1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/file.h> 62 #include <linux/tracehook.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include "internal.h" 66 #include <net/sock.h> 67 #include <net/ip.h> 68 #include "slab.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 82 83 /* Socket memory accounting disabled? */ 84 static bool cgroup_memory_nosocket __ro_after_init; 85 86 /* Kernel memory accounting disabled? */ 87 bool cgroup_memory_nokmem __ro_after_init; 88 89 /* Whether the swap controller is active */ 90 #ifdef CONFIG_MEMCG_SWAP 91 bool cgroup_memory_noswap __ro_after_init; 92 #else 93 #define cgroup_memory_noswap 1 94 #endif 95 96 #ifdef CONFIG_CGROUP_WRITEBACK 97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 98 #endif 99 100 /* Whether legacy memory+swap accounting is active */ 101 static bool do_memsw_account(void) 102 { 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 104 } 105 106 #define THRESHOLDS_EVENTS_TARGET 128 107 #define SOFTLIMIT_EVENTS_TARGET 1024 108 109 /* 110 * Cgroups above their limits are maintained in a RB-Tree, independent of 111 * their hierarchy representation 112 */ 113 114 struct mem_cgroup_tree_per_node { 115 struct rb_root rb_root; 116 struct rb_node *rb_rightmost; 117 spinlock_t lock; 118 }; 119 120 struct mem_cgroup_tree { 121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 122 }; 123 124 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 125 126 /* for OOM */ 127 struct mem_cgroup_eventfd_list { 128 struct list_head list; 129 struct eventfd_ctx *eventfd; 130 }; 131 132 /* 133 * cgroup_event represents events which userspace want to receive. 134 */ 135 struct mem_cgroup_event { 136 /* 137 * memcg which the event belongs to. 138 */ 139 struct mem_cgroup *memcg; 140 /* 141 * eventfd to signal userspace about the event. 142 */ 143 struct eventfd_ctx *eventfd; 144 /* 145 * Each of these stored in a list by the cgroup. 146 */ 147 struct list_head list; 148 /* 149 * register_event() callback will be used to add new userspace 150 * waiter for changes related to this event. Use eventfd_signal() 151 * on eventfd to send notification to userspace. 152 */ 153 int (*register_event)(struct mem_cgroup *memcg, 154 struct eventfd_ctx *eventfd, const char *args); 155 /* 156 * unregister_event() callback will be called when userspace closes 157 * the eventfd or on cgroup removing. This callback must be set, 158 * if you want provide notification functionality. 159 */ 160 void (*unregister_event)(struct mem_cgroup *memcg, 161 struct eventfd_ctx *eventfd); 162 /* 163 * All fields below needed to unregister event when 164 * userspace closes eventfd. 165 */ 166 poll_table pt; 167 wait_queue_head_t *wqh; 168 wait_queue_entry_t wait; 169 struct work_struct remove; 170 }; 171 172 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 174 175 /* Stuffs for move charges at task migration. */ 176 /* 177 * Types of charges to be moved. 178 */ 179 #define MOVE_ANON 0x1U 180 #define MOVE_FILE 0x2U 181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 182 183 /* "mc" and its members are protected by cgroup_mutex */ 184 static struct move_charge_struct { 185 spinlock_t lock; /* for from, to */ 186 struct mm_struct *mm; 187 struct mem_cgroup *from; 188 struct mem_cgroup *to; 189 unsigned long flags; 190 unsigned long precharge; 191 unsigned long moved_charge; 192 unsigned long moved_swap; 193 struct task_struct *moving_task; /* a task moving charges */ 194 wait_queue_head_t waitq; /* a waitq for other context */ 195 } mc = { 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 198 }; 199 200 /* 201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 202 * limit reclaim to prevent infinite loops, if they ever occur. 203 */ 204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 206 207 /* for encoding cft->private value on file */ 208 enum res_type { 209 _MEM, 210 _MEMSWAP, 211 _OOM_TYPE, 212 _KMEM, 213 _TCP, 214 }; 215 216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 218 #define MEMFILE_ATTR(val) ((val) & 0xffff) 219 /* Used for OOM notifier */ 220 #define OOM_CONTROL (0) 221 222 /* 223 * Iteration constructs for visiting all cgroups (under a tree). If 224 * loops are exited prematurely (break), mem_cgroup_iter_break() must 225 * be used for reference counting. 226 */ 227 #define for_each_mem_cgroup_tree(iter, root) \ 228 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 229 iter != NULL; \ 230 iter = mem_cgroup_iter(root, iter, NULL)) 231 232 #define for_each_mem_cgroup(iter) \ 233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 234 iter != NULL; \ 235 iter = mem_cgroup_iter(NULL, iter, NULL)) 236 237 static inline bool task_is_dying(void) 238 { 239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 240 (current->flags & PF_EXITING); 241 } 242 243 /* Some nice accessors for the vmpressure. */ 244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 245 { 246 if (!memcg) 247 memcg = root_mem_cgroup; 248 return &memcg->vmpressure; 249 } 250 251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 252 { 253 return container_of(vmpr, struct mem_cgroup, vmpressure); 254 } 255 256 #ifdef CONFIG_MEMCG_KMEM 257 extern spinlock_t css_set_lock; 258 259 bool mem_cgroup_kmem_disabled(void) 260 { 261 return cgroup_memory_nokmem; 262 } 263 264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 265 unsigned int nr_pages); 266 267 static void obj_cgroup_release(struct percpu_ref *ref) 268 { 269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 270 unsigned int nr_bytes; 271 unsigned int nr_pages; 272 unsigned long flags; 273 274 /* 275 * At this point all allocated objects are freed, and 276 * objcg->nr_charged_bytes can't have an arbitrary byte value. 277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 278 * 279 * The following sequence can lead to it: 280 * 1) CPU0: objcg == stock->cached_objcg 281 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 282 * PAGE_SIZE bytes are charged 283 * 3) CPU1: a process from another memcg is allocating something, 284 * the stock if flushed, 285 * objcg->nr_charged_bytes = PAGE_SIZE - 92 286 * 5) CPU0: we do release this object, 287 * 92 bytes are added to stock->nr_bytes 288 * 6) CPU0: stock is flushed, 289 * 92 bytes are added to objcg->nr_charged_bytes 290 * 291 * In the result, nr_charged_bytes == PAGE_SIZE. 292 * This page will be uncharged in obj_cgroup_release(). 293 */ 294 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 296 nr_pages = nr_bytes >> PAGE_SHIFT; 297 298 if (nr_pages) 299 obj_cgroup_uncharge_pages(objcg, nr_pages); 300 301 spin_lock_irqsave(&css_set_lock, flags); 302 list_del(&objcg->list); 303 spin_unlock_irqrestore(&css_set_lock, flags); 304 305 percpu_ref_exit(ref); 306 kfree_rcu(objcg, rcu); 307 } 308 309 static struct obj_cgroup *obj_cgroup_alloc(void) 310 { 311 struct obj_cgroup *objcg; 312 int ret; 313 314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 315 if (!objcg) 316 return NULL; 317 318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 319 GFP_KERNEL); 320 if (ret) { 321 kfree(objcg); 322 return NULL; 323 } 324 INIT_LIST_HEAD(&objcg->list); 325 return objcg; 326 } 327 328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 329 struct mem_cgroup *parent) 330 { 331 struct obj_cgroup *objcg, *iter; 332 333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 334 335 spin_lock_irq(&css_set_lock); 336 337 /* 1) Ready to reparent active objcg. */ 338 list_add(&objcg->list, &memcg->objcg_list); 339 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 340 list_for_each_entry(iter, &memcg->objcg_list, list) 341 WRITE_ONCE(iter->memcg, parent); 342 /* 3) Move already reparented objcgs to the parent's list */ 343 list_splice(&memcg->objcg_list, &parent->objcg_list); 344 345 spin_unlock_irq(&css_set_lock); 346 347 percpu_ref_kill(&objcg->refcnt); 348 } 349 350 /* 351 * This will be used as a shrinker list's index. 352 * The main reason for not using cgroup id for this: 353 * this works better in sparse environments, where we have a lot of memcgs, 354 * but only a few kmem-limited. Or also, if we have, for instance, 200 355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 356 * 200 entry array for that. 357 * 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It 359 * will double each time we have to increase it. 360 */ 361 static DEFINE_IDA(memcg_cache_ida); 362 int memcg_nr_cache_ids; 363 364 /* Protects memcg_nr_cache_ids */ 365 static DECLARE_RWSEM(memcg_cache_ids_sem); 366 367 void memcg_get_cache_ids(void) 368 { 369 down_read(&memcg_cache_ids_sem); 370 } 371 372 void memcg_put_cache_ids(void) 373 { 374 up_read(&memcg_cache_ids_sem); 375 } 376 377 /* 378 * MIN_SIZE is different than 1, because we would like to avoid going through 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited 380 * cgroups is a reasonable guess. In the future, it could be a parameter or 381 * tunable, but that is strictly not necessary. 382 * 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 384 * this constant directly from cgroup, but it is understandable that this is 385 * better kept as an internal representation in cgroup.c. In any case, the 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily 387 * increase ours as well if it increases. 388 */ 389 #define MEMCG_CACHES_MIN_SIZE 4 390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 391 392 /* 393 * A lot of the calls to the cache allocation functions are expected to be 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 395 * conditional to this static branch, we'll have to allow modules that does 396 * kmem_cache_alloc and the such to see this symbol as well 397 */ 398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 399 EXPORT_SYMBOL(memcg_kmem_enabled_key); 400 #endif 401 402 /** 403 * mem_cgroup_css_from_page - css of the memcg associated with a page 404 * @page: page of interest 405 * 406 * If memcg is bound to the default hierarchy, css of the memcg associated 407 * with @page is returned. The returned css remains associated with @page 408 * until it is released. 409 * 410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 411 * is returned. 412 */ 413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 414 { 415 struct mem_cgroup *memcg; 416 417 memcg = page_memcg(page); 418 419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 420 memcg = root_mem_cgroup; 421 422 return &memcg->css; 423 } 424 425 /** 426 * page_cgroup_ino - return inode number of the memcg a page is charged to 427 * @page: the page 428 * 429 * Look up the closest online ancestor of the memory cgroup @page is charged to 430 * and return its inode number or 0 if @page is not charged to any cgroup. It 431 * is safe to call this function without holding a reference to @page. 432 * 433 * Note, this function is inherently racy, because there is nothing to prevent 434 * the cgroup inode from getting torn down and potentially reallocated a moment 435 * after page_cgroup_ino() returns, so it only should be used by callers that 436 * do not care (such as procfs interfaces). 437 */ 438 ino_t page_cgroup_ino(struct page *page) 439 { 440 struct mem_cgroup *memcg; 441 unsigned long ino = 0; 442 443 rcu_read_lock(); 444 memcg = page_memcg_check(page); 445 446 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 447 memcg = parent_mem_cgroup(memcg); 448 if (memcg) 449 ino = cgroup_ino(memcg->css.cgroup); 450 rcu_read_unlock(); 451 return ino; 452 } 453 454 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 455 struct mem_cgroup_tree_per_node *mctz, 456 unsigned long new_usage_in_excess) 457 { 458 struct rb_node **p = &mctz->rb_root.rb_node; 459 struct rb_node *parent = NULL; 460 struct mem_cgroup_per_node *mz_node; 461 bool rightmost = true; 462 463 if (mz->on_tree) 464 return; 465 466 mz->usage_in_excess = new_usage_in_excess; 467 if (!mz->usage_in_excess) 468 return; 469 while (*p) { 470 parent = *p; 471 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 472 tree_node); 473 if (mz->usage_in_excess < mz_node->usage_in_excess) { 474 p = &(*p)->rb_left; 475 rightmost = false; 476 } else { 477 p = &(*p)->rb_right; 478 } 479 } 480 481 if (rightmost) 482 mctz->rb_rightmost = &mz->tree_node; 483 484 rb_link_node(&mz->tree_node, parent, p); 485 rb_insert_color(&mz->tree_node, &mctz->rb_root); 486 mz->on_tree = true; 487 } 488 489 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 490 struct mem_cgroup_tree_per_node *mctz) 491 { 492 if (!mz->on_tree) 493 return; 494 495 if (&mz->tree_node == mctz->rb_rightmost) 496 mctz->rb_rightmost = rb_prev(&mz->tree_node); 497 498 rb_erase(&mz->tree_node, &mctz->rb_root); 499 mz->on_tree = false; 500 } 501 502 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 503 struct mem_cgroup_tree_per_node *mctz) 504 { 505 unsigned long flags; 506 507 spin_lock_irqsave(&mctz->lock, flags); 508 __mem_cgroup_remove_exceeded(mz, mctz); 509 spin_unlock_irqrestore(&mctz->lock, flags); 510 } 511 512 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 513 { 514 unsigned long nr_pages = page_counter_read(&memcg->memory); 515 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 516 unsigned long excess = 0; 517 518 if (nr_pages > soft_limit) 519 excess = nr_pages - soft_limit; 520 521 return excess; 522 } 523 524 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 525 { 526 unsigned long excess; 527 struct mem_cgroup_per_node *mz; 528 struct mem_cgroup_tree_per_node *mctz; 529 530 mctz = soft_limit_tree.rb_tree_per_node[nid]; 531 if (!mctz) 532 return; 533 /* 534 * Necessary to update all ancestors when hierarchy is used. 535 * because their event counter is not touched. 536 */ 537 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 538 mz = memcg->nodeinfo[nid]; 539 excess = soft_limit_excess(memcg); 540 /* 541 * We have to update the tree if mz is on RB-tree or 542 * mem is over its softlimit. 543 */ 544 if (excess || mz->on_tree) { 545 unsigned long flags; 546 547 spin_lock_irqsave(&mctz->lock, flags); 548 /* if on-tree, remove it */ 549 if (mz->on_tree) 550 __mem_cgroup_remove_exceeded(mz, mctz); 551 /* 552 * Insert again. mz->usage_in_excess will be updated. 553 * If excess is 0, no tree ops. 554 */ 555 __mem_cgroup_insert_exceeded(mz, mctz, excess); 556 spin_unlock_irqrestore(&mctz->lock, flags); 557 } 558 } 559 } 560 561 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 562 { 563 struct mem_cgroup_tree_per_node *mctz; 564 struct mem_cgroup_per_node *mz; 565 int nid; 566 567 for_each_node(nid) { 568 mz = memcg->nodeinfo[nid]; 569 mctz = soft_limit_tree.rb_tree_per_node[nid]; 570 if (mctz) 571 mem_cgroup_remove_exceeded(mz, mctz); 572 } 573 } 574 575 static struct mem_cgroup_per_node * 576 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 577 { 578 struct mem_cgroup_per_node *mz; 579 580 retry: 581 mz = NULL; 582 if (!mctz->rb_rightmost) 583 goto done; /* Nothing to reclaim from */ 584 585 mz = rb_entry(mctz->rb_rightmost, 586 struct mem_cgroup_per_node, tree_node); 587 /* 588 * Remove the node now but someone else can add it back, 589 * we will to add it back at the end of reclaim to its correct 590 * position in the tree. 591 */ 592 __mem_cgroup_remove_exceeded(mz, mctz); 593 if (!soft_limit_excess(mz->memcg) || 594 !css_tryget(&mz->memcg->css)) 595 goto retry; 596 done: 597 return mz; 598 } 599 600 static struct mem_cgroup_per_node * 601 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 602 { 603 struct mem_cgroup_per_node *mz; 604 605 spin_lock_irq(&mctz->lock); 606 mz = __mem_cgroup_largest_soft_limit_node(mctz); 607 spin_unlock_irq(&mctz->lock); 608 return mz; 609 } 610 611 /* 612 * memcg and lruvec stats flushing 613 * 614 * Many codepaths leading to stats update or read are performance sensitive and 615 * adding stats flushing in such codepaths is not desirable. So, to optimize the 616 * flushing the kernel does: 617 * 618 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 619 * rstat update tree grow unbounded. 620 * 621 * 2) Flush the stats synchronously on reader side only when there are more than 622 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 623 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 624 * only for 2 seconds due to (1). 625 */ 626 static void flush_memcg_stats_dwork(struct work_struct *w); 627 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 628 static DEFINE_SPINLOCK(stats_flush_lock); 629 static DEFINE_PER_CPU(unsigned int, stats_updates); 630 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 631 632 static inline void memcg_rstat_updated(struct mem_cgroup *memcg) 633 { 634 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 635 if (!(__this_cpu_inc_return(stats_updates) % MEMCG_CHARGE_BATCH)) 636 atomic_inc(&stats_flush_threshold); 637 } 638 639 static void __mem_cgroup_flush_stats(void) 640 { 641 unsigned long flag; 642 643 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 644 return; 645 646 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 647 atomic_set(&stats_flush_threshold, 0); 648 spin_unlock_irqrestore(&stats_flush_lock, flag); 649 } 650 651 void mem_cgroup_flush_stats(void) 652 { 653 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 654 __mem_cgroup_flush_stats(); 655 } 656 657 static void flush_memcg_stats_dwork(struct work_struct *w) 658 { 659 mem_cgroup_flush_stats(); 660 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ); 661 } 662 663 /** 664 * __mod_memcg_state - update cgroup memory statistics 665 * @memcg: the memory cgroup 666 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 667 * @val: delta to add to the counter, can be negative 668 */ 669 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 670 { 671 if (mem_cgroup_disabled()) 672 return; 673 674 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 675 memcg_rstat_updated(memcg); 676 } 677 678 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 679 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 680 { 681 long x = 0; 682 int cpu; 683 684 for_each_possible_cpu(cpu) 685 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 686 #ifdef CONFIG_SMP 687 if (x < 0) 688 x = 0; 689 #endif 690 return x; 691 } 692 693 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 694 int val) 695 { 696 struct mem_cgroup_per_node *pn; 697 struct mem_cgroup *memcg; 698 699 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 700 memcg = pn->memcg; 701 702 /* Update memcg */ 703 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 704 705 /* Update lruvec */ 706 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 707 708 memcg_rstat_updated(memcg); 709 } 710 711 /** 712 * __mod_lruvec_state - update lruvec memory statistics 713 * @lruvec: the lruvec 714 * @idx: the stat item 715 * @val: delta to add to the counter, can be negative 716 * 717 * The lruvec is the intersection of the NUMA node and a cgroup. This 718 * function updates the all three counters that are affected by a 719 * change of state at this level: per-node, per-cgroup, per-lruvec. 720 */ 721 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 722 int val) 723 { 724 /* Update node */ 725 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 726 727 /* Update memcg and lruvec */ 728 if (!mem_cgroup_disabled()) 729 __mod_memcg_lruvec_state(lruvec, idx, val); 730 } 731 732 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 733 int val) 734 { 735 struct page *head = compound_head(page); /* rmap on tail pages */ 736 struct mem_cgroup *memcg; 737 pg_data_t *pgdat = page_pgdat(page); 738 struct lruvec *lruvec; 739 740 rcu_read_lock(); 741 memcg = page_memcg(head); 742 /* Untracked pages have no memcg, no lruvec. Update only the node */ 743 if (!memcg) { 744 rcu_read_unlock(); 745 __mod_node_page_state(pgdat, idx, val); 746 return; 747 } 748 749 lruvec = mem_cgroup_lruvec(memcg, pgdat); 750 __mod_lruvec_state(lruvec, idx, val); 751 rcu_read_unlock(); 752 } 753 EXPORT_SYMBOL(__mod_lruvec_page_state); 754 755 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 756 { 757 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 758 struct mem_cgroup *memcg; 759 struct lruvec *lruvec; 760 761 rcu_read_lock(); 762 memcg = mem_cgroup_from_obj(p); 763 764 /* 765 * Untracked pages have no memcg, no lruvec. Update only the 766 * node. If we reparent the slab objects to the root memcg, 767 * when we free the slab object, we need to update the per-memcg 768 * vmstats to keep it correct for the root memcg. 769 */ 770 if (!memcg) { 771 __mod_node_page_state(pgdat, idx, val); 772 } else { 773 lruvec = mem_cgroup_lruvec(memcg, pgdat); 774 __mod_lruvec_state(lruvec, idx, val); 775 } 776 rcu_read_unlock(); 777 } 778 779 /* 780 * mod_objcg_mlstate() may be called with irq enabled, so 781 * mod_memcg_lruvec_state() should be used. 782 */ 783 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 784 struct pglist_data *pgdat, 785 enum node_stat_item idx, int nr) 786 { 787 struct mem_cgroup *memcg; 788 struct lruvec *lruvec; 789 790 rcu_read_lock(); 791 memcg = obj_cgroup_memcg(objcg); 792 lruvec = mem_cgroup_lruvec(memcg, pgdat); 793 mod_memcg_lruvec_state(lruvec, idx, nr); 794 rcu_read_unlock(); 795 } 796 797 /** 798 * __count_memcg_events - account VM events in a cgroup 799 * @memcg: the memory cgroup 800 * @idx: the event item 801 * @count: the number of events that occurred 802 */ 803 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 804 unsigned long count) 805 { 806 if (mem_cgroup_disabled()) 807 return; 808 809 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 810 memcg_rstat_updated(memcg); 811 } 812 813 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 814 { 815 return READ_ONCE(memcg->vmstats.events[event]); 816 } 817 818 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 819 { 820 long x = 0; 821 int cpu; 822 823 for_each_possible_cpu(cpu) 824 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 825 return x; 826 } 827 828 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 829 int nr_pages) 830 { 831 /* pagein of a big page is an event. So, ignore page size */ 832 if (nr_pages > 0) 833 __count_memcg_events(memcg, PGPGIN, 1); 834 else { 835 __count_memcg_events(memcg, PGPGOUT, 1); 836 nr_pages = -nr_pages; /* for event */ 837 } 838 839 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 840 } 841 842 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 843 enum mem_cgroup_events_target target) 844 { 845 unsigned long val, next; 846 847 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 848 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 849 /* from time_after() in jiffies.h */ 850 if ((long)(next - val) < 0) { 851 switch (target) { 852 case MEM_CGROUP_TARGET_THRESH: 853 next = val + THRESHOLDS_EVENTS_TARGET; 854 break; 855 case MEM_CGROUP_TARGET_SOFTLIMIT: 856 next = val + SOFTLIMIT_EVENTS_TARGET; 857 break; 858 default: 859 break; 860 } 861 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 862 return true; 863 } 864 return false; 865 } 866 867 /* 868 * Check events in order. 869 * 870 */ 871 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 872 { 873 /* threshold event is triggered in finer grain than soft limit */ 874 if (unlikely(mem_cgroup_event_ratelimit(memcg, 875 MEM_CGROUP_TARGET_THRESH))) { 876 bool do_softlimit; 877 878 do_softlimit = mem_cgroup_event_ratelimit(memcg, 879 MEM_CGROUP_TARGET_SOFTLIMIT); 880 mem_cgroup_threshold(memcg); 881 if (unlikely(do_softlimit)) 882 mem_cgroup_update_tree(memcg, nid); 883 } 884 } 885 886 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 887 { 888 /* 889 * mm_update_next_owner() may clear mm->owner to NULL 890 * if it races with swapoff, page migration, etc. 891 * So this can be called with p == NULL. 892 */ 893 if (unlikely(!p)) 894 return NULL; 895 896 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 897 } 898 EXPORT_SYMBOL(mem_cgroup_from_task); 899 900 static __always_inline struct mem_cgroup *active_memcg(void) 901 { 902 if (!in_task()) 903 return this_cpu_read(int_active_memcg); 904 else 905 return current->active_memcg; 906 } 907 908 /** 909 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 910 * @mm: mm from which memcg should be extracted. It can be NULL. 911 * 912 * Obtain a reference on mm->memcg and returns it if successful. If mm 913 * is NULL, then the memcg is chosen as follows: 914 * 1) The active memcg, if set. 915 * 2) current->mm->memcg, if available 916 * 3) root memcg 917 * If mem_cgroup is disabled, NULL is returned. 918 */ 919 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 920 { 921 struct mem_cgroup *memcg; 922 923 if (mem_cgroup_disabled()) 924 return NULL; 925 926 /* 927 * Page cache insertions can happen without an 928 * actual mm context, e.g. during disk probing 929 * on boot, loopback IO, acct() writes etc. 930 * 931 * No need to css_get on root memcg as the reference 932 * counting is disabled on the root level in the 933 * cgroup core. See CSS_NO_REF. 934 */ 935 if (unlikely(!mm)) { 936 memcg = active_memcg(); 937 if (unlikely(memcg)) { 938 /* remote memcg must hold a ref */ 939 css_get(&memcg->css); 940 return memcg; 941 } 942 mm = current->mm; 943 if (unlikely(!mm)) 944 return root_mem_cgroup; 945 } 946 947 rcu_read_lock(); 948 do { 949 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 950 if (unlikely(!memcg)) 951 memcg = root_mem_cgroup; 952 } while (!css_tryget(&memcg->css)); 953 rcu_read_unlock(); 954 return memcg; 955 } 956 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 957 958 static __always_inline bool memcg_kmem_bypass(void) 959 { 960 /* Allow remote memcg charging from any context. */ 961 if (unlikely(active_memcg())) 962 return false; 963 964 /* Memcg to charge can't be determined. */ 965 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 966 return true; 967 968 return false; 969 } 970 971 /** 972 * mem_cgroup_iter - iterate over memory cgroup hierarchy 973 * @root: hierarchy root 974 * @prev: previously returned memcg, NULL on first invocation 975 * @reclaim: cookie for shared reclaim walks, NULL for full walks 976 * 977 * Returns references to children of the hierarchy below @root, or 978 * @root itself, or %NULL after a full round-trip. 979 * 980 * Caller must pass the return value in @prev on subsequent 981 * invocations for reference counting, or use mem_cgroup_iter_break() 982 * to cancel a hierarchy walk before the round-trip is complete. 