1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/file.h> 62 #include <linux/tracehook.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include "internal.h" 66 #include <net/sock.h> 67 #include <net/ip.h> 68 #include "slab.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 bool cgroup_memory_noswap __read_mostly; 91 #else 92 #define cgroup_memory_noswap 1 93 #endif 94 95 #ifdef CONFIG_CGROUP_WRITEBACK 96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 97 #endif 98 99 /* Whether legacy memory+swap accounting is active */ 100 static bool do_memsw_account(void) 101 { 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 103 } 104 105 #define THRESHOLDS_EVENTS_TARGET 128 106 #define SOFTLIMIT_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 /* for encoding cft->private value on file */ 207 enum res_type { 208 _MEM, 209 _MEMSWAP, 210 _OOM_TYPE, 211 _KMEM, 212 _TCP, 213 }; 214 215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 217 #define MEMFILE_ATTR(val) ((val) & 0xffff) 218 /* Used for OOM nofiier */ 219 #define OOM_CONTROL (0) 220 221 /* 222 * Iteration constructs for visiting all cgroups (under a tree). If 223 * loops are exited prematurely (break), mem_cgroup_iter_break() must 224 * be used for reference counting. 225 */ 226 #define for_each_mem_cgroup_tree(iter, root) \ 227 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 228 iter != NULL; \ 229 iter = mem_cgroup_iter(root, iter, NULL)) 230 231 #define for_each_mem_cgroup(iter) \ 232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 233 iter != NULL; \ 234 iter = mem_cgroup_iter(NULL, iter, NULL)) 235 236 static inline bool should_force_charge(void) 237 { 238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 239 (current->flags & PF_EXITING); 240 } 241 242 /* Some nice accessors for the vmpressure. */ 243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 244 { 245 if (!memcg) 246 memcg = root_mem_cgroup; 247 return &memcg->vmpressure; 248 } 249 250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 251 { 252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 253 } 254 255 #ifdef CONFIG_MEMCG_KMEM 256 extern spinlock_t css_set_lock; 257 258 static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 259 unsigned int nr_pages); 260 static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, 261 unsigned int nr_pages); 262 263 static void obj_cgroup_release(struct percpu_ref *ref) 264 { 265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 266 struct mem_cgroup *memcg; 267 unsigned int nr_bytes; 268 unsigned int nr_pages; 269 unsigned long flags; 270 271 /* 272 * At this point all allocated objects are freed, and 273 * objcg->nr_charged_bytes can't have an arbitrary byte value. 274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 275 * 276 * The following sequence can lead to it: 277 * 1) CPU0: objcg == stock->cached_objcg 278 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 279 * PAGE_SIZE bytes are charged 280 * 3) CPU1: a process from another memcg is allocating something, 281 * the stock if flushed, 282 * objcg->nr_charged_bytes = PAGE_SIZE - 92 283 * 5) CPU0: we do release this object, 284 * 92 bytes are added to stock->nr_bytes 285 * 6) CPU0: stock is flushed, 286 * 92 bytes are added to objcg->nr_charged_bytes 287 * 288 * In the result, nr_charged_bytes == PAGE_SIZE. 289 * This page will be uncharged in obj_cgroup_release(). 290 */ 291 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 293 nr_pages = nr_bytes >> PAGE_SHIFT; 294 295 spin_lock_irqsave(&css_set_lock, flags); 296 memcg = obj_cgroup_memcg(objcg); 297 if (nr_pages) 298 __memcg_kmem_uncharge(memcg, nr_pages); 299 list_del(&objcg->list); 300 mem_cgroup_put(memcg); 301 spin_unlock_irqrestore(&css_set_lock, flags); 302 303 percpu_ref_exit(ref); 304 kfree_rcu(objcg, rcu); 305 } 306 307 static struct obj_cgroup *obj_cgroup_alloc(void) 308 { 309 struct obj_cgroup *objcg; 310 int ret; 311 312 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 313 if (!objcg) 314 return NULL; 315 316 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 317 GFP_KERNEL); 318 if (ret) { 319 kfree(objcg); 320 return NULL; 321 } 322 INIT_LIST_HEAD(&objcg->list); 323 return objcg; 324 } 325 326 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 327 struct mem_cgroup *parent) 328 { 329 struct obj_cgroup *objcg, *iter; 330 331 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 332 333 spin_lock_irq(&css_set_lock); 334 335 /* Move active objcg to the parent's list */ 336 xchg(&objcg->memcg, parent); 337 css_get(&parent->css); 338 list_add(&objcg->list, &parent->objcg_list); 339 340 /* Move already reparented objcgs to the parent's list */ 341 list_for_each_entry(iter, &memcg->objcg_list, list) { 342 css_get(&parent->css); 343 xchg(&iter->memcg, parent); 344 css_put(&memcg->css); 345 } 346 list_splice(&memcg->objcg_list, &parent->objcg_list); 347 348 spin_unlock_irq(&css_set_lock); 349 350 percpu_ref_kill(&objcg->refcnt); 351 } 352 353 /* 354 * This will be used as a shrinker list's index. 355 * The main reason for not using cgroup id for this: 356 * this works better in sparse environments, where we have a lot of memcgs, 357 * but only a few kmem-limited. Or also, if we have, for instance, 200 358 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 359 * 200 entry array for that. 360 * 361 * The current size of the caches array is stored in memcg_nr_cache_ids. It 362 * will double each time we have to increase it. 363 */ 364 static DEFINE_IDA(memcg_cache_ida); 365 int memcg_nr_cache_ids; 366 367 /* Protects memcg_nr_cache_ids */ 368 static DECLARE_RWSEM(memcg_cache_ids_sem); 369 370 void memcg_get_cache_ids(void) 371 { 372 down_read(&memcg_cache_ids_sem); 373 } 374 375 void memcg_put_cache_ids(void) 376 { 377 up_read(&memcg_cache_ids_sem); 378 } 379 380 /* 381 * MIN_SIZE is different than 1, because we would like to avoid going through 382 * the alloc/free process all the time. In a small machine, 4 kmem-limited 383 * cgroups is a reasonable guess. In the future, it could be a parameter or 384 * tunable, but that is strictly not necessary. 385 * 386 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 387 * this constant directly from cgroup, but it is understandable that this is 388 * better kept as an internal representation in cgroup.c. In any case, the 389 * cgrp_id space is not getting any smaller, and we don't have to necessarily 390 * increase ours as well if it increases. 391 */ 392 #define MEMCG_CACHES_MIN_SIZE 4 393 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 394 395 /* 396 * A lot of the calls to the cache allocation functions are expected to be 397 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 398 * conditional to this static branch, we'll have to allow modules that does 399 * kmem_cache_alloc and the such to see this symbol as well 400 */ 401 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 402 EXPORT_SYMBOL(memcg_kmem_enabled_key); 403 #endif 404 405 static int memcg_shrinker_map_size; 406 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 407 408 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 409 { 410 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 411 } 412 413 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 414 int size, int old_size) 415 { 416 struct memcg_shrinker_map *new, *old; 417 int nid; 418 419 lockdep_assert_held(&memcg_shrinker_map_mutex); 420 421 for_each_node(nid) { 422 old = rcu_dereference_protected( 423 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 424 /* Not yet online memcg */ 425 if (!old) 426 return 0; 427 428 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 429 if (!new) 430 return -ENOMEM; 431 432 /* Set all old bits, clear all new bits */ 433 memset(new->map, (int)0xff, old_size); 434 memset((void *)new->map + old_size, 0, size - old_size); 435 436 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 437 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 438 } 439 440 return 0; 441 } 442 443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 444 { 445 struct mem_cgroup_per_node *pn; 446 struct memcg_shrinker_map *map; 447 int nid; 448 449 if (mem_cgroup_is_root(memcg)) 450 return; 451 452 for_each_node(nid) { 453 pn = mem_cgroup_nodeinfo(memcg, nid); 454 map = rcu_dereference_protected(pn->shrinker_map, true); 455 kvfree(map); 456 rcu_assign_pointer(pn->shrinker_map, NULL); 457 } 458 } 459 460 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 461 { 462 struct memcg_shrinker_map *map; 463 int nid, size, ret = 0; 464 465 if (mem_cgroup_is_root(memcg)) 466 return 0; 467 468 mutex_lock(&memcg_shrinker_map_mutex); 469 size = memcg_shrinker_map_size; 470 for_each_node(nid) { 471 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 472 if (!map) { 473 memcg_free_shrinker_maps(memcg); 474 ret = -ENOMEM; 475 break; 476 } 477 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 478 } 479 mutex_unlock(&memcg_shrinker_map_mutex); 480 481 return ret; 482 } 483 484 int memcg_expand_shrinker_maps(int new_id) 485 { 486 int size, old_size, ret = 0; 487 struct mem_cgroup *memcg; 488 489 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 490 old_size = memcg_shrinker_map_size; 491 if (size <= old_size) 492 return 0; 493 494 mutex_lock(&memcg_shrinker_map_mutex); 495 if (!root_mem_cgroup) 496 goto unlock; 497 498 for_each_mem_cgroup(memcg) { 499 if (mem_cgroup_is_root(memcg)) 500 continue; 501 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 502 if (ret) { 503 mem_cgroup_iter_break(NULL, memcg); 504 goto unlock; 505 } 506 } 507 unlock: 508 if (!ret) 509 memcg_shrinker_map_size = size; 510 mutex_unlock(&memcg_shrinker_map_mutex); 511 return ret; 512 } 513 514 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 515 { 516 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 517 struct memcg_shrinker_map *map; 518 519 rcu_read_lock(); 520 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 521 /* Pairs with smp mb in shrink_slab() */ 522 smp_mb__before_atomic(); 523 set_bit(shrinker_id, map->map); 524 rcu_read_unlock(); 525 } 526 } 527 528 /** 529 * mem_cgroup_css_from_page - css of the memcg associated with a page 530 * @page: page of interest 531 * 532 * If memcg is bound to the default hierarchy, css of the memcg associated 533 * with @page is returned. The returned css remains associated with @page 534 * until it is released. 535 * 536 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 537 * is returned. 538 */ 539 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 540 { 541 struct mem_cgroup *memcg; 542 543 memcg = page_memcg(page); 544 545 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 546 memcg = root_mem_cgroup; 547 548 return &memcg->css; 549 } 550 551 /** 552 * page_cgroup_ino - return inode number of the memcg a page is charged to 553 * @page: the page 554 * 555 * Look up the closest online ancestor of the memory cgroup @page is charged to 556 * and return its inode number or 0 if @page is not charged to any cgroup. It 557 * is safe to call this function without holding a reference to @page. 558 * 559 * Note, this function is inherently racy, because there is nothing to prevent 560 * the cgroup inode from getting torn down and potentially reallocated a moment 561 * after page_cgroup_ino() returns, so it only should be used by callers that 562 * do not care (such as procfs interfaces). 563 */ 564 ino_t page_cgroup_ino(struct page *page) 565 { 566 struct mem_cgroup *memcg; 567 unsigned long ino = 0; 568 569 rcu_read_lock(); 570 memcg = page_memcg_check(page); 571 572 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 573 memcg = parent_mem_cgroup(memcg); 574 if (memcg) 575 ino = cgroup_ino(memcg->css.cgroup); 576 rcu_read_unlock(); 577 return ino; 578 } 579 580 static struct mem_cgroup_per_node * 581 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 582 { 583 int nid = page_to_nid(page); 584 585 return memcg->nodeinfo[nid]; 586 } 587 588 static struct mem_cgroup_tree_per_node * 589 soft_limit_tree_node(int nid) 590 { 591 return soft_limit_tree.rb_tree_per_node[nid]; 592 } 593 594 static struct mem_cgroup_tree_per_node * 595 soft_limit_tree_from_page(struct page *page) 596 { 597 int nid = page_to_nid(page); 598 599 return soft_limit_tree.rb_tree_per_node[nid]; 600 } 601 602 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 603 struct mem_cgroup_tree_per_node *mctz, 604 unsigned long new_usage_in_excess) 605 { 606 struct rb_node **p = &mctz->rb_root.rb_node; 607 struct rb_node *parent = NULL; 608 struct mem_cgroup_per_node *mz_node; 609 bool rightmost = true; 610 611 if (mz->on_tree) 612 return; 613 614 mz->usage_in_excess = new_usage_in_excess; 615 if (!mz->usage_in_excess) 616 return; 617 while (*p) { 618 parent = *p; 619 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 620 tree_node); 621 if (mz->usage_in_excess < mz_node->usage_in_excess) { 622 p = &(*p)->rb_left; 623 rightmost = false; 624 } else { 625 p = &(*p)->rb_right; 626 } 627 } 628 629 if (rightmost) 630 mctz->rb_rightmost = &mz->tree_node; 631 632 rb_link_node(&mz->tree_node, parent, p); 633 rb_insert_color(&mz->tree_node, &mctz->rb_root); 634 mz->on_tree = true; 635 } 636 637 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 638 struct mem_cgroup_tree_per_node *mctz) 639 { 640 if (!mz->on_tree) 641 return; 642 643 if (&mz->tree_node == mctz->rb_rightmost) 644 mctz->rb_rightmost = rb_prev(&mz->tree_node); 645 646 rb_erase(&mz->tree_node, &mctz->rb_root); 647 mz->on_tree = false; 648 } 649 650 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 651 struct mem_cgroup_tree_per_node *mctz) 652 { 653 unsigned long flags; 654 655 spin_lock_irqsave(&mctz->lock, flags); 656 __mem_cgroup_remove_exceeded(mz, mctz); 657 spin_unlock_irqrestore(&mctz->lock, flags); 658 } 659 660 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 661 { 662 unsigned long nr_pages = page_counter_read(&memcg->memory); 663 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 664 unsigned long excess = 0; 665 666 if (nr_pages > soft_limit) 667 excess = nr_pages - soft_limit; 668 669 return excess; 670 } 671 672 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 673 { 674 unsigned long excess; 675 struct mem_cgroup_per_node *mz; 676 struct mem_cgroup_tree_per_node *mctz; 677 678 mctz = soft_limit_tree_from_page(page); 679 if (!mctz) 680 return; 681 /* 682 * Necessary to update all ancestors when hierarchy is used. 683 * because their event counter is not touched. 684 */ 685 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 686 mz = mem_cgroup_page_nodeinfo(memcg, page); 687 excess = soft_limit_excess(memcg); 688 /* 689 * We have to update the tree if mz is on RB-tree or 690 * mem is over its softlimit. 691 */ 692 if (excess || mz->on_tree) { 693 unsigned long flags; 694 695 spin_lock_irqsave(&mctz->lock, flags); 696 /* if on-tree, remove it */ 697 if (mz->on_tree) 698 __mem_cgroup_remove_exceeded(mz, mctz); 699 /* 700 * Insert again. mz->usage_in_excess will be updated. 701 * If excess is 0, no tree ops. 702 */ 703 __mem_cgroup_insert_exceeded(mz, mctz, excess); 704 spin_unlock_irqrestore(&mctz->lock, flags); 705 } 706 } 707 } 708 709 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 710 { 711 struct mem_cgroup_tree_per_node *mctz; 712 struct mem_cgroup_per_node *mz; 713 int nid; 714 715 for_each_node(nid) { 716 mz = mem_cgroup_nodeinfo(memcg, nid); 717 mctz = soft_limit_tree_node(nid); 718 if (mctz) 719 mem_cgroup_remove_exceeded(mz, mctz); 720 } 721 } 722 723 static struct mem_cgroup_per_node * 724 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 725 { 726 struct mem_cgroup_per_node *mz; 727 728 retry: 729 mz = NULL; 730 if (!mctz->rb_rightmost) 731 goto done; /* Nothing to reclaim from */ 732 733 mz = rb_entry(mctz->rb_rightmost, 734 struct mem_cgroup_per_node, tree_node); 735 /* 736 * Remove the node now but someone else can add it back, 737 * we will to add it back at the end of reclaim to its correct 738 * position in the tree. 739 */ 740 __mem_cgroup_remove_exceeded(mz, mctz); 741 if (!soft_limit_excess(mz->memcg) || 742 !css_tryget(&mz->memcg->css)) 743 goto retry; 744 done: 745 return mz; 746 } 747 748 static struct mem_cgroup_per_node * 749 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 750 { 751 struct mem_cgroup_per_node *mz; 752 753 spin_lock_irq(&mctz->lock); 754 mz = __mem_cgroup_largest_soft_limit_node(mctz); 755 spin_unlock_irq(&mctz->lock); 756 return mz; 757 } 758 759 /** 760 * __mod_memcg_state - update cgroup memory statistics 761 * @memcg: the memory cgroup 762 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 763 * @val: delta to add to the counter, can be negative 764 */ 765 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 766 { 767 long x, threshold = MEMCG_CHARGE_BATCH; 768 769 if (mem_cgroup_disabled()) 770 return; 771 772 if (memcg_stat_item_in_bytes(idx)) 773 threshold <<= PAGE_SHIFT; 774 775 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 776 if (unlikely(abs(x) > threshold)) { 777 struct mem_cgroup *mi; 778 779 /* 780 * Batch local counters to keep them in sync with 781 * the hierarchical ones. 782 */ 783 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 784 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 785 atomic_long_add(x, &mi->vmstats[idx]); 786 x = 0; 787 } 788 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 789 } 790 791 static struct mem_cgroup_per_node * 792 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 793 { 794 struct mem_cgroup *parent; 795 796 parent = parent_mem_cgroup(pn->memcg); 797 if (!parent) 798 return NULL; 799 return mem_cgroup_nodeinfo(parent, nid); 800 } 801 802 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 803 int val) 804 { 805 struct mem_cgroup_per_node *pn; 806 struct mem_cgroup *memcg; 807 long x, threshold = MEMCG_CHARGE_BATCH; 808 809 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 810 memcg = pn->memcg; 811 812 /* Update memcg */ 813 __mod_memcg_state(memcg, idx, val); 814 815 /* Update lruvec */ 816 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 817 818 if (vmstat_item_in_bytes(idx)) 819 threshold <<= PAGE_SHIFT; 820 821 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 822 if (unlikely(abs(x) > threshold)) { 823 pg_data_t *pgdat = lruvec_pgdat(lruvec); 824 struct mem_cgroup_per_node *pi; 825 826 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 827 atomic_long_add(x, &pi->lruvec_stat[idx]); 828 x = 0; 829 } 830 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 831 } 832 833 /** 834 * __mod_lruvec_state - update lruvec memory statistics 835 * @lruvec: the lruvec 836 * @idx: the stat item 837 * @val: delta to add to the counter, can be negative 838 * 839 * The lruvec is the intersection of the NUMA node and a cgroup. This 840 * function updates the all three counters that are affected by a 841 * change of state at this level: per-node, per-cgroup, per-lruvec. 842 */ 843 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 844 int val) 845 { 846 /* Update node */ 847 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 848 849 /* Update memcg and lruvec */ 850 if (!mem_cgroup_disabled()) 851 __mod_memcg_lruvec_state(lruvec, idx, val); 852 } 853 854 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 855 int val) 856 { 857 struct page *head = compound_head(page); /* rmap on tail pages */ 858 struct mem_cgroup *memcg = page_memcg(head); 859 pg_data_t *pgdat = page_pgdat(page); 860 struct lruvec *lruvec; 861 862 /* Untracked pages have no memcg, no lruvec. Update only the node */ 863 if (!memcg) { 864 __mod_node_page_state(pgdat, idx, val); 865 return; 866 } 867 868 lruvec = mem_cgroup_lruvec(memcg, pgdat); 869 __mod_lruvec_state(lruvec, idx, val); 870 } 871 EXPORT_SYMBOL(__mod_lruvec_page_state); 872 873 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 874 { 875 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 876 struct mem_cgroup *memcg; 877 struct lruvec *lruvec; 878 879 rcu_read_lock(); 880 memcg = mem_cgroup_from_obj(p); 881 882 /* 883 * Untracked pages have no memcg, no lruvec. Update only the 884 * node. If we reparent the slab objects to the root memcg, 885 * when we free the slab object, we need to update the per-memcg 886 * vmstats to keep it correct for the root memcg. 887 */ 888 if (!memcg) { 889 __mod_node_page_state(pgdat, idx, val); 890 } else { 891 lruvec = mem_cgroup_lruvec(memcg, pgdat); 892 __mod_lruvec_state(lruvec, idx, val); 893 } 894 rcu_read_unlock(); 895 } 896 897 /** 898 * __count_memcg_events - account VM events in a cgroup 899 * @memcg: the memory cgroup 900 * @idx: the event item 901 * @count: the number of events that occured 902 */ 903 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 904 unsigned long count) 905 { 906 unsigned long x; 907 908 if (mem_cgroup_disabled()) 909 return; 910 911 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 912 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 913 struct mem_cgroup *mi; 914 915 /* 916 * Batch local counters to keep them in sync with 917 * the hierarchical ones. 918 */ 919 __this_cpu_add(memcg->vmstats_local->events[idx], x); 920 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 921 atomic_long_add(x, &mi->vmevents[idx]); 922 x = 0; 923 } 924 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 925 } 926 927 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 928 { 929 return atomic_long_read(&memcg->vmevents[event]); 930 } 931 932 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 933 { 934 long x = 0; 935 int cpu; 936 937 for_each_possible_cpu(cpu) 938 x += per_cpu(memcg->vmstats_local->events[event], cpu); 939 return x; 940 } 941 942 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 943 struct page *page, 944 int nr_pages) 945 { 946 /* pagein of a big page is an event. So, ignore page size */ 947 if (nr_pages > 0) 948 __count_memcg_events(memcg, PGPGIN, 1); 949 else { 950 __count_memcg_events(memcg, PGPGOUT, 1); 951 nr_pages = -nr_pages; /* for event */ 952 } 953 954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 955 } 956 957 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 958 enum mem_cgroup_events_target target) 959 { 960 unsigned long val, next; 961 962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 964 /* from time_after() in jiffies.h */ 965 if ((long)(next - val) < 0) { 966 switch (target) { 967 case MEM_CGROUP_TARGET_THRESH: 968 next = val + THRESHOLDS_EVENTS_TARGET; 969 break; 970 case MEM_CGROUP_TARGET_SOFTLIMIT: 971 next = val + SOFTLIMIT_EVENTS_TARGET; 972 break; 973 default: 974 break; 975 } 976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 977 return true; 978 } 979 return false; 980 } 981 982 /* 983 * Check events in order. 984 * 985 */ 986 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 987 { 988 /* threshold event is triggered in finer grain than soft limit */ 989 if (unlikely(mem_cgroup_event_ratelimit(memcg, 990 MEM_CGROUP_TARGET_THRESH))) { 991 bool do_softlimit; 992 993 do_softlimit = mem_cgroup_event_ratelimit(memcg, 994 MEM_CGROUP_TARGET_SOFTLIMIT); 995 mem_cgroup_threshold(memcg); 996 if (unlikely(do_softlimit)) 997 mem_cgroup_update_tree(memcg, page); 998 } 999 } 1000 1001 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1002 { 1003 /* 1004 * mm_update_next_owner() may clear mm->owner to NULL 1005 * if it races with swapoff, page migration, etc. 1006 * So this can be called with p == NULL. 1007 */ 1008 if (unlikely(!p)) 1009 return NULL; 1010 1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1012 } 1013 EXPORT_SYMBOL(mem_cgroup_from_task); 1014 1015 /** 1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1017 * @mm: mm from which memcg should be extracted. It can be NULL. 1018 * 1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 1021 * returned. 1022 */ 1023 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1024 { 1025 struct mem_cgroup *memcg; 1026 1027 if (mem_cgroup_disabled()) 1028 return NULL; 1029 1030 rcu_read_lock(); 1031 do { 1032 /* 1033 * Page cache insertions can happen withou an 1034 * actual mm context, e.g. during disk probing 1035 * on boot, loopback IO, acct() writes etc. 1036 */ 1037 if (unlikely(!mm)) 1038 memcg = root_mem_cgroup; 1039 else { 1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1041 if (unlikely(!memcg)) 1042 memcg = root_mem_cgroup; 1043 } 1044 } while (!css_tryget(&memcg->css)); 1045 rcu_read_unlock(); 1046 return memcg; 1047 } 1048 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1049 1050 static __always_inline struct mem_cgroup *active_memcg(void) 1051 { 1052 if (in_interrupt()) 1053 return this_cpu_read(int_active_memcg); 1054 else 1055 return current->active_memcg; 1056 } 1057 1058 static __always_inline struct mem_cgroup *get_active_memcg(void) 1059 { 1060 struct mem_cgroup *memcg; 1061 1062 rcu_read_lock(); 1063 memcg = active_memcg(); 1064 /* remote memcg must hold a ref. */ 1065 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css))) 1066 memcg = root_mem_cgroup; 1067 rcu_read_unlock(); 1068 1069 return memcg; 1070 } 1071 1072 static __always_inline bool memcg_kmem_bypass(void) 1073 { 1074 /* Allow remote memcg charging from any context. */ 1075 if (unlikely(active_memcg())) 1076 return false; 1077 1078 /* Memcg to charge can't be determined. */ 1079 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 1080 return true; 1081 1082 return false; 1083 } 1084 1085 /** 1086 * If active memcg is set, do not fallback to current->mm->memcg. 1087 */ 1088 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1089 { 1090 if (memcg_kmem_bypass()) 1091 return NULL; 1092 1093 if (unlikely(active_memcg())) 1094 return get_active_memcg(); 1095 1096 return get_mem_cgroup_from_mm(current->mm); 1097 } 1098 1099 /** 1100 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1101 * @root: hierarchy root 1102 * @prev: previously returned memcg, NULL on first invocation 1103 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1104 * 1105 * Returns references to children of the hierarchy below @root, or 1106 * @root itself, or %NULL after a full round-trip. 1107 * 1108 * Caller must pass the return value in @prev on subsequent 1109 * invocations for reference counting, or use mem_cgroup_iter_break() 1110 * to cancel a hierarchy walk before the round-trip is complete. 