1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char *const mem_cgroup_lru_names[] = { 102 "inactive_anon", 103 "active_anon", 104 "inactive_file", 105 "active_file", 106 "unevictable", 107 }; 108 109 #define THRESHOLDS_EVENTS_TARGET 128 110 #define SOFTLIMIT_EVENTS_TARGET 1024 111 #define NUMAINFO_EVENTS_TARGET 1024 112 113 /* 114 * Cgroups above their limits are maintained in a RB-Tree, independent of 115 * their hierarchy representation 116 */ 117 118 struct mem_cgroup_tree_per_node { 119 struct rb_root rb_root; 120 struct rb_node *rb_rightmost; 121 spinlock_t lock; 122 }; 123 124 struct mem_cgroup_tree { 125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 126 }; 127 128 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 129 130 /* for OOM */ 131 struct mem_cgroup_eventfd_list { 132 struct list_head list; 133 struct eventfd_ctx *eventfd; 134 }; 135 136 /* 137 * cgroup_event represents events which userspace want to receive. 138 */ 139 struct mem_cgroup_event { 140 /* 141 * memcg which the event belongs to. 142 */ 143 struct mem_cgroup *memcg; 144 /* 145 * eventfd to signal userspace about the event. 146 */ 147 struct eventfd_ctx *eventfd; 148 /* 149 * Each of these stored in a list by the cgroup. 150 */ 151 struct list_head list; 152 /* 153 * register_event() callback will be used to add new userspace 154 * waiter for changes related to this event. Use eventfd_signal() 155 * on eventfd to send notification to userspace. 156 */ 157 int (*register_event)(struct mem_cgroup *memcg, 158 struct eventfd_ctx *eventfd, const char *args); 159 /* 160 * unregister_event() callback will be called when userspace closes 161 * the eventfd or on cgroup removing. This callback must be set, 162 * if you want provide notification functionality. 163 */ 164 void (*unregister_event)(struct mem_cgroup *memcg, 165 struct eventfd_ctx *eventfd); 166 /* 167 * All fields below needed to unregister event when 168 * userspace closes eventfd. 169 */ 170 poll_table pt; 171 wait_queue_head_t *wqh; 172 wait_queue_entry_t wait; 173 struct work_struct remove; 174 }; 175 176 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 177 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 178 179 /* Stuffs for move charges at task migration. */ 180 /* 181 * Types of charges to be moved. 182 */ 183 #define MOVE_ANON 0x1U 184 #define MOVE_FILE 0x2U 185 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 186 187 /* "mc" and its members are protected by cgroup_mutex */ 188 static struct move_charge_struct { 189 spinlock_t lock; /* for from, to */ 190 struct mm_struct *mm; 191 struct mem_cgroup *from; 192 struct mem_cgroup *to; 193 unsigned long flags; 194 unsigned long precharge; 195 unsigned long moved_charge; 196 unsigned long moved_swap; 197 struct task_struct *moving_task; /* a task moving charges */ 198 wait_queue_head_t waitq; /* a waitq for other context */ 199 } mc = { 200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 202 }; 203 204 /* 205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 206 * limit reclaim to prevent infinite loops, if they ever occur. 207 */ 208 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 209 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 210 211 enum charge_type { 212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 213 MEM_CGROUP_CHARGE_TYPE_ANON, 214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 216 NR_CHARGE_TYPE, 217 }; 218 219 /* for encoding cft->private value on file */ 220 enum res_type { 221 _MEM, 222 _MEMSWAP, 223 _OOM_TYPE, 224 _KMEM, 225 _TCP, 226 }; 227 228 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 229 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 230 #define MEMFILE_ATTR(val) ((val) & 0xffff) 231 /* Used for OOM nofiier */ 232 #define OOM_CONTROL (0) 233 234 /* 235 * Iteration constructs for visiting all cgroups (under a tree). If 236 * loops are exited prematurely (break), mem_cgroup_iter_break() must 237 * be used for reference counting. 238 */ 239 #define for_each_mem_cgroup_tree(iter, root) \ 240 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 241 iter != NULL; \ 242 iter = mem_cgroup_iter(root, iter, NULL)) 243 244 #define for_each_mem_cgroup(iter) \ 245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 246 iter != NULL; \ 247 iter = mem_cgroup_iter(NULL, iter, NULL)) 248 249 static inline bool should_force_charge(void) 250 { 251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 252 (current->flags & PF_EXITING); 253 } 254 255 /* Some nice accessors for the vmpressure. */ 256 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 257 { 258 if (!memcg) 259 memcg = root_mem_cgroup; 260 return &memcg->vmpressure; 261 } 262 263 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 264 { 265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 266 } 267 268 #ifdef CONFIG_MEMCG_KMEM 269 /* 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 271 * The main reason for not using cgroup id for this: 272 * this works better in sparse environments, where we have a lot of memcgs, 273 * but only a few kmem-limited. Or also, if we have, for instance, 200 274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 275 * 200 entry array for that. 276 * 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It 278 * will double each time we have to increase it. 279 */ 280 static DEFINE_IDA(memcg_cache_ida); 281 int memcg_nr_cache_ids; 282 283 /* Protects memcg_nr_cache_ids */ 284 static DECLARE_RWSEM(memcg_cache_ids_sem); 285 286 void memcg_get_cache_ids(void) 287 { 288 down_read(&memcg_cache_ids_sem); 289 } 290 291 void memcg_put_cache_ids(void) 292 { 293 up_read(&memcg_cache_ids_sem); 294 } 295 296 /* 297 * MIN_SIZE is different than 1, because we would like to avoid going through 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited 299 * cgroups is a reasonable guess. In the future, it could be a parameter or 300 * tunable, but that is strictly not necessary. 301 * 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 303 * this constant directly from cgroup, but it is understandable that this is 304 * better kept as an internal representation in cgroup.c. In any case, the 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily 306 * increase ours as well if it increases. 307 */ 308 #define MEMCG_CACHES_MIN_SIZE 4 309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 310 311 /* 312 * A lot of the calls to the cache allocation functions are expected to be 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 314 * conditional to this static branch, we'll have to allow modules that does 315 * kmem_cache_alloc and the such to see this symbol as well 316 */ 317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 318 EXPORT_SYMBOL(memcg_kmem_enabled_key); 319 320 struct workqueue_struct *memcg_kmem_cache_wq; 321 #endif 322 323 static int memcg_shrinker_map_size; 324 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 325 326 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 327 { 328 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 329 } 330 331 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 332 int size, int old_size) 333 { 334 struct memcg_shrinker_map *new, *old; 335 int nid; 336 337 lockdep_assert_held(&memcg_shrinker_map_mutex); 338 339 for_each_node(nid) { 340 old = rcu_dereference_protected( 341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 342 /* Not yet online memcg */ 343 if (!old) 344 return 0; 345 346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 347 if (!new) 348 return -ENOMEM; 349 350 /* Set all old bits, clear all new bits */ 351 memset(new->map, (int)0xff, old_size); 352 memset((void *)new->map + old_size, 0, size - old_size); 353 354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 356 } 357 358 return 0; 359 } 360 361 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 362 { 363 struct mem_cgroup_per_node *pn; 364 struct memcg_shrinker_map *map; 365 int nid; 366 367 if (mem_cgroup_is_root(memcg)) 368 return; 369 370 for_each_node(nid) { 371 pn = mem_cgroup_nodeinfo(memcg, nid); 372 map = rcu_dereference_protected(pn->shrinker_map, true); 373 if (map) 374 kvfree(map); 375 rcu_assign_pointer(pn->shrinker_map, NULL); 376 } 377 } 378 379 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 380 { 381 struct memcg_shrinker_map *map; 382 int nid, size, ret = 0; 383 384 if (mem_cgroup_is_root(memcg)) 385 return 0; 386 387 mutex_lock(&memcg_shrinker_map_mutex); 388 size = memcg_shrinker_map_size; 389 for_each_node(nid) { 390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 391 if (!map) { 392 memcg_free_shrinker_maps(memcg); 393 ret = -ENOMEM; 394 break; 395 } 396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 397 } 398 mutex_unlock(&memcg_shrinker_map_mutex); 399 400 return ret; 401 } 402 403 int memcg_expand_shrinker_maps(int new_id) 404 { 405 int size, old_size, ret = 0; 406 struct mem_cgroup *memcg; 407 408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 409 old_size = memcg_shrinker_map_size; 410 if (size <= old_size) 411 return 0; 412 413 mutex_lock(&memcg_shrinker_map_mutex); 414 if (!root_mem_cgroup) 415 goto unlock; 416 417 for_each_mem_cgroup(memcg) { 418 if (mem_cgroup_is_root(memcg)) 419 continue; 420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 421 if (ret) 422 goto unlock; 423 } 424 unlock: 425 if (!ret) 426 memcg_shrinker_map_size = size; 427 mutex_unlock(&memcg_shrinker_map_mutex); 428 return ret; 429 } 430 431 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 432 { 433 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 434 struct memcg_shrinker_map *map; 435 436 rcu_read_lock(); 437 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 438 /* Pairs with smp mb in shrink_slab() */ 439 smp_mb__before_atomic(); 440 set_bit(shrinker_id, map->map); 441 rcu_read_unlock(); 442 } 443 } 444 445 /** 446 * mem_cgroup_css_from_page - css of the memcg associated with a page 447 * @page: page of interest 448 * 449 * If memcg is bound to the default hierarchy, css of the memcg associated 450 * with @page is returned. The returned css remains associated with @page 451 * until it is released. 452 * 453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 454 * is returned. 455 */ 456 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 457 { 458 struct mem_cgroup *memcg; 459 460 memcg = page->mem_cgroup; 461 462 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 463 memcg = root_mem_cgroup; 464 465 return &memcg->css; 466 } 467 468 /** 469 * page_cgroup_ino - return inode number of the memcg a page is charged to 470 * @page: the page 471 * 472 * Look up the closest online ancestor of the memory cgroup @page is charged to 473 * and return its inode number or 0 if @page is not charged to any cgroup. It 474 * is safe to call this function without holding a reference to @page. 475 * 476 * Note, this function is inherently racy, because there is nothing to prevent 477 * the cgroup inode from getting torn down and potentially reallocated a moment 478 * after page_cgroup_ino() returns, so it only should be used by callers that 479 * do not care (such as procfs interfaces). 480 */ 481 ino_t page_cgroup_ino(struct page *page) 482 { 483 struct mem_cgroup *memcg; 484 unsigned long ino = 0; 485 486 rcu_read_lock(); 487 if (PageHead(page) && PageSlab(page)) 488 memcg = memcg_from_slab_page(page); 489 else 490 memcg = READ_ONCE(page->mem_cgroup); 491 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 492 memcg = parent_mem_cgroup(memcg); 493 if (memcg) 494 ino = cgroup_ino(memcg->css.cgroup); 495 rcu_read_unlock(); 496 return ino; 497 } 498 499 static struct mem_cgroup_per_node * 500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 501 { 502 int nid = page_to_nid(page); 503 504 return memcg->nodeinfo[nid]; 505 } 506 507 static struct mem_cgroup_tree_per_node * 508 soft_limit_tree_node(int nid) 509 { 510 return soft_limit_tree.rb_tree_per_node[nid]; 511 } 512 513 static struct mem_cgroup_tree_per_node * 514 soft_limit_tree_from_page(struct page *page) 515 { 516 int nid = page_to_nid(page); 517 518 return soft_limit_tree.rb_tree_per_node[nid]; 519 } 520 521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 522 struct mem_cgroup_tree_per_node *mctz, 523 unsigned long new_usage_in_excess) 524 { 525 struct rb_node **p = &mctz->rb_root.rb_node; 526 struct rb_node *parent = NULL; 527 struct mem_cgroup_per_node *mz_node; 528 bool rightmost = true; 529 530 if (mz->on_tree) 531 return; 532 533 mz->usage_in_excess = new_usage_in_excess; 534 if (!mz->usage_in_excess) 535 return; 536 while (*p) { 537 parent = *p; 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 539 tree_node); 540 if (mz->usage_in_excess < mz_node->usage_in_excess) { 541 p = &(*p)->rb_left; 542 rightmost = false; 543 } 544 545 /* 546 * We can't avoid mem cgroups that are over their soft 547 * limit by the same amount 548 */ 549 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 550 p = &(*p)->rb_right; 551 } 552 553 if (rightmost) 554 mctz->rb_rightmost = &mz->tree_node; 555 556 rb_link_node(&mz->tree_node, parent, p); 557 rb_insert_color(&mz->tree_node, &mctz->rb_root); 558 mz->on_tree = true; 559 } 560 561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 562 struct mem_cgroup_tree_per_node *mctz) 563 { 564 if (!mz->on_tree) 565 return; 566 567 if (&mz->tree_node == mctz->rb_rightmost) 568 mctz->rb_rightmost = rb_prev(&mz->tree_node); 569 570 rb_erase(&mz->tree_node, &mctz->rb_root); 571 mz->on_tree = false; 572 } 573 574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 575 struct mem_cgroup_tree_per_node *mctz) 576 { 577 unsigned long flags; 578 579 spin_lock_irqsave(&mctz->lock, flags); 580 __mem_cgroup_remove_exceeded(mz, mctz); 581 spin_unlock_irqrestore(&mctz->lock, flags); 582 } 583 584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 585 { 586 unsigned long nr_pages = page_counter_read(&memcg->memory); 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 588 unsigned long excess = 0; 589 590 if (nr_pages > soft_limit) 591 excess = nr_pages - soft_limit; 592 593 return excess; 594 } 595 596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 597 { 598 unsigned long excess; 599 struct mem_cgroup_per_node *mz; 600 struct mem_cgroup_tree_per_node *mctz; 601 602 mctz = soft_limit_tree_from_page(page); 603 if (!mctz) 604 return; 605 /* 606 * Necessary to update all ancestors when hierarchy is used. 607 * because their event counter is not touched. 608 */ 609 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 610 mz = mem_cgroup_page_nodeinfo(memcg, page); 611 excess = soft_limit_excess(memcg); 612 /* 613 * We have to update the tree if mz is on RB-tree or 614 * mem is over its softlimit. 615 */ 616 if (excess || mz->on_tree) { 617 unsigned long flags; 618 619 spin_lock_irqsave(&mctz->lock, flags); 620 /* if on-tree, remove it */ 621 if (mz->on_tree) 622 __mem_cgroup_remove_exceeded(mz, mctz); 623 /* 624 * Insert again. mz->usage_in_excess will be updated. 625 * If excess is 0, no tree ops. 626 */ 627 __mem_cgroup_insert_exceeded(mz, mctz, excess); 628 spin_unlock_irqrestore(&mctz->lock, flags); 629 } 630 } 631 } 632 633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 634 { 635 struct mem_cgroup_tree_per_node *mctz; 636 struct mem_cgroup_per_node *mz; 637 int nid; 638 639 for_each_node(nid) { 640 mz = mem_cgroup_nodeinfo(memcg, nid); 641 mctz = soft_limit_tree_node(nid); 642 if (mctz) 643 mem_cgroup_remove_exceeded(mz, mctz); 644 } 645 } 646 647 static struct mem_cgroup_per_node * 648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 649 { 650 struct mem_cgroup_per_node *mz; 651 652 retry: 653 mz = NULL; 654 if (!mctz->rb_rightmost) 655 goto done; /* Nothing to reclaim from */ 656 657 mz = rb_entry(mctz->rb_rightmost, 658 struct mem_cgroup_per_node, tree_node); 659 /* 660 * Remove the node now but someone else can add it back, 661 * we will to add it back at the end of reclaim to its correct 662 * position in the tree. 663 */ 664 __mem_cgroup_remove_exceeded(mz, mctz); 665 if (!soft_limit_excess(mz->memcg) || 666 !css_tryget_online(&mz->memcg->css)) 667 goto retry; 668 done: 669 return mz; 670 } 671 672 static struct mem_cgroup_per_node * 673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 674 { 675 struct mem_cgroup_per_node *mz; 676 677 spin_lock_irq(&mctz->lock); 678 mz = __mem_cgroup_largest_soft_limit_node(mctz); 679 spin_unlock_irq(&mctz->lock); 680 return mz; 681 } 682 683 /** 684 * __mod_memcg_state - update cgroup memory statistics 685 * @memcg: the memory cgroup 686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 687 * @val: delta to add to the counter, can be negative 688 */ 689 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 690 { 691 long x; 692 693 if (mem_cgroup_disabled()) 694 return; 695 696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 698 struct mem_cgroup *mi; 699 700 /* 701 * Batch local counters to keep them in sync with 702 * the hierarchical ones. 703 */ 704 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 705 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 706 atomic_long_add(x, &mi->vmstats[idx]); 707 x = 0; 708 } 709 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 710 } 711 712 static struct mem_cgroup_per_node * 713 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 714 { 715 struct mem_cgroup *parent; 716 717 parent = parent_mem_cgroup(pn->memcg); 718 if (!parent) 719 return NULL; 720 return mem_cgroup_nodeinfo(parent, nid); 721 } 722 723 /** 724 * __mod_lruvec_state - update lruvec memory statistics 725 * @lruvec: the lruvec 726 * @idx: the stat item 727 * @val: delta to add to the counter, can be negative 728 * 729 * The lruvec is the intersection of the NUMA node and a cgroup. This 730 * function updates the all three counters that are affected by a 731 * change of state at this level: per-node, per-cgroup, per-lruvec. 