1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/smp.h> 43 #include <linux/page-flags.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/limits.h> 48 #include <linux/export.h> 49 #include <linux/mutex.h> 50 #include <linux/rbtree.h> 51 #include <linux/slab.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/spinlock.h> 55 #include <linux/eventfd.h> 56 #include <linux/poll.h> 57 #include <linux/sort.h> 58 #include <linux/fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/vmpressure.h> 61 #include <linux/mm_inline.h> 62 #include <linux/swap_cgroup.h> 63 #include <linux/cpu.h> 64 #include <linux/oom.h> 65 #include <linux/lockdep.h> 66 #include <linux/file.h> 67 #include <linux/tracehook.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 #define MEM_CGROUP_RECLAIM_RETRIES 5 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 int do_swap_account __read_mostly; 93 #else 94 #define do_swap_account 0 95 #endif 96 97 /* Whether legacy memory+swap accounting is active */ 98 static bool do_memsw_account(void) 99 { 100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 101 } 102 103 static const char *const mem_cgroup_lru_names[] = { 104 "inactive_anon", 105 "active_anon", 106 "inactive_file", 107 "active_file", 108 "unevictable", 109 }; 110 111 #define THRESHOLDS_EVENTS_TARGET 128 112 #define SOFTLIMIT_EVENTS_TARGET 1024 113 #define NUMAINFO_EVENTS_TARGET 1024 114 115 /* 116 * Cgroups above their limits are maintained in a RB-Tree, independent of 117 * their hierarchy representation 118 */ 119 120 struct mem_cgroup_tree_per_node { 121 struct rb_root rb_root; 122 struct rb_node *rb_rightmost; 123 spinlock_t lock; 124 }; 125 126 struct mem_cgroup_tree { 127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 128 }; 129 130 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 131 132 /* for OOM */ 133 struct mem_cgroup_eventfd_list { 134 struct list_head list; 135 struct eventfd_ctx *eventfd; 136 }; 137 138 /* 139 * cgroup_event represents events which userspace want to receive. 140 */ 141 struct mem_cgroup_event { 142 /* 143 * memcg which the event belongs to. 144 */ 145 struct mem_cgroup *memcg; 146 /* 147 * eventfd to signal userspace about the event. 148 */ 149 struct eventfd_ctx *eventfd; 150 /* 151 * Each of these stored in a list by the cgroup. 152 */ 153 struct list_head list; 154 /* 155 * register_event() callback will be used to add new userspace 156 * waiter for changes related to this event. Use eventfd_signal() 157 * on eventfd to send notification to userspace. 158 */ 159 int (*register_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd, const char *args); 161 /* 162 * unregister_event() callback will be called when userspace closes 163 * the eventfd or on cgroup removing. This callback must be set, 164 * if you want provide notification functionality. 165 */ 166 void (*unregister_event)(struct mem_cgroup *memcg, 167 struct eventfd_ctx *eventfd); 168 /* 169 * All fields below needed to unregister event when 170 * userspace closes eventfd. 171 */ 172 poll_table pt; 173 wait_queue_head_t *wqh; 174 wait_queue_entry_t wait; 175 struct work_struct remove; 176 }; 177 178 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 180 181 /* Stuffs for move charges at task migration. */ 182 /* 183 * Types of charges to be moved. 184 */ 185 #define MOVE_ANON 0x1U 186 #define MOVE_FILE 0x2U 187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 188 189 /* "mc" and its members are protected by cgroup_mutex */ 190 static struct move_charge_struct { 191 spinlock_t lock; /* for from, to */ 192 struct mm_struct *mm; 193 struct mem_cgroup *from; 194 struct mem_cgroup *to; 195 unsigned long flags; 196 unsigned long precharge; 197 unsigned long moved_charge; 198 unsigned long moved_swap; 199 struct task_struct *moving_task; /* a task moving charges */ 200 wait_queue_head_t waitq; /* a waitq for other context */ 201 } mc = { 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 204 }; 205 206 /* 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 208 * limit reclaim to prevent infinite loops, if they ever occur. 209 */ 210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 212 213 enum charge_type { 214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 215 MEM_CGROUP_CHARGE_TYPE_ANON, 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 218 NR_CHARGE_TYPE, 219 }; 220 221 /* for encoding cft->private value on file */ 222 enum res_type { 223 _MEM, 224 _MEMSWAP, 225 _OOM_TYPE, 226 _KMEM, 227 _TCP, 228 }; 229 230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 232 #define MEMFILE_ATTR(val) ((val) & 0xffff) 233 /* Used for OOM nofiier */ 234 #define OOM_CONTROL (0) 235 236 /* 237 * Iteration constructs for visiting all cgroups (under a tree). If 238 * loops are exited prematurely (break), mem_cgroup_iter_break() must 239 * be used for reference counting. 240 */ 241 #define for_each_mem_cgroup_tree(iter, root) \ 242 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 243 iter != NULL; \ 244 iter = mem_cgroup_iter(root, iter, NULL)) 245 246 #define for_each_mem_cgroup(iter) \ 247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 248 iter != NULL; \ 249 iter = mem_cgroup_iter(NULL, iter, NULL)) 250 251 /* Some nice accessors for the vmpressure. */ 252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 253 { 254 if (!memcg) 255 memcg = root_mem_cgroup; 256 return &memcg->vmpressure; 257 } 258 259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 260 { 261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 262 } 263 264 #ifdef CONFIG_MEMCG_KMEM 265 /* 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 267 * The main reason for not using cgroup id for this: 268 * this works better in sparse environments, where we have a lot of memcgs, 269 * but only a few kmem-limited. Or also, if we have, for instance, 200 270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 271 * 200 entry array for that. 272 * 273 * The current size of the caches array is stored in memcg_nr_cache_ids. It 274 * will double each time we have to increase it. 275 */ 276 static DEFINE_IDA(memcg_cache_ida); 277 int memcg_nr_cache_ids; 278 279 /* Protects memcg_nr_cache_ids */ 280 static DECLARE_RWSEM(memcg_cache_ids_sem); 281 282 void memcg_get_cache_ids(void) 283 { 284 down_read(&memcg_cache_ids_sem); 285 } 286 287 void memcg_put_cache_ids(void) 288 { 289 up_read(&memcg_cache_ids_sem); 290 } 291 292 /* 293 * MIN_SIZE is different than 1, because we would like to avoid going through 294 * the alloc/free process all the time. In a small machine, 4 kmem-limited 295 * cgroups is a reasonable guess. In the future, it could be a parameter or 296 * tunable, but that is strictly not necessary. 297 * 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 299 * this constant directly from cgroup, but it is understandable that this is 300 * better kept as an internal representation in cgroup.c. In any case, the 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily 302 * increase ours as well if it increases. 303 */ 304 #define MEMCG_CACHES_MIN_SIZE 4 305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 306 307 /* 308 * A lot of the calls to the cache allocation functions are expected to be 309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 310 * conditional to this static branch, we'll have to allow modules that does 311 * kmem_cache_alloc and the such to see this symbol as well 312 */ 313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 314 EXPORT_SYMBOL(memcg_kmem_enabled_key); 315 316 struct workqueue_struct *memcg_kmem_cache_wq; 317 318 static int memcg_shrinker_map_size; 319 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 320 321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 322 { 323 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 324 } 325 326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 327 int size, int old_size) 328 { 329 struct memcg_shrinker_map *new, *old; 330 int nid; 331 332 lockdep_assert_held(&memcg_shrinker_map_mutex); 333 334 for_each_node(nid) { 335 old = rcu_dereference_protected( 336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 337 /* Not yet online memcg */ 338 if (!old) 339 return 0; 340 341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 342 if (!new) 343 return -ENOMEM; 344 345 /* Set all old bits, clear all new bits */ 346 memset(new->map, (int)0xff, old_size); 347 memset((void *)new->map + old_size, 0, size - old_size); 348 349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 351 } 352 353 return 0; 354 } 355 356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 357 { 358 struct mem_cgroup_per_node *pn; 359 struct memcg_shrinker_map *map; 360 int nid; 361 362 if (mem_cgroup_is_root(memcg)) 363 return; 364 365 for_each_node(nid) { 366 pn = mem_cgroup_nodeinfo(memcg, nid); 367 map = rcu_dereference_protected(pn->shrinker_map, true); 368 if (map) 369 kvfree(map); 370 rcu_assign_pointer(pn->shrinker_map, NULL); 371 } 372 } 373 374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 375 { 376 struct memcg_shrinker_map *map; 377 int nid, size, ret = 0; 378 379 if (mem_cgroup_is_root(memcg)) 380 return 0; 381 382 mutex_lock(&memcg_shrinker_map_mutex); 383 size = memcg_shrinker_map_size; 384 for_each_node(nid) { 385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 386 if (!map) { 387 memcg_free_shrinker_maps(memcg); 388 ret = -ENOMEM; 389 break; 390 } 391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 392 } 393 mutex_unlock(&memcg_shrinker_map_mutex); 394 395 return ret; 396 } 397 398 int memcg_expand_shrinker_maps(int new_id) 399 { 400 int size, old_size, ret = 0; 401 struct mem_cgroup *memcg; 402 403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 404 old_size = memcg_shrinker_map_size; 405 if (size <= old_size) 406 return 0; 407 408 mutex_lock(&memcg_shrinker_map_mutex); 409 if (!root_mem_cgroup) 410 goto unlock; 411 412 for_each_mem_cgroup(memcg) { 413 if (mem_cgroup_is_root(memcg)) 414 continue; 415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 416 if (ret) 417 goto unlock; 418 } 419 unlock: 420 if (!ret) 421 memcg_shrinker_map_size = size; 422 mutex_unlock(&memcg_shrinker_map_mutex); 423 return ret; 424 } 425 426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 427 { 428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 429 struct memcg_shrinker_map *map; 430 431 rcu_read_lock(); 432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 433 /* Pairs with smp mb in shrink_slab() */ 434 smp_mb__before_atomic(); 435 set_bit(shrinker_id, map->map); 436 rcu_read_unlock(); 437 } 438 } 439 440 #else /* CONFIG_MEMCG_KMEM */ 441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 442 { 443 return 0; 444 } 445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 446 #endif /* CONFIG_MEMCG_KMEM */ 447 448 /** 449 * mem_cgroup_css_from_page - css of the memcg associated with a page 450 * @page: page of interest 451 * 452 * If memcg is bound to the default hierarchy, css of the memcg associated 453 * with @page is returned. The returned css remains associated with @page 454 * until it is released. 455 * 456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 457 * is returned. 458 */ 459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 460 { 461 struct mem_cgroup *memcg; 462 463 memcg = page->mem_cgroup; 464 465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 466 memcg = root_mem_cgroup; 467 468 return &memcg->css; 469 } 470 471 /** 472 * page_cgroup_ino - return inode number of the memcg a page is charged to 473 * @page: the page 474 * 475 * Look up the closest online ancestor of the memory cgroup @page is charged to 476 * and return its inode number or 0 if @page is not charged to any cgroup. It 477 * is safe to call this function without holding a reference to @page. 478 * 479 * Note, this function is inherently racy, because there is nothing to prevent 480 * the cgroup inode from getting torn down and potentially reallocated a moment 481 * after page_cgroup_ino() returns, so it only should be used by callers that 482 * do not care (such as procfs interfaces). 483 */ 484 ino_t page_cgroup_ino(struct page *page) 485 { 486 struct mem_cgroup *memcg; 487 unsigned long ino = 0; 488 489 rcu_read_lock(); 490 memcg = READ_ONCE(page->mem_cgroup); 491 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 492 memcg = parent_mem_cgroup(memcg); 493 if (memcg) 494 ino = cgroup_ino(memcg->css.cgroup); 495 rcu_read_unlock(); 496 return ino; 497 } 498 499 static struct mem_cgroup_per_node * 500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 501 { 502 int nid = page_to_nid(page); 503 504 return memcg->nodeinfo[nid]; 505 } 506 507 static struct mem_cgroup_tree_per_node * 508 soft_limit_tree_node(int nid) 509 { 510 return soft_limit_tree.rb_tree_per_node[nid]; 511 } 512 513 static struct mem_cgroup_tree_per_node * 514 soft_limit_tree_from_page(struct page *page) 515 { 516 int nid = page_to_nid(page); 517 518 return soft_limit_tree.rb_tree_per_node[nid]; 519 } 520 521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 522 struct mem_cgroup_tree_per_node *mctz, 523 unsigned long new_usage_in_excess) 524 { 525 struct rb_node **p = &mctz->rb_root.rb_node; 526 struct rb_node *parent = NULL; 527 struct mem_cgroup_per_node *mz_node; 528 bool rightmost = true; 529 530 if (mz->on_tree) 531 return; 532 533 mz->usage_in_excess = new_usage_in_excess; 534 if (!mz->usage_in_excess) 535 return; 536 while (*p) { 537 parent = *p; 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 539 tree_node); 540 if (mz->usage_in_excess < mz_node->usage_in_excess) { 541 p = &(*p)->rb_left; 542 rightmost = false; 543 } 544 545 /* 546 * We can't avoid mem cgroups that are over their soft 547 * limit by the same amount 548 */ 549 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 550 p = &(*p)->rb_right; 551 } 552 553 if (rightmost) 554 mctz->rb_rightmost = &mz->tree_node; 555 556 rb_link_node(&mz->tree_node, parent, p); 557 rb_insert_color(&mz->tree_node, &mctz->rb_root); 558 mz->on_tree = true; 559 } 560 561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 562 struct mem_cgroup_tree_per_node *mctz) 563 { 564 if (!mz->on_tree) 565 return; 566 567 if (&mz->tree_node == mctz->rb_rightmost) 568 mctz->rb_rightmost = rb_prev(&mz->tree_node); 569 570 rb_erase(&mz->tree_node, &mctz->rb_root); 571 mz->on_tree = false; 572 } 573 574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 575 struct mem_cgroup_tree_per_node *mctz) 576 { 577 unsigned long flags; 578 579 spin_lock_irqsave(&mctz->lock, flags); 580 __mem_cgroup_remove_exceeded(mz, mctz); 581 spin_unlock_irqrestore(&mctz->lock, flags); 582 } 583 584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 585 { 586 unsigned long nr_pages = page_counter_read(&memcg->memory); 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 588 unsigned long excess = 0; 589 590 if (nr_pages > soft_limit) 591 excess = nr_pages - soft_limit; 592 593 return excess; 594 } 595 596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 597 { 598 unsigned long excess; 599 struct mem_cgroup_per_node *mz; 600 struct mem_cgroup_tree_per_node *mctz; 601 602 mctz = soft_limit_tree_from_page(page); 603 if (!mctz) 604 return; 605 /* 606 * Necessary to update all ancestors when hierarchy is used. 607 * because their event counter is not touched. 608 */ 609 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 610 mz = mem_cgroup_page_nodeinfo(memcg, page); 611 excess = soft_limit_excess(memcg); 612 /* 613 * We have to update the tree if mz is on RB-tree or 614 * mem is over its softlimit. 615 */ 616 if (excess || mz->on_tree) { 617 unsigned long flags; 618 619 spin_lock_irqsave(&mctz->lock, flags); 620 /* if on-tree, remove it */ 621 if (mz->on_tree) 622 __mem_cgroup_remove_exceeded(mz, mctz); 623 /* 624 * Insert again. mz->usage_in_excess will be updated. 625 * If excess is 0, no tree ops. 626 */ 627 __mem_cgroup_insert_exceeded(mz, mctz, excess); 628 spin_unlock_irqrestore(&mctz->lock, flags); 629 } 630 } 631 } 632 633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 634 { 635 struct mem_cgroup_tree_per_node *mctz; 636 struct mem_cgroup_per_node *mz; 637 int nid; 638 639 for_each_node(nid) { 640 mz = mem_cgroup_nodeinfo(memcg, nid); 641 mctz = soft_limit_tree_node(nid); 642 if (mctz) 643 mem_cgroup_remove_exceeded(mz, mctz); 644 } 645 } 646 647 static struct mem_cgroup_per_node * 648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 649 { 650 struct mem_cgroup_per_node *mz; 651 652 retry: 653 mz = NULL; 654 if (!mctz->rb_rightmost) 655 goto done; /* Nothing to reclaim from */ 656 657 mz = rb_entry(mctz->rb_rightmost, 658 struct mem_cgroup_per_node, tree_node); 659 /* 660 * Remove the node now but someone else can add it back, 661 * we will to add it back at the end of reclaim to its correct 662 * position in the tree. 663 */ 664 __mem_cgroup_remove_exceeded(mz, mctz); 665 if (!soft_limit_excess(mz->memcg) || 666 !css_tryget_online(&mz->memcg->css)) 667 goto retry; 668 done: 669 return mz; 670 } 671 672 static struct mem_cgroup_per_node * 673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 674 { 675 struct mem_cgroup_per_node *mz; 676 677 spin_lock_irq(&mctz->lock); 678 mz = __mem_cgroup_largest_soft_limit_node(mctz); 679 spin_unlock_irq(&mctz->lock); 680 return mz; 681 } 682 683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 684 int event) 685 { 686 return atomic_long_read(&memcg->events[event]); 687 } 688 689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 690 struct page *page, 691 bool compound, int nr_pages) 692 { 693 /* 694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 695 * counted as CACHE even if it's on ANON LRU. 696 */ 697 if (PageAnon(page)) 698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 699 else { 700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 701 if (PageSwapBacked(page)) 702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 703 } 704 705 if (compound) { 706 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 708 } 709 710 /* pagein of a big page is an event. So, ignore page size */ 711 if (nr_pages > 0) 712 __count_memcg_events(memcg, PGPGIN, 1); 713 else { 714 __count_memcg_events(memcg, PGPGOUT, 1); 715 nr_pages = -nr_pages; /* for event */ 716 } 717 718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages); 719 } 720 721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 722 int nid, unsigned int lru_mask) 723 { 724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 725 unsigned long nr = 0; 726 enum lru_list lru; 727 728 VM_BUG_ON((unsigned)nid >= nr_node_ids); 729 730 for_each_lru(lru) { 731 if (!(BIT(lru) & lru_mask)) 732 continue; 733 nr += mem_cgroup_get_lru_size(lruvec, lru); 734 } 735 return nr; 736 } 737 738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 739 unsigned int lru_mask) 740 { 741 unsigned long nr = 0; 742 int nid; 743 744 for_each_node_state(nid, N_MEMORY) 745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 746 return nr; 747 } 748 749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 750 enum mem_cgroup_events_target target) 751 { 752 unsigned long val, next; 753 754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events); 755 next = __this_cpu_read(memcg->stat_cpu->targets[target]); 756 /* from time_after() in jiffies.h */ 757 if ((long)(next - val) < 0) { 758 switch (target) { 759 case MEM_CGROUP_TARGET_THRESH: 760 next = val + THRESHOLDS_EVENTS_TARGET; 761 break; 762 case MEM_CGROUP_TARGET_SOFTLIMIT: 763 next = val + SOFTLIMIT_EVENTS_TARGET; 764 break; 765 case MEM_CGROUP_TARGET_NUMAINFO: 766 next = val + NUMAINFO_EVENTS_TARGET; 767 break; 768 default: 769 break; 770 } 771 __this_cpu_write(memcg->stat_cpu->targets[target], next); 772 return true; 773 } 774 return false; 775 } 776 777 /* 778 * Check events in order. 779 * 780 */ 781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 782 { 783 /* threshold event is triggered in finer grain than soft limit */ 784 if (unlikely(mem_cgroup_event_ratelimit(memcg, 785 MEM_CGROUP_TARGET_THRESH))) { 786 bool do_softlimit; 787 bool do_numainfo __maybe_unused; 788 789 do_softlimit = mem_cgroup_event_ratelimit(memcg, 790 MEM_CGROUP_TARGET_SOFTLIMIT); 791 #if MAX_NUMNODES > 1 792 do_numainfo = mem_cgroup_event_ratelimit(memcg, 793 MEM_CGROUP_TARGET_NUMAINFO); 794 #endif 795 mem_cgroup_threshold(memcg); 796 if (unlikely(do_softlimit)) 797 mem_cgroup_update_tree(memcg, page); 798 #if MAX_NUMNODES > 1 799 if (unlikely(do_numainfo)) 800 atomic_inc(&memcg->numainfo_events); 801 #endif 802 } 803 } 804 805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 806 { 807 /* 808 * mm_update_next_owner() may clear mm->owner to NULL 809 * if it races with swapoff, page migration, etc. 810 * So this can be called with p == NULL. 811 */ 812 if (unlikely(!p)) 813 return NULL; 814 815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 816 } 817 EXPORT_SYMBOL(mem_cgroup_from_task); 818 819 /** 820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 821 * @mm: mm from which memcg should be extracted. It can be NULL. 822 * 823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 825 * returned. 826 */ 827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 828 { 829 struct mem_cgroup *memcg; 830 831 if (mem_cgroup_disabled()) 832 return NULL; 833 834 rcu_read_lock(); 835 do { 836 /* 837 * Page cache insertions can happen withou an 838 * actual mm context, e.g. during disk probing 839 * on boot, loopback IO, acct() writes etc. 840 */ 841 if (unlikely(!mm)) 842 memcg = root_mem_cgroup; 843 else { 844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 845 if (unlikely(!memcg)) 846 memcg = root_mem_cgroup; 847 } 848 } while (!css_tryget_online(&memcg->css)); 849 rcu_read_unlock(); 850 return memcg; 851 } 852 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 853 854 /** 855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 856 * @page: page from which memcg should be extracted. 857 * 858 * Obtain a reference on page->memcg and returns it if successful. Otherwise 859 * root_mem_cgroup is returned. 860 */ 861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 862 { 863 struct mem_cgroup *memcg = page->mem_cgroup; 864 865 if (mem_cgroup_disabled()) 866 return NULL; 867 868 rcu_read_lock(); 869 if (!memcg || !css_tryget_online(&memcg->css)) 870 memcg = root_mem_cgroup; 871 rcu_read_unlock(); 872 return memcg; 873 } 874 EXPORT_SYMBOL(get_mem_cgroup_from_page); 875 876 /** 877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 878 */ 879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 880 { 881 if (unlikely(current->active_memcg)) { 882 struct mem_cgroup *memcg = root_mem_cgroup; 883 884 rcu_read_lock(); 885 if (css_tryget_online(¤t->active_memcg->css)) 886 memcg = current->active_memcg; 887 rcu_read_unlock(); 888 return memcg; 889 } 890 return get_mem_cgroup_from_mm(current->mm); 891 } 892 893 /** 894 * mem_cgroup_iter - iterate over memory cgroup hierarchy 895 * @root: hierarchy root 896 * @prev: previously returned memcg, NULL on first invocation 897 * @reclaim: cookie for shared reclaim walks, NULL for full walks 898 * 899 * Returns references to children of the hierarchy below @root, or 900 * @root itself, or %NULL after a full round-trip. 901 * 902 * Caller must pass the return value in @prev on subsequent 903 * invocations for reference counting, or use mem_cgroup_iter_break() 904 * to cancel a hierarchy walk before the round-trip is complete. 905 * 906 * Reclaimers can specify a node and a priority level in @reclaim to 907 * divide up the memcgs in the hierarchy among all concurrent 908 * reclaimers operating on the same node and priority. 