1111 * 1112 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1113 * in the hierarchy among all concurrent reclaimers operating on the 1114 * same node. 1115 */ 1116 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1117 struct mem_cgroup *prev, 1118 struct mem_cgroup_reclaim_cookie *reclaim) 1119 { 1120 struct mem_cgroup_reclaim_iter *iter; 1121 struct cgroup_subsys_state *css = NULL; 1122 struct mem_cgroup *memcg = NULL; 1123 struct mem_cgroup *pos = NULL; 1124 1125 if (mem_cgroup_disabled()) 1126 return NULL; 1127 1128 if (!root) 1129 root = root_mem_cgroup; 1130 1131 if (prev && !reclaim) 1132 pos = prev; 1133 1134 rcu_read_lock(); 1135 1136 if (reclaim) { 1137 struct mem_cgroup_per_node *mz; 1138 1139 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1140 iter = &mz->iter; 1141 1142 if (prev && reclaim->generation != iter->generation) 1143 goto out_unlock; 1144 1145 while (1) { 1146 pos = READ_ONCE(iter->position); 1147 if (!pos || css_tryget(&pos->css)) 1148 break; 1149 /* 1150 * css reference reached zero, so iter->position will 1151 * be cleared by ->css_released. However, we should not 1152 * rely on this happening soon, because ->css_released 1153 * is called from a work queue, and by busy-waiting we 1154 * might block it. So we clear iter->position right 1155 * away. 1156 */ 1157 (void)cmpxchg(&iter->position, pos, NULL); 1158 } 1159 } 1160 1161 if (pos) 1162 css = &pos->css; 1163 1164 for (;;) { 1165 css = css_next_descendant_pre(css, &root->css); 1166 if (!css) { 1167 /* 1168 * Reclaimers share the hierarchy walk, and a 1169 * new one might jump in right at the end of 1170 * the hierarchy - make sure they see at least 1171 * one group and restart from the beginning. 1172 */ 1173 if (!prev) 1174 continue; 1175 break; 1176 } 1177 1178 /* 1179 * Verify the css and acquire a reference. The root 1180 * is provided by the caller, so we know it's alive 1181 * and kicking, and don't take an extra reference. 1182 */ 1183 memcg = mem_cgroup_from_css(css); 1184 1185 if (css == &root->css) 1186 break; 1187 1188 if (css_tryget(css)) 1189 break; 1190 1191 memcg = NULL; 1192 } 1193 1194 if (reclaim) { 1195 /* 1196 * The position could have already been updated by a competing 1197 * thread, so check that the value hasn't changed since we read 1198 * it to avoid reclaiming from the same cgroup twice. 1199 */ 1200 (void)cmpxchg(&iter->position, pos, memcg); 1201 1202 if (pos) 1203 css_put(&pos->css); 1204 1205 if (!memcg) 1206 iter->generation++; 1207 else if (!prev) 1208 reclaim->generation = iter->generation; 1209 } 1210 1211 out_unlock: 1212 rcu_read_unlock(); 1213 if (prev && prev != root) 1214 css_put(&prev->css); 1215 1216 return memcg; 1217 } 1218 1219 /** 1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1221 * @root: hierarchy root 1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1223 */ 1224 void mem_cgroup_iter_break(struct mem_cgroup *root, 1225 struct mem_cgroup *prev) 1226 { 1227 if (!root) 1228 root = root_mem_cgroup; 1229 if (prev && prev != root) 1230 css_put(&prev->css); 1231 } 1232 1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1234 struct mem_cgroup *dead_memcg) 1235 { 1236 struct mem_cgroup_reclaim_iter *iter; 1237 struct mem_cgroup_per_node *mz; 1238 int nid; 1239 1240 for_each_node(nid) { 1241 mz = mem_cgroup_nodeinfo(from, nid); 1242 iter = &mz->iter; 1243 cmpxchg(&iter->position, dead_memcg, NULL); 1244 } 1245 } 1246 1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1248 { 1249 struct mem_cgroup *memcg = dead_memcg; 1250 struct mem_cgroup *last; 1251 1252 do { 1253 __invalidate_reclaim_iterators(memcg, dead_memcg); 1254 last = memcg; 1255 } while ((memcg = parent_mem_cgroup(memcg))); 1256 1257 /* 1258 * When cgruop1 non-hierarchy mode is used, 1259 * parent_mem_cgroup() does not walk all the way up to the 1260 * cgroup root (root_mem_cgroup). So we have to handle 1261 * dead_memcg from cgroup root separately. 1262 */ 1263 if (last != root_mem_cgroup) 1264 __invalidate_reclaim_iterators(root_mem_cgroup, 1265 dead_memcg); 1266 } 1267 1268 /** 1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1270 * @memcg: hierarchy root 1271 * @fn: function to call for each task 1272 * @arg: argument passed to @fn 1273 * 1274 * This function iterates over tasks attached to @memcg or to any of its 1275 * descendants and calls @fn for each task. If @fn returns a non-zero 1276 * value, the function breaks the iteration loop and returns the value. 1277 * Otherwise, it will iterate over all tasks and return 0. 1278 * 1279 * This function must not be called for the root memory cgroup. 1280 */ 1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1282 int (*fn)(struct task_struct *, void *), void *arg) 1283 { 1284 struct mem_cgroup *iter; 1285 int ret = 0; 1286 1287 BUG_ON(memcg == root_mem_cgroup); 1288 1289 for_each_mem_cgroup_tree(iter, memcg) { 1290 struct css_task_iter it; 1291 struct task_struct *task; 1292 1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1294 while (!ret && (task = css_task_iter_next(&it))) 1295 ret = fn(task, arg); 1296 css_task_iter_end(&it); 1297 if (ret) { 1298 mem_cgroup_iter_break(memcg, iter); 1299 break; 1300 } 1301 } 1302 return ret; 1303 } 1304 1305 #ifdef CONFIG_DEBUG_VM 1306 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1307 { 1308 struct mem_cgroup *memcg; 1309 1310 if (mem_cgroup_disabled()) 1311 return; 1312 1313 memcg = page_memcg(page); 1314 1315 if (!memcg) 1316 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page); 1317 else 1318 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page); 1319 } 1320 #endif 1321 1322 /** 1323 * lock_page_lruvec - lock and return lruvec for a given page. 1324 * @page: the page 1325 * 1326 * These functions are safe to use under any of the following conditions: 1327 * - page locked 1328 * - PageLRU cleared 1329 * - lock_page_memcg() 1330 * - page->_refcount is zero 1331 */ 1332 struct lruvec *lock_page_lruvec(struct page *page) 1333 { 1334 struct lruvec *lruvec; 1335 struct pglist_data *pgdat = page_pgdat(page); 1336 1337 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1338 spin_lock(&lruvec->lru_lock); 1339 1340 lruvec_memcg_debug(lruvec, page); 1341 1342 return lruvec; 1343 } 1344 1345 struct lruvec *lock_page_lruvec_irq(struct page *page) 1346 { 1347 struct lruvec *lruvec; 1348 struct pglist_data *pgdat = page_pgdat(page); 1349 1350 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1351 spin_lock_irq(&lruvec->lru_lock); 1352 1353 lruvec_memcg_debug(lruvec, page); 1354 1355 return lruvec; 1356 } 1357 1358 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags) 1359 { 1360 struct lruvec *lruvec; 1361 struct pglist_data *pgdat = page_pgdat(page); 1362 1363 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1364 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1365 1366 lruvec_memcg_debug(lruvec, page); 1367 1368 return lruvec; 1369 } 1370 1371 /** 1372 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1373 * @lruvec: mem_cgroup per zone lru vector 1374 * @lru: index of lru list the page is sitting on 1375 * @zid: zone id of the accounted pages 1376 * @nr_pages: positive when adding or negative when removing 1377 * 1378 * This function must be called under lru_lock, just before a page is added 1379 * to or just after a page is removed from an lru list (that ordering being 1380 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1381 */ 1382 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1383 int zid, int nr_pages) 1384 { 1385 struct mem_cgroup_per_node *mz; 1386 unsigned long *lru_size; 1387 long size; 1388 1389 if (mem_cgroup_disabled()) 1390 return; 1391 1392 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1393 lru_size = &mz->lru_zone_size[zid][lru]; 1394 1395 if (nr_pages < 0) 1396 *lru_size += nr_pages; 1397 1398 size = *lru_size; 1399 if (WARN_ONCE(size < 0, 1400 "%s(%p, %d, %d): lru_size %ld\n", 1401 __func__, lruvec, lru, nr_pages, size)) { 1402 VM_BUG_ON(1); 1403 *lru_size = 0; 1404 } 1405 1406 if (nr_pages > 0) 1407 *lru_size += nr_pages; 1408 } 1409 1410 /** 1411 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1412 * @memcg: the memory cgroup 1413 * 1414 * Returns the maximum amount of memory @mem can be charged with, in 1415 * pages. 1416 */ 1417 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1418 { 1419 unsigned long margin = 0; 1420 unsigned long count; 1421 unsigned long limit; 1422 1423 count = page_counter_read(&memcg->memory); 1424 limit = READ_ONCE(memcg->memory.max); 1425 if (count < limit) 1426 margin = limit - count; 1427 1428 if (do_memsw_account()) { 1429 count = page_counter_read(&memcg->memsw); 1430 limit = READ_ONCE(memcg->memsw.max); 1431 if (count < limit) 1432 margin = min(margin, limit - count); 1433 else 1434 margin = 0; 1435 } 1436 1437 return margin; 1438 } 1439 1440 /* 1441 * A routine for checking "mem" is under move_account() or not. 1442 * 1443 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1444 * moving cgroups. This is for waiting at high-memory pressure 1445 * caused by "move". 1446 */ 1447 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1448 { 1449 struct mem_cgroup *from; 1450 struct mem_cgroup *to; 1451 bool ret = false; 1452 /* 1453 * Unlike task_move routines, we access mc.to, mc.from not under 1454 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1455 */ 1456 spin_lock(&mc.lock); 1457 from = mc.from; 1458 to = mc.to; 1459 if (!from) 1460 goto unlock; 1461 1462 ret = mem_cgroup_is_descendant(from, memcg) || 1463 mem_cgroup_is_descendant(to, memcg); 1464 unlock: 1465 spin_unlock(&mc.lock); 1466 return ret; 1467 } 1468 1469 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1470 { 1471 if (mc.moving_task && current != mc.moving_task) { 1472 if (mem_cgroup_under_move(memcg)) { 1473 DEFINE_WAIT(wait); 1474 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1475 /* moving charge context might have finished. */ 1476 if (mc.moving_task) 1477 schedule(); 1478 finish_wait(&mc.waitq, &wait); 1479 return true; 1480 } 1481 } 1482 return false; 1483 } 1484 1485 struct memory_stat { 1486 const char *name; 1487 unsigned int idx; 1488 }; 1489 1490 static const struct memory_stat memory_stats[] = { 1491 { "anon", NR_ANON_MAPPED }, 1492 { "file", NR_FILE_PAGES }, 1493 { "kernel_stack", NR_KERNEL_STACK_KB }, 1494 { "pagetables", NR_PAGETABLE }, 1495 { "percpu", MEMCG_PERCPU_B }, 1496 { "sock", MEMCG_SOCK }, 1497 { "shmem", NR_SHMEM }, 1498 { "file_mapped", NR_FILE_MAPPED }, 1499 { "file_dirty", NR_FILE_DIRTY }, 1500 { "file_writeback", NR_WRITEBACK }, 1501 #ifdef CONFIG_SWAP 1502 { "swapcached", NR_SWAPCACHE }, 1503 #endif 1504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1505 { "anon_thp", NR_ANON_THPS }, 1506 { "file_thp", NR_FILE_THPS }, 1507 { "shmem_thp", NR_SHMEM_THPS }, 1508 #endif 1509 { "inactive_anon", NR_INACTIVE_ANON }, 1510 { "active_anon", NR_ACTIVE_ANON }, 1511 { "inactive_file", NR_INACTIVE_FILE }, 1512 { "active_file", NR_ACTIVE_FILE }, 1513 { "unevictable", NR_UNEVICTABLE }, 1514 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1515 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1516 1517 /* The memory events */ 1518 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1519 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1520 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1521 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1522 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1523 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1524 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1525 }; 1526 1527 /* Translate stat items to the correct unit for memory.stat output */ 1528 static int memcg_page_state_unit(int item) 1529 { 1530 switch (item) { 1531 case MEMCG_PERCPU_B: 1532 case NR_SLAB_RECLAIMABLE_B: 1533 case NR_SLAB_UNRECLAIMABLE_B: 1534 case WORKINGSET_REFAULT_ANON: 1535 case WORKINGSET_REFAULT_FILE: 1536 case WORKINGSET_ACTIVATE_ANON: 1537 case WORKINGSET_ACTIVATE_FILE: 1538 case WORKINGSET_RESTORE_ANON: 1539 case WORKINGSET_RESTORE_FILE: 1540 case WORKINGSET_NODERECLAIM: 1541 return 1; 1542 case NR_KERNEL_STACK_KB: 1543 return SZ_1K; 1544 default: 1545 return PAGE_SIZE; 1546 } 1547 } 1548 1549 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1550 int item) 1551 { 1552 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1553 } 1554 1555 static char *memory_stat_format(struct mem_cgroup *memcg) 1556 { 1557 struct seq_buf s; 1558 int i; 1559 1560 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1561 if (!s.buffer) 1562 return NULL; 1563 1564 /* 1565 * Provide statistics on the state of the memory subsystem as 1566 * well as cumulative event counters that show past behavior. 1567 * 1568 * This list is ordered following a combination of these gradients: 1569 * 1) generic big picture -> specifics and details 1570 * 2) reflecting userspace activity -> reflecting kernel heuristics 1571 * 1572 * Current memory state: 1573 */ 1574 1575 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1576 u64 size; 1577 1578 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1579 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1580 1581 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1582 size += memcg_page_state_output(memcg, 1583 NR_SLAB_RECLAIMABLE_B); 1584 seq_buf_printf(&s, "slab %llu\n", size); 1585 } 1586 } 1587 1588 /* Accumulated memory events */ 1589 1590 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1591 memcg_events(memcg, PGFAULT)); 1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1593 memcg_events(memcg, PGMAJFAULT)); 1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1595 memcg_events(memcg, PGREFILL)); 1596 seq_buf_printf(&s, "pgscan %lu\n", 1597 memcg_events(memcg, PGSCAN_KSWAPD) + 1598 memcg_events(memcg, PGSCAN_DIRECT)); 1599 seq_buf_printf(&s, "pgsteal %lu\n", 1600 memcg_events(memcg, PGSTEAL_KSWAPD) + 1601 memcg_events(memcg, PGSTEAL_DIRECT)); 1602 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1603 memcg_events(memcg, PGACTIVATE)); 1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1605 memcg_events(memcg, PGDEACTIVATE)); 1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1607 memcg_events(memcg, PGLAZYFREE)); 1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1609 memcg_events(memcg, PGLAZYFREED)); 1610 1611 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1612 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1613 memcg_events(memcg, THP_FAULT_ALLOC)); 1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1615 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1616 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1617 1618 /* The above should easily fit into one page */ 1619 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1620 1621 return s.buffer; 1622 } 1623 1624 #define K(x) ((x) << (PAGE_SHIFT-10)) 1625 /** 1626 * mem_cgroup_print_oom_context: Print OOM information relevant to 1627 * memory controller. 1628 * @memcg: The memory cgroup that went over limit 1629 * @p: Task that is going to be killed 1630 * 1631 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1632 * enabled 1633 */ 1634 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1635 { 1636 rcu_read_lock(); 1637 1638 if (memcg) { 1639 pr_cont(",oom_memcg="); 1640 pr_cont_cgroup_path(memcg->css.cgroup); 1641 } else 1642 pr_cont(",global_oom"); 1643 if (p) { 1644 pr_cont(",task_memcg="); 1645 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1646 } 1647 rcu_read_unlock(); 1648 } 1649 1650 /** 1651 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1652 * memory controller. 1653 * @memcg: The memory cgroup that went over limit 1654 */ 1655 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1656 { 1657 char *buf; 1658 1659 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1660 K((u64)page_counter_read(&memcg->memory)), 1661 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1662 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1663 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1664 K((u64)page_counter_read(&memcg->swap)), 1665 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1666 else { 1667 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1668 K((u64)page_counter_read(&memcg->memsw)), 1669 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1670 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1671 K((u64)page_counter_read(&memcg->kmem)), 1672 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1673 } 1674 1675 pr_info("Memory cgroup stats for "); 1676 pr_cont_cgroup_path(memcg->css.cgroup); 1677 pr_cont(":"); 1678 buf = memory_stat_format(memcg); 1679 if (!buf) 1680 return; 1681 pr_info("%s", buf); 1682 kfree(buf); 1683 } 1684 1685 /* 1686 * Return the memory (and swap, if configured) limit for a memcg. 1687 */ 1688 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1689 { 1690 unsigned long max = READ_ONCE(memcg->memory.max); 1691 1692 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1693 if (mem_cgroup_swappiness(memcg)) 1694 max += min(READ_ONCE(memcg->swap.max), 1695 (unsigned long)total_swap_pages); 1696 } else { /* v1 */ 1697 if (mem_cgroup_swappiness(memcg)) { 1698 /* Calculate swap excess capacity from memsw limit */ 1699 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1700 1701 max += min(swap, (unsigned long)total_swap_pages); 1702 } 1703 } 1704 return max; 1705 } 1706 1707 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1708 { 1709 return page_counter_read(&memcg->memory); 1710 } 1711 1712 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1713 int order) 1714 { 1715 struct oom_control oc = { 1716 .zonelist = NULL, 1717 .nodemask = NULL, 1718 .memcg = memcg, 1719 .gfp_mask = gfp_mask, 1720 .order = order, 1721 }; 1722 bool ret = true; 1723 1724 if (mutex_lock_killable(&oom_lock)) 1725 return true; 1726 1727 if (mem_cgroup_margin(memcg) >= (1 << order)) 1728 goto unlock; 1729 1730 /* 1731 * A few threads which were not waiting at mutex_lock_killable() can 1732 * fail to bail out. Therefore, check again after holding oom_lock. 1733 */ 1734 ret = should_force_charge() || out_of_memory(&oc); 1735 1736 unlock: 1737 mutex_unlock(&oom_lock); 1738 return ret; 1739 } 1740 1741 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1742 pg_data_t *pgdat, 1743 gfp_t gfp_mask, 1744 unsigned long *total_scanned) 1745 { 1746 struct mem_cgroup *victim = NULL; 1747 int total = 0; 1748 int loop = 0; 1749 unsigned long excess; 1750 unsigned long nr_scanned; 1751 struct mem_cgroup_reclaim_cookie reclaim = { 1752 .pgdat = pgdat, 1753 }; 1754 1755 excess = soft_limit_excess(root_memcg); 1756 1757 while (1) { 1758 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1759 if (!victim) { 1760 loop++; 1761 if (loop >= 2) { 1762 /* 1763 * If we have not been able to reclaim 1764 * anything, it might because there are 1765 * no reclaimable pages under this hierarchy 1766 */ 1767 if (!total) 1768 break; 1769 /* 1770 * We want to do more targeted reclaim. 1771 * excess >> 2 is not to excessive so as to 1772 * reclaim too much, nor too less that we keep 1773 * coming back to reclaim from this cgroup 1774 */ 1775 if (total >= (excess >> 2) || 1776 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1777 break; 1778 } 1779 continue; 1780 } 1781 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1782 pgdat, &nr_scanned); 1783 *total_scanned += nr_scanned; 1784 if (!soft_limit_excess(root_memcg)) 1785 break; 1786 } 1787 mem_cgroup_iter_break(root_memcg, victim); 1788 return total; 1789 } 1790 1791 #ifdef CONFIG_LOCKDEP 1792 static struct lockdep_map memcg_oom_lock_dep_map = { 1793 .name = "memcg_oom_lock", 1794 }; 1795 #endif 1796 1797 static DEFINE_SPINLOCK(memcg_oom_lock); 1798 1799 /* 1800 * Check OOM-Killer is already running under our hierarchy. 1801 * If someone is running, return false. 1802 */ 1803 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1804 { 1805 struct mem_cgroup *iter, *failed = NULL; 1806 1807 spin_lock(&memcg_oom_lock); 1808 1809 for_each_mem_cgroup_tree(iter, memcg) { 1810 if (iter->oom_lock) { 1811 /* 1812 * this subtree of our hierarchy is already locked 1813 * so we cannot give a lock. 1814 */ 1815 failed = iter; 1816 mem_cgroup_iter_break(memcg, iter); 1817 break; 1818 } else 1819 iter->oom_lock = true; 1820 } 1821 1822 if (failed) { 1823 /* 1824 * OK, we failed to lock the whole subtree so we have 1825 * to clean up what we set up to the failing subtree 1826 */ 1827 for_each_mem_cgroup_tree(iter, memcg) { 1828 if (iter == failed) { 1829 mem_cgroup_iter_break(memcg, iter); 1830 break; 1831 } 1832 iter->oom_lock = false; 1833 } 1834 } else 1835 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1836 1837 spin_unlock(&memcg_oom_lock); 1838 1839 return !failed; 1840 } 1841 1842 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1843 { 1844 struct mem_cgroup *iter; 1845 1846 spin_lock(&memcg_oom_lock); 1847 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1848 for_each_mem_cgroup_tree(iter, memcg) 1849 iter->oom_lock = false; 1850 spin_unlock(&memcg_oom_lock); 1851 } 1852 1853 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1854 { 1855 struct mem_cgroup *iter; 1856 1857 spin_lock(&memcg_oom_lock); 1858 for_each_mem_cgroup_tree(iter, memcg) 1859 iter->under_oom++; 1860 spin_unlock(&memcg_oom_lock); 1861 } 1862 1863 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1864 { 1865 struct mem_cgroup *iter; 1866 1867 /* 1868 * Be careful about under_oom underflows becase a child memcg 1869 * could have been added after mem_cgroup_mark_under_oom. 1870 */ 1871 spin_lock(&memcg_oom_lock); 1872 for_each_mem_cgroup_tree(iter, memcg) 1873 if (iter->under_oom > 0) 1874 iter->under_oom--; 1875 spin_unlock(&memcg_oom_lock); 1876 } 1877 1878 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1879 1880 struct oom_wait_info { 1881 struct mem_cgroup *memcg; 1882 wait_queue_entry_t wait; 1883 }; 1884 1885 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1886 unsigned mode, int sync, void *arg) 1887 { 1888 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1889 struct mem_cgroup *oom_wait_memcg; 1890 struct oom_wait_info *oom_wait_info; 1891 1892 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1893 oom_wait_memcg = oom_wait_info->memcg; 1894 1895 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1896 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1897 return 0; 1898 return autoremove_wake_function(wait, mode, sync, arg); 1899 } 1900 1901 static void memcg_oom_recover(struct mem_cgroup *memcg) 1902 { 1903 /* 1904 * For the following lockless ->under_oom test, the only required 1905 * guarantee is that it must see the state asserted by an OOM when 1906 * this function is called as a result of userland actions 1907 * triggered by the notification of the OOM. This is trivially 1908 * achieved by invoking mem_cgroup_mark_under_oom() before 1909 * triggering notification. 1910 */ 1911 if (memcg && memcg->under_oom) 1912 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1913 } 1914 1915 enum oom_status { 1916 OOM_SUCCESS, 1917 OOM_FAILED, 1918 OOM_ASYNC, 1919 OOM_SKIPPED 1920 }; 1921 1922 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1923 { 1924 enum oom_status ret; 1925 bool locked; 1926 1927 if (order > PAGE_ALLOC_COSTLY_ORDER) 1928 return OOM_SKIPPED; 1929 1930 memcg_memory_event(memcg, MEMCG_OOM); 1931 1932 /* 1933 * We are in the middle of the charge context here, so we 1934 * don't want to block when potentially sitting on a callstack 1935 * that holds all kinds of filesystem and mm locks. 1936 * 1937 * cgroup1 allows disabling the OOM killer and waiting for outside 1938 * handling until the charge can succeed; remember the context and put 1939 * the task to sleep at the end of the page fault when all locks are 1940 * released. 1941 * 1942 * On the other hand, in-kernel OOM killer allows for an async victim 1943 * memory reclaim (oom_reaper) and that means that we are not solely 1944 * relying on the oom victim to make a forward progress and we can 1945 * invoke the oom killer here. 1946 * 1947 * Please note that mem_cgroup_out_of_memory might fail to find a 1948 * victim and then we have to bail out from the charge path. 1949 */ 1950 if (memcg->oom_kill_disable) { 1951 if (!current->in_user_fault) 1952 return OOM_SKIPPED; 1953 css_get(&memcg->css); 1954 current->memcg_in_oom = memcg; 1955 current->memcg_oom_gfp_mask = mask; 1956 current->memcg_oom_order = order; 1957 1958 return OOM_ASYNC; 1959 } 1960 1961 mem_cgroup_mark_under_oom(memcg); 1962 1963 locked = mem_cgroup_oom_trylock(memcg); 1964 1965 if (locked) 1966 mem_cgroup_oom_notify(memcg); 1967 1968 mem_cgroup_unmark_under_oom(memcg); 1969 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1970 ret = OOM_SUCCESS; 1971 else 1972 ret = OOM_FAILED; 1973 1974 if (locked) 1975 mem_cgroup_oom_unlock(memcg); 1976 1977 return ret; 1978 } 1979 1980 /** 1981 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1982 * @handle: actually kill/wait or just clean up the OOM state 1983 * 1984 * This has to be called at the end of a page fault if the memcg OOM 1985 * handler was enabled. 1986 * 1987 * Memcg supports userspace OOM handling where failed allocations must 1988 * sleep on a waitqueue until the userspace task resolves the 1989 * situation. Sleeping directly in the charge context with all kinds 1990 * of locks held is not a good idea, instead we remember an OOM state 1991 * in the task and mem_cgroup_oom_synchronize() has to be called at 1992 * the end of the page fault to complete the OOM handling. 1993 * 1994 * Returns %true if an ongoing memcg OOM situation was detected and 1995 * completed, %false otherwise. 