732 */ 733 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 734 int val) 735 { 736 pg_data_t *pgdat = lruvec_pgdat(lruvec); 737 struct mem_cgroup_per_node *pn; 738 struct mem_cgroup *memcg; 739 long x; 740 741 /* Update node */ 742 __mod_node_page_state(pgdat, idx, val); 743 744 if (mem_cgroup_disabled()) 745 return; 746 747 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 748 memcg = pn->memcg; 749 750 /* Update memcg */ 751 __mod_memcg_state(memcg, idx, val); 752 753 /* Update lruvec */ 754 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 755 756 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 757 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 758 struct mem_cgroup_per_node *pi; 759 760 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 761 atomic_long_add(x, &pi->lruvec_stat[idx]); 762 x = 0; 763 } 764 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 765 } 766 767 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 768 { 769 struct page *page = virt_to_head_page(p); 770 pg_data_t *pgdat = page_pgdat(page); 771 struct mem_cgroup *memcg; 772 struct lruvec *lruvec; 773 774 rcu_read_lock(); 775 memcg = memcg_from_slab_page(page); 776 777 /* Untracked pages have no memcg, no lruvec. Update only the node */ 778 if (!memcg || memcg == root_mem_cgroup) { 779 __mod_node_page_state(pgdat, idx, val); 780 } else { 781 lruvec = mem_cgroup_lruvec(pgdat, memcg); 782 __mod_lruvec_state(lruvec, idx, val); 783 } 784 rcu_read_unlock(); 785 } 786 787 /** 788 * __count_memcg_events - account VM events in a cgroup 789 * @memcg: the memory cgroup 790 * @idx: the event item 791 * @count: the number of events that occured 792 */ 793 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 794 unsigned long count) 795 { 796 unsigned long x; 797 798 if (mem_cgroup_disabled()) 799 return; 800 801 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 802 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 803 struct mem_cgroup *mi; 804 805 /* 806 * Batch local counters to keep them in sync with 807 * the hierarchical ones. 808 */ 809 __this_cpu_add(memcg->vmstats_local->events[idx], x); 810 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 811 atomic_long_add(x, &mi->vmevents[idx]); 812 x = 0; 813 } 814 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 815 } 816 817 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 818 { 819 return atomic_long_read(&memcg->vmevents[event]); 820 } 821 822 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 823 { 824 long x = 0; 825 int cpu; 826 827 for_each_possible_cpu(cpu) 828 x += per_cpu(memcg->vmstats_local->events[event], cpu); 829 return x; 830 } 831 832 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 833 struct page *page, 834 bool compound, int nr_pages) 835 { 836 /* 837 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 838 * counted as CACHE even if it's on ANON LRU. 839 */ 840 if (PageAnon(page)) 841 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 842 else { 843 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 844 if (PageSwapBacked(page)) 845 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 846 } 847 848 if (compound) { 849 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 850 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 851 } 852 853 /* pagein of a big page is an event. So, ignore page size */ 854 if (nr_pages > 0) 855 __count_memcg_events(memcg, PGPGIN, 1); 856 else { 857 __count_memcg_events(memcg, PGPGOUT, 1); 858 nr_pages = -nr_pages; /* for event */ 859 } 860 861 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 862 } 863 864 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 865 enum mem_cgroup_events_target target) 866 { 867 unsigned long val, next; 868 869 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 870 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 871 /* from time_after() in jiffies.h */ 872 if ((long)(next - val) < 0) { 873 switch (target) { 874 case MEM_CGROUP_TARGET_THRESH: 875 next = val + THRESHOLDS_EVENTS_TARGET; 876 break; 877 case MEM_CGROUP_TARGET_SOFTLIMIT: 878 next = val + SOFTLIMIT_EVENTS_TARGET; 879 break; 880 case MEM_CGROUP_TARGET_NUMAINFO: 881 next = val + NUMAINFO_EVENTS_TARGET; 882 break; 883 default: 884 break; 885 } 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 887 return true; 888 } 889 return false; 890 } 891 892 /* 893 * Check events in order. 894 * 895 */ 896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 897 { 898 /* threshold event is triggered in finer grain than soft limit */ 899 if (unlikely(mem_cgroup_event_ratelimit(memcg, 900 MEM_CGROUP_TARGET_THRESH))) { 901 bool do_softlimit; 902 bool do_numainfo __maybe_unused; 903 904 do_softlimit = mem_cgroup_event_ratelimit(memcg, 905 MEM_CGROUP_TARGET_SOFTLIMIT); 906 #if MAX_NUMNODES > 1 907 do_numainfo = mem_cgroup_event_ratelimit(memcg, 908 MEM_CGROUP_TARGET_NUMAINFO); 909 #endif 910 mem_cgroup_threshold(memcg); 911 if (unlikely(do_softlimit)) 912 mem_cgroup_update_tree(memcg, page); 913 #if MAX_NUMNODES > 1 914 if (unlikely(do_numainfo)) 915 atomic_inc(&memcg->numainfo_events); 916 #endif 917 } 918 } 919 920 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 921 { 922 /* 923 * mm_update_next_owner() may clear mm->owner to NULL 924 * if it races with swapoff, page migration, etc. 925 * So this can be called with p == NULL. 926 */ 927 if (unlikely(!p)) 928 return NULL; 929 930 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 931 } 932 EXPORT_SYMBOL(mem_cgroup_from_task); 933 934 /** 935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 936 * @mm: mm from which memcg should be extracted. It can be NULL. 937 * 938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 940 * returned. 941 */ 942 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 943 { 944 struct mem_cgroup *memcg; 945 946 if (mem_cgroup_disabled()) 947 return NULL; 948 949 rcu_read_lock(); 950 do { 951 /* 952 * Page cache insertions can happen withou an 953 * actual mm context, e.g. during disk probing 954 * on boot, loopback IO, acct() writes etc. 955 */ 956 if (unlikely(!mm)) 957 memcg = root_mem_cgroup; 958 else { 959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 960 if (unlikely(!memcg)) 961 memcg = root_mem_cgroup; 962 } 963 } while (!css_tryget_online(&memcg->css)); 964 rcu_read_unlock(); 965 return memcg; 966 } 967 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 968 969 /** 970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 971 * @page: page from which memcg should be extracted. 972 * 973 * Obtain a reference on page->memcg and returns it if successful. Otherwise 974 * root_mem_cgroup is returned. 975 */ 976 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 977 { 978 struct mem_cgroup *memcg = page->mem_cgroup; 979 980 if (mem_cgroup_disabled()) 981 return NULL; 982 983 rcu_read_lock(); 984 if (!memcg || !css_tryget_online(&memcg->css)) 985 memcg = root_mem_cgroup; 986 rcu_read_unlock(); 987 return memcg; 988 } 989 EXPORT_SYMBOL(get_mem_cgroup_from_page); 990 991 /** 992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 993 */ 994 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 995 { 996 if (unlikely(current->active_memcg)) { 997 struct mem_cgroup *memcg = root_mem_cgroup; 998 999 rcu_read_lock(); 1000 if (css_tryget_online(¤t->active_memcg->css)) 1001 memcg = current->active_memcg; 1002 rcu_read_unlock(); 1003 return memcg; 1004 } 1005 return get_mem_cgroup_from_mm(current->mm); 1006 } 1007 1008 /** 1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1010 * @root: hierarchy root 1011 * @prev: previously returned memcg, NULL on first invocation 1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1013 * 1014 * Returns references to children of the hierarchy below @root, or 1015 * @root itself, or %NULL after a full round-trip. 1016 * 1017 * Caller must pass the return value in @prev on subsequent 1018 * invocations for reference counting, or use mem_cgroup_iter_break() 1019 * to cancel a hierarchy walk before the round-trip is complete. 1020 * 1021 * Reclaimers can specify a node and a priority level in @reclaim to 1022 * divide up the memcgs in the hierarchy among all concurrent 1023 * reclaimers operating on the same node and priority. 1024 */ 1025 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1026 struct mem_cgroup *prev, 1027 struct mem_cgroup_reclaim_cookie *reclaim) 1028 { 1029 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1030 struct cgroup_subsys_state *css = NULL; 1031 struct mem_cgroup *memcg = NULL; 1032 struct mem_cgroup *pos = NULL; 1033 1034 if (mem_cgroup_disabled()) 1035 return NULL; 1036 1037 if (!root) 1038 root = root_mem_cgroup; 1039 1040 if (prev && !reclaim) 1041 pos = prev; 1042 1043 if (!root->use_hierarchy && root != root_mem_cgroup) { 1044 if (prev) 1045 goto out; 1046 return root; 1047 } 1048 1049 rcu_read_lock(); 1050 1051 if (reclaim) { 1052 struct mem_cgroup_per_node *mz; 1053 1054 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1055 iter = &mz->iter[reclaim->priority]; 1056 1057 if (prev && reclaim->generation != iter->generation) 1058 goto out_unlock; 1059 1060 while (1) { 1061 pos = READ_ONCE(iter->position); 1062 if (!pos || css_tryget(&pos->css)) 1063 break; 1064 /* 1065 * css reference reached zero, so iter->position will 1066 * be cleared by ->css_released. However, we should not 1067 * rely on this happening soon, because ->css_released 1068 * is called from a work queue, and by busy-waiting we 1069 * might block it. So we clear iter->position right 1070 * away. 1071 */ 1072 (void)cmpxchg(&iter->position, pos, NULL); 1073 } 1074 } 1075 1076 if (pos) 1077 css = &pos->css; 1078 1079 for (;;) { 1080 css = css_next_descendant_pre(css, &root->css); 1081 if (!css) { 1082 /* 1083 * Reclaimers share the hierarchy walk, and a 1084 * new one might jump in right at the end of 1085 * the hierarchy - make sure they see at least 1086 * one group and restart from the beginning. 1087 */ 1088 if (!prev) 1089 continue; 1090 break; 1091 } 1092 1093 /* 1094 * Verify the css and acquire a reference. The root 1095 * is provided by the caller, so we know it's alive 1096 * and kicking, and don't take an extra reference. 1097 */ 1098 memcg = mem_cgroup_from_css(css); 1099 1100 if (css == &root->css) 1101 break; 1102 1103 if (css_tryget(css)) 1104 break; 1105 1106 memcg = NULL; 1107 } 1108 1109 if (reclaim) { 1110 /* 1111 * The position could have already been updated by a competing 1112 * thread, so check that the value hasn't changed since we read 1113 * it to avoid reclaiming from the same cgroup twice. 1114 */ 1115 (void)cmpxchg(&iter->position, pos, memcg); 1116 1117 if (pos) 1118 css_put(&pos->css); 1119 1120 if (!memcg) 1121 iter->generation++; 1122 else if (!prev) 1123 reclaim->generation = iter->generation; 1124 } 1125 1126 out_unlock: 1127 rcu_read_unlock(); 1128 out: 1129 if (prev && prev != root) 1130 css_put(&prev->css); 1131 1132 return memcg; 1133 } 1134 1135 /** 1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1137 * @root: hierarchy root 1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1139 */ 1140 void mem_cgroup_iter_break(struct mem_cgroup *root, 1141 struct mem_cgroup *prev) 1142 { 1143 if (!root) 1144 root = root_mem_cgroup; 1145 if (prev && prev != root) 1146 css_put(&prev->css); 1147 } 1148 1149 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1150 struct mem_cgroup *dead_memcg) 1151 { 1152 struct mem_cgroup_reclaim_iter *iter; 1153 struct mem_cgroup_per_node *mz; 1154 int nid; 1155 int i; 1156 1157 for_each_node(nid) { 1158 mz = mem_cgroup_nodeinfo(from, nid); 1159 for (i = 0; i <= DEF_PRIORITY; i++) { 1160 iter = &mz->iter[i]; 1161 cmpxchg(&iter->position, 1162 dead_memcg, NULL); 1163 } 1164 } 1165 } 1166 1167 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1168 { 1169 struct mem_cgroup *memcg = dead_memcg; 1170 struct mem_cgroup *last; 1171 1172 do { 1173 __invalidate_reclaim_iterators(memcg, dead_memcg); 1174 last = memcg; 1175 } while ((memcg = parent_mem_cgroup(memcg))); 1176 1177 /* 1178 * When cgruop1 non-hierarchy mode is used, 1179 * parent_mem_cgroup() does not walk all the way up to the 1180 * cgroup root (root_mem_cgroup). So we have to handle 1181 * dead_memcg from cgroup root separately. 1182 */ 1183 if (last != root_mem_cgroup) 1184 __invalidate_reclaim_iterators(root_mem_cgroup, 1185 dead_memcg); 1186 } 1187 1188 /** 1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1190 * @memcg: hierarchy root 1191 * @fn: function to call for each task 1192 * @arg: argument passed to @fn 1193 * 1194 * This function iterates over tasks attached to @memcg or to any of its 1195 * descendants and calls @fn for each task. If @fn returns a non-zero 1196 * value, the function breaks the iteration loop and returns the value. 1197 * Otherwise, it will iterate over all tasks and return 0. 1198 * 1199 * This function must not be called for the root memory cgroup. 1200 */ 1201 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1202 int (*fn)(struct task_struct *, void *), void *arg) 1203 { 1204 struct mem_cgroup *iter; 1205 int ret = 0; 1206 1207 BUG_ON(memcg == root_mem_cgroup); 1208 1209 for_each_mem_cgroup_tree(iter, memcg) { 1210 struct css_task_iter it; 1211 struct task_struct *task; 1212 1213 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1214 while (!ret && (task = css_task_iter_next(&it))) 1215 ret = fn(task, arg); 1216 css_task_iter_end(&it); 1217 if (ret) { 1218 mem_cgroup_iter_break(memcg, iter); 1219 break; 1220 } 1221 } 1222 return ret; 1223 } 1224 1225 /** 1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1227 * @page: the page 1228 * @pgdat: pgdat of the page 1229 * 1230 * This function is only safe when following the LRU page isolation 1231 * and putback protocol: the LRU lock must be held, and the page must 1232 * either be PageLRU() or the caller must have isolated/allocated it. 1233 */ 1234 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1235 { 1236 struct mem_cgroup_per_node *mz; 1237 struct mem_cgroup *memcg; 1238 struct lruvec *lruvec; 1239 1240 if (mem_cgroup_disabled()) { 1241 lruvec = &pgdat->lruvec; 1242 goto out; 1243 } 1244 1245 memcg = page->mem_cgroup; 1246 /* 1247 * Swapcache readahead pages are added to the LRU - and 1248 * possibly migrated - before they are charged. 1249 */ 1250 if (!memcg) 1251 memcg = root_mem_cgroup; 1252 1253 mz = mem_cgroup_page_nodeinfo(memcg, page); 1254 lruvec = &mz->lruvec; 1255 out: 1256 /* 1257 * Since a node can be onlined after the mem_cgroup was created, 1258 * we have to be prepared to initialize lruvec->zone here; 1259 * and if offlined then reonlined, we need to reinitialize it. 1260 */ 1261 if (unlikely(lruvec->pgdat != pgdat)) 1262 lruvec->pgdat = pgdat; 1263 return lruvec; 1264 } 1265 1266 /** 1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1268 * @lruvec: mem_cgroup per zone lru vector 1269 * @lru: index of lru list the page is sitting on 1270 * @zid: zone id of the accounted pages 1271 * @nr_pages: positive when adding or negative when removing 1272 * 1273 * This function must be called under lru_lock, just before a page is added 1274 * to or just after a page is removed from an lru list (that ordering being 1275 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1276 */ 1277 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1278 int zid, int nr_pages) 1279 { 1280 struct mem_cgroup_per_node *mz; 1281 unsigned long *lru_size; 1282 long size; 1283 1284 if (mem_cgroup_disabled()) 1285 return; 1286 1287 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1288 lru_size = &mz->lru_zone_size[zid][lru]; 1289 1290 if (nr_pages < 0) 1291 *lru_size += nr_pages; 1292 1293 size = *lru_size; 1294 if (WARN_ONCE(size < 0, 1295 "%s(%p, %d, %d): lru_size %ld\n", 1296 __func__, lruvec, lru, nr_pages, size)) { 1297 VM_BUG_ON(1); 1298 *lru_size = 0; 1299 } 1300 1301 if (nr_pages > 0) 1302 *lru_size += nr_pages; 1303 } 1304 1305 /** 1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1307 * @memcg: the memory cgroup 1308 * 1309 * Returns the maximum amount of memory @mem can be charged with, in 1310 * pages. 1311 */ 1312 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1313 { 1314 unsigned long margin = 0; 1315 unsigned long count; 1316 unsigned long limit; 1317 1318 count = page_counter_read(&memcg->memory); 1319 limit = READ_ONCE(memcg->memory.max); 1320 if (count < limit) 1321 margin = limit - count; 1322 1323 if (do_memsw_account()) { 1324 count = page_counter_read(&memcg->memsw); 1325 limit = READ_ONCE(memcg->memsw.max); 1326 if (count <= limit) 1327 margin = min(margin, limit - count); 1328 else 1329 margin = 0; 1330 } 1331 1332 return margin; 1333 } 1334 1335 /* 1336 * A routine for checking "mem" is under move_account() or not. 1337 * 1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1339 * moving cgroups. This is for waiting at high-memory pressure 1340 * caused by "move". 