909 */ 910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 911 struct mem_cgroup *prev, 912 struct mem_cgroup_reclaim_cookie *reclaim) 913 { 914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 915 struct cgroup_subsys_state *css = NULL; 916 struct mem_cgroup *memcg = NULL; 917 struct mem_cgroup *pos = NULL; 918 919 if (mem_cgroup_disabled()) 920 return NULL; 921 922 if (!root) 923 root = root_mem_cgroup; 924 925 if (prev && !reclaim) 926 pos = prev; 927 928 if (!root->use_hierarchy && root != root_mem_cgroup) { 929 if (prev) 930 goto out; 931 return root; 932 } 933 934 rcu_read_lock(); 935 936 if (reclaim) { 937 struct mem_cgroup_per_node *mz; 938 939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 940 iter = &mz->iter[reclaim->priority]; 941 942 if (prev && reclaim->generation != iter->generation) 943 goto out_unlock; 944 945 while (1) { 946 pos = READ_ONCE(iter->position); 947 if (!pos || css_tryget(&pos->css)) 948 break; 949 /* 950 * css reference reached zero, so iter->position will 951 * be cleared by ->css_released. However, we should not 952 * rely on this happening soon, because ->css_released 953 * is called from a work queue, and by busy-waiting we 954 * might block it. So we clear iter->position right 955 * away. 956 */ 957 (void)cmpxchg(&iter->position, pos, NULL); 958 } 959 } 960 961 if (pos) 962 css = &pos->css; 963 964 for (;;) { 965 css = css_next_descendant_pre(css, &root->css); 966 if (!css) { 967 /* 968 * Reclaimers share the hierarchy walk, and a 969 * new one might jump in right at the end of 970 * the hierarchy - make sure they see at least 971 * one group and restart from the beginning. 972 */ 973 if (!prev) 974 continue; 975 break; 976 } 977 978 /* 979 * Verify the css and acquire a reference. The root 980 * is provided by the caller, so we know it's alive 981 * and kicking, and don't take an extra reference. 982 */ 983 memcg = mem_cgroup_from_css(css); 984 985 if (css == &root->css) 986 break; 987 988 if (css_tryget(css)) 989 break; 990 991 memcg = NULL; 992 } 993 994 if (reclaim) { 995 /* 996 * The position could have already been updated by a competing 997 * thread, so check that the value hasn't changed since we read 998 * it to avoid reclaiming from the same cgroup twice. 999 */ 1000 (void)cmpxchg(&iter->position, pos, memcg); 1001 1002 if (pos) 1003 css_put(&pos->css); 1004 1005 if (!memcg) 1006 iter->generation++; 1007 else if (!prev) 1008 reclaim->generation = iter->generation; 1009 } 1010 1011 out_unlock: 1012 rcu_read_unlock(); 1013 out: 1014 if (prev && prev != root) 1015 css_put(&prev->css); 1016 1017 return memcg; 1018 } 1019 1020 /** 1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1022 * @root: hierarchy root 1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1024 */ 1025 void mem_cgroup_iter_break(struct mem_cgroup *root, 1026 struct mem_cgroup *prev) 1027 { 1028 if (!root) 1029 root = root_mem_cgroup; 1030 if (prev && prev != root) 1031 css_put(&prev->css); 1032 } 1033 1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1035 { 1036 struct mem_cgroup *memcg = dead_memcg; 1037 struct mem_cgroup_reclaim_iter *iter; 1038 struct mem_cgroup_per_node *mz; 1039 int nid; 1040 int i; 1041 1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1043 for_each_node(nid) { 1044 mz = mem_cgroup_nodeinfo(memcg, nid); 1045 for (i = 0; i <= DEF_PRIORITY; i++) { 1046 iter = &mz->iter[i]; 1047 cmpxchg(&iter->position, 1048 dead_memcg, NULL); 1049 } 1050 } 1051 } 1052 } 1053 1054 /** 1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1056 * @memcg: hierarchy root 1057 * @fn: function to call for each task 1058 * @arg: argument passed to @fn 1059 * 1060 * This function iterates over tasks attached to @memcg or to any of its 1061 * descendants and calls @fn for each task. If @fn returns a non-zero 1062 * value, the function breaks the iteration loop and returns the value. 1063 * Otherwise, it will iterate over all tasks and return 0. 1064 * 1065 * This function must not be called for the root memory cgroup. 1066 */ 1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1068 int (*fn)(struct task_struct *, void *), void *arg) 1069 { 1070 struct mem_cgroup *iter; 1071 int ret = 0; 1072 1073 BUG_ON(memcg == root_mem_cgroup); 1074 1075 for_each_mem_cgroup_tree(iter, memcg) { 1076 struct css_task_iter it; 1077 struct task_struct *task; 1078 1079 css_task_iter_start(&iter->css, 0, &it); 1080 while (!ret && (task = css_task_iter_next(&it))) 1081 ret = fn(task, arg); 1082 css_task_iter_end(&it); 1083 if (ret) { 1084 mem_cgroup_iter_break(memcg, iter); 1085 break; 1086 } 1087 } 1088 return ret; 1089 } 1090 1091 /** 1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1093 * @page: the page 1094 * @pgdat: pgdat of the page 1095 * 1096 * This function is only safe when following the LRU page isolation 1097 * and putback protocol: the LRU lock must be held, and the page must 1098 * either be PageLRU() or the caller must have isolated/allocated it. 1099 */ 1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1101 { 1102 struct mem_cgroup_per_node *mz; 1103 struct mem_cgroup *memcg; 1104 struct lruvec *lruvec; 1105 1106 if (mem_cgroup_disabled()) { 1107 lruvec = &pgdat->lruvec; 1108 goto out; 1109 } 1110 1111 memcg = page->mem_cgroup; 1112 /* 1113 * Swapcache readahead pages are added to the LRU - and 1114 * possibly migrated - before they are charged. 1115 */ 1116 if (!memcg) 1117 memcg = root_mem_cgroup; 1118 1119 mz = mem_cgroup_page_nodeinfo(memcg, page); 1120 lruvec = &mz->lruvec; 1121 out: 1122 /* 1123 * Since a node can be onlined after the mem_cgroup was created, 1124 * we have to be prepared to initialize lruvec->zone here; 1125 * and if offlined then reonlined, we need to reinitialize it. 1126 */ 1127 if (unlikely(lruvec->pgdat != pgdat)) 1128 lruvec->pgdat = pgdat; 1129 return lruvec; 1130 } 1131 1132 /** 1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1134 * @lruvec: mem_cgroup per zone lru vector 1135 * @lru: index of lru list the page is sitting on 1136 * @zid: zone id of the accounted pages 1137 * @nr_pages: positive when adding or negative when removing 1138 * 1139 * This function must be called under lru_lock, just before a page is added 1140 * to or just after a page is removed from an lru list (that ordering being 1141 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1142 */ 1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1144 int zid, int nr_pages) 1145 { 1146 struct mem_cgroup_per_node *mz; 1147 unsigned long *lru_size; 1148 long size; 1149 1150 if (mem_cgroup_disabled()) 1151 return; 1152 1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1154 lru_size = &mz->lru_zone_size[zid][lru]; 1155 1156 if (nr_pages < 0) 1157 *lru_size += nr_pages; 1158 1159 size = *lru_size; 1160 if (WARN_ONCE(size < 0, 1161 "%s(%p, %d, %d): lru_size %ld\n", 1162 __func__, lruvec, lru, nr_pages, size)) { 1163 VM_BUG_ON(1); 1164 *lru_size = 0; 1165 } 1166 1167 if (nr_pages > 0) 1168 *lru_size += nr_pages; 1169 } 1170 1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1172 { 1173 struct mem_cgroup *task_memcg; 1174 struct task_struct *p; 1175 bool ret; 1176 1177 p = find_lock_task_mm(task); 1178 if (p) { 1179 task_memcg = get_mem_cgroup_from_mm(p->mm); 1180 task_unlock(p); 1181 } else { 1182 /* 1183 * All threads may have already detached their mm's, but the oom 1184 * killer still needs to detect if they have already been oom 1185 * killed to prevent needlessly killing additional tasks. 1186 */ 1187 rcu_read_lock(); 1188 task_memcg = mem_cgroup_from_task(task); 1189 css_get(&task_memcg->css); 1190 rcu_read_unlock(); 1191 } 1192 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1193 css_put(&task_memcg->css); 1194 return ret; 1195 } 1196 1197 /** 1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1199 * @memcg: the memory cgroup 1200 * 1201 * Returns the maximum amount of memory @mem can be charged with, in 1202 * pages. 1203 */ 1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1205 { 1206 unsigned long margin = 0; 1207 unsigned long count; 1208 unsigned long limit; 1209 1210 count = page_counter_read(&memcg->memory); 1211 limit = READ_ONCE(memcg->memory.max); 1212 if (count < limit) 1213 margin = limit - count; 1214 1215 if (do_memsw_account()) { 1216 count = page_counter_read(&memcg->memsw); 1217 limit = READ_ONCE(memcg->memsw.max); 1218 if (count <= limit) 1219 margin = min(margin, limit - count); 1220 else 1221 margin = 0; 1222 } 1223 1224 return margin; 1225 } 1226 1227 /* 1228 * A routine for checking "mem" is under move_account() or not. 1229 * 1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1231 * moving cgroups. This is for waiting at high-memory pressure 1232 * caused by "move". 1233 */ 1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1235 { 1236 struct mem_cgroup *from; 1237 struct mem_cgroup *to; 1238 bool ret = false; 1239 /* 1240 * Unlike task_move routines, we access mc.to, mc.from not under 1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1242 */ 1243 spin_lock(&mc.lock); 1244 from = mc.from; 1245 to = mc.to; 1246 if (!from) 1247 goto unlock; 1248 1249 ret = mem_cgroup_is_descendant(from, memcg) || 1250 mem_cgroup_is_descendant(to, memcg); 1251 unlock: 1252 spin_unlock(&mc.lock); 1253 return ret; 1254 } 1255 1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1257 { 1258 if (mc.moving_task && current != mc.moving_task) { 1259 if (mem_cgroup_under_move(memcg)) { 1260 DEFINE_WAIT(wait); 1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1262 /* moving charge context might have finished. */ 1263 if (mc.moving_task) 1264 schedule(); 1265 finish_wait(&mc.waitq, &wait); 1266 return true; 1267 } 1268 } 1269 return false; 1270 } 1271 1272 static const unsigned int memcg1_stats[] = { 1273 MEMCG_CACHE, 1274 MEMCG_RSS, 1275 MEMCG_RSS_HUGE, 1276 NR_SHMEM, 1277 NR_FILE_MAPPED, 1278 NR_FILE_DIRTY, 1279 NR_WRITEBACK, 1280 MEMCG_SWAP, 1281 }; 1282 1283 static const char *const memcg1_stat_names[] = { 1284 "cache", 1285 "rss", 1286 "rss_huge", 1287 "shmem", 1288 "mapped_file", 1289 "dirty", 1290 "writeback", 1291 "swap", 1292 }; 1293 1294 #define K(x) ((x) << (PAGE_SHIFT-10)) 1295 /** 1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1297 * @memcg: The memory cgroup that went over limit 1298 * @p: Task that is going to be killed 1299 * 1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1301 * enabled 1302 */ 1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1304 { 1305 struct mem_cgroup *iter; 1306 unsigned int i; 1307 1308 rcu_read_lock(); 1309 1310 if (p) { 1311 pr_info("Task in "); 1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1313 pr_cont(" killed as a result of limit of "); 1314 } else { 1315 pr_info("Memory limit reached of cgroup "); 1316 } 1317 1318 pr_cont_cgroup_path(memcg->css.cgroup); 1319 pr_cont("\n"); 1320 1321 rcu_read_unlock(); 1322 1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1324 K((u64)page_counter_read(&memcg->memory)), 1325 K((u64)memcg->memory.max), memcg->memory.failcnt); 1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1327 K((u64)page_counter_read(&memcg->memsw)), 1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1330 K((u64)page_counter_read(&memcg->kmem)), 1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1332 1333 for_each_mem_cgroup_tree(iter, memcg) { 1334 pr_info("Memory cgroup stats for "); 1335 pr_cont_cgroup_path(iter->css.cgroup); 1336 pr_cont(":"); 1337 1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1340 continue; 1341 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1342 K(memcg_page_state(iter, memcg1_stats[i]))); 1343 } 1344 1345 for (i = 0; i < NR_LRU_LISTS; i++) 1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1348 1349 pr_cont("\n"); 1350 } 1351 } 1352 1353 /* 1354 * Return the memory (and swap, if configured) limit for a memcg. 1355 */ 1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1357 { 1358 unsigned long max; 1359 1360 max = memcg->memory.max; 1361 if (mem_cgroup_swappiness(memcg)) { 1362 unsigned long memsw_max; 1363 unsigned long swap_max; 1364 1365 memsw_max = memcg->memsw.max; 1366 swap_max = memcg->swap.max; 1367 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1368 max = min(max + swap_max, memsw_max); 1369 } 1370 return max; 1371 } 1372 1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1374 int order) 1375 { 1376 struct oom_control oc = { 1377 .zonelist = NULL, 1378 .nodemask = NULL, 1379 .memcg = memcg, 1380 .gfp_mask = gfp_mask, 1381 .order = order, 1382 }; 1383 bool ret; 1384 1385 mutex_lock(&oom_lock); 1386 ret = out_of_memory(&oc); 1387 mutex_unlock(&oom_lock); 1388 return ret; 1389 } 1390 1391 #if MAX_NUMNODES > 1 1392 1393 /** 1394 * test_mem_cgroup_node_reclaimable 1395 * @memcg: the target memcg 1396 * @nid: the node ID to be checked. 1397 * @noswap : specify true here if the user wants flle only information. 1398 * 1399 * This function returns whether the specified memcg contains any 1400 * reclaimable pages on a node. Returns true if there are any reclaimable 1401 * pages in the node. 1402 */ 1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1404 int nid, bool noswap) 1405 { 1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1407 return true; 1408 if (noswap || !total_swap_pages) 1409 return false; 1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1411 return true; 1412 return false; 1413 1414 } 1415 1416 /* 1417 * Always updating the nodemask is not very good - even if we have an empty 1418 * list or the wrong list here, we can start from some node and traverse all 1419 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1420 * 1421 */ 1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1423 { 1424 int nid; 1425 /* 1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1427 * pagein/pageout changes since the last update. 1428 */ 1429 if (!atomic_read(&memcg->numainfo_events)) 1430 return; 1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1432 return; 1433 1434 /* make a nodemask where this memcg uses memory from */ 1435 memcg->scan_nodes = node_states[N_MEMORY]; 1436 1437 for_each_node_mask(nid, node_states[N_MEMORY]) { 1438 1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1440 node_clear(nid, memcg->scan_nodes); 1441 } 1442 1443 atomic_set(&memcg->numainfo_events, 0); 1444 atomic_set(&memcg->numainfo_updating, 0); 1445 } 1446 1447 /* 1448 * Selecting a node where we start reclaim from. Because what we need is just 1449 * reducing usage counter, start from anywhere is O,K. Considering 1450 * memory reclaim from current node, there are pros. and cons. 1451 * 1452 * Freeing memory from current node means freeing memory from a node which 1453 * we'll use or we've used. So, it may make LRU bad. And if several threads 1454 * hit limits, it will see a contention on a node. But freeing from remote 1455 * node means more costs for memory reclaim because of memory latency. 1456 * 1457 * Now, we use round-robin. Better algorithm is welcomed. 1458 */ 1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1460 { 1461 int node; 1462 1463 mem_cgroup_may_update_nodemask(memcg); 1464 node = memcg->last_scanned_node; 1465 1466 node = next_node_in(node, memcg->scan_nodes); 1467 /* 1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1469 * last time it really checked all the LRUs due to rate limiting. 1470 * Fallback to the current node in that case for simplicity. 1471 */ 1472 if (unlikely(node == MAX_NUMNODES)) 1473 node = numa_node_id(); 1474 1475 memcg->last_scanned_node = node; 1476 return node; 1477 } 1478 #else 1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1480 { 1481 return 0; 1482 } 1483 #endif 1484 1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1486 pg_data_t *pgdat, 1487 gfp_t gfp_mask, 1488 unsigned long *total_scanned) 1489 { 1490 struct mem_cgroup *victim = NULL; 1491 int total = 0; 1492 int loop = 0; 1493 unsigned long excess; 1494 unsigned long nr_scanned; 1495 struct mem_cgroup_reclaim_cookie reclaim = { 1496 .pgdat = pgdat, 1497 .priority = 0, 1498 }; 1499 1500 excess = soft_limit_excess(root_memcg); 1501 1502 while (1) { 1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1504 if (!victim) { 1505 loop++; 1506 if (loop >= 2) { 1507 /* 1508 * If we have not been able to reclaim 1509 * anything, it might because there are 1510 * no reclaimable pages under this hierarchy 1511 */ 1512 if (!total) 1513 break; 1514 /* 1515 * We want to do more targeted reclaim. 1516 * excess >> 2 is not to excessive so as to 1517 * reclaim too much, nor too less that we keep 1518 * coming back to reclaim from this cgroup 1519 */ 1520 if (total >= (excess >> 2) || 1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1522 break; 1523 } 1524 continue; 1525 } 1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1527 pgdat, &nr_scanned); 1528 *total_scanned += nr_scanned; 1529 if (!soft_limit_excess(root_memcg)) 1530 break; 1531 } 1532 mem_cgroup_iter_break(root_memcg, victim); 1533 return total; 1534 } 1535 1536 #ifdef CONFIG_LOCKDEP 1537 static struct lockdep_map memcg_oom_lock_dep_map = { 1538 .name = "memcg_oom_lock", 1539 }; 1540 #endif 1541 1542 static DEFINE_SPINLOCK(memcg_oom_lock); 1543 1544 /* 1545 * Check OOM-Killer is already running under our hierarchy. 1546 * If someone is running, return false. 1547 */ 1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1549 { 1550 struct mem_cgroup *iter, *failed = NULL; 1551 1552 spin_lock(&memcg_oom_lock); 1553 1554 for_each_mem_cgroup_tree(iter, memcg) { 1555 if (iter->oom_lock) { 1556 /* 1557 * this subtree of our hierarchy is already locked 1558 * so we cannot give a lock. 1559 */ 1560 failed = iter; 1561 mem_cgroup_iter_break(memcg, iter); 1562 break; 1563 } else 1564 iter->oom_lock = true; 1565 } 1566 1567 if (failed) { 1568 /* 1569 * OK, we failed to lock the whole subtree so we have 1570 * to clean up what we set up to the failing subtree 1571 */ 1572 for_each_mem_cgroup_tree(iter, memcg) { 1573 if (iter == failed) { 1574 mem_cgroup_iter_break(memcg, iter); 1575 break; 1576 } 1577 iter->oom_lock = false; 1578 } 1579 } else 1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1581 1582 spin_unlock(&memcg_oom_lock); 1583 1584 return !failed; 1585 } 1586 1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1588 { 1589 struct mem_cgroup *iter; 1590 1591 spin_lock(&memcg_oom_lock); 1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1593 for_each_mem_cgroup_tree(iter, memcg) 1594 iter->oom_lock = false; 1595 spin_unlock(&memcg_oom_lock); 1596 } 1597 1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1599 { 1600 struct mem_cgroup *iter; 1601 1602 spin_lock(&memcg_oom_lock); 1603 for_each_mem_cgroup_tree(iter, memcg) 1604 iter->under_oom++; 1605 spin_unlock(&memcg_oom_lock); 1606 } 1607 1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1609 { 1610 struct mem_cgroup *iter; 1611 1612 /* 1613 * When a new child is created while the hierarchy is under oom, 1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1615 */ 1616 spin_lock(&memcg_oom_lock); 1617 for_each_mem_cgroup_tree(iter, memcg) 1618 if (iter->under_oom > 0) 1619 iter->under_oom--; 1620 spin_unlock(&memcg_oom_lock); 1621 } 1622 1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1624 1625 struct oom_wait_info { 1626 struct mem_cgroup *memcg; 1627 wait_queue_entry_t wait; 1628 }; 1629 1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1631 unsigned mode, int sync, void *arg) 1632 { 1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1634 struct mem_cgroup *oom_wait_memcg; 1635 struct oom_wait_info *oom_wait_info; 1636 1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1638 oom_wait_memcg = oom_wait_info->memcg; 1639 1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1642 return 0; 1643 return autoremove_wake_function(wait, mode, sync, arg); 1644 } 1645 1646 static void memcg_oom_recover(struct mem_cgroup *memcg) 1647 { 1648 /* 1649 * For the following lockless ->under_oom test, the only required 1650 * guarantee is that it must see the state asserted by an OOM when 1651 * this function is called as a result of userland actions 1652 * triggered by the notification of the OOM. This is trivially 1653 * achieved by invoking mem_cgroup_mark_under_oom() before 1654 * triggering notification. 1655 */ 1656 if (memcg && memcg->under_oom) 1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1658 } 1659 1660 enum oom_status { 1661 OOM_SUCCESS, 1662 OOM_FAILED, 1663 OOM_ASYNC, 1664 OOM_SKIPPED 1665 }; 1666 1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1668 { 1669 if (order > PAGE_ALLOC_COSTLY_ORDER) 1670 return OOM_SKIPPED; 1671 1672 /* 1673 * We are in the middle of the charge context here, so we 1674 * don't want to block when potentially sitting on a callstack 1675 * that holds all kinds of filesystem and mm locks. 1676 * 1677 * cgroup1 allows disabling the OOM killer and waiting for outside 1678 * handling until the charge can succeed; remember the context and put 1679 * the task to sleep at the end of the page fault when all locks are 1680 * released. 1681 * 1682 * On the other hand, in-kernel OOM killer allows for an async victim 1683 * memory reclaim (oom_reaper) and that means that we are not solely 1684 * relying on the oom victim to make a forward progress and we can 1685 * invoke the oom killer here. 1686 * 1687 * Please note that mem_cgroup_out_of_memory might fail to find a 1688 * victim and then we have to bail out from the charge path. 1689 */ 1690 if (memcg->oom_kill_disable) { 1691 if (!current->in_user_fault) 1692 return OOM_SKIPPED; 1693 css_get(&memcg->css); 1694 current->memcg_in_oom = memcg; 1695 current->memcg_oom_gfp_mask = mask; 1696 current->memcg_oom_order = order; 1697 1698 return OOM_ASYNC; 1699 } 1700 1701 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1702 return OOM_SUCCESS; 1703 1704 return OOM_FAILED; 1705 } 1706 1707 /** 1708 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1709 * @handle: actually kill/wait or just clean up the OOM state 1710 * 1711 * This has to be called at the end of a page fault if the memcg OOM 1712 * handler was enabled. 1713 * 1714 * Memcg supports userspace OOM handling where failed allocations must 1715 * sleep on a waitqueue until the userspace task resolves the 1716 * situation. Sleeping directly in the charge context with all kinds 1717 * of locks held is not a good idea, instead we remember an OOM state 1718 * in the task and mem_cgroup_oom_synchronize() has to be called at 1719 * the end of the page fault to complete the OOM handling. 1720 * 1721 * Returns %true if an ongoing memcg OOM situation was detected and 1722 * completed, %false otherwise. 1723 */ 1724 bool mem_cgroup_oom_synchronize(bool handle) 1725 { 1726 struct mem_cgroup *memcg = current->memcg_in_oom; 1727 struct oom_wait_info owait; 1728 bool locked; 1729 1730 /* OOM is global, do not handle */ 1731 if (!memcg) 1732 return false; 1733 1734 if (!handle) 1735 goto cleanup; 1736 1737 owait.memcg = memcg; 1738 owait.wait.flags = 0; 1739 owait.wait.func = memcg_oom_wake_function; 1740 owait.wait.private = current; 1741 INIT_LIST_HEAD(&owait.wait.entry); 1742 1743 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1744 mem_cgroup_mark_under_oom(memcg); 1745 1746 locked = mem_cgroup_oom_trylock(memcg); 1747 1748 if (locked) 1749 mem_cgroup_oom_notify(memcg); 1750 1751 if (locked && !memcg->oom_kill_disable) { 1752 mem_cgroup_unmark_under_oom(memcg); 1753 finish_wait(&memcg_oom_waitq, &owait.wait); 1754 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1755 current->memcg_oom_order); 1756 } else { 1757 schedule(); 1758 mem_cgroup_unmark_under_oom(memcg); 1759 finish_wait(&memcg_oom_waitq, &owait.wait); 1760 } 1761 1762 if (locked) { 1763 mem_cgroup_oom_unlock(memcg); 1764 /* 1765 * There is no guarantee that an OOM-lock contender 1766 * sees the wakeups triggered by the OOM kill 1767 * uncharges. Wake any sleepers explicitely. 