1996 */ 1997 bool mem_cgroup_oom_synchronize(bool handle) 1998 { 1999 struct mem_cgroup *memcg = current->memcg_in_oom; 2000 struct oom_wait_info owait; 2001 bool locked; 2002 2003 /* OOM is global, do not handle */ 2004 if (!memcg) 2005 return false; 2006 2007 if (!handle) 2008 goto cleanup; 2009 2010 owait.memcg = memcg; 2011 owait.wait.flags = 0; 2012 owait.wait.func = memcg_oom_wake_function; 2013 owait.wait.private = current; 2014 INIT_LIST_HEAD(&owait.wait.entry); 2015 2016 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2017 mem_cgroup_mark_under_oom(memcg); 2018 2019 locked = mem_cgroup_oom_trylock(memcg); 2020 2021 if (locked) 2022 mem_cgroup_oom_notify(memcg); 2023 2024 if (locked && !memcg->oom_kill_disable) { 2025 mem_cgroup_unmark_under_oom(memcg); 2026 finish_wait(&memcg_oom_waitq, &owait.wait); 2027 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 2028 current->memcg_oom_order); 2029 } else { 2030 schedule(); 2031 mem_cgroup_unmark_under_oom(memcg); 2032 finish_wait(&memcg_oom_waitq, &owait.wait); 2033 } 2034 2035 if (locked) { 2036 mem_cgroup_oom_unlock(memcg); 2037 /* 2038 * There is no guarantee that an OOM-lock contender 2039 * sees the wakeups triggered by the OOM kill 2040 * uncharges. Wake any sleepers explicitely. 2041 */ 2042 memcg_oom_recover(memcg); 2043 } 2044 cleanup: 2045 current->memcg_in_oom = NULL; 2046 css_put(&memcg->css); 2047 return true; 2048 } 2049 2050 /** 2051 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2052 * @victim: task to be killed by the OOM killer 2053 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2054 * 2055 * Returns a pointer to a memory cgroup, which has to be cleaned up 2056 * by killing all belonging OOM-killable tasks. 2057 * 2058 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2059 */ 2060 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2061 struct mem_cgroup *oom_domain) 2062 { 2063 struct mem_cgroup *oom_group = NULL; 2064 struct mem_cgroup *memcg; 2065 2066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2067 return NULL; 2068 2069 if (!oom_domain) 2070 oom_domain = root_mem_cgroup; 2071 2072 rcu_read_lock(); 2073 2074 memcg = mem_cgroup_from_task(victim); 2075 if (memcg == root_mem_cgroup) 2076 goto out; 2077 2078 /* 2079 * If the victim task has been asynchronously moved to a different 2080 * memory cgroup, we might end up killing tasks outside oom_domain. 2081 * In this case it's better to ignore memory.group.oom. 2082 */ 2083 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2084 goto out; 2085 2086 /* 2087 * Traverse the memory cgroup hierarchy from the victim task's 2088 * cgroup up to the OOMing cgroup (or root) to find the 2089 * highest-level memory cgroup with oom.group set. 2090 */ 2091 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2092 if (memcg->oom_group) 2093 oom_group = memcg; 2094 2095 if (memcg == oom_domain) 2096 break; 2097 } 2098 2099 if (oom_group) 2100 css_get(&oom_group->css); 2101 out: 2102 rcu_read_unlock(); 2103 2104 return oom_group; 2105 } 2106 2107 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2108 { 2109 pr_info("Tasks in "); 2110 pr_cont_cgroup_path(memcg->css.cgroup); 2111 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2112 } 2113 2114 /** 2115 * lock_page_memcg - lock a page and memcg binding 2116 * @page: the page 2117 * 2118 * This function protects unlocked LRU pages from being moved to 2119 * another cgroup. 2120 * 2121 * It ensures lifetime of the returned memcg. Caller is responsible 2122 * for the lifetime of the page; __unlock_page_memcg() is available 2123 * when @page might get freed inside the locked section. 2124 */ 2125 struct mem_cgroup *lock_page_memcg(struct page *page) 2126 { 2127 struct page *head = compound_head(page); /* rmap on tail pages */ 2128 struct mem_cgroup *memcg; 2129 unsigned long flags; 2130 2131 /* 2132 * The RCU lock is held throughout the transaction. The fast 2133 * path can get away without acquiring the memcg->move_lock 2134 * because page moving starts with an RCU grace period. 2135 * 2136 * The RCU lock also protects the memcg from being freed when 2137 * the page state that is going to change is the only thing 2138 * preventing the page itself from being freed. E.g. writeback 2139 * doesn't hold a page reference and relies on PG_writeback to 2140 * keep off truncation, migration and so forth. 2141 */ 2142 rcu_read_lock(); 2143 2144 if (mem_cgroup_disabled()) 2145 return NULL; 2146 again: 2147 memcg = page_memcg(head); 2148 if (unlikely(!memcg)) 2149 return NULL; 2150 2151 #ifdef CONFIG_PROVE_LOCKING 2152 local_irq_save(flags); 2153 might_lock(&memcg->move_lock); 2154 local_irq_restore(flags); 2155 #endif 2156 2157 if (atomic_read(&memcg->moving_account) <= 0) 2158 return memcg; 2159 2160 spin_lock_irqsave(&memcg->move_lock, flags); 2161 if (memcg != page_memcg(head)) { 2162 spin_unlock_irqrestore(&memcg->move_lock, flags); 2163 goto again; 2164 } 2165 2166 /* 2167 * When charge migration first begins, we can have locked and 2168 * unlocked page stat updates happening concurrently. Track 2169 * the task who has the lock for unlock_page_memcg(). 2170 */ 2171 memcg->move_lock_task = current; 2172 memcg->move_lock_flags = flags; 2173 2174 return memcg; 2175 } 2176 EXPORT_SYMBOL(lock_page_memcg); 2177 2178 /** 2179 * __unlock_page_memcg - unlock and unpin a memcg 2180 * @memcg: the memcg 2181 * 2182 * Unlock and unpin a memcg returned by lock_page_memcg(). 2183 */ 2184 void __unlock_page_memcg(struct mem_cgroup *memcg) 2185 { 2186 if (memcg && memcg->move_lock_task == current) { 2187 unsigned long flags = memcg->move_lock_flags; 2188 2189 memcg->move_lock_task = NULL; 2190 memcg->move_lock_flags = 0; 2191 2192 spin_unlock_irqrestore(&memcg->move_lock, flags); 2193 } 2194 2195 rcu_read_unlock(); 2196 } 2197 2198 /** 2199 * unlock_page_memcg - unlock a page and memcg binding 2200 * @page: the page 2201 */ 2202 void unlock_page_memcg(struct page *page) 2203 { 2204 struct page *head = compound_head(page); 2205 2206 __unlock_page_memcg(page_memcg(head)); 2207 } 2208 EXPORT_SYMBOL(unlock_page_memcg); 2209 2210 struct memcg_stock_pcp { 2211 struct mem_cgroup *cached; /* this never be root cgroup */ 2212 unsigned int nr_pages; 2213 2214 #ifdef CONFIG_MEMCG_KMEM 2215 struct obj_cgroup *cached_objcg; 2216 unsigned int nr_bytes; 2217 #endif 2218 2219 struct work_struct work; 2220 unsigned long flags; 2221 #define FLUSHING_CACHED_CHARGE 0 2222 }; 2223 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2224 static DEFINE_MUTEX(percpu_charge_mutex); 2225 2226 #ifdef CONFIG_MEMCG_KMEM 2227 static void drain_obj_stock(struct memcg_stock_pcp *stock); 2228 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2229 struct mem_cgroup *root_memcg); 2230 2231 #else 2232 static inline void drain_obj_stock(struct memcg_stock_pcp *stock) 2233 { 2234 } 2235 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2236 struct mem_cgroup *root_memcg) 2237 { 2238 return false; 2239 } 2240 #endif 2241 2242 /** 2243 * consume_stock: Try to consume stocked charge on this cpu. 2244 * @memcg: memcg to consume from. 2245 * @nr_pages: how many pages to charge. 2246 * 2247 * The charges will only happen if @memcg matches the current cpu's memcg 2248 * stock, and at least @nr_pages are available in that stock. Failure to 2249 * service an allocation will refill the stock. 2250 * 2251 * returns true if successful, false otherwise. 2252 */ 2253 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2254 { 2255 struct memcg_stock_pcp *stock; 2256 unsigned long flags; 2257 bool ret = false; 2258 2259 if (nr_pages > MEMCG_CHARGE_BATCH) 2260 return ret; 2261 2262 local_irq_save(flags); 2263 2264 stock = this_cpu_ptr(&memcg_stock); 2265 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2266 stock->nr_pages -= nr_pages; 2267 ret = true; 2268 } 2269 2270 local_irq_restore(flags); 2271 2272 return ret; 2273 } 2274 2275 /* 2276 * Returns stocks cached in percpu and reset cached information. 2277 */ 2278 static void drain_stock(struct memcg_stock_pcp *stock) 2279 { 2280 struct mem_cgroup *old = stock->cached; 2281 2282 if (!old) 2283 return; 2284 2285 if (stock->nr_pages) { 2286 page_counter_uncharge(&old->memory, stock->nr_pages); 2287 if (do_memsw_account()) 2288 page_counter_uncharge(&old->memsw, stock->nr_pages); 2289 stock->nr_pages = 0; 2290 } 2291 2292 css_put(&old->css); 2293 stock->cached = NULL; 2294 } 2295 2296 static void drain_local_stock(struct work_struct *dummy) 2297 { 2298 struct memcg_stock_pcp *stock; 2299 unsigned long flags; 2300 2301 /* 2302 * The only protection from memory hotplug vs. drain_stock races is 2303 * that we always operate on local CPU stock here with IRQ disabled 2304 */ 2305 local_irq_save(flags); 2306 2307 stock = this_cpu_ptr(&memcg_stock); 2308 drain_obj_stock(stock); 2309 drain_stock(stock); 2310 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2311 2312 local_irq_restore(flags); 2313 } 2314 2315 /* 2316 * Cache charges(val) to local per_cpu area. 2317 * This will be consumed by consume_stock() function, later. 2318 */ 2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2320 { 2321 struct memcg_stock_pcp *stock; 2322 unsigned long flags; 2323 2324 local_irq_save(flags); 2325 2326 stock = this_cpu_ptr(&memcg_stock); 2327 if (stock->cached != memcg) { /* reset if necessary */ 2328 drain_stock(stock); 2329 css_get(&memcg->css); 2330 stock->cached = memcg; 2331 } 2332 stock->nr_pages += nr_pages; 2333 2334 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2335 drain_stock(stock); 2336 2337 local_irq_restore(flags); 2338 } 2339 2340 /* 2341 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2342 * of the hierarchy under it. 2343 */ 2344 static void drain_all_stock(struct mem_cgroup *root_memcg) 2345 { 2346 int cpu, curcpu; 2347 2348 /* If someone's already draining, avoid adding running more workers. */ 2349 if (!mutex_trylock(&percpu_charge_mutex)) 2350 return; 2351 /* 2352 * Notify other cpus that system-wide "drain" is running 2353 * We do not care about races with the cpu hotplug because cpu down 2354 * as well as workers from this path always operate on the local 2355 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2356 */ 2357 curcpu = get_cpu(); 2358 for_each_online_cpu(cpu) { 2359 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2360 struct mem_cgroup *memcg; 2361 bool flush = false; 2362 2363 rcu_read_lock(); 2364 memcg = stock->cached; 2365 if (memcg && stock->nr_pages && 2366 mem_cgroup_is_descendant(memcg, root_memcg)) 2367 flush = true; 2368 if (obj_stock_flush_required(stock, root_memcg)) 2369 flush = true; 2370 rcu_read_unlock(); 2371 2372 if (flush && 2373 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2374 if (cpu == curcpu) 2375 drain_local_stock(&stock->work); 2376 else 2377 schedule_work_on(cpu, &stock->work); 2378 } 2379 } 2380 put_cpu(); 2381 mutex_unlock(&percpu_charge_mutex); 2382 } 2383 2384 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2385 { 2386 struct memcg_stock_pcp *stock; 2387 struct mem_cgroup *memcg, *mi; 2388 2389 stock = &per_cpu(memcg_stock, cpu); 2390 drain_stock(stock); 2391 2392 for_each_mem_cgroup(memcg) { 2393 int i; 2394 2395 for (i = 0; i < MEMCG_NR_STAT; i++) { 2396 int nid; 2397 long x; 2398 2399 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2400 if (x) 2401 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2402 atomic_long_add(x, &memcg->vmstats[i]); 2403 2404 if (i >= NR_VM_NODE_STAT_ITEMS) 2405 continue; 2406 2407 for_each_node(nid) { 2408 struct mem_cgroup_per_node *pn; 2409 2410 pn = mem_cgroup_nodeinfo(memcg, nid); 2411 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2412 if (x) 2413 do { 2414 atomic_long_add(x, &pn->lruvec_stat[i]); 2415 } while ((pn = parent_nodeinfo(pn, nid))); 2416 } 2417 } 2418 2419 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2420 long x; 2421 2422 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2423 if (x) 2424 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2425 atomic_long_add(x, &memcg->vmevents[i]); 2426 } 2427 } 2428 2429 return 0; 2430 } 2431 2432 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2433 unsigned int nr_pages, 2434 gfp_t gfp_mask) 2435 { 2436 unsigned long nr_reclaimed = 0; 2437 2438 do { 2439 unsigned long pflags; 2440 2441 if (page_counter_read(&memcg->memory) <= 2442 READ_ONCE(memcg->memory.high)) 2443 continue; 2444 2445 memcg_memory_event(memcg, MEMCG_HIGH); 2446 2447 psi_memstall_enter(&pflags); 2448 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2449 gfp_mask, true); 2450 psi_memstall_leave(&pflags); 2451 } while ((memcg = parent_mem_cgroup(memcg)) && 2452 !mem_cgroup_is_root(memcg)); 2453 2454 return nr_reclaimed; 2455 } 2456 2457 static void high_work_func(struct work_struct *work) 2458 { 2459 struct mem_cgroup *memcg; 2460 2461 memcg = container_of(work, struct mem_cgroup, high_work); 2462 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2463 } 2464 2465 /* 2466 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2467 * enough to still cause a significant slowdown in most cases, while still 2468 * allowing diagnostics and tracing to proceed without becoming stuck. 2469 */ 2470 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2471 2472 /* 2473 * When calculating the delay, we use these either side of the exponentiation to 2474 * maintain precision and scale to a reasonable number of jiffies (see the table 2475 * below. 2476 * 2477 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2478 * overage ratio to a delay. 2479 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2480 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2481 * to produce a reasonable delay curve. 2482 * 2483 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2484 * reasonable delay curve compared to precision-adjusted overage, not 2485 * penalising heavily at first, but still making sure that growth beyond the 2486 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2487 * example, with a high of 100 megabytes: 2488 * 2489 * +-------+------------------------+ 2490 * | usage | time to allocate in ms | 2491 * +-------+------------------------+ 2492 * | 100M | 0 | 2493 * | 101M | 6 | 2494 * | 102M | 25 | 2495 * | 103M | 57 | 2496 * | 104M | 102 | 2497 * | 105M | 159 | 2498 * | 106M | 230 | 2499 * | 107M | 313 | 2500 * | 108M | 409 | 2501 * | 109M | 518 | 2502 * | 110M | 639 | 2503 * | 111M | 774 | 2504 * | 112M | 921 | 2505 * | 113M | 1081 | 2506 * | 114M | 1254 | 2507 * | 115M | 1439 | 2508 * | 116M | 1638 | 2509 * | 117M | 1849 | 2510 * | 118M | 2000 | 2511 * | 119M | 2000 | 2512 * | 120M | 2000 | 2513 * +-------+------------------------+ 2514 */ 2515 #define MEMCG_DELAY_PRECISION_SHIFT 20 2516 #define MEMCG_DELAY_SCALING_SHIFT 14 2517 2518 static u64 calculate_overage(unsigned long usage, unsigned long high) 2519 { 2520 u64 overage; 2521 2522 if (usage <= high) 2523 return 0; 2524 2525 /* 2526 * Prevent division by 0 in overage calculation by acting as if 2527 * it was a threshold of 1 page 2528 */ 2529 high = max(high, 1UL); 2530 2531 overage = usage - high; 2532 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2533 return div64_u64(overage, high); 2534 } 2535 2536 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2537 { 2538 u64 overage, max_overage = 0; 2539 2540 do { 2541 overage = calculate_overage(page_counter_read(&memcg->memory), 2542 READ_ONCE(memcg->memory.high)); 2543 max_overage = max(overage, max_overage); 2544 } while ((memcg = parent_mem_cgroup(memcg)) && 2545 !mem_cgroup_is_root(memcg)); 2546 2547 return max_overage; 2548 } 2549 2550 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2551 { 2552 u64 overage, max_overage = 0; 2553 2554 do { 2555 overage = calculate_overage(page_counter_read(&memcg->swap), 2556 READ_ONCE(memcg->swap.high)); 2557 if (overage) 2558 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2559 max_overage = max(overage, max_overage); 2560 } while ((memcg = parent_mem_cgroup(memcg)) && 2561 !mem_cgroup_is_root(memcg)); 2562 2563 return max_overage; 2564 } 2565 2566 /* 2567 * Get the number of jiffies that we should penalise a mischievous cgroup which 2568 * is exceeding its memory.high by checking both it and its ancestors. 2569 */ 2570 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2571 unsigned int nr_pages, 2572 u64 max_overage) 2573 { 2574 unsigned long penalty_jiffies; 2575 2576 if (!max_overage) 2577 return 0; 2578 2579 /* 2580 * We use overage compared to memory.high to calculate the number of 2581 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2582 * fairly lenient on small overages, and increasingly harsh when the 2583 * memcg in question makes it clear that it has no intention of stopping 2584 * its crazy behaviour, so we exponentially increase the delay based on 2585 * overage amount. 2586 */ 2587 penalty_jiffies = max_overage * max_overage * HZ; 2588 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2589 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2590 2591 /* 2592 * Factor in the task's own contribution to the overage, such that four 2593 * N-sized allocations are throttled approximately the same as one 2594 * 4N-sized allocation. 2595 * 2596 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2597 * larger the current charge patch is than that. 2598 */ 2599 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2600 } 2601 2602 /* 2603 * Scheduled by try_charge() to be executed from the userland return path 2604 * and reclaims memory over the high limit. 2605 */ 2606 void mem_cgroup_handle_over_high(void) 2607 { 2608 unsigned long penalty_jiffies; 2609 unsigned long pflags; 2610 unsigned long nr_reclaimed; 2611 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2612 int nr_retries = MAX_RECLAIM_RETRIES; 2613 struct mem_cgroup *memcg; 2614 bool in_retry = false; 2615 2616 if (likely(!nr_pages)) 2617 return; 2618 2619 memcg = get_mem_cgroup_from_mm(current->mm); 2620 current->memcg_nr_pages_over_high = 0; 2621 2622 retry_reclaim: 2623 /* 2624 * The allocating task should reclaim at least the batch size, but for 2625 * subsequent retries we only want to do what's necessary to prevent oom 2626 * or breaching resource isolation. 2627 * 2628 * This is distinct from memory.max or page allocator behaviour because 2629 * memory.high is currently batched, whereas memory.max and the page 2630 * allocator run every time an allocation is made. 2631 */ 2632 nr_reclaimed = reclaim_high(memcg, 2633 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2634 GFP_KERNEL); 2635 2636 /* 2637 * memory.high is breached and reclaim is unable to keep up. Throttle 2638 * allocators proactively to slow down excessive growth. 2639 */ 2640 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2641 mem_find_max_overage(memcg)); 2642 2643 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2644 swap_find_max_overage(memcg)); 2645 2646 /* 2647 * Clamp the max delay per usermode return so as to still keep the 2648 * application moving forwards and also permit diagnostics, albeit 2649 * extremely slowly. 2650 */ 2651 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2652 2653 /* 2654 * Don't sleep if the amount of jiffies this memcg owes us is so low 2655 * that it's not even worth doing, in an attempt to be nice to those who 2656 * go only a small amount over their memory.high value and maybe haven't 2657 * been aggressively reclaimed enough yet. 2658 */ 2659 if (penalty_jiffies <= HZ / 100) 2660 goto out; 2661 2662 /* 2663 * If reclaim is making forward progress but we're still over 2664 * memory.high, we want to encourage that rather than doing allocator 2665 * throttling. 2666 */ 2667 if (nr_reclaimed || nr_retries--) { 2668 in_retry = true; 2669 goto retry_reclaim; 2670 } 2671 2672 /* 2673 * If we exit early, we're guaranteed to die (since 2674 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2675 * need to account for any ill-begotten jiffies to pay them off later. 2676 */ 2677 psi_memstall_enter(&pflags); 2678 schedule_timeout_killable(penalty_jiffies); 2679 psi_memstall_leave(&pflags); 2680 2681 out: 2682 css_put(&memcg->css); 2683 } 2684 2685 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2686 unsigned int nr_pages) 2687 { 2688 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2689 int nr_retries = MAX_RECLAIM_RETRIES; 2690 struct mem_cgroup *mem_over_limit; 2691 struct page_counter *counter; 2692 enum oom_status oom_status; 2693 unsigned long nr_reclaimed; 2694 bool may_swap = true; 2695 bool drained = false; 2696 unsigned long pflags; 2697 2698 if (mem_cgroup_is_root(memcg)) 2699 return 0; 2700 retry: 2701 if (consume_stock(memcg, nr_pages)) 2702 return 0; 2703 2704 if (!do_memsw_account() || 2705 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2706 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2707 goto done_restock; 2708 if (do_memsw_account()) 2709 page_counter_uncharge(&memcg->memsw, batch); 2710 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2711 } else { 2712 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2713 may_swap = false; 2714 } 2715 2716 if (batch > nr_pages) { 2717 batch = nr_pages; 2718 goto retry; 2719 } 2720 2721 /* 2722 * Memcg doesn't have a dedicated reserve for atomic 2723 * allocations. But like the global atomic pool, we need to 2724 * put the burden of reclaim on regular allocation requests 2725 * and let these go through as privileged allocations. 2726 */ 2727 if (gfp_mask & __GFP_ATOMIC) 2728 goto force; 2729 2730 /* 2731 * Unlike in global OOM situations, memcg is not in a physical 2732 * memory shortage. Allow dying and OOM-killed tasks to 2733 * bypass the last charges so that they can exit quickly and 2734 * free their memory. 2735 */ 2736 if (unlikely(should_force_charge())) 2737 goto force; 2738 2739 /* 2740 * Prevent unbounded recursion when reclaim operations need to 2741 * allocate memory. This might exceed the limits temporarily, 2742 * but we prefer facilitating memory reclaim and getting back 2743 * under the limit over triggering OOM kills in these cases. 2744 */ 2745 if (unlikely(current->flags & PF_MEMALLOC)) 2746 goto force; 2747 2748 if (unlikely(task_in_memcg_oom(current))) 2749 goto nomem; 2750 2751 if (!gfpflags_allow_blocking(gfp_mask)) 2752 goto nomem; 2753 2754 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2755 2756 psi_memstall_enter(&pflags); 2757 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2758 gfp_mask, may_swap); 2759 psi_memstall_leave(&pflags); 2760 2761 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2762 goto retry; 2763 2764 if (!drained) { 2765 drain_all_stock(mem_over_limit); 2766 drained = true; 2767 goto retry; 2768 } 2769 2770 if (gfp_mask & __GFP_NORETRY) 2771 goto nomem; 2772 /* 2773 * Even though the limit is exceeded at this point, reclaim 2774 * may have been able to free some pages. Retry the charge 2775 * before killing the task. 2776 * 2777 * Only for regular pages, though: huge pages are rather 2778 * unlikely to succeed so close to the limit, and we fall back 2779 * to regular pages anyway in case of failure. 2780 */ 2781 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2782 goto retry; 2783 /* 2784 * At task move, charge accounts can be doubly counted. So, it's 2785 * better to wait until the end of task_move if something is going on. 2786 */ 2787 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2788 goto retry; 2789 2790 if (nr_retries--) 2791 goto retry; 2792 2793 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2794 goto nomem; 2795 2796 if (gfp_mask & __GFP_NOFAIL) 2797 goto force; 2798 2799 if (fatal_signal_pending(current)) 2800 goto force; 2801 2802 /* 2803 * keep retrying as long as the memcg oom killer is able to make 2804 * a forward progress or bypass the charge if the oom killer 2805 * couldn't make any progress. 2806 */ 2807 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2808 get_order(nr_pages * PAGE_SIZE)); 2809 switch (oom_status) { 2810 case OOM_SUCCESS: 2811 nr_retries = MAX_RECLAIM_RETRIES; 2812 goto retry; 2813 case OOM_FAILED: 2814 goto force; 2815 default: 2816 goto nomem; 2817 } 2818 nomem: 2819 if (!(gfp_mask & __GFP_NOFAIL)) 2820 return -ENOMEM; 2821 force: 2822 /* 2823 * The allocation either can't fail or will lead to more memory 2824 * being freed very soon. Allow memory usage go over the limit 2825 * temporarily by force charging it. 2826 */ 2827 page_counter_charge(&memcg->memory, nr_pages); 2828 if (do_memsw_account()) 2829 page_counter_charge(&memcg->memsw, nr_pages); 2830 2831 return 0; 2832 2833 done_restock: 2834 if (batch > nr_pages) 2835 refill_stock(memcg, batch - nr_pages); 2836 2837 /* 2838 * If the hierarchy is above the normal consumption range, schedule 2839 * reclaim on returning to userland. We can perform reclaim here 2840 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2841 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2842 * not recorded as it most likely matches current's and won't 2843 * change in the meantime. As high limit is checked again before 2844 * reclaim, the cost of mismatch is negligible. 2845 */ 2846 do { 2847 bool mem_high, swap_high; 2848 2849 mem_high = page_counter_read(&memcg->memory) > 2850 READ_ONCE(memcg->memory.high); 2851 swap_high = page_counter_read(&memcg->swap) > 2852 READ_ONCE(memcg->swap.high); 2853 2854 /* Don't bother a random interrupted task */ 2855 if (in_interrupt()) { 2856 if (mem_high) { 2857 schedule_work(&memcg->high_work); 2858 break; 2859 } 2860 continue; 2861 } 2862 2863 if (mem_high || swap_high) { 2864 /* 2865 * The allocating tasks in this cgroup will need to do 2866 * reclaim or be throttled to prevent further growth 2867 * of the memory or swap footprints. 2868 * 2869 * Target some best-effort fairness between the tasks, 2870 * and distribute reclaim work and delay penalties 2871 * based on how much each task is actually allocating. 