xref: /openbmc/linux/mm/memcontrol.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_node {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree {
141 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143 
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145 
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 	struct list_head list;
149 	struct eventfd_ctx *eventfd;
150 };
151 
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156 	/*
157 	 * memcg which the event belongs to.
158 	 */
159 	struct mem_cgroup *memcg;
160 	/*
161 	 * eventfd to signal userspace about the event.
162 	 */
163 	struct eventfd_ctx *eventfd;
164 	/*
165 	 * Each of these stored in a list by the cgroup.
166 	 */
167 	struct list_head list;
168 	/*
169 	 * register_event() callback will be used to add new userspace
170 	 * waiter for changes related to this event.  Use eventfd_signal()
171 	 * on eventfd to send notification to userspace.
172 	 */
173 	int (*register_event)(struct mem_cgroup *memcg,
174 			      struct eventfd_ctx *eventfd, const char *args);
175 	/*
176 	 * unregister_event() callback will be called when userspace closes
177 	 * the eventfd or on cgroup removing.  This callback must be set,
178 	 * if you want provide notification functionality.
179 	 */
180 	void (*unregister_event)(struct mem_cgroup *memcg,
181 				 struct eventfd_ctx *eventfd);
182 	/*
183 	 * All fields below needed to unregister event when
184 	 * userspace closes eventfd.
185 	 */
186 	poll_table pt;
187 	wait_queue_head_t *wqh;
188 	wait_queue_t wait;
189 	struct work_struct remove;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194 
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON	0x1U
200 #define MOVE_FILE	0x2U
201 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202 
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 	spinlock_t	  lock; /* for from, to */
206 	struct mm_struct  *mm;
207 	struct mem_cgroup *from;
208 	struct mem_cgroup *to;
209 	unsigned long flags;
210 	unsigned long precharge;
211 	unsigned long moved_charge;
212 	unsigned long moved_swap;
213 	struct task_struct *moving_task;	/* a task moving charges */
214 	wait_queue_head_t waitq;		/* a waitq for other context */
215 } mc = {
216 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219 
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226 
227 enum charge_type {
228 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 	MEM_CGROUP_CHARGE_TYPE_ANON,
230 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
231 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 	NR_CHARGE_TYPE,
233 };
234 
235 /* for encoding cft->private value on file */
236 enum res_type {
237 	_MEM,
238 	_MEMSWAP,
239 	_OOM_TYPE,
240 	_KMEM,
241 	_TCP,
242 };
243 
244 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)	((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL		(0)
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 	return (memcg == root_mem_cgroup);
266 }
267 
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 #endif /* !CONFIG_SLOB */
321 
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 	struct mem_cgroup *memcg;
336 
337 	memcg = page->mem_cgroup;
338 
339 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 		memcg = root_mem_cgroup;
341 
342 	return &memcg->css;
343 }
344 
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 	struct mem_cgroup *memcg;
361 	unsigned long ino = 0;
362 
363 	rcu_read_lock();
364 	memcg = READ_ONCE(page->mem_cgroup);
365 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 		memcg = parent_mem_cgroup(memcg);
367 	if (memcg)
368 		ino = cgroup_ino(memcg->css.cgroup);
369 	rcu_read_unlock();
370 	return ino;
371 }
372 
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 	int nid = page_to_nid(page);
377 
378 	return memcg->nodeinfo[nid];
379 }
380 
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 	return soft_limit_tree.rb_tree_per_node[nid];
385 }
386 
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 	int nid = page_to_nid(page);
391 
392 	return soft_limit_tree.rb_tree_per_node[nid];
393 }
394 
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 					 struct mem_cgroup_tree_per_node *mctz,
397 					 unsigned long new_usage_in_excess)
398 {
399 	struct rb_node **p = &mctz->rb_root.rb_node;
400 	struct rb_node *parent = NULL;
401 	struct mem_cgroup_per_node *mz_node;
402 
403 	if (mz->on_tree)
404 		return;
405 
406 	mz->usage_in_excess = new_usage_in_excess;
407 	if (!mz->usage_in_excess)
408 		return;
409 	while (*p) {
410 		parent = *p;
411 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 					tree_node);
413 		if (mz->usage_in_excess < mz_node->usage_in_excess)
414 			p = &(*p)->rb_left;
415 		/*
416 		 * We can't avoid mem cgroups that are over their soft
417 		 * limit by the same amount
418 		 */
419 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 			p = &(*p)->rb_right;
421 	}
422 	rb_link_node(&mz->tree_node, parent, p);
423 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 	mz->on_tree = true;
425 }
426 
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 					 struct mem_cgroup_tree_per_node *mctz)
429 {
430 	if (!mz->on_tree)
431 		return;
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	/*
466 	 * Necessary to update all ancestors when hierarchy is used.
467 	 * because their event counter is not touched.
468 	 */
469 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 		mz = mem_cgroup_page_nodeinfo(memcg, page);
471 		excess = soft_limit_excess(memcg);
472 		/*
473 		 * We have to update the tree if mz is on RB-tree or
474 		 * mem is over its softlimit.
475 		 */
476 		if (excess || mz->on_tree) {
477 			unsigned long flags;
478 
479 			spin_lock_irqsave(&mctz->lock, flags);
480 			/* if on-tree, remove it */
481 			if (mz->on_tree)
482 				__mem_cgroup_remove_exceeded(mz, mctz);
483 			/*
484 			 * Insert again. mz->usage_in_excess will be updated.
485 			 * If excess is 0, no tree ops.
486 			 */
487 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488 			spin_unlock_irqrestore(&mctz->lock, flags);
489 		}
490 	}
491 }
492 
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 	struct mem_cgroup_tree_per_node *mctz;
496 	struct mem_cgroup_per_node *mz;
497 	int nid;
498 
499 	for_each_node(nid) {
500 		mz = mem_cgroup_nodeinfo(memcg, nid);
501 		mctz = soft_limit_tree_node(nid);
502 		mem_cgroup_remove_exceeded(mz, mctz);
503 	}
504 }
505 
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 	struct rb_node *rightmost = NULL;
510 	struct mem_cgroup_per_node *mz;
511 
512 retry:
513 	mz = NULL;
514 	rightmost = rb_last(&mctz->rb_root);
515 	if (!rightmost)
516 		goto done;		/* Nothing to reclaim from */
517 
518 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 	/*
520 	 * Remove the node now but someone else can add it back,
521 	 * we will to add it back at the end of reclaim to its correct
522 	 * position in the tree.
523 	 */
524 	__mem_cgroup_remove_exceeded(mz, mctz);
525 	if (!soft_limit_excess(mz->memcg) ||
526 	    !css_tryget_online(&mz->memcg->css))
527 		goto retry;
528 done:
529 	return mz;
530 }
531 
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 	struct mem_cgroup_per_node *mz;
536 
537 	spin_lock_irq(&mctz->lock);
538 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 	spin_unlock_irq(&mctz->lock);
540 	return mz;
541 }
542 
543 /*
544  * Return page count for single (non recursive) @memcg.
545  *
546  * Implementation Note: reading percpu statistics for memcg.
547  *
548  * Both of vmstat[] and percpu_counter has threshold and do periodic
549  * synchronization to implement "quick" read. There are trade-off between
550  * reading cost and precision of value. Then, we may have a chance to implement
551  * a periodic synchronization of counter in memcg's counter.
552  *
553  * But this _read() function is used for user interface now. The user accounts
554  * memory usage by memory cgroup and he _always_ requires exact value because
555  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556  * have to visit all online cpus and make sum. So, for now, unnecessary
557  * synchronization is not implemented. (just implemented for cpu hotplug)
558  *
559  * If there are kernel internal actions which can make use of some not-exact
560  * value, and reading all cpu value can be performance bottleneck in some
561  * common workload, threshold and synchronization as vmstat[] should be
562  * implemented.
563  */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 	long val = 0;
568 	int cpu;
569 
570 	/* Per-cpu values can be negative, use a signed accumulator */
571 	for_each_possible_cpu(cpu)
572 		val += per_cpu(memcg->stat->count[idx], cpu);
573 	/*
574 	 * Summing races with updates, so val may be negative.  Avoid exposing
575 	 * transient negative values.
576 	 */
577 	if (val < 0)
578 		val = 0;
579 	return val;
580 }
581 
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 					    enum mem_cgroup_events_index idx)
584 {
585 	unsigned long val = 0;
586 	int cpu;
587 
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->events[idx], cpu);
590 	return val;
591 }
592 
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 					 struct page *page,
595 					 bool compound, int nr_pages)
596 {
597 	/*
598 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 	 * counted as CACHE even if it's on ANON LRU.
600 	 */
601 	if (PageAnon(page))
602 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 				nr_pages);
604 	else
605 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 				nr_pages);
607 
608 	if (compound) {
609 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 				nr_pages);
612 	}
613 
614 	/* pagein of a big page is an event. So, ignore page size */
615 	if (nr_pages > 0)
616 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 	else {
618 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 		nr_pages = -nr_pages; /* for event */
620 	}
621 
622 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624 
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 					   int nid, unsigned int lru_mask)
627 {
628 	unsigned long nr = 0;
629 	struct mem_cgroup_per_node *mz;
630 	enum lru_list lru;
631 
632 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633 
634 	for_each_lru(lru) {
635 		if (!(BIT(lru) & lru_mask))
636 			continue;
637 		mz = mem_cgroup_nodeinfo(memcg, nid);
638 		nr += mz->lru_size[lru];
639 	}
640 	return nr;
641 }
642 
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 			unsigned int lru_mask)
645 {
646 	unsigned long nr = 0;
647 	int nid;
648 
649 	for_each_node_state(nid, N_MEMORY)
650 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 	return nr;
652 }
653 
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 				       enum mem_cgroup_events_target target)
656 {
657 	unsigned long val, next;
658 
659 	val = __this_cpu_read(memcg->stat->nr_page_events);
660 	next = __this_cpu_read(memcg->stat->targets[target]);
661 	/* from time_after() in jiffies.h */
662 	if ((long)next - (long)val < 0) {
663 		switch (target) {
664 		case MEM_CGROUP_TARGET_THRESH:
665 			next = val + THRESHOLDS_EVENTS_TARGET;
666 			break;
667 		case MEM_CGROUP_TARGET_SOFTLIMIT:
668 			next = val + SOFTLIMIT_EVENTS_TARGET;
669 			break;
670 		case MEM_CGROUP_TARGET_NUMAINFO:
671 			next = val + NUMAINFO_EVENTS_TARGET;
672 			break;
673 		default:
674 			break;
675 		}
676 		__this_cpu_write(memcg->stat->targets[target], next);
677 		return true;
678 	}
679 	return false;
680 }
681 
682 /*
683  * Check events in order.
684  *
685  */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 	/* threshold event is triggered in finer grain than soft limit */
689 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 						MEM_CGROUP_TARGET_THRESH))) {
691 		bool do_softlimit;
692 		bool do_numainfo __maybe_unused;
693 
694 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 						MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 						MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 		mem_cgroup_threshold(memcg);
701 		if (unlikely(do_softlimit))
702 			mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 		if (unlikely(do_numainfo))
705 			atomic_inc(&memcg->numainfo_events);
706 #endif
707 	}
708 }
709 
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 	/*
713 	 * mm_update_next_owner() may clear mm->owner to NULL
714 	 * if it races with swapoff, page migration, etc.
715 	 * So this can be called with p == NULL.
716 	 */
717 	if (unlikely(!p))
718 		return NULL;
719 
720 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723 
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 	struct mem_cgroup *memcg = NULL;
727 
728 	rcu_read_lock();
729 	do {
730 		/*
731 		 * Page cache insertions can happen withou an
732 		 * actual mm context, e.g. during disk probing
733 		 * on boot, loopback IO, acct() writes etc.
734 		 */
735 		if (unlikely(!mm))
736 			memcg = root_mem_cgroup;
737 		else {
738 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 			if (unlikely(!memcg))
740 				memcg = root_mem_cgroup;
741 		}
742 	} while (!css_tryget_online(&memcg->css));
743 	rcu_read_unlock();
744 	return memcg;
745 }
746 
747 /**
748  * mem_cgroup_iter - iterate over memory cgroup hierarchy
749  * @root: hierarchy root
750  * @prev: previously returned memcg, NULL on first invocation
751  * @reclaim: cookie for shared reclaim walks, NULL for full walks
752  *
753  * Returns references to children of the hierarchy below @root, or
754  * @root itself, or %NULL after a full round-trip.
755  *
756  * Caller must pass the return value in @prev on subsequent
757  * invocations for reference counting, or use mem_cgroup_iter_break()
758  * to cancel a hierarchy walk before the round-trip is complete.
759  *
760  * Reclaimers can specify a zone and a priority level in @reclaim to
761  * divide up the memcgs in the hierarchy among all concurrent
762  * reclaimers operating on the same zone and priority.
763  */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 				   struct mem_cgroup *prev,
766 				   struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 	struct cgroup_subsys_state *css = NULL;
770 	struct mem_cgroup *memcg = NULL;
771 	struct mem_cgroup *pos = NULL;
772 
773 	if (mem_cgroup_disabled())
774 		return NULL;
775 
776 	if (!root)
777 		root = root_mem_cgroup;
778 
779 	if (prev && !reclaim)
780 		pos = prev;
781 
782 	if (!root->use_hierarchy && root != root_mem_cgroup) {
783 		if (prev)
784 			goto out;
785 		return root;
786 	}
787 
788 	rcu_read_lock();
789 
790 	if (reclaim) {
791 		struct mem_cgroup_per_node *mz;
792 
793 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 		iter = &mz->iter[reclaim->priority];
795 
796 		if (prev && reclaim->generation != iter->generation)
797 			goto out_unlock;
798 
799 		while (1) {
800 			pos = READ_ONCE(iter->position);
801 			if (!pos || css_tryget(&pos->css))
802 				break;
803 			/*
804 			 * css reference reached zero, so iter->position will
805 			 * be cleared by ->css_released. However, we should not
806 			 * rely on this happening soon, because ->css_released
807 			 * is called from a work queue, and by busy-waiting we
808 			 * might block it. So we clear iter->position right
809 			 * away.
810 			 */
811 			(void)cmpxchg(&iter->position, pos, NULL);
812 		}
813 	}
814 
815 	if (pos)
816 		css = &pos->css;
817 
818 	for (;;) {
819 		css = css_next_descendant_pre(css, &root->css);
820 		if (!css) {
821 			/*
822 			 * Reclaimers share the hierarchy walk, and a
823 			 * new one might jump in right at the end of
824 			 * the hierarchy - make sure they see at least
825 			 * one group and restart from the beginning.
826 			 */
827 			if (!prev)
828 				continue;
829 			break;
830 		}
831 
832 		/*
833 		 * Verify the css and acquire a reference.  The root
834 		 * is provided by the caller, so we know it's alive
835 		 * and kicking, and don't take an extra reference.
836 		 */
837 		memcg = mem_cgroup_from_css(css);
838 
839 		if (css == &root->css)
840 			break;
841 
842 		if (css_tryget(css))
843 			break;
844 
845 		memcg = NULL;
846 	}
847 
848 	if (reclaim) {
849 		/*
850 		 * The position could have already been updated by a competing
851 		 * thread, so check that the value hasn't changed since we read
852 		 * it to avoid reclaiming from the same cgroup twice.
853 		 */
854 		(void)cmpxchg(&iter->position, pos, memcg);
855 
856 		if (pos)
857 			css_put(&pos->css);
858 
859 		if (!memcg)
860 			iter->generation++;
861 		else if (!prev)
862 			reclaim->generation = iter->generation;
863 	}
864 
865 out_unlock:
866 	rcu_read_unlock();
867 out:
868 	if (prev && prev != root)
869 		css_put(&prev->css);
870 
871 	return memcg;
872 }
873 
874 /**
875  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876  * @root: hierarchy root
877  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878  */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 			   struct mem_cgroup *prev)
881 {
882 	if (!root)
883 		root = root_mem_cgroup;
884 	if (prev && prev != root)
885 		css_put(&prev->css);
886 }
887 
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 	struct mem_cgroup *memcg = dead_memcg;
891 	struct mem_cgroup_reclaim_iter *iter;
892 	struct mem_cgroup_per_node *mz;
893 	int nid;
894 	int i;
895 
896 	while ((memcg = parent_mem_cgroup(memcg))) {
897 		for_each_node(nid) {
898 			mz = mem_cgroup_nodeinfo(memcg, nid);
899 			for (i = 0; i <= DEF_PRIORITY; i++) {
900 				iter = &mz->iter[i];
901 				cmpxchg(&iter->position,
902 					dead_memcg, NULL);
903 			}
904 		}
905 	}
906 }
907 
908 /*
909  * Iteration constructs for visiting all cgroups (under a tree).  If
910  * loops are exited prematurely (break), mem_cgroup_iter_break() must
911  * be used for reference counting.
912  */
913 #define for_each_mem_cgroup_tree(iter, root)		\
914 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915 	     iter != NULL;				\
916 	     iter = mem_cgroup_iter(root, iter, NULL))
917 
918 #define for_each_mem_cgroup(iter)			\
919 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920 	     iter != NULL;				\
921 	     iter = mem_cgroup_iter(NULL, iter, NULL))
922 
923 /**
924  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
925  * @memcg: hierarchy root
926  * @fn: function to call for each task
927  * @arg: argument passed to @fn
928  *
929  * This function iterates over tasks attached to @memcg or to any of its
930  * descendants and calls @fn for each task. If @fn returns a non-zero
931  * value, the function breaks the iteration loop and returns the value.
932  * Otherwise, it will iterate over all tasks and return 0.
933  *
934  * This function must not be called for the root memory cgroup.
935  */
936 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
937 			  int (*fn)(struct task_struct *, void *), void *arg)
938 {
939 	struct mem_cgroup *iter;
940 	int ret = 0;
941 
942 	BUG_ON(memcg == root_mem_cgroup);
943 
944 	for_each_mem_cgroup_tree(iter, memcg) {
945 		struct css_task_iter it;
946 		struct task_struct *task;
947 
948 		css_task_iter_start(&iter->css, &it);
949 		while (!ret && (task = css_task_iter_next(&it)))
950 			ret = fn(task, arg);
951 		css_task_iter_end(&it);
952 		if (ret) {
953 			mem_cgroup_iter_break(memcg, iter);
954 			break;
955 		}
956 	}
957 	return ret;
958 }
959 
960 /**
961  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
962  * @page: the page
963  * @zone: zone of the page
964  *
965  * This function is only safe when following the LRU page isolation
966  * and putback protocol: the LRU lock must be held, and the page must
967  * either be PageLRU() or the caller must have isolated/allocated it.
968  */
969 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
970 {
971 	struct mem_cgroup_per_node *mz;
972 	struct mem_cgroup *memcg;
973 	struct lruvec *lruvec;
974 
975 	if (mem_cgroup_disabled()) {
976 		lruvec = &pgdat->lruvec;
977 		goto out;
978 	}
979 
980 	memcg = page->mem_cgroup;
981 	/*
982 	 * Swapcache readahead pages are added to the LRU - and
983 	 * possibly migrated - before they are charged.
984 	 */
985 	if (!memcg)
986 		memcg = root_mem_cgroup;
987 
988 	mz = mem_cgroup_page_nodeinfo(memcg, page);
989 	lruvec = &mz->lruvec;
990 out:
991 	/*
992 	 * Since a node can be onlined after the mem_cgroup was created,
993 	 * we have to be prepared to initialize lruvec->zone here;
994 	 * and if offlined then reonlined, we need to reinitialize it.
995 	 */
996 	if (unlikely(lruvec->pgdat != pgdat))
997 		lruvec->pgdat = pgdat;
998 	return lruvec;
999 }
1000 
1001 /**
1002  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1003  * @lruvec: mem_cgroup per zone lru vector
1004  * @lru: index of lru list the page is sitting on
1005  * @nr_pages: positive when adding or negative when removing
1006  *
1007  * This function must be called under lru_lock, just before a page is added
1008  * to or just after a page is removed from an lru list (that ordering being
1009  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010  */
1011 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012 				int nr_pages)
1013 {
1014 	struct mem_cgroup_per_node *mz;
1015 	unsigned long *lru_size;
1016 	long size;
1017 	bool empty;
1018 
1019 	if (mem_cgroup_disabled())
1020 		return;
1021 
1022 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1023 	lru_size = mz->lru_size + lru;
1024 	empty = list_empty(lruvec->lists + lru);
1025 
1026 	if (nr_pages < 0)
1027 		*lru_size += nr_pages;
1028 
1029 	size = *lru_size;
1030 	if (WARN_ONCE(size < 0 || empty != !size,
1031 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
1032 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1033 		VM_BUG_ON(1);
1034 		*lru_size = 0;
1035 	}
1036 
1037 	if (nr_pages > 0)
1038 		*lru_size += nr_pages;
1039 }
1040 
1041 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1042 {
1043 	struct mem_cgroup *task_memcg;
1044 	struct task_struct *p;
1045 	bool ret;
1046 
1047 	p = find_lock_task_mm(task);
1048 	if (p) {
1049 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1050 		task_unlock(p);
1051 	} else {
1052 		/*
1053 		 * All threads may have already detached their mm's, but the oom
1054 		 * killer still needs to detect if they have already been oom
1055 		 * killed to prevent needlessly killing additional tasks.
1056 		 */
1057 		rcu_read_lock();
1058 		task_memcg = mem_cgroup_from_task(task);
1059 		css_get(&task_memcg->css);
1060 		rcu_read_unlock();
1061 	}
1062 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063 	css_put(&task_memcg->css);
1064 	return ret;
1065 }
1066 
1067 /**
1068  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1069  * @memcg: the memory cgroup
1070  *
1071  * Returns the maximum amount of memory @mem can be charged with, in
1072  * pages.