1768 */ 1769 memcg_oom_recover(memcg); 1770 } 1771 cleanup: 1772 current->memcg_in_oom = NULL; 1773 css_put(&memcg->css); 1774 return true; 1775 } 1776 1777 /** 1778 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1779 * @victim: task to be killed by the OOM killer 1780 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1781 * 1782 * Returns a pointer to a memory cgroup, which has to be cleaned up 1783 * by killing all belonging OOM-killable tasks. 1784 * 1785 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1786 */ 1787 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1788 struct mem_cgroup *oom_domain) 1789 { 1790 struct mem_cgroup *oom_group = NULL; 1791 struct mem_cgroup *memcg; 1792 1793 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1794 return NULL; 1795 1796 if (!oom_domain) 1797 oom_domain = root_mem_cgroup; 1798 1799 rcu_read_lock(); 1800 1801 memcg = mem_cgroup_from_task(victim); 1802 if (memcg == root_mem_cgroup) 1803 goto out; 1804 1805 /* 1806 * Traverse the memory cgroup hierarchy from the victim task's 1807 * cgroup up to the OOMing cgroup (or root) to find the 1808 * highest-level memory cgroup with oom.group set. 1809 */ 1810 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1811 if (memcg->oom_group) 1812 oom_group = memcg; 1813 1814 if (memcg == oom_domain) 1815 break; 1816 } 1817 1818 if (oom_group) 1819 css_get(&oom_group->css); 1820 out: 1821 rcu_read_unlock(); 1822 1823 return oom_group; 1824 } 1825 1826 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1827 { 1828 pr_info("Tasks in "); 1829 pr_cont_cgroup_path(memcg->css.cgroup); 1830 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1831 } 1832 1833 /** 1834 * lock_page_memcg - lock a page->mem_cgroup binding 1835 * @page: the page 1836 * 1837 * This function protects unlocked LRU pages from being moved to 1838 * another cgroup. 1839 * 1840 * It ensures lifetime of the returned memcg. Caller is responsible 1841 * for the lifetime of the page; __unlock_page_memcg() is available 1842 * when @page might get freed inside the locked section. 1843 */ 1844 struct mem_cgroup *lock_page_memcg(struct page *page) 1845 { 1846 struct mem_cgroup *memcg; 1847 unsigned long flags; 1848 1849 /* 1850 * The RCU lock is held throughout the transaction. The fast 1851 * path can get away without acquiring the memcg->move_lock 1852 * because page moving starts with an RCU grace period. 1853 * 1854 * The RCU lock also protects the memcg from being freed when 1855 * the page state that is going to change is the only thing 1856 * preventing the page itself from being freed. E.g. writeback 1857 * doesn't hold a page reference and relies on PG_writeback to 1858 * keep off truncation, migration and so forth. 1859 */ 1860 rcu_read_lock(); 1861 1862 if (mem_cgroup_disabled()) 1863 return NULL; 1864 again: 1865 memcg = page->mem_cgroup; 1866 if (unlikely(!memcg)) 1867 return NULL; 1868 1869 if (atomic_read(&memcg->moving_account) <= 0) 1870 return memcg; 1871 1872 spin_lock_irqsave(&memcg->move_lock, flags); 1873 if (memcg != page->mem_cgroup) { 1874 spin_unlock_irqrestore(&memcg->move_lock, flags); 1875 goto again; 1876 } 1877 1878 /* 1879 * When charge migration first begins, we can have locked and 1880 * unlocked page stat updates happening concurrently. Track 1881 * the task who has the lock for unlock_page_memcg(). 1882 */ 1883 memcg->move_lock_task = current; 1884 memcg->move_lock_flags = flags; 1885 1886 return memcg; 1887 } 1888 EXPORT_SYMBOL(lock_page_memcg); 1889 1890 /** 1891 * __unlock_page_memcg - unlock and unpin a memcg 1892 * @memcg: the memcg 1893 * 1894 * Unlock and unpin a memcg returned by lock_page_memcg(). 1895 */ 1896 void __unlock_page_memcg(struct mem_cgroup *memcg) 1897 { 1898 if (memcg && memcg->move_lock_task == current) { 1899 unsigned long flags = memcg->move_lock_flags; 1900 1901 memcg->move_lock_task = NULL; 1902 memcg->move_lock_flags = 0; 1903 1904 spin_unlock_irqrestore(&memcg->move_lock, flags); 1905 } 1906 1907 rcu_read_unlock(); 1908 } 1909 1910 /** 1911 * unlock_page_memcg - unlock a page->mem_cgroup binding 1912 * @page: the page 1913 */ 1914 void unlock_page_memcg(struct page *page) 1915 { 1916 __unlock_page_memcg(page->mem_cgroup); 1917 } 1918 EXPORT_SYMBOL(unlock_page_memcg); 1919 1920 struct memcg_stock_pcp { 1921 struct mem_cgroup *cached; /* this never be root cgroup */ 1922 unsigned int nr_pages; 1923 struct work_struct work; 1924 unsigned long flags; 1925 #define FLUSHING_CACHED_CHARGE 0 1926 }; 1927 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1928 static DEFINE_MUTEX(percpu_charge_mutex); 1929 1930 /** 1931 * consume_stock: Try to consume stocked charge on this cpu. 1932 * @memcg: memcg to consume from. 1933 * @nr_pages: how many pages to charge. 1934 * 1935 * The charges will only happen if @memcg matches the current cpu's memcg 1936 * stock, and at least @nr_pages are available in that stock. Failure to 1937 * service an allocation will refill the stock. 1938 * 1939 * returns true if successful, false otherwise. 1940 */ 1941 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1942 { 1943 struct memcg_stock_pcp *stock; 1944 unsigned long flags; 1945 bool ret = false; 1946 1947 if (nr_pages > MEMCG_CHARGE_BATCH) 1948 return ret; 1949 1950 local_irq_save(flags); 1951 1952 stock = this_cpu_ptr(&memcg_stock); 1953 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1954 stock->nr_pages -= nr_pages; 1955 ret = true; 1956 } 1957 1958 local_irq_restore(flags); 1959 1960 return ret; 1961 } 1962 1963 /* 1964 * Returns stocks cached in percpu and reset cached information. 1965 */ 1966 static void drain_stock(struct memcg_stock_pcp *stock) 1967 { 1968 struct mem_cgroup *old = stock->cached; 1969 1970 if (stock->nr_pages) { 1971 page_counter_uncharge(&old->memory, stock->nr_pages); 1972 if (do_memsw_account()) 1973 page_counter_uncharge(&old->memsw, stock->nr_pages); 1974 css_put_many(&old->css, stock->nr_pages); 1975 stock->nr_pages = 0; 1976 } 1977 stock->cached = NULL; 1978 } 1979 1980 static void drain_local_stock(struct work_struct *dummy) 1981 { 1982 struct memcg_stock_pcp *stock; 1983 unsigned long flags; 1984 1985 /* 1986 * The only protection from memory hotplug vs. drain_stock races is 1987 * that we always operate on local CPU stock here with IRQ disabled 1988 */ 1989 local_irq_save(flags); 1990 1991 stock = this_cpu_ptr(&memcg_stock); 1992 drain_stock(stock); 1993 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1994 1995 local_irq_restore(flags); 1996 } 1997 1998 /* 1999 * Cache charges(val) to local per_cpu area. 2000 * This will be consumed by consume_stock() function, later. 2001 */ 2002 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2003 { 2004 struct memcg_stock_pcp *stock; 2005 unsigned long flags; 2006 2007 local_irq_save(flags); 2008 2009 stock = this_cpu_ptr(&memcg_stock); 2010 if (stock->cached != memcg) { /* reset if necessary */ 2011 drain_stock(stock); 2012 stock->cached = memcg; 2013 } 2014 stock->nr_pages += nr_pages; 2015 2016 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2017 drain_stock(stock); 2018 2019 local_irq_restore(flags); 2020 } 2021 2022 /* 2023 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2024 * of the hierarchy under it. 2025 */ 2026 static void drain_all_stock(struct mem_cgroup *root_memcg) 2027 { 2028 int cpu, curcpu; 2029 2030 /* If someone's already draining, avoid adding running more workers. */ 2031 if (!mutex_trylock(&percpu_charge_mutex)) 2032 return; 2033 /* 2034 * Notify other cpus that system-wide "drain" is running 2035 * We do not care about races with the cpu hotplug because cpu down 2036 * as well as workers from this path always operate on the local 2037 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2038 */ 2039 curcpu = get_cpu(); 2040 for_each_online_cpu(cpu) { 2041 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2042 struct mem_cgroup *memcg; 2043 2044 memcg = stock->cached; 2045 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2046 continue; 2047 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2048 css_put(&memcg->css); 2049 continue; 2050 } 2051 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2052 if (cpu == curcpu) 2053 drain_local_stock(&stock->work); 2054 else 2055 schedule_work_on(cpu, &stock->work); 2056 } 2057 css_put(&memcg->css); 2058 } 2059 put_cpu(); 2060 mutex_unlock(&percpu_charge_mutex); 2061 } 2062 2063 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2064 { 2065 struct memcg_stock_pcp *stock; 2066 struct mem_cgroup *memcg; 2067 2068 stock = &per_cpu(memcg_stock, cpu); 2069 drain_stock(stock); 2070 2071 for_each_mem_cgroup(memcg) { 2072 int i; 2073 2074 for (i = 0; i < MEMCG_NR_STAT; i++) { 2075 int nid; 2076 long x; 2077 2078 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0); 2079 if (x) 2080 atomic_long_add(x, &memcg->stat[i]); 2081 2082 if (i >= NR_VM_NODE_STAT_ITEMS) 2083 continue; 2084 2085 for_each_node(nid) { 2086 struct mem_cgroup_per_node *pn; 2087 2088 pn = mem_cgroup_nodeinfo(memcg, nid); 2089 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2090 if (x) 2091 atomic_long_add(x, &pn->lruvec_stat[i]); 2092 } 2093 } 2094 2095 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2096 long x; 2097 2098 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0); 2099 if (x) 2100 atomic_long_add(x, &memcg->events[i]); 2101 } 2102 } 2103 2104 return 0; 2105 } 2106 2107 static void reclaim_high(struct mem_cgroup *memcg, 2108 unsigned int nr_pages, 2109 gfp_t gfp_mask) 2110 { 2111 do { 2112 if (page_counter_read(&memcg->memory) <= memcg->high) 2113 continue; 2114 memcg_memory_event(memcg, MEMCG_HIGH); 2115 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2116 } while ((memcg = parent_mem_cgroup(memcg))); 2117 } 2118 2119 static void high_work_func(struct work_struct *work) 2120 { 2121 struct mem_cgroup *memcg; 2122 2123 memcg = container_of(work, struct mem_cgroup, high_work); 2124 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2125 } 2126 2127 /* 2128 * Scheduled by try_charge() to be executed from the userland return path 2129 * and reclaims memory over the high limit. 2130 */ 2131 void mem_cgroup_handle_over_high(void) 2132 { 2133 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2134 struct mem_cgroup *memcg; 2135 2136 if (likely(!nr_pages)) 2137 return; 2138 2139 memcg = get_mem_cgroup_from_mm(current->mm); 2140 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2141 css_put(&memcg->css); 2142 current->memcg_nr_pages_over_high = 0; 2143 } 2144 2145 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2146 unsigned int nr_pages) 2147 { 2148 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2149 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2150 struct mem_cgroup *mem_over_limit; 2151 struct page_counter *counter; 2152 unsigned long nr_reclaimed; 2153 bool may_swap = true; 2154 bool drained = false; 2155 bool oomed = false; 2156 enum oom_status oom_status; 2157 2158 if (mem_cgroup_is_root(memcg)) 2159 return 0; 2160 retry: 2161 if (consume_stock(memcg, nr_pages)) 2162 return 0; 2163 2164 if (!do_memsw_account() || 2165 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2166 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2167 goto done_restock; 2168 if (do_memsw_account()) 2169 page_counter_uncharge(&memcg->memsw, batch); 2170 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2171 } else { 2172 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2173 may_swap = false; 2174 } 2175 2176 if (batch > nr_pages) { 2177 batch = nr_pages; 2178 goto retry; 2179 } 2180 2181 /* 2182 * Unlike in global OOM situations, memcg is not in a physical 2183 * memory shortage. Allow dying and OOM-killed tasks to 2184 * bypass the last charges so that they can exit quickly and 2185 * free their memory. 2186 */ 2187 if (unlikely(tsk_is_oom_victim(current) || 2188 fatal_signal_pending(current) || 2189 current->flags & PF_EXITING)) 2190 goto force; 2191 2192 /* 2193 * Prevent unbounded recursion when reclaim operations need to 2194 * allocate memory. This might exceed the limits temporarily, 2195 * but we prefer facilitating memory reclaim and getting back 2196 * under the limit over triggering OOM kills in these cases. 2197 */ 2198 if (unlikely(current->flags & PF_MEMALLOC)) 2199 goto force; 2200 2201 if (unlikely(task_in_memcg_oom(current))) 2202 goto nomem; 2203 2204 if (!gfpflags_allow_blocking(gfp_mask)) 2205 goto nomem; 2206 2207 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2208 2209 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2210 gfp_mask, may_swap); 2211 2212 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2213 goto retry; 2214 2215 if (!drained) { 2216 drain_all_stock(mem_over_limit); 2217 drained = true; 2218 goto retry; 2219 } 2220 2221 if (gfp_mask & __GFP_NORETRY) 2222 goto nomem; 2223 /* 2224 * Even though the limit is exceeded at this point, reclaim 2225 * may have been able to free some pages. Retry the charge 2226 * before killing the task. 2227 * 2228 * Only for regular pages, though: huge pages are rather 2229 * unlikely to succeed so close to the limit, and we fall back 2230 * to regular pages anyway in case of failure. 2231 */ 2232 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2233 goto retry; 2234 /* 2235 * At task move, charge accounts can be doubly counted. So, it's 2236 * better to wait until the end of task_move if something is going on. 2237 */ 2238 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2239 goto retry; 2240 2241 if (nr_retries--) 2242 goto retry; 2243 2244 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed) 2245 goto nomem; 2246 2247 if (gfp_mask & __GFP_NOFAIL) 2248 goto force; 2249 2250 if (fatal_signal_pending(current)) 2251 goto force; 2252 2253 memcg_memory_event(mem_over_limit, MEMCG_OOM); 2254 2255 /* 2256 * keep retrying as long as the memcg oom killer is able to make 2257 * a forward progress or bypass the charge if the oom killer 2258 * couldn't make any progress. 2259 */ 2260 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2261 get_order(nr_pages * PAGE_SIZE)); 2262 switch (oom_status) { 2263 case OOM_SUCCESS: 2264 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2265 oomed = true; 2266 goto retry; 2267 case OOM_FAILED: 2268 goto force; 2269 default: 2270 goto nomem; 2271 } 2272 nomem: 2273 if (!(gfp_mask & __GFP_NOFAIL)) 2274 return -ENOMEM; 2275 force: 2276 /* 2277 * The allocation either can't fail or will lead to more memory 2278 * being freed very soon. Allow memory usage go over the limit 2279 * temporarily by force charging it. 2280 */ 2281 page_counter_charge(&memcg->memory, nr_pages); 2282 if (do_memsw_account()) 2283 page_counter_charge(&memcg->memsw, nr_pages); 2284 css_get_many(&memcg->css, nr_pages); 2285 2286 return 0; 2287 2288 done_restock: 2289 css_get_many(&memcg->css, batch); 2290 if (batch > nr_pages) 2291 refill_stock(memcg, batch - nr_pages); 2292 2293 /* 2294 * If the hierarchy is above the normal consumption range, schedule 2295 * reclaim on returning to userland. We can perform reclaim here 2296 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2297 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2298 * not recorded as it most likely matches current's and won't 2299 * change in the meantime. As high limit is checked again before 2300 * reclaim, the cost of mismatch is negligible. 2301 */ 2302 do { 2303 if (page_counter_read(&memcg->memory) > memcg->high) { 2304 /* Don't bother a random interrupted task */ 2305 if (in_interrupt()) { 2306 schedule_work(&memcg->high_work); 2307 break; 2308 } 2309 current->memcg_nr_pages_over_high += batch; 2310 set_notify_resume(current); 2311 break; 2312 } 2313 } while ((memcg = parent_mem_cgroup(memcg))); 2314 2315 return 0; 2316 } 2317 2318 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2319 { 2320 if (mem_cgroup_is_root(memcg)) 2321 return; 2322 2323 page_counter_uncharge(&memcg->memory, nr_pages); 2324 if (do_memsw_account()) 2325 page_counter_uncharge(&memcg->memsw, nr_pages); 2326 2327 css_put_many(&memcg->css, nr_pages); 2328 } 2329 2330 static void lock_page_lru(struct page *page, int *isolated) 2331 { 2332 struct zone *zone = page_zone(page); 2333 2334 spin_lock_irq(zone_lru_lock(zone)); 2335 if (PageLRU(page)) { 2336 struct lruvec *lruvec; 2337 2338 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2339 ClearPageLRU(page); 2340 del_page_from_lru_list(page, lruvec, page_lru(page)); 2341 *isolated = 1; 2342 } else 2343 *isolated = 0; 2344 } 2345 2346 static void unlock_page_lru(struct page *page, int isolated) 2347 { 2348 struct zone *zone = page_zone(page); 2349 2350 if (isolated) { 2351 struct lruvec *lruvec; 2352 2353 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2354 VM_BUG_ON_PAGE(PageLRU(page), page); 2355 SetPageLRU(page); 2356 add_page_to_lru_list(page, lruvec, page_lru(page)); 2357 } 2358 spin_unlock_irq(zone_lru_lock(zone)); 2359 } 2360 2361 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2362 bool lrucare) 2363 { 2364 int isolated; 2365 2366 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2367 2368 /* 2369 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2370 * may already be on some other mem_cgroup's LRU. Take care of it. 2371 */ 2372 if (lrucare) 2373 lock_page_lru(page, &isolated); 2374 2375 /* 2376 * Nobody should be changing or seriously looking at 2377 * page->mem_cgroup at this point: 2378 * 2379 * - the page is uncharged 2380 * 2381 * - the page is off-LRU 2382 * 2383 * - an anonymous fault has exclusive page access, except for 2384 * a locked page table 2385 * 2386 * - a page cache insertion, a swapin fault, or a migration 2387 * have the page locked 2388 */ 2389 page->mem_cgroup = memcg; 2390 2391 if (lrucare) 2392 unlock_page_lru(page, isolated); 2393 } 2394 2395 #ifdef CONFIG_MEMCG_KMEM 2396 static int memcg_alloc_cache_id(void) 2397 { 2398 int id, size; 2399 int err; 2400 2401 id = ida_simple_get(&memcg_cache_ida, 2402 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2403 if (id < 0) 2404 return id; 2405 2406 if (id < memcg_nr_cache_ids) 2407 return id; 2408 2409 /* 2410 * There's no space for the new id in memcg_caches arrays, 2411 * so we have to grow them. 2412 */ 2413 down_write(&memcg_cache_ids_sem); 2414 2415 size = 2 * (id + 1); 2416 if (size < MEMCG_CACHES_MIN_SIZE) 2417 size = MEMCG_CACHES_MIN_SIZE; 2418 else if (size > MEMCG_CACHES_MAX_SIZE) 2419 size = MEMCG_CACHES_MAX_SIZE; 2420 2421 err = memcg_update_all_caches(size); 2422 if (!err) 2423 err = memcg_update_all_list_lrus(size); 2424 if (!err) 2425 memcg_nr_cache_ids = size; 2426 2427 up_write(&memcg_cache_ids_sem); 2428 2429 if (err) { 2430 ida_simple_remove(&memcg_cache_ida, id); 2431 return err; 2432 } 2433 return id; 2434 } 2435 2436 static void memcg_free_cache_id(int id) 2437 { 2438 ida_simple_remove(&memcg_cache_ida, id); 2439 } 2440 2441 struct memcg_kmem_cache_create_work { 2442 struct mem_cgroup *memcg; 2443 struct kmem_cache *cachep; 2444 struct work_struct work; 2445 }; 2446 2447 static void memcg_kmem_cache_create_func(struct work_struct *w) 2448 { 2449 struct memcg_kmem_cache_create_work *cw = 2450 container_of(w, struct memcg_kmem_cache_create_work, work); 2451 struct mem_cgroup *memcg = cw->memcg; 2452 struct kmem_cache *cachep = cw->cachep; 2453 2454 memcg_create_kmem_cache(memcg, cachep); 2455 2456 css_put(&memcg->css); 2457 kfree(cw); 2458 } 2459 2460 /* 2461 * Enqueue the creation of a per-memcg kmem_cache. 2462 */ 2463 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2464 struct kmem_cache *cachep) 2465 { 2466 struct memcg_kmem_cache_create_work *cw; 2467 2468 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2469 if (!cw) 2470 return; 2471 2472 css_get(&memcg->css); 2473 2474 cw->memcg = memcg; 2475 cw->cachep = cachep; 2476 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2477 2478 queue_work(memcg_kmem_cache_wq, &cw->work); 2479 } 2480 2481 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2482 struct kmem_cache *cachep) 2483 { 2484 /* 2485 * We need to stop accounting when we kmalloc, because if the 2486 * corresponding kmalloc cache is not yet created, the first allocation 2487 * in __memcg_schedule_kmem_cache_create will recurse. 2488 * 2489 * However, it is better to enclose the whole function. Depending on 2490 * the debugging options enabled, INIT_WORK(), for instance, can 2491 * trigger an allocation. This too, will make us recurse. Because at 2492 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2493 * the safest choice is to do it like this, wrapping the whole function. 2494 */ 2495 current->memcg_kmem_skip_account = 1; 2496 __memcg_schedule_kmem_cache_create(memcg, cachep); 2497 current->memcg_kmem_skip_account = 0; 2498 } 2499 2500 static inline bool memcg_kmem_bypass(void) 2501 { 2502 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2503 return true; 2504 return false; 2505 } 2506 2507 /** 2508 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2509 * @cachep: the original global kmem cache 2510 * 2511 * Return the kmem_cache we're supposed to use for a slab allocation. 2512 * We try to use the current memcg's version of the cache. 2513 * 2514 * If the cache does not exist yet, if we are the first user of it, we 2515 * create it asynchronously in a workqueue and let the current allocation 2516 * go through with the original cache. 2517 * 2518 * This function takes a reference to the cache it returns to assure it 2519 * won't get destroyed while we are working with it. Once the caller is 2520 * done with it, memcg_kmem_put_cache() must be called to release the 2521 * reference. 2522 */ 2523 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2524 { 2525 struct mem_cgroup *memcg; 2526 struct kmem_cache *memcg_cachep; 2527 int kmemcg_id; 2528 2529 VM_BUG_ON(!is_root_cache(cachep)); 2530 2531 if (memcg_kmem_bypass()) 2532 return cachep; 2533 2534 if (current->memcg_kmem_skip_account) 2535 return cachep; 2536 2537 memcg = get_mem_cgroup_from_current(); 2538 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2539 if (kmemcg_id < 0) 2540 goto out; 2541 2542 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2543 if (likely(memcg_cachep)) 2544 return memcg_cachep; 2545 2546 /* 2547 * If we are in a safe context (can wait, and not in interrupt 2548 * context), we could be be predictable and return right away. 2549 * This would guarantee that the allocation being performed 2550 * already belongs in the new cache. 2551 * 2552 * However, there are some clashes that can arrive from locking. 2553 * For instance, because we acquire the slab_mutex while doing 2554 * memcg_create_kmem_cache, this means no further allocation 2555 * could happen with the slab_mutex held. So it's better to 2556 * defer everything. 2557 */ 2558 memcg_schedule_kmem_cache_create(memcg, cachep); 2559 out: 2560 css_put(&memcg->css); 2561 return cachep; 2562 } 2563 2564 /** 2565 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2566 * @cachep: the cache returned by memcg_kmem_get_cache 2567 */ 2568 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2569 { 2570 if (!is_root_cache(cachep)) 2571 css_put(&cachep->memcg_params.memcg->css); 2572 } 2573 2574 /** 2575 * memcg_kmem_charge_memcg: charge a kmem page 2576 * @page: page to charge 2577 * @gfp: reclaim mode 2578 * @order: allocation order 2579 * @memcg: memory cgroup to charge 2580 * 2581 * Returns 0 on success, an error code on failure. 