1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include <linux/sched/isolation.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "swap.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 /* Active memory cgroup to use from an interrupt context */ 83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 85 86 /* Socket memory accounting disabled? */ 87 static bool cgroup_memory_nosocket __ro_after_init; 88 89 /* Kernel memory accounting disabled? */ 90 static bool cgroup_memory_nokmem __ro_after_init; 91 92 /* BPF memory accounting disabled? */ 93 static bool cgroup_memory_nobpf __ro_after_init; 94 95 #ifdef CONFIG_CGROUP_WRITEBACK 96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 97 #endif 98 99 /* Whether legacy memory+swap accounting is active */ 100 static bool do_memsw_account(void) 101 { 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 103 } 104 105 #define THRESHOLDS_EVENTS_TARGET 128 106 #define SOFTLIMIT_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 /* for encoding cft->private value on file */ 207 enum res_type { 208 _MEM, 209 _MEMSWAP, 210 _KMEM, 211 _TCP, 212 }; 213 214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 215 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 216 #define MEMFILE_ATTR(val) ((val) & 0xffff) 217 218 /* 219 * Iteration constructs for visiting all cgroups (under a tree). If 220 * loops are exited prematurely (break), mem_cgroup_iter_break() must 221 * be used for reference counting. 222 */ 223 #define for_each_mem_cgroup_tree(iter, root) \ 224 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 225 iter != NULL; \ 226 iter = mem_cgroup_iter(root, iter, NULL)) 227 228 #define for_each_mem_cgroup(iter) \ 229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 230 iter != NULL; \ 231 iter = mem_cgroup_iter(NULL, iter, NULL)) 232 233 static inline bool task_is_dying(void) 234 { 235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 236 (current->flags & PF_EXITING); 237 } 238 239 /* Some nice accessors for the vmpressure. */ 240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 241 { 242 if (!memcg) 243 memcg = root_mem_cgroup; 244 return &memcg->vmpressure; 245 } 246 247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 248 { 249 return container_of(vmpr, struct mem_cgroup, vmpressure); 250 } 251 252 #ifdef CONFIG_MEMCG_KMEM 253 static DEFINE_SPINLOCK(objcg_lock); 254 255 bool mem_cgroup_kmem_disabled(void) 256 { 257 return cgroup_memory_nokmem; 258 } 259 260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 261 unsigned int nr_pages); 262 263 static void obj_cgroup_release(struct percpu_ref *ref) 264 { 265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 266 unsigned int nr_bytes; 267 unsigned int nr_pages; 268 unsigned long flags; 269 270 /* 271 * At this point all allocated objects are freed, and 272 * objcg->nr_charged_bytes can't have an arbitrary byte value. 273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 274 * 275 * The following sequence can lead to it: 276 * 1) CPU0: objcg == stock->cached_objcg 277 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 278 * PAGE_SIZE bytes are charged 279 * 3) CPU1: a process from another memcg is allocating something, 280 * the stock if flushed, 281 * objcg->nr_charged_bytes = PAGE_SIZE - 92 282 * 5) CPU0: we do release this object, 283 * 92 bytes are added to stock->nr_bytes 284 * 6) CPU0: stock is flushed, 285 * 92 bytes are added to objcg->nr_charged_bytes 286 * 287 * In the result, nr_charged_bytes == PAGE_SIZE. 288 * This page will be uncharged in obj_cgroup_release(). 289 */ 290 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 292 nr_pages = nr_bytes >> PAGE_SHIFT; 293 294 if (nr_pages) 295 obj_cgroup_uncharge_pages(objcg, nr_pages); 296 297 spin_lock_irqsave(&objcg_lock, flags); 298 list_del(&objcg->list); 299 spin_unlock_irqrestore(&objcg_lock, flags); 300 301 percpu_ref_exit(ref); 302 kfree_rcu(objcg, rcu); 303 } 304 305 static struct obj_cgroup *obj_cgroup_alloc(void) 306 { 307 struct obj_cgroup *objcg; 308 int ret; 309 310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 311 if (!objcg) 312 return NULL; 313 314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 315 GFP_KERNEL); 316 if (ret) { 317 kfree(objcg); 318 return NULL; 319 } 320 INIT_LIST_HEAD(&objcg->list); 321 return objcg; 322 } 323 324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 325 struct mem_cgroup *parent) 326 { 327 struct obj_cgroup *objcg, *iter; 328 329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 330 331 spin_lock_irq(&objcg_lock); 332 333 /* 1) Ready to reparent active objcg. */ 334 list_add(&objcg->list, &memcg->objcg_list); 335 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 336 list_for_each_entry(iter, &memcg->objcg_list, list) 337 WRITE_ONCE(iter->memcg, parent); 338 /* 3) Move already reparented objcgs to the parent's list */ 339 list_splice(&memcg->objcg_list, &parent->objcg_list); 340 341 spin_unlock_irq(&objcg_lock); 342 343 percpu_ref_kill(&objcg->refcnt); 344 } 345 346 /* 347 * A lot of the calls to the cache allocation functions are expected to be 348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 349 * conditional to this static branch, we'll have to allow modules that does 350 * kmem_cache_alloc and the such to see this symbol as well 351 */ 352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 353 EXPORT_SYMBOL(memcg_kmem_online_key); 354 355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 356 EXPORT_SYMBOL(memcg_bpf_enabled_key); 357 #endif 358 359 /** 360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 361 * @folio: folio of interest 362 * 363 * If memcg is bound to the default hierarchy, css of the memcg associated 364 * with @folio is returned. The returned css remains associated with @folio 365 * until it is released. 366 * 367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 368 * is returned. 369 */ 370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 371 { 372 struct mem_cgroup *memcg = folio_memcg(folio); 373 374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 375 memcg = root_mem_cgroup; 376 377 return &memcg->css; 378 } 379 380 /** 381 * page_cgroup_ino - return inode number of the memcg a page is charged to 382 * @page: the page 383 * 384 * Look up the closest online ancestor of the memory cgroup @page is charged to 385 * and return its inode number or 0 if @page is not charged to any cgroup. It 386 * is safe to call this function without holding a reference to @page. 387 * 388 * Note, this function is inherently racy, because there is nothing to prevent 389 * the cgroup inode from getting torn down and potentially reallocated a moment 390 * after page_cgroup_ino() returns, so it only should be used by callers that 391 * do not care (such as procfs interfaces). 392 */ 393 ino_t page_cgroup_ino(struct page *page) 394 { 395 struct mem_cgroup *memcg; 396 unsigned long ino = 0; 397 398 rcu_read_lock(); 399 /* page_folio() is racy here, but the entire function is racy anyway */ 400 memcg = folio_memcg_check(page_folio(page)); 401 402 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 403 memcg = parent_mem_cgroup(memcg); 404 if (memcg) 405 ino = cgroup_ino(memcg->css.cgroup); 406 rcu_read_unlock(); 407 return ino; 408 } 409 410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 411 struct mem_cgroup_tree_per_node *mctz, 412 unsigned long new_usage_in_excess) 413 { 414 struct rb_node **p = &mctz->rb_root.rb_node; 415 struct rb_node *parent = NULL; 416 struct mem_cgroup_per_node *mz_node; 417 bool rightmost = true; 418 419 if (mz->on_tree) 420 return; 421 422 mz->usage_in_excess = new_usage_in_excess; 423 if (!mz->usage_in_excess) 424 return; 425 while (*p) { 426 parent = *p; 427 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 428 tree_node); 429 if (mz->usage_in_excess < mz_node->usage_in_excess) { 430 p = &(*p)->rb_left; 431 rightmost = false; 432 } else { 433 p = &(*p)->rb_right; 434 } 435 } 436 437 if (rightmost) 438 mctz->rb_rightmost = &mz->tree_node; 439 440 rb_link_node(&mz->tree_node, parent, p); 441 rb_insert_color(&mz->tree_node, &mctz->rb_root); 442 mz->on_tree = true; 443 } 444 445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 446 struct mem_cgroup_tree_per_node *mctz) 447 { 448 if (!mz->on_tree) 449 return; 450 451 if (&mz->tree_node == mctz->rb_rightmost) 452 mctz->rb_rightmost = rb_prev(&mz->tree_node); 453 454 rb_erase(&mz->tree_node, &mctz->rb_root); 455 mz->on_tree = false; 456 } 457 458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 459 struct mem_cgroup_tree_per_node *mctz) 460 { 461 unsigned long flags; 462 463 spin_lock_irqsave(&mctz->lock, flags); 464 __mem_cgroup_remove_exceeded(mz, mctz); 465 spin_unlock_irqrestore(&mctz->lock, flags); 466 } 467 468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 469 { 470 unsigned long nr_pages = page_counter_read(&memcg->memory); 471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 472 unsigned long excess = 0; 473 474 if (nr_pages > soft_limit) 475 excess = nr_pages - soft_limit; 476 477 return excess; 478 } 479 480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 481 { 482 unsigned long excess; 483 struct mem_cgroup_per_node *mz; 484 struct mem_cgroup_tree_per_node *mctz; 485 486 if (lru_gen_enabled()) { 487 if (soft_limit_excess(memcg)) 488 lru_gen_soft_reclaim(memcg, nid); 489 return; 490 } 491 492 mctz = soft_limit_tree.rb_tree_per_node[nid]; 493 if (!mctz) 494 return; 495 /* 496 * Necessary to update all ancestors when hierarchy is used. 497 * because their event counter is not touched. 498 */ 499 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 500 mz = memcg->nodeinfo[nid]; 501 excess = soft_limit_excess(memcg); 502 /* 503 * We have to update the tree if mz is on RB-tree or 504 * mem is over its softlimit. 505 */ 506 if (excess || mz->on_tree) { 507 unsigned long flags; 508 509 spin_lock_irqsave(&mctz->lock, flags); 510 /* if on-tree, remove it */ 511 if (mz->on_tree) 512 __mem_cgroup_remove_exceeded(mz, mctz); 513 /* 514 * Insert again. mz->usage_in_excess will be updated. 515 * If excess is 0, no tree ops. 516 */ 517 __mem_cgroup_insert_exceeded(mz, mctz, excess); 518 spin_unlock_irqrestore(&mctz->lock, flags); 519 } 520 } 521 } 522 523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 524 { 525 struct mem_cgroup_tree_per_node *mctz; 526 struct mem_cgroup_per_node *mz; 527 int nid; 528 529 for_each_node(nid) { 530 mz = memcg->nodeinfo[nid]; 531 mctz = soft_limit_tree.rb_tree_per_node[nid]; 532 if (mctz) 533 mem_cgroup_remove_exceeded(mz, mctz); 534 } 535 } 536 537 static struct mem_cgroup_per_node * 538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 539 { 540 struct mem_cgroup_per_node *mz; 541 542 retry: 543 mz = NULL; 544 if (!mctz->rb_rightmost) 545 goto done; /* Nothing to reclaim from */ 546 547 mz = rb_entry(mctz->rb_rightmost, 548 struct mem_cgroup_per_node, tree_node); 549 /* 550 * Remove the node now but someone else can add it back, 551 * we will to add it back at the end of reclaim to its correct 552 * position in the tree. 553 */ 554 __mem_cgroup_remove_exceeded(mz, mctz); 555 if (!soft_limit_excess(mz->memcg) || 556 !css_tryget(&mz->memcg->css)) 557 goto retry; 558 done: 559 return mz; 560 } 561 562 static struct mem_cgroup_per_node * 563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 564 { 565 struct mem_cgroup_per_node *mz; 566 567 spin_lock_irq(&mctz->lock); 568 mz = __mem_cgroup_largest_soft_limit_node(mctz); 569 spin_unlock_irq(&mctz->lock); 570 return mz; 571 } 572 573 /* 574 * memcg and lruvec stats flushing 575 * 576 * Many codepaths leading to stats update or read are performance sensitive and 577 * adding stats flushing in such codepaths is not desirable. So, to optimize the 578 * flushing the kernel does: 579 * 580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 581 * rstat update tree grow unbounded. 582 * 583 * 2) Flush the stats synchronously on reader side only when there are more than 584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 586 * only for 2 seconds due to (1). 587 */ 588 static void flush_memcg_stats_dwork(struct work_struct *w); 589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 590 static DEFINE_PER_CPU(unsigned int, stats_updates); 591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0); 592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 593 static u64 flush_next_time; 594 595 #define FLUSH_TIME (2UL*HZ) 596 597 /* 598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 599 * not rely on this as part of an acquired spinlock_t lock. These functions are 600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 601 * is sufficient. 602 */ 603 static void memcg_stats_lock(void) 604 { 605 preempt_disable_nested(); 606 VM_WARN_ON_IRQS_ENABLED(); 607 } 608 609 static void __memcg_stats_lock(void) 610 { 611 preempt_disable_nested(); 612 } 613 614 static void memcg_stats_unlock(void) 615 { 616 preempt_enable_nested(); 617 } 618 619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 620 { 621 unsigned int x; 622 623 if (!val) 624 return; 625 626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 627 628 x = __this_cpu_add_return(stats_updates, abs(val)); 629 if (x > MEMCG_CHARGE_BATCH) { 630 /* 631 * If stats_flush_threshold exceeds the threshold 632 * (>num_online_cpus()), cgroup stats update will be triggered 633 * in __mem_cgroup_flush_stats(). Increasing this var further 634 * is redundant and simply adds overhead in atomic update. 635 */ 636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 638 __this_cpu_write(stats_updates, 0); 639 } 640 } 641 642 static void do_flush_stats(void) 643 { 644 /* 645 * We always flush the entire tree, so concurrent flushers can just 646 * skip. This avoids a thundering herd problem on the rstat global lock 647 * from memcg flushers (e.g. reclaim, refault, etc). 648 */ 649 if (atomic_read(&stats_flush_ongoing) || 650 atomic_xchg(&stats_flush_ongoing, 1)) 651 return; 652 653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME); 654 655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup); 656 657 atomic_set(&stats_flush_threshold, 0); 658 atomic_set(&stats_flush_ongoing, 0); 659 } 660 661 void mem_cgroup_flush_stats(void) 662 { 663 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 664 do_flush_stats(); 665 } 666 667 void mem_cgroup_flush_stats_ratelimited(void) 668 { 669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time))) 670 mem_cgroup_flush_stats(); 671 } 672 673 static void flush_memcg_stats_dwork(struct work_struct *w) 674 { 675 /* 676 * Always flush here so that flushing in latency-sensitive paths is 677 * as cheap as possible. 678 */ 679 do_flush_stats(); 680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 681 } 682 683 /* Subset of vm_event_item to report for memcg event stats */ 684 static const unsigned int memcg_vm_event_stat[] = { 685 PGPGIN, 686 PGPGOUT, 687 PGSCAN_KSWAPD, 688 PGSCAN_DIRECT, 689 PGSCAN_KHUGEPAGED, 690 PGSTEAL_KSWAPD, 691 PGSTEAL_DIRECT, 692 PGSTEAL_KHUGEPAGED, 693 PGFAULT, 694 PGMAJFAULT, 695 PGREFILL, 696 PGACTIVATE, 697 PGDEACTIVATE, 698 PGLAZYFREE, 699 PGLAZYFREED, 700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 701 ZSWPIN, 702 ZSWPOUT, 703 #endif 704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 705 THP_FAULT_ALLOC, 706 THP_COLLAPSE_ALLOC, 707 #endif 708 }; 709 710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 712 713 static void init_memcg_events(void) 714 { 715 int i; 716 717 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 719 } 720 721 static inline int memcg_events_index(enum vm_event_item idx) 722 { 723 return mem_cgroup_events_index[idx] - 1; 724 } 725 726 struct memcg_vmstats_percpu { 727 /* Local (CPU and cgroup) page state & events */ 728 long state[MEMCG_NR_STAT]; 729 unsigned long events[NR_MEMCG_EVENTS]; 730 731 /* Delta calculation for lockless upward propagation */ 732 long state_prev[MEMCG_NR_STAT]; 733 unsigned long events_prev[NR_MEMCG_EVENTS]; 734 735 /* Cgroup1: threshold notifications & softlimit tree updates */ 736 unsigned long nr_page_events; 737 unsigned long targets[MEM_CGROUP_NTARGETS]; 738 }; 739 740 struct memcg_vmstats { 741 /* Aggregated (CPU and subtree) page state & events */ 742 long state[MEMCG_NR_STAT]; 743 unsigned long events[NR_MEMCG_EVENTS]; 744 745 /* Pending child counts during tree propagation */ 746 long state_pending[MEMCG_NR_STAT]; 747 unsigned long events_pending[NR_MEMCG_EVENTS]; 748 }; 749 750 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 751 { 752 long x = READ_ONCE(memcg->vmstats->state[idx]); 753 #ifdef CONFIG_SMP 754 if (x < 0) 755 x = 0; 756 #endif 757 return x; 758 } 759 760 /** 761 * __mod_memcg_state - update cgroup memory statistics 762 * @memcg: the memory cgroup 763 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 764 * @val: delta to add to the counter, can be negative 765 */ 766 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 767 { 768 if (mem_cgroup_disabled()) 769 return; 770 771 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 772 memcg_rstat_updated(memcg, val); 773 } 774 775 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 776 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 777 { 778 long x = 0; 779 int cpu; 780 781 for_each_possible_cpu(cpu) 782 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 783 #ifdef CONFIG_SMP 784 if (x < 0) 785 x = 0; 786 #endif 787 return x; 788 } 789 790 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 791 int val) 792 { 793 struct mem_cgroup_per_node *pn; 794 struct mem_cgroup *memcg; 795 796 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 797 memcg = pn->memcg; 798 799 /* 800 * The caller from rmap relay on disabled preemption becase they never 801 * update their counter from in-interrupt context. For these two 802 * counters we check that the update is never performed from an 803 * interrupt context while other caller need to have disabled interrupt. 804 */ 805 __memcg_stats_lock(); 806 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 807 switch (idx) { 808 case NR_ANON_MAPPED: 809 case NR_FILE_MAPPED: 810 case NR_ANON_THPS: 811 case NR_SHMEM_PMDMAPPED: 812 case NR_FILE_PMDMAPPED: 813 WARN_ON_ONCE(!in_task()); 814 break; 815 default: 816 VM_WARN_ON_IRQS_ENABLED(); 817 } 818 } 819 820 /* Update memcg */ 821 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 822 823 /* Update lruvec */ 824 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 825 826 memcg_rstat_updated(memcg, val); 827 memcg_stats_unlock(); 828 } 829 830 /** 831 * __mod_lruvec_state - update lruvec memory statistics 832 * @lruvec: the lruvec 833 * @idx: the stat item 834 * @val: delta to add to the counter, can be negative 835 * 836 * The lruvec is the intersection of the NUMA node and a cgroup. This 837 * function updates the all three counters that are affected by a 838 * change of state at this level: per-node, per-cgroup, per-lruvec. 839 */ 840 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 841 int val) 842 { 843 /* Update node */ 844 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 845 846 /* Update memcg and lruvec */ 847 if (!mem_cgroup_disabled()) 848 __mod_memcg_lruvec_state(lruvec, idx, val); 849 } 850 851 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 852 int val) 853 { 854 struct page *head = compound_head(page); /* rmap on tail pages */ 855 struct mem_cgroup *memcg; 856 pg_data_t *pgdat = page_pgdat(page); 857 struct lruvec *lruvec; 858 859 rcu_read_lock(); 860 memcg = page_memcg(head); 861 /* Untracked pages have no memcg, no lruvec. Update only the node */ 862 if (!memcg) { 863 rcu_read_unlock(); 864 __mod_node_page_state(pgdat, idx, val); 865 return; 866 } 867 868 lruvec = mem_cgroup_lruvec(memcg, pgdat); 869 __mod_lruvec_state(lruvec, idx, val); 870 rcu_read_unlock(); 871 } 872 EXPORT_SYMBOL(__mod_lruvec_page_state); 873 874 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 875 { 876 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 877 struct mem_cgroup *memcg; 878 struct lruvec *lruvec; 879 880 rcu_read_lock(); 881 memcg = mem_cgroup_from_slab_obj(p); 882 883 /* 884 * Untracked pages have no memcg, no lruvec. Update only the 885 * node. If we reparent the slab objects to the root memcg, 886 * when we free the slab object, we need to update the per-memcg 887 * vmstats to keep it correct for the root memcg. 888 */ 889 if (!memcg) { 890 __mod_node_page_state(pgdat, idx, val); 891 } else { 892 lruvec = mem_cgroup_lruvec(memcg, pgdat); 893 __mod_lruvec_state(lruvec, idx, val); 894 } 895 rcu_read_unlock(); 896 } 897 898 /** 899 * __count_memcg_events - account VM events in a cgroup 900 * @memcg: the memory cgroup 901 * @idx: the event item 902 * @count: the number of events that occurred 903 */ 904 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 905 unsigned long count) 906 { 907 int index = memcg_events_index(idx); 908 909 if (mem_cgroup_disabled() || index < 0) 910 return; 911 912 memcg_stats_lock(); 913 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 914 memcg_rstat_updated(memcg, count); 915 memcg_stats_unlock(); 916 } 917 918 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 919 { 920 int index = memcg_events_index(event); 921 922 if (index < 0) 923 return 0; 924 return READ_ONCE(memcg->vmstats->events[index]); 925 } 926 927 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 928 { 929 long x = 0; 930 int cpu; 931 int index = memcg_events_index(event); 932 933 if (index < 0) 934 return 0; 935 936 for_each_possible_cpu(cpu) 937 x += per_cpu(memcg->vmstats_percpu->events[index], cpu); 938 return x; 939 } 940 941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 942 int nr_pages) 943 { 944 /* pagein of a big page is an event. So, ignore page size */ 945 if (nr_pages > 0) 946 __count_memcg_events(memcg, PGPGIN, 1); 947 else { 948 __count_memcg_events(memcg, PGPGOUT, 1); 949 nr_pages = -nr_pages; /* for event */ 950 } 951 952 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 953 } 954 955 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 956 enum mem_cgroup_events_target target) 957 { 958 unsigned long val, next; 959 960 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 961 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 962 /* from time_after() in jiffies.h */ 963 if ((long)(next - val) < 0) { 964 switch (target) { 965 case MEM_CGROUP_TARGET_THRESH: 966 next = val + THRESHOLDS_EVENTS_TARGET; 967 break; 968 case MEM_CGROUP_TARGET_SOFTLIMIT: 969 next = val + SOFTLIMIT_EVENTS_TARGET; 970 break; 971 default: 972 break; 973 } 974 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 975 return true; 976 } 977 return false; 978 } 979 980 /* 981 * Check events in order. 982 * 983 */ 984 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 985 { 986 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 987 return; 988 989 /* threshold event is triggered in finer grain than soft limit */ 990 if (unlikely(mem_cgroup_event_ratelimit(memcg, 991 MEM_CGROUP_TARGET_THRESH))) { 992 bool do_softlimit; 993 994 do_softlimit = mem_cgroup_event_ratelimit(memcg, 995 MEM_CGROUP_TARGET_SOFTLIMIT); 996 mem_cgroup_threshold(memcg); 997 if (unlikely(do_softlimit)) 998 mem_cgroup_update_tree(memcg, nid); 999 } 1000 } 1001 1002 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1003 { 1004 /* 1005 * mm_update_next_owner() may clear mm->owner to NULL 1006 * if it races with swapoff, page migration, etc. 1007 * So this can be called with p == NULL. 1008 */ 1009 if (unlikely(!p)) 1010 return NULL; 1011 1012 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1013 } 1014 EXPORT_SYMBOL(mem_cgroup_from_task); 1015 1016 static __always_inline struct mem_cgroup *active_memcg(void) 1017 { 1018 if (!in_task()) 1019 return this_cpu_read(int_active_memcg); 1020 else 1021 return current->active_memcg; 1022 } 1023 1024 /** 1025 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1026 * @mm: mm from which memcg should be extracted. It can be NULL. 1027 * 1028 * Obtain a reference on mm->memcg and returns it if successful. If mm 1029 * is NULL, then the memcg is chosen as follows: 1030 * 1) The active memcg, if set. 1031 * 2) current->mm->memcg, if available 1032 * 3) root memcg 1033 * If mem_cgroup is disabled, NULL is returned. 1034 */ 1035 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1036 { 1037 struct mem_cgroup *memcg; 1038 1039 if (mem_cgroup_disabled()) 1040 return NULL; 1041 1042 /* 1043 * Page cache insertions can happen without an 1044 * actual mm context, e.g. during disk probing 1045 * on boot, loopback IO, acct() writes etc. 1046 * 1047 * No need to css_get on root memcg as the reference 1048 * counting is disabled on the root level in the 1049 * cgroup core. See CSS_NO_REF. 1050 */ 1051 if (unlikely(!mm)) { 1052 memcg = active_memcg(); 1053 if (unlikely(memcg)) { 1054 /* remote memcg must hold a ref */ 1055 css_get(&memcg->css); 1056 return memcg; 1057 } 1058 mm = current->mm; 1059 if (unlikely(!mm)) 1060 return root_mem_cgroup; 1061 } 1062 1063 rcu_read_lock(); 1064 do { 1065 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1066 if (unlikely(!memcg)) 1067 memcg = root_mem_cgroup; 1068 } while (!css_tryget(&memcg->css)); 1069 rcu_read_unlock(); 1070 return memcg; 1071 } 1072 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1073 1074 static __always_inline bool memcg_kmem_bypass(void) 1075 { 1076 /* Allow remote memcg charging from any context. */ 1077 if (unlikely(active_memcg())) 1078 return false; 1079 1080 /* Memcg to charge can't be determined. */ 1081 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 1082 return true; 1083 1084 return false; 1085 } 1086 1087 /** 1088 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1089 * @root: hierarchy root 1090 * @prev: previously returned memcg, NULL on first invocation 1091 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1092 * 1093 * Returns references to children of the hierarchy below @root, or 1094 * @root itself, or %NULL after a full round-trip. 1095 * 1096 * Caller must pass the return value in @prev on subsequent 1097 * invocations for reference counting, or use mem_cgroup_iter_break() 1098 * to cancel a hierarchy walk before the round-trip is complete. 1099 * 1100 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1101 * in the hierarchy among all concurrent reclaimers operating on the 1102 * same node. 1103 */ 1104 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1105 struct mem_cgroup *prev, 1106 struct mem_cgroup_reclaim_cookie *reclaim) 1107 { 1108 struct mem_cgroup_reclaim_iter *iter; 1109 struct cgroup_subsys_state *css = NULL; 1110 struct mem_cgroup *memcg = NULL; 1111 struct mem_cgroup *pos = NULL; 1112 1113 if (mem_cgroup_disabled()) 1114 return NULL; 1115 1116 if (!root) 1117 root = root_mem_cgroup; 1118 1119 rcu_read_lock(); 1120 1121 if (reclaim) { 1122 struct mem_cgroup_per_node *mz; 1123 1124 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1125 iter = &mz->iter; 1126 1127 /* 1128 * On start, join the current reclaim iteration cycle. 1129 * Exit when a concurrent walker completes it. 1130 */ 1131 if (!prev) 1132 reclaim->generation = iter->generation; 1133 else if (reclaim->generation != iter->generation) 1134 goto out_unlock; 1135 1136 while (1) { 1137 pos = READ_ONCE(iter->position); 1138 if (!pos || css_tryget(&pos->css)) 1139 break; 1140 /* 1141 * css reference reached zero, so iter->position will 1142 * be cleared by ->css_released. However, we should not 1143 * rely on this happening soon, because ->css_released 1144 * is called from a work queue, and by busy-waiting we 1145 * might block it. So we clear iter->position right 1146 * away. 1147 */ 1148 (void)cmpxchg(&iter->position, pos, NULL); 1149 } 1150 } else if (prev) { 1151 pos = prev; 1152 } 1153 1154 if (pos) 1155 css = &pos->css; 1156 1157 for (;;) { 1158 css = css_next_descendant_pre(css, &root->css); 1159 if (!css) { 1160 /* 1161 * Reclaimers share the hierarchy walk, and a 1162 * new one might jump in right at the end of 1163 * the hierarchy - make sure they see at least 1164 * one group and restart from the beginning. 