xref: /openbmc/linux/mm/memcontrol.c (revision cd4d09ec)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 	struct list_head list;
153 	struct eventfd_ctx *eventfd;
154 };
155 
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160 	/*
161 	 * memcg which the event belongs to.
162 	 */
163 	struct mem_cgroup *memcg;
164 	/*
165 	 * eventfd to signal userspace about the event.
166 	 */
167 	struct eventfd_ctx *eventfd;
168 	/*
169 	 * Each of these stored in a list by the cgroup.
170 	 */
171 	struct list_head list;
172 	/*
173 	 * register_event() callback will be used to add new userspace
174 	 * waiter for changes related to this event.  Use eventfd_signal()
175 	 * on eventfd to send notification to userspace.
176 	 */
177 	int (*register_event)(struct mem_cgroup *memcg,
178 			      struct eventfd_ctx *eventfd, const char *args);
179 	/*
180 	 * unregister_event() callback will be called when userspace closes
181 	 * the eventfd or on cgroup removing.  This callback must be set,
182 	 * if you want provide notification functionality.
183 	 */
184 	void (*unregister_event)(struct mem_cgroup *memcg,
185 				 struct eventfd_ctx *eventfd);
186 	/*
187 	 * All fields below needed to unregister event when
188 	 * userspace closes eventfd.
189 	 */
190 	poll_table pt;
191 	wait_queue_head_t *wqh;
192 	wait_queue_t wait;
193 	struct work_struct remove;
194 };
195 
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198 
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON	0x1U
204 #define MOVE_FILE	0x2U
205 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206 
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 	spinlock_t	  lock; /* for from, to */
210 	struct mem_cgroup *from;
211 	struct mem_cgroup *to;
212 	unsigned long flags;
213 	unsigned long precharge;
214 	unsigned long moved_charge;
215 	unsigned long moved_swap;
216 	struct task_struct *moving_task;	/* a task moving charges */
217 	wait_queue_head_t waitq;		/* a waitq for other context */
218 } mc = {
219 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222 
223 /*
224  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225  * limit reclaim to prevent infinite loops, if they ever occur.
226  */
227 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229 
230 enum charge_type {
231 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 	MEM_CGROUP_CHARGE_TYPE_ANON,
233 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
234 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 	NR_CHARGE_TYPE,
236 };
237 
238 /* for encoding cft->private value on file */
239 enum res_type {
240 	_MEM,
241 	_MEMSWAP,
242 	_OOM_TYPE,
243 	_KMEM,
244 	_TCP,
245 };
246 
247 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
248 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val)	((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL		(0)
252 
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 	if (!memcg)
257 		memcg = root_mem_cgroup;
258 	return &memcg->vmpressure;
259 }
260 
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265 
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 	return (memcg == root_mem_cgroup);
269 }
270 
271 /*
272  * We restrict the id in the range of [1, 65535], so it can fit into
273  * an unsigned short.
274  */
275 #define MEM_CGROUP_ID_MAX	USHRT_MAX
276 
277 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
278 {
279 	return memcg->css.id;
280 }
281 
282 /*
283  * A helper function to get mem_cgroup from ID. must be called under
284  * rcu_read_lock().  The caller is responsible for calling
285  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
286  * refcnt from swap can be called against removed memcg.)
287  */
288 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
289 {
290 	struct cgroup_subsys_state *css;
291 
292 	css = css_from_id(id, &memory_cgrp_subsys);
293 	return mem_cgroup_from_css(css);
294 }
295 
296 #ifndef CONFIG_SLOB
297 /*
298  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
299  * The main reason for not using cgroup id for this:
300  *  this works better in sparse environments, where we have a lot of memcgs,
301  *  but only a few kmem-limited. Or also, if we have, for instance, 200
302  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
303  *  200 entry array for that.
304  *
305  * The current size of the caches array is stored in memcg_nr_cache_ids. It
306  * will double each time we have to increase it.
307  */
308 static DEFINE_IDA(memcg_cache_ida);
309 int memcg_nr_cache_ids;
310 
311 /* Protects memcg_nr_cache_ids */
312 static DECLARE_RWSEM(memcg_cache_ids_sem);
313 
314 void memcg_get_cache_ids(void)
315 {
316 	down_read(&memcg_cache_ids_sem);
317 }
318 
319 void memcg_put_cache_ids(void)
320 {
321 	up_read(&memcg_cache_ids_sem);
322 }
323 
324 /*
325  * MIN_SIZE is different than 1, because we would like to avoid going through
326  * the alloc/free process all the time. In a small machine, 4 kmem-limited
327  * cgroups is a reasonable guess. In the future, it could be a parameter or
328  * tunable, but that is strictly not necessary.
329  *
330  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
331  * this constant directly from cgroup, but it is understandable that this is
332  * better kept as an internal representation in cgroup.c. In any case, the
333  * cgrp_id space is not getting any smaller, and we don't have to necessarily
334  * increase ours as well if it increases.
335  */
336 #define MEMCG_CACHES_MIN_SIZE 4
337 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
338 
339 /*
340  * A lot of the calls to the cache allocation functions are expected to be
341  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
342  * conditional to this static branch, we'll have to allow modules that does
343  * kmem_cache_alloc and the such to see this symbol as well
344  */
345 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
346 EXPORT_SYMBOL(memcg_kmem_enabled_key);
347 
348 #endif /* !CONFIG_SLOB */
349 
350 static struct mem_cgroup_per_zone *
351 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
352 {
353 	int nid = zone_to_nid(zone);
354 	int zid = zone_idx(zone);
355 
356 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
357 }
358 
359 /**
360  * mem_cgroup_css_from_page - css of the memcg associated with a page
361  * @page: page of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @page is returned.  The returned css remains associated with @page
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
371 {
372 	struct mem_cgroup *memcg;
373 
374 	memcg = page->mem_cgroup;
375 
376 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377 		memcg = root_mem_cgroup;
378 
379 	return &memcg->css;
380 }
381 
382 /**
383  * page_cgroup_ino - return inode number of the memcg a page is charged to
384  * @page: the page
385  *
386  * Look up the closest online ancestor of the memory cgroup @page is charged to
387  * and return its inode number or 0 if @page is not charged to any cgroup. It
388  * is safe to call this function without holding a reference to @page.
389  *
390  * Note, this function is inherently racy, because there is nothing to prevent
391  * the cgroup inode from getting torn down and potentially reallocated a moment
392  * after page_cgroup_ino() returns, so it only should be used by callers that
393  * do not care (such as procfs interfaces).
394  */
395 ino_t page_cgroup_ino(struct page *page)
396 {
397 	struct mem_cgroup *memcg;
398 	unsigned long ino = 0;
399 
400 	rcu_read_lock();
401 	memcg = READ_ONCE(page->mem_cgroup);
402 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 		memcg = parent_mem_cgroup(memcg);
404 	if (memcg)
405 		ino = cgroup_ino(memcg->css.cgroup);
406 	rcu_read_unlock();
407 	return ino;
408 }
409 
410 static struct mem_cgroup_per_zone *
411 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
412 {
413 	int nid = page_to_nid(page);
414 	int zid = page_zonenum(page);
415 
416 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
417 }
418 
419 static struct mem_cgroup_tree_per_zone *
420 soft_limit_tree_node_zone(int nid, int zid)
421 {
422 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
423 }
424 
425 static struct mem_cgroup_tree_per_zone *
426 soft_limit_tree_from_page(struct page *page)
427 {
428 	int nid = page_to_nid(page);
429 	int zid = page_zonenum(page);
430 
431 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
432 }
433 
434 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
435 					 struct mem_cgroup_tree_per_zone *mctz,
436 					 unsigned long new_usage_in_excess)
437 {
438 	struct rb_node **p = &mctz->rb_root.rb_node;
439 	struct rb_node *parent = NULL;
440 	struct mem_cgroup_per_zone *mz_node;
441 
442 	if (mz->on_tree)
443 		return;
444 
445 	mz->usage_in_excess = new_usage_in_excess;
446 	if (!mz->usage_in_excess)
447 		return;
448 	while (*p) {
449 		parent = *p;
450 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
451 					tree_node);
452 		if (mz->usage_in_excess < mz_node->usage_in_excess)
453 			p = &(*p)->rb_left;
454 		/*
455 		 * We can't avoid mem cgroups that are over their soft
456 		 * limit by the same amount
457 		 */
458 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
459 			p = &(*p)->rb_right;
460 	}
461 	rb_link_node(&mz->tree_node, parent, p);
462 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
463 	mz->on_tree = true;
464 }
465 
466 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
467 					 struct mem_cgroup_tree_per_zone *mctz)
468 {
469 	if (!mz->on_tree)
470 		return;
471 	rb_erase(&mz->tree_node, &mctz->rb_root);
472 	mz->on_tree = false;
473 }
474 
475 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
476 				       struct mem_cgroup_tree_per_zone *mctz)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&mctz->lock, flags);
481 	__mem_cgroup_remove_exceeded(mz, mctz);
482 	spin_unlock_irqrestore(&mctz->lock, flags);
483 }
484 
485 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
486 {
487 	unsigned long nr_pages = page_counter_read(&memcg->memory);
488 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
489 	unsigned long excess = 0;
490 
491 	if (nr_pages > soft_limit)
492 		excess = nr_pages - soft_limit;
493 
494 	return excess;
495 }
496 
497 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
498 {
499 	unsigned long excess;
500 	struct mem_cgroup_per_zone *mz;
501 	struct mem_cgroup_tree_per_zone *mctz;
502 
503 	mctz = soft_limit_tree_from_page(page);
504 	/*
505 	 * Necessary to update all ancestors when hierarchy is used.
506 	 * because their event counter is not touched.
507 	 */
508 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
509 		mz = mem_cgroup_page_zoneinfo(memcg, page);
510 		excess = soft_limit_excess(memcg);
511 		/*
512 		 * We have to update the tree if mz is on RB-tree or
513 		 * mem is over its softlimit.
514 		 */
515 		if (excess || mz->on_tree) {
516 			unsigned long flags;
517 
518 			spin_lock_irqsave(&mctz->lock, flags);
519 			/* if on-tree, remove it */
520 			if (mz->on_tree)
521 				__mem_cgroup_remove_exceeded(mz, mctz);
522 			/*
523 			 * Insert again. mz->usage_in_excess will be updated.
524 			 * If excess is 0, no tree ops.
525 			 */
526 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
527 			spin_unlock_irqrestore(&mctz->lock, flags);
528 		}
529 	}
530 }
531 
532 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
533 {
534 	struct mem_cgroup_tree_per_zone *mctz;
535 	struct mem_cgroup_per_zone *mz;
536 	int nid, zid;
537 
538 	for_each_node(nid) {
539 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
540 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
541 			mctz = soft_limit_tree_node_zone(nid, zid);
542 			mem_cgroup_remove_exceeded(mz, mctz);
543 		}
544 	}
545 }
546 
547 static struct mem_cgroup_per_zone *
548 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
549 {
550 	struct rb_node *rightmost = NULL;
551 	struct mem_cgroup_per_zone *mz;
552 
553 retry:
554 	mz = NULL;
555 	rightmost = rb_last(&mctz->rb_root);
556 	if (!rightmost)
557 		goto done;		/* Nothing to reclaim from */
558 
559 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
560 	/*
561 	 * Remove the node now but someone else can add it back,
562 	 * we will to add it back at the end of reclaim to its correct
563 	 * position in the tree.
564 	 */
565 	__mem_cgroup_remove_exceeded(mz, mctz);
566 	if (!soft_limit_excess(mz->memcg) ||
567 	    !css_tryget_online(&mz->memcg->css))
568 		goto retry;
569 done:
570 	return mz;
571 }
572 
573 static struct mem_cgroup_per_zone *
574 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
575 {
576 	struct mem_cgroup_per_zone *mz;
577 
578 	spin_lock_irq(&mctz->lock);
579 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
580 	spin_unlock_irq(&mctz->lock);
581 	return mz;
582 }
583 
584 /*
585  * Return page count for single (non recursive) @memcg.
586  *
587  * Implementation Note: reading percpu statistics for memcg.
588  *
589  * Both of vmstat[] and percpu_counter has threshold and do periodic
590  * synchronization to implement "quick" read. There are trade-off between
591  * reading cost and precision of value. Then, we may have a chance to implement
592  * a periodic synchronization of counter in memcg's counter.
593  *
594  * But this _read() function is used for user interface now. The user accounts
595  * memory usage by memory cgroup and he _always_ requires exact value because
596  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
597  * have to visit all online cpus and make sum. So, for now, unnecessary
598  * synchronization is not implemented. (just implemented for cpu hotplug)
599  *
600  * If there are kernel internal actions which can make use of some not-exact
601  * value, and reading all cpu value can be performance bottleneck in some
602  * common workload, threshold and synchronization as vmstat[] should be
603  * implemented.
604  */
605 static unsigned long
606 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
607 {
608 	long val = 0;
609 	int cpu;
610 
611 	/* Per-cpu values can be negative, use a signed accumulator */
612 	for_each_possible_cpu(cpu)
613 		val += per_cpu(memcg->stat->count[idx], cpu);
614 	/*
615 	 * Summing races with updates, so val may be negative.  Avoid exposing
616 	 * transient negative values.
617 	 */
618 	if (val < 0)
619 		val = 0;
620 	return val;
621 }
622 
623 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
624 					    enum mem_cgroup_events_index idx)
625 {
626 	unsigned long val = 0;
627 	int cpu;
628 
629 	for_each_possible_cpu(cpu)
630 		val += per_cpu(memcg->stat->events[idx], cpu);
631 	return val;
632 }
633 
634 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
635 					 struct page *page,
636 					 bool compound, int nr_pages)
637 {
638 	/*
639 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
640 	 * counted as CACHE even if it's on ANON LRU.
641 	 */
642 	if (PageAnon(page))
643 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
644 				nr_pages);
645 	else
646 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
647 				nr_pages);
648 
649 	if (compound) {
650 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
651 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
652 				nr_pages);
653 	}
654 
655 	/* pagein of a big page is an event. So, ignore page size */
656 	if (nr_pages > 0)
657 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
658 	else {
659 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
660 		nr_pages = -nr_pages; /* for event */
661 	}
662 
663 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
664 }
665 
666 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
667 						  int nid,
668 						  unsigned int lru_mask)
669 {
670 	unsigned long nr = 0;
671 	int zid;
672 
673 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
674 
675 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
676 		struct mem_cgroup_per_zone *mz;
677 		enum lru_list lru;
678 
679 		for_each_lru(lru) {
680 			if (!(BIT(lru) & lru_mask))
681 				continue;
682 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
683 			nr += mz->lru_size[lru];
684 		}
685 	}
686 	return nr;
687 }
688 
689 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
690 			unsigned int lru_mask)
691 {
692 	unsigned long nr = 0;
693 	int nid;
694 
695 	for_each_node_state(nid, N_MEMORY)
696 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
697 	return nr;
698 }
699 
700 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
701 				       enum mem_cgroup_events_target target)
702 {
703 	unsigned long val, next;
704 
705 	val = __this_cpu_read(memcg->stat->nr_page_events);
706 	next = __this_cpu_read(memcg->stat->targets[target]);
707 	/* from time_after() in jiffies.h */
708 	if ((long)next - (long)val < 0) {
709 		switch (target) {
710 		case MEM_CGROUP_TARGET_THRESH:
711 			next = val + THRESHOLDS_EVENTS_TARGET;
712 			break;
713 		case MEM_CGROUP_TARGET_SOFTLIMIT:
714 			next = val + SOFTLIMIT_EVENTS_TARGET;
715 			break;
716 		case MEM_CGROUP_TARGET_NUMAINFO:
717 			next = val + NUMAINFO_EVENTS_TARGET;
718 			break;
719 		default:
720 			break;
721 		}
722 		__this_cpu_write(memcg->stat->targets[target], next);
723 		return true;
724 	}
725 	return false;
726 }
727 
728 /*
729  * Check events in order.
730  *
731  */
732 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
733 {
734 	/* threshold event is triggered in finer grain than soft limit */
735 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
736 						MEM_CGROUP_TARGET_THRESH))) {
737 		bool do_softlimit;
738 		bool do_numainfo __maybe_unused;
739 
740 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
741 						MEM_CGROUP_TARGET_SOFTLIMIT);
742 #if MAX_NUMNODES > 1
743 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
744 						MEM_CGROUP_TARGET_NUMAINFO);
745 #endif
746 		mem_cgroup_threshold(memcg);
747 		if (unlikely(do_softlimit))
748 			mem_cgroup_update_tree(memcg, page);
749 #if MAX_NUMNODES > 1
750 		if (unlikely(do_numainfo))
751 			atomic_inc(&memcg->numainfo_events);
752 #endif
753 	}
754 }
755 
756 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
757 {
758 	/*
759 	 * mm_update_next_owner() may clear mm->owner to NULL
760 	 * if it races with swapoff, page migration, etc.
761 	 * So this can be called with p == NULL.
762 	 */
763 	if (unlikely(!p))
764 		return NULL;
765 
766 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
767 }
768 EXPORT_SYMBOL(mem_cgroup_from_task);
769 
770 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
771 {
772 	struct mem_cgroup *memcg = NULL;
773 
774 	rcu_read_lock();
775 	do {
776 		/*
777 		 * Page cache insertions can happen withou an
778 		 * actual mm context, e.g. during disk probing
779 		 * on boot, loopback IO, acct() writes etc.
780 		 */
781 		if (unlikely(!mm))
782 			memcg = root_mem_cgroup;
783 		else {
784 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
785 			if (unlikely(!memcg))
786 				memcg = root_mem_cgroup;
787 		}
788 	} while (!css_tryget_online(&memcg->css));
789 	rcu_read_unlock();
790 	return memcg;
791 }
792 
793 /**
794  * mem_cgroup_iter - iterate over memory cgroup hierarchy
795  * @root: hierarchy root
796  * @prev: previously returned memcg, NULL on first invocation
797  * @reclaim: cookie for shared reclaim walks, NULL for full walks
798  *
799  * Returns references to children of the hierarchy below @root, or
800  * @root itself, or %NULL after a full round-trip.
801  *
802  * Caller must pass the return value in @prev on subsequent
803  * invocations for reference counting, or use mem_cgroup_iter_break()
804  * to cancel a hierarchy walk before the round-trip is complete.
805  *
806  * Reclaimers can specify a zone and a priority level in @reclaim to
807  * divide up the memcgs in the hierarchy among all concurrent
808  * reclaimers operating on the same zone and priority.
809  */
810 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
811 				   struct mem_cgroup *prev,
812 				   struct mem_cgroup_reclaim_cookie *reclaim)
813 {
814 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
815 	struct cgroup_subsys_state *css = NULL;
816 	struct mem_cgroup *memcg = NULL;
817 	struct mem_cgroup *pos = NULL;
818 
819 	if (mem_cgroup_disabled())
820 		return NULL;
821 
822 	if (!root)
823 		root = root_mem_cgroup;
824 
825 	if (prev && !reclaim)
826 		pos = prev;
827 
828 	if (!root->use_hierarchy && root != root_mem_cgroup) {
829 		if (prev)
830 			goto out;
831 		return root;
832 	}
833 
834 	rcu_read_lock();
835 
836 	if (reclaim) {
837 		struct mem_cgroup_per_zone *mz;
838 
839 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
840 		iter = &mz->iter[reclaim->priority];
841 
842 		if (prev && reclaim->generation != iter->generation)
843 			goto out_unlock;
844 
845 		while (1) {
846 			pos = READ_ONCE(iter->position);
847 			if (!pos || css_tryget(&pos->css))
848 				break;
849 			/*
850 			 * css reference reached zero, so iter->position will
851 			 * be cleared by ->css_released. However, we should not
852 			 * rely on this happening soon, because ->css_released
853 			 * is called from a work queue, and by busy-waiting we
854 			 * might block it. So we clear iter->position right
855 			 * away.
856 			 */
857 			(void)cmpxchg(&iter->position, pos, NULL);
858 		}
859 	}
860 
861 	if (pos)
862 		css = &pos->css;
863 
864 	for (;;) {
865 		css = css_next_descendant_pre(css, &root->css);
866 		if (!css) {
867 			/*
868 			 * Reclaimers share the hierarchy walk, and a
869 			 * new one might jump in right at the end of
870 			 * the hierarchy - make sure they see at least
871 			 * one group and restart from the beginning.
872 			 */
873 			if (!prev)
874 				continue;
875 			break;
876 		}
877 
878 		/*
879 		 * Verify the css and acquire a reference.  The root
880 		 * is provided by the caller, so we know it's alive
881 		 * and kicking, and don't take an extra reference.
882 		 */
883 		memcg = mem_cgroup_from_css(css);
884 
885 		if (css == &root->css)
886 			break;
887 
888 		if (css_tryget(css))
889 			break;
890 
891 		memcg = NULL;
892 	}
893 
894 	if (reclaim) {
895 		/*
896 		 * The position could have already been updated by a competing
897 		 * thread, so check that the value hasn't changed since we read
898 		 * it to avoid reclaiming from the same cgroup twice.
899 		 */
900 		(void)cmpxchg(&iter->position, pos, memcg);
901 
902 		if (pos)
903 			css_put(&pos->css);
904 
905 		if (!memcg)
906 			iter->generation++;
907 		else if (!prev)
908 			reclaim->generation = iter->generation;
909 	}
910 
911 out_unlock:
912 	rcu_read_unlock();
913 out:
914 	if (prev && prev != root)
915 		css_put(&prev->css);
916 
917 	return memcg;
918 }
919 
920 /**
921  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
922  * @root: hierarchy root
923  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
924  */
925 void mem_cgroup_iter_break(struct mem_cgroup *root,
926 			   struct mem_cgroup *prev)
927 {
928 	if (!root)
929 		root = root_mem_cgroup;
930 	if (prev && prev != root)
931 		css_put(&prev->css);
932 }
933 
934 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
935 {
936 	struct mem_cgroup *memcg = dead_memcg;
937 	struct mem_cgroup_reclaim_iter *iter;
938 	struct mem_cgroup_per_zone *mz;
939 	int nid, zid;
940 	int i;
941 
942 	while ((memcg = parent_mem_cgroup(memcg))) {
943 		for_each_node(nid) {
944 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
945 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
946 				for (i = 0; i <= DEF_PRIORITY; i++) {
947 					iter = &mz->iter[i];
948 					cmpxchg(&iter->position,
949 						dead_memcg, NULL);
950 				}
951 			}
952 		}
953 	}
954 }
955 
956 /*
957  * Iteration constructs for visiting all cgroups (under a tree).  If
958  * loops are exited prematurely (break), mem_cgroup_iter_break() must
959  * be used for reference counting.
