xref: /openbmc/linux/mm/memcontrol.c (revision d2999e1b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64 
65 #include <asm/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71 
72 #define MEM_CGROUP_RECLAIM_RETRIES	5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78 
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85 
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 
91 static const char * const mem_cgroup_stat_names[] = {
92 	"cache",
93 	"rss",
94 	"rss_huge",
95 	"mapped_file",
96 	"writeback",
97 	"swap",
98 };
99 
100 enum mem_cgroup_events_index {
101 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
102 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
104 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 	MEM_CGROUP_EVENTS_NSTATS,
106 };
107 
108 static const char * const mem_cgroup_events_names[] = {
109 	"pgpgin",
110 	"pgpgout",
111 	"pgfault",
112 	"pgmajfault",
113 };
114 
115 static const char * const mem_cgroup_lru_names[] = {
116 	"inactive_anon",
117 	"active_anon",
118 	"inactive_file",
119 	"active_file",
120 	"unevictable",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct mem_cgroup_reclaim_iter {
147 	/*
148 	 * last scanned hierarchy member. Valid only if last_dead_count
149 	 * matches memcg->dead_count of the hierarchy root group.
150 	 */
151 	struct mem_cgroup *last_visited;
152 	int last_dead_count;
153 
154 	/* scan generation, increased every round-trip */
155 	unsigned int generation;
156 };
157 
158 /*
159  * per-zone information in memory controller.
160  */
161 struct mem_cgroup_per_zone {
162 	struct lruvec		lruvec;
163 	unsigned long		lru_size[NR_LRU_LISTS];
164 
165 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 
167 	struct rb_node		tree_node;	/* RB tree node */
168 	unsigned long long	usage_in_excess;/* Set to the value by which */
169 						/* the soft limit is exceeded*/
170 	bool			on_tree;
171 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172 						/* use container_of	   */
173 };
174 
175 struct mem_cgroup_per_node {
176 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178 
179 /*
180  * Cgroups above their limits are maintained in a RB-Tree, independent of
181  * their hierarchy representation
182  */
183 
184 struct mem_cgroup_tree_per_zone {
185 	struct rb_root rb_root;
186 	spinlock_t lock;
187 };
188 
189 struct mem_cgroup_tree_per_node {
190 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192 
193 struct mem_cgroup_tree {
194 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196 
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 
199 struct mem_cgroup_threshold {
200 	struct eventfd_ctx *eventfd;
201 	u64 threshold;
202 };
203 
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 	/* An array index points to threshold just below or equal to usage. */
207 	int current_threshold;
208 	/* Size of entries[] */
209 	unsigned int size;
210 	/* Array of thresholds */
211 	struct mem_cgroup_threshold entries[0];
212 };
213 
214 struct mem_cgroup_thresholds {
215 	/* Primary thresholds array */
216 	struct mem_cgroup_threshold_ary *primary;
217 	/*
218 	 * Spare threshold array.
219 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 	 * It must be able to store at least primary->size - 1 entries.
221 	 */
222 	struct mem_cgroup_threshold_ary *spare;
223 };
224 
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 	struct list_head list;
228 	struct eventfd_ctx *eventfd;
229 };
230 
231 /*
232  * cgroup_event represents events which userspace want to receive.
233  */
234 struct mem_cgroup_event {
235 	/*
236 	 * memcg which the event belongs to.
237 	 */
238 	struct mem_cgroup *memcg;
239 	/*
240 	 * eventfd to signal userspace about the event.
241 	 */
242 	struct eventfd_ctx *eventfd;
243 	/*
244 	 * Each of these stored in a list by the cgroup.
245 	 */
246 	struct list_head list;
247 	/*
248 	 * register_event() callback will be used to add new userspace
249 	 * waiter for changes related to this event.  Use eventfd_signal()
250 	 * on eventfd to send notification to userspace.
251 	 */
252 	int (*register_event)(struct mem_cgroup *memcg,
253 			      struct eventfd_ctx *eventfd, const char *args);
254 	/*
255 	 * unregister_event() callback will be called when userspace closes
256 	 * the eventfd or on cgroup removing.  This callback must be set,
257 	 * if you want provide notification functionality.
258 	 */
259 	void (*unregister_event)(struct mem_cgroup *memcg,
260 				 struct eventfd_ctx *eventfd);
261 	/*
262 	 * All fields below needed to unregister event when
263 	 * userspace closes eventfd.
264 	 */
265 	poll_table pt;
266 	wait_queue_head_t *wqh;
267 	wait_queue_t wait;
268 	struct work_struct remove;
269 };
270 
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273 
274 /*
275  * The memory controller data structure. The memory controller controls both
276  * page cache and RSS per cgroup. We would eventually like to provide
277  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278  * to help the administrator determine what knobs to tune.
279  *
280  * TODO: Add a water mark for the memory controller. Reclaim will begin when
281  * we hit the water mark. May be even add a low water mark, such that
282  * no reclaim occurs from a cgroup at it's low water mark, this is
283  * a feature that will be implemented much later in the future.
284  */
285 struct mem_cgroup {
286 	struct cgroup_subsys_state css;
287 	/*
288 	 * the counter to account for memory usage
289 	 */
290 	struct res_counter res;
291 
292 	/* vmpressure notifications */
293 	struct vmpressure vmpressure;
294 
295 	/*
296 	 * the counter to account for mem+swap usage.
297 	 */
298 	struct res_counter memsw;
299 
300 	/*
301 	 * the counter to account for kernel memory usage.
302 	 */
303 	struct res_counter kmem;
304 	/*
305 	 * Should the accounting and control be hierarchical, per subtree?
306 	 */
307 	bool use_hierarchy;
308 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 
310 	bool		oom_lock;
311 	atomic_t	under_oom;
312 	atomic_t	oom_wakeups;
313 
314 	int	swappiness;
315 	/* OOM-Killer disable */
316 	int		oom_kill_disable;
317 
318 	/* set when res.limit == memsw.limit */
319 	bool		memsw_is_minimum;
320 
321 	/* protect arrays of thresholds */
322 	struct mutex thresholds_lock;
323 
324 	/* thresholds for memory usage. RCU-protected */
325 	struct mem_cgroup_thresholds thresholds;
326 
327 	/* thresholds for mem+swap usage. RCU-protected */
328 	struct mem_cgroup_thresholds memsw_thresholds;
329 
330 	/* For oom notifier event fd */
331 	struct list_head oom_notify;
332 
333 	/*
334 	 * Should we move charges of a task when a task is moved into this
335 	 * mem_cgroup ? And what type of charges should we move ?
336 	 */
337 	unsigned long move_charge_at_immigrate;
338 	/*
339 	 * set > 0 if pages under this cgroup are moving to other cgroup.
340 	 */
341 	atomic_t	moving_account;
342 	/* taken only while moving_account > 0 */
343 	spinlock_t	move_lock;
344 	/*
345 	 * percpu counter.
346 	 */
347 	struct mem_cgroup_stat_cpu __percpu *stat;
348 	/*
349 	 * used when a cpu is offlined or other synchronizations
350 	 * See mem_cgroup_read_stat().
351 	 */
352 	struct mem_cgroup_stat_cpu nocpu_base;
353 	spinlock_t pcp_counter_lock;
354 
355 	atomic_t	dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 	struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 	/* analogous to slab_common's slab_caches list, but per-memcg;
361 	 * protected by memcg_slab_mutex */
362 	struct list_head memcg_slab_caches;
363         /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 	int kmemcg_id;
365 #endif
366 
367 	int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 	nodemask_t	scan_nodes;
370 	atomic_t	numainfo_events;
371 	atomic_t	numainfo_updating;
372 #endif
373 
374 	/* List of events which userspace want to receive */
375 	struct list_head event_list;
376 	spinlock_t event_list_lock;
377 
378 	struct mem_cgroup_per_node *nodeinfo[0];
379 	/* WARNING: nodeinfo must be the last member here */
380 };
381 
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387 
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393 
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398 
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 	/*
402 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 	 * will call css_put() if it sees the memcg is dead.
404 	 */
405 	smp_wmb();
406 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409 
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 				  &memcg->kmem_account_flags);
414 }
415 #endif
416 
417 /* Stuffs for move charges at task migration. */
418 /*
419  * Types of charges to be moved. "move_charge_at_immitgrate" and
420  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421  */
422 enum move_type {
423 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 	NR_MOVE_TYPE,
426 };
427 
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 	spinlock_t	  lock; /* for from, to */
431 	struct mem_cgroup *from;
432 	struct mem_cgroup *to;
433 	unsigned long immigrate_flags;
434 	unsigned long precharge;
435 	unsigned long moved_charge;
436 	unsigned long moved_swap;
437 	struct task_struct *moving_task;	/* a task moving charges */
438 	wait_queue_head_t waitq;		/* a waitq for other context */
439 } mc = {
440 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443 
444 static bool move_anon(void)
445 {
446 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448 
449 static bool move_file(void)
450 {
451 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453 
454 /*
455  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456  * limit reclaim to prevent infinite loops, if they ever occur.
457  */
458 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460 
461 enum charge_type {
462 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 	MEM_CGROUP_CHARGE_TYPE_ANON,
464 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
465 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 	NR_CHARGE_TYPE,
467 };
468 
469 /* for encoding cft->private value on file */
470 enum res_type {
471 	_MEM,
472 	_MEMSWAP,
473 	_OOM_TYPE,
474 	_KMEM,
475 };
476 
477 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
478 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val)	((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL		(0)
482 
483 /*
484  * Reclaim flags for mem_cgroup_hierarchical_reclaim
485  */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490 
491 /*
492  * The memcg_create_mutex will be held whenever a new cgroup is created.
493  * As a consequence, any change that needs to protect against new child cgroups
494  * appearing has to hold it as well.
495  */
496 static DEFINE_MUTEX(memcg_create_mutex);
497 
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502 
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 	if (!memcg)
507 		memcg = root_mem_cgroup;
508 	return &memcg->vmpressure;
509 }
510 
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515 
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 	return (memcg == root_mem_cgroup);
519 }
520 
521 /*
522  * We restrict the id in the range of [1, 65535], so it can fit into
523  * an unsigned short.
524  */
525 #define MEM_CGROUP_ID_MAX	USHRT_MAX
526 
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 	return memcg->css.id;
530 }
531 
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533 {
534 	struct cgroup_subsys_state *css;
535 
536 	css = css_from_id(id, &memory_cgrp_subsys);
537 	return mem_cgroup_from_css(css);
538 }
539 
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
542 
543 void sock_update_memcg(struct sock *sk)
544 {
545 	if (mem_cgroup_sockets_enabled) {
546 		struct mem_cgroup *memcg;
547 		struct cg_proto *cg_proto;
548 
549 		BUG_ON(!sk->sk_prot->proto_cgroup);
550 
551 		/* Socket cloning can throw us here with sk_cgrp already
552 		 * filled. It won't however, necessarily happen from
553 		 * process context. So the test for root memcg given
554 		 * the current task's memcg won't help us in this case.
555 		 *
556 		 * Respecting the original socket's memcg is a better
557 		 * decision in this case.
558 		 */
559 		if (sk->sk_cgrp) {
560 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 			css_get(&sk->sk_cgrp->memcg->css);
562 			return;
563 		}
564 
565 		rcu_read_lock();
566 		memcg = mem_cgroup_from_task(current);
567 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 		if (!mem_cgroup_is_root(memcg) &&
569 		    memcg_proto_active(cg_proto) &&
570 		    css_tryget_online(&memcg->css)) {
571 			sk->sk_cgrp = cg_proto;
572 		}
573 		rcu_read_unlock();
574 	}
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577 
578 void sock_release_memcg(struct sock *sk)
579 {
580 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 		struct mem_cgroup *memcg;
582 		WARN_ON(!sk->sk_cgrp->memcg);
583 		memcg = sk->sk_cgrp->memcg;
584 		css_put(&sk->sk_cgrp->memcg->css);
585 	}
586 }
587 
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 	if (!memcg || mem_cgroup_is_root(memcg))
591 		return NULL;
592 
593 	return &memcg->tcp_mem;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596 
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 	if (!memcg_proto_activated(&memcg->tcp_mem))
600 		return;
601 	static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608 
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612  * The main reason for not using cgroup id for this:
613  *  this works better in sparse environments, where we have a lot of memcgs,
614  *  but only a few kmem-limited. Or also, if we have, for instance, 200
615  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
616  *  200 entry array for that.
617  *
618  * The current size of the caches array is stored in
619  * memcg_limited_groups_array_size.  It will double each time we have to
620  * increase it.
621  */
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
624 
625 /*
626  * MIN_SIZE is different than 1, because we would like to avoid going through
627  * the alloc/free process all the time. In a small machine, 4 kmem-limited
628  * cgroups is a reasonable guess. In the future, it could be a parameter or
629  * tunable, but that is strictly not necessary.
630  *
631  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632  * this constant directly from cgroup, but it is understandable that this is
633  * better kept as an internal representation in cgroup.c. In any case, the
634  * cgrp_id space is not getting any smaller, and we don't have to necessarily
635  * increase ours as well if it increases.
636  */
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639 
640 /*
641  * A lot of the calls to the cache allocation functions are expected to be
642  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643  * conditional to this static branch, we'll have to allow modules that does
644  * kmem_cache_alloc and the such to see this symbol as well
645  */
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
648 
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 {
651 	if (memcg_kmem_is_active(memcg)) {
652 		static_key_slow_dec(&memcg_kmem_enabled_key);
653 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 	}
655 	/*
656 	 * This check can't live in kmem destruction function,
657 	 * since the charges will outlive the cgroup
658 	 */
659 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 }
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
663 {
664 }
665 #endif /* CONFIG_MEMCG_KMEM */
666 
667 static void disarm_static_keys(struct mem_cgroup *memcg)
668 {
669 	disarm_sock_keys(memcg);
670 	disarm_kmem_keys(memcg);
671 }
672 
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
674 
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677 {
678 	int nid = zone_to_nid(zone);
679 	int zid = zone_idx(zone);
680 
681 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683 
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 	return &memcg->css;
687 }
688 
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 	int nid = page_to_nid(page);
693 	int zid = page_zonenum(page);
694 
695 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 }
697 
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703 
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 	int nid = page_to_nid(page);
708 	int zid = page_zonenum(page);
709 
710 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712 
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 					 struct mem_cgroup_tree_per_zone *mctz,
715 					 unsigned long long new_usage_in_excess)
716 {
717 	struct rb_node **p = &mctz->rb_root.rb_node;
718 	struct rb_node *parent = NULL;
719 	struct mem_cgroup_per_zone *mz_node;
720 
721 	if (mz->on_tree)
722 		return;
723 
724 	mz->usage_in_excess = new_usage_in_excess;
725 	if (!mz->usage_in_excess)
726 		return;
727 	while (*p) {
728 		parent = *p;
729 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 					tree_node);
731 		if (mz->usage_in_excess < mz_node->usage_in_excess)
732 			p = &(*p)->rb_left;
733 		/*
734 		 * We can't avoid mem cgroups that are over their soft
735 		 * limit by the same amount
736 		 */
737 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 			p = &(*p)->rb_right;
739 	}
740 	rb_link_node(&mz->tree_node, parent, p);
741 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 	mz->on_tree = true;
743 }
744 
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 					 struct mem_cgroup_tree_per_zone *mctz)
747 {
748 	if (!mz->on_tree)
749 		return;
750 	rb_erase(&mz->tree_node, &mctz->rb_root);
751 	mz->on_tree = false;
752 }
753 
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 				       struct mem_cgroup_tree_per_zone *mctz)
756 {
757 	spin_lock(&mctz->lock);
758 	__mem_cgroup_remove_exceeded(mz, mctz);
759 	spin_unlock(&mctz->lock);
760 }
761 
762 
763 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
764 {
765 	unsigned long long excess;
766 	struct mem_cgroup_per_zone *mz;
767 	struct mem_cgroup_tree_per_zone *mctz;
768 
769 	mctz = soft_limit_tree_from_page(page);
770 	/*
771 	 * Necessary to update all ancestors when hierarchy is used.
772 	 * because their event counter is not touched.
773 	 */
774 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
775 		mz = mem_cgroup_page_zoneinfo(memcg, page);
776 		excess = res_counter_soft_limit_excess(&memcg->res);
777 		/*
778 		 * We have to update the tree if mz is on RB-tree or
779 		 * mem is over its softlimit.
780 		 */
781 		if (excess || mz->on_tree) {
782 			spin_lock(&mctz->lock);
783 			/* if on-tree, remove it */
784 			if (mz->on_tree)
785 				__mem_cgroup_remove_exceeded(mz, mctz);
786 			/*
787 			 * Insert again. mz->usage_in_excess will be updated.
788 			 * If excess is 0, no tree ops.
789 			 */
790 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
791 			spin_unlock(&mctz->lock);
792 		}
793 	}
794 }
795 
796 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
797 {
798 	struct mem_cgroup_tree_per_zone *mctz;
799 	struct mem_cgroup_per_zone *mz;
800 	int nid, zid;
801 
802 	for_each_node(nid) {
803 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
804 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
805 			mctz = soft_limit_tree_node_zone(nid, zid);
806 			mem_cgroup_remove_exceeded(mz, mctz);
807 		}
808 	}
809 }
810 
811 static struct mem_cgroup_per_zone *
812 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
813 {
814 	struct rb_node *rightmost = NULL;
815 	struct mem_cgroup_per_zone *mz;
816 
817 retry:
818 	mz = NULL;
819 	rightmost = rb_last(&mctz->rb_root);
820 	if (!rightmost)
821 		goto done;		/* Nothing to reclaim from */
822 
823 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
824 	/*
825 	 * Remove the node now but someone else can add it back,
826 	 * we will to add it back at the end of reclaim to its correct
827 	 * position in the tree.
828 	 */
829 	__mem_cgroup_remove_exceeded(mz, mctz);
830 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
831 	    !css_tryget_online(&mz->memcg->css))
832 		goto retry;
833 done:
834 	return mz;
835 }
836 
837 static struct mem_cgroup_per_zone *
838 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
839 {
840 	struct mem_cgroup_per_zone *mz;
841 
842 	spin_lock(&mctz->lock);
843 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
844 	spin_unlock(&mctz->lock);
845 	return mz;
846 }
847 
848 /*
849  * Implementation Note: reading percpu statistics for memcg.
850  *
851  * Both of vmstat[] and percpu_counter has threshold and do periodic
852  * synchronization to implement "quick" read. There are trade-off between
853  * reading cost and precision of value. Then, we may have a chance to implement
854  * a periodic synchronizion of counter in memcg's counter.
855  *
856  * But this _read() function is used for user interface now. The user accounts
857  * memory usage by memory cgroup and he _always_ requires exact value because
858  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
859  * have to visit all online cpus and make sum. So, for now, unnecessary
860  * synchronization is not implemented. (just implemented for cpu hotplug)
861  *
862  * If there are kernel internal actions which can make use of some not-exact
863  * value, and reading all cpu value can be performance bottleneck in some
864  * common workload, threashold and synchonization as vmstat[] should be
865  * implemented.
866  */
867 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
868 				 enum mem_cgroup_stat_index idx)
869 {
870 	long val = 0;
871 	int cpu;
872 
873 	get_online_cpus();
874 	for_each_online_cpu(cpu)
875 		val += per_cpu(memcg->stat->count[idx], cpu);
876 #ifdef CONFIG_HOTPLUG_CPU
877 	spin_lock(&memcg->pcp_counter_lock);
878 	val += memcg->nocpu_base.count[idx];
879 	spin_unlock(&memcg->pcp_counter_lock);
880 #endif
881 	put_online_cpus();
882 	return val;
883 }
884 
885 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
886 					 bool charge)
887 {
888 	int val = (charge) ? 1 : -1;
889 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
890 }
891 
892 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
893 					    enum mem_cgroup_events_index idx)
894 {
895 	unsigned long val = 0;
896 	int cpu;
897 
898 	get_online_cpus();
899 	for_each_online_cpu(cpu)
900 		val += per_cpu(memcg->stat->events[idx], cpu);
901 #ifdef CONFIG_HOTPLUG_CPU
902 	spin_lock(&memcg->pcp_counter_lock);
903 	val += memcg->nocpu_base.events[idx];
904 	spin_unlock(&memcg->pcp_counter_lock);
905 #endif
906 	put_online_cpus();
907 	return val;
908 }
909 
910 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
911 					 struct page *page,
912 					 bool anon, int nr_pages)
913 {
914 	/*
915 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
916 	 * counted as CACHE even if it's on ANON LRU.
917 	 */
918 	if (anon)
919 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
920 				nr_pages);
921 	else
922 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
923 				nr_pages);
924 
925 	if (PageTransHuge(page))
926 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
927 				nr_pages);
928 
929 	/* pagein of a big page is an event. So, ignore page size */
930 	if (nr_pages > 0)
931 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
932 	else {
933 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
934 		nr_pages = -nr_pages; /* for event */
935 	}
936 
937 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
938 }
939 
940 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
941 {
942 	struct mem_cgroup_per_zone *mz;
943 
944 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
945 	return mz->lru_size[lru];
946 }
947 
948 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 						  int nid,
950 						  unsigned int lru_mask)
951 {
952 	unsigned long nr = 0;
953 	int zid;
954 
955 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
956 
957 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 		struct mem_cgroup_per_zone *mz;
959 		enum lru_list lru;
960 
961 		for_each_lru(lru) {
962 			if (!(BIT(lru) & lru_mask))
963 				continue;
964 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
965 			nr += mz->lru_size[lru];
966 		}
967 	}
968 	return nr;
969 }
970 
971 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
972 			unsigned int lru_mask)
973 {
974 	unsigned long nr = 0;
975 	int nid;
976 
977 	for_each_node_state(nid, N_MEMORY)
978 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
979 	return nr;
980 }
981 
982 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
983 				       enum mem_cgroup_events_target target)
984 {
985 	unsigned long val, next;
986 
987 	val = __this_cpu_read(memcg->stat->nr_page_events);
988 	next = __this_cpu_read(memcg->stat->targets[target]);
989 	/* from time_after() in jiffies.h */
990 	if ((long)next - (long)val < 0) {
991 		switch (target) {
992 		case MEM_CGROUP_TARGET_THRESH:
993 			next = val + THRESHOLDS_EVENTS_TARGET;
994 			break;
995 		case MEM_CGROUP_TARGET_SOFTLIMIT:
996 			next = val + SOFTLIMIT_EVENTS_TARGET;
997 			break;
998 		case MEM_CGROUP_TARGET_NUMAINFO:
999 			next = val + NUMAINFO_EVENTS_TARGET;
1000 			break;
1001 		default:
1002 			break;
1003 		}
1004 		__this_cpu_write(memcg->stat->targets[target], next);
1005 		return true;
1006 	}
1007 	return false;
1008 }
1009 
1010 /*
1011  * Check events in order.
1012  *
1013  */
1014 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1015 {
1016 	preempt_disable();
1017 	/* threshold event is triggered in finer grain than soft limit */
1018 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1019 						MEM_CGROUP_TARGET_THRESH))) {
1020 		bool do_softlimit;
1021 		bool do_numainfo __maybe_unused;
1022 
1023 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1024 						MEM_CGROUP_TARGET_SOFTLIMIT);
1025 #if MAX_NUMNODES > 1
1026 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1027 						MEM_CGROUP_TARGET_NUMAINFO);
1028 #endif
1029 		preempt_enable();
1030 
1031 		mem_cgroup_threshold(memcg);
1032 		if (unlikely(do_softlimit))
1033 			mem_cgroup_update_tree(memcg, page);
1034 #if MAX_NUMNODES > 1
1035 		if (unlikely(do_numainfo))
1036 			atomic_inc(&memcg->numainfo_events);
1037 #endif
1038 	} else
1039 		preempt_enable();
1040 }
1041 
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 	/*
1045 	 * mm_update_next_owner() may clear mm->owner to NULL
1046 	 * if it races with swapoff, page migration, etc.
1047 	 * So this can be called with p == NULL.
1048 	 */
1049 	if (unlikely(!p))
1050 		return NULL;
1051 
1052 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1053 }
1054 
1055 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 	struct mem_cgroup *memcg = NULL;
1058 
1059 	rcu_read_lock();
1060 	do {
1061 		/*
1062 		 * Page cache insertions can happen withou an
1063 		 * actual mm context, e.g. during disk probing
1064 		 * on boot, loopback IO, acct() writes etc.
1065 		 */
1066 		if (unlikely(!mm))
1067 			memcg = root_mem_cgroup;
1068 		else {
1069 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 			if (unlikely(!memcg))
1071 				memcg = root_mem_cgroup;
1072 		}
1073 	} while (!css_tryget_online(&memcg->css));
1074 	rcu_read_unlock();
1075 	return memcg;
1076 }
1077 
1078 /*
1079  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080  * ref. count) or NULL if the whole root's subtree has been visited.
1081  *
1082  * helper function to be used by mem_cgroup_iter
1083  */
1084 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1085 		struct mem_cgroup *last_visited)
1086 {
1087 	struct cgroup_subsys_state *prev_css, *next_css;
1088 
1089 	prev_css = last_visited ? &last_visited->css : NULL;
1090 skip_node:
1091 	next_css = css_next_descendant_pre(prev_css, &root->css);
1092 
1093 	/*
1094 	 * Even if we found a group we have to make sure it is
1095 	 * alive. css && !memcg means that the groups should be
1096 	 * skipped and we should continue the tree walk.
1097 	 * last_visited css is safe to use because it is
1098 	 * protected by css_get and the tree walk is rcu safe.
1099 	 *
1100 	 * We do not take a reference on the root of the tree walk
1101 	 * because we might race with the root removal when it would
1102 	 * be the only node in the iterated hierarchy and mem_cgroup_iter
1103 	 * would end up in an endless loop because it expects that at
1104 	 * least one valid node will be returned. Root cannot disappear
1105 	 * because caller of the iterator should hold it already so
1106 	 * skipping css reference should be safe.
1107 	 */
1108 	if (next_css) {
1109 		if ((next_css == &root->css) ||
1110 		    ((next_css->flags & CSS_ONLINE) &&
1111 		     css_tryget_online(next_css)))
1112 			return mem_cgroup_from_css(next_css);
1113 
1114 		prev_css = next_css;
1115 		goto skip_node;
1116 	}
1117 
1118 	return NULL;
1119 }
1120 
1121 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1122 {
1123 	/*
1124 	 * When a group in the hierarchy below root is destroyed, the
1125 	 * hierarchy iterator can no longer be trusted since it might
1126 	 * have pointed to the destroyed group.  Invalidate it.
