xref: /openbmc/linux/mm/memcontrol.c (revision dea54fba)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char *const mem_cgroup_lru_names[] = {
104 	"inactive_anon",
105 	"active_anon",
106 	"inactive_file",
107 	"active_file",
108 	"unevictable",
109 };
110 
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET	1024
114 
115 /*
116  * Cgroups above their limits are maintained in a RB-Tree, independent of
117  * their hierarchy representation
118  */
119 
120 struct mem_cgroup_tree_per_node {
121 	struct rb_root rb_root;
122 	spinlock_t lock;
123 };
124 
125 struct mem_cgroup_tree {
126 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 };
128 
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130 
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133 	struct list_head list;
134 	struct eventfd_ctx *eventfd;
135 };
136 
137 /*
138  * cgroup_event represents events which userspace want to receive.
139  */
140 struct mem_cgroup_event {
141 	/*
142 	 * memcg which the event belongs to.
143 	 */
144 	struct mem_cgroup *memcg;
145 	/*
146 	 * eventfd to signal userspace about the event.
147 	 */
148 	struct eventfd_ctx *eventfd;
149 	/*
150 	 * Each of these stored in a list by the cgroup.
151 	 */
152 	struct list_head list;
153 	/*
154 	 * register_event() callback will be used to add new userspace
155 	 * waiter for changes related to this event.  Use eventfd_signal()
156 	 * on eventfd to send notification to userspace.
157 	 */
158 	int (*register_event)(struct mem_cgroup *memcg,
159 			      struct eventfd_ctx *eventfd, const char *args);
160 	/*
161 	 * unregister_event() callback will be called when userspace closes
162 	 * the eventfd or on cgroup removing.  This callback must be set,
163 	 * if you want provide notification functionality.
164 	 */
165 	void (*unregister_event)(struct mem_cgroup *memcg,
166 				 struct eventfd_ctx *eventfd);
167 	/*
168 	 * All fields below needed to unregister event when
169 	 * userspace closes eventfd.
170 	 */
171 	poll_table pt;
172 	wait_queue_head_t *wqh;
173 	wait_queue_entry_t wait;
174 	struct work_struct remove;
175 };
176 
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179 
180 /* Stuffs for move charges at task migration. */
181 /*
182  * Types of charges to be moved.
183  */
184 #define MOVE_ANON	0x1U
185 #define MOVE_FILE	0x2U
186 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
187 
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190 	spinlock_t	  lock; /* for from, to */
191 	struct mm_struct  *mm;
192 	struct mem_cgroup *from;
193 	struct mem_cgroup *to;
194 	unsigned long flags;
195 	unsigned long precharge;
196 	unsigned long moved_charge;
197 	unsigned long moved_swap;
198 	struct task_struct *moving_task;	/* a task moving charges */
199 	wait_queue_head_t waitq;		/* a waitq for other context */
200 } mc = {
201 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203 };
204 
205 /*
206  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207  * limit reclaim to prevent infinite loops, if they ever occur.
208  */
209 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
210 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
211 
212 enum charge_type {
213 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214 	MEM_CGROUP_CHARGE_TYPE_ANON,
215 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
216 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
217 	NR_CHARGE_TYPE,
218 };
219 
220 /* for encoding cft->private value on file */
221 enum res_type {
222 	_MEM,
223 	_MEMSWAP,
224 	_OOM_TYPE,
225 	_KMEM,
226 	_TCP,
227 };
228 
229 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
230 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val)	((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL		(0)
234 
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238 	if (!memcg)
239 		memcg = root_mem_cgroup;
240 	return &memcg->vmpressure;
241 }
242 
243 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
244 {
245 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
246 }
247 
248 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
249 {
250 	return (memcg == root_mem_cgroup);
251 }
252 
253 #ifndef CONFIG_SLOB
254 /*
255  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256  * The main reason for not using cgroup id for this:
257  *  this works better in sparse environments, where we have a lot of memcgs,
258  *  but only a few kmem-limited. Or also, if we have, for instance, 200
259  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
260  *  200 entry array for that.
261  *
262  * The current size of the caches array is stored in memcg_nr_cache_ids. It
263  * will double each time we have to increase it.
264  */
265 static DEFINE_IDA(memcg_cache_ida);
266 int memcg_nr_cache_ids;
267 
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem);
270 
271 void memcg_get_cache_ids(void)
272 {
273 	down_read(&memcg_cache_ids_sem);
274 }
275 
276 void memcg_put_cache_ids(void)
277 {
278 	up_read(&memcg_cache_ids_sem);
279 }
280 
281 /*
282  * MIN_SIZE is different than 1, because we would like to avoid going through
283  * the alloc/free process all the time. In a small machine, 4 kmem-limited
284  * cgroups is a reasonable guess. In the future, it could be a parameter or
285  * tunable, but that is strictly not necessary.
286  *
287  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288  * this constant directly from cgroup, but it is understandable that this is
289  * better kept as an internal representation in cgroup.c. In any case, the
290  * cgrp_id space is not getting any smaller, and we don't have to necessarily
291  * increase ours as well if it increases.
292  */
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
295 
296 /*
297  * A lot of the calls to the cache allocation functions are expected to be
298  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299  * conditional to this static branch, we'll have to allow modules that does
300  * kmem_cache_alloc and the such to see this symbol as well
301  */
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key);
304 
305 struct workqueue_struct *memcg_kmem_cache_wq;
306 
307 #endif /* !CONFIG_SLOB */
308 
309 /**
310  * mem_cgroup_css_from_page - css of the memcg associated with a page
311  * @page: page of interest
312  *
313  * If memcg is bound to the default hierarchy, css of the memcg associated
314  * with @page is returned.  The returned css remains associated with @page
315  * until it is released.
316  *
317  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318  * is returned.
319  */
320 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
321 {
322 	struct mem_cgroup *memcg;
323 
324 	memcg = page->mem_cgroup;
325 
326 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 		memcg = root_mem_cgroup;
328 
329 	return &memcg->css;
330 }
331 
332 /**
333  * page_cgroup_ino - return inode number of the memcg a page is charged to
334  * @page: the page
335  *
336  * Look up the closest online ancestor of the memory cgroup @page is charged to
337  * and return its inode number or 0 if @page is not charged to any cgroup. It
338  * is safe to call this function without holding a reference to @page.
339  *
340  * Note, this function is inherently racy, because there is nothing to prevent
341  * the cgroup inode from getting torn down and potentially reallocated a moment
342  * after page_cgroup_ino() returns, so it only should be used by callers that
343  * do not care (such as procfs interfaces).
344  */
345 ino_t page_cgroup_ino(struct page *page)
346 {
347 	struct mem_cgroup *memcg;
348 	unsigned long ino = 0;
349 
350 	rcu_read_lock();
351 	memcg = READ_ONCE(page->mem_cgroup);
352 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 		memcg = parent_mem_cgroup(memcg);
354 	if (memcg)
355 		ino = cgroup_ino(memcg->css.cgroup);
356 	rcu_read_unlock();
357 	return ino;
358 }
359 
360 static struct mem_cgroup_per_node *
361 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
362 {
363 	int nid = page_to_nid(page);
364 
365 	return memcg->nodeinfo[nid];
366 }
367 
368 static struct mem_cgroup_tree_per_node *
369 soft_limit_tree_node(int nid)
370 {
371 	return soft_limit_tree.rb_tree_per_node[nid];
372 }
373 
374 static struct mem_cgroup_tree_per_node *
375 soft_limit_tree_from_page(struct page *page)
376 {
377 	int nid = page_to_nid(page);
378 
379 	return soft_limit_tree.rb_tree_per_node[nid];
380 }
381 
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 					 struct mem_cgroup_tree_per_node *mctz,
384 					 unsigned long new_usage_in_excess)
385 {
386 	struct rb_node **p = &mctz->rb_root.rb_node;
387 	struct rb_node *parent = NULL;
388 	struct mem_cgroup_per_node *mz_node;
389 
390 	if (mz->on_tree)
391 		return;
392 
393 	mz->usage_in_excess = new_usage_in_excess;
394 	if (!mz->usage_in_excess)
395 		return;
396 	while (*p) {
397 		parent = *p;
398 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 					tree_node);
400 		if (mz->usage_in_excess < mz_node->usage_in_excess)
401 			p = &(*p)->rb_left;
402 		/*
403 		 * We can't avoid mem cgroups that are over their soft
404 		 * limit by the same amount
405 		 */
406 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 			p = &(*p)->rb_right;
408 	}
409 	rb_link_node(&mz->tree_node, parent, p);
410 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 	mz->on_tree = true;
412 }
413 
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 					 struct mem_cgroup_tree_per_node *mctz)
416 {
417 	if (!mz->on_tree)
418 		return;
419 	rb_erase(&mz->tree_node, &mctz->rb_root);
420 	mz->on_tree = false;
421 }
422 
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 				       struct mem_cgroup_tree_per_node *mctz)
425 {
426 	unsigned long flags;
427 
428 	spin_lock_irqsave(&mctz->lock, flags);
429 	__mem_cgroup_remove_exceeded(mz, mctz);
430 	spin_unlock_irqrestore(&mctz->lock, flags);
431 }
432 
433 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
434 {
435 	unsigned long nr_pages = page_counter_read(&memcg->memory);
436 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 	unsigned long excess = 0;
438 
439 	if (nr_pages > soft_limit)
440 		excess = nr_pages - soft_limit;
441 
442 	return excess;
443 }
444 
445 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
446 {
447 	unsigned long excess;
448 	struct mem_cgroup_per_node *mz;
449 	struct mem_cgroup_tree_per_node *mctz;
450 
451 	mctz = soft_limit_tree_from_page(page);
452 	if (!mctz)
453 		return;
454 	/*
455 	 * Necessary to update all ancestors when hierarchy is used.
456 	 * because their event counter is not touched.
457 	 */
458 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459 		mz = mem_cgroup_page_nodeinfo(memcg, page);
460 		excess = soft_limit_excess(memcg);
461 		/*
462 		 * We have to update the tree if mz is on RB-tree or
463 		 * mem is over its softlimit.
464 		 */
465 		if (excess || mz->on_tree) {
466 			unsigned long flags;
467 
468 			spin_lock_irqsave(&mctz->lock, flags);
469 			/* if on-tree, remove it */
470 			if (mz->on_tree)
471 				__mem_cgroup_remove_exceeded(mz, mctz);
472 			/*
473 			 * Insert again. mz->usage_in_excess will be updated.
474 			 * If excess is 0, no tree ops.
475 			 */
476 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
477 			spin_unlock_irqrestore(&mctz->lock, flags);
478 		}
479 	}
480 }
481 
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
483 {
484 	struct mem_cgroup_tree_per_node *mctz;
485 	struct mem_cgroup_per_node *mz;
486 	int nid;
487 
488 	for_each_node(nid) {
489 		mz = mem_cgroup_nodeinfo(memcg, nid);
490 		mctz = soft_limit_tree_node(nid);
491 		if (mctz)
492 			mem_cgroup_remove_exceeded(mz, mctz);
493 	}
494 }
495 
496 static struct mem_cgroup_per_node *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
498 {
499 	struct rb_node *rightmost = NULL;
500 	struct mem_cgroup_per_node *mz;
501 
502 retry:
503 	mz = NULL;
504 	rightmost = rb_last(&mctz->rb_root);
505 	if (!rightmost)
506 		goto done;		/* Nothing to reclaim from */
507 
508 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
509 	/*
510 	 * Remove the node now but someone else can add it back,
511 	 * we will to add it back at the end of reclaim to its correct
512 	 * position in the tree.
513 	 */
514 	__mem_cgroup_remove_exceeded(mz, mctz);
515 	if (!soft_limit_excess(mz->memcg) ||
516 	    !css_tryget_online(&mz->memcg->css))
517 		goto retry;
518 done:
519 	return mz;
520 }
521 
522 static struct mem_cgroup_per_node *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
524 {
525 	struct mem_cgroup_per_node *mz;
526 
527 	spin_lock_irq(&mctz->lock);
528 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 	spin_unlock_irq(&mctz->lock);
530 	return mz;
531 }
532 
533 /*
534  * Return page count for single (non recursive) @memcg.
535  *
536  * Implementation Note: reading percpu statistics for memcg.
537  *
538  * Both of vmstat[] and percpu_counter has threshold and do periodic
539  * synchronization to implement "quick" read. There are trade-off between
540  * reading cost and precision of value. Then, we may have a chance to implement
541  * a periodic synchronization of counter in memcg's counter.
542  *
543  * But this _read() function is used for user interface now. The user accounts
544  * memory usage by memory cgroup and he _always_ requires exact value because
545  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546  * have to visit all online cpus and make sum. So, for now, unnecessary
547  * synchronization is not implemented. (just implemented for cpu hotplug)
548  *
549  * If there are kernel internal actions which can make use of some not-exact
550  * value, and reading all cpu value can be performance bottleneck in some
551  * common workload, threshold and synchronization as vmstat[] should be
552  * implemented.
553  */
554 
555 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
556 				      enum memcg_event_item event)
557 {
558 	unsigned long val = 0;
559 	int cpu;
560 
561 	for_each_possible_cpu(cpu)
562 		val += per_cpu(memcg->stat->events[event], cpu);
563 	return val;
564 }
565 
566 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
567 					 struct page *page,
568 					 bool compound, int nr_pages)
569 {
570 	/*
571 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
572 	 * counted as CACHE even if it's on ANON LRU.
573 	 */
574 	if (PageAnon(page))
575 		__this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
576 	else {
577 		__this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
578 		if (PageSwapBacked(page))
579 			__this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
580 	}
581 
582 	if (compound) {
583 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
584 		__this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
585 	}
586 
587 	/* pagein of a big page is an event. So, ignore page size */
588 	if (nr_pages > 0)
589 		__this_cpu_inc(memcg->stat->events[PGPGIN]);
590 	else {
591 		__this_cpu_inc(memcg->stat->events[PGPGOUT]);
592 		nr_pages = -nr_pages; /* for event */
593 	}
594 
595 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
596 }
597 
598 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
599 					   int nid, unsigned int lru_mask)
600 {
601 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
602 	unsigned long nr = 0;
603 	enum lru_list lru;
604 
605 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
606 
607 	for_each_lru(lru) {
608 		if (!(BIT(lru) & lru_mask))
609 			continue;
610 		nr += mem_cgroup_get_lru_size(lruvec, lru);
611 	}
612 	return nr;
613 }
614 
615 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
616 			unsigned int lru_mask)
617 {
618 	unsigned long nr = 0;
619 	int nid;
620 
621 	for_each_node_state(nid, N_MEMORY)
622 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
623 	return nr;
624 }
625 
626 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
627 				       enum mem_cgroup_events_target target)
628 {
629 	unsigned long val, next;
630 
631 	val = __this_cpu_read(memcg->stat->nr_page_events);
632 	next = __this_cpu_read(memcg->stat->targets[target]);
633 	/* from time_after() in jiffies.h */
634 	if ((long)(next - val) < 0) {
635 		switch (target) {
636 		case MEM_CGROUP_TARGET_THRESH:
637 			next = val + THRESHOLDS_EVENTS_TARGET;
638 			break;
639 		case MEM_CGROUP_TARGET_SOFTLIMIT:
640 			next = val + SOFTLIMIT_EVENTS_TARGET;
641 			break;
642 		case MEM_CGROUP_TARGET_NUMAINFO:
643 			next = val + NUMAINFO_EVENTS_TARGET;
644 			break;
645 		default:
646 			break;
647 		}
648 		__this_cpu_write(memcg->stat->targets[target], next);
649 		return true;
650 	}
651 	return false;
652 }
653 
654 /*
655  * Check events in order.
656  *
657  */
658 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
659 {
660 	/* threshold event is triggered in finer grain than soft limit */
661 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
662 						MEM_CGROUP_TARGET_THRESH))) {
663 		bool do_softlimit;
664 		bool do_numainfo __maybe_unused;
665 
666 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
667 						MEM_CGROUP_TARGET_SOFTLIMIT);
668 #if MAX_NUMNODES > 1
669 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
670 						MEM_CGROUP_TARGET_NUMAINFO);
671 #endif
672 		mem_cgroup_threshold(memcg);
673 		if (unlikely(do_softlimit))
674 			mem_cgroup_update_tree(memcg, page);
675 #if MAX_NUMNODES > 1
676 		if (unlikely(do_numainfo))
677 			atomic_inc(&memcg->numainfo_events);
678 #endif
679 	}
680 }
681 
682 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
683 {
684 	/*
685 	 * mm_update_next_owner() may clear mm->owner to NULL
686 	 * if it races with swapoff, page migration, etc.
687 	 * So this can be called with p == NULL.
688 	 */
689 	if (unlikely(!p))
690 		return NULL;
691 
692 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
693 }
694 EXPORT_SYMBOL(mem_cgroup_from_task);
695 
696 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
697 {
698 	struct mem_cgroup *memcg = NULL;
699 
700 	rcu_read_lock();
701 	do {
702 		/*
703 		 * Page cache insertions can happen withou an
704 		 * actual mm context, e.g. during disk probing
705 		 * on boot, loopback IO, acct() writes etc.
706 		 */
707 		if (unlikely(!mm))
708 			memcg = root_mem_cgroup;
709 		else {
710 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
711 			if (unlikely(!memcg))
712 				memcg = root_mem_cgroup;
713 		}
714 	} while (!css_tryget_online(&memcg->css));
715 	rcu_read_unlock();
716 	return memcg;
717 }
718 
719 /**
720  * mem_cgroup_iter - iterate over memory cgroup hierarchy
721  * @root: hierarchy root
722  * @prev: previously returned memcg, NULL on first invocation
723  * @reclaim: cookie for shared reclaim walks, NULL for full walks
724  *
725  * Returns references to children of the hierarchy below @root, or
726  * @root itself, or %NULL after a full round-trip.
727  *
728  * Caller must pass the return value in @prev on subsequent
729  * invocations for reference counting, or use mem_cgroup_iter_break()
730  * to cancel a hierarchy walk before the round-trip is complete.
731  *
732  * Reclaimers can specify a zone and a priority level in @reclaim to
733  * divide up the memcgs in the hierarchy among all concurrent
734  * reclaimers operating on the same zone and priority.
735  */
736 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
737 				   struct mem_cgroup *prev,
738 				   struct mem_cgroup_reclaim_cookie *reclaim)
739 {
740 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
741 	struct cgroup_subsys_state *css = NULL;
742 	struct mem_cgroup *memcg = NULL;
743 	struct mem_cgroup *pos = NULL;
744 
745 	if (mem_cgroup_disabled())
746 		return NULL;
747 
748 	if (!root)
749 		root = root_mem_cgroup;
750 
751 	if (prev && !reclaim)
752 		pos = prev;
753 
754 	if (!root->use_hierarchy && root != root_mem_cgroup) {
755 		if (prev)
756 			goto out;
757 		return root;
758 	}
759 
760 	rcu_read_lock();
761 
762 	if (reclaim) {
763 		struct mem_cgroup_per_node *mz;
764 
765 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
766 		iter = &mz->iter[reclaim->priority];
767 
768 		if (prev && reclaim->generation != iter->generation)
769 			goto out_unlock;
770 
771 		while (1) {
772 			pos = READ_ONCE(iter->position);
773 			if (!pos || css_tryget(&pos->css))
774 				break;
775 			/*
776 			 * css reference reached zero, so iter->position will
777 			 * be cleared by ->css_released. However, we should not
778 			 * rely on this happening soon, because ->css_released
779 			 * is called from a work queue, and by busy-waiting we
780 			 * might block it. So we clear iter->position right
781 			 * away.
782 			 */
783 			(void)cmpxchg(&iter->position, pos, NULL);
784 		}
785 	}
786 
787 	if (pos)
788 		css = &pos->css;
789 
790 	for (;;) {
791 		css = css_next_descendant_pre(css, &root->css);
792 		if (!css) {
793 			/*
794 			 * Reclaimers share the hierarchy walk, and a
795 			 * new one might jump in right at the end of
796 			 * the hierarchy - make sure they see at least
797 			 * one group and restart from the beginning.
798 			 */
799 			if (!prev)
800 				continue;
801 			break;
802 		}
803 
804 		/*
805 		 * Verify the css and acquire a reference.  The root
806 		 * is provided by the caller, so we know it's alive
807 		 * and kicking, and don't take an extra reference.
808 		 */
809 		memcg = mem_cgroup_from_css(css);
810 
811 		if (css == &root->css)
812 			break;
813 
814 		if (css_tryget(css))
815 			break;
816 
817 		memcg = NULL;
818 	}
819 
820 	if (reclaim) {
821 		/*
822 		 * The position could have already been updated by a competing
823 		 * thread, so check that the value hasn't changed since we read
824 		 * it to avoid reclaiming from the same cgroup twice.
825 		 */
826 		(void)cmpxchg(&iter->position, pos, memcg);
827 
828 		if (pos)
829 			css_put(&pos->css);
830 
831 		if (!memcg)
832 			iter->generation++;
833 		else if (!prev)
834 			reclaim->generation = iter->generation;
835 	}
836 
837 out_unlock:
838 	rcu_read_unlock();
839 out:
840 	if (prev && prev != root)
841 		css_put(&prev->css);
842 
843 	return memcg;
844 }
845 
846 /**
847  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
848  * @root: hierarchy root
849  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
850  */
851 void mem_cgroup_iter_break(struct mem_cgroup *root,
852 			   struct mem_cgroup *prev)
853 {
854 	if (!root)
855 		root = root_mem_cgroup;
856 	if (prev && prev != root)
857 		css_put(&prev->css);
858 }
859 
860 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
861 {
862 	struct mem_cgroup *memcg = dead_memcg;
863 	struct mem_cgroup_reclaim_iter *iter;
864 	struct mem_cgroup_per_node *mz;
865 	int nid;
866 	int i;
867 
868 	while ((memcg = parent_mem_cgroup(memcg))) {
869 		for_each_node(nid) {
870 			mz = mem_cgroup_nodeinfo(memcg, nid);
871 			for (i = 0; i <= DEF_PRIORITY; i++) {
872 				iter = &mz->iter[i];
873 				cmpxchg(&iter->position,
874 					dead_memcg, NULL);
875 			}
876 		}
877 	}
878 }
879 
880 /*
881  * Iteration constructs for visiting all cgroups (under a tree).  If
882  * loops are exited prematurely (break), mem_cgroup_iter_break() must
883  * be used for reference counting.
884  */
885 #define for_each_mem_cgroup_tree(iter, root)		\
886 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
887 	     iter != NULL;				\
888 	     iter = mem_cgroup_iter(root, iter, NULL))
889 
890 #define for_each_mem_cgroup(iter)			\
891 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
892 	     iter != NULL;				\
893 	     iter = mem_cgroup_iter(NULL, iter, NULL))
894 
895 /**
896  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
897  * @memcg: hierarchy root
898  * @fn: function to call for each task
899  * @arg: argument passed to @fn
900  *
901  * This function iterates over tasks attached to @memcg or to any of its
902  * descendants and calls @fn for each task. If @fn returns a non-zero
903  * value, the function breaks the iteration loop and returns the value.