1165 */ 1166 if (!prev) 1167 continue; 1168 break; 1169 } 1170 1171 /* 1172 * Verify the css and acquire a reference. The root 1173 * is provided by the caller, so we know it's alive 1174 * and kicking, and don't take an extra reference. 1175 */ 1176 if (css == &root->css || css_tryget(css)) { 1177 memcg = mem_cgroup_from_css(css); 1178 break; 1179 } 1180 } 1181 1182 if (reclaim) { 1183 /* 1184 * The position could have already been updated by a competing 1185 * thread, so check that the value hasn't changed since we read 1186 * it to avoid reclaiming from the same cgroup twice. 1187 */ 1188 (void)cmpxchg(&iter->position, pos, memcg); 1189 1190 if (pos) 1191 css_put(&pos->css); 1192 1193 if (!memcg) 1194 iter->generation++; 1195 } 1196 1197 out_unlock: 1198 rcu_read_unlock(); 1199 if (prev && prev != root) 1200 css_put(&prev->css); 1201 1202 return memcg; 1203 } 1204 1205 /** 1206 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1207 * @root: hierarchy root 1208 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1209 */ 1210 void mem_cgroup_iter_break(struct mem_cgroup *root, 1211 struct mem_cgroup *prev) 1212 { 1213 if (!root) 1214 root = root_mem_cgroup; 1215 if (prev && prev != root) 1216 css_put(&prev->css); 1217 } 1218 1219 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1220 struct mem_cgroup *dead_memcg) 1221 { 1222 struct mem_cgroup_reclaim_iter *iter; 1223 struct mem_cgroup_per_node *mz; 1224 int nid; 1225 1226 for_each_node(nid) { 1227 mz = from->nodeinfo[nid]; 1228 iter = &mz->iter; 1229 cmpxchg(&iter->position, dead_memcg, NULL); 1230 } 1231 } 1232 1233 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1234 { 1235 struct mem_cgroup *memcg = dead_memcg; 1236 struct mem_cgroup *last; 1237 1238 do { 1239 __invalidate_reclaim_iterators(memcg, dead_memcg); 1240 last = memcg; 1241 } while ((memcg = parent_mem_cgroup(memcg))); 1242 1243 /* 1244 * When cgroup1 non-hierarchy mode is used, 1245 * parent_mem_cgroup() does not walk all the way up to the 1246 * cgroup root (root_mem_cgroup). So we have to handle 1247 * dead_memcg from cgroup root separately. 1248 */ 1249 if (!mem_cgroup_is_root(last)) 1250 __invalidate_reclaim_iterators(root_mem_cgroup, 1251 dead_memcg); 1252 } 1253 1254 /** 1255 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1256 * @memcg: hierarchy root 1257 * @fn: function to call for each task 1258 * @arg: argument passed to @fn 1259 * 1260 * This function iterates over tasks attached to @memcg or to any of its 1261 * descendants and calls @fn for each task. If @fn returns a non-zero 1262 * value, the function breaks the iteration loop and returns the value. 1263 * Otherwise, it will iterate over all tasks and return 0. 1264 * 1265 * This function must not be called for the root memory cgroup. 1266 */ 1267 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1268 int (*fn)(struct task_struct *, void *), void *arg) 1269 { 1270 struct mem_cgroup *iter; 1271 int ret = 0; 1272 1273 BUG_ON(mem_cgroup_is_root(memcg)); 1274 1275 for_each_mem_cgroup_tree(iter, memcg) { 1276 struct css_task_iter it; 1277 struct task_struct *task; 1278 1279 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1280 while (!ret && (task = css_task_iter_next(&it))) 1281 ret = fn(task, arg); 1282 css_task_iter_end(&it); 1283 if (ret) { 1284 mem_cgroup_iter_break(memcg, iter); 1285 break; 1286 } 1287 } 1288 return ret; 1289 } 1290 1291 #ifdef CONFIG_DEBUG_VM 1292 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1293 { 1294 struct mem_cgroup *memcg; 1295 1296 if (mem_cgroup_disabled()) 1297 return; 1298 1299 memcg = folio_memcg(folio); 1300 1301 if (!memcg) 1302 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1303 else 1304 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1305 } 1306 #endif 1307 1308 /** 1309 * folio_lruvec_lock - Lock the lruvec for a folio. 1310 * @folio: Pointer to the folio. 1311 * 1312 * These functions are safe to use under any of the following conditions: 1313 * - folio locked 1314 * - folio_test_lru false 1315 * - folio_memcg_lock() 1316 * - folio frozen (refcount of 0) 1317 * 1318 * Return: The lruvec this folio is on with its lock held. 1319 */ 1320 struct lruvec *folio_lruvec_lock(struct folio *folio) 1321 { 1322 struct lruvec *lruvec = folio_lruvec(folio); 1323 1324 spin_lock(&lruvec->lru_lock); 1325 lruvec_memcg_debug(lruvec, folio); 1326 1327 return lruvec; 1328 } 1329 1330 /** 1331 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1332 * @folio: Pointer to the folio. 1333 * 1334 * These functions are safe to use under any of the following conditions: 1335 * - folio locked 1336 * - folio_test_lru false 1337 * - folio_memcg_lock() 1338 * - folio frozen (refcount of 0) 1339 * 1340 * Return: The lruvec this folio is on with its lock held and interrupts 1341 * disabled. 1342 */ 1343 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1344 { 1345 struct lruvec *lruvec = folio_lruvec(folio); 1346 1347 spin_lock_irq(&lruvec->lru_lock); 1348 lruvec_memcg_debug(lruvec, folio); 1349 1350 return lruvec; 1351 } 1352 1353 /** 1354 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1355 * @folio: Pointer to the folio. 1356 * @flags: Pointer to irqsave flags. 1357 * 1358 * These functions are safe to use under any of the following conditions: 1359 * - folio locked 1360 * - folio_test_lru false 1361 * - folio_memcg_lock() 1362 * - folio frozen (refcount of 0) 1363 * 1364 * Return: The lruvec this folio is on with its lock held and interrupts 1365 * disabled. 1366 */ 1367 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1368 unsigned long *flags) 1369 { 1370 struct lruvec *lruvec = folio_lruvec(folio); 1371 1372 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1373 lruvec_memcg_debug(lruvec, folio); 1374 1375 return lruvec; 1376 } 1377 1378 /** 1379 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1380 * @lruvec: mem_cgroup per zone lru vector 1381 * @lru: index of lru list the page is sitting on 1382 * @zid: zone id of the accounted pages 1383 * @nr_pages: positive when adding or negative when removing 1384 * 1385 * This function must be called under lru_lock, just before a page is added 1386 * to or just after a page is removed from an lru list. 1387 */ 1388 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1389 int zid, int nr_pages) 1390 { 1391 struct mem_cgroup_per_node *mz; 1392 unsigned long *lru_size; 1393 long size; 1394 1395 if (mem_cgroup_disabled()) 1396 return; 1397 1398 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1399 lru_size = &mz->lru_zone_size[zid][lru]; 1400 1401 if (nr_pages < 0) 1402 *lru_size += nr_pages; 1403 1404 size = *lru_size; 1405 if (WARN_ONCE(size < 0, 1406 "%s(%p, %d, %d): lru_size %ld\n", 1407 __func__, lruvec, lru, nr_pages, size)) { 1408 VM_BUG_ON(1); 1409 *lru_size = 0; 1410 } 1411 1412 if (nr_pages > 0) 1413 *lru_size += nr_pages; 1414 } 1415 1416 /** 1417 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1418 * @memcg: the memory cgroup 1419 * 1420 * Returns the maximum amount of memory @mem can be charged with, in 1421 * pages. 1422 */ 1423 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1424 { 1425 unsigned long margin = 0; 1426 unsigned long count; 1427 unsigned long limit; 1428 1429 count = page_counter_read(&memcg->memory); 1430 limit = READ_ONCE(memcg->memory.max); 1431 if (count < limit) 1432 margin = limit - count; 1433 1434 if (do_memsw_account()) { 1435 count = page_counter_read(&memcg->memsw); 1436 limit = READ_ONCE(memcg->memsw.max); 1437 if (count < limit) 1438 margin = min(margin, limit - count); 1439 else 1440 margin = 0; 1441 } 1442 1443 return margin; 1444 } 1445 1446 /* 1447 * A routine for checking "mem" is under move_account() or not. 1448 * 1449 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1450 * moving cgroups. This is for waiting at high-memory pressure 1451 * caused by "move". 1452 */ 1453 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1454 { 1455 struct mem_cgroup *from; 1456 struct mem_cgroup *to; 1457 bool ret = false; 1458 /* 1459 * Unlike task_move routines, we access mc.to, mc.from not under 1460 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1461 */ 1462 spin_lock(&mc.lock); 1463 from = mc.from; 1464 to = mc.to; 1465 if (!from) 1466 goto unlock; 1467 1468 ret = mem_cgroup_is_descendant(from, memcg) || 1469 mem_cgroup_is_descendant(to, memcg); 1470 unlock: 1471 spin_unlock(&mc.lock); 1472 return ret; 1473 } 1474 1475 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1476 { 1477 if (mc.moving_task && current != mc.moving_task) { 1478 if (mem_cgroup_under_move(memcg)) { 1479 DEFINE_WAIT(wait); 1480 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1481 /* moving charge context might have finished. */ 1482 if (mc.moving_task) 1483 schedule(); 1484 finish_wait(&mc.waitq, &wait); 1485 return true; 1486 } 1487 } 1488 return false; 1489 } 1490 1491 struct memory_stat { 1492 const char *name; 1493 unsigned int idx; 1494 }; 1495 1496 static const struct memory_stat memory_stats[] = { 1497 { "anon", NR_ANON_MAPPED }, 1498 { "file", NR_FILE_PAGES }, 1499 { "kernel", MEMCG_KMEM }, 1500 { "kernel_stack", NR_KERNEL_STACK_KB }, 1501 { "pagetables", NR_PAGETABLE }, 1502 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1503 { "percpu", MEMCG_PERCPU_B }, 1504 { "sock", MEMCG_SOCK }, 1505 { "vmalloc", MEMCG_VMALLOC }, 1506 { "shmem", NR_SHMEM }, 1507 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1508 { "zswap", MEMCG_ZSWAP_B }, 1509 { "zswapped", MEMCG_ZSWAPPED }, 1510 #endif 1511 { "file_mapped", NR_FILE_MAPPED }, 1512 { "file_dirty", NR_FILE_DIRTY }, 1513 { "file_writeback", NR_WRITEBACK }, 1514 #ifdef CONFIG_SWAP 1515 { "swapcached", NR_SWAPCACHE }, 1516 #endif 1517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1518 { "anon_thp", NR_ANON_THPS }, 1519 { "file_thp", NR_FILE_THPS }, 1520 { "shmem_thp", NR_SHMEM_THPS }, 1521 #endif 1522 { "inactive_anon", NR_INACTIVE_ANON }, 1523 { "active_anon", NR_ACTIVE_ANON }, 1524 { "inactive_file", NR_INACTIVE_FILE }, 1525 { "active_file", NR_ACTIVE_FILE }, 1526 { "unevictable", NR_UNEVICTABLE }, 1527 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1528 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1529 1530 /* The memory events */ 1531 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1532 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1533 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1534 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1535 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1536 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1537 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1538 }; 1539 1540 /* Translate stat items to the correct unit for memory.stat output */ 1541 static int memcg_page_state_unit(int item) 1542 { 1543 switch (item) { 1544 case MEMCG_PERCPU_B: 1545 case MEMCG_ZSWAP_B: 1546 case NR_SLAB_RECLAIMABLE_B: 1547 case NR_SLAB_UNRECLAIMABLE_B: 1548 case WORKINGSET_REFAULT_ANON: 1549 case WORKINGSET_REFAULT_FILE: 1550 case WORKINGSET_ACTIVATE_ANON: 1551 case WORKINGSET_ACTIVATE_FILE: 1552 case WORKINGSET_RESTORE_ANON: 1553 case WORKINGSET_RESTORE_FILE: 1554 case WORKINGSET_NODERECLAIM: 1555 return 1; 1556 case NR_KERNEL_STACK_KB: 1557 return SZ_1K; 1558 default: 1559 return PAGE_SIZE; 1560 } 1561 } 1562 1563 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1564 int item) 1565 { 1566 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1567 } 1568 1569 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1570 { 1571 int i; 1572 1573 /* 1574 * Provide statistics on the state of the memory subsystem as 1575 * well as cumulative event counters that show past behavior. 1576 * 1577 * This list is ordered following a combination of these gradients: 1578 * 1) generic big picture -> specifics and details 1579 * 2) reflecting userspace activity -> reflecting kernel heuristics 1580 * 1581 * Current memory state: 1582 */ 1583 mem_cgroup_flush_stats(); 1584 1585 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1586 u64 size; 1587 1588 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1589 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1590 1591 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1592 size += memcg_page_state_output(memcg, 1593 NR_SLAB_RECLAIMABLE_B); 1594 seq_buf_printf(s, "slab %llu\n", size); 1595 } 1596 } 1597 1598 /* Accumulated memory events */ 1599 seq_buf_printf(s, "pgscan %lu\n", 1600 memcg_events(memcg, PGSCAN_KSWAPD) + 1601 memcg_events(memcg, PGSCAN_DIRECT) + 1602 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1603 seq_buf_printf(s, "pgsteal %lu\n", 1604 memcg_events(memcg, PGSTEAL_KSWAPD) + 1605 memcg_events(memcg, PGSTEAL_DIRECT) + 1606 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1607 1608 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1609 if (memcg_vm_event_stat[i] == PGPGIN || 1610 memcg_vm_event_stat[i] == PGPGOUT) 1611 continue; 1612 1613 seq_buf_printf(s, "%s %lu\n", 1614 vm_event_name(memcg_vm_event_stat[i]), 1615 memcg_events(memcg, memcg_vm_event_stat[i])); 1616 } 1617 1618 /* The above should easily fit into one page */ 1619 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1620 } 1621 1622 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s); 1623 1624 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1625 { 1626 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1627 memcg_stat_format(memcg, s); 1628 else 1629 memcg1_stat_format(memcg, s); 1630 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1631 } 1632 1633 #define K(x) ((x) << (PAGE_SHIFT-10)) 1634 /** 1635 * mem_cgroup_print_oom_context: Print OOM information relevant to 1636 * memory controller. 1637 * @memcg: The memory cgroup that went over limit 1638 * @p: Task that is going to be killed 1639 * 1640 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1641 * enabled 1642 */ 1643 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1644 { 1645 rcu_read_lock(); 1646 1647 if (memcg) { 1648 pr_cont(",oom_memcg="); 1649 pr_cont_cgroup_path(memcg->css.cgroup); 1650 } else 1651 pr_cont(",global_oom"); 1652 if (p) { 1653 pr_cont(",task_memcg="); 1654 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1655 } 1656 rcu_read_unlock(); 1657 } 1658 1659 /** 1660 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1661 * memory controller. 1662 * @memcg: The memory cgroup that went over limit 1663 */ 1664 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1665 { 1666 /* Use static buffer, for the caller is holding oom_lock. */ 1667 static char buf[PAGE_SIZE]; 1668 struct seq_buf s; 1669 1670 lockdep_assert_held(&oom_lock); 1671 1672 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1673 K((u64)page_counter_read(&memcg->memory)), 1674 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1675 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1676 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1677 K((u64)page_counter_read(&memcg->swap)), 1678 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1679 else { 1680 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1681 K((u64)page_counter_read(&memcg->memsw)), 1682 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1683 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1684 K((u64)page_counter_read(&memcg->kmem)), 1685 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1686 } 1687 1688 pr_info("Memory cgroup stats for "); 1689 pr_cont_cgroup_path(memcg->css.cgroup); 1690 pr_cont(":"); 1691 seq_buf_init(&s, buf, sizeof(buf)); 1692 memory_stat_format(memcg, &s); 1693 seq_buf_do_printk(&s, KERN_INFO); 1694 } 1695 1696 /* 1697 * Return the memory (and swap, if configured) limit for a memcg. 1698 */ 1699 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1700 { 1701 unsigned long max = READ_ONCE(memcg->memory.max); 1702 1703 if (do_memsw_account()) { 1704 if (mem_cgroup_swappiness(memcg)) { 1705 /* Calculate swap excess capacity from memsw limit */ 1706 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1707 1708 max += min(swap, (unsigned long)total_swap_pages); 1709 } 1710 } else { 1711 if (mem_cgroup_swappiness(memcg)) 1712 max += min(READ_ONCE(memcg->swap.max), 1713 (unsigned long)total_swap_pages); 1714 } 1715 return max; 1716 } 1717 1718 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1719 { 1720 return page_counter_read(&memcg->memory); 1721 } 1722 1723 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1724 int order) 1725 { 1726 struct oom_control oc = { 1727 .zonelist = NULL, 1728 .nodemask = NULL, 1729 .memcg = memcg, 1730 .gfp_mask = gfp_mask, 1731 .order = order, 1732 }; 1733 bool ret = true; 1734 1735 if (mutex_lock_killable(&oom_lock)) 1736 return true; 1737 1738 if (mem_cgroup_margin(memcg) >= (1 << order)) 1739 goto unlock; 1740 1741 /* 1742 * A few threads which were not waiting at mutex_lock_killable() can 1743 * fail to bail out. Therefore, check again after holding oom_lock. 1744 */ 1745 ret = task_is_dying() || out_of_memory(&oc); 1746 1747 unlock: 1748 mutex_unlock(&oom_lock); 1749 return ret; 1750 } 1751 1752 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1753 pg_data_t *pgdat, 1754 gfp_t gfp_mask, 1755 unsigned long *total_scanned) 1756 { 1757 struct mem_cgroup *victim = NULL; 1758 int total = 0; 1759 int loop = 0; 1760 unsigned long excess; 1761 unsigned long nr_scanned; 1762 struct mem_cgroup_reclaim_cookie reclaim = { 1763 .pgdat = pgdat, 1764 }; 1765 1766 excess = soft_limit_excess(root_memcg); 1767 1768 while (1) { 1769 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1770 if (!victim) { 1771 loop++; 1772 if (loop >= 2) { 1773 /* 1774 * If we have not been able to reclaim 1775 * anything, it might because there are 1776 * no reclaimable pages under this hierarchy 1777 */ 1778 if (!total) 1779 break; 1780 /* 1781 * We want to do more targeted reclaim. 1782 * excess >> 2 is not to excessive so as to 1783 * reclaim too much, nor too less that we keep 1784 * coming back to reclaim from this cgroup 1785 */ 1786 if (total >= (excess >> 2) || 1787 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1788 break; 1789 } 1790 continue; 1791 } 1792 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1793 pgdat, &nr_scanned); 1794 *total_scanned += nr_scanned; 1795 if (!soft_limit_excess(root_memcg)) 1796 break; 1797 } 1798 mem_cgroup_iter_break(root_memcg, victim); 1799 return total; 1800 } 1801 1802 #ifdef CONFIG_LOCKDEP 1803 static struct lockdep_map memcg_oom_lock_dep_map = { 1804 .name = "memcg_oom_lock", 1805 }; 1806 #endif 1807 1808 static DEFINE_SPINLOCK(memcg_oom_lock); 1809 1810 /* 1811 * Check OOM-Killer is already running under our hierarchy. 1812 * If someone is running, return false. 1813 */ 1814 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1815 { 1816 struct mem_cgroup *iter, *failed = NULL; 1817 1818 spin_lock(&memcg_oom_lock); 1819 1820 for_each_mem_cgroup_tree(iter, memcg) { 1821 if (iter->oom_lock) { 1822 /* 1823 * this subtree of our hierarchy is already locked 1824 * so we cannot give a lock. 1825 */ 1826 failed = iter; 1827 mem_cgroup_iter_break(memcg, iter); 1828 break; 1829 } else 1830 iter->oom_lock = true; 1831 } 1832 1833 if (failed) { 1834 /* 1835 * OK, we failed to lock the whole subtree so we have 1836 * to clean up what we set up to the failing subtree 1837 */ 1838 for_each_mem_cgroup_tree(iter, memcg) { 1839 if (iter == failed) { 1840 mem_cgroup_iter_break(memcg, iter); 1841 break; 1842 } 1843 iter->oom_lock = false; 1844 } 1845 } else 1846 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1847 1848 spin_unlock(&memcg_oom_lock); 1849 1850 return !failed; 1851 } 1852 1853 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1854 { 1855 struct mem_cgroup *iter; 1856 1857 spin_lock(&memcg_oom_lock); 1858 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1859 for_each_mem_cgroup_tree(iter, memcg) 1860 iter->oom_lock = false; 1861 spin_unlock(&memcg_oom_lock); 1862 } 1863 1864 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1865 { 1866 struct mem_cgroup *iter; 1867 1868 spin_lock(&memcg_oom_lock); 1869 for_each_mem_cgroup_tree(iter, memcg) 1870 iter->under_oom++; 1871 spin_unlock(&memcg_oom_lock); 1872 } 1873 1874 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1875 { 1876 struct mem_cgroup *iter; 1877 1878 /* 1879 * Be careful about under_oom underflows because a child memcg 1880 * could have been added after mem_cgroup_mark_under_oom. 1881 */ 1882 spin_lock(&memcg_oom_lock); 1883 for_each_mem_cgroup_tree(iter, memcg) 1884 if (iter->under_oom > 0) 1885 iter->under_oom--; 1886 spin_unlock(&memcg_oom_lock); 1887 } 1888 1889 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1890 1891 struct oom_wait_info { 1892 struct mem_cgroup *memcg; 1893 wait_queue_entry_t wait; 1894 }; 1895 1896 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1897 unsigned mode, int sync, void *arg) 1898 { 1899 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1900 struct mem_cgroup *oom_wait_memcg; 1901 struct oom_wait_info *oom_wait_info; 1902 1903 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1904 oom_wait_memcg = oom_wait_info->memcg; 1905 1906 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1907 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1908 return 0; 1909 return autoremove_wake_function(wait, mode, sync, arg); 1910 } 1911 1912 static void memcg_oom_recover(struct mem_cgroup *memcg) 1913 { 1914 /* 1915 * For the following lockless ->under_oom test, the only required 1916 * guarantee is that it must see the state asserted by an OOM when 1917 * this function is called as a result of userland actions 1918 * triggered by the notification of the OOM. This is trivially 1919 * achieved by invoking mem_cgroup_mark_under_oom() before 1920 * triggering notification. 1921 */ 1922 if (memcg && memcg->under_oom) 1923 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1924 } 1925 1926 /* 1927 * Returns true if successfully killed one or more processes. Though in some 1928 * corner cases it can return true even without killing any process. 1929 */ 1930 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1931 { 1932 bool locked, ret; 1933 1934 if (order > PAGE_ALLOC_COSTLY_ORDER) 1935 return false; 1936 1937 memcg_memory_event(memcg, MEMCG_OOM); 1938 1939 /* 1940 * We are in the middle of the charge context here, so we 1941 * don't want to block when potentially sitting on a callstack 1942 * that holds all kinds of filesystem and mm locks. 1943 * 1944 * cgroup1 allows disabling the OOM killer and waiting for outside 1945 * handling until the charge can succeed; remember the context and put 1946 * the task to sleep at the end of the page fault when all locks are 1947 * released. 1948 * 1949 * On the other hand, in-kernel OOM killer allows for an async victim 1950 * memory reclaim (oom_reaper) and that means that we are not solely 1951 * relying on the oom victim to make a forward progress and we can 1952 * invoke the oom killer here. 1953 * 1954 * Please note that mem_cgroup_out_of_memory might fail to find a 1955 * victim and then we have to bail out from the charge path. 1956 */ 1957 if (READ_ONCE(memcg->oom_kill_disable)) { 1958 if (current->in_user_fault) { 1959 css_get(&memcg->css); 1960 current->memcg_in_oom = memcg; 1961 current->memcg_oom_gfp_mask = mask; 1962 current->memcg_oom_order = order; 1963 } 1964 return false; 1965 } 1966 1967 mem_cgroup_mark_under_oom(memcg); 1968 1969 locked = mem_cgroup_oom_trylock(memcg); 1970 1971 if (locked) 1972 mem_cgroup_oom_notify(memcg); 1973 1974 mem_cgroup_unmark_under_oom(memcg); 1975 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1976 1977 if (locked) 1978 mem_cgroup_oom_unlock(memcg); 1979 1980 return ret; 1981 } 1982 1983 /** 1984 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1985 * @handle: actually kill/wait or just clean up the OOM state 1986 * 1987 * This has to be called at the end of a page fault if the memcg OOM 1988 * handler was enabled. 1989 * 1990 * Memcg supports userspace OOM handling where failed allocations must 1991 * sleep on a waitqueue until the userspace task resolves the 1992 * situation. Sleeping directly in the charge context with all kinds 1993 * of locks held is not a good idea, instead we remember an OOM state 1994 * in the task and mem_cgroup_oom_synchronize() has to be called at 1995 * the end of the page fault to complete the OOM handling. 1996 * 1997 * Returns %true if an ongoing memcg OOM situation was detected and 1998 * completed, %false otherwise. 1999 */ 2000 bool mem_cgroup_oom_synchronize(bool handle) 2001 { 2002 struct mem_cgroup *memcg = current->memcg_in_oom; 2003 struct oom_wait_info owait; 2004 bool locked; 2005 2006 /* OOM is global, do not handle */ 2007 if (!memcg) 2008 return false; 2009 2010 if (!handle) 2011 goto cleanup; 2012 2013 owait.memcg = memcg; 2014 owait.wait.flags = 0; 2015 owait.wait.func = memcg_oom_wake_function; 2016 owait.wait.private = current; 2017 INIT_LIST_HEAD(&owait.wait.entry); 2018 2019 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2020 mem_cgroup_mark_under_oom(memcg); 2021 2022 locked = mem_cgroup_oom_trylock(memcg); 2023 2024 if (locked) 2025 mem_cgroup_oom_notify(memcg); 2026 2027 schedule(); 2028 mem_cgroup_unmark_under_oom(memcg); 2029 finish_wait(&memcg_oom_waitq, &owait.wait); 2030 2031 if (locked) 2032 mem_cgroup_oom_unlock(memcg); 2033 cleanup: 2034 current->memcg_in_oom = NULL; 2035 css_put(&memcg->css); 2036 return true; 2037 } 2038 2039 /** 2040 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2041 * @victim: task to be killed by the OOM killer 2042 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2043 * 2044 * Returns a pointer to a memory cgroup, which has to be cleaned up 2045 * by killing all belonging OOM-killable tasks. 2046 * 2047 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2048 */ 2049 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2050 struct mem_cgroup *oom_domain) 2051 { 2052 struct mem_cgroup *oom_group = NULL; 2053 struct mem_cgroup *memcg; 2054 2055 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2056 return NULL; 2057 2058 if (!oom_domain) 2059 oom_domain = root_mem_cgroup; 2060 2061 rcu_read_lock(); 2062 2063 memcg = mem_cgroup_from_task(victim); 2064 if (mem_cgroup_is_root(memcg)) 2065 goto out; 2066 2067 /* 2068 * If the victim task has been asynchronously moved to a different 2069 * memory cgroup, we might end up killing tasks outside oom_domain. 2070 * In this case it's better to ignore memory.group.oom. 2071 */ 2072 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2073 goto out; 2074 2075 /* 2076 * Traverse the memory cgroup hierarchy from the victim task's 2077 * cgroup up to the OOMing cgroup (or root) to find the 2078 * highest-level memory cgroup with oom.group set. 2079 */ 2080 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2081 if (READ_ONCE(memcg->oom_group)) 2082 oom_group = memcg; 2083 2084 if (memcg == oom_domain) 2085 break; 2086 } 2087 2088 if (oom_group) 2089 css_get(&oom_group->css); 2090 out: 2091 rcu_read_unlock(); 2092 2093 return oom_group; 2094 } 2095 2096 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2097 { 2098 pr_info("Tasks in "); 2099 pr_cont_cgroup_path(memcg->css.cgroup); 2100 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2101 } 2102 2103 /** 2104 * folio_memcg_lock - Bind a folio to its memcg. 2105 * @folio: The folio. 2106 * 2107 * This function prevents unlocked LRU folios from being moved to 2108 * another cgroup. 2109 * 2110 * It ensures lifetime of the bound memcg. The caller is responsible 2111 * for the lifetime of the folio. 2112 */ 2113 void folio_memcg_lock(struct folio *folio) 2114 { 2115 struct mem_cgroup *memcg; 2116 unsigned long flags; 2117 2118 /* 2119 * The RCU lock is held throughout the transaction. The fast 2120 * path can get away without acquiring the memcg->move_lock 2121 * because page moving starts with an RCU grace period. 