2582 */ 2583 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2584 struct mem_cgroup *memcg) 2585 { 2586 unsigned int nr_pages = 1 << order; 2587 struct page_counter *counter; 2588 int ret; 2589 2590 ret = try_charge(memcg, gfp, nr_pages); 2591 if (ret) 2592 return ret; 2593 2594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2595 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2596 cancel_charge(memcg, nr_pages); 2597 return -ENOMEM; 2598 } 2599 2600 page->mem_cgroup = memcg; 2601 2602 return 0; 2603 } 2604 2605 /** 2606 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2607 * @page: page to charge 2608 * @gfp: reclaim mode 2609 * @order: allocation order 2610 * 2611 * Returns 0 on success, an error code on failure. 2612 */ 2613 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2614 { 2615 struct mem_cgroup *memcg; 2616 int ret = 0; 2617 2618 if (memcg_kmem_bypass()) 2619 return 0; 2620 2621 memcg = get_mem_cgroup_from_current(); 2622 if (!mem_cgroup_is_root(memcg)) { 2623 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2624 if (!ret) 2625 __SetPageKmemcg(page); 2626 } 2627 css_put(&memcg->css); 2628 return ret; 2629 } 2630 /** 2631 * memcg_kmem_uncharge: uncharge a kmem page 2632 * @page: page to uncharge 2633 * @order: allocation order 2634 */ 2635 void memcg_kmem_uncharge(struct page *page, int order) 2636 { 2637 struct mem_cgroup *memcg = page->mem_cgroup; 2638 unsigned int nr_pages = 1 << order; 2639 2640 if (!memcg) 2641 return; 2642 2643 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2644 2645 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2646 page_counter_uncharge(&memcg->kmem, nr_pages); 2647 2648 page_counter_uncharge(&memcg->memory, nr_pages); 2649 if (do_memsw_account()) 2650 page_counter_uncharge(&memcg->memsw, nr_pages); 2651 2652 page->mem_cgroup = NULL; 2653 2654 /* slab pages do not have PageKmemcg flag set */ 2655 if (PageKmemcg(page)) 2656 __ClearPageKmemcg(page); 2657 2658 css_put_many(&memcg->css, nr_pages); 2659 } 2660 #endif /* CONFIG_MEMCG_KMEM */ 2661 2662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2663 2664 /* 2665 * Because tail pages are not marked as "used", set it. We're under 2666 * zone_lru_lock and migration entries setup in all page mappings. 2667 */ 2668 void mem_cgroup_split_huge_fixup(struct page *head) 2669 { 2670 int i; 2671 2672 if (mem_cgroup_disabled()) 2673 return; 2674 2675 for (i = 1; i < HPAGE_PMD_NR; i++) 2676 head[i].mem_cgroup = head->mem_cgroup; 2677 2678 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2679 } 2680 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2681 2682 #ifdef CONFIG_MEMCG_SWAP 2683 /** 2684 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2685 * @entry: swap entry to be moved 2686 * @from: mem_cgroup which the entry is moved from 2687 * @to: mem_cgroup which the entry is moved to 2688 * 2689 * It succeeds only when the swap_cgroup's record for this entry is the same 2690 * as the mem_cgroup's id of @from. 2691 * 2692 * Returns 0 on success, -EINVAL on failure. 2693 * 2694 * The caller must have charged to @to, IOW, called page_counter_charge() about 2695 * both res and memsw, and called css_get(). 2696 */ 2697 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2698 struct mem_cgroup *from, struct mem_cgroup *to) 2699 { 2700 unsigned short old_id, new_id; 2701 2702 old_id = mem_cgroup_id(from); 2703 new_id = mem_cgroup_id(to); 2704 2705 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2706 mod_memcg_state(from, MEMCG_SWAP, -1); 2707 mod_memcg_state(to, MEMCG_SWAP, 1); 2708 return 0; 2709 } 2710 return -EINVAL; 2711 } 2712 #else 2713 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2714 struct mem_cgroup *from, struct mem_cgroup *to) 2715 { 2716 return -EINVAL; 2717 } 2718 #endif 2719 2720 static DEFINE_MUTEX(memcg_max_mutex); 2721 2722 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2723 unsigned long max, bool memsw) 2724 { 2725 bool enlarge = false; 2726 bool drained = false; 2727 int ret; 2728 bool limits_invariant; 2729 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2730 2731 do { 2732 if (signal_pending(current)) { 2733 ret = -EINTR; 2734 break; 2735 } 2736 2737 mutex_lock(&memcg_max_mutex); 2738 /* 2739 * Make sure that the new limit (memsw or memory limit) doesn't 2740 * break our basic invariant rule memory.max <= memsw.max. 2741 */ 2742 limits_invariant = memsw ? max >= memcg->memory.max : 2743 max <= memcg->memsw.max; 2744 if (!limits_invariant) { 2745 mutex_unlock(&memcg_max_mutex); 2746 ret = -EINVAL; 2747 break; 2748 } 2749 if (max > counter->max) 2750 enlarge = true; 2751 ret = page_counter_set_max(counter, max); 2752 mutex_unlock(&memcg_max_mutex); 2753 2754 if (!ret) 2755 break; 2756 2757 if (!drained) { 2758 drain_all_stock(memcg); 2759 drained = true; 2760 continue; 2761 } 2762 2763 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2764 GFP_KERNEL, !memsw)) { 2765 ret = -EBUSY; 2766 break; 2767 } 2768 } while (true); 2769 2770 if (!ret && enlarge) 2771 memcg_oom_recover(memcg); 2772 2773 return ret; 2774 } 2775 2776 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2777 gfp_t gfp_mask, 2778 unsigned long *total_scanned) 2779 { 2780 unsigned long nr_reclaimed = 0; 2781 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2782 unsigned long reclaimed; 2783 int loop = 0; 2784 struct mem_cgroup_tree_per_node *mctz; 2785 unsigned long excess; 2786 unsigned long nr_scanned; 2787 2788 if (order > 0) 2789 return 0; 2790 2791 mctz = soft_limit_tree_node(pgdat->node_id); 2792 2793 /* 2794 * Do not even bother to check the largest node if the root 2795 * is empty. Do it lockless to prevent lock bouncing. Races 2796 * are acceptable as soft limit is best effort anyway. 2797 */ 2798 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2799 return 0; 2800 2801 /* 2802 * This loop can run a while, specially if mem_cgroup's continuously 2803 * keep exceeding their soft limit and putting the system under 2804 * pressure 2805 */ 2806 do { 2807 if (next_mz) 2808 mz = next_mz; 2809 else 2810 mz = mem_cgroup_largest_soft_limit_node(mctz); 2811 if (!mz) 2812 break; 2813 2814 nr_scanned = 0; 2815 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2816 gfp_mask, &nr_scanned); 2817 nr_reclaimed += reclaimed; 2818 *total_scanned += nr_scanned; 2819 spin_lock_irq(&mctz->lock); 2820 __mem_cgroup_remove_exceeded(mz, mctz); 2821 2822 /* 2823 * If we failed to reclaim anything from this memory cgroup 2824 * it is time to move on to the next cgroup 2825 */ 2826 next_mz = NULL; 2827 if (!reclaimed) 2828 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2829 2830 excess = soft_limit_excess(mz->memcg); 2831 /* 2832 * One school of thought says that we should not add 2833 * back the node to the tree if reclaim returns 0. 2834 * But our reclaim could return 0, simply because due 2835 * to priority we are exposing a smaller subset of 2836 * memory to reclaim from. Consider this as a longer 2837 * term TODO. 2838 */ 2839 /* If excess == 0, no tree ops */ 2840 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2841 spin_unlock_irq(&mctz->lock); 2842 css_put(&mz->memcg->css); 2843 loop++; 2844 /* 2845 * Could not reclaim anything and there are no more 2846 * mem cgroups to try or we seem to be looping without 2847 * reclaiming anything. 2848 */ 2849 if (!nr_reclaimed && 2850 (next_mz == NULL || 2851 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2852 break; 2853 } while (!nr_reclaimed); 2854 if (next_mz) 2855 css_put(&next_mz->memcg->css); 2856 return nr_reclaimed; 2857 } 2858 2859 /* 2860 * Test whether @memcg has children, dead or alive. Note that this 2861 * function doesn't care whether @memcg has use_hierarchy enabled and 2862 * returns %true if there are child csses according to the cgroup 2863 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2864 */ 2865 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2866 { 2867 bool ret; 2868 2869 rcu_read_lock(); 2870 ret = css_next_child(NULL, &memcg->css); 2871 rcu_read_unlock(); 2872 return ret; 2873 } 2874 2875 /* 2876 * Reclaims as many pages from the given memcg as possible. 2877 * 2878 * Caller is responsible for holding css reference for memcg. 2879 */ 2880 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2881 { 2882 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2883 2884 /* we call try-to-free pages for make this cgroup empty */ 2885 lru_add_drain_all(); 2886 2887 drain_all_stock(memcg); 2888 2889 /* try to free all pages in this cgroup */ 2890 while (nr_retries && page_counter_read(&memcg->memory)) { 2891 int progress; 2892 2893 if (signal_pending(current)) 2894 return -EINTR; 2895 2896 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2897 GFP_KERNEL, true); 2898 if (!progress) { 2899 nr_retries--; 2900 /* maybe some writeback is necessary */ 2901 congestion_wait(BLK_RW_ASYNC, HZ/10); 2902 } 2903 2904 } 2905 2906 return 0; 2907 } 2908 2909 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2910 char *buf, size_t nbytes, 2911 loff_t off) 2912 { 2913 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2914 2915 if (mem_cgroup_is_root(memcg)) 2916 return -EINVAL; 2917 return mem_cgroup_force_empty(memcg) ?: nbytes; 2918 } 2919 2920 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2921 struct cftype *cft) 2922 { 2923 return mem_cgroup_from_css(css)->use_hierarchy; 2924 } 2925 2926 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2927 struct cftype *cft, u64 val) 2928 { 2929 int retval = 0; 2930 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2931 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2932 2933 if (memcg->use_hierarchy == val) 2934 return 0; 2935 2936 /* 2937 * If parent's use_hierarchy is set, we can't make any modifications 2938 * in the child subtrees. If it is unset, then the change can 2939 * occur, provided the current cgroup has no children. 2940 * 2941 * For the root cgroup, parent_mem is NULL, we allow value to be 2942 * set if there are no children. 2943 */ 2944 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2945 (val == 1 || val == 0)) { 2946 if (!memcg_has_children(memcg)) 2947 memcg->use_hierarchy = val; 2948 else 2949 retval = -EBUSY; 2950 } else 2951 retval = -EINVAL; 2952 2953 return retval; 2954 } 2955 2956 struct accumulated_stats { 2957 unsigned long stat[MEMCG_NR_STAT]; 2958 unsigned long events[NR_VM_EVENT_ITEMS]; 2959 unsigned long lru_pages[NR_LRU_LISTS]; 2960 const unsigned int *stats_array; 2961 const unsigned int *events_array; 2962 int stats_size; 2963 int events_size; 2964 }; 2965 2966 static void accumulate_memcg_tree(struct mem_cgroup *memcg, 2967 struct accumulated_stats *acc) 2968 { 2969 struct mem_cgroup *mi; 2970 int i; 2971 2972 for_each_mem_cgroup_tree(mi, memcg) { 2973 for (i = 0; i < acc->stats_size; i++) 2974 acc->stat[i] += memcg_page_state(mi, 2975 acc->stats_array ? acc->stats_array[i] : i); 2976 2977 for (i = 0; i < acc->events_size; i++) 2978 acc->events[i] += memcg_sum_events(mi, 2979 acc->events_array ? acc->events_array[i] : i); 2980 2981 for (i = 0; i < NR_LRU_LISTS; i++) 2982 acc->lru_pages[i] += 2983 mem_cgroup_nr_lru_pages(mi, BIT(i)); 2984 } 2985 } 2986 2987 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2988 { 2989 unsigned long val = 0; 2990 2991 if (mem_cgroup_is_root(memcg)) { 2992 struct mem_cgroup *iter; 2993 2994 for_each_mem_cgroup_tree(iter, memcg) { 2995 val += memcg_page_state(iter, MEMCG_CACHE); 2996 val += memcg_page_state(iter, MEMCG_RSS); 2997 if (swap) 2998 val += memcg_page_state(iter, MEMCG_SWAP); 2999 } 3000 } else { 3001 if (!swap) 3002 val = page_counter_read(&memcg->memory); 3003 else 3004 val = page_counter_read(&memcg->memsw); 3005 } 3006 return val; 3007 } 3008 3009 enum { 3010 RES_USAGE, 3011 RES_LIMIT, 3012 RES_MAX_USAGE, 3013 RES_FAILCNT, 3014 RES_SOFT_LIMIT, 3015 }; 3016 3017 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3018 struct cftype *cft) 3019 { 3020 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3021 struct page_counter *counter; 3022 3023 switch (MEMFILE_TYPE(cft->private)) { 3024 case _MEM: 3025 counter = &memcg->memory; 3026 break; 3027 case _MEMSWAP: 3028 counter = &memcg->memsw; 3029 break; 3030 case _KMEM: 3031 counter = &memcg->kmem; 3032 break; 3033 case _TCP: 3034 counter = &memcg->tcpmem; 3035 break; 3036 default: 3037 BUG(); 3038 } 3039 3040 switch (MEMFILE_ATTR(cft->private)) { 3041 case RES_USAGE: 3042 if (counter == &memcg->memory) 3043 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3044 if (counter == &memcg->memsw) 3045 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3046 return (u64)page_counter_read(counter) * PAGE_SIZE; 3047 case RES_LIMIT: 3048 return (u64)counter->max * PAGE_SIZE; 3049 case RES_MAX_USAGE: 3050 return (u64)counter->watermark * PAGE_SIZE; 3051 case RES_FAILCNT: 3052 return counter->failcnt; 3053 case RES_SOFT_LIMIT: 3054 return (u64)memcg->soft_limit * PAGE_SIZE; 3055 default: 3056 BUG(); 3057 } 3058 } 3059 3060 #ifdef CONFIG_MEMCG_KMEM 3061 static int memcg_online_kmem(struct mem_cgroup *memcg) 3062 { 3063 int memcg_id; 3064 3065 if (cgroup_memory_nokmem) 3066 return 0; 3067 3068 BUG_ON(memcg->kmemcg_id >= 0); 3069 BUG_ON(memcg->kmem_state); 3070 3071 memcg_id = memcg_alloc_cache_id(); 3072 if (memcg_id < 0) 3073 return memcg_id; 3074 3075 static_branch_inc(&memcg_kmem_enabled_key); 3076 /* 3077 * A memory cgroup is considered kmem-online as soon as it gets 3078 * kmemcg_id. Setting the id after enabling static branching will 3079 * guarantee no one starts accounting before all call sites are 3080 * patched. 3081 */ 3082 memcg->kmemcg_id = memcg_id; 3083 memcg->kmem_state = KMEM_ONLINE; 3084 INIT_LIST_HEAD(&memcg->kmem_caches); 3085 3086 return 0; 3087 } 3088 3089 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3090 { 3091 struct cgroup_subsys_state *css; 3092 struct mem_cgroup *parent, *child; 3093 int kmemcg_id; 3094 3095 if (memcg->kmem_state != KMEM_ONLINE) 3096 return; 3097 /* 3098 * Clear the online state before clearing memcg_caches array 3099 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3100 * guarantees that no cache will be created for this cgroup 3101 * after we are done (see memcg_create_kmem_cache()). 3102 */ 3103 memcg->kmem_state = KMEM_ALLOCATED; 3104 3105 memcg_deactivate_kmem_caches(memcg); 3106 3107 kmemcg_id = memcg->kmemcg_id; 3108 BUG_ON(kmemcg_id < 0); 3109 3110 parent = parent_mem_cgroup(memcg); 3111 if (!parent) 3112 parent = root_mem_cgroup; 3113 3114 /* 3115 * Change kmemcg_id of this cgroup and all its descendants to the 3116 * parent's id, and then move all entries from this cgroup's list_lrus 3117 * to ones of the parent. After we have finished, all list_lrus 3118 * corresponding to this cgroup are guaranteed to remain empty. The 3119 * ordering is imposed by list_lru_node->lock taken by 3120 * memcg_drain_all_list_lrus(). 3121 */ 3122 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3123 css_for_each_descendant_pre(css, &memcg->css) { 3124 child = mem_cgroup_from_css(css); 3125 BUG_ON(child->kmemcg_id != kmemcg_id); 3126 child->kmemcg_id = parent->kmemcg_id; 3127 if (!memcg->use_hierarchy) 3128 break; 3129 } 3130 rcu_read_unlock(); 3131 3132 memcg_drain_all_list_lrus(kmemcg_id, parent); 3133 3134 memcg_free_cache_id(kmemcg_id); 3135 } 3136 3137 static void memcg_free_kmem(struct mem_cgroup *memcg) 3138 { 3139 /* css_alloc() failed, offlining didn't happen */ 3140 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3141 memcg_offline_kmem(memcg); 3142 3143 if (memcg->kmem_state == KMEM_ALLOCATED) { 3144 memcg_destroy_kmem_caches(memcg); 3145 static_branch_dec(&memcg_kmem_enabled_key); 3146 WARN_ON(page_counter_read(&memcg->kmem)); 3147 } 3148 } 3149 #else 3150 static int memcg_online_kmem(struct mem_cgroup *memcg) 3151 { 3152 return 0; 3153 } 3154 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3155 { 3156 } 3157 static void memcg_free_kmem(struct mem_cgroup *memcg) 3158 { 3159 } 3160 #endif /* CONFIG_MEMCG_KMEM */ 3161 3162 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3163 unsigned long max) 3164 { 3165 int ret; 3166 3167 mutex_lock(&memcg_max_mutex); 3168 ret = page_counter_set_max(&memcg->kmem, max); 3169 mutex_unlock(&memcg_max_mutex); 3170 return ret; 3171 } 3172 3173 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3174 { 3175 int ret; 3176 3177 mutex_lock(&memcg_max_mutex); 3178 3179 ret = page_counter_set_max(&memcg->tcpmem, max); 3180 if (ret) 3181 goto out; 3182 3183 if (!memcg->tcpmem_active) { 3184 /* 3185 * The active flag needs to be written after the static_key 3186 * update. This is what guarantees that the socket activation 3187 * function is the last one to run. See mem_cgroup_sk_alloc() 3188 * for details, and note that we don't mark any socket as 3189 * belonging to this memcg until that flag is up. 3190 * 3191 * We need to do this, because static_keys will span multiple 3192 * sites, but we can't control their order. If we mark a socket 3193 * as accounted, but the accounting functions are not patched in 3194 * yet, we'll lose accounting. 3195 * 3196 * We never race with the readers in mem_cgroup_sk_alloc(), 3197 * because when this value change, the code to process it is not 3198 * patched in yet. 3199 */ 3200 static_branch_inc(&memcg_sockets_enabled_key); 3201 memcg->tcpmem_active = true; 3202 } 3203 out: 3204 mutex_unlock(&memcg_max_mutex); 3205 return ret; 3206 } 3207 3208 /* 3209 * The user of this function is... 3210 * RES_LIMIT. 3211 */ 3212 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3213 char *buf, size_t nbytes, loff_t off) 3214 { 3215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3216 unsigned long nr_pages; 3217 int ret; 3218 3219 buf = strstrip(buf); 3220 ret = page_counter_memparse(buf, "-1", &nr_pages); 3221 if (ret) 3222 return ret; 3223 3224 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3225 case RES_LIMIT: 3226 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3227 ret = -EINVAL; 3228 break; 3229 } 3230 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3231 case _MEM: 3232 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3233 break; 3234 case _MEMSWAP: 3235 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3236 break; 3237 case _KMEM: 3238 ret = memcg_update_kmem_max(memcg, nr_pages); 3239 break; 3240 case _TCP: 3241 ret = memcg_update_tcp_max(memcg, nr_pages); 3242 break; 3243 } 3244 break; 3245 case RES_SOFT_LIMIT: 3246 memcg->soft_limit = nr_pages; 3247 ret = 0; 3248 break; 3249 } 3250 return ret ?: nbytes; 3251 } 3252 3253 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3254 size_t nbytes, loff_t off) 3255 { 3256 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3257 struct page_counter *counter; 3258 3259 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3260 case _MEM: 3261 counter = &memcg->memory; 3262 break; 3263 case _MEMSWAP: 3264 counter = &memcg->memsw; 3265 break; 3266 case _KMEM: 3267 counter = &memcg->kmem; 3268 break; 3269 case _TCP: 3270 counter = &memcg->tcpmem; 3271 break; 3272 default: 3273 BUG(); 3274 } 3275 3276 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3277 case RES_MAX_USAGE: 3278 page_counter_reset_watermark(counter); 3279 break; 3280 case RES_FAILCNT: 3281 counter->failcnt = 0; 3282 break; 3283 default: 3284 BUG(); 3285 } 3286 3287 return nbytes; 3288 } 3289 3290 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3291 struct cftype *cft) 3292 { 3293 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3294 } 3295 3296 #ifdef CONFIG_MMU 3297 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3298 struct cftype *cft, u64 val) 3299 { 3300 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3301 3302 if (val & ~MOVE_MASK) 3303 return -EINVAL; 3304 3305 /* 3306 * No kind of locking is needed in here, because ->can_attach() will 3307 * check this value once in the beginning of the process, and then carry 3308 * on with stale data. This means that changes to this value will only 3309 * affect task migrations starting after the change. 3310 */ 3311 memcg->move_charge_at_immigrate = val; 3312 return 0; 3313 } 3314 #else 3315 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3316 struct cftype *cft, u64 val) 3317 { 3318 return -ENOSYS; 3319 } 3320 #endif 3321 3322 #ifdef CONFIG_NUMA 3323 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3324 { 3325 struct numa_stat { 3326 const char *name; 3327 unsigned int lru_mask; 3328 }; 3329 3330 static const struct numa_stat stats[] = { 3331 { "total", LRU_ALL }, 3332 { "file", LRU_ALL_FILE }, 3333 { "anon", LRU_ALL_ANON }, 3334 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3335 }; 3336 const struct numa_stat *stat; 3337 int nid; 3338 unsigned long nr; 3339 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3340 3341 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3342 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3343 seq_printf(m, "%s=%lu", stat->name, nr); 3344 for_each_node_state(nid, N_MEMORY) { 3345 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3346 stat->lru_mask); 3347 seq_printf(m, " N%d=%lu", nid, nr); 3348 } 3349 seq_putc(m, '\n'); 3350 } 3351 3352 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3353 struct mem_cgroup *iter; 3354 3355 nr = 0; 3356 for_each_mem_cgroup_tree(iter, memcg) 3357 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3358 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3359 for_each_node_state(nid, N_MEMORY) { 3360 nr = 0; 3361 for_each_mem_cgroup_tree(iter, memcg) 3362 nr += mem_cgroup_node_nr_lru_pages( 3363 iter, nid, stat->lru_mask); 3364 seq_printf(m, " N%d=%lu", nid, nr); 3365 } 3366 seq_putc(m, '\n'); 3367 } 3368 3369 return 0; 3370 } 3371 #endif /* CONFIG_NUMA */ 3372 3373 /* Universal VM events cgroup1 shows, original sort order */ 3374 static const unsigned int memcg1_events[] = { 3375 PGPGIN, 3376 PGPGOUT, 3377 PGFAULT, 3378 PGMAJFAULT, 3379 }; 3380 3381 static const char *const memcg1_event_names[] = { 3382 "pgpgin", 3383 "pgpgout", 3384 "pgfault", 3385 "pgmajfault", 3386 }; 3387 3388 static int memcg_stat_show(struct seq_file *m, void *v) 3389 { 3390 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3391 unsigned long memory, memsw; 3392 struct mem_cgroup *mi; 3393 unsigned int i; 3394 struct accumulated_stats acc; 3395 3396 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3397 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3398 3399 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3400 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3401 continue; 3402 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3403 memcg_page_state(memcg, memcg1_stats[i]) * 3404 PAGE_SIZE); 3405 } 3406 3407 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3408 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3409 memcg_sum_events(memcg, memcg1_events[i])); 3410 3411 for (i = 0; i < NR_LRU_LISTS; i++) 3412 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3413 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3414 3415 /* Hierarchical information */ 3416 memory = memsw = PAGE_COUNTER_MAX; 3417 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3418 memory = min(memory, mi->memory.max); 3419 memsw = min(memsw, mi->memsw.max); 3420 } 3421 seq_printf(m, "hierarchical_memory_limit %llu\n", 3422 (u64)memory * PAGE_SIZE); 3423 if (do_memsw_account()) 3424 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3425 (u64)memsw * PAGE_SIZE); 3426 3427 memset(&acc, 0, sizeof(acc)); 3428 acc.stats_size = ARRAY_SIZE(memcg1_stats); 3429 acc.stats_array = memcg1_stats; 3430 acc.events_size = ARRAY_SIZE(memcg1_events); 3431 acc.events_array = memcg1_events; 3432 accumulate_memcg_tree(memcg, &acc); 3433 3434 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3435 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3436 continue; 3437 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3438 (u64)acc.stat[i] * PAGE_SIZE); 3439 } 3440 3441 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3442 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3443 (u64)acc.events[i]); 3444 3445 for (i = 0; i < NR_LRU_LISTS; i++) 3446 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3447 (u64)acc.lru_pages[i] * PAGE_SIZE); 3448 3449 #ifdef CONFIG_DEBUG_VM 3450 { 3451 pg_data_t *pgdat; 3452 struct mem_cgroup_per_node *mz; 3453 struct zone_reclaim_stat *rstat; 3454 unsigned long recent_rotated[2] = {0, 0}; 3455 unsigned long recent_scanned[2] = {0, 0}; 3456 3457 for_each_online_pgdat(pgdat) { 3458 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3459 rstat = &mz->lruvec.reclaim_stat; 3460 3461 recent_rotated[0] += rstat->recent_rotated[0]; 3462 recent_rotated[1] += rstat->recent_rotated[1]; 3463 recent_scanned[0] += rstat->recent_scanned[0]; 3464 recent_scanned[1] += rstat->recent_scanned[1]; 3465 } 3466 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3467 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3468 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3469 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3470 } 3471 #endif 3472 3473 return 0; 3474 } 3475 3476 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3477 struct cftype *cft) 3478 { 3479 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3480 3481 return mem_cgroup_swappiness(memcg); 3482 } 3483 3484 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3485 struct cftype *cft, u64 val) 3486 { 3487 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3488 3489 if (val > 100) 3490 return -EINVAL; 3491 3492 if (css->parent) 3493 memcg->swappiness = val; 3494 else 3495 vm_swappiness = val; 3496 3497 return 0; 3498 } 3499 3500 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3501 { 3502 struct mem_cgroup_threshold_ary *t; 3503 unsigned long usage; 3504 int i; 3505 3506 rcu_read_lock(); 3507 if (!swap) 3508 t = rcu_dereference(memcg->thresholds.primary); 3509 else 3510 t = rcu_dereference(memcg->memsw_thresholds.primary); 3511 3512 if (!t) 3513 goto unlock; 3514 3515 usage = mem_cgroup_usage(memcg, swap); 3516 3517 /* 3518 * current_threshold points to threshold just below or equal to usage. 