xref: /openbmc/linux/mm/memcontrol.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71 
72 #include <linux/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84 
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87 
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
99 }
100 
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103 
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108 
109 struct mem_cgroup_tree_per_node {
110 	struct rb_root rb_root;
111 	struct rb_node *rb_rightmost;
112 	spinlock_t lock;
113 };
114 
115 struct mem_cgroup_tree {
116 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118 
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120 
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 	struct list_head list;
124 	struct eventfd_ctx *eventfd;
125 };
126 
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131 	/*
132 	 * memcg which the event belongs to.
133 	 */
134 	struct mem_cgroup *memcg;
135 	/*
136 	 * eventfd to signal userspace about the event.
137 	 */
138 	struct eventfd_ctx *eventfd;
139 	/*
140 	 * Each of these stored in a list by the cgroup.
141 	 */
142 	struct list_head list;
143 	/*
144 	 * register_event() callback will be used to add new userspace
145 	 * waiter for changes related to this event.  Use eventfd_signal()
146 	 * on eventfd to send notification to userspace.
147 	 */
148 	int (*register_event)(struct mem_cgroup *memcg,
149 			      struct eventfd_ctx *eventfd, const char *args);
150 	/*
151 	 * unregister_event() callback will be called when userspace closes
152 	 * the eventfd or on cgroup removing.  This callback must be set,
153 	 * if you want provide notification functionality.
154 	 */
155 	void (*unregister_event)(struct mem_cgroup *memcg,
156 				 struct eventfd_ctx *eventfd);
157 	/*
158 	 * All fields below needed to unregister event when
159 	 * userspace closes eventfd.
160 	 */
161 	poll_table pt;
162 	wait_queue_head_t *wqh;
163 	wait_queue_entry_t wait;
164 	struct work_struct remove;
165 };
166 
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169 
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON	0x1U
175 #define MOVE_FILE	0x2U
176 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177 
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 	spinlock_t	  lock; /* for from, to */
181 	struct mm_struct  *mm;
182 	struct mem_cgroup *from;
183 	struct mem_cgroup *to;
184 	unsigned long flags;
185 	unsigned long precharge;
186 	unsigned long moved_charge;
187 	unsigned long moved_swap;
188 	struct task_struct *moving_task;	/* a task moving charges */
189 	wait_queue_head_t waitq;		/* a waitq for other context */
190 } mc = {
191 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194 
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201 
202 /* for encoding cft->private value on file */
203 enum res_type {
204 	_MEM,
205 	_MEMSWAP,
206 	_KMEM,
207 	_TCP,
208 };
209 
210 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
211 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
212 #define MEMFILE_ATTR(val)	((val) & 0xffff)
213 
214 /*
215  * Iteration constructs for visiting all cgroups (under a tree).  If
216  * loops are exited prematurely (break), mem_cgroup_iter_break() must
217  * be used for reference counting.
218  */
219 #define for_each_mem_cgroup_tree(iter, root)		\
220 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
221 	     iter != NULL;				\
222 	     iter = mem_cgroup_iter(root, iter, NULL))
223 
224 #define for_each_mem_cgroup(iter)			\
225 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
226 	     iter != NULL;				\
227 	     iter = mem_cgroup_iter(NULL, iter, NULL))
228 
229 static inline bool task_is_dying(void)
230 {
231 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232 		(current->flags & PF_EXITING);
233 }
234 
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238 	if (!memcg)
239 		memcg = root_mem_cgroup;
240 	return &memcg->vmpressure;
241 }
242 
243 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
244 {
245 	return container_of(vmpr, struct mem_cgroup, vmpressure);
246 }
247 
248 #ifdef CONFIG_MEMCG_KMEM
249 static DEFINE_SPINLOCK(objcg_lock);
250 
251 bool mem_cgroup_kmem_disabled(void)
252 {
253 	return cgroup_memory_nokmem;
254 }
255 
256 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257 				      unsigned int nr_pages);
258 
259 static void obj_cgroup_release(struct percpu_ref *ref)
260 {
261 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
262 	unsigned int nr_bytes;
263 	unsigned int nr_pages;
264 	unsigned long flags;
265 
266 	/*
267 	 * At this point all allocated objects are freed, and
268 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 	 *
271 	 * The following sequence can lead to it:
272 	 * 1) CPU0: objcg == stock->cached_objcg
273 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 	 *          PAGE_SIZE bytes are charged
275 	 * 3) CPU1: a process from another memcg is allocating something,
276 	 *          the stock if flushed,
277 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
278 	 * 5) CPU0: we do release this object,
279 	 *          92 bytes are added to stock->nr_bytes
280 	 * 6) CPU0: stock is flushed,
281 	 *          92 bytes are added to objcg->nr_charged_bytes
282 	 *
283 	 * In the result, nr_charged_bytes == PAGE_SIZE.
284 	 * This page will be uncharged in obj_cgroup_release().
285 	 */
286 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 	nr_pages = nr_bytes >> PAGE_SHIFT;
289 
290 	if (nr_pages)
291 		obj_cgroup_uncharge_pages(objcg, nr_pages);
292 
293 	spin_lock_irqsave(&objcg_lock, flags);
294 	list_del(&objcg->list);
295 	spin_unlock_irqrestore(&objcg_lock, flags);
296 
297 	percpu_ref_exit(ref);
298 	kfree_rcu(objcg, rcu);
299 }
300 
301 static struct obj_cgroup *obj_cgroup_alloc(void)
302 {
303 	struct obj_cgroup *objcg;
304 	int ret;
305 
306 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307 	if (!objcg)
308 		return NULL;
309 
310 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311 			      GFP_KERNEL);
312 	if (ret) {
313 		kfree(objcg);
314 		return NULL;
315 	}
316 	INIT_LIST_HEAD(&objcg->list);
317 	return objcg;
318 }
319 
320 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321 				  struct mem_cgroup *parent)
322 {
323 	struct obj_cgroup *objcg, *iter;
324 
325 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326 
327 	spin_lock_irq(&objcg_lock);
328 
329 	/* 1) Ready to reparent active objcg. */
330 	list_add(&objcg->list, &memcg->objcg_list);
331 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
332 	list_for_each_entry(iter, &memcg->objcg_list, list)
333 		WRITE_ONCE(iter->memcg, parent);
334 	/* 3) Move already reparented objcgs to the parent's list */
335 	list_splice(&memcg->objcg_list, &parent->objcg_list);
336 
337 	spin_unlock_irq(&objcg_lock);
338 
339 	percpu_ref_kill(&objcg->refcnt);
340 }
341 
342 /*
343  * A lot of the calls to the cache allocation functions are expected to be
344  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
345  * conditional to this static branch, we'll have to allow modules that does
346  * kmem_cache_alloc and the such to see this symbol as well
347  */
348 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
349 EXPORT_SYMBOL(memcg_kmem_enabled_key);
350 #endif
351 
352 /**
353  * mem_cgroup_css_from_page - css of the memcg associated with a page
354  * @page: page of interest
355  *
356  * If memcg is bound to the default hierarchy, css of the memcg associated
357  * with @page is returned.  The returned css remains associated with @page
358  * until it is released.
359  *
360  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361  * is returned.
362  */
363 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364 {
365 	struct mem_cgroup *memcg;
366 
367 	memcg = page_memcg(page);
368 
369 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
370 		memcg = root_mem_cgroup;
371 
372 	return &memcg->css;
373 }
374 
375 /**
376  * page_cgroup_ino - return inode number of the memcg a page is charged to
377  * @page: the page
378  *
379  * Look up the closest online ancestor of the memory cgroup @page is charged to
380  * and return its inode number or 0 if @page is not charged to any cgroup. It
381  * is safe to call this function without holding a reference to @page.
382  *
383  * Note, this function is inherently racy, because there is nothing to prevent
384  * the cgroup inode from getting torn down and potentially reallocated a moment
385  * after page_cgroup_ino() returns, so it only should be used by callers that
386  * do not care (such as procfs interfaces).
387  */
388 ino_t page_cgroup_ino(struct page *page)
389 {
390 	struct mem_cgroup *memcg;
391 	unsigned long ino = 0;
392 
393 	rcu_read_lock();
394 	memcg = page_memcg_check(page);
395 
396 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
397 		memcg = parent_mem_cgroup(memcg);
398 	if (memcg)
399 		ino = cgroup_ino(memcg->css.cgroup);
400 	rcu_read_unlock();
401 	return ino;
402 }
403 
404 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405 					 struct mem_cgroup_tree_per_node *mctz,
406 					 unsigned long new_usage_in_excess)
407 {
408 	struct rb_node **p = &mctz->rb_root.rb_node;
409 	struct rb_node *parent = NULL;
410 	struct mem_cgroup_per_node *mz_node;
411 	bool rightmost = true;
412 
413 	if (mz->on_tree)
414 		return;
415 
416 	mz->usage_in_excess = new_usage_in_excess;
417 	if (!mz->usage_in_excess)
418 		return;
419 	while (*p) {
420 		parent = *p;
421 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
422 					tree_node);
423 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
424 			p = &(*p)->rb_left;
425 			rightmost = false;
426 		} else {
427 			p = &(*p)->rb_right;
428 		}
429 	}
430 
431 	if (rightmost)
432 		mctz->rb_rightmost = &mz->tree_node;
433 
434 	rb_link_node(&mz->tree_node, parent, p);
435 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 	mz->on_tree = true;
437 }
438 
439 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 					 struct mem_cgroup_tree_per_node *mctz)
441 {
442 	if (!mz->on_tree)
443 		return;
444 
445 	if (&mz->tree_node == mctz->rb_rightmost)
446 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
447 
448 	rb_erase(&mz->tree_node, &mctz->rb_root);
449 	mz->on_tree = false;
450 }
451 
452 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453 				       struct mem_cgroup_tree_per_node *mctz)
454 {
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(&mctz->lock, flags);
458 	__mem_cgroup_remove_exceeded(mz, mctz);
459 	spin_unlock_irqrestore(&mctz->lock, flags);
460 }
461 
462 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463 {
464 	unsigned long nr_pages = page_counter_read(&memcg->memory);
465 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
466 	unsigned long excess = 0;
467 
468 	if (nr_pages > soft_limit)
469 		excess = nr_pages - soft_limit;
470 
471 	return excess;
472 }
473 
474 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
475 {
476 	unsigned long excess;
477 	struct mem_cgroup_per_node *mz;
478 	struct mem_cgroup_tree_per_node *mctz;
479 
480 	mctz = soft_limit_tree.rb_tree_per_node[nid];
481 	if (!mctz)
482 		return;
483 	/*
484 	 * Necessary to update all ancestors when hierarchy is used.
485 	 * because their event counter is not touched.
486 	 */
487 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
488 		mz = memcg->nodeinfo[nid];
489 		excess = soft_limit_excess(memcg);
490 		/*
491 		 * We have to update the tree if mz is on RB-tree or
492 		 * mem is over its softlimit.
493 		 */
494 		if (excess || mz->on_tree) {
495 			unsigned long flags;
496 
497 			spin_lock_irqsave(&mctz->lock, flags);
498 			/* if on-tree, remove it */
499 			if (mz->on_tree)
500 				__mem_cgroup_remove_exceeded(mz, mctz);
501 			/*
502 			 * Insert again. mz->usage_in_excess will be updated.
503 			 * If excess is 0, no tree ops.
504 			 */
505 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
506 			spin_unlock_irqrestore(&mctz->lock, flags);
507 		}
508 	}
509 }
510 
511 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512 {
513 	struct mem_cgroup_tree_per_node *mctz;
514 	struct mem_cgroup_per_node *mz;
515 	int nid;
516 
517 	for_each_node(nid) {
518 		mz = memcg->nodeinfo[nid];
519 		mctz = soft_limit_tree.rb_tree_per_node[nid];
520 		if (mctz)
521 			mem_cgroup_remove_exceeded(mz, mctz);
522 	}
523 }
524 
525 static struct mem_cgroup_per_node *
526 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
527 {
528 	struct mem_cgroup_per_node *mz;
529 
530 retry:
531 	mz = NULL;
532 	if (!mctz->rb_rightmost)
533 		goto done;		/* Nothing to reclaim from */
534 
535 	mz = rb_entry(mctz->rb_rightmost,
536 		      struct mem_cgroup_per_node, tree_node);
537 	/*
538 	 * Remove the node now but someone else can add it back,
539 	 * we will to add it back at the end of reclaim to its correct
540 	 * position in the tree.
541 	 */
542 	__mem_cgroup_remove_exceeded(mz, mctz);
543 	if (!soft_limit_excess(mz->memcg) ||
544 	    !css_tryget(&mz->memcg->css))
545 		goto retry;
546 done:
547 	return mz;
548 }
549 
550 static struct mem_cgroup_per_node *
551 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
552 {
553 	struct mem_cgroup_per_node *mz;
554 
555 	spin_lock_irq(&mctz->lock);
556 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
557 	spin_unlock_irq(&mctz->lock);
558 	return mz;
559 }
560 
561 /*
562  * memcg and lruvec stats flushing
563  *
564  * Many codepaths leading to stats update or read are performance sensitive and
565  * adding stats flushing in such codepaths is not desirable. So, to optimize the
566  * flushing the kernel does:
567  *
568  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569  *    rstat update tree grow unbounded.
570  *
571  * 2) Flush the stats synchronously on reader side only when there are more than
572  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574  *    only for 2 seconds due to (1).
575  */
576 static void flush_memcg_stats_dwork(struct work_struct *w);
577 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578 static DEFINE_SPINLOCK(stats_flush_lock);
579 static DEFINE_PER_CPU(unsigned int, stats_updates);
580 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
581 static u64 flush_next_time;
582 
583 #define FLUSH_TIME (2UL*HZ)
584 
585 /*
586  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587  * not rely on this as part of an acquired spinlock_t lock. These functions are
588  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589  * is sufficient.
590  */
591 static void memcg_stats_lock(void)
592 {
593 	preempt_disable_nested();
594 	VM_WARN_ON_IRQS_ENABLED();
595 }
596 
597 static void __memcg_stats_lock(void)
598 {
599 	preempt_disable_nested();
600 }
601 
602 static void memcg_stats_unlock(void)
603 {
604 	preempt_enable_nested();
605 }
606 
607 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
608 {
609 	unsigned int x;
610 
611 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
612 
613 	x = __this_cpu_add_return(stats_updates, abs(val));
614 	if (x > MEMCG_CHARGE_BATCH) {
615 		/*
616 		 * If stats_flush_threshold exceeds the threshold
617 		 * (>num_online_cpus()), cgroup stats update will be triggered
618 		 * in __mem_cgroup_flush_stats(). Increasing this var further
619 		 * is redundant and simply adds overhead in atomic update.
620 		 */
621 		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622 			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
623 		__this_cpu_write(stats_updates, 0);
624 	}
625 }
626 
627 static void __mem_cgroup_flush_stats(void)
628 {
629 	unsigned long flag;
630 
631 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
632 		return;
633 
634 	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
635 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636 	atomic_set(&stats_flush_threshold, 0);
637 	spin_unlock_irqrestore(&stats_flush_lock, flag);
638 }
639 
640 void mem_cgroup_flush_stats(void)
641 {
642 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643 		__mem_cgroup_flush_stats();
644 }
645 
646 void mem_cgroup_flush_stats_delayed(void)
647 {
648 	if (time_after64(jiffies_64, flush_next_time))
649 		mem_cgroup_flush_stats();
650 }
651 
652 static void flush_memcg_stats_dwork(struct work_struct *w)
653 {
654 	__mem_cgroup_flush_stats();
655 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
656 }
657 
658 /* Subset of vm_event_item to report for memcg event stats */
659 static const unsigned int memcg_vm_event_stat[] = {
660 	PGPGIN,
661 	PGPGOUT,
662 	PGSCAN_KSWAPD,
663 	PGSCAN_DIRECT,
664 	PGSCAN_KHUGEPAGED,
665 	PGSTEAL_KSWAPD,
666 	PGSTEAL_DIRECT,
667 	PGSTEAL_KHUGEPAGED,
668 	PGFAULT,
669 	PGMAJFAULT,
670 	PGREFILL,
671 	PGACTIVATE,
672 	PGDEACTIVATE,
673 	PGLAZYFREE,
674 	PGLAZYFREED,
675 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
676 	ZSWPIN,
677 	ZSWPOUT,
678 #endif
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 	THP_FAULT_ALLOC,
681 	THP_COLLAPSE_ALLOC,
682 #endif
683 };
684 
685 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
686 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
687 
688 static void init_memcg_events(void)
689 {
690 	int i;
691 
692 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
693 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
694 }
695 
696 static inline int memcg_events_index(enum vm_event_item idx)
697 {
698 	return mem_cgroup_events_index[idx] - 1;
699 }
700 
701 struct memcg_vmstats_percpu {
702 	/* Local (CPU and cgroup) page state & events */
703 	long			state[MEMCG_NR_STAT];
704 	unsigned long		events[NR_MEMCG_EVENTS];
705 
706 	/* Delta calculation for lockless upward propagation */
707 	long			state_prev[MEMCG_NR_STAT];
708 	unsigned long		events_prev[NR_MEMCG_EVENTS];
709 
710 	/* Cgroup1: threshold notifications & softlimit tree updates */
711 	unsigned long		nr_page_events;
712 	unsigned long		targets[MEM_CGROUP_NTARGETS];
713 };
714 
715 struct memcg_vmstats {
716 	/* Aggregated (CPU and subtree) page state & events */
717 	long			state[MEMCG_NR_STAT];
718 	unsigned long		events[NR_MEMCG_EVENTS];
719 
720 	/* Pending child counts during tree propagation */
721 	long			state_pending[MEMCG_NR_STAT];
722 	unsigned long		events_pending[NR_MEMCG_EVENTS];
723 };
724 
725 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
726 {
727 	long x = READ_ONCE(memcg->vmstats->state[idx]);
728 #ifdef CONFIG_SMP
729 	if (x < 0)
730 		x = 0;
731 #endif
732 	return x;
733 }
734 
735 /**
736  * __mod_memcg_state - update cgroup memory statistics
737  * @memcg: the memory cgroup
738  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
739  * @val: delta to add to the counter, can be negative
740  */
741 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
742 {
743 	if (mem_cgroup_disabled())
744 		return;
745 
746 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
747 	memcg_rstat_updated(memcg, val);
748 }
749 
750 /* idx can be of type enum memcg_stat_item or node_stat_item. */
751 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
752 {
753 	long x = 0;
754 	int cpu;
755 
756 	for_each_possible_cpu(cpu)
757 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
758 #ifdef CONFIG_SMP
759 	if (x < 0)
760 		x = 0;
761 #endif
762 	return x;
763 }
764 
765 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
766 			      int val)
767 {
768 	struct mem_cgroup_per_node *pn;
769 	struct mem_cgroup *memcg;
770 
771 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
772 	memcg = pn->memcg;
773 
774 	/*
775 	 * The caller from rmap relay on disabled preemption becase they never
776 	 * update their counter from in-interrupt context. For these two
777 	 * counters we check that the update is never performed from an
778 	 * interrupt context while other caller need to have disabled interrupt.
779 	 */
780 	__memcg_stats_lock();
781 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
782 		switch (idx) {
783 		case NR_ANON_MAPPED:
784 		case NR_FILE_MAPPED:
785 		case NR_ANON_THPS:
786 		case NR_SHMEM_PMDMAPPED:
787 		case NR_FILE_PMDMAPPED:
788 			WARN_ON_ONCE(!in_task());
789 			break;
790 		default:
791 			VM_WARN_ON_IRQS_ENABLED();
792 		}
793 	}
794 
795 	/* Update memcg */
796 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
797 
798 	/* Update lruvec */
799 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
800 
801 	memcg_rstat_updated(memcg, val);
802 	memcg_stats_unlock();
803 }
804 
805 /**
806  * __mod_lruvec_state - update lruvec memory statistics
807  * @lruvec: the lruvec
808  * @idx: the stat item
809  * @val: delta to add to the counter, can be negative
810  *
811  * The lruvec is the intersection of the NUMA node and a cgroup. This
812  * function updates the all three counters that are affected by a
813  * change of state at this level: per-node, per-cgroup, per-lruvec.
814  */
815 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
816 			int val)
817 {
818 	/* Update node */
819 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
820 
821 	/* Update memcg and lruvec */
822 	if (!mem_cgroup_disabled())
823 		__mod_memcg_lruvec_state(lruvec, idx, val);
824 }
825 
826 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
827 			     int val)
828 {
829 	struct page *head = compound_head(page); /* rmap on tail pages */
830 	struct mem_cgroup *memcg;
831 	pg_data_t *pgdat = page_pgdat(page);
832 	struct lruvec *lruvec;
833 
834 	rcu_read_lock();
835 	memcg = page_memcg(head);
836 	/* Untracked pages have no memcg, no lruvec. Update only the node */
837 	if (!memcg) {
838 		rcu_read_unlock();
839 		__mod_node_page_state(pgdat, idx, val);
840 		return;
841 	}
842 
843 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
844 	__mod_lruvec_state(lruvec, idx, val);
845 	rcu_read_unlock();
846 }
847 EXPORT_SYMBOL(__mod_lruvec_page_state);
848 
849 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
850 {
851 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
852 	struct mem_cgroup *memcg;
853 	struct lruvec *lruvec;
854 
855 	rcu_read_lock();
856 	memcg = mem_cgroup_from_slab_obj(p);
857 
858 	/*
859 	 * Untracked pages have no memcg, no lruvec. Update only the
860 	 * node. If we reparent the slab objects to the root memcg,
861 	 * when we free the slab object, we need to update the per-memcg
862 	 * vmstats to keep it correct for the root memcg.
863 	 */
864 	if (!memcg) {
865 		__mod_node_page_state(pgdat, idx, val);
866 	} else {
867 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
868 		__mod_lruvec_state(lruvec, idx, val);
869 	}
870 	rcu_read_unlock();
871 }
872 
873 /**
874  * __count_memcg_events - account VM events in a cgroup
875  * @memcg: the memory cgroup
876  * @idx: the event item
877  * @count: the number of events that occurred
878  */
879 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
880 			  unsigned long count)
881 {
882 	int index = memcg_events_index(idx);
883 
884 	if (mem_cgroup_disabled() || index < 0)
885 		return;
886 
887 	memcg_stats_lock();
888 	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
889 	memcg_rstat_updated(memcg, count);
890 	memcg_stats_unlock();
891 }
892 
893 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
894 {
895 	int index = memcg_events_index(event);
896 
897 	if (index < 0)
898 		return 0;
899 	return READ_ONCE(memcg->vmstats->events[index]);
900 }
901 
902 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
903 {
904 	long x = 0;
905 	int cpu;
906 	int index = memcg_events_index(event);
907 
908 	if (index < 0)
909 		return 0;
910 
911 	for_each_possible_cpu(cpu)
912 		x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
913 	return x;
914 }
915 
916 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
917 					 int nr_pages)
918 {
919 	/* pagein of a big page is an event. So, ignore page size */
920 	if (nr_pages > 0)
921 		__count_memcg_events(memcg, PGPGIN, 1);
922 	else {
923 		__count_memcg_events(memcg, PGPGOUT, 1);
924 		nr_pages = -nr_pages; /* for event */
925 	}
926 
927 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
928 }
929 
930 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
931 				       enum mem_cgroup_events_target target)
932 {
933 	unsigned long val, next;
934 
935 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
936 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
937 	/* from time_after() in jiffies.h */
938 	if ((long)(next - val) < 0) {
939 		switch (target) {
940 		case MEM_CGROUP_TARGET_THRESH:
941 			next = val + THRESHOLDS_EVENTS_TARGET;
942 			break;
943 		case MEM_CGROUP_TARGET_SOFTLIMIT:
944 			next = val + SOFTLIMIT_EVENTS_TARGET;
945 			break;
946 		default:
947 			break;
948 		}
949 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
950 		return true;
951 	}
952 	return false;
953 }
954 
955 /*
956  * Check events in order.
957  *
958  */
959 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
960 {
961 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
962 		return;
963 
964 	/* threshold event is triggered in finer grain than soft limit */
965 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
966 						MEM_CGROUP_TARGET_THRESH))) {
967 		bool do_softlimit;
968 
969 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
970 						MEM_CGROUP_TARGET_SOFTLIMIT);
971 		mem_cgroup_threshold(memcg);
972 		if (unlikely(do_softlimit))
973 			mem_cgroup_update_tree(memcg, nid);
974 	}
975 }
976 
977 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978 {
979 	/*
980 	 * mm_update_next_owner() may clear mm->owner to NULL
981 	 * if it races with swapoff, page migration, etc.
982 	 * So this can be called with p == NULL.
983 	 */
984 	if (unlikely(!p))
985 		return NULL;
986 
987 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988 }
989 EXPORT_SYMBOL(mem_cgroup_from_task);
990 
991 static __always_inline struct mem_cgroup *active_memcg(void)
992 {
993 	if (!in_task())
994 		return this_cpu_read(int_active_memcg);
995 	else
996 		return current->active_memcg;
997 }
998 
999 /**
1000  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1001  * @mm: mm from which memcg should be extracted. It can be NULL.
1002  *
1003  * Obtain a reference on mm->memcg and returns it if successful. If mm
1004  * is NULL, then the memcg is chosen as follows:
1005  * 1) The active memcg, if set.
1006  * 2) current->mm->memcg, if available
1007  * 3) root memcg
1008  * If mem_cgroup is disabled, NULL is returned.
1009  */
1010 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1011 {
1012 	struct mem_cgroup *memcg;
1013 
1014 	if (mem_cgroup_disabled())
1015 		return NULL;
1016 
1017 	/*
1018 	 * Page cache insertions can happen without an
1019 	 * actual mm context, e.g. during disk probing
1020 	 * on boot, loopback IO, acct() writes etc.
1021 	 *
1022 	 * No need to css_get on root memcg as the reference
1023 	 * counting is disabled on the root level in the
1024 	 * cgroup core. See CSS_NO_REF.
1025 	 */
1026 	if (unlikely(!mm)) {
1027 		memcg = active_memcg();
1028 		if (unlikely(memcg)) {
1029 			/* remote memcg must hold a ref */
1030 			css_get(&memcg->css);
1031 			return memcg;
1032 		}
1033 		mm = current->mm;
1034 		if (unlikely(!mm))
1035 			return root_mem_cgroup;
1036 	}
1037 
1038 	rcu_read_lock();
1039 	do {
1040 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 		if (unlikely(!memcg))
1042 			memcg = root_mem_cgroup;
1043 	} while (!css_tryget(&memcg->css));
1044 	rcu_read_unlock();
1045 	return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048 
1049 static __always_inline bool memcg_kmem_bypass(void)
1050 {
1051 	/* Allow remote memcg charging from any context. */
1052 	if (unlikely(active_memcg()))
1053 		return false;
1054 
1055 	/* Memcg to charge can't be determined. */
1056 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1057 		return true;
1058 
1059 	return false;
1060 }
1061 
1062 /**
1063  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1064  * @root: hierarchy root
1065  * @prev: previously returned memcg, NULL on first invocation
1066  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067  *
1068  * Returns references to children of the hierarchy below @root, or
1069  * @root itself, or %NULL after a full round-trip.
1070  *
1071  * Caller must pass the return value in @prev on subsequent
1072  * invocations for reference counting, or use mem_cgroup_iter_break()
1073  * to cancel a hierarchy walk before the round-trip is complete.
1074  *
1075  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1076  * in the hierarchy among all concurrent reclaimers operating on the
1077  * same node.
1078  */
1079 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1080 				   struct mem_cgroup *prev,
1081 				   struct mem_cgroup_reclaim_cookie *reclaim)
1082 {
1083 	struct mem_cgroup_reclaim_iter *iter;
1084 	struct cgroup_subsys_state *css = NULL;
1085 	struct mem_cgroup *memcg = NULL;
1086 	struct mem_cgroup *pos = NULL;
1087 
1088 	if (mem_cgroup_disabled())
1089 		return NULL;
1090 
1091 	if (!root)
1092 		root = root_mem_cgroup;
1093 
1094 	rcu_read_lock();
1095 
1096 	if (reclaim) {
1097 		struct mem_cgroup_per_node *mz;
1098 
1099 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1100 		iter = &mz->iter;
1101 
1102 		/*
1103 		 * On start, join the current reclaim iteration cycle.
1104 		 * Exit when a concurrent walker completes it.
1105 		 */
1106 		if (!prev)
1107 			reclaim->generation = iter->generation;
1108 		else if (reclaim->generation != iter->generation)
1109 			goto out_unlock;
1110 
1111 		while (1) {
1112 			pos = READ_ONCE(iter->position);
1113 			if (!pos || css_tryget(&pos->css))
1114 				break;
1115 			/*
1116 			 * css reference reached zero, so iter->position will
1117 			 * be cleared by ->css_released. However, we should not
1118 			 * rely on this happening soon, because ->css_released
1119 			 * is called from a work queue, and by busy-waiting we
1120 			 * might block it. So we clear iter->position right
1121 			 * away.
