1006 } 1007 1008 if (nr_pages > 0) 1009 *lru_size += nr_pages; 1010 } 1011 1012 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1013 { 1014 struct mem_cgroup *task_memcg; 1015 struct task_struct *p; 1016 bool ret; 1017 1018 p = find_lock_task_mm(task); 1019 if (p) { 1020 task_memcg = get_mem_cgroup_from_mm(p->mm); 1021 task_unlock(p); 1022 } else { 1023 /* 1024 * All threads may have already detached their mm's, but the oom 1025 * killer still needs to detect if they have already been oom 1026 * killed to prevent needlessly killing additional tasks. 1027 */ 1028 rcu_read_lock(); 1029 task_memcg = mem_cgroup_from_task(task); 1030 css_get(&task_memcg->css); 1031 rcu_read_unlock(); 1032 } 1033 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1034 css_put(&task_memcg->css); 1035 return ret; 1036 } 1037 1038 /** 1039 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1040 * @memcg: the memory cgroup 1041 * 1042 * Returns the maximum amount of memory @mem can be charged with, in 1043 * pages. 1044 */ 1045 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1046 { 1047 unsigned long margin = 0; 1048 unsigned long count; 1049 unsigned long limit; 1050 1051 count = page_counter_read(&memcg->memory); 1052 limit = READ_ONCE(memcg->memory.limit); 1053 if (count < limit) 1054 margin = limit - count; 1055 1056 if (do_memsw_account()) { 1057 count = page_counter_read(&memcg->memsw); 1058 limit = READ_ONCE(memcg->memsw.limit); 1059 if (count <= limit) 1060 margin = min(margin, limit - count); 1061 else 1062 margin = 0; 1063 } 1064 1065 return margin; 1066 } 1067 1068 /* 1069 * A routine for checking "mem" is under move_account() or not. 1070 * 1071 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1072 * moving cgroups. This is for waiting at high-memory pressure 1073 * caused by "move". 1074 */ 1075 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1076 { 1077 struct mem_cgroup *from; 1078 struct mem_cgroup *to; 1079 bool ret = false; 1080 /* 1081 * Unlike task_move routines, we access mc.to, mc.from not under 1082 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1083 */ 1084 spin_lock(&mc.lock); 1085 from = mc.from; 1086 to = mc.to; 1087 if (!from) 1088 goto unlock; 1089 1090 ret = mem_cgroup_is_descendant(from, memcg) || 1091 mem_cgroup_is_descendant(to, memcg); 1092 unlock: 1093 spin_unlock(&mc.lock); 1094 return ret; 1095 } 1096 1097 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1098 { 1099 if (mc.moving_task && current != mc.moving_task) { 1100 if (mem_cgroup_under_move(memcg)) { 1101 DEFINE_WAIT(wait); 1102 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1103 /* moving charge context might have finished. */ 1104 if (mc.moving_task) 1105 schedule(); 1106 finish_wait(&mc.waitq, &wait); 1107 return true; 1108 } 1109 } 1110 return false; 1111 } 1112 1113 unsigned int memcg1_stats[] = { 1114 MEMCG_CACHE, 1115 MEMCG_RSS, 1116 MEMCG_RSS_HUGE, 1117 NR_SHMEM, 1118 NR_FILE_MAPPED, 1119 NR_FILE_DIRTY, 1120 NR_WRITEBACK, 1121 MEMCG_SWAP, 1122 }; 1123 1124 static const char *const memcg1_stat_names[] = { 1125 "cache", 1126 "rss", 1127 "rss_huge", 1128 "shmem", 1129 "mapped_file", 1130 "dirty", 1131 "writeback", 1132 "swap", 1133 }; 1134 1135 #define K(x) ((x) << (PAGE_SHIFT-10)) 1136 /** 1137 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1138 * @memcg: The memory cgroup that went over limit 1139 * @p: Task that is going to be killed 1140 * 1141 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1142 * enabled 1143 */ 1144 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1145 { 1146 struct mem_cgroup *iter; 1147 unsigned int i; 1148 1149 rcu_read_lock(); 1150 1151 if (p) { 1152 pr_info("Task in "); 1153 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1154 pr_cont(" killed as a result of limit of "); 1155 } else { 1156 pr_info("Memory limit reached of cgroup "); 1157 } 1158 1159 pr_cont_cgroup_path(memcg->css.cgroup); 1160 pr_cont("\n"); 1161 1162 rcu_read_unlock(); 1163 1164 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1165 K((u64)page_counter_read(&memcg->memory)), 1166 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1167 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1168 K((u64)page_counter_read(&memcg->memsw)), 1169 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1170 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1171 K((u64)page_counter_read(&memcg->kmem)), 1172 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1173 1174 for_each_mem_cgroup_tree(iter, memcg) { 1175 pr_info("Memory cgroup stats for "); 1176 pr_cont_cgroup_path(iter->css.cgroup); 1177 pr_cont(":"); 1178 1179 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1180 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1181 continue; 1182 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1183 K(memcg_page_state(iter, memcg1_stats[i]))); 1184 } 1185 1186 for (i = 0; i < NR_LRU_LISTS; i++) 1187 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1188 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1189 1190 pr_cont("\n"); 1191 } 1192 } 1193 1194 /* 1195 * This function returns the number of memcg under hierarchy tree. Returns 1196 * 1(self count) if no children. 1197 */ 1198 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1199 { 1200 int num = 0; 1201 struct mem_cgroup *iter; 1202 1203 for_each_mem_cgroup_tree(iter, memcg) 1204 num++; 1205 return num; 1206 } 1207 1208 /* 1209 * Return the memory (and swap, if configured) limit for a memcg. 1210 */ 1211 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1212 { 1213 unsigned long limit; 1214 1215 limit = memcg->memory.limit; 1216 if (mem_cgroup_swappiness(memcg)) { 1217 unsigned long memsw_limit; 1218 unsigned long swap_limit; 1219 1220 memsw_limit = memcg->memsw.limit; 1221 swap_limit = memcg->swap.limit; 1222 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1223 limit = min(limit + swap_limit, memsw_limit); 1224 } 1225 return limit; 1226 } 1227 1228 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1229 int order) 1230 { 1231 struct oom_control oc = { 1232 .zonelist = NULL, 1233 .nodemask = NULL, 1234 .memcg = memcg, 1235 .gfp_mask = gfp_mask, 1236 .order = order, 1237 }; 1238 bool ret; 1239 1240 mutex_lock(&oom_lock); 1241 ret = out_of_memory(&oc); 1242 mutex_unlock(&oom_lock); 1243 return ret; 1244 } 1245 1246 #if MAX_NUMNODES > 1 1247 1248 /** 1249 * test_mem_cgroup_node_reclaimable 1250 * @memcg: the target memcg 1251 * @nid: the node ID to be checked. 1252 * @noswap : specify true here if the user wants flle only information. 1253 * 1254 * This function returns whether the specified memcg contains any 1255 * reclaimable pages on a node. Returns true if there are any reclaimable 1256 * pages in the node. 1257 */ 1258 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1259 int nid, bool noswap) 1260 { 1261 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1262 return true; 1263 if (noswap || !total_swap_pages) 1264 return false; 1265 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1266 return true; 1267 return false; 1268 1269 } 1270 1271 /* 1272 * Always updating the nodemask is not very good - even if we have an empty 1273 * list or the wrong list here, we can start from some node and traverse all 1274 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1275 * 1276 */ 1277 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1278 { 1279 int nid; 1280 /* 1281 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1282 * pagein/pageout changes since the last update. 1283 */ 1284 if (!atomic_read(&memcg->numainfo_events)) 1285 return; 1286 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1287 return; 1288 1289 /* make a nodemask where this memcg uses memory from */ 1290 memcg->scan_nodes = node_states[N_MEMORY]; 1291 1292 for_each_node_mask(nid, node_states[N_MEMORY]) { 1293 1294 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1295 node_clear(nid, memcg->scan_nodes); 1296 } 1297 1298 atomic_set(&memcg->numainfo_events, 0); 1299 atomic_set(&memcg->numainfo_updating, 0); 1300 } 1301 1302 /* 1303 * Selecting a node where we start reclaim from. Because what we need is just 1304 * reducing usage counter, start from anywhere is O,K. Considering 1305 * memory reclaim from current node, there are pros. and cons. 1306 * 1307 * Freeing memory from current node means freeing memory from a node which 1308 * we'll use or we've used. So, it may make LRU bad. And if several threads 1309 * hit limits, it will see a contention on a node. But freeing from remote 1310 * node means more costs for memory reclaim because of memory latency. 1311 * 1312 * Now, we use round-robin. Better algorithm is welcomed. 1313 */ 1314 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1315 { 1316 int node; 1317 1318 mem_cgroup_may_update_nodemask(memcg); 1319 node = memcg->last_scanned_node; 1320 1321 node = next_node_in(node, memcg->scan_nodes); 1322 /* 1323 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1324 * last time it really checked all the LRUs due to rate limiting. 1325 * Fallback to the current node in that case for simplicity. 1326 */ 1327 if (unlikely(node == MAX_NUMNODES)) 1328 node = numa_node_id(); 1329 1330 memcg->last_scanned_node = node; 1331 return node; 1332 } 1333 #else 1334 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1335 { 1336 return 0; 1337 } 1338 #endif 1339 1340 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1341 pg_data_t *pgdat, 1342 gfp_t gfp_mask, 1343 unsigned long *total_scanned) 1344 { 1345 struct mem_cgroup *victim = NULL; 1346 int total = 0; 1347 int loop = 0; 1348 unsigned long excess; 1349 unsigned long nr_scanned; 1350 struct mem_cgroup_reclaim_cookie reclaim = { 1351 .pgdat = pgdat, 1352 .priority = 0, 1353 }; 1354 1355 excess = soft_limit_excess(root_memcg); 1356 1357 while (1) { 1358 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1359 if (!victim) { 1360 loop++; 1361 if (loop >= 2) { 1362 /* 1363 * If we have not been able to reclaim 1364 * anything, it might because there are 1365 * no reclaimable pages under this hierarchy 1366 */ 1367 if (!total) 1368 break; 1369 /* 1370 * We want to do more targeted reclaim. 1371 * excess >> 2 is not to excessive so as to 1372 * reclaim too much, nor too less that we keep 1373 * coming back to reclaim from this cgroup 1374 */ 1375 if (total >= (excess >> 2) || 1376 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1377 break; 1378 } 1379 continue; 1380 } 1381 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1382 pgdat, &nr_scanned); 1383 *total_scanned += nr_scanned; 1384 if (!soft_limit_excess(root_memcg)) 1385 break; 1386 } 1387 mem_cgroup_iter_break(root_memcg, victim); 1388 return total; 1389 } 1390 1391 #ifdef CONFIG_LOCKDEP 1392 static struct lockdep_map memcg_oom_lock_dep_map = { 1393 .name = "memcg_oom_lock", 1394 }; 1395 #endif 1396 1397 static DEFINE_SPINLOCK(memcg_oom_lock); 1398 1399 /* 1400 * Check OOM-Killer is already running under our hierarchy. 1401 * If someone is running, return false. 1402 */ 1403 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1404 { 1405 struct mem_cgroup *iter, *failed = NULL; 1406 1407 spin_lock(&memcg_oom_lock); 1408 1409 for_each_mem_cgroup_tree(iter, memcg) { 1410 if (iter->oom_lock) { 1411 /* 1412 * this subtree of our hierarchy is already locked 1413 * so we cannot give a lock. 1414 */ 1415 failed = iter; 1416 mem_cgroup_iter_break(memcg, iter); 1417 break; 1418 } else 1419 iter->oom_lock = true; 1420 } 1421 1422 if (failed) { 1423 /* 1424 * OK, we failed to lock the whole subtree so we have 1425 * to clean up what we set up to the failing subtree 1426 */ 1427 for_each_mem_cgroup_tree(iter, memcg) { 1428 if (iter == failed) { 1429 mem_cgroup_iter_break(memcg, iter); 1430 break; 1431 } 1432 iter->oom_lock = false; 1433 } 1434 } else 1435 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1436 1437 spin_unlock(&memcg_oom_lock); 1438 1439 return !failed; 1440 } 1441 1442 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1443 { 1444 struct mem_cgroup *iter; 1445 1446 spin_lock(&memcg_oom_lock); 1447 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1448 for_each_mem_cgroup_tree(iter, memcg) 1449 iter->oom_lock = false; 1450 spin_unlock(&memcg_oom_lock); 1451 } 1452 1453 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1454 { 1455 struct mem_cgroup *iter; 1456 1457 spin_lock(&memcg_oom_lock); 1458 for_each_mem_cgroup_tree(iter, memcg) 1459 iter->under_oom++; 1460 spin_unlock(&memcg_oom_lock); 1461 } 1462 1463 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1464 { 1465 struct mem_cgroup *iter; 1466 1467 /* 1468 * When a new child is created while the hierarchy is under oom, 1469 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1470 */ 1471 spin_lock(&memcg_oom_lock); 1472 for_each_mem_cgroup_tree(iter, memcg) 1473 if (iter->under_oom > 0) 1474 iter->under_oom--; 1475 spin_unlock(&memcg_oom_lock); 1476 } 1477 1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1479 1480 struct oom_wait_info { 1481 struct mem_cgroup *memcg; 1482 wait_queue_entry_t wait; 1483 }; 1484 1485 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1486 unsigned mode, int sync, void *arg) 1487 { 1488 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1489 struct mem_cgroup *oom_wait_memcg; 1490 struct oom_wait_info *oom_wait_info; 1491 1492 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1493 oom_wait_memcg = oom_wait_info->memcg; 1494 1495 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1496 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1497 return 0; 1498 return autoremove_wake_function(wait, mode, sync, arg); 1499 } 1500 1501 static void memcg_oom_recover(struct mem_cgroup *memcg) 1502 { 1503 /* 1504 * For the following lockless ->under_oom test, the only required 1505 * guarantee is that it must see the state asserted by an OOM when 1506 * this function is called as a result of userland actions 1507 * triggered by the notification of the OOM. This is trivially 1508 * achieved by invoking mem_cgroup_mark_under_oom() before 1509 * triggering notification. 1510 */ 1511 if (memcg && memcg->under_oom) 1512 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1513 } 1514 1515 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1516 { 1517 if (!current->memcg_may_oom) 1518 return; 1519 /* 1520 * We are in the middle of the charge context here, so we 1521 * don't want to block when potentially sitting on a callstack 1522 * that holds all kinds of filesystem and mm locks. 1523 * 1524 * Also, the caller may handle a failed allocation gracefully 1525 * (like optional page cache readahead) and so an OOM killer 1526 * invocation might not even be necessary. 1527 * 1528 * That's why we don't do anything here except remember the 1529 * OOM context and then deal with it at the end of the page 1530 * fault when the stack is unwound, the locks are released, 1531 * and when we know whether the fault was overall successful. 1532 */ 1533 css_get(&memcg->css); 1534 current->memcg_in_oom = memcg; 1535 current->memcg_oom_gfp_mask = mask; 1536 current->memcg_oom_order = order; 1537 } 1538 1539 /** 1540 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1541 * @handle: actually kill/wait or just clean up the OOM state 1542 * 1543 * This has to be called at the end of a page fault if the memcg OOM 1544 * handler was enabled. 1545 * 1546 * Memcg supports userspace OOM handling where failed allocations must 1547 * sleep on a waitqueue until the userspace task resolves the 1548 * situation. Sleeping directly in the charge context with all kinds 1549 * of locks held is not a good idea, instead we remember an OOM state 1550 * in the task and mem_cgroup_oom_synchronize() has to be called at 1551 * the end of the page fault to complete the OOM handling. 1552 * 1553 * Returns %true if an ongoing memcg OOM situation was detected and 1554 * completed, %false otherwise. 1555 */ 1556 bool mem_cgroup_oom_synchronize(bool handle) 1557 { 1558 struct mem_cgroup *memcg = current->memcg_in_oom; 1559 struct oom_wait_info owait; 1560 bool locked; 1561 1562 /* OOM is global, do not handle */ 1563 if (!memcg) 1564 return false; 1565 1566 if (!handle) 1567 goto cleanup; 1568 1569 owait.memcg = memcg; 1570 owait.wait.flags = 0; 1571 owait.wait.func = memcg_oom_wake_function; 1572 owait.wait.private = current; 1573 INIT_LIST_HEAD(&owait.wait.entry); 1574 1575 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1576 mem_cgroup_mark_under_oom(memcg); 1577 1578 locked = mem_cgroup_oom_trylock(memcg); 1579 1580 if (locked) 1581 mem_cgroup_oom_notify(memcg); 1582 1583 if (locked && !memcg->oom_kill_disable) { 1584 mem_cgroup_unmark_under_oom(memcg); 1585 finish_wait(&memcg_oom_waitq, &owait.wait); 1586 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1587 current->memcg_oom_order); 1588 } else { 1589 schedule(); 1590 mem_cgroup_unmark_under_oom(memcg); 1591 finish_wait(&memcg_oom_waitq, &owait.wait); 1592 } 1593 1594 if (locked) { 1595 mem_cgroup_oom_unlock(memcg); 1596 /* 1597 * There is no guarantee that an OOM-lock contender 1598 * sees the wakeups triggered by the OOM kill 1599 * uncharges. Wake any sleepers explicitely. 1600 */ 1601 memcg_oom_recover(memcg); 1602 } 1603 cleanup: 1604 current->memcg_in_oom = NULL; 1605 css_put(&memcg->css); 1606 return true; 1607 } 1608 1609 /** 1610 * lock_page_memcg - lock a page->mem_cgroup binding 1611 * @page: the page 1612 * 1613 * This function protects unlocked LRU pages from being moved to 1614 * another cgroup. 1615 * 1616 * It ensures lifetime of the returned memcg. Caller is responsible 1617 * for the lifetime of the page; __unlock_page_memcg() is available 1618 * when @page might get freed inside the locked section. 1619 */ 1620 struct mem_cgroup *lock_page_memcg(struct page *page) 1621 { 1622 struct mem_cgroup *memcg; 1623 unsigned long flags; 1624 1625 /* 1626 * The RCU lock is held throughout the transaction. The fast 1627 * path can get away without acquiring the memcg->move_lock 1628 * because page moving starts with an RCU grace period. 1629 * 1630 * The RCU lock also protects the memcg from being freed when 1631 * the page state that is going to change is the only thing 1632 * preventing the page itself from being freed. E.g. writeback 1633 * doesn't hold a page reference and relies on PG_writeback to 1634 * keep off truncation, migration and so forth. 