1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "swap.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* BPF memory accounting disabled? */ 92 static bool cgroup_memory_nobpf __ro_after_init; 93 94 #ifdef CONFIG_CGROUP_WRITEBACK 95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 96 #endif 97 98 /* Whether legacy memory+swap accounting is active */ 99 static bool do_memsw_account(void) 100 { 101 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 102 } 103 104 #define THRESHOLDS_EVENTS_TARGET 128 105 #define SOFTLIMIT_EVENTS_TARGET 1024 106 107 /* 108 * Cgroups above their limits are maintained in a RB-Tree, independent of 109 * their hierarchy representation 110 */ 111 112 struct mem_cgroup_tree_per_node { 113 struct rb_root rb_root; 114 struct rb_node *rb_rightmost; 115 spinlock_t lock; 116 }; 117 118 struct mem_cgroup_tree { 119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 120 }; 121 122 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 123 124 /* for OOM */ 125 struct mem_cgroup_eventfd_list { 126 struct list_head list; 127 struct eventfd_ctx *eventfd; 128 }; 129 130 /* 131 * cgroup_event represents events which userspace want to receive. 132 */ 133 struct mem_cgroup_event { 134 /* 135 * memcg which the event belongs to. 136 */ 137 struct mem_cgroup *memcg; 138 /* 139 * eventfd to signal userspace about the event. 140 */ 141 struct eventfd_ctx *eventfd; 142 /* 143 * Each of these stored in a list by the cgroup. 144 */ 145 struct list_head list; 146 /* 147 * register_event() callback will be used to add new userspace 148 * waiter for changes related to this event. Use eventfd_signal() 149 * on eventfd to send notification to userspace. 150 */ 151 int (*register_event)(struct mem_cgroup *memcg, 152 struct eventfd_ctx *eventfd, const char *args); 153 /* 154 * unregister_event() callback will be called when userspace closes 155 * the eventfd or on cgroup removing. This callback must be set, 156 * if you want provide notification functionality. 157 */ 158 void (*unregister_event)(struct mem_cgroup *memcg, 159 struct eventfd_ctx *eventfd); 160 /* 161 * All fields below needed to unregister event when 162 * userspace closes eventfd. 163 */ 164 poll_table pt; 165 wait_queue_head_t *wqh; 166 wait_queue_entry_t wait; 167 struct work_struct remove; 168 }; 169 170 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 172 173 /* Stuffs for move charges at task migration. */ 174 /* 175 * Types of charges to be moved. 176 */ 177 #define MOVE_ANON 0x1U 178 #define MOVE_FILE 0x2U 179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 180 181 /* "mc" and its members are protected by cgroup_mutex */ 182 static struct move_charge_struct { 183 spinlock_t lock; /* for from, to */ 184 struct mm_struct *mm; 185 struct mem_cgroup *from; 186 struct mem_cgroup *to; 187 unsigned long flags; 188 unsigned long precharge; 189 unsigned long moved_charge; 190 unsigned long moved_swap; 191 struct task_struct *moving_task; /* a task moving charges */ 192 wait_queue_head_t waitq; /* a waitq for other context */ 193 } mc = { 194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 196 }; 197 198 /* 199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 200 * limit reclaim to prevent infinite loops, if they ever occur. 201 */ 202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 204 205 /* for encoding cft->private value on file */ 206 enum res_type { 207 _MEM, 208 _MEMSWAP, 209 _KMEM, 210 _TCP, 211 }; 212 213 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 214 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 215 #define MEMFILE_ATTR(val) ((val) & 0xffff) 216 217 /* 218 * Iteration constructs for visiting all cgroups (under a tree). If 219 * loops are exited prematurely (break), mem_cgroup_iter_break() must 220 * be used for reference counting. 221 */ 222 #define for_each_mem_cgroup_tree(iter, root) \ 223 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 224 iter != NULL; \ 225 iter = mem_cgroup_iter(root, iter, NULL)) 226 227 #define for_each_mem_cgroup(iter) \ 228 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 229 iter != NULL; \ 230 iter = mem_cgroup_iter(NULL, iter, NULL)) 231 232 static inline bool task_is_dying(void) 233 { 234 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 235 (current->flags & PF_EXITING); 236 } 237 238 /* Some nice accessors for the vmpressure. */ 239 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 240 { 241 if (!memcg) 242 memcg = root_mem_cgroup; 243 return &memcg->vmpressure; 244 } 245 246 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 247 { 248 return container_of(vmpr, struct mem_cgroup, vmpressure); 249 } 250 251 #ifdef CONFIG_MEMCG_KMEM 252 static DEFINE_SPINLOCK(objcg_lock); 253 254 bool mem_cgroup_kmem_disabled(void) 255 { 256 return cgroup_memory_nokmem; 257 } 258 259 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 260 unsigned int nr_pages); 261 262 static void obj_cgroup_release(struct percpu_ref *ref) 263 { 264 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 265 unsigned int nr_bytes; 266 unsigned int nr_pages; 267 unsigned long flags; 268 269 /* 270 * At this point all allocated objects are freed, and 271 * objcg->nr_charged_bytes can't have an arbitrary byte value. 272 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 273 * 274 * The following sequence can lead to it: 275 * 1) CPU0: objcg == stock->cached_objcg 276 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 277 * PAGE_SIZE bytes are charged 278 * 3) CPU1: a process from another memcg is allocating something, 279 * the stock if flushed, 280 * objcg->nr_charged_bytes = PAGE_SIZE - 92 281 * 5) CPU0: we do release this object, 282 * 92 bytes are added to stock->nr_bytes 283 * 6) CPU0: stock is flushed, 284 * 92 bytes are added to objcg->nr_charged_bytes 285 * 286 * In the result, nr_charged_bytes == PAGE_SIZE. 287 * This page will be uncharged in obj_cgroup_release(). 288 */ 289 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 290 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 291 nr_pages = nr_bytes >> PAGE_SHIFT; 292 293 if (nr_pages) 294 obj_cgroup_uncharge_pages(objcg, nr_pages); 295 296 spin_lock_irqsave(&objcg_lock, flags); 297 list_del(&objcg->list); 298 spin_unlock_irqrestore(&objcg_lock, flags); 299 300 percpu_ref_exit(ref); 301 kfree_rcu(objcg, rcu); 302 } 303 304 static struct obj_cgroup *obj_cgroup_alloc(void) 305 { 306 struct obj_cgroup *objcg; 307 int ret; 308 309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 310 if (!objcg) 311 return NULL; 312 313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 314 GFP_KERNEL); 315 if (ret) { 316 kfree(objcg); 317 return NULL; 318 } 319 INIT_LIST_HEAD(&objcg->list); 320 return objcg; 321 } 322 323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 324 struct mem_cgroup *parent) 325 { 326 struct obj_cgroup *objcg, *iter; 327 328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 329 330 spin_lock_irq(&objcg_lock); 331 332 /* 1) Ready to reparent active objcg. */ 333 list_add(&objcg->list, &memcg->objcg_list); 334 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 335 list_for_each_entry(iter, &memcg->objcg_list, list) 336 WRITE_ONCE(iter->memcg, parent); 337 /* 3) Move already reparented objcgs to the parent's list */ 338 list_splice(&memcg->objcg_list, &parent->objcg_list); 339 340 spin_unlock_irq(&objcg_lock); 341 342 percpu_ref_kill(&objcg->refcnt); 343 } 344 345 /* 346 * A lot of the calls to the cache allocation functions are expected to be 347 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 348 * conditional to this static branch, we'll have to allow modules that does 349 * kmem_cache_alloc and the such to see this symbol as well 350 */ 351 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 352 EXPORT_SYMBOL(memcg_kmem_online_key); 353 354 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 355 EXPORT_SYMBOL(memcg_bpf_enabled_key); 356 #endif 357 358 /** 359 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 360 * @folio: folio of interest 361 * 362 * If memcg is bound to the default hierarchy, css of the memcg associated 363 * with @folio is returned. The returned css remains associated with @folio 364 * until it is released. 365 * 366 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 367 * is returned. 368 */ 369 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 370 { 371 struct mem_cgroup *memcg = folio_memcg(folio); 372 373 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 374 memcg = root_mem_cgroup; 375 376 return &memcg->css; 377 } 378 379 /** 380 * page_cgroup_ino - return inode number of the memcg a page is charged to 381 * @page: the page 382 * 383 * Look up the closest online ancestor of the memory cgroup @page is charged to 384 * and return its inode number or 0 if @page is not charged to any cgroup. It 385 * is safe to call this function without holding a reference to @page. 386 * 387 * Note, this function is inherently racy, because there is nothing to prevent 388 * the cgroup inode from getting torn down and potentially reallocated a moment 389 * after page_cgroup_ino() returns, so it only should be used by callers that 390 * do not care (such as procfs interfaces). 391 */ 392 ino_t page_cgroup_ino(struct page *page) 393 { 394 struct mem_cgroup *memcg; 395 unsigned long ino = 0; 396 397 rcu_read_lock(); 398 memcg = page_memcg_check(page); 399 400 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 401 memcg = parent_mem_cgroup(memcg); 402 if (memcg) 403 ino = cgroup_ino(memcg->css.cgroup); 404 rcu_read_unlock(); 405 return ino; 406 } 407 408 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 409 struct mem_cgroup_tree_per_node *mctz, 410 unsigned long new_usage_in_excess) 411 { 412 struct rb_node **p = &mctz->rb_root.rb_node; 413 struct rb_node *parent = NULL; 414 struct mem_cgroup_per_node *mz_node; 415 bool rightmost = true; 416 417 if (mz->on_tree) 418 return; 419 420 mz->usage_in_excess = new_usage_in_excess; 421 if (!mz->usage_in_excess) 422 return; 423 while (*p) { 424 parent = *p; 425 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 426 tree_node); 427 if (mz->usage_in_excess < mz_node->usage_in_excess) { 428 p = &(*p)->rb_left; 429 rightmost = false; 430 } else { 431 p = &(*p)->rb_right; 432 } 433 } 434 435 if (rightmost) 436 mctz->rb_rightmost = &mz->tree_node; 437 438 rb_link_node(&mz->tree_node, parent, p); 439 rb_insert_color(&mz->tree_node, &mctz->rb_root); 440 mz->on_tree = true; 441 } 442 443 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 444 struct mem_cgroup_tree_per_node *mctz) 445 { 446 if (!mz->on_tree) 447 return; 448 449 if (&mz->tree_node == mctz->rb_rightmost) 450 mctz->rb_rightmost = rb_prev(&mz->tree_node); 451 452 rb_erase(&mz->tree_node, &mctz->rb_root); 453 mz->on_tree = false; 454 } 455 456 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 457 struct mem_cgroup_tree_per_node *mctz) 458 { 459 unsigned long flags; 460 461 spin_lock_irqsave(&mctz->lock, flags); 462 __mem_cgroup_remove_exceeded(mz, mctz); 463 spin_unlock_irqrestore(&mctz->lock, flags); 464 } 465 466 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 467 { 468 unsigned long nr_pages = page_counter_read(&memcg->memory); 469 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 470 unsigned long excess = 0; 471 472 if (nr_pages > soft_limit) 473 excess = nr_pages - soft_limit; 474 475 return excess; 476 } 477 478 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 479 { 480 unsigned long excess; 481 struct mem_cgroup_per_node *mz; 482 struct mem_cgroup_tree_per_node *mctz; 483 484 if (lru_gen_enabled()) { 485 if (soft_limit_excess(memcg)) 486 lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec); 487 return; 488 } 489 490 mctz = soft_limit_tree.rb_tree_per_node[nid]; 491 if (!mctz) 492 return; 493 /* 494 * Necessary to update all ancestors when hierarchy is used. 495 * because their event counter is not touched. 496 */ 497 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 498 mz = memcg->nodeinfo[nid]; 499 excess = soft_limit_excess(memcg); 500 /* 501 * We have to update the tree if mz is on RB-tree or 502 * mem is over its softlimit. 503 */ 504 if (excess || mz->on_tree) { 505 unsigned long flags; 506 507 spin_lock_irqsave(&mctz->lock, flags); 508 /* if on-tree, remove it */ 509 if (mz->on_tree) 510 __mem_cgroup_remove_exceeded(mz, mctz); 511 /* 512 * Insert again. mz->usage_in_excess will be updated. 513 * If excess is 0, no tree ops. 514 */ 515 __mem_cgroup_insert_exceeded(mz, mctz, excess); 516 spin_unlock_irqrestore(&mctz->lock, flags); 517 } 518 } 519 } 520 521 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 522 { 523 struct mem_cgroup_tree_per_node *mctz; 524 struct mem_cgroup_per_node *mz; 525 int nid; 526 527 for_each_node(nid) { 528 mz = memcg->nodeinfo[nid]; 529 mctz = soft_limit_tree.rb_tree_per_node[nid]; 530 if (mctz) 531 mem_cgroup_remove_exceeded(mz, mctz); 532 } 533 } 534 535 static struct mem_cgroup_per_node * 536 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 537 { 538 struct mem_cgroup_per_node *mz; 539 540 retry: 541 mz = NULL; 542 if (!mctz->rb_rightmost) 543 goto done; /* Nothing to reclaim from */ 544 545 mz = rb_entry(mctz->rb_rightmost, 546 struct mem_cgroup_per_node, tree_node); 547 /* 548 * Remove the node now but someone else can add it back, 549 * we will to add it back at the end of reclaim to its correct 550 * position in the tree. 551 */ 552 __mem_cgroup_remove_exceeded(mz, mctz); 553 if (!soft_limit_excess(mz->memcg) || 554 !css_tryget(&mz->memcg->css)) 555 goto retry; 556 done: 557 return mz; 558 } 559 560 static struct mem_cgroup_per_node * 561 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 562 { 563 struct mem_cgroup_per_node *mz; 564 565 spin_lock_irq(&mctz->lock); 566 mz = __mem_cgroup_largest_soft_limit_node(mctz); 567 spin_unlock_irq(&mctz->lock); 568 return mz; 569 } 570 571 /* 572 * memcg and lruvec stats flushing 573 * 574 * Many codepaths leading to stats update or read are performance sensitive and 575 * adding stats flushing in such codepaths is not desirable. So, to optimize the 576 * flushing the kernel does: 577 * 578 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 579 * rstat update tree grow unbounded. 580 * 581 * 2) Flush the stats synchronously on reader side only when there are more than 582 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 583 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 584 * only for 2 seconds due to (1). 585 */ 586 static void flush_memcg_stats_dwork(struct work_struct *w); 587 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 588 static DEFINE_SPINLOCK(stats_flush_lock); 589 static DEFINE_PER_CPU(unsigned int, stats_updates); 590 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 591 static u64 flush_next_time; 592 593 #define FLUSH_TIME (2UL*HZ) 594 595 /* 596 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 597 * not rely on this as part of an acquired spinlock_t lock. These functions are 598 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 599 * is sufficient. 600 */ 601 static void memcg_stats_lock(void) 602 { 603 preempt_disable_nested(); 604 VM_WARN_ON_IRQS_ENABLED(); 605 } 606 607 static void __memcg_stats_lock(void) 608 { 609 preempt_disable_nested(); 610 } 611 612 static void memcg_stats_unlock(void) 613 { 614 preempt_enable_nested(); 615 } 616 617 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 618 { 619 unsigned int x; 620 621 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 622 623 x = __this_cpu_add_return(stats_updates, abs(val)); 624 if (x > MEMCG_CHARGE_BATCH) { 625 /* 626 * If stats_flush_threshold exceeds the threshold 627 * (>num_online_cpus()), cgroup stats update will be triggered 628 * in __mem_cgroup_flush_stats(). Increasing this var further 629 * is redundant and simply adds overhead in atomic update. 630 */ 631 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 632 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 633 __this_cpu_write(stats_updates, 0); 634 } 635 } 636 637 static void __mem_cgroup_flush_stats(void) 638 { 639 unsigned long flag; 640 641 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 642 return; 643 644 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 645 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 646 atomic_set(&stats_flush_threshold, 0); 647 spin_unlock_irqrestore(&stats_flush_lock, flag); 648 } 649 650 void mem_cgroup_flush_stats(void) 651 { 652 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 653 __mem_cgroup_flush_stats(); 654 } 655 656 void mem_cgroup_flush_stats_delayed(void) 657 { 658 if (time_after64(jiffies_64, flush_next_time)) 659 mem_cgroup_flush_stats(); 660 } 661 662 static void flush_memcg_stats_dwork(struct work_struct *w) 663 { 664 __mem_cgroup_flush_stats(); 665 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 666 } 667 668 /* Subset of vm_event_item to report for memcg event stats */ 669 static const unsigned int memcg_vm_event_stat[] = { 670 PGPGIN, 671 PGPGOUT, 672 PGSCAN_KSWAPD, 673 PGSCAN_DIRECT, 674 PGSCAN_KHUGEPAGED, 675 PGSTEAL_KSWAPD, 676 PGSTEAL_DIRECT, 677 PGSTEAL_KHUGEPAGED, 678 PGFAULT, 679 PGMAJFAULT, 680 PGREFILL, 681 PGACTIVATE, 682 PGDEACTIVATE, 683 PGLAZYFREE, 684 PGLAZYFREED, 685 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 686 ZSWPIN, 687 ZSWPOUT, 688 #endif 689 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 690 THP_FAULT_ALLOC, 691 THP_COLLAPSE_ALLOC, 692 #endif 693 }; 694 695 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 696 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 697 698 static void init_memcg_events(void) 699 { 700 int i; 701 702 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 703 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 704 } 705 706 static inline int memcg_events_index(enum vm_event_item idx) 707 { 708 return mem_cgroup_events_index[idx] - 1; 709 } 710 711 struct memcg_vmstats_percpu { 712 /* Local (CPU and cgroup) page state & events */ 713 long state[MEMCG_NR_STAT]; 714 unsigned long events[NR_MEMCG_EVENTS]; 715 716 /* Delta calculation for lockless upward propagation */ 717 long state_prev[MEMCG_NR_STAT]; 718 unsigned long events_prev[NR_MEMCG_EVENTS]; 719 720 /* Cgroup1: threshold notifications & softlimit tree updates */ 721 unsigned long nr_page_events; 722 unsigned long targets[MEM_CGROUP_NTARGETS]; 723 }; 724 725 struct memcg_vmstats { 726 /* Aggregated (CPU and subtree) page state & events */ 727 long state[MEMCG_NR_STAT]; 728 unsigned long events[NR_MEMCG_EVENTS]; 729 730 /* Pending child counts during tree propagation */ 731 long state_pending[MEMCG_NR_STAT]; 732 unsigned long events_pending[NR_MEMCG_EVENTS]; 733 }; 734 735 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 736 { 737 long x = READ_ONCE(memcg->vmstats->state[idx]); 738 #ifdef CONFIG_SMP 739 if (x < 0) 740 x = 0; 741 #endif 742 return x; 743 } 744 745 /** 746 * __mod_memcg_state - update cgroup memory statistics 747 * @memcg: the memory cgroup 748 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 749 * @val: delta to add to the counter, can be negative 750 */ 751 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 752 { 753 if (mem_cgroup_disabled()) 754 return; 755 756 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 757 memcg_rstat_updated(memcg, val); 758 } 759 760 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 761 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 762 { 763 long x = 0; 764 int cpu; 765 766 for_each_possible_cpu(cpu) 767 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 768 #ifdef CONFIG_SMP 769 if (x < 0) 770 x = 0; 771 #endif 772 return x; 773 } 774 775 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 776 int val) 777 { 778 struct mem_cgroup_per_node *pn; 779 struct mem_cgroup *memcg; 780 781 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 782 memcg = pn->memcg; 783 784 /* 785 * The caller from rmap relay on disabled preemption becase they never 786 * update their counter from in-interrupt context. For these two 787 * counters we check that the update is never performed from an 788 * interrupt context while other caller need to have disabled interrupt. 789 */ 790 __memcg_stats_lock(); 791 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 792 switch (idx) { 793 case NR_ANON_MAPPED: 794 case NR_FILE_MAPPED: 795 case NR_ANON_THPS: 796 case NR_SHMEM_PMDMAPPED: 797 case NR_FILE_PMDMAPPED: 798 WARN_ON_ONCE(!in_task()); 799 break; 800 default: 801 VM_WARN_ON_IRQS_ENABLED(); 802 } 803 } 804 805 /* Update memcg */ 806 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 807 808 /* Update lruvec */ 809 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 810 811 memcg_rstat_updated(memcg, val); 812 memcg_stats_unlock(); 813 } 814 815 /** 816 * __mod_lruvec_state - update lruvec memory statistics 817 * @lruvec: the lruvec 818 * @idx: the stat item 819 * @val: delta to add to the counter, can be negative 820 * 821 * The lruvec is the intersection of the NUMA node and a cgroup. This 822 * function updates the all three counters that are affected by a 823 * change of state at this level: per-node, per-cgroup, per-lruvec. 824 */ 825 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 826 int val) 827 { 828 /* Update node */ 829 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 830 831 /* Update memcg and lruvec */ 832 if (!mem_cgroup_disabled()) 833 __mod_memcg_lruvec_state(lruvec, idx, val); 834 } 835 836 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 837 int val) 838 { 839 struct page *head = compound_head(page); /* rmap on tail pages */ 840 struct mem_cgroup *memcg; 841 pg_data_t *pgdat = page_pgdat(page); 842 struct lruvec *lruvec; 843 844 rcu_read_lock(); 845 memcg = page_memcg(head); 846 /* Untracked pages have no memcg, no lruvec. Update only the node */ 847 if (!memcg) { 848 rcu_read_unlock(); 849 __mod_node_page_state(pgdat, idx, val); 850 return; 851 } 852 853 lruvec = mem_cgroup_lruvec(memcg, pgdat); 854 __mod_lruvec_state(lruvec, idx, val); 855 rcu_read_unlock(); 856 } 857 EXPORT_SYMBOL(__mod_lruvec_page_state); 858 859 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 860 { 861 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 862 struct mem_cgroup *memcg; 863 struct lruvec *lruvec; 864 865 rcu_read_lock(); 866 memcg = mem_cgroup_from_slab_obj(p); 867 868 /* 869 * Untracked pages have no memcg, no lruvec. Update only the 870 * node. If we reparent the slab objects to the root memcg, 871 * when we free the slab object, we need to update the per-memcg 872 * vmstats to keep it correct for the root memcg. 873 */ 874 if (!memcg) { 875 __mod_node_page_state(pgdat, idx, val); 876 } else { 877 lruvec = mem_cgroup_lruvec(memcg, pgdat); 878 __mod_lruvec_state(lruvec, idx, val); 879 } 880 rcu_read_unlock(); 881 } 882 883 /** 884 * __count_memcg_events - account VM events in a cgroup 885 * @memcg: the memory cgroup 886 * @idx: the event item 887 * @count: the number of events that occurred 888 */ 889 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 890 unsigned long count) 891 { 892 int index = memcg_events_index(idx); 893 894 if (mem_cgroup_disabled() || index < 0) 895 return; 896 897 memcg_stats_lock(); 898 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 899 memcg_rstat_updated(memcg, count); 900 memcg_stats_unlock(); 901 } 902 903 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 904 { 905 int index = memcg_events_index(event); 906 907 if (index < 0) 908 return 0; 909 return READ_ONCE(memcg->vmstats->events[index]); 910 } 911 912 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 913 { 914 long x = 0; 915 int cpu; 916 int index = memcg_events_index(event); 917 918 if (index < 0) 919 return 0; 920 921 for_each_possible_cpu(cpu) 922 x += per_cpu(memcg->vmstats_percpu->events[index], cpu); 923 return x; 924 } 925 926 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 927 int nr_pages) 928 { 929 /* pagein of a big page is an event. So, ignore page size */ 930 if (nr_pages > 0) 931 __count_memcg_events(memcg, PGPGIN, 1); 932 else { 933 __count_memcg_events(memcg, PGPGOUT, 1); 934 nr_pages = -nr_pages; /* for event */ 935 } 936 937 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 938 } 939 940 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 941 enum mem_cgroup_events_target target) 942 { 943 unsigned long val, next; 944 945 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 946 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 947 /* from time_after() in jiffies.h */ 948 if ((long)(next - val) < 0) { 949 switch (target) { 950 case MEM_CGROUP_TARGET_THRESH: 951 next = val + THRESHOLDS_EVENTS_TARGET; 952 break; 953 case MEM_CGROUP_TARGET_SOFTLIMIT: 954 next = val + SOFTLIMIT_EVENTS_TARGET; 955 break; 956 default: 957 break; 958 } 959 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 960 return true; 961 } 962 return false; 963 } 964 965 /* 966 * Check events in order. 967 * 968 */ 969 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 970 { 971 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 972 return; 973 974 /* threshold event is triggered in finer grain than soft limit */ 975 if (unlikely(mem_cgroup_event_ratelimit(memcg, 976 MEM_CGROUP_TARGET_THRESH))) { 977 bool do_softlimit; 978 979 do_softlimit = mem_cgroup_event_ratelimit(memcg, 980 MEM_CGROUP_TARGET_SOFTLIMIT); 981 mem_cgroup_threshold(memcg); 982 if (unlikely(do_softlimit)) 983 mem_cgroup_update_tree(memcg, nid); 984 } 985 } 986 987 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 988 { 989 /* 990 * mm_update_next_owner() may clear mm->owner to NULL 991 * if it races with swapoff, page migration, etc. 992 * So this can be called with p == NULL. 993 */ 994 if (unlikely(!p)) 995 return NULL; 996 997 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 998 } 999 EXPORT_SYMBOL(mem_cgroup_from_task); 1000 1001 static __always_inline struct mem_cgroup *active_memcg(void) 1002 { 1003 if (!in_task()) 1004 return this_cpu_read(int_active_memcg); 1005 else 1006 return current->active_memcg; 1007 } 1008 1009 /** 1010 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1011 * @mm: mm from which memcg should be extracted. It can be NULL. 1012 * 1013 * Obtain a reference on mm->memcg and returns it if successful. If mm 1014 * is NULL, then the memcg is chosen as follows: 1015 * 1) The active memcg, if set. 1016 * 2) current->mm->memcg, if available 1017 * 3) root memcg 1018 * If mem_cgroup is disabled, NULL is returned. 1019 */ 1020 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1021 { 1022 struct mem_cgroup *memcg; 1023 1024 if (mem_cgroup_disabled()) 1025 return NULL; 1026 1027 /* 1028 * Page cache insertions can happen without an 1029 * actual mm context, e.g. during disk probing 1030 * on boot, loopback IO, acct() writes etc. 1031 * 1032 * No need to css_get on root memcg as the reference 1033 * counting is disabled on the root level in the 1034 * cgroup core. See CSS_NO_REF. 1035 */ 1036 if (unlikely(!mm)) { 1037 memcg = active_memcg(); 1038 if (unlikely(memcg)) { 1039 /* remote memcg must hold a ref */ 1040 css_get(&memcg->css); 1041 return memcg; 1042 } 1043 mm = current->mm; 1044 if (unlikely(!mm)) 1045 return root_mem_cgroup; 1046 } 1047 1048 rcu_read_lock(); 1049 do { 1050 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1051 if (unlikely(!memcg)) 1052 memcg = root_mem_cgroup; 1053 } while (!css_tryget(&memcg->css)); 1054 rcu_read_unlock(); 1055 return memcg; 1056 } 1057 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1058 1059 static __always_inline bool memcg_kmem_bypass(void) 1060 { 1061 /* Allow remote memcg charging from any context. */ 1062 if (unlikely(active_memcg())) 1063 return false; 1064 1065 /* Memcg to charge can't be determined. */ 1066 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 1067 return true; 1068 1069 return false; 1070 } 1071 1072 /** 1073 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1074 * @root: hierarchy root 1075 * @prev: previously returned memcg, NULL on first invocation 1076 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1077 * 1078 * Returns references to children of the hierarchy below @root, or 1079 * @root itself, or %NULL after a full round-trip. 1080 * 1081 * Caller must pass the return value in @prev on subsequent 1082 * invocations for reference counting, or use mem_cgroup_iter_break() 1083 * to cancel a hierarchy walk before the round-trip is complete. 