1073  */
1074 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1075 {
1076 	unsigned long margin = 0;
1077 	unsigned long count;
1078 	unsigned long limit;
1079 
1080 	count = page_counter_read(&memcg->memory);
1081 	limit = READ_ONCE(memcg->memory.limit);
1082 	if (count < limit)
1083 		margin = limit - count;
1084 
1085 	if (do_memsw_account()) {
1086 		count = page_counter_read(&memcg->memsw);
1087 		limit = READ_ONCE(memcg->memsw.limit);
1088 		if (count <= limit)
1089 			margin = min(margin, limit - count);
1090 		else
1091 			margin = 0;
1092 	}
1093 
1094 	return margin;
1095 }
1096 
1097 /*
1098  * A routine for checking "mem" is under move_account() or not.
1099  *
1100  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101  * moving cgroups. This is for waiting at high-memory pressure
1102  * caused by "move".
1103  */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106 	struct mem_cgroup *from;
1107 	struct mem_cgroup *to;
1108 	bool ret = false;
1109 	/*
1110 	 * Unlike task_move routines, we access mc.to, mc.from not under
1111 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 	 */
1113 	spin_lock(&mc.lock);
1114 	from = mc.from;
1115 	to = mc.to;
1116 	if (!from)
1117 		goto unlock;
1118 
1119 	ret = mem_cgroup_is_descendant(from, memcg) ||
1120 		mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122 	spin_unlock(&mc.lock);
1123 	return ret;
1124 }
1125 
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128 	if (mc.moving_task && current != mc.moving_task) {
1129 		if (mem_cgroup_under_move(memcg)) {
1130 			DEFINE_WAIT(wait);
1131 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 			/* moving charge context might have finished. */
1133 			if (mc.moving_task)
1134 				schedule();
1135 			finish_wait(&mc.waitq, &wait);
1136 			return true;
1137 		}
1138 	}
1139 	return false;
1140 }
1141 
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145  * @memcg: The memory cgroup that went over limit
1146  * @p: Task that is going to be killed
1147  *
1148  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149  * enabled
1150  */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153 	struct mem_cgroup *iter;
1154 	unsigned int i;
1155 
1156 	rcu_read_lock();
1157 
1158 	if (p) {
1159 		pr_info("Task in ");
1160 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 		pr_cont(" killed as a result of limit of ");
1162 	} else {
1163 		pr_info("Memory limit reached of cgroup ");
1164 	}
1165 
1166 	pr_cont_cgroup_path(memcg->css.cgroup);
1167 	pr_cont("\n");
1168 
1169 	rcu_read_unlock();
1170 
1171 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 		K((u64)page_counter_read(&memcg->memory)),
1173 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 		K((u64)page_counter_read(&memcg->memsw)),
1176 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 		K((u64)page_counter_read(&memcg->kmem)),
1179 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180 
1181 	for_each_mem_cgroup_tree(iter, memcg) {
1182 		pr_info("Memory cgroup stats for ");
1183 		pr_cont_cgroup_path(iter->css.cgroup);
1184 		pr_cont(":");
1185 
1186 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188 				continue;
1189 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190 				K(mem_cgroup_read_stat(iter, i)));
1191 		}
1192 
1193 		for (i = 0; i < NR_LRU_LISTS; i++)
1194 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196 
1197 		pr_cont("\n");
1198 	}
1199 }
1200 
1201 /*
1202  * This function returns the number of memcg under hierarchy tree. Returns
1203  * 1(self count) if no children.
1204  */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207 	int num = 0;
1208 	struct mem_cgroup *iter;
1209 
1210 	for_each_mem_cgroup_tree(iter, memcg)
1211 		num++;
1212 	return num;
1213 }
1214 
1215 /*
1216  * Return the memory (and swap, if configured) limit for a memcg.
1217  */
1218 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220 	unsigned long limit;
1221 
1222 	limit = memcg->memory.limit;
1223 	if (mem_cgroup_swappiness(memcg)) {
1224 		unsigned long memsw_limit;
1225 		unsigned long swap_limit;
1226 
1227 		memsw_limit = memcg->memsw.limit;
1228 		swap_limit = memcg->swap.limit;
1229 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 		limit = min(limit + swap_limit, memsw_limit);
1231 	}
1232 	return limit;
1233 }
1234 
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236 				     int order)
1237 {
1238 	struct oom_control oc = {
1239 		.zonelist = NULL,
1240 		.nodemask = NULL,
1241 		.memcg = memcg,
1242 		.gfp_mask = gfp_mask,
1243 		.order = order,
1244 	};
1245 	bool ret;
1246 
1247 	mutex_lock(&oom_lock);
1248 	ret = out_of_memory(&oc);
1249 	mutex_unlock(&oom_lock);
1250 	return ret;
1251 }
1252 
1253 #if MAX_NUMNODES > 1
1254 
1255 /**
1256  * test_mem_cgroup_node_reclaimable
1257  * @memcg: the target memcg
1258  * @nid: the node ID to be checked.
1259  * @noswap : specify true here if the user wants flle only information.
1260  *
1261  * This function returns whether the specified memcg contains any
1262  * reclaimable pages on a node. Returns true if there are any reclaimable
1263  * pages in the node.
1264  */
1265 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1266 		int nid, bool noswap)
1267 {
1268 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1269 		return true;
1270 	if (noswap || !total_swap_pages)
1271 		return false;
1272 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1273 		return true;
1274 	return false;
1275 
1276 }
1277 
1278 /*
1279  * Always updating the nodemask is not very good - even if we have an empty
1280  * list or the wrong list here, we can start from some node and traverse all
1281  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282  *
1283  */
1284 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1285 {
1286 	int nid;
1287 	/*
1288 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289 	 * pagein/pageout changes since the last update.
1290 	 */
1291 	if (!atomic_read(&memcg->numainfo_events))
1292 		return;
1293 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1294 		return;
1295 
1296 	/* make a nodemask where this memcg uses memory from */
1297 	memcg->scan_nodes = node_states[N_MEMORY];
1298 
1299 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1300 
1301 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302 			node_clear(nid, memcg->scan_nodes);
1303 	}
1304 
1305 	atomic_set(&memcg->numainfo_events, 0);
1306 	atomic_set(&memcg->numainfo_updating, 0);
1307 }
1308 
1309 /*
1310  * Selecting a node where we start reclaim from. Because what we need is just
1311  * reducing usage counter, start from anywhere is O,K. Considering
1312  * memory reclaim from current node, there are pros. and cons.
1313  *
1314  * Freeing memory from current node means freeing memory from a node which
1315  * we'll use or we've used. So, it may make LRU bad. And if several threads
1316  * hit limits, it will see a contention on a node. But freeing from remote
1317  * node means more costs for memory reclaim because of memory latency.
1318  *
1319  * Now, we use round-robin. Better algorithm is welcomed.
1320  */
1321 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1322 {
1323 	int node;
1324 
1325 	mem_cgroup_may_update_nodemask(memcg);
1326 	node = memcg->last_scanned_node;
1327 
1328 	node = next_node_in(node, memcg->scan_nodes);
1329 	/*
1330 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331 	 * last time it really checked all the LRUs due to rate limiting.
1332 	 * Fallback to the current node in that case for simplicity.
1333 	 */
1334 	if (unlikely(node == MAX_NUMNODES))
1335 		node = numa_node_id();
1336 
1337 	memcg->last_scanned_node = node;
1338 	return node;
1339 }
1340 #else
1341 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1342 {
1343 	return 0;
1344 }
1345 #endif
1346 
1347 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1348 				   pg_data_t *pgdat,
1349 				   gfp_t gfp_mask,
1350 				   unsigned long *total_scanned)
1351 {
1352 	struct mem_cgroup *victim = NULL;
1353 	int total = 0;
1354 	int loop = 0;
1355 	unsigned long excess;
1356 	unsigned long nr_scanned;
1357 	struct mem_cgroup_reclaim_cookie reclaim = {
1358 		.pgdat = pgdat,
1359 		.priority = 0,
1360 	};
1361 
1362 	excess = soft_limit_excess(root_memcg);
1363 
1364 	while (1) {
1365 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366 		if (!victim) {
1367 			loop++;
1368 			if (loop >= 2) {
1369 				/*
1370 				 * If we have not been able to reclaim
1371 				 * anything, it might because there are
1372 				 * no reclaimable pages under this hierarchy
1373 				 */
1374 				if (!total)
1375 					break;
1376 				/*
1377 				 * We want to do more targeted reclaim.
1378 				 * excess >> 2 is not to excessive so as to
1379 				 * reclaim too much, nor too less that we keep
1380 				 * coming back to reclaim from this cgroup
1381 				 */
1382 				if (total >= (excess >> 2) ||
1383 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384 					break;
1385 			}
1386 			continue;
1387 		}
1388 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1389 					pgdat, &nr_scanned);
1390 		*total_scanned += nr_scanned;
1391 		if (!soft_limit_excess(root_memcg))
1392 			break;
1393 	}
1394 	mem_cgroup_iter_break(root_memcg, victim);
1395 	return total;
1396 }
1397 
1398 #ifdef CONFIG_LOCKDEP
1399 static struct lockdep_map memcg_oom_lock_dep_map = {
1400 	.name = "memcg_oom_lock",
1401 };
1402 #endif
1403 
1404 static DEFINE_SPINLOCK(memcg_oom_lock);
1405 
1406 /*
1407  * Check OOM-Killer is already running under our hierarchy.
1408  * If someone is running, return false.
1409  */
1410 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1411 {
1412 	struct mem_cgroup *iter, *failed = NULL;
1413 
1414 	spin_lock(&memcg_oom_lock);
1415 
1416 	for_each_mem_cgroup_tree(iter, memcg) {
1417 		if (iter->oom_lock) {
1418 			/*
1419 			 * this subtree of our hierarchy is already locked
1420 			 * so we cannot give a lock.
1421 			 */
1422 			failed = iter;
1423 			mem_cgroup_iter_break(memcg, iter);
1424 			break;
1425 		} else
1426 			iter->oom_lock = true;
1427 	}
1428 
1429 	if (failed) {
1430 		/*
1431 		 * OK, we failed to lock the whole subtree so we have
1432 		 * to clean up what we set up to the failing subtree
1433 		 */
1434 		for_each_mem_cgroup_tree(iter, memcg) {
1435 			if (iter == failed) {
1436 				mem_cgroup_iter_break(memcg, iter);
1437 				break;
1438 			}
1439 			iter->oom_lock = false;
1440 		}
1441 	} else
1442 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1443 
1444 	spin_unlock(&memcg_oom_lock);
1445 
1446 	return !failed;
1447 }
1448 
1449 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1450 {
1451 	struct mem_cgroup *iter;
1452 
1453 	spin_lock(&memcg_oom_lock);
1454 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1455 	for_each_mem_cgroup_tree(iter, memcg)
1456 		iter->oom_lock = false;
1457 	spin_unlock(&memcg_oom_lock);
1458 }
1459 
1460 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1461 {
1462 	struct mem_cgroup *iter;
1463 
1464 	spin_lock(&memcg_oom_lock);
1465 	for_each_mem_cgroup_tree(iter, memcg)
1466 		iter->under_oom++;
1467 	spin_unlock(&memcg_oom_lock);
1468 }
1469 
1470 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1471 {
1472 	struct mem_cgroup *iter;
1473 
1474 	/*
1475 	 * When a new child is created while the hierarchy is under oom,
1476 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1477 	 */
1478 	spin_lock(&memcg_oom_lock);
1479 	for_each_mem_cgroup_tree(iter, memcg)
1480 		if (iter->under_oom > 0)
1481 			iter->under_oom--;
1482 	spin_unlock(&memcg_oom_lock);
1483 }
1484 
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486 
1487 struct oom_wait_info {
1488 	struct mem_cgroup *memcg;
1489 	wait_queue_t	wait;
1490 };
1491 
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493 	unsigned mode, int sync, void *arg)
1494 {
1495 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496 	struct mem_cgroup *oom_wait_memcg;
1497 	struct oom_wait_info *oom_wait_info;
1498 
1499 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500 	oom_wait_memcg = oom_wait_info->memcg;
1501 
1502 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1504 		return 0;
1505 	return autoremove_wake_function(wait, mode, sync, arg);
1506 }
1507 
1508 static void memcg_oom_recover(struct mem_cgroup *memcg)
1509 {
1510 	/*
1511 	 * For the following lockless ->under_oom test, the only required
1512 	 * guarantee is that it must see the state asserted by an OOM when
1513 	 * this function is called as a result of userland actions
1514 	 * triggered by the notification of the OOM.  This is trivially
1515 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1516 	 * triggering notification.
1517 	 */
1518 	if (memcg && memcg->under_oom)
1519 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1520 }
1521 
1522 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1523 {
1524 	if (!current->memcg_may_oom)
1525 		return;
1526 	/*
1527 	 * We are in the middle of the charge context here, so we
1528 	 * don't want to block when potentially sitting on a callstack
1529 	 * that holds all kinds of filesystem and mm locks.
1530 	 *
1531 	 * Also, the caller may handle a failed allocation gracefully
1532 	 * (like optional page cache readahead) and so an OOM killer
1533 	 * invocation might not even be necessary.
1534 	 *
1535 	 * That's why we don't do anything here except remember the
1536 	 * OOM context and then deal with it at the end of the page
1537 	 * fault when the stack is unwound, the locks are released,
1538 	 * and when we know whether the fault was overall successful.
1539 	 */
1540 	css_get(&memcg->css);
1541 	current->memcg_in_oom = memcg;
1542 	current->memcg_oom_gfp_mask = mask;
1543 	current->memcg_oom_order = order;
1544 }
1545 
1546 /**
1547  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1548  * @handle: actually kill/wait or just clean up the OOM state
1549  *
1550  * This has to be called at the end of a page fault if the memcg OOM
1551  * handler was enabled.
1552  *
1553  * Memcg supports userspace OOM handling where failed allocations must
1554  * sleep on a waitqueue until the userspace task resolves the
1555  * situation.  Sleeping directly in the charge context with all kinds
1556  * of locks held is not a good idea, instead we remember an OOM state
1557  * in the task and mem_cgroup_oom_synchronize() has to be called at
1558  * the end of the page fault to complete the OOM handling.
1559  *
1560  * Returns %true if an ongoing memcg OOM situation was detected and
1561  * completed, %false otherwise.
1562  */
1563 bool mem_cgroup_oom_synchronize(bool handle)
1564 {
1565 	struct mem_cgroup *memcg = current->memcg_in_oom;
1566 	struct oom_wait_info owait;
1567 	bool locked;
1568 
1569 	/* OOM is global, do not handle */
1570 	if (!memcg)
1571 		return false;
1572 
1573 	if (!handle)
1574 		goto cleanup;
1575 
1576 	owait.memcg = memcg;
1577 	owait.wait.flags = 0;
1578 	owait.wait.func = memcg_oom_wake_function;
1579 	owait.wait.private = current;
1580 	INIT_LIST_HEAD(&owait.wait.task_list);
1581 
1582 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1583 	mem_cgroup_mark_under_oom(memcg);
1584 
1585 	locked = mem_cgroup_oom_trylock(memcg);
1586 
1587 	if (locked)
1588 		mem_cgroup_oom_notify(memcg);
1589 
1590 	if (locked && !memcg->oom_kill_disable) {
1591 		mem_cgroup_unmark_under_oom(memcg);
1592 		finish_wait(&memcg_oom_waitq, &owait.wait);
1593 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594 					 current->memcg_oom_order);
1595 	} else {
1596 		schedule();
1597 		mem_cgroup_unmark_under_oom(memcg);
1598 		finish_wait(&memcg_oom_waitq, &owait.wait);
1599 	}
1600 
1601 	if (locked) {
1602 		mem_cgroup_oom_unlock(memcg);
1603 		/*
1604 		 * There is no guarantee that an OOM-lock contender
1605 		 * sees the wakeups triggered by the OOM kill
1606 		 * uncharges.  Wake any sleepers explicitely.
1607 		 */
1608 		memcg_oom_recover(memcg);
1609 	}
1610 cleanup:
1611 	current->memcg_in_oom = NULL;
1612 	css_put(&memcg->css);
1613 	return true;
1614 }
1615 
1616 /**
1617  * lock_page_memcg - lock a page->mem_cgroup binding
1618  * @page: the page
1619  *
1620  * This function protects unlocked LRU pages from being moved to
1621  * another cgroup and stabilizes their page->mem_cgroup binding.
1622  */
1623 void lock_page_memcg(struct page *page)
1624 {
1625 	struct mem_cgroup *memcg;
1626 	unsigned long flags;
1627 
1628 	/*
1629 	 * The RCU lock is held throughout the transaction.  The fast
1630 	 * path can get away without acquiring the memcg->move_lock
1631 	 * because page moving starts with an RCU grace period.
1632 	 */
1633 	rcu_read_lock();
1634 
1635 	if (mem_cgroup_disabled())
1636 		return;
1637 again:
1638 	memcg = page->mem_cgroup;
1639 	if (unlikely(!memcg))
1640 		return;
1641 
1642 	if (atomic_read(&memcg->moving_account) <= 0)
1643 		return;
1644 
1645 	spin_lock_irqsave(&memcg->move_lock, flags);
1646 	if (memcg != page->mem_cgroup) {
1647 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1648 		goto again;
1649 	}
1650 
1651 	/*
1652 	 * When charge migration first begins, we can have locked and
1653 	 * unlocked page stat updates happening concurrently.  Track
1654 	 * the task who has the lock for unlock_page_memcg().
1655 	 */
1656 	memcg->move_lock_task = current;
1657 	memcg->move_lock_flags = flags;
1658 
1659 	return;
1660 }
1661 EXPORT_SYMBOL(lock_page_memcg);
1662 
1663 /**
1664  * unlock_page_memcg - unlock a page->mem_cgroup binding
1665  * @page: the page
1666  */
1667 void unlock_page_memcg(struct page *page)
1668 {
1669 	struct mem_cgroup *memcg = page->mem_cgroup;
1670 
1671 	if (memcg && memcg->move_lock_task == current) {
1672 		unsigned long flags = memcg->move_lock_flags;
1673 
1674 		memcg->move_lock_task = NULL;
1675 		memcg->move_lock_flags = 0;
1676 
1677 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 	}
1679 
1680 	rcu_read_unlock();
1681 }
1682 EXPORT_SYMBOL(unlock_page_memcg);
1683 
1684 /*
1685  * size of first charge trial. "32" comes from vmscan.c's magic value.
1686  * TODO: maybe necessary to use big numbers in big irons.
1687  */
1688 #define CHARGE_BATCH	32U
1689 struct memcg_stock_pcp {
1690 	struct mem_cgroup *cached; /* this never be root cgroup */
1691 	unsigned int nr_pages;
1692 	struct work_struct work;
1693 	unsigned long flags;
1694 #define FLUSHING_CACHED_CHARGE	0
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static DEFINE_MUTEX(percpu_charge_mutex);
1698 
1699 /**
1700  * consume_stock: Try to consume stocked charge on this cpu.
1701  * @memcg: memcg to consume from.
1702  * @nr_pages: how many pages to charge.
1703  *
1704  * The charges will only happen if @memcg matches the current cpu's memcg
1705  * stock, and at least @nr_pages are available in that stock.  Failure to
1706  * service an allocation will refill the stock.
1707  *
1708  * returns true if successful, false otherwise.
1709  */
1710 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1711 {
1712 	struct memcg_stock_pcp *stock;
1713 	unsigned long flags;
1714 	bool ret = false;
1715 
1716 	if (nr_pages > CHARGE_BATCH)
1717 		return ret;
1718 
1719 	local_irq_save(flags);
1720 
1721 	stock = this_cpu_ptr(&memcg_stock);
1722 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1723 		stock->nr_pages -= nr_pages;
1724 		ret = true;
1725 	}
1726 
1727 	local_irq_restore(flags);
1728 
1729 	return ret;
1730 }
1731 
1732 /*
1733  * Returns stocks cached in percpu and reset cached information.
1734  */
1735 static void drain_stock(struct memcg_stock_pcp *stock)
1736 {
1737 	struct mem_cgroup *old = stock->cached;
1738 
1739 	if (stock->nr_pages) {
1740 		page_counter_uncharge(&old->memory, stock->nr_pages);
1741 		if (do_memsw_account())
1742 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1743 		css_put_many(&old->css, stock->nr_pages);
1744 		stock->nr_pages = 0;
1745 	}
1746 	stock->cached = NULL;
1747 }
1748 
1749 static void drain_local_stock(struct work_struct *dummy)
1750 {
1751 	struct memcg_stock_pcp *stock;
1752 	unsigned long flags;
1753 
1754 	local_irq_save(flags);
1755 
1756 	stock = this_cpu_ptr(&memcg_stock);
1757 	drain_stock(stock);
1758 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1759 
1760 	local_irq_restore(flags);
1761 }
1762 
1763 /*
1764  * Cache charges(val) to local per_cpu area.
1765  * This will be consumed by consume_stock() function, later.
1766  */
1767 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1768 {
1769 	struct memcg_stock_pcp *stock;
1770 	unsigned long flags;
1771 
1772 	local_irq_save(flags);
1773 
1774 	stock = this_cpu_ptr(&memcg_stock);
1775 	if (stock->cached != memcg) { /* reset if necessary */
1776 		drain_stock(stock);
1777 		stock->cached = memcg;
1778 	}
1779 	stock->nr_pages += nr_pages;
1780 
1781 	local_irq_restore(flags);
1782 }
1783 
1784 /*
1785  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1786  * of the hierarchy under it.