904  * Otherwise, it will iterate over all tasks and return 0.
905  *
906  * This function must not be called for the root memory cgroup.
907  */
908 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
909 			  int (*fn)(struct task_struct *, void *), void *arg)
910 {
911 	struct mem_cgroup *iter;
912 	int ret = 0;
913 
914 	BUG_ON(memcg == root_mem_cgroup);
915 
916 	for_each_mem_cgroup_tree(iter, memcg) {
917 		struct css_task_iter it;
918 		struct task_struct *task;
919 
920 		css_task_iter_start(&iter->css, &it);
921 		while (!ret && (task = css_task_iter_next(&it)))
922 			ret = fn(task, arg);
923 		css_task_iter_end(&it);
924 		if (ret) {
925 			mem_cgroup_iter_break(memcg, iter);
926 			break;
927 		}
928 	}
929 	return ret;
930 }
931 
932 /**
933  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
934  * @page: the page
935  * @zone: zone of the page
936  *
937  * This function is only safe when following the LRU page isolation
938  * and putback protocol: the LRU lock must be held, and the page must
939  * either be PageLRU() or the caller must have isolated/allocated it.
940  */
941 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
942 {
943 	struct mem_cgroup_per_node *mz;
944 	struct mem_cgroup *memcg;
945 	struct lruvec *lruvec;
946 
947 	if (mem_cgroup_disabled()) {
948 		lruvec = &pgdat->lruvec;
949 		goto out;
950 	}
951 
952 	memcg = page->mem_cgroup;
953 	/*
954 	 * Swapcache readahead pages are added to the LRU - and
955 	 * possibly migrated - before they are charged.
956 	 */
957 	if (!memcg)
958 		memcg = root_mem_cgroup;
959 
960 	mz = mem_cgroup_page_nodeinfo(memcg, page);
961 	lruvec = &mz->lruvec;
962 out:
963 	/*
964 	 * Since a node can be onlined after the mem_cgroup was created,
965 	 * we have to be prepared to initialize lruvec->zone here;
966 	 * and if offlined then reonlined, we need to reinitialize it.
967 	 */
968 	if (unlikely(lruvec->pgdat != pgdat))
969 		lruvec->pgdat = pgdat;
970 	return lruvec;
971 }
972 
973 /**
974  * mem_cgroup_update_lru_size - account for adding or removing an lru page
975  * @lruvec: mem_cgroup per zone lru vector
976  * @lru: index of lru list the page is sitting on
977  * @zid: zone id of the accounted pages
978  * @nr_pages: positive when adding or negative when removing
979  *
980  * This function must be called under lru_lock, just before a page is added
981  * to or just after a page is removed from an lru list (that ordering being
982  * so as to allow it to check that lru_size 0 is consistent with list_empty).
983  */
984 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
985 				int zid, int nr_pages)
986 {
987 	struct mem_cgroup_per_node *mz;
988 	unsigned long *lru_size;
989 	long size;
990 
991 	if (mem_cgroup_disabled())
992 		return;
993 
994 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
995 	lru_size = &mz->lru_zone_size[zid][lru];
996 
997 	if (nr_pages < 0)
998 		*lru_size += nr_pages;
999 
1000 	size = *lru_size;
1001 	if (WARN_ONCE(size < 0,
1002 		"%s(%p, %d, %d): lru_size %ld\n",
1003 		__func__, lruvec, lru, nr_pages, size)) {
1004 		VM_BUG_ON(1);
1005 		*lru_size = 0;
1006 	}
1007 
1008 	if (nr_pages > 0)
1009 		*lru_size += nr_pages;
1010 }
1011 
1012 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1013 {
1014 	struct mem_cgroup *task_memcg;
1015 	struct task_struct *p;
1016 	bool ret;
1017 
1018 	p = find_lock_task_mm(task);
1019 	if (p) {
1020 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1021 		task_unlock(p);
1022 	} else {
1023 		/*
1024 		 * All threads may have already detached their mm's, but the oom
1025 		 * killer still needs to detect if they have already been oom
1026 		 * killed to prevent needlessly killing additional tasks.
1027 		 */
1028 		rcu_read_lock();
1029 		task_memcg = mem_cgroup_from_task(task);
1030 		css_get(&task_memcg->css);
1031 		rcu_read_unlock();
1032 	}
1033 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1034 	css_put(&task_memcg->css);
1035 	return ret;
1036 }
1037 
1038 /**
1039  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1040  * @memcg: the memory cgroup
1041  *
1042  * Returns the maximum amount of memory @mem can be charged with, in
1043  * pages.
1044  */
1045 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1046 {
1047 	unsigned long margin = 0;
1048 	unsigned long count;
1049 	unsigned long limit;
1050 
1051 	count = page_counter_read(&memcg->memory);
1052 	limit = READ_ONCE(memcg->memory.limit);
1053 	if (count < limit)
1054 		margin = limit - count;
1055 
1056 	if (do_memsw_account()) {
1057 		count = page_counter_read(&memcg->memsw);
1058 		limit = READ_ONCE(memcg->memsw.limit);
1059 		if (count <= limit)
1060 			margin = min(margin, limit - count);
1061 		else
1062 			margin = 0;
1063 	}
1064 
1065 	return margin;
1066 }
1067 
1068 /*
1069  * A routine for checking "mem" is under move_account() or not.
1070  *
1071  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1072  * moving cgroups. This is for waiting at high-memory pressure
1073  * caused by "move".
1074  */
1075 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1076 {
1077 	struct mem_cgroup *from;
1078 	struct mem_cgroup *to;
1079 	bool ret = false;
1080 	/*
1081 	 * Unlike task_move routines, we access mc.to, mc.from not under
1082 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1083 	 */
1084 	spin_lock(&mc.lock);
1085 	from = mc.from;
1086 	to = mc.to;
1087 	if (!from)
1088 		goto unlock;
1089 
1090 	ret = mem_cgroup_is_descendant(from, memcg) ||
1091 		mem_cgroup_is_descendant(to, memcg);
1092 unlock:
1093 	spin_unlock(&mc.lock);
1094 	return ret;
1095 }
1096 
1097 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1098 {
1099 	if (mc.moving_task && current != mc.moving_task) {
1100 		if (mem_cgroup_under_move(memcg)) {
1101 			DEFINE_WAIT(wait);
1102 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1103 			/* moving charge context might have finished. */
1104 			if (mc.moving_task)
1105 				schedule();
1106 			finish_wait(&mc.waitq, &wait);
1107 			return true;
1108 		}
1109 	}
1110 	return false;
1111 }
1112 
1113 unsigned int memcg1_stats[] = {
1114 	MEMCG_CACHE,
1115 	MEMCG_RSS,
1116 	MEMCG_RSS_HUGE,
1117 	NR_SHMEM,
1118 	NR_FILE_MAPPED,
1119 	NR_FILE_DIRTY,
1120 	NR_WRITEBACK,
1121 	MEMCG_SWAP,
1122 };
1123 
1124 static const char *const memcg1_stat_names[] = {
1125 	"cache",
1126 	"rss",
1127 	"rss_huge",
1128 	"shmem",
1129 	"mapped_file",
1130 	"dirty",
1131 	"writeback",
1132 	"swap",
1133 };
1134 
1135 #define K(x) ((x) << (PAGE_SHIFT-10))
1136 /**
1137  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138  * @memcg: The memory cgroup that went over limit
1139  * @p: Task that is going to be killed
1140  *
1141  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1142  * enabled
1143  */
1144 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1145 {
1146 	struct mem_cgroup *iter;
1147 	unsigned int i;
1148 
1149 	rcu_read_lock();
1150 
1151 	if (p) {
1152 		pr_info("Task in ");
1153 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1154 		pr_cont(" killed as a result of limit of ");
1155 	} else {
1156 		pr_info("Memory limit reached of cgroup ");
1157 	}
1158 
1159 	pr_cont_cgroup_path(memcg->css.cgroup);
1160 	pr_cont("\n");
1161 
1162 	rcu_read_unlock();
1163 
1164 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1165 		K((u64)page_counter_read(&memcg->memory)),
1166 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1167 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1168 		K((u64)page_counter_read(&memcg->memsw)),
1169 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1170 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1171 		K((u64)page_counter_read(&memcg->kmem)),
1172 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1173 
1174 	for_each_mem_cgroup_tree(iter, memcg) {
1175 		pr_info("Memory cgroup stats for ");
1176 		pr_cont_cgroup_path(iter->css.cgroup);
1177 		pr_cont(":");
1178 
1179 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1180 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1181 				continue;
1182 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1183 				K(memcg_page_state(iter, memcg1_stats[i])));
1184 		}
1185 
1186 		for (i = 0; i < NR_LRU_LISTS; i++)
1187 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1188 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1189 
1190 		pr_cont("\n");
1191 	}
1192 }
1193 
1194 /*
1195  * This function returns the number of memcg under hierarchy tree. Returns
1196  * 1(self count) if no children.
1197  */
1198 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1199 {
1200 	int num = 0;
1201 	struct mem_cgroup *iter;
1202 
1203 	for_each_mem_cgroup_tree(iter, memcg)
1204 		num++;
1205 	return num;
1206 }
1207 
1208 /*
1209  * Return the memory (and swap, if configured) limit for a memcg.
1210  */
1211 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1212 {
1213 	unsigned long limit;
1214 
1215 	limit = memcg->memory.limit;
1216 	if (mem_cgroup_swappiness(memcg)) {
1217 		unsigned long memsw_limit;
1218 		unsigned long swap_limit;
1219 
1220 		memsw_limit = memcg->memsw.limit;
1221 		swap_limit = memcg->swap.limit;
1222 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1223 		limit = min(limit + swap_limit, memsw_limit);
1224 	}
1225 	return limit;
1226 }
1227 
1228 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1229 				     int order)
1230 {
1231 	struct oom_control oc = {
1232 		.zonelist = NULL,
1233 		.nodemask = NULL,
1234 		.memcg = memcg,
1235 		.gfp_mask = gfp_mask,
1236 		.order = order,
1237 	};
1238 	bool ret;
1239 
1240 	mutex_lock(&oom_lock);
1241 	ret = out_of_memory(&oc);
1242 	mutex_unlock(&oom_lock);
1243 	return ret;
1244 }
1245 
1246 #if MAX_NUMNODES > 1
1247 
1248 /**
1249  * test_mem_cgroup_node_reclaimable
1250  * @memcg: the target memcg
1251  * @nid: the node ID to be checked.
1252  * @noswap : specify true here if the user wants flle only information.
1253  *
1254  * This function returns whether the specified memcg contains any
1255  * reclaimable pages on a node. Returns true if there are any reclaimable
1256  * pages in the node.
1257  */
1258 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1259 		int nid, bool noswap)
1260 {
1261 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1262 		return true;
1263 	if (noswap || !total_swap_pages)
1264 		return false;
1265 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1266 		return true;
1267 	return false;
1268 
1269 }
1270 
1271 /*
1272  * Always updating the nodemask is not very good - even if we have an empty
1273  * list or the wrong list here, we can start from some node and traverse all
1274  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1275  *
1276  */
1277 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1278 {
1279 	int nid;
1280 	/*
1281 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282 	 * pagein/pageout changes since the last update.
1283 	 */
1284 	if (!atomic_read(&memcg->numainfo_events))
1285 		return;
1286 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1287 		return;
1288 
1289 	/* make a nodemask where this memcg uses memory from */
1290 	memcg->scan_nodes = node_states[N_MEMORY];
1291 
1292 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1293 
1294 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1295 			node_clear(nid, memcg->scan_nodes);
1296 	}
1297 
1298 	atomic_set(&memcg->numainfo_events, 0);
1299 	atomic_set(&memcg->numainfo_updating, 0);
1300 }
1301 
1302 /*
1303  * Selecting a node where we start reclaim from. Because what we need is just
1304  * reducing usage counter, start from anywhere is O,K. Considering
1305  * memory reclaim from current node, there are pros. and cons.
1306  *
1307  * Freeing memory from current node means freeing memory from a node which
1308  * we'll use or we've used. So, it may make LRU bad. And if several threads
1309  * hit limits, it will see a contention on a node. But freeing from remote
1310  * node means more costs for memory reclaim because of memory latency.
1311  *
1312  * Now, we use round-robin. Better algorithm is welcomed.
1313  */
1314 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1315 {
1316 	int node;
1317 
1318 	mem_cgroup_may_update_nodemask(memcg);
1319 	node = memcg->last_scanned_node;
1320 
1321 	node = next_node_in(node, memcg->scan_nodes);
1322 	/*
1323 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324 	 * last time it really checked all the LRUs due to rate limiting.
1325 	 * Fallback to the current node in that case for simplicity.
1326 	 */
1327 	if (unlikely(node == MAX_NUMNODES))
1328 		node = numa_node_id();
1329 
1330 	memcg->last_scanned_node = node;
1331 	return node;
1332 }
1333 #else
1334 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1335 {
1336 	return 0;
1337 }
1338 #endif
1339 
1340 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1341 				   pg_data_t *pgdat,
1342 				   gfp_t gfp_mask,
1343 				   unsigned long *total_scanned)
1344 {
1345 	struct mem_cgroup *victim = NULL;
1346 	int total = 0;
1347 	int loop = 0;
1348 	unsigned long excess;
1349 	unsigned long nr_scanned;
1350 	struct mem_cgroup_reclaim_cookie reclaim = {
1351 		.pgdat = pgdat,
1352 		.priority = 0,
1353 	};
1354 
1355 	excess = soft_limit_excess(root_memcg);
1356 
1357 	while (1) {
1358 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1359 		if (!victim) {
1360 			loop++;
1361 			if (loop >= 2) {
1362 				/*
1363 				 * If we have not been able to reclaim
1364 				 * anything, it might because there are
1365 				 * no reclaimable pages under this hierarchy
1366 				 */
1367 				if (!total)
1368 					break;
1369 				/*
1370 				 * We want to do more targeted reclaim.
1371 				 * excess >> 2 is not to excessive so as to
1372 				 * reclaim too much, nor too less that we keep
1373 				 * coming back to reclaim from this cgroup
1374 				 */
1375 				if (total >= (excess >> 2) ||
1376 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1377 					break;
1378 			}
1379 			continue;
1380 		}
1381 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1382 					pgdat, &nr_scanned);
1383 		*total_scanned += nr_scanned;
1384 		if (!soft_limit_excess(root_memcg))
1385 			break;
1386 	}
1387 	mem_cgroup_iter_break(root_memcg, victim);
1388 	return total;
1389 }
1390 
1391 #ifdef CONFIG_LOCKDEP
1392 static struct lockdep_map memcg_oom_lock_dep_map = {
1393 	.name = "memcg_oom_lock",
1394 };
1395 #endif
1396 
1397 static DEFINE_SPINLOCK(memcg_oom_lock);
1398 
1399 /*
1400  * Check OOM-Killer is already running under our hierarchy.
1401  * If someone is running, return false.
1402  */
1403 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1404 {
1405 	struct mem_cgroup *iter, *failed = NULL;
1406 
1407 	spin_lock(&memcg_oom_lock);
1408 
1409 	for_each_mem_cgroup_tree(iter, memcg) {
1410 		if (iter->oom_lock) {
1411 			/*
1412 			 * this subtree of our hierarchy is already locked
1413 			 * so we cannot give a lock.
1414 			 */
1415 			failed = iter;
1416 			mem_cgroup_iter_break(memcg, iter);
1417 			break;
1418 		} else
1419 			iter->oom_lock = true;
1420 	}
1421 
1422 	if (failed) {
1423 		/*
1424 		 * OK, we failed to lock the whole subtree so we have
1425 		 * to clean up what we set up to the failing subtree
1426 		 */
1427 		for_each_mem_cgroup_tree(iter, memcg) {
1428 			if (iter == failed) {
1429 				mem_cgroup_iter_break(memcg, iter);
1430 				break;
1431 			}
1432 			iter->oom_lock = false;
1433 		}
1434 	} else
1435 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1436 
1437 	spin_unlock(&memcg_oom_lock);
1438 
1439 	return !failed;
1440 }
1441 
1442 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1443 {
1444 	struct mem_cgroup *iter;
1445 
1446 	spin_lock(&memcg_oom_lock);
1447 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1448 	for_each_mem_cgroup_tree(iter, memcg)
1449 		iter->oom_lock = false;
1450 	spin_unlock(&memcg_oom_lock);
1451 }
1452 
1453 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1454 {
1455 	struct mem_cgroup *iter;
1456 
1457 	spin_lock(&memcg_oom_lock);
1458 	for_each_mem_cgroup_tree(iter, memcg)
1459 		iter->under_oom++;
1460 	spin_unlock(&memcg_oom_lock);
1461 }
1462 
1463 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1464 {
1465 	struct mem_cgroup *iter;
1466 
1467 	/*
1468 	 * When a new child is created while the hierarchy is under oom,
1469 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1470 	 */
1471 	spin_lock(&memcg_oom_lock);
1472 	for_each_mem_cgroup_tree(iter, memcg)
1473 		if (iter->under_oom > 0)
1474 			iter->under_oom--;
1475 	spin_unlock(&memcg_oom_lock);
1476 }
1477 
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479 
1480 struct oom_wait_info {
1481 	struct mem_cgroup *memcg;
1482 	wait_queue_entry_t	wait;
1483 };
1484 
1485 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1486 	unsigned mode, int sync, void *arg)
1487 {
1488 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1489 	struct mem_cgroup *oom_wait_memcg;
1490 	struct oom_wait_info *oom_wait_info;
1491 
1492 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493 	oom_wait_memcg = oom_wait_info->memcg;
1494 
1495 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1496 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1497 		return 0;
1498 	return autoremove_wake_function(wait, mode, sync, arg);
1499 }
1500 
1501 static void memcg_oom_recover(struct mem_cgroup *memcg)
1502 {
1503 	/*
1504 	 * For the following lockless ->under_oom test, the only required
1505 	 * guarantee is that it must see the state asserted by an OOM when
1506 	 * this function is called as a result of userland actions
1507 	 * triggered by the notification of the OOM.  This is trivially
1508 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1509 	 * triggering notification.
1510 	 */
1511 	if (memcg && memcg->under_oom)
1512 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1513 }
1514 
1515 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1516 {
1517 	if (!current->memcg_may_oom)
1518 		return;
1519 	/*
1520 	 * We are in the middle of the charge context here, so we
1521 	 * don't want to block when potentially sitting on a callstack
1522 	 * that holds all kinds of filesystem and mm locks.
1523 	 *
1524 	 * Also, the caller may handle a failed allocation gracefully
1525 	 * (like optional page cache readahead) and so an OOM killer
1526 	 * invocation might not even be necessary.
1527 	 *
1528 	 * That's why we don't do anything here except remember the
1529 	 * OOM context and then deal with it at the end of the page
1530 	 * fault when the stack is unwound, the locks are released,
1531 	 * and when we know whether the fault was overall successful.
1532 	 */
1533 	css_get(&memcg->css);
1534 	current->memcg_in_oom = memcg;
1535 	current->memcg_oom_gfp_mask = mask;
1536 	current->memcg_oom_order = order;
1537 }
1538 
1539 /**
1540  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541  * @handle: actually kill/wait or just clean up the OOM state
1542  *
1543  * This has to be called at the end of a page fault if the memcg OOM
1544  * handler was enabled.
1545  *
1546  * Memcg supports userspace OOM handling where failed allocations must
1547  * sleep on a waitqueue until the userspace task resolves the
1548  * situation.  Sleeping directly in the charge context with all kinds
1549  * of locks held is not a good idea, instead we remember an OOM state
1550  * in the task and mem_cgroup_oom_synchronize() has to be called at
1551  * the end of the page fault to complete the OOM handling.
1552  *
1553  * Returns %true if an ongoing memcg OOM situation was detected and
1554  * completed, %false otherwise.
1555  */
1556 bool mem_cgroup_oom_synchronize(bool handle)
1557 {
1558 	struct mem_cgroup *memcg = current->memcg_in_oom;
1559 	struct oom_wait_info owait;
1560 	bool locked;
1561 
1562 	/* OOM is global, do not handle */
1563 	if (!memcg)
1564 		return false;
1565 
1566 	if (!handle)
1567 		goto cleanup;
1568 
1569 	owait.memcg = memcg;
1570 	owait.wait.flags = 0;
1571 	owait.wait.func = memcg_oom_wake_function;
1572 	owait.wait.private = current;
1573 	INIT_LIST_HEAD(&owait.wait.entry);
1574 
1575 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1576 	mem_cgroup_mark_under_oom(memcg);
1577 
1578 	locked = mem_cgroup_oom_trylock(memcg);
1579 
1580 	if (locked)
1581 		mem_cgroup_oom_notify(memcg);
1582 
1583 	if (locked && !memcg->oom_kill_disable) {
1584 		mem_cgroup_unmark_under_oom(memcg);
1585 		finish_wait(&memcg_oom_waitq, &owait.wait);
1586 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1587 					 current->memcg_oom_order);
1588 	} else {
1589 		schedule();
1590 		mem_cgroup_unmark_under_oom(memcg);
1591 		finish_wait(&memcg_oom_waitq, &owait.wait);
1592 	}
1593 
1594 	if (locked) {
1595 		mem_cgroup_oom_unlock(memcg);
1596 		/*
1597 		 * There is no guarantee that an OOM-lock contender
1598 		 * sees the wakeups triggered by the OOM kill
1599 		 * uncharges.  Wake any sleepers explicitely.
1600 		 */
1601 		memcg_oom_recover(memcg);
1602 	}
1603 cleanup:
1604 	current->memcg_in_oom = NULL;
1605 	css_put(&memcg->css);
1606 	return true;
1607 }
1608 
1609 /**
1610  * lock_page_memcg - lock a page->mem_cgroup binding
1611  * @page: the page
1612  *
1613  * This function protects unlocked LRU pages from being moved to
1614  * another cgroup.
1615  *
1616  * It ensures lifetime of the returned memcg. Caller is responsible
1617  * for the lifetime of the page; __unlock_page_memcg() is available
1618  * when @page might get freed inside the locked section.
1619  */
1620 struct mem_cgroup *lock_page_memcg(struct page *page)
1621 {
1622 	struct mem_cgroup *memcg;
1623 	unsigned long flags;
1624 
1625 	/*
1626 	 * The RCU lock is held throughout the transaction.  The fast
1627 	 * path can get away without acquiring the memcg->move_lock
1628 	 * because page moving starts with an RCU grace period.
1629 	 *
1630 	 * The RCU lock also protects the memcg from being freed when
1631 	 * the page state that is going to change is the only thing
1632 	 * preventing the page itself from being freed. E.g. writeback
1633 	 * doesn't hold a page reference and relies on PG_writeback to
1634 	 * keep off truncation, migration and so forth.