1084 * 1085 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1086 * in the hierarchy among all concurrent reclaimers operating on the 1087 * same node. 1088 */ 1089 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1090 struct mem_cgroup *prev, 1091 struct mem_cgroup_reclaim_cookie *reclaim) 1092 { 1093 struct mem_cgroup_reclaim_iter *iter; 1094 struct cgroup_subsys_state *css = NULL; 1095 struct mem_cgroup *memcg = NULL; 1096 struct mem_cgroup *pos = NULL; 1097 1098 if (mem_cgroup_disabled()) 1099 return NULL; 1100 1101 if (!root) 1102 root = root_mem_cgroup; 1103 1104 rcu_read_lock(); 1105 1106 if (reclaim) { 1107 struct mem_cgroup_per_node *mz; 1108 1109 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1110 iter = &mz->iter; 1111 1112 /* 1113 * On start, join the current reclaim iteration cycle. 1114 * Exit when a concurrent walker completes it. 1115 */ 1116 if (!prev) 1117 reclaim->generation = iter->generation; 1118 else if (reclaim->generation != iter->generation) 1119 goto out_unlock; 1120 1121 while (1) { 1122 pos = READ_ONCE(iter->position); 1123 if (!pos || css_tryget(&pos->css)) 1124 break; 1125 /* 1126 * css reference reached zero, so iter->position will 1127 * be cleared by ->css_released. However, we should not 1128 * rely on this happening soon, because ->css_released 1129 * is called from a work queue, and by busy-waiting we 1130 * might block it. So we clear iter->position right 1131 * away. 1132 */ 1133 (void)cmpxchg(&iter->position, pos, NULL); 1134 } 1135 } else if (prev) { 1136 pos = prev; 1137 } 1138 1139 if (pos) 1140 css = &pos->css; 1141 1142 for (;;) { 1143 css = css_next_descendant_pre(css, &root->css); 1144 if (!css) { 1145 /* 1146 * Reclaimers share the hierarchy walk, and a 1147 * new one might jump in right at the end of 1148 * the hierarchy - make sure they see at least 1149 * one group and restart from the beginning. 1150 */ 1151 if (!prev) 1152 continue; 1153 break; 1154 } 1155 1156 /* 1157 * Verify the css and acquire a reference. The root 1158 * is provided by the caller, so we know it's alive 1159 * and kicking, and don't take an extra reference. 1160 */ 1161 if (css == &root->css || css_tryget(css)) { 1162 memcg = mem_cgroup_from_css(css); 1163 break; 1164 } 1165 } 1166 1167 if (reclaim) { 1168 /* 1169 * The position could have already been updated by a competing 1170 * thread, so check that the value hasn't changed since we read 1171 * it to avoid reclaiming from the same cgroup twice. 1172 */ 1173 (void)cmpxchg(&iter->position, pos, memcg); 1174 1175 if (pos) 1176 css_put(&pos->css); 1177 1178 if (!memcg) 1179 iter->generation++; 1180 } 1181 1182 out_unlock: 1183 rcu_read_unlock(); 1184 if (prev && prev != root) 1185 css_put(&prev->css); 1186 1187 return memcg; 1188 } 1189 1190 /** 1191 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1192 * @root: hierarchy root 1193 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1194 */ 1195 void mem_cgroup_iter_break(struct mem_cgroup *root, 1196 struct mem_cgroup *prev) 1197 { 1198 if (!root) 1199 root = root_mem_cgroup; 1200 if (prev && prev != root) 1201 css_put(&prev->css); 1202 } 1203 1204 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1205 struct mem_cgroup *dead_memcg) 1206 { 1207 struct mem_cgroup_reclaim_iter *iter; 1208 struct mem_cgroup_per_node *mz; 1209 int nid; 1210 1211 for_each_node(nid) { 1212 mz = from->nodeinfo[nid]; 1213 iter = &mz->iter; 1214 cmpxchg(&iter->position, dead_memcg, NULL); 1215 } 1216 } 1217 1218 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1219 { 1220 struct mem_cgroup *memcg = dead_memcg; 1221 struct mem_cgroup *last; 1222 1223 do { 1224 __invalidate_reclaim_iterators(memcg, dead_memcg); 1225 last = memcg; 1226 } while ((memcg = parent_mem_cgroup(memcg))); 1227 1228 /* 1229 * When cgroup1 non-hierarchy mode is used, 1230 * parent_mem_cgroup() does not walk all the way up to the 1231 * cgroup root (root_mem_cgroup). So we have to handle 1232 * dead_memcg from cgroup root separately. 1233 */ 1234 if (!mem_cgroup_is_root(last)) 1235 __invalidate_reclaim_iterators(root_mem_cgroup, 1236 dead_memcg); 1237 } 1238 1239 /** 1240 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1241 * @memcg: hierarchy root 1242 * @fn: function to call for each task 1243 * @arg: argument passed to @fn 1244 * 1245 * This function iterates over tasks attached to @memcg or to any of its 1246 * descendants and calls @fn for each task. If @fn returns a non-zero 1247 * value, the function breaks the iteration loop and returns the value. 1248 * Otherwise, it will iterate over all tasks and return 0. 1249 * 1250 * This function must not be called for the root memory cgroup. 1251 */ 1252 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1253 int (*fn)(struct task_struct *, void *), void *arg) 1254 { 1255 struct mem_cgroup *iter; 1256 int ret = 0; 1257 1258 BUG_ON(mem_cgroup_is_root(memcg)); 1259 1260 for_each_mem_cgroup_tree(iter, memcg) { 1261 struct css_task_iter it; 1262 struct task_struct *task; 1263 1264 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1265 while (!ret && (task = css_task_iter_next(&it))) 1266 ret = fn(task, arg); 1267 css_task_iter_end(&it); 1268 if (ret) { 1269 mem_cgroup_iter_break(memcg, iter); 1270 break; 1271 } 1272 } 1273 return ret; 1274 } 1275 1276 #ifdef CONFIG_DEBUG_VM 1277 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1278 { 1279 struct mem_cgroup *memcg; 1280 1281 if (mem_cgroup_disabled()) 1282 return; 1283 1284 memcg = folio_memcg(folio); 1285 1286 if (!memcg) 1287 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1288 else 1289 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1290 } 1291 #endif 1292 1293 /** 1294 * folio_lruvec_lock - Lock the lruvec for a folio. 1295 * @folio: Pointer to the folio. 1296 * 1297 * These functions are safe to use under any of the following conditions: 1298 * - folio locked 1299 * - folio_test_lru false 1300 * - folio_memcg_lock() 1301 * - folio frozen (refcount of 0) 1302 * 1303 * Return: The lruvec this folio is on with its lock held. 1304 */ 1305 struct lruvec *folio_lruvec_lock(struct folio *folio) 1306 { 1307 struct lruvec *lruvec = folio_lruvec(folio); 1308 1309 spin_lock(&lruvec->lru_lock); 1310 lruvec_memcg_debug(lruvec, folio); 1311 1312 return lruvec; 1313 } 1314 1315 /** 1316 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1317 * @folio: Pointer to the folio. 1318 * 1319 * These functions are safe to use under any of the following conditions: 1320 * - folio locked 1321 * - folio_test_lru false 1322 * - folio_memcg_lock() 1323 * - folio frozen (refcount of 0) 1324 * 1325 * Return: The lruvec this folio is on with its lock held and interrupts 1326 * disabled. 1327 */ 1328 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1329 { 1330 struct lruvec *lruvec = folio_lruvec(folio); 1331 1332 spin_lock_irq(&lruvec->lru_lock); 1333 lruvec_memcg_debug(lruvec, folio); 1334 1335 return lruvec; 1336 } 1337 1338 /** 1339 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1340 * @folio: Pointer to the folio. 1341 * @flags: Pointer to irqsave flags. 1342 * 1343 * These functions are safe to use under any of the following conditions: 1344 * - folio locked 1345 * - folio_test_lru false 1346 * - folio_memcg_lock() 1347 * - folio frozen (refcount of 0) 1348 * 1349 * Return: The lruvec this folio is on with its lock held and interrupts 1350 * disabled. 1351 */ 1352 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1353 unsigned long *flags) 1354 { 1355 struct lruvec *lruvec = folio_lruvec(folio); 1356 1357 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1358 lruvec_memcg_debug(lruvec, folio); 1359 1360 return lruvec; 1361 } 1362 1363 /** 1364 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1365 * @lruvec: mem_cgroup per zone lru vector 1366 * @lru: index of lru list the page is sitting on 1367 * @zid: zone id of the accounted pages 1368 * @nr_pages: positive when adding or negative when removing 1369 * 1370 * This function must be called under lru_lock, just before a page is added 1371 * to or just after a page is removed from an lru list. 1372 */ 1373 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1374 int zid, int nr_pages) 1375 { 1376 struct mem_cgroup_per_node *mz; 1377 unsigned long *lru_size; 1378 long size; 1379 1380 if (mem_cgroup_disabled()) 1381 return; 1382 1383 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1384 lru_size = &mz->lru_zone_size[zid][lru]; 1385 1386 if (nr_pages < 0) 1387 *lru_size += nr_pages; 1388 1389 size = *lru_size; 1390 if (WARN_ONCE(size < 0, 1391 "%s(%p, %d, %d): lru_size %ld\n", 1392 __func__, lruvec, lru, nr_pages, size)) { 1393 VM_BUG_ON(1); 1394 *lru_size = 0; 1395 } 1396 1397 if (nr_pages > 0) 1398 *lru_size += nr_pages; 1399 } 1400 1401 /** 1402 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1403 * @memcg: the memory cgroup 1404 * 1405 * Returns the maximum amount of memory @mem can be charged with, in 1406 * pages. 1407 */ 1408 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1409 { 1410 unsigned long margin = 0; 1411 unsigned long count; 1412 unsigned long limit; 1413 1414 count = page_counter_read(&memcg->memory); 1415 limit = READ_ONCE(memcg->memory.max); 1416 if (count < limit) 1417 margin = limit - count; 1418 1419 if (do_memsw_account()) { 1420 count = page_counter_read(&memcg->memsw); 1421 limit = READ_ONCE(memcg->memsw.max); 1422 if (count < limit) 1423 margin = min(margin, limit - count); 1424 else 1425 margin = 0; 1426 } 1427 1428 return margin; 1429 } 1430 1431 /* 1432 * A routine for checking "mem" is under move_account() or not. 1433 * 1434 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1435 * moving cgroups. This is for waiting at high-memory pressure 1436 * caused by "move". 1437 */ 1438 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1439 { 1440 struct mem_cgroup *from; 1441 struct mem_cgroup *to; 1442 bool ret = false; 1443 /* 1444 * Unlike task_move routines, we access mc.to, mc.from not under 1445 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1446 */ 1447 spin_lock(&mc.lock); 1448 from = mc.from; 1449 to = mc.to; 1450 if (!from) 1451 goto unlock; 1452 1453 ret = mem_cgroup_is_descendant(from, memcg) || 1454 mem_cgroup_is_descendant(to, memcg); 1455 unlock: 1456 spin_unlock(&mc.lock); 1457 return ret; 1458 } 1459 1460 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1461 { 1462 if (mc.moving_task && current != mc.moving_task) { 1463 if (mem_cgroup_under_move(memcg)) { 1464 DEFINE_WAIT(wait); 1465 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1466 /* moving charge context might have finished. */ 1467 if (mc.moving_task) 1468 schedule(); 1469 finish_wait(&mc.waitq, &wait); 1470 return true; 1471 } 1472 } 1473 return false; 1474 } 1475 1476 struct memory_stat { 1477 const char *name; 1478 unsigned int idx; 1479 }; 1480 1481 static const struct memory_stat memory_stats[] = { 1482 { "anon", NR_ANON_MAPPED }, 1483 { "file", NR_FILE_PAGES }, 1484 { "kernel", MEMCG_KMEM }, 1485 { "kernel_stack", NR_KERNEL_STACK_KB }, 1486 { "pagetables", NR_PAGETABLE }, 1487 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1488 { "percpu", MEMCG_PERCPU_B }, 1489 { "sock", MEMCG_SOCK }, 1490 { "vmalloc", MEMCG_VMALLOC }, 1491 { "shmem", NR_SHMEM }, 1492 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1493 { "zswap", MEMCG_ZSWAP_B }, 1494 { "zswapped", MEMCG_ZSWAPPED }, 1495 #endif 1496 { "file_mapped", NR_FILE_MAPPED }, 1497 { "file_dirty", NR_FILE_DIRTY }, 1498 { "file_writeback", NR_WRITEBACK }, 1499 #ifdef CONFIG_SWAP 1500 { "swapcached", NR_SWAPCACHE }, 1501 #endif 1502 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1503 { "anon_thp", NR_ANON_THPS }, 1504 { "file_thp", NR_FILE_THPS }, 1505 { "shmem_thp", NR_SHMEM_THPS }, 1506 #endif 1507 { "inactive_anon", NR_INACTIVE_ANON }, 1508 { "active_anon", NR_ACTIVE_ANON }, 1509 { "inactive_file", NR_INACTIVE_FILE }, 1510 { "active_file", NR_ACTIVE_FILE }, 1511 { "unevictable", NR_UNEVICTABLE }, 1512 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1513 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1514 1515 /* The memory events */ 1516 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1517 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1518 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1519 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1520 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1521 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1522 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1523 }; 1524 1525 /* Translate stat items to the correct unit for memory.stat output */ 1526 static int memcg_page_state_unit(int item) 1527 { 1528 switch (item) { 1529 case MEMCG_PERCPU_B: 1530 case MEMCG_ZSWAP_B: 1531 case NR_SLAB_RECLAIMABLE_B: 1532 case NR_SLAB_UNRECLAIMABLE_B: 1533 case WORKINGSET_REFAULT_ANON: 1534 case WORKINGSET_REFAULT_FILE: 1535 case WORKINGSET_ACTIVATE_ANON: 1536 case WORKINGSET_ACTIVATE_FILE: 1537 case WORKINGSET_RESTORE_ANON: 1538 case WORKINGSET_RESTORE_FILE: 1539 case WORKINGSET_NODERECLAIM: 1540 return 1; 1541 case NR_KERNEL_STACK_KB: 1542 return SZ_1K; 1543 default: 1544 return PAGE_SIZE; 1545 } 1546 } 1547 1548 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1549 int item) 1550 { 1551 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1552 } 1553 1554 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize) 1555 { 1556 struct seq_buf s; 1557 int i; 1558 1559 seq_buf_init(&s, buf, bufsize); 1560 1561 /* 1562 * Provide statistics on the state of the memory subsystem as 1563 * well as cumulative event counters that show past behavior. 1564 * 1565 * This list is ordered following a combination of these gradients: 1566 * 1) generic big picture -> specifics and details 1567 * 2) reflecting userspace activity -> reflecting kernel heuristics 1568 * 1569 * Current memory state: 1570 */ 1571 mem_cgroup_flush_stats(); 1572 1573 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1574 u64 size; 1575 1576 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1577 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1578 1579 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1580 size += memcg_page_state_output(memcg, 1581 NR_SLAB_RECLAIMABLE_B); 1582 seq_buf_printf(&s, "slab %llu\n", size); 1583 } 1584 } 1585 1586 /* Accumulated memory events */ 1587 seq_buf_printf(&s, "pgscan %lu\n", 1588 memcg_events(memcg, PGSCAN_KSWAPD) + 1589 memcg_events(memcg, PGSCAN_DIRECT) + 1590 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1591 seq_buf_printf(&s, "pgsteal %lu\n", 1592 memcg_events(memcg, PGSTEAL_KSWAPD) + 1593 memcg_events(memcg, PGSTEAL_DIRECT) + 1594 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1595 1596 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1597 if (memcg_vm_event_stat[i] == PGPGIN || 1598 memcg_vm_event_stat[i] == PGPGOUT) 1599 continue; 1600 1601 seq_buf_printf(&s, "%s %lu\n", 1602 vm_event_name(memcg_vm_event_stat[i]), 1603 memcg_events(memcg, memcg_vm_event_stat[i])); 1604 } 1605 1606 /* The above should easily fit into one page */ 1607 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1608 } 1609 1610 #define K(x) ((x) << (PAGE_SHIFT-10)) 1611 /** 1612 * mem_cgroup_print_oom_context: Print OOM information relevant to 1613 * memory controller. 1614 * @memcg: The memory cgroup that went over limit 1615 * @p: Task that is going to be killed 1616 * 1617 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1618 * enabled 1619 */ 1620 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1621 { 1622 rcu_read_lock(); 1623 1624 if (memcg) { 1625 pr_cont(",oom_memcg="); 1626 pr_cont_cgroup_path(memcg->css.cgroup); 1627 } else 1628 pr_cont(",global_oom"); 1629 if (p) { 1630 pr_cont(",task_memcg="); 1631 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1632 } 1633 rcu_read_unlock(); 1634 } 1635 1636 /** 1637 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1638 * memory controller. 1639 * @memcg: The memory cgroup that went over limit 1640 */ 1641 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1642 { 1643 /* Use static buffer, for the caller is holding oom_lock. */ 1644 static char buf[PAGE_SIZE]; 1645 1646 lockdep_assert_held(&oom_lock); 1647 1648 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1649 K((u64)page_counter_read(&memcg->memory)), 1650 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1651 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1652 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1653 K((u64)page_counter_read(&memcg->swap)), 1654 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1655 else { 1656 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1657 K((u64)page_counter_read(&memcg->memsw)), 1658 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1659 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1660 K((u64)page_counter_read(&memcg->kmem)), 1661 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1662 } 1663 1664 pr_info("Memory cgroup stats for "); 1665 pr_cont_cgroup_path(memcg->css.cgroup); 1666 pr_cont(":"); 1667 memory_stat_format(memcg, buf, sizeof(buf)); 1668 pr_info("%s", buf); 1669 } 1670 1671 /* 1672 * Return the memory (and swap, if configured) limit for a memcg. 1673 */ 1674 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1675 { 1676 unsigned long max = READ_ONCE(memcg->memory.max); 1677 1678 if (do_memsw_account()) { 1679 if (mem_cgroup_swappiness(memcg)) { 1680 /* Calculate swap excess capacity from memsw limit */ 1681 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1682 1683 max += min(swap, (unsigned long)total_swap_pages); 1684 } 1685 } else { 1686 if (mem_cgroup_swappiness(memcg)) 1687 max += min(READ_ONCE(memcg->swap.max), 1688 (unsigned long)total_swap_pages); 1689 } 1690 return max; 1691 } 1692 1693 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1694 { 1695 return page_counter_read(&memcg->memory); 1696 } 1697 1698 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1699 int order) 1700 { 1701 struct oom_control oc = { 1702 .zonelist = NULL, 1703 .nodemask = NULL, 1704 .memcg = memcg, 1705 .gfp_mask = gfp_mask, 1706 .order = order, 1707 }; 1708 bool ret = true; 1709 1710 if (mutex_lock_killable(&oom_lock)) 1711 return true; 1712 1713 if (mem_cgroup_margin(memcg) >= (1 << order)) 1714 goto unlock; 1715 1716 /* 1717 * A few threads which were not waiting at mutex_lock_killable() can 1718 * fail to bail out. Therefore, check again after holding oom_lock. 1719 */ 1720 ret = task_is_dying() || out_of_memory(&oc); 1721 1722 unlock: 1723 mutex_unlock(&oom_lock); 1724 return ret; 1725 } 1726 1727 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1728 pg_data_t *pgdat, 1729 gfp_t gfp_mask, 1730 unsigned long *total_scanned) 1731 { 1732 struct mem_cgroup *victim = NULL; 1733 int total = 0; 1734 int loop = 0; 1735 unsigned long excess; 1736 unsigned long nr_scanned; 1737 struct mem_cgroup_reclaim_cookie reclaim = { 1738 .pgdat = pgdat, 1739 }; 1740 1741 excess = soft_limit_excess(root_memcg); 1742 1743 while (1) { 1744 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1745 if (!victim) { 1746 loop++; 1747 if (loop >= 2) { 1748 /* 1749 * If we have not been able to reclaim 1750 * anything, it might because there are 1751 * no reclaimable pages under this hierarchy 1752 */ 1753 if (!total) 1754 break; 1755 /* 1756 * We want to do more targeted reclaim. 1757 * excess >> 2 is not to excessive so as to 1758 * reclaim too much, nor too less that we keep 1759 * coming back to reclaim from this cgroup 1760 */ 1761 if (total >= (excess >> 2) || 1762 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1763 break; 1764 } 1765 continue; 1766 } 1767 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1768 pgdat, &nr_scanned); 1769 *total_scanned += nr_scanned; 1770 if (!soft_limit_excess(root_memcg)) 1771 break; 1772 } 1773 mem_cgroup_iter_break(root_memcg, victim); 1774 return total; 1775 } 1776 1777 #ifdef CONFIG_LOCKDEP 1778 static struct lockdep_map memcg_oom_lock_dep_map = { 1779 .name = "memcg_oom_lock", 1780 }; 1781 #endif 1782 1783 static DEFINE_SPINLOCK(memcg_oom_lock); 1784 1785 /* 1786 * Check OOM-Killer is already running under our hierarchy. 1787 * If someone is running, return false. 1788 */ 1789 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1790 { 1791 struct mem_cgroup *iter, *failed = NULL; 1792 1793 spin_lock(&memcg_oom_lock); 1794 1795 for_each_mem_cgroup_tree(iter, memcg) { 1796 if (iter->oom_lock) { 1797 /* 1798 * this subtree of our hierarchy is already locked 1799 * so we cannot give a lock. 1800 */ 1801 failed = iter; 1802 mem_cgroup_iter_break(memcg, iter); 1803 break; 1804 } else 1805 iter->oom_lock = true; 1806 } 1807 1808 if (failed) { 1809 /* 1810 * OK, we failed to lock the whole subtree so we have 1811 * to clean up what we set up to the failing subtree 1812 */ 1813 for_each_mem_cgroup_tree(iter, memcg) { 1814 if (iter == failed) { 1815 mem_cgroup_iter_break(memcg, iter); 1816 break; 1817 } 1818 iter->oom_lock = false; 1819 } 1820 } else 1821 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1822 1823 spin_unlock(&memcg_oom_lock); 1824 1825 return !failed; 1826 } 1827 1828 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1829 { 1830 struct mem_cgroup *iter; 1831 1832 spin_lock(&memcg_oom_lock); 1833 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1834 for_each_mem_cgroup_tree(iter, memcg) 1835 iter->oom_lock = false; 1836 spin_unlock(&memcg_oom_lock); 1837 } 1838 1839 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1840 { 1841 struct mem_cgroup *iter; 1842 1843 spin_lock(&memcg_oom_lock); 1844 for_each_mem_cgroup_tree(iter, memcg) 1845 iter->under_oom++; 1846 spin_unlock(&memcg_oom_lock); 1847 } 1848 1849 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1850 { 1851 struct mem_cgroup *iter; 1852 1853 /* 1854 * Be careful about under_oom underflows because a child memcg 1855 * could have been added after mem_cgroup_mark_under_oom. 1856 */ 1857 spin_lock(&memcg_oom_lock); 1858 for_each_mem_cgroup_tree(iter, memcg) 1859 if (iter->under_oom > 0) 1860 iter->under_oom--; 1861 spin_unlock(&memcg_oom_lock); 1862 } 1863 1864 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1865 1866 struct oom_wait_info { 1867 struct mem_cgroup *memcg; 1868 wait_queue_entry_t wait; 1869 }; 1870 1871 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1872 unsigned mode, int sync, void *arg) 1873 { 1874 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1875 struct mem_cgroup *oom_wait_memcg; 1876 struct oom_wait_info *oom_wait_info; 1877 1878 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1879 oom_wait_memcg = oom_wait_info->memcg; 1880 1881 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1882 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1883 return 0; 1884 return autoremove_wake_function(wait, mode, sync, arg); 1885 } 1886 1887 static void memcg_oom_recover(struct mem_cgroup *memcg) 1888 { 1889 /* 1890 * For the following lockless ->under_oom test, the only required 1891 * guarantee is that it must see the state asserted by an OOM when 1892 * this function is called as a result of userland actions 1893 * triggered by the notification of the OOM. This is trivially 1894 * achieved by invoking mem_cgroup_mark_under_oom() before 1895 * triggering notification. 1896 */ 1897 if (memcg && memcg->under_oom) 1898 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1899 } 1900 1901 /* 1902 * Returns true if successfully killed one or more processes. Though in some 1903 * corner cases it can return true even without killing any process. 1904 */ 1905 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1906 { 1907 bool locked, ret; 1908 1909 if (order > PAGE_ALLOC_COSTLY_ORDER) 1910 return false; 1911 1912 memcg_memory_event(memcg, MEMCG_OOM); 1913 1914 /* 1915 * We are in the middle of the charge context here, so we 1916 * don't want to block when potentially sitting on a callstack 1917 * that holds all kinds of filesystem and mm locks. 1918 * 1919 * cgroup1 allows disabling the OOM killer and waiting for outside 1920 * handling until the charge can succeed; remember the context and put 1921 * the task to sleep at the end of the page fault when all locks are 1922 * released. 1923 * 1924 * On the other hand, in-kernel OOM killer allows for an async victim 1925 * memory reclaim (oom_reaper) and that means that we are not solely 1926 * relying on the oom victim to make a forward progress and we can 1927 * invoke the oom killer here. 1928 * 1929 * Please note that mem_cgroup_out_of_memory might fail to find a 1930 * victim and then we have to bail out from the charge path. 1931 */ 1932 if (memcg->oom_kill_disable) { 1933 if (current->in_user_fault) { 1934 css_get(&memcg->css); 1935 current->memcg_in_oom = memcg; 1936 current->memcg_oom_gfp_mask = mask; 1937 current->memcg_oom_order = order; 1938 } 1939 return false; 1940 } 1941 1942 mem_cgroup_mark_under_oom(memcg); 1943 1944 locked = mem_cgroup_oom_trylock(memcg); 1945 1946 if (locked) 1947 mem_cgroup_oom_notify(memcg); 1948 1949 mem_cgroup_unmark_under_oom(memcg); 1950 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1951 1952 if (locked) 1953 mem_cgroup_oom_unlock(memcg); 1954 1955 return ret; 1956 } 1957 1958 /** 1959 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1960 * @handle: actually kill/wait or just clean up the OOM state 1961 * 1962 * This has to be called at the end of a page fault if the memcg OOM 1963 * handler was enabled. 1964 * 1965 * Memcg supports userspace OOM handling where failed allocations must 1966 * sleep on a waitqueue until the userspace task resolves the 1967 * situation. Sleeping directly in the charge context with all kinds 1968 * of locks held is not a good idea, instead we remember an OOM state 1969 * in the task and mem_cgroup_oom_synchronize() has to be called at 1970 * the end of the page fault to complete the OOM handling. 1971 * 1972 * Returns %true if an ongoing memcg OOM situation was detected and 1973 * completed, %false otherwise. 1974 */ 1975 bool mem_cgroup_oom_synchronize(bool handle) 1976 { 1977 struct mem_cgroup *memcg = current->memcg_in_oom; 1978 struct oom_wait_info owait; 1979 bool locked; 1980 1981 /* OOM is global, do not handle */ 1982 if (!memcg) 1983 return false; 1984 1985 if (!handle) 1986 goto cleanup; 1987 1988 owait.memcg = memcg; 1989 owait.wait.flags = 0; 1990 owait.wait.func = memcg_oom_wake_function; 1991 owait.wait.private = current; 1992 INIT_LIST_HEAD(&owait.wait.entry); 1993 1994 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1995 mem_cgroup_mark_under_oom(memcg); 1996 1997 locked = mem_cgroup_oom_trylock(memcg); 1998 1999 if (locked) 2000 mem_cgroup_oom_notify(memcg); 2001 2002 if (locked && !memcg->oom_kill_disable) { 2003 mem_cgroup_unmark_under_oom(memcg); 2004 finish_wait(&memcg_oom_waitq, &owait.wait); 2005 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 2006 current->memcg_oom_order); 2007 } else { 2008 schedule(); 2009 mem_cgroup_unmark_under_oom(memcg); 2010 finish_wait(&memcg_oom_waitq, &owait.wait); 2011 } 2012 2013 if (locked) { 2014 mem_cgroup_oom_unlock(memcg); 2015 /* 2016 * There is no guarantee that an OOM-lock contender 2017 * sees the wakeups triggered by the OOM kill 2018 * uncharges. Wake any sleepers explicitly. 2019 */ 2020 memcg_oom_recover(memcg); 2021 } 2022 cleanup: 2023 current->memcg_in_oom = NULL; 2024 css_put(&memcg->css); 2025 return true; 2026 } 2027 2028 /** 2029 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2030 * @victim: task to be killed by the OOM killer 2031 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2032 * 2033 * Returns a pointer to a memory cgroup, which has to be cleaned up 2034 * by killing all belonging OOM-killable tasks. 