3519 * If it's not true, a threshold was crossed after last 3520 * call of __mem_cgroup_threshold(). 3521 */ 3522 i = t->current_threshold; 3523 3524 /* 3525 * Iterate backward over array of thresholds starting from 3526 * current_threshold and check if a threshold is crossed. 3527 * If none of thresholds below usage is crossed, we read 3528 * only one element of the array here. 3529 */ 3530 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3531 eventfd_signal(t->entries[i].eventfd, 1); 3532 3533 /* i = current_threshold + 1 */ 3534 i++; 3535 3536 /* 3537 * Iterate forward over array of thresholds starting from 3538 * current_threshold+1 and check if a threshold is crossed. 3539 * If none of thresholds above usage is crossed, we read 3540 * only one element of the array here. 3541 */ 3542 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3543 eventfd_signal(t->entries[i].eventfd, 1); 3544 3545 /* Update current_threshold */ 3546 t->current_threshold = i - 1; 3547 unlock: 3548 rcu_read_unlock(); 3549 } 3550 3551 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3552 { 3553 while (memcg) { 3554 __mem_cgroup_threshold(memcg, false); 3555 if (do_memsw_account()) 3556 __mem_cgroup_threshold(memcg, true); 3557 3558 memcg = parent_mem_cgroup(memcg); 3559 } 3560 } 3561 3562 static int compare_thresholds(const void *a, const void *b) 3563 { 3564 const struct mem_cgroup_threshold *_a = a; 3565 const struct mem_cgroup_threshold *_b = b; 3566 3567 if (_a->threshold > _b->threshold) 3568 return 1; 3569 3570 if (_a->threshold < _b->threshold) 3571 return -1; 3572 3573 return 0; 3574 } 3575 3576 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3577 { 3578 struct mem_cgroup_eventfd_list *ev; 3579 3580 spin_lock(&memcg_oom_lock); 3581 3582 list_for_each_entry(ev, &memcg->oom_notify, list) 3583 eventfd_signal(ev->eventfd, 1); 3584 3585 spin_unlock(&memcg_oom_lock); 3586 return 0; 3587 } 3588 3589 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3590 { 3591 struct mem_cgroup *iter; 3592 3593 for_each_mem_cgroup_tree(iter, memcg) 3594 mem_cgroup_oom_notify_cb(iter); 3595 } 3596 3597 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3598 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3599 { 3600 struct mem_cgroup_thresholds *thresholds; 3601 struct mem_cgroup_threshold_ary *new; 3602 unsigned long threshold; 3603 unsigned long usage; 3604 int i, size, ret; 3605 3606 ret = page_counter_memparse(args, "-1", &threshold); 3607 if (ret) 3608 return ret; 3609 3610 mutex_lock(&memcg->thresholds_lock); 3611 3612 if (type == _MEM) { 3613 thresholds = &memcg->thresholds; 3614 usage = mem_cgroup_usage(memcg, false); 3615 } else if (type == _MEMSWAP) { 3616 thresholds = &memcg->memsw_thresholds; 3617 usage = mem_cgroup_usage(memcg, true); 3618 } else 3619 BUG(); 3620 3621 /* Check if a threshold crossed before adding a new one */ 3622 if (thresholds->primary) 3623 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3624 3625 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3626 3627 /* Allocate memory for new array of thresholds */ 3628 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3629 GFP_KERNEL); 3630 if (!new) { 3631 ret = -ENOMEM; 3632 goto unlock; 3633 } 3634 new->size = size; 3635 3636 /* Copy thresholds (if any) to new array */ 3637 if (thresholds->primary) { 3638 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3639 sizeof(struct mem_cgroup_threshold)); 3640 } 3641 3642 /* Add new threshold */ 3643 new->entries[size - 1].eventfd = eventfd; 3644 new->entries[size - 1].threshold = threshold; 3645 3646 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3647 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3648 compare_thresholds, NULL); 3649 3650 /* Find current threshold */ 3651 new->current_threshold = -1; 3652 for (i = 0; i < size; i++) { 3653 if (new->entries[i].threshold <= usage) { 3654 /* 3655 * new->current_threshold will not be used until 3656 * rcu_assign_pointer(), so it's safe to increment 3657 * it here. 3658 */ 3659 ++new->current_threshold; 3660 } else 3661 break; 3662 } 3663 3664 /* Free old spare buffer and save old primary buffer as spare */ 3665 kfree(thresholds->spare); 3666 thresholds->spare = thresholds->primary; 3667 3668 rcu_assign_pointer(thresholds->primary, new); 3669 3670 /* To be sure that nobody uses thresholds */ 3671 synchronize_rcu(); 3672 3673 unlock: 3674 mutex_unlock(&memcg->thresholds_lock); 3675 3676 return ret; 3677 } 3678 3679 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3680 struct eventfd_ctx *eventfd, const char *args) 3681 { 3682 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3683 } 3684 3685 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3686 struct eventfd_ctx *eventfd, const char *args) 3687 { 3688 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3689 } 3690 3691 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3692 struct eventfd_ctx *eventfd, enum res_type type) 3693 { 3694 struct mem_cgroup_thresholds *thresholds; 3695 struct mem_cgroup_threshold_ary *new; 3696 unsigned long usage; 3697 int i, j, size; 3698 3699 mutex_lock(&memcg->thresholds_lock); 3700 3701 if (type == _MEM) { 3702 thresholds = &memcg->thresholds; 3703 usage = mem_cgroup_usage(memcg, false); 3704 } else if (type == _MEMSWAP) { 3705 thresholds = &memcg->memsw_thresholds; 3706 usage = mem_cgroup_usage(memcg, true); 3707 } else 3708 BUG(); 3709 3710 if (!thresholds->primary) 3711 goto unlock; 3712 3713 /* Check if a threshold crossed before removing */ 3714 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3715 3716 /* Calculate new number of threshold */ 3717 size = 0; 3718 for (i = 0; i < thresholds->primary->size; i++) { 3719 if (thresholds->primary->entries[i].eventfd != eventfd) 3720 size++; 3721 } 3722 3723 new = thresholds->spare; 3724 3725 /* Set thresholds array to NULL if we don't have thresholds */ 3726 if (!size) { 3727 kfree(new); 3728 new = NULL; 3729 goto swap_buffers; 3730 } 3731 3732 new->size = size; 3733 3734 /* Copy thresholds and find current threshold */ 3735 new->current_threshold = -1; 3736 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3737 if (thresholds->primary->entries[i].eventfd == eventfd) 3738 continue; 3739 3740 new->entries[j] = thresholds->primary->entries[i]; 3741 if (new->entries[j].threshold <= usage) { 3742 /* 3743 * new->current_threshold will not be used 3744 * until rcu_assign_pointer(), so it's safe to increment 3745 * it here. 3746 */ 3747 ++new->current_threshold; 3748 } 3749 j++; 3750 } 3751 3752 swap_buffers: 3753 /* Swap primary and spare array */ 3754 thresholds->spare = thresholds->primary; 3755 3756 rcu_assign_pointer(thresholds->primary, new); 3757 3758 /* To be sure that nobody uses thresholds */ 3759 synchronize_rcu(); 3760 3761 /* If all events are unregistered, free the spare array */ 3762 if (!new) { 3763 kfree(thresholds->spare); 3764 thresholds->spare = NULL; 3765 } 3766 unlock: 3767 mutex_unlock(&memcg->thresholds_lock); 3768 } 3769 3770 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3771 struct eventfd_ctx *eventfd) 3772 { 3773 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3774 } 3775 3776 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3777 struct eventfd_ctx *eventfd) 3778 { 3779 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3780 } 3781 3782 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3783 struct eventfd_ctx *eventfd, const char *args) 3784 { 3785 struct mem_cgroup_eventfd_list *event; 3786 3787 event = kmalloc(sizeof(*event), GFP_KERNEL); 3788 if (!event) 3789 return -ENOMEM; 3790 3791 spin_lock(&memcg_oom_lock); 3792 3793 event->eventfd = eventfd; 3794 list_add(&event->list, &memcg->oom_notify); 3795 3796 /* already in OOM ? */ 3797 if (memcg->under_oom) 3798 eventfd_signal(eventfd, 1); 3799 spin_unlock(&memcg_oom_lock); 3800 3801 return 0; 3802 } 3803 3804 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3805 struct eventfd_ctx *eventfd) 3806 { 3807 struct mem_cgroup_eventfd_list *ev, *tmp; 3808 3809 spin_lock(&memcg_oom_lock); 3810 3811 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3812 if (ev->eventfd == eventfd) { 3813 list_del(&ev->list); 3814 kfree(ev); 3815 } 3816 } 3817 3818 spin_unlock(&memcg_oom_lock); 3819 } 3820 3821 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3822 { 3823 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3824 3825 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3826 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3827 seq_printf(sf, "oom_kill %lu\n", 3828 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 3829 return 0; 3830 } 3831 3832 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3833 struct cftype *cft, u64 val) 3834 { 3835 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3836 3837 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3838 if (!css->parent || !((val == 0) || (val == 1))) 3839 return -EINVAL; 3840 3841 memcg->oom_kill_disable = val; 3842 if (!val) 3843 memcg_oom_recover(memcg); 3844 3845 return 0; 3846 } 3847 3848 #ifdef CONFIG_CGROUP_WRITEBACK 3849 3850 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3851 { 3852 return wb_domain_init(&memcg->cgwb_domain, gfp); 3853 } 3854 3855 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3856 { 3857 wb_domain_exit(&memcg->cgwb_domain); 3858 } 3859 3860 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3861 { 3862 wb_domain_size_changed(&memcg->cgwb_domain); 3863 } 3864 3865 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3866 { 3867 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3868 3869 if (!memcg->css.parent) 3870 return NULL; 3871 3872 return &memcg->cgwb_domain; 3873 } 3874 3875 /** 3876 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3877 * @wb: bdi_writeback in question 3878 * @pfilepages: out parameter for number of file pages 3879 * @pheadroom: out parameter for number of allocatable pages according to memcg 3880 * @pdirty: out parameter for number of dirty pages 3881 * @pwriteback: out parameter for number of pages under writeback 3882 * 3883 * Determine the numbers of file, headroom, dirty, and writeback pages in 3884 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3885 * is a bit more involved. 3886 * 3887 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3888 * headroom is calculated as the lowest headroom of itself and the 3889 * ancestors. Note that this doesn't consider the actual amount of 3890 * available memory in the system. The caller should further cap 3891 * *@pheadroom accordingly. 3892 */ 3893 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3894 unsigned long *pheadroom, unsigned long *pdirty, 3895 unsigned long *pwriteback) 3896 { 3897 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3898 struct mem_cgroup *parent; 3899 3900 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3901 3902 /* this should eventually include NR_UNSTABLE_NFS */ 3903 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3904 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3905 (1 << LRU_ACTIVE_FILE)); 3906 *pheadroom = PAGE_COUNTER_MAX; 3907 3908 while ((parent = parent_mem_cgroup(memcg))) { 3909 unsigned long ceiling = min(memcg->memory.max, memcg->high); 3910 unsigned long used = page_counter_read(&memcg->memory); 3911 3912 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3913 memcg = parent; 3914 } 3915 } 3916 3917 #else /* CONFIG_CGROUP_WRITEBACK */ 3918 3919 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3920 { 3921 return 0; 3922 } 3923 3924 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3925 { 3926 } 3927 3928 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3929 { 3930 } 3931 3932 #endif /* CONFIG_CGROUP_WRITEBACK */ 3933 3934 /* 3935 * DO NOT USE IN NEW FILES. 3936 * 3937 * "cgroup.event_control" implementation. 3938 * 3939 * This is way over-engineered. It tries to support fully configurable 3940 * events for each user. Such level of flexibility is completely 3941 * unnecessary especially in the light of the planned unified hierarchy. 3942 * 3943 * Please deprecate this and replace with something simpler if at all 3944 * possible. 3945 */ 3946 3947 /* 3948 * Unregister event and free resources. 3949 * 3950 * Gets called from workqueue. 3951 */ 3952 static void memcg_event_remove(struct work_struct *work) 3953 { 3954 struct mem_cgroup_event *event = 3955 container_of(work, struct mem_cgroup_event, remove); 3956 struct mem_cgroup *memcg = event->memcg; 3957 3958 remove_wait_queue(event->wqh, &event->wait); 3959 3960 event->unregister_event(memcg, event->eventfd); 3961 3962 /* Notify userspace the event is going away. */ 3963 eventfd_signal(event->eventfd, 1); 3964 3965 eventfd_ctx_put(event->eventfd); 3966 kfree(event); 3967 css_put(&memcg->css); 3968 } 3969 3970 /* 3971 * Gets called on EPOLLHUP on eventfd when user closes it. 3972 * 3973 * Called with wqh->lock held and interrupts disabled. 3974 */ 3975 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 3976 int sync, void *key) 3977 { 3978 struct mem_cgroup_event *event = 3979 container_of(wait, struct mem_cgroup_event, wait); 3980 struct mem_cgroup *memcg = event->memcg; 3981 __poll_t flags = key_to_poll(key); 3982 3983 if (flags & EPOLLHUP) { 3984 /* 3985 * If the event has been detached at cgroup removal, we 3986 * can simply return knowing the other side will cleanup 3987 * for us. 3988 * 3989 * We can't race against event freeing since the other 3990 * side will require wqh->lock via remove_wait_queue(), 3991 * which we hold. 3992 */ 3993 spin_lock(&memcg->event_list_lock); 3994 if (!list_empty(&event->list)) { 3995 list_del_init(&event->list); 3996 /* 3997 * We are in atomic context, but cgroup_event_remove() 3998 * may sleep, so we have to call it in workqueue. 3999 */ 4000 schedule_work(&event->remove); 4001 } 4002 spin_unlock(&memcg->event_list_lock); 4003 } 4004 4005 return 0; 4006 } 4007 4008 static void memcg_event_ptable_queue_proc(struct file *file, 4009 wait_queue_head_t *wqh, poll_table *pt) 4010 { 4011 struct mem_cgroup_event *event = 4012 container_of(pt, struct mem_cgroup_event, pt); 4013 4014 event->wqh = wqh; 4015 add_wait_queue(wqh, &event->wait); 4016 } 4017 4018 /* 4019 * DO NOT USE IN NEW FILES. 4020 * 4021 * Parse input and register new cgroup event handler. 4022 * 4023 * Input must be in format '<event_fd> <control_fd> <args>'. 4024 * Interpretation of args is defined by control file implementation. 4025 */ 4026 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4027 char *buf, size_t nbytes, loff_t off) 4028 { 4029 struct cgroup_subsys_state *css = of_css(of); 4030 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4031 struct mem_cgroup_event *event; 4032 struct cgroup_subsys_state *cfile_css; 4033 unsigned int efd, cfd; 4034 struct fd efile; 4035 struct fd cfile; 4036 const char *name; 4037 char *endp; 4038 int ret; 4039 4040 buf = strstrip(buf); 4041 4042 efd = simple_strtoul(buf, &endp, 10); 4043 if (*endp != ' ') 4044 return -EINVAL; 4045 buf = endp + 1; 4046 4047 cfd = simple_strtoul(buf, &endp, 10); 4048 if ((*endp != ' ') && (*endp != '\0')) 4049 return -EINVAL; 4050 buf = endp + 1; 4051 4052 event = kzalloc(sizeof(*event), GFP_KERNEL); 4053 if (!event) 4054 return -ENOMEM; 4055 4056 event->memcg = memcg; 4057 INIT_LIST_HEAD(&event->list); 4058 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4059 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4060 INIT_WORK(&event->remove, memcg_event_remove); 4061 4062 efile = fdget(efd); 4063 if (!efile.file) { 4064 ret = -EBADF; 4065 goto out_kfree; 4066 } 4067 4068 event->eventfd = eventfd_ctx_fileget(efile.file); 4069 if (IS_ERR(event->eventfd)) { 4070 ret = PTR_ERR(event->eventfd); 4071 goto out_put_efile; 4072 } 4073 4074 cfile = fdget(cfd); 4075 if (!cfile.file) { 4076 ret = -EBADF; 4077 goto out_put_eventfd; 4078 } 4079 4080 /* the process need read permission on control file */ 4081 /* AV: shouldn't we check that it's been opened for read instead? */ 4082 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4083 if (ret < 0) 4084 goto out_put_cfile; 4085 4086 /* 4087 * Determine the event callbacks and set them in @event. This used 4088 * to be done via struct cftype but cgroup core no longer knows 4089 * about these events. The following is crude but the whole thing 4090 * is for compatibility anyway. 4091 * 4092 * DO NOT ADD NEW FILES. 4093 */ 4094 name = cfile.file->f_path.dentry->d_name.name; 4095 4096 if (!strcmp(name, "memory.usage_in_bytes")) { 4097 event->register_event = mem_cgroup_usage_register_event; 4098 event->unregister_event = mem_cgroup_usage_unregister_event; 4099 } else if (!strcmp(name, "memory.oom_control")) { 4100 event->register_event = mem_cgroup_oom_register_event; 4101 event->unregister_event = mem_cgroup_oom_unregister_event; 4102 } else if (!strcmp(name, "memory.pressure_level")) { 4103 event->register_event = vmpressure_register_event; 4104 event->unregister_event = vmpressure_unregister_event; 4105 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4106 event->register_event = memsw_cgroup_usage_register_event; 4107 event->unregister_event = memsw_cgroup_usage_unregister_event; 4108 } else { 4109 ret = -EINVAL; 4110 goto out_put_cfile; 4111 } 4112 4113 /* 4114 * Verify @cfile should belong to @css. Also, remaining events are 4115 * automatically removed on cgroup destruction but the removal is 4116 * asynchronous, so take an extra ref on @css. 4117 */ 4118 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4119 &memory_cgrp_subsys); 4120 ret = -EINVAL; 4121 if (IS_ERR(cfile_css)) 4122 goto out_put_cfile; 4123 if (cfile_css != css) { 4124 css_put(cfile_css); 4125 goto out_put_cfile; 4126 } 4127 4128 ret = event->register_event(memcg, event->eventfd, buf); 4129 if (ret) 4130 goto out_put_css; 4131 4132 vfs_poll(efile.file, &event->pt); 4133 4134 spin_lock(&memcg->event_list_lock); 4135 list_add(&event->list, &memcg->event_list); 4136 spin_unlock(&memcg->event_list_lock); 4137 4138 fdput(cfile); 4139 fdput(efile); 4140 4141 return nbytes; 4142 4143 out_put_css: 4144 css_put(css); 4145 out_put_cfile: 4146 fdput(cfile); 4147 out_put_eventfd: 4148 eventfd_ctx_put(event->eventfd); 4149 out_put_efile: 4150 fdput(efile); 4151 out_kfree: 4152 kfree(event); 4153 4154 return ret; 4155 } 4156 4157 static struct cftype mem_cgroup_legacy_files[] = { 4158 { 4159 .name = "usage_in_bytes", 4160 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4161 .read_u64 = mem_cgroup_read_u64, 4162 }, 4163 { 4164 .name = "max_usage_in_bytes", 4165 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4166 .write = mem_cgroup_reset, 4167 .read_u64 = mem_cgroup_read_u64, 4168 }, 4169 { 4170 .name = "limit_in_bytes", 4171 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4172 .write = mem_cgroup_write, 4173 .read_u64 = mem_cgroup_read_u64, 4174 }, 4175 { 4176 .name = "soft_limit_in_bytes", 4177 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4178 .write = mem_cgroup_write, 4179 .read_u64 = mem_cgroup_read_u64, 4180 }, 4181 { 4182 .name = "failcnt", 4183 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4184 .write = mem_cgroup_reset, 4185 .read_u64 = mem_cgroup_read_u64, 4186 }, 4187 { 4188 .name = "stat", 4189 .seq_show = memcg_stat_show, 4190 }, 4191 { 4192 .name = "force_empty", 4193 .write = mem_cgroup_force_empty_write, 4194 }, 4195 { 4196 .name = "use_hierarchy", 4197 .write_u64 = mem_cgroup_hierarchy_write, 4198 .read_u64 = mem_cgroup_hierarchy_read, 4199 }, 4200 { 4201 .name = "cgroup.event_control", /* XXX: for compat */ 4202 .write = memcg_write_event_control, 4203 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4204 }, 4205 { 4206 .name = "swappiness", 4207 .read_u64 = mem_cgroup_swappiness_read, 4208 .write_u64 = mem_cgroup_swappiness_write, 4209 }, 4210 { 4211 .name = "move_charge_at_immigrate", 4212 .read_u64 = mem_cgroup_move_charge_read, 4213 .write_u64 = mem_cgroup_move_charge_write, 4214 }, 4215 { 4216 .name = "oom_control", 4217 .seq_show = mem_cgroup_oom_control_read, 4218 .write_u64 = mem_cgroup_oom_control_write, 4219 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4220 }, 4221 { 4222 .name = "pressure_level", 4223 }, 4224 #ifdef CONFIG_NUMA 4225 { 4226 .name = "numa_stat", 4227 .seq_show = memcg_numa_stat_show, 4228 }, 4229 #endif 4230 { 4231 .name = "kmem.limit_in_bytes", 4232 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4233 .write = mem_cgroup_write, 4234 .read_u64 = mem_cgroup_read_u64, 4235 }, 4236 { 4237 .name = "kmem.usage_in_bytes", 4238 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4239 .read_u64 = mem_cgroup_read_u64, 4240 }, 4241 { 4242 .name = "kmem.failcnt", 4243 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4244 .write = mem_cgroup_reset, 4245 .read_u64 = mem_cgroup_read_u64, 4246 }, 4247 { 4248 .name = "kmem.max_usage_in_bytes", 4249 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4250 .write = mem_cgroup_reset, 4251 .read_u64 = mem_cgroup_read_u64, 4252 }, 4253 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4254 { 4255 .name = "kmem.slabinfo", 4256 .seq_start = memcg_slab_start, 4257 .seq_next = memcg_slab_next, 4258 .seq_stop = memcg_slab_stop, 4259 .seq_show = memcg_slab_show, 4260 }, 4261 #endif 4262 { 4263 .name = "kmem.tcp.limit_in_bytes", 4264 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4265 .write = mem_cgroup_write, 4266 .read_u64 = mem_cgroup_read_u64, 4267 }, 4268 { 4269 .name = "kmem.tcp.usage_in_bytes", 4270 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4271 .read_u64 = mem_cgroup_read_u64, 4272 }, 4273 { 4274 .name = "kmem.tcp.failcnt", 4275 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4276 .write = mem_cgroup_reset, 4277 .read_u64 = mem_cgroup_read_u64, 4278 }, 4279 { 4280 .name = "kmem.tcp.max_usage_in_bytes", 4281 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4282 .write = mem_cgroup_reset, 4283 .read_u64 = mem_cgroup_read_u64, 4284 }, 4285 { }, /* terminate */ 4286 }; 4287 4288 /* 4289 * Private memory cgroup IDR 4290 * 4291 * Swap-out records and page cache shadow entries need to store memcg 4292 * references in constrained space, so we maintain an ID space that is 4293 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4294 * memory-controlled cgroups to 64k. 4295 * 4296 * However, there usually are many references to the oflline CSS after 4297 * the cgroup has been destroyed, such as page cache or reclaimable 4298 * slab objects, that don't need to hang on to the ID. We want to keep 4299 * those dead CSS from occupying IDs, or we might quickly exhaust the 4300 * relatively small ID space and prevent the creation of new cgroups 4301 * even when there are much fewer than 64k cgroups - possibly none. 4302 * 4303 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4304 * be freed and recycled when it's no longer needed, which is usually 4305 * when the CSS is offlined. 