1787  */
1788 static void drain_all_stock(struct mem_cgroup *root_memcg)
1789 {
1790 	int cpu, curcpu;
1791 
1792 	/* If someone's already draining, avoid adding running more workers. */
1793 	if (!mutex_trylock(&percpu_charge_mutex))
1794 		return;
1795 	/* Notify other cpus that system-wide "drain" is running */
1796 	get_online_cpus();
1797 	curcpu = get_cpu();
1798 	for_each_online_cpu(cpu) {
1799 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1800 		struct mem_cgroup *memcg;
1801 
1802 		memcg = stock->cached;
1803 		if (!memcg || !stock->nr_pages)
1804 			continue;
1805 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1806 			continue;
1807 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1808 			if (cpu == curcpu)
1809 				drain_local_stock(&stock->work);
1810 			else
1811 				schedule_work_on(cpu, &stock->work);
1812 		}
1813 	}
1814 	put_cpu();
1815 	put_online_cpus();
1816 	mutex_unlock(&percpu_charge_mutex);
1817 }
1818 
1819 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1820 					unsigned long action,
1821 					void *hcpu)
1822 {
1823 	int cpu = (unsigned long)hcpu;
1824 	struct memcg_stock_pcp *stock;
1825 
1826 	if (action == CPU_ONLINE)
1827 		return NOTIFY_OK;
1828 
1829 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1830 		return NOTIFY_OK;
1831 
1832 	stock = &per_cpu(memcg_stock, cpu);
1833 	drain_stock(stock);
1834 	return NOTIFY_OK;
1835 }
1836 
1837 static void reclaim_high(struct mem_cgroup *memcg,
1838 			 unsigned int nr_pages,
1839 			 gfp_t gfp_mask)
1840 {
1841 	do {
1842 		if (page_counter_read(&memcg->memory) <= memcg->high)
1843 			continue;
1844 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1845 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1846 	} while ((memcg = parent_mem_cgroup(memcg)));
1847 }
1848 
1849 static void high_work_func(struct work_struct *work)
1850 {
1851 	struct mem_cgroup *memcg;
1852 
1853 	memcg = container_of(work, struct mem_cgroup, high_work);
1854 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1855 }
1856 
1857 /*
1858  * Scheduled by try_charge() to be executed from the userland return path
1859  * and reclaims memory over the high limit.
1860  */
1861 void mem_cgroup_handle_over_high(void)
1862 {
1863 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1864 	struct mem_cgroup *memcg;
1865 
1866 	if (likely(!nr_pages))
1867 		return;
1868 
1869 	memcg = get_mem_cgroup_from_mm(current->mm);
1870 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1871 	css_put(&memcg->css);
1872 	current->memcg_nr_pages_over_high = 0;
1873 }
1874 
1875 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1876 		      unsigned int nr_pages)
1877 {
1878 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1879 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1880 	struct mem_cgroup *mem_over_limit;
1881 	struct page_counter *counter;
1882 	unsigned long nr_reclaimed;
1883 	bool may_swap = true;
1884 	bool drained = false;
1885 
1886 	if (mem_cgroup_is_root(memcg))
1887 		return 0;
1888 retry:
1889 	if (consume_stock(memcg, nr_pages))
1890 		return 0;
1891 
1892 	if (!do_memsw_account() ||
1893 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1894 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1895 			goto done_restock;
1896 		if (do_memsw_account())
1897 			page_counter_uncharge(&memcg->memsw, batch);
1898 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1899 	} else {
1900 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1901 		may_swap = false;
1902 	}
1903 
1904 	if (batch > nr_pages) {
1905 		batch = nr_pages;
1906 		goto retry;
1907 	}
1908 
1909 	/*
1910 	 * Unlike in global OOM situations, memcg is not in a physical
1911 	 * memory shortage.  Allow dying and OOM-killed tasks to
1912 	 * bypass the last charges so that they can exit quickly and
1913 	 * free their memory.
1914 	 */
1915 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1916 		     fatal_signal_pending(current) ||
1917 		     current->flags & PF_EXITING))
1918 		goto force;
1919 
1920 	/*
1921 	 * Prevent unbounded recursion when reclaim operations need to
1922 	 * allocate memory. This might exceed the limits temporarily,
1923 	 * but we prefer facilitating memory reclaim and getting back
1924 	 * under the limit over triggering OOM kills in these cases.
1925 	 */
1926 	if (unlikely(current->flags & PF_MEMALLOC))
1927 		goto force;
1928 
1929 	if (unlikely(task_in_memcg_oom(current)))
1930 		goto nomem;
1931 
1932 	if (!gfpflags_allow_blocking(gfp_mask))
1933 		goto nomem;
1934 
1935 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1936 
1937 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1938 						    gfp_mask, may_swap);
1939 
1940 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1941 		goto retry;
1942 
1943 	if (!drained) {
1944 		drain_all_stock(mem_over_limit);
1945 		drained = true;
1946 		goto retry;
1947 	}
1948 
1949 	if (gfp_mask & __GFP_NORETRY)
1950 		goto nomem;
1951 	/*
1952 	 * Even though the limit is exceeded at this point, reclaim
1953 	 * may have been able to free some pages.  Retry the charge
1954 	 * before killing the task.
1955 	 *
1956 	 * Only for regular pages, though: huge pages are rather
1957 	 * unlikely to succeed so close to the limit, and we fall back
1958 	 * to regular pages anyway in case of failure.
1959 	 */
1960 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1961 		goto retry;
1962 	/*
1963 	 * At task move, charge accounts can be doubly counted. So, it's
1964 	 * better to wait until the end of task_move if something is going on.
1965 	 */
1966 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1967 		goto retry;
1968 
1969 	if (nr_retries--)
1970 		goto retry;
1971 
1972 	if (gfp_mask & __GFP_NOFAIL)
1973 		goto force;
1974 
1975 	if (fatal_signal_pending(current))
1976 		goto force;
1977 
1978 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1979 
1980 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1981 		       get_order(nr_pages * PAGE_SIZE));
1982 nomem:
1983 	if (!(gfp_mask & __GFP_NOFAIL))
1984 		return -ENOMEM;
1985 force:
1986 	/*
1987 	 * The allocation either can't fail or will lead to more memory
1988 	 * being freed very soon.  Allow memory usage go over the limit
1989 	 * temporarily by force charging it.
1990 	 */
1991 	page_counter_charge(&memcg->memory, nr_pages);
1992 	if (do_memsw_account())
1993 		page_counter_charge(&memcg->memsw, nr_pages);
1994 	css_get_many(&memcg->css, nr_pages);
1995 
1996 	return 0;
1997 
1998 done_restock:
1999 	css_get_many(&memcg->css, batch);
2000 	if (batch > nr_pages)
2001 		refill_stock(memcg, batch - nr_pages);
2002 
2003 	/*
2004 	 * If the hierarchy is above the normal consumption range, schedule
2005 	 * reclaim on returning to userland.  We can perform reclaim here
2006 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2007 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2008 	 * not recorded as it most likely matches current's and won't
2009 	 * change in the meantime.  As high limit is checked again before
2010 	 * reclaim, the cost of mismatch is negligible.
2011 	 */
2012 	do {
2013 		if (page_counter_read(&memcg->memory) > memcg->high) {
2014 			/* Don't bother a random interrupted task */
2015 			if (in_interrupt()) {
2016 				schedule_work(&memcg->high_work);
2017 				break;
2018 			}
2019 			current->memcg_nr_pages_over_high += batch;
2020 			set_notify_resume(current);
2021 			break;
2022 		}
2023 	} while ((memcg = parent_mem_cgroup(memcg)));
2024 
2025 	return 0;
2026 }
2027 
2028 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2029 {
2030 	if (mem_cgroup_is_root(memcg))
2031 		return;
2032 
2033 	page_counter_uncharge(&memcg->memory, nr_pages);
2034 	if (do_memsw_account())
2035 		page_counter_uncharge(&memcg->memsw, nr_pages);
2036 
2037 	css_put_many(&memcg->css, nr_pages);
2038 }
2039 
2040 static void lock_page_lru(struct page *page, int *isolated)
2041 {
2042 	struct zone *zone = page_zone(page);
2043 
2044 	spin_lock_irq(zone_lru_lock(zone));
2045 	if (PageLRU(page)) {
2046 		struct lruvec *lruvec;
2047 
2048 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2049 		ClearPageLRU(page);
2050 		del_page_from_lru_list(page, lruvec, page_lru(page));
2051 		*isolated = 1;
2052 	} else
2053 		*isolated = 0;
2054 }
2055 
2056 static void unlock_page_lru(struct page *page, int isolated)
2057 {
2058 	struct zone *zone = page_zone(page);
2059 
2060 	if (isolated) {
2061 		struct lruvec *lruvec;
2062 
2063 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2064 		VM_BUG_ON_PAGE(PageLRU(page), page);
2065 		SetPageLRU(page);
2066 		add_page_to_lru_list(page, lruvec, page_lru(page));
2067 	}
2068 	spin_unlock_irq(zone_lru_lock(zone));
2069 }
2070 
2071 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2072 			  bool lrucare)
2073 {
2074 	int isolated;
2075 
2076 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2077 
2078 	/*
2079 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2080 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2081 	 */
2082 	if (lrucare)
2083 		lock_page_lru(page, &isolated);
2084 
2085 	/*
2086 	 * Nobody should be changing or seriously looking at
2087 	 * page->mem_cgroup at this point:
2088 	 *
2089 	 * - the page is uncharged
2090 	 *
2091 	 * - the page is off-LRU
2092 	 *
2093 	 * - an anonymous fault has exclusive page access, except for
2094 	 *   a locked page table
2095 	 *
2096 	 * - a page cache insertion, a swapin fault, or a migration
2097 	 *   have the page locked
2098 	 */
2099 	page->mem_cgroup = memcg;
2100 
2101 	if (lrucare)
2102 		unlock_page_lru(page, isolated);
2103 }
2104 
2105 #ifndef CONFIG_SLOB
2106 static int memcg_alloc_cache_id(void)
2107 {
2108 	int id, size;
2109 	int err;
2110 
2111 	id = ida_simple_get(&memcg_cache_ida,
2112 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2113 	if (id < 0)
2114 		return id;
2115 
2116 	if (id < memcg_nr_cache_ids)
2117 		return id;
2118 
2119 	/*
2120 	 * There's no space for the new id in memcg_caches arrays,
2121 	 * so we have to grow them.
2122 	 */
2123 	down_write(&memcg_cache_ids_sem);
2124 
2125 	size = 2 * (id + 1);
2126 	if (size < MEMCG_CACHES_MIN_SIZE)
2127 		size = MEMCG_CACHES_MIN_SIZE;
2128 	else if (size > MEMCG_CACHES_MAX_SIZE)
2129 		size = MEMCG_CACHES_MAX_SIZE;
2130 
2131 	err = memcg_update_all_caches(size);
2132 	if (!err)
2133 		err = memcg_update_all_list_lrus(size);
2134 	if (!err)
2135 		memcg_nr_cache_ids = size;
2136 
2137 	up_write(&memcg_cache_ids_sem);
2138 
2139 	if (err) {
2140 		ida_simple_remove(&memcg_cache_ida, id);
2141 		return err;
2142 	}
2143 	return id;
2144 }
2145 
2146 static void memcg_free_cache_id(int id)
2147 {
2148 	ida_simple_remove(&memcg_cache_ida, id);
2149 }
2150 
2151 struct memcg_kmem_cache_create_work {
2152 	struct mem_cgroup *memcg;
2153 	struct kmem_cache *cachep;
2154 	struct work_struct work;
2155 };
2156 
2157 static void memcg_kmem_cache_create_func(struct work_struct *w)
2158 {
2159 	struct memcg_kmem_cache_create_work *cw =
2160 		container_of(w, struct memcg_kmem_cache_create_work, work);
2161 	struct mem_cgroup *memcg = cw->memcg;
2162 	struct kmem_cache *cachep = cw->cachep;
2163 
2164 	memcg_create_kmem_cache(memcg, cachep);
2165 
2166 	css_put(&memcg->css);
2167 	kfree(cw);
2168 }
2169 
2170 /*
2171  * Enqueue the creation of a per-memcg kmem_cache.
2172  */
2173 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2174 					       struct kmem_cache *cachep)
2175 {
2176 	struct memcg_kmem_cache_create_work *cw;
2177 
2178 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2179 	if (!cw)
2180 		return;
2181 
2182 	css_get(&memcg->css);
2183 
2184 	cw->memcg = memcg;
2185 	cw->cachep = cachep;
2186 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2187 
2188 	schedule_work(&cw->work);
2189 }
2190 
2191 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2192 					     struct kmem_cache *cachep)
2193 {
2194 	/*
2195 	 * We need to stop accounting when we kmalloc, because if the
2196 	 * corresponding kmalloc cache is not yet created, the first allocation
2197 	 * in __memcg_schedule_kmem_cache_create will recurse.
2198 	 *
2199 	 * However, it is better to enclose the whole function. Depending on
2200 	 * the debugging options enabled, INIT_WORK(), for instance, can
2201 	 * trigger an allocation. This too, will make us recurse. Because at
2202 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2203 	 * the safest choice is to do it like this, wrapping the whole function.
2204 	 */
2205 	current->memcg_kmem_skip_account = 1;
2206 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2207 	current->memcg_kmem_skip_account = 0;
2208 }
2209 
2210 static inline bool memcg_kmem_bypass(void)
2211 {
2212 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2213 		return true;
2214 	return false;
2215 }
2216 
2217 /**
2218  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2219  * @cachep: the original global kmem cache
2220  *
2221  * Return the kmem_cache we're supposed to use for a slab allocation.
2222  * We try to use the current memcg's version of the cache.
2223  *
2224  * If the cache does not exist yet, if we are the first user of it, we
2225  * create it asynchronously in a workqueue and let the current allocation
2226  * go through with the original cache.
2227  *
2228  * This function takes a reference to the cache it returns to assure it
2229  * won't get destroyed while we are working with it. Once the caller is
2230  * done with it, memcg_kmem_put_cache() must be called to release the
2231  * reference.
2232  */
2233 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2234 {
2235 	struct mem_cgroup *memcg;
2236 	struct kmem_cache *memcg_cachep;
2237 	int kmemcg_id;
2238 
2239 	VM_BUG_ON(!is_root_cache(cachep));
2240 
2241 	if (memcg_kmem_bypass())
2242 		return cachep;
2243 
2244 	if (current->memcg_kmem_skip_account)
2245 		return cachep;
2246 
2247 	memcg = get_mem_cgroup_from_mm(current->mm);
2248 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2249 	if (kmemcg_id < 0)
2250 		goto out;
2251 
2252 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2253 	if (likely(memcg_cachep))
2254 		return memcg_cachep;
2255 
2256 	/*
2257 	 * If we are in a safe context (can wait, and not in interrupt
2258 	 * context), we could be be predictable and return right away.
2259 	 * This would guarantee that the allocation being performed
2260 	 * already belongs in the new cache.
2261 	 *
2262 	 * However, there are some clashes that can arrive from locking.
2263 	 * For instance, because we acquire the slab_mutex while doing
2264 	 * memcg_create_kmem_cache, this means no further allocation
2265 	 * could happen with the slab_mutex held. So it's better to
2266 	 * defer everything.
2267 	 */
2268 	memcg_schedule_kmem_cache_create(memcg, cachep);
2269 out:
2270 	css_put(&memcg->css);
2271 	return cachep;
2272 }
2273 
2274 /**
2275  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2276  * @cachep: the cache returned by memcg_kmem_get_cache
2277  */
2278 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2279 {
2280 	if (!is_root_cache(cachep))
2281 		css_put(&cachep->memcg_params.memcg->css);
2282 }
2283 
2284 /**
2285  * memcg_kmem_charge: charge a kmem page
2286  * @page: page to charge
2287  * @gfp: reclaim mode
2288  * @order: allocation order
2289  * @memcg: memory cgroup to charge
2290  *
2291  * Returns 0 on success, an error code on failure.
2292  */
2293 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2294 			    struct mem_cgroup *memcg)
2295 {
2296 	unsigned int nr_pages = 1 << order;
2297 	struct page_counter *counter;
2298 	int ret;
2299 
2300 	ret = try_charge(memcg, gfp, nr_pages);
2301 	if (ret)
2302 		return ret;
2303 
2304 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2305 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2306 		cancel_charge(memcg, nr_pages);
2307 		return -ENOMEM;
2308 	}
2309 
2310 	page->mem_cgroup = memcg;
2311 
2312 	return 0;
2313 }
2314 
2315 /**
2316  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2317  * @page: page to charge
2318  * @gfp: reclaim mode
2319  * @order: allocation order
2320  *
2321  * Returns 0 on success, an error code on failure.
2322  */
2323 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2324 {
2325 	struct mem_cgroup *memcg;
2326 	int ret = 0;
2327 
2328 	if (memcg_kmem_bypass())
2329 		return 0;
2330 
2331 	memcg = get_mem_cgroup_from_mm(current->mm);
2332 	if (!mem_cgroup_is_root(memcg)) {
2333 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2334 		if (!ret)
2335 			__SetPageKmemcg(page);
2336 	}
2337 	css_put(&memcg->css);
2338 	return ret;
2339 }
2340 /**
2341  * memcg_kmem_uncharge: uncharge a kmem page
2342  * @page: page to uncharge
2343  * @order: allocation order
2344  */
2345 void memcg_kmem_uncharge(struct page *page, int order)
2346 {
2347 	struct mem_cgroup *memcg = page->mem_cgroup;
2348 	unsigned int nr_pages = 1 << order;
2349 
2350 	if (!memcg)
2351 		return;
2352 
2353 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2354 
2355 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2356 		page_counter_uncharge(&memcg->kmem, nr_pages);
2357 
2358 	page_counter_uncharge(&memcg->memory, nr_pages);
2359 	if (do_memsw_account())
2360 		page_counter_uncharge(&memcg->memsw, nr_pages);
2361 
2362 	page->mem_cgroup = NULL;
2363 
2364 	/* slab pages do not have PageKmemcg flag set */
2365 	if (PageKmemcg(page))
2366 		__ClearPageKmemcg(page);
2367 
2368 	css_put_many(&memcg->css, nr_pages);
2369 }
2370 #endif /* !CONFIG_SLOB */
2371 
2372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2373 
2374 /*
2375  * Because tail pages are not marked as "used", set it. We're under
2376  * zone_lru_lock and migration entries setup in all page mappings.
2377  */
2378 void mem_cgroup_split_huge_fixup(struct page *head)
2379 {
2380 	int i;
2381 
2382 	if (mem_cgroup_disabled())
2383 		return;
2384 
2385 	for (i = 1; i < HPAGE_PMD_NR; i++)
2386 		head[i].mem_cgroup = head->mem_cgroup;
2387 
2388 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2389 		       HPAGE_PMD_NR);
2390 }
2391 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2392 
2393 #ifdef CONFIG_MEMCG_SWAP
2394 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2395 					 bool charge)
2396 {
2397 	int val = (charge) ? 1 : -1;
2398 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2399 }
2400 
2401 /**
2402  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2403  * @entry: swap entry to be moved
2404  * @from:  mem_cgroup which the entry is moved from
2405  * @to:  mem_cgroup which the entry is moved to
2406  *
2407  * It succeeds only when the swap_cgroup's record for this entry is the same
2408  * as the mem_cgroup's id of @from.
2409  *
2410  * Returns 0 on success, -EINVAL on failure.
2411  *
2412  * The caller must have charged to @to, IOW, called page_counter_charge() about
2413  * both res and memsw, and called css_get().
2414  */
2415 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2416 				struct mem_cgroup *from, struct mem_cgroup *to)
2417 {
2418 	unsigned short old_id, new_id;
2419 
2420 	old_id = mem_cgroup_id(from);
2421 	new_id = mem_cgroup_id(to);
2422 
2423 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2424 		mem_cgroup_swap_statistics(from, false);
2425 		mem_cgroup_swap_statistics(to, true);
2426 		return 0;
2427 	}
2428 	return -EINVAL;
2429 }
2430 #else
2431 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2432 				struct mem_cgroup *from, struct mem_cgroup *to)
2433 {
2434 	return -EINVAL;
2435 }
2436 #endif
2437 
2438 static DEFINE_MUTEX(memcg_limit_mutex);
2439 
2440 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2441 				   unsigned long limit)
2442 {
2443 	unsigned long curusage;
2444 	unsigned long oldusage;
2445 	bool enlarge = false;
2446 	int retry_count;
2447 	int ret;
2448 
2449 	/*
2450 	 * For keeping hierarchical_reclaim simple, how long we should retry
2451 	 * is depends on callers. We set our retry-count to be function
2452 	 * of # of children which we should visit in this loop.