2035 * 2036 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2037 */ 2038 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2039 struct mem_cgroup *oom_domain) 2040 { 2041 struct mem_cgroup *oom_group = NULL; 2042 struct mem_cgroup *memcg; 2043 2044 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2045 return NULL; 2046 2047 if (!oom_domain) 2048 oom_domain = root_mem_cgroup; 2049 2050 rcu_read_lock(); 2051 2052 memcg = mem_cgroup_from_task(victim); 2053 if (mem_cgroup_is_root(memcg)) 2054 goto out; 2055 2056 /* 2057 * If the victim task has been asynchronously moved to a different 2058 * memory cgroup, we might end up killing tasks outside oom_domain. 2059 * In this case it's better to ignore memory.group.oom. 2060 */ 2061 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2062 goto out; 2063 2064 /* 2065 * Traverse the memory cgroup hierarchy from the victim task's 2066 * cgroup up to the OOMing cgroup (or root) to find the 2067 * highest-level memory cgroup with oom.group set. 2068 */ 2069 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2070 if (memcg->oom_group) 2071 oom_group = memcg; 2072 2073 if (memcg == oom_domain) 2074 break; 2075 } 2076 2077 if (oom_group) 2078 css_get(&oom_group->css); 2079 out: 2080 rcu_read_unlock(); 2081 2082 return oom_group; 2083 } 2084 2085 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2086 { 2087 pr_info("Tasks in "); 2088 pr_cont_cgroup_path(memcg->css.cgroup); 2089 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2090 } 2091 2092 /** 2093 * folio_memcg_lock - Bind a folio to its memcg. 2094 * @folio: The folio. 2095 * 2096 * This function prevents unlocked LRU folios from being moved to 2097 * another cgroup. 2098 * 2099 * It ensures lifetime of the bound memcg. The caller is responsible 2100 * for the lifetime of the folio. 2101 */ 2102 void folio_memcg_lock(struct folio *folio) 2103 { 2104 struct mem_cgroup *memcg; 2105 unsigned long flags; 2106 2107 /* 2108 * The RCU lock is held throughout the transaction. The fast 2109 * path can get away without acquiring the memcg->move_lock 2110 * because page moving starts with an RCU grace period. 2111 */ 2112 rcu_read_lock(); 2113 2114 if (mem_cgroup_disabled()) 2115 return; 2116 again: 2117 memcg = folio_memcg(folio); 2118 if (unlikely(!memcg)) 2119 return; 2120 2121 #ifdef CONFIG_PROVE_LOCKING 2122 local_irq_save(flags); 2123 might_lock(&memcg->move_lock); 2124 local_irq_restore(flags); 2125 #endif 2126 2127 if (atomic_read(&memcg->moving_account) <= 0) 2128 return; 2129 2130 spin_lock_irqsave(&memcg->move_lock, flags); 2131 if (memcg != folio_memcg(folio)) { 2132 spin_unlock_irqrestore(&memcg->move_lock, flags); 2133 goto again; 2134 } 2135 2136 /* 2137 * When charge migration first begins, we can have multiple 2138 * critical sections holding the fast-path RCU lock and one 2139 * holding the slowpath move_lock. Track the task who has the 2140 * move_lock for unlock_page_memcg(). 2141 */ 2142 memcg->move_lock_task = current; 2143 memcg->move_lock_flags = flags; 2144 } 2145 2146 void lock_page_memcg(struct page *page) 2147 { 2148 folio_memcg_lock(page_folio(page)); 2149 } 2150 2151 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2152 { 2153 if (memcg && memcg->move_lock_task == current) { 2154 unsigned long flags = memcg->move_lock_flags; 2155 2156 memcg->move_lock_task = NULL; 2157 memcg->move_lock_flags = 0; 2158 2159 spin_unlock_irqrestore(&memcg->move_lock, flags); 2160 } 2161 2162 rcu_read_unlock(); 2163 } 2164 2165 /** 2166 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2167 * @folio: The folio. 2168 * 2169 * This releases the binding created by folio_memcg_lock(). This does 2170 * not change the accounting of this folio to its memcg, but it does 2171 * permit others to change it. 2172 */ 2173 void folio_memcg_unlock(struct folio *folio) 2174 { 2175 __folio_memcg_unlock(folio_memcg(folio)); 2176 } 2177 2178 void unlock_page_memcg(struct page *page) 2179 { 2180 folio_memcg_unlock(page_folio(page)); 2181 } 2182 2183 struct memcg_stock_pcp { 2184 local_lock_t stock_lock; 2185 struct mem_cgroup *cached; /* this never be root cgroup */ 2186 unsigned int nr_pages; 2187 2188 #ifdef CONFIG_MEMCG_KMEM 2189 struct obj_cgroup *cached_objcg; 2190 struct pglist_data *cached_pgdat; 2191 unsigned int nr_bytes; 2192 int nr_slab_reclaimable_b; 2193 int nr_slab_unreclaimable_b; 2194 #endif 2195 2196 struct work_struct work; 2197 unsigned long flags; 2198 #define FLUSHING_CACHED_CHARGE 0 2199 }; 2200 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2201 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2202 }; 2203 static DEFINE_MUTEX(percpu_charge_mutex); 2204 2205 #ifdef CONFIG_MEMCG_KMEM 2206 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2207 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2208 struct mem_cgroup *root_memcg); 2209 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2210 2211 #else 2212 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2213 { 2214 return NULL; 2215 } 2216 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2217 struct mem_cgroup *root_memcg) 2218 { 2219 return false; 2220 } 2221 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2222 { 2223 } 2224 #endif 2225 2226 /** 2227 * consume_stock: Try to consume stocked charge on this cpu. 2228 * @memcg: memcg to consume from. 2229 * @nr_pages: how many pages to charge. 2230 * 2231 * The charges will only happen if @memcg matches the current cpu's memcg 2232 * stock, and at least @nr_pages are available in that stock. Failure to 2233 * service an allocation will refill the stock. 2234 * 2235 * returns true if successful, false otherwise. 2236 */ 2237 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2238 { 2239 struct memcg_stock_pcp *stock; 2240 unsigned long flags; 2241 bool ret = false; 2242 2243 if (nr_pages > MEMCG_CHARGE_BATCH) 2244 return ret; 2245 2246 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2247 2248 stock = this_cpu_ptr(&memcg_stock); 2249 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2250 stock->nr_pages -= nr_pages; 2251 ret = true; 2252 } 2253 2254 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2255 2256 return ret; 2257 } 2258 2259 /* 2260 * Returns stocks cached in percpu and reset cached information. 2261 */ 2262 static void drain_stock(struct memcg_stock_pcp *stock) 2263 { 2264 struct mem_cgroup *old = stock->cached; 2265 2266 if (!old) 2267 return; 2268 2269 if (stock->nr_pages) { 2270 page_counter_uncharge(&old->memory, stock->nr_pages); 2271 if (do_memsw_account()) 2272 page_counter_uncharge(&old->memsw, stock->nr_pages); 2273 stock->nr_pages = 0; 2274 } 2275 2276 css_put(&old->css); 2277 stock->cached = NULL; 2278 } 2279 2280 static void drain_local_stock(struct work_struct *dummy) 2281 { 2282 struct memcg_stock_pcp *stock; 2283 struct obj_cgroup *old = NULL; 2284 unsigned long flags; 2285 2286 /* 2287 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2288 * drain_stock races is that we always operate on local CPU stock 2289 * here with IRQ disabled 2290 */ 2291 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2292 2293 stock = this_cpu_ptr(&memcg_stock); 2294 old = drain_obj_stock(stock); 2295 drain_stock(stock); 2296 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2297 2298 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2299 if (old) 2300 obj_cgroup_put(old); 2301 } 2302 2303 /* 2304 * Cache charges(val) to local per_cpu area. 2305 * This will be consumed by consume_stock() function, later. 2306 */ 2307 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2308 { 2309 struct memcg_stock_pcp *stock; 2310 2311 stock = this_cpu_ptr(&memcg_stock); 2312 if (stock->cached != memcg) { /* reset if necessary */ 2313 drain_stock(stock); 2314 css_get(&memcg->css); 2315 stock->cached = memcg; 2316 } 2317 stock->nr_pages += nr_pages; 2318 2319 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2320 drain_stock(stock); 2321 } 2322 2323 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2324 { 2325 unsigned long flags; 2326 2327 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2328 __refill_stock(memcg, nr_pages); 2329 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2330 } 2331 2332 /* 2333 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2334 * of the hierarchy under it. 2335 */ 2336 static void drain_all_stock(struct mem_cgroup *root_memcg) 2337 { 2338 int cpu, curcpu; 2339 2340 /* If someone's already draining, avoid adding running more workers. */ 2341 if (!mutex_trylock(&percpu_charge_mutex)) 2342 return; 2343 /* 2344 * Notify other cpus that system-wide "drain" is running 2345 * We do not care about races with the cpu hotplug because cpu down 2346 * as well as workers from this path always operate on the local 2347 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2348 */ 2349 migrate_disable(); 2350 curcpu = smp_processor_id(); 2351 for_each_online_cpu(cpu) { 2352 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2353 struct mem_cgroup *memcg; 2354 bool flush = false; 2355 2356 rcu_read_lock(); 2357 memcg = stock->cached; 2358 if (memcg && stock->nr_pages && 2359 mem_cgroup_is_descendant(memcg, root_memcg)) 2360 flush = true; 2361 else if (obj_stock_flush_required(stock, root_memcg)) 2362 flush = true; 2363 rcu_read_unlock(); 2364 2365 if (flush && 2366 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2367 if (cpu == curcpu) 2368 drain_local_stock(&stock->work); 2369 else 2370 schedule_work_on(cpu, &stock->work); 2371 } 2372 } 2373 migrate_enable(); 2374 mutex_unlock(&percpu_charge_mutex); 2375 } 2376 2377 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2378 { 2379 struct memcg_stock_pcp *stock; 2380 2381 stock = &per_cpu(memcg_stock, cpu); 2382 drain_stock(stock); 2383 2384 return 0; 2385 } 2386 2387 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2388 unsigned int nr_pages, 2389 gfp_t gfp_mask) 2390 { 2391 unsigned long nr_reclaimed = 0; 2392 2393 do { 2394 unsigned long pflags; 2395 2396 if (page_counter_read(&memcg->memory) <= 2397 READ_ONCE(memcg->memory.high)) 2398 continue; 2399 2400 memcg_memory_event(memcg, MEMCG_HIGH); 2401 2402 psi_memstall_enter(&pflags); 2403 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2404 gfp_mask, 2405 MEMCG_RECLAIM_MAY_SWAP); 2406 psi_memstall_leave(&pflags); 2407 } while ((memcg = parent_mem_cgroup(memcg)) && 2408 !mem_cgroup_is_root(memcg)); 2409 2410 return nr_reclaimed; 2411 } 2412 2413 static void high_work_func(struct work_struct *work) 2414 { 2415 struct mem_cgroup *memcg; 2416 2417 memcg = container_of(work, struct mem_cgroup, high_work); 2418 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2419 } 2420 2421 /* 2422 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2423 * enough to still cause a significant slowdown in most cases, while still 2424 * allowing diagnostics and tracing to proceed without becoming stuck. 2425 */ 2426 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2427 2428 /* 2429 * When calculating the delay, we use these either side of the exponentiation to 2430 * maintain precision and scale to a reasonable number of jiffies (see the table 2431 * below. 2432 * 2433 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2434 * overage ratio to a delay. 2435 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2436 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2437 * to produce a reasonable delay curve. 2438 * 2439 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2440 * reasonable delay curve compared to precision-adjusted overage, not 2441 * penalising heavily at first, but still making sure that growth beyond the 2442 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2443 * example, with a high of 100 megabytes: 2444 * 2445 * +-------+------------------------+ 2446 * | usage | time to allocate in ms | 2447 * +-------+------------------------+ 2448 * | 100M | 0 | 2449 * | 101M | 6 | 2450 * | 102M | 25 | 2451 * | 103M | 57 | 2452 * | 104M | 102 | 2453 * | 105M | 159 | 2454 * | 106M | 230 | 2455 * | 107M | 313 | 2456 * | 108M | 409 | 2457 * | 109M | 518 | 2458 * | 110M | 639 | 2459 * | 111M | 774 | 2460 * | 112M | 921 | 2461 * | 113M | 1081 | 2462 * | 114M | 1254 | 2463 * | 115M | 1439 | 2464 * | 116M | 1638 | 2465 * | 117M | 1849 | 2466 * | 118M | 2000 | 2467 * | 119M | 2000 | 2468 * | 120M | 2000 | 2469 * +-------+------------------------+ 2470 */ 2471 #define MEMCG_DELAY_PRECISION_SHIFT 20 2472 #define MEMCG_DELAY_SCALING_SHIFT 14 2473 2474 static u64 calculate_overage(unsigned long usage, unsigned long high) 2475 { 2476 u64 overage; 2477 2478 if (usage <= high) 2479 return 0; 2480 2481 /* 2482 * Prevent division by 0 in overage calculation by acting as if 2483 * it was a threshold of 1 page 2484 */ 2485 high = max(high, 1UL); 2486 2487 overage = usage - high; 2488 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2489 return div64_u64(overage, high); 2490 } 2491 2492 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2493 { 2494 u64 overage, max_overage = 0; 2495 2496 do { 2497 overage = calculate_overage(page_counter_read(&memcg->memory), 2498 READ_ONCE(memcg->memory.high)); 2499 max_overage = max(overage, max_overage); 2500 } while ((memcg = parent_mem_cgroup(memcg)) && 2501 !mem_cgroup_is_root(memcg)); 2502 2503 return max_overage; 2504 } 2505 2506 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2507 { 2508 u64 overage, max_overage = 0; 2509 2510 do { 2511 overage = calculate_overage(page_counter_read(&memcg->swap), 2512 READ_ONCE(memcg->swap.high)); 2513 if (overage) 2514 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2515 max_overage = max(overage, max_overage); 2516 } while ((memcg = parent_mem_cgroup(memcg)) && 2517 !mem_cgroup_is_root(memcg)); 2518 2519 return max_overage; 2520 } 2521 2522 /* 2523 * Get the number of jiffies that we should penalise a mischievous cgroup which 2524 * is exceeding its memory.high by checking both it and its ancestors. 2525 */ 2526 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2527 unsigned int nr_pages, 2528 u64 max_overage) 2529 { 2530 unsigned long penalty_jiffies; 2531 2532 if (!max_overage) 2533 return 0; 2534 2535 /* 2536 * We use overage compared to memory.high to calculate the number of 2537 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2538 * fairly lenient on small overages, and increasingly harsh when the 2539 * memcg in question makes it clear that it has no intention of stopping 2540 * its crazy behaviour, so we exponentially increase the delay based on 2541 * overage amount. 2542 */ 2543 penalty_jiffies = max_overage * max_overage * HZ; 2544 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2545 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2546 2547 /* 2548 * Factor in the task's own contribution to the overage, such that four 2549 * N-sized allocations are throttled approximately the same as one 2550 * 4N-sized allocation. 2551 * 2552 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2553 * larger the current charge patch is than that. 2554 */ 2555 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2556 } 2557 2558 /* 2559 * Scheduled by try_charge() to be executed from the userland return path 2560 * and reclaims memory over the high limit. 2561 */ 2562 void mem_cgroup_handle_over_high(void) 2563 { 2564 unsigned long penalty_jiffies; 2565 unsigned long pflags; 2566 unsigned long nr_reclaimed; 2567 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2568 int nr_retries = MAX_RECLAIM_RETRIES; 2569 struct mem_cgroup *memcg; 2570 bool in_retry = false; 2571 2572 if (likely(!nr_pages)) 2573 return; 2574 2575 memcg = get_mem_cgroup_from_mm(current->mm); 2576 current->memcg_nr_pages_over_high = 0; 2577 2578 retry_reclaim: 2579 /* 2580 * The allocating task should reclaim at least the batch size, but for 2581 * subsequent retries we only want to do what's necessary to prevent oom 2582 * or breaching resource isolation. 2583 * 2584 * This is distinct from memory.max or page allocator behaviour because 2585 * memory.high is currently batched, whereas memory.max and the page 2586 * allocator run every time an allocation is made. 2587 */ 2588 nr_reclaimed = reclaim_high(memcg, 2589 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2590 GFP_KERNEL); 2591 2592 /* 2593 * memory.high is breached and reclaim is unable to keep up. Throttle 2594 * allocators proactively to slow down excessive growth. 2595 */ 2596 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2597 mem_find_max_overage(memcg)); 2598 2599 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2600 swap_find_max_overage(memcg)); 2601 2602 /* 2603 * Clamp the max delay per usermode return so as to still keep the 2604 * application moving forwards and also permit diagnostics, albeit 2605 * extremely slowly. 2606 */ 2607 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2608 2609 /* 2610 * Don't sleep if the amount of jiffies this memcg owes us is so low 2611 * that it's not even worth doing, in an attempt to be nice to those who 2612 * go only a small amount over their memory.high value and maybe haven't 2613 * been aggressively reclaimed enough yet. 2614 */ 2615 if (penalty_jiffies <= HZ / 100) 2616 goto out; 2617 2618 /* 2619 * If reclaim is making forward progress but we're still over 2620 * memory.high, we want to encourage that rather than doing allocator 2621 * throttling. 2622 */ 2623 if (nr_reclaimed || nr_retries--) { 2624 in_retry = true; 2625 goto retry_reclaim; 2626 } 2627 2628 /* 2629 * If we exit early, we're guaranteed to die (since 2630 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2631 * need to account for any ill-begotten jiffies to pay them off later. 2632 */ 2633 psi_memstall_enter(&pflags); 2634 schedule_timeout_killable(penalty_jiffies); 2635 psi_memstall_leave(&pflags); 2636 2637 out: 2638 css_put(&memcg->css); 2639 } 2640 2641 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2642 unsigned int nr_pages) 2643 { 2644 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2645 int nr_retries = MAX_RECLAIM_RETRIES; 2646 struct mem_cgroup *mem_over_limit; 2647 struct page_counter *counter; 2648 unsigned long nr_reclaimed; 2649 bool passed_oom = false; 2650 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2651 bool drained = false; 2652 bool raised_max_event = false; 2653 unsigned long pflags; 2654 2655 retry: 2656 if (consume_stock(memcg, nr_pages)) 2657 return 0; 2658 2659 if (!do_memsw_account() || 2660 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2661 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2662 goto done_restock; 2663 if (do_memsw_account()) 2664 page_counter_uncharge(&memcg->memsw, batch); 2665 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2666 } else { 2667 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2668 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2669 } 2670 2671 if (batch > nr_pages) { 2672 batch = nr_pages; 2673 goto retry; 2674 } 2675 2676 /* 2677 * Prevent unbounded recursion when reclaim operations need to 2678 * allocate memory. This might exceed the limits temporarily, 2679 * but we prefer facilitating memory reclaim and getting back 2680 * under the limit over triggering OOM kills in these cases. 2681 */ 2682 if (unlikely(current->flags & PF_MEMALLOC)) 2683 goto force; 2684 2685 if (unlikely(task_in_memcg_oom(current))) 2686 goto nomem; 2687 2688 if (!gfpflags_allow_blocking(gfp_mask)) 2689 goto nomem; 2690 2691 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2692 raised_max_event = true; 2693 2694 psi_memstall_enter(&pflags); 2695 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2696 gfp_mask, reclaim_options); 2697 psi_memstall_leave(&pflags); 2698 2699 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2700 goto retry; 2701 2702 if (!drained) { 2703 drain_all_stock(mem_over_limit); 2704 drained = true; 2705 goto retry; 2706 } 2707 2708 if (gfp_mask & __GFP_NORETRY) 2709 goto nomem; 2710 /* 2711 * Even though the limit is exceeded at this point, reclaim 2712 * may have been able to free some pages. Retry the charge 2713 * before killing the task. 2714 * 2715 * Only for regular pages, though: huge pages are rather 2716 * unlikely to succeed so close to the limit, and we fall back 2717 * to regular pages anyway in case of failure. 2718 */ 2719 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2720 goto retry; 2721 /* 2722 * At task move, charge accounts can be doubly counted. So, it's 2723 * better to wait until the end of task_move if something is going on. 2724 */ 2725 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2726 goto retry; 2727 2728 if (nr_retries--) 2729 goto retry; 2730 2731 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2732 goto nomem; 2733 2734 /* Avoid endless loop for tasks bypassed by the oom killer */ 2735 if (passed_oom && task_is_dying()) 2736 goto nomem; 2737 2738 /* 2739 * keep retrying as long as the memcg oom killer is able to make 2740 * a forward progress or bypass the charge if the oom killer 2741 * couldn't make any progress. 2742 */ 2743 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2744 get_order(nr_pages * PAGE_SIZE))) { 2745 passed_oom = true; 2746 nr_retries = MAX_RECLAIM_RETRIES; 2747 goto retry; 2748 } 2749 nomem: 2750 /* 2751 * Memcg doesn't have a dedicated reserve for atomic 2752 * allocations. But like the global atomic pool, we need to 2753 * put the burden of reclaim on regular allocation requests 2754 * and let these go through as privileged allocations. 2755 */ 2756 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2757 return -ENOMEM; 2758 force: 2759 /* 2760 * If the allocation has to be enforced, don't forget to raise 2761 * a MEMCG_MAX event. 2762 */ 2763 if (!raised_max_event) 2764 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2765 2766 /* 2767 * The allocation either can't fail or will lead to more memory 2768 * being freed very soon. Allow memory usage go over the limit 2769 * temporarily by force charging it. 2770 */ 2771 page_counter_charge(&memcg->memory, nr_pages); 2772 if (do_memsw_account()) 2773 page_counter_charge(&memcg->memsw, nr_pages); 2774 2775 return 0; 2776 2777 done_restock: 2778 if (batch > nr_pages) 2779 refill_stock(memcg, batch - nr_pages); 2780 2781 /* 2782 * If the hierarchy is above the normal consumption range, schedule 2783 * reclaim on returning to userland. We can perform reclaim here 2784 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2785 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2786 * not recorded as it most likely matches current's and won't 2787 * change in the meantime. As high limit is checked again before 2788 * reclaim, the cost of mismatch is negligible. 2789 */ 2790 do { 2791 bool mem_high, swap_high; 2792 2793 mem_high = page_counter_read(&memcg->memory) > 2794 READ_ONCE(memcg->memory.high); 2795 swap_high = page_counter_read(&memcg->swap) > 2796 READ_ONCE(memcg->swap.high); 2797 2798 /* Don't bother a random interrupted task */ 2799 if (!in_task()) { 2800 if (mem_high) { 2801 schedule_work(&memcg->high_work); 2802 break; 2803 } 2804 continue; 2805 } 2806 2807 if (mem_high || swap_high) { 2808 /* 2809 * The allocating tasks in this cgroup will need to do 2810 * reclaim or be throttled to prevent further growth 2811 * of the memory or swap footprints. 2812 * 2813 * Target some best-effort fairness between the tasks, 2814 * and distribute reclaim work and delay penalties 2815 * based on how much each task is actually allocating. 2816 */ 2817 current->memcg_nr_pages_over_high += batch; 2818 set_notify_resume(current); 2819 break; 2820 } 2821 } while ((memcg = parent_mem_cgroup(memcg))); 2822 2823 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2824 !(current->flags & PF_MEMALLOC) && 2825 gfpflags_allow_blocking(gfp_mask)) { 2826 mem_cgroup_handle_over_high(); 2827 } 2828 return 0; 2829 } 2830 2831 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2832 unsigned int nr_pages) 2833 { 2834 if (mem_cgroup_is_root(memcg)) 2835 return 0; 2836 2837 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2838 } 2839 2840 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2841 { 2842 if (mem_cgroup_is_root(memcg)) 2843 return; 2844 2845 page_counter_uncharge(&memcg->memory, nr_pages); 2846 if (do_memsw_account()) 2847 page_counter_uncharge(&memcg->memsw, nr_pages); 2848 } 2849 2850 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2851 { 2852 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2853 /* 2854 * Any of the following ensures page's memcg stability: 2855 * 2856 * - the page lock 2857 * - LRU isolation 2858 * - lock_page_memcg() 2859 * - exclusive reference 2860 * - mem_cgroup_trylock_pages() 2861 */ 2862 folio->memcg_data = (unsigned long)memcg; 2863 } 2864 2865 #ifdef CONFIG_MEMCG_KMEM 2866 /* 2867 * The allocated objcg pointers array is not accounted directly. 2868 * Moreover, it should not come from DMA buffer and is not readily 2869 * reclaimable. So those GFP bits should be masked off. 2870 */ 2871 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2872 2873 /* 2874 * mod_objcg_mlstate() may be called with irq enabled, so 2875 * mod_memcg_lruvec_state() should be used. 2876 */ 2877 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2878 struct pglist_data *pgdat, 2879 enum node_stat_item idx, int nr) 2880 { 2881 struct mem_cgroup *memcg; 2882 struct lruvec *lruvec; 2883 2884 rcu_read_lock(); 2885 memcg = obj_cgroup_memcg(objcg); 2886 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2887 mod_memcg_lruvec_state(lruvec, idx, nr); 2888 rcu_read_unlock(); 2889 } 2890 2891 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2892 gfp_t gfp, bool new_slab) 2893 { 2894 unsigned int objects = objs_per_slab(s, slab); 2895 unsigned long memcg_data; 2896 void *vec; 2897 2898 gfp &= ~OBJCGS_CLEAR_MASK; 2899 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2900 slab_nid(slab)); 2901 if (!vec) 2902 return -ENOMEM; 2903 2904 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2905 if (new_slab) { 2906 /* 2907 * If the slab is brand new and nobody can yet access its 2908 * memcg_data, no synchronization is required and memcg_data can 2909 * be simply assigned. 2910 */ 2911 slab->memcg_data = memcg_data; 2912 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2913 /* 2914 * If the slab is already in use, somebody can allocate and 2915 * assign obj_cgroups in parallel. In this case the existing 2916 * objcg vector should be reused. 2917 */ 2918 kfree(vec); 2919 return 0; 2920 } 2921 2922 kmemleak_not_leak(vec); 2923 return 0; 2924 } 2925 2926 static __always_inline 2927 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2928 { 2929 /* 2930 * Slab objects are accounted individually, not per-page. 2931 * Memcg membership data for each individual object is saved in 2932 * slab->memcg_data. 2933 */ 2934 if (folio_test_slab(folio)) { 2935 struct obj_cgroup **objcgs; 2936 struct slab *slab; 2937 unsigned int off; 2938 2939 slab = folio_slab(folio); 2940 objcgs = slab_objcgs(slab); 2941 if (!objcgs) 2942 return NULL; 2943 2944 off = obj_to_index(slab->slab_cache, slab, p); 2945 if (objcgs[off]) 2946 return obj_cgroup_memcg(objcgs[off]); 2947 2948 return NULL; 2949 } 2950 2951 /* 2952 * folio_memcg_check() is used here, because in theory we can encounter 2953 * a folio where the slab flag has been cleared already, but 2954 * slab->memcg_data has not been freed yet 2955 * folio_memcg_check() will guarantee that a proper memory 2956 * cgroup pointer or NULL will be returned. 2957 */ 2958 return folio_memcg_check(folio); 2959 } 2960 2961 /* 2962 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2963 * 2964 * A passed kernel object can be a slab object, vmalloc object or a generic 2965 * kernel page, so different mechanisms for getting the memory cgroup pointer 2966 * should be used. 2967 * 2968 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2969 * can not know for sure how the kernel object is implemented. 2970 * mem_cgroup_from_obj() can be safely used in such cases. 