xref: /openbmc/linux/mm/memcontrol.c (revision ca79522c)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61 
62 #include <asm/uaccess.h>
63 
64 #include <trace/events/vmscan.h>
65 
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68 
69 #define MEM_CGROUP_RECLAIM_RETRIES	5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75 
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82 
83 #else
84 #define do_swap_account		0
85 #endif
86 
87 
88 /*
89  * Statistics for memory cgroup.
90  */
91 enum mem_cgroup_stat_index {
92 	/*
93 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 	 */
95 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
96 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
97 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
98 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
99 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 	MEM_CGROUP_STAT_NSTATS,
101 };
102 
103 static const char * const mem_cgroup_stat_names[] = {
104 	"cache",
105 	"rss",
106 	"rss_huge",
107 	"mapped_file",
108 	"swap",
109 };
110 
111 enum mem_cgroup_events_index {
112 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
113 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
115 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 	MEM_CGROUP_EVENTS_NSTATS,
117 };
118 
119 static const char * const mem_cgroup_events_names[] = {
120 	"pgpgin",
121 	"pgpgout",
122 	"pgfault",
123 	"pgmajfault",
124 };
125 
126 static const char * const mem_cgroup_lru_names[] = {
127 	"inactive_anon",
128 	"active_anon",
129 	"inactive_file",
130 	"active_file",
131 	"unevictable",
132 };
133 
134 /*
135  * Per memcg event counter is incremented at every pagein/pageout. With THP,
136  * it will be incremated by the number of pages. This counter is used for
137  * for trigger some periodic events. This is straightforward and better
138  * than using jiffies etc. to handle periodic memcg event.
139  */
140 enum mem_cgroup_events_target {
141 	MEM_CGROUP_TARGET_THRESH,
142 	MEM_CGROUP_TARGET_SOFTLIMIT,
143 	MEM_CGROUP_TARGET_NUMAINFO,
144 	MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET	1024
149 
150 struct mem_cgroup_stat_cpu {
151 	long count[MEM_CGROUP_STAT_NSTATS];
152 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 	unsigned long nr_page_events;
154 	unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156 
157 struct mem_cgroup_reclaim_iter {
158 	/*
159 	 * last scanned hierarchy member. Valid only if last_dead_count
160 	 * matches memcg->dead_count of the hierarchy root group.
161 	 */
162 	struct mem_cgroup *last_visited;
163 	unsigned long last_dead_count;
164 
165 	/* scan generation, increased every round-trip */
166 	unsigned int generation;
167 };
168 
169 /*
170  * per-zone information in memory controller.
171  */
172 struct mem_cgroup_per_zone {
173 	struct lruvec		lruvec;
174 	unsigned long		lru_size[NR_LRU_LISTS];
175 
176 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177 
178 	struct rb_node		tree_node;	/* RB tree node */
179 	unsigned long long	usage_in_excess;/* Set to the value by which */
180 						/* the soft limit is exceeded*/
181 	bool			on_tree;
182 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183 						/* use container_of	   */
184 };
185 
186 struct mem_cgroup_per_node {
187 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189 
190 struct mem_cgroup_lru_info {
191 	struct mem_cgroup_per_node *nodeinfo[0];
192 };
193 
194 /*
195  * Cgroups above their limits are maintained in a RB-Tree, independent of
196  * their hierarchy representation
197  */
198 
199 struct mem_cgroup_tree_per_zone {
200 	struct rb_root rb_root;
201 	spinlock_t lock;
202 };
203 
204 struct mem_cgroup_tree_per_node {
205 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
206 };
207 
208 struct mem_cgroup_tree {
209 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
210 };
211 
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
213 
214 struct mem_cgroup_threshold {
215 	struct eventfd_ctx *eventfd;
216 	u64 threshold;
217 };
218 
219 /* For threshold */
220 struct mem_cgroup_threshold_ary {
221 	/* An array index points to threshold just below or equal to usage. */
222 	int current_threshold;
223 	/* Size of entries[] */
224 	unsigned int size;
225 	/* Array of thresholds */
226 	struct mem_cgroup_threshold entries[0];
227 };
228 
229 struct mem_cgroup_thresholds {
230 	/* Primary thresholds array */
231 	struct mem_cgroup_threshold_ary *primary;
232 	/*
233 	 * Spare threshold array.
234 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 	 * It must be able to store at least primary->size - 1 entries.
236 	 */
237 	struct mem_cgroup_threshold_ary *spare;
238 };
239 
240 /* for OOM */
241 struct mem_cgroup_eventfd_list {
242 	struct list_head list;
243 	struct eventfd_ctx *eventfd;
244 };
245 
246 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
248 
249 /*
250  * The memory controller data structure. The memory controller controls both
251  * page cache and RSS per cgroup. We would eventually like to provide
252  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253  * to help the administrator determine what knobs to tune.
254  *
255  * TODO: Add a water mark for the memory controller. Reclaim will begin when
256  * we hit the water mark. May be even add a low water mark, such that
257  * no reclaim occurs from a cgroup at it's low water mark, this is
258  * a feature that will be implemented much later in the future.
259  */
260 struct mem_cgroup {
261 	struct cgroup_subsys_state css;
262 	/*
263 	 * the counter to account for memory usage
264 	 */
265 	struct res_counter res;
266 
267 	/* vmpressure notifications */
268 	struct vmpressure vmpressure;
269 
270 	union {
271 		/*
272 		 * the counter to account for mem+swap usage.
273 		 */
274 		struct res_counter memsw;
275 
276 		/*
277 		 * rcu_freeing is used only when freeing struct mem_cgroup,
278 		 * so put it into a union to avoid wasting more memory.
279 		 * It must be disjoint from the css field.  It could be
280 		 * in a union with the res field, but res plays a much
281 		 * larger part in mem_cgroup life than memsw, and might
282 		 * be of interest, even at time of free, when debugging.
283 		 * So share rcu_head with the less interesting memsw.
284 		 */
285 		struct rcu_head rcu_freeing;
286 		/*
287 		 * We also need some space for a worker in deferred freeing.
288 		 * By the time we call it, rcu_freeing is no longer in use.
289 		 */
290 		struct work_struct work_freeing;
291 	};
292 
293 	/*
294 	 * the counter to account for kernel memory usage.
295 	 */
296 	struct res_counter kmem;
297 	/*
298 	 * Should the accounting and control be hierarchical, per subtree?
299 	 */
300 	bool use_hierarchy;
301 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302 
303 	bool		oom_lock;
304 	atomic_t	under_oom;
305 
306 	atomic_t	refcnt;
307 
308 	int	swappiness;
309 	/* OOM-Killer disable */
310 	int		oom_kill_disable;
311 
312 	/* set when res.limit == memsw.limit */
313 	bool		memsw_is_minimum;
314 
315 	/* protect arrays of thresholds */
316 	struct mutex thresholds_lock;
317 
318 	/* thresholds for memory usage. RCU-protected */
319 	struct mem_cgroup_thresholds thresholds;
320 
321 	/* thresholds for mem+swap usage. RCU-protected */
322 	struct mem_cgroup_thresholds memsw_thresholds;
323 
324 	/* For oom notifier event fd */
325 	struct list_head oom_notify;
326 
327 	/*
328 	 * Should we move charges of a task when a task is moved into this
329 	 * mem_cgroup ? And what type of charges should we move ?
330 	 */
331 	unsigned long 	move_charge_at_immigrate;
332 	/*
333 	 * set > 0 if pages under this cgroup are moving to other cgroup.
334 	 */
335 	atomic_t	moving_account;
336 	/* taken only while moving_account > 0 */
337 	spinlock_t	move_lock;
338 	/*
339 	 * percpu counter.
340 	 */
341 	struct mem_cgroup_stat_cpu __percpu *stat;
342 	/*
343 	 * used when a cpu is offlined or other synchronizations
344 	 * See mem_cgroup_read_stat().
345 	 */
346 	struct mem_cgroup_stat_cpu nocpu_base;
347 	spinlock_t pcp_counter_lock;
348 
349 	atomic_t	dead_count;
350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
351 	struct tcp_memcontrol tcp_mem;
352 #endif
353 #if defined(CONFIG_MEMCG_KMEM)
354 	/* analogous to slab_common's slab_caches list. per-memcg */
355 	struct list_head memcg_slab_caches;
356 	/* Not a spinlock, we can take a lot of time walking the list */
357 	struct mutex slab_caches_mutex;
358         /* Index in the kmem_cache->memcg_params->memcg_caches array */
359 	int kmemcg_id;
360 #endif
361 
362 	int last_scanned_node;
363 #if MAX_NUMNODES > 1
364 	nodemask_t	scan_nodes;
365 	atomic_t	numainfo_events;
366 	atomic_t	numainfo_updating;
367 #endif
368 
369 	/*
370 	 * Per cgroup active and inactive list, similar to the
371 	 * per zone LRU lists.
372 	 *
373 	 * WARNING: This has to be the last element of the struct. Don't
374 	 * add new fields after this point.
375 	 */
376 	struct mem_cgroup_lru_info info;
377 };
378 
379 static size_t memcg_size(void)
380 {
381 	return sizeof(struct mem_cgroup) +
382 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
383 }
384 
385 /* internal only representation about the status of kmem accounting. */
386 enum {
387 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
388 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
389 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
390 };
391 
392 /* We account when limit is on, but only after call sites are patched */
393 #define KMEM_ACCOUNTED_MASK \
394 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
395 
396 #ifdef CONFIG_MEMCG_KMEM
397 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
398 {
399 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
400 }
401 
402 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
403 {
404 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405 }
406 
407 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
408 {
409 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
410 }
411 
412 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
413 {
414 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415 }
416 
417 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
418 {
419 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
420 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
421 }
422 
423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
424 {
425 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
426 				  &memcg->kmem_account_flags);
427 }
428 #endif
429 
430 /* Stuffs for move charges at task migration. */
431 /*
432  * Types of charges to be moved. "move_charge_at_immitgrate" and
433  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
434  */
435 enum move_type {
436 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
437 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
438 	NR_MOVE_TYPE,
439 };
440 
441 /* "mc" and its members are protected by cgroup_mutex */
442 static struct move_charge_struct {
443 	spinlock_t	  lock; /* for from, to */
444 	struct mem_cgroup *from;
445 	struct mem_cgroup *to;
446 	unsigned long immigrate_flags;
447 	unsigned long precharge;
448 	unsigned long moved_charge;
449 	unsigned long moved_swap;
450 	struct task_struct *moving_task;	/* a task moving charges */
451 	wait_queue_head_t waitq;		/* a waitq for other context */
452 } mc = {
453 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
454 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
455 };
456 
457 static bool move_anon(void)
458 {
459 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
460 }
461 
462 static bool move_file(void)
463 {
464 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
465 }
466 
467 /*
468  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469  * limit reclaim to prevent infinite loops, if they ever occur.
470  */
471 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
472 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
473 
474 enum charge_type {
475 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
476 	MEM_CGROUP_CHARGE_TYPE_ANON,
477 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
478 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
479 	NR_CHARGE_TYPE,
480 };
481 
482 /* for encoding cft->private value on file */
483 enum res_type {
484 	_MEM,
485 	_MEMSWAP,
486 	_OOM_TYPE,
487 	_KMEM,
488 };
489 
490 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
491 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
492 #define MEMFILE_ATTR(val)	((val) & 0xffff)
493 /* Used for OOM nofiier */
494 #define OOM_CONTROL		(0)
495 
496 /*
497  * Reclaim flags for mem_cgroup_hierarchical_reclaim
498  */
499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
500 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
502 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
503 
504 /*
505  * The memcg_create_mutex will be held whenever a new cgroup is created.
506  * As a consequence, any change that needs to protect against new child cgroups
507  * appearing has to hold it as well.
508  */
509 static DEFINE_MUTEX(memcg_create_mutex);
510 
511 static void mem_cgroup_get(struct mem_cgroup *memcg);
512 static void mem_cgroup_put(struct mem_cgroup *memcg);
513 
514 static inline
515 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
516 {
517 	return container_of(s, struct mem_cgroup, css);
518 }
519 
520 /* Some nice accessors for the vmpressure. */
521 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
522 {
523 	if (!memcg)
524 		memcg = root_mem_cgroup;
525 	return &memcg->vmpressure;
526 }
527 
528 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
529 {
530 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
531 }
532 
533 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
534 {
535 	return &mem_cgroup_from_css(css)->vmpressure;
536 }
537 
538 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
539 {
540 	return (memcg == root_mem_cgroup);
541 }
542 
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
545 
546 void sock_update_memcg(struct sock *sk)
547 {
548 	if (mem_cgroup_sockets_enabled) {
549 		struct mem_cgroup *memcg;
550 		struct cg_proto *cg_proto;
551 
552 		BUG_ON(!sk->sk_prot->proto_cgroup);
553 
554 		/* Socket cloning can throw us here with sk_cgrp already
555 		 * filled. It won't however, necessarily happen from
556 		 * process context. So the test for root memcg given
557 		 * the current task's memcg won't help us in this case.
558 		 *
559 		 * Respecting the original socket's memcg is a better
560 		 * decision in this case.
561 		 */
562 		if (sk->sk_cgrp) {
563 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564 			mem_cgroup_get(sk->sk_cgrp->memcg);
565 			return;
566 		}
567 
568 		rcu_read_lock();
569 		memcg = mem_cgroup_from_task(current);
570 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
572 			mem_cgroup_get(memcg);
573 			sk->sk_cgrp = cg_proto;
574 		}
575 		rcu_read_unlock();
576 	}
577 }
578 EXPORT_SYMBOL(sock_update_memcg);
579 
580 void sock_release_memcg(struct sock *sk)
581 {
582 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
583 		struct mem_cgroup *memcg;
584 		WARN_ON(!sk->sk_cgrp->memcg);
585 		memcg = sk->sk_cgrp->memcg;
586 		mem_cgroup_put(memcg);
587 	}
588 }
589 
590 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
591 {
592 	if (!memcg || mem_cgroup_is_root(memcg))
593 		return NULL;
594 
595 	return &memcg->tcp_mem.cg_proto;
596 }
597 EXPORT_SYMBOL(tcp_proto_cgroup);
598 
599 static void disarm_sock_keys(struct mem_cgroup *memcg)
600 {
601 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
602 		return;
603 	static_key_slow_dec(&memcg_socket_limit_enabled);
604 }
605 #else
606 static void disarm_sock_keys(struct mem_cgroup *memcg)
607 {
608 }
609 #endif
610 
611 #ifdef CONFIG_MEMCG_KMEM
612 /*
613  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614  * There are two main reasons for not using the css_id for this:
615  *  1) this works better in sparse environments, where we have a lot of memcgs,
616  *     but only a few kmem-limited. Or also, if we have, for instance, 200
617  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
618  *     200 entry array for that.
619  *
620  *  2) In order not to violate the cgroup API, we would like to do all memory
621  *     allocation in ->create(). At that point, we haven't yet allocated the
622  *     css_id. Having a separate index prevents us from messing with the cgroup
623  *     core for this
624  *
625  * The current size of the caches array is stored in
626  * memcg_limited_groups_array_size.  It will double each time we have to
627  * increase it.
628  */
629 static DEFINE_IDA(kmem_limited_groups);
630 int memcg_limited_groups_array_size;
631 
632 /*
633  * MIN_SIZE is different than 1, because we would like to avoid going through
634  * the alloc/free process all the time. In a small machine, 4 kmem-limited
635  * cgroups is a reasonable guess. In the future, it could be a parameter or
636  * tunable, but that is strictly not necessary.
637  *
638  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639  * this constant directly from cgroup, but it is understandable that this is
640  * better kept as an internal representation in cgroup.c. In any case, the
641  * css_id space is not getting any smaller, and we don't have to necessarily
642  * increase ours as well if it increases.
643  */
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE 65535
646 
647 /*
648  * A lot of the calls to the cache allocation functions are expected to be
649  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650  * conditional to this static branch, we'll have to allow modules that does
651  * kmem_cache_alloc and the such to see this symbol as well
652  */
653 struct static_key memcg_kmem_enabled_key;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key);
655 
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
657 {
658 	if (memcg_kmem_is_active(memcg)) {
659 		static_key_slow_dec(&memcg_kmem_enabled_key);
660 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
661 	}
662 	/*
663 	 * This check can't live in kmem destruction function,
664 	 * since the charges will outlive the cgroup
665 	 */
666 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
667 }
668 #else
669 static void disarm_kmem_keys(struct mem_cgroup *memcg)
670 {
671 }
672 #endif /* CONFIG_MEMCG_KMEM */
673 
674 static void disarm_static_keys(struct mem_cgroup *memcg)
675 {
676 	disarm_sock_keys(memcg);
677 	disarm_kmem_keys(memcg);
678 }
679 
680 static void drain_all_stock_async(struct mem_cgroup *memcg);
681 
682 static struct mem_cgroup_per_zone *
683 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
684 {
685 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
686 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
687 }
688 
689 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
690 {
691 	return &memcg->css;
692 }
693 
694 static struct mem_cgroup_per_zone *
695 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
696 {
697 	int nid = page_to_nid(page);
698 	int zid = page_zonenum(page);
699 
700 	return mem_cgroup_zoneinfo(memcg, nid, zid);
701 }
702 
703 static struct mem_cgroup_tree_per_zone *
704 soft_limit_tree_node_zone(int nid, int zid)
705 {
706 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
707 }
708 
709 static struct mem_cgroup_tree_per_zone *
710 soft_limit_tree_from_page(struct page *page)
711 {
712 	int nid = page_to_nid(page);
713 	int zid = page_zonenum(page);
714 
715 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
716 }
717 
718 static void
719 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
720 				struct mem_cgroup_per_zone *mz,
721 				struct mem_cgroup_tree_per_zone *mctz,
722 				unsigned long long new_usage_in_excess)
723 {
724 	struct rb_node **p = &mctz->rb_root.rb_node;
725 	struct rb_node *parent = NULL;
726 	struct mem_cgroup_per_zone *mz_node;
727 
728 	if (mz->on_tree)
729 		return;
730 
731 	mz->usage_in_excess = new_usage_in_excess;
732 	if (!mz->usage_in_excess)
733 		return;
734 	while (*p) {
735 		parent = *p;
736 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
737 					tree_node);
738 		if (mz->usage_in_excess < mz_node->usage_in_excess)
739 			p = &(*p)->rb_left;
740 		/*
741 		 * We can't avoid mem cgroups that are over their soft
742 		 * limit by the same amount
743 		 */
744 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
745 			p = &(*p)->rb_right;
746 	}
747 	rb_link_node(&mz->tree_node, parent, p);
748 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
749 	mz->on_tree = true;
750 }
751 
752 static void
753 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
754 				struct mem_cgroup_per_zone *mz,
755 				struct mem_cgroup_tree_per_zone *mctz)
756 {
757 	if (!mz->on_tree)
758 		return;
759 	rb_erase(&mz->tree_node, &mctz->rb_root);
760 	mz->on_tree = false;
761 }
762 
763 static void
764 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
765 				struct mem_cgroup_per_zone *mz,
766 				struct mem_cgroup_tree_per_zone *mctz)
767 {
768 	spin_lock(&mctz->lock);
769 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 	spin_unlock(&mctz->lock);
771 }
772 
773 
774 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
775 {
776 	unsigned long long excess;
777 	struct mem_cgroup_per_zone *mz;
778 	struct mem_cgroup_tree_per_zone *mctz;
779 	int nid = page_to_nid(page);
780 	int zid = page_zonenum(page);
781 	mctz = soft_limit_tree_from_page(page);
782 
783 	/*
784 	 * Necessary to update all ancestors when hierarchy is used.
785 	 * because their event counter is not touched.
786 	 */
787 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
788 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
789 		excess = res_counter_soft_limit_excess(&memcg->res);
790 		/*
791 		 * We have to update the tree if mz is on RB-tree or
792 		 * mem is over its softlimit.
793 		 */
794 		if (excess || mz->on_tree) {
795 			spin_lock(&mctz->lock);
796 			/* if on-tree, remove it */
797 			if (mz->on_tree)
798 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
799 			/*
800 			 * Insert again. mz->usage_in_excess will be updated.
801 			 * If excess is 0, no tree ops.
802 			 */
803 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
804 			spin_unlock(&mctz->lock);
805 		}
806 	}
807 }
808 
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
810 {
811 	int node, zone;
812 	struct mem_cgroup_per_zone *mz;
813 	struct mem_cgroup_tree_per_zone *mctz;
814 
815 	for_each_node(node) {
816 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
817 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
818 			mctz = soft_limit_tree_node_zone(node, zone);
819 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
820 		}
821 	}
822 }
823 
824 static struct mem_cgroup_per_zone *
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
826 {
827 	struct rb_node *rightmost = NULL;
828 	struct mem_cgroup_per_zone *mz;
829 
830 retry:
831 	mz = NULL;
832 	rightmost = rb_last(&mctz->rb_root);
833 	if (!rightmost)
834 		goto done;		/* Nothing to reclaim from */
835 
836 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
837 	/*
838 	 * Remove the node now but someone else can add it back,
839 	 * we will to add it back at the end of reclaim to its correct
840 	 * position in the tree.
841 	 */
842 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
843 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
844 		!css_tryget(&mz->memcg->css))
845 		goto retry;
846 done:
847 	return mz;
848 }
849 
850 static struct mem_cgroup_per_zone *
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
852 {
853 	struct mem_cgroup_per_zone *mz;
854 
855 	spin_lock(&mctz->lock);
856 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
857 	spin_unlock(&mctz->lock);
858 	return mz;
859 }
860 
861 /*
862  * Implementation Note: reading percpu statistics for memcg.
863  *
864  * Both of vmstat[] and percpu_counter has threshold and do periodic
865  * synchronization to implement "quick" read. There are trade-off between
866  * reading cost and precision of value. Then, we may have a chance to implement
867  * a periodic synchronizion of counter in memcg's counter.
868  *
869  * But this _read() function is used for user interface now. The user accounts
870  * memory usage by memory cgroup and he _always_ requires exact value because
871  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872  * have to visit all online cpus and make sum. So, for now, unnecessary
873  * synchronization is not implemented. (just implemented for cpu hotplug)
874  *
875  * If there are kernel internal actions which can make use of some not-exact
876  * value, and reading all cpu value can be performance bottleneck in some
877  * common workload, threashold and synchonization as vmstat[] should be
878  * implemented.
879  */
880 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881 				 enum mem_cgroup_stat_index idx)
882 {
883 	long val = 0;
884 	int cpu;
885 
886 	get_online_cpus();
887 	for_each_online_cpu(cpu)
888 		val += per_cpu(memcg->stat->count[idx], cpu);
889 #ifdef CONFIG_HOTPLUG_CPU
890 	spin_lock(&memcg->pcp_counter_lock);
891 	val += memcg->nocpu_base.count[idx];
892 	spin_unlock(&memcg->pcp_counter_lock);
893 #endif
894 	put_online_cpus();
895 	return val;
896 }
897 
898 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 					 bool charge)
900 {
901 	int val = (charge) ? 1 : -1;
902 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
903 }
904 
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 					    enum mem_cgroup_events_index idx)
907 {
908 	unsigned long val = 0;
909 	int cpu;
910 
911 	for_each_online_cpu(cpu)
912 		val += per_cpu(memcg->stat->events[idx], cpu);
913 #ifdef CONFIG_HOTPLUG_CPU
914 	spin_lock(&memcg->pcp_counter_lock);
915 	val += memcg->nocpu_base.events[idx];
916 	spin_unlock(&memcg->pcp_counter_lock);
917 #endif
918 	return val;
919 }
920 
921 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
922 					 struct page *page,
923 					 bool anon, int nr_pages)
924 {
925 	preempt_disable();
926 
927 	/*
928 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 	 * counted as CACHE even if it's on ANON LRU.
930 	 */
931 	if (anon)
932 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
933 				nr_pages);
934 	else
935 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
936 				nr_pages);
937 
938 	if (PageTransHuge(page))
939 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
940 				nr_pages);
941 
942 	/* pagein of a big page is an event. So, ignore page size */
943 	if (nr_pages > 0)
944 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
945 	else {
946 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
947 		nr_pages = -nr_pages; /* for event */
948 	}
949 
950 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
951 
952 	preempt_enable();
953 }
954 
955 unsigned long
956 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
957 {
958 	struct mem_cgroup_per_zone *mz;
959 
960 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
961 	return mz->lru_size[lru];
962 }
963 
964 static unsigned long
965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
966 			unsigned int lru_mask)
967 {
968 	struct mem_cgroup_per_zone *mz;
969 	enum lru_list lru;
970 	unsigned long ret = 0;
971 
972 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
973 
974 	for_each_lru(lru) {
975 		if (BIT(lru) & lru_mask)
976 			ret += mz->lru_size[lru];
977 	}
978 	return ret;
979 }
980 
981 static unsigned long
982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
983 			int nid, unsigned int lru_mask)
984 {
985 	u64 total = 0;
986 	int zid;
987 
988 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
989 		total += mem_cgroup_zone_nr_lru_pages(memcg,
990 						nid, zid, lru_mask);
991 
992 	return total;
993 }
994 
995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
996 			unsigned int lru_mask)
997 {
998 	int nid;
999 	u64 total = 0;
1000 
1001 	for_each_node_state(nid, N_MEMORY)
1002 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1003 	return total;
1004 }
1005 
1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1007 				       enum mem_cgroup_events_target target)
1008 {
1009 	unsigned long val, next;
1010 
1011 	val = __this_cpu_read(memcg->stat->nr_page_events);
1012 	next = __this_cpu_read(memcg->stat->targets[target]);
1013 	/* from time_after() in jiffies.h */
1014 	if ((long)next - (long)val < 0) {
1015 		switch (target) {
1016 		case MEM_CGROUP_TARGET_THRESH:
1017 			next = val + THRESHOLDS_EVENTS_TARGET;
1018 			break;
1019 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1020 			next = val + SOFTLIMIT_EVENTS_TARGET;
1021 			break;
1022 		case MEM_CGROUP_TARGET_NUMAINFO:
1023 			next = val + NUMAINFO_EVENTS_TARGET;
1024 			break;
1025 		default:
1026 			break;
1027 		}
1028 		__this_cpu_write(memcg->stat->targets[target], next);
1029 		return true;
1030 	}
1031 	return false;
1032 }
1033 
1034 /*
1035  * Check events in order.