960  */
961 #define for_each_mem_cgroup_tree(iter, root)		\
962 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
963 	     iter != NULL;				\
964 	     iter = mem_cgroup_iter(root, iter, NULL))
965 
966 #define for_each_mem_cgroup(iter)			\
967 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
968 	     iter != NULL;				\
969 	     iter = mem_cgroup_iter(NULL, iter, NULL))
970 
971 /**
972  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
973  * @zone: zone of the wanted lruvec
974  * @memcg: memcg of the wanted lruvec
975  *
976  * Returns the lru list vector holding pages for the given @zone and
977  * @mem.  This can be the global zone lruvec, if the memory controller
978  * is disabled.
979  */
980 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
981 				      struct mem_cgroup *memcg)
982 {
983 	struct mem_cgroup_per_zone *mz;
984 	struct lruvec *lruvec;
985 
986 	if (mem_cgroup_disabled()) {
987 		lruvec = &zone->lruvec;
988 		goto out;
989 	}
990 
991 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
992 	lruvec = &mz->lruvec;
993 out:
994 	/*
995 	 * Since a node can be onlined after the mem_cgroup was created,
996 	 * we have to be prepared to initialize lruvec->zone here;
997 	 * and if offlined then reonlined, we need to reinitialize it.
998 	 */
999 	if (unlikely(lruvec->zone != zone))
1000 		lruvec->zone = zone;
1001 	return lruvec;
1002 }
1003 
1004 /**
1005  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1006  * @page: the page
1007  * @zone: zone of the page
1008  *
1009  * This function is only safe when following the LRU page isolation
1010  * and putback protocol: the LRU lock must be held, and the page must
1011  * either be PageLRU() or the caller must have isolated/allocated it.
1012  */
1013 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1014 {
1015 	struct mem_cgroup_per_zone *mz;
1016 	struct mem_cgroup *memcg;
1017 	struct lruvec *lruvec;
1018 
1019 	if (mem_cgroup_disabled()) {
1020 		lruvec = &zone->lruvec;
1021 		goto out;
1022 	}
1023 
1024 	memcg = page->mem_cgroup;
1025 	/*
1026 	 * Swapcache readahead pages are added to the LRU - and
1027 	 * possibly migrated - before they are charged.
1028 	 */
1029 	if (!memcg)
1030 		memcg = root_mem_cgroup;
1031 
1032 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1033 	lruvec = &mz->lruvec;
1034 out:
1035 	/*
1036 	 * Since a node can be onlined after the mem_cgroup was created,
1037 	 * we have to be prepared to initialize lruvec->zone here;
1038 	 * and if offlined then reonlined, we need to reinitialize it.
1039 	 */
1040 	if (unlikely(lruvec->zone != zone))
1041 		lruvec->zone = zone;
1042 	return lruvec;
1043 }
1044 
1045 /**
1046  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1047  * @lruvec: mem_cgroup per zone lru vector
1048  * @lru: index of lru list the page is sitting on
1049  * @nr_pages: positive when adding or negative when removing
1050  *
1051  * This function must be called when a page is added to or removed from an
1052  * lru list.
1053  */
1054 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1055 				int nr_pages)
1056 {
1057 	struct mem_cgroup_per_zone *mz;
1058 	unsigned long *lru_size;
1059 
1060 	if (mem_cgroup_disabled())
1061 		return;
1062 
1063 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1064 	lru_size = mz->lru_size + lru;
1065 	*lru_size += nr_pages;
1066 	VM_BUG_ON((long)(*lru_size) < 0);
1067 }
1068 
1069 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1070 {
1071 	struct mem_cgroup *task_memcg;
1072 	struct task_struct *p;
1073 	bool ret;
1074 
1075 	p = find_lock_task_mm(task);
1076 	if (p) {
1077 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1078 		task_unlock(p);
1079 	} else {
1080 		/*
1081 		 * All threads may have already detached their mm's, but the oom
1082 		 * killer still needs to detect if they have already been oom
1083 		 * killed to prevent needlessly killing additional tasks.
1084 		 */
1085 		rcu_read_lock();
1086 		task_memcg = mem_cgroup_from_task(task);
1087 		css_get(&task_memcg->css);
1088 		rcu_read_unlock();
1089 	}
1090 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1091 	css_put(&task_memcg->css);
1092 	return ret;
1093 }
1094 
1095 /**
1096  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1097  * @memcg: the memory cgroup
1098  *
1099  * Returns the maximum amount of memory @mem can be charged with, in
1100  * pages.
1101  */
1102 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1103 {
1104 	unsigned long margin = 0;
1105 	unsigned long count;
1106 	unsigned long limit;
1107 
1108 	count = page_counter_read(&memcg->memory);
1109 	limit = READ_ONCE(memcg->memory.limit);
1110 	if (count < limit)
1111 		margin = limit - count;
1112 
1113 	if (do_memsw_account()) {
1114 		count = page_counter_read(&memcg->memsw);
1115 		limit = READ_ONCE(memcg->memsw.limit);
1116 		if (count <= limit)
1117 			margin = min(margin, limit - count);
1118 	}
1119 
1120 	return margin;
1121 }
1122 
1123 /*
1124  * A routine for checking "mem" is under move_account() or not.
1125  *
1126  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1127  * moving cgroups. This is for waiting at high-memory pressure
1128  * caused by "move".
1129  */
1130 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1131 {
1132 	struct mem_cgroup *from;
1133 	struct mem_cgroup *to;
1134 	bool ret = false;
1135 	/*
1136 	 * Unlike task_move routines, we access mc.to, mc.from not under
1137 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1138 	 */
1139 	spin_lock(&mc.lock);
1140 	from = mc.from;
1141 	to = mc.to;
1142 	if (!from)
1143 		goto unlock;
1144 
1145 	ret = mem_cgroup_is_descendant(from, memcg) ||
1146 		mem_cgroup_is_descendant(to, memcg);
1147 unlock:
1148 	spin_unlock(&mc.lock);
1149 	return ret;
1150 }
1151 
1152 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1153 {
1154 	if (mc.moving_task && current != mc.moving_task) {
1155 		if (mem_cgroup_under_move(memcg)) {
1156 			DEFINE_WAIT(wait);
1157 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1158 			/* moving charge context might have finished. */
1159 			if (mc.moving_task)
1160 				schedule();
1161 			finish_wait(&mc.waitq, &wait);
1162 			return true;
1163 		}
1164 	}
1165 	return false;
1166 }
1167 
1168 #define K(x) ((x) << (PAGE_SHIFT-10))
1169 /**
1170  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1171  * @memcg: The memory cgroup that went over limit
1172  * @p: Task that is going to be killed
1173  *
1174  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1175  * enabled
1176  */
1177 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1178 {
1179 	/* oom_info_lock ensures that parallel ooms do not interleave */
1180 	static DEFINE_MUTEX(oom_info_lock);
1181 	struct mem_cgroup *iter;
1182 	unsigned int i;
1183 
1184 	mutex_lock(&oom_info_lock);
1185 	rcu_read_lock();
1186 
1187 	if (p) {
1188 		pr_info("Task in ");
1189 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1190 		pr_cont(" killed as a result of limit of ");
1191 	} else {
1192 		pr_info("Memory limit reached of cgroup ");
1193 	}
1194 
1195 	pr_cont_cgroup_path(memcg->css.cgroup);
1196 	pr_cont("\n");
1197 
1198 	rcu_read_unlock();
1199 
1200 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1201 		K((u64)page_counter_read(&memcg->memory)),
1202 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1203 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1204 		K((u64)page_counter_read(&memcg->memsw)),
1205 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1206 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1207 		K((u64)page_counter_read(&memcg->kmem)),
1208 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1209 
1210 	for_each_mem_cgroup_tree(iter, memcg) {
1211 		pr_info("Memory cgroup stats for ");
1212 		pr_cont_cgroup_path(iter->css.cgroup);
1213 		pr_cont(":");
1214 
1215 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1216 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1217 				continue;
1218 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1219 				K(mem_cgroup_read_stat(iter, i)));
1220 		}
1221 
1222 		for (i = 0; i < NR_LRU_LISTS; i++)
1223 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1224 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1225 
1226 		pr_cont("\n");
1227 	}
1228 	mutex_unlock(&oom_info_lock);
1229 }
1230 
1231 /*
1232  * This function returns the number of memcg under hierarchy tree. Returns
1233  * 1(self count) if no children.
1234  */
1235 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1236 {
1237 	int num = 0;
1238 	struct mem_cgroup *iter;
1239 
1240 	for_each_mem_cgroup_tree(iter, memcg)
1241 		num++;
1242 	return num;
1243 }
1244 
1245 /*
1246  * Return the memory (and swap, if configured) limit for a memcg.
1247  */
1248 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1249 {
1250 	unsigned long limit;
1251 
1252 	limit = memcg->memory.limit;
1253 	if (mem_cgroup_swappiness(memcg)) {
1254 		unsigned long memsw_limit;
1255 		unsigned long swap_limit;
1256 
1257 		memsw_limit = memcg->memsw.limit;
1258 		swap_limit = memcg->swap.limit;
1259 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1260 		limit = min(limit + swap_limit, memsw_limit);
1261 	}
1262 	return limit;
1263 }
1264 
1265 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1266 				     int order)
1267 {
1268 	struct oom_control oc = {
1269 		.zonelist = NULL,
1270 		.nodemask = NULL,
1271 		.gfp_mask = gfp_mask,
1272 		.order = order,
1273 	};
1274 	struct mem_cgroup *iter;
1275 	unsigned long chosen_points = 0;
1276 	unsigned long totalpages;
1277 	unsigned int points = 0;
1278 	struct task_struct *chosen = NULL;
1279 
1280 	mutex_lock(&oom_lock);
1281 
1282 	/*
1283 	 * If current has a pending SIGKILL or is exiting, then automatically
1284 	 * select it.  The goal is to allow it to allocate so that it may
1285 	 * quickly exit and free its memory.
1286 	 */
1287 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1288 		mark_oom_victim(current);
1289 		goto unlock;
1290 	}
1291 
1292 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1293 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1294 	for_each_mem_cgroup_tree(iter, memcg) {
1295 		struct css_task_iter it;
1296 		struct task_struct *task;
1297 
1298 		css_task_iter_start(&iter->css, &it);
1299 		while ((task = css_task_iter_next(&it))) {
1300 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1301 			case OOM_SCAN_SELECT:
1302 				if (chosen)
1303 					put_task_struct(chosen);
1304 				chosen = task;
1305 				chosen_points = ULONG_MAX;
1306 				get_task_struct(chosen);
1307 				/* fall through */
1308 			case OOM_SCAN_CONTINUE:
1309 				continue;
1310 			case OOM_SCAN_ABORT:
1311 				css_task_iter_end(&it);
1312 				mem_cgroup_iter_break(memcg, iter);
1313 				if (chosen)
1314 					put_task_struct(chosen);
1315 				goto unlock;
1316 			case OOM_SCAN_OK:
1317 				break;
1318 			};
1319 			points = oom_badness(task, memcg, NULL, totalpages);
1320 			if (!points || points < chosen_points)
1321 				continue;
1322 			/* Prefer thread group leaders for display purposes */
1323 			if (points == chosen_points &&
1324 			    thread_group_leader(chosen))
1325 				continue;
1326 
1327 			if (chosen)
1328 				put_task_struct(chosen);
1329 			chosen = task;
1330 			chosen_points = points;
1331 			get_task_struct(chosen);
1332 		}
1333 		css_task_iter_end(&it);
1334 	}
1335 
1336 	if (chosen) {
1337 		points = chosen_points * 1000 / totalpages;
1338 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1339 				 "Memory cgroup out of memory");
1340 	}
1341 unlock:
1342 	mutex_unlock(&oom_lock);
1343 }
1344 
1345 #if MAX_NUMNODES > 1
1346 
1347 /**
1348  * test_mem_cgroup_node_reclaimable
1349  * @memcg: the target memcg
1350  * @nid: the node ID to be checked.
1351  * @noswap : specify true here if the user wants flle only information.
1352  *
1353  * This function returns whether the specified memcg contains any
1354  * reclaimable pages on a node. Returns true if there are any reclaimable
1355  * pages in the node.
1356  */
1357 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1358 		int nid, bool noswap)
1359 {
1360 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1361 		return true;
1362 	if (noswap || !total_swap_pages)
1363 		return false;
1364 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1365 		return true;
1366 	return false;
1367 
1368 }
1369 
1370 /*
1371  * Always updating the nodemask is not very good - even if we have an empty
1372  * list or the wrong list here, we can start from some node and traverse all
1373  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1374  *
1375  */
1376 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1377 {
1378 	int nid;
1379 	/*
1380 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1381 	 * pagein/pageout changes since the last update.
1382 	 */
1383 	if (!atomic_read(&memcg->numainfo_events))
1384 		return;
1385 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1386 		return;
1387 
1388 	/* make a nodemask where this memcg uses memory from */
1389 	memcg->scan_nodes = node_states[N_MEMORY];
1390 
1391 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1392 
1393 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1394 			node_clear(nid, memcg->scan_nodes);
1395 	}
1396 
1397 	atomic_set(&memcg->numainfo_events, 0);
1398 	atomic_set(&memcg->numainfo_updating, 0);
1399 }
1400 
1401 /*
1402  * Selecting a node where we start reclaim from. Because what we need is just
1403  * reducing usage counter, start from anywhere is O,K. Considering
1404  * memory reclaim from current node, there are pros. and cons.
1405  *
1406  * Freeing memory from current node means freeing memory from a node which
1407  * we'll use or we've used. So, it may make LRU bad. And if several threads
1408  * hit limits, it will see a contention on a node. But freeing from remote
1409  * node means more costs for memory reclaim because of memory latency.
1410  *
1411  * Now, we use round-robin. Better algorithm is welcomed.
1412  */
1413 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1414 {
1415 	int node;
1416 
1417 	mem_cgroup_may_update_nodemask(memcg);
1418 	node = memcg->last_scanned_node;
1419 
1420 	node = next_node(node, memcg->scan_nodes);
1421 	if (node == MAX_NUMNODES)
1422 		node = first_node(memcg->scan_nodes);
1423 	/*
1424 	 * We call this when we hit limit, not when pages are added to LRU.
1425 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1426 	 * memcg is too small and all pages are not on LRU. In that case,
1427 	 * we use curret node.
1428 	 */
1429 	if (unlikely(node == MAX_NUMNODES))
1430 		node = numa_node_id();
1431 
1432 	memcg->last_scanned_node = node;
1433 	return node;
1434 }
1435 #else
1436 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1437 {
1438 	return 0;
1439 }
1440 #endif
1441 
1442 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1443 				   struct zone *zone,
1444 				   gfp_t gfp_mask,
1445 				   unsigned long *total_scanned)
1446 {
1447 	struct mem_cgroup *victim = NULL;
1448 	int total = 0;
1449 	int loop = 0;
1450 	unsigned long excess;
1451 	unsigned long nr_scanned;
1452 	struct mem_cgroup_reclaim_cookie reclaim = {
1453 		.zone = zone,
1454 		.priority = 0,
1455 	};
1456 
1457 	excess = soft_limit_excess(root_memcg);
1458 
1459 	while (1) {
1460 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1461 		if (!victim) {
1462 			loop++;
1463 			if (loop >= 2) {
1464 				/*
1465 				 * If we have not been able to reclaim
1466 				 * anything, it might because there are
1467 				 * no reclaimable pages under this hierarchy
1468 				 */
1469 				if (!total)
1470 					break;
1471 				/*
1472 				 * We want to do more targeted reclaim.
1473 				 * excess >> 2 is not to excessive so as to
1474 				 * reclaim too much, nor too less that we keep
1475 				 * coming back to reclaim from this cgroup
1476 				 */
1477 				if (total >= (excess >> 2) ||
1478 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1479 					break;
1480 			}
1481 			continue;
1482 		}
1483 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1484 						     zone, &nr_scanned);
1485 		*total_scanned += nr_scanned;
1486 		if (!soft_limit_excess(root_memcg))
1487 			break;
1488 	}
1489 	mem_cgroup_iter_break(root_memcg, victim);
1490 	return total;
1491 }
1492 
1493 #ifdef CONFIG_LOCKDEP
1494 static struct lockdep_map memcg_oom_lock_dep_map = {
1495 	.name = "memcg_oom_lock",
1496 };
1497 #endif
1498 
1499 static DEFINE_SPINLOCK(memcg_oom_lock);
1500 
1501 /*
1502  * Check OOM-Killer is already running under our hierarchy.
1503  * If someone is running, return false.
1504  */
1505 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1506 {
1507 	struct mem_cgroup *iter, *failed = NULL;
1508 
1509 	spin_lock(&memcg_oom_lock);
1510 
1511 	for_each_mem_cgroup_tree(iter, memcg) {
1512 		if (iter->oom_lock) {
1513 			/*
1514 			 * this subtree of our hierarchy is already locked
1515 			 * so we cannot give a lock.
1516 			 */
1517 			failed = iter;
1518 			mem_cgroup_iter_break(memcg, iter);
1519 			break;
1520 		} else
1521 			iter->oom_lock = true;
1522 	}
1523 
1524 	if (failed) {
1525 		/*
1526 		 * OK, we failed to lock the whole subtree so we have
1527 		 * to clean up what we set up to the failing subtree
1528 		 */
1529 		for_each_mem_cgroup_tree(iter, memcg) {
1530 			if (iter == failed) {
1531 				mem_cgroup_iter_break(memcg, iter);
1532 				break;
1533 			}
1534 			iter->oom_lock = false;
1535 		}
1536 	} else
1537 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1538 
1539 	spin_unlock(&memcg_oom_lock);
1540 
1541 	return !failed;
1542 }
1543 
1544 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1545 {
1546 	struct mem_cgroup *iter;
1547 
1548 	spin_lock(&memcg_oom_lock);
1549 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1550 	for_each_mem_cgroup_tree(iter, memcg)
1551 		iter->oom_lock = false;
1552 	spin_unlock(&memcg_oom_lock);
1553 }
1554 
1555 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1556 {
1557 	struct mem_cgroup *iter;
1558 
1559 	spin_lock(&memcg_oom_lock);
1560 	for_each_mem_cgroup_tree(iter, memcg)
1561 		iter->under_oom++;
1562 	spin_unlock(&memcg_oom_lock);
1563 }
1564 
1565 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1566 {
1567 	struct mem_cgroup *iter;
1568 
1569 	/*
1570 	 * When a new child is created while the hierarchy is under oom,
1571 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1572 	 */
1573 	spin_lock(&memcg_oom_lock);
1574 	for_each_mem_cgroup_tree(iter, memcg)
1575 		if (iter->under_oom > 0)
1576 			iter->under_oom--;
1577 	spin_unlock(&memcg_oom_lock);
1578 }
1579 
1580 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1581 
1582 struct oom_wait_info {
1583 	struct mem_cgroup *memcg;
1584 	wait_queue_t	wait;
1585 };
1586 
1587 static int memcg_oom_wake_function(wait_queue_t *wait,
1588 	unsigned mode, int sync, void *arg)
1589 {
1590 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1591 	struct mem_cgroup *oom_wait_memcg;
1592 	struct oom_wait_info *oom_wait_info;
1593 
1594 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1595 	oom_wait_memcg = oom_wait_info->memcg;
1596 
1597 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1598 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1599 		return 0;
1600 	return autoremove_wake_function(wait, mode, sync, arg);
1601 }
1602 
1603 static void memcg_oom_recover(struct mem_cgroup *memcg)
1604 {
1605 	/*
1606 	 * For the following lockless ->under_oom test, the only required
1607 	 * guarantee is that it must see the state asserted by an OOM when
1608 	 * this function is called as a result of userland actions
1609 	 * triggered by the notification of the OOM.  This is trivially
1610 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1611 	 * triggering notification.
1612 	 */
1613 	if (memcg && memcg->under_oom)
1614 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1615 }
1616 
1617 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1618 {
1619 	if (!current->memcg_may_oom)
1620 		return;
1621 	/*
1622 	 * We are in the middle of the charge context here, so we
1623 	 * don't want to block when potentially sitting on a callstack
1624 	 * that holds all kinds of filesystem and mm locks.
1625 	 *
1626 	 * Also, the caller may handle a failed allocation gracefully
1627 	 * (like optional page cache readahead) and so an OOM killer
1628 	 * invocation might not even be necessary.
1629 	 *
1630 	 * That's why we don't do anything here except remember the
1631 	 * OOM context and then deal with it at the end of the page
1632 	 * fault when the stack is unwound, the locks are released,
1633 	 * and when we know whether the fault was overall successful.
1634 	 */
1635 	css_get(&memcg->css);
1636 	current->memcg_in_oom = memcg;
1637 	current->memcg_oom_gfp_mask = mask;
1638 	current->memcg_oom_order = order;
1639 }
1640 
1641 /**
1642  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1643  * @handle: actually kill/wait or just clean up the OOM state
1644  *
1645  * This has to be called at the end of a page fault if the memcg OOM
1646  * handler was enabled.
1647  *
1648  * Memcg supports userspace OOM handling where failed allocations must
1649  * sleep on a waitqueue until the userspace task resolves the
1650  * situation.  Sleeping directly in the charge context with all kinds
1651  * of locks held is not a good idea, instead we remember an OOM state
1652  * in the task and mem_cgroup_oom_synchronize() has to be called at
1653  * the end of the page fault to complete the OOM handling.
1654  *
1655  * Returns %true if an ongoing memcg OOM situation was detected and
1656  * completed, %false otherwise.