983 * 984 * Reclaimers can specify a node in @reclaim to divide up the memcgs 985 * in the hierarchy among all concurrent reclaimers operating on the 986 * same node. 987 */ 988 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 989 struct mem_cgroup *prev, 990 struct mem_cgroup_reclaim_cookie *reclaim) 991 { 992 struct mem_cgroup_reclaim_iter *iter; 993 struct cgroup_subsys_state *css = NULL; 994 struct mem_cgroup *memcg = NULL; 995 struct mem_cgroup *pos = NULL; 996 997 if (mem_cgroup_disabled()) 998 return NULL; 999 1000 if (!root) 1001 root = root_mem_cgroup; 1002 1003 if (prev && !reclaim) 1004 pos = prev; 1005 1006 rcu_read_lock(); 1007 1008 if (reclaim) { 1009 struct mem_cgroup_per_node *mz; 1010 1011 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1012 iter = &mz->iter; 1013 1014 if (prev && reclaim->generation != iter->generation) 1015 goto out_unlock; 1016 1017 while (1) { 1018 pos = READ_ONCE(iter->position); 1019 if (!pos || css_tryget(&pos->css)) 1020 break; 1021 /* 1022 * css reference reached zero, so iter->position will 1023 * be cleared by ->css_released. However, we should not 1024 * rely on this happening soon, because ->css_released 1025 * is called from a work queue, and by busy-waiting we 1026 * might block it. So we clear iter->position right 1027 * away. 1028 */ 1029 (void)cmpxchg(&iter->position, pos, NULL); 1030 } 1031 } 1032 1033 if (pos) 1034 css = &pos->css; 1035 1036 for (;;) { 1037 css = css_next_descendant_pre(css, &root->css); 1038 if (!css) { 1039 /* 1040 * Reclaimers share the hierarchy walk, and a 1041 * new one might jump in right at the end of 1042 * the hierarchy - make sure they see at least 1043 * one group and restart from the beginning. 1044 */ 1045 if (!prev) 1046 continue; 1047 break; 1048 } 1049 1050 /* 1051 * Verify the css and acquire a reference. The root 1052 * is provided by the caller, so we know it's alive 1053 * and kicking, and don't take an extra reference. 1054 */ 1055 memcg = mem_cgroup_from_css(css); 1056 1057 if (css == &root->css) 1058 break; 1059 1060 if (css_tryget(css)) 1061 break; 1062 1063 memcg = NULL; 1064 } 1065 1066 if (reclaim) { 1067 /* 1068 * The position could have already been updated by a competing 1069 * thread, so check that the value hasn't changed since we read 1070 * it to avoid reclaiming from the same cgroup twice. 1071 */ 1072 (void)cmpxchg(&iter->position, pos, memcg); 1073 1074 if (pos) 1075 css_put(&pos->css); 1076 1077 if (!memcg) 1078 iter->generation++; 1079 else if (!prev) 1080 reclaim->generation = iter->generation; 1081 } 1082 1083 out_unlock: 1084 rcu_read_unlock(); 1085 if (prev && prev != root) 1086 css_put(&prev->css); 1087 1088 return memcg; 1089 } 1090 1091 /** 1092 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1093 * @root: hierarchy root 1094 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1095 */ 1096 void mem_cgroup_iter_break(struct mem_cgroup *root, 1097 struct mem_cgroup *prev) 1098 { 1099 if (!root) 1100 root = root_mem_cgroup; 1101 if (prev && prev != root) 1102 css_put(&prev->css); 1103 } 1104 1105 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1106 struct mem_cgroup *dead_memcg) 1107 { 1108 struct mem_cgroup_reclaim_iter *iter; 1109 struct mem_cgroup_per_node *mz; 1110 int nid; 1111 1112 for_each_node(nid) { 1113 mz = from->nodeinfo[nid]; 1114 iter = &mz->iter; 1115 cmpxchg(&iter->position, dead_memcg, NULL); 1116 } 1117 } 1118 1119 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1120 { 1121 struct mem_cgroup *memcg = dead_memcg; 1122 struct mem_cgroup *last; 1123 1124 do { 1125 __invalidate_reclaim_iterators(memcg, dead_memcg); 1126 last = memcg; 1127 } while ((memcg = parent_mem_cgroup(memcg))); 1128 1129 /* 1130 * When cgruop1 non-hierarchy mode is used, 1131 * parent_mem_cgroup() does not walk all the way up to the 1132 * cgroup root (root_mem_cgroup). So we have to handle 1133 * dead_memcg from cgroup root separately. 1134 */ 1135 if (last != root_mem_cgroup) 1136 __invalidate_reclaim_iterators(root_mem_cgroup, 1137 dead_memcg); 1138 } 1139 1140 /** 1141 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1142 * @memcg: hierarchy root 1143 * @fn: function to call for each task 1144 * @arg: argument passed to @fn 1145 * 1146 * This function iterates over tasks attached to @memcg or to any of its 1147 * descendants and calls @fn for each task. If @fn returns a non-zero 1148 * value, the function breaks the iteration loop and returns the value. 1149 * Otherwise, it will iterate over all tasks and return 0. 1150 * 1151 * This function must not be called for the root memory cgroup. 1152 */ 1153 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1154 int (*fn)(struct task_struct *, void *), void *arg) 1155 { 1156 struct mem_cgroup *iter; 1157 int ret = 0; 1158 1159 BUG_ON(memcg == root_mem_cgroup); 1160 1161 for_each_mem_cgroup_tree(iter, memcg) { 1162 struct css_task_iter it; 1163 struct task_struct *task; 1164 1165 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1166 while (!ret && (task = css_task_iter_next(&it))) 1167 ret = fn(task, arg); 1168 css_task_iter_end(&it); 1169 if (ret) { 1170 mem_cgroup_iter_break(memcg, iter); 1171 break; 1172 } 1173 } 1174 return ret; 1175 } 1176 1177 #ifdef CONFIG_DEBUG_VM 1178 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1179 { 1180 struct mem_cgroup *memcg; 1181 1182 if (mem_cgroup_disabled()) 1183 return; 1184 1185 memcg = folio_memcg(folio); 1186 1187 if (!memcg) 1188 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1189 else 1190 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1191 } 1192 #endif 1193 1194 /** 1195 * folio_lruvec_lock - Lock the lruvec for a folio. 1196 * @folio: Pointer to the folio. 1197 * 1198 * These functions are safe to use under any of the following conditions: 1199 * - folio locked 1200 * - folio_test_lru false 1201 * - folio_memcg_lock() 1202 * - folio frozen (refcount of 0) 1203 * 1204 * Return: The lruvec this folio is on with its lock held. 1205 */ 1206 struct lruvec *folio_lruvec_lock(struct folio *folio) 1207 { 1208 struct lruvec *lruvec = folio_lruvec(folio); 1209 1210 spin_lock(&lruvec->lru_lock); 1211 lruvec_memcg_debug(lruvec, folio); 1212 1213 return lruvec; 1214 } 1215 1216 /** 1217 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1218 * @folio: Pointer to the folio. 1219 * 1220 * These functions are safe to use under any of the following conditions: 1221 * - folio locked 1222 * - folio_test_lru false 1223 * - folio_memcg_lock() 1224 * - folio frozen (refcount of 0) 1225 * 1226 * Return: The lruvec this folio is on with its lock held and interrupts 1227 * disabled. 1228 */ 1229 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1230 { 1231 struct lruvec *lruvec = folio_lruvec(folio); 1232 1233 spin_lock_irq(&lruvec->lru_lock); 1234 lruvec_memcg_debug(lruvec, folio); 1235 1236 return lruvec; 1237 } 1238 1239 /** 1240 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1241 * @folio: Pointer to the folio. 1242 * @flags: Pointer to irqsave flags. 1243 * 1244 * These functions are safe to use under any of the following conditions: 1245 * - folio locked 1246 * - folio_test_lru false 1247 * - folio_memcg_lock() 1248 * - folio frozen (refcount of 0) 1249 * 1250 * Return: The lruvec this folio is on with its lock held and interrupts 1251 * disabled. 1252 */ 1253 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1254 unsigned long *flags) 1255 { 1256 struct lruvec *lruvec = folio_lruvec(folio); 1257 1258 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1259 lruvec_memcg_debug(lruvec, folio); 1260 1261 return lruvec; 1262 } 1263 1264 /** 1265 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1266 * @lruvec: mem_cgroup per zone lru vector 1267 * @lru: index of lru list the page is sitting on 1268 * @zid: zone id of the accounted pages 1269 * @nr_pages: positive when adding or negative when removing 1270 * 1271 * This function must be called under lru_lock, just before a page is added 1272 * to or just after a page is removed from an lru list (that ordering being 1273 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1274 */ 1275 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1276 int zid, int nr_pages) 1277 { 1278 struct mem_cgroup_per_node *mz; 1279 unsigned long *lru_size; 1280 long size; 1281 1282 if (mem_cgroup_disabled()) 1283 return; 1284 1285 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1286 lru_size = &mz->lru_zone_size[zid][lru]; 1287 1288 if (nr_pages < 0) 1289 *lru_size += nr_pages; 1290 1291 size = *lru_size; 1292 if (WARN_ONCE(size < 0, 1293 "%s(%p, %d, %d): lru_size %ld\n", 1294 __func__, lruvec, lru, nr_pages, size)) { 1295 VM_BUG_ON(1); 1296 *lru_size = 0; 1297 } 1298 1299 if (nr_pages > 0) 1300 *lru_size += nr_pages; 1301 } 1302 1303 /** 1304 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1305 * @memcg: the memory cgroup 1306 * 1307 * Returns the maximum amount of memory @mem can be charged with, in 1308 * pages. 1309 */ 1310 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1311 { 1312 unsigned long margin = 0; 1313 unsigned long count; 1314 unsigned long limit; 1315 1316 count = page_counter_read(&memcg->memory); 1317 limit = READ_ONCE(memcg->memory.max); 1318 if (count < limit) 1319 margin = limit - count; 1320 1321 if (do_memsw_account()) { 1322 count = page_counter_read(&memcg->memsw); 1323 limit = READ_ONCE(memcg->memsw.max); 1324 if (count < limit) 1325 margin = min(margin, limit - count); 1326 else 1327 margin = 0; 1328 } 1329 1330 return margin; 1331 } 1332 1333 /* 1334 * A routine for checking "mem" is under move_account() or not. 1335 * 1336 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1337 * moving cgroups. This is for waiting at high-memory pressure 1338 * caused by "move". 1339 */ 1340 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1341 { 1342 struct mem_cgroup *from; 1343 struct mem_cgroup *to; 1344 bool ret = false; 1345 /* 1346 * Unlike task_move routines, we access mc.to, mc.from not under 1347 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1348 */ 1349 spin_lock(&mc.lock); 1350 from = mc.from; 1351 to = mc.to; 1352 if (!from) 1353 goto unlock; 1354 1355 ret = mem_cgroup_is_descendant(from, memcg) || 1356 mem_cgroup_is_descendant(to, memcg); 1357 unlock: 1358 spin_unlock(&mc.lock); 1359 return ret; 1360 } 1361 1362 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1363 { 1364 if (mc.moving_task && current != mc.moving_task) { 1365 if (mem_cgroup_under_move(memcg)) { 1366 DEFINE_WAIT(wait); 1367 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1368 /* moving charge context might have finished. */ 1369 if (mc.moving_task) 1370 schedule(); 1371 finish_wait(&mc.waitq, &wait); 1372 return true; 1373 } 1374 } 1375 return false; 1376 } 1377 1378 struct memory_stat { 1379 const char *name; 1380 unsigned int idx; 1381 }; 1382 1383 static const struct memory_stat memory_stats[] = { 1384 { "anon", NR_ANON_MAPPED }, 1385 { "file", NR_FILE_PAGES }, 1386 { "kernel_stack", NR_KERNEL_STACK_KB }, 1387 { "pagetables", NR_PAGETABLE }, 1388 { "percpu", MEMCG_PERCPU_B }, 1389 { "sock", MEMCG_SOCK }, 1390 { "shmem", NR_SHMEM }, 1391 { "file_mapped", NR_FILE_MAPPED }, 1392 { "file_dirty", NR_FILE_DIRTY }, 1393 { "file_writeback", NR_WRITEBACK }, 1394 #ifdef CONFIG_SWAP 1395 { "swapcached", NR_SWAPCACHE }, 1396 #endif 1397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1398 { "anon_thp", NR_ANON_THPS }, 1399 { "file_thp", NR_FILE_THPS }, 1400 { "shmem_thp", NR_SHMEM_THPS }, 1401 #endif 1402 { "inactive_anon", NR_INACTIVE_ANON }, 1403 { "active_anon", NR_ACTIVE_ANON }, 1404 { "inactive_file", NR_INACTIVE_FILE }, 1405 { "active_file", NR_ACTIVE_FILE }, 1406 { "unevictable", NR_UNEVICTABLE }, 1407 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1408 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1409 1410 /* The memory events */ 1411 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1412 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1413 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1414 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1415 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1416 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1417 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1418 }; 1419 1420 /* Translate stat items to the correct unit for memory.stat output */ 1421 static int memcg_page_state_unit(int item) 1422 { 1423 switch (item) { 1424 case MEMCG_PERCPU_B: 1425 case NR_SLAB_RECLAIMABLE_B: 1426 case NR_SLAB_UNRECLAIMABLE_B: 1427 case WORKINGSET_REFAULT_ANON: 1428 case WORKINGSET_REFAULT_FILE: 1429 case WORKINGSET_ACTIVATE_ANON: 1430 case WORKINGSET_ACTIVATE_FILE: 1431 case WORKINGSET_RESTORE_ANON: 1432 case WORKINGSET_RESTORE_FILE: 1433 case WORKINGSET_NODERECLAIM: 1434 return 1; 1435 case NR_KERNEL_STACK_KB: 1436 return SZ_1K; 1437 default: 1438 return PAGE_SIZE; 1439 } 1440 } 1441 1442 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1443 int item) 1444 { 1445 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1446 } 1447 1448 static char *memory_stat_format(struct mem_cgroup *memcg) 1449 { 1450 struct seq_buf s; 1451 int i; 1452 1453 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1454 if (!s.buffer) 1455 return NULL; 1456 1457 /* 1458 * Provide statistics on the state of the memory subsystem as 1459 * well as cumulative event counters that show past behavior. 1460 * 1461 * This list is ordered following a combination of these gradients: 1462 * 1) generic big picture -> specifics and details 1463 * 2) reflecting userspace activity -> reflecting kernel heuristics 1464 * 1465 * Current memory state: 1466 */ 1467 mem_cgroup_flush_stats(); 1468 1469 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1470 u64 size; 1471 1472 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1473 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1474 1475 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1476 size += memcg_page_state_output(memcg, 1477 NR_SLAB_RECLAIMABLE_B); 1478 seq_buf_printf(&s, "slab %llu\n", size); 1479 } 1480 } 1481 1482 /* Accumulated memory events */ 1483 1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1485 memcg_events(memcg, PGFAULT)); 1486 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1487 memcg_events(memcg, PGMAJFAULT)); 1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1489 memcg_events(memcg, PGREFILL)); 1490 seq_buf_printf(&s, "pgscan %lu\n", 1491 memcg_events(memcg, PGSCAN_KSWAPD) + 1492 memcg_events(memcg, PGSCAN_DIRECT)); 1493 seq_buf_printf(&s, "pgsteal %lu\n", 1494 memcg_events(memcg, PGSTEAL_KSWAPD) + 1495 memcg_events(memcg, PGSTEAL_DIRECT)); 1496 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1497 memcg_events(memcg, PGACTIVATE)); 1498 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1499 memcg_events(memcg, PGDEACTIVATE)); 1500 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1501 memcg_events(memcg, PGLAZYFREE)); 1502 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1503 memcg_events(memcg, PGLAZYFREED)); 1504 1505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1506 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1507 memcg_events(memcg, THP_FAULT_ALLOC)); 1508 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1509 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1510 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1511 1512 /* The above should easily fit into one page */ 1513 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1514 1515 return s.buffer; 1516 } 1517 1518 #define K(x) ((x) << (PAGE_SHIFT-10)) 1519 /** 1520 * mem_cgroup_print_oom_context: Print OOM information relevant to 1521 * memory controller. 1522 * @memcg: The memory cgroup that went over limit 1523 * @p: Task that is going to be killed 1524 * 1525 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1526 * enabled 1527 */ 1528 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1529 { 1530 rcu_read_lock(); 1531 1532 if (memcg) { 1533 pr_cont(",oom_memcg="); 1534 pr_cont_cgroup_path(memcg->css.cgroup); 1535 } else 1536 pr_cont(",global_oom"); 1537 if (p) { 1538 pr_cont(",task_memcg="); 1539 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1540 } 1541 rcu_read_unlock(); 1542 } 1543 1544 /** 1545 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1546 * memory controller. 1547 * @memcg: The memory cgroup that went over limit 1548 */ 1549 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1550 { 1551 char *buf; 1552 1553 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1554 K((u64)page_counter_read(&memcg->memory)), 1555 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1556 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1557 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1558 K((u64)page_counter_read(&memcg->swap)), 1559 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1560 else { 1561 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1562 K((u64)page_counter_read(&memcg->memsw)), 1563 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1564 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1565 K((u64)page_counter_read(&memcg->kmem)), 1566 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1567 } 1568 1569 pr_info("Memory cgroup stats for "); 1570 pr_cont_cgroup_path(memcg->css.cgroup); 1571 pr_cont(":"); 1572 buf = memory_stat_format(memcg); 1573 if (!buf) 1574 return; 1575 pr_info("%s", buf); 1576 kfree(buf); 1577 } 1578 1579 /* 1580 * Return the memory (and swap, if configured) limit for a memcg. 1581 */ 1582 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1583 { 1584 unsigned long max = READ_ONCE(memcg->memory.max); 1585 1586 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1587 if (mem_cgroup_swappiness(memcg)) 1588 max += min(READ_ONCE(memcg->swap.max), 1589 (unsigned long)total_swap_pages); 1590 } else { /* v1 */ 1591 if (mem_cgroup_swappiness(memcg)) { 1592 /* Calculate swap excess capacity from memsw limit */ 1593 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1594 1595 max += min(swap, (unsigned long)total_swap_pages); 1596 } 1597 } 1598 return max; 1599 } 1600 1601 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1602 { 1603 return page_counter_read(&memcg->memory); 1604 } 1605 1606 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1607 int order) 1608 { 1609 struct oom_control oc = { 1610 .zonelist = NULL, 1611 .nodemask = NULL, 1612 .memcg = memcg, 1613 .gfp_mask = gfp_mask, 1614 .order = order, 1615 }; 1616 bool ret = true; 1617 1618 if (mutex_lock_killable(&oom_lock)) 1619 return true; 1620 1621 if (mem_cgroup_margin(memcg) >= (1 << order)) 1622 goto unlock; 1623 1624 /* 1625 * A few threads which were not waiting at mutex_lock_killable() can 1626 * fail to bail out. Therefore, check again after holding oom_lock. 1627 */ 1628 ret = task_is_dying() || out_of_memory(&oc); 1629 1630 unlock: 1631 mutex_unlock(&oom_lock); 1632 return ret; 1633 } 1634 1635 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1636 pg_data_t *pgdat, 1637 gfp_t gfp_mask, 1638 unsigned long *total_scanned) 1639 { 1640 struct mem_cgroup *victim = NULL; 1641 int total = 0; 1642 int loop = 0; 1643 unsigned long excess; 1644 unsigned long nr_scanned; 1645 struct mem_cgroup_reclaim_cookie reclaim = { 1646 .pgdat = pgdat, 1647 }; 1648 1649 excess = soft_limit_excess(root_memcg); 1650 1651 while (1) { 1652 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1653 if (!victim) { 1654 loop++; 1655 if (loop >= 2) { 1656 /* 1657 * If we have not been able to reclaim 1658 * anything, it might because there are 1659 * no reclaimable pages under this hierarchy 1660 */ 1661 if (!total) 1662 break; 1663 /* 1664 * We want to do more targeted reclaim. 1665 * excess >> 2 is not to excessive so as to 1666 * reclaim too much, nor too less that we keep 1667 * coming back to reclaim from this cgroup 1668 */ 1669 if (total >= (excess >> 2) || 1670 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1671 break; 1672 } 1673 continue; 1674 } 1675 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1676 pgdat, &nr_scanned); 1677 *total_scanned += nr_scanned; 1678 if (!soft_limit_excess(root_memcg)) 1679 break; 1680 } 1681 mem_cgroup_iter_break(root_memcg, victim); 1682 return total; 1683 } 1684 1685 #ifdef CONFIG_LOCKDEP 1686 static struct lockdep_map memcg_oom_lock_dep_map = { 1687 .name = "memcg_oom_lock", 1688 }; 1689 #endif 1690 1691 static DEFINE_SPINLOCK(memcg_oom_lock); 1692 1693 /* 1694 * Check OOM-Killer is already running under our hierarchy. 1695 * If someone is running, return false. 1696 */ 1697 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1698 { 1699 struct mem_cgroup *iter, *failed = NULL; 1700 1701 spin_lock(&memcg_oom_lock); 1702 1703 for_each_mem_cgroup_tree(iter, memcg) { 1704 if (iter->oom_lock) { 1705 /* 1706 * this subtree of our hierarchy is already locked 1707 * so we cannot give a lock. 1708 */ 1709 failed = iter; 1710 mem_cgroup_iter_break(memcg, iter); 1711 break; 1712 } else 1713 iter->oom_lock = true; 1714 } 1715 1716 if (failed) { 1717 /* 1718 * OK, we failed to lock the whole subtree so we have 1719 * to clean up what we set up to the failing subtree 1720 */ 1721 for_each_mem_cgroup_tree(iter, memcg) { 1722 if (iter == failed) { 1723 mem_cgroup_iter_break(memcg, iter); 1724 break; 1725 } 1726 iter->oom_lock = false; 1727 } 1728 } else 1729 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1730 1731 spin_unlock(&memcg_oom_lock); 1732 1733 return !failed; 1734 } 1735 1736 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1737 { 1738 struct mem_cgroup *iter; 1739 1740 spin_lock(&memcg_oom_lock); 1741 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1742 for_each_mem_cgroup_tree(iter, memcg) 1743 iter->oom_lock = false; 1744 spin_unlock(&memcg_oom_lock); 1745 } 1746 1747 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1748 { 1749 struct mem_cgroup *iter; 1750 1751 spin_lock(&memcg_oom_lock); 1752 for_each_mem_cgroup_tree(iter, memcg) 1753 iter->under_oom++; 1754 spin_unlock(&memcg_oom_lock); 1755 } 1756 1757 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1758 { 1759 struct mem_cgroup *iter; 1760 1761 /* 1762 * Be careful about under_oom underflows because a child memcg 1763 * could have been added after mem_cgroup_mark_under_oom. 1764 */ 1765 spin_lock(&memcg_oom_lock); 1766 for_each_mem_cgroup_tree(iter, memcg) 1767 if (iter->under_oom > 0) 1768 iter->under_oom--; 1769 spin_unlock(&memcg_oom_lock); 1770 } 1771 1772 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1773 1774 struct oom_wait_info { 1775 struct mem_cgroup *memcg; 1776 wait_queue_entry_t wait; 1777 }; 1778 1779 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1780 unsigned mode, int sync, void *arg) 1781 { 1782 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1783 struct mem_cgroup *oom_wait_memcg; 1784 struct oom_wait_info *oom_wait_info; 1785 1786 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1787 oom_wait_memcg = oom_wait_info->memcg; 1788 1789 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1790 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1791 return 0; 1792 return autoremove_wake_function(wait, mode, sync, arg); 1793 } 1794 1795 static void memcg_oom_recover(struct mem_cgroup *memcg) 1796 { 1797 /* 1798 * For the following lockless ->under_oom test, the only required 1799 * guarantee is that it must see the state asserted by an OOM when 1800 * this function is called as a result of userland actions 1801 * triggered by the notification of the OOM. This is trivially 1802 * achieved by invoking mem_cgroup_mark_under_oom() before 1803 * triggering notification. 1804 */ 1805 if (memcg && memcg->under_oom) 1806 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1807 } 1808 1809 enum oom_status { 1810 OOM_SUCCESS, 1811 OOM_FAILED, 1812 OOM_ASYNC, 1813 OOM_SKIPPED 1814 }; 1815 1816 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1817 { 1818 enum oom_status ret; 1819 bool locked; 1820 1821 if (order > PAGE_ALLOC_COSTLY_ORDER) 1822 return OOM_SKIPPED; 1823 1824 memcg_memory_event(memcg, MEMCG_OOM); 1825 1826 /* 1827 * We are in the middle of the charge context here, so we 1828 * don't want to block when potentially sitting on a callstack 1829 * that holds all kinds of filesystem and mm locks. 1830 * 1831 * cgroup1 allows disabling the OOM killer and waiting for outside 1832 * handling until the charge can succeed; remember the context and put 1833 * the task to sleep at the end of the page fault when all locks are 1834 * released. 1835 * 1836 * On the other hand, in-kernel OOM killer allows for an async victim 1837 * memory reclaim (oom_reaper) and that means that we are not solely 1838 * relying on the oom victim to make a forward progress and we can 1839 * invoke the oom killer here. 1840 * 1841 * Please note that mem_cgroup_out_of_memory might fail to find a 1842 * victim and then we have to bail out from the charge path. 1843 */ 1844 if (memcg->oom_kill_disable) { 1845 if (!current->in_user_fault) 1846 return OOM_SKIPPED; 1847 css_get(&memcg->css); 1848 current->memcg_in_oom = memcg; 1849 current->memcg_oom_gfp_mask = mask; 1850 current->memcg_oom_order = order; 1851 1852 return OOM_ASYNC; 1853 } 1854 1855 mem_cgroup_mark_under_oom(memcg); 1856 1857 locked = mem_cgroup_oom_trylock(memcg); 1858 1859 if (locked) 1860 mem_cgroup_oom_notify(memcg); 1861 1862 mem_cgroup_unmark_under_oom(memcg); 1863 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1864 ret = OOM_SUCCESS; 1865 else 1866 ret = OOM_FAILED; 1867 1868 if (locked) 1869 mem_cgroup_oom_unlock(memcg); 1870 1871 return ret; 1872 } 1873 1874 /** 1875 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1876 * @handle: actually kill/wait or just clean up the OOM state 1877 * 1878 * This has to be called at the end of a page fault if the memcg OOM 1879 * handler was enabled. 1880 * 1881 * Memcg supports userspace OOM handling where failed allocations must 1882 * sleep on a waitqueue until the userspace task resolves the 1883 * situation. Sleeping directly in the charge context with all kinds 1884 * of locks held is not a good idea, instead we remember an OOM state 1885 * in the task and mem_cgroup_oom_synchronize() has to be called at 1886 * the end of the page fault to complete the OOM handling. 1887 * 1888 * Returns %true if an ongoing memcg OOM situation was detected and 1889 * completed, %false otherwise. 