1036  *
1037  */
1038 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1039 {
1040 	preempt_disable();
1041 	/* threshold event is triggered in finer grain than soft limit */
1042 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1043 						MEM_CGROUP_TARGET_THRESH))) {
1044 		bool do_softlimit;
1045 		bool do_numainfo __maybe_unused;
1046 
1047 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1048 						MEM_CGROUP_TARGET_SOFTLIMIT);
1049 #if MAX_NUMNODES > 1
1050 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1051 						MEM_CGROUP_TARGET_NUMAINFO);
1052 #endif
1053 		preempt_enable();
1054 
1055 		mem_cgroup_threshold(memcg);
1056 		if (unlikely(do_softlimit))
1057 			mem_cgroup_update_tree(memcg, page);
1058 #if MAX_NUMNODES > 1
1059 		if (unlikely(do_numainfo))
1060 			atomic_inc(&memcg->numainfo_events);
1061 #endif
1062 	} else
1063 		preempt_enable();
1064 }
1065 
1066 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1067 {
1068 	return mem_cgroup_from_css(
1069 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1070 }
1071 
1072 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1073 {
1074 	/*
1075 	 * mm_update_next_owner() may clear mm->owner to NULL
1076 	 * if it races with swapoff, page migration, etc.
1077 	 * So this can be called with p == NULL.
1078 	 */
1079 	if (unlikely(!p))
1080 		return NULL;
1081 
1082 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1083 }
1084 
1085 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1086 {
1087 	struct mem_cgroup *memcg = NULL;
1088 
1089 	if (!mm)
1090 		return NULL;
1091 	/*
1092 	 * Because we have no locks, mm->owner's may be being moved to other
1093 	 * cgroup. We use css_tryget() here even if this looks
1094 	 * pessimistic (rather than adding locks here).
1095 	 */
1096 	rcu_read_lock();
1097 	do {
1098 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1099 		if (unlikely(!memcg))
1100 			break;
1101 	} while (!css_tryget(&memcg->css));
1102 	rcu_read_unlock();
1103 	return memcg;
1104 }
1105 
1106 /*
1107  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108  * ref. count) or NULL if the whole root's subtree has been visited.
1109  *
1110  * helper function to be used by mem_cgroup_iter
1111  */
1112 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1113 		struct mem_cgroup *last_visited)
1114 {
1115 	struct cgroup *prev_cgroup, *next_cgroup;
1116 
1117 	/*
1118 	 * Root is not visited by cgroup iterators so it needs an
1119 	 * explicit visit.
1120 	 */
1121 	if (!last_visited)
1122 		return root;
1123 
1124 	prev_cgroup = (last_visited == root) ? NULL
1125 		: last_visited->css.cgroup;
1126 skip_node:
1127 	next_cgroup = cgroup_next_descendant_pre(
1128 			prev_cgroup, root->css.cgroup);
1129 
1130 	/*
1131 	 * Even if we found a group we have to make sure it is
1132 	 * alive. css && !memcg means that the groups should be
1133 	 * skipped and we should continue the tree walk.
1134 	 * last_visited css is safe to use because it is
1135 	 * protected by css_get and the tree walk is rcu safe.
1136 	 */
1137 	if (next_cgroup) {
1138 		struct mem_cgroup *mem = mem_cgroup_from_cont(
1139 				next_cgroup);
1140 		if (css_tryget(&mem->css))
1141 			return mem;
1142 		else {
1143 			prev_cgroup = next_cgroup;
1144 			goto skip_node;
1145 		}
1146 	}
1147 
1148 	return NULL;
1149 }
1150 
1151 /**
1152  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1153  * @root: hierarchy root
1154  * @prev: previously returned memcg, NULL on first invocation
1155  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1156  *
1157  * Returns references to children of the hierarchy below @root, or
1158  * @root itself, or %NULL after a full round-trip.
1159  *
1160  * Caller must pass the return value in @prev on subsequent
1161  * invocations for reference counting, or use mem_cgroup_iter_break()
1162  * to cancel a hierarchy walk before the round-trip is complete.
1163  *
1164  * Reclaimers can specify a zone and a priority level in @reclaim to
1165  * divide up the memcgs in the hierarchy among all concurrent
1166  * reclaimers operating on the same zone and priority.
1167  */
1168 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1169 				   struct mem_cgroup *prev,
1170 				   struct mem_cgroup_reclaim_cookie *reclaim)
1171 {
1172 	struct mem_cgroup *memcg = NULL;
1173 	struct mem_cgroup *last_visited = NULL;
1174 	unsigned long uninitialized_var(dead_count);
1175 
1176 	if (mem_cgroup_disabled())
1177 		return NULL;
1178 
1179 	if (!root)
1180 		root = root_mem_cgroup;
1181 
1182 	if (prev && !reclaim)
1183 		last_visited = prev;
1184 
1185 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1186 		if (prev)
1187 			goto out_css_put;
1188 		return root;
1189 	}
1190 
1191 	rcu_read_lock();
1192 	while (!memcg) {
1193 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1194 
1195 		if (reclaim) {
1196 			int nid = zone_to_nid(reclaim->zone);
1197 			int zid = zone_idx(reclaim->zone);
1198 			struct mem_cgroup_per_zone *mz;
1199 
1200 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1201 			iter = &mz->reclaim_iter[reclaim->priority];
1202 			last_visited = iter->last_visited;
1203 			if (prev && reclaim->generation != iter->generation) {
1204 				iter->last_visited = NULL;
1205 				goto out_unlock;
1206 			}
1207 
1208 			/*
1209 			 * If the dead_count mismatches, a destruction
1210 			 * has happened or is happening concurrently.
1211 			 * If the dead_count matches, a destruction
1212 			 * might still happen concurrently, but since
1213 			 * we checked under RCU, that destruction
1214 			 * won't free the object until we release the
1215 			 * RCU reader lock.  Thus, the dead_count
1216 			 * check verifies the pointer is still valid,
1217 			 * css_tryget() verifies the cgroup pointed to
1218 			 * is alive.
1219 			 */
1220 			dead_count = atomic_read(&root->dead_count);
1221 			smp_rmb();
1222 			last_visited = iter->last_visited;
1223 			if (last_visited) {
1224 				if ((dead_count != iter->last_dead_count) ||
1225 					!css_tryget(&last_visited->css)) {
1226 					last_visited = NULL;
1227 				}
1228 			}
1229 		}
1230 
1231 		memcg = __mem_cgroup_iter_next(root, last_visited);
1232 
1233 		if (reclaim) {
1234 			if (last_visited)
1235 				css_put(&last_visited->css);
1236 
1237 			iter->last_visited = memcg;
1238 			smp_wmb();
1239 			iter->last_dead_count = dead_count;
1240 
1241 			if (!memcg)
1242 				iter->generation++;
1243 			else if (!prev && memcg)
1244 				reclaim->generation = iter->generation;
1245 		}
1246 
1247 		if (prev && !memcg)
1248 			goto out_unlock;
1249 	}
1250 out_unlock:
1251 	rcu_read_unlock();
1252 out_css_put:
1253 	if (prev && prev != root)
1254 		css_put(&prev->css);
1255 
1256 	return memcg;
1257 }
1258 
1259 /**
1260  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1261  * @root: hierarchy root
1262  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1263  */
1264 void mem_cgroup_iter_break(struct mem_cgroup *root,
1265 			   struct mem_cgroup *prev)
1266 {
1267 	if (!root)
1268 		root = root_mem_cgroup;
1269 	if (prev && prev != root)
1270 		css_put(&prev->css);
1271 }
1272 
1273 /*
1274  * Iteration constructs for visiting all cgroups (under a tree).  If
1275  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1276  * be used for reference counting.
1277  */
1278 #define for_each_mem_cgroup_tree(iter, root)		\
1279 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1280 	     iter != NULL;				\
1281 	     iter = mem_cgroup_iter(root, iter, NULL))
1282 
1283 #define for_each_mem_cgroup(iter)			\
1284 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1285 	     iter != NULL;				\
1286 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1287 
1288 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1289 {
1290 	struct mem_cgroup *memcg;
1291 
1292 	rcu_read_lock();
1293 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1294 	if (unlikely(!memcg))
1295 		goto out;
1296 
1297 	switch (idx) {
1298 	case PGFAULT:
1299 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1300 		break;
1301 	case PGMAJFAULT:
1302 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1303 		break;
1304 	default:
1305 		BUG();
1306 	}
1307 out:
1308 	rcu_read_unlock();
1309 }
1310 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1311 
1312 /**
1313  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1314  * @zone: zone of the wanted lruvec
1315  * @memcg: memcg of the wanted lruvec
1316  *
1317  * Returns the lru list vector holding pages for the given @zone and
1318  * @mem.  This can be the global zone lruvec, if the memory controller
1319  * is disabled.
1320  */
1321 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1322 				      struct mem_cgroup *memcg)
1323 {
1324 	struct mem_cgroup_per_zone *mz;
1325 	struct lruvec *lruvec;
1326 
1327 	if (mem_cgroup_disabled()) {
1328 		lruvec = &zone->lruvec;
1329 		goto out;
1330 	}
1331 
1332 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1333 	lruvec = &mz->lruvec;
1334 out:
1335 	/*
1336 	 * Since a node can be onlined after the mem_cgroup was created,
1337 	 * we have to be prepared to initialize lruvec->zone here;
1338 	 * and if offlined then reonlined, we need to reinitialize it.
1339 	 */
1340 	if (unlikely(lruvec->zone != zone))
1341 		lruvec->zone = zone;
1342 	return lruvec;
1343 }
1344 
1345 /*
1346  * Following LRU functions are allowed to be used without PCG_LOCK.
1347  * Operations are called by routine of global LRU independently from memcg.
1348  * What we have to take care of here is validness of pc->mem_cgroup.
1349  *
1350  * Changes to pc->mem_cgroup happens when
1351  * 1. charge
1352  * 2. moving account
1353  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1354  * It is added to LRU before charge.
1355  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1356  * When moving account, the page is not on LRU. It's isolated.
1357  */
1358 
1359 /**
1360  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1361  * @page: the page
1362  * @zone: zone of the page
1363  */
1364 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1365 {
1366 	struct mem_cgroup_per_zone *mz;
1367 	struct mem_cgroup *memcg;
1368 	struct page_cgroup *pc;
1369 	struct lruvec *lruvec;
1370 
1371 	if (mem_cgroup_disabled()) {
1372 		lruvec = &zone->lruvec;
1373 		goto out;
1374 	}
1375 
1376 	pc = lookup_page_cgroup(page);
1377 	memcg = pc->mem_cgroup;
1378 
1379 	/*
1380 	 * Surreptitiously switch any uncharged offlist page to root:
1381 	 * an uncharged page off lru does nothing to secure
1382 	 * its former mem_cgroup from sudden removal.
1383 	 *
1384 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1385 	 * under page_cgroup lock: between them, they make all uses
1386 	 * of pc->mem_cgroup safe.
1387 	 */
1388 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1389 		pc->mem_cgroup = memcg = root_mem_cgroup;
1390 
1391 	mz = page_cgroup_zoneinfo(memcg, page);
1392 	lruvec = &mz->lruvec;
1393 out:
1394 	/*
1395 	 * Since a node can be onlined after the mem_cgroup was created,
1396 	 * we have to be prepared to initialize lruvec->zone here;
1397 	 * and if offlined then reonlined, we need to reinitialize it.
1398 	 */
1399 	if (unlikely(lruvec->zone != zone))
1400 		lruvec->zone = zone;
1401 	return lruvec;
1402 }
1403 
1404 /**
1405  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1406  * @lruvec: mem_cgroup per zone lru vector
1407  * @lru: index of lru list the page is sitting on
1408  * @nr_pages: positive when adding or negative when removing
1409  *
1410  * This function must be called when a page is added to or removed from an
1411  * lru list.
1412  */
1413 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1414 				int nr_pages)
1415 {
1416 	struct mem_cgroup_per_zone *mz;
1417 	unsigned long *lru_size;
1418 
1419 	if (mem_cgroup_disabled())
1420 		return;
1421 
1422 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1423 	lru_size = mz->lru_size + lru;
1424 	*lru_size += nr_pages;
1425 	VM_BUG_ON((long)(*lru_size) < 0);
1426 }
1427 
1428 /*
1429  * Checks whether given mem is same or in the root_mem_cgroup's
1430  * hierarchy subtree
1431  */
1432 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1433 				  struct mem_cgroup *memcg)
1434 {
1435 	if (root_memcg == memcg)
1436 		return true;
1437 	if (!root_memcg->use_hierarchy || !memcg)
1438 		return false;
1439 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1440 }
1441 
1442 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1443 				       struct mem_cgroup *memcg)
1444 {
1445 	bool ret;
1446 
1447 	rcu_read_lock();
1448 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1449 	rcu_read_unlock();
1450 	return ret;
1451 }
1452 
1453 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1454 {
1455 	int ret;
1456 	struct mem_cgroup *curr = NULL;
1457 	struct task_struct *p;
1458 
1459 	p = find_lock_task_mm(task);
1460 	if (p) {
1461 		curr = try_get_mem_cgroup_from_mm(p->mm);
1462 		task_unlock(p);
1463 	} else {
1464 		/*
1465 		 * All threads may have already detached their mm's, but the oom
1466 		 * killer still needs to detect if they have already been oom
1467 		 * killed to prevent needlessly killing additional tasks.
1468 		 */
1469 		task_lock(task);
1470 		curr = mem_cgroup_from_task(task);
1471 		if (curr)
1472 			css_get(&curr->css);
1473 		task_unlock(task);
1474 	}
1475 	if (!curr)
1476 		return 0;
1477 	/*
1478 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1479 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1480 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1481 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1482 	 */
1483 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1484 	css_put(&curr->css);
1485 	return ret;
1486 }
1487 
1488 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1489 {
1490 	unsigned long inactive_ratio;
1491 	unsigned long inactive;
1492 	unsigned long active;
1493 	unsigned long gb;
1494 
1495 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1496 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1497 
1498 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1499 	if (gb)
1500 		inactive_ratio = int_sqrt(10 * gb);
1501 	else
1502 		inactive_ratio = 1;
1503 
1504 	return inactive * inactive_ratio < active;
1505 }
1506 
1507 #define mem_cgroup_from_res_counter(counter, member)	\
1508 	container_of(counter, struct mem_cgroup, member)
1509 
1510 /**
1511  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1512  * @memcg: the memory cgroup
1513  *
1514  * Returns the maximum amount of memory @mem can be charged with, in
1515  * pages.
1516  */
1517 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1518 {
1519 	unsigned long long margin;
1520 
1521 	margin = res_counter_margin(&memcg->res);
1522 	if (do_swap_account)
1523 		margin = min(margin, res_counter_margin(&memcg->memsw));
1524 	return margin >> PAGE_SHIFT;
1525 }
1526 
1527 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1528 {
1529 	struct cgroup *cgrp = memcg->css.cgroup;
1530 
1531 	/* root ? */
1532 	if (cgrp->parent == NULL)
1533 		return vm_swappiness;
1534 
1535 	return memcg->swappiness;
1536 }
1537 
1538 /*
1539  * memcg->moving_account is used for checking possibility that some thread is
1540  * calling move_account(). When a thread on CPU-A starts moving pages under
1541  * a memcg, other threads should check memcg->moving_account under
1542  * rcu_read_lock(), like this:
1543  *
1544  *         CPU-A                                    CPU-B
1545  *                                              rcu_read_lock()
1546  *         memcg->moving_account+1              if (memcg->mocing_account)
1547  *                                                   take heavy locks.
1548  *         synchronize_rcu()                    update something.
1549  *                                              rcu_read_unlock()
1550  *         start move here.
1551  */
1552 
1553 /* for quick checking without looking up memcg */
1554 atomic_t memcg_moving __read_mostly;
1555 
1556 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1557 {
1558 	atomic_inc(&memcg_moving);
1559 	atomic_inc(&memcg->moving_account);
1560 	synchronize_rcu();
1561 }
1562 
1563 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1564 {
1565 	/*
1566 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1567 	 * We check NULL in callee rather than caller.
1568 	 */
1569 	if (memcg) {
1570 		atomic_dec(&memcg_moving);
1571 		atomic_dec(&memcg->moving_account);
1572 	}
1573 }
1574 
1575 /*
1576  * 2 routines for checking "mem" is under move_account() or not.
1577  *
1578  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1579  *			  is used for avoiding races in accounting.  If true,
1580  *			  pc->mem_cgroup may be overwritten.
1581  *
1582  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1583  *			  under hierarchy of moving cgroups. This is for
1584  *			  waiting at hith-memory prressure caused by "move".
1585  */
1586 
1587 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1588 {
1589 	VM_BUG_ON(!rcu_read_lock_held());
1590 	return atomic_read(&memcg->moving_account) > 0;
1591 }
1592 
1593 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1594 {
1595 	struct mem_cgroup *from;
1596 	struct mem_cgroup *to;
1597 	bool ret = false;
1598 	/*
1599 	 * Unlike task_move routines, we access mc.to, mc.from not under
1600 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1601 	 */
1602 	spin_lock(&mc.lock);
1603 	from = mc.from;
1604 	to = mc.to;
1605 	if (!from)
1606 		goto unlock;
1607 
1608 	ret = mem_cgroup_same_or_subtree(memcg, from)
1609 		|| mem_cgroup_same_or_subtree(memcg, to);
1610 unlock:
1611 	spin_unlock(&mc.lock);
1612 	return ret;
1613 }
1614 
1615 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1616 {
1617 	if (mc.moving_task && current != mc.moving_task) {
1618 		if (mem_cgroup_under_move(memcg)) {
1619 			DEFINE_WAIT(wait);
1620 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1621 			/* moving charge context might have finished. */
1622 			if (mc.moving_task)
1623 				schedule();
1624 			finish_wait(&mc.waitq, &wait);
1625 			return true;
1626 		}
1627 	}
1628 	return false;
1629 }
1630 
1631 /*
1632  * Take this lock when
1633  * - a code tries to modify page's memcg while it's USED.
1634  * - a code tries to modify page state accounting in a memcg.
1635  * see mem_cgroup_stolen(), too.
1636  */
1637 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1638 				  unsigned long *flags)
1639 {
1640 	spin_lock_irqsave(&memcg->move_lock, *flags);
1641 }
1642 
1643 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1644 				unsigned long *flags)
1645 {
1646 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1647 }
1648 
1649 #define K(x) ((x) << (PAGE_SHIFT-10))
1650 /**
1651  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1652  * @memcg: The memory cgroup that went over limit
1653  * @p: Task that is going to be killed
1654  *
1655  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1656  * enabled
1657  */
1658 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1659 {
1660 	struct cgroup *task_cgrp;
1661 	struct cgroup *mem_cgrp;
1662 	/*
1663 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1664 	 * on the assumption that OOM is serialized for memory controller.
1665 	 * If this assumption is broken, revisit this code.
1666 	 */
1667 	static char memcg_name[PATH_MAX];
1668 	int ret;
1669 	struct mem_cgroup *iter;
1670 	unsigned int i;
1671 
1672 	if (!p)
1673 		return;
1674 
1675 	rcu_read_lock();
1676 
1677 	mem_cgrp = memcg->css.cgroup;
1678 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1679 
1680 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1681 	if (ret < 0) {
1682 		/*
1683 		 * Unfortunately, we are unable to convert to a useful name
1684 		 * But we'll still print out the usage information
1685 		 */
1686 		rcu_read_unlock();
1687 		goto done;
1688 	}
1689 	rcu_read_unlock();
1690 
1691 	pr_info("Task in %s killed", memcg_name);
1692 
1693 	rcu_read_lock();
1694 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1695 	if (ret < 0) {
1696 		rcu_read_unlock();
1697 		goto done;
1698 	}
1699 	rcu_read_unlock();
1700 
1701 	/*
1702 	 * Continues from above, so we don't need an KERN_ level
1703 	 */
1704 	pr_cont(" as a result of limit of %s\n", memcg_name);
1705 done:
1706 
1707 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1708 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1709 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1710 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1711 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1712 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1713 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1714 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1715 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1716 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1717 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1718 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1719 
1720 	for_each_mem_cgroup_tree(iter, memcg) {
1721 		pr_info("Memory cgroup stats");
1722 
1723 		rcu_read_lock();
1724 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1725 		if (!ret)
1726 			pr_cont(" for %s", memcg_name);
1727 		rcu_read_unlock();
1728 		pr_cont(":");
1729 
1730 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1731 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1732 				continue;
1733 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1734 				K(mem_cgroup_read_stat(iter, i)));
1735 		}
1736 
1737 		for (i = 0; i < NR_LRU_LISTS; i++)
1738 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1739 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1740 
1741 		pr_cont("\n");
1742 	}
1743 }
1744 
1745 /*
1746  * This function returns the number of memcg under hierarchy tree. Returns
1747  * 1(self count) if no children.
1748  */
1749 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1750 {
1751 	int num = 0;
1752 	struct mem_cgroup *iter;
1753 
1754 	for_each_mem_cgroup_tree(iter, memcg)
1755 		num++;
1756 	return num;
1757 }
1758 
1759 /*
1760  * Return the memory (and swap, if configured) limit for a memcg.
1761  */
1762 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1763 {
1764 	u64 limit;
1765 
1766 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1767 
1768 	/*
1769 	 * Do not consider swap space if we cannot swap due to swappiness
1770 	 */
1771 	if (mem_cgroup_swappiness(memcg)) {
1772 		u64 memsw;
1773 
1774 		limit += total_swap_pages << PAGE_SHIFT;
1775 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1776 
1777 		/*
1778 		 * If memsw is finite and limits the amount of swap space
1779 		 * available to this memcg, return that limit.
1780 		 */
1781 		limit = min(limit, memsw);
1782 	}
1783 
1784 	return limit;
1785 }
1786 
1787 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1788 				     int order)
1789 {
1790 	struct mem_cgroup *iter;
1791 	unsigned long chosen_points = 0;
1792 	unsigned long totalpages;
1793 	unsigned int points = 0;
1794 	struct task_struct *chosen = NULL;
1795 
1796 	/*
1797 	 * If current has a pending SIGKILL or is exiting, then automatically
1798 	 * select it.  The goal is to allow it to allocate so that it may
1799 	 * quickly exit and free its memory.
1800 	 */
1801 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1802 		set_thread_flag(TIF_MEMDIE);
1803 		return;
1804 	}
1805 
1806 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1807 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1808 	for_each_mem_cgroup_tree(iter, memcg) {
1809 		struct cgroup *cgroup = iter->css.cgroup;
1810 		struct cgroup_iter it;
1811 		struct task_struct *task;
1812 
1813 		cgroup_iter_start(cgroup, &it);
1814 		while ((task = cgroup_iter_next(cgroup, &it))) {
1815 			switch (oom_scan_process_thread(task, totalpages, NULL,
1816 							false)) {
1817 			case OOM_SCAN_SELECT:
1818 				if (chosen)
1819 					put_task_struct(chosen);
1820 				chosen = task;
1821 				chosen_points = ULONG_MAX;
1822 				get_task_struct(chosen);
1823 				/* fall through */
1824 			case OOM_SCAN_CONTINUE:
1825 				continue;
1826 			case OOM_SCAN_ABORT:
1827 				cgroup_iter_end(cgroup, &it);
1828 				mem_cgroup_iter_break(memcg, iter);
1829 				if (chosen)
1830 					put_task_struct(chosen);
1831 				return;
1832 			case OOM_SCAN_OK:
1833 				break;
1834 			};
1835 			points = oom_badness(task, memcg, NULL, totalpages);
1836 			if (points > chosen_points) {
1837 				if (chosen)
1838 					put_task_struct(chosen);
1839 				chosen = task;
1840 				chosen_points = points;
1841 				get_task_struct(chosen);
1842 			}
1843 		}
1844 		cgroup_iter_end(cgroup, &it);
1845 	}
1846 
1847 	if (!chosen)
1848 		return;
1849 	points = chosen_points * 1000 / totalpages;
1850 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1851 			 NULL, "Memory cgroup out of memory");
1852 }
1853 
1854 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1855 					gfp_t gfp_mask,
1856 					unsigned long flags)
1857 {
1858 	unsigned long total = 0;
1859 	bool noswap = false;
1860 	int loop;
1861 
1862 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1863 		noswap = true;
1864 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1865 		noswap = true;
1866 
1867 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1868 		if (loop)
1869 			drain_all_stock_async(memcg);
1870 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1871 		/*
1872 		 * Allow limit shrinkers, which are triggered directly
1873 		 * by userspace, to catch signals and stop reclaim
1874 		 * after minimal progress, regardless of the margin.
1875 		 */
1876 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1877 			break;
1878 		if (mem_cgroup_margin(memcg))
1879 			break;
1880 		/*
1881 		 * If nothing was reclaimed after two attempts, there
1882 		 * may be no reclaimable pages in this hierarchy.
1883 		 */
1884 		if (loop && !total)
1885 			break;
1886 	}
1887 	return total;
1888 }
1889 
1890 /**
1891  * test_mem_cgroup_node_reclaimable
1892  * @memcg: the target memcg
1893  * @nid: the node ID to be checked.
1894  * @noswap : specify true here if the user wants flle only information.
1895  *
1896  * This function returns whether the specified memcg contains any
1897  * reclaimable pages on a node. Returns true if there are any reclaimable
1898  * pages in the node.
1899  */
1900 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1901 		int nid, bool noswap)
1902 {
1903 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1904 		return true;
1905 	if (noswap || !total_swap_pages)
1906 		return false;
1907 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1908 		return true;
1909 	return false;
1910 
1911 }
1912 #if MAX_NUMNODES > 1
1913 
1914 /*
1915  * Always updating the nodemask is not very good - even if we have an empty
1916  * list or the wrong list here, we can start from some node and traverse all
1917  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1918  *
1919  */
1920 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1921 {
1922 	int nid;
1923 	/*
1924 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1925 	 * pagein/pageout changes since the last update.
1926 	 */
1927 	if (!atomic_read(&memcg->numainfo_events))
1928 		return;
1929 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1930 		return;
1931 
1932 	/* make a nodemask where this memcg uses memory from */
1933 	memcg->scan_nodes = node_states[N_MEMORY];
1934 
1935 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1936 
1937 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1938 			node_clear(nid, memcg->scan_nodes);
1939 	}
1940 
1941 	atomic_set(&memcg->numainfo_events, 0);
1942 	atomic_set(&memcg->numainfo_updating, 0);
1943 }
1944 
1945 /*
1946  * Selecting a node where we start reclaim from. Because what we need is just
1947  * reducing usage counter, start from anywhere is O,K. Considering
1948  * memory reclaim from current node, there are pros. and cons.