2122 */ 2123 rcu_read_lock(); 2124 2125 if (mem_cgroup_disabled()) 2126 return; 2127 again: 2128 memcg = folio_memcg(folio); 2129 if (unlikely(!memcg)) 2130 return; 2131 2132 #ifdef CONFIG_PROVE_LOCKING 2133 local_irq_save(flags); 2134 might_lock(&memcg->move_lock); 2135 local_irq_restore(flags); 2136 #endif 2137 2138 if (atomic_read(&memcg->moving_account) <= 0) 2139 return; 2140 2141 spin_lock_irqsave(&memcg->move_lock, flags); 2142 if (memcg != folio_memcg(folio)) { 2143 spin_unlock_irqrestore(&memcg->move_lock, flags); 2144 goto again; 2145 } 2146 2147 /* 2148 * When charge migration first begins, we can have multiple 2149 * critical sections holding the fast-path RCU lock and one 2150 * holding the slowpath move_lock. Track the task who has the 2151 * move_lock for unlock_page_memcg(). 2152 */ 2153 memcg->move_lock_task = current; 2154 memcg->move_lock_flags = flags; 2155 } 2156 2157 void lock_page_memcg(struct page *page) 2158 { 2159 folio_memcg_lock(page_folio(page)); 2160 } 2161 2162 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2163 { 2164 if (memcg && memcg->move_lock_task == current) { 2165 unsigned long flags = memcg->move_lock_flags; 2166 2167 memcg->move_lock_task = NULL; 2168 memcg->move_lock_flags = 0; 2169 2170 spin_unlock_irqrestore(&memcg->move_lock, flags); 2171 } 2172 2173 rcu_read_unlock(); 2174 } 2175 2176 /** 2177 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2178 * @folio: The folio. 2179 * 2180 * This releases the binding created by folio_memcg_lock(). This does 2181 * not change the accounting of this folio to its memcg, but it does 2182 * permit others to change it. 2183 */ 2184 void folio_memcg_unlock(struct folio *folio) 2185 { 2186 __folio_memcg_unlock(folio_memcg(folio)); 2187 } 2188 2189 void unlock_page_memcg(struct page *page) 2190 { 2191 folio_memcg_unlock(page_folio(page)); 2192 } 2193 2194 struct memcg_stock_pcp { 2195 local_lock_t stock_lock; 2196 struct mem_cgroup *cached; /* this never be root cgroup */ 2197 unsigned int nr_pages; 2198 2199 #ifdef CONFIG_MEMCG_KMEM 2200 struct obj_cgroup *cached_objcg; 2201 struct pglist_data *cached_pgdat; 2202 unsigned int nr_bytes; 2203 int nr_slab_reclaimable_b; 2204 int nr_slab_unreclaimable_b; 2205 #endif 2206 2207 struct work_struct work; 2208 unsigned long flags; 2209 #define FLUSHING_CACHED_CHARGE 0 2210 }; 2211 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2212 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2213 }; 2214 static DEFINE_MUTEX(percpu_charge_mutex); 2215 2216 #ifdef CONFIG_MEMCG_KMEM 2217 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2218 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2219 struct mem_cgroup *root_memcg); 2220 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2221 2222 #else 2223 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2224 { 2225 return NULL; 2226 } 2227 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2228 struct mem_cgroup *root_memcg) 2229 { 2230 return false; 2231 } 2232 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2233 { 2234 } 2235 #endif 2236 2237 /** 2238 * consume_stock: Try to consume stocked charge on this cpu. 2239 * @memcg: memcg to consume from. 2240 * @nr_pages: how many pages to charge. 2241 * 2242 * The charges will only happen if @memcg matches the current cpu's memcg 2243 * stock, and at least @nr_pages are available in that stock. Failure to 2244 * service an allocation will refill the stock. 2245 * 2246 * returns true if successful, false otherwise. 2247 */ 2248 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2249 { 2250 struct memcg_stock_pcp *stock; 2251 unsigned long flags; 2252 bool ret = false; 2253 2254 if (nr_pages > MEMCG_CHARGE_BATCH) 2255 return ret; 2256 2257 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2258 2259 stock = this_cpu_ptr(&memcg_stock); 2260 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) { 2261 stock->nr_pages -= nr_pages; 2262 ret = true; 2263 } 2264 2265 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2266 2267 return ret; 2268 } 2269 2270 /* 2271 * Returns stocks cached in percpu and reset cached information. 2272 */ 2273 static void drain_stock(struct memcg_stock_pcp *stock) 2274 { 2275 struct mem_cgroup *old = READ_ONCE(stock->cached); 2276 2277 if (!old) 2278 return; 2279 2280 if (stock->nr_pages) { 2281 page_counter_uncharge(&old->memory, stock->nr_pages); 2282 if (do_memsw_account()) 2283 page_counter_uncharge(&old->memsw, stock->nr_pages); 2284 stock->nr_pages = 0; 2285 } 2286 2287 css_put(&old->css); 2288 WRITE_ONCE(stock->cached, NULL); 2289 } 2290 2291 static void drain_local_stock(struct work_struct *dummy) 2292 { 2293 struct memcg_stock_pcp *stock; 2294 struct obj_cgroup *old = NULL; 2295 unsigned long flags; 2296 2297 /* 2298 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2299 * drain_stock races is that we always operate on local CPU stock 2300 * here with IRQ disabled 2301 */ 2302 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2303 2304 stock = this_cpu_ptr(&memcg_stock); 2305 old = drain_obj_stock(stock); 2306 drain_stock(stock); 2307 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2308 2309 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2310 if (old) 2311 obj_cgroup_put(old); 2312 } 2313 2314 /* 2315 * Cache charges(val) to local per_cpu area. 2316 * This will be consumed by consume_stock() function, later. 2317 */ 2318 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2319 { 2320 struct memcg_stock_pcp *stock; 2321 2322 stock = this_cpu_ptr(&memcg_stock); 2323 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 2324 drain_stock(stock); 2325 css_get(&memcg->css); 2326 WRITE_ONCE(stock->cached, memcg); 2327 } 2328 stock->nr_pages += nr_pages; 2329 2330 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2331 drain_stock(stock); 2332 } 2333 2334 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2335 { 2336 unsigned long flags; 2337 2338 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2339 __refill_stock(memcg, nr_pages); 2340 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2341 } 2342 2343 /* 2344 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2345 * of the hierarchy under it. 2346 */ 2347 static void drain_all_stock(struct mem_cgroup *root_memcg) 2348 { 2349 int cpu, curcpu; 2350 2351 /* If someone's already draining, avoid adding running more workers. */ 2352 if (!mutex_trylock(&percpu_charge_mutex)) 2353 return; 2354 /* 2355 * Notify other cpus that system-wide "drain" is running 2356 * We do not care about races with the cpu hotplug because cpu down 2357 * as well as workers from this path always operate on the local 2358 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2359 */ 2360 migrate_disable(); 2361 curcpu = smp_processor_id(); 2362 for_each_online_cpu(cpu) { 2363 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2364 struct mem_cgroup *memcg; 2365 bool flush = false; 2366 2367 rcu_read_lock(); 2368 memcg = READ_ONCE(stock->cached); 2369 if (memcg && stock->nr_pages && 2370 mem_cgroup_is_descendant(memcg, root_memcg)) 2371 flush = true; 2372 else if (obj_stock_flush_required(stock, root_memcg)) 2373 flush = true; 2374 rcu_read_unlock(); 2375 2376 if (flush && 2377 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2378 if (cpu == curcpu) 2379 drain_local_stock(&stock->work); 2380 else if (!cpu_is_isolated(cpu)) 2381 schedule_work_on(cpu, &stock->work); 2382 } 2383 } 2384 migrate_enable(); 2385 mutex_unlock(&percpu_charge_mutex); 2386 } 2387 2388 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2389 { 2390 struct memcg_stock_pcp *stock; 2391 2392 stock = &per_cpu(memcg_stock, cpu); 2393 drain_stock(stock); 2394 2395 return 0; 2396 } 2397 2398 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2399 unsigned int nr_pages, 2400 gfp_t gfp_mask) 2401 { 2402 unsigned long nr_reclaimed = 0; 2403 2404 do { 2405 unsigned long pflags; 2406 2407 if (page_counter_read(&memcg->memory) <= 2408 READ_ONCE(memcg->memory.high)) 2409 continue; 2410 2411 memcg_memory_event(memcg, MEMCG_HIGH); 2412 2413 psi_memstall_enter(&pflags); 2414 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2415 gfp_mask, 2416 MEMCG_RECLAIM_MAY_SWAP); 2417 psi_memstall_leave(&pflags); 2418 } while ((memcg = parent_mem_cgroup(memcg)) && 2419 !mem_cgroup_is_root(memcg)); 2420 2421 return nr_reclaimed; 2422 } 2423 2424 static void high_work_func(struct work_struct *work) 2425 { 2426 struct mem_cgroup *memcg; 2427 2428 memcg = container_of(work, struct mem_cgroup, high_work); 2429 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2430 } 2431 2432 /* 2433 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2434 * enough to still cause a significant slowdown in most cases, while still 2435 * allowing diagnostics and tracing to proceed without becoming stuck. 2436 */ 2437 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2438 2439 /* 2440 * When calculating the delay, we use these either side of the exponentiation to 2441 * maintain precision and scale to a reasonable number of jiffies (see the table 2442 * below. 2443 * 2444 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2445 * overage ratio to a delay. 2446 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2447 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2448 * to produce a reasonable delay curve. 2449 * 2450 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2451 * reasonable delay curve compared to precision-adjusted overage, not 2452 * penalising heavily at first, but still making sure that growth beyond the 2453 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2454 * example, with a high of 100 megabytes: 2455 * 2456 * +-------+------------------------+ 2457 * | usage | time to allocate in ms | 2458 * +-------+------------------------+ 2459 * | 100M | 0 | 2460 * | 101M | 6 | 2461 * | 102M | 25 | 2462 * | 103M | 57 | 2463 * | 104M | 102 | 2464 * | 105M | 159 | 2465 * | 106M | 230 | 2466 * | 107M | 313 | 2467 * | 108M | 409 | 2468 * | 109M | 518 | 2469 * | 110M | 639 | 2470 * | 111M | 774 | 2471 * | 112M | 921 | 2472 * | 113M | 1081 | 2473 * | 114M | 1254 | 2474 * | 115M | 1439 | 2475 * | 116M | 1638 | 2476 * | 117M | 1849 | 2477 * | 118M | 2000 | 2478 * | 119M | 2000 | 2479 * | 120M | 2000 | 2480 * +-------+------------------------+ 2481 */ 2482 #define MEMCG_DELAY_PRECISION_SHIFT 20 2483 #define MEMCG_DELAY_SCALING_SHIFT 14 2484 2485 static u64 calculate_overage(unsigned long usage, unsigned long high) 2486 { 2487 u64 overage; 2488 2489 if (usage <= high) 2490 return 0; 2491 2492 /* 2493 * Prevent division by 0 in overage calculation by acting as if 2494 * it was a threshold of 1 page 2495 */ 2496 high = max(high, 1UL); 2497 2498 overage = usage - high; 2499 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2500 return div64_u64(overage, high); 2501 } 2502 2503 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2504 { 2505 u64 overage, max_overage = 0; 2506 2507 do { 2508 overage = calculate_overage(page_counter_read(&memcg->memory), 2509 READ_ONCE(memcg->memory.high)); 2510 max_overage = max(overage, max_overage); 2511 } while ((memcg = parent_mem_cgroup(memcg)) && 2512 !mem_cgroup_is_root(memcg)); 2513 2514 return max_overage; 2515 } 2516 2517 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2518 { 2519 u64 overage, max_overage = 0; 2520 2521 do { 2522 overage = calculate_overage(page_counter_read(&memcg->swap), 2523 READ_ONCE(memcg->swap.high)); 2524 if (overage) 2525 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2526 max_overage = max(overage, max_overage); 2527 } while ((memcg = parent_mem_cgroup(memcg)) && 2528 !mem_cgroup_is_root(memcg)); 2529 2530 return max_overage; 2531 } 2532 2533 /* 2534 * Get the number of jiffies that we should penalise a mischievous cgroup which 2535 * is exceeding its memory.high by checking both it and its ancestors. 2536 */ 2537 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2538 unsigned int nr_pages, 2539 u64 max_overage) 2540 { 2541 unsigned long penalty_jiffies; 2542 2543 if (!max_overage) 2544 return 0; 2545 2546 /* 2547 * We use overage compared to memory.high to calculate the number of 2548 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2549 * fairly lenient on small overages, and increasingly harsh when the 2550 * memcg in question makes it clear that it has no intention of stopping 2551 * its crazy behaviour, so we exponentially increase the delay based on 2552 * overage amount. 2553 */ 2554 penalty_jiffies = max_overage * max_overage * HZ; 2555 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2556 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2557 2558 /* 2559 * Factor in the task's own contribution to the overage, such that four 2560 * N-sized allocations are throttled approximately the same as one 2561 * 4N-sized allocation. 2562 * 2563 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2564 * larger the current charge patch is than that. 2565 */ 2566 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2567 } 2568 2569 /* 2570 * Scheduled by try_charge() to be executed from the userland return path 2571 * and reclaims memory over the high limit. 2572 */ 2573 void mem_cgroup_handle_over_high(void) 2574 { 2575 unsigned long penalty_jiffies; 2576 unsigned long pflags; 2577 unsigned long nr_reclaimed; 2578 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2579 int nr_retries = MAX_RECLAIM_RETRIES; 2580 struct mem_cgroup *memcg; 2581 bool in_retry = false; 2582 2583 if (likely(!nr_pages)) 2584 return; 2585 2586 memcg = get_mem_cgroup_from_mm(current->mm); 2587 current->memcg_nr_pages_over_high = 0; 2588 2589 retry_reclaim: 2590 /* 2591 * The allocating task should reclaim at least the batch size, but for 2592 * subsequent retries we only want to do what's necessary to prevent oom 2593 * or breaching resource isolation. 2594 * 2595 * This is distinct from memory.max or page allocator behaviour because 2596 * memory.high is currently batched, whereas memory.max and the page 2597 * allocator run every time an allocation is made. 2598 */ 2599 nr_reclaimed = reclaim_high(memcg, 2600 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2601 GFP_KERNEL); 2602 2603 /* 2604 * memory.high is breached and reclaim is unable to keep up. Throttle 2605 * allocators proactively to slow down excessive growth. 2606 */ 2607 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2608 mem_find_max_overage(memcg)); 2609 2610 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2611 swap_find_max_overage(memcg)); 2612 2613 /* 2614 * Clamp the max delay per usermode return so as to still keep the 2615 * application moving forwards and also permit diagnostics, albeit 2616 * extremely slowly. 2617 */ 2618 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2619 2620 /* 2621 * Don't sleep if the amount of jiffies this memcg owes us is so low 2622 * that it's not even worth doing, in an attempt to be nice to those who 2623 * go only a small amount over their memory.high value and maybe haven't 2624 * been aggressively reclaimed enough yet. 2625 */ 2626 if (penalty_jiffies <= HZ / 100) 2627 goto out; 2628 2629 /* 2630 * If reclaim is making forward progress but we're still over 2631 * memory.high, we want to encourage that rather than doing allocator 2632 * throttling. 2633 */ 2634 if (nr_reclaimed || nr_retries--) { 2635 in_retry = true; 2636 goto retry_reclaim; 2637 } 2638 2639 /* 2640 * If we exit early, we're guaranteed to die (since 2641 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2642 * need to account for any ill-begotten jiffies to pay them off later. 2643 */ 2644 psi_memstall_enter(&pflags); 2645 schedule_timeout_killable(penalty_jiffies); 2646 psi_memstall_leave(&pflags); 2647 2648 out: 2649 css_put(&memcg->css); 2650 } 2651 2652 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2653 unsigned int nr_pages) 2654 { 2655 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2656 int nr_retries = MAX_RECLAIM_RETRIES; 2657 struct mem_cgroup *mem_over_limit; 2658 struct page_counter *counter; 2659 unsigned long nr_reclaimed; 2660 bool passed_oom = false; 2661 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2662 bool drained = false; 2663 bool raised_max_event = false; 2664 unsigned long pflags; 2665 2666 retry: 2667 if (consume_stock(memcg, nr_pages)) 2668 return 0; 2669 2670 if (!do_memsw_account() || 2671 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2672 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2673 goto done_restock; 2674 if (do_memsw_account()) 2675 page_counter_uncharge(&memcg->memsw, batch); 2676 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2677 } else { 2678 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2679 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2680 } 2681 2682 if (batch > nr_pages) { 2683 batch = nr_pages; 2684 goto retry; 2685 } 2686 2687 /* 2688 * Prevent unbounded recursion when reclaim operations need to 2689 * allocate memory. This might exceed the limits temporarily, 2690 * but we prefer facilitating memory reclaim and getting back 2691 * under the limit over triggering OOM kills in these cases. 2692 */ 2693 if (unlikely(current->flags & PF_MEMALLOC)) 2694 goto force; 2695 2696 if (unlikely(task_in_memcg_oom(current))) 2697 goto nomem; 2698 2699 if (!gfpflags_allow_blocking(gfp_mask)) 2700 goto nomem; 2701 2702 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2703 raised_max_event = true; 2704 2705 psi_memstall_enter(&pflags); 2706 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2707 gfp_mask, reclaim_options); 2708 psi_memstall_leave(&pflags); 2709 2710 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2711 goto retry; 2712 2713 if (!drained) { 2714 drain_all_stock(mem_over_limit); 2715 drained = true; 2716 goto retry; 2717 } 2718 2719 if (gfp_mask & __GFP_NORETRY) 2720 goto nomem; 2721 /* 2722 * Even though the limit is exceeded at this point, reclaim 2723 * may have been able to free some pages. Retry the charge 2724 * before killing the task. 2725 * 2726 * Only for regular pages, though: huge pages are rather 2727 * unlikely to succeed so close to the limit, and we fall back 2728 * to regular pages anyway in case of failure. 2729 */ 2730 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2731 goto retry; 2732 /* 2733 * At task move, charge accounts can be doubly counted. So, it's 2734 * better to wait until the end of task_move if something is going on. 2735 */ 2736 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2737 goto retry; 2738 2739 if (nr_retries--) 2740 goto retry; 2741 2742 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2743 goto nomem; 2744 2745 /* Avoid endless loop for tasks bypassed by the oom killer */ 2746 if (passed_oom && task_is_dying()) 2747 goto nomem; 2748 2749 /* 2750 * keep retrying as long as the memcg oom killer is able to make 2751 * a forward progress or bypass the charge if the oom killer 2752 * couldn't make any progress. 2753 */ 2754 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2755 get_order(nr_pages * PAGE_SIZE))) { 2756 passed_oom = true; 2757 nr_retries = MAX_RECLAIM_RETRIES; 2758 goto retry; 2759 } 2760 nomem: 2761 /* 2762 * Memcg doesn't have a dedicated reserve for atomic 2763 * allocations. But like the global atomic pool, we need to 2764 * put the burden of reclaim on regular allocation requests 2765 * and let these go through as privileged allocations. 2766 */ 2767 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2768 return -ENOMEM; 2769 force: 2770 /* 2771 * If the allocation has to be enforced, don't forget to raise 2772 * a MEMCG_MAX event. 2773 */ 2774 if (!raised_max_event) 2775 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2776 2777 /* 2778 * The allocation either can't fail or will lead to more memory 2779 * being freed very soon. Allow memory usage go over the limit 2780 * temporarily by force charging it. 2781 */ 2782 page_counter_charge(&memcg->memory, nr_pages); 2783 if (do_memsw_account()) 2784 page_counter_charge(&memcg->memsw, nr_pages); 2785 2786 return 0; 2787 2788 done_restock: 2789 if (batch > nr_pages) 2790 refill_stock(memcg, batch - nr_pages); 2791 2792 /* 2793 * If the hierarchy is above the normal consumption range, schedule 2794 * reclaim on returning to userland. We can perform reclaim here 2795 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2796 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2797 * not recorded as it most likely matches current's and won't 2798 * change in the meantime. As high limit is checked again before 2799 * reclaim, the cost of mismatch is negligible. 2800 */ 2801 do { 2802 bool mem_high, swap_high; 2803 2804 mem_high = page_counter_read(&memcg->memory) > 2805 READ_ONCE(memcg->memory.high); 2806 swap_high = page_counter_read(&memcg->swap) > 2807 READ_ONCE(memcg->swap.high); 2808 2809 /* Don't bother a random interrupted task */ 2810 if (!in_task()) { 2811 if (mem_high) { 2812 schedule_work(&memcg->high_work); 2813 break; 2814 } 2815 continue; 2816 } 2817 2818 if (mem_high || swap_high) { 2819 /* 2820 * The allocating tasks in this cgroup will need to do 2821 * reclaim or be throttled to prevent further growth 2822 * of the memory or swap footprints. 2823 * 2824 * Target some best-effort fairness between the tasks, 2825 * and distribute reclaim work and delay penalties 2826 * based on how much each task is actually allocating. 2827 */ 2828 current->memcg_nr_pages_over_high += batch; 2829 set_notify_resume(current); 2830 break; 2831 } 2832 } while ((memcg = parent_mem_cgroup(memcg))); 2833 2834 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2835 !(current->flags & PF_MEMALLOC) && 2836 gfpflags_allow_blocking(gfp_mask)) { 2837 mem_cgroup_handle_over_high(); 2838 } 2839 return 0; 2840 } 2841 2842 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2843 unsigned int nr_pages) 2844 { 2845 if (mem_cgroup_is_root(memcg)) 2846 return 0; 2847 2848 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2849 } 2850 2851 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2852 { 2853 if (mem_cgroup_is_root(memcg)) 2854 return; 2855 2856 page_counter_uncharge(&memcg->memory, nr_pages); 2857 if (do_memsw_account()) 2858 page_counter_uncharge(&memcg->memsw, nr_pages); 2859 } 2860 2861 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2862 { 2863 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2864 /* 2865 * Any of the following ensures page's memcg stability: 2866 * 2867 * - the page lock 2868 * - LRU isolation 2869 * - lock_page_memcg() 2870 * - exclusive reference 2871 * - mem_cgroup_trylock_pages() 2872 */ 2873 folio->memcg_data = (unsigned long)memcg; 2874 } 2875 2876 #ifdef CONFIG_MEMCG_KMEM 2877 /* 2878 * The allocated objcg pointers array is not accounted directly. 2879 * Moreover, it should not come from DMA buffer and is not readily 2880 * reclaimable. So those GFP bits should be masked off. 2881 */ 2882 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2883 2884 /* 2885 * mod_objcg_mlstate() may be called with irq enabled, so 2886 * mod_memcg_lruvec_state() should be used. 2887 */ 2888 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2889 struct pglist_data *pgdat, 2890 enum node_stat_item idx, int nr) 2891 { 2892 struct mem_cgroup *memcg; 2893 struct lruvec *lruvec; 2894 2895 rcu_read_lock(); 2896 memcg = obj_cgroup_memcg(objcg); 2897 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2898 mod_memcg_lruvec_state(lruvec, idx, nr); 2899 rcu_read_unlock(); 2900 } 2901 2902 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2903 gfp_t gfp, bool new_slab) 2904 { 2905 unsigned int objects = objs_per_slab(s, slab); 2906 unsigned long memcg_data; 2907 void *vec; 2908 2909 gfp &= ~OBJCGS_CLEAR_MASK; 2910 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2911 slab_nid(slab)); 2912 if (!vec) 2913 return -ENOMEM; 2914 2915 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2916 if (new_slab) { 2917 /* 2918 * If the slab is brand new and nobody can yet access its 2919 * memcg_data, no synchronization is required and memcg_data can 2920 * be simply assigned. 2921 */ 2922 slab->memcg_data = memcg_data; 2923 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2924 /* 2925 * If the slab is already in use, somebody can allocate and 2926 * assign obj_cgroups in parallel. In this case the existing 2927 * objcg vector should be reused. 2928 */ 2929 kfree(vec); 2930 return 0; 2931 } 2932 2933 kmemleak_not_leak(vec); 2934 return 0; 2935 } 2936 2937 static __always_inline 2938 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2939 { 2940 /* 2941 * Slab objects are accounted individually, not per-page. 2942 * Memcg membership data for each individual object is saved in 2943 * slab->memcg_data. 2944 */ 2945 if (folio_test_slab(folio)) { 2946 struct obj_cgroup **objcgs; 2947 struct slab *slab; 2948 unsigned int off; 2949 2950 slab = folio_slab(folio); 2951 objcgs = slab_objcgs(slab); 2952 if (!objcgs) 2953 return NULL; 2954 2955 off = obj_to_index(slab->slab_cache, slab, p); 2956 if (objcgs[off]) 2957 return obj_cgroup_memcg(objcgs[off]); 2958 2959 return NULL; 2960 } 2961 2962 /* 2963 * folio_memcg_check() is used here, because in theory we can encounter 2964 * a folio where the slab flag has been cleared already, but 2965 * slab->memcg_data has not been freed yet 2966 * folio_memcg_check() will guarantee that a proper memory 2967 * cgroup pointer or NULL will be returned. 2968 */ 2969 return folio_memcg_check(folio); 2970 } 2971 2972 /* 2973 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2974 * 2975 * A passed kernel object can be a slab object, vmalloc object or a generic 2976 * kernel page, so different mechanisms for getting the memory cgroup pointer 2977 * should be used. 2978 * 2979 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2980 * can not know for sure how the kernel object is implemented. 2981 * mem_cgroup_from_obj() can be safely used in such cases. 2982 * 2983 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2984 * cgroup_mutex, etc. 2985 */ 2986 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2987 { 2988 struct folio *folio; 2989 2990 if (mem_cgroup_disabled()) 2991 return NULL; 2992 2993 if (unlikely(is_vmalloc_addr(p))) 2994 folio = page_folio(vmalloc_to_page(p)); 2995 else 2996 folio = virt_to_folio(p); 2997 2998 return mem_cgroup_from_obj_folio(folio, p); 2999 } 3000 3001 /* 3002 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3003 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 3004 * allocated using vmalloc(). 