1635 */ 1636 rcu_read_lock(); 1637 1638 if (mem_cgroup_disabled()) 1639 return NULL; 1640 again: 1641 memcg = page->mem_cgroup; 1642 if (unlikely(!memcg)) 1643 return NULL; 1644 1645 if (atomic_read(&memcg->moving_account) <= 0) 1646 return memcg; 1647 1648 spin_lock_irqsave(&memcg->move_lock, flags); 1649 if (memcg != page->mem_cgroup) { 1650 spin_unlock_irqrestore(&memcg->move_lock, flags); 1651 goto again; 1652 } 1653 1654 /* 1655 * When charge migration first begins, we can have locked and 1656 * unlocked page stat updates happening concurrently. Track 1657 * the task who has the lock for unlock_page_memcg(). 1658 */ 1659 memcg->move_lock_task = current; 1660 memcg->move_lock_flags = flags; 1661 1662 return memcg; 1663 } 1664 EXPORT_SYMBOL(lock_page_memcg); 1665 1666 /** 1667 * __unlock_page_memcg - unlock and unpin a memcg 1668 * @memcg: the memcg 1669 * 1670 * Unlock and unpin a memcg returned by lock_page_memcg(). 1671 */ 1672 void __unlock_page_memcg(struct mem_cgroup *memcg) 1673 { 1674 if (memcg && memcg->move_lock_task == current) { 1675 unsigned long flags = memcg->move_lock_flags; 1676 1677 memcg->move_lock_task = NULL; 1678 memcg->move_lock_flags = 0; 1679 1680 spin_unlock_irqrestore(&memcg->move_lock, flags); 1681 } 1682 1683 rcu_read_unlock(); 1684 } 1685 1686 /** 1687 * unlock_page_memcg - unlock a page->mem_cgroup binding 1688 * @page: the page 1689 */ 1690 void unlock_page_memcg(struct page *page) 1691 { 1692 __unlock_page_memcg(page->mem_cgroup); 1693 } 1694 EXPORT_SYMBOL(unlock_page_memcg); 1695 1696 /* 1697 * size of first charge trial. "32" comes from vmscan.c's magic value. 1698 * TODO: maybe necessary to use big numbers in big irons. 1699 */ 1700 #define CHARGE_BATCH 32U 1701 struct memcg_stock_pcp { 1702 struct mem_cgroup *cached; /* this never be root cgroup */ 1703 unsigned int nr_pages; 1704 struct work_struct work; 1705 unsigned long flags; 1706 #define FLUSHING_CACHED_CHARGE 0 1707 }; 1708 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1709 static DEFINE_MUTEX(percpu_charge_mutex); 1710 1711 /** 1712 * consume_stock: Try to consume stocked charge on this cpu. 1713 * @memcg: memcg to consume from. 1714 * @nr_pages: how many pages to charge. 1715 * 1716 * The charges will only happen if @memcg matches the current cpu's memcg 1717 * stock, and at least @nr_pages are available in that stock. Failure to 1718 * service an allocation will refill the stock. 1719 * 1720 * returns true if successful, false otherwise. 1721 */ 1722 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1723 { 1724 struct memcg_stock_pcp *stock; 1725 unsigned long flags; 1726 bool ret = false; 1727 1728 if (nr_pages > CHARGE_BATCH) 1729 return ret; 1730 1731 local_irq_save(flags); 1732 1733 stock = this_cpu_ptr(&memcg_stock); 1734 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1735 stock->nr_pages -= nr_pages; 1736 ret = true; 1737 } 1738 1739 local_irq_restore(flags); 1740 1741 return ret; 1742 } 1743 1744 /* 1745 * Returns stocks cached in percpu and reset cached information. 1746 */ 1747 static void drain_stock(struct memcg_stock_pcp *stock) 1748 { 1749 struct mem_cgroup *old = stock->cached; 1750 1751 if (stock->nr_pages) { 1752 page_counter_uncharge(&old->memory, stock->nr_pages); 1753 if (do_memsw_account()) 1754 page_counter_uncharge(&old->memsw, stock->nr_pages); 1755 css_put_many(&old->css, stock->nr_pages); 1756 stock->nr_pages = 0; 1757 } 1758 stock->cached = NULL; 1759 } 1760 1761 static void drain_local_stock(struct work_struct *dummy) 1762 { 1763 struct memcg_stock_pcp *stock; 1764 unsigned long flags; 1765 1766 local_irq_save(flags); 1767 1768 stock = this_cpu_ptr(&memcg_stock); 1769 drain_stock(stock); 1770 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1771 1772 local_irq_restore(flags); 1773 } 1774 1775 /* 1776 * Cache charges(val) to local per_cpu area. 1777 * This will be consumed by consume_stock() function, later. 1778 */ 1779 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1780 { 1781 struct memcg_stock_pcp *stock; 1782 unsigned long flags; 1783 1784 local_irq_save(flags); 1785 1786 stock = this_cpu_ptr(&memcg_stock); 1787 if (stock->cached != memcg) { /* reset if necessary */ 1788 drain_stock(stock); 1789 stock->cached = memcg; 1790 } 1791 stock->nr_pages += nr_pages; 1792 1793 local_irq_restore(flags); 1794 } 1795 1796 /* 1797 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1798 * of the hierarchy under it. 1799 */ 1800 static void drain_all_stock(struct mem_cgroup *root_memcg) 1801 { 1802 int cpu, curcpu; 1803 1804 /* If someone's already draining, avoid adding running more workers. */ 1805 if (!mutex_trylock(&percpu_charge_mutex)) 1806 return; 1807 /* Notify other cpus that system-wide "drain" is running */ 1808 get_online_cpus(); 1809 curcpu = get_cpu(); 1810 for_each_online_cpu(cpu) { 1811 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1812 struct mem_cgroup *memcg; 1813 1814 memcg = stock->cached; 1815 if (!memcg || !stock->nr_pages) 1816 continue; 1817 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1818 continue; 1819 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1820 if (cpu == curcpu) 1821 drain_local_stock(&stock->work); 1822 else 1823 schedule_work_on(cpu, &stock->work); 1824 } 1825 } 1826 put_cpu(); 1827 put_online_cpus(); 1828 mutex_unlock(&percpu_charge_mutex); 1829 } 1830 1831 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1832 { 1833 struct memcg_stock_pcp *stock; 1834 1835 stock = &per_cpu(memcg_stock, cpu); 1836 drain_stock(stock); 1837 return 0; 1838 } 1839 1840 static void reclaim_high(struct mem_cgroup *memcg, 1841 unsigned int nr_pages, 1842 gfp_t gfp_mask) 1843 { 1844 do { 1845 if (page_counter_read(&memcg->memory) <= memcg->high) 1846 continue; 1847 mem_cgroup_event(memcg, MEMCG_HIGH); 1848 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1849 } while ((memcg = parent_mem_cgroup(memcg))); 1850 } 1851 1852 static void high_work_func(struct work_struct *work) 1853 { 1854 struct mem_cgroup *memcg; 1855 1856 memcg = container_of(work, struct mem_cgroup, high_work); 1857 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1858 } 1859 1860 /* 1861 * Scheduled by try_charge() to be executed from the userland return path 1862 * and reclaims memory over the high limit. 1863 */ 1864 void mem_cgroup_handle_over_high(void) 1865 { 1866 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1867 struct mem_cgroup *memcg; 1868 1869 if (likely(!nr_pages)) 1870 return; 1871 1872 memcg = get_mem_cgroup_from_mm(current->mm); 1873 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1874 css_put(&memcg->css); 1875 current->memcg_nr_pages_over_high = 0; 1876 } 1877 1878 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1879 unsigned int nr_pages) 1880 { 1881 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1882 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1883 struct mem_cgroup *mem_over_limit; 1884 struct page_counter *counter; 1885 unsigned long nr_reclaimed; 1886 bool may_swap = true; 1887 bool drained = false; 1888 1889 if (mem_cgroup_is_root(memcg)) 1890 return 0; 1891 retry: 1892 if (consume_stock(memcg, nr_pages)) 1893 return 0; 1894 1895 if (!do_memsw_account() || 1896 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1897 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1898 goto done_restock; 1899 if (do_memsw_account()) 1900 page_counter_uncharge(&memcg->memsw, batch); 1901 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1902 } else { 1903 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1904 may_swap = false; 1905 } 1906 1907 if (batch > nr_pages) { 1908 batch = nr_pages; 1909 goto retry; 1910 } 1911 1912 /* 1913 * Unlike in global OOM situations, memcg is not in a physical 1914 * memory shortage. Allow dying and OOM-killed tasks to 1915 * bypass the last charges so that they can exit quickly and 1916 * free their memory. 1917 */ 1918 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1919 fatal_signal_pending(current) || 1920 current->flags & PF_EXITING)) 1921 goto force; 1922 1923 /* 1924 * Prevent unbounded recursion when reclaim operations need to 1925 * allocate memory. This might exceed the limits temporarily, 1926 * but we prefer facilitating memory reclaim and getting back 1927 * under the limit over triggering OOM kills in these cases. 1928 */ 1929 if (unlikely(current->flags & PF_MEMALLOC)) 1930 goto force; 1931 1932 if (unlikely(task_in_memcg_oom(current))) 1933 goto nomem; 1934 1935 if (!gfpflags_allow_blocking(gfp_mask)) 1936 goto nomem; 1937 1938 mem_cgroup_event(mem_over_limit, MEMCG_MAX); 1939 1940 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1941 gfp_mask, may_swap); 1942 1943 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1944 goto retry; 1945 1946 if (!drained) { 1947 drain_all_stock(mem_over_limit); 1948 drained = true; 1949 goto retry; 1950 } 1951 1952 if (gfp_mask & __GFP_NORETRY) 1953 goto nomem; 1954 /* 1955 * Even though the limit is exceeded at this point, reclaim 1956 * may have been able to free some pages. Retry the charge 1957 * before killing the task. 1958 * 1959 * Only for regular pages, though: huge pages are rather 1960 * unlikely to succeed so close to the limit, and we fall back 1961 * to regular pages anyway in case of failure. 1962 */ 1963 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1964 goto retry; 1965 /* 1966 * At task move, charge accounts can be doubly counted. So, it's 1967 * better to wait until the end of task_move if something is going on. 1968 */ 1969 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1970 goto retry; 1971 1972 if (nr_retries--) 1973 goto retry; 1974 1975 if (gfp_mask & __GFP_NOFAIL) 1976 goto force; 1977 1978 if (fatal_signal_pending(current)) 1979 goto force; 1980 1981 mem_cgroup_event(mem_over_limit, MEMCG_OOM); 1982 1983 mem_cgroup_oom(mem_over_limit, gfp_mask, 1984 get_order(nr_pages * PAGE_SIZE)); 1985 nomem: 1986 if (!(gfp_mask & __GFP_NOFAIL)) 1987 return -ENOMEM; 1988 force: 1989 /* 1990 * The allocation either can't fail or will lead to more memory 1991 * being freed very soon. Allow memory usage go over the limit 1992 * temporarily by force charging it. 1993 */ 1994 page_counter_charge(&memcg->memory, nr_pages); 1995 if (do_memsw_account()) 1996 page_counter_charge(&memcg->memsw, nr_pages); 1997 css_get_many(&memcg->css, nr_pages); 1998 1999 return 0; 2000 2001 done_restock: 2002 css_get_many(&memcg->css, batch); 2003 if (batch > nr_pages) 2004 refill_stock(memcg, batch - nr_pages); 2005 2006 /* 2007 * If the hierarchy is above the normal consumption range, schedule 2008 * reclaim on returning to userland. We can perform reclaim here 2009 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2010 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2011 * not recorded as it most likely matches current's and won't 2012 * change in the meantime. As high limit is checked again before 2013 * reclaim, the cost of mismatch is negligible. 2014 */ 2015 do { 2016 if (page_counter_read(&memcg->memory) > memcg->high) { 2017 /* Don't bother a random interrupted task */ 2018 if (in_interrupt()) { 2019 schedule_work(&memcg->high_work); 2020 break; 2021 } 2022 current->memcg_nr_pages_over_high += batch; 2023 set_notify_resume(current); 2024 break; 2025 } 2026 } while ((memcg = parent_mem_cgroup(memcg))); 2027 2028 return 0; 2029 } 2030 2031 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2032 { 2033 if (mem_cgroup_is_root(memcg)) 2034 return; 2035 2036 page_counter_uncharge(&memcg->memory, nr_pages); 2037 if (do_memsw_account()) 2038 page_counter_uncharge(&memcg->memsw, nr_pages); 2039 2040 css_put_many(&memcg->css, nr_pages); 2041 } 2042 2043 static void lock_page_lru(struct page *page, int *isolated) 2044 { 2045 struct zone *zone = page_zone(page); 2046 2047 spin_lock_irq(zone_lru_lock(zone)); 2048 if (PageLRU(page)) { 2049 struct lruvec *lruvec; 2050 2051 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2052 ClearPageLRU(page); 2053 del_page_from_lru_list(page, lruvec, page_lru(page)); 2054 *isolated = 1; 2055 } else 2056 *isolated = 0; 2057 } 2058 2059 static void unlock_page_lru(struct page *page, int isolated) 2060 { 2061 struct zone *zone = page_zone(page); 2062 2063 if (isolated) { 2064 struct lruvec *lruvec; 2065 2066 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2067 VM_BUG_ON_PAGE(PageLRU(page), page); 2068 SetPageLRU(page); 2069 add_page_to_lru_list(page, lruvec, page_lru(page)); 2070 } 2071 spin_unlock_irq(zone_lru_lock(zone)); 2072 } 2073 2074 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2075 bool lrucare) 2076 { 2077 int isolated; 2078 2079 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2080 2081 /* 2082 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2083 * may already be on some other mem_cgroup's LRU. Take care of it. 2084 */ 2085 if (lrucare) 2086 lock_page_lru(page, &isolated); 2087 2088 /* 2089 * Nobody should be changing or seriously looking at 2090 * page->mem_cgroup at this point: 2091 * 2092 * - the page is uncharged 2093 * 2094 * - the page is off-LRU 2095 * 2096 * - an anonymous fault has exclusive page access, except for 2097 * a locked page table 2098 * 2099 * - a page cache insertion, a swapin fault, or a migration 2100 * have the page locked 2101 */ 2102 page->mem_cgroup = memcg; 2103 2104 if (lrucare) 2105 unlock_page_lru(page, isolated); 2106 } 2107 2108 #ifndef CONFIG_SLOB 2109 static int memcg_alloc_cache_id(void) 2110 { 2111 int id, size; 2112 int err; 2113 2114 id = ida_simple_get(&memcg_cache_ida, 2115 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2116 if (id < 0) 2117 return id; 2118 2119 if (id < memcg_nr_cache_ids) 2120 return id; 2121 2122 /* 2123 * There's no space for the new id in memcg_caches arrays, 2124 * so we have to grow them. 2125 */ 2126 down_write(&memcg_cache_ids_sem); 2127 2128 size = 2 * (id + 1); 2129 if (size < MEMCG_CACHES_MIN_SIZE) 2130 size = MEMCG_CACHES_MIN_SIZE; 2131 else if (size > MEMCG_CACHES_MAX_SIZE) 2132 size = MEMCG_CACHES_MAX_SIZE; 2133 2134 err = memcg_update_all_caches(size); 2135 if (!err) 2136 err = memcg_update_all_list_lrus(size); 2137 if (!err) 2138 memcg_nr_cache_ids = size; 2139 2140 up_write(&memcg_cache_ids_sem); 2141 2142 if (err) { 2143 ida_simple_remove(&memcg_cache_ida, id); 2144 return err; 2145 } 2146 return id; 2147 } 2148 2149 static void memcg_free_cache_id(int id) 2150 { 2151 ida_simple_remove(&memcg_cache_ida, id); 2152 } 2153 2154 struct memcg_kmem_cache_create_work { 2155 struct mem_cgroup *memcg; 2156 struct kmem_cache *cachep; 2157 struct work_struct work; 2158 }; 2159 2160 static void memcg_kmem_cache_create_func(struct work_struct *w) 2161 { 2162 struct memcg_kmem_cache_create_work *cw = 2163 container_of(w, struct memcg_kmem_cache_create_work, work); 2164 struct mem_cgroup *memcg = cw->memcg; 2165 struct kmem_cache *cachep = cw->cachep; 2166 2167 memcg_create_kmem_cache(memcg, cachep); 2168 2169 css_put(&memcg->css); 2170 kfree(cw); 2171 } 2172 2173 /* 2174 * Enqueue the creation of a per-memcg kmem_cache. 2175 */ 2176 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2177 struct kmem_cache *cachep) 2178 { 2179 struct memcg_kmem_cache_create_work *cw; 2180 2181 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2182 if (!cw) 2183 return; 2184 2185 css_get(&memcg->css); 2186 2187 cw->memcg = memcg; 2188 cw->cachep = cachep; 2189 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2190 2191 queue_work(memcg_kmem_cache_wq, &cw->work); 2192 } 2193 2194 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2195 struct kmem_cache *cachep) 2196 { 2197 /* 2198 * We need to stop accounting when we kmalloc, because if the 2199 * corresponding kmalloc cache is not yet created, the first allocation 2200 * in __memcg_schedule_kmem_cache_create will recurse. 2201 * 2202 * However, it is better to enclose the whole function. Depending on 2203 * the debugging options enabled, INIT_WORK(), for instance, can 2204 * trigger an allocation. This too, will make us recurse. Because at 2205 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2206 * the safest choice is to do it like this, wrapping the whole function. 2207 */ 2208 current->memcg_kmem_skip_account = 1; 2209 __memcg_schedule_kmem_cache_create(memcg, cachep); 2210 current->memcg_kmem_skip_account = 0; 2211 } 2212 2213 static inline bool memcg_kmem_bypass(void) 2214 { 2215 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2216 return true; 2217 return false; 2218 } 2219 2220 /** 2221 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2222 * @cachep: the original global kmem cache 2223 * 2224 * Return the kmem_cache we're supposed to use for a slab allocation. 2225 * We try to use the current memcg's version of the cache. 2226 * 2227 * If the cache does not exist yet, if we are the first user of it, we 2228 * create it asynchronously in a workqueue and let the current allocation 2229 * go through with the original cache. 2230 * 2231 * This function takes a reference to the cache it returns to assure it 2232 * won't get destroyed while we are working with it. Once the caller is 2233 * done with it, memcg_kmem_put_cache() must be called to release the 2234 * reference. 2235 */ 2236 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2237 { 2238 struct mem_cgroup *memcg; 2239 struct kmem_cache *memcg_cachep; 2240 int kmemcg_id; 2241 2242 VM_BUG_ON(!is_root_cache(cachep)); 2243 2244 if (memcg_kmem_bypass()) 2245 return cachep; 2246 2247 if (current->memcg_kmem_skip_account) 2248 return cachep; 2249 2250 memcg = get_mem_cgroup_from_mm(current->mm); 2251 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2252 if (kmemcg_id < 0) 2253 goto out; 2254 2255 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2256 if (likely(memcg_cachep)) 2257 return memcg_cachep; 2258 2259 /* 2260 * If we are in a safe context (can wait, and not in interrupt 2261 * context), we could be be predictable and return right away. 2262 * This would guarantee that the allocation being performed 2263 * already belongs in the new cache. 2264 * 2265 * However, there are some clashes that can arrive from locking. 2266 * For instance, because we acquire the slab_mutex while doing 2267 * memcg_create_kmem_cache, this means no further allocation 2268 * could happen with the slab_mutex held. So it's better to 2269 * defer everything. 2270 */ 2271 memcg_schedule_kmem_cache_create(memcg, cachep); 2272 out: 2273 css_put(&memcg->css); 2274 return cachep; 2275 } 2276 2277 /** 2278 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2279 * @cachep: the cache returned by memcg_kmem_get_cache 2280 */ 2281 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2282 { 2283 if (!is_root_cache(cachep)) 2284 css_put(&cachep->memcg_params.memcg->css); 2285 } 2286 2287 /** 2288 * memcg_kmem_charge: charge a kmem page 2289 * @page: page to charge 2290 * @gfp: reclaim mode 2291 * @order: allocation order 2292 * @memcg: memory cgroup to charge 2293 * 2294 * Returns 0 on success, an error code on failure. 