1635          */
1636 	rcu_read_lock();
1637 
1638 	if (mem_cgroup_disabled())
1639 		return NULL;
1640 again:
1641 	memcg = page->mem_cgroup;
1642 	if (unlikely(!memcg))
1643 		return NULL;
1644 
1645 	if (atomic_read(&memcg->moving_account) <= 0)
1646 		return memcg;
1647 
1648 	spin_lock_irqsave(&memcg->move_lock, flags);
1649 	if (memcg != page->mem_cgroup) {
1650 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1651 		goto again;
1652 	}
1653 
1654 	/*
1655 	 * When charge migration first begins, we can have locked and
1656 	 * unlocked page stat updates happening concurrently.  Track
1657 	 * the task who has the lock for unlock_page_memcg().
1658 	 */
1659 	memcg->move_lock_task = current;
1660 	memcg->move_lock_flags = flags;
1661 
1662 	return memcg;
1663 }
1664 EXPORT_SYMBOL(lock_page_memcg);
1665 
1666 /**
1667  * __unlock_page_memcg - unlock and unpin a memcg
1668  * @memcg: the memcg
1669  *
1670  * Unlock and unpin a memcg returned by lock_page_memcg().
1671  */
1672 void __unlock_page_memcg(struct mem_cgroup *memcg)
1673 {
1674 	if (memcg && memcg->move_lock_task == current) {
1675 		unsigned long flags = memcg->move_lock_flags;
1676 
1677 		memcg->move_lock_task = NULL;
1678 		memcg->move_lock_flags = 0;
1679 
1680 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1681 	}
1682 
1683 	rcu_read_unlock();
1684 }
1685 
1686 /**
1687  * unlock_page_memcg - unlock a page->mem_cgroup binding
1688  * @page: the page
1689  */
1690 void unlock_page_memcg(struct page *page)
1691 {
1692 	__unlock_page_memcg(page->mem_cgroup);
1693 }
1694 EXPORT_SYMBOL(unlock_page_memcg);
1695 
1696 /*
1697  * size of first charge trial. "32" comes from vmscan.c's magic value.
1698  * TODO: maybe necessary to use big numbers in big irons.
1699  */
1700 #define CHARGE_BATCH	32U
1701 struct memcg_stock_pcp {
1702 	struct mem_cgroup *cached; /* this never be root cgroup */
1703 	unsigned int nr_pages;
1704 	struct work_struct work;
1705 	unsigned long flags;
1706 #define FLUSHING_CACHED_CHARGE	0
1707 };
1708 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1709 static DEFINE_MUTEX(percpu_charge_mutex);
1710 
1711 /**
1712  * consume_stock: Try to consume stocked charge on this cpu.
1713  * @memcg: memcg to consume from.
1714  * @nr_pages: how many pages to charge.
1715  *
1716  * The charges will only happen if @memcg matches the current cpu's memcg
1717  * stock, and at least @nr_pages are available in that stock.  Failure to
1718  * service an allocation will refill the stock.
1719  *
1720  * returns true if successful, false otherwise.
1721  */
1722 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1723 {
1724 	struct memcg_stock_pcp *stock;
1725 	unsigned long flags;
1726 	bool ret = false;
1727 
1728 	if (nr_pages > CHARGE_BATCH)
1729 		return ret;
1730 
1731 	local_irq_save(flags);
1732 
1733 	stock = this_cpu_ptr(&memcg_stock);
1734 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1735 		stock->nr_pages -= nr_pages;
1736 		ret = true;
1737 	}
1738 
1739 	local_irq_restore(flags);
1740 
1741 	return ret;
1742 }
1743 
1744 /*
1745  * Returns stocks cached in percpu and reset cached information.
1746  */
1747 static void drain_stock(struct memcg_stock_pcp *stock)
1748 {
1749 	struct mem_cgroup *old = stock->cached;
1750 
1751 	if (stock->nr_pages) {
1752 		page_counter_uncharge(&old->memory, stock->nr_pages);
1753 		if (do_memsw_account())
1754 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1755 		css_put_many(&old->css, stock->nr_pages);
1756 		stock->nr_pages = 0;
1757 	}
1758 	stock->cached = NULL;
1759 }
1760 
1761 static void drain_local_stock(struct work_struct *dummy)
1762 {
1763 	struct memcg_stock_pcp *stock;
1764 	unsigned long flags;
1765 
1766 	local_irq_save(flags);
1767 
1768 	stock = this_cpu_ptr(&memcg_stock);
1769 	drain_stock(stock);
1770 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1771 
1772 	local_irq_restore(flags);
1773 }
1774 
1775 /*
1776  * Cache charges(val) to local per_cpu area.
1777  * This will be consumed by consume_stock() function, later.
1778  */
1779 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1780 {
1781 	struct memcg_stock_pcp *stock;
1782 	unsigned long flags;
1783 
1784 	local_irq_save(flags);
1785 
1786 	stock = this_cpu_ptr(&memcg_stock);
1787 	if (stock->cached != memcg) { /* reset if necessary */
1788 		drain_stock(stock);
1789 		stock->cached = memcg;
1790 	}
1791 	stock->nr_pages += nr_pages;
1792 
1793 	local_irq_restore(flags);
1794 }
1795 
1796 /*
1797  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1798  * of the hierarchy under it.
1799  */
1800 static void drain_all_stock(struct mem_cgroup *root_memcg)
1801 {
1802 	int cpu, curcpu;
1803 
1804 	/* If someone's already draining, avoid adding running more workers. */
1805 	if (!mutex_trylock(&percpu_charge_mutex))
1806 		return;
1807 	/* Notify other cpus that system-wide "drain" is running */
1808 	get_online_cpus();
1809 	curcpu = get_cpu();
1810 	for_each_online_cpu(cpu) {
1811 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1812 		struct mem_cgroup *memcg;
1813 
1814 		memcg = stock->cached;
1815 		if (!memcg || !stock->nr_pages)
1816 			continue;
1817 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1818 			continue;
1819 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1820 			if (cpu == curcpu)
1821 				drain_local_stock(&stock->work);
1822 			else
1823 				schedule_work_on(cpu, &stock->work);
1824 		}
1825 	}
1826 	put_cpu();
1827 	put_online_cpus();
1828 	mutex_unlock(&percpu_charge_mutex);
1829 }
1830 
1831 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1832 {
1833 	struct memcg_stock_pcp *stock;
1834 
1835 	stock = &per_cpu(memcg_stock, cpu);
1836 	drain_stock(stock);
1837 	return 0;
1838 }
1839 
1840 static void reclaim_high(struct mem_cgroup *memcg,
1841 			 unsigned int nr_pages,
1842 			 gfp_t gfp_mask)
1843 {
1844 	do {
1845 		if (page_counter_read(&memcg->memory) <= memcg->high)
1846 			continue;
1847 		mem_cgroup_event(memcg, MEMCG_HIGH);
1848 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1849 	} while ((memcg = parent_mem_cgroup(memcg)));
1850 }
1851 
1852 static void high_work_func(struct work_struct *work)
1853 {
1854 	struct mem_cgroup *memcg;
1855 
1856 	memcg = container_of(work, struct mem_cgroup, high_work);
1857 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1858 }
1859 
1860 /*
1861  * Scheduled by try_charge() to be executed from the userland return path
1862  * and reclaims memory over the high limit.
1863  */
1864 void mem_cgroup_handle_over_high(void)
1865 {
1866 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1867 	struct mem_cgroup *memcg;
1868 
1869 	if (likely(!nr_pages))
1870 		return;
1871 
1872 	memcg = get_mem_cgroup_from_mm(current->mm);
1873 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1874 	css_put(&memcg->css);
1875 	current->memcg_nr_pages_over_high = 0;
1876 }
1877 
1878 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1879 		      unsigned int nr_pages)
1880 {
1881 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1882 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1883 	struct mem_cgroup *mem_over_limit;
1884 	struct page_counter *counter;
1885 	unsigned long nr_reclaimed;
1886 	bool may_swap = true;
1887 	bool drained = false;
1888 
1889 	if (mem_cgroup_is_root(memcg))
1890 		return 0;
1891 retry:
1892 	if (consume_stock(memcg, nr_pages))
1893 		return 0;
1894 
1895 	if (!do_memsw_account() ||
1896 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1897 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1898 			goto done_restock;
1899 		if (do_memsw_account())
1900 			page_counter_uncharge(&memcg->memsw, batch);
1901 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1902 	} else {
1903 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1904 		may_swap = false;
1905 	}
1906 
1907 	if (batch > nr_pages) {
1908 		batch = nr_pages;
1909 		goto retry;
1910 	}
1911 
1912 	/*
1913 	 * Unlike in global OOM situations, memcg is not in a physical
1914 	 * memory shortage.  Allow dying and OOM-killed tasks to
1915 	 * bypass the last charges so that they can exit quickly and
1916 	 * free their memory.
1917 	 */
1918 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1919 		     fatal_signal_pending(current) ||
1920 		     current->flags & PF_EXITING))
1921 		goto force;
1922 
1923 	/*
1924 	 * Prevent unbounded recursion when reclaim operations need to
1925 	 * allocate memory. This might exceed the limits temporarily,
1926 	 * but we prefer facilitating memory reclaim and getting back
1927 	 * under the limit over triggering OOM kills in these cases.
1928 	 */
1929 	if (unlikely(current->flags & PF_MEMALLOC))
1930 		goto force;
1931 
1932 	if (unlikely(task_in_memcg_oom(current)))
1933 		goto nomem;
1934 
1935 	if (!gfpflags_allow_blocking(gfp_mask))
1936 		goto nomem;
1937 
1938 	mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1939 
1940 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1941 						    gfp_mask, may_swap);
1942 
1943 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1944 		goto retry;
1945 
1946 	if (!drained) {
1947 		drain_all_stock(mem_over_limit);
1948 		drained = true;
1949 		goto retry;
1950 	}
1951 
1952 	if (gfp_mask & __GFP_NORETRY)
1953 		goto nomem;
1954 	/*
1955 	 * Even though the limit is exceeded at this point, reclaim
1956 	 * may have been able to free some pages.  Retry the charge
1957 	 * before killing the task.
1958 	 *
1959 	 * Only for regular pages, though: huge pages are rather
1960 	 * unlikely to succeed so close to the limit, and we fall back
1961 	 * to regular pages anyway in case of failure.
1962 	 */
1963 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1964 		goto retry;
1965 	/*
1966 	 * At task move, charge accounts can be doubly counted. So, it's
1967 	 * better to wait until the end of task_move if something is going on.
1968 	 */
1969 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1970 		goto retry;
1971 
1972 	if (nr_retries--)
1973 		goto retry;
1974 
1975 	if (gfp_mask & __GFP_NOFAIL)
1976 		goto force;
1977 
1978 	if (fatal_signal_pending(current))
1979 		goto force;
1980 
1981 	mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1982 
1983 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1984 		       get_order(nr_pages * PAGE_SIZE));
1985 nomem:
1986 	if (!(gfp_mask & __GFP_NOFAIL))
1987 		return -ENOMEM;
1988 force:
1989 	/*
1990 	 * The allocation either can't fail or will lead to more memory
1991 	 * being freed very soon.  Allow memory usage go over the limit
1992 	 * temporarily by force charging it.
1993 	 */
1994 	page_counter_charge(&memcg->memory, nr_pages);
1995 	if (do_memsw_account())
1996 		page_counter_charge(&memcg->memsw, nr_pages);
1997 	css_get_many(&memcg->css, nr_pages);
1998 
1999 	return 0;
2000 
2001 done_restock:
2002 	css_get_many(&memcg->css, batch);
2003 	if (batch > nr_pages)
2004 		refill_stock(memcg, batch - nr_pages);
2005 
2006 	/*
2007 	 * If the hierarchy is above the normal consumption range, schedule
2008 	 * reclaim on returning to userland.  We can perform reclaim here
2009 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2010 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2011 	 * not recorded as it most likely matches current's and won't
2012 	 * change in the meantime.  As high limit is checked again before
2013 	 * reclaim, the cost of mismatch is negligible.
2014 	 */
2015 	do {
2016 		if (page_counter_read(&memcg->memory) > memcg->high) {
2017 			/* Don't bother a random interrupted task */
2018 			if (in_interrupt()) {
2019 				schedule_work(&memcg->high_work);
2020 				break;
2021 			}
2022 			current->memcg_nr_pages_over_high += batch;
2023 			set_notify_resume(current);
2024 			break;
2025 		}
2026 	} while ((memcg = parent_mem_cgroup(memcg)));
2027 
2028 	return 0;
2029 }
2030 
2031 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2032 {
2033 	if (mem_cgroup_is_root(memcg))
2034 		return;
2035 
2036 	page_counter_uncharge(&memcg->memory, nr_pages);
2037 	if (do_memsw_account())
2038 		page_counter_uncharge(&memcg->memsw, nr_pages);
2039 
2040 	css_put_many(&memcg->css, nr_pages);
2041 }
2042 
2043 static void lock_page_lru(struct page *page, int *isolated)
2044 {
2045 	struct zone *zone = page_zone(page);
2046 
2047 	spin_lock_irq(zone_lru_lock(zone));
2048 	if (PageLRU(page)) {
2049 		struct lruvec *lruvec;
2050 
2051 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2052 		ClearPageLRU(page);
2053 		del_page_from_lru_list(page, lruvec, page_lru(page));
2054 		*isolated = 1;
2055 	} else
2056 		*isolated = 0;
2057 }
2058 
2059 static void unlock_page_lru(struct page *page, int isolated)
2060 {
2061 	struct zone *zone = page_zone(page);
2062 
2063 	if (isolated) {
2064 		struct lruvec *lruvec;
2065 
2066 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2067 		VM_BUG_ON_PAGE(PageLRU(page), page);
2068 		SetPageLRU(page);
2069 		add_page_to_lru_list(page, lruvec, page_lru(page));
2070 	}
2071 	spin_unlock_irq(zone_lru_lock(zone));
2072 }
2073 
2074 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2075 			  bool lrucare)
2076 {
2077 	int isolated;
2078 
2079 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2080 
2081 	/*
2082 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2083 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2084 	 */
2085 	if (lrucare)
2086 		lock_page_lru(page, &isolated);
2087 
2088 	/*
2089 	 * Nobody should be changing or seriously looking at
2090 	 * page->mem_cgroup at this point:
2091 	 *
2092 	 * - the page is uncharged
2093 	 *
2094 	 * - the page is off-LRU
2095 	 *
2096 	 * - an anonymous fault has exclusive page access, except for
2097 	 *   a locked page table
2098 	 *
2099 	 * - a page cache insertion, a swapin fault, or a migration
2100 	 *   have the page locked
2101 	 */
2102 	page->mem_cgroup = memcg;
2103 
2104 	if (lrucare)
2105 		unlock_page_lru(page, isolated);
2106 }
2107 
2108 #ifndef CONFIG_SLOB
2109 static int memcg_alloc_cache_id(void)
2110 {
2111 	int id, size;
2112 	int err;
2113 
2114 	id = ida_simple_get(&memcg_cache_ida,
2115 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2116 	if (id < 0)
2117 		return id;
2118 
2119 	if (id < memcg_nr_cache_ids)
2120 		return id;
2121 
2122 	/*
2123 	 * There's no space for the new id in memcg_caches arrays,
2124 	 * so we have to grow them.
2125 	 */
2126 	down_write(&memcg_cache_ids_sem);
2127 
2128 	size = 2 * (id + 1);
2129 	if (size < MEMCG_CACHES_MIN_SIZE)
2130 		size = MEMCG_CACHES_MIN_SIZE;
2131 	else if (size > MEMCG_CACHES_MAX_SIZE)
2132 		size = MEMCG_CACHES_MAX_SIZE;
2133 
2134 	err = memcg_update_all_caches(size);
2135 	if (!err)
2136 		err = memcg_update_all_list_lrus(size);
2137 	if (!err)
2138 		memcg_nr_cache_ids = size;
2139 
2140 	up_write(&memcg_cache_ids_sem);
2141 
2142 	if (err) {
2143 		ida_simple_remove(&memcg_cache_ida, id);
2144 		return err;
2145 	}
2146 	return id;
2147 }
2148 
2149 static void memcg_free_cache_id(int id)
2150 {
2151 	ida_simple_remove(&memcg_cache_ida, id);
2152 }
2153 
2154 struct memcg_kmem_cache_create_work {
2155 	struct mem_cgroup *memcg;
2156 	struct kmem_cache *cachep;
2157 	struct work_struct work;
2158 };
2159 
2160 static void memcg_kmem_cache_create_func(struct work_struct *w)
2161 {
2162 	struct memcg_kmem_cache_create_work *cw =
2163 		container_of(w, struct memcg_kmem_cache_create_work, work);
2164 	struct mem_cgroup *memcg = cw->memcg;
2165 	struct kmem_cache *cachep = cw->cachep;
2166 
2167 	memcg_create_kmem_cache(memcg, cachep);
2168 
2169 	css_put(&memcg->css);
2170 	kfree(cw);
2171 }
2172 
2173 /*
2174  * Enqueue the creation of a per-memcg kmem_cache.
2175  */
2176 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2177 					       struct kmem_cache *cachep)
2178 {
2179 	struct memcg_kmem_cache_create_work *cw;
2180 
2181 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2182 	if (!cw)
2183 		return;
2184 
2185 	css_get(&memcg->css);
2186 
2187 	cw->memcg = memcg;
2188 	cw->cachep = cachep;
2189 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2190 
2191 	queue_work(memcg_kmem_cache_wq, &cw->work);
2192 }
2193 
2194 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2195 					     struct kmem_cache *cachep)
2196 {
2197 	/*
2198 	 * We need to stop accounting when we kmalloc, because if the
2199 	 * corresponding kmalloc cache is not yet created, the first allocation
2200 	 * in __memcg_schedule_kmem_cache_create will recurse.
2201 	 *
2202 	 * However, it is better to enclose the whole function. Depending on
2203 	 * the debugging options enabled, INIT_WORK(), for instance, can
2204 	 * trigger an allocation. This too, will make us recurse. Because at
2205 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2206 	 * the safest choice is to do it like this, wrapping the whole function.
2207 	 */
2208 	current->memcg_kmem_skip_account = 1;
2209 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2210 	current->memcg_kmem_skip_account = 0;
2211 }
2212 
2213 static inline bool memcg_kmem_bypass(void)
2214 {
2215 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2216 		return true;
2217 	return false;
2218 }
2219 
2220 /**
2221  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2222  * @cachep: the original global kmem cache
2223  *
2224  * Return the kmem_cache we're supposed to use for a slab allocation.
2225  * We try to use the current memcg's version of the cache.
2226  *
2227  * If the cache does not exist yet, if we are the first user of it, we
2228  * create it asynchronously in a workqueue and let the current allocation
2229  * go through with the original cache.
2230  *
2231  * This function takes a reference to the cache it returns to assure it
2232  * won't get destroyed while we are working with it. Once the caller is
2233  * done with it, memcg_kmem_put_cache() must be called to release the
2234  * reference.
2235  */
2236 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2237 {
2238 	struct mem_cgroup *memcg;
2239 	struct kmem_cache *memcg_cachep;
2240 	int kmemcg_id;
2241 
2242 	VM_BUG_ON(!is_root_cache(cachep));
2243 
2244 	if (memcg_kmem_bypass())
2245 		return cachep;
2246 
2247 	if (current->memcg_kmem_skip_account)
2248 		return cachep;
2249 
2250 	memcg = get_mem_cgroup_from_mm(current->mm);
2251 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2252 	if (kmemcg_id < 0)
2253 		goto out;
2254 
2255 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2256 	if (likely(memcg_cachep))
2257 		return memcg_cachep;
2258 
2259 	/*
2260 	 * If we are in a safe context (can wait, and not in interrupt
2261 	 * context), we could be be predictable and return right away.
2262 	 * This would guarantee that the allocation being performed
2263 	 * already belongs in the new cache.
2264 	 *
2265 	 * However, there are some clashes that can arrive from locking.
2266 	 * For instance, because we acquire the slab_mutex while doing
2267 	 * memcg_create_kmem_cache, this means no further allocation
2268 	 * could happen with the slab_mutex held. So it's better to
2269 	 * defer everything.
2270 	 */
2271 	memcg_schedule_kmem_cache_create(memcg, cachep);
2272 out:
2273 	css_put(&memcg->css);
2274 	return cachep;
2275 }
2276 
2277 /**
2278  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2279  * @cachep: the cache returned by memcg_kmem_get_cache
2280  */
2281 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2282 {
2283 	if (!is_root_cache(cachep))
2284 		css_put(&cachep->memcg_params.memcg->css);
2285 }
2286 
2287 /**
2288  * memcg_kmem_charge: charge a kmem page
2289  * @page: page to charge
2290  * @gfp: reclaim mode
2291  * @order: allocation order
2292  * @memcg: memory cgroup to charge
2293  *
2294  * Returns 0 on success, an error code on failure.
2295  */
2296 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2297 			    struct mem_cgroup *memcg)
2298 {
2299 	unsigned int nr_pages = 1 << order;
2300 	struct page_counter *counter;
2301 	int ret;
2302 
2303 	ret = try_charge(memcg, gfp, nr_pages);
2304 	if (ret)
2305 		return ret;
2306 
2307 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2308 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2309 		cancel_charge(memcg, nr_pages);
2310 		return -ENOMEM;
2311 	}
2312 
2313 	page->mem_cgroup = memcg;
2314 
2315 	return 0;
2316 }
2317 
2318 /**
2319  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2320  * @page: page to charge
2321  * @gfp: reclaim mode
2322  * @order: allocation order
2323  *
2324  * Returns 0 on success, an error code on failure.
2325  */
2326 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2327 {
2328 	struct mem_cgroup *memcg;
2329 	int ret = 0;
2330 
2331 	if (memcg_kmem_bypass())
2332 		return 0;
2333 
2334 	memcg = get_mem_cgroup_from_mm(current->mm);
2335 	if (!mem_cgroup_is_root(memcg)) {
2336 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2337 		if (!ret)
2338 			__SetPageKmemcg(page);
2339 	}
2340 	css_put(&memcg->css);
2341 	return ret;
2342 }
2343 /**
2344  * memcg_kmem_uncharge: uncharge a kmem page
2345  * @page: page to uncharge
2346  * @order: allocation order
2347  */
2348 void memcg_kmem_uncharge(struct page *page, int order)
2349 {
2350 	struct mem_cgroup *memcg = page->mem_cgroup;
2351 	unsigned int nr_pages = 1 << order;
2352 
2353 	if (!memcg)
2354 		return;
2355 
2356 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2357 
2358 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2359 		page_counter_uncharge(&memcg->kmem, nr_pages);
2360 
2361 	page_counter_uncharge(&memcg->memory, nr_pages);
2362 	if (do_memsw_account())
2363 		page_counter_uncharge(&memcg->memsw, nr_pages);
2364 
2365 	page->mem_cgroup = NULL;
2366 
2367 	/* slab pages do not have PageKmemcg flag set */
2368 	if (PageKmemcg(page))
2369 		__ClearPageKmemcg(page);
2370 
2371 	css_put_many(&memcg->css, nr_pages);
2372 }
2373 #endif /* !CONFIG_SLOB */
2374 
2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2376 
2377 /*
2378  * Because tail pages are not marked as "used", set it. We're under
2379  * zone_lru_lock and migration entries setup in all page mappings.