4306 * 4307 * The only exception to that are records of swapped out tmpfs/shmem 4308 * pages that need to be attributed to live ancestors on swapin. But 4309 * those references are manageable from userspace. 4310 */ 4311 4312 static DEFINE_IDR(mem_cgroup_idr); 4313 4314 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4315 { 4316 if (memcg->id.id > 0) { 4317 idr_remove(&mem_cgroup_idr, memcg->id.id); 4318 memcg->id.id = 0; 4319 } 4320 } 4321 4322 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4323 { 4324 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); 4325 atomic_add(n, &memcg->id.ref); 4326 } 4327 4328 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4329 { 4330 VM_BUG_ON(atomic_read(&memcg->id.ref) < n); 4331 if (atomic_sub_and_test(n, &memcg->id.ref)) { 4332 mem_cgroup_id_remove(memcg); 4333 4334 /* Memcg ID pins CSS */ 4335 css_put(&memcg->css); 4336 } 4337 } 4338 4339 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4340 { 4341 mem_cgroup_id_get_many(memcg, 1); 4342 } 4343 4344 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4345 { 4346 mem_cgroup_id_put_many(memcg, 1); 4347 } 4348 4349 /** 4350 * mem_cgroup_from_id - look up a memcg from a memcg id 4351 * @id: the memcg id to look up 4352 * 4353 * Caller must hold rcu_read_lock(). 4354 */ 4355 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4356 { 4357 WARN_ON_ONCE(!rcu_read_lock_held()); 4358 return idr_find(&mem_cgroup_idr, id); 4359 } 4360 4361 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4362 { 4363 struct mem_cgroup_per_node *pn; 4364 int tmp = node; 4365 /* 4366 * This routine is called against possible nodes. 4367 * But it's BUG to call kmalloc() against offline node. 4368 * 4369 * TODO: this routine can waste much memory for nodes which will 4370 * never be onlined. It's better to use memory hotplug callback 4371 * function. 4372 */ 4373 if (!node_state(node, N_NORMAL_MEMORY)) 4374 tmp = -1; 4375 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4376 if (!pn) 4377 return 1; 4378 4379 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4380 if (!pn->lruvec_stat_cpu) { 4381 kfree(pn); 4382 return 1; 4383 } 4384 4385 lruvec_init(&pn->lruvec); 4386 pn->usage_in_excess = 0; 4387 pn->on_tree = false; 4388 pn->memcg = memcg; 4389 4390 memcg->nodeinfo[node] = pn; 4391 return 0; 4392 } 4393 4394 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4395 { 4396 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4397 4398 if (!pn) 4399 return; 4400 4401 free_percpu(pn->lruvec_stat_cpu); 4402 kfree(pn); 4403 } 4404 4405 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4406 { 4407 int node; 4408 4409 for_each_node(node) 4410 free_mem_cgroup_per_node_info(memcg, node); 4411 free_percpu(memcg->stat_cpu); 4412 kfree(memcg); 4413 } 4414 4415 static void mem_cgroup_free(struct mem_cgroup *memcg) 4416 { 4417 memcg_wb_domain_exit(memcg); 4418 __mem_cgroup_free(memcg); 4419 } 4420 4421 static struct mem_cgroup *mem_cgroup_alloc(void) 4422 { 4423 struct mem_cgroup *memcg; 4424 size_t size; 4425 int node; 4426 4427 size = sizeof(struct mem_cgroup); 4428 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4429 4430 memcg = kzalloc(size, GFP_KERNEL); 4431 if (!memcg) 4432 return NULL; 4433 4434 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4435 1, MEM_CGROUP_ID_MAX, 4436 GFP_KERNEL); 4437 if (memcg->id.id < 0) 4438 goto fail; 4439 4440 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu); 4441 if (!memcg->stat_cpu) 4442 goto fail; 4443 4444 for_each_node(node) 4445 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4446 goto fail; 4447 4448 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4449 goto fail; 4450 4451 INIT_WORK(&memcg->high_work, high_work_func); 4452 memcg->last_scanned_node = MAX_NUMNODES; 4453 INIT_LIST_HEAD(&memcg->oom_notify); 4454 mutex_init(&memcg->thresholds_lock); 4455 spin_lock_init(&memcg->move_lock); 4456 vmpressure_init(&memcg->vmpressure); 4457 INIT_LIST_HEAD(&memcg->event_list); 4458 spin_lock_init(&memcg->event_list_lock); 4459 memcg->socket_pressure = jiffies; 4460 #ifdef CONFIG_MEMCG_KMEM 4461 memcg->kmemcg_id = -1; 4462 #endif 4463 #ifdef CONFIG_CGROUP_WRITEBACK 4464 INIT_LIST_HEAD(&memcg->cgwb_list); 4465 #endif 4466 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4467 return memcg; 4468 fail: 4469 mem_cgroup_id_remove(memcg); 4470 __mem_cgroup_free(memcg); 4471 return NULL; 4472 } 4473 4474 static struct cgroup_subsys_state * __ref 4475 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4476 { 4477 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4478 struct mem_cgroup *memcg; 4479 long error = -ENOMEM; 4480 4481 memcg = mem_cgroup_alloc(); 4482 if (!memcg) 4483 return ERR_PTR(error); 4484 4485 memcg->high = PAGE_COUNTER_MAX; 4486 memcg->soft_limit = PAGE_COUNTER_MAX; 4487 if (parent) { 4488 memcg->swappiness = mem_cgroup_swappiness(parent); 4489 memcg->oom_kill_disable = parent->oom_kill_disable; 4490 } 4491 if (parent && parent->use_hierarchy) { 4492 memcg->use_hierarchy = true; 4493 page_counter_init(&memcg->memory, &parent->memory); 4494 page_counter_init(&memcg->swap, &parent->swap); 4495 page_counter_init(&memcg->memsw, &parent->memsw); 4496 page_counter_init(&memcg->kmem, &parent->kmem); 4497 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4498 } else { 4499 page_counter_init(&memcg->memory, NULL); 4500 page_counter_init(&memcg->swap, NULL); 4501 page_counter_init(&memcg->memsw, NULL); 4502 page_counter_init(&memcg->kmem, NULL); 4503 page_counter_init(&memcg->tcpmem, NULL); 4504 /* 4505 * Deeper hierachy with use_hierarchy == false doesn't make 4506 * much sense so let cgroup subsystem know about this 4507 * unfortunate state in our controller. 4508 */ 4509 if (parent != root_mem_cgroup) 4510 memory_cgrp_subsys.broken_hierarchy = true; 4511 } 4512 4513 /* The following stuff does not apply to the root */ 4514 if (!parent) { 4515 root_mem_cgroup = memcg; 4516 return &memcg->css; 4517 } 4518 4519 error = memcg_online_kmem(memcg); 4520 if (error) 4521 goto fail; 4522 4523 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4524 static_branch_inc(&memcg_sockets_enabled_key); 4525 4526 return &memcg->css; 4527 fail: 4528 mem_cgroup_id_remove(memcg); 4529 mem_cgroup_free(memcg); 4530 return ERR_PTR(-ENOMEM); 4531 } 4532 4533 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4534 { 4535 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4536 4537 /* 4538 * A memcg must be visible for memcg_expand_shrinker_maps() 4539 * by the time the maps are allocated. So, we allocate maps 4540 * here, when for_each_mem_cgroup() can't skip it. 4541 */ 4542 if (memcg_alloc_shrinker_maps(memcg)) { 4543 mem_cgroup_id_remove(memcg); 4544 return -ENOMEM; 4545 } 4546 4547 /* Online state pins memcg ID, memcg ID pins CSS */ 4548 atomic_set(&memcg->id.ref, 1); 4549 css_get(css); 4550 return 0; 4551 } 4552 4553 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4554 { 4555 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4556 struct mem_cgroup_event *event, *tmp; 4557 4558 /* 4559 * Unregister events and notify userspace. 4560 * Notify userspace about cgroup removing only after rmdir of cgroup 4561 * directory to avoid race between userspace and kernelspace. 4562 */ 4563 spin_lock(&memcg->event_list_lock); 4564 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4565 list_del_init(&event->list); 4566 schedule_work(&event->remove); 4567 } 4568 spin_unlock(&memcg->event_list_lock); 4569 4570 page_counter_set_min(&memcg->memory, 0); 4571 page_counter_set_low(&memcg->memory, 0); 4572 4573 memcg_offline_kmem(memcg); 4574 wb_memcg_offline(memcg); 4575 4576 mem_cgroup_id_put(memcg); 4577 } 4578 4579 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4580 { 4581 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4582 4583 invalidate_reclaim_iterators(memcg); 4584 } 4585 4586 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4587 { 4588 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4589 4590 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4591 static_branch_dec(&memcg_sockets_enabled_key); 4592 4593 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4594 static_branch_dec(&memcg_sockets_enabled_key); 4595 4596 vmpressure_cleanup(&memcg->vmpressure); 4597 cancel_work_sync(&memcg->high_work); 4598 mem_cgroup_remove_from_trees(memcg); 4599 memcg_free_shrinker_maps(memcg); 4600 memcg_free_kmem(memcg); 4601 mem_cgroup_free(memcg); 4602 } 4603 4604 /** 4605 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4606 * @css: the target css 4607 * 4608 * Reset the states of the mem_cgroup associated with @css. This is 4609 * invoked when the userland requests disabling on the default hierarchy 4610 * but the memcg is pinned through dependency. The memcg should stop 4611 * applying policies and should revert to the vanilla state as it may be 4612 * made visible again. 4613 * 4614 * The current implementation only resets the essential configurations. 4615 * This needs to be expanded to cover all the visible parts. 4616 */ 4617 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4618 { 4619 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4620 4621 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4622 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4623 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4624 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4625 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4626 page_counter_set_min(&memcg->memory, 0); 4627 page_counter_set_low(&memcg->memory, 0); 4628 memcg->high = PAGE_COUNTER_MAX; 4629 memcg->soft_limit = PAGE_COUNTER_MAX; 4630 memcg_wb_domain_size_changed(memcg); 4631 } 4632 4633 #ifdef CONFIG_MMU 4634 /* Handlers for move charge at task migration. */ 4635 static int mem_cgroup_do_precharge(unsigned long count) 4636 { 4637 int ret; 4638 4639 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4640 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4641 if (!ret) { 4642 mc.precharge += count; 4643 return ret; 4644 } 4645 4646 /* Try charges one by one with reclaim, but do not retry */ 4647 while (count--) { 4648 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4649 if (ret) 4650 return ret; 4651 mc.precharge++; 4652 cond_resched(); 4653 } 4654 return 0; 4655 } 4656 4657 union mc_target { 4658 struct page *page; 4659 swp_entry_t ent; 4660 }; 4661 4662 enum mc_target_type { 4663 MC_TARGET_NONE = 0, 4664 MC_TARGET_PAGE, 4665 MC_TARGET_SWAP, 4666 MC_TARGET_DEVICE, 4667 }; 4668 4669 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4670 unsigned long addr, pte_t ptent) 4671 { 4672 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4673 4674 if (!page || !page_mapped(page)) 4675 return NULL; 4676 if (PageAnon(page)) { 4677 if (!(mc.flags & MOVE_ANON)) 4678 return NULL; 4679 } else { 4680 if (!(mc.flags & MOVE_FILE)) 4681 return NULL; 4682 } 4683 if (!get_page_unless_zero(page)) 4684 return NULL; 4685 4686 return page; 4687 } 4688 4689 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4690 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4691 pte_t ptent, swp_entry_t *entry) 4692 { 4693 struct page *page = NULL; 4694 swp_entry_t ent = pte_to_swp_entry(ptent); 4695 4696 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4697 return NULL; 4698 4699 /* 4700 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4701 * a device and because they are not accessible by CPU they are store 4702 * as special swap entry in the CPU page table. 4703 */ 4704 if (is_device_private_entry(ent)) { 4705 page = device_private_entry_to_page(ent); 4706 /* 4707 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4708 * a refcount of 1 when free (unlike normal page) 4709 */ 4710 if (!page_ref_add_unless(page, 1, 1)) 4711 return NULL; 4712 return page; 4713 } 4714 4715 /* 4716 * Because lookup_swap_cache() updates some statistics counter, 4717 * we call find_get_page() with swapper_space directly. 4718 */ 4719 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4720 if (do_memsw_account()) 4721 entry->val = ent.val; 4722 4723 return page; 4724 } 4725 #else 4726 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4727 pte_t ptent, swp_entry_t *entry) 4728 { 4729 return NULL; 4730 } 4731 #endif 4732 4733 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4734 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4735 { 4736 struct page *page = NULL; 4737 struct address_space *mapping; 4738 pgoff_t pgoff; 4739 4740 if (!vma->vm_file) /* anonymous vma */ 4741 return NULL; 4742 if (!(mc.flags & MOVE_FILE)) 4743 return NULL; 4744 4745 mapping = vma->vm_file->f_mapping; 4746 pgoff = linear_page_index(vma, addr); 4747 4748 /* page is moved even if it's not RSS of this task(page-faulted). */ 4749 #ifdef CONFIG_SWAP 4750 /* shmem/tmpfs may report page out on swap: account for that too. */ 4751 if (shmem_mapping(mapping)) { 4752 page = find_get_entry(mapping, pgoff); 4753 if (radix_tree_exceptional_entry(page)) { 4754 swp_entry_t swp = radix_to_swp_entry(page); 4755 if (do_memsw_account()) 4756 *entry = swp; 4757 page = find_get_page(swap_address_space(swp), 4758 swp_offset(swp)); 4759 } 4760 } else 4761 page = find_get_page(mapping, pgoff); 4762 #else 4763 page = find_get_page(mapping, pgoff); 4764 #endif 4765 return page; 4766 } 4767 4768 /** 4769 * mem_cgroup_move_account - move account of the page 4770 * @page: the page 4771 * @compound: charge the page as compound or small page 4772 * @from: mem_cgroup which the page is moved from. 4773 * @to: mem_cgroup which the page is moved to. @from != @to. 4774 * 4775 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4776 * 4777 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4778 * from old cgroup. 4779 */ 4780 static int mem_cgroup_move_account(struct page *page, 4781 bool compound, 4782 struct mem_cgroup *from, 4783 struct mem_cgroup *to) 4784 { 4785 unsigned long flags; 4786 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4787 int ret; 4788 bool anon; 4789 4790 VM_BUG_ON(from == to); 4791 VM_BUG_ON_PAGE(PageLRU(page), page); 4792 VM_BUG_ON(compound && !PageTransHuge(page)); 4793 4794 /* 4795 * Prevent mem_cgroup_migrate() from looking at 4796 * page->mem_cgroup of its source page while we change it. 4797 */ 4798 ret = -EBUSY; 4799 if (!trylock_page(page)) 4800 goto out; 4801 4802 ret = -EINVAL; 4803 if (page->mem_cgroup != from) 4804 goto out_unlock; 4805 4806 anon = PageAnon(page); 4807 4808 spin_lock_irqsave(&from->move_lock, flags); 4809 4810 if (!anon && page_mapped(page)) { 4811 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 4812 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 4813 } 4814 4815 /* 4816 * move_lock grabbed above and caller set from->moving_account, so 4817 * mod_memcg_page_state will serialize updates to PageDirty. 4818 * So mapping should be stable for dirty pages. 4819 */ 4820 if (!anon && PageDirty(page)) { 4821 struct address_space *mapping = page_mapping(page); 4822 4823 if (mapping_cap_account_dirty(mapping)) { 4824 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 4825 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 4826 } 4827 } 4828 4829 if (PageWriteback(page)) { 4830 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 4831 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 4832 } 4833 4834 /* 4835 * It is safe to change page->mem_cgroup here because the page 4836 * is referenced, charged, and isolated - we can't race with 4837 * uncharging, charging, migration, or LRU putback. 4838 */ 4839 4840 /* caller should have done css_get */ 4841 page->mem_cgroup = to; 4842 spin_unlock_irqrestore(&from->move_lock, flags); 4843 4844 ret = 0; 4845 4846 local_irq_disable(); 4847 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4848 memcg_check_events(to, page); 4849 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4850 memcg_check_events(from, page); 4851 local_irq_enable(); 4852 out_unlock: 4853 unlock_page(page); 4854 out: 4855 return ret; 4856 } 4857 4858 /** 4859 * get_mctgt_type - get target type of moving charge 4860 * @vma: the vma the pte to be checked belongs 4861 * @addr: the address corresponding to the pte to be checked 4862 * @ptent: the pte to be checked 4863 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4864 * 4865 * Returns 4866 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4867 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4868 * move charge. if @target is not NULL, the page is stored in target->page 4869 * with extra refcnt got(Callers should handle it). 4870 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4871 * target for charge migration. if @target is not NULL, the entry is stored 4872 * in target->ent. 4873 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4874 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4875 * For now we such page is charge like a regular page would be as for all 4876 * intent and purposes it is just special memory taking the place of a 4877 * regular page. 4878 * 4879 * See Documentations/vm/hmm.txt and include/linux/hmm.h 4880 * 4881 * Called with pte lock held. 4882 */ 4883 4884 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4885 unsigned long addr, pte_t ptent, union mc_target *target) 4886 { 4887 struct page *page = NULL; 4888 enum mc_target_type ret = MC_TARGET_NONE; 4889 swp_entry_t ent = { .val = 0 }; 4890 4891 if (pte_present(ptent)) 4892 page = mc_handle_present_pte(vma, addr, ptent); 4893 else if (is_swap_pte(ptent)) 4894 page = mc_handle_swap_pte(vma, ptent, &ent); 4895 else if (pte_none(ptent)) 4896 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4897 4898 if (!page && !ent.val) 4899 return ret; 4900 if (page) { 4901 /* 4902 * Do only loose check w/o serialization. 4903 * mem_cgroup_move_account() checks the page is valid or 4904 * not under LRU exclusion. 4905 */ 4906 if (page->mem_cgroup == mc.from) { 4907 ret = MC_TARGET_PAGE; 4908 if (is_device_private_page(page) || 4909 is_device_public_page(page)) 4910 ret = MC_TARGET_DEVICE; 4911 if (target) 4912 target->page = page; 4913 } 4914 if (!ret || !target) 4915 put_page(page); 4916 } 4917 /* 4918 * There is a swap entry and a page doesn't exist or isn't charged. 4919 * But we cannot move a tail-page in a THP. 4920 */ 4921 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 4922 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4923 ret = MC_TARGET_SWAP; 4924 if (target) 4925 target->ent = ent; 4926 } 4927 return ret; 4928 } 4929 4930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4931 /* 4932 * We don't consider PMD mapped swapping or file mapped pages because THP does 4933 * not support them for now. 4934 * Caller should make sure that pmd_trans_huge(pmd) is true. 4935 */ 4936 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4937 unsigned long addr, pmd_t pmd, union mc_target *target) 4938 { 4939 struct page *page = NULL; 4940 enum mc_target_type ret = MC_TARGET_NONE; 4941 4942 if (unlikely(is_swap_pmd(pmd))) { 4943 VM_BUG_ON(thp_migration_supported() && 4944 !is_pmd_migration_entry(pmd)); 4945 return ret; 4946 } 4947 page = pmd_page(pmd); 4948 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4949 if (!(mc.flags & MOVE_ANON)) 4950 return ret; 4951 if (page->mem_cgroup == mc.from) { 4952 ret = MC_TARGET_PAGE; 4953 if (target) { 4954 get_page(page); 4955 target->page = page; 4956 } 4957 } 4958 return ret; 4959 } 4960 #else 4961 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4962 unsigned long addr, pmd_t pmd, union mc_target *target) 4963 { 4964 return MC_TARGET_NONE; 4965 } 4966 #endif 4967 4968 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4969 unsigned long addr, unsigned long end, 4970 struct mm_walk *walk) 4971 { 4972 struct vm_area_struct *vma = walk->vma; 4973 pte_t *pte; 4974 spinlock_t *ptl; 4975 4976 ptl = pmd_trans_huge_lock(pmd, vma); 4977 if (ptl) { 4978 /* 4979 * Note their can not be MC_TARGET_DEVICE for now as we do not 4980 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 4981 * MEMORY_DEVICE_PRIVATE but this might change. 4982 */ 4983 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4984 mc.precharge += HPAGE_PMD_NR; 4985 spin_unlock(ptl); 4986 return 0; 4987 } 4988 4989 if (pmd_trans_unstable(pmd)) 4990 return 0; 4991 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4992 for (; addr != end; pte++, addr += PAGE_SIZE) 4993 if (get_mctgt_type(vma, addr, *pte, NULL)) 4994 mc.precharge++; /* increment precharge temporarily */ 4995 pte_unmap_unlock(pte - 1, ptl); 4996 cond_resched(); 4997 4998 return 0; 4999 } 5000 5001 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5002 { 5003 unsigned long precharge; 5004 5005 struct mm_walk mem_cgroup_count_precharge_walk = { 5006 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5007 .mm = mm, 5008 }; 5009 down_read(&mm->mmap_sem); 5010 walk_page_range(0, mm->highest_vm_end, 5011 &mem_cgroup_count_precharge_walk); 5012 up_read(&mm->mmap_sem); 5013 5014 precharge = mc.precharge; 5015 mc.precharge = 0; 5016 5017 return precharge; 5018 } 5019 5020 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5021 { 5022 unsigned long precharge = mem_cgroup_count_precharge(mm); 5023 5024 VM_BUG_ON(mc.moving_task); 5025 mc.moving_task = current; 5026 return mem_cgroup_do_precharge(precharge); 5027 } 5028 5029 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5030 static void __mem_cgroup_clear_mc(void) 5031 { 5032 struct mem_cgroup *from = mc.from; 5033 struct mem_cgroup *to = mc.to; 5034 5035 /* we must uncharge all the leftover precharges from mc.to */ 5036 if (mc.precharge) { 5037 cancel_charge(mc.to, mc.precharge); 5038 mc.precharge = 0; 5039 } 5040 /* 5041 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5042 * we must uncharge here. 5043 */ 5044 if (mc.moved_charge) { 5045 cancel_charge(mc.from, mc.moved_charge); 5046 mc.moved_charge = 0; 5047 } 5048 /* we must fixup refcnts and charges */ 5049 if (mc.moved_swap) { 5050 /* uncharge swap account from the old cgroup */ 5051 if (!mem_cgroup_is_root(mc.from)) 5052 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5053 5054 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5055 5056 /* 5057 * we charged both to->memory and to->memsw, so we 5058 * should uncharge to->memory. 5059 */ 5060 if (!mem_cgroup_is_root(mc.to)) 5061 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5062 5063 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5064 css_put_many(&mc.to->css, mc.moved_swap); 5065 5066 mc.moved_swap = 0; 5067 } 5068 memcg_oom_recover(from); 5069 memcg_oom_recover(to); 5070 wake_up_all(&mc.waitq); 5071 } 5072 5073 static void mem_cgroup_clear_mc(void) 5074 { 5075 struct mm_struct *mm = mc.mm; 5076 5077 /* 5078 * we must clear moving_task before waking up waiters at the end of 5079 * task migration. 