1890 */ 1891 bool mem_cgroup_oom_synchronize(bool handle) 1892 { 1893 struct mem_cgroup *memcg = current->memcg_in_oom; 1894 struct oom_wait_info owait; 1895 bool locked; 1896 1897 /* OOM is global, do not handle */ 1898 if (!memcg) 1899 return false; 1900 1901 if (!handle) 1902 goto cleanup; 1903 1904 owait.memcg = memcg; 1905 owait.wait.flags = 0; 1906 owait.wait.func = memcg_oom_wake_function; 1907 owait.wait.private = current; 1908 INIT_LIST_HEAD(&owait.wait.entry); 1909 1910 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1911 mem_cgroup_mark_under_oom(memcg); 1912 1913 locked = mem_cgroup_oom_trylock(memcg); 1914 1915 if (locked) 1916 mem_cgroup_oom_notify(memcg); 1917 1918 if (locked && !memcg->oom_kill_disable) { 1919 mem_cgroup_unmark_under_oom(memcg); 1920 finish_wait(&memcg_oom_waitq, &owait.wait); 1921 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1922 current->memcg_oom_order); 1923 } else { 1924 schedule(); 1925 mem_cgroup_unmark_under_oom(memcg); 1926 finish_wait(&memcg_oom_waitq, &owait.wait); 1927 } 1928 1929 if (locked) { 1930 mem_cgroup_oom_unlock(memcg); 1931 /* 1932 * There is no guarantee that an OOM-lock contender 1933 * sees the wakeups triggered by the OOM kill 1934 * uncharges. Wake any sleepers explicitly. 1935 */ 1936 memcg_oom_recover(memcg); 1937 } 1938 cleanup: 1939 current->memcg_in_oom = NULL; 1940 css_put(&memcg->css); 1941 return true; 1942 } 1943 1944 /** 1945 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1946 * @victim: task to be killed by the OOM killer 1947 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1948 * 1949 * Returns a pointer to a memory cgroup, which has to be cleaned up 1950 * by killing all belonging OOM-killable tasks. 1951 * 1952 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1953 */ 1954 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1955 struct mem_cgroup *oom_domain) 1956 { 1957 struct mem_cgroup *oom_group = NULL; 1958 struct mem_cgroup *memcg; 1959 1960 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1961 return NULL; 1962 1963 if (!oom_domain) 1964 oom_domain = root_mem_cgroup; 1965 1966 rcu_read_lock(); 1967 1968 memcg = mem_cgroup_from_task(victim); 1969 if (memcg == root_mem_cgroup) 1970 goto out; 1971 1972 /* 1973 * If the victim task has been asynchronously moved to a different 1974 * memory cgroup, we might end up killing tasks outside oom_domain. 1975 * In this case it's better to ignore memory.group.oom. 1976 */ 1977 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1978 goto out; 1979 1980 /* 1981 * Traverse the memory cgroup hierarchy from the victim task's 1982 * cgroup up to the OOMing cgroup (or root) to find the 1983 * highest-level memory cgroup with oom.group set. 1984 */ 1985 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1986 if (memcg->oom_group) 1987 oom_group = memcg; 1988 1989 if (memcg == oom_domain) 1990 break; 1991 } 1992 1993 if (oom_group) 1994 css_get(&oom_group->css); 1995 out: 1996 rcu_read_unlock(); 1997 1998 return oom_group; 1999 } 2000 2001 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2002 { 2003 pr_info("Tasks in "); 2004 pr_cont_cgroup_path(memcg->css.cgroup); 2005 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2006 } 2007 2008 /** 2009 * folio_memcg_lock - Bind a folio to its memcg. 2010 * @folio: The folio. 2011 * 2012 * This function prevents unlocked LRU folios from being moved to 2013 * another cgroup. 2014 * 2015 * It ensures lifetime of the bound memcg. The caller is responsible 2016 * for the lifetime of the folio. 2017 */ 2018 void folio_memcg_lock(struct folio *folio) 2019 { 2020 struct mem_cgroup *memcg; 2021 unsigned long flags; 2022 2023 /* 2024 * The RCU lock is held throughout the transaction. The fast 2025 * path can get away without acquiring the memcg->move_lock 2026 * because page moving starts with an RCU grace period. 2027 */ 2028 rcu_read_lock(); 2029 2030 if (mem_cgroup_disabled()) 2031 return; 2032 again: 2033 memcg = folio_memcg(folio); 2034 if (unlikely(!memcg)) 2035 return; 2036 2037 #ifdef CONFIG_PROVE_LOCKING 2038 local_irq_save(flags); 2039 might_lock(&memcg->move_lock); 2040 local_irq_restore(flags); 2041 #endif 2042 2043 if (atomic_read(&memcg->moving_account) <= 0) 2044 return; 2045 2046 spin_lock_irqsave(&memcg->move_lock, flags); 2047 if (memcg != folio_memcg(folio)) { 2048 spin_unlock_irqrestore(&memcg->move_lock, flags); 2049 goto again; 2050 } 2051 2052 /* 2053 * When charge migration first begins, we can have multiple 2054 * critical sections holding the fast-path RCU lock and one 2055 * holding the slowpath move_lock. Track the task who has the 2056 * move_lock for unlock_page_memcg(). 2057 */ 2058 memcg->move_lock_task = current; 2059 memcg->move_lock_flags = flags; 2060 } 2061 2062 void lock_page_memcg(struct page *page) 2063 { 2064 folio_memcg_lock(page_folio(page)); 2065 } 2066 2067 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2068 { 2069 if (memcg && memcg->move_lock_task == current) { 2070 unsigned long flags = memcg->move_lock_flags; 2071 2072 memcg->move_lock_task = NULL; 2073 memcg->move_lock_flags = 0; 2074 2075 spin_unlock_irqrestore(&memcg->move_lock, flags); 2076 } 2077 2078 rcu_read_unlock(); 2079 } 2080 2081 /** 2082 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2083 * @folio: The folio. 2084 * 2085 * This releases the binding created by folio_memcg_lock(). This does 2086 * not change the accounting of this folio to its memcg, but it does 2087 * permit others to change it. 2088 */ 2089 void folio_memcg_unlock(struct folio *folio) 2090 { 2091 __folio_memcg_unlock(folio_memcg(folio)); 2092 } 2093 2094 void unlock_page_memcg(struct page *page) 2095 { 2096 folio_memcg_unlock(page_folio(page)); 2097 } 2098 2099 struct obj_stock { 2100 #ifdef CONFIG_MEMCG_KMEM 2101 struct obj_cgroup *cached_objcg; 2102 struct pglist_data *cached_pgdat; 2103 unsigned int nr_bytes; 2104 int nr_slab_reclaimable_b; 2105 int nr_slab_unreclaimable_b; 2106 #else 2107 int dummy[0]; 2108 #endif 2109 }; 2110 2111 struct memcg_stock_pcp { 2112 struct mem_cgroup *cached; /* this never be root cgroup */ 2113 unsigned int nr_pages; 2114 struct obj_stock task_obj; 2115 struct obj_stock irq_obj; 2116 2117 struct work_struct work; 2118 unsigned long flags; 2119 #define FLUSHING_CACHED_CHARGE 0 2120 }; 2121 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2122 static DEFINE_MUTEX(percpu_charge_mutex); 2123 2124 #ifdef CONFIG_MEMCG_KMEM 2125 static void drain_obj_stock(struct obj_stock *stock); 2126 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2127 struct mem_cgroup *root_memcg); 2128 2129 #else 2130 static inline void drain_obj_stock(struct obj_stock *stock) 2131 { 2132 } 2133 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2134 struct mem_cgroup *root_memcg) 2135 { 2136 return false; 2137 } 2138 #endif 2139 2140 /* 2141 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable 2142 * sequence used in this case to access content from object stock is slow. 2143 * To optimize for user context access, there are now two object stocks for 2144 * task context and interrupt context access respectively. 2145 * 2146 * The task context object stock can be accessed by disabling preemption only 2147 * which is cheap in non-preempt kernel. The interrupt context object stock 2148 * can only be accessed after disabling interrupt. User context code can 2149 * access interrupt object stock, but not vice versa. 2150 */ 2151 static inline struct obj_stock *get_obj_stock(unsigned long *pflags) 2152 { 2153 struct memcg_stock_pcp *stock; 2154 2155 if (likely(in_task())) { 2156 *pflags = 0UL; 2157 preempt_disable(); 2158 stock = this_cpu_ptr(&memcg_stock); 2159 return &stock->task_obj; 2160 } 2161 2162 local_irq_save(*pflags); 2163 stock = this_cpu_ptr(&memcg_stock); 2164 return &stock->irq_obj; 2165 } 2166 2167 static inline void put_obj_stock(unsigned long flags) 2168 { 2169 if (likely(in_task())) 2170 preempt_enable(); 2171 else 2172 local_irq_restore(flags); 2173 } 2174 2175 /** 2176 * consume_stock: Try to consume stocked charge on this cpu. 2177 * @memcg: memcg to consume from. 2178 * @nr_pages: how many pages to charge. 2179 * 2180 * The charges will only happen if @memcg matches the current cpu's memcg 2181 * stock, and at least @nr_pages are available in that stock. Failure to 2182 * service an allocation will refill the stock. 2183 * 2184 * returns true if successful, false otherwise. 2185 */ 2186 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2187 { 2188 struct memcg_stock_pcp *stock; 2189 unsigned long flags; 2190 bool ret = false; 2191 2192 if (nr_pages > MEMCG_CHARGE_BATCH) 2193 return ret; 2194 2195 local_irq_save(flags); 2196 2197 stock = this_cpu_ptr(&memcg_stock); 2198 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2199 stock->nr_pages -= nr_pages; 2200 ret = true; 2201 } 2202 2203 local_irq_restore(flags); 2204 2205 return ret; 2206 } 2207 2208 /* 2209 * Returns stocks cached in percpu and reset cached information. 2210 */ 2211 static void drain_stock(struct memcg_stock_pcp *stock) 2212 { 2213 struct mem_cgroup *old = stock->cached; 2214 2215 if (!old) 2216 return; 2217 2218 if (stock->nr_pages) { 2219 page_counter_uncharge(&old->memory, stock->nr_pages); 2220 if (do_memsw_account()) 2221 page_counter_uncharge(&old->memsw, stock->nr_pages); 2222 stock->nr_pages = 0; 2223 } 2224 2225 css_put(&old->css); 2226 stock->cached = NULL; 2227 } 2228 2229 static void drain_local_stock(struct work_struct *dummy) 2230 { 2231 struct memcg_stock_pcp *stock; 2232 unsigned long flags; 2233 2234 /* 2235 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2236 * drain_stock races is that we always operate on local CPU stock 2237 * here with IRQ disabled 2238 */ 2239 local_irq_save(flags); 2240 2241 stock = this_cpu_ptr(&memcg_stock); 2242 drain_obj_stock(&stock->irq_obj); 2243 if (in_task()) 2244 drain_obj_stock(&stock->task_obj); 2245 drain_stock(stock); 2246 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2247 2248 local_irq_restore(flags); 2249 } 2250 2251 /* 2252 * Cache charges(val) to local per_cpu area. 2253 * This will be consumed by consume_stock() function, later. 2254 */ 2255 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2256 { 2257 struct memcg_stock_pcp *stock; 2258 unsigned long flags; 2259 2260 local_irq_save(flags); 2261 2262 stock = this_cpu_ptr(&memcg_stock); 2263 if (stock->cached != memcg) { /* reset if necessary */ 2264 drain_stock(stock); 2265 css_get(&memcg->css); 2266 stock->cached = memcg; 2267 } 2268 stock->nr_pages += nr_pages; 2269 2270 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2271 drain_stock(stock); 2272 2273 local_irq_restore(flags); 2274 } 2275 2276 /* 2277 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2278 * of the hierarchy under it. 2279 */ 2280 static void drain_all_stock(struct mem_cgroup *root_memcg) 2281 { 2282 int cpu, curcpu; 2283 2284 /* If someone's already draining, avoid adding running more workers. */ 2285 if (!mutex_trylock(&percpu_charge_mutex)) 2286 return; 2287 /* 2288 * Notify other cpus that system-wide "drain" is running 2289 * We do not care about races with the cpu hotplug because cpu down 2290 * as well as workers from this path always operate on the local 2291 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2292 */ 2293 curcpu = get_cpu(); 2294 for_each_online_cpu(cpu) { 2295 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2296 struct mem_cgroup *memcg; 2297 bool flush = false; 2298 2299 rcu_read_lock(); 2300 memcg = stock->cached; 2301 if (memcg && stock->nr_pages && 2302 mem_cgroup_is_descendant(memcg, root_memcg)) 2303 flush = true; 2304 else if (obj_stock_flush_required(stock, root_memcg)) 2305 flush = true; 2306 rcu_read_unlock(); 2307 2308 if (flush && 2309 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2310 if (cpu == curcpu) 2311 drain_local_stock(&stock->work); 2312 else 2313 schedule_work_on(cpu, &stock->work); 2314 } 2315 } 2316 put_cpu(); 2317 mutex_unlock(&percpu_charge_mutex); 2318 } 2319 2320 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2321 { 2322 struct memcg_stock_pcp *stock; 2323 2324 stock = &per_cpu(memcg_stock, cpu); 2325 drain_stock(stock); 2326 2327 return 0; 2328 } 2329 2330 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2331 unsigned int nr_pages, 2332 gfp_t gfp_mask) 2333 { 2334 unsigned long nr_reclaimed = 0; 2335 2336 do { 2337 unsigned long pflags; 2338 2339 if (page_counter_read(&memcg->memory) <= 2340 READ_ONCE(memcg->memory.high)) 2341 continue; 2342 2343 memcg_memory_event(memcg, MEMCG_HIGH); 2344 2345 psi_memstall_enter(&pflags); 2346 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2347 gfp_mask, true); 2348 psi_memstall_leave(&pflags); 2349 } while ((memcg = parent_mem_cgroup(memcg)) && 2350 !mem_cgroup_is_root(memcg)); 2351 2352 return nr_reclaimed; 2353 } 2354 2355 static void high_work_func(struct work_struct *work) 2356 { 2357 struct mem_cgroup *memcg; 2358 2359 memcg = container_of(work, struct mem_cgroup, high_work); 2360 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2361 } 2362 2363 /* 2364 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2365 * enough to still cause a significant slowdown in most cases, while still 2366 * allowing diagnostics and tracing to proceed without becoming stuck. 2367 */ 2368 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2369 2370 /* 2371 * When calculating the delay, we use these either side of the exponentiation to 2372 * maintain precision and scale to a reasonable number of jiffies (see the table 2373 * below. 2374 * 2375 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2376 * overage ratio to a delay. 2377 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2378 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2379 * to produce a reasonable delay curve. 2380 * 2381 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2382 * reasonable delay curve compared to precision-adjusted overage, not 2383 * penalising heavily at first, but still making sure that growth beyond the 2384 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2385 * example, with a high of 100 megabytes: 2386 * 2387 * +-------+------------------------+ 2388 * | usage | time to allocate in ms | 2389 * +-------+------------------------+ 2390 * | 100M | 0 | 2391 * | 101M | 6 | 2392 * | 102M | 25 | 2393 * | 103M | 57 | 2394 * | 104M | 102 | 2395 * | 105M | 159 | 2396 * | 106M | 230 | 2397 * | 107M | 313 | 2398 * | 108M | 409 | 2399 * | 109M | 518 | 2400 * | 110M | 639 | 2401 * | 111M | 774 | 2402 * | 112M | 921 | 2403 * | 113M | 1081 | 2404 * | 114M | 1254 | 2405 * | 115M | 1439 | 2406 * | 116M | 1638 | 2407 * | 117M | 1849 | 2408 * | 118M | 2000 | 2409 * | 119M | 2000 | 2410 * | 120M | 2000 | 2411 * +-------+------------------------+ 2412 */ 2413 #define MEMCG_DELAY_PRECISION_SHIFT 20 2414 #define MEMCG_DELAY_SCALING_SHIFT 14 2415 2416 static u64 calculate_overage(unsigned long usage, unsigned long high) 2417 { 2418 u64 overage; 2419 2420 if (usage <= high) 2421 return 0; 2422 2423 /* 2424 * Prevent division by 0 in overage calculation by acting as if 2425 * it was a threshold of 1 page 2426 */ 2427 high = max(high, 1UL); 2428 2429 overage = usage - high; 2430 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2431 return div64_u64(overage, high); 2432 } 2433 2434 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2435 { 2436 u64 overage, max_overage = 0; 2437 2438 do { 2439 overage = calculate_overage(page_counter_read(&memcg->memory), 2440 READ_ONCE(memcg->memory.high)); 2441 max_overage = max(overage, max_overage); 2442 } while ((memcg = parent_mem_cgroup(memcg)) && 2443 !mem_cgroup_is_root(memcg)); 2444 2445 return max_overage; 2446 } 2447 2448 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2449 { 2450 u64 overage, max_overage = 0; 2451 2452 do { 2453 overage = calculate_overage(page_counter_read(&memcg->swap), 2454 READ_ONCE(memcg->swap.high)); 2455 if (overage) 2456 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2457 max_overage = max(overage, max_overage); 2458 } while ((memcg = parent_mem_cgroup(memcg)) && 2459 !mem_cgroup_is_root(memcg)); 2460 2461 return max_overage; 2462 } 2463 2464 /* 2465 * Get the number of jiffies that we should penalise a mischievous cgroup which 2466 * is exceeding its memory.high by checking both it and its ancestors. 2467 */ 2468 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2469 unsigned int nr_pages, 2470 u64 max_overage) 2471 { 2472 unsigned long penalty_jiffies; 2473 2474 if (!max_overage) 2475 return 0; 2476 2477 /* 2478 * We use overage compared to memory.high to calculate the number of 2479 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2480 * fairly lenient on small overages, and increasingly harsh when the 2481 * memcg in question makes it clear that it has no intention of stopping 2482 * its crazy behaviour, so we exponentially increase the delay based on 2483 * overage amount. 2484 */ 2485 penalty_jiffies = max_overage * max_overage * HZ; 2486 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2487 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2488 2489 /* 2490 * Factor in the task's own contribution to the overage, such that four 2491 * N-sized allocations are throttled approximately the same as one 2492 * 4N-sized allocation. 2493 * 2494 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2495 * larger the current charge patch is than that. 2496 */ 2497 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2498 } 2499 2500 /* 2501 * Scheduled by try_charge() to be executed from the userland return path 2502 * and reclaims memory over the high limit. 2503 */ 2504 void mem_cgroup_handle_over_high(void) 2505 { 2506 unsigned long penalty_jiffies; 2507 unsigned long pflags; 2508 unsigned long nr_reclaimed; 2509 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2510 int nr_retries = MAX_RECLAIM_RETRIES; 2511 struct mem_cgroup *memcg; 2512 bool in_retry = false; 2513 2514 if (likely(!nr_pages)) 2515 return; 2516 2517 memcg = get_mem_cgroup_from_mm(current->mm); 2518 current->memcg_nr_pages_over_high = 0; 2519 2520 retry_reclaim: 2521 /* 2522 * The allocating task should reclaim at least the batch size, but for 2523 * subsequent retries we only want to do what's necessary to prevent oom 2524 * or breaching resource isolation. 2525 * 2526 * This is distinct from memory.max or page allocator behaviour because 2527 * memory.high is currently batched, whereas memory.max and the page 2528 * allocator run every time an allocation is made. 2529 */ 2530 nr_reclaimed = reclaim_high(memcg, 2531 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2532 GFP_KERNEL); 2533 2534 /* 2535 * memory.high is breached and reclaim is unable to keep up. Throttle 2536 * allocators proactively to slow down excessive growth. 2537 */ 2538 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2539 mem_find_max_overage(memcg)); 2540 2541 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2542 swap_find_max_overage(memcg)); 2543 2544 /* 2545 * Clamp the max delay per usermode return so as to still keep the 2546 * application moving forwards and also permit diagnostics, albeit 2547 * extremely slowly. 2548 */ 2549 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2550 2551 /* 2552 * Don't sleep if the amount of jiffies this memcg owes us is so low 2553 * that it's not even worth doing, in an attempt to be nice to those who 2554 * go only a small amount over their memory.high value and maybe haven't 2555 * been aggressively reclaimed enough yet. 2556 */ 2557 if (penalty_jiffies <= HZ / 100) 2558 goto out; 2559 2560 /* 2561 * If reclaim is making forward progress but we're still over 2562 * memory.high, we want to encourage that rather than doing allocator 2563 * throttling. 2564 */ 2565 if (nr_reclaimed || nr_retries--) { 2566 in_retry = true; 2567 goto retry_reclaim; 2568 } 2569 2570 /* 2571 * If we exit early, we're guaranteed to die (since 2572 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2573 * need to account for any ill-begotten jiffies to pay them off later. 2574 */ 2575 psi_memstall_enter(&pflags); 2576 schedule_timeout_killable(penalty_jiffies); 2577 psi_memstall_leave(&pflags); 2578 2579 out: 2580 css_put(&memcg->css); 2581 } 2582 2583 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2584 unsigned int nr_pages) 2585 { 2586 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2587 int nr_retries = MAX_RECLAIM_RETRIES; 2588 struct mem_cgroup *mem_over_limit; 2589 struct page_counter *counter; 2590 enum oom_status oom_status; 2591 unsigned long nr_reclaimed; 2592 bool passed_oom = false; 2593 bool may_swap = true; 2594 bool drained = false; 2595 unsigned long pflags; 2596 2597 retry: 2598 if (consume_stock(memcg, nr_pages)) 2599 return 0; 2600 2601 if (!do_memsw_account() || 2602 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2603 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2604 goto done_restock; 2605 if (do_memsw_account()) 2606 page_counter_uncharge(&memcg->memsw, batch); 2607 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2608 } else { 2609 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2610 may_swap = false; 2611 } 2612 2613 if (batch > nr_pages) { 2614 batch = nr_pages; 2615 goto retry; 2616 } 2617 2618 /* 2619 * Memcg doesn't have a dedicated reserve for atomic 2620 * allocations. But like the global atomic pool, we need to 2621 * put the burden of reclaim on regular allocation requests 2622 * and let these go through as privileged allocations. 2623 */ 2624 if (gfp_mask & __GFP_ATOMIC) 2625 goto force; 2626 2627 /* 2628 * Prevent unbounded recursion when reclaim operations need to 2629 * allocate memory. This might exceed the limits temporarily, 2630 * but we prefer facilitating memory reclaim and getting back 2631 * under the limit over triggering OOM kills in these cases. 2632 */ 2633 if (unlikely(current->flags & PF_MEMALLOC)) 2634 goto force; 2635 2636 if (unlikely(task_in_memcg_oom(current))) 2637 goto nomem; 2638 2639 if (!gfpflags_allow_blocking(gfp_mask)) 2640 goto nomem; 2641 2642 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2643 2644 psi_memstall_enter(&pflags); 2645 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2646 gfp_mask, may_swap); 2647 psi_memstall_leave(&pflags); 2648 2649 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2650 goto retry; 2651 2652 if (!drained) { 2653 drain_all_stock(mem_over_limit); 2654 drained = true; 2655 goto retry; 2656 } 2657 2658 if (gfp_mask & __GFP_NORETRY) 2659 goto nomem; 2660 /* 2661 * Even though the limit is exceeded at this point, reclaim 2662 * may have been able to free some pages. Retry the charge 2663 * before killing the task. 2664 * 2665 * Only for regular pages, though: huge pages are rather 2666 * unlikely to succeed so close to the limit, and we fall back 2667 * to regular pages anyway in case of failure. 2668 */ 2669 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2670 goto retry; 2671 /* 2672 * At task move, charge accounts can be doubly counted. So, it's 2673 * better to wait until the end of task_move if something is going on. 2674 */ 2675 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2676 goto retry; 2677 2678 if (nr_retries--) 2679 goto retry; 2680 2681 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2682 goto nomem; 2683 2684 /* Avoid endless loop for tasks bypassed by the oom killer */ 2685 if (passed_oom && task_is_dying()) 2686 goto nomem; 2687 2688 /* 2689 * keep retrying as long as the memcg oom killer is able to make 2690 * a forward progress or bypass the charge if the oom killer 2691 * couldn't make any progress. 2692 */ 2693 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2694 get_order(nr_pages * PAGE_SIZE)); 2695 if (oom_status == OOM_SUCCESS) { 2696 passed_oom = true; 2697 nr_retries = MAX_RECLAIM_RETRIES; 2698 goto retry; 2699 } 2700 nomem: 2701 if (!(gfp_mask & __GFP_NOFAIL)) 2702 return -ENOMEM; 2703 force: 2704 /* 2705 * The allocation either can't fail or will lead to more memory 2706 * being freed very soon. Allow memory usage go over the limit 2707 * temporarily by force charging it. 2708 */ 2709 page_counter_charge(&memcg->memory, nr_pages); 2710 if (do_memsw_account()) 2711 page_counter_charge(&memcg->memsw, nr_pages); 2712 2713 return 0; 2714 2715 done_restock: 2716 if (batch > nr_pages) 2717 refill_stock(memcg, batch - nr_pages); 2718 2719 /* 2720 * If the hierarchy is above the normal consumption range, schedule 2721 * reclaim on returning to userland. We can perform reclaim here 2722 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2723 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2724 * not recorded as it most likely matches current's and won't 2725 * change in the meantime. As high limit is checked again before 2726 * reclaim, the cost of mismatch is negligible. 2727 */ 2728 do { 2729 bool mem_high, swap_high; 2730 2731 mem_high = page_counter_read(&memcg->memory) > 2732 READ_ONCE(memcg->memory.high); 2733 swap_high = page_counter_read(&memcg->swap) > 2734 READ_ONCE(memcg->swap.high); 2735 2736 /* Don't bother a random interrupted task */ 2737 if (in_interrupt()) { 2738 if (mem_high) { 2739 schedule_work(&memcg->high_work); 2740 break; 2741 } 2742 continue; 2743 } 2744 2745 if (mem_high || swap_high) { 2746 /* 2747 * The allocating tasks in this cgroup will need to do 2748 * reclaim or be throttled to prevent further growth 2749 * of the memory or swap footprints. 2750 * 2751 * Target some best-effort fairness between the tasks, 2752 * and distribute reclaim work and delay penalties 2753 * based on how much each task is actually allocating. 2754 */ 2755 current->memcg_nr_pages_over_high += batch; 2756 set_notify_resume(current); 2757 break; 2758 } 2759 } while ((memcg = parent_mem_cgroup(memcg))); 2760 2761 return 0; 2762 } 2763 2764 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2765 unsigned int nr_pages) 2766 { 2767 if (mem_cgroup_is_root(memcg)) 2768 return 0; 2769 2770 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2771 } 2772 2773 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2774 { 2775 if (mem_cgroup_is_root(memcg)) 2776 return; 2777 2778 page_counter_uncharge(&memcg->memory, nr_pages); 2779 if (do_memsw_account()) 2780 page_counter_uncharge(&memcg->memsw, nr_pages); 2781 } 2782 2783 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2784 { 2785 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2786 /* 2787 * Any of the following ensures page's memcg stability: 2788 * 2789 * - the page lock 2790 * - LRU isolation 2791 * - lock_page_memcg() 2792 * - exclusive reference 2793 */ 2794 folio->memcg_data = (unsigned long)memcg; 2795 } 2796 2797 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 2798 { 2799 struct mem_cgroup *memcg; 2800 2801 rcu_read_lock(); 2802 retry: 2803 memcg = obj_cgroup_memcg(objcg); 2804 if (unlikely(!css_tryget(&memcg->css))) 2805 goto retry; 2806 rcu_read_unlock(); 2807 2808 return memcg; 2809 } 2810 2811 #ifdef CONFIG_MEMCG_KMEM 2812 /* 2813 * The allocated objcg pointers array is not accounted directly. 