2380  */
2381 void mem_cgroup_split_huge_fixup(struct page *head)
2382 {
2383 	int i;
2384 
2385 	if (mem_cgroup_disabled())
2386 		return;
2387 
2388 	for (i = 1; i < HPAGE_PMD_NR; i++)
2389 		head[i].mem_cgroup = head->mem_cgroup;
2390 
2391 	__this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2392 		       HPAGE_PMD_NR);
2393 }
2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2395 
2396 #ifdef CONFIG_MEMCG_SWAP
2397 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2398 				       int nr_entries)
2399 {
2400 	this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2401 }
2402 
2403 /**
2404  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405  * @entry: swap entry to be moved
2406  * @from:  mem_cgroup which the entry is moved from
2407  * @to:  mem_cgroup which the entry is moved to
2408  *
2409  * It succeeds only when the swap_cgroup's record for this entry is the same
2410  * as the mem_cgroup's id of @from.
2411  *
2412  * Returns 0 on success, -EINVAL on failure.
2413  *
2414  * The caller must have charged to @to, IOW, called page_counter_charge() about
2415  * both res and memsw, and called css_get().
2416  */
2417 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 				struct mem_cgroup *from, struct mem_cgroup *to)
2419 {
2420 	unsigned short old_id, new_id;
2421 
2422 	old_id = mem_cgroup_id(from);
2423 	new_id = mem_cgroup_id(to);
2424 
2425 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 		mem_cgroup_swap_statistics(from, -1);
2427 		mem_cgroup_swap_statistics(to, 1);
2428 		return 0;
2429 	}
2430 	return -EINVAL;
2431 }
2432 #else
2433 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 				struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436 	return -EINVAL;
2437 }
2438 #endif
2439 
2440 static DEFINE_MUTEX(memcg_limit_mutex);
2441 
2442 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 				   unsigned long limit)
2444 {
2445 	unsigned long curusage;
2446 	unsigned long oldusage;
2447 	bool enlarge = false;
2448 	int retry_count;
2449 	int ret;
2450 
2451 	/*
2452 	 * For keeping hierarchical_reclaim simple, how long we should retry
2453 	 * is depends on callers. We set our retry-count to be function
2454 	 * of # of children which we should visit in this loop.
2455 	 */
2456 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 		      mem_cgroup_count_children(memcg);
2458 
2459 	oldusage = page_counter_read(&memcg->memory);
2460 
2461 	do {
2462 		if (signal_pending(current)) {
2463 			ret = -EINTR;
2464 			break;
2465 		}
2466 
2467 		mutex_lock(&memcg_limit_mutex);
2468 		if (limit > memcg->memsw.limit) {
2469 			mutex_unlock(&memcg_limit_mutex);
2470 			ret = -EINVAL;
2471 			break;
2472 		}
2473 		if (limit > memcg->memory.limit)
2474 			enlarge = true;
2475 		ret = page_counter_limit(&memcg->memory, limit);
2476 		mutex_unlock(&memcg_limit_mutex);
2477 
2478 		if (!ret)
2479 			break;
2480 
2481 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482 
2483 		curusage = page_counter_read(&memcg->memory);
2484 		/* Usage is reduced ? */
2485 		if (curusage >= oldusage)
2486 			retry_count--;
2487 		else
2488 			oldusage = curusage;
2489 	} while (retry_count);
2490 
2491 	if (!ret && enlarge)
2492 		memcg_oom_recover(memcg);
2493 
2494 	return ret;
2495 }
2496 
2497 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 					 unsigned long limit)
2499 {
2500 	unsigned long curusage;
2501 	unsigned long oldusage;
2502 	bool enlarge = false;
2503 	int retry_count;
2504 	int ret;
2505 
2506 	/* see mem_cgroup_resize_res_limit */
2507 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 		      mem_cgroup_count_children(memcg);
2509 
2510 	oldusage = page_counter_read(&memcg->memsw);
2511 
2512 	do {
2513 		if (signal_pending(current)) {
2514 			ret = -EINTR;
2515 			break;
2516 		}
2517 
2518 		mutex_lock(&memcg_limit_mutex);
2519 		if (limit < memcg->memory.limit) {
2520 			mutex_unlock(&memcg_limit_mutex);
2521 			ret = -EINVAL;
2522 			break;
2523 		}
2524 		if (limit > memcg->memsw.limit)
2525 			enlarge = true;
2526 		ret = page_counter_limit(&memcg->memsw, limit);
2527 		mutex_unlock(&memcg_limit_mutex);
2528 
2529 		if (!ret)
2530 			break;
2531 
2532 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533 
2534 		curusage = page_counter_read(&memcg->memsw);
2535 		/* Usage is reduced ? */
2536 		if (curusage >= oldusage)
2537 			retry_count--;
2538 		else
2539 			oldusage = curusage;
2540 	} while (retry_count);
2541 
2542 	if (!ret && enlarge)
2543 		memcg_oom_recover(memcg);
2544 
2545 	return ret;
2546 }
2547 
2548 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2549 					    gfp_t gfp_mask,
2550 					    unsigned long *total_scanned)
2551 {
2552 	unsigned long nr_reclaimed = 0;
2553 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2554 	unsigned long reclaimed;
2555 	int loop = 0;
2556 	struct mem_cgroup_tree_per_node *mctz;
2557 	unsigned long excess;
2558 	unsigned long nr_scanned;
2559 
2560 	if (order > 0)
2561 		return 0;
2562 
2563 	mctz = soft_limit_tree_node(pgdat->node_id);
2564 
2565 	/*
2566 	 * Do not even bother to check the largest node if the root
2567 	 * is empty. Do it lockless to prevent lock bouncing. Races
2568 	 * are acceptable as soft limit is best effort anyway.
2569 	 */
2570 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2571 		return 0;
2572 
2573 	/*
2574 	 * This loop can run a while, specially if mem_cgroup's continuously
2575 	 * keep exceeding their soft limit and putting the system under
2576 	 * pressure
2577 	 */
2578 	do {
2579 		if (next_mz)
2580 			mz = next_mz;
2581 		else
2582 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2583 		if (!mz)
2584 			break;
2585 
2586 		nr_scanned = 0;
2587 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2588 						    gfp_mask, &nr_scanned);
2589 		nr_reclaimed += reclaimed;
2590 		*total_scanned += nr_scanned;
2591 		spin_lock_irq(&mctz->lock);
2592 		__mem_cgroup_remove_exceeded(mz, mctz);
2593 
2594 		/*
2595 		 * If we failed to reclaim anything from this memory cgroup
2596 		 * it is time to move on to the next cgroup
2597 		 */
2598 		next_mz = NULL;
2599 		if (!reclaimed)
2600 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2601 
2602 		excess = soft_limit_excess(mz->memcg);
2603 		/*
2604 		 * One school of thought says that we should not add
2605 		 * back the node to the tree if reclaim returns 0.
2606 		 * But our reclaim could return 0, simply because due
2607 		 * to priority we are exposing a smaller subset of
2608 		 * memory to reclaim from. Consider this as a longer
2609 		 * term TODO.
2610 		 */
2611 		/* If excess == 0, no tree ops */
2612 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2613 		spin_unlock_irq(&mctz->lock);
2614 		css_put(&mz->memcg->css);
2615 		loop++;
2616 		/*
2617 		 * Could not reclaim anything and there are no more
2618 		 * mem cgroups to try or we seem to be looping without
2619 		 * reclaiming anything.
2620 		 */
2621 		if (!nr_reclaimed &&
2622 			(next_mz == NULL ||
2623 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2624 			break;
2625 	} while (!nr_reclaimed);
2626 	if (next_mz)
2627 		css_put(&next_mz->memcg->css);
2628 	return nr_reclaimed;
2629 }
2630 
2631 /*
2632  * Test whether @memcg has children, dead or alive.  Note that this
2633  * function doesn't care whether @memcg has use_hierarchy enabled and
2634  * returns %true if there are child csses according to the cgroup
2635  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2636  */
2637 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2638 {
2639 	bool ret;
2640 
2641 	rcu_read_lock();
2642 	ret = css_next_child(NULL, &memcg->css);
2643 	rcu_read_unlock();
2644 	return ret;
2645 }
2646 
2647 /*
2648  * Reclaims as many pages from the given memcg as possible.
2649  *
2650  * Caller is responsible for holding css reference for memcg.
2651  */
2652 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2653 {
2654 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2655 
2656 	/* we call try-to-free pages for make this cgroup empty */
2657 	lru_add_drain_all();
2658 	/* try to free all pages in this cgroup */
2659 	while (nr_retries && page_counter_read(&memcg->memory)) {
2660 		int progress;
2661 
2662 		if (signal_pending(current))
2663 			return -EINTR;
2664 
2665 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2666 							GFP_KERNEL, true);
2667 		if (!progress) {
2668 			nr_retries--;
2669 			/* maybe some writeback is necessary */
2670 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2671 		}
2672 
2673 	}
2674 
2675 	return 0;
2676 }
2677 
2678 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2679 					    char *buf, size_t nbytes,
2680 					    loff_t off)
2681 {
2682 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2683 
2684 	if (mem_cgroup_is_root(memcg))
2685 		return -EINVAL;
2686 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2687 }
2688 
2689 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2690 				     struct cftype *cft)
2691 {
2692 	return mem_cgroup_from_css(css)->use_hierarchy;
2693 }
2694 
2695 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2696 				      struct cftype *cft, u64 val)
2697 {
2698 	int retval = 0;
2699 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2700 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2701 
2702 	if (memcg->use_hierarchy == val)
2703 		return 0;
2704 
2705 	/*
2706 	 * If parent's use_hierarchy is set, we can't make any modifications
2707 	 * in the child subtrees. If it is unset, then the change can
2708 	 * occur, provided the current cgroup has no children.
2709 	 *
2710 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2711 	 * set if there are no children.
2712 	 */
2713 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2714 				(val == 1 || val == 0)) {
2715 		if (!memcg_has_children(memcg))
2716 			memcg->use_hierarchy = val;
2717 		else
2718 			retval = -EBUSY;
2719 	} else
2720 		retval = -EINVAL;
2721 
2722 	return retval;
2723 }
2724 
2725 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2726 {
2727 	struct mem_cgroup *iter;
2728 	int i;
2729 
2730 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2731 
2732 	for_each_mem_cgroup_tree(iter, memcg) {
2733 		for (i = 0; i < MEMCG_NR_STAT; i++)
2734 			stat[i] += memcg_page_state(iter, i);
2735 	}
2736 }
2737 
2738 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2739 {
2740 	struct mem_cgroup *iter;
2741 	int i;
2742 
2743 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2744 
2745 	for_each_mem_cgroup_tree(iter, memcg) {
2746 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2747 			events[i] += memcg_sum_events(iter, i);
2748 	}
2749 }
2750 
2751 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2752 {
2753 	unsigned long val = 0;
2754 
2755 	if (mem_cgroup_is_root(memcg)) {
2756 		struct mem_cgroup *iter;
2757 
2758 		for_each_mem_cgroup_tree(iter, memcg) {
2759 			val += memcg_page_state(iter, MEMCG_CACHE);
2760 			val += memcg_page_state(iter, MEMCG_RSS);
2761 			if (swap)
2762 				val += memcg_page_state(iter, MEMCG_SWAP);
2763 		}
2764 	} else {
2765 		if (!swap)
2766 			val = page_counter_read(&memcg->memory);
2767 		else
2768 			val = page_counter_read(&memcg->memsw);
2769 	}
2770 	return val;
2771 }
2772 
2773 enum {
2774 	RES_USAGE,
2775 	RES_LIMIT,
2776 	RES_MAX_USAGE,
2777 	RES_FAILCNT,
2778 	RES_SOFT_LIMIT,
2779 };
2780 
2781 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2782 			       struct cftype *cft)
2783 {
2784 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2785 	struct page_counter *counter;
2786 
2787 	switch (MEMFILE_TYPE(cft->private)) {
2788 	case _MEM:
2789 		counter = &memcg->memory;
2790 		break;
2791 	case _MEMSWAP:
2792 		counter = &memcg->memsw;
2793 		break;
2794 	case _KMEM:
2795 		counter = &memcg->kmem;
2796 		break;
2797 	case _TCP:
2798 		counter = &memcg->tcpmem;
2799 		break;
2800 	default:
2801 		BUG();
2802 	}
2803 
2804 	switch (MEMFILE_ATTR(cft->private)) {
2805 	case RES_USAGE:
2806 		if (counter == &memcg->memory)
2807 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2808 		if (counter == &memcg->memsw)
2809 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2810 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2811 	case RES_LIMIT:
2812 		return (u64)counter->limit * PAGE_SIZE;
2813 	case RES_MAX_USAGE:
2814 		return (u64)counter->watermark * PAGE_SIZE;
2815 	case RES_FAILCNT:
2816 		return counter->failcnt;
2817 	case RES_SOFT_LIMIT:
2818 		return (u64)memcg->soft_limit * PAGE_SIZE;
2819 	default:
2820 		BUG();
2821 	}
2822 }
2823 
2824 #ifndef CONFIG_SLOB
2825 static int memcg_online_kmem(struct mem_cgroup *memcg)
2826 {
2827 	int memcg_id;
2828 
2829 	if (cgroup_memory_nokmem)
2830 		return 0;
2831 
2832 	BUG_ON(memcg->kmemcg_id >= 0);
2833 	BUG_ON(memcg->kmem_state);
2834 
2835 	memcg_id = memcg_alloc_cache_id();
2836 	if (memcg_id < 0)
2837 		return memcg_id;
2838 
2839 	static_branch_inc(&memcg_kmem_enabled_key);
2840 	/*
2841 	 * A memory cgroup is considered kmem-online as soon as it gets
2842 	 * kmemcg_id. Setting the id after enabling static branching will
2843 	 * guarantee no one starts accounting before all call sites are
2844 	 * patched.
2845 	 */
2846 	memcg->kmemcg_id = memcg_id;
2847 	memcg->kmem_state = KMEM_ONLINE;
2848 	INIT_LIST_HEAD(&memcg->kmem_caches);
2849 
2850 	return 0;
2851 }
2852 
2853 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2854 {
2855 	struct cgroup_subsys_state *css;
2856 	struct mem_cgroup *parent, *child;
2857 	int kmemcg_id;
2858 
2859 	if (memcg->kmem_state != KMEM_ONLINE)
2860 		return;
2861 	/*
2862 	 * Clear the online state before clearing memcg_caches array
2863 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2864 	 * guarantees that no cache will be created for this cgroup
2865 	 * after we are done (see memcg_create_kmem_cache()).
2866 	 */
2867 	memcg->kmem_state = KMEM_ALLOCATED;
2868 
2869 	memcg_deactivate_kmem_caches(memcg);
2870 
2871 	kmemcg_id = memcg->kmemcg_id;
2872 	BUG_ON(kmemcg_id < 0);
2873 
2874 	parent = parent_mem_cgroup(memcg);
2875 	if (!parent)
2876 		parent = root_mem_cgroup;
2877 
2878 	/*
2879 	 * Change kmemcg_id of this cgroup and all its descendants to the
2880 	 * parent's id, and then move all entries from this cgroup's list_lrus
2881 	 * to ones of the parent. After we have finished, all list_lrus
2882 	 * corresponding to this cgroup are guaranteed to remain empty. The
2883 	 * ordering is imposed by list_lru_node->lock taken by
2884 	 * memcg_drain_all_list_lrus().
2885 	 */
2886 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2887 	css_for_each_descendant_pre(css, &memcg->css) {
2888 		child = mem_cgroup_from_css(css);
2889 		BUG_ON(child->kmemcg_id != kmemcg_id);
2890 		child->kmemcg_id = parent->kmemcg_id;
2891 		if (!memcg->use_hierarchy)
2892 			break;
2893 	}
2894 	rcu_read_unlock();
2895 
2896 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2897 
2898 	memcg_free_cache_id(kmemcg_id);
2899 }
2900 
2901 static void memcg_free_kmem(struct mem_cgroup *memcg)
2902 {
2903 	/* css_alloc() failed, offlining didn't happen */
2904 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2905 		memcg_offline_kmem(memcg);
2906 
2907 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2908 		memcg_destroy_kmem_caches(memcg);
2909 		static_branch_dec(&memcg_kmem_enabled_key);
2910 		WARN_ON(page_counter_read(&memcg->kmem));
2911 	}
2912 }
2913 #else
2914 static int memcg_online_kmem(struct mem_cgroup *memcg)
2915 {
2916 	return 0;
2917 }
2918 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2919 {
2920 }
2921 static void memcg_free_kmem(struct mem_cgroup *memcg)
2922 {
2923 }
2924 #endif /* !CONFIG_SLOB */
2925 
2926 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2927 				   unsigned long limit)
2928 {
2929 	int ret;
2930 
2931 	mutex_lock(&memcg_limit_mutex);
2932 	ret = page_counter_limit(&memcg->kmem, limit);
2933 	mutex_unlock(&memcg_limit_mutex);
2934 	return ret;
2935 }
2936 
2937 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2938 {
2939 	int ret;
2940 
2941 	mutex_lock(&memcg_limit_mutex);
2942 
2943 	ret = page_counter_limit(&memcg->tcpmem, limit);
2944 	if (ret)
2945 		goto out;
2946 
2947 	if (!memcg->tcpmem_active) {
2948 		/*
2949 		 * The active flag needs to be written after the static_key
2950 		 * update. This is what guarantees that the socket activation
2951 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2952 		 * for details, and note that we don't mark any socket as
2953 		 * belonging to this memcg until that flag is up.
2954 		 *
2955 		 * We need to do this, because static_keys will span multiple
2956 		 * sites, but we can't control their order. If we mark a socket
2957 		 * as accounted, but the accounting functions are not patched in
2958 		 * yet, we'll lose accounting.
2959 		 *
2960 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2961 		 * because when this value change, the code to process it is not
2962 		 * patched in yet.
2963 		 */
2964 		static_branch_inc(&memcg_sockets_enabled_key);
2965 		memcg->tcpmem_active = true;
2966 	}
2967 out:
2968 	mutex_unlock(&memcg_limit_mutex);
2969 	return ret;
2970 }
2971 
2972 /*
2973  * The user of this function is...
2974  * RES_LIMIT.
2975  */
2976 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2977 				char *buf, size_t nbytes, loff_t off)
2978 {
2979 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2980 	unsigned long nr_pages;
2981 	int ret;
2982 
2983 	buf = strstrip(buf);
2984 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2985 	if (ret)
2986 		return ret;
2987 
2988 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989 	case RES_LIMIT:
2990 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2991 			ret = -EINVAL;
2992 			break;
2993 		}
2994 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2995 		case _MEM:
2996 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2997 			break;
2998 		case _MEMSWAP:
2999 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3000 			break;
3001 		case _KMEM:
3002 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3003 			break;
3004 		case _TCP:
3005 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3006 			break;
3007 		}
3008 		break;
3009 	case RES_SOFT_LIMIT:
3010 		memcg->soft_limit = nr_pages;
3011 		ret = 0;
3012 		break;
3013 	}
3014 	return ret ?: nbytes;
3015 }
3016 
3017 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3018 				size_t nbytes, loff_t off)
3019 {
3020 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3021 	struct page_counter *counter;
3022 
3023 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3024 	case _MEM:
3025 		counter = &memcg->memory;
3026 		break;
3027 	case _MEMSWAP:
3028 		counter = &memcg->memsw;
3029 		break;
3030 	case _KMEM:
3031 		counter = &memcg->kmem;
3032 		break;
3033 	case _TCP:
3034 		counter = &memcg->tcpmem;
3035 		break;
3036 	default:
3037 		BUG();
3038 	}
3039 
3040 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3041 	case RES_MAX_USAGE:
3042 		page_counter_reset_watermark(counter);
3043 		break;
3044 	case RES_FAILCNT:
3045 		counter->failcnt = 0;
3046 		break;
3047 	default:
3048 		BUG();
3049 	}
3050 
3051 	return nbytes;
3052 }
3053 
3054 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3055 					struct cftype *cft)
3056 {
3057 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3058 }
3059 
3060 #ifdef CONFIG_MMU
3061 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3062 					struct cftype *cft, u64 val)
3063 {
3064 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3065 
3066 	if (val & ~MOVE_MASK)
3067 		return -EINVAL;
3068 
3069 	/*
3070 	 * No kind of locking is needed in here, because ->can_attach() will
3071 	 * check this value once in the beginning of the process, and then carry
3072 	 * on with stale data. This means that changes to this value will only
3073 	 * affect task migrations starting after the change.