2971 * 2972 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2973 * cgroup_mutex, etc. 2974 */ 2975 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2976 { 2977 struct folio *folio; 2978 2979 if (mem_cgroup_disabled()) 2980 return NULL; 2981 2982 if (unlikely(is_vmalloc_addr(p))) 2983 folio = page_folio(vmalloc_to_page(p)); 2984 else 2985 folio = virt_to_folio(p); 2986 2987 return mem_cgroup_from_obj_folio(folio, p); 2988 } 2989 2990 /* 2991 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2992 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 2993 * allocated using vmalloc(). 2994 * 2995 * A passed kernel object must be a slab object or a generic kernel page. 2996 * 2997 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2998 * cgroup_mutex, etc. 2999 */ 3000 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3001 { 3002 if (mem_cgroup_disabled()) 3003 return NULL; 3004 3005 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3006 } 3007 3008 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3009 { 3010 struct obj_cgroup *objcg = NULL; 3011 3012 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3013 objcg = rcu_dereference(memcg->objcg); 3014 if (objcg && obj_cgroup_tryget(objcg)) 3015 break; 3016 objcg = NULL; 3017 } 3018 return objcg; 3019 } 3020 3021 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 3022 { 3023 struct obj_cgroup *objcg = NULL; 3024 struct mem_cgroup *memcg; 3025 3026 if (memcg_kmem_bypass()) 3027 return NULL; 3028 3029 rcu_read_lock(); 3030 if (unlikely(active_memcg())) 3031 memcg = active_memcg(); 3032 else 3033 memcg = mem_cgroup_from_task(current); 3034 objcg = __get_obj_cgroup_from_memcg(memcg); 3035 rcu_read_unlock(); 3036 return objcg; 3037 } 3038 3039 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 3040 { 3041 struct obj_cgroup *objcg; 3042 3043 if (!memcg_kmem_online()) 3044 return NULL; 3045 3046 if (PageMemcgKmem(page)) { 3047 objcg = __folio_objcg(page_folio(page)); 3048 obj_cgroup_get(objcg); 3049 } else { 3050 struct mem_cgroup *memcg; 3051 3052 rcu_read_lock(); 3053 memcg = __folio_memcg(page_folio(page)); 3054 if (memcg) 3055 objcg = __get_obj_cgroup_from_memcg(memcg); 3056 else 3057 objcg = NULL; 3058 rcu_read_unlock(); 3059 } 3060 return objcg; 3061 } 3062 3063 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3064 { 3065 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3067 if (nr_pages > 0) 3068 page_counter_charge(&memcg->kmem, nr_pages); 3069 else 3070 page_counter_uncharge(&memcg->kmem, -nr_pages); 3071 } 3072 } 3073 3074 3075 /* 3076 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3077 * @objcg: object cgroup to uncharge 3078 * @nr_pages: number of pages to uncharge 3079 */ 3080 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3081 unsigned int nr_pages) 3082 { 3083 struct mem_cgroup *memcg; 3084 3085 memcg = get_mem_cgroup_from_objcg(objcg); 3086 3087 memcg_account_kmem(memcg, -nr_pages); 3088 refill_stock(memcg, nr_pages); 3089 3090 css_put(&memcg->css); 3091 } 3092 3093 /* 3094 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3095 * @objcg: object cgroup to charge 3096 * @gfp: reclaim mode 3097 * @nr_pages: number of pages to charge 3098 * 3099 * Returns 0 on success, an error code on failure. 3100 */ 3101 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3102 unsigned int nr_pages) 3103 { 3104 struct mem_cgroup *memcg; 3105 int ret; 3106 3107 memcg = get_mem_cgroup_from_objcg(objcg); 3108 3109 ret = try_charge_memcg(memcg, gfp, nr_pages); 3110 if (ret) 3111 goto out; 3112 3113 memcg_account_kmem(memcg, nr_pages); 3114 out: 3115 css_put(&memcg->css); 3116 3117 return ret; 3118 } 3119 3120 /** 3121 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3122 * @page: page to charge 3123 * @gfp: reclaim mode 3124 * @order: allocation order 3125 * 3126 * Returns 0 on success, an error code on failure. 3127 */ 3128 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3129 { 3130 struct obj_cgroup *objcg; 3131 int ret = 0; 3132 3133 objcg = get_obj_cgroup_from_current(); 3134 if (objcg) { 3135 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3136 if (!ret) { 3137 page->memcg_data = (unsigned long)objcg | 3138 MEMCG_DATA_KMEM; 3139 return 0; 3140 } 3141 obj_cgroup_put(objcg); 3142 } 3143 return ret; 3144 } 3145 3146 /** 3147 * __memcg_kmem_uncharge_page: uncharge a kmem page 3148 * @page: page to uncharge 3149 * @order: allocation order 3150 */ 3151 void __memcg_kmem_uncharge_page(struct page *page, int order) 3152 { 3153 struct folio *folio = page_folio(page); 3154 struct obj_cgroup *objcg; 3155 unsigned int nr_pages = 1 << order; 3156 3157 if (!folio_memcg_kmem(folio)) 3158 return; 3159 3160 objcg = __folio_objcg(folio); 3161 obj_cgroup_uncharge_pages(objcg, nr_pages); 3162 folio->memcg_data = 0; 3163 obj_cgroup_put(objcg); 3164 } 3165 3166 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3167 enum node_stat_item idx, int nr) 3168 { 3169 struct memcg_stock_pcp *stock; 3170 struct obj_cgroup *old = NULL; 3171 unsigned long flags; 3172 int *bytes; 3173 3174 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3175 stock = this_cpu_ptr(&memcg_stock); 3176 3177 /* 3178 * Save vmstat data in stock and skip vmstat array update unless 3179 * accumulating over a page of vmstat data or when pgdat or idx 3180 * changes. 3181 */ 3182 if (stock->cached_objcg != objcg) { 3183 old = drain_obj_stock(stock); 3184 obj_cgroup_get(objcg); 3185 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3186 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3187 stock->cached_objcg = objcg; 3188 stock->cached_pgdat = pgdat; 3189 } else if (stock->cached_pgdat != pgdat) { 3190 /* Flush the existing cached vmstat data */ 3191 struct pglist_data *oldpg = stock->cached_pgdat; 3192 3193 if (stock->nr_slab_reclaimable_b) { 3194 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3195 stock->nr_slab_reclaimable_b); 3196 stock->nr_slab_reclaimable_b = 0; 3197 } 3198 if (stock->nr_slab_unreclaimable_b) { 3199 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3200 stock->nr_slab_unreclaimable_b); 3201 stock->nr_slab_unreclaimable_b = 0; 3202 } 3203 stock->cached_pgdat = pgdat; 3204 } 3205 3206 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3207 : &stock->nr_slab_unreclaimable_b; 3208 /* 3209 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3210 * cached locally at least once before pushing it out. 3211 */ 3212 if (!*bytes) { 3213 *bytes = nr; 3214 nr = 0; 3215 } else { 3216 *bytes += nr; 3217 if (abs(*bytes) > PAGE_SIZE) { 3218 nr = *bytes; 3219 *bytes = 0; 3220 } else { 3221 nr = 0; 3222 } 3223 } 3224 if (nr) 3225 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3226 3227 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3228 if (old) 3229 obj_cgroup_put(old); 3230 } 3231 3232 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3233 { 3234 struct memcg_stock_pcp *stock; 3235 unsigned long flags; 3236 bool ret = false; 3237 3238 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3239 3240 stock = this_cpu_ptr(&memcg_stock); 3241 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3242 stock->nr_bytes -= nr_bytes; 3243 ret = true; 3244 } 3245 3246 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3247 3248 return ret; 3249 } 3250 3251 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3252 { 3253 struct obj_cgroup *old = stock->cached_objcg; 3254 3255 if (!old) 3256 return NULL; 3257 3258 if (stock->nr_bytes) { 3259 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3260 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3261 3262 if (nr_pages) { 3263 struct mem_cgroup *memcg; 3264 3265 memcg = get_mem_cgroup_from_objcg(old); 3266 3267 memcg_account_kmem(memcg, -nr_pages); 3268 __refill_stock(memcg, nr_pages); 3269 3270 css_put(&memcg->css); 3271 } 3272 3273 /* 3274 * The leftover is flushed to the centralized per-memcg value. 3275 * On the next attempt to refill obj stock it will be moved 3276 * to a per-cpu stock (probably, on an other CPU), see 3277 * refill_obj_stock(). 3278 * 3279 * How often it's flushed is a trade-off between the memory 3280 * limit enforcement accuracy and potential CPU contention, 3281 * so it might be changed in the future. 3282 */ 3283 atomic_add(nr_bytes, &old->nr_charged_bytes); 3284 stock->nr_bytes = 0; 3285 } 3286 3287 /* 3288 * Flush the vmstat data in current stock 3289 */ 3290 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3291 if (stock->nr_slab_reclaimable_b) { 3292 mod_objcg_mlstate(old, stock->cached_pgdat, 3293 NR_SLAB_RECLAIMABLE_B, 3294 stock->nr_slab_reclaimable_b); 3295 stock->nr_slab_reclaimable_b = 0; 3296 } 3297 if (stock->nr_slab_unreclaimable_b) { 3298 mod_objcg_mlstate(old, stock->cached_pgdat, 3299 NR_SLAB_UNRECLAIMABLE_B, 3300 stock->nr_slab_unreclaimable_b); 3301 stock->nr_slab_unreclaimable_b = 0; 3302 } 3303 stock->cached_pgdat = NULL; 3304 } 3305 3306 stock->cached_objcg = NULL; 3307 /* 3308 * The `old' objects needs to be released by the caller via 3309 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3310 */ 3311 return old; 3312 } 3313 3314 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3315 struct mem_cgroup *root_memcg) 3316 { 3317 struct mem_cgroup *memcg; 3318 3319 if (stock->cached_objcg) { 3320 memcg = obj_cgroup_memcg(stock->cached_objcg); 3321 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3322 return true; 3323 } 3324 3325 return false; 3326 } 3327 3328 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3329 bool allow_uncharge) 3330 { 3331 struct memcg_stock_pcp *stock; 3332 struct obj_cgroup *old = NULL; 3333 unsigned long flags; 3334 unsigned int nr_pages = 0; 3335 3336 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3337 3338 stock = this_cpu_ptr(&memcg_stock); 3339 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3340 old = drain_obj_stock(stock); 3341 obj_cgroup_get(objcg); 3342 stock->cached_objcg = objcg; 3343 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3344 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3345 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3346 } 3347 stock->nr_bytes += nr_bytes; 3348 3349 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3350 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3351 stock->nr_bytes &= (PAGE_SIZE - 1); 3352 } 3353 3354 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3355 if (old) 3356 obj_cgroup_put(old); 3357 3358 if (nr_pages) 3359 obj_cgroup_uncharge_pages(objcg, nr_pages); 3360 } 3361 3362 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3363 { 3364 unsigned int nr_pages, nr_bytes; 3365 int ret; 3366 3367 if (consume_obj_stock(objcg, size)) 3368 return 0; 3369 3370 /* 3371 * In theory, objcg->nr_charged_bytes can have enough 3372 * pre-charged bytes to satisfy the allocation. However, 3373 * flushing objcg->nr_charged_bytes requires two atomic 3374 * operations, and objcg->nr_charged_bytes can't be big. 3375 * The shared objcg->nr_charged_bytes can also become a 3376 * performance bottleneck if all tasks of the same memcg are 3377 * trying to update it. So it's better to ignore it and try 3378 * grab some new pages. The stock's nr_bytes will be flushed to 3379 * objcg->nr_charged_bytes later on when objcg changes. 3380 * 3381 * The stock's nr_bytes may contain enough pre-charged bytes 3382 * to allow one less page from being charged, but we can't rely 3383 * on the pre-charged bytes not being changed outside of 3384 * consume_obj_stock() or refill_obj_stock(). So ignore those 3385 * pre-charged bytes as well when charging pages. To avoid a 3386 * page uncharge right after a page charge, we set the 3387 * allow_uncharge flag to false when calling refill_obj_stock() 3388 * to temporarily allow the pre-charged bytes to exceed the page 3389 * size limit. The maximum reachable value of the pre-charged 3390 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3391 * race. 3392 */ 3393 nr_pages = size >> PAGE_SHIFT; 3394 nr_bytes = size & (PAGE_SIZE - 1); 3395 3396 if (nr_bytes) 3397 nr_pages += 1; 3398 3399 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3400 if (!ret && nr_bytes) 3401 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3402 3403 return ret; 3404 } 3405 3406 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3407 { 3408 refill_obj_stock(objcg, size, true); 3409 } 3410 3411 #endif /* CONFIG_MEMCG_KMEM */ 3412 3413 /* 3414 * Because page_memcg(head) is not set on tails, set it now. 3415 */ 3416 void split_page_memcg(struct page *head, unsigned int nr) 3417 { 3418 struct folio *folio = page_folio(head); 3419 struct mem_cgroup *memcg = folio_memcg(folio); 3420 int i; 3421 3422 if (mem_cgroup_disabled() || !memcg) 3423 return; 3424 3425 for (i = 1; i < nr; i++) 3426 folio_page(folio, i)->memcg_data = folio->memcg_data; 3427 3428 if (folio_memcg_kmem(folio)) 3429 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3430 else 3431 css_get_many(&memcg->css, nr - 1); 3432 } 3433 3434 #ifdef CONFIG_SWAP 3435 /** 3436 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3437 * @entry: swap entry to be moved 3438 * @from: mem_cgroup which the entry is moved from 3439 * @to: mem_cgroup which the entry is moved to 3440 * 3441 * It succeeds only when the swap_cgroup's record for this entry is the same 3442 * as the mem_cgroup's id of @from. 3443 * 3444 * Returns 0 on success, -EINVAL on failure. 3445 * 3446 * The caller must have charged to @to, IOW, called page_counter_charge() about 3447 * both res and memsw, and called css_get(). 3448 */ 3449 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3450 struct mem_cgroup *from, struct mem_cgroup *to) 3451 { 3452 unsigned short old_id, new_id; 3453 3454 old_id = mem_cgroup_id(from); 3455 new_id = mem_cgroup_id(to); 3456 3457 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3458 mod_memcg_state(from, MEMCG_SWAP, -1); 3459 mod_memcg_state(to, MEMCG_SWAP, 1); 3460 return 0; 3461 } 3462 return -EINVAL; 3463 } 3464 #else 3465 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3466 struct mem_cgroup *from, struct mem_cgroup *to) 3467 { 3468 return -EINVAL; 3469 } 3470 #endif 3471 3472 static DEFINE_MUTEX(memcg_max_mutex); 3473 3474 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3475 unsigned long max, bool memsw) 3476 { 3477 bool enlarge = false; 3478 bool drained = false; 3479 int ret; 3480 bool limits_invariant; 3481 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3482 3483 do { 3484 if (signal_pending(current)) { 3485 ret = -EINTR; 3486 break; 3487 } 3488 3489 mutex_lock(&memcg_max_mutex); 3490 /* 3491 * Make sure that the new limit (memsw or memory limit) doesn't 3492 * break our basic invariant rule memory.max <= memsw.max. 3493 */ 3494 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3495 max <= memcg->memsw.max; 3496 if (!limits_invariant) { 3497 mutex_unlock(&memcg_max_mutex); 3498 ret = -EINVAL; 3499 break; 3500 } 3501 if (max > counter->max) 3502 enlarge = true; 3503 ret = page_counter_set_max(counter, max); 3504 mutex_unlock(&memcg_max_mutex); 3505 3506 if (!ret) 3507 break; 3508 3509 if (!drained) { 3510 drain_all_stock(memcg); 3511 drained = true; 3512 continue; 3513 } 3514 3515 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3516 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3517 ret = -EBUSY; 3518 break; 3519 } 3520 } while (true); 3521 3522 if (!ret && enlarge) 3523 memcg_oom_recover(memcg); 3524 3525 return ret; 3526 } 3527 3528 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3529 gfp_t gfp_mask, 3530 unsigned long *total_scanned) 3531 { 3532 unsigned long nr_reclaimed = 0; 3533 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3534 unsigned long reclaimed; 3535 int loop = 0; 3536 struct mem_cgroup_tree_per_node *mctz; 3537 unsigned long excess; 3538 3539 if (lru_gen_enabled()) 3540 return 0; 3541 3542 if (order > 0) 3543 return 0; 3544 3545 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3546 3547 /* 3548 * Do not even bother to check the largest node if the root 3549 * is empty. Do it lockless to prevent lock bouncing. Races 3550 * are acceptable as soft limit is best effort anyway. 3551 */ 3552 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3553 return 0; 3554 3555 /* 3556 * This loop can run a while, specially if mem_cgroup's continuously 3557 * keep exceeding their soft limit and putting the system under 3558 * pressure 3559 */ 3560 do { 3561 if (next_mz) 3562 mz = next_mz; 3563 else 3564 mz = mem_cgroup_largest_soft_limit_node(mctz); 3565 if (!mz) 3566 break; 3567 3568 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3569 gfp_mask, total_scanned); 3570 nr_reclaimed += reclaimed; 3571 spin_lock_irq(&mctz->lock); 3572 3573 /* 3574 * If we failed to reclaim anything from this memory cgroup 3575 * it is time to move on to the next cgroup 3576 */ 3577 next_mz = NULL; 3578 if (!reclaimed) 3579 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3580 3581 excess = soft_limit_excess(mz->memcg); 3582 /* 3583 * One school of thought says that we should not add 3584 * back the node to the tree if reclaim returns 0. 3585 * But our reclaim could return 0, simply because due 3586 * to priority we are exposing a smaller subset of 3587 * memory to reclaim from. Consider this as a longer 3588 * term TODO. 3589 */ 3590 /* If excess == 0, no tree ops */ 3591 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3592 spin_unlock_irq(&mctz->lock); 3593 css_put(&mz->memcg->css); 3594 loop++; 3595 /* 3596 * Could not reclaim anything and there are no more 3597 * mem cgroups to try or we seem to be looping without 3598 * reclaiming anything. 3599 */ 3600 if (!nr_reclaimed && 3601 (next_mz == NULL || 3602 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3603 break; 3604 } while (!nr_reclaimed); 3605 if (next_mz) 3606 css_put(&next_mz->memcg->css); 3607 return nr_reclaimed; 3608 } 3609 3610 /* 3611 * Reclaims as many pages from the given memcg as possible. 3612 * 3613 * Caller is responsible for holding css reference for memcg. 3614 */ 3615 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3616 { 3617 int nr_retries = MAX_RECLAIM_RETRIES; 3618 3619 /* we call try-to-free pages for make this cgroup empty */ 3620 lru_add_drain_all(); 3621 3622 drain_all_stock(memcg); 3623 3624 /* try to free all pages in this cgroup */ 3625 while (nr_retries && page_counter_read(&memcg->memory)) { 3626 if (signal_pending(current)) 3627 return -EINTR; 3628 3629 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3630 MEMCG_RECLAIM_MAY_SWAP)) 3631 nr_retries--; 3632 } 3633 3634 return 0; 3635 } 3636 3637 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3638 char *buf, size_t nbytes, 3639 loff_t off) 3640 { 3641 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3642 3643 if (mem_cgroup_is_root(memcg)) 3644 return -EINVAL; 3645 return mem_cgroup_force_empty(memcg) ?: nbytes; 3646 } 3647 3648 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3649 struct cftype *cft) 3650 { 3651 return 1; 3652 } 3653 3654 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3655 struct cftype *cft, u64 val) 3656 { 3657 if (val == 1) 3658 return 0; 3659 3660 pr_warn_once("Non-hierarchical mode is deprecated. " 3661 "Please report your usecase to linux-mm@kvack.org if you " 3662 "depend on this functionality.\n"); 3663 3664 return -EINVAL; 3665 } 3666 3667 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3668 { 3669 unsigned long val; 3670 3671 if (mem_cgroup_is_root(memcg)) { 3672 mem_cgroup_flush_stats(); 3673 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3674 memcg_page_state(memcg, NR_ANON_MAPPED); 3675 if (swap) 3676 val += memcg_page_state(memcg, MEMCG_SWAP); 3677 } else { 3678 if (!swap) 3679 val = page_counter_read(&memcg->memory); 3680 else 3681 val = page_counter_read(&memcg->memsw); 3682 } 3683 return val; 3684 } 3685 3686 enum { 3687 RES_USAGE, 3688 RES_LIMIT, 3689 RES_MAX_USAGE, 3690 RES_FAILCNT, 3691 RES_SOFT_LIMIT, 3692 }; 3693 3694 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3695 struct cftype *cft) 3696 { 3697 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3698 struct page_counter *counter; 3699 3700 switch (MEMFILE_TYPE(cft->private)) { 3701 case _MEM: 3702 counter = &memcg->memory; 3703 break; 3704 case _MEMSWAP: 3705 counter = &memcg->memsw; 3706 break; 3707 case _KMEM: 3708 counter = &memcg->kmem; 3709 break; 3710 case _TCP: 3711 counter = &memcg->tcpmem; 3712 break; 3713 default: 3714 BUG(); 3715 } 3716 3717 switch (MEMFILE_ATTR(cft->private)) { 3718 case RES_USAGE: 3719 if (counter == &memcg->memory) 3720 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3721 if (counter == &memcg->memsw) 3722 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3723 return (u64)page_counter_read(counter) * PAGE_SIZE; 3724 case RES_LIMIT: 3725 return (u64)counter->max * PAGE_SIZE; 3726 case RES_MAX_USAGE: 3727 return (u64)counter->watermark * PAGE_SIZE; 3728 case RES_FAILCNT: 3729 return counter->failcnt; 3730 case RES_SOFT_LIMIT: 3731 return (u64)memcg->soft_limit * PAGE_SIZE; 3732 default: 3733 BUG(); 3734 } 3735 } 3736 3737 #ifdef CONFIG_MEMCG_KMEM 3738 static int memcg_online_kmem(struct mem_cgroup *memcg) 3739 { 3740 struct obj_cgroup *objcg; 3741 3742 if (mem_cgroup_kmem_disabled()) 3743 return 0; 3744 3745 if (unlikely(mem_cgroup_is_root(memcg))) 3746 return 0; 3747 3748 objcg = obj_cgroup_alloc(); 3749 if (!objcg) 3750 return -ENOMEM; 3751 3752 objcg->memcg = memcg; 3753 rcu_assign_pointer(memcg->objcg, objcg); 3754 3755 static_branch_enable(&memcg_kmem_online_key); 3756 3757 memcg->kmemcg_id = memcg->id.id; 3758 3759 return 0; 3760 } 3761 3762 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3763 { 3764 struct mem_cgroup *parent; 3765 3766 if (mem_cgroup_kmem_disabled()) 3767 return; 3768 3769 if (unlikely(mem_cgroup_is_root(memcg))) 3770 return; 3771 3772 parent = parent_mem_cgroup(memcg); 3773 if (!parent) 3774 parent = root_mem_cgroup; 3775 3776 memcg_reparent_objcgs(memcg, parent); 3777 3778 /* 3779 * After we have finished memcg_reparent_objcgs(), all list_lrus 3780 * corresponding to this cgroup are guaranteed to remain empty. 3781 * The ordering is imposed by list_lru_node->lock taken by 3782 * memcg_reparent_list_lrus(). 3783 */ 3784 memcg_reparent_list_lrus(memcg, parent); 3785 } 3786 #else 3787 static int memcg_online_kmem(struct mem_cgroup *memcg) 3788 { 3789 return 0; 3790 } 3791 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3792 { 3793 } 3794 #endif /* CONFIG_MEMCG_KMEM */ 3795 3796 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3797 { 3798 int ret; 3799 3800 mutex_lock(&memcg_max_mutex); 3801 3802 ret = page_counter_set_max(&memcg->tcpmem, max); 3803 if (ret) 3804 goto out; 3805 3806 if (!memcg->tcpmem_active) { 3807 /* 3808 * The active flag needs to be written after the static_key 3809 * update. This is what guarantees that the socket activation 3810 * function is the last one to run. See mem_cgroup_sk_alloc() 3811 * for details, and note that we don't mark any socket as 3812 * belonging to this memcg until that flag is up. 3813 * 3814 * We need to do this, because static_keys will span multiple 3815 * sites, but we can't control their order. If we mark a socket 3816 * as accounted, but the accounting functions are not patched in 3817 * yet, we'll lose accounting. 3818 * 3819 * We never race with the readers in mem_cgroup_sk_alloc(), 3820 * because when this value change, the code to process it is not 3821 * patched in yet. 3822 */ 3823 static_branch_inc(&memcg_sockets_enabled_key); 3824 memcg->tcpmem_active = true; 3825 } 3826 out: 3827 mutex_unlock(&memcg_max_mutex); 3828 return ret; 3829 } 3830 3831 /* 3832 * The user of this function is... 3833 * RES_LIMIT. 3834 */ 3835 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3836 char *buf, size_t nbytes, loff_t off) 3837 { 3838 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3839 unsigned long nr_pages; 3840 int ret; 3841 3842 buf = strstrip(buf); 3843 ret = page_counter_memparse(buf, "-1", &nr_pages); 3844 if (ret) 3845 return ret; 3846 3847 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3848 case RES_LIMIT: 3849 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3850 ret = -EINVAL; 3851 break; 3852 } 3853 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3854 case _MEM: 3855 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3856 break; 3857 case _MEMSWAP: 3858 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3859 break; 3860 case _KMEM: 3861 /* kmem.limit_in_bytes is deprecated. */ 3862 ret = -EOPNOTSUPP; 3863 break; 3864 case _TCP: 3865 ret = memcg_update_tcp_max(memcg, nr_pages); 3866 break; 3867 } 3868 break; 3869 case RES_SOFT_LIMIT: 3870 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3871 ret = -EOPNOTSUPP; 3872 } else { 3873 memcg->soft_limit = nr_pages; 3874 ret = 0; 3875 } 3876 break; 3877 } 3878 return ret ?: nbytes; 3879 } 3880 3881 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3882 size_t nbytes, loff_t off) 3883 { 3884 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3885 struct page_counter *counter; 3886 3887 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3888 case _MEM: 3889 counter = &memcg->memory; 3890 break; 3891 case _MEMSWAP: 3892 counter = &memcg->memsw; 3893 break; 3894 case _KMEM: 3895 counter = &memcg->kmem; 3896 break; 3897 case _TCP: 3898 counter = &memcg->tcpmem; 3899 break; 3900 default: 3901 BUG(); 3902 } 3903 3904 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3905 case RES_MAX_USAGE: 3906 page_counter_reset_watermark(counter); 3907 break; 3908 case RES_FAILCNT: 3909 counter->failcnt = 0; 3910 break; 3911 default: 3912 BUG(); 3913 } 3914 3915 return nbytes; 3916 } 3917 3918 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3919 struct cftype *cft) 3920 { 3921 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3922 } 3923 3924 #ifdef CONFIG_MMU 3925 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3926 struct cftype *cft, u64 val) 3927 { 3928 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3929 3930 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 3931 "Please report your usecase to linux-mm@kvack.org if you " 3932 "depend on this functionality.\n"); 3933 3934 if (val & ~MOVE_MASK) 3935 return -EINVAL; 3936 3937 /* 3938 * No kind of locking is needed in here, because ->can_attach() will 3939 * check this value once in the beginning of the process, and then carry 3940 * on with stale data. This means that changes to this value will only 3941 * affect task migrations starting after the change. 3942 */ 3943 memcg->move_charge_at_immigrate = val; 3944 return 0; 3945 } 3946 #else 3947 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3948 struct cftype *cft, u64 val) 3949 { 3950 return -ENOSYS; 3951 } 3952 #endif 3953 3954 #ifdef CONFIG_NUMA 3955 3956 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3957 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3958 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3959 3960 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3961 int nid, unsigned int lru_mask, bool tree) 3962 { 3963 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3964 unsigned long nr = 0; 3965 enum lru_list lru; 3966 3967 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3968 3969 for_each_lru(lru) { 3970 if (!(BIT(lru) & lru_mask)) 3971 continue; 3972 if (tree) 3973 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3974 else 3975 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3976 } 3977 return nr; 3978 } 3979 3980 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3981 unsigned int lru_mask, 3982 bool tree) 3983 { 3984 unsigned long nr = 0; 3985 enum lru_list lru; 3986 3987 for_each_lru(lru) { 3988 if (!