2872 */ 2873 current->memcg_nr_pages_over_high += batch; 2874 set_notify_resume(current); 2875 break; 2876 } 2877 } while ((memcg = parent_mem_cgroup(memcg))); 2878 2879 return 0; 2880 } 2881 2882 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2883 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2884 { 2885 if (mem_cgroup_is_root(memcg)) 2886 return; 2887 2888 page_counter_uncharge(&memcg->memory, nr_pages); 2889 if (do_memsw_account()) 2890 page_counter_uncharge(&memcg->memsw, nr_pages); 2891 } 2892 #endif 2893 2894 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2895 { 2896 VM_BUG_ON_PAGE(page_memcg(page), page); 2897 /* 2898 * Any of the following ensures page's memcg stability: 2899 * 2900 * - the page lock 2901 * - LRU isolation 2902 * - lock_page_memcg() 2903 * - exclusive reference 2904 */ 2905 page->memcg_data = (unsigned long)memcg; 2906 } 2907 2908 #ifdef CONFIG_MEMCG_KMEM 2909 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2910 gfp_t gfp, bool new_page) 2911 { 2912 unsigned int objects = objs_per_slab_page(s, page); 2913 unsigned long memcg_data; 2914 void *vec; 2915 2916 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2917 page_to_nid(page)); 2918 if (!vec) 2919 return -ENOMEM; 2920 2921 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2922 if (new_page) { 2923 /* 2924 * If the slab page is brand new and nobody can yet access 2925 * it's memcg_data, no synchronization is required and 2926 * memcg_data can be simply assigned. 2927 */ 2928 page->memcg_data = memcg_data; 2929 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) { 2930 /* 2931 * If the slab page is already in use, somebody can allocate 2932 * and assign obj_cgroups in parallel. In this case the existing 2933 * objcg vector should be reused. 2934 */ 2935 kfree(vec); 2936 return 0; 2937 } 2938 2939 kmemleak_not_leak(vec); 2940 return 0; 2941 } 2942 2943 /* 2944 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2945 * 2946 * A passed kernel object can be a slab object or a generic kernel page, so 2947 * different mechanisms for getting the memory cgroup pointer should be used. 2948 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2949 * can not know for sure how the kernel object is implemented. 2950 * mem_cgroup_from_obj() can be safely used in such cases. 2951 * 2952 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2953 * cgroup_mutex, etc. 2954 */ 2955 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2956 { 2957 struct page *page; 2958 2959 if (mem_cgroup_disabled()) 2960 return NULL; 2961 2962 page = virt_to_head_page(p); 2963 2964 /* 2965 * Slab objects are accounted individually, not per-page. 2966 * Memcg membership data for each individual object is saved in 2967 * the page->obj_cgroups. 2968 */ 2969 if (page_objcgs_check(page)) { 2970 struct obj_cgroup *objcg; 2971 unsigned int off; 2972 2973 off = obj_to_index(page->slab_cache, page, p); 2974 objcg = page_objcgs(page)[off]; 2975 if (objcg) 2976 return obj_cgroup_memcg(objcg); 2977 2978 return NULL; 2979 } 2980 2981 /* 2982 * page_memcg_check() is used here, because page_has_obj_cgroups() 2983 * check above could fail because the object cgroups vector wasn't set 2984 * at that moment, but it can be set concurrently. 2985 * page_memcg_check(page) will guarantee that a proper memory 2986 * cgroup pointer or NULL will be returned. 2987 */ 2988 return page_memcg_check(page); 2989 } 2990 2991 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2992 { 2993 struct obj_cgroup *objcg = NULL; 2994 struct mem_cgroup *memcg; 2995 2996 if (memcg_kmem_bypass()) 2997 return NULL; 2998 2999 rcu_read_lock(); 3000 if (unlikely(active_memcg())) 3001 memcg = active_memcg(); 3002 else 3003 memcg = mem_cgroup_from_task(current); 3004 3005 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 3006 objcg = rcu_dereference(memcg->objcg); 3007 if (objcg && obj_cgroup_tryget(objcg)) 3008 break; 3009 objcg = NULL; 3010 } 3011 rcu_read_unlock(); 3012 3013 return objcg; 3014 } 3015 3016 static int memcg_alloc_cache_id(void) 3017 { 3018 int id, size; 3019 int err; 3020 3021 id = ida_simple_get(&memcg_cache_ida, 3022 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3023 if (id < 0) 3024 return id; 3025 3026 if (id < memcg_nr_cache_ids) 3027 return id; 3028 3029 /* 3030 * There's no space for the new id in memcg_caches arrays, 3031 * so we have to grow them. 3032 */ 3033 down_write(&memcg_cache_ids_sem); 3034 3035 size = 2 * (id + 1); 3036 if (size < MEMCG_CACHES_MIN_SIZE) 3037 size = MEMCG_CACHES_MIN_SIZE; 3038 else if (size > MEMCG_CACHES_MAX_SIZE) 3039 size = MEMCG_CACHES_MAX_SIZE; 3040 3041 err = memcg_update_all_list_lrus(size); 3042 if (!err) 3043 memcg_nr_cache_ids = size; 3044 3045 up_write(&memcg_cache_ids_sem); 3046 3047 if (err) { 3048 ida_simple_remove(&memcg_cache_ida, id); 3049 return err; 3050 } 3051 return id; 3052 } 3053 3054 static void memcg_free_cache_id(int id) 3055 { 3056 ida_simple_remove(&memcg_cache_ida, id); 3057 } 3058 3059 /** 3060 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 3061 * @memcg: memory cgroup to charge 3062 * @gfp: reclaim mode 3063 * @nr_pages: number of pages to charge 3064 * 3065 * Returns 0 on success, an error code on failure. 3066 */ 3067 static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 3068 unsigned int nr_pages) 3069 { 3070 struct page_counter *counter; 3071 int ret; 3072 3073 ret = try_charge(memcg, gfp, nr_pages); 3074 if (ret) 3075 return ret; 3076 3077 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 3078 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 3079 3080 /* 3081 * Enforce __GFP_NOFAIL allocation because callers are not 3082 * prepared to see failures and likely do not have any failure 3083 * handling code. 3084 */ 3085 if (gfp & __GFP_NOFAIL) { 3086 page_counter_charge(&memcg->kmem, nr_pages); 3087 return 0; 3088 } 3089 cancel_charge(memcg, nr_pages); 3090 return -ENOMEM; 3091 } 3092 return 0; 3093 } 3094 3095 /** 3096 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 3097 * @memcg: memcg to uncharge 3098 * @nr_pages: number of pages to uncharge 3099 */ 3100 static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 3101 { 3102 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3103 page_counter_uncharge(&memcg->kmem, nr_pages); 3104 3105 refill_stock(memcg, nr_pages); 3106 } 3107 3108 /** 3109 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3110 * @page: page to charge 3111 * @gfp: reclaim mode 3112 * @order: allocation order 3113 * 3114 * Returns 0 on success, an error code on failure. 3115 */ 3116 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3117 { 3118 struct mem_cgroup *memcg; 3119 int ret = 0; 3120 3121 memcg = get_mem_cgroup_from_current(); 3122 if (memcg && !mem_cgroup_is_root(memcg)) { 3123 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 3124 if (!ret) { 3125 page->memcg_data = (unsigned long)memcg | 3126 MEMCG_DATA_KMEM; 3127 return 0; 3128 } 3129 css_put(&memcg->css); 3130 } 3131 return ret; 3132 } 3133 3134 /** 3135 * __memcg_kmem_uncharge_page: uncharge a kmem page 3136 * @page: page to uncharge 3137 * @order: allocation order 3138 */ 3139 void __memcg_kmem_uncharge_page(struct page *page, int order) 3140 { 3141 struct mem_cgroup *memcg = page_memcg(page); 3142 unsigned int nr_pages = 1 << order; 3143 3144 if (!memcg) 3145 return; 3146 3147 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3148 __memcg_kmem_uncharge(memcg, nr_pages); 3149 page->memcg_data = 0; 3150 css_put(&memcg->css); 3151 } 3152 3153 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3154 { 3155 struct memcg_stock_pcp *stock; 3156 unsigned long flags; 3157 bool ret = false; 3158 3159 local_irq_save(flags); 3160 3161 stock = this_cpu_ptr(&memcg_stock); 3162 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3163 stock->nr_bytes -= nr_bytes; 3164 ret = true; 3165 } 3166 3167 local_irq_restore(flags); 3168 3169 return ret; 3170 } 3171 3172 static void drain_obj_stock(struct memcg_stock_pcp *stock) 3173 { 3174 struct obj_cgroup *old = stock->cached_objcg; 3175 3176 if (!old) 3177 return; 3178 3179 if (stock->nr_bytes) { 3180 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3181 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3182 3183 if (nr_pages) { 3184 rcu_read_lock(); 3185 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages); 3186 rcu_read_unlock(); 3187 } 3188 3189 /* 3190 * The leftover is flushed to the centralized per-memcg value. 3191 * On the next attempt to refill obj stock it will be moved 3192 * to a per-cpu stock (probably, on an other CPU), see 3193 * refill_obj_stock(). 3194 * 3195 * How often it's flushed is a trade-off between the memory 3196 * limit enforcement accuracy and potential CPU contention, 3197 * so it might be changed in the future. 3198 */ 3199 atomic_add(nr_bytes, &old->nr_charged_bytes); 3200 stock->nr_bytes = 0; 3201 } 3202 3203 obj_cgroup_put(old); 3204 stock->cached_objcg = NULL; 3205 } 3206 3207 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3208 struct mem_cgroup *root_memcg) 3209 { 3210 struct mem_cgroup *memcg; 3211 3212 if (stock->cached_objcg) { 3213 memcg = obj_cgroup_memcg(stock->cached_objcg); 3214 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3215 return true; 3216 } 3217 3218 return false; 3219 } 3220 3221 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3222 { 3223 struct memcg_stock_pcp *stock; 3224 unsigned long flags; 3225 3226 local_irq_save(flags); 3227 3228 stock = this_cpu_ptr(&memcg_stock); 3229 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3230 drain_obj_stock(stock); 3231 obj_cgroup_get(objcg); 3232 stock->cached_objcg = objcg; 3233 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0); 3234 } 3235 stock->nr_bytes += nr_bytes; 3236 3237 if (stock->nr_bytes > PAGE_SIZE) 3238 drain_obj_stock(stock); 3239 3240 local_irq_restore(flags); 3241 } 3242 3243 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3244 { 3245 struct mem_cgroup *memcg; 3246 unsigned int nr_pages, nr_bytes; 3247 int ret; 3248 3249 if (consume_obj_stock(objcg, size)) 3250 return 0; 3251 3252 /* 3253 * In theory, memcg->nr_charged_bytes can have enough 3254 * pre-charged bytes to satisfy the allocation. However, 3255 * flushing memcg->nr_charged_bytes requires two atomic 3256 * operations, and memcg->nr_charged_bytes can't be big, 3257 * so it's better to ignore it and try grab some new pages. 3258 * memcg->nr_charged_bytes will be flushed in 3259 * refill_obj_stock(), called from this function or 3260 * independently later. 3261 */ 3262 rcu_read_lock(); 3263 retry: 3264 memcg = obj_cgroup_memcg(objcg); 3265 if (unlikely(!css_tryget(&memcg->css))) 3266 goto retry; 3267 rcu_read_unlock(); 3268 3269 nr_pages = size >> PAGE_SHIFT; 3270 nr_bytes = size & (PAGE_SIZE - 1); 3271 3272 if (nr_bytes) 3273 nr_pages += 1; 3274 3275 ret = __memcg_kmem_charge(memcg, gfp, nr_pages); 3276 if (!ret && nr_bytes) 3277 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes); 3278 3279 css_put(&memcg->css); 3280 return ret; 3281 } 3282 3283 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3284 { 3285 refill_obj_stock(objcg, size); 3286 } 3287 3288 #endif /* CONFIG_MEMCG_KMEM */ 3289 3290 /* 3291 * Because page_memcg(head) is not set on tails, set it now. 3292 */ 3293 void split_page_memcg(struct page *head, unsigned int nr) 3294 { 3295 struct mem_cgroup *memcg = page_memcg(head); 3296 int i; 3297 3298 if (mem_cgroup_disabled() || !memcg) 3299 return; 3300 3301 for (i = 1; i < nr; i++) 3302 head[i].memcg_data = head->memcg_data; 3303 css_get_many(&memcg->css, nr - 1); 3304 } 3305 3306 #ifdef CONFIG_MEMCG_SWAP 3307 /** 3308 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3309 * @entry: swap entry to be moved 3310 * @from: mem_cgroup which the entry is moved from 3311 * @to: mem_cgroup which the entry is moved to 3312 * 3313 * It succeeds only when the swap_cgroup's record for this entry is the same 3314 * as the mem_cgroup's id of @from. 3315 * 3316 * Returns 0 on success, -EINVAL on failure. 3317 * 3318 * The caller must have charged to @to, IOW, called page_counter_charge() about 3319 * both res and memsw, and called css_get(). 3320 */ 3321 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3322 struct mem_cgroup *from, struct mem_cgroup *to) 3323 { 3324 unsigned short old_id, new_id; 3325 3326 old_id = mem_cgroup_id(from); 3327 new_id = mem_cgroup_id(to); 3328 3329 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3330 mod_memcg_state(from, MEMCG_SWAP, -1); 3331 mod_memcg_state(to, MEMCG_SWAP, 1); 3332 return 0; 3333 } 3334 return -EINVAL; 3335 } 3336 #else 3337 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3338 struct mem_cgroup *from, struct mem_cgroup *to) 3339 { 3340 return -EINVAL; 3341 } 3342 #endif 3343 3344 static DEFINE_MUTEX(memcg_max_mutex); 3345 3346 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3347 unsigned long max, bool memsw) 3348 { 3349 bool enlarge = false; 3350 bool drained = false; 3351 int ret; 3352 bool limits_invariant; 3353 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3354 3355 do { 3356 if (signal_pending(current)) { 3357 ret = -EINTR; 3358 break; 3359 } 3360 3361 mutex_lock(&memcg_max_mutex); 3362 /* 3363 * Make sure that the new limit (memsw or memory limit) doesn't 3364 * break our basic invariant rule memory.max <= memsw.max. 3365 */ 3366 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3367 max <= memcg->memsw.max; 3368 if (!limits_invariant) { 3369 mutex_unlock(&memcg_max_mutex); 3370 ret = -EINVAL; 3371 break; 3372 } 3373 if (max > counter->max) 3374 enlarge = true; 3375 ret = page_counter_set_max(counter, max); 3376 mutex_unlock(&memcg_max_mutex); 3377 3378 if (!ret) 3379 break; 3380 3381 if (!drained) { 3382 drain_all_stock(memcg); 3383 drained = true; 3384 continue; 3385 } 3386 3387 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3388 GFP_KERNEL, !memsw)) { 3389 ret = -EBUSY; 3390 break; 3391 } 3392 } while (true); 3393 3394 if (!ret && enlarge) 3395 memcg_oom_recover(memcg); 3396 3397 return ret; 3398 } 3399 3400 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3401 gfp_t gfp_mask, 3402 unsigned long *total_scanned) 3403 { 3404 unsigned long nr_reclaimed = 0; 3405 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3406 unsigned long reclaimed; 3407 int loop = 0; 3408 struct mem_cgroup_tree_per_node *mctz; 3409 unsigned long excess; 3410 unsigned long nr_scanned; 3411 3412 if (order > 0) 3413 return 0; 3414 3415 mctz = soft_limit_tree_node(pgdat->node_id); 3416 3417 /* 3418 * Do not even bother to check the largest node if the root 3419 * is empty. Do it lockless to prevent lock bouncing. Races 3420 * are acceptable as soft limit is best effort anyway. 3421 */ 3422 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3423 return 0; 3424 3425 /* 3426 * This loop can run a while, specially if mem_cgroup's continuously 3427 * keep exceeding their soft limit and putting the system under 3428 * pressure 3429 */ 3430 do { 3431 if (next_mz) 3432 mz = next_mz; 3433 else 3434 mz = mem_cgroup_largest_soft_limit_node(mctz); 3435 if (!mz) 3436 break; 3437 3438 nr_scanned = 0; 3439 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3440 gfp_mask, &nr_scanned); 3441 nr_reclaimed += reclaimed; 3442 *total_scanned += nr_scanned; 3443 spin_lock_irq(&mctz->lock); 3444 __mem_cgroup_remove_exceeded(mz, mctz); 3445 3446 /* 3447 * If we failed to reclaim anything from this memory cgroup 3448 * it is time to move on to the next cgroup 3449 */ 3450 next_mz = NULL; 3451 if (!reclaimed) 3452 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3453 3454 excess = soft_limit_excess(mz->memcg); 3455 /* 3456 * One school of thought says that we should not add 3457 * back the node to the tree if reclaim returns 0. 3458 * But our reclaim could return 0, simply because due 3459 * to priority we are exposing a smaller subset of 3460 * memory to reclaim from. Consider this as a longer 3461 * term TODO. 3462 */ 3463 /* If excess == 0, no tree ops */ 3464 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3465 spin_unlock_irq(&mctz->lock); 3466 css_put(&mz->memcg->css); 3467 loop++; 3468 /* 3469 * Could not reclaim anything and there are no more 3470 * mem cgroups to try or we seem to be looping without 3471 * reclaiming anything. 3472 */ 3473 if (!nr_reclaimed && 3474 (next_mz == NULL || 3475 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3476 break; 3477 } while (!nr_reclaimed); 3478 if (next_mz) 3479 css_put(&next_mz->memcg->css); 3480 return nr_reclaimed; 3481 } 3482 3483 /* 3484 * Reclaims as many pages from the given memcg as possible. 3485 * 3486 * Caller is responsible for holding css reference for memcg. 3487 */ 3488 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3489 { 3490 int nr_retries = MAX_RECLAIM_RETRIES; 3491 3492 /* we call try-to-free pages for make this cgroup empty */ 3493 lru_add_drain_all(); 3494 3495 drain_all_stock(memcg); 3496 3497 /* try to free all pages in this cgroup */ 3498 while (nr_retries && page_counter_read(&memcg->memory)) { 3499 int progress; 3500 3501 if (signal_pending(current)) 3502 return -EINTR; 3503 3504 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3505 GFP_KERNEL, true); 3506 if (!progress) { 3507 nr_retries--; 3508 /* maybe some writeback is necessary */ 3509 congestion_wait(BLK_RW_ASYNC, HZ/10); 3510 } 3511 3512 } 3513 3514 return 0; 3515 } 3516 3517 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3518 char *buf, size_t nbytes, 3519 loff_t off) 3520 { 3521 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3522 3523 if (mem_cgroup_is_root(memcg)) 3524 return -EINVAL; 3525 return mem_cgroup_force_empty(memcg) ?: nbytes; 3526 } 3527 3528 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3529 struct cftype *cft) 3530 { 3531 return 1; 3532 } 3533 3534 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3535 struct cftype *cft, u64 val) 3536 { 3537 if (val == 1) 3538 return 0; 3539 3540 pr_warn_once("Non-hierarchical mode is deprecated. " 3541 "Please report your usecase to linux-mm@kvack.org if you " 3542 "depend on this functionality.\n"); 3543 3544 return -EINVAL; 3545 } 3546 3547 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3548 { 3549 unsigned long val; 3550 3551 if (mem_cgroup_is_root(memcg)) { 3552 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3553 memcg_page_state(memcg, NR_ANON_MAPPED); 3554 if (swap) 3555 val += memcg_page_state(memcg, MEMCG_SWAP); 3556 } else { 3557 if (!swap) 3558 val = page_counter_read(&memcg->memory); 3559 else 3560 val = page_counter_read(&memcg->memsw); 3561 } 3562 return val; 3563 } 3564 3565 enum { 3566 RES_USAGE, 3567 RES_LIMIT, 3568 RES_MAX_USAGE, 3569 RES_FAILCNT, 3570 RES_SOFT_LIMIT, 3571 }; 3572 3573 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3574 struct cftype *cft) 3575 { 3576 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3577 struct page_counter *counter; 3578 3579 switch (MEMFILE_TYPE(cft->private)) { 3580 case _MEM: 3581 counter = &memcg->memory; 3582 break; 3583 case _MEMSWAP: 3584 counter = &memcg->memsw; 3585 break; 3586 case _KMEM: 3587 counter = &memcg->kmem; 3588 break; 3589 case _TCP: 3590 counter = &memcg->tcpmem; 3591 break; 3592 default: 3593 BUG(); 3594 } 3595 3596 switch (MEMFILE_ATTR(cft->private)) { 3597 case RES_USAGE: 3598 if (counter == &memcg->memory) 3599 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3600 if (counter == &memcg->memsw) 3601 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3602 return (u64)page_counter_read(counter) * PAGE_SIZE; 3603 case RES_LIMIT: 3604 return (u64)counter->max * PAGE_SIZE; 3605 case RES_MAX_USAGE: 3606 return (u64)counter->watermark * PAGE_SIZE; 3607 case RES_FAILCNT: 3608 return counter->failcnt; 3609 case RES_SOFT_LIMIT: 3610 return (u64)memcg->soft_limit * PAGE_SIZE; 3611 default: 3612 BUG(); 3613 } 3614 } 3615 3616 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3617 { 3618 unsigned long stat[MEMCG_NR_STAT] = {0}; 3619 struct mem_cgroup *mi; 3620 int node, cpu, i; 3621 3622 for_each_online_cpu(cpu) 3623 for (i = 0; i < MEMCG_NR_STAT; i++) 3624 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3625 3626 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3627 for (i = 0; i < MEMCG_NR_STAT; i++) 3628 atomic_long_add(stat[i], &mi->vmstats[i]); 3629 3630 for_each_node(node) { 3631 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3632 struct mem_cgroup_per_node *pi; 3633 3634 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3635 stat[i] = 0; 3636 3637 for_each_online_cpu(cpu) 3638 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3639 stat[i] += per_cpu( 3640 pn->lruvec_stat_cpu->count[i], cpu); 3641 3642 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3643 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3644 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3645 } 3646 } 3647 3648 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3649 { 3650 unsigned long events[NR_VM_EVENT_ITEMS]; 3651 struct mem_cgroup *mi; 3652 int cpu, i; 3653 3654 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3655 events[i] = 0; 3656 3657 for_each_online_cpu(cpu) 3658 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3659 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3660 cpu); 3661 3662 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3663 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3664 atomic_long_add(events[i], &mi->vmevents[i]); 3665 } 3666 3667 #ifdef CONFIG_MEMCG_KMEM 3668 static int memcg_online_kmem(struct mem_cgroup *memcg) 3669 { 3670 struct obj_cgroup *objcg; 3671 int memcg_id; 3672 3673 if (cgroup_memory_nokmem) 3674 return 0; 3675 3676 BUG_ON(memcg->kmemcg_id >= 0); 3677 BUG_ON(memcg->kmem_state); 3678 3679 memcg_id = memcg_alloc_cache_id(); 3680 if (memcg_id < 0) 3681 return memcg_id; 3682 3683 objcg = obj_cgroup_alloc(); 3684 if (!objcg) { 3685 memcg_free_cache_id(memcg_id); 3686 return -ENOMEM; 3687 } 3688 objcg->memcg = memcg; 3689 rcu_assign_pointer(memcg->objcg, objcg); 3690 3691 static_branch_enable(&memcg_kmem_enabled_key); 3692 3693 memcg->kmemcg_id = memcg_id; 3694 memcg->kmem_state = KMEM_ONLINE; 3695 3696 return 0; 3697 } 3698 3699 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3700 { 3701 struct cgroup_subsys_state *css; 3702 struct mem_cgroup *parent, *child; 3703 int kmemcg_id; 3704 3705 if (memcg->kmem_state != KMEM_ONLINE) 3706 return; 3707 3708 memcg->kmem_state = KMEM_ALLOCATED; 3709 3710 parent = parent_mem_cgroup(memcg); 3711 if (!parent) 3712 parent = root_mem_cgroup; 3713 3714 memcg_reparent_objcgs(memcg, parent); 3715 3716 kmemcg_id = memcg->kmemcg_id; 3717 BUG_ON(kmemcg_id < 0); 3718 3719 /* 3720 * Change kmemcg_id of this cgroup and all its descendants to the 3721 * parent's id, and then move all entries from this cgroup's list_lrus 3722 * to ones of the parent. After we have finished, all list_lrus 3723 * corresponding to this cgroup are guaranteed to remain empty. The 3724 * ordering is imposed by list_lru_node->lock taken by 3725 * memcg_drain_all_list_lrus(). 3726 */ 3727 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3728 css_for_each_descendant_pre(css, &memcg->css) { 3729 child = mem_cgroup_from_css(css); 3730 BUG_ON(child->kmemcg_id != kmemcg_id); 3731 child->kmemcg_id = parent->kmemcg_id; 3732 } 3733 rcu_read_unlock(); 3734 3735 memcg_drain_all_list_lrus(kmemcg_id, parent); 3736 3737 memcg_free_cache_id(kmemcg_id); 3738 } 3739 3740 static void memcg_free_kmem(struct mem_cgroup *memcg) 3741 { 3742 /* css_alloc() failed, offlining didn't happen */ 3743 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3744 memcg_offline_kmem(memcg); 3745 } 3746 #else 3747 static int memcg_online_kmem(struct mem_cgroup *memcg) 3748 { 3749 return 0; 3750 } 3751 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3752 { 3753 } 3754 static void memcg_free_kmem(struct mem_cgroup *memcg) 3755 { 3756 } 3757 #endif /* CONFIG_MEMCG_KMEM */ 3758 3759 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3760 unsigned long max) 3761 { 3762 int ret; 3763 3764 mutex_lock(&memcg_max_mutex); 3765 ret = page_counter_set_max(&memcg->kmem, max); 3766 mutex_unlock(&memcg_max_mutex); 3767 return ret; 3768 } 3769 3770 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3771 { 3772 int ret; 3773 3774 mutex_lock(&memcg_max_mutex); 3775 3776 ret = page_counter_set_max(&memcg->tcpmem, max); 3777 if (ret) 3778 goto out; 3779 3780 if (!memcg->tcpmem_active) { 3781 /* 3782 * The active flag needs to be written after the static_key 3783 * update. This is what guarantees that the socket activation 3784 * function is the last one to run. See mem_cgroup_sk_alloc() 3785 * for details, and note that we don't mark any socket as 3786 * belonging to this memcg until that flag is up. 3787 * 3788 * We need to do this, because static_keys will span multiple 3789 * sites, but we can't control their order. If we mark a socket 3790 * as accounted, but the accounting functions are not patched in 3791 * yet, we'll lose accounting. 3792 * 3793 * We never race with the readers in mem_cgroup_sk_alloc(), 3794 * because when this value change, the code to process it is not 3795 * patched in yet. 3796 */ 3797 static_branch_inc(&memcg_sockets_enabled_key); 3798 memcg->tcpmem_active = true; 3799 } 3800 out: 3801 mutex_unlock(&memcg_max_mutex); 3802 return ret; 3803 } 3804 3805 /* 3806 * The user of this function is... 3807 * RES_LIMIT. 3808 */ 3809 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3810 char *buf, size_t nbytes, loff_t off) 3811 { 3812 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3813 unsigned long nr_pages; 3814 int ret; 3815 3816 buf = strstrip(buf); 3817 ret = page_counter_memparse(buf, "-1", &nr_pages); 3818 if (ret) 3819 return ret; 3820 3821 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3822 case RES_LIMIT: 3823 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3824 ret = -EINVAL; 3825 break; 3826 } 3827 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3828 case _MEM: 3829 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3830 break; 3831 case _MEMSWAP: 3832 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3833 break; 3834 case _KMEM: 3835 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3836 "Please report your usecase to linux-mm@kvack.org if you " 3837 "depend on this functionality.