1657  */
1658 bool mem_cgroup_oom_synchronize(bool handle)
1659 {
1660 	struct mem_cgroup *memcg = current->memcg_in_oom;
1661 	struct oom_wait_info owait;
1662 	bool locked;
1663 
1664 	/* OOM is global, do not handle */
1665 	if (!memcg)
1666 		return false;
1667 
1668 	if (!handle || oom_killer_disabled)
1669 		goto cleanup;
1670 
1671 	owait.memcg = memcg;
1672 	owait.wait.flags = 0;
1673 	owait.wait.func = memcg_oom_wake_function;
1674 	owait.wait.private = current;
1675 	INIT_LIST_HEAD(&owait.wait.task_list);
1676 
1677 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1678 	mem_cgroup_mark_under_oom(memcg);
1679 
1680 	locked = mem_cgroup_oom_trylock(memcg);
1681 
1682 	if (locked)
1683 		mem_cgroup_oom_notify(memcg);
1684 
1685 	if (locked && !memcg->oom_kill_disable) {
1686 		mem_cgroup_unmark_under_oom(memcg);
1687 		finish_wait(&memcg_oom_waitq, &owait.wait);
1688 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1689 					 current->memcg_oom_order);
1690 	} else {
1691 		schedule();
1692 		mem_cgroup_unmark_under_oom(memcg);
1693 		finish_wait(&memcg_oom_waitq, &owait.wait);
1694 	}
1695 
1696 	if (locked) {
1697 		mem_cgroup_oom_unlock(memcg);
1698 		/*
1699 		 * There is no guarantee that an OOM-lock contender
1700 		 * sees the wakeups triggered by the OOM kill
1701 		 * uncharges.  Wake any sleepers explicitely.
1702 		 */
1703 		memcg_oom_recover(memcg);
1704 	}
1705 cleanup:
1706 	current->memcg_in_oom = NULL;
1707 	css_put(&memcg->css);
1708 	return true;
1709 }
1710 
1711 /**
1712  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1713  * @page: page that is going to change accounted state
1714  *
1715  * This function must mark the beginning of an accounted page state
1716  * change to prevent double accounting when the page is concurrently
1717  * being moved to another memcg:
1718  *
1719  *   memcg = mem_cgroup_begin_page_stat(page);
1720  *   if (TestClearPageState(page))
1721  *     mem_cgroup_update_page_stat(memcg, state, -1);
1722  *   mem_cgroup_end_page_stat(memcg);
1723  */
1724 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1725 {
1726 	struct mem_cgroup *memcg;
1727 	unsigned long flags;
1728 
1729 	/*
1730 	 * The RCU lock is held throughout the transaction.  The fast
1731 	 * path can get away without acquiring the memcg->move_lock
1732 	 * because page moving starts with an RCU grace period.
1733 	 *
1734 	 * The RCU lock also protects the memcg from being freed when
1735 	 * the page state that is going to change is the only thing
1736 	 * preventing the page from being uncharged.
1737 	 * E.g. end-writeback clearing PageWriteback(), which allows
1738 	 * migration to go ahead and uncharge the page before the
1739 	 * account transaction might be complete.
1740 	 */
1741 	rcu_read_lock();
1742 
1743 	if (mem_cgroup_disabled())
1744 		return NULL;
1745 again:
1746 	memcg = page->mem_cgroup;
1747 	if (unlikely(!memcg))
1748 		return NULL;
1749 
1750 	if (atomic_read(&memcg->moving_account) <= 0)
1751 		return memcg;
1752 
1753 	spin_lock_irqsave(&memcg->move_lock, flags);
1754 	if (memcg != page->mem_cgroup) {
1755 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1756 		goto again;
1757 	}
1758 
1759 	/*
1760 	 * When charge migration first begins, we can have locked and
1761 	 * unlocked page stat updates happening concurrently.  Track
1762 	 * the task who has the lock for mem_cgroup_end_page_stat().
1763 	 */
1764 	memcg->move_lock_task = current;
1765 	memcg->move_lock_flags = flags;
1766 
1767 	return memcg;
1768 }
1769 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1770 
1771 /**
1772  * mem_cgroup_end_page_stat - finish a page state statistics transaction
1773  * @memcg: the memcg that was accounted against
1774  */
1775 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1776 {
1777 	if (memcg && memcg->move_lock_task == current) {
1778 		unsigned long flags = memcg->move_lock_flags;
1779 
1780 		memcg->move_lock_task = NULL;
1781 		memcg->move_lock_flags = 0;
1782 
1783 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1784 	}
1785 
1786 	rcu_read_unlock();
1787 }
1788 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1789 
1790 /*
1791  * size of first charge trial. "32" comes from vmscan.c's magic value.
1792  * TODO: maybe necessary to use big numbers in big irons.
1793  */
1794 #define CHARGE_BATCH	32U
1795 struct memcg_stock_pcp {
1796 	struct mem_cgroup *cached; /* this never be root cgroup */
1797 	unsigned int nr_pages;
1798 	struct work_struct work;
1799 	unsigned long flags;
1800 #define FLUSHING_CACHED_CHARGE	0
1801 };
1802 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1803 static DEFINE_MUTEX(percpu_charge_mutex);
1804 
1805 /**
1806  * consume_stock: Try to consume stocked charge on this cpu.
1807  * @memcg: memcg to consume from.
1808  * @nr_pages: how many pages to charge.
1809  *
1810  * The charges will only happen if @memcg matches the current cpu's memcg
1811  * stock, and at least @nr_pages are available in that stock.  Failure to
1812  * service an allocation will refill the stock.
1813  *
1814  * returns true if successful, false otherwise.
1815  */
1816 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1817 {
1818 	struct memcg_stock_pcp *stock;
1819 	bool ret = false;
1820 
1821 	if (nr_pages > CHARGE_BATCH)
1822 		return ret;
1823 
1824 	stock = &get_cpu_var(memcg_stock);
1825 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1826 		stock->nr_pages -= nr_pages;
1827 		ret = true;
1828 	}
1829 	put_cpu_var(memcg_stock);
1830 	return ret;
1831 }
1832 
1833 /*
1834  * Returns stocks cached in percpu and reset cached information.
1835  */
1836 static void drain_stock(struct memcg_stock_pcp *stock)
1837 {
1838 	struct mem_cgroup *old = stock->cached;
1839 
1840 	if (stock->nr_pages) {
1841 		page_counter_uncharge(&old->memory, stock->nr_pages);
1842 		if (do_memsw_account())
1843 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1844 		css_put_many(&old->css, stock->nr_pages);
1845 		stock->nr_pages = 0;
1846 	}
1847 	stock->cached = NULL;
1848 }
1849 
1850 /*
1851  * This must be called under preempt disabled or must be called by
1852  * a thread which is pinned to local cpu.
1853  */
1854 static void drain_local_stock(struct work_struct *dummy)
1855 {
1856 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1857 	drain_stock(stock);
1858 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1859 }
1860 
1861 /*
1862  * Cache charges(val) to local per_cpu area.
1863  * This will be consumed by consume_stock() function, later.
1864  */
1865 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1866 {
1867 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1868 
1869 	if (stock->cached != memcg) { /* reset if necessary */
1870 		drain_stock(stock);
1871 		stock->cached = memcg;
1872 	}
1873 	stock->nr_pages += nr_pages;
1874 	put_cpu_var(memcg_stock);
1875 }
1876 
1877 /*
1878  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1879  * of the hierarchy under it.
1880  */
1881 static void drain_all_stock(struct mem_cgroup *root_memcg)
1882 {
1883 	int cpu, curcpu;
1884 
1885 	/* If someone's already draining, avoid adding running more workers. */
1886 	if (!mutex_trylock(&percpu_charge_mutex))
1887 		return;
1888 	/* Notify other cpus that system-wide "drain" is running */
1889 	get_online_cpus();
1890 	curcpu = get_cpu();
1891 	for_each_online_cpu(cpu) {
1892 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1893 		struct mem_cgroup *memcg;
1894 
1895 		memcg = stock->cached;
1896 		if (!memcg || !stock->nr_pages)
1897 			continue;
1898 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1899 			continue;
1900 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1901 			if (cpu == curcpu)
1902 				drain_local_stock(&stock->work);
1903 			else
1904 				schedule_work_on(cpu, &stock->work);
1905 		}
1906 	}
1907 	put_cpu();
1908 	put_online_cpus();
1909 	mutex_unlock(&percpu_charge_mutex);
1910 }
1911 
1912 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1913 					unsigned long action,
1914 					void *hcpu)
1915 {
1916 	int cpu = (unsigned long)hcpu;
1917 	struct memcg_stock_pcp *stock;
1918 
1919 	if (action == CPU_ONLINE)
1920 		return NOTIFY_OK;
1921 
1922 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1923 		return NOTIFY_OK;
1924 
1925 	stock = &per_cpu(memcg_stock, cpu);
1926 	drain_stock(stock);
1927 	return NOTIFY_OK;
1928 }
1929 
1930 static void reclaim_high(struct mem_cgroup *memcg,
1931 			 unsigned int nr_pages,
1932 			 gfp_t gfp_mask)
1933 {
1934 	do {
1935 		if (page_counter_read(&memcg->memory) <= memcg->high)
1936 			continue;
1937 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1938 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1939 	} while ((memcg = parent_mem_cgroup(memcg)));
1940 }
1941 
1942 static void high_work_func(struct work_struct *work)
1943 {
1944 	struct mem_cgroup *memcg;
1945 
1946 	memcg = container_of(work, struct mem_cgroup, high_work);
1947 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1948 }
1949 
1950 /*
1951  * Scheduled by try_charge() to be executed from the userland return path
1952  * and reclaims memory over the high limit.
1953  */
1954 void mem_cgroup_handle_over_high(void)
1955 {
1956 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1957 	struct mem_cgroup *memcg;
1958 
1959 	if (likely(!nr_pages))
1960 		return;
1961 
1962 	memcg = get_mem_cgroup_from_mm(current->mm);
1963 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1964 	css_put(&memcg->css);
1965 	current->memcg_nr_pages_over_high = 0;
1966 }
1967 
1968 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1969 		      unsigned int nr_pages)
1970 {
1971 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1972 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1973 	struct mem_cgroup *mem_over_limit;
1974 	struct page_counter *counter;
1975 	unsigned long nr_reclaimed;
1976 	bool may_swap = true;
1977 	bool drained = false;
1978 
1979 	if (mem_cgroup_is_root(memcg))
1980 		return 0;
1981 retry:
1982 	if (consume_stock(memcg, nr_pages))
1983 		return 0;
1984 
1985 	if (!do_memsw_account() ||
1986 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1987 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1988 			goto done_restock;
1989 		if (do_memsw_account())
1990 			page_counter_uncharge(&memcg->memsw, batch);
1991 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1992 	} else {
1993 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1994 		may_swap = false;
1995 	}
1996 
1997 	if (batch > nr_pages) {
1998 		batch = nr_pages;
1999 		goto retry;
2000 	}
2001 
2002 	/*
2003 	 * Unlike in global OOM situations, memcg is not in a physical
2004 	 * memory shortage.  Allow dying and OOM-killed tasks to
2005 	 * bypass the last charges so that they can exit quickly and
2006 	 * free their memory.
2007 	 */
2008 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2009 		     fatal_signal_pending(current) ||
2010 		     current->flags & PF_EXITING))
2011 		goto force;
2012 
2013 	if (unlikely(task_in_memcg_oom(current)))
2014 		goto nomem;
2015 
2016 	if (!gfpflags_allow_blocking(gfp_mask))
2017 		goto nomem;
2018 
2019 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2020 
2021 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2022 						    gfp_mask, may_swap);
2023 
2024 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2025 		goto retry;
2026 
2027 	if (!drained) {
2028 		drain_all_stock(mem_over_limit);
2029 		drained = true;
2030 		goto retry;
2031 	}
2032 
2033 	if (gfp_mask & __GFP_NORETRY)
2034 		goto nomem;
2035 	/*
2036 	 * Even though the limit is exceeded at this point, reclaim
2037 	 * may have been able to free some pages.  Retry the charge
2038 	 * before killing the task.
2039 	 *
2040 	 * Only for regular pages, though: huge pages are rather
2041 	 * unlikely to succeed so close to the limit, and we fall back
2042 	 * to regular pages anyway in case of failure.
2043 	 */
2044 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2045 		goto retry;
2046 	/*
2047 	 * At task move, charge accounts can be doubly counted. So, it's
2048 	 * better to wait until the end of task_move if something is going on.
2049 	 */
2050 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2051 		goto retry;
2052 
2053 	if (nr_retries--)
2054 		goto retry;
2055 
2056 	if (gfp_mask & __GFP_NOFAIL)
2057 		goto force;
2058 
2059 	if (fatal_signal_pending(current))
2060 		goto force;
2061 
2062 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2063 
2064 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2065 		       get_order(nr_pages * PAGE_SIZE));
2066 nomem:
2067 	if (!(gfp_mask & __GFP_NOFAIL))
2068 		return -ENOMEM;
2069 force:
2070 	/*
2071 	 * The allocation either can't fail or will lead to more memory
2072 	 * being freed very soon.  Allow memory usage go over the limit
2073 	 * temporarily by force charging it.
2074 	 */
2075 	page_counter_charge(&memcg->memory, nr_pages);
2076 	if (do_memsw_account())
2077 		page_counter_charge(&memcg->memsw, nr_pages);
2078 	css_get_many(&memcg->css, nr_pages);
2079 
2080 	return 0;
2081 
2082 done_restock:
2083 	css_get_many(&memcg->css, batch);
2084 	if (batch > nr_pages)
2085 		refill_stock(memcg, batch - nr_pages);
2086 
2087 	/*
2088 	 * If the hierarchy is above the normal consumption range, schedule
2089 	 * reclaim on returning to userland.  We can perform reclaim here
2090 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2091 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2092 	 * not recorded as it most likely matches current's and won't
2093 	 * change in the meantime.  As high limit is checked again before
2094 	 * reclaim, the cost of mismatch is negligible.
2095 	 */
2096 	do {
2097 		if (page_counter_read(&memcg->memory) > memcg->high) {
2098 			/* Don't bother a random interrupted task */
2099 			if (in_interrupt()) {
2100 				schedule_work(&memcg->high_work);
2101 				break;
2102 			}
2103 			current->memcg_nr_pages_over_high += batch;
2104 			set_notify_resume(current);
2105 			break;
2106 		}
2107 	} while ((memcg = parent_mem_cgroup(memcg)));
2108 
2109 	return 0;
2110 }
2111 
2112 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2113 {
2114 	if (mem_cgroup_is_root(memcg))
2115 		return;
2116 
2117 	page_counter_uncharge(&memcg->memory, nr_pages);
2118 	if (do_memsw_account())
2119 		page_counter_uncharge(&memcg->memsw, nr_pages);
2120 
2121 	css_put_many(&memcg->css, nr_pages);
2122 }
2123 
2124 static void lock_page_lru(struct page *page, int *isolated)
2125 {
2126 	struct zone *zone = page_zone(page);
2127 
2128 	spin_lock_irq(&zone->lru_lock);
2129 	if (PageLRU(page)) {
2130 		struct lruvec *lruvec;
2131 
2132 		lruvec = mem_cgroup_page_lruvec(page, zone);
2133 		ClearPageLRU(page);
2134 		del_page_from_lru_list(page, lruvec, page_lru(page));
2135 		*isolated = 1;
2136 	} else
2137 		*isolated = 0;
2138 }
2139 
2140 static void unlock_page_lru(struct page *page, int isolated)
2141 {
2142 	struct zone *zone = page_zone(page);
2143 
2144 	if (isolated) {
2145 		struct lruvec *lruvec;
2146 
2147 		lruvec = mem_cgroup_page_lruvec(page, zone);
2148 		VM_BUG_ON_PAGE(PageLRU(page), page);
2149 		SetPageLRU(page);
2150 		add_page_to_lru_list(page, lruvec, page_lru(page));
2151 	}
2152 	spin_unlock_irq(&zone->lru_lock);
2153 }
2154 
2155 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2156 			  bool lrucare)
2157 {
2158 	int isolated;
2159 
2160 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2161 
2162 	/*
2163 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2164 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2165 	 */
2166 	if (lrucare)
2167 		lock_page_lru(page, &isolated);
2168 
2169 	/*
2170 	 * Nobody should be changing or seriously looking at
2171 	 * page->mem_cgroup at this point:
2172 	 *
2173 	 * - the page is uncharged
2174 	 *
2175 	 * - the page is off-LRU
2176 	 *
2177 	 * - an anonymous fault has exclusive page access, except for
2178 	 *   a locked page table
2179 	 *
2180 	 * - a page cache insertion, a swapin fault, or a migration
2181 	 *   have the page locked
2182 	 */
2183 	page->mem_cgroup = memcg;
2184 
2185 	if (lrucare)
2186 		unlock_page_lru(page, isolated);
2187 }
2188 
2189 #ifndef CONFIG_SLOB
2190 static int memcg_alloc_cache_id(void)
2191 {
2192 	int id, size;
2193 	int err;
2194 
2195 	id = ida_simple_get(&memcg_cache_ida,
2196 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2197 	if (id < 0)
2198 		return id;
2199 
2200 	if (id < memcg_nr_cache_ids)
2201 		return id;
2202 
2203 	/*
2204 	 * There's no space for the new id in memcg_caches arrays,
2205 	 * so we have to grow them.
2206 	 */
2207 	down_write(&memcg_cache_ids_sem);
2208 
2209 	size = 2 * (id + 1);
2210 	if (size < MEMCG_CACHES_MIN_SIZE)
2211 		size = MEMCG_CACHES_MIN_SIZE;
2212 	else if (size > MEMCG_CACHES_MAX_SIZE)
2213 		size = MEMCG_CACHES_MAX_SIZE;
2214 
2215 	err = memcg_update_all_caches(size);
2216 	if (!err)
2217 		err = memcg_update_all_list_lrus(size);
2218 	if (!err)
2219 		memcg_nr_cache_ids = size;
2220 
2221 	up_write(&memcg_cache_ids_sem);
2222 
2223 	if (err) {
2224 		ida_simple_remove(&memcg_cache_ida, id);
2225 		return err;
2226 	}
2227 	return id;
2228 }
2229 
2230 static void memcg_free_cache_id(int id)
2231 {
2232 	ida_simple_remove(&memcg_cache_ida, id);
2233 }
2234 
2235 struct memcg_kmem_cache_create_work {
2236 	struct mem_cgroup *memcg;
2237 	struct kmem_cache *cachep;
2238 	struct work_struct work;
2239 };
2240 
2241 static void memcg_kmem_cache_create_func(struct work_struct *w)
2242 {
2243 	struct memcg_kmem_cache_create_work *cw =
2244 		container_of(w, struct memcg_kmem_cache_create_work, work);
2245 	struct mem_cgroup *memcg = cw->memcg;
2246 	struct kmem_cache *cachep = cw->cachep;
2247 
2248 	memcg_create_kmem_cache(memcg, cachep);
2249 
2250 	css_put(&memcg->css);
2251 	kfree(cw);
2252 }
2253 
2254 /*
2255  * Enqueue the creation of a per-memcg kmem_cache.
2256  */
2257 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2258 					       struct kmem_cache *cachep)
2259 {
2260 	struct memcg_kmem_cache_create_work *cw;
2261 
2262 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2263 	if (!cw)
2264 		return;
2265 
2266 	css_get(&memcg->css);
2267 
2268 	cw->memcg = memcg;
2269 	cw->cachep = cachep;
2270 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2271 
2272 	schedule_work(&cw->work);
2273 }
2274 
2275 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2276 					     struct kmem_cache *cachep)
2277 {
2278 	/*
2279 	 * We need to stop accounting when we kmalloc, because if the
2280 	 * corresponding kmalloc cache is not yet created, the first allocation
2281 	 * in __memcg_schedule_kmem_cache_create will recurse.
2282 	 *
2283 	 * However, it is better to enclose the whole function. Depending on
2284 	 * the debugging options enabled, INIT_WORK(), for instance, can
2285 	 * trigger an allocation. This too, will make us recurse. Because at
2286 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2287 	 * the safest choice is to do it like this, wrapping the whole function.
2288 	 */
2289 	current->memcg_kmem_skip_account = 1;
2290 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2291 	current->memcg_kmem_skip_account = 0;
2292 }
2293 
2294 /*
2295  * Return the kmem_cache we're supposed to use for a slab allocation.
2296  * We try to use the current memcg's version of the cache.
2297  *
2298  * If the cache does not exist yet, if we are the first user of it,
2299  * we either create it immediately, if possible, or create it asynchronously
2300  * in a workqueue.
2301  * In the latter case, we will let the current allocation go through with
2302  * the original cache.
2303  *
2304  * Can't be called in interrupt context or from kernel threads.
2305  * This function needs to be called with rcu_read_lock() held.
2306  */
2307 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2308 {
2309 	struct mem_cgroup *memcg;
2310 	struct kmem_cache *memcg_cachep;
2311 	int kmemcg_id;
2312 
2313 	VM_BUG_ON(!is_root_cache(cachep));
2314 
2315 	if (cachep->flags & SLAB_ACCOUNT)
2316 		gfp |= __GFP_ACCOUNT;
2317 
2318 	if (!(gfp & __GFP_ACCOUNT))
2319 		return cachep;
2320 
2321 	if (current->memcg_kmem_skip_account)
2322 		return cachep;
2323 
2324 	memcg = get_mem_cgroup_from_mm(current->mm);
2325 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2326 	if (kmemcg_id < 0)
2327 		goto out;
2328 
2329 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2330 	if (likely(memcg_cachep))
2331 		return memcg_cachep;
2332 
2333 	/*
2334 	 * If we are in a safe context (can wait, and not in interrupt
2335 	 * context), we could be be predictable and return right away.
2336 	 * This would guarantee that the allocation being performed
2337 	 * already belongs in the new cache.
2338 	 *
2339 	 * However, there are some clashes that can arrive from locking.
2340 	 * For instance, because we acquire the slab_mutex while doing
2341 	 * memcg_create_kmem_cache, this means no further allocation
2342 	 * could happen with the slab_mutex held. So it's better to
2343 	 * defer everything.