1949  *
1950  * Freeing memory from current node means freeing memory from a node which
1951  * we'll use or we've used. So, it may make LRU bad. And if several threads
1952  * hit limits, it will see a contention on a node. But freeing from remote
1953  * node means more costs for memory reclaim because of memory latency.
1954  *
1955  * Now, we use round-robin. Better algorithm is welcomed.
1956  */
1957 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1958 {
1959 	int node;
1960 
1961 	mem_cgroup_may_update_nodemask(memcg);
1962 	node = memcg->last_scanned_node;
1963 
1964 	node = next_node(node, memcg->scan_nodes);
1965 	if (node == MAX_NUMNODES)
1966 		node = first_node(memcg->scan_nodes);
1967 	/*
1968 	 * We call this when we hit limit, not when pages are added to LRU.
1969 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1970 	 * memcg is too small and all pages are not on LRU. In that case,
1971 	 * we use curret node.
1972 	 */
1973 	if (unlikely(node == MAX_NUMNODES))
1974 		node = numa_node_id();
1975 
1976 	memcg->last_scanned_node = node;
1977 	return node;
1978 }
1979 
1980 /*
1981  * Check all nodes whether it contains reclaimable pages or not.
1982  * For quick scan, we make use of scan_nodes. This will allow us to skip
1983  * unused nodes. But scan_nodes is lazily updated and may not cotain
1984  * enough new information. We need to do double check.
1985  */
1986 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1987 {
1988 	int nid;
1989 
1990 	/*
1991 	 * quick check...making use of scan_node.
1992 	 * We can skip unused nodes.
1993 	 */
1994 	if (!nodes_empty(memcg->scan_nodes)) {
1995 		for (nid = first_node(memcg->scan_nodes);
1996 		     nid < MAX_NUMNODES;
1997 		     nid = next_node(nid, memcg->scan_nodes)) {
1998 
1999 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2000 				return true;
2001 		}
2002 	}
2003 	/*
2004 	 * Check rest of nodes.
2005 	 */
2006 	for_each_node_state(nid, N_MEMORY) {
2007 		if (node_isset(nid, memcg->scan_nodes))
2008 			continue;
2009 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2010 			return true;
2011 	}
2012 	return false;
2013 }
2014 
2015 #else
2016 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2017 {
2018 	return 0;
2019 }
2020 
2021 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2022 {
2023 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2024 }
2025 #endif
2026 
2027 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2028 				   struct zone *zone,
2029 				   gfp_t gfp_mask,
2030 				   unsigned long *total_scanned)
2031 {
2032 	struct mem_cgroup *victim = NULL;
2033 	int total = 0;
2034 	int loop = 0;
2035 	unsigned long excess;
2036 	unsigned long nr_scanned;
2037 	struct mem_cgroup_reclaim_cookie reclaim = {
2038 		.zone = zone,
2039 		.priority = 0,
2040 	};
2041 
2042 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2043 
2044 	while (1) {
2045 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2046 		if (!victim) {
2047 			loop++;
2048 			if (loop >= 2) {
2049 				/*
2050 				 * If we have not been able to reclaim
2051 				 * anything, it might because there are
2052 				 * no reclaimable pages under this hierarchy
2053 				 */
2054 				if (!total)
2055 					break;
2056 				/*
2057 				 * We want to do more targeted reclaim.
2058 				 * excess >> 2 is not to excessive so as to
2059 				 * reclaim too much, nor too less that we keep
2060 				 * coming back to reclaim from this cgroup
2061 				 */
2062 				if (total >= (excess >> 2) ||
2063 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2064 					break;
2065 			}
2066 			continue;
2067 		}
2068 		if (!mem_cgroup_reclaimable(victim, false))
2069 			continue;
2070 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2071 						     zone, &nr_scanned);
2072 		*total_scanned += nr_scanned;
2073 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2074 			break;
2075 	}
2076 	mem_cgroup_iter_break(root_memcg, victim);
2077 	return total;
2078 }
2079 
2080 /*
2081  * Check OOM-Killer is already running under our hierarchy.
2082  * If someone is running, return false.
2083  * Has to be called with memcg_oom_lock
2084  */
2085 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2086 {
2087 	struct mem_cgroup *iter, *failed = NULL;
2088 
2089 	for_each_mem_cgroup_tree(iter, memcg) {
2090 		if (iter->oom_lock) {
2091 			/*
2092 			 * this subtree of our hierarchy is already locked
2093 			 * so we cannot give a lock.
2094 			 */
2095 			failed = iter;
2096 			mem_cgroup_iter_break(memcg, iter);
2097 			break;
2098 		} else
2099 			iter->oom_lock = true;
2100 	}
2101 
2102 	if (!failed)
2103 		return true;
2104 
2105 	/*
2106 	 * OK, we failed to lock the whole subtree so we have to clean up
2107 	 * what we set up to the failing subtree
2108 	 */
2109 	for_each_mem_cgroup_tree(iter, memcg) {
2110 		if (iter == failed) {
2111 			mem_cgroup_iter_break(memcg, iter);
2112 			break;
2113 		}
2114 		iter->oom_lock = false;
2115 	}
2116 	return false;
2117 }
2118 
2119 /*
2120  * Has to be called with memcg_oom_lock
2121  */
2122 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2123 {
2124 	struct mem_cgroup *iter;
2125 
2126 	for_each_mem_cgroup_tree(iter, memcg)
2127 		iter->oom_lock = false;
2128 	return 0;
2129 }
2130 
2131 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2132 {
2133 	struct mem_cgroup *iter;
2134 
2135 	for_each_mem_cgroup_tree(iter, memcg)
2136 		atomic_inc(&iter->under_oom);
2137 }
2138 
2139 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2140 {
2141 	struct mem_cgroup *iter;
2142 
2143 	/*
2144 	 * When a new child is created while the hierarchy is under oom,
2145 	 * mem_cgroup_oom_lock() may not be called. We have to use
2146 	 * atomic_add_unless() here.
2147 	 */
2148 	for_each_mem_cgroup_tree(iter, memcg)
2149 		atomic_add_unless(&iter->under_oom, -1, 0);
2150 }
2151 
2152 static DEFINE_SPINLOCK(memcg_oom_lock);
2153 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2154 
2155 struct oom_wait_info {
2156 	struct mem_cgroup *memcg;
2157 	wait_queue_t	wait;
2158 };
2159 
2160 static int memcg_oom_wake_function(wait_queue_t *wait,
2161 	unsigned mode, int sync, void *arg)
2162 {
2163 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2164 	struct mem_cgroup *oom_wait_memcg;
2165 	struct oom_wait_info *oom_wait_info;
2166 
2167 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2168 	oom_wait_memcg = oom_wait_info->memcg;
2169 
2170 	/*
2171 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2172 	 * Then we can use css_is_ancestor without taking care of RCU.
2173 	 */
2174 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2175 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2176 		return 0;
2177 	return autoremove_wake_function(wait, mode, sync, arg);
2178 }
2179 
2180 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2181 {
2182 	/* for filtering, pass "memcg" as argument. */
2183 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2184 }
2185 
2186 static void memcg_oom_recover(struct mem_cgroup *memcg)
2187 {
2188 	if (memcg && atomic_read(&memcg->under_oom))
2189 		memcg_wakeup_oom(memcg);
2190 }
2191 
2192 /*
2193  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2194  */
2195 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2196 				  int order)
2197 {
2198 	struct oom_wait_info owait;
2199 	bool locked, need_to_kill;
2200 
2201 	owait.memcg = memcg;
2202 	owait.wait.flags = 0;
2203 	owait.wait.func = memcg_oom_wake_function;
2204 	owait.wait.private = current;
2205 	INIT_LIST_HEAD(&owait.wait.task_list);
2206 	need_to_kill = true;
2207 	mem_cgroup_mark_under_oom(memcg);
2208 
2209 	/* At first, try to OOM lock hierarchy under memcg.*/
2210 	spin_lock(&memcg_oom_lock);
2211 	locked = mem_cgroup_oom_lock(memcg);
2212 	/*
2213 	 * Even if signal_pending(), we can't quit charge() loop without
2214 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2215 	 * under OOM is always welcomed, use TASK_KILLABLE here.
2216 	 */
2217 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2218 	if (!locked || memcg->oom_kill_disable)
2219 		need_to_kill = false;
2220 	if (locked)
2221 		mem_cgroup_oom_notify(memcg);
2222 	spin_unlock(&memcg_oom_lock);
2223 
2224 	if (need_to_kill) {
2225 		finish_wait(&memcg_oom_waitq, &owait.wait);
2226 		mem_cgroup_out_of_memory(memcg, mask, order);
2227 	} else {
2228 		schedule();
2229 		finish_wait(&memcg_oom_waitq, &owait.wait);
2230 	}
2231 	spin_lock(&memcg_oom_lock);
2232 	if (locked)
2233 		mem_cgroup_oom_unlock(memcg);
2234 	memcg_wakeup_oom(memcg);
2235 	spin_unlock(&memcg_oom_lock);
2236 
2237 	mem_cgroup_unmark_under_oom(memcg);
2238 
2239 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2240 		return false;
2241 	/* Give chance to dying process */
2242 	schedule_timeout_uninterruptible(1);
2243 	return true;
2244 }
2245 
2246 /*
2247  * Currently used to update mapped file statistics, but the routine can be
2248  * generalized to update other statistics as well.
2249  *
2250  * Notes: Race condition
2251  *
2252  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2253  * it tends to be costly. But considering some conditions, we doesn't need
2254  * to do so _always_.
2255  *
2256  * Considering "charge", lock_page_cgroup() is not required because all
2257  * file-stat operations happen after a page is attached to radix-tree. There
2258  * are no race with "charge".
2259  *
2260  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2261  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2262  * if there are race with "uncharge". Statistics itself is properly handled
2263  * by flags.
2264  *
2265  * Considering "move", this is an only case we see a race. To make the race
2266  * small, we check mm->moving_account and detect there are possibility of race
2267  * If there is, we take a lock.
2268  */
2269 
2270 void __mem_cgroup_begin_update_page_stat(struct page *page,
2271 				bool *locked, unsigned long *flags)
2272 {
2273 	struct mem_cgroup *memcg;
2274 	struct page_cgroup *pc;
2275 
2276 	pc = lookup_page_cgroup(page);
2277 again:
2278 	memcg = pc->mem_cgroup;
2279 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2280 		return;
2281 	/*
2282 	 * If this memory cgroup is not under account moving, we don't
2283 	 * need to take move_lock_mem_cgroup(). Because we already hold
2284 	 * rcu_read_lock(), any calls to move_account will be delayed until
2285 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2286 	 */
2287 	if (!mem_cgroup_stolen(memcg))
2288 		return;
2289 
2290 	move_lock_mem_cgroup(memcg, flags);
2291 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2292 		move_unlock_mem_cgroup(memcg, flags);
2293 		goto again;
2294 	}
2295 	*locked = true;
2296 }
2297 
2298 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2299 {
2300 	struct page_cgroup *pc = lookup_page_cgroup(page);
2301 
2302 	/*
2303 	 * It's guaranteed that pc->mem_cgroup never changes while
2304 	 * lock is held because a routine modifies pc->mem_cgroup
2305 	 * should take move_lock_mem_cgroup().
2306 	 */
2307 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2308 }
2309 
2310 void mem_cgroup_update_page_stat(struct page *page,
2311 				 enum mem_cgroup_page_stat_item idx, int val)
2312 {
2313 	struct mem_cgroup *memcg;
2314 	struct page_cgroup *pc = lookup_page_cgroup(page);
2315 	unsigned long uninitialized_var(flags);
2316 
2317 	if (mem_cgroup_disabled())
2318 		return;
2319 
2320 	memcg = pc->mem_cgroup;
2321 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2322 		return;
2323 
2324 	switch (idx) {
2325 	case MEMCG_NR_FILE_MAPPED:
2326 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2327 		break;
2328 	default:
2329 		BUG();
2330 	}
2331 
2332 	this_cpu_add(memcg->stat->count[idx], val);
2333 }
2334 
2335 /*
2336  * size of first charge trial. "32" comes from vmscan.c's magic value.
2337  * TODO: maybe necessary to use big numbers in big irons.
2338  */
2339 #define CHARGE_BATCH	32U
2340 struct memcg_stock_pcp {
2341 	struct mem_cgroup *cached; /* this never be root cgroup */
2342 	unsigned int nr_pages;
2343 	struct work_struct work;
2344 	unsigned long flags;
2345 #define FLUSHING_CACHED_CHARGE	0
2346 };
2347 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2348 static DEFINE_MUTEX(percpu_charge_mutex);
2349 
2350 /**
2351  * consume_stock: Try to consume stocked charge on this cpu.
2352  * @memcg: memcg to consume from.
2353  * @nr_pages: how many pages to charge.
2354  *
2355  * The charges will only happen if @memcg matches the current cpu's memcg
2356  * stock, and at least @nr_pages are available in that stock.  Failure to
2357  * service an allocation will refill the stock.
2358  *
2359  * returns true if successful, false otherwise.
2360  */
2361 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2362 {
2363 	struct memcg_stock_pcp *stock;
2364 	bool ret = true;
2365 
2366 	if (nr_pages > CHARGE_BATCH)
2367 		return false;
2368 
2369 	stock = &get_cpu_var(memcg_stock);
2370 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2371 		stock->nr_pages -= nr_pages;
2372 	else /* need to call res_counter_charge */
2373 		ret = false;
2374 	put_cpu_var(memcg_stock);
2375 	return ret;
2376 }
2377 
2378 /*
2379  * Returns stocks cached in percpu to res_counter and reset cached information.
2380  */
2381 static void drain_stock(struct memcg_stock_pcp *stock)
2382 {
2383 	struct mem_cgroup *old = stock->cached;
2384 
2385 	if (stock->nr_pages) {
2386 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2387 
2388 		res_counter_uncharge(&old->res, bytes);
2389 		if (do_swap_account)
2390 			res_counter_uncharge(&old->memsw, bytes);
2391 		stock->nr_pages = 0;
2392 	}
2393 	stock->cached = NULL;
2394 }
2395 
2396 /*
2397  * This must be called under preempt disabled or must be called by
2398  * a thread which is pinned to local cpu.
2399  */
2400 static void drain_local_stock(struct work_struct *dummy)
2401 {
2402 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2403 	drain_stock(stock);
2404 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2405 }
2406 
2407 static void __init memcg_stock_init(void)
2408 {
2409 	int cpu;
2410 
2411 	for_each_possible_cpu(cpu) {
2412 		struct memcg_stock_pcp *stock =
2413 					&per_cpu(memcg_stock, cpu);
2414 		INIT_WORK(&stock->work, drain_local_stock);
2415 	}
2416 }
2417 
2418 /*
2419  * Cache charges(val) which is from res_counter, to local per_cpu area.
2420  * This will be consumed by consume_stock() function, later.
2421  */
2422 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2423 {
2424 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2425 
2426 	if (stock->cached != memcg) { /* reset if necessary */
2427 		drain_stock(stock);
2428 		stock->cached = memcg;
2429 	}
2430 	stock->nr_pages += nr_pages;
2431 	put_cpu_var(memcg_stock);
2432 }
2433 
2434 /*
2435  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2436  * of the hierarchy under it. sync flag says whether we should block
2437  * until the work is done.
2438  */
2439 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2440 {
2441 	int cpu, curcpu;
2442 
2443 	/* Notify other cpus that system-wide "drain" is running */
2444 	get_online_cpus();
2445 	curcpu = get_cpu();
2446 	for_each_online_cpu(cpu) {
2447 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2448 		struct mem_cgroup *memcg;
2449 
2450 		memcg = stock->cached;
2451 		if (!memcg || !stock->nr_pages)
2452 			continue;
2453 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2454 			continue;
2455 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2456 			if (cpu == curcpu)
2457 				drain_local_stock(&stock->work);
2458 			else
2459 				schedule_work_on(cpu, &stock->work);
2460 		}
2461 	}
2462 	put_cpu();
2463 
2464 	if (!sync)
2465 		goto out;
2466 
2467 	for_each_online_cpu(cpu) {
2468 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2469 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2470 			flush_work(&stock->work);
2471 	}
2472 out:
2473  	put_online_cpus();
2474 }
2475 
2476 /*
2477  * Tries to drain stocked charges in other cpus. This function is asynchronous
2478  * and just put a work per cpu for draining localy on each cpu. Caller can
2479  * expects some charges will be back to res_counter later but cannot wait for
2480  * it.
2481  */
2482 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2483 {
2484 	/*
2485 	 * If someone calls draining, avoid adding more kworker runs.
2486 	 */
2487 	if (!mutex_trylock(&percpu_charge_mutex))
2488 		return;
2489 	drain_all_stock(root_memcg, false);
2490 	mutex_unlock(&percpu_charge_mutex);
2491 }
2492 
2493 /* This is a synchronous drain interface. */
2494 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2495 {
2496 	/* called when force_empty is called */
2497 	mutex_lock(&percpu_charge_mutex);
2498 	drain_all_stock(root_memcg, true);
2499 	mutex_unlock(&percpu_charge_mutex);
2500 }
2501 
2502 /*
2503  * This function drains percpu counter value from DEAD cpu and
2504  * move it to local cpu. Note that this function can be preempted.
2505  */
2506 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2507 {
2508 	int i;
2509 
2510 	spin_lock(&memcg->pcp_counter_lock);
2511 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2512 		long x = per_cpu(memcg->stat->count[i], cpu);
2513 
2514 		per_cpu(memcg->stat->count[i], cpu) = 0;
2515 		memcg->nocpu_base.count[i] += x;
2516 	}
2517 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2518 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2519 
2520 		per_cpu(memcg->stat->events[i], cpu) = 0;
2521 		memcg->nocpu_base.events[i] += x;
2522 	}
2523 	spin_unlock(&memcg->pcp_counter_lock);
2524 }
2525 
2526 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2527 					unsigned long action,
2528 					void *hcpu)
2529 {
2530 	int cpu = (unsigned long)hcpu;
2531 	struct memcg_stock_pcp *stock;
2532 	struct mem_cgroup *iter;
2533 
2534 	if (action == CPU_ONLINE)
2535 		return NOTIFY_OK;
2536 
2537 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2538 		return NOTIFY_OK;
2539 
2540 	for_each_mem_cgroup(iter)
2541 		mem_cgroup_drain_pcp_counter(iter, cpu);
2542 
2543 	stock = &per_cpu(memcg_stock, cpu);
2544 	drain_stock(stock);
2545 	return NOTIFY_OK;
2546 }
2547 
2548 
2549 /* See __mem_cgroup_try_charge() for details */
2550 enum {
2551 	CHARGE_OK,		/* success */
2552 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2553 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2554 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2555 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2556 };
2557 
2558 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2559 				unsigned int nr_pages, unsigned int min_pages,
2560 				bool oom_check)
2561 {
2562 	unsigned long csize = nr_pages * PAGE_SIZE;
2563 	struct mem_cgroup *mem_over_limit;
2564 	struct res_counter *fail_res;
2565 	unsigned long flags = 0;
2566 	int ret;
2567 
2568 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2569 
2570 	if (likely(!ret)) {
2571 		if (!do_swap_account)
2572 			return CHARGE_OK;
2573 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2574 		if (likely(!ret))
2575 			return CHARGE_OK;
2576 
2577 		res_counter_uncharge(&memcg->res, csize);
2578 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2579 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2580 	} else
2581 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2582 	/*
2583 	 * Never reclaim on behalf of optional batching, retry with a
2584 	 * single page instead.
2585 	 */
2586 	if (nr_pages > min_pages)
2587 		return CHARGE_RETRY;
2588 
2589 	if (!(gfp_mask & __GFP_WAIT))
2590 		return CHARGE_WOULDBLOCK;
2591 
2592 	if (gfp_mask & __GFP_NORETRY)
2593 		return CHARGE_NOMEM;
2594 
2595 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2596 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2597 		return CHARGE_RETRY;
2598 	/*
2599 	 * Even though the limit is exceeded at this point, reclaim
2600 	 * may have been able to free some pages.  Retry the charge
2601 	 * before killing the task.
2602 	 *
2603 	 * Only for regular pages, though: huge pages are rather
2604 	 * unlikely to succeed so close to the limit, and we fall back
2605 	 * to regular pages anyway in case of failure.
2606 	 */
2607 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2608 		return CHARGE_RETRY;
2609 
2610 	/*
2611 	 * At task move, charge accounts can be doubly counted. So, it's
2612 	 * better to wait until the end of task_move if something is going on.
2613 	 */
2614 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2615 		return CHARGE_RETRY;
2616 
2617 	/* If we don't need to call oom-killer at el, return immediately */
2618 	if (!oom_check)
2619 		return CHARGE_NOMEM;
2620 	/* check OOM */
2621 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2622 		return CHARGE_OOM_DIE;
2623 
2624 	return CHARGE_RETRY;
2625 }
2626 
2627 /*
2628  * __mem_cgroup_try_charge() does
2629  * 1. detect memcg to be charged against from passed *mm and *ptr,
2630  * 2. update res_counter
2631  * 3. call memory reclaim if necessary.
2632  *
2633  * In some special case, if the task is fatal, fatal_signal_pending() or
2634  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2635  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2636  * as possible without any hazards. 2: all pages should have a valid
2637  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2638  * pointer, that is treated as a charge to root_mem_cgroup.
2639  *
2640  * So __mem_cgroup_try_charge() will return
2641  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2642  *  -ENOMEM ...  charge failure because of resource limits.
2643  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2644  *
2645  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2646  * the oom-killer can be invoked.
2647  */
2648 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2649 				   gfp_t gfp_mask,
2650 				   unsigned int nr_pages,
2651 				   struct mem_cgroup **ptr,
2652 				   bool oom)
2653 {
2654 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2655 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2656 	struct mem_cgroup *memcg = NULL;
2657 	int ret;
2658 
2659 	/*
2660 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2661 	 * in system level. So, allow to go ahead dying process in addition to
2662 	 * MEMDIE process.
2663 	 */
2664 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2665 		     || fatal_signal_pending(current)))
2666 		goto bypass;
2667 
2668 	/*
2669 	 * We always charge the cgroup the mm_struct belongs to.
2670 	 * The mm_struct's mem_cgroup changes on task migration if the
2671 	 * thread group leader migrates. It's possible that mm is not
2672 	 * set, if so charge the root memcg (happens for pagecache usage).
2673 	 */
2674 	if (!*ptr && !mm)
2675 		*ptr = root_mem_cgroup;
2676 again:
2677 	if (*ptr) { /* css should be a valid one */
2678 		memcg = *ptr;
2679 		if (mem_cgroup_is_root(memcg))
2680 			goto done;
2681 		if (consume_stock(memcg, nr_pages))
2682 			goto done;
2683 		css_get(&memcg->css);
2684 	} else {
2685 		struct task_struct *p;
2686 
2687 		rcu_read_lock();
2688 		p = rcu_dereference(mm->owner);
2689 		/*
2690 		 * Because we don't have task_lock(), "p" can exit.
2691 		 * In that case, "memcg" can point to root or p can be NULL with
2692 		 * race with swapoff. Then, we have small risk of mis-accouning.
2693 		 * But such kind of mis-account by race always happens because
2694 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2695 		 * small race, here.
2696 		 * (*) swapoff at el will charge against mm-struct not against
2697 		 * task-struct. So, mm->owner can be NULL.
2698 		 */
2699 		memcg = mem_cgroup_from_task(p);
2700 		if (!memcg)
2701 			memcg = root_mem_cgroup;
2702 		if (mem_cgroup_is_root(memcg)) {
2703 			rcu_read_unlock();
2704 			goto done;
2705 		}
2706 		if (consume_stock(memcg, nr_pages)) {
2707 			/*
2708 			 * It seems dagerous to access memcg without css_get().
2709 			 * But considering how consume_stok works, it's not
2710 			 * necessary. If consume_stock success, some charges
2711 			 * from this memcg are cached on this cpu. So, we
2712 			 * don't need to call css_get()/css_tryget() before
2713 			 * calling consume_stock().
2714 			 */
2715 			rcu_read_unlock();
2716 			goto done;
2717 		}
2718 		/* after here, we may be blocked. we need to get refcnt */
2719 		if (!css_tryget(&memcg->css)) {
2720 			rcu_read_unlock();
2721 			goto again;
2722 		}
2723 		rcu_read_unlock();
2724 	}
2725 
2726 	do {
2727 		bool oom_check;
2728 
2729 		/* If killed, bypass charge */
2730 		if (fatal_signal_pending(current)) {
2731 			css_put(&memcg->css);
2732 			goto bypass;
2733 		}
2734 
2735 		oom_check = false;
2736 		if (oom && !nr_oom_retries) {
2737 			oom_check = true;
2738 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2739 		}
2740 
2741 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2742 		    oom_check);
2743 		switch (ret) {
2744 		case CHARGE_OK:
2745 			break;
2746 		case CHARGE_RETRY: /* not in OOM situation but retry */
2747 			batch = nr_pages;
2748 			css_put(&memcg->css);
2749 			memcg = NULL;
2750 			goto again;
2751 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2752 			css_put(&memcg->css);
2753 			goto nomem;
2754 		case CHARGE_NOMEM: /* OOM routine works */
2755 			if (!oom) {
2756 				css_put(&memcg->css);
2757 				goto nomem;
2758 			}
2759 			/* If oom, we never return -ENOMEM */
2760 			nr_oom_retries--;
2761 			break;
2762 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2763 			css_put(&memcg->css);
2764 			goto bypass;
2765 		}
2766 	} while (ret != CHARGE_OK);
2767 
2768 	if (batch > nr_pages)
2769 		refill_stock(memcg, batch - nr_pages);
2770 	css_put(&memcg->css);
2771 done:
2772 	*ptr = memcg;
2773 	return 0;
2774 nomem:
2775 	*ptr = NULL;
2776 	return -ENOMEM;
2777 bypass:
2778 	*ptr = root_mem_cgroup;
2779 	return -EINTR;
2780 }
2781 
2782 /*
2783  * Somemtimes we have to undo a charge we got by try_charge().
2784  * This function is for that and do uncharge, put css's refcnt.
2785  * gotten by try_charge().
2786  */
2787 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2788 				       unsigned int nr_pages)
2789 {
2790 	if (!mem_cgroup_is_root(memcg)) {
2791 		unsigned long bytes = nr_pages * PAGE_SIZE;
2792 
2793 		res_counter_uncharge(&memcg->res, bytes);
2794 		if (do_swap_account)
2795 			res_counter_uncharge(&memcg->memsw, bytes);
2796 	}
2797 }
2798 
2799 /*
2800  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2801  * This is useful when moving usage to parent cgroup.