2814 * Moreover, it should not come from DMA buffer and is not readily 2815 * reclaimable. So those GFP bits should be masked off. 2816 */ 2817 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2818 2819 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2820 gfp_t gfp, bool new_page) 2821 { 2822 unsigned int objects = objs_per_slab_page(s, page); 2823 unsigned long memcg_data; 2824 void *vec; 2825 2826 gfp &= ~OBJCGS_CLEAR_MASK; 2827 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2828 page_to_nid(page)); 2829 if (!vec) 2830 return -ENOMEM; 2831 2832 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2833 if (new_page) { 2834 /* 2835 * If the slab page is brand new and nobody can yet access 2836 * it's memcg_data, no synchronization is required and 2837 * memcg_data can be simply assigned. 2838 */ 2839 page->memcg_data = memcg_data; 2840 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) { 2841 /* 2842 * If the slab page is already in use, somebody can allocate 2843 * and assign obj_cgroups in parallel. In this case the existing 2844 * objcg vector should be reused. 2845 */ 2846 kfree(vec); 2847 return 0; 2848 } 2849 2850 kmemleak_not_leak(vec); 2851 return 0; 2852 } 2853 2854 /* 2855 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2856 * 2857 * A passed kernel object can be a slab object or a generic kernel page, so 2858 * different mechanisms for getting the memory cgroup pointer should be used. 2859 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2860 * can not know for sure how the kernel object is implemented. 2861 * mem_cgroup_from_obj() can be safely used in such cases. 2862 * 2863 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2864 * cgroup_mutex, etc. 2865 */ 2866 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2867 { 2868 struct page *page; 2869 2870 if (mem_cgroup_disabled()) 2871 return NULL; 2872 2873 page = virt_to_head_page(p); 2874 2875 /* 2876 * Slab objects are accounted individually, not per-page. 2877 * Memcg membership data for each individual object is saved in 2878 * the page->obj_cgroups. 2879 */ 2880 if (page_objcgs_check(page)) { 2881 struct obj_cgroup *objcg; 2882 unsigned int off; 2883 2884 off = obj_to_index(page->slab_cache, page, p); 2885 objcg = page_objcgs(page)[off]; 2886 if (objcg) 2887 return obj_cgroup_memcg(objcg); 2888 2889 return NULL; 2890 } 2891 2892 /* 2893 * page_memcg_check() is used here, because page_has_obj_cgroups() 2894 * check above could fail because the object cgroups vector wasn't set 2895 * at that moment, but it can be set concurrently. 2896 * page_memcg_check(page) will guarantee that a proper memory 2897 * cgroup pointer or NULL will be returned. 2898 */ 2899 return page_memcg_check(page); 2900 } 2901 2902 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2903 { 2904 struct obj_cgroup *objcg = NULL; 2905 struct mem_cgroup *memcg; 2906 2907 if (memcg_kmem_bypass()) 2908 return NULL; 2909 2910 rcu_read_lock(); 2911 if (unlikely(active_memcg())) 2912 memcg = active_memcg(); 2913 else 2914 memcg = mem_cgroup_from_task(current); 2915 2916 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2917 objcg = rcu_dereference(memcg->objcg); 2918 if (objcg && obj_cgroup_tryget(objcg)) 2919 break; 2920 objcg = NULL; 2921 } 2922 rcu_read_unlock(); 2923 2924 return objcg; 2925 } 2926 2927 static int memcg_alloc_cache_id(void) 2928 { 2929 int id, size; 2930 int err; 2931 2932 id = ida_simple_get(&memcg_cache_ida, 2933 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2934 if (id < 0) 2935 return id; 2936 2937 if (id < memcg_nr_cache_ids) 2938 return id; 2939 2940 /* 2941 * There's no space for the new id in memcg_caches arrays, 2942 * so we have to grow them. 2943 */ 2944 down_write(&memcg_cache_ids_sem); 2945 2946 size = 2 * (id + 1); 2947 if (size < MEMCG_CACHES_MIN_SIZE) 2948 size = MEMCG_CACHES_MIN_SIZE; 2949 else if (size > MEMCG_CACHES_MAX_SIZE) 2950 size = MEMCG_CACHES_MAX_SIZE; 2951 2952 err = memcg_update_all_list_lrus(size); 2953 if (!err) 2954 memcg_nr_cache_ids = size; 2955 2956 up_write(&memcg_cache_ids_sem); 2957 2958 if (err) { 2959 ida_simple_remove(&memcg_cache_ida, id); 2960 return err; 2961 } 2962 return id; 2963 } 2964 2965 static void memcg_free_cache_id(int id) 2966 { 2967 ida_simple_remove(&memcg_cache_ida, id); 2968 } 2969 2970 /* 2971 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2972 * @objcg: object cgroup to uncharge 2973 * @nr_pages: number of pages to uncharge 2974 */ 2975 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2976 unsigned int nr_pages) 2977 { 2978 struct mem_cgroup *memcg; 2979 2980 memcg = get_mem_cgroup_from_objcg(objcg); 2981 2982 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2983 page_counter_uncharge(&memcg->kmem, nr_pages); 2984 refill_stock(memcg, nr_pages); 2985 2986 css_put(&memcg->css); 2987 } 2988 2989 /* 2990 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2991 * @objcg: object cgroup to charge 2992 * @gfp: reclaim mode 2993 * @nr_pages: number of pages to charge 2994 * 2995 * Returns 0 on success, an error code on failure. 2996 */ 2997 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2998 unsigned int nr_pages) 2999 { 3000 struct mem_cgroup *memcg; 3001 int ret; 3002 3003 memcg = get_mem_cgroup_from_objcg(objcg); 3004 3005 ret = try_charge_memcg(memcg, gfp, nr_pages); 3006 if (ret) 3007 goto out; 3008 3009 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3010 page_counter_charge(&memcg->kmem, nr_pages); 3011 out: 3012 css_put(&memcg->css); 3013 3014 return ret; 3015 } 3016 3017 /** 3018 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3019 * @page: page to charge 3020 * @gfp: reclaim mode 3021 * @order: allocation order 3022 * 3023 * Returns 0 on success, an error code on failure. 3024 */ 3025 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3026 { 3027 struct obj_cgroup *objcg; 3028 int ret = 0; 3029 3030 objcg = get_obj_cgroup_from_current(); 3031 if (objcg) { 3032 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3033 if (!ret) { 3034 page->memcg_data = (unsigned long)objcg | 3035 MEMCG_DATA_KMEM; 3036 return 0; 3037 } 3038 obj_cgroup_put(objcg); 3039 } 3040 return ret; 3041 } 3042 3043 /** 3044 * __memcg_kmem_uncharge_page: uncharge a kmem page 3045 * @page: page to uncharge 3046 * @order: allocation order 3047 */ 3048 void __memcg_kmem_uncharge_page(struct page *page, int order) 3049 { 3050 struct folio *folio = page_folio(page); 3051 struct obj_cgroup *objcg; 3052 unsigned int nr_pages = 1 << order; 3053 3054 if (!folio_memcg_kmem(folio)) 3055 return; 3056 3057 objcg = __folio_objcg(folio); 3058 obj_cgroup_uncharge_pages(objcg, nr_pages); 3059 folio->memcg_data = 0; 3060 obj_cgroup_put(objcg); 3061 } 3062 3063 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3064 enum node_stat_item idx, int nr) 3065 { 3066 unsigned long flags; 3067 struct obj_stock *stock = get_obj_stock(&flags); 3068 int *bytes; 3069 3070 /* 3071 * Save vmstat data in stock and skip vmstat array update unless 3072 * accumulating over a page of vmstat data or when pgdat or idx 3073 * changes. 3074 */ 3075 if (stock->cached_objcg != objcg) { 3076 drain_obj_stock(stock); 3077 obj_cgroup_get(objcg); 3078 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3079 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3080 stock->cached_objcg = objcg; 3081 stock->cached_pgdat = pgdat; 3082 } else if (stock->cached_pgdat != pgdat) { 3083 /* Flush the existing cached vmstat data */ 3084 struct pglist_data *oldpg = stock->cached_pgdat; 3085 3086 if (stock->nr_slab_reclaimable_b) { 3087 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3088 stock->nr_slab_reclaimable_b); 3089 stock->nr_slab_reclaimable_b = 0; 3090 } 3091 if (stock->nr_slab_unreclaimable_b) { 3092 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3093 stock->nr_slab_unreclaimable_b); 3094 stock->nr_slab_unreclaimable_b = 0; 3095 } 3096 stock->cached_pgdat = pgdat; 3097 } 3098 3099 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3100 : &stock->nr_slab_unreclaimable_b; 3101 /* 3102 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3103 * cached locally at least once before pushing it out. 3104 */ 3105 if (!*bytes) { 3106 *bytes = nr; 3107 nr = 0; 3108 } else { 3109 *bytes += nr; 3110 if (abs(*bytes) > PAGE_SIZE) { 3111 nr = *bytes; 3112 *bytes = 0; 3113 } else { 3114 nr = 0; 3115 } 3116 } 3117 if (nr) 3118 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3119 3120 put_obj_stock(flags); 3121 } 3122 3123 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3124 { 3125 unsigned long flags; 3126 struct obj_stock *stock = get_obj_stock(&flags); 3127 bool ret = false; 3128 3129 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3130 stock->nr_bytes -= nr_bytes; 3131 ret = true; 3132 } 3133 3134 put_obj_stock(flags); 3135 3136 return ret; 3137 } 3138 3139 static void drain_obj_stock(struct obj_stock *stock) 3140 { 3141 struct obj_cgroup *old = stock->cached_objcg; 3142 3143 if (!old) 3144 return; 3145 3146 if (stock->nr_bytes) { 3147 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3148 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3149 3150 if (nr_pages) 3151 obj_cgroup_uncharge_pages(old, nr_pages); 3152 3153 /* 3154 * The leftover is flushed to the centralized per-memcg value. 3155 * On the next attempt to refill obj stock it will be moved 3156 * to a per-cpu stock (probably, on an other CPU), see 3157 * refill_obj_stock(). 3158 * 3159 * How often it's flushed is a trade-off between the memory 3160 * limit enforcement accuracy and potential CPU contention, 3161 * so it might be changed in the future. 3162 */ 3163 atomic_add(nr_bytes, &old->nr_charged_bytes); 3164 stock->nr_bytes = 0; 3165 } 3166 3167 /* 3168 * Flush the vmstat data in current stock 3169 */ 3170 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3171 if (stock->nr_slab_reclaimable_b) { 3172 mod_objcg_mlstate(old, stock->cached_pgdat, 3173 NR_SLAB_RECLAIMABLE_B, 3174 stock->nr_slab_reclaimable_b); 3175 stock->nr_slab_reclaimable_b = 0; 3176 } 3177 if (stock->nr_slab_unreclaimable_b) { 3178 mod_objcg_mlstate(old, stock->cached_pgdat, 3179 NR_SLAB_UNRECLAIMABLE_B, 3180 stock->nr_slab_unreclaimable_b); 3181 stock->nr_slab_unreclaimable_b = 0; 3182 } 3183 stock->cached_pgdat = NULL; 3184 } 3185 3186 obj_cgroup_put(old); 3187 stock->cached_objcg = NULL; 3188 } 3189 3190 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3191 struct mem_cgroup *root_memcg) 3192 { 3193 struct mem_cgroup *memcg; 3194 3195 if (in_task() && stock->task_obj.cached_objcg) { 3196 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg); 3197 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3198 return true; 3199 } 3200 if (stock->irq_obj.cached_objcg) { 3201 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg); 3202 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3203 return true; 3204 } 3205 3206 return false; 3207 } 3208 3209 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3210 bool allow_uncharge) 3211 { 3212 unsigned long flags; 3213 struct obj_stock *stock = get_obj_stock(&flags); 3214 unsigned int nr_pages = 0; 3215 3216 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3217 drain_obj_stock(stock); 3218 obj_cgroup_get(objcg); 3219 stock->cached_objcg = objcg; 3220 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3221 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3222 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3223 } 3224 stock->nr_bytes += nr_bytes; 3225 3226 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3227 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3228 stock->nr_bytes &= (PAGE_SIZE - 1); 3229 } 3230 3231 put_obj_stock(flags); 3232 3233 if (nr_pages) 3234 obj_cgroup_uncharge_pages(objcg, nr_pages); 3235 } 3236 3237 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3238 { 3239 unsigned int nr_pages, nr_bytes; 3240 int ret; 3241 3242 if (consume_obj_stock(objcg, size)) 3243 return 0; 3244 3245 /* 3246 * In theory, objcg->nr_charged_bytes can have enough 3247 * pre-charged bytes to satisfy the allocation. However, 3248 * flushing objcg->nr_charged_bytes requires two atomic 3249 * operations, and objcg->nr_charged_bytes can't be big. 3250 * The shared objcg->nr_charged_bytes can also become a 3251 * performance bottleneck if all tasks of the same memcg are 3252 * trying to update it. So it's better to ignore it and try 3253 * grab some new pages. The stock's nr_bytes will be flushed to 3254 * objcg->nr_charged_bytes later on when objcg changes. 3255 * 3256 * The stock's nr_bytes may contain enough pre-charged bytes 3257 * to allow one less page from being charged, but we can't rely 3258 * on the pre-charged bytes not being changed outside of 3259 * consume_obj_stock() or refill_obj_stock(). So ignore those 3260 * pre-charged bytes as well when charging pages. To avoid a 3261 * page uncharge right after a page charge, we set the 3262 * allow_uncharge flag to false when calling refill_obj_stock() 3263 * to temporarily allow the pre-charged bytes to exceed the page 3264 * size limit. The maximum reachable value of the pre-charged 3265 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3266 * race. 3267 */ 3268 nr_pages = size >> PAGE_SHIFT; 3269 nr_bytes = size & (PAGE_SIZE - 1); 3270 3271 if (nr_bytes) 3272 nr_pages += 1; 3273 3274 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3275 if (!ret && nr_bytes) 3276 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3277 3278 return ret; 3279 } 3280 3281 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3282 { 3283 refill_obj_stock(objcg, size, true); 3284 } 3285 3286 #endif /* CONFIG_MEMCG_KMEM */ 3287 3288 /* 3289 * Because page_memcg(head) is not set on tails, set it now. 3290 */ 3291 void split_page_memcg(struct page *head, unsigned int nr) 3292 { 3293 struct folio *folio = page_folio(head); 3294 struct mem_cgroup *memcg = folio_memcg(folio); 3295 int i; 3296 3297 if (mem_cgroup_disabled() || !memcg) 3298 return; 3299 3300 for (i = 1; i < nr; i++) 3301 folio_page(folio, i)->memcg_data = folio->memcg_data; 3302 3303 if (folio_memcg_kmem(folio)) 3304 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3305 else 3306 css_get_many(&memcg->css, nr - 1); 3307 } 3308 3309 #ifdef CONFIG_MEMCG_SWAP 3310 /** 3311 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3312 * @entry: swap entry to be moved 3313 * @from: mem_cgroup which the entry is moved from 3314 * @to: mem_cgroup which the entry is moved to 3315 * 3316 * It succeeds only when the swap_cgroup's record for this entry is the same 3317 * as the mem_cgroup's id of @from. 3318 * 3319 * Returns 0 on success, -EINVAL on failure. 3320 * 3321 * The caller must have charged to @to, IOW, called page_counter_charge() about 3322 * both res and memsw, and called css_get(). 3323 */ 3324 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3325 struct mem_cgroup *from, struct mem_cgroup *to) 3326 { 3327 unsigned short old_id, new_id; 3328 3329 old_id = mem_cgroup_id(from); 3330 new_id = mem_cgroup_id(to); 3331 3332 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3333 mod_memcg_state(from, MEMCG_SWAP, -1); 3334 mod_memcg_state(to, MEMCG_SWAP, 1); 3335 return 0; 3336 } 3337 return -EINVAL; 3338 } 3339 #else 3340 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3341 struct mem_cgroup *from, struct mem_cgroup *to) 3342 { 3343 return -EINVAL; 3344 } 3345 #endif 3346 3347 static DEFINE_MUTEX(memcg_max_mutex); 3348 3349 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3350 unsigned long max, bool memsw) 3351 { 3352 bool enlarge = false; 3353 bool drained = false; 3354 int ret; 3355 bool limits_invariant; 3356 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3357 3358 do { 3359 if (signal_pending(current)) { 3360 ret = -EINTR; 3361 break; 3362 } 3363 3364 mutex_lock(&memcg_max_mutex); 3365 /* 3366 * Make sure that the new limit (memsw or memory limit) doesn't 3367 * break our basic invariant rule memory.max <= memsw.max. 3368 */ 3369 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3370 max <= memcg->memsw.max; 3371 if (!limits_invariant) { 3372 mutex_unlock(&memcg_max_mutex); 3373 ret = -EINVAL; 3374 break; 3375 } 3376 if (max > counter->max) 3377 enlarge = true; 3378 ret = page_counter_set_max(counter, max); 3379 mutex_unlock(&memcg_max_mutex); 3380 3381 if (!ret) 3382 break; 3383 3384 if (!drained) { 3385 drain_all_stock(memcg); 3386 drained = true; 3387 continue; 3388 } 3389 3390 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3391 GFP_KERNEL, !memsw)) { 3392 ret = -EBUSY; 3393 break; 3394 } 3395 } while (true); 3396 3397 if (!ret && enlarge) 3398 memcg_oom_recover(memcg); 3399 3400 return ret; 3401 } 3402 3403 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3404 gfp_t gfp_mask, 3405 unsigned long *total_scanned) 3406 { 3407 unsigned long nr_reclaimed = 0; 3408 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3409 unsigned long reclaimed; 3410 int loop = 0; 3411 struct mem_cgroup_tree_per_node *mctz; 3412 unsigned long excess; 3413 unsigned long nr_scanned; 3414 3415 if (order > 0) 3416 return 0; 3417 3418 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3419 3420 /* 3421 * Do not even bother to check the largest node if the root 3422 * is empty. Do it lockless to prevent lock bouncing. Races 3423 * are acceptable as soft limit is best effort anyway. 3424 */ 3425 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3426 return 0; 3427 3428 /* 3429 * This loop can run a while, specially if mem_cgroup's continuously 3430 * keep exceeding their soft limit and putting the system under 3431 * pressure 3432 */ 3433 do { 3434 if (next_mz) 3435 mz = next_mz; 3436 else 3437 mz = mem_cgroup_largest_soft_limit_node(mctz); 3438 if (!mz) 3439 break; 3440 3441 nr_scanned = 0; 3442 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3443 gfp_mask, &nr_scanned); 3444 nr_reclaimed += reclaimed; 3445 *total_scanned += nr_scanned; 3446 spin_lock_irq(&mctz->lock); 3447 __mem_cgroup_remove_exceeded(mz, mctz); 3448 3449 /* 3450 * If we failed to reclaim anything from this memory cgroup 3451 * it is time to move on to the next cgroup 3452 */ 3453 next_mz = NULL; 3454 if (!reclaimed) 3455 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3456 3457 excess = soft_limit_excess(mz->memcg); 3458 /* 3459 * One school of thought says that we should not add 3460 * back the node to the tree if reclaim returns 0. 3461 * But our reclaim could return 0, simply because due 3462 * to priority we are exposing a smaller subset of 3463 * memory to reclaim from. Consider this as a longer 3464 * term TODO. 3465 */ 3466 /* If excess == 0, no tree ops */ 3467 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3468 spin_unlock_irq(&mctz->lock); 3469 css_put(&mz->memcg->css); 3470 loop++; 3471 /* 3472 * Could not reclaim anything and there are no more 3473 * mem cgroups to try or we seem to be looping without 3474 * reclaiming anything. 3475 */ 3476 if (!nr_reclaimed && 3477 (next_mz == NULL || 3478 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3479 break; 3480 } while (!nr_reclaimed); 3481 if (next_mz) 3482 css_put(&next_mz->memcg->css); 3483 return nr_reclaimed; 3484 } 3485 3486 /* 3487 * Reclaims as many pages from the given memcg as possible. 3488 * 3489 * Caller is responsible for holding css reference for memcg. 3490 */ 3491 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3492 { 3493 int nr_retries = MAX_RECLAIM_RETRIES; 3494 3495 /* we call try-to-free pages for make this cgroup empty */ 3496 lru_add_drain_all(); 3497 3498 drain_all_stock(memcg); 3499 3500 /* try to free all pages in this cgroup */ 3501 while (nr_retries && page_counter_read(&memcg->memory)) { 3502 if (signal_pending(current)) 3503 return -EINTR; 3504 3505 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true)) 3506 nr_retries--; 3507 } 3508 3509 return 0; 3510 } 3511 3512 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3513 char *buf, size_t nbytes, 3514 loff_t off) 3515 { 3516 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3517 3518 if (mem_cgroup_is_root(memcg)) 3519 return -EINVAL; 3520 return mem_cgroup_force_empty(memcg) ?: nbytes; 3521 } 3522 3523 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3524 struct cftype *cft) 3525 { 3526 return 1; 3527 } 3528 3529 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3530 struct cftype *cft, u64 val) 3531 { 3532 if (val == 1) 3533 return 0; 3534 3535 pr_warn_once("Non-hierarchical mode is deprecated. " 3536 "Please report your usecase to linux-mm@kvack.org if you " 3537 "depend on this functionality.\n"); 3538 3539 return -EINVAL; 3540 } 3541 3542 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3543 { 3544 unsigned long val; 3545 3546 if (mem_cgroup_is_root(memcg)) { 3547 mem_cgroup_flush_stats(); 3548 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3549 memcg_page_state(memcg, NR_ANON_MAPPED); 3550 if (swap) 3551 val += memcg_page_state(memcg, MEMCG_SWAP); 3552 } else { 3553 if (!swap) 3554 val = page_counter_read(&memcg->memory); 3555 else 3556 val = page_counter_read(&memcg->memsw); 3557 } 3558 return val; 3559 } 3560 3561 enum { 3562 RES_USAGE, 3563 RES_LIMIT, 3564 RES_MAX_USAGE, 3565 RES_FAILCNT, 3566 RES_SOFT_LIMIT, 3567 }; 3568 3569 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3570 struct cftype *cft) 3571 { 3572 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3573 struct page_counter *counter; 3574 3575 switch (MEMFILE_TYPE(cft->private)) { 3576 case _MEM: 3577 counter = &memcg->memory; 3578 break; 3579 case _MEMSWAP: 3580 counter = &memcg->memsw; 3581 break; 3582 case _KMEM: 3583 counter = &memcg->kmem; 3584 break; 3585 case _TCP: 3586 counter = &memcg->tcpmem; 3587 break; 3588 default: 3589 BUG(); 3590 } 3591 3592 switch (MEMFILE_ATTR(cft->private)) { 3593 case RES_USAGE: 3594 if (counter == &memcg->memory) 3595 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3596 if (counter == &memcg->memsw) 3597 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3598 return (u64)page_counter_read(counter) * PAGE_SIZE; 3599 case RES_LIMIT: 3600 return (u64)counter->max * PAGE_SIZE; 3601 case RES_MAX_USAGE: 3602 return (u64)counter->watermark * PAGE_SIZE; 3603 case RES_FAILCNT: 3604 return counter->failcnt; 3605 case RES_SOFT_LIMIT: 3606 return (u64)memcg->soft_limit * PAGE_SIZE; 3607 default: 3608 BUG(); 3609 } 3610 } 3611 3612 #ifdef CONFIG_MEMCG_KMEM 3613 static int memcg_online_kmem(struct mem_cgroup *memcg) 3614 { 3615 struct obj_cgroup *objcg; 3616 int memcg_id; 3617 3618 if (cgroup_memory_nokmem) 3619 return 0; 3620 3621 BUG_ON(memcg->kmemcg_id >= 0); 3622 3623 memcg_id = memcg_alloc_cache_id(); 3624 if (memcg_id < 0) 3625 return memcg_id; 3626 3627 objcg = obj_cgroup_alloc(); 3628 if (!objcg) { 3629 memcg_free_cache_id(memcg_id); 3630 return -ENOMEM; 3631 } 3632 objcg->memcg = memcg; 3633 rcu_assign_pointer(memcg->objcg, objcg); 3634 3635 static_branch_enable(&memcg_kmem_enabled_key); 3636 3637 memcg->kmemcg_id = memcg_id; 3638 3639 return 0; 3640 } 3641 3642 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3643 { 3644 struct mem_cgroup *parent; 3645 int kmemcg_id; 3646 3647 if (memcg->kmemcg_id == -1) 3648 return; 3649 3650 parent = parent_mem_cgroup(memcg); 3651 if (!parent) 3652 parent = root_mem_cgroup; 3653 3654 memcg_reparent_objcgs(memcg, parent); 3655 3656 kmemcg_id = memcg->kmemcg_id; 3657 BUG_ON(kmemcg_id < 0); 3658 3659 /* 3660 * After we have finished memcg_reparent_objcgs(), all list_lrus 3661 * corresponding to this cgroup are guaranteed to remain empty. 3662 * The ordering is imposed by list_lru_node->lock taken by 3663 * memcg_drain_all_list_lrus(). 3664 */ 3665 memcg_drain_all_list_lrus(kmemcg_id, parent); 3666 3667 memcg_free_cache_id(kmemcg_id); 3668 memcg->kmemcg_id = -1; 3669 } 3670 #else 3671 static int memcg_online_kmem(struct mem_cgroup *memcg) 3672 { 3673 return 0; 3674 } 3675 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3676 { 3677 } 3678 #endif /* CONFIG_MEMCG_KMEM */ 3679 3680 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3681 { 3682 int ret; 3683 3684 mutex_lock(&memcg_max_mutex); 3685 3686 ret = page_counter_set_max(&memcg->tcpmem, max); 3687 if (ret) 3688 goto out; 3689 3690 if (!memcg->tcpmem_active) { 3691 /* 3692 * The active flag needs to be written after the static_key 3693 * update. This is what guarantees that the socket activation 3694 * function is the last one to run. See mem_cgroup_sk_alloc() 3695 * for details, and note that we don't mark any socket as 3696 * belonging to this memcg until that flag is up. 3697 * 3698 * We need to do this, because static_keys will span multiple 3699 * sites, but we can't control their order. If we mark a socket 3700 * as accounted, but the accounting functions are not patched in 3701 * yet, we'll lose accounting. 3702 * 3703 * We never race with the readers in mem_cgroup_sk_alloc(), 3704 * because when this value change, the code to process it is not 3705 * patched in yet. 3706 */ 3707 static_branch_inc(&memcg_sockets_enabled_key); 3708 memcg->tcpmem_active = true; 3709 } 3710 out: 3711 mutex_unlock(&memcg_max_mutex); 3712 return ret; 3713 } 3714 3715 /* 3716 * The user of this function is... 3717 * RES_LIMIT. 3718 */ 3719 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3720 char *buf, size_t nbytes, loff_t off) 3721 { 3722 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3723 unsigned long nr_pages; 3724 int ret; 3725 3726 buf = strstrip(buf); 3727 ret = page_counter_memparse(buf, "-1", &nr_pages); 3728 if (ret) 3729 return ret; 3730 3731 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3732 case RES_LIMIT: 3733 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3734 ret = -EINVAL; 3735 break; 3736 } 3737 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3738 case _MEM: 3739 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3740 break; 3741 case _MEMSWAP: 3742 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3743 break; 3744 case _KMEM: 3745 /* kmem.limit_in_bytes is deprecated. */ 3746 ret = -EOPNOTSUPP; 3747 break; 3748 case _TCP: 3749 ret = memcg_update_tcp_max(memcg, nr_pages); 3750 break; 3751 } 3752 break; 3753 case RES_SOFT_LIMIT: 3754 memcg->soft_limit = nr_pages; 3755 ret = 0; 3756 break; 3757 } 3758 return ret ?: nbytes; 3759 } 3760 3761 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3762 size_t nbytes, loff_t off) 3763 { 3764 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3765 struct page_counter *counter; 3766 3767 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3768 case _MEM: 3769 counter = &memcg->memory; 3770 break; 3771 case _MEMSWAP: 3772 counter = &memcg->memsw; 3773 break; 3774 case _KMEM: 3775 counter = &memcg->kmem; 3776 break; 3777 case _TCP: 3778 counter = &memcg->tcpmem; 3779 break; 3780 default: 3781 BUG(); 3782 } 3783 3784 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3785 case RES_MAX_USAGE: 3786 page_counter_reset_watermark(counter); 3787 break; 3788 case RES_FAILCNT: 3789 counter->failcnt = 0; 3790 break; 3791 default: 3792 BUG(); 3793 } 3794 3795 return nbytes; 3796 } 3797 3798 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3799 struct cftype *cft) 3800 { 3801 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3802 } 3803 3804 #ifdef CONFIG_MMU 3805 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3806 struct cftype *cft, u64 val) 3807 { 3808 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3809 3810 if (val & ~MOVE_MASK) 3811 return -EINVAL; 3812 3813 /* 3814 * No kind of locking is needed in here, because ->can_attach() will 3815 * check this value once in the beginning of the process, and then carry 3816 * on with stale data. This means that changes to this value will only 3817 * affect task migrations starting after the change. 