2344 	 */
2345 	memcg_schedule_kmem_cache_create(memcg, cachep);
2346 out:
2347 	css_put(&memcg->css);
2348 	return cachep;
2349 }
2350 
2351 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2352 {
2353 	if (!is_root_cache(cachep))
2354 		css_put(&cachep->memcg_params.memcg->css);
2355 }
2356 
2357 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2358 			      struct mem_cgroup *memcg)
2359 {
2360 	unsigned int nr_pages = 1 << order;
2361 	struct page_counter *counter;
2362 	int ret;
2363 
2364 	if (!memcg_kmem_online(memcg))
2365 		return 0;
2366 
2367 	ret = try_charge(memcg, gfp, nr_pages);
2368 	if (ret)
2369 		return ret;
2370 
2371 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2372 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2373 		cancel_charge(memcg, nr_pages);
2374 		return -ENOMEM;
2375 	}
2376 
2377 	page->mem_cgroup = memcg;
2378 
2379 	return 0;
2380 }
2381 
2382 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2383 {
2384 	struct mem_cgroup *memcg;
2385 	int ret;
2386 
2387 	memcg = get_mem_cgroup_from_mm(current->mm);
2388 	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2389 	css_put(&memcg->css);
2390 	return ret;
2391 }
2392 
2393 void __memcg_kmem_uncharge(struct page *page, int order)
2394 {
2395 	struct mem_cgroup *memcg = page->mem_cgroup;
2396 	unsigned int nr_pages = 1 << order;
2397 
2398 	if (!memcg)
2399 		return;
2400 
2401 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2402 
2403 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2404 		page_counter_uncharge(&memcg->kmem, nr_pages);
2405 
2406 	page_counter_uncharge(&memcg->memory, nr_pages);
2407 	if (do_memsw_account())
2408 		page_counter_uncharge(&memcg->memsw, nr_pages);
2409 
2410 	page->mem_cgroup = NULL;
2411 	css_put_many(&memcg->css, nr_pages);
2412 }
2413 #endif /* !CONFIG_SLOB */
2414 
2415 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2416 
2417 /*
2418  * Because tail pages are not marked as "used", set it. We're under
2419  * zone->lru_lock and migration entries setup in all page mappings.
2420  */
2421 void mem_cgroup_split_huge_fixup(struct page *head)
2422 {
2423 	int i;
2424 
2425 	if (mem_cgroup_disabled())
2426 		return;
2427 
2428 	for (i = 1; i < HPAGE_PMD_NR; i++)
2429 		head[i].mem_cgroup = head->mem_cgroup;
2430 
2431 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2432 		       HPAGE_PMD_NR);
2433 }
2434 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2435 
2436 #ifdef CONFIG_MEMCG_SWAP
2437 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2438 					 bool charge)
2439 {
2440 	int val = (charge) ? 1 : -1;
2441 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2442 }
2443 
2444 /**
2445  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2446  * @entry: swap entry to be moved
2447  * @from:  mem_cgroup which the entry is moved from
2448  * @to:  mem_cgroup which the entry is moved to
2449  *
2450  * It succeeds only when the swap_cgroup's record for this entry is the same
2451  * as the mem_cgroup's id of @from.
2452  *
2453  * Returns 0 on success, -EINVAL on failure.
2454  *
2455  * The caller must have charged to @to, IOW, called page_counter_charge() about
2456  * both res and memsw, and called css_get().
2457  */
2458 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2459 				struct mem_cgroup *from, struct mem_cgroup *to)
2460 {
2461 	unsigned short old_id, new_id;
2462 
2463 	old_id = mem_cgroup_id(from);
2464 	new_id = mem_cgroup_id(to);
2465 
2466 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2467 		mem_cgroup_swap_statistics(from, false);
2468 		mem_cgroup_swap_statistics(to, true);
2469 		return 0;
2470 	}
2471 	return -EINVAL;
2472 }
2473 #else
2474 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2475 				struct mem_cgroup *from, struct mem_cgroup *to)
2476 {
2477 	return -EINVAL;
2478 }
2479 #endif
2480 
2481 static DEFINE_MUTEX(memcg_limit_mutex);
2482 
2483 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2484 				   unsigned long limit)
2485 {
2486 	unsigned long curusage;
2487 	unsigned long oldusage;
2488 	bool enlarge = false;
2489 	int retry_count;
2490 	int ret;
2491 
2492 	/*
2493 	 * For keeping hierarchical_reclaim simple, how long we should retry
2494 	 * is depends on callers. We set our retry-count to be function
2495 	 * of # of children which we should visit in this loop.
2496 	 */
2497 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2498 		      mem_cgroup_count_children(memcg);
2499 
2500 	oldusage = page_counter_read(&memcg->memory);
2501 
2502 	do {
2503 		if (signal_pending(current)) {
2504 			ret = -EINTR;
2505 			break;
2506 		}
2507 
2508 		mutex_lock(&memcg_limit_mutex);
2509 		if (limit > memcg->memsw.limit) {
2510 			mutex_unlock(&memcg_limit_mutex);
2511 			ret = -EINVAL;
2512 			break;
2513 		}
2514 		if (limit > memcg->memory.limit)
2515 			enlarge = true;
2516 		ret = page_counter_limit(&memcg->memory, limit);
2517 		mutex_unlock(&memcg_limit_mutex);
2518 
2519 		if (!ret)
2520 			break;
2521 
2522 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2523 
2524 		curusage = page_counter_read(&memcg->memory);
2525 		/* Usage is reduced ? */
2526 		if (curusage >= oldusage)
2527 			retry_count--;
2528 		else
2529 			oldusage = curusage;
2530 	} while (retry_count);
2531 
2532 	if (!ret && enlarge)
2533 		memcg_oom_recover(memcg);
2534 
2535 	return ret;
2536 }
2537 
2538 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2539 					 unsigned long limit)
2540 {
2541 	unsigned long curusage;
2542 	unsigned long oldusage;
2543 	bool enlarge = false;
2544 	int retry_count;
2545 	int ret;
2546 
2547 	/* see mem_cgroup_resize_res_limit */
2548 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2549 		      mem_cgroup_count_children(memcg);
2550 
2551 	oldusage = page_counter_read(&memcg->memsw);
2552 
2553 	do {
2554 		if (signal_pending(current)) {
2555 			ret = -EINTR;
2556 			break;
2557 		}
2558 
2559 		mutex_lock(&memcg_limit_mutex);
2560 		if (limit < memcg->memory.limit) {
2561 			mutex_unlock(&memcg_limit_mutex);
2562 			ret = -EINVAL;
2563 			break;
2564 		}
2565 		if (limit > memcg->memsw.limit)
2566 			enlarge = true;
2567 		ret = page_counter_limit(&memcg->memsw, limit);
2568 		mutex_unlock(&memcg_limit_mutex);
2569 
2570 		if (!ret)
2571 			break;
2572 
2573 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2574 
2575 		curusage = page_counter_read(&memcg->memsw);
2576 		/* Usage is reduced ? */
2577 		if (curusage >= oldusage)
2578 			retry_count--;
2579 		else
2580 			oldusage = curusage;
2581 	} while (retry_count);
2582 
2583 	if (!ret && enlarge)
2584 		memcg_oom_recover(memcg);
2585 
2586 	return ret;
2587 }
2588 
2589 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2590 					    gfp_t gfp_mask,
2591 					    unsigned long *total_scanned)
2592 {
2593 	unsigned long nr_reclaimed = 0;
2594 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2595 	unsigned long reclaimed;
2596 	int loop = 0;
2597 	struct mem_cgroup_tree_per_zone *mctz;
2598 	unsigned long excess;
2599 	unsigned long nr_scanned;
2600 
2601 	if (order > 0)
2602 		return 0;
2603 
2604 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2605 	/*
2606 	 * This loop can run a while, specially if mem_cgroup's continuously
2607 	 * keep exceeding their soft limit and putting the system under
2608 	 * pressure
2609 	 */
2610 	do {
2611 		if (next_mz)
2612 			mz = next_mz;
2613 		else
2614 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2615 		if (!mz)
2616 			break;
2617 
2618 		nr_scanned = 0;
2619 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2620 						    gfp_mask, &nr_scanned);
2621 		nr_reclaimed += reclaimed;
2622 		*total_scanned += nr_scanned;
2623 		spin_lock_irq(&mctz->lock);
2624 		__mem_cgroup_remove_exceeded(mz, mctz);
2625 
2626 		/*
2627 		 * If we failed to reclaim anything from this memory cgroup
2628 		 * it is time to move on to the next cgroup
2629 		 */
2630 		next_mz = NULL;
2631 		if (!reclaimed)
2632 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2633 
2634 		excess = soft_limit_excess(mz->memcg);
2635 		/*
2636 		 * One school of thought says that we should not add
2637 		 * back the node to the tree if reclaim returns 0.
2638 		 * But our reclaim could return 0, simply because due
2639 		 * to priority we are exposing a smaller subset of
2640 		 * memory to reclaim from. Consider this as a longer
2641 		 * term TODO.
2642 		 */
2643 		/* If excess == 0, no tree ops */
2644 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2645 		spin_unlock_irq(&mctz->lock);
2646 		css_put(&mz->memcg->css);
2647 		loop++;
2648 		/*
2649 		 * Could not reclaim anything and there are no more
2650 		 * mem cgroups to try or we seem to be looping without
2651 		 * reclaiming anything.
2652 		 */
2653 		if (!nr_reclaimed &&
2654 			(next_mz == NULL ||
2655 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2656 			break;
2657 	} while (!nr_reclaimed);
2658 	if (next_mz)
2659 		css_put(&next_mz->memcg->css);
2660 	return nr_reclaimed;
2661 }
2662 
2663 /*
2664  * Test whether @memcg has children, dead or alive.  Note that this
2665  * function doesn't care whether @memcg has use_hierarchy enabled and
2666  * returns %true if there are child csses according to the cgroup
2667  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2668  */
2669 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2670 {
2671 	bool ret;
2672 
2673 	rcu_read_lock();
2674 	ret = css_next_child(NULL, &memcg->css);
2675 	rcu_read_unlock();
2676 	return ret;
2677 }
2678 
2679 /*
2680  * Reclaims as many pages from the given memcg as possible and moves
2681  * the rest to the parent.
2682  *
2683  * Caller is responsible for holding css reference for memcg.
2684  */
2685 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2686 {
2687 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2688 
2689 	/* we call try-to-free pages for make this cgroup empty */
2690 	lru_add_drain_all();
2691 	/* try to free all pages in this cgroup */
2692 	while (nr_retries && page_counter_read(&memcg->memory)) {
2693 		int progress;
2694 
2695 		if (signal_pending(current))
2696 			return -EINTR;
2697 
2698 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2699 							GFP_KERNEL, true);
2700 		if (!progress) {
2701 			nr_retries--;
2702 			/* maybe some writeback is necessary */
2703 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2704 		}
2705 
2706 	}
2707 
2708 	return 0;
2709 }
2710 
2711 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2712 					    char *buf, size_t nbytes,
2713 					    loff_t off)
2714 {
2715 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2716 
2717 	if (mem_cgroup_is_root(memcg))
2718 		return -EINVAL;
2719 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2720 }
2721 
2722 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2723 				     struct cftype *cft)
2724 {
2725 	return mem_cgroup_from_css(css)->use_hierarchy;
2726 }
2727 
2728 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2729 				      struct cftype *cft, u64 val)
2730 {
2731 	int retval = 0;
2732 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2734 
2735 	if (memcg->use_hierarchy == val)
2736 		return 0;
2737 
2738 	/*
2739 	 * If parent's use_hierarchy is set, we can't make any modifications
2740 	 * in the child subtrees. If it is unset, then the change can
2741 	 * occur, provided the current cgroup has no children.
2742 	 *
2743 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2744 	 * set if there are no children.
2745 	 */
2746 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2747 				(val == 1 || val == 0)) {
2748 		if (!memcg_has_children(memcg))
2749 			memcg->use_hierarchy = val;
2750 		else
2751 			retval = -EBUSY;
2752 	} else
2753 		retval = -EINVAL;
2754 
2755 	return retval;
2756 }
2757 
2758 static unsigned long tree_stat(struct mem_cgroup *memcg,
2759 			       enum mem_cgroup_stat_index idx)
2760 {
2761 	struct mem_cgroup *iter;
2762 	unsigned long val = 0;
2763 
2764 	for_each_mem_cgroup_tree(iter, memcg)
2765 		val += mem_cgroup_read_stat(iter, idx);
2766 
2767 	return val;
2768 }
2769 
2770 static unsigned long tree_events(struct mem_cgroup *memcg,
2771 				 enum mem_cgroup_events_index idx)
2772 {
2773 	struct mem_cgroup *iter;
2774 	unsigned long val = 0;
2775 
2776 	for_each_mem_cgroup_tree(iter, memcg)
2777 		val += mem_cgroup_read_events(iter, idx);
2778 
2779 	return val;
2780 }
2781 
2782 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2783 {
2784 	unsigned long val;
2785 
2786 	if (mem_cgroup_is_root(memcg)) {
2787 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2788 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2789 		if (swap)
2790 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2791 	} else {
2792 		if (!swap)
2793 			val = page_counter_read(&memcg->memory);
2794 		else
2795 			val = page_counter_read(&memcg->memsw);
2796 	}
2797 	return val;
2798 }
2799 
2800 enum {
2801 	RES_USAGE,
2802 	RES_LIMIT,
2803 	RES_MAX_USAGE,
2804 	RES_FAILCNT,
2805 	RES_SOFT_LIMIT,
2806 };
2807 
2808 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2809 			       struct cftype *cft)
2810 {
2811 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2812 	struct page_counter *counter;
2813 
2814 	switch (MEMFILE_TYPE(cft->private)) {
2815 	case _MEM:
2816 		counter = &memcg->memory;
2817 		break;
2818 	case _MEMSWAP:
2819 		counter = &memcg->memsw;
2820 		break;
2821 	case _KMEM:
2822 		counter = &memcg->kmem;
2823 		break;
2824 	case _TCP:
2825 		counter = &memcg->tcpmem;
2826 		break;
2827 	default:
2828 		BUG();
2829 	}
2830 
2831 	switch (MEMFILE_ATTR(cft->private)) {
2832 	case RES_USAGE:
2833 		if (counter == &memcg->memory)
2834 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2835 		if (counter == &memcg->memsw)
2836 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2837 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2838 	case RES_LIMIT:
2839 		return (u64)counter->limit * PAGE_SIZE;
2840 	case RES_MAX_USAGE:
2841 		return (u64)counter->watermark * PAGE_SIZE;
2842 	case RES_FAILCNT:
2843 		return counter->failcnt;
2844 	case RES_SOFT_LIMIT:
2845 		return (u64)memcg->soft_limit * PAGE_SIZE;
2846 	default:
2847 		BUG();
2848 	}
2849 }
2850 
2851 #ifndef CONFIG_SLOB
2852 static int memcg_online_kmem(struct mem_cgroup *memcg)
2853 {
2854 	int memcg_id;
2855 
2856 	BUG_ON(memcg->kmemcg_id >= 0);
2857 	BUG_ON(memcg->kmem_state);
2858 
2859 	memcg_id = memcg_alloc_cache_id();
2860 	if (memcg_id < 0)
2861 		return memcg_id;
2862 
2863 	static_branch_inc(&memcg_kmem_enabled_key);
2864 	/*
2865 	 * A memory cgroup is considered kmem-online as soon as it gets
2866 	 * kmemcg_id. Setting the id after enabling static branching will
2867 	 * guarantee no one starts accounting before all call sites are
2868 	 * patched.
2869 	 */
2870 	memcg->kmemcg_id = memcg_id;
2871 	memcg->kmem_state = KMEM_ONLINE;
2872 
2873 	return 0;
2874 }
2875 
2876 static int memcg_propagate_kmem(struct mem_cgroup *parent,
2877 				struct mem_cgroup *memcg)
2878 {
2879 	int ret = 0;
2880 
2881 	mutex_lock(&memcg_limit_mutex);
2882 	/*
2883 	 * If the parent cgroup is not kmem-online now, it cannot be
2884 	 * onlined after this point, because it has at least one child
2885 	 * already.
2886 	 */
2887 	if (memcg_kmem_online(parent) ||
2888 	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2889 		ret = memcg_online_kmem(memcg);
2890 	mutex_unlock(&memcg_limit_mutex);
2891 	return ret;
2892 }
2893 
2894 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2895 {
2896 	struct cgroup_subsys_state *css;
2897 	struct mem_cgroup *parent, *child;
2898 	int kmemcg_id;
2899 
2900 	if (memcg->kmem_state != KMEM_ONLINE)
2901 		return;
2902 	/*
2903 	 * Clear the online state before clearing memcg_caches array
2904 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2905 	 * guarantees that no cache will be created for this cgroup
2906 	 * after we are done (see memcg_create_kmem_cache()).
2907 	 */
2908 	memcg->kmem_state = KMEM_ALLOCATED;
2909 
2910 	memcg_deactivate_kmem_caches(memcg);
2911 
2912 	kmemcg_id = memcg->kmemcg_id;
2913 	BUG_ON(kmemcg_id < 0);
2914 
2915 	parent = parent_mem_cgroup(memcg);
2916 	if (!parent)
2917 		parent = root_mem_cgroup;
2918 
2919 	/*
2920 	 * Change kmemcg_id of this cgroup and all its descendants to the
2921 	 * parent's id, and then move all entries from this cgroup's list_lrus
2922 	 * to ones of the parent. After we have finished, all list_lrus
2923 	 * corresponding to this cgroup are guaranteed to remain empty. The
2924 	 * ordering is imposed by list_lru_node->lock taken by
2925 	 * memcg_drain_all_list_lrus().
2926 	 */
2927 	css_for_each_descendant_pre(css, &memcg->css) {
2928 		child = mem_cgroup_from_css(css);
2929 		BUG_ON(child->kmemcg_id != kmemcg_id);
2930 		child->kmemcg_id = parent->kmemcg_id;
2931 		if (!memcg->use_hierarchy)
2932 			break;
2933 	}
2934 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2935 
2936 	memcg_free_cache_id(kmemcg_id);
2937 }
2938 
2939 static void memcg_free_kmem(struct mem_cgroup *memcg)
2940 {
2941 	/* css_alloc() failed, offlining didn't happen */
2942 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2943 		memcg_offline_kmem(memcg);
2944 
2945 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2946 		memcg_destroy_kmem_caches(memcg);
2947 		static_branch_dec(&memcg_kmem_enabled_key);
2948 		WARN_ON(page_counter_read(&memcg->kmem));
2949 	}
2950 }
2951 #else
2952 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2953 {
2954 	return 0;
2955 }
2956 static int memcg_online_kmem(struct mem_cgroup *memcg)
2957 {
2958 	return 0;
2959 }
2960 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2961 {
2962 }
2963 static void memcg_free_kmem(struct mem_cgroup *memcg)
2964 {
2965 }
2966 #endif /* !CONFIG_SLOB */
2967 
2968 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2969 				   unsigned long limit)
2970 {
2971 	int ret = 0;
2972 
2973 	mutex_lock(&memcg_limit_mutex);
2974 	/* Top-level cgroup doesn't propagate from root */
2975 	if (!memcg_kmem_online(memcg)) {
2976 		if (cgroup_is_populated(memcg->css.cgroup) ||
2977 		    (memcg->use_hierarchy && memcg_has_children(memcg)))
2978 			ret = -EBUSY;
2979 		if (ret)
2980 			goto out;
2981 		ret = memcg_online_kmem(memcg);
2982 		if (ret)
2983 			goto out;
2984 	}
2985 	ret = page_counter_limit(&memcg->kmem, limit);
2986 out:
2987 	mutex_unlock(&memcg_limit_mutex);
2988 	return ret;
2989 }
2990 
2991 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2992 {
2993 	int ret;
2994 
2995 	mutex_lock(&memcg_limit_mutex);
2996 
2997 	ret = page_counter_limit(&memcg->tcpmem, limit);
2998 	if (ret)
2999 		goto out;
3000 
3001 	if (!memcg->tcpmem_active) {
3002 		/*
3003 		 * The active flag needs to be written after the static_key
3004 		 * update. This is what guarantees that the socket activation
3005 		 * function is the last one to run. See sock_update_memcg() for
3006 		 * details, and note that we don't mark any socket as belonging
3007 		 * to this memcg until that flag is up.
3008 		 *
3009 		 * We need to do this, because static_keys will span multiple
3010 		 * sites, but we can't control their order. If we mark a socket
3011 		 * as accounted, but the accounting functions are not patched in
3012 		 * yet, we'll lose accounting.
3013 		 *
3014 		 * We never race with the readers in sock_update_memcg(),
3015 		 * because when this value change, the code to process it is not
3016 		 * patched in yet.
3017 		 */
3018 		static_branch_inc(&memcg_sockets_enabled_key);
3019 		memcg->tcpmem_active = true;
3020 	}
3021 out:
3022 	mutex_unlock(&memcg_limit_mutex);
3023 	return ret;
3024 }
3025 
3026 /*
3027  * The user of this function is...
3028  * RES_LIMIT.