3005 * 3006 * A passed kernel object must be a slab object or a generic kernel page. 3007 * 3008 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3009 * cgroup_mutex, etc. 3010 */ 3011 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3012 { 3013 if (mem_cgroup_disabled()) 3014 return NULL; 3015 3016 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3017 } 3018 3019 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3020 { 3021 struct obj_cgroup *objcg = NULL; 3022 3023 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3024 objcg = rcu_dereference(memcg->objcg); 3025 if (objcg && obj_cgroup_tryget(objcg)) 3026 break; 3027 objcg = NULL; 3028 } 3029 return objcg; 3030 } 3031 3032 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 3033 { 3034 struct obj_cgroup *objcg = NULL; 3035 struct mem_cgroup *memcg; 3036 3037 if (memcg_kmem_bypass()) 3038 return NULL; 3039 3040 rcu_read_lock(); 3041 if (unlikely(active_memcg())) 3042 memcg = active_memcg(); 3043 else 3044 memcg = mem_cgroup_from_task(current); 3045 objcg = __get_obj_cgroup_from_memcg(memcg); 3046 rcu_read_unlock(); 3047 return objcg; 3048 } 3049 3050 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 3051 { 3052 struct obj_cgroup *objcg; 3053 3054 if (!memcg_kmem_online()) 3055 return NULL; 3056 3057 if (PageMemcgKmem(page)) { 3058 objcg = __folio_objcg(page_folio(page)); 3059 obj_cgroup_get(objcg); 3060 } else { 3061 struct mem_cgroup *memcg; 3062 3063 rcu_read_lock(); 3064 memcg = __folio_memcg(page_folio(page)); 3065 if (memcg) 3066 objcg = __get_obj_cgroup_from_memcg(memcg); 3067 else 3068 objcg = NULL; 3069 rcu_read_unlock(); 3070 } 3071 return objcg; 3072 } 3073 3074 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3075 { 3076 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3077 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3078 if (nr_pages > 0) 3079 page_counter_charge(&memcg->kmem, nr_pages); 3080 else 3081 page_counter_uncharge(&memcg->kmem, -nr_pages); 3082 } 3083 } 3084 3085 3086 /* 3087 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3088 * @objcg: object cgroup to uncharge 3089 * @nr_pages: number of pages to uncharge 3090 */ 3091 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3092 unsigned int nr_pages) 3093 { 3094 struct mem_cgroup *memcg; 3095 3096 memcg = get_mem_cgroup_from_objcg(objcg); 3097 3098 memcg_account_kmem(memcg, -nr_pages); 3099 refill_stock(memcg, nr_pages); 3100 3101 css_put(&memcg->css); 3102 } 3103 3104 /* 3105 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3106 * @objcg: object cgroup to charge 3107 * @gfp: reclaim mode 3108 * @nr_pages: number of pages to charge 3109 * 3110 * Returns 0 on success, an error code on failure. 3111 */ 3112 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3113 unsigned int nr_pages) 3114 { 3115 struct mem_cgroup *memcg; 3116 int ret; 3117 3118 memcg = get_mem_cgroup_from_objcg(objcg); 3119 3120 ret = try_charge_memcg(memcg, gfp, nr_pages); 3121 if (ret) 3122 goto out; 3123 3124 memcg_account_kmem(memcg, nr_pages); 3125 out: 3126 css_put(&memcg->css); 3127 3128 return ret; 3129 } 3130 3131 /** 3132 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3133 * @page: page to charge 3134 * @gfp: reclaim mode 3135 * @order: allocation order 3136 * 3137 * Returns 0 on success, an error code on failure. 3138 */ 3139 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3140 { 3141 struct obj_cgroup *objcg; 3142 int ret = 0; 3143 3144 objcg = get_obj_cgroup_from_current(); 3145 if (objcg) { 3146 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3147 if (!ret) { 3148 page->memcg_data = (unsigned long)objcg | 3149 MEMCG_DATA_KMEM; 3150 return 0; 3151 } 3152 obj_cgroup_put(objcg); 3153 } 3154 return ret; 3155 } 3156 3157 /** 3158 * __memcg_kmem_uncharge_page: uncharge a kmem page 3159 * @page: page to uncharge 3160 * @order: allocation order 3161 */ 3162 void __memcg_kmem_uncharge_page(struct page *page, int order) 3163 { 3164 struct folio *folio = page_folio(page); 3165 struct obj_cgroup *objcg; 3166 unsigned int nr_pages = 1 << order; 3167 3168 if (!folio_memcg_kmem(folio)) 3169 return; 3170 3171 objcg = __folio_objcg(folio); 3172 obj_cgroup_uncharge_pages(objcg, nr_pages); 3173 folio->memcg_data = 0; 3174 obj_cgroup_put(objcg); 3175 } 3176 3177 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3178 enum node_stat_item idx, int nr) 3179 { 3180 struct memcg_stock_pcp *stock; 3181 struct obj_cgroup *old = NULL; 3182 unsigned long flags; 3183 int *bytes; 3184 3185 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3186 stock = this_cpu_ptr(&memcg_stock); 3187 3188 /* 3189 * Save vmstat data in stock and skip vmstat array update unless 3190 * accumulating over a page of vmstat data or when pgdat or idx 3191 * changes. 3192 */ 3193 if (READ_ONCE(stock->cached_objcg) != objcg) { 3194 old = drain_obj_stock(stock); 3195 obj_cgroup_get(objcg); 3196 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3197 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3198 WRITE_ONCE(stock->cached_objcg, objcg); 3199 stock->cached_pgdat = pgdat; 3200 } else if (stock->cached_pgdat != pgdat) { 3201 /* Flush the existing cached vmstat data */ 3202 struct pglist_data *oldpg = stock->cached_pgdat; 3203 3204 if (stock->nr_slab_reclaimable_b) { 3205 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3206 stock->nr_slab_reclaimable_b); 3207 stock->nr_slab_reclaimable_b = 0; 3208 } 3209 if (stock->nr_slab_unreclaimable_b) { 3210 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3211 stock->nr_slab_unreclaimable_b); 3212 stock->nr_slab_unreclaimable_b = 0; 3213 } 3214 stock->cached_pgdat = pgdat; 3215 } 3216 3217 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3218 : &stock->nr_slab_unreclaimable_b; 3219 /* 3220 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3221 * cached locally at least once before pushing it out. 3222 */ 3223 if (!*bytes) { 3224 *bytes = nr; 3225 nr = 0; 3226 } else { 3227 *bytes += nr; 3228 if (abs(*bytes) > PAGE_SIZE) { 3229 nr = *bytes; 3230 *bytes = 0; 3231 } else { 3232 nr = 0; 3233 } 3234 } 3235 if (nr) 3236 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3237 3238 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3239 if (old) 3240 obj_cgroup_put(old); 3241 } 3242 3243 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3244 { 3245 struct memcg_stock_pcp *stock; 3246 unsigned long flags; 3247 bool ret = false; 3248 3249 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3250 3251 stock = this_cpu_ptr(&memcg_stock); 3252 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 3253 stock->nr_bytes -= nr_bytes; 3254 ret = true; 3255 } 3256 3257 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3258 3259 return ret; 3260 } 3261 3262 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3263 { 3264 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 3265 3266 if (!old) 3267 return NULL; 3268 3269 if (stock->nr_bytes) { 3270 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3271 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3272 3273 if (nr_pages) { 3274 struct mem_cgroup *memcg; 3275 3276 memcg = get_mem_cgroup_from_objcg(old); 3277 3278 memcg_account_kmem(memcg, -nr_pages); 3279 __refill_stock(memcg, nr_pages); 3280 3281 css_put(&memcg->css); 3282 } 3283 3284 /* 3285 * The leftover is flushed to the centralized per-memcg value. 3286 * On the next attempt to refill obj stock it will be moved 3287 * to a per-cpu stock (probably, on an other CPU), see 3288 * refill_obj_stock(). 3289 * 3290 * How often it's flushed is a trade-off between the memory 3291 * limit enforcement accuracy and potential CPU contention, 3292 * so it might be changed in the future. 3293 */ 3294 atomic_add(nr_bytes, &old->nr_charged_bytes); 3295 stock->nr_bytes = 0; 3296 } 3297 3298 /* 3299 * Flush the vmstat data in current stock 3300 */ 3301 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3302 if (stock->nr_slab_reclaimable_b) { 3303 mod_objcg_mlstate(old, stock->cached_pgdat, 3304 NR_SLAB_RECLAIMABLE_B, 3305 stock->nr_slab_reclaimable_b); 3306 stock->nr_slab_reclaimable_b = 0; 3307 } 3308 if (stock->nr_slab_unreclaimable_b) { 3309 mod_objcg_mlstate(old, stock->cached_pgdat, 3310 NR_SLAB_UNRECLAIMABLE_B, 3311 stock->nr_slab_unreclaimable_b); 3312 stock->nr_slab_unreclaimable_b = 0; 3313 } 3314 stock->cached_pgdat = NULL; 3315 } 3316 3317 WRITE_ONCE(stock->cached_objcg, NULL); 3318 /* 3319 * The `old' objects needs to be released by the caller via 3320 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3321 */ 3322 return old; 3323 } 3324 3325 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3326 struct mem_cgroup *root_memcg) 3327 { 3328 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3329 struct mem_cgroup *memcg; 3330 3331 if (objcg) { 3332 memcg = obj_cgroup_memcg(objcg); 3333 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3334 return true; 3335 } 3336 3337 return false; 3338 } 3339 3340 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3341 bool allow_uncharge) 3342 { 3343 struct memcg_stock_pcp *stock; 3344 struct obj_cgroup *old = NULL; 3345 unsigned long flags; 3346 unsigned int nr_pages = 0; 3347 3348 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3349 3350 stock = this_cpu_ptr(&memcg_stock); 3351 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3352 old = drain_obj_stock(stock); 3353 obj_cgroup_get(objcg); 3354 WRITE_ONCE(stock->cached_objcg, objcg); 3355 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3356 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3357 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3358 } 3359 stock->nr_bytes += nr_bytes; 3360 3361 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3362 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3363 stock->nr_bytes &= (PAGE_SIZE - 1); 3364 } 3365 3366 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3367 if (old) 3368 obj_cgroup_put(old); 3369 3370 if (nr_pages) 3371 obj_cgroup_uncharge_pages(objcg, nr_pages); 3372 } 3373 3374 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3375 { 3376 unsigned int nr_pages, nr_bytes; 3377 int ret; 3378 3379 if (consume_obj_stock(objcg, size)) 3380 return 0; 3381 3382 /* 3383 * In theory, objcg->nr_charged_bytes can have enough 3384 * pre-charged bytes to satisfy the allocation. However, 3385 * flushing objcg->nr_charged_bytes requires two atomic 3386 * operations, and objcg->nr_charged_bytes can't be big. 3387 * The shared objcg->nr_charged_bytes can also become a 3388 * performance bottleneck if all tasks of the same memcg are 3389 * trying to update it. So it's better to ignore it and try 3390 * grab some new pages. The stock's nr_bytes will be flushed to 3391 * objcg->nr_charged_bytes later on when objcg changes. 3392 * 3393 * The stock's nr_bytes may contain enough pre-charged bytes 3394 * to allow one less page from being charged, but we can't rely 3395 * on the pre-charged bytes not being changed outside of 3396 * consume_obj_stock() or refill_obj_stock(). So ignore those 3397 * pre-charged bytes as well when charging pages. To avoid a 3398 * page uncharge right after a page charge, we set the 3399 * allow_uncharge flag to false when calling refill_obj_stock() 3400 * to temporarily allow the pre-charged bytes to exceed the page 3401 * size limit. The maximum reachable value of the pre-charged 3402 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3403 * race. 3404 */ 3405 nr_pages = size >> PAGE_SHIFT; 3406 nr_bytes = size & (PAGE_SIZE - 1); 3407 3408 if (nr_bytes) 3409 nr_pages += 1; 3410 3411 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3412 if (!ret && nr_bytes) 3413 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3414 3415 return ret; 3416 } 3417 3418 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3419 { 3420 refill_obj_stock(objcg, size, true); 3421 } 3422 3423 #endif /* CONFIG_MEMCG_KMEM */ 3424 3425 /* 3426 * Because page_memcg(head) is not set on tails, set it now. 3427 */ 3428 void split_page_memcg(struct page *head, unsigned int nr) 3429 { 3430 struct folio *folio = page_folio(head); 3431 struct mem_cgroup *memcg = folio_memcg(folio); 3432 int i; 3433 3434 if (mem_cgroup_disabled() || !memcg) 3435 return; 3436 3437 for (i = 1; i < nr; i++) 3438 folio_page(folio, i)->memcg_data = folio->memcg_data; 3439 3440 if (folio_memcg_kmem(folio)) 3441 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3442 else 3443 css_get_many(&memcg->css, nr - 1); 3444 } 3445 3446 #ifdef CONFIG_SWAP 3447 /** 3448 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3449 * @entry: swap entry to be moved 3450 * @from: mem_cgroup which the entry is moved from 3451 * @to: mem_cgroup which the entry is moved to 3452 * 3453 * It succeeds only when the swap_cgroup's record for this entry is the same 3454 * as the mem_cgroup's id of @from. 3455 * 3456 * Returns 0 on success, -EINVAL on failure. 3457 * 3458 * The caller must have charged to @to, IOW, called page_counter_charge() about 3459 * both res and memsw, and called css_get(). 3460 */ 3461 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3462 struct mem_cgroup *from, struct mem_cgroup *to) 3463 { 3464 unsigned short old_id, new_id; 3465 3466 old_id = mem_cgroup_id(from); 3467 new_id = mem_cgroup_id(to); 3468 3469 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3470 mod_memcg_state(from, MEMCG_SWAP, -1); 3471 mod_memcg_state(to, MEMCG_SWAP, 1); 3472 return 0; 3473 } 3474 return -EINVAL; 3475 } 3476 #else 3477 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3478 struct mem_cgroup *from, struct mem_cgroup *to) 3479 { 3480 return -EINVAL; 3481 } 3482 #endif 3483 3484 static DEFINE_MUTEX(memcg_max_mutex); 3485 3486 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3487 unsigned long max, bool memsw) 3488 { 3489 bool enlarge = false; 3490 bool drained = false; 3491 int ret; 3492 bool limits_invariant; 3493 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3494 3495 do { 3496 if (signal_pending(current)) { 3497 ret = -EINTR; 3498 break; 3499 } 3500 3501 mutex_lock(&memcg_max_mutex); 3502 /* 3503 * Make sure that the new limit (memsw or memory limit) doesn't 3504 * break our basic invariant rule memory.max <= memsw.max. 3505 */ 3506 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3507 max <= memcg->memsw.max; 3508 if (!limits_invariant) { 3509 mutex_unlock(&memcg_max_mutex); 3510 ret = -EINVAL; 3511 break; 3512 } 3513 if (max > counter->max) 3514 enlarge = true; 3515 ret = page_counter_set_max(counter, max); 3516 mutex_unlock(&memcg_max_mutex); 3517 3518 if (!ret) 3519 break; 3520 3521 if (!drained) { 3522 drain_all_stock(memcg); 3523 drained = true; 3524 continue; 3525 } 3526 3527 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3528 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3529 ret = -EBUSY; 3530 break; 3531 } 3532 } while (true); 3533 3534 if (!ret && enlarge) 3535 memcg_oom_recover(memcg); 3536 3537 return ret; 3538 } 3539 3540 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3541 gfp_t gfp_mask, 3542 unsigned long *total_scanned) 3543 { 3544 unsigned long nr_reclaimed = 0; 3545 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3546 unsigned long reclaimed; 3547 int loop = 0; 3548 struct mem_cgroup_tree_per_node *mctz; 3549 unsigned long excess; 3550 3551 if (lru_gen_enabled()) 3552 return 0; 3553 3554 if (order > 0) 3555 return 0; 3556 3557 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3558 3559 /* 3560 * Do not even bother to check the largest node if the root 3561 * is empty. Do it lockless to prevent lock bouncing. Races 3562 * are acceptable as soft limit is best effort anyway. 3563 */ 3564 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3565 return 0; 3566 3567 /* 3568 * This loop can run a while, specially if mem_cgroup's continuously 3569 * keep exceeding their soft limit and putting the system under 3570 * pressure 3571 */ 3572 do { 3573 if (next_mz) 3574 mz = next_mz; 3575 else 3576 mz = mem_cgroup_largest_soft_limit_node(mctz); 3577 if (!mz) 3578 break; 3579 3580 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3581 gfp_mask, total_scanned); 3582 nr_reclaimed += reclaimed; 3583 spin_lock_irq(&mctz->lock); 3584 3585 /* 3586 * If we failed to reclaim anything from this memory cgroup 3587 * it is time to move on to the next cgroup 3588 */ 3589 next_mz = NULL; 3590 if (!reclaimed) 3591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3592 3593 excess = soft_limit_excess(mz->memcg); 3594 /* 3595 * One school of thought says that we should not add 3596 * back the node to the tree if reclaim returns 0. 3597 * But our reclaim could return 0, simply because due 3598 * to priority we are exposing a smaller subset of 3599 * memory to reclaim from. Consider this as a longer 3600 * term TODO. 3601 */ 3602 /* If excess == 0, no tree ops */ 3603 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3604 spin_unlock_irq(&mctz->lock); 3605 css_put(&mz->memcg->css); 3606 loop++; 3607 /* 3608 * Could not reclaim anything and there are no more 3609 * mem cgroups to try or we seem to be looping without 3610 * reclaiming anything. 3611 */ 3612 if (!nr_reclaimed && 3613 (next_mz == NULL || 3614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3615 break; 3616 } while (!nr_reclaimed); 3617 if (next_mz) 3618 css_put(&next_mz->memcg->css); 3619 return nr_reclaimed; 3620 } 3621 3622 /* 3623 * Reclaims as many pages from the given memcg as possible. 3624 * 3625 * Caller is responsible for holding css reference for memcg. 3626 */ 3627 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3628 { 3629 int nr_retries = MAX_RECLAIM_RETRIES; 3630 3631 /* we call try-to-free pages for make this cgroup empty */ 3632 lru_add_drain_all(); 3633 3634 drain_all_stock(memcg); 3635 3636 /* try to free all pages in this cgroup */ 3637 while (nr_retries && page_counter_read(&memcg->memory)) { 3638 if (signal_pending(current)) 3639 return -EINTR; 3640 3641 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3642 MEMCG_RECLAIM_MAY_SWAP)) 3643 nr_retries--; 3644 } 3645 3646 return 0; 3647 } 3648 3649 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3650 char *buf, size_t nbytes, 3651 loff_t off) 3652 { 3653 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3654 3655 if (mem_cgroup_is_root(memcg)) 3656 return -EINVAL; 3657 return mem_cgroup_force_empty(memcg) ?: nbytes; 3658 } 3659 3660 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3661 struct cftype *cft) 3662 { 3663 return 1; 3664 } 3665 3666 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3667 struct cftype *cft, u64 val) 3668 { 3669 if (val == 1) 3670 return 0; 3671 3672 pr_warn_once("Non-hierarchical mode is deprecated. " 3673 "Please report your usecase to linux-mm@kvack.org if you " 3674 "depend on this functionality.\n"); 3675 3676 return -EINVAL; 3677 } 3678 3679 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3680 { 3681 unsigned long val; 3682 3683 if (mem_cgroup_is_root(memcg)) { 3684 /* 3685 * Approximate root's usage from global state. This isn't 3686 * perfect, but the root usage was always an approximation. 3687 */ 3688 val = global_node_page_state(NR_FILE_PAGES) + 3689 global_node_page_state(NR_ANON_MAPPED); 3690 if (swap) 3691 val += total_swap_pages - get_nr_swap_pages(); 3692 } else { 3693 if (!swap) 3694 val = page_counter_read(&memcg->memory); 3695 else 3696 val = page_counter_read(&memcg->memsw); 3697 } 3698 return val; 3699 } 3700 3701 enum { 3702 RES_USAGE, 3703 RES_LIMIT, 3704 RES_MAX_USAGE, 3705 RES_FAILCNT, 3706 RES_SOFT_LIMIT, 3707 }; 3708 3709 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3710 struct cftype *cft) 3711 { 3712 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3713 struct page_counter *counter; 3714 3715 switch (MEMFILE_TYPE(cft->private)) { 3716 case _MEM: 3717 counter = &memcg->memory; 3718 break; 3719 case _MEMSWAP: 3720 counter = &memcg->memsw; 3721 break; 3722 case _KMEM: 3723 counter = &memcg->kmem; 3724 break; 3725 case _TCP: 3726 counter = &memcg->tcpmem; 3727 break; 3728 default: 3729 BUG(); 3730 } 3731 3732 switch (MEMFILE_ATTR(cft->private)) { 3733 case RES_USAGE: 3734 if (counter == &memcg->memory) 3735 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3736 if (counter == &memcg->memsw) 3737 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3738 return (u64)page_counter_read(counter) * PAGE_SIZE; 3739 case RES_LIMIT: 3740 return (u64)counter->max * PAGE_SIZE; 3741 case RES_MAX_USAGE: 3742 return (u64)counter->watermark * PAGE_SIZE; 3743 case RES_FAILCNT: 3744 return counter->failcnt; 3745 case RES_SOFT_LIMIT: 3746 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 3747 default: 3748 BUG(); 3749 } 3750 } 3751 3752 /* 3753 * This function doesn't do anything useful. Its only job is to provide a read 3754 * handler for a file so that cgroup_file_mode() will add read permissions. 3755 */ 3756 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 3757 __always_unused void *v) 3758 { 3759 return -EINVAL; 3760 } 3761 3762 #ifdef CONFIG_MEMCG_KMEM 3763 static int memcg_online_kmem(struct mem_cgroup *memcg) 3764 { 3765 struct obj_cgroup *objcg; 3766 3767 if (mem_cgroup_kmem_disabled()) 3768 return 0; 3769 3770 if (unlikely(mem_cgroup_is_root(memcg))) 3771 return 0; 3772 3773 objcg = obj_cgroup_alloc(); 3774 if (!objcg) 3775 return -ENOMEM; 3776 3777 objcg->memcg = memcg; 3778 rcu_assign_pointer(memcg->objcg, objcg); 3779 3780 static_branch_enable(&memcg_kmem_online_key); 3781 3782 memcg->kmemcg_id = memcg->id.id; 3783 3784 return 0; 3785 } 3786 3787 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3788 { 3789 struct mem_cgroup *parent; 3790 3791 if (mem_cgroup_kmem_disabled()) 3792 return; 3793 3794 if (unlikely(mem_cgroup_is_root(memcg))) 3795 return; 3796 3797 parent = parent_mem_cgroup(memcg); 3798 if (!parent) 3799 parent = root_mem_cgroup; 3800 3801 memcg_reparent_objcgs(memcg, parent); 3802 3803 /* 3804 * After we have finished memcg_reparent_objcgs(), all list_lrus 3805 * corresponding to this cgroup are guaranteed to remain empty. 3806 * The ordering is imposed by list_lru_node->lock taken by 3807 * memcg_reparent_list_lrus(). 3808 */ 3809 memcg_reparent_list_lrus(memcg, parent); 3810 } 3811 #else 3812 static int memcg_online_kmem(struct mem_cgroup *memcg) 3813 { 3814 return 0; 3815 } 3816 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3817 { 3818 } 3819 #endif /* CONFIG_MEMCG_KMEM */ 3820 3821 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3822 { 3823 int ret; 3824 3825 mutex_lock(&memcg_max_mutex); 3826 3827 ret = page_counter_set_max(&memcg->tcpmem, max); 3828 if (ret) 3829 goto out; 3830 3831 if (!memcg->tcpmem_active) { 3832 /* 3833 * The active flag needs to be written after the static_key 3834 * update. This is what guarantees that the socket activation 3835 * function is the last one to run. See mem_cgroup_sk_alloc() 3836 * for details, and note that we don't mark any socket as 3837 * belonging to this memcg until that flag is up. 3838 * 3839 * We need to do this, because static_keys will span multiple 3840 * sites, but we can't control their order. If we mark a socket 3841 * as accounted, but the accounting functions are not patched in 3842 * yet, we'll lose accounting. 3843 * 3844 * We never race with the readers in mem_cgroup_sk_alloc(), 3845 * because when this value change, the code to process it is not 3846 * patched in yet. 3847 */ 3848 static_branch_inc(&memcg_sockets_enabled_key); 3849 memcg->tcpmem_active = true; 3850 } 3851 out: 3852 mutex_unlock(&memcg_max_mutex); 3853 return ret; 3854 } 3855 3856 /* 3857 * The user of this function is... 3858 * RES_LIMIT. 3859 */ 3860 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3861 char *buf, size_t nbytes, loff_t off) 3862 { 3863 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3864 unsigned long nr_pages; 3865 int ret; 3866 3867 buf = strstrip(buf); 3868 ret = page_counter_memparse(buf, "-1", &nr_pages); 3869 if (ret) 3870 return ret; 3871 3872 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3873 case RES_LIMIT: 3874 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3875 ret = -EINVAL; 3876 break; 3877 } 3878 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3879 case _MEM: 3880 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3881 break; 3882 case _MEMSWAP: 3883 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3884 break; 3885 case _KMEM: 3886 /* kmem.limit_in_bytes is deprecated. */ 3887 ret = -EOPNOTSUPP; 3888 break; 3889 case _TCP: 3890 ret = memcg_update_tcp_max(memcg, nr_pages); 3891 break; 3892 } 3893 break; 3894 case RES_SOFT_LIMIT: 3895 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3896 ret = -EOPNOTSUPP; 3897 } else { 3898 WRITE_ONCE(memcg->soft_limit, nr_pages); 3899 ret = 0; 3900 } 3901 break; 3902 } 3903 return ret ?: nbytes; 3904 } 3905 3906 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3907 size_t nbytes, loff_t off) 3908 { 3909 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3910 struct page_counter *counter; 3911 3912 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3913 case _MEM: 3914 counter = &memcg->memory; 3915 break; 3916 case _MEMSWAP: 3917 counter = &memcg->memsw; 3918 break; 3919 case _KMEM: 3920 counter = &memcg->kmem; 3921 break; 3922 case _TCP: 3923 counter = &memcg->tcpmem; 3924 break; 3925 default: 3926 BUG(); 3927 } 3928 3929 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3930 case RES_MAX_USAGE: 3931 page_counter_reset_watermark(counter); 3932 break; 3933 case RES_FAILCNT: 3934 counter->failcnt = 0; 3935 break; 3936 default: 3937 BUG(); 3938 } 3939 3940 return nbytes; 3941 } 3942 3943 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3944 struct cftype *cft) 3945 { 3946 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3947 } 3948 3949 #ifdef CONFIG_MMU 3950 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3951 struct cftype *cft, u64 val) 3952 { 3953 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3954 3955 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 3956 "Please report your usecase to linux-mm@kvack.org if you " 3957 "depend on this functionality.\n"); 3958 3959 if (val & ~MOVE_MASK) 3960 return -EINVAL; 3961 3962 /* 3963 * No kind of locking is needed in here, because ->can_attach() will 3964 * check this value once in the beginning of the process, and then carry 3965 * on with stale data. This means that changes to this value will only 3966 * affect task migrations starting after the change. 3967 */ 3968 memcg->move_charge_at_immigrate = val; 3969 return 0; 3970 } 3971 #else 3972 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3973 struct cftype *cft, u64 val) 3974 { 3975 return -ENOSYS; 3976 } 3977 #endif 3978 3979 #ifdef CONFIG_NUMA 3980 3981 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3982 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3983 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3984 3985 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3986 int nid, unsigned int lru_mask, bool tree) 3987 { 3988 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3989 unsigned long nr = 0; 3990 enum lru_list lru; 3991 3992 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3993 3994 for_each_lru(lru) { 3995 if (!(BIT(lru) & lru_mask)) 3996 continue; 3997 if (tree) 3998 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3999 else 4000 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 4001 } 4002 return nr; 4003 } 4004 4005 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 4006 unsigned int lru_mask, 4007 bool tree) 4008 { 4009 unsigned long nr = 0; 4010 enum lru_list lru; 4011 4012 for_each_lru(lru) { 4013 if (!