2453 	 */
2454 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2455 		      mem_cgroup_count_children(memcg);
2456 
2457 	oldusage = page_counter_read(&memcg->memory);
2458 
2459 	do {
2460 		if (signal_pending(current)) {
2461 			ret = -EINTR;
2462 			break;
2463 		}
2464 
2465 		mutex_lock(&memcg_limit_mutex);
2466 		if (limit > memcg->memsw.limit) {
2467 			mutex_unlock(&memcg_limit_mutex);
2468 			ret = -EINVAL;
2469 			break;
2470 		}
2471 		if (limit > memcg->memory.limit)
2472 			enlarge = true;
2473 		ret = page_counter_limit(&memcg->memory, limit);
2474 		mutex_unlock(&memcg_limit_mutex);
2475 
2476 		if (!ret)
2477 			break;
2478 
2479 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2480 
2481 		curusage = page_counter_read(&memcg->memory);
2482 		/* Usage is reduced ? */
2483 		if (curusage >= oldusage)
2484 			retry_count--;
2485 		else
2486 			oldusage = curusage;
2487 	} while (retry_count);
2488 
2489 	if (!ret && enlarge)
2490 		memcg_oom_recover(memcg);
2491 
2492 	return ret;
2493 }
2494 
2495 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2496 					 unsigned long limit)
2497 {
2498 	unsigned long curusage;
2499 	unsigned long oldusage;
2500 	bool enlarge = false;
2501 	int retry_count;
2502 	int ret;
2503 
2504 	/* see mem_cgroup_resize_res_limit */
2505 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2506 		      mem_cgroup_count_children(memcg);
2507 
2508 	oldusage = page_counter_read(&memcg->memsw);
2509 
2510 	do {
2511 		if (signal_pending(current)) {
2512 			ret = -EINTR;
2513 			break;
2514 		}
2515 
2516 		mutex_lock(&memcg_limit_mutex);
2517 		if (limit < memcg->memory.limit) {
2518 			mutex_unlock(&memcg_limit_mutex);
2519 			ret = -EINVAL;
2520 			break;
2521 		}
2522 		if (limit > memcg->memsw.limit)
2523 			enlarge = true;
2524 		ret = page_counter_limit(&memcg->memsw, limit);
2525 		mutex_unlock(&memcg_limit_mutex);
2526 
2527 		if (!ret)
2528 			break;
2529 
2530 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2531 
2532 		curusage = page_counter_read(&memcg->memsw);
2533 		/* Usage is reduced ? */
2534 		if (curusage >= oldusage)
2535 			retry_count--;
2536 		else
2537 			oldusage = curusage;
2538 	} while (retry_count);
2539 
2540 	if (!ret && enlarge)
2541 		memcg_oom_recover(memcg);
2542 
2543 	return ret;
2544 }
2545 
2546 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2547 					    gfp_t gfp_mask,
2548 					    unsigned long *total_scanned)
2549 {
2550 	unsigned long nr_reclaimed = 0;
2551 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2552 	unsigned long reclaimed;
2553 	int loop = 0;
2554 	struct mem_cgroup_tree_per_node *mctz;
2555 	unsigned long excess;
2556 	unsigned long nr_scanned;
2557 
2558 	if (order > 0)
2559 		return 0;
2560 
2561 	mctz = soft_limit_tree_node(pgdat->node_id);
2562 
2563 	/*
2564 	 * Do not even bother to check the largest node if the root
2565 	 * is empty. Do it lockless to prevent lock bouncing. Races
2566 	 * are acceptable as soft limit is best effort anyway.
2567 	 */
2568 	if (RB_EMPTY_ROOT(&mctz->rb_root))
2569 		return 0;
2570 
2571 	/*
2572 	 * This loop can run a while, specially if mem_cgroup's continuously
2573 	 * keep exceeding their soft limit and putting the system under
2574 	 * pressure
2575 	 */
2576 	do {
2577 		if (next_mz)
2578 			mz = next_mz;
2579 		else
2580 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2581 		if (!mz)
2582 			break;
2583 
2584 		nr_scanned = 0;
2585 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2586 						    gfp_mask, &nr_scanned);
2587 		nr_reclaimed += reclaimed;
2588 		*total_scanned += nr_scanned;
2589 		spin_lock_irq(&mctz->lock);
2590 		__mem_cgroup_remove_exceeded(mz, mctz);
2591 
2592 		/*
2593 		 * If we failed to reclaim anything from this memory cgroup
2594 		 * it is time to move on to the next cgroup
2595 		 */
2596 		next_mz = NULL;
2597 		if (!reclaimed)
2598 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2599 
2600 		excess = soft_limit_excess(mz->memcg);
2601 		/*
2602 		 * One school of thought says that we should not add
2603 		 * back the node to the tree if reclaim returns 0.
2604 		 * But our reclaim could return 0, simply because due
2605 		 * to priority we are exposing a smaller subset of
2606 		 * memory to reclaim from. Consider this as a longer
2607 		 * term TODO.
2608 		 */
2609 		/* If excess == 0, no tree ops */
2610 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2611 		spin_unlock_irq(&mctz->lock);
2612 		css_put(&mz->memcg->css);
2613 		loop++;
2614 		/*
2615 		 * Could not reclaim anything and there are no more
2616 		 * mem cgroups to try or we seem to be looping without
2617 		 * reclaiming anything.
2618 		 */
2619 		if (!nr_reclaimed &&
2620 			(next_mz == NULL ||
2621 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2622 			break;
2623 	} while (!nr_reclaimed);
2624 	if (next_mz)
2625 		css_put(&next_mz->memcg->css);
2626 	return nr_reclaimed;
2627 }
2628 
2629 /*
2630  * Test whether @memcg has children, dead or alive.  Note that this
2631  * function doesn't care whether @memcg has use_hierarchy enabled and
2632  * returns %true if there are child csses according to the cgroup
2633  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2634  */
2635 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2636 {
2637 	bool ret;
2638 
2639 	rcu_read_lock();
2640 	ret = css_next_child(NULL, &memcg->css);
2641 	rcu_read_unlock();
2642 	return ret;
2643 }
2644 
2645 /*
2646  * Reclaims as many pages from the given memcg as possible.
2647  *
2648  * Caller is responsible for holding css reference for memcg.
2649  */
2650 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2651 {
2652 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2653 
2654 	/* we call try-to-free pages for make this cgroup empty */
2655 	lru_add_drain_all();
2656 	/* try to free all pages in this cgroup */
2657 	while (nr_retries && page_counter_read(&memcg->memory)) {
2658 		int progress;
2659 
2660 		if (signal_pending(current))
2661 			return -EINTR;
2662 
2663 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2664 							GFP_KERNEL, true);
2665 		if (!progress) {
2666 			nr_retries--;
2667 			/* maybe some writeback is necessary */
2668 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2669 		}
2670 
2671 	}
2672 
2673 	return 0;
2674 }
2675 
2676 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2677 					    char *buf, size_t nbytes,
2678 					    loff_t off)
2679 {
2680 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2681 
2682 	if (mem_cgroup_is_root(memcg))
2683 		return -EINVAL;
2684 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2685 }
2686 
2687 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2688 				     struct cftype *cft)
2689 {
2690 	return mem_cgroup_from_css(css)->use_hierarchy;
2691 }
2692 
2693 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2694 				      struct cftype *cft, u64 val)
2695 {
2696 	int retval = 0;
2697 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2698 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2699 
2700 	if (memcg->use_hierarchy == val)
2701 		return 0;
2702 
2703 	/*
2704 	 * If parent's use_hierarchy is set, we can't make any modifications
2705 	 * in the child subtrees. If it is unset, then the change can
2706 	 * occur, provided the current cgroup has no children.
2707 	 *
2708 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2709 	 * set if there are no children.
2710 	 */
2711 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2712 				(val == 1 || val == 0)) {
2713 		if (!memcg_has_children(memcg))
2714 			memcg->use_hierarchy = val;
2715 		else
2716 			retval = -EBUSY;
2717 	} else
2718 		retval = -EINVAL;
2719 
2720 	return retval;
2721 }
2722 
2723 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2724 {
2725 	struct mem_cgroup *iter;
2726 	int i;
2727 
2728 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2729 
2730 	for_each_mem_cgroup_tree(iter, memcg) {
2731 		for (i = 0; i < MEMCG_NR_STAT; i++)
2732 			stat[i] += mem_cgroup_read_stat(iter, i);
2733 	}
2734 }
2735 
2736 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2737 {
2738 	struct mem_cgroup *iter;
2739 	int i;
2740 
2741 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2742 
2743 	for_each_mem_cgroup_tree(iter, memcg) {
2744 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2745 			events[i] += mem_cgroup_read_events(iter, i);
2746 	}
2747 }
2748 
2749 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2750 {
2751 	unsigned long val = 0;
2752 
2753 	if (mem_cgroup_is_root(memcg)) {
2754 		struct mem_cgroup *iter;
2755 
2756 		for_each_mem_cgroup_tree(iter, memcg) {
2757 			val += mem_cgroup_read_stat(iter,
2758 					MEM_CGROUP_STAT_CACHE);
2759 			val += mem_cgroup_read_stat(iter,
2760 					MEM_CGROUP_STAT_RSS);
2761 			if (swap)
2762 				val += mem_cgroup_read_stat(iter,
2763 						MEM_CGROUP_STAT_SWAP);
2764 		}
2765 	} else {
2766 		if (!swap)
2767 			val = page_counter_read(&memcg->memory);
2768 		else
2769 			val = page_counter_read(&memcg->memsw);
2770 	}
2771 	return val;
2772 }
2773 
2774 enum {
2775 	RES_USAGE,
2776 	RES_LIMIT,
2777 	RES_MAX_USAGE,
2778 	RES_FAILCNT,
2779 	RES_SOFT_LIMIT,
2780 };
2781 
2782 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2783 			       struct cftype *cft)
2784 {
2785 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2786 	struct page_counter *counter;
2787 
2788 	switch (MEMFILE_TYPE(cft->private)) {
2789 	case _MEM:
2790 		counter = &memcg->memory;
2791 		break;
2792 	case _MEMSWAP:
2793 		counter = &memcg->memsw;
2794 		break;
2795 	case _KMEM:
2796 		counter = &memcg->kmem;
2797 		break;
2798 	case _TCP:
2799 		counter = &memcg->tcpmem;
2800 		break;
2801 	default:
2802 		BUG();
2803 	}
2804 
2805 	switch (MEMFILE_ATTR(cft->private)) {
2806 	case RES_USAGE:
2807 		if (counter == &memcg->memory)
2808 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2809 		if (counter == &memcg->memsw)
2810 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2811 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2812 	case RES_LIMIT:
2813 		return (u64)counter->limit * PAGE_SIZE;
2814 	case RES_MAX_USAGE:
2815 		return (u64)counter->watermark * PAGE_SIZE;
2816 	case RES_FAILCNT:
2817 		return counter->failcnt;
2818 	case RES_SOFT_LIMIT:
2819 		return (u64)memcg->soft_limit * PAGE_SIZE;
2820 	default:
2821 		BUG();
2822 	}
2823 }
2824 
2825 #ifndef CONFIG_SLOB
2826 static int memcg_online_kmem(struct mem_cgroup *memcg)
2827 {
2828 	int memcg_id;
2829 
2830 	if (cgroup_memory_nokmem)
2831 		return 0;
2832 
2833 	BUG_ON(memcg->kmemcg_id >= 0);
2834 	BUG_ON(memcg->kmem_state);
2835 
2836 	memcg_id = memcg_alloc_cache_id();
2837 	if (memcg_id < 0)
2838 		return memcg_id;
2839 
2840 	static_branch_inc(&memcg_kmem_enabled_key);
2841 	/*
2842 	 * A memory cgroup is considered kmem-online as soon as it gets
2843 	 * kmemcg_id. Setting the id after enabling static branching will
2844 	 * guarantee no one starts accounting before all call sites are
2845 	 * patched.
2846 	 */
2847 	memcg->kmemcg_id = memcg_id;
2848 	memcg->kmem_state = KMEM_ONLINE;
2849 
2850 	return 0;
2851 }
2852 
2853 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2854 {
2855 	struct cgroup_subsys_state *css;
2856 	struct mem_cgroup *parent, *child;
2857 	int kmemcg_id;
2858 
2859 	if (memcg->kmem_state != KMEM_ONLINE)
2860 		return;
2861 	/*
2862 	 * Clear the online state before clearing memcg_caches array
2863 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2864 	 * guarantees that no cache will be created for this cgroup
2865 	 * after we are done (see memcg_create_kmem_cache()).
2866 	 */
2867 	memcg->kmem_state = KMEM_ALLOCATED;
2868 
2869 	memcg_deactivate_kmem_caches(memcg);
2870 
2871 	kmemcg_id = memcg->kmemcg_id;
2872 	BUG_ON(kmemcg_id < 0);
2873 
2874 	parent = parent_mem_cgroup(memcg);
2875 	if (!parent)
2876 		parent = root_mem_cgroup;
2877 
2878 	/*
2879 	 * Change kmemcg_id of this cgroup and all its descendants to the
2880 	 * parent's id, and then move all entries from this cgroup's list_lrus
2881 	 * to ones of the parent. After we have finished, all list_lrus
2882 	 * corresponding to this cgroup are guaranteed to remain empty. The
2883 	 * ordering is imposed by list_lru_node->lock taken by
2884 	 * memcg_drain_all_list_lrus().
2885 	 */
2886 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2887 	css_for_each_descendant_pre(css, &memcg->css) {
2888 		child = mem_cgroup_from_css(css);
2889 		BUG_ON(child->kmemcg_id != kmemcg_id);
2890 		child->kmemcg_id = parent->kmemcg_id;
2891 		if (!memcg->use_hierarchy)
2892 			break;
2893 	}
2894 	rcu_read_unlock();
2895 
2896 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2897 
2898 	memcg_free_cache_id(kmemcg_id);
2899 }
2900 
2901 static void memcg_free_kmem(struct mem_cgroup *memcg)
2902 {
2903 	/* css_alloc() failed, offlining didn't happen */
2904 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2905 		memcg_offline_kmem(memcg);
2906 
2907 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2908 		memcg_destroy_kmem_caches(memcg);
2909 		static_branch_dec(&memcg_kmem_enabled_key);
2910 		WARN_ON(page_counter_read(&memcg->kmem));
2911 	}
2912 }
2913 #else
2914 static int memcg_online_kmem(struct mem_cgroup *memcg)
2915 {
2916 	return 0;
2917 }
2918 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2919 {
2920 }
2921 static void memcg_free_kmem(struct mem_cgroup *memcg)
2922 {
2923 }
2924 #endif /* !CONFIG_SLOB */
2925 
2926 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2927 				   unsigned long limit)
2928 {
2929 	int ret;
2930 
2931 	mutex_lock(&memcg_limit_mutex);
2932 	ret = page_counter_limit(&memcg->kmem, limit);
2933 	mutex_unlock(&memcg_limit_mutex);
2934 	return ret;
2935 }
2936 
2937 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2938 {
2939 	int ret;
2940 
2941 	mutex_lock(&memcg_limit_mutex);
2942 
2943 	ret = page_counter_limit(&memcg->tcpmem, limit);
2944 	if (ret)
2945 		goto out;
2946 
2947 	if (!memcg->tcpmem_active) {
2948 		/*
2949 		 * The active flag needs to be written after the static_key
2950 		 * update. This is what guarantees that the socket activation
2951 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2952 		 * for details, and note that we don't mark any socket as
2953 		 * belonging to this memcg until that flag is up.
2954 		 *
2955 		 * We need to do this, because static_keys will span multiple
2956 		 * sites, but we can't control their order. If we mark a socket
2957 		 * as accounted, but the accounting functions are not patched in
2958 		 * yet, we'll lose accounting.
2959 		 *
2960 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2961 		 * because when this value change, the code to process it is not
2962 		 * patched in yet.
2963 		 */
2964 		static_branch_inc(&memcg_sockets_enabled_key);
2965 		memcg->tcpmem_active = true;
2966 	}
2967 out:
2968 	mutex_unlock(&memcg_limit_mutex);
2969 	return ret;
2970 }
2971 
2972 /*
2973  * The user of this function is...
2974  * RES_LIMIT.
2975  */
2976 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2977 				char *buf, size_t nbytes, loff_t off)
2978 {
2979 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2980 	unsigned long nr_pages;
2981 	int ret;
2982 
2983 	buf = strstrip(buf);
2984 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2985 	if (ret)
2986 		return ret;
2987 
2988 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989 	case RES_LIMIT:
2990 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2991 			ret = -EINVAL;
2992 			break;
2993 		}
2994 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2995 		case _MEM:
2996 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2997 			break;
2998 		case _MEMSWAP:
2999 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3000 			break;
3001 		case _KMEM:
3002 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3003 			break;
3004 		case _TCP:
3005 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3006 			break;
3007 		}
3008 		break;
3009 	case RES_SOFT_LIMIT:
3010 		memcg->soft_limit = nr_pages;
3011 		ret = 0;
3012 		break;
3013 	}
3014 	return ret ?: nbytes;
3015 }
3016 
3017 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3018 				size_t nbytes, loff_t off)
3019 {
3020 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3021 	struct page_counter *counter;
3022 
3023 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3024 	case _MEM:
3025 		counter = &memcg->memory;
3026 		break;
3027 	case _MEMSWAP:
3028 		counter = &memcg->memsw;
3029 		break;
3030 	case _KMEM:
3031 		counter = &memcg->kmem;
3032 		break;
3033 	case _TCP:
3034 		counter = &memcg->tcpmem;
3035 		break;
3036 	default:
3037 		BUG();
3038 	}
3039 
3040 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3041 	case RES_MAX_USAGE:
3042 		page_counter_reset_watermark(counter);
3043 		break;
3044 	case RES_FAILCNT:
3045 		counter->failcnt = 0;
3046 		break;
3047 	default:
3048 		BUG();
3049 	}
3050 
3051 	return nbytes;
3052 }
3053 
3054 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3055 					struct cftype *cft)
3056 {
3057 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3058 }
3059 
3060 #ifdef CONFIG_MMU
3061 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3062 					struct cftype *cft, u64 val)
3063 {
3064 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3065 
3066 	if (val & ~MOVE_MASK)
3067 		return -EINVAL;
3068 
3069 	/*
3070 	 * No kind of locking is needed in here, because ->can_attach() will
3071 	 * check this value once in the beginning of the process, and then carry
3072 	 * on with stale data. This means that changes to this value will only
3073 	 * affect task migrations starting after the change.
3074 	 */
3075 	memcg->move_charge_at_immigrate = val;
3076 	return 0;
3077 }
3078 #else
3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3080 					struct cftype *cft, u64 val)
3081 {
3082 	return -ENOSYS;
3083 }
3084 #endif
3085 
3086 #ifdef CONFIG_NUMA
3087 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3088 {
3089 	struct numa_stat {
3090 		const char *name;
3091 		unsigned int lru_mask;
3092 	};
3093 
3094 	static const struct numa_stat stats[] = {
3095 		{ "total", LRU_ALL },
3096 		{ "file", LRU_ALL_FILE },
3097 		{ "anon", LRU_ALL_ANON },
3098 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3099 	};
3100 	const struct numa_stat *stat;
3101 	int nid;
3102 	unsigned long nr;
3103 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3104 
3105 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3106 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3107 		seq_printf(m, "%s=%lu", stat->name, nr);
3108 		for_each_node_state(nid, N_MEMORY) {
3109 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3110 							  stat->lru_mask);
3111 			seq_printf(m, " N%d=%lu", nid, nr);
3112 		}
3113 		seq_putc(m, '\n');
3114 	}
3115 
3116 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3117 		struct mem_cgroup *iter;
3118 
3119 		nr = 0;
3120 		for_each_mem_cgroup_tree(iter, memcg)
3121 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3122 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3123 		for_each_node_state(nid, N_MEMORY) {
3124 			nr = 0;
3125 			for_each_mem_cgroup_tree(iter, memcg)
3126 				nr += mem_cgroup_node_nr_lru_pages(
3127 					iter, nid, stat->lru_mask);
3128 			seq_printf(m, " N%d=%lu", nid, nr);
3129 		}
3130 		seq_putc(m, '\n');
3131 	}
3132 
3133 	return 0;
3134 }
3135 #endif /* CONFIG_NUMA */
3136 
3137 static int memcg_stat_show(struct seq_file *m, void *v)
3138 {
3139 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3140 	unsigned long memory, memsw;
3141 	struct mem_cgroup *mi;
3142 	unsigned int i;
3143 
3144 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3145 		     MEM_CGROUP_STAT_NSTATS);
3146 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3147 		     MEM_CGROUP_EVENTS_NSTATS);
3148 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3149 
3150 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3151 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3152 			continue;
3153 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3154 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3155 	}
3156 
3157 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3158 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3159 			   mem_cgroup_read_events(memcg, i));
3160 
3161 	for (i = 0; i < NR_LRU_LISTS; i++)
3162 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3163 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3164 
3165 	/* Hierarchical information */
3166 	memory = memsw = PAGE_COUNTER_MAX;
3167 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3168 		memory = min(memory, mi->memory.limit);
3169 		memsw = min(memsw, mi->memsw.limit);
3170 	}
3171 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3172 		   (u64)memory * PAGE_SIZE);
3173 	if (do_memsw_account())
3174 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3175 			   (u64)memsw * PAGE_SIZE);
3176 
3177 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3178 		unsigned long long val = 0;
3179 
3180 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3181 			continue;
3182 		for_each_mem_cgroup_tree(mi, memcg)
3183 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3184 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3185 	}
3186 
3187 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3188 		unsigned long long val = 0;
3189 
3190 		for_each_mem_cgroup_tree(mi, memcg)
3191 			val += mem_cgroup_read_events(mi, i);
3192 		seq_printf(m, "total_%s %llu\n",
3193 			   mem_cgroup_events_names[i], val);
3194 	}
3195 
3196 	for (i = 0; i < NR_LRU_LISTS; i++) {
3197 		unsigned long long val = 0;
3198 
3199 		for_each_mem_cgroup_tree(mi, memcg)
3200 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3201 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3202 	}
3203 
3204 #ifdef CONFIG_DEBUG_VM
3205 	{
3206 		pg_data_t *pgdat;
3207 		struct mem_cgroup_per_node *mz;
3208 		struct zone_reclaim_stat *rstat;
3209 		unsigned long recent_rotated[2] = {0, 0};
3210 		unsigned long recent_scanned[2] = {0, 0};
3211 
3212 		for_each_online_pgdat(pgdat) {
3213 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3214 			rstat = &mz->lruvec.reclaim_stat;
3215 
3216 			recent_rotated[0] += rstat->recent_rotated[0];
3217 			recent_rotated[1] += rstat->recent_rotated[1];
3218 			recent_scanned[0] += rstat->recent_scanned[0];
3219 			recent_scanned[1] += rstat->recent_scanned[1];
3220 		}
3221 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3222 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3223 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3224 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3225 	}
3226 #endif
3227 
3228 	return 0;
3229 }
3230 
3231 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3232 				      struct cftype *cft)
3233 {
3234 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235 
3236 	return mem_cgroup_swappiness(memcg);
3237 }
3238 
3239 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3240 				       struct cftype *cft, u64 val)
3241 {
3242 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3243 
3244 	if (val > 100)
3245 		return -EINVAL;
3246 
3247 	if (css->parent)
3248 		memcg->swappiness = val;
3249 	else
3250 		vm_swappiness = val;
3251 
3252 	return 0;
3253 }
3254 
3255 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3256 {
3257 	struct mem_cgroup_threshold_ary *t;
3258 	unsigned long usage;
3259 	int i;
3260 
3261 	rcu_read_lock();
3262 	if (!swap)
3263 		t = rcu_dereference(memcg->thresholds.primary);
3264 	else
3265 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3266 
3267 	if (!t)
3268 		goto unlock;
3269 
3270 	usage = mem_cgroup_usage(memcg, swap);
3271 
3272 	/*
3273 	 * current_threshold points to threshold just below or equal to usage.