3074 	 */
3075 	memcg->move_charge_at_immigrate = val;
3076 	return 0;
3077 }
3078 #else
3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3080 					struct cftype *cft, u64 val)
3081 {
3082 	return -ENOSYS;
3083 }
3084 #endif
3085 
3086 #ifdef CONFIG_NUMA
3087 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3088 {
3089 	struct numa_stat {
3090 		const char *name;
3091 		unsigned int lru_mask;
3092 	};
3093 
3094 	static const struct numa_stat stats[] = {
3095 		{ "total", LRU_ALL },
3096 		{ "file", LRU_ALL_FILE },
3097 		{ "anon", LRU_ALL_ANON },
3098 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3099 	};
3100 	const struct numa_stat *stat;
3101 	int nid;
3102 	unsigned long nr;
3103 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3104 
3105 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3106 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3107 		seq_printf(m, "%s=%lu", stat->name, nr);
3108 		for_each_node_state(nid, N_MEMORY) {
3109 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3110 							  stat->lru_mask);
3111 			seq_printf(m, " N%d=%lu", nid, nr);
3112 		}
3113 		seq_putc(m, '\n');
3114 	}
3115 
3116 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3117 		struct mem_cgroup *iter;
3118 
3119 		nr = 0;
3120 		for_each_mem_cgroup_tree(iter, memcg)
3121 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3122 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3123 		for_each_node_state(nid, N_MEMORY) {
3124 			nr = 0;
3125 			for_each_mem_cgroup_tree(iter, memcg)
3126 				nr += mem_cgroup_node_nr_lru_pages(
3127 					iter, nid, stat->lru_mask);
3128 			seq_printf(m, " N%d=%lu", nid, nr);
3129 		}
3130 		seq_putc(m, '\n');
3131 	}
3132 
3133 	return 0;
3134 }
3135 #endif /* CONFIG_NUMA */
3136 
3137 /* Universal VM events cgroup1 shows, original sort order */
3138 unsigned int memcg1_events[] = {
3139 	PGPGIN,
3140 	PGPGOUT,
3141 	PGFAULT,
3142 	PGMAJFAULT,
3143 };
3144 
3145 static const char *const memcg1_event_names[] = {
3146 	"pgpgin",
3147 	"pgpgout",
3148 	"pgfault",
3149 	"pgmajfault",
3150 };
3151 
3152 static int memcg_stat_show(struct seq_file *m, void *v)
3153 {
3154 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3155 	unsigned long memory, memsw;
3156 	struct mem_cgroup *mi;
3157 	unsigned int i;
3158 
3159 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3160 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3161 
3162 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3163 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3164 			continue;
3165 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3166 			   memcg_page_state(memcg, memcg1_stats[i]) *
3167 			   PAGE_SIZE);
3168 	}
3169 
3170 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3171 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3172 			   memcg_sum_events(memcg, memcg1_events[i]));
3173 
3174 	for (i = 0; i < NR_LRU_LISTS; i++)
3175 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3176 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3177 
3178 	/* Hierarchical information */
3179 	memory = memsw = PAGE_COUNTER_MAX;
3180 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3181 		memory = min(memory, mi->memory.limit);
3182 		memsw = min(memsw, mi->memsw.limit);
3183 	}
3184 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3185 		   (u64)memory * PAGE_SIZE);
3186 	if (do_memsw_account())
3187 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3188 			   (u64)memsw * PAGE_SIZE);
3189 
3190 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3191 		unsigned long long val = 0;
3192 
3193 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3194 			continue;
3195 		for_each_mem_cgroup_tree(mi, memcg)
3196 			val += memcg_page_state(mi, memcg1_stats[i]) *
3197 			PAGE_SIZE;
3198 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3199 	}
3200 
3201 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3202 		unsigned long long val = 0;
3203 
3204 		for_each_mem_cgroup_tree(mi, memcg)
3205 			val += memcg_sum_events(mi, memcg1_events[i]);
3206 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3207 	}
3208 
3209 	for (i = 0; i < NR_LRU_LISTS; i++) {
3210 		unsigned long long val = 0;
3211 
3212 		for_each_mem_cgroup_tree(mi, memcg)
3213 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3214 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3215 	}
3216 
3217 #ifdef CONFIG_DEBUG_VM
3218 	{
3219 		pg_data_t *pgdat;
3220 		struct mem_cgroup_per_node *mz;
3221 		struct zone_reclaim_stat *rstat;
3222 		unsigned long recent_rotated[2] = {0, 0};
3223 		unsigned long recent_scanned[2] = {0, 0};
3224 
3225 		for_each_online_pgdat(pgdat) {
3226 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3227 			rstat = &mz->lruvec.reclaim_stat;
3228 
3229 			recent_rotated[0] += rstat->recent_rotated[0];
3230 			recent_rotated[1] += rstat->recent_rotated[1];
3231 			recent_scanned[0] += rstat->recent_scanned[0];
3232 			recent_scanned[1] += rstat->recent_scanned[1];
3233 		}
3234 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3235 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3236 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3237 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3238 	}
3239 #endif
3240 
3241 	return 0;
3242 }
3243 
3244 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3245 				      struct cftype *cft)
3246 {
3247 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3248 
3249 	return mem_cgroup_swappiness(memcg);
3250 }
3251 
3252 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3253 				       struct cftype *cft, u64 val)
3254 {
3255 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3256 
3257 	if (val > 100)
3258 		return -EINVAL;
3259 
3260 	if (css->parent)
3261 		memcg->swappiness = val;
3262 	else
3263 		vm_swappiness = val;
3264 
3265 	return 0;
3266 }
3267 
3268 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3269 {
3270 	struct mem_cgroup_threshold_ary *t;
3271 	unsigned long usage;
3272 	int i;
3273 
3274 	rcu_read_lock();
3275 	if (!swap)
3276 		t = rcu_dereference(memcg->thresholds.primary);
3277 	else
3278 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3279 
3280 	if (!t)
3281 		goto unlock;
3282 
3283 	usage = mem_cgroup_usage(memcg, swap);
3284 
3285 	/*
3286 	 * current_threshold points to threshold just below or equal to usage.
3287 	 * If it's not true, a threshold was crossed after last
3288 	 * call of __mem_cgroup_threshold().
3289 	 */
3290 	i = t->current_threshold;
3291 
3292 	/*
3293 	 * Iterate backward over array of thresholds starting from
3294 	 * current_threshold and check if a threshold is crossed.
3295 	 * If none of thresholds below usage is crossed, we read
3296 	 * only one element of the array here.
3297 	 */
3298 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3299 		eventfd_signal(t->entries[i].eventfd, 1);
3300 
3301 	/* i = current_threshold + 1 */
3302 	i++;
3303 
3304 	/*
3305 	 * Iterate forward over array of thresholds starting from
3306 	 * current_threshold+1 and check if a threshold is crossed.
3307 	 * If none of thresholds above usage is crossed, we read
3308 	 * only one element of the array here.
3309 	 */
3310 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3311 		eventfd_signal(t->entries[i].eventfd, 1);
3312 
3313 	/* Update current_threshold */
3314 	t->current_threshold = i - 1;
3315 unlock:
3316 	rcu_read_unlock();
3317 }
3318 
3319 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3320 {
3321 	while (memcg) {
3322 		__mem_cgroup_threshold(memcg, false);
3323 		if (do_memsw_account())
3324 			__mem_cgroup_threshold(memcg, true);
3325 
3326 		memcg = parent_mem_cgroup(memcg);
3327 	}
3328 }
3329 
3330 static int compare_thresholds(const void *a, const void *b)
3331 {
3332 	const struct mem_cgroup_threshold *_a = a;
3333 	const struct mem_cgroup_threshold *_b = b;
3334 
3335 	if (_a->threshold > _b->threshold)
3336 		return 1;
3337 
3338 	if (_a->threshold < _b->threshold)
3339 		return -1;
3340 
3341 	return 0;
3342 }
3343 
3344 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3345 {
3346 	struct mem_cgroup_eventfd_list *ev;
3347 
3348 	spin_lock(&memcg_oom_lock);
3349 
3350 	list_for_each_entry(ev, &memcg->oom_notify, list)
3351 		eventfd_signal(ev->eventfd, 1);
3352 
3353 	spin_unlock(&memcg_oom_lock);
3354 	return 0;
3355 }
3356 
3357 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3358 {
3359 	struct mem_cgroup *iter;
3360 
3361 	for_each_mem_cgroup_tree(iter, memcg)
3362 		mem_cgroup_oom_notify_cb(iter);
3363 }
3364 
3365 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3366 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3367 {
3368 	struct mem_cgroup_thresholds *thresholds;
3369 	struct mem_cgroup_threshold_ary *new;
3370 	unsigned long threshold;
3371 	unsigned long usage;
3372 	int i, size, ret;
3373 
3374 	ret = page_counter_memparse(args, "-1", &threshold);
3375 	if (ret)
3376 		return ret;
3377 
3378 	mutex_lock(&memcg->thresholds_lock);
3379 
3380 	if (type == _MEM) {
3381 		thresholds = &memcg->thresholds;
3382 		usage = mem_cgroup_usage(memcg, false);
3383 	} else if (type == _MEMSWAP) {
3384 		thresholds = &memcg->memsw_thresholds;
3385 		usage = mem_cgroup_usage(memcg, true);
3386 	} else
3387 		BUG();
3388 
3389 	/* Check if a threshold crossed before adding a new one */
3390 	if (thresholds->primary)
3391 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3392 
3393 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3394 
3395 	/* Allocate memory for new array of thresholds */
3396 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3397 			GFP_KERNEL);
3398 	if (!new) {
3399 		ret = -ENOMEM;
3400 		goto unlock;
3401 	}
3402 	new->size = size;
3403 
3404 	/* Copy thresholds (if any) to new array */
3405 	if (thresholds->primary) {
3406 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3407 				sizeof(struct mem_cgroup_threshold));
3408 	}
3409 
3410 	/* Add new threshold */
3411 	new->entries[size - 1].eventfd = eventfd;
3412 	new->entries[size - 1].threshold = threshold;
3413 
3414 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3415 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3416 			compare_thresholds, NULL);
3417 
3418 	/* Find current threshold */
3419 	new->current_threshold = -1;
3420 	for (i = 0; i < size; i++) {
3421 		if (new->entries[i].threshold <= usage) {
3422 			/*
3423 			 * new->current_threshold will not be used until
3424 			 * rcu_assign_pointer(), so it's safe to increment
3425 			 * it here.
3426 			 */
3427 			++new->current_threshold;
3428 		} else
3429 			break;
3430 	}
3431 
3432 	/* Free old spare buffer and save old primary buffer as spare */
3433 	kfree(thresholds->spare);
3434 	thresholds->spare = thresholds->primary;
3435 
3436 	rcu_assign_pointer(thresholds->primary, new);
3437 
3438 	/* To be sure that nobody uses thresholds */
3439 	synchronize_rcu();
3440 
3441 unlock:
3442 	mutex_unlock(&memcg->thresholds_lock);
3443 
3444 	return ret;
3445 }
3446 
3447 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3448 	struct eventfd_ctx *eventfd, const char *args)
3449 {
3450 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3451 }
3452 
3453 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3454 	struct eventfd_ctx *eventfd, const char *args)
3455 {
3456 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3457 }
3458 
3459 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3460 	struct eventfd_ctx *eventfd, enum res_type type)
3461 {
3462 	struct mem_cgroup_thresholds *thresholds;
3463 	struct mem_cgroup_threshold_ary *new;
3464 	unsigned long usage;
3465 	int i, j, size;
3466 
3467 	mutex_lock(&memcg->thresholds_lock);
3468 
3469 	if (type == _MEM) {
3470 		thresholds = &memcg->thresholds;
3471 		usage = mem_cgroup_usage(memcg, false);
3472 	} else if (type == _MEMSWAP) {
3473 		thresholds = &memcg->memsw_thresholds;
3474 		usage = mem_cgroup_usage(memcg, true);
3475 	} else
3476 		BUG();
3477 
3478 	if (!thresholds->primary)
3479 		goto unlock;
3480 
3481 	/* Check if a threshold crossed before removing */
3482 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3483 
3484 	/* Calculate new number of threshold */
3485 	size = 0;
3486 	for (i = 0; i < thresholds->primary->size; i++) {
3487 		if (thresholds->primary->entries[i].eventfd != eventfd)
3488 			size++;
3489 	}
3490 
3491 	new = thresholds->spare;
3492 
3493 	/* Set thresholds array to NULL if we don't have thresholds */
3494 	if (!size) {
3495 		kfree(new);
3496 		new = NULL;
3497 		goto swap_buffers;
3498 	}
3499 
3500 	new->size = size;
3501 
3502 	/* Copy thresholds and find current threshold */
3503 	new->current_threshold = -1;
3504 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3505 		if (thresholds->primary->entries[i].eventfd == eventfd)
3506 			continue;
3507 
3508 		new->entries[j] = thresholds->primary->entries[i];
3509 		if (new->entries[j].threshold <= usage) {
3510 			/*
3511 			 * new->current_threshold will not be used
3512 			 * until rcu_assign_pointer(), so it's safe to increment
3513 			 * it here.
3514 			 */
3515 			++new->current_threshold;
3516 		}
3517 		j++;
3518 	}
3519 
3520 swap_buffers:
3521 	/* Swap primary and spare array */
3522 	thresholds->spare = thresholds->primary;
3523 
3524 	rcu_assign_pointer(thresholds->primary, new);
3525 
3526 	/* To be sure that nobody uses thresholds */
3527 	synchronize_rcu();
3528 
3529 	/* If all events are unregistered, free the spare array */
3530 	if (!new) {
3531 		kfree(thresholds->spare);
3532 		thresholds->spare = NULL;
3533 	}
3534 unlock:
3535 	mutex_unlock(&memcg->thresholds_lock);
3536 }
3537 
3538 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3539 	struct eventfd_ctx *eventfd)
3540 {
3541 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3542 }
3543 
3544 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3545 	struct eventfd_ctx *eventfd)
3546 {
3547 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3548 }
3549 
3550 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3551 	struct eventfd_ctx *eventfd, const char *args)
3552 {
3553 	struct mem_cgroup_eventfd_list *event;
3554 
3555 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3556 	if (!event)
3557 		return -ENOMEM;
3558 
3559 	spin_lock(&memcg_oom_lock);
3560 
3561 	event->eventfd = eventfd;
3562 	list_add(&event->list, &memcg->oom_notify);
3563 
3564 	/* already in OOM ? */
3565 	if (memcg->under_oom)
3566 		eventfd_signal(eventfd, 1);
3567 	spin_unlock(&memcg_oom_lock);
3568 
3569 	return 0;
3570 }
3571 
3572 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3573 	struct eventfd_ctx *eventfd)
3574 {
3575 	struct mem_cgroup_eventfd_list *ev, *tmp;
3576 
3577 	spin_lock(&memcg_oom_lock);
3578 
3579 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3580 		if (ev->eventfd == eventfd) {
3581 			list_del(&ev->list);
3582 			kfree(ev);
3583 		}
3584 	}
3585 
3586 	spin_unlock(&memcg_oom_lock);
3587 }
3588 
3589 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3590 {
3591 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3592 
3593 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3594 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3595 	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3596 	return 0;
3597 }
3598 
3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3600 	struct cftype *cft, u64 val)
3601 {
3602 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603 
3604 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3605 	if (!css->parent || !((val == 0) || (val == 1)))
3606 		return -EINVAL;
3607 
3608 	memcg->oom_kill_disable = val;
3609 	if (!val)
3610 		memcg_oom_recover(memcg);
3611 
3612 	return 0;
3613 }
3614 
3615 #ifdef CONFIG_CGROUP_WRITEBACK
3616 
3617 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3618 {
3619 	return &memcg->cgwb_list;
3620 }
3621 
3622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3623 {
3624 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3625 }
3626 
3627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3628 {
3629 	wb_domain_exit(&memcg->cgwb_domain);
3630 }
3631 
3632 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3633 {
3634 	wb_domain_size_changed(&memcg->cgwb_domain);
3635 }
3636 
3637 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3638 {
3639 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3640 
3641 	if (!memcg->css.parent)
3642 		return NULL;
3643 
3644 	return &memcg->cgwb_domain;
3645 }
3646 
3647 /**
3648  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3649  * @wb: bdi_writeback in question
3650  * @pfilepages: out parameter for number of file pages
3651  * @pheadroom: out parameter for number of allocatable pages according to memcg
3652  * @pdirty: out parameter for number of dirty pages
3653  * @pwriteback: out parameter for number of pages under writeback
3654  *
3655  * Determine the numbers of file, headroom, dirty, and writeback pages in
3656  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3657  * is a bit more involved.
3658  *
3659  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3660  * headroom is calculated as the lowest headroom of itself and the
3661  * ancestors.  Note that this doesn't consider the actual amount of
3662  * available memory in the system.  The caller should further cap
3663  * *@pheadroom accordingly.
3664  */
3665 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3666 			 unsigned long *pheadroom, unsigned long *pdirty,
3667 			 unsigned long *pwriteback)
3668 {
3669 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3670 	struct mem_cgroup *parent;
3671 
3672 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3673 
3674 	/* this should eventually include NR_UNSTABLE_NFS */
3675 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3676 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3677 						     (1 << LRU_ACTIVE_FILE));
3678 	*pheadroom = PAGE_COUNTER_MAX;
3679 
3680 	while ((parent = parent_mem_cgroup(memcg))) {
3681 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3682 		unsigned long used = page_counter_read(&memcg->memory);
3683 
3684 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3685 		memcg = parent;
3686 	}
3687 }
3688 
3689 #else	/* CONFIG_CGROUP_WRITEBACK */
3690 
3691 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3692 {
3693 	return 0;
3694 }
3695 
3696 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3697 {
3698 }
3699 
3700 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3701 {
3702 }
3703 
3704 #endif	/* CONFIG_CGROUP_WRITEBACK */
3705 
3706 /*
3707  * DO NOT USE IN NEW FILES.
3708  *
3709  * "cgroup.event_control" implementation.
3710  *
3711  * This is way over-engineered.  It tries to support fully configurable
3712  * events for each user.  Such level of flexibility is completely
3713  * unnecessary especially in the light of the planned unified hierarchy.
3714  *
3715  * Please deprecate this and replace with something simpler if at all
3716  * possible.
3717  */
3718 
3719 /*
3720  * Unregister event and free resources.
3721  *
3722  * Gets called from workqueue.
3723  */
3724 static void memcg_event_remove(struct work_struct *work)
3725 {
3726 	struct mem_cgroup_event *event =
3727 		container_of(work, struct mem_cgroup_event, remove);
3728 	struct mem_cgroup *memcg = event->memcg;
3729 
3730 	remove_wait_queue(event->wqh, &event->wait);
3731 
3732 	event->unregister_event(memcg, event->eventfd);
3733 
3734 	/* Notify userspace the event is going away. */
3735 	eventfd_signal(event->eventfd, 1);
3736 
3737 	eventfd_ctx_put(event->eventfd);
3738 	kfree(event);
3739 	css_put(&memcg->css);
3740 }
3741 
3742 /*
3743  * Gets called on POLLHUP on eventfd when user closes it.
3744  *
3745  * Called with wqh->lock held and interrupts disabled.
3746  */
3747 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3748 			    int sync, void *key)
3749 {
3750 	struct mem_cgroup_event *event =
3751 		container_of(wait, struct mem_cgroup_event, wait);
3752 	struct mem_cgroup *memcg = event->memcg;
3753 	unsigned long flags = (unsigned long)key;
3754 
3755 	if (flags & POLLHUP) {
3756 		/*
3757 		 * If the event has been detached at cgroup removal, we
3758 		 * can simply return knowing the other side will cleanup
3759 		 * for us.
3760 		 *
3761 		 * We can't race against event freeing since the other
3762 		 * side will require wqh->lock via remove_wait_queue(),
3763 		 * which we hold.
3764 		 */
3765 		spin_lock(&memcg->event_list_lock);
3766 		if (!list_empty(&event->list)) {
3767 			list_del_init(&event->list);
3768 			/*
3769 			 * We are in atomic context, but cgroup_event_remove()
3770 			 * may sleep, so we have to call it in workqueue.
3771 			 */
3772 			schedule_work(&event->remove);
3773 		}
3774 		spin_unlock(&memcg->event_list_lock);
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780 static void memcg_event_ptable_queue_proc(struct file *file,
3781 		wait_queue_head_t *wqh, poll_table *pt)
3782 {
3783 	struct mem_cgroup_event *event =
3784 		container_of(pt, struct mem_cgroup_event, pt);
3785 
3786 	event->wqh = wqh;
3787 	add_wait_queue(wqh, &event->wait);
3788 }
3789 
3790 /*
3791  * DO NOT USE IN NEW FILES.
3792  *
3793  * Parse input and register new cgroup event handler.
3794  *
3795  * Input must be in format '<event_fd> <control_fd> <args>'.
3796  * Interpretation of args is defined by control file implementation.
3797  */
3798 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3799 					 char *buf, size_t nbytes, loff_t off)
3800 {
3801 	struct cgroup_subsys_state *css = of_css(of);
3802 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3803 	struct mem_cgroup_event *event;
3804 	struct cgroup_subsys_state *cfile_css;
3805 	unsigned int efd, cfd;
3806 	struct fd efile;
3807 	struct fd cfile;
3808 	const char *name;
3809 	char *endp;
3810 	int ret;
3811 
3812 	buf = strstrip(buf);
3813 
3814 	efd = simple_strtoul(buf, &endp, 10);
3815 	if (*endp != ' ')
3816 		return -EINVAL;
3817 	buf = endp + 1;
3818 
3819 	cfd = simple_strtoul(buf, &endp, 10);
3820 	if ((*endp != ' ') && (*endp != '\0'))
3821 		return -EINVAL;
3822 	buf = endp + 1;
3823 
3824 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3825 	if (!event)
3826 		return -ENOMEM;
3827 
3828 	event->memcg = memcg;
3829 	INIT_LIST_HEAD(&event->list);
3830 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3831 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3832 	INIT_WORK(&event->remove, memcg_event_remove);
3833 
3834 	efile = fdget(efd);
3835 	if (!efile.file) {
3836 		ret = -EBADF;
3837 		goto out_kfree;
3838 	}
3839 
3840 	event->eventfd = eventfd_ctx_fileget(efile.file);
3841 	if (IS_ERR(event->eventfd)) {
3842 		ret = PTR_ERR(event->eventfd);
3843 		goto out_put_efile;
3844 	}
3845 
3846 	cfile = fdget(cfd);
3847 	if (!cfile.file) {
3848 		ret = -EBADF;
3849 		goto out_put_eventfd;
3850 	}
3851 
3852 	/* the process need read permission on control file */
3853 	/* AV: shouldn't we check that it's been opened for read instead? */
3854 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3855 	if (ret < 0)
3856 		goto out_put_cfile;
3857 
3858 	/*
3859 	 * Determine the event callbacks and set them in @event.  This used
3860 	 * to be done via struct cftype but cgroup core no longer knows
3861 	 * about these events.  The following is crude but the whole thing
3862 	 * is for compatibility anyway.
3863 	 *
3864 	 * DO NOT ADD NEW FILES.
3865 	 */
3866 	name = cfile.file->f_path.dentry->d_name.name;
3867 
3868 	if (!strcmp(name, "memory.usage_in_bytes")) {
3869 		event->register_event = mem_cgroup_usage_register_event;
3870 		event->unregister_event = mem_cgroup_usage_unregister_event;
3871 	} else if (!strcmp(name, "memory.oom_control")) {
3872 		event->register_event = mem_cgroup_oom_register_event;
3873 		event->unregister_event = mem_cgroup_oom_unregister_event;
3874 	} else if (!strcmp(name, "memory.pressure_level")) {
3875 		event->register_event = vmpressure_register_event;
3876 		event->unregister_event = vmpressure_unregister_event;
3877 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3878 		event->register_event = memsw_cgroup_usage_register_event;
3879 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3880 	} else {
3881 		ret = -EINVAL;
3882 		goto out_put_cfile;
3883 	}
3884 
3885 	/*
3886 	 * Verify @cfile should belong to @css.  Also, remaining events are
3887 	 * automatically removed on cgroup destruction but the removal is
3888 	 * asynchronous, so take an extra ref on @css.