(BIT(lru) & lru_mask)) 4014 continue; 4015 if (tree) 4016 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 4017 else 4018 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 4019 } 4020 return nr; 4021 } 4022 4023 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4024 { 4025 struct numa_stat { 4026 const char *name; 4027 unsigned int lru_mask; 4028 }; 4029 4030 static const struct numa_stat stats[] = { 4031 { "total", LRU_ALL }, 4032 { "file", LRU_ALL_FILE }, 4033 { "anon", LRU_ALL_ANON }, 4034 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4035 }; 4036 const struct numa_stat *stat; 4037 int nid; 4038 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4039 4040 mem_cgroup_flush_stats(); 4041 4042 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4043 seq_printf(m, "%s=%lu", stat->name, 4044 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4045 false)); 4046 for_each_node_state(nid, N_MEMORY) 4047 seq_printf(m, " N%d=%lu", nid, 4048 mem_cgroup_node_nr_lru_pages(memcg, nid, 4049 stat->lru_mask, false)); 4050 seq_putc(m, '\n'); 4051 } 4052 4053 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4054 4055 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4056 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4057 true)); 4058 for_each_node_state(nid, N_MEMORY) 4059 seq_printf(m, " N%d=%lu", nid, 4060 mem_cgroup_node_nr_lru_pages(memcg, nid, 4061 stat->lru_mask, true)); 4062 seq_putc(m, '\n'); 4063 } 4064 4065 return 0; 4066 } 4067 #endif /* CONFIG_NUMA */ 4068 4069 static const unsigned int memcg1_stats[] = { 4070 NR_FILE_PAGES, 4071 NR_ANON_MAPPED, 4072 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4073 NR_ANON_THPS, 4074 #endif 4075 NR_SHMEM, 4076 NR_FILE_MAPPED, 4077 NR_FILE_DIRTY, 4078 NR_WRITEBACK, 4079 WORKINGSET_REFAULT_ANON, 4080 WORKINGSET_REFAULT_FILE, 4081 MEMCG_SWAP, 4082 }; 4083 4084 static const char *const memcg1_stat_names[] = { 4085 "cache", 4086 "rss", 4087 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4088 "rss_huge", 4089 #endif 4090 "shmem", 4091 "mapped_file", 4092 "dirty", 4093 "writeback", 4094 "workingset_refault_anon", 4095 "workingset_refault_file", 4096 "swap", 4097 }; 4098 4099 /* Universal VM events cgroup1 shows, original sort order */ 4100 static const unsigned int memcg1_events[] = { 4101 PGPGIN, 4102 PGPGOUT, 4103 PGFAULT, 4104 PGMAJFAULT, 4105 }; 4106 4107 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 4108 { 4109 unsigned long memory, memsw; 4110 struct mem_cgroup *mi; 4111 unsigned int i; 4112 4113 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4114 4115 mem_cgroup_flush_stats(); 4116 4117 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4118 unsigned long nr; 4119 4120 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4121 continue; 4122 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4123 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], 4124 nr * memcg_page_state_unit(memcg1_stats[i])); 4125 } 4126 4127 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4128 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 4129 memcg_events_local(memcg, memcg1_events[i])); 4130 4131 for (i = 0; i < NR_LRU_LISTS; i++) 4132 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 4133 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4134 PAGE_SIZE); 4135 4136 /* Hierarchical information */ 4137 memory = memsw = PAGE_COUNTER_MAX; 4138 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4139 memory = min(memory, READ_ONCE(mi->memory.max)); 4140 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4141 } 4142 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 4143 (u64)memory * PAGE_SIZE); 4144 if (do_memsw_account()) 4145 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 4146 (u64)memsw * PAGE_SIZE); 4147 4148 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4149 unsigned long nr; 4150 4151 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4152 continue; 4153 nr = memcg_page_state(memcg, memcg1_stats[i]); 4154 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 4155 (u64)nr * memcg_page_state_unit(memcg1_stats[i])); 4156 } 4157 4158 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4159 seq_buf_printf(s, "total_%s %llu\n", 4160 vm_event_name(memcg1_events[i]), 4161 (u64)memcg_events(memcg, memcg1_events[i])); 4162 4163 for (i = 0; i < NR_LRU_LISTS; i++) 4164 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 4165 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4166 PAGE_SIZE); 4167 4168 #ifdef CONFIG_DEBUG_VM 4169 { 4170 pg_data_t *pgdat; 4171 struct mem_cgroup_per_node *mz; 4172 unsigned long anon_cost = 0; 4173 unsigned long file_cost = 0; 4174 4175 for_each_online_pgdat(pgdat) { 4176 mz = memcg->nodeinfo[pgdat->node_id]; 4177 4178 anon_cost += mz->lruvec.anon_cost; 4179 file_cost += mz->lruvec.file_cost; 4180 } 4181 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 4182 seq_buf_printf(s, "file_cost %lu\n", file_cost); 4183 } 4184 #endif 4185 } 4186 4187 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4188 struct cftype *cft) 4189 { 4190 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4191 4192 return mem_cgroup_swappiness(memcg); 4193 } 4194 4195 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4196 struct cftype *cft, u64 val) 4197 { 4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4199 4200 if (val > 200) 4201 return -EINVAL; 4202 4203 if (!mem_cgroup_is_root(memcg)) 4204 WRITE_ONCE(memcg->swappiness, val); 4205 else 4206 WRITE_ONCE(vm_swappiness, val); 4207 4208 return 0; 4209 } 4210 4211 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4212 { 4213 struct mem_cgroup_threshold_ary *t; 4214 unsigned long usage; 4215 int i; 4216 4217 rcu_read_lock(); 4218 if (!swap) 4219 t = rcu_dereference(memcg->thresholds.primary); 4220 else 4221 t = rcu_dereference(memcg->memsw_thresholds.primary); 4222 4223 if (!t) 4224 goto unlock; 4225 4226 usage = mem_cgroup_usage(memcg, swap); 4227 4228 /* 4229 * current_threshold points to threshold just below or equal to usage. 4230 * If it's not true, a threshold was crossed after last 4231 * call of __mem_cgroup_threshold(). 4232 */ 4233 i = t->current_threshold; 4234 4235 /* 4236 * Iterate backward over array of thresholds starting from 4237 * current_threshold and check if a threshold is crossed. 4238 * If none of thresholds below usage is crossed, we read 4239 * only one element of the array here. 4240 */ 4241 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4242 eventfd_signal(t->entries[i].eventfd, 1); 4243 4244 /* i = current_threshold + 1 */ 4245 i++; 4246 4247 /* 4248 * Iterate forward over array of thresholds starting from 4249 * current_threshold+1 and check if a threshold is crossed. 4250 * If none of thresholds above usage is crossed, we read 4251 * only one element of the array here. 4252 */ 4253 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4254 eventfd_signal(t->entries[i].eventfd, 1); 4255 4256 /* Update current_threshold */ 4257 t->current_threshold = i - 1; 4258 unlock: 4259 rcu_read_unlock(); 4260 } 4261 4262 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4263 { 4264 while (memcg) { 4265 __mem_cgroup_threshold(memcg, false); 4266 if (do_memsw_account()) 4267 __mem_cgroup_threshold(memcg, true); 4268 4269 memcg = parent_mem_cgroup(memcg); 4270 } 4271 } 4272 4273 static int compare_thresholds(const void *a, const void *b) 4274 { 4275 const struct mem_cgroup_threshold *_a = a; 4276 const struct mem_cgroup_threshold *_b = b; 4277 4278 if (_a->threshold > _b->threshold) 4279 return 1; 4280 4281 if (_a->threshold < _b->threshold) 4282 return -1; 4283 4284 return 0; 4285 } 4286 4287 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4288 { 4289 struct mem_cgroup_eventfd_list *ev; 4290 4291 spin_lock(&memcg_oom_lock); 4292 4293 list_for_each_entry(ev, &memcg->oom_notify, list) 4294 eventfd_signal(ev->eventfd, 1); 4295 4296 spin_unlock(&memcg_oom_lock); 4297 return 0; 4298 } 4299 4300 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4301 { 4302 struct mem_cgroup *iter; 4303 4304 for_each_mem_cgroup_tree(iter, memcg) 4305 mem_cgroup_oom_notify_cb(iter); 4306 } 4307 4308 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4309 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4310 { 4311 struct mem_cgroup_thresholds *thresholds; 4312 struct mem_cgroup_threshold_ary *new; 4313 unsigned long threshold; 4314 unsigned long usage; 4315 int i, size, ret; 4316 4317 ret = page_counter_memparse(args, "-1", &threshold); 4318 if (ret) 4319 return ret; 4320 4321 mutex_lock(&memcg->thresholds_lock); 4322 4323 if (type == _MEM) { 4324 thresholds = &memcg->thresholds; 4325 usage = mem_cgroup_usage(memcg, false); 4326 } else if (type == _MEMSWAP) { 4327 thresholds = &memcg->memsw_thresholds; 4328 usage = mem_cgroup_usage(memcg, true); 4329 } else 4330 BUG(); 4331 4332 /* Check if a threshold crossed before adding a new one */ 4333 if (thresholds->primary) 4334 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4335 4336 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4337 4338 /* Allocate memory for new array of thresholds */ 4339 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4340 if (!new) { 4341 ret = -ENOMEM; 4342 goto unlock; 4343 } 4344 new->size = size; 4345 4346 /* Copy thresholds (if any) to new array */ 4347 if (thresholds->primary) 4348 memcpy(new->entries, thresholds->primary->entries, 4349 flex_array_size(new, entries, size - 1)); 4350 4351 /* Add new threshold */ 4352 new->entries[size - 1].eventfd = eventfd; 4353 new->entries[size - 1].threshold = threshold; 4354 4355 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4356 sort(new->entries, size, sizeof(*new->entries), 4357 compare_thresholds, NULL); 4358 4359 /* Find current threshold */ 4360 new->current_threshold = -1; 4361 for (i = 0; i < size; i++) { 4362 if (new->entries[i].threshold <= usage) { 4363 /* 4364 * new->current_threshold will not be used until 4365 * rcu_assign_pointer(), so it's safe to increment 4366 * it here. 4367 */ 4368 ++new->current_threshold; 4369 } else 4370 break; 4371 } 4372 4373 /* Free old spare buffer and save old primary buffer as spare */ 4374 kfree(thresholds->spare); 4375 thresholds->spare = thresholds->primary; 4376 4377 rcu_assign_pointer(thresholds->primary, new); 4378 4379 /* To be sure that nobody uses thresholds */ 4380 synchronize_rcu(); 4381 4382 unlock: 4383 mutex_unlock(&memcg->thresholds_lock); 4384 4385 return ret; 4386 } 4387 4388 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4389 struct eventfd_ctx *eventfd, const char *args) 4390 { 4391 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4392 } 4393 4394 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4395 struct eventfd_ctx *eventfd, const char *args) 4396 { 4397 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4398 } 4399 4400 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4401 struct eventfd_ctx *eventfd, enum res_type type) 4402 { 4403 struct mem_cgroup_thresholds *thresholds; 4404 struct mem_cgroup_threshold_ary *new; 4405 unsigned long usage; 4406 int i, j, size, entries; 4407 4408 mutex_lock(&memcg->thresholds_lock); 4409 4410 if (type == _MEM) { 4411 thresholds = &memcg->thresholds; 4412 usage = mem_cgroup_usage(memcg, false); 4413 } else if (type == _MEMSWAP) { 4414 thresholds = &memcg->memsw_thresholds; 4415 usage = mem_cgroup_usage(memcg, true); 4416 } else 4417 BUG(); 4418 4419 if (!thresholds->primary) 4420 goto unlock; 4421 4422 /* Check if a threshold crossed before removing */ 4423 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4424 4425 /* Calculate new number of threshold */ 4426 size = entries = 0; 4427 for (i = 0; i < thresholds->primary->size; i++) { 4428 if (thresholds->primary->entries[i].eventfd != eventfd) 4429 size++; 4430 else 4431 entries++; 4432 } 4433 4434 new = thresholds->spare; 4435 4436 /* If no items related to eventfd have been cleared, nothing to do */ 4437 if (!entries) 4438 goto unlock; 4439 4440 /* Set thresholds array to NULL if we don't have thresholds */ 4441 if (!size) { 4442 kfree(new); 4443 new = NULL; 4444 goto swap_buffers; 4445 } 4446 4447 new->size = size; 4448 4449 /* Copy thresholds and find current threshold */ 4450 new->current_threshold = -1; 4451 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4452 if (thresholds->primary->entries[i].eventfd == eventfd) 4453 continue; 4454 4455 new->entries[j] = thresholds->primary->entries[i]; 4456 if (new->entries[j].threshold <= usage) { 4457 /* 4458 * new->current_threshold will not be used 4459 * until rcu_assign_pointer(), so it's safe to increment 4460 * it here. 4461 */ 4462 ++new->current_threshold; 4463 } 4464 j++; 4465 } 4466 4467 swap_buffers: 4468 /* Swap primary and spare array */ 4469 thresholds->spare = thresholds->primary; 4470 4471 rcu_assign_pointer(thresholds->primary, new); 4472 4473 /* To be sure that nobody uses thresholds */ 4474 synchronize_rcu(); 4475 4476 /* If all events are unregistered, free the spare array */ 4477 if (!new) { 4478 kfree(thresholds->spare); 4479 thresholds->spare = NULL; 4480 } 4481 unlock: 4482 mutex_unlock(&memcg->thresholds_lock); 4483 } 4484 4485 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4486 struct eventfd_ctx *eventfd) 4487 { 4488 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4489 } 4490 4491 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4492 struct eventfd_ctx *eventfd) 4493 { 4494 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4495 } 4496 4497 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4498 struct eventfd_ctx *eventfd, const char *args) 4499 { 4500 struct mem_cgroup_eventfd_list *event; 4501 4502 event = kmalloc(sizeof(*event), GFP_KERNEL); 4503 if (!event) 4504 return -ENOMEM; 4505 4506 spin_lock(&memcg_oom_lock); 4507 4508 event->eventfd = eventfd; 4509 list_add(&event->list, &memcg->oom_notify); 4510 4511 /* already in OOM ? */ 4512 if (memcg->under_oom) 4513 eventfd_signal(eventfd, 1); 4514 spin_unlock(&memcg_oom_lock); 4515 4516 return 0; 4517 } 4518 4519 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4520 struct eventfd_ctx *eventfd) 4521 { 4522 struct mem_cgroup_eventfd_list *ev, *tmp; 4523 4524 spin_lock(&memcg_oom_lock); 4525 4526 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4527 if (ev->eventfd == eventfd) { 4528 list_del(&ev->list); 4529 kfree(ev); 4530 } 4531 } 4532 4533 spin_unlock(&memcg_oom_lock); 4534 } 4535 4536 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4537 { 4538 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4539 4540 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 4541 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4542 seq_printf(sf, "oom_kill %lu\n", 4543 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4544 return 0; 4545 } 4546 4547 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4548 struct cftype *cft, u64 val) 4549 { 4550 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4551 4552 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4553 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4554 return -EINVAL; 4555 4556 WRITE_ONCE(memcg->oom_kill_disable, val); 4557 if (!val) 4558 memcg_oom_recover(memcg); 4559 4560 return 0; 4561 } 4562 4563 #ifdef CONFIG_CGROUP_WRITEBACK 4564 4565 #include <trace/events/writeback.h> 4566 4567 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4568 { 4569 return wb_domain_init(&memcg->cgwb_domain, gfp); 4570 } 4571 4572 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4573 { 4574 wb_domain_exit(&memcg->cgwb_domain); 4575 } 4576 4577 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4578 { 4579 wb_domain_size_changed(&memcg->cgwb_domain); 4580 } 4581 4582 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4583 { 4584 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4585 4586 if (!memcg->css.parent) 4587 return NULL; 4588 4589 return &memcg->cgwb_domain; 4590 } 4591 4592 /** 4593 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4594 * @wb: bdi_writeback in question 4595 * @pfilepages: out parameter for number of file pages 4596 * @pheadroom: out parameter for number of allocatable pages according to memcg 4597 * @pdirty: out parameter for number of dirty pages 4598 * @pwriteback: out parameter for number of pages under writeback 4599 * 4600 * Determine the numbers of file, headroom, dirty, and writeback pages in 4601 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4602 * is a bit more involved. 4603 * 4604 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4605 * headroom is calculated as the lowest headroom of itself and the 4606 * ancestors. Note that this doesn't consider the actual amount of 4607 * available memory in the system. The caller should further cap 4608 * *@pheadroom accordingly. 4609 */ 4610 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4611 unsigned long *pheadroom, unsigned long *pdirty, 4612 unsigned long *pwriteback) 4613 { 4614 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4615 struct mem_cgroup *parent; 4616 4617 mem_cgroup_flush_stats(); 4618 4619 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4620 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4621 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4622 memcg_page_state(memcg, NR_ACTIVE_FILE); 4623 4624 *pheadroom = PAGE_COUNTER_MAX; 4625 while ((parent = parent_mem_cgroup(memcg))) { 4626 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4627 READ_ONCE(memcg->memory.high)); 4628 unsigned long used = page_counter_read(&memcg->memory); 4629 4630 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4631 memcg = parent; 4632 } 4633 } 4634 4635 /* 4636 * Foreign dirty flushing 4637 * 4638 * There's an inherent mismatch between memcg and writeback. The former 4639 * tracks ownership per-page while the latter per-inode. This was a 4640 * deliberate design decision because honoring per-page ownership in the 4641 * writeback path is complicated, may lead to higher CPU and IO overheads 4642 * and deemed unnecessary given that write-sharing an inode across 4643 * different cgroups isn't a common use-case. 4644 * 4645 * Combined with inode majority-writer ownership switching, this works well 4646 * enough in most cases but there are some pathological cases. For 4647 * example, let's say there are two cgroups A and B which keep writing to 4648 * different but confined parts of the same inode. B owns the inode and 4649 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4650 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4651 * triggering background writeback. A will be slowed down without a way to 4652 * make writeback of the dirty pages happen. 4653 * 4654 * Conditions like the above can lead to a cgroup getting repeatedly and 4655 * severely throttled after making some progress after each 4656 * dirty_expire_interval while the underlying IO device is almost 4657 * completely idle. 4658 * 4659 * Solving this problem completely requires matching the ownership tracking 4660 * granularities between memcg and writeback in either direction. However, 4661 * the more egregious behaviors can be avoided by simply remembering the 4662 * most recent foreign dirtying events and initiating remote flushes on 4663 * them when local writeback isn't enough to keep the memory clean enough. 4664 * 4665 * The following two functions implement such mechanism. When a foreign 4666 * page - a page whose memcg and writeback ownerships don't match - is 4667 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4668 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4669 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4670 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4671 * foreign bdi_writebacks which haven't expired. Both the numbers of 4672 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4673 * limited to MEMCG_CGWB_FRN_CNT. 4674 * 4675 * The mechanism only remembers IDs and doesn't hold any object references. 4676 * As being wrong occasionally doesn't matter, updates and accesses to the 4677 * records are lockless and racy. 4678 */ 4679 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4680 struct bdi_writeback *wb) 4681 { 4682 struct mem_cgroup *memcg = folio_memcg(folio); 4683 struct memcg_cgwb_frn *frn; 4684 u64 now = get_jiffies_64(); 4685 u64 oldest_at = now; 4686 int oldest = -1; 4687 int i; 4688 4689 trace_track_foreign_dirty(folio, wb); 4690 4691 /* 4692 * Pick the slot to use. If there is already a slot for @wb, keep 4693 * using it. If not replace the oldest one which isn't being 4694 * written out. 4695 */ 4696 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4697 frn = &memcg->cgwb_frn[i]; 4698 if (frn->bdi_id == wb->bdi->id && 4699 frn->memcg_id == wb->memcg_css->id) 4700 break; 4701 if (time_before64(frn->at, oldest_at) && 4702 atomic_read(&frn->done.cnt) == 1) { 4703 oldest = i; 4704 oldest_at = frn->at; 4705 } 4706 } 4707 4708 if (i < MEMCG_CGWB_FRN_CNT) { 4709 /* 4710 * Re-using an existing one. Update timestamp lazily to 4711 * avoid making the cacheline hot. We want them to be 4712 * reasonably up-to-date and significantly shorter than 4713 * dirty_expire_interval as that's what expires the record. 4714 * Use the shorter of 1s and dirty_expire_interval / 8. 4715 */ 4716 unsigned long update_intv = 4717 min_t(unsigned long, HZ, 4718 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4719 4720 if (time_before64(frn->at, now - update_intv)) 4721 frn->at = now; 4722 } else if (oldest >= 0) { 4723 /* replace the oldest free one */ 4724 frn = &memcg->cgwb_frn[oldest]; 4725 frn->bdi_id = wb->bdi->id; 4726 frn->memcg_id = wb->memcg_css->id; 4727 frn->at = now; 4728 } 4729 } 4730 4731 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4732 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4733 { 4734 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4735 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4736 u64 now = jiffies_64; 4737 int i; 4738 4739 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4740 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4741 4742 /* 4743 * If the record is older than dirty_expire_interval, 4744 * writeback on it has already started. No need to kick it 4745 * off again. Also, don't start a new one if there's 4746 * already one in flight. 4747 */ 4748 if (time_after64(frn->at, now - intv) && 4749 atomic_read(&frn->done.cnt) == 1) { 4750 frn->at = 0; 4751 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4752 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4753 WB_REASON_FOREIGN_FLUSH, 4754 &frn->done); 4755 } 4756 } 4757 } 4758 4759 #else /* CONFIG_CGROUP_WRITEBACK */ 4760 4761 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4762 { 4763 return 0; 4764 } 4765 4766 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4767 { 4768 } 4769 4770 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4771 { 4772 } 4773 4774 #endif /* CONFIG_CGROUP_WRITEBACK */ 4775 4776 /* 4777 * DO NOT USE IN NEW FILES. 4778 * 4779 * "cgroup.event_control" implementation. 4780 * 4781 * This is way over-engineered. It tries to support fully configurable 4782 * events for each user. Such level of flexibility is completely 4783 * unnecessary especially in the light of the planned unified hierarchy. 4784 * 4785 * Please deprecate this and replace with something simpler if at all 4786 * possible. 4787 */ 4788 4789 /* 4790 * Unregister event and free resources. 4791 * 4792 * Gets called from workqueue. 4793 */ 4794 static void memcg_event_remove(struct work_struct *work) 4795 { 4796 struct mem_cgroup_event *event = 4797 container_of(work, struct mem_cgroup_event, remove); 4798 struct mem_cgroup *memcg = event->memcg; 4799 4800 remove_wait_queue(event->wqh, &event->wait); 4801 4802 event->unregister_event(memcg, event->eventfd); 4803 4804 /* Notify userspace the event is going away. */ 4805 eventfd_signal(event->eventfd, 1); 4806 4807 eventfd_ctx_put(event->eventfd); 4808 kfree(event); 4809 css_put(&memcg->css); 4810 } 4811 4812 /* 4813 * Gets called on EPOLLHUP on eventfd when user closes it. 4814 * 4815 * Called with wqh->lock held and interrupts disabled. 4816 */ 4817 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4818 int sync, void *key) 4819 { 4820 struct mem_cgroup_event *event = 4821 container_of(wait, struct mem_cgroup_event, wait); 4822 struct mem_cgroup *memcg = event->memcg; 4823 __poll_t flags = key_to_poll(key); 4824 4825 if (flags & EPOLLHUP) { 4826 /* 4827 * If the event has been detached at cgroup removal, we 4828 * can simply return knowing the other side will cleanup 4829 * for us. 4830 * 4831 * We can't race against event freeing since the other 4832 * side will require wqh->lock via remove_wait_queue(), 4833 * which we hold. 4834 */ 4835 spin_lock(&memcg->event_list_lock); 4836 if (!list_empty(&event->list)) { 4837 list_del_init(&event->list); 4838 /* 4839 * We are in atomic context, but cgroup_event_remove() 4840 * may sleep, so we have to call it in workqueue. 4841 */ 4842 schedule_work(&event->remove); 4843 } 4844 spin_unlock(&memcg->event_list_lock); 4845 } 4846 4847 return 0; 4848 } 4849 4850 static void memcg_event_ptable_queue_proc(struct file *file, 4851 wait_queue_head_t *wqh, poll_table *pt) 4852 { 4853 struct mem_cgroup_event *event = 4854 container_of(pt, struct mem_cgroup_event, pt); 4855 4856 event->wqh = wqh; 4857 add_wait_queue(wqh, &event->wait); 4858 } 4859 4860 /* 4861 * DO NOT USE IN NEW FILES. 4862 * 4863 * Parse input and register new cgroup event handler. 4864 * 4865 * Input must be in format '<event_fd> <control_fd> <args>'. 4866 * Interpretation of args is defined by control file implementation. 4867 */ 4868 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4869 char *buf, size_t nbytes, loff_t off) 4870 { 4871 struct cgroup_subsys_state *css = of_css(of); 4872 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4873 struct mem_cgroup_event *event; 4874 struct cgroup_subsys_state *cfile_css; 4875 unsigned int efd, cfd; 4876 struct fd efile; 4877 struct fd cfile; 4878 struct dentry *cdentry; 4879 const char *name; 4880 char *endp; 4881 int ret; 4882 4883 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4884 return -EOPNOTSUPP; 4885 4886 buf = strstrip(buf); 4887 4888 efd = simple_strtoul(buf, &endp, 10); 4889 if (*endp != ' ') 4890 return -EINVAL; 4891 buf = endp + 1; 4892 4893 cfd = simple_strtoul(buf, &endp, 10); 4894 if ((*endp != ' ') && (*endp != '\0')) 4895 return -EINVAL; 4896 buf = endp + 1; 4897 4898 event = kzalloc(sizeof(*event), GFP_KERNEL); 4899 if (!event) 4900 return -ENOMEM; 4901 4902 event->memcg = memcg; 4903 INIT_LIST_HEAD(&event->list); 4904 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4905 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4906 INIT_WORK(&event->remove, memcg_event_remove); 4907 4908 efile = fdget(efd); 4909 if (!efile.file) { 4910 ret = -EBADF; 4911 goto out_kfree; 4912 } 4913 4914 event->eventfd = eventfd_ctx_fileget(efile.file); 4915 if (IS_ERR(event->eventfd)) { 4916 ret = PTR_ERR(event->eventfd); 4917 goto out_put_efile; 4918 } 4919 4920 cfile = fdget(cfd); 4921 if (!cfile.file) { 4922 ret = -EBADF; 4923 goto out_put_eventfd; 4924 } 4925 4926 /* the process need read permission on control file */ 4927 /* AV: shouldn't we check that it's been opened for read instead? */ 4928 ret = file_permission(cfile.file, MAY_READ); 4929 if (ret < 0) 4930 goto out_put_cfile; 4931 4932 /* 4933 * The control file must be a regular cgroup1 file. As a regular cgroup 4934 * file can't be renamed, it's safe to access its name afterwards. 4935 */ 4936 cdentry = cfile.file->f_path.dentry; 4937 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 4938 ret = -EINVAL; 4939 goto out_put_cfile; 4940 } 4941 4942 /* 4943 * Determine the event callbacks and set them in @event. This used 4944 * to be done via struct cftype but cgroup core no longer knows 4945 * about these events. The following is crude but the whole thing 4946 * is for compatibility anyway. 4947 * 4948 * DO NOT ADD NEW FILES. 4949 */ 4950 name = cdentry->d_name.name; 4951 4952 if (!strcmp(name, "memory.usage_in_bytes")) { 4953 event->register_event = mem_cgroup_usage_register_event; 4954 event->unregister_event = mem_cgroup_usage_unregister_event; 4955 } else if (!strcmp(name, "memory.oom_control")) { 4956 event->register_event = mem_cgroup_oom_register_event; 4957 event->unregister_event = mem_cgroup_oom_unregister_event; 4958 } else if (!strcmp(name, "memory.pressure_level")) { 4959 event->register_event = vmpressure_register_event; 4960 event->unregister_event = vmpressure_unregister_event; 4961 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4962 event->register_event = memsw_cgroup_usage_register_event; 4963 event->unregister_event = memsw_cgroup_usage_unregister_event; 4964 } else { 4965 ret = -EINVAL; 4966 goto out_put_cfile; 4967 } 4968 4969 /* 4970 * Verify @cfile should belong to @css. Also, remaining events are 4971 * automatically removed on cgroup destruction but the removal is 4972 * asynchronous, so take an extra ref on @css. 4973 */ 4974 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 4975 &memory_cgrp_subsys); 4976 ret = -EINVAL; 4977 if (IS_ERR(cfile_css)) 4978 goto out_put_cfile; 4979 if (cfile_css != css) { 4980 css_put(cfile_css); 4981 goto out_put_cfile; 4982 } 4983 4984 ret = event->register_event(memcg, event->eventfd, buf); 4985 if (ret) 4986 goto out_put_css; 4987 4988 vfs_poll(efile.file, &event->pt); 4989 4990 spin_lock_irq(&memcg->event_list_lock); 4991 list_add(&event->list, &memcg->event_list); 4992 spin_unlock_irq(&memcg->event_list_lock); 4993 4994 fdput(cfile); 4995 fdput(efile); 4996 4997 return nbytes; 4998 4999 out_put_css: 5000 css_put(css); 5001 out_put_cfile: 5002 fdput(cfile); 5003 out_put_eventfd: 5004 eventfd_ctx_put(event->eventfd); 5005 out_put_efile: 5006 fdput(efile); 5007 out_kfree: 5008 kfree(event); 5009 5010 return ret; 5011 } 5012 5013 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5014 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 5015 { 5016 /* 5017 * Deprecated. 