1341 */ 1342 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1343 { 1344 struct mem_cgroup *from; 1345 struct mem_cgroup *to; 1346 bool ret = false; 1347 /* 1348 * Unlike task_move routines, we access mc.to, mc.from not under 1349 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1350 */ 1351 spin_lock(&mc.lock); 1352 from = mc.from; 1353 to = mc.to; 1354 if (!from) 1355 goto unlock; 1356 1357 ret = mem_cgroup_is_descendant(from, memcg) || 1358 mem_cgroup_is_descendant(to, memcg); 1359 unlock: 1360 spin_unlock(&mc.lock); 1361 return ret; 1362 } 1363 1364 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1365 { 1366 if (mc.moving_task && current != mc.moving_task) { 1367 if (mem_cgroup_under_move(memcg)) { 1368 DEFINE_WAIT(wait); 1369 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1370 /* moving charge context might have finished. */ 1371 if (mc.moving_task) 1372 schedule(); 1373 finish_wait(&mc.waitq, &wait); 1374 return true; 1375 } 1376 } 1377 return false; 1378 } 1379 1380 static char *memory_stat_format(struct mem_cgroup *memcg) 1381 { 1382 struct seq_buf s; 1383 int i; 1384 1385 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1386 if (!s.buffer) 1387 return NULL; 1388 1389 /* 1390 * Provide statistics on the state of the memory subsystem as 1391 * well as cumulative event counters that show past behavior. 1392 * 1393 * This list is ordered following a combination of these gradients: 1394 * 1) generic big picture -> specifics and details 1395 * 2) reflecting userspace activity -> reflecting kernel heuristics 1396 * 1397 * Current memory state: 1398 */ 1399 1400 seq_buf_printf(&s, "anon %llu\n", 1401 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1402 PAGE_SIZE); 1403 seq_buf_printf(&s, "file %llu\n", 1404 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1405 PAGE_SIZE); 1406 seq_buf_printf(&s, "kernel_stack %llu\n", 1407 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1408 1024); 1409 seq_buf_printf(&s, "slab %llu\n", 1410 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1411 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1412 PAGE_SIZE); 1413 seq_buf_printf(&s, "sock %llu\n", 1414 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1415 PAGE_SIZE); 1416 1417 seq_buf_printf(&s, "shmem %llu\n", 1418 (u64)memcg_page_state(memcg, NR_SHMEM) * 1419 PAGE_SIZE); 1420 seq_buf_printf(&s, "file_mapped %llu\n", 1421 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1422 PAGE_SIZE); 1423 seq_buf_printf(&s, "file_dirty %llu\n", 1424 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1425 PAGE_SIZE); 1426 seq_buf_printf(&s, "file_writeback %llu\n", 1427 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1428 PAGE_SIZE); 1429 1430 /* 1431 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1432 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1433 * arse because it requires migrating the work out of rmap to a place 1434 * where the page->mem_cgroup is set up and stable. 1435 */ 1436 seq_buf_printf(&s, "anon_thp %llu\n", 1437 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1438 PAGE_SIZE); 1439 1440 for (i = 0; i < NR_LRU_LISTS; i++) 1441 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], 1442 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1443 PAGE_SIZE); 1444 1445 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1446 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1447 PAGE_SIZE); 1448 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1449 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1450 PAGE_SIZE); 1451 1452 /* Accumulated memory events */ 1453 1454 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 1455 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 1456 1457 seq_buf_printf(&s, "workingset_refault %lu\n", 1458 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1459 seq_buf_printf(&s, "workingset_activate %lu\n", 1460 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1461 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1462 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1463 1464 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 1465 seq_buf_printf(&s, "pgscan %lu\n", 1466 memcg_events(memcg, PGSCAN_KSWAPD) + 1467 memcg_events(memcg, PGSCAN_DIRECT)); 1468 seq_buf_printf(&s, "pgsteal %lu\n", 1469 memcg_events(memcg, PGSTEAL_KSWAPD) + 1470 memcg_events(memcg, PGSTEAL_DIRECT)); 1471 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 1472 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 1473 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 1474 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 1475 1476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1477 seq_buf_printf(&s, "thp_fault_alloc %lu\n", 1478 memcg_events(memcg, THP_FAULT_ALLOC)); 1479 seq_buf_printf(&s, "thp_collapse_alloc %lu\n", 1480 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1482 1483 /* The above should easily fit into one page */ 1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1485 1486 return s.buffer; 1487 } 1488 1489 #define K(x) ((x) << (PAGE_SHIFT-10)) 1490 /** 1491 * mem_cgroup_print_oom_context: Print OOM information relevant to 1492 * memory controller. 1493 * @memcg: The memory cgroup that went over limit 1494 * @p: Task that is going to be killed 1495 * 1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1497 * enabled 1498 */ 1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1500 { 1501 rcu_read_lock(); 1502 1503 if (memcg) { 1504 pr_cont(",oom_memcg="); 1505 pr_cont_cgroup_path(memcg->css.cgroup); 1506 } else 1507 pr_cont(",global_oom"); 1508 if (p) { 1509 pr_cont(",task_memcg="); 1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1511 } 1512 rcu_read_unlock(); 1513 } 1514 1515 /** 1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1517 * memory controller. 1518 * @memcg: The memory cgroup that went over limit 1519 */ 1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1521 { 1522 char *buf; 1523 1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1525 K((u64)page_counter_read(&memcg->memory)), 1526 K((u64)memcg->memory.max), memcg->memory.failcnt); 1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1529 K((u64)page_counter_read(&memcg->swap)), 1530 K((u64)memcg->swap.max), memcg->swap.failcnt); 1531 else { 1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1533 K((u64)page_counter_read(&memcg->memsw)), 1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1536 K((u64)page_counter_read(&memcg->kmem)), 1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1538 } 1539 1540 pr_info("Memory cgroup stats for "); 1541 pr_cont_cgroup_path(memcg->css.cgroup); 1542 pr_cont(":"); 1543 buf = memory_stat_format(memcg); 1544 if (!buf) 1545 return; 1546 pr_info("%s", buf); 1547 kfree(buf); 1548 } 1549 1550 /* 1551 * Return the memory (and swap, if configured) limit for a memcg. 1552 */ 1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1554 { 1555 unsigned long max; 1556 1557 max = memcg->memory.max; 1558 if (mem_cgroup_swappiness(memcg)) { 1559 unsigned long memsw_max; 1560 unsigned long swap_max; 1561 1562 memsw_max = memcg->memsw.max; 1563 swap_max = memcg->swap.max; 1564 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1565 max = min(max + swap_max, memsw_max); 1566 } 1567 return max; 1568 } 1569 1570 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1571 int order) 1572 { 1573 struct oom_control oc = { 1574 .zonelist = NULL, 1575 .nodemask = NULL, 1576 .memcg = memcg, 1577 .gfp_mask = gfp_mask, 1578 .order = order, 1579 }; 1580 bool ret; 1581 1582 if (mutex_lock_killable(&oom_lock)) 1583 return true; 1584 /* 1585 * A few threads which were not waiting at mutex_lock_killable() can 1586 * fail to bail out. Therefore, check again after holding oom_lock. 1587 */ 1588 ret = should_force_charge() || out_of_memory(&oc); 1589 mutex_unlock(&oom_lock); 1590 return ret; 1591 } 1592 1593 #if MAX_NUMNODES > 1 1594 1595 /** 1596 * test_mem_cgroup_node_reclaimable 1597 * @memcg: the target memcg 1598 * @nid: the node ID to be checked. 1599 * @noswap : specify true here if the user wants flle only information. 1600 * 1601 * This function returns whether the specified memcg contains any 1602 * reclaimable pages on a node. Returns true if there are any reclaimable 1603 * pages in the node. 1604 */ 1605 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1606 int nid, bool noswap) 1607 { 1608 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1609 1610 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1611 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1612 return true; 1613 if (noswap || !total_swap_pages) 1614 return false; 1615 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1616 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1617 return true; 1618 return false; 1619 1620 } 1621 1622 /* 1623 * Always updating the nodemask is not very good - even if we have an empty 1624 * list or the wrong list here, we can start from some node and traverse all 1625 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1626 * 1627 */ 1628 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1629 { 1630 int nid; 1631 /* 1632 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1633 * pagein/pageout changes since the last update. 1634 */ 1635 if (!atomic_read(&memcg->numainfo_events)) 1636 return; 1637 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1638 return; 1639 1640 /* make a nodemask where this memcg uses memory from */ 1641 memcg->scan_nodes = node_states[N_MEMORY]; 1642 1643 for_each_node_mask(nid, node_states[N_MEMORY]) { 1644 1645 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1646 node_clear(nid, memcg->scan_nodes); 1647 } 1648 1649 atomic_set(&memcg->numainfo_events, 0); 1650 atomic_set(&memcg->numainfo_updating, 0); 1651 } 1652 1653 /* 1654 * Selecting a node where we start reclaim from. Because what we need is just 1655 * reducing usage counter, start from anywhere is O,K. Considering 1656 * memory reclaim from current node, there are pros. and cons. 1657 * 1658 * Freeing memory from current node means freeing memory from a node which 1659 * we'll use or we've used. So, it may make LRU bad. And if several threads 1660 * hit limits, it will see a contention on a node. But freeing from remote 1661 * node means more costs for memory reclaim because of memory latency. 1662 * 1663 * Now, we use round-robin. Better algorithm is welcomed. 1664 */ 1665 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1666 { 1667 int node; 1668 1669 mem_cgroup_may_update_nodemask(memcg); 1670 node = memcg->last_scanned_node; 1671 1672 node = next_node_in(node, memcg->scan_nodes); 1673 /* 1674 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1675 * last time it really checked all the LRUs due to rate limiting. 1676 * Fallback to the current node in that case for simplicity. 1677 */ 1678 if (unlikely(node == MAX_NUMNODES)) 1679 node = numa_node_id(); 1680 1681 memcg->last_scanned_node = node; 1682 return node; 1683 } 1684 #else 1685 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1686 { 1687 return 0; 1688 } 1689 #endif 1690 1691 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1692 pg_data_t *pgdat, 1693 gfp_t gfp_mask, 1694 unsigned long *total_scanned) 1695 { 1696 struct mem_cgroup *victim = NULL; 1697 int total = 0; 1698 int loop = 0; 1699 unsigned long excess; 1700 unsigned long nr_scanned; 1701 struct mem_cgroup_reclaim_cookie reclaim = { 1702 .pgdat = pgdat, 1703 .priority = 0, 1704 }; 1705 1706 excess = soft_limit_excess(root_memcg); 1707 1708 while (1) { 1709 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1710 if (!victim) { 1711 loop++; 1712 if (loop >= 2) { 1713 /* 1714 * If we have not been able to reclaim 1715 * anything, it might because there are 1716 * no reclaimable pages under this hierarchy 1717 */ 1718 if (!total) 1719 break; 1720 /* 1721 * We want to do more targeted reclaim. 1722 * excess >> 2 is not to excessive so as to 1723 * reclaim too much, nor too less that we keep 1724 * coming back to reclaim from this cgroup 1725 */ 1726 if (total >= (excess >> 2) || 1727 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1728 break; 1729 } 1730 continue; 1731 } 1732 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1733 pgdat, &nr_scanned); 1734 *total_scanned += nr_scanned; 1735 if (!soft_limit_excess(root_memcg)) 1736 break; 1737 } 1738 mem_cgroup_iter_break(root_memcg, victim); 1739 return total; 1740 } 1741 1742 #ifdef CONFIG_LOCKDEP 1743 static struct lockdep_map memcg_oom_lock_dep_map = { 1744 .name = "memcg_oom_lock", 1745 }; 1746 #endif 1747 1748 static DEFINE_SPINLOCK(memcg_oom_lock); 1749 1750 /* 1751 * Check OOM-Killer is already running under our hierarchy. 1752 * If someone is running, return false. 1753 */ 1754 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1755 { 1756 struct mem_cgroup *iter, *failed = NULL; 1757 1758 spin_lock(&memcg_oom_lock); 1759 1760 for_each_mem_cgroup_tree(iter, memcg) { 1761 if (iter->oom_lock) { 1762 /* 1763 * this subtree of our hierarchy is already locked 1764 * so we cannot give a lock. 1765 */ 1766 failed = iter; 1767 mem_cgroup_iter_break(memcg, iter); 1768 break; 1769 } else 1770 iter->oom_lock = true; 1771 } 1772 1773 if (failed) { 1774 /* 1775 * OK, we failed to lock the whole subtree so we have 1776 * to clean up what we set up to the failing subtree 1777 */ 1778 for_each_mem_cgroup_tree(iter, memcg) { 1779 if (iter == failed) { 1780 mem_cgroup_iter_break(memcg, iter); 1781 break; 1782 } 1783 iter->oom_lock = false; 1784 } 1785 } else 1786 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1787 1788 spin_unlock(&memcg_oom_lock); 1789 1790 return !failed; 1791 } 1792 1793 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1794 { 1795 struct mem_cgroup *iter; 1796 1797 spin_lock(&memcg_oom_lock); 1798 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1799 for_each_mem_cgroup_tree(iter, memcg) 1800 iter->oom_lock = false; 1801 spin_unlock(&memcg_oom_lock); 1802 } 1803 1804 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1805 { 1806 struct mem_cgroup *iter; 1807 1808 spin_lock(&memcg_oom_lock); 1809 for_each_mem_cgroup_tree(iter, memcg) 1810 iter->under_oom++; 1811 spin_unlock(&memcg_oom_lock); 1812 } 1813 1814 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1815 { 1816 struct mem_cgroup *iter; 1817 1818 /* 1819 * When a new child is created while the hierarchy is under oom, 1820 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1821 */ 1822 spin_lock(&memcg_oom_lock); 1823 for_each_mem_cgroup_tree(iter, memcg) 1824 if (iter->under_oom > 0) 1825 iter->under_oom--; 1826 spin_unlock(&memcg_oom_lock); 1827 } 1828 1829 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1830 1831 struct oom_wait_info { 1832 struct mem_cgroup *memcg; 1833 wait_queue_entry_t wait; 1834 }; 1835 1836 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1837 unsigned mode, int sync, void *arg) 1838 { 1839 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1840 struct mem_cgroup *oom_wait_memcg; 1841 struct oom_wait_info *oom_wait_info; 1842 1843 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1844 oom_wait_memcg = oom_wait_info->memcg; 1845 1846 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1847 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1848 return 0; 1849 return autoremove_wake_function(wait, mode, sync, arg); 1850 } 1851 1852 static void memcg_oom_recover(struct mem_cgroup *memcg) 1853 { 1854 /* 1855 * For the following lockless ->under_oom test, the only required 1856 * guarantee is that it must see the state asserted by an OOM when 1857 * this function is called as a result of userland actions 1858 * triggered by the notification of the OOM. This is trivially 1859 * achieved by invoking mem_cgroup_mark_under_oom() before 1860 * triggering notification. 1861 */ 1862 if (memcg && memcg->under_oom) 1863 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1864 } 1865 1866 enum oom_status { 1867 OOM_SUCCESS, 1868 OOM_FAILED, 1869 OOM_ASYNC, 1870 OOM_SKIPPED 1871 }; 1872 1873 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1874 { 1875 enum oom_status ret; 1876 bool locked; 1877 1878 if (order > PAGE_ALLOC_COSTLY_ORDER) 1879 return OOM_SKIPPED; 1880 1881 memcg_memory_event(memcg, MEMCG_OOM); 1882 1883 /* 1884 * We are in the middle of the charge context here, so we 1885 * don't want to block when potentially sitting on a callstack 1886 * that holds all kinds of filesystem and mm locks. 1887 * 1888 * cgroup1 allows disabling the OOM killer and waiting for outside 1889 * handling until the charge can succeed; remember the context and put 1890 * the task to sleep at the end of the page fault when all locks are 1891 * released. 