3274 	 * If it's not true, a threshold was crossed after last
3275 	 * call of __mem_cgroup_threshold().
3276 	 */
3277 	i = t->current_threshold;
3278 
3279 	/*
3280 	 * Iterate backward over array of thresholds starting from
3281 	 * current_threshold and check if a threshold is crossed.
3282 	 * If none of thresholds below usage is crossed, we read
3283 	 * only one element of the array here.
3284 	 */
3285 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3286 		eventfd_signal(t->entries[i].eventfd, 1);
3287 
3288 	/* i = current_threshold + 1 */
3289 	i++;
3290 
3291 	/*
3292 	 * Iterate forward over array of thresholds starting from
3293 	 * current_threshold+1 and check if a threshold is crossed.
3294 	 * If none of thresholds above usage is crossed, we read
3295 	 * only one element of the array here.
3296 	 */
3297 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3298 		eventfd_signal(t->entries[i].eventfd, 1);
3299 
3300 	/* Update current_threshold */
3301 	t->current_threshold = i - 1;
3302 unlock:
3303 	rcu_read_unlock();
3304 }
3305 
3306 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3307 {
3308 	while (memcg) {
3309 		__mem_cgroup_threshold(memcg, false);
3310 		if (do_memsw_account())
3311 			__mem_cgroup_threshold(memcg, true);
3312 
3313 		memcg = parent_mem_cgroup(memcg);
3314 	}
3315 }
3316 
3317 static int compare_thresholds(const void *a, const void *b)
3318 {
3319 	const struct mem_cgroup_threshold *_a = a;
3320 	const struct mem_cgroup_threshold *_b = b;
3321 
3322 	if (_a->threshold > _b->threshold)
3323 		return 1;
3324 
3325 	if (_a->threshold < _b->threshold)
3326 		return -1;
3327 
3328 	return 0;
3329 }
3330 
3331 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3332 {
3333 	struct mem_cgroup_eventfd_list *ev;
3334 
3335 	spin_lock(&memcg_oom_lock);
3336 
3337 	list_for_each_entry(ev, &memcg->oom_notify, list)
3338 		eventfd_signal(ev->eventfd, 1);
3339 
3340 	spin_unlock(&memcg_oom_lock);
3341 	return 0;
3342 }
3343 
3344 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3345 {
3346 	struct mem_cgroup *iter;
3347 
3348 	for_each_mem_cgroup_tree(iter, memcg)
3349 		mem_cgroup_oom_notify_cb(iter);
3350 }
3351 
3352 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3353 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3354 {
3355 	struct mem_cgroup_thresholds *thresholds;
3356 	struct mem_cgroup_threshold_ary *new;
3357 	unsigned long threshold;
3358 	unsigned long usage;
3359 	int i, size, ret;
3360 
3361 	ret = page_counter_memparse(args, "-1", &threshold);
3362 	if (ret)
3363 		return ret;
3364 
3365 	mutex_lock(&memcg->thresholds_lock);
3366 
3367 	if (type == _MEM) {
3368 		thresholds = &memcg->thresholds;
3369 		usage = mem_cgroup_usage(memcg, false);
3370 	} else if (type == _MEMSWAP) {
3371 		thresholds = &memcg->memsw_thresholds;
3372 		usage = mem_cgroup_usage(memcg, true);
3373 	} else
3374 		BUG();
3375 
3376 	/* Check if a threshold crossed before adding a new one */
3377 	if (thresholds->primary)
3378 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3379 
3380 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3381 
3382 	/* Allocate memory for new array of thresholds */
3383 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3384 			GFP_KERNEL);
3385 	if (!new) {
3386 		ret = -ENOMEM;
3387 		goto unlock;
3388 	}
3389 	new->size = size;
3390 
3391 	/* Copy thresholds (if any) to new array */
3392 	if (thresholds->primary) {
3393 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3394 				sizeof(struct mem_cgroup_threshold));
3395 	}
3396 
3397 	/* Add new threshold */
3398 	new->entries[size - 1].eventfd = eventfd;
3399 	new->entries[size - 1].threshold = threshold;
3400 
3401 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3402 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3403 			compare_thresholds, NULL);
3404 
3405 	/* Find current threshold */
3406 	new->current_threshold = -1;
3407 	for (i = 0; i < size; i++) {
3408 		if (new->entries[i].threshold <= usage) {
3409 			/*
3410 			 * new->current_threshold will not be used until
3411 			 * rcu_assign_pointer(), so it's safe to increment
3412 			 * it here.
3413 			 */
3414 			++new->current_threshold;
3415 		} else
3416 			break;
3417 	}
3418 
3419 	/* Free old spare buffer and save old primary buffer as spare */
3420 	kfree(thresholds->spare);
3421 	thresholds->spare = thresholds->primary;
3422 
3423 	rcu_assign_pointer(thresholds->primary, new);
3424 
3425 	/* To be sure that nobody uses thresholds */
3426 	synchronize_rcu();
3427 
3428 unlock:
3429 	mutex_unlock(&memcg->thresholds_lock);
3430 
3431 	return ret;
3432 }
3433 
3434 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 	struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3438 }
3439 
3440 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3441 	struct eventfd_ctx *eventfd, const char *args)
3442 {
3443 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3444 }
3445 
3446 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3447 	struct eventfd_ctx *eventfd, enum res_type type)
3448 {
3449 	struct mem_cgroup_thresholds *thresholds;
3450 	struct mem_cgroup_threshold_ary *new;
3451 	unsigned long usage;
3452 	int i, j, size;
3453 
3454 	mutex_lock(&memcg->thresholds_lock);
3455 
3456 	if (type == _MEM) {
3457 		thresholds = &memcg->thresholds;
3458 		usage = mem_cgroup_usage(memcg, false);
3459 	} else if (type == _MEMSWAP) {
3460 		thresholds = &memcg->memsw_thresholds;
3461 		usage = mem_cgroup_usage(memcg, true);
3462 	} else
3463 		BUG();
3464 
3465 	if (!thresholds->primary)
3466 		goto unlock;
3467 
3468 	/* Check if a threshold crossed before removing */
3469 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3470 
3471 	/* Calculate new number of threshold */
3472 	size = 0;
3473 	for (i = 0; i < thresholds->primary->size; i++) {
3474 		if (thresholds->primary->entries[i].eventfd != eventfd)
3475 			size++;
3476 	}
3477 
3478 	new = thresholds->spare;
3479 
3480 	/* Set thresholds array to NULL if we don't have thresholds */
3481 	if (!size) {
3482 		kfree(new);
3483 		new = NULL;
3484 		goto swap_buffers;
3485 	}
3486 
3487 	new->size = size;
3488 
3489 	/* Copy thresholds and find current threshold */
3490 	new->current_threshold = -1;
3491 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3492 		if (thresholds->primary->entries[i].eventfd == eventfd)
3493 			continue;
3494 
3495 		new->entries[j] = thresholds->primary->entries[i];
3496 		if (new->entries[j].threshold <= usage) {
3497 			/*
3498 			 * new->current_threshold will not be used
3499 			 * until rcu_assign_pointer(), so it's safe to increment
3500 			 * it here.
3501 			 */
3502 			++new->current_threshold;
3503 		}
3504 		j++;
3505 	}
3506 
3507 swap_buffers:
3508 	/* Swap primary and spare array */
3509 	thresholds->spare = thresholds->primary;
3510 
3511 	rcu_assign_pointer(thresholds->primary, new);
3512 
3513 	/* To be sure that nobody uses thresholds */
3514 	synchronize_rcu();
3515 
3516 	/* If all events are unregistered, free the spare array */
3517 	if (!new) {
3518 		kfree(thresholds->spare);
3519 		thresholds->spare = NULL;
3520 	}
3521 unlock:
3522 	mutex_unlock(&memcg->thresholds_lock);
3523 }
3524 
3525 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 	struct eventfd_ctx *eventfd)
3527 {
3528 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3529 }
3530 
3531 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3532 	struct eventfd_ctx *eventfd)
3533 {
3534 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3535 }
3536 
3537 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3538 	struct eventfd_ctx *eventfd, const char *args)
3539 {
3540 	struct mem_cgroup_eventfd_list *event;
3541 
3542 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3543 	if (!event)
3544 		return -ENOMEM;
3545 
3546 	spin_lock(&memcg_oom_lock);
3547 
3548 	event->eventfd = eventfd;
3549 	list_add(&event->list, &memcg->oom_notify);
3550 
3551 	/* already in OOM ? */
3552 	if (memcg->under_oom)
3553 		eventfd_signal(eventfd, 1);
3554 	spin_unlock(&memcg_oom_lock);
3555 
3556 	return 0;
3557 }
3558 
3559 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3560 	struct eventfd_ctx *eventfd)
3561 {
3562 	struct mem_cgroup_eventfd_list *ev, *tmp;
3563 
3564 	spin_lock(&memcg_oom_lock);
3565 
3566 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3567 		if (ev->eventfd == eventfd) {
3568 			list_del(&ev->list);
3569 			kfree(ev);
3570 		}
3571 	}
3572 
3573 	spin_unlock(&memcg_oom_lock);
3574 }
3575 
3576 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3577 {
3578 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3579 
3580 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3581 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3582 	return 0;
3583 }
3584 
3585 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3586 	struct cftype *cft, u64 val)
3587 {
3588 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3589 
3590 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3591 	if (!css->parent || !((val == 0) || (val == 1)))
3592 		return -EINVAL;
3593 
3594 	memcg->oom_kill_disable = val;
3595 	if (!val)
3596 		memcg_oom_recover(memcg);
3597 
3598 	return 0;
3599 }
3600 
3601 #ifdef CONFIG_CGROUP_WRITEBACK
3602 
3603 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3604 {
3605 	return &memcg->cgwb_list;
3606 }
3607 
3608 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3609 {
3610 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3611 }
3612 
3613 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3614 {
3615 	wb_domain_exit(&memcg->cgwb_domain);
3616 }
3617 
3618 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3619 {
3620 	wb_domain_size_changed(&memcg->cgwb_domain);
3621 }
3622 
3623 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3624 {
3625 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3626 
3627 	if (!memcg->css.parent)
3628 		return NULL;
3629 
3630 	return &memcg->cgwb_domain;
3631 }
3632 
3633 /**
3634  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3635  * @wb: bdi_writeback in question
3636  * @pfilepages: out parameter for number of file pages
3637  * @pheadroom: out parameter for number of allocatable pages according to memcg
3638  * @pdirty: out parameter for number of dirty pages
3639  * @pwriteback: out parameter for number of pages under writeback
3640  *
3641  * Determine the numbers of file, headroom, dirty, and writeback pages in
3642  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3643  * is a bit more involved.
3644  *
3645  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3646  * headroom is calculated as the lowest headroom of itself and the
3647  * ancestors.  Note that this doesn't consider the actual amount of
3648  * available memory in the system.  The caller should further cap
3649  * *@pheadroom accordingly.
3650  */
3651 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3652 			 unsigned long *pheadroom, unsigned long *pdirty,
3653 			 unsigned long *pwriteback)
3654 {
3655 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3656 	struct mem_cgroup *parent;
3657 
3658 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3659 
3660 	/* this should eventually include NR_UNSTABLE_NFS */
3661 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3662 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3663 						     (1 << LRU_ACTIVE_FILE));
3664 	*pheadroom = PAGE_COUNTER_MAX;
3665 
3666 	while ((parent = parent_mem_cgroup(memcg))) {
3667 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3668 		unsigned long used = page_counter_read(&memcg->memory);
3669 
3670 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3671 		memcg = parent;
3672 	}
3673 }
3674 
3675 #else	/* CONFIG_CGROUP_WRITEBACK */
3676 
3677 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3678 {
3679 	return 0;
3680 }
3681 
3682 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3683 {
3684 }
3685 
3686 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3687 {
3688 }
3689 
3690 #endif	/* CONFIG_CGROUP_WRITEBACK */
3691 
3692 /*
3693  * DO NOT USE IN NEW FILES.
3694  *
3695  * "cgroup.event_control" implementation.
3696  *
3697  * This is way over-engineered.  It tries to support fully configurable
3698  * events for each user.  Such level of flexibility is completely
3699  * unnecessary especially in the light of the planned unified hierarchy.
3700  *
3701  * Please deprecate this and replace with something simpler if at all
3702  * possible.
3703  */
3704 
3705 /*
3706  * Unregister event and free resources.
3707  *
3708  * Gets called from workqueue.
3709  */
3710 static void memcg_event_remove(struct work_struct *work)
3711 {
3712 	struct mem_cgroup_event *event =
3713 		container_of(work, struct mem_cgroup_event, remove);
3714 	struct mem_cgroup *memcg = event->memcg;
3715 
3716 	remove_wait_queue(event->wqh, &event->wait);
3717 
3718 	event->unregister_event(memcg, event->eventfd);
3719 
3720 	/* Notify userspace the event is going away. */
3721 	eventfd_signal(event->eventfd, 1);
3722 
3723 	eventfd_ctx_put(event->eventfd);
3724 	kfree(event);
3725 	css_put(&memcg->css);
3726 }
3727 
3728 /*
3729  * Gets called on POLLHUP on eventfd when user closes it.
3730  *
3731  * Called with wqh->lock held and interrupts disabled.
3732  */
3733 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3734 			    int sync, void *key)
3735 {
3736 	struct mem_cgroup_event *event =
3737 		container_of(wait, struct mem_cgroup_event, wait);
3738 	struct mem_cgroup *memcg = event->memcg;
3739 	unsigned long flags = (unsigned long)key;
3740 
3741 	if (flags & POLLHUP) {
3742 		/*
3743 		 * If the event has been detached at cgroup removal, we
3744 		 * can simply return knowing the other side will cleanup
3745 		 * for us.
3746 		 *
3747 		 * We can't race against event freeing since the other
3748 		 * side will require wqh->lock via remove_wait_queue(),
3749 		 * which we hold.
3750 		 */
3751 		spin_lock(&memcg->event_list_lock);
3752 		if (!list_empty(&event->list)) {
3753 			list_del_init(&event->list);
3754 			/*
3755 			 * We are in atomic context, but cgroup_event_remove()
3756 			 * may sleep, so we have to call it in workqueue.
3757 			 */
3758 			schedule_work(&event->remove);
3759 		}
3760 		spin_unlock(&memcg->event_list_lock);
3761 	}
3762 
3763 	return 0;
3764 }
3765 
3766 static void memcg_event_ptable_queue_proc(struct file *file,
3767 		wait_queue_head_t *wqh, poll_table *pt)
3768 {
3769 	struct mem_cgroup_event *event =
3770 		container_of(pt, struct mem_cgroup_event, pt);
3771 
3772 	event->wqh = wqh;
3773 	add_wait_queue(wqh, &event->wait);
3774 }
3775 
3776 /*
3777  * DO NOT USE IN NEW FILES.
3778  *
3779  * Parse input and register new cgroup event handler.
3780  *
3781  * Input must be in format '<event_fd> <control_fd> <args>'.
3782  * Interpretation of args is defined by control file implementation.
3783  */
3784 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3785 					 char *buf, size_t nbytes, loff_t off)
3786 {
3787 	struct cgroup_subsys_state *css = of_css(of);
3788 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3789 	struct mem_cgroup_event *event;
3790 	struct cgroup_subsys_state *cfile_css;
3791 	unsigned int efd, cfd;
3792 	struct fd efile;
3793 	struct fd cfile;
3794 	const char *name;
3795 	char *endp;
3796 	int ret;
3797 
3798 	buf = strstrip(buf);
3799 
3800 	efd = simple_strtoul(buf, &endp, 10);
3801 	if (*endp != ' ')
3802 		return -EINVAL;
3803 	buf = endp + 1;
3804 
3805 	cfd = simple_strtoul(buf, &endp, 10);
3806 	if ((*endp != ' ') && (*endp != '\0'))
3807 		return -EINVAL;
3808 	buf = endp + 1;
3809 
3810 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3811 	if (!event)
3812 		return -ENOMEM;
3813 
3814 	event->memcg = memcg;
3815 	INIT_LIST_HEAD(&event->list);
3816 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3817 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3818 	INIT_WORK(&event->remove, memcg_event_remove);
3819 
3820 	efile = fdget(efd);
3821 	if (!efile.file) {
3822 		ret = -EBADF;
3823 		goto out_kfree;
3824 	}
3825 
3826 	event->eventfd = eventfd_ctx_fileget(efile.file);
3827 	if (IS_ERR(event->eventfd)) {
3828 		ret = PTR_ERR(event->eventfd);
3829 		goto out_put_efile;
3830 	}
3831 
3832 	cfile = fdget(cfd);
3833 	if (!cfile.file) {
3834 		ret = -EBADF;
3835 		goto out_put_eventfd;
3836 	}
3837 
3838 	/* the process need read permission on control file */
3839 	/* AV: shouldn't we check that it's been opened for read instead? */
3840 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3841 	if (ret < 0)
3842 		goto out_put_cfile;
3843 
3844 	/*
3845 	 * Determine the event callbacks and set them in @event.  This used
3846 	 * to be done via struct cftype but cgroup core no longer knows
3847 	 * about these events.  The following is crude but the whole thing
3848 	 * is for compatibility anyway.
3849 	 *
3850 	 * DO NOT ADD NEW FILES.
3851 	 */
3852 	name = cfile.file->f_path.dentry->d_name.name;
3853 
3854 	if (!strcmp(name, "memory.usage_in_bytes")) {
3855 		event->register_event = mem_cgroup_usage_register_event;
3856 		event->unregister_event = mem_cgroup_usage_unregister_event;
3857 	} else if (!strcmp(name, "memory.oom_control")) {
3858 		event->register_event = mem_cgroup_oom_register_event;
3859 		event->unregister_event = mem_cgroup_oom_unregister_event;
3860 	} else if (!strcmp(name, "memory.pressure_level")) {
3861 		event->register_event = vmpressure_register_event;
3862 		event->unregister_event = vmpressure_unregister_event;
3863 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3864 		event->register_event = memsw_cgroup_usage_register_event;
3865 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3866 	} else {
3867 		ret = -EINVAL;
3868 		goto out_put_cfile;
3869 	}
3870 
3871 	/*
3872 	 * Verify @cfile should belong to @css.  Also, remaining events are
3873 	 * automatically removed on cgroup destruction but the removal is
3874 	 * asynchronous, so take an extra ref on @css.
3875 	 */
3876 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3877 					       &memory_cgrp_subsys);
3878 	ret = -EINVAL;
3879 	if (IS_ERR(cfile_css))
3880 		goto out_put_cfile;
3881 	if (cfile_css != css) {
3882 		css_put(cfile_css);
3883 		goto out_put_cfile;
3884 	}
3885 
3886 	ret = event->register_event(memcg, event->eventfd, buf);
3887 	if (ret)
3888 		goto out_put_css;
3889 
3890 	efile.file->f_op->poll(efile.file, &event->pt);
3891 
3892 	spin_lock(&memcg->event_list_lock);
3893 	list_add(&event->list, &memcg->event_list);
3894 	spin_unlock(&memcg->event_list_lock);
3895 
3896 	fdput(cfile);
3897 	fdput(efile);
3898 
3899 	return nbytes;
3900 
3901 out_put_css:
3902 	css_put(css);
3903 out_put_cfile:
3904 	fdput(cfile);
3905 out_put_eventfd:
3906 	eventfd_ctx_put(event->eventfd);
3907 out_put_efile:
3908 	fdput(efile);
3909 out_kfree:
3910 	kfree(event);
3911 
3912 	return ret;
3913 }
3914 
3915 static struct cftype mem_cgroup_legacy_files[] = {
3916 	{
3917 		.name = "usage_in_bytes",
3918 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3919 		.read_u64 = mem_cgroup_read_u64,
3920 	},
3921 	{
3922 		.name = "max_usage_in_bytes",
3923 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3924 		.write = mem_cgroup_reset,
3925 		.read_u64 = mem_cgroup_read_u64,
3926 	},
3927 	{
3928 		.name = "limit_in_bytes",
3929 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3930 		.write = mem_cgroup_write,
3931 		.read_u64 = mem_cgroup_read_u64,
3932 	},
3933 	{
3934 		.name = "soft_limit_in_bytes",
3935 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3936 		.write = mem_cgroup_write,
3937 		.read_u64 = mem_cgroup_read_u64,
3938 	},
3939 	{
3940 		.name = "failcnt",
3941 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3942 		.write = mem_cgroup_reset,
3943 		.read_u64 = mem_cgroup_read_u64,
3944 	},
3945 	{
3946 		.name = "stat",
3947 		.seq_show = memcg_stat_show,
3948 	},
3949 	{
3950 		.name = "force_empty",
3951 		.write = mem_cgroup_force_empty_write,
3952 	},
3953 	{
3954 		.name = "use_hierarchy",
3955 		.write_u64 = mem_cgroup_hierarchy_write,
3956 		.read_u64 = mem_cgroup_hierarchy_read,
3957 	},
3958 	{
3959 		.name = "cgroup.event_control",		/* XXX: for compat */
3960 		.write = memcg_write_event_control,
3961 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3962 	},
3963 	{
3964 		.name = "swappiness",
3965 		.read_u64 = mem_cgroup_swappiness_read,
3966 		.write_u64 = mem_cgroup_swappiness_write,
3967 	},
3968 	{
3969 		.name = "move_charge_at_immigrate",
3970 		.read_u64 = mem_cgroup_move_charge_read,
3971 		.write_u64 = mem_cgroup_move_charge_write,
3972 	},
3973 	{
3974 		.name = "oom_control",
3975 		.seq_show = mem_cgroup_oom_control_read,
3976 		.write_u64 = mem_cgroup_oom_control_write,
3977 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3978 	},
3979 	{
3980 		.name = "pressure_level",
3981 	},
3982 #ifdef CONFIG_NUMA
3983 	{
3984 		.name = "numa_stat",
3985 		.seq_show = memcg_numa_stat_show,
3986 	},
3987 #endif
3988 	{
3989 		.name = "kmem.limit_in_bytes",
3990 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3991 		.write = mem_cgroup_write,
3992 		.read_u64 = mem_cgroup_read_u64,
3993 	},
3994 	{
3995 		.name = "kmem.usage_in_bytes",
3996 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3997 		.read_u64 = mem_cgroup_read_u64,
3998 	},
3999 	{
4000 		.name = "kmem.failcnt",
4001 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4002 		.write = mem_cgroup_reset,
4003 		.read_u64 = mem_cgroup_read_u64,
4004 	},
4005 	{
4006 		.name = "kmem.max_usage_in_bytes",
4007 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4008 		.write = mem_cgroup_reset,
4009 		.read_u64 = mem_cgroup_read_u64,
4010 	},
4011 #ifdef CONFIG_SLABINFO
4012 	{
4013 		.name = "kmem.slabinfo",
4014 		.seq_start = slab_start,
4015 		.seq_next = slab_next,
4016 		.seq_stop = slab_stop,
4017 		.seq_show = memcg_slab_show,
4018 	},
4019 #endif
4020 	{
4021 		.name = "kmem.tcp.limit_in_bytes",
4022 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4023 		.write = mem_cgroup_write,
4024 		.read_u64 = mem_cgroup_read_u64,
4025 	},
4026 	{
4027 		.name = "kmem.tcp.usage_in_bytes",
4028 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4029 		.read_u64 = mem_cgroup_read_u64,
4030 	},
4031 	{
4032 		.name = "kmem.tcp.failcnt",
4033 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4034 		.write = mem_cgroup_reset,
4035 		.read_u64 = mem_cgroup_read_u64,
4036 	},
4037 	{
4038 		.name = "kmem.tcp.max_usage_in_bytes",
4039 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4040 		.write = mem_cgroup_reset,
4041 		.read_u64 = mem_cgroup_read_u64,
4042 	},
4043 	{ },	/* terminate */
4044 };
4045 
4046 /*
4047  * Private memory cgroup IDR
4048  *
4049  * Swap-out records and page cache shadow entries need to store memcg
4050  * references in constrained space, so we maintain an ID space that is
4051  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4052  * memory-controlled cgroups to 64k.