2802  */
2803 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2804 					unsigned int nr_pages)
2805 {
2806 	unsigned long bytes = nr_pages * PAGE_SIZE;
2807 
2808 	if (mem_cgroup_is_root(memcg))
2809 		return;
2810 
2811 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2812 	if (do_swap_account)
2813 		res_counter_uncharge_until(&memcg->memsw,
2814 						memcg->memsw.parent, bytes);
2815 }
2816 
2817 /*
2818  * A helper function to get mem_cgroup from ID. must be called under
2819  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2820  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2821  * called against removed memcg.)
2822  */
2823 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2824 {
2825 	struct cgroup_subsys_state *css;
2826 
2827 	/* ID 0 is unused ID */
2828 	if (!id)
2829 		return NULL;
2830 	css = css_lookup(&mem_cgroup_subsys, id);
2831 	if (!css)
2832 		return NULL;
2833 	return mem_cgroup_from_css(css);
2834 }
2835 
2836 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2837 {
2838 	struct mem_cgroup *memcg = NULL;
2839 	struct page_cgroup *pc;
2840 	unsigned short id;
2841 	swp_entry_t ent;
2842 
2843 	VM_BUG_ON(!PageLocked(page));
2844 
2845 	pc = lookup_page_cgroup(page);
2846 	lock_page_cgroup(pc);
2847 	if (PageCgroupUsed(pc)) {
2848 		memcg = pc->mem_cgroup;
2849 		if (memcg && !css_tryget(&memcg->css))
2850 			memcg = NULL;
2851 	} else if (PageSwapCache(page)) {
2852 		ent.val = page_private(page);
2853 		id = lookup_swap_cgroup_id(ent);
2854 		rcu_read_lock();
2855 		memcg = mem_cgroup_lookup(id);
2856 		if (memcg && !css_tryget(&memcg->css))
2857 			memcg = NULL;
2858 		rcu_read_unlock();
2859 	}
2860 	unlock_page_cgroup(pc);
2861 	return memcg;
2862 }
2863 
2864 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2865 				       struct page *page,
2866 				       unsigned int nr_pages,
2867 				       enum charge_type ctype,
2868 				       bool lrucare)
2869 {
2870 	struct page_cgroup *pc = lookup_page_cgroup(page);
2871 	struct zone *uninitialized_var(zone);
2872 	struct lruvec *lruvec;
2873 	bool was_on_lru = false;
2874 	bool anon;
2875 
2876 	lock_page_cgroup(pc);
2877 	VM_BUG_ON(PageCgroupUsed(pc));
2878 	/*
2879 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2880 	 * accessed by any other context at this point.
2881 	 */
2882 
2883 	/*
2884 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2885 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2886 	 */
2887 	if (lrucare) {
2888 		zone = page_zone(page);
2889 		spin_lock_irq(&zone->lru_lock);
2890 		if (PageLRU(page)) {
2891 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2892 			ClearPageLRU(page);
2893 			del_page_from_lru_list(page, lruvec, page_lru(page));
2894 			was_on_lru = true;
2895 		}
2896 	}
2897 
2898 	pc->mem_cgroup = memcg;
2899 	/*
2900 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2901 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2902 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2903 	 * before USED bit, we need memory barrier here.
2904 	 * See mem_cgroup_add_lru_list(), etc.
2905  	 */
2906 	smp_wmb();
2907 	SetPageCgroupUsed(pc);
2908 
2909 	if (lrucare) {
2910 		if (was_on_lru) {
2911 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2912 			VM_BUG_ON(PageLRU(page));
2913 			SetPageLRU(page);
2914 			add_page_to_lru_list(page, lruvec, page_lru(page));
2915 		}
2916 		spin_unlock_irq(&zone->lru_lock);
2917 	}
2918 
2919 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2920 		anon = true;
2921 	else
2922 		anon = false;
2923 
2924 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2925 	unlock_page_cgroup(pc);
2926 
2927 	/*
2928 	 * "charge_statistics" updated event counter. Then, check it.
2929 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2930 	 * if they exceeds softlimit.
2931 	 */
2932 	memcg_check_events(memcg, page);
2933 }
2934 
2935 static DEFINE_MUTEX(set_limit_mutex);
2936 
2937 #ifdef CONFIG_MEMCG_KMEM
2938 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2939 {
2940 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2941 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2942 }
2943 
2944 /*
2945  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2946  * in the memcg_cache_params struct.
2947  */
2948 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2949 {
2950 	struct kmem_cache *cachep;
2951 
2952 	VM_BUG_ON(p->is_root_cache);
2953 	cachep = p->root_cache;
2954 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2955 }
2956 
2957 #ifdef CONFIG_SLABINFO
2958 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2959 					struct seq_file *m)
2960 {
2961 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2962 	struct memcg_cache_params *params;
2963 
2964 	if (!memcg_can_account_kmem(memcg))
2965 		return -EIO;
2966 
2967 	print_slabinfo_header(m);
2968 
2969 	mutex_lock(&memcg->slab_caches_mutex);
2970 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2971 		cache_show(memcg_params_to_cache(params), m);
2972 	mutex_unlock(&memcg->slab_caches_mutex);
2973 
2974 	return 0;
2975 }
2976 #endif
2977 
2978 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2979 {
2980 	struct res_counter *fail_res;
2981 	struct mem_cgroup *_memcg;
2982 	int ret = 0;
2983 	bool may_oom;
2984 
2985 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2986 	if (ret)
2987 		return ret;
2988 
2989 	/*
2990 	 * Conditions under which we can wait for the oom_killer. Those are
2991 	 * the same conditions tested by the core page allocator
2992 	 */
2993 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2994 
2995 	_memcg = memcg;
2996 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2997 				      &_memcg, may_oom);
2998 
2999 	if (ret == -EINTR)  {
3000 		/*
3001 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3002 		 * OOM kill or fatal signal.  Since our only options are to
3003 		 * either fail the allocation or charge it to this cgroup, do
3004 		 * it as a temporary condition. But we can't fail. From a
3005 		 * kmem/slab perspective, the cache has already been selected,
3006 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3007 		 * our minds.
3008 		 *
3009 		 * This condition will only trigger if the task entered
3010 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3011 		 * __mem_cgroup_try_charge() above. Tasks that were already
3012 		 * dying when the allocation triggers should have been already
3013 		 * directed to the root cgroup in memcontrol.h
3014 		 */
3015 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3016 		if (do_swap_account)
3017 			res_counter_charge_nofail(&memcg->memsw, size,
3018 						  &fail_res);
3019 		ret = 0;
3020 	} else if (ret)
3021 		res_counter_uncharge(&memcg->kmem, size);
3022 
3023 	return ret;
3024 }
3025 
3026 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3027 {
3028 	res_counter_uncharge(&memcg->res, size);
3029 	if (do_swap_account)
3030 		res_counter_uncharge(&memcg->memsw, size);
3031 
3032 	/* Not down to 0 */
3033 	if (res_counter_uncharge(&memcg->kmem, size))
3034 		return;
3035 
3036 	if (memcg_kmem_test_and_clear_dead(memcg))
3037 		mem_cgroup_put(memcg);
3038 }
3039 
3040 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3041 {
3042 	if (!memcg)
3043 		return;
3044 
3045 	mutex_lock(&memcg->slab_caches_mutex);
3046 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3047 	mutex_unlock(&memcg->slab_caches_mutex);
3048 }
3049 
3050 /*
3051  * helper for acessing a memcg's index. It will be used as an index in the
3052  * child cache array in kmem_cache, and also to derive its name. This function
3053  * will return -1 when this is not a kmem-limited memcg.
3054  */
3055 int memcg_cache_id(struct mem_cgroup *memcg)
3056 {
3057 	return memcg ? memcg->kmemcg_id : -1;
3058 }
3059 
3060 /*
3061  * This ends up being protected by the set_limit mutex, during normal
3062  * operation, because that is its main call site.
3063  *
3064  * But when we create a new cache, we can call this as well if its parent
3065  * is kmem-limited. That will have to hold set_limit_mutex as well.
3066  */
3067 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3068 {
3069 	int num, ret;
3070 
3071 	num = ida_simple_get(&kmem_limited_groups,
3072 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3073 	if (num < 0)
3074 		return num;
3075 	/*
3076 	 * After this point, kmem_accounted (that we test atomically in
3077 	 * the beginning of this conditional), is no longer 0. This
3078 	 * guarantees only one process will set the following boolean
3079 	 * to true. We don't need test_and_set because we're protected
3080 	 * by the set_limit_mutex anyway.
3081 	 */
3082 	memcg_kmem_set_activated(memcg);
3083 
3084 	ret = memcg_update_all_caches(num+1);
3085 	if (ret) {
3086 		ida_simple_remove(&kmem_limited_groups, num);
3087 		memcg_kmem_clear_activated(memcg);
3088 		return ret;
3089 	}
3090 
3091 	memcg->kmemcg_id = num;
3092 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3093 	mutex_init(&memcg->slab_caches_mutex);
3094 	return 0;
3095 }
3096 
3097 static size_t memcg_caches_array_size(int num_groups)
3098 {
3099 	ssize_t size;
3100 	if (num_groups <= 0)
3101 		return 0;
3102 
3103 	size = 2 * num_groups;
3104 	if (size < MEMCG_CACHES_MIN_SIZE)
3105 		size = MEMCG_CACHES_MIN_SIZE;
3106 	else if (size > MEMCG_CACHES_MAX_SIZE)
3107 		size = MEMCG_CACHES_MAX_SIZE;
3108 
3109 	return size;
3110 }
3111 
3112 /*
3113  * We should update the current array size iff all caches updates succeed. This
3114  * can only be done from the slab side. The slab mutex needs to be held when
3115  * calling this.
3116  */
3117 void memcg_update_array_size(int num)
3118 {
3119 	if (num > memcg_limited_groups_array_size)
3120 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3121 }
3122 
3123 static void kmem_cache_destroy_work_func(struct work_struct *w);
3124 
3125 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3126 {
3127 	struct memcg_cache_params *cur_params = s->memcg_params;
3128 
3129 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3130 
3131 	if (num_groups > memcg_limited_groups_array_size) {
3132 		int i;
3133 		ssize_t size = memcg_caches_array_size(num_groups);
3134 
3135 		size *= sizeof(void *);
3136 		size += sizeof(struct memcg_cache_params);
3137 
3138 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3139 		if (!s->memcg_params) {
3140 			s->memcg_params = cur_params;
3141 			return -ENOMEM;
3142 		}
3143 
3144 		INIT_WORK(&s->memcg_params->destroy,
3145 				kmem_cache_destroy_work_func);
3146 		s->memcg_params->is_root_cache = true;
3147 
3148 		/*
3149 		 * There is the chance it will be bigger than
3150 		 * memcg_limited_groups_array_size, if we failed an allocation
3151 		 * in a cache, in which case all caches updated before it, will
3152 		 * have a bigger array.
3153 		 *
3154 		 * But if that is the case, the data after
3155 		 * memcg_limited_groups_array_size is certainly unused
3156 		 */
3157 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3158 			if (!cur_params->memcg_caches[i])
3159 				continue;
3160 			s->memcg_params->memcg_caches[i] =
3161 						cur_params->memcg_caches[i];
3162 		}
3163 
3164 		/*
3165 		 * Ideally, we would wait until all caches succeed, and only
3166 		 * then free the old one. But this is not worth the extra
3167 		 * pointer per-cache we'd have to have for this.
3168 		 *
3169 		 * It is not a big deal if some caches are left with a size
3170 		 * bigger than the others. And all updates will reset this
3171 		 * anyway.
3172 		 */
3173 		kfree(cur_params);
3174 	}
3175 	return 0;
3176 }
3177 
3178 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3179 			 struct kmem_cache *root_cache)
3180 {
3181 	size_t size = sizeof(struct memcg_cache_params);
3182 
3183 	if (!memcg_kmem_enabled())
3184 		return 0;
3185 
3186 	if (!memcg)
3187 		size += memcg_limited_groups_array_size * sizeof(void *);
3188 
3189 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3190 	if (!s->memcg_params)
3191 		return -ENOMEM;
3192 
3193 	INIT_WORK(&s->memcg_params->destroy,
3194 			kmem_cache_destroy_work_func);
3195 	if (memcg) {
3196 		s->memcg_params->memcg = memcg;
3197 		s->memcg_params->root_cache = root_cache;
3198 	} else
3199 		s->memcg_params->is_root_cache = true;
3200 
3201 	return 0;
3202 }
3203 
3204 void memcg_release_cache(struct kmem_cache *s)
3205 {
3206 	struct kmem_cache *root;
3207 	struct mem_cgroup *memcg;
3208 	int id;
3209 
3210 	/*
3211 	 * This happens, for instance, when a root cache goes away before we
3212 	 * add any memcg.
3213 	 */
3214 	if (!s->memcg_params)
3215 		return;
3216 
3217 	if (s->memcg_params->is_root_cache)
3218 		goto out;
3219 
3220 	memcg = s->memcg_params->memcg;
3221 	id  = memcg_cache_id(memcg);
3222 
3223 	root = s->memcg_params->root_cache;
3224 	root->memcg_params->memcg_caches[id] = NULL;
3225 
3226 	mutex_lock(&memcg->slab_caches_mutex);
3227 	list_del(&s->memcg_params->list);
3228 	mutex_unlock(&memcg->slab_caches_mutex);
3229 
3230 	mem_cgroup_put(memcg);
3231 out:
3232 	kfree(s->memcg_params);
3233 }
3234 
3235 /*
3236  * During the creation a new cache, we need to disable our accounting mechanism
3237  * altogether. This is true even if we are not creating, but rather just
3238  * enqueing new caches to be created.
3239  *
3240  * This is because that process will trigger allocations; some visible, like
3241  * explicit kmallocs to auxiliary data structures, name strings and internal
3242  * cache structures; some well concealed, like INIT_WORK() that can allocate
3243  * objects during debug.
3244  *
3245  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3246  * to it. This may not be a bounded recursion: since the first cache creation
3247  * failed to complete (waiting on the allocation), we'll just try to create the
3248  * cache again, failing at the same point.
3249  *
3250  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3251  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3252  * inside the following two functions.
3253  */
3254 static inline void memcg_stop_kmem_account(void)
3255 {
3256 	VM_BUG_ON(!current->mm);
3257 	current->memcg_kmem_skip_account++;
3258 }
3259 
3260 static inline void memcg_resume_kmem_account(void)
3261 {
3262 	VM_BUG_ON(!current->mm);
3263 	current->memcg_kmem_skip_account--;
3264 }
3265 
3266 static void kmem_cache_destroy_work_func(struct work_struct *w)
3267 {
3268 	struct kmem_cache *cachep;
3269 	struct memcg_cache_params *p;
3270 
3271 	p = container_of(w, struct memcg_cache_params, destroy);
3272 
3273 	cachep = memcg_params_to_cache(p);
3274 
3275 	/*
3276 	 * If we get down to 0 after shrink, we could delete right away.
3277 	 * However, memcg_release_pages() already puts us back in the workqueue
3278 	 * in that case. If we proceed deleting, we'll get a dangling
3279 	 * reference, and removing the object from the workqueue in that case
3280 	 * is unnecessary complication. We are not a fast path.
3281 	 *
3282 	 * Note that this case is fundamentally different from racing with
3283 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3284 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3285 	 * into the queue, but doing so from inside the worker racing to
3286 	 * destroy it.
3287 	 *
3288 	 * So if we aren't down to zero, we'll just schedule a worker and try
3289 	 * again
3290 	 */
3291 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3292 		kmem_cache_shrink(cachep);
3293 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3294 			return;
3295 	} else
3296 		kmem_cache_destroy(cachep);
3297 }
3298 
3299 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3300 {
3301 	if (!cachep->memcg_params->dead)
3302 		return;
3303 
3304 	/*
3305 	 * There are many ways in which we can get here.
3306 	 *
3307 	 * We can get to a memory-pressure situation while the delayed work is
3308 	 * still pending to run. The vmscan shrinkers can then release all
3309 	 * cache memory and get us to destruction. If this is the case, we'll
3310 	 * be executed twice, which is a bug (the second time will execute over
3311 	 * bogus data). In this case, cancelling the work should be fine.
3312 	 *
3313 	 * But we can also get here from the worker itself, if
3314 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3315 	 * get the page count to 0. In this case, we'll deadlock if we try to
3316 	 * cancel the work (the worker runs with an internal lock held, which
3317 	 * is the same lock we would hold for cancel_work_sync().)
3318 	 *
3319 	 * Since we can't possibly know who got us here, just refrain from
3320 	 * running if there is already work pending
3321 	 */
3322 	if (work_pending(&cachep->memcg_params->destroy))
3323 		return;
3324 	/*
3325 	 * We have to defer the actual destroying to a workqueue, because
3326 	 * we might currently be in a context that cannot sleep.
3327 	 */
3328 	schedule_work(&cachep->memcg_params->destroy);
3329 }
3330 
3331 /*
3332  * This lock protects updaters, not readers. We want readers to be as fast as
3333  * they can, and they will either see NULL or a valid cache value. Our model
3334  * allow them to see NULL, in which case the root memcg will be selected.
3335  *
3336  * We need this lock because multiple allocations to the same cache from a non
3337  * will span more than one worker. Only one of them can create the cache.
3338  */
3339 static DEFINE_MUTEX(memcg_cache_mutex);
3340 
3341 /*
3342  * Called with memcg_cache_mutex held
3343  */
3344 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3345 					 struct kmem_cache *s)
3346 {
3347 	struct kmem_cache *new;
3348 	static char *tmp_name = NULL;
3349 
3350 	lockdep_assert_held(&memcg_cache_mutex);
3351 
3352 	/*
3353 	 * kmem_cache_create_memcg duplicates the given name and
3354 	 * cgroup_name for this name requires RCU context.
3355 	 * This static temporary buffer is used to prevent from
3356 	 * pointless shortliving allocation.
3357 	 */
3358 	if (!tmp_name) {
3359 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3360 		if (!tmp_name)
3361 			return NULL;
3362 	}
3363 
3364 	rcu_read_lock();
3365 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3366 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3367 	rcu_read_unlock();
3368 
3369 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3370 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3371 
3372 	if (new)
3373 		new->allocflags |= __GFP_KMEMCG;
3374 
3375 	return new;
3376 }
3377 
3378 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3379 						  struct kmem_cache *cachep)
3380 {
3381 	struct kmem_cache *new_cachep;
3382 	int idx;
3383 
3384 	BUG_ON(!memcg_can_account_kmem(memcg));
3385 
3386 	idx = memcg_cache_id(memcg);
3387 
3388 	mutex_lock(&memcg_cache_mutex);
3389 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3390 	if (new_cachep)
3391 		goto out;
3392 
3393 	new_cachep = kmem_cache_dup(memcg, cachep);
3394 	if (new_cachep == NULL) {
3395 		new_cachep = cachep;
3396 		goto out;
3397 	}
3398 
3399 	mem_cgroup_get(memcg);
3400 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3401 
3402 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3403 	/*
3404 	 * the readers won't lock, make sure everybody sees the updated value,
3405 	 * so they won't put stuff in the queue again for no reason
3406 	 */
3407 	wmb();
3408 out:
3409 	mutex_unlock(&memcg_cache_mutex);
3410 	return new_cachep;
3411 }
3412 
3413 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3414 {
3415 	struct kmem_cache *c;
3416 	int i;
3417 
3418 	if (!s->memcg_params)
3419 		return;
3420 	if (!s->memcg_params->is_root_cache)
3421 		return;
3422 
3423 	/*
3424 	 * If the cache is being destroyed, we trust that there is no one else
3425 	 * requesting objects from it. Even if there are, the sanity checks in
3426 	 * kmem_cache_destroy should caught this ill-case.
3427 	 *
3428 	 * Still, we don't want anyone else freeing memcg_caches under our
3429 	 * noses, which can happen if a new memcg comes to life. As usual,
3430 	 * we'll take the set_limit_mutex to protect ourselves against this.
3431 	 */
3432 	mutex_lock(&set_limit_mutex);
3433 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3434 		c = s->memcg_params->memcg_caches[i];
3435 		if (!c)
3436 			continue;
3437 
3438 		/*
3439 		 * We will now manually delete the caches, so to avoid races
3440 		 * we need to cancel all pending destruction workers and
3441 		 * proceed with destruction ourselves.
3442 		 *
3443 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3444 		 * and that could spawn the workers again: it is likely that
3445 		 * the cache still have active pages until this very moment.
3446 		 * This would lead us back to mem_cgroup_destroy_cache.
3447 		 *
3448 		 * But that will not execute at all if the "dead" flag is not
3449 		 * set, so flip it down to guarantee we are in control.
3450 		 */
3451 		c->memcg_params->dead = false;
3452 		cancel_work_sync(&c->memcg_params->destroy);
3453 		kmem_cache_destroy(c);
3454 	}
3455 	mutex_unlock(&set_limit_mutex);
3456 }
3457 
3458 struct create_work {
3459 	struct mem_cgroup *memcg;
3460 	struct kmem_cache *cachep;
3461 	struct work_struct work;
3462 };
3463 
3464 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3465 {
3466 	struct kmem_cache *cachep;
3467 	struct memcg_cache_params *params;
3468 
3469 	if (!memcg_kmem_is_active(memcg))
3470 		return;
3471 
3472 	mutex_lock(&memcg->slab_caches_mutex);
3473 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3474 		cachep = memcg_params_to_cache(params);
3475 		cachep->memcg_params->dead = true;
3476 		schedule_work(&cachep->memcg_params->destroy);
3477 	}
3478 	mutex_unlock(&memcg->slab_caches_mutex);
3479 }
3480 
3481 static void memcg_create_cache_work_func(struct work_struct *w)
3482 {
3483 	struct create_work *cw;
3484 
3485 	cw = container_of(w, struct create_work, work);
3486 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3487 	/* Drop the reference gotten when we enqueued. */
3488 	css_put(&cw->memcg->css);
3489 	kfree(cw);
3490 }
3491 
3492 /*
3493  * Enqueue the creation of a per-memcg kmem_cache.
3494  */
3495 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3496 					 struct kmem_cache *cachep)
3497 {
3498 	struct create_work *cw;
3499 
3500 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3501 	if (cw == NULL) {
3502 		css_put(&memcg->css);
3503 		return;
3504 	}
3505 
3506 	cw->memcg = memcg;
3507 	cw->cachep = cachep;
3508 
3509 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3510 	schedule_work(&cw->work);
3511 }
3512 
3513 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3514 				       struct kmem_cache *cachep)
3515 {
3516 	/*
3517 	 * We need to stop accounting when we kmalloc, because if the
3518 	 * corresponding kmalloc cache is not yet created, the first allocation
3519 	 * in __memcg_create_cache_enqueue will recurse.
3520 	 *
3521 	 * However, it is better to enclose the whole function. Depending on
3522 	 * the debugging options enabled, INIT_WORK(), for instance, can
3523 	 * trigger an allocation. This too, will make us recurse. Because at
3524 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3525 	 * the safest choice is to do it like this, wrapping the whole function.
3526 	 */
3527 	memcg_stop_kmem_account();
3528 	__memcg_create_cache_enqueue(memcg, cachep);
3529 	memcg_resume_kmem_account();
3530 }
3531 /*
3532  * Return the kmem_cache we're supposed to use for a slab allocation.
3533  * We try to use the current memcg's version of the cache.
3534  *
3535  * If the cache does not exist yet, if we are the first user of it,
3536  * we either create it immediately, if possible, or create it asynchronously
3537  * in a workqueue.
3538  * In the latter case, we will let the current allocation go through with
3539  * the original cache.
3540  *
3541  * Can't be called in interrupt context or from kernel threads.
3542  * This function needs to be called with rcu_read_lock() held.
3543  */
3544 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3545 					  gfp_t gfp)
3546 {
3547 	struct mem_cgroup *memcg;
3548 	int idx;
3549 
3550 	VM_BUG_ON(!cachep->memcg_params);
3551 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3552 
3553 	if (!current->mm || current->memcg_kmem_skip_account)
3554 		return cachep;
3555 
3556 	rcu_read_lock();
3557 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3558 
3559 	if (!memcg_can_account_kmem(memcg))
3560 		goto out;
3561 
3562 	idx = memcg_cache_id(memcg);
3563 
3564 	/*
3565 	 * barrier to mare sure we're always seeing the up to date value.  The
3566 	 * code updating memcg_caches will issue a write barrier to match this.
3567 	 */
3568 	read_barrier_depends();
3569 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3570 		cachep = cachep->memcg_params->memcg_caches[idx];
3571 		goto out;
3572 	}
3573 
3574 	/* The corresponding put will be done in the workqueue. */
3575 	if (!css_tryget(&memcg->css))
3576 		goto out;
3577 	rcu_read_unlock();
3578 
3579 	/*
3580 	 * If we are in a safe context (can wait, and not in interrupt
3581 	 * context), we could be be predictable and return right away.
3582 	 * This would guarantee that the allocation being performed
3583 	 * already belongs in the new cache.
3584 	 *
3585 	 * However, there are some clashes that can arrive from locking.
3586 	 * For instance, because we acquire the slab_mutex while doing
3587 	 * kmem_cache_dup, this means no further allocation could happen
3588 	 * with the slab_mutex held.
3589 	 *
3590 	 * Also, because cache creation issue get_online_cpus(), this
3591 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3592 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3593 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3594 	 * better to defer everything.
3595 	 */
3596 	memcg_create_cache_enqueue(memcg, cachep);
3597 	return cachep;
3598 out:
3599 	rcu_read_unlock();
3600 	return cachep;
3601 }
3602 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3603 
3604 /*
3605  * We need to verify if the allocation against current->mm->owner's memcg is
3606  * possible for the given order. But the page is not allocated yet, so we'll
3607  * need a further commit step to do the final arrangements.
3608  *
3609  * It is possible for the task to switch cgroups in this mean time, so at
3610  * commit time, we can't rely on task conversion any longer.  We'll then use
3611  * the handle argument to return to the caller which cgroup we should commit
3612  * against. We could also return the memcg directly and avoid the pointer
3613  * passing, but a boolean return value gives better semantics considering
3614  * the compiled-out case as well.
3615  *
3616  * Returning true means the allocation is possible.