(BIT(lru) & lru_mask)) 3989 continue; 3990 if (tree) 3991 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3992 else 3993 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3994 } 3995 return nr; 3996 } 3997 3998 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3999 { 4000 struct numa_stat { 4001 const char *name; 4002 unsigned int lru_mask; 4003 }; 4004 4005 static const struct numa_stat stats[] = { 4006 { "total", LRU_ALL }, 4007 { "file", LRU_ALL_FILE }, 4008 { "anon", LRU_ALL_ANON }, 4009 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4010 }; 4011 const struct numa_stat *stat; 4012 int nid; 4013 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4014 4015 mem_cgroup_flush_stats(); 4016 4017 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4018 seq_printf(m, "%s=%lu", stat->name, 4019 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4020 false)); 4021 for_each_node_state(nid, N_MEMORY) 4022 seq_printf(m, " N%d=%lu", nid, 4023 mem_cgroup_node_nr_lru_pages(memcg, nid, 4024 stat->lru_mask, false)); 4025 seq_putc(m, '\n'); 4026 } 4027 4028 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4029 4030 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4031 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4032 true)); 4033 for_each_node_state(nid, N_MEMORY) 4034 seq_printf(m, " N%d=%lu", nid, 4035 mem_cgroup_node_nr_lru_pages(memcg, nid, 4036 stat->lru_mask, true)); 4037 seq_putc(m, '\n'); 4038 } 4039 4040 return 0; 4041 } 4042 #endif /* CONFIG_NUMA */ 4043 4044 static const unsigned int memcg1_stats[] = { 4045 NR_FILE_PAGES, 4046 NR_ANON_MAPPED, 4047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4048 NR_ANON_THPS, 4049 #endif 4050 NR_SHMEM, 4051 NR_FILE_MAPPED, 4052 NR_FILE_DIRTY, 4053 NR_WRITEBACK, 4054 WORKINGSET_REFAULT_ANON, 4055 WORKINGSET_REFAULT_FILE, 4056 MEMCG_SWAP, 4057 }; 4058 4059 static const char *const memcg1_stat_names[] = { 4060 "cache", 4061 "rss", 4062 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4063 "rss_huge", 4064 #endif 4065 "shmem", 4066 "mapped_file", 4067 "dirty", 4068 "writeback", 4069 "workingset_refault_anon", 4070 "workingset_refault_file", 4071 "swap", 4072 }; 4073 4074 /* Universal VM events cgroup1 shows, original sort order */ 4075 static const unsigned int memcg1_events[] = { 4076 PGPGIN, 4077 PGPGOUT, 4078 PGFAULT, 4079 PGMAJFAULT, 4080 }; 4081 4082 static int memcg_stat_show(struct seq_file *m, void *v) 4083 { 4084 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4085 unsigned long memory, memsw; 4086 struct mem_cgroup *mi; 4087 unsigned int i; 4088 4089 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4090 4091 mem_cgroup_flush_stats(); 4092 4093 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4094 unsigned long nr; 4095 4096 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4097 continue; 4098 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4099 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 4100 nr * memcg_page_state_unit(memcg1_stats[i])); 4101 } 4102 4103 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4104 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4105 memcg_events_local(memcg, memcg1_events[i])); 4106 4107 for (i = 0; i < NR_LRU_LISTS; i++) 4108 seq_printf(m, "%s %lu\n", lru_list_name(i), 4109 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4110 PAGE_SIZE); 4111 4112 /* Hierarchical information */ 4113 memory = memsw = PAGE_COUNTER_MAX; 4114 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4115 memory = min(memory, READ_ONCE(mi->memory.max)); 4116 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4117 } 4118 seq_printf(m, "hierarchical_memory_limit %llu\n", 4119 (u64)memory * PAGE_SIZE); 4120 if (do_memsw_account()) 4121 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4122 (u64)memsw * PAGE_SIZE); 4123 4124 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4125 unsigned long nr; 4126 4127 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4128 continue; 4129 nr = memcg_page_state(memcg, memcg1_stats[i]); 4130 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4131 (u64)nr * memcg_page_state_unit(memcg1_stats[i])); 4132 } 4133 4134 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4135 seq_printf(m, "total_%s %llu\n", 4136 vm_event_name(memcg1_events[i]), 4137 (u64)memcg_events(memcg, memcg1_events[i])); 4138 4139 for (i = 0; i < NR_LRU_LISTS; i++) 4140 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4141 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4142 PAGE_SIZE); 4143 4144 #ifdef CONFIG_DEBUG_VM 4145 { 4146 pg_data_t *pgdat; 4147 struct mem_cgroup_per_node *mz; 4148 unsigned long anon_cost = 0; 4149 unsigned long file_cost = 0; 4150 4151 for_each_online_pgdat(pgdat) { 4152 mz = memcg->nodeinfo[pgdat->node_id]; 4153 4154 anon_cost += mz->lruvec.anon_cost; 4155 file_cost += mz->lruvec.file_cost; 4156 } 4157 seq_printf(m, "anon_cost %lu\n", anon_cost); 4158 seq_printf(m, "file_cost %lu\n", file_cost); 4159 } 4160 #endif 4161 4162 return 0; 4163 } 4164 4165 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4166 struct cftype *cft) 4167 { 4168 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4169 4170 return mem_cgroup_swappiness(memcg); 4171 } 4172 4173 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4174 struct cftype *cft, u64 val) 4175 { 4176 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4177 4178 if (val > 200) 4179 return -EINVAL; 4180 4181 if (!mem_cgroup_is_root(memcg)) 4182 memcg->swappiness = val; 4183 else 4184 vm_swappiness = val; 4185 4186 return 0; 4187 } 4188 4189 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4190 { 4191 struct mem_cgroup_threshold_ary *t; 4192 unsigned long usage; 4193 int i; 4194 4195 rcu_read_lock(); 4196 if (!swap) 4197 t = rcu_dereference(memcg->thresholds.primary); 4198 else 4199 t = rcu_dereference(memcg->memsw_thresholds.primary); 4200 4201 if (!t) 4202 goto unlock; 4203 4204 usage = mem_cgroup_usage(memcg, swap); 4205 4206 /* 4207 * current_threshold points to threshold just below or equal to usage. 4208 * If it's not true, a threshold was crossed after last 4209 * call of __mem_cgroup_threshold(). 4210 */ 4211 i = t->current_threshold; 4212 4213 /* 4214 * Iterate backward over array of thresholds starting from 4215 * current_threshold and check if a threshold is crossed. 4216 * If none of thresholds below usage is crossed, we read 4217 * only one element of the array here. 4218 */ 4219 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4220 eventfd_signal(t->entries[i].eventfd, 1); 4221 4222 /* i = current_threshold + 1 */ 4223 i++; 4224 4225 /* 4226 * Iterate forward over array of thresholds starting from 4227 * current_threshold+1 and check if a threshold is crossed. 4228 * If none of thresholds above usage is crossed, we read 4229 * only one element of the array here. 4230 */ 4231 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4232 eventfd_signal(t->entries[i].eventfd, 1); 4233 4234 /* Update current_threshold */ 4235 t->current_threshold = i - 1; 4236 unlock: 4237 rcu_read_unlock(); 4238 } 4239 4240 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4241 { 4242 while (memcg) { 4243 __mem_cgroup_threshold(memcg, false); 4244 if (do_memsw_account()) 4245 __mem_cgroup_threshold(memcg, true); 4246 4247 memcg = parent_mem_cgroup(memcg); 4248 } 4249 } 4250 4251 static int compare_thresholds(const void *a, const void *b) 4252 { 4253 const struct mem_cgroup_threshold *_a = a; 4254 const struct mem_cgroup_threshold *_b = b; 4255 4256 if (_a->threshold > _b->threshold) 4257 return 1; 4258 4259 if (_a->threshold < _b->threshold) 4260 return -1; 4261 4262 return 0; 4263 } 4264 4265 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4266 { 4267 struct mem_cgroup_eventfd_list *ev; 4268 4269 spin_lock(&memcg_oom_lock); 4270 4271 list_for_each_entry(ev, &memcg->oom_notify, list) 4272 eventfd_signal(ev->eventfd, 1); 4273 4274 spin_unlock(&memcg_oom_lock); 4275 return 0; 4276 } 4277 4278 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4279 { 4280 struct mem_cgroup *iter; 4281 4282 for_each_mem_cgroup_tree(iter, memcg) 4283 mem_cgroup_oom_notify_cb(iter); 4284 } 4285 4286 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4287 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4288 { 4289 struct mem_cgroup_thresholds *thresholds; 4290 struct mem_cgroup_threshold_ary *new; 4291 unsigned long threshold; 4292 unsigned long usage; 4293 int i, size, ret; 4294 4295 ret = page_counter_memparse(args, "-1", &threshold); 4296 if (ret) 4297 return ret; 4298 4299 mutex_lock(&memcg->thresholds_lock); 4300 4301 if (type == _MEM) { 4302 thresholds = &memcg->thresholds; 4303 usage = mem_cgroup_usage(memcg, false); 4304 } else if (type == _MEMSWAP) { 4305 thresholds = &memcg->memsw_thresholds; 4306 usage = mem_cgroup_usage(memcg, true); 4307 } else 4308 BUG(); 4309 4310 /* Check if a threshold crossed before adding a new one */ 4311 if (thresholds->primary) 4312 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4313 4314 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4315 4316 /* Allocate memory for new array of thresholds */ 4317 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4318 if (!new) { 4319 ret = -ENOMEM; 4320 goto unlock; 4321 } 4322 new->size = size; 4323 4324 /* Copy thresholds (if any) to new array */ 4325 if (thresholds->primary) 4326 memcpy(new->entries, thresholds->primary->entries, 4327 flex_array_size(new, entries, size - 1)); 4328 4329 /* Add new threshold */ 4330 new->entries[size - 1].eventfd = eventfd; 4331 new->entries[size - 1].threshold = threshold; 4332 4333 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4334 sort(new->entries, size, sizeof(*new->entries), 4335 compare_thresholds, NULL); 4336 4337 /* Find current threshold */ 4338 new->current_threshold = -1; 4339 for (i = 0; i < size; i++) { 4340 if (new->entries[i].threshold <= usage) { 4341 /* 4342 * new->current_threshold will not be used until 4343 * rcu_assign_pointer(), so it's safe to increment 4344 * it here. 4345 */ 4346 ++new->current_threshold; 4347 } else 4348 break; 4349 } 4350 4351 /* Free old spare buffer and save old primary buffer as spare */ 4352 kfree(thresholds->spare); 4353 thresholds->spare = thresholds->primary; 4354 4355 rcu_assign_pointer(thresholds->primary, new); 4356 4357 /* To be sure that nobody uses thresholds */ 4358 synchronize_rcu(); 4359 4360 unlock: 4361 mutex_unlock(&memcg->thresholds_lock); 4362 4363 return ret; 4364 } 4365 4366 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4367 struct eventfd_ctx *eventfd, const char *args) 4368 { 4369 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4370 } 4371 4372 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4373 struct eventfd_ctx *eventfd, const char *args) 4374 { 4375 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4376 } 4377 4378 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4379 struct eventfd_ctx *eventfd, enum res_type type) 4380 { 4381 struct mem_cgroup_thresholds *thresholds; 4382 struct mem_cgroup_threshold_ary *new; 4383 unsigned long usage; 4384 int i, j, size, entries; 4385 4386 mutex_lock(&memcg->thresholds_lock); 4387 4388 if (type == _MEM) { 4389 thresholds = &memcg->thresholds; 4390 usage = mem_cgroup_usage(memcg, false); 4391 } else if (type == _MEMSWAP) { 4392 thresholds = &memcg->memsw_thresholds; 4393 usage = mem_cgroup_usage(memcg, true); 4394 } else 4395 BUG(); 4396 4397 if (!thresholds->primary) 4398 goto unlock; 4399 4400 /* Check if a threshold crossed before removing */ 4401 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4402 4403 /* Calculate new number of threshold */ 4404 size = entries = 0; 4405 for (i = 0; i < thresholds->primary->size; i++) { 4406 if (thresholds->primary->entries[i].eventfd != eventfd) 4407 size++; 4408 else 4409 entries++; 4410 } 4411 4412 new = thresholds->spare; 4413 4414 /* If no items related to eventfd have been cleared, nothing to do */ 4415 if (!entries) 4416 goto unlock; 4417 4418 /* Set thresholds array to NULL if we don't have thresholds */ 4419 if (!size) { 4420 kfree(new); 4421 new = NULL; 4422 goto swap_buffers; 4423 } 4424 4425 new->size = size; 4426 4427 /* Copy thresholds and find current threshold */ 4428 new->current_threshold = -1; 4429 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4430 if (thresholds->primary->entries[i].eventfd == eventfd) 4431 continue; 4432 4433 new->entries[j] = thresholds->primary->entries[i]; 4434 if (new->entries[j].threshold <= usage) { 4435 /* 4436 * new->current_threshold will not be used 4437 * until rcu_assign_pointer(), so it's safe to increment 4438 * it here. 4439 */ 4440 ++new->current_threshold; 4441 } 4442 j++; 4443 } 4444 4445 swap_buffers: 4446 /* Swap primary and spare array */ 4447 thresholds->spare = thresholds->primary; 4448 4449 rcu_assign_pointer(thresholds->primary, new); 4450 4451 /* To be sure that nobody uses thresholds */ 4452 synchronize_rcu(); 4453 4454 /* If all events are unregistered, free the spare array */ 4455 if (!new) { 4456 kfree(thresholds->spare); 4457 thresholds->spare = NULL; 4458 } 4459 unlock: 4460 mutex_unlock(&memcg->thresholds_lock); 4461 } 4462 4463 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4464 struct eventfd_ctx *eventfd) 4465 { 4466 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4467 } 4468 4469 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4470 struct eventfd_ctx *eventfd) 4471 { 4472 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4473 } 4474 4475 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4476 struct eventfd_ctx *eventfd, const char *args) 4477 { 4478 struct mem_cgroup_eventfd_list *event; 4479 4480 event = kmalloc(sizeof(*event), GFP_KERNEL); 4481 if (!event) 4482 return -ENOMEM; 4483 4484 spin_lock(&memcg_oom_lock); 4485 4486 event->eventfd = eventfd; 4487 list_add(&event->list, &memcg->oom_notify); 4488 4489 /* already in OOM ? */ 4490 if (memcg->under_oom) 4491 eventfd_signal(eventfd, 1); 4492 spin_unlock(&memcg_oom_lock); 4493 4494 return 0; 4495 } 4496 4497 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4498 struct eventfd_ctx *eventfd) 4499 { 4500 struct mem_cgroup_eventfd_list *ev, *tmp; 4501 4502 spin_lock(&memcg_oom_lock); 4503 4504 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4505 if (ev->eventfd == eventfd) { 4506 list_del(&ev->list); 4507 kfree(ev); 4508 } 4509 } 4510 4511 spin_unlock(&memcg_oom_lock); 4512 } 4513 4514 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4515 { 4516 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4517 4518 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4519 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4520 seq_printf(sf, "oom_kill %lu\n", 4521 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4522 return 0; 4523 } 4524 4525 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4526 struct cftype *cft, u64 val) 4527 { 4528 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4529 4530 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4531 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4532 return -EINVAL; 4533 4534 memcg->oom_kill_disable = val; 4535 if (!val) 4536 memcg_oom_recover(memcg); 4537 4538 return 0; 4539 } 4540 4541 #ifdef CONFIG_CGROUP_WRITEBACK 4542 4543 #include <trace/events/writeback.h> 4544 4545 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4546 { 4547 return wb_domain_init(&memcg->cgwb_domain, gfp); 4548 } 4549 4550 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4551 { 4552 wb_domain_exit(&memcg->cgwb_domain); 4553 } 4554 4555 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4556 { 4557 wb_domain_size_changed(&memcg->cgwb_domain); 4558 } 4559 4560 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4561 { 4562 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4563 4564 if (!memcg->css.parent) 4565 return NULL; 4566 4567 return &memcg->cgwb_domain; 4568 } 4569 4570 /** 4571 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4572 * @wb: bdi_writeback in question 4573 * @pfilepages: out parameter for number of file pages 4574 * @pheadroom: out parameter for number of allocatable pages according to memcg 4575 * @pdirty: out parameter for number of dirty pages 4576 * @pwriteback: out parameter for number of pages under writeback 4577 * 4578 * Determine the numbers of file, headroom, dirty, and writeback pages in 4579 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4580 * is a bit more involved. 4581 * 4582 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4583 * headroom is calculated as the lowest headroom of itself and the 4584 * ancestors. Note that this doesn't consider the actual amount of 4585 * available memory in the system. The caller should further cap 4586 * *@pheadroom accordingly. 4587 */ 4588 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4589 unsigned long *pheadroom, unsigned long *pdirty, 4590 unsigned long *pwriteback) 4591 { 4592 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4593 struct mem_cgroup *parent; 4594 4595 mem_cgroup_flush_stats(); 4596 4597 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4598 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4599 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4600 memcg_page_state(memcg, NR_ACTIVE_FILE); 4601 4602 *pheadroom = PAGE_COUNTER_MAX; 4603 while ((parent = parent_mem_cgroup(memcg))) { 4604 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4605 READ_ONCE(memcg->memory.high)); 4606 unsigned long used = page_counter_read(&memcg->memory); 4607 4608 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4609 memcg = parent; 4610 } 4611 } 4612 4613 /* 4614 * Foreign dirty flushing 4615 * 4616 * There's an inherent mismatch between memcg and writeback. The former 4617 * tracks ownership per-page while the latter per-inode. This was a 4618 * deliberate design decision because honoring per-page ownership in the 4619 * writeback path is complicated, may lead to higher CPU and IO overheads 4620 * and deemed unnecessary given that write-sharing an inode across 4621 * different cgroups isn't a common use-case. 4622 * 4623 * Combined with inode majority-writer ownership switching, this works well 4624 * enough in most cases but there are some pathological cases. For 4625 * example, let's say there are two cgroups A and B which keep writing to 4626 * different but confined parts of the same inode. B owns the inode and 4627 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4628 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4629 * triggering background writeback. A will be slowed down without a way to 4630 * make writeback of the dirty pages happen. 4631 * 4632 * Conditions like the above can lead to a cgroup getting repeatedly and 4633 * severely throttled after making some progress after each 4634 * dirty_expire_interval while the underlying IO device is almost 4635 * completely idle. 4636 * 4637 * Solving this problem completely requires matching the ownership tracking 4638 * granularities between memcg and writeback in either direction. However, 4639 * the more egregious behaviors can be avoided by simply remembering the 4640 * most recent foreign dirtying events and initiating remote flushes on 4641 * them when local writeback isn't enough to keep the memory clean enough. 4642 * 4643 * The following two functions implement such mechanism. When a foreign 4644 * page - a page whose memcg and writeback ownerships don't match - is 4645 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4646 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4647 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4648 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4649 * foreign bdi_writebacks which haven't expired. Both the numbers of 4650 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4651 * limited to MEMCG_CGWB_FRN_CNT. 4652 * 4653 * The mechanism only remembers IDs and doesn't hold any object references. 4654 * As being wrong occasionally doesn't matter, updates and accesses to the 4655 * records are lockless and racy. 4656 */ 4657 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4658 struct bdi_writeback *wb) 4659 { 4660 struct mem_cgroup *memcg = folio_memcg(folio); 4661 struct memcg_cgwb_frn *frn; 4662 u64 now = get_jiffies_64(); 4663 u64 oldest_at = now; 4664 int oldest = -1; 4665 int i; 4666 4667 trace_track_foreign_dirty(folio, wb); 4668 4669 /* 4670 * Pick the slot to use. If there is already a slot for @wb, keep 4671 * using it. If not replace the oldest one which isn't being 4672 * written out. 4673 */ 4674 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4675 frn = &memcg->cgwb_frn[i]; 4676 if (frn->bdi_id == wb->bdi->id && 4677 frn->memcg_id == wb->memcg_css->id) 4678 break; 4679 if (time_before64(frn->at, oldest_at) && 4680 atomic_read(&frn->done.cnt) == 1) { 4681 oldest = i; 4682 oldest_at = frn->at; 4683 } 4684 } 4685 4686 if (i < MEMCG_CGWB_FRN_CNT) { 4687 /* 4688 * Re-using an existing one. Update timestamp lazily to 4689 * avoid making the cacheline hot. We want them to be 4690 * reasonably up-to-date and significantly shorter than 4691 * dirty_expire_interval as that's what expires the record. 4692 * Use the shorter of 1s and dirty_expire_interval / 8. 4693 */ 4694 unsigned long update_intv = 4695 min_t(unsigned long, HZ, 4696 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4697 4698 if (time_before64(frn->at, now - update_intv)) 4699 frn->at = now; 4700 } else if (oldest >= 0) { 4701 /* replace the oldest free one */ 4702 frn = &memcg->cgwb_frn[oldest]; 4703 frn->bdi_id = wb->bdi->id; 4704 frn->memcg_id = wb->memcg_css->id; 4705 frn->at = now; 4706 } 4707 } 4708 4709 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4710 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4711 { 4712 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4713 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4714 u64 now = jiffies_64; 4715 int i; 4716 4717 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4718 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4719 4720 /* 4721 * If the record is older than dirty_expire_interval, 4722 * writeback on it has already started. No need to kick it 4723 * off again. Also, don't start a new one if there's 4724 * already one in flight. 4725 */ 4726 if (time_after64(frn->at, now - intv) && 4727 atomic_read(&frn->done.cnt) == 1) { 4728 frn->at = 0; 4729 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4730 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4731 WB_REASON_FOREIGN_FLUSH, 4732 &frn->done); 4733 } 4734 } 4735 } 4736 4737 #else /* CONFIG_CGROUP_WRITEBACK */ 4738 4739 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4740 { 4741 return 0; 4742 } 4743 4744 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4745 { 4746 } 4747 4748 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4749 { 4750 } 4751 4752 #endif /* CONFIG_CGROUP_WRITEBACK */ 4753 4754 /* 4755 * DO NOT USE IN NEW FILES. 4756 * 4757 * "cgroup.event_control" implementation. 4758 * 4759 * This is way over-engineered. It tries to support fully configurable 4760 * events for each user. Such level of flexibility is completely 4761 * unnecessary especially in the light of the planned unified hierarchy. 4762 * 4763 * Please deprecate this and replace with something simpler if at all 4764 * possible. 4765 */ 4766 4767 /* 4768 * Unregister event and free resources. 4769 * 4770 * Gets called from workqueue. 4771 */ 4772 static void memcg_event_remove(struct work_struct *work) 4773 { 4774 struct mem_cgroup_event *event = 4775 container_of(work, struct mem_cgroup_event, remove); 4776 struct mem_cgroup *memcg = event->memcg; 4777 4778 remove_wait_queue(event->wqh, &event->wait); 4779 4780 event->unregister_event(memcg, event->eventfd); 4781 4782 /* Notify userspace the event is going away. */ 4783 eventfd_signal(event->eventfd, 1); 4784 4785 eventfd_ctx_put(event->eventfd); 4786 kfree(event); 4787 css_put(&memcg->css); 4788 } 4789 4790 /* 4791 * Gets called on EPOLLHUP on eventfd when user closes it. 4792 * 4793 * Called with wqh->lock held and interrupts disabled. 4794 */ 4795 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4796 int sync, void *key) 4797 { 4798 struct mem_cgroup_event *event = 4799 container_of(wait, struct mem_cgroup_event, wait); 4800 struct mem_cgroup *memcg = event->memcg; 4801 __poll_t flags = key_to_poll(key); 4802 4803 if (flags & EPOLLHUP) { 4804 /* 4805 * If the event has been detached at cgroup removal, we 4806 * can simply return knowing the other side will cleanup 4807 * for us. 4808 * 4809 * We can't race against event freeing since the other 4810 * side will require wqh->lock via remove_wait_queue(), 4811 * which we hold. 4812 */ 4813 spin_lock(&memcg->event_list_lock); 4814 if (!list_empty(&event->list)) { 4815 list_del_init(&event->list); 4816 /* 4817 * We are in atomic context, but cgroup_event_remove() 4818 * may sleep, so we have to call it in workqueue. 4819 */ 4820 schedule_work(&event->remove); 4821 } 4822 spin_unlock(&memcg->event_list_lock); 4823 } 4824 4825 return 0; 4826 } 4827 4828 static void memcg_event_ptable_queue_proc(struct file *file, 4829 wait_queue_head_t *wqh, poll_table *pt) 4830 { 4831 struct mem_cgroup_event *event = 4832 container_of(pt, struct mem_cgroup_event, pt); 4833 4834 event->wqh = wqh; 4835 add_wait_queue(wqh, &event->wait); 4836 } 4837 4838 /* 4839 * DO NOT USE IN NEW FILES. 4840 * 4841 * Parse input and register new cgroup event handler. 4842 * 4843 * Input must be in format '<event_fd> <control_fd> <args>'. 4844 * Interpretation of args is defined by control file implementation. 4845 */ 4846 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4847 char *buf, size_t nbytes, loff_t off) 4848 { 4849 struct cgroup_subsys_state *css = of_css(of); 4850 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4851 struct mem_cgroup_event *event; 4852 struct cgroup_subsys_state *cfile_css; 4853 unsigned int efd, cfd; 4854 struct fd efile; 4855 struct fd cfile; 4856 struct dentry *cdentry; 4857 const char *name; 4858 char *endp; 4859 int ret; 4860 4861 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4862 return -EOPNOTSUPP; 4863 4864 buf = strstrip(buf); 4865 4866 efd = simple_strtoul(buf, &endp, 10); 4867 if (*endp != ' ') 4868 return -EINVAL; 4869 buf = endp + 1; 4870 4871 cfd = simple_strtoul(buf, &endp, 10); 4872 if ((*endp != ' ') && (*endp != '\0')) 4873 return -EINVAL; 4874 buf = endp + 1; 4875 4876 event = kzalloc(sizeof(*event), GFP_KERNEL); 4877 if (!event) 4878 return -ENOMEM; 4879 4880 event->memcg = memcg; 4881 INIT_LIST_HEAD(&event->list); 4882 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4883 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4884 INIT_WORK(&event->remove, memcg_event_remove); 4885 4886 efile = fdget(efd); 4887 if (!efile.file) { 4888 ret = -EBADF; 4889 goto out_kfree; 4890 } 4891 4892 event->eventfd = eventfd_ctx_fileget(efile.file); 4893 if (IS_ERR(event->eventfd)) { 4894 ret = PTR_ERR(event->eventfd); 4895 goto out_put_efile; 4896 } 4897 4898 cfile = fdget(cfd); 4899 if (!cfile.file) { 4900 ret = -EBADF; 4901 goto out_put_eventfd; 4902 } 4903 4904 /* the process need read permission on control file */ 4905 /* AV: shouldn't we check that it's been opened for read instead? */ 4906 ret = file_permission(cfile.file, MAY_READ); 4907 if (ret < 0) 4908 goto out_put_cfile; 4909 4910 /* 4911 * The control file must be a regular cgroup1 file. As a regular cgroup 4912 * file can't be renamed, it's safe to access its name afterwards. 4913 */ 4914 cdentry = cfile.file->f_path.dentry; 4915 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 4916 ret = -EINVAL; 4917 goto out_put_cfile; 4918 } 4919 4920 /* 4921 * Determine the event callbacks and set them in @event. This used 4922 * to be done via struct cftype but cgroup core no longer knows 4923 * about these events. The following is crude but the whole thing 4924 * is for compatibility anyway. 4925 * 4926 * DO NOT ADD NEW FILES. 