2295 */ 2296 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2297 struct mem_cgroup *memcg) 2298 { 2299 unsigned int nr_pages = 1 << order; 2300 struct page_counter *counter; 2301 int ret; 2302 2303 ret = try_charge(memcg, gfp, nr_pages); 2304 if (ret) 2305 return ret; 2306 2307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2308 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2309 cancel_charge(memcg, nr_pages); 2310 return -ENOMEM; 2311 } 2312 2313 page->mem_cgroup = memcg; 2314 2315 return 0; 2316 } 2317 2318 /** 2319 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2320 * @page: page to charge 2321 * @gfp: reclaim mode 2322 * @order: allocation order 2323 * 2324 * Returns 0 on success, an error code on failure. 2325 */ 2326 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2327 { 2328 struct mem_cgroup *memcg; 2329 int ret = 0; 2330 2331 if (memcg_kmem_bypass()) 2332 return 0; 2333 2334 memcg = get_mem_cgroup_from_mm(current->mm); 2335 if (!mem_cgroup_is_root(memcg)) { 2336 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2337 if (!ret) 2338 __SetPageKmemcg(page); 2339 } 2340 css_put(&memcg->css); 2341 return ret; 2342 } 2343 /** 2344 * memcg_kmem_uncharge: uncharge a kmem page 2345 * @page: page to uncharge 2346 * @order: allocation order 2347 */ 2348 void memcg_kmem_uncharge(struct page *page, int order) 2349 { 2350 struct mem_cgroup *memcg = page->mem_cgroup; 2351 unsigned int nr_pages = 1 << order; 2352 2353 if (!memcg) 2354 return; 2355 2356 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2357 2358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2359 page_counter_uncharge(&memcg->kmem, nr_pages); 2360 2361 page_counter_uncharge(&memcg->memory, nr_pages); 2362 if (do_memsw_account()) 2363 page_counter_uncharge(&memcg->memsw, nr_pages); 2364 2365 page->mem_cgroup = NULL; 2366 2367 /* slab pages do not have PageKmemcg flag set */ 2368 if (PageKmemcg(page)) 2369 __ClearPageKmemcg(page); 2370 2371 css_put_many(&memcg->css, nr_pages); 2372 } 2373 #endif /* !CONFIG_SLOB */ 2374 2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2376 2377 /* 2378 * Because tail pages are not marked as "used", set it. We're under 2379 * zone_lru_lock and migration entries setup in all page mappings. 2380 */ 2381 void mem_cgroup_split_huge_fixup(struct page *head) 2382 { 2383 int i; 2384 2385 if (mem_cgroup_disabled()) 2386 return; 2387 2388 for (i = 1; i < HPAGE_PMD_NR; i++) 2389 head[i].mem_cgroup = head->mem_cgroup; 2390 2391 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE], 2392 HPAGE_PMD_NR); 2393 } 2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2395 2396 #ifdef CONFIG_MEMCG_SWAP 2397 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2398 int nr_entries) 2399 { 2400 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries); 2401 } 2402 2403 /** 2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2405 * @entry: swap entry to be moved 2406 * @from: mem_cgroup which the entry is moved from 2407 * @to: mem_cgroup which the entry is moved to 2408 * 2409 * It succeeds only when the swap_cgroup's record for this entry is the same 2410 * as the mem_cgroup's id of @from. 2411 * 2412 * Returns 0 on success, -EINVAL on failure. 2413 * 2414 * The caller must have charged to @to, IOW, called page_counter_charge() about 2415 * both res and memsw, and called css_get(). 2416 */ 2417 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2418 struct mem_cgroup *from, struct mem_cgroup *to) 2419 { 2420 unsigned short old_id, new_id; 2421 2422 old_id = mem_cgroup_id(from); 2423 new_id = mem_cgroup_id(to); 2424 2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2426 mem_cgroup_swap_statistics(from, -1); 2427 mem_cgroup_swap_statistics(to, 1); 2428 return 0; 2429 } 2430 return -EINVAL; 2431 } 2432 #else 2433 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2434 struct mem_cgroup *from, struct mem_cgroup *to) 2435 { 2436 return -EINVAL; 2437 } 2438 #endif 2439 2440 static DEFINE_MUTEX(memcg_limit_mutex); 2441 2442 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2443 unsigned long limit) 2444 { 2445 unsigned long curusage; 2446 unsigned long oldusage; 2447 bool enlarge = false; 2448 int retry_count; 2449 int ret; 2450 2451 /* 2452 * For keeping hierarchical_reclaim simple, how long we should retry 2453 * is depends on callers. We set our retry-count to be function 2454 * of # of children which we should visit in this loop. 2455 */ 2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2457 mem_cgroup_count_children(memcg); 2458 2459 oldusage = page_counter_read(&memcg->memory); 2460 2461 do { 2462 if (signal_pending(current)) { 2463 ret = -EINTR; 2464 break; 2465 } 2466 2467 mutex_lock(&memcg_limit_mutex); 2468 if (limit > memcg->memsw.limit) { 2469 mutex_unlock(&memcg_limit_mutex); 2470 ret = -EINVAL; 2471 break; 2472 } 2473 if (limit > memcg->memory.limit) 2474 enlarge = true; 2475 ret = page_counter_limit(&memcg->memory, limit); 2476 mutex_unlock(&memcg_limit_mutex); 2477 2478 if (!ret) 2479 break; 2480 2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2482 2483 curusage = page_counter_read(&memcg->memory); 2484 /* Usage is reduced ? */ 2485 if (curusage >= oldusage) 2486 retry_count--; 2487 else 2488 oldusage = curusage; 2489 } while (retry_count); 2490 2491 if (!ret && enlarge) 2492 memcg_oom_recover(memcg); 2493 2494 return ret; 2495 } 2496 2497 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2498 unsigned long limit) 2499 { 2500 unsigned long curusage; 2501 unsigned long oldusage; 2502 bool enlarge = false; 2503 int retry_count; 2504 int ret; 2505 2506 /* see mem_cgroup_resize_res_limit */ 2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2508 mem_cgroup_count_children(memcg); 2509 2510 oldusage = page_counter_read(&memcg->memsw); 2511 2512 do { 2513 if (signal_pending(current)) { 2514 ret = -EINTR; 2515 break; 2516 } 2517 2518 mutex_lock(&memcg_limit_mutex); 2519 if (limit < memcg->memory.limit) { 2520 mutex_unlock(&memcg_limit_mutex); 2521 ret = -EINVAL; 2522 break; 2523 } 2524 if (limit > memcg->memsw.limit) 2525 enlarge = true; 2526 ret = page_counter_limit(&memcg->memsw, limit); 2527 mutex_unlock(&memcg_limit_mutex); 2528 2529 if (!ret) 2530 break; 2531 2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2533 2534 curusage = page_counter_read(&memcg->memsw); 2535 /* Usage is reduced ? */ 2536 if (curusage >= oldusage) 2537 retry_count--; 2538 else 2539 oldusage = curusage; 2540 } while (retry_count); 2541 2542 if (!ret && enlarge) 2543 memcg_oom_recover(memcg); 2544 2545 return ret; 2546 } 2547 2548 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2549 gfp_t gfp_mask, 2550 unsigned long *total_scanned) 2551 { 2552 unsigned long nr_reclaimed = 0; 2553 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2554 unsigned long reclaimed; 2555 int loop = 0; 2556 struct mem_cgroup_tree_per_node *mctz; 2557 unsigned long excess; 2558 unsigned long nr_scanned; 2559 2560 if (order > 0) 2561 return 0; 2562 2563 mctz = soft_limit_tree_node(pgdat->node_id); 2564 2565 /* 2566 * Do not even bother to check the largest node if the root 2567 * is empty. Do it lockless to prevent lock bouncing. Races 2568 * are acceptable as soft limit is best effort anyway. 2569 */ 2570 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2571 return 0; 2572 2573 /* 2574 * This loop can run a while, specially if mem_cgroup's continuously 2575 * keep exceeding their soft limit and putting the system under 2576 * pressure 2577 */ 2578 do { 2579 if (next_mz) 2580 mz = next_mz; 2581 else 2582 mz = mem_cgroup_largest_soft_limit_node(mctz); 2583 if (!mz) 2584 break; 2585 2586 nr_scanned = 0; 2587 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2588 gfp_mask, &nr_scanned); 2589 nr_reclaimed += reclaimed; 2590 *total_scanned += nr_scanned; 2591 spin_lock_irq(&mctz->lock); 2592 __mem_cgroup_remove_exceeded(mz, mctz); 2593 2594 /* 2595 * If we failed to reclaim anything from this memory cgroup 2596 * it is time to move on to the next cgroup 2597 */ 2598 next_mz = NULL; 2599 if (!reclaimed) 2600 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2601 2602 excess = soft_limit_excess(mz->memcg); 2603 /* 2604 * One school of thought says that we should not add 2605 * back the node to the tree if reclaim returns 0. 2606 * But our reclaim could return 0, simply because due 2607 * to priority we are exposing a smaller subset of 2608 * memory to reclaim from. Consider this as a longer 2609 * term TODO. 2610 */ 2611 /* If excess == 0, no tree ops */ 2612 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2613 spin_unlock_irq(&mctz->lock); 2614 css_put(&mz->memcg->css); 2615 loop++; 2616 /* 2617 * Could not reclaim anything and there are no more 2618 * mem cgroups to try or we seem to be looping without 2619 * reclaiming anything. 2620 */ 2621 if (!nr_reclaimed && 2622 (next_mz == NULL || 2623 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2624 break; 2625 } while (!nr_reclaimed); 2626 if (next_mz) 2627 css_put(&next_mz->memcg->css); 2628 return nr_reclaimed; 2629 } 2630 2631 /* 2632 * Test whether @memcg has children, dead or alive. Note that this 2633 * function doesn't care whether @memcg has use_hierarchy enabled and 2634 * returns %true if there are child csses according to the cgroup 2635 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2636 */ 2637 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2638 { 2639 bool ret; 2640 2641 rcu_read_lock(); 2642 ret = css_next_child(NULL, &memcg->css); 2643 rcu_read_unlock(); 2644 return ret; 2645 } 2646 2647 /* 2648 * Reclaims as many pages from the given memcg as possible. 2649 * 2650 * Caller is responsible for holding css reference for memcg. 2651 */ 2652 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2653 { 2654 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2655 2656 /* we call try-to-free pages for make this cgroup empty */ 2657 lru_add_drain_all(); 2658 /* try to free all pages in this cgroup */ 2659 while (nr_retries && page_counter_read(&memcg->memory)) { 2660 int progress; 2661 2662 if (signal_pending(current)) 2663 return -EINTR; 2664 2665 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2666 GFP_KERNEL, true); 2667 if (!progress) { 2668 nr_retries--; 2669 /* maybe some writeback is necessary */ 2670 congestion_wait(BLK_RW_ASYNC, HZ/10); 2671 } 2672 2673 } 2674 2675 return 0; 2676 } 2677 2678 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2679 char *buf, size_t nbytes, 2680 loff_t off) 2681 { 2682 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2683 2684 if (mem_cgroup_is_root(memcg)) 2685 return -EINVAL; 2686 return mem_cgroup_force_empty(memcg) ?: nbytes; 2687 } 2688 2689 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2690 struct cftype *cft) 2691 { 2692 return mem_cgroup_from_css(css)->use_hierarchy; 2693 } 2694 2695 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2696 struct cftype *cft, u64 val) 2697 { 2698 int retval = 0; 2699 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2700 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2701 2702 if (memcg->use_hierarchy == val) 2703 return 0; 2704 2705 /* 2706 * If parent's use_hierarchy is set, we can't make any modifications 2707 * in the child subtrees. If it is unset, then the change can 2708 * occur, provided the current cgroup has no children. 2709 * 2710 * For the root cgroup, parent_mem is NULL, we allow value to be 2711 * set if there are no children. 2712 */ 2713 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2714 (val == 1 || val == 0)) { 2715 if (!memcg_has_children(memcg)) 2716 memcg->use_hierarchy = val; 2717 else 2718 retval = -EBUSY; 2719 } else 2720 retval = -EINVAL; 2721 2722 return retval; 2723 } 2724 2725 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2726 { 2727 struct mem_cgroup *iter; 2728 int i; 2729 2730 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2731 2732 for_each_mem_cgroup_tree(iter, memcg) { 2733 for (i = 0; i < MEMCG_NR_STAT; i++) 2734 stat[i] += memcg_page_state(iter, i); 2735 } 2736 } 2737 2738 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2739 { 2740 struct mem_cgroup *iter; 2741 int i; 2742 2743 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2744 2745 for_each_mem_cgroup_tree(iter, memcg) { 2746 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2747 events[i] += memcg_sum_events(iter, i); 2748 } 2749 } 2750 2751 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2752 { 2753 unsigned long val = 0; 2754 2755 if (mem_cgroup_is_root(memcg)) { 2756 struct mem_cgroup *iter; 2757 2758 for_each_mem_cgroup_tree(iter, memcg) { 2759 val += memcg_page_state(iter, MEMCG_CACHE); 2760 val += memcg_page_state(iter, MEMCG_RSS); 2761 if (swap) 2762 val += memcg_page_state(iter, MEMCG_SWAP); 2763 } 2764 } else { 2765 if (!swap) 2766 val = page_counter_read(&memcg->memory); 2767 else 2768 val = page_counter_read(&memcg->memsw); 2769 } 2770 return val; 2771 } 2772 2773 enum { 2774 RES_USAGE, 2775 RES_LIMIT, 2776 RES_MAX_USAGE, 2777 RES_FAILCNT, 2778 RES_SOFT_LIMIT, 2779 }; 2780 2781 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2782 struct cftype *cft) 2783 { 2784 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2785 struct page_counter *counter; 2786 2787 switch (MEMFILE_TYPE(cft->private)) { 2788 case _MEM: 2789 counter = &memcg->memory; 2790 break; 2791 case _MEMSWAP: 2792 counter = &memcg->memsw; 2793 break; 2794 case _KMEM: 2795 counter = &memcg->kmem; 2796 break; 2797 case _TCP: 2798 counter = &memcg->tcpmem; 2799 break; 2800 default: 2801 BUG(); 2802 } 2803 2804 switch (MEMFILE_ATTR(cft->private)) { 2805 case RES_USAGE: 2806 if (counter == &memcg->memory) 2807 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2808 if (counter == &memcg->memsw) 2809 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2810 return (u64)page_counter_read(counter) * PAGE_SIZE; 2811 case RES_LIMIT: 2812 return (u64)counter->limit * PAGE_SIZE; 2813 case RES_MAX_USAGE: 2814 return (u64)counter->watermark * PAGE_SIZE; 2815 case RES_FAILCNT: 2816 return counter->failcnt; 2817 case RES_SOFT_LIMIT: 2818 return (u64)memcg->soft_limit * PAGE_SIZE; 2819 default: 2820 BUG(); 2821 } 2822 } 2823 2824 #ifndef CONFIG_SLOB 2825 static int memcg_online_kmem(struct mem_cgroup *memcg) 2826 { 2827 int memcg_id; 2828 2829 if (cgroup_memory_nokmem) 2830 return 0; 2831 2832 BUG_ON(memcg->kmemcg_id >= 0); 2833 BUG_ON(memcg->kmem_state); 2834 2835 memcg_id = memcg_alloc_cache_id(); 2836 if (memcg_id < 0) 2837 return memcg_id; 2838 2839 static_branch_inc(&memcg_kmem_enabled_key); 2840 /* 2841 * A memory cgroup is considered kmem-online as soon as it gets 2842 * kmemcg_id. Setting the id after enabling static branching will 2843 * guarantee no one starts accounting before all call sites are 2844 * patched. 2845 */ 2846 memcg->kmemcg_id = memcg_id; 2847 memcg->kmem_state = KMEM_ONLINE; 2848 INIT_LIST_HEAD(&memcg->kmem_caches); 2849 2850 return 0; 2851 } 2852 2853 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2854 { 2855 struct cgroup_subsys_state *css; 2856 struct mem_cgroup *parent, *child; 2857 int kmemcg_id; 2858 2859 if (memcg->kmem_state != KMEM_ONLINE) 2860 return; 2861 /* 2862 * Clear the online state before clearing memcg_caches array 2863 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2864 * guarantees that no cache will be created for this cgroup 2865 * after we are done (see memcg_create_kmem_cache()). 2866 */ 2867 memcg->kmem_state = KMEM_ALLOCATED; 2868 2869 memcg_deactivate_kmem_caches(memcg); 2870 2871 kmemcg_id = memcg->kmemcg_id; 2872 BUG_ON(kmemcg_id < 0); 2873 2874 parent = parent_mem_cgroup(memcg); 2875 if (!parent) 2876 parent = root_mem_cgroup; 2877 2878 /* 2879 * Change kmemcg_id of this cgroup and all its descendants to the 2880 * parent's id, and then move all entries from this cgroup's list_lrus 2881 * to ones of the parent. After we have finished, all list_lrus 2882 * corresponding to this cgroup are guaranteed to remain empty. The 2883 * ordering is imposed by list_lru_node->lock taken by 2884 * memcg_drain_all_list_lrus(). 2885 */ 2886 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2887 css_for_each_descendant_pre(css, &memcg->css) { 2888 child = mem_cgroup_from_css(css); 2889 BUG_ON(child->kmemcg_id != kmemcg_id); 2890 child->kmemcg_id = parent->kmemcg_id; 2891 if (!memcg->use_hierarchy) 2892 break; 2893 } 2894 rcu_read_unlock(); 2895 2896 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2897 2898 memcg_free_cache_id(kmemcg_id); 2899 } 2900 2901 static void memcg_free_kmem(struct mem_cgroup *memcg) 2902 { 2903 /* css_alloc() failed, offlining didn't happen */ 2904 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2905 memcg_offline_kmem(memcg); 2906 2907 if (memcg->kmem_state == KMEM_ALLOCATED) { 2908 memcg_destroy_kmem_caches(memcg); 2909 static_branch_dec(&memcg_kmem_enabled_key); 2910 WARN_ON(page_counter_read(&memcg->kmem)); 2911 } 2912 } 2913 #else 2914 static int memcg_online_kmem(struct mem_cgroup *memcg) 2915 { 2916 return 0; 2917 } 2918 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2919 { 2920 } 2921 static void memcg_free_kmem(struct mem_cgroup *memcg) 2922 { 2923 } 2924 #endif /* !CONFIG_SLOB */ 2925 2926 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2927 unsigned long limit) 2928 { 2929 int ret; 2930 2931 mutex_lock(&memcg_limit_mutex); 2932 ret = page_counter_limit(&memcg->kmem, limit); 2933 mutex_unlock(&memcg_limit_mutex); 2934 return ret; 2935 } 2936 2937 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2938 { 2939 int ret; 2940 2941 mutex_lock(&memcg_limit_mutex); 2942 2943 ret = page_counter_limit(&memcg->tcpmem, limit); 2944 if (ret) 2945 goto out; 2946 2947 if (!memcg->tcpmem_active) { 2948 /* 2949 * The active flag needs to be written after the static_key 2950 * update. This is what guarantees that the socket activation 2951 * function is the last one to run. See mem_cgroup_sk_alloc() 2952 * for details, and note that we don't mark any socket as 2953 * belonging to this memcg until that flag is up. 2954 * 2955 * We need to do this, because static_keys will span multiple 2956 * sites, but we can't control their order. If we mark a socket 2957 * as accounted, but the accounting functions are not patched in 2958 * yet, we'll lose accounting. 