3617  */
3618 bool
3619 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3620 {
3621 	struct mem_cgroup *memcg;
3622 	int ret;
3623 
3624 	*_memcg = NULL;
3625 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3626 
3627 	/*
3628 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3629 	 * isn't much we can do without complicating this too much, and it would
3630 	 * be gfp-dependent anyway. Just let it go
3631 	 */
3632 	if (unlikely(!memcg))
3633 		return true;
3634 
3635 	if (!memcg_can_account_kmem(memcg)) {
3636 		css_put(&memcg->css);
3637 		return true;
3638 	}
3639 
3640 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3641 	if (!ret)
3642 		*_memcg = memcg;
3643 
3644 	css_put(&memcg->css);
3645 	return (ret == 0);
3646 }
3647 
3648 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3649 			      int order)
3650 {
3651 	struct page_cgroup *pc;
3652 
3653 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3654 
3655 	/* The page allocation failed. Revert */
3656 	if (!page) {
3657 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3658 		return;
3659 	}
3660 
3661 	pc = lookup_page_cgroup(page);
3662 	lock_page_cgroup(pc);
3663 	pc->mem_cgroup = memcg;
3664 	SetPageCgroupUsed(pc);
3665 	unlock_page_cgroup(pc);
3666 }
3667 
3668 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3669 {
3670 	struct mem_cgroup *memcg = NULL;
3671 	struct page_cgroup *pc;
3672 
3673 
3674 	pc = lookup_page_cgroup(page);
3675 	/*
3676 	 * Fast unlocked return. Theoretically might have changed, have to
3677 	 * check again after locking.
3678 	 */
3679 	if (!PageCgroupUsed(pc))
3680 		return;
3681 
3682 	lock_page_cgroup(pc);
3683 	if (PageCgroupUsed(pc)) {
3684 		memcg = pc->mem_cgroup;
3685 		ClearPageCgroupUsed(pc);
3686 	}
3687 	unlock_page_cgroup(pc);
3688 
3689 	/*
3690 	 * We trust that only if there is a memcg associated with the page, it
3691 	 * is a valid allocation
3692 	 */
3693 	if (!memcg)
3694 		return;
3695 
3696 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3697 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3698 }
3699 #else
3700 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3701 {
3702 }
3703 #endif /* CONFIG_MEMCG_KMEM */
3704 
3705 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3706 
3707 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3708 /*
3709  * Because tail pages are not marked as "used", set it. We're under
3710  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3711  * charge/uncharge will be never happen and move_account() is done under
3712  * compound_lock(), so we don't have to take care of races.
3713  */
3714 void mem_cgroup_split_huge_fixup(struct page *head)
3715 {
3716 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3717 	struct page_cgroup *pc;
3718 	struct mem_cgroup *memcg;
3719 	int i;
3720 
3721 	if (mem_cgroup_disabled())
3722 		return;
3723 
3724 	memcg = head_pc->mem_cgroup;
3725 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3726 		pc = head_pc + i;
3727 		pc->mem_cgroup = memcg;
3728 		smp_wmb();/* see __commit_charge() */
3729 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3730 	}
3731 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3732 		       HPAGE_PMD_NR);
3733 }
3734 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3735 
3736 /**
3737  * mem_cgroup_move_account - move account of the page
3738  * @page: the page
3739  * @nr_pages: number of regular pages (>1 for huge pages)
3740  * @pc:	page_cgroup of the page.
3741  * @from: mem_cgroup which the page is moved from.
3742  * @to:	mem_cgroup which the page is moved to. @from != @to.
3743  *
3744  * The caller must confirm following.
3745  * - page is not on LRU (isolate_page() is useful.)
3746  * - compound_lock is held when nr_pages > 1
3747  *
3748  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3749  * from old cgroup.
3750  */
3751 static int mem_cgroup_move_account(struct page *page,
3752 				   unsigned int nr_pages,
3753 				   struct page_cgroup *pc,
3754 				   struct mem_cgroup *from,
3755 				   struct mem_cgroup *to)
3756 {
3757 	unsigned long flags;
3758 	int ret;
3759 	bool anon = PageAnon(page);
3760 
3761 	VM_BUG_ON(from == to);
3762 	VM_BUG_ON(PageLRU(page));
3763 	/*
3764 	 * The page is isolated from LRU. So, collapse function
3765 	 * will not handle this page. But page splitting can happen.
3766 	 * Do this check under compound_page_lock(). The caller should
3767 	 * hold it.
3768 	 */
3769 	ret = -EBUSY;
3770 	if (nr_pages > 1 && !PageTransHuge(page))
3771 		goto out;
3772 
3773 	lock_page_cgroup(pc);
3774 
3775 	ret = -EINVAL;
3776 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3777 		goto unlock;
3778 
3779 	move_lock_mem_cgroup(from, &flags);
3780 
3781 	if (!anon && page_mapped(page)) {
3782 		/* Update mapped_file data for mem_cgroup */
3783 		preempt_disable();
3784 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3785 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3786 		preempt_enable();
3787 	}
3788 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3789 
3790 	/* caller should have done css_get */
3791 	pc->mem_cgroup = to;
3792 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3793 	move_unlock_mem_cgroup(from, &flags);
3794 	ret = 0;
3795 unlock:
3796 	unlock_page_cgroup(pc);
3797 	/*
3798 	 * check events
3799 	 */
3800 	memcg_check_events(to, page);
3801 	memcg_check_events(from, page);
3802 out:
3803 	return ret;
3804 }
3805 
3806 /**
3807  * mem_cgroup_move_parent - moves page to the parent group
3808  * @page: the page to move
3809  * @pc: page_cgroup of the page
3810  * @child: page's cgroup
3811  *
3812  * move charges to its parent or the root cgroup if the group has no
3813  * parent (aka use_hierarchy==0).
3814  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3815  * mem_cgroup_move_account fails) the failure is always temporary and
3816  * it signals a race with a page removal/uncharge or migration. In the
3817  * first case the page is on the way out and it will vanish from the LRU
3818  * on the next attempt and the call should be retried later.
3819  * Isolation from the LRU fails only if page has been isolated from
3820  * the LRU since we looked at it and that usually means either global
3821  * reclaim or migration going on. The page will either get back to the
3822  * LRU or vanish.
3823  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3824  * (!PageCgroupUsed) or moved to a different group. The page will
3825  * disappear in the next attempt.
3826  */
3827 static int mem_cgroup_move_parent(struct page *page,
3828 				  struct page_cgroup *pc,
3829 				  struct mem_cgroup *child)
3830 {
3831 	struct mem_cgroup *parent;
3832 	unsigned int nr_pages;
3833 	unsigned long uninitialized_var(flags);
3834 	int ret;
3835 
3836 	VM_BUG_ON(mem_cgroup_is_root(child));
3837 
3838 	ret = -EBUSY;
3839 	if (!get_page_unless_zero(page))
3840 		goto out;
3841 	if (isolate_lru_page(page))
3842 		goto put;
3843 
3844 	nr_pages = hpage_nr_pages(page);
3845 
3846 	parent = parent_mem_cgroup(child);
3847 	/*
3848 	 * If no parent, move charges to root cgroup.
3849 	 */
3850 	if (!parent)
3851 		parent = root_mem_cgroup;
3852 
3853 	if (nr_pages > 1) {
3854 		VM_BUG_ON(!PageTransHuge(page));
3855 		flags = compound_lock_irqsave(page);
3856 	}
3857 
3858 	ret = mem_cgroup_move_account(page, nr_pages,
3859 				pc, child, parent);
3860 	if (!ret)
3861 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3862 
3863 	if (nr_pages > 1)
3864 		compound_unlock_irqrestore(page, flags);
3865 	putback_lru_page(page);
3866 put:
3867 	put_page(page);
3868 out:
3869 	return ret;
3870 }
3871 
3872 /*
3873  * Charge the memory controller for page usage.
3874  * Return
3875  * 0 if the charge was successful
3876  * < 0 if the cgroup is over its limit
3877  */
3878 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3879 				gfp_t gfp_mask, enum charge_type ctype)
3880 {
3881 	struct mem_cgroup *memcg = NULL;
3882 	unsigned int nr_pages = 1;
3883 	bool oom = true;
3884 	int ret;
3885 
3886 	if (PageTransHuge(page)) {
3887 		nr_pages <<= compound_order(page);
3888 		VM_BUG_ON(!PageTransHuge(page));
3889 		/*
3890 		 * Never OOM-kill a process for a huge page.  The
3891 		 * fault handler will fall back to regular pages.
3892 		 */
3893 		oom = false;
3894 	}
3895 
3896 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3897 	if (ret == -ENOMEM)
3898 		return ret;
3899 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3900 	return 0;
3901 }
3902 
3903 int mem_cgroup_newpage_charge(struct page *page,
3904 			      struct mm_struct *mm, gfp_t gfp_mask)
3905 {
3906 	if (mem_cgroup_disabled())
3907 		return 0;
3908 	VM_BUG_ON(page_mapped(page));
3909 	VM_BUG_ON(page->mapping && !PageAnon(page));
3910 	VM_BUG_ON(!mm);
3911 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3912 					MEM_CGROUP_CHARGE_TYPE_ANON);
3913 }
3914 
3915 /*
3916  * While swap-in, try_charge -> commit or cancel, the page is locked.
3917  * And when try_charge() successfully returns, one refcnt to memcg without
3918  * struct page_cgroup is acquired. This refcnt will be consumed by
3919  * "commit()" or removed by "cancel()"
3920  */
3921 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3922 					  struct page *page,
3923 					  gfp_t mask,
3924 					  struct mem_cgroup **memcgp)
3925 {
3926 	struct mem_cgroup *memcg;
3927 	struct page_cgroup *pc;
3928 	int ret;
3929 
3930 	pc = lookup_page_cgroup(page);
3931 	/*
3932 	 * Every swap fault against a single page tries to charge the
3933 	 * page, bail as early as possible.  shmem_unuse() encounters
3934 	 * already charged pages, too.  The USED bit is protected by
3935 	 * the page lock, which serializes swap cache removal, which
3936 	 * in turn serializes uncharging.
3937 	 */
3938 	if (PageCgroupUsed(pc))
3939 		return 0;
3940 	if (!do_swap_account)
3941 		goto charge_cur_mm;
3942 	memcg = try_get_mem_cgroup_from_page(page);
3943 	if (!memcg)
3944 		goto charge_cur_mm;
3945 	*memcgp = memcg;
3946 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3947 	css_put(&memcg->css);
3948 	if (ret == -EINTR)
3949 		ret = 0;
3950 	return ret;
3951 charge_cur_mm:
3952 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3953 	if (ret == -EINTR)
3954 		ret = 0;
3955 	return ret;
3956 }
3957 
3958 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3959 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3960 {
3961 	*memcgp = NULL;
3962 	if (mem_cgroup_disabled())
3963 		return 0;
3964 	/*
3965 	 * A racing thread's fault, or swapoff, may have already
3966 	 * updated the pte, and even removed page from swap cache: in
3967 	 * those cases unuse_pte()'s pte_same() test will fail; but
3968 	 * there's also a KSM case which does need to charge the page.
3969 	 */
3970 	if (!PageSwapCache(page)) {
3971 		int ret;
3972 
3973 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3974 		if (ret == -EINTR)
3975 			ret = 0;
3976 		return ret;
3977 	}
3978 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3979 }
3980 
3981 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3982 {
3983 	if (mem_cgroup_disabled())
3984 		return;
3985 	if (!memcg)
3986 		return;
3987 	__mem_cgroup_cancel_charge(memcg, 1);
3988 }
3989 
3990 static void
3991 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3992 					enum charge_type ctype)
3993 {
3994 	if (mem_cgroup_disabled())
3995 		return;
3996 	if (!memcg)
3997 		return;
3998 
3999 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4000 	/*
4001 	 * Now swap is on-memory. This means this page may be
4002 	 * counted both as mem and swap....double count.
4003 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4004 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4005 	 * may call delete_from_swap_cache() before reach here.
4006 	 */
4007 	if (do_swap_account && PageSwapCache(page)) {
4008 		swp_entry_t ent = {.val = page_private(page)};
4009 		mem_cgroup_uncharge_swap(ent);
4010 	}
4011 }
4012 
4013 void mem_cgroup_commit_charge_swapin(struct page *page,
4014 				     struct mem_cgroup *memcg)
4015 {
4016 	__mem_cgroup_commit_charge_swapin(page, memcg,
4017 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4018 }
4019 
4020 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4021 				gfp_t gfp_mask)
4022 {
4023 	struct mem_cgroup *memcg = NULL;
4024 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4025 	int ret;
4026 
4027 	if (mem_cgroup_disabled())
4028 		return 0;
4029 	if (PageCompound(page))
4030 		return 0;
4031 
4032 	if (!PageSwapCache(page))
4033 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4034 	else { /* page is swapcache/shmem */
4035 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4036 						     gfp_mask, &memcg);
4037 		if (!ret)
4038 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4039 	}
4040 	return ret;
4041 }
4042 
4043 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4044 				   unsigned int nr_pages,
4045 				   const enum charge_type ctype)
4046 {
4047 	struct memcg_batch_info *batch = NULL;
4048 	bool uncharge_memsw = true;
4049 
4050 	/* If swapout, usage of swap doesn't decrease */
4051 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4052 		uncharge_memsw = false;
4053 
4054 	batch = &current->memcg_batch;
4055 	/*
4056 	 * In usual, we do css_get() when we remember memcg pointer.
4057 	 * But in this case, we keep res->usage until end of a series of
4058 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4059 	 */
4060 	if (!batch->memcg)
4061 		batch->memcg = memcg;
4062 	/*
4063 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4064 	 * In those cases, all pages freed continuously can be expected to be in
4065 	 * the same cgroup and we have chance to coalesce uncharges.
4066 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4067 	 * because we want to do uncharge as soon as possible.
4068 	 */
4069 
4070 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4071 		goto direct_uncharge;
4072 
4073 	if (nr_pages > 1)
4074 		goto direct_uncharge;
4075 
4076 	/*
4077 	 * In typical case, batch->memcg == mem. This means we can
4078 	 * merge a series of uncharges to an uncharge of res_counter.
4079 	 * If not, we uncharge res_counter ony by one.
4080 	 */
4081 	if (batch->memcg != memcg)
4082 		goto direct_uncharge;
4083 	/* remember freed charge and uncharge it later */
4084 	batch->nr_pages++;
4085 	if (uncharge_memsw)
4086 		batch->memsw_nr_pages++;
4087 	return;
4088 direct_uncharge:
4089 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4090 	if (uncharge_memsw)
4091 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4092 	if (unlikely(batch->memcg != memcg))
4093 		memcg_oom_recover(memcg);
4094 }
4095 
4096 /*
4097  * uncharge if !page_mapped(page)
4098  */
4099 static struct mem_cgroup *
4100 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4101 			     bool end_migration)
4102 {
4103 	struct mem_cgroup *memcg = NULL;
4104 	unsigned int nr_pages = 1;
4105 	struct page_cgroup *pc;
4106 	bool anon;
4107 
4108 	if (mem_cgroup_disabled())
4109 		return NULL;
4110 
4111 	VM_BUG_ON(PageSwapCache(page));
4112 
4113 	if (PageTransHuge(page)) {
4114 		nr_pages <<= compound_order(page);
4115 		VM_BUG_ON(!PageTransHuge(page));
4116 	}
4117 	/*
4118 	 * Check if our page_cgroup is valid
4119 	 */
4120 	pc = lookup_page_cgroup(page);
4121 	if (unlikely(!PageCgroupUsed(pc)))
4122 		return NULL;
4123 
4124 	lock_page_cgroup(pc);
4125 
4126 	memcg = pc->mem_cgroup;
4127 
4128 	if (!PageCgroupUsed(pc))
4129 		goto unlock_out;
4130 
4131 	anon = PageAnon(page);
4132 
4133 	switch (ctype) {
4134 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4135 		/*
4136 		 * Generally PageAnon tells if it's the anon statistics to be
4137 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4138 		 * used before page reached the stage of being marked PageAnon.
4139 		 */
4140 		anon = true;
4141 		/* fallthrough */
4142 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4143 		/* See mem_cgroup_prepare_migration() */
4144 		if (page_mapped(page))
4145 			goto unlock_out;
4146 		/*
4147 		 * Pages under migration may not be uncharged.  But
4148 		 * end_migration() /must/ be the one uncharging the
4149 		 * unused post-migration page and so it has to call
4150 		 * here with the migration bit still set.  See the
4151 		 * res_counter handling below.
4152 		 */
4153 		if (!end_migration && PageCgroupMigration(pc))
4154 			goto unlock_out;
4155 		break;
4156 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4157 		if (!PageAnon(page)) {	/* Shared memory */
4158 			if (page->mapping && !page_is_file_cache(page))
4159 				goto unlock_out;
4160 		} else if (page_mapped(page)) /* Anon */
4161 				goto unlock_out;
4162 		break;
4163 	default:
4164 		break;
4165 	}
4166 
4167 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4168 
4169 	ClearPageCgroupUsed(pc);
4170 	/*
4171 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4172 	 * freed from LRU. This is safe because uncharged page is expected not
4173 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4174 	 * special functions.
4175 	 */
4176 
4177 	unlock_page_cgroup(pc);
4178 	/*
4179 	 * even after unlock, we have memcg->res.usage here and this memcg
4180 	 * will never be freed.
4181 	 */
4182 	memcg_check_events(memcg, page);
4183 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4184 		mem_cgroup_swap_statistics(memcg, true);
4185 		mem_cgroup_get(memcg);
4186 	}
4187 	/*
4188 	 * Migration does not charge the res_counter for the
4189 	 * replacement page, so leave it alone when phasing out the
4190 	 * page that is unused after the migration.
4191 	 */
4192 	if (!end_migration && !mem_cgroup_is_root(memcg))
4193 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4194 
4195 	return memcg;
4196 
4197 unlock_out:
4198 	unlock_page_cgroup(pc);
4199 	return NULL;
4200 }
4201 
4202 void mem_cgroup_uncharge_page(struct page *page)
4203 {
4204 	/* early check. */
4205 	if (page_mapped(page))
4206 		return;
4207 	VM_BUG_ON(page->mapping && !PageAnon(page));
4208 	if (PageSwapCache(page))
4209 		return;
4210 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4211 }
4212 
4213 void mem_cgroup_uncharge_cache_page(struct page *page)
4214 {
4215 	VM_BUG_ON(page_mapped(page));
4216 	VM_BUG_ON(page->mapping);
4217 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4218 }
4219 
4220 /*
4221  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4222  * In that cases, pages are freed continuously and we can expect pages
4223  * are in the same memcg. All these calls itself limits the number of
4224  * pages freed at once, then uncharge_start/end() is called properly.
4225  * This may be called prural(2) times in a context,
4226  */
4227 
4228 void mem_cgroup_uncharge_start(void)
4229 {
4230 	current->memcg_batch.do_batch++;
4231 	/* We can do nest. */
4232 	if (current->memcg_batch.do_batch == 1) {
4233 		current->memcg_batch.memcg = NULL;
4234 		current->memcg_batch.nr_pages = 0;
4235 		current->memcg_batch.memsw_nr_pages = 0;
4236 	}
4237 }
4238 
4239 void mem_cgroup_uncharge_end(void)
4240 {
4241 	struct memcg_batch_info *batch = &current->memcg_batch;
4242 
4243 	if (!batch->do_batch)
4244 		return;
4245 
4246 	batch->do_batch--;
4247 	if (batch->do_batch) /* If stacked, do nothing. */
4248 		return;
4249 
4250 	if (!batch->memcg)
4251 		return;
4252 	/*
4253 	 * This "batch->memcg" is valid without any css_get/put etc...
4254 	 * bacause we hide charges behind us.
4255 	 */
4256 	if (batch->nr_pages)
4257 		res_counter_uncharge(&batch->memcg->res,
4258 				     batch->nr_pages * PAGE_SIZE);
4259 	if (batch->memsw_nr_pages)
4260 		res_counter_uncharge(&batch->memcg->memsw,
4261 				     batch->memsw_nr_pages * PAGE_SIZE);
4262 	memcg_oom_recover(batch->memcg);
4263 	/* forget this pointer (for sanity check) */
4264 	batch->memcg = NULL;
4265 }
4266 
4267 #ifdef CONFIG_SWAP
4268 /*
4269  * called after __delete_from_swap_cache() and drop "page" account.
4270  * memcg information is recorded to swap_cgroup of "ent"
4271  */
4272 void
4273 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4274 {
4275 	struct mem_cgroup *memcg;
4276 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4277 
4278 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4279 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4280 
4281 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4282 
4283 	/*
4284 	 * record memcg information,  if swapout && memcg != NULL,
4285 	 * mem_cgroup_get() was called in uncharge().
4286 	 */
4287 	if (do_swap_account && swapout && memcg)
4288 		swap_cgroup_record(ent, css_id(&memcg->css));
4289 }
4290 #endif
4291 
4292 #ifdef CONFIG_MEMCG_SWAP
4293 /*
4294  * called from swap_entry_free(). remove record in swap_cgroup and
4295  * uncharge "memsw" account.
4296  */
4297 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4298 {
4299 	struct mem_cgroup *memcg;
4300 	unsigned short id;
4301 
4302 	if (!do_swap_account)
4303 		return;
4304 
4305 	id = swap_cgroup_record(ent, 0);
4306 	rcu_read_lock();
4307 	memcg = mem_cgroup_lookup(id);
4308 	if (memcg) {
4309 		/*
4310 		 * We uncharge this because swap is freed.
4311 		 * This memcg can be obsolete one. We avoid calling css_tryget
4312 		 */
4313 		if (!mem_cgroup_is_root(memcg))
4314 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4315 		mem_cgroup_swap_statistics(memcg, false);
4316 		mem_cgroup_put(memcg);
4317 	}
4318 	rcu_read_unlock();
4319 }
4320 
4321 /**
4322  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4323  * @entry: swap entry to be moved
4324  * @from:  mem_cgroup which the entry is moved from
4325  * @to:  mem_cgroup which the entry is moved to
4326  *
4327  * It succeeds only when the swap_cgroup's record for this entry is the same
4328  * as the mem_cgroup's id of @from.
4329  *
4330  * Returns 0 on success, -EINVAL on failure.
4331  *
4332  * The caller must have charged to @to, IOW, called res_counter_charge() about
4333  * both res and memsw, and called css_get().
4334  */
4335 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4336 				struct mem_cgroup *from, struct mem_cgroup *to)
4337 {
4338 	unsigned short old_id, new_id;
4339 
4340 	old_id = css_id(&from->css);
4341 	new_id = css_id(&to->css);
4342 
4343 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4344 		mem_cgroup_swap_statistics(from, false);
4345 		mem_cgroup_swap_statistics(to, true);
4346 		/*
4347 		 * This function is only called from task migration context now.
4348 		 * It postpones res_counter and refcount handling till the end
4349 		 * of task migration(mem_cgroup_clear_mc()) for performance
4350 		 * improvement. But we cannot postpone mem_cgroup_get(to)
4351 		 * because if the process that has been moved to @to does
4352 		 * swap-in, the refcount of @to might be decreased to 0.
4353 		 */
4354 		mem_cgroup_get(to);
4355 		return 0;
4356 	}
4357 	return -EINVAL;
4358 }
4359 #else
4360 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4361 				struct mem_cgroup *from, struct mem_cgroup *to)
4362 {
4363 	return -EINVAL;
4364 }
4365 #endif
4366 
4367 /*
4368  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4369  * page belongs to.
4370  */
4371 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4372 				  struct mem_cgroup **memcgp)
4373 {
4374 	struct mem_cgroup *memcg = NULL;
4375 	unsigned int nr_pages = 1;
4376 	struct page_cgroup *pc;
4377 	enum charge_type ctype;
4378 
4379 	*memcgp = NULL;
4380 
4381 	if (mem_cgroup_disabled())
4382 		return;
4383 
4384 	if (PageTransHuge(page))
4385 		nr_pages <<= compound_order(page);
4386 
4387 	pc = lookup_page_cgroup(page);
4388 	lock_page_cgroup(pc);
4389 	if (PageCgroupUsed(pc)) {
4390 		memcg = pc->mem_cgroup;
4391 		css_get(&memcg->css);
4392 		/*
4393 		 * At migrating an anonymous page, its mapcount goes down
4394 		 * to 0 and uncharge() will be called. But, even if it's fully
4395 		 * unmapped, migration may fail and this page has to be
4396 		 * charged again. We set MIGRATION flag here and delay uncharge
4397 		 * until end_migration() is called
4398 		 *
4399 		 * Corner Case Thinking
4400 		 * A)
4401 		 * When the old page was mapped as Anon and it's unmap-and-freed
4402 		 * while migration was ongoing.
4403 		 * If unmap finds the old page, uncharge() of it will be delayed
4404 		 * until end_migration(). If unmap finds a new page, it's
4405 		 * uncharged when it make mapcount to be 1->0. If unmap code
4406 		 * finds swap_migration_entry, the new page will not be mapped
4407 		 * and end_migration() will find it(mapcount==0).
4408 		 *
4409 		 * B)
4410 		 * When the old page was mapped but migraion fails, the kernel
4411 		 * remaps it. A charge for it is kept by MIGRATION flag even
4412 		 * if mapcount goes down to 0. We can do remap successfully
4413 		 * without charging it again.
4414 		 *
4415 		 * C)
4416 		 * The "old" page is under lock_page() until the end of
4417 		 * migration, so, the old page itself will not be swapped-out.
4418 		 * If the new page is swapped out before end_migraton, our
4419 		 * hook to usual swap-out path will catch the event.
4420 		 */
4421 		if (PageAnon(page))
4422 			SetPageCgroupMigration(pc);
4423 	}
4424 	unlock_page_cgroup(pc);
4425 	/*
4426 	 * If the page is not charged at this point,
4427 	 * we return here.
4428 	 */
4429 	if (!memcg)
4430 		return;
4431 
4432 	*memcgp = memcg;
4433 	/*
4434 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4435 	 * is called before end_migration, we can catch all events on this new
4436 	 * page. In the case new page is migrated but not remapped, new page's
4437 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4438 	 */
4439 	if (PageAnon(page))
4440 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4441 	else
4442 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4443 	/*
4444 	 * The page is committed to the memcg, but it's not actually
4445 	 * charged to the res_counter since we plan on replacing the
4446 	 * old one and only one page is going to be left afterwards.