1122 			 */
1123 			(void)cmpxchg(&iter->position, pos, NULL);
1124 		}
1125 	} else if (prev) {
1126 		pos = prev;
1127 	}
1128 
1129 	if (pos)
1130 		css = &pos->css;
1131 
1132 	for (;;) {
1133 		css = css_next_descendant_pre(css, &root->css);
1134 		if (!css) {
1135 			/*
1136 			 * Reclaimers share the hierarchy walk, and a
1137 			 * new one might jump in right at the end of
1138 			 * the hierarchy - make sure they see at least
1139 			 * one group and restart from the beginning.
1140 			 */
1141 			if (!prev)
1142 				continue;
1143 			break;
1144 		}
1145 
1146 		/*
1147 		 * Verify the css and acquire a reference.  The root
1148 		 * is provided by the caller, so we know it's alive
1149 		 * and kicking, and don't take an extra reference.
1150 		 */
1151 		if (css == &root->css || css_tryget(css)) {
1152 			memcg = mem_cgroup_from_css(css);
1153 			break;
1154 		}
1155 	}
1156 
1157 	if (reclaim) {
1158 		/*
1159 		 * The position could have already been updated by a competing
1160 		 * thread, so check that the value hasn't changed since we read
1161 		 * it to avoid reclaiming from the same cgroup twice.
1162 		 */
1163 		(void)cmpxchg(&iter->position, pos, memcg);
1164 
1165 		if (pos)
1166 			css_put(&pos->css);
1167 
1168 		if (!memcg)
1169 			iter->generation++;
1170 	}
1171 
1172 out_unlock:
1173 	rcu_read_unlock();
1174 	if (prev && prev != root)
1175 		css_put(&prev->css);
1176 
1177 	return memcg;
1178 }
1179 
1180 /**
1181  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1182  * @root: hierarchy root
1183  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1184  */
1185 void mem_cgroup_iter_break(struct mem_cgroup *root,
1186 			   struct mem_cgroup *prev)
1187 {
1188 	if (!root)
1189 		root = root_mem_cgroup;
1190 	if (prev && prev != root)
1191 		css_put(&prev->css);
1192 }
1193 
1194 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1195 					struct mem_cgroup *dead_memcg)
1196 {
1197 	struct mem_cgroup_reclaim_iter *iter;
1198 	struct mem_cgroup_per_node *mz;
1199 	int nid;
1200 
1201 	for_each_node(nid) {
1202 		mz = from->nodeinfo[nid];
1203 		iter = &mz->iter;
1204 		cmpxchg(&iter->position, dead_memcg, NULL);
1205 	}
1206 }
1207 
1208 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1209 {
1210 	struct mem_cgroup *memcg = dead_memcg;
1211 	struct mem_cgroup *last;
1212 
1213 	do {
1214 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1215 		last = memcg;
1216 	} while ((memcg = parent_mem_cgroup(memcg)));
1217 
1218 	/*
1219 	 * When cgroup1 non-hierarchy mode is used,
1220 	 * parent_mem_cgroup() does not walk all the way up to the
1221 	 * cgroup root (root_mem_cgroup). So we have to handle
1222 	 * dead_memcg from cgroup root separately.
1223 	 */
1224 	if (!mem_cgroup_is_root(last))
1225 		__invalidate_reclaim_iterators(root_mem_cgroup,
1226 						dead_memcg);
1227 }
1228 
1229 /**
1230  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1231  * @memcg: hierarchy root
1232  * @fn: function to call for each task
1233  * @arg: argument passed to @fn
1234  *
1235  * This function iterates over tasks attached to @memcg or to any of its
1236  * descendants and calls @fn for each task. If @fn returns a non-zero
1237  * value, the function breaks the iteration loop and returns the value.
1238  * Otherwise, it will iterate over all tasks and return 0.
1239  *
1240  * This function must not be called for the root memory cgroup.
1241  */
1242 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1243 			  int (*fn)(struct task_struct *, void *), void *arg)
1244 {
1245 	struct mem_cgroup *iter;
1246 	int ret = 0;
1247 
1248 	BUG_ON(mem_cgroup_is_root(memcg));
1249 
1250 	for_each_mem_cgroup_tree(iter, memcg) {
1251 		struct css_task_iter it;
1252 		struct task_struct *task;
1253 
1254 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1255 		while (!ret && (task = css_task_iter_next(&it)))
1256 			ret = fn(task, arg);
1257 		css_task_iter_end(&it);
1258 		if (ret) {
1259 			mem_cgroup_iter_break(memcg, iter);
1260 			break;
1261 		}
1262 	}
1263 	return ret;
1264 }
1265 
1266 #ifdef CONFIG_DEBUG_VM
1267 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1268 {
1269 	struct mem_cgroup *memcg;
1270 
1271 	if (mem_cgroup_disabled())
1272 		return;
1273 
1274 	memcg = folio_memcg(folio);
1275 
1276 	if (!memcg)
1277 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1278 	else
1279 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1280 }
1281 #endif
1282 
1283 /**
1284  * folio_lruvec_lock - Lock the lruvec for a folio.
1285  * @folio: Pointer to the folio.
1286  *
1287  * These functions are safe to use under any of the following conditions:
1288  * - folio locked
1289  * - folio_test_lru false
1290  * - folio_memcg_lock()
1291  * - folio frozen (refcount of 0)
1292  *
1293  * Return: The lruvec this folio is on with its lock held.
1294  */
1295 struct lruvec *folio_lruvec_lock(struct folio *folio)
1296 {
1297 	struct lruvec *lruvec = folio_lruvec(folio);
1298 
1299 	spin_lock(&lruvec->lru_lock);
1300 	lruvec_memcg_debug(lruvec, folio);
1301 
1302 	return lruvec;
1303 }
1304 
1305 /**
1306  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1307  * @folio: Pointer to the folio.
1308  *
1309  * These functions are safe to use under any of the following conditions:
1310  * - folio locked
1311  * - folio_test_lru false
1312  * - folio_memcg_lock()
1313  * - folio frozen (refcount of 0)
1314  *
1315  * Return: The lruvec this folio is on with its lock held and interrupts
1316  * disabled.
1317  */
1318 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1319 {
1320 	struct lruvec *lruvec = folio_lruvec(folio);
1321 
1322 	spin_lock_irq(&lruvec->lru_lock);
1323 	lruvec_memcg_debug(lruvec, folio);
1324 
1325 	return lruvec;
1326 }
1327 
1328 /**
1329  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1330  * @folio: Pointer to the folio.
1331  * @flags: Pointer to irqsave flags.
1332  *
1333  * These functions are safe to use under any of the following conditions:
1334  * - folio locked
1335  * - folio_test_lru false
1336  * - folio_memcg_lock()
1337  * - folio frozen (refcount of 0)
1338  *
1339  * Return: The lruvec this folio is on with its lock held and interrupts
1340  * disabled.
1341  */
1342 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1343 		unsigned long *flags)
1344 {
1345 	struct lruvec *lruvec = folio_lruvec(folio);
1346 
1347 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1348 	lruvec_memcg_debug(lruvec, folio);
1349 
1350 	return lruvec;
1351 }
1352 
1353 /**
1354  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1355  * @lruvec: mem_cgroup per zone lru vector
1356  * @lru: index of lru list the page is sitting on
1357  * @zid: zone id of the accounted pages
1358  * @nr_pages: positive when adding or negative when removing
1359  *
1360  * This function must be called under lru_lock, just before a page is added
1361  * to or just after a page is removed from an lru list.
1362  */
1363 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1364 				int zid, int nr_pages)
1365 {
1366 	struct mem_cgroup_per_node *mz;
1367 	unsigned long *lru_size;
1368 	long size;
1369 
1370 	if (mem_cgroup_disabled())
1371 		return;
1372 
1373 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1374 	lru_size = &mz->lru_zone_size[zid][lru];
1375 
1376 	if (nr_pages < 0)
1377 		*lru_size += nr_pages;
1378 
1379 	size = *lru_size;
1380 	if (WARN_ONCE(size < 0,
1381 		"%s(%p, %d, %d): lru_size %ld\n",
1382 		__func__, lruvec, lru, nr_pages, size)) {
1383 		VM_BUG_ON(1);
1384 		*lru_size = 0;
1385 	}
1386 
1387 	if (nr_pages > 0)
1388 		*lru_size += nr_pages;
1389 }
1390 
1391 /**
1392  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1393  * @memcg: the memory cgroup
1394  *
1395  * Returns the maximum amount of memory @mem can be charged with, in
1396  * pages.
1397  */
1398 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1399 {
1400 	unsigned long margin = 0;
1401 	unsigned long count;
1402 	unsigned long limit;
1403 
1404 	count = page_counter_read(&memcg->memory);
1405 	limit = READ_ONCE(memcg->memory.max);
1406 	if (count < limit)
1407 		margin = limit - count;
1408 
1409 	if (do_memsw_account()) {
1410 		count = page_counter_read(&memcg->memsw);
1411 		limit = READ_ONCE(memcg->memsw.max);
1412 		if (count < limit)
1413 			margin = min(margin, limit - count);
1414 		else
1415 			margin = 0;
1416 	}
1417 
1418 	return margin;
1419 }
1420 
1421 /*
1422  * A routine for checking "mem" is under move_account() or not.
1423  *
1424  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1425  * moving cgroups. This is for waiting at high-memory pressure
1426  * caused by "move".
1427  */
1428 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1429 {
1430 	struct mem_cgroup *from;
1431 	struct mem_cgroup *to;
1432 	bool ret = false;
1433 	/*
1434 	 * Unlike task_move routines, we access mc.to, mc.from not under
1435 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1436 	 */
1437 	spin_lock(&mc.lock);
1438 	from = mc.from;
1439 	to = mc.to;
1440 	if (!from)
1441 		goto unlock;
1442 
1443 	ret = mem_cgroup_is_descendant(from, memcg) ||
1444 		mem_cgroup_is_descendant(to, memcg);
1445 unlock:
1446 	spin_unlock(&mc.lock);
1447 	return ret;
1448 }
1449 
1450 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1451 {
1452 	if (mc.moving_task && current != mc.moving_task) {
1453 		if (mem_cgroup_under_move(memcg)) {
1454 			DEFINE_WAIT(wait);
1455 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1456 			/* moving charge context might have finished. */
1457 			if (mc.moving_task)
1458 				schedule();
1459 			finish_wait(&mc.waitq, &wait);
1460 			return true;
1461 		}
1462 	}
1463 	return false;
1464 }
1465 
1466 struct memory_stat {
1467 	const char *name;
1468 	unsigned int idx;
1469 };
1470 
1471 static const struct memory_stat memory_stats[] = {
1472 	{ "anon",			NR_ANON_MAPPED			},
1473 	{ "file",			NR_FILE_PAGES			},
1474 	{ "kernel",			MEMCG_KMEM			},
1475 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1476 	{ "pagetables",			NR_PAGETABLE			},
1477 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1478 	{ "percpu",			MEMCG_PERCPU_B			},
1479 	{ "sock",			MEMCG_SOCK			},
1480 	{ "vmalloc",			MEMCG_VMALLOC			},
1481 	{ "shmem",			NR_SHMEM			},
1482 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1483 	{ "zswap",			MEMCG_ZSWAP_B			},
1484 	{ "zswapped",			MEMCG_ZSWAPPED			},
1485 #endif
1486 	{ "file_mapped",		NR_FILE_MAPPED			},
1487 	{ "file_dirty",			NR_FILE_DIRTY			},
1488 	{ "file_writeback",		NR_WRITEBACK			},
1489 #ifdef CONFIG_SWAP
1490 	{ "swapcached",			NR_SWAPCACHE			},
1491 #endif
1492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1493 	{ "anon_thp",			NR_ANON_THPS			},
1494 	{ "file_thp",			NR_FILE_THPS			},
1495 	{ "shmem_thp",			NR_SHMEM_THPS			},
1496 #endif
1497 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1498 	{ "active_anon",		NR_ACTIVE_ANON			},
1499 	{ "inactive_file",		NR_INACTIVE_FILE		},
1500 	{ "active_file",		NR_ACTIVE_FILE			},
1501 	{ "unevictable",		NR_UNEVICTABLE			},
1502 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1503 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1504 
1505 	/* The memory events */
1506 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1507 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1508 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1509 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1510 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1511 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1512 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1513 };
1514 
1515 /* Translate stat items to the correct unit for memory.stat output */
1516 static int memcg_page_state_unit(int item)
1517 {
1518 	switch (item) {
1519 	case MEMCG_PERCPU_B:
1520 	case MEMCG_ZSWAP_B:
1521 	case NR_SLAB_RECLAIMABLE_B:
1522 	case NR_SLAB_UNRECLAIMABLE_B:
1523 	case WORKINGSET_REFAULT_ANON:
1524 	case WORKINGSET_REFAULT_FILE:
1525 	case WORKINGSET_ACTIVATE_ANON:
1526 	case WORKINGSET_ACTIVATE_FILE:
1527 	case WORKINGSET_RESTORE_ANON:
1528 	case WORKINGSET_RESTORE_FILE:
1529 	case WORKINGSET_NODERECLAIM:
1530 		return 1;
1531 	case NR_KERNEL_STACK_KB:
1532 		return SZ_1K;
1533 	default:
1534 		return PAGE_SIZE;
1535 	}
1536 }
1537 
1538 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1539 						    int item)
1540 {
1541 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1542 }
1543 
1544 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1545 {
1546 	struct seq_buf s;
1547 	int i;
1548 
1549 	seq_buf_init(&s, buf, bufsize);
1550 
1551 	/*
1552 	 * Provide statistics on the state of the memory subsystem as
1553 	 * well as cumulative event counters that show past behavior.
1554 	 *
1555 	 * This list is ordered following a combination of these gradients:
1556 	 * 1) generic big picture -> specifics and details
1557 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1558 	 *
1559 	 * Current memory state:
1560 	 */
1561 	mem_cgroup_flush_stats();
1562 
1563 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564 		u64 size;
1565 
1566 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1567 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1568 
1569 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1570 			size += memcg_page_state_output(memcg,
1571 							NR_SLAB_RECLAIMABLE_B);
1572 			seq_buf_printf(&s, "slab %llu\n", size);
1573 		}
1574 	}
1575 
1576 	/* Accumulated memory events */
1577 	seq_buf_printf(&s, "pgscan %lu\n",
1578 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1579 		       memcg_events(memcg, PGSCAN_DIRECT) +
1580 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1581 	seq_buf_printf(&s, "pgsteal %lu\n",
1582 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1583 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1584 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1585 
1586 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1587 		if (memcg_vm_event_stat[i] == PGPGIN ||
1588 		    memcg_vm_event_stat[i] == PGPGOUT)
1589 			continue;
1590 
1591 		seq_buf_printf(&s, "%s %lu\n",
1592 			       vm_event_name(memcg_vm_event_stat[i]),
1593 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1594 	}
1595 
1596 	/* The above should easily fit into one page */
1597 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1598 }
1599 
1600 #define K(x) ((x) << (PAGE_SHIFT-10))
1601 /**
1602  * mem_cgroup_print_oom_context: Print OOM information relevant to
1603  * memory controller.
1604  * @memcg: The memory cgroup that went over limit
1605  * @p: Task that is going to be killed
1606  *
1607  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1608  * enabled
1609  */
1610 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1611 {
1612 	rcu_read_lock();
1613 
1614 	if (memcg) {
1615 		pr_cont(",oom_memcg=");
1616 		pr_cont_cgroup_path(memcg->css.cgroup);
1617 	} else
1618 		pr_cont(",global_oom");
1619 	if (p) {
1620 		pr_cont(",task_memcg=");
1621 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1622 	}
1623 	rcu_read_unlock();
1624 }
1625 
1626 /**
1627  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1628  * memory controller.
1629  * @memcg: The memory cgroup that went over limit
1630  */
1631 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1632 {
1633 	/* Use static buffer, for the caller is holding oom_lock. */
1634 	static char buf[PAGE_SIZE];
1635 
1636 	lockdep_assert_held(&oom_lock);
1637 
1638 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1639 		K((u64)page_counter_read(&memcg->memory)),
1640 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1641 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1642 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643 			K((u64)page_counter_read(&memcg->swap)),
1644 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1645 	else {
1646 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1647 			K((u64)page_counter_read(&memcg->memsw)),
1648 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1649 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1650 			K((u64)page_counter_read(&memcg->kmem)),
1651 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1652 	}
1653 
1654 	pr_info("Memory cgroup stats for ");
1655 	pr_cont_cgroup_path(memcg->css.cgroup);
1656 	pr_cont(":");
1657 	memory_stat_format(memcg, buf, sizeof(buf));
1658 	pr_info("%s", buf);
1659 }
1660 
1661 /*
1662  * Return the memory (and swap, if configured) limit for a memcg.
1663  */
1664 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1665 {
1666 	unsigned long max = READ_ONCE(memcg->memory.max);
1667 
1668 	if (do_memsw_account()) {
1669 		if (mem_cgroup_swappiness(memcg)) {
1670 			/* Calculate swap excess capacity from memsw limit */
1671 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1672 
1673 			max += min(swap, (unsigned long)total_swap_pages);
1674 		}
1675 	} else {
1676 		if (mem_cgroup_swappiness(memcg))
1677 			max += min(READ_ONCE(memcg->swap.max),
1678 				   (unsigned long)total_swap_pages);
1679 	}
1680 	return max;
1681 }
1682 
1683 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1684 {
1685 	return page_counter_read(&memcg->memory);
1686 }
1687 
1688 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1689 				     int order)
1690 {
1691 	struct oom_control oc = {
1692 		.zonelist = NULL,
1693 		.nodemask = NULL,
1694 		.memcg = memcg,
1695 		.gfp_mask = gfp_mask,
1696 		.order = order,
1697 	};
1698 	bool ret = true;
1699 
1700 	if (mutex_lock_killable(&oom_lock))
1701 		return true;
1702 
1703 	if (mem_cgroup_margin(memcg) >= (1 << order))
1704 		goto unlock;
1705 
1706 	/*
1707 	 * A few threads which were not waiting at mutex_lock_killable() can
1708 	 * fail to bail out. Therefore, check again after holding oom_lock.
1709 	 */
1710 	ret = task_is_dying() || out_of_memory(&oc);
1711 
1712 unlock:
1713 	mutex_unlock(&oom_lock);
1714 	return ret;
1715 }
1716 
1717 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718 				   pg_data_t *pgdat,
1719 				   gfp_t gfp_mask,
1720 				   unsigned long *total_scanned)
1721 {
1722 	struct mem_cgroup *victim = NULL;
1723 	int total = 0;
1724 	int loop = 0;
1725 	unsigned long excess;
1726 	unsigned long nr_scanned;
1727 	struct mem_cgroup_reclaim_cookie reclaim = {
1728 		.pgdat = pgdat,
1729 	};
1730 
1731 	excess = soft_limit_excess(root_memcg);
1732 
1733 	while (1) {
1734 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735 		if (!victim) {
1736 			loop++;
1737 			if (loop >= 2) {
1738 				/*
1739 				 * If we have not been able to reclaim
1740 				 * anything, it might because there are
1741 				 * no reclaimable pages under this hierarchy
1742 				 */
1743 				if (!total)
1744 					break;
1745 				/*
1746 				 * We want to do more targeted reclaim.
1747 				 * excess >> 2 is not to excessive so as to
1748 				 * reclaim too much, nor too less that we keep
1749 				 * coming back to reclaim from this cgroup
1750 				 */
1751 				if (total >= (excess >> 2) ||
1752 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753 					break;
1754 			}
1755 			continue;
1756 		}
1757 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1758 					pgdat, &nr_scanned);
1759 		*total_scanned += nr_scanned;
1760 		if (!soft_limit_excess(root_memcg))
1761 			break;
1762 	}
1763 	mem_cgroup_iter_break(root_memcg, victim);
1764 	return total;
1765 }
1766 
1767 #ifdef CONFIG_LOCKDEP
1768 static struct lockdep_map memcg_oom_lock_dep_map = {
1769 	.name = "memcg_oom_lock",
1770 };
1771 #endif
1772 
1773 static DEFINE_SPINLOCK(memcg_oom_lock);
1774 
1775 /*
1776  * Check OOM-Killer is already running under our hierarchy.
1777  * If someone is running, return false.
1778  */
1779 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1780 {
1781 	struct mem_cgroup *iter, *failed = NULL;
1782 
1783 	spin_lock(&memcg_oom_lock);
1784 
1785 	for_each_mem_cgroup_tree(iter, memcg) {
1786 		if (iter->oom_lock) {
1787 			/*
1788 			 * this subtree of our hierarchy is already locked
1789 			 * so we cannot give a lock.
1790 			 */
1791 			failed = iter;
1792 			mem_cgroup_iter_break(memcg, iter);
1793 			break;
1794 		} else
1795 			iter->oom_lock = true;
1796 	}
1797 
1798 	if (failed) {
1799 		/*
1800 		 * OK, we failed to lock the whole subtree so we have
1801 		 * to clean up what we set up to the failing subtree
1802 		 */
1803 		for_each_mem_cgroup_tree(iter, memcg) {
1804 			if (iter == failed) {
1805 				mem_cgroup_iter_break(memcg, iter);
1806 				break;
1807 			}
1808 			iter->oom_lock = false;
1809 		}
1810 	} else
1811 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1812 
1813 	spin_unlock(&memcg_oom_lock);
1814 
1815 	return !failed;
1816 }
1817 
1818 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819 {
1820 	struct mem_cgroup *iter;
1821 
1822 	spin_lock(&memcg_oom_lock);
1823 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1824 	for_each_mem_cgroup_tree(iter, memcg)
1825 		iter->oom_lock = false;
1826 	spin_unlock(&memcg_oom_lock);
1827 }
1828 
1829 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1830 {
1831 	struct mem_cgroup *iter;
1832 
1833 	spin_lock(&memcg_oom_lock);
1834 	for_each_mem_cgroup_tree(iter, memcg)
1835 		iter->under_oom++;
1836 	spin_unlock(&memcg_oom_lock);
1837 }
1838 
1839 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1840 {
1841 	struct mem_cgroup *iter;
1842 
1843 	/*
1844 	 * Be careful about under_oom underflows because a child memcg
1845 	 * could have been added after mem_cgroup_mark_under_oom.
1846 	 */
1847 	spin_lock(&memcg_oom_lock);
1848 	for_each_mem_cgroup_tree(iter, memcg)
1849 		if (iter->under_oom > 0)
1850 			iter->under_oom--;
1851 	spin_unlock(&memcg_oom_lock);
1852 }
1853 
1854 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1855 
1856 struct oom_wait_info {
1857 	struct mem_cgroup *memcg;
1858 	wait_queue_entry_t	wait;
1859 };
1860 
1861 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1862 	unsigned mode, int sync, void *arg)
1863 {
1864 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1865 	struct mem_cgroup *oom_wait_memcg;
1866 	struct oom_wait_info *oom_wait_info;
1867 
1868 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1869 	oom_wait_memcg = oom_wait_info->memcg;
1870 
1871 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1872 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1873 		return 0;
1874 	return autoremove_wake_function(wait, mode, sync, arg);
1875 }
1876 
1877 static void memcg_oom_recover(struct mem_cgroup *memcg)
1878 {
1879 	/*
1880 	 * For the following lockless ->under_oom test, the only required
1881 	 * guarantee is that it must see the state asserted by an OOM when
1882 	 * this function is called as a result of userland actions
1883 	 * triggered by the notification of the OOM.  This is trivially
1884 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1885 	 * triggering notification.
1886 	 */
1887 	if (memcg && memcg->under_oom)
1888 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1889 }
1890 
1891 /*
1892  * Returns true if successfully killed one or more processes. Though in some
1893  * corner cases it can return true even without killing any process.
1894  */
1895 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1896 {
1897 	bool locked, ret;
1898 
1899 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1900 		return false;
1901 
1902 	memcg_memory_event(memcg, MEMCG_OOM);
1903 
1904 	/*
1905 	 * We are in the middle of the charge context here, so we
1906 	 * don't want to block when potentially sitting on a callstack
1907 	 * that holds all kinds of filesystem and mm locks.
1908 	 *
1909 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1910 	 * handling until the charge can succeed; remember the context and put
1911 	 * the task to sleep at the end of the page fault when all locks are
1912 	 * released.
1913 	 *
1914 	 * On the other hand, in-kernel OOM killer allows for an async victim
1915 	 * memory reclaim (oom_reaper) and that means that we are not solely
1916 	 * relying on the oom victim to make a forward progress and we can
1917 	 * invoke the oom killer here.
1918 	 *
1919 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1920 	 * victim and then we have to bail out from the charge path.
1921 	 */
1922 	if (memcg->oom_kill_disable) {
1923 		if (current->in_user_fault) {
1924 			css_get(&memcg->css);
1925 			current->memcg_in_oom = memcg;
1926 			current->memcg_oom_gfp_mask = mask;
1927 			current->memcg_oom_order = order;
1928 		}
1929 		return false;
1930 	}
1931 
1932 	mem_cgroup_mark_under_oom(memcg);
1933 
1934 	locked = mem_cgroup_oom_trylock(memcg);
1935 
1936 	if (locked)
1937 		mem_cgroup_oom_notify(memcg);
1938 
1939 	mem_cgroup_unmark_under_oom(memcg);
1940 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1941 
1942 	if (locked)
1943 		mem_cgroup_oom_unlock(memcg);
1944 
1945 	return ret;
1946 }
1947 
1948 /**
1949  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1950  * @handle: actually kill/wait or just clean up the OOM state
1951  *
1952  * This has to be called at the end of a page fault if the memcg OOM
1953  * handler was enabled.
1954  *
1955  * Memcg supports userspace OOM handling where failed allocations must
1956  * sleep on a waitqueue until the userspace task resolves the
1957  * situation.  Sleeping directly in the charge context with all kinds
1958  * of locks held is not a good idea, instead we remember an OOM state
1959  * in the task and mem_cgroup_oom_synchronize() has to be called at
1960  * the end of the page fault to complete the OOM handling.
1961  *
1962  * Returns %true if an ongoing memcg OOM situation was detected and
1963  * completed, %false otherwise.
1964  */
1965 bool mem_cgroup_oom_synchronize(bool handle)
1966 {
1967 	struct mem_cgroup *memcg = current->memcg_in_oom;
1968 	struct oom_wait_info owait;
1969 	bool locked;
1970 
1971 	/* OOM is global, do not handle */
1972 	if (!memcg)
1973 		return false;
1974 
1975 	if (!handle)
1976 		goto cleanup;
1977 
1978 	owait.memcg = memcg;
1979 	owait.wait.flags = 0;
1980 	owait.wait.func = memcg_oom_wake_function;
1981 	owait.wait.private = current;
1982 	INIT_LIST_HEAD(&owait.wait.entry);
1983 
1984 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1985 	mem_cgroup_mark_under_oom(memcg);
1986 
1987 	locked = mem_cgroup_oom_trylock(memcg);
1988 
1989 	if (locked)
1990 		mem_cgroup_oom_notify(memcg);
1991 
1992 	if (locked && !memcg->oom_kill_disable) {
1993 		mem_cgroup_unmark_under_oom(memcg);
1994 		finish_wait(&memcg_oom_waitq, &owait.wait);
1995 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1996 					 current->memcg_oom_order);
1997 	} else {
1998 		schedule();
1999 		mem_cgroup_unmark_under_oom(memcg);
2000 		finish_wait(&memcg_oom_waitq, &owait.wait);
2001 	}
2002 
2003 	if (locked) {
2004 		mem_cgroup_oom_unlock(memcg);
2005 		/*
2006 		 * There is no guarantee that an OOM-lock contender
2007 		 * sees the wakeups triggered by the OOM kill
2008 		 * uncharges.  Wake any sleepers explicitly.
2009 		 */
2010 		memcg_oom_recover(memcg);
2011 	}
2012 cleanup:
2013 	current->memcg_in_oom = NULL;
2014 	css_put(&memcg->css);
2015 	return true;
2016 }
2017 
2018 /**
2019  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2020  * @victim: task to be killed by the OOM killer
2021  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2022  *
2023  * Returns a pointer to a memory cgroup, which has to be cleaned up
2024  * by killing all belonging OOM-killable tasks.
2025  *
2026  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2027  */
2028 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2029 					    struct mem_cgroup *oom_domain)
2030 {
2031 	struct mem_cgroup *oom_group = NULL;
2032 	struct mem_cgroup *memcg;
2033 
2034 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2035 		return NULL;
2036 
2037 	if (!oom_domain)
2038 		oom_domain = root_mem_cgroup;
2039 
2040 	rcu_read_lock();
2041 
2042 	memcg = mem_cgroup_from_task(victim);
2043 	if (mem_cgroup_is_root(memcg))
2044 		goto out;
2045 
2046 	/*
2047 	 * If the victim task has been asynchronously moved to a different
2048 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2049 	 * In this case it's better to ignore memory.group.oom.