2959 * 2960 * We never race with the readers in mem_cgroup_sk_alloc(), 2961 * because when this value change, the code to process it is not 2962 * patched in yet. 2963 */ 2964 static_branch_inc(&memcg_sockets_enabled_key); 2965 memcg->tcpmem_active = true; 2966 } 2967 out: 2968 mutex_unlock(&memcg_limit_mutex); 2969 return ret; 2970 } 2971 2972 /* 2973 * The user of this function is... 2974 * RES_LIMIT. 2975 */ 2976 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2977 char *buf, size_t nbytes, loff_t off) 2978 { 2979 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2980 unsigned long nr_pages; 2981 int ret; 2982 2983 buf = strstrip(buf); 2984 ret = page_counter_memparse(buf, "-1", &nr_pages); 2985 if (ret) 2986 return ret; 2987 2988 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2989 case RES_LIMIT: 2990 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2991 ret = -EINVAL; 2992 break; 2993 } 2994 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2995 case _MEM: 2996 ret = mem_cgroup_resize_limit(memcg, nr_pages); 2997 break; 2998 case _MEMSWAP: 2999 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3000 break; 3001 case _KMEM: 3002 ret = memcg_update_kmem_limit(memcg, nr_pages); 3003 break; 3004 case _TCP: 3005 ret = memcg_update_tcp_limit(memcg, nr_pages); 3006 break; 3007 } 3008 break; 3009 case RES_SOFT_LIMIT: 3010 memcg->soft_limit = nr_pages; 3011 ret = 0; 3012 break; 3013 } 3014 return ret ?: nbytes; 3015 } 3016 3017 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3018 size_t nbytes, loff_t off) 3019 { 3020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3021 struct page_counter *counter; 3022 3023 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3024 case _MEM: 3025 counter = &memcg->memory; 3026 break; 3027 case _MEMSWAP: 3028 counter = &memcg->memsw; 3029 break; 3030 case _KMEM: 3031 counter = &memcg->kmem; 3032 break; 3033 case _TCP: 3034 counter = &memcg->tcpmem; 3035 break; 3036 default: 3037 BUG(); 3038 } 3039 3040 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3041 case RES_MAX_USAGE: 3042 page_counter_reset_watermark(counter); 3043 break; 3044 case RES_FAILCNT: 3045 counter->failcnt = 0; 3046 break; 3047 default: 3048 BUG(); 3049 } 3050 3051 return nbytes; 3052 } 3053 3054 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3055 struct cftype *cft) 3056 { 3057 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3058 } 3059 3060 #ifdef CONFIG_MMU 3061 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3062 struct cftype *cft, u64 val) 3063 { 3064 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3065 3066 if (val & ~MOVE_MASK) 3067 return -EINVAL; 3068 3069 /* 3070 * No kind of locking is needed in here, because ->can_attach() will 3071 * check this value once in the beginning of the process, and then carry 3072 * on with stale data. This means that changes to this value will only 3073 * affect task migrations starting after the change. 3074 */ 3075 memcg->move_charge_at_immigrate = val; 3076 return 0; 3077 } 3078 #else 3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3080 struct cftype *cft, u64 val) 3081 { 3082 return -ENOSYS; 3083 } 3084 #endif 3085 3086 #ifdef CONFIG_NUMA 3087 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3088 { 3089 struct numa_stat { 3090 const char *name; 3091 unsigned int lru_mask; 3092 }; 3093 3094 static const struct numa_stat stats[] = { 3095 { "total", LRU_ALL }, 3096 { "file", LRU_ALL_FILE }, 3097 { "anon", LRU_ALL_ANON }, 3098 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3099 }; 3100 const struct numa_stat *stat; 3101 int nid; 3102 unsigned long nr; 3103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3104 3105 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3106 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3107 seq_printf(m, "%s=%lu", stat->name, nr); 3108 for_each_node_state(nid, N_MEMORY) { 3109 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3110 stat->lru_mask); 3111 seq_printf(m, " N%d=%lu", nid, nr); 3112 } 3113 seq_putc(m, '\n'); 3114 } 3115 3116 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3117 struct mem_cgroup *iter; 3118 3119 nr = 0; 3120 for_each_mem_cgroup_tree(iter, memcg) 3121 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3122 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3123 for_each_node_state(nid, N_MEMORY) { 3124 nr = 0; 3125 for_each_mem_cgroup_tree(iter, memcg) 3126 nr += mem_cgroup_node_nr_lru_pages( 3127 iter, nid, stat->lru_mask); 3128 seq_printf(m, " N%d=%lu", nid, nr); 3129 } 3130 seq_putc(m, '\n'); 3131 } 3132 3133 return 0; 3134 } 3135 #endif /* CONFIG_NUMA */ 3136 3137 /* Universal VM events cgroup1 shows, original sort order */ 3138 unsigned int memcg1_events[] = { 3139 PGPGIN, 3140 PGPGOUT, 3141 PGFAULT, 3142 PGMAJFAULT, 3143 }; 3144 3145 static const char *const memcg1_event_names[] = { 3146 "pgpgin", 3147 "pgpgout", 3148 "pgfault", 3149 "pgmajfault", 3150 }; 3151 3152 static int memcg_stat_show(struct seq_file *m, void *v) 3153 { 3154 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3155 unsigned long memory, memsw; 3156 struct mem_cgroup *mi; 3157 unsigned int i; 3158 3159 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3160 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3161 3162 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3163 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3164 continue; 3165 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3166 memcg_page_state(memcg, memcg1_stats[i]) * 3167 PAGE_SIZE); 3168 } 3169 3170 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3171 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3172 memcg_sum_events(memcg, memcg1_events[i])); 3173 3174 for (i = 0; i < NR_LRU_LISTS; i++) 3175 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3176 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3177 3178 /* Hierarchical information */ 3179 memory = memsw = PAGE_COUNTER_MAX; 3180 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3181 memory = min(memory, mi->memory.limit); 3182 memsw = min(memsw, mi->memsw.limit); 3183 } 3184 seq_printf(m, "hierarchical_memory_limit %llu\n", 3185 (u64)memory * PAGE_SIZE); 3186 if (do_memsw_account()) 3187 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3188 (u64)memsw * PAGE_SIZE); 3189 3190 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3191 unsigned long long val = 0; 3192 3193 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3194 continue; 3195 for_each_mem_cgroup_tree(mi, memcg) 3196 val += memcg_page_state(mi, memcg1_stats[i]) * 3197 PAGE_SIZE; 3198 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val); 3199 } 3200 3201 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) { 3202 unsigned long long val = 0; 3203 3204 for_each_mem_cgroup_tree(mi, memcg) 3205 val += memcg_sum_events(mi, memcg1_events[i]); 3206 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val); 3207 } 3208 3209 for (i = 0; i < NR_LRU_LISTS; i++) { 3210 unsigned long long val = 0; 3211 3212 for_each_mem_cgroup_tree(mi, memcg) 3213 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3214 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3215 } 3216 3217 #ifdef CONFIG_DEBUG_VM 3218 { 3219 pg_data_t *pgdat; 3220 struct mem_cgroup_per_node *mz; 3221 struct zone_reclaim_stat *rstat; 3222 unsigned long recent_rotated[2] = {0, 0}; 3223 unsigned long recent_scanned[2] = {0, 0}; 3224 3225 for_each_online_pgdat(pgdat) { 3226 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3227 rstat = &mz->lruvec.reclaim_stat; 3228 3229 recent_rotated[0] += rstat->recent_rotated[0]; 3230 recent_rotated[1] += rstat->recent_rotated[1]; 3231 recent_scanned[0] += rstat->recent_scanned[0]; 3232 recent_scanned[1] += rstat->recent_scanned[1]; 3233 } 3234 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3235 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3236 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3237 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3238 } 3239 #endif 3240 3241 return 0; 3242 } 3243 3244 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3245 struct cftype *cft) 3246 { 3247 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3248 3249 return mem_cgroup_swappiness(memcg); 3250 } 3251 3252 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3253 struct cftype *cft, u64 val) 3254 { 3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3256 3257 if (val > 100) 3258 return -EINVAL; 3259 3260 if (css->parent) 3261 memcg->swappiness = val; 3262 else 3263 vm_swappiness = val; 3264 3265 return 0; 3266 } 3267 3268 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3269 { 3270 struct mem_cgroup_threshold_ary *t; 3271 unsigned long usage; 3272 int i; 3273 3274 rcu_read_lock(); 3275 if (!swap) 3276 t = rcu_dereference(memcg->thresholds.primary); 3277 else 3278 t = rcu_dereference(memcg->memsw_thresholds.primary); 3279 3280 if (!t) 3281 goto unlock; 3282 3283 usage = mem_cgroup_usage(memcg, swap); 3284 3285 /* 3286 * current_threshold points to threshold just below or equal to usage. 3287 * If it's not true, a threshold was crossed after last 3288 * call of __mem_cgroup_threshold(). 3289 */ 3290 i = t->current_threshold; 3291 3292 /* 3293 * Iterate backward over array of thresholds starting from 3294 * current_threshold and check if a threshold is crossed. 3295 * If none of thresholds below usage is crossed, we read 3296 * only one element of the array here. 3297 */ 3298 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3299 eventfd_signal(t->entries[i].eventfd, 1); 3300 3301 /* i = current_threshold + 1 */ 3302 i++; 3303 3304 /* 3305 * Iterate forward over array of thresholds starting from 3306 * current_threshold+1 and check if a threshold is crossed. 3307 * If none of thresholds above usage is crossed, we read 3308 * only one element of the array here. 3309 */ 3310 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3311 eventfd_signal(t->entries[i].eventfd, 1); 3312 3313 /* Update current_threshold */ 3314 t->current_threshold = i - 1; 3315 unlock: 3316 rcu_read_unlock(); 3317 } 3318 3319 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3320 { 3321 while (memcg) { 3322 __mem_cgroup_threshold(memcg, false); 3323 if (do_memsw_account()) 3324 __mem_cgroup_threshold(memcg, true); 3325 3326 memcg = parent_mem_cgroup(memcg); 3327 } 3328 } 3329 3330 static int compare_thresholds(const void *a, const void *b) 3331 { 3332 const struct mem_cgroup_threshold *_a = a; 3333 const struct mem_cgroup_threshold *_b = b; 3334 3335 if (_a->threshold > _b->threshold) 3336 return 1; 3337 3338 if (_a->threshold < _b->threshold) 3339 return -1; 3340 3341 return 0; 3342 } 3343 3344 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3345 { 3346 struct mem_cgroup_eventfd_list *ev; 3347 3348 spin_lock(&memcg_oom_lock); 3349 3350 list_for_each_entry(ev, &memcg->oom_notify, list) 3351 eventfd_signal(ev->eventfd, 1); 3352 3353 spin_unlock(&memcg_oom_lock); 3354 return 0; 3355 } 3356 3357 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3358 { 3359 struct mem_cgroup *iter; 3360 3361 for_each_mem_cgroup_tree(iter, memcg) 3362 mem_cgroup_oom_notify_cb(iter); 3363 } 3364 3365 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3366 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3367 { 3368 struct mem_cgroup_thresholds *thresholds; 3369 struct mem_cgroup_threshold_ary *new; 3370 unsigned long threshold; 3371 unsigned long usage; 3372 int i, size, ret; 3373 3374 ret = page_counter_memparse(args, "-1", &threshold); 3375 if (ret) 3376 return ret; 3377 3378 mutex_lock(&memcg->thresholds_lock); 3379 3380 if (type == _MEM) { 3381 thresholds = &memcg->thresholds; 3382 usage = mem_cgroup_usage(memcg, false); 3383 } else if (type == _MEMSWAP) { 3384 thresholds = &memcg->memsw_thresholds; 3385 usage = mem_cgroup_usage(memcg, true); 3386 } else 3387 BUG(); 3388 3389 /* Check if a threshold crossed before adding a new one */ 3390 if (thresholds->primary) 3391 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3392 3393 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3394 3395 /* Allocate memory for new array of thresholds */ 3396 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3397 GFP_KERNEL); 3398 if (!new) { 3399 ret = -ENOMEM; 3400 goto unlock; 3401 } 3402 new->size = size; 3403 3404 /* Copy thresholds (if any) to new array */ 3405 if (thresholds->primary) { 3406 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3407 sizeof(struct mem_cgroup_threshold)); 3408 } 3409 3410 /* Add new threshold */ 3411 new->entries[size - 1].eventfd = eventfd; 3412 new->entries[size - 1].threshold = threshold; 3413 3414 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3415 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3416 compare_thresholds, NULL); 3417 3418 /* Find current threshold */ 3419 new->current_threshold = -1; 3420 for (i = 0; i < size; i++) { 3421 if (new->entries[i].threshold <= usage) { 3422 /* 3423 * new->current_threshold will not be used until 3424 * rcu_assign_pointer(), so it's safe to increment 3425 * it here. 3426 */ 3427 ++new->current_threshold; 3428 } else 3429 break; 3430 } 3431 3432 /* Free old spare buffer and save old primary buffer as spare */ 3433 kfree(thresholds->spare); 3434 thresholds->spare = thresholds->primary; 3435 3436 rcu_assign_pointer(thresholds->primary, new); 3437 3438 /* To be sure that nobody uses thresholds */ 3439 synchronize_rcu(); 3440 3441 unlock: 3442 mutex_unlock(&memcg->thresholds_lock); 3443 3444 return ret; 3445 } 3446 3447 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3448 struct eventfd_ctx *eventfd, const char *args) 3449 { 3450 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3451 } 3452 3453 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3454 struct eventfd_ctx *eventfd, const char *args) 3455 { 3456 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3457 } 3458 3459 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3460 struct eventfd_ctx *eventfd, enum res_type type) 3461 { 3462 struct mem_cgroup_thresholds *thresholds; 3463 struct mem_cgroup_threshold_ary *new; 3464 unsigned long usage; 3465 int i, j, size; 3466 3467 mutex_lock(&memcg->thresholds_lock); 3468 3469 if (type == _MEM) { 3470 thresholds = &memcg->thresholds; 3471 usage = mem_cgroup_usage(memcg, false); 3472 } else if (type == _MEMSWAP) { 3473 thresholds = &memcg->memsw_thresholds; 3474 usage = mem_cgroup_usage(memcg, true); 3475 } else 3476 BUG(); 3477 3478 if (!thresholds->primary) 3479 goto unlock; 3480 3481 /* Check if a threshold crossed before removing */ 3482 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3483 3484 /* Calculate new number of threshold */ 3485 size = 0; 3486 for (i = 0; i < thresholds->primary->size; i++) { 3487 if (thresholds->primary->entries[i].eventfd != eventfd) 3488 size++; 3489 } 3490 3491 new = thresholds->spare; 3492 3493 /* Set thresholds array to NULL if we don't have thresholds */ 3494 if (!size) { 3495 kfree(new); 3496 new = NULL; 3497 goto swap_buffers; 3498 } 3499 3500 new->size = size; 3501 3502 /* Copy thresholds and find current threshold */ 3503 new->current_threshold = -1; 3504 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3505 if (thresholds->primary->entries[i].eventfd == eventfd) 3506 continue; 3507 3508 new->entries[j] = thresholds->primary->entries[i]; 3509 if (new->entries[j].threshold <= usage) { 3510 /* 3511 * new->current_threshold will not be used 3512 * until rcu_assign_pointer(), so it's safe to increment 3513 * it here. 3514 */ 3515 ++new->current_threshold; 3516 } 3517 j++; 3518 } 3519 3520 swap_buffers: 3521 /* Swap primary and spare array */ 3522 thresholds->spare = thresholds->primary; 3523 3524 rcu_assign_pointer(thresholds->primary, new); 3525 3526 /* To be sure that nobody uses thresholds */ 3527 synchronize_rcu(); 3528 3529 /* If all events are unregistered, free the spare array */ 3530 if (!new) { 3531 kfree(thresholds->spare); 3532 thresholds->spare = NULL; 3533 } 3534 unlock: 3535 mutex_unlock(&memcg->thresholds_lock); 3536 } 3537 3538 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3539 struct eventfd_ctx *eventfd) 3540 { 3541 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3542 } 3543 3544 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3545 struct eventfd_ctx *eventfd) 3546 { 3547 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3548 } 3549 3550 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3551 struct eventfd_ctx *eventfd, const char *args) 3552 { 3553 struct mem_cgroup_eventfd_list *event; 3554 3555 event = kmalloc(sizeof(*event), GFP_KERNEL); 3556 if (!event) 3557 return -ENOMEM; 3558 3559 spin_lock(&memcg_oom_lock); 3560 3561 event->eventfd = eventfd; 3562 list_add(&event->list, &memcg->oom_notify); 3563 3564 /* already in OOM ? */ 3565 if (memcg->under_oom) 3566 eventfd_signal(eventfd, 1); 3567 spin_unlock(&memcg_oom_lock); 3568 3569 return 0; 3570 } 3571 3572 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3573 struct eventfd_ctx *eventfd) 3574 { 3575 struct mem_cgroup_eventfd_list *ev, *tmp; 3576 3577 spin_lock(&memcg_oom_lock); 3578 3579 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3580 if (ev->eventfd == eventfd) { 3581 list_del(&ev->list); 3582 kfree(ev); 3583 } 3584 } 3585 3586 spin_unlock(&memcg_oom_lock); 3587 } 3588 3589 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3590 { 3591 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3592 3593 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3594 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3595 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL)); 3596 return 0; 3597 } 3598 3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3600 struct cftype *cft, u64 val) 3601 { 3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3603 3604 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3605 if (!css->parent || !