4447 	 */
4448 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4449 }
4450 
4451 /* remove redundant charge if migration failed*/
4452 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4453 	struct page *oldpage, struct page *newpage, bool migration_ok)
4454 {
4455 	struct page *used, *unused;
4456 	struct page_cgroup *pc;
4457 	bool anon;
4458 
4459 	if (!memcg)
4460 		return;
4461 
4462 	if (!migration_ok) {
4463 		used = oldpage;
4464 		unused = newpage;
4465 	} else {
4466 		used = newpage;
4467 		unused = oldpage;
4468 	}
4469 	anon = PageAnon(used);
4470 	__mem_cgroup_uncharge_common(unused,
4471 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4472 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4473 				     true);
4474 	css_put(&memcg->css);
4475 	/*
4476 	 * We disallowed uncharge of pages under migration because mapcount
4477 	 * of the page goes down to zero, temporarly.
4478 	 * Clear the flag and check the page should be charged.
4479 	 */
4480 	pc = lookup_page_cgroup(oldpage);
4481 	lock_page_cgroup(pc);
4482 	ClearPageCgroupMigration(pc);
4483 	unlock_page_cgroup(pc);
4484 
4485 	/*
4486 	 * If a page is a file cache, radix-tree replacement is very atomic
4487 	 * and we can skip this check. When it was an Anon page, its mapcount
4488 	 * goes down to 0. But because we added MIGRATION flage, it's not
4489 	 * uncharged yet. There are several case but page->mapcount check
4490 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4491 	 * check. (see prepare_charge() also)
4492 	 */
4493 	if (anon)
4494 		mem_cgroup_uncharge_page(used);
4495 }
4496 
4497 /*
4498  * At replace page cache, newpage is not under any memcg but it's on
4499  * LRU. So, this function doesn't touch res_counter but handles LRU
4500  * in correct way. Both pages are locked so we cannot race with uncharge.
4501  */
4502 void mem_cgroup_replace_page_cache(struct page *oldpage,
4503 				  struct page *newpage)
4504 {
4505 	struct mem_cgroup *memcg = NULL;
4506 	struct page_cgroup *pc;
4507 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4508 
4509 	if (mem_cgroup_disabled())
4510 		return;
4511 
4512 	pc = lookup_page_cgroup(oldpage);
4513 	/* fix accounting on old pages */
4514 	lock_page_cgroup(pc);
4515 	if (PageCgroupUsed(pc)) {
4516 		memcg = pc->mem_cgroup;
4517 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4518 		ClearPageCgroupUsed(pc);
4519 	}
4520 	unlock_page_cgroup(pc);
4521 
4522 	/*
4523 	 * When called from shmem_replace_page(), in some cases the
4524 	 * oldpage has already been charged, and in some cases not.
4525 	 */
4526 	if (!memcg)
4527 		return;
4528 	/*
4529 	 * Even if newpage->mapping was NULL before starting replacement,
4530 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4531 	 * LRU while we overwrite pc->mem_cgroup.
4532 	 */
4533 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4534 }
4535 
4536 #ifdef CONFIG_DEBUG_VM
4537 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4538 {
4539 	struct page_cgroup *pc;
4540 
4541 	pc = lookup_page_cgroup(page);
4542 	/*
4543 	 * Can be NULL while feeding pages into the page allocator for
4544 	 * the first time, i.e. during boot or memory hotplug;
4545 	 * or when mem_cgroup_disabled().
4546 	 */
4547 	if (likely(pc) && PageCgroupUsed(pc))
4548 		return pc;
4549 	return NULL;
4550 }
4551 
4552 bool mem_cgroup_bad_page_check(struct page *page)
4553 {
4554 	if (mem_cgroup_disabled())
4555 		return false;
4556 
4557 	return lookup_page_cgroup_used(page) != NULL;
4558 }
4559 
4560 void mem_cgroup_print_bad_page(struct page *page)
4561 {
4562 	struct page_cgroup *pc;
4563 
4564 	pc = lookup_page_cgroup_used(page);
4565 	if (pc) {
4566 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4567 			 pc, pc->flags, pc->mem_cgroup);
4568 	}
4569 }
4570 #endif
4571 
4572 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4573 				unsigned long long val)
4574 {
4575 	int retry_count;
4576 	u64 memswlimit, memlimit;
4577 	int ret = 0;
4578 	int children = mem_cgroup_count_children(memcg);
4579 	u64 curusage, oldusage;
4580 	int enlarge;
4581 
4582 	/*
4583 	 * For keeping hierarchical_reclaim simple, how long we should retry
4584 	 * is depends on callers. We set our retry-count to be function
4585 	 * of # of children which we should visit in this loop.
4586 	 */
4587 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4588 
4589 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4590 
4591 	enlarge = 0;
4592 	while (retry_count) {
4593 		if (signal_pending(current)) {
4594 			ret = -EINTR;
4595 			break;
4596 		}
4597 		/*
4598 		 * Rather than hide all in some function, I do this in
4599 		 * open coded manner. You see what this really does.
4600 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4601 		 */
4602 		mutex_lock(&set_limit_mutex);
4603 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4604 		if (memswlimit < val) {
4605 			ret = -EINVAL;
4606 			mutex_unlock(&set_limit_mutex);
4607 			break;
4608 		}
4609 
4610 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4611 		if (memlimit < val)
4612 			enlarge = 1;
4613 
4614 		ret = res_counter_set_limit(&memcg->res, val);
4615 		if (!ret) {
4616 			if (memswlimit == val)
4617 				memcg->memsw_is_minimum = true;
4618 			else
4619 				memcg->memsw_is_minimum = false;
4620 		}
4621 		mutex_unlock(&set_limit_mutex);
4622 
4623 		if (!ret)
4624 			break;
4625 
4626 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4627 				   MEM_CGROUP_RECLAIM_SHRINK);
4628 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4629 		/* Usage is reduced ? */
4630   		if (curusage >= oldusage)
4631 			retry_count--;
4632 		else
4633 			oldusage = curusage;
4634 	}
4635 	if (!ret && enlarge)
4636 		memcg_oom_recover(memcg);
4637 
4638 	return ret;
4639 }
4640 
4641 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4642 					unsigned long long val)
4643 {
4644 	int retry_count;
4645 	u64 memlimit, memswlimit, oldusage, curusage;
4646 	int children = mem_cgroup_count_children(memcg);
4647 	int ret = -EBUSY;
4648 	int enlarge = 0;
4649 
4650 	/* see mem_cgroup_resize_res_limit */
4651  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4652 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4653 	while (retry_count) {
4654 		if (signal_pending(current)) {
4655 			ret = -EINTR;
4656 			break;
4657 		}
4658 		/*
4659 		 * Rather than hide all in some function, I do this in
4660 		 * open coded manner. You see what this really does.
4661 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4662 		 */
4663 		mutex_lock(&set_limit_mutex);
4664 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4665 		if (memlimit > val) {
4666 			ret = -EINVAL;
4667 			mutex_unlock(&set_limit_mutex);
4668 			break;
4669 		}
4670 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4671 		if (memswlimit < val)
4672 			enlarge = 1;
4673 		ret = res_counter_set_limit(&memcg->memsw, val);
4674 		if (!ret) {
4675 			if (memlimit == val)
4676 				memcg->memsw_is_minimum = true;
4677 			else
4678 				memcg->memsw_is_minimum = false;
4679 		}
4680 		mutex_unlock(&set_limit_mutex);
4681 
4682 		if (!ret)
4683 			break;
4684 
4685 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4686 				   MEM_CGROUP_RECLAIM_NOSWAP |
4687 				   MEM_CGROUP_RECLAIM_SHRINK);
4688 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4689 		/* Usage is reduced ? */
4690 		if (curusage >= oldusage)
4691 			retry_count--;
4692 		else
4693 			oldusage = curusage;
4694 	}
4695 	if (!ret && enlarge)
4696 		memcg_oom_recover(memcg);
4697 	return ret;
4698 }
4699 
4700 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4701 					    gfp_t gfp_mask,
4702 					    unsigned long *total_scanned)
4703 {
4704 	unsigned long nr_reclaimed = 0;
4705 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4706 	unsigned long reclaimed;
4707 	int loop = 0;
4708 	struct mem_cgroup_tree_per_zone *mctz;
4709 	unsigned long long excess;
4710 	unsigned long nr_scanned;
4711 
4712 	if (order > 0)
4713 		return 0;
4714 
4715 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4716 	/*
4717 	 * This loop can run a while, specially if mem_cgroup's continuously
4718 	 * keep exceeding their soft limit and putting the system under
4719 	 * pressure
4720 	 */
4721 	do {
4722 		if (next_mz)
4723 			mz = next_mz;
4724 		else
4725 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4726 		if (!mz)
4727 			break;
4728 
4729 		nr_scanned = 0;
4730 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4731 						    gfp_mask, &nr_scanned);
4732 		nr_reclaimed += reclaimed;
4733 		*total_scanned += nr_scanned;
4734 		spin_lock(&mctz->lock);
4735 
4736 		/*
4737 		 * If we failed to reclaim anything from this memory cgroup
4738 		 * it is time to move on to the next cgroup
4739 		 */
4740 		next_mz = NULL;
4741 		if (!reclaimed) {
4742 			do {
4743 				/*
4744 				 * Loop until we find yet another one.
4745 				 *
4746 				 * By the time we get the soft_limit lock
4747 				 * again, someone might have aded the
4748 				 * group back on the RB tree. Iterate to
4749 				 * make sure we get a different mem.
4750 				 * mem_cgroup_largest_soft_limit_node returns
4751 				 * NULL if no other cgroup is present on
4752 				 * the tree
4753 				 */
4754 				next_mz =
4755 				__mem_cgroup_largest_soft_limit_node(mctz);
4756 				if (next_mz == mz)
4757 					css_put(&next_mz->memcg->css);
4758 				else /* next_mz == NULL or other memcg */
4759 					break;
4760 			} while (1);
4761 		}
4762 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4763 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4764 		/*
4765 		 * One school of thought says that we should not add
4766 		 * back the node to the tree if reclaim returns 0.
4767 		 * But our reclaim could return 0, simply because due
4768 		 * to priority we are exposing a smaller subset of
4769 		 * memory to reclaim from. Consider this as a longer
4770 		 * term TODO.
4771 		 */
4772 		/* If excess == 0, no tree ops */
4773 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4774 		spin_unlock(&mctz->lock);
4775 		css_put(&mz->memcg->css);
4776 		loop++;
4777 		/*
4778 		 * Could not reclaim anything and there are no more
4779 		 * mem cgroups to try or we seem to be looping without
4780 		 * reclaiming anything.
4781 		 */
4782 		if (!nr_reclaimed &&
4783 			(next_mz == NULL ||
4784 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4785 			break;
4786 	} while (!nr_reclaimed);
4787 	if (next_mz)
4788 		css_put(&next_mz->memcg->css);
4789 	return nr_reclaimed;
4790 }
4791 
4792 /**
4793  * mem_cgroup_force_empty_list - clears LRU of a group
4794  * @memcg: group to clear
4795  * @node: NUMA node
4796  * @zid: zone id
4797  * @lru: lru to to clear
4798  *
4799  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4800  * reclaim the pages page themselves - pages are moved to the parent (or root)
4801  * group.
4802  */
4803 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4804 				int node, int zid, enum lru_list lru)
4805 {
4806 	struct lruvec *lruvec;
4807 	unsigned long flags;
4808 	struct list_head *list;
4809 	struct page *busy;
4810 	struct zone *zone;
4811 
4812 	zone = &NODE_DATA(node)->node_zones[zid];
4813 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4814 	list = &lruvec->lists[lru];
4815 
4816 	busy = NULL;
4817 	do {
4818 		struct page_cgroup *pc;
4819 		struct page *page;
4820 
4821 		spin_lock_irqsave(&zone->lru_lock, flags);
4822 		if (list_empty(list)) {
4823 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4824 			break;
4825 		}
4826 		page = list_entry(list->prev, struct page, lru);
4827 		if (busy == page) {
4828 			list_move(&page->lru, list);
4829 			busy = NULL;
4830 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4831 			continue;
4832 		}
4833 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4834 
4835 		pc = lookup_page_cgroup(page);
4836 
4837 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4838 			/* found lock contention or "pc" is obsolete. */
4839 			busy = page;
4840 			cond_resched();
4841 		} else
4842 			busy = NULL;
4843 	} while (!list_empty(list));
4844 }
4845 
4846 /*
4847  * make mem_cgroup's charge to be 0 if there is no task by moving
4848  * all the charges and pages to the parent.
4849  * This enables deleting this mem_cgroup.
4850  *
4851  * Caller is responsible for holding css reference on the memcg.
4852  */
4853 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4854 {
4855 	int node, zid;
4856 	u64 usage;
4857 
4858 	do {
4859 		/* This is for making all *used* pages to be on LRU. */
4860 		lru_add_drain_all();
4861 		drain_all_stock_sync(memcg);
4862 		mem_cgroup_start_move(memcg);
4863 		for_each_node_state(node, N_MEMORY) {
4864 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4865 				enum lru_list lru;
4866 				for_each_lru(lru) {
4867 					mem_cgroup_force_empty_list(memcg,
4868 							node, zid, lru);
4869 				}
4870 			}
4871 		}
4872 		mem_cgroup_end_move(memcg);
4873 		memcg_oom_recover(memcg);
4874 		cond_resched();
4875 
4876 		/*
4877 		 * Kernel memory may not necessarily be trackable to a specific
4878 		 * process. So they are not migrated, and therefore we can't
4879 		 * expect their value to drop to 0 here.
4880 		 * Having res filled up with kmem only is enough.
4881 		 *
4882 		 * This is a safety check because mem_cgroup_force_empty_list
4883 		 * could have raced with mem_cgroup_replace_page_cache callers
4884 		 * so the lru seemed empty but the page could have been added
4885 		 * right after the check. RES_USAGE should be safe as we always
4886 		 * charge before adding to the LRU.
4887 		 */
4888 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4889 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4890 	} while (usage > 0);
4891 }
4892 
4893 /*
4894  * This mainly exists for tests during the setting of set of use_hierarchy.
4895  * Since this is the very setting we are changing, the current hierarchy value
4896  * is meaningless
4897  */
4898 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4899 {
4900 	struct cgroup *pos;
4901 
4902 	/* bounce at first found */
4903 	cgroup_for_each_child(pos, memcg->css.cgroup)
4904 		return true;
4905 	return false;
4906 }
4907 
4908 /*
4909  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4910  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4911  * from mem_cgroup_count_children(), in the sense that we don't really care how
4912  * many children we have; we only need to know if we have any.  It also counts
4913  * any memcg without hierarchy as infertile.
4914  */
4915 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4916 {
4917 	return memcg->use_hierarchy && __memcg_has_children(memcg);
4918 }
4919 
4920 /*
4921  * Reclaims as many pages from the given memcg as possible and moves
4922  * the rest to the parent.
4923  *
4924  * Caller is responsible for holding css reference for memcg.
4925  */
4926 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4927 {
4928 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4929 	struct cgroup *cgrp = memcg->css.cgroup;
4930 
4931 	/* returns EBUSY if there is a task or if we come here twice. */
4932 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4933 		return -EBUSY;
4934 
4935 	/* we call try-to-free pages for make this cgroup empty */
4936 	lru_add_drain_all();
4937 	/* try to free all pages in this cgroup */
4938 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4939 		int progress;
4940 
4941 		if (signal_pending(current))
4942 			return -EINTR;
4943 
4944 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4945 						false);
4946 		if (!progress) {
4947 			nr_retries--;
4948 			/* maybe some writeback is necessary */
4949 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4950 		}
4951 
4952 	}
4953 	lru_add_drain();
4954 	mem_cgroup_reparent_charges(memcg);
4955 
4956 	return 0;
4957 }
4958 
4959 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4960 {
4961 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4962 	int ret;
4963 
4964 	if (mem_cgroup_is_root(memcg))
4965 		return -EINVAL;
4966 	css_get(&memcg->css);
4967 	ret = mem_cgroup_force_empty(memcg);
4968 	css_put(&memcg->css);
4969 
4970 	return ret;
4971 }
4972 
4973 
4974 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4975 {
4976 	return mem_cgroup_from_cont(cont)->use_hierarchy;
4977 }
4978 
4979 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4980 					u64 val)
4981 {
4982 	int retval = 0;
4983 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4984 	struct cgroup *parent = cont->parent;
4985 	struct mem_cgroup *parent_memcg = NULL;
4986 
4987 	if (parent)
4988 		parent_memcg = mem_cgroup_from_cont(parent);
4989 
4990 	mutex_lock(&memcg_create_mutex);
4991 
4992 	if (memcg->use_hierarchy == val)
4993 		goto out;
4994 
4995 	/*
4996 	 * If parent's use_hierarchy is set, we can't make any modifications
4997 	 * in the child subtrees. If it is unset, then the change can
4998 	 * occur, provided the current cgroup has no children.
4999 	 *
5000 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5001 	 * set if there are no children.
5002 	 */
5003 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5004 				(val == 1 || val == 0)) {
5005 		if (!__memcg_has_children(memcg))
5006 			memcg->use_hierarchy = val;
5007 		else
5008 			retval = -EBUSY;
5009 	} else
5010 		retval = -EINVAL;
5011 
5012 out:
5013 	mutex_unlock(&memcg_create_mutex);
5014 
5015 	return retval;
5016 }
5017 
5018 
5019 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5020 					       enum mem_cgroup_stat_index idx)
5021 {
5022 	struct mem_cgroup *iter;
5023 	long val = 0;
5024 
5025 	/* Per-cpu values can be negative, use a signed accumulator */
5026 	for_each_mem_cgroup_tree(iter, memcg)
5027 		val += mem_cgroup_read_stat(iter, idx);
5028 
5029 	if (val < 0) /* race ? */
5030 		val = 0;
5031 	return val;
5032 }
5033 
5034 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5035 {
5036 	u64 val;
5037 
5038 	if (!mem_cgroup_is_root(memcg)) {
5039 		if (!swap)
5040 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5041 		else
5042 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5043 	}
5044 
5045 	/*
5046 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5047 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5048 	 */
5049 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5050 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5051 
5052 	if (swap)
5053 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5054 
5055 	return val << PAGE_SHIFT;
5056 }
5057 
5058 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5059 			       struct file *file, char __user *buf,
5060 			       size_t nbytes, loff_t *ppos)
5061 {
5062 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5063 	char str[64];
5064 	u64 val;
5065 	int name, len;
5066 	enum res_type type;
5067 
5068 	type = MEMFILE_TYPE(cft->private);
5069 	name = MEMFILE_ATTR(cft->private);
5070 
5071 	switch (type) {
5072 	case _MEM:
5073 		if (name == RES_USAGE)
5074 			val = mem_cgroup_usage(memcg, false);
5075 		else
5076 			val = res_counter_read_u64(&memcg->res, name);
5077 		break;
5078 	case _MEMSWAP:
5079 		if (name == RES_USAGE)
5080 			val = mem_cgroup_usage(memcg, true);
5081 		else
5082 			val = res_counter_read_u64(&memcg->memsw, name);
5083 		break;
5084 	case _KMEM:
5085 		val = res_counter_read_u64(&memcg->kmem, name);
5086 		break;
5087 	default:
5088 		BUG();
5089 	}
5090 
5091 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5092 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5093 }
5094 
5095 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5096 {
5097 	int ret = -EINVAL;
5098 #ifdef CONFIG_MEMCG_KMEM
5099 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5100 	/*
5101 	 * For simplicity, we won't allow this to be disabled.  It also can't
5102 	 * be changed if the cgroup has children already, or if tasks had
5103 	 * already joined.
5104 	 *
5105 	 * If tasks join before we set the limit, a person looking at
5106 	 * kmem.usage_in_bytes will have no way to determine when it took
5107 	 * place, which makes the value quite meaningless.
5108 	 *
5109 	 * After it first became limited, changes in the value of the limit are
5110 	 * of course permitted.
5111 	 */
5112 	mutex_lock(&memcg_create_mutex);
5113 	mutex_lock(&set_limit_mutex);
5114 	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5115 		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5116 			ret = -EBUSY;
5117 			goto out;
5118 		}
5119 		ret = res_counter_set_limit(&memcg->kmem, val);
5120 		VM_BUG_ON(ret);
5121 
5122 		ret = memcg_update_cache_sizes(memcg);
5123 		if (ret) {
5124 			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5125 			goto out;
5126 		}
5127 		static_key_slow_inc(&memcg_kmem_enabled_key);
5128 		/*
5129 		 * setting the active bit after the inc will guarantee no one
5130 		 * starts accounting before all call sites are patched
5131 		 */
5132 		memcg_kmem_set_active(memcg);
5133 
5134 		/*
5135 		 * kmem charges can outlive the cgroup. In the case of slab
5136 		 * pages, for instance, a page contain objects from various
5137 		 * processes, so it is unfeasible to migrate them away. We
5138 		 * need to reference count the memcg because of that.
5139 		 */
5140 		mem_cgroup_get(memcg);
5141 	} else
5142 		ret = res_counter_set_limit(&memcg->kmem, val);
5143 out:
5144 	mutex_unlock(&set_limit_mutex);
5145 	mutex_unlock(&memcg_create_mutex);
5146 #endif
5147 	return ret;
5148 }
5149 
5150 #ifdef CONFIG_MEMCG_KMEM
5151 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5152 {
5153 	int ret = 0;
5154 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5155 	if (!parent)
5156 		goto out;
5157 
5158 	memcg->kmem_account_flags = parent->kmem_account_flags;
5159 	/*
5160 	 * When that happen, we need to disable the static branch only on those
5161 	 * memcgs that enabled it. To achieve this, we would be forced to
5162 	 * complicate the code by keeping track of which memcgs were the ones
5163 	 * that actually enabled limits, and which ones got it from its
5164 	 * parents.
5165 	 *
5166 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5167 	 * that is accounted.
5168 	 */
5169 	if (!memcg_kmem_is_active(memcg))
5170 		goto out;
5171 
5172 	/*
5173 	 * destroy(), called if we fail, will issue static_key_slow_inc() and
5174 	 * mem_cgroup_put() if kmem is enabled. We have to either call them
5175 	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5176 	 * this more consistent, since it always leads to the same destroy path
5177 	 */
5178 	mem_cgroup_get(memcg);
5179 	static_key_slow_inc(&memcg_kmem_enabled_key);
5180 
5181 	mutex_lock(&set_limit_mutex);
5182 	ret = memcg_update_cache_sizes(memcg);
5183 	mutex_unlock(&set_limit_mutex);
5184 out:
5185 	return ret;
5186 }
5187 #endif /* CONFIG_MEMCG_KMEM */
5188 
5189 /*
5190  * The user of this function is...
5191  * RES_LIMIT.
5192  */
5193 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5194 			    const char *buffer)
5195 {
5196 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5197 	enum res_type type;
5198 	int name;
5199 	unsigned long long val;
5200 	int ret;
5201 
5202 	type = MEMFILE_TYPE(cft->private);
5203 	name = MEMFILE_ATTR(cft->private);
5204 
5205 	switch (name) {
5206 	case RES_LIMIT:
5207 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5208 			ret = -EINVAL;
5209 			break;
5210 		}
5211 		/* This function does all necessary parse...reuse it */
5212 		ret = res_counter_memparse_write_strategy(buffer, &val);
5213 		if (ret)
5214 			break;
5215 		if (type == _MEM)
5216 			ret = mem_cgroup_resize_limit(memcg, val);
5217 		else if (type == _MEMSWAP)
5218 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5219 		else if (type == _KMEM)
5220 			ret = memcg_update_kmem_limit(cont, val);
5221 		else
5222 			return -EINVAL;
5223 		break;
5224 	case RES_SOFT_LIMIT:
5225 		ret = res_counter_memparse_write_strategy(buffer, &val);
5226 		if (ret)
5227 			break;
5228 		/*
5229 		 * For memsw, soft limits are hard to implement in terms
5230 		 * of semantics, for now, we support soft limits for
5231 		 * control without swap
5232 		 */
5233 		if (type == _MEM)
5234 			ret = res_counter_set_soft_limit(&memcg->res, val);
5235 		else
5236 			ret = -EINVAL;
5237 		break;
5238 	default:
5239 		ret = -EINVAL; /* should be BUG() ? */
5240 		break;
5241 	}
5242 	return ret;
5243 }
5244 
5245 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5246 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5247 {
5248 	struct cgroup *cgroup;
5249 	unsigned long long min_limit, min_memsw_limit, tmp;
5250 
5251 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5252 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5253 	cgroup = memcg->css.cgroup;
5254 	if (!memcg->use_hierarchy)
5255 		goto out;
5256 
5257 	while (cgroup->parent) {
5258 		cgroup = cgroup->parent;
5259 		memcg = mem_cgroup_from_cont(cgroup);
5260 		if (!memcg->use_hierarchy)
5261 			break;
5262 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5263 		min_limit = min(min_limit, tmp);
5264 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5265 		min_memsw_limit = min(min_memsw_limit, tmp);
5266 	}
5267 out:
5268 	*mem_limit = min_limit;
5269 	*memsw_limit = min_memsw_limit;
5270 }
5271 
5272 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5273 {
5274 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5275 	int name;
5276 	enum res_type type;
5277 
5278 	type = MEMFILE_TYPE(event);
5279 	name = MEMFILE_ATTR(event);
5280 
5281 	switch (name) {
5282 	case RES_MAX_USAGE:
5283 		if (type == _MEM)
5284 			res_counter_reset_max(&memcg->res);
5285 		else if (type == _MEMSWAP)
5286 			res_counter_reset_max(&memcg->memsw);
5287 		else if (type == _KMEM)
5288 			res_counter_reset_max(&memcg->kmem);
5289 		else
5290 			return -EINVAL;
5291 		break;
5292 	case RES_FAILCNT:
5293 		if (type == _MEM)
5294 			res_counter_reset_failcnt(&memcg->res);
5295 		else if (type == _MEMSWAP)
5296 			res_counter_reset_failcnt(&memcg->memsw);
5297 		else if (type == _KMEM)
5298 			res_counter_reset_failcnt(&memcg->kmem);
5299 		else
5300 			return -EINVAL;
5301 		break;
5302 	}
5303 
5304 	return 0;
5305 }
5306 
5307 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5308 					struct cftype *cft)
5309 {
5310 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5311 }
5312 
5313 #ifdef CONFIG_MMU
5314 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5315 					struct cftype *cft, u64 val)
5316 {
5317 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5318 
5319 	if (val >= (1 << NR_MOVE_TYPE))
5320 		return -EINVAL;
5321 
5322 	/*
5323 	 * No kind of locking is needed in here, because ->can_attach() will
5324 	 * check this value once in the beginning of the process, and then carry
5325 	 * on with stale data. This means that changes to this value will only
5326 	 * affect task migrations starting after the change.