1127 	 */
1128 	atomic_inc(&root->dead_count);
1129 }
1130 
1131 static struct mem_cgroup *
1132 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1133 		     struct mem_cgroup *root,
1134 		     int *sequence)
1135 {
1136 	struct mem_cgroup *position = NULL;
1137 	/*
1138 	 * A cgroup destruction happens in two stages: offlining and
1139 	 * release.  They are separated by a RCU grace period.
1140 	 *
1141 	 * If the iterator is valid, we may still race with an
1142 	 * offlining.  The RCU lock ensures the object won't be
1143 	 * released, tryget will fail if we lost the race.
1144 	 */
1145 	*sequence = atomic_read(&root->dead_count);
1146 	if (iter->last_dead_count == *sequence) {
1147 		smp_rmb();
1148 		position = iter->last_visited;
1149 
1150 		/*
1151 		 * We cannot take a reference to root because we might race
1152 		 * with root removal and returning NULL would end up in
1153 		 * an endless loop on the iterator user level when root
1154 		 * would be returned all the time.
1155 		 */
1156 		if (position && position != root &&
1157 		    !css_tryget_online(&position->css))
1158 			position = NULL;
1159 	}
1160 	return position;
1161 }
1162 
1163 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 				   struct mem_cgroup *last_visited,
1165 				   struct mem_cgroup *new_position,
1166 				   struct mem_cgroup *root,
1167 				   int sequence)
1168 {
1169 	/* root reference counting symmetric to mem_cgroup_iter_load */
1170 	if (last_visited && last_visited != root)
1171 		css_put(&last_visited->css);
1172 	/*
1173 	 * We store the sequence count from the time @last_visited was
1174 	 * loaded successfully instead of rereading it here so that we
1175 	 * don't lose destruction events in between.  We could have
1176 	 * raced with the destruction of @new_position after all.
1177 	 */
1178 	iter->last_visited = new_position;
1179 	smp_wmb();
1180 	iter->last_dead_count = sequence;
1181 }
1182 
1183 /**
1184  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1185  * @root: hierarchy root
1186  * @prev: previously returned memcg, NULL on first invocation
1187  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1188  *
1189  * Returns references to children of the hierarchy below @root, or
1190  * @root itself, or %NULL after a full round-trip.
1191  *
1192  * Caller must pass the return value in @prev on subsequent
1193  * invocations for reference counting, or use mem_cgroup_iter_break()
1194  * to cancel a hierarchy walk before the round-trip is complete.
1195  *
1196  * Reclaimers can specify a zone and a priority level in @reclaim to
1197  * divide up the memcgs in the hierarchy among all concurrent
1198  * reclaimers operating on the same zone and priority.
1199  */
1200 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1201 				   struct mem_cgroup *prev,
1202 				   struct mem_cgroup_reclaim_cookie *reclaim)
1203 {
1204 	struct mem_cgroup *memcg = NULL;
1205 	struct mem_cgroup *last_visited = NULL;
1206 
1207 	if (mem_cgroup_disabled())
1208 		return NULL;
1209 
1210 	if (!root)
1211 		root = root_mem_cgroup;
1212 
1213 	if (prev && !reclaim)
1214 		last_visited = prev;
1215 
1216 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1217 		if (prev)
1218 			goto out_css_put;
1219 		return root;
1220 	}
1221 
1222 	rcu_read_lock();
1223 	while (!memcg) {
1224 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1225 		int uninitialized_var(seq);
1226 
1227 		if (reclaim) {
1228 			struct mem_cgroup_per_zone *mz;
1229 
1230 			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1231 			iter = &mz->reclaim_iter[reclaim->priority];
1232 			if (prev && reclaim->generation != iter->generation) {
1233 				iter->last_visited = NULL;
1234 				goto out_unlock;
1235 			}
1236 
1237 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1238 		}
1239 
1240 		memcg = __mem_cgroup_iter_next(root, last_visited);
1241 
1242 		if (reclaim) {
1243 			mem_cgroup_iter_update(iter, last_visited, memcg, root,
1244 					seq);
1245 
1246 			if (!memcg)
1247 				iter->generation++;
1248 			else if (!prev && memcg)
1249 				reclaim->generation = iter->generation;
1250 		}
1251 
1252 		if (prev && !memcg)
1253 			goto out_unlock;
1254 	}
1255 out_unlock:
1256 	rcu_read_unlock();
1257 out_css_put:
1258 	if (prev && prev != root)
1259 		css_put(&prev->css);
1260 
1261 	return memcg;
1262 }
1263 
1264 /**
1265  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1266  * @root: hierarchy root
1267  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1268  */
1269 void mem_cgroup_iter_break(struct mem_cgroup *root,
1270 			   struct mem_cgroup *prev)
1271 {
1272 	if (!root)
1273 		root = root_mem_cgroup;
1274 	if (prev && prev != root)
1275 		css_put(&prev->css);
1276 }
1277 
1278 /*
1279  * Iteration constructs for visiting all cgroups (under a tree).  If
1280  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1281  * be used for reference counting.
1282  */
1283 #define for_each_mem_cgroup_tree(iter, root)		\
1284 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1285 	     iter != NULL;				\
1286 	     iter = mem_cgroup_iter(root, iter, NULL))
1287 
1288 #define for_each_mem_cgroup(iter)			\
1289 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1290 	     iter != NULL;				\
1291 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1292 
1293 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1294 {
1295 	struct mem_cgroup *memcg;
1296 
1297 	rcu_read_lock();
1298 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1299 	if (unlikely(!memcg))
1300 		goto out;
1301 
1302 	switch (idx) {
1303 	case PGFAULT:
1304 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1305 		break;
1306 	case PGMAJFAULT:
1307 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1308 		break;
1309 	default:
1310 		BUG();
1311 	}
1312 out:
1313 	rcu_read_unlock();
1314 }
1315 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1316 
1317 /**
1318  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1319  * @zone: zone of the wanted lruvec
1320  * @memcg: memcg of the wanted lruvec
1321  *
1322  * Returns the lru list vector holding pages for the given @zone and
1323  * @mem.  This can be the global zone lruvec, if the memory controller
1324  * is disabled.
1325  */
1326 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1327 				      struct mem_cgroup *memcg)
1328 {
1329 	struct mem_cgroup_per_zone *mz;
1330 	struct lruvec *lruvec;
1331 
1332 	if (mem_cgroup_disabled()) {
1333 		lruvec = &zone->lruvec;
1334 		goto out;
1335 	}
1336 
1337 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1338 	lruvec = &mz->lruvec;
1339 out:
1340 	/*
1341 	 * Since a node can be onlined after the mem_cgroup was created,
1342 	 * we have to be prepared to initialize lruvec->zone here;
1343 	 * and if offlined then reonlined, we need to reinitialize it.
1344 	 */
1345 	if (unlikely(lruvec->zone != zone))
1346 		lruvec->zone = zone;
1347 	return lruvec;
1348 }
1349 
1350 /*
1351  * Following LRU functions are allowed to be used without PCG_LOCK.
1352  * Operations are called by routine of global LRU independently from memcg.
1353  * What we have to take care of here is validness of pc->mem_cgroup.
1354  *
1355  * Changes to pc->mem_cgroup happens when
1356  * 1. charge
1357  * 2. moving account
1358  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1359  * It is added to LRU before charge.
1360  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1361  * When moving account, the page is not on LRU. It's isolated.
1362  */
1363 
1364 /**
1365  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1366  * @page: the page
1367  * @zone: zone of the page
1368  */
1369 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1370 {
1371 	struct mem_cgroup_per_zone *mz;
1372 	struct mem_cgroup *memcg;
1373 	struct page_cgroup *pc;
1374 	struct lruvec *lruvec;
1375 
1376 	if (mem_cgroup_disabled()) {
1377 		lruvec = &zone->lruvec;
1378 		goto out;
1379 	}
1380 
1381 	pc = lookup_page_cgroup(page);
1382 	memcg = pc->mem_cgroup;
1383 
1384 	/*
1385 	 * Surreptitiously switch any uncharged offlist page to root:
1386 	 * an uncharged page off lru does nothing to secure
1387 	 * its former mem_cgroup from sudden removal.
1388 	 *
1389 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1390 	 * under page_cgroup lock: between them, they make all uses
1391 	 * of pc->mem_cgroup safe.
1392 	 */
1393 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1394 		pc->mem_cgroup = memcg = root_mem_cgroup;
1395 
1396 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1397 	lruvec = &mz->lruvec;
1398 out:
1399 	/*
1400 	 * Since a node can be onlined after the mem_cgroup was created,
1401 	 * we have to be prepared to initialize lruvec->zone here;
1402 	 * and if offlined then reonlined, we need to reinitialize it.
1403 	 */
1404 	if (unlikely(lruvec->zone != zone))
1405 		lruvec->zone = zone;
1406 	return lruvec;
1407 }
1408 
1409 /**
1410  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1411  * @lruvec: mem_cgroup per zone lru vector
1412  * @lru: index of lru list the page is sitting on
1413  * @nr_pages: positive when adding or negative when removing
1414  *
1415  * This function must be called when a page is added to or removed from an
1416  * lru list.
1417  */
1418 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1419 				int nr_pages)
1420 {
1421 	struct mem_cgroup_per_zone *mz;
1422 	unsigned long *lru_size;
1423 
1424 	if (mem_cgroup_disabled())
1425 		return;
1426 
1427 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1428 	lru_size = mz->lru_size + lru;
1429 	*lru_size += nr_pages;
1430 	VM_BUG_ON((long)(*lru_size) < 0);
1431 }
1432 
1433 /*
1434  * Checks whether given mem is same or in the root_mem_cgroup's
1435  * hierarchy subtree
1436  */
1437 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1438 				  struct mem_cgroup *memcg)
1439 {
1440 	if (root_memcg == memcg)
1441 		return true;
1442 	if (!root_memcg->use_hierarchy || !memcg)
1443 		return false;
1444 	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1445 }
1446 
1447 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1448 				       struct mem_cgroup *memcg)
1449 {
1450 	bool ret;
1451 
1452 	rcu_read_lock();
1453 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1454 	rcu_read_unlock();
1455 	return ret;
1456 }
1457 
1458 bool task_in_mem_cgroup(struct task_struct *task,
1459 			const struct mem_cgroup *memcg)
1460 {
1461 	struct mem_cgroup *curr = NULL;
1462 	struct task_struct *p;
1463 	bool ret;
1464 
1465 	p = find_lock_task_mm(task);
1466 	if (p) {
1467 		curr = get_mem_cgroup_from_mm(p->mm);
1468 		task_unlock(p);
1469 	} else {
1470 		/*
1471 		 * All threads may have already detached their mm's, but the oom
1472 		 * killer still needs to detect if they have already been oom
1473 		 * killed to prevent needlessly killing additional tasks.
1474 		 */
1475 		rcu_read_lock();
1476 		curr = mem_cgroup_from_task(task);
1477 		if (curr)
1478 			css_get(&curr->css);
1479 		rcu_read_unlock();
1480 	}
1481 	/*
1482 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1483 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1484 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1485 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1486 	 */
1487 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1488 	css_put(&curr->css);
1489 	return ret;
1490 }
1491 
1492 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1493 {
1494 	unsigned long inactive_ratio;
1495 	unsigned long inactive;
1496 	unsigned long active;
1497 	unsigned long gb;
1498 
1499 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1500 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1501 
1502 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1503 	if (gb)
1504 		inactive_ratio = int_sqrt(10 * gb);
1505 	else
1506 		inactive_ratio = 1;
1507 
1508 	return inactive * inactive_ratio < active;
1509 }
1510 
1511 #define mem_cgroup_from_res_counter(counter, member)	\
1512 	container_of(counter, struct mem_cgroup, member)
1513 
1514 /**
1515  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1516  * @memcg: the memory cgroup
1517  *
1518  * Returns the maximum amount of memory @mem can be charged with, in
1519  * pages.
1520  */
1521 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1522 {
1523 	unsigned long long margin;
1524 
1525 	margin = res_counter_margin(&memcg->res);
1526 	if (do_swap_account)
1527 		margin = min(margin, res_counter_margin(&memcg->memsw));
1528 	return margin >> PAGE_SHIFT;
1529 }
1530 
1531 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1532 {
1533 	/* root ? */
1534 	if (mem_cgroup_disabled() || !memcg->css.parent)
1535 		return vm_swappiness;
1536 
1537 	return memcg->swappiness;
1538 }
1539 
1540 /*
1541  * memcg->moving_account is used for checking possibility that some thread is
1542  * calling move_account(). When a thread on CPU-A starts moving pages under
1543  * a memcg, other threads should check memcg->moving_account under
1544  * rcu_read_lock(), like this:
1545  *
1546  *         CPU-A                                    CPU-B
1547  *                                              rcu_read_lock()
1548  *         memcg->moving_account+1              if (memcg->mocing_account)
1549  *                                                   take heavy locks.
1550  *         synchronize_rcu()                    update something.
1551  *                                              rcu_read_unlock()
1552  *         start move here.
1553  */
1554 
1555 /* for quick checking without looking up memcg */
1556 atomic_t memcg_moving __read_mostly;
1557 
1558 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1559 {
1560 	atomic_inc(&memcg_moving);
1561 	atomic_inc(&memcg->moving_account);
1562 	synchronize_rcu();
1563 }
1564 
1565 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1566 {
1567 	/*
1568 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1569 	 * We check NULL in callee rather than caller.
1570 	 */
1571 	if (memcg) {
1572 		atomic_dec(&memcg_moving);
1573 		atomic_dec(&memcg->moving_account);
1574 	}
1575 }
1576 
1577 /*
1578  * A routine for checking "mem" is under move_account() or not.
1579  *
1580  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1581  * moving cgroups. This is for waiting at high-memory pressure
1582  * caused by "move".
1583  */
1584 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1585 {
1586 	struct mem_cgroup *from;
1587 	struct mem_cgroup *to;
1588 	bool ret = false;
1589 	/*
1590 	 * Unlike task_move routines, we access mc.to, mc.from not under
1591 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1592 	 */
1593 	spin_lock(&mc.lock);
1594 	from = mc.from;
1595 	to = mc.to;
1596 	if (!from)
1597 		goto unlock;
1598 
1599 	ret = mem_cgroup_same_or_subtree(memcg, from)
1600 		|| mem_cgroup_same_or_subtree(memcg, to);
1601 unlock:
1602 	spin_unlock(&mc.lock);
1603 	return ret;
1604 }
1605 
1606 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1607 {
1608 	if (mc.moving_task && current != mc.moving_task) {
1609 		if (mem_cgroup_under_move(memcg)) {
1610 			DEFINE_WAIT(wait);
1611 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1612 			/* moving charge context might have finished. */
1613 			if (mc.moving_task)
1614 				schedule();
1615 			finish_wait(&mc.waitq, &wait);
1616 			return true;
1617 		}
1618 	}
1619 	return false;
1620 }
1621 
1622 /*
1623  * Take this lock when
1624  * - a code tries to modify page's memcg while it's USED.
1625  * - a code tries to modify page state accounting in a memcg.
1626  */
1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 				  unsigned long *flags)
1629 {
1630 	spin_lock_irqsave(&memcg->move_lock, *flags);
1631 }
1632 
1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 				unsigned long *flags)
1635 {
1636 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637 }
1638 
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642  * @memcg: The memory cgroup that went over limit
1643  * @p: Task that is going to be killed
1644  *
1645  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646  * enabled
1647  */
1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649 {
1650 	/* oom_info_lock ensures that parallel ooms do not interleave */
1651 	static DEFINE_MUTEX(oom_info_lock);
1652 	struct mem_cgroup *iter;
1653 	unsigned int i;
1654 
1655 	if (!p)
1656 		return;
1657 
1658 	mutex_lock(&oom_info_lock);
1659 	rcu_read_lock();
1660 
1661 	pr_info("Task in ");
1662 	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1663 	pr_info(" killed as a result of limit of ");
1664 	pr_cont_cgroup_path(memcg->css.cgroup);
1665 	pr_info("\n");
1666 
1667 	rcu_read_unlock();
1668 
1669 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1670 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1671 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1672 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1673 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1674 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1675 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1676 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1677 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1678 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1679 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1680 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1681 
1682 	for_each_mem_cgroup_tree(iter, memcg) {
1683 		pr_info("Memory cgroup stats for ");
1684 		pr_cont_cgroup_path(iter->css.cgroup);
1685 		pr_cont(":");
1686 
1687 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1688 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1689 				continue;
1690 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1691 				K(mem_cgroup_read_stat(iter, i)));
1692 		}
1693 
1694 		for (i = 0; i < NR_LRU_LISTS; i++)
1695 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1696 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1697 
1698 		pr_cont("\n");
1699 	}
1700 	mutex_unlock(&oom_info_lock);
1701 }
1702 
1703 /*
1704  * This function returns the number of memcg under hierarchy tree. Returns
1705  * 1(self count) if no children.
1706  */
1707 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1708 {
1709 	int num = 0;
1710 	struct mem_cgroup *iter;
1711 
1712 	for_each_mem_cgroup_tree(iter, memcg)
1713 		num++;
1714 	return num;
1715 }
1716 
1717 /*
1718  * Return the memory (and swap, if configured) limit for a memcg.
1719  */
1720 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1721 {
1722 	u64 limit;
1723 
1724 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1725 
1726 	/*
1727 	 * Do not consider swap space if we cannot swap due to swappiness
1728 	 */
1729 	if (mem_cgroup_swappiness(memcg)) {
1730 		u64 memsw;
1731 
1732 		limit += total_swap_pages << PAGE_SHIFT;
1733 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1734 
1735 		/*
1736 		 * If memsw is finite and limits the amount of swap space
1737 		 * available to this memcg, return that limit.
1738 		 */
1739 		limit = min(limit, memsw);
1740 	}
1741 
1742 	return limit;
1743 }
1744 
1745 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1746 				     int order)
1747 {
1748 	struct mem_cgroup *iter;
1749 	unsigned long chosen_points = 0;
1750 	unsigned long totalpages;
1751 	unsigned int points = 0;
1752 	struct task_struct *chosen = NULL;
1753 
1754 	/*
1755 	 * If current has a pending SIGKILL or is exiting, then automatically
1756 	 * select it.  The goal is to allow it to allocate so that it may
1757 	 * quickly exit and free its memory.
1758 	 */
1759 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1760 		set_thread_flag(TIF_MEMDIE);
1761 		return;
1762 	}
1763 
1764 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1765 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1766 	for_each_mem_cgroup_tree(iter, memcg) {
1767 		struct css_task_iter it;
1768 		struct task_struct *task;
1769 
1770 		css_task_iter_start(&iter->css, &it);
1771 		while ((task = css_task_iter_next(&it))) {
1772 			switch (oom_scan_process_thread(task, totalpages, NULL,
1773 							false)) {
1774 			case OOM_SCAN_SELECT:
1775 				if (chosen)
1776 					put_task_struct(chosen);
1777 				chosen = task;
1778 				chosen_points = ULONG_MAX;
1779 				get_task_struct(chosen);
1780 				/* fall through */
1781 			case OOM_SCAN_CONTINUE:
1782 				continue;
1783 			case OOM_SCAN_ABORT:
1784 				css_task_iter_end(&it);
1785 				mem_cgroup_iter_break(memcg, iter);
1786 				if (chosen)
1787 					put_task_struct(chosen);
1788 				return;
1789 			case OOM_SCAN_OK:
1790 				break;
1791 			};
1792 			points = oom_badness(task, memcg, NULL, totalpages);
1793 			if (!points || points < chosen_points)
1794 				continue;
1795 			/* Prefer thread group leaders for display purposes */
1796 			if (points == chosen_points &&
1797 			    thread_group_leader(chosen))
1798 				continue;
1799 
1800 			if (chosen)
1801 				put_task_struct(chosen);
1802 			chosen = task;
1803 			chosen_points = points;
1804 			get_task_struct(chosen);
1805 		}
1806 		css_task_iter_end(&it);
1807 	}
1808 
1809 	if (!chosen)
1810 		return;
1811 	points = chosen_points * 1000 / totalpages;
1812 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1813 			 NULL, "Memory cgroup out of memory");
1814 }
1815 
1816 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1817 					gfp_t gfp_mask,
1818 					unsigned long flags)
1819 {
1820 	unsigned long total = 0;
1821 	bool noswap = false;
1822 	int loop;
1823 
1824 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1825 		noswap = true;
1826 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1827 		noswap = true;
1828 
1829 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1830 		if (loop)
1831 			drain_all_stock_async(memcg);
1832 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1833 		/*
1834 		 * Allow limit shrinkers, which are triggered directly
1835 		 * by userspace, to catch signals and stop reclaim
1836 		 * after minimal progress, regardless of the margin.
1837 		 */
1838 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1839 			break;
1840 		if (mem_cgroup_margin(memcg))
1841 			break;
1842 		/*
1843 		 * If nothing was reclaimed after two attempts, there
1844 		 * may be no reclaimable pages in this hierarchy.
1845 		 */
1846 		if (loop && !total)
1847 			break;
1848 	}
1849 	return total;
1850 }
1851 
1852 /**
1853  * test_mem_cgroup_node_reclaimable
1854  * @memcg: the target memcg
1855  * @nid: the node ID to be checked.
1856  * @noswap : specify true here if the user wants flle only information.
1857  *
1858  * This function returns whether the specified memcg contains any
1859  * reclaimable pages on a node. Returns true if there are any reclaimable
1860  * pages in the node.
1861  */
1862 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1863 		int nid, bool noswap)
1864 {
1865 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1866 		return true;
1867 	if (noswap || !total_swap_pages)
1868 		return false;
1869 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1870 		return true;
1871 	return false;
1872 
1873 }
1874 #if MAX_NUMNODES > 1
1875 
1876 /*
1877  * Always updating the nodemask is not very good - even if we have an empty
1878  * list or the wrong list here, we can start from some node and traverse all
1879  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1880  *
1881  */
1882 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1883 {
1884 	int nid;
1885 	/*
1886 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1887 	 * pagein/pageout changes since the last update.
1888 	 */
1889 	if (!atomic_read(&memcg->numainfo_events))
1890 		return;
1891 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1892 		return;
1893 
1894 	/* make a nodemask where this memcg uses memory from */
1895 	memcg->scan_nodes = node_states[N_MEMORY];
1896 
1897 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1898 
1899 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1900 			node_clear(nid, memcg->scan_nodes);
1901 	}
1902 
1903 	atomic_set(&memcg->numainfo_events, 0);
1904 	atomic_set(&memcg->numainfo_updating, 0);
1905 }
1906 
1907 /*
1908  * Selecting a node where we start reclaim from. Because what we need is just
1909  * reducing usage counter, start from anywhere is O,K. Considering
1910  * memory reclaim from current node, there are pros. and cons.
1911  *
1912  * Freeing memory from current node means freeing memory from a node which
1913  * we'll use or we've used. So, it may make LRU bad. And if several threads
1914  * hit limits, it will see a contention on a node. But freeing from remote
1915  * node means more costs for memory reclaim because of memory latency.
1916  *
1917  * Now, we use round-robin. Better algorithm is welcomed.
1918  */
1919 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1920 {
1921 	int node;
1922 
1923 	mem_cgroup_may_update_nodemask(memcg);
1924 	node = memcg->last_scanned_node;
1925 
1926 	node = next_node(node, memcg->scan_nodes);
1927 	if (node == MAX_NUMNODES)
1928 		node = first_node(memcg->scan_nodes);
1929 	/*
1930 	 * We call this when we hit limit, not when pages are added to LRU.
1931 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1932 	 * memcg is too small and all pages are not on LRU. In that case,
1933 	 * we use curret node.
1934 	 */
1935 	if (unlikely(node == MAX_NUMNODES))
1936 		node = numa_node_id();
1937 
1938 	memcg->last_scanned_node = node;
1939 	return node;
1940 }
1941 
1942 /*
1943  * Check all nodes whether it contains reclaimable pages or not.
1944  * For quick scan, we make use of scan_nodes. This will allow us to skip
1945  * unused nodes. But scan_nodes is lazily updated and may not cotain
1946  * enough new information. We need to do double check.
1947  */
1948 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1949 {
1950 	int nid;
1951 
1952 	/*
1953 	 * quick check...making use of scan_node.
1954 	 * We can skip unused nodes.
1955 	 */
1956 	if (!nodes_empty(memcg->scan_nodes)) {
1957 		for (nid = first_node(memcg->scan_nodes);
1958 		     nid < MAX_NUMNODES;
1959 		     nid = next_node(nid, memcg->scan_nodes)) {
1960 
1961 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1962 				return true;
1963 		}
1964 	}
1965 	/*
1966 	 * Check rest of nodes.
1967 	 */
1968 	for_each_node_state(nid, N_MEMORY) {
1969 		if (node_isset(nid, memcg->scan_nodes))
1970 			continue;
1971 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1972 			return true;
1973 	}
1974 	return false;
1975 }
1976 
1977 #else
1978 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1979 {
1980 	return 0;
1981 }
1982 
1983 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1984 {
1985 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1986 }
1987 #endif
1988 
1989 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1990 				   struct zone *zone,
1991 				   gfp_t gfp_mask,
1992 				   unsigned long *total_scanned)
1993 {
1994 	struct mem_cgroup *victim = NULL;
1995 	int total = 0;
1996 	int loop = 0;
1997 	unsigned long excess;
1998 	unsigned long nr_scanned;
1999 	struct mem_cgroup_reclaim_cookie reclaim = {
2000 		.zone = zone,
2001 		.priority = 0,
2002 	};
2003 
2004 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2005 
2006 	while (1) {
2007 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2008 		if (!victim) {
2009 			loop++;
2010 			if (loop >= 2) {
2011 				/*
2012 				 * If we have not been able to reclaim
2013 				 * anything, it might because there are
2014 				 * no reclaimable pages under this hierarchy
2015 				 */
2016 				if (!total)
2017 					break;
2018 				/*
2019 				 * We want to do more targeted reclaim.