\n"); 3838 ret = memcg_update_kmem_max(memcg, nr_pages); 3839 break; 3840 case _TCP: 3841 ret = memcg_update_tcp_max(memcg, nr_pages); 3842 break; 3843 } 3844 break; 3845 case RES_SOFT_LIMIT: 3846 memcg->soft_limit = nr_pages; 3847 ret = 0; 3848 break; 3849 } 3850 return ret ?: nbytes; 3851 } 3852 3853 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3854 size_t nbytes, loff_t off) 3855 { 3856 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3857 struct page_counter *counter; 3858 3859 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3860 case _MEM: 3861 counter = &memcg->memory; 3862 break; 3863 case _MEMSWAP: 3864 counter = &memcg->memsw; 3865 break; 3866 case _KMEM: 3867 counter = &memcg->kmem; 3868 break; 3869 case _TCP: 3870 counter = &memcg->tcpmem; 3871 break; 3872 default: 3873 BUG(); 3874 } 3875 3876 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3877 case RES_MAX_USAGE: 3878 page_counter_reset_watermark(counter); 3879 break; 3880 case RES_FAILCNT: 3881 counter->failcnt = 0; 3882 break; 3883 default: 3884 BUG(); 3885 } 3886 3887 return nbytes; 3888 } 3889 3890 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3891 struct cftype *cft) 3892 { 3893 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3894 } 3895 3896 #ifdef CONFIG_MMU 3897 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3898 struct cftype *cft, u64 val) 3899 { 3900 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3901 3902 if (val & ~MOVE_MASK) 3903 return -EINVAL; 3904 3905 /* 3906 * No kind of locking is needed in here, because ->can_attach() will 3907 * check this value once in the beginning of the process, and then carry 3908 * on with stale data. This means that changes to this value will only 3909 * affect task migrations starting after the change. 3910 */ 3911 memcg->move_charge_at_immigrate = val; 3912 return 0; 3913 } 3914 #else 3915 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3916 struct cftype *cft, u64 val) 3917 { 3918 return -ENOSYS; 3919 } 3920 #endif 3921 3922 #ifdef CONFIG_NUMA 3923 3924 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3925 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3926 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3927 3928 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3929 int nid, unsigned int lru_mask, bool tree) 3930 { 3931 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3932 unsigned long nr = 0; 3933 enum lru_list lru; 3934 3935 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3936 3937 for_each_lru(lru) { 3938 if (!(BIT(lru) & lru_mask)) 3939 continue; 3940 if (tree) 3941 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3942 else 3943 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3944 } 3945 return nr; 3946 } 3947 3948 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3949 unsigned int lru_mask, 3950 bool tree) 3951 { 3952 unsigned long nr = 0; 3953 enum lru_list lru; 3954 3955 for_each_lru(lru) { 3956 if (!(BIT(lru) & lru_mask)) 3957 continue; 3958 if (tree) 3959 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3960 else 3961 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3962 } 3963 return nr; 3964 } 3965 3966 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3967 { 3968 struct numa_stat { 3969 const char *name; 3970 unsigned int lru_mask; 3971 }; 3972 3973 static const struct numa_stat stats[] = { 3974 { "total", LRU_ALL }, 3975 { "file", LRU_ALL_FILE }, 3976 { "anon", LRU_ALL_ANON }, 3977 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3978 }; 3979 const struct numa_stat *stat; 3980 int nid; 3981 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3982 3983 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3984 seq_printf(m, "%s=%lu", stat->name, 3985 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3986 false)); 3987 for_each_node_state(nid, N_MEMORY) 3988 seq_printf(m, " N%d=%lu", nid, 3989 mem_cgroup_node_nr_lru_pages(memcg, nid, 3990 stat->lru_mask, false)); 3991 seq_putc(m, '\n'); 3992 } 3993 3994 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3995 3996 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3997 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3998 true)); 3999 for_each_node_state(nid, N_MEMORY) 4000 seq_printf(m, " N%d=%lu", nid, 4001 mem_cgroup_node_nr_lru_pages(memcg, nid, 4002 stat->lru_mask, true)); 4003 seq_putc(m, '\n'); 4004 } 4005 4006 return 0; 4007 } 4008 #endif /* CONFIG_NUMA */ 4009 4010 static const unsigned int memcg1_stats[] = { 4011 NR_FILE_PAGES, 4012 NR_ANON_MAPPED, 4013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4014 NR_ANON_THPS, 4015 #endif 4016 NR_SHMEM, 4017 NR_FILE_MAPPED, 4018 NR_FILE_DIRTY, 4019 NR_WRITEBACK, 4020 MEMCG_SWAP, 4021 }; 4022 4023 static const char *const memcg1_stat_names[] = { 4024 "cache", 4025 "rss", 4026 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4027 "rss_huge", 4028 #endif 4029 "shmem", 4030 "mapped_file", 4031 "dirty", 4032 "writeback", 4033 "swap", 4034 }; 4035 4036 /* Universal VM events cgroup1 shows, original sort order */ 4037 static const unsigned int memcg1_events[] = { 4038 PGPGIN, 4039 PGPGOUT, 4040 PGFAULT, 4041 PGMAJFAULT, 4042 }; 4043 4044 static int memcg_stat_show(struct seq_file *m, void *v) 4045 { 4046 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4047 unsigned long memory, memsw; 4048 struct mem_cgroup *mi; 4049 unsigned int i; 4050 4051 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4052 4053 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4054 unsigned long nr; 4055 4056 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4057 continue; 4058 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4059 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 4060 } 4061 4062 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4063 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4064 memcg_events_local(memcg, memcg1_events[i])); 4065 4066 for (i = 0; i < NR_LRU_LISTS; i++) 4067 seq_printf(m, "%s %lu\n", lru_list_name(i), 4068 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4069 PAGE_SIZE); 4070 4071 /* Hierarchical information */ 4072 memory = memsw = PAGE_COUNTER_MAX; 4073 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4074 memory = min(memory, READ_ONCE(mi->memory.max)); 4075 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4076 } 4077 seq_printf(m, "hierarchical_memory_limit %llu\n", 4078 (u64)memory * PAGE_SIZE); 4079 if (do_memsw_account()) 4080 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4081 (u64)memsw * PAGE_SIZE); 4082 4083 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4084 unsigned long nr; 4085 4086 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4087 continue; 4088 nr = memcg_page_state(memcg, memcg1_stats[i]); 4089 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4090 (u64)nr * PAGE_SIZE); 4091 } 4092 4093 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4094 seq_printf(m, "total_%s %llu\n", 4095 vm_event_name(memcg1_events[i]), 4096 (u64)memcg_events(memcg, memcg1_events[i])); 4097 4098 for (i = 0; i < NR_LRU_LISTS; i++) 4099 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4100 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4101 PAGE_SIZE); 4102 4103 #ifdef CONFIG_DEBUG_VM 4104 { 4105 pg_data_t *pgdat; 4106 struct mem_cgroup_per_node *mz; 4107 unsigned long anon_cost = 0; 4108 unsigned long file_cost = 0; 4109 4110 for_each_online_pgdat(pgdat) { 4111 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 4112 4113 anon_cost += mz->lruvec.anon_cost; 4114 file_cost += mz->lruvec.file_cost; 4115 } 4116 seq_printf(m, "anon_cost %lu\n", anon_cost); 4117 seq_printf(m, "file_cost %lu\n", file_cost); 4118 } 4119 #endif 4120 4121 return 0; 4122 } 4123 4124 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4125 struct cftype *cft) 4126 { 4127 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4128 4129 return mem_cgroup_swappiness(memcg); 4130 } 4131 4132 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4133 struct cftype *cft, u64 val) 4134 { 4135 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4136 4137 if (val > 100) 4138 return -EINVAL; 4139 4140 if (css->parent) 4141 memcg->swappiness = val; 4142 else 4143 vm_swappiness = val; 4144 4145 return 0; 4146 } 4147 4148 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4149 { 4150 struct mem_cgroup_threshold_ary *t; 4151 unsigned long usage; 4152 int i; 4153 4154 rcu_read_lock(); 4155 if (!swap) 4156 t = rcu_dereference(memcg->thresholds.primary); 4157 else 4158 t = rcu_dereference(memcg->memsw_thresholds.primary); 4159 4160 if (!t) 4161 goto unlock; 4162 4163 usage = mem_cgroup_usage(memcg, swap); 4164 4165 /* 4166 * current_threshold points to threshold just below or equal to usage. 4167 * If it's not true, a threshold was crossed after last 4168 * call of __mem_cgroup_threshold(). 4169 */ 4170 i = t->current_threshold; 4171 4172 /* 4173 * Iterate backward over array of thresholds starting from 4174 * current_threshold and check if a threshold is crossed. 4175 * If none of thresholds below usage is crossed, we read 4176 * only one element of the array here. 4177 */ 4178 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4179 eventfd_signal(t->entries[i].eventfd, 1); 4180 4181 /* i = current_threshold + 1 */ 4182 i++; 4183 4184 /* 4185 * Iterate forward over array of thresholds starting from 4186 * current_threshold+1 and check if a threshold is crossed. 4187 * If none of thresholds above usage is crossed, we read 4188 * only one element of the array here. 4189 */ 4190 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4191 eventfd_signal(t->entries[i].eventfd, 1); 4192 4193 /* Update current_threshold */ 4194 t->current_threshold = i - 1; 4195 unlock: 4196 rcu_read_unlock(); 4197 } 4198 4199 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4200 { 4201 while (memcg) { 4202 __mem_cgroup_threshold(memcg, false); 4203 if (do_memsw_account()) 4204 __mem_cgroup_threshold(memcg, true); 4205 4206 memcg = parent_mem_cgroup(memcg); 4207 } 4208 } 4209 4210 static int compare_thresholds(const void *a, const void *b) 4211 { 4212 const struct mem_cgroup_threshold *_a = a; 4213 const struct mem_cgroup_threshold *_b = b; 4214 4215 if (_a->threshold > _b->threshold) 4216 return 1; 4217 4218 if (_a->threshold < _b->threshold) 4219 return -1; 4220 4221 return 0; 4222 } 4223 4224 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4225 { 4226 struct mem_cgroup_eventfd_list *ev; 4227 4228 spin_lock(&memcg_oom_lock); 4229 4230 list_for_each_entry(ev, &memcg->oom_notify, list) 4231 eventfd_signal(ev->eventfd, 1); 4232 4233 spin_unlock(&memcg_oom_lock); 4234 return 0; 4235 } 4236 4237 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4238 { 4239 struct mem_cgroup *iter; 4240 4241 for_each_mem_cgroup_tree(iter, memcg) 4242 mem_cgroup_oom_notify_cb(iter); 4243 } 4244 4245 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4246 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4247 { 4248 struct mem_cgroup_thresholds *thresholds; 4249 struct mem_cgroup_threshold_ary *new; 4250 unsigned long threshold; 4251 unsigned long usage; 4252 int i, size, ret; 4253 4254 ret = page_counter_memparse(args, "-1", &threshold); 4255 if (ret) 4256 return ret; 4257 4258 mutex_lock(&memcg->thresholds_lock); 4259 4260 if (type == _MEM) { 4261 thresholds = &memcg->thresholds; 4262 usage = mem_cgroup_usage(memcg, false); 4263 } else if (type == _MEMSWAP) { 4264 thresholds = &memcg->memsw_thresholds; 4265 usage = mem_cgroup_usage(memcg, true); 4266 } else 4267 BUG(); 4268 4269 /* Check if a threshold crossed before adding a new one */ 4270 if (thresholds->primary) 4271 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4272 4273 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4274 4275 /* Allocate memory for new array of thresholds */ 4276 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4277 if (!new) { 4278 ret = -ENOMEM; 4279 goto unlock; 4280 } 4281 new->size = size; 4282 4283 /* Copy thresholds (if any) to new array */ 4284 if (thresholds->primary) 4285 memcpy(new->entries, thresholds->primary->entries, 4286 flex_array_size(new, entries, size - 1)); 4287 4288 /* Add new threshold */ 4289 new->entries[size - 1].eventfd = eventfd; 4290 new->entries[size - 1].threshold = threshold; 4291 4292 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4293 sort(new->entries, size, sizeof(*new->entries), 4294 compare_thresholds, NULL); 4295 4296 /* Find current threshold */ 4297 new->current_threshold = -1; 4298 for (i = 0; i < size; i++) { 4299 if (new->entries[i].threshold <= usage) { 4300 /* 4301 * new->current_threshold will not be used until 4302 * rcu_assign_pointer(), so it's safe to increment 4303 * it here. 4304 */ 4305 ++new->current_threshold; 4306 } else 4307 break; 4308 } 4309 4310 /* Free old spare buffer and save old primary buffer as spare */ 4311 kfree(thresholds->spare); 4312 thresholds->spare = thresholds->primary; 4313 4314 rcu_assign_pointer(thresholds->primary, new); 4315 4316 /* To be sure that nobody uses thresholds */ 4317 synchronize_rcu(); 4318 4319 unlock: 4320 mutex_unlock(&memcg->thresholds_lock); 4321 4322 return ret; 4323 } 4324 4325 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4326 struct eventfd_ctx *eventfd, const char *args) 4327 { 4328 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4329 } 4330 4331 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4332 struct eventfd_ctx *eventfd, const char *args) 4333 { 4334 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4335 } 4336 4337 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4338 struct eventfd_ctx *eventfd, enum res_type type) 4339 { 4340 struct mem_cgroup_thresholds *thresholds; 4341 struct mem_cgroup_threshold_ary *new; 4342 unsigned long usage; 4343 int i, j, size, entries; 4344 4345 mutex_lock(&memcg->thresholds_lock); 4346 4347 if (type == _MEM) { 4348 thresholds = &memcg->thresholds; 4349 usage = mem_cgroup_usage(memcg, false); 4350 } else if (type == _MEMSWAP) { 4351 thresholds = &memcg->memsw_thresholds; 4352 usage = mem_cgroup_usage(memcg, true); 4353 } else 4354 BUG(); 4355 4356 if (!thresholds->primary) 4357 goto unlock; 4358 4359 /* Check if a threshold crossed before removing */ 4360 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4361 4362 /* Calculate new number of threshold */ 4363 size = entries = 0; 4364 for (i = 0; i < thresholds->primary->size; i++) { 4365 if (thresholds->primary->entries[i].eventfd != eventfd) 4366 size++; 4367 else 4368 entries++; 4369 } 4370 4371 new = thresholds->spare; 4372 4373 /* If no items related to eventfd have been cleared, nothing to do */ 4374 if (!entries) 4375 goto unlock; 4376 4377 /* Set thresholds array to NULL if we don't have thresholds */ 4378 if (!size) { 4379 kfree(new); 4380 new = NULL; 4381 goto swap_buffers; 4382 } 4383 4384 new->size = size; 4385 4386 /* Copy thresholds and find current threshold */ 4387 new->current_threshold = -1; 4388 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4389 if (thresholds->primary->entries[i].eventfd == eventfd) 4390 continue; 4391 4392 new->entries[j] = thresholds->primary->entries[i]; 4393 if (new->entries[j].threshold <= usage) { 4394 /* 4395 * new->current_threshold will not be used 4396 * until rcu_assign_pointer(), so it's safe to increment 4397 * it here. 4398 */ 4399 ++new->current_threshold; 4400 } 4401 j++; 4402 } 4403 4404 swap_buffers: 4405 /* Swap primary and spare array */ 4406 thresholds->spare = thresholds->primary; 4407 4408 rcu_assign_pointer(thresholds->primary, new); 4409 4410 /* To be sure that nobody uses thresholds */ 4411 synchronize_rcu(); 4412 4413 /* If all events are unregistered, free the spare array */ 4414 if (!new) { 4415 kfree(thresholds->spare); 4416 thresholds->spare = NULL; 4417 } 4418 unlock: 4419 mutex_unlock(&memcg->thresholds_lock); 4420 } 4421 4422 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4423 struct eventfd_ctx *eventfd) 4424 { 4425 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4426 } 4427 4428 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4429 struct eventfd_ctx *eventfd) 4430 { 4431 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4432 } 4433 4434 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4435 struct eventfd_ctx *eventfd, const char *args) 4436 { 4437 struct mem_cgroup_eventfd_list *event; 4438 4439 event = kmalloc(sizeof(*event), GFP_KERNEL); 4440 if (!event) 4441 return -ENOMEM; 4442 4443 spin_lock(&memcg_oom_lock); 4444 4445 event->eventfd = eventfd; 4446 list_add(&event->list, &memcg->oom_notify); 4447 4448 /* already in OOM ? */ 4449 if (memcg->under_oom) 4450 eventfd_signal(eventfd, 1); 4451 spin_unlock(&memcg_oom_lock); 4452 4453 return 0; 4454 } 4455 4456 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4457 struct eventfd_ctx *eventfd) 4458 { 4459 struct mem_cgroup_eventfd_list *ev, *tmp; 4460 4461 spin_lock(&memcg_oom_lock); 4462 4463 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4464 if (ev->eventfd == eventfd) { 4465 list_del(&ev->list); 4466 kfree(ev); 4467 } 4468 } 4469 4470 spin_unlock(&memcg_oom_lock); 4471 } 4472 4473 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4474 { 4475 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4476 4477 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4478 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4479 seq_printf(sf, "oom_kill %lu\n", 4480 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4481 return 0; 4482 } 4483 4484 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4485 struct cftype *cft, u64 val) 4486 { 4487 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4488 4489 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4490 if (!css->parent || !((val == 0) || (val == 1))) 4491 return -EINVAL; 4492 4493 memcg->oom_kill_disable = val; 4494 if (!val) 4495 memcg_oom_recover(memcg); 4496 4497 return 0; 4498 } 4499 4500 #ifdef CONFIG_CGROUP_WRITEBACK 4501 4502 #include <trace/events/writeback.h> 4503 4504 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4505 { 4506 return wb_domain_init(&memcg->cgwb_domain, gfp); 4507 } 4508 4509 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4510 { 4511 wb_domain_exit(&memcg->cgwb_domain); 4512 } 4513 4514 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4515 { 4516 wb_domain_size_changed(&memcg->cgwb_domain); 4517 } 4518 4519 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4520 { 4521 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4522 4523 if (!memcg->css.parent) 4524 return NULL; 4525 4526 return &memcg->cgwb_domain; 4527 } 4528 4529 /* 4530 * idx can be of type enum memcg_stat_item or node_stat_item. 4531 * Keep in sync with memcg_exact_page(). 4532 */ 4533 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4534 { 4535 long x = atomic_long_read(&memcg->vmstats[idx]); 4536 int cpu; 4537 4538 for_each_online_cpu(cpu) 4539 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4540 if (x < 0) 4541 x = 0; 4542 return x; 4543 } 4544 4545 /** 4546 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4547 * @wb: bdi_writeback in question 4548 * @pfilepages: out parameter for number of file pages 4549 * @pheadroom: out parameter for number of allocatable pages according to memcg 4550 * @pdirty: out parameter for number of dirty pages 4551 * @pwriteback: out parameter for number of pages under writeback 4552 * 4553 * Determine the numbers of file, headroom, dirty, and writeback pages in 4554 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4555 * is a bit more involved. 4556 * 4557 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4558 * headroom is calculated as the lowest headroom of itself and the 4559 * ancestors. Note that this doesn't consider the actual amount of 4560 * available memory in the system. The caller should further cap 4561 * *@pheadroom accordingly. 4562 */ 4563 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4564 unsigned long *pheadroom, unsigned long *pdirty, 4565 unsigned long *pwriteback) 4566 { 4567 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4568 struct mem_cgroup *parent; 4569 4570 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4571 4572 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4573 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4574 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4575 *pheadroom = PAGE_COUNTER_MAX; 4576 4577 while ((parent = parent_mem_cgroup(memcg))) { 4578 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4579 READ_ONCE(memcg->memory.high)); 4580 unsigned long used = page_counter_read(&memcg->memory); 4581 4582 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4583 memcg = parent; 4584 } 4585 } 4586 4587 /* 4588 * Foreign dirty flushing 4589 * 4590 * There's an inherent mismatch between memcg and writeback. The former 4591 * trackes ownership per-page while the latter per-inode. This was a 4592 * deliberate design decision because honoring per-page ownership in the 4593 * writeback path is complicated, may lead to higher CPU and IO overheads 4594 * and deemed unnecessary given that write-sharing an inode across 4595 * different cgroups isn't a common use-case. 4596 * 4597 * Combined with inode majority-writer ownership switching, this works well 4598 * enough in most cases but there are some pathological cases. For 4599 * example, let's say there are two cgroups A and B which keep writing to 4600 * different but confined parts of the same inode. B owns the inode and 4601 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4602 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4603 * triggering background writeback. A will be slowed down without a way to 4604 * make writeback of the dirty pages happen. 4605 * 4606 * Conditions like the above can lead to a cgroup getting repatedly and 4607 * severely throttled after making some progress after each 4608 * dirty_expire_interval while the underyling IO device is almost 4609 * completely idle. 4610 * 4611 * Solving this problem completely requires matching the ownership tracking 4612 * granularities between memcg and writeback in either direction. However, 4613 * the more egregious behaviors can be avoided by simply remembering the 4614 * most recent foreign dirtying events and initiating remote flushes on 4615 * them when local writeback isn't enough to keep the memory clean enough. 4616 * 4617 * The following two functions implement such mechanism. When a foreign 4618 * page - a page whose memcg and writeback ownerships don't match - is 4619 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4620 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4621 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4622 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4623 * foreign bdi_writebacks which haven't expired. Both the numbers of 4624 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4625 * limited to MEMCG_CGWB_FRN_CNT. 4626 * 4627 * The mechanism only remembers IDs and doesn't hold any object references. 4628 * As being wrong occasionally doesn't matter, updates and accesses to the 4629 * records are lockless and racy. 4630 */ 4631 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4632 struct bdi_writeback *wb) 4633 { 4634 struct mem_cgroup *memcg = page_memcg(page); 4635 struct memcg_cgwb_frn *frn; 4636 u64 now = get_jiffies_64(); 4637 u64 oldest_at = now; 4638 int oldest = -1; 4639 int i; 4640 4641 trace_track_foreign_dirty(page, wb); 4642 4643 /* 4644 * Pick the slot to use. If there is already a slot for @wb, keep 4645 * using it. If not replace the oldest one which isn't being 4646 * written out. 4647 */ 4648 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4649 frn = &memcg->cgwb_frn[i]; 4650 if (frn->bdi_id == wb->bdi->id && 4651 frn->memcg_id == wb->memcg_css->id) 4652 break; 4653 if (time_before64(frn->at, oldest_at) && 4654 atomic_read(&frn->done.cnt) == 1) { 4655 oldest = i; 4656 oldest_at = frn->at; 4657 } 4658 } 4659 4660 if (i < MEMCG_CGWB_FRN_CNT) { 4661 /* 4662 * Re-using an existing one. Update timestamp lazily to 4663 * avoid making the cacheline hot. We want them to be 4664 * reasonably up-to-date and significantly shorter than 4665 * dirty_expire_interval as that's what expires the record. 4666 * Use the shorter of 1s and dirty_expire_interval / 8. 4667 */ 4668 unsigned long update_intv = 4669 min_t(unsigned long, HZ, 4670 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4671 4672 if (time_before64(frn->at, now - update_intv)) 4673 frn->at = now; 4674 } else if (oldest >= 0) { 4675 /* replace the oldest free one */ 4676 frn = &memcg->cgwb_frn[oldest]; 4677 frn->bdi_id = wb->bdi->id; 4678 frn->memcg_id = wb->memcg_css->id; 4679 frn->at = now; 4680 } 4681 } 4682 4683 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4684 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4685 { 4686 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4687 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4688 u64 now = jiffies_64; 4689 int i; 4690 4691 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4692 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4693 4694 /* 4695 * If the record is older than dirty_expire_interval, 4696 * writeback on it has already started. No need to kick it 4697 * off again. Also, don't start a new one if there's 4698 * already one in flight. 4699 */ 4700 if (time_after64(frn->at, now - intv) && 4701 atomic_read(&frn->done.cnt) == 1) { 4702 frn->at = 0; 4703 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4704 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4705 WB_REASON_FOREIGN_FLUSH, 4706 &frn->done); 4707 } 4708 } 4709 } 4710 4711 #else /* CONFIG_CGROUP_WRITEBACK */ 4712 4713 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4714 { 4715 return 0; 4716 } 4717 4718 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4719 { 4720 } 4721 4722 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4723 { 4724 } 4725 4726 #endif /* CONFIG_CGROUP_WRITEBACK */ 4727 4728 /* 4729 * DO NOT USE IN NEW FILES. 4730 * 4731 * "cgroup.event_control" implementation. 4732 * 4733 * This is way over-engineered. It tries to support fully configurable 4734 * events for each user. Such level of flexibility is completely 4735 * unnecessary especially in the light of the planned unified hierarchy. 4736 * 4737 * Please deprecate this and replace with something simpler if at all 4738 * possible. 4739 */ 4740 4741 /* 4742 * Unregister event and free resources. 4743 * 4744 * Gets called from workqueue. 