5018 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 5019 */ 5020 return 0; 5021 } 5022 #endif 5023 5024 static int memory_stat_show(struct seq_file *m, void *v); 5025 5026 static struct cftype mem_cgroup_legacy_files[] = { 5027 { 5028 .name = "usage_in_bytes", 5029 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5030 .read_u64 = mem_cgroup_read_u64, 5031 }, 5032 { 5033 .name = "max_usage_in_bytes", 5034 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5035 .write = mem_cgroup_reset, 5036 .read_u64 = mem_cgroup_read_u64, 5037 }, 5038 { 5039 .name = "limit_in_bytes", 5040 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5041 .write = mem_cgroup_write, 5042 .read_u64 = mem_cgroup_read_u64, 5043 }, 5044 { 5045 .name = "soft_limit_in_bytes", 5046 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5047 .write = mem_cgroup_write, 5048 .read_u64 = mem_cgroup_read_u64, 5049 }, 5050 { 5051 .name = "failcnt", 5052 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5053 .write = mem_cgroup_reset, 5054 .read_u64 = mem_cgroup_read_u64, 5055 }, 5056 { 5057 .name = "stat", 5058 .seq_show = memory_stat_show, 5059 }, 5060 { 5061 .name = "force_empty", 5062 .write = mem_cgroup_force_empty_write, 5063 }, 5064 { 5065 .name = "use_hierarchy", 5066 .write_u64 = mem_cgroup_hierarchy_write, 5067 .read_u64 = mem_cgroup_hierarchy_read, 5068 }, 5069 { 5070 .name = "cgroup.event_control", /* XXX: for compat */ 5071 .write = memcg_write_event_control, 5072 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5073 }, 5074 { 5075 .name = "swappiness", 5076 .read_u64 = mem_cgroup_swappiness_read, 5077 .write_u64 = mem_cgroup_swappiness_write, 5078 }, 5079 { 5080 .name = "move_charge_at_immigrate", 5081 .read_u64 = mem_cgroup_move_charge_read, 5082 .write_u64 = mem_cgroup_move_charge_write, 5083 }, 5084 { 5085 .name = "oom_control", 5086 .seq_show = mem_cgroup_oom_control_read, 5087 .write_u64 = mem_cgroup_oom_control_write, 5088 }, 5089 { 5090 .name = "pressure_level", 5091 .seq_show = mem_cgroup_dummy_seq_show, 5092 }, 5093 #ifdef CONFIG_NUMA 5094 { 5095 .name = "numa_stat", 5096 .seq_show = memcg_numa_stat_show, 5097 }, 5098 #endif 5099 { 5100 .name = "kmem.limit_in_bytes", 5101 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5102 .write = mem_cgroup_write, 5103 .read_u64 = mem_cgroup_read_u64, 5104 }, 5105 { 5106 .name = "kmem.usage_in_bytes", 5107 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5108 .read_u64 = mem_cgroup_read_u64, 5109 }, 5110 { 5111 .name = "kmem.failcnt", 5112 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5113 .write = mem_cgroup_reset, 5114 .read_u64 = mem_cgroup_read_u64, 5115 }, 5116 { 5117 .name = "kmem.max_usage_in_bytes", 5118 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5119 .write = mem_cgroup_reset, 5120 .read_u64 = mem_cgroup_read_u64, 5121 }, 5122 #if defined(CONFIG_MEMCG_KMEM) && \ 5123 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5124 { 5125 .name = "kmem.slabinfo", 5126 .seq_show = mem_cgroup_slab_show, 5127 }, 5128 #endif 5129 { 5130 .name = "kmem.tcp.limit_in_bytes", 5131 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5132 .write = mem_cgroup_write, 5133 .read_u64 = mem_cgroup_read_u64, 5134 }, 5135 { 5136 .name = "kmem.tcp.usage_in_bytes", 5137 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5138 .read_u64 = mem_cgroup_read_u64, 5139 }, 5140 { 5141 .name = "kmem.tcp.failcnt", 5142 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5143 .write = mem_cgroup_reset, 5144 .read_u64 = mem_cgroup_read_u64, 5145 }, 5146 { 5147 .name = "kmem.tcp.max_usage_in_bytes", 5148 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5149 .write = mem_cgroup_reset, 5150 .read_u64 = mem_cgroup_read_u64, 5151 }, 5152 { }, /* terminate */ 5153 }; 5154 5155 /* 5156 * Private memory cgroup IDR 5157 * 5158 * Swap-out records and page cache shadow entries need to store memcg 5159 * references in constrained space, so we maintain an ID space that is 5160 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5161 * memory-controlled cgroups to 64k. 5162 * 5163 * However, there usually are many references to the offline CSS after 5164 * the cgroup has been destroyed, such as page cache or reclaimable 5165 * slab objects, that don't need to hang on to the ID. We want to keep 5166 * those dead CSS from occupying IDs, or we might quickly exhaust the 5167 * relatively small ID space and prevent the creation of new cgroups 5168 * even when there are much fewer than 64k cgroups - possibly none. 5169 * 5170 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5171 * be freed and recycled when it's no longer needed, which is usually 5172 * when the CSS is offlined. 5173 * 5174 * The only exception to that are records of swapped out tmpfs/shmem 5175 * pages that need to be attributed to live ancestors on swapin. But 5176 * those references are manageable from userspace. 5177 */ 5178 5179 static DEFINE_IDR(mem_cgroup_idr); 5180 5181 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5182 { 5183 if (memcg->id.id > 0) { 5184 idr_remove(&mem_cgroup_idr, memcg->id.id); 5185 memcg->id.id = 0; 5186 } 5187 } 5188 5189 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5190 unsigned int n) 5191 { 5192 refcount_add(n, &memcg->id.ref); 5193 } 5194 5195 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5196 { 5197 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5198 mem_cgroup_id_remove(memcg); 5199 5200 /* Memcg ID pins CSS */ 5201 css_put(&memcg->css); 5202 } 5203 } 5204 5205 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5206 { 5207 mem_cgroup_id_put_many(memcg, 1); 5208 } 5209 5210 /** 5211 * mem_cgroup_from_id - look up a memcg from a memcg id 5212 * @id: the memcg id to look up 5213 * 5214 * Caller must hold rcu_read_lock(). 5215 */ 5216 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5217 { 5218 WARN_ON_ONCE(!rcu_read_lock_held()); 5219 return idr_find(&mem_cgroup_idr, id); 5220 } 5221 5222 #ifdef CONFIG_SHRINKER_DEBUG 5223 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5224 { 5225 struct cgroup *cgrp; 5226 struct cgroup_subsys_state *css; 5227 struct mem_cgroup *memcg; 5228 5229 cgrp = cgroup_get_from_id(ino); 5230 if (IS_ERR(cgrp)) 5231 return ERR_CAST(cgrp); 5232 5233 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5234 if (css) 5235 memcg = container_of(css, struct mem_cgroup, css); 5236 else 5237 memcg = ERR_PTR(-ENOENT); 5238 5239 cgroup_put(cgrp); 5240 5241 return memcg; 5242 } 5243 #endif 5244 5245 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5246 { 5247 struct mem_cgroup_per_node *pn; 5248 5249 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5250 if (!pn) 5251 return 1; 5252 5253 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5254 GFP_KERNEL_ACCOUNT); 5255 if (!pn->lruvec_stats_percpu) { 5256 kfree(pn); 5257 return 1; 5258 } 5259 5260 lruvec_init(&pn->lruvec); 5261 pn->memcg = memcg; 5262 5263 memcg->nodeinfo[node] = pn; 5264 return 0; 5265 } 5266 5267 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5268 { 5269 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5270 5271 if (!pn) 5272 return; 5273 5274 free_percpu(pn->lruvec_stats_percpu); 5275 kfree(pn); 5276 } 5277 5278 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5279 { 5280 int node; 5281 5282 for_each_node(node) 5283 free_mem_cgroup_per_node_info(memcg, node); 5284 kfree(memcg->vmstats); 5285 free_percpu(memcg->vmstats_percpu); 5286 kfree(memcg); 5287 } 5288 5289 static void mem_cgroup_free(struct mem_cgroup *memcg) 5290 { 5291 lru_gen_exit_memcg(memcg); 5292 memcg_wb_domain_exit(memcg); 5293 __mem_cgroup_free(memcg); 5294 } 5295 5296 static struct mem_cgroup *mem_cgroup_alloc(void) 5297 { 5298 struct mem_cgroup *memcg; 5299 int node; 5300 int __maybe_unused i; 5301 long error = -ENOMEM; 5302 5303 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5304 if (!memcg) 5305 return ERR_PTR(error); 5306 5307 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5308 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5309 if (memcg->id.id < 0) { 5310 error = memcg->id.id; 5311 goto fail; 5312 } 5313 5314 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5315 if (!memcg->vmstats) 5316 goto fail; 5317 5318 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5319 GFP_KERNEL_ACCOUNT); 5320 if (!memcg->vmstats_percpu) 5321 goto fail; 5322 5323 for_each_node(node) 5324 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5325 goto fail; 5326 5327 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5328 goto fail; 5329 5330 INIT_WORK(&memcg->high_work, high_work_func); 5331 INIT_LIST_HEAD(&memcg->oom_notify); 5332 mutex_init(&memcg->thresholds_lock); 5333 spin_lock_init(&memcg->move_lock); 5334 vmpressure_init(&memcg->vmpressure); 5335 INIT_LIST_HEAD(&memcg->event_list); 5336 spin_lock_init(&memcg->event_list_lock); 5337 memcg->socket_pressure = jiffies; 5338 #ifdef CONFIG_MEMCG_KMEM 5339 memcg->kmemcg_id = -1; 5340 INIT_LIST_HEAD(&memcg->objcg_list); 5341 #endif 5342 #ifdef CONFIG_CGROUP_WRITEBACK 5343 INIT_LIST_HEAD(&memcg->cgwb_list); 5344 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5345 memcg->cgwb_frn[i].done = 5346 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5347 #endif 5348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5349 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5350 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5351 memcg->deferred_split_queue.split_queue_len = 0; 5352 #endif 5353 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5354 lru_gen_init_memcg(memcg); 5355 return memcg; 5356 fail: 5357 mem_cgroup_id_remove(memcg); 5358 __mem_cgroup_free(memcg); 5359 return ERR_PTR(error); 5360 } 5361 5362 static struct cgroup_subsys_state * __ref 5363 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5364 { 5365 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5366 struct mem_cgroup *memcg, *old_memcg; 5367 5368 old_memcg = set_active_memcg(parent); 5369 memcg = mem_cgroup_alloc(); 5370 set_active_memcg(old_memcg); 5371 if (IS_ERR(memcg)) 5372 return ERR_CAST(memcg); 5373 5374 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5375 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5376 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5377 memcg->zswap_max = PAGE_COUNTER_MAX; 5378 #endif 5379 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5380 if (parent) { 5381 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 5382 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 5383 5384 page_counter_init(&memcg->memory, &parent->memory); 5385 page_counter_init(&memcg->swap, &parent->swap); 5386 page_counter_init(&memcg->kmem, &parent->kmem); 5387 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5388 } else { 5389 init_memcg_events(); 5390 page_counter_init(&memcg->memory, NULL); 5391 page_counter_init(&memcg->swap, NULL); 5392 page_counter_init(&memcg->kmem, NULL); 5393 page_counter_init(&memcg->tcpmem, NULL); 5394 5395 root_mem_cgroup = memcg; 5396 return &memcg->css; 5397 } 5398 5399 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5400 static_branch_inc(&memcg_sockets_enabled_key); 5401 5402 #if defined(CONFIG_MEMCG_KMEM) 5403 if (!cgroup_memory_nobpf) 5404 static_branch_inc(&memcg_bpf_enabled_key); 5405 #endif 5406 5407 return &memcg->css; 5408 } 5409 5410 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5411 { 5412 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5413 5414 if (memcg_online_kmem(memcg)) 5415 goto remove_id; 5416 5417 /* 5418 * A memcg must be visible for expand_shrinker_info() 5419 * by the time the maps are allocated. So, we allocate maps 5420 * here, when for_each_mem_cgroup() can't skip it. 5421 */ 5422 if (alloc_shrinker_info(memcg)) 5423 goto offline_kmem; 5424 5425 /* Online state pins memcg ID, memcg ID pins CSS */ 5426 refcount_set(&memcg->id.ref, 1); 5427 css_get(css); 5428 5429 if (unlikely(mem_cgroup_is_root(memcg))) 5430 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5431 FLUSH_TIME); 5432 lru_gen_online_memcg(memcg); 5433 return 0; 5434 offline_kmem: 5435 memcg_offline_kmem(memcg); 5436 remove_id: 5437 mem_cgroup_id_remove(memcg); 5438 return -ENOMEM; 5439 } 5440 5441 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5442 { 5443 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5444 struct mem_cgroup_event *event, *tmp; 5445 5446 /* 5447 * Unregister events and notify userspace. 5448 * Notify userspace about cgroup removing only after rmdir of cgroup 5449 * directory to avoid race between userspace and kernelspace. 5450 */ 5451 spin_lock_irq(&memcg->event_list_lock); 5452 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5453 list_del_init(&event->list); 5454 schedule_work(&event->remove); 5455 } 5456 spin_unlock_irq(&memcg->event_list_lock); 5457 5458 page_counter_set_min(&memcg->memory, 0); 5459 page_counter_set_low(&memcg->memory, 0); 5460 5461 memcg_offline_kmem(memcg); 5462 reparent_shrinker_deferred(memcg); 5463 wb_memcg_offline(memcg); 5464 lru_gen_offline_memcg(memcg); 5465 5466 drain_all_stock(memcg); 5467 5468 mem_cgroup_id_put(memcg); 5469 } 5470 5471 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5472 { 5473 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5474 5475 invalidate_reclaim_iterators(memcg); 5476 lru_gen_release_memcg(memcg); 5477 } 5478 5479 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5480 { 5481 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5482 int __maybe_unused i; 5483 5484 #ifdef CONFIG_CGROUP_WRITEBACK 5485 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5486 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5487 #endif 5488 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5489 static_branch_dec(&memcg_sockets_enabled_key); 5490 5491 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5492 static_branch_dec(&memcg_sockets_enabled_key); 5493 5494 #if defined(CONFIG_MEMCG_KMEM) 5495 if (!cgroup_memory_nobpf) 5496 static_branch_dec(&memcg_bpf_enabled_key); 5497 #endif 5498 5499 vmpressure_cleanup(&memcg->vmpressure); 5500 cancel_work_sync(&memcg->high_work); 5501 mem_cgroup_remove_from_trees(memcg); 5502 free_shrinker_info(memcg); 5503 mem_cgroup_free(memcg); 5504 } 5505 5506 /** 5507 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5508 * @css: the target css 5509 * 5510 * Reset the states of the mem_cgroup associated with @css. This is 5511 * invoked when the userland requests disabling on the default hierarchy 5512 * but the memcg is pinned through dependency. The memcg should stop 5513 * applying policies and should revert to the vanilla state as it may be 5514 * made visible again. 5515 * 5516 * The current implementation only resets the essential configurations. 5517 * This needs to be expanded to cover all the visible parts. 5518 */ 5519 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5520 { 5521 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5522 5523 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5524 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5525 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5526 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5527 page_counter_set_min(&memcg->memory, 0); 5528 page_counter_set_low(&memcg->memory, 0); 5529 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5530 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5531 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5532 memcg_wb_domain_size_changed(memcg); 5533 } 5534 5535 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5536 { 5537 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5538 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5539 struct memcg_vmstats_percpu *statc; 5540 long delta, v; 5541 int i, nid; 5542 5543 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5544 5545 for (i = 0; i < MEMCG_NR_STAT; i++) { 5546 /* 5547 * Collect the aggregated propagation counts of groups 5548 * below us. We're in a per-cpu loop here and this is 5549 * a global counter, so the first cycle will get them. 5550 */ 5551 delta = memcg->vmstats->state_pending[i]; 5552 if (delta) 5553 memcg->vmstats->state_pending[i] = 0; 5554 5555 /* Add CPU changes on this level since the last flush */ 5556 v = READ_ONCE(statc->state[i]); 5557 if (v != statc->state_prev[i]) { 5558 delta += v - statc->state_prev[i]; 5559 statc->state_prev[i] = v; 5560 } 5561 5562 if (!delta) 5563 continue; 5564 5565 /* Aggregate counts on this level and propagate upwards */ 5566 memcg->vmstats->state[i] += delta; 5567 if (parent) 5568 parent->vmstats->state_pending[i] += delta; 5569 } 5570 5571 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5572 delta = memcg->vmstats->events_pending[i]; 5573 if (delta) 5574 memcg->vmstats->events_pending[i] = 0; 5575 5576 v = READ_ONCE(statc->events[i]); 5577 if (v != statc->events_prev[i]) { 5578 delta += v - statc->events_prev[i]; 5579 statc->events_prev[i] = v; 5580 } 5581 5582 if (!delta) 5583 continue; 5584 5585 memcg->vmstats->events[i] += delta; 5586 if (parent) 5587 parent->vmstats->events_pending[i] += delta; 5588 } 5589 5590 for_each_node_state(nid, N_MEMORY) { 5591 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5592 struct mem_cgroup_per_node *ppn = NULL; 5593 struct lruvec_stats_percpu *lstatc; 5594 5595 if (parent) 5596 ppn = parent->nodeinfo[nid]; 5597 5598 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5599 5600 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5601 delta = pn->lruvec_stats.state_pending[i]; 5602 if (delta) 5603 pn->lruvec_stats.state_pending[i] = 0; 5604 5605 v = READ_ONCE(lstatc->state[i]); 5606 if (v != lstatc->state_prev[i]) { 5607 delta += v - lstatc->state_prev[i]; 5608 lstatc->state_prev[i] = v; 5609 } 5610 5611 if (!delta) 5612 continue; 5613 5614 pn->lruvec_stats.state[i] += delta; 5615 if (ppn) 5616 ppn->lruvec_stats.state_pending[i] += delta; 5617 } 5618 } 5619 } 5620 5621 #ifdef CONFIG_MMU 5622 /* Handlers for move charge at task migration. */ 5623 static int mem_cgroup_do_precharge(unsigned long count) 5624 { 5625 int ret; 5626 5627 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5628 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5629 if (!ret) { 5630 mc.precharge += count; 5631 return ret; 5632 } 5633 5634 /* Try charges one by one with reclaim, but do not retry */ 5635 while (count--) { 5636 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5637 if (ret) 5638 return ret; 5639 mc.precharge++; 5640 cond_resched(); 5641 } 5642 return 0; 5643 } 5644 5645 union mc_target { 5646 struct page *page; 5647 swp_entry_t ent; 5648 }; 5649 5650 enum mc_target_type { 5651 MC_TARGET_NONE = 0, 5652 MC_TARGET_PAGE, 5653 MC_TARGET_SWAP, 5654 MC_TARGET_DEVICE, 5655 }; 5656 5657 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5658 unsigned long addr, pte_t ptent) 5659 { 5660 struct page *page = vm_normal_page(vma, addr, ptent); 5661 5662 if (!page || !page_mapped(page)) 5663 return NULL; 5664 if (PageAnon(page)) { 5665 if (!(mc.flags & MOVE_ANON)) 5666 return NULL; 5667 } else { 5668 if (!(mc.flags & MOVE_FILE)) 5669 return NULL; 5670 } 5671 if (!get_page_unless_zero(page)) 5672 return NULL; 5673 5674 return page; 5675 } 5676 5677 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5678 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5679 pte_t ptent, swp_entry_t *entry) 5680 { 5681 struct page *page = NULL; 5682 swp_entry_t ent = pte_to_swp_entry(ptent); 5683 5684 if (!(mc.flags & MOVE_ANON)) 5685 return NULL; 5686 5687 /* 5688 * Handle device private pages that are not accessible by the CPU, but 5689 * stored as special swap entries in the page table. 5690 */ 5691 if (is_device_private_entry(ent)) { 5692 page = pfn_swap_entry_to_page(ent); 5693 if (!get_page_unless_zero(page)) 5694 return NULL; 5695 return page; 5696 } 5697 5698 if (non_swap_entry(ent)) 5699 return NULL; 5700 5701 /* 5702 * Because swap_cache_get_folio() updates some statistics counter, 5703 * we call find_get_page() with swapper_space directly. 5704 */ 5705 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5706 entry->val = ent.val; 5707 5708 return page; 5709 } 5710 #else 5711 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5712 pte_t ptent, swp_entry_t *entry) 5713 { 5714 return NULL; 5715 } 5716 #endif 5717 5718 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5719 unsigned long addr, pte_t ptent) 5720 { 5721 unsigned long index; 5722 struct folio *folio; 5723 5724 if (!vma->vm_file) /* anonymous vma */ 5725 return NULL; 5726 if (!(mc.flags & MOVE_FILE)) 5727 return NULL; 5728 5729 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5730 /* shmem/tmpfs may report page out on swap: account for that too. */ 5731 index = linear_page_index(vma, addr); 5732 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5733 if (IS_ERR(folio)) 5734 return NULL; 5735 return folio_file_page(folio, index); 5736 } 5737 5738 /** 5739 * mem_cgroup_move_account - move account of the page 5740 * @page: the page 5741 * @compound: charge the page as compound or small page 5742 * @from: mem_cgroup which the page is moved from. 5743 * @to: mem_cgroup which the page is moved to. @from != @to. 5744 * 5745 * The page must be locked and not on the LRU. 5746 * 5747 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5748 * from old cgroup. 5749 */ 5750 static int mem_cgroup_move_account(struct page *page, 5751 bool compound, 5752 struct mem_cgroup *from, 5753 struct mem_cgroup *to) 5754 { 5755 struct folio *folio = page_folio(page); 5756 struct lruvec *from_vec, *to_vec; 5757 struct pglist_data *pgdat; 5758 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5759 int nid, ret; 5760 5761 VM_BUG_ON(from == to); 5762 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5763 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5764 VM_BUG_ON(compound && !folio_test_large(folio)); 5765 5766 ret = -EINVAL; 5767 if (folio_memcg(folio) != from) 5768 goto out; 5769 5770 pgdat = folio_pgdat(folio); 5771 from_vec = mem_cgroup_lruvec(from, pgdat); 5772 to_vec = mem_cgroup_lruvec(to, pgdat); 5773 5774 folio_memcg_lock(folio); 5775 5776 if (folio_test_anon(folio)) { 5777 if (folio_mapped(folio)) { 5778 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5779 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5780 if (folio_test_transhuge(folio)) { 5781 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5782 -nr_pages); 5783 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5784 nr_pages); 5785 } 5786 } 5787 } else { 5788 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5789 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5790 5791 if (folio_test_swapbacked(folio)) { 5792 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5793 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5794 } 5795 5796 if (folio_mapped(folio)) { 5797 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5798 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5799 } 5800 5801 if (folio_test_dirty(folio)) { 5802 struct address_space *mapping = folio_mapping(folio); 5803 5804 if (mapping_can_writeback(mapping)) { 5805 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5806 -nr_pages); 5807 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5808 nr_pages); 5809 } 5810 } 5811 } 5812 5813 #ifdef CONFIG_SWAP 5814 if (folio_test_swapcache(folio)) { 5815 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 5816 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 5817 } 5818 #endif 5819 if (folio_test_writeback(folio)) { 5820 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5821 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5822 } 5823 5824 /* 5825 * All state has been migrated, let's switch to the new memcg. 5826 * 5827 * It is safe to change page's memcg here because the page 5828 * is referenced, charged, isolated, and locked: we can't race 5829 * with (un)charging, migration, LRU putback, or anything else 5830 * that would rely on a stable page's memory cgroup. 5831 * 5832 * Note that lock_page_memcg is a memcg lock, not a page lock, 5833 * to save space. As soon as we switch page's memory cgroup to a 5834 * new memcg that isn't locked, the above state can change 5835 * concurrently again. Make sure we're truly done with it. 5836 */ 5837 smp_mb(); 5838 5839 css_get(&to->css); 5840 css_put(&from->css); 5841 5842 folio->memcg_data = (unsigned long)to; 5843 5844 __folio_memcg_unlock(from); 5845 5846 ret = 0; 5847 nid = folio_nid(folio); 5848 5849 local_irq_disable(); 5850 mem_cgroup_charge_statistics(to, nr_pages); 5851 memcg_check_events(to, nid); 5852 mem_cgroup_charge_statistics(from, -nr_pages); 5853 memcg_check_events(from, nid); 5854 local_irq_enable(); 5855 out: 5856 return ret; 5857 } 5858 5859 /** 5860 * get_mctgt_type - get target type of moving charge 5861 * @vma: the vma the pte to be checked belongs 5862 * @addr: the address corresponding to the pte to be checked 5863 * @ptent: the pte to be checked 5864 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5865 * 5866 * Returns 5867 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5868 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5869 * move charge. if @target is not NULL, the page is stored in target->page 5870 * with extra refcnt got(Callers should handle it). 5871 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5872 * target for charge migration. if @target is not NULL, the entry is stored 5873 * in target->ent. 5874 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and 5875 * thus not on the lru. 5876 * For now we such page is charge like a regular page would be as for all 5877 * intent and purposes it is just special memory taking the place of a 5878 * regular page. 5879 * 5880 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5881 * 5882 * Called with pte lock held. 5883 */ 5884 5885 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5886 unsigned long addr, pte_t ptent, union mc_target *target) 5887 { 5888 struct page *page = NULL; 5889 enum mc_target_type ret = MC_TARGET_NONE; 5890 swp_entry_t ent = { .val = 0 }; 5891 5892 if (pte_present(ptent)) 5893 page = mc_handle_present_pte(vma, addr, ptent); 5894 else if (pte_none_mostly(ptent)) 5895 /* 5896 * PTE markers should be treated as a none pte here, separated 5897 * from other swap handling below. 5898 */ 5899 page = mc_handle_file_pte(vma, addr, ptent); 5900 else if (is_swap_pte(ptent)) 5901 page = mc_handle_swap_pte(vma, ptent, &ent); 5902 5903 if (target && page) { 5904 if (!trylock_page(page)) { 5905 put_page(page); 5906 return ret; 5907 } 5908 /* 5909 * page_mapped() must be stable during the move. This 5910 * pte is locked, so if it's present, the page cannot 5911 * become unmapped. If it isn't, we have only partial 5912 * control over the mapped state: the page lock will 5913 * prevent new faults against pagecache and swapcache, 5914 * so an unmapped page cannot become mapped. However, 5915 * if the page is already mapped elsewhere, it can 5916 * unmap, and there is nothing we can do about it. 5917 * Alas, skip moving the page in this case. 5918 */ 5919 if (!pte_present(ptent) && page_mapped(page)) { 5920 unlock_page(page); 5921 put_page(page); 5922 return ret; 5923 } 5924 } 5925 5926 if (!page && !ent.val) 5927 return ret; 5928 if (page) { 5929 /* 5930 * Do only loose check w/o serialization. 5931 * mem_cgroup_move_account() checks the page is valid or 5932 * not under LRU exclusion. 