2020 				 * excess >> 2 is not to excessive so as to
2021 				 * reclaim too much, nor too less that we keep
2022 				 * coming back to reclaim from this cgroup
2023 				 */
2024 				if (total >= (excess >> 2) ||
2025 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2026 					break;
2027 			}
2028 			continue;
2029 		}
2030 		if (!mem_cgroup_reclaimable(victim, false))
2031 			continue;
2032 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2033 						     zone, &nr_scanned);
2034 		*total_scanned += nr_scanned;
2035 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2036 			break;
2037 	}
2038 	mem_cgroup_iter_break(root_memcg, victim);
2039 	return total;
2040 }
2041 
2042 #ifdef CONFIG_LOCKDEP
2043 static struct lockdep_map memcg_oom_lock_dep_map = {
2044 	.name = "memcg_oom_lock",
2045 };
2046 #endif
2047 
2048 static DEFINE_SPINLOCK(memcg_oom_lock);
2049 
2050 /*
2051  * Check OOM-Killer is already running under our hierarchy.
2052  * If someone is running, return false.
2053  */
2054 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2055 {
2056 	struct mem_cgroup *iter, *failed = NULL;
2057 
2058 	spin_lock(&memcg_oom_lock);
2059 
2060 	for_each_mem_cgroup_tree(iter, memcg) {
2061 		if (iter->oom_lock) {
2062 			/*
2063 			 * this subtree of our hierarchy is already locked
2064 			 * so we cannot give a lock.
2065 			 */
2066 			failed = iter;
2067 			mem_cgroup_iter_break(memcg, iter);
2068 			break;
2069 		} else
2070 			iter->oom_lock = true;
2071 	}
2072 
2073 	if (failed) {
2074 		/*
2075 		 * OK, we failed to lock the whole subtree so we have
2076 		 * to clean up what we set up to the failing subtree
2077 		 */
2078 		for_each_mem_cgroup_tree(iter, memcg) {
2079 			if (iter == failed) {
2080 				mem_cgroup_iter_break(memcg, iter);
2081 				break;
2082 			}
2083 			iter->oom_lock = false;
2084 		}
2085 	} else
2086 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2087 
2088 	spin_unlock(&memcg_oom_lock);
2089 
2090 	return !failed;
2091 }
2092 
2093 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094 {
2095 	struct mem_cgroup *iter;
2096 
2097 	spin_lock(&memcg_oom_lock);
2098 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2099 	for_each_mem_cgroup_tree(iter, memcg)
2100 		iter->oom_lock = false;
2101 	spin_unlock(&memcg_oom_lock);
2102 }
2103 
2104 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2105 {
2106 	struct mem_cgroup *iter;
2107 
2108 	for_each_mem_cgroup_tree(iter, memcg)
2109 		atomic_inc(&iter->under_oom);
2110 }
2111 
2112 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2113 {
2114 	struct mem_cgroup *iter;
2115 
2116 	/*
2117 	 * When a new child is created while the hierarchy is under oom,
2118 	 * mem_cgroup_oom_lock() may not be called. We have to use
2119 	 * atomic_add_unless() here.
2120 	 */
2121 	for_each_mem_cgroup_tree(iter, memcg)
2122 		atomic_add_unless(&iter->under_oom, -1, 0);
2123 }
2124 
2125 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2126 
2127 struct oom_wait_info {
2128 	struct mem_cgroup *memcg;
2129 	wait_queue_t	wait;
2130 };
2131 
2132 static int memcg_oom_wake_function(wait_queue_t *wait,
2133 	unsigned mode, int sync, void *arg)
2134 {
2135 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2136 	struct mem_cgroup *oom_wait_memcg;
2137 	struct oom_wait_info *oom_wait_info;
2138 
2139 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2140 	oom_wait_memcg = oom_wait_info->memcg;
2141 
2142 	/*
2143 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2144 	 * Then we can use css_is_ancestor without taking care of RCU.
2145 	 */
2146 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2147 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2148 		return 0;
2149 	return autoremove_wake_function(wait, mode, sync, arg);
2150 }
2151 
2152 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2153 {
2154 	atomic_inc(&memcg->oom_wakeups);
2155 	/* for filtering, pass "memcg" as argument. */
2156 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2157 }
2158 
2159 static void memcg_oom_recover(struct mem_cgroup *memcg)
2160 {
2161 	if (memcg && atomic_read(&memcg->under_oom))
2162 		memcg_wakeup_oom(memcg);
2163 }
2164 
2165 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2166 {
2167 	if (!current->memcg_oom.may_oom)
2168 		return;
2169 	/*
2170 	 * We are in the middle of the charge context here, so we
2171 	 * don't want to block when potentially sitting on a callstack
2172 	 * that holds all kinds of filesystem and mm locks.
2173 	 *
2174 	 * Also, the caller may handle a failed allocation gracefully
2175 	 * (like optional page cache readahead) and so an OOM killer
2176 	 * invocation might not even be necessary.
2177 	 *
2178 	 * That's why we don't do anything here except remember the
2179 	 * OOM context and then deal with it at the end of the page
2180 	 * fault when the stack is unwound, the locks are released,
2181 	 * and when we know whether the fault was overall successful.
2182 	 */
2183 	css_get(&memcg->css);
2184 	current->memcg_oom.memcg = memcg;
2185 	current->memcg_oom.gfp_mask = mask;
2186 	current->memcg_oom.order = order;
2187 }
2188 
2189 /**
2190  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2191  * @handle: actually kill/wait or just clean up the OOM state
2192  *
2193  * This has to be called at the end of a page fault if the memcg OOM
2194  * handler was enabled.
2195  *
2196  * Memcg supports userspace OOM handling where failed allocations must
2197  * sleep on a waitqueue until the userspace task resolves the
2198  * situation.  Sleeping directly in the charge context with all kinds
2199  * of locks held is not a good idea, instead we remember an OOM state
2200  * in the task and mem_cgroup_oom_synchronize() has to be called at
2201  * the end of the page fault to complete the OOM handling.
2202  *
2203  * Returns %true if an ongoing memcg OOM situation was detected and
2204  * completed, %false otherwise.
2205  */
2206 bool mem_cgroup_oom_synchronize(bool handle)
2207 {
2208 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2209 	struct oom_wait_info owait;
2210 	bool locked;
2211 
2212 	/* OOM is global, do not handle */
2213 	if (!memcg)
2214 		return false;
2215 
2216 	if (!handle)
2217 		goto cleanup;
2218 
2219 	owait.memcg = memcg;
2220 	owait.wait.flags = 0;
2221 	owait.wait.func = memcg_oom_wake_function;
2222 	owait.wait.private = current;
2223 	INIT_LIST_HEAD(&owait.wait.task_list);
2224 
2225 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2226 	mem_cgroup_mark_under_oom(memcg);
2227 
2228 	locked = mem_cgroup_oom_trylock(memcg);
2229 
2230 	if (locked)
2231 		mem_cgroup_oom_notify(memcg);
2232 
2233 	if (locked && !memcg->oom_kill_disable) {
2234 		mem_cgroup_unmark_under_oom(memcg);
2235 		finish_wait(&memcg_oom_waitq, &owait.wait);
2236 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2237 					 current->memcg_oom.order);
2238 	} else {
2239 		schedule();
2240 		mem_cgroup_unmark_under_oom(memcg);
2241 		finish_wait(&memcg_oom_waitq, &owait.wait);
2242 	}
2243 
2244 	if (locked) {
2245 		mem_cgroup_oom_unlock(memcg);
2246 		/*
2247 		 * There is no guarantee that an OOM-lock contender
2248 		 * sees the wakeups triggered by the OOM kill
2249 		 * uncharges.  Wake any sleepers explicitely.
2250 		 */
2251 		memcg_oom_recover(memcg);
2252 	}
2253 cleanup:
2254 	current->memcg_oom.memcg = NULL;
2255 	css_put(&memcg->css);
2256 	return true;
2257 }
2258 
2259 /*
2260  * Used to update mapped file or writeback or other statistics.
2261  *
2262  * Notes: Race condition
2263  *
2264  * We usually use lock_page_cgroup() for accessing page_cgroup member but
2265  * it tends to be costly. But considering some conditions, we doesn't need
2266  * to do so _always_.
2267  *
2268  * Considering "charge", lock_page_cgroup() is not required because all
2269  * file-stat operations happen after a page is attached to radix-tree. There
2270  * are no race with "charge".
2271  *
2272  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2273  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2274  * if there are race with "uncharge". Statistics itself is properly handled
2275  * by flags.
2276  *
2277  * Considering "move", this is an only case we see a race. To make the race
2278  * small, we check memcg->moving_account and detect there are possibility
2279  * of race or not. If there is, we take a lock.
2280  */
2281 
2282 void __mem_cgroup_begin_update_page_stat(struct page *page,
2283 				bool *locked, unsigned long *flags)
2284 {
2285 	struct mem_cgroup *memcg;
2286 	struct page_cgroup *pc;
2287 
2288 	pc = lookup_page_cgroup(page);
2289 again:
2290 	memcg = pc->mem_cgroup;
2291 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 		return;
2293 	/*
2294 	 * If this memory cgroup is not under account moving, we don't
2295 	 * need to take move_lock_mem_cgroup(). Because we already hold
2296 	 * rcu_read_lock(), any calls to move_account will be delayed until
2297 	 * rcu_read_unlock().
2298 	 */
2299 	VM_BUG_ON(!rcu_read_lock_held());
2300 	if (atomic_read(&memcg->moving_account) <= 0)
2301 		return;
2302 
2303 	move_lock_mem_cgroup(memcg, flags);
2304 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2305 		move_unlock_mem_cgroup(memcg, flags);
2306 		goto again;
2307 	}
2308 	*locked = true;
2309 }
2310 
2311 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2312 {
2313 	struct page_cgroup *pc = lookup_page_cgroup(page);
2314 
2315 	/*
2316 	 * It's guaranteed that pc->mem_cgroup never changes while
2317 	 * lock is held because a routine modifies pc->mem_cgroup
2318 	 * should take move_lock_mem_cgroup().
2319 	 */
2320 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2321 }
2322 
2323 void mem_cgroup_update_page_stat(struct page *page,
2324 				 enum mem_cgroup_stat_index idx, int val)
2325 {
2326 	struct mem_cgroup *memcg;
2327 	struct page_cgroup *pc = lookup_page_cgroup(page);
2328 	unsigned long uninitialized_var(flags);
2329 
2330 	if (mem_cgroup_disabled())
2331 		return;
2332 
2333 	VM_BUG_ON(!rcu_read_lock_held());
2334 	memcg = pc->mem_cgroup;
2335 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2336 		return;
2337 
2338 	this_cpu_add(memcg->stat->count[idx], val);
2339 }
2340 
2341 /*
2342  * size of first charge trial. "32" comes from vmscan.c's magic value.
2343  * TODO: maybe necessary to use big numbers in big irons.
2344  */
2345 #define CHARGE_BATCH	32U
2346 struct memcg_stock_pcp {
2347 	struct mem_cgroup *cached; /* this never be root cgroup */
2348 	unsigned int nr_pages;
2349 	struct work_struct work;
2350 	unsigned long flags;
2351 #define FLUSHING_CACHED_CHARGE	0
2352 };
2353 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2354 static DEFINE_MUTEX(percpu_charge_mutex);
2355 
2356 /**
2357  * consume_stock: Try to consume stocked charge on this cpu.
2358  * @memcg: memcg to consume from.
2359  * @nr_pages: how many pages to charge.
2360  *
2361  * The charges will only happen if @memcg matches the current cpu's memcg
2362  * stock, and at least @nr_pages are available in that stock.  Failure to
2363  * service an allocation will refill the stock.
2364  *
2365  * returns true if successful, false otherwise.
2366  */
2367 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2368 {
2369 	struct memcg_stock_pcp *stock;
2370 	bool ret = true;
2371 
2372 	if (nr_pages > CHARGE_BATCH)
2373 		return false;
2374 
2375 	stock = &get_cpu_var(memcg_stock);
2376 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2377 		stock->nr_pages -= nr_pages;
2378 	else /* need to call res_counter_charge */
2379 		ret = false;
2380 	put_cpu_var(memcg_stock);
2381 	return ret;
2382 }
2383 
2384 /*
2385  * Returns stocks cached in percpu to res_counter and reset cached information.
2386  */
2387 static void drain_stock(struct memcg_stock_pcp *stock)
2388 {
2389 	struct mem_cgroup *old = stock->cached;
2390 
2391 	if (stock->nr_pages) {
2392 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2393 
2394 		res_counter_uncharge(&old->res, bytes);
2395 		if (do_swap_account)
2396 			res_counter_uncharge(&old->memsw, bytes);
2397 		stock->nr_pages = 0;
2398 	}
2399 	stock->cached = NULL;
2400 }
2401 
2402 /*
2403  * This must be called under preempt disabled or must be called by
2404  * a thread which is pinned to local cpu.
2405  */
2406 static void drain_local_stock(struct work_struct *dummy)
2407 {
2408 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2409 	drain_stock(stock);
2410 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2411 }
2412 
2413 static void __init memcg_stock_init(void)
2414 {
2415 	int cpu;
2416 
2417 	for_each_possible_cpu(cpu) {
2418 		struct memcg_stock_pcp *stock =
2419 					&per_cpu(memcg_stock, cpu);
2420 		INIT_WORK(&stock->work, drain_local_stock);
2421 	}
2422 }
2423 
2424 /*
2425  * Cache charges(val) which is from res_counter, to local per_cpu area.
2426  * This will be consumed by consume_stock() function, later.
2427  */
2428 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2429 {
2430 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2431 
2432 	if (stock->cached != memcg) { /* reset if necessary */
2433 		drain_stock(stock);
2434 		stock->cached = memcg;
2435 	}
2436 	stock->nr_pages += nr_pages;
2437 	put_cpu_var(memcg_stock);
2438 }
2439 
2440 /*
2441  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2442  * of the hierarchy under it. sync flag says whether we should block
2443  * until the work is done.
2444  */
2445 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2446 {
2447 	int cpu, curcpu;
2448 
2449 	/* Notify other cpus that system-wide "drain" is running */
2450 	get_online_cpus();
2451 	curcpu = get_cpu();
2452 	for_each_online_cpu(cpu) {
2453 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2454 		struct mem_cgroup *memcg;
2455 
2456 		memcg = stock->cached;
2457 		if (!memcg || !stock->nr_pages)
2458 			continue;
2459 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2460 			continue;
2461 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2462 			if (cpu == curcpu)
2463 				drain_local_stock(&stock->work);
2464 			else
2465 				schedule_work_on(cpu, &stock->work);
2466 		}
2467 	}
2468 	put_cpu();
2469 
2470 	if (!sync)
2471 		goto out;
2472 
2473 	for_each_online_cpu(cpu) {
2474 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2476 			flush_work(&stock->work);
2477 	}
2478 out:
2479 	put_online_cpus();
2480 }
2481 
2482 /*
2483  * Tries to drain stocked charges in other cpus. This function is asynchronous
2484  * and just put a work per cpu for draining localy on each cpu. Caller can
2485  * expects some charges will be back to res_counter later but cannot wait for
2486  * it.
2487  */
2488 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2489 {
2490 	/*
2491 	 * If someone calls draining, avoid adding more kworker runs.
2492 	 */
2493 	if (!mutex_trylock(&percpu_charge_mutex))
2494 		return;
2495 	drain_all_stock(root_memcg, false);
2496 	mutex_unlock(&percpu_charge_mutex);
2497 }
2498 
2499 /* This is a synchronous drain interface. */
2500 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2501 {
2502 	/* called when force_empty is called */
2503 	mutex_lock(&percpu_charge_mutex);
2504 	drain_all_stock(root_memcg, true);
2505 	mutex_unlock(&percpu_charge_mutex);
2506 }
2507 
2508 /*
2509  * This function drains percpu counter value from DEAD cpu and
2510  * move it to local cpu. Note that this function can be preempted.
2511  */
2512 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2513 {
2514 	int i;
2515 
2516 	spin_lock(&memcg->pcp_counter_lock);
2517 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2518 		long x = per_cpu(memcg->stat->count[i], cpu);
2519 
2520 		per_cpu(memcg->stat->count[i], cpu) = 0;
2521 		memcg->nocpu_base.count[i] += x;
2522 	}
2523 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2524 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2525 
2526 		per_cpu(memcg->stat->events[i], cpu) = 0;
2527 		memcg->nocpu_base.events[i] += x;
2528 	}
2529 	spin_unlock(&memcg->pcp_counter_lock);
2530 }
2531 
2532 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2533 					unsigned long action,
2534 					void *hcpu)
2535 {
2536 	int cpu = (unsigned long)hcpu;
2537 	struct memcg_stock_pcp *stock;
2538 	struct mem_cgroup *iter;
2539 
2540 	if (action == CPU_ONLINE)
2541 		return NOTIFY_OK;
2542 
2543 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2544 		return NOTIFY_OK;
2545 
2546 	for_each_mem_cgroup(iter)
2547 		mem_cgroup_drain_pcp_counter(iter, cpu);
2548 
2549 	stock = &per_cpu(memcg_stock, cpu);
2550 	drain_stock(stock);
2551 	return NOTIFY_OK;
2552 }
2553 
2554 
2555 /* See mem_cgroup_try_charge() for details */
2556 enum {
2557 	CHARGE_OK,		/* success */
2558 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2559 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2560 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2561 };
2562 
2563 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2564 				unsigned int nr_pages, unsigned int min_pages,
2565 				bool invoke_oom)
2566 {
2567 	unsigned long csize = nr_pages * PAGE_SIZE;
2568 	struct mem_cgroup *mem_over_limit;
2569 	struct res_counter *fail_res;
2570 	unsigned long flags = 0;
2571 	int ret;
2572 
2573 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2574 
2575 	if (likely(!ret)) {
2576 		if (!do_swap_account)
2577 			return CHARGE_OK;
2578 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2579 		if (likely(!ret))
2580 			return CHARGE_OK;
2581 
2582 		res_counter_uncharge(&memcg->res, csize);
2583 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2584 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2585 	} else
2586 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2587 	/*
2588 	 * Never reclaim on behalf of optional batching, retry with a
2589 	 * single page instead.
2590 	 */
2591 	if (nr_pages > min_pages)
2592 		return CHARGE_RETRY;
2593 
2594 	if (!(gfp_mask & __GFP_WAIT))
2595 		return CHARGE_WOULDBLOCK;
2596 
2597 	if (gfp_mask & __GFP_NORETRY)
2598 		return CHARGE_NOMEM;
2599 
2600 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2601 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2602 		return CHARGE_RETRY;
2603 	/*
2604 	 * Even though the limit is exceeded at this point, reclaim
2605 	 * may have been able to free some pages.  Retry the charge
2606 	 * before killing the task.
2607 	 *
2608 	 * Only for regular pages, though: huge pages are rather
2609 	 * unlikely to succeed so close to the limit, and we fall back
2610 	 * to regular pages anyway in case of failure.
2611 	 */
2612 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2613 		return CHARGE_RETRY;
2614 
2615 	/*
2616 	 * At task move, charge accounts can be doubly counted. So, it's
2617 	 * better to wait until the end of task_move if something is going on.
2618 	 */
2619 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2620 		return CHARGE_RETRY;
2621 
2622 	if (invoke_oom)
2623 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2624 
2625 	return CHARGE_NOMEM;
2626 }
2627 
2628 /**
2629  * mem_cgroup_try_charge - try charging a memcg
2630  * @memcg: memcg to charge
2631  * @nr_pages: number of pages to charge
2632  * @oom: trigger OOM if reclaim fails
2633  *
2634  * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2635  * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2636  */
2637 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2638 				 gfp_t gfp_mask,
2639 				 unsigned int nr_pages,
2640 				 bool oom)
2641 {
2642 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2643 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644 	int ret;
2645 
2646 	if (mem_cgroup_is_root(memcg))
2647 		goto done;
2648 	/*
2649 	 * Unlike in global OOM situations, memcg is not in a physical
2650 	 * memory shortage.  Allow dying and OOM-killed tasks to
2651 	 * bypass the last charges so that they can exit quickly and
2652 	 * free their memory.
2653 	 */
2654 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2655 		     fatal_signal_pending(current) ||
2656 		     current->flags & PF_EXITING))
2657 		goto bypass;
2658 
2659 	if (unlikely(task_in_memcg_oom(current)))
2660 		goto nomem;
2661 
2662 	if (gfp_mask & __GFP_NOFAIL)
2663 		oom = false;
2664 again:
2665 	if (consume_stock(memcg, nr_pages))
2666 		goto done;
2667 
2668 	do {
2669 		bool invoke_oom = oom && !nr_oom_retries;
2670 
2671 		/* If killed, bypass charge */
2672 		if (fatal_signal_pending(current))
2673 			goto bypass;
2674 
2675 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2676 					   nr_pages, invoke_oom);
2677 		switch (ret) {
2678 		case CHARGE_OK:
2679 			break;
2680 		case CHARGE_RETRY: /* not in OOM situation but retry */
2681 			batch = nr_pages;
2682 			goto again;
2683 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2684 			goto nomem;
2685 		case CHARGE_NOMEM: /* OOM routine works */
2686 			if (!oom || invoke_oom)
2687 				goto nomem;
2688 			nr_oom_retries--;
2689 			break;
2690 		}
2691 	} while (ret != CHARGE_OK);
2692 
2693 	if (batch > nr_pages)
2694 		refill_stock(memcg, batch - nr_pages);
2695 done:
2696 	return 0;
2697 nomem:
2698 	if (!(gfp_mask & __GFP_NOFAIL))
2699 		return -ENOMEM;
2700 bypass:
2701 	return -EINTR;
2702 }
2703 
2704 /**
2705  * mem_cgroup_try_charge_mm - try charging a mm
2706  * @mm: mm_struct to charge
2707  * @nr_pages: number of pages to charge
2708  * @oom: trigger OOM if reclaim fails
2709  *
2710  * Returns the charged mem_cgroup associated with the given mm_struct or
2711  * NULL the charge failed.
2712  */
2713 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2714 				 gfp_t gfp_mask,
2715 				 unsigned int nr_pages,
2716 				 bool oom)
2717 
2718 {
2719 	struct mem_cgroup *memcg;
2720 	int ret;
2721 
2722 	memcg = get_mem_cgroup_from_mm(mm);
2723 	ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2724 	css_put(&memcg->css);
2725 	if (ret == -EINTR)
2726 		memcg = root_mem_cgroup;
2727 	else if (ret)
2728 		memcg = NULL;
2729 
2730 	return memcg;
2731 }
2732 
2733 /*
2734  * Somemtimes we have to undo a charge we got by try_charge().
2735  * This function is for that and do uncharge, put css's refcnt.
2736  * gotten by try_charge().
2737  */
2738 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2739 				       unsigned int nr_pages)
2740 {
2741 	if (!mem_cgroup_is_root(memcg)) {
2742 		unsigned long bytes = nr_pages * PAGE_SIZE;
2743 
2744 		res_counter_uncharge(&memcg->res, bytes);
2745 		if (do_swap_account)
2746 			res_counter_uncharge(&memcg->memsw, bytes);
2747 	}
2748 }
2749 
2750 /*
2751  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2752  * This is useful when moving usage to parent cgroup.
2753  */
2754 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2755 					unsigned int nr_pages)
2756 {
2757 	unsigned long bytes = nr_pages * PAGE_SIZE;
2758 
2759 	if (mem_cgroup_is_root(memcg))
2760 		return;
2761 
2762 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2763 	if (do_swap_account)
2764 		res_counter_uncharge_until(&memcg->memsw,
2765 						memcg->memsw.parent, bytes);
2766 }
2767 
2768 /*
2769  * A helper function to get mem_cgroup from ID. must be called under
2770  * rcu_read_lock().  The caller is responsible for calling
2771  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2772  * refcnt from swap can be called against removed memcg.)
2773  */
2774 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2775 {
2776 	/* ID 0 is unused ID */
2777 	if (!id)
2778 		return NULL;
2779 	return mem_cgroup_from_id(id);
2780 }
2781 
2782 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2783 {
2784 	struct mem_cgroup *memcg = NULL;
2785 	struct page_cgroup *pc;
2786 	unsigned short id;
2787 	swp_entry_t ent;
2788 
2789 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2790 
2791 	pc = lookup_page_cgroup(page);
2792 	lock_page_cgroup(pc);
2793 	if (PageCgroupUsed(pc)) {
2794 		memcg = pc->mem_cgroup;
2795 		if (memcg && !css_tryget_online(&memcg->css))
2796 			memcg = NULL;
2797 	} else if (PageSwapCache(page)) {
2798 		ent.val = page_private(page);
2799 		id = lookup_swap_cgroup_id(ent);
2800 		rcu_read_lock();
2801 		memcg = mem_cgroup_lookup(id);
2802 		if (memcg && !css_tryget_online(&memcg->css))
2803 			memcg = NULL;
2804 		rcu_read_unlock();
2805 	}
2806 	unlock_page_cgroup(pc);
2807 	return memcg;
2808 }
2809 
2810 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2811 				       struct page *page,
2812 				       unsigned int nr_pages,
2813 				       enum charge_type ctype,
2814 				       bool lrucare)
2815 {
2816 	struct page_cgroup *pc = lookup_page_cgroup(page);
2817 	struct zone *uninitialized_var(zone);
2818 	struct lruvec *lruvec;
2819 	bool was_on_lru = false;
2820 	bool anon;
2821 
2822 	lock_page_cgroup(pc);
2823 	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2824 	/*
2825 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2826 	 * accessed by any other context at this point.
2827 	 */
2828 
2829 	/*
2830 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2831 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2832 	 */
2833 	if (lrucare) {
2834 		zone = page_zone(page);
2835 		spin_lock_irq(&zone->lru_lock);
2836 		if (PageLRU(page)) {
2837 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2838 			ClearPageLRU(page);
2839 			del_page_from_lru_list(page, lruvec, page_lru(page));
2840 			was_on_lru = true;
2841 		}
2842 	}
2843 
2844 	pc->mem_cgroup = memcg;
2845 	/*
2846 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2847 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2848 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2849 	 * before USED bit, we need memory barrier here.
2850 	 * See mem_cgroup_add_lru_list(), etc.
2851 	 */
2852 	smp_wmb();
2853 	SetPageCgroupUsed(pc);
2854 
2855 	if (lrucare) {
2856 		if (was_on_lru) {
2857 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2858 			VM_BUG_ON_PAGE(PageLRU(page), page);
2859 			SetPageLRU(page);
2860 			add_page_to_lru_list(page, lruvec, page_lru(page));
2861 		}
2862 		spin_unlock_irq(&zone->lru_lock);
2863 	}
2864 
2865 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2866 		anon = true;
2867 	else
2868 		anon = false;
2869 
2870 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2871 	unlock_page_cgroup(pc);
2872 
2873 	/*
2874 	 * "charge_statistics" updated event counter. Then, check it.