((val == 0) || (val == 1))) 3606 return -EINVAL; 3607 3608 memcg->oom_kill_disable = val; 3609 if (!val) 3610 memcg_oom_recover(memcg); 3611 3612 return 0; 3613 } 3614 3615 #ifdef CONFIG_CGROUP_WRITEBACK 3616 3617 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3618 { 3619 return &memcg->cgwb_list; 3620 } 3621 3622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3623 { 3624 return wb_domain_init(&memcg->cgwb_domain, gfp); 3625 } 3626 3627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3628 { 3629 wb_domain_exit(&memcg->cgwb_domain); 3630 } 3631 3632 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3633 { 3634 wb_domain_size_changed(&memcg->cgwb_domain); 3635 } 3636 3637 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3638 { 3639 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3640 3641 if (!memcg->css.parent) 3642 return NULL; 3643 3644 return &memcg->cgwb_domain; 3645 } 3646 3647 /** 3648 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3649 * @wb: bdi_writeback in question 3650 * @pfilepages: out parameter for number of file pages 3651 * @pheadroom: out parameter for number of allocatable pages according to memcg 3652 * @pdirty: out parameter for number of dirty pages 3653 * @pwriteback: out parameter for number of pages under writeback 3654 * 3655 * Determine the numbers of file, headroom, dirty, and writeback pages in 3656 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3657 * is a bit more involved. 3658 * 3659 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3660 * headroom is calculated as the lowest headroom of itself and the 3661 * ancestors. Note that this doesn't consider the actual amount of 3662 * available memory in the system. The caller should further cap 3663 * *@pheadroom accordingly. 3664 */ 3665 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3666 unsigned long *pheadroom, unsigned long *pdirty, 3667 unsigned long *pwriteback) 3668 { 3669 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3670 struct mem_cgroup *parent; 3671 3672 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3673 3674 /* this should eventually include NR_UNSTABLE_NFS */ 3675 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3676 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3677 (1 << LRU_ACTIVE_FILE)); 3678 *pheadroom = PAGE_COUNTER_MAX; 3679 3680 while ((parent = parent_mem_cgroup(memcg))) { 3681 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3682 unsigned long used = page_counter_read(&memcg->memory); 3683 3684 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3685 memcg = parent; 3686 } 3687 } 3688 3689 #else /* CONFIG_CGROUP_WRITEBACK */ 3690 3691 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3692 { 3693 return 0; 3694 } 3695 3696 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3697 { 3698 } 3699 3700 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3701 { 3702 } 3703 3704 #endif /* CONFIG_CGROUP_WRITEBACK */ 3705 3706 /* 3707 * DO NOT USE IN NEW FILES. 3708 * 3709 * "cgroup.event_control" implementation. 3710 * 3711 * This is way over-engineered. It tries to support fully configurable 3712 * events for each user. Such level of flexibility is completely 3713 * unnecessary especially in the light of the planned unified hierarchy. 3714 * 3715 * Please deprecate this and replace with something simpler if at all 3716 * possible. 3717 */ 3718 3719 /* 3720 * Unregister event and free resources. 3721 * 3722 * Gets called from workqueue. 3723 */ 3724 static void memcg_event_remove(struct work_struct *work) 3725 { 3726 struct mem_cgroup_event *event = 3727 container_of(work, struct mem_cgroup_event, remove); 3728 struct mem_cgroup *memcg = event->memcg; 3729 3730 remove_wait_queue(event->wqh, &event->wait); 3731 3732 event->unregister_event(memcg, event->eventfd); 3733 3734 /* Notify userspace the event is going away. */ 3735 eventfd_signal(event->eventfd, 1); 3736 3737 eventfd_ctx_put(event->eventfd); 3738 kfree(event); 3739 css_put(&memcg->css); 3740 } 3741 3742 /* 3743 * Gets called on POLLHUP on eventfd when user closes it. 3744 * 3745 * Called with wqh->lock held and interrupts disabled. 3746 */ 3747 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 3748 int sync, void *key) 3749 { 3750 struct mem_cgroup_event *event = 3751 container_of(wait, struct mem_cgroup_event, wait); 3752 struct mem_cgroup *memcg = event->memcg; 3753 unsigned long flags = (unsigned long)key; 3754 3755 if (flags & POLLHUP) { 3756 /* 3757 * If the event has been detached at cgroup removal, we 3758 * can simply return knowing the other side will cleanup 3759 * for us. 3760 * 3761 * We can't race against event freeing since the other 3762 * side will require wqh->lock via remove_wait_queue(), 3763 * which we hold. 3764 */ 3765 spin_lock(&memcg->event_list_lock); 3766 if (!list_empty(&event->list)) { 3767 list_del_init(&event->list); 3768 /* 3769 * We are in atomic context, but cgroup_event_remove() 3770 * may sleep, so we have to call it in workqueue. 3771 */ 3772 schedule_work(&event->remove); 3773 } 3774 spin_unlock(&memcg->event_list_lock); 3775 } 3776 3777 return 0; 3778 } 3779 3780 static void memcg_event_ptable_queue_proc(struct file *file, 3781 wait_queue_head_t *wqh, poll_table *pt) 3782 { 3783 struct mem_cgroup_event *event = 3784 container_of(pt, struct mem_cgroup_event, pt); 3785 3786 event->wqh = wqh; 3787 add_wait_queue(wqh, &event->wait); 3788 } 3789 3790 /* 3791 * DO NOT USE IN NEW FILES. 3792 * 3793 * Parse input and register new cgroup event handler. 3794 * 3795 * Input must be in format '<event_fd> <control_fd> <args>'. 3796 * Interpretation of args is defined by control file implementation. 3797 */ 3798 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3799 char *buf, size_t nbytes, loff_t off) 3800 { 3801 struct cgroup_subsys_state *css = of_css(of); 3802 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3803 struct mem_cgroup_event *event; 3804 struct cgroup_subsys_state *cfile_css; 3805 unsigned int efd, cfd; 3806 struct fd efile; 3807 struct fd cfile; 3808 const char *name; 3809 char *endp; 3810 int ret; 3811 3812 buf = strstrip(buf); 3813 3814 efd = simple_strtoul(buf, &endp, 10); 3815 if (*endp != ' ') 3816 return -EINVAL; 3817 buf = endp + 1; 3818 3819 cfd = simple_strtoul(buf, &endp, 10); 3820 if ((*endp != ' ') && (*endp != '\0')) 3821 return -EINVAL; 3822 buf = endp + 1; 3823 3824 event = kzalloc(sizeof(*event), GFP_KERNEL); 3825 if (!event) 3826 return -ENOMEM; 3827 3828 event->memcg = memcg; 3829 INIT_LIST_HEAD(&event->list); 3830 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3831 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3832 INIT_WORK(&event->remove, memcg_event_remove); 3833 3834 efile = fdget(efd); 3835 if (!efile.file) { 3836 ret = -EBADF; 3837 goto out_kfree; 3838 } 3839 3840 event->eventfd = eventfd_ctx_fileget(efile.file); 3841 if (IS_ERR(event->eventfd)) { 3842 ret = PTR_ERR(event->eventfd); 3843 goto out_put_efile; 3844 } 3845 3846 cfile = fdget(cfd); 3847 if (!cfile.file) { 3848 ret = -EBADF; 3849 goto out_put_eventfd; 3850 } 3851 3852 /* the process need read permission on control file */ 3853 /* AV: shouldn't we check that it's been opened for read instead? */ 3854 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3855 if (ret < 0) 3856 goto out_put_cfile; 3857 3858 /* 3859 * Determine the event callbacks and set them in @event. This used 3860 * to be done via struct cftype but cgroup core no longer knows 3861 * about these events. The following is crude but the whole thing 3862 * is for compatibility anyway. 3863 * 3864 * DO NOT ADD NEW FILES. 3865 */ 3866 name = cfile.file->f_path.dentry->d_name.name; 3867 3868 if (!strcmp(name, "memory.usage_in_bytes")) { 3869 event->register_event = mem_cgroup_usage_register_event; 3870 event->unregister_event = mem_cgroup_usage_unregister_event; 3871 } else if (!strcmp(name, "memory.oom_control")) { 3872 event->register_event = mem_cgroup_oom_register_event; 3873 event->unregister_event = mem_cgroup_oom_unregister_event; 3874 } else if (!strcmp(name, "memory.pressure_level")) { 3875 event->register_event = vmpressure_register_event; 3876 event->unregister_event = vmpressure_unregister_event; 3877 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3878 event->register_event = memsw_cgroup_usage_register_event; 3879 event->unregister_event = memsw_cgroup_usage_unregister_event; 3880 } else { 3881 ret = -EINVAL; 3882 goto out_put_cfile; 3883 } 3884 3885 /* 3886 * Verify @cfile should belong to @css. Also, remaining events are 3887 * automatically removed on cgroup destruction but the removal is 3888 * asynchronous, so take an extra ref on @css. 3889 */ 3890 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3891 &memory_cgrp_subsys); 3892 ret = -EINVAL; 3893 if (IS_ERR(cfile_css)) 3894 goto out_put_cfile; 3895 if (cfile_css != css) { 3896 css_put(cfile_css); 3897 goto out_put_cfile; 3898 } 3899 3900 ret = event->register_event(memcg, event->eventfd, buf); 3901 if (ret) 3902 goto out_put_css; 3903 3904 efile.file->f_op->poll(efile.file, &event->pt); 3905 3906 spin_lock(&memcg->event_list_lock); 3907 list_add(&event->list, &memcg->event_list); 3908 spin_unlock(&memcg->event_list_lock); 3909 3910 fdput(cfile); 3911 fdput(efile); 3912 3913 return nbytes; 3914 3915 out_put_css: 3916 css_put(css); 3917 out_put_cfile: 3918 fdput(cfile); 3919 out_put_eventfd: 3920 eventfd_ctx_put(event->eventfd); 3921 out_put_efile: 3922 fdput(efile); 3923 out_kfree: 3924 kfree(event); 3925 3926 return ret; 3927 } 3928 3929 static struct cftype mem_cgroup_legacy_files[] = { 3930 { 3931 .name = "usage_in_bytes", 3932 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3933 .read_u64 = mem_cgroup_read_u64, 3934 }, 3935 { 3936 .name = "max_usage_in_bytes", 3937 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3938 .write = mem_cgroup_reset, 3939 .read_u64 = mem_cgroup_read_u64, 3940 }, 3941 { 3942 .name = "limit_in_bytes", 3943 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3944 .write = mem_cgroup_write, 3945 .read_u64 = mem_cgroup_read_u64, 3946 }, 3947 { 3948 .name = "soft_limit_in_bytes", 3949 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3950 .write = mem_cgroup_write, 3951 .read_u64 = mem_cgroup_read_u64, 3952 }, 3953 { 3954 .name = "failcnt", 3955 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3956 .write = mem_cgroup_reset, 3957 .read_u64 = mem_cgroup_read_u64, 3958 }, 3959 { 3960 .name = "stat", 3961 .seq_show = memcg_stat_show, 3962 }, 3963 { 3964 .name = "force_empty", 3965 .write = mem_cgroup_force_empty_write, 3966 }, 3967 { 3968 .name = "use_hierarchy", 3969 .write_u64 = mem_cgroup_hierarchy_write, 3970 .read_u64 = mem_cgroup_hierarchy_read, 3971 }, 3972 { 3973 .name = "cgroup.event_control", /* XXX: for compat */ 3974 .write = memcg_write_event_control, 3975 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3976 }, 3977 { 3978 .name = "swappiness", 3979 .read_u64 = mem_cgroup_swappiness_read, 3980 .write_u64 = mem_cgroup_swappiness_write, 3981 }, 3982 { 3983 .name = "move_charge_at_immigrate", 3984 .read_u64 = mem_cgroup_move_charge_read, 3985 .write_u64 = mem_cgroup_move_charge_write, 3986 }, 3987 { 3988 .name = "oom_control", 3989 .seq_show = mem_cgroup_oom_control_read, 3990 .write_u64 = mem_cgroup_oom_control_write, 3991 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3992 }, 3993 { 3994 .name = "pressure_level", 3995 }, 3996 #ifdef CONFIG_NUMA 3997 { 3998 .name = "numa_stat", 3999 .seq_show = memcg_numa_stat_show, 4000 }, 4001 #endif 4002 { 4003 .name = "kmem.limit_in_bytes", 4004 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4005 .write = mem_cgroup_write, 4006 .read_u64 = mem_cgroup_read_u64, 4007 }, 4008 { 4009 .name = "kmem.usage_in_bytes", 4010 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4011 .read_u64 = mem_cgroup_read_u64, 4012 }, 4013 { 4014 .name = "kmem.failcnt", 4015 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4016 .write = mem_cgroup_reset, 4017 .read_u64 = mem_cgroup_read_u64, 4018 }, 4019 { 4020 .name = "kmem.max_usage_in_bytes", 4021 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4022 .write = mem_cgroup_reset, 4023 .read_u64 = mem_cgroup_read_u64, 4024 }, 4025 #ifdef CONFIG_SLABINFO 4026 { 4027 .name = "kmem.slabinfo", 4028 .seq_start = memcg_slab_start, 4029 .seq_next = memcg_slab_next, 4030 .seq_stop = memcg_slab_stop, 4031 .seq_show = memcg_slab_show, 4032 }, 4033 #endif 4034 { 4035 .name = "kmem.tcp.limit_in_bytes", 4036 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4037 .write = mem_cgroup_write, 4038 .read_u64 = mem_cgroup_read_u64, 4039 }, 4040 { 4041 .name = "kmem.tcp.usage_in_bytes", 4042 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4043 .read_u64 = mem_cgroup_read_u64, 4044 }, 4045 { 4046 .name = "kmem.tcp.failcnt", 4047 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4048 .write = mem_cgroup_reset, 4049 .read_u64 = mem_cgroup_read_u64, 4050 }, 4051 { 4052 .name = "kmem.tcp.max_usage_in_bytes", 4053 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4054 .write = mem_cgroup_reset, 4055 .read_u64 = mem_cgroup_read_u64, 4056 }, 4057 { }, /* terminate */ 4058 }; 4059 4060 /* 4061 * Private memory cgroup IDR 4062 * 4063 * Swap-out records and page cache shadow entries need to store memcg 4064 * references in constrained space, so we maintain an ID space that is 4065 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4066 * memory-controlled cgroups to 64k. 4067 * 4068 * However, there usually are many references to the oflline CSS after 4069 * the cgroup has been destroyed, such as page cache or reclaimable 4070 * slab objects, that don't need to hang on to the ID. We want to keep 4071 * those dead CSS from occupying IDs, or we might quickly exhaust the 4072 * relatively small ID space and prevent the creation of new cgroups 4073 * even when there are much fewer than 64k cgroups - possibly none. 4074 * 4075 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4076 * be freed and recycled when it's no longer needed, which is usually 4077 * when the CSS is offlined. 4078 * 4079 * The only exception to that are records of swapped out tmpfs/shmem 4080 * pages that need to be attributed to live ancestors on swapin. But 4081 * those references are manageable from userspace. 4082 */ 4083 4084 static DEFINE_IDR(mem_cgroup_idr); 4085 4086 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4087 { 4088 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); 4089 atomic_add(n, &memcg->id.ref); 4090 } 4091 4092 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4093 { 4094 VM_BUG_ON(atomic_read(&memcg->id.ref) < n); 4095 if (atomic_sub_and_test(n, &memcg->id.ref)) { 4096 idr_remove(&mem_cgroup_idr, memcg->id.id); 4097 memcg->id.id = 0; 4098 4099 /* Memcg ID pins CSS */ 4100 css_put(&memcg->css); 4101 } 4102 } 4103 4104 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4105 { 4106 mem_cgroup_id_get_many(memcg, 1); 4107 } 4108 4109 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4110 { 4111 mem_cgroup_id_put_many(memcg, 1); 4112 } 4113 4114 /** 4115 * mem_cgroup_from_id - look up a memcg from a memcg id 4116 * @id: the memcg id to look up 4117 * 4118 * Caller must hold rcu_read_lock(). 4119 */ 4120 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4121 { 4122 WARN_ON_ONCE(!rcu_read_lock_held()); 4123 return idr_find(&mem_cgroup_idr, id); 4124 } 4125 4126 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4127 { 4128 struct mem_cgroup_per_node *pn; 4129 int tmp = node; 4130 /* 4131 * This routine is called against possible nodes. 4132 * But it's BUG to call kmalloc() against offline node. 4133 * 4134 * TODO: this routine can waste much memory for nodes which will 4135 * never be onlined. It's better to use memory hotplug callback 4136 * function. 4137 */ 4138 if (!node_state(node, N_NORMAL_MEMORY)) 4139 tmp = -1; 4140 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4141 if (!pn) 4142 return 1; 4143 4144 pn->lruvec_stat = alloc_percpu(struct lruvec_stat); 4145 if (!pn->lruvec_stat) { 4146 kfree(pn); 4147 return 1; 4148 } 4149 4150 lruvec_init(&pn->lruvec); 4151 pn->usage_in_excess = 0; 4152 pn->on_tree = false; 4153 pn->memcg = memcg; 4154 4155 memcg->nodeinfo[node] = pn; 4156 return 0; 4157 } 4158 4159 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4160 { 4161 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4162 4163 free_percpu(pn->lruvec_stat); 4164 kfree(pn); 4165 } 4166 4167 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4168 { 4169 int node; 4170 4171 for_each_node(node) 4172 free_mem_cgroup_per_node_info(memcg, node); 4173 free_percpu(memcg->stat); 4174 kfree(memcg); 4175 } 4176 4177 static void mem_cgroup_free(struct mem_cgroup *memcg) 4178 { 4179 memcg_wb_domain_exit(memcg); 4180 __mem_cgroup_free(memcg); 4181 } 4182 4183 static struct mem_cgroup *mem_cgroup_alloc(void) 4184 { 4185 struct mem_cgroup *memcg; 4186 size_t size; 4187 int node; 4188 4189 size = sizeof(struct mem_cgroup); 4190 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4191 4192 memcg = kzalloc(size, GFP_KERNEL); 4193 if (!memcg) 4194 return NULL; 4195 4196 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4197 1, MEM_CGROUP_ID_MAX, 4198 GFP_KERNEL); 4199 if (memcg->id.id < 0) 4200 goto fail; 4201 4202 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4203 if (!memcg->stat) 4204 goto fail; 4205 4206 for_each_node(node) 4207 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4208 goto fail; 4209 4210 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4211 goto fail; 4212 4213 INIT_WORK(&memcg->high_work, high_work_func); 4214 memcg->last_scanned_node = MAX_NUMNODES; 4215 INIT_LIST_HEAD(&memcg->oom_notify); 4216 mutex_init(&memcg->thresholds_lock); 4217 spin_lock_init(&memcg->move_lock); 4218 vmpressure_init(&memcg->vmpressure); 4219 INIT_LIST_HEAD(&memcg->event_list); 4220 spin_lock_init(&memcg->event_list_lock); 4221 memcg->socket_pressure = jiffies; 4222 #ifndef CONFIG_SLOB 4223 memcg->kmemcg_id = -1; 4224 #endif 4225 #ifdef CONFIG_CGROUP_WRITEBACK 4226 INIT_LIST_HEAD(&memcg->cgwb_list); 4227 #endif 4228 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4229 return memcg; 4230 fail: 4231 if (memcg->id.id > 0) 4232 idr_remove(&mem_cgroup_idr, memcg->id.id); 4233 __mem_cgroup_free(memcg); 4234 return NULL; 4235 } 4236 4237 static struct cgroup_subsys_state * __ref 4238 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4239 { 4240 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4241 struct mem_cgroup *memcg; 4242 long error = -ENOMEM; 4243 4244 memcg = mem_cgroup_alloc(); 4245 if (!memcg) 4246 return ERR_PTR(error); 4247 4248 memcg->high = PAGE_COUNTER_MAX; 4249 memcg->soft_limit = PAGE_COUNTER_MAX; 4250 if (parent) { 4251 memcg->swappiness = mem_cgroup_swappiness(parent); 4252 memcg->oom_kill_disable = parent->oom_kill_disable; 4253 } 4254 if (parent && parent->use_hierarchy) { 4255 memcg->use_hierarchy = true; 4256 page_counter_init(&memcg->memory, &parent->memory); 4257 page_counter_init(&memcg->swap, &parent->swap); 4258 page_counter_init(&memcg->memsw, &parent->memsw); 4259 page_counter_init(&memcg->kmem, &parent->kmem); 4260 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4261 } else { 4262 page_counter_init(&memcg->memory, NULL); 4263 page_counter_init(&memcg->swap, NULL); 4264 page_counter_init(&memcg->memsw, NULL); 4265 page_counter_init(&memcg->kmem, NULL); 4266 page_counter_init(&memcg->tcpmem, NULL); 4267 /* 4268 * Deeper hierachy with use_hierarchy == false doesn't make 4269 * much sense so let cgroup subsystem know about this 4270 * unfortunate state in our controller. 