2050 	 */
2051 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2052 		goto out;
2053 
2054 	/*
2055 	 * Traverse the memory cgroup hierarchy from the victim task's
2056 	 * cgroup up to the OOMing cgroup (or root) to find the
2057 	 * highest-level memory cgroup with oom.group set.
2058 	 */
2059 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2060 		if (memcg->oom_group)
2061 			oom_group = memcg;
2062 
2063 		if (memcg == oom_domain)
2064 			break;
2065 	}
2066 
2067 	if (oom_group)
2068 		css_get(&oom_group->css);
2069 out:
2070 	rcu_read_unlock();
2071 
2072 	return oom_group;
2073 }
2074 
2075 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2076 {
2077 	pr_info("Tasks in ");
2078 	pr_cont_cgroup_path(memcg->css.cgroup);
2079 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2080 }
2081 
2082 /**
2083  * folio_memcg_lock - Bind a folio to its memcg.
2084  * @folio: The folio.
2085  *
2086  * This function prevents unlocked LRU folios from being moved to
2087  * another cgroup.
2088  *
2089  * It ensures lifetime of the bound memcg.  The caller is responsible
2090  * for the lifetime of the folio.
2091  */
2092 void folio_memcg_lock(struct folio *folio)
2093 {
2094 	struct mem_cgroup *memcg;
2095 	unsigned long flags;
2096 
2097 	/*
2098 	 * The RCU lock is held throughout the transaction.  The fast
2099 	 * path can get away without acquiring the memcg->move_lock
2100 	 * because page moving starts with an RCU grace period.
2101          */
2102 	rcu_read_lock();
2103 
2104 	if (mem_cgroup_disabled())
2105 		return;
2106 again:
2107 	memcg = folio_memcg(folio);
2108 	if (unlikely(!memcg))
2109 		return;
2110 
2111 #ifdef CONFIG_PROVE_LOCKING
2112 	local_irq_save(flags);
2113 	might_lock(&memcg->move_lock);
2114 	local_irq_restore(flags);
2115 #endif
2116 
2117 	if (atomic_read(&memcg->moving_account) <= 0)
2118 		return;
2119 
2120 	spin_lock_irqsave(&memcg->move_lock, flags);
2121 	if (memcg != folio_memcg(folio)) {
2122 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2123 		goto again;
2124 	}
2125 
2126 	/*
2127 	 * When charge migration first begins, we can have multiple
2128 	 * critical sections holding the fast-path RCU lock and one
2129 	 * holding the slowpath move_lock. Track the task who has the
2130 	 * move_lock for unlock_page_memcg().
2131 	 */
2132 	memcg->move_lock_task = current;
2133 	memcg->move_lock_flags = flags;
2134 }
2135 
2136 void lock_page_memcg(struct page *page)
2137 {
2138 	folio_memcg_lock(page_folio(page));
2139 }
2140 
2141 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2142 {
2143 	if (memcg && memcg->move_lock_task == current) {
2144 		unsigned long flags = memcg->move_lock_flags;
2145 
2146 		memcg->move_lock_task = NULL;
2147 		memcg->move_lock_flags = 0;
2148 
2149 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2150 	}
2151 
2152 	rcu_read_unlock();
2153 }
2154 
2155 /**
2156  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2157  * @folio: The folio.
2158  *
2159  * This releases the binding created by folio_memcg_lock().  This does
2160  * not change the accounting of this folio to its memcg, but it does
2161  * permit others to change it.
2162  */
2163 void folio_memcg_unlock(struct folio *folio)
2164 {
2165 	__folio_memcg_unlock(folio_memcg(folio));
2166 }
2167 
2168 void unlock_page_memcg(struct page *page)
2169 {
2170 	folio_memcg_unlock(page_folio(page));
2171 }
2172 
2173 struct memcg_stock_pcp {
2174 	local_lock_t stock_lock;
2175 	struct mem_cgroup *cached; /* this never be root cgroup */
2176 	unsigned int nr_pages;
2177 
2178 #ifdef CONFIG_MEMCG_KMEM
2179 	struct obj_cgroup *cached_objcg;
2180 	struct pglist_data *cached_pgdat;
2181 	unsigned int nr_bytes;
2182 	int nr_slab_reclaimable_b;
2183 	int nr_slab_unreclaimable_b;
2184 #endif
2185 
2186 	struct work_struct work;
2187 	unsigned long flags;
2188 #define FLUSHING_CACHED_CHARGE	0
2189 };
2190 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2191 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2192 };
2193 static DEFINE_MUTEX(percpu_charge_mutex);
2194 
2195 #ifdef CONFIG_MEMCG_KMEM
2196 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2197 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2198 				     struct mem_cgroup *root_memcg);
2199 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2200 
2201 #else
2202 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2203 {
2204 	return NULL;
2205 }
2206 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2207 				     struct mem_cgroup *root_memcg)
2208 {
2209 	return false;
2210 }
2211 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2212 {
2213 }
2214 #endif
2215 
2216 /**
2217  * consume_stock: Try to consume stocked charge on this cpu.
2218  * @memcg: memcg to consume from.
2219  * @nr_pages: how many pages to charge.
2220  *
2221  * The charges will only happen if @memcg matches the current cpu's memcg
2222  * stock, and at least @nr_pages are available in that stock.  Failure to
2223  * service an allocation will refill the stock.
2224  *
2225  * returns true if successful, false otherwise.
2226  */
2227 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228 {
2229 	struct memcg_stock_pcp *stock;
2230 	unsigned long flags;
2231 	bool ret = false;
2232 
2233 	if (nr_pages > MEMCG_CHARGE_BATCH)
2234 		return ret;
2235 
2236 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2237 
2238 	stock = this_cpu_ptr(&memcg_stock);
2239 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2240 		stock->nr_pages -= nr_pages;
2241 		ret = true;
2242 	}
2243 
2244 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2245 
2246 	return ret;
2247 }
2248 
2249 /*
2250  * Returns stocks cached in percpu and reset cached information.
2251  */
2252 static void drain_stock(struct memcg_stock_pcp *stock)
2253 {
2254 	struct mem_cgroup *old = stock->cached;
2255 
2256 	if (!old)
2257 		return;
2258 
2259 	if (stock->nr_pages) {
2260 		page_counter_uncharge(&old->memory, stock->nr_pages);
2261 		if (do_memsw_account())
2262 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2263 		stock->nr_pages = 0;
2264 	}
2265 
2266 	css_put(&old->css);
2267 	stock->cached = NULL;
2268 }
2269 
2270 static void drain_local_stock(struct work_struct *dummy)
2271 {
2272 	struct memcg_stock_pcp *stock;
2273 	struct obj_cgroup *old = NULL;
2274 	unsigned long flags;
2275 
2276 	/*
2277 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2278 	 * drain_stock races is that we always operate on local CPU stock
2279 	 * here with IRQ disabled
2280 	 */
2281 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2282 
2283 	stock = this_cpu_ptr(&memcg_stock);
2284 	old = drain_obj_stock(stock);
2285 	drain_stock(stock);
2286 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2287 
2288 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2289 	if (old)
2290 		obj_cgroup_put(old);
2291 }
2292 
2293 /*
2294  * Cache charges(val) to local per_cpu area.
2295  * This will be consumed by consume_stock() function, later.
2296  */
2297 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2298 {
2299 	struct memcg_stock_pcp *stock;
2300 
2301 	stock = this_cpu_ptr(&memcg_stock);
2302 	if (stock->cached != memcg) { /* reset if necessary */
2303 		drain_stock(stock);
2304 		css_get(&memcg->css);
2305 		stock->cached = memcg;
2306 	}
2307 	stock->nr_pages += nr_pages;
2308 
2309 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2310 		drain_stock(stock);
2311 }
2312 
2313 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2314 {
2315 	unsigned long flags;
2316 
2317 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2318 	__refill_stock(memcg, nr_pages);
2319 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2320 }
2321 
2322 /*
2323  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2324  * of the hierarchy under it.
2325  */
2326 static void drain_all_stock(struct mem_cgroup *root_memcg)
2327 {
2328 	int cpu, curcpu;
2329 
2330 	/* If someone's already draining, avoid adding running more workers. */
2331 	if (!mutex_trylock(&percpu_charge_mutex))
2332 		return;
2333 	/*
2334 	 * Notify other cpus that system-wide "drain" is running
2335 	 * We do not care about races with the cpu hotplug because cpu down
2336 	 * as well as workers from this path always operate on the local
2337 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2338 	 */
2339 	migrate_disable();
2340 	curcpu = smp_processor_id();
2341 	for_each_online_cpu(cpu) {
2342 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2343 		struct mem_cgroup *memcg;
2344 		bool flush = false;
2345 
2346 		rcu_read_lock();
2347 		memcg = stock->cached;
2348 		if (memcg && stock->nr_pages &&
2349 		    mem_cgroup_is_descendant(memcg, root_memcg))
2350 			flush = true;
2351 		else if (obj_stock_flush_required(stock, root_memcg))
2352 			flush = true;
2353 		rcu_read_unlock();
2354 
2355 		if (flush &&
2356 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2357 			if (cpu == curcpu)
2358 				drain_local_stock(&stock->work);
2359 			else
2360 				schedule_work_on(cpu, &stock->work);
2361 		}
2362 	}
2363 	migrate_enable();
2364 	mutex_unlock(&percpu_charge_mutex);
2365 }
2366 
2367 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2368 {
2369 	struct memcg_stock_pcp *stock;
2370 
2371 	stock = &per_cpu(memcg_stock, cpu);
2372 	drain_stock(stock);
2373 
2374 	return 0;
2375 }
2376 
2377 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2378 				  unsigned int nr_pages,
2379 				  gfp_t gfp_mask)
2380 {
2381 	unsigned long nr_reclaimed = 0;
2382 
2383 	do {
2384 		unsigned long pflags;
2385 
2386 		if (page_counter_read(&memcg->memory) <=
2387 		    READ_ONCE(memcg->memory.high))
2388 			continue;
2389 
2390 		memcg_memory_event(memcg, MEMCG_HIGH);
2391 
2392 		psi_memstall_enter(&pflags);
2393 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2394 							gfp_mask,
2395 							MEMCG_RECLAIM_MAY_SWAP);
2396 		psi_memstall_leave(&pflags);
2397 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2398 		 !mem_cgroup_is_root(memcg));
2399 
2400 	return nr_reclaimed;
2401 }
2402 
2403 static void high_work_func(struct work_struct *work)
2404 {
2405 	struct mem_cgroup *memcg;
2406 
2407 	memcg = container_of(work, struct mem_cgroup, high_work);
2408 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409 }
2410 
2411 /*
2412  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413  * enough to still cause a significant slowdown in most cases, while still
2414  * allowing diagnostics and tracing to proceed without becoming stuck.
2415  */
2416 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417 
2418 /*
2419  * When calculating the delay, we use these either side of the exponentiation to
2420  * maintain precision and scale to a reasonable number of jiffies (see the table
2421  * below.
2422  *
2423  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424  *   overage ratio to a delay.
2425  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2427  *   to produce a reasonable delay curve.
2428  *
2429  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430  * reasonable delay curve compared to precision-adjusted overage, not
2431  * penalising heavily at first, but still making sure that growth beyond the
2432  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433  * example, with a high of 100 megabytes:
2434  *
2435  *  +-------+------------------------+
2436  *  | usage | time to allocate in ms |
2437  *  +-------+------------------------+
2438  *  | 100M  |                      0 |
2439  *  | 101M  |                      6 |
2440  *  | 102M  |                     25 |
2441  *  | 103M  |                     57 |
2442  *  | 104M  |                    102 |
2443  *  | 105M  |                    159 |
2444  *  | 106M  |                    230 |
2445  *  | 107M  |                    313 |
2446  *  | 108M  |                    409 |
2447  *  | 109M  |                    518 |
2448  *  | 110M  |                    639 |
2449  *  | 111M  |                    774 |
2450  *  | 112M  |                    921 |
2451  *  | 113M  |                   1081 |
2452  *  | 114M  |                   1254 |
2453  *  | 115M  |                   1439 |
2454  *  | 116M  |                   1638 |
2455  *  | 117M  |                   1849 |
2456  *  | 118M  |                   2000 |
2457  *  | 119M  |                   2000 |
2458  *  | 120M  |                   2000 |
2459  *  +-------+------------------------+
2460  */
2461  #define MEMCG_DELAY_PRECISION_SHIFT 20
2462  #define MEMCG_DELAY_SCALING_SHIFT 14
2463 
2464 static u64 calculate_overage(unsigned long usage, unsigned long high)
2465 {
2466 	u64 overage;
2467 
2468 	if (usage <= high)
2469 		return 0;
2470 
2471 	/*
2472 	 * Prevent division by 0 in overage calculation by acting as if
2473 	 * it was a threshold of 1 page
2474 	 */
2475 	high = max(high, 1UL);
2476 
2477 	overage = usage - high;
2478 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479 	return div64_u64(overage, high);
2480 }
2481 
2482 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483 {
2484 	u64 overage, max_overage = 0;
2485 
2486 	do {
2487 		overage = calculate_overage(page_counter_read(&memcg->memory),
2488 					    READ_ONCE(memcg->memory.high));
2489 		max_overage = max(overage, max_overage);
2490 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2491 		 !mem_cgroup_is_root(memcg));
2492 
2493 	return max_overage;
2494 }
2495 
2496 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497 {
2498 	u64 overage, max_overage = 0;
2499 
2500 	do {
2501 		overage = calculate_overage(page_counter_read(&memcg->swap),
2502 					    READ_ONCE(memcg->swap.high));
2503 		if (overage)
2504 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505 		max_overage = max(overage, max_overage);
2506 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2507 		 !mem_cgroup_is_root(memcg));
2508 
2509 	return max_overage;
2510 }
2511 
2512 /*
2513  * Get the number of jiffies that we should penalise a mischievous cgroup which
2514  * is exceeding its memory.high by checking both it and its ancestors.
2515  */
2516 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517 					  unsigned int nr_pages,
2518 					  u64 max_overage)
2519 {
2520 	unsigned long penalty_jiffies;
2521 
2522 	if (!max_overage)
2523 		return 0;
2524 
2525 	/*
2526 	 * We use overage compared to memory.high to calculate the number of
2527 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528 	 * fairly lenient on small overages, and increasingly harsh when the
2529 	 * memcg in question makes it clear that it has no intention of stopping
2530 	 * its crazy behaviour, so we exponentially increase the delay based on
2531 	 * overage amount.
2532 	 */
2533 	penalty_jiffies = max_overage * max_overage * HZ;
2534 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536 
2537 	/*
2538 	 * Factor in the task's own contribution to the overage, such that four
2539 	 * N-sized allocations are throttled approximately the same as one
2540 	 * 4N-sized allocation.
2541 	 *
2542 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543 	 * larger the current charge patch is than that.
2544 	 */
2545 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546 }
2547 
2548 /*
2549  * Scheduled by try_charge() to be executed from the userland return path
2550  * and reclaims memory over the high limit.
2551  */
2552 void mem_cgroup_handle_over_high(void)
2553 {
2554 	unsigned long penalty_jiffies;
2555 	unsigned long pflags;
2556 	unsigned long nr_reclaimed;
2557 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558 	int nr_retries = MAX_RECLAIM_RETRIES;
2559 	struct mem_cgroup *memcg;
2560 	bool in_retry = false;
2561 
2562 	if (likely(!nr_pages))
2563 		return;
2564 
2565 	memcg = get_mem_cgroup_from_mm(current->mm);
2566 	current->memcg_nr_pages_over_high = 0;
2567 
2568 retry_reclaim:
2569 	/*
2570 	 * The allocating task should reclaim at least the batch size, but for
2571 	 * subsequent retries we only want to do what's necessary to prevent oom
2572 	 * or breaching resource isolation.
2573 	 *
2574 	 * This is distinct from memory.max or page allocator behaviour because
2575 	 * memory.high is currently batched, whereas memory.max and the page
2576 	 * allocator run every time an allocation is made.
2577 	 */
2578 	nr_reclaimed = reclaim_high(memcg,
2579 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580 				    GFP_KERNEL);
2581 
2582 	/*
2583 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2584 	 * allocators proactively to slow down excessive growth.
2585 	 */
2586 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587 					       mem_find_max_overage(memcg));
2588 
2589 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590 						swap_find_max_overage(memcg));
2591 
2592 	/*
2593 	 * Clamp the max delay per usermode return so as to still keep the
2594 	 * application moving forwards and also permit diagnostics, albeit
2595 	 * extremely slowly.
2596 	 */
2597 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598 
2599 	/*
2600 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601 	 * that it's not even worth doing, in an attempt to be nice to those who
2602 	 * go only a small amount over their memory.high value and maybe haven't
2603 	 * been aggressively reclaimed enough yet.
2604 	 */
2605 	if (penalty_jiffies <= HZ / 100)
2606 		goto out;
2607 
2608 	/*
2609 	 * If reclaim is making forward progress but we're still over
2610 	 * memory.high, we want to encourage that rather than doing allocator
2611 	 * throttling.
2612 	 */
2613 	if (nr_reclaimed || nr_retries--) {
2614 		in_retry = true;
2615 		goto retry_reclaim;
2616 	}
2617 
2618 	/*
2619 	 * If we exit early, we're guaranteed to die (since
2620 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621 	 * need to account for any ill-begotten jiffies to pay them off later.
2622 	 */
2623 	psi_memstall_enter(&pflags);
2624 	schedule_timeout_killable(penalty_jiffies);
2625 	psi_memstall_leave(&pflags);
2626 
2627 out:
2628 	css_put(&memcg->css);
2629 }
2630 
2631 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 			unsigned int nr_pages)
2633 {
2634 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635 	int nr_retries = MAX_RECLAIM_RETRIES;
2636 	struct mem_cgroup *mem_over_limit;
2637 	struct page_counter *counter;
2638 	unsigned long nr_reclaimed;
2639 	bool passed_oom = false;
2640 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2641 	bool drained = false;
2642 	bool raised_max_event = false;
2643 	unsigned long pflags;
2644 
2645 retry:
2646 	if (consume_stock(memcg, nr_pages))
2647 		return 0;
2648 
2649 	if (!do_memsw_account() ||
2650 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2651 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2652 			goto done_restock;
2653 		if (do_memsw_account())
2654 			page_counter_uncharge(&memcg->memsw, batch);
2655 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2656 	} else {
2657 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2658 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2659 	}
2660 
2661 	if (batch > nr_pages) {
2662 		batch = nr_pages;
2663 		goto retry;
2664 	}
2665 
2666 	/*
2667 	 * Prevent unbounded recursion when reclaim operations need to
2668 	 * allocate memory. This might exceed the limits temporarily,
2669 	 * but we prefer facilitating memory reclaim and getting back
2670 	 * under the limit over triggering OOM kills in these cases.
2671 	 */
2672 	if (unlikely(current->flags & PF_MEMALLOC))
2673 		goto force;
2674 
2675 	if (unlikely(task_in_memcg_oom(current)))
2676 		goto nomem;
2677 
2678 	if (!gfpflags_allow_blocking(gfp_mask))
2679 		goto nomem;
2680 
2681 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2682 	raised_max_event = true;
2683 
2684 	psi_memstall_enter(&pflags);
2685 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2686 						    gfp_mask, reclaim_options);
2687 	psi_memstall_leave(&pflags);
2688 
2689 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2690 		goto retry;
2691 
2692 	if (!drained) {
2693 		drain_all_stock(mem_over_limit);
2694 		drained = true;
2695 		goto retry;
2696 	}
2697 
2698 	if (gfp_mask & __GFP_NORETRY)
2699 		goto nomem;
2700 	/*
2701 	 * Even though the limit is exceeded at this point, reclaim
2702 	 * may have been able to free some pages.  Retry the charge
2703 	 * before killing the task.
2704 	 *
2705 	 * Only for regular pages, though: huge pages are rather
2706 	 * unlikely to succeed so close to the limit, and we fall back
2707 	 * to regular pages anyway in case of failure.
2708 	 */
2709 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2710 		goto retry;
2711 	/*
2712 	 * At task move, charge accounts can be doubly counted. So, it's
2713 	 * better to wait until the end of task_move if something is going on.
2714 	 */
2715 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2716 		goto retry;
2717 
2718 	if (nr_retries--)
2719 		goto retry;
2720 
2721 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2722 		goto nomem;
2723 
2724 	/* Avoid endless loop for tasks bypassed by the oom killer */
2725 	if (passed_oom && task_is_dying())
2726 		goto nomem;
2727 
2728 	/*
2729 	 * keep retrying as long as the memcg oom killer is able to make
2730 	 * a forward progress or bypass the charge if the oom killer
2731 	 * couldn't make any progress.
2732 	 */
2733 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2734 			   get_order(nr_pages * PAGE_SIZE))) {
2735 		passed_oom = true;
2736 		nr_retries = MAX_RECLAIM_RETRIES;
2737 		goto retry;
2738 	}
2739 nomem:
2740 	/*
2741 	 * Memcg doesn't have a dedicated reserve for atomic
2742 	 * allocations. But like the global atomic pool, we need to
2743 	 * put the burden of reclaim on regular allocation requests
2744 	 * and let these go through as privileged allocations.
2745 	 */
2746 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2747 		return -ENOMEM;
2748 force:
2749 	/*
2750 	 * If the allocation has to be enforced, don't forget to raise
2751 	 * a MEMCG_MAX event.
2752 	 */
2753 	if (!raised_max_event)
2754 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2755 
2756 	/*
2757 	 * The allocation either can't fail or will lead to more memory
2758 	 * being freed very soon.  Allow memory usage go over the limit
2759 	 * temporarily by force charging it.
2760 	 */
2761 	page_counter_charge(&memcg->memory, nr_pages);
2762 	if (do_memsw_account())
2763 		page_counter_charge(&memcg->memsw, nr_pages);
2764 
2765 	return 0;
2766 
2767 done_restock:
2768 	if (batch > nr_pages)
2769 		refill_stock(memcg, batch - nr_pages);
2770 
2771 	/*
2772 	 * If the hierarchy is above the normal consumption range, schedule
2773 	 * reclaim on returning to userland.  We can perform reclaim here
2774 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2775 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2776 	 * not recorded as it most likely matches current's and won't
2777 	 * change in the meantime.  As high limit is checked again before
2778 	 * reclaim, the cost of mismatch is negligible.
2779 	 */
2780 	do {
2781 		bool mem_high, swap_high;
2782 
2783 		mem_high = page_counter_read(&memcg->memory) >
2784 			READ_ONCE(memcg->memory.high);
2785 		swap_high = page_counter_read(&memcg->swap) >
2786 			READ_ONCE(memcg->swap.high);
2787 
2788 		/* Don't bother a random interrupted task */
2789 		if (!in_task()) {
2790 			if (mem_high) {
2791 				schedule_work(&memcg->high_work);
2792 				break;
2793 			}
2794 			continue;
2795 		}
2796 
2797 		if (mem_high || swap_high) {
2798 			/*
2799 			 * The allocating tasks in this cgroup will need to do
2800 			 * reclaim or be throttled to prevent further growth
2801 			 * of the memory or swap footprints.
2802 			 *
2803 			 * Target some best-effort fairness between the tasks,
2804 			 * and distribute reclaim work and delay penalties
2805 			 * based on how much each task is actually allocating.
2806 			 */
2807 			current->memcg_nr_pages_over_high += batch;
2808 			set_notify_resume(current);
2809 			break;
2810 		}
2811 	} while ((memcg = parent_mem_cgroup(memcg)));
2812 
2813 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2814 	    !(current->flags & PF_MEMALLOC) &&
2815 	    gfpflags_allow_blocking(gfp_mask)) {
2816 		mem_cgroup_handle_over_high();
2817 	}
2818 	return 0;
2819 }
2820 
2821 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2822 			     unsigned int nr_pages)
2823 {
2824 	if (mem_cgroup_is_root(memcg))
2825 		return 0;
2826 
2827 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2828 }
2829 
2830 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2831 {
2832 	if (mem_cgroup_is_root(memcg))
2833 		return;
2834 
2835 	page_counter_uncharge(&memcg->memory, nr_pages);
2836 	if (do_memsw_account())
2837 		page_counter_uncharge(&memcg->memsw, nr_pages);
2838 }
2839 
2840 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2841 {
2842 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2843 	/*
2844 	 * Any of the following ensures page's memcg stability:
2845 	 *
2846 	 * - the page lock
2847 	 * - LRU isolation
2848 	 * - lock_page_memcg()
2849 	 * - exclusive reference
2850 	 * - mem_cgroup_trylock_pages()
2851 	 */
2852 	folio->memcg_data = (unsigned long)memcg;
2853 }
2854 
2855 #ifdef CONFIG_MEMCG_KMEM
2856 /*
2857  * The allocated objcg pointers array is not accounted directly.
2858  * Moreover, it should not come from DMA buffer and is not readily
2859  * reclaimable. So those GFP bits should be masked off.
2860  */
2861 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2862 
2863 /*
2864  * mod_objcg_mlstate() may be called with irq enabled, so
2865  * mod_memcg_lruvec_state() should be used.
2866  */
2867 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2868 				     struct pglist_data *pgdat,
2869 				     enum node_stat_item idx, int nr)
2870 {
2871 	struct mem_cgroup *memcg;
2872 	struct lruvec *lruvec;
2873 
2874 	rcu_read_lock();
2875 	memcg = obj_cgroup_memcg(objcg);
2876 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2877 	mod_memcg_lruvec_state(lruvec, idx, nr);
2878 	rcu_read_unlock();
2879 }
2880 
2881 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2882 				 gfp_t gfp, bool new_slab)
2883 {
2884 	unsigned int objects = objs_per_slab(s, slab);
2885 	unsigned long memcg_data;
2886 	void *vec;
2887 
2888 	gfp &= ~OBJCGS_CLEAR_MASK;
2889 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2890 			   slab_nid(slab));
2891 	if (!vec)
2892 		return -ENOMEM;
2893 
2894 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2895 	if (new_slab) {
2896 		/*
2897 		 * If the slab is brand new and nobody can yet access its
2898 		 * memcg_data, no synchronization is required and memcg_data can
2899 		 * be simply assigned.
2900 		 */
2901 		slab->memcg_data = memcg_data;
2902 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2903 		/*
2904 		 * If the slab is already in use, somebody can allocate and
2905 		 * assign obj_cgroups in parallel. In this case the existing
2906 		 * objcg vector should be reused.
2907 		 */
2908 		kfree(vec);
2909 		return 0;
2910 	}
2911 
2912 	kmemleak_not_leak(vec);
2913 	return 0;
2914 }
2915 
2916 static __always_inline
2917 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2918 {
2919 	/*
2920 	 * Slab objects are accounted individually, not per-page.
2921 	 * Memcg membership data for each individual object is saved in
2922 	 * slab->memcg_data.
2923 	 */
2924 	if (folio_test_slab(folio)) {
2925 		struct obj_cgroup **objcgs;
2926 		struct slab *slab;
2927 		unsigned int off;
2928 
2929 		slab = folio_slab(folio);
2930 		objcgs = slab_objcgs(slab);
2931 		if (!objcgs)
2932 			return NULL;
2933 
2934 		off = obj_to_index(slab->slab_cache, slab, p);
2935 		if (objcgs[off])
2936 			return obj_cgroup_memcg(objcgs[off]);
2937 
2938 		return NULL;
2939 	}
2940 
2941 	/*
2942 	 * page_memcg_check() is used here, because in theory we can encounter
2943 	 * a folio where the slab flag has been cleared already, but
2944 	 * slab->memcg_data has not been freed yet
2945 	 * page_memcg_check(page) will guarantee that a proper memory
2946 	 * cgroup pointer or NULL will be returned.
2947 	 */
2948 	return page_memcg_check(folio_page(folio, 0));
2949 }
2950 
2951 /*
2952  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2953  *
2954  * A passed kernel object can be a slab object, vmalloc object or a generic
2955  * kernel page, so different mechanisms for getting the memory cgroup pointer
2956  * should be used.
2957  *
2958  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2959  * can not know for sure how the kernel object is implemented.
2960  * mem_cgroup_from_obj() can be safely used in such cases.
2961  *
2962  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2963  * cgroup_mutex, etc.
2964  */
2965 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2966 {
2967 	struct folio *folio;
2968 
2969 	if (mem_cgroup_disabled())
2970 		return NULL;
2971 
2972 	if (unlikely(is_vmalloc_addr(p)))
2973 		folio = page_folio(vmalloc_to_page(p));
2974 	else
2975 		folio = virt_to_folio(p);
2976 
2977 	return mem_cgroup_from_obj_folio(folio, p);
2978 }
2979 
2980 /*
2981  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2982  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2983  * allocated using vmalloc().
2984  *
2985  * A passed kernel object must be a slab object or a generic kernel page.