2875 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2876 	 * if they exceeds softlimit.
2877 	 */
2878 	memcg_check_events(memcg, page);
2879 }
2880 
2881 static DEFINE_MUTEX(set_limit_mutex);
2882 
2883 #ifdef CONFIG_MEMCG_KMEM
2884 /*
2885  * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2886  * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2887  */
2888 static DEFINE_MUTEX(memcg_slab_mutex);
2889 
2890 static DEFINE_MUTEX(activate_kmem_mutex);
2891 
2892 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2893 {
2894 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2895 		memcg_kmem_is_active(memcg);
2896 }
2897 
2898 /*
2899  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2900  * in the memcg_cache_params struct.
2901  */
2902 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2903 {
2904 	struct kmem_cache *cachep;
2905 
2906 	VM_BUG_ON(p->is_root_cache);
2907 	cachep = p->root_cache;
2908 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2909 }
2910 
2911 #ifdef CONFIG_SLABINFO
2912 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2913 {
2914 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2915 	struct memcg_cache_params *params;
2916 
2917 	if (!memcg_can_account_kmem(memcg))
2918 		return -EIO;
2919 
2920 	print_slabinfo_header(m);
2921 
2922 	mutex_lock(&memcg_slab_mutex);
2923 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2924 		cache_show(memcg_params_to_cache(params), m);
2925 	mutex_unlock(&memcg_slab_mutex);
2926 
2927 	return 0;
2928 }
2929 #endif
2930 
2931 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2932 {
2933 	struct res_counter *fail_res;
2934 	int ret = 0;
2935 
2936 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2937 	if (ret)
2938 		return ret;
2939 
2940 	ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2941 				    oom_gfp_allowed(gfp));
2942 	if (ret == -EINTR)  {
2943 		/*
2944 		 * mem_cgroup_try_charge() chosed to bypass to root due to
2945 		 * OOM kill or fatal signal.  Since our only options are to
2946 		 * either fail the allocation or charge it to this cgroup, do
2947 		 * it as a temporary condition. But we can't fail. From a
2948 		 * kmem/slab perspective, the cache has already been selected,
2949 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2950 		 * our minds.
2951 		 *
2952 		 * This condition will only trigger if the task entered
2953 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2954 		 * mem_cgroup_try_charge() above. Tasks that were already
2955 		 * dying when the allocation triggers should have been already
2956 		 * directed to the root cgroup in memcontrol.h
2957 		 */
2958 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
2959 		if (do_swap_account)
2960 			res_counter_charge_nofail(&memcg->memsw, size,
2961 						  &fail_res);
2962 		ret = 0;
2963 	} else if (ret)
2964 		res_counter_uncharge(&memcg->kmem, size);
2965 
2966 	return ret;
2967 }
2968 
2969 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2970 {
2971 	res_counter_uncharge(&memcg->res, size);
2972 	if (do_swap_account)
2973 		res_counter_uncharge(&memcg->memsw, size);
2974 
2975 	/* Not down to 0 */
2976 	if (res_counter_uncharge(&memcg->kmem, size))
2977 		return;
2978 
2979 	/*
2980 	 * Releases a reference taken in kmem_cgroup_css_offline in case
2981 	 * this last uncharge is racing with the offlining code or it is
2982 	 * outliving the memcg existence.
2983 	 *
2984 	 * The memory barrier imposed by test&clear is paired with the
2985 	 * explicit one in memcg_kmem_mark_dead().
2986 	 */
2987 	if (memcg_kmem_test_and_clear_dead(memcg))
2988 		css_put(&memcg->css);
2989 }
2990 
2991 /*
2992  * helper for acessing a memcg's index. It will be used as an index in the
2993  * child cache array in kmem_cache, and also to derive its name. This function
2994  * will return -1 when this is not a kmem-limited memcg.
2995  */
2996 int memcg_cache_id(struct mem_cgroup *memcg)
2997 {
2998 	return memcg ? memcg->kmemcg_id : -1;
2999 }
3000 
3001 static size_t memcg_caches_array_size(int num_groups)
3002 {
3003 	ssize_t size;
3004 	if (num_groups <= 0)
3005 		return 0;
3006 
3007 	size = 2 * num_groups;
3008 	if (size < MEMCG_CACHES_MIN_SIZE)
3009 		size = MEMCG_CACHES_MIN_SIZE;
3010 	else if (size > MEMCG_CACHES_MAX_SIZE)
3011 		size = MEMCG_CACHES_MAX_SIZE;
3012 
3013 	return size;
3014 }
3015 
3016 /*
3017  * We should update the current array size iff all caches updates succeed. This
3018  * can only be done from the slab side. The slab mutex needs to be held when
3019  * calling this.
3020  */
3021 void memcg_update_array_size(int num)
3022 {
3023 	if (num > memcg_limited_groups_array_size)
3024 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3025 }
3026 
3027 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3028 {
3029 	struct memcg_cache_params *cur_params = s->memcg_params;
3030 
3031 	VM_BUG_ON(!is_root_cache(s));
3032 
3033 	if (num_groups > memcg_limited_groups_array_size) {
3034 		int i;
3035 		struct memcg_cache_params *new_params;
3036 		ssize_t size = memcg_caches_array_size(num_groups);
3037 
3038 		size *= sizeof(void *);
3039 		size += offsetof(struct memcg_cache_params, memcg_caches);
3040 
3041 		new_params = kzalloc(size, GFP_KERNEL);
3042 		if (!new_params)
3043 			return -ENOMEM;
3044 
3045 		new_params->is_root_cache = true;
3046 
3047 		/*
3048 		 * There is the chance it will be bigger than
3049 		 * memcg_limited_groups_array_size, if we failed an allocation
3050 		 * in a cache, in which case all caches updated before it, will
3051 		 * have a bigger array.
3052 		 *
3053 		 * But if that is the case, the data after
3054 		 * memcg_limited_groups_array_size is certainly unused
3055 		 */
3056 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3057 			if (!cur_params->memcg_caches[i])
3058 				continue;
3059 			new_params->memcg_caches[i] =
3060 						cur_params->memcg_caches[i];
3061 		}
3062 
3063 		/*
3064 		 * Ideally, we would wait until all caches succeed, and only
3065 		 * then free the old one. But this is not worth the extra
3066 		 * pointer per-cache we'd have to have for this.
3067 		 *
3068 		 * It is not a big deal if some caches are left with a size
3069 		 * bigger than the others. And all updates will reset this
3070 		 * anyway.
3071 		 */
3072 		rcu_assign_pointer(s->memcg_params, new_params);
3073 		if (cur_params)
3074 			kfree_rcu(cur_params, rcu_head);
3075 	}
3076 	return 0;
3077 }
3078 
3079 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3080 			     struct kmem_cache *root_cache)
3081 {
3082 	size_t size;
3083 
3084 	if (!memcg_kmem_enabled())
3085 		return 0;
3086 
3087 	if (!memcg) {
3088 		size = offsetof(struct memcg_cache_params, memcg_caches);
3089 		size += memcg_limited_groups_array_size * sizeof(void *);
3090 	} else
3091 		size = sizeof(struct memcg_cache_params);
3092 
3093 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3094 	if (!s->memcg_params)
3095 		return -ENOMEM;
3096 
3097 	if (memcg) {
3098 		s->memcg_params->memcg = memcg;
3099 		s->memcg_params->root_cache = root_cache;
3100 		css_get(&memcg->css);
3101 	} else
3102 		s->memcg_params->is_root_cache = true;
3103 
3104 	return 0;
3105 }
3106 
3107 void memcg_free_cache_params(struct kmem_cache *s)
3108 {
3109 	if (!s->memcg_params)
3110 		return;
3111 	if (!s->memcg_params->is_root_cache)
3112 		css_put(&s->memcg_params->memcg->css);
3113 	kfree(s->memcg_params);
3114 }
3115 
3116 static void memcg_register_cache(struct mem_cgroup *memcg,
3117 				 struct kmem_cache *root_cache)
3118 {
3119 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3120 						     memcg_slab_mutex */
3121 	struct kmem_cache *cachep;
3122 	int id;
3123 
3124 	lockdep_assert_held(&memcg_slab_mutex);
3125 
3126 	id = memcg_cache_id(memcg);
3127 
3128 	/*
3129 	 * Since per-memcg caches are created asynchronously on first
3130 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
3131 	 * create the same cache, but only one of them may succeed.
3132 	 */
3133 	if (cache_from_memcg_idx(root_cache, id))
3134 		return;
3135 
3136 	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3137 	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3138 	/*
3139 	 * If we could not create a memcg cache, do not complain, because
3140 	 * that's not critical at all as we can always proceed with the root
3141 	 * cache.
3142 	 */
3143 	if (!cachep)
3144 		return;
3145 
3146 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3147 
3148 	/*
3149 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3150 	 * barrier here to ensure nobody will see the kmem_cache partially
3151 	 * initialized.
3152 	 */
3153 	smp_wmb();
3154 
3155 	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3156 	root_cache->memcg_params->memcg_caches[id] = cachep;
3157 }
3158 
3159 static void memcg_unregister_cache(struct kmem_cache *cachep)
3160 {
3161 	struct kmem_cache *root_cache;
3162 	struct mem_cgroup *memcg;
3163 	int id;
3164 
3165 	lockdep_assert_held(&memcg_slab_mutex);
3166 
3167 	BUG_ON(is_root_cache(cachep));
3168 
3169 	root_cache = cachep->memcg_params->root_cache;
3170 	memcg = cachep->memcg_params->memcg;
3171 	id = memcg_cache_id(memcg);
3172 
3173 	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3174 	root_cache->memcg_params->memcg_caches[id] = NULL;
3175 
3176 	list_del(&cachep->memcg_params->list);
3177 
3178 	kmem_cache_destroy(cachep);
3179 }
3180 
3181 /*
3182  * During the creation a new cache, we need to disable our accounting mechanism
3183  * altogether. This is true even if we are not creating, but rather just
3184  * enqueing new caches to be created.
3185  *
3186  * This is because that process will trigger allocations; some visible, like
3187  * explicit kmallocs to auxiliary data structures, name strings and internal
3188  * cache structures; some well concealed, like INIT_WORK() that can allocate
3189  * objects during debug.
3190  *
3191  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3192  * to it. This may not be a bounded recursion: since the first cache creation
3193  * failed to complete (waiting on the allocation), we'll just try to create the
3194  * cache again, failing at the same point.
3195  *
3196  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3197  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3198  * inside the following two functions.
3199  */
3200 static inline void memcg_stop_kmem_account(void)
3201 {
3202 	VM_BUG_ON(!current->mm);
3203 	current->memcg_kmem_skip_account++;
3204 }
3205 
3206 static inline void memcg_resume_kmem_account(void)
3207 {
3208 	VM_BUG_ON(!current->mm);
3209 	current->memcg_kmem_skip_account--;
3210 }
3211 
3212 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3213 {
3214 	struct kmem_cache *c;
3215 	int i, failed = 0;
3216 
3217 	mutex_lock(&memcg_slab_mutex);
3218 	for_each_memcg_cache_index(i) {
3219 		c = cache_from_memcg_idx(s, i);
3220 		if (!c)
3221 			continue;
3222 
3223 		memcg_unregister_cache(c);
3224 
3225 		if (cache_from_memcg_idx(s, i))
3226 			failed++;
3227 	}
3228 	mutex_unlock(&memcg_slab_mutex);
3229 	return failed;
3230 }
3231 
3232 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3233 {
3234 	struct kmem_cache *cachep;
3235 	struct memcg_cache_params *params, *tmp;
3236 
3237 	if (!memcg_kmem_is_active(memcg))
3238 		return;
3239 
3240 	mutex_lock(&memcg_slab_mutex);
3241 	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3242 		cachep = memcg_params_to_cache(params);
3243 		kmem_cache_shrink(cachep);
3244 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3245 			memcg_unregister_cache(cachep);
3246 	}
3247 	mutex_unlock(&memcg_slab_mutex);
3248 }
3249 
3250 struct memcg_register_cache_work {
3251 	struct mem_cgroup *memcg;
3252 	struct kmem_cache *cachep;
3253 	struct work_struct work;
3254 };
3255 
3256 static void memcg_register_cache_func(struct work_struct *w)
3257 {
3258 	struct memcg_register_cache_work *cw =
3259 		container_of(w, struct memcg_register_cache_work, work);
3260 	struct mem_cgroup *memcg = cw->memcg;
3261 	struct kmem_cache *cachep = cw->cachep;
3262 
3263 	mutex_lock(&memcg_slab_mutex);
3264 	memcg_register_cache(memcg, cachep);
3265 	mutex_unlock(&memcg_slab_mutex);
3266 
3267 	css_put(&memcg->css);
3268 	kfree(cw);
3269 }
3270 
3271 /*
3272  * Enqueue the creation of a per-memcg kmem_cache.
3273  */
3274 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3275 					    struct kmem_cache *cachep)
3276 {
3277 	struct memcg_register_cache_work *cw;
3278 
3279 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3280 	if (cw == NULL) {
3281 		css_put(&memcg->css);
3282 		return;
3283 	}
3284 
3285 	cw->memcg = memcg;
3286 	cw->cachep = cachep;
3287 
3288 	INIT_WORK(&cw->work, memcg_register_cache_func);
3289 	schedule_work(&cw->work);
3290 }
3291 
3292 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3293 					  struct kmem_cache *cachep)
3294 {
3295 	/*
3296 	 * We need to stop accounting when we kmalloc, because if the
3297 	 * corresponding kmalloc cache is not yet created, the first allocation
3298 	 * in __memcg_schedule_register_cache will recurse.
3299 	 *
3300 	 * However, it is better to enclose the whole function. Depending on
3301 	 * the debugging options enabled, INIT_WORK(), for instance, can
3302 	 * trigger an allocation. This too, will make us recurse. Because at
3303 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3304 	 * the safest choice is to do it like this, wrapping the whole function.
3305 	 */
3306 	memcg_stop_kmem_account();
3307 	__memcg_schedule_register_cache(memcg, cachep);
3308 	memcg_resume_kmem_account();
3309 }
3310 
3311 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3312 {
3313 	int res;
3314 
3315 	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3316 				PAGE_SIZE << order);
3317 	if (!res)
3318 		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3319 	return res;
3320 }
3321 
3322 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3323 {
3324 	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3325 	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3326 }
3327 
3328 /*
3329  * Return the kmem_cache we're supposed to use for a slab allocation.
3330  * We try to use the current memcg's version of the cache.
3331  *
3332  * If the cache does not exist yet, if we are the first user of it,
3333  * we either create it immediately, if possible, or create it asynchronously
3334  * in a workqueue.
3335  * In the latter case, we will let the current allocation go through with
3336  * the original cache.
3337  *
3338  * Can't be called in interrupt context or from kernel threads.
3339  * This function needs to be called with rcu_read_lock() held.
3340  */
3341 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3342 					  gfp_t gfp)
3343 {
3344 	struct mem_cgroup *memcg;
3345 	struct kmem_cache *memcg_cachep;
3346 
3347 	VM_BUG_ON(!cachep->memcg_params);
3348 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3349 
3350 	if (!current->mm || current->memcg_kmem_skip_account)
3351 		return cachep;
3352 
3353 	rcu_read_lock();
3354 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3355 
3356 	if (!memcg_can_account_kmem(memcg))
3357 		goto out;
3358 
3359 	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3360 	if (likely(memcg_cachep)) {
3361 		cachep = memcg_cachep;
3362 		goto out;
3363 	}
3364 
3365 	/* The corresponding put will be done in the workqueue. */
3366 	if (!css_tryget_online(&memcg->css))
3367 		goto out;
3368 	rcu_read_unlock();
3369 
3370 	/*
3371 	 * If we are in a safe context (can wait, and not in interrupt
3372 	 * context), we could be be predictable and return right away.
3373 	 * This would guarantee that the allocation being performed
3374 	 * already belongs in the new cache.
3375 	 *
3376 	 * However, there are some clashes that can arrive from locking.
3377 	 * For instance, because we acquire the slab_mutex while doing
3378 	 * memcg_create_kmem_cache, this means no further allocation
3379 	 * could happen with the slab_mutex held. So it's better to
3380 	 * defer everything.
3381 	 */
3382 	memcg_schedule_register_cache(memcg, cachep);
3383 	return cachep;
3384 out:
3385 	rcu_read_unlock();
3386 	return cachep;
3387 }
3388 
3389 /*
3390  * We need to verify if the allocation against current->mm->owner's memcg is
3391  * possible for the given order. But the page is not allocated yet, so we'll
3392  * need a further commit step to do the final arrangements.
3393  *
3394  * It is possible for the task to switch cgroups in this mean time, so at
3395  * commit time, we can't rely on task conversion any longer.  We'll then use
3396  * the handle argument to return to the caller which cgroup we should commit
3397  * against. We could also return the memcg directly and avoid the pointer
3398  * passing, but a boolean return value gives better semantics considering
3399  * the compiled-out case as well.
3400  *
3401  * Returning true means the allocation is possible.
3402  */
3403 bool
3404 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3405 {
3406 	struct mem_cgroup *memcg;
3407 	int ret;
3408 
3409 	*_memcg = NULL;
3410 
3411 	/*
3412 	 * Disabling accounting is only relevant for some specific memcg
3413 	 * internal allocations. Therefore we would initially not have such
3414 	 * check here, since direct calls to the page allocator that are
3415 	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3416 	 * outside memcg core. We are mostly concerned with cache allocations,
3417 	 * and by having this test at memcg_kmem_get_cache, we are already able
3418 	 * to relay the allocation to the root cache and bypass the memcg cache
3419 	 * altogether.
3420 	 *
3421 	 * There is one exception, though: the SLUB allocator does not create
3422 	 * large order caches, but rather service large kmallocs directly from
3423 	 * the page allocator. Therefore, the following sequence when backed by
3424 	 * the SLUB allocator:
3425 	 *
3426 	 *	memcg_stop_kmem_account();
3427 	 *	kmalloc(<large_number>)
3428 	 *	memcg_resume_kmem_account();
3429 	 *
3430 	 * would effectively ignore the fact that we should skip accounting,
3431 	 * since it will drive us directly to this function without passing
3432 	 * through the cache selector memcg_kmem_get_cache. Such large
3433 	 * allocations are extremely rare but can happen, for instance, for the
3434 	 * cache arrays. We bring this test here.
3435 	 */
3436 	if (!current->mm || current->memcg_kmem_skip_account)
3437 		return true;
3438 
3439 	memcg = get_mem_cgroup_from_mm(current->mm);
3440 
3441 	if (!memcg_can_account_kmem(memcg)) {
3442 		css_put(&memcg->css);
3443 		return true;
3444 	}
3445 
3446 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3447 	if (!ret)
3448 		*_memcg = memcg;
3449 
3450 	css_put(&memcg->css);
3451 	return (ret == 0);
3452 }
3453 
3454 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3455 			      int order)
3456 {
3457 	struct page_cgroup *pc;
3458 
3459 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3460 
3461 	/* The page allocation failed. Revert */
3462 	if (!page) {
3463 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3464 		return;
3465 	}
3466 
3467 	pc = lookup_page_cgroup(page);
3468 	lock_page_cgroup(pc);
3469 	pc->mem_cgroup = memcg;
3470 	SetPageCgroupUsed(pc);
3471 	unlock_page_cgroup(pc);
3472 }
3473 
3474 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3475 {
3476 	struct mem_cgroup *memcg = NULL;
3477 	struct page_cgroup *pc;
3478 
3479 
3480 	pc = lookup_page_cgroup(page);
3481 	/*
3482 	 * Fast unlocked return. Theoretically might have changed, have to
3483 	 * check again after locking.
3484 	 */
3485 	if (!PageCgroupUsed(pc))
3486 		return;
3487 
3488 	lock_page_cgroup(pc);
3489 	if (PageCgroupUsed(pc)) {
3490 		memcg = pc->mem_cgroup;
3491 		ClearPageCgroupUsed(pc);
3492 	}
3493 	unlock_page_cgroup(pc);
3494 
3495 	/*
3496 	 * We trust that only if there is a memcg associated with the page, it
3497 	 * is a valid allocation
3498 	 */
3499 	if (!memcg)
3500 		return;
3501 
3502 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3503 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3504 }
3505 #else
3506 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3507 {
3508 }
3509 #endif /* CONFIG_MEMCG_KMEM */
3510 
3511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3512 
3513 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3514 /*
3515  * Because tail pages are not marked as "used", set it. We're under
3516  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3517  * charge/uncharge will be never happen and move_account() is done under
3518  * compound_lock(), so we don't have to take care of races.
3519  */
3520 void mem_cgroup_split_huge_fixup(struct page *head)
3521 {
3522 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3523 	struct page_cgroup *pc;
3524 	struct mem_cgroup *memcg;
3525 	int i;
3526 
3527 	if (mem_cgroup_disabled())
3528 		return;
3529 
3530 	memcg = head_pc->mem_cgroup;
3531 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3532 		pc = head_pc + i;
3533 		pc->mem_cgroup = memcg;
3534 		smp_wmb();/* see __commit_charge() */
3535 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3536 	}
3537 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3538 		       HPAGE_PMD_NR);
3539 }
3540 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3541 
3542 /**
3543  * mem_cgroup_move_account - move account of the page
3544  * @page: the page
3545  * @nr_pages: number of regular pages (>1 for huge pages)
3546  * @pc:	page_cgroup of the page.
3547  * @from: mem_cgroup which the page is moved from.
3548  * @to:	mem_cgroup which the page is moved to. @from != @to.
3549  *
3550  * The caller must confirm following.
3551  * - page is not on LRU (isolate_page() is useful.)
3552  * - compound_lock is held when nr_pages > 1
3553  *
3554  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3555  * from old cgroup.
3556  */
3557 static int mem_cgroup_move_account(struct page *page,
3558 				   unsigned int nr_pages,
3559 				   struct page_cgroup *pc,
3560 				   struct mem_cgroup *from,
3561 				   struct mem_cgroup *to)
3562 {
3563 	unsigned long flags;
3564 	int ret;
3565 	bool anon = PageAnon(page);
3566 
3567 	VM_BUG_ON(from == to);
3568 	VM_BUG_ON_PAGE(PageLRU(page), page);
3569 	/*
3570 	 * The page is isolated from LRU. So, collapse function
3571 	 * will not handle this page. But page splitting can happen.
3572 	 * Do this check under compound_page_lock(). The caller should
3573 	 * hold it.
3574 	 */
3575 	ret = -EBUSY;
3576 	if (nr_pages > 1 && !PageTransHuge(page))
3577 		goto out;
3578 
3579 	lock_page_cgroup(pc);
3580 
3581 	ret = -EINVAL;
3582 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3583 		goto unlock;
3584 
3585 	move_lock_mem_cgroup(from, &flags);
3586 
3587 	if (!anon && page_mapped(page)) {
3588 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3589 			       nr_pages);
3590 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3591 			       nr_pages);
3592 	}
3593 
3594 	if (PageWriteback(page)) {
3595 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3596 			       nr_pages);
3597 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3598 			       nr_pages);
3599 	}
3600 
3601 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3602 
3603 	/* caller should have done css_get */
3604 	pc->mem_cgroup = to;
3605 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3606 	move_unlock_mem_cgroup(from, &flags);
3607 	ret = 0;
3608 unlock:
3609 	unlock_page_cgroup(pc);
3610 	/*
3611 	 * check events
3612 	 */
3613 	memcg_check_events(to, page);
3614 	memcg_check_events(from, page);
3615 out:
3616 	return ret;
3617 }
3618 
3619 /**
3620  * mem_cgroup_move_parent - moves page to the parent group
3621  * @page: the page to move
3622  * @pc: page_cgroup of the page
3623  * @child: page's cgroup
3624  *
3625  * move charges to its parent or the root cgroup if the group has no
3626  * parent (aka use_hierarchy==0).
3627  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3628  * mem_cgroup_move_account fails) the failure is always temporary and
3629  * it signals a race with a page removal/uncharge or migration. In the
3630  * first case the page is on the way out and it will vanish from the LRU
3631  * on the next attempt and the call should be retried later.
3632  * Isolation from the LRU fails only if page has been isolated from
3633  * the LRU since we looked at it and that usually means either global
3634  * reclaim or migration going on. The page will either get back to the
3635  * LRU or vanish.
3636  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3637  * (!PageCgroupUsed) or moved to a different group. The page will
3638  * disappear in the next attempt.
3639  */
3640 static int mem_cgroup_move_parent(struct page *page,
3641 				  struct page_cgroup *pc,
3642 				  struct mem_cgroup *child)
3643 {
3644 	struct mem_cgroup *parent;
3645 	unsigned int nr_pages;
3646 	unsigned long uninitialized_var(flags);
3647 	int ret;
3648 
3649 	VM_BUG_ON(mem_cgroup_is_root(child));
3650 
3651 	ret = -EBUSY;
3652 	if (!get_page_unless_zero(page))
3653 		goto out;
3654 	if (isolate_lru_page(page))
3655 		goto put;
3656 
3657 	nr_pages = hpage_nr_pages(page);
3658 
3659 	parent = parent_mem_cgroup(child);
3660 	/*
3661 	 * If no parent, move charges to root cgroup.
3662 	 */
3663 	if (!parent)
3664 		parent = root_mem_cgroup;
3665 
3666 	if (nr_pages > 1) {
3667 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3668 		flags = compound_lock_irqsave(page);
3669 	}
3670 
3671 	ret = mem_cgroup_move_account(page, nr_pages,
3672 				pc, child, parent);
3673 	if (!ret)
3674 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3675 
3676 	if (nr_pages > 1)
3677 		compound_unlock_irqrestore(page, flags);
3678 	putback_lru_page(page);
3679 put:
3680 	put_page(page);
3681 out:
3682 	return ret;
3683 }
3684 
3685 int mem_cgroup_charge_anon(struct page *page,
3686 			      struct mm_struct *mm, gfp_t gfp_mask)
3687 {
3688 	unsigned int nr_pages = 1;
3689 	struct mem_cgroup *memcg;
3690 	bool oom = true;
3691 
3692 	if (mem_cgroup_disabled())
3693 		return 0;
3694 
3695 	VM_BUG_ON_PAGE(page_mapped(page), page);
3696 	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3697 	VM_BUG_ON(!mm);
3698 
3699 	if (PageTransHuge(page)) {
3700 		nr_pages <<= compound_order(page);
3701 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3702 		/*
3703 		 * Never OOM-kill a process for a huge page.  The
3704 		 * fault handler will fall back to regular pages.