1892 * 1893 * On the other hand, in-kernel OOM killer allows for an async victim 1894 * memory reclaim (oom_reaper) and that means that we are not solely 1895 * relying on the oom victim to make a forward progress and we can 1896 * invoke the oom killer here. 1897 * 1898 * Please note that mem_cgroup_out_of_memory might fail to find a 1899 * victim and then we have to bail out from the charge path. 1900 */ 1901 if (memcg->oom_kill_disable) { 1902 if (!current->in_user_fault) 1903 return OOM_SKIPPED; 1904 css_get(&memcg->css); 1905 current->memcg_in_oom = memcg; 1906 current->memcg_oom_gfp_mask = mask; 1907 current->memcg_oom_order = order; 1908 1909 return OOM_ASYNC; 1910 } 1911 1912 mem_cgroup_mark_under_oom(memcg); 1913 1914 locked = mem_cgroup_oom_trylock(memcg); 1915 1916 if (locked) 1917 mem_cgroup_oom_notify(memcg); 1918 1919 mem_cgroup_unmark_under_oom(memcg); 1920 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1921 ret = OOM_SUCCESS; 1922 else 1923 ret = OOM_FAILED; 1924 1925 if (locked) 1926 mem_cgroup_oom_unlock(memcg); 1927 1928 return ret; 1929 } 1930 1931 /** 1932 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1933 * @handle: actually kill/wait or just clean up the OOM state 1934 * 1935 * This has to be called at the end of a page fault if the memcg OOM 1936 * handler was enabled. 1937 * 1938 * Memcg supports userspace OOM handling where failed allocations must 1939 * sleep on a waitqueue until the userspace task resolves the 1940 * situation. Sleeping directly in the charge context with all kinds 1941 * of locks held is not a good idea, instead we remember an OOM state 1942 * in the task and mem_cgroup_oom_synchronize() has to be called at 1943 * the end of the page fault to complete the OOM handling. 1944 * 1945 * Returns %true if an ongoing memcg OOM situation was detected and 1946 * completed, %false otherwise. 1947 */ 1948 bool mem_cgroup_oom_synchronize(bool handle) 1949 { 1950 struct mem_cgroup *memcg = current->memcg_in_oom; 1951 struct oom_wait_info owait; 1952 bool locked; 1953 1954 /* OOM is global, do not handle */ 1955 if (!memcg) 1956 return false; 1957 1958 if (!handle) 1959 goto cleanup; 1960 1961 owait.memcg = memcg; 1962 owait.wait.flags = 0; 1963 owait.wait.func = memcg_oom_wake_function; 1964 owait.wait.private = current; 1965 INIT_LIST_HEAD(&owait.wait.entry); 1966 1967 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1968 mem_cgroup_mark_under_oom(memcg); 1969 1970 locked = mem_cgroup_oom_trylock(memcg); 1971 1972 if (locked) 1973 mem_cgroup_oom_notify(memcg); 1974 1975 if (locked && !memcg->oom_kill_disable) { 1976 mem_cgroup_unmark_under_oom(memcg); 1977 finish_wait(&memcg_oom_waitq, &owait.wait); 1978 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1979 current->memcg_oom_order); 1980 } else { 1981 schedule(); 1982 mem_cgroup_unmark_under_oom(memcg); 1983 finish_wait(&memcg_oom_waitq, &owait.wait); 1984 } 1985 1986 if (locked) { 1987 mem_cgroup_oom_unlock(memcg); 1988 /* 1989 * There is no guarantee that an OOM-lock contender 1990 * sees the wakeups triggered by the OOM kill 1991 * uncharges. Wake any sleepers explicitely. 1992 */ 1993 memcg_oom_recover(memcg); 1994 } 1995 cleanup: 1996 current->memcg_in_oom = NULL; 1997 css_put(&memcg->css); 1998 return true; 1999 } 2000 2001 /** 2002 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2003 * @victim: task to be killed by the OOM killer 2004 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2005 * 2006 * Returns a pointer to a memory cgroup, which has to be cleaned up 2007 * by killing all belonging OOM-killable tasks. 2008 * 2009 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2010 */ 2011 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2012 struct mem_cgroup *oom_domain) 2013 { 2014 struct mem_cgroup *oom_group = NULL; 2015 struct mem_cgroup *memcg; 2016 2017 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2018 return NULL; 2019 2020 if (!oom_domain) 2021 oom_domain = root_mem_cgroup; 2022 2023 rcu_read_lock(); 2024 2025 memcg = mem_cgroup_from_task(victim); 2026 if (memcg == root_mem_cgroup) 2027 goto out; 2028 2029 /* 2030 * Traverse the memory cgroup hierarchy from the victim task's 2031 * cgroup up to the OOMing cgroup (or root) to find the 2032 * highest-level memory cgroup with oom.group set. 2033 */ 2034 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2035 if (memcg->oom_group) 2036 oom_group = memcg; 2037 2038 if (memcg == oom_domain) 2039 break; 2040 } 2041 2042 if (oom_group) 2043 css_get(&oom_group->css); 2044 out: 2045 rcu_read_unlock(); 2046 2047 return oom_group; 2048 } 2049 2050 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2051 { 2052 pr_info("Tasks in "); 2053 pr_cont_cgroup_path(memcg->css.cgroup); 2054 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2055 } 2056 2057 /** 2058 * lock_page_memcg - lock a page->mem_cgroup binding 2059 * @page: the page 2060 * 2061 * This function protects unlocked LRU pages from being moved to 2062 * another cgroup. 2063 * 2064 * It ensures lifetime of the returned memcg. Caller is responsible 2065 * for the lifetime of the page; __unlock_page_memcg() is available 2066 * when @page might get freed inside the locked section. 2067 */ 2068 struct mem_cgroup *lock_page_memcg(struct page *page) 2069 { 2070 struct mem_cgroup *memcg; 2071 unsigned long flags; 2072 2073 /* 2074 * The RCU lock is held throughout the transaction. The fast 2075 * path can get away without acquiring the memcg->move_lock 2076 * because page moving starts with an RCU grace period. 2077 * 2078 * The RCU lock also protects the memcg from being freed when 2079 * the page state that is going to change is the only thing 2080 * preventing the page itself from being freed. E.g. writeback 2081 * doesn't hold a page reference and relies on PG_writeback to 2082 * keep off truncation, migration and so forth. 2083 */ 2084 rcu_read_lock(); 2085 2086 if (mem_cgroup_disabled()) 2087 return NULL; 2088 again: 2089 memcg = page->mem_cgroup; 2090 if (unlikely(!memcg)) 2091 return NULL; 2092 2093 if (atomic_read(&memcg->moving_account) <= 0) 2094 return memcg; 2095 2096 spin_lock_irqsave(&memcg->move_lock, flags); 2097 if (memcg != page->mem_cgroup) { 2098 spin_unlock_irqrestore(&memcg->move_lock, flags); 2099 goto again; 2100 } 2101 2102 /* 2103 * When charge migration first begins, we can have locked and 2104 * unlocked page stat updates happening concurrently. Track 2105 * the task who has the lock for unlock_page_memcg(). 2106 */ 2107 memcg->move_lock_task = current; 2108 memcg->move_lock_flags = flags; 2109 2110 return memcg; 2111 } 2112 EXPORT_SYMBOL(lock_page_memcg); 2113 2114 /** 2115 * __unlock_page_memcg - unlock and unpin a memcg 2116 * @memcg: the memcg 2117 * 2118 * Unlock and unpin a memcg returned by lock_page_memcg(). 2119 */ 2120 void __unlock_page_memcg(struct mem_cgroup *memcg) 2121 { 2122 if (memcg && memcg->move_lock_task == current) { 2123 unsigned long flags = memcg->move_lock_flags; 2124 2125 memcg->move_lock_task = NULL; 2126 memcg->move_lock_flags = 0; 2127 2128 spin_unlock_irqrestore(&memcg->move_lock, flags); 2129 } 2130 2131 rcu_read_unlock(); 2132 } 2133 2134 /** 2135 * unlock_page_memcg - unlock a page->mem_cgroup binding 2136 * @page: the page 2137 */ 2138 void unlock_page_memcg(struct page *page) 2139 { 2140 __unlock_page_memcg(page->mem_cgroup); 2141 } 2142 EXPORT_SYMBOL(unlock_page_memcg); 2143 2144 struct memcg_stock_pcp { 2145 struct mem_cgroup *cached; /* this never be root cgroup */ 2146 unsigned int nr_pages; 2147 struct work_struct work; 2148 unsigned long flags; 2149 #define FLUSHING_CACHED_CHARGE 0 2150 }; 2151 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2152 static DEFINE_MUTEX(percpu_charge_mutex); 2153 2154 /** 2155 * consume_stock: Try to consume stocked charge on this cpu. 2156 * @memcg: memcg to consume from. 2157 * @nr_pages: how many pages to charge. 2158 * 2159 * The charges will only happen if @memcg matches the current cpu's memcg 2160 * stock, and at least @nr_pages are available in that stock. Failure to 2161 * service an allocation will refill the stock. 2162 * 2163 * returns true if successful, false otherwise. 2164 */ 2165 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2166 { 2167 struct memcg_stock_pcp *stock; 2168 unsigned long flags; 2169 bool ret = false; 2170 2171 if (nr_pages > MEMCG_CHARGE_BATCH) 2172 return ret; 2173 2174 local_irq_save(flags); 2175 2176 stock = this_cpu_ptr(&memcg_stock); 2177 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2178 stock->nr_pages -= nr_pages; 2179 ret = true; 2180 } 2181 2182 local_irq_restore(flags); 2183 2184 return ret; 2185 } 2186 2187 /* 2188 * Returns stocks cached in percpu and reset cached information. 2189 */ 2190 static void drain_stock(struct memcg_stock_pcp *stock) 2191 { 2192 struct mem_cgroup *old = stock->cached; 2193 2194 if (stock->nr_pages) { 2195 page_counter_uncharge(&old->memory, stock->nr_pages); 2196 if (do_memsw_account()) 2197 page_counter_uncharge(&old->memsw, stock->nr_pages); 2198 css_put_many(&old->css, stock->nr_pages); 2199 stock->nr_pages = 0; 2200 } 2201 stock->cached = NULL; 2202 } 2203 2204 static void drain_local_stock(struct work_struct *dummy) 2205 { 2206 struct memcg_stock_pcp *stock; 2207 unsigned long flags; 2208 2209 /* 2210 * The only protection from memory hotplug vs. drain_stock races is 2211 * that we always operate on local CPU stock here with IRQ disabled 2212 */ 2213 local_irq_save(flags); 2214 2215 stock = this_cpu_ptr(&memcg_stock); 2216 drain_stock(stock); 2217 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2218 2219 local_irq_restore(flags); 2220 } 2221 2222 /* 2223 * Cache charges(val) to local per_cpu area. 2224 * This will be consumed by consume_stock() function, later. 2225 */ 2226 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2227 { 2228 struct memcg_stock_pcp *stock; 2229 unsigned long flags; 2230 2231 local_irq_save(flags); 2232 2233 stock = this_cpu_ptr(&memcg_stock); 2234 if (stock->cached != memcg) { /* reset if necessary */ 2235 drain_stock(stock); 2236 stock->cached = memcg; 2237 } 2238 stock->nr_pages += nr_pages; 2239 2240 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2241 drain_stock(stock); 2242 2243 local_irq_restore(flags); 2244 } 2245 2246 /* 2247 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2248 * of the hierarchy under it. 2249 */ 2250 static void drain_all_stock(struct mem_cgroup *root_memcg) 2251 { 2252 int cpu, curcpu; 2253 2254 /* If someone's already draining, avoid adding running more workers. */ 2255 if (!mutex_trylock(&percpu_charge_mutex)) 2256 return; 2257 /* 2258 * Notify other cpus that system-wide "drain" is running 2259 * We do not care about races with the cpu hotplug because cpu down 2260 * as well as workers from this path always operate on the local 2261 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2262 */ 2263 curcpu = get_cpu(); 2264 for_each_online_cpu(cpu) { 2265 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2266 struct mem_cgroup *memcg; 2267 bool flush = false; 2268 2269 rcu_read_lock(); 2270 memcg = stock->cached; 2271 if (memcg && stock->nr_pages && 2272 mem_cgroup_is_descendant(memcg, root_memcg)) 2273 flush = true; 2274 rcu_read_unlock(); 2275 2276 if (flush && 2277 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2278 if (cpu == curcpu) 2279 drain_local_stock(&stock->work); 2280 else 2281 schedule_work_on(cpu, &stock->work); 2282 } 2283 } 2284 put_cpu(); 2285 mutex_unlock(&percpu_charge_mutex); 2286 } 2287 2288 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2289 { 2290 struct memcg_stock_pcp *stock; 2291 struct mem_cgroup *memcg, *mi; 2292 2293 stock = &per_cpu(memcg_stock, cpu); 2294 drain_stock(stock); 2295 2296 for_each_mem_cgroup(memcg) { 2297 int i; 2298 2299 for (i = 0; i < MEMCG_NR_STAT; i++) { 2300 int nid; 2301 long x; 2302 2303 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2304 if (x) 2305 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2306 atomic_long_add(x, &memcg->vmstats[i]); 2307 2308 if (i >= NR_VM_NODE_STAT_ITEMS) 2309 continue; 2310 2311 for_each_node(nid) { 2312 struct mem_cgroup_per_node *pn; 2313 2314 pn = mem_cgroup_nodeinfo(memcg, nid); 2315 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2316 if (x) 2317 do { 2318 atomic_long_add(x, &pn->lruvec_stat[i]); 2319 } while ((pn = parent_nodeinfo(pn, nid))); 2320 } 2321 } 2322 2323 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2324 long x; 2325 2326 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2327 if (x) 2328 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2329 atomic_long_add(x, &memcg->vmevents[i]); 2330 } 2331 } 2332 2333 return 0; 2334 } 2335 2336 static void reclaim_high(struct mem_cgroup *memcg, 2337 unsigned int nr_pages, 2338 gfp_t gfp_mask) 2339 { 2340 do { 2341 if (page_counter_read(&memcg->memory) <= memcg->high) 2342 continue; 2343 memcg_memory_event(memcg, MEMCG_HIGH); 2344 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2345 } while ((memcg = parent_mem_cgroup(memcg))); 2346 } 2347 2348 static void high_work_func(struct work_struct *work) 2349 { 2350 struct mem_cgroup *memcg; 2351 2352 memcg = container_of(work, struct mem_cgroup, high_work); 2353 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2354 } 2355 2356 /* 2357 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2358 * enough to still cause a significant slowdown in most cases, while still 2359 * allowing diagnostics and tracing to proceed without becoming stuck. 2360 */ 2361 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2362 2363 /* 2364 * When calculating the delay, we use these either side of the exponentiation to 2365 * maintain precision and scale to a reasonable number of jiffies (see the table 2366 * below. 2367 * 2368 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2369 * overage ratio to a delay. 2370 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2371 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2372 * to produce a reasonable delay curve. 2373 * 2374 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2375 * reasonable delay curve compared to precision-adjusted overage, not 2376 * penalising heavily at first, but still making sure that growth beyond the 2377 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2378 * example, with a high of 100 megabytes: 2379 * 2380 * +-------+------------------------+ 2381 * | usage | time to allocate in ms | 2382 * +-------+------------------------+ 2383 * | 100M | 0 | 2384 * | 101M | 6 | 2385 * | 102M | 25 | 2386 * | 103M | 57 | 2387 * | 104M | 102 | 2388 * | 105M | 159 | 2389 * | 106M | 230 | 2390 * | 107M | 313 | 2391 * | 108M | 409 | 2392 * | 109M | 518 | 2393 * | 110M | 639 | 2394 * | 111M | 774 | 2395 * | 112M | 921 | 2396 * | 113M | 1081 | 2397 * | 114M | 1254 | 2398 * | 115M | 1439 | 2399 * | 116M | 1638 | 2400 * | 117M | 1849 | 2401 * | 118M | 2000 | 2402 * | 119M | 2000 | 2403 * | 120M | 2000 | 2404 * +-------+------------------------+ 2405 */ 2406 #define MEMCG_DELAY_PRECISION_SHIFT 20 2407 #define MEMCG_DELAY_SCALING_SHIFT 14 2408 2409 /* 2410 * Scheduled by try_charge() to be executed from the userland return path 2411 * and reclaims memory over the high limit. 2412 */ 2413 void mem_cgroup_handle_over_high(void) 2414 { 2415 unsigned long usage, high, clamped_high; 2416 unsigned long pflags; 2417 unsigned long penalty_jiffies, overage; 2418 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2419 struct mem_cgroup *memcg; 2420 2421 if (likely(!nr_pages)) 2422 return; 2423 2424 memcg = get_mem_cgroup_from_mm(current->mm); 2425 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2426 current->memcg_nr_pages_over_high = 0; 2427 2428 /* 2429 * memory.high is breached and reclaim is unable to keep up. Throttle 2430 * allocators proactively to slow down excessive growth. 2431 * 2432 * We use overage compared to memory.high to calculate the number of 2433 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2434 * fairly lenient on small overages, and increasingly harsh when the 2435 * memcg in question makes it clear that it has no intention of stopping 2436 * its crazy behaviour, so we exponentially increase the delay based on 2437 * overage amount. 2438 */ 2439 2440 usage = page_counter_read(&memcg->memory); 2441 high = READ_ONCE(memcg->high); 2442 2443 if (usage <= high) 2444 goto out; 2445 2446 /* 2447 * Prevent division by 0 in overage calculation by acting as if it was a 2448 * threshold of 1 page 2449 */ 2450 clamped_high = max(high, 1UL); 2451 2452 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT, 2453 clamped_high); 2454 2455 penalty_jiffies = ((u64)overage * overage * HZ) 2456 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT); 2457 2458 /* 2459 * Factor in the task's own contribution to the overage, such that four 2460 * N-sized allocations are throttled approximately the same as one 2461 * 4N-sized allocation. 2462 * 2463 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2464 * larger the current charge patch is than that. 2465 */ 2466 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2467 2468 /* 2469 * Clamp the max delay per usermode return so as to still keep the 2470 * application moving forwards and also permit diagnostics, albeit 2471 * extremely slowly. 2472 */ 2473 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2474 2475 /* 2476 * Don't sleep if the amount of jiffies this memcg owes us is so low 2477 * that it's not even worth doing, in an attempt to be nice to those who 2478 * go only a small amount over their memory.high value and maybe haven't 2479 * been aggressively reclaimed enough yet. 2480 */ 2481 if (penalty_jiffies <= HZ / 100) 2482 goto out; 2483 2484 /* 2485 * If we exit early, we're guaranteed to die (since 2486 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2487 * need to account for any ill-begotten jiffies to pay them off later. 