4745 */ 4746 static void memcg_event_remove(struct work_struct *work) 4747 { 4748 struct mem_cgroup_event *event = 4749 container_of(work, struct mem_cgroup_event, remove); 4750 struct mem_cgroup *memcg = event->memcg; 4751 4752 remove_wait_queue(event->wqh, &event->wait); 4753 4754 event->unregister_event(memcg, event->eventfd); 4755 4756 /* Notify userspace the event is going away. */ 4757 eventfd_signal(event->eventfd, 1); 4758 4759 eventfd_ctx_put(event->eventfd); 4760 kfree(event); 4761 css_put(&memcg->css); 4762 } 4763 4764 /* 4765 * Gets called on EPOLLHUP on eventfd when user closes it. 4766 * 4767 * Called with wqh->lock held and interrupts disabled. 4768 */ 4769 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4770 int sync, void *key) 4771 { 4772 struct mem_cgroup_event *event = 4773 container_of(wait, struct mem_cgroup_event, wait); 4774 struct mem_cgroup *memcg = event->memcg; 4775 __poll_t flags = key_to_poll(key); 4776 4777 if (flags & EPOLLHUP) { 4778 /* 4779 * If the event has been detached at cgroup removal, we 4780 * can simply return knowing the other side will cleanup 4781 * for us. 4782 * 4783 * We can't race against event freeing since the other 4784 * side will require wqh->lock via remove_wait_queue(), 4785 * which we hold. 4786 */ 4787 spin_lock(&memcg->event_list_lock); 4788 if (!list_empty(&event->list)) { 4789 list_del_init(&event->list); 4790 /* 4791 * We are in atomic context, but cgroup_event_remove() 4792 * may sleep, so we have to call it in workqueue. 4793 */ 4794 schedule_work(&event->remove); 4795 } 4796 spin_unlock(&memcg->event_list_lock); 4797 } 4798 4799 return 0; 4800 } 4801 4802 static void memcg_event_ptable_queue_proc(struct file *file, 4803 wait_queue_head_t *wqh, poll_table *pt) 4804 { 4805 struct mem_cgroup_event *event = 4806 container_of(pt, struct mem_cgroup_event, pt); 4807 4808 event->wqh = wqh; 4809 add_wait_queue(wqh, &event->wait); 4810 } 4811 4812 /* 4813 * DO NOT USE IN NEW FILES. 4814 * 4815 * Parse input and register new cgroup event handler. 4816 * 4817 * Input must be in format '<event_fd> <control_fd> <args>'. 4818 * Interpretation of args is defined by control file implementation. 4819 */ 4820 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4821 char *buf, size_t nbytes, loff_t off) 4822 { 4823 struct cgroup_subsys_state *css = of_css(of); 4824 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4825 struct mem_cgroup_event *event; 4826 struct cgroup_subsys_state *cfile_css; 4827 unsigned int efd, cfd; 4828 struct fd efile; 4829 struct fd cfile; 4830 const char *name; 4831 char *endp; 4832 int ret; 4833 4834 buf = strstrip(buf); 4835 4836 efd = simple_strtoul(buf, &endp, 10); 4837 if (*endp != ' ') 4838 return -EINVAL; 4839 buf = endp + 1; 4840 4841 cfd = simple_strtoul(buf, &endp, 10); 4842 if ((*endp != ' ') && (*endp != '\0')) 4843 return -EINVAL; 4844 buf = endp + 1; 4845 4846 event = kzalloc(sizeof(*event), GFP_KERNEL); 4847 if (!event) 4848 return -ENOMEM; 4849 4850 event->memcg = memcg; 4851 INIT_LIST_HEAD(&event->list); 4852 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4853 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4854 INIT_WORK(&event->remove, memcg_event_remove); 4855 4856 efile = fdget(efd); 4857 if (!efile.file) { 4858 ret = -EBADF; 4859 goto out_kfree; 4860 } 4861 4862 event->eventfd = eventfd_ctx_fileget(efile.file); 4863 if (IS_ERR(event->eventfd)) { 4864 ret = PTR_ERR(event->eventfd); 4865 goto out_put_efile; 4866 } 4867 4868 cfile = fdget(cfd); 4869 if (!cfile.file) { 4870 ret = -EBADF; 4871 goto out_put_eventfd; 4872 } 4873 4874 /* the process need read permission on control file */ 4875 /* AV: shouldn't we check that it's been opened for read instead? */ 4876 ret = file_permission(cfile.file, MAY_READ); 4877 if (ret < 0) 4878 goto out_put_cfile; 4879 4880 /* 4881 * Determine the event callbacks and set them in @event. This used 4882 * to be done via struct cftype but cgroup core no longer knows 4883 * about these events. The following is crude but the whole thing 4884 * is for compatibility anyway. 4885 * 4886 * DO NOT ADD NEW FILES. 4887 */ 4888 name = cfile.file->f_path.dentry->d_name.name; 4889 4890 if (!strcmp(name, "memory.usage_in_bytes")) { 4891 event->register_event = mem_cgroup_usage_register_event; 4892 event->unregister_event = mem_cgroup_usage_unregister_event; 4893 } else if (!strcmp(name, "memory.oom_control")) { 4894 event->register_event = mem_cgroup_oom_register_event; 4895 event->unregister_event = mem_cgroup_oom_unregister_event; 4896 } else if (!strcmp(name, "memory.pressure_level")) { 4897 event->register_event = vmpressure_register_event; 4898 event->unregister_event = vmpressure_unregister_event; 4899 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4900 event->register_event = memsw_cgroup_usage_register_event; 4901 event->unregister_event = memsw_cgroup_usage_unregister_event; 4902 } else { 4903 ret = -EINVAL; 4904 goto out_put_cfile; 4905 } 4906 4907 /* 4908 * Verify @cfile should belong to @css. Also, remaining events are 4909 * automatically removed on cgroup destruction but the removal is 4910 * asynchronous, so take an extra ref on @css. 4911 */ 4912 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4913 &memory_cgrp_subsys); 4914 ret = -EINVAL; 4915 if (IS_ERR(cfile_css)) 4916 goto out_put_cfile; 4917 if (cfile_css != css) { 4918 css_put(cfile_css); 4919 goto out_put_cfile; 4920 } 4921 4922 ret = event->register_event(memcg, event->eventfd, buf); 4923 if (ret) 4924 goto out_put_css; 4925 4926 vfs_poll(efile.file, &event->pt); 4927 4928 spin_lock(&memcg->event_list_lock); 4929 list_add(&event->list, &memcg->event_list); 4930 spin_unlock(&memcg->event_list_lock); 4931 4932 fdput(cfile); 4933 fdput(efile); 4934 4935 return nbytes; 4936 4937 out_put_css: 4938 css_put(css); 4939 out_put_cfile: 4940 fdput(cfile); 4941 out_put_eventfd: 4942 eventfd_ctx_put(event->eventfd); 4943 out_put_efile: 4944 fdput(efile); 4945 out_kfree: 4946 kfree(event); 4947 4948 return ret; 4949 } 4950 4951 static struct cftype mem_cgroup_legacy_files[] = { 4952 { 4953 .name = "usage_in_bytes", 4954 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4955 .read_u64 = mem_cgroup_read_u64, 4956 }, 4957 { 4958 .name = "max_usage_in_bytes", 4959 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4960 .write = mem_cgroup_reset, 4961 .read_u64 = mem_cgroup_read_u64, 4962 }, 4963 { 4964 .name = "limit_in_bytes", 4965 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4966 .write = mem_cgroup_write, 4967 .read_u64 = mem_cgroup_read_u64, 4968 }, 4969 { 4970 .name = "soft_limit_in_bytes", 4971 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4972 .write = mem_cgroup_write, 4973 .read_u64 = mem_cgroup_read_u64, 4974 }, 4975 { 4976 .name = "failcnt", 4977 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4978 .write = mem_cgroup_reset, 4979 .read_u64 = mem_cgroup_read_u64, 4980 }, 4981 { 4982 .name = "stat", 4983 .seq_show = memcg_stat_show, 4984 }, 4985 { 4986 .name = "force_empty", 4987 .write = mem_cgroup_force_empty_write, 4988 }, 4989 { 4990 .name = "use_hierarchy", 4991 .write_u64 = mem_cgroup_hierarchy_write, 4992 .read_u64 = mem_cgroup_hierarchy_read, 4993 }, 4994 { 4995 .name = "cgroup.event_control", /* XXX: for compat */ 4996 .write = memcg_write_event_control, 4997 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4998 }, 4999 { 5000 .name = "swappiness", 5001 .read_u64 = mem_cgroup_swappiness_read, 5002 .write_u64 = mem_cgroup_swappiness_write, 5003 }, 5004 { 5005 .name = "move_charge_at_immigrate", 5006 .read_u64 = mem_cgroup_move_charge_read, 5007 .write_u64 = mem_cgroup_move_charge_write, 5008 }, 5009 { 5010 .name = "oom_control", 5011 .seq_show = mem_cgroup_oom_control_read, 5012 .write_u64 = mem_cgroup_oom_control_write, 5013 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5014 }, 5015 { 5016 .name = "pressure_level", 5017 }, 5018 #ifdef CONFIG_NUMA 5019 { 5020 .name = "numa_stat", 5021 .seq_show = memcg_numa_stat_show, 5022 }, 5023 #endif 5024 { 5025 .name = "kmem.limit_in_bytes", 5026 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5027 .write = mem_cgroup_write, 5028 .read_u64 = mem_cgroup_read_u64, 5029 }, 5030 { 5031 .name = "kmem.usage_in_bytes", 5032 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5033 .read_u64 = mem_cgroup_read_u64, 5034 }, 5035 { 5036 .name = "kmem.failcnt", 5037 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5038 .write = mem_cgroup_reset, 5039 .read_u64 = mem_cgroup_read_u64, 5040 }, 5041 { 5042 .name = "kmem.max_usage_in_bytes", 5043 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5044 .write = mem_cgroup_reset, 5045 .read_u64 = mem_cgroup_read_u64, 5046 }, 5047 #if defined(CONFIG_MEMCG_KMEM) && \ 5048 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5049 { 5050 .name = "kmem.slabinfo", 5051 .seq_show = memcg_slab_show, 5052 }, 5053 #endif 5054 { 5055 .name = "kmem.tcp.limit_in_bytes", 5056 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5057 .write = mem_cgroup_write, 5058 .read_u64 = mem_cgroup_read_u64, 5059 }, 5060 { 5061 .name = "kmem.tcp.usage_in_bytes", 5062 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5063 .read_u64 = mem_cgroup_read_u64, 5064 }, 5065 { 5066 .name = "kmem.tcp.failcnt", 5067 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5068 .write = mem_cgroup_reset, 5069 .read_u64 = mem_cgroup_read_u64, 5070 }, 5071 { 5072 .name = "kmem.tcp.max_usage_in_bytes", 5073 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5074 .write = mem_cgroup_reset, 5075 .read_u64 = mem_cgroup_read_u64, 5076 }, 5077 { }, /* terminate */ 5078 }; 5079 5080 /* 5081 * Private memory cgroup IDR 5082 * 5083 * Swap-out records and page cache shadow entries need to store memcg 5084 * references in constrained space, so we maintain an ID space that is 5085 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5086 * memory-controlled cgroups to 64k. 5087 * 5088 * However, there usually are many references to the offline CSS after 5089 * the cgroup has been destroyed, such as page cache or reclaimable 5090 * slab objects, that don't need to hang on to the ID. We want to keep 5091 * those dead CSS from occupying IDs, or we might quickly exhaust the 5092 * relatively small ID space and prevent the creation of new cgroups 5093 * even when there are much fewer than 64k cgroups - possibly none. 5094 * 5095 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5096 * be freed and recycled when it's no longer needed, which is usually 5097 * when the CSS is offlined. 5098 * 5099 * The only exception to that are records of swapped out tmpfs/shmem 5100 * pages that need to be attributed to live ancestors on swapin. But 5101 * those references are manageable from userspace. 5102 */ 5103 5104 static DEFINE_IDR(mem_cgroup_idr); 5105 5106 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5107 { 5108 if (memcg->id.id > 0) { 5109 idr_remove(&mem_cgroup_idr, memcg->id.id); 5110 memcg->id.id = 0; 5111 } 5112 } 5113 5114 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5115 unsigned int n) 5116 { 5117 refcount_add(n, &memcg->id.ref); 5118 } 5119 5120 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5121 { 5122 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5123 mem_cgroup_id_remove(memcg); 5124 5125 /* Memcg ID pins CSS */ 5126 css_put(&memcg->css); 5127 } 5128 } 5129 5130 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5131 { 5132 mem_cgroup_id_put_many(memcg, 1); 5133 } 5134 5135 /** 5136 * mem_cgroup_from_id - look up a memcg from a memcg id 5137 * @id: the memcg id to look up 5138 * 5139 * Caller must hold rcu_read_lock(). 5140 */ 5141 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5142 { 5143 WARN_ON_ONCE(!rcu_read_lock_held()); 5144 return idr_find(&mem_cgroup_idr, id); 5145 } 5146 5147 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5148 { 5149 struct mem_cgroup_per_node *pn; 5150 int tmp = node; 5151 /* 5152 * This routine is called against possible nodes. 5153 * But it's BUG to call kmalloc() against offline node. 5154 * 5155 * TODO: this routine can waste much memory for nodes which will 5156 * never be onlined. It's better to use memory hotplug callback 5157 * function. 5158 */ 5159 if (!node_state(node, N_NORMAL_MEMORY)) 5160 tmp = -1; 5161 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5162 if (!pn) 5163 return 1; 5164 5165 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat, 5166 GFP_KERNEL_ACCOUNT); 5167 if (!pn->lruvec_stat_local) { 5168 kfree(pn); 5169 return 1; 5170 } 5171 5172 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat, 5173 GFP_KERNEL_ACCOUNT); 5174 if (!pn->lruvec_stat_cpu) { 5175 free_percpu(pn->lruvec_stat_local); 5176 kfree(pn); 5177 return 1; 5178 } 5179 5180 lruvec_init(&pn->lruvec); 5181 pn->usage_in_excess = 0; 5182 pn->on_tree = false; 5183 pn->memcg = memcg; 5184 5185 memcg->nodeinfo[node] = pn; 5186 return 0; 5187 } 5188 5189 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5190 { 5191 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5192 5193 if (!pn) 5194 return; 5195 5196 free_percpu(pn->lruvec_stat_cpu); 5197 free_percpu(pn->lruvec_stat_local); 5198 kfree(pn); 5199 } 5200 5201 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5202 { 5203 int node; 5204 5205 for_each_node(node) 5206 free_mem_cgroup_per_node_info(memcg, node); 5207 free_percpu(memcg->vmstats_percpu); 5208 free_percpu(memcg->vmstats_local); 5209 kfree(memcg); 5210 } 5211 5212 static void mem_cgroup_free(struct mem_cgroup *memcg) 5213 { 5214 memcg_wb_domain_exit(memcg); 5215 /* 5216 * Flush percpu vmstats and vmevents to guarantee the value correctness 5217 * on parent's and all ancestor levels. 5218 */ 5219 memcg_flush_percpu_vmstats(memcg); 5220 memcg_flush_percpu_vmevents(memcg); 5221 __mem_cgroup_free(memcg); 5222 } 5223 5224 static struct mem_cgroup *mem_cgroup_alloc(void) 5225 { 5226 struct mem_cgroup *memcg; 5227 unsigned int size; 5228 int node; 5229 int __maybe_unused i; 5230 long error = -ENOMEM; 5231 5232 size = sizeof(struct mem_cgroup); 5233 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5234 5235 memcg = kzalloc(size, GFP_KERNEL); 5236 if (!memcg) 5237 return ERR_PTR(error); 5238 5239 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5240 1, MEM_CGROUP_ID_MAX, 5241 GFP_KERNEL); 5242 if (memcg->id.id < 0) { 5243 error = memcg->id.id; 5244 goto fail; 5245 } 5246 5247 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5248 GFP_KERNEL_ACCOUNT); 5249 if (!memcg->vmstats_local) 5250 goto fail; 5251 5252 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5253 GFP_KERNEL_ACCOUNT); 5254 if (!memcg->vmstats_percpu) 5255 goto fail; 5256 5257 for_each_node(node) 5258 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5259 goto fail; 5260 5261 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5262 goto fail; 5263 5264 INIT_WORK(&memcg->high_work, high_work_func); 5265 INIT_LIST_HEAD(&memcg->oom_notify); 5266 mutex_init(&memcg->thresholds_lock); 5267 spin_lock_init(&memcg->move_lock); 5268 vmpressure_init(&memcg->vmpressure); 5269 INIT_LIST_HEAD(&memcg->event_list); 5270 spin_lock_init(&memcg->event_list_lock); 5271 memcg->socket_pressure = jiffies; 5272 #ifdef CONFIG_MEMCG_KMEM 5273 memcg->kmemcg_id = -1; 5274 INIT_LIST_HEAD(&memcg->objcg_list); 5275 #endif 5276 #ifdef CONFIG_CGROUP_WRITEBACK 5277 INIT_LIST_HEAD(&memcg->cgwb_list); 5278 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5279 memcg->cgwb_frn[i].done = 5280 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5281 #endif 5282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5283 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5284 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5285 memcg->deferred_split_queue.split_queue_len = 0; 5286 #endif 5287 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5288 return memcg; 5289 fail: 5290 mem_cgroup_id_remove(memcg); 5291 __mem_cgroup_free(memcg); 5292 return ERR_PTR(error); 5293 } 5294 5295 static struct cgroup_subsys_state * __ref 5296 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5297 { 5298 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5299 struct mem_cgroup *memcg, *old_memcg; 5300 long error = -ENOMEM; 5301 5302 old_memcg = set_active_memcg(parent); 5303 memcg = mem_cgroup_alloc(); 5304 set_active_memcg(old_memcg); 5305 if (IS_ERR(memcg)) 5306 return ERR_CAST(memcg); 5307 5308 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5309 memcg->soft_limit = PAGE_COUNTER_MAX; 5310 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5311 if (parent) { 5312 memcg->swappiness = mem_cgroup_swappiness(parent); 5313 memcg->oom_kill_disable = parent->oom_kill_disable; 5314 5315 page_counter_init(&memcg->memory, &parent->memory); 5316 page_counter_init(&memcg->swap, &parent->swap); 5317 page_counter_init(&memcg->kmem, &parent->kmem); 5318 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5319 } else { 5320 page_counter_init(&memcg->memory, NULL); 5321 page_counter_init(&memcg->swap, NULL); 5322 page_counter_init(&memcg->kmem, NULL); 5323 page_counter_init(&memcg->tcpmem, NULL); 5324 5325 root_mem_cgroup = memcg; 5326 return &memcg->css; 5327 } 5328 5329 /* The following stuff does not apply to the root */ 5330 error = memcg_online_kmem(memcg); 5331 if (error) 5332 goto fail; 5333 5334 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5335 static_branch_inc(&memcg_sockets_enabled_key); 5336 5337 return &memcg->css; 5338 fail: 5339 mem_cgroup_id_remove(memcg); 5340 mem_cgroup_free(memcg); 5341 return ERR_PTR(error); 5342 } 5343 5344 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5345 { 5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5347 5348 /* 5349 * A memcg must be visible for memcg_expand_shrinker_maps() 5350 * by the time the maps are allocated. So, we allocate maps 5351 * here, when for_each_mem_cgroup() can't skip it. 5352 */ 5353 if (memcg_alloc_shrinker_maps(memcg)) { 5354 mem_cgroup_id_remove(memcg); 5355 return -ENOMEM; 5356 } 5357 5358 /* Online state pins memcg ID, memcg ID pins CSS */ 5359 refcount_set(&memcg->id.ref, 1); 5360 css_get(css); 5361 return 0; 5362 } 5363 5364 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5365 { 5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5367 struct mem_cgroup_event *event, *tmp; 5368 5369 /* 5370 * Unregister events and notify userspace. 5371 * Notify userspace about cgroup removing only after rmdir of cgroup 5372 * directory to avoid race between userspace and kernelspace. 5373 */ 5374 spin_lock(&memcg->event_list_lock); 5375 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5376 list_del_init(&event->list); 5377 schedule_work(&event->remove); 5378 } 5379 spin_unlock(&memcg->event_list_lock); 5380 5381 page_counter_set_min(&memcg->memory, 0); 5382 page_counter_set_low(&memcg->memory, 0); 5383 5384 memcg_offline_kmem(memcg); 5385 wb_memcg_offline(memcg); 5386 5387 drain_all_stock(memcg); 5388 5389 mem_cgroup_id_put(memcg); 5390 } 5391 5392 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5393 { 5394 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5395 5396 invalidate_reclaim_iterators(memcg); 5397 } 5398 5399 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5400 { 5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5402 int __maybe_unused i; 5403 5404 #ifdef CONFIG_CGROUP_WRITEBACK 5405 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5406 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5407 #endif 5408 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5409 static_branch_dec(&memcg_sockets_enabled_key); 5410 5411 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5412 static_branch_dec(&memcg_sockets_enabled_key); 5413 5414 vmpressure_cleanup(&memcg->vmpressure); 5415 cancel_work_sync(&memcg->high_work); 5416 mem_cgroup_remove_from_trees(memcg); 5417 memcg_free_shrinker_maps(memcg); 5418 memcg_free_kmem(memcg); 5419 mem_cgroup_free(memcg); 5420 } 5421 5422 /** 5423 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5424 * @css: the target css 5425 * 5426 * Reset the states of the mem_cgroup associated with @css. This is 5427 * invoked when the userland requests disabling on the default hierarchy 5428 * but the memcg is pinned through dependency. The memcg should stop 5429 * applying policies and should revert to the vanilla state as it may be 5430 * made visible again. 5431 * 5432 * The current implementation only resets the essential configurations. 5433 * This needs to be expanded to cover all the visible parts. 5434 */ 5435 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5436 { 5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5438 5439 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5440 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5441 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5442 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5443 page_counter_set_min(&memcg->memory, 0); 5444 page_counter_set_low(&memcg->memory, 0); 5445 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5446 memcg->soft_limit = PAGE_COUNTER_MAX; 5447 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5448 memcg_wb_domain_size_changed(memcg); 5449 } 5450 5451 #ifdef CONFIG_MMU 5452 /* Handlers for move charge at task migration. */ 5453 static int mem_cgroup_do_precharge(unsigned long count) 5454 { 5455 int ret; 5456 5457 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5458 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5459 if (!ret) { 5460 mc.precharge += count; 5461 return ret; 5462 } 5463 5464 /* Try charges one by one with reclaim, but do not retry */ 5465 while (count--) { 5466 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5467 if (ret) 5468 return ret; 5469 mc.precharge++; 5470 cond_resched(); 5471 } 5472 return 0; 5473 } 5474 5475 union mc_target { 5476 struct page *page; 5477 swp_entry_t ent; 5478 }; 5479 5480 enum mc_target_type { 5481 MC_TARGET_NONE = 0, 5482 MC_TARGET_PAGE, 5483 MC_TARGET_SWAP, 5484 MC_TARGET_DEVICE, 5485 }; 5486 5487 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5488 unsigned long addr, pte_t ptent) 5489 { 5490 struct page *page = vm_normal_page(vma, addr, ptent); 5491 5492 if (!page || !page_mapped(page)) 5493 return NULL; 5494 if (PageAnon(page)) { 5495 if (!(mc.flags & MOVE_ANON)) 5496 return NULL; 5497 } else { 5498 if (!(mc.flags & MOVE_FILE)) 5499 return NULL; 5500 } 5501 if (!get_page_unless_zero(page)) 5502 return NULL; 5503 5504 return page; 5505 } 5506 5507 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5508 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5509 pte_t ptent, swp_entry_t *entry) 5510 { 5511 struct page *page = NULL; 5512 swp_entry_t ent = pte_to_swp_entry(ptent); 5513 5514 if (!(mc.flags & MOVE_ANON)) 5515 return NULL; 5516 5517 /* 5518 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5519 * a device and because they are not accessible by CPU they are store 5520 * as special swap entry in the CPU page table. 5521 */ 5522 if (is_device_private_entry(ent)) { 5523 page = device_private_entry_to_page(ent); 5524 /* 5525 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5526 * a refcount of 1 when free (unlike normal page) 5527 */ 5528 if (!page_ref_add_unless(page, 1, 1)) 5529 return NULL; 5530 return page; 5531 } 5532 5533 if (non_swap_entry(ent)) 5534 return NULL; 5535 5536 /* 5537 * Because lookup_swap_cache() updates some statistics counter, 5538 * we call find_get_page() with swapper_space directly. 5539 */ 5540 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5541 entry->val = ent.val; 5542 5543 return page; 5544 } 5545 #else 5546 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5547 pte_t ptent, swp_entry_t *entry) 5548 { 5549 return NULL; 5550 } 5551 #endif 5552 5553 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5554 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5555 { 5556 if (!vma->vm_file) /* anonymous vma */ 5557 return NULL; 5558 if (!(mc.flags & MOVE_FILE)) 5559 return NULL; 5560 5561 /* page is moved even if it's not RSS of this task(page-faulted). */ 5562 /* shmem/tmpfs may report page out on swap: account for that too. */ 5563 return find_get_incore_page(vma->vm_file->f_mapping, 5564 linear_page_index(vma, addr)); 5565 } 5566 5567 /** 5568 * mem_cgroup_move_account - move account of the page 5569 * @page: the page 5570 * @compound: charge the page as compound or small page 5571 * @from: mem_cgroup which the page is moved from. 5572 * @to: mem_cgroup which the page is moved to. @from != @to. 5573 * 5574 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5575 * 5576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5577 * from old cgroup. 5578 */ 5579 static int mem_cgroup_move_account(struct page *page, 5580 bool compound, 5581 struct mem_cgroup *from, 5582 struct mem_cgroup *to) 5583 { 5584 struct lruvec *from_vec, *to_vec; 5585 struct pglist_data *pgdat; 5586 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1; 5587 int ret; 5588 5589 VM_BUG_ON(from == to); 5590 VM_BUG_ON_PAGE(PageLRU(page), page); 5591 VM_BUG_ON(compound && !PageTransHuge(page)); 5592 5593 /* 5594 * Prevent mem_cgroup_migrate() from looking at 5595 * page's memory cgroup of its source page while we change it. 5596 */ 5597 ret = -EBUSY; 5598 if (!trylock_page(page)) 5599 goto out; 5600 5601 ret = -EINVAL; 5602 if (page_memcg(page) != from) 5603 goto out_unlock; 5604 5605 pgdat = page_pgdat(page); 5606 from_vec = mem_cgroup_lruvec(from, pgdat); 5607 to_vec = mem_cgroup_lruvec(to, pgdat); 5608 5609 lock_page_memcg(page); 5610 5611 if (PageAnon(page)) { 5612 if (page_mapped(page)) { 5613 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5614 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5615 if (PageTransHuge(page)) { 5616 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5617 -nr_pages); 5618 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5619 nr_pages); 5620 } 5621 } 5622 } else { 5623 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5624 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5625 5626 if (PageSwapBacked(page)) { 5627 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5628 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5629 } 5630 5631 if (page_mapped(page)) { 5632 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5633 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5634 } 5635 5636 if (PageDirty(page)) { 5637 struct address_space *mapping = page_mapping(page); 5638 5639 if (mapping_can_writeback(mapping)) { 5640 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5641 -nr_pages); 5642 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5643 nr_pages); 5644 } 5645 } 5646 } 5647 5648 if (PageWriteback(page)) { 5649 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5650 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5651 } 5652 5653 /* 5654 * All state has been migrated, let's switch to the new memcg. 