5933 */ 5934 if (page_memcg(page) == mc.from) { 5935 ret = MC_TARGET_PAGE; 5936 if (is_device_private_page(page) || 5937 is_device_coherent_page(page)) 5938 ret = MC_TARGET_DEVICE; 5939 if (target) 5940 target->page = page; 5941 } 5942 if (!ret || !target) { 5943 if (target) 5944 unlock_page(page); 5945 put_page(page); 5946 } 5947 } 5948 /* 5949 * There is a swap entry and a page doesn't exist or isn't charged. 5950 * But we cannot move a tail-page in a THP. 5951 */ 5952 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5953 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5954 ret = MC_TARGET_SWAP; 5955 if (target) 5956 target->ent = ent; 5957 } 5958 return ret; 5959 } 5960 5961 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5962 /* 5963 * We don't consider PMD mapped swapping or file mapped pages because THP does 5964 * not support them for now. 5965 * Caller should make sure that pmd_trans_huge(pmd) is true. 5966 */ 5967 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5968 unsigned long addr, pmd_t pmd, union mc_target *target) 5969 { 5970 struct page *page = NULL; 5971 enum mc_target_type ret = MC_TARGET_NONE; 5972 5973 if (unlikely(is_swap_pmd(pmd))) { 5974 VM_BUG_ON(thp_migration_supported() && 5975 !is_pmd_migration_entry(pmd)); 5976 return ret; 5977 } 5978 page = pmd_page(pmd); 5979 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5980 if (!(mc.flags & MOVE_ANON)) 5981 return ret; 5982 if (page_memcg(page) == mc.from) { 5983 ret = MC_TARGET_PAGE; 5984 if (target) { 5985 get_page(page); 5986 if (!trylock_page(page)) { 5987 put_page(page); 5988 return MC_TARGET_NONE; 5989 } 5990 target->page = page; 5991 } 5992 } 5993 return ret; 5994 } 5995 #else 5996 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5997 unsigned long addr, pmd_t pmd, union mc_target *target) 5998 { 5999 return MC_TARGET_NONE; 6000 } 6001 #endif 6002 6003 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6004 unsigned long addr, unsigned long end, 6005 struct mm_walk *walk) 6006 { 6007 struct vm_area_struct *vma = walk->vma; 6008 pte_t *pte; 6009 spinlock_t *ptl; 6010 6011 ptl = pmd_trans_huge_lock(pmd, vma); 6012 if (ptl) { 6013 /* 6014 * Note their can not be MC_TARGET_DEVICE for now as we do not 6015 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 6016 * this might change. 6017 */ 6018 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6019 mc.precharge += HPAGE_PMD_NR; 6020 spin_unlock(ptl); 6021 return 0; 6022 } 6023 6024 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6025 if (!pte) 6026 return 0; 6027 for (; addr != end; pte++, addr += PAGE_SIZE) 6028 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 6029 mc.precharge++; /* increment precharge temporarily */ 6030 pte_unmap_unlock(pte - 1, ptl); 6031 cond_resched(); 6032 6033 return 0; 6034 } 6035 6036 static const struct mm_walk_ops precharge_walk_ops = { 6037 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6038 }; 6039 6040 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6041 { 6042 unsigned long precharge; 6043 6044 mmap_read_lock(mm); 6045 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6046 mmap_read_unlock(mm); 6047 6048 precharge = mc.precharge; 6049 mc.precharge = 0; 6050 6051 return precharge; 6052 } 6053 6054 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6055 { 6056 unsigned long precharge = mem_cgroup_count_precharge(mm); 6057 6058 VM_BUG_ON(mc.moving_task); 6059 mc.moving_task = current; 6060 return mem_cgroup_do_precharge(precharge); 6061 } 6062 6063 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6064 static void __mem_cgroup_clear_mc(void) 6065 { 6066 struct mem_cgroup *from = mc.from; 6067 struct mem_cgroup *to = mc.to; 6068 6069 /* we must uncharge all the leftover precharges from mc.to */ 6070 if (mc.precharge) { 6071 cancel_charge(mc.to, mc.precharge); 6072 mc.precharge = 0; 6073 } 6074 /* 6075 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6076 * we must uncharge here. 6077 */ 6078 if (mc.moved_charge) { 6079 cancel_charge(mc.from, mc.moved_charge); 6080 mc.moved_charge = 0; 6081 } 6082 /* we must fixup refcnts and charges */ 6083 if (mc.moved_swap) { 6084 /* uncharge swap account from the old cgroup */ 6085 if (!mem_cgroup_is_root(mc.from)) 6086 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6087 6088 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6089 6090 /* 6091 * we charged both to->memory and to->memsw, so we 6092 * should uncharge to->memory. 6093 */ 6094 if (!mem_cgroup_is_root(mc.to)) 6095 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6096 6097 mc.moved_swap = 0; 6098 } 6099 memcg_oom_recover(from); 6100 memcg_oom_recover(to); 6101 wake_up_all(&mc.waitq); 6102 } 6103 6104 static void mem_cgroup_clear_mc(void) 6105 { 6106 struct mm_struct *mm = mc.mm; 6107 6108 /* 6109 * we must clear moving_task before waking up waiters at the end of 6110 * task migration. 6111 */ 6112 mc.moving_task = NULL; 6113 __mem_cgroup_clear_mc(); 6114 spin_lock(&mc.lock); 6115 mc.from = NULL; 6116 mc.to = NULL; 6117 mc.mm = NULL; 6118 spin_unlock(&mc.lock); 6119 6120 mmput(mm); 6121 } 6122 6123 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6124 { 6125 struct cgroup_subsys_state *css; 6126 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6127 struct mem_cgroup *from; 6128 struct task_struct *leader, *p; 6129 struct mm_struct *mm; 6130 unsigned long move_flags; 6131 int ret = 0; 6132 6133 /* charge immigration isn't supported on the default hierarchy */ 6134 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6135 return 0; 6136 6137 /* 6138 * Multi-process migrations only happen on the default hierarchy 6139 * where charge immigration is not used. Perform charge 6140 * immigration if @tset contains a leader and whine if there are 6141 * multiple. 6142 */ 6143 p = NULL; 6144 cgroup_taskset_for_each_leader(leader, css, tset) { 6145 WARN_ON_ONCE(p); 6146 p = leader; 6147 memcg = mem_cgroup_from_css(css); 6148 } 6149 if (!p) 6150 return 0; 6151 6152 /* 6153 * We are now committed to this value whatever it is. Changes in this 6154 * tunable will only affect upcoming migrations, not the current one. 6155 * So we need to save it, and keep it going. 6156 */ 6157 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6158 if (!move_flags) 6159 return 0; 6160 6161 from = mem_cgroup_from_task(p); 6162 6163 VM_BUG_ON(from == memcg); 6164 6165 mm = get_task_mm(p); 6166 if (!mm) 6167 return 0; 6168 /* We move charges only when we move a owner of the mm */ 6169 if (mm->owner == p) { 6170 VM_BUG_ON(mc.from); 6171 VM_BUG_ON(mc.to); 6172 VM_BUG_ON(mc.precharge); 6173 VM_BUG_ON(mc.moved_charge); 6174 VM_BUG_ON(mc.moved_swap); 6175 6176 spin_lock(&mc.lock); 6177 mc.mm = mm; 6178 mc.from = from; 6179 mc.to = memcg; 6180 mc.flags = move_flags; 6181 spin_unlock(&mc.lock); 6182 /* We set mc.moving_task later */ 6183 6184 ret = mem_cgroup_precharge_mc(mm); 6185 if (ret) 6186 mem_cgroup_clear_mc(); 6187 } else { 6188 mmput(mm); 6189 } 6190 return ret; 6191 } 6192 6193 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6194 { 6195 if (mc.to) 6196 mem_cgroup_clear_mc(); 6197 } 6198 6199 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6200 unsigned long addr, unsigned long end, 6201 struct mm_walk *walk) 6202 { 6203 int ret = 0; 6204 struct vm_area_struct *vma = walk->vma; 6205 pte_t *pte; 6206 spinlock_t *ptl; 6207 enum mc_target_type target_type; 6208 union mc_target target; 6209 struct page *page; 6210 6211 ptl = pmd_trans_huge_lock(pmd, vma); 6212 if (ptl) { 6213 if (mc.precharge < HPAGE_PMD_NR) { 6214 spin_unlock(ptl); 6215 return 0; 6216 } 6217 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6218 if (target_type == MC_TARGET_PAGE) { 6219 page = target.page; 6220 if (isolate_lru_page(page)) { 6221 if (!mem_cgroup_move_account(page, true, 6222 mc.from, mc.to)) { 6223 mc.precharge -= HPAGE_PMD_NR; 6224 mc.moved_charge += HPAGE_PMD_NR; 6225 } 6226 putback_lru_page(page); 6227 } 6228 unlock_page(page); 6229 put_page(page); 6230 } else if (target_type == MC_TARGET_DEVICE) { 6231 page = target.page; 6232 if (!mem_cgroup_move_account(page, true, 6233 mc.from, mc.to)) { 6234 mc.precharge -= HPAGE_PMD_NR; 6235 mc.moved_charge += HPAGE_PMD_NR; 6236 } 6237 unlock_page(page); 6238 put_page(page); 6239 } 6240 spin_unlock(ptl); 6241 return 0; 6242 } 6243 6244 retry: 6245 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6246 if (!pte) 6247 return 0; 6248 for (; addr != end; addr += PAGE_SIZE) { 6249 pte_t ptent = ptep_get(pte++); 6250 bool device = false; 6251 swp_entry_t ent; 6252 6253 if (!mc.precharge) 6254 break; 6255 6256 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6257 case MC_TARGET_DEVICE: 6258 device = true; 6259 fallthrough; 6260 case MC_TARGET_PAGE: 6261 page = target.page; 6262 /* 6263 * We can have a part of the split pmd here. Moving it 6264 * can be done but it would be too convoluted so simply 6265 * ignore such a partial THP and keep it in original 6266 * memcg. There should be somebody mapping the head. 6267 */ 6268 if (PageTransCompound(page)) 6269 goto put; 6270 if (!device && !isolate_lru_page(page)) 6271 goto put; 6272 if (!mem_cgroup_move_account(page, false, 6273 mc.from, mc.to)) { 6274 mc.precharge--; 6275 /* we uncharge from mc.from later. */ 6276 mc.moved_charge++; 6277 } 6278 if (!device) 6279 putback_lru_page(page); 6280 put: /* get_mctgt_type() gets & locks the page */ 6281 unlock_page(page); 6282 put_page(page); 6283 break; 6284 case MC_TARGET_SWAP: 6285 ent = target.ent; 6286 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6287 mc.precharge--; 6288 mem_cgroup_id_get_many(mc.to, 1); 6289 /* we fixup other refcnts and charges later. */ 6290 mc.moved_swap++; 6291 } 6292 break; 6293 default: 6294 break; 6295 } 6296 } 6297 pte_unmap_unlock(pte - 1, ptl); 6298 cond_resched(); 6299 6300 if (addr != end) { 6301 /* 6302 * We have consumed all precharges we got in can_attach(). 6303 * We try charge one by one, but don't do any additional 6304 * charges to mc.to if we have failed in charge once in attach() 6305 * phase. 6306 */ 6307 ret = mem_cgroup_do_precharge(1); 6308 if (!ret) 6309 goto retry; 6310 } 6311 6312 return ret; 6313 } 6314 6315 static const struct mm_walk_ops charge_walk_ops = { 6316 .pmd_entry = mem_cgroup_move_charge_pte_range, 6317 }; 6318 6319 static void mem_cgroup_move_charge(void) 6320 { 6321 lru_add_drain_all(); 6322 /* 6323 * Signal lock_page_memcg() to take the memcg's move_lock 6324 * while we're moving its pages to another memcg. Then wait 6325 * for already started RCU-only updates to finish. 6326 */ 6327 atomic_inc(&mc.from->moving_account); 6328 synchronize_rcu(); 6329 retry: 6330 if (unlikely(!mmap_read_trylock(mc.mm))) { 6331 /* 6332 * Someone who are holding the mmap_lock might be waiting in 6333 * waitq. So we cancel all extra charges, wake up all waiters, 6334 * and retry. Because we cancel precharges, we might not be able 6335 * to move enough charges, but moving charge is a best-effort 6336 * feature anyway, so it wouldn't be a big problem. 6337 */ 6338 __mem_cgroup_clear_mc(); 6339 cond_resched(); 6340 goto retry; 6341 } 6342 /* 6343 * When we have consumed all precharges and failed in doing 6344 * additional charge, the page walk just aborts. 6345 */ 6346 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6347 mmap_read_unlock(mc.mm); 6348 atomic_dec(&mc.from->moving_account); 6349 } 6350 6351 static void mem_cgroup_move_task(void) 6352 { 6353 if (mc.to) { 6354 mem_cgroup_move_charge(); 6355 mem_cgroup_clear_mc(); 6356 } 6357 } 6358 #else /* !CONFIG_MMU */ 6359 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6360 { 6361 return 0; 6362 } 6363 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6364 { 6365 } 6366 static void mem_cgroup_move_task(void) 6367 { 6368 } 6369 #endif 6370 6371 #ifdef CONFIG_LRU_GEN 6372 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6373 { 6374 struct task_struct *task; 6375 struct cgroup_subsys_state *css; 6376 6377 /* find the first leader if there is any */ 6378 cgroup_taskset_for_each_leader(task, css, tset) 6379 break; 6380 6381 if (!task) 6382 return; 6383 6384 task_lock(task); 6385 if (task->mm && READ_ONCE(task->mm->owner) == task) 6386 lru_gen_migrate_mm(task->mm); 6387 task_unlock(task); 6388 } 6389 #else 6390 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6391 { 6392 } 6393 #endif /* CONFIG_LRU_GEN */ 6394 6395 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6396 { 6397 if (value == PAGE_COUNTER_MAX) 6398 seq_puts(m, "max\n"); 6399 else 6400 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6401 6402 return 0; 6403 } 6404 6405 static u64 memory_current_read(struct cgroup_subsys_state *css, 6406 struct cftype *cft) 6407 { 6408 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6409 6410 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6411 } 6412 6413 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6414 struct cftype *cft) 6415 { 6416 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6417 6418 return (u64)memcg->memory.watermark * PAGE_SIZE; 6419 } 6420 6421 static int memory_min_show(struct seq_file *m, void *v) 6422 { 6423 return seq_puts_memcg_tunable(m, 6424 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6425 } 6426 6427 static ssize_t memory_min_write(struct kernfs_open_file *of, 6428 char *buf, size_t nbytes, loff_t off) 6429 { 6430 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6431 unsigned long min; 6432 int err; 6433 6434 buf = strstrip(buf); 6435 err = page_counter_memparse(buf, "max", &min); 6436 if (err) 6437 return err; 6438 6439 page_counter_set_min(&memcg->memory, min); 6440 6441 return nbytes; 6442 } 6443 6444 static int memory_low_show(struct seq_file *m, void *v) 6445 { 6446 return seq_puts_memcg_tunable(m, 6447 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6448 } 6449 6450 static ssize_t memory_low_write(struct kernfs_open_file *of, 6451 char *buf, size_t nbytes, loff_t off) 6452 { 6453 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6454 unsigned long low; 6455 int err; 6456 6457 buf = strstrip(buf); 6458 err = page_counter_memparse(buf, "max", &low); 6459 if (err) 6460 return err; 6461 6462 page_counter_set_low(&memcg->memory, low); 6463 6464 return nbytes; 6465 } 6466 6467 static int memory_high_show(struct seq_file *m, void *v) 6468 { 6469 return seq_puts_memcg_tunable(m, 6470 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6471 } 6472 6473 static ssize_t memory_high_write(struct kernfs_open_file *of, 6474 char *buf, size_t nbytes, loff_t off) 6475 { 6476 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6477 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6478 bool drained = false; 6479 unsigned long high; 6480 int err; 6481 6482 buf = strstrip(buf); 6483 err = page_counter_memparse(buf, "max", &high); 6484 if (err) 6485 return err; 6486 6487 page_counter_set_high(&memcg->memory, high); 6488 6489 for (;;) { 6490 unsigned long nr_pages = page_counter_read(&memcg->memory); 6491 unsigned long reclaimed; 6492 6493 if (nr_pages <= high) 6494 break; 6495 6496 if (signal_pending(current)) 6497 break; 6498 6499 if (!drained) { 6500 drain_all_stock(memcg); 6501 drained = true; 6502 continue; 6503 } 6504 6505 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6506 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6507 6508 if (!reclaimed && !nr_retries--) 6509 break; 6510 } 6511 6512 memcg_wb_domain_size_changed(memcg); 6513 return nbytes; 6514 } 6515 6516 static int memory_max_show(struct seq_file *m, void *v) 6517 { 6518 return seq_puts_memcg_tunable(m, 6519 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6520 } 6521 6522 static ssize_t memory_max_write(struct kernfs_open_file *of, 6523 char *buf, size_t nbytes, loff_t off) 6524 { 6525 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6526 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6527 bool drained = false; 6528 unsigned long max; 6529 int err; 6530 6531 buf = strstrip(buf); 6532 err = page_counter_memparse(buf, "max", &max); 6533 if (err) 6534 return err; 6535 6536 xchg(&memcg->memory.max, max); 6537 6538 for (;;) { 6539 unsigned long nr_pages = page_counter_read(&memcg->memory); 6540 6541 if (nr_pages <= max) 6542 break; 6543 6544 if (signal_pending(current)) 6545 break; 6546 6547 if (!drained) { 6548 drain_all_stock(memcg); 6549 drained = true; 6550 continue; 6551 } 6552 6553 if (nr_reclaims) { 6554 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6555 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6556 nr_reclaims--; 6557 continue; 6558 } 6559 6560 memcg_memory_event(memcg, MEMCG_OOM); 6561 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6562 break; 6563 } 6564 6565 memcg_wb_domain_size_changed(memcg); 6566 return nbytes; 6567 } 6568 6569 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6570 { 6571 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6572 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6573 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6574 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6575 seq_printf(m, "oom_kill %lu\n", 6576 atomic_long_read(&events[MEMCG_OOM_KILL])); 6577 seq_printf(m, "oom_group_kill %lu\n", 6578 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6579 } 6580 6581 static int memory_events_show(struct seq_file *m, void *v) 6582 { 6583 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6584 6585 __memory_events_show(m, memcg->memory_events); 6586 return 0; 6587 } 6588 6589 static int memory_events_local_show(struct seq_file *m, void *v) 6590 { 6591 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6592 6593 __memory_events_show(m, memcg->memory_events_local); 6594 return 0; 6595 } 6596 6597 static int memory_stat_show(struct seq_file *m, void *v) 6598 { 6599 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6600 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6601 struct seq_buf s; 6602 6603 if (!buf) 6604 return -ENOMEM; 6605 seq_buf_init(&s, buf, PAGE_SIZE); 6606 memory_stat_format(memcg, &s); 6607 seq_puts(m, buf); 6608 kfree(buf); 6609 return 0; 6610 } 6611 6612 #ifdef CONFIG_NUMA 6613 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6614 int item) 6615 { 6616 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6617 } 6618 6619 static int memory_numa_stat_show(struct seq_file *m, void *v) 6620 { 6621 int i; 6622 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6623 6624 mem_cgroup_flush_stats(); 6625 6626 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6627 int nid; 6628 6629 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6630 continue; 6631 6632 seq_printf(m, "%s", memory_stats[i].name); 6633 for_each_node_state(nid, N_MEMORY) { 6634 u64 size; 6635 struct lruvec *lruvec; 6636 6637 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6638 size = lruvec_page_state_output(lruvec, 6639 memory_stats[i].idx); 6640 seq_printf(m, " N%d=%llu", nid, size); 6641 } 6642 seq_putc(m, '\n'); 6643 } 6644 6645 return 0; 6646 } 6647 #endif 6648 6649 static int memory_oom_group_show(struct seq_file *m, void *v) 6650 { 6651 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6652 6653 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 6654 6655 return 0; 6656 } 6657 6658 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6659 char *buf, size_t nbytes, loff_t off) 6660 { 6661 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6662 int ret, oom_group; 6663 6664 buf = strstrip(buf); 6665 if (!buf) 6666 return -EINVAL; 6667 6668 ret = kstrtoint(buf, 0, &oom_group); 6669 if (ret) 6670 return ret; 6671 6672 if (oom_group != 0 && oom_group != 1) 6673 return -EINVAL; 6674 6675 WRITE_ONCE(memcg->oom_group, oom_group); 6676 6677 return nbytes; 6678 } 6679 6680 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6681 size_t nbytes, loff_t off) 6682 { 6683 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6684 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6685 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6686 unsigned int reclaim_options; 6687 int err; 6688 6689 buf = strstrip(buf); 6690 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6691 if (err) 6692 return err; 6693 6694 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6695 while (nr_reclaimed < nr_to_reclaim) { 6696 unsigned long reclaimed; 6697 6698 if (signal_pending(current)) 6699 return -EINTR; 6700 6701 /* 6702 * This is the final attempt, drain percpu lru caches in the 6703 * hope of introducing more evictable pages for 6704 * try_to_free_mem_cgroup_pages(). 6705 */ 6706 if (!nr_retries) 6707 lru_add_drain_all(); 6708 6709 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6710 nr_to_reclaim - nr_reclaimed, 6711 GFP_KERNEL, reclaim_options); 6712 6713 if (!reclaimed && !nr_retries--) 6714 return -EAGAIN; 6715 6716 nr_reclaimed += reclaimed; 6717 } 6718 6719 return nbytes; 6720 } 6721 6722 static struct cftype memory_files[] = { 6723 { 6724 .name = "current", 6725 .flags = CFTYPE_NOT_ON_ROOT, 6726 .read_u64 = memory_current_read, 6727 }, 6728 { 6729 .name = "peak", 6730 .flags = CFTYPE_NOT_ON_ROOT, 6731 .read_u64 = memory_peak_read, 6732 }, 6733 { 6734 .name = "min", 6735 .flags = CFTYPE_NOT_ON_ROOT, 6736 .seq_show = memory_min_show, 6737 .write = memory_min_write, 6738 }, 6739 { 6740 .name = "low", 6741 .flags = CFTYPE_NOT_ON_ROOT, 6742 .seq_show = memory_low_show, 6743 .write = memory_low_write, 6744 }, 6745 { 6746 .name = "high", 6747 .flags = CFTYPE_NOT_ON_ROOT, 6748 .seq_show = memory_high_show, 6749 .write = memory_high_write, 6750 }, 6751 { 6752 .name = "max", 6753 .flags = CFTYPE_NOT_ON_ROOT, 6754 .seq_show = memory_max_show, 6755 .write = memory_max_write, 6756 }, 6757 { 6758 .name = "events", 6759 .flags = CFTYPE_NOT_ON_ROOT, 6760 .file_offset = offsetof(struct mem_cgroup, events_file), 6761 .seq_show = memory_events_show, 6762 }, 6763 { 6764 .name = "events.local", 6765 .flags = CFTYPE_NOT_ON_ROOT, 6766 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6767 .seq_show = memory_events_local_show, 6768 }, 6769 { 6770 .name = "stat", 6771 .seq_show = memory_stat_show, 6772 }, 6773 #ifdef CONFIG_NUMA 6774 { 6775 .name = "numa_stat", 6776 .seq_show = memory_numa_stat_show, 6777 }, 6778 #endif 6779 { 6780 .name = "oom.group", 6781 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6782 .seq_show = memory_oom_group_show, 6783 .write = memory_oom_group_write, 6784 }, 6785 { 6786 .name = "reclaim", 6787 .flags = CFTYPE_NS_DELEGATABLE, 6788 .write = memory_reclaim, 6789 }, 6790 { } /* terminate */ 6791 }; 6792 6793 struct cgroup_subsys memory_cgrp_subsys = { 6794 .css_alloc = mem_cgroup_css_alloc, 6795 .css_online = mem_cgroup_css_online, 6796 .css_offline = mem_cgroup_css_offline, 6797 .css_released = mem_cgroup_css_released, 6798 .css_free = mem_cgroup_css_free, 6799 .css_reset = mem_cgroup_css_reset, 6800 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6801 .can_attach = mem_cgroup_can_attach, 6802 .attach = mem_cgroup_attach, 6803 .cancel_attach = mem_cgroup_cancel_attach, 6804 .post_attach = mem_cgroup_move_task, 6805 .dfl_cftypes = memory_files, 6806 .legacy_cftypes = mem_cgroup_legacy_files, 6807 .early_init = 0, 6808 }; 6809 6810 /* 6811 * This function calculates an individual cgroup's effective 6812 * protection which is derived from its own memory.min/low, its 6813 * parent's and siblings' settings, as well as the actual memory 6814 * distribution in the tree. 6815 * 6816 * The following rules apply to the effective protection values: 6817 * 6818 * 1. At the first level of reclaim, effective protection is equal to 6819 * the declared protection in memory.min and memory.low. 6820 * 6821 * 2. To enable safe delegation of the protection configuration, at 6822 * subsequent levels the effective protection is capped to the 6823 * parent's effective protection. 6824 * 6825 * 3. To make complex and dynamic subtrees easier to configure, the 6826 * user is allowed to overcommit the declared protection at a given 6827 * level. If that is the case, the parent's effective protection is 6828 * distributed to the children in proportion to how much protection 6829 * they have declared and how much of it they are utilizing. 6830 * 6831 * This makes distribution proportional, but also work-conserving: 6832 * if one cgroup claims much more protection than it uses memory, 6833 * the unused remainder is available to its siblings. 6834 * 6835 * 4. Conversely, when the declared protection is undercommitted at a 6836 * given level, the distribution of the larger parental protection 6837 * budget is NOT proportional. A cgroup's protection from a sibling 6838 * is capped to its own memory.min/low setting. 6839 * 6840 * 5. However, to allow protecting recursive subtrees from each other 6841 * without having to declare each individual cgroup's fixed share 6842 * of the ancestor's claim to protection, any unutilized - 6843 * "floating" - protection from up the tree is distributed in 6844 * proportion to each cgroup's *usage*. This makes the protection 6845 * neutral wrt sibling cgroups and lets them compete freely over 6846 * the shared parental protection budget, but it protects the 6847 * subtree as a whole from neighboring subtrees. 6848 * 6849 * Note that 4. and 5. are not in conflict: 4. is about protecting 6850 * against immediate siblings whereas 5. is about protecting against 6851 * neighboring subtrees. 6852 */ 6853 static unsigned long effective_protection(unsigned long usage, 6854 unsigned long parent_usage, 6855 unsigned long setting, 6856 unsigned long parent_effective, 6857 unsigned long siblings_protected) 6858 { 6859 unsigned long protected; 6860 unsigned long ep; 6861 6862 protected = min(usage, setting); 6863 /* 6864 * If all cgroups at this level combined claim and use more 6865 * protection than what the parent affords them, distribute 6866 * shares in proportion to utilization. 6867 * 6868 * We are using actual utilization rather than the statically 6869 * claimed protection in order to be work-conserving: claimed 6870 * but unused protection is available to siblings that would 6871 * otherwise get a smaller chunk than what they claimed. 6872 */ 6873 if (siblings_protected > parent_effective) 6874 return protected * parent_effective / siblings_protected; 6875 6876 /* 6877 * Ok, utilized protection of all children is within what the 6878 * parent affords them, so we know whatever this child claims 6879 * and utilizes is effectively protected. 6880 * 6881 * If there is unprotected usage beyond this value, reclaim 6882 * will apply pressure in proportion to that amount. 6883 * 6884 * If there is unutilized protection, the cgroup will be fully 6885 * shielded from reclaim, but we do return a smaller value for 6886 * protection than what the group could enjoy in theory. This 6887 * is okay. With the overcommit distribution above, effective 6888 * protection is always dependent on how memory is actually 6889 * consumed among the siblings anyway. 6890 */ 6891 ep = protected; 6892 6893 /* 6894 * If the children aren't claiming (all of) the protection 6895 * afforded to them by the parent, distribute the remainder in 6896 * proportion to the (unprotected) memory of each cgroup. That 6897 * way, cgroups that aren't explicitly prioritized wrt each 6898 * other compete freely over the allowance, but they are 6899 * collectively protected from neighboring trees. 6900 * 6901 * We're using unprotected memory for the weight so that if 6902 * some cgroups DO claim explicit protection, we don't protect 6903 * the same bytes twice. 6904 * 6905 * Check both usage and parent_usage against the respective 6906 * protected values. One should imply the other, but they 6907 * aren't read atomically - make sure the division is sane. 6908 */ 6909 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6910 return ep; 6911 if (parent_effective > siblings_protected && 6912 parent_usage > siblings_protected && 6913 usage > protected) { 6914 unsigned long unclaimed; 6915 6916 unclaimed = parent_effective - siblings_protected; 6917 unclaimed *= usage - protected; 6918 unclaimed /= parent_usage - siblings_protected; 6919 6920 ep += unclaimed; 6921 } 6922 6923 return ep; 6924 } 6925 6926 /** 6927 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6928 * @root: the top ancestor of the sub-tree being checked 6929 * @memcg: the memory cgroup to check 6930 * 6931 * WARNING: This function is not stateless! It can only be used as part 6932 * of a top-down tree iteration, not for isolated queries. 