3029  */
3030 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3031 				char *buf, size_t nbytes, loff_t off)
3032 {
3033 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3034 	unsigned long nr_pages;
3035 	int ret;
3036 
3037 	buf = strstrip(buf);
3038 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3039 	if (ret)
3040 		return ret;
3041 
3042 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3043 	case RES_LIMIT:
3044 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3045 			ret = -EINVAL;
3046 			break;
3047 		}
3048 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3049 		case _MEM:
3050 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3051 			break;
3052 		case _MEMSWAP:
3053 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3054 			break;
3055 		case _KMEM:
3056 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3057 			break;
3058 		case _TCP:
3059 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3060 			break;
3061 		}
3062 		break;
3063 	case RES_SOFT_LIMIT:
3064 		memcg->soft_limit = nr_pages;
3065 		ret = 0;
3066 		break;
3067 	}
3068 	return ret ?: nbytes;
3069 }
3070 
3071 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3072 				size_t nbytes, loff_t off)
3073 {
3074 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3075 	struct page_counter *counter;
3076 
3077 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3078 	case _MEM:
3079 		counter = &memcg->memory;
3080 		break;
3081 	case _MEMSWAP:
3082 		counter = &memcg->memsw;
3083 		break;
3084 	case _KMEM:
3085 		counter = &memcg->kmem;
3086 		break;
3087 	case _TCP:
3088 		counter = &memcg->tcpmem;
3089 		break;
3090 	default:
3091 		BUG();
3092 	}
3093 
3094 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3095 	case RES_MAX_USAGE:
3096 		page_counter_reset_watermark(counter);
3097 		break;
3098 	case RES_FAILCNT:
3099 		counter->failcnt = 0;
3100 		break;
3101 	default:
3102 		BUG();
3103 	}
3104 
3105 	return nbytes;
3106 }
3107 
3108 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3109 					struct cftype *cft)
3110 {
3111 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3112 }
3113 
3114 #ifdef CONFIG_MMU
3115 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3116 					struct cftype *cft, u64 val)
3117 {
3118 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3119 
3120 	if (val & ~MOVE_MASK)
3121 		return -EINVAL;
3122 
3123 	/*
3124 	 * No kind of locking is needed in here, because ->can_attach() will
3125 	 * check this value once in the beginning of the process, and then carry
3126 	 * on with stale data. This means that changes to this value will only
3127 	 * affect task migrations starting after the change.
3128 	 */
3129 	memcg->move_charge_at_immigrate = val;
3130 	return 0;
3131 }
3132 #else
3133 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3134 					struct cftype *cft, u64 val)
3135 {
3136 	return -ENOSYS;
3137 }
3138 #endif
3139 
3140 #ifdef CONFIG_NUMA
3141 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3142 {
3143 	struct numa_stat {
3144 		const char *name;
3145 		unsigned int lru_mask;
3146 	};
3147 
3148 	static const struct numa_stat stats[] = {
3149 		{ "total", LRU_ALL },
3150 		{ "file", LRU_ALL_FILE },
3151 		{ "anon", LRU_ALL_ANON },
3152 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3153 	};
3154 	const struct numa_stat *stat;
3155 	int nid;
3156 	unsigned long nr;
3157 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3158 
3159 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3160 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3161 		seq_printf(m, "%s=%lu", stat->name, nr);
3162 		for_each_node_state(nid, N_MEMORY) {
3163 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3164 							  stat->lru_mask);
3165 			seq_printf(m, " N%d=%lu", nid, nr);
3166 		}
3167 		seq_putc(m, '\n');
3168 	}
3169 
3170 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3171 		struct mem_cgroup *iter;
3172 
3173 		nr = 0;
3174 		for_each_mem_cgroup_tree(iter, memcg)
3175 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3176 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3177 		for_each_node_state(nid, N_MEMORY) {
3178 			nr = 0;
3179 			for_each_mem_cgroup_tree(iter, memcg)
3180 				nr += mem_cgroup_node_nr_lru_pages(
3181 					iter, nid, stat->lru_mask);
3182 			seq_printf(m, " N%d=%lu", nid, nr);
3183 		}
3184 		seq_putc(m, '\n');
3185 	}
3186 
3187 	return 0;
3188 }
3189 #endif /* CONFIG_NUMA */
3190 
3191 static int memcg_stat_show(struct seq_file *m, void *v)
3192 {
3193 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3194 	unsigned long memory, memsw;
3195 	struct mem_cgroup *mi;
3196 	unsigned int i;
3197 
3198 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3199 		     MEM_CGROUP_STAT_NSTATS);
3200 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3201 		     MEM_CGROUP_EVENTS_NSTATS);
3202 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3203 
3204 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3205 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3206 			continue;
3207 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3208 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3209 	}
3210 
3211 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3212 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3213 			   mem_cgroup_read_events(memcg, i));
3214 
3215 	for (i = 0; i < NR_LRU_LISTS; i++)
3216 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3217 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3218 
3219 	/* Hierarchical information */
3220 	memory = memsw = PAGE_COUNTER_MAX;
3221 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3222 		memory = min(memory, mi->memory.limit);
3223 		memsw = min(memsw, mi->memsw.limit);
3224 	}
3225 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3226 		   (u64)memory * PAGE_SIZE);
3227 	if (do_memsw_account())
3228 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3229 			   (u64)memsw * PAGE_SIZE);
3230 
3231 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3232 		unsigned long long val = 0;
3233 
3234 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3235 			continue;
3236 		for_each_mem_cgroup_tree(mi, memcg)
3237 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3238 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3239 	}
3240 
3241 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3242 		unsigned long long val = 0;
3243 
3244 		for_each_mem_cgroup_tree(mi, memcg)
3245 			val += mem_cgroup_read_events(mi, i);
3246 		seq_printf(m, "total_%s %llu\n",
3247 			   mem_cgroup_events_names[i], val);
3248 	}
3249 
3250 	for (i = 0; i < NR_LRU_LISTS; i++) {
3251 		unsigned long long val = 0;
3252 
3253 		for_each_mem_cgroup_tree(mi, memcg)
3254 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3255 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3256 	}
3257 
3258 #ifdef CONFIG_DEBUG_VM
3259 	{
3260 		int nid, zid;
3261 		struct mem_cgroup_per_zone *mz;
3262 		struct zone_reclaim_stat *rstat;
3263 		unsigned long recent_rotated[2] = {0, 0};
3264 		unsigned long recent_scanned[2] = {0, 0};
3265 
3266 		for_each_online_node(nid)
3267 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3268 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3269 				rstat = &mz->lruvec.reclaim_stat;
3270 
3271 				recent_rotated[0] += rstat->recent_rotated[0];
3272 				recent_rotated[1] += rstat->recent_rotated[1];
3273 				recent_scanned[0] += rstat->recent_scanned[0];
3274 				recent_scanned[1] += rstat->recent_scanned[1];
3275 			}
3276 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3277 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3278 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3279 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3280 	}
3281 #endif
3282 
3283 	return 0;
3284 }
3285 
3286 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3287 				      struct cftype *cft)
3288 {
3289 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3290 
3291 	return mem_cgroup_swappiness(memcg);
3292 }
3293 
3294 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3295 				       struct cftype *cft, u64 val)
3296 {
3297 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3298 
3299 	if (val > 100)
3300 		return -EINVAL;
3301 
3302 	if (css->parent)
3303 		memcg->swappiness = val;
3304 	else
3305 		vm_swappiness = val;
3306 
3307 	return 0;
3308 }
3309 
3310 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3311 {
3312 	struct mem_cgroup_threshold_ary *t;
3313 	unsigned long usage;
3314 	int i;
3315 
3316 	rcu_read_lock();
3317 	if (!swap)
3318 		t = rcu_dereference(memcg->thresholds.primary);
3319 	else
3320 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3321 
3322 	if (!t)
3323 		goto unlock;
3324 
3325 	usage = mem_cgroup_usage(memcg, swap);
3326 
3327 	/*
3328 	 * current_threshold points to threshold just below or equal to usage.
3329 	 * If it's not true, a threshold was crossed after last
3330 	 * call of __mem_cgroup_threshold().
3331 	 */
3332 	i = t->current_threshold;
3333 
3334 	/*
3335 	 * Iterate backward over array of thresholds starting from
3336 	 * current_threshold and check if a threshold is crossed.
3337 	 * If none of thresholds below usage is crossed, we read
3338 	 * only one element of the array here.
3339 	 */
3340 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3341 		eventfd_signal(t->entries[i].eventfd, 1);
3342 
3343 	/* i = current_threshold + 1 */
3344 	i++;
3345 
3346 	/*
3347 	 * Iterate forward over array of thresholds starting from
3348 	 * current_threshold+1 and check if a threshold is crossed.
3349 	 * If none of thresholds above usage is crossed, we read
3350 	 * only one element of the array here.
3351 	 */
3352 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3353 		eventfd_signal(t->entries[i].eventfd, 1);
3354 
3355 	/* Update current_threshold */
3356 	t->current_threshold = i - 1;
3357 unlock:
3358 	rcu_read_unlock();
3359 }
3360 
3361 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3362 {
3363 	while (memcg) {
3364 		__mem_cgroup_threshold(memcg, false);
3365 		if (do_memsw_account())
3366 			__mem_cgroup_threshold(memcg, true);
3367 
3368 		memcg = parent_mem_cgroup(memcg);
3369 	}
3370 }
3371 
3372 static int compare_thresholds(const void *a, const void *b)
3373 {
3374 	const struct mem_cgroup_threshold *_a = a;
3375 	const struct mem_cgroup_threshold *_b = b;
3376 
3377 	if (_a->threshold > _b->threshold)
3378 		return 1;
3379 
3380 	if (_a->threshold < _b->threshold)
3381 		return -1;
3382 
3383 	return 0;
3384 }
3385 
3386 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3387 {
3388 	struct mem_cgroup_eventfd_list *ev;
3389 
3390 	spin_lock(&memcg_oom_lock);
3391 
3392 	list_for_each_entry(ev, &memcg->oom_notify, list)
3393 		eventfd_signal(ev->eventfd, 1);
3394 
3395 	spin_unlock(&memcg_oom_lock);
3396 	return 0;
3397 }
3398 
3399 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3400 {
3401 	struct mem_cgroup *iter;
3402 
3403 	for_each_mem_cgroup_tree(iter, memcg)
3404 		mem_cgroup_oom_notify_cb(iter);
3405 }
3406 
3407 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3408 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3409 {
3410 	struct mem_cgroup_thresholds *thresholds;
3411 	struct mem_cgroup_threshold_ary *new;
3412 	unsigned long threshold;
3413 	unsigned long usage;
3414 	int i, size, ret;
3415 
3416 	ret = page_counter_memparse(args, "-1", &threshold);
3417 	if (ret)
3418 		return ret;
3419 
3420 	mutex_lock(&memcg->thresholds_lock);
3421 
3422 	if (type == _MEM) {
3423 		thresholds = &memcg->thresholds;
3424 		usage = mem_cgroup_usage(memcg, false);
3425 	} else if (type == _MEMSWAP) {
3426 		thresholds = &memcg->memsw_thresholds;
3427 		usage = mem_cgroup_usage(memcg, true);
3428 	} else
3429 		BUG();
3430 
3431 	/* Check if a threshold crossed before adding a new one */
3432 	if (thresholds->primary)
3433 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3434 
3435 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3436 
3437 	/* Allocate memory for new array of thresholds */
3438 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3439 			GFP_KERNEL);
3440 	if (!new) {
3441 		ret = -ENOMEM;
3442 		goto unlock;
3443 	}
3444 	new->size = size;
3445 
3446 	/* Copy thresholds (if any) to new array */
3447 	if (thresholds->primary) {
3448 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3449 				sizeof(struct mem_cgroup_threshold));
3450 	}
3451 
3452 	/* Add new threshold */
3453 	new->entries[size - 1].eventfd = eventfd;
3454 	new->entries[size - 1].threshold = threshold;
3455 
3456 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3457 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3458 			compare_thresholds, NULL);
3459 
3460 	/* Find current threshold */
3461 	new->current_threshold = -1;
3462 	for (i = 0; i < size; i++) {
3463 		if (new->entries[i].threshold <= usage) {
3464 			/*
3465 			 * new->current_threshold will not be used until
3466 			 * rcu_assign_pointer(), so it's safe to increment
3467 			 * it here.
3468 			 */
3469 			++new->current_threshold;
3470 		} else
3471 			break;
3472 	}
3473 
3474 	/* Free old spare buffer and save old primary buffer as spare */
3475 	kfree(thresholds->spare);
3476 	thresholds->spare = thresholds->primary;
3477 
3478 	rcu_assign_pointer(thresholds->primary, new);
3479 
3480 	/* To be sure that nobody uses thresholds */
3481 	synchronize_rcu();
3482 
3483 unlock:
3484 	mutex_unlock(&memcg->thresholds_lock);
3485 
3486 	return ret;
3487 }
3488 
3489 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3490 	struct eventfd_ctx *eventfd, const char *args)
3491 {
3492 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3493 }
3494 
3495 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3496 	struct eventfd_ctx *eventfd, const char *args)
3497 {
3498 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3499 }
3500 
3501 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3502 	struct eventfd_ctx *eventfd, enum res_type type)
3503 {
3504 	struct mem_cgroup_thresholds *thresholds;
3505 	struct mem_cgroup_threshold_ary *new;
3506 	unsigned long usage;
3507 	int i, j, size;
3508 
3509 	mutex_lock(&memcg->thresholds_lock);
3510 
3511 	if (type == _MEM) {
3512 		thresholds = &memcg->thresholds;
3513 		usage = mem_cgroup_usage(memcg, false);
3514 	} else if (type == _MEMSWAP) {
3515 		thresholds = &memcg->memsw_thresholds;
3516 		usage = mem_cgroup_usage(memcg, true);
3517 	} else
3518 		BUG();
3519 
3520 	if (!thresholds->primary)
3521 		goto unlock;
3522 
3523 	/* Check if a threshold crossed before removing */
3524 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3525 
3526 	/* Calculate new number of threshold */
3527 	size = 0;
3528 	for (i = 0; i < thresholds->primary->size; i++) {
3529 		if (thresholds->primary->entries[i].eventfd != eventfd)
3530 			size++;
3531 	}
3532 
3533 	new = thresholds->spare;
3534 
3535 	/* Set thresholds array to NULL if we don't have thresholds */
3536 	if (!size) {
3537 		kfree(new);
3538 		new = NULL;
3539 		goto swap_buffers;
3540 	}
3541 
3542 	new->size = size;
3543 
3544 	/* Copy thresholds and find current threshold */
3545 	new->current_threshold = -1;
3546 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3547 		if (thresholds->primary->entries[i].eventfd == eventfd)
3548 			continue;
3549 
3550 		new->entries[j] = thresholds->primary->entries[i];
3551 		if (new->entries[j].threshold <= usage) {
3552 			/*
3553 			 * new->current_threshold will not be used
3554 			 * until rcu_assign_pointer(), so it's safe to increment
3555 			 * it here.
3556 			 */
3557 			++new->current_threshold;
3558 		}
3559 		j++;
3560 	}
3561 
3562 swap_buffers:
3563 	/* Swap primary and spare array */
3564 	thresholds->spare = thresholds->primary;
3565 
3566 	rcu_assign_pointer(thresholds->primary, new);
3567 
3568 	/* To be sure that nobody uses thresholds */
3569 	synchronize_rcu();
3570 
3571 	/* If all events are unregistered, free the spare array */
3572 	if (!new) {
3573 		kfree(thresholds->spare);
3574 		thresholds->spare = NULL;
3575 	}
3576 unlock:
3577 	mutex_unlock(&memcg->thresholds_lock);
3578 }
3579 
3580 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3581 	struct eventfd_ctx *eventfd)
3582 {
3583 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3584 }
3585 
3586 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3587 	struct eventfd_ctx *eventfd)
3588 {
3589 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3590 }
3591 
3592 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3593 	struct eventfd_ctx *eventfd, const char *args)
3594 {
3595 	struct mem_cgroup_eventfd_list *event;
3596 
3597 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3598 	if (!event)
3599 		return -ENOMEM;
3600 
3601 	spin_lock(&memcg_oom_lock);
3602 
3603 	event->eventfd = eventfd;
3604 	list_add(&event->list, &memcg->oom_notify);
3605 
3606 	/* already in OOM ? */
3607 	if (memcg->under_oom)
3608 		eventfd_signal(eventfd, 1);
3609 	spin_unlock(&memcg_oom_lock);
3610 
3611 	return 0;
3612 }
3613 
3614 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3615 	struct eventfd_ctx *eventfd)
3616 {
3617 	struct mem_cgroup_eventfd_list *ev, *tmp;
3618 
3619 	spin_lock(&memcg_oom_lock);
3620 
3621 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3622 		if (ev->eventfd == eventfd) {
3623 			list_del(&ev->list);
3624 			kfree(ev);
3625 		}
3626 	}
3627 
3628 	spin_unlock(&memcg_oom_lock);
3629 }
3630 
3631 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3632 {
3633 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3634 
3635 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3636 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3637 	return 0;
3638 }
3639 
3640 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3641 	struct cftype *cft, u64 val)
3642 {
3643 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3644 
3645 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3646 	if (!css->parent || !((val == 0) || (val == 1)))
3647 		return -EINVAL;
3648 
3649 	memcg->oom_kill_disable = val;
3650 	if (!val)
3651 		memcg_oom_recover(memcg);
3652 
3653 	return 0;
3654 }
3655 
3656 #ifdef CONFIG_CGROUP_WRITEBACK
3657 
3658 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3659 {
3660 	return &memcg->cgwb_list;
3661 }
3662 
3663 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3664 {
3665 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3666 }
3667 
3668 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3669 {
3670 	wb_domain_exit(&memcg->cgwb_domain);
3671 }
3672 
3673 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3674 {
3675 	wb_domain_size_changed(&memcg->cgwb_domain);
3676 }
3677 
3678 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3679 {
3680 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3681 
3682 	if (!memcg->css.parent)
3683 		return NULL;
3684 
3685 	return &memcg->cgwb_domain;
3686 }
3687 
3688 /**
3689  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3690  * @wb: bdi_writeback in question
3691  * @pfilepages: out parameter for number of file pages
3692  * @pheadroom: out parameter for number of allocatable pages according to memcg
3693  * @pdirty: out parameter for number of dirty pages
3694  * @pwriteback: out parameter for number of pages under writeback
3695  *
3696  * Determine the numbers of file, headroom, dirty, and writeback pages in
3697  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3698  * is a bit more involved.
3699  *
3700  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3701  * headroom is calculated as the lowest headroom of itself and the
3702  * ancestors.  Note that this doesn't consider the actual amount of
3703  * available memory in the system.  The caller should further cap
3704  * *@pheadroom accordingly.
3705  */
3706 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3707 			 unsigned long *pheadroom, unsigned long *pdirty,
3708 			 unsigned long *pwriteback)
3709 {
3710 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3711 	struct mem_cgroup *parent;
3712 
3713 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3714 
3715 	/* this should eventually include NR_UNSTABLE_NFS */
3716 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3717 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3718 						     (1 << LRU_ACTIVE_FILE));
3719 	*pheadroom = PAGE_COUNTER_MAX;
3720 
3721 	while ((parent = parent_mem_cgroup(memcg))) {
3722 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3723 		unsigned long used = page_counter_read(&memcg->memory);
3724 
3725 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3726 		memcg = parent;
3727 	}
3728 }
3729 
3730 #else	/* CONFIG_CGROUP_WRITEBACK */
3731 
3732 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3733 {
3734 	return 0;
3735 }
3736 
3737 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3738 {
3739 }
3740 
3741 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3742 {
3743 }
3744 
3745 #endif	/* CONFIG_CGROUP_WRITEBACK */
3746 
3747 /*
3748  * DO NOT USE IN NEW FILES.
3749  *
3750  * "cgroup.event_control" implementation.
3751  *
3752  * This is way over-engineered.  It tries to support fully configurable
3753  * events for each user.  Such level of flexibility is completely
3754  * unnecessary especially in the light of the planned unified hierarchy.
3755  *
3756  * Please deprecate this and replace with something simpler if at all
3757  * possible.
3758  */
3759 
3760 /*
3761  * Unregister event and free resources.
3762  *
3763  * Gets called from workqueue.
3764  */
3765 static void memcg_event_remove(struct work_struct *work)
3766 {
3767 	struct mem_cgroup_event *event =
3768 		container_of(work, struct mem_cgroup_event, remove);
3769 	struct mem_cgroup *memcg = event->memcg;
3770 
3771 	remove_wait_queue(event->wqh, &event->wait);
3772 
3773 	event->unregister_event(memcg, event->eventfd);
3774 
3775 	/* Notify userspace the event is going away. */
3776 	eventfd_signal(event->eventfd, 1);
3777 
3778 	eventfd_ctx_put(event->eventfd);
3779 	kfree(event);
3780 	css_put(&memcg->css);
3781 }
3782 
3783 /*
3784  * Gets called on POLLHUP on eventfd when user closes it.
3785  *
3786  * Called with wqh->lock held and interrupts disabled.
3787  */
3788 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3789 			    int sync, void *key)
3790 {
3791 	struct mem_cgroup_event *event =
3792 		container_of(wait, struct mem_cgroup_event, wait);
3793 	struct mem_cgroup *memcg = event->memcg;
3794 	unsigned long flags = (unsigned long)key;
3795 
3796 	if (flags & POLLHUP) {
3797 		/*
3798 		 * If the event has been detached at cgroup removal, we
3799 		 * can simply return knowing the other side will cleanup
3800 		 * for us.
3801 		 *
3802 		 * We can't race against event freeing since the other
3803 		 * side will require wqh->lock via remove_wait_queue(),
3804 		 * which we hold.
3805 		 */
3806 		spin_lock(&memcg->event_list_lock);
3807 		if (!list_empty(&event->list)) {
3808 			list_del_init(&event->list);
3809 			/*
3810 			 * We are in atomic context, but cgroup_event_remove()
3811 			 * may sleep, so we have to call it in workqueue.
3812 			 */
3813 			schedule_work(&event->remove);
3814 		}
3815 		spin_unlock(&memcg->event_list_lock);
3816 	}
3817 
3818 	return 0;
3819 }
3820 
3821 static void memcg_event_ptable_queue_proc(struct file *file,
3822 		wait_queue_head_t *wqh, poll_table *pt)
3823 {
3824 	struct mem_cgroup_event *event =
3825 		container_of(pt, struct mem_cgroup_event, pt);
3826 
3827 	event->wqh = wqh;
3828 	add_wait_queue(wqh, &event->wait);
3829 }
3830 
3831 /*
3832  * DO NOT USE IN NEW FILES.
3833  *
3834  * Parse input and register new cgroup event handler.
3835  *
3836  * Input must be in format '<event_fd> <control_fd> <args>'.
3837  * Interpretation of args is defined by control file implementation.