4053  *
4054  * However, there usually are many references to the oflline CSS after
4055  * the cgroup has been destroyed, such as page cache or reclaimable
4056  * slab objects, that don't need to hang on to the ID. We want to keep
4057  * those dead CSS from occupying IDs, or we might quickly exhaust the
4058  * relatively small ID space and prevent the creation of new cgroups
4059  * even when there are much fewer than 64k cgroups - possibly none.
4060  *
4061  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4062  * be freed and recycled when it's no longer needed, which is usually
4063  * when the CSS is offlined.
4064  *
4065  * The only exception to that are records of swapped out tmpfs/shmem
4066  * pages that need to be attributed to live ancestors on swapin. But
4067  * those references are manageable from userspace.
4068  */
4069 
4070 static DEFINE_IDR(mem_cgroup_idr);
4071 
4072 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4073 {
4074 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4075 	atomic_add(n, &memcg->id.ref);
4076 }
4077 
4078 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4079 {
4080 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4081 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4082 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4083 		memcg->id.id = 0;
4084 
4085 		/* Memcg ID pins CSS */
4086 		css_put(&memcg->css);
4087 	}
4088 }
4089 
4090 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4091 {
4092 	mem_cgroup_id_get_many(memcg, 1);
4093 }
4094 
4095 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4096 {
4097 	mem_cgroup_id_put_many(memcg, 1);
4098 }
4099 
4100 /**
4101  * mem_cgroup_from_id - look up a memcg from a memcg id
4102  * @id: the memcg id to look up
4103  *
4104  * Caller must hold rcu_read_lock().
4105  */
4106 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4107 {
4108 	WARN_ON_ONCE(!rcu_read_lock_held());
4109 	return idr_find(&mem_cgroup_idr, id);
4110 }
4111 
4112 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4113 {
4114 	struct mem_cgroup_per_node *pn;
4115 	int tmp = node;
4116 	/*
4117 	 * This routine is called against possible nodes.
4118 	 * But it's BUG to call kmalloc() against offline node.
4119 	 *
4120 	 * TODO: this routine can waste much memory for nodes which will
4121 	 *       never be onlined. It's better to use memory hotplug callback
4122 	 *       function.
4123 	 */
4124 	if (!node_state(node, N_NORMAL_MEMORY))
4125 		tmp = -1;
4126 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4127 	if (!pn)
4128 		return 1;
4129 
4130 	lruvec_init(&pn->lruvec);
4131 	pn->usage_in_excess = 0;
4132 	pn->on_tree = false;
4133 	pn->memcg = memcg;
4134 
4135 	memcg->nodeinfo[node] = pn;
4136 	return 0;
4137 }
4138 
4139 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4140 {
4141 	kfree(memcg->nodeinfo[node]);
4142 }
4143 
4144 static void mem_cgroup_free(struct mem_cgroup *memcg)
4145 {
4146 	int node;
4147 
4148 	memcg_wb_domain_exit(memcg);
4149 	for_each_node(node)
4150 		free_mem_cgroup_per_node_info(memcg, node);
4151 	free_percpu(memcg->stat);
4152 	kfree(memcg);
4153 }
4154 
4155 static struct mem_cgroup *mem_cgroup_alloc(void)
4156 {
4157 	struct mem_cgroup *memcg;
4158 	size_t size;
4159 	int node;
4160 
4161 	size = sizeof(struct mem_cgroup);
4162 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4163 
4164 	memcg = kzalloc(size, GFP_KERNEL);
4165 	if (!memcg)
4166 		return NULL;
4167 
4168 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4169 				 1, MEM_CGROUP_ID_MAX,
4170 				 GFP_KERNEL);
4171 	if (memcg->id.id < 0)
4172 		goto fail;
4173 
4174 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 	if (!memcg->stat)
4176 		goto fail;
4177 
4178 	for_each_node(node)
4179 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4180 			goto fail;
4181 
4182 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4183 		goto fail;
4184 
4185 	INIT_WORK(&memcg->high_work, high_work_func);
4186 	memcg->last_scanned_node = MAX_NUMNODES;
4187 	INIT_LIST_HEAD(&memcg->oom_notify);
4188 	mutex_init(&memcg->thresholds_lock);
4189 	spin_lock_init(&memcg->move_lock);
4190 	vmpressure_init(&memcg->vmpressure);
4191 	INIT_LIST_HEAD(&memcg->event_list);
4192 	spin_lock_init(&memcg->event_list_lock);
4193 	memcg->socket_pressure = jiffies;
4194 #ifndef CONFIG_SLOB
4195 	memcg->kmemcg_id = -1;
4196 #endif
4197 #ifdef CONFIG_CGROUP_WRITEBACK
4198 	INIT_LIST_HEAD(&memcg->cgwb_list);
4199 #endif
4200 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4201 	return memcg;
4202 fail:
4203 	if (memcg->id.id > 0)
4204 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4205 	mem_cgroup_free(memcg);
4206 	return NULL;
4207 }
4208 
4209 static struct cgroup_subsys_state * __ref
4210 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4211 {
4212 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4213 	struct mem_cgroup *memcg;
4214 	long error = -ENOMEM;
4215 
4216 	memcg = mem_cgroup_alloc();
4217 	if (!memcg)
4218 		return ERR_PTR(error);
4219 
4220 	memcg->high = PAGE_COUNTER_MAX;
4221 	memcg->soft_limit = PAGE_COUNTER_MAX;
4222 	if (parent) {
4223 		memcg->swappiness = mem_cgroup_swappiness(parent);
4224 		memcg->oom_kill_disable = parent->oom_kill_disable;
4225 	}
4226 	if (parent && parent->use_hierarchy) {
4227 		memcg->use_hierarchy = true;
4228 		page_counter_init(&memcg->memory, &parent->memory);
4229 		page_counter_init(&memcg->swap, &parent->swap);
4230 		page_counter_init(&memcg->memsw, &parent->memsw);
4231 		page_counter_init(&memcg->kmem, &parent->kmem);
4232 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4233 	} else {
4234 		page_counter_init(&memcg->memory, NULL);
4235 		page_counter_init(&memcg->swap, NULL);
4236 		page_counter_init(&memcg->memsw, NULL);
4237 		page_counter_init(&memcg->kmem, NULL);
4238 		page_counter_init(&memcg->tcpmem, NULL);
4239 		/*
4240 		 * Deeper hierachy with use_hierarchy == false doesn't make
4241 		 * much sense so let cgroup subsystem know about this
4242 		 * unfortunate state in our controller.
4243 		 */
4244 		if (parent != root_mem_cgroup)
4245 			memory_cgrp_subsys.broken_hierarchy = true;
4246 	}
4247 
4248 	/* The following stuff does not apply to the root */
4249 	if (!parent) {
4250 		root_mem_cgroup = memcg;
4251 		return &memcg->css;
4252 	}
4253 
4254 	error = memcg_online_kmem(memcg);
4255 	if (error)
4256 		goto fail;
4257 
4258 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4259 		static_branch_inc(&memcg_sockets_enabled_key);
4260 
4261 	return &memcg->css;
4262 fail:
4263 	mem_cgroup_free(memcg);
4264 	return ERR_PTR(-ENOMEM);
4265 }
4266 
4267 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4268 {
4269 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4270 
4271 	/* Online state pins memcg ID, memcg ID pins CSS */
4272 	atomic_set(&memcg->id.ref, 1);
4273 	css_get(css);
4274 	return 0;
4275 }
4276 
4277 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4278 {
4279 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4280 	struct mem_cgroup_event *event, *tmp;
4281 
4282 	/*
4283 	 * Unregister events and notify userspace.
4284 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4285 	 * directory to avoid race between userspace and kernelspace.
4286 	 */
4287 	spin_lock(&memcg->event_list_lock);
4288 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4289 		list_del_init(&event->list);
4290 		schedule_work(&event->remove);
4291 	}
4292 	spin_unlock(&memcg->event_list_lock);
4293 
4294 	memcg_offline_kmem(memcg);
4295 	wb_memcg_offline(memcg);
4296 
4297 	mem_cgroup_id_put(memcg);
4298 }
4299 
4300 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4301 {
4302 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303 
4304 	invalidate_reclaim_iterators(memcg);
4305 }
4306 
4307 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4308 {
4309 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310 
4311 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4312 		static_branch_dec(&memcg_sockets_enabled_key);
4313 
4314 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4315 		static_branch_dec(&memcg_sockets_enabled_key);
4316 
4317 	vmpressure_cleanup(&memcg->vmpressure);
4318 	cancel_work_sync(&memcg->high_work);
4319 	mem_cgroup_remove_from_trees(memcg);
4320 	memcg_free_kmem(memcg);
4321 	mem_cgroup_free(memcg);
4322 }
4323 
4324 /**
4325  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4326  * @css: the target css
4327  *
4328  * Reset the states of the mem_cgroup associated with @css.  This is
4329  * invoked when the userland requests disabling on the default hierarchy
4330  * but the memcg is pinned through dependency.  The memcg should stop
4331  * applying policies and should revert to the vanilla state as it may be
4332  * made visible again.
4333  *
4334  * The current implementation only resets the essential configurations.
4335  * This needs to be expanded to cover all the visible parts.
4336  */
4337 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4338 {
4339 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4340 
4341 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4342 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4343 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4344 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4345 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4346 	memcg->low = 0;
4347 	memcg->high = PAGE_COUNTER_MAX;
4348 	memcg->soft_limit = PAGE_COUNTER_MAX;
4349 	memcg_wb_domain_size_changed(memcg);
4350 }
4351 
4352 #ifdef CONFIG_MMU
4353 /* Handlers for move charge at task migration. */
4354 static int mem_cgroup_do_precharge(unsigned long count)
4355 {
4356 	int ret;
4357 
4358 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4359 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4360 	if (!ret) {
4361 		mc.precharge += count;
4362 		return ret;
4363 	}
4364 
4365 	/* Try charges one by one with reclaim */
4366 	while (count--) {
4367 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4368 		if (ret)
4369 			return ret;
4370 		mc.precharge++;
4371 		cond_resched();
4372 	}
4373 	return 0;
4374 }
4375 
4376 union mc_target {
4377 	struct page	*page;
4378 	swp_entry_t	ent;
4379 };
4380 
4381 enum mc_target_type {
4382 	MC_TARGET_NONE = 0,
4383 	MC_TARGET_PAGE,
4384 	MC_TARGET_SWAP,
4385 };
4386 
4387 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4388 						unsigned long addr, pte_t ptent)
4389 {
4390 	struct page *page = vm_normal_page(vma, addr, ptent);
4391 
4392 	if (!page || !page_mapped(page))
4393 		return NULL;
4394 	if (PageAnon(page)) {
4395 		if (!(mc.flags & MOVE_ANON))
4396 			return NULL;
4397 	} else {
4398 		if (!(mc.flags & MOVE_FILE))
4399 			return NULL;
4400 	}
4401 	if (!get_page_unless_zero(page))
4402 		return NULL;
4403 
4404 	return page;
4405 }
4406 
4407 #ifdef CONFIG_SWAP
4408 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4409 			pte_t ptent, swp_entry_t *entry)
4410 {
4411 	struct page *page = NULL;
4412 	swp_entry_t ent = pte_to_swp_entry(ptent);
4413 
4414 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4415 		return NULL;
4416 	/*
4417 	 * Because lookup_swap_cache() updates some statistics counter,
4418 	 * we call find_get_page() with swapper_space directly.
4419 	 */
4420 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4421 	if (do_memsw_account())
4422 		entry->val = ent.val;
4423 
4424 	return page;
4425 }
4426 #else
4427 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4428 			pte_t ptent, swp_entry_t *entry)
4429 {
4430 	return NULL;
4431 }
4432 #endif
4433 
4434 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4435 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4436 {
4437 	struct page *page = NULL;
4438 	struct address_space *mapping;
4439 	pgoff_t pgoff;
4440 
4441 	if (!vma->vm_file) /* anonymous vma */
4442 		return NULL;
4443 	if (!(mc.flags & MOVE_FILE))
4444 		return NULL;
4445 
4446 	mapping = vma->vm_file->f_mapping;
4447 	pgoff = linear_page_index(vma, addr);
4448 
4449 	/* page is moved even if it's not RSS of this task(page-faulted). */
4450 #ifdef CONFIG_SWAP
4451 	/* shmem/tmpfs may report page out on swap: account for that too. */
4452 	if (shmem_mapping(mapping)) {
4453 		page = find_get_entry(mapping, pgoff);
4454 		if (radix_tree_exceptional_entry(page)) {
4455 			swp_entry_t swp = radix_to_swp_entry(page);
4456 			if (do_memsw_account())
4457 				*entry = swp;
4458 			page = find_get_page(swap_address_space(swp),
4459 					     swp_offset(swp));
4460 		}
4461 	} else
4462 		page = find_get_page(mapping, pgoff);
4463 #else
4464 	page = find_get_page(mapping, pgoff);
4465 #endif
4466 	return page;
4467 }
4468 
4469 /**
4470  * mem_cgroup_move_account - move account of the page
4471  * @page: the page
4472  * @compound: charge the page as compound or small page
4473  * @from: mem_cgroup which the page is moved from.
4474  * @to:	mem_cgroup which the page is moved to. @from != @to.
4475  *
4476  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4477  *
4478  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4479  * from old cgroup.
4480  */
4481 static int mem_cgroup_move_account(struct page *page,
4482 				   bool compound,
4483 				   struct mem_cgroup *from,
4484 				   struct mem_cgroup *to)
4485 {
4486 	unsigned long flags;
4487 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4488 	int ret;
4489 	bool anon;
4490 
4491 	VM_BUG_ON(from == to);
4492 	VM_BUG_ON_PAGE(PageLRU(page), page);
4493 	VM_BUG_ON(compound && !PageTransHuge(page));
4494 
4495 	/*
4496 	 * Prevent mem_cgroup_migrate() from looking at
4497 	 * page->mem_cgroup of its source page while we change it.
4498 	 */
4499 	ret = -EBUSY;
4500 	if (!trylock_page(page))
4501 		goto out;
4502 
4503 	ret = -EINVAL;
4504 	if (page->mem_cgroup != from)
4505 		goto out_unlock;
4506 
4507 	anon = PageAnon(page);
4508 
4509 	spin_lock_irqsave(&from->move_lock, flags);
4510 
4511 	if (!anon && page_mapped(page)) {
4512 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4513 			       nr_pages);
4514 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4515 			       nr_pages);
4516 	}
4517 
4518 	/*
4519 	 * move_lock grabbed above and caller set from->moving_account, so
4520 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4521 	 * So mapping should be stable for dirty pages.
4522 	 */
4523 	if (!anon && PageDirty(page)) {
4524 		struct address_space *mapping = page_mapping(page);
4525 
4526 		if (mapping_cap_account_dirty(mapping)) {
4527 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4528 				       nr_pages);
4529 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4530 				       nr_pages);
4531 		}
4532 	}
4533 
4534 	if (PageWriteback(page)) {
4535 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4536 			       nr_pages);
4537 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4538 			       nr_pages);
4539 	}
4540 
4541 	/*
4542 	 * It is safe to change page->mem_cgroup here because the page
4543 	 * is referenced, charged, and isolated - we can't race with
4544 	 * uncharging, charging, migration, or LRU putback.
4545 	 */
4546 
4547 	/* caller should have done css_get */
4548 	page->mem_cgroup = to;
4549 	spin_unlock_irqrestore(&from->move_lock, flags);
4550 
4551 	ret = 0;
4552 
4553 	local_irq_disable();
4554 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4555 	memcg_check_events(to, page);
4556 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4557 	memcg_check_events(from, page);
4558 	local_irq_enable();
4559 out_unlock:
4560 	unlock_page(page);
4561 out:
4562 	return ret;
4563 }
4564 
4565 /**
4566  * get_mctgt_type - get target type of moving charge
4567  * @vma: the vma the pte to be checked belongs
4568  * @addr: the address corresponding to the pte to be checked
4569  * @ptent: the pte to be checked
4570  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4571  *
4572  * Returns
4573  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4574  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4575  *     move charge. if @target is not NULL, the page is stored in target->page
4576  *     with extra refcnt got(Callers should handle it).
4577  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4578  *     target for charge migration. if @target is not NULL, the entry is stored
4579  *     in target->ent.
4580  *
4581  * Called with pte lock held.
4582  */
4583 
4584 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4585 		unsigned long addr, pte_t ptent, union mc_target *target)
4586 {
4587 	struct page *page = NULL;
4588 	enum mc_target_type ret = MC_TARGET_NONE;
4589 	swp_entry_t ent = { .val = 0 };
4590 
4591 	if (pte_present(ptent))
4592 		page = mc_handle_present_pte(vma, addr, ptent);
4593 	else if (is_swap_pte(ptent))
4594 		page = mc_handle_swap_pte(vma, ptent, &ent);
4595 	else if (pte_none(ptent))
4596 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4597 
4598 	if (!page && !ent.val)
4599 		return ret;
4600 	if (page) {
4601 		/*
4602 		 * Do only loose check w/o serialization.
4603 		 * mem_cgroup_move_account() checks the page is valid or
4604 		 * not under LRU exclusion.
4605 		 */
4606 		if (page->mem_cgroup == mc.from) {
4607 			ret = MC_TARGET_PAGE;
4608 			if (target)
4609 				target->page = page;
4610 		}
4611 		if (!ret || !target)
4612 			put_page(page);
4613 	}
4614 	/* There is a swap entry and a page doesn't exist or isn't charged */
4615 	if (ent.val && !ret &&
4616 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4617 		ret = MC_TARGET_SWAP;
4618 		if (target)
4619 			target->ent = ent;
4620 	}
4621 	return ret;
4622 }
4623 
4624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4625 /*
4626  * We don't consider swapping or file mapped pages because THP does not
4627  * support them for now.
4628  * Caller should make sure that pmd_trans_huge(pmd) is true.