2488 */ 2489 psi_memstall_enter(&pflags); 2490 schedule_timeout_killable(penalty_jiffies); 2491 psi_memstall_leave(&pflags); 2492 2493 out: 2494 css_put(&memcg->css); 2495 } 2496 2497 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2498 unsigned int nr_pages) 2499 { 2500 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2501 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2502 struct mem_cgroup *mem_over_limit; 2503 struct page_counter *counter; 2504 unsigned long nr_reclaimed; 2505 bool may_swap = true; 2506 bool drained = false; 2507 enum oom_status oom_status; 2508 2509 if (mem_cgroup_is_root(memcg)) 2510 return 0; 2511 retry: 2512 if (consume_stock(memcg, nr_pages)) 2513 return 0; 2514 2515 if (!do_memsw_account() || 2516 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2517 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2518 goto done_restock; 2519 if (do_memsw_account()) 2520 page_counter_uncharge(&memcg->memsw, batch); 2521 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2522 } else { 2523 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2524 may_swap = false; 2525 } 2526 2527 if (batch > nr_pages) { 2528 batch = nr_pages; 2529 goto retry; 2530 } 2531 2532 /* 2533 * Unlike in global OOM situations, memcg is not in a physical 2534 * memory shortage. Allow dying and OOM-killed tasks to 2535 * bypass the last charges so that they can exit quickly and 2536 * free their memory. 2537 */ 2538 if (unlikely(should_force_charge())) 2539 goto force; 2540 2541 /* 2542 * Prevent unbounded recursion when reclaim operations need to 2543 * allocate memory. This might exceed the limits temporarily, 2544 * but we prefer facilitating memory reclaim and getting back 2545 * under the limit over triggering OOM kills in these cases. 2546 */ 2547 if (unlikely(current->flags & PF_MEMALLOC)) 2548 goto force; 2549 2550 if (unlikely(task_in_memcg_oom(current))) 2551 goto nomem; 2552 2553 if (!gfpflags_allow_blocking(gfp_mask)) 2554 goto nomem; 2555 2556 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2557 2558 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2559 gfp_mask, may_swap); 2560 2561 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2562 goto retry; 2563 2564 if (!drained) { 2565 drain_all_stock(mem_over_limit); 2566 drained = true; 2567 goto retry; 2568 } 2569 2570 if (gfp_mask & __GFP_NORETRY) 2571 goto nomem; 2572 /* 2573 * Even though the limit is exceeded at this point, reclaim 2574 * may have been able to free some pages. Retry the charge 2575 * before killing the task. 2576 * 2577 * Only for regular pages, though: huge pages are rather 2578 * unlikely to succeed so close to the limit, and we fall back 2579 * to regular pages anyway in case of failure. 2580 */ 2581 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2582 goto retry; 2583 /* 2584 * At task move, charge accounts can be doubly counted. So, it's 2585 * better to wait until the end of task_move if something is going on. 2586 */ 2587 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2588 goto retry; 2589 2590 if (nr_retries--) 2591 goto retry; 2592 2593 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2594 goto nomem; 2595 2596 if (gfp_mask & __GFP_NOFAIL) 2597 goto force; 2598 2599 if (fatal_signal_pending(current)) 2600 goto force; 2601 2602 /* 2603 * keep retrying as long as the memcg oom killer is able to make 2604 * a forward progress or bypass the charge if the oom killer 2605 * couldn't make any progress. 2606 */ 2607 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2608 get_order(nr_pages * PAGE_SIZE)); 2609 switch (oom_status) { 2610 case OOM_SUCCESS: 2611 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2612 goto retry; 2613 case OOM_FAILED: 2614 goto force; 2615 default: 2616 goto nomem; 2617 } 2618 nomem: 2619 if (!(gfp_mask & __GFP_NOFAIL)) 2620 return -ENOMEM; 2621 force: 2622 /* 2623 * The allocation either can't fail or will lead to more memory 2624 * being freed very soon. Allow memory usage go over the limit 2625 * temporarily by force charging it. 2626 */ 2627 page_counter_charge(&memcg->memory, nr_pages); 2628 if (do_memsw_account()) 2629 page_counter_charge(&memcg->memsw, nr_pages); 2630 css_get_many(&memcg->css, nr_pages); 2631 2632 return 0; 2633 2634 done_restock: 2635 css_get_many(&memcg->css, batch); 2636 if (batch > nr_pages) 2637 refill_stock(memcg, batch - nr_pages); 2638 2639 /* 2640 * If the hierarchy is above the normal consumption range, schedule 2641 * reclaim on returning to userland. We can perform reclaim here 2642 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2643 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2644 * not recorded as it most likely matches current's and won't 2645 * change in the meantime. As high limit is checked again before 2646 * reclaim, the cost of mismatch is negligible. 2647 */ 2648 do { 2649 if (page_counter_read(&memcg->memory) > memcg->high) { 2650 /* Don't bother a random interrupted task */ 2651 if (in_interrupt()) { 2652 schedule_work(&memcg->high_work); 2653 break; 2654 } 2655 current->memcg_nr_pages_over_high += batch; 2656 set_notify_resume(current); 2657 break; 2658 } 2659 } while ((memcg = parent_mem_cgroup(memcg))); 2660 2661 return 0; 2662 } 2663 2664 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2665 { 2666 if (mem_cgroup_is_root(memcg)) 2667 return; 2668 2669 page_counter_uncharge(&memcg->memory, nr_pages); 2670 if (do_memsw_account()) 2671 page_counter_uncharge(&memcg->memsw, nr_pages); 2672 2673 css_put_many(&memcg->css, nr_pages); 2674 } 2675 2676 static void lock_page_lru(struct page *page, int *isolated) 2677 { 2678 pg_data_t *pgdat = page_pgdat(page); 2679 2680 spin_lock_irq(&pgdat->lru_lock); 2681 if (PageLRU(page)) { 2682 struct lruvec *lruvec; 2683 2684 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2685 ClearPageLRU(page); 2686 del_page_from_lru_list(page, lruvec, page_lru(page)); 2687 *isolated = 1; 2688 } else 2689 *isolated = 0; 2690 } 2691 2692 static void unlock_page_lru(struct page *page, int isolated) 2693 { 2694 pg_data_t *pgdat = page_pgdat(page); 2695 2696 if (isolated) { 2697 struct lruvec *lruvec; 2698 2699 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2700 VM_BUG_ON_PAGE(PageLRU(page), page); 2701 SetPageLRU(page); 2702 add_page_to_lru_list(page, lruvec, page_lru(page)); 2703 } 2704 spin_unlock_irq(&pgdat->lru_lock); 2705 } 2706 2707 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2708 bool lrucare) 2709 { 2710 int isolated; 2711 2712 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2713 2714 /* 2715 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2716 * may already be on some other mem_cgroup's LRU. Take care of it. 2717 */ 2718 if (lrucare) 2719 lock_page_lru(page, &isolated); 2720 2721 /* 2722 * Nobody should be changing or seriously looking at 2723 * page->mem_cgroup at this point: 2724 * 2725 * - the page is uncharged 2726 * 2727 * - the page is off-LRU 2728 * 2729 * - an anonymous fault has exclusive page access, except for 2730 * a locked page table 2731 * 2732 * - a page cache insertion, a swapin fault, or a migration 2733 * have the page locked 2734 */ 2735 page->mem_cgroup = memcg; 2736 2737 if (lrucare) 2738 unlock_page_lru(page, isolated); 2739 } 2740 2741 #ifdef CONFIG_MEMCG_KMEM 2742 static int memcg_alloc_cache_id(void) 2743 { 2744 int id, size; 2745 int err; 2746 2747 id = ida_simple_get(&memcg_cache_ida, 2748 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2749 if (id < 0) 2750 return id; 2751 2752 if (id < memcg_nr_cache_ids) 2753 return id; 2754 2755 /* 2756 * There's no space for the new id in memcg_caches arrays, 2757 * so we have to grow them. 2758 */ 2759 down_write(&memcg_cache_ids_sem); 2760 2761 size = 2 * (id + 1); 2762 if (size < MEMCG_CACHES_MIN_SIZE) 2763 size = MEMCG_CACHES_MIN_SIZE; 2764 else if (size > MEMCG_CACHES_MAX_SIZE) 2765 size = MEMCG_CACHES_MAX_SIZE; 2766 2767 err = memcg_update_all_caches(size); 2768 if (!err) 2769 err = memcg_update_all_list_lrus(size); 2770 if (!err) 2771 memcg_nr_cache_ids = size; 2772 2773 up_write(&memcg_cache_ids_sem); 2774 2775 if (err) { 2776 ida_simple_remove(&memcg_cache_ida, id); 2777 return err; 2778 } 2779 return id; 2780 } 2781 2782 static void memcg_free_cache_id(int id) 2783 { 2784 ida_simple_remove(&memcg_cache_ida, id); 2785 } 2786 2787 struct memcg_kmem_cache_create_work { 2788 struct mem_cgroup *memcg; 2789 struct kmem_cache *cachep; 2790 struct work_struct work; 2791 }; 2792 2793 static void memcg_kmem_cache_create_func(struct work_struct *w) 2794 { 2795 struct memcg_kmem_cache_create_work *cw = 2796 container_of(w, struct memcg_kmem_cache_create_work, work); 2797 struct mem_cgroup *memcg = cw->memcg; 2798 struct kmem_cache *cachep = cw->cachep; 2799 2800 memcg_create_kmem_cache(memcg, cachep); 2801 2802 css_put(&memcg->css); 2803 kfree(cw); 2804 } 2805 2806 /* 2807 * Enqueue the creation of a per-memcg kmem_cache. 2808 */ 2809 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2810 struct kmem_cache *cachep) 2811 { 2812 struct memcg_kmem_cache_create_work *cw; 2813 2814 if (!css_tryget_online(&memcg->css)) 2815 return; 2816 2817 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2818 if (!cw) 2819 return; 2820 2821 cw->memcg = memcg; 2822 cw->cachep = cachep; 2823 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2824 2825 queue_work(memcg_kmem_cache_wq, &cw->work); 2826 } 2827 2828 static inline bool memcg_kmem_bypass(void) 2829 { 2830 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2831 return true; 2832 return false; 2833 } 2834 2835 /** 2836 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2837 * @cachep: the original global kmem cache 2838 * 2839 * Return the kmem_cache we're supposed to use for a slab allocation. 2840 * We try to use the current memcg's version of the cache. 2841 * 2842 * If the cache does not exist yet, if we are the first user of it, we 2843 * create it asynchronously in a workqueue and let the current allocation 2844 * go through with the original cache. 2845 * 2846 * This function takes a reference to the cache it returns to assure it 2847 * won't get destroyed while we are working with it. Once the caller is 2848 * done with it, memcg_kmem_put_cache() must be called to release the 2849 * reference. 2850 */ 2851 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2852 { 2853 struct mem_cgroup *memcg; 2854 struct kmem_cache *memcg_cachep; 2855 struct memcg_cache_array *arr; 2856 int kmemcg_id; 2857 2858 VM_BUG_ON(!is_root_cache(cachep)); 2859 2860 if (memcg_kmem_bypass()) 2861 return cachep; 2862 2863 rcu_read_lock(); 2864 2865 if (unlikely(current->active_memcg)) 2866 memcg = current->active_memcg; 2867 else 2868 memcg = mem_cgroup_from_task(current); 2869 2870 if (!memcg || memcg == root_mem_cgroup) 2871 goto out_unlock; 2872 2873 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2874 if (kmemcg_id < 0) 2875 goto out_unlock; 2876 2877 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2878 2879 /* 2880 * Make sure we will access the up-to-date value. The code updating 2881 * memcg_caches issues a write barrier to match the data dependency 2882 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2883 */ 2884 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2885 2886 /* 2887 * If we are in a safe context (can wait, and not in interrupt 2888 * context), we could be be predictable and return right away. 2889 * This would guarantee that the allocation being performed 2890 * already belongs in the new cache. 2891 * 2892 * However, there are some clashes that can arrive from locking. 2893 * For instance, because we acquire the slab_mutex while doing 2894 * memcg_create_kmem_cache, this means no further allocation 2895 * could happen with the slab_mutex held. So it's better to 2896 * defer everything. 2897 * 2898 * If the memcg is dying or memcg_cache is about to be released, 2899 * don't bother creating new kmem_caches. Because memcg_cachep 2900 * is ZEROed as the fist step of kmem offlining, we don't need 2901 * percpu_ref_tryget_live() here. css_tryget_online() check in 2902 * memcg_schedule_kmem_cache_create() will prevent us from 2903 * creation of a new kmem_cache. 2904 */ 2905 if (unlikely(!memcg_cachep)) 2906 memcg_schedule_kmem_cache_create(memcg, cachep); 2907 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2908 cachep = memcg_cachep; 2909 out_unlock: 2910 rcu_read_unlock(); 2911 return cachep; 2912 } 2913 2914 /** 2915 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2916 * @cachep: the cache returned by memcg_kmem_get_cache 2917 */ 2918 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2919 { 2920 if (!is_root_cache(cachep)) 2921 percpu_ref_put(&cachep->memcg_params.refcnt); 2922 } 2923 2924 /** 2925 * __memcg_kmem_charge_memcg: charge a kmem page 2926 * @page: page to charge 2927 * @gfp: reclaim mode 2928 * @order: allocation order 2929 * @memcg: memory cgroup to charge 2930 * 2931 * Returns 0 on success, an error code on failure. 2932 */ 2933 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2934 struct mem_cgroup *memcg) 2935 { 2936 unsigned int nr_pages = 1 << order; 2937 struct page_counter *counter; 2938 int ret; 2939 2940 ret = try_charge(memcg, gfp, nr_pages); 2941 if (ret) 2942 return ret; 2943 2944 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2945 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2946 2947 /* 2948 * Enforce __GFP_NOFAIL allocation because callers are not 2949 * prepared to see failures and likely do not have any failure 2950 * handling code. 2951 */ 2952 if (gfp & __GFP_NOFAIL) { 2953 page_counter_charge(&memcg->kmem, nr_pages); 2954 return 0; 2955 } 2956 cancel_charge(memcg, nr_pages); 2957 return -ENOMEM; 2958 } 2959 return 0; 2960 } 2961 2962 /** 2963 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2964 * @page: page to charge 2965 * @gfp: reclaim mode 2966 * @order: allocation order 2967 * 2968 * Returns 0 on success, an error code on failure. 2969 */ 2970 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2971 { 2972 struct mem_cgroup *memcg; 2973 int ret = 0; 2974 2975 if (memcg_kmem_bypass()) 2976 return 0; 2977 2978 memcg = get_mem_cgroup_from_current(); 2979 if (!mem_cgroup_is_root(memcg)) { 2980 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2981 if (!ret) { 2982 page->mem_cgroup = memcg; 2983 __SetPageKmemcg(page); 2984 } 2985 } 2986 css_put(&memcg->css); 2987 return ret; 2988 } 2989 2990 /** 2991 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2992 * @memcg: memcg to uncharge 2993 * @nr_pages: number of pages to uncharge 2994 */ 2995 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2996 unsigned int nr_pages) 2997 { 2998 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2999 page_counter_uncharge(&memcg->kmem, nr_pages); 3000 3001 page_counter_uncharge(&memcg->memory, nr_pages); 3002 if (do_memsw_account()) 3003 page_counter_uncharge(&memcg->memsw, nr_pages); 3004 } 3005 /** 3006 * __memcg_kmem_uncharge: uncharge a kmem page 3007 * @page: page to uncharge 3008 * @order: allocation order 3009 */ 3010 void __memcg_kmem_uncharge(struct page *page, int order) 3011 { 3012 struct mem_cgroup *memcg = page->mem_cgroup; 3013 unsigned int nr_pages = 1 << order; 3014 3015 if (!memcg) 3016 return; 3017 3018 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3019 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 3020 page->mem_cgroup = NULL; 3021 3022 /* slab pages do not have PageKmemcg flag set */ 3023 if (PageKmemcg(page)) 3024 __ClearPageKmemcg(page); 3025 3026 css_put_many(&memcg->css, nr_pages); 3027 } 3028 #endif /* CONFIG_MEMCG_KMEM */ 3029 3030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3031 3032 /* 3033 * Because tail pages are not marked as "used", set it. We're under 3034 * pgdat->lru_lock and migration entries setup in all page mappings. 3035 */ 3036 void mem_cgroup_split_huge_fixup(struct page *head) 3037 { 3038 int i; 3039 3040 if (mem_cgroup_disabled()) 3041 return; 3042 3043 for (i = 1; i < HPAGE_PMD_NR; i++) 3044 head[i].mem_cgroup = head->mem_cgroup; 3045 3046 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 3047 } 3048 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3049 3050 #ifdef CONFIG_MEMCG_SWAP 3051 /** 3052 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3053 * @entry: swap entry to be moved 3054 * @from: mem_cgroup which the entry is moved from 3055 * @to: mem_cgroup which the entry is moved to 3056 * 3057 * It succeeds only when the swap_cgroup's record for this entry is the same 3058 * as the mem_cgroup's id of @from. 3059 * 3060 * Returns 0 on success, -EINVAL on failure. 3061 * 3062 * The caller must have charged to @to, IOW, called page_counter_charge() about 3063 * both res and memsw, and called css_get(). 