3838  */
3839 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3840 					 char *buf, size_t nbytes, loff_t off)
3841 {
3842 	struct cgroup_subsys_state *css = of_css(of);
3843 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3844 	struct mem_cgroup_event *event;
3845 	struct cgroup_subsys_state *cfile_css;
3846 	unsigned int efd, cfd;
3847 	struct fd efile;
3848 	struct fd cfile;
3849 	const char *name;
3850 	char *endp;
3851 	int ret;
3852 
3853 	buf = strstrip(buf);
3854 
3855 	efd = simple_strtoul(buf, &endp, 10);
3856 	if (*endp != ' ')
3857 		return -EINVAL;
3858 	buf = endp + 1;
3859 
3860 	cfd = simple_strtoul(buf, &endp, 10);
3861 	if ((*endp != ' ') && (*endp != '\0'))
3862 		return -EINVAL;
3863 	buf = endp + 1;
3864 
3865 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3866 	if (!event)
3867 		return -ENOMEM;
3868 
3869 	event->memcg = memcg;
3870 	INIT_LIST_HEAD(&event->list);
3871 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3872 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3873 	INIT_WORK(&event->remove, memcg_event_remove);
3874 
3875 	efile = fdget(efd);
3876 	if (!efile.file) {
3877 		ret = -EBADF;
3878 		goto out_kfree;
3879 	}
3880 
3881 	event->eventfd = eventfd_ctx_fileget(efile.file);
3882 	if (IS_ERR(event->eventfd)) {
3883 		ret = PTR_ERR(event->eventfd);
3884 		goto out_put_efile;
3885 	}
3886 
3887 	cfile = fdget(cfd);
3888 	if (!cfile.file) {
3889 		ret = -EBADF;
3890 		goto out_put_eventfd;
3891 	}
3892 
3893 	/* the process need read permission on control file */
3894 	/* AV: shouldn't we check that it's been opened for read instead? */
3895 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3896 	if (ret < 0)
3897 		goto out_put_cfile;
3898 
3899 	/*
3900 	 * Determine the event callbacks and set them in @event.  This used
3901 	 * to be done via struct cftype but cgroup core no longer knows
3902 	 * about these events.  The following is crude but the whole thing
3903 	 * is for compatibility anyway.
3904 	 *
3905 	 * DO NOT ADD NEW FILES.
3906 	 */
3907 	name = cfile.file->f_path.dentry->d_name.name;
3908 
3909 	if (!strcmp(name, "memory.usage_in_bytes")) {
3910 		event->register_event = mem_cgroup_usage_register_event;
3911 		event->unregister_event = mem_cgroup_usage_unregister_event;
3912 	} else if (!strcmp(name, "memory.oom_control")) {
3913 		event->register_event = mem_cgroup_oom_register_event;
3914 		event->unregister_event = mem_cgroup_oom_unregister_event;
3915 	} else if (!strcmp(name, "memory.pressure_level")) {
3916 		event->register_event = vmpressure_register_event;
3917 		event->unregister_event = vmpressure_unregister_event;
3918 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3919 		event->register_event = memsw_cgroup_usage_register_event;
3920 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3921 	} else {
3922 		ret = -EINVAL;
3923 		goto out_put_cfile;
3924 	}
3925 
3926 	/*
3927 	 * Verify @cfile should belong to @css.  Also, remaining events are
3928 	 * automatically removed on cgroup destruction but the removal is
3929 	 * asynchronous, so take an extra ref on @css.
3930 	 */
3931 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3932 					       &memory_cgrp_subsys);
3933 	ret = -EINVAL;
3934 	if (IS_ERR(cfile_css))
3935 		goto out_put_cfile;
3936 	if (cfile_css != css) {
3937 		css_put(cfile_css);
3938 		goto out_put_cfile;
3939 	}
3940 
3941 	ret = event->register_event(memcg, event->eventfd, buf);
3942 	if (ret)
3943 		goto out_put_css;
3944 
3945 	efile.file->f_op->poll(efile.file, &event->pt);
3946 
3947 	spin_lock(&memcg->event_list_lock);
3948 	list_add(&event->list, &memcg->event_list);
3949 	spin_unlock(&memcg->event_list_lock);
3950 
3951 	fdput(cfile);
3952 	fdput(efile);
3953 
3954 	return nbytes;
3955 
3956 out_put_css:
3957 	css_put(css);
3958 out_put_cfile:
3959 	fdput(cfile);
3960 out_put_eventfd:
3961 	eventfd_ctx_put(event->eventfd);
3962 out_put_efile:
3963 	fdput(efile);
3964 out_kfree:
3965 	kfree(event);
3966 
3967 	return ret;
3968 }
3969 
3970 static struct cftype mem_cgroup_legacy_files[] = {
3971 	{
3972 		.name = "usage_in_bytes",
3973 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3974 		.read_u64 = mem_cgroup_read_u64,
3975 	},
3976 	{
3977 		.name = "max_usage_in_bytes",
3978 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3979 		.write = mem_cgroup_reset,
3980 		.read_u64 = mem_cgroup_read_u64,
3981 	},
3982 	{
3983 		.name = "limit_in_bytes",
3984 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3985 		.write = mem_cgroup_write,
3986 		.read_u64 = mem_cgroup_read_u64,
3987 	},
3988 	{
3989 		.name = "soft_limit_in_bytes",
3990 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3991 		.write = mem_cgroup_write,
3992 		.read_u64 = mem_cgroup_read_u64,
3993 	},
3994 	{
3995 		.name = "failcnt",
3996 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3997 		.write = mem_cgroup_reset,
3998 		.read_u64 = mem_cgroup_read_u64,
3999 	},
4000 	{
4001 		.name = "stat",
4002 		.seq_show = memcg_stat_show,
4003 	},
4004 	{
4005 		.name = "force_empty",
4006 		.write = mem_cgroup_force_empty_write,
4007 	},
4008 	{
4009 		.name = "use_hierarchy",
4010 		.write_u64 = mem_cgroup_hierarchy_write,
4011 		.read_u64 = mem_cgroup_hierarchy_read,
4012 	},
4013 	{
4014 		.name = "cgroup.event_control",		/* XXX: for compat */
4015 		.write = memcg_write_event_control,
4016 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4017 	},
4018 	{
4019 		.name = "swappiness",
4020 		.read_u64 = mem_cgroup_swappiness_read,
4021 		.write_u64 = mem_cgroup_swappiness_write,
4022 	},
4023 	{
4024 		.name = "move_charge_at_immigrate",
4025 		.read_u64 = mem_cgroup_move_charge_read,
4026 		.write_u64 = mem_cgroup_move_charge_write,
4027 	},
4028 	{
4029 		.name = "oom_control",
4030 		.seq_show = mem_cgroup_oom_control_read,
4031 		.write_u64 = mem_cgroup_oom_control_write,
4032 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4033 	},
4034 	{
4035 		.name = "pressure_level",
4036 	},
4037 #ifdef CONFIG_NUMA
4038 	{
4039 		.name = "numa_stat",
4040 		.seq_show = memcg_numa_stat_show,
4041 	},
4042 #endif
4043 	{
4044 		.name = "kmem.limit_in_bytes",
4045 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4046 		.write = mem_cgroup_write,
4047 		.read_u64 = mem_cgroup_read_u64,
4048 	},
4049 	{
4050 		.name = "kmem.usage_in_bytes",
4051 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4052 		.read_u64 = mem_cgroup_read_u64,
4053 	},
4054 	{
4055 		.name = "kmem.failcnt",
4056 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4057 		.write = mem_cgroup_reset,
4058 		.read_u64 = mem_cgroup_read_u64,
4059 	},
4060 	{
4061 		.name = "kmem.max_usage_in_bytes",
4062 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4063 		.write = mem_cgroup_reset,
4064 		.read_u64 = mem_cgroup_read_u64,
4065 	},
4066 #ifdef CONFIG_SLABINFO
4067 	{
4068 		.name = "kmem.slabinfo",
4069 		.seq_start = slab_start,
4070 		.seq_next = slab_next,
4071 		.seq_stop = slab_stop,
4072 		.seq_show = memcg_slab_show,
4073 	},
4074 #endif
4075 	{
4076 		.name = "kmem.tcp.limit_in_bytes",
4077 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4078 		.write = mem_cgroup_write,
4079 		.read_u64 = mem_cgroup_read_u64,
4080 	},
4081 	{
4082 		.name = "kmem.tcp.usage_in_bytes",
4083 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4084 		.read_u64 = mem_cgroup_read_u64,
4085 	},
4086 	{
4087 		.name = "kmem.tcp.failcnt",
4088 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4089 		.write = mem_cgroup_reset,
4090 		.read_u64 = mem_cgroup_read_u64,
4091 	},
4092 	{
4093 		.name = "kmem.tcp.max_usage_in_bytes",
4094 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4095 		.write = mem_cgroup_reset,
4096 		.read_u64 = mem_cgroup_read_u64,
4097 	},
4098 	{ },	/* terminate */
4099 };
4100 
4101 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4102 {
4103 	struct mem_cgroup_per_node *pn;
4104 	struct mem_cgroup_per_zone *mz;
4105 	int zone, tmp = node;
4106 	/*
4107 	 * This routine is called against possible nodes.
4108 	 * But it's BUG to call kmalloc() against offline node.
4109 	 *
4110 	 * TODO: this routine can waste much memory for nodes which will
4111 	 *       never be onlined. It's better to use memory hotplug callback
4112 	 *       function.
4113 	 */
4114 	if (!node_state(node, N_NORMAL_MEMORY))
4115 		tmp = -1;
4116 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4117 	if (!pn)
4118 		return 1;
4119 
4120 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4121 		mz = &pn->zoneinfo[zone];
4122 		lruvec_init(&mz->lruvec);
4123 		mz->usage_in_excess = 0;
4124 		mz->on_tree = false;
4125 		mz->memcg = memcg;
4126 	}
4127 	memcg->nodeinfo[node] = pn;
4128 	return 0;
4129 }
4130 
4131 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4132 {
4133 	kfree(memcg->nodeinfo[node]);
4134 }
4135 
4136 static void mem_cgroup_free(struct mem_cgroup *memcg)
4137 {
4138 	int node;
4139 
4140 	memcg_wb_domain_exit(memcg);
4141 	for_each_node(node)
4142 		free_mem_cgroup_per_zone_info(memcg, node);
4143 	free_percpu(memcg->stat);
4144 	kfree(memcg);
4145 }
4146 
4147 static struct mem_cgroup *mem_cgroup_alloc(void)
4148 {
4149 	struct mem_cgroup *memcg;
4150 	size_t size;
4151 	int node;
4152 
4153 	size = sizeof(struct mem_cgroup);
4154 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4155 
4156 	memcg = kzalloc(size, GFP_KERNEL);
4157 	if (!memcg)
4158 		return NULL;
4159 
4160 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4161 	if (!memcg->stat)
4162 		goto fail;
4163 
4164 	for_each_node(node)
4165 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4166 			goto fail;
4167 
4168 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4169 		goto fail;
4170 
4171 	INIT_WORK(&memcg->high_work, high_work_func);
4172 	memcg->last_scanned_node = MAX_NUMNODES;
4173 	INIT_LIST_HEAD(&memcg->oom_notify);
4174 	mutex_init(&memcg->thresholds_lock);
4175 	spin_lock_init(&memcg->move_lock);
4176 	vmpressure_init(&memcg->vmpressure);
4177 	INIT_LIST_HEAD(&memcg->event_list);
4178 	spin_lock_init(&memcg->event_list_lock);
4179 	memcg->socket_pressure = jiffies;
4180 #ifndef CONFIG_SLOB
4181 	memcg->kmemcg_id = -1;
4182 #endif
4183 #ifdef CONFIG_CGROUP_WRITEBACK
4184 	INIT_LIST_HEAD(&memcg->cgwb_list);
4185 #endif
4186 	return memcg;
4187 fail:
4188 	mem_cgroup_free(memcg);
4189 	return NULL;
4190 }
4191 
4192 static struct cgroup_subsys_state * __ref
4193 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4194 {
4195 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4196 	struct mem_cgroup *memcg;
4197 	long error = -ENOMEM;
4198 
4199 	memcg = mem_cgroup_alloc();
4200 	if (!memcg)
4201 		return ERR_PTR(error);
4202 
4203 	memcg->high = PAGE_COUNTER_MAX;
4204 	memcg->soft_limit = PAGE_COUNTER_MAX;
4205 	if (parent) {
4206 		memcg->swappiness = mem_cgroup_swappiness(parent);
4207 		memcg->oom_kill_disable = parent->oom_kill_disable;
4208 	}
4209 	if (parent && parent->use_hierarchy) {
4210 		memcg->use_hierarchy = true;
4211 		page_counter_init(&memcg->memory, &parent->memory);
4212 		page_counter_init(&memcg->swap, &parent->swap);
4213 		page_counter_init(&memcg->memsw, &parent->memsw);
4214 		page_counter_init(&memcg->kmem, &parent->kmem);
4215 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4216 	} else {
4217 		page_counter_init(&memcg->memory, NULL);
4218 		page_counter_init(&memcg->swap, NULL);
4219 		page_counter_init(&memcg->memsw, NULL);
4220 		page_counter_init(&memcg->kmem, NULL);
4221 		page_counter_init(&memcg->tcpmem, NULL);
4222 		/*
4223 		 * Deeper hierachy with use_hierarchy == false doesn't make
4224 		 * much sense so let cgroup subsystem know about this
4225 		 * unfortunate state in our controller.
4226 		 */
4227 		if (parent != root_mem_cgroup)
4228 			memory_cgrp_subsys.broken_hierarchy = true;
4229 	}
4230 
4231 	/* The following stuff does not apply to the root */
4232 	if (!parent) {
4233 		root_mem_cgroup = memcg;
4234 		return &memcg->css;
4235 	}
4236 
4237 	error = memcg_propagate_kmem(parent, memcg);
4238 	if (error)
4239 		goto fail;
4240 
4241 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4242 		static_branch_inc(&memcg_sockets_enabled_key);
4243 
4244 	return &memcg->css;
4245 fail:
4246 	mem_cgroup_free(memcg);
4247 	return NULL;
4248 }
4249 
4250 static int
4251 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4252 {
4253 	if (css->id > MEM_CGROUP_ID_MAX)
4254 		return -ENOSPC;
4255 
4256 	return 0;
4257 }
4258 
4259 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4260 {
4261 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4262 	struct mem_cgroup_event *event, *tmp;
4263 
4264 	/*
4265 	 * Unregister events and notify userspace.
4266 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4267 	 * directory to avoid race between userspace and kernelspace.
4268 	 */
4269 	spin_lock(&memcg->event_list_lock);
4270 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4271 		list_del_init(&event->list);
4272 		schedule_work(&event->remove);
4273 	}
4274 	spin_unlock(&memcg->event_list_lock);
4275 
4276 	memcg_offline_kmem(memcg);
4277 	wb_memcg_offline(memcg);
4278 }
4279 
4280 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4281 {
4282 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4283 
4284 	invalidate_reclaim_iterators(memcg);
4285 }
4286 
4287 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4288 {
4289 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4290 
4291 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4292 		static_branch_dec(&memcg_sockets_enabled_key);
4293 
4294 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4295 		static_branch_dec(&memcg_sockets_enabled_key);
4296 
4297 	vmpressure_cleanup(&memcg->vmpressure);
4298 	cancel_work_sync(&memcg->high_work);
4299 	mem_cgroup_remove_from_trees(memcg);
4300 	memcg_free_kmem(memcg);
4301 	mem_cgroup_free(memcg);
4302 }
4303 
4304 /**
4305  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4306  * @css: the target css
4307  *
4308  * Reset the states of the mem_cgroup associated with @css.  This is
4309  * invoked when the userland requests disabling on the default hierarchy
4310  * but the memcg is pinned through dependency.  The memcg should stop
4311  * applying policies and should revert to the vanilla state as it may be
4312  * made visible again.
4313  *
4314  * The current implementation only resets the essential configurations.
4315  * This needs to be expanded to cover all the visible parts.
4316  */
4317 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4318 {
4319 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4320 
4321 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4322 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4323 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4324 	memcg->low = 0;
4325 	memcg->high = PAGE_COUNTER_MAX;
4326 	memcg->soft_limit = PAGE_COUNTER_MAX;
4327 	memcg_wb_domain_size_changed(memcg);
4328 }
4329 
4330 #ifdef CONFIG_MMU
4331 /* Handlers for move charge at task migration. */
4332 static int mem_cgroup_do_precharge(unsigned long count)
4333 {
4334 	int ret;
4335 
4336 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4337 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4338 	if (!ret) {
4339 		mc.precharge += count;
4340 		return ret;
4341 	}
4342 
4343 	/* Try charges one by one with reclaim */
4344 	while (count--) {
4345 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4346 		if (ret)
4347 			return ret;
4348 		mc.precharge++;
4349 		cond_resched();
4350 	}
4351 	return 0;
4352 }
4353 
4354 /**
4355  * get_mctgt_type - get target type of moving charge
4356  * @vma: the vma the pte to be checked belongs
4357  * @addr: the address corresponding to the pte to be checked
4358  * @ptent: the pte to be checked
4359  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4360  *
4361  * Returns
4362  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4363  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4364  *     move charge. if @target is not NULL, the page is stored in target->page
4365  *     with extra refcnt got(Callers should handle it).
4366  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4367  *     target for charge migration. if @target is not NULL, the entry is stored
4368  *     in target->ent.
4369  *
4370  * Called with pte lock held.
4371  */
4372 union mc_target {
4373 	struct page	*page;
4374 	swp_entry_t	ent;
4375 };
4376 
4377 enum mc_target_type {
4378 	MC_TARGET_NONE = 0,
4379 	MC_TARGET_PAGE,
4380 	MC_TARGET_SWAP,
4381 };
4382 
4383 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4384 						unsigned long addr, pte_t ptent)
4385 {
4386 	struct page *page = vm_normal_page(vma, addr, ptent);
4387 
4388 	if (!page || !page_mapped(page))
4389 		return NULL;
4390 	if (PageAnon(page)) {
4391 		if (!(mc.flags & MOVE_ANON))
4392 			return NULL;
4393 	} else {
4394 		if (!(mc.flags & MOVE_FILE))
4395 			return NULL;
4396 	}
4397 	if (!get_page_unless_zero(page))
4398 		return NULL;
4399 
4400 	return page;
4401 }
4402 
4403 #ifdef CONFIG_SWAP
4404 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4405 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4406 {
4407 	struct page *page = NULL;
4408 	swp_entry_t ent = pte_to_swp_entry(ptent);
4409 
4410 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4411 		return NULL;
4412 	/*
4413 	 * Because lookup_swap_cache() updates some statistics counter,
4414 	 * we call find_get_page() with swapper_space directly.
4415 	 */
4416 	page = find_get_page(swap_address_space(ent), ent.val);
4417 	if (do_memsw_account())
4418 		entry->val = ent.val;
4419 
4420 	return page;
4421 }
4422 #else
4423 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4424 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4425 {
4426 	return NULL;
4427 }
4428 #endif
4429 
4430 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4431 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4432 {
4433 	struct page *page = NULL;
4434 	struct address_space *mapping;
4435 	pgoff_t pgoff;
4436 
4437 	if (!vma->vm_file) /* anonymous vma */
4438 		return NULL;
4439 	if (!(mc.flags & MOVE_FILE))
4440 		return NULL;
4441 
4442 	mapping = vma->vm_file->f_mapping;
4443 	pgoff = linear_page_index(vma, addr);
4444 
4445 	/* page is moved even if it's not RSS of this task(page-faulted). */
4446 #ifdef CONFIG_SWAP
4447 	/* shmem/tmpfs may report page out on swap: account for that too. */
4448 	if (shmem_mapping(mapping)) {
4449 		page = find_get_entry(mapping, pgoff);
4450 		if (radix_tree_exceptional_entry(page)) {
4451 			swp_entry_t swp = radix_to_swp_entry(page);
4452 			if (do_memsw_account())
4453 				*entry = swp;
4454 			page = find_get_page(swap_address_space(swp), swp.val);
4455 		}
4456 	} else
4457 		page = find_get_page(mapping, pgoff);
4458 #else
4459 	page = find_get_page(mapping, pgoff);
4460 #endif
4461 	return page;
4462 }
4463 
4464 /**
4465  * mem_cgroup_move_account - move account of the page
4466  * @page: the page
4467  * @nr_pages: number of regular pages (>1 for huge pages)
4468  * @from: mem_cgroup which the page is moved from.
4469  * @to:	mem_cgroup which the page is moved to. @from != @to.
4470  *
4471  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4472  *
4473  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4474  * from old cgroup.
4475  */
4476 static int mem_cgroup_move_account(struct page *page,
4477 				   bool compound,
4478 				   struct mem_cgroup *from,
4479 				   struct mem_cgroup *to)
4480 {
4481 	unsigned long flags;
4482 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4483 	int ret;
4484 	bool anon;
4485 
4486 	VM_BUG_ON(from == to);
4487 	VM_BUG_ON_PAGE(PageLRU(page), page);
4488 	VM_BUG_ON(compound && !PageTransHuge(page));
4489 
4490 	/*
4491 	 * Prevent mem_cgroup_replace_page() from looking at
4492 	 * page->mem_cgroup of its source page while we change it.
4493 	 */
4494 	ret = -EBUSY;
4495 	if (!trylock_page(page))
4496 		goto out;
4497 
4498 	ret = -EINVAL;
4499 	if (page->mem_cgroup != from)
4500 		goto out_unlock;
4501 
4502 	anon = PageAnon(page);
4503 
4504 	spin_lock_irqsave(&from->move_lock, flags);
4505 
4506 	if (!anon && page_mapped(page)) {
4507 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4508 			       nr_pages);
4509 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4510 			       nr_pages);
4511 	}
4512 
4513 	/*
4514 	 * move_lock grabbed above and caller set from->moving_account, so
4515 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4516 	 * So mapping should be stable for dirty pages.