3818 */ 3819 memcg->move_charge_at_immigrate = val; 3820 return 0; 3821 } 3822 #else 3823 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3824 struct cftype *cft, u64 val) 3825 { 3826 return -ENOSYS; 3827 } 3828 #endif 3829 3830 #ifdef CONFIG_NUMA 3831 3832 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3833 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3834 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3835 3836 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3837 int nid, unsigned int lru_mask, bool tree) 3838 { 3839 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3840 unsigned long nr = 0; 3841 enum lru_list lru; 3842 3843 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3844 3845 for_each_lru(lru) { 3846 if (!(BIT(lru) & lru_mask)) 3847 continue; 3848 if (tree) 3849 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3850 else 3851 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3852 } 3853 return nr; 3854 } 3855 3856 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3857 unsigned int lru_mask, 3858 bool tree) 3859 { 3860 unsigned long nr = 0; 3861 enum lru_list lru; 3862 3863 for_each_lru(lru) { 3864 if (!(BIT(lru) & lru_mask)) 3865 continue; 3866 if (tree) 3867 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3868 else 3869 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3870 } 3871 return nr; 3872 } 3873 3874 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3875 { 3876 struct numa_stat { 3877 const char *name; 3878 unsigned int lru_mask; 3879 }; 3880 3881 static const struct numa_stat stats[] = { 3882 { "total", LRU_ALL }, 3883 { "file", LRU_ALL_FILE }, 3884 { "anon", LRU_ALL_ANON }, 3885 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3886 }; 3887 const struct numa_stat *stat; 3888 int nid; 3889 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3890 3891 mem_cgroup_flush_stats(); 3892 3893 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3894 seq_printf(m, "%s=%lu", stat->name, 3895 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3896 false)); 3897 for_each_node_state(nid, N_MEMORY) 3898 seq_printf(m, " N%d=%lu", nid, 3899 mem_cgroup_node_nr_lru_pages(memcg, nid, 3900 stat->lru_mask, false)); 3901 seq_putc(m, '\n'); 3902 } 3903 3904 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3905 3906 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3907 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3908 true)); 3909 for_each_node_state(nid, N_MEMORY) 3910 seq_printf(m, " N%d=%lu", nid, 3911 mem_cgroup_node_nr_lru_pages(memcg, nid, 3912 stat->lru_mask, true)); 3913 seq_putc(m, '\n'); 3914 } 3915 3916 return 0; 3917 } 3918 #endif /* CONFIG_NUMA */ 3919 3920 static const unsigned int memcg1_stats[] = { 3921 NR_FILE_PAGES, 3922 NR_ANON_MAPPED, 3923 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3924 NR_ANON_THPS, 3925 #endif 3926 NR_SHMEM, 3927 NR_FILE_MAPPED, 3928 NR_FILE_DIRTY, 3929 NR_WRITEBACK, 3930 MEMCG_SWAP, 3931 }; 3932 3933 static const char *const memcg1_stat_names[] = { 3934 "cache", 3935 "rss", 3936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3937 "rss_huge", 3938 #endif 3939 "shmem", 3940 "mapped_file", 3941 "dirty", 3942 "writeback", 3943 "swap", 3944 }; 3945 3946 /* Universal VM events cgroup1 shows, original sort order */ 3947 static const unsigned int memcg1_events[] = { 3948 PGPGIN, 3949 PGPGOUT, 3950 PGFAULT, 3951 PGMAJFAULT, 3952 }; 3953 3954 static int memcg_stat_show(struct seq_file *m, void *v) 3955 { 3956 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3957 unsigned long memory, memsw; 3958 struct mem_cgroup *mi; 3959 unsigned int i; 3960 3961 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3962 3963 mem_cgroup_flush_stats(); 3964 3965 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3966 unsigned long nr; 3967 3968 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3969 continue; 3970 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3971 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3972 } 3973 3974 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3975 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3976 memcg_events_local(memcg, memcg1_events[i])); 3977 3978 for (i = 0; i < NR_LRU_LISTS; i++) 3979 seq_printf(m, "%s %lu\n", lru_list_name(i), 3980 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3981 PAGE_SIZE); 3982 3983 /* Hierarchical information */ 3984 memory = memsw = PAGE_COUNTER_MAX; 3985 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3986 memory = min(memory, READ_ONCE(mi->memory.max)); 3987 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3988 } 3989 seq_printf(m, "hierarchical_memory_limit %llu\n", 3990 (u64)memory * PAGE_SIZE); 3991 if (do_memsw_account()) 3992 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3993 (u64)memsw * PAGE_SIZE); 3994 3995 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3996 unsigned long nr; 3997 3998 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3999 continue; 4000 nr = memcg_page_state(memcg, memcg1_stats[i]); 4001 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4002 (u64)nr * PAGE_SIZE); 4003 } 4004 4005 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4006 seq_printf(m, "total_%s %llu\n", 4007 vm_event_name(memcg1_events[i]), 4008 (u64)memcg_events(memcg, memcg1_events[i])); 4009 4010 for (i = 0; i < NR_LRU_LISTS; i++) 4011 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4012 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4013 PAGE_SIZE); 4014 4015 #ifdef CONFIG_DEBUG_VM 4016 { 4017 pg_data_t *pgdat; 4018 struct mem_cgroup_per_node *mz; 4019 unsigned long anon_cost = 0; 4020 unsigned long file_cost = 0; 4021 4022 for_each_online_pgdat(pgdat) { 4023 mz = memcg->nodeinfo[pgdat->node_id]; 4024 4025 anon_cost += mz->lruvec.anon_cost; 4026 file_cost += mz->lruvec.file_cost; 4027 } 4028 seq_printf(m, "anon_cost %lu\n", anon_cost); 4029 seq_printf(m, "file_cost %lu\n", file_cost); 4030 } 4031 #endif 4032 4033 return 0; 4034 } 4035 4036 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4037 struct cftype *cft) 4038 { 4039 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4040 4041 return mem_cgroup_swappiness(memcg); 4042 } 4043 4044 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4045 struct cftype *cft, u64 val) 4046 { 4047 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4048 4049 if (val > 200) 4050 return -EINVAL; 4051 4052 if (!mem_cgroup_is_root(memcg)) 4053 memcg->swappiness = val; 4054 else 4055 vm_swappiness = val; 4056 4057 return 0; 4058 } 4059 4060 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4061 { 4062 struct mem_cgroup_threshold_ary *t; 4063 unsigned long usage; 4064 int i; 4065 4066 rcu_read_lock(); 4067 if (!swap) 4068 t = rcu_dereference(memcg->thresholds.primary); 4069 else 4070 t = rcu_dereference(memcg->memsw_thresholds.primary); 4071 4072 if (!t) 4073 goto unlock; 4074 4075 usage = mem_cgroup_usage(memcg, swap); 4076 4077 /* 4078 * current_threshold points to threshold just below or equal to usage. 4079 * If it's not true, a threshold was crossed after last 4080 * call of __mem_cgroup_threshold(). 4081 */ 4082 i = t->current_threshold; 4083 4084 /* 4085 * Iterate backward over array of thresholds starting from 4086 * current_threshold and check if a threshold is crossed. 4087 * If none of thresholds below usage is crossed, we read 4088 * only one element of the array here. 4089 */ 4090 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4091 eventfd_signal(t->entries[i].eventfd, 1); 4092 4093 /* i = current_threshold + 1 */ 4094 i++; 4095 4096 /* 4097 * Iterate forward over array of thresholds starting from 4098 * current_threshold+1 and check if a threshold is crossed. 4099 * If none of thresholds above usage is crossed, we read 4100 * only one element of the array here. 4101 */ 4102 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4103 eventfd_signal(t->entries[i].eventfd, 1); 4104 4105 /* Update current_threshold */ 4106 t->current_threshold = i - 1; 4107 unlock: 4108 rcu_read_unlock(); 4109 } 4110 4111 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4112 { 4113 while (memcg) { 4114 __mem_cgroup_threshold(memcg, false); 4115 if (do_memsw_account()) 4116 __mem_cgroup_threshold(memcg, true); 4117 4118 memcg = parent_mem_cgroup(memcg); 4119 } 4120 } 4121 4122 static int compare_thresholds(const void *a, const void *b) 4123 { 4124 const struct mem_cgroup_threshold *_a = a; 4125 const struct mem_cgroup_threshold *_b = b; 4126 4127 if (_a->threshold > _b->threshold) 4128 return 1; 4129 4130 if (_a->threshold < _b->threshold) 4131 return -1; 4132 4133 return 0; 4134 } 4135 4136 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4137 { 4138 struct mem_cgroup_eventfd_list *ev; 4139 4140 spin_lock(&memcg_oom_lock); 4141 4142 list_for_each_entry(ev, &memcg->oom_notify, list) 4143 eventfd_signal(ev->eventfd, 1); 4144 4145 spin_unlock(&memcg_oom_lock); 4146 return 0; 4147 } 4148 4149 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4150 { 4151 struct mem_cgroup *iter; 4152 4153 for_each_mem_cgroup_tree(iter, memcg) 4154 mem_cgroup_oom_notify_cb(iter); 4155 } 4156 4157 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4158 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4159 { 4160 struct mem_cgroup_thresholds *thresholds; 4161 struct mem_cgroup_threshold_ary *new; 4162 unsigned long threshold; 4163 unsigned long usage; 4164 int i, size, ret; 4165 4166 ret = page_counter_memparse(args, "-1", &threshold); 4167 if (ret) 4168 return ret; 4169 4170 mutex_lock(&memcg->thresholds_lock); 4171 4172 if (type == _MEM) { 4173 thresholds = &memcg->thresholds; 4174 usage = mem_cgroup_usage(memcg, false); 4175 } else if (type == _MEMSWAP) { 4176 thresholds = &memcg->memsw_thresholds; 4177 usage = mem_cgroup_usage(memcg, true); 4178 } else 4179 BUG(); 4180 4181 /* Check if a threshold crossed before adding a new one */ 4182 if (thresholds->primary) 4183 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4184 4185 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4186 4187 /* Allocate memory for new array of thresholds */ 4188 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4189 if (!new) { 4190 ret = -ENOMEM; 4191 goto unlock; 4192 } 4193 new->size = size; 4194 4195 /* Copy thresholds (if any) to new array */ 4196 if (thresholds->primary) 4197 memcpy(new->entries, thresholds->primary->entries, 4198 flex_array_size(new, entries, size - 1)); 4199 4200 /* Add new threshold */ 4201 new->entries[size - 1].eventfd = eventfd; 4202 new->entries[size - 1].threshold = threshold; 4203 4204 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4205 sort(new->entries, size, sizeof(*new->entries), 4206 compare_thresholds, NULL); 4207 4208 /* Find current threshold */ 4209 new->current_threshold = -1; 4210 for (i = 0; i < size; i++) { 4211 if (new->entries[i].threshold <= usage) { 4212 /* 4213 * new->current_threshold will not be used until 4214 * rcu_assign_pointer(), so it's safe to increment 4215 * it here. 4216 */ 4217 ++new->current_threshold; 4218 } else 4219 break; 4220 } 4221 4222 /* Free old spare buffer and save old primary buffer as spare */ 4223 kfree(thresholds->spare); 4224 thresholds->spare = thresholds->primary; 4225 4226 rcu_assign_pointer(thresholds->primary, new); 4227 4228 /* To be sure that nobody uses thresholds */ 4229 synchronize_rcu(); 4230 4231 unlock: 4232 mutex_unlock(&memcg->thresholds_lock); 4233 4234 return ret; 4235 } 4236 4237 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4238 struct eventfd_ctx *eventfd, const char *args) 4239 { 4240 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4241 } 4242 4243 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4244 struct eventfd_ctx *eventfd, const char *args) 4245 { 4246 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4247 } 4248 4249 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4250 struct eventfd_ctx *eventfd, enum res_type type) 4251 { 4252 struct mem_cgroup_thresholds *thresholds; 4253 struct mem_cgroup_threshold_ary *new; 4254 unsigned long usage; 4255 int i, j, size, entries; 4256 4257 mutex_lock(&memcg->thresholds_lock); 4258 4259 if (type == _MEM) { 4260 thresholds = &memcg->thresholds; 4261 usage = mem_cgroup_usage(memcg, false); 4262 } else if (type == _MEMSWAP) { 4263 thresholds = &memcg->memsw_thresholds; 4264 usage = mem_cgroup_usage(memcg, true); 4265 } else 4266 BUG(); 4267 4268 if (!thresholds->primary) 4269 goto unlock; 4270 4271 /* Check if a threshold crossed before removing */ 4272 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4273 4274 /* Calculate new number of threshold */ 4275 size = entries = 0; 4276 for (i = 0; i < thresholds->primary->size; i++) { 4277 if (thresholds->primary->entries[i].eventfd != eventfd) 4278 size++; 4279 else 4280 entries++; 4281 } 4282 4283 new = thresholds->spare; 4284 4285 /* If no items related to eventfd have been cleared, nothing to do */ 4286 if (!entries) 4287 goto unlock; 4288 4289 /* Set thresholds array to NULL if we don't have thresholds */ 4290 if (!size) { 4291 kfree(new); 4292 new = NULL; 4293 goto swap_buffers; 4294 } 4295 4296 new->size = size; 4297 4298 /* Copy thresholds and find current threshold */ 4299 new->current_threshold = -1; 4300 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4301 if (thresholds->primary->entries[i].eventfd == eventfd) 4302 continue; 4303 4304 new->entries[j] = thresholds->primary->entries[i]; 4305 if (new->entries[j].threshold <= usage) { 4306 /* 4307 * new->current_threshold will not be used 4308 * until rcu_assign_pointer(), so it's safe to increment 4309 * it here. 4310 */ 4311 ++new->current_threshold; 4312 } 4313 j++; 4314 } 4315 4316 swap_buffers: 4317 /* Swap primary and spare array */ 4318 thresholds->spare = thresholds->primary; 4319 4320 rcu_assign_pointer(thresholds->primary, new); 4321 4322 /* To be sure that nobody uses thresholds */ 4323 synchronize_rcu(); 4324 4325 /* If all events are unregistered, free the spare array */ 4326 if (!new) { 4327 kfree(thresholds->spare); 4328 thresholds->spare = NULL; 4329 } 4330 unlock: 4331 mutex_unlock(&memcg->thresholds_lock); 4332 } 4333 4334 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4335 struct eventfd_ctx *eventfd) 4336 { 4337 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4338 } 4339 4340 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4341 struct eventfd_ctx *eventfd) 4342 { 4343 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4344 } 4345 4346 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4347 struct eventfd_ctx *eventfd, const char *args) 4348 { 4349 struct mem_cgroup_eventfd_list *event; 4350 4351 event = kmalloc(sizeof(*event), GFP_KERNEL); 4352 if (!event) 4353 return -ENOMEM; 4354 4355 spin_lock(&memcg_oom_lock); 4356 4357 event->eventfd = eventfd; 4358 list_add(&event->list, &memcg->oom_notify); 4359 4360 /* already in OOM ? */ 4361 if (memcg->under_oom) 4362 eventfd_signal(eventfd, 1); 4363 spin_unlock(&memcg_oom_lock); 4364 4365 return 0; 4366 } 4367 4368 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4369 struct eventfd_ctx *eventfd) 4370 { 4371 struct mem_cgroup_eventfd_list *ev, *tmp; 4372 4373 spin_lock(&memcg_oom_lock); 4374 4375 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4376 if (ev->eventfd == eventfd) { 4377 list_del(&ev->list); 4378 kfree(ev); 4379 } 4380 } 4381 4382 spin_unlock(&memcg_oom_lock); 4383 } 4384 4385 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4386 { 4387 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4388 4389 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4390 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4391 seq_printf(sf, "oom_kill %lu\n", 4392 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4393 return 0; 4394 } 4395 4396 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4397 struct cftype *cft, u64 val) 4398 { 4399 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4400 4401 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4402 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4403 return -EINVAL; 4404 4405 memcg->oom_kill_disable = val; 4406 if (!val) 4407 memcg_oom_recover(memcg); 4408 4409 return 0; 4410 } 4411 4412 #ifdef CONFIG_CGROUP_WRITEBACK 4413 4414 #include <trace/events/writeback.h> 4415 4416 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4417 { 4418 return wb_domain_init(&memcg->cgwb_domain, gfp); 4419 } 4420 4421 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4422 { 4423 wb_domain_exit(&memcg->cgwb_domain); 4424 } 4425 4426 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4427 { 4428 wb_domain_size_changed(&memcg->cgwb_domain); 4429 } 4430 4431 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4432 { 4433 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4434 4435 if (!memcg->css.parent) 4436 return NULL; 4437 4438 return &memcg->cgwb_domain; 4439 } 4440 4441 /** 4442 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4443 * @wb: bdi_writeback in question 4444 * @pfilepages: out parameter for number of file pages 4445 * @pheadroom: out parameter for number of allocatable pages according to memcg 4446 * @pdirty: out parameter for number of dirty pages 4447 * @pwriteback: out parameter for number of pages under writeback 4448 * 4449 * Determine the numbers of file, headroom, dirty, and writeback pages in 4450 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4451 * is a bit more involved. 4452 * 4453 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4454 * headroom is calculated as the lowest headroom of itself and the 4455 * ancestors. Note that this doesn't consider the actual amount of 4456 * available memory in the system. The caller should further cap 4457 * *@pheadroom accordingly. 4458 */ 4459 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4460 unsigned long *pheadroom, unsigned long *pdirty, 4461 unsigned long *pwriteback) 4462 { 4463 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4464 struct mem_cgroup *parent; 4465 4466 mem_cgroup_flush_stats(); 4467 4468 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4469 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4470 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4471 memcg_page_state(memcg, NR_ACTIVE_FILE); 4472 4473 *pheadroom = PAGE_COUNTER_MAX; 4474 while ((parent = parent_mem_cgroup(memcg))) { 4475 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4476 READ_ONCE(memcg->memory.high)); 4477 unsigned long used = page_counter_read(&memcg->memory); 4478 4479 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4480 memcg = parent; 4481 } 4482 } 4483 4484 /* 4485 * Foreign dirty flushing 4486 * 4487 * There's an inherent mismatch between memcg and writeback. The former 4488 * tracks ownership per-page while the latter per-inode. This was a 4489 * deliberate design decision because honoring per-page ownership in the 4490 * writeback path is complicated, may lead to higher CPU and IO overheads 4491 * and deemed unnecessary given that write-sharing an inode across 4492 * different cgroups isn't a common use-case. 4493 * 4494 * Combined with inode majority-writer ownership switching, this works well 4495 * enough in most cases but there are some pathological cases. For 4496 * example, let's say there are two cgroups A and B which keep writing to 4497 * different but confined parts of the same inode. B owns the inode and 4498 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4499 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4500 * triggering background writeback. A will be slowed down without a way to 4501 * make writeback of the dirty pages happen. 4502 * 4503 * Conditions like the above can lead to a cgroup getting repeatedly and 4504 * severely throttled after making some progress after each 4505 * dirty_expire_interval while the underlying IO device is almost 4506 * completely idle. 4507 * 4508 * Solving this problem completely requires matching the ownership tracking 4509 * granularities between memcg and writeback in either direction. However, 4510 * the more egregious behaviors can be avoided by simply remembering the 4511 * most recent foreign dirtying events and initiating remote flushes on 4512 * them when local writeback isn't enough to keep the memory clean enough. 4513 * 4514 * The following two functions implement such mechanism. When a foreign 4515 * page - a page whose memcg and writeback ownerships don't match - is 4516 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4517 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4518 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4519 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4520 * foreign bdi_writebacks which haven't expired. Both the numbers of 4521 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4522 * limited to MEMCG_CGWB_FRN_CNT. 4523 * 4524 * The mechanism only remembers IDs and doesn't hold any object references. 4525 * As being wrong occasionally doesn't matter, updates and accesses to the 4526 * records are lockless and racy. 4527 */ 4528 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4529 struct bdi_writeback *wb) 4530 { 4531 struct mem_cgroup *memcg = folio_memcg(folio); 4532 struct memcg_cgwb_frn *frn; 4533 u64 now = get_jiffies_64(); 4534 u64 oldest_at = now; 4535 int oldest = -1; 4536 int i; 4537 4538 trace_track_foreign_dirty(folio, wb); 4539 4540 /* 4541 * Pick the slot to use. If there is already a slot for @wb, keep 4542 * using it. If not replace the oldest one which isn't being 4543 * written out. 4544 */ 4545 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4546 frn = &memcg->cgwb_frn[i]; 4547 if (frn->bdi_id == wb->bdi->id && 4548 frn->memcg_id == wb->memcg_css->id) 4549 break; 4550 if (time_before64(frn->at, oldest_at) && 4551 atomic_read(&frn->done.cnt) == 1) { 4552 oldest = i; 4553 oldest_at = frn->at; 4554 } 4555 } 4556 4557 if (i < MEMCG_CGWB_FRN_CNT) { 4558 /* 4559 * Re-using an existing one. Update timestamp lazily to 4560 * avoid making the cacheline hot. We want them to be 4561 * reasonably up-to-date and significantly shorter than 4562 * dirty_expire_interval as that's what expires the record. 4563 * Use the shorter of 1s and dirty_expire_interval / 8. 4564 */ 4565 unsigned long update_intv = 4566 min_t(unsigned long, HZ, 4567 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4568 4569 if (time_before64(frn->at, now - update_intv)) 4570 frn->at = now; 4571 } else if (oldest >= 0) { 4572 /* replace the oldest free one */ 4573 frn = &memcg->cgwb_frn[oldest]; 4574 frn->bdi_id = wb->bdi->id; 4575 frn->memcg_id = wb->memcg_css->id; 4576 frn->at = now; 4577 } 4578 } 4579 4580 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4581 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4582 { 4583 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4584 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4585 u64 now = jiffies_64; 4586 int i; 4587 4588 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4589 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4590 4591 /* 4592 * If the record is older than dirty_expire_interval, 4593 * writeback on it has already started. No need to kick it 4594 * off again. Also, don't start a new one if there's 4595 * already one in flight. 4596 */ 4597 if (time_after64(frn->at, now - intv) && 4598 atomic_read(&frn->done.cnt) == 1) { 4599 frn->at = 0; 4600 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4601 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4602 WB_REASON_FOREIGN_FLUSH, 4603 &frn->done); 4604 } 4605 } 4606 } 4607 4608 #else /* CONFIG_CGROUP_WRITEBACK */ 4609 4610 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4611 { 4612 return 0; 4613 } 4614 4615 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4616 { 4617 } 4618 4619 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4620 { 4621 } 4622 4623 #endif /* CONFIG_CGROUP_WRITEBACK */ 4624 4625 /* 4626 * DO NOT USE IN NEW FILES. 4627 * 4628 * "cgroup.event_control" implementation. 4629 * 4630 * This is way over-engineered. It tries to support fully configurable 4631 * events for each user. Such level of flexibility is completely 4632 * unnecessary especially in the light of the planned unified hierarchy. 4633 * 4634 * Please deprecate this and replace with something simpler if at all 4635 * possible. 4636 */ 4637 4638 /* 4639 * Unregister event and free resources. 4640 * 4641 * Gets called from workqueue. 4642 */ 4643 static void memcg_event_remove(struct work_struct *work) 4644 { 4645 struct mem_cgroup_event *event = 4646 container_of(work, struct mem_cgroup_event, remove); 4647 struct mem_cgroup *memcg = event->memcg; 4648 4649 remove_wait_queue(event->wqh, &event->wait); 4650 4651 event->unregister_event(memcg, event->eventfd); 4652 4653 /* Notify userspace the event is going away. */ 4654 eventfd_signal(event->eventfd, 1); 4655 4656 eventfd_ctx_put(event->eventfd); 4657 kfree(event); 4658 css_put(&memcg->css); 4659 } 4660 4661 /* 4662 * Gets called on EPOLLHUP on eventfd when user closes it. 4663 * 4664 * Called with wqh->lock held and interrupts disabled. 4665 */ 4666 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4667 int sync, void *key) 4668 { 4669 struct mem_cgroup_event *event = 4670 container_of(wait, struct mem_cgroup_event, wait); 4671 struct mem_cgroup *memcg = event->memcg; 4672 __poll_t flags = key_to_poll(key); 4673 4674 if (flags & EPOLLHUP) { 4675 /* 4676 * If the event has been detached at cgroup removal, we 4677 * can simply return knowing the other side will cleanup 4678 * for us. 4679 * 4680 * We can't race against event freeing since the other 4681 * side will require wqh->lock via remove_wait_queue(), 4682 * which we hold. 4683 */ 4684 spin_lock(&memcg->event_list_lock); 4685 if (!list_empty(&event->list)) { 4686 list_del_init(&event->list); 4687 /* 4688 * We are in atomic context, but cgroup_event_remove() 4689 * may sleep, so we have to call it in workqueue. 