2986  *
2987  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2988  * cgroup_mutex, etc.
2989  */
2990 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2991 {
2992 	if (mem_cgroup_disabled())
2993 		return NULL;
2994 
2995 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2996 }
2997 
2998 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2999 {
3000 	struct obj_cgroup *objcg = NULL;
3001 
3002 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3003 		objcg = rcu_dereference(memcg->objcg);
3004 		if (objcg && obj_cgroup_tryget(objcg))
3005 			break;
3006 		objcg = NULL;
3007 	}
3008 	return objcg;
3009 }
3010 
3011 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3012 {
3013 	struct obj_cgroup *objcg = NULL;
3014 	struct mem_cgroup *memcg;
3015 
3016 	if (memcg_kmem_bypass())
3017 		return NULL;
3018 
3019 	rcu_read_lock();
3020 	if (unlikely(active_memcg()))
3021 		memcg = active_memcg();
3022 	else
3023 		memcg = mem_cgroup_from_task(current);
3024 	objcg = __get_obj_cgroup_from_memcg(memcg);
3025 	rcu_read_unlock();
3026 	return objcg;
3027 }
3028 
3029 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3030 {
3031 	struct obj_cgroup *objcg;
3032 
3033 	if (!memcg_kmem_enabled())
3034 		return NULL;
3035 
3036 	if (PageMemcgKmem(page)) {
3037 		objcg = __folio_objcg(page_folio(page));
3038 		obj_cgroup_get(objcg);
3039 	} else {
3040 		struct mem_cgroup *memcg;
3041 
3042 		rcu_read_lock();
3043 		memcg = __folio_memcg(page_folio(page));
3044 		if (memcg)
3045 			objcg = __get_obj_cgroup_from_memcg(memcg);
3046 		else
3047 			objcg = NULL;
3048 		rcu_read_unlock();
3049 	}
3050 	return objcg;
3051 }
3052 
3053 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3054 {
3055 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3056 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3057 		if (nr_pages > 0)
3058 			page_counter_charge(&memcg->kmem, nr_pages);
3059 		else
3060 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3061 	}
3062 }
3063 
3064 
3065 /*
3066  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3067  * @objcg: object cgroup to uncharge
3068  * @nr_pages: number of pages to uncharge
3069  */
3070 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3071 				      unsigned int nr_pages)
3072 {
3073 	struct mem_cgroup *memcg;
3074 
3075 	memcg = get_mem_cgroup_from_objcg(objcg);
3076 
3077 	memcg_account_kmem(memcg, -nr_pages);
3078 	refill_stock(memcg, nr_pages);
3079 
3080 	css_put(&memcg->css);
3081 }
3082 
3083 /*
3084  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3085  * @objcg: object cgroup to charge
3086  * @gfp: reclaim mode
3087  * @nr_pages: number of pages to charge
3088  *
3089  * Returns 0 on success, an error code on failure.
3090  */
3091 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3092 				   unsigned int nr_pages)
3093 {
3094 	struct mem_cgroup *memcg;
3095 	int ret;
3096 
3097 	memcg = get_mem_cgroup_from_objcg(objcg);
3098 
3099 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3100 	if (ret)
3101 		goto out;
3102 
3103 	memcg_account_kmem(memcg, nr_pages);
3104 out:
3105 	css_put(&memcg->css);
3106 
3107 	return ret;
3108 }
3109 
3110 /**
3111  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3112  * @page: page to charge
3113  * @gfp: reclaim mode
3114  * @order: allocation order
3115  *
3116  * Returns 0 on success, an error code on failure.
3117  */
3118 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3119 {
3120 	struct obj_cgroup *objcg;
3121 	int ret = 0;
3122 
3123 	objcg = get_obj_cgroup_from_current();
3124 	if (objcg) {
3125 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3126 		if (!ret) {
3127 			page->memcg_data = (unsigned long)objcg |
3128 				MEMCG_DATA_KMEM;
3129 			return 0;
3130 		}
3131 		obj_cgroup_put(objcg);
3132 	}
3133 	return ret;
3134 }
3135 
3136 /**
3137  * __memcg_kmem_uncharge_page: uncharge a kmem page
3138  * @page: page to uncharge
3139  * @order: allocation order
3140  */
3141 void __memcg_kmem_uncharge_page(struct page *page, int order)
3142 {
3143 	struct folio *folio = page_folio(page);
3144 	struct obj_cgroup *objcg;
3145 	unsigned int nr_pages = 1 << order;
3146 
3147 	if (!folio_memcg_kmem(folio))
3148 		return;
3149 
3150 	objcg = __folio_objcg(folio);
3151 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3152 	folio->memcg_data = 0;
3153 	obj_cgroup_put(objcg);
3154 }
3155 
3156 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3157 		     enum node_stat_item idx, int nr)
3158 {
3159 	struct memcg_stock_pcp *stock;
3160 	struct obj_cgroup *old = NULL;
3161 	unsigned long flags;
3162 	int *bytes;
3163 
3164 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3165 	stock = this_cpu_ptr(&memcg_stock);
3166 
3167 	/*
3168 	 * Save vmstat data in stock and skip vmstat array update unless
3169 	 * accumulating over a page of vmstat data or when pgdat or idx
3170 	 * changes.
3171 	 */
3172 	if (stock->cached_objcg != objcg) {
3173 		old = drain_obj_stock(stock);
3174 		obj_cgroup_get(objcg);
3175 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3176 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3177 		stock->cached_objcg = objcg;
3178 		stock->cached_pgdat = pgdat;
3179 	} else if (stock->cached_pgdat != pgdat) {
3180 		/* Flush the existing cached vmstat data */
3181 		struct pglist_data *oldpg = stock->cached_pgdat;
3182 
3183 		if (stock->nr_slab_reclaimable_b) {
3184 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3185 					  stock->nr_slab_reclaimable_b);
3186 			stock->nr_slab_reclaimable_b = 0;
3187 		}
3188 		if (stock->nr_slab_unreclaimable_b) {
3189 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3190 					  stock->nr_slab_unreclaimable_b);
3191 			stock->nr_slab_unreclaimable_b = 0;
3192 		}
3193 		stock->cached_pgdat = pgdat;
3194 	}
3195 
3196 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3197 					       : &stock->nr_slab_unreclaimable_b;
3198 	/*
3199 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3200 	 * cached locally at least once before pushing it out.
3201 	 */
3202 	if (!*bytes) {
3203 		*bytes = nr;
3204 		nr = 0;
3205 	} else {
3206 		*bytes += nr;
3207 		if (abs(*bytes) > PAGE_SIZE) {
3208 			nr = *bytes;
3209 			*bytes = 0;
3210 		} else {
3211 			nr = 0;
3212 		}
3213 	}
3214 	if (nr)
3215 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3216 
3217 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3218 	if (old)
3219 		obj_cgroup_put(old);
3220 }
3221 
3222 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3223 {
3224 	struct memcg_stock_pcp *stock;
3225 	unsigned long flags;
3226 	bool ret = false;
3227 
3228 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3229 
3230 	stock = this_cpu_ptr(&memcg_stock);
3231 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3232 		stock->nr_bytes -= nr_bytes;
3233 		ret = true;
3234 	}
3235 
3236 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3237 
3238 	return ret;
3239 }
3240 
3241 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3242 {
3243 	struct obj_cgroup *old = stock->cached_objcg;
3244 
3245 	if (!old)
3246 		return NULL;
3247 
3248 	if (stock->nr_bytes) {
3249 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3250 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3251 
3252 		if (nr_pages) {
3253 			struct mem_cgroup *memcg;
3254 
3255 			memcg = get_mem_cgroup_from_objcg(old);
3256 
3257 			memcg_account_kmem(memcg, -nr_pages);
3258 			__refill_stock(memcg, nr_pages);
3259 
3260 			css_put(&memcg->css);
3261 		}
3262 
3263 		/*
3264 		 * The leftover is flushed to the centralized per-memcg value.
3265 		 * On the next attempt to refill obj stock it will be moved
3266 		 * to a per-cpu stock (probably, on an other CPU), see
3267 		 * refill_obj_stock().
3268 		 *
3269 		 * How often it's flushed is a trade-off between the memory
3270 		 * limit enforcement accuracy and potential CPU contention,
3271 		 * so it might be changed in the future.
3272 		 */
3273 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3274 		stock->nr_bytes = 0;
3275 	}
3276 
3277 	/*
3278 	 * Flush the vmstat data in current stock
3279 	 */
3280 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3281 		if (stock->nr_slab_reclaimable_b) {
3282 			mod_objcg_mlstate(old, stock->cached_pgdat,
3283 					  NR_SLAB_RECLAIMABLE_B,
3284 					  stock->nr_slab_reclaimable_b);
3285 			stock->nr_slab_reclaimable_b = 0;
3286 		}
3287 		if (stock->nr_slab_unreclaimable_b) {
3288 			mod_objcg_mlstate(old, stock->cached_pgdat,
3289 					  NR_SLAB_UNRECLAIMABLE_B,
3290 					  stock->nr_slab_unreclaimable_b);
3291 			stock->nr_slab_unreclaimable_b = 0;
3292 		}
3293 		stock->cached_pgdat = NULL;
3294 	}
3295 
3296 	stock->cached_objcg = NULL;
3297 	/*
3298 	 * The `old' objects needs to be released by the caller via
3299 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3300 	 */
3301 	return old;
3302 }
3303 
3304 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3305 				     struct mem_cgroup *root_memcg)
3306 {
3307 	struct mem_cgroup *memcg;
3308 
3309 	if (stock->cached_objcg) {
3310 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3311 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3312 			return true;
3313 	}
3314 
3315 	return false;
3316 }
3317 
3318 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3319 			     bool allow_uncharge)
3320 {
3321 	struct memcg_stock_pcp *stock;
3322 	struct obj_cgroup *old = NULL;
3323 	unsigned long flags;
3324 	unsigned int nr_pages = 0;
3325 
3326 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3327 
3328 	stock = this_cpu_ptr(&memcg_stock);
3329 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3330 		old = drain_obj_stock(stock);
3331 		obj_cgroup_get(objcg);
3332 		stock->cached_objcg = objcg;
3333 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3334 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3335 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3336 	}
3337 	stock->nr_bytes += nr_bytes;
3338 
3339 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3340 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3341 		stock->nr_bytes &= (PAGE_SIZE - 1);
3342 	}
3343 
3344 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3345 	if (old)
3346 		obj_cgroup_put(old);
3347 
3348 	if (nr_pages)
3349 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3350 }
3351 
3352 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3353 {
3354 	unsigned int nr_pages, nr_bytes;
3355 	int ret;
3356 
3357 	if (consume_obj_stock(objcg, size))
3358 		return 0;
3359 
3360 	/*
3361 	 * In theory, objcg->nr_charged_bytes can have enough
3362 	 * pre-charged bytes to satisfy the allocation. However,
3363 	 * flushing objcg->nr_charged_bytes requires two atomic
3364 	 * operations, and objcg->nr_charged_bytes can't be big.
3365 	 * The shared objcg->nr_charged_bytes can also become a
3366 	 * performance bottleneck if all tasks of the same memcg are
3367 	 * trying to update it. So it's better to ignore it and try
3368 	 * grab some new pages. The stock's nr_bytes will be flushed to
3369 	 * objcg->nr_charged_bytes later on when objcg changes.
3370 	 *
3371 	 * The stock's nr_bytes may contain enough pre-charged bytes
3372 	 * to allow one less page from being charged, but we can't rely
3373 	 * on the pre-charged bytes not being changed outside of
3374 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3375 	 * pre-charged bytes as well when charging pages. To avoid a
3376 	 * page uncharge right after a page charge, we set the
3377 	 * allow_uncharge flag to false when calling refill_obj_stock()
3378 	 * to temporarily allow the pre-charged bytes to exceed the page
3379 	 * size limit. The maximum reachable value of the pre-charged
3380 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3381 	 * race.
3382 	 */
3383 	nr_pages = size >> PAGE_SHIFT;
3384 	nr_bytes = size & (PAGE_SIZE - 1);
3385 
3386 	if (nr_bytes)
3387 		nr_pages += 1;
3388 
3389 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3390 	if (!ret && nr_bytes)
3391 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3392 
3393 	return ret;
3394 }
3395 
3396 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3397 {
3398 	refill_obj_stock(objcg, size, true);
3399 }
3400 
3401 #endif /* CONFIG_MEMCG_KMEM */
3402 
3403 /*
3404  * Because page_memcg(head) is not set on tails, set it now.
3405  */
3406 void split_page_memcg(struct page *head, unsigned int nr)
3407 {
3408 	struct folio *folio = page_folio(head);
3409 	struct mem_cgroup *memcg = folio_memcg(folio);
3410 	int i;
3411 
3412 	if (mem_cgroup_disabled() || !memcg)
3413 		return;
3414 
3415 	for (i = 1; i < nr; i++)
3416 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3417 
3418 	if (folio_memcg_kmem(folio))
3419 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3420 	else
3421 		css_get_many(&memcg->css, nr - 1);
3422 }
3423 
3424 #ifdef CONFIG_SWAP
3425 /**
3426  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3427  * @entry: swap entry to be moved
3428  * @from:  mem_cgroup which the entry is moved from
3429  * @to:  mem_cgroup which the entry is moved to
3430  *
3431  * It succeeds only when the swap_cgroup's record for this entry is the same
3432  * as the mem_cgroup's id of @from.
3433  *
3434  * Returns 0 on success, -EINVAL on failure.
3435  *
3436  * The caller must have charged to @to, IOW, called page_counter_charge() about
3437  * both res and memsw, and called css_get().
3438  */
3439 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3440 				struct mem_cgroup *from, struct mem_cgroup *to)
3441 {
3442 	unsigned short old_id, new_id;
3443 
3444 	old_id = mem_cgroup_id(from);
3445 	new_id = mem_cgroup_id(to);
3446 
3447 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3448 		mod_memcg_state(from, MEMCG_SWAP, -1);
3449 		mod_memcg_state(to, MEMCG_SWAP, 1);
3450 		return 0;
3451 	}
3452 	return -EINVAL;
3453 }
3454 #else
3455 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3456 				struct mem_cgroup *from, struct mem_cgroup *to)
3457 {
3458 	return -EINVAL;
3459 }
3460 #endif
3461 
3462 static DEFINE_MUTEX(memcg_max_mutex);
3463 
3464 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3465 				 unsigned long max, bool memsw)
3466 {
3467 	bool enlarge = false;
3468 	bool drained = false;
3469 	int ret;
3470 	bool limits_invariant;
3471 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3472 
3473 	do {
3474 		if (signal_pending(current)) {
3475 			ret = -EINTR;
3476 			break;
3477 		}
3478 
3479 		mutex_lock(&memcg_max_mutex);
3480 		/*
3481 		 * Make sure that the new limit (memsw or memory limit) doesn't
3482 		 * break our basic invariant rule memory.max <= memsw.max.
3483 		 */
3484 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3485 					   max <= memcg->memsw.max;
3486 		if (!limits_invariant) {
3487 			mutex_unlock(&memcg_max_mutex);
3488 			ret = -EINVAL;
3489 			break;
3490 		}
3491 		if (max > counter->max)
3492 			enlarge = true;
3493 		ret = page_counter_set_max(counter, max);
3494 		mutex_unlock(&memcg_max_mutex);
3495 
3496 		if (!ret)
3497 			break;
3498 
3499 		if (!drained) {
3500 			drain_all_stock(memcg);
3501 			drained = true;
3502 			continue;
3503 		}
3504 
3505 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3506 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3507 			ret = -EBUSY;
3508 			break;
3509 		}
3510 	} while (true);
3511 
3512 	if (!ret && enlarge)
3513 		memcg_oom_recover(memcg);
3514 
3515 	return ret;
3516 }
3517 
3518 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3519 					    gfp_t gfp_mask,
3520 					    unsigned long *total_scanned)
3521 {
3522 	unsigned long nr_reclaimed = 0;
3523 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3524 	unsigned long reclaimed;
3525 	int loop = 0;
3526 	struct mem_cgroup_tree_per_node *mctz;
3527 	unsigned long excess;
3528 
3529 	if (order > 0)
3530 		return 0;
3531 
3532 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3533 
3534 	/*
3535 	 * Do not even bother to check the largest node if the root
3536 	 * is empty. Do it lockless to prevent lock bouncing. Races
3537 	 * are acceptable as soft limit is best effort anyway.
3538 	 */
3539 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3540 		return 0;
3541 
3542 	/*
3543 	 * This loop can run a while, specially if mem_cgroup's continuously
3544 	 * keep exceeding their soft limit and putting the system under
3545 	 * pressure
3546 	 */
3547 	do {
3548 		if (next_mz)
3549 			mz = next_mz;
3550 		else
3551 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3552 		if (!mz)
3553 			break;
3554 
3555 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3556 						    gfp_mask, total_scanned);
3557 		nr_reclaimed += reclaimed;
3558 		spin_lock_irq(&mctz->lock);
3559 
3560 		/*
3561 		 * If we failed to reclaim anything from this memory cgroup
3562 		 * it is time to move on to the next cgroup
3563 		 */
3564 		next_mz = NULL;
3565 		if (!reclaimed)
3566 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3567 
3568 		excess = soft_limit_excess(mz->memcg);
3569 		/*
3570 		 * One school of thought says that we should not add
3571 		 * back the node to the tree if reclaim returns 0.
3572 		 * But our reclaim could return 0, simply because due
3573 		 * to priority we are exposing a smaller subset of
3574 		 * memory to reclaim from. Consider this as a longer
3575 		 * term TODO.
3576 		 */
3577 		/* If excess == 0, no tree ops */
3578 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3579 		spin_unlock_irq(&mctz->lock);
3580 		css_put(&mz->memcg->css);
3581 		loop++;
3582 		/*
3583 		 * Could not reclaim anything and there are no more
3584 		 * mem cgroups to try or we seem to be looping without
3585 		 * reclaiming anything.
3586 		 */
3587 		if (!nr_reclaimed &&
3588 			(next_mz == NULL ||
3589 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3590 			break;
3591 	} while (!nr_reclaimed);
3592 	if (next_mz)
3593 		css_put(&next_mz->memcg->css);
3594 	return nr_reclaimed;
3595 }
3596 
3597 /*
3598  * Reclaims as many pages from the given memcg as possible.
3599  *
3600  * Caller is responsible for holding css reference for memcg.
3601  */
3602 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3603 {
3604 	int nr_retries = MAX_RECLAIM_RETRIES;
3605 
3606 	/* we call try-to-free pages for make this cgroup empty */
3607 	lru_add_drain_all();
3608 
3609 	drain_all_stock(memcg);
3610 
3611 	/* try to free all pages in this cgroup */
3612 	while (nr_retries && page_counter_read(&memcg->memory)) {
3613 		if (signal_pending(current))
3614 			return -EINTR;
3615 
3616 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3617 						  MEMCG_RECLAIM_MAY_SWAP))
3618 			nr_retries--;
3619 	}
3620 
3621 	return 0;
3622 }
3623 
3624 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3625 					    char *buf, size_t nbytes,
3626 					    loff_t off)
3627 {
3628 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3629 
3630 	if (mem_cgroup_is_root(memcg))
3631 		return -EINVAL;
3632 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3633 }
3634 
3635 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3636 				     struct cftype *cft)
3637 {
3638 	return 1;
3639 }
3640 
3641 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3642 				      struct cftype *cft, u64 val)
3643 {
3644 	if (val == 1)
3645 		return 0;
3646 
3647 	pr_warn_once("Non-hierarchical mode is deprecated. "
3648 		     "Please report your usecase to linux-mm@kvack.org if you "
3649 		     "depend on this functionality.\n");
3650 
3651 	return -EINVAL;
3652 }
3653 
3654 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3655 {
3656 	unsigned long val;
3657 
3658 	if (mem_cgroup_is_root(memcg)) {
3659 		mem_cgroup_flush_stats();
3660 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3661 			memcg_page_state(memcg, NR_ANON_MAPPED);
3662 		if (swap)
3663 			val += memcg_page_state(memcg, MEMCG_SWAP);
3664 	} else {
3665 		if (!swap)
3666 			val = page_counter_read(&memcg->memory);
3667 		else
3668 			val = page_counter_read(&memcg->memsw);
3669 	}
3670 	return val;
3671 }
3672 
3673 enum {
3674 	RES_USAGE,
3675 	RES_LIMIT,
3676 	RES_MAX_USAGE,
3677 	RES_FAILCNT,
3678 	RES_SOFT_LIMIT,
3679 };
3680 
3681 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3682 			       struct cftype *cft)
3683 {
3684 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3685 	struct page_counter *counter;
3686 
3687 	switch (MEMFILE_TYPE(cft->private)) {
3688 	case _MEM:
3689 		counter = &memcg->memory;
3690 		break;
3691 	case _MEMSWAP:
3692 		counter = &memcg->memsw;
3693 		break;
3694 	case _KMEM:
3695 		counter = &memcg->kmem;
3696 		break;
3697 	case _TCP:
3698 		counter = &memcg->tcpmem;
3699 		break;
3700 	default:
3701 		BUG();
3702 	}
3703 
3704 	switch (MEMFILE_ATTR(cft->private)) {
3705 	case RES_USAGE:
3706 		if (counter == &memcg->memory)
3707 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3708 		if (counter == &memcg->memsw)
3709 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3710 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3711 	case RES_LIMIT:
3712 		return (u64)counter->max * PAGE_SIZE;
3713 	case RES_MAX_USAGE:
3714 		return (u64)counter->watermark * PAGE_SIZE;
3715 	case RES_FAILCNT:
3716 		return counter->failcnt;
3717 	case RES_SOFT_LIMIT:
3718 		return (u64)memcg->soft_limit * PAGE_SIZE;
3719 	default:
3720 		BUG();
3721 	}
3722 }
3723 
3724 #ifdef CONFIG_MEMCG_KMEM
3725 static int memcg_online_kmem(struct mem_cgroup *memcg)
3726 {
3727 	struct obj_cgroup *objcg;
3728 
3729 	if (mem_cgroup_kmem_disabled())
3730 		return 0;
3731 
3732 	if (unlikely(mem_cgroup_is_root(memcg)))
3733 		return 0;
3734 
3735 	objcg = obj_cgroup_alloc();
3736 	if (!objcg)
3737 		return -ENOMEM;
3738 
3739 	objcg->memcg = memcg;
3740 	rcu_assign_pointer(memcg->objcg, objcg);
3741 
3742 	static_branch_enable(&memcg_kmem_enabled_key);
3743 
3744 	memcg->kmemcg_id = memcg->id.id;
3745 
3746 	return 0;
3747 }
3748 
3749 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3750 {
3751 	struct mem_cgroup *parent;
3752 
3753 	if (mem_cgroup_kmem_disabled())
3754 		return;
3755 
3756 	if (unlikely(mem_cgroup_is_root(memcg)))
3757 		return;
3758 
3759 	parent = parent_mem_cgroup(memcg);
3760 	if (!parent)
3761 		parent = root_mem_cgroup;
3762 
3763 	memcg_reparent_objcgs(memcg, parent);
3764 
3765 	/*
3766 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3767 	 * corresponding to this cgroup are guaranteed to remain empty.
3768 	 * The ordering is imposed by list_lru_node->lock taken by
3769 	 * memcg_reparent_list_lrus().
3770 	 */
3771 	memcg_reparent_list_lrus(memcg, parent);
3772 }
3773 #else
3774 static int memcg_online_kmem(struct mem_cgroup *memcg)
3775 {
3776 	return 0;
3777 }
3778 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3779 {
3780 }
3781 #endif /* CONFIG_MEMCG_KMEM */
3782 
3783 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3784 {
3785 	int ret;
3786 
3787 	mutex_lock(&memcg_max_mutex);
3788 
3789 	ret = page_counter_set_max(&memcg->tcpmem, max);
3790 	if (ret)
3791 		goto out;
3792 
3793 	if (!memcg->tcpmem_active) {
3794 		/*
3795 		 * The active flag needs to be written after the static_key
3796 		 * update. This is what guarantees that the socket activation
3797 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3798 		 * for details, and note that we don't mark any socket as
3799 		 * belonging to this memcg until that flag is up.
3800 		 *
3801 		 * We need to do this, because static_keys will span multiple
3802 		 * sites, but we can't control their order. If we mark a socket
3803 		 * as accounted, but the accounting functions are not patched in
3804 		 * yet, we'll lose accounting.
3805 		 *
3806 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3807 		 * because when this value change, the code to process it is not
3808 		 * patched in yet.
3809 		 */
3810 		static_branch_inc(&memcg_sockets_enabled_key);
3811 		memcg->tcpmem_active = true;
3812 	}
3813 out:
3814 	mutex_unlock(&memcg_max_mutex);
3815 	return ret;
3816 }
3817 
3818 /*
3819  * The user of this function is...
3820  * RES_LIMIT.
3821  */
3822 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3823 				char *buf, size_t nbytes, loff_t off)
3824 {
3825 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3826 	unsigned long nr_pages;
3827 	int ret;
3828 
3829 	buf = strstrip(buf);
3830 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3831 	if (ret)
3832 		return ret;
3833 
3834 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3835 	case RES_LIMIT:
3836 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3837 			ret = -EINVAL;
3838 			break;
3839 		}
3840 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3841 		case _MEM:
3842 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3843 			break;
3844 		case _MEMSWAP:
3845 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3846 			break;
3847 		case _KMEM:
3848 			/* kmem.limit_in_bytes is deprecated. */
3849 			ret = -EOPNOTSUPP;
3850 			break;
3851 		case _TCP:
3852 			ret = memcg_update_tcp_max(memcg, nr_pages);
3853 			break;
3854 		}
3855 		break;
3856 	case RES_SOFT_LIMIT:
3857 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3858 			ret = -EOPNOTSUPP;
3859 		} else {
3860 			memcg->soft_limit = nr_pages;
3861 			ret = 0;
3862 		}
3863 		break;
3864 	}
3865 	return ret ?: nbytes;
3866 }
3867 
3868 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3869 				size_t nbytes, loff_t off)
3870 {
3871 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3872 	struct page_counter *counter;
3873 
3874 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3875 	case _MEM:
3876 		counter = &memcg->memory;
3877 		break;
3878 	case _MEMSWAP:
3879 		counter = &memcg->memsw;
3880 		break;
3881 	case _KMEM:
3882 		counter = &memcg->kmem;
3883 		break;
3884 	case _TCP:
3885 		counter = &memcg->tcpmem;
3886 		break;
3887 	default:
3888 		BUG();
3889 	}
3890 
3891 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3892 	case RES_MAX_USAGE:
3893 		page_counter_reset_watermark(counter);
3894 		break;
3895 	case RES_FAILCNT:
3896 		counter->failcnt = 0;
3897 		break;
3898 	default:
3899 		BUG();
3900 	}
3901 
3902 	return nbytes;
3903 }
3904 
3905 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3906 					struct cftype *cft)
3907 {
3908 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3909 }
3910 
3911 #ifdef CONFIG_MMU
3912 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3913 					struct cftype *cft, u64 val)
3914 {
3915 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3916 
3917 	if (val & ~MOVE_MASK)
3918 		return -EINVAL;
3919 
3920 	/*
3921 	 * No kind of locking is needed in here, because ->can_attach() will
3922 	 * check this value once in the beginning of the process, and then carry
3923 	 * on with stale data. This means that changes to this value will only
3924 	 * affect task migrations starting after the change.