3705 		 */
3706 		oom = false;
3707 	}
3708 
3709 	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3710 	if (!memcg)
3711 		return -ENOMEM;
3712 	__mem_cgroup_commit_charge(memcg, page, nr_pages,
3713 				   MEM_CGROUP_CHARGE_TYPE_ANON, false);
3714 	return 0;
3715 }
3716 
3717 /*
3718  * While swap-in, try_charge -> commit or cancel, the page is locked.
3719  * And when try_charge() successfully returns, one refcnt to memcg without
3720  * struct page_cgroup is acquired. This refcnt will be consumed by
3721  * "commit()" or removed by "cancel()"
3722  */
3723 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3724 					  struct page *page,
3725 					  gfp_t mask,
3726 					  struct mem_cgroup **memcgp)
3727 {
3728 	struct mem_cgroup *memcg = NULL;
3729 	struct page_cgroup *pc;
3730 	int ret;
3731 
3732 	pc = lookup_page_cgroup(page);
3733 	/*
3734 	 * Every swap fault against a single page tries to charge the
3735 	 * page, bail as early as possible.  shmem_unuse() encounters
3736 	 * already charged pages, too.  The USED bit is protected by
3737 	 * the page lock, which serializes swap cache removal, which
3738 	 * in turn serializes uncharging.
3739 	 */
3740 	if (PageCgroupUsed(pc))
3741 		goto out;
3742 	if (do_swap_account)
3743 		memcg = try_get_mem_cgroup_from_page(page);
3744 	if (!memcg)
3745 		memcg = get_mem_cgroup_from_mm(mm);
3746 	ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3747 	css_put(&memcg->css);
3748 	if (ret == -EINTR)
3749 		memcg = root_mem_cgroup;
3750 	else if (ret)
3751 		return ret;
3752 out:
3753 	*memcgp = memcg;
3754 	return 0;
3755 }
3756 
3757 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3758 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3759 {
3760 	if (mem_cgroup_disabled()) {
3761 		*memcgp = NULL;
3762 		return 0;
3763 	}
3764 	/*
3765 	 * A racing thread's fault, or swapoff, may have already
3766 	 * updated the pte, and even removed page from swap cache: in
3767 	 * those cases unuse_pte()'s pte_same() test will fail; but
3768 	 * there's also a KSM case which does need to charge the page.
3769 	 */
3770 	if (!PageSwapCache(page)) {
3771 		struct mem_cgroup *memcg;
3772 
3773 		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3774 		if (!memcg)
3775 			return -ENOMEM;
3776 		*memcgp = memcg;
3777 		return 0;
3778 	}
3779 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3780 }
3781 
3782 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3783 {
3784 	if (mem_cgroup_disabled())
3785 		return;
3786 	if (!memcg)
3787 		return;
3788 	__mem_cgroup_cancel_charge(memcg, 1);
3789 }
3790 
3791 static void
3792 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3793 					enum charge_type ctype)
3794 {
3795 	if (mem_cgroup_disabled())
3796 		return;
3797 	if (!memcg)
3798 		return;
3799 
3800 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3801 	/*
3802 	 * Now swap is on-memory. This means this page may be
3803 	 * counted both as mem and swap....double count.
3804 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3805 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3806 	 * may call delete_from_swap_cache() before reach here.
3807 	 */
3808 	if (do_swap_account && PageSwapCache(page)) {
3809 		swp_entry_t ent = {.val = page_private(page)};
3810 		mem_cgroup_uncharge_swap(ent);
3811 	}
3812 }
3813 
3814 void mem_cgroup_commit_charge_swapin(struct page *page,
3815 				     struct mem_cgroup *memcg)
3816 {
3817 	__mem_cgroup_commit_charge_swapin(page, memcg,
3818 					  MEM_CGROUP_CHARGE_TYPE_ANON);
3819 }
3820 
3821 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3822 				gfp_t gfp_mask)
3823 {
3824 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3825 	struct mem_cgroup *memcg;
3826 	int ret;
3827 
3828 	if (mem_cgroup_disabled())
3829 		return 0;
3830 	if (PageCompound(page))
3831 		return 0;
3832 
3833 	if (PageSwapCache(page)) { /* shmem */
3834 		ret = __mem_cgroup_try_charge_swapin(mm, page,
3835 						     gfp_mask, &memcg);
3836 		if (ret)
3837 			return ret;
3838 		__mem_cgroup_commit_charge_swapin(page, memcg, type);
3839 		return 0;
3840 	}
3841 
3842 	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3843 	if (!memcg)
3844 		return -ENOMEM;
3845 	__mem_cgroup_commit_charge(memcg, page, 1, type, false);
3846 	return 0;
3847 }
3848 
3849 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3850 				   unsigned int nr_pages,
3851 				   const enum charge_type ctype)
3852 {
3853 	struct memcg_batch_info *batch = NULL;
3854 	bool uncharge_memsw = true;
3855 
3856 	/* If swapout, usage of swap doesn't decrease */
3857 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3858 		uncharge_memsw = false;
3859 
3860 	batch = &current->memcg_batch;
3861 	/*
3862 	 * In usual, we do css_get() when we remember memcg pointer.
3863 	 * But in this case, we keep res->usage until end of a series of
3864 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
3865 	 */
3866 	if (!batch->memcg)
3867 		batch->memcg = memcg;
3868 	/*
3869 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3870 	 * In those cases, all pages freed continuously can be expected to be in
3871 	 * the same cgroup and we have chance to coalesce uncharges.
3872 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3873 	 * because we want to do uncharge as soon as possible.
3874 	 */
3875 
3876 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3877 		goto direct_uncharge;
3878 
3879 	if (nr_pages > 1)
3880 		goto direct_uncharge;
3881 
3882 	/*
3883 	 * In typical case, batch->memcg == mem. This means we can
3884 	 * merge a series of uncharges to an uncharge of res_counter.
3885 	 * If not, we uncharge res_counter ony by one.
3886 	 */
3887 	if (batch->memcg != memcg)
3888 		goto direct_uncharge;
3889 	/* remember freed charge and uncharge it later */
3890 	batch->nr_pages++;
3891 	if (uncharge_memsw)
3892 		batch->memsw_nr_pages++;
3893 	return;
3894 direct_uncharge:
3895 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3896 	if (uncharge_memsw)
3897 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3898 	if (unlikely(batch->memcg != memcg))
3899 		memcg_oom_recover(memcg);
3900 }
3901 
3902 /*
3903  * uncharge if !page_mapped(page)
3904  */
3905 static struct mem_cgroup *
3906 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3907 			     bool end_migration)
3908 {
3909 	struct mem_cgroup *memcg = NULL;
3910 	unsigned int nr_pages = 1;
3911 	struct page_cgroup *pc;
3912 	bool anon;
3913 
3914 	if (mem_cgroup_disabled())
3915 		return NULL;
3916 
3917 	if (PageTransHuge(page)) {
3918 		nr_pages <<= compound_order(page);
3919 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3920 	}
3921 	/*
3922 	 * Check if our page_cgroup is valid
3923 	 */
3924 	pc = lookup_page_cgroup(page);
3925 	if (unlikely(!PageCgroupUsed(pc)))
3926 		return NULL;
3927 
3928 	lock_page_cgroup(pc);
3929 
3930 	memcg = pc->mem_cgroup;
3931 
3932 	if (!PageCgroupUsed(pc))
3933 		goto unlock_out;
3934 
3935 	anon = PageAnon(page);
3936 
3937 	switch (ctype) {
3938 	case MEM_CGROUP_CHARGE_TYPE_ANON:
3939 		/*
3940 		 * Generally PageAnon tells if it's the anon statistics to be
3941 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3942 		 * used before page reached the stage of being marked PageAnon.
3943 		 */
3944 		anon = true;
3945 		/* fallthrough */
3946 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3947 		/* See mem_cgroup_prepare_migration() */
3948 		if (page_mapped(page))
3949 			goto unlock_out;
3950 		/*
3951 		 * Pages under migration may not be uncharged.  But
3952 		 * end_migration() /must/ be the one uncharging the
3953 		 * unused post-migration page and so it has to call
3954 		 * here with the migration bit still set.  See the
3955 		 * res_counter handling below.
3956 		 */
3957 		if (!end_migration && PageCgroupMigration(pc))
3958 			goto unlock_out;
3959 		break;
3960 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3961 		if (!PageAnon(page)) {	/* Shared memory */
3962 			if (page->mapping && !page_is_file_cache(page))
3963 				goto unlock_out;
3964 		} else if (page_mapped(page)) /* Anon */
3965 				goto unlock_out;
3966 		break;
3967 	default:
3968 		break;
3969 	}
3970 
3971 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
3972 
3973 	ClearPageCgroupUsed(pc);
3974 	/*
3975 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3976 	 * freed from LRU. This is safe because uncharged page is expected not
3977 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3978 	 * special functions.
3979 	 */
3980 
3981 	unlock_page_cgroup(pc);
3982 	/*
3983 	 * even after unlock, we have memcg->res.usage here and this memcg
3984 	 * will never be freed, so it's safe to call css_get().
3985 	 */
3986 	memcg_check_events(memcg, page);
3987 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3988 		mem_cgroup_swap_statistics(memcg, true);
3989 		css_get(&memcg->css);
3990 	}
3991 	/*
3992 	 * Migration does not charge the res_counter for the
3993 	 * replacement page, so leave it alone when phasing out the
3994 	 * page that is unused after the migration.
3995 	 */
3996 	if (!end_migration && !mem_cgroup_is_root(memcg))
3997 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3998 
3999 	return memcg;
4000 
4001 unlock_out:
4002 	unlock_page_cgroup(pc);
4003 	return NULL;
4004 }
4005 
4006 void mem_cgroup_uncharge_page(struct page *page)
4007 {
4008 	/* early check. */
4009 	if (page_mapped(page))
4010 		return;
4011 	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4012 	/*
4013 	 * If the page is in swap cache, uncharge should be deferred
4014 	 * to the swap path, which also properly accounts swap usage
4015 	 * and handles memcg lifetime.
4016 	 *
4017 	 * Note that this check is not stable and reclaim may add the
4018 	 * page to swap cache at any time after this.  However, if the
4019 	 * page is not in swap cache by the time page->mapcount hits
4020 	 * 0, there won't be any page table references to the swap
4021 	 * slot, and reclaim will free it and not actually write the
4022 	 * page to disk.
4023 	 */
4024 	if (PageSwapCache(page))
4025 		return;
4026 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4027 }
4028 
4029 void mem_cgroup_uncharge_cache_page(struct page *page)
4030 {
4031 	VM_BUG_ON_PAGE(page_mapped(page), page);
4032 	VM_BUG_ON_PAGE(page->mapping, page);
4033 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4034 }
4035 
4036 /*
4037  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4038  * In that cases, pages are freed continuously and we can expect pages
4039  * are in the same memcg. All these calls itself limits the number of
4040  * pages freed at once, then uncharge_start/end() is called properly.
4041  * This may be called prural(2) times in a context,
4042  */
4043 
4044 void mem_cgroup_uncharge_start(void)
4045 {
4046 	current->memcg_batch.do_batch++;
4047 	/* We can do nest. */
4048 	if (current->memcg_batch.do_batch == 1) {
4049 		current->memcg_batch.memcg = NULL;
4050 		current->memcg_batch.nr_pages = 0;
4051 		current->memcg_batch.memsw_nr_pages = 0;
4052 	}
4053 }
4054 
4055 void mem_cgroup_uncharge_end(void)
4056 {
4057 	struct memcg_batch_info *batch = &current->memcg_batch;
4058 
4059 	if (!batch->do_batch)
4060 		return;
4061 
4062 	batch->do_batch--;
4063 	if (batch->do_batch) /* If stacked, do nothing. */
4064 		return;
4065 
4066 	if (!batch->memcg)
4067 		return;
4068 	/*
4069 	 * This "batch->memcg" is valid without any css_get/put etc...
4070 	 * bacause we hide charges behind us.
4071 	 */
4072 	if (batch->nr_pages)
4073 		res_counter_uncharge(&batch->memcg->res,
4074 				     batch->nr_pages * PAGE_SIZE);
4075 	if (batch->memsw_nr_pages)
4076 		res_counter_uncharge(&batch->memcg->memsw,
4077 				     batch->memsw_nr_pages * PAGE_SIZE);
4078 	memcg_oom_recover(batch->memcg);
4079 	/* forget this pointer (for sanity check) */
4080 	batch->memcg = NULL;
4081 }
4082 
4083 #ifdef CONFIG_SWAP
4084 /*
4085  * called after __delete_from_swap_cache() and drop "page" account.
4086  * memcg information is recorded to swap_cgroup of "ent"
4087  */
4088 void
4089 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4090 {
4091 	struct mem_cgroup *memcg;
4092 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4093 
4094 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4095 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4096 
4097 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4098 
4099 	/*
4100 	 * record memcg information,  if swapout && memcg != NULL,
4101 	 * css_get() was called in uncharge().
4102 	 */
4103 	if (do_swap_account && swapout && memcg)
4104 		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4105 }
4106 #endif
4107 
4108 #ifdef CONFIG_MEMCG_SWAP
4109 /*
4110  * called from swap_entry_free(). remove record in swap_cgroup and
4111  * uncharge "memsw" account.
4112  */
4113 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4114 {
4115 	struct mem_cgroup *memcg;
4116 	unsigned short id;
4117 
4118 	if (!do_swap_account)
4119 		return;
4120 
4121 	id = swap_cgroup_record(ent, 0);
4122 	rcu_read_lock();
4123 	memcg = mem_cgroup_lookup(id);
4124 	if (memcg) {
4125 		/*
4126 		 * We uncharge this because swap is freed.  This memcg can
4127 		 * be obsolete one. We avoid calling css_tryget_online().
4128 		 */
4129 		if (!mem_cgroup_is_root(memcg))
4130 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4131 		mem_cgroup_swap_statistics(memcg, false);
4132 		css_put(&memcg->css);
4133 	}
4134 	rcu_read_unlock();
4135 }
4136 
4137 /**
4138  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4139  * @entry: swap entry to be moved
4140  * @from:  mem_cgroup which the entry is moved from
4141  * @to:  mem_cgroup which the entry is moved to
4142  *
4143  * It succeeds only when the swap_cgroup's record for this entry is the same
4144  * as the mem_cgroup's id of @from.
4145  *
4146  * Returns 0 on success, -EINVAL on failure.
4147  *
4148  * The caller must have charged to @to, IOW, called res_counter_charge() about
4149  * both res and memsw, and called css_get().
4150  */
4151 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4152 				struct mem_cgroup *from, struct mem_cgroup *to)
4153 {
4154 	unsigned short old_id, new_id;
4155 
4156 	old_id = mem_cgroup_id(from);
4157 	new_id = mem_cgroup_id(to);
4158 
4159 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4160 		mem_cgroup_swap_statistics(from, false);
4161 		mem_cgroup_swap_statistics(to, true);
4162 		/*
4163 		 * This function is only called from task migration context now.
4164 		 * It postpones res_counter and refcount handling till the end
4165 		 * of task migration(mem_cgroup_clear_mc()) for performance
4166 		 * improvement. But we cannot postpone css_get(to)  because if
4167 		 * the process that has been moved to @to does swap-in, the
4168 		 * refcount of @to might be decreased to 0.
4169 		 *
4170 		 * We are in attach() phase, so the cgroup is guaranteed to be
4171 		 * alive, so we can just call css_get().
4172 		 */
4173 		css_get(&to->css);
4174 		return 0;
4175 	}
4176 	return -EINVAL;
4177 }
4178 #else
4179 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4180 				struct mem_cgroup *from, struct mem_cgroup *to)
4181 {
4182 	return -EINVAL;
4183 }
4184 #endif
4185 
4186 /*
4187  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4188  * page belongs to.
4189  */
4190 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4191 				  struct mem_cgroup **memcgp)
4192 {
4193 	struct mem_cgroup *memcg = NULL;
4194 	unsigned int nr_pages = 1;
4195 	struct page_cgroup *pc;
4196 	enum charge_type ctype;
4197 
4198 	*memcgp = NULL;
4199 
4200 	if (mem_cgroup_disabled())
4201 		return;
4202 
4203 	if (PageTransHuge(page))
4204 		nr_pages <<= compound_order(page);
4205 
4206 	pc = lookup_page_cgroup(page);
4207 	lock_page_cgroup(pc);
4208 	if (PageCgroupUsed(pc)) {
4209 		memcg = pc->mem_cgroup;
4210 		css_get(&memcg->css);
4211 		/*
4212 		 * At migrating an anonymous page, its mapcount goes down
4213 		 * to 0 and uncharge() will be called. But, even if it's fully
4214 		 * unmapped, migration may fail and this page has to be
4215 		 * charged again. We set MIGRATION flag here and delay uncharge
4216 		 * until end_migration() is called
4217 		 *
4218 		 * Corner Case Thinking
4219 		 * A)
4220 		 * When the old page was mapped as Anon and it's unmap-and-freed
4221 		 * while migration was ongoing.
4222 		 * If unmap finds the old page, uncharge() of it will be delayed
4223 		 * until end_migration(). If unmap finds a new page, it's
4224 		 * uncharged when it make mapcount to be 1->0. If unmap code
4225 		 * finds swap_migration_entry, the new page will not be mapped
4226 		 * and end_migration() will find it(mapcount==0).
4227 		 *
4228 		 * B)
4229 		 * When the old page was mapped but migraion fails, the kernel
4230 		 * remaps it. A charge for it is kept by MIGRATION flag even
4231 		 * if mapcount goes down to 0. We can do remap successfully
4232 		 * without charging it again.
4233 		 *
4234 		 * C)
4235 		 * The "old" page is under lock_page() until the end of
4236 		 * migration, so, the old page itself will not be swapped-out.
4237 		 * If the new page is swapped out before end_migraton, our
4238 		 * hook to usual swap-out path will catch the event.
4239 		 */
4240 		if (PageAnon(page))
4241 			SetPageCgroupMigration(pc);
4242 	}
4243 	unlock_page_cgroup(pc);
4244 	/*
4245 	 * If the page is not charged at this point,
4246 	 * we return here.
4247 	 */
4248 	if (!memcg)
4249 		return;
4250 
4251 	*memcgp = memcg;
4252 	/*
4253 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4254 	 * is called before end_migration, we can catch all events on this new
4255 	 * page. In the case new page is migrated but not remapped, new page's
4256 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4257 	 */
4258 	if (PageAnon(page))
4259 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4260 	else
4261 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4262 	/*
4263 	 * The page is committed to the memcg, but it's not actually
4264 	 * charged to the res_counter since we plan on replacing the
4265 	 * old one and only one page is going to be left afterwards.
4266 	 */
4267 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4268 }
4269 
4270 /* remove redundant charge if migration failed*/
4271 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4272 	struct page *oldpage, struct page *newpage, bool migration_ok)
4273 {
4274 	struct page *used, *unused;
4275 	struct page_cgroup *pc;
4276 	bool anon;
4277 
4278 	if (!memcg)
4279 		return;
4280 
4281 	if (!migration_ok) {
4282 		used = oldpage;
4283 		unused = newpage;
4284 	} else {
4285 		used = newpage;
4286 		unused = oldpage;
4287 	}
4288 	anon = PageAnon(used);
4289 	__mem_cgroup_uncharge_common(unused,
4290 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4291 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4292 				     true);
4293 	css_put(&memcg->css);
4294 	/*
4295 	 * We disallowed uncharge of pages under migration because mapcount
4296 	 * of the page goes down to zero, temporarly.
4297 	 * Clear the flag and check the page should be charged.
4298 	 */
4299 	pc = lookup_page_cgroup(oldpage);
4300 	lock_page_cgroup(pc);
4301 	ClearPageCgroupMigration(pc);
4302 	unlock_page_cgroup(pc);
4303 
4304 	/*
4305 	 * If a page is a file cache, radix-tree replacement is very atomic
4306 	 * and we can skip this check. When it was an Anon page, its mapcount
4307 	 * goes down to 0. But because we added MIGRATION flage, it's not
4308 	 * uncharged yet. There are several case but page->mapcount check
4309 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4310 	 * check. (see prepare_charge() also)
4311 	 */
4312 	if (anon)
4313 		mem_cgroup_uncharge_page(used);
4314 }
4315 
4316 /*
4317  * At replace page cache, newpage is not under any memcg but it's on
4318  * LRU. So, this function doesn't touch res_counter but handles LRU
4319  * in correct way. Both pages are locked so we cannot race with uncharge.
4320  */
4321 void mem_cgroup_replace_page_cache(struct page *oldpage,
4322 				  struct page *newpage)
4323 {
4324 	struct mem_cgroup *memcg = NULL;
4325 	struct page_cgroup *pc;
4326 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4327 
4328 	if (mem_cgroup_disabled())
4329 		return;
4330 
4331 	pc = lookup_page_cgroup(oldpage);
4332 	/* fix accounting on old pages */
4333 	lock_page_cgroup(pc);
4334 	if (PageCgroupUsed(pc)) {
4335 		memcg = pc->mem_cgroup;
4336 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4337 		ClearPageCgroupUsed(pc);
4338 	}
4339 	unlock_page_cgroup(pc);
4340 
4341 	/*
4342 	 * When called from shmem_replace_page(), in some cases the
4343 	 * oldpage has already been charged, and in some cases not.
4344 	 */
4345 	if (!memcg)
4346 		return;
4347 	/*
4348 	 * Even if newpage->mapping was NULL before starting replacement,
4349 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4350 	 * LRU while we overwrite pc->mem_cgroup.
4351 	 */
4352 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4353 }
4354 
4355 #ifdef CONFIG_DEBUG_VM
4356 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4357 {
4358 	struct page_cgroup *pc;
4359 
4360 	pc = lookup_page_cgroup(page);
4361 	/*
4362 	 * Can be NULL while feeding pages into the page allocator for
4363 	 * the first time, i.e. during boot or memory hotplug;
4364 	 * or when mem_cgroup_disabled().
4365 	 */
4366 	if (likely(pc) && PageCgroupUsed(pc))
4367 		return pc;
4368 	return NULL;
4369 }
4370 
4371 bool mem_cgroup_bad_page_check(struct page *page)
4372 {
4373 	if (mem_cgroup_disabled())
4374 		return false;
4375 
4376 	return lookup_page_cgroup_used(page) != NULL;
4377 }
4378 
4379 void mem_cgroup_print_bad_page(struct page *page)
4380 {
4381 	struct page_cgroup *pc;
4382 
4383 	pc = lookup_page_cgroup_used(page);
4384 	if (pc) {
4385 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4386 			 pc, pc->flags, pc->mem_cgroup);
4387 	}
4388 }
4389 #endif
4390 
4391 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4392 				unsigned long long val)
4393 {
4394 	int retry_count;
4395 	u64 memswlimit, memlimit;
4396 	int ret = 0;
4397 	int children = mem_cgroup_count_children(memcg);
4398 	u64 curusage, oldusage;
4399 	int enlarge;
4400 
4401 	/*
4402 	 * For keeping hierarchical_reclaim simple, how long we should retry
4403 	 * is depends on callers. We set our retry-count to be function
4404 	 * of # of children which we should visit in this loop.
4405 	 */
4406 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4407 
4408 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4409 
4410 	enlarge = 0;
4411 	while (retry_count) {
4412 		if (signal_pending(current)) {
4413 			ret = -EINTR;
4414 			break;
4415 		}
4416 		/*
4417 		 * Rather than hide all in some function, I do this in
4418 		 * open coded manner. You see what this really does.
4419 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4420 		 */
4421 		mutex_lock(&set_limit_mutex);
4422 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4423 		if (memswlimit < val) {
4424 			ret = -EINVAL;
4425 			mutex_unlock(&set_limit_mutex);
4426 			break;
4427 		}
4428 
4429 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4430 		if (memlimit < val)
4431 			enlarge = 1;
4432 
4433 		ret = res_counter_set_limit(&memcg->res, val);
4434 		if (!ret) {
4435 			if (memswlimit == val)
4436 				memcg->memsw_is_minimum = true;
4437 			else
4438 				memcg->memsw_is_minimum = false;
4439 		}
4440 		mutex_unlock(&set_limit_mutex);
4441 
4442 		if (!ret)
4443 			break;
4444 
4445 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4446 				   MEM_CGROUP_RECLAIM_SHRINK);
4447 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4448 		/* Usage is reduced ? */
4449 		if (curusage >= oldusage)
4450 			retry_count--;
4451 		else
4452 			oldusage = curusage;
4453 	}
4454 	if (!ret && enlarge)
4455 		memcg_oom_recover(memcg);
4456 
4457 	return ret;
4458 }
4459 
4460 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4461 					unsigned long long val)
4462 {
4463 	int retry_count;
4464 	u64 memlimit, memswlimit, oldusage, curusage;
4465 	int children = mem_cgroup_count_children(memcg);
4466 	int ret = -EBUSY;
4467 	int enlarge = 0;
4468 
4469 	/* see mem_cgroup_resize_res_limit */
4470 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4471 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4472 	while (retry_count) {
4473 		if (signal_pending(current)) {
4474 			ret = -EINTR;
4475 			break;
4476 		}
4477 		/*
4478 		 * Rather than hide all in some function, I do this in
4479 		 * open coded manner. You see what this really does.