4517 	 */
4518 	if (!anon && PageDirty(page)) {
4519 		struct address_space *mapping = page_mapping(page);
4520 
4521 		if (mapping_cap_account_dirty(mapping)) {
4522 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4523 				       nr_pages);
4524 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4525 				       nr_pages);
4526 		}
4527 	}
4528 
4529 	if (PageWriteback(page)) {
4530 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4531 			       nr_pages);
4532 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4533 			       nr_pages);
4534 	}
4535 
4536 	/*
4537 	 * It is safe to change page->mem_cgroup here because the page
4538 	 * is referenced, charged, and isolated - we can't race with
4539 	 * uncharging, charging, migration, or LRU putback.
4540 	 */
4541 
4542 	/* caller should have done css_get */
4543 	page->mem_cgroup = to;
4544 	spin_unlock_irqrestore(&from->move_lock, flags);
4545 
4546 	ret = 0;
4547 
4548 	local_irq_disable();
4549 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4550 	memcg_check_events(to, page);
4551 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4552 	memcg_check_events(from, page);
4553 	local_irq_enable();
4554 out_unlock:
4555 	unlock_page(page);
4556 out:
4557 	return ret;
4558 }
4559 
4560 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4561 		unsigned long addr, pte_t ptent, union mc_target *target)
4562 {
4563 	struct page *page = NULL;
4564 	enum mc_target_type ret = MC_TARGET_NONE;
4565 	swp_entry_t ent = { .val = 0 };
4566 
4567 	if (pte_present(ptent))
4568 		page = mc_handle_present_pte(vma, addr, ptent);
4569 	else if (is_swap_pte(ptent))
4570 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4571 	else if (pte_none(ptent))
4572 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4573 
4574 	if (!page && !ent.val)
4575 		return ret;
4576 	if (page) {
4577 		/*
4578 		 * Do only loose check w/o serialization.
4579 		 * mem_cgroup_move_account() checks the page is valid or
4580 		 * not under LRU exclusion.
4581 		 */
4582 		if (page->mem_cgroup == mc.from) {
4583 			ret = MC_TARGET_PAGE;
4584 			if (target)
4585 				target->page = page;
4586 		}
4587 		if (!ret || !target)
4588 			put_page(page);
4589 	}
4590 	/* There is a swap entry and a page doesn't exist or isn't charged */
4591 	if (ent.val && !ret &&
4592 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4593 		ret = MC_TARGET_SWAP;
4594 		if (target)
4595 			target->ent = ent;
4596 	}
4597 	return ret;
4598 }
4599 
4600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4601 /*
4602  * We don't consider swapping or file mapped pages because THP does not
4603  * support them for now.
4604  * Caller should make sure that pmd_trans_huge(pmd) is true.
4605  */
4606 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4607 		unsigned long addr, pmd_t pmd, union mc_target *target)
4608 {
4609 	struct page *page = NULL;
4610 	enum mc_target_type ret = MC_TARGET_NONE;
4611 
4612 	page = pmd_page(pmd);
4613 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4614 	if (!(mc.flags & MOVE_ANON))
4615 		return ret;
4616 	if (page->mem_cgroup == mc.from) {
4617 		ret = MC_TARGET_PAGE;
4618 		if (target) {
4619 			get_page(page);
4620 			target->page = page;
4621 		}
4622 	}
4623 	return ret;
4624 }
4625 #else
4626 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4627 		unsigned long addr, pmd_t pmd, union mc_target *target)
4628 {
4629 	return MC_TARGET_NONE;
4630 }
4631 #endif
4632 
4633 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4634 					unsigned long addr, unsigned long end,
4635 					struct mm_walk *walk)
4636 {
4637 	struct vm_area_struct *vma = walk->vma;
4638 	pte_t *pte;
4639 	spinlock_t *ptl;
4640 
4641 	ptl = pmd_trans_huge_lock(pmd, vma);
4642 	if (ptl) {
4643 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4644 			mc.precharge += HPAGE_PMD_NR;
4645 		spin_unlock(ptl);
4646 		return 0;
4647 	}
4648 
4649 	if (pmd_trans_unstable(pmd))
4650 		return 0;
4651 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4652 	for (; addr != end; pte++, addr += PAGE_SIZE)
4653 		if (get_mctgt_type(vma, addr, *pte, NULL))
4654 			mc.precharge++;	/* increment precharge temporarily */
4655 	pte_unmap_unlock(pte - 1, ptl);
4656 	cond_resched();
4657 
4658 	return 0;
4659 }
4660 
4661 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4662 {
4663 	unsigned long precharge;
4664 
4665 	struct mm_walk mem_cgroup_count_precharge_walk = {
4666 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4667 		.mm = mm,
4668 	};
4669 	down_read(&mm->mmap_sem);
4670 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4671 	up_read(&mm->mmap_sem);
4672 
4673 	precharge = mc.precharge;
4674 	mc.precharge = 0;
4675 
4676 	return precharge;
4677 }
4678 
4679 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4680 {
4681 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4682 
4683 	VM_BUG_ON(mc.moving_task);
4684 	mc.moving_task = current;
4685 	return mem_cgroup_do_precharge(precharge);
4686 }
4687 
4688 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4689 static void __mem_cgroup_clear_mc(void)
4690 {
4691 	struct mem_cgroup *from = mc.from;
4692 	struct mem_cgroup *to = mc.to;
4693 
4694 	/* we must uncharge all the leftover precharges from mc.to */
4695 	if (mc.precharge) {
4696 		cancel_charge(mc.to, mc.precharge);
4697 		mc.precharge = 0;
4698 	}
4699 	/*
4700 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4701 	 * we must uncharge here.
4702 	 */
4703 	if (mc.moved_charge) {
4704 		cancel_charge(mc.from, mc.moved_charge);
4705 		mc.moved_charge = 0;
4706 	}
4707 	/* we must fixup refcnts and charges */
4708 	if (mc.moved_swap) {
4709 		/* uncharge swap account from the old cgroup */
4710 		if (!mem_cgroup_is_root(mc.from))
4711 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4712 
4713 		/*
4714 		 * we charged both to->memory and to->memsw, so we
4715 		 * should uncharge to->memory.
4716 		 */
4717 		if (!mem_cgroup_is_root(mc.to))
4718 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4719 
4720 		css_put_many(&mc.from->css, mc.moved_swap);
4721 
4722 		/* we've already done css_get(mc.to) */
4723 		mc.moved_swap = 0;
4724 	}
4725 	memcg_oom_recover(from);
4726 	memcg_oom_recover(to);
4727 	wake_up_all(&mc.waitq);
4728 }
4729 
4730 static void mem_cgroup_clear_mc(void)
4731 {
4732 	/*
4733 	 * we must clear moving_task before waking up waiters at the end of
4734 	 * task migration.
4735 	 */
4736 	mc.moving_task = NULL;
4737 	__mem_cgroup_clear_mc();
4738 	spin_lock(&mc.lock);
4739 	mc.from = NULL;
4740 	mc.to = NULL;
4741 	spin_unlock(&mc.lock);
4742 }
4743 
4744 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4745 {
4746 	struct cgroup_subsys_state *css;
4747 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4748 	struct mem_cgroup *from;
4749 	struct task_struct *leader, *p;
4750 	struct mm_struct *mm;
4751 	unsigned long move_flags;
4752 	int ret = 0;
4753 
4754 	/* charge immigration isn't supported on the default hierarchy */
4755 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4756 		return 0;
4757 
4758 	/*
4759 	 * Multi-process migrations only happen on the default hierarchy
4760 	 * where charge immigration is not used.  Perform charge
4761 	 * immigration if @tset contains a leader and whine if there are
4762 	 * multiple.
4763 	 */
4764 	p = NULL;
4765 	cgroup_taskset_for_each_leader(leader, css, tset) {
4766 		WARN_ON_ONCE(p);
4767 		p = leader;
4768 		memcg = mem_cgroup_from_css(css);
4769 	}
4770 	if (!p)
4771 		return 0;
4772 
4773 	/*
4774 	 * We are now commited to this value whatever it is. Changes in this
4775 	 * tunable will only affect upcoming migrations, not the current one.
4776 	 * So we need to save it, and keep it going.
4777 	 */
4778 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4779 	if (!move_flags)
4780 		return 0;
4781 
4782 	from = mem_cgroup_from_task(p);
4783 
4784 	VM_BUG_ON(from == memcg);
4785 
4786 	mm = get_task_mm(p);
4787 	if (!mm)
4788 		return 0;
4789 	/* We move charges only when we move a owner of the mm */
4790 	if (mm->owner == p) {
4791 		VM_BUG_ON(mc.from);
4792 		VM_BUG_ON(mc.to);
4793 		VM_BUG_ON(mc.precharge);
4794 		VM_BUG_ON(mc.moved_charge);
4795 		VM_BUG_ON(mc.moved_swap);
4796 
4797 		spin_lock(&mc.lock);
4798 		mc.from = from;
4799 		mc.to = memcg;
4800 		mc.flags = move_flags;
4801 		spin_unlock(&mc.lock);
4802 		/* We set mc.moving_task later */
4803 
4804 		ret = mem_cgroup_precharge_mc(mm);
4805 		if (ret)
4806 			mem_cgroup_clear_mc();
4807 	}
4808 	mmput(mm);
4809 	return ret;
4810 }
4811 
4812 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4813 {
4814 	if (mc.to)
4815 		mem_cgroup_clear_mc();
4816 }
4817 
4818 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4819 				unsigned long addr, unsigned long end,
4820 				struct mm_walk *walk)
4821 {
4822 	int ret = 0;
4823 	struct vm_area_struct *vma = walk->vma;
4824 	pte_t *pte;
4825 	spinlock_t *ptl;
4826 	enum mc_target_type target_type;
4827 	union mc_target target;
4828 	struct page *page;
4829 
4830 	ptl = pmd_trans_huge_lock(pmd, vma);
4831 	if (ptl) {
4832 		if (mc.precharge < HPAGE_PMD_NR) {
4833 			spin_unlock(ptl);
4834 			return 0;
4835 		}
4836 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4837 		if (target_type == MC_TARGET_PAGE) {
4838 			page = target.page;
4839 			if (!isolate_lru_page(page)) {
4840 				if (!mem_cgroup_move_account(page, true,
4841 							     mc.from, mc.to)) {
4842 					mc.precharge -= HPAGE_PMD_NR;
4843 					mc.moved_charge += HPAGE_PMD_NR;
4844 				}
4845 				putback_lru_page(page);
4846 			}
4847 			put_page(page);
4848 		}
4849 		spin_unlock(ptl);
4850 		return 0;
4851 	}
4852 
4853 	if (pmd_trans_unstable(pmd))
4854 		return 0;
4855 retry:
4856 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4857 	for (; addr != end; addr += PAGE_SIZE) {
4858 		pte_t ptent = *(pte++);
4859 		swp_entry_t ent;
4860 
4861 		if (!mc.precharge)
4862 			break;
4863 
4864 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4865 		case MC_TARGET_PAGE:
4866 			page = target.page;
4867 			/*
4868 			 * We can have a part of the split pmd here. Moving it
4869 			 * can be done but it would be too convoluted so simply
4870 			 * ignore such a partial THP and keep it in original
4871 			 * memcg. There should be somebody mapping the head.
4872 			 */
4873 			if (PageTransCompound(page))
4874 				goto put;
4875 			if (isolate_lru_page(page))
4876 				goto put;
4877 			if (!mem_cgroup_move_account(page, false,
4878 						mc.from, mc.to)) {
4879 				mc.precharge--;
4880 				/* we uncharge from mc.from later. */
4881 				mc.moved_charge++;
4882 			}
4883 			putback_lru_page(page);
4884 put:			/* get_mctgt_type() gets the page */
4885 			put_page(page);
4886 			break;
4887 		case MC_TARGET_SWAP:
4888 			ent = target.ent;
4889 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4890 				mc.precharge--;
4891 				/* we fixup refcnts and charges later. */
4892 				mc.moved_swap++;
4893 			}
4894 			break;
4895 		default:
4896 			break;
4897 		}
4898 	}
4899 	pte_unmap_unlock(pte - 1, ptl);
4900 	cond_resched();
4901 
4902 	if (addr != end) {
4903 		/*
4904 		 * We have consumed all precharges we got in can_attach().
4905 		 * We try charge one by one, but don't do any additional
4906 		 * charges to mc.to if we have failed in charge once in attach()
4907 		 * phase.
4908 		 */
4909 		ret = mem_cgroup_do_precharge(1);
4910 		if (!ret)
4911 			goto retry;
4912 	}
4913 
4914 	return ret;
4915 }
4916 
4917 static void mem_cgroup_move_charge(struct mm_struct *mm)
4918 {
4919 	struct mm_walk mem_cgroup_move_charge_walk = {
4920 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4921 		.mm = mm,
4922 	};
4923 
4924 	lru_add_drain_all();
4925 	/*
4926 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4927 	 * move_lock while we're moving its pages to another memcg.
4928 	 * Then wait for already started RCU-only updates to finish.
4929 	 */
4930 	atomic_inc(&mc.from->moving_account);
4931 	synchronize_rcu();
4932 retry:
4933 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4934 		/*
4935 		 * Someone who are holding the mmap_sem might be waiting in
4936 		 * waitq. So we cancel all extra charges, wake up all waiters,
4937 		 * and retry. Because we cancel precharges, we might not be able
4938 		 * to move enough charges, but moving charge is a best-effort
4939 		 * feature anyway, so it wouldn't be a big problem.
4940 		 */
4941 		__mem_cgroup_clear_mc();
4942 		cond_resched();
4943 		goto retry;
4944 	}
4945 	/*
4946 	 * When we have consumed all precharges and failed in doing
4947 	 * additional charge, the page walk just aborts.
4948 	 */
4949 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4950 	up_read(&mm->mmap_sem);
4951 	atomic_dec(&mc.from->moving_account);
4952 }
4953 
4954 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4955 {
4956 	struct cgroup_subsys_state *css;
4957 	struct task_struct *p = cgroup_taskset_first(tset, &css);
4958 	struct mm_struct *mm = get_task_mm(p);
4959 
4960 	if (mm) {
4961 		if (mc.to)
4962 			mem_cgroup_move_charge(mm);
4963 		mmput(mm);
4964 	}
4965 	if (mc.to)
4966 		mem_cgroup_clear_mc();
4967 }
4968 #else	/* !CONFIG_MMU */
4969 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4970 {
4971 	return 0;
4972 }
4973 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4974 {
4975 }
4976 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4977 {
4978 }
4979 #endif
4980 
4981 /*
4982  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4983  * to verify whether we're attached to the default hierarchy on each mount
4984  * attempt.
4985  */
4986 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4987 {
4988 	/*
4989 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4990 	 * guarantees that @root doesn't have any children, so turning it
4991 	 * on for the root memcg is enough.
4992 	 */
4993 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4994 		root_mem_cgroup->use_hierarchy = true;
4995 	else
4996 		root_mem_cgroup->use_hierarchy = false;
4997 }
4998 
4999 static u64 memory_current_read(struct cgroup_subsys_state *css,
5000 			       struct cftype *cft)
5001 {
5002 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5003 
5004 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5005 }
5006 
5007 static int memory_low_show(struct seq_file *m, void *v)
5008 {
5009 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5010 	unsigned long low = READ_ONCE(memcg->low);
5011 
5012 	if (low == PAGE_COUNTER_MAX)
5013 		seq_puts(m, "max\n");
5014 	else
5015 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5016 
5017 	return 0;
5018 }
5019 
5020 static ssize_t memory_low_write(struct kernfs_open_file *of,
5021 				char *buf, size_t nbytes, loff_t off)
5022 {
5023 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5024 	unsigned long low;
5025 	int err;
5026 
5027 	buf = strstrip(buf);
5028 	err = page_counter_memparse(buf, "max", &low);
5029 	if (err)
5030 		return err;
5031 
5032 	memcg->low = low;
5033 
5034 	return nbytes;
5035 }
5036 
5037 static int memory_high_show(struct seq_file *m, void *v)
5038 {
5039 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5040 	unsigned long high = READ_ONCE(memcg->high);
5041 
5042 	if (high == PAGE_COUNTER_MAX)
5043 		seq_puts(m, "max\n");
5044 	else
5045 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5046 
5047 	return 0;
5048 }
5049 
5050 static ssize_t memory_high_write(struct kernfs_open_file *of,
5051 				 char *buf, size_t nbytes, loff_t off)
5052 {
5053 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5054 	unsigned long high;
5055 	int err;
5056 
5057 	buf = strstrip(buf);
5058 	err = page_counter_memparse(buf, "max", &high);
5059 	if (err)
5060 		return err;
5061 
5062 	memcg->high = high;
5063 
5064 	memcg_wb_domain_size_changed(memcg);
5065 	return nbytes;
5066 }
5067 
5068 static int memory_max_show(struct seq_file *m, void *v)
5069 {
5070 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5071 	unsigned long max = READ_ONCE(memcg->memory.limit);
5072 
5073 	if (max == PAGE_COUNTER_MAX)
5074 		seq_puts(m, "max\n");
5075 	else
5076 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5077 
5078 	return 0;
5079 }
5080 
5081 static ssize_t memory_max_write(struct kernfs_open_file *of,
5082 				char *buf, size_t nbytes, loff_t off)
5083 {
5084 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5085 	unsigned long max;
5086 	int err;
5087 
5088 	buf = strstrip(buf);
5089 	err = page_counter_memparse(buf, "max", &max);
5090 	if (err)
5091 		return err;
5092 
5093 	err = mem_cgroup_resize_limit(memcg, max);
5094 	if (err)
5095 		return err;
5096 
5097 	memcg_wb_domain_size_changed(memcg);
5098 	return nbytes;
5099 }
5100 
5101 static int memory_events_show(struct seq_file *m, void *v)
5102 {
5103 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5104 
5105 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5106 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5107 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5108 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5109 
5110 	return 0;
5111 }
5112 
5113 static int memory_stat_show(struct seq_file *m, void *v)
5114 {
5115 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5116 	int i;
5117 
5118 	/*
5119 	 * Provide statistics on the state of the memory subsystem as
5120 	 * well as cumulative event counters that show past behavior.
5121 	 *
5122 	 * This list is ordered following a combination of these gradients:
5123 	 * 1) generic big picture -> specifics and details
5124 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5125 	 *
5126 	 * Current memory state:
5127 	 */
5128 
5129 	seq_printf(m, "anon %llu\n",
5130 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE);
5131 	seq_printf(m, "file %llu\n",
5132 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE);
5133 	seq_printf(m, "sock %llu\n",
5134 		   (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE);
5135 
5136 	seq_printf(m, "file_mapped %llu\n",
5137 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) *
5138 		   PAGE_SIZE);
5139 	seq_printf(m, "file_dirty %llu\n",
5140 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) *
5141 		   PAGE_SIZE);
5142 	seq_printf(m, "file_writeback %llu\n",
5143 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) *
5144 		   PAGE_SIZE);
5145 
5146 	for (i = 0; i < NR_LRU_LISTS; i++) {
5147 		struct mem_cgroup *mi;
5148 		unsigned long val = 0;
5149 
5150 		for_each_mem_cgroup_tree(mi, memcg)
5151 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5152 		seq_printf(m, "%s %llu\n",
5153 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5154 	}
5155 
5156 	/* Accumulated memory events */
5157 
5158 	seq_printf(m, "pgfault %lu\n",
5159 		   tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT));
5160 	seq_printf(m, "pgmajfault %lu\n",
5161 		   tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT));
5162 
5163 	return 0;
5164 }
5165 
5166 static struct cftype memory_files[] = {
5167 	{
5168 		.name = "current",
5169 		.flags = CFTYPE_NOT_ON_ROOT,
5170 		.read_u64 = memory_current_read,
5171 	},
5172 	{
5173 		.name = "low",
5174 		.flags = CFTYPE_NOT_ON_ROOT,
5175 		.seq_show = memory_low_show,
5176 		.write = memory_low_write,
5177 	},
5178 	{
5179 		.name = "high",
5180 		.flags = CFTYPE_NOT_ON_ROOT,
5181 		.seq_show = memory_high_show,
5182 		.write = memory_high_write,
5183 	},
5184 	{
5185 		.name = "max",
5186 		.flags = CFTYPE_NOT_ON_ROOT,
5187 		.seq_show = memory_max_show,
5188 		.write = memory_max_write,
5189 	},
5190 	{
5191 		.name = "events",
5192 		.flags = CFTYPE_NOT_ON_ROOT,
5193 		.file_offset = offsetof(struct mem_cgroup, events_file),
5194 		.seq_show = memory_events_show,
5195 	},
5196 	{
5197 		.name = "stat",
5198 		.flags = CFTYPE_NOT_ON_ROOT,
5199 		.seq_show = memory_stat_show,
5200 	},
5201 	{ }	/* terminate */
5202 };
5203 
5204 struct cgroup_subsys memory_cgrp_subsys = {
5205 	.css_alloc = mem_cgroup_css_alloc,
5206 	.css_online = mem_cgroup_css_online,
5207 	.css_offline = mem_cgroup_css_offline,
5208 	.css_released = mem_cgroup_css_released,
5209 	.css_free = mem_cgroup_css_free,
5210 	.css_reset = mem_cgroup_css_reset,
5211 	.can_attach = mem_cgroup_can_attach,
5212 	.cancel_attach = mem_cgroup_cancel_attach,
5213 	.attach = mem_cgroup_move_task,
5214 	.bind = mem_cgroup_bind,
5215 	.dfl_cftypes = memory_files,
5216 	.legacy_cftypes = mem_cgroup_legacy_files,
5217 	.early_init = 0,
5218 };
5219 
5220 /**
5221  * mem_cgroup_low - check if memory consumption is below the normal range
5222  * @root: the highest ancestor to consider
5223  * @memcg: the memory cgroup to check
5224  *
5225  * Returns %true if memory consumption of @memcg, and that of all
5226  * configurable ancestors up to @root, is below the normal range.
5227  */
5228 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5229 {
5230 	if (mem_cgroup_disabled())
5231 		return false;
5232 
5233 	/*
5234 	 * The toplevel group doesn't have a configurable range, so
5235 	 * it's never low when looked at directly, and it is not
5236 	 * considered an ancestor when assessing the hierarchy.