4927 */ 4928 name = cdentry->d_name.name; 4929 4930 if (!strcmp(name, "memory.usage_in_bytes")) { 4931 event->register_event = mem_cgroup_usage_register_event; 4932 event->unregister_event = mem_cgroup_usage_unregister_event; 4933 } else if (!strcmp(name, "memory.oom_control")) { 4934 event->register_event = mem_cgroup_oom_register_event; 4935 event->unregister_event = mem_cgroup_oom_unregister_event; 4936 } else if (!strcmp(name, "memory.pressure_level")) { 4937 event->register_event = vmpressure_register_event; 4938 event->unregister_event = vmpressure_unregister_event; 4939 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4940 event->register_event = memsw_cgroup_usage_register_event; 4941 event->unregister_event = memsw_cgroup_usage_unregister_event; 4942 } else { 4943 ret = -EINVAL; 4944 goto out_put_cfile; 4945 } 4946 4947 /* 4948 * Verify @cfile should belong to @css. Also, remaining events are 4949 * automatically removed on cgroup destruction but the removal is 4950 * asynchronous, so take an extra ref on @css. 4951 */ 4952 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 4953 &memory_cgrp_subsys); 4954 ret = -EINVAL; 4955 if (IS_ERR(cfile_css)) 4956 goto out_put_cfile; 4957 if (cfile_css != css) { 4958 css_put(cfile_css); 4959 goto out_put_cfile; 4960 } 4961 4962 ret = event->register_event(memcg, event->eventfd, buf); 4963 if (ret) 4964 goto out_put_css; 4965 4966 vfs_poll(efile.file, &event->pt); 4967 4968 spin_lock_irq(&memcg->event_list_lock); 4969 list_add(&event->list, &memcg->event_list); 4970 spin_unlock_irq(&memcg->event_list_lock); 4971 4972 fdput(cfile); 4973 fdput(efile); 4974 4975 return nbytes; 4976 4977 out_put_css: 4978 css_put(css); 4979 out_put_cfile: 4980 fdput(cfile); 4981 out_put_eventfd: 4982 eventfd_ctx_put(event->eventfd); 4983 out_put_efile: 4984 fdput(efile); 4985 out_kfree: 4986 kfree(event); 4987 4988 return ret; 4989 } 4990 4991 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4992 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4993 { 4994 /* 4995 * Deprecated. 4996 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 4997 */ 4998 return 0; 4999 } 5000 #endif 5001 5002 static struct cftype mem_cgroup_legacy_files[] = { 5003 { 5004 .name = "usage_in_bytes", 5005 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5006 .read_u64 = mem_cgroup_read_u64, 5007 }, 5008 { 5009 .name = "max_usage_in_bytes", 5010 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5011 .write = mem_cgroup_reset, 5012 .read_u64 = mem_cgroup_read_u64, 5013 }, 5014 { 5015 .name = "limit_in_bytes", 5016 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5017 .write = mem_cgroup_write, 5018 .read_u64 = mem_cgroup_read_u64, 5019 }, 5020 { 5021 .name = "soft_limit_in_bytes", 5022 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5023 .write = mem_cgroup_write, 5024 .read_u64 = mem_cgroup_read_u64, 5025 }, 5026 { 5027 .name = "failcnt", 5028 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5029 .write = mem_cgroup_reset, 5030 .read_u64 = mem_cgroup_read_u64, 5031 }, 5032 { 5033 .name = "stat", 5034 .seq_show = memcg_stat_show, 5035 }, 5036 { 5037 .name = "force_empty", 5038 .write = mem_cgroup_force_empty_write, 5039 }, 5040 { 5041 .name = "use_hierarchy", 5042 .write_u64 = mem_cgroup_hierarchy_write, 5043 .read_u64 = mem_cgroup_hierarchy_read, 5044 }, 5045 { 5046 .name = "cgroup.event_control", /* XXX: for compat */ 5047 .write = memcg_write_event_control, 5048 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5049 }, 5050 { 5051 .name = "swappiness", 5052 .read_u64 = mem_cgroup_swappiness_read, 5053 .write_u64 = mem_cgroup_swappiness_write, 5054 }, 5055 { 5056 .name = "move_charge_at_immigrate", 5057 .read_u64 = mem_cgroup_move_charge_read, 5058 .write_u64 = mem_cgroup_move_charge_write, 5059 }, 5060 { 5061 .name = "oom_control", 5062 .seq_show = mem_cgroup_oom_control_read, 5063 .write_u64 = mem_cgroup_oom_control_write, 5064 }, 5065 { 5066 .name = "pressure_level", 5067 }, 5068 #ifdef CONFIG_NUMA 5069 { 5070 .name = "numa_stat", 5071 .seq_show = memcg_numa_stat_show, 5072 }, 5073 #endif 5074 { 5075 .name = "kmem.limit_in_bytes", 5076 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5077 .write = mem_cgroup_write, 5078 .read_u64 = mem_cgroup_read_u64, 5079 }, 5080 { 5081 .name = "kmem.usage_in_bytes", 5082 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5083 .read_u64 = mem_cgroup_read_u64, 5084 }, 5085 { 5086 .name = "kmem.failcnt", 5087 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5088 .write = mem_cgroup_reset, 5089 .read_u64 = mem_cgroup_read_u64, 5090 }, 5091 { 5092 .name = "kmem.max_usage_in_bytes", 5093 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5094 .write = mem_cgroup_reset, 5095 .read_u64 = mem_cgroup_read_u64, 5096 }, 5097 #if defined(CONFIG_MEMCG_KMEM) && \ 5098 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5099 { 5100 .name = "kmem.slabinfo", 5101 .seq_show = mem_cgroup_slab_show, 5102 }, 5103 #endif 5104 { 5105 .name = "kmem.tcp.limit_in_bytes", 5106 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5107 .write = mem_cgroup_write, 5108 .read_u64 = mem_cgroup_read_u64, 5109 }, 5110 { 5111 .name = "kmem.tcp.usage_in_bytes", 5112 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5113 .read_u64 = mem_cgroup_read_u64, 5114 }, 5115 { 5116 .name = "kmem.tcp.failcnt", 5117 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5118 .write = mem_cgroup_reset, 5119 .read_u64 = mem_cgroup_read_u64, 5120 }, 5121 { 5122 .name = "kmem.tcp.max_usage_in_bytes", 5123 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5124 .write = mem_cgroup_reset, 5125 .read_u64 = mem_cgroup_read_u64, 5126 }, 5127 { }, /* terminate */ 5128 }; 5129 5130 /* 5131 * Private memory cgroup IDR 5132 * 5133 * Swap-out records and page cache shadow entries need to store memcg 5134 * references in constrained space, so we maintain an ID space that is 5135 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5136 * memory-controlled cgroups to 64k. 5137 * 5138 * However, there usually are many references to the offline CSS after 5139 * the cgroup has been destroyed, such as page cache or reclaimable 5140 * slab objects, that don't need to hang on to the ID. We want to keep 5141 * those dead CSS from occupying IDs, or we might quickly exhaust the 5142 * relatively small ID space and prevent the creation of new cgroups 5143 * even when there are much fewer than 64k cgroups - possibly none. 5144 * 5145 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5146 * be freed and recycled when it's no longer needed, which is usually 5147 * when the CSS is offlined. 5148 * 5149 * The only exception to that are records of swapped out tmpfs/shmem 5150 * pages that need to be attributed to live ancestors on swapin. But 5151 * those references are manageable from userspace. 5152 */ 5153 5154 static DEFINE_IDR(mem_cgroup_idr); 5155 5156 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5157 { 5158 if (memcg->id.id > 0) { 5159 idr_remove(&mem_cgroup_idr, memcg->id.id); 5160 memcg->id.id = 0; 5161 } 5162 } 5163 5164 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5165 unsigned int n) 5166 { 5167 refcount_add(n, &memcg->id.ref); 5168 } 5169 5170 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5171 { 5172 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5173 mem_cgroup_id_remove(memcg); 5174 5175 /* Memcg ID pins CSS */ 5176 css_put(&memcg->css); 5177 } 5178 } 5179 5180 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5181 { 5182 mem_cgroup_id_put_many(memcg, 1); 5183 } 5184 5185 /** 5186 * mem_cgroup_from_id - look up a memcg from a memcg id 5187 * @id: the memcg id to look up 5188 * 5189 * Caller must hold rcu_read_lock(). 5190 */ 5191 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5192 { 5193 WARN_ON_ONCE(!rcu_read_lock_held()); 5194 return idr_find(&mem_cgroup_idr, id); 5195 } 5196 5197 #ifdef CONFIG_SHRINKER_DEBUG 5198 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5199 { 5200 struct cgroup *cgrp; 5201 struct cgroup_subsys_state *css; 5202 struct mem_cgroup *memcg; 5203 5204 cgrp = cgroup_get_from_id(ino); 5205 if (IS_ERR(cgrp)) 5206 return ERR_CAST(cgrp); 5207 5208 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5209 if (css) 5210 memcg = container_of(css, struct mem_cgroup, css); 5211 else 5212 memcg = ERR_PTR(-ENOENT); 5213 5214 cgroup_put(cgrp); 5215 5216 return memcg; 5217 } 5218 #endif 5219 5220 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5221 { 5222 struct mem_cgroup_per_node *pn; 5223 5224 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5225 if (!pn) 5226 return 1; 5227 5228 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5229 GFP_KERNEL_ACCOUNT); 5230 if (!pn->lruvec_stats_percpu) { 5231 kfree(pn); 5232 return 1; 5233 } 5234 5235 lruvec_init(&pn->lruvec); 5236 pn->memcg = memcg; 5237 5238 memcg->nodeinfo[node] = pn; 5239 return 0; 5240 } 5241 5242 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5243 { 5244 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5245 5246 if (!pn) 5247 return; 5248 5249 free_percpu(pn->lruvec_stats_percpu); 5250 kfree(pn); 5251 } 5252 5253 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5254 { 5255 int node; 5256 5257 for_each_node(node) 5258 free_mem_cgroup_per_node_info(memcg, node); 5259 kfree(memcg->vmstats); 5260 free_percpu(memcg->vmstats_percpu); 5261 kfree(memcg); 5262 } 5263 5264 static void mem_cgroup_free(struct mem_cgroup *memcg) 5265 { 5266 lru_gen_exit_memcg(memcg); 5267 memcg_wb_domain_exit(memcg); 5268 __mem_cgroup_free(memcg); 5269 } 5270 5271 static struct mem_cgroup *mem_cgroup_alloc(void) 5272 { 5273 struct mem_cgroup *memcg; 5274 int node; 5275 int __maybe_unused i; 5276 long error = -ENOMEM; 5277 5278 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5279 if (!memcg) 5280 return ERR_PTR(error); 5281 5282 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5283 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5284 if (memcg->id.id < 0) { 5285 error = memcg->id.id; 5286 goto fail; 5287 } 5288 5289 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5290 if (!memcg->vmstats) 5291 goto fail; 5292 5293 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5294 GFP_KERNEL_ACCOUNT); 5295 if (!memcg->vmstats_percpu) 5296 goto fail; 5297 5298 for_each_node(node) 5299 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5300 goto fail; 5301 5302 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5303 goto fail; 5304 5305 INIT_WORK(&memcg->high_work, high_work_func); 5306 INIT_LIST_HEAD(&memcg->oom_notify); 5307 mutex_init(&memcg->thresholds_lock); 5308 spin_lock_init(&memcg->move_lock); 5309 vmpressure_init(&memcg->vmpressure); 5310 INIT_LIST_HEAD(&memcg->event_list); 5311 spin_lock_init(&memcg->event_list_lock); 5312 memcg->socket_pressure = jiffies; 5313 #ifdef CONFIG_MEMCG_KMEM 5314 memcg->kmemcg_id = -1; 5315 INIT_LIST_HEAD(&memcg->objcg_list); 5316 #endif 5317 #ifdef CONFIG_CGROUP_WRITEBACK 5318 INIT_LIST_HEAD(&memcg->cgwb_list); 5319 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5320 memcg->cgwb_frn[i].done = 5321 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5322 #endif 5323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5324 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5325 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5326 memcg->deferred_split_queue.split_queue_len = 0; 5327 #endif 5328 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5329 lru_gen_init_memcg(memcg); 5330 return memcg; 5331 fail: 5332 mem_cgroup_id_remove(memcg); 5333 __mem_cgroup_free(memcg); 5334 return ERR_PTR(error); 5335 } 5336 5337 static struct cgroup_subsys_state * __ref 5338 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5339 { 5340 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5341 struct mem_cgroup *memcg, *old_memcg; 5342 5343 old_memcg = set_active_memcg(parent); 5344 memcg = mem_cgroup_alloc(); 5345 set_active_memcg(old_memcg); 5346 if (IS_ERR(memcg)) 5347 return ERR_CAST(memcg); 5348 5349 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5350 memcg->soft_limit = PAGE_COUNTER_MAX; 5351 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5352 memcg->zswap_max = PAGE_COUNTER_MAX; 5353 #endif 5354 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5355 if (parent) { 5356 memcg->swappiness = mem_cgroup_swappiness(parent); 5357 memcg->oom_kill_disable = parent->oom_kill_disable; 5358 5359 page_counter_init(&memcg->memory, &parent->memory); 5360 page_counter_init(&memcg->swap, &parent->swap); 5361 page_counter_init(&memcg->kmem, &parent->kmem); 5362 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5363 } else { 5364 init_memcg_events(); 5365 page_counter_init(&memcg->memory, NULL); 5366 page_counter_init(&memcg->swap, NULL); 5367 page_counter_init(&memcg->kmem, NULL); 5368 page_counter_init(&memcg->tcpmem, NULL); 5369 5370 root_mem_cgroup = memcg; 5371 return &memcg->css; 5372 } 5373 5374 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5375 static_branch_inc(&memcg_sockets_enabled_key); 5376 5377 #if defined(CONFIG_MEMCG_KMEM) 5378 if (!cgroup_memory_nobpf) 5379 static_branch_inc(&memcg_bpf_enabled_key); 5380 #endif 5381 5382 return &memcg->css; 5383 } 5384 5385 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5386 { 5387 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5388 5389 if (memcg_online_kmem(memcg)) 5390 goto remove_id; 5391 5392 /* 5393 * A memcg must be visible for expand_shrinker_info() 5394 * by the time the maps are allocated. So, we allocate maps 5395 * here, when for_each_mem_cgroup() can't skip it. 5396 */ 5397 if (alloc_shrinker_info(memcg)) 5398 goto offline_kmem; 5399 5400 /* Online state pins memcg ID, memcg ID pins CSS */ 5401 refcount_set(&memcg->id.ref, 1); 5402 css_get(css); 5403 5404 if (unlikely(mem_cgroup_is_root(memcg))) 5405 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5406 2UL*HZ); 5407 lru_gen_online_memcg(memcg); 5408 return 0; 5409 offline_kmem: 5410 memcg_offline_kmem(memcg); 5411 remove_id: 5412 mem_cgroup_id_remove(memcg); 5413 return -ENOMEM; 5414 } 5415 5416 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5417 { 5418 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5419 struct mem_cgroup_event *event, *tmp; 5420 5421 /* 5422 * Unregister events and notify userspace. 5423 * Notify userspace about cgroup removing only after rmdir of cgroup 5424 * directory to avoid race between userspace and kernelspace. 5425 */ 5426 spin_lock_irq(&memcg->event_list_lock); 5427 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5428 list_del_init(&event->list); 5429 schedule_work(&event->remove); 5430 } 5431 spin_unlock_irq(&memcg->event_list_lock); 5432 5433 page_counter_set_min(&memcg->memory, 0); 5434 page_counter_set_low(&memcg->memory, 0); 5435 5436 memcg_offline_kmem(memcg); 5437 reparent_shrinker_deferred(memcg); 5438 wb_memcg_offline(memcg); 5439 lru_gen_offline_memcg(memcg); 5440 5441 drain_all_stock(memcg); 5442 5443 mem_cgroup_id_put(memcg); 5444 } 5445 5446 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5447 { 5448 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5449 5450 invalidate_reclaim_iterators(memcg); 5451 lru_gen_release_memcg(memcg); 5452 } 5453 5454 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5455 { 5456 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5457 int __maybe_unused i; 5458 5459 #ifdef CONFIG_CGROUP_WRITEBACK 5460 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5461 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5462 #endif 5463 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5464 static_branch_dec(&memcg_sockets_enabled_key); 5465 5466 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5467 static_branch_dec(&memcg_sockets_enabled_key); 5468 5469 #if defined(CONFIG_MEMCG_KMEM) 5470 if (!cgroup_memory_nobpf) 5471 static_branch_dec(&memcg_bpf_enabled_key); 5472 #endif 5473 5474 vmpressure_cleanup(&memcg->vmpressure); 5475 cancel_work_sync(&memcg->high_work); 5476 mem_cgroup_remove_from_trees(memcg); 5477 free_shrinker_info(memcg); 5478 mem_cgroup_free(memcg); 5479 } 5480 5481 /** 5482 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5483 * @css: the target css 5484 * 5485 * Reset the states of the mem_cgroup associated with @css. This is 5486 * invoked when the userland requests disabling on the default hierarchy 5487 * but the memcg is pinned through dependency. The memcg should stop 5488 * applying policies and should revert to the vanilla state as it may be 5489 * made visible again. 5490 * 5491 * The current implementation only resets the essential configurations. 5492 * This needs to be expanded to cover all the visible parts. 5493 */ 5494 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5495 { 5496 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5497 5498 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5499 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5500 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5501 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5502 page_counter_set_min(&memcg->memory, 0); 5503 page_counter_set_low(&memcg->memory, 0); 5504 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5505 memcg->soft_limit = PAGE_COUNTER_MAX; 5506 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5507 memcg_wb_domain_size_changed(memcg); 5508 } 5509 5510 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5511 { 5512 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5513 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5514 struct memcg_vmstats_percpu *statc; 5515 long delta, v; 5516 int i, nid; 5517 5518 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5519 5520 for (i = 0; i < MEMCG_NR_STAT; i++) { 5521 /* 5522 * Collect the aggregated propagation counts of groups 5523 * below us. We're in a per-cpu loop here and this is 5524 * a global counter, so the first cycle will get them. 5525 */ 5526 delta = memcg->vmstats->state_pending[i]; 5527 if (delta) 5528 memcg->vmstats->state_pending[i] = 0; 5529 5530 /* Add CPU changes on this level since the last flush */ 5531 v = READ_ONCE(statc->state[i]); 5532 if (v != statc->state_prev[i]) { 5533 delta += v - statc->state_prev[i]; 5534 statc->state_prev[i] = v; 5535 } 5536 5537 if (!delta) 5538 continue; 5539 5540 /* Aggregate counts on this level and propagate upwards */ 5541 memcg->vmstats->state[i] += delta; 5542 if (parent) 5543 parent->vmstats->state_pending[i] += delta; 5544 } 5545 5546 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5547 delta = memcg->vmstats->events_pending[i]; 5548 if (delta) 5549 memcg->vmstats->events_pending[i] = 0; 5550 5551 v = READ_ONCE(statc->events[i]); 5552 if (v != statc->events_prev[i]) { 5553 delta += v - statc->events_prev[i]; 5554 statc->events_prev[i] = v; 5555 } 5556 5557 if (!delta) 5558 continue; 5559 5560 memcg->vmstats->events[i] += delta; 5561 if (parent) 5562 parent->vmstats->events_pending[i] += delta; 5563 } 5564 5565 for_each_node_state(nid, N_MEMORY) { 5566 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5567 struct mem_cgroup_per_node *ppn = NULL; 5568 struct lruvec_stats_percpu *lstatc; 5569 5570 if (parent) 5571 ppn = parent->nodeinfo[nid]; 5572 5573 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5574 5575 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5576 delta = pn->lruvec_stats.state_pending[i]; 5577 if (delta) 5578 pn->lruvec_stats.state_pending[i] = 0; 5579 5580 v = READ_ONCE(lstatc->state[i]); 5581 if (v != lstatc->state_prev[i]) { 5582 delta += v - lstatc->state_prev[i]; 5583 lstatc->state_prev[i] = v; 5584 } 5585 5586 if (!delta) 5587 continue; 5588 5589 pn->lruvec_stats.state[i] += delta; 5590 if (ppn) 5591 ppn->lruvec_stats.state_pending[i] += delta; 5592 } 5593 } 5594 } 5595 5596 #ifdef CONFIG_MMU 5597 /* Handlers for move charge at task migration. */ 5598 static int mem_cgroup_do_precharge(unsigned long count) 5599 { 5600 int ret; 5601 5602 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5603 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5604 if (!ret) { 5605 mc.precharge += count; 5606 return ret; 5607 } 5608 5609 /* Try charges one by one with reclaim, but do not retry */ 5610 while (count--) { 5611 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5612 if (ret) 5613 return ret; 5614 mc.precharge++; 5615 cond_resched(); 5616 } 5617 return 0; 5618 } 5619 5620 union mc_target { 5621 struct page *page; 5622 swp_entry_t ent; 5623 }; 5624 5625 enum mc_target_type { 5626 MC_TARGET_NONE = 0, 5627 MC_TARGET_PAGE, 5628 MC_TARGET_SWAP, 5629 MC_TARGET_DEVICE, 5630 }; 5631 5632 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5633 unsigned long addr, pte_t ptent) 5634 { 5635 struct page *page = vm_normal_page(vma, addr, ptent); 5636 5637 if (!page || !page_mapped(page)) 5638 return NULL; 5639 if (PageAnon(page)) { 5640 if (!(mc.flags & MOVE_ANON)) 5641 return NULL; 5642 } else { 5643 if (!(mc.flags & MOVE_FILE)) 5644 return NULL; 5645 } 5646 if (!get_page_unless_zero(page)) 5647 return NULL; 5648 5649 return page; 5650 } 5651 5652 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5653 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5654 pte_t ptent, swp_entry_t *entry) 5655 { 5656 struct page *page = NULL; 5657 swp_entry_t ent = pte_to_swp_entry(ptent); 5658 5659 if (!(mc.flags & MOVE_ANON)) 5660 return NULL; 5661 5662 /* 5663 * Handle device private pages that are not accessible by the CPU, but 5664 * stored as special swap entries in the page table. 5665 */ 5666 if (is_device_private_entry(ent)) { 5667 page = pfn_swap_entry_to_page(ent); 5668 if (!get_page_unless_zero(page)) 5669 return NULL; 5670 return page; 5671 } 5672 5673 if (non_swap_entry(ent)) 5674 return NULL; 5675 5676 /* 5677 * Because swap_cache_get_folio() updates some statistics counter, 5678 * we call find_get_page() with swapper_space directly. 5679 */ 5680 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5681 entry->val = ent.val; 5682 5683 return page; 5684 } 5685 #else 5686 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5687 pte_t ptent, swp_entry_t *entry) 5688 { 5689 return NULL; 5690 } 5691 #endif 5692 5693 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5694 unsigned long addr, pte_t ptent) 5695 { 5696 unsigned long index; 5697 struct folio *folio; 5698 5699 if (!vma->vm_file) /* anonymous vma */ 5700 return NULL; 5701 if (!(mc.flags & MOVE_FILE)) 5702 return NULL; 5703 5704 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5705 /* shmem/tmpfs may report page out on swap: account for that too. */ 5706 index = linear_page_index(vma, addr); 5707 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5708 if (!folio) 5709 return NULL; 5710 return folio_file_page(folio, index); 5711 } 5712 5713 /** 5714 * mem_cgroup_move_account - move account of the page 5715 * @page: the page 5716 * @compound: charge the page as compound or small page 5717 * @from: mem_cgroup which the page is moved from. 5718 * @to: mem_cgroup which the page is moved to. @from != @to. 5719 * 5720 * The page must be locked and not on the LRU. 5721 * 5722 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5723 * from old cgroup. 5724 */ 5725 static int mem_cgroup_move_account(struct page *page, 5726 bool compound, 5727 struct mem_cgroup *from, 5728 struct mem_cgroup *to) 5729 { 5730 struct folio *folio = page_folio(page); 5731 struct lruvec *from_vec, *to_vec; 5732 struct pglist_data *pgdat; 5733 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5734 int nid, ret; 5735 5736 VM_BUG_ON(from == to); 5737 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5738 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5739 VM_BUG_ON(compound && !folio_test_large(folio)); 5740 5741 ret = -EINVAL; 5742 if (folio_memcg(folio) != from) 5743 goto out; 5744 5745 pgdat = folio_pgdat(folio); 5746 from_vec = mem_cgroup_lruvec(from, pgdat); 5747 to_vec = mem_cgroup_lruvec(to, pgdat); 5748 5749 folio_memcg_lock(folio); 5750 5751 if (folio_test_anon(folio)) { 5752 if (folio_mapped(folio)) { 5753 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5754 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5755 if (folio_test_transhuge(folio)) { 5756 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5757 -nr_pages); 5758 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5759 nr_pages); 5760 } 5761 } 5762 } else { 5763 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5764 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5765 5766 if (folio_test_swapbacked(folio)) { 5767 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5768 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5769 } 5770 5771 if (folio_mapped(folio)) { 5772 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5773 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5774 } 5775 5776 if (folio_test_dirty(folio)) { 5777 struct address_space *mapping = folio_mapping(folio); 5778 5779 if (mapping_can_writeback(mapping)) { 5780 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5781 -nr_pages); 5782 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5783 nr_pages); 5784 } 5785 } 5786 } 5787 5788 #ifdef CONFIG_SWAP 5789 if (folio_test_swapcache(folio)) { 5790 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 5791 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 5792 } 5793 #endif 5794 if (folio_test_writeback(folio)) { 5795 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5796 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5797 } 5798 5799 /* 5800 * All state has been migrated, let's switch to the new memcg. 5801 * 5802 * It is safe to change page's memcg here because the page 5803 * is referenced, charged, isolated, and locked: we can't race 5804 * with (un)charging, migration, LRU putback, or anything else 5805 * that would rely on a stable page's memory cgroup. 5806 * 5807 * Note that lock_page_memcg is a memcg lock, not a page lock, 5808 * to save space. As soon as we switch page's memory cgroup to a 5809 * new memcg that isn't locked, the above state can change 5810 * concurrently again. Make sure we're truly done with it. 5811 */ 5812 smp_mb(); 5813 5814 css_get(&to->css); 5815 css_put(&from->css); 5816 5817 folio->memcg_data = (unsigned long)to; 5818 5819 __folio_memcg_unlock(from); 5820 5821 ret = 0; 5822 nid = folio_nid(folio); 5823 5824 local_irq_disable(); 5825 mem_cgroup_charge_statistics(to, nr_pages); 5826 memcg_check_events(to, nid); 5827 mem_cgroup_charge_statistics(from, -nr_pages); 5828 memcg_check_events(from, nid); 5829 local_irq_enable(); 5830 out: 5831 return ret; 5832 } 5833 5834 /** 5835 * get_mctgt_type - get target type of moving charge 5836 * @vma: the vma the pte to be checked belongs 5837 * @addr: the address corresponding to the pte to be checked 5838 * @ptent: the pte to be checked 5839 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5840 * 5841 * Returns 5842 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5843 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5844 * move charge. if @target is not NULL, the page is stored in target->page 5845 * with extra refcnt got(Callers should handle it). 5846 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5847 * target for charge migration. if @target is not NULL, the entry is stored 5848 * in target->ent. 5849 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and 5850 * thus not on the lru. 5851 * For now we such page is charge like a regular page would be as for all 5852 * intent and purposes it is just special memory taking the place of a 5853 * regular page. 5854 * 5855 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5856 * 5857 * Called with pte lock held. 5858 */ 5859 5860 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5861 unsigned long addr, pte_t ptent, union mc_target *target) 5862 { 5863 struct page *page = NULL; 5864 enum mc_target_type ret = MC_TARGET_NONE; 5865 swp_entry_t ent = { .val = 0 }; 5866 5867 if (pte_present(ptent)) 5868 page = mc_handle_present_pte(vma, addr, ptent); 5869 else if (pte_none_mostly(ptent)) 5870 /* 5871 * PTE markers should be treated as a none pte here, separated 5872 * from other swap handling below. 5873 */ 5874 page = mc_handle_file_pte(vma, addr, ptent); 5875 else if (is_swap_pte(ptent)) 5876 page = mc_handle_swap_pte(vma, ptent, &ent); 5877 5878 if (target && page) { 5879 if (!trylock_page(page)) { 5880 put_page(page); 5881 return ret; 5882 } 5883 /* 5884 * page_mapped() must be stable during the move. This 5885 * pte is locked, so if it's present, the page cannot 5886 * become unmapped. If it isn't, we have only partial 5887 * control over the mapped state: the page lock will 5888 * prevent new faults against pagecache and swapcache, 5889 * so an unmapped page cannot become mapped. However, 5890 * if the page is already mapped elsewhere, it can 5891 * unmap, and there is nothing we can do about it. 5892 * Alas, skip moving the page in this case. 5893 */ 5894 if (!pte_present(ptent) && page_mapped(page)) { 5895 unlock_page(page); 5896 put_page(page); 5897 return ret; 5898 } 5899 } 5900 5901 if (!page && !ent.val) 5902 return ret; 5903 if (page) { 5904 /* 5905 * Do only loose check w/o serialization. 