4690 */ 4691 schedule_work(&event->remove); 4692 } 4693 spin_unlock(&memcg->event_list_lock); 4694 } 4695 4696 return 0; 4697 } 4698 4699 static void memcg_event_ptable_queue_proc(struct file *file, 4700 wait_queue_head_t *wqh, poll_table *pt) 4701 { 4702 struct mem_cgroup_event *event = 4703 container_of(pt, struct mem_cgroup_event, pt); 4704 4705 event->wqh = wqh; 4706 add_wait_queue(wqh, &event->wait); 4707 } 4708 4709 /* 4710 * DO NOT USE IN NEW FILES. 4711 * 4712 * Parse input and register new cgroup event handler. 4713 * 4714 * Input must be in format '<event_fd> <control_fd> <args>'. 4715 * Interpretation of args is defined by control file implementation. 4716 */ 4717 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4718 char *buf, size_t nbytes, loff_t off) 4719 { 4720 struct cgroup_subsys_state *css = of_css(of); 4721 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4722 struct mem_cgroup_event *event; 4723 struct cgroup_subsys_state *cfile_css; 4724 unsigned int efd, cfd; 4725 struct fd efile; 4726 struct fd cfile; 4727 const char *name; 4728 char *endp; 4729 int ret; 4730 4731 buf = strstrip(buf); 4732 4733 efd = simple_strtoul(buf, &endp, 10); 4734 if (*endp != ' ') 4735 return -EINVAL; 4736 buf = endp + 1; 4737 4738 cfd = simple_strtoul(buf, &endp, 10); 4739 if ((*endp != ' ') && (*endp != '\0')) 4740 return -EINVAL; 4741 buf = endp + 1; 4742 4743 event = kzalloc(sizeof(*event), GFP_KERNEL); 4744 if (!event) 4745 return -ENOMEM; 4746 4747 event->memcg = memcg; 4748 INIT_LIST_HEAD(&event->list); 4749 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4750 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4751 INIT_WORK(&event->remove, memcg_event_remove); 4752 4753 efile = fdget(efd); 4754 if (!efile.file) { 4755 ret = -EBADF; 4756 goto out_kfree; 4757 } 4758 4759 event->eventfd = eventfd_ctx_fileget(efile.file); 4760 if (IS_ERR(event->eventfd)) { 4761 ret = PTR_ERR(event->eventfd); 4762 goto out_put_efile; 4763 } 4764 4765 cfile = fdget(cfd); 4766 if (!cfile.file) { 4767 ret = -EBADF; 4768 goto out_put_eventfd; 4769 } 4770 4771 /* the process need read permission on control file */ 4772 /* AV: shouldn't we check that it's been opened for read instead? */ 4773 ret = file_permission(cfile.file, MAY_READ); 4774 if (ret < 0) 4775 goto out_put_cfile; 4776 4777 /* 4778 * Determine the event callbacks and set them in @event. This used 4779 * to be done via struct cftype but cgroup core no longer knows 4780 * about these events. The following is crude but the whole thing 4781 * is for compatibility anyway. 4782 * 4783 * DO NOT ADD NEW FILES. 4784 */ 4785 name = cfile.file->f_path.dentry->d_name.name; 4786 4787 if (!strcmp(name, "memory.usage_in_bytes")) { 4788 event->register_event = mem_cgroup_usage_register_event; 4789 event->unregister_event = mem_cgroup_usage_unregister_event; 4790 } else if (!strcmp(name, "memory.oom_control")) { 4791 event->register_event = mem_cgroup_oom_register_event; 4792 event->unregister_event = mem_cgroup_oom_unregister_event; 4793 } else if (!strcmp(name, "memory.pressure_level")) { 4794 event->register_event = vmpressure_register_event; 4795 event->unregister_event = vmpressure_unregister_event; 4796 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4797 event->register_event = memsw_cgroup_usage_register_event; 4798 event->unregister_event = memsw_cgroup_usage_unregister_event; 4799 } else { 4800 ret = -EINVAL; 4801 goto out_put_cfile; 4802 } 4803 4804 /* 4805 * Verify @cfile should belong to @css. Also, remaining events are 4806 * automatically removed on cgroup destruction but the removal is 4807 * asynchronous, so take an extra ref on @css. 4808 */ 4809 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4810 &memory_cgrp_subsys); 4811 ret = -EINVAL; 4812 if (IS_ERR(cfile_css)) 4813 goto out_put_cfile; 4814 if (cfile_css != css) { 4815 css_put(cfile_css); 4816 goto out_put_cfile; 4817 } 4818 4819 ret = event->register_event(memcg, event->eventfd, buf); 4820 if (ret) 4821 goto out_put_css; 4822 4823 vfs_poll(efile.file, &event->pt); 4824 4825 spin_lock_irq(&memcg->event_list_lock); 4826 list_add(&event->list, &memcg->event_list); 4827 spin_unlock_irq(&memcg->event_list_lock); 4828 4829 fdput(cfile); 4830 fdput(efile); 4831 4832 return nbytes; 4833 4834 out_put_css: 4835 css_put(css); 4836 out_put_cfile: 4837 fdput(cfile); 4838 out_put_eventfd: 4839 eventfd_ctx_put(event->eventfd); 4840 out_put_efile: 4841 fdput(efile); 4842 out_kfree: 4843 kfree(event); 4844 4845 return ret; 4846 } 4847 4848 static struct cftype mem_cgroup_legacy_files[] = { 4849 { 4850 .name = "usage_in_bytes", 4851 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4852 .read_u64 = mem_cgroup_read_u64, 4853 }, 4854 { 4855 .name = "max_usage_in_bytes", 4856 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4857 .write = mem_cgroup_reset, 4858 .read_u64 = mem_cgroup_read_u64, 4859 }, 4860 { 4861 .name = "limit_in_bytes", 4862 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4863 .write = mem_cgroup_write, 4864 .read_u64 = mem_cgroup_read_u64, 4865 }, 4866 { 4867 .name = "soft_limit_in_bytes", 4868 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4869 .write = mem_cgroup_write, 4870 .read_u64 = mem_cgroup_read_u64, 4871 }, 4872 { 4873 .name = "failcnt", 4874 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4875 .write = mem_cgroup_reset, 4876 .read_u64 = mem_cgroup_read_u64, 4877 }, 4878 { 4879 .name = "stat", 4880 .seq_show = memcg_stat_show, 4881 }, 4882 { 4883 .name = "force_empty", 4884 .write = mem_cgroup_force_empty_write, 4885 }, 4886 { 4887 .name = "use_hierarchy", 4888 .write_u64 = mem_cgroup_hierarchy_write, 4889 .read_u64 = mem_cgroup_hierarchy_read, 4890 }, 4891 { 4892 .name = "cgroup.event_control", /* XXX: for compat */ 4893 .write = memcg_write_event_control, 4894 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4895 }, 4896 { 4897 .name = "swappiness", 4898 .read_u64 = mem_cgroup_swappiness_read, 4899 .write_u64 = mem_cgroup_swappiness_write, 4900 }, 4901 { 4902 .name = "move_charge_at_immigrate", 4903 .read_u64 = mem_cgroup_move_charge_read, 4904 .write_u64 = mem_cgroup_move_charge_write, 4905 }, 4906 { 4907 .name = "oom_control", 4908 .seq_show = mem_cgroup_oom_control_read, 4909 .write_u64 = mem_cgroup_oom_control_write, 4910 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4911 }, 4912 { 4913 .name = "pressure_level", 4914 }, 4915 #ifdef CONFIG_NUMA 4916 { 4917 .name = "numa_stat", 4918 .seq_show = memcg_numa_stat_show, 4919 }, 4920 #endif 4921 { 4922 .name = "kmem.limit_in_bytes", 4923 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4924 .write = mem_cgroup_write, 4925 .read_u64 = mem_cgroup_read_u64, 4926 }, 4927 { 4928 .name = "kmem.usage_in_bytes", 4929 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4930 .read_u64 = mem_cgroup_read_u64, 4931 }, 4932 { 4933 .name = "kmem.failcnt", 4934 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4935 .write = mem_cgroup_reset, 4936 .read_u64 = mem_cgroup_read_u64, 4937 }, 4938 { 4939 .name = "kmem.max_usage_in_bytes", 4940 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4941 .write = mem_cgroup_reset, 4942 .read_u64 = mem_cgroup_read_u64, 4943 }, 4944 #if defined(CONFIG_MEMCG_KMEM) && \ 4945 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4946 { 4947 .name = "kmem.slabinfo", 4948 .seq_show = memcg_slab_show, 4949 }, 4950 #endif 4951 { 4952 .name = "kmem.tcp.limit_in_bytes", 4953 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4954 .write = mem_cgroup_write, 4955 .read_u64 = mem_cgroup_read_u64, 4956 }, 4957 { 4958 .name = "kmem.tcp.usage_in_bytes", 4959 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4960 .read_u64 = mem_cgroup_read_u64, 4961 }, 4962 { 4963 .name = "kmem.tcp.failcnt", 4964 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4965 .write = mem_cgroup_reset, 4966 .read_u64 = mem_cgroup_read_u64, 4967 }, 4968 { 4969 .name = "kmem.tcp.max_usage_in_bytes", 4970 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4971 .write = mem_cgroup_reset, 4972 .read_u64 = mem_cgroup_read_u64, 4973 }, 4974 { }, /* terminate */ 4975 }; 4976 4977 /* 4978 * Private memory cgroup IDR 4979 * 4980 * Swap-out records and page cache shadow entries need to store memcg 4981 * references in constrained space, so we maintain an ID space that is 4982 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4983 * memory-controlled cgroups to 64k. 4984 * 4985 * However, there usually are many references to the offline CSS after 4986 * the cgroup has been destroyed, such as page cache or reclaimable 4987 * slab objects, that don't need to hang on to the ID. We want to keep 4988 * those dead CSS from occupying IDs, or we might quickly exhaust the 4989 * relatively small ID space and prevent the creation of new cgroups 4990 * even when there are much fewer than 64k cgroups - possibly none. 4991 * 4992 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4993 * be freed and recycled when it's no longer needed, which is usually 4994 * when the CSS is offlined. 4995 * 4996 * The only exception to that are records of swapped out tmpfs/shmem 4997 * pages that need to be attributed to live ancestors on swapin. But 4998 * those references are manageable from userspace. 4999 */ 5000 5001 static DEFINE_IDR(mem_cgroup_idr); 5002 5003 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5004 { 5005 if (memcg->id.id > 0) { 5006 idr_remove(&mem_cgroup_idr, memcg->id.id); 5007 memcg->id.id = 0; 5008 } 5009 } 5010 5011 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5012 unsigned int n) 5013 { 5014 refcount_add(n, &memcg->id.ref); 5015 } 5016 5017 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5018 { 5019 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5020 mem_cgroup_id_remove(memcg); 5021 5022 /* Memcg ID pins CSS */ 5023 css_put(&memcg->css); 5024 } 5025 } 5026 5027 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5028 { 5029 mem_cgroup_id_put_many(memcg, 1); 5030 } 5031 5032 /** 5033 * mem_cgroup_from_id - look up a memcg from a memcg id 5034 * @id: the memcg id to look up 5035 * 5036 * Caller must hold rcu_read_lock(). 5037 */ 5038 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5039 { 5040 WARN_ON_ONCE(!rcu_read_lock_held()); 5041 return idr_find(&mem_cgroup_idr, id); 5042 } 5043 5044 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5045 { 5046 struct mem_cgroup_per_node *pn; 5047 int tmp = node; 5048 /* 5049 * This routine is called against possible nodes. 5050 * But it's BUG to call kmalloc() against offline node. 5051 * 5052 * TODO: this routine can waste much memory for nodes which will 5053 * never be onlined. It's better to use memory hotplug callback 5054 * function. 5055 */ 5056 if (!node_state(node, N_NORMAL_MEMORY)) 5057 tmp = -1; 5058 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5059 if (!pn) 5060 return 1; 5061 5062 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5063 GFP_KERNEL_ACCOUNT); 5064 if (!pn->lruvec_stats_percpu) { 5065 kfree(pn); 5066 return 1; 5067 } 5068 5069 lruvec_init(&pn->lruvec); 5070 pn->usage_in_excess = 0; 5071 pn->on_tree = false; 5072 pn->memcg = memcg; 5073 5074 memcg->nodeinfo[node] = pn; 5075 return 0; 5076 } 5077 5078 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5079 { 5080 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5081 5082 if (!pn) 5083 return; 5084 5085 free_percpu(pn->lruvec_stats_percpu); 5086 kfree(pn); 5087 } 5088 5089 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5090 { 5091 int node; 5092 5093 for_each_node(node) 5094 free_mem_cgroup_per_node_info(memcg, node); 5095 free_percpu(memcg->vmstats_percpu); 5096 kfree(memcg); 5097 } 5098 5099 static void mem_cgroup_free(struct mem_cgroup *memcg) 5100 { 5101 memcg_wb_domain_exit(memcg); 5102 __mem_cgroup_free(memcg); 5103 } 5104 5105 static struct mem_cgroup *mem_cgroup_alloc(void) 5106 { 5107 struct mem_cgroup *memcg; 5108 unsigned int size; 5109 int node; 5110 int __maybe_unused i; 5111 long error = -ENOMEM; 5112 5113 size = sizeof(struct mem_cgroup); 5114 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5115 5116 memcg = kzalloc(size, GFP_KERNEL); 5117 if (!memcg) 5118 return ERR_PTR(error); 5119 5120 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5121 1, MEM_CGROUP_ID_MAX, 5122 GFP_KERNEL); 5123 if (memcg->id.id < 0) { 5124 error = memcg->id.id; 5125 goto fail; 5126 } 5127 5128 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5129 GFP_KERNEL_ACCOUNT); 5130 if (!memcg->vmstats_percpu) 5131 goto fail; 5132 5133 for_each_node(node) 5134 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5135 goto fail; 5136 5137 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5138 goto fail; 5139 5140 INIT_WORK(&memcg->high_work, high_work_func); 5141 INIT_LIST_HEAD(&memcg->oom_notify); 5142 mutex_init(&memcg->thresholds_lock); 5143 spin_lock_init(&memcg->move_lock); 5144 vmpressure_init(&memcg->vmpressure); 5145 INIT_LIST_HEAD(&memcg->event_list); 5146 spin_lock_init(&memcg->event_list_lock); 5147 memcg->socket_pressure = jiffies; 5148 #ifdef CONFIG_MEMCG_KMEM 5149 memcg->kmemcg_id = -1; 5150 INIT_LIST_HEAD(&memcg->objcg_list); 5151 #endif 5152 #ifdef CONFIG_CGROUP_WRITEBACK 5153 INIT_LIST_HEAD(&memcg->cgwb_list); 5154 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5155 memcg->cgwb_frn[i].done = 5156 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5157 #endif 5158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5159 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5160 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5161 memcg->deferred_split_queue.split_queue_len = 0; 5162 #endif 5163 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5164 return memcg; 5165 fail: 5166 mem_cgroup_id_remove(memcg); 5167 __mem_cgroup_free(memcg); 5168 return ERR_PTR(error); 5169 } 5170 5171 static struct cgroup_subsys_state * __ref 5172 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5173 { 5174 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5175 struct mem_cgroup *memcg, *old_memcg; 5176 long error = -ENOMEM; 5177 5178 old_memcg = set_active_memcg(parent); 5179 memcg = mem_cgroup_alloc(); 5180 set_active_memcg(old_memcg); 5181 if (IS_ERR(memcg)) 5182 return ERR_CAST(memcg); 5183 5184 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5185 memcg->soft_limit = PAGE_COUNTER_MAX; 5186 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5187 if (parent) { 5188 memcg->swappiness = mem_cgroup_swappiness(parent); 5189 memcg->oom_kill_disable = parent->oom_kill_disable; 5190 5191 page_counter_init(&memcg->memory, &parent->memory); 5192 page_counter_init(&memcg->swap, &parent->swap); 5193 page_counter_init(&memcg->kmem, &parent->kmem); 5194 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5195 } else { 5196 page_counter_init(&memcg->memory, NULL); 5197 page_counter_init(&memcg->swap, NULL); 5198 page_counter_init(&memcg->kmem, NULL); 5199 page_counter_init(&memcg->tcpmem, NULL); 5200 5201 root_mem_cgroup = memcg; 5202 return &memcg->css; 5203 } 5204 5205 /* The following stuff does not apply to the root */ 5206 error = memcg_online_kmem(memcg); 5207 if (error) 5208 goto fail; 5209 5210 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5211 static_branch_inc(&memcg_sockets_enabled_key); 5212 5213 return &memcg->css; 5214 fail: 5215 mem_cgroup_id_remove(memcg); 5216 mem_cgroup_free(memcg); 5217 return ERR_PTR(error); 5218 } 5219 5220 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5221 { 5222 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5223 5224 /* 5225 * A memcg must be visible for expand_shrinker_info() 5226 * by the time the maps are allocated. So, we allocate maps 5227 * here, when for_each_mem_cgroup() can't skip it. 5228 */ 5229 if (alloc_shrinker_info(memcg)) { 5230 mem_cgroup_id_remove(memcg); 5231 return -ENOMEM; 5232 } 5233 5234 /* Online state pins memcg ID, memcg ID pins CSS */ 5235 refcount_set(&memcg->id.ref, 1); 5236 css_get(css); 5237 5238 if (unlikely(mem_cgroup_is_root(memcg))) 5239 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5240 2UL*HZ); 5241 return 0; 5242 } 5243 5244 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5245 { 5246 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5247 struct mem_cgroup_event *event, *tmp; 5248 5249 /* 5250 * Unregister events and notify userspace. 5251 * Notify userspace about cgroup removing only after rmdir of cgroup 5252 * directory to avoid race between userspace and kernelspace. 5253 */ 5254 spin_lock_irq(&memcg->event_list_lock); 5255 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5256 list_del_init(&event->list); 5257 schedule_work(&event->remove); 5258 } 5259 spin_unlock_irq(&memcg->event_list_lock); 5260 5261 page_counter_set_min(&memcg->memory, 0); 5262 page_counter_set_low(&memcg->memory, 0); 5263 5264 memcg_offline_kmem(memcg); 5265 reparent_shrinker_deferred(memcg); 5266 wb_memcg_offline(memcg); 5267 5268 drain_all_stock(memcg); 5269 5270 mem_cgroup_id_put(memcg); 5271 } 5272 5273 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5274 { 5275 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5276 5277 invalidate_reclaim_iterators(memcg); 5278 } 5279 5280 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5281 { 5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5283 int __maybe_unused i; 5284 5285 #ifdef CONFIG_CGROUP_WRITEBACK 5286 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5287 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5288 #endif 5289 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5290 static_branch_dec(&memcg_sockets_enabled_key); 5291 5292 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5293 static_branch_dec(&memcg_sockets_enabled_key); 5294 5295 vmpressure_cleanup(&memcg->vmpressure); 5296 cancel_work_sync(&memcg->high_work); 5297 mem_cgroup_remove_from_trees(memcg); 5298 free_shrinker_info(memcg); 5299 5300 /* Need to offline kmem if online_css() fails */ 5301 memcg_offline_kmem(memcg); 5302 mem_cgroup_free(memcg); 5303 } 5304 5305 /** 5306 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5307 * @css: the target css 5308 * 5309 * Reset the states of the mem_cgroup associated with @css. This is 5310 * invoked when the userland requests disabling on the default hierarchy 5311 * but the memcg is pinned through dependency. The memcg should stop 5312 * applying policies and should revert to the vanilla state as it may be 5313 * made visible again. 5314 * 5315 * The current implementation only resets the essential configurations. 5316 * This needs to be expanded to cover all the visible parts. 5317 */ 5318 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5319 { 5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5321 5322 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5323 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5324 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5325 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5326 page_counter_set_min(&memcg->memory, 0); 5327 page_counter_set_low(&memcg->memory, 0); 5328 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5329 memcg->soft_limit = PAGE_COUNTER_MAX; 5330 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5331 memcg_wb_domain_size_changed(memcg); 5332 } 5333 5334 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5335 { 5336 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5337 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5338 struct memcg_vmstats_percpu *statc; 5339 long delta, v; 5340 int i, nid; 5341 5342 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5343 5344 for (i = 0; i < MEMCG_NR_STAT; i++) { 5345 /* 5346 * Collect the aggregated propagation counts of groups 5347 * below us. We're in a per-cpu loop here and this is 5348 * a global counter, so the first cycle will get them. 5349 */ 5350 delta = memcg->vmstats.state_pending[i]; 5351 if (delta) 5352 memcg->vmstats.state_pending[i] = 0; 5353 5354 /* Add CPU changes on this level since the last flush */ 5355 v = READ_ONCE(statc->state[i]); 5356 if (v != statc->state_prev[i]) { 5357 delta += v - statc->state_prev[i]; 5358 statc->state_prev[i] = v; 5359 } 5360 5361 if (!delta) 5362 continue; 5363 5364 /* Aggregate counts on this level and propagate upwards */ 5365 memcg->vmstats.state[i] += delta; 5366 if (parent) 5367 parent->vmstats.state_pending[i] += delta; 5368 } 5369 5370 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5371 delta = memcg->vmstats.events_pending[i]; 5372 if (delta) 5373 memcg->vmstats.events_pending[i] = 0; 5374 5375 v = READ_ONCE(statc->events[i]); 5376 if (v != statc->events_prev[i]) { 5377 delta += v - statc->events_prev[i]; 5378 statc->events_prev[i] = v; 5379 } 5380 5381 if (!delta) 5382 continue; 5383 5384 memcg->vmstats.events[i] += delta; 5385 if (parent) 5386 parent->vmstats.events_pending[i] += delta; 5387 } 5388 5389 for_each_node_state(nid, N_MEMORY) { 5390 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5391 struct mem_cgroup_per_node *ppn = NULL; 5392 struct lruvec_stats_percpu *lstatc; 5393 5394 if (parent) 5395 ppn = parent->nodeinfo[nid]; 5396 5397 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5398 5399 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5400 delta = pn->lruvec_stats.state_pending[i]; 5401 if (delta) 5402 pn->lruvec_stats.state_pending[i] = 0; 5403 5404 v = READ_ONCE(lstatc->state[i]); 5405 if (v != lstatc->state_prev[i]) { 5406 delta += v - lstatc->state_prev[i]; 5407 lstatc->state_prev[i] = v; 5408 } 5409 5410 if (!delta) 5411 continue; 5412 5413 pn->lruvec_stats.state[i] += delta; 5414 if (ppn) 5415 ppn->lruvec_stats.state_pending[i] += delta; 5416 } 5417 } 5418 } 5419 5420 #ifdef CONFIG_MMU 5421 /* Handlers for move charge at task migration. */ 5422 static int mem_cgroup_do_precharge(unsigned long count) 5423 { 5424 int ret; 5425 5426 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5427 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5428 if (!ret) { 5429 mc.precharge += count; 5430 return ret; 5431 } 5432 5433 /* Try charges one by one with reclaim, but do not retry */ 5434 while (count--) { 5435 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5436 if (ret) 5437 return ret; 5438 mc.precharge++; 5439 cond_resched(); 5440 } 5441 return 0; 5442 } 5443 5444 union mc_target { 5445 struct page *page; 5446 swp_entry_t ent; 5447 }; 5448 5449 enum mc_target_type { 5450 MC_TARGET_NONE = 0, 5451 MC_TARGET_PAGE, 5452 MC_TARGET_SWAP, 5453 MC_TARGET_DEVICE, 5454 }; 5455 5456 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5457 unsigned long addr, pte_t ptent) 5458 { 5459 struct page *page = vm_normal_page(vma, addr, ptent); 5460 5461 if (!page || !page_mapped(page)) 5462 return NULL; 5463 if (PageAnon(page)) { 5464 if (!(mc.flags & MOVE_ANON)) 5465 return NULL; 5466 } else { 5467 if (!(mc.flags & MOVE_FILE)) 5468 return NULL; 5469 } 5470 if (!get_page_unless_zero(page)) 5471 return NULL; 5472 5473 return page; 5474 } 5475 5476 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5477 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5478 pte_t ptent, swp_entry_t *entry) 5479 { 5480 struct page *page = NULL; 5481 swp_entry_t ent = pte_to_swp_entry(ptent); 5482 5483 if (!(mc.flags & MOVE_ANON)) 5484 return NULL; 5485 5486 /* 5487 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5488 * a device and because they are not accessible by CPU they are store 5489 * as special swap entry in the CPU page table. 5490 */ 5491 if (is_device_private_entry(ent)) { 5492 page = pfn_swap_entry_to_page(ent); 5493 /* 5494 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5495 * a refcount of 1 when free (unlike normal page) 5496 */ 5497 if (!page_ref_add_unless(page, 1, 1)) 5498 return NULL; 5499 return page; 5500 } 5501 5502 if (non_swap_entry(ent)) 5503 return NULL; 5504 5505 /* 5506 * Because lookup_swap_cache() updates some statistics counter, 5507 * we call find_get_page() with swapper_space directly. 5508 */ 5509 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5510 entry->val = ent.val; 5511 5512 return page; 5513 } 5514 #else 5515 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5516 pte_t ptent, swp_entry_t *entry) 5517 { 5518 return NULL; 5519 } 5520 #endif 5521 5522 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5523 unsigned long addr, pte_t ptent) 5524 { 5525 if (!vma->vm_file) /* anonymous vma */ 5526 return NULL; 5527 if (!(mc.flags & MOVE_FILE)) 5528 return NULL; 5529 5530 /* page is moved even if it's not RSS of this task(page-faulted). */ 5531 /* shmem/tmpfs may report page out on swap: account for that too. */ 5532 return find_get_incore_page(vma->vm_file->f_mapping, 5533 linear_page_index(vma, addr)); 5534 } 5535 5536 /** 5537 * mem_cgroup_move_account - move account of the page 5538 * @page: the page 5539 * @compound: charge the page as compound or small page 5540 * @from: mem_cgroup which the page is moved from. 5541 * @to: mem_cgroup which the page is moved to. @from != @to. 5542 * 5543 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5544 * 5545 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5546 * from old cgroup. 5547 */ 5548 static int mem_cgroup_move_account(struct page *page, 5549 bool compound, 5550 struct mem_cgroup *from, 5551 struct mem_cgroup *to) 5552 { 5553 struct folio *folio = page_folio(page); 5554 struct lruvec *from_vec, *to_vec; 5555 struct pglist_data *pgdat; 5556 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5557 int nid, ret; 5558 5559 VM_BUG_ON(from == to); 5560 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5561 VM_BUG_ON(compound && !folio_test_large(folio)); 5562 5563 /* 5564 * Prevent mem_cgroup_migrate() from looking at 5565 * page's memory cgroup of its source page while we change it. 5566 */ 5567 ret = -EBUSY; 5568 if (!folio_trylock(folio)) 5569 goto out; 5570 5571 ret = -EINVAL; 5572 if (folio_memcg(folio) != from) 5573 goto out_unlock; 5574 5575 pgdat = folio_pgdat(folio); 5576 from_vec = mem_cgroup_lruvec(from, pgdat); 5577 to_vec = mem_cgroup_lruvec(to, pgdat); 5578 5579 folio_memcg_lock(folio); 5580 5581 if (folio_test_anon(folio)) { 5582 if (folio_mapped(folio)) { 5583 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5584 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5585 if (folio_test_transhuge(folio)) { 5586 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5587 -nr_pages); 5588 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5589 nr_pages); 5590 } 5591 } 5592 } else { 5593 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5594 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5595 5596 if (folio_test_swapbacked(folio)) { 5597 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5598 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5599 } 5600 5601 if (folio_mapped(folio)) { 5602 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5603 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5604 } 5605 5606 if (folio_test_dirty(folio)) { 5607 struct address_space *mapping = folio_mapping(folio); 5608 5609 if (mapping_can_writeback(mapping)) { 5610 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5611 -nr_pages); 5612 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5613 nr_pages); 5614 } 5615 } 5616 } 5617 5618 if (folio_test_writeback(folio)) { 5619 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5620 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5621 } 5622 5623 /* 5624 * All state has been migrated, let's switch to the new memcg. 