3925 	 */
3926 	memcg->move_charge_at_immigrate = val;
3927 	return 0;
3928 }
3929 #else
3930 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3931 					struct cftype *cft, u64 val)
3932 {
3933 	return -ENOSYS;
3934 }
3935 #endif
3936 
3937 #ifdef CONFIG_NUMA
3938 
3939 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3940 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3941 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3942 
3943 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3944 				int nid, unsigned int lru_mask, bool tree)
3945 {
3946 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3947 	unsigned long nr = 0;
3948 	enum lru_list lru;
3949 
3950 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3951 
3952 	for_each_lru(lru) {
3953 		if (!(BIT(lru) & lru_mask))
3954 			continue;
3955 		if (tree)
3956 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3957 		else
3958 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3959 	}
3960 	return nr;
3961 }
3962 
3963 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3964 					     unsigned int lru_mask,
3965 					     bool tree)
3966 {
3967 	unsigned long nr = 0;
3968 	enum lru_list lru;
3969 
3970 	for_each_lru(lru) {
3971 		if (!(BIT(lru) & lru_mask))
3972 			continue;
3973 		if (tree)
3974 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3975 		else
3976 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3977 	}
3978 	return nr;
3979 }
3980 
3981 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3982 {
3983 	struct numa_stat {
3984 		const char *name;
3985 		unsigned int lru_mask;
3986 	};
3987 
3988 	static const struct numa_stat stats[] = {
3989 		{ "total", LRU_ALL },
3990 		{ "file", LRU_ALL_FILE },
3991 		{ "anon", LRU_ALL_ANON },
3992 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3993 	};
3994 	const struct numa_stat *stat;
3995 	int nid;
3996 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3997 
3998 	mem_cgroup_flush_stats();
3999 
4000 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4001 		seq_printf(m, "%s=%lu", stat->name,
4002 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003 						   false));
4004 		for_each_node_state(nid, N_MEMORY)
4005 			seq_printf(m, " N%d=%lu", nid,
4006 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4007 							stat->lru_mask, false));
4008 		seq_putc(m, '\n');
4009 	}
4010 
4011 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4012 
4013 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015 						   true));
4016 		for_each_node_state(nid, N_MEMORY)
4017 			seq_printf(m, " N%d=%lu", nid,
4018 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4019 							stat->lru_mask, true));
4020 		seq_putc(m, '\n');
4021 	}
4022 
4023 	return 0;
4024 }
4025 #endif /* CONFIG_NUMA */
4026 
4027 static const unsigned int memcg1_stats[] = {
4028 	NR_FILE_PAGES,
4029 	NR_ANON_MAPPED,
4030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 	NR_ANON_THPS,
4032 #endif
4033 	NR_SHMEM,
4034 	NR_FILE_MAPPED,
4035 	NR_FILE_DIRTY,
4036 	NR_WRITEBACK,
4037 	WORKINGSET_REFAULT_ANON,
4038 	WORKINGSET_REFAULT_FILE,
4039 	MEMCG_SWAP,
4040 };
4041 
4042 static const char *const memcg1_stat_names[] = {
4043 	"cache",
4044 	"rss",
4045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4046 	"rss_huge",
4047 #endif
4048 	"shmem",
4049 	"mapped_file",
4050 	"dirty",
4051 	"writeback",
4052 	"workingset_refault_anon",
4053 	"workingset_refault_file",
4054 	"swap",
4055 };
4056 
4057 /* Universal VM events cgroup1 shows, original sort order */
4058 static const unsigned int memcg1_events[] = {
4059 	PGPGIN,
4060 	PGPGOUT,
4061 	PGFAULT,
4062 	PGMAJFAULT,
4063 };
4064 
4065 static int memcg_stat_show(struct seq_file *m, void *v)
4066 {
4067 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4068 	unsigned long memory, memsw;
4069 	struct mem_cgroup *mi;
4070 	unsigned int i;
4071 
4072 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4073 
4074 	mem_cgroup_flush_stats();
4075 
4076 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4077 		unsigned long nr;
4078 
4079 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4080 			continue;
4081 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4082 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4083 			   nr * memcg_page_state_unit(memcg1_stats[i]));
4084 	}
4085 
4086 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4087 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4088 			   memcg_events_local(memcg, memcg1_events[i]));
4089 
4090 	for (i = 0; i < NR_LRU_LISTS; i++)
4091 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4092 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4093 			   PAGE_SIZE);
4094 
4095 	/* Hierarchical information */
4096 	memory = memsw = PAGE_COUNTER_MAX;
4097 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4098 		memory = min(memory, READ_ONCE(mi->memory.max));
4099 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4100 	}
4101 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4102 		   (u64)memory * PAGE_SIZE);
4103 	if (do_memsw_account())
4104 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4105 			   (u64)memsw * PAGE_SIZE);
4106 
4107 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4108 		unsigned long nr;
4109 
4110 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4111 			continue;
4112 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4113 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4114 			   (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4115 	}
4116 
4117 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4118 		seq_printf(m, "total_%s %llu\n",
4119 			   vm_event_name(memcg1_events[i]),
4120 			   (u64)memcg_events(memcg, memcg1_events[i]));
4121 
4122 	for (i = 0; i < NR_LRU_LISTS; i++)
4123 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4124 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4125 			   PAGE_SIZE);
4126 
4127 #ifdef CONFIG_DEBUG_VM
4128 	{
4129 		pg_data_t *pgdat;
4130 		struct mem_cgroup_per_node *mz;
4131 		unsigned long anon_cost = 0;
4132 		unsigned long file_cost = 0;
4133 
4134 		for_each_online_pgdat(pgdat) {
4135 			mz = memcg->nodeinfo[pgdat->node_id];
4136 
4137 			anon_cost += mz->lruvec.anon_cost;
4138 			file_cost += mz->lruvec.file_cost;
4139 		}
4140 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4141 		seq_printf(m, "file_cost %lu\n", file_cost);
4142 	}
4143 #endif
4144 
4145 	return 0;
4146 }
4147 
4148 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4149 				      struct cftype *cft)
4150 {
4151 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4152 
4153 	return mem_cgroup_swappiness(memcg);
4154 }
4155 
4156 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4157 				       struct cftype *cft, u64 val)
4158 {
4159 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4160 
4161 	if (val > 200)
4162 		return -EINVAL;
4163 
4164 	if (!mem_cgroup_is_root(memcg))
4165 		memcg->swappiness = val;
4166 	else
4167 		vm_swappiness = val;
4168 
4169 	return 0;
4170 }
4171 
4172 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4173 {
4174 	struct mem_cgroup_threshold_ary *t;
4175 	unsigned long usage;
4176 	int i;
4177 
4178 	rcu_read_lock();
4179 	if (!swap)
4180 		t = rcu_dereference(memcg->thresholds.primary);
4181 	else
4182 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4183 
4184 	if (!t)
4185 		goto unlock;
4186 
4187 	usage = mem_cgroup_usage(memcg, swap);
4188 
4189 	/*
4190 	 * current_threshold points to threshold just below or equal to usage.
4191 	 * If it's not true, a threshold was crossed after last
4192 	 * call of __mem_cgroup_threshold().
4193 	 */
4194 	i = t->current_threshold;
4195 
4196 	/*
4197 	 * Iterate backward over array of thresholds starting from
4198 	 * current_threshold and check if a threshold is crossed.
4199 	 * If none of thresholds below usage is crossed, we read
4200 	 * only one element of the array here.
4201 	 */
4202 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4203 		eventfd_signal(t->entries[i].eventfd, 1);
4204 
4205 	/* i = current_threshold + 1 */
4206 	i++;
4207 
4208 	/*
4209 	 * Iterate forward over array of thresholds starting from
4210 	 * current_threshold+1 and check if a threshold is crossed.
4211 	 * If none of thresholds above usage is crossed, we read
4212 	 * only one element of the array here.
4213 	 */
4214 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4215 		eventfd_signal(t->entries[i].eventfd, 1);
4216 
4217 	/* Update current_threshold */
4218 	t->current_threshold = i - 1;
4219 unlock:
4220 	rcu_read_unlock();
4221 }
4222 
4223 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4224 {
4225 	while (memcg) {
4226 		__mem_cgroup_threshold(memcg, false);
4227 		if (do_memsw_account())
4228 			__mem_cgroup_threshold(memcg, true);
4229 
4230 		memcg = parent_mem_cgroup(memcg);
4231 	}
4232 }
4233 
4234 static int compare_thresholds(const void *a, const void *b)
4235 {
4236 	const struct mem_cgroup_threshold *_a = a;
4237 	const struct mem_cgroup_threshold *_b = b;
4238 
4239 	if (_a->threshold > _b->threshold)
4240 		return 1;
4241 
4242 	if (_a->threshold < _b->threshold)
4243 		return -1;
4244 
4245 	return 0;
4246 }
4247 
4248 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4249 {
4250 	struct mem_cgroup_eventfd_list *ev;
4251 
4252 	spin_lock(&memcg_oom_lock);
4253 
4254 	list_for_each_entry(ev, &memcg->oom_notify, list)
4255 		eventfd_signal(ev->eventfd, 1);
4256 
4257 	spin_unlock(&memcg_oom_lock);
4258 	return 0;
4259 }
4260 
4261 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4262 {
4263 	struct mem_cgroup *iter;
4264 
4265 	for_each_mem_cgroup_tree(iter, memcg)
4266 		mem_cgroup_oom_notify_cb(iter);
4267 }
4268 
4269 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4270 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4271 {
4272 	struct mem_cgroup_thresholds *thresholds;
4273 	struct mem_cgroup_threshold_ary *new;
4274 	unsigned long threshold;
4275 	unsigned long usage;
4276 	int i, size, ret;
4277 
4278 	ret = page_counter_memparse(args, "-1", &threshold);
4279 	if (ret)
4280 		return ret;
4281 
4282 	mutex_lock(&memcg->thresholds_lock);
4283 
4284 	if (type == _MEM) {
4285 		thresholds = &memcg->thresholds;
4286 		usage = mem_cgroup_usage(memcg, false);
4287 	} else if (type == _MEMSWAP) {
4288 		thresholds = &memcg->memsw_thresholds;
4289 		usage = mem_cgroup_usage(memcg, true);
4290 	} else
4291 		BUG();
4292 
4293 	/* Check if a threshold crossed before adding a new one */
4294 	if (thresholds->primary)
4295 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4296 
4297 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4298 
4299 	/* Allocate memory for new array of thresholds */
4300 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4301 	if (!new) {
4302 		ret = -ENOMEM;
4303 		goto unlock;
4304 	}
4305 	new->size = size;
4306 
4307 	/* Copy thresholds (if any) to new array */
4308 	if (thresholds->primary)
4309 		memcpy(new->entries, thresholds->primary->entries,
4310 		       flex_array_size(new, entries, size - 1));
4311 
4312 	/* Add new threshold */
4313 	new->entries[size - 1].eventfd = eventfd;
4314 	new->entries[size - 1].threshold = threshold;
4315 
4316 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4317 	sort(new->entries, size, sizeof(*new->entries),
4318 			compare_thresholds, NULL);
4319 
4320 	/* Find current threshold */
4321 	new->current_threshold = -1;
4322 	for (i = 0; i < size; i++) {
4323 		if (new->entries[i].threshold <= usage) {
4324 			/*
4325 			 * new->current_threshold will not be used until
4326 			 * rcu_assign_pointer(), so it's safe to increment
4327 			 * it here.
4328 			 */
4329 			++new->current_threshold;
4330 		} else
4331 			break;
4332 	}
4333 
4334 	/* Free old spare buffer and save old primary buffer as spare */
4335 	kfree(thresholds->spare);
4336 	thresholds->spare = thresholds->primary;
4337 
4338 	rcu_assign_pointer(thresholds->primary, new);
4339 
4340 	/* To be sure that nobody uses thresholds */
4341 	synchronize_rcu();
4342 
4343 unlock:
4344 	mutex_unlock(&memcg->thresholds_lock);
4345 
4346 	return ret;
4347 }
4348 
4349 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4350 	struct eventfd_ctx *eventfd, const char *args)
4351 {
4352 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4353 }
4354 
4355 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4356 	struct eventfd_ctx *eventfd, const char *args)
4357 {
4358 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4359 }
4360 
4361 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4362 	struct eventfd_ctx *eventfd, enum res_type type)
4363 {
4364 	struct mem_cgroup_thresholds *thresholds;
4365 	struct mem_cgroup_threshold_ary *new;
4366 	unsigned long usage;
4367 	int i, j, size, entries;
4368 
4369 	mutex_lock(&memcg->thresholds_lock);
4370 
4371 	if (type == _MEM) {
4372 		thresholds = &memcg->thresholds;
4373 		usage = mem_cgroup_usage(memcg, false);
4374 	} else if (type == _MEMSWAP) {
4375 		thresholds = &memcg->memsw_thresholds;
4376 		usage = mem_cgroup_usage(memcg, true);
4377 	} else
4378 		BUG();
4379 
4380 	if (!thresholds->primary)
4381 		goto unlock;
4382 
4383 	/* Check if a threshold crossed before removing */
4384 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385 
4386 	/* Calculate new number of threshold */
4387 	size = entries = 0;
4388 	for (i = 0; i < thresholds->primary->size; i++) {
4389 		if (thresholds->primary->entries[i].eventfd != eventfd)
4390 			size++;
4391 		else
4392 			entries++;
4393 	}
4394 
4395 	new = thresholds->spare;
4396 
4397 	/* If no items related to eventfd have been cleared, nothing to do */
4398 	if (!entries)
4399 		goto unlock;
4400 
4401 	/* Set thresholds array to NULL if we don't have thresholds */
4402 	if (!size) {
4403 		kfree(new);
4404 		new = NULL;
4405 		goto swap_buffers;
4406 	}
4407 
4408 	new->size = size;
4409 
4410 	/* Copy thresholds and find current threshold */
4411 	new->current_threshold = -1;
4412 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4413 		if (thresholds->primary->entries[i].eventfd == eventfd)
4414 			continue;
4415 
4416 		new->entries[j] = thresholds->primary->entries[i];
4417 		if (new->entries[j].threshold <= usage) {
4418 			/*
4419 			 * new->current_threshold will not be used
4420 			 * until rcu_assign_pointer(), so it's safe to increment
4421 			 * it here.
4422 			 */
4423 			++new->current_threshold;
4424 		}
4425 		j++;
4426 	}
4427 
4428 swap_buffers:
4429 	/* Swap primary and spare array */
4430 	thresholds->spare = thresholds->primary;
4431 
4432 	rcu_assign_pointer(thresholds->primary, new);
4433 
4434 	/* To be sure that nobody uses thresholds */
4435 	synchronize_rcu();
4436 
4437 	/* If all events are unregistered, free the spare array */
4438 	if (!new) {
4439 		kfree(thresholds->spare);
4440 		thresholds->spare = NULL;
4441 	}
4442 unlock:
4443 	mutex_unlock(&memcg->thresholds_lock);
4444 }
4445 
4446 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4447 	struct eventfd_ctx *eventfd)
4448 {
4449 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4450 }
4451 
4452 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4453 	struct eventfd_ctx *eventfd)
4454 {
4455 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4456 }
4457 
4458 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4459 	struct eventfd_ctx *eventfd, const char *args)
4460 {
4461 	struct mem_cgroup_eventfd_list *event;
4462 
4463 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4464 	if (!event)
4465 		return -ENOMEM;
4466 
4467 	spin_lock(&memcg_oom_lock);
4468 
4469 	event->eventfd = eventfd;
4470 	list_add(&event->list, &memcg->oom_notify);
4471 
4472 	/* already in OOM ? */
4473 	if (memcg->under_oom)
4474 		eventfd_signal(eventfd, 1);
4475 	spin_unlock(&memcg_oom_lock);
4476 
4477 	return 0;
4478 }
4479 
4480 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4481 	struct eventfd_ctx *eventfd)
4482 {
4483 	struct mem_cgroup_eventfd_list *ev, *tmp;
4484 
4485 	spin_lock(&memcg_oom_lock);
4486 
4487 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4488 		if (ev->eventfd == eventfd) {
4489 			list_del(&ev->list);
4490 			kfree(ev);
4491 		}
4492 	}
4493 
4494 	spin_unlock(&memcg_oom_lock);
4495 }
4496 
4497 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4498 {
4499 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4500 
4501 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4502 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4503 	seq_printf(sf, "oom_kill %lu\n",
4504 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4505 	return 0;
4506 }
4507 
4508 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4509 	struct cftype *cft, u64 val)
4510 {
4511 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512 
4513 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4514 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4515 		return -EINVAL;
4516 
4517 	memcg->oom_kill_disable = val;
4518 	if (!val)
4519 		memcg_oom_recover(memcg);
4520 
4521 	return 0;
4522 }
4523 
4524 #ifdef CONFIG_CGROUP_WRITEBACK
4525 
4526 #include <trace/events/writeback.h>
4527 
4528 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4529 {
4530 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4531 }
4532 
4533 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4534 {
4535 	wb_domain_exit(&memcg->cgwb_domain);
4536 }
4537 
4538 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4539 {
4540 	wb_domain_size_changed(&memcg->cgwb_domain);
4541 }
4542 
4543 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4544 {
4545 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546 
4547 	if (!memcg->css.parent)
4548 		return NULL;
4549 
4550 	return &memcg->cgwb_domain;
4551 }
4552 
4553 /**
4554  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4555  * @wb: bdi_writeback in question
4556  * @pfilepages: out parameter for number of file pages
4557  * @pheadroom: out parameter for number of allocatable pages according to memcg
4558  * @pdirty: out parameter for number of dirty pages
4559  * @pwriteback: out parameter for number of pages under writeback
4560  *
4561  * Determine the numbers of file, headroom, dirty, and writeback pages in
4562  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4563  * is a bit more involved.
4564  *
4565  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4566  * headroom is calculated as the lowest headroom of itself and the
4567  * ancestors.  Note that this doesn't consider the actual amount of
4568  * available memory in the system.  The caller should further cap
4569  * *@pheadroom accordingly.
4570  */
4571 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4572 			 unsigned long *pheadroom, unsigned long *pdirty,
4573 			 unsigned long *pwriteback)
4574 {
4575 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4576 	struct mem_cgroup *parent;
4577 
4578 	mem_cgroup_flush_stats();
4579 
4580 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4581 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4582 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4583 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4584 
4585 	*pheadroom = PAGE_COUNTER_MAX;
4586 	while ((parent = parent_mem_cgroup(memcg))) {
4587 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4588 					    READ_ONCE(memcg->memory.high));
4589 		unsigned long used = page_counter_read(&memcg->memory);
4590 
4591 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4592 		memcg = parent;
4593 	}
4594 }
4595 
4596 /*
4597  * Foreign dirty flushing
4598  *
4599  * There's an inherent mismatch between memcg and writeback.  The former
4600  * tracks ownership per-page while the latter per-inode.  This was a
4601  * deliberate design decision because honoring per-page ownership in the
4602  * writeback path is complicated, may lead to higher CPU and IO overheads
4603  * and deemed unnecessary given that write-sharing an inode across
4604  * different cgroups isn't a common use-case.
4605  *
4606  * Combined with inode majority-writer ownership switching, this works well
4607  * enough in most cases but there are some pathological cases.  For
4608  * example, let's say there are two cgroups A and B which keep writing to
4609  * different but confined parts of the same inode.  B owns the inode and
4610  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4611  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4612  * triggering background writeback.  A will be slowed down without a way to
4613  * make writeback of the dirty pages happen.
4614  *
4615  * Conditions like the above can lead to a cgroup getting repeatedly and
4616  * severely throttled after making some progress after each
4617  * dirty_expire_interval while the underlying IO device is almost
4618  * completely idle.
4619  *
4620  * Solving this problem completely requires matching the ownership tracking
4621  * granularities between memcg and writeback in either direction.  However,
4622  * the more egregious behaviors can be avoided by simply remembering the
4623  * most recent foreign dirtying events and initiating remote flushes on
4624  * them when local writeback isn't enough to keep the memory clean enough.
4625  *
4626  * The following two functions implement such mechanism.  When a foreign
4627  * page - a page whose memcg and writeback ownerships don't match - is
4628  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4629  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4630  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4631  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4632  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4633  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4634  * limited to MEMCG_CGWB_FRN_CNT.
4635  *
4636  * The mechanism only remembers IDs and doesn't hold any object references.
4637  * As being wrong occasionally doesn't matter, updates and accesses to the
4638  * records are lockless and racy.
4639  */
4640 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4641 					     struct bdi_writeback *wb)
4642 {
4643 	struct mem_cgroup *memcg = folio_memcg(folio);
4644 	struct memcg_cgwb_frn *frn;
4645 	u64 now = get_jiffies_64();
4646 	u64 oldest_at = now;
4647 	int oldest = -1;
4648 	int i;
4649 
4650 	trace_track_foreign_dirty(folio, wb);
4651 
4652 	/*
4653 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4654 	 * using it.  If not replace the oldest one which isn't being
4655 	 * written out.
4656 	 */
4657 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4658 		frn = &memcg->cgwb_frn[i];
4659 		if (frn->bdi_id == wb->bdi->id &&
4660 		    frn->memcg_id == wb->memcg_css->id)
4661 			break;
4662 		if (time_before64(frn->at, oldest_at) &&
4663 		    atomic_read(&frn->done.cnt) == 1) {
4664 			oldest = i;
4665 			oldest_at = frn->at;
4666 		}
4667 	}
4668 
4669 	if (i < MEMCG_CGWB_FRN_CNT) {
4670 		/*
4671 		 * Re-using an existing one.  Update timestamp lazily to
4672 		 * avoid making the cacheline hot.  We want them to be
4673 		 * reasonably up-to-date and significantly shorter than
4674 		 * dirty_expire_interval as that's what expires the record.
4675 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4676 		 */
4677 		unsigned long update_intv =
4678 			min_t(unsigned long, HZ,
4679 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4680 
4681 		if (time_before64(frn->at, now - update_intv))
4682 			frn->at = now;
4683 	} else if (oldest >= 0) {
4684 		/* replace the oldest free one */
4685 		frn = &memcg->cgwb_frn[oldest];
4686 		frn->bdi_id = wb->bdi->id;
4687 		frn->memcg_id = wb->memcg_css->id;
4688 		frn->at = now;
4689 	}
4690 }
4691 
4692 /* issue foreign writeback flushes for recorded foreign dirtying events */
4693 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4694 {
4695 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4696 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4697 	u64 now = jiffies_64;
4698 	int i;
4699 
4700 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4701 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4702 
4703 		/*
4704 		 * If the record is older than dirty_expire_interval,
4705 		 * writeback on it has already started.  No need to kick it
4706 		 * off again.  Also, don't start a new one if there's
4707 		 * already one in flight.
4708 		 */
4709 		if (time_after64(frn->at, now - intv) &&
4710 		    atomic_read(&frn->done.cnt) == 1) {
4711 			frn->at = 0;
4712 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4713 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4714 					       WB_REASON_FOREIGN_FLUSH,
4715 					       &frn->done);
4716 		}
4717 	}
4718 }
4719 
4720 #else	/* CONFIG_CGROUP_WRITEBACK */
4721 
4722 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4723 {
4724 	return 0;
4725 }
4726 
4727 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4728 {
4729 }
4730 
4731 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4732 {
4733 }
4734 
4735 #endif	/* CONFIG_CGROUP_WRITEBACK */
4736 
4737 /*
4738  * DO NOT USE IN NEW FILES.
4739  *
4740  * "cgroup.event_control" implementation.
4741  *
4742  * This is way over-engineered.  It tries to support fully configurable
4743  * events for each user.  Such level of flexibility is completely
4744  * unnecessary especially in the light of the planned unified hierarchy.
4745  *
4746  * Please deprecate this and replace with something simpler if at all
4747  * possible.
4748  */
4749 
4750 /*
4751  * Unregister event and free resources.
4752  *
4753  * Gets called from workqueue.
4754  */
4755 static void memcg_event_remove(struct work_struct *work)
4756 {
4757 	struct mem_cgroup_event *event =
4758 		container_of(work, struct mem_cgroup_event, remove);
4759 	struct mem_cgroup *memcg = event->memcg;
4760 
4761 	remove_wait_queue(event->wqh, &event->wait);
4762 
4763 	event->unregister_event(memcg, event->eventfd);
4764 
4765 	/* Notify userspace the event is going away. */
4766 	eventfd_signal(event->eventfd, 1);
4767 
4768 	eventfd_ctx_put(event->eventfd);
4769 	kfree(event);
4770 	css_put(&memcg->css);
4771 }
4772 
4773 /*
4774  * Gets called on EPOLLHUP on eventfd when user closes it.
4775  *
4776  * Called with wqh->lock held and interrupts disabled.
4777  */
4778 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4779 			    int sync, void *key)
4780 {
4781 	struct mem_cgroup_event *event =
4782 		container_of(wait, struct mem_cgroup_event, wait);
4783 	struct mem_cgroup *memcg = event->memcg;
4784 	__poll_t flags = key_to_poll(key);
4785 
4786 	if (flags & EPOLLHUP) {
4787 		/*
4788 		 * If the event has been detached at cgroup removal, we
4789 		 * can simply return knowing the other side will cleanup
4790 		 * for us.
4791 		 *
4792 		 * We can't race against event freeing since the other
4793 		 * side will require wqh->lock via remove_wait_queue(),
4794 		 * which we hold.
4795 		 */
4796 		spin_lock(&memcg->event_list_lock);
4797 		if (!list_empty(&event->list)) {
4798 			list_del_init(&event->list);
4799 			/*
4800 			 * We are in atomic context, but cgroup_event_remove()
4801 			 * may sleep, so we have to call it in workqueue.
4802 			 */
4803 			schedule_work(&event->remove);
4804 		}
4805 		spin_unlock(&memcg->event_list_lock);
4806 	}
4807 
4808 	return 0;
4809 }
4810 
4811 static void memcg_event_ptable_queue_proc(struct file *file,
4812 		wait_queue_head_t *wqh, poll_table *pt)
4813 {
4814 	struct mem_cgroup_event *event =
4815 		container_of(pt, struct mem_cgroup_event, pt);
4816 
4817 	event->wqh = wqh;
4818 	add_wait_queue(wqh, &event->wait);
4819 }
4820 
4821 /*
4822  * DO NOT USE IN NEW FILES.
4823  *
4824  * Parse input and register new cgroup event handler.
4825  *
4826  * Input must be in format '<event_fd> <control_fd> <args>'.
4827  * Interpretation of args is defined by control file implementation.
4828  */
4829 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4830 					 char *buf, size_t nbytes, loff_t off)
4831 {
4832 	struct cgroup_subsys_state *css = of_css(of);
4833 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4834 	struct mem_cgroup_event *event;
4835 	struct cgroup_subsys_state *cfile_css;
4836 	unsigned int efd, cfd;
4837 	struct fd efile;
4838 	struct fd cfile;
4839 	struct dentry *cdentry;
4840 	const char *name;
4841 	char *endp;
4842 	int ret;
4843 
4844 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4845 		return -EOPNOTSUPP;
4846 
4847 	buf = strstrip(buf);
4848 
4849 	efd = simple_strtoul(buf, &endp, 10);
4850 	if (*endp != ' ')
4851 		return -EINVAL;
4852 	buf = endp + 1;
4853 
4854 	cfd = simple_strtoul(buf, &endp, 10);
4855 	if ((*endp != ' ') && (*endp != '\0'))
4856 		return -EINVAL;
4857 	buf = endp + 1;
4858 
4859 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4860 	if (!event)
4861 		return -ENOMEM;
4862 
4863 	event->memcg = memcg;
4864 	INIT_LIST_HEAD(&event->list);
4865 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4866 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4867 	INIT_WORK(&event->remove, memcg_event_remove);
4868 
4869 	efile = fdget(efd);
4870 	if (!efile.file) {
4871 		ret = -EBADF;
4872 		goto out_kfree;
4873 	}
4874 
4875 	event->eventfd = eventfd_ctx_fileget(efile.file);
4876 	if (IS_ERR(event->eventfd)) {
4877 		ret = PTR_ERR(event->eventfd);
4878 		goto out_put_efile;
4879 	}
4880 
4881 	cfile = fdget(cfd);
4882 	if (!cfile.file) {
4883 		ret = -EBADF;
4884 		goto out_put_eventfd;
4885 	}
4886 
4887 	/* the process need read permission on control file */
4888 	/* AV: shouldn't we check that it's been opened for read instead? */
4889 	ret = file_permission(cfile.file, MAY_READ);
4890 	if (ret < 0)
4891 		goto out_put_cfile;
4892 
4893 	/*
4894 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4895 	 * file can't be renamed, it's safe to access its name afterwards.
4896 	 */
4897 	cdentry = cfile.file->f_path.dentry;
4898 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4899 		ret = -EINVAL;
4900 		goto out_put_cfile;
4901 	}
4902 
4903 	/*
4904 	 * Determine the event callbacks and set them in @event.  This used
4905 	 * to be done via struct cftype but cgroup core no longer knows
4906 	 * about these events.  The following is crude but the whole thing
4907 	 * is for compatibility anyway.
4908 	 *
4909 	 * DO NOT ADD NEW FILES.
4910 	 */
4911 	name = cdentry->d_name.name;
4912 
4913 	if (!strcmp(name, "memory.usage_in_bytes")) {
4914 		event->register_event = mem_cgroup_usage_register_event;
4915 		event->unregister_event = mem_cgroup_usage_unregister_event;
4916 	} else if (!strcmp(name, "memory.oom_control")) {
4917 		event->register_event = mem_cgroup_oom_register_event;
4918 		event->unregister_event = mem_cgroup_oom_unregister_event;
4919 	} else if (!strcmp(name, "memory.pressure_level")) {
4920 		event->register_event = vmpressure_register_event;
4921 		event->unregister_event = vmpressure_unregister_event;
4922 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4923 		event->register_event = memsw_cgroup_usage_register_event;
4924 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4925 	} else {
4926 		ret = -EINVAL;
4927 		goto out_put_cfile;
4928 	}
4929 
4930 	/*
4931 	 * Verify @cfile should belong to @css.  Also, remaining events are
4932 	 * automatically removed on cgroup destruction but the removal is
4933 	 * asynchronous, so take an extra ref on @css.