5906 * mem_cgroup_move_account() checks the page is valid or 5907 * not under LRU exclusion. 5908 */ 5909 if (page_memcg(page) == mc.from) { 5910 ret = MC_TARGET_PAGE; 5911 if (is_device_private_page(page) || 5912 is_device_coherent_page(page)) 5913 ret = MC_TARGET_DEVICE; 5914 if (target) 5915 target->page = page; 5916 } 5917 if (!ret || !target) { 5918 if (target) 5919 unlock_page(page); 5920 put_page(page); 5921 } 5922 } 5923 /* 5924 * There is a swap entry and a page doesn't exist or isn't charged. 5925 * But we cannot move a tail-page in a THP. 5926 */ 5927 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5928 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5929 ret = MC_TARGET_SWAP; 5930 if (target) 5931 target->ent = ent; 5932 } 5933 return ret; 5934 } 5935 5936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5937 /* 5938 * We don't consider PMD mapped swapping or file mapped pages because THP does 5939 * not support them for now. 5940 * Caller should make sure that pmd_trans_huge(pmd) is true. 5941 */ 5942 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5943 unsigned long addr, pmd_t pmd, union mc_target *target) 5944 { 5945 struct page *page = NULL; 5946 enum mc_target_type ret = MC_TARGET_NONE; 5947 5948 if (unlikely(is_swap_pmd(pmd))) { 5949 VM_BUG_ON(thp_migration_supported() && 5950 !is_pmd_migration_entry(pmd)); 5951 return ret; 5952 } 5953 page = pmd_page(pmd); 5954 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5955 if (!(mc.flags & MOVE_ANON)) 5956 return ret; 5957 if (page_memcg(page) == mc.from) { 5958 ret = MC_TARGET_PAGE; 5959 if (target) { 5960 get_page(page); 5961 if (!trylock_page(page)) { 5962 put_page(page); 5963 return MC_TARGET_NONE; 5964 } 5965 target->page = page; 5966 } 5967 } 5968 return ret; 5969 } 5970 #else 5971 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5972 unsigned long addr, pmd_t pmd, union mc_target *target) 5973 { 5974 return MC_TARGET_NONE; 5975 } 5976 #endif 5977 5978 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5979 unsigned long addr, unsigned long end, 5980 struct mm_walk *walk) 5981 { 5982 struct vm_area_struct *vma = walk->vma; 5983 pte_t *pte; 5984 spinlock_t *ptl; 5985 5986 ptl = pmd_trans_huge_lock(pmd, vma); 5987 if (ptl) { 5988 /* 5989 * Note their can not be MC_TARGET_DEVICE for now as we do not 5990 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5991 * this might change. 5992 */ 5993 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5994 mc.precharge += HPAGE_PMD_NR; 5995 spin_unlock(ptl); 5996 return 0; 5997 } 5998 5999 if (pmd_trans_unstable(pmd)) 6000 return 0; 6001 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6002 for (; addr != end; pte++, addr += PAGE_SIZE) 6003 if (get_mctgt_type(vma, addr, *pte, NULL)) 6004 mc.precharge++; /* increment precharge temporarily */ 6005 pte_unmap_unlock(pte - 1, ptl); 6006 cond_resched(); 6007 6008 return 0; 6009 } 6010 6011 static const struct mm_walk_ops precharge_walk_ops = { 6012 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6013 }; 6014 6015 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6016 { 6017 unsigned long precharge; 6018 6019 mmap_read_lock(mm); 6020 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6021 mmap_read_unlock(mm); 6022 6023 precharge = mc.precharge; 6024 mc.precharge = 0; 6025 6026 return precharge; 6027 } 6028 6029 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6030 { 6031 unsigned long precharge = mem_cgroup_count_precharge(mm); 6032 6033 VM_BUG_ON(mc.moving_task); 6034 mc.moving_task = current; 6035 return mem_cgroup_do_precharge(precharge); 6036 } 6037 6038 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6039 static void __mem_cgroup_clear_mc(void) 6040 { 6041 struct mem_cgroup *from = mc.from; 6042 struct mem_cgroup *to = mc.to; 6043 6044 /* we must uncharge all the leftover precharges from mc.to */ 6045 if (mc.precharge) { 6046 cancel_charge(mc.to, mc.precharge); 6047 mc.precharge = 0; 6048 } 6049 /* 6050 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6051 * we must uncharge here. 6052 */ 6053 if (mc.moved_charge) { 6054 cancel_charge(mc.from, mc.moved_charge); 6055 mc.moved_charge = 0; 6056 } 6057 /* we must fixup refcnts and charges */ 6058 if (mc.moved_swap) { 6059 /* uncharge swap account from the old cgroup */ 6060 if (!mem_cgroup_is_root(mc.from)) 6061 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6062 6063 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6064 6065 /* 6066 * we charged both to->memory and to->memsw, so we 6067 * should uncharge to->memory. 6068 */ 6069 if (!mem_cgroup_is_root(mc.to)) 6070 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6071 6072 mc.moved_swap = 0; 6073 } 6074 memcg_oom_recover(from); 6075 memcg_oom_recover(to); 6076 wake_up_all(&mc.waitq); 6077 } 6078 6079 static void mem_cgroup_clear_mc(void) 6080 { 6081 struct mm_struct *mm = mc.mm; 6082 6083 /* 6084 * we must clear moving_task before waking up waiters at the end of 6085 * task migration. 6086 */ 6087 mc.moving_task = NULL; 6088 __mem_cgroup_clear_mc(); 6089 spin_lock(&mc.lock); 6090 mc.from = NULL; 6091 mc.to = NULL; 6092 mc.mm = NULL; 6093 spin_unlock(&mc.lock); 6094 6095 mmput(mm); 6096 } 6097 6098 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6099 { 6100 struct cgroup_subsys_state *css; 6101 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6102 struct mem_cgroup *from; 6103 struct task_struct *leader, *p; 6104 struct mm_struct *mm; 6105 unsigned long move_flags; 6106 int ret = 0; 6107 6108 /* charge immigration isn't supported on the default hierarchy */ 6109 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6110 return 0; 6111 6112 /* 6113 * Multi-process migrations only happen on the default hierarchy 6114 * where charge immigration is not used. Perform charge 6115 * immigration if @tset contains a leader and whine if there are 6116 * multiple. 6117 */ 6118 p = NULL; 6119 cgroup_taskset_for_each_leader(leader, css, tset) { 6120 WARN_ON_ONCE(p); 6121 p = leader; 6122 memcg = mem_cgroup_from_css(css); 6123 } 6124 if (!p) 6125 return 0; 6126 6127 /* 6128 * We are now committed to this value whatever it is. Changes in this 6129 * tunable will only affect upcoming migrations, not the current one. 6130 * So we need to save it, and keep it going. 6131 */ 6132 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6133 if (!move_flags) 6134 return 0; 6135 6136 from = mem_cgroup_from_task(p); 6137 6138 VM_BUG_ON(from == memcg); 6139 6140 mm = get_task_mm(p); 6141 if (!mm) 6142 return 0; 6143 /* We move charges only when we move a owner of the mm */ 6144 if (mm->owner == p) { 6145 VM_BUG_ON(mc.from); 6146 VM_BUG_ON(mc.to); 6147 VM_BUG_ON(mc.precharge); 6148 VM_BUG_ON(mc.moved_charge); 6149 VM_BUG_ON(mc.moved_swap); 6150 6151 spin_lock(&mc.lock); 6152 mc.mm = mm; 6153 mc.from = from; 6154 mc.to = memcg; 6155 mc.flags = move_flags; 6156 spin_unlock(&mc.lock); 6157 /* We set mc.moving_task later */ 6158 6159 ret = mem_cgroup_precharge_mc(mm); 6160 if (ret) 6161 mem_cgroup_clear_mc(); 6162 } else { 6163 mmput(mm); 6164 } 6165 return ret; 6166 } 6167 6168 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6169 { 6170 if (mc.to) 6171 mem_cgroup_clear_mc(); 6172 } 6173 6174 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6175 unsigned long addr, unsigned long end, 6176 struct mm_walk *walk) 6177 { 6178 int ret = 0; 6179 struct vm_area_struct *vma = walk->vma; 6180 pte_t *pte; 6181 spinlock_t *ptl; 6182 enum mc_target_type target_type; 6183 union mc_target target; 6184 struct page *page; 6185 6186 ptl = pmd_trans_huge_lock(pmd, vma); 6187 if (ptl) { 6188 if (mc.precharge < HPAGE_PMD_NR) { 6189 spin_unlock(ptl); 6190 return 0; 6191 } 6192 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6193 if (target_type == MC_TARGET_PAGE) { 6194 page = target.page; 6195 if (isolate_lru_page(page)) { 6196 if (!mem_cgroup_move_account(page, true, 6197 mc.from, mc.to)) { 6198 mc.precharge -= HPAGE_PMD_NR; 6199 mc.moved_charge += HPAGE_PMD_NR; 6200 } 6201 putback_lru_page(page); 6202 } 6203 unlock_page(page); 6204 put_page(page); 6205 } else if (target_type == MC_TARGET_DEVICE) { 6206 page = target.page; 6207 if (!mem_cgroup_move_account(page, true, 6208 mc.from, mc.to)) { 6209 mc.precharge -= HPAGE_PMD_NR; 6210 mc.moved_charge += HPAGE_PMD_NR; 6211 } 6212 unlock_page(page); 6213 put_page(page); 6214 } 6215 spin_unlock(ptl); 6216 return 0; 6217 } 6218 6219 if (pmd_trans_unstable(pmd)) 6220 return 0; 6221 retry: 6222 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6223 for (; addr != end; addr += PAGE_SIZE) { 6224 pte_t ptent = *(pte++); 6225 bool device = false; 6226 swp_entry_t ent; 6227 6228 if (!mc.precharge) 6229 break; 6230 6231 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6232 case MC_TARGET_DEVICE: 6233 device = true; 6234 fallthrough; 6235 case MC_TARGET_PAGE: 6236 page = target.page; 6237 /* 6238 * We can have a part of the split pmd here. Moving it 6239 * can be done but it would be too convoluted so simply 6240 * ignore such a partial THP and keep it in original 6241 * memcg. There should be somebody mapping the head. 6242 */ 6243 if (PageTransCompound(page)) 6244 goto put; 6245 if (!device && !isolate_lru_page(page)) 6246 goto put; 6247 if (!mem_cgroup_move_account(page, false, 6248 mc.from, mc.to)) { 6249 mc.precharge--; 6250 /* we uncharge from mc.from later. */ 6251 mc.moved_charge++; 6252 } 6253 if (!device) 6254 putback_lru_page(page); 6255 put: /* get_mctgt_type() gets & locks the page */ 6256 unlock_page(page); 6257 put_page(page); 6258 break; 6259 case MC_TARGET_SWAP: 6260 ent = target.ent; 6261 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6262 mc.precharge--; 6263 mem_cgroup_id_get_many(mc.to, 1); 6264 /* we fixup other refcnts and charges later. */ 6265 mc.moved_swap++; 6266 } 6267 break; 6268 default: 6269 break; 6270 } 6271 } 6272 pte_unmap_unlock(pte - 1, ptl); 6273 cond_resched(); 6274 6275 if (addr != end) { 6276 /* 6277 * We have consumed all precharges we got in can_attach(). 6278 * We try charge one by one, but don't do any additional 6279 * charges to mc.to if we have failed in charge once in attach() 6280 * phase. 6281 */ 6282 ret = mem_cgroup_do_precharge(1); 6283 if (!ret) 6284 goto retry; 6285 } 6286 6287 return ret; 6288 } 6289 6290 static const struct mm_walk_ops charge_walk_ops = { 6291 .pmd_entry = mem_cgroup_move_charge_pte_range, 6292 }; 6293 6294 static void mem_cgroup_move_charge(void) 6295 { 6296 lru_add_drain_all(); 6297 /* 6298 * Signal lock_page_memcg() to take the memcg's move_lock 6299 * while we're moving its pages to another memcg. Then wait 6300 * for already started RCU-only updates to finish. 6301 */ 6302 atomic_inc(&mc.from->moving_account); 6303 synchronize_rcu(); 6304 retry: 6305 if (unlikely(!mmap_read_trylock(mc.mm))) { 6306 /* 6307 * Someone who are holding the mmap_lock might be waiting in 6308 * waitq. So we cancel all extra charges, wake up all waiters, 6309 * and retry. Because we cancel precharges, we might not be able 6310 * to move enough charges, but moving charge is a best-effort 6311 * feature anyway, so it wouldn't be a big problem. 6312 */ 6313 __mem_cgroup_clear_mc(); 6314 cond_resched(); 6315 goto retry; 6316 } 6317 /* 6318 * When we have consumed all precharges and failed in doing 6319 * additional charge, the page walk just aborts. 6320 */ 6321 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6322 mmap_read_unlock(mc.mm); 6323 atomic_dec(&mc.from->moving_account); 6324 } 6325 6326 static void mem_cgroup_move_task(void) 6327 { 6328 if (mc.to) { 6329 mem_cgroup_move_charge(); 6330 mem_cgroup_clear_mc(); 6331 } 6332 } 6333 #else /* !CONFIG_MMU */ 6334 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6335 { 6336 return 0; 6337 } 6338 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6339 { 6340 } 6341 static void mem_cgroup_move_task(void) 6342 { 6343 } 6344 #endif 6345 6346 #ifdef CONFIG_LRU_GEN 6347 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6348 { 6349 struct task_struct *task; 6350 struct cgroup_subsys_state *css; 6351 6352 /* find the first leader if there is any */ 6353 cgroup_taskset_for_each_leader(task, css, tset) 6354 break; 6355 6356 if (!task) 6357 return; 6358 6359 task_lock(task); 6360 if (task->mm && READ_ONCE(task->mm->owner) == task) 6361 lru_gen_migrate_mm(task->mm); 6362 task_unlock(task); 6363 } 6364 #else 6365 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6366 { 6367 } 6368 #endif /* CONFIG_LRU_GEN */ 6369 6370 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6371 { 6372 if (value == PAGE_COUNTER_MAX) 6373 seq_puts(m, "max\n"); 6374 else 6375 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6376 6377 return 0; 6378 } 6379 6380 static u64 memory_current_read(struct cgroup_subsys_state *css, 6381 struct cftype *cft) 6382 { 6383 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6384 6385 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6386 } 6387 6388 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6389 struct cftype *cft) 6390 { 6391 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6392 6393 return (u64)memcg->memory.watermark * PAGE_SIZE; 6394 } 6395 6396 static int memory_min_show(struct seq_file *m, void *v) 6397 { 6398 return seq_puts_memcg_tunable(m, 6399 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6400 } 6401 6402 static ssize_t memory_min_write(struct kernfs_open_file *of, 6403 char *buf, size_t nbytes, loff_t off) 6404 { 6405 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6406 unsigned long min; 6407 int err; 6408 6409 buf = strstrip(buf); 6410 err = page_counter_memparse(buf, "max", &min); 6411 if (err) 6412 return err; 6413 6414 page_counter_set_min(&memcg->memory, min); 6415 6416 return nbytes; 6417 } 6418 6419 static int memory_low_show(struct seq_file *m, void *v) 6420 { 6421 return seq_puts_memcg_tunable(m, 6422 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6423 } 6424 6425 static ssize_t memory_low_write(struct kernfs_open_file *of, 6426 char *buf, size_t nbytes, loff_t off) 6427 { 6428 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6429 unsigned long low; 6430 int err; 6431 6432 buf = strstrip(buf); 6433 err = page_counter_memparse(buf, "max", &low); 6434 if (err) 6435 return err; 6436 6437 page_counter_set_low(&memcg->memory, low); 6438 6439 return nbytes; 6440 } 6441 6442 static int memory_high_show(struct seq_file *m, void *v) 6443 { 6444 return seq_puts_memcg_tunable(m, 6445 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6446 } 6447 6448 static ssize_t memory_high_write(struct kernfs_open_file *of, 6449 char *buf, size_t nbytes, loff_t off) 6450 { 6451 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6452 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6453 bool drained = false; 6454 unsigned long high; 6455 int err; 6456 6457 buf = strstrip(buf); 6458 err = page_counter_memparse(buf, "max", &high); 6459 if (err) 6460 return err; 6461 6462 page_counter_set_high(&memcg->memory, high); 6463 6464 for (;;) { 6465 unsigned long nr_pages = page_counter_read(&memcg->memory); 6466 unsigned long reclaimed; 6467 6468 if (nr_pages <= high) 6469 break; 6470 6471 if (signal_pending(current)) 6472 break; 6473 6474 if (!drained) { 6475 drain_all_stock(memcg); 6476 drained = true; 6477 continue; 6478 } 6479 6480 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6481 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6482 6483 if (!reclaimed && !nr_retries--) 6484 break; 6485 } 6486 6487 memcg_wb_domain_size_changed(memcg); 6488 return nbytes; 6489 } 6490 6491 static int memory_max_show(struct seq_file *m, void *v) 6492 { 6493 return seq_puts_memcg_tunable(m, 6494 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6495 } 6496 6497 static ssize_t memory_max_write(struct kernfs_open_file *of, 6498 char *buf, size_t nbytes, loff_t off) 6499 { 6500 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6501 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6502 bool drained = false; 6503 unsigned long max; 6504 int err; 6505 6506 buf = strstrip(buf); 6507 err = page_counter_memparse(buf, "max", &max); 6508 if (err) 6509 return err; 6510 6511 xchg(&memcg->memory.max, max); 6512 6513 for (;;) { 6514 unsigned long nr_pages = page_counter_read(&memcg->memory); 6515 6516 if (nr_pages <= max) 6517 break; 6518 6519 if (signal_pending(current)) 6520 break; 6521 6522 if (!drained) { 6523 drain_all_stock(memcg); 6524 drained = true; 6525 continue; 6526 } 6527 6528 if (nr_reclaims) { 6529 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6530 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6531 nr_reclaims--; 6532 continue; 6533 } 6534 6535 memcg_memory_event(memcg, MEMCG_OOM); 6536 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6537 break; 6538 } 6539 6540 memcg_wb_domain_size_changed(memcg); 6541 return nbytes; 6542 } 6543 6544 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6545 { 6546 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6547 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6548 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6549 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6550 seq_printf(m, "oom_kill %lu\n", 6551 atomic_long_read(&events[MEMCG_OOM_KILL])); 6552 seq_printf(m, "oom_group_kill %lu\n", 6553 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6554 } 6555 6556 static int memory_events_show(struct seq_file *m, void *v) 6557 { 6558 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6559 6560 __memory_events_show(m, memcg->memory_events); 6561 return 0; 6562 } 6563 6564 static int memory_events_local_show(struct seq_file *m, void *v) 6565 { 6566 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6567 6568 __memory_events_show(m, memcg->memory_events_local); 6569 return 0; 6570 } 6571 6572 static int memory_stat_show(struct seq_file *m, void *v) 6573 { 6574 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6575 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6576 6577 if (!buf) 6578 return -ENOMEM; 6579 memory_stat_format(memcg, buf, PAGE_SIZE); 6580 seq_puts(m, buf); 6581 kfree(buf); 6582 return 0; 6583 } 6584 6585 #ifdef CONFIG_NUMA 6586 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6587 int item) 6588 { 6589 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6590 } 6591 6592 static int memory_numa_stat_show(struct seq_file *m, void *v) 6593 { 6594 int i; 6595 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6596 6597 mem_cgroup_flush_stats(); 6598 6599 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6600 int nid; 6601 6602 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6603 continue; 6604 6605 seq_printf(m, "%s", memory_stats[i].name); 6606 for_each_node_state(nid, N_MEMORY) { 6607 u64 size; 6608 struct lruvec *lruvec; 6609 6610 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6611 size = lruvec_page_state_output(lruvec, 6612 memory_stats[i].idx); 6613 seq_printf(m, " N%d=%llu", nid, size); 6614 } 6615 seq_putc(m, '\n'); 6616 } 6617 6618 return 0; 6619 } 6620 #endif 6621 6622 static int memory_oom_group_show(struct seq_file *m, void *v) 6623 { 6624 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6625 6626 seq_printf(m, "%d\n", memcg->oom_group); 6627 6628 return 0; 6629 } 6630 6631 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6632 char *buf, size_t nbytes, loff_t off) 6633 { 6634 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6635 int ret, oom_group; 6636 6637 buf = strstrip(buf); 6638 if (!buf) 6639 return -EINVAL; 6640 6641 ret = kstrtoint(buf, 0, &oom_group); 6642 if (ret) 6643 return ret; 6644 6645 if (oom_group != 0 && oom_group != 1) 6646 return -EINVAL; 6647 6648 memcg->oom_group = oom_group; 6649 6650 return nbytes; 6651 } 6652 6653 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6654 size_t nbytes, loff_t off) 6655 { 6656 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6657 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6658 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6659 unsigned int reclaim_options; 6660 int err; 6661 6662 buf = strstrip(buf); 6663 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6664 if (err) 6665 return err; 6666 6667 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6668 while (nr_reclaimed < nr_to_reclaim) { 6669 unsigned long reclaimed; 6670 6671 if (signal_pending(current)) 6672 return -EINTR; 6673 6674 /* 6675 * This is the final attempt, drain percpu lru caches in the 6676 * hope of introducing more evictable pages for 6677 * try_to_free_mem_cgroup_pages(). 6678 */ 6679 if (!nr_retries) 6680 lru_add_drain_all(); 6681 6682 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6683 nr_to_reclaim - nr_reclaimed, 6684 GFP_KERNEL, reclaim_options); 6685 6686 if (!reclaimed && !nr_retries--) 6687 return -EAGAIN; 6688 6689 nr_reclaimed += reclaimed; 6690 } 6691 6692 return nbytes; 6693 } 6694 6695 static struct cftype memory_files[] = { 6696 { 6697 .name = "current", 6698 .flags = CFTYPE_NOT_ON_ROOT, 6699 .read_u64 = memory_current_read, 6700 }, 6701 { 6702 .name = "peak", 6703 .flags = CFTYPE_NOT_ON_ROOT, 6704 .read_u64 = memory_peak_read, 6705 }, 6706 { 6707 .name = "min", 6708 .flags = CFTYPE_NOT_ON_ROOT, 6709 .seq_show = memory_min_show, 6710 .write = memory_min_write, 6711 }, 6712 { 6713 .name = "low", 6714 .flags = CFTYPE_NOT_ON_ROOT, 6715 .seq_show = memory_low_show, 6716 .write = memory_low_write, 6717 }, 6718 { 6719 .name = "high", 6720 .flags = CFTYPE_NOT_ON_ROOT, 6721 .seq_show = memory_high_show, 6722 .write = memory_high_write, 6723 }, 6724 { 6725 .name = "max", 6726 .flags = CFTYPE_NOT_ON_ROOT, 6727 .seq_show = memory_max_show, 6728 .write = memory_max_write, 6729 }, 6730 { 6731 .name = "events", 6732 .flags = CFTYPE_NOT_ON_ROOT, 6733 .file_offset = offsetof(struct mem_cgroup, events_file), 6734 .seq_show = memory_events_show, 6735 }, 6736 { 6737 .name = "events.local", 6738 .flags = CFTYPE_NOT_ON_ROOT, 6739 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6740 .seq_show = memory_events_local_show, 6741 }, 6742 { 6743 .name = "stat", 6744 .seq_show = memory_stat_show, 6745 }, 6746 #ifdef CONFIG_NUMA 6747 { 6748 .name = "numa_stat", 6749 .seq_show = memory_numa_stat_show, 6750 }, 6751 #endif 6752 { 6753 .name = "oom.group", 6754 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6755 .seq_show = memory_oom_group_show, 6756 .write = memory_oom_group_write, 6757 }, 6758 { 6759 .name = "reclaim", 6760 .flags = CFTYPE_NS_DELEGATABLE, 6761 .write = memory_reclaim, 6762 }, 6763 { } /* terminate */ 6764 }; 6765 6766 struct cgroup_subsys memory_cgrp_subsys = { 6767 .css_alloc = mem_cgroup_css_alloc, 6768 .css_online = mem_cgroup_css_online, 6769 .css_offline = mem_cgroup_css_offline, 6770 .css_released = mem_cgroup_css_released, 6771 .css_free = mem_cgroup_css_free, 6772 .css_reset = mem_cgroup_css_reset, 6773 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6774 .can_attach = mem_cgroup_can_attach, 6775 .attach = mem_cgroup_attach, 6776 .cancel_attach = mem_cgroup_cancel_attach, 6777 .post_attach = mem_cgroup_move_task, 6778 .dfl_cftypes = memory_files, 6779 .legacy_cftypes = mem_cgroup_legacy_files, 6780 .early_init = 0, 6781 }; 6782 6783 /* 6784 * This function calculates an individual cgroup's effective 6785 * protection which is derived from its own memory.min/low, its 6786 * parent's and siblings' settings, as well as the actual memory 6787 * distribution in the tree. 6788 * 6789 * The following rules apply to the effective protection values: 6790 * 6791 * 1. At the first level of reclaim, effective protection is equal to 6792 * the declared protection in memory.min and memory.low. 6793 * 6794 * 2. To enable safe delegation of the protection configuration, at 6795 * subsequent levels the effective protection is capped to the 6796 * parent's effective protection. 6797 * 6798 * 3. To make complex and dynamic subtrees easier to configure, the 6799 * user is allowed to overcommit the declared protection at a given 6800 * level. If that is the case, the parent's effective protection is 6801 * distributed to the children in proportion to how much protection 6802 * they have declared and how much of it they are utilizing. 6803 * 6804 * This makes distribution proportional, but also work-conserving: 6805 * if one cgroup claims much more protection than it uses memory, 6806 * the unused remainder is available to its siblings. 6807 * 6808 * 4. Conversely, when the declared protection is undercommitted at a 6809 * given level, the distribution of the larger parental protection 6810 * budget is NOT proportional. A cgroup's protection from a sibling 6811 * is capped to its own memory.min/low setting. 6812 * 6813 * 5. However, to allow protecting recursive subtrees from each other 6814 * without having to declare each individual cgroup's fixed share 6815 * of the ancestor's claim to protection, any unutilized - 6816 * "floating" - protection from up the tree is distributed in 6817 * proportion to each cgroup's *usage*. This makes the protection 6818 * neutral wrt sibling cgroups and lets them compete freely over 6819 * the shared parental protection budget, but it protects the 6820 * subtree as a whole from neighboring subtrees. 6821 * 6822 * Note that 4. and 5. are not in conflict: 4. is about protecting 6823 * against immediate siblings whereas 5. is about protecting against 6824 * neighboring subtrees. 6825 */ 6826 static unsigned long effective_protection(unsigned long usage, 6827 unsigned long parent_usage, 6828 unsigned long setting, 6829 unsigned long parent_effective, 6830 unsigned long siblings_protected) 6831 { 6832 unsigned long protected; 6833 unsigned long ep; 6834 6835 protected = min(usage, setting); 6836 /* 6837 * If all cgroups at this level combined claim and use more 6838 * protection then what the parent affords them, distribute 6839 * shares in proportion to utilization. 6840 * 6841 * We are using actual utilization rather than the statically 6842 * claimed protection in order to be work-conserving: claimed 6843 * but unused protection is available to siblings that would 6844 * otherwise get a smaller chunk than what they claimed. 6845 */ 6846 if (siblings_protected > parent_effective) 6847 return protected * parent_effective / siblings_protected; 6848 6849 /* 6850 * Ok, utilized protection of all children is within what the 6851 * parent affords them, so we know whatever this child claims 6852 * and utilizes is effectively protected. 6853 * 6854 * If there is unprotected usage beyond this value, reclaim 6855 * will apply pressure in proportion to that amount. 6856 * 6857 * If there is unutilized protection, the cgroup will be fully 6858 * shielded from reclaim, but we do return a smaller value for 6859 * protection than what the group could enjoy in theory. This 6860 * is okay. With the overcommit distribution above, effective 6861 * protection is always dependent on how memory is actually 6862 * consumed among the siblings anyway. 6863 */ 6864 ep = protected; 6865 6866 /* 6867 * If the children aren't claiming (all of) the protection 6868 * afforded to them by the parent, distribute the remainder in 6869 * proportion to the (unprotected) memory of each cgroup. That 6870 * way, cgroups that aren't explicitly prioritized wrt each 6871 * other compete freely over the allowance, but they are 6872 * collectively protected from neighboring trees. 6873 * 6874 * We're using unprotected memory for the weight so that if 6875 * some cgroups DO claim explicit protection, we don't protect 6876 * the same bytes twice. 