5327 	 */
5328 	memcg->move_charge_at_immigrate = val;
5329 	return 0;
5330 }
5331 #else
5332 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5333 					struct cftype *cft, u64 val)
5334 {
5335 	return -ENOSYS;
5336 }
5337 #endif
5338 
5339 #ifdef CONFIG_NUMA
5340 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5341 				      struct seq_file *m)
5342 {
5343 	int nid;
5344 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5345 	unsigned long node_nr;
5346 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5347 
5348 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5349 	seq_printf(m, "total=%lu", total_nr);
5350 	for_each_node_state(nid, N_MEMORY) {
5351 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5352 		seq_printf(m, " N%d=%lu", nid, node_nr);
5353 	}
5354 	seq_putc(m, '\n');
5355 
5356 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5357 	seq_printf(m, "file=%lu", file_nr);
5358 	for_each_node_state(nid, N_MEMORY) {
5359 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5360 				LRU_ALL_FILE);
5361 		seq_printf(m, " N%d=%lu", nid, node_nr);
5362 	}
5363 	seq_putc(m, '\n');
5364 
5365 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5366 	seq_printf(m, "anon=%lu", anon_nr);
5367 	for_each_node_state(nid, N_MEMORY) {
5368 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5369 				LRU_ALL_ANON);
5370 		seq_printf(m, " N%d=%lu", nid, node_nr);
5371 	}
5372 	seq_putc(m, '\n');
5373 
5374 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5375 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5376 	for_each_node_state(nid, N_MEMORY) {
5377 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5378 				BIT(LRU_UNEVICTABLE));
5379 		seq_printf(m, " N%d=%lu", nid, node_nr);
5380 	}
5381 	seq_putc(m, '\n');
5382 	return 0;
5383 }
5384 #endif /* CONFIG_NUMA */
5385 
5386 static inline void mem_cgroup_lru_names_not_uptodate(void)
5387 {
5388 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5389 }
5390 
5391 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5392 				 struct seq_file *m)
5393 {
5394 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5395 	struct mem_cgroup *mi;
5396 	unsigned int i;
5397 
5398 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5399 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5400 			continue;
5401 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5402 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5403 	}
5404 
5405 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5406 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5407 			   mem_cgroup_read_events(memcg, i));
5408 
5409 	for (i = 0; i < NR_LRU_LISTS; i++)
5410 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5411 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5412 
5413 	/* Hierarchical information */
5414 	{
5415 		unsigned long long limit, memsw_limit;
5416 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5417 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5418 		if (do_swap_account)
5419 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5420 				   memsw_limit);
5421 	}
5422 
5423 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5424 		long long val = 0;
5425 
5426 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5427 			continue;
5428 		for_each_mem_cgroup_tree(mi, memcg)
5429 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5430 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5431 	}
5432 
5433 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5434 		unsigned long long val = 0;
5435 
5436 		for_each_mem_cgroup_tree(mi, memcg)
5437 			val += mem_cgroup_read_events(mi, i);
5438 		seq_printf(m, "total_%s %llu\n",
5439 			   mem_cgroup_events_names[i], val);
5440 	}
5441 
5442 	for (i = 0; i < NR_LRU_LISTS; i++) {
5443 		unsigned long long val = 0;
5444 
5445 		for_each_mem_cgroup_tree(mi, memcg)
5446 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5447 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5448 	}
5449 
5450 #ifdef CONFIG_DEBUG_VM
5451 	{
5452 		int nid, zid;
5453 		struct mem_cgroup_per_zone *mz;
5454 		struct zone_reclaim_stat *rstat;
5455 		unsigned long recent_rotated[2] = {0, 0};
5456 		unsigned long recent_scanned[2] = {0, 0};
5457 
5458 		for_each_online_node(nid)
5459 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5460 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5461 				rstat = &mz->lruvec.reclaim_stat;
5462 
5463 				recent_rotated[0] += rstat->recent_rotated[0];
5464 				recent_rotated[1] += rstat->recent_rotated[1];
5465 				recent_scanned[0] += rstat->recent_scanned[0];
5466 				recent_scanned[1] += rstat->recent_scanned[1];
5467 			}
5468 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5469 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5470 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5471 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5472 	}
5473 #endif
5474 
5475 	return 0;
5476 }
5477 
5478 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5479 {
5480 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5481 
5482 	return mem_cgroup_swappiness(memcg);
5483 }
5484 
5485 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5486 				       u64 val)
5487 {
5488 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5489 	struct mem_cgroup *parent;
5490 
5491 	if (val > 100)
5492 		return -EINVAL;
5493 
5494 	if (cgrp->parent == NULL)
5495 		return -EINVAL;
5496 
5497 	parent = mem_cgroup_from_cont(cgrp->parent);
5498 
5499 	mutex_lock(&memcg_create_mutex);
5500 
5501 	/* If under hierarchy, only empty-root can set this value */
5502 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5503 		mutex_unlock(&memcg_create_mutex);
5504 		return -EINVAL;
5505 	}
5506 
5507 	memcg->swappiness = val;
5508 
5509 	mutex_unlock(&memcg_create_mutex);
5510 
5511 	return 0;
5512 }
5513 
5514 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5515 {
5516 	struct mem_cgroup_threshold_ary *t;
5517 	u64 usage;
5518 	int i;
5519 
5520 	rcu_read_lock();
5521 	if (!swap)
5522 		t = rcu_dereference(memcg->thresholds.primary);
5523 	else
5524 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5525 
5526 	if (!t)
5527 		goto unlock;
5528 
5529 	usage = mem_cgroup_usage(memcg, swap);
5530 
5531 	/*
5532 	 * current_threshold points to threshold just below or equal to usage.
5533 	 * If it's not true, a threshold was crossed after last
5534 	 * call of __mem_cgroup_threshold().
5535 	 */
5536 	i = t->current_threshold;
5537 
5538 	/*
5539 	 * Iterate backward over array of thresholds starting from
5540 	 * current_threshold and check if a threshold is crossed.
5541 	 * If none of thresholds below usage is crossed, we read
5542 	 * only one element of the array here.
5543 	 */
5544 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5545 		eventfd_signal(t->entries[i].eventfd, 1);
5546 
5547 	/* i = current_threshold + 1 */
5548 	i++;
5549 
5550 	/*
5551 	 * Iterate forward over array of thresholds starting from
5552 	 * current_threshold+1 and check if a threshold is crossed.
5553 	 * If none of thresholds above usage is crossed, we read
5554 	 * only one element of the array here.
5555 	 */
5556 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5557 		eventfd_signal(t->entries[i].eventfd, 1);
5558 
5559 	/* Update current_threshold */
5560 	t->current_threshold = i - 1;
5561 unlock:
5562 	rcu_read_unlock();
5563 }
5564 
5565 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5566 {
5567 	while (memcg) {
5568 		__mem_cgroup_threshold(memcg, false);
5569 		if (do_swap_account)
5570 			__mem_cgroup_threshold(memcg, true);
5571 
5572 		memcg = parent_mem_cgroup(memcg);
5573 	}
5574 }
5575 
5576 static int compare_thresholds(const void *a, const void *b)
5577 {
5578 	const struct mem_cgroup_threshold *_a = a;
5579 	const struct mem_cgroup_threshold *_b = b;
5580 
5581 	return _a->threshold - _b->threshold;
5582 }
5583 
5584 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5585 {
5586 	struct mem_cgroup_eventfd_list *ev;
5587 
5588 	list_for_each_entry(ev, &memcg->oom_notify, list)
5589 		eventfd_signal(ev->eventfd, 1);
5590 	return 0;
5591 }
5592 
5593 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5594 {
5595 	struct mem_cgroup *iter;
5596 
5597 	for_each_mem_cgroup_tree(iter, memcg)
5598 		mem_cgroup_oom_notify_cb(iter);
5599 }
5600 
5601 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5602 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5603 {
5604 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5605 	struct mem_cgroup_thresholds *thresholds;
5606 	struct mem_cgroup_threshold_ary *new;
5607 	enum res_type type = MEMFILE_TYPE(cft->private);
5608 	u64 threshold, usage;
5609 	int i, size, ret;
5610 
5611 	ret = res_counter_memparse_write_strategy(args, &threshold);
5612 	if (ret)
5613 		return ret;
5614 
5615 	mutex_lock(&memcg->thresholds_lock);
5616 
5617 	if (type == _MEM)
5618 		thresholds = &memcg->thresholds;
5619 	else if (type == _MEMSWAP)
5620 		thresholds = &memcg->memsw_thresholds;
5621 	else
5622 		BUG();
5623 
5624 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5625 
5626 	/* Check if a threshold crossed before adding a new one */
5627 	if (thresholds->primary)
5628 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5629 
5630 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5631 
5632 	/* Allocate memory for new array of thresholds */
5633 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5634 			GFP_KERNEL);
5635 	if (!new) {
5636 		ret = -ENOMEM;
5637 		goto unlock;
5638 	}
5639 	new->size = size;
5640 
5641 	/* Copy thresholds (if any) to new array */
5642 	if (thresholds->primary) {
5643 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5644 				sizeof(struct mem_cgroup_threshold));
5645 	}
5646 
5647 	/* Add new threshold */
5648 	new->entries[size - 1].eventfd = eventfd;
5649 	new->entries[size - 1].threshold = threshold;
5650 
5651 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5652 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5653 			compare_thresholds, NULL);
5654 
5655 	/* Find current threshold */
5656 	new->current_threshold = -1;
5657 	for (i = 0; i < size; i++) {
5658 		if (new->entries[i].threshold <= usage) {
5659 			/*
5660 			 * new->current_threshold will not be used until
5661 			 * rcu_assign_pointer(), so it's safe to increment
5662 			 * it here.
5663 			 */
5664 			++new->current_threshold;
5665 		} else
5666 			break;
5667 	}
5668 
5669 	/* Free old spare buffer and save old primary buffer as spare */
5670 	kfree(thresholds->spare);
5671 	thresholds->spare = thresholds->primary;
5672 
5673 	rcu_assign_pointer(thresholds->primary, new);
5674 
5675 	/* To be sure that nobody uses thresholds */
5676 	synchronize_rcu();
5677 
5678 unlock:
5679 	mutex_unlock(&memcg->thresholds_lock);
5680 
5681 	return ret;
5682 }
5683 
5684 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5685 	struct cftype *cft, struct eventfd_ctx *eventfd)
5686 {
5687 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5688 	struct mem_cgroup_thresholds *thresholds;
5689 	struct mem_cgroup_threshold_ary *new;
5690 	enum res_type type = MEMFILE_TYPE(cft->private);
5691 	u64 usage;
5692 	int i, j, size;
5693 
5694 	mutex_lock(&memcg->thresholds_lock);
5695 	if (type == _MEM)
5696 		thresholds = &memcg->thresholds;
5697 	else if (type == _MEMSWAP)
5698 		thresholds = &memcg->memsw_thresholds;
5699 	else
5700 		BUG();
5701 
5702 	if (!thresholds->primary)
5703 		goto unlock;
5704 
5705 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5706 
5707 	/* Check if a threshold crossed before removing */
5708 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5709 
5710 	/* Calculate new number of threshold */
5711 	size = 0;
5712 	for (i = 0; i < thresholds->primary->size; i++) {
5713 		if (thresholds->primary->entries[i].eventfd != eventfd)
5714 			size++;
5715 	}
5716 
5717 	new = thresholds->spare;
5718 
5719 	/* Set thresholds array to NULL if we don't have thresholds */
5720 	if (!size) {
5721 		kfree(new);
5722 		new = NULL;
5723 		goto swap_buffers;
5724 	}
5725 
5726 	new->size = size;
5727 
5728 	/* Copy thresholds and find current threshold */
5729 	new->current_threshold = -1;
5730 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5731 		if (thresholds->primary->entries[i].eventfd == eventfd)
5732 			continue;
5733 
5734 		new->entries[j] = thresholds->primary->entries[i];
5735 		if (new->entries[j].threshold <= usage) {
5736 			/*
5737 			 * new->current_threshold will not be used
5738 			 * until rcu_assign_pointer(), so it's safe to increment
5739 			 * it here.
5740 			 */
5741 			++new->current_threshold;
5742 		}
5743 		j++;
5744 	}
5745 
5746 swap_buffers:
5747 	/* Swap primary and spare array */
5748 	thresholds->spare = thresholds->primary;
5749 	/* If all events are unregistered, free the spare array */
5750 	if (!new) {
5751 		kfree(thresholds->spare);
5752 		thresholds->spare = NULL;
5753 	}
5754 
5755 	rcu_assign_pointer(thresholds->primary, new);
5756 
5757 	/* To be sure that nobody uses thresholds */
5758 	synchronize_rcu();
5759 unlock:
5760 	mutex_unlock(&memcg->thresholds_lock);
5761 }
5762 
5763 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5764 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5765 {
5766 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5767 	struct mem_cgroup_eventfd_list *event;
5768 	enum res_type type = MEMFILE_TYPE(cft->private);
5769 
5770 	BUG_ON(type != _OOM_TYPE);
5771 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5772 	if (!event)
5773 		return -ENOMEM;
5774 
5775 	spin_lock(&memcg_oom_lock);
5776 
5777 	event->eventfd = eventfd;
5778 	list_add(&event->list, &memcg->oom_notify);
5779 
5780 	/* already in OOM ? */
5781 	if (atomic_read(&memcg->under_oom))
5782 		eventfd_signal(eventfd, 1);
5783 	spin_unlock(&memcg_oom_lock);
5784 
5785 	return 0;
5786 }
5787 
5788 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5789 	struct cftype *cft, struct eventfd_ctx *eventfd)
5790 {
5791 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5792 	struct mem_cgroup_eventfd_list *ev, *tmp;
5793 	enum res_type type = MEMFILE_TYPE(cft->private);
5794 
5795 	BUG_ON(type != _OOM_TYPE);
5796 
5797 	spin_lock(&memcg_oom_lock);
5798 
5799 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5800 		if (ev->eventfd == eventfd) {
5801 			list_del(&ev->list);
5802 			kfree(ev);
5803 		}
5804 	}
5805 
5806 	spin_unlock(&memcg_oom_lock);
5807 }
5808 
5809 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5810 	struct cftype *cft,  struct cgroup_map_cb *cb)
5811 {
5812 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5813 
5814 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5815 
5816 	if (atomic_read(&memcg->under_oom))
5817 		cb->fill(cb, "under_oom", 1);
5818 	else
5819 		cb->fill(cb, "under_oom", 0);
5820 	return 0;
5821 }
5822 
5823 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5824 	struct cftype *cft, u64 val)
5825 {
5826 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5827 	struct mem_cgroup *parent;
5828 
5829 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5830 	if (!cgrp->parent || !((val == 0) || (val == 1)))
5831 		return -EINVAL;
5832 
5833 	parent = mem_cgroup_from_cont(cgrp->parent);
5834 
5835 	mutex_lock(&memcg_create_mutex);
5836 	/* oom-kill-disable is a flag for subhierarchy. */
5837 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5838 		mutex_unlock(&memcg_create_mutex);
5839 		return -EINVAL;
5840 	}
5841 	memcg->oom_kill_disable = val;
5842 	if (!val)
5843 		memcg_oom_recover(memcg);
5844 	mutex_unlock(&memcg_create_mutex);
5845 	return 0;
5846 }
5847 
5848 #ifdef CONFIG_MEMCG_KMEM
5849 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5850 {
5851 	int ret;
5852 
5853 	memcg->kmemcg_id = -1;
5854 	ret = memcg_propagate_kmem(memcg);
5855 	if (ret)
5856 		return ret;
5857 
5858 	return mem_cgroup_sockets_init(memcg, ss);
5859 }
5860 
5861 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5862 {
5863 	mem_cgroup_sockets_destroy(memcg);
5864 
5865 	memcg_kmem_mark_dead(memcg);
5866 
5867 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5868 		return;
5869 
5870 	/*
5871 	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5872 	 * path here, being careful not to race with memcg_uncharge_kmem: it is
5873 	 * possible that the charges went down to 0 between mark_dead and the
5874 	 * res_counter read, so in that case, we don't need the put
5875 	 */
5876 	if (memcg_kmem_test_and_clear_dead(memcg))
5877 		mem_cgroup_put(memcg);
5878 }
5879 #else
5880 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5881 {
5882 	return 0;
5883 }
5884 
5885 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5886 {
5887 }
5888 #endif
5889 
5890 static struct cftype mem_cgroup_files[] = {
5891 	{
5892 		.name = "usage_in_bytes",
5893 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5894 		.read = mem_cgroup_read,
5895 		.register_event = mem_cgroup_usage_register_event,
5896 		.unregister_event = mem_cgroup_usage_unregister_event,
5897 	},
5898 	{
5899 		.name = "max_usage_in_bytes",
5900 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5901 		.trigger = mem_cgroup_reset,
5902 		.read = mem_cgroup_read,
5903 	},
5904 	{
5905 		.name = "limit_in_bytes",
5906 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5907 		.write_string = mem_cgroup_write,
5908 		.read = mem_cgroup_read,
5909 	},
5910 	{
5911 		.name = "soft_limit_in_bytes",
5912 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5913 		.write_string = mem_cgroup_write,
5914 		.read = mem_cgroup_read,
5915 	},
5916 	{
5917 		.name = "failcnt",
5918 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5919 		.trigger = mem_cgroup_reset,
5920 		.read = mem_cgroup_read,
5921 	},
5922 	{
5923 		.name = "stat",
5924 		.read_seq_string = memcg_stat_show,
5925 	},
5926 	{
5927 		.name = "force_empty",
5928 		.trigger = mem_cgroup_force_empty_write,
5929 	},
5930 	{
5931 		.name = "use_hierarchy",
5932 		.flags = CFTYPE_INSANE,
5933 		.write_u64 = mem_cgroup_hierarchy_write,
5934 		.read_u64 = mem_cgroup_hierarchy_read,
5935 	},
5936 	{
5937 		.name = "swappiness",
5938 		.read_u64 = mem_cgroup_swappiness_read,
5939 		.write_u64 = mem_cgroup_swappiness_write,
5940 	},
5941 	{
5942 		.name = "move_charge_at_immigrate",
5943 		.read_u64 = mem_cgroup_move_charge_read,
5944 		.write_u64 = mem_cgroup_move_charge_write,
5945 	},
5946 	{
5947 		.name = "oom_control",
5948 		.read_map = mem_cgroup_oom_control_read,
5949 		.write_u64 = mem_cgroup_oom_control_write,
5950 		.register_event = mem_cgroup_oom_register_event,
5951 		.unregister_event = mem_cgroup_oom_unregister_event,
5952 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5953 	},
5954 	{
5955 		.name = "pressure_level",
5956 		.register_event = vmpressure_register_event,
5957 		.unregister_event = vmpressure_unregister_event,
5958 	},
5959 #ifdef CONFIG_NUMA
5960 	{
5961 		.name = "numa_stat",
5962 		.read_seq_string = memcg_numa_stat_show,
5963 	},
5964 #endif
5965 #ifdef CONFIG_MEMCG_KMEM
5966 	{
5967 		.name = "kmem.limit_in_bytes",
5968 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5969 		.write_string = mem_cgroup_write,
5970 		.read = mem_cgroup_read,
5971 	},
5972 	{
5973 		.name = "kmem.usage_in_bytes",
5974 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5975 		.read = mem_cgroup_read,
5976 	},
5977 	{
5978 		.name = "kmem.failcnt",
5979 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5980 		.trigger = mem_cgroup_reset,
5981 		.read = mem_cgroup_read,
5982 	},
5983 	{
5984 		.name = "kmem.max_usage_in_bytes",
5985 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5986 		.trigger = mem_cgroup_reset,
5987 		.read = mem_cgroup_read,
5988 	},
5989 #ifdef CONFIG_SLABINFO
5990 	{
5991 		.name = "kmem.slabinfo",
5992 		.read_seq_string = mem_cgroup_slabinfo_read,
5993 	},
5994 #endif
5995 #endif
5996 	{ },	/* terminate */
5997 };
5998 
5999 #ifdef CONFIG_MEMCG_SWAP
6000 static struct cftype memsw_cgroup_files[] = {
6001 	{
6002 		.name = "memsw.usage_in_bytes",
6003 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6004 		.read = mem_cgroup_read,
6005 		.register_event = mem_cgroup_usage_register_event,
6006 		.unregister_event = mem_cgroup_usage_unregister_event,
6007 	},
6008 	{
6009 		.name = "memsw.max_usage_in_bytes",
6010 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6011 		.trigger = mem_cgroup_reset,
6012 		.read = mem_cgroup_read,
6013 	},
6014 	{
6015 		.name = "memsw.limit_in_bytes",
6016 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6017 		.write_string = mem_cgroup_write,
6018 		.read = mem_cgroup_read,
6019 	},
6020 	{
6021 		.name = "memsw.failcnt",
6022 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6023 		.trigger = mem_cgroup_reset,
6024 		.read = mem_cgroup_read,
6025 	},
6026 	{ },	/* terminate */
6027 };
6028 #endif
6029 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6030 {
6031 	struct mem_cgroup_per_node *pn;
6032 	struct mem_cgroup_per_zone *mz;
6033 	int zone, tmp = node;
6034 	/*
6035 	 * This routine is called against possible nodes.
6036 	 * But it's BUG to call kmalloc() against offline node.
6037 	 *
6038 	 * TODO: this routine can waste much memory for nodes which will
6039 	 *       never be onlined. It's better to use memory hotplug callback
6040 	 *       function.
6041 	 */
6042 	if (!node_state(node, N_NORMAL_MEMORY))
6043 		tmp = -1;
6044 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6045 	if (!pn)
6046 		return 1;
6047 
6048 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6049 		mz = &pn->zoneinfo[zone];
6050 		lruvec_init(&mz->lruvec);
6051 		mz->usage_in_excess = 0;
6052 		mz->on_tree = false;
6053 		mz->memcg = memcg;
6054 	}
6055 	memcg->info.nodeinfo[node] = pn;
6056 	return 0;
6057 }
6058 
6059 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6060 {
6061 	kfree(memcg->info.nodeinfo[node]);
6062 }
6063 
6064 static struct mem_cgroup *mem_cgroup_alloc(void)
6065 {
6066 	struct mem_cgroup *memcg;
6067 	size_t size = memcg_size();
6068 
6069 	/* Can be very big if nr_node_ids is very big */
6070 	if (size < PAGE_SIZE)
6071 		memcg = kzalloc(size, GFP_KERNEL);
6072 	else
6073 		memcg = vzalloc(size);
6074 
6075 	if (!memcg)
6076 		return NULL;
6077 
6078 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6079 	if (!memcg->stat)
6080 		goto out_free;
6081 	spin_lock_init(&memcg->pcp_counter_lock);
6082 	return memcg;
6083 
6084 out_free:
6085 	if (size < PAGE_SIZE)
6086 		kfree(memcg);
6087 	else
6088 		vfree(memcg);
6089 	return NULL;
6090 }
6091 
6092 /*
6093  * At destroying mem_cgroup, references from swap_cgroup can remain.
6094  * (scanning all at force_empty is too costly...)
6095  *
6096  * Instead of clearing all references at force_empty, we remember
6097  * the number of reference from swap_cgroup and free mem_cgroup when
6098  * it goes down to 0.
6099  *
6100  * Removal of cgroup itself succeeds regardless of refs from swap.
6101  */
6102 
6103 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6104 {
6105 	int node;
6106 	size_t size = memcg_size();
6107 
6108 	mem_cgroup_remove_from_trees(memcg);
6109 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6110 
6111 	for_each_node(node)
6112 		free_mem_cgroup_per_zone_info(memcg, node);
6113 
6114 	free_percpu(memcg->stat);
6115 
6116 	/*
6117 	 * We need to make sure that (at least for now), the jump label
6118 	 * destruction code runs outside of the cgroup lock. This is because
6119 	 * get_online_cpus(), which is called from the static_branch update,
6120 	 * can't be called inside the cgroup_lock. cpusets are the ones
6121 	 * enforcing this dependency, so if they ever change, we might as well.
6122 	 *
6123 	 * schedule_work() will guarantee this happens. Be careful if you need
6124 	 * to move this code around, and make sure it is outside
6125 	 * the cgroup_lock.
6126 	 */
6127 	disarm_static_keys(memcg);
6128 	if (size < PAGE_SIZE)
6129 		kfree(memcg);
6130 	else
6131 		vfree(memcg);
6132 }
6133 
6134 
6135 /*
6136  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6137  * but in process context.  The work_freeing structure is overlaid
6138  * on the rcu_freeing structure, which itself is overlaid on memsw.