4934 	 */
4935 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4936 					       &memory_cgrp_subsys);
4937 	ret = -EINVAL;
4938 	if (IS_ERR(cfile_css))
4939 		goto out_put_cfile;
4940 	if (cfile_css != css) {
4941 		css_put(cfile_css);
4942 		goto out_put_cfile;
4943 	}
4944 
4945 	ret = event->register_event(memcg, event->eventfd, buf);
4946 	if (ret)
4947 		goto out_put_css;
4948 
4949 	vfs_poll(efile.file, &event->pt);
4950 
4951 	spin_lock_irq(&memcg->event_list_lock);
4952 	list_add(&event->list, &memcg->event_list);
4953 	spin_unlock_irq(&memcg->event_list_lock);
4954 
4955 	fdput(cfile);
4956 	fdput(efile);
4957 
4958 	return nbytes;
4959 
4960 out_put_css:
4961 	css_put(css);
4962 out_put_cfile:
4963 	fdput(cfile);
4964 out_put_eventfd:
4965 	eventfd_ctx_put(event->eventfd);
4966 out_put_efile:
4967 	fdput(efile);
4968 out_kfree:
4969 	kfree(event);
4970 
4971 	return ret;
4972 }
4973 
4974 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4975 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4976 {
4977 	/*
4978 	 * Deprecated.
4979 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4980 	 */
4981 	return 0;
4982 }
4983 #endif
4984 
4985 static struct cftype mem_cgroup_legacy_files[] = {
4986 	{
4987 		.name = "usage_in_bytes",
4988 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4989 		.read_u64 = mem_cgroup_read_u64,
4990 	},
4991 	{
4992 		.name = "max_usage_in_bytes",
4993 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4994 		.write = mem_cgroup_reset,
4995 		.read_u64 = mem_cgroup_read_u64,
4996 	},
4997 	{
4998 		.name = "limit_in_bytes",
4999 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5000 		.write = mem_cgroup_write,
5001 		.read_u64 = mem_cgroup_read_u64,
5002 	},
5003 	{
5004 		.name = "soft_limit_in_bytes",
5005 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5006 		.write = mem_cgroup_write,
5007 		.read_u64 = mem_cgroup_read_u64,
5008 	},
5009 	{
5010 		.name = "failcnt",
5011 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5012 		.write = mem_cgroup_reset,
5013 		.read_u64 = mem_cgroup_read_u64,
5014 	},
5015 	{
5016 		.name = "stat",
5017 		.seq_show = memcg_stat_show,
5018 	},
5019 	{
5020 		.name = "force_empty",
5021 		.write = mem_cgroup_force_empty_write,
5022 	},
5023 	{
5024 		.name = "use_hierarchy",
5025 		.write_u64 = mem_cgroup_hierarchy_write,
5026 		.read_u64 = mem_cgroup_hierarchy_read,
5027 	},
5028 	{
5029 		.name = "cgroup.event_control",		/* XXX: for compat */
5030 		.write = memcg_write_event_control,
5031 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5032 	},
5033 	{
5034 		.name = "swappiness",
5035 		.read_u64 = mem_cgroup_swappiness_read,
5036 		.write_u64 = mem_cgroup_swappiness_write,
5037 	},
5038 	{
5039 		.name = "move_charge_at_immigrate",
5040 		.read_u64 = mem_cgroup_move_charge_read,
5041 		.write_u64 = mem_cgroup_move_charge_write,
5042 	},
5043 	{
5044 		.name = "oom_control",
5045 		.seq_show = mem_cgroup_oom_control_read,
5046 		.write_u64 = mem_cgroup_oom_control_write,
5047 	},
5048 	{
5049 		.name = "pressure_level",
5050 	},
5051 #ifdef CONFIG_NUMA
5052 	{
5053 		.name = "numa_stat",
5054 		.seq_show = memcg_numa_stat_show,
5055 	},
5056 #endif
5057 	{
5058 		.name = "kmem.limit_in_bytes",
5059 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060 		.write = mem_cgroup_write,
5061 		.read_u64 = mem_cgroup_read_u64,
5062 	},
5063 	{
5064 		.name = "kmem.usage_in_bytes",
5065 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066 		.read_u64 = mem_cgroup_read_u64,
5067 	},
5068 	{
5069 		.name = "kmem.failcnt",
5070 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071 		.write = mem_cgroup_reset,
5072 		.read_u64 = mem_cgroup_read_u64,
5073 	},
5074 	{
5075 		.name = "kmem.max_usage_in_bytes",
5076 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077 		.write = mem_cgroup_reset,
5078 		.read_u64 = mem_cgroup_read_u64,
5079 	},
5080 #if defined(CONFIG_MEMCG_KMEM) && \
5081 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082 	{
5083 		.name = "kmem.slabinfo",
5084 		.seq_show = mem_cgroup_slab_show,
5085 	},
5086 #endif
5087 	{
5088 		.name = "kmem.tcp.limit_in_bytes",
5089 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090 		.write = mem_cgroup_write,
5091 		.read_u64 = mem_cgroup_read_u64,
5092 	},
5093 	{
5094 		.name = "kmem.tcp.usage_in_bytes",
5095 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096 		.read_u64 = mem_cgroup_read_u64,
5097 	},
5098 	{
5099 		.name = "kmem.tcp.failcnt",
5100 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101 		.write = mem_cgroup_reset,
5102 		.read_u64 = mem_cgroup_read_u64,
5103 	},
5104 	{
5105 		.name = "kmem.tcp.max_usage_in_bytes",
5106 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107 		.write = mem_cgroup_reset,
5108 		.read_u64 = mem_cgroup_read_u64,
5109 	},
5110 	{ },	/* terminate */
5111 };
5112 
5113 /*
5114  * Private memory cgroup IDR
5115  *
5116  * Swap-out records and page cache shadow entries need to store memcg
5117  * references in constrained space, so we maintain an ID space that is
5118  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119  * memory-controlled cgroups to 64k.
5120  *
5121  * However, there usually are many references to the offline CSS after
5122  * the cgroup has been destroyed, such as page cache or reclaimable
5123  * slab objects, that don't need to hang on to the ID. We want to keep
5124  * those dead CSS from occupying IDs, or we might quickly exhaust the
5125  * relatively small ID space and prevent the creation of new cgroups
5126  * even when there are much fewer than 64k cgroups - possibly none.
5127  *
5128  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129  * be freed and recycled when it's no longer needed, which is usually
5130  * when the CSS is offlined.
5131  *
5132  * The only exception to that are records of swapped out tmpfs/shmem
5133  * pages that need to be attributed to live ancestors on swapin. But
5134  * those references are manageable from userspace.
5135  */
5136 
5137 static DEFINE_IDR(mem_cgroup_idr);
5138 
5139 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140 {
5141 	if (memcg->id.id > 0) {
5142 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5143 		memcg->id.id = 0;
5144 	}
5145 }
5146 
5147 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148 						  unsigned int n)
5149 {
5150 	refcount_add(n, &memcg->id.ref);
5151 }
5152 
5153 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154 {
5155 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156 		mem_cgroup_id_remove(memcg);
5157 
5158 		/* Memcg ID pins CSS */
5159 		css_put(&memcg->css);
5160 	}
5161 }
5162 
5163 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164 {
5165 	mem_cgroup_id_put_many(memcg, 1);
5166 }
5167 
5168 /**
5169  * mem_cgroup_from_id - look up a memcg from a memcg id
5170  * @id: the memcg id to look up
5171  *
5172  * Caller must hold rcu_read_lock().
5173  */
5174 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175 {
5176 	WARN_ON_ONCE(!rcu_read_lock_held());
5177 	return idr_find(&mem_cgroup_idr, id);
5178 }
5179 
5180 #ifdef CONFIG_SHRINKER_DEBUG
5181 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5182 {
5183 	struct cgroup *cgrp;
5184 	struct cgroup_subsys_state *css;
5185 	struct mem_cgroup *memcg;
5186 
5187 	cgrp = cgroup_get_from_id(ino);
5188 	if (IS_ERR(cgrp))
5189 		return ERR_CAST(cgrp);
5190 
5191 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5192 	if (css)
5193 		memcg = container_of(css, struct mem_cgroup, css);
5194 	else
5195 		memcg = ERR_PTR(-ENOENT);
5196 
5197 	cgroup_put(cgrp);
5198 
5199 	return memcg;
5200 }
5201 #endif
5202 
5203 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5204 {
5205 	struct mem_cgroup_per_node *pn;
5206 
5207 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5208 	if (!pn)
5209 		return 1;
5210 
5211 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5212 						   GFP_KERNEL_ACCOUNT);
5213 	if (!pn->lruvec_stats_percpu) {
5214 		kfree(pn);
5215 		return 1;
5216 	}
5217 
5218 	lruvec_init(&pn->lruvec);
5219 	pn->memcg = memcg;
5220 
5221 	memcg->nodeinfo[node] = pn;
5222 	return 0;
5223 }
5224 
5225 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5226 {
5227 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5228 
5229 	if (!pn)
5230 		return;
5231 
5232 	free_percpu(pn->lruvec_stats_percpu);
5233 	kfree(pn);
5234 }
5235 
5236 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5237 {
5238 	int node;
5239 
5240 	for_each_node(node)
5241 		free_mem_cgroup_per_node_info(memcg, node);
5242 	kfree(memcg->vmstats);
5243 	free_percpu(memcg->vmstats_percpu);
5244 	kfree(memcg);
5245 }
5246 
5247 static void mem_cgroup_free(struct mem_cgroup *memcg)
5248 {
5249 	lru_gen_exit_memcg(memcg);
5250 	memcg_wb_domain_exit(memcg);
5251 	__mem_cgroup_free(memcg);
5252 }
5253 
5254 static struct mem_cgroup *mem_cgroup_alloc(void)
5255 {
5256 	struct mem_cgroup *memcg;
5257 	int node;
5258 	int __maybe_unused i;
5259 	long error = -ENOMEM;
5260 
5261 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5262 	if (!memcg)
5263 		return ERR_PTR(error);
5264 
5265 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5267 	if (memcg->id.id < 0) {
5268 		error = memcg->id.id;
5269 		goto fail;
5270 	}
5271 
5272 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5273 	if (!memcg->vmstats)
5274 		goto fail;
5275 
5276 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277 						 GFP_KERNEL_ACCOUNT);
5278 	if (!memcg->vmstats_percpu)
5279 		goto fail;
5280 
5281 	for_each_node(node)
5282 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5283 			goto fail;
5284 
5285 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5286 		goto fail;
5287 
5288 	INIT_WORK(&memcg->high_work, high_work_func);
5289 	INIT_LIST_HEAD(&memcg->oom_notify);
5290 	mutex_init(&memcg->thresholds_lock);
5291 	spin_lock_init(&memcg->move_lock);
5292 	vmpressure_init(&memcg->vmpressure);
5293 	INIT_LIST_HEAD(&memcg->event_list);
5294 	spin_lock_init(&memcg->event_list_lock);
5295 	memcg->socket_pressure = jiffies;
5296 #ifdef CONFIG_MEMCG_KMEM
5297 	memcg->kmemcg_id = -1;
5298 	INIT_LIST_HEAD(&memcg->objcg_list);
5299 #endif
5300 #ifdef CONFIG_CGROUP_WRITEBACK
5301 	INIT_LIST_HEAD(&memcg->cgwb_list);
5302 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303 		memcg->cgwb_frn[i].done =
5304 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5305 #endif
5306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5308 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5309 	memcg->deferred_split_queue.split_queue_len = 0;
5310 #endif
5311 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5312 	lru_gen_init_memcg(memcg);
5313 	return memcg;
5314 fail:
5315 	mem_cgroup_id_remove(memcg);
5316 	__mem_cgroup_free(memcg);
5317 	return ERR_PTR(error);
5318 }
5319 
5320 static struct cgroup_subsys_state * __ref
5321 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5322 {
5323 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5324 	struct mem_cgroup *memcg, *old_memcg;
5325 
5326 	old_memcg = set_active_memcg(parent);
5327 	memcg = mem_cgroup_alloc();
5328 	set_active_memcg(old_memcg);
5329 	if (IS_ERR(memcg))
5330 		return ERR_CAST(memcg);
5331 
5332 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5333 	memcg->soft_limit = PAGE_COUNTER_MAX;
5334 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5335 	memcg->zswap_max = PAGE_COUNTER_MAX;
5336 #endif
5337 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5338 	if (parent) {
5339 		memcg->swappiness = mem_cgroup_swappiness(parent);
5340 		memcg->oom_kill_disable = parent->oom_kill_disable;
5341 
5342 		page_counter_init(&memcg->memory, &parent->memory);
5343 		page_counter_init(&memcg->swap, &parent->swap);
5344 		page_counter_init(&memcg->kmem, &parent->kmem);
5345 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5346 	} else {
5347 		init_memcg_events();
5348 		page_counter_init(&memcg->memory, NULL);
5349 		page_counter_init(&memcg->swap, NULL);
5350 		page_counter_init(&memcg->kmem, NULL);
5351 		page_counter_init(&memcg->tcpmem, NULL);
5352 
5353 		root_mem_cgroup = memcg;
5354 		return &memcg->css;
5355 	}
5356 
5357 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5358 		static_branch_inc(&memcg_sockets_enabled_key);
5359 
5360 	return &memcg->css;
5361 }
5362 
5363 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5364 {
5365 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366 
5367 	if (memcg_online_kmem(memcg))
5368 		goto remove_id;
5369 
5370 	/*
5371 	 * A memcg must be visible for expand_shrinker_info()
5372 	 * by the time the maps are allocated. So, we allocate maps
5373 	 * here, when for_each_mem_cgroup() can't skip it.
5374 	 */
5375 	if (alloc_shrinker_info(memcg))
5376 		goto offline_kmem;
5377 
5378 	/* Online state pins memcg ID, memcg ID pins CSS */
5379 	refcount_set(&memcg->id.ref, 1);
5380 	css_get(css);
5381 
5382 	if (unlikely(mem_cgroup_is_root(memcg)))
5383 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5384 				   2UL*HZ);
5385 	return 0;
5386 offline_kmem:
5387 	memcg_offline_kmem(memcg);
5388 remove_id:
5389 	mem_cgroup_id_remove(memcg);
5390 	return -ENOMEM;
5391 }
5392 
5393 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5394 {
5395 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396 	struct mem_cgroup_event *event, *tmp;
5397 
5398 	/*
5399 	 * Unregister events and notify userspace.
5400 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5401 	 * directory to avoid race between userspace and kernelspace.
5402 	 */
5403 	spin_lock_irq(&memcg->event_list_lock);
5404 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5405 		list_del_init(&event->list);
5406 		schedule_work(&event->remove);
5407 	}
5408 	spin_unlock_irq(&memcg->event_list_lock);
5409 
5410 	page_counter_set_min(&memcg->memory, 0);
5411 	page_counter_set_low(&memcg->memory, 0);
5412 
5413 	memcg_offline_kmem(memcg);
5414 	reparent_shrinker_deferred(memcg);
5415 	wb_memcg_offline(memcg);
5416 
5417 	drain_all_stock(memcg);
5418 
5419 	mem_cgroup_id_put(memcg);
5420 }
5421 
5422 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5423 {
5424 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5425 
5426 	invalidate_reclaim_iterators(memcg);
5427 }
5428 
5429 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5430 {
5431 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432 	int __maybe_unused i;
5433 
5434 #ifdef CONFIG_CGROUP_WRITEBACK
5435 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5436 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5437 #endif
5438 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5439 		static_branch_dec(&memcg_sockets_enabled_key);
5440 
5441 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5442 		static_branch_dec(&memcg_sockets_enabled_key);
5443 
5444 	vmpressure_cleanup(&memcg->vmpressure);
5445 	cancel_work_sync(&memcg->high_work);
5446 	mem_cgroup_remove_from_trees(memcg);
5447 	free_shrinker_info(memcg);
5448 	mem_cgroup_free(memcg);
5449 }
5450 
5451 /**
5452  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5453  * @css: the target css
5454  *
5455  * Reset the states of the mem_cgroup associated with @css.  This is
5456  * invoked when the userland requests disabling on the default hierarchy
5457  * but the memcg is pinned through dependency.  The memcg should stop
5458  * applying policies and should revert to the vanilla state as it may be
5459  * made visible again.
5460  *
5461  * The current implementation only resets the essential configurations.
5462  * This needs to be expanded to cover all the visible parts.
5463  */
5464 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5465 {
5466 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467 
5468 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5469 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5470 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5471 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5472 	page_counter_set_min(&memcg->memory, 0);
5473 	page_counter_set_low(&memcg->memory, 0);
5474 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5475 	memcg->soft_limit = PAGE_COUNTER_MAX;
5476 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5477 	memcg_wb_domain_size_changed(memcg);
5478 }
5479 
5480 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5481 {
5482 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5484 	struct memcg_vmstats_percpu *statc;
5485 	long delta, v;
5486 	int i, nid;
5487 
5488 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5489 
5490 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5491 		/*
5492 		 * Collect the aggregated propagation counts of groups
5493 		 * below us. We're in a per-cpu loop here and this is
5494 		 * a global counter, so the first cycle will get them.
5495 		 */
5496 		delta = memcg->vmstats->state_pending[i];
5497 		if (delta)
5498 			memcg->vmstats->state_pending[i] = 0;
5499 
5500 		/* Add CPU changes on this level since the last flush */
5501 		v = READ_ONCE(statc->state[i]);
5502 		if (v != statc->state_prev[i]) {
5503 			delta += v - statc->state_prev[i];
5504 			statc->state_prev[i] = v;
5505 		}
5506 
5507 		if (!delta)
5508 			continue;
5509 
5510 		/* Aggregate counts on this level and propagate upwards */
5511 		memcg->vmstats->state[i] += delta;
5512 		if (parent)
5513 			parent->vmstats->state_pending[i] += delta;
5514 	}
5515 
5516 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5517 		delta = memcg->vmstats->events_pending[i];
5518 		if (delta)
5519 			memcg->vmstats->events_pending[i] = 0;
5520 
5521 		v = READ_ONCE(statc->events[i]);
5522 		if (v != statc->events_prev[i]) {
5523 			delta += v - statc->events_prev[i];
5524 			statc->events_prev[i] = v;
5525 		}
5526 
5527 		if (!delta)
5528 			continue;
5529 
5530 		memcg->vmstats->events[i] += delta;
5531 		if (parent)
5532 			parent->vmstats->events_pending[i] += delta;
5533 	}
5534 
5535 	for_each_node_state(nid, N_MEMORY) {
5536 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5537 		struct mem_cgroup_per_node *ppn = NULL;
5538 		struct lruvec_stats_percpu *lstatc;
5539 
5540 		if (parent)
5541 			ppn = parent->nodeinfo[nid];
5542 
5543 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5544 
5545 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5546 			delta = pn->lruvec_stats.state_pending[i];
5547 			if (delta)
5548 				pn->lruvec_stats.state_pending[i] = 0;
5549 
5550 			v = READ_ONCE(lstatc->state[i]);
5551 			if (v != lstatc->state_prev[i]) {
5552 				delta += v - lstatc->state_prev[i];
5553 				lstatc->state_prev[i] = v;
5554 			}
5555 
5556 			if (!delta)
5557 				continue;
5558 
5559 			pn->lruvec_stats.state[i] += delta;
5560 			if (ppn)
5561 				ppn->lruvec_stats.state_pending[i] += delta;
5562 		}
5563 	}
5564 }
5565 
5566 #ifdef CONFIG_MMU
5567 /* Handlers for move charge at task migration. */
5568 static int mem_cgroup_do_precharge(unsigned long count)
5569 {
5570 	int ret;
5571 
5572 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5573 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5574 	if (!ret) {
5575 		mc.precharge += count;
5576 		return ret;
5577 	}
5578 
5579 	/* Try charges one by one with reclaim, but do not retry */
5580 	while (count--) {
5581 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5582 		if (ret)
5583 			return ret;
5584 		mc.precharge++;
5585 		cond_resched();
5586 	}
5587 	return 0;
5588 }
5589 
5590 union mc_target {
5591 	struct page	*page;
5592 	swp_entry_t	ent;
5593 };
5594 
5595 enum mc_target_type {
5596 	MC_TARGET_NONE = 0,
5597 	MC_TARGET_PAGE,
5598 	MC_TARGET_SWAP,
5599 	MC_TARGET_DEVICE,
5600 };
5601 
5602 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5603 						unsigned long addr, pte_t ptent)
5604 {
5605 	struct page *page = vm_normal_page(vma, addr, ptent);
5606 
5607 	if (!page || !page_mapped(page))
5608 		return NULL;
5609 	if (PageAnon(page)) {
5610 		if (!(mc.flags & MOVE_ANON))
5611 			return NULL;
5612 	} else {
5613 		if (!(mc.flags & MOVE_FILE))
5614 			return NULL;
5615 	}
5616 	if (!get_page_unless_zero(page))
5617 		return NULL;
5618 
5619 	return page;
5620 }
5621 
5622 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5623 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5624 			pte_t ptent, swp_entry_t *entry)
5625 {
5626 	struct page *page = NULL;
5627 	swp_entry_t ent = pte_to_swp_entry(ptent);
5628 
5629 	if (!(mc.flags & MOVE_ANON))
5630 		return NULL;
5631 
5632 	/*
5633 	 * Handle device private pages that are not accessible by the CPU, but
5634 	 * stored as special swap entries in the page table.
5635 	 */
5636 	if (is_device_private_entry(ent)) {
5637 		page = pfn_swap_entry_to_page(ent);
5638 		if (!get_page_unless_zero(page))
5639 			return NULL;
5640 		return page;
5641 	}
5642 
5643 	if (non_swap_entry(ent))
5644 		return NULL;
5645 
5646 	/*
5647 	 * Because swap_cache_get_folio() updates some statistics counter,
5648 	 * we call find_get_page() with swapper_space directly.
5649 	 */
5650 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5651 	entry->val = ent.val;
5652 
5653 	return page;
5654 }
5655 #else
5656 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5657 			pte_t ptent, swp_entry_t *entry)
5658 {
5659 	return NULL;
5660 }
5661 #endif
5662 
5663 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5664 			unsigned long addr, pte_t ptent)
5665 {
5666 	unsigned long index;
5667 	struct folio *folio;
5668 
5669 	if (!vma->vm_file) /* anonymous vma */
5670 		return NULL;
5671 	if (!(mc.flags & MOVE_FILE))
5672 		return NULL;
5673 
5674 	/* folio is moved even if it's not RSS of this task(page-faulted). */
5675 	/* shmem/tmpfs may report page out on swap: account for that too. */
5676 	index = linear_page_index(vma, addr);
5677 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5678 	if (!folio)
5679 		return NULL;
5680 	return folio_file_page(folio, index);
5681 }
5682 
5683 /**
5684  * mem_cgroup_move_account - move account of the page
5685  * @page: the page
5686  * @compound: charge the page as compound or small page
5687  * @from: mem_cgroup which the page is moved from.
5688  * @to:	mem_cgroup which the page is moved to. @from != @to.
5689  *
5690  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5691  *
5692  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5693  * from old cgroup.
5694  */
5695 static int mem_cgroup_move_account(struct page *page,
5696 				   bool compound,
5697 				   struct mem_cgroup *from,
5698 				   struct mem_cgroup *to)
5699 {
5700 	struct folio *folio = page_folio(page);
5701 	struct lruvec *from_vec, *to_vec;
5702 	struct pglist_data *pgdat;
5703 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5704 	int nid, ret;
5705 
5706 	VM_BUG_ON(from == to);
5707 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5708 	VM_BUG_ON(compound && !folio_test_large(folio));
5709 
5710 	/*
5711 	 * Prevent mem_cgroup_migrate() from looking at
5712 	 * page's memory cgroup of its source page while we change it.
5713 	 */
5714 	ret = -EBUSY;
5715 	if (!folio_trylock(folio))
5716 		goto out;
5717 
5718 	ret = -EINVAL;
5719 	if (folio_memcg(folio) != from)
5720 		goto out_unlock;
5721 
5722 	pgdat = folio_pgdat(folio);
5723 	from_vec = mem_cgroup_lruvec(from, pgdat);
5724 	to_vec = mem_cgroup_lruvec(to, pgdat);
5725 
5726 	folio_memcg_lock(folio);
5727 
5728 	if (folio_test_anon(folio)) {
5729 		if (folio_mapped(folio)) {
5730 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5731 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5732 			if (folio_test_transhuge(folio)) {
5733 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5734 						   -nr_pages);
5735 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5736 						   nr_pages);
5737 			}
5738 		}
5739 	} else {
5740 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5741 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5742 
5743 		if (folio_test_swapbacked(folio)) {
5744 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5745 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5746 		}
5747 
5748 		if (folio_mapped(folio)) {
5749 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5750 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5751 		}
5752 
5753 		if (folio_test_dirty(folio)) {
5754 			struct address_space *mapping = folio_mapping(folio);
5755 
5756 			if (mapping_can_writeback(mapping)) {
5757 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5758 						   -nr_pages);
5759 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5760 						   nr_pages);
5761 			}
5762 		}
5763 	}
5764 
5765 #ifdef CONFIG_SWAP
5766 	if (folio_test_swapcache(folio)) {
5767 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5768 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5769 	}
5770 #endif
5771 	if (folio_test_writeback(folio)) {
5772 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5773 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5774 	}
5775 
5776 	/*
5777 	 * All state has been migrated, let's switch to the new memcg.
5778 	 *
5779 	 * It is safe to change page's memcg here because the page
5780 	 * is referenced, charged, isolated, and locked: we can't race
5781 	 * with (un)charging, migration, LRU putback, or anything else
5782 	 * that would rely on a stable page's memory cgroup.
5783 	 *
5784 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5785 	 * to save space. As soon as we switch page's memory cgroup to a
5786 	 * new memcg that isn't locked, the above state can change
5787 	 * concurrently again. Make sure we're truly done with it.
5788 	 */
5789 	smp_mb();
5790 
5791 	css_get(&to->css);
5792 	css_put(&from->css);
5793 
5794 	folio->memcg_data = (unsigned long)to;
5795 
5796 	__folio_memcg_unlock(from);
5797 
5798 	ret = 0;
5799 	nid = folio_nid(folio);
5800 
5801 	local_irq_disable();
5802 	mem_cgroup_charge_statistics(to, nr_pages);
5803 	memcg_check_events(to, nid);
5804 	mem_cgroup_charge_statistics(from, -nr_pages);
5805 	memcg_check_events(from, nid);
5806 	local_irq_enable();
5807 out_unlock:
5808 	folio_unlock(folio);
5809 out:
5810 	return ret;
5811 }
5812 
5813 /**
5814  * get_mctgt_type - get target type of moving charge
5815  * @vma: the vma the pte to be checked belongs
5816  * @addr: the address corresponding to the pte to be checked
5817  * @ptent: the pte to be checked
5818  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5819  *
5820  * Returns
5821  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5822  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5823  *     move charge. if @target is not NULL, the page is stored in target->page
5824  *     with extra refcnt got(Callers should handle it).
5825  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5826  *     target for charge migration. if @target is not NULL, the entry is stored
5827  *     in target->ent.
5828  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5829  *   thus not on the lru.
5830  *     For now we such page is charge like a regular page would be as for all
5831  *     intent and purposes it is just special memory taking the place of a
5832  *     regular page.
5833  *
5834  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5835  *
5836  * Called with pte lock held.
5837  */
5838 
5839 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5840 		unsigned long addr, pte_t ptent, union mc_target *target)
5841 {
5842 	struct page *page = NULL;
5843 	enum mc_target_type ret = MC_TARGET_NONE;
5844 	swp_entry_t ent = { .val = 0 };
5845 
5846 	if (pte_present(ptent))
5847 		page = mc_handle_present_pte(vma, addr, ptent);
5848 	else if (pte_none_mostly(ptent))
5849 		/*
5850 		 * PTE markers should be treated as a none pte here, separated
5851 		 * from other swap handling below.
5852 		 */
5853 		page = mc_handle_file_pte(vma, addr, ptent);
5854 	else if (is_swap_pte(ptent))
5855 		page = mc_handle_swap_pte(vma, ptent, &ent);
5856 
5857 	if (!page && !ent.val)
5858 		return ret;
5859 	if (page) {
5860 		/*
5861 		 * Do only loose check w/o serialization.
5862 		 * mem_cgroup_move_account() checks the page is valid or
5863 		 * not under LRU exclusion.
5864 		 */
5865 		if (page_memcg(page) == mc.from) {
5866 			ret = MC_TARGET_PAGE;
5867 			if (is_device_private_page(page) ||
5868 			    is_device_coherent_page(page))
5869 				ret = MC_TARGET_DEVICE;
5870 			if (target)
5871 				target->page = page;
5872 		}
5873 		if (!ret || !target)
5874 			put_page(page);
5875 	}
5876 	/*
5877 	 * There is a swap entry and a page doesn't exist or isn't charged.
5878 	 * But we cannot move a tail-page in a THP.