5080 */ 5081 mc.moving_task = NULL; 5082 __mem_cgroup_clear_mc(); 5083 spin_lock(&mc.lock); 5084 mc.from = NULL; 5085 mc.to = NULL; 5086 mc.mm = NULL; 5087 spin_unlock(&mc.lock); 5088 5089 mmput(mm); 5090 } 5091 5092 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5093 { 5094 struct cgroup_subsys_state *css; 5095 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5096 struct mem_cgroup *from; 5097 struct task_struct *leader, *p; 5098 struct mm_struct *mm; 5099 unsigned long move_flags; 5100 int ret = 0; 5101 5102 /* charge immigration isn't supported on the default hierarchy */ 5103 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5104 return 0; 5105 5106 /* 5107 * Multi-process migrations only happen on the default hierarchy 5108 * where charge immigration is not used. Perform charge 5109 * immigration if @tset contains a leader and whine if there are 5110 * multiple. 5111 */ 5112 p = NULL; 5113 cgroup_taskset_for_each_leader(leader, css, tset) { 5114 WARN_ON_ONCE(p); 5115 p = leader; 5116 memcg = mem_cgroup_from_css(css); 5117 } 5118 if (!p) 5119 return 0; 5120 5121 /* 5122 * We are now commited to this value whatever it is. Changes in this 5123 * tunable will only affect upcoming migrations, not the current one. 5124 * So we need to save it, and keep it going. 5125 */ 5126 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5127 if (!move_flags) 5128 return 0; 5129 5130 from = mem_cgroup_from_task(p); 5131 5132 VM_BUG_ON(from == memcg); 5133 5134 mm = get_task_mm(p); 5135 if (!mm) 5136 return 0; 5137 /* We move charges only when we move a owner of the mm */ 5138 if (mm->owner == p) { 5139 VM_BUG_ON(mc.from); 5140 VM_BUG_ON(mc.to); 5141 VM_BUG_ON(mc.precharge); 5142 VM_BUG_ON(mc.moved_charge); 5143 VM_BUG_ON(mc.moved_swap); 5144 5145 spin_lock(&mc.lock); 5146 mc.mm = mm; 5147 mc.from = from; 5148 mc.to = memcg; 5149 mc.flags = move_flags; 5150 spin_unlock(&mc.lock); 5151 /* We set mc.moving_task later */ 5152 5153 ret = mem_cgroup_precharge_mc(mm); 5154 if (ret) 5155 mem_cgroup_clear_mc(); 5156 } else { 5157 mmput(mm); 5158 } 5159 return ret; 5160 } 5161 5162 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5163 { 5164 if (mc.to) 5165 mem_cgroup_clear_mc(); 5166 } 5167 5168 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5169 unsigned long addr, unsigned long end, 5170 struct mm_walk *walk) 5171 { 5172 int ret = 0; 5173 struct vm_area_struct *vma = walk->vma; 5174 pte_t *pte; 5175 spinlock_t *ptl; 5176 enum mc_target_type target_type; 5177 union mc_target target; 5178 struct page *page; 5179 5180 ptl = pmd_trans_huge_lock(pmd, vma); 5181 if (ptl) { 5182 if (mc.precharge < HPAGE_PMD_NR) { 5183 spin_unlock(ptl); 5184 return 0; 5185 } 5186 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5187 if (target_type == MC_TARGET_PAGE) { 5188 page = target.page; 5189 if (!isolate_lru_page(page)) { 5190 if (!mem_cgroup_move_account(page, true, 5191 mc.from, mc.to)) { 5192 mc.precharge -= HPAGE_PMD_NR; 5193 mc.moved_charge += HPAGE_PMD_NR; 5194 } 5195 putback_lru_page(page); 5196 } 5197 put_page(page); 5198 } else if (target_type == MC_TARGET_DEVICE) { 5199 page = target.page; 5200 if (!mem_cgroup_move_account(page, true, 5201 mc.from, mc.to)) { 5202 mc.precharge -= HPAGE_PMD_NR; 5203 mc.moved_charge += HPAGE_PMD_NR; 5204 } 5205 put_page(page); 5206 } 5207 spin_unlock(ptl); 5208 return 0; 5209 } 5210 5211 if (pmd_trans_unstable(pmd)) 5212 return 0; 5213 retry: 5214 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5215 for (; addr != end; addr += PAGE_SIZE) { 5216 pte_t ptent = *(pte++); 5217 bool device = false; 5218 swp_entry_t ent; 5219 5220 if (!mc.precharge) 5221 break; 5222 5223 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5224 case MC_TARGET_DEVICE: 5225 device = true; 5226 /* fall through */ 5227 case MC_TARGET_PAGE: 5228 page = target.page; 5229 /* 5230 * We can have a part of the split pmd here. Moving it 5231 * can be done but it would be too convoluted so simply 5232 * ignore such a partial THP and keep it in original 5233 * memcg. There should be somebody mapping the head. 5234 */ 5235 if (PageTransCompound(page)) 5236 goto put; 5237 if (!device && isolate_lru_page(page)) 5238 goto put; 5239 if (!mem_cgroup_move_account(page, false, 5240 mc.from, mc.to)) { 5241 mc.precharge--; 5242 /* we uncharge from mc.from later. */ 5243 mc.moved_charge++; 5244 } 5245 if (!device) 5246 putback_lru_page(page); 5247 put: /* get_mctgt_type() gets the page */ 5248 put_page(page); 5249 break; 5250 case MC_TARGET_SWAP: 5251 ent = target.ent; 5252 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5253 mc.precharge--; 5254 /* we fixup refcnts and charges later. */ 5255 mc.moved_swap++; 5256 } 5257 break; 5258 default: 5259 break; 5260 } 5261 } 5262 pte_unmap_unlock(pte - 1, ptl); 5263 cond_resched(); 5264 5265 if (addr != end) { 5266 /* 5267 * We have consumed all precharges we got in can_attach(). 5268 * We try charge one by one, but don't do any additional 5269 * charges to mc.to if we have failed in charge once in attach() 5270 * phase. 5271 */ 5272 ret = mem_cgroup_do_precharge(1); 5273 if (!ret) 5274 goto retry; 5275 } 5276 5277 return ret; 5278 } 5279 5280 static void mem_cgroup_move_charge(void) 5281 { 5282 struct mm_walk mem_cgroup_move_charge_walk = { 5283 .pmd_entry = mem_cgroup_move_charge_pte_range, 5284 .mm = mc.mm, 5285 }; 5286 5287 lru_add_drain_all(); 5288 /* 5289 * Signal lock_page_memcg() to take the memcg's move_lock 5290 * while we're moving its pages to another memcg. Then wait 5291 * for already started RCU-only updates to finish. 5292 */ 5293 atomic_inc(&mc.from->moving_account); 5294 synchronize_rcu(); 5295 retry: 5296 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5297 /* 5298 * Someone who are holding the mmap_sem might be waiting in 5299 * waitq. So we cancel all extra charges, wake up all waiters, 5300 * and retry. Because we cancel precharges, we might not be able 5301 * to move enough charges, but moving charge is a best-effort 5302 * feature anyway, so it wouldn't be a big problem. 5303 */ 5304 __mem_cgroup_clear_mc(); 5305 cond_resched(); 5306 goto retry; 5307 } 5308 /* 5309 * When we have consumed all precharges and failed in doing 5310 * additional charge, the page walk just aborts. 5311 */ 5312 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5313 5314 up_read(&mc.mm->mmap_sem); 5315 atomic_dec(&mc.from->moving_account); 5316 } 5317 5318 static void mem_cgroup_move_task(void) 5319 { 5320 if (mc.to) { 5321 mem_cgroup_move_charge(); 5322 mem_cgroup_clear_mc(); 5323 } 5324 } 5325 #else /* !CONFIG_MMU */ 5326 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5327 { 5328 return 0; 5329 } 5330 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5331 { 5332 } 5333 static void mem_cgroup_move_task(void) 5334 { 5335 } 5336 #endif 5337 5338 /* 5339 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5340 * to verify whether we're attached to the default hierarchy on each mount 5341 * attempt. 5342 */ 5343 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5344 { 5345 /* 5346 * use_hierarchy is forced on the default hierarchy. cgroup core 5347 * guarantees that @root doesn't have any children, so turning it 5348 * on for the root memcg is enough. 5349 */ 5350 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5351 root_mem_cgroup->use_hierarchy = true; 5352 else 5353 root_mem_cgroup->use_hierarchy = false; 5354 } 5355 5356 static u64 memory_current_read(struct cgroup_subsys_state *css, 5357 struct cftype *cft) 5358 { 5359 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5360 5361 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5362 } 5363 5364 static int memory_min_show(struct seq_file *m, void *v) 5365 { 5366 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5367 unsigned long min = READ_ONCE(memcg->memory.min); 5368 5369 if (min == PAGE_COUNTER_MAX) 5370 seq_puts(m, "max\n"); 5371 else 5372 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE); 5373 5374 return 0; 5375 } 5376 5377 static ssize_t memory_min_write(struct kernfs_open_file *of, 5378 char *buf, size_t nbytes, loff_t off) 5379 { 5380 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5381 unsigned long min; 5382 int err; 5383 5384 buf = strstrip(buf); 5385 err = page_counter_memparse(buf, "max", &min); 5386 if (err) 5387 return err; 5388 5389 page_counter_set_min(&memcg->memory, min); 5390 5391 return nbytes; 5392 } 5393 5394 static int memory_low_show(struct seq_file *m, void *v) 5395 { 5396 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5397 unsigned long low = READ_ONCE(memcg->memory.low); 5398 5399 if (low == PAGE_COUNTER_MAX) 5400 seq_puts(m, "max\n"); 5401 else 5402 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5403 5404 return 0; 5405 } 5406 5407 static ssize_t memory_low_write(struct kernfs_open_file *of, 5408 char *buf, size_t nbytes, loff_t off) 5409 { 5410 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5411 unsigned long low; 5412 int err; 5413 5414 buf = strstrip(buf); 5415 err = page_counter_memparse(buf, "max", &low); 5416 if (err) 5417 return err; 5418 5419 page_counter_set_low(&memcg->memory, low); 5420 5421 return nbytes; 5422 } 5423 5424 static int memory_high_show(struct seq_file *m, void *v) 5425 { 5426 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5427 unsigned long high = READ_ONCE(memcg->high); 5428 5429 if (high == PAGE_COUNTER_MAX) 5430 seq_puts(m, "max\n"); 5431 else 5432 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5433 5434 return 0; 5435 } 5436 5437 static ssize_t memory_high_write(struct kernfs_open_file *of, 5438 char *buf, size_t nbytes, loff_t off) 5439 { 5440 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5441 unsigned long nr_pages; 5442 unsigned long high; 5443 int err; 5444 5445 buf = strstrip(buf); 5446 err = page_counter_memparse(buf, "max", &high); 5447 if (err) 5448 return err; 5449 5450 memcg->high = high; 5451 5452 nr_pages = page_counter_read(&memcg->memory); 5453 if (nr_pages > high) 5454 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5455 GFP_KERNEL, true); 5456 5457 memcg_wb_domain_size_changed(memcg); 5458 return nbytes; 5459 } 5460 5461 static int memory_max_show(struct seq_file *m, void *v) 5462 { 5463 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5464 unsigned long max = READ_ONCE(memcg->memory.max); 5465 5466 if (max == PAGE_COUNTER_MAX) 5467 seq_puts(m, "max\n"); 5468 else 5469 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5470 5471 return 0; 5472 } 5473 5474 static ssize_t memory_max_write(struct kernfs_open_file *of, 5475 char *buf, size_t nbytes, loff_t off) 5476 { 5477 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5478 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5479 bool drained = false; 5480 unsigned long max; 5481 int err; 5482 5483 buf = strstrip(buf); 5484 err = page_counter_memparse(buf, "max", &max); 5485 if (err) 5486 return err; 5487 5488 xchg(&memcg->memory.max, max); 5489 5490 for (;;) { 5491 unsigned long nr_pages = page_counter_read(&memcg->memory); 5492 5493 if (nr_pages <= max) 5494 break; 5495 5496 if (signal_pending(current)) { 5497 err = -EINTR; 5498 break; 5499 } 5500 5501 if (!drained) { 5502 drain_all_stock(memcg); 5503 drained = true; 5504 continue; 5505 } 5506 5507 if (nr_reclaims) { 5508 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5509 GFP_KERNEL, true)) 5510 nr_reclaims--; 5511 continue; 5512 } 5513 5514 memcg_memory_event(memcg, MEMCG_OOM); 5515 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5516 break; 5517 } 5518 5519 memcg_wb_domain_size_changed(memcg); 5520 return nbytes; 5521 } 5522 5523 static int memory_events_show(struct seq_file *m, void *v) 5524 { 5525 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5526 5527 seq_printf(m, "low %lu\n", 5528 atomic_long_read(&memcg->memory_events[MEMCG_LOW])); 5529 seq_printf(m, "high %lu\n", 5530 atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); 5531 seq_printf(m, "max %lu\n", 5532 atomic_long_read(&memcg->memory_events[MEMCG_MAX])); 5533 seq_printf(m, "oom %lu\n", 5534 atomic_long_read(&memcg->memory_events[MEMCG_OOM])); 5535 seq_printf(m, "oom_kill %lu\n", 5536 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 5537 5538 return 0; 5539 } 5540 5541 static int memory_stat_show(struct seq_file *m, void *v) 5542 { 5543 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5544 struct accumulated_stats acc; 5545 int i; 5546 5547 /* 5548 * Provide statistics on the state of the memory subsystem as 5549 * well as cumulative event counters that show past behavior. 5550 * 5551 * This list is ordered following a combination of these gradients: 5552 * 1) generic big picture -> specifics and details 5553 * 2) reflecting userspace activity -> reflecting kernel heuristics 5554 * 5555 * Current memory state: 5556 */ 5557 5558 memset(&acc, 0, sizeof(acc)); 5559 acc.stats_size = MEMCG_NR_STAT; 5560 acc.events_size = NR_VM_EVENT_ITEMS; 5561 accumulate_memcg_tree(memcg, &acc); 5562 5563 seq_printf(m, "anon %llu\n", 5564 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE); 5565 seq_printf(m, "file %llu\n", 5566 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE); 5567 seq_printf(m, "kernel_stack %llu\n", 5568 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024); 5569 seq_printf(m, "slab %llu\n", 5570 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] + 5571 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5572 seq_printf(m, "sock %llu\n", 5573 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE); 5574 5575 seq_printf(m, "shmem %llu\n", 5576 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE); 5577 seq_printf(m, "file_mapped %llu\n", 5578 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE); 5579 seq_printf(m, "file_dirty %llu\n", 5580 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE); 5581 seq_printf(m, "file_writeback %llu\n", 5582 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE); 5583 5584 for (i = 0; i < NR_LRU_LISTS; i++) 5585 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i], 5586 (u64)acc.lru_pages[i] * PAGE_SIZE); 5587 5588 seq_printf(m, "slab_reclaimable %llu\n", 5589 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5590 seq_printf(m, "slab_unreclaimable %llu\n", 5591 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5592 5593 /* Accumulated memory events */ 5594 5595 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]); 5596 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]); 5597 5598 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]); 5599 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] + 5600 acc.events[PGSCAN_DIRECT]); 5601 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] + 5602 acc.events[PGSTEAL_DIRECT]); 5603 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]); 5604 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]); 5605 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]); 5606 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]); 5607 5608 seq_printf(m, "workingset_refault %lu\n", 5609 acc.stat[WORKINGSET_REFAULT]); 5610 seq_printf(m, "workingset_activate %lu\n", 5611 acc.stat[WORKINGSET_ACTIVATE]); 5612 seq_printf(m, "workingset_nodereclaim %lu\n", 5613 acc.stat[WORKINGSET_NODERECLAIM]); 5614 5615 return 0; 5616 } 5617 5618 static int memory_oom_group_show(struct seq_file *m, void *v) 5619 { 5620 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5621 5622 seq_printf(m, "%d\n", memcg->oom_group); 5623 5624 return 0; 5625 } 5626 5627 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5628 char *buf, size_t nbytes, loff_t off) 5629 { 5630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5631 int ret, oom_group; 5632 5633 buf = strstrip(buf); 5634 if (!buf) 5635 return -EINVAL; 5636 5637 ret = kstrtoint(buf, 0, &oom_group); 5638 if (ret) 5639 return ret; 5640 5641 if (oom_group != 0 && oom_group != 1) 5642 return -EINVAL; 5643 5644 memcg->oom_group = oom_group; 5645 5646 return nbytes; 5647 } 5648 5649 static struct cftype memory_files[] = { 5650 { 5651 .name = "current", 5652 .flags = CFTYPE_NOT_ON_ROOT, 5653 .read_u64 = memory_current_read, 5654 }, 5655 { 5656 .name = "min", 5657 .flags = CFTYPE_NOT_ON_ROOT, 5658 .seq_show = memory_min_show, 5659 .write = memory_min_write, 5660 }, 5661 { 5662 .name = "low", 5663 .flags = CFTYPE_NOT_ON_ROOT, 5664 .seq_show = memory_low_show, 5665 .write = memory_low_write, 5666 }, 5667 { 5668 .name = "high", 5669 .flags = CFTYPE_NOT_ON_ROOT, 5670 .seq_show = memory_high_show, 5671 .write = memory_high_write, 5672 }, 5673 { 5674 .name = "max", 5675 .flags = CFTYPE_NOT_ON_ROOT, 5676 .seq_show = memory_max_show, 5677 .write = memory_max_write, 5678 }, 5679 { 5680 .name = "events", 5681 .flags = CFTYPE_NOT_ON_ROOT, 5682 .file_offset = offsetof(struct mem_cgroup, events_file), 5683 .seq_show = memory_events_show, 5684 }, 5685 { 5686 .name = "stat", 5687 .flags = CFTYPE_NOT_ON_ROOT, 5688 .seq_show = memory_stat_show, 5689 }, 5690 { 5691 .name = "oom.group", 5692 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5693 .seq_show = memory_oom_group_show, 5694 .write = memory_oom_group_write, 5695 }, 5696 { } /* terminate */ 5697 }; 5698 5699 struct cgroup_subsys memory_cgrp_subsys = { 5700 .css_alloc = mem_cgroup_css_alloc, 5701 .css_online = mem_cgroup_css_online, 5702 .css_offline = mem_cgroup_css_offline, 5703 .css_released = mem_cgroup_css_released, 5704 .css_free = mem_cgroup_css_free, 5705 .css_reset = mem_cgroup_css_reset, 5706 .can_attach = mem_cgroup_can_attach, 5707 .cancel_attach = mem_cgroup_cancel_attach, 5708 .post_attach = mem_cgroup_move_task, 5709 .bind = mem_cgroup_bind, 5710 .dfl_cftypes = memory_files, 5711 .legacy_cftypes = mem_cgroup_legacy_files, 5712 .early_init = 0, 5713 }; 5714 5715 /** 5716 * mem_cgroup_protected - check if memory consumption is in the normal range 5717 * @root: the top ancestor of the sub-tree being checked 5718 * @memcg: the memory cgroup to check 5719 * 5720 * WARNING: This function is not stateless! It can only be used as part 5721 * of a top-down tree iteration, not for isolated queries. 5722 * 5723 * Returns one of the following: 5724 * MEMCG_PROT_NONE: cgroup memory is not protected 5725 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5726 * an unprotected supply of reclaimable memory from other cgroups. 5727 * MEMCG_PROT_MIN: cgroup memory is protected 5728 * 5729 * @root is exclusive; it is never protected when looked at directly 5730 * 5731 * To provide a proper hierarchical behavior, effective memory.min/low values 5732 * are used. Below is the description of how effective memory.low is calculated. 5733 * Effective memory.min values is calculated in the same way. 5734 * 5735 * Effective memory.low is always equal or less than the original memory.low. 5736 * If there is no memory.low overcommittment (which is always true for 5737 * top-level memory cgroups), these two values are equal. 5738 * Otherwise, it's a part of parent's effective memory.low, 5739 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5740 * memory.low usages, where memory.low usage is the size of actually 5741 * protected memory. 5742 * 5743 * low_usage 5744 * elow = min( memory.low, parent->elow * ------------------ ), 5745 * siblings_low_usage 5746 * 5747 * | memory.current, if memory.current < memory.low 5748 * low_usage = | 5749 | 0, otherwise. 5750 * 5751 * 5752 * Such definition of the effective memory.low provides the expected 5753 * hierarchical behavior: parent's memory.low value is limiting 5754 * children, unprotected memory is reclaimed first and cgroups, 5755 * which are not using their guarantee do not affect actual memory 5756 * distribution. 5757 * 5758 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5759 * 5760 * A A/memory.low = 2G, A/memory.current = 6G 5761 * //\\ 5762 * BC DE B/memory.low = 3G B/memory.current = 2G 5763 * C/memory.low = 1G C/memory.current = 2G 5764 * D/memory.low = 0 D/memory.current = 2G 5765 * E/memory.low = 10G E/memory.current = 0 5766 * 5767 * and the memory pressure is applied, the following memory distribution 5768 * is expected (approximately): 5769 * 5770 * A/memory.current = 2G 5771 * 5772 * B/memory.current = 1.3G 5773 * C/memory.current = 0.6G 5774 * D/memory.current = 0 5775 * E/memory.current = 0 5776 * 5777 * These calculations require constant tracking of the actual low usages 5778 * (see propagate_protected_usage()), as well as recursive calculation of 5779 * effective memory.low values. But as we do call mem_cgroup_protected() 5780 * path for each memory cgroup top-down from the reclaim, 5781 * it's possible to optimize this part, and save calculated elow 5782 * for next usage. This part is intentionally racy, but it's ok, 5783 * as memory.low is a best-effort mechanism. 5784 */ 5785 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5786 struct mem_cgroup *memcg) 5787 { 5788 struct mem_cgroup *parent; 5789 unsigned long emin, parent_emin; 5790 unsigned long elow, parent_elow; 5791 unsigned long usage; 5792 5793 if (mem_cgroup_disabled()) 5794 return MEMCG_PROT_NONE; 5795 5796 if (!root) 5797 root = root_mem_cgroup; 5798 if (memcg == root) 5799 return MEMCG_PROT_NONE; 5800 5801 usage = page_counter_read(&memcg->memory); 5802 if (!usage) 5803 return MEMCG_PROT_NONE; 5804 5805 emin = memcg->memory.min; 5806 elow = memcg->memory.low; 5807 5808 parent = parent_mem_cgroup(memcg); 5809 /* No parent means a non-hierarchical mode on v1 memcg */ 5810 if (!parent) 5811 return MEMCG_PROT_NONE; 5812 5813 if (parent == root) 5814 goto exit; 5815 5816 parent_emin = READ_ONCE(parent->memory.emin); 5817 emin = min(emin, parent_emin); 5818 if (emin && parent_emin) { 5819 unsigned long min_usage, siblings_min_usage; 5820 5821 min_usage = min(usage, memcg->memory.min); 5822 siblings_min_usage = atomic_long_read( 5823 &parent->memory.children_min_usage); 5824 5825 if (min_usage && siblings_min_usage) 5826 emin = min(emin, parent_emin * min_usage / 5827 siblings_min_usage); 5828 } 5829 5830 parent_elow = READ_ONCE(parent->memory.elow); 5831 elow = min(elow, parent_elow); 5832 if (elow && parent_elow) { 5833 unsigned long low_usage, siblings_low_usage; 5834 5835 low_usage = min(usage, memcg->memory.low); 5836 siblings_low_usage = atomic_long_read( 5837 &parent->memory.children_low_usage); 5838 5839 if (low_usage && siblings_low_usage) 5840 elow = min(elow, parent_elow * low_usage / 5841 siblings_low_usage); 5842 } 5843 5844 exit: 5845 memcg->memory.emin = emin; 5846 memcg->memory.elow = elow; 5847 5848 if (usage <= emin) 5849 return MEMCG_PROT_MIN; 5850 else if (usage <= elow) 5851 return MEMCG_PROT_LOW; 5852 else 5853 return MEMCG_PROT_NONE; 5854 } 5855 5856 /** 5857 * mem_cgroup_try_charge - try charging a page 5858 * @page: page to charge 5859 * @mm: mm context of the victim 5860 * @gfp_mask: reclaim mode 5861 * @memcgp: charged memcg return 5862 * @compound: charge the page as compound or small page 5863 * 5864 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5865 * pages according to @gfp_mask if necessary. 5866 * 5867 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5868 * Otherwise, an error code is returned. 