3889 	 */
3890 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3891 					       &memory_cgrp_subsys);
3892 	ret = -EINVAL;
3893 	if (IS_ERR(cfile_css))
3894 		goto out_put_cfile;
3895 	if (cfile_css != css) {
3896 		css_put(cfile_css);
3897 		goto out_put_cfile;
3898 	}
3899 
3900 	ret = event->register_event(memcg, event->eventfd, buf);
3901 	if (ret)
3902 		goto out_put_css;
3903 
3904 	efile.file->f_op->poll(efile.file, &event->pt);
3905 
3906 	spin_lock(&memcg->event_list_lock);
3907 	list_add(&event->list, &memcg->event_list);
3908 	spin_unlock(&memcg->event_list_lock);
3909 
3910 	fdput(cfile);
3911 	fdput(efile);
3912 
3913 	return nbytes;
3914 
3915 out_put_css:
3916 	css_put(css);
3917 out_put_cfile:
3918 	fdput(cfile);
3919 out_put_eventfd:
3920 	eventfd_ctx_put(event->eventfd);
3921 out_put_efile:
3922 	fdput(efile);
3923 out_kfree:
3924 	kfree(event);
3925 
3926 	return ret;
3927 }
3928 
3929 static struct cftype mem_cgroup_legacy_files[] = {
3930 	{
3931 		.name = "usage_in_bytes",
3932 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3933 		.read_u64 = mem_cgroup_read_u64,
3934 	},
3935 	{
3936 		.name = "max_usage_in_bytes",
3937 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3938 		.write = mem_cgroup_reset,
3939 		.read_u64 = mem_cgroup_read_u64,
3940 	},
3941 	{
3942 		.name = "limit_in_bytes",
3943 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3944 		.write = mem_cgroup_write,
3945 		.read_u64 = mem_cgroup_read_u64,
3946 	},
3947 	{
3948 		.name = "soft_limit_in_bytes",
3949 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3950 		.write = mem_cgroup_write,
3951 		.read_u64 = mem_cgroup_read_u64,
3952 	},
3953 	{
3954 		.name = "failcnt",
3955 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3956 		.write = mem_cgroup_reset,
3957 		.read_u64 = mem_cgroup_read_u64,
3958 	},
3959 	{
3960 		.name = "stat",
3961 		.seq_show = memcg_stat_show,
3962 	},
3963 	{
3964 		.name = "force_empty",
3965 		.write = mem_cgroup_force_empty_write,
3966 	},
3967 	{
3968 		.name = "use_hierarchy",
3969 		.write_u64 = mem_cgroup_hierarchy_write,
3970 		.read_u64 = mem_cgroup_hierarchy_read,
3971 	},
3972 	{
3973 		.name = "cgroup.event_control",		/* XXX: for compat */
3974 		.write = memcg_write_event_control,
3975 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3976 	},
3977 	{
3978 		.name = "swappiness",
3979 		.read_u64 = mem_cgroup_swappiness_read,
3980 		.write_u64 = mem_cgroup_swappiness_write,
3981 	},
3982 	{
3983 		.name = "move_charge_at_immigrate",
3984 		.read_u64 = mem_cgroup_move_charge_read,
3985 		.write_u64 = mem_cgroup_move_charge_write,
3986 	},
3987 	{
3988 		.name = "oom_control",
3989 		.seq_show = mem_cgroup_oom_control_read,
3990 		.write_u64 = mem_cgroup_oom_control_write,
3991 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3992 	},
3993 	{
3994 		.name = "pressure_level",
3995 	},
3996 #ifdef CONFIG_NUMA
3997 	{
3998 		.name = "numa_stat",
3999 		.seq_show = memcg_numa_stat_show,
4000 	},
4001 #endif
4002 	{
4003 		.name = "kmem.limit_in_bytes",
4004 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4005 		.write = mem_cgroup_write,
4006 		.read_u64 = mem_cgroup_read_u64,
4007 	},
4008 	{
4009 		.name = "kmem.usage_in_bytes",
4010 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4011 		.read_u64 = mem_cgroup_read_u64,
4012 	},
4013 	{
4014 		.name = "kmem.failcnt",
4015 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4016 		.write = mem_cgroup_reset,
4017 		.read_u64 = mem_cgroup_read_u64,
4018 	},
4019 	{
4020 		.name = "kmem.max_usage_in_bytes",
4021 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4022 		.write = mem_cgroup_reset,
4023 		.read_u64 = mem_cgroup_read_u64,
4024 	},
4025 #ifdef CONFIG_SLABINFO
4026 	{
4027 		.name = "kmem.slabinfo",
4028 		.seq_start = memcg_slab_start,
4029 		.seq_next = memcg_slab_next,
4030 		.seq_stop = memcg_slab_stop,
4031 		.seq_show = memcg_slab_show,
4032 	},
4033 #endif
4034 	{
4035 		.name = "kmem.tcp.limit_in_bytes",
4036 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4037 		.write = mem_cgroup_write,
4038 		.read_u64 = mem_cgroup_read_u64,
4039 	},
4040 	{
4041 		.name = "kmem.tcp.usage_in_bytes",
4042 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4043 		.read_u64 = mem_cgroup_read_u64,
4044 	},
4045 	{
4046 		.name = "kmem.tcp.failcnt",
4047 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4048 		.write = mem_cgroup_reset,
4049 		.read_u64 = mem_cgroup_read_u64,
4050 	},
4051 	{
4052 		.name = "kmem.tcp.max_usage_in_bytes",
4053 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4054 		.write = mem_cgroup_reset,
4055 		.read_u64 = mem_cgroup_read_u64,
4056 	},
4057 	{ },	/* terminate */
4058 };
4059 
4060 /*
4061  * Private memory cgroup IDR
4062  *
4063  * Swap-out records and page cache shadow entries need to store memcg
4064  * references in constrained space, so we maintain an ID space that is
4065  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4066  * memory-controlled cgroups to 64k.
4067  *
4068  * However, there usually are many references to the oflline CSS after
4069  * the cgroup has been destroyed, such as page cache or reclaimable
4070  * slab objects, that don't need to hang on to the ID. We want to keep
4071  * those dead CSS from occupying IDs, or we might quickly exhaust the
4072  * relatively small ID space and prevent the creation of new cgroups
4073  * even when there are much fewer than 64k cgroups - possibly none.
4074  *
4075  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4076  * be freed and recycled when it's no longer needed, which is usually
4077  * when the CSS is offlined.
4078  *
4079  * The only exception to that are records of swapped out tmpfs/shmem
4080  * pages that need to be attributed to live ancestors on swapin. But
4081  * those references are manageable from userspace.
4082  */
4083 
4084 static DEFINE_IDR(mem_cgroup_idr);
4085 
4086 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4087 {
4088 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4089 	atomic_add(n, &memcg->id.ref);
4090 }
4091 
4092 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4093 {
4094 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4095 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4096 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4097 		memcg->id.id = 0;
4098 
4099 		/* Memcg ID pins CSS */
4100 		css_put(&memcg->css);
4101 	}
4102 }
4103 
4104 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4105 {
4106 	mem_cgroup_id_get_many(memcg, 1);
4107 }
4108 
4109 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4110 {
4111 	mem_cgroup_id_put_many(memcg, 1);
4112 }
4113 
4114 /**
4115  * mem_cgroup_from_id - look up a memcg from a memcg id
4116  * @id: the memcg id to look up
4117  *
4118  * Caller must hold rcu_read_lock().
4119  */
4120 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4121 {
4122 	WARN_ON_ONCE(!rcu_read_lock_held());
4123 	return idr_find(&mem_cgroup_idr, id);
4124 }
4125 
4126 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4127 {
4128 	struct mem_cgroup_per_node *pn;
4129 	int tmp = node;
4130 	/*
4131 	 * This routine is called against possible nodes.
4132 	 * But it's BUG to call kmalloc() against offline node.
4133 	 *
4134 	 * TODO: this routine can waste much memory for nodes which will
4135 	 *       never be onlined. It's better to use memory hotplug callback
4136 	 *       function.
4137 	 */
4138 	if (!node_state(node, N_NORMAL_MEMORY))
4139 		tmp = -1;
4140 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4141 	if (!pn)
4142 		return 1;
4143 
4144 	pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4145 	if (!pn->lruvec_stat) {
4146 		kfree(pn);
4147 		return 1;
4148 	}
4149 
4150 	lruvec_init(&pn->lruvec);
4151 	pn->usage_in_excess = 0;
4152 	pn->on_tree = false;
4153 	pn->memcg = memcg;
4154 
4155 	memcg->nodeinfo[node] = pn;
4156 	return 0;
4157 }
4158 
4159 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4160 {
4161 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4162 
4163 	free_percpu(pn->lruvec_stat);
4164 	kfree(pn);
4165 }
4166 
4167 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4168 {
4169 	int node;
4170 
4171 	for_each_node(node)
4172 		free_mem_cgroup_per_node_info(memcg, node);
4173 	free_percpu(memcg->stat);
4174 	kfree(memcg);
4175 }
4176 
4177 static void mem_cgroup_free(struct mem_cgroup *memcg)
4178 {
4179 	memcg_wb_domain_exit(memcg);
4180 	__mem_cgroup_free(memcg);
4181 }
4182 
4183 static struct mem_cgroup *mem_cgroup_alloc(void)
4184 {
4185 	struct mem_cgroup *memcg;
4186 	size_t size;
4187 	int node;
4188 
4189 	size = sizeof(struct mem_cgroup);
4190 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4191 
4192 	memcg = kzalloc(size, GFP_KERNEL);
4193 	if (!memcg)
4194 		return NULL;
4195 
4196 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4197 				 1, MEM_CGROUP_ID_MAX,
4198 				 GFP_KERNEL);
4199 	if (memcg->id.id < 0)
4200 		goto fail;
4201 
4202 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4203 	if (!memcg->stat)
4204 		goto fail;
4205 
4206 	for_each_node(node)
4207 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4208 			goto fail;
4209 
4210 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4211 		goto fail;
4212 
4213 	INIT_WORK(&memcg->high_work, high_work_func);
4214 	memcg->last_scanned_node = MAX_NUMNODES;
4215 	INIT_LIST_HEAD(&memcg->oom_notify);
4216 	mutex_init(&memcg->thresholds_lock);
4217 	spin_lock_init(&memcg->move_lock);
4218 	vmpressure_init(&memcg->vmpressure);
4219 	INIT_LIST_HEAD(&memcg->event_list);
4220 	spin_lock_init(&memcg->event_list_lock);
4221 	memcg->socket_pressure = jiffies;
4222 #ifndef CONFIG_SLOB
4223 	memcg->kmemcg_id = -1;
4224 #endif
4225 #ifdef CONFIG_CGROUP_WRITEBACK
4226 	INIT_LIST_HEAD(&memcg->cgwb_list);
4227 #endif
4228 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4229 	return memcg;
4230 fail:
4231 	if (memcg->id.id > 0)
4232 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4233 	__mem_cgroup_free(memcg);
4234 	return NULL;
4235 }
4236 
4237 static struct cgroup_subsys_state * __ref
4238 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4239 {
4240 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4241 	struct mem_cgroup *memcg;
4242 	long error = -ENOMEM;
4243 
4244 	memcg = mem_cgroup_alloc();
4245 	if (!memcg)
4246 		return ERR_PTR(error);
4247 
4248 	memcg->high = PAGE_COUNTER_MAX;
4249 	memcg->soft_limit = PAGE_COUNTER_MAX;
4250 	if (parent) {
4251 		memcg->swappiness = mem_cgroup_swappiness(parent);
4252 		memcg->oom_kill_disable = parent->oom_kill_disable;
4253 	}
4254 	if (parent && parent->use_hierarchy) {
4255 		memcg->use_hierarchy = true;
4256 		page_counter_init(&memcg->memory, &parent->memory);
4257 		page_counter_init(&memcg->swap, &parent->swap);
4258 		page_counter_init(&memcg->memsw, &parent->memsw);
4259 		page_counter_init(&memcg->kmem, &parent->kmem);
4260 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4261 	} else {
4262 		page_counter_init(&memcg->memory, NULL);
4263 		page_counter_init(&memcg->swap, NULL);
4264 		page_counter_init(&memcg->memsw, NULL);
4265 		page_counter_init(&memcg->kmem, NULL);
4266 		page_counter_init(&memcg->tcpmem, NULL);
4267 		/*
4268 		 * Deeper hierachy with use_hierarchy == false doesn't make
4269 		 * much sense so let cgroup subsystem know about this
4270 		 * unfortunate state in our controller.
4271 		 */
4272 		if (parent != root_mem_cgroup)
4273 			memory_cgrp_subsys.broken_hierarchy = true;
4274 	}
4275 
4276 	/* The following stuff does not apply to the root */
4277 	if (!parent) {
4278 		root_mem_cgroup = memcg;
4279 		return &memcg->css;
4280 	}
4281 
4282 	error = memcg_online_kmem(memcg);
4283 	if (error)
4284 		goto fail;
4285 
4286 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4287 		static_branch_inc(&memcg_sockets_enabled_key);
4288 
4289 	return &memcg->css;
4290 fail:
4291 	mem_cgroup_free(memcg);
4292 	return ERR_PTR(-ENOMEM);
4293 }
4294 
4295 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4296 {
4297 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4298 
4299 	/* Online state pins memcg ID, memcg ID pins CSS */
4300 	atomic_set(&memcg->id.ref, 1);
4301 	css_get(css);
4302 	return 0;
4303 }
4304 
4305 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4306 {
4307 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4308 	struct mem_cgroup_event *event, *tmp;
4309 
4310 	/*
4311 	 * Unregister events and notify userspace.
4312 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4313 	 * directory to avoid race between userspace and kernelspace.
4314 	 */
4315 	spin_lock(&memcg->event_list_lock);
4316 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4317 		list_del_init(&event->list);
4318 		schedule_work(&event->remove);
4319 	}
4320 	spin_unlock(&memcg->event_list_lock);
4321 
4322 	memcg_offline_kmem(memcg);
4323 	wb_memcg_offline(memcg);
4324 
4325 	mem_cgroup_id_put(memcg);
4326 }
4327 
4328 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4329 {
4330 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4331 
4332 	invalidate_reclaim_iterators(memcg);
4333 }
4334 
4335 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4336 {
4337 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338 
4339 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4340 		static_branch_dec(&memcg_sockets_enabled_key);
4341 
4342 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4343 		static_branch_dec(&memcg_sockets_enabled_key);
4344 
4345 	vmpressure_cleanup(&memcg->vmpressure);
4346 	cancel_work_sync(&memcg->high_work);
4347 	mem_cgroup_remove_from_trees(memcg);
4348 	memcg_free_kmem(memcg);
4349 	mem_cgroup_free(memcg);
4350 }
4351 
4352 /**
4353  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4354  * @css: the target css
4355  *
4356  * Reset the states of the mem_cgroup associated with @css.  This is
4357  * invoked when the userland requests disabling on the default hierarchy
4358  * but the memcg is pinned through dependency.  The memcg should stop
4359  * applying policies and should revert to the vanilla state as it may be
4360  * made visible again.
4361  *
4362  * The current implementation only resets the essential configurations.
4363  * This needs to be expanded to cover all the visible parts.
4364  */
4365 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4366 {
4367 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4368 
4369 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4370 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4371 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4372 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4373 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4374 	memcg->low = 0;
4375 	memcg->high = PAGE_COUNTER_MAX;
4376 	memcg->soft_limit = PAGE_COUNTER_MAX;
4377 	memcg_wb_domain_size_changed(memcg);
4378 }
4379 
4380 #ifdef CONFIG_MMU
4381 /* Handlers for move charge at task migration. */
4382 static int mem_cgroup_do_precharge(unsigned long count)
4383 {
4384 	int ret;
4385 
4386 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4387 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4388 	if (!ret) {
4389 		mc.precharge += count;
4390 		return ret;
4391 	}
4392 
4393 	/* Try charges one by one with reclaim, but do not retry */
4394 	while (count--) {
4395 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4396 		if (ret)
4397 			return ret;
4398 		mc.precharge++;
4399 		cond_resched();
4400 	}
4401 	return 0;
4402 }
4403 
4404 union mc_target {
4405 	struct page	*page;
4406 	swp_entry_t	ent;
4407 };
4408 
4409 enum mc_target_type {
4410 	MC_TARGET_NONE = 0,
4411 	MC_TARGET_PAGE,
4412 	MC_TARGET_SWAP,
4413 };
4414 
4415 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4416 						unsigned long addr, pte_t ptent)
4417 {
4418 	struct page *page = vm_normal_page(vma, addr, ptent);
4419 
4420 	if (!page || !page_mapped(page))
4421 		return NULL;
4422 	if (PageAnon(page)) {
4423 		if (!(mc.flags & MOVE_ANON))
4424 			return NULL;
4425 	} else {
4426 		if (!(mc.flags & MOVE_FILE))
4427 			return NULL;
4428 	}
4429 	if (!get_page_unless_zero(page))
4430 		return NULL;
4431 
4432 	return page;
4433 }
4434 
4435 #ifdef CONFIG_SWAP
4436 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4437 			pte_t ptent, swp_entry_t *entry)
4438 {
4439 	struct page *page = NULL;
4440 	swp_entry_t ent = pte_to_swp_entry(ptent);
4441 
4442 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4443 		return NULL;
4444 	/*
4445 	 * Because lookup_swap_cache() updates some statistics counter,
4446 	 * we call find_get_page() with swapper_space directly.
4447 	 */
4448 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4449 	if (do_memsw_account())
4450 		entry->val = ent.val;
4451 
4452 	return page;
4453 }
4454 #else
4455 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4456 			pte_t ptent, swp_entry_t *entry)
4457 {
4458 	return NULL;
4459 }
4460 #endif
4461 
4462 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4463 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4464 {
4465 	struct page *page = NULL;
4466 	struct address_space *mapping;
4467 	pgoff_t pgoff;
4468 
4469 	if (!vma->vm_file) /* anonymous vma */
4470 		return NULL;
4471 	if (!(mc.flags & MOVE_FILE))
4472 		return NULL;
4473 
4474 	mapping = vma->vm_file->f_mapping;
4475 	pgoff = linear_page_index(vma, addr);
4476 
4477 	/* page is moved even if it's not RSS of this task(page-faulted). */
4478 #ifdef CONFIG_SWAP
4479 	/* shmem/tmpfs may report page out on swap: account for that too. */
4480 	if (shmem_mapping(mapping)) {
4481 		page = find_get_entry(mapping, pgoff);
4482 		if (radix_tree_exceptional_entry(page)) {
4483 			swp_entry_t swp = radix_to_swp_entry(page);
4484 			if (do_memsw_account())
4485 				*entry = swp;
4486 			page = find_get_page(swap_address_space(swp),
4487 					     swp_offset(swp));
4488 		}
4489 	} else
4490 		page = find_get_page(mapping, pgoff);
4491 #else
4492 	page = find_get_page(mapping, pgoff);
4493 #endif
4494 	return page;
4495 }
4496 
4497 /**
4498  * mem_cgroup_move_account - move account of the page
4499  * @page: the page
4500  * @compound: charge the page as compound or small page
4501  * @from: mem_cgroup which the page is moved from.
4502  * @to:	mem_cgroup which the page is moved to. @from != @to.
4503  *
4504  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4505  *
4506  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4507  * from old cgroup.
4508  */
4509 static int mem_cgroup_move_account(struct page *page,
4510 				   bool compound,
4511 				   struct mem_cgroup *from,
4512 				   struct mem_cgroup *to)
4513 {
4514 	unsigned long flags;
4515 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4516 	int ret;
4517 	bool anon;
4518 
4519 	VM_BUG_ON(from == to);
4520 	VM_BUG_ON_PAGE(PageLRU(page), page);
4521 	VM_BUG_ON(compound && !PageTransHuge(page));
4522 
4523 	/*
4524 	 * Prevent mem_cgroup_migrate() from looking at
4525 	 * page->mem_cgroup of its source page while we change it.
4526 	 */
4527 	ret = -EBUSY;
4528 	if (!trylock_page(page))
4529 		goto out;
4530 
4531 	ret = -EINVAL;
4532 	if (page->mem_cgroup != from)
4533 		goto out_unlock;
4534 
4535 	anon = PageAnon(page);
4536 
4537 	spin_lock_irqsave(&from->move_lock, flags);
4538 
4539 	if (!anon && page_mapped(page)) {
4540 		__this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4541 		__this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4542 	}
4543 
4544 	/*
4545 	 * move_lock grabbed above and caller set from->moving_account, so
4546 	 * mod_memcg_page_state will serialize updates to PageDirty.
4547 	 * So mapping should be stable for dirty pages.
4548 	 */
4549 	if (!anon && PageDirty(page)) {
4550 		struct address_space *mapping = page_mapping(page);
4551 
4552 		if (mapping_cap_account_dirty(mapping)) {
4553 			__this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4554 				       nr_pages);
4555 			__this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4556 				       nr_pages);
4557 		}
4558 	}
4559 
4560 	if (PageWriteback(page)) {
4561 		__this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4562 		__this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4563 	}
4564 
4565 	/*
4566 	 * It is safe to change page->mem_cgroup here because the page
4567 	 * is referenced, charged, and isolated - we can't race with
4568 	 * uncharging, charging, migration, or LRU putback.
4569 	 */
4570 
4571 	/* caller should have done css_get */
4572 	page->mem_cgroup = to;
4573 	spin_unlock_irqrestore(&from->move_lock, flags);
4574 
4575 	ret = 0;
4576 
4577 	local_irq_disable();
4578 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4579 	memcg_check_events(to, page);
4580 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4581 	memcg_check_events(from, page);
4582 	local_irq_enable();
4583 out_unlock:
4584 	unlock_page(page);
4585 out:
4586 	return ret;
4587 }
4588 
4589 /**
4590  * get_mctgt_type - get target type of moving charge
4591  * @vma: the vma the pte to be checked belongs
4592  * @addr: the address corresponding to the pte to be checked
4593  * @ptent: the pte to be checked
4594  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4595  *
4596  * Returns
4597  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4598  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4599  *     move charge. if @target is not NULL, the page is stored in target->page
4600  *     with extra refcnt got(Callers should handle it).
4601  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4602  *     target for charge migration. if @target is not NULL, the entry is stored
4603  *     in target->ent.
4604  *
4605  * Called with pte lock held.
4606  */
4607 
4608 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4609 		unsigned long addr, pte_t ptent, union mc_target *target)
4610 {
4611 	struct page *page = NULL;
4612 	enum mc_target_type ret = MC_TARGET_NONE;
4613 	swp_entry_t ent = { .val = 0 };
4614 
4615 	if (pte_present(ptent))
4616 		page = mc_handle_present_pte(vma, addr, ptent);
4617 	else if (is_swap_pte(ptent))
4618 		page = mc_handle_swap_pte(vma, ptent, &ent);
4619 	else if (pte_none(ptent))
4620 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4621 
4622 	if (!page && !ent.val)
4623 		return ret;
4624 	if (page) {
4625 		/*
4626 		 * Do only loose check w/o serialization.
4627 		 * mem_cgroup_move_account() checks the page is valid or
4628 		 * not under LRU exclusion.
4629 		 */
4630 		if (page->mem_cgroup == mc.from) {
4631 			ret = MC_TARGET_PAGE;
4632 			if (target)
4633 				target->page = page;
4634 		}
4635 		if (!ret || !target)
4636 			put_page(page);
4637 	}
4638 	/* There is a swap entry and a page doesn't exist or isn't charged */
4639 	if (ent.val && !ret &&
4640 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4641 		ret = MC_TARGET_SWAP;
4642 		if (target)
4643 			target->ent = ent;
4644 	}
4645 	return ret;
4646 }
4647 
4648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4649 /*
4650  * We don't consider swapping or file mapped pages because THP does not
4651  * support them for now.
4652  * Caller should make sure that pmd_trans_huge(pmd) is true.