6139  */
6140 static void free_work(struct work_struct *work)
6141 {
6142 	struct mem_cgroup *memcg;
6143 
6144 	memcg = container_of(work, struct mem_cgroup, work_freeing);
6145 	__mem_cgroup_free(memcg);
6146 }
6147 
6148 static void free_rcu(struct rcu_head *rcu_head)
6149 {
6150 	struct mem_cgroup *memcg;
6151 
6152 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6153 	INIT_WORK(&memcg->work_freeing, free_work);
6154 	schedule_work(&memcg->work_freeing);
6155 }
6156 
6157 static void mem_cgroup_get(struct mem_cgroup *memcg)
6158 {
6159 	atomic_inc(&memcg->refcnt);
6160 }
6161 
6162 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6163 {
6164 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
6165 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6166 		call_rcu(&memcg->rcu_freeing, free_rcu);
6167 		if (parent)
6168 			mem_cgroup_put(parent);
6169 	}
6170 }
6171 
6172 static void mem_cgroup_put(struct mem_cgroup *memcg)
6173 {
6174 	__mem_cgroup_put(memcg, 1);
6175 }
6176 
6177 /*
6178  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6179  */
6180 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6181 {
6182 	if (!memcg->res.parent)
6183 		return NULL;
6184 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6185 }
6186 EXPORT_SYMBOL(parent_mem_cgroup);
6187 
6188 static void __init mem_cgroup_soft_limit_tree_init(void)
6189 {
6190 	struct mem_cgroup_tree_per_node *rtpn;
6191 	struct mem_cgroup_tree_per_zone *rtpz;
6192 	int tmp, node, zone;
6193 
6194 	for_each_node(node) {
6195 		tmp = node;
6196 		if (!node_state(node, N_NORMAL_MEMORY))
6197 			tmp = -1;
6198 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6199 		BUG_ON(!rtpn);
6200 
6201 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6202 
6203 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6204 			rtpz = &rtpn->rb_tree_per_zone[zone];
6205 			rtpz->rb_root = RB_ROOT;
6206 			spin_lock_init(&rtpz->lock);
6207 		}
6208 	}
6209 }
6210 
6211 static struct cgroup_subsys_state * __ref
6212 mem_cgroup_css_alloc(struct cgroup *cont)
6213 {
6214 	struct mem_cgroup *memcg;
6215 	long error = -ENOMEM;
6216 	int node;
6217 
6218 	memcg = mem_cgroup_alloc();
6219 	if (!memcg)
6220 		return ERR_PTR(error);
6221 
6222 	for_each_node(node)
6223 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6224 			goto free_out;
6225 
6226 	/* root ? */
6227 	if (cont->parent == NULL) {
6228 		root_mem_cgroup = memcg;
6229 		res_counter_init(&memcg->res, NULL);
6230 		res_counter_init(&memcg->memsw, NULL);
6231 		res_counter_init(&memcg->kmem, NULL);
6232 	}
6233 
6234 	memcg->last_scanned_node = MAX_NUMNODES;
6235 	INIT_LIST_HEAD(&memcg->oom_notify);
6236 	atomic_set(&memcg->refcnt, 1);
6237 	memcg->move_charge_at_immigrate = 0;
6238 	mutex_init(&memcg->thresholds_lock);
6239 	spin_lock_init(&memcg->move_lock);
6240 	vmpressure_init(&memcg->vmpressure);
6241 
6242 	return &memcg->css;
6243 
6244 free_out:
6245 	__mem_cgroup_free(memcg);
6246 	return ERR_PTR(error);
6247 }
6248 
6249 static int
6250 mem_cgroup_css_online(struct cgroup *cont)
6251 {
6252 	struct mem_cgroup *memcg, *parent;
6253 	int error = 0;
6254 
6255 	if (!cont->parent)
6256 		return 0;
6257 
6258 	mutex_lock(&memcg_create_mutex);
6259 	memcg = mem_cgroup_from_cont(cont);
6260 	parent = mem_cgroup_from_cont(cont->parent);
6261 
6262 	memcg->use_hierarchy = parent->use_hierarchy;
6263 	memcg->oom_kill_disable = parent->oom_kill_disable;
6264 	memcg->swappiness = mem_cgroup_swappiness(parent);
6265 
6266 	if (parent->use_hierarchy) {
6267 		res_counter_init(&memcg->res, &parent->res);
6268 		res_counter_init(&memcg->memsw, &parent->memsw);
6269 		res_counter_init(&memcg->kmem, &parent->kmem);
6270 
6271 		/*
6272 		 * We increment refcnt of the parent to ensure that we can
6273 		 * safely access it on res_counter_charge/uncharge.
6274 		 * This refcnt will be decremented when freeing this
6275 		 * mem_cgroup(see mem_cgroup_put).
6276 		 */
6277 		mem_cgroup_get(parent);
6278 	} else {
6279 		res_counter_init(&memcg->res, NULL);
6280 		res_counter_init(&memcg->memsw, NULL);
6281 		res_counter_init(&memcg->kmem, NULL);
6282 		/*
6283 		 * Deeper hierachy with use_hierarchy == false doesn't make
6284 		 * much sense so let cgroup subsystem know about this
6285 		 * unfortunate state in our controller.
6286 		 */
6287 		if (parent != root_mem_cgroup)
6288 			mem_cgroup_subsys.broken_hierarchy = true;
6289 	}
6290 
6291 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6292 	mutex_unlock(&memcg_create_mutex);
6293 	if (error) {
6294 		/*
6295 		 * We call put now because our (and parent's) refcnts
6296 		 * are already in place. mem_cgroup_put() will internally
6297 		 * call __mem_cgroup_free, so return directly
6298 		 */
6299 		mem_cgroup_put(memcg);
6300 		if (parent->use_hierarchy)
6301 			mem_cgroup_put(parent);
6302 	}
6303 	return error;
6304 }
6305 
6306 /*
6307  * Announce all parents that a group from their hierarchy is gone.
6308  */
6309 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6310 {
6311 	struct mem_cgroup *parent = memcg;
6312 
6313 	while ((parent = parent_mem_cgroup(parent)))
6314 		atomic_inc(&parent->dead_count);
6315 
6316 	/*
6317 	 * if the root memcg is not hierarchical we have to check it
6318 	 * explicitely.
6319 	 */
6320 	if (!root_mem_cgroup->use_hierarchy)
6321 		atomic_inc(&root_mem_cgroup->dead_count);
6322 }
6323 
6324 static void mem_cgroup_css_offline(struct cgroup *cont)
6325 {
6326 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6327 
6328 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6329 	mem_cgroup_reparent_charges(memcg);
6330 	mem_cgroup_destroy_all_caches(memcg);
6331 }
6332 
6333 static void mem_cgroup_css_free(struct cgroup *cont)
6334 {
6335 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6336 
6337 	kmem_cgroup_destroy(memcg);
6338 
6339 	mem_cgroup_put(memcg);
6340 }
6341 
6342 #ifdef CONFIG_MMU
6343 /* Handlers for move charge at task migration. */
6344 #define PRECHARGE_COUNT_AT_ONCE	256
6345 static int mem_cgroup_do_precharge(unsigned long count)
6346 {
6347 	int ret = 0;
6348 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6349 	struct mem_cgroup *memcg = mc.to;
6350 
6351 	if (mem_cgroup_is_root(memcg)) {
6352 		mc.precharge += count;
6353 		/* we don't need css_get for root */
6354 		return ret;
6355 	}
6356 	/* try to charge at once */
6357 	if (count > 1) {
6358 		struct res_counter *dummy;
6359 		/*
6360 		 * "memcg" cannot be under rmdir() because we've already checked
6361 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6362 		 * are still under the same cgroup_mutex. So we can postpone
6363 		 * css_get().
6364 		 */
6365 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6366 			goto one_by_one;
6367 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6368 						PAGE_SIZE * count, &dummy)) {
6369 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6370 			goto one_by_one;
6371 		}
6372 		mc.precharge += count;
6373 		return ret;
6374 	}
6375 one_by_one:
6376 	/* fall back to one by one charge */
6377 	while (count--) {
6378 		if (signal_pending(current)) {
6379 			ret = -EINTR;
6380 			break;
6381 		}
6382 		if (!batch_count--) {
6383 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6384 			cond_resched();
6385 		}
6386 		ret = __mem_cgroup_try_charge(NULL,
6387 					GFP_KERNEL, 1, &memcg, false);
6388 		if (ret)
6389 			/* mem_cgroup_clear_mc() will do uncharge later */
6390 			return ret;
6391 		mc.precharge++;
6392 	}
6393 	return ret;
6394 }
6395 
6396 /**
6397  * get_mctgt_type - get target type of moving charge
6398  * @vma: the vma the pte to be checked belongs
6399  * @addr: the address corresponding to the pte to be checked
6400  * @ptent: the pte to be checked
6401  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6402  *
6403  * Returns
6404  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6405  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6406  *     move charge. if @target is not NULL, the page is stored in target->page
6407  *     with extra refcnt got(Callers should handle it).
6408  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6409  *     target for charge migration. if @target is not NULL, the entry is stored
6410  *     in target->ent.
6411  *
6412  * Called with pte lock held.
6413  */
6414 union mc_target {
6415 	struct page	*page;
6416 	swp_entry_t	ent;
6417 };
6418 
6419 enum mc_target_type {
6420 	MC_TARGET_NONE = 0,
6421 	MC_TARGET_PAGE,
6422 	MC_TARGET_SWAP,
6423 };
6424 
6425 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6426 						unsigned long addr, pte_t ptent)
6427 {
6428 	struct page *page = vm_normal_page(vma, addr, ptent);
6429 
6430 	if (!page || !page_mapped(page))
6431 		return NULL;
6432 	if (PageAnon(page)) {
6433 		/* we don't move shared anon */
6434 		if (!move_anon())
6435 			return NULL;
6436 	} else if (!move_file())
6437 		/* we ignore mapcount for file pages */
6438 		return NULL;
6439 	if (!get_page_unless_zero(page))
6440 		return NULL;
6441 
6442 	return page;
6443 }
6444 
6445 #ifdef CONFIG_SWAP
6446 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6447 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6448 {
6449 	struct page *page = NULL;
6450 	swp_entry_t ent = pte_to_swp_entry(ptent);
6451 
6452 	if (!move_anon() || non_swap_entry(ent))
6453 		return NULL;
6454 	/*
6455 	 * Because lookup_swap_cache() updates some statistics counter,
6456 	 * we call find_get_page() with swapper_space directly.
6457 	 */
6458 	page = find_get_page(swap_address_space(ent), ent.val);
6459 	if (do_swap_account)
6460 		entry->val = ent.val;
6461 
6462 	return page;
6463 }
6464 #else
6465 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6466 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6467 {
6468 	return NULL;
6469 }
6470 #endif
6471 
6472 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6473 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6474 {
6475 	struct page *page = NULL;
6476 	struct address_space *mapping;
6477 	pgoff_t pgoff;
6478 
6479 	if (!vma->vm_file) /* anonymous vma */
6480 		return NULL;
6481 	if (!move_file())
6482 		return NULL;
6483 
6484 	mapping = vma->vm_file->f_mapping;
6485 	if (pte_none(ptent))
6486 		pgoff = linear_page_index(vma, addr);
6487 	else /* pte_file(ptent) is true */
6488 		pgoff = pte_to_pgoff(ptent);
6489 
6490 	/* page is moved even if it's not RSS of this task(page-faulted). */
6491 	page = find_get_page(mapping, pgoff);
6492 
6493 #ifdef CONFIG_SWAP
6494 	/* shmem/tmpfs may report page out on swap: account for that too. */
6495 	if (radix_tree_exceptional_entry(page)) {
6496 		swp_entry_t swap = radix_to_swp_entry(page);
6497 		if (do_swap_account)
6498 			*entry = swap;
6499 		page = find_get_page(swap_address_space(swap), swap.val);
6500 	}
6501 #endif
6502 	return page;
6503 }
6504 
6505 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6506 		unsigned long addr, pte_t ptent, union mc_target *target)
6507 {
6508 	struct page *page = NULL;
6509 	struct page_cgroup *pc;
6510 	enum mc_target_type ret = MC_TARGET_NONE;
6511 	swp_entry_t ent = { .val = 0 };
6512 
6513 	if (pte_present(ptent))
6514 		page = mc_handle_present_pte(vma, addr, ptent);
6515 	else if (is_swap_pte(ptent))
6516 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6517 	else if (pte_none(ptent) || pte_file(ptent))
6518 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6519 
6520 	if (!page && !ent.val)
6521 		return ret;
6522 	if (page) {
6523 		pc = lookup_page_cgroup(page);
6524 		/*
6525 		 * Do only loose check w/o page_cgroup lock.
6526 		 * mem_cgroup_move_account() checks the pc is valid or not under
6527 		 * the lock.
6528 		 */
6529 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6530 			ret = MC_TARGET_PAGE;
6531 			if (target)
6532 				target->page = page;
6533 		}
6534 		if (!ret || !target)
6535 			put_page(page);
6536 	}
6537 	/* There is a swap entry and a page doesn't exist or isn't charged */
6538 	if (ent.val && !ret &&
6539 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6540 		ret = MC_TARGET_SWAP;
6541 		if (target)
6542 			target->ent = ent;
6543 	}
6544 	return ret;
6545 }
6546 
6547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6548 /*
6549  * We don't consider swapping or file mapped pages because THP does not
6550  * support them for now.
6551  * Caller should make sure that pmd_trans_huge(pmd) is true.
6552  */
6553 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6554 		unsigned long addr, pmd_t pmd, union mc_target *target)
6555 {
6556 	struct page *page = NULL;
6557 	struct page_cgroup *pc;
6558 	enum mc_target_type ret = MC_TARGET_NONE;
6559 
6560 	page = pmd_page(pmd);
6561 	VM_BUG_ON(!page || !PageHead(page));
6562 	if (!move_anon())
6563 		return ret;
6564 	pc = lookup_page_cgroup(page);
6565 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6566 		ret = MC_TARGET_PAGE;
6567 		if (target) {
6568 			get_page(page);
6569 			target->page = page;
6570 		}
6571 	}
6572 	return ret;
6573 }
6574 #else
6575 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6576 		unsigned long addr, pmd_t pmd, union mc_target *target)
6577 {
6578 	return MC_TARGET_NONE;
6579 }
6580 #endif
6581 
6582 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6583 					unsigned long addr, unsigned long end,
6584 					struct mm_walk *walk)
6585 {
6586 	struct vm_area_struct *vma = walk->private;
6587 	pte_t *pte;
6588 	spinlock_t *ptl;
6589 
6590 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6591 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6592 			mc.precharge += HPAGE_PMD_NR;
6593 		spin_unlock(&vma->vm_mm->page_table_lock);
6594 		return 0;
6595 	}
6596 
6597 	if (pmd_trans_unstable(pmd))
6598 		return 0;
6599 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6600 	for (; addr != end; pte++, addr += PAGE_SIZE)
6601 		if (get_mctgt_type(vma, addr, *pte, NULL))
6602 			mc.precharge++;	/* increment precharge temporarily */
6603 	pte_unmap_unlock(pte - 1, ptl);
6604 	cond_resched();
6605 
6606 	return 0;
6607 }
6608 
6609 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6610 {
6611 	unsigned long precharge;
6612 	struct vm_area_struct *vma;
6613 
6614 	down_read(&mm->mmap_sem);
6615 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6616 		struct mm_walk mem_cgroup_count_precharge_walk = {
6617 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6618 			.mm = mm,
6619 			.private = vma,
6620 		};
6621 		if (is_vm_hugetlb_page(vma))
6622 			continue;
6623 		walk_page_range(vma->vm_start, vma->vm_end,
6624 					&mem_cgroup_count_precharge_walk);
6625 	}
6626 	up_read(&mm->mmap_sem);
6627 
6628 	precharge = mc.precharge;
6629 	mc.precharge = 0;
6630 
6631 	return precharge;
6632 }
6633 
6634 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6635 {
6636 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6637 
6638 	VM_BUG_ON(mc.moving_task);
6639 	mc.moving_task = current;
6640 	return mem_cgroup_do_precharge(precharge);
6641 }
6642 
6643 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6644 static void __mem_cgroup_clear_mc(void)
6645 {
6646 	struct mem_cgroup *from = mc.from;
6647 	struct mem_cgroup *to = mc.to;
6648 
6649 	/* we must uncharge all the leftover precharges from mc.to */
6650 	if (mc.precharge) {
6651 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6652 		mc.precharge = 0;
6653 	}
6654 	/*
6655 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6656 	 * we must uncharge here.
6657 	 */
6658 	if (mc.moved_charge) {
6659 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6660 		mc.moved_charge = 0;
6661 	}
6662 	/* we must fixup refcnts and charges */
6663 	if (mc.moved_swap) {
6664 		/* uncharge swap account from the old cgroup */
6665 		if (!mem_cgroup_is_root(mc.from))
6666 			res_counter_uncharge(&mc.from->memsw,
6667 						PAGE_SIZE * mc.moved_swap);
6668 		__mem_cgroup_put(mc.from, mc.moved_swap);
6669 
6670 		if (!mem_cgroup_is_root(mc.to)) {
6671 			/*
6672 			 * we charged both to->res and to->memsw, so we should
6673 			 * uncharge to->res.
6674 			 */
6675 			res_counter_uncharge(&mc.to->res,
6676 						PAGE_SIZE * mc.moved_swap);
6677 		}
6678 		/* we've already done mem_cgroup_get(mc.to) */
6679 		mc.moved_swap = 0;
6680 	}
6681 	memcg_oom_recover(from);
6682 	memcg_oom_recover(to);
6683 	wake_up_all(&mc.waitq);
6684 }
6685 
6686 static void mem_cgroup_clear_mc(void)
6687 {
6688 	struct mem_cgroup *from = mc.from;
6689 
6690 	/*
6691 	 * we must clear moving_task before waking up waiters at the end of
6692 	 * task migration.
6693 	 */
6694 	mc.moving_task = NULL;
6695 	__mem_cgroup_clear_mc();
6696 	spin_lock(&mc.lock);
6697 	mc.from = NULL;
6698 	mc.to = NULL;
6699 	spin_unlock(&mc.lock);
6700 	mem_cgroup_end_move(from);
6701 }
6702 
6703 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6704 				 struct cgroup_taskset *tset)
6705 {
6706 	struct task_struct *p = cgroup_taskset_first(tset);
6707 	int ret = 0;
6708 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6709 	unsigned long move_charge_at_immigrate;
6710 
6711 	/*
6712 	 * We are now commited to this value whatever it is. Changes in this
6713 	 * tunable will only affect upcoming migrations, not the current one.
6714 	 * So we need to save it, and keep it going.
6715 	 */
6716 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6717 	if (move_charge_at_immigrate) {
6718 		struct mm_struct *mm;
6719 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6720 
6721 		VM_BUG_ON(from == memcg);
6722 
6723 		mm = get_task_mm(p);
6724 		if (!mm)
6725 			return 0;
6726 		/* We move charges only when we move a owner of the mm */
6727 		if (mm->owner == p) {
6728 			VM_BUG_ON(mc.from);
6729 			VM_BUG_ON(mc.to);
6730 			VM_BUG_ON(mc.precharge);
6731 			VM_BUG_ON(mc.moved_charge);
6732 			VM_BUG_ON(mc.moved_swap);
6733 			mem_cgroup_start_move(from);
6734 			spin_lock(&mc.lock);
6735 			mc.from = from;
6736 			mc.to = memcg;
6737 			mc.immigrate_flags = move_charge_at_immigrate;
6738 			spin_unlock(&mc.lock);
6739 			/* We set mc.moving_task later */
6740 
6741 			ret = mem_cgroup_precharge_mc(mm);
6742 			if (ret)
6743 				mem_cgroup_clear_mc();
6744 		}
6745 		mmput(mm);
6746 	}
6747 	return ret;
6748 }
6749 
6750 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6751 				     struct cgroup_taskset *tset)
6752 {
6753 	mem_cgroup_clear_mc();
6754 }
6755 
6756 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6757 				unsigned long addr, unsigned long end,
6758 				struct mm_walk *walk)
6759 {
6760 	int ret = 0;
6761 	struct vm_area_struct *vma = walk->private;
6762 	pte_t *pte;
6763 	spinlock_t *ptl;
6764 	enum mc_target_type target_type;
6765 	union mc_target target;
6766 	struct page *page;
6767 	struct page_cgroup *pc;
6768 
6769 	/*
6770 	 * We don't take compound_lock() here but no race with splitting thp
6771 	 * happens because:
6772 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6773 	 *    under splitting, which means there's no concurrent thp split,
6774 	 *  - if another thread runs into split_huge_page() just after we
6775 	 *    entered this if-block, the thread must wait for page table lock
6776 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6777 	 *    part of thp split is not executed yet.
6778 	 */
6779 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6780 		if (mc.precharge < HPAGE_PMD_NR) {
6781 			spin_unlock(&vma->vm_mm->page_table_lock);
6782 			return 0;
6783 		}
6784 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6785 		if (target_type == MC_TARGET_PAGE) {
6786 			page = target.page;
6787 			if (!isolate_lru_page(page)) {
6788 				pc = lookup_page_cgroup(page);
6789 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6790 							pc, mc.from, mc.to)) {
6791 					mc.precharge -= HPAGE_PMD_NR;
6792 					mc.moved_charge += HPAGE_PMD_NR;
6793 				}
6794 				putback_lru_page(page);
6795 			}
6796 			put_page(page);
6797 		}
6798 		spin_unlock(&vma->vm_mm->page_table_lock);
6799 		return 0;
6800 	}
6801 
6802 	if (pmd_trans_unstable(pmd))
6803 		return 0;
6804 retry:
6805 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6806 	for (; addr != end; addr += PAGE_SIZE) {
6807 		pte_t ptent = *(pte++);
6808 		swp_entry_t ent;
6809 
6810 		if (!mc.precharge)
6811 			break;
6812 
6813 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6814 		case MC_TARGET_PAGE:
6815 			page = target.page;
6816 			if (isolate_lru_page(page))
6817 				goto put;
6818 			pc = lookup_page_cgroup(page);
6819 			if (!mem_cgroup_move_account(page, 1, pc,
6820 						     mc.from, mc.to)) {
6821 				mc.precharge--;
6822 				/* we uncharge from mc.from later. */
6823 				mc.moved_charge++;
6824 			}
6825 			putback_lru_page(page);
6826 put:			/* get_mctgt_type() gets the page */
6827 			put_page(page);
6828 			break;
6829 		case MC_TARGET_SWAP:
6830 			ent = target.ent;
6831 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6832 				mc.precharge--;
6833 				/* we fixup refcnts and charges later. */
6834 				mc.moved_swap++;
6835 			}
6836 			break;
6837 		default:
6838 			break;
6839 		}
6840 	}
6841 	pte_unmap_unlock(pte - 1, ptl);
6842 	cond_resched();
6843 
6844 	if (addr != end) {
6845 		/*
6846 		 * We have consumed all precharges we got in can_attach().
6847 		 * We try charge one by one, but don't do any additional
6848 		 * charges to mc.to if we have failed in charge once in attach()
6849 		 * phase.
6850 		 */
6851 		ret = mem_cgroup_do_precharge(1);
6852 		if (!ret)
6853 			goto retry;
6854 	}
6855 
6856 	return ret;
6857 }
6858 
6859 static void mem_cgroup_move_charge(struct mm_struct *mm)
6860 {
6861 	struct vm_area_struct *vma;
6862 
6863 	lru_add_drain_all();
6864 retry:
6865 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6866 		/*
6867 		 * Someone who are holding the mmap_sem might be waiting in
6868 		 * waitq. So we cancel all extra charges, wake up all waiters,
6869 		 * and retry. Because we cancel precharges, we might not be able
6870 		 * to move enough charges, but moving charge is a best-effort
6871 		 * feature anyway, so it wouldn't be a big problem.
6872 		 */
6873 		__mem_cgroup_clear_mc();
6874 		cond_resched();
6875 		goto retry;
6876 	}
6877 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6878 		int ret;
6879 		struct mm_walk mem_cgroup_move_charge_walk = {
6880 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6881 			.mm = mm,
6882 			.private = vma,
6883 		};
6884 		if (is_vm_hugetlb_page(vma))
6885 			continue;
6886 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6887 						&mem_cgroup_move_charge_walk);
6888 		if (ret)
6889 			/*
6890 			 * means we have consumed all precharges and failed in
6891 			 * doing additional charge. Just abandon here.
6892 			 */
6893 			break;
6894 	}
6895 	up_read(&mm->mmap_sem);
6896 }
6897 
6898 static void mem_cgroup_move_task(struct cgroup *cont,
6899 				 struct cgroup_taskset *tset)
6900 {
6901 	struct task_struct *p = cgroup_taskset_first(tset);
6902 	struct mm_struct *mm = get_task_mm(p);
6903 
6904 	if (mm) {
6905 		if (mc.to)
6906 			mem_cgroup_move_charge(mm);
6907 		mmput(mm);
6908 	}
6909 	if (mc.to)
6910 		mem_cgroup_clear_mc();
6911 }
6912 #else	/* !CONFIG_MMU */
6913 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6914 				 struct cgroup_taskset *tset)
6915 {
6916 	return 0;
6917 }
6918 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6919 				     struct cgroup_taskset *tset)
6920 {
6921 }
6922 static void mem_cgroup_move_task(struct cgroup *cont,
6923 				 struct cgroup_taskset *tset)
6924 {
6925 }
6926 #endif
6927 
6928 /*
6929  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6930  * to verify sane_behavior flag on each mount attempt.
6931  */
6932 static void mem_cgroup_bind(struct cgroup *root)
6933 {
6934 	/*
6935 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6936 	 * guarantees that @root doesn't have any children, so turning it
6937 	 * on for the root memcg is enough.
6938 	 */
6939 	if (cgroup_sane_behavior(root))
6940 		mem_cgroup_from_cont(root)->use_hierarchy = true;
6941 }
6942 
6943 struct cgroup_subsys mem_cgroup_subsys = {
6944 	.name = "memory",
6945 	.subsys_id = mem_cgroup_subsys_id,
6946 	.css_alloc = mem_cgroup_css_alloc,
6947 	.css_online = mem_cgroup_css_online,
6948 	.css_offline = mem_cgroup_css_offline,
6949 	.css_free = mem_cgroup_css_free,
6950 	.can_attach = mem_cgroup_can_attach,
6951 	.cancel_attach = mem_cgroup_cancel_attach,
6952 	.attach = mem_cgroup_move_task,
6953 	.bind = mem_cgroup_bind,
6954 	.base_cftypes = mem_cgroup_files,
6955 	.early_init = 0,
6956 	.use_id = 1,
6957 };
6958 
6959 #ifdef CONFIG_MEMCG_SWAP
6960 static int __init enable_swap_account(char *s)
6961 {
6962 	/* consider enabled if no parameter or 1 is given */
6963 	if (!strcmp(s, "1"))
6964 		really_do_swap_account = 1;
6965 	else if (!strcmp(s, "0"))
6966 		really_do_swap_account = 0;
6967 	return 1;
6968 }
6969 __setup("swapaccount=", enable_swap_account);
6970 
6971 static void __init memsw_file_init(void)
6972 {
6973 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6974 }
6975 
6976 static void __init enable_swap_cgroup(void)
6977 {
6978 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6979 		do_swap_account = 1;
6980 		memsw_file_init();
6981 	}
6982 }
6983 
6984 #else
6985 static void __init enable_swap_cgroup(void)
6986 {
6987 }
6988 #endif
6989 
6990 /*
6991  * subsys_initcall() for memory controller.
6992  *
6993  * Some parts like hotcpu_notifier() have to be initialized from this context
6994  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6995  * everything that doesn't depend on a specific mem_cgroup structure should
6996  * be initialized from here.
6997  */
6998 static int __init mem_cgroup_init(void)
6999 {
7000 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7001 	enable_swap_cgroup();
7002 	mem_cgroup_soft_limit_tree_init();
7003 	memcg_stock_init();
7004 	return 0;
7005 }
7006 subsys_initcall(mem_cgroup_init);
7007