3064 */ 3065 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3066 struct mem_cgroup *from, struct mem_cgroup *to) 3067 { 3068 unsigned short old_id, new_id; 3069 3070 old_id = mem_cgroup_id(from); 3071 new_id = mem_cgroup_id(to); 3072 3073 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3074 mod_memcg_state(from, MEMCG_SWAP, -1); 3075 mod_memcg_state(to, MEMCG_SWAP, 1); 3076 return 0; 3077 } 3078 return -EINVAL; 3079 } 3080 #else 3081 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3082 struct mem_cgroup *from, struct mem_cgroup *to) 3083 { 3084 return -EINVAL; 3085 } 3086 #endif 3087 3088 static DEFINE_MUTEX(memcg_max_mutex); 3089 3090 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3091 unsigned long max, bool memsw) 3092 { 3093 bool enlarge = false; 3094 bool drained = false; 3095 int ret; 3096 bool limits_invariant; 3097 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3098 3099 do { 3100 if (signal_pending(current)) { 3101 ret = -EINTR; 3102 break; 3103 } 3104 3105 mutex_lock(&memcg_max_mutex); 3106 /* 3107 * Make sure that the new limit (memsw or memory limit) doesn't 3108 * break our basic invariant rule memory.max <= memsw.max. 3109 */ 3110 limits_invariant = memsw ? max >= memcg->memory.max : 3111 max <= memcg->memsw.max; 3112 if (!limits_invariant) { 3113 mutex_unlock(&memcg_max_mutex); 3114 ret = -EINVAL; 3115 break; 3116 } 3117 if (max > counter->max) 3118 enlarge = true; 3119 ret = page_counter_set_max(counter, max); 3120 mutex_unlock(&memcg_max_mutex); 3121 3122 if (!ret) 3123 break; 3124 3125 if (!drained) { 3126 drain_all_stock(memcg); 3127 drained = true; 3128 continue; 3129 } 3130 3131 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3132 GFP_KERNEL, !memsw)) { 3133 ret = -EBUSY; 3134 break; 3135 } 3136 } while (true); 3137 3138 if (!ret && enlarge) 3139 memcg_oom_recover(memcg); 3140 3141 return ret; 3142 } 3143 3144 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3145 gfp_t gfp_mask, 3146 unsigned long *total_scanned) 3147 { 3148 unsigned long nr_reclaimed = 0; 3149 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3150 unsigned long reclaimed; 3151 int loop = 0; 3152 struct mem_cgroup_tree_per_node *mctz; 3153 unsigned long excess; 3154 unsigned long nr_scanned; 3155 3156 if (order > 0) 3157 return 0; 3158 3159 mctz = soft_limit_tree_node(pgdat->node_id); 3160 3161 /* 3162 * Do not even bother to check the largest node if the root 3163 * is empty. Do it lockless to prevent lock bouncing. Races 3164 * are acceptable as soft limit is best effort anyway. 3165 */ 3166 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3167 return 0; 3168 3169 /* 3170 * This loop can run a while, specially if mem_cgroup's continuously 3171 * keep exceeding their soft limit and putting the system under 3172 * pressure 3173 */ 3174 do { 3175 if (next_mz) 3176 mz = next_mz; 3177 else 3178 mz = mem_cgroup_largest_soft_limit_node(mctz); 3179 if (!mz) 3180 break; 3181 3182 nr_scanned = 0; 3183 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3184 gfp_mask, &nr_scanned); 3185 nr_reclaimed += reclaimed; 3186 *total_scanned += nr_scanned; 3187 spin_lock_irq(&mctz->lock); 3188 __mem_cgroup_remove_exceeded(mz, mctz); 3189 3190 /* 3191 * If we failed to reclaim anything from this memory cgroup 3192 * it is time to move on to the next cgroup 3193 */ 3194 next_mz = NULL; 3195 if (!reclaimed) 3196 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3197 3198 excess = soft_limit_excess(mz->memcg); 3199 /* 3200 * One school of thought says that we should not add 3201 * back the node to the tree if reclaim returns 0. 3202 * But our reclaim could return 0, simply because due 3203 * to priority we are exposing a smaller subset of 3204 * memory to reclaim from. Consider this as a longer 3205 * term TODO. 3206 */ 3207 /* If excess == 0, no tree ops */ 3208 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3209 spin_unlock_irq(&mctz->lock); 3210 css_put(&mz->memcg->css); 3211 loop++; 3212 /* 3213 * Could not reclaim anything and there are no more 3214 * mem cgroups to try or we seem to be looping without 3215 * reclaiming anything. 3216 */ 3217 if (!nr_reclaimed && 3218 (next_mz == NULL || 3219 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3220 break; 3221 } while (!nr_reclaimed); 3222 if (next_mz) 3223 css_put(&next_mz->memcg->css); 3224 return nr_reclaimed; 3225 } 3226 3227 /* 3228 * Test whether @memcg has children, dead or alive. Note that this 3229 * function doesn't care whether @memcg has use_hierarchy enabled and 3230 * returns %true if there are child csses according to the cgroup 3231 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3232 */ 3233 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3234 { 3235 bool ret; 3236 3237 rcu_read_lock(); 3238 ret = css_next_child(NULL, &memcg->css); 3239 rcu_read_unlock(); 3240 return ret; 3241 } 3242 3243 /* 3244 * Reclaims as many pages from the given memcg as possible. 3245 * 3246 * Caller is responsible for holding css reference for memcg. 3247 */ 3248 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3249 { 3250 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3251 3252 /* we call try-to-free pages for make this cgroup empty */ 3253 lru_add_drain_all(); 3254 3255 drain_all_stock(memcg); 3256 3257 /* try to free all pages in this cgroup */ 3258 while (nr_retries && page_counter_read(&memcg->memory)) { 3259 int progress; 3260 3261 if (signal_pending(current)) 3262 return -EINTR; 3263 3264 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3265 GFP_KERNEL, true); 3266 if (!progress) { 3267 nr_retries--; 3268 /* maybe some writeback is necessary */ 3269 congestion_wait(BLK_RW_ASYNC, HZ/10); 3270 } 3271 3272 } 3273 3274 return 0; 3275 } 3276 3277 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3278 char *buf, size_t nbytes, 3279 loff_t off) 3280 { 3281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3282 3283 if (mem_cgroup_is_root(memcg)) 3284 return -EINVAL; 3285 return mem_cgroup_force_empty(memcg) ?: nbytes; 3286 } 3287 3288 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3289 struct cftype *cft) 3290 { 3291 return mem_cgroup_from_css(css)->use_hierarchy; 3292 } 3293 3294 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3295 struct cftype *cft, u64 val) 3296 { 3297 int retval = 0; 3298 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3299 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3300 3301 if (memcg->use_hierarchy == val) 3302 return 0; 3303 3304 /* 3305 * If parent's use_hierarchy is set, we can't make any modifications 3306 * in the child subtrees. If it is unset, then the change can 3307 * occur, provided the current cgroup has no children. 3308 * 3309 * For the root cgroup, parent_mem is NULL, we allow value to be 3310 * set if there are no children. 3311 */ 3312 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3313 (val == 1 || val == 0)) { 3314 if (!memcg_has_children(memcg)) 3315 memcg->use_hierarchy = val; 3316 else 3317 retval = -EBUSY; 3318 } else 3319 retval = -EINVAL; 3320 3321 return retval; 3322 } 3323 3324 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3325 { 3326 unsigned long val; 3327 3328 if (mem_cgroup_is_root(memcg)) { 3329 val = memcg_page_state(memcg, MEMCG_CACHE) + 3330 memcg_page_state(memcg, MEMCG_RSS); 3331 if (swap) 3332 val += memcg_page_state(memcg, MEMCG_SWAP); 3333 } else { 3334 if (!swap) 3335 val = page_counter_read(&memcg->memory); 3336 else 3337 val = page_counter_read(&memcg->memsw); 3338 } 3339 return val; 3340 } 3341 3342 enum { 3343 RES_USAGE, 3344 RES_LIMIT, 3345 RES_MAX_USAGE, 3346 RES_FAILCNT, 3347 RES_SOFT_LIMIT, 3348 }; 3349 3350 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3351 struct cftype *cft) 3352 { 3353 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3354 struct page_counter *counter; 3355 3356 switch (MEMFILE_TYPE(cft->private)) { 3357 case _MEM: 3358 counter = &memcg->memory; 3359 break; 3360 case _MEMSWAP: 3361 counter = &memcg->memsw; 3362 break; 3363 case _KMEM: 3364 counter = &memcg->kmem; 3365 break; 3366 case _TCP: 3367 counter = &memcg->tcpmem; 3368 break; 3369 default: 3370 BUG(); 3371 } 3372 3373 switch (MEMFILE_ATTR(cft->private)) { 3374 case RES_USAGE: 3375 if (counter == &memcg->memory) 3376 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3377 if (counter == &memcg->memsw) 3378 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3379 return (u64)page_counter_read(counter) * PAGE_SIZE; 3380 case RES_LIMIT: 3381 return (u64)counter->max * PAGE_SIZE; 3382 case RES_MAX_USAGE: 3383 return (u64)counter->watermark * PAGE_SIZE; 3384 case RES_FAILCNT: 3385 return counter->failcnt; 3386 case RES_SOFT_LIMIT: 3387 return (u64)memcg->soft_limit * PAGE_SIZE; 3388 default: 3389 BUG(); 3390 } 3391 } 3392 3393 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only) 3394 { 3395 unsigned long stat[MEMCG_NR_STAT]; 3396 struct mem_cgroup *mi; 3397 int node, cpu, i; 3398 int min_idx, max_idx; 3399 3400 if (slab_only) { 3401 min_idx = NR_SLAB_RECLAIMABLE; 3402 max_idx = NR_SLAB_UNRECLAIMABLE; 3403 } else { 3404 min_idx = 0; 3405 max_idx = MEMCG_NR_STAT; 3406 } 3407 3408 for (i = min_idx; i < max_idx; i++) 3409 stat[i] = 0; 3410 3411 for_each_online_cpu(cpu) 3412 for (i = min_idx; i < max_idx; i++) 3413 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3414 3415 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3416 for (i = min_idx; i < max_idx; i++) 3417 atomic_long_add(stat[i], &mi->vmstats[i]); 3418 3419 if (!slab_only) 3420 max_idx = NR_VM_NODE_STAT_ITEMS; 3421 3422 for_each_node(node) { 3423 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3424 struct mem_cgroup_per_node *pi; 3425 3426 for (i = min_idx; i < max_idx; i++) 3427 stat[i] = 0; 3428 3429 for_each_online_cpu(cpu) 3430 for (i = min_idx; i < max_idx; i++) 3431 stat[i] += per_cpu( 3432 pn->lruvec_stat_cpu->count[i], cpu); 3433 3434 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3435 for (i = min_idx; i < max_idx; i++) 3436 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3437 } 3438 } 3439 3440 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3441 { 3442 unsigned long events[NR_VM_EVENT_ITEMS]; 3443 struct mem_cgroup *mi; 3444 int cpu, i; 3445 3446 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3447 events[i] = 0; 3448 3449 for_each_online_cpu(cpu) 3450 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3451 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3452 cpu); 3453 3454 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3455 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3456 atomic_long_add(events[i], &mi->vmevents[i]); 3457 } 3458 3459 #ifdef CONFIG_MEMCG_KMEM 3460 static int memcg_online_kmem(struct mem_cgroup *memcg) 3461 { 3462 int memcg_id; 3463 3464 if (cgroup_memory_nokmem) 3465 return 0; 3466 3467 BUG_ON(memcg->kmemcg_id >= 0); 3468 BUG_ON(memcg->kmem_state); 3469 3470 memcg_id = memcg_alloc_cache_id(); 3471 if (memcg_id < 0) 3472 return memcg_id; 3473 3474 static_branch_inc(&memcg_kmem_enabled_key); 3475 /* 3476 * A memory cgroup is considered kmem-online as soon as it gets 3477 * kmemcg_id. Setting the id after enabling static branching will 3478 * guarantee no one starts accounting before all call sites are 3479 * patched. 3480 */ 3481 memcg->kmemcg_id = memcg_id; 3482 memcg->kmem_state = KMEM_ONLINE; 3483 INIT_LIST_HEAD(&memcg->kmem_caches); 3484 3485 return 0; 3486 } 3487 3488 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3489 { 3490 struct cgroup_subsys_state *css; 3491 struct mem_cgroup *parent, *child; 3492 int kmemcg_id; 3493 3494 if (memcg->kmem_state != KMEM_ONLINE) 3495 return; 3496 /* 3497 * Clear the online state before clearing memcg_caches array 3498 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3499 * guarantees that no cache will be created for this cgroup 3500 * after we are done (see memcg_create_kmem_cache()). 3501 */ 3502 memcg->kmem_state = KMEM_ALLOCATED; 3503 3504 parent = parent_mem_cgroup(memcg); 3505 if (!parent) 3506 parent = root_mem_cgroup; 3507 3508 /* 3509 * Deactivate and reparent kmem_caches. Then flush percpu 3510 * slab statistics to have precise values at the parent and 3511 * all ancestor levels. It's required to keep slab stats 3512 * accurate after the reparenting of kmem_caches. 3513 */ 3514 memcg_deactivate_kmem_caches(memcg, parent); 3515 memcg_flush_percpu_vmstats(memcg, true); 3516 3517 kmemcg_id = memcg->kmemcg_id; 3518 BUG_ON(kmemcg_id < 0); 3519 3520 /* 3521 * Change kmemcg_id of this cgroup and all its descendants to the 3522 * parent's id, and then move all entries from this cgroup's list_lrus 3523 * to ones of the parent. After we have finished, all list_lrus 3524 * corresponding to this cgroup are guaranteed to remain empty. The 3525 * ordering is imposed by list_lru_node->lock taken by 3526 * memcg_drain_all_list_lrus(). 3527 */ 3528 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3529 css_for_each_descendant_pre(css, &memcg->css) { 3530 child = mem_cgroup_from_css(css); 3531 BUG_ON(child->kmemcg_id != kmemcg_id); 3532 child->kmemcg_id = parent->kmemcg_id; 3533 if (!memcg->use_hierarchy) 3534 break; 3535 } 3536 rcu_read_unlock(); 3537 3538 memcg_drain_all_list_lrus(kmemcg_id, parent); 3539 3540 memcg_free_cache_id(kmemcg_id); 3541 } 3542 3543 static void memcg_free_kmem(struct mem_cgroup *memcg) 3544 { 3545 /* css_alloc() failed, offlining didn't happen */ 3546 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3547 memcg_offline_kmem(memcg); 3548 3549 if (memcg->kmem_state == KMEM_ALLOCATED) { 3550 WARN_ON(!list_empty(&memcg->kmem_caches)); 3551 static_branch_dec(&memcg_kmem_enabled_key); 3552 } 3553 } 3554 #else 3555 static int memcg_online_kmem(struct mem_cgroup *memcg) 3556 { 3557 return 0; 3558 } 3559 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3560 { 3561 } 3562 static void memcg_free_kmem(struct mem_cgroup *memcg) 3563 { 3564 } 3565 #endif /* CONFIG_MEMCG_KMEM */ 3566 3567 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3568 unsigned long max) 3569 { 3570 int ret; 3571 3572 mutex_lock(&memcg_max_mutex); 3573 ret = page_counter_set_max(&memcg->kmem, max); 3574 mutex_unlock(&memcg_max_mutex); 3575 return ret; 3576 } 3577 3578 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3579 { 3580 int ret; 3581 3582 mutex_lock(&memcg_max_mutex); 3583 3584 ret = page_counter_set_max(&memcg->tcpmem, max); 3585 if (ret) 3586 goto out; 3587 3588 if (!memcg->tcpmem_active) { 3589 /* 3590 * The active flag needs to be written after the static_key 3591 * update. This is what guarantees that the socket activation 3592 * function is the last one to run. See mem_cgroup_sk_alloc() 3593 * for details, and note that we don't mark any socket as 3594 * belonging to this memcg until that flag is up. 3595 * 3596 * We need to do this, because static_keys will span multiple 3597 * sites, but we can't control their order. If we mark a socket 3598 * as accounted, but the accounting functions are not patched in 3599 * yet, we'll lose accounting. 3600 * 3601 * We never race with the readers in mem_cgroup_sk_alloc(), 3602 * because when this value change, the code to process it is not 3603 * patched in yet. 3604 */ 3605 static_branch_inc(&memcg_sockets_enabled_key); 3606 memcg->tcpmem_active = true; 3607 } 3608 out: 3609 mutex_unlock(&memcg_max_mutex); 3610 return ret; 3611 } 3612 3613 /* 3614 * The user of this function is... 3615 * RES_LIMIT. 3616 */ 3617 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3618 char *buf, size_t nbytes, loff_t off) 3619 { 3620 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3621 unsigned long nr_pages; 3622 int ret; 3623 3624 buf = strstrip(buf); 3625 ret = page_counter_memparse(buf, "-1", &nr_pages); 3626 if (ret) 3627 return ret; 3628 3629 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3630 case RES_LIMIT: 3631 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3632 ret = -EINVAL; 3633 break; 3634 } 3635 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3636 case _MEM: 3637 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3638 break; 3639 case _MEMSWAP: 3640 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3641 break; 3642 case _KMEM: 3643 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3644 "Please report your usecase to linux-mm@kvack.org if you " 3645 "depend on this functionality.\n"); 3646 ret = memcg_update_kmem_max(memcg, nr_pages); 3647 break; 3648 case _TCP: 3649 ret = memcg_update_tcp_max(memcg, nr_pages); 3650 break; 3651 } 3652 break; 3653 case RES_SOFT_LIMIT: 3654 memcg->soft_limit = nr_pages; 3655 ret = 0; 3656 break; 3657 } 3658 return ret ?: nbytes; 3659 } 3660 3661 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3662 size_t nbytes, loff_t off) 3663 { 3664 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3665 struct page_counter *counter; 3666 3667 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3668 case _MEM: 3669 counter = &memcg->memory; 3670 break; 3671 case _MEMSWAP: 3672 counter = &memcg->memsw; 3673 break; 3674 case _KMEM: 3675 counter = &memcg->kmem; 3676 break; 3677 case _TCP: 3678 counter = &memcg->tcpmem; 3679 break; 3680 default: 3681 BUG(); 3682 } 3683 3684 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3685 case RES_MAX_USAGE: 3686 page_counter_reset_watermark(counter); 3687 break; 3688 case RES_FAILCNT: 3689 counter->failcnt = 0; 3690 break; 3691 default: 3692 BUG(); 3693 } 3694 3695 return nbytes; 3696 } 3697 3698 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3699 struct cftype *cft) 3700 { 3701 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3702 } 3703 3704 #ifdef CONFIG_MMU 3705 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3706 struct cftype *cft, u64 val) 3707 { 3708 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3709 3710 if (val & ~MOVE_MASK) 3711 return -EINVAL; 3712 3713 /* 3714 * No kind of locking is needed in here, because ->can_attach() will 3715 * check this value once in the beginning of the process, and then carry 3716 * on with stale data. This means that changes to this value will only 3717 * affect task migrations starting after the change. 