6877 * 6878 * Check both usage and parent_usage against the respective 6879 * protected values. One should imply the other, but they 6880 * aren't read atomically - make sure the division is sane. 6881 */ 6882 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6883 return ep; 6884 if (parent_effective > siblings_protected && 6885 parent_usage > siblings_protected && 6886 usage > protected) { 6887 unsigned long unclaimed; 6888 6889 unclaimed = parent_effective - siblings_protected; 6890 unclaimed *= usage - protected; 6891 unclaimed /= parent_usage - siblings_protected; 6892 6893 ep += unclaimed; 6894 } 6895 6896 return ep; 6897 } 6898 6899 /** 6900 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6901 * @root: the top ancestor of the sub-tree being checked 6902 * @memcg: the memory cgroup to check 6903 * 6904 * WARNING: This function is not stateless! It can only be used as part 6905 * of a top-down tree iteration, not for isolated queries. 6906 */ 6907 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6908 struct mem_cgroup *memcg) 6909 { 6910 unsigned long usage, parent_usage; 6911 struct mem_cgroup *parent; 6912 6913 if (mem_cgroup_disabled()) 6914 return; 6915 6916 if (!root) 6917 root = root_mem_cgroup; 6918 6919 /* 6920 * Effective values of the reclaim targets are ignored so they 6921 * can be stale. Have a look at mem_cgroup_protection for more 6922 * details. 6923 * TODO: calculation should be more robust so that we do not need 6924 * that special casing. 6925 */ 6926 if (memcg == root) 6927 return; 6928 6929 usage = page_counter_read(&memcg->memory); 6930 if (!usage) 6931 return; 6932 6933 parent = parent_mem_cgroup(memcg); 6934 6935 if (parent == root) { 6936 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6937 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6938 return; 6939 } 6940 6941 parent_usage = page_counter_read(&parent->memory); 6942 6943 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6944 READ_ONCE(memcg->memory.min), 6945 READ_ONCE(parent->memory.emin), 6946 atomic_long_read(&parent->memory.children_min_usage))); 6947 6948 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6949 READ_ONCE(memcg->memory.low), 6950 READ_ONCE(parent->memory.elow), 6951 atomic_long_read(&parent->memory.children_low_usage))); 6952 } 6953 6954 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6955 gfp_t gfp) 6956 { 6957 long nr_pages = folio_nr_pages(folio); 6958 int ret; 6959 6960 ret = try_charge(memcg, gfp, nr_pages); 6961 if (ret) 6962 goto out; 6963 6964 css_get(&memcg->css); 6965 commit_charge(folio, memcg); 6966 6967 local_irq_disable(); 6968 mem_cgroup_charge_statistics(memcg, nr_pages); 6969 memcg_check_events(memcg, folio_nid(folio)); 6970 local_irq_enable(); 6971 out: 6972 return ret; 6973 } 6974 6975 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6976 { 6977 struct mem_cgroup *memcg; 6978 int ret; 6979 6980 memcg = get_mem_cgroup_from_mm(mm); 6981 ret = charge_memcg(folio, memcg, gfp); 6982 css_put(&memcg->css); 6983 6984 return ret; 6985 } 6986 6987 /** 6988 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 6989 * @folio: folio to charge. 6990 * @mm: mm context of the victim 6991 * @gfp: reclaim mode 6992 * @entry: swap entry for which the folio is allocated 6993 * 6994 * This function charges a folio allocated for swapin. Please call this before 6995 * adding the folio to the swapcache. 6996 * 6997 * Returns 0 on success. Otherwise, an error code is returned. 6998 */ 6999 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7000 gfp_t gfp, swp_entry_t entry) 7001 { 7002 struct mem_cgroup *memcg; 7003 unsigned short id; 7004 int ret; 7005 7006 if (mem_cgroup_disabled()) 7007 return 0; 7008 7009 id = lookup_swap_cgroup_id(entry); 7010 rcu_read_lock(); 7011 memcg = mem_cgroup_from_id(id); 7012 if (!memcg || !css_tryget_online(&memcg->css)) 7013 memcg = get_mem_cgroup_from_mm(mm); 7014 rcu_read_unlock(); 7015 7016 ret = charge_memcg(folio, memcg, gfp); 7017 7018 css_put(&memcg->css); 7019 return ret; 7020 } 7021 7022 /* 7023 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7024 * @entry: swap entry for which the page is charged 7025 * 7026 * Call this function after successfully adding the charged page to swapcache. 7027 * 7028 * Note: This function assumes the page for which swap slot is being uncharged 7029 * is order 0 page. 7030 */ 7031 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7032 { 7033 /* 7034 * Cgroup1's unified memory+swap counter has been charged with the 7035 * new swapcache page, finish the transfer by uncharging the swap 7036 * slot. The swap slot would also get uncharged when it dies, but 7037 * it can stick around indefinitely and we'd count the page twice 7038 * the entire time. 7039 * 7040 * Cgroup2 has separate resource counters for memory and swap, 7041 * so this is a non-issue here. Memory and swap charge lifetimes 7042 * correspond 1:1 to page and swap slot lifetimes: we charge the 7043 * page to memory here, and uncharge swap when the slot is freed. 7044 */ 7045 if (!mem_cgroup_disabled() && do_memsw_account()) { 7046 /* 7047 * The swap entry might not get freed for a long time, 7048 * let's not wait for it. The page already received a 7049 * memory+swap charge, drop the swap entry duplicate. 7050 */ 7051 mem_cgroup_uncharge_swap(entry, 1); 7052 } 7053 } 7054 7055 struct uncharge_gather { 7056 struct mem_cgroup *memcg; 7057 unsigned long nr_memory; 7058 unsigned long pgpgout; 7059 unsigned long nr_kmem; 7060 int nid; 7061 }; 7062 7063 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7064 { 7065 memset(ug, 0, sizeof(*ug)); 7066 } 7067 7068 static void uncharge_batch(const struct uncharge_gather *ug) 7069 { 7070 unsigned long flags; 7071 7072 if (ug->nr_memory) { 7073 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7074 if (do_memsw_account()) 7075 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7076 if (ug->nr_kmem) 7077 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7078 memcg_oom_recover(ug->memcg); 7079 } 7080 7081 local_irq_save(flags); 7082 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7083 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7084 memcg_check_events(ug->memcg, ug->nid); 7085 local_irq_restore(flags); 7086 7087 /* drop reference from uncharge_folio */ 7088 css_put(&ug->memcg->css); 7089 } 7090 7091 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7092 { 7093 long nr_pages; 7094 struct mem_cgroup *memcg; 7095 struct obj_cgroup *objcg; 7096 7097 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7098 7099 /* 7100 * Nobody should be changing or seriously looking at 7101 * folio memcg or objcg at this point, we have fully 7102 * exclusive access to the folio. 7103 */ 7104 if (folio_memcg_kmem(folio)) { 7105 objcg = __folio_objcg(folio); 7106 /* 7107 * This get matches the put at the end of the function and 7108 * kmem pages do not hold memcg references anymore. 7109 */ 7110 memcg = get_mem_cgroup_from_objcg(objcg); 7111 } else { 7112 memcg = __folio_memcg(folio); 7113 } 7114 7115 if (!memcg) 7116 return; 7117 7118 if (ug->memcg != memcg) { 7119 if (ug->memcg) { 7120 uncharge_batch(ug); 7121 uncharge_gather_clear(ug); 7122 } 7123 ug->memcg = memcg; 7124 ug->nid = folio_nid(folio); 7125 7126 /* pairs with css_put in uncharge_batch */ 7127 css_get(&memcg->css); 7128 } 7129 7130 nr_pages = folio_nr_pages(folio); 7131 7132 if (folio_memcg_kmem(folio)) { 7133 ug->nr_memory += nr_pages; 7134 ug->nr_kmem += nr_pages; 7135 7136 folio->memcg_data = 0; 7137 obj_cgroup_put(objcg); 7138 } else { 7139 /* LRU pages aren't accounted at the root level */ 7140 if (!mem_cgroup_is_root(memcg)) 7141 ug->nr_memory += nr_pages; 7142 ug->pgpgout++; 7143 7144 folio->memcg_data = 0; 7145 } 7146 7147 css_put(&memcg->css); 7148 } 7149 7150 void __mem_cgroup_uncharge(struct folio *folio) 7151 { 7152 struct uncharge_gather ug; 7153 7154 /* Don't touch folio->lru of any random page, pre-check: */ 7155 if (!folio_memcg(folio)) 7156 return; 7157 7158 uncharge_gather_clear(&ug); 7159 uncharge_folio(folio, &ug); 7160 uncharge_batch(&ug); 7161 } 7162 7163 /** 7164 * __mem_cgroup_uncharge_list - uncharge a list of page 7165 * @page_list: list of pages to uncharge 7166 * 7167 * Uncharge a list of pages previously charged with 7168 * __mem_cgroup_charge(). 7169 */ 7170 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7171 { 7172 struct uncharge_gather ug; 7173 struct folio *folio; 7174 7175 uncharge_gather_clear(&ug); 7176 list_for_each_entry(folio, page_list, lru) 7177 uncharge_folio(folio, &ug); 7178 if (ug.memcg) 7179 uncharge_batch(&ug); 7180 } 7181 7182 /** 7183 * mem_cgroup_migrate - Charge a folio's replacement. 7184 * @old: Currently circulating folio. 7185 * @new: Replacement folio. 7186 * 7187 * Charge @new as a replacement folio for @old. @old will 7188 * be uncharged upon free. 7189 * 7190 * Both folios must be locked, @new->mapping must be set up. 7191 */ 7192 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7193 { 7194 struct mem_cgroup *memcg; 7195 long nr_pages = folio_nr_pages(new); 7196 unsigned long flags; 7197 7198 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7199 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7200 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7201 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7202 7203 if (mem_cgroup_disabled()) 7204 return; 7205 7206 /* Page cache replacement: new folio already charged? */ 7207 if (folio_memcg(new)) 7208 return; 7209 7210 memcg = folio_memcg(old); 7211 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7212 if (!memcg) 7213 return; 7214 7215 /* Force-charge the new page. The old one will be freed soon */ 7216 if (!mem_cgroup_is_root(memcg)) { 7217 page_counter_charge(&memcg->memory, nr_pages); 7218 if (do_memsw_account()) 7219 page_counter_charge(&memcg->memsw, nr_pages); 7220 } 7221 7222 css_get(&memcg->css); 7223 commit_charge(new, memcg); 7224 7225 local_irq_save(flags); 7226 mem_cgroup_charge_statistics(memcg, nr_pages); 7227 memcg_check_events(memcg, folio_nid(new)); 7228 local_irq_restore(flags); 7229 } 7230 7231 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7232 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7233 7234 void mem_cgroup_sk_alloc(struct sock *sk) 7235 { 7236 struct mem_cgroup *memcg; 7237 7238 if (!mem_cgroup_sockets_enabled) 7239 return; 7240 7241 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7242 if (!in_task()) 7243 return; 7244 7245 rcu_read_lock(); 7246 memcg = mem_cgroup_from_task(current); 7247 if (mem_cgroup_is_root(memcg)) 7248 goto out; 7249 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7250 goto out; 7251 if (css_tryget(&memcg->css)) 7252 sk->sk_memcg = memcg; 7253 out: 7254 rcu_read_unlock(); 7255 } 7256 7257 void mem_cgroup_sk_free(struct sock *sk) 7258 { 7259 if (sk->sk_memcg) 7260 css_put(&sk->sk_memcg->css); 7261 } 7262 7263 /** 7264 * mem_cgroup_charge_skmem - charge socket memory 7265 * @memcg: memcg to charge 7266 * @nr_pages: number of pages to charge 7267 * @gfp_mask: reclaim mode 7268 * 7269 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7270 * @memcg's configured limit, %false if it doesn't. 7271 */ 7272 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7273 gfp_t gfp_mask) 7274 { 7275 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7276 struct page_counter *fail; 7277 7278 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7279 memcg->tcpmem_pressure = 0; 7280 return true; 7281 } 7282 memcg->tcpmem_pressure = 1; 7283 if (gfp_mask & __GFP_NOFAIL) { 7284 page_counter_charge(&memcg->tcpmem, nr_pages); 7285 return true; 7286 } 7287 return false; 7288 } 7289 7290 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7291 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7292 return true; 7293 } 7294 7295 return false; 7296 } 7297 7298 /** 7299 * mem_cgroup_uncharge_skmem - uncharge socket memory 7300 * @memcg: memcg to uncharge 7301 * @nr_pages: number of pages to uncharge 7302 */ 7303 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7304 { 7305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7306 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7307 return; 7308 } 7309 7310 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7311 7312 refill_stock(memcg, nr_pages); 7313 } 7314 7315 static int __init cgroup_memory(char *s) 7316 { 7317 char *token; 7318 7319 while ((token = strsep(&s, ",")) != NULL) { 7320 if (!*token) 7321 continue; 7322 if (!strcmp(token, "nosocket")) 7323 cgroup_memory_nosocket = true; 7324 if (!strcmp(token, "nokmem")) 7325 cgroup_memory_nokmem = true; 7326 if (!strcmp(token, "nobpf")) 7327 cgroup_memory_nobpf = true; 7328 } 7329 return 1; 7330 } 7331 __setup("cgroup.memory=", cgroup_memory); 7332 7333 /* 7334 * subsys_initcall() for memory controller. 7335 * 7336 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7337 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7338 * basically everything that doesn't depend on a specific mem_cgroup structure 7339 * should be initialized from here. 7340 */ 7341 static int __init mem_cgroup_init(void) 7342 { 7343 int cpu, node; 7344 7345 /* 7346 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7347 * used for per-memcg-per-cpu caching of per-node statistics. In order 7348 * to work fine, we should make sure that the overfill threshold can't 7349 * exceed S32_MAX / PAGE_SIZE. 7350 */ 7351 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7352 7353 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7354 memcg_hotplug_cpu_dead); 7355 7356 for_each_possible_cpu(cpu) 7357 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7358 drain_local_stock); 7359 7360 for_each_node(node) { 7361 struct mem_cgroup_tree_per_node *rtpn; 7362 7363 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7364 node_online(node) ? node : NUMA_NO_NODE); 7365 7366 rtpn->rb_root = RB_ROOT; 7367 rtpn->rb_rightmost = NULL; 7368 spin_lock_init(&rtpn->lock); 7369 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7370 } 7371 7372 return 0; 7373 } 7374 subsys_initcall(mem_cgroup_init); 7375 7376 #ifdef CONFIG_SWAP 7377 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7378 { 7379 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7380 /* 7381 * The root cgroup cannot be destroyed, so it's refcount must 7382 * always be >= 1. 7383 */ 7384 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7385 VM_BUG_ON(1); 7386 break; 7387 } 7388 memcg = parent_mem_cgroup(memcg); 7389 if (!memcg) 7390 memcg = root_mem_cgroup; 7391 } 7392 return memcg; 7393 } 7394 7395 /** 7396 * mem_cgroup_swapout - transfer a memsw charge to swap 7397 * @folio: folio whose memsw charge to transfer 7398 * @entry: swap entry to move the charge to 7399 * 7400 * Transfer the memsw charge of @folio to @entry. 7401 */ 7402 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7403 { 7404 struct mem_cgroup *memcg, *swap_memcg; 7405 unsigned int nr_entries; 7406 unsigned short oldid; 7407 7408 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7409 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7410 7411 if (mem_cgroup_disabled()) 7412 return; 7413 7414 if (!do_memsw_account()) 7415 return; 7416 7417 memcg = folio_memcg(folio); 7418 7419 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7420 if (!memcg) 7421 return; 7422 7423 /* 7424 * In case the memcg owning these pages has been offlined and doesn't 7425 * have an ID allocated to it anymore, charge the closest online 7426 * ancestor for the swap instead and transfer the memory+swap charge. 7427 */ 7428 swap_memcg = mem_cgroup_id_get_online(memcg); 7429 nr_entries = folio_nr_pages(folio); 7430 /* Get references for the tail pages, too */ 7431 if (nr_entries > 1) 7432 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7433 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7434 nr_entries); 7435 VM_BUG_ON_FOLIO(oldid, folio); 7436 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7437 7438 folio->memcg_data = 0; 7439 7440 if (!mem_cgroup_is_root(memcg)) 7441 page_counter_uncharge(&memcg->memory, nr_entries); 7442 7443 if (memcg != swap_memcg) { 7444 if (!mem_cgroup_is_root(swap_memcg)) 7445 page_counter_charge(&swap_memcg->memsw, nr_entries); 7446 page_counter_uncharge(&memcg->memsw, nr_entries); 7447 } 7448 7449 /* 7450 * Interrupts should be disabled here because the caller holds the 7451 * i_pages lock which is taken with interrupts-off. It is 7452 * important here to have the interrupts disabled because it is the 7453 * only synchronisation we have for updating the per-CPU variables. 7454 */ 7455 memcg_stats_lock(); 7456 mem_cgroup_charge_statistics(memcg, -nr_entries); 7457 memcg_stats_unlock(); 7458 memcg_check_events(memcg, folio_nid(folio)); 7459 7460 css_put(&memcg->css); 7461 } 7462 7463 /** 7464 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7465 * @folio: folio being added to swap 7466 * @entry: swap entry to charge 7467 * 7468 * Try to charge @folio's memcg for the swap space at @entry. 7469 * 7470 * Returns 0 on success, -ENOMEM on failure. 7471 */ 7472 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7473 { 7474 unsigned int nr_pages = folio_nr_pages(folio); 7475 struct page_counter *counter; 7476 struct mem_cgroup *memcg; 7477 unsigned short oldid; 7478 7479 if (do_memsw_account()) 7480 return 0; 7481 7482 memcg = folio_memcg(folio); 7483 7484 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7485 if (!memcg) 7486 return 0; 7487 7488 if (!entry.val) { 7489 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7490 return 0; 7491 } 7492 7493 memcg = mem_cgroup_id_get_online(memcg); 7494 7495 if (!mem_cgroup_is_root(memcg) && 7496 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7497 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7498 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7499 mem_cgroup_id_put(memcg); 7500 return -ENOMEM; 7501 } 7502 7503 /* Get references for the tail pages, too */ 7504 if (nr_pages > 1) 7505 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7506 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7507 VM_BUG_ON_FOLIO(oldid, folio); 7508 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7509 7510 return 0; 7511 } 7512 7513 /** 7514 * __mem_cgroup_uncharge_swap - uncharge swap space 7515 * @entry: swap entry to uncharge 7516 * @nr_pages: the amount of swap space to uncharge 7517 */ 7518 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7519 { 7520 struct mem_cgroup *memcg; 7521 unsigned short id; 7522 7523 if (mem_cgroup_disabled()) 7524 return; 7525 7526 id = swap_cgroup_record(entry, 0, nr_pages); 7527 rcu_read_lock(); 7528 memcg = mem_cgroup_from_id(id); 7529 if (memcg) { 7530 if (!mem_cgroup_is_root(memcg)) { 7531 if (do_memsw_account()) 7532 page_counter_uncharge(&memcg->memsw, nr_pages); 7533 else 7534 page_counter_uncharge(&memcg->swap, nr_pages); 7535 } 7536 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7537 mem_cgroup_id_put_many(memcg, nr_pages); 7538 } 7539 rcu_read_unlock(); 7540 } 7541 7542 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7543 { 7544 long nr_swap_pages = get_nr_swap_pages(); 7545 7546 if (mem_cgroup_disabled() || do_memsw_account()) 7547 return nr_swap_pages; 7548 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7549 nr_swap_pages = min_t(long, nr_swap_pages, 7550 READ_ONCE(memcg->swap.max) - 7551 page_counter_read(&memcg->swap)); 7552 return nr_swap_pages; 7553 } 7554 7555 bool mem_cgroup_swap_full(struct folio *folio) 7556 { 7557 struct mem_cgroup *memcg; 7558 7559 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7560 7561 if (vm_swap_full()) 7562 return true; 7563 if (do_memsw_account()) 7564 return false; 7565 7566 memcg = folio_memcg(folio); 7567 if (!memcg) 7568 return false; 7569 7570 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7571 unsigned long usage = page_counter_read(&memcg->swap); 7572 7573 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7574 usage * 2 >= READ_ONCE(memcg->swap.max)) 7575 return true; 7576 } 7577 7578 return false; 7579 } 7580 7581 static int __init setup_swap_account(char *s) 7582 { 7583 pr_warn_once("The swapaccount= commandline option is deprecated. " 7584 "Please report your usecase to linux-mm@kvack.org if you " 7585 "depend on this functionality.\n"); 7586 return 1; 7587 } 7588 __setup("swapaccount=", setup_swap_account); 7589 7590 static u64 swap_current_read(struct cgroup_subsys_state *css, 7591 struct cftype *cft) 7592 { 7593 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7594 7595 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7596 } 7597 7598 static int swap_high_show(struct seq_file *m, void *v) 7599 { 7600 return seq_puts_memcg_tunable(m, 7601 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7602 } 7603 7604 static ssize_t swap_high_write(struct kernfs_open_file *of, 7605 char *buf, size_t nbytes, loff_t off) 7606 { 7607 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7608 unsigned long high; 7609 int err; 7610 7611 buf = strstrip(buf); 7612 err = page_counter_memparse(buf, "max", &high); 7613 if (err) 7614 return err; 7615 7616 page_counter_set_high(&memcg->swap, high); 7617 7618 return nbytes; 7619 } 7620 7621 static int swap_max_show(struct seq_file *m, void *v) 7622 { 7623 return seq_puts_memcg_tunable(m, 7624 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7625 } 7626 7627 static ssize_t swap_max_write(struct kernfs_open_file *of, 7628 char *buf, size_t nbytes, loff_t off) 7629 { 7630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7631 unsigned long max; 7632 int err; 7633 7634 buf = strstrip(buf); 7635 err = page_counter_memparse(buf, "max", &max); 7636 if (err) 7637 return err; 7638 7639 xchg(&memcg->swap.max, max); 7640 7641 return nbytes; 7642 } 7643 7644 static int swap_events_show(struct seq_file *m, void *v) 7645 { 7646 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7647 7648 seq_printf(m, "high %lu\n", 7649 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7650 seq_printf(m, "max %lu\n", 7651 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7652 seq_printf(m, "fail %lu\n", 7653 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7654 7655 return 0; 7656 } 7657 7658 static struct cftype swap_files[] = { 7659 { 7660 .name = "swap.current", 7661 .flags = CFTYPE_NOT_ON_ROOT, 7662 .read_u64 = swap_current_read, 7663 }, 7664 { 7665 .name = "swap.high", 7666 .flags = CFTYPE_NOT_ON_ROOT, 7667 .seq_show = swap_high_show, 7668 .write = swap_high_write, 7669 }, 7670 { 7671 .name = "swap.max", 7672 .flags = CFTYPE_NOT_ON_ROOT, 7673 .seq_show = swap_max_show, 7674 .write = swap_max_write, 7675 }, 7676 { 7677 .name = "swap.events", 7678 .flags = CFTYPE_NOT_ON_ROOT, 7679 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7680 .seq_show = swap_events_show, 7681 }, 7682 { } /* terminate */ 7683 }; 7684 7685 static struct cftype memsw_files[] = { 7686 { 7687 .name = "memsw.usage_in_bytes", 7688 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7689 .read_u64 = mem_cgroup_read_u64, 7690 }, 7691 { 7692 .name = "memsw.max_usage_in_bytes", 7693 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7694 .write = mem_cgroup_reset, 7695 .read_u64 = mem_cgroup_read_u64, 7696 }, 7697 { 7698 .name = "memsw.limit_in_bytes", 7699 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7700 .write = mem_cgroup_write, 7701 .read_u64 = mem_cgroup_read_u64, 7702 }, 7703 { 7704 .name = "memsw.failcnt", 7705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7706 .write = mem_cgroup_reset, 7707 .read_u64 = mem_cgroup_read_u64, 7708 }, 7709 { }, /* terminate */ 7710 }; 7711 7712 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7713 /** 7714 * obj_cgroup_may_zswap - check if this cgroup can zswap 7715 * @objcg: the object cgroup 7716 * 7717 * Check if the hierarchical zswap limit has been reached. 7718 * 7719 * This doesn't check for specific headroom, and it is not atomic 7720 * either. But with zswap, the size of the allocation is only known 7721 * once compression has occured, and this optimistic pre-check avoids 7722 * spending cycles on compression when there is already no room left 7723 * or zswap is disabled altogether somewhere in the hierarchy. 7724 */ 7725 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7726 { 7727 struct mem_cgroup *memcg, *original_memcg; 7728 bool ret = true; 7729 7730 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7731 return true; 7732 7733 original_memcg = get_mem_cgroup_from_objcg(objcg); 7734 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 7735 memcg = parent_mem_cgroup(memcg)) { 7736 unsigned long max = READ_ONCE(memcg->zswap_max); 7737 unsigned long pages; 7738 7739 if (max == PAGE_COUNTER_MAX) 7740 continue; 7741 if (max == 0) { 7742 ret = false; 7743 break; 7744 } 7745 7746 cgroup_rstat_flush(memcg->css.cgroup); 7747 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7748 if (pages < max) 7749 continue; 7750 ret = false; 7751 break; 7752 } 7753 mem_cgroup_put(original_memcg); 7754 return ret; 7755 } 7756 7757 /** 7758 * obj_cgroup_charge_zswap - charge compression backend memory 7759 * @objcg: the object cgroup 7760 * @size: size of compressed object 7761 * 7762 * This forces the charge after obj_cgroup_may_swap() allowed 7763 * compression and storage in zwap for this cgroup to go ahead. 7764 */ 7765 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7766 { 7767 struct mem_cgroup *memcg; 7768 7769 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7770 return; 7771 7772 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7773 7774 /* PF_MEMALLOC context, charging must succeed */ 7775 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7776 VM_WARN_ON_ONCE(1); 7777 7778 rcu_read_lock(); 7779 memcg = obj_cgroup_memcg(objcg); 7780 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7781 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7782 rcu_read_unlock(); 7783 } 7784 7785 /** 7786 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7787 * @objcg: the object cgroup 7788 * @size: size of compressed object 7789 * 7790 * Uncharges zswap memory on page in. 7791 */ 7792 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7793 { 7794 struct mem_cgroup *memcg; 7795 7796 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7797 return; 7798 7799 obj_cgroup_uncharge(objcg, size); 7800 7801 rcu_read_lock(); 7802 memcg = obj_cgroup_memcg(objcg); 7803 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7804 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7805 rcu_read_unlock(); 7806 } 7807 7808 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7809 struct cftype *cft) 7810 { 7811 cgroup_rstat_flush(css->cgroup); 7812 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7813 } 7814 7815 static int zswap_max_show(struct seq_file *m, void *v) 7816 { 7817 return seq_puts_memcg_tunable(m, 7818 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7819 } 7820 7821 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7822 char *buf, size_t nbytes, loff_t off) 7823 { 7824 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7825 unsigned long max; 7826 int err; 7827 7828 buf = strstrip(buf); 7829 err = page_counter_memparse(buf, "max", &max); 7830 if (err) 7831 return err; 7832 7833 xchg(&memcg->zswap_max, max); 7834 7835 return nbytes; 7836 } 7837 7838 static struct cftype zswap_files[] = { 7839 { 7840 .name = "zswap.current", 7841 .flags = CFTYPE_NOT_ON_ROOT, 7842 .read_u64 = zswap_current_read, 7843 }, 7844 { 7845 .name = "zswap.max", 7846 .flags = CFTYPE_NOT_ON_ROOT, 7847 .seq_show = zswap_max_show, 7848 .write = zswap_max_write, 7849 }, 7850 { } /* terminate */ 7851 }; 7852 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7853 7854 static int __init mem_cgroup_swap_init(void) 7855 { 7856 if (mem_cgroup_disabled()) 7857 return 0; 7858 7859 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7860 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7861 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7862 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7863 #endif 7864 return 0; 7865 } 7866 subsys_initcall(mem_cgroup_swap_init); 7867 7868 #endif /* CONFIG_SWAP */ 7869