5625 * 5626 * It is safe to change page's memcg here because the page 5627 * is referenced, charged, isolated, and locked: we can't race 5628 * with (un)charging, migration, LRU putback, or anything else 5629 * that would rely on a stable page's memory cgroup. 5630 * 5631 * Note that lock_page_memcg is a memcg lock, not a page lock, 5632 * to save space. As soon as we switch page's memory cgroup to a 5633 * new memcg that isn't locked, the above state can change 5634 * concurrently again. Make sure we're truly done with it. 5635 */ 5636 smp_mb(); 5637 5638 css_get(&to->css); 5639 css_put(&from->css); 5640 5641 folio->memcg_data = (unsigned long)to; 5642 5643 __folio_memcg_unlock(from); 5644 5645 ret = 0; 5646 nid = folio_nid(folio); 5647 5648 local_irq_disable(); 5649 mem_cgroup_charge_statistics(to, nr_pages); 5650 memcg_check_events(to, nid); 5651 mem_cgroup_charge_statistics(from, -nr_pages); 5652 memcg_check_events(from, nid); 5653 local_irq_enable(); 5654 out_unlock: 5655 folio_unlock(folio); 5656 out: 5657 return ret; 5658 } 5659 5660 /** 5661 * get_mctgt_type - get target type of moving charge 5662 * @vma: the vma the pte to be checked belongs 5663 * @addr: the address corresponding to the pte to be checked 5664 * @ptent: the pte to be checked 5665 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5666 * 5667 * Returns 5668 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5669 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5670 * move charge. if @target is not NULL, the page is stored in target->page 5671 * with extra refcnt got(Callers should handle it). 5672 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5673 * target for charge migration. if @target is not NULL, the entry is stored 5674 * in target->ent. 5675 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5676 * (so ZONE_DEVICE page and thus not on the lru). 5677 * For now we such page is charge like a regular page would be as for all 5678 * intent and purposes it is just special memory taking the place of a 5679 * regular page. 5680 * 5681 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5682 * 5683 * Called with pte lock held. 5684 */ 5685 5686 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5687 unsigned long addr, pte_t ptent, union mc_target *target) 5688 { 5689 struct page *page = NULL; 5690 enum mc_target_type ret = MC_TARGET_NONE; 5691 swp_entry_t ent = { .val = 0 }; 5692 5693 if (pte_present(ptent)) 5694 page = mc_handle_present_pte(vma, addr, ptent); 5695 else if (is_swap_pte(ptent)) 5696 page = mc_handle_swap_pte(vma, ptent, &ent); 5697 else if (pte_none(ptent)) 5698 page = mc_handle_file_pte(vma, addr, ptent); 5699 5700 if (!page && !ent.val) 5701 return ret; 5702 if (page) { 5703 /* 5704 * Do only loose check w/o serialization. 5705 * mem_cgroup_move_account() checks the page is valid or 5706 * not under LRU exclusion. 5707 */ 5708 if (page_memcg(page) == mc.from) { 5709 ret = MC_TARGET_PAGE; 5710 if (is_device_private_page(page)) 5711 ret = MC_TARGET_DEVICE; 5712 if (target) 5713 target->page = page; 5714 } 5715 if (!ret || !target) 5716 put_page(page); 5717 } 5718 /* 5719 * There is a swap entry and a page doesn't exist or isn't charged. 5720 * But we cannot move a tail-page in a THP. 5721 */ 5722 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5723 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5724 ret = MC_TARGET_SWAP; 5725 if (target) 5726 target->ent = ent; 5727 } 5728 return ret; 5729 } 5730 5731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5732 /* 5733 * We don't consider PMD mapped swapping or file mapped pages because THP does 5734 * not support them for now. 5735 * Caller should make sure that pmd_trans_huge(pmd) is true. 5736 */ 5737 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5738 unsigned long addr, pmd_t pmd, union mc_target *target) 5739 { 5740 struct page *page = NULL; 5741 enum mc_target_type ret = MC_TARGET_NONE; 5742 5743 if (unlikely(is_swap_pmd(pmd))) { 5744 VM_BUG_ON(thp_migration_supported() && 5745 !is_pmd_migration_entry(pmd)); 5746 return ret; 5747 } 5748 page = pmd_page(pmd); 5749 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5750 if (!(mc.flags & MOVE_ANON)) 5751 return ret; 5752 if (page_memcg(page) == mc.from) { 5753 ret = MC_TARGET_PAGE; 5754 if (target) { 5755 get_page(page); 5756 target->page = page; 5757 } 5758 } 5759 return ret; 5760 } 5761 #else 5762 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5763 unsigned long addr, pmd_t pmd, union mc_target *target) 5764 { 5765 return MC_TARGET_NONE; 5766 } 5767 #endif 5768 5769 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5770 unsigned long addr, unsigned long end, 5771 struct mm_walk *walk) 5772 { 5773 struct vm_area_struct *vma = walk->vma; 5774 pte_t *pte; 5775 spinlock_t *ptl; 5776 5777 ptl = pmd_trans_huge_lock(pmd, vma); 5778 if (ptl) { 5779 /* 5780 * Note their can not be MC_TARGET_DEVICE for now as we do not 5781 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5782 * this might change. 5783 */ 5784 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5785 mc.precharge += HPAGE_PMD_NR; 5786 spin_unlock(ptl); 5787 return 0; 5788 } 5789 5790 if (pmd_trans_unstable(pmd)) 5791 return 0; 5792 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5793 for (; addr != end; pte++, addr += PAGE_SIZE) 5794 if (get_mctgt_type(vma, addr, *pte, NULL)) 5795 mc.precharge++; /* increment precharge temporarily */ 5796 pte_unmap_unlock(pte - 1, ptl); 5797 cond_resched(); 5798 5799 return 0; 5800 } 5801 5802 static const struct mm_walk_ops precharge_walk_ops = { 5803 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5804 }; 5805 5806 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5807 { 5808 unsigned long precharge; 5809 5810 mmap_read_lock(mm); 5811 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5812 mmap_read_unlock(mm); 5813 5814 precharge = mc.precharge; 5815 mc.precharge = 0; 5816 5817 return precharge; 5818 } 5819 5820 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5821 { 5822 unsigned long precharge = mem_cgroup_count_precharge(mm); 5823 5824 VM_BUG_ON(mc.moving_task); 5825 mc.moving_task = current; 5826 return mem_cgroup_do_precharge(precharge); 5827 } 5828 5829 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5830 static void __mem_cgroup_clear_mc(void) 5831 { 5832 struct mem_cgroup *from = mc.from; 5833 struct mem_cgroup *to = mc.to; 5834 5835 /* we must uncharge all the leftover precharges from mc.to */ 5836 if (mc.precharge) { 5837 cancel_charge(mc.to, mc.precharge); 5838 mc.precharge = 0; 5839 } 5840 /* 5841 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5842 * we must uncharge here. 5843 */ 5844 if (mc.moved_charge) { 5845 cancel_charge(mc.from, mc.moved_charge); 5846 mc.moved_charge = 0; 5847 } 5848 /* we must fixup refcnts and charges */ 5849 if (mc.moved_swap) { 5850 /* uncharge swap account from the old cgroup */ 5851 if (!mem_cgroup_is_root(mc.from)) 5852 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5853 5854 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5855 5856 /* 5857 * we charged both to->memory and to->memsw, so we 5858 * should uncharge to->memory. 5859 */ 5860 if (!mem_cgroup_is_root(mc.to)) 5861 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5862 5863 mc.moved_swap = 0; 5864 } 5865 memcg_oom_recover(from); 5866 memcg_oom_recover(to); 5867 wake_up_all(&mc.waitq); 5868 } 5869 5870 static void mem_cgroup_clear_mc(void) 5871 { 5872 struct mm_struct *mm = mc.mm; 5873 5874 /* 5875 * we must clear moving_task before waking up waiters at the end of 5876 * task migration. 5877 */ 5878 mc.moving_task = NULL; 5879 __mem_cgroup_clear_mc(); 5880 spin_lock(&mc.lock); 5881 mc.from = NULL; 5882 mc.to = NULL; 5883 mc.mm = NULL; 5884 spin_unlock(&mc.lock); 5885 5886 mmput(mm); 5887 } 5888 5889 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5890 { 5891 struct cgroup_subsys_state *css; 5892 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5893 struct mem_cgroup *from; 5894 struct task_struct *leader, *p; 5895 struct mm_struct *mm; 5896 unsigned long move_flags; 5897 int ret = 0; 5898 5899 /* charge immigration isn't supported on the default hierarchy */ 5900 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5901 return 0; 5902 5903 /* 5904 * Multi-process migrations only happen on the default hierarchy 5905 * where charge immigration is not used. Perform charge 5906 * immigration if @tset contains a leader and whine if there are 5907 * multiple. 5908 */ 5909 p = NULL; 5910 cgroup_taskset_for_each_leader(leader, css, tset) { 5911 WARN_ON_ONCE(p); 5912 p = leader; 5913 memcg = mem_cgroup_from_css(css); 5914 } 5915 if (!p) 5916 return 0; 5917 5918 /* 5919 * We are now committed to this value whatever it is. Changes in this 5920 * tunable will only affect upcoming migrations, not the current one. 5921 * So we need to save it, and keep it going. 5922 */ 5923 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5924 if (!move_flags) 5925 return 0; 5926 5927 from = mem_cgroup_from_task(p); 5928 5929 VM_BUG_ON(from == memcg); 5930 5931 mm = get_task_mm(p); 5932 if (!mm) 5933 return 0; 5934 /* We move charges only when we move a owner of the mm */ 5935 if (mm->owner == p) { 5936 VM_BUG_ON(mc.from); 5937 VM_BUG_ON(mc.to); 5938 VM_BUG_ON(mc.precharge); 5939 VM_BUG_ON(mc.moved_charge); 5940 VM_BUG_ON(mc.moved_swap); 5941 5942 spin_lock(&mc.lock); 5943 mc.mm = mm; 5944 mc.from = from; 5945 mc.to = memcg; 5946 mc.flags = move_flags; 5947 spin_unlock(&mc.lock); 5948 /* We set mc.moving_task later */ 5949 5950 ret = mem_cgroup_precharge_mc(mm); 5951 if (ret) 5952 mem_cgroup_clear_mc(); 5953 } else { 5954 mmput(mm); 5955 } 5956 return ret; 5957 } 5958 5959 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5960 { 5961 if (mc.to) 5962 mem_cgroup_clear_mc(); 5963 } 5964 5965 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5966 unsigned long addr, unsigned long end, 5967 struct mm_walk *walk) 5968 { 5969 int ret = 0; 5970 struct vm_area_struct *vma = walk->vma; 5971 pte_t *pte; 5972 spinlock_t *ptl; 5973 enum mc_target_type target_type; 5974 union mc_target target; 5975 struct page *page; 5976 5977 ptl = pmd_trans_huge_lock(pmd, vma); 5978 if (ptl) { 5979 if (mc.precharge < HPAGE_PMD_NR) { 5980 spin_unlock(ptl); 5981 return 0; 5982 } 5983 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5984 if (target_type == MC_TARGET_PAGE) { 5985 page = target.page; 5986 if (!isolate_lru_page(page)) { 5987 if (!mem_cgroup_move_account(page, true, 5988 mc.from, mc.to)) { 5989 mc.precharge -= HPAGE_PMD_NR; 5990 mc.moved_charge += HPAGE_PMD_NR; 5991 } 5992 putback_lru_page(page); 5993 } 5994 put_page(page); 5995 } else if (target_type == MC_TARGET_DEVICE) { 5996 page = target.page; 5997 if (!mem_cgroup_move_account(page, true, 5998 mc.from, mc.to)) { 5999 mc.precharge -= HPAGE_PMD_NR; 6000 mc.moved_charge += HPAGE_PMD_NR; 6001 } 6002 put_page(page); 6003 } 6004 spin_unlock(ptl); 6005 return 0; 6006 } 6007 6008 if (pmd_trans_unstable(pmd)) 6009 return 0; 6010 retry: 6011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6012 for (; addr != end; addr += PAGE_SIZE) { 6013 pte_t ptent = *(pte++); 6014 bool device = false; 6015 swp_entry_t ent; 6016 6017 if (!mc.precharge) 6018 break; 6019 6020 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6021 case MC_TARGET_DEVICE: 6022 device = true; 6023 fallthrough; 6024 case MC_TARGET_PAGE: 6025 page = target.page; 6026 /* 6027 * We can have a part of the split pmd here. Moving it 6028 * can be done but it would be too convoluted so simply 6029 * ignore such a partial THP and keep it in original 6030 * memcg. There should be somebody mapping the head. 6031 */ 6032 if (PageTransCompound(page)) 6033 goto put; 6034 if (!device && isolate_lru_page(page)) 6035 goto put; 6036 if (!mem_cgroup_move_account(page, false, 6037 mc.from, mc.to)) { 6038 mc.precharge--; 6039 /* we uncharge from mc.from later. */ 6040 mc.moved_charge++; 6041 } 6042 if (!device) 6043 putback_lru_page(page); 6044 put: /* get_mctgt_type() gets the page */ 6045 put_page(page); 6046 break; 6047 case MC_TARGET_SWAP: 6048 ent = target.ent; 6049 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6050 mc.precharge--; 6051 mem_cgroup_id_get_many(mc.to, 1); 6052 /* we fixup other refcnts and charges later. */ 6053 mc.moved_swap++; 6054 } 6055 break; 6056 default: 6057 break; 6058 } 6059 } 6060 pte_unmap_unlock(pte - 1, ptl); 6061 cond_resched(); 6062 6063 if (addr != end) { 6064 /* 6065 * We have consumed all precharges we got in can_attach(). 6066 * We try charge one by one, but don't do any additional 6067 * charges to mc.to if we have failed in charge once in attach() 6068 * phase. 6069 */ 6070 ret = mem_cgroup_do_precharge(1); 6071 if (!ret) 6072 goto retry; 6073 } 6074 6075 return ret; 6076 } 6077 6078 static const struct mm_walk_ops charge_walk_ops = { 6079 .pmd_entry = mem_cgroup_move_charge_pte_range, 6080 }; 6081 6082 static void mem_cgroup_move_charge(void) 6083 { 6084 lru_add_drain_all(); 6085 /* 6086 * Signal lock_page_memcg() to take the memcg's move_lock 6087 * while we're moving its pages to another memcg. Then wait 6088 * for already started RCU-only updates to finish. 6089 */ 6090 atomic_inc(&mc.from->moving_account); 6091 synchronize_rcu(); 6092 retry: 6093 if (unlikely(!mmap_read_trylock(mc.mm))) { 6094 /* 6095 * Someone who are holding the mmap_lock might be waiting in 6096 * waitq. So we cancel all extra charges, wake up all waiters, 6097 * and retry. Because we cancel precharges, we might not be able 6098 * to move enough charges, but moving charge is a best-effort 6099 * feature anyway, so it wouldn't be a big problem. 6100 */ 6101 __mem_cgroup_clear_mc(); 6102 cond_resched(); 6103 goto retry; 6104 } 6105 /* 6106 * When we have consumed all precharges and failed in doing 6107 * additional charge, the page walk just aborts. 6108 */ 6109 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6110 NULL); 6111 6112 mmap_read_unlock(mc.mm); 6113 atomic_dec(&mc.from->moving_account); 6114 } 6115 6116 static void mem_cgroup_move_task(void) 6117 { 6118 if (mc.to) { 6119 mem_cgroup_move_charge(); 6120 mem_cgroup_clear_mc(); 6121 } 6122 } 6123 #else /* !CONFIG_MMU */ 6124 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6125 { 6126 return 0; 6127 } 6128 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6129 { 6130 } 6131 static void mem_cgroup_move_task(void) 6132 { 6133 } 6134 #endif 6135 6136 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6137 { 6138 if (value == PAGE_COUNTER_MAX) 6139 seq_puts(m, "max\n"); 6140 else 6141 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6142 6143 return 0; 6144 } 6145 6146 static u64 memory_current_read(struct cgroup_subsys_state *css, 6147 struct cftype *cft) 6148 { 6149 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6150 6151 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6152 } 6153 6154 static int memory_min_show(struct seq_file *m, void *v) 6155 { 6156 return seq_puts_memcg_tunable(m, 6157 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6158 } 6159 6160 static ssize_t memory_min_write(struct kernfs_open_file *of, 6161 char *buf, size_t nbytes, loff_t off) 6162 { 6163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6164 unsigned long min; 6165 int err; 6166 6167 buf = strstrip(buf); 6168 err = page_counter_memparse(buf, "max", &min); 6169 if (err) 6170 return err; 6171 6172 page_counter_set_min(&memcg->memory, min); 6173 6174 return nbytes; 6175 } 6176 6177 static int memory_low_show(struct seq_file *m, void *v) 6178 { 6179 return seq_puts_memcg_tunable(m, 6180 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6181 } 6182 6183 static ssize_t memory_low_write(struct kernfs_open_file *of, 6184 char *buf, size_t nbytes, loff_t off) 6185 { 6186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6187 unsigned long low; 6188 int err; 6189 6190 buf = strstrip(buf); 6191 err = page_counter_memparse(buf, "max", &low); 6192 if (err) 6193 return err; 6194 6195 page_counter_set_low(&memcg->memory, low); 6196 6197 return nbytes; 6198 } 6199 6200 static int memory_high_show(struct seq_file *m, void *v) 6201 { 6202 return seq_puts_memcg_tunable(m, 6203 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6204 } 6205 6206 static ssize_t memory_high_write(struct kernfs_open_file *of, 6207 char *buf, size_t nbytes, loff_t off) 6208 { 6209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6210 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6211 bool drained = false; 6212 unsigned long high; 6213 int err; 6214 6215 buf = strstrip(buf); 6216 err = page_counter_memparse(buf, "max", &high); 6217 if (err) 6218 return err; 6219 6220 page_counter_set_high(&memcg->memory, high); 6221 6222 for (;;) { 6223 unsigned long nr_pages = page_counter_read(&memcg->memory); 6224 unsigned long reclaimed; 6225 6226 if (nr_pages <= high) 6227 break; 6228 6229 if (signal_pending(current)) 6230 break; 6231 6232 if (!drained) { 6233 drain_all_stock(memcg); 6234 drained = true; 6235 continue; 6236 } 6237 6238 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6239 GFP_KERNEL, true); 6240 6241 if (!reclaimed && !nr_retries--) 6242 break; 6243 } 6244 6245 memcg_wb_domain_size_changed(memcg); 6246 return nbytes; 6247 } 6248 6249 static int memory_max_show(struct seq_file *m, void *v) 6250 { 6251 return seq_puts_memcg_tunable(m, 6252 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6253 } 6254 6255 static ssize_t memory_max_write(struct kernfs_open_file *of, 6256 char *buf, size_t nbytes, loff_t off) 6257 { 6258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6259 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6260 bool drained = false; 6261 unsigned long max; 6262 int err; 6263 6264 buf = strstrip(buf); 6265 err = page_counter_memparse(buf, "max", &max); 6266 if (err) 6267 return err; 6268 6269 xchg(&memcg->memory.max, max); 6270 6271 for (;;) { 6272 unsigned long nr_pages = page_counter_read(&memcg->memory); 6273 6274 if (nr_pages <= max) 6275 break; 6276 6277 if (signal_pending(current)) 6278 break; 6279 6280 if (!drained) { 6281 drain_all_stock(memcg); 6282 drained = true; 6283 continue; 6284 } 6285 6286 if (nr_reclaims) { 6287 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6288 GFP_KERNEL, true)) 6289 nr_reclaims--; 6290 continue; 6291 } 6292 6293 memcg_memory_event(memcg, MEMCG_OOM); 6294 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6295 break; 6296 } 6297 6298 memcg_wb_domain_size_changed(memcg); 6299 return nbytes; 6300 } 6301 6302 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6303 { 6304 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6305 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6306 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6307 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6308 seq_printf(m, "oom_kill %lu\n", 6309 atomic_long_read(&events[MEMCG_OOM_KILL])); 6310 } 6311 6312 static int memory_events_show(struct seq_file *m, void *v) 6313 { 6314 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6315 6316 __memory_events_show(m, memcg->memory_events); 6317 return 0; 6318 } 6319 6320 static int memory_events_local_show(struct seq_file *m, void *v) 6321 { 6322 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6323 6324 __memory_events_show(m, memcg->memory_events_local); 6325 return 0; 6326 } 6327 6328 static int memory_stat_show(struct seq_file *m, void *v) 6329 { 6330 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6331 char *buf; 6332 6333 buf = memory_stat_format(memcg); 6334 if (!buf) 6335 return -ENOMEM; 6336 seq_puts(m, buf); 6337 kfree(buf); 6338 return 0; 6339 } 6340 6341 #ifdef CONFIG_NUMA 6342 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6343 int item) 6344 { 6345 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6346 } 6347 6348 static int memory_numa_stat_show(struct seq_file *m, void *v) 6349 { 6350 int i; 6351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6352 6353 mem_cgroup_flush_stats(); 6354 6355 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6356 int nid; 6357 6358 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6359 continue; 6360 6361 seq_printf(m, "%s", memory_stats[i].name); 6362 for_each_node_state(nid, N_MEMORY) { 6363 u64 size; 6364 struct lruvec *lruvec; 6365 6366 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6367 size = lruvec_page_state_output(lruvec, 6368 memory_stats[i].idx); 6369 seq_printf(m, " N%d=%llu", nid, size); 6370 } 6371 seq_putc(m, '\n'); 6372 } 6373 6374 return 0; 6375 } 6376 #endif 6377 6378 static int memory_oom_group_show(struct seq_file *m, void *v) 6379 { 6380 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6381 6382 seq_printf(m, "%d\n", memcg->oom_group); 6383 6384 return 0; 6385 } 6386 6387 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6388 char *buf, size_t nbytes, loff_t off) 6389 { 6390 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6391 int ret, oom_group; 6392 6393 buf = strstrip(buf); 6394 if (!buf) 6395 return -EINVAL; 6396 6397 ret = kstrtoint(buf, 0, &oom_group); 6398 if (ret) 6399 return ret; 6400 6401 if (oom_group != 0 && oom_group != 1) 6402 return -EINVAL; 6403 6404 memcg->oom_group = oom_group; 6405 6406 return nbytes; 6407 } 6408 6409 static struct cftype memory_files[] = { 6410 { 6411 .name = "current", 6412 .flags = CFTYPE_NOT_ON_ROOT, 6413 .read_u64 = memory_current_read, 6414 }, 6415 { 6416 .name = "min", 6417 .flags = CFTYPE_NOT_ON_ROOT, 6418 .seq_show = memory_min_show, 6419 .write = memory_min_write, 6420 }, 6421 { 6422 .name = "low", 6423 .flags = CFTYPE_NOT_ON_ROOT, 6424 .seq_show = memory_low_show, 6425 .write = memory_low_write, 6426 }, 6427 { 6428 .name = "high", 6429 .flags = CFTYPE_NOT_ON_ROOT, 6430 .seq_show = memory_high_show, 6431 .write = memory_high_write, 6432 }, 6433 { 6434 .name = "max", 6435 .flags = CFTYPE_NOT_ON_ROOT, 6436 .seq_show = memory_max_show, 6437 .write = memory_max_write, 6438 }, 6439 { 6440 .name = "events", 6441 .flags = CFTYPE_NOT_ON_ROOT, 6442 .file_offset = offsetof(struct mem_cgroup, events_file), 6443 .seq_show = memory_events_show, 6444 }, 6445 { 6446 .name = "events.local", 6447 .flags = CFTYPE_NOT_ON_ROOT, 6448 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6449 .seq_show = memory_events_local_show, 6450 }, 6451 { 6452 .name = "stat", 6453 .seq_show = memory_stat_show, 6454 }, 6455 #ifdef CONFIG_NUMA 6456 { 6457 .name = "numa_stat", 6458 .seq_show = memory_numa_stat_show, 6459 }, 6460 #endif 6461 { 6462 .name = "oom.group", 6463 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6464 .seq_show = memory_oom_group_show, 6465 .write = memory_oom_group_write, 6466 }, 6467 { } /* terminate */ 6468 }; 6469 6470 struct cgroup_subsys memory_cgrp_subsys = { 6471 .css_alloc = mem_cgroup_css_alloc, 6472 .css_online = mem_cgroup_css_online, 6473 .css_offline = mem_cgroup_css_offline, 6474 .css_released = mem_cgroup_css_released, 6475 .css_free = mem_cgroup_css_free, 6476 .css_reset = mem_cgroup_css_reset, 6477 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6478 .can_attach = mem_cgroup_can_attach, 6479 .cancel_attach = mem_cgroup_cancel_attach, 6480 .post_attach = mem_cgroup_move_task, 6481 .dfl_cftypes = memory_files, 6482 .legacy_cftypes = mem_cgroup_legacy_files, 6483 .early_init = 0, 6484 }; 6485 6486 /* 6487 * This function calculates an individual cgroup's effective 6488 * protection which is derived from its own memory.min/low, its 6489 * parent's and siblings' settings, as well as the actual memory 6490 * distribution in the tree. 6491 * 6492 * The following rules apply to the effective protection values: 6493 * 6494 * 1. At the first level of reclaim, effective protection is equal to 6495 * the declared protection in memory.min and memory.low. 6496 * 6497 * 2. To enable safe delegation of the protection configuration, at 6498 * subsequent levels the effective protection is capped to the 6499 * parent's effective protection. 6500 * 6501 * 3. To make complex and dynamic subtrees easier to configure, the 6502 * user is allowed to overcommit the declared protection at a given 6503 * level. If that is the case, the parent's effective protection is 6504 * distributed to the children in proportion to how much protection 6505 * they have declared and how much of it they are utilizing. 6506 * 6507 * This makes distribution proportional, but also work-conserving: 6508 * if one cgroup claims much more protection than it uses memory, 6509 * the unused remainder is available to its siblings. 6510 * 6511 * 4. Conversely, when the declared protection is undercommitted at a 6512 * given level, the distribution of the larger parental protection 6513 * budget is NOT proportional. A cgroup's protection from a sibling 6514 * is capped to its own memory.min/low setting. 6515 * 6516 * 5. However, to allow protecting recursive subtrees from each other 6517 * without having to declare each individual cgroup's fixed share 6518 * of the ancestor's claim to protection, any unutilized - 6519 * "floating" - protection from up the tree is distributed in 6520 * proportion to each cgroup's *usage*. This makes the protection 6521 * neutral wrt sibling cgroups and lets them compete freely over 6522 * the shared parental protection budget, but it protects the 6523 * subtree as a whole from neighboring subtrees. 6524 * 6525 * Note that 4. and 5. are not in conflict: 4. is about protecting 6526 * against immediate siblings whereas 5. is about protecting against 6527 * neighboring subtrees. 