3718 */ 3719 memcg->move_charge_at_immigrate = val; 3720 return 0; 3721 } 3722 #else 3723 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3724 struct cftype *cft, u64 val) 3725 { 3726 return -ENOSYS; 3727 } 3728 #endif 3729 3730 #ifdef CONFIG_NUMA 3731 3732 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3733 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3734 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3735 3736 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3737 int nid, unsigned int lru_mask) 3738 { 3739 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3740 unsigned long nr = 0; 3741 enum lru_list lru; 3742 3743 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3744 3745 for_each_lru(lru) { 3746 if (!(BIT(lru) & lru_mask)) 3747 continue; 3748 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3749 } 3750 return nr; 3751 } 3752 3753 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3754 unsigned int lru_mask) 3755 { 3756 unsigned long nr = 0; 3757 enum lru_list lru; 3758 3759 for_each_lru(lru) { 3760 if (!(BIT(lru) & lru_mask)) 3761 continue; 3762 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3763 } 3764 return nr; 3765 } 3766 3767 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3768 { 3769 struct numa_stat { 3770 const char *name; 3771 unsigned int lru_mask; 3772 }; 3773 3774 static const struct numa_stat stats[] = { 3775 { "total", LRU_ALL }, 3776 { "file", LRU_ALL_FILE }, 3777 { "anon", LRU_ALL_ANON }, 3778 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3779 }; 3780 const struct numa_stat *stat; 3781 int nid; 3782 unsigned long nr; 3783 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3784 3785 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3786 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3787 seq_printf(m, "%s=%lu", stat->name, nr); 3788 for_each_node_state(nid, N_MEMORY) { 3789 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3790 stat->lru_mask); 3791 seq_printf(m, " N%d=%lu", nid, nr); 3792 } 3793 seq_putc(m, '\n'); 3794 } 3795 3796 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3797 struct mem_cgroup *iter; 3798 3799 nr = 0; 3800 for_each_mem_cgroup_tree(iter, memcg) 3801 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3802 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3803 for_each_node_state(nid, N_MEMORY) { 3804 nr = 0; 3805 for_each_mem_cgroup_tree(iter, memcg) 3806 nr += mem_cgroup_node_nr_lru_pages( 3807 iter, nid, stat->lru_mask); 3808 seq_printf(m, " N%d=%lu", nid, nr); 3809 } 3810 seq_putc(m, '\n'); 3811 } 3812 3813 return 0; 3814 } 3815 #endif /* CONFIG_NUMA */ 3816 3817 static const unsigned int memcg1_stats[] = { 3818 MEMCG_CACHE, 3819 MEMCG_RSS, 3820 MEMCG_RSS_HUGE, 3821 NR_SHMEM, 3822 NR_FILE_MAPPED, 3823 NR_FILE_DIRTY, 3824 NR_WRITEBACK, 3825 MEMCG_SWAP, 3826 }; 3827 3828 static const char *const memcg1_stat_names[] = { 3829 "cache", 3830 "rss", 3831 "rss_huge", 3832 "shmem", 3833 "mapped_file", 3834 "dirty", 3835 "writeback", 3836 "swap", 3837 }; 3838 3839 /* Universal VM events cgroup1 shows, original sort order */ 3840 static const unsigned int memcg1_events[] = { 3841 PGPGIN, 3842 PGPGOUT, 3843 PGFAULT, 3844 PGMAJFAULT, 3845 }; 3846 3847 static const char *const memcg1_event_names[] = { 3848 "pgpgin", 3849 "pgpgout", 3850 "pgfault", 3851 "pgmajfault", 3852 }; 3853 3854 static int memcg_stat_show(struct seq_file *m, void *v) 3855 { 3856 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3857 unsigned long memory, memsw; 3858 struct mem_cgroup *mi; 3859 unsigned int i; 3860 3861 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3862 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3863 3864 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3865 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3866 continue; 3867 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3868 memcg_page_state_local(memcg, memcg1_stats[i]) * 3869 PAGE_SIZE); 3870 } 3871 3872 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3873 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3874 memcg_events_local(memcg, memcg1_events[i])); 3875 3876 for (i = 0; i < NR_LRU_LISTS; i++) 3877 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3878 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3879 PAGE_SIZE); 3880 3881 /* Hierarchical information */ 3882 memory = memsw = PAGE_COUNTER_MAX; 3883 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3884 memory = min(memory, mi->memory.max); 3885 memsw = min(memsw, mi->memsw.max); 3886 } 3887 seq_printf(m, "hierarchical_memory_limit %llu\n", 3888 (u64)memory * PAGE_SIZE); 3889 if (do_memsw_account()) 3890 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3891 (u64)memsw * PAGE_SIZE); 3892 3893 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3894 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3895 continue; 3896 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3897 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3898 PAGE_SIZE); 3899 } 3900 3901 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3902 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3903 (u64)memcg_events(memcg, memcg1_events[i])); 3904 3905 for (i = 0; i < NR_LRU_LISTS; i++) 3906 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3907 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3908 PAGE_SIZE); 3909 3910 #ifdef CONFIG_DEBUG_VM 3911 { 3912 pg_data_t *pgdat; 3913 struct mem_cgroup_per_node *mz; 3914 struct zone_reclaim_stat *rstat; 3915 unsigned long recent_rotated[2] = {0, 0}; 3916 unsigned long recent_scanned[2] = {0, 0}; 3917 3918 for_each_online_pgdat(pgdat) { 3919 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3920 rstat = &mz->lruvec.reclaim_stat; 3921 3922 recent_rotated[0] += rstat->recent_rotated[0]; 3923 recent_rotated[1] += rstat->recent_rotated[1]; 3924 recent_scanned[0] += rstat->recent_scanned[0]; 3925 recent_scanned[1] += rstat->recent_scanned[1]; 3926 } 3927 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3928 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3929 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3930 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3931 } 3932 #endif 3933 3934 return 0; 3935 } 3936 3937 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3938 struct cftype *cft) 3939 { 3940 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3941 3942 return mem_cgroup_swappiness(memcg); 3943 } 3944 3945 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3946 struct cftype *cft, u64 val) 3947 { 3948 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3949 3950 if (val > 100) 3951 return -EINVAL; 3952 3953 if (css->parent) 3954 memcg->swappiness = val; 3955 else 3956 vm_swappiness = val; 3957 3958 return 0; 3959 } 3960 3961 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3962 { 3963 struct mem_cgroup_threshold_ary *t; 3964 unsigned long usage; 3965 int i; 3966 3967 rcu_read_lock(); 3968 if (!swap) 3969 t = rcu_dereference(memcg->thresholds.primary); 3970 else 3971 t = rcu_dereference(memcg->memsw_thresholds.primary); 3972 3973 if (!t) 3974 goto unlock; 3975 3976 usage = mem_cgroup_usage(memcg, swap); 3977 3978 /* 3979 * current_threshold points to threshold just below or equal to usage. 3980 * If it's not true, a threshold was crossed after last 3981 * call of __mem_cgroup_threshold(). 3982 */ 3983 i = t->current_threshold; 3984 3985 /* 3986 * Iterate backward over array of thresholds starting from 3987 * current_threshold and check if a threshold is crossed. 3988 * If none of thresholds below usage is crossed, we read 3989 * only one element of the array here. 3990 */ 3991 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3992 eventfd_signal(t->entries[i].eventfd, 1); 3993 3994 /* i = current_threshold + 1 */ 3995 i++; 3996 3997 /* 3998 * Iterate forward over array of thresholds starting from 3999 * current_threshold+1 and check if a threshold is crossed. 4000 * If none of thresholds above usage is crossed, we read 4001 * only one element of the array here. 4002 */ 4003 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4004 eventfd_signal(t->entries[i].eventfd, 1); 4005 4006 /* Update current_threshold */ 4007 t->current_threshold = i - 1; 4008 unlock: 4009 rcu_read_unlock(); 4010 } 4011 4012 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4013 { 4014 while (memcg) { 4015 __mem_cgroup_threshold(memcg, false); 4016 if (do_memsw_account()) 4017 __mem_cgroup_threshold(memcg, true); 4018 4019 memcg = parent_mem_cgroup(memcg); 4020 } 4021 } 4022 4023 static int compare_thresholds(const void *a, const void *b) 4024 { 4025 const struct mem_cgroup_threshold *_a = a; 4026 const struct mem_cgroup_threshold *_b = b; 4027 4028 if (_a->threshold > _b->threshold) 4029 return 1; 4030 4031 if (_a->threshold < _b->threshold) 4032 return -1; 4033 4034 return 0; 4035 } 4036 4037 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4038 { 4039 struct mem_cgroup_eventfd_list *ev; 4040 4041 spin_lock(&memcg_oom_lock); 4042 4043 list_for_each_entry(ev, &memcg->oom_notify, list) 4044 eventfd_signal(ev->eventfd, 1); 4045 4046 spin_unlock(&memcg_oom_lock); 4047 return 0; 4048 } 4049 4050 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4051 { 4052 struct mem_cgroup *iter; 4053 4054 for_each_mem_cgroup_tree(iter, memcg) 4055 mem_cgroup_oom_notify_cb(iter); 4056 } 4057 4058 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4059 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4060 { 4061 struct mem_cgroup_thresholds *thresholds; 4062 struct mem_cgroup_threshold_ary *new; 4063 unsigned long threshold; 4064 unsigned long usage; 4065 int i, size, ret; 4066 4067 ret = page_counter_memparse(args, "-1", &threshold); 4068 if (ret) 4069 return ret; 4070 4071 mutex_lock(&memcg->thresholds_lock); 4072 4073 if (type == _MEM) { 4074 thresholds = &memcg->thresholds; 4075 usage = mem_cgroup_usage(memcg, false); 4076 } else if (type == _MEMSWAP) { 4077 thresholds = &memcg->memsw_thresholds; 4078 usage = mem_cgroup_usage(memcg, true); 4079 } else 4080 BUG(); 4081 4082 /* Check if a threshold crossed before adding a new one */ 4083 if (thresholds->primary) 4084 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4085 4086 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4087 4088 /* Allocate memory for new array of thresholds */ 4089 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4090 if (!new) { 4091 ret = -ENOMEM; 4092 goto unlock; 4093 } 4094 new->size = size; 4095 4096 /* Copy thresholds (if any) to new array */ 4097 if (thresholds->primary) { 4098 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4099 sizeof(struct mem_cgroup_threshold)); 4100 } 4101 4102 /* Add new threshold */ 4103 new->entries[size - 1].eventfd = eventfd; 4104 new->entries[size - 1].threshold = threshold; 4105 4106 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4107 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4108 compare_thresholds, NULL); 4109 4110 /* Find current threshold */ 4111 new->current_threshold = -1; 4112 for (i = 0; i < size; i++) { 4113 if (new->entries[i].threshold <= usage) { 4114 /* 4115 * new->current_threshold will not be used until 4116 * rcu_assign_pointer(), so it's safe to increment 4117 * it here. 4118 */ 4119 ++new->current_threshold; 4120 } else 4121 break; 4122 } 4123 4124 /* Free old spare buffer and save old primary buffer as spare */ 4125 kfree(thresholds->spare); 4126 thresholds->spare = thresholds->primary; 4127 4128 rcu_assign_pointer(thresholds->primary, new); 4129 4130 /* To be sure that nobody uses thresholds */ 4131 synchronize_rcu(); 4132 4133 unlock: 4134 mutex_unlock(&memcg->thresholds_lock); 4135 4136 return ret; 4137 } 4138 4139 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4140 struct eventfd_ctx *eventfd, const char *args) 4141 { 4142 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4143 } 4144 4145 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4146 struct eventfd_ctx *eventfd, const char *args) 4147 { 4148 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4149 } 4150 4151 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4152 struct eventfd_ctx *eventfd, enum res_type type) 4153 { 4154 struct mem_cgroup_thresholds *thresholds; 4155 struct mem_cgroup_threshold_ary *new; 4156 unsigned long usage; 4157 int i, j, size; 4158 4159 mutex_lock(&memcg->thresholds_lock); 4160 4161 if (type == _MEM) { 4162 thresholds = &memcg->thresholds; 4163 usage = mem_cgroup_usage(memcg, false); 4164 } else if (type == _MEMSWAP) { 4165 thresholds = &memcg->memsw_thresholds; 4166 usage = mem_cgroup_usage(memcg, true); 4167 } else 4168 BUG(); 4169 4170 if (!thresholds->primary) 4171 goto unlock; 4172 4173 /* Check if a threshold crossed before removing */ 4174 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4175 4176 /* Calculate new number of threshold */ 4177 size = 0; 4178 for (i = 0; i < thresholds->primary->size; i++) { 4179 if (thresholds->primary->entries[i].eventfd != eventfd) 4180 size++; 4181 } 4182 4183 new = thresholds->spare; 4184 4185 /* Set thresholds array to NULL if we don't have thresholds */ 4186 if (!size) { 4187 kfree(new); 4188 new = NULL; 4189 goto swap_buffers; 4190 } 4191 4192 new->size = size; 4193 4194 /* Copy thresholds and find current threshold */ 4195 new->current_threshold = -1; 4196 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4197 if (thresholds->primary->entries[i].eventfd == eventfd) 4198 continue; 4199 4200 new->entries[j] = thresholds->primary->entries[i]; 4201 if (new->entries[j].threshold <= usage) { 4202 /* 4203 * new->current_threshold will not be used 4204 * until rcu_assign_pointer(), so it's safe to increment 4205 * it here. 4206 */ 4207 ++new->current_threshold; 4208 } 4209 j++; 4210 } 4211 4212 swap_buffers: 4213 /* Swap primary and spare array */ 4214 thresholds->spare = thresholds->primary; 4215 4216 rcu_assign_pointer(thresholds->primary, new); 4217 4218 /* To be sure that nobody uses thresholds */ 4219 synchronize_rcu(); 4220 4221 /* If all events are unregistered, free the spare array */ 4222 if (!new) { 4223 kfree(thresholds->spare); 4224 thresholds->spare = NULL; 4225 } 4226 unlock: 4227 mutex_unlock(&memcg->thresholds_lock); 4228 } 4229 4230 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4231 struct eventfd_ctx *eventfd) 4232 { 4233 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4234 } 4235 4236 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4237 struct eventfd_ctx *eventfd) 4238 { 4239 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4240 } 4241 4242 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4243 struct eventfd_ctx *eventfd, const char *args) 4244 { 4245 struct mem_cgroup_eventfd_list *event; 4246 4247 event = kmalloc(sizeof(*event), GFP_KERNEL); 4248 if (!event) 4249 return -ENOMEM; 4250 4251 spin_lock(&memcg_oom_lock); 4252 4253 event->eventfd = eventfd; 4254 list_add(&event->list, &memcg->oom_notify); 4255 4256 /* already in OOM ? */ 4257 if (memcg->under_oom) 4258 eventfd_signal(eventfd, 1); 4259 spin_unlock(&memcg_oom_lock); 4260 4261 return 0; 4262 } 4263 4264 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4265 struct eventfd_ctx *eventfd) 4266 { 4267 struct mem_cgroup_eventfd_list *ev, *tmp; 4268 4269 spin_lock(&memcg_oom_lock); 4270 4271 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4272 if (ev->eventfd == eventfd) { 4273 list_del(&ev->list); 4274 kfree(ev); 4275 } 4276 } 4277 4278 spin_unlock(&memcg_oom_lock); 4279 } 4280 4281 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4282 { 4283 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4284 4285 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4286 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4287 seq_printf(sf, "oom_kill %lu\n", 4288 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4289 return 0; 4290 } 4291 4292 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4293 struct cftype *cft, u64 val) 4294 { 4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4296 4297 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4298 if (!css->parent || !((val == 0) || (val == 1))) 4299 return -EINVAL; 4300 4301 memcg->oom_kill_disable = val; 4302 if (!val) 4303 memcg_oom_recover(memcg); 4304 4305 return 0; 4306 } 4307 4308 #ifdef CONFIG_CGROUP_WRITEBACK 4309 4310 #include <trace/events/writeback.h> 4311 4312 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4313 { 4314 return wb_domain_init(&memcg->cgwb_domain, gfp); 4315 } 4316 4317 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4318 { 4319 wb_domain_exit(&memcg->cgwb_domain); 4320 } 4321 4322 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4323 { 4324 wb_domain_size_changed(&memcg->cgwb_domain); 4325 } 4326 4327 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4328 { 4329 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4330 4331 if (!memcg->css.parent) 4332 return NULL; 4333 4334 return &memcg->cgwb_domain; 4335 } 4336 4337 /* 4338 * idx can be of type enum memcg_stat_item or node_stat_item. 4339 * Keep in sync with memcg_exact_page(). 