5869 * 5870 * After page->mapping has been set up, the caller must finalize the 5871 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5872 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5873 */ 5874 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5875 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5876 bool compound) 5877 { 5878 struct mem_cgroup *memcg = NULL; 5879 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5880 int ret = 0; 5881 5882 if (mem_cgroup_disabled()) 5883 goto out; 5884 5885 if (PageSwapCache(page)) { 5886 /* 5887 * Every swap fault against a single page tries to charge the 5888 * page, bail as early as possible. shmem_unuse() encounters 5889 * already charged pages, too. The USED bit is protected by 5890 * the page lock, which serializes swap cache removal, which 5891 * in turn serializes uncharging. 5892 */ 5893 VM_BUG_ON_PAGE(!PageLocked(page), page); 5894 if (compound_head(page)->mem_cgroup) 5895 goto out; 5896 5897 if (do_swap_account) { 5898 swp_entry_t ent = { .val = page_private(page), }; 5899 unsigned short id = lookup_swap_cgroup_id(ent); 5900 5901 rcu_read_lock(); 5902 memcg = mem_cgroup_from_id(id); 5903 if (memcg && !css_tryget_online(&memcg->css)) 5904 memcg = NULL; 5905 rcu_read_unlock(); 5906 } 5907 } 5908 5909 if (!memcg) 5910 memcg = get_mem_cgroup_from_mm(mm); 5911 5912 ret = try_charge(memcg, gfp_mask, nr_pages); 5913 5914 css_put(&memcg->css); 5915 out: 5916 *memcgp = memcg; 5917 return ret; 5918 } 5919 5920 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 5921 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5922 bool compound) 5923 { 5924 struct mem_cgroup *memcg; 5925 int ret; 5926 5927 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 5928 memcg = *memcgp; 5929 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 5930 return ret; 5931 } 5932 5933 /** 5934 * mem_cgroup_commit_charge - commit a page charge 5935 * @page: page to charge 5936 * @memcg: memcg to charge the page to 5937 * @lrucare: page might be on LRU already 5938 * @compound: charge the page as compound or small page 5939 * 5940 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5941 * after page->mapping has been set up. This must happen atomically 5942 * as part of the page instantiation, i.e. under the page table lock 5943 * for anonymous pages, under the page lock for page and swap cache. 5944 * 5945 * In addition, the page must not be on the LRU during the commit, to 5946 * prevent racing with task migration. If it might be, use @lrucare. 5947 * 5948 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5949 */ 5950 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5951 bool lrucare, bool compound) 5952 { 5953 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5954 5955 VM_BUG_ON_PAGE(!page->mapping, page); 5956 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5957 5958 if (mem_cgroup_disabled()) 5959 return; 5960 /* 5961 * Swap faults will attempt to charge the same page multiple 5962 * times. But reuse_swap_page() might have removed the page 5963 * from swapcache already, so we can't check PageSwapCache(). 5964 */ 5965 if (!memcg) 5966 return; 5967 5968 commit_charge(page, memcg, lrucare); 5969 5970 local_irq_disable(); 5971 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5972 memcg_check_events(memcg, page); 5973 local_irq_enable(); 5974 5975 if (do_memsw_account() && PageSwapCache(page)) { 5976 swp_entry_t entry = { .val = page_private(page) }; 5977 /* 5978 * The swap entry might not get freed for a long time, 5979 * let's not wait for it. The page already received a 5980 * memory+swap charge, drop the swap entry duplicate. 5981 */ 5982 mem_cgroup_uncharge_swap(entry, nr_pages); 5983 } 5984 } 5985 5986 /** 5987 * mem_cgroup_cancel_charge - cancel a page charge 5988 * @page: page to charge 5989 * @memcg: memcg to charge the page to 5990 * @compound: charge the page as compound or small page 5991 * 5992 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5993 */ 5994 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5995 bool compound) 5996 { 5997 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5998 5999 if (mem_cgroup_disabled()) 6000 return; 6001 /* 6002 * Swap faults will attempt to charge the same page multiple 6003 * times. But reuse_swap_page() might have removed the page 6004 * from swapcache already, so we can't check PageSwapCache(). 6005 */ 6006 if (!memcg) 6007 return; 6008 6009 cancel_charge(memcg, nr_pages); 6010 } 6011 6012 struct uncharge_gather { 6013 struct mem_cgroup *memcg; 6014 unsigned long pgpgout; 6015 unsigned long nr_anon; 6016 unsigned long nr_file; 6017 unsigned long nr_kmem; 6018 unsigned long nr_huge; 6019 unsigned long nr_shmem; 6020 struct page *dummy_page; 6021 }; 6022 6023 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6024 { 6025 memset(ug, 0, sizeof(*ug)); 6026 } 6027 6028 static void uncharge_batch(const struct uncharge_gather *ug) 6029 { 6030 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6031 unsigned long flags; 6032 6033 if (!mem_cgroup_is_root(ug->memcg)) { 6034 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6035 if (do_memsw_account()) 6036 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6037 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6038 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6039 memcg_oom_recover(ug->memcg); 6040 } 6041 6042 local_irq_save(flags); 6043 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6044 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6045 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6046 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6047 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6048 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages); 6049 memcg_check_events(ug->memcg, ug->dummy_page); 6050 local_irq_restore(flags); 6051 6052 if (!mem_cgroup_is_root(ug->memcg)) 6053 css_put_many(&ug->memcg->css, nr_pages); 6054 } 6055 6056 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6057 { 6058 VM_BUG_ON_PAGE(PageLRU(page), page); 6059 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6060 !PageHWPoison(page) , page); 6061 6062 if (!page->mem_cgroup) 6063 return; 6064 6065 /* 6066 * Nobody should be changing or seriously looking at 6067 * page->mem_cgroup at this point, we have fully 6068 * exclusive access to the page. 6069 */ 6070 6071 if (ug->memcg != page->mem_cgroup) { 6072 if (ug->memcg) { 6073 uncharge_batch(ug); 6074 uncharge_gather_clear(ug); 6075 } 6076 ug->memcg = page->mem_cgroup; 6077 } 6078 6079 if (!PageKmemcg(page)) { 6080 unsigned int nr_pages = 1; 6081 6082 if (PageTransHuge(page)) { 6083 nr_pages <<= compound_order(page); 6084 ug->nr_huge += nr_pages; 6085 } 6086 if (PageAnon(page)) 6087 ug->nr_anon += nr_pages; 6088 else { 6089 ug->nr_file += nr_pages; 6090 if (PageSwapBacked(page)) 6091 ug->nr_shmem += nr_pages; 6092 } 6093 ug->pgpgout++; 6094 } else { 6095 ug->nr_kmem += 1 << compound_order(page); 6096 __ClearPageKmemcg(page); 6097 } 6098 6099 ug->dummy_page = page; 6100 page->mem_cgroup = NULL; 6101 } 6102 6103 static void uncharge_list(struct list_head *page_list) 6104 { 6105 struct uncharge_gather ug; 6106 struct list_head *next; 6107 6108 uncharge_gather_clear(&ug); 6109 6110 /* 6111 * Note that the list can be a single page->lru; hence the 6112 * do-while loop instead of a simple list_for_each_entry(). 6113 */ 6114 next = page_list->next; 6115 do { 6116 struct page *page; 6117 6118 page = list_entry(next, struct page, lru); 6119 next = page->lru.next; 6120 6121 uncharge_page(page, &ug); 6122 } while (next != page_list); 6123 6124 if (ug.memcg) 6125 uncharge_batch(&ug); 6126 } 6127 6128 /** 6129 * mem_cgroup_uncharge - uncharge a page 6130 * @page: page to uncharge 6131 * 6132 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6133 * mem_cgroup_commit_charge(). 6134 */ 6135 void mem_cgroup_uncharge(struct page *page) 6136 { 6137 struct uncharge_gather ug; 6138 6139 if (mem_cgroup_disabled()) 6140 return; 6141 6142 /* Don't touch page->lru of any random page, pre-check: */ 6143 if (!page->mem_cgroup) 6144 return; 6145 6146 uncharge_gather_clear(&ug); 6147 uncharge_page(page, &ug); 6148 uncharge_batch(&ug); 6149 } 6150 6151 /** 6152 * mem_cgroup_uncharge_list - uncharge a list of page 6153 * @page_list: list of pages to uncharge 6154 * 6155 * Uncharge a list of pages previously charged with 6156 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6157 */ 6158 void mem_cgroup_uncharge_list(struct list_head *page_list) 6159 { 6160 if (mem_cgroup_disabled()) 6161 return; 6162 6163 if (!list_empty(page_list)) 6164 uncharge_list(page_list); 6165 } 6166 6167 /** 6168 * mem_cgroup_migrate - charge a page's replacement 6169 * @oldpage: currently circulating page 6170 * @newpage: replacement page 6171 * 6172 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6173 * be uncharged upon free. 6174 * 6175 * Both pages must be locked, @newpage->mapping must be set up. 6176 */ 6177 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6178 { 6179 struct mem_cgroup *memcg; 6180 unsigned int nr_pages; 6181 bool compound; 6182 unsigned long flags; 6183 6184 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6185 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6186 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6187 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6188 newpage); 6189 6190 if (mem_cgroup_disabled()) 6191 return; 6192 6193 /* Page cache replacement: new page already charged? */ 6194 if (newpage->mem_cgroup) 6195 return; 6196 6197 /* Swapcache readahead pages can get replaced before being charged */ 6198 memcg = oldpage->mem_cgroup; 6199 if (!memcg) 6200 return; 6201 6202 /* Force-charge the new page. The old one will be freed soon */ 6203 compound = PageTransHuge(newpage); 6204 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6205 6206 page_counter_charge(&memcg->memory, nr_pages); 6207 if (do_memsw_account()) 6208 page_counter_charge(&memcg->memsw, nr_pages); 6209 css_get_many(&memcg->css, nr_pages); 6210 6211 commit_charge(newpage, memcg, false); 6212 6213 local_irq_save(flags); 6214 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6215 memcg_check_events(memcg, newpage); 6216 local_irq_restore(flags); 6217 } 6218 6219 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6220 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6221 6222 void mem_cgroup_sk_alloc(struct sock *sk) 6223 { 6224 struct mem_cgroup *memcg; 6225 6226 if (!mem_cgroup_sockets_enabled) 6227 return; 6228 6229 /* 6230 * Socket cloning can throw us here with sk_memcg already 6231 * filled. It won't however, necessarily happen from 6232 * process context. So the test for root memcg given 6233 * the current task's memcg won't help us in this case. 6234 * 6235 * Respecting the original socket's memcg is a better 6236 * decision in this case. 6237 */ 6238 if (sk->sk_memcg) { 6239 css_get(&sk->sk_memcg->css); 6240 return; 6241 } 6242 6243 rcu_read_lock(); 6244 memcg = mem_cgroup_from_task(current); 6245 if (memcg == root_mem_cgroup) 6246 goto out; 6247 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6248 goto out; 6249 if (css_tryget_online(&memcg->css)) 6250 sk->sk_memcg = memcg; 6251 out: 6252 rcu_read_unlock(); 6253 } 6254 6255 void mem_cgroup_sk_free(struct sock *sk) 6256 { 6257 if (sk->sk_memcg) 6258 css_put(&sk->sk_memcg->css); 6259 } 6260 6261 /** 6262 * mem_cgroup_charge_skmem - charge socket memory 6263 * @memcg: memcg to charge 6264 * @nr_pages: number of pages to charge 6265 * 6266 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6267 * @memcg's configured limit, %false if the charge had to be forced. 6268 */ 6269 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6270 { 6271 gfp_t gfp_mask = GFP_KERNEL; 6272 6273 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6274 struct page_counter *fail; 6275 6276 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6277 memcg->tcpmem_pressure = 0; 6278 return true; 6279 } 6280 page_counter_charge(&memcg->tcpmem, nr_pages); 6281 memcg->tcpmem_pressure = 1; 6282 return false; 6283 } 6284 6285 /* Don't block in the packet receive path */ 6286 if (in_softirq()) 6287 gfp_mask = GFP_NOWAIT; 6288 6289 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6290 6291 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6292 return true; 6293 6294 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6295 return false; 6296 } 6297 6298 /** 6299 * mem_cgroup_uncharge_skmem - uncharge socket memory 6300 * @memcg: memcg to uncharge 6301 * @nr_pages: number of pages to uncharge 6302 */ 6303 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6304 { 6305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6306 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6307 return; 6308 } 6309 6310 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6311 6312 refill_stock(memcg, nr_pages); 6313 } 6314 6315 static int __init cgroup_memory(char *s) 6316 { 6317 char *token; 6318 6319 while ((token = strsep(&s, ",")) != NULL) { 6320 if (!*token) 6321 continue; 6322 if (!strcmp(token, "nosocket")) 6323 cgroup_memory_nosocket = true; 6324 if (!strcmp(token, "nokmem")) 6325 cgroup_memory_nokmem = true; 6326 } 6327 return 0; 6328 } 6329 __setup("cgroup.memory=", cgroup_memory); 6330 6331 /* 6332 * subsys_initcall() for memory controller. 6333 * 6334 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6335 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6336 * basically everything that doesn't depend on a specific mem_cgroup structure 6337 * should be initialized from here. 6338 */ 6339 static int __init mem_cgroup_init(void) 6340 { 6341 int cpu, node; 6342 6343 #ifdef CONFIG_MEMCG_KMEM 6344 /* 6345 * Kmem cache creation is mostly done with the slab_mutex held, 6346 * so use a workqueue with limited concurrency to avoid stalling 6347 * all worker threads in case lots of cgroups are created and 6348 * destroyed simultaneously. 6349 */ 6350 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6351 BUG_ON(!memcg_kmem_cache_wq); 6352 #endif 6353 6354 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6355 memcg_hotplug_cpu_dead); 6356 6357 for_each_possible_cpu(cpu) 6358 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6359 drain_local_stock); 6360 6361 for_each_node(node) { 6362 struct mem_cgroup_tree_per_node *rtpn; 6363 6364 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6365 node_online(node) ? node : NUMA_NO_NODE); 6366 6367 rtpn->rb_root = RB_ROOT; 6368 rtpn->rb_rightmost = NULL; 6369 spin_lock_init(&rtpn->lock); 6370 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6371 } 6372 6373 return 0; 6374 } 6375 subsys_initcall(mem_cgroup_init); 6376 6377 #ifdef CONFIG_MEMCG_SWAP 6378 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6379 { 6380 while (!atomic_inc_not_zero(&memcg->id.ref)) { 6381 /* 6382 * The root cgroup cannot be destroyed, so it's refcount must 6383 * always be >= 1. 6384 */ 6385 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6386 VM_BUG_ON(1); 6387 break; 6388 } 6389 memcg = parent_mem_cgroup(memcg); 6390 if (!memcg) 6391 memcg = root_mem_cgroup; 6392 } 6393 return memcg; 6394 } 6395 6396 /** 6397 * mem_cgroup_swapout - transfer a memsw charge to swap 6398 * @page: page whose memsw charge to transfer 6399 * @entry: swap entry to move the charge to 6400 * 6401 * Transfer the memsw charge of @page to @entry. 6402 */ 6403 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6404 { 6405 struct mem_cgroup *memcg, *swap_memcg; 6406 unsigned int nr_entries; 6407 unsigned short oldid; 6408 6409 VM_BUG_ON_PAGE(PageLRU(page), page); 6410 VM_BUG_ON_PAGE(page_count(page), page); 6411 6412 if (!do_memsw_account()) 6413 return; 6414 6415 memcg = page->mem_cgroup; 6416 6417 /* Readahead page, never charged */ 6418 if (!memcg) 6419 return; 6420 6421 /* 6422 * In case the memcg owning these pages has been offlined and doesn't 6423 * have an ID allocated to it anymore, charge the closest online 6424 * ancestor for the swap instead and transfer the memory+swap charge. 6425 */ 6426 swap_memcg = mem_cgroup_id_get_online(memcg); 6427 nr_entries = hpage_nr_pages(page); 6428 /* Get references for the tail pages, too */ 6429 if (nr_entries > 1) 6430 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6431 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6432 nr_entries); 6433 VM_BUG_ON_PAGE(oldid, page); 6434 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6435 6436 page->mem_cgroup = NULL; 6437 6438 if (!mem_cgroup_is_root(memcg)) 6439 page_counter_uncharge(&memcg->memory, nr_entries); 6440 6441 if (memcg != swap_memcg) { 6442 if (!mem_cgroup_is_root(swap_memcg)) 6443 page_counter_charge(&swap_memcg->memsw, nr_entries); 6444 page_counter_uncharge(&memcg->memsw, nr_entries); 6445 } 6446 6447 /* 6448 * Interrupts should be disabled here because the caller holds the 6449 * i_pages lock which is taken with interrupts-off. It is 6450 * important here to have the interrupts disabled because it is the 6451 * only synchronisation we have for updating the per-CPU variables. 6452 */ 6453 VM_BUG_ON(!irqs_disabled()); 6454 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6455 -nr_entries); 6456 memcg_check_events(memcg, page); 6457 6458 if (!mem_cgroup_is_root(memcg)) 6459 css_put_many(&memcg->css, nr_entries); 6460 } 6461 6462 /** 6463 * mem_cgroup_try_charge_swap - try charging swap space for a page 6464 * @page: page being added to swap 6465 * @entry: swap entry to charge 6466 * 6467 * Try to charge @page's memcg for the swap space at @entry. 6468 * 6469 * Returns 0 on success, -ENOMEM on failure. 6470 */ 6471 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6472 { 6473 unsigned int nr_pages = hpage_nr_pages(page); 6474 struct page_counter *counter; 6475 struct mem_cgroup *memcg; 6476 unsigned short oldid; 6477 6478 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6479 return 0; 6480 6481 memcg = page->mem_cgroup; 6482 6483 /* Readahead page, never charged */ 6484 if (!memcg) 6485 return 0; 6486 6487 if (!entry.val) { 6488 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6489 return 0; 6490 } 6491 6492 memcg = mem_cgroup_id_get_online(memcg); 6493 6494 if (!mem_cgroup_is_root(memcg) && 6495 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6496 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6497 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6498 mem_cgroup_id_put(memcg); 6499 return -ENOMEM; 6500 } 6501 6502 /* Get references for the tail pages, too */ 6503 if (nr_pages > 1) 6504 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6505 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6506 VM_BUG_ON_PAGE(oldid, page); 6507 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6508 6509 return 0; 6510 } 6511 6512 /** 6513 * mem_cgroup_uncharge_swap - uncharge swap space 6514 * @entry: swap entry to uncharge 6515 * @nr_pages: the amount of swap space to uncharge 6516 */ 6517 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6518 { 6519 struct mem_cgroup *memcg; 6520 unsigned short id; 6521 6522 if (!do_swap_account) 6523 return; 6524 6525 id = swap_cgroup_record(entry, 0, nr_pages); 6526 rcu_read_lock(); 6527 memcg = mem_cgroup_from_id(id); 6528 if (memcg) { 6529 if (!mem_cgroup_is_root(memcg)) { 6530 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6531 page_counter_uncharge(&memcg->swap, nr_pages); 6532 else 6533 page_counter_uncharge(&memcg->memsw, nr_pages); 6534 } 6535 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6536 mem_cgroup_id_put_many(memcg, nr_pages); 6537 } 6538 rcu_read_unlock(); 6539 } 6540 6541 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6542 { 6543 long nr_swap_pages = get_nr_swap_pages(); 6544 6545 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6546 return nr_swap_pages; 6547 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6548 nr_swap_pages = min_t(long, nr_swap_pages, 6549 READ_ONCE(memcg->swap.max) - 6550 page_counter_read(&memcg->swap)); 6551 return nr_swap_pages; 6552 } 6553 6554 bool mem_cgroup_swap_full(struct page *page) 6555 { 6556 struct mem_cgroup *memcg; 6557 6558 VM_BUG_ON_PAGE(!PageLocked(page), page); 6559 6560 if (vm_swap_full()) 6561 return true; 6562 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6563 return false; 6564 6565 memcg = page->mem_cgroup; 6566 if (!memcg) 6567 return false; 6568 6569 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6570 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6571 return true; 6572 6573 return false; 6574 } 6575 6576 /* for remember boot option*/ 6577 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6578 static int really_do_swap_account __initdata = 1; 6579 #else 6580 static int really_do_swap_account __initdata; 6581 #endif 6582 6583 static int __init enable_swap_account(char *s) 6584 { 6585 if (!strcmp(s, "1")) 6586 really_do_swap_account = 1; 6587 else if (!strcmp(s, "0")) 6588 really_do_swap_account = 0; 6589 return 1; 6590 } 6591 __setup("swapaccount=", enable_swap_account); 6592 6593 static u64 swap_current_read(struct cgroup_subsys_state *css, 6594 struct cftype *cft) 6595 { 6596 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6597 6598 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6599 } 6600 6601 static int swap_max_show(struct seq_file *m, void *v) 6602 { 6603 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6604 unsigned long max = READ_ONCE(memcg->swap.max); 6605 6606 if (max == PAGE_COUNTER_MAX) 6607 seq_puts(m, "max\n"); 6608 else 6609 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6610 6611 return 0; 6612 } 6613 6614 static ssize_t swap_max_write(struct kernfs_open_file *of, 6615 char *buf, size_t nbytes, loff_t off) 6616 { 6617 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6618 unsigned long max; 6619 int err; 6620 6621 buf = strstrip(buf); 6622 err = page_counter_memparse(buf, "max", &max); 6623 if (err) 6624 return err; 6625 6626 xchg(&memcg->swap.max, max); 6627 6628 return nbytes; 6629 } 6630 6631 static int swap_events_show(struct seq_file *m, void *v) 6632 { 6633 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6634 6635 seq_printf(m, "max %lu\n", 6636 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6637 seq_printf(m, "fail %lu\n", 6638 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6639 6640 return 0; 6641 } 6642 6643 static struct cftype swap_files[] = { 6644 { 6645 .name = "swap.current", 6646 .flags = CFTYPE_NOT_ON_ROOT, 6647 .read_u64 = swap_current_read, 6648 }, 6649 { 6650 .name = "swap.max", 6651 .flags = CFTYPE_NOT_ON_ROOT, 6652 .seq_show = swap_max_show, 6653 .write = swap_max_write, 6654 }, 6655 { 6656 .name = "swap.events", 6657 .flags = CFTYPE_NOT_ON_ROOT, 6658 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6659 .seq_show = swap_events_show, 6660 }, 6661 { } /* terminate */ 6662 }; 6663 6664 static struct cftype memsw_cgroup_files[] = { 6665 { 6666 .name = "memsw.usage_in_bytes", 6667 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6668 .read_u64 = mem_cgroup_read_u64, 6669 }, 6670 { 6671 .name = "memsw.max_usage_in_bytes", 6672 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6673 .write = mem_cgroup_reset, 6674 .read_u64 = mem_cgroup_read_u64, 6675 }, 6676 { 6677 .name = "memsw.limit_in_bytes", 6678 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6679 .write = mem_cgroup_write, 6680 .read_u64 = mem_cgroup_read_u64, 6681 }, 6682 { 6683 .name = "memsw.failcnt", 6684 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6685 .write = mem_cgroup_reset, 6686 .read_u64 = mem_cgroup_read_u64, 6687 }, 6688 { }, /* terminate */ 6689 }; 6690 6691 static int __init mem_cgroup_swap_init(void) 6692 { 6693 if (!mem_cgroup_disabled() && really_do_swap_account) { 6694 do_swap_account = 1; 6695 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6696 swap_files)); 6697 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6698 memsw_cgroup_files)); 6699 } 6700 return 0; 6701 } 6702 subsys_initcall(mem_cgroup_swap_init); 6703 6704 #endif /* CONFIG_MEMCG_SWAP */ 6705