5655 * 5656 * It is safe to change page's memcg here because the page 5657 * is referenced, charged, isolated, and locked: we can't race 5658 * with (un)charging, migration, LRU putback, or anything else 5659 * that would rely on a stable page's memory cgroup. 5660 * 5661 * Note that lock_page_memcg is a memcg lock, not a page lock, 5662 * to save space. As soon as we switch page's memory cgroup to a 5663 * new memcg that isn't locked, the above state can change 5664 * concurrently again. Make sure we're truly done with it. 5665 */ 5666 smp_mb(); 5667 5668 css_get(&to->css); 5669 css_put(&from->css); 5670 5671 page->memcg_data = (unsigned long)to; 5672 5673 __unlock_page_memcg(from); 5674 5675 ret = 0; 5676 5677 local_irq_disable(); 5678 mem_cgroup_charge_statistics(to, page, nr_pages); 5679 memcg_check_events(to, page); 5680 mem_cgroup_charge_statistics(from, page, -nr_pages); 5681 memcg_check_events(from, page); 5682 local_irq_enable(); 5683 out_unlock: 5684 unlock_page(page); 5685 out: 5686 return ret; 5687 } 5688 5689 /** 5690 * get_mctgt_type - get target type of moving charge 5691 * @vma: the vma the pte to be checked belongs 5692 * @addr: the address corresponding to the pte to be checked 5693 * @ptent: the pte to be checked 5694 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5695 * 5696 * Returns 5697 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5698 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5699 * move charge. if @target is not NULL, the page is stored in target->page 5700 * with extra refcnt got(Callers should handle it). 5701 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5702 * target for charge migration. if @target is not NULL, the entry is stored 5703 * in target->ent. 5704 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5705 * (so ZONE_DEVICE page and thus not on the lru). 5706 * For now we such page is charge like a regular page would be as for all 5707 * intent and purposes it is just special memory taking the place of a 5708 * regular page. 5709 * 5710 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5711 * 5712 * Called with pte lock held. 5713 */ 5714 5715 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5716 unsigned long addr, pte_t ptent, union mc_target *target) 5717 { 5718 struct page *page = NULL; 5719 enum mc_target_type ret = MC_TARGET_NONE; 5720 swp_entry_t ent = { .val = 0 }; 5721 5722 if (pte_present(ptent)) 5723 page = mc_handle_present_pte(vma, addr, ptent); 5724 else if (is_swap_pte(ptent)) 5725 page = mc_handle_swap_pte(vma, ptent, &ent); 5726 else if (pte_none(ptent)) 5727 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5728 5729 if (!page && !ent.val) 5730 return ret; 5731 if (page) { 5732 /* 5733 * Do only loose check w/o serialization. 5734 * mem_cgroup_move_account() checks the page is valid or 5735 * not under LRU exclusion. 5736 */ 5737 if (page_memcg(page) == mc.from) { 5738 ret = MC_TARGET_PAGE; 5739 if (is_device_private_page(page)) 5740 ret = MC_TARGET_DEVICE; 5741 if (target) 5742 target->page = page; 5743 } 5744 if (!ret || !target) 5745 put_page(page); 5746 } 5747 /* 5748 * There is a swap entry and a page doesn't exist or isn't charged. 5749 * But we cannot move a tail-page in a THP. 5750 */ 5751 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5752 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5753 ret = MC_TARGET_SWAP; 5754 if (target) 5755 target->ent = ent; 5756 } 5757 return ret; 5758 } 5759 5760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5761 /* 5762 * We don't consider PMD mapped swapping or file mapped pages because THP does 5763 * not support them for now. 5764 * Caller should make sure that pmd_trans_huge(pmd) is true. 5765 */ 5766 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5767 unsigned long addr, pmd_t pmd, union mc_target *target) 5768 { 5769 struct page *page = NULL; 5770 enum mc_target_type ret = MC_TARGET_NONE; 5771 5772 if (unlikely(is_swap_pmd(pmd))) { 5773 VM_BUG_ON(thp_migration_supported() && 5774 !is_pmd_migration_entry(pmd)); 5775 return ret; 5776 } 5777 page = pmd_page(pmd); 5778 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5779 if (!(mc.flags & MOVE_ANON)) 5780 return ret; 5781 if (page_memcg(page) == mc.from) { 5782 ret = MC_TARGET_PAGE; 5783 if (target) { 5784 get_page(page); 5785 target->page = page; 5786 } 5787 } 5788 return ret; 5789 } 5790 #else 5791 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5792 unsigned long addr, pmd_t pmd, union mc_target *target) 5793 { 5794 return MC_TARGET_NONE; 5795 } 5796 #endif 5797 5798 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5799 unsigned long addr, unsigned long end, 5800 struct mm_walk *walk) 5801 { 5802 struct vm_area_struct *vma = walk->vma; 5803 pte_t *pte; 5804 spinlock_t *ptl; 5805 5806 ptl = pmd_trans_huge_lock(pmd, vma); 5807 if (ptl) { 5808 /* 5809 * Note their can not be MC_TARGET_DEVICE for now as we do not 5810 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5811 * this might change. 5812 */ 5813 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5814 mc.precharge += HPAGE_PMD_NR; 5815 spin_unlock(ptl); 5816 return 0; 5817 } 5818 5819 if (pmd_trans_unstable(pmd)) 5820 return 0; 5821 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5822 for (; addr != end; pte++, addr += PAGE_SIZE) 5823 if (get_mctgt_type(vma, addr, *pte, NULL)) 5824 mc.precharge++; /* increment precharge temporarily */ 5825 pte_unmap_unlock(pte - 1, ptl); 5826 cond_resched(); 5827 5828 return 0; 5829 } 5830 5831 static const struct mm_walk_ops precharge_walk_ops = { 5832 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5833 }; 5834 5835 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5836 { 5837 unsigned long precharge; 5838 5839 mmap_read_lock(mm); 5840 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5841 mmap_read_unlock(mm); 5842 5843 precharge = mc.precharge; 5844 mc.precharge = 0; 5845 5846 return precharge; 5847 } 5848 5849 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5850 { 5851 unsigned long precharge = mem_cgroup_count_precharge(mm); 5852 5853 VM_BUG_ON(mc.moving_task); 5854 mc.moving_task = current; 5855 return mem_cgroup_do_precharge(precharge); 5856 } 5857 5858 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5859 static void __mem_cgroup_clear_mc(void) 5860 { 5861 struct mem_cgroup *from = mc.from; 5862 struct mem_cgroup *to = mc.to; 5863 5864 /* we must uncharge all the leftover precharges from mc.to */ 5865 if (mc.precharge) { 5866 cancel_charge(mc.to, mc.precharge); 5867 mc.precharge = 0; 5868 } 5869 /* 5870 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5871 * we must uncharge here. 5872 */ 5873 if (mc.moved_charge) { 5874 cancel_charge(mc.from, mc.moved_charge); 5875 mc.moved_charge = 0; 5876 } 5877 /* we must fixup refcnts and charges */ 5878 if (mc.moved_swap) { 5879 /* uncharge swap account from the old cgroup */ 5880 if (!mem_cgroup_is_root(mc.from)) 5881 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5882 5883 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5884 5885 /* 5886 * we charged both to->memory and to->memsw, so we 5887 * should uncharge to->memory. 5888 */ 5889 if (!mem_cgroup_is_root(mc.to)) 5890 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5891 5892 mc.moved_swap = 0; 5893 } 5894 memcg_oom_recover(from); 5895 memcg_oom_recover(to); 5896 wake_up_all(&mc.waitq); 5897 } 5898 5899 static void mem_cgroup_clear_mc(void) 5900 { 5901 struct mm_struct *mm = mc.mm; 5902 5903 /* 5904 * we must clear moving_task before waking up waiters at the end of 5905 * task migration. 5906 */ 5907 mc.moving_task = NULL; 5908 __mem_cgroup_clear_mc(); 5909 spin_lock(&mc.lock); 5910 mc.from = NULL; 5911 mc.to = NULL; 5912 mc.mm = NULL; 5913 spin_unlock(&mc.lock); 5914 5915 mmput(mm); 5916 } 5917 5918 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5919 { 5920 struct cgroup_subsys_state *css; 5921 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5922 struct mem_cgroup *from; 5923 struct task_struct *leader, *p; 5924 struct mm_struct *mm; 5925 unsigned long move_flags; 5926 int ret = 0; 5927 5928 /* charge immigration isn't supported on the default hierarchy */ 5929 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5930 return 0; 5931 5932 /* 5933 * Multi-process migrations only happen on the default hierarchy 5934 * where charge immigration is not used. Perform charge 5935 * immigration if @tset contains a leader and whine if there are 5936 * multiple. 5937 */ 5938 p = NULL; 5939 cgroup_taskset_for_each_leader(leader, css, tset) { 5940 WARN_ON_ONCE(p); 5941 p = leader; 5942 memcg = mem_cgroup_from_css(css); 5943 } 5944 if (!p) 5945 return 0; 5946 5947 /* 5948 * We are now commited to this value whatever it is. Changes in this 5949 * tunable will only affect upcoming migrations, not the current one. 5950 * So we need to save it, and keep it going. 5951 */ 5952 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5953 if (!move_flags) 5954 return 0; 5955 5956 from = mem_cgroup_from_task(p); 5957 5958 VM_BUG_ON(from == memcg); 5959 5960 mm = get_task_mm(p); 5961 if (!mm) 5962 return 0; 5963 /* We move charges only when we move a owner of the mm */ 5964 if (mm->owner == p) { 5965 VM_BUG_ON(mc.from); 5966 VM_BUG_ON(mc.to); 5967 VM_BUG_ON(mc.precharge); 5968 VM_BUG_ON(mc.moved_charge); 5969 VM_BUG_ON(mc.moved_swap); 5970 5971 spin_lock(&mc.lock); 5972 mc.mm = mm; 5973 mc.from = from; 5974 mc.to = memcg; 5975 mc.flags = move_flags; 5976 spin_unlock(&mc.lock); 5977 /* We set mc.moving_task later */ 5978 5979 ret = mem_cgroup_precharge_mc(mm); 5980 if (ret) 5981 mem_cgroup_clear_mc(); 5982 } else { 5983 mmput(mm); 5984 } 5985 return ret; 5986 } 5987 5988 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5989 { 5990 if (mc.to) 5991 mem_cgroup_clear_mc(); 5992 } 5993 5994 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5995 unsigned long addr, unsigned long end, 5996 struct mm_walk *walk) 5997 { 5998 int ret = 0; 5999 struct vm_area_struct *vma = walk->vma; 6000 pte_t *pte; 6001 spinlock_t *ptl; 6002 enum mc_target_type target_type; 6003 union mc_target target; 6004 struct page *page; 6005 6006 ptl = pmd_trans_huge_lock(pmd, vma); 6007 if (ptl) { 6008 if (mc.precharge < HPAGE_PMD_NR) { 6009 spin_unlock(ptl); 6010 return 0; 6011 } 6012 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6013 if (target_type == MC_TARGET_PAGE) { 6014 page = target.page; 6015 if (!isolate_lru_page(page)) { 6016 if (!mem_cgroup_move_account(page, true, 6017 mc.from, mc.to)) { 6018 mc.precharge -= HPAGE_PMD_NR; 6019 mc.moved_charge += HPAGE_PMD_NR; 6020 } 6021 putback_lru_page(page); 6022 } 6023 put_page(page); 6024 } else if (target_type == MC_TARGET_DEVICE) { 6025 page = target.page; 6026 if (!mem_cgroup_move_account(page, true, 6027 mc.from, mc.to)) { 6028 mc.precharge -= HPAGE_PMD_NR; 6029 mc.moved_charge += HPAGE_PMD_NR; 6030 } 6031 put_page(page); 6032 } 6033 spin_unlock(ptl); 6034 return 0; 6035 } 6036 6037 if (pmd_trans_unstable(pmd)) 6038 return 0; 6039 retry: 6040 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6041 for (; addr != end; addr += PAGE_SIZE) { 6042 pte_t ptent = *(pte++); 6043 bool device = false; 6044 swp_entry_t ent; 6045 6046 if (!mc.precharge) 6047 break; 6048 6049 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6050 case MC_TARGET_DEVICE: 6051 device = true; 6052 fallthrough; 6053 case MC_TARGET_PAGE: 6054 page = target.page; 6055 /* 6056 * We can have a part of the split pmd here. Moving it 6057 * can be done but it would be too convoluted so simply 6058 * ignore such a partial THP and keep it in original 6059 * memcg. There should be somebody mapping the head. 6060 */ 6061 if (PageTransCompound(page)) 6062 goto put; 6063 if (!device && isolate_lru_page(page)) 6064 goto put; 6065 if (!mem_cgroup_move_account(page, false, 6066 mc.from, mc.to)) { 6067 mc.precharge--; 6068 /* we uncharge from mc.from later. */ 6069 mc.moved_charge++; 6070 } 6071 if (!device) 6072 putback_lru_page(page); 6073 put: /* get_mctgt_type() gets the page */ 6074 put_page(page); 6075 break; 6076 case MC_TARGET_SWAP: 6077 ent = target.ent; 6078 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6079 mc.precharge--; 6080 mem_cgroup_id_get_many(mc.to, 1); 6081 /* we fixup other refcnts and charges later. */ 6082 mc.moved_swap++; 6083 } 6084 break; 6085 default: 6086 break; 6087 } 6088 } 6089 pte_unmap_unlock(pte - 1, ptl); 6090 cond_resched(); 6091 6092 if (addr != end) { 6093 /* 6094 * We have consumed all precharges we got in can_attach(). 6095 * We try charge one by one, but don't do any additional 6096 * charges to mc.to if we have failed in charge once in attach() 6097 * phase. 6098 */ 6099 ret = mem_cgroup_do_precharge(1); 6100 if (!ret) 6101 goto retry; 6102 } 6103 6104 return ret; 6105 } 6106 6107 static const struct mm_walk_ops charge_walk_ops = { 6108 .pmd_entry = mem_cgroup_move_charge_pte_range, 6109 }; 6110 6111 static void mem_cgroup_move_charge(void) 6112 { 6113 lru_add_drain_all(); 6114 /* 6115 * Signal lock_page_memcg() to take the memcg's move_lock 6116 * while we're moving its pages to another memcg. Then wait 6117 * for already started RCU-only updates to finish. 6118 */ 6119 atomic_inc(&mc.from->moving_account); 6120 synchronize_rcu(); 6121 retry: 6122 if (unlikely(!mmap_read_trylock(mc.mm))) { 6123 /* 6124 * Someone who are holding the mmap_lock might be waiting in 6125 * waitq. So we cancel all extra charges, wake up all waiters, 6126 * and retry. Because we cancel precharges, we might not be able 6127 * to move enough charges, but moving charge is a best-effort 6128 * feature anyway, so it wouldn't be a big problem. 6129 */ 6130 __mem_cgroup_clear_mc(); 6131 cond_resched(); 6132 goto retry; 6133 } 6134 /* 6135 * When we have consumed all precharges and failed in doing 6136 * additional charge, the page walk just aborts. 6137 */ 6138 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6139 NULL); 6140 6141 mmap_read_unlock(mc.mm); 6142 atomic_dec(&mc.from->moving_account); 6143 } 6144 6145 static void mem_cgroup_move_task(void) 6146 { 6147 if (mc.to) { 6148 mem_cgroup_move_charge(); 6149 mem_cgroup_clear_mc(); 6150 } 6151 } 6152 #else /* !CONFIG_MMU */ 6153 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6154 { 6155 return 0; 6156 } 6157 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6158 { 6159 } 6160 static void mem_cgroup_move_task(void) 6161 { 6162 } 6163 #endif 6164 6165 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6166 { 6167 if (value == PAGE_COUNTER_MAX) 6168 seq_puts(m, "max\n"); 6169 else 6170 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6171 6172 return 0; 6173 } 6174 6175 static u64 memory_current_read(struct cgroup_subsys_state *css, 6176 struct cftype *cft) 6177 { 6178 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6179 6180 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6181 } 6182 6183 static int memory_min_show(struct seq_file *m, void *v) 6184 { 6185 return seq_puts_memcg_tunable(m, 6186 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6187 } 6188 6189 static ssize_t memory_min_write(struct kernfs_open_file *of, 6190 char *buf, size_t nbytes, loff_t off) 6191 { 6192 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6193 unsigned long min; 6194 int err; 6195 6196 buf = strstrip(buf); 6197 err = page_counter_memparse(buf, "max", &min); 6198 if (err) 6199 return err; 6200 6201 page_counter_set_min(&memcg->memory, min); 6202 6203 return nbytes; 6204 } 6205 6206 static int memory_low_show(struct seq_file *m, void *v) 6207 { 6208 return seq_puts_memcg_tunable(m, 6209 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6210 } 6211 6212 static ssize_t memory_low_write(struct kernfs_open_file *of, 6213 char *buf, size_t nbytes, loff_t off) 6214 { 6215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6216 unsigned long low; 6217 int err; 6218 6219 buf = strstrip(buf); 6220 err = page_counter_memparse(buf, "max", &low); 6221 if (err) 6222 return err; 6223 6224 page_counter_set_low(&memcg->memory, low); 6225 6226 return nbytes; 6227 } 6228 6229 static int memory_high_show(struct seq_file *m, void *v) 6230 { 6231 return seq_puts_memcg_tunable(m, 6232 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6233 } 6234 6235 static ssize_t memory_high_write(struct kernfs_open_file *of, 6236 char *buf, size_t nbytes, loff_t off) 6237 { 6238 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6239 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6240 bool drained = false; 6241 unsigned long high; 6242 int err; 6243 6244 buf = strstrip(buf); 6245 err = page_counter_memparse(buf, "max", &high); 6246 if (err) 6247 return err; 6248 6249 page_counter_set_high(&memcg->memory, high); 6250 6251 for (;;) { 6252 unsigned long nr_pages = page_counter_read(&memcg->memory); 6253 unsigned long reclaimed; 6254 6255 if (nr_pages <= high) 6256 break; 6257 6258 if (signal_pending(current)) 6259 break; 6260 6261 if (!drained) { 6262 drain_all_stock(memcg); 6263 drained = true; 6264 continue; 6265 } 6266 6267 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6268 GFP_KERNEL, true); 6269 6270 if (!reclaimed && !nr_retries--) 6271 break; 6272 } 6273 6274 memcg_wb_domain_size_changed(memcg); 6275 return nbytes; 6276 } 6277 6278 static int memory_max_show(struct seq_file *m, void *v) 6279 { 6280 return seq_puts_memcg_tunable(m, 6281 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6282 } 6283 6284 static ssize_t memory_max_write(struct kernfs_open_file *of, 6285 char *buf, size_t nbytes, loff_t off) 6286 { 6287 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6288 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6289 bool drained = false; 6290 unsigned long max; 6291 int err; 6292 6293 buf = strstrip(buf); 6294 err = page_counter_memparse(buf, "max", &max); 6295 if (err) 6296 return err; 6297 6298 xchg(&memcg->memory.max, max); 6299 6300 for (;;) { 6301 unsigned long nr_pages = page_counter_read(&memcg->memory); 6302 6303 if (nr_pages <= max) 6304 break; 6305 6306 if (signal_pending(current)) 6307 break; 6308 6309 if (!drained) { 6310 drain_all_stock(memcg); 6311 drained = true; 6312 continue; 6313 } 6314 6315 if (nr_reclaims) { 6316 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6317 GFP_KERNEL, true)) 6318 nr_reclaims--; 6319 continue; 6320 } 6321 6322 memcg_memory_event(memcg, MEMCG_OOM); 6323 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6324 break; 6325 } 6326 6327 memcg_wb_domain_size_changed(memcg); 6328 return nbytes; 6329 } 6330 6331 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6332 { 6333 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6334 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6335 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6336 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6337 seq_printf(m, "oom_kill %lu\n", 6338 atomic_long_read(&events[MEMCG_OOM_KILL])); 6339 } 6340 6341 static int memory_events_show(struct seq_file *m, void *v) 6342 { 6343 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6344 6345 __memory_events_show(m, memcg->memory_events); 6346 return 0; 6347 } 6348 6349 static int memory_events_local_show(struct seq_file *m, void *v) 6350 { 6351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6352 6353 __memory_events_show(m, memcg->memory_events_local); 6354 return 0; 6355 } 6356 6357 static int memory_stat_show(struct seq_file *m, void *v) 6358 { 6359 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6360 char *buf; 6361 6362 buf = memory_stat_format(memcg); 6363 if (!buf) 6364 return -ENOMEM; 6365 seq_puts(m, buf); 6366 kfree(buf); 6367 return 0; 6368 } 6369 6370 #ifdef CONFIG_NUMA 6371 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6372 int item) 6373 { 6374 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6375 } 6376 6377 static int memory_numa_stat_show(struct seq_file *m, void *v) 6378 { 6379 int i; 6380 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6381 6382 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6383 int nid; 6384 6385 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6386 continue; 6387 6388 seq_printf(m, "%s", memory_stats[i].name); 6389 for_each_node_state(nid, N_MEMORY) { 6390 u64 size; 6391 struct lruvec *lruvec; 6392 6393 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6394 size = lruvec_page_state_output(lruvec, 6395 memory_stats[i].idx); 6396 seq_printf(m, " N%d=%llu", nid, size); 6397 } 6398 seq_putc(m, '\n'); 6399 } 6400 6401 return 0; 6402 } 6403 #endif 6404 6405 static int memory_oom_group_show(struct seq_file *m, void *v) 6406 { 6407 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6408 6409 seq_printf(m, "%d\n", memcg->oom_group); 6410 6411 return 0; 6412 } 6413 6414 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6415 char *buf, size_t nbytes, loff_t off) 6416 { 6417 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6418 int ret, oom_group; 6419 6420 buf = strstrip(buf); 6421 if (!buf) 6422 return -EINVAL; 6423 6424 ret = kstrtoint(buf, 0, &oom_group); 6425 if (ret) 6426 return ret; 6427 6428 if (oom_group != 0 && oom_group != 1) 6429 return -EINVAL; 6430 6431 memcg->oom_group = oom_group; 6432 6433 return nbytes; 6434 } 6435 6436 static struct cftype memory_files[] = { 6437 { 6438 .name = "current", 6439 .flags = CFTYPE_NOT_ON_ROOT, 6440 .read_u64 = memory_current_read, 6441 }, 6442 { 6443 .name = "min", 6444 .flags = CFTYPE_NOT_ON_ROOT, 6445 .seq_show = memory_min_show, 6446 .write = memory_min_write, 6447 }, 6448 { 6449 .name = "low", 6450 .flags = CFTYPE_NOT_ON_ROOT, 6451 .seq_show = memory_low_show, 6452 .write = memory_low_write, 6453 }, 6454 { 6455 .name = "high", 6456 .flags = CFTYPE_NOT_ON_ROOT, 6457 .seq_show = memory_high_show, 6458 .write = memory_high_write, 6459 }, 6460 { 6461 .name = "max", 6462 .flags = CFTYPE_NOT_ON_ROOT, 6463 .seq_show = memory_max_show, 6464 .write = memory_max_write, 6465 }, 6466 { 6467 .name = "events", 6468 .flags = CFTYPE_NOT_ON_ROOT, 6469 .file_offset = offsetof(struct mem_cgroup, events_file), 6470 .seq_show = memory_events_show, 6471 }, 6472 { 6473 .name = "events.local", 6474 .flags = CFTYPE_NOT_ON_ROOT, 6475 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6476 .seq_show = memory_events_local_show, 6477 }, 6478 { 6479 .name = "stat", 6480 .seq_show = memory_stat_show, 6481 }, 6482 #ifdef CONFIG_NUMA 6483 { 6484 .name = "numa_stat", 6485 .seq_show = memory_numa_stat_show, 6486 }, 6487 #endif 6488 { 6489 .name = "oom.group", 6490 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6491 .seq_show = memory_oom_group_show, 6492 .write = memory_oom_group_write, 6493 }, 6494 { } /* terminate */ 6495 }; 6496 6497 struct cgroup_subsys memory_cgrp_subsys = { 6498 .css_alloc = mem_cgroup_css_alloc, 6499 .css_online = mem_cgroup_css_online, 6500 .css_offline = mem_cgroup_css_offline, 6501 .css_released = mem_cgroup_css_released, 6502 .css_free = mem_cgroup_css_free, 6503 .css_reset = mem_cgroup_css_reset, 6504 .can_attach = mem_cgroup_can_attach, 6505 .cancel_attach = mem_cgroup_cancel_attach, 6506 .post_attach = mem_cgroup_move_task, 6507 .dfl_cftypes = memory_files, 6508 .legacy_cftypes = mem_cgroup_legacy_files, 6509 .early_init = 0, 6510 }; 6511 6512 /* 6513 * This function calculates an individual cgroup's effective 6514 * protection which is derived from its own memory.min/low, its 6515 * parent's and siblings' settings, as well as the actual memory 6516 * distribution in the tree. 6517 * 6518 * The following rules apply to the effective protection values: 6519 * 6520 * 1. At the first level of reclaim, effective protection is equal to 6521 * the declared protection in memory.min and memory.low. 6522 * 6523 * 2. To enable safe delegation of the protection configuration, at 6524 * subsequent levels the effective protection is capped to the 6525 * parent's effective protection. 6526 * 6527 * 3. To make complex and dynamic subtrees easier to configure, the 6528 * user is allowed to overcommit the declared protection at a given 6529 * level. If that is the case, the parent's effective protection is 6530 * distributed to the children in proportion to how much protection 6531 * they have declared and how much of it they are utilizing. 6532 * 6533 * This makes distribution proportional, but also work-conserving: 6534 * if one cgroup claims much more protection than it uses memory, 6535 * the unused remainder is available to its siblings. 6536 * 6537 * 4. Conversely, when the declared protection is undercommitted at a 6538 * given level, the distribution of the larger parental protection 6539 * budget is NOT proportional. A cgroup's protection from a sibling 6540 * is capped to its own memory.min/low setting. 6541 * 6542 * 5. However, to allow protecting recursive subtrees from each other 6543 * without having to declare each individual cgroup's fixed share 6544 * of the ancestor's claim to protection, any unutilized - 6545 * "floating" - protection from up the tree is distributed in 6546 * proportion to each cgroup's *usage*. This makes the protection 6547 * neutral wrt sibling cgroups and lets them compete freely over 6548 * the shared parental protection budget, but it protects the 6549 * subtree as a whole from neighboring subtrees. 6550 * 6551 * Note that 4. and 5. are not in conflict: 4. is about protecting 6552 * against immediate siblings whereas 5. is about protecting against 6553 * neighboring subtrees. 