4480 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4481 		 */
4482 		mutex_lock(&set_limit_mutex);
4483 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4484 		if (memlimit > val) {
4485 			ret = -EINVAL;
4486 			mutex_unlock(&set_limit_mutex);
4487 			break;
4488 		}
4489 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4490 		if (memswlimit < val)
4491 			enlarge = 1;
4492 		ret = res_counter_set_limit(&memcg->memsw, val);
4493 		if (!ret) {
4494 			if (memlimit == val)
4495 				memcg->memsw_is_minimum = true;
4496 			else
4497 				memcg->memsw_is_minimum = false;
4498 		}
4499 		mutex_unlock(&set_limit_mutex);
4500 
4501 		if (!ret)
4502 			break;
4503 
4504 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4505 				   MEM_CGROUP_RECLAIM_NOSWAP |
4506 				   MEM_CGROUP_RECLAIM_SHRINK);
4507 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4508 		/* Usage is reduced ? */
4509 		if (curusage >= oldusage)
4510 			retry_count--;
4511 		else
4512 			oldusage = curusage;
4513 	}
4514 	if (!ret && enlarge)
4515 		memcg_oom_recover(memcg);
4516 	return ret;
4517 }
4518 
4519 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4520 					    gfp_t gfp_mask,
4521 					    unsigned long *total_scanned)
4522 {
4523 	unsigned long nr_reclaimed = 0;
4524 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4525 	unsigned long reclaimed;
4526 	int loop = 0;
4527 	struct mem_cgroup_tree_per_zone *mctz;
4528 	unsigned long long excess;
4529 	unsigned long nr_scanned;
4530 
4531 	if (order > 0)
4532 		return 0;
4533 
4534 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4535 	/*
4536 	 * This loop can run a while, specially if mem_cgroup's continuously
4537 	 * keep exceeding their soft limit and putting the system under
4538 	 * pressure
4539 	 */
4540 	do {
4541 		if (next_mz)
4542 			mz = next_mz;
4543 		else
4544 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4545 		if (!mz)
4546 			break;
4547 
4548 		nr_scanned = 0;
4549 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4550 						    gfp_mask, &nr_scanned);
4551 		nr_reclaimed += reclaimed;
4552 		*total_scanned += nr_scanned;
4553 		spin_lock(&mctz->lock);
4554 
4555 		/*
4556 		 * If we failed to reclaim anything from this memory cgroup
4557 		 * it is time to move on to the next cgroup
4558 		 */
4559 		next_mz = NULL;
4560 		if (!reclaimed) {
4561 			do {
4562 				/*
4563 				 * Loop until we find yet another one.
4564 				 *
4565 				 * By the time we get the soft_limit lock
4566 				 * again, someone might have aded the
4567 				 * group back on the RB tree. Iterate to
4568 				 * make sure we get a different mem.
4569 				 * mem_cgroup_largest_soft_limit_node returns
4570 				 * NULL if no other cgroup is present on
4571 				 * the tree
4572 				 */
4573 				next_mz =
4574 				__mem_cgroup_largest_soft_limit_node(mctz);
4575 				if (next_mz == mz)
4576 					css_put(&next_mz->memcg->css);
4577 				else /* next_mz == NULL or other memcg */
4578 					break;
4579 			} while (1);
4580 		}
4581 		__mem_cgroup_remove_exceeded(mz, mctz);
4582 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4583 		/*
4584 		 * One school of thought says that we should not add
4585 		 * back the node to the tree if reclaim returns 0.
4586 		 * But our reclaim could return 0, simply because due
4587 		 * to priority we are exposing a smaller subset of
4588 		 * memory to reclaim from. Consider this as a longer
4589 		 * term TODO.
4590 		 */
4591 		/* If excess == 0, no tree ops */
4592 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
4593 		spin_unlock(&mctz->lock);
4594 		css_put(&mz->memcg->css);
4595 		loop++;
4596 		/*
4597 		 * Could not reclaim anything and there are no more
4598 		 * mem cgroups to try or we seem to be looping without
4599 		 * reclaiming anything.
4600 		 */
4601 		if (!nr_reclaimed &&
4602 			(next_mz == NULL ||
4603 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4604 			break;
4605 	} while (!nr_reclaimed);
4606 	if (next_mz)
4607 		css_put(&next_mz->memcg->css);
4608 	return nr_reclaimed;
4609 }
4610 
4611 /**
4612  * mem_cgroup_force_empty_list - clears LRU of a group
4613  * @memcg: group to clear
4614  * @node: NUMA node
4615  * @zid: zone id
4616  * @lru: lru to to clear
4617  *
4618  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4619  * reclaim the pages page themselves - pages are moved to the parent (or root)
4620  * group.
4621  */
4622 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4623 				int node, int zid, enum lru_list lru)
4624 {
4625 	struct lruvec *lruvec;
4626 	unsigned long flags;
4627 	struct list_head *list;
4628 	struct page *busy;
4629 	struct zone *zone;
4630 
4631 	zone = &NODE_DATA(node)->node_zones[zid];
4632 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4633 	list = &lruvec->lists[lru];
4634 
4635 	busy = NULL;
4636 	do {
4637 		struct page_cgroup *pc;
4638 		struct page *page;
4639 
4640 		spin_lock_irqsave(&zone->lru_lock, flags);
4641 		if (list_empty(list)) {
4642 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4643 			break;
4644 		}
4645 		page = list_entry(list->prev, struct page, lru);
4646 		if (busy == page) {
4647 			list_move(&page->lru, list);
4648 			busy = NULL;
4649 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4650 			continue;
4651 		}
4652 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4653 
4654 		pc = lookup_page_cgroup(page);
4655 
4656 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4657 			/* found lock contention or "pc" is obsolete. */
4658 			busy = page;
4659 		} else
4660 			busy = NULL;
4661 		cond_resched();
4662 	} while (!list_empty(list));
4663 }
4664 
4665 /*
4666  * make mem_cgroup's charge to be 0 if there is no task by moving
4667  * all the charges and pages to the parent.
4668  * This enables deleting this mem_cgroup.
4669  *
4670  * Caller is responsible for holding css reference on the memcg.
4671  */
4672 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4673 {
4674 	int node, zid;
4675 	u64 usage;
4676 
4677 	do {
4678 		/* This is for making all *used* pages to be on LRU. */
4679 		lru_add_drain_all();
4680 		drain_all_stock_sync(memcg);
4681 		mem_cgroup_start_move(memcg);
4682 		for_each_node_state(node, N_MEMORY) {
4683 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4684 				enum lru_list lru;
4685 				for_each_lru(lru) {
4686 					mem_cgroup_force_empty_list(memcg,
4687 							node, zid, lru);
4688 				}
4689 			}
4690 		}
4691 		mem_cgroup_end_move(memcg);
4692 		memcg_oom_recover(memcg);
4693 		cond_resched();
4694 
4695 		/*
4696 		 * Kernel memory may not necessarily be trackable to a specific
4697 		 * process. So they are not migrated, and therefore we can't
4698 		 * expect their value to drop to 0 here.
4699 		 * Having res filled up with kmem only is enough.
4700 		 *
4701 		 * This is a safety check because mem_cgroup_force_empty_list
4702 		 * could have raced with mem_cgroup_replace_page_cache callers
4703 		 * so the lru seemed empty but the page could have been added
4704 		 * right after the check. RES_USAGE should be safe as we always
4705 		 * charge before adding to the LRU.
4706 		 */
4707 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4708 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4709 	} while (usage > 0);
4710 }
4711 
4712 /*
4713  * Test whether @memcg has children, dead or alive.  Note that this
4714  * function doesn't care whether @memcg has use_hierarchy enabled and
4715  * returns %true if there are child csses according to the cgroup
4716  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
4717  */
4718 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4719 {
4720 	bool ret;
4721 
4722 	/*
4723 	 * The lock does not prevent addition or deletion of children, but
4724 	 * it prevents a new child from being initialized based on this
4725 	 * parent in css_online(), so it's enough to decide whether
4726 	 * hierarchically inherited attributes can still be changed or not.
4727 	 */
4728 	lockdep_assert_held(&memcg_create_mutex);
4729 
4730 	rcu_read_lock();
4731 	ret = css_next_child(NULL, &memcg->css);
4732 	rcu_read_unlock();
4733 	return ret;
4734 }
4735 
4736 /*
4737  * Reclaims as many pages from the given memcg as possible and moves
4738  * the rest to the parent.
4739  *
4740  * Caller is responsible for holding css reference for memcg.
4741  */
4742 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4743 {
4744 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4745 
4746 	/* we call try-to-free pages for make this cgroup empty */
4747 	lru_add_drain_all();
4748 	/* try to free all pages in this cgroup */
4749 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4750 		int progress;
4751 
4752 		if (signal_pending(current))
4753 			return -EINTR;
4754 
4755 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4756 						false);
4757 		if (!progress) {
4758 			nr_retries--;
4759 			/* maybe some writeback is necessary */
4760 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4761 		}
4762 
4763 	}
4764 
4765 	return 0;
4766 }
4767 
4768 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4769 					    char *buf, size_t nbytes,
4770 					    loff_t off)
4771 {
4772 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4773 
4774 	if (mem_cgroup_is_root(memcg))
4775 		return -EINVAL;
4776 	return mem_cgroup_force_empty(memcg) ?: nbytes;
4777 }
4778 
4779 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4780 				     struct cftype *cft)
4781 {
4782 	return mem_cgroup_from_css(css)->use_hierarchy;
4783 }
4784 
4785 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4786 				      struct cftype *cft, u64 val)
4787 {
4788 	int retval = 0;
4789 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4790 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4791 
4792 	mutex_lock(&memcg_create_mutex);
4793 
4794 	if (memcg->use_hierarchy == val)
4795 		goto out;
4796 
4797 	/*
4798 	 * If parent's use_hierarchy is set, we can't make any modifications
4799 	 * in the child subtrees. If it is unset, then the change can
4800 	 * occur, provided the current cgroup has no children.
4801 	 *
4802 	 * For the root cgroup, parent_mem is NULL, we allow value to be
4803 	 * set if there are no children.
4804 	 */
4805 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4806 				(val == 1 || val == 0)) {
4807 		if (!memcg_has_children(memcg))
4808 			memcg->use_hierarchy = val;
4809 		else
4810 			retval = -EBUSY;
4811 	} else
4812 		retval = -EINVAL;
4813 
4814 out:
4815 	mutex_unlock(&memcg_create_mutex);
4816 
4817 	return retval;
4818 }
4819 
4820 
4821 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4822 					       enum mem_cgroup_stat_index idx)
4823 {
4824 	struct mem_cgroup *iter;
4825 	long val = 0;
4826 
4827 	/* Per-cpu values can be negative, use a signed accumulator */
4828 	for_each_mem_cgroup_tree(iter, memcg)
4829 		val += mem_cgroup_read_stat(iter, idx);
4830 
4831 	if (val < 0) /* race ? */
4832 		val = 0;
4833 	return val;
4834 }
4835 
4836 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4837 {
4838 	u64 val;
4839 
4840 	if (!mem_cgroup_is_root(memcg)) {
4841 		if (!swap)
4842 			return res_counter_read_u64(&memcg->res, RES_USAGE);
4843 		else
4844 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4845 	}
4846 
4847 	/*
4848 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4849 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4850 	 */
4851 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4852 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4853 
4854 	if (swap)
4855 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4856 
4857 	return val << PAGE_SHIFT;
4858 }
4859 
4860 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4861 				   struct cftype *cft)
4862 {
4863 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4864 	u64 val;
4865 	int name;
4866 	enum res_type type;
4867 
4868 	type = MEMFILE_TYPE(cft->private);
4869 	name = MEMFILE_ATTR(cft->private);
4870 
4871 	switch (type) {
4872 	case _MEM:
4873 		if (name == RES_USAGE)
4874 			val = mem_cgroup_usage(memcg, false);
4875 		else
4876 			val = res_counter_read_u64(&memcg->res, name);
4877 		break;
4878 	case _MEMSWAP:
4879 		if (name == RES_USAGE)
4880 			val = mem_cgroup_usage(memcg, true);
4881 		else
4882 			val = res_counter_read_u64(&memcg->memsw, name);
4883 		break;
4884 	case _KMEM:
4885 		val = res_counter_read_u64(&memcg->kmem, name);
4886 		break;
4887 	default:
4888 		BUG();
4889 	}
4890 
4891 	return val;
4892 }
4893 
4894 #ifdef CONFIG_MEMCG_KMEM
4895 /* should be called with activate_kmem_mutex held */
4896 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4897 				 unsigned long long limit)
4898 {
4899 	int err = 0;
4900 	int memcg_id;
4901 
4902 	if (memcg_kmem_is_active(memcg))
4903 		return 0;
4904 
4905 	/*
4906 	 * We are going to allocate memory for data shared by all memory
4907 	 * cgroups so let's stop accounting here.
4908 	 */
4909 	memcg_stop_kmem_account();
4910 
4911 	/*
4912 	 * For simplicity, we won't allow this to be disabled.  It also can't
4913 	 * be changed if the cgroup has children already, or if tasks had
4914 	 * already joined.
4915 	 *
4916 	 * If tasks join before we set the limit, a person looking at
4917 	 * kmem.usage_in_bytes will have no way to determine when it took
4918 	 * place, which makes the value quite meaningless.
4919 	 *
4920 	 * After it first became limited, changes in the value of the limit are
4921 	 * of course permitted.
4922 	 */
4923 	mutex_lock(&memcg_create_mutex);
4924 	if (cgroup_has_tasks(memcg->css.cgroup) ||
4925 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4926 		err = -EBUSY;
4927 	mutex_unlock(&memcg_create_mutex);
4928 	if (err)
4929 		goto out;
4930 
4931 	memcg_id = ida_simple_get(&kmem_limited_groups,
4932 				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4933 	if (memcg_id < 0) {
4934 		err = memcg_id;
4935 		goto out;
4936 	}
4937 
4938 	/*
4939 	 * Make sure we have enough space for this cgroup in each root cache's
4940 	 * memcg_params.
4941 	 */
4942 	mutex_lock(&memcg_slab_mutex);
4943 	err = memcg_update_all_caches(memcg_id + 1);
4944 	mutex_unlock(&memcg_slab_mutex);
4945 	if (err)
4946 		goto out_rmid;
4947 
4948 	memcg->kmemcg_id = memcg_id;
4949 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4950 
4951 	/*
4952 	 * We couldn't have accounted to this cgroup, because it hasn't got the
4953 	 * active bit set yet, so this should succeed.
4954 	 */
4955 	err = res_counter_set_limit(&memcg->kmem, limit);
4956 	VM_BUG_ON(err);
4957 
4958 	static_key_slow_inc(&memcg_kmem_enabled_key);
4959 	/*
4960 	 * Setting the active bit after enabling static branching will
4961 	 * guarantee no one starts accounting before all call sites are
4962 	 * patched.
4963 	 */
4964 	memcg_kmem_set_active(memcg);
4965 out:
4966 	memcg_resume_kmem_account();
4967 	return err;
4968 
4969 out_rmid:
4970 	ida_simple_remove(&kmem_limited_groups, memcg_id);
4971 	goto out;
4972 }
4973 
4974 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4975 			       unsigned long long limit)
4976 {
4977 	int ret;
4978 
4979 	mutex_lock(&activate_kmem_mutex);
4980 	ret = __memcg_activate_kmem(memcg, limit);
4981 	mutex_unlock(&activate_kmem_mutex);
4982 	return ret;
4983 }
4984 
4985 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4986 				   unsigned long long val)
4987 {
4988 	int ret;
4989 
4990 	if (!memcg_kmem_is_active(memcg))
4991 		ret = memcg_activate_kmem(memcg, val);
4992 	else
4993 		ret = res_counter_set_limit(&memcg->kmem, val);
4994 	return ret;
4995 }
4996 
4997 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4998 {
4999 	int ret = 0;
5000 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5001 
5002 	if (!parent)
5003 		return 0;
5004 
5005 	mutex_lock(&activate_kmem_mutex);
5006 	/*
5007 	 * If the parent cgroup is not kmem-active now, it cannot be activated
5008 	 * after this point, because it has at least one child already.
5009 	 */
5010 	if (memcg_kmem_is_active(parent))
5011 		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5012 	mutex_unlock(&activate_kmem_mutex);
5013 	return ret;
5014 }
5015 #else
5016 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5017 				   unsigned long long val)
5018 {
5019 	return -EINVAL;
5020 }
5021 #endif /* CONFIG_MEMCG_KMEM */
5022 
5023 /*
5024  * The user of this function is...
5025  * RES_LIMIT.
5026  */
5027 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
5028 				char *buf, size_t nbytes, loff_t off)
5029 {
5030 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5031 	enum res_type type;
5032 	int name;
5033 	unsigned long long val;
5034 	int ret;
5035 
5036 	buf = strstrip(buf);
5037 	type = MEMFILE_TYPE(of_cft(of)->private);
5038 	name = MEMFILE_ATTR(of_cft(of)->private);
5039 
5040 	switch (name) {
5041 	case RES_LIMIT:
5042 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5043 			ret = -EINVAL;
5044 			break;
5045 		}
5046 		/* This function does all necessary parse...reuse it */
5047 		ret = res_counter_memparse_write_strategy(buf, &val);
5048 		if (ret)
5049 			break;
5050 		if (type == _MEM)
5051 			ret = mem_cgroup_resize_limit(memcg, val);
5052 		else if (type == _MEMSWAP)
5053 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5054 		else if (type == _KMEM)
5055 			ret = memcg_update_kmem_limit(memcg, val);
5056 		else
5057 			return -EINVAL;
5058 		break;
5059 	case RES_SOFT_LIMIT:
5060 		ret = res_counter_memparse_write_strategy(buf, &val);
5061 		if (ret)
5062 			break;
5063 		/*
5064 		 * For memsw, soft limits are hard to implement in terms
5065 		 * of semantics, for now, we support soft limits for
5066 		 * control without swap
5067 		 */
5068 		if (type == _MEM)
5069 			ret = res_counter_set_soft_limit(&memcg->res, val);
5070 		else
5071 			ret = -EINVAL;
5072 		break;
5073 	default:
5074 		ret = -EINVAL; /* should be BUG() ? */
5075 		break;
5076 	}
5077 	return ret ?: nbytes;
5078 }
5079 
5080 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5081 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5082 {
5083 	unsigned long long min_limit, min_memsw_limit, tmp;
5084 
5085 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5086 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5087 	if (!memcg->use_hierarchy)
5088 		goto out;
5089 
5090 	while (memcg->css.parent) {
5091 		memcg = mem_cgroup_from_css(memcg->css.parent);
5092 		if (!memcg->use_hierarchy)
5093 			break;
5094 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5095 		min_limit = min(min_limit, tmp);
5096 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5097 		min_memsw_limit = min(min_memsw_limit, tmp);
5098 	}
5099 out:
5100 	*mem_limit = min_limit;
5101 	*memsw_limit = min_memsw_limit;
5102 }
5103 
5104 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
5105 				size_t nbytes, loff_t off)
5106 {
5107 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5108 	int name;
5109 	enum res_type type;
5110 
5111 	type = MEMFILE_TYPE(of_cft(of)->private);
5112 	name = MEMFILE_ATTR(of_cft(of)->private);
5113 
5114 	switch (name) {
5115 	case RES_MAX_USAGE:
5116 		if (type == _MEM)
5117 			res_counter_reset_max(&memcg->res);
5118 		else if (type == _MEMSWAP)
5119 			res_counter_reset_max(&memcg->memsw);
5120 		else if (type == _KMEM)
5121 			res_counter_reset_max(&memcg->kmem);
5122 		else
5123 			return -EINVAL;
5124 		break;
5125 	case RES_FAILCNT:
5126 		if (type == _MEM)
5127 			res_counter_reset_failcnt(&memcg->res);
5128 		else if (type == _MEMSWAP)
5129 			res_counter_reset_failcnt(&memcg->memsw);
5130 		else if (type == _KMEM)
5131 			res_counter_reset_failcnt(&memcg->kmem);
5132 		else
5133 			return -EINVAL;
5134 		break;
5135 	}
5136 
5137 	return nbytes;
5138 }
5139 
5140 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5141 					struct cftype *cft)
5142 {
5143 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5144 }
5145 
5146 #ifdef CONFIG_MMU
5147 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5148 					struct cftype *cft, u64 val)
5149 {
5150 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5151 
5152 	if (val >= (1 << NR_MOVE_TYPE))
5153 		return -EINVAL;
5154 
5155 	/*
5156 	 * No kind of locking is needed in here, because ->can_attach() will
5157 	 * check this value once in the beginning of the process, and then carry
5158 	 * on with stale data. This means that changes to this value will only
5159 	 * affect task migrations starting after the change.
5160 	 */
5161 	memcg->move_charge_at_immigrate = val;
5162 	return 0;
5163 }
5164 #else
5165 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5166 					struct cftype *cft, u64 val)
5167 {
5168 	return -ENOSYS;
5169 }
5170 #endif
5171 
5172 #ifdef CONFIG_NUMA
5173 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5174 {
5175 	struct numa_stat {
5176 		const char *name;
5177 		unsigned int lru_mask;
5178 	};
5179 
5180 	static const struct numa_stat stats[] = {
5181 		{ "total", LRU_ALL },
5182 		{ "file", LRU_ALL_FILE },
5183 		{ "anon", LRU_ALL_ANON },
5184 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
5185 	};
5186 	const struct numa_stat *stat;
5187 	int nid;
5188 	unsigned long nr;
5189 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5190 
5191 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5192 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5193 		seq_printf(m, "%s=%lu", stat->name, nr);
5194 		for_each_node_state(nid, N_MEMORY) {
5195 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5196 							  stat->lru_mask);
5197 			seq_printf(m, " N%d=%lu", nid, nr);
5198 		}
5199 		seq_putc(m, '\n');
5200 	}
5201 
5202 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5203 		struct mem_cgroup *iter;
5204 
5205 		nr = 0;
5206 		for_each_mem_cgroup_tree(iter, memcg)
5207 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5208 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5209 		for_each_node_state(nid, N_MEMORY) {
5210 			nr = 0;
5211 			for_each_mem_cgroup_tree(iter, memcg)
5212 				nr += mem_cgroup_node_nr_lru_pages(
5213 					iter, nid, stat->lru_mask);
5214 			seq_printf(m, " N%d=%lu", nid, nr);
5215 		}
5216 		seq_putc(m, '\n');
5217 	}
5218 
5219 	return 0;
5220 }
5221 #endif /* CONFIG_NUMA */
5222 
5223 static inline void mem_cgroup_lru_names_not_uptodate(void)
5224 {
5225 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5226 }
5227 
5228 static int memcg_stat_show(struct seq_file *m, void *v)
5229 {
5230 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5231 	struct mem_cgroup *mi;
5232 	unsigned int i;
5233 
5234 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5235 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5236 			continue;
5237 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5238 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5239 	}
5240 
5241 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5242 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5243 			   mem_cgroup_read_events(memcg, i));
5244 
5245 	for (i = 0; i < NR_LRU_LISTS; i++)
5246 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5247 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5248 
5249 	/* Hierarchical information */
5250 	{
5251 		unsigned long long limit, memsw_limit;
5252 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5253 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5254 		if (do_swap_account)
5255 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5256 				   memsw_limit);
5257 	}
5258 
5259 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5260 		long long val = 0;
5261 
5262 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5263 			continue;
5264 		for_each_mem_cgroup_tree(mi, memcg)
5265 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5266 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5267 	}
5268 
5269 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5270 		unsigned long long val = 0;
5271 
5272 		for_each_mem_cgroup_tree(mi, memcg)
5273 			val += mem_cgroup_read_events(mi, i);
5274 		seq_printf(m, "total_%s %llu\n",
5275 			   mem_cgroup_events_names[i], val);
5276 	}
5277 
5278 	for (i = 0; i < NR_LRU_LISTS; i++) {
5279 		unsigned long long val = 0;
5280 
5281 		for_each_mem_cgroup_tree(mi, memcg)
5282 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5283 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5284 	}
5285 
5286 #ifdef CONFIG_DEBUG_VM
5287 	{
5288 		int nid, zid;
5289 		struct mem_cgroup_per_zone *mz;
5290 		struct zone_reclaim_stat *rstat;
5291 		unsigned long recent_rotated[2] = {0, 0};
5292 		unsigned long recent_scanned[2] = {0, 0};
5293 
5294 		for_each_online_node(nid)
5295 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5296 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5297 				rstat = &mz->lruvec.reclaim_stat;
5298 
5299 				recent_rotated[0] += rstat->recent_rotated[0];
5300 				recent_rotated[1] += rstat->recent_rotated[1];
5301 				recent_scanned[0] += rstat->recent_scanned[0];
5302 				recent_scanned[1] += rstat->recent_scanned[1];
5303 			}
5304 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5305 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5306 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5307 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5308 	}
5309 #endif
5310 
5311 	return 0;
5312 }
5313 
5314 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5315 				      struct cftype *cft)
5316 {
5317 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5318 
5319 	return mem_cgroup_swappiness(memcg);
5320 }
5321 
5322 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5323 				       struct cftype *cft, u64 val)
5324 {
5325 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5326 
5327 	if (val > 100)
5328 		return -EINVAL;
5329 
5330 	if (css->parent)
5331 		memcg->swappiness = val;
5332 	else
5333 		vm_swappiness = val;
5334 
5335 	return 0;
5336 }
5337 
5338 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5339 {
5340 	struct mem_cgroup_threshold_ary *t;
5341 	u64 usage;
5342 	int i;
5343 
5344 	rcu_read_lock();
5345 	if (!swap)
5346 		t = rcu_dereference(memcg->thresholds.primary);
5347 	else
5348 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5349 
5350 	if (!t)
5351 		goto unlock;
5352 
5353 	usage = mem_cgroup_usage(memcg, swap);
5354 
5355 	/*
5356 	 * current_threshold points to threshold just below or equal to usage.
5357 	 * If it's not true, a threshold was crossed after last
5358 	 * call of __mem_cgroup_threshold().
5359 	 */
5360 	i = t->current_threshold;
5361 
5362 	/*
5363 	 * Iterate backward over array of thresholds starting from
5364 	 * current_threshold and check if a threshold is crossed.
5365 	 * If none of thresholds below usage is crossed, we read
5366 	 * only one element of the array here.
5367 	 */
5368 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5369 		eventfd_signal(t->entries[i].eventfd, 1);
5370 
5371 	/* i = current_threshold + 1 */
5372 	i++;
5373 
5374 	/*
5375 	 * Iterate forward over array of thresholds starting from
5376 	 * current_threshold+1 and check if a threshold is crossed.
5377 	 * If none of thresholds above usage is crossed, we read
5378 	 * only one element of the array here.