6528 */ 6529 static unsigned long effective_protection(unsigned long usage, 6530 unsigned long parent_usage, 6531 unsigned long setting, 6532 unsigned long parent_effective, 6533 unsigned long siblings_protected) 6534 { 6535 unsigned long protected; 6536 unsigned long ep; 6537 6538 protected = min(usage, setting); 6539 /* 6540 * If all cgroups at this level combined claim and use more 6541 * protection then what the parent affords them, distribute 6542 * shares in proportion to utilization. 6543 * 6544 * We are using actual utilization rather than the statically 6545 * claimed protection in order to be work-conserving: claimed 6546 * but unused protection is available to siblings that would 6547 * otherwise get a smaller chunk than what they claimed. 6548 */ 6549 if (siblings_protected > parent_effective) 6550 return protected * parent_effective / siblings_protected; 6551 6552 /* 6553 * Ok, utilized protection of all children is within what the 6554 * parent affords them, so we know whatever this child claims 6555 * and utilizes is effectively protected. 6556 * 6557 * If there is unprotected usage beyond this value, reclaim 6558 * will apply pressure in proportion to that amount. 6559 * 6560 * If there is unutilized protection, the cgroup will be fully 6561 * shielded from reclaim, but we do return a smaller value for 6562 * protection than what the group could enjoy in theory. This 6563 * is okay. With the overcommit distribution above, effective 6564 * protection is always dependent on how memory is actually 6565 * consumed among the siblings anyway. 6566 */ 6567 ep = protected; 6568 6569 /* 6570 * If the children aren't claiming (all of) the protection 6571 * afforded to them by the parent, distribute the remainder in 6572 * proportion to the (unprotected) memory of each cgroup. That 6573 * way, cgroups that aren't explicitly prioritized wrt each 6574 * other compete freely over the allowance, but they are 6575 * collectively protected from neighboring trees. 6576 * 6577 * We're using unprotected memory for the weight so that if 6578 * some cgroups DO claim explicit protection, we don't protect 6579 * the same bytes twice. 6580 * 6581 * Check both usage and parent_usage against the respective 6582 * protected values. One should imply the other, but they 6583 * aren't read atomically - make sure the division is sane. 6584 */ 6585 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6586 return ep; 6587 if (parent_effective > siblings_protected && 6588 parent_usage > siblings_protected && 6589 usage > protected) { 6590 unsigned long unclaimed; 6591 6592 unclaimed = parent_effective - siblings_protected; 6593 unclaimed *= usage - protected; 6594 unclaimed /= parent_usage - siblings_protected; 6595 6596 ep += unclaimed; 6597 } 6598 6599 return ep; 6600 } 6601 6602 /** 6603 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6604 * @root: the top ancestor of the sub-tree being checked 6605 * @memcg: the memory cgroup to check 6606 * 6607 * WARNING: This function is not stateless! It can only be used as part 6608 * of a top-down tree iteration, not for isolated queries. 6609 */ 6610 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6611 struct mem_cgroup *memcg) 6612 { 6613 unsigned long usage, parent_usage; 6614 struct mem_cgroup *parent; 6615 6616 if (mem_cgroup_disabled()) 6617 return; 6618 6619 if (!root) 6620 root = root_mem_cgroup; 6621 6622 /* 6623 * Effective values of the reclaim targets are ignored so they 6624 * can be stale. Have a look at mem_cgroup_protection for more 6625 * details. 6626 * TODO: calculation should be more robust so that we do not need 6627 * that special casing. 6628 */ 6629 if (memcg == root) 6630 return; 6631 6632 usage = page_counter_read(&memcg->memory); 6633 if (!usage) 6634 return; 6635 6636 parent = parent_mem_cgroup(memcg); 6637 /* No parent means a non-hierarchical mode on v1 memcg */ 6638 if (!parent) 6639 return; 6640 6641 if (parent == root) { 6642 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6643 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6644 return; 6645 } 6646 6647 parent_usage = page_counter_read(&parent->memory); 6648 6649 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6650 READ_ONCE(memcg->memory.min), 6651 READ_ONCE(parent->memory.emin), 6652 atomic_long_read(&parent->memory.children_min_usage))); 6653 6654 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6655 READ_ONCE(memcg->memory.low), 6656 READ_ONCE(parent->memory.elow), 6657 atomic_long_read(&parent->memory.children_low_usage))); 6658 } 6659 6660 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6661 gfp_t gfp) 6662 { 6663 long nr_pages = folio_nr_pages(folio); 6664 int ret; 6665 6666 ret = try_charge(memcg, gfp, nr_pages); 6667 if (ret) 6668 goto out; 6669 6670 css_get(&memcg->css); 6671 commit_charge(folio, memcg); 6672 6673 local_irq_disable(); 6674 mem_cgroup_charge_statistics(memcg, nr_pages); 6675 memcg_check_events(memcg, folio_nid(folio)); 6676 local_irq_enable(); 6677 out: 6678 return ret; 6679 } 6680 6681 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6682 { 6683 struct mem_cgroup *memcg; 6684 int ret; 6685 6686 memcg = get_mem_cgroup_from_mm(mm); 6687 ret = charge_memcg(folio, memcg, gfp); 6688 css_put(&memcg->css); 6689 6690 return ret; 6691 } 6692 6693 /** 6694 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6695 * @page: page to charge 6696 * @mm: mm context of the victim 6697 * @gfp: reclaim mode 6698 * @entry: swap entry for which the page is allocated 6699 * 6700 * This function charges a page allocated for swapin. Please call this before 6701 * adding the page to the swapcache. 6702 * 6703 * Returns 0 on success. Otherwise, an error code is returned. 6704 */ 6705 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6706 gfp_t gfp, swp_entry_t entry) 6707 { 6708 struct folio *folio = page_folio(page); 6709 struct mem_cgroup *memcg; 6710 unsigned short id; 6711 int ret; 6712 6713 if (mem_cgroup_disabled()) 6714 return 0; 6715 6716 id = lookup_swap_cgroup_id(entry); 6717 rcu_read_lock(); 6718 memcg = mem_cgroup_from_id(id); 6719 if (!memcg || !css_tryget_online(&memcg->css)) 6720 memcg = get_mem_cgroup_from_mm(mm); 6721 rcu_read_unlock(); 6722 6723 ret = charge_memcg(folio, memcg, gfp); 6724 6725 css_put(&memcg->css); 6726 return ret; 6727 } 6728 6729 /* 6730 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6731 * @entry: swap entry for which the page is charged 6732 * 6733 * Call this function after successfully adding the charged page to swapcache. 6734 * 6735 * Note: This function assumes the page for which swap slot is being uncharged 6736 * is order 0 page. 6737 */ 6738 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6739 { 6740 /* 6741 * Cgroup1's unified memory+swap counter has been charged with the 6742 * new swapcache page, finish the transfer by uncharging the swap 6743 * slot. The swap slot would also get uncharged when it dies, but 6744 * it can stick around indefinitely and we'd count the page twice 6745 * the entire time. 6746 * 6747 * Cgroup2 has separate resource counters for memory and swap, 6748 * so this is a non-issue here. Memory and swap charge lifetimes 6749 * correspond 1:1 to page and swap slot lifetimes: we charge the 6750 * page to memory here, and uncharge swap when the slot is freed. 6751 */ 6752 if (!mem_cgroup_disabled() && do_memsw_account()) { 6753 /* 6754 * The swap entry might not get freed for a long time, 6755 * let's not wait for it. The page already received a 6756 * memory+swap charge, drop the swap entry duplicate. 6757 */ 6758 mem_cgroup_uncharge_swap(entry, 1); 6759 } 6760 } 6761 6762 struct uncharge_gather { 6763 struct mem_cgroup *memcg; 6764 unsigned long nr_memory; 6765 unsigned long pgpgout; 6766 unsigned long nr_kmem; 6767 int nid; 6768 }; 6769 6770 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6771 { 6772 memset(ug, 0, sizeof(*ug)); 6773 } 6774 6775 static void uncharge_batch(const struct uncharge_gather *ug) 6776 { 6777 unsigned long flags; 6778 6779 if (ug->nr_memory) { 6780 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6781 if (do_memsw_account()) 6782 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6783 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6784 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6785 memcg_oom_recover(ug->memcg); 6786 } 6787 6788 local_irq_save(flags); 6789 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6790 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6791 memcg_check_events(ug->memcg, ug->nid); 6792 local_irq_restore(flags); 6793 6794 /* drop reference from uncharge_folio */ 6795 css_put(&ug->memcg->css); 6796 } 6797 6798 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6799 { 6800 long nr_pages; 6801 struct mem_cgroup *memcg; 6802 struct obj_cgroup *objcg; 6803 bool use_objcg = folio_memcg_kmem(folio); 6804 6805 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6806 6807 /* 6808 * Nobody should be changing or seriously looking at 6809 * folio memcg or objcg at this point, we have fully 6810 * exclusive access to the folio. 6811 */ 6812 if (use_objcg) { 6813 objcg = __folio_objcg(folio); 6814 /* 6815 * This get matches the put at the end of the function and 6816 * kmem pages do not hold memcg references anymore. 6817 */ 6818 memcg = get_mem_cgroup_from_objcg(objcg); 6819 } else { 6820 memcg = __folio_memcg(folio); 6821 } 6822 6823 if (!memcg) 6824 return; 6825 6826 if (ug->memcg != memcg) { 6827 if (ug->memcg) { 6828 uncharge_batch(ug); 6829 uncharge_gather_clear(ug); 6830 } 6831 ug->memcg = memcg; 6832 ug->nid = folio_nid(folio); 6833 6834 /* pairs with css_put in uncharge_batch */ 6835 css_get(&memcg->css); 6836 } 6837 6838 nr_pages = folio_nr_pages(folio); 6839 6840 if (use_objcg) { 6841 ug->nr_memory += nr_pages; 6842 ug->nr_kmem += nr_pages; 6843 6844 folio->memcg_data = 0; 6845 obj_cgroup_put(objcg); 6846 } else { 6847 /* LRU pages aren't accounted at the root level */ 6848 if (!mem_cgroup_is_root(memcg)) 6849 ug->nr_memory += nr_pages; 6850 ug->pgpgout++; 6851 6852 folio->memcg_data = 0; 6853 } 6854 6855 css_put(&memcg->css); 6856 } 6857 6858 void __mem_cgroup_uncharge(struct folio *folio) 6859 { 6860 struct uncharge_gather ug; 6861 6862 /* Don't touch folio->lru of any random page, pre-check: */ 6863 if (!folio_memcg(folio)) 6864 return; 6865 6866 uncharge_gather_clear(&ug); 6867 uncharge_folio(folio, &ug); 6868 uncharge_batch(&ug); 6869 } 6870 6871 /** 6872 * __mem_cgroup_uncharge_list - uncharge a list of page 6873 * @page_list: list of pages to uncharge 6874 * 6875 * Uncharge a list of pages previously charged with 6876 * __mem_cgroup_charge(). 6877 */ 6878 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6879 { 6880 struct uncharge_gather ug; 6881 struct folio *folio; 6882 6883 uncharge_gather_clear(&ug); 6884 list_for_each_entry(folio, page_list, lru) 6885 uncharge_folio(folio, &ug); 6886 if (ug.memcg) 6887 uncharge_batch(&ug); 6888 } 6889 6890 /** 6891 * mem_cgroup_migrate - Charge a folio's replacement. 6892 * @old: Currently circulating folio. 6893 * @new: Replacement folio. 6894 * 6895 * Charge @new as a replacement folio for @old. @old will 6896 * be uncharged upon free. 6897 * 6898 * Both folios must be locked, @new->mapping must be set up. 6899 */ 6900 void mem_cgroup_migrate(struct folio *old, struct folio *new) 6901 { 6902 struct mem_cgroup *memcg; 6903 long nr_pages = folio_nr_pages(new); 6904 unsigned long flags; 6905 6906 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 6907 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 6908 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 6909 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 6910 6911 if (mem_cgroup_disabled()) 6912 return; 6913 6914 /* Page cache replacement: new folio already charged? */ 6915 if (folio_memcg(new)) 6916 return; 6917 6918 memcg = folio_memcg(old); 6919 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 6920 if (!memcg) 6921 return; 6922 6923 /* Force-charge the new page. The old one will be freed soon */ 6924 if (!mem_cgroup_is_root(memcg)) { 6925 page_counter_charge(&memcg->memory, nr_pages); 6926 if (do_memsw_account()) 6927 page_counter_charge(&memcg->memsw, nr_pages); 6928 } 6929 6930 css_get(&memcg->css); 6931 commit_charge(new, memcg); 6932 6933 local_irq_save(flags); 6934 mem_cgroup_charge_statistics(memcg, nr_pages); 6935 memcg_check_events(memcg, folio_nid(new)); 6936 local_irq_restore(flags); 6937 } 6938 6939 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6940 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6941 6942 void mem_cgroup_sk_alloc(struct sock *sk) 6943 { 6944 struct mem_cgroup *memcg; 6945 6946 if (!mem_cgroup_sockets_enabled) 6947 return; 6948 6949 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6950 if (in_interrupt()) 6951 return; 6952 6953 rcu_read_lock(); 6954 memcg = mem_cgroup_from_task(current); 6955 if (memcg == root_mem_cgroup) 6956 goto out; 6957 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6958 goto out; 6959 if (css_tryget(&memcg->css)) 6960 sk->sk_memcg = memcg; 6961 out: 6962 rcu_read_unlock(); 6963 } 6964 6965 void mem_cgroup_sk_free(struct sock *sk) 6966 { 6967 if (sk->sk_memcg) 6968 css_put(&sk->sk_memcg->css); 6969 } 6970 6971 /** 6972 * mem_cgroup_charge_skmem - charge socket memory 6973 * @memcg: memcg to charge 6974 * @nr_pages: number of pages to charge 6975 * @gfp_mask: reclaim mode 6976 * 6977 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6978 * @memcg's configured limit, %false if it doesn't. 6979 */ 6980 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 6981 gfp_t gfp_mask) 6982 { 6983 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6984 struct page_counter *fail; 6985 6986 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6987 memcg->tcpmem_pressure = 0; 6988 return true; 6989 } 6990 memcg->tcpmem_pressure = 1; 6991 if (gfp_mask & __GFP_NOFAIL) { 6992 page_counter_charge(&memcg->tcpmem, nr_pages); 6993 return true; 6994 } 6995 return false; 6996 } 6997 6998 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 6999 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7000 return true; 7001 } 7002 7003 return false; 7004 } 7005 7006 /** 7007 * mem_cgroup_uncharge_skmem - uncharge socket memory 7008 * @memcg: memcg to uncharge 7009 * @nr_pages: number of pages to uncharge 7010 */ 7011 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7012 { 7013 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7014 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7015 return; 7016 } 7017 7018 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7019 7020 refill_stock(memcg, nr_pages); 7021 } 7022 7023 static int __init cgroup_memory(char *s) 7024 { 7025 char *token; 7026 7027 while ((token = strsep(&s, ",")) != NULL) { 7028 if (!*token) 7029 continue; 7030 if (!strcmp(token, "nosocket")) 7031 cgroup_memory_nosocket = true; 7032 if (!strcmp(token, "nokmem")) 7033 cgroup_memory_nokmem = true; 7034 } 7035 return 0; 7036 } 7037 __setup("cgroup.memory=", cgroup_memory); 7038 7039 /* 7040 * subsys_initcall() for memory controller. 7041 * 7042 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7043 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7044 * basically everything that doesn't depend on a specific mem_cgroup structure 7045 * should be initialized from here. 7046 */ 7047 static int __init mem_cgroup_init(void) 7048 { 7049 int cpu, node; 7050 7051 /* 7052 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7053 * used for per-memcg-per-cpu caching of per-node statistics. In order 7054 * to work fine, we should make sure that the overfill threshold can't 7055 * exceed S32_MAX / PAGE_SIZE. 7056 */ 7057 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7058 7059 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7060 memcg_hotplug_cpu_dead); 7061 7062 for_each_possible_cpu(cpu) 7063 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7064 drain_local_stock); 7065 7066 for_each_node(node) { 7067 struct mem_cgroup_tree_per_node *rtpn; 7068 7069 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7070 node_online(node) ? node : NUMA_NO_NODE); 7071 7072 rtpn->rb_root = RB_ROOT; 7073 rtpn->rb_rightmost = NULL; 7074 spin_lock_init(&rtpn->lock); 7075 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7076 } 7077 7078 return 0; 7079 } 7080 subsys_initcall(mem_cgroup_init); 7081 7082 #ifdef CONFIG_MEMCG_SWAP 7083 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7084 { 7085 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7086 /* 7087 * The root cgroup cannot be destroyed, so it's refcount must 7088 * always be >= 1. 7089 */ 7090 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7091 VM_BUG_ON(1); 7092 break; 7093 } 7094 memcg = parent_mem_cgroup(memcg); 7095 if (!memcg) 7096 memcg = root_mem_cgroup; 7097 } 7098 return memcg; 7099 } 7100 7101 /** 7102 * mem_cgroup_swapout - transfer a memsw charge to swap 7103 * @page: page whose memsw charge to transfer 7104 * @entry: swap entry to move the charge to 7105 * 7106 * Transfer the memsw charge of @page to @entry. 7107 */ 7108 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7109 { 7110 struct mem_cgroup *memcg, *swap_memcg; 7111 unsigned int nr_entries; 7112 unsigned short oldid; 7113 7114 VM_BUG_ON_PAGE(PageLRU(page), page); 7115 VM_BUG_ON_PAGE(page_count(page), page); 7116 7117 if (mem_cgroup_disabled()) 7118 return; 7119 7120 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7121 return; 7122 7123 memcg = page_memcg(page); 7124 7125 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7126 if (!memcg) 7127 return; 7128 7129 /* 7130 * In case the memcg owning these pages has been offlined and doesn't 7131 * have an ID allocated to it anymore, charge the closest online 7132 * ancestor for the swap instead and transfer the memory+swap charge. 7133 */ 7134 swap_memcg = mem_cgroup_id_get_online(memcg); 7135 nr_entries = thp_nr_pages(page); 7136 /* Get references for the tail pages, too */ 7137 if (nr_entries > 1) 7138 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7139 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7140 nr_entries); 7141 VM_BUG_ON_PAGE(oldid, page); 7142 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7143 7144 page->memcg_data = 0; 7145 7146 if (!mem_cgroup_is_root(memcg)) 7147 page_counter_uncharge(&memcg->memory, nr_entries); 7148 7149 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7150 if (!mem_cgroup_is_root(swap_memcg)) 7151 page_counter_charge(&swap_memcg->memsw, nr_entries); 7152 page_counter_uncharge(&memcg->memsw, nr_entries); 7153 } 7154 7155 /* 7156 * Interrupts should be disabled here because the caller holds the 7157 * i_pages lock which is taken with interrupts-off. It is 7158 * important here to have the interrupts disabled because it is the 7159 * only synchronisation we have for updating the per-CPU variables. 7160 */ 7161 VM_BUG_ON(!irqs_disabled()); 7162 mem_cgroup_charge_statistics(memcg, -nr_entries); 7163 memcg_check_events(memcg, page_to_nid(page)); 7164 7165 css_put(&memcg->css); 7166 } 7167 7168 /** 7169 * __mem_cgroup_try_charge_swap - try charging swap space for a page 7170 * @page: page being added to swap 7171 * @entry: swap entry to charge 7172 * 7173 * Try to charge @page's memcg for the swap space at @entry. 7174 * 7175 * Returns 0 on success, -ENOMEM on failure. 7176 */ 7177 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7178 { 7179 unsigned int nr_pages = thp_nr_pages(page); 7180 struct page_counter *counter; 7181 struct mem_cgroup *memcg; 7182 unsigned short oldid; 7183 7184 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7185 return 0; 7186 7187 memcg = page_memcg(page); 7188 7189 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7190 if (!memcg) 7191 return 0; 7192 7193 if (!entry.val) { 7194 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7195 return 0; 7196 } 7197 7198 memcg = mem_cgroup_id_get_online(memcg); 7199 7200 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7201 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7202 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7203 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7204 mem_cgroup_id_put(memcg); 7205 return -ENOMEM; 7206 } 7207 7208 /* Get references for the tail pages, too */ 7209 if (nr_pages > 1) 7210 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7211 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7212 VM_BUG_ON_PAGE(oldid, page); 7213 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7214 7215 return 0; 7216 } 7217 7218 /** 7219 * __mem_cgroup_uncharge_swap - uncharge swap space 7220 * @entry: swap entry to uncharge 7221 * @nr_pages: the amount of swap space to uncharge 7222 */ 7223 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7224 { 7225 struct mem_cgroup *memcg; 7226 unsigned short id; 7227 7228 id = swap_cgroup_record(entry, 0, nr_pages); 7229 rcu_read_lock(); 7230 memcg = mem_cgroup_from_id(id); 7231 if (memcg) { 7232 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7233 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7234 page_counter_uncharge(&memcg->swap, nr_pages); 7235 else 7236 page_counter_uncharge(&memcg->memsw, nr_pages); 7237 } 7238 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7239 mem_cgroup_id_put_many(memcg, nr_pages); 7240 } 7241 rcu_read_unlock(); 7242 } 7243 7244 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7245 { 7246 long nr_swap_pages = get_nr_swap_pages(); 7247 7248 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7249 return nr_swap_pages; 7250 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7251 nr_swap_pages = min_t(long, nr_swap_pages, 7252 READ_ONCE(memcg->swap.max) - 7253 page_counter_read(&memcg->swap)); 7254 return nr_swap_pages; 7255 } 7256 7257 bool mem_cgroup_swap_full(struct page *page) 7258 { 7259 struct mem_cgroup *memcg; 7260 7261 VM_BUG_ON_PAGE(!PageLocked(page), page); 7262 7263 if (vm_swap_full()) 7264 return true; 7265 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7266 return false; 7267 7268 memcg = page_memcg(page); 7269 if (!memcg) 7270 return false; 7271 7272 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7273 unsigned long usage = page_counter_read(&memcg->swap); 7274 7275 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7276 usage * 2 >= READ_ONCE(memcg->swap.max)) 7277 return true; 7278 } 7279 7280 return false; 7281 } 7282 7283 static int __init setup_swap_account(char *s) 7284 { 7285 if (!strcmp(s, "1")) 7286 cgroup_memory_noswap = false; 7287 else if (!strcmp(s, "0")) 7288 cgroup_memory_noswap = true; 7289 return 1; 7290 } 7291 __setup("swapaccount=", setup_swap_account); 7292 7293 static u64 swap_current_read(struct cgroup_subsys_state *css, 7294 struct cftype *cft) 7295 { 7296 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7297 7298 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7299 } 7300 7301 static int swap_high_show(struct seq_file *m, void *v) 7302 { 7303 return seq_puts_memcg_tunable(m, 7304 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7305 } 7306 7307 static ssize_t swap_high_write(struct kernfs_open_file *of, 7308 char *buf, size_t nbytes, loff_t off) 7309 { 7310 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7311 unsigned long high; 7312 int err; 7313 7314 buf = strstrip(buf); 7315 err = page_counter_memparse(buf, "max", &high); 7316 if (err) 7317 return err; 7318 7319 page_counter_set_high(&memcg->swap, high); 7320 7321 return nbytes; 7322 } 7323 7324 static int swap_max_show(struct seq_file *m, void *v) 7325 { 7326 return seq_puts_memcg_tunable(m, 7327 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7328 } 7329 7330 static ssize_t swap_max_write(struct kernfs_open_file *of, 7331 char *buf, size_t nbytes, loff_t off) 7332 { 7333 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7334 unsigned long max; 7335 int err; 7336 7337 buf = strstrip(buf); 7338 err = page_counter_memparse(buf, "max", &max); 7339 if (err) 7340 return err; 7341 7342 xchg(&memcg->swap.max, max); 7343 7344 return nbytes; 7345 } 7346 7347 static int swap_events_show(struct seq_file *m, void *v) 7348 { 7349 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7350 7351 seq_printf(m, "high %lu\n", 7352 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7353 seq_printf(m, "max %lu\n", 7354 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7355 seq_printf(m, "fail %lu\n", 7356 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7357 7358 return 0; 7359 } 7360 7361 static struct cftype swap_files[] = { 7362 { 7363 .name = "swap.current", 7364 .flags = CFTYPE_NOT_ON_ROOT, 7365 .read_u64 = swap_current_read, 7366 }, 7367 { 7368 .name = "swap.high", 7369 .flags = CFTYPE_NOT_ON_ROOT, 7370 .seq_show = swap_high_show, 7371 .write = swap_high_write, 7372 }, 7373 { 7374 .name = "swap.max", 7375 .flags = CFTYPE_NOT_ON_ROOT, 7376 .seq_show = swap_max_show, 7377 .write = swap_max_write, 7378 }, 7379 { 7380 .name = "swap.events", 7381 .flags = CFTYPE_NOT_ON_ROOT, 7382 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7383 .seq_show = swap_events_show, 7384 }, 7385 { } /* terminate */ 7386 }; 7387 7388 static struct cftype memsw_files[] = { 7389 { 7390 .name = "memsw.usage_in_bytes", 7391 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7392 .read_u64 = mem_cgroup_read_u64, 7393 }, 7394 { 7395 .name = "memsw.max_usage_in_bytes", 7396 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7397 .write = mem_cgroup_reset, 7398 .read_u64 = mem_cgroup_read_u64, 7399 }, 7400 { 7401 .name = "memsw.limit_in_bytes", 7402 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7403 .write = mem_cgroup_write, 7404 .read_u64 = mem_cgroup_read_u64, 7405 }, 7406 { 7407 .name = "memsw.failcnt", 7408 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7409 .write = mem_cgroup_reset, 7410 .read_u64 = mem_cgroup_read_u64, 7411 }, 7412 { }, /* terminate */ 7413 }; 7414 7415 /* 7416 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7417 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7418 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7419 * boot parameter. This may result in premature OOPS inside 7420 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7421 */ 7422 static int __init mem_cgroup_swap_init(void) 7423 { 7424 /* No memory control -> no swap control */ 7425 if (mem_cgroup_disabled()) 7426 cgroup_memory_noswap = true; 7427 7428 if (cgroup_memory_noswap) 7429 return 0; 7430 7431 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7432 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7433 7434 return 0; 7435 } 7436 core_initcall(mem_cgroup_swap_init); 7437 7438 #endif /* CONFIG_MEMCG_SWAP */ 7439