6554 */ 6555 static unsigned long effective_protection(unsigned long usage, 6556 unsigned long parent_usage, 6557 unsigned long setting, 6558 unsigned long parent_effective, 6559 unsigned long siblings_protected) 6560 { 6561 unsigned long protected; 6562 unsigned long ep; 6563 6564 protected = min(usage, setting); 6565 /* 6566 * If all cgroups at this level combined claim and use more 6567 * protection then what the parent affords them, distribute 6568 * shares in proportion to utilization. 6569 * 6570 * We are using actual utilization rather than the statically 6571 * claimed protection in order to be work-conserving: claimed 6572 * but unused protection is available to siblings that would 6573 * otherwise get a smaller chunk than what they claimed. 6574 */ 6575 if (siblings_protected > parent_effective) 6576 return protected * parent_effective / siblings_protected; 6577 6578 /* 6579 * Ok, utilized protection of all children is within what the 6580 * parent affords them, so we know whatever this child claims 6581 * and utilizes is effectively protected. 6582 * 6583 * If there is unprotected usage beyond this value, reclaim 6584 * will apply pressure in proportion to that amount. 6585 * 6586 * If there is unutilized protection, the cgroup will be fully 6587 * shielded from reclaim, but we do return a smaller value for 6588 * protection than what the group could enjoy in theory. This 6589 * is okay. With the overcommit distribution above, effective 6590 * protection is always dependent on how memory is actually 6591 * consumed among the siblings anyway. 6592 */ 6593 ep = protected; 6594 6595 /* 6596 * If the children aren't claiming (all of) the protection 6597 * afforded to them by the parent, distribute the remainder in 6598 * proportion to the (unprotected) memory of each cgroup. That 6599 * way, cgroups that aren't explicitly prioritized wrt each 6600 * other compete freely over the allowance, but they are 6601 * collectively protected from neighboring trees. 6602 * 6603 * We're using unprotected memory for the weight so that if 6604 * some cgroups DO claim explicit protection, we don't protect 6605 * the same bytes twice. 6606 * 6607 * Check both usage and parent_usage against the respective 6608 * protected values. One should imply the other, but they 6609 * aren't read atomically - make sure the division is sane. 6610 */ 6611 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6612 return ep; 6613 if (parent_effective > siblings_protected && 6614 parent_usage > siblings_protected && 6615 usage > protected) { 6616 unsigned long unclaimed; 6617 6618 unclaimed = parent_effective - siblings_protected; 6619 unclaimed *= usage - protected; 6620 unclaimed /= parent_usage - siblings_protected; 6621 6622 ep += unclaimed; 6623 } 6624 6625 return ep; 6626 } 6627 6628 /** 6629 * mem_cgroup_protected - check if memory consumption is in the normal range 6630 * @root: the top ancestor of the sub-tree being checked 6631 * @memcg: the memory cgroup to check 6632 * 6633 * WARNING: This function is not stateless! It can only be used as part 6634 * of a top-down tree iteration, not for isolated queries. 6635 */ 6636 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6637 struct mem_cgroup *memcg) 6638 { 6639 unsigned long usage, parent_usage; 6640 struct mem_cgroup *parent; 6641 6642 if (mem_cgroup_disabled()) 6643 return; 6644 6645 if (!root) 6646 root = root_mem_cgroup; 6647 6648 /* 6649 * Effective values of the reclaim targets are ignored so they 6650 * can be stale. Have a look at mem_cgroup_protection for more 6651 * details. 6652 * TODO: calculation should be more robust so that we do not need 6653 * that special casing. 6654 */ 6655 if (memcg == root) 6656 return; 6657 6658 usage = page_counter_read(&memcg->memory); 6659 if (!usage) 6660 return; 6661 6662 parent = parent_mem_cgroup(memcg); 6663 /* No parent means a non-hierarchical mode on v1 memcg */ 6664 if (!parent) 6665 return; 6666 6667 if (parent == root) { 6668 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6669 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6670 return; 6671 } 6672 6673 parent_usage = page_counter_read(&parent->memory); 6674 6675 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6676 READ_ONCE(memcg->memory.min), 6677 READ_ONCE(parent->memory.emin), 6678 atomic_long_read(&parent->memory.children_min_usage))); 6679 6680 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6681 READ_ONCE(memcg->memory.low), 6682 READ_ONCE(parent->memory.elow), 6683 atomic_long_read(&parent->memory.children_low_usage))); 6684 } 6685 6686 /** 6687 * mem_cgroup_charge - charge a newly allocated page to a cgroup 6688 * @page: page to charge 6689 * @mm: mm context of the victim 6690 * @gfp_mask: reclaim mode 6691 * 6692 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6693 * pages according to @gfp_mask if necessary. 6694 * 6695 * Returns 0 on success. Otherwise, an error code is returned. 6696 */ 6697 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) 6698 { 6699 unsigned int nr_pages = thp_nr_pages(page); 6700 struct mem_cgroup *memcg = NULL; 6701 int ret = 0; 6702 6703 if (mem_cgroup_disabled()) 6704 goto out; 6705 6706 if (PageSwapCache(page)) { 6707 swp_entry_t ent = { .val = page_private(page), }; 6708 unsigned short id; 6709 6710 /* 6711 * Every swap fault against a single page tries to charge the 6712 * page, bail as early as possible. shmem_unuse() encounters 6713 * already charged pages, too. page and memcg binding is 6714 * protected by the page lock, which serializes swap cache 6715 * removal, which in turn serializes uncharging. 6716 */ 6717 VM_BUG_ON_PAGE(!PageLocked(page), page); 6718 if (page_memcg(compound_head(page))) 6719 goto out; 6720 6721 id = lookup_swap_cgroup_id(ent); 6722 rcu_read_lock(); 6723 memcg = mem_cgroup_from_id(id); 6724 if (memcg && !css_tryget_online(&memcg->css)) 6725 memcg = NULL; 6726 rcu_read_unlock(); 6727 } 6728 6729 if (!memcg) 6730 memcg = get_mem_cgroup_from_mm(mm); 6731 6732 ret = try_charge(memcg, gfp_mask, nr_pages); 6733 if (ret) 6734 goto out_put; 6735 6736 css_get(&memcg->css); 6737 commit_charge(page, memcg); 6738 6739 local_irq_disable(); 6740 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6741 memcg_check_events(memcg, page); 6742 local_irq_enable(); 6743 6744 /* 6745 * Cgroup1's unified memory+swap counter has been charged with the 6746 * new swapcache page, finish the transfer by uncharging the swap 6747 * slot. The swap slot would also get uncharged when it dies, but 6748 * it can stick around indefinitely and we'd count the page twice 6749 * the entire time. 6750 * 6751 * Cgroup2 has separate resource counters for memory and swap, 6752 * so this is a non-issue here. Memory and swap charge lifetimes 6753 * correspond 1:1 to page and swap slot lifetimes: we charge the 6754 * page to memory here, and uncharge swap when the slot is freed. 6755 */ 6756 if (do_memsw_account() && PageSwapCache(page)) { 6757 swp_entry_t entry = { .val = page_private(page) }; 6758 /* 6759 * The swap entry might not get freed for a long time, 6760 * let's not wait for it. The page already received a 6761 * memory+swap charge, drop the swap entry duplicate. 6762 */ 6763 mem_cgroup_uncharge_swap(entry, nr_pages); 6764 } 6765 6766 out_put: 6767 css_put(&memcg->css); 6768 out: 6769 return ret; 6770 } 6771 6772 struct uncharge_gather { 6773 struct mem_cgroup *memcg; 6774 unsigned long nr_pages; 6775 unsigned long pgpgout; 6776 unsigned long nr_kmem; 6777 struct page *dummy_page; 6778 }; 6779 6780 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6781 { 6782 memset(ug, 0, sizeof(*ug)); 6783 } 6784 6785 static void uncharge_batch(const struct uncharge_gather *ug) 6786 { 6787 unsigned long flags; 6788 6789 if (!mem_cgroup_is_root(ug->memcg)) { 6790 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages); 6791 if (do_memsw_account()) 6792 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages); 6793 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6794 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6795 memcg_oom_recover(ug->memcg); 6796 } 6797 6798 local_irq_save(flags); 6799 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6800 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); 6801 memcg_check_events(ug->memcg, ug->dummy_page); 6802 local_irq_restore(flags); 6803 6804 /* drop reference from uncharge_page */ 6805 css_put(&ug->memcg->css); 6806 } 6807 6808 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6809 { 6810 unsigned long nr_pages; 6811 6812 VM_BUG_ON_PAGE(PageLRU(page), page); 6813 6814 if (!page_memcg(page)) 6815 return; 6816 6817 /* 6818 * Nobody should be changing or seriously looking at 6819 * page_memcg(page) at this point, we have fully 6820 * exclusive access to the page. 6821 */ 6822 6823 if (ug->memcg != page_memcg(page)) { 6824 if (ug->memcg) { 6825 uncharge_batch(ug); 6826 uncharge_gather_clear(ug); 6827 } 6828 ug->memcg = page_memcg(page); 6829 6830 /* pairs with css_put in uncharge_batch */ 6831 css_get(&ug->memcg->css); 6832 } 6833 6834 nr_pages = compound_nr(page); 6835 ug->nr_pages += nr_pages; 6836 6837 if (PageMemcgKmem(page)) 6838 ug->nr_kmem += nr_pages; 6839 else 6840 ug->pgpgout++; 6841 6842 ug->dummy_page = page; 6843 page->memcg_data = 0; 6844 css_put(&ug->memcg->css); 6845 } 6846 6847 /** 6848 * mem_cgroup_uncharge - uncharge a page 6849 * @page: page to uncharge 6850 * 6851 * Uncharge a page previously charged with mem_cgroup_charge(). 6852 */ 6853 void mem_cgroup_uncharge(struct page *page) 6854 { 6855 struct uncharge_gather ug; 6856 6857 if (mem_cgroup_disabled()) 6858 return; 6859 6860 /* Don't touch page->lru of any random page, pre-check: */ 6861 if (!page_memcg(page)) 6862 return; 6863 6864 uncharge_gather_clear(&ug); 6865 uncharge_page(page, &ug); 6866 uncharge_batch(&ug); 6867 } 6868 6869 /** 6870 * mem_cgroup_uncharge_list - uncharge a list of page 6871 * @page_list: list of pages to uncharge 6872 * 6873 * Uncharge a list of pages previously charged with 6874 * mem_cgroup_charge(). 6875 */ 6876 void mem_cgroup_uncharge_list(struct list_head *page_list) 6877 { 6878 struct uncharge_gather ug; 6879 struct page *page; 6880 6881 if (mem_cgroup_disabled()) 6882 return; 6883 6884 uncharge_gather_clear(&ug); 6885 list_for_each_entry(page, page_list, lru) 6886 uncharge_page(page, &ug); 6887 if (ug.memcg) 6888 uncharge_batch(&ug); 6889 } 6890 6891 /** 6892 * mem_cgroup_migrate - charge a page's replacement 6893 * @oldpage: currently circulating page 6894 * @newpage: replacement page 6895 * 6896 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6897 * be uncharged upon free. 6898 * 6899 * Both pages must be locked, @newpage->mapping must be set up. 6900 */ 6901 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6902 { 6903 struct mem_cgroup *memcg; 6904 unsigned int nr_pages; 6905 unsigned long flags; 6906 6907 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6908 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6909 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6910 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6911 newpage); 6912 6913 if (mem_cgroup_disabled()) 6914 return; 6915 6916 /* Page cache replacement: new page already charged? */ 6917 if (page_memcg(newpage)) 6918 return; 6919 6920 memcg = page_memcg(oldpage); 6921 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage); 6922 if (!memcg) 6923 return; 6924 6925 /* Force-charge the new page. The old one will be freed soon */ 6926 nr_pages = thp_nr_pages(newpage); 6927 6928 page_counter_charge(&memcg->memory, nr_pages); 6929 if (do_memsw_account()) 6930 page_counter_charge(&memcg->memsw, nr_pages); 6931 6932 css_get(&memcg->css); 6933 commit_charge(newpage, memcg); 6934 6935 local_irq_save(flags); 6936 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 6937 memcg_check_events(memcg, newpage); 6938 local_irq_restore(flags); 6939 } 6940 6941 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6942 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6943 6944 void mem_cgroup_sk_alloc(struct sock *sk) 6945 { 6946 struct mem_cgroup *memcg; 6947 6948 if (!mem_cgroup_sockets_enabled) 6949 return; 6950 6951 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6952 if (in_interrupt()) 6953 return; 6954 6955 rcu_read_lock(); 6956 memcg = mem_cgroup_from_task(current); 6957 if (memcg == root_mem_cgroup) 6958 goto out; 6959 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6960 goto out; 6961 if (css_tryget(&memcg->css)) 6962 sk->sk_memcg = memcg; 6963 out: 6964 rcu_read_unlock(); 6965 } 6966 6967 void mem_cgroup_sk_free(struct sock *sk) 6968 { 6969 if (sk->sk_memcg) 6970 css_put(&sk->sk_memcg->css); 6971 } 6972 6973 /** 6974 * mem_cgroup_charge_skmem - charge socket memory 6975 * @memcg: memcg to charge 6976 * @nr_pages: number of pages to charge 6977 * 6978 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6979 * @memcg's configured limit, %false if the charge had to be forced. 6980 */ 6981 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6982 { 6983 gfp_t gfp_mask = GFP_KERNEL; 6984 6985 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6986 struct page_counter *fail; 6987 6988 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6989 memcg->tcpmem_pressure = 0; 6990 return true; 6991 } 6992 page_counter_charge(&memcg->tcpmem, nr_pages); 6993 memcg->tcpmem_pressure = 1; 6994 return false; 6995 } 6996 6997 /* Don't block in the packet receive path */ 6998 if (in_softirq()) 6999 gfp_mask = GFP_NOWAIT; 7000 7001 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7002 7003 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 7004 return true; 7005 7006 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 7007 return false; 7008 } 7009 7010 /** 7011 * mem_cgroup_uncharge_skmem - uncharge socket memory 7012 * @memcg: memcg to uncharge 7013 * @nr_pages: number of pages to uncharge 7014 */ 7015 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7016 { 7017 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7018 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7019 return; 7020 } 7021 7022 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7023 7024 refill_stock(memcg, nr_pages); 7025 } 7026 7027 static int __init cgroup_memory(char *s) 7028 { 7029 char *token; 7030 7031 while ((token = strsep(&s, ",")) != NULL) { 7032 if (!*token) 7033 continue; 7034 if (!strcmp(token, "nosocket")) 7035 cgroup_memory_nosocket = true; 7036 if (!strcmp(token, "nokmem")) 7037 cgroup_memory_nokmem = true; 7038 } 7039 return 0; 7040 } 7041 __setup("cgroup.memory=", cgroup_memory); 7042 7043 /* 7044 * subsys_initcall() for memory controller. 7045 * 7046 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7047 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7048 * basically everything that doesn't depend on a specific mem_cgroup structure 7049 * should be initialized from here. 7050 */ 7051 static int __init mem_cgroup_init(void) 7052 { 7053 int cpu, node; 7054 7055 /* 7056 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7057 * used for per-memcg-per-cpu caching of per-node statistics. In order 7058 * to work fine, we should make sure that the overfill threshold can't 7059 * exceed S32_MAX / PAGE_SIZE. 7060 */ 7061 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7062 7063 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7064 memcg_hotplug_cpu_dead); 7065 7066 for_each_possible_cpu(cpu) 7067 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7068 drain_local_stock); 7069 7070 for_each_node(node) { 7071 struct mem_cgroup_tree_per_node *rtpn; 7072 7073 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7074 node_online(node) ? node : NUMA_NO_NODE); 7075 7076 rtpn->rb_root = RB_ROOT; 7077 rtpn->rb_rightmost = NULL; 7078 spin_lock_init(&rtpn->lock); 7079 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7080 } 7081 7082 return 0; 7083 } 7084 subsys_initcall(mem_cgroup_init); 7085 7086 #ifdef CONFIG_MEMCG_SWAP 7087 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7088 { 7089 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7090 /* 7091 * The root cgroup cannot be destroyed, so it's refcount must 7092 * always be >= 1. 7093 */ 7094 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7095 VM_BUG_ON(1); 7096 break; 7097 } 7098 memcg = parent_mem_cgroup(memcg); 7099 if (!memcg) 7100 memcg = root_mem_cgroup; 7101 } 7102 return memcg; 7103 } 7104 7105 /** 7106 * mem_cgroup_swapout - transfer a memsw charge to swap 7107 * @page: page whose memsw charge to transfer 7108 * @entry: swap entry to move the charge to 7109 * 7110 * Transfer the memsw charge of @page to @entry. 7111 */ 7112 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7113 { 7114 struct mem_cgroup *memcg, *swap_memcg; 7115 unsigned int nr_entries; 7116 unsigned short oldid; 7117 7118 VM_BUG_ON_PAGE(PageLRU(page), page); 7119 VM_BUG_ON_PAGE(page_count(page), page); 7120 7121 if (mem_cgroup_disabled()) 7122 return; 7123 7124 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7125 return; 7126 7127 memcg = page_memcg(page); 7128 7129 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7130 if (!memcg) 7131 return; 7132 7133 /* 7134 * In case the memcg owning these pages has been offlined and doesn't 7135 * have an ID allocated to it anymore, charge the closest online 7136 * ancestor for the swap instead and transfer the memory+swap charge. 7137 */ 7138 swap_memcg = mem_cgroup_id_get_online(memcg); 7139 nr_entries = thp_nr_pages(page); 7140 /* Get references for the tail pages, too */ 7141 if (nr_entries > 1) 7142 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7143 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7144 nr_entries); 7145 VM_BUG_ON_PAGE(oldid, page); 7146 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7147 7148 page->memcg_data = 0; 7149 7150 if (!mem_cgroup_is_root(memcg)) 7151 page_counter_uncharge(&memcg->memory, nr_entries); 7152 7153 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7154 if (!mem_cgroup_is_root(swap_memcg)) 7155 page_counter_charge(&swap_memcg->memsw, nr_entries); 7156 page_counter_uncharge(&memcg->memsw, nr_entries); 7157 } 7158 7159 /* 7160 * Interrupts should be disabled here because the caller holds the 7161 * i_pages lock which is taken with interrupts-off. It is 7162 * important here to have the interrupts disabled because it is the 7163 * only synchronisation we have for updating the per-CPU variables. 7164 */ 7165 VM_BUG_ON(!irqs_disabled()); 7166 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 7167 memcg_check_events(memcg, page); 7168 7169 css_put(&memcg->css); 7170 } 7171 7172 /** 7173 * mem_cgroup_try_charge_swap - try charging swap space for a page 7174 * @page: page being added to swap 7175 * @entry: swap entry to charge 7176 * 7177 * Try to charge @page's memcg for the swap space at @entry. 7178 * 7179 * Returns 0 on success, -ENOMEM on failure. 7180 */ 7181 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7182 { 7183 unsigned int nr_pages = thp_nr_pages(page); 7184 struct page_counter *counter; 7185 struct mem_cgroup *memcg; 7186 unsigned short oldid; 7187 7188 if (mem_cgroup_disabled()) 7189 return 0; 7190 7191 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7192 return 0; 7193 7194 memcg = page_memcg(page); 7195 7196 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7197 if (!memcg) 7198 return 0; 7199 7200 if (!entry.val) { 7201 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7202 return 0; 7203 } 7204 7205 memcg = mem_cgroup_id_get_online(memcg); 7206 7207 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7208 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7209 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7210 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7211 mem_cgroup_id_put(memcg); 7212 return -ENOMEM; 7213 } 7214 7215 /* Get references for the tail pages, too */ 7216 if (nr_pages > 1) 7217 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7218 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7219 VM_BUG_ON_PAGE(oldid, page); 7220 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7221 7222 return 0; 7223 } 7224 7225 /** 7226 * mem_cgroup_uncharge_swap - uncharge swap space 7227 * @entry: swap entry to uncharge 7228 * @nr_pages: the amount of swap space to uncharge 7229 */ 7230 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7231 { 7232 struct mem_cgroup *memcg; 7233 unsigned short id; 7234 7235 id = swap_cgroup_record(entry, 0, nr_pages); 7236 rcu_read_lock(); 7237 memcg = mem_cgroup_from_id(id); 7238 if (memcg) { 7239 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7241 page_counter_uncharge(&memcg->swap, nr_pages); 7242 else 7243 page_counter_uncharge(&memcg->memsw, nr_pages); 7244 } 7245 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7246 mem_cgroup_id_put_many(memcg, nr_pages); 7247 } 7248 rcu_read_unlock(); 7249 } 7250 7251 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7252 { 7253 long nr_swap_pages = get_nr_swap_pages(); 7254 7255 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7256 return nr_swap_pages; 7257 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7258 nr_swap_pages = min_t(long, nr_swap_pages, 7259 READ_ONCE(memcg->swap.max) - 7260 page_counter_read(&memcg->swap)); 7261 return nr_swap_pages; 7262 } 7263 7264 bool mem_cgroup_swap_full(struct page *page) 7265 { 7266 struct mem_cgroup *memcg; 7267 7268 VM_BUG_ON_PAGE(!PageLocked(page), page); 7269 7270 if (vm_swap_full()) 7271 return true; 7272 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7273 return false; 7274 7275 memcg = page_memcg(page); 7276 if (!memcg) 7277 return false; 7278 7279 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7280 unsigned long usage = page_counter_read(&memcg->swap); 7281 7282 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7283 usage * 2 >= READ_ONCE(memcg->swap.max)) 7284 return true; 7285 } 7286 7287 return false; 7288 } 7289 7290 static int __init setup_swap_account(char *s) 7291 { 7292 if (!strcmp(s, "1")) 7293 cgroup_memory_noswap = false; 7294 else if (!strcmp(s, "0")) 7295 cgroup_memory_noswap = true; 7296 return 1; 7297 } 7298 __setup("swapaccount=", setup_swap_account); 7299 7300 static u64 swap_current_read(struct cgroup_subsys_state *css, 7301 struct cftype *cft) 7302 { 7303 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7304 7305 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7306 } 7307 7308 static int swap_high_show(struct seq_file *m, void *v) 7309 { 7310 return seq_puts_memcg_tunable(m, 7311 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7312 } 7313 7314 static ssize_t swap_high_write(struct kernfs_open_file *of, 7315 char *buf, size_t nbytes, loff_t off) 7316 { 7317 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7318 unsigned long high; 7319 int err; 7320 7321 buf = strstrip(buf); 7322 err = page_counter_memparse(buf, "max", &high); 7323 if (err) 7324 return err; 7325 7326 page_counter_set_high(&memcg->swap, high); 7327 7328 return nbytes; 7329 } 7330 7331 static int swap_max_show(struct seq_file *m, void *v) 7332 { 7333 return seq_puts_memcg_tunable(m, 7334 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7335 } 7336 7337 static ssize_t swap_max_write(struct kernfs_open_file *of, 7338 char *buf, size_t nbytes, loff_t off) 7339 { 7340 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7341 unsigned long max; 7342 int err; 7343 7344 buf = strstrip(buf); 7345 err = page_counter_memparse(buf, "max", &max); 7346 if (err) 7347 return err; 7348 7349 xchg(&memcg->swap.max, max); 7350 7351 return nbytes; 7352 } 7353 7354 static int swap_events_show(struct seq_file *m, void *v) 7355 { 7356 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7357 7358 seq_printf(m, "high %lu\n", 7359 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7360 seq_printf(m, "max %lu\n", 7361 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7362 seq_printf(m, "fail %lu\n", 7363 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7364 7365 return 0; 7366 } 7367 7368 static struct cftype swap_files[] = { 7369 { 7370 .name = "swap.current", 7371 .flags = CFTYPE_NOT_ON_ROOT, 7372 .read_u64 = swap_current_read, 7373 }, 7374 { 7375 .name = "swap.high", 7376 .flags = CFTYPE_NOT_ON_ROOT, 7377 .seq_show = swap_high_show, 7378 .write = swap_high_write, 7379 }, 7380 { 7381 .name = "swap.max", 7382 .flags = CFTYPE_NOT_ON_ROOT, 7383 .seq_show = swap_max_show, 7384 .write = swap_max_write, 7385 }, 7386 { 7387 .name = "swap.events", 7388 .flags = CFTYPE_NOT_ON_ROOT, 7389 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7390 .seq_show = swap_events_show, 7391 }, 7392 { } /* terminate */ 7393 }; 7394 7395 static struct cftype memsw_files[] = { 7396 { 7397 .name = "memsw.usage_in_bytes", 7398 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7399 .read_u64 = mem_cgroup_read_u64, 7400 }, 7401 { 7402 .name = "memsw.max_usage_in_bytes", 7403 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7404 .write = mem_cgroup_reset, 7405 .read_u64 = mem_cgroup_read_u64, 7406 }, 7407 { 7408 .name = "memsw.limit_in_bytes", 7409 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7410 .write = mem_cgroup_write, 7411 .read_u64 = mem_cgroup_read_u64, 7412 }, 7413 { 7414 .name = "memsw.failcnt", 7415 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7416 .write = mem_cgroup_reset, 7417 .read_u64 = mem_cgroup_read_u64, 7418 }, 7419 { }, /* terminate */ 7420 }; 7421 7422 /* 7423 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7424 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7425 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7426 * boot parameter. This may result in premature OOPS inside 7427 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7428 */ 7429 static int __init mem_cgroup_swap_init(void) 7430 { 7431 /* No memory control -> no swap control */ 7432 if (mem_cgroup_disabled()) 7433 cgroup_memory_noswap = true; 7434 7435 if (cgroup_memory_noswap) 7436 return 0; 7437 7438 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7439 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7440 7441 return 0; 7442 } 7443 core_initcall(mem_cgroup_swap_init); 7444 7445 #endif /* CONFIG_MEMCG_SWAP */ 7446