4271 */ 4272 if (parent != root_mem_cgroup) 4273 memory_cgrp_subsys.broken_hierarchy = true; 4274 } 4275 4276 /* The following stuff does not apply to the root */ 4277 if (!parent) { 4278 root_mem_cgroup = memcg; 4279 return &memcg->css; 4280 } 4281 4282 error = memcg_online_kmem(memcg); 4283 if (error) 4284 goto fail; 4285 4286 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4287 static_branch_inc(&memcg_sockets_enabled_key); 4288 4289 return &memcg->css; 4290 fail: 4291 mem_cgroup_free(memcg); 4292 return ERR_PTR(-ENOMEM); 4293 } 4294 4295 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4296 { 4297 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4298 4299 /* Online state pins memcg ID, memcg ID pins CSS */ 4300 atomic_set(&memcg->id.ref, 1); 4301 css_get(css); 4302 return 0; 4303 } 4304 4305 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4306 { 4307 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4308 struct mem_cgroup_event *event, *tmp; 4309 4310 /* 4311 * Unregister events and notify userspace. 4312 * Notify userspace about cgroup removing only after rmdir of cgroup 4313 * directory to avoid race between userspace and kernelspace. 4314 */ 4315 spin_lock(&memcg->event_list_lock); 4316 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4317 list_del_init(&event->list); 4318 schedule_work(&event->remove); 4319 } 4320 spin_unlock(&memcg->event_list_lock); 4321 4322 memcg_offline_kmem(memcg); 4323 wb_memcg_offline(memcg); 4324 4325 mem_cgroup_id_put(memcg); 4326 } 4327 4328 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4329 { 4330 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4331 4332 invalidate_reclaim_iterators(memcg); 4333 } 4334 4335 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4336 { 4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4338 4339 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4340 static_branch_dec(&memcg_sockets_enabled_key); 4341 4342 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4343 static_branch_dec(&memcg_sockets_enabled_key); 4344 4345 vmpressure_cleanup(&memcg->vmpressure); 4346 cancel_work_sync(&memcg->high_work); 4347 mem_cgroup_remove_from_trees(memcg); 4348 memcg_free_kmem(memcg); 4349 mem_cgroup_free(memcg); 4350 } 4351 4352 /** 4353 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4354 * @css: the target css 4355 * 4356 * Reset the states of the mem_cgroup associated with @css. This is 4357 * invoked when the userland requests disabling on the default hierarchy 4358 * but the memcg is pinned through dependency. The memcg should stop 4359 * applying policies and should revert to the vanilla state as it may be 4360 * made visible again. 4361 * 4362 * The current implementation only resets the essential configurations. 4363 * This needs to be expanded to cover all the visible parts. 4364 */ 4365 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4366 { 4367 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4368 4369 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4370 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4371 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4372 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4373 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4374 memcg->low = 0; 4375 memcg->high = PAGE_COUNTER_MAX; 4376 memcg->soft_limit = PAGE_COUNTER_MAX; 4377 memcg_wb_domain_size_changed(memcg); 4378 } 4379 4380 #ifdef CONFIG_MMU 4381 /* Handlers for move charge at task migration. */ 4382 static int mem_cgroup_do_precharge(unsigned long count) 4383 { 4384 int ret; 4385 4386 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4387 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4388 if (!ret) { 4389 mc.precharge += count; 4390 return ret; 4391 } 4392 4393 /* Try charges one by one with reclaim, but do not retry */ 4394 while (count--) { 4395 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4396 if (ret) 4397 return ret; 4398 mc.precharge++; 4399 cond_resched(); 4400 } 4401 return 0; 4402 } 4403 4404 union mc_target { 4405 struct page *page; 4406 swp_entry_t ent; 4407 }; 4408 4409 enum mc_target_type { 4410 MC_TARGET_NONE = 0, 4411 MC_TARGET_PAGE, 4412 MC_TARGET_SWAP, 4413 }; 4414 4415 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4416 unsigned long addr, pte_t ptent) 4417 { 4418 struct page *page = vm_normal_page(vma, addr, ptent); 4419 4420 if (!page || !page_mapped(page)) 4421 return NULL; 4422 if (PageAnon(page)) { 4423 if (!(mc.flags & MOVE_ANON)) 4424 return NULL; 4425 } else { 4426 if (!(mc.flags & MOVE_FILE)) 4427 return NULL; 4428 } 4429 if (!get_page_unless_zero(page)) 4430 return NULL; 4431 4432 return page; 4433 } 4434 4435 #ifdef CONFIG_SWAP 4436 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4437 pte_t ptent, swp_entry_t *entry) 4438 { 4439 struct page *page = NULL; 4440 swp_entry_t ent = pte_to_swp_entry(ptent); 4441 4442 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4443 return NULL; 4444 /* 4445 * Because lookup_swap_cache() updates some statistics counter, 4446 * we call find_get_page() with swapper_space directly. 4447 */ 4448 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4449 if (do_memsw_account()) 4450 entry->val = ent.val; 4451 4452 return page; 4453 } 4454 #else 4455 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4456 pte_t ptent, swp_entry_t *entry) 4457 { 4458 return NULL; 4459 } 4460 #endif 4461 4462 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4463 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4464 { 4465 struct page *page = NULL; 4466 struct address_space *mapping; 4467 pgoff_t pgoff; 4468 4469 if (!vma->vm_file) /* anonymous vma */ 4470 return NULL; 4471 if (!(mc.flags & MOVE_FILE)) 4472 return NULL; 4473 4474 mapping = vma->vm_file->f_mapping; 4475 pgoff = linear_page_index(vma, addr); 4476 4477 /* page is moved even if it's not RSS of this task(page-faulted). */ 4478 #ifdef CONFIG_SWAP 4479 /* shmem/tmpfs may report page out on swap: account for that too. */ 4480 if (shmem_mapping(mapping)) { 4481 page = find_get_entry(mapping, pgoff); 4482 if (radix_tree_exceptional_entry(page)) { 4483 swp_entry_t swp = radix_to_swp_entry(page); 4484 if (do_memsw_account()) 4485 *entry = swp; 4486 page = find_get_page(swap_address_space(swp), 4487 swp_offset(swp)); 4488 } 4489 } else 4490 page = find_get_page(mapping, pgoff); 4491 #else 4492 page = find_get_page(mapping, pgoff); 4493 #endif 4494 return page; 4495 } 4496 4497 /** 4498 * mem_cgroup_move_account - move account of the page 4499 * @page: the page 4500 * @compound: charge the page as compound or small page 4501 * @from: mem_cgroup which the page is moved from. 4502 * @to: mem_cgroup which the page is moved to. @from != @to. 4503 * 4504 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4505 * 4506 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4507 * from old cgroup. 4508 */ 4509 static int mem_cgroup_move_account(struct page *page, 4510 bool compound, 4511 struct mem_cgroup *from, 4512 struct mem_cgroup *to) 4513 { 4514 unsigned long flags; 4515 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4516 int ret; 4517 bool anon; 4518 4519 VM_BUG_ON(from == to); 4520 VM_BUG_ON_PAGE(PageLRU(page), page); 4521 VM_BUG_ON(compound && !PageTransHuge(page)); 4522 4523 /* 4524 * Prevent mem_cgroup_migrate() from looking at 4525 * page->mem_cgroup of its source page while we change it. 4526 */ 4527 ret = -EBUSY; 4528 if (!trylock_page(page)) 4529 goto out; 4530 4531 ret = -EINVAL; 4532 if (page->mem_cgroup != from) 4533 goto out_unlock; 4534 4535 anon = PageAnon(page); 4536 4537 spin_lock_irqsave(&from->move_lock, flags); 4538 4539 if (!anon && page_mapped(page)) { 4540 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages); 4541 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages); 4542 } 4543 4544 /* 4545 * move_lock grabbed above and caller set from->moving_account, so 4546 * mod_memcg_page_state will serialize updates to PageDirty. 4547 * So mapping should be stable for dirty pages. 4548 */ 4549 if (!anon && PageDirty(page)) { 4550 struct address_space *mapping = page_mapping(page); 4551 4552 if (mapping_cap_account_dirty(mapping)) { 4553 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY], 4554 nr_pages); 4555 __this_cpu_add(to->stat->count[NR_FILE_DIRTY], 4556 nr_pages); 4557 } 4558 } 4559 4560 if (PageWriteback(page)) { 4561 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages); 4562 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages); 4563 } 4564 4565 /* 4566 * It is safe to change page->mem_cgroup here because the page 4567 * is referenced, charged, and isolated - we can't race with 4568 * uncharging, charging, migration, or LRU putback. 4569 */ 4570 4571 /* caller should have done css_get */ 4572 page->mem_cgroup = to; 4573 spin_unlock_irqrestore(&from->move_lock, flags); 4574 4575 ret = 0; 4576 4577 local_irq_disable(); 4578 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4579 memcg_check_events(to, page); 4580 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4581 memcg_check_events(from, page); 4582 local_irq_enable(); 4583 out_unlock: 4584 unlock_page(page); 4585 out: 4586 return ret; 4587 } 4588 4589 /** 4590 * get_mctgt_type - get target type of moving charge 4591 * @vma: the vma the pte to be checked belongs 4592 * @addr: the address corresponding to the pte to be checked 4593 * @ptent: the pte to be checked 4594 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4595 * 4596 * Returns 4597 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4598 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4599 * move charge. if @target is not NULL, the page is stored in target->page 4600 * with extra refcnt got(Callers should handle it). 4601 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4602 * target for charge migration. if @target is not NULL, the entry is stored 4603 * in target->ent. 4604 * 4605 * Called with pte lock held. 4606 */ 4607 4608 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4609 unsigned long addr, pte_t ptent, union mc_target *target) 4610 { 4611 struct page *page = NULL; 4612 enum mc_target_type ret = MC_TARGET_NONE; 4613 swp_entry_t ent = { .val = 0 }; 4614 4615 if (pte_present(ptent)) 4616 page = mc_handle_present_pte(vma, addr, ptent); 4617 else if (is_swap_pte(ptent)) 4618 page = mc_handle_swap_pte(vma, ptent, &ent); 4619 else if (pte_none(ptent)) 4620 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4621 4622 if (!page && !ent.val) 4623 return ret; 4624 if (page) { 4625 /* 4626 * Do only loose check w/o serialization. 4627 * mem_cgroup_move_account() checks the page is valid or 4628 * not under LRU exclusion. 4629 */ 4630 if (page->mem_cgroup == mc.from) { 4631 ret = MC_TARGET_PAGE; 4632 if (target) 4633 target->page = page; 4634 } 4635 if (!ret || !target) 4636 put_page(page); 4637 } 4638 /* There is a swap entry and a page doesn't exist or isn't charged */ 4639 if (ent.val && !ret && 4640 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4641 ret = MC_TARGET_SWAP; 4642 if (target) 4643 target->ent = ent; 4644 } 4645 return ret; 4646 } 4647 4648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4649 /* 4650 * We don't consider swapping or file mapped pages because THP does not 4651 * support them for now. 4652 * Caller should make sure that pmd_trans_huge(pmd) is true. 4653 */ 4654 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4655 unsigned long addr, pmd_t pmd, union mc_target *target) 4656 { 4657 struct page *page = NULL; 4658 enum mc_target_type ret = MC_TARGET_NONE; 4659 4660 page = pmd_page(pmd); 4661 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4662 if (!(mc.flags & MOVE_ANON)) 4663 return ret; 4664 if (page->mem_cgroup == mc.from) { 4665 ret = MC_TARGET_PAGE; 4666 if (target) { 4667 get_page(page); 4668 target->page = page; 4669 } 4670 } 4671 return ret; 4672 } 4673 #else 4674 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4675 unsigned long addr, pmd_t pmd, union mc_target *target) 4676 { 4677 return MC_TARGET_NONE; 4678 } 4679 #endif 4680 4681 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4682 unsigned long addr, unsigned long end, 4683 struct mm_walk *walk) 4684 { 4685 struct vm_area_struct *vma = walk->vma; 4686 pte_t *pte; 4687 spinlock_t *ptl; 4688 4689 ptl = pmd_trans_huge_lock(pmd, vma); 4690 if (ptl) { 4691 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4692 mc.precharge += HPAGE_PMD_NR; 4693 spin_unlock(ptl); 4694 return 0; 4695 } 4696 4697 if (pmd_trans_unstable(pmd)) 4698 return 0; 4699 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4700 for (; addr != end; pte++, addr += PAGE_SIZE) 4701 if (get_mctgt_type(vma, addr, *pte, NULL)) 4702 mc.precharge++; /* increment precharge temporarily */ 4703 pte_unmap_unlock(pte - 1, ptl); 4704 cond_resched(); 4705 4706 return 0; 4707 } 4708 4709 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4710 { 4711 unsigned long precharge; 4712 4713 struct mm_walk mem_cgroup_count_precharge_walk = { 4714 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4715 .mm = mm, 4716 }; 4717 down_read(&mm->mmap_sem); 4718 walk_page_range(0, mm->highest_vm_end, 4719 &mem_cgroup_count_precharge_walk); 4720 up_read(&mm->mmap_sem); 4721 4722 precharge = mc.precharge; 4723 mc.precharge = 0; 4724 4725 return precharge; 4726 } 4727 4728 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4729 { 4730 unsigned long precharge = mem_cgroup_count_precharge(mm); 4731 4732 VM_BUG_ON(mc.moving_task); 4733 mc.moving_task = current; 4734 return mem_cgroup_do_precharge(precharge); 4735 } 4736 4737 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4738 static void __mem_cgroup_clear_mc(void) 4739 { 4740 struct mem_cgroup *from = mc.from; 4741 struct mem_cgroup *to = mc.to; 4742 4743 /* we must uncharge all the leftover precharges from mc.to */ 4744 if (mc.precharge) { 4745 cancel_charge(mc.to, mc.precharge); 4746 mc.precharge = 0; 4747 } 4748 /* 4749 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4750 * we must uncharge here. 4751 */ 4752 if (mc.moved_charge) { 4753 cancel_charge(mc.from, mc.moved_charge); 4754 mc.moved_charge = 0; 4755 } 4756 /* we must fixup refcnts and charges */ 4757 if (mc.moved_swap) { 4758 /* uncharge swap account from the old cgroup */ 4759 if (!mem_cgroup_is_root(mc.from)) 4760 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4761 4762 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 4763 4764 /* 4765 * we charged both to->memory and to->memsw, so we 4766 * should uncharge to->memory. 4767 */ 4768 if (!mem_cgroup_is_root(mc.to)) 4769 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4770 4771 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 4772 css_put_many(&mc.to->css, mc.moved_swap); 4773 4774 mc.moved_swap = 0; 4775 } 4776 memcg_oom_recover(from); 4777 memcg_oom_recover(to); 4778 wake_up_all(&mc.waitq); 4779 } 4780 4781 static void mem_cgroup_clear_mc(void) 4782 { 4783 struct mm_struct *mm = mc.mm; 4784 4785 /* 4786 * we must clear moving_task before waking up waiters at the end of 4787 * task migration. 4788 */ 4789 mc.moving_task = NULL; 4790 __mem_cgroup_clear_mc(); 4791 spin_lock(&mc.lock); 4792 mc.from = NULL; 4793 mc.to = NULL; 4794 mc.mm = NULL; 4795 spin_unlock(&mc.lock); 4796 4797 mmput(mm); 4798 } 4799 4800 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4801 { 4802 struct cgroup_subsys_state *css; 4803 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4804 struct mem_cgroup *from; 4805 struct task_struct *leader, *p; 4806 struct mm_struct *mm; 4807 unsigned long move_flags; 4808 int ret = 0; 4809 4810 /* charge immigration isn't supported on the default hierarchy */ 4811 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4812 return 0; 4813 4814 /* 4815 * Multi-process migrations only happen on the default hierarchy 4816 * where charge immigration is not used. Perform charge 4817 * immigration if @tset contains a leader and whine if there are 4818 * multiple. 4819 */ 4820 p = NULL; 4821 cgroup_taskset_for_each_leader(leader, css, tset) { 4822 WARN_ON_ONCE(p); 4823 p = leader; 4824 memcg = mem_cgroup_from_css(css); 4825 } 4826 if (!p) 4827 return 0; 4828 4829 /* 4830 * We are now commited to this value whatever it is. Changes in this 4831 * tunable will only affect upcoming migrations, not the current one. 4832 * So we need to save it, and keep it going. 4833 */ 4834 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4835 if (!move_flags) 4836 return 0; 4837 4838 from = mem_cgroup_from_task(p); 4839 4840 VM_BUG_ON(from == memcg); 4841 4842 mm = get_task_mm(p); 4843 if (!mm) 4844 return 0; 4845 /* We move charges only when we move a owner of the mm */ 4846 if (mm->owner == p) { 4847 VM_BUG_ON(mc.from); 4848 VM_BUG_ON(mc.to); 4849 VM_BUG_ON(mc.precharge); 4850 VM_BUG_ON(mc.moved_charge); 4851 VM_BUG_ON(mc.moved_swap); 4852 4853 spin_lock(&mc.lock); 4854 mc.mm = mm; 4855 mc.from = from; 4856 mc.to = memcg; 4857 mc.flags = move_flags; 4858 spin_unlock(&mc.lock); 4859 /* We set mc.moving_task later */ 4860 4861 ret = mem_cgroup_precharge_mc(mm); 4862 if (ret) 4863 mem_cgroup_clear_mc(); 4864 } else { 4865 mmput(mm); 4866 } 4867 return ret; 4868 } 4869 4870 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4871 { 4872 if (mc.to) 4873 mem_cgroup_clear_mc(); 4874 } 4875 4876 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4877 unsigned long addr, unsigned long end, 4878 struct mm_walk *walk) 4879 { 4880 int ret = 0; 4881 struct vm_area_struct *vma = walk->vma; 4882 pte_t *pte; 4883 spinlock_t *ptl; 4884 enum mc_target_type target_type; 4885 union mc_target target; 4886 struct page *page; 4887 4888 ptl = pmd_trans_huge_lock(pmd, vma); 4889 if (ptl) { 4890 if (mc.precharge < HPAGE_PMD_NR) { 4891 spin_unlock(ptl); 4892 return 0; 4893 } 4894 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4895 if (target_type == MC_TARGET_PAGE) { 4896 page = target.page; 4897 if (!isolate_lru_page(page)) { 4898 if (!mem_cgroup_move_account(page, true, 4899 mc.from, mc.to)) { 4900 mc.precharge -= HPAGE_PMD_NR; 4901 mc.moved_charge += HPAGE_PMD_NR; 4902 } 4903 putback_lru_page(page); 4904 } 4905 put_page(page); 4906 } 4907 spin_unlock(ptl); 4908 return 0; 4909 } 4910 4911 if (pmd_trans_unstable(pmd)) 4912 return 0; 4913 retry: 4914 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4915 for (; addr != end; addr += PAGE_SIZE) { 4916 pte_t ptent = *(pte++); 4917 swp_entry_t ent; 4918 4919 if (!mc.precharge) 4920 break; 4921 4922 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4923 case MC_TARGET_PAGE: 4924 page = target.page; 4925 /* 4926 * We can have a part of the split pmd here. Moving it 4927 * can be done but it would be too convoluted so simply 4928 * ignore such a partial THP and keep it in original 4929 * memcg. There should be somebody mapping the head. 4930 */ 4931 if (PageTransCompound(page)) 4932 goto put; 4933 if (isolate_lru_page(page)) 4934 goto put; 4935 if (!mem_cgroup_move_account(page, false, 4936 mc.from, mc.to)) { 4937 mc.precharge--; 4938 /* we uncharge from mc.from later. */ 4939 mc.moved_charge++; 4940 } 4941 putback_lru_page(page); 4942 put: /* get_mctgt_type() gets the page */ 4943 put_page(page); 4944 break; 4945 case MC_TARGET_SWAP: 4946 ent = target.ent; 4947 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4948 mc.precharge--; 4949 /* we fixup refcnts and charges later. */ 4950 mc.moved_swap++; 4951 } 4952 break; 4953 default: 4954 break; 4955 } 4956 } 4957 pte_unmap_unlock(pte - 1, ptl); 4958 cond_resched(); 4959 4960 if (addr != end) { 4961 /* 4962 * We have consumed all precharges we got in can_attach(). 