4653  */
4654 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4655 		unsigned long addr, pmd_t pmd, union mc_target *target)
4656 {
4657 	struct page *page = NULL;
4658 	enum mc_target_type ret = MC_TARGET_NONE;
4659 
4660 	page = pmd_page(pmd);
4661 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4662 	if (!(mc.flags & MOVE_ANON))
4663 		return ret;
4664 	if (page->mem_cgroup == mc.from) {
4665 		ret = MC_TARGET_PAGE;
4666 		if (target) {
4667 			get_page(page);
4668 			target->page = page;
4669 		}
4670 	}
4671 	return ret;
4672 }
4673 #else
4674 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4675 		unsigned long addr, pmd_t pmd, union mc_target *target)
4676 {
4677 	return MC_TARGET_NONE;
4678 }
4679 #endif
4680 
4681 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4682 					unsigned long addr, unsigned long end,
4683 					struct mm_walk *walk)
4684 {
4685 	struct vm_area_struct *vma = walk->vma;
4686 	pte_t *pte;
4687 	spinlock_t *ptl;
4688 
4689 	ptl = pmd_trans_huge_lock(pmd, vma);
4690 	if (ptl) {
4691 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4692 			mc.precharge += HPAGE_PMD_NR;
4693 		spin_unlock(ptl);
4694 		return 0;
4695 	}
4696 
4697 	if (pmd_trans_unstable(pmd))
4698 		return 0;
4699 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4700 	for (; addr != end; pte++, addr += PAGE_SIZE)
4701 		if (get_mctgt_type(vma, addr, *pte, NULL))
4702 			mc.precharge++;	/* increment precharge temporarily */
4703 	pte_unmap_unlock(pte - 1, ptl);
4704 	cond_resched();
4705 
4706 	return 0;
4707 }
4708 
4709 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4710 {
4711 	unsigned long precharge;
4712 
4713 	struct mm_walk mem_cgroup_count_precharge_walk = {
4714 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4715 		.mm = mm,
4716 	};
4717 	down_read(&mm->mmap_sem);
4718 	walk_page_range(0, mm->highest_vm_end,
4719 			&mem_cgroup_count_precharge_walk);
4720 	up_read(&mm->mmap_sem);
4721 
4722 	precharge = mc.precharge;
4723 	mc.precharge = 0;
4724 
4725 	return precharge;
4726 }
4727 
4728 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4729 {
4730 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4731 
4732 	VM_BUG_ON(mc.moving_task);
4733 	mc.moving_task = current;
4734 	return mem_cgroup_do_precharge(precharge);
4735 }
4736 
4737 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4738 static void __mem_cgroup_clear_mc(void)
4739 {
4740 	struct mem_cgroup *from = mc.from;
4741 	struct mem_cgroup *to = mc.to;
4742 
4743 	/* we must uncharge all the leftover precharges from mc.to */
4744 	if (mc.precharge) {
4745 		cancel_charge(mc.to, mc.precharge);
4746 		mc.precharge = 0;
4747 	}
4748 	/*
4749 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4750 	 * we must uncharge here.
4751 	 */
4752 	if (mc.moved_charge) {
4753 		cancel_charge(mc.from, mc.moved_charge);
4754 		mc.moved_charge = 0;
4755 	}
4756 	/* we must fixup refcnts and charges */
4757 	if (mc.moved_swap) {
4758 		/* uncharge swap account from the old cgroup */
4759 		if (!mem_cgroup_is_root(mc.from))
4760 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4761 
4762 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4763 
4764 		/*
4765 		 * we charged both to->memory and to->memsw, so we
4766 		 * should uncharge to->memory.
4767 		 */
4768 		if (!mem_cgroup_is_root(mc.to))
4769 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4770 
4771 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4772 		css_put_many(&mc.to->css, mc.moved_swap);
4773 
4774 		mc.moved_swap = 0;
4775 	}
4776 	memcg_oom_recover(from);
4777 	memcg_oom_recover(to);
4778 	wake_up_all(&mc.waitq);
4779 }
4780 
4781 static void mem_cgroup_clear_mc(void)
4782 {
4783 	struct mm_struct *mm = mc.mm;
4784 
4785 	/*
4786 	 * we must clear moving_task before waking up waiters at the end of
4787 	 * task migration.
4788 	 */
4789 	mc.moving_task = NULL;
4790 	__mem_cgroup_clear_mc();
4791 	spin_lock(&mc.lock);
4792 	mc.from = NULL;
4793 	mc.to = NULL;
4794 	mc.mm = NULL;
4795 	spin_unlock(&mc.lock);
4796 
4797 	mmput(mm);
4798 }
4799 
4800 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4801 {
4802 	struct cgroup_subsys_state *css;
4803 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4804 	struct mem_cgroup *from;
4805 	struct task_struct *leader, *p;
4806 	struct mm_struct *mm;
4807 	unsigned long move_flags;
4808 	int ret = 0;
4809 
4810 	/* charge immigration isn't supported on the default hierarchy */
4811 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4812 		return 0;
4813 
4814 	/*
4815 	 * Multi-process migrations only happen on the default hierarchy
4816 	 * where charge immigration is not used.  Perform charge
4817 	 * immigration if @tset contains a leader and whine if there are
4818 	 * multiple.
4819 	 */
4820 	p = NULL;
4821 	cgroup_taskset_for_each_leader(leader, css, tset) {
4822 		WARN_ON_ONCE(p);
4823 		p = leader;
4824 		memcg = mem_cgroup_from_css(css);
4825 	}
4826 	if (!p)
4827 		return 0;
4828 
4829 	/*
4830 	 * We are now commited to this value whatever it is. Changes in this
4831 	 * tunable will only affect upcoming migrations, not the current one.
4832 	 * So we need to save it, and keep it going.
4833 	 */
4834 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4835 	if (!move_flags)
4836 		return 0;
4837 
4838 	from = mem_cgroup_from_task(p);
4839 
4840 	VM_BUG_ON(from == memcg);
4841 
4842 	mm = get_task_mm(p);
4843 	if (!mm)
4844 		return 0;
4845 	/* We move charges only when we move a owner of the mm */
4846 	if (mm->owner == p) {
4847 		VM_BUG_ON(mc.from);
4848 		VM_BUG_ON(mc.to);
4849 		VM_BUG_ON(mc.precharge);
4850 		VM_BUG_ON(mc.moved_charge);
4851 		VM_BUG_ON(mc.moved_swap);
4852 
4853 		spin_lock(&mc.lock);
4854 		mc.mm = mm;
4855 		mc.from = from;
4856 		mc.to = memcg;
4857 		mc.flags = move_flags;
4858 		spin_unlock(&mc.lock);
4859 		/* We set mc.moving_task later */
4860 
4861 		ret = mem_cgroup_precharge_mc(mm);
4862 		if (ret)
4863 			mem_cgroup_clear_mc();
4864 	} else {
4865 		mmput(mm);
4866 	}
4867 	return ret;
4868 }
4869 
4870 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4871 {
4872 	if (mc.to)
4873 		mem_cgroup_clear_mc();
4874 }
4875 
4876 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4877 				unsigned long addr, unsigned long end,
4878 				struct mm_walk *walk)
4879 {
4880 	int ret = 0;
4881 	struct vm_area_struct *vma = walk->vma;
4882 	pte_t *pte;
4883 	spinlock_t *ptl;
4884 	enum mc_target_type target_type;
4885 	union mc_target target;
4886 	struct page *page;
4887 
4888 	ptl = pmd_trans_huge_lock(pmd, vma);
4889 	if (ptl) {
4890 		if (mc.precharge < HPAGE_PMD_NR) {
4891 			spin_unlock(ptl);
4892 			return 0;
4893 		}
4894 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4895 		if (target_type == MC_TARGET_PAGE) {
4896 			page = target.page;
4897 			if (!isolate_lru_page(page)) {
4898 				if (!mem_cgroup_move_account(page, true,
4899 							     mc.from, mc.to)) {
4900 					mc.precharge -= HPAGE_PMD_NR;
4901 					mc.moved_charge += HPAGE_PMD_NR;
4902 				}
4903 				putback_lru_page(page);
4904 			}
4905 			put_page(page);
4906 		}
4907 		spin_unlock(ptl);
4908 		return 0;
4909 	}
4910 
4911 	if (pmd_trans_unstable(pmd))
4912 		return 0;
4913 retry:
4914 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915 	for (; addr != end; addr += PAGE_SIZE) {
4916 		pte_t ptent = *(pte++);
4917 		swp_entry_t ent;
4918 
4919 		if (!mc.precharge)
4920 			break;
4921 
4922 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4923 		case MC_TARGET_PAGE:
4924 			page = target.page;
4925 			/*
4926 			 * We can have a part of the split pmd here. Moving it
4927 			 * can be done but it would be too convoluted so simply
4928 			 * ignore such a partial THP and keep it in original
4929 			 * memcg. There should be somebody mapping the head.
4930 			 */
4931 			if (PageTransCompound(page))
4932 				goto put;
4933 			if (isolate_lru_page(page))
4934 				goto put;
4935 			if (!mem_cgroup_move_account(page, false,
4936 						mc.from, mc.to)) {
4937 				mc.precharge--;
4938 				/* we uncharge from mc.from later. */
4939 				mc.moved_charge++;
4940 			}
4941 			putback_lru_page(page);
4942 put:			/* get_mctgt_type() gets the page */
4943 			put_page(page);
4944 			break;
4945 		case MC_TARGET_SWAP:
4946 			ent = target.ent;
4947 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4948 				mc.precharge--;
4949 				/* we fixup refcnts and charges later. */
4950 				mc.moved_swap++;
4951 			}
4952 			break;
4953 		default:
4954 			break;
4955 		}
4956 	}
4957 	pte_unmap_unlock(pte - 1, ptl);
4958 	cond_resched();
4959 
4960 	if (addr != end) {
4961 		/*
4962 		 * We have consumed all precharges we got in can_attach().
4963 		 * We try charge one by one, but don't do any additional
4964 		 * charges to mc.to if we have failed in charge once in attach()
4965 		 * phase.
4966 		 */
4967 		ret = mem_cgroup_do_precharge(1);
4968 		if (!ret)
4969 			goto retry;
4970 	}
4971 
4972 	return ret;
4973 }
4974 
4975 static void mem_cgroup_move_charge(void)
4976 {
4977 	struct mm_walk mem_cgroup_move_charge_walk = {
4978 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4979 		.mm = mc.mm,
4980 	};
4981 
4982 	lru_add_drain_all();
4983 	/*
4984 	 * Signal lock_page_memcg() to take the memcg's move_lock
4985 	 * while we're moving its pages to another memcg. Then wait
4986 	 * for already started RCU-only updates to finish.
4987 	 */
4988 	atomic_inc(&mc.from->moving_account);
4989 	synchronize_rcu();
4990 retry:
4991 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4992 		/*
4993 		 * Someone who are holding the mmap_sem might be waiting in
4994 		 * waitq. So we cancel all extra charges, wake up all waiters,
4995 		 * and retry. Because we cancel precharges, we might not be able
4996 		 * to move enough charges, but moving charge is a best-effort
4997 		 * feature anyway, so it wouldn't be a big problem.
4998 		 */
4999 		__mem_cgroup_clear_mc();
5000 		cond_resched();
5001 		goto retry;
5002 	}
5003 	/*
5004 	 * When we have consumed all precharges and failed in doing
5005 	 * additional charge, the page walk just aborts.
5006 	 */
5007 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5008 
5009 	up_read(&mc.mm->mmap_sem);
5010 	atomic_dec(&mc.from->moving_account);
5011 }
5012 
5013 static void mem_cgroup_move_task(void)
5014 {
5015 	if (mc.to) {
5016 		mem_cgroup_move_charge();
5017 		mem_cgroup_clear_mc();
5018 	}
5019 }
5020 #else	/* !CONFIG_MMU */
5021 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5022 {
5023 	return 0;
5024 }
5025 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5026 {
5027 }
5028 static void mem_cgroup_move_task(void)
5029 {
5030 }
5031 #endif
5032 
5033 /*
5034  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5035  * to verify whether we're attached to the default hierarchy on each mount
5036  * attempt.
5037  */
5038 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5039 {
5040 	/*
5041 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5042 	 * guarantees that @root doesn't have any children, so turning it
5043 	 * on for the root memcg is enough.
5044 	 */
5045 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5046 		root_mem_cgroup->use_hierarchy = true;
5047 	else
5048 		root_mem_cgroup->use_hierarchy = false;
5049 }
5050 
5051 static u64 memory_current_read(struct cgroup_subsys_state *css,
5052 			       struct cftype *cft)
5053 {
5054 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5055 
5056 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5057 }
5058 
5059 static int memory_low_show(struct seq_file *m, void *v)
5060 {
5061 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5062 	unsigned long low = READ_ONCE(memcg->low);
5063 
5064 	if (low == PAGE_COUNTER_MAX)
5065 		seq_puts(m, "max\n");
5066 	else
5067 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5068 
5069 	return 0;
5070 }
5071 
5072 static ssize_t memory_low_write(struct kernfs_open_file *of,
5073 				char *buf, size_t nbytes, loff_t off)
5074 {
5075 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5076 	unsigned long low;
5077 	int err;
5078 
5079 	buf = strstrip(buf);
5080 	err = page_counter_memparse(buf, "max", &low);
5081 	if (err)
5082 		return err;
5083 
5084 	memcg->low = low;
5085 
5086 	return nbytes;
5087 }
5088 
5089 static int memory_high_show(struct seq_file *m, void *v)
5090 {
5091 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5092 	unsigned long high = READ_ONCE(memcg->high);
5093 
5094 	if (high == PAGE_COUNTER_MAX)
5095 		seq_puts(m, "max\n");
5096 	else
5097 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5098 
5099 	return 0;
5100 }
5101 
5102 static ssize_t memory_high_write(struct kernfs_open_file *of,
5103 				 char *buf, size_t nbytes, loff_t off)
5104 {
5105 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5106 	unsigned long nr_pages;
5107 	unsigned long high;
5108 	int err;
5109 
5110 	buf = strstrip(buf);
5111 	err = page_counter_memparse(buf, "max", &high);
5112 	if (err)
5113 		return err;
5114 
5115 	memcg->high = high;
5116 
5117 	nr_pages = page_counter_read(&memcg->memory);
5118 	if (nr_pages > high)
5119 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5120 					     GFP_KERNEL, true);
5121 
5122 	memcg_wb_domain_size_changed(memcg);
5123 	return nbytes;
5124 }
5125 
5126 static int memory_max_show(struct seq_file *m, void *v)
5127 {
5128 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5129 	unsigned long max = READ_ONCE(memcg->memory.limit);
5130 
5131 	if (max == PAGE_COUNTER_MAX)
5132 		seq_puts(m, "max\n");
5133 	else
5134 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5135 
5136 	return 0;
5137 }
5138 
5139 static ssize_t memory_max_write(struct kernfs_open_file *of,
5140 				char *buf, size_t nbytes, loff_t off)
5141 {
5142 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5143 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5144 	bool drained = false;
5145 	unsigned long max;
5146 	int err;
5147 
5148 	buf = strstrip(buf);
5149 	err = page_counter_memparse(buf, "max", &max);
5150 	if (err)
5151 		return err;
5152 
5153 	xchg(&memcg->memory.limit, max);
5154 
5155 	for (;;) {
5156 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5157 
5158 		if (nr_pages <= max)
5159 			break;
5160 
5161 		if (signal_pending(current)) {
5162 			err = -EINTR;
5163 			break;
5164 		}
5165 
5166 		if (!drained) {
5167 			drain_all_stock(memcg);
5168 			drained = true;
5169 			continue;
5170 		}
5171 
5172 		if (nr_reclaims) {
5173 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5174 							  GFP_KERNEL, true))
5175 				nr_reclaims--;
5176 			continue;
5177 		}
5178 
5179 		mem_cgroup_event(memcg, MEMCG_OOM);
5180 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5181 			break;
5182 	}
5183 
5184 	memcg_wb_domain_size_changed(memcg);
5185 	return nbytes;
5186 }
5187 
5188 static int memory_events_show(struct seq_file *m, void *v)
5189 {
5190 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5191 
5192 	seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5193 	seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5194 	seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5195 	seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5196 	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5197 
5198 	return 0;
5199 }
5200 
5201 static int memory_stat_show(struct seq_file *m, void *v)
5202 {
5203 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5204 	unsigned long stat[MEMCG_NR_STAT];
5205 	unsigned long events[MEMCG_NR_EVENTS];
5206 	int i;
5207 
5208 	/*
5209 	 * Provide statistics on the state of the memory subsystem as
5210 	 * well as cumulative event counters that show past behavior.
5211 	 *
5212 	 * This list is ordered following a combination of these gradients:
5213 	 * 1) generic big picture -> specifics and details
5214 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5215 	 *
5216 	 * Current memory state:
5217 	 */
5218 
5219 	tree_stat(memcg, stat);
5220 	tree_events(memcg, events);
5221 
5222 	seq_printf(m, "anon %llu\n",
5223 		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5224 	seq_printf(m, "file %llu\n",
5225 		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5226 	seq_printf(m, "kernel_stack %llu\n",
5227 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5228 	seq_printf(m, "slab %llu\n",
5229 		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
5230 			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5231 	seq_printf(m, "sock %llu\n",
5232 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5233 
5234 	seq_printf(m, "shmem %llu\n",
5235 		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5236 	seq_printf(m, "file_mapped %llu\n",
5237 		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5238 	seq_printf(m, "file_dirty %llu\n",
5239 		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5240 	seq_printf(m, "file_writeback %llu\n",
5241 		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5242 
5243 	for (i = 0; i < NR_LRU_LISTS; i++) {
5244 		struct mem_cgroup *mi;
5245 		unsigned long val = 0;
5246 
5247 		for_each_mem_cgroup_tree(mi, memcg)
5248 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5249 		seq_printf(m, "%s %llu\n",
5250 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5251 	}
5252 
5253 	seq_printf(m, "slab_reclaimable %llu\n",
5254 		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5255 	seq_printf(m, "slab_unreclaimable %llu\n",
5256 		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5257 
5258 	/* Accumulated memory events */
5259 
5260 	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5261 	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5262 
5263 	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5264 	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5265 		   events[PGSCAN_DIRECT]);
5266 	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5267 		   events[PGSTEAL_DIRECT]);
5268 	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5269 	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5270 	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5271 	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5272 
5273 	seq_printf(m, "workingset_refault %lu\n",
5274 		   stat[WORKINGSET_REFAULT]);
5275 	seq_printf(m, "workingset_activate %lu\n",
5276 		   stat[WORKINGSET_ACTIVATE]);
5277 	seq_printf(m, "workingset_nodereclaim %lu\n",
5278 		   stat[WORKINGSET_NODERECLAIM]);
5279 
5280 	return 0;
5281 }
5282 
5283 static struct cftype memory_files[] = {
5284 	{
5285 		.name = "current",
5286 		.flags = CFTYPE_NOT_ON_ROOT,
5287 		.read_u64 = memory_current_read,
5288 	},
5289 	{
5290 		.name = "low",
5291 		.flags = CFTYPE_NOT_ON_ROOT,
5292 		.seq_show = memory_low_show,
5293 		.write = memory_low_write,
5294 	},
5295 	{
5296 		.name = "high",
5297 		.flags = CFTYPE_NOT_ON_ROOT,
5298 		.seq_show = memory_high_show,
5299 		.write = memory_high_write,
5300 	},
5301 	{
5302 		.name = "max",
5303 		.flags = CFTYPE_NOT_ON_ROOT,
5304 		.seq_show = memory_max_show,
5305 		.write = memory_max_write,
5306 	},
5307 	{
5308 		.name = "events",
5309 		.flags = CFTYPE_NOT_ON_ROOT,
5310 		.file_offset = offsetof(struct mem_cgroup, events_file),
5311 		.seq_show = memory_events_show,
5312 	},
5313 	{
5314 		.name = "stat",
5315 		.flags = CFTYPE_NOT_ON_ROOT,
5316 		.seq_show = memory_stat_show,
5317 	},
5318 	{ }	/* terminate */
5319 };
5320 
5321 struct cgroup_subsys memory_cgrp_subsys = {
5322 	.css_alloc = mem_cgroup_css_alloc,
5323 	.css_online = mem_cgroup_css_online,
5324 	.css_offline = mem_cgroup_css_offline,
5325 	.css_released = mem_cgroup_css_released,
5326 	.css_free = mem_cgroup_css_free,
5327 	.css_reset = mem_cgroup_css_reset,
5328 	.can_attach = mem_cgroup_can_attach,
5329 	.cancel_attach = mem_cgroup_cancel_attach,
5330 	.post_attach = mem_cgroup_move_task,
5331 	.bind = mem_cgroup_bind,
5332 	.dfl_cftypes = memory_files,
5333 	.legacy_cftypes = mem_cgroup_legacy_files,
5334 	.early_init = 0,
5335 };
5336 
5337 /**
5338  * mem_cgroup_low - check if memory consumption is below the normal range
5339  * @root: the top ancestor of the sub-tree being checked
5340  * @memcg: the memory cgroup to check
5341  *
5342  * Returns %true if memory consumption of @memcg, and that of all
5343  * ancestors up to (but not including) @root, is below the normal range.
5344  *
5345  * @root is exclusive; it is never low when looked at directly and isn't
5346  * checked when traversing the hierarchy.
5347  *
5348  * Excluding @root enables using memory.low to prioritize memory usage
5349  * between cgroups within a subtree of the hierarchy that is limited by
5350  * memory.high or memory.max.
5351  *
5352  * For example, given cgroup A with children B and C:
5353  *
5354  *    A
5355  *   / \
5356  *  B   C
5357  *
5358  * and
5359  *
5360  *  1. A/memory.current > A/memory.high
5361  *  2. A/B/memory.current < A/B/memory.low
5362  *  3. A/C/memory.current >= A/C/memory.low
5363  *
5364  * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5365  * should reclaim from 'C' until 'A' is no longer high or until we can
5366  * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
5367  * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5368  * low and we will reclaim indiscriminately from both 'B' and 'C'.
5369  */
5370 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5371 {
5372 	if (mem_cgroup_disabled())
5373 		return false;
5374 
5375 	if (!root)
5376 		root = root_mem_cgroup;
5377 	if (memcg == root)
5378 		return false;
5379 
5380 	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5381 		if (page_counter_read(&memcg->memory) >= memcg->low)
5382 			return false;
5383 	}
5384 
5385 	return true;
5386 }
5387 
5388 /**
5389  * mem_cgroup_try_charge - try charging a page
5390  * @page: page to charge
5391  * @mm: mm context of the victim
5392  * @gfp_mask: reclaim mode
5393  * @memcgp: charged memcg return
5394  * @compound: charge the page as compound or small page
5395  *
5396  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5397  * pages according to @gfp_mask if necessary.
5398  *
5399  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5400  * Otherwise, an error code is returned.
5401  *
5402  * After page->mapping has been set up, the caller must finalize the
5403  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5404  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5405  */
5406 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5407 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5408 			  bool compound)
5409 {
5410 	struct mem_cgroup *memcg = NULL;
5411 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5412 	int ret = 0;
5413 
5414 	if (mem_cgroup_disabled())
5415 		goto out;
5416 
5417 	if (PageSwapCache(page)) {
5418 		/*
5419 		 * Every swap fault against a single page tries to charge the
5420 		 * page, bail as early as possible.  shmem_unuse() encounters
5421 		 * already charged pages, too.  The USED bit is protected by
5422 		 * the page lock, which serializes swap cache removal, which
5423 		 * in turn serializes uncharging.