5879 	 */
5880 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5881 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5882 		ret = MC_TARGET_SWAP;
5883 		if (target)
5884 			target->ent = ent;
5885 	}
5886 	return ret;
5887 }
5888 
5889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5890 /*
5891  * We don't consider PMD mapped swapping or file mapped pages because THP does
5892  * not support them for now.
5893  * Caller should make sure that pmd_trans_huge(pmd) is true.
5894  */
5895 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5896 		unsigned long addr, pmd_t pmd, union mc_target *target)
5897 {
5898 	struct page *page = NULL;
5899 	enum mc_target_type ret = MC_TARGET_NONE;
5900 
5901 	if (unlikely(is_swap_pmd(pmd))) {
5902 		VM_BUG_ON(thp_migration_supported() &&
5903 				  !is_pmd_migration_entry(pmd));
5904 		return ret;
5905 	}
5906 	page = pmd_page(pmd);
5907 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5908 	if (!(mc.flags & MOVE_ANON))
5909 		return ret;
5910 	if (page_memcg(page) == mc.from) {
5911 		ret = MC_TARGET_PAGE;
5912 		if (target) {
5913 			get_page(page);
5914 			target->page = page;
5915 		}
5916 	}
5917 	return ret;
5918 }
5919 #else
5920 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5921 		unsigned long addr, pmd_t pmd, union mc_target *target)
5922 {
5923 	return MC_TARGET_NONE;
5924 }
5925 #endif
5926 
5927 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5928 					unsigned long addr, unsigned long end,
5929 					struct mm_walk *walk)
5930 {
5931 	struct vm_area_struct *vma = walk->vma;
5932 	pte_t *pte;
5933 	spinlock_t *ptl;
5934 
5935 	ptl = pmd_trans_huge_lock(pmd, vma);
5936 	if (ptl) {
5937 		/*
5938 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5939 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5940 		 * this might change.
5941 		 */
5942 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5943 			mc.precharge += HPAGE_PMD_NR;
5944 		spin_unlock(ptl);
5945 		return 0;
5946 	}
5947 
5948 	if (pmd_trans_unstable(pmd))
5949 		return 0;
5950 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5951 	for (; addr != end; pte++, addr += PAGE_SIZE)
5952 		if (get_mctgt_type(vma, addr, *pte, NULL))
5953 			mc.precharge++;	/* increment precharge temporarily */
5954 	pte_unmap_unlock(pte - 1, ptl);
5955 	cond_resched();
5956 
5957 	return 0;
5958 }
5959 
5960 static const struct mm_walk_ops precharge_walk_ops = {
5961 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5962 };
5963 
5964 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5965 {
5966 	unsigned long precharge;
5967 
5968 	mmap_read_lock(mm);
5969 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5970 	mmap_read_unlock(mm);
5971 
5972 	precharge = mc.precharge;
5973 	mc.precharge = 0;
5974 
5975 	return precharge;
5976 }
5977 
5978 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5979 {
5980 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5981 
5982 	VM_BUG_ON(mc.moving_task);
5983 	mc.moving_task = current;
5984 	return mem_cgroup_do_precharge(precharge);
5985 }
5986 
5987 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5988 static void __mem_cgroup_clear_mc(void)
5989 {
5990 	struct mem_cgroup *from = mc.from;
5991 	struct mem_cgroup *to = mc.to;
5992 
5993 	/* we must uncharge all the leftover precharges from mc.to */
5994 	if (mc.precharge) {
5995 		cancel_charge(mc.to, mc.precharge);
5996 		mc.precharge = 0;
5997 	}
5998 	/*
5999 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6000 	 * we must uncharge here.
6001 	 */
6002 	if (mc.moved_charge) {
6003 		cancel_charge(mc.from, mc.moved_charge);
6004 		mc.moved_charge = 0;
6005 	}
6006 	/* we must fixup refcnts and charges */
6007 	if (mc.moved_swap) {
6008 		/* uncharge swap account from the old cgroup */
6009 		if (!mem_cgroup_is_root(mc.from))
6010 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6011 
6012 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6013 
6014 		/*
6015 		 * we charged both to->memory and to->memsw, so we
6016 		 * should uncharge to->memory.
6017 		 */
6018 		if (!mem_cgroup_is_root(mc.to))
6019 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6020 
6021 		mc.moved_swap = 0;
6022 	}
6023 	memcg_oom_recover(from);
6024 	memcg_oom_recover(to);
6025 	wake_up_all(&mc.waitq);
6026 }
6027 
6028 static void mem_cgroup_clear_mc(void)
6029 {
6030 	struct mm_struct *mm = mc.mm;
6031 
6032 	/*
6033 	 * we must clear moving_task before waking up waiters at the end of
6034 	 * task migration.
6035 	 */
6036 	mc.moving_task = NULL;
6037 	__mem_cgroup_clear_mc();
6038 	spin_lock(&mc.lock);
6039 	mc.from = NULL;
6040 	mc.to = NULL;
6041 	mc.mm = NULL;
6042 	spin_unlock(&mc.lock);
6043 
6044 	mmput(mm);
6045 }
6046 
6047 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6048 {
6049 	struct cgroup_subsys_state *css;
6050 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6051 	struct mem_cgroup *from;
6052 	struct task_struct *leader, *p;
6053 	struct mm_struct *mm;
6054 	unsigned long move_flags;
6055 	int ret = 0;
6056 
6057 	/* charge immigration isn't supported on the default hierarchy */
6058 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6059 		return 0;
6060 
6061 	/*
6062 	 * Multi-process migrations only happen on the default hierarchy
6063 	 * where charge immigration is not used.  Perform charge
6064 	 * immigration if @tset contains a leader and whine if there are
6065 	 * multiple.
6066 	 */
6067 	p = NULL;
6068 	cgroup_taskset_for_each_leader(leader, css, tset) {
6069 		WARN_ON_ONCE(p);
6070 		p = leader;
6071 		memcg = mem_cgroup_from_css(css);
6072 	}
6073 	if (!p)
6074 		return 0;
6075 
6076 	/*
6077 	 * We are now committed to this value whatever it is. Changes in this
6078 	 * tunable will only affect upcoming migrations, not the current one.
6079 	 * So we need to save it, and keep it going.
6080 	 */
6081 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6082 	if (!move_flags)
6083 		return 0;
6084 
6085 	from = mem_cgroup_from_task(p);
6086 
6087 	VM_BUG_ON(from == memcg);
6088 
6089 	mm = get_task_mm(p);
6090 	if (!mm)
6091 		return 0;
6092 	/* We move charges only when we move a owner of the mm */
6093 	if (mm->owner == p) {
6094 		VM_BUG_ON(mc.from);
6095 		VM_BUG_ON(mc.to);
6096 		VM_BUG_ON(mc.precharge);
6097 		VM_BUG_ON(mc.moved_charge);
6098 		VM_BUG_ON(mc.moved_swap);
6099 
6100 		spin_lock(&mc.lock);
6101 		mc.mm = mm;
6102 		mc.from = from;
6103 		mc.to = memcg;
6104 		mc.flags = move_flags;
6105 		spin_unlock(&mc.lock);
6106 		/* We set mc.moving_task later */
6107 
6108 		ret = mem_cgroup_precharge_mc(mm);
6109 		if (ret)
6110 			mem_cgroup_clear_mc();
6111 	} else {
6112 		mmput(mm);
6113 	}
6114 	return ret;
6115 }
6116 
6117 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6118 {
6119 	if (mc.to)
6120 		mem_cgroup_clear_mc();
6121 }
6122 
6123 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6124 				unsigned long addr, unsigned long end,
6125 				struct mm_walk *walk)
6126 {
6127 	int ret = 0;
6128 	struct vm_area_struct *vma = walk->vma;
6129 	pte_t *pte;
6130 	spinlock_t *ptl;
6131 	enum mc_target_type target_type;
6132 	union mc_target target;
6133 	struct page *page;
6134 
6135 	ptl = pmd_trans_huge_lock(pmd, vma);
6136 	if (ptl) {
6137 		if (mc.precharge < HPAGE_PMD_NR) {
6138 			spin_unlock(ptl);
6139 			return 0;
6140 		}
6141 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6142 		if (target_type == MC_TARGET_PAGE) {
6143 			page = target.page;
6144 			if (!isolate_lru_page(page)) {
6145 				if (!mem_cgroup_move_account(page, true,
6146 							     mc.from, mc.to)) {
6147 					mc.precharge -= HPAGE_PMD_NR;
6148 					mc.moved_charge += HPAGE_PMD_NR;
6149 				}
6150 				putback_lru_page(page);
6151 			}
6152 			put_page(page);
6153 		} else if (target_type == MC_TARGET_DEVICE) {
6154 			page = target.page;
6155 			if (!mem_cgroup_move_account(page, true,
6156 						     mc.from, mc.to)) {
6157 				mc.precharge -= HPAGE_PMD_NR;
6158 				mc.moved_charge += HPAGE_PMD_NR;
6159 			}
6160 			put_page(page);
6161 		}
6162 		spin_unlock(ptl);
6163 		return 0;
6164 	}
6165 
6166 	if (pmd_trans_unstable(pmd))
6167 		return 0;
6168 retry:
6169 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6170 	for (; addr != end; addr += PAGE_SIZE) {
6171 		pte_t ptent = *(pte++);
6172 		bool device = false;
6173 		swp_entry_t ent;
6174 
6175 		if (!mc.precharge)
6176 			break;
6177 
6178 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6179 		case MC_TARGET_DEVICE:
6180 			device = true;
6181 			fallthrough;
6182 		case MC_TARGET_PAGE:
6183 			page = target.page;
6184 			/*
6185 			 * We can have a part of the split pmd here. Moving it
6186 			 * can be done but it would be too convoluted so simply
6187 			 * ignore such a partial THP and keep it in original
6188 			 * memcg. There should be somebody mapping the head.
6189 			 */
6190 			if (PageTransCompound(page))
6191 				goto put;
6192 			if (!device && isolate_lru_page(page))
6193 				goto put;
6194 			if (!mem_cgroup_move_account(page, false,
6195 						mc.from, mc.to)) {
6196 				mc.precharge--;
6197 				/* we uncharge from mc.from later. */
6198 				mc.moved_charge++;
6199 			}
6200 			if (!device)
6201 				putback_lru_page(page);
6202 put:			/* get_mctgt_type() gets the page */
6203 			put_page(page);
6204 			break;
6205 		case MC_TARGET_SWAP:
6206 			ent = target.ent;
6207 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6208 				mc.precharge--;
6209 				mem_cgroup_id_get_many(mc.to, 1);
6210 				/* we fixup other refcnts and charges later. */
6211 				mc.moved_swap++;
6212 			}
6213 			break;
6214 		default:
6215 			break;
6216 		}
6217 	}
6218 	pte_unmap_unlock(pte - 1, ptl);
6219 	cond_resched();
6220 
6221 	if (addr != end) {
6222 		/*
6223 		 * We have consumed all precharges we got in can_attach().
6224 		 * We try charge one by one, but don't do any additional
6225 		 * charges to mc.to if we have failed in charge once in attach()
6226 		 * phase.
6227 		 */
6228 		ret = mem_cgroup_do_precharge(1);
6229 		if (!ret)
6230 			goto retry;
6231 	}
6232 
6233 	return ret;
6234 }
6235 
6236 static const struct mm_walk_ops charge_walk_ops = {
6237 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6238 };
6239 
6240 static void mem_cgroup_move_charge(void)
6241 {
6242 	lru_add_drain_all();
6243 	/*
6244 	 * Signal lock_page_memcg() to take the memcg's move_lock
6245 	 * while we're moving its pages to another memcg. Then wait
6246 	 * for already started RCU-only updates to finish.
6247 	 */
6248 	atomic_inc(&mc.from->moving_account);
6249 	synchronize_rcu();
6250 retry:
6251 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6252 		/*
6253 		 * Someone who are holding the mmap_lock might be waiting in
6254 		 * waitq. So we cancel all extra charges, wake up all waiters,
6255 		 * and retry. Because we cancel precharges, we might not be able
6256 		 * to move enough charges, but moving charge is a best-effort
6257 		 * feature anyway, so it wouldn't be a big problem.
6258 		 */
6259 		__mem_cgroup_clear_mc();
6260 		cond_resched();
6261 		goto retry;
6262 	}
6263 	/*
6264 	 * When we have consumed all precharges and failed in doing
6265 	 * additional charge, the page walk just aborts.
6266 	 */
6267 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6268 	mmap_read_unlock(mc.mm);
6269 	atomic_dec(&mc.from->moving_account);
6270 }
6271 
6272 static void mem_cgroup_move_task(void)
6273 {
6274 	if (mc.to) {
6275 		mem_cgroup_move_charge();
6276 		mem_cgroup_clear_mc();
6277 	}
6278 }
6279 #else	/* !CONFIG_MMU */
6280 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6281 {
6282 	return 0;
6283 }
6284 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6285 {
6286 }
6287 static void mem_cgroup_move_task(void)
6288 {
6289 }
6290 #endif
6291 
6292 #ifdef CONFIG_LRU_GEN
6293 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6294 {
6295 	struct task_struct *task;
6296 	struct cgroup_subsys_state *css;
6297 
6298 	/* find the first leader if there is any */
6299 	cgroup_taskset_for_each_leader(task, css, tset)
6300 		break;
6301 
6302 	if (!task)
6303 		return;
6304 
6305 	task_lock(task);
6306 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6307 		lru_gen_migrate_mm(task->mm);
6308 	task_unlock(task);
6309 }
6310 #else
6311 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6312 {
6313 }
6314 #endif /* CONFIG_LRU_GEN */
6315 
6316 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6317 {
6318 	if (value == PAGE_COUNTER_MAX)
6319 		seq_puts(m, "max\n");
6320 	else
6321 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6322 
6323 	return 0;
6324 }
6325 
6326 static u64 memory_current_read(struct cgroup_subsys_state *css,
6327 			       struct cftype *cft)
6328 {
6329 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6330 
6331 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6332 }
6333 
6334 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6335 			    struct cftype *cft)
6336 {
6337 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6338 
6339 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6340 }
6341 
6342 static int memory_min_show(struct seq_file *m, void *v)
6343 {
6344 	return seq_puts_memcg_tunable(m,
6345 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6346 }
6347 
6348 static ssize_t memory_min_write(struct kernfs_open_file *of,
6349 				char *buf, size_t nbytes, loff_t off)
6350 {
6351 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6352 	unsigned long min;
6353 	int err;
6354 
6355 	buf = strstrip(buf);
6356 	err = page_counter_memparse(buf, "max", &min);
6357 	if (err)
6358 		return err;
6359 
6360 	page_counter_set_min(&memcg->memory, min);
6361 
6362 	return nbytes;
6363 }
6364 
6365 static int memory_low_show(struct seq_file *m, void *v)
6366 {
6367 	return seq_puts_memcg_tunable(m,
6368 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6369 }
6370 
6371 static ssize_t memory_low_write(struct kernfs_open_file *of,
6372 				char *buf, size_t nbytes, loff_t off)
6373 {
6374 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6375 	unsigned long low;
6376 	int err;
6377 
6378 	buf = strstrip(buf);
6379 	err = page_counter_memparse(buf, "max", &low);
6380 	if (err)
6381 		return err;
6382 
6383 	page_counter_set_low(&memcg->memory, low);
6384 
6385 	return nbytes;
6386 }
6387 
6388 static int memory_high_show(struct seq_file *m, void *v)
6389 {
6390 	return seq_puts_memcg_tunable(m,
6391 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6392 }
6393 
6394 static ssize_t memory_high_write(struct kernfs_open_file *of,
6395 				 char *buf, size_t nbytes, loff_t off)
6396 {
6397 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6398 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6399 	bool drained = false;
6400 	unsigned long high;
6401 	int err;
6402 
6403 	buf = strstrip(buf);
6404 	err = page_counter_memparse(buf, "max", &high);
6405 	if (err)
6406 		return err;
6407 
6408 	page_counter_set_high(&memcg->memory, high);
6409 
6410 	for (;;) {
6411 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6412 		unsigned long reclaimed;
6413 
6414 		if (nr_pages <= high)
6415 			break;
6416 
6417 		if (signal_pending(current))
6418 			break;
6419 
6420 		if (!drained) {
6421 			drain_all_stock(memcg);
6422 			drained = true;
6423 			continue;
6424 		}
6425 
6426 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6427 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6428 
6429 		if (!reclaimed && !nr_retries--)
6430 			break;
6431 	}
6432 
6433 	memcg_wb_domain_size_changed(memcg);
6434 	return nbytes;
6435 }
6436 
6437 static int memory_max_show(struct seq_file *m, void *v)
6438 {
6439 	return seq_puts_memcg_tunable(m,
6440 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6441 }
6442 
6443 static ssize_t memory_max_write(struct kernfs_open_file *of,
6444 				char *buf, size_t nbytes, loff_t off)
6445 {
6446 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6447 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6448 	bool drained = false;
6449 	unsigned long max;
6450 	int err;
6451 
6452 	buf = strstrip(buf);
6453 	err = page_counter_memparse(buf, "max", &max);
6454 	if (err)
6455 		return err;
6456 
6457 	xchg(&memcg->memory.max, max);
6458 
6459 	for (;;) {
6460 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6461 
6462 		if (nr_pages <= max)
6463 			break;
6464 
6465 		if (signal_pending(current))
6466 			break;
6467 
6468 		if (!drained) {
6469 			drain_all_stock(memcg);
6470 			drained = true;
6471 			continue;
6472 		}
6473 
6474 		if (nr_reclaims) {
6475 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6476 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6477 				nr_reclaims--;
6478 			continue;
6479 		}
6480 
6481 		memcg_memory_event(memcg, MEMCG_OOM);
6482 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6483 			break;
6484 	}
6485 
6486 	memcg_wb_domain_size_changed(memcg);
6487 	return nbytes;
6488 }
6489 
6490 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6491 {
6492 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6493 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6494 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6495 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6496 	seq_printf(m, "oom_kill %lu\n",
6497 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6498 	seq_printf(m, "oom_group_kill %lu\n",
6499 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6500 }
6501 
6502 static int memory_events_show(struct seq_file *m, void *v)
6503 {
6504 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6505 
6506 	__memory_events_show(m, memcg->memory_events);
6507 	return 0;
6508 }
6509 
6510 static int memory_events_local_show(struct seq_file *m, void *v)
6511 {
6512 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6513 
6514 	__memory_events_show(m, memcg->memory_events_local);
6515 	return 0;
6516 }
6517 
6518 static int memory_stat_show(struct seq_file *m, void *v)
6519 {
6520 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6521 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6522 
6523 	if (!buf)
6524 		return -ENOMEM;
6525 	memory_stat_format(memcg, buf, PAGE_SIZE);
6526 	seq_puts(m, buf);
6527 	kfree(buf);
6528 	return 0;
6529 }
6530 
6531 #ifdef CONFIG_NUMA
6532 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6533 						     int item)
6534 {
6535 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6536 }
6537 
6538 static int memory_numa_stat_show(struct seq_file *m, void *v)
6539 {
6540 	int i;
6541 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6542 
6543 	mem_cgroup_flush_stats();
6544 
6545 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6546 		int nid;
6547 
6548 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6549 			continue;
6550 
6551 		seq_printf(m, "%s", memory_stats[i].name);
6552 		for_each_node_state(nid, N_MEMORY) {
6553 			u64 size;
6554 			struct lruvec *lruvec;
6555 
6556 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6557 			size = lruvec_page_state_output(lruvec,
6558 							memory_stats[i].idx);
6559 			seq_printf(m, " N%d=%llu", nid, size);
6560 		}
6561 		seq_putc(m, '\n');
6562 	}
6563 
6564 	return 0;
6565 }
6566 #endif
6567 
6568 static int memory_oom_group_show(struct seq_file *m, void *v)
6569 {
6570 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6571 
6572 	seq_printf(m, "%d\n", memcg->oom_group);
6573 
6574 	return 0;
6575 }
6576 
6577 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6578 				      char *buf, size_t nbytes, loff_t off)
6579 {
6580 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6581 	int ret, oom_group;
6582 
6583 	buf = strstrip(buf);
6584 	if (!buf)
6585 		return -EINVAL;
6586 
6587 	ret = kstrtoint(buf, 0, &oom_group);
6588 	if (ret)
6589 		return ret;
6590 
6591 	if (oom_group != 0 && oom_group != 1)
6592 		return -EINVAL;
6593 
6594 	memcg->oom_group = oom_group;
6595 
6596 	return nbytes;
6597 }
6598 
6599 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6600 			      size_t nbytes, loff_t off)
6601 {
6602 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6603 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6604 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6605 	unsigned int reclaim_options;
6606 	int err;
6607 
6608 	buf = strstrip(buf);
6609 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6610 	if (err)
6611 		return err;
6612 
6613 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6614 	while (nr_reclaimed < nr_to_reclaim) {
6615 		unsigned long reclaimed;
6616 
6617 		if (signal_pending(current))
6618 			return -EINTR;
6619 
6620 		/*
6621 		 * This is the final attempt, drain percpu lru caches in the
6622 		 * hope of introducing more evictable pages for
6623 		 * try_to_free_mem_cgroup_pages().
6624 		 */
6625 		if (!nr_retries)
6626 			lru_add_drain_all();
6627 
6628 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6629 						nr_to_reclaim - nr_reclaimed,
6630 						GFP_KERNEL, reclaim_options);
6631 
6632 		if (!reclaimed && !nr_retries--)
6633 			return -EAGAIN;
6634 
6635 		nr_reclaimed += reclaimed;
6636 	}
6637 
6638 	return nbytes;
6639 }
6640 
6641 static struct cftype memory_files[] = {
6642 	{
6643 		.name = "current",
6644 		.flags = CFTYPE_NOT_ON_ROOT,
6645 		.read_u64 = memory_current_read,
6646 	},
6647 	{
6648 		.name = "peak",
6649 		.flags = CFTYPE_NOT_ON_ROOT,
6650 		.read_u64 = memory_peak_read,
6651 	},
6652 	{
6653 		.name = "min",
6654 		.flags = CFTYPE_NOT_ON_ROOT,
6655 		.seq_show = memory_min_show,
6656 		.write = memory_min_write,
6657 	},
6658 	{
6659 		.name = "low",
6660 		.flags = CFTYPE_NOT_ON_ROOT,
6661 		.seq_show = memory_low_show,
6662 		.write = memory_low_write,
6663 	},
6664 	{
6665 		.name = "high",
6666 		.flags = CFTYPE_NOT_ON_ROOT,
6667 		.seq_show = memory_high_show,
6668 		.write = memory_high_write,
6669 	},
6670 	{
6671 		.name = "max",
6672 		.flags = CFTYPE_NOT_ON_ROOT,
6673 		.seq_show = memory_max_show,
6674 		.write = memory_max_write,
6675 	},
6676 	{
6677 		.name = "events",
6678 		.flags = CFTYPE_NOT_ON_ROOT,
6679 		.file_offset = offsetof(struct mem_cgroup, events_file),
6680 		.seq_show = memory_events_show,
6681 	},
6682 	{
6683 		.name = "events.local",
6684 		.flags = CFTYPE_NOT_ON_ROOT,
6685 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6686 		.seq_show = memory_events_local_show,
6687 	},
6688 	{
6689 		.name = "stat",
6690 		.seq_show = memory_stat_show,
6691 	},
6692 #ifdef CONFIG_NUMA
6693 	{
6694 		.name = "numa_stat",
6695 		.seq_show = memory_numa_stat_show,
6696 	},
6697 #endif
6698 	{
6699 		.name = "oom.group",
6700 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6701 		.seq_show = memory_oom_group_show,
6702 		.write = memory_oom_group_write,
6703 	},
6704 	{
6705 		.name = "reclaim",
6706 		.flags = CFTYPE_NS_DELEGATABLE,
6707 		.write = memory_reclaim,
6708 	},
6709 	{ }	/* terminate */
6710 };
6711 
6712 struct cgroup_subsys memory_cgrp_subsys = {
6713 	.css_alloc = mem_cgroup_css_alloc,
6714 	.css_online = mem_cgroup_css_online,
6715 	.css_offline = mem_cgroup_css_offline,
6716 	.css_released = mem_cgroup_css_released,
6717 	.css_free = mem_cgroup_css_free,
6718 	.css_reset = mem_cgroup_css_reset,
6719 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6720 	.can_attach = mem_cgroup_can_attach,
6721 	.attach = mem_cgroup_attach,
6722 	.cancel_attach = mem_cgroup_cancel_attach,
6723 	.post_attach = mem_cgroup_move_task,
6724 	.dfl_cftypes = memory_files,
6725 	.legacy_cftypes = mem_cgroup_legacy_files,
6726 	.early_init = 0,
6727 };
6728 
6729 /*
6730  * This function calculates an individual cgroup's effective
6731  * protection which is derived from its own memory.min/low, its
6732  * parent's and siblings' settings, as well as the actual memory
6733  * distribution in the tree.
6734  *
6735  * The following rules apply to the effective protection values:
6736  *
6737  * 1. At the first level of reclaim, effective protection is equal to
6738  *    the declared protection in memory.min and memory.low.
6739  *
6740  * 2. To enable safe delegation of the protection configuration, at
6741  *    subsequent levels the effective protection is capped to the
6742  *    parent's effective protection.
6743  *
6744  * 3. To make complex and dynamic subtrees easier to configure, the
6745  *    user is allowed to overcommit the declared protection at a given
6746  *    level. If that is the case, the parent's effective protection is
6747  *    distributed to the children in proportion to how much protection
6748  *    they have declared and how much of it they are utilizing.
6749  *
6750  *    This makes distribution proportional, but also work-conserving:
6751  *    if one cgroup claims much more protection than it uses memory,
6752  *    the unused remainder is available to its siblings.
6753  *
6754  * 4. Conversely, when the declared protection is undercommitted at a
6755  *    given level, the distribution of the larger parental protection
6756  *    budget is NOT proportional. A cgroup's protection from a sibling
6757  *    is capped to its own memory.min/low setting.
6758  *
6759  * 5. However, to allow protecting recursive subtrees from each other
6760  *    without having to declare each individual cgroup's fixed share
6761  *    of the ancestor's claim to protection, any unutilized -
6762  *    "floating" - protection from up the tree is distributed in
6763  *    proportion to each cgroup's *usage*. This makes the protection
6764  *    neutral wrt sibling cgroups and lets them compete freely over
6765  *    the shared parental protection budget, but it protects the
6766  *    subtree as a whole from neighboring subtrees.
6767  *
6768  * Note that 4. and 5. are not in conflict: 4. is about protecting
6769  * against immediate siblings whereas 5. is about protecting against
6770  * neighboring subtrees.
6771  */
6772 static unsigned long effective_protection(unsigned long usage,
6773 					  unsigned long parent_usage,
6774 					  unsigned long setting,
6775 					  unsigned long parent_effective,
6776 					  unsigned long siblings_protected)
6777 {
6778 	unsigned long protected;
6779 	unsigned long ep;
6780 
6781 	protected = min(usage, setting);
6782 	/*
6783 	 * If all cgroups at this level combined claim and use more
6784 	 * protection then what the parent affords them, distribute
6785 	 * shares in proportion to utilization.
6786 	 *
6787 	 * We are using actual utilization rather than the statically
6788 	 * claimed protection in order to be work-conserving: claimed
6789 	 * but unused protection is available to siblings that would
6790 	 * otherwise get a smaller chunk than what they claimed.
6791 	 */
6792 	if (siblings_protected > parent_effective)
6793 		return protected * parent_effective / siblings_protected;
6794 
6795 	/*
6796 	 * Ok, utilized protection of all children is within what the
6797 	 * parent affords them, so we know whatever this child claims
6798 	 * and utilizes is effectively protected.
6799 	 *
6800 	 * If there is unprotected usage beyond this value, reclaim
6801 	 * will apply pressure in proportion to that amount.
6802 	 *
6803 	 * If there is unutilized protection, the cgroup will be fully
6804 	 * shielded from reclaim, but we do return a smaller value for
6805 	 * protection than what the group could enjoy in theory. This
6806 	 * is okay. With the overcommit distribution above, effective
6807 	 * protection is always dependent on how memory is actually
6808 	 * consumed among the siblings anyway.
6809 	 */
6810 	ep = protected;
6811 
6812 	/*
6813 	 * If the children aren't claiming (all of) the protection
6814 	 * afforded to them by the parent, distribute the remainder in
6815 	 * proportion to the (unprotected) memory of each cgroup. That
6816 	 * way, cgroups that aren't explicitly prioritized wrt each
6817 	 * other compete freely over the allowance, but they are
6818 	 * collectively protected from neighboring trees.
6819 	 *
6820 	 * We're using unprotected memory for the weight so that if
6821 	 * some cgroups DO claim explicit protection, we don't protect
6822 	 * the same bytes twice.
6823 	 *
6824 	 * Check both usage and parent_usage against the respective
6825 	 * protected values. One should imply the other, but they
6826 	 * aren't read atomically - make sure the division is sane.