4629  */
4630 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4631 		unsigned long addr, pmd_t pmd, union mc_target *target)
4632 {
4633 	struct page *page = NULL;
4634 	enum mc_target_type ret = MC_TARGET_NONE;
4635 
4636 	page = pmd_page(pmd);
4637 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4638 	if (!(mc.flags & MOVE_ANON))
4639 		return ret;
4640 	if (page->mem_cgroup == mc.from) {
4641 		ret = MC_TARGET_PAGE;
4642 		if (target) {
4643 			get_page(page);
4644 			target->page = page;
4645 		}
4646 	}
4647 	return ret;
4648 }
4649 #else
4650 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4651 		unsigned long addr, pmd_t pmd, union mc_target *target)
4652 {
4653 	return MC_TARGET_NONE;
4654 }
4655 #endif
4656 
4657 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4658 					unsigned long addr, unsigned long end,
4659 					struct mm_walk *walk)
4660 {
4661 	struct vm_area_struct *vma = walk->vma;
4662 	pte_t *pte;
4663 	spinlock_t *ptl;
4664 
4665 	ptl = pmd_trans_huge_lock(pmd, vma);
4666 	if (ptl) {
4667 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4668 			mc.precharge += HPAGE_PMD_NR;
4669 		spin_unlock(ptl);
4670 		return 0;
4671 	}
4672 
4673 	if (pmd_trans_unstable(pmd))
4674 		return 0;
4675 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4676 	for (; addr != end; pte++, addr += PAGE_SIZE)
4677 		if (get_mctgt_type(vma, addr, *pte, NULL))
4678 			mc.precharge++;	/* increment precharge temporarily */
4679 	pte_unmap_unlock(pte - 1, ptl);
4680 	cond_resched();
4681 
4682 	return 0;
4683 }
4684 
4685 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4686 {
4687 	unsigned long precharge;
4688 
4689 	struct mm_walk mem_cgroup_count_precharge_walk = {
4690 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4691 		.mm = mm,
4692 	};
4693 	down_read(&mm->mmap_sem);
4694 	walk_page_range(0, mm->highest_vm_end,
4695 			&mem_cgroup_count_precharge_walk);
4696 	up_read(&mm->mmap_sem);
4697 
4698 	precharge = mc.precharge;
4699 	mc.precharge = 0;
4700 
4701 	return precharge;
4702 }
4703 
4704 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4705 {
4706 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4707 
4708 	VM_BUG_ON(mc.moving_task);
4709 	mc.moving_task = current;
4710 	return mem_cgroup_do_precharge(precharge);
4711 }
4712 
4713 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4714 static void __mem_cgroup_clear_mc(void)
4715 {
4716 	struct mem_cgroup *from = mc.from;
4717 	struct mem_cgroup *to = mc.to;
4718 
4719 	/* we must uncharge all the leftover precharges from mc.to */
4720 	if (mc.precharge) {
4721 		cancel_charge(mc.to, mc.precharge);
4722 		mc.precharge = 0;
4723 	}
4724 	/*
4725 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4726 	 * we must uncharge here.
4727 	 */
4728 	if (mc.moved_charge) {
4729 		cancel_charge(mc.from, mc.moved_charge);
4730 		mc.moved_charge = 0;
4731 	}
4732 	/* we must fixup refcnts and charges */
4733 	if (mc.moved_swap) {
4734 		/* uncharge swap account from the old cgroup */
4735 		if (!mem_cgroup_is_root(mc.from))
4736 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4737 
4738 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4739 
4740 		/*
4741 		 * we charged both to->memory and to->memsw, so we
4742 		 * should uncharge to->memory.
4743 		 */
4744 		if (!mem_cgroup_is_root(mc.to))
4745 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4746 
4747 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4748 		css_put_many(&mc.to->css, mc.moved_swap);
4749 
4750 		mc.moved_swap = 0;
4751 	}
4752 	memcg_oom_recover(from);
4753 	memcg_oom_recover(to);
4754 	wake_up_all(&mc.waitq);
4755 }
4756 
4757 static void mem_cgroup_clear_mc(void)
4758 {
4759 	struct mm_struct *mm = mc.mm;
4760 
4761 	/*
4762 	 * we must clear moving_task before waking up waiters at the end of
4763 	 * task migration.
4764 	 */
4765 	mc.moving_task = NULL;
4766 	__mem_cgroup_clear_mc();
4767 	spin_lock(&mc.lock);
4768 	mc.from = NULL;
4769 	mc.to = NULL;
4770 	mc.mm = NULL;
4771 	spin_unlock(&mc.lock);
4772 
4773 	mmput(mm);
4774 }
4775 
4776 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4777 {
4778 	struct cgroup_subsys_state *css;
4779 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4780 	struct mem_cgroup *from;
4781 	struct task_struct *leader, *p;
4782 	struct mm_struct *mm;
4783 	unsigned long move_flags;
4784 	int ret = 0;
4785 
4786 	/* charge immigration isn't supported on the default hierarchy */
4787 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4788 		return 0;
4789 
4790 	/*
4791 	 * Multi-process migrations only happen on the default hierarchy
4792 	 * where charge immigration is not used.  Perform charge
4793 	 * immigration if @tset contains a leader and whine if there are
4794 	 * multiple.
4795 	 */
4796 	p = NULL;
4797 	cgroup_taskset_for_each_leader(leader, css, tset) {
4798 		WARN_ON_ONCE(p);
4799 		p = leader;
4800 		memcg = mem_cgroup_from_css(css);
4801 	}
4802 	if (!p)
4803 		return 0;
4804 
4805 	/*
4806 	 * We are now commited to this value whatever it is. Changes in this
4807 	 * tunable will only affect upcoming migrations, not the current one.
4808 	 * So we need to save it, and keep it going.
4809 	 */
4810 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4811 	if (!move_flags)
4812 		return 0;
4813 
4814 	from = mem_cgroup_from_task(p);
4815 
4816 	VM_BUG_ON(from == memcg);
4817 
4818 	mm = get_task_mm(p);
4819 	if (!mm)
4820 		return 0;
4821 	/* We move charges only when we move a owner of the mm */
4822 	if (mm->owner == p) {
4823 		VM_BUG_ON(mc.from);
4824 		VM_BUG_ON(mc.to);
4825 		VM_BUG_ON(mc.precharge);
4826 		VM_BUG_ON(mc.moved_charge);
4827 		VM_BUG_ON(mc.moved_swap);
4828 
4829 		spin_lock(&mc.lock);
4830 		mc.mm = mm;
4831 		mc.from = from;
4832 		mc.to = memcg;
4833 		mc.flags = move_flags;
4834 		spin_unlock(&mc.lock);
4835 		/* We set mc.moving_task later */
4836 
4837 		ret = mem_cgroup_precharge_mc(mm);
4838 		if (ret)
4839 			mem_cgroup_clear_mc();
4840 	} else {
4841 		mmput(mm);
4842 	}
4843 	return ret;
4844 }
4845 
4846 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4847 {
4848 	if (mc.to)
4849 		mem_cgroup_clear_mc();
4850 }
4851 
4852 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4853 				unsigned long addr, unsigned long end,
4854 				struct mm_walk *walk)
4855 {
4856 	int ret = 0;
4857 	struct vm_area_struct *vma = walk->vma;
4858 	pte_t *pte;
4859 	spinlock_t *ptl;
4860 	enum mc_target_type target_type;
4861 	union mc_target target;
4862 	struct page *page;
4863 
4864 	ptl = pmd_trans_huge_lock(pmd, vma);
4865 	if (ptl) {
4866 		if (mc.precharge < HPAGE_PMD_NR) {
4867 			spin_unlock(ptl);
4868 			return 0;
4869 		}
4870 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4871 		if (target_type == MC_TARGET_PAGE) {
4872 			page = target.page;
4873 			if (!isolate_lru_page(page)) {
4874 				if (!mem_cgroup_move_account(page, true,
4875 							     mc.from, mc.to)) {
4876 					mc.precharge -= HPAGE_PMD_NR;
4877 					mc.moved_charge += HPAGE_PMD_NR;
4878 				}
4879 				putback_lru_page(page);
4880 			}
4881 			put_page(page);
4882 		}
4883 		spin_unlock(ptl);
4884 		return 0;
4885 	}
4886 
4887 	if (pmd_trans_unstable(pmd))
4888 		return 0;
4889 retry:
4890 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4891 	for (; addr != end; addr += PAGE_SIZE) {
4892 		pte_t ptent = *(pte++);
4893 		swp_entry_t ent;
4894 
4895 		if (!mc.precharge)
4896 			break;
4897 
4898 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4899 		case MC_TARGET_PAGE:
4900 			page = target.page;
4901 			/*
4902 			 * We can have a part of the split pmd here. Moving it
4903 			 * can be done but it would be too convoluted so simply
4904 			 * ignore such a partial THP and keep it in original
4905 			 * memcg. There should be somebody mapping the head.
4906 			 */
4907 			if (PageTransCompound(page))
4908 				goto put;
4909 			if (isolate_lru_page(page))
4910 				goto put;
4911 			if (!mem_cgroup_move_account(page, false,
4912 						mc.from, mc.to)) {
4913 				mc.precharge--;
4914 				/* we uncharge from mc.from later. */
4915 				mc.moved_charge++;
4916 			}
4917 			putback_lru_page(page);
4918 put:			/* get_mctgt_type() gets the page */
4919 			put_page(page);
4920 			break;
4921 		case MC_TARGET_SWAP:
4922 			ent = target.ent;
4923 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4924 				mc.precharge--;
4925 				/* we fixup refcnts and charges later. */
4926 				mc.moved_swap++;
4927 			}
4928 			break;
4929 		default:
4930 			break;
4931 		}
4932 	}
4933 	pte_unmap_unlock(pte - 1, ptl);
4934 	cond_resched();
4935 
4936 	if (addr != end) {
4937 		/*
4938 		 * We have consumed all precharges we got in can_attach().
4939 		 * We try charge one by one, but don't do any additional
4940 		 * charges to mc.to if we have failed in charge once in attach()
4941 		 * phase.
4942 		 */
4943 		ret = mem_cgroup_do_precharge(1);
4944 		if (!ret)
4945 			goto retry;
4946 	}
4947 
4948 	return ret;
4949 }
4950 
4951 static void mem_cgroup_move_charge(void)
4952 {
4953 	struct mm_walk mem_cgroup_move_charge_walk = {
4954 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4955 		.mm = mc.mm,
4956 	};
4957 
4958 	lru_add_drain_all();
4959 	/*
4960 	 * Signal lock_page_memcg() to take the memcg's move_lock
4961 	 * while we're moving its pages to another memcg. Then wait
4962 	 * for already started RCU-only updates to finish.
4963 	 */
4964 	atomic_inc(&mc.from->moving_account);
4965 	synchronize_rcu();
4966 retry:
4967 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4968 		/*
4969 		 * Someone who are holding the mmap_sem might be waiting in
4970 		 * waitq. So we cancel all extra charges, wake up all waiters,
4971 		 * and retry. Because we cancel precharges, we might not be able
4972 		 * to move enough charges, but moving charge is a best-effort
4973 		 * feature anyway, so it wouldn't be a big problem.
4974 		 */
4975 		__mem_cgroup_clear_mc();
4976 		cond_resched();
4977 		goto retry;
4978 	}
4979 	/*
4980 	 * When we have consumed all precharges and failed in doing
4981 	 * additional charge, the page walk just aborts.
4982 	 */
4983 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4984 
4985 	up_read(&mc.mm->mmap_sem);
4986 	atomic_dec(&mc.from->moving_account);
4987 }
4988 
4989 static void mem_cgroup_move_task(void)
4990 {
4991 	if (mc.to) {
4992 		mem_cgroup_move_charge();
4993 		mem_cgroup_clear_mc();
4994 	}
4995 }
4996 #else	/* !CONFIG_MMU */
4997 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4998 {
4999 	return 0;
5000 }
5001 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5002 {
5003 }
5004 static void mem_cgroup_move_task(void)
5005 {
5006 }
5007 #endif
5008 
5009 /*
5010  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5011  * to verify whether we're attached to the default hierarchy on each mount
5012  * attempt.
5013  */
5014 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5015 {
5016 	/*
5017 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5018 	 * guarantees that @root doesn't have any children, so turning it
5019 	 * on for the root memcg is enough.
5020 	 */
5021 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5022 		root_mem_cgroup->use_hierarchy = true;
5023 	else
5024 		root_mem_cgroup->use_hierarchy = false;
5025 }
5026 
5027 static u64 memory_current_read(struct cgroup_subsys_state *css,
5028 			       struct cftype *cft)
5029 {
5030 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5031 
5032 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5033 }
5034 
5035 static int memory_low_show(struct seq_file *m, void *v)
5036 {
5037 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5038 	unsigned long low = READ_ONCE(memcg->low);
5039 
5040 	if (low == PAGE_COUNTER_MAX)
5041 		seq_puts(m, "max\n");
5042 	else
5043 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5044 
5045 	return 0;
5046 }
5047 
5048 static ssize_t memory_low_write(struct kernfs_open_file *of,
5049 				char *buf, size_t nbytes, loff_t off)
5050 {
5051 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5052 	unsigned long low;
5053 	int err;
5054 
5055 	buf = strstrip(buf);
5056 	err = page_counter_memparse(buf, "max", &low);
5057 	if (err)
5058 		return err;
5059 
5060 	memcg->low = low;
5061 
5062 	return nbytes;
5063 }
5064 
5065 static int memory_high_show(struct seq_file *m, void *v)
5066 {
5067 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5068 	unsigned long high = READ_ONCE(memcg->high);
5069 
5070 	if (high == PAGE_COUNTER_MAX)
5071 		seq_puts(m, "max\n");
5072 	else
5073 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5074 
5075 	return 0;
5076 }
5077 
5078 static ssize_t memory_high_write(struct kernfs_open_file *of,
5079 				 char *buf, size_t nbytes, loff_t off)
5080 {
5081 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5082 	unsigned long nr_pages;
5083 	unsigned long high;
5084 	int err;
5085 
5086 	buf = strstrip(buf);
5087 	err = page_counter_memparse(buf, "max", &high);
5088 	if (err)
5089 		return err;
5090 
5091 	memcg->high = high;
5092 
5093 	nr_pages = page_counter_read(&memcg->memory);
5094 	if (nr_pages > high)
5095 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5096 					     GFP_KERNEL, true);
5097 
5098 	memcg_wb_domain_size_changed(memcg);
5099 	return nbytes;
5100 }
5101 
5102 static int memory_max_show(struct seq_file *m, void *v)
5103 {
5104 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5105 	unsigned long max = READ_ONCE(memcg->memory.limit);
5106 
5107 	if (max == PAGE_COUNTER_MAX)
5108 		seq_puts(m, "max\n");
5109 	else
5110 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5111 
5112 	return 0;
5113 }
5114 
5115 static ssize_t memory_max_write(struct kernfs_open_file *of,
5116 				char *buf, size_t nbytes, loff_t off)
5117 {
5118 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5119 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5120 	bool drained = false;
5121 	unsigned long max;
5122 	int err;
5123 
5124 	buf = strstrip(buf);
5125 	err = page_counter_memparse(buf, "max", &max);
5126 	if (err)
5127 		return err;
5128 
5129 	xchg(&memcg->memory.limit, max);
5130 
5131 	for (;;) {
5132 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5133 
5134 		if (nr_pages <= max)
5135 			break;
5136 
5137 		if (signal_pending(current)) {
5138 			err = -EINTR;
5139 			break;
5140 		}
5141 
5142 		if (!drained) {
5143 			drain_all_stock(memcg);
5144 			drained = true;
5145 			continue;
5146 		}
5147 
5148 		if (nr_reclaims) {
5149 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5150 							  GFP_KERNEL, true))
5151 				nr_reclaims--;
5152 			continue;
5153 		}
5154 
5155 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5156 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5157 			break;
5158 	}
5159 
5160 	memcg_wb_domain_size_changed(memcg);
5161 	return nbytes;
5162 }
5163 
5164 static int memory_events_show(struct seq_file *m, void *v)
5165 {
5166 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5167 
5168 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5169 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5170 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5171 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5172 
5173 	return 0;
5174 }
5175 
5176 static int memory_stat_show(struct seq_file *m, void *v)
5177 {
5178 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5179 	unsigned long stat[MEMCG_NR_STAT];
5180 	unsigned long events[MEMCG_NR_EVENTS];
5181 	int i;
5182 
5183 	/*
5184 	 * Provide statistics on the state of the memory subsystem as
5185 	 * well as cumulative event counters that show past behavior.
5186 	 *
5187 	 * This list is ordered following a combination of these gradients:
5188 	 * 1) generic big picture -> specifics and details
5189 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5190 	 *
5191 	 * Current memory state:
5192 	 */
5193 
5194 	tree_stat(memcg, stat);
5195 	tree_events(memcg, events);
5196 
5197 	seq_printf(m, "anon %llu\n",
5198 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5199 	seq_printf(m, "file %llu\n",
5200 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5201 	seq_printf(m, "kernel_stack %llu\n",
5202 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5203 	seq_printf(m, "slab %llu\n",
5204 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5205 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5206 	seq_printf(m, "sock %llu\n",
5207 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5208 
5209 	seq_printf(m, "file_mapped %llu\n",
5210 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5211 	seq_printf(m, "file_dirty %llu\n",
5212 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5213 	seq_printf(m, "file_writeback %llu\n",
5214 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5215 
5216 	for (i = 0; i < NR_LRU_LISTS; i++) {
5217 		struct mem_cgroup *mi;
5218 		unsigned long val = 0;
5219 
5220 		for_each_mem_cgroup_tree(mi, memcg)
5221 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5222 		seq_printf(m, "%s %llu\n",
5223 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5224 	}
5225 
5226 	seq_printf(m, "slab_reclaimable %llu\n",
5227 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5228 	seq_printf(m, "slab_unreclaimable %llu\n",
5229 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5230 
5231 	/* Accumulated memory events */
5232 
5233 	seq_printf(m, "pgfault %lu\n",
5234 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5235 	seq_printf(m, "pgmajfault %lu\n",
5236 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5237 
5238 	return 0;
5239 }
5240 
5241 static struct cftype memory_files[] = {
5242 	{
5243 		.name = "current",
5244 		.flags = CFTYPE_NOT_ON_ROOT,
5245 		.read_u64 = memory_current_read,
5246 	},
5247 	{
5248 		.name = "low",
5249 		.flags = CFTYPE_NOT_ON_ROOT,
5250 		.seq_show = memory_low_show,
5251 		.write = memory_low_write,
5252 	},
5253 	{
5254 		.name = "high",
5255 		.flags = CFTYPE_NOT_ON_ROOT,
5256 		.seq_show = memory_high_show,
5257 		.write = memory_high_write,
5258 	},
5259 	{
5260 		.name = "max",
5261 		.flags = CFTYPE_NOT_ON_ROOT,
5262 		.seq_show = memory_max_show,
5263 		.write = memory_max_write,
5264 	},
5265 	{
5266 		.name = "events",
5267 		.flags = CFTYPE_NOT_ON_ROOT,
5268 		.file_offset = offsetof(struct mem_cgroup, events_file),
5269 		.seq_show = memory_events_show,
5270 	},
5271 	{
5272 		.name = "stat",
5273 		.flags = CFTYPE_NOT_ON_ROOT,
5274 		.seq_show = memory_stat_show,
5275 	},
5276 	{ }	/* terminate */
5277 };
5278 
5279 struct cgroup_subsys memory_cgrp_subsys = {
5280 	.css_alloc = mem_cgroup_css_alloc,
5281 	.css_online = mem_cgroup_css_online,
5282 	.css_offline = mem_cgroup_css_offline,
5283 	.css_released = mem_cgroup_css_released,
5284 	.css_free = mem_cgroup_css_free,
5285 	.css_reset = mem_cgroup_css_reset,
5286 	.can_attach = mem_cgroup_can_attach,
5287 	.cancel_attach = mem_cgroup_cancel_attach,
5288 	.post_attach = mem_cgroup_move_task,
5289 	.bind = mem_cgroup_bind,
5290 	.dfl_cftypes = memory_files,
5291 	.legacy_cftypes = mem_cgroup_legacy_files,
5292 	.early_init = 0,
5293 };
5294 
5295 /**
5296  * mem_cgroup_low - check if memory consumption is below the normal range
5297  * @root: the highest ancestor to consider
5298  * @memcg: the memory cgroup to check
5299  *
5300  * Returns %true if memory consumption of @memcg, and that of all
5301  * configurable ancestors up to @root, is below the normal range.
5302  */
5303 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5304 {
5305 	if (mem_cgroup_disabled())
5306 		return false;
5307 
5308 	/*
5309 	 * The toplevel group doesn't have a configurable range, so
5310 	 * it's never low when looked at directly, and it is not
5311 	 * considered an ancestor when assessing the hierarchy.
5312 	 */
5313 
5314 	if (memcg == root_mem_cgroup)
5315 		return false;
5316 
5317 	if (page_counter_read(&memcg->memory) >= memcg->low)
5318 		return false;
5319 
5320 	while (memcg != root) {
5321 		memcg = parent_mem_cgroup(memcg);
5322 
5323 		if (memcg == root_mem_cgroup)
5324 			break;
5325 
5326 		if (page_counter_read(&memcg->memory) >= memcg->low)
5327 			return false;
5328 	}
5329 	return true;
5330 }
5331 
5332 /**
5333  * mem_cgroup_try_charge - try charging a page
5334  * @page: page to charge
5335  * @mm: mm context of the victim
5336  * @gfp_mask: reclaim mode
5337  * @memcgp: charged memcg return
5338  * @compound: charge the page as compound or small page
5339  *
5340  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5341  * pages according to @gfp_mask if necessary.
5342  *
5343  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5344  * Otherwise, an error code is returned.
5345  *
5346  * After page->mapping has been set up, the caller must finalize the
5347  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5348  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5349  */
5350 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5351 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5352 			  bool compound)
5353 {
5354 	struct mem_cgroup *memcg = NULL;
5355 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5356 	int ret = 0;
5357 
5358 	if (mem_cgroup_disabled())
5359 		goto out;
5360 
5361 	if (PageSwapCache(page)) {
5362 		/*
5363 		 * Every swap fault against a single page tries to charge the
5364 		 * page, bail as early as possible.  shmem_unuse() encounters
5365 		 * already charged pages, too.  The USED bit is protected by
5366 		 * the page lock, which serializes swap cache removal, which
5367 		 * in turn serializes uncharging.