4963 * We try charge one by one, but don't do any additional 4964 * charges to mc.to if we have failed in charge once in attach() 4965 * phase. 4966 */ 4967 ret = mem_cgroup_do_precharge(1); 4968 if (!ret) 4969 goto retry; 4970 } 4971 4972 return ret; 4973 } 4974 4975 static void mem_cgroup_move_charge(void) 4976 { 4977 struct mm_walk mem_cgroup_move_charge_walk = { 4978 .pmd_entry = mem_cgroup_move_charge_pte_range, 4979 .mm = mc.mm, 4980 }; 4981 4982 lru_add_drain_all(); 4983 /* 4984 * Signal lock_page_memcg() to take the memcg's move_lock 4985 * while we're moving its pages to another memcg. Then wait 4986 * for already started RCU-only updates to finish. 4987 */ 4988 atomic_inc(&mc.from->moving_account); 4989 synchronize_rcu(); 4990 retry: 4991 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4992 /* 4993 * Someone who are holding the mmap_sem might be waiting in 4994 * waitq. So we cancel all extra charges, wake up all waiters, 4995 * and retry. Because we cancel precharges, we might not be able 4996 * to move enough charges, but moving charge is a best-effort 4997 * feature anyway, so it wouldn't be a big problem. 4998 */ 4999 __mem_cgroup_clear_mc(); 5000 cond_resched(); 5001 goto retry; 5002 } 5003 /* 5004 * When we have consumed all precharges and failed in doing 5005 * additional charge, the page walk just aborts. 5006 */ 5007 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5008 5009 up_read(&mc.mm->mmap_sem); 5010 atomic_dec(&mc.from->moving_account); 5011 } 5012 5013 static void mem_cgroup_move_task(void) 5014 { 5015 if (mc.to) { 5016 mem_cgroup_move_charge(); 5017 mem_cgroup_clear_mc(); 5018 } 5019 } 5020 #else /* !CONFIG_MMU */ 5021 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5022 { 5023 return 0; 5024 } 5025 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5026 { 5027 } 5028 static void mem_cgroup_move_task(void) 5029 { 5030 } 5031 #endif 5032 5033 /* 5034 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5035 * to verify whether we're attached to the default hierarchy on each mount 5036 * attempt. 5037 */ 5038 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5039 { 5040 /* 5041 * use_hierarchy is forced on the default hierarchy. cgroup core 5042 * guarantees that @root doesn't have any children, so turning it 5043 * on for the root memcg is enough. 5044 */ 5045 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5046 root_mem_cgroup->use_hierarchy = true; 5047 else 5048 root_mem_cgroup->use_hierarchy = false; 5049 } 5050 5051 static u64 memory_current_read(struct cgroup_subsys_state *css, 5052 struct cftype *cft) 5053 { 5054 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5055 5056 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5057 } 5058 5059 static int memory_low_show(struct seq_file *m, void *v) 5060 { 5061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5062 unsigned long low = READ_ONCE(memcg->low); 5063 5064 if (low == PAGE_COUNTER_MAX) 5065 seq_puts(m, "max\n"); 5066 else 5067 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5068 5069 return 0; 5070 } 5071 5072 static ssize_t memory_low_write(struct kernfs_open_file *of, 5073 char *buf, size_t nbytes, loff_t off) 5074 { 5075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5076 unsigned long low; 5077 int err; 5078 5079 buf = strstrip(buf); 5080 err = page_counter_memparse(buf, "max", &low); 5081 if (err) 5082 return err; 5083 5084 memcg->low = low; 5085 5086 return nbytes; 5087 } 5088 5089 static int memory_high_show(struct seq_file *m, void *v) 5090 { 5091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5092 unsigned long high = READ_ONCE(memcg->high); 5093 5094 if (high == PAGE_COUNTER_MAX) 5095 seq_puts(m, "max\n"); 5096 else 5097 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5098 5099 return 0; 5100 } 5101 5102 static ssize_t memory_high_write(struct kernfs_open_file *of, 5103 char *buf, size_t nbytes, loff_t off) 5104 { 5105 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5106 unsigned long nr_pages; 5107 unsigned long high; 5108 int err; 5109 5110 buf = strstrip(buf); 5111 err = page_counter_memparse(buf, "max", &high); 5112 if (err) 5113 return err; 5114 5115 memcg->high = high; 5116 5117 nr_pages = page_counter_read(&memcg->memory); 5118 if (nr_pages > high) 5119 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5120 GFP_KERNEL, true); 5121 5122 memcg_wb_domain_size_changed(memcg); 5123 return nbytes; 5124 } 5125 5126 static int memory_max_show(struct seq_file *m, void *v) 5127 { 5128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5129 unsigned long max = READ_ONCE(memcg->memory.limit); 5130 5131 if (max == PAGE_COUNTER_MAX) 5132 seq_puts(m, "max\n"); 5133 else 5134 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5135 5136 return 0; 5137 } 5138 5139 static ssize_t memory_max_write(struct kernfs_open_file *of, 5140 char *buf, size_t nbytes, loff_t off) 5141 { 5142 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5143 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5144 bool drained = false; 5145 unsigned long max; 5146 int err; 5147 5148 buf = strstrip(buf); 5149 err = page_counter_memparse(buf, "max", &max); 5150 if (err) 5151 return err; 5152 5153 xchg(&memcg->memory.limit, max); 5154 5155 for (;;) { 5156 unsigned long nr_pages = page_counter_read(&memcg->memory); 5157 5158 if (nr_pages <= max) 5159 break; 5160 5161 if (signal_pending(current)) { 5162 err = -EINTR; 5163 break; 5164 } 5165 5166 if (!drained) { 5167 drain_all_stock(memcg); 5168 drained = true; 5169 continue; 5170 } 5171 5172 if (nr_reclaims) { 5173 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5174 GFP_KERNEL, true)) 5175 nr_reclaims--; 5176 continue; 5177 } 5178 5179 mem_cgroup_event(memcg, MEMCG_OOM); 5180 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5181 break; 5182 } 5183 5184 memcg_wb_domain_size_changed(memcg); 5185 return nbytes; 5186 } 5187 5188 static int memory_events_show(struct seq_file *m, void *v) 5189 { 5190 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5191 5192 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW)); 5193 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH)); 5194 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX)); 5195 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM)); 5196 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL)); 5197 5198 return 0; 5199 } 5200 5201 static int memory_stat_show(struct seq_file *m, void *v) 5202 { 5203 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5204 unsigned long stat[MEMCG_NR_STAT]; 5205 unsigned long events[MEMCG_NR_EVENTS]; 5206 int i; 5207 5208 /* 5209 * Provide statistics on the state of the memory subsystem as 5210 * well as cumulative event counters that show past behavior. 5211 * 5212 * This list is ordered following a combination of these gradients: 5213 * 1) generic big picture -> specifics and details 5214 * 2) reflecting userspace activity -> reflecting kernel heuristics 5215 * 5216 * Current memory state: 5217 */ 5218 5219 tree_stat(memcg, stat); 5220 tree_events(memcg, events); 5221 5222 seq_printf(m, "anon %llu\n", 5223 (u64)stat[MEMCG_RSS] * PAGE_SIZE); 5224 seq_printf(m, "file %llu\n", 5225 (u64)stat[MEMCG_CACHE] * PAGE_SIZE); 5226 seq_printf(m, "kernel_stack %llu\n", 5227 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); 5228 seq_printf(m, "slab %llu\n", 5229 (u64)(stat[NR_SLAB_RECLAIMABLE] + 5230 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5231 seq_printf(m, "sock %llu\n", 5232 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5233 5234 seq_printf(m, "shmem %llu\n", 5235 (u64)stat[NR_SHMEM] * PAGE_SIZE); 5236 seq_printf(m, "file_mapped %llu\n", 5237 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE); 5238 seq_printf(m, "file_dirty %llu\n", 5239 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE); 5240 seq_printf(m, "file_writeback %llu\n", 5241 (u64)stat[NR_WRITEBACK] * PAGE_SIZE); 5242 5243 for (i = 0; i < NR_LRU_LISTS; i++) { 5244 struct mem_cgroup *mi; 5245 unsigned long val = 0; 5246 5247 for_each_mem_cgroup_tree(mi, memcg) 5248 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5249 seq_printf(m, "%s %llu\n", 5250 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5251 } 5252 5253 seq_printf(m, "slab_reclaimable %llu\n", 5254 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5255 seq_printf(m, "slab_unreclaimable %llu\n", 5256 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5257 5258 /* Accumulated memory events */ 5259 5260 seq_printf(m, "pgfault %lu\n", events[PGFAULT]); 5261 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]); 5262 5263 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]); 5264 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] + 5265 events[PGSCAN_DIRECT]); 5266 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] + 5267 events[PGSTEAL_DIRECT]); 5268 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]); 5269 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]); 5270 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]); 5271 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]); 5272 5273 seq_printf(m, "workingset_refault %lu\n", 5274 stat[WORKINGSET_REFAULT]); 5275 seq_printf(m, "workingset_activate %lu\n", 5276 stat[WORKINGSET_ACTIVATE]); 5277 seq_printf(m, "workingset_nodereclaim %lu\n", 5278 stat[WORKINGSET_NODERECLAIM]); 5279 5280 return 0; 5281 } 5282 5283 static struct cftype memory_files[] = { 5284 { 5285 .name = "current", 5286 .flags = CFTYPE_NOT_ON_ROOT, 5287 .read_u64 = memory_current_read, 5288 }, 5289 { 5290 .name = "low", 5291 .flags = CFTYPE_NOT_ON_ROOT, 5292 .seq_show = memory_low_show, 5293 .write = memory_low_write, 5294 }, 5295 { 5296 .name = "high", 5297 .flags = CFTYPE_NOT_ON_ROOT, 5298 .seq_show = memory_high_show, 5299 .write = memory_high_write, 5300 }, 5301 { 5302 .name = "max", 5303 .flags = CFTYPE_NOT_ON_ROOT, 5304 .seq_show = memory_max_show, 5305 .write = memory_max_write, 5306 }, 5307 { 5308 .name = "events", 5309 .flags = CFTYPE_NOT_ON_ROOT, 5310 .file_offset = offsetof(struct mem_cgroup, events_file), 5311 .seq_show = memory_events_show, 5312 }, 5313 { 5314 .name = "stat", 5315 .flags = CFTYPE_NOT_ON_ROOT, 5316 .seq_show = memory_stat_show, 5317 }, 5318 { } /* terminate */ 5319 }; 5320 5321 struct cgroup_subsys memory_cgrp_subsys = { 5322 .css_alloc = mem_cgroup_css_alloc, 5323 .css_online = mem_cgroup_css_online, 5324 .css_offline = mem_cgroup_css_offline, 5325 .css_released = mem_cgroup_css_released, 5326 .css_free = mem_cgroup_css_free, 5327 .css_reset = mem_cgroup_css_reset, 5328 .can_attach = mem_cgroup_can_attach, 5329 .cancel_attach = mem_cgroup_cancel_attach, 5330 .post_attach = mem_cgroup_move_task, 5331 .bind = mem_cgroup_bind, 5332 .dfl_cftypes = memory_files, 5333 .legacy_cftypes = mem_cgroup_legacy_files, 5334 .early_init = 0, 5335 }; 5336 5337 /** 5338 * mem_cgroup_low - check if memory consumption is below the normal range 5339 * @root: the top ancestor of the sub-tree being checked 5340 * @memcg: the memory cgroup to check 5341 * 5342 * Returns %true if memory consumption of @memcg, and that of all 5343 * ancestors up to (but not including) @root, is below the normal range. 5344 * 5345 * @root is exclusive; it is never low when looked at directly and isn't 5346 * checked when traversing the hierarchy. 5347 * 5348 * Excluding @root enables using memory.low to prioritize memory usage 5349 * between cgroups within a subtree of the hierarchy that is limited by 5350 * memory.high or memory.max. 5351 * 5352 * For example, given cgroup A with children B and C: 5353 * 5354 * A 5355 * / \ 5356 * B C 5357 * 5358 * and 5359 * 5360 * 1. A/memory.current > A/memory.high 5361 * 2. A/B/memory.current < A/B/memory.low 5362 * 3. A/C/memory.current >= A/C/memory.low 5363 * 5364 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we 5365 * should reclaim from 'C' until 'A' is no longer high or until we can 5366 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by 5367 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered 5368 * low and we will reclaim indiscriminately from both 'B' and 'C'. 5369 */ 5370 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5371 { 5372 if (mem_cgroup_disabled()) 5373 return false; 5374 5375 if (!root) 5376 root = root_mem_cgroup; 5377 if (memcg == root) 5378 return false; 5379 5380 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) { 5381 if (page_counter_read(&memcg->memory) >= memcg->low) 5382 return false; 5383 } 5384 5385 return true; 5386 } 5387 5388 /** 5389 * mem_cgroup_try_charge - try charging a page 5390 * @page: page to charge 5391 * @mm: mm context of the victim 5392 * @gfp_mask: reclaim mode 5393 * @memcgp: charged memcg return 5394 * @compound: charge the page as compound or small page 5395 * 5396 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5397 * pages according to @gfp_mask if necessary. 5398 * 5399 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5400 * Otherwise, an error code is returned. 5401 * 5402 * After page->mapping has been set up, the caller must finalize the 5403 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5404 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5405 */ 5406 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5407 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5408 bool compound) 5409 { 5410 struct mem_cgroup *memcg = NULL; 5411 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5412 int ret = 0; 5413 5414 if (mem_cgroup_disabled()) 5415 goto out; 5416 5417 if (PageSwapCache(page)) { 5418 /* 5419 * Every swap fault against a single page tries to charge the 5420 * page, bail as early as possible. shmem_unuse() encounters 5421 * already charged pages, too. The USED bit is protected by 5422 * the page lock, which serializes swap cache removal, which 5423 * in turn serializes uncharging. 5424 */ 5425 VM_BUG_ON_PAGE(!PageLocked(page), page); 5426 if (page->mem_cgroup) 5427 goto out; 5428 5429 if (do_swap_account) { 5430 swp_entry_t ent = { .val = page_private(page), }; 5431 unsigned short id = lookup_swap_cgroup_id(ent); 5432 5433 rcu_read_lock(); 5434 memcg = mem_cgroup_from_id(id); 5435 if (memcg && !css_tryget_online(&memcg->css)) 5436 memcg = NULL; 5437 rcu_read_unlock(); 5438 } 5439 } 5440 5441 if (!memcg) 5442 memcg = get_mem_cgroup_from_mm(mm); 5443 5444 ret = try_charge(memcg, gfp_mask, nr_pages); 5445 5446 css_put(&memcg->css); 5447 out: 5448 *memcgp = memcg; 5449 return ret; 5450 } 5451 5452 /** 5453 * mem_cgroup_commit_charge - commit a page charge 5454 * @page: page to charge 5455 * @memcg: memcg to charge the page to 5456 * @lrucare: page might be on LRU already 5457 * @compound: charge the page as compound or small page 5458 * 5459 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5460 * after page->mapping has been set up. This must happen atomically 5461 * as part of the page instantiation, i.e. under the page table lock 5462 * for anonymous pages, under the page lock for page and swap cache. 5463 * 5464 * In addition, the page must not be on the LRU during the commit, to 5465 * prevent racing with task migration. If it might be, use @lrucare. 5466 * 5467 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5468 */ 5469 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5470 bool lrucare, bool compound) 5471 { 5472 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5473 5474 VM_BUG_ON_PAGE(!page->mapping, page); 5475 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5476 5477 if (mem_cgroup_disabled()) 5478 return; 5479 /* 5480 * Swap faults will attempt to charge the same page multiple 5481 * times. But reuse_swap_page() might have removed the page 5482 * from swapcache already, so we can't check PageSwapCache(). 5483 */ 5484 if (!memcg) 5485 return; 5486 5487 commit_charge(page, memcg, lrucare); 5488 5489 local_irq_disable(); 5490 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5491 memcg_check_events(memcg, page); 5492 local_irq_enable(); 5493 5494 if (do_memsw_account() && PageSwapCache(page)) { 5495 swp_entry_t entry = { .val = page_private(page) }; 5496 /* 5497 * The swap entry might not get freed for a long time, 5498 * let's not wait for it. The page already received a 5499 * memory+swap charge, drop the swap entry duplicate. 5500 */ 5501 mem_cgroup_uncharge_swap(entry, nr_pages); 5502 } 5503 } 5504 5505 /** 5506 * mem_cgroup_cancel_charge - cancel a page charge 5507 * @page: page to charge 5508 * @memcg: memcg to charge the page to 5509 * @compound: charge the page as compound or small page 5510 * 5511 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5512 */ 5513 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5514 bool compound) 5515 { 5516 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5517 5518 if (mem_cgroup_disabled()) 5519 return; 5520 /* 5521 * Swap faults will attempt to charge the same page multiple 5522 * times. But reuse_swap_page() might have removed the page 5523 * from swapcache already, so we can't check PageSwapCache(). 