5424 		 */
5425 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5426 		if (page->mem_cgroup)
5427 			goto out;
5428 
5429 		if (do_swap_account) {
5430 			swp_entry_t ent = { .val = page_private(page), };
5431 			unsigned short id = lookup_swap_cgroup_id(ent);
5432 
5433 			rcu_read_lock();
5434 			memcg = mem_cgroup_from_id(id);
5435 			if (memcg && !css_tryget_online(&memcg->css))
5436 				memcg = NULL;
5437 			rcu_read_unlock();
5438 		}
5439 	}
5440 
5441 	if (!memcg)
5442 		memcg = get_mem_cgroup_from_mm(mm);
5443 
5444 	ret = try_charge(memcg, gfp_mask, nr_pages);
5445 
5446 	css_put(&memcg->css);
5447 out:
5448 	*memcgp = memcg;
5449 	return ret;
5450 }
5451 
5452 /**
5453  * mem_cgroup_commit_charge - commit a page charge
5454  * @page: page to charge
5455  * @memcg: memcg to charge the page to
5456  * @lrucare: page might be on LRU already
5457  * @compound: charge the page as compound or small page
5458  *
5459  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5460  * after page->mapping has been set up.  This must happen atomically
5461  * as part of the page instantiation, i.e. under the page table lock
5462  * for anonymous pages, under the page lock for page and swap cache.
5463  *
5464  * In addition, the page must not be on the LRU during the commit, to
5465  * prevent racing with task migration.  If it might be, use @lrucare.
5466  *
5467  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5468  */
5469 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5470 			      bool lrucare, bool compound)
5471 {
5472 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5473 
5474 	VM_BUG_ON_PAGE(!page->mapping, page);
5475 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5476 
5477 	if (mem_cgroup_disabled())
5478 		return;
5479 	/*
5480 	 * Swap faults will attempt to charge the same page multiple
5481 	 * times.  But reuse_swap_page() might have removed the page
5482 	 * from swapcache already, so we can't check PageSwapCache().
5483 	 */
5484 	if (!memcg)
5485 		return;
5486 
5487 	commit_charge(page, memcg, lrucare);
5488 
5489 	local_irq_disable();
5490 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5491 	memcg_check_events(memcg, page);
5492 	local_irq_enable();
5493 
5494 	if (do_memsw_account() && PageSwapCache(page)) {
5495 		swp_entry_t entry = { .val = page_private(page) };
5496 		/*
5497 		 * The swap entry might not get freed for a long time,
5498 		 * let's not wait for it.  The page already received a
5499 		 * memory+swap charge, drop the swap entry duplicate.
5500 		 */
5501 		mem_cgroup_uncharge_swap(entry, nr_pages);
5502 	}
5503 }
5504 
5505 /**
5506  * mem_cgroup_cancel_charge - cancel a page charge
5507  * @page: page to charge
5508  * @memcg: memcg to charge the page to
5509  * @compound: charge the page as compound or small page
5510  *
5511  * Cancel a charge transaction started by mem_cgroup_try_charge().
5512  */
5513 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5514 		bool compound)
5515 {
5516 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5517 
5518 	if (mem_cgroup_disabled())
5519 		return;
5520 	/*
5521 	 * Swap faults will attempt to charge the same page multiple
5522 	 * times.  But reuse_swap_page() might have removed the page
5523 	 * from swapcache already, so we can't check PageSwapCache().
5524 	 */
5525 	if (!memcg)
5526 		return;
5527 
5528 	cancel_charge(memcg, nr_pages);
5529 }
5530 
5531 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5532 			   unsigned long nr_anon, unsigned long nr_file,
5533 			   unsigned long nr_kmem, unsigned long nr_huge,
5534 			   unsigned long nr_shmem, struct page *dummy_page)
5535 {
5536 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5537 	unsigned long flags;
5538 
5539 	if (!mem_cgroup_is_root(memcg)) {
5540 		page_counter_uncharge(&memcg->memory, nr_pages);
5541 		if (do_memsw_account())
5542 			page_counter_uncharge(&memcg->memsw, nr_pages);
5543 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5544 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5545 		memcg_oom_recover(memcg);
5546 	}
5547 
5548 	local_irq_save(flags);
5549 	__this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon);
5550 	__this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file);
5551 	__this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge);
5552 	__this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem);
5553 	__this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout);
5554 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5555 	memcg_check_events(memcg, dummy_page);
5556 	local_irq_restore(flags);
5557 
5558 	if (!mem_cgroup_is_root(memcg))
5559 		css_put_many(&memcg->css, nr_pages);
5560 }
5561 
5562 static void uncharge_list(struct list_head *page_list)
5563 {
5564 	struct mem_cgroup *memcg = NULL;
5565 	unsigned long nr_shmem = 0;
5566 	unsigned long nr_anon = 0;
5567 	unsigned long nr_file = 0;
5568 	unsigned long nr_huge = 0;
5569 	unsigned long nr_kmem = 0;
5570 	unsigned long pgpgout = 0;
5571 	struct list_head *next;
5572 	struct page *page;
5573 
5574 	/*
5575 	 * Note that the list can be a single page->lru; hence the
5576 	 * do-while loop instead of a simple list_for_each_entry().
5577 	 */
5578 	next = page_list->next;
5579 	do {
5580 		page = list_entry(next, struct page, lru);
5581 		next = page->lru.next;
5582 
5583 		VM_BUG_ON_PAGE(PageLRU(page), page);
5584 		VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5585 
5586 		if (!page->mem_cgroup)
5587 			continue;
5588 
5589 		/*
5590 		 * Nobody should be changing or seriously looking at
5591 		 * page->mem_cgroup at this point, we have fully
5592 		 * exclusive access to the page.
5593 		 */
5594 
5595 		if (memcg != page->mem_cgroup) {
5596 			if (memcg) {
5597 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5598 					       nr_kmem, nr_huge, nr_shmem, page);
5599 				pgpgout = nr_anon = nr_file = nr_kmem = 0;
5600 				nr_huge = nr_shmem = 0;
5601 			}
5602 			memcg = page->mem_cgroup;
5603 		}
5604 
5605 		if (!PageKmemcg(page)) {
5606 			unsigned int nr_pages = 1;
5607 
5608 			if (PageTransHuge(page)) {
5609 				nr_pages <<= compound_order(page);
5610 				nr_huge += nr_pages;
5611 			}
5612 			if (PageAnon(page))
5613 				nr_anon += nr_pages;
5614 			else {
5615 				nr_file += nr_pages;
5616 				if (PageSwapBacked(page))
5617 					nr_shmem += nr_pages;
5618 			}
5619 			pgpgout++;
5620 		} else {
5621 			nr_kmem += 1 << compound_order(page);
5622 			__ClearPageKmemcg(page);
5623 		}
5624 
5625 		page->mem_cgroup = NULL;
5626 	} while (next != page_list);
5627 
5628 	if (memcg)
5629 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5630 			       nr_kmem, nr_huge, nr_shmem, page);
5631 }
5632 
5633 /**
5634  * mem_cgroup_uncharge - uncharge a page
5635  * @page: page to uncharge
5636  *
5637  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5638  * mem_cgroup_commit_charge().
5639  */
5640 void mem_cgroup_uncharge(struct page *page)
5641 {
5642 	if (mem_cgroup_disabled())
5643 		return;
5644 
5645 	/* Don't touch page->lru of any random page, pre-check: */
5646 	if (!page->mem_cgroup)
5647 		return;
5648 
5649 	INIT_LIST_HEAD(&page->lru);
5650 	uncharge_list(&page->lru);
5651 }
5652 
5653 /**
5654  * mem_cgroup_uncharge_list - uncharge a list of page
5655  * @page_list: list of pages to uncharge
5656  *
5657  * Uncharge a list of pages previously charged with
5658  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5659  */
5660 void mem_cgroup_uncharge_list(struct list_head *page_list)
5661 {
5662 	if (mem_cgroup_disabled())
5663 		return;
5664 
5665 	if (!list_empty(page_list))
5666 		uncharge_list(page_list);
5667 }
5668 
5669 /**
5670  * mem_cgroup_migrate - charge a page's replacement
5671  * @oldpage: currently circulating page
5672  * @newpage: replacement page
5673  *
5674  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5675  * be uncharged upon free.
5676  *
5677  * Both pages must be locked, @newpage->mapping must be set up.
5678  */
5679 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5680 {
5681 	struct mem_cgroup *memcg;
5682 	unsigned int nr_pages;
5683 	bool compound;
5684 	unsigned long flags;
5685 
5686 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5687 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5688 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5689 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5690 		       newpage);
5691 
5692 	if (mem_cgroup_disabled())
5693 		return;
5694 
5695 	/* Page cache replacement: new page already charged? */
5696 	if (newpage->mem_cgroup)
5697 		return;
5698 
5699 	/* Swapcache readahead pages can get replaced before being charged */
5700 	memcg = oldpage->mem_cgroup;
5701 	if (!memcg)
5702 		return;
5703 
5704 	/* Force-charge the new page. The old one will be freed soon */
5705 	compound = PageTransHuge(newpage);
5706 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5707 
5708 	page_counter_charge(&memcg->memory, nr_pages);
5709 	if (do_memsw_account())
5710 		page_counter_charge(&memcg->memsw, nr_pages);
5711 	css_get_many(&memcg->css, nr_pages);
5712 
5713 	commit_charge(newpage, memcg, false);
5714 
5715 	local_irq_save(flags);
5716 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5717 	memcg_check_events(memcg, newpage);
5718 	local_irq_restore(flags);
5719 }
5720 
5721 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5722 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5723 
5724 void mem_cgroup_sk_alloc(struct sock *sk)
5725 {
5726 	struct mem_cgroup *memcg;
5727 
5728 	if (!mem_cgroup_sockets_enabled)
5729 		return;
5730 
5731 	/*
5732 	 * Socket cloning can throw us here with sk_memcg already
5733 	 * filled. It won't however, necessarily happen from
5734 	 * process context. So the test for root memcg given
5735 	 * the current task's memcg won't help us in this case.
5736 	 *
5737 	 * Respecting the original socket's memcg is a better
5738 	 * decision in this case.
5739 	 */
5740 	if (sk->sk_memcg) {
5741 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5742 		css_get(&sk->sk_memcg->css);
5743 		return;
5744 	}
5745 
5746 	rcu_read_lock();
5747 	memcg = mem_cgroup_from_task(current);
5748 	if (memcg == root_mem_cgroup)
5749 		goto out;
5750 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5751 		goto out;
5752 	if (css_tryget_online(&memcg->css))
5753 		sk->sk_memcg = memcg;
5754 out:
5755 	rcu_read_unlock();
5756 }
5757 
5758 void mem_cgroup_sk_free(struct sock *sk)
5759 {
5760 	if (sk->sk_memcg)
5761 		css_put(&sk->sk_memcg->css);
5762 }
5763 
5764 /**
5765  * mem_cgroup_charge_skmem - charge socket memory
5766  * @memcg: memcg to charge
5767  * @nr_pages: number of pages to charge
5768  *
5769  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5770  * @memcg's configured limit, %false if the charge had to be forced.
5771  */
5772 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5773 {
5774 	gfp_t gfp_mask = GFP_KERNEL;
5775 
5776 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5777 		struct page_counter *fail;
5778 
5779 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5780 			memcg->tcpmem_pressure = 0;
5781 			return true;
5782 		}
5783 		page_counter_charge(&memcg->tcpmem, nr_pages);
5784 		memcg->tcpmem_pressure = 1;
5785 		return false;
5786 	}
5787 
5788 	/* Don't block in the packet receive path */
5789 	if (in_softirq())
5790 		gfp_mask = GFP_NOWAIT;
5791 
5792 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5793 
5794 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5795 		return true;
5796 
5797 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5798 	return false;
5799 }
5800 
5801 /**
5802  * mem_cgroup_uncharge_skmem - uncharge socket memory
5803  * @memcg - memcg to uncharge
5804  * @nr_pages - number of pages to uncharge
5805  */
5806 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5807 {
5808 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5809 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5810 		return;
5811 	}
5812 
5813 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5814 
5815 	page_counter_uncharge(&memcg->memory, nr_pages);
5816 	css_put_many(&memcg->css, nr_pages);
5817 }
5818 
5819 static int __init cgroup_memory(char *s)
5820 {
5821 	char *token;
5822 
5823 	while ((token = strsep(&s, ",")) != NULL) {
5824 		if (!*token)
5825 			continue;
5826 		if (!strcmp(token, "nosocket"))
5827 			cgroup_memory_nosocket = true;
5828 		if (!strcmp(token, "nokmem"))
5829 			cgroup_memory_nokmem = true;
5830 	}
5831 	return 0;
5832 }
5833 __setup("cgroup.memory=", cgroup_memory);
5834 
5835 /*
5836  * subsys_initcall() for memory controller.
5837  *
5838  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5839  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5840  * basically everything that doesn't depend on a specific mem_cgroup structure
5841  * should be initialized from here.
5842  */
5843 static int __init mem_cgroup_init(void)
5844 {
5845 	int cpu, node;
5846 
5847 #ifndef CONFIG_SLOB
5848 	/*
5849 	 * Kmem cache creation is mostly done with the slab_mutex held,
5850 	 * so use a workqueue with limited concurrency to avoid stalling
5851 	 * all worker threads in case lots of cgroups are created and
5852 	 * destroyed simultaneously.
5853 	 */
5854 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5855 	BUG_ON(!memcg_kmem_cache_wq);
5856 #endif
5857 
5858 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5859 				  memcg_hotplug_cpu_dead);
5860 
5861 	for_each_possible_cpu(cpu)
5862 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5863 			  drain_local_stock);
5864 
5865 	for_each_node(node) {
5866 		struct mem_cgroup_tree_per_node *rtpn;
5867 
5868 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5869 				    node_online(node) ? node : NUMA_NO_NODE);
5870 
5871 		rtpn->rb_root = RB_ROOT;
5872 		spin_lock_init(&rtpn->lock);
5873 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5874 	}
5875 
5876 	return 0;
5877 }
5878 subsys_initcall(mem_cgroup_init);
5879 
5880 #ifdef CONFIG_MEMCG_SWAP
5881 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5882 {
5883 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5884 		/*
5885 		 * The root cgroup cannot be destroyed, so it's refcount must
5886 		 * always be >= 1.
5887 		 */
5888 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5889 			VM_BUG_ON(1);
5890 			break;
5891 		}
5892 		memcg = parent_mem_cgroup(memcg);
5893 		if (!memcg)
5894 			memcg = root_mem_cgroup;
5895 	}
5896 	return memcg;
5897 }
5898 
5899 /**
5900  * mem_cgroup_swapout - transfer a memsw charge to swap
5901  * @page: page whose memsw charge to transfer
5902  * @entry: swap entry to move the charge to
5903  *
5904  * Transfer the memsw charge of @page to @entry.
5905  */
5906 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5907 {
5908 	struct mem_cgroup *memcg, *swap_memcg;
5909 	unsigned short oldid;
5910 
5911 	VM_BUG_ON_PAGE(PageLRU(page), page);
5912 	VM_BUG_ON_PAGE(page_count(page), page);
5913 
5914 	if (!do_memsw_account())
5915 		return;
5916 
5917 	memcg = page->mem_cgroup;
5918 
5919 	/* Readahead page, never charged */
5920 	if (!memcg)
5921 		return;
5922 
5923 	/*
5924 	 * In case the memcg owning these pages has been offlined and doesn't
5925 	 * have an ID allocated to it anymore, charge the closest online
5926 	 * ancestor for the swap instead and transfer the memory+swap charge.
5927 	 */
5928 	swap_memcg = mem_cgroup_id_get_online(memcg);
5929 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 1);
5930 	VM_BUG_ON_PAGE(oldid, page);
5931 	mem_cgroup_swap_statistics(swap_memcg, 1);
5932 
5933 	page->mem_cgroup = NULL;
5934 
5935 	if (!mem_cgroup_is_root(memcg))
5936 		page_counter_uncharge(&memcg->memory, 1);
5937 
5938 	if (memcg != swap_memcg) {
5939 		if (!mem_cgroup_is_root(swap_memcg))
5940 			page_counter_charge(&swap_memcg->memsw, 1);
5941 		page_counter_uncharge(&memcg->memsw, 1);
5942 	}
5943 
5944 	/*
5945 	 * Interrupts should be disabled here because the caller holds the
5946 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5947 	 * important here to have the interrupts disabled because it is the
5948 	 * only synchronisation we have for udpating the per-CPU variables.
5949 	 */
5950 	VM_BUG_ON(!irqs_disabled());
5951 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5952 	memcg_check_events(memcg, page);
5953 
5954 	if (!mem_cgroup_is_root(memcg))
5955 		css_put(&memcg->css);
5956 }
5957 
5958 /**
5959  * mem_cgroup_try_charge_swap - try charging swap space for a page
5960  * @page: page being added to swap
5961  * @entry: swap entry to charge
5962  *
5963  * Try to charge @page's memcg for the swap space at @entry.
5964  *
5965  * Returns 0 on success, -ENOMEM on failure.
5966  */
5967 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5968 {
5969 	unsigned int nr_pages = hpage_nr_pages(page);
5970 	struct page_counter *counter;
5971 	struct mem_cgroup *memcg;
5972 	unsigned short oldid;
5973 
5974 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5975 		return 0;
5976 
5977 	memcg = page->mem_cgroup;
5978 
5979 	/* Readahead page, never charged */
5980 	if (!memcg)
5981 		return 0;
5982 
5983 	memcg = mem_cgroup_id_get_online(memcg);
5984 
5985 	if (!mem_cgroup_is_root(memcg) &&
5986 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5987 		mem_cgroup_id_put(memcg);
5988 		return -ENOMEM;
5989 	}
5990 
5991 	/* Get references for the tail pages, too */
5992 	if (nr_pages > 1)
5993 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5994 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5995 	VM_BUG_ON_PAGE(oldid, page);
5996 	mem_cgroup_swap_statistics(memcg, nr_pages);
5997 
5998 	return 0;
5999 }
6000 
6001 /**
6002  * mem_cgroup_uncharge_swap - uncharge swap space
6003  * @entry: swap entry to uncharge
6004  * @nr_pages: the amount of swap space to uncharge
6005  */
6006 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6007 {
6008 	struct mem_cgroup *memcg;
6009 	unsigned short id;
6010 
6011 	if (!do_swap_account)
6012 		return;
6013 
6014 	id = swap_cgroup_record(entry, 0, nr_pages);
6015 	rcu_read_lock();
6016 	memcg = mem_cgroup_from_id(id);
6017 	if (memcg) {
6018 		if (!mem_cgroup_is_root(memcg)) {
6019 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6020 				page_counter_uncharge(&memcg->swap, nr_pages);
6021 			else
6022 				page_counter_uncharge(&memcg->memsw, nr_pages);
6023 		}
6024 		mem_cgroup_swap_statistics(memcg, -nr_pages);
6025 		mem_cgroup_id_put_many(memcg, nr_pages);
6026 	}
6027 	rcu_read_unlock();
6028 }
6029 
6030 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6031 {
6032 	long nr_swap_pages = get_nr_swap_pages();
6033 
6034 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6035 		return nr_swap_pages;
6036 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6037 		nr_swap_pages = min_t(long, nr_swap_pages,
6038 				      READ_ONCE(memcg->swap.limit) -
6039 				      page_counter_read(&memcg->swap));
6040 	return nr_swap_pages;
6041 }
6042 
6043 bool mem_cgroup_swap_full(struct page *page)
6044 {
6045 	struct mem_cgroup *memcg;
6046 
6047 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6048 
6049 	if (vm_swap_full())
6050 		return true;
6051 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052 		return false;
6053 
6054 	memcg = page->mem_cgroup;
6055 	if (!memcg)
6056 		return false;
6057 
6058 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6059 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6060 			return true;
6061 
6062 	return false;
6063 }
6064 
6065 /* for remember boot option*/
6066 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6067 static int really_do_swap_account __initdata = 1;
6068 #else
6069 static int really_do_swap_account __initdata;
6070 #endif
6071 
6072 static int __init enable_swap_account(char *s)
6073 {
6074 	if (!strcmp(s, "1"))
6075 		really_do_swap_account = 1;
6076 	else if (!strcmp(s, "0"))
6077 		really_do_swap_account = 0;
6078 	return 1;
6079 }
6080 __setup("swapaccount=", enable_swap_account);
6081 
6082 static u64 swap_current_read(struct cgroup_subsys_state *css,
6083 			     struct cftype *cft)
6084 {
6085 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6086 
6087 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6088 }
6089 
6090 static int swap_max_show(struct seq_file *m, void *v)
6091 {
6092 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6093 	unsigned long max = READ_ONCE(memcg->swap.limit);
6094 
6095 	if (max == PAGE_COUNTER_MAX)
6096 		seq_puts(m, "max\n");
6097 	else
6098 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6099 
6100 	return 0;
6101 }
6102 
6103 static ssize_t swap_max_write(struct kernfs_open_file *of,
6104 			      char *buf, size_t nbytes, loff_t off)
6105 {
6106 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6107 	unsigned long max;
6108 	int err;
6109 
6110 	buf = strstrip(buf);
6111 	err = page_counter_memparse(buf, "max", &max);
6112 	if (err)
6113 		return err;
6114 
6115 	mutex_lock(&memcg_limit_mutex);
6116 	err = page_counter_limit(&memcg->swap, max);
6117 	mutex_unlock(&memcg_limit_mutex);
6118 	if (err)
6119 		return err;
6120 
6121 	return nbytes;
6122 }
6123 
6124 static struct cftype swap_files[] = {
6125 	{
6126 		.name = "swap.current",
6127 		.flags = CFTYPE_NOT_ON_ROOT,
6128 		.read_u64 = swap_current_read,
6129 	},
6130 	{
6131 		.name = "swap.max",
6132 		.flags = CFTYPE_NOT_ON_ROOT,
6133 		.seq_show = swap_max_show,
6134 		.write = swap_max_write,
6135 	},
6136 	{ }	/* terminate */
6137 };
6138 
6139 static struct cftype memsw_cgroup_files[] = {
6140 	{
6141 		.name = "memsw.usage_in_bytes",
6142 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6143 		.read_u64 = mem_cgroup_read_u64,
6144 	},
6145 	{
6146 		.name = "memsw.max_usage_in_bytes",
6147 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6148 		.write = mem_cgroup_reset,
6149 		.read_u64 = mem_cgroup_read_u64,
6150 	},
6151 	{
6152 		.name = "memsw.limit_in_bytes",
6153 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6154 		.write = mem_cgroup_write,
6155 		.read_u64 = mem_cgroup_read_u64,
6156 	},
6157 	{
6158 		.name = "memsw.failcnt",
6159 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6160 		.write = mem_cgroup_reset,
6161 		.read_u64 = mem_cgroup_read_u64,
6162 	},
6163 	{ },	/* terminate */
6164 };
6165 
6166 static int __init mem_cgroup_swap_init(void)
6167 {
6168 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6169 		do_swap_account = 1;
6170 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6171 					       swap_files));
6172 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6173 						  memsw_cgroup_files));
6174 	}
6175 	return 0;
6176 }
6177 subsys_initcall(mem_cgroup_swap_init);
6178 
6179 #endif /* CONFIG_MEMCG_SWAP */
6180