5368 		 */
5369 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5370 		if (page->mem_cgroup)
5371 			goto out;
5372 
5373 		if (do_swap_account) {
5374 			swp_entry_t ent = { .val = page_private(page), };
5375 			unsigned short id = lookup_swap_cgroup_id(ent);
5376 
5377 			rcu_read_lock();
5378 			memcg = mem_cgroup_from_id(id);
5379 			if (memcg && !css_tryget_online(&memcg->css))
5380 				memcg = NULL;
5381 			rcu_read_unlock();
5382 		}
5383 	}
5384 
5385 	if (!memcg)
5386 		memcg = get_mem_cgroup_from_mm(mm);
5387 
5388 	ret = try_charge(memcg, gfp_mask, nr_pages);
5389 
5390 	css_put(&memcg->css);
5391 out:
5392 	*memcgp = memcg;
5393 	return ret;
5394 }
5395 
5396 /**
5397  * mem_cgroup_commit_charge - commit a page charge
5398  * @page: page to charge
5399  * @memcg: memcg to charge the page to
5400  * @lrucare: page might be on LRU already
5401  * @compound: charge the page as compound or small page
5402  *
5403  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5404  * after page->mapping has been set up.  This must happen atomically
5405  * as part of the page instantiation, i.e. under the page table lock
5406  * for anonymous pages, under the page lock for page and swap cache.
5407  *
5408  * In addition, the page must not be on the LRU during the commit, to
5409  * prevent racing with task migration.  If it might be, use @lrucare.
5410  *
5411  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5412  */
5413 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5414 			      bool lrucare, bool compound)
5415 {
5416 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5417 
5418 	VM_BUG_ON_PAGE(!page->mapping, page);
5419 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5420 
5421 	if (mem_cgroup_disabled())
5422 		return;
5423 	/*
5424 	 * Swap faults will attempt to charge the same page multiple
5425 	 * times.  But reuse_swap_page() might have removed the page
5426 	 * from swapcache already, so we can't check PageSwapCache().
5427 	 */
5428 	if (!memcg)
5429 		return;
5430 
5431 	commit_charge(page, memcg, lrucare);
5432 
5433 	local_irq_disable();
5434 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5435 	memcg_check_events(memcg, page);
5436 	local_irq_enable();
5437 
5438 	if (do_memsw_account() && PageSwapCache(page)) {
5439 		swp_entry_t entry = { .val = page_private(page) };
5440 		/*
5441 		 * The swap entry might not get freed for a long time,
5442 		 * let's not wait for it.  The page already received a
5443 		 * memory+swap charge, drop the swap entry duplicate.
5444 		 */
5445 		mem_cgroup_uncharge_swap(entry);
5446 	}
5447 }
5448 
5449 /**
5450  * mem_cgroup_cancel_charge - cancel a page charge
5451  * @page: page to charge
5452  * @memcg: memcg to charge the page to
5453  * @compound: charge the page as compound or small page
5454  *
5455  * Cancel a charge transaction started by mem_cgroup_try_charge().
5456  */
5457 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5458 		bool compound)
5459 {
5460 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5461 
5462 	if (mem_cgroup_disabled())
5463 		return;
5464 	/*
5465 	 * Swap faults will attempt to charge the same page multiple
5466 	 * times.  But reuse_swap_page() might have removed the page
5467 	 * from swapcache already, so we can't check PageSwapCache().
5468 	 */
5469 	if (!memcg)
5470 		return;
5471 
5472 	cancel_charge(memcg, nr_pages);
5473 }
5474 
5475 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5476 			   unsigned long nr_anon, unsigned long nr_file,
5477 			   unsigned long nr_huge, unsigned long nr_kmem,
5478 			   struct page *dummy_page)
5479 {
5480 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5481 	unsigned long flags;
5482 
5483 	if (!mem_cgroup_is_root(memcg)) {
5484 		page_counter_uncharge(&memcg->memory, nr_pages);
5485 		if (do_memsw_account())
5486 			page_counter_uncharge(&memcg->memsw, nr_pages);
5487 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5488 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5489 		memcg_oom_recover(memcg);
5490 	}
5491 
5492 	local_irq_save(flags);
5493 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5494 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5495 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5496 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5497 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5498 	memcg_check_events(memcg, dummy_page);
5499 	local_irq_restore(flags);
5500 
5501 	if (!mem_cgroup_is_root(memcg))
5502 		css_put_many(&memcg->css, nr_pages);
5503 }
5504 
5505 static void uncharge_list(struct list_head *page_list)
5506 {
5507 	struct mem_cgroup *memcg = NULL;
5508 	unsigned long nr_anon = 0;
5509 	unsigned long nr_file = 0;
5510 	unsigned long nr_huge = 0;
5511 	unsigned long nr_kmem = 0;
5512 	unsigned long pgpgout = 0;
5513 	struct list_head *next;
5514 	struct page *page;
5515 
5516 	/*
5517 	 * Note that the list can be a single page->lru; hence the
5518 	 * do-while loop instead of a simple list_for_each_entry().
5519 	 */
5520 	next = page_list->next;
5521 	do {
5522 		page = list_entry(next, struct page, lru);
5523 		next = page->lru.next;
5524 
5525 		VM_BUG_ON_PAGE(PageLRU(page), page);
5526 		VM_BUG_ON_PAGE(page_count(page), page);
5527 
5528 		if (!page->mem_cgroup)
5529 			continue;
5530 
5531 		/*
5532 		 * Nobody should be changing or seriously looking at
5533 		 * page->mem_cgroup at this point, we have fully
5534 		 * exclusive access to the page.
5535 		 */
5536 
5537 		if (memcg != page->mem_cgroup) {
5538 			if (memcg) {
5539 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5540 					       nr_huge, nr_kmem, page);
5541 				pgpgout = nr_anon = nr_file =
5542 					nr_huge = nr_kmem = 0;
5543 			}
5544 			memcg = page->mem_cgroup;
5545 		}
5546 
5547 		if (!PageKmemcg(page)) {
5548 			unsigned int nr_pages = 1;
5549 
5550 			if (PageTransHuge(page)) {
5551 				nr_pages <<= compound_order(page);
5552 				nr_huge += nr_pages;
5553 			}
5554 			if (PageAnon(page))
5555 				nr_anon += nr_pages;
5556 			else
5557 				nr_file += nr_pages;
5558 			pgpgout++;
5559 		} else {
5560 			nr_kmem += 1 << compound_order(page);
5561 			__ClearPageKmemcg(page);
5562 		}
5563 
5564 		page->mem_cgroup = NULL;
5565 	} while (next != page_list);
5566 
5567 	if (memcg)
5568 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5569 			       nr_huge, nr_kmem, page);
5570 }
5571 
5572 /**
5573  * mem_cgroup_uncharge - uncharge a page
5574  * @page: page to uncharge
5575  *
5576  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5577  * mem_cgroup_commit_charge().
5578  */
5579 void mem_cgroup_uncharge(struct page *page)
5580 {
5581 	if (mem_cgroup_disabled())
5582 		return;
5583 
5584 	/* Don't touch page->lru of any random page, pre-check: */
5585 	if (!page->mem_cgroup)
5586 		return;
5587 
5588 	INIT_LIST_HEAD(&page->lru);
5589 	uncharge_list(&page->lru);
5590 }
5591 
5592 /**
5593  * mem_cgroup_uncharge_list - uncharge a list of page
5594  * @page_list: list of pages to uncharge
5595  *
5596  * Uncharge a list of pages previously charged with
5597  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5598  */
5599 void mem_cgroup_uncharge_list(struct list_head *page_list)
5600 {
5601 	if (mem_cgroup_disabled())
5602 		return;
5603 
5604 	if (!list_empty(page_list))
5605 		uncharge_list(page_list);
5606 }
5607 
5608 /**
5609  * mem_cgroup_migrate - charge a page's replacement
5610  * @oldpage: currently circulating page
5611  * @newpage: replacement page
5612  *
5613  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5614  * be uncharged upon free.
5615  *
5616  * Both pages must be locked, @newpage->mapping must be set up.
5617  */
5618 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5619 {
5620 	struct mem_cgroup *memcg;
5621 	unsigned int nr_pages;
5622 	bool compound;
5623 	unsigned long flags;
5624 
5625 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5626 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5627 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5628 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5629 		       newpage);
5630 
5631 	if (mem_cgroup_disabled())
5632 		return;
5633 
5634 	/* Page cache replacement: new page already charged? */
5635 	if (newpage->mem_cgroup)
5636 		return;
5637 
5638 	/* Swapcache readahead pages can get replaced before being charged */
5639 	memcg = oldpage->mem_cgroup;
5640 	if (!memcg)
5641 		return;
5642 
5643 	/* Force-charge the new page. The old one will be freed soon */
5644 	compound = PageTransHuge(newpage);
5645 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5646 
5647 	page_counter_charge(&memcg->memory, nr_pages);
5648 	if (do_memsw_account())
5649 		page_counter_charge(&memcg->memsw, nr_pages);
5650 	css_get_many(&memcg->css, nr_pages);
5651 
5652 	commit_charge(newpage, memcg, false);
5653 
5654 	local_irq_save(flags);
5655 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5656 	memcg_check_events(memcg, newpage);
5657 	local_irq_restore(flags);
5658 }
5659 
5660 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5661 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5662 
5663 void mem_cgroup_sk_alloc(struct sock *sk)
5664 {
5665 	struct mem_cgroup *memcg;
5666 
5667 	if (!mem_cgroup_sockets_enabled)
5668 		return;
5669 
5670 	/*
5671 	 * Socket cloning can throw us here with sk_memcg already
5672 	 * filled. It won't however, necessarily happen from
5673 	 * process context. So the test for root memcg given
5674 	 * the current task's memcg won't help us in this case.
5675 	 *
5676 	 * Respecting the original socket's memcg is a better
5677 	 * decision in this case.
5678 	 */
5679 	if (sk->sk_memcg) {
5680 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5681 		css_get(&sk->sk_memcg->css);
5682 		return;
5683 	}
5684 
5685 	rcu_read_lock();
5686 	memcg = mem_cgroup_from_task(current);
5687 	if (memcg == root_mem_cgroup)
5688 		goto out;
5689 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5690 		goto out;
5691 	if (css_tryget_online(&memcg->css))
5692 		sk->sk_memcg = memcg;
5693 out:
5694 	rcu_read_unlock();
5695 }
5696 
5697 void mem_cgroup_sk_free(struct sock *sk)
5698 {
5699 	if (sk->sk_memcg)
5700 		css_put(&sk->sk_memcg->css);
5701 }
5702 
5703 /**
5704  * mem_cgroup_charge_skmem - charge socket memory
5705  * @memcg: memcg to charge
5706  * @nr_pages: number of pages to charge
5707  *
5708  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5709  * @memcg's configured limit, %false if the charge had to be forced.
5710  */
5711 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5712 {
5713 	gfp_t gfp_mask = GFP_KERNEL;
5714 
5715 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5716 		struct page_counter *fail;
5717 
5718 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5719 			memcg->tcpmem_pressure = 0;
5720 			return true;
5721 		}
5722 		page_counter_charge(&memcg->tcpmem, nr_pages);
5723 		memcg->tcpmem_pressure = 1;
5724 		return false;
5725 	}
5726 
5727 	/* Don't block in the packet receive path */
5728 	if (in_softirq())
5729 		gfp_mask = GFP_NOWAIT;
5730 
5731 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5732 
5733 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5734 		return true;
5735 
5736 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5737 	return false;
5738 }
5739 
5740 /**
5741  * mem_cgroup_uncharge_skmem - uncharge socket memory
5742  * @memcg - memcg to uncharge
5743  * @nr_pages - number of pages to uncharge
5744  */
5745 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5746 {
5747 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5748 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5749 		return;
5750 	}
5751 
5752 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5753 
5754 	page_counter_uncharge(&memcg->memory, nr_pages);
5755 	css_put_many(&memcg->css, nr_pages);
5756 }
5757 
5758 static int __init cgroup_memory(char *s)
5759 {
5760 	char *token;
5761 
5762 	while ((token = strsep(&s, ",")) != NULL) {
5763 		if (!*token)
5764 			continue;
5765 		if (!strcmp(token, "nosocket"))
5766 			cgroup_memory_nosocket = true;
5767 		if (!strcmp(token, "nokmem"))
5768 			cgroup_memory_nokmem = true;
5769 	}
5770 	return 0;
5771 }
5772 __setup("cgroup.memory=", cgroup_memory);
5773 
5774 /*
5775  * subsys_initcall() for memory controller.
5776  *
5777  * Some parts like hotcpu_notifier() have to be initialized from this context
5778  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5779  * everything that doesn't depend on a specific mem_cgroup structure should
5780  * be initialized from here.
5781  */
5782 static int __init mem_cgroup_init(void)
5783 {
5784 	int cpu, node;
5785 
5786 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5787 
5788 	for_each_possible_cpu(cpu)
5789 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5790 			  drain_local_stock);
5791 
5792 	for_each_node(node) {
5793 		struct mem_cgroup_tree_per_node *rtpn;
5794 
5795 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5796 				    node_online(node) ? node : NUMA_NO_NODE);
5797 
5798 		rtpn->rb_root = RB_ROOT;
5799 		spin_lock_init(&rtpn->lock);
5800 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5801 	}
5802 
5803 	return 0;
5804 }
5805 subsys_initcall(mem_cgroup_init);
5806 
5807 #ifdef CONFIG_MEMCG_SWAP
5808 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5809 {
5810 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5811 		/*
5812 		 * The root cgroup cannot be destroyed, so it's refcount must
5813 		 * always be >= 1.
5814 		 */
5815 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5816 			VM_BUG_ON(1);
5817 			break;
5818 		}
5819 		memcg = parent_mem_cgroup(memcg);
5820 		if (!memcg)
5821 			memcg = root_mem_cgroup;
5822 	}
5823 	return memcg;
5824 }
5825 
5826 /**
5827  * mem_cgroup_swapout - transfer a memsw charge to swap
5828  * @page: page whose memsw charge to transfer
5829  * @entry: swap entry to move the charge to
5830  *
5831  * Transfer the memsw charge of @page to @entry.
5832  */
5833 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5834 {
5835 	struct mem_cgroup *memcg, *swap_memcg;
5836 	unsigned short oldid;
5837 
5838 	VM_BUG_ON_PAGE(PageLRU(page), page);
5839 	VM_BUG_ON_PAGE(page_count(page), page);
5840 
5841 	if (!do_memsw_account())
5842 		return;
5843 
5844 	memcg = page->mem_cgroup;
5845 
5846 	/* Readahead page, never charged */
5847 	if (!memcg)
5848 		return;
5849 
5850 	/*
5851 	 * In case the memcg owning these pages has been offlined and doesn't
5852 	 * have an ID allocated to it anymore, charge the closest online
5853 	 * ancestor for the swap instead and transfer the memory+swap charge.
5854 	 */
5855 	swap_memcg = mem_cgroup_id_get_online(memcg);
5856 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5857 	VM_BUG_ON_PAGE(oldid, page);
5858 	mem_cgroup_swap_statistics(swap_memcg, true);
5859 
5860 	page->mem_cgroup = NULL;
5861 
5862 	if (!mem_cgroup_is_root(memcg))
5863 		page_counter_uncharge(&memcg->memory, 1);
5864 
5865 	if (memcg != swap_memcg) {
5866 		if (!mem_cgroup_is_root(swap_memcg))
5867 			page_counter_charge(&swap_memcg->memsw, 1);
5868 		page_counter_uncharge(&memcg->memsw, 1);
5869 	}
5870 
5871 	/*
5872 	 * Interrupts should be disabled here because the caller holds the
5873 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5874 	 * important here to have the interrupts disabled because it is the
5875 	 * only synchronisation we have for udpating the per-CPU variables.
5876 	 */
5877 	VM_BUG_ON(!irqs_disabled());
5878 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5879 	memcg_check_events(memcg, page);
5880 
5881 	if (!mem_cgroup_is_root(memcg))
5882 		css_put(&memcg->css);
5883 }
5884 
5885 /*
5886  * mem_cgroup_try_charge_swap - try charging a swap entry
5887  * @page: page being added to swap
5888  * @entry: swap entry to charge
5889  *
5890  * Try to charge @entry to the memcg that @page belongs to.
5891  *
5892  * Returns 0 on success, -ENOMEM on failure.
5893  */
5894 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5895 {
5896 	struct mem_cgroup *memcg;
5897 	struct page_counter *counter;
5898 	unsigned short oldid;
5899 
5900 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5901 		return 0;
5902 
5903 	memcg = page->mem_cgroup;
5904 
5905 	/* Readahead page, never charged */
5906 	if (!memcg)
5907 		return 0;
5908 
5909 	memcg = mem_cgroup_id_get_online(memcg);
5910 
5911 	if (!mem_cgroup_is_root(memcg) &&
5912 	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5913 		mem_cgroup_id_put(memcg);
5914 		return -ENOMEM;
5915 	}
5916 
5917 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5918 	VM_BUG_ON_PAGE(oldid, page);
5919 	mem_cgroup_swap_statistics(memcg, true);
5920 
5921 	return 0;
5922 }
5923 
5924 /**
5925  * mem_cgroup_uncharge_swap - uncharge a swap entry
5926  * @entry: swap entry to uncharge
5927  *
5928  * Drop the swap charge associated with @entry.
5929  */
5930 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5931 {
5932 	struct mem_cgroup *memcg;
5933 	unsigned short id;
5934 
5935 	if (!do_swap_account)
5936 		return;
5937 
5938 	id = swap_cgroup_record(entry, 0);
5939 	rcu_read_lock();
5940 	memcg = mem_cgroup_from_id(id);
5941 	if (memcg) {
5942 		if (!mem_cgroup_is_root(memcg)) {
5943 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5944 				page_counter_uncharge(&memcg->swap, 1);
5945 			else
5946 				page_counter_uncharge(&memcg->memsw, 1);
5947 		}
5948 		mem_cgroup_swap_statistics(memcg, false);
5949 		mem_cgroup_id_put(memcg);
5950 	}
5951 	rcu_read_unlock();
5952 }
5953 
5954 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5955 {
5956 	long nr_swap_pages = get_nr_swap_pages();
5957 
5958 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5959 		return nr_swap_pages;
5960 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5961 		nr_swap_pages = min_t(long, nr_swap_pages,
5962 				      READ_ONCE(memcg->swap.limit) -
5963 				      page_counter_read(&memcg->swap));
5964 	return nr_swap_pages;
5965 }
5966 
5967 bool mem_cgroup_swap_full(struct page *page)
5968 {
5969 	struct mem_cgroup *memcg;
5970 
5971 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5972 
5973 	if (vm_swap_full())
5974 		return true;
5975 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5976 		return false;
5977 
5978 	memcg = page->mem_cgroup;
5979 	if (!memcg)
5980 		return false;
5981 
5982 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5983 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5984 			return true;
5985 
5986 	return false;
5987 }
5988 
5989 /* for remember boot option*/
5990 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5991 static int really_do_swap_account __initdata = 1;
5992 #else
5993 static int really_do_swap_account __initdata;
5994 #endif
5995 
5996 static int __init enable_swap_account(char *s)
5997 {
5998 	if (!strcmp(s, "1"))
5999 		really_do_swap_account = 1;
6000 	else if (!strcmp(s, "0"))
6001 		really_do_swap_account = 0;
6002 	return 1;
6003 }
6004 __setup("swapaccount=", enable_swap_account);
6005 
6006 static u64 swap_current_read(struct cgroup_subsys_state *css,
6007 			     struct cftype *cft)
6008 {
6009 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6010 
6011 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6012 }
6013 
6014 static int swap_max_show(struct seq_file *m, void *v)
6015 {
6016 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6017 	unsigned long max = READ_ONCE(memcg->swap.limit);
6018 
6019 	if (max == PAGE_COUNTER_MAX)
6020 		seq_puts(m, "max\n");
6021 	else
6022 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6023 
6024 	return 0;
6025 }
6026 
6027 static ssize_t swap_max_write(struct kernfs_open_file *of,
6028 			      char *buf, size_t nbytes, loff_t off)
6029 {
6030 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6031 	unsigned long max;
6032 	int err;
6033 
6034 	buf = strstrip(buf);
6035 	err = page_counter_memparse(buf, "max", &max);
6036 	if (err)
6037 		return err;
6038 
6039 	mutex_lock(&memcg_limit_mutex);
6040 	err = page_counter_limit(&memcg->swap, max);
6041 	mutex_unlock(&memcg_limit_mutex);
6042 	if (err)
6043 		return err;
6044 
6045 	return nbytes;
6046 }
6047 
6048 static struct cftype swap_files[] = {
6049 	{
6050 		.name = "swap.current",
6051 		.flags = CFTYPE_NOT_ON_ROOT,
6052 		.read_u64 = swap_current_read,
6053 	},
6054 	{
6055 		.name = "swap.max",
6056 		.flags = CFTYPE_NOT_ON_ROOT,
6057 		.seq_show = swap_max_show,
6058 		.write = swap_max_write,
6059 	},
6060 	{ }	/* terminate */
6061 };
6062 
6063 static struct cftype memsw_cgroup_files[] = {
6064 	{
6065 		.name = "memsw.usage_in_bytes",
6066 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6067 		.read_u64 = mem_cgroup_read_u64,
6068 	},
6069 	{
6070 		.name = "memsw.max_usage_in_bytes",
6071 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6072 		.write = mem_cgroup_reset,
6073 		.read_u64 = mem_cgroup_read_u64,
6074 	},
6075 	{
6076 		.name = "memsw.limit_in_bytes",
6077 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6078 		.write = mem_cgroup_write,
6079 		.read_u64 = mem_cgroup_read_u64,
6080 	},
6081 	{
6082 		.name = "memsw.failcnt",
6083 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6084 		.write = mem_cgroup_reset,
6085 		.read_u64 = mem_cgroup_read_u64,
6086 	},
6087 	{ },	/* terminate */
6088 };
6089 
6090 static int __init mem_cgroup_swap_init(void)
6091 {
6092 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6093 		do_swap_account = 1;
6094 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6095 					       swap_files));
6096 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6097 						  memsw_cgroup_files));
6098 	}
6099 	return 0;
6100 }
6101 subsys_initcall(mem_cgroup_swap_init);
6102 
6103 #endif /* CONFIG_MEMCG_SWAP */
6104