6827 	 */
6828 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6829 		return ep;
6830 	if (parent_effective > siblings_protected &&
6831 	    parent_usage > siblings_protected &&
6832 	    usage > protected) {
6833 		unsigned long unclaimed;
6834 
6835 		unclaimed = parent_effective - siblings_protected;
6836 		unclaimed *= usage - protected;
6837 		unclaimed /= parent_usage - siblings_protected;
6838 
6839 		ep += unclaimed;
6840 	}
6841 
6842 	return ep;
6843 }
6844 
6845 /**
6846  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6847  * @root: the top ancestor of the sub-tree being checked
6848  * @memcg: the memory cgroup to check
6849  *
6850  * WARNING: This function is not stateless! It can only be used as part
6851  *          of a top-down tree iteration, not for isolated queries.
6852  */
6853 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6854 				     struct mem_cgroup *memcg)
6855 {
6856 	unsigned long usage, parent_usage;
6857 	struct mem_cgroup *parent;
6858 
6859 	if (mem_cgroup_disabled())
6860 		return;
6861 
6862 	if (!root)
6863 		root = root_mem_cgroup;
6864 
6865 	/*
6866 	 * Effective values of the reclaim targets are ignored so they
6867 	 * can be stale. Have a look at mem_cgroup_protection for more
6868 	 * details.
6869 	 * TODO: calculation should be more robust so that we do not need
6870 	 * that special casing.
6871 	 */
6872 	if (memcg == root)
6873 		return;
6874 
6875 	usage = page_counter_read(&memcg->memory);
6876 	if (!usage)
6877 		return;
6878 
6879 	parent = parent_mem_cgroup(memcg);
6880 
6881 	if (parent == root) {
6882 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6883 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6884 		return;
6885 	}
6886 
6887 	parent_usage = page_counter_read(&parent->memory);
6888 
6889 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6890 			READ_ONCE(memcg->memory.min),
6891 			READ_ONCE(parent->memory.emin),
6892 			atomic_long_read(&parent->memory.children_min_usage)));
6893 
6894 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6895 			READ_ONCE(memcg->memory.low),
6896 			READ_ONCE(parent->memory.elow),
6897 			atomic_long_read(&parent->memory.children_low_usage)));
6898 }
6899 
6900 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6901 			gfp_t gfp)
6902 {
6903 	long nr_pages = folio_nr_pages(folio);
6904 	int ret;
6905 
6906 	ret = try_charge(memcg, gfp, nr_pages);
6907 	if (ret)
6908 		goto out;
6909 
6910 	css_get(&memcg->css);
6911 	commit_charge(folio, memcg);
6912 
6913 	local_irq_disable();
6914 	mem_cgroup_charge_statistics(memcg, nr_pages);
6915 	memcg_check_events(memcg, folio_nid(folio));
6916 	local_irq_enable();
6917 out:
6918 	return ret;
6919 }
6920 
6921 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6922 {
6923 	struct mem_cgroup *memcg;
6924 	int ret;
6925 
6926 	memcg = get_mem_cgroup_from_mm(mm);
6927 	ret = charge_memcg(folio, memcg, gfp);
6928 	css_put(&memcg->css);
6929 
6930 	return ret;
6931 }
6932 
6933 /**
6934  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6935  * @folio: folio to charge.
6936  * @mm: mm context of the victim
6937  * @gfp: reclaim mode
6938  * @entry: swap entry for which the folio is allocated
6939  *
6940  * This function charges a folio allocated for swapin. Please call this before
6941  * adding the folio to the swapcache.
6942  *
6943  * Returns 0 on success. Otherwise, an error code is returned.
6944  */
6945 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6946 				  gfp_t gfp, swp_entry_t entry)
6947 {
6948 	struct mem_cgroup *memcg;
6949 	unsigned short id;
6950 	int ret;
6951 
6952 	if (mem_cgroup_disabled())
6953 		return 0;
6954 
6955 	id = lookup_swap_cgroup_id(entry);
6956 	rcu_read_lock();
6957 	memcg = mem_cgroup_from_id(id);
6958 	if (!memcg || !css_tryget_online(&memcg->css))
6959 		memcg = get_mem_cgroup_from_mm(mm);
6960 	rcu_read_unlock();
6961 
6962 	ret = charge_memcg(folio, memcg, gfp);
6963 
6964 	css_put(&memcg->css);
6965 	return ret;
6966 }
6967 
6968 /*
6969  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6970  * @entry: swap entry for which the page is charged
6971  *
6972  * Call this function after successfully adding the charged page to swapcache.
6973  *
6974  * Note: This function assumes the page for which swap slot is being uncharged
6975  * is order 0 page.
6976  */
6977 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6978 {
6979 	/*
6980 	 * Cgroup1's unified memory+swap counter has been charged with the
6981 	 * new swapcache page, finish the transfer by uncharging the swap
6982 	 * slot. The swap slot would also get uncharged when it dies, but
6983 	 * it can stick around indefinitely and we'd count the page twice
6984 	 * the entire time.
6985 	 *
6986 	 * Cgroup2 has separate resource counters for memory and swap,
6987 	 * so this is a non-issue here. Memory and swap charge lifetimes
6988 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6989 	 * page to memory here, and uncharge swap when the slot is freed.
6990 	 */
6991 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6992 		/*
6993 		 * The swap entry might not get freed for a long time,
6994 		 * let's not wait for it.  The page already received a
6995 		 * memory+swap charge, drop the swap entry duplicate.
6996 		 */
6997 		mem_cgroup_uncharge_swap(entry, 1);
6998 	}
6999 }
7000 
7001 struct uncharge_gather {
7002 	struct mem_cgroup *memcg;
7003 	unsigned long nr_memory;
7004 	unsigned long pgpgout;
7005 	unsigned long nr_kmem;
7006 	int nid;
7007 };
7008 
7009 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7010 {
7011 	memset(ug, 0, sizeof(*ug));
7012 }
7013 
7014 static void uncharge_batch(const struct uncharge_gather *ug)
7015 {
7016 	unsigned long flags;
7017 
7018 	if (ug->nr_memory) {
7019 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7020 		if (do_memsw_account())
7021 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7022 		if (ug->nr_kmem)
7023 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7024 		memcg_oom_recover(ug->memcg);
7025 	}
7026 
7027 	local_irq_save(flags);
7028 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7029 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7030 	memcg_check_events(ug->memcg, ug->nid);
7031 	local_irq_restore(flags);
7032 
7033 	/* drop reference from uncharge_folio */
7034 	css_put(&ug->memcg->css);
7035 }
7036 
7037 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7038 {
7039 	long nr_pages;
7040 	struct mem_cgroup *memcg;
7041 	struct obj_cgroup *objcg;
7042 
7043 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7044 
7045 	/*
7046 	 * Nobody should be changing or seriously looking at
7047 	 * folio memcg or objcg at this point, we have fully
7048 	 * exclusive access to the folio.
7049 	 */
7050 	if (folio_memcg_kmem(folio)) {
7051 		objcg = __folio_objcg(folio);
7052 		/*
7053 		 * This get matches the put at the end of the function and
7054 		 * kmem pages do not hold memcg references anymore.
7055 		 */
7056 		memcg = get_mem_cgroup_from_objcg(objcg);
7057 	} else {
7058 		memcg = __folio_memcg(folio);
7059 	}
7060 
7061 	if (!memcg)
7062 		return;
7063 
7064 	if (ug->memcg != memcg) {
7065 		if (ug->memcg) {
7066 			uncharge_batch(ug);
7067 			uncharge_gather_clear(ug);
7068 		}
7069 		ug->memcg = memcg;
7070 		ug->nid = folio_nid(folio);
7071 
7072 		/* pairs with css_put in uncharge_batch */
7073 		css_get(&memcg->css);
7074 	}
7075 
7076 	nr_pages = folio_nr_pages(folio);
7077 
7078 	if (folio_memcg_kmem(folio)) {
7079 		ug->nr_memory += nr_pages;
7080 		ug->nr_kmem += nr_pages;
7081 
7082 		folio->memcg_data = 0;
7083 		obj_cgroup_put(objcg);
7084 	} else {
7085 		/* LRU pages aren't accounted at the root level */
7086 		if (!mem_cgroup_is_root(memcg))
7087 			ug->nr_memory += nr_pages;
7088 		ug->pgpgout++;
7089 
7090 		folio->memcg_data = 0;
7091 	}
7092 
7093 	css_put(&memcg->css);
7094 }
7095 
7096 void __mem_cgroup_uncharge(struct folio *folio)
7097 {
7098 	struct uncharge_gather ug;
7099 
7100 	/* Don't touch folio->lru of any random page, pre-check: */
7101 	if (!folio_memcg(folio))
7102 		return;
7103 
7104 	uncharge_gather_clear(&ug);
7105 	uncharge_folio(folio, &ug);
7106 	uncharge_batch(&ug);
7107 }
7108 
7109 /**
7110  * __mem_cgroup_uncharge_list - uncharge a list of page
7111  * @page_list: list of pages to uncharge
7112  *
7113  * Uncharge a list of pages previously charged with
7114  * __mem_cgroup_charge().
7115  */
7116 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7117 {
7118 	struct uncharge_gather ug;
7119 	struct folio *folio;
7120 
7121 	uncharge_gather_clear(&ug);
7122 	list_for_each_entry(folio, page_list, lru)
7123 		uncharge_folio(folio, &ug);
7124 	if (ug.memcg)
7125 		uncharge_batch(&ug);
7126 }
7127 
7128 /**
7129  * mem_cgroup_migrate - Charge a folio's replacement.
7130  * @old: Currently circulating folio.
7131  * @new: Replacement folio.
7132  *
7133  * Charge @new as a replacement folio for @old. @old will
7134  * be uncharged upon free.
7135  *
7136  * Both folios must be locked, @new->mapping must be set up.
7137  */
7138 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7139 {
7140 	struct mem_cgroup *memcg;
7141 	long nr_pages = folio_nr_pages(new);
7142 	unsigned long flags;
7143 
7144 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7145 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7146 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7147 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7148 
7149 	if (mem_cgroup_disabled())
7150 		return;
7151 
7152 	/* Page cache replacement: new folio already charged? */
7153 	if (folio_memcg(new))
7154 		return;
7155 
7156 	memcg = folio_memcg(old);
7157 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7158 	if (!memcg)
7159 		return;
7160 
7161 	/* Force-charge the new page. The old one will be freed soon */
7162 	if (!mem_cgroup_is_root(memcg)) {
7163 		page_counter_charge(&memcg->memory, nr_pages);
7164 		if (do_memsw_account())
7165 			page_counter_charge(&memcg->memsw, nr_pages);
7166 	}
7167 
7168 	css_get(&memcg->css);
7169 	commit_charge(new, memcg);
7170 
7171 	local_irq_save(flags);
7172 	mem_cgroup_charge_statistics(memcg, nr_pages);
7173 	memcg_check_events(memcg, folio_nid(new));
7174 	local_irq_restore(flags);
7175 }
7176 
7177 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7178 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7179 
7180 void mem_cgroup_sk_alloc(struct sock *sk)
7181 {
7182 	struct mem_cgroup *memcg;
7183 
7184 	if (!mem_cgroup_sockets_enabled)
7185 		return;
7186 
7187 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7188 	if (!in_task())
7189 		return;
7190 
7191 	rcu_read_lock();
7192 	memcg = mem_cgroup_from_task(current);
7193 	if (mem_cgroup_is_root(memcg))
7194 		goto out;
7195 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7196 		goto out;
7197 	if (css_tryget(&memcg->css))
7198 		sk->sk_memcg = memcg;
7199 out:
7200 	rcu_read_unlock();
7201 }
7202 
7203 void mem_cgroup_sk_free(struct sock *sk)
7204 {
7205 	if (sk->sk_memcg)
7206 		css_put(&sk->sk_memcg->css);
7207 }
7208 
7209 /**
7210  * mem_cgroup_charge_skmem - charge socket memory
7211  * @memcg: memcg to charge
7212  * @nr_pages: number of pages to charge
7213  * @gfp_mask: reclaim mode
7214  *
7215  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7216  * @memcg's configured limit, %false if it doesn't.
7217  */
7218 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7219 			     gfp_t gfp_mask)
7220 {
7221 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7222 		struct page_counter *fail;
7223 
7224 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7225 			memcg->tcpmem_pressure = 0;
7226 			return true;
7227 		}
7228 		memcg->tcpmem_pressure = 1;
7229 		if (gfp_mask & __GFP_NOFAIL) {
7230 			page_counter_charge(&memcg->tcpmem, nr_pages);
7231 			return true;
7232 		}
7233 		return false;
7234 	}
7235 
7236 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7237 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7238 		return true;
7239 	}
7240 
7241 	return false;
7242 }
7243 
7244 /**
7245  * mem_cgroup_uncharge_skmem - uncharge socket memory
7246  * @memcg: memcg to uncharge
7247  * @nr_pages: number of pages to uncharge
7248  */
7249 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7250 {
7251 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7252 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7253 		return;
7254 	}
7255 
7256 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7257 
7258 	refill_stock(memcg, nr_pages);
7259 }
7260 
7261 static int __init cgroup_memory(char *s)
7262 {
7263 	char *token;
7264 
7265 	while ((token = strsep(&s, ",")) != NULL) {
7266 		if (!*token)
7267 			continue;
7268 		if (!strcmp(token, "nosocket"))
7269 			cgroup_memory_nosocket = true;
7270 		if (!strcmp(token, "nokmem"))
7271 			cgroup_memory_nokmem = true;
7272 	}
7273 	return 1;
7274 }
7275 __setup("cgroup.memory=", cgroup_memory);
7276 
7277 /*
7278  * subsys_initcall() for memory controller.
7279  *
7280  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7281  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7282  * basically everything that doesn't depend on a specific mem_cgroup structure
7283  * should be initialized from here.
7284  */
7285 static int __init mem_cgroup_init(void)
7286 {
7287 	int cpu, node;
7288 
7289 	/*
7290 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7291 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7292 	 * to work fine, we should make sure that the overfill threshold can't
7293 	 * exceed S32_MAX / PAGE_SIZE.
7294 	 */
7295 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7296 
7297 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7298 				  memcg_hotplug_cpu_dead);
7299 
7300 	for_each_possible_cpu(cpu)
7301 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7302 			  drain_local_stock);
7303 
7304 	for_each_node(node) {
7305 		struct mem_cgroup_tree_per_node *rtpn;
7306 
7307 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7308 				    node_online(node) ? node : NUMA_NO_NODE);
7309 
7310 		rtpn->rb_root = RB_ROOT;
7311 		rtpn->rb_rightmost = NULL;
7312 		spin_lock_init(&rtpn->lock);
7313 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7314 	}
7315 
7316 	return 0;
7317 }
7318 subsys_initcall(mem_cgroup_init);
7319 
7320 #ifdef CONFIG_SWAP
7321 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7322 {
7323 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7324 		/*
7325 		 * The root cgroup cannot be destroyed, so it's refcount must
7326 		 * always be >= 1.
7327 		 */
7328 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7329 			VM_BUG_ON(1);
7330 			break;
7331 		}
7332 		memcg = parent_mem_cgroup(memcg);
7333 		if (!memcg)
7334 			memcg = root_mem_cgroup;
7335 	}
7336 	return memcg;
7337 }
7338 
7339 /**
7340  * mem_cgroup_swapout - transfer a memsw charge to swap
7341  * @folio: folio whose memsw charge to transfer
7342  * @entry: swap entry to move the charge to
7343  *
7344  * Transfer the memsw charge of @folio to @entry.
7345  */
7346 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7347 {
7348 	struct mem_cgroup *memcg, *swap_memcg;
7349 	unsigned int nr_entries;
7350 	unsigned short oldid;
7351 
7352 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7353 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7354 
7355 	if (mem_cgroup_disabled())
7356 		return;
7357 
7358 	if (!do_memsw_account())
7359 		return;
7360 
7361 	memcg = folio_memcg(folio);
7362 
7363 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7364 	if (!memcg)
7365 		return;
7366 
7367 	/*
7368 	 * In case the memcg owning these pages has been offlined and doesn't
7369 	 * have an ID allocated to it anymore, charge the closest online
7370 	 * ancestor for the swap instead and transfer the memory+swap charge.
7371 	 */
7372 	swap_memcg = mem_cgroup_id_get_online(memcg);
7373 	nr_entries = folio_nr_pages(folio);
7374 	/* Get references for the tail pages, too */
7375 	if (nr_entries > 1)
7376 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7377 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7378 				   nr_entries);
7379 	VM_BUG_ON_FOLIO(oldid, folio);
7380 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7381 
7382 	folio->memcg_data = 0;
7383 
7384 	if (!mem_cgroup_is_root(memcg))
7385 		page_counter_uncharge(&memcg->memory, nr_entries);
7386 
7387 	if (memcg != swap_memcg) {
7388 		if (!mem_cgroup_is_root(swap_memcg))
7389 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7390 		page_counter_uncharge(&memcg->memsw, nr_entries);
7391 	}
7392 
7393 	/*
7394 	 * Interrupts should be disabled here because the caller holds the
7395 	 * i_pages lock which is taken with interrupts-off. It is
7396 	 * important here to have the interrupts disabled because it is the
7397 	 * only synchronisation we have for updating the per-CPU variables.
7398 	 */
7399 	memcg_stats_lock();
7400 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7401 	memcg_stats_unlock();
7402 	memcg_check_events(memcg, folio_nid(folio));
7403 
7404 	css_put(&memcg->css);
7405 }
7406 
7407 /**
7408  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7409  * @folio: folio being added to swap
7410  * @entry: swap entry to charge
7411  *
7412  * Try to charge @folio's memcg for the swap space at @entry.
7413  *
7414  * Returns 0 on success, -ENOMEM on failure.
7415  */
7416 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7417 {
7418 	unsigned int nr_pages = folio_nr_pages(folio);
7419 	struct page_counter *counter;
7420 	struct mem_cgroup *memcg;
7421 	unsigned short oldid;
7422 
7423 	if (do_memsw_account())
7424 		return 0;
7425 
7426 	memcg = folio_memcg(folio);
7427 
7428 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7429 	if (!memcg)
7430 		return 0;
7431 
7432 	if (!entry.val) {
7433 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7434 		return 0;
7435 	}
7436 
7437 	memcg = mem_cgroup_id_get_online(memcg);
7438 
7439 	if (!mem_cgroup_is_root(memcg) &&
7440 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7441 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7442 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7443 		mem_cgroup_id_put(memcg);
7444 		return -ENOMEM;
7445 	}
7446 
7447 	/* Get references for the tail pages, too */
7448 	if (nr_pages > 1)
7449 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7450 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7451 	VM_BUG_ON_FOLIO(oldid, folio);
7452 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7453 
7454 	return 0;
7455 }
7456 
7457 /**
7458  * __mem_cgroup_uncharge_swap - uncharge swap space
7459  * @entry: swap entry to uncharge
7460  * @nr_pages: the amount of swap space to uncharge
7461  */
7462 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7463 {
7464 	struct mem_cgroup *memcg;
7465 	unsigned short id;
7466 
7467 	if (mem_cgroup_disabled())
7468 		return;
7469 
7470 	id = swap_cgroup_record(entry, 0, nr_pages);
7471 	rcu_read_lock();
7472 	memcg = mem_cgroup_from_id(id);
7473 	if (memcg) {
7474 		if (!mem_cgroup_is_root(memcg)) {
7475 			if (do_memsw_account())
7476 				page_counter_uncharge(&memcg->memsw, nr_pages);
7477 			else
7478 				page_counter_uncharge(&memcg->swap, nr_pages);
7479 		}
7480 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7481 		mem_cgroup_id_put_many(memcg, nr_pages);
7482 	}
7483 	rcu_read_unlock();
7484 }
7485 
7486 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7487 {
7488 	long nr_swap_pages = get_nr_swap_pages();
7489 
7490 	if (mem_cgroup_disabled() || do_memsw_account())
7491 		return nr_swap_pages;
7492 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7493 		nr_swap_pages = min_t(long, nr_swap_pages,
7494 				      READ_ONCE(memcg->swap.max) -
7495 				      page_counter_read(&memcg->swap));
7496 	return nr_swap_pages;
7497 }
7498 
7499 bool mem_cgroup_swap_full(struct folio *folio)
7500 {
7501 	struct mem_cgroup *memcg;
7502 
7503 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7504 
7505 	if (vm_swap_full())
7506 		return true;
7507 	if (do_memsw_account())
7508 		return false;
7509 
7510 	memcg = folio_memcg(folio);
7511 	if (!memcg)
7512 		return false;
7513 
7514 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7515 		unsigned long usage = page_counter_read(&memcg->swap);
7516 
7517 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7518 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7519 			return true;
7520 	}
7521 
7522 	return false;
7523 }
7524 
7525 static int __init setup_swap_account(char *s)
7526 {
7527 	pr_warn_once("The swapaccount= commandline option is deprecated. "
7528 		     "Please report your usecase to linux-mm@kvack.org if you "
7529 		     "depend on this functionality.\n");
7530 	return 1;
7531 }
7532 __setup("swapaccount=", setup_swap_account);
7533 
7534 static u64 swap_current_read(struct cgroup_subsys_state *css,
7535 			     struct cftype *cft)
7536 {
7537 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7538 
7539 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7540 }
7541 
7542 static int swap_high_show(struct seq_file *m, void *v)
7543 {
7544 	return seq_puts_memcg_tunable(m,
7545 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7546 }
7547 
7548 static ssize_t swap_high_write(struct kernfs_open_file *of,
7549 			       char *buf, size_t nbytes, loff_t off)
7550 {
7551 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7552 	unsigned long high;
7553 	int err;
7554 
7555 	buf = strstrip(buf);
7556 	err = page_counter_memparse(buf, "max", &high);
7557 	if (err)
7558 		return err;
7559 
7560 	page_counter_set_high(&memcg->swap, high);
7561 
7562 	return nbytes;
7563 }
7564 
7565 static int swap_max_show(struct seq_file *m, void *v)
7566 {
7567 	return seq_puts_memcg_tunable(m,
7568 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7569 }
7570 
7571 static ssize_t swap_max_write(struct kernfs_open_file *of,
7572 			      char *buf, size_t nbytes, loff_t off)
7573 {
7574 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7575 	unsigned long max;
7576 	int err;
7577 
7578 	buf = strstrip(buf);
7579 	err = page_counter_memparse(buf, "max", &max);
7580 	if (err)
7581 		return err;
7582 
7583 	xchg(&memcg->swap.max, max);
7584 
7585 	return nbytes;
7586 }
7587 
7588 static int swap_events_show(struct seq_file *m, void *v)
7589 {
7590 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7591 
7592 	seq_printf(m, "high %lu\n",
7593 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7594 	seq_printf(m, "max %lu\n",
7595 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7596 	seq_printf(m, "fail %lu\n",
7597 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7598 
7599 	return 0;
7600 }
7601 
7602 static struct cftype swap_files[] = {
7603 	{
7604 		.name = "swap.current",
7605 		.flags = CFTYPE_NOT_ON_ROOT,
7606 		.read_u64 = swap_current_read,
7607 	},
7608 	{
7609 		.name = "swap.high",
7610 		.flags = CFTYPE_NOT_ON_ROOT,
7611 		.seq_show = swap_high_show,
7612 		.write = swap_high_write,
7613 	},
7614 	{
7615 		.name = "swap.max",
7616 		.flags = CFTYPE_NOT_ON_ROOT,
7617 		.seq_show = swap_max_show,
7618 		.write = swap_max_write,
7619 	},
7620 	{
7621 		.name = "swap.events",
7622 		.flags = CFTYPE_NOT_ON_ROOT,
7623 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7624 		.seq_show = swap_events_show,
7625 	},
7626 	{ }	/* terminate */
7627 };
7628 
7629 static struct cftype memsw_files[] = {
7630 	{
7631 		.name = "memsw.usage_in_bytes",
7632 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7633 		.read_u64 = mem_cgroup_read_u64,
7634 	},
7635 	{
7636 		.name = "memsw.max_usage_in_bytes",
7637 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7638 		.write = mem_cgroup_reset,
7639 		.read_u64 = mem_cgroup_read_u64,
7640 	},
7641 	{
7642 		.name = "memsw.limit_in_bytes",
7643 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7644 		.write = mem_cgroup_write,
7645 		.read_u64 = mem_cgroup_read_u64,
7646 	},
7647 	{
7648 		.name = "memsw.failcnt",
7649 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7650 		.write = mem_cgroup_reset,
7651 		.read_u64 = mem_cgroup_read_u64,
7652 	},
7653 	{ },	/* terminate */
7654 };
7655 
7656 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7657 /**
7658  * obj_cgroup_may_zswap - check if this cgroup can zswap
7659  * @objcg: the object cgroup
7660  *
7661  * Check if the hierarchical zswap limit has been reached.
7662  *
7663  * This doesn't check for specific headroom, and it is not atomic
7664  * either. But with zswap, the size of the allocation is only known
7665  * once compression has occured, and this optimistic pre-check avoids
7666  * spending cycles on compression when there is already no room left
7667  * or zswap is disabled altogether somewhere in the hierarchy.
7668  */
7669 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7670 {
7671 	struct mem_cgroup *memcg, *original_memcg;
7672 	bool ret = true;
7673 
7674 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7675 		return true;
7676 
7677 	original_memcg = get_mem_cgroup_from_objcg(objcg);
7678 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7679 	     memcg = parent_mem_cgroup(memcg)) {
7680 		unsigned long max = READ_ONCE(memcg->zswap_max);
7681 		unsigned long pages;
7682 
7683 		if (max == PAGE_COUNTER_MAX)
7684 			continue;
7685 		if (max == 0) {
7686 			ret = false;
7687 			break;
7688 		}
7689 
7690 		cgroup_rstat_flush(memcg->css.cgroup);
7691 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7692 		if (pages < max)
7693 			continue;
7694 		ret = false;
7695 		break;
7696 	}
7697 	mem_cgroup_put(original_memcg);
7698 	return ret;
7699 }
7700 
7701 /**
7702  * obj_cgroup_charge_zswap - charge compression backend memory
7703  * @objcg: the object cgroup
7704  * @size: size of compressed object
7705  *
7706  * This forces the charge after obj_cgroup_may_swap() allowed
7707  * compression and storage in zwap for this cgroup to go ahead.
7708  */
7709 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7710 {
7711 	struct mem_cgroup *memcg;
7712 
7713 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7714 		return;
7715 
7716 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7717 
7718 	/* PF_MEMALLOC context, charging must succeed */
7719 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7720 		VM_WARN_ON_ONCE(1);
7721 
7722 	rcu_read_lock();
7723 	memcg = obj_cgroup_memcg(objcg);
7724 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7725 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7726 	rcu_read_unlock();
7727 }
7728 
7729 /**
7730  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7731  * @objcg: the object cgroup
7732  * @size: size of compressed object
7733  *
7734  * Uncharges zswap memory on page in.
7735  */
7736 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7737 {
7738 	struct mem_cgroup *memcg;
7739 
7740 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7741 		return;
7742 
7743 	obj_cgroup_uncharge(objcg, size);
7744 
7745 	rcu_read_lock();
7746 	memcg = obj_cgroup_memcg(objcg);
7747 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7748 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7749 	rcu_read_unlock();
7750 }
7751 
7752 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7753 			      struct cftype *cft)
7754 {
7755 	cgroup_rstat_flush(css->cgroup);
7756 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7757 }
7758 
7759 static int zswap_max_show(struct seq_file *m, void *v)
7760 {
7761 	return seq_puts_memcg_tunable(m,
7762 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7763 }
7764 
7765 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7766 			       char *buf, size_t nbytes, loff_t off)
7767 {
7768 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7769 	unsigned long max;
7770 	int err;
7771 
7772 	buf = strstrip(buf);
7773 	err = page_counter_memparse(buf, "max", &max);
7774 	if (err)
7775 		return err;
7776 
7777 	xchg(&memcg->zswap_max, max);
7778 
7779 	return nbytes;
7780 }
7781 
7782 static struct cftype zswap_files[] = {
7783 	{
7784 		.name = "zswap.current",
7785 		.flags = CFTYPE_NOT_ON_ROOT,
7786 		.read_u64 = zswap_current_read,
7787 	},
7788 	{
7789 		.name = "zswap.max",
7790 		.flags = CFTYPE_NOT_ON_ROOT,
7791 		.seq_show = zswap_max_show,
7792 		.write = zswap_max_write,
7793 	},
7794 	{ }	/* terminate */
7795 };
7796 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7797 
7798 static int __init mem_cgroup_swap_init(void)
7799 {
7800 	if (mem_cgroup_disabled())
7801 		return 0;
7802 
7803 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7804 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7805 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7806 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7807 #endif
7808 	return 0;
7809 }
7810 subsys_initcall(mem_cgroup_swap_init);
7811 
7812 #endif /* CONFIG_SWAP */
7813