5379 	 */
5380 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5381 		eventfd_signal(t->entries[i].eventfd, 1);
5382 
5383 	/* Update current_threshold */
5384 	t->current_threshold = i - 1;
5385 unlock:
5386 	rcu_read_unlock();
5387 }
5388 
5389 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5390 {
5391 	while (memcg) {
5392 		__mem_cgroup_threshold(memcg, false);
5393 		if (do_swap_account)
5394 			__mem_cgroup_threshold(memcg, true);
5395 
5396 		memcg = parent_mem_cgroup(memcg);
5397 	}
5398 }
5399 
5400 static int compare_thresholds(const void *a, const void *b)
5401 {
5402 	const struct mem_cgroup_threshold *_a = a;
5403 	const struct mem_cgroup_threshold *_b = b;
5404 
5405 	if (_a->threshold > _b->threshold)
5406 		return 1;
5407 
5408 	if (_a->threshold < _b->threshold)
5409 		return -1;
5410 
5411 	return 0;
5412 }
5413 
5414 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5415 {
5416 	struct mem_cgroup_eventfd_list *ev;
5417 
5418 	list_for_each_entry(ev, &memcg->oom_notify, list)
5419 		eventfd_signal(ev->eventfd, 1);
5420 	return 0;
5421 }
5422 
5423 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5424 {
5425 	struct mem_cgroup *iter;
5426 
5427 	for_each_mem_cgroup_tree(iter, memcg)
5428 		mem_cgroup_oom_notify_cb(iter);
5429 }
5430 
5431 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5432 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5433 {
5434 	struct mem_cgroup_thresholds *thresholds;
5435 	struct mem_cgroup_threshold_ary *new;
5436 	u64 threshold, usage;
5437 	int i, size, ret;
5438 
5439 	ret = res_counter_memparse_write_strategy(args, &threshold);
5440 	if (ret)
5441 		return ret;
5442 
5443 	mutex_lock(&memcg->thresholds_lock);
5444 
5445 	if (type == _MEM)
5446 		thresholds = &memcg->thresholds;
5447 	else if (type == _MEMSWAP)
5448 		thresholds = &memcg->memsw_thresholds;
5449 	else
5450 		BUG();
5451 
5452 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5453 
5454 	/* Check if a threshold crossed before adding a new one */
5455 	if (thresholds->primary)
5456 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5457 
5458 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5459 
5460 	/* Allocate memory for new array of thresholds */
5461 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5462 			GFP_KERNEL);
5463 	if (!new) {
5464 		ret = -ENOMEM;
5465 		goto unlock;
5466 	}
5467 	new->size = size;
5468 
5469 	/* Copy thresholds (if any) to new array */
5470 	if (thresholds->primary) {
5471 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5472 				sizeof(struct mem_cgroup_threshold));
5473 	}
5474 
5475 	/* Add new threshold */
5476 	new->entries[size - 1].eventfd = eventfd;
5477 	new->entries[size - 1].threshold = threshold;
5478 
5479 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5480 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5481 			compare_thresholds, NULL);
5482 
5483 	/* Find current threshold */
5484 	new->current_threshold = -1;
5485 	for (i = 0; i < size; i++) {
5486 		if (new->entries[i].threshold <= usage) {
5487 			/*
5488 			 * new->current_threshold will not be used until
5489 			 * rcu_assign_pointer(), so it's safe to increment
5490 			 * it here.
5491 			 */
5492 			++new->current_threshold;
5493 		} else
5494 			break;
5495 	}
5496 
5497 	/* Free old spare buffer and save old primary buffer as spare */
5498 	kfree(thresholds->spare);
5499 	thresholds->spare = thresholds->primary;
5500 
5501 	rcu_assign_pointer(thresholds->primary, new);
5502 
5503 	/* To be sure that nobody uses thresholds */
5504 	synchronize_rcu();
5505 
5506 unlock:
5507 	mutex_unlock(&memcg->thresholds_lock);
5508 
5509 	return ret;
5510 }
5511 
5512 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5513 	struct eventfd_ctx *eventfd, const char *args)
5514 {
5515 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5516 }
5517 
5518 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5519 	struct eventfd_ctx *eventfd, const char *args)
5520 {
5521 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5522 }
5523 
5524 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5525 	struct eventfd_ctx *eventfd, enum res_type type)
5526 {
5527 	struct mem_cgroup_thresholds *thresholds;
5528 	struct mem_cgroup_threshold_ary *new;
5529 	u64 usage;
5530 	int i, j, size;
5531 
5532 	mutex_lock(&memcg->thresholds_lock);
5533 	if (type == _MEM)
5534 		thresholds = &memcg->thresholds;
5535 	else if (type == _MEMSWAP)
5536 		thresholds = &memcg->memsw_thresholds;
5537 	else
5538 		BUG();
5539 
5540 	if (!thresholds->primary)
5541 		goto unlock;
5542 
5543 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5544 
5545 	/* Check if a threshold crossed before removing */
5546 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5547 
5548 	/* Calculate new number of threshold */
5549 	size = 0;
5550 	for (i = 0; i < thresholds->primary->size; i++) {
5551 		if (thresholds->primary->entries[i].eventfd != eventfd)
5552 			size++;
5553 	}
5554 
5555 	new = thresholds->spare;
5556 
5557 	/* Set thresholds array to NULL if we don't have thresholds */
5558 	if (!size) {
5559 		kfree(new);
5560 		new = NULL;
5561 		goto swap_buffers;
5562 	}
5563 
5564 	new->size = size;
5565 
5566 	/* Copy thresholds and find current threshold */
5567 	new->current_threshold = -1;
5568 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5569 		if (thresholds->primary->entries[i].eventfd == eventfd)
5570 			continue;
5571 
5572 		new->entries[j] = thresholds->primary->entries[i];
5573 		if (new->entries[j].threshold <= usage) {
5574 			/*
5575 			 * new->current_threshold will not be used
5576 			 * until rcu_assign_pointer(), so it's safe to increment
5577 			 * it here.
5578 			 */
5579 			++new->current_threshold;
5580 		}
5581 		j++;
5582 	}
5583 
5584 swap_buffers:
5585 	/* Swap primary and spare array */
5586 	thresholds->spare = thresholds->primary;
5587 	/* If all events are unregistered, free the spare array */
5588 	if (!new) {
5589 		kfree(thresholds->spare);
5590 		thresholds->spare = NULL;
5591 	}
5592 
5593 	rcu_assign_pointer(thresholds->primary, new);
5594 
5595 	/* To be sure that nobody uses thresholds */
5596 	synchronize_rcu();
5597 unlock:
5598 	mutex_unlock(&memcg->thresholds_lock);
5599 }
5600 
5601 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5602 	struct eventfd_ctx *eventfd)
5603 {
5604 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5605 }
5606 
5607 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5608 	struct eventfd_ctx *eventfd)
5609 {
5610 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5611 }
5612 
5613 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5614 	struct eventfd_ctx *eventfd, const char *args)
5615 {
5616 	struct mem_cgroup_eventfd_list *event;
5617 
5618 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5619 	if (!event)
5620 		return -ENOMEM;
5621 
5622 	spin_lock(&memcg_oom_lock);
5623 
5624 	event->eventfd = eventfd;
5625 	list_add(&event->list, &memcg->oom_notify);
5626 
5627 	/* already in OOM ? */
5628 	if (atomic_read(&memcg->under_oom))
5629 		eventfd_signal(eventfd, 1);
5630 	spin_unlock(&memcg_oom_lock);
5631 
5632 	return 0;
5633 }
5634 
5635 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5636 	struct eventfd_ctx *eventfd)
5637 {
5638 	struct mem_cgroup_eventfd_list *ev, *tmp;
5639 
5640 	spin_lock(&memcg_oom_lock);
5641 
5642 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5643 		if (ev->eventfd == eventfd) {
5644 			list_del(&ev->list);
5645 			kfree(ev);
5646 		}
5647 	}
5648 
5649 	spin_unlock(&memcg_oom_lock);
5650 }
5651 
5652 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5653 {
5654 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5655 
5656 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5657 	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5658 	return 0;
5659 }
5660 
5661 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5662 	struct cftype *cft, u64 val)
5663 {
5664 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5665 
5666 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5667 	if (!css->parent || !((val == 0) || (val == 1)))
5668 		return -EINVAL;
5669 
5670 	memcg->oom_kill_disable = val;
5671 	if (!val)
5672 		memcg_oom_recover(memcg);
5673 
5674 	return 0;
5675 }
5676 
5677 #ifdef CONFIG_MEMCG_KMEM
5678 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5679 {
5680 	int ret;
5681 
5682 	memcg->kmemcg_id = -1;
5683 	ret = memcg_propagate_kmem(memcg);
5684 	if (ret)
5685 		return ret;
5686 
5687 	return mem_cgroup_sockets_init(memcg, ss);
5688 }
5689 
5690 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5691 {
5692 	mem_cgroup_sockets_destroy(memcg);
5693 }
5694 
5695 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5696 {
5697 	if (!memcg_kmem_is_active(memcg))
5698 		return;
5699 
5700 	/*
5701 	 * kmem charges can outlive the cgroup. In the case of slab
5702 	 * pages, for instance, a page contain objects from various
5703 	 * processes. As we prevent from taking a reference for every
5704 	 * such allocation we have to be careful when doing uncharge
5705 	 * (see memcg_uncharge_kmem) and here during offlining.
5706 	 *
5707 	 * The idea is that that only the _last_ uncharge which sees
5708 	 * the dead memcg will drop the last reference. An additional
5709 	 * reference is taken here before the group is marked dead
5710 	 * which is then paired with css_put during uncharge resp. here.
5711 	 *
5712 	 * Although this might sound strange as this path is called from
5713 	 * css_offline() when the referencemight have dropped down to 0 and
5714 	 * shouldn't be incremented anymore (css_tryget_online() would
5715 	 * fail) we do not have other options because of the kmem
5716 	 * allocations lifetime.
5717 	 */
5718 	css_get(&memcg->css);
5719 
5720 	memcg_kmem_mark_dead(memcg);
5721 
5722 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5723 		return;
5724 
5725 	if (memcg_kmem_test_and_clear_dead(memcg))
5726 		css_put(&memcg->css);
5727 }
5728 #else
5729 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5730 {
5731 	return 0;
5732 }
5733 
5734 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5735 {
5736 }
5737 
5738 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5739 {
5740 }
5741 #endif
5742 
5743 /*
5744  * DO NOT USE IN NEW FILES.
5745  *
5746  * "cgroup.event_control" implementation.
5747  *
5748  * This is way over-engineered.  It tries to support fully configurable
5749  * events for each user.  Such level of flexibility is completely
5750  * unnecessary especially in the light of the planned unified hierarchy.
5751  *
5752  * Please deprecate this and replace with something simpler if at all
5753  * possible.
5754  */
5755 
5756 /*
5757  * Unregister event and free resources.
5758  *
5759  * Gets called from workqueue.
5760  */
5761 static void memcg_event_remove(struct work_struct *work)
5762 {
5763 	struct mem_cgroup_event *event =
5764 		container_of(work, struct mem_cgroup_event, remove);
5765 	struct mem_cgroup *memcg = event->memcg;
5766 
5767 	remove_wait_queue(event->wqh, &event->wait);
5768 
5769 	event->unregister_event(memcg, event->eventfd);
5770 
5771 	/* Notify userspace the event is going away. */
5772 	eventfd_signal(event->eventfd, 1);
5773 
5774 	eventfd_ctx_put(event->eventfd);
5775 	kfree(event);
5776 	css_put(&memcg->css);
5777 }
5778 
5779 /*
5780  * Gets called on POLLHUP on eventfd when user closes it.
5781  *
5782  * Called with wqh->lock held and interrupts disabled.
5783  */
5784 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5785 			    int sync, void *key)
5786 {
5787 	struct mem_cgroup_event *event =
5788 		container_of(wait, struct mem_cgroup_event, wait);
5789 	struct mem_cgroup *memcg = event->memcg;
5790 	unsigned long flags = (unsigned long)key;
5791 
5792 	if (flags & POLLHUP) {
5793 		/*
5794 		 * If the event has been detached at cgroup removal, we
5795 		 * can simply return knowing the other side will cleanup
5796 		 * for us.
5797 		 *
5798 		 * We can't race against event freeing since the other
5799 		 * side will require wqh->lock via remove_wait_queue(),
5800 		 * which we hold.
5801 		 */
5802 		spin_lock(&memcg->event_list_lock);
5803 		if (!list_empty(&event->list)) {
5804 			list_del_init(&event->list);
5805 			/*
5806 			 * We are in atomic context, but cgroup_event_remove()
5807 			 * may sleep, so we have to call it in workqueue.
5808 			 */
5809 			schedule_work(&event->remove);
5810 		}
5811 		spin_unlock(&memcg->event_list_lock);
5812 	}
5813 
5814 	return 0;
5815 }
5816 
5817 static void memcg_event_ptable_queue_proc(struct file *file,
5818 		wait_queue_head_t *wqh, poll_table *pt)
5819 {
5820 	struct mem_cgroup_event *event =
5821 		container_of(pt, struct mem_cgroup_event, pt);
5822 
5823 	event->wqh = wqh;
5824 	add_wait_queue(wqh, &event->wait);
5825 }
5826 
5827 /*
5828  * DO NOT USE IN NEW FILES.
5829  *
5830  * Parse input and register new cgroup event handler.
5831  *
5832  * Input must be in format '<event_fd> <control_fd> <args>'.
5833  * Interpretation of args is defined by control file implementation.
5834  */
5835 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5836 					 char *buf, size_t nbytes, loff_t off)
5837 {
5838 	struct cgroup_subsys_state *css = of_css(of);
5839 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5840 	struct mem_cgroup_event *event;
5841 	struct cgroup_subsys_state *cfile_css;
5842 	unsigned int efd, cfd;
5843 	struct fd efile;
5844 	struct fd cfile;
5845 	const char *name;
5846 	char *endp;
5847 	int ret;
5848 
5849 	buf = strstrip(buf);
5850 
5851 	efd = simple_strtoul(buf, &endp, 10);
5852 	if (*endp != ' ')
5853 		return -EINVAL;
5854 	buf = endp + 1;
5855 
5856 	cfd = simple_strtoul(buf, &endp, 10);
5857 	if ((*endp != ' ') && (*endp != '\0'))
5858 		return -EINVAL;
5859 	buf = endp + 1;
5860 
5861 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5862 	if (!event)
5863 		return -ENOMEM;
5864 
5865 	event->memcg = memcg;
5866 	INIT_LIST_HEAD(&event->list);
5867 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5868 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5869 	INIT_WORK(&event->remove, memcg_event_remove);
5870 
5871 	efile = fdget(efd);
5872 	if (!efile.file) {
5873 		ret = -EBADF;
5874 		goto out_kfree;
5875 	}
5876 
5877 	event->eventfd = eventfd_ctx_fileget(efile.file);
5878 	if (IS_ERR(event->eventfd)) {
5879 		ret = PTR_ERR(event->eventfd);
5880 		goto out_put_efile;
5881 	}
5882 
5883 	cfile = fdget(cfd);
5884 	if (!cfile.file) {
5885 		ret = -EBADF;
5886 		goto out_put_eventfd;
5887 	}
5888 
5889 	/* the process need read permission on control file */
5890 	/* AV: shouldn't we check that it's been opened for read instead? */
5891 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
5892 	if (ret < 0)
5893 		goto out_put_cfile;
5894 
5895 	/*
5896 	 * Determine the event callbacks and set them in @event.  This used
5897 	 * to be done via struct cftype but cgroup core no longer knows
5898 	 * about these events.  The following is crude but the whole thing
5899 	 * is for compatibility anyway.
5900 	 *
5901 	 * DO NOT ADD NEW FILES.
5902 	 */
5903 	name = cfile.file->f_dentry->d_name.name;
5904 
5905 	if (!strcmp(name, "memory.usage_in_bytes")) {
5906 		event->register_event = mem_cgroup_usage_register_event;
5907 		event->unregister_event = mem_cgroup_usage_unregister_event;
5908 	} else if (!strcmp(name, "memory.oom_control")) {
5909 		event->register_event = mem_cgroup_oom_register_event;
5910 		event->unregister_event = mem_cgroup_oom_unregister_event;
5911 	} else if (!strcmp(name, "memory.pressure_level")) {
5912 		event->register_event = vmpressure_register_event;
5913 		event->unregister_event = vmpressure_unregister_event;
5914 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5915 		event->register_event = memsw_cgroup_usage_register_event;
5916 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5917 	} else {
5918 		ret = -EINVAL;
5919 		goto out_put_cfile;
5920 	}
5921 
5922 	/*
5923 	 * Verify @cfile should belong to @css.  Also, remaining events are
5924 	 * automatically removed on cgroup destruction but the removal is
5925 	 * asynchronous, so take an extra ref on @css.
5926 	 */
5927 	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5928 					       &memory_cgrp_subsys);
5929 	ret = -EINVAL;
5930 	if (IS_ERR(cfile_css))
5931 		goto out_put_cfile;
5932 	if (cfile_css != css) {
5933 		css_put(cfile_css);
5934 		goto out_put_cfile;
5935 	}
5936 
5937 	ret = event->register_event(memcg, event->eventfd, buf);
5938 	if (ret)
5939 		goto out_put_css;
5940 
5941 	efile.file->f_op->poll(efile.file, &event->pt);
5942 
5943 	spin_lock(&memcg->event_list_lock);
5944 	list_add(&event->list, &memcg->event_list);
5945 	spin_unlock(&memcg->event_list_lock);
5946 
5947 	fdput(cfile);
5948 	fdput(efile);
5949 
5950 	return nbytes;
5951 
5952 out_put_css:
5953 	css_put(css);
5954 out_put_cfile:
5955 	fdput(cfile);
5956 out_put_eventfd:
5957 	eventfd_ctx_put(event->eventfd);
5958 out_put_efile:
5959 	fdput(efile);
5960 out_kfree:
5961 	kfree(event);
5962 
5963 	return ret;
5964 }
5965 
5966 static struct cftype mem_cgroup_files[] = {
5967 	{
5968 		.name = "usage_in_bytes",
5969 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5970 		.read_u64 = mem_cgroup_read_u64,
5971 	},
5972 	{
5973 		.name = "max_usage_in_bytes",
5974 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5975 		.write = mem_cgroup_reset,
5976 		.read_u64 = mem_cgroup_read_u64,
5977 	},
5978 	{
5979 		.name = "limit_in_bytes",
5980 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5981 		.write = mem_cgroup_write,
5982 		.read_u64 = mem_cgroup_read_u64,
5983 	},
5984 	{
5985 		.name = "soft_limit_in_bytes",
5986 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5987 		.write = mem_cgroup_write,
5988 		.read_u64 = mem_cgroup_read_u64,
5989 	},
5990 	{
5991 		.name = "failcnt",
5992 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5993 		.write = mem_cgroup_reset,
5994 		.read_u64 = mem_cgroup_read_u64,
5995 	},
5996 	{
5997 		.name = "stat",
5998 		.seq_show = memcg_stat_show,
5999 	},
6000 	{
6001 		.name = "force_empty",
6002 		.write = mem_cgroup_force_empty_write,
6003 	},
6004 	{
6005 		.name = "use_hierarchy",
6006 		.flags = CFTYPE_INSANE,
6007 		.write_u64 = mem_cgroup_hierarchy_write,
6008 		.read_u64 = mem_cgroup_hierarchy_read,
6009 	},
6010 	{
6011 		.name = "cgroup.event_control",		/* XXX: for compat */
6012 		.write = memcg_write_event_control,
6013 		.flags = CFTYPE_NO_PREFIX,
6014 		.mode = S_IWUGO,
6015 	},
6016 	{
6017 		.name = "swappiness",
6018 		.read_u64 = mem_cgroup_swappiness_read,
6019 		.write_u64 = mem_cgroup_swappiness_write,
6020 	},
6021 	{
6022 		.name = "move_charge_at_immigrate",
6023 		.read_u64 = mem_cgroup_move_charge_read,
6024 		.write_u64 = mem_cgroup_move_charge_write,
6025 	},
6026 	{
6027 		.name = "oom_control",
6028 		.seq_show = mem_cgroup_oom_control_read,
6029 		.write_u64 = mem_cgroup_oom_control_write,
6030 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6031 	},
6032 	{
6033 		.name = "pressure_level",
6034 	},
6035 #ifdef CONFIG_NUMA
6036 	{
6037 		.name = "numa_stat",
6038 		.seq_show = memcg_numa_stat_show,
6039 	},
6040 #endif
6041 #ifdef CONFIG_MEMCG_KMEM
6042 	{
6043 		.name = "kmem.limit_in_bytes",
6044 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6045 		.write = mem_cgroup_write,
6046 		.read_u64 = mem_cgroup_read_u64,
6047 	},
6048 	{
6049 		.name = "kmem.usage_in_bytes",
6050 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6051 		.read_u64 = mem_cgroup_read_u64,
6052 	},
6053 	{
6054 		.name = "kmem.failcnt",
6055 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6056 		.write = mem_cgroup_reset,
6057 		.read_u64 = mem_cgroup_read_u64,
6058 	},
6059 	{
6060 		.name = "kmem.max_usage_in_bytes",
6061 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6062 		.write = mem_cgroup_reset,
6063 		.read_u64 = mem_cgroup_read_u64,
6064 	},
6065 #ifdef CONFIG_SLABINFO
6066 	{
6067 		.name = "kmem.slabinfo",
6068 		.seq_show = mem_cgroup_slabinfo_read,
6069 	},
6070 #endif
6071 #endif
6072 	{ },	/* terminate */
6073 };
6074 
6075 #ifdef CONFIG_MEMCG_SWAP
6076 static struct cftype memsw_cgroup_files[] = {
6077 	{
6078 		.name = "memsw.usage_in_bytes",
6079 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6080 		.read_u64 = mem_cgroup_read_u64,
6081 	},
6082 	{
6083 		.name = "memsw.max_usage_in_bytes",
6084 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6085 		.write = mem_cgroup_reset,
6086 		.read_u64 = mem_cgroup_read_u64,
6087 	},
6088 	{
6089 		.name = "memsw.limit_in_bytes",
6090 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6091 		.write = mem_cgroup_write,
6092 		.read_u64 = mem_cgroup_read_u64,
6093 	},
6094 	{
6095 		.name = "memsw.failcnt",
6096 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6097 		.write = mem_cgroup_reset,
6098 		.read_u64 = mem_cgroup_read_u64,
6099 	},
6100 	{ },	/* terminate */
6101 };
6102 #endif
6103 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6104 {
6105 	struct mem_cgroup_per_node *pn;
6106 	struct mem_cgroup_per_zone *mz;
6107 	int zone, tmp = node;
6108 	/*
6109 	 * This routine is called against possible nodes.
6110 	 * But it's BUG to call kmalloc() against offline node.
6111 	 *
6112 	 * TODO: this routine can waste much memory for nodes which will
6113 	 *       never be onlined. It's better to use memory hotplug callback
6114 	 *       function.
6115 	 */
6116 	if (!node_state(node, N_NORMAL_MEMORY))
6117 		tmp = -1;
6118 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6119 	if (!pn)
6120 		return 1;
6121 
6122 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6123 		mz = &pn->zoneinfo[zone];
6124 		lruvec_init(&mz->lruvec);
6125 		mz->usage_in_excess = 0;
6126 		mz->on_tree = false;
6127 		mz->memcg = memcg;
6128 	}
6129 	memcg->nodeinfo[node] = pn;
6130 	return 0;
6131 }
6132 
6133 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6134 {
6135 	kfree(memcg->nodeinfo[node]);
6136 }
6137 
6138 static struct mem_cgroup *mem_cgroup_alloc(void)
6139 {
6140 	struct mem_cgroup *memcg;
6141 	size_t size;
6142 
6143 	size = sizeof(struct mem_cgroup);
6144 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6145 
6146 	memcg = kzalloc(size, GFP_KERNEL);
6147 	if (!memcg)
6148 		return NULL;
6149 
6150 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6151 	if (!memcg->stat)
6152 		goto out_free;
6153 	spin_lock_init(&memcg->pcp_counter_lock);
6154 	return memcg;
6155 
6156 out_free:
6157 	kfree(memcg);
6158 	return NULL;
6159 }
6160 
6161 /*
6162  * At destroying mem_cgroup, references from swap_cgroup can remain.
6163  * (scanning all at force_empty is too costly...)
6164  *
6165  * Instead of clearing all references at force_empty, we remember
6166  * the number of reference from swap_cgroup and free mem_cgroup when
6167  * it goes down to 0.
6168  *
6169  * Removal of cgroup itself succeeds regardless of refs from swap.
6170  */
6171 
6172 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6173 {
6174 	int node;
6175 
6176 	mem_cgroup_remove_from_trees(memcg);
6177 
6178 	for_each_node(node)
6179 		free_mem_cgroup_per_zone_info(memcg, node);
6180 
6181 	free_percpu(memcg->stat);
6182 
6183 	/*
6184 	 * We need to make sure that (at least for now), the jump label
6185 	 * destruction code runs outside of the cgroup lock. This is because
6186 	 * get_online_cpus(), which is called from the static_branch update,
6187 	 * can't be called inside the cgroup_lock. cpusets are the ones
6188 	 * enforcing this dependency, so if they ever change, we might as well.
6189 	 *
6190 	 * schedule_work() will guarantee this happens. Be careful if you need
6191 	 * to move this code around, and make sure it is outside
6192 	 * the cgroup_lock.
6193 	 */
6194 	disarm_static_keys(memcg);
6195 	kfree(memcg);
6196 }
6197 
6198 /*
6199  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6200  */
6201 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6202 {
6203 	if (!memcg->res.parent)
6204 		return NULL;
6205 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6206 }
6207 EXPORT_SYMBOL(parent_mem_cgroup);
6208 
6209 static void __init mem_cgroup_soft_limit_tree_init(void)
6210 {
6211 	struct mem_cgroup_tree_per_node *rtpn;
6212 	struct mem_cgroup_tree_per_zone *rtpz;
6213 	int tmp, node, zone;
6214 
6215 	for_each_node(node) {
6216 		tmp = node;
6217 		if (!node_state(node, N_NORMAL_MEMORY))
6218 			tmp = -1;
6219 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6220 		BUG_ON(!rtpn);
6221 
6222 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6223 
6224 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6225 			rtpz = &rtpn->rb_tree_per_zone[zone];
6226 			rtpz->rb_root = RB_ROOT;
6227 			spin_lock_init(&rtpz->lock);
6228 		}
6229 	}
6230 }
6231 
6232 static struct cgroup_subsys_state * __ref
6233 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6234 {
6235 	struct mem_cgroup *memcg;
6236 	long error = -ENOMEM;
6237 	int node;
6238 
6239 	memcg = mem_cgroup_alloc();
6240 	if (!memcg)
6241 		return ERR_PTR(error);
6242 
6243 	for_each_node(node)
6244 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6245 			goto free_out;
6246 
6247 	/* root ? */
6248 	if (parent_css == NULL) {
6249 		root_mem_cgroup = memcg;
6250 		res_counter_init(&memcg->res, NULL);
6251 		res_counter_init(&memcg->memsw, NULL);
6252 		res_counter_init(&memcg->kmem, NULL);
6253 	}
6254 
6255 	memcg->last_scanned_node = MAX_NUMNODES;
6256 	INIT_LIST_HEAD(&memcg->oom_notify);
6257 	memcg->move_charge_at_immigrate = 0;
6258 	mutex_init(&memcg->thresholds_lock);
6259 	spin_lock_init(&memcg->move_lock);
6260 	vmpressure_init(&memcg->vmpressure);
6261 	INIT_LIST_HEAD(&memcg->event_list);
6262 	spin_lock_init(&memcg->event_list_lock);
6263 
6264 	return &memcg->css;
6265 
6266 free_out:
6267 	__mem_cgroup_free(memcg);
6268 	return ERR_PTR(error);
6269 }
6270 
6271 static int
6272 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6273 {
6274 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6275 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
6276 
6277 	if (css->id > MEM_CGROUP_ID_MAX)
6278 		return -ENOSPC;
6279 
6280 	if (!parent)
6281 		return 0;
6282 
6283 	mutex_lock(&memcg_create_mutex);
6284 
6285 	memcg->use_hierarchy = parent->use_hierarchy;
6286 	memcg->oom_kill_disable = parent->oom_kill_disable;
6287 	memcg->swappiness = mem_cgroup_swappiness(parent);
6288 
6289 	if (parent->use_hierarchy) {
6290 		res_counter_init(&memcg->res, &parent->res);
6291 		res_counter_init(&memcg->memsw, &parent->memsw);
6292 		res_counter_init(&memcg->kmem, &parent->kmem);
6293 
6294 		/*
6295 		 * No need to take a reference to the parent because cgroup
6296 		 * core guarantees its existence.