6933 */ 6934 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6935 struct mem_cgroup *memcg) 6936 { 6937 unsigned long usage, parent_usage; 6938 struct mem_cgroup *parent; 6939 6940 if (mem_cgroup_disabled()) 6941 return; 6942 6943 if (!root) 6944 root = root_mem_cgroup; 6945 6946 /* 6947 * Effective values of the reclaim targets are ignored so they 6948 * can be stale. Have a look at mem_cgroup_protection for more 6949 * details. 6950 * TODO: calculation should be more robust so that we do not need 6951 * that special casing. 6952 */ 6953 if (memcg == root) 6954 return; 6955 6956 usage = page_counter_read(&memcg->memory); 6957 if (!usage) 6958 return; 6959 6960 parent = parent_mem_cgroup(memcg); 6961 6962 if (parent == root) { 6963 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6964 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6965 return; 6966 } 6967 6968 parent_usage = page_counter_read(&parent->memory); 6969 6970 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6971 READ_ONCE(memcg->memory.min), 6972 READ_ONCE(parent->memory.emin), 6973 atomic_long_read(&parent->memory.children_min_usage))); 6974 6975 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6976 READ_ONCE(memcg->memory.low), 6977 READ_ONCE(parent->memory.elow), 6978 atomic_long_read(&parent->memory.children_low_usage))); 6979 } 6980 6981 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6982 gfp_t gfp) 6983 { 6984 long nr_pages = folio_nr_pages(folio); 6985 int ret; 6986 6987 ret = try_charge(memcg, gfp, nr_pages); 6988 if (ret) 6989 goto out; 6990 6991 css_get(&memcg->css); 6992 commit_charge(folio, memcg); 6993 6994 local_irq_disable(); 6995 mem_cgroup_charge_statistics(memcg, nr_pages); 6996 memcg_check_events(memcg, folio_nid(folio)); 6997 local_irq_enable(); 6998 out: 6999 return ret; 7000 } 7001 7002 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 7003 { 7004 struct mem_cgroup *memcg; 7005 int ret; 7006 7007 memcg = get_mem_cgroup_from_mm(mm); 7008 ret = charge_memcg(folio, memcg, gfp); 7009 css_put(&memcg->css); 7010 7011 return ret; 7012 } 7013 7014 /** 7015 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 7016 * @folio: folio to charge. 7017 * @mm: mm context of the victim 7018 * @gfp: reclaim mode 7019 * @entry: swap entry for which the folio is allocated 7020 * 7021 * This function charges a folio allocated for swapin. Please call this before 7022 * adding the folio to the swapcache. 7023 * 7024 * Returns 0 on success. Otherwise, an error code is returned. 7025 */ 7026 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7027 gfp_t gfp, swp_entry_t entry) 7028 { 7029 struct mem_cgroup *memcg; 7030 unsigned short id; 7031 int ret; 7032 7033 if (mem_cgroup_disabled()) 7034 return 0; 7035 7036 id = lookup_swap_cgroup_id(entry); 7037 rcu_read_lock(); 7038 memcg = mem_cgroup_from_id(id); 7039 if (!memcg || !css_tryget_online(&memcg->css)) 7040 memcg = get_mem_cgroup_from_mm(mm); 7041 rcu_read_unlock(); 7042 7043 ret = charge_memcg(folio, memcg, gfp); 7044 7045 css_put(&memcg->css); 7046 return ret; 7047 } 7048 7049 /* 7050 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7051 * @entry: swap entry for which the page is charged 7052 * 7053 * Call this function after successfully adding the charged page to swapcache. 7054 * 7055 * Note: This function assumes the page for which swap slot is being uncharged 7056 * is order 0 page. 7057 */ 7058 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7059 { 7060 /* 7061 * Cgroup1's unified memory+swap counter has been charged with the 7062 * new swapcache page, finish the transfer by uncharging the swap 7063 * slot. The swap slot would also get uncharged when it dies, but 7064 * it can stick around indefinitely and we'd count the page twice 7065 * the entire time. 7066 * 7067 * Cgroup2 has separate resource counters for memory and swap, 7068 * so this is a non-issue here. Memory and swap charge lifetimes 7069 * correspond 1:1 to page and swap slot lifetimes: we charge the 7070 * page to memory here, and uncharge swap when the slot is freed. 7071 */ 7072 if (!mem_cgroup_disabled() && do_memsw_account()) { 7073 /* 7074 * The swap entry might not get freed for a long time, 7075 * let's not wait for it. The page already received a 7076 * memory+swap charge, drop the swap entry duplicate. 7077 */ 7078 mem_cgroup_uncharge_swap(entry, 1); 7079 } 7080 } 7081 7082 struct uncharge_gather { 7083 struct mem_cgroup *memcg; 7084 unsigned long nr_memory; 7085 unsigned long pgpgout; 7086 unsigned long nr_kmem; 7087 int nid; 7088 }; 7089 7090 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7091 { 7092 memset(ug, 0, sizeof(*ug)); 7093 } 7094 7095 static void uncharge_batch(const struct uncharge_gather *ug) 7096 { 7097 unsigned long flags; 7098 7099 if (ug->nr_memory) { 7100 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7101 if (do_memsw_account()) 7102 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7103 if (ug->nr_kmem) 7104 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7105 memcg_oom_recover(ug->memcg); 7106 } 7107 7108 local_irq_save(flags); 7109 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7110 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7111 memcg_check_events(ug->memcg, ug->nid); 7112 local_irq_restore(flags); 7113 7114 /* drop reference from uncharge_folio */ 7115 css_put(&ug->memcg->css); 7116 } 7117 7118 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7119 { 7120 long nr_pages; 7121 struct mem_cgroup *memcg; 7122 struct obj_cgroup *objcg; 7123 7124 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7125 7126 /* 7127 * Nobody should be changing or seriously looking at 7128 * folio memcg or objcg at this point, we have fully 7129 * exclusive access to the folio. 7130 */ 7131 if (folio_memcg_kmem(folio)) { 7132 objcg = __folio_objcg(folio); 7133 /* 7134 * This get matches the put at the end of the function and 7135 * kmem pages do not hold memcg references anymore. 7136 */ 7137 memcg = get_mem_cgroup_from_objcg(objcg); 7138 } else { 7139 memcg = __folio_memcg(folio); 7140 } 7141 7142 if (!memcg) 7143 return; 7144 7145 if (ug->memcg != memcg) { 7146 if (ug->memcg) { 7147 uncharge_batch(ug); 7148 uncharge_gather_clear(ug); 7149 } 7150 ug->memcg = memcg; 7151 ug->nid = folio_nid(folio); 7152 7153 /* pairs with css_put in uncharge_batch */ 7154 css_get(&memcg->css); 7155 } 7156 7157 nr_pages = folio_nr_pages(folio); 7158 7159 if (folio_memcg_kmem(folio)) { 7160 ug->nr_memory += nr_pages; 7161 ug->nr_kmem += nr_pages; 7162 7163 folio->memcg_data = 0; 7164 obj_cgroup_put(objcg); 7165 } else { 7166 /* LRU pages aren't accounted at the root level */ 7167 if (!mem_cgroup_is_root(memcg)) 7168 ug->nr_memory += nr_pages; 7169 ug->pgpgout++; 7170 7171 folio->memcg_data = 0; 7172 } 7173 7174 css_put(&memcg->css); 7175 } 7176 7177 void __mem_cgroup_uncharge(struct folio *folio) 7178 { 7179 struct uncharge_gather ug; 7180 7181 /* Don't touch folio->lru of any random page, pre-check: */ 7182 if (!folio_memcg(folio)) 7183 return; 7184 7185 uncharge_gather_clear(&ug); 7186 uncharge_folio(folio, &ug); 7187 uncharge_batch(&ug); 7188 } 7189 7190 /** 7191 * __mem_cgroup_uncharge_list - uncharge a list of page 7192 * @page_list: list of pages to uncharge 7193 * 7194 * Uncharge a list of pages previously charged with 7195 * __mem_cgroup_charge(). 7196 */ 7197 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7198 { 7199 struct uncharge_gather ug; 7200 struct folio *folio; 7201 7202 uncharge_gather_clear(&ug); 7203 list_for_each_entry(folio, page_list, lru) 7204 uncharge_folio(folio, &ug); 7205 if (ug.memcg) 7206 uncharge_batch(&ug); 7207 } 7208 7209 /** 7210 * mem_cgroup_migrate - Charge a folio's replacement. 7211 * @old: Currently circulating folio. 7212 * @new: Replacement folio. 7213 * 7214 * Charge @new as a replacement folio for @old. @old will 7215 * be uncharged upon free. 7216 * 7217 * Both folios must be locked, @new->mapping must be set up. 7218 */ 7219 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7220 { 7221 struct mem_cgroup *memcg; 7222 long nr_pages = folio_nr_pages(new); 7223 unsigned long flags; 7224 7225 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7226 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7227 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7228 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7229 7230 if (mem_cgroup_disabled()) 7231 return; 7232 7233 /* Page cache replacement: new folio already charged? */ 7234 if (folio_memcg(new)) 7235 return; 7236 7237 memcg = folio_memcg(old); 7238 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7239 if (!memcg) 7240 return; 7241 7242 /* Force-charge the new page. The old one will be freed soon */ 7243 if (!mem_cgroup_is_root(memcg)) { 7244 page_counter_charge(&memcg->memory, nr_pages); 7245 if (do_memsw_account()) 7246 page_counter_charge(&memcg->memsw, nr_pages); 7247 } 7248 7249 css_get(&memcg->css); 7250 commit_charge(new, memcg); 7251 7252 local_irq_save(flags); 7253 mem_cgroup_charge_statistics(memcg, nr_pages); 7254 memcg_check_events(memcg, folio_nid(new)); 7255 local_irq_restore(flags); 7256 } 7257 7258 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7259 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7260 7261 void mem_cgroup_sk_alloc(struct sock *sk) 7262 { 7263 struct mem_cgroup *memcg; 7264 7265 if (!mem_cgroup_sockets_enabled) 7266 return; 7267 7268 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7269 if (!in_task()) 7270 return; 7271 7272 rcu_read_lock(); 7273 memcg = mem_cgroup_from_task(current); 7274 if (mem_cgroup_is_root(memcg)) 7275 goto out; 7276 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7277 goto out; 7278 if (css_tryget(&memcg->css)) 7279 sk->sk_memcg = memcg; 7280 out: 7281 rcu_read_unlock(); 7282 } 7283 7284 void mem_cgroup_sk_free(struct sock *sk) 7285 { 7286 if (sk->sk_memcg) 7287 css_put(&sk->sk_memcg->css); 7288 } 7289 7290 /** 7291 * mem_cgroup_charge_skmem - charge socket memory 7292 * @memcg: memcg to charge 7293 * @nr_pages: number of pages to charge 7294 * @gfp_mask: reclaim mode 7295 * 7296 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7297 * @memcg's configured limit, %false if it doesn't. 7298 */ 7299 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7300 gfp_t gfp_mask) 7301 { 7302 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7303 struct page_counter *fail; 7304 7305 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7306 memcg->tcpmem_pressure = 0; 7307 return true; 7308 } 7309 memcg->tcpmem_pressure = 1; 7310 if (gfp_mask & __GFP_NOFAIL) { 7311 page_counter_charge(&memcg->tcpmem, nr_pages); 7312 return true; 7313 } 7314 return false; 7315 } 7316 7317 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7318 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7319 return true; 7320 } 7321 7322 return false; 7323 } 7324 7325 /** 7326 * mem_cgroup_uncharge_skmem - uncharge socket memory 7327 * @memcg: memcg to uncharge 7328 * @nr_pages: number of pages to uncharge 7329 */ 7330 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7331 { 7332 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7333 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7334 return; 7335 } 7336 7337 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7338 7339 refill_stock(memcg, nr_pages); 7340 } 7341 7342 static int __init cgroup_memory(char *s) 7343 { 7344 char *token; 7345 7346 while ((token = strsep(&s, ",")) != NULL) { 7347 if (!*token) 7348 continue; 7349 if (!strcmp(token, "nosocket")) 7350 cgroup_memory_nosocket = true; 7351 if (!strcmp(token, "nokmem")) 7352 cgroup_memory_nokmem = true; 7353 if (!strcmp(token, "nobpf")) 7354 cgroup_memory_nobpf = true; 7355 } 7356 return 1; 7357 } 7358 __setup("cgroup.memory=", cgroup_memory); 7359 7360 /* 7361 * subsys_initcall() for memory controller. 7362 * 7363 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7364 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7365 * basically everything that doesn't depend on a specific mem_cgroup structure 7366 * should be initialized from here. 7367 */ 7368 static int __init mem_cgroup_init(void) 7369 { 7370 int cpu, node; 7371 7372 /* 7373 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7374 * used for per-memcg-per-cpu caching of per-node statistics. In order 7375 * to work fine, we should make sure that the overfill threshold can't 7376 * exceed S32_MAX / PAGE_SIZE. 7377 */ 7378 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7379 7380 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7381 memcg_hotplug_cpu_dead); 7382 7383 for_each_possible_cpu(cpu) 7384 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7385 drain_local_stock); 7386 7387 for_each_node(node) { 7388 struct mem_cgroup_tree_per_node *rtpn; 7389 7390 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7391 node_online(node) ? node : NUMA_NO_NODE); 7392 7393 rtpn->rb_root = RB_ROOT; 7394 rtpn->rb_rightmost = NULL; 7395 spin_lock_init(&rtpn->lock); 7396 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7397 } 7398 7399 return 0; 7400 } 7401 subsys_initcall(mem_cgroup_init); 7402 7403 #ifdef CONFIG_SWAP 7404 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7405 { 7406 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7407 /* 7408 * The root cgroup cannot be destroyed, so it's refcount must 7409 * always be >= 1. 7410 */ 7411 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7412 VM_BUG_ON(1); 7413 break; 7414 } 7415 memcg = parent_mem_cgroup(memcg); 7416 if (!memcg) 7417 memcg = root_mem_cgroup; 7418 } 7419 return memcg; 7420 } 7421 7422 /** 7423 * mem_cgroup_swapout - transfer a memsw charge to swap 7424 * @folio: folio whose memsw charge to transfer 7425 * @entry: swap entry to move the charge to 7426 * 7427 * Transfer the memsw charge of @folio to @entry. 7428 */ 7429 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7430 { 7431 struct mem_cgroup *memcg, *swap_memcg; 7432 unsigned int nr_entries; 7433 unsigned short oldid; 7434 7435 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7436 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7437 7438 if (mem_cgroup_disabled()) 7439 return; 7440 7441 if (!do_memsw_account()) 7442 return; 7443 7444 memcg = folio_memcg(folio); 7445 7446 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7447 if (!memcg) 7448 return; 7449 7450 /* 7451 * In case the memcg owning these pages has been offlined and doesn't 7452 * have an ID allocated to it anymore, charge the closest online 7453 * ancestor for the swap instead and transfer the memory+swap charge. 7454 */ 7455 swap_memcg = mem_cgroup_id_get_online(memcg); 7456 nr_entries = folio_nr_pages(folio); 7457 /* Get references for the tail pages, too */ 7458 if (nr_entries > 1) 7459 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7460 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7461 nr_entries); 7462 VM_BUG_ON_FOLIO(oldid, folio); 7463 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7464 7465 folio->memcg_data = 0; 7466 7467 if (!mem_cgroup_is_root(memcg)) 7468 page_counter_uncharge(&memcg->memory, nr_entries); 7469 7470 if (memcg != swap_memcg) { 7471 if (!mem_cgroup_is_root(swap_memcg)) 7472 page_counter_charge(&swap_memcg->memsw, nr_entries); 7473 page_counter_uncharge(&memcg->memsw, nr_entries); 7474 } 7475 7476 /* 7477 * Interrupts should be disabled here because the caller holds the 7478 * i_pages lock which is taken with interrupts-off. It is 7479 * important here to have the interrupts disabled because it is the 7480 * only synchronisation we have for updating the per-CPU variables. 7481 */ 7482 memcg_stats_lock(); 7483 mem_cgroup_charge_statistics(memcg, -nr_entries); 7484 memcg_stats_unlock(); 7485 memcg_check_events(memcg, folio_nid(folio)); 7486 7487 css_put(&memcg->css); 7488 } 7489 7490 /** 7491 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7492 * @folio: folio being added to swap 7493 * @entry: swap entry to charge 7494 * 7495 * Try to charge @folio's memcg for the swap space at @entry. 7496 * 7497 * Returns 0 on success, -ENOMEM on failure. 7498 */ 7499 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7500 { 7501 unsigned int nr_pages = folio_nr_pages(folio); 7502 struct page_counter *counter; 7503 struct mem_cgroup *memcg; 7504 unsigned short oldid; 7505 7506 if (do_memsw_account()) 7507 return 0; 7508 7509 memcg = folio_memcg(folio); 7510 7511 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7512 if (!memcg) 7513 return 0; 7514 7515 if (!entry.val) { 7516 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7517 return 0; 7518 } 7519 7520 memcg = mem_cgroup_id_get_online(memcg); 7521 7522 if (!mem_cgroup_is_root(memcg) && 7523 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7524 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7525 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7526 mem_cgroup_id_put(memcg); 7527 return -ENOMEM; 7528 } 7529 7530 /* Get references for the tail pages, too */ 7531 if (nr_pages > 1) 7532 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7533 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7534 VM_BUG_ON_FOLIO(oldid, folio); 7535 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7536 7537 return 0; 7538 } 7539 7540 /** 7541 * __mem_cgroup_uncharge_swap - uncharge swap space 7542 * @entry: swap entry to uncharge 7543 * @nr_pages: the amount of swap space to uncharge 7544 */ 7545 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7546 { 7547 struct mem_cgroup *memcg; 7548 unsigned short id; 7549 7550 if (mem_cgroup_disabled()) 7551 return; 7552 7553 id = swap_cgroup_record(entry, 0, nr_pages); 7554 rcu_read_lock(); 7555 memcg = mem_cgroup_from_id(id); 7556 if (memcg) { 7557 if (!mem_cgroup_is_root(memcg)) { 7558 if (do_memsw_account()) 7559 page_counter_uncharge(&memcg->memsw, nr_pages); 7560 else 7561 page_counter_uncharge(&memcg->swap, nr_pages); 7562 } 7563 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7564 mem_cgroup_id_put_many(memcg, nr_pages); 7565 } 7566 rcu_read_unlock(); 7567 } 7568 7569 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7570 { 7571 long nr_swap_pages = get_nr_swap_pages(); 7572 7573 if (mem_cgroup_disabled() || do_memsw_account()) 7574 return nr_swap_pages; 7575 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7576 nr_swap_pages = min_t(long, nr_swap_pages, 7577 READ_ONCE(memcg->swap.max) - 7578 page_counter_read(&memcg->swap)); 7579 return nr_swap_pages; 7580 } 7581 7582 bool mem_cgroup_swap_full(struct folio *folio) 7583 { 7584 struct mem_cgroup *memcg; 7585 7586 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7587 7588 if (vm_swap_full()) 7589 return true; 7590 if (do_memsw_account()) 7591 return false; 7592 7593 memcg = folio_memcg(folio); 7594 if (!memcg) 7595 return false; 7596 7597 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7598 unsigned long usage = page_counter_read(&memcg->swap); 7599 7600 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7601 usage * 2 >= READ_ONCE(memcg->swap.max)) 7602 return true; 7603 } 7604 7605 return false; 7606 } 7607 7608 static int __init setup_swap_account(char *s) 7609 { 7610 pr_warn_once("The swapaccount= commandline option is deprecated. " 7611 "Please report your usecase to linux-mm@kvack.org if you " 7612 "depend on this functionality.\n"); 7613 return 1; 7614 } 7615 __setup("swapaccount=", setup_swap_account); 7616 7617 static u64 swap_current_read(struct cgroup_subsys_state *css, 7618 struct cftype *cft) 7619 { 7620 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7621 7622 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7623 } 7624 7625 static u64 swap_peak_read(struct cgroup_subsys_state *css, 7626 struct cftype *cft) 7627 { 7628 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7629 7630 return (u64)memcg->swap.watermark * PAGE_SIZE; 7631 } 7632 7633 static int swap_high_show(struct seq_file *m, void *v) 7634 { 7635 return seq_puts_memcg_tunable(m, 7636 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7637 } 7638 7639 static ssize_t swap_high_write(struct kernfs_open_file *of, 7640 char *buf, size_t nbytes, loff_t off) 7641 { 7642 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7643 unsigned long high; 7644 int err; 7645 7646 buf = strstrip(buf); 7647 err = page_counter_memparse(buf, "max", &high); 7648 if (err) 7649 return err; 7650 7651 page_counter_set_high(&memcg->swap, high); 7652 7653 return nbytes; 7654 } 7655 7656 static int swap_max_show(struct seq_file *m, void *v) 7657 { 7658 return seq_puts_memcg_tunable(m, 7659 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7660 } 7661 7662 static ssize_t swap_max_write(struct kernfs_open_file *of, 7663 char *buf, size_t nbytes, loff_t off) 7664 { 7665 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7666 unsigned long max; 7667 int err; 7668 7669 buf = strstrip(buf); 7670 err = page_counter_memparse(buf, "max", &max); 7671 if (err) 7672 return err; 7673 7674 xchg(&memcg->swap.max, max); 7675 7676 return nbytes; 7677 } 7678 7679 static int swap_events_show(struct seq_file *m, void *v) 7680 { 7681 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7682 7683 seq_printf(m, "high %lu\n", 7684 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7685 seq_printf(m, "max %lu\n", 7686 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7687 seq_printf(m, "fail %lu\n", 7688 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7689 7690 return 0; 7691 } 7692 7693 static struct cftype swap_files[] = { 7694 { 7695 .name = "swap.current", 7696 .flags = CFTYPE_NOT_ON_ROOT, 7697 .read_u64 = swap_current_read, 7698 }, 7699 { 7700 .name = "swap.high", 7701 .flags = CFTYPE_NOT_ON_ROOT, 7702 .seq_show = swap_high_show, 7703 .write = swap_high_write, 7704 }, 7705 { 7706 .name = "swap.max", 7707 .flags = CFTYPE_NOT_ON_ROOT, 7708 .seq_show = swap_max_show, 7709 .write = swap_max_write, 7710 }, 7711 { 7712 .name = "swap.peak", 7713 .flags = CFTYPE_NOT_ON_ROOT, 7714 .read_u64 = swap_peak_read, 7715 }, 7716 { 7717 .name = "swap.events", 7718 .flags = CFTYPE_NOT_ON_ROOT, 7719 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7720 .seq_show = swap_events_show, 7721 }, 7722 { } /* terminate */ 7723 }; 7724 7725 static struct cftype memsw_files[] = { 7726 { 7727 .name = "memsw.usage_in_bytes", 7728 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7729 .read_u64 = mem_cgroup_read_u64, 7730 }, 7731 { 7732 .name = "memsw.max_usage_in_bytes", 7733 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7734 .write = mem_cgroup_reset, 7735 .read_u64 = mem_cgroup_read_u64, 7736 }, 7737 { 7738 .name = "memsw.limit_in_bytes", 7739 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7740 .write = mem_cgroup_write, 7741 .read_u64 = mem_cgroup_read_u64, 7742 }, 7743 { 7744 .name = "memsw.failcnt", 7745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7746 .write = mem_cgroup_reset, 7747 .read_u64 = mem_cgroup_read_u64, 7748 }, 7749 { }, /* terminate */ 7750 }; 7751 7752 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7753 /** 7754 * obj_cgroup_may_zswap - check if this cgroup can zswap 7755 * @objcg: the object cgroup 7756 * 7757 * Check if the hierarchical zswap limit has been reached. 7758 * 7759 * This doesn't check for specific headroom, and it is not atomic 7760 * either. But with zswap, the size of the allocation is only known 7761 * once compression has occured, and this optimistic pre-check avoids 7762 * spending cycles on compression when there is already no room left 7763 * or zswap is disabled altogether somewhere in the hierarchy. 7764 */ 7765 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7766 { 7767 struct mem_cgroup *memcg, *original_memcg; 7768 bool ret = true; 7769 7770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7771 return true; 7772 7773 original_memcg = get_mem_cgroup_from_objcg(objcg); 7774 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 7775 memcg = parent_mem_cgroup(memcg)) { 7776 unsigned long max = READ_ONCE(memcg->zswap_max); 7777 unsigned long pages; 7778 7779 if (max == PAGE_COUNTER_MAX) 7780 continue; 7781 if (max == 0) { 7782 ret = false; 7783 break; 7784 } 7785 7786 cgroup_rstat_flush(memcg->css.cgroup); 7787 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7788 if (pages < max) 7789 continue; 7790 ret = false; 7791 break; 7792 } 7793 mem_cgroup_put(original_memcg); 7794 return ret; 7795 } 7796 7797 /** 7798 * obj_cgroup_charge_zswap - charge compression backend memory 7799 * @objcg: the object cgroup 7800 * @size: size of compressed object 7801 * 7802 * This forces the charge after obj_cgroup_may_swap() allowed 7803 * compression and storage in zwap for this cgroup to go ahead. 7804 */ 7805 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7806 { 7807 struct mem_cgroup *memcg; 7808 7809 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7810 return; 7811 7812 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7813 7814 /* PF_MEMALLOC context, charging must succeed */ 7815 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7816 VM_WARN_ON_ONCE(1); 7817 7818 rcu_read_lock(); 7819 memcg = obj_cgroup_memcg(objcg); 7820 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7821 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7822 rcu_read_unlock(); 7823 } 7824 7825 /** 7826 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7827 * @objcg: the object cgroup 7828 * @size: size of compressed object 7829 * 7830 * Uncharges zswap memory on page in. 7831 */ 7832 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7833 { 7834 struct mem_cgroup *memcg; 7835 7836 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7837 return; 7838 7839 obj_cgroup_uncharge(objcg, size); 7840 7841 rcu_read_lock(); 7842 memcg = obj_cgroup_memcg(objcg); 7843 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7844 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7845 rcu_read_unlock(); 7846 } 7847 7848 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7849 struct cftype *cft) 7850 { 7851 cgroup_rstat_flush(css->cgroup); 7852 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7853 } 7854 7855 static int zswap_max_show(struct seq_file *m, void *v) 7856 { 7857 return seq_puts_memcg_tunable(m, 7858 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7859 } 7860 7861 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7862 char *buf, size_t nbytes, loff_t off) 7863 { 7864 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7865 unsigned long max; 7866 int err; 7867 7868 buf = strstrip(buf); 7869 err = page_counter_memparse(buf, "max", &max); 7870 if (err) 7871 return err; 7872 7873 xchg(&memcg->zswap_max, max); 7874 7875 return nbytes; 7876 } 7877 7878 static struct cftype zswap_files[] = { 7879 { 7880 .name = "zswap.current", 7881 .flags = CFTYPE_NOT_ON_ROOT, 7882 .read_u64 = zswap_current_read, 7883 }, 7884 { 7885 .name = "zswap.max", 7886 .flags = CFTYPE_NOT_ON_ROOT, 7887 .seq_show = zswap_max_show, 7888 .write = zswap_max_write, 7889 }, 7890 { } /* terminate */ 7891 }; 7892 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7893 7894 static int __init mem_cgroup_swap_init(void) 7895 { 7896 if (mem_cgroup_disabled()) 7897 return 0; 7898 7899 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7900 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7901 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7902 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7903 #endif 7904 return 0; 7905 } 7906 subsys_initcall(mem_cgroup_swap_init); 7907 7908 #endif /* CONFIG_SWAP */ 7909