5237 	 */
5238 
5239 	if (memcg == root_mem_cgroup)
5240 		return false;
5241 
5242 	if (page_counter_read(&memcg->memory) >= memcg->low)
5243 		return false;
5244 
5245 	while (memcg != root) {
5246 		memcg = parent_mem_cgroup(memcg);
5247 
5248 		if (memcg == root_mem_cgroup)
5249 			break;
5250 
5251 		if (page_counter_read(&memcg->memory) >= memcg->low)
5252 			return false;
5253 	}
5254 	return true;
5255 }
5256 
5257 /**
5258  * mem_cgroup_try_charge - try charging a page
5259  * @page: page to charge
5260  * @mm: mm context of the victim
5261  * @gfp_mask: reclaim mode
5262  * @memcgp: charged memcg return
5263  *
5264  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5265  * pages according to @gfp_mask if necessary.
5266  *
5267  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5268  * Otherwise, an error code is returned.
5269  *
5270  * After page->mapping has been set up, the caller must finalize the
5271  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5272  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5273  */
5274 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5275 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5276 			  bool compound)
5277 {
5278 	struct mem_cgroup *memcg = NULL;
5279 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5280 	int ret = 0;
5281 
5282 	if (mem_cgroup_disabled())
5283 		goto out;
5284 
5285 	if (PageSwapCache(page)) {
5286 		/*
5287 		 * Every swap fault against a single page tries to charge the
5288 		 * page, bail as early as possible.  shmem_unuse() encounters
5289 		 * already charged pages, too.  The USED bit is protected by
5290 		 * the page lock, which serializes swap cache removal, which
5291 		 * in turn serializes uncharging.
5292 		 */
5293 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5294 		if (page->mem_cgroup)
5295 			goto out;
5296 
5297 		if (do_swap_account) {
5298 			swp_entry_t ent = { .val = page_private(page), };
5299 			unsigned short id = lookup_swap_cgroup_id(ent);
5300 
5301 			rcu_read_lock();
5302 			memcg = mem_cgroup_from_id(id);
5303 			if (memcg && !css_tryget_online(&memcg->css))
5304 				memcg = NULL;
5305 			rcu_read_unlock();
5306 		}
5307 	}
5308 
5309 	if (!memcg)
5310 		memcg = get_mem_cgroup_from_mm(mm);
5311 
5312 	ret = try_charge(memcg, gfp_mask, nr_pages);
5313 
5314 	css_put(&memcg->css);
5315 out:
5316 	*memcgp = memcg;
5317 	return ret;
5318 }
5319 
5320 /**
5321  * mem_cgroup_commit_charge - commit a page charge
5322  * @page: page to charge
5323  * @memcg: memcg to charge the page to
5324  * @lrucare: page might be on LRU already
5325  *
5326  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5327  * after page->mapping has been set up.  This must happen atomically
5328  * as part of the page instantiation, i.e. under the page table lock
5329  * for anonymous pages, under the page lock for page and swap cache.
5330  *
5331  * In addition, the page must not be on the LRU during the commit, to
5332  * prevent racing with task migration.  If it might be, use @lrucare.
5333  *
5334  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5335  */
5336 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5337 			      bool lrucare, bool compound)
5338 {
5339 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5340 
5341 	VM_BUG_ON_PAGE(!page->mapping, page);
5342 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5343 
5344 	if (mem_cgroup_disabled())
5345 		return;
5346 	/*
5347 	 * Swap faults will attempt to charge the same page multiple
5348 	 * times.  But reuse_swap_page() might have removed the page
5349 	 * from swapcache already, so we can't check PageSwapCache().
5350 	 */
5351 	if (!memcg)
5352 		return;
5353 
5354 	commit_charge(page, memcg, lrucare);
5355 
5356 	local_irq_disable();
5357 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5358 	memcg_check_events(memcg, page);
5359 	local_irq_enable();
5360 
5361 	if (do_memsw_account() && PageSwapCache(page)) {
5362 		swp_entry_t entry = { .val = page_private(page) };
5363 		/*
5364 		 * The swap entry might not get freed for a long time,
5365 		 * let's not wait for it.  The page already received a
5366 		 * memory+swap charge, drop the swap entry duplicate.
5367 		 */
5368 		mem_cgroup_uncharge_swap(entry);
5369 	}
5370 }
5371 
5372 /**
5373  * mem_cgroup_cancel_charge - cancel a page charge
5374  * @page: page to charge
5375  * @memcg: memcg to charge the page to
5376  *
5377  * Cancel a charge transaction started by mem_cgroup_try_charge().
5378  */
5379 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5380 		bool compound)
5381 {
5382 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5383 
5384 	if (mem_cgroup_disabled())
5385 		return;
5386 	/*
5387 	 * Swap faults will attempt to charge the same page multiple
5388 	 * times.  But reuse_swap_page() might have removed the page
5389 	 * from swapcache already, so we can't check PageSwapCache().
5390 	 */
5391 	if (!memcg)
5392 		return;
5393 
5394 	cancel_charge(memcg, nr_pages);
5395 }
5396 
5397 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5398 			   unsigned long nr_anon, unsigned long nr_file,
5399 			   unsigned long nr_huge, struct page *dummy_page)
5400 {
5401 	unsigned long nr_pages = nr_anon + nr_file;
5402 	unsigned long flags;
5403 
5404 	if (!mem_cgroup_is_root(memcg)) {
5405 		page_counter_uncharge(&memcg->memory, nr_pages);
5406 		if (do_memsw_account())
5407 			page_counter_uncharge(&memcg->memsw, nr_pages);
5408 		memcg_oom_recover(memcg);
5409 	}
5410 
5411 	local_irq_save(flags);
5412 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5413 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5414 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5415 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5416 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5417 	memcg_check_events(memcg, dummy_page);
5418 	local_irq_restore(flags);
5419 
5420 	if (!mem_cgroup_is_root(memcg))
5421 		css_put_many(&memcg->css, nr_pages);
5422 }
5423 
5424 static void uncharge_list(struct list_head *page_list)
5425 {
5426 	struct mem_cgroup *memcg = NULL;
5427 	unsigned long nr_anon = 0;
5428 	unsigned long nr_file = 0;
5429 	unsigned long nr_huge = 0;
5430 	unsigned long pgpgout = 0;
5431 	struct list_head *next;
5432 	struct page *page;
5433 
5434 	next = page_list->next;
5435 	do {
5436 		unsigned int nr_pages = 1;
5437 
5438 		page = list_entry(next, struct page, lru);
5439 		next = page->lru.next;
5440 
5441 		VM_BUG_ON_PAGE(PageLRU(page), page);
5442 		VM_BUG_ON_PAGE(page_count(page), page);
5443 
5444 		if (!page->mem_cgroup)
5445 			continue;
5446 
5447 		/*
5448 		 * Nobody should be changing or seriously looking at
5449 		 * page->mem_cgroup at this point, we have fully
5450 		 * exclusive access to the page.
5451 		 */
5452 
5453 		if (memcg != page->mem_cgroup) {
5454 			if (memcg) {
5455 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5456 					       nr_huge, page);
5457 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5458 			}
5459 			memcg = page->mem_cgroup;
5460 		}
5461 
5462 		if (PageTransHuge(page)) {
5463 			nr_pages <<= compound_order(page);
5464 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5465 			nr_huge += nr_pages;
5466 		}
5467 
5468 		if (PageAnon(page))
5469 			nr_anon += nr_pages;
5470 		else
5471 			nr_file += nr_pages;
5472 
5473 		page->mem_cgroup = NULL;
5474 
5475 		pgpgout++;
5476 	} while (next != page_list);
5477 
5478 	if (memcg)
5479 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5480 			       nr_huge, page);
5481 }
5482 
5483 /**
5484  * mem_cgroup_uncharge - uncharge a page
5485  * @page: page to uncharge
5486  *
5487  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5488  * mem_cgroup_commit_charge().
5489  */
5490 void mem_cgroup_uncharge(struct page *page)
5491 {
5492 	if (mem_cgroup_disabled())
5493 		return;
5494 
5495 	/* Don't touch page->lru of any random page, pre-check: */
5496 	if (!page->mem_cgroup)
5497 		return;
5498 
5499 	INIT_LIST_HEAD(&page->lru);
5500 	uncharge_list(&page->lru);
5501 }
5502 
5503 /**
5504  * mem_cgroup_uncharge_list - uncharge a list of page
5505  * @page_list: list of pages to uncharge
5506  *
5507  * Uncharge a list of pages previously charged with
5508  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5509  */
5510 void mem_cgroup_uncharge_list(struct list_head *page_list)
5511 {
5512 	if (mem_cgroup_disabled())
5513 		return;
5514 
5515 	if (!list_empty(page_list))
5516 		uncharge_list(page_list);
5517 }
5518 
5519 /**
5520  * mem_cgroup_replace_page - migrate a charge to another page
5521  * @oldpage: currently charged page
5522  * @newpage: page to transfer the charge to
5523  *
5524  * Migrate the charge from @oldpage to @newpage.
5525  *
5526  * Both pages must be locked, @newpage->mapping must be set up.
5527  * Either or both pages might be on the LRU already.
5528  */
5529 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5530 {
5531 	struct mem_cgroup *memcg;
5532 	unsigned int nr_pages;
5533 	bool compound;
5534 
5535 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5536 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5537 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5538 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5539 		       newpage);
5540 
5541 	if (mem_cgroup_disabled())
5542 		return;
5543 
5544 	/* Page cache replacement: new page already charged? */
5545 	if (newpage->mem_cgroup)
5546 		return;
5547 
5548 	/* Swapcache readahead pages can get replaced before being charged */
5549 	memcg = oldpage->mem_cgroup;
5550 	if (!memcg)
5551 		return;
5552 
5553 	/* Force-charge the new page. The old one will be freed soon */
5554 	compound = PageTransHuge(newpage);
5555 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5556 
5557 	page_counter_charge(&memcg->memory, nr_pages);
5558 	if (do_memsw_account())
5559 		page_counter_charge(&memcg->memsw, nr_pages);
5560 	css_get_many(&memcg->css, nr_pages);
5561 
5562 	commit_charge(newpage, memcg, true);
5563 
5564 	local_irq_disable();
5565 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5566 	memcg_check_events(memcg, newpage);
5567 	local_irq_enable();
5568 }
5569 
5570 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5571 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5572 
5573 void sock_update_memcg(struct sock *sk)
5574 {
5575 	struct mem_cgroup *memcg;
5576 
5577 	/* Socket cloning can throw us here with sk_cgrp already
5578 	 * filled. It won't however, necessarily happen from
5579 	 * process context. So the test for root memcg given
5580 	 * the current task's memcg won't help us in this case.
5581 	 *
5582 	 * Respecting the original socket's memcg is a better
5583 	 * decision in this case.
5584 	 */
5585 	if (sk->sk_memcg) {
5586 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5587 		css_get(&sk->sk_memcg->css);
5588 		return;
5589 	}
5590 
5591 	rcu_read_lock();
5592 	memcg = mem_cgroup_from_task(current);
5593 	if (memcg == root_mem_cgroup)
5594 		goto out;
5595 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5596 		goto out;
5597 	if (css_tryget_online(&memcg->css))
5598 		sk->sk_memcg = memcg;
5599 out:
5600 	rcu_read_unlock();
5601 }
5602 EXPORT_SYMBOL(sock_update_memcg);
5603 
5604 void sock_release_memcg(struct sock *sk)
5605 {
5606 	WARN_ON(!sk->sk_memcg);
5607 	css_put(&sk->sk_memcg->css);
5608 }
5609 
5610 /**
5611  * mem_cgroup_charge_skmem - charge socket memory
5612  * @memcg: memcg to charge
5613  * @nr_pages: number of pages to charge
5614  *
5615  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5616  * @memcg's configured limit, %false if the charge had to be forced.
5617  */
5618 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5619 {
5620 	gfp_t gfp_mask = GFP_KERNEL;
5621 
5622 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5623 		struct page_counter *fail;
5624 
5625 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5626 			memcg->tcpmem_pressure = 0;
5627 			return true;
5628 		}
5629 		page_counter_charge(&memcg->tcpmem, nr_pages);
5630 		memcg->tcpmem_pressure = 1;
5631 		return false;
5632 	}
5633 
5634 	/* Don't block in the packet receive path */
5635 	if (in_softirq())
5636 		gfp_mask = GFP_NOWAIT;
5637 
5638 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5639 
5640 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5641 		return true;
5642 
5643 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5644 	return false;
5645 }
5646 
5647 /**
5648  * mem_cgroup_uncharge_skmem - uncharge socket memory
5649  * @memcg - memcg to uncharge
5650  * @nr_pages - number of pages to uncharge
5651  */
5652 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5653 {
5654 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5655 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5656 		return;
5657 	}
5658 
5659 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5660 
5661 	page_counter_uncharge(&memcg->memory, nr_pages);
5662 	css_put_many(&memcg->css, nr_pages);
5663 }
5664 
5665 static int __init cgroup_memory(char *s)
5666 {
5667 	char *token;
5668 
5669 	while ((token = strsep(&s, ",")) != NULL) {
5670 		if (!*token)
5671 			continue;
5672 		if (!strcmp(token, "nosocket"))
5673 			cgroup_memory_nosocket = true;
5674 		if (!strcmp(token, "nokmem"))
5675 			cgroup_memory_nokmem = true;
5676 	}
5677 	return 0;
5678 }
5679 __setup("cgroup.memory=", cgroup_memory);
5680 
5681 /*
5682  * subsys_initcall() for memory controller.
5683  *
5684  * Some parts like hotcpu_notifier() have to be initialized from this context
5685  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5686  * everything that doesn't depend on a specific mem_cgroup structure should
5687  * be initialized from here.
5688  */
5689 static int __init mem_cgroup_init(void)
5690 {
5691 	int cpu, node;
5692 
5693 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5694 
5695 	for_each_possible_cpu(cpu)
5696 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5697 			  drain_local_stock);
5698 
5699 	for_each_node(node) {
5700 		struct mem_cgroup_tree_per_node *rtpn;
5701 		int zone;
5702 
5703 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5704 				    node_online(node) ? node : NUMA_NO_NODE);
5705 
5706 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5707 			struct mem_cgroup_tree_per_zone *rtpz;
5708 
5709 			rtpz = &rtpn->rb_tree_per_zone[zone];
5710 			rtpz->rb_root = RB_ROOT;
5711 			spin_lock_init(&rtpz->lock);
5712 		}
5713 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5714 	}
5715 
5716 	return 0;
5717 }
5718 subsys_initcall(mem_cgroup_init);
5719 
5720 #ifdef CONFIG_MEMCG_SWAP
5721 /**
5722  * mem_cgroup_swapout - transfer a memsw charge to swap
5723  * @page: page whose memsw charge to transfer
5724  * @entry: swap entry to move the charge to
5725  *
5726  * Transfer the memsw charge of @page to @entry.
5727  */
5728 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5729 {
5730 	struct mem_cgroup *memcg;
5731 	unsigned short oldid;
5732 
5733 	VM_BUG_ON_PAGE(PageLRU(page), page);
5734 	VM_BUG_ON_PAGE(page_count(page), page);
5735 
5736 	if (!do_memsw_account())
5737 		return;
5738 
5739 	memcg = page->mem_cgroup;
5740 
5741 	/* Readahead page, never charged */
5742 	if (!memcg)
5743 		return;
5744 
5745 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5746 	VM_BUG_ON_PAGE(oldid, page);
5747 	mem_cgroup_swap_statistics(memcg, true);
5748 
5749 	page->mem_cgroup = NULL;
5750 
5751 	if (!mem_cgroup_is_root(memcg))
5752 		page_counter_uncharge(&memcg->memory, 1);
5753 
5754 	/*
5755 	 * Interrupts should be disabled here because the caller holds the
5756 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5757 	 * important here to have the interrupts disabled because it is the
5758 	 * only synchronisation we have for udpating the per-CPU variables.
5759 	 */
5760 	VM_BUG_ON(!irqs_disabled());
5761 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5762 	memcg_check_events(memcg, page);
5763 }
5764 
5765 /*
5766  * mem_cgroup_try_charge_swap - try charging a swap entry
5767  * @page: page being added to swap
5768  * @entry: swap entry to charge
5769  *
5770  * Try to charge @entry to the memcg that @page belongs to.
5771  *
5772  * Returns 0 on success, -ENOMEM on failure.
5773  */
5774 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5775 {
5776 	struct mem_cgroup *memcg;
5777 	struct page_counter *counter;
5778 	unsigned short oldid;
5779 
5780 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5781 		return 0;
5782 
5783 	memcg = page->mem_cgroup;
5784 
5785 	/* Readahead page, never charged */
5786 	if (!memcg)
5787 		return 0;
5788 
5789 	if (!mem_cgroup_is_root(memcg) &&
5790 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5791 		return -ENOMEM;
5792 
5793 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5794 	VM_BUG_ON_PAGE(oldid, page);
5795 	mem_cgroup_swap_statistics(memcg, true);
5796 
5797 	css_get(&memcg->css);
5798 	return 0;
5799 }
5800 
5801 /**
5802  * mem_cgroup_uncharge_swap - uncharge a swap entry
5803  * @entry: swap entry to uncharge
5804  *
5805  * Drop the swap charge associated with @entry.
5806  */
5807 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5808 {
5809 	struct mem_cgroup *memcg;
5810 	unsigned short id;
5811 
5812 	if (!do_swap_account)
5813 		return;
5814 
5815 	id = swap_cgroup_record(entry, 0);
5816 	rcu_read_lock();
5817 	memcg = mem_cgroup_from_id(id);
5818 	if (memcg) {
5819 		if (!mem_cgroup_is_root(memcg)) {
5820 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5821 				page_counter_uncharge(&memcg->swap, 1);
5822 			else
5823 				page_counter_uncharge(&memcg->memsw, 1);
5824 		}
5825 		mem_cgroup_swap_statistics(memcg, false);
5826 		css_put(&memcg->css);
5827 	}
5828 	rcu_read_unlock();
5829 }
5830 
5831 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5832 {
5833 	long nr_swap_pages = get_nr_swap_pages();
5834 
5835 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5836 		return nr_swap_pages;
5837 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5838 		nr_swap_pages = min_t(long, nr_swap_pages,
5839 				      READ_ONCE(memcg->swap.limit) -
5840 				      page_counter_read(&memcg->swap));
5841 	return nr_swap_pages;
5842 }
5843 
5844 bool mem_cgroup_swap_full(struct page *page)
5845 {
5846 	struct mem_cgroup *memcg;
5847 
5848 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5849 
5850 	if (vm_swap_full())
5851 		return true;
5852 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5853 		return false;
5854 
5855 	memcg = page->mem_cgroup;
5856 	if (!memcg)
5857 		return false;
5858 
5859 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5860 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5861 			return true;
5862 
5863 	return false;
5864 }
5865 
5866 /* for remember boot option*/
5867 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5868 static int really_do_swap_account __initdata = 1;
5869 #else
5870 static int really_do_swap_account __initdata;
5871 #endif
5872 
5873 static int __init enable_swap_account(char *s)
5874 {
5875 	if (!strcmp(s, "1"))
5876 		really_do_swap_account = 1;
5877 	else if (!strcmp(s, "0"))
5878 		really_do_swap_account = 0;
5879 	return 1;
5880 }
5881 __setup("swapaccount=", enable_swap_account);
5882 
5883 static u64 swap_current_read(struct cgroup_subsys_state *css,
5884 			     struct cftype *cft)
5885 {
5886 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5887 
5888 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5889 }
5890 
5891 static int swap_max_show(struct seq_file *m, void *v)
5892 {
5893 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5894 	unsigned long max = READ_ONCE(memcg->swap.limit);
5895 
5896 	if (max == PAGE_COUNTER_MAX)
5897 		seq_puts(m, "max\n");
5898 	else
5899 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5900 
5901 	return 0;
5902 }
5903 
5904 static ssize_t swap_max_write(struct kernfs_open_file *of,
5905 			      char *buf, size_t nbytes, loff_t off)
5906 {
5907 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5908 	unsigned long max;
5909 	int err;
5910 
5911 	buf = strstrip(buf);
5912 	err = page_counter_memparse(buf, "max", &max);
5913 	if (err)
5914 		return err;
5915 
5916 	mutex_lock(&memcg_limit_mutex);
5917 	err = page_counter_limit(&memcg->swap, max);
5918 	mutex_unlock(&memcg_limit_mutex);
5919 	if (err)
5920 		return err;
5921 
5922 	return nbytes;
5923 }
5924 
5925 static struct cftype swap_files[] = {
5926 	{
5927 		.name = "swap.current",
5928 		.flags = CFTYPE_NOT_ON_ROOT,
5929 		.read_u64 = swap_current_read,
5930 	},
5931 	{
5932 		.name = "swap.max",
5933 		.flags = CFTYPE_NOT_ON_ROOT,
5934 		.seq_show = swap_max_show,
5935 		.write = swap_max_write,
5936 	},
5937 	{ }	/* terminate */
5938 };
5939 
5940 static struct cftype memsw_cgroup_files[] = {
5941 	{
5942 		.name = "memsw.usage_in_bytes",
5943 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5944 		.read_u64 = mem_cgroup_read_u64,
5945 	},
5946 	{
5947 		.name = "memsw.max_usage_in_bytes",
5948 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5949 		.write = mem_cgroup_reset,
5950 		.read_u64 = mem_cgroup_read_u64,
5951 	},
5952 	{
5953 		.name = "memsw.limit_in_bytes",
5954 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5955 		.write = mem_cgroup_write,
5956 		.read_u64 = mem_cgroup_read_u64,
5957 	},
5958 	{
5959 		.name = "memsw.failcnt",
5960 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5961 		.write = mem_cgroup_reset,
5962 		.read_u64 = mem_cgroup_read_u64,
5963 	},
5964 	{ },	/* terminate */
5965 };
5966 
5967 static int __init mem_cgroup_swap_init(void)
5968 {
5969 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5970 		do_swap_account = 1;
5971 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5972 					       swap_files));
5973 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5974 						  memsw_cgroup_files));
5975 	}
5976 	return 0;
5977 }
5978 subsys_initcall(mem_cgroup_swap_init);
5979 
5980 #endif /* CONFIG_MEMCG_SWAP */
5981