6297 		 */
6298 	} else {
6299 		res_counter_init(&memcg->res, NULL);
6300 		res_counter_init(&memcg->memsw, NULL);
6301 		res_counter_init(&memcg->kmem, NULL);
6302 		/*
6303 		 * Deeper hierachy with use_hierarchy == false doesn't make
6304 		 * much sense so let cgroup subsystem know about this
6305 		 * unfortunate state in our controller.
6306 		 */
6307 		if (parent != root_mem_cgroup)
6308 			memory_cgrp_subsys.broken_hierarchy = true;
6309 	}
6310 	mutex_unlock(&memcg_create_mutex);
6311 
6312 	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6313 }
6314 
6315 /*
6316  * Announce all parents that a group from their hierarchy is gone.
6317  */
6318 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6319 {
6320 	struct mem_cgroup *parent = memcg;
6321 
6322 	while ((parent = parent_mem_cgroup(parent)))
6323 		mem_cgroup_iter_invalidate(parent);
6324 
6325 	/*
6326 	 * if the root memcg is not hierarchical we have to check it
6327 	 * explicitely.
6328 	 */
6329 	if (!root_mem_cgroup->use_hierarchy)
6330 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6331 }
6332 
6333 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6334 {
6335 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6336 	struct mem_cgroup_event *event, *tmp;
6337 	struct cgroup_subsys_state *iter;
6338 
6339 	/*
6340 	 * Unregister events and notify userspace.
6341 	 * Notify userspace about cgroup removing only after rmdir of cgroup
6342 	 * directory to avoid race between userspace and kernelspace.
6343 	 */
6344 	spin_lock(&memcg->event_list_lock);
6345 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6346 		list_del_init(&event->list);
6347 		schedule_work(&event->remove);
6348 	}
6349 	spin_unlock(&memcg->event_list_lock);
6350 
6351 	kmem_cgroup_css_offline(memcg);
6352 
6353 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6354 
6355 	/*
6356 	 * This requires that offlining is serialized.  Right now that is
6357 	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6358 	 */
6359 	css_for_each_descendant_post(iter, css)
6360 		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6361 
6362 	memcg_unregister_all_caches(memcg);
6363 	vmpressure_cleanup(&memcg->vmpressure);
6364 }
6365 
6366 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6367 {
6368 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6369 	/*
6370 	 * XXX: css_offline() would be where we should reparent all
6371 	 * memory to prepare the cgroup for destruction.  However,
6372 	 * memcg does not do css_tryget_online() and res_counter charging
6373 	 * under the same RCU lock region, which means that charging
6374 	 * could race with offlining.  Offlining only happens to
6375 	 * cgroups with no tasks in them but charges can show up
6376 	 * without any tasks from the swapin path when the target
6377 	 * memcg is looked up from the swapout record and not from the
6378 	 * current task as it usually is.  A race like this can leak
6379 	 * charges and put pages with stale cgroup pointers into
6380 	 * circulation:
6381 	 *
6382 	 * #0                        #1
6383 	 *                           lookup_swap_cgroup_id()
6384 	 *                           rcu_read_lock()
6385 	 *                           mem_cgroup_lookup()
6386 	 *                           css_tryget_online()
6387 	 *                           rcu_read_unlock()
6388 	 * disable css_tryget_online()
6389 	 * call_rcu()
6390 	 *   offline_css()
6391 	 *     reparent_charges()
6392 	 *                           res_counter_charge()
6393 	 *                           css_put()
6394 	 *                             css_free()
6395 	 *                           pc->mem_cgroup = dead memcg
6396 	 *                           add page to lru
6397 	 *
6398 	 * The bulk of the charges are still moved in offline_css() to
6399 	 * avoid pinning a lot of pages in case a long-term reference
6400 	 * like a swapout record is deferring the css_free() to long
6401 	 * after offlining.  But this makes sure we catch any charges
6402 	 * made after offlining:
6403 	 */
6404 	mem_cgroup_reparent_charges(memcg);
6405 
6406 	memcg_destroy_kmem(memcg);
6407 	__mem_cgroup_free(memcg);
6408 }
6409 
6410 #ifdef CONFIG_MMU
6411 /* Handlers for move charge at task migration. */
6412 #define PRECHARGE_COUNT_AT_ONCE	256
6413 static int mem_cgroup_do_precharge(unsigned long count)
6414 {
6415 	int ret = 0;
6416 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6417 	struct mem_cgroup *memcg = mc.to;
6418 
6419 	if (mem_cgroup_is_root(memcg)) {
6420 		mc.precharge += count;
6421 		/* we don't need css_get for root */
6422 		return ret;
6423 	}
6424 	/* try to charge at once */
6425 	if (count > 1) {
6426 		struct res_counter *dummy;
6427 		/*
6428 		 * "memcg" cannot be under rmdir() because we've already checked
6429 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6430 		 * are still under the same cgroup_mutex. So we can postpone
6431 		 * css_get().
6432 		 */
6433 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6434 			goto one_by_one;
6435 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6436 						PAGE_SIZE * count, &dummy)) {
6437 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6438 			goto one_by_one;
6439 		}
6440 		mc.precharge += count;
6441 		return ret;
6442 	}
6443 one_by_one:
6444 	/* fall back to one by one charge */
6445 	while (count--) {
6446 		if (signal_pending(current)) {
6447 			ret = -EINTR;
6448 			break;
6449 		}
6450 		if (!batch_count--) {
6451 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6452 			cond_resched();
6453 		}
6454 		ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6455 		if (ret)
6456 			/* mem_cgroup_clear_mc() will do uncharge later */
6457 			return ret;
6458 		mc.precharge++;
6459 	}
6460 	return ret;
6461 }
6462 
6463 /**
6464  * get_mctgt_type - get target type of moving charge
6465  * @vma: the vma the pte to be checked belongs
6466  * @addr: the address corresponding to the pte to be checked
6467  * @ptent: the pte to be checked
6468  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6469  *
6470  * Returns
6471  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6472  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6473  *     move charge. if @target is not NULL, the page is stored in target->page
6474  *     with extra refcnt got(Callers should handle it).
6475  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6476  *     target for charge migration. if @target is not NULL, the entry is stored
6477  *     in target->ent.
6478  *
6479  * Called with pte lock held.
6480  */
6481 union mc_target {
6482 	struct page	*page;
6483 	swp_entry_t	ent;
6484 };
6485 
6486 enum mc_target_type {
6487 	MC_TARGET_NONE = 0,
6488 	MC_TARGET_PAGE,
6489 	MC_TARGET_SWAP,
6490 };
6491 
6492 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6493 						unsigned long addr, pte_t ptent)
6494 {
6495 	struct page *page = vm_normal_page(vma, addr, ptent);
6496 
6497 	if (!page || !page_mapped(page))
6498 		return NULL;
6499 	if (PageAnon(page)) {
6500 		/* we don't move shared anon */
6501 		if (!move_anon())
6502 			return NULL;
6503 	} else if (!move_file())
6504 		/* we ignore mapcount for file pages */
6505 		return NULL;
6506 	if (!get_page_unless_zero(page))
6507 		return NULL;
6508 
6509 	return page;
6510 }
6511 
6512 #ifdef CONFIG_SWAP
6513 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6514 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6515 {
6516 	struct page *page = NULL;
6517 	swp_entry_t ent = pte_to_swp_entry(ptent);
6518 
6519 	if (!move_anon() || non_swap_entry(ent))
6520 		return NULL;
6521 	/*
6522 	 * Because lookup_swap_cache() updates some statistics counter,
6523 	 * we call find_get_page() with swapper_space directly.
6524 	 */
6525 	page = find_get_page(swap_address_space(ent), ent.val);
6526 	if (do_swap_account)
6527 		entry->val = ent.val;
6528 
6529 	return page;
6530 }
6531 #else
6532 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6533 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6534 {
6535 	return NULL;
6536 }
6537 #endif
6538 
6539 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6540 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6541 {
6542 	struct page *page = NULL;
6543 	struct address_space *mapping;
6544 	pgoff_t pgoff;
6545 
6546 	if (!vma->vm_file) /* anonymous vma */
6547 		return NULL;
6548 	if (!move_file())
6549 		return NULL;
6550 
6551 	mapping = vma->vm_file->f_mapping;
6552 	if (pte_none(ptent))
6553 		pgoff = linear_page_index(vma, addr);
6554 	else /* pte_file(ptent) is true */
6555 		pgoff = pte_to_pgoff(ptent);
6556 
6557 	/* page is moved even if it's not RSS of this task(page-faulted). */
6558 #ifdef CONFIG_SWAP
6559 	/* shmem/tmpfs may report page out on swap: account for that too. */
6560 	if (shmem_mapping(mapping)) {
6561 		page = find_get_entry(mapping, pgoff);
6562 		if (radix_tree_exceptional_entry(page)) {
6563 			swp_entry_t swp = radix_to_swp_entry(page);
6564 			if (do_swap_account)
6565 				*entry = swp;
6566 			page = find_get_page(swap_address_space(swp), swp.val);
6567 		}
6568 	} else
6569 		page = find_get_page(mapping, pgoff);
6570 #else
6571 	page = find_get_page(mapping, pgoff);
6572 #endif
6573 	return page;
6574 }
6575 
6576 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6577 		unsigned long addr, pte_t ptent, union mc_target *target)
6578 {
6579 	struct page *page = NULL;
6580 	struct page_cgroup *pc;
6581 	enum mc_target_type ret = MC_TARGET_NONE;
6582 	swp_entry_t ent = { .val = 0 };
6583 
6584 	if (pte_present(ptent))
6585 		page = mc_handle_present_pte(vma, addr, ptent);
6586 	else if (is_swap_pte(ptent))
6587 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6588 	else if (pte_none(ptent) || pte_file(ptent))
6589 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6590 
6591 	if (!page && !ent.val)
6592 		return ret;
6593 	if (page) {
6594 		pc = lookup_page_cgroup(page);
6595 		/*
6596 		 * Do only loose check w/o page_cgroup lock.
6597 		 * mem_cgroup_move_account() checks the pc is valid or not under
6598 		 * the lock.
6599 		 */
6600 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6601 			ret = MC_TARGET_PAGE;
6602 			if (target)
6603 				target->page = page;
6604 		}
6605 		if (!ret || !target)
6606 			put_page(page);
6607 	}
6608 	/* There is a swap entry and a page doesn't exist or isn't charged */
6609 	if (ent.val && !ret &&
6610 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6611 		ret = MC_TARGET_SWAP;
6612 		if (target)
6613 			target->ent = ent;
6614 	}
6615 	return ret;
6616 }
6617 
6618 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6619 /*
6620  * We don't consider swapping or file mapped pages because THP does not
6621  * support them for now.
6622  * Caller should make sure that pmd_trans_huge(pmd) is true.
6623  */
6624 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6625 		unsigned long addr, pmd_t pmd, union mc_target *target)
6626 {
6627 	struct page *page = NULL;
6628 	struct page_cgroup *pc;
6629 	enum mc_target_type ret = MC_TARGET_NONE;
6630 
6631 	page = pmd_page(pmd);
6632 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6633 	if (!move_anon())
6634 		return ret;
6635 	pc = lookup_page_cgroup(page);
6636 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6637 		ret = MC_TARGET_PAGE;
6638 		if (target) {
6639 			get_page(page);
6640 			target->page = page;
6641 		}
6642 	}
6643 	return ret;
6644 }
6645 #else
6646 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6647 		unsigned long addr, pmd_t pmd, union mc_target *target)
6648 {
6649 	return MC_TARGET_NONE;
6650 }
6651 #endif
6652 
6653 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6654 					unsigned long addr, unsigned long end,
6655 					struct mm_walk *walk)
6656 {
6657 	struct vm_area_struct *vma = walk->private;
6658 	pte_t *pte;
6659 	spinlock_t *ptl;
6660 
6661 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6662 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6663 			mc.precharge += HPAGE_PMD_NR;
6664 		spin_unlock(ptl);
6665 		return 0;
6666 	}
6667 
6668 	if (pmd_trans_unstable(pmd))
6669 		return 0;
6670 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6671 	for (; addr != end; pte++, addr += PAGE_SIZE)
6672 		if (get_mctgt_type(vma, addr, *pte, NULL))
6673 			mc.precharge++;	/* increment precharge temporarily */
6674 	pte_unmap_unlock(pte - 1, ptl);
6675 	cond_resched();
6676 
6677 	return 0;
6678 }
6679 
6680 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6681 {
6682 	unsigned long precharge;
6683 	struct vm_area_struct *vma;
6684 
6685 	down_read(&mm->mmap_sem);
6686 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6687 		struct mm_walk mem_cgroup_count_precharge_walk = {
6688 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6689 			.mm = mm,
6690 			.private = vma,
6691 		};
6692 		if (is_vm_hugetlb_page(vma))
6693 			continue;
6694 		walk_page_range(vma->vm_start, vma->vm_end,
6695 					&mem_cgroup_count_precharge_walk);
6696 	}
6697 	up_read(&mm->mmap_sem);
6698 
6699 	precharge = mc.precharge;
6700 	mc.precharge = 0;
6701 
6702 	return precharge;
6703 }
6704 
6705 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6706 {
6707 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6708 
6709 	VM_BUG_ON(mc.moving_task);
6710 	mc.moving_task = current;
6711 	return mem_cgroup_do_precharge(precharge);
6712 }
6713 
6714 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6715 static void __mem_cgroup_clear_mc(void)
6716 {
6717 	struct mem_cgroup *from = mc.from;
6718 	struct mem_cgroup *to = mc.to;
6719 	int i;
6720 
6721 	/* we must uncharge all the leftover precharges from mc.to */
6722 	if (mc.precharge) {
6723 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6724 		mc.precharge = 0;
6725 	}
6726 	/*
6727 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6728 	 * we must uncharge here.
6729 	 */
6730 	if (mc.moved_charge) {
6731 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6732 		mc.moved_charge = 0;
6733 	}
6734 	/* we must fixup refcnts and charges */
6735 	if (mc.moved_swap) {
6736 		/* uncharge swap account from the old cgroup */
6737 		if (!mem_cgroup_is_root(mc.from))
6738 			res_counter_uncharge(&mc.from->memsw,
6739 						PAGE_SIZE * mc.moved_swap);
6740 
6741 		for (i = 0; i < mc.moved_swap; i++)
6742 			css_put(&mc.from->css);
6743 
6744 		if (!mem_cgroup_is_root(mc.to)) {
6745 			/*
6746 			 * we charged both to->res and to->memsw, so we should
6747 			 * uncharge to->res.
6748 			 */
6749 			res_counter_uncharge(&mc.to->res,
6750 						PAGE_SIZE * mc.moved_swap);
6751 		}
6752 		/* we've already done css_get(mc.to) */
6753 		mc.moved_swap = 0;
6754 	}
6755 	memcg_oom_recover(from);
6756 	memcg_oom_recover(to);
6757 	wake_up_all(&mc.waitq);
6758 }
6759 
6760 static void mem_cgroup_clear_mc(void)
6761 {
6762 	struct mem_cgroup *from = mc.from;
6763 
6764 	/*
6765 	 * we must clear moving_task before waking up waiters at the end of
6766 	 * task migration.
6767 	 */
6768 	mc.moving_task = NULL;
6769 	__mem_cgroup_clear_mc();
6770 	spin_lock(&mc.lock);
6771 	mc.from = NULL;
6772 	mc.to = NULL;
6773 	spin_unlock(&mc.lock);
6774 	mem_cgroup_end_move(from);
6775 }
6776 
6777 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6778 				 struct cgroup_taskset *tset)
6779 {
6780 	struct task_struct *p = cgroup_taskset_first(tset);
6781 	int ret = 0;
6782 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6783 	unsigned long move_charge_at_immigrate;
6784 
6785 	/*
6786 	 * We are now commited to this value whatever it is. Changes in this
6787 	 * tunable will only affect upcoming migrations, not the current one.
6788 	 * So we need to save it, and keep it going.
6789 	 */
6790 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6791 	if (move_charge_at_immigrate) {
6792 		struct mm_struct *mm;
6793 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6794 
6795 		VM_BUG_ON(from == memcg);
6796 
6797 		mm = get_task_mm(p);
6798 		if (!mm)
6799 			return 0;
6800 		/* We move charges only when we move a owner of the mm */
6801 		if (mm->owner == p) {
6802 			VM_BUG_ON(mc.from);
6803 			VM_BUG_ON(mc.to);
6804 			VM_BUG_ON(mc.precharge);
6805 			VM_BUG_ON(mc.moved_charge);
6806 			VM_BUG_ON(mc.moved_swap);
6807 			mem_cgroup_start_move(from);
6808 			spin_lock(&mc.lock);
6809 			mc.from = from;
6810 			mc.to = memcg;
6811 			mc.immigrate_flags = move_charge_at_immigrate;
6812 			spin_unlock(&mc.lock);
6813 			/* We set mc.moving_task later */
6814 
6815 			ret = mem_cgroup_precharge_mc(mm);
6816 			if (ret)
6817 				mem_cgroup_clear_mc();
6818 		}
6819 		mmput(mm);
6820 	}
6821 	return ret;
6822 }
6823 
6824 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6825 				     struct cgroup_taskset *tset)
6826 {
6827 	mem_cgroup_clear_mc();
6828 }
6829 
6830 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6831 				unsigned long addr, unsigned long end,
6832 				struct mm_walk *walk)
6833 {
6834 	int ret = 0;
6835 	struct vm_area_struct *vma = walk->private;
6836 	pte_t *pte;
6837 	spinlock_t *ptl;
6838 	enum mc_target_type target_type;
6839 	union mc_target target;
6840 	struct page *page;
6841 	struct page_cgroup *pc;
6842 
6843 	/*
6844 	 * We don't take compound_lock() here but no race with splitting thp
6845 	 * happens because:
6846 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6847 	 *    under splitting, which means there's no concurrent thp split,
6848 	 *  - if another thread runs into split_huge_page() just after we
6849 	 *    entered this if-block, the thread must wait for page table lock
6850 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6851 	 *    part of thp split is not executed yet.
6852 	 */
6853 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6854 		if (mc.precharge < HPAGE_PMD_NR) {
6855 			spin_unlock(ptl);
6856 			return 0;
6857 		}
6858 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6859 		if (target_type == MC_TARGET_PAGE) {
6860 			page = target.page;
6861 			if (!isolate_lru_page(page)) {
6862 				pc = lookup_page_cgroup(page);
6863 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6864 							pc, mc.from, mc.to)) {
6865 					mc.precharge -= HPAGE_PMD_NR;
6866 					mc.moved_charge += HPAGE_PMD_NR;
6867 				}
6868 				putback_lru_page(page);
6869 			}
6870 			put_page(page);
6871 		}
6872 		spin_unlock(ptl);
6873 		return 0;
6874 	}
6875 
6876 	if (pmd_trans_unstable(pmd))
6877 		return 0;
6878 retry:
6879 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6880 	for (; addr != end; addr += PAGE_SIZE) {
6881 		pte_t ptent = *(pte++);
6882 		swp_entry_t ent;
6883 
6884 		if (!mc.precharge)
6885 			break;
6886 
6887 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6888 		case MC_TARGET_PAGE:
6889 			page = target.page;
6890 			if (isolate_lru_page(page))
6891 				goto put;
6892 			pc = lookup_page_cgroup(page);
6893 			if (!mem_cgroup_move_account(page, 1, pc,
6894 						     mc.from, mc.to)) {
6895 				mc.precharge--;
6896 				/* we uncharge from mc.from later. */
6897 				mc.moved_charge++;
6898 			}
6899 			putback_lru_page(page);
6900 put:			/* get_mctgt_type() gets the page */
6901 			put_page(page);
6902 			break;
6903 		case MC_TARGET_SWAP:
6904 			ent = target.ent;
6905 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6906 				mc.precharge--;
6907 				/* we fixup refcnts and charges later. */
6908 				mc.moved_swap++;
6909 			}
6910 			break;
6911 		default:
6912 			break;
6913 		}
6914 	}
6915 	pte_unmap_unlock(pte - 1, ptl);
6916 	cond_resched();
6917 
6918 	if (addr != end) {
6919 		/*
6920 		 * We have consumed all precharges we got in can_attach().
6921 		 * We try charge one by one, but don't do any additional
6922 		 * charges to mc.to if we have failed in charge once in attach()
6923 		 * phase.
6924 		 */
6925 		ret = mem_cgroup_do_precharge(1);
6926 		if (!ret)
6927 			goto retry;
6928 	}
6929 
6930 	return ret;
6931 }
6932 
6933 static void mem_cgroup_move_charge(struct mm_struct *mm)
6934 {
6935 	struct vm_area_struct *vma;
6936 
6937 	lru_add_drain_all();
6938 retry:
6939 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6940 		/*
6941 		 * Someone who are holding the mmap_sem might be waiting in
6942 		 * waitq. So we cancel all extra charges, wake up all waiters,
6943 		 * and retry. Because we cancel precharges, we might not be able
6944 		 * to move enough charges, but moving charge is a best-effort
6945 		 * feature anyway, so it wouldn't be a big problem.
6946 		 */
6947 		__mem_cgroup_clear_mc();
6948 		cond_resched();
6949 		goto retry;
6950 	}
6951 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6952 		int ret;
6953 		struct mm_walk mem_cgroup_move_charge_walk = {
6954 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6955 			.mm = mm,
6956 			.private = vma,
6957 		};
6958 		if (is_vm_hugetlb_page(vma))
6959 			continue;
6960 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6961 						&mem_cgroup_move_charge_walk);
6962 		if (ret)
6963 			/*
6964 			 * means we have consumed all precharges and failed in
6965 			 * doing additional charge. Just abandon here.
6966 			 */
6967 			break;
6968 	}
6969 	up_read(&mm->mmap_sem);
6970 }
6971 
6972 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6973 				 struct cgroup_taskset *tset)
6974 {
6975 	struct task_struct *p = cgroup_taskset_first(tset);
6976 	struct mm_struct *mm = get_task_mm(p);
6977 
6978 	if (mm) {
6979 		if (mc.to)
6980 			mem_cgroup_move_charge(mm);
6981 		mmput(mm);
6982 	}
6983 	if (mc.to)
6984 		mem_cgroup_clear_mc();
6985 }
6986 #else	/* !CONFIG_MMU */
6987 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6988 				 struct cgroup_taskset *tset)
6989 {
6990 	return 0;
6991 }
6992 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6993 				     struct cgroup_taskset *tset)
6994 {
6995 }
6996 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6997 				 struct cgroup_taskset *tset)
6998 {
6999 }
7000 #endif
7001 
7002 /*
7003  * Cgroup retains root cgroups across [un]mount cycles making it necessary
7004  * to verify sane_behavior flag on each mount attempt.
7005  */
7006 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7007 {
7008 	/*
7009 	 * use_hierarchy is forced with sane_behavior.  cgroup core
7010 	 * guarantees that @root doesn't have any children, so turning it
7011 	 * on for the root memcg is enough.
7012 	 */
7013 	if (cgroup_sane_behavior(root_css->cgroup))
7014 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7015 }
7016 
7017 struct cgroup_subsys memory_cgrp_subsys = {
7018 	.css_alloc = mem_cgroup_css_alloc,
7019 	.css_online = mem_cgroup_css_online,
7020 	.css_offline = mem_cgroup_css_offline,
7021 	.css_free = mem_cgroup_css_free,
7022 	.can_attach = mem_cgroup_can_attach,
7023 	.cancel_attach = mem_cgroup_cancel_attach,
7024 	.attach = mem_cgroup_move_task,
7025 	.bind = mem_cgroup_bind,
7026 	.base_cftypes = mem_cgroup_files,
7027 	.early_init = 0,
7028 };
7029 
7030 #ifdef CONFIG_MEMCG_SWAP
7031 static int __init enable_swap_account(char *s)
7032 {
7033 	if (!strcmp(s, "1"))
7034 		really_do_swap_account = 1;
7035 	else if (!strcmp(s, "0"))
7036 		really_do_swap_account = 0;
7037 	return 1;
7038 }
7039 __setup("swapaccount=", enable_swap_account);
7040 
7041 static void __init memsw_file_init(void)
7042 {
7043 	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7044 }
7045 
7046 static void __init enable_swap_cgroup(void)
7047 {
7048 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7049 		do_swap_account = 1;
7050 		memsw_file_init();
7051 	}
7052 }
7053 
7054 #else
7055 static void __init enable_swap_cgroup(void)
7056 {
7057 }
7058 #endif
7059 
7060 /*
7061  * subsys_initcall() for memory controller.
7062  *
7063  * Some parts like hotcpu_notifier() have to be initialized from this context
7064  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7065  * everything that doesn't depend on a specific mem_cgroup structure should
7066  * be initialized from here.
7067  */
7068 static int __init mem_cgroup_init(void)
7069 {
7070 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7071 	enable_swap_cgroup();
7072 	mem_cgroup_soft_limit_tree_init();
7073 	memcg_stock_init();
7074 	return 0;
7075 }
7076 subsys_initcall(mem_cgroup_init);
7077