5524 */ 5525 if (!memcg) 5526 return; 5527 5528 cancel_charge(memcg, nr_pages); 5529 } 5530 5531 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5532 unsigned long nr_anon, unsigned long nr_file, 5533 unsigned long nr_kmem, unsigned long nr_huge, 5534 unsigned long nr_shmem, struct page *dummy_page) 5535 { 5536 unsigned long nr_pages = nr_anon + nr_file + nr_kmem; 5537 unsigned long flags; 5538 5539 if (!mem_cgroup_is_root(memcg)) { 5540 page_counter_uncharge(&memcg->memory, nr_pages); 5541 if (do_memsw_account()) 5542 page_counter_uncharge(&memcg->memsw, nr_pages); 5543 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem) 5544 page_counter_uncharge(&memcg->kmem, nr_kmem); 5545 memcg_oom_recover(memcg); 5546 } 5547 5548 local_irq_save(flags); 5549 __this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon); 5550 __this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file); 5551 __this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge); 5552 __this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem); 5553 __this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout); 5554 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5555 memcg_check_events(memcg, dummy_page); 5556 local_irq_restore(flags); 5557 5558 if (!mem_cgroup_is_root(memcg)) 5559 css_put_many(&memcg->css, nr_pages); 5560 } 5561 5562 static void uncharge_list(struct list_head *page_list) 5563 { 5564 struct mem_cgroup *memcg = NULL; 5565 unsigned long nr_shmem = 0; 5566 unsigned long nr_anon = 0; 5567 unsigned long nr_file = 0; 5568 unsigned long nr_huge = 0; 5569 unsigned long nr_kmem = 0; 5570 unsigned long pgpgout = 0; 5571 struct list_head *next; 5572 struct page *page; 5573 5574 /* 5575 * Note that the list can be a single page->lru; hence the 5576 * do-while loop instead of a simple list_for_each_entry(). 5577 */ 5578 next = page_list->next; 5579 do { 5580 page = list_entry(next, struct page, lru); 5581 next = page->lru.next; 5582 5583 VM_BUG_ON_PAGE(PageLRU(page), page); 5584 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page); 5585 5586 if (!page->mem_cgroup) 5587 continue; 5588 5589 /* 5590 * Nobody should be changing or seriously looking at 5591 * page->mem_cgroup at this point, we have fully 5592 * exclusive access to the page. 5593 */ 5594 5595 if (memcg != page->mem_cgroup) { 5596 if (memcg) { 5597 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5598 nr_kmem, nr_huge, nr_shmem, page); 5599 pgpgout = nr_anon = nr_file = nr_kmem = 0; 5600 nr_huge = nr_shmem = 0; 5601 } 5602 memcg = page->mem_cgroup; 5603 } 5604 5605 if (!PageKmemcg(page)) { 5606 unsigned int nr_pages = 1; 5607 5608 if (PageTransHuge(page)) { 5609 nr_pages <<= compound_order(page); 5610 nr_huge += nr_pages; 5611 } 5612 if (PageAnon(page)) 5613 nr_anon += nr_pages; 5614 else { 5615 nr_file += nr_pages; 5616 if (PageSwapBacked(page)) 5617 nr_shmem += nr_pages; 5618 } 5619 pgpgout++; 5620 } else { 5621 nr_kmem += 1 << compound_order(page); 5622 __ClearPageKmemcg(page); 5623 } 5624 5625 page->mem_cgroup = NULL; 5626 } while (next != page_list); 5627 5628 if (memcg) 5629 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5630 nr_kmem, nr_huge, nr_shmem, page); 5631 } 5632 5633 /** 5634 * mem_cgroup_uncharge - uncharge a page 5635 * @page: page to uncharge 5636 * 5637 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5638 * mem_cgroup_commit_charge(). 5639 */ 5640 void mem_cgroup_uncharge(struct page *page) 5641 { 5642 if (mem_cgroup_disabled()) 5643 return; 5644 5645 /* Don't touch page->lru of any random page, pre-check: */ 5646 if (!page->mem_cgroup) 5647 return; 5648 5649 INIT_LIST_HEAD(&page->lru); 5650 uncharge_list(&page->lru); 5651 } 5652 5653 /** 5654 * mem_cgroup_uncharge_list - uncharge a list of page 5655 * @page_list: list of pages to uncharge 5656 * 5657 * Uncharge a list of pages previously charged with 5658 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5659 */ 5660 void mem_cgroup_uncharge_list(struct list_head *page_list) 5661 { 5662 if (mem_cgroup_disabled()) 5663 return; 5664 5665 if (!list_empty(page_list)) 5666 uncharge_list(page_list); 5667 } 5668 5669 /** 5670 * mem_cgroup_migrate - charge a page's replacement 5671 * @oldpage: currently circulating page 5672 * @newpage: replacement page 5673 * 5674 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5675 * be uncharged upon free. 5676 * 5677 * Both pages must be locked, @newpage->mapping must be set up. 5678 */ 5679 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5680 { 5681 struct mem_cgroup *memcg; 5682 unsigned int nr_pages; 5683 bool compound; 5684 unsigned long flags; 5685 5686 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5687 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5688 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5689 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5690 newpage); 5691 5692 if (mem_cgroup_disabled()) 5693 return; 5694 5695 /* Page cache replacement: new page already charged? */ 5696 if (newpage->mem_cgroup) 5697 return; 5698 5699 /* Swapcache readahead pages can get replaced before being charged */ 5700 memcg = oldpage->mem_cgroup; 5701 if (!memcg) 5702 return; 5703 5704 /* Force-charge the new page. The old one will be freed soon */ 5705 compound = PageTransHuge(newpage); 5706 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5707 5708 page_counter_charge(&memcg->memory, nr_pages); 5709 if (do_memsw_account()) 5710 page_counter_charge(&memcg->memsw, nr_pages); 5711 css_get_many(&memcg->css, nr_pages); 5712 5713 commit_charge(newpage, memcg, false); 5714 5715 local_irq_save(flags); 5716 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5717 memcg_check_events(memcg, newpage); 5718 local_irq_restore(flags); 5719 } 5720 5721 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5722 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5723 5724 void mem_cgroup_sk_alloc(struct sock *sk) 5725 { 5726 struct mem_cgroup *memcg; 5727 5728 if (!mem_cgroup_sockets_enabled) 5729 return; 5730 5731 /* 5732 * Socket cloning can throw us here with sk_memcg already 5733 * filled. It won't however, necessarily happen from 5734 * process context. So the test for root memcg given 5735 * the current task's memcg won't help us in this case. 5736 * 5737 * Respecting the original socket's memcg is a better 5738 * decision in this case. 5739 */ 5740 if (sk->sk_memcg) { 5741 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5742 css_get(&sk->sk_memcg->css); 5743 return; 5744 } 5745 5746 rcu_read_lock(); 5747 memcg = mem_cgroup_from_task(current); 5748 if (memcg == root_mem_cgroup) 5749 goto out; 5750 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5751 goto out; 5752 if (css_tryget_online(&memcg->css)) 5753 sk->sk_memcg = memcg; 5754 out: 5755 rcu_read_unlock(); 5756 } 5757 5758 void mem_cgroup_sk_free(struct sock *sk) 5759 { 5760 if (sk->sk_memcg) 5761 css_put(&sk->sk_memcg->css); 5762 } 5763 5764 /** 5765 * mem_cgroup_charge_skmem - charge socket memory 5766 * @memcg: memcg to charge 5767 * @nr_pages: number of pages to charge 5768 * 5769 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5770 * @memcg's configured limit, %false if the charge had to be forced. 5771 */ 5772 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5773 { 5774 gfp_t gfp_mask = GFP_KERNEL; 5775 5776 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5777 struct page_counter *fail; 5778 5779 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5780 memcg->tcpmem_pressure = 0; 5781 return true; 5782 } 5783 page_counter_charge(&memcg->tcpmem, nr_pages); 5784 memcg->tcpmem_pressure = 1; 5785 return false; 5786 } 5787 5788 /* Don't block in the packet receive path */ 5789 if (in_softirq()) 5790 gfp_mask = GFP_NOWAIT; 5791 5792 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5793 5794 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5795 return true; 5796 5797 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5798 return false; 5799 } 5800 5801 /** 5802 * mem_cgroup_uncharge_skmem - uncharge socket memory 5803 * @memcg - memcg to uncharge 5804 * @nr_pages - number of pages to uncharge 5805 */ 5806 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5807 { 5808 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5809 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5810 return; 5811 } 5812 5813 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5814 5815 page_counter_uncharge(&memcg->memory, nr_pages); 5816 css_put_many(&memcg->css, nr_pages); 5817 } 5818 5819 static int __init cgroup_memory(char *s) 5820 { 5821 char *token; 5822 5823 while ((token = strsep(&s, ",")) != NULL) { 5824 if (!*token) 5825 continue; 5826 if (!strcmp(token, "nosocket")) 5827 cgroup_memory_nosocket = true; 5828 if (!strcmp(token, "nokmem")) 5829 cgroup_memory_nokmem = true; 5830 } 5831 return 0; 5832 } 5833 __setup("cgroup.memory=", cgroup_memory); 5834 5835 /* 5836 * subsys_initcall() for memory controller. 5837 * 5838 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5839 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5840 * basically everything that doesn't depend on a specific mem_cgroup structure 5841 * should be initialized from here. 5842 */ 5843 static int __init mem_cgroup_init(void) 5844 { 5845 int cpu, node; 5846 5847 #ifndef CONFIG_SLOB 5848 /* 5849 * Kmem cache creation is mostly done with the slab_mutex held, 5850 * so use a workqueue with limited concurrency to avoid stalling 5851 * all worker threads in case lots of cgroups are created and 5852 * destroyed simultaneously. 5853 */ 5854 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 5855 BUG_ON(!memcg_kmem_cache_wq); 5856 #endif 5857 5858 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5859 memcg_hotplug_cpu_dead); 5860 5861 for_each_possible_cpu(cpu) 5862 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5863 drain_local_stock); 5864 5865 for_each_node(node) { 5866 struct mem_cgroup_tree_per_node *rtpn; 5867 5868 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5869 node_online(node) ? node : NUMA_NO_NODE); 5870 5871 rtpn->rb_root = RB_ROOT; 5872 spin_lock_init(&rtpn->lock); 5873 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5874 } 5875 5876 return 0; 5877 } 5878 subsys_initcall(mem_cgroup_init); 5879 5880 #ifdef CONFIG_MEMCG_SWAP 5881 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 5882 { 5883 while (!atomic_inc_not_zero(&memcg->id.ref)) { 5884 /* 5885 * The root cgroup cannot be destroyed, so it's refcount must 5886 * always be >= 1. 5887 */ 5888 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 5889 VM_BUG_ON(1); 5890 break; 5891 } 5892 memcg = parent_mem_cgroup(memcg); 5893 if (!memcg) 5894 memcg = root_mem_cgroup; 5895 } 5896 return memcg; 5897 } 5898 5899 /** 5900 * mem_cgroup_swapout - transfer a memsw charge to swap 5901 * @page: page whose memsw charge to transfer 5902 * @entry: swap entry to move the charge to 5903 * 5904 * Transfer the memsw charge of @page to @entry. 5905 */ 5906 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5907 { 5908 struct mem_cgroup *memcg, *swap_memcg; 5909 unsigned short oldid; 5910 5911 VM_BUG_ON_PAGE(PageLRU(page), page); 5912 VM_BUG_ON_PAGE(page_count(page), page); 5913 5914 if (!do_memsw_account()) 5915 return; 5916 5917 memcg = page->mem_cgroup; 5918 5919 /* Readahead page, never charged */ 5920 if (!memcg) 5921 return; 5922 5923 /* 5924 * In case the memcg owning these pages has been offlined and doesn't 5925 * have an ID allocated to it anymore, charge the closest online 5926 * ancestor for the swap instead and transfer the memory+swap charge. 5927 */ 5928 swap_memcg = mem_cgroup_id_get_online(memcg); 5929 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 1); 5930 VM_BUG_ON_PAGE(oldid, page); 5931 mem_cgroup_swap_statistics(swap_memcg, 1); 5932 5933 page->mem_cgroup = NULL; 5934 5935 if (!mem_cgroup_is_root(memcg)) 5936 page_counter_uncharge(&memcg->memory, 1); 5937 5938 if (memcg != swap_memcg) { 5939 if (!mem_cgroup_is_root(swap_memcg)) 5940 page_counter_charge(&swap_memcg->memsw, 1); 5941 page_counter_uncharge(&memcg->memsw, 1); 5942 } 5943 5944 /* 5945 * Interrupts should be disabled here because the caller holds the 5946 * mapping->tree_lock lock which is taken with interrupts-off. It is 5947 * important here to have the interrupts disabled because it is the 5948 * only synchronisation we have for udpating the per-CPU variables. 5949 */ 5950 VM_BUG_ON(!irqs_disabled()); 5951 mem_cgroup_charge_statistics(memcg, page, false, -1); 5952 memcg_check_events(memcg, page); 5953 5954 if (!mem_cgroup_is_root(memcg)) 5955 css_put(&memcg->css); 5956 } 5957 5958 /** 5959 * mem_cgroup_try_charge_swap - try charging swap space for a page 5960 * @page: page being added to swap 5961 * @entry: swap entry to charge 5962 * 5963 * Try to charge @page's memcg for the swap space at @entry. 5964 * 5965 * Returns 0 on success, -ENOMEM on failure. 5966 */ 5967 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5968 { 5969 unsigned int nr_pages = hpage_nr_pages(page); 5970 struct page_counter *counter; 5971 struct mem_cgroup *memcg; 5972 unsigned short oldid; 5973 5974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5975 return 0; 5976 5977 memcg = page->mem_cgroup; 5978 5979 /* Readahead page, never charged */ 5980 if (!memcg) 5981 return 0; 5982 5983 memcg = mem_cgroup_id_get_online(memcg); 5984 5985 if (!mem_cgroup_is_root(memcg) && 5986 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5987 mem_cgroup_id_put(memcg); 5988 return -ENOMEM; 5989 } 5990 5991 /* Get references for the tail pages, too */ 5992 if (nr_pages > 1) 5993 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5994 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 5995 VM_BUG_ON_PAGE(oldid, page); 5996 mem_cgroup_swap_statistics(memcg, nr_pages); 5997 5998 return 0; 5999 } 6000 6001 /** 6002 * mem_cgroup_uncharge_swap - uncharge swap space 6003 * @entry: swap entry to uncharge 6004 * @nr_pages: the amount of swap space to uncharge 6005 */ 6006 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6007 { 6008 struct mem_cgroup *memcg; 6009 unsigned short id; 6010 6011 if (!do_swap_account) 6012 return; 6013 6014 id = swap_cgroup_record(entry, 0, nr_pages); 6015 rcu_read_lock(); 6016 memcg = mem_cgroup_from_id(id); 6017 if (memcg) { 6018 if (!mem_cgroup_is_root(memcg)) { 6019 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6020 page_counter_uncharge(&memcg->swap, nr_pages); 6021 else 6022 page_counter_uncharge(&memcg->memsw, nr_pages); 6023 } 6024 mem_cgroup_swap_statistics(memcg, -nr_pages); 6025 mem_cgroup_id_put_many(memcg, nr_pages); 6026 } 6027 rcu_read_unlock(); 6028 } 6029 6030 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6031 { 6032 long nr_swap_pages = get_nr_swap_pages(); 6033 6034 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6035 return nr_swap_pages; 6036 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6037 nr_swap_pages = min_t(long, nr_swap_pages, 6038 READ_ONCE(memcg->swap.limit) - 6039 page_counter_read(&memcg->swap)); 6040 return nr_swap_pages; 6041 } 6042 6043 bool mem_cgroup_swap_full(struct page *page) 6044 { 6045 struct mem_cgroup *memcg; 6046 6047 VM_BUG_ON_PAGE(!PageLocked(page), page); 6048 6049 if (vm_swap_full()) 6050 return true; 6051 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6052 return false; 6053 6054 memcg = page->mem_cgroup; 6055 if (!memcg) 6056 return false; 6057 6058 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6059 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 6060 return true; 6061 6062 return false; 6063 } 6064 6065 /* for remember boot option*/ 6066 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6067 static int really_do_swap_account __initdata = 1; 6068 #else 6069 static int really_do_swap_account __initdata; 6070 #endif 6071 6072 static int __init enable_swap_account(char *s) 6073 { 6074 if (!strcmp(s, "1")) 6075 really_do_swap_account = 1; 6076 else if (!strcmp(s, "0")) 6077 really_do_swap_account = 0; 6078 return 1; 6079 } 6080 __setup("swapaccount=", enable_swap_account); 6081 6082 static u64 swap_current_read(struct cgroup_subsys_state *css, 6083 struct cftype *cft) 6084 { 6085 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6086 6087 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6088 } 6089 6090 static int swap_max_show(struct seq_file *m, void *v) 6091 { 6092 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6093 unsigned long max = READ_ONCE(memcg->swap.limit); 6094 6095 if (max == PAGE_COUNTER_MAX) 6096 seq_puts(m, "max\n"); 6097 else 6098 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6099 6100 return 0; 6101 } 6102 6103 static ssize_t swap_max_write(struct kernfs_open_file *of, 6104 char *buf, size_t nbytes, loff_t off) 6105 { 6106 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6107 unsigned long max; 6108 int err; 6109 6110 buf = strstrip(buf); 6111 err = page_counter_memparse(buf, "max", &max); 6112 if (err) 6113 return err; 6114 6115 mutex_lock(&memcg_limit_mutex); 6116 err = page_counter_limit(&memcg->swap, max); 6117 mutex_unlock(&memcg_limit_mutex); 6118 if (err) 6119 return err; 6120 6121 return nbytes; 6122 } 6123 6124 static struct cftype swap_files[] = { 6125 { 6126 .name = "swap.current", 6127 .flags = CFTYPE_NOT_ON_ROOT, 6128 .read_u64 = swap_current_read, 6129 }, 6130 { 6131 .name = "swap.max", 6132 .flags = CFTYPE_NOT_ON_ROOT, 6133 .seq_show = swap_max_show, 6134 .write = swap_max_write, 6135 }, 6136 { } /* terminate */ 6137 }; 6138 6139 static struct cftype memsw_cgroup_files[] = { 6140 { 6141 .name = "memsw.usage_in_bytes", 6142 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6143 .read_u64 = mem_cgroup_read_u64, 6144 }, 6145 { 6146 .name = "memsw.max_usage_in_bytes", 6147 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6148 .write = mem_cgroup_reset, 6149 .read_u64 = mem_cgroup_read_u64, 6150 }, 6151 { 6152 .name = "memsw.limit_in_bytes", 6153 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6154 .write = mem_cgroup_write, 6155 .read_u64 = mem_cgroup_read_u64, 6156 }, 6157 { 6158 .name = "memsw.failcnt", 6159 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6160 .write = mem_cgroup_reset, 6161 .read_u64 = mem_cgroup_read_u64, 6162 }, 6163 { }, /* terminate */ 6164 }; 6165 6166 static int __init mem_cgroup_swap_init(void) 6167 { 6168 if (!mem_cgroup_disabled() && really_do_swap_account) { 6169 do_swap_account = 1; 6170 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6171 swap_files)); 6172 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6173 memsw_cgroup_files)); 6174 } 6175 return 0; 6176 } 6177 subsys_initcall(mem_cgroup_swap_init); 6178 6179 #endif /* CONFIG_MEMCG_SWAP */ 6180