4340 */ 4341 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4342 { 4343 long x = atomic_long_read(&memcg->vmstats[idx]); 4344 int cpu; 4345 4346 for_each_online_cpu(cpu) 4347 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4348 if (x < 0) 4349 x = 0; 4350 return x; 4351 } 4352 4353 /** 4354 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4355 * @wb: bdi_writeback in question 4356 * @pfilepages: out parameter for number of file pages 4357 * @pheadroom: out parameter for number of allocatable pages according to memcg 4358 * @pdirty: out parameter for number of dirty pages 4359 * @pwriteback: out parameter for number of pages under writeback 4360 * 4361 * Determine the numbers of file, headroom, dirty, and writeback pages in 4362 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4363 * is a bit more involved. 4364 * 4365 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4366 * headroom is calculated as the lowest headroom of itself and the 4367 * ancestors. Note that this doesn't consider the actual amount of 4368 * available memory in the system. The caller should further cap 4369 * *@pheadroom accordingly. 4370 */ 4371 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4372 unsigned long *pheadroom, unsigned long *pdirty, 4373 unsigned long *pwriteback) 4374 { 4375 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4376 struct mem_cgroup *parent; 4377 4378 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4379 4380 /* this should eventually include NR_UNSTABLE_NFS */ 4381 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4382 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4383 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4384 *pheadroom = PAGE_COUNTER_MAX; 4385 4386 while ((parent = parent_mem_cgroup(memcg))) { 4387 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4388 unsigned long used = page_counter_read(&memcg->memory); 4389 4390 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4391 memcg = parent; 4392 } 4393 } 4394 4395 /* 4396 * Foreign dirty flushing 4397 * 4398 * There's an inherent mismatch between memcg and writeback. The former 4399 * trackes ownership per-page while the latter per-inode. This was a 4400 * deliberate design decision because honoring per-page ownership in the 4401 * writeback path is complicated, may lead to higher CPU and IO overheads 4402 * and deemed unnecessary given that write-sharing an inode across 4403 * different cgroups isn't a common use-case. 4404 * 4405 * Combined with inode majority-writer ownership switching, this works well 4406 * enough in most cases but there are some pathological cases. For 4407 * example, let's say there are two cgroups A and B which keep writing to 4408 * different but confined parts of the same inode. B owns the inode and 4409 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4410 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4411 * triggering background writeback. A will be slowed down without a way to 4412 * make writeback of the dirty pages happen. 4413 * 4414 * Conditions like the above can lead to a cgroup getting repatedly and 4415 * severely throttled after making some progress after each 4416 * dirty_expire_interval while the underyling IO device is almost 4417 * completely idle. 4418 * 4419 * Solving this problem completely requires matching the ownership tracking 4420 * granularities between memcg and writeback in either direction. However, 4421 * the more egregious behaviors can be avoided by simply remembering the 4422 * most recent foreign dirtying events and initiating remote flushes on 4423 * them when local writeback isn't enough to keep the memory clean enough. 4424 * 4425 * The following two functions implement such mechanism. When a foreign 4426 * page - a page whose memcg and writeback ownerships don't match - is 4427 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4428 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4429 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4430 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4431 * foreign bdi_writebacks which haven't expired. Both the numbers of 4432 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4433 * limited to MEMCG_CGWB_FRN_CNT. 4434 * 4435 * The mechanism only remembers IDs and doesn't hold any object references. 4436 * As being wrong occasionally doesn't matter, updates and accesses to the 4437 * records are lockless and racy. 4438 */ 4439 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4440 struct bdi_writeback *wb) 4441 { 4442 struct mem_cgroup *memcg = page->mem_cgroup; 4443 struct memcg_cgwb_frn *frn; 4444 u64 now = get_jiffies_64(); 4445 u64 oldest_at = now; 4446 int oldest = -1; 4447 int i; 4448 4449 trace_track_foreign_dirty(page, wb); 4450 4451 /* 4452 * Pick the slot to use. If there is already a slot for @wb, keep 4453 * using it. If not replace the oldest one which isn't being 4454 * written out. 4455 */ 4456 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4457 frn = &memcg->cgwb_frn[i]; 4458 if (frn->bdi_id == wb->bdi->id && 4459 frn->memcg_id == wb->memcg_css->id) 4460 break; 4461 if (time_before64(frn->at, oldest_at) && 4462 atomic_read(&frn->done.cnt) == 1) { 4463 oldest = i; 4464 oldest_at = frn->at; 4465 } 4466 } 4467 4468 if (i < MEMCG_CGWB_FRN_CNT) { 4469 /* 4470 * Re-using an existing one. Update timestamp lazily to 4471 * avoid making the cacheline hot. We want them to be 4472 * reasonably up-to-date and significantly shorter than 4473 * dirty_expire_interval as that's what expires the record. 4474 * Use the shorter of 1s and dirty_expire_interval / 8. 4475 */ 4476 unsigned long update_intv = 4477 min_t(unsigned long, HZ, 4478 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4479 4480 if (time_before64(frn->at, now - update_intv)) 4481 frn->at = now; 4482 } else if (oldest >= 0) { 4483 /* replace the oldest free one */ 4484 frn = &memcg->cgwb_frn[oldest]; 4485 frn->bdi_id = wb->bdi->id; 4486 frn->memcg_id = wb->memcg_css->id; 4487 frn->at = now; 4488 } 4489 } 4490 4491 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4492 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4493 { 4494 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4495 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4496 u64 now = jiffies_64; 4497 int i; 4498 4499 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4500 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4501 4502 /* 4503 * If the record is older than dirty_expire_interval, 4504 * writeback on it has already started. No need to kick it 4505 * off again. Also, don't start a new one if there's 4506 * already one in flight. 4507 */ 4508 if (time_after64(frn->at, now - intv) && 4509 atomic_read(&frn->done.cnt) == 1) { 4510 frn->at = 0; 4511 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4512 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4513 WB_REASON_FOREIGN_FLUSH, 4514 &frn->done); 4515 } 4516 } 4517 } 4518 4519 #else /* CONFIG_CGROUP_WRITEBACK */ 4520 4521 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4522 { 4523 return 0; 4524 } 4525 4526 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4527 { 4528 } 4529 4530 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4531 { 4532 } 4533 4534 #endif /* CONFIG_CGROUP_WRITEBACK */ 4535 4536 /* 4537 * DO NOT USE IN NEW FILES. 4538 * 4539 * "cgroup.event_control" implementation. 4540 * 4541 * This is way over-engineered. It tries to support fully configurable 4542 * events for each user. Such level of flexibility is completely 4543 * unnecessary especially in the light of the planned unified hierarchy. 4544 * 4545 * Please deprecate this and replace with something simpler if at all 4546 * possible. 4547 */ 4548 4549 /* 4550 * Unregister event and free resources. 4551 * 4552 * Gets called from workqueue. 4553 */ 4554 static void memcg_event_remove(struct work_struct *work) 4555 { 4556 struct mem_cgroup_event *event = 4557 container_of(work, struct mem_cgroup_event, remove); 4558 struct mem_cgroup *memcg = event->memcg; 4559 4560 remove_wait_queue(event->wqh, &event->wait); 4561 4562 event->unregister_event(memcg, event->eventfd); 4563 4564 /* Notify userspace the event is going away. */ 4565 eventfd_signal(event->eventfd, 1); 4566 4567 eventfd_ctx_put(event->eventfd); 4568 kfree(event); 4569 css_put(&memcg->css); 4570 } 4571 4572 /* 4573 * Gets called on EPOLLHUP on eventfd when user closes it. 4574 * 4575 * Called with wqh->lock held and interrupts disabled. 4576 */ 4577 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4578 int sync, void *key) 4579 { 4580 struct mem_cgroup_event *event = 4581 container_of(wait, struct mem_cgroup_event, wait); 4582 struct mem_cgroup *memcg = event->memcg; 4583 __poll_t flags = key_to_poll(key); 4584 4585 if (flags & EPOLLHUP) { 4586 /* 4587 * If the event has been detached at cgroup removal, we 4588 * can simply return knowing the other side will cleanup 4589 * for us. 4590 * 4591 * We can't race against event freeing since the other 4592 * side will require wqh->lock via remove_wait_queue(), 4593 * which we hold. 4594 */ 4595 spin_lock(&memcg->event_list_lock); 4596 if (!list_empty(&event->list)) { 4597 list_del_init(&event->list); 4598 /* 4599 * We are in atomic context, but cgroup_event_remove() 4600 * may sleep, so we have to call it in workqueue. 4601 */ 4602 schedule_work(&event->remove); 4603 } 4604 spin_unlock(&memcg->event_list_lock); 4605 } 4606 4607 return 0; 4608 } 4609 4610 static void memcg_event_ptable_queue_proc(struct file *file, 4611 wait_queue_head_t *wqh, poll_table *pt) 4612 { 4613 struct mem_cgroup_event *event = 4614 container_of(pt, struct mem_cgroup_event, pt); 4615 4616 event->wqh = wqh; 4617 add_wait_queue(wqh, &event->wait); 4618 } 4619 4620 /* 4621 * DO NOT USE IN NEW FILES. 4622 * 4623 * Parse input and register new cgroup event handler. 4624 * 4625 * Input must be in format '<event_fd> <control_fd> <args>'. 4626 * Interpretation of args is defined by control file implementation. 4627 */ 4628 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4629 char *buf, size_t nbytes, loff_t off) 4630 { 4631 struct cgroup_subsys_state *css = of_css(of); 4632 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4633 struct mem_cgroup_event *event; 4634 struct cgroup_subsys_state *cfile_css; 4635 unsigned int efd, cfd; 4636 struct fd efile; 4637 struct fd cfile; 4638 const char *name; 4639 char *endp; 4640 int ret; 4641 4642 buf = strstrip(buf); 4643 4644 efd = simple_strtoul(buf, &endp, 10); 4645 if (*endp != ' ') 4646 return -EINVAL; 4647 buf = endp + 1; 4648 4649 cfd = simple_strtoul(buf, &endp, 10); 4650 if ((*endp != ' ') && (*endp != '\0')) 4651 return -EINVAL; 4652 buf = endp + 1; 4653 4654 event = kzalloc(sizeof(*event), GFP_KERNEL); 4655 if (!event) 4656 return -ENOMEM; 4657 4658 event->memcg = memcg; 4659 INIT_LIST_HEAD(&event->list); 4660 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4661 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4662 INIT_WORK(&event->remove, memcg_event_remove); 4663 4664 efile = fdget(efd); 4665 if (!efile.file) { 4666 ret = -EBADF; 4667 goto out_kfree; 4668 } 4669 4670 event->eventfd = eventfd_ctx_fileget(efile.file); 4671 if (IS_ERR(event->eventfd)) { 4672 ret = PTR_ERR(event->eventfd); 4673 goto out_put_efile; 4674 } 4675 4676 cfile = fdget(cfd); 4677 if (!cfile.file) { 4678 ret = -EBADF; 4679 goto out_put_eventfd; 4680 } 4681 4682 /* the process need read permission on control file */ 4683 /* AV: shouldn't we check that it's been opened for read instead? */ 4684 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4685 if (ret < 0) 4686 goto out_put_cfile; 4687 4688 /* 4689 * Determine the event callbacks and set them in @event. This used 4690 * to be done via struct cftype but cgroup core no longer knows 4691 * about these events. The following is crude but the whole thing 4692 * is for compatibility anyway. 4693 * 4694 * DO NOT ADD NEW FILES. 4695 */ 4696 name = cfile.file->f_path.dentry->d_name.name; 4697 4698 if (!strcmp(name, "memory.usage_in_bytes")) { 4699 event->register_event = mem_cgroup_usage_register_event; 4700 event->unregister_event = mem_cgroup_usage_unregister_event; 4701 } else if (!strcmp(name, "memory.oom_control")) { 4702 event->register_event = mem_cgroup_oom_register_event; 4703 event->unregister_event = mem_cgroup_oom_unregister_event; 4704 } else if (!strcmp(name, "memory.pressure_level")) { 4705 event->register_event = vmpressure_register_event; 4706 event->unregister_event = vmpressure_unregister_event; 4707 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4708 event->register_event = memsw_cgroup_usage_register_event; 4709 event->unregister_event = memsw_cgroup_usage_unregister_event; 4710 } else { 4711 ret = -EINVAL; 4712 goto out_put_cfile; 4713 } 4714 4715 /* 4716 * Verify @cfile should belong to @css. Also, remaining events are 4717 * automatically removed on cgroup destruction but the removal is 4718 * asynchronous, so take an extra ref on @css. 4719 */ 4720 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4721 &memory_cgrp_subsys); 4722 ret = -EINVAL; 4723 if (IS_ERR(cfile_css)) 4724 goto out_put_cfile; 4725 if (cfile_css != css) { 4726 css_put(cfile_css); 4727 goto out_put_cfile; 4728 } 4729 4730 ret = event->register_event(memcg, event->eventfd, buf); 4731 if (ret) 4732 goto out_put_css; 4733 4734 vfs_poll(efile.file, &event->pt); 4735 4736 spin_lock(&memcg->event_list_lock); 4737 list_add(&event->list, &memcg->event_list); 4738 spin_unlock(&memcg->event_list_lock); 4739 4740 fdput(cfile); 4741 fdput(efile); 4742 4743 return nbytes; 4744 4745 out_put_css: 4746 css_put(css); 4747 out_put_cfile: 4748 fdput(cfile); 4749 out_put_eventfd: 4750 eventfd_ctx_put(event->eventfd); 4751 out_put_efile: 4752 fdput(efile); 4753 out_kfree: 4754 kfree(event); 4755 4756 return ret; 4757 } 4758 4759 static struct cftype mem_cgroup_legacy_files[] = { 4760 { 4761 .name = "usage_in_bytes", 4762 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4763 .read_u64 = mem_cgroup_read_u64, 4764 }, 4765 { 4766 .name = "max_usage_in_bytes", 4767 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4768 .write = mem_cgroup_reset, 4769 .read_u64 = mem_cgroup_read_u64, 4770 }, 4771 { 4772 .name = "limit_in_bytes", 4773 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4774 .write = mem_cgroup_write, 4775 .read_u64 = mem_cgroup_read_u64, 4776 }, 4777 { 4778 .name = "soft_limit_in_bytes", 4779 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4780 .write = mem_cgroup_write, 4781 .read_u64 = mem_cgroup_read_u64, 4782 }, 4783 { 4784 .name = "failcnt", 4785 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4786 .write = mem_cgroup_reset, 4787 .read_u64 = mem_cgroup_read_u64, 4788 }, 4789 { 4790 .name = "stat", 4791 .seq_show = memcg_stat_show, 4792 }, 4793 { 4794 .name = "force_empty", 4795 .write = mem_cgroup_force_empty_write, 4796 }, 4797 { 4798 .name = "use_hierarchy", 4799 .write_u64 = mem_cgroup_hierarchy_write, 4800 .read_u64 = mem_cgroup_hierarchy_read, 4801 }, 4802 { 4803 .name = "cgroup.event_control", /* XXX: for compat */ 4804 .write = memcg_write_event_control, 4805 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4806 }, 4807 { 4808 .name = "swappiness", 4809 .read_u64 = mem_cgroup_swappiness_read, 4810 .write_u64 = mem_cgroup_swappiness_write, 4811 }, 4812 { 4813 .name = "move_charge_at_immigrate", 4814 .read_u64 = mem_cgroup_move_charge_read, 4815 .write_u64 = mem_cgroup_move_charge_write, 4816 }, 4817 { 4818 .name = "oom_control", 4819 .seq_show = mem_cgroup_oom_control_read, 4820 .write_u64 = mem_cgroup_oom_control_write, 4821 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4822 }, 4823 { 4824 .name = "pressure_level", 4825 }, 4826 #ifdef CONFIG_NUMA 4827 { 4828 .name = "numa_stat", 4829 .seq_show = memcg_numa_stat_show, 4830 }, 4831 #endif 4832 { 4833 .name = "kmem.limit_in_bytes", 4834 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4835 .write = mem_cgroup_write, 4836 .read_u64 = mem_cgroup_read_u64, 4837 }, 4838 { 4839 .name = "kmem.usage_in_bytes", 4840 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4841 .read_u64 = mem_cgroup_read_u64, 4842 }, 4843 { 4844 .name = "kmem.failcnt", 4845 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4846 .write = mem_cgroup_reset, 4847 .read_u64 = mem_cgroup_read_u64, 4848 }, 4849 { 4850 .name = "kmem.max_usage_in_bytes", 4851 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4852 .write = mem_cgroup_reset, 4853 .read_u64 = mem_cgroup_read_u64, 4854 }, 4855 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4856 { 4857 .name = "kmem.slabinfo", 4858 .seq_start = memcg_slab_start, 4859 .seq_next = memcg_slab_next, 4860 .seq_stop = memcg_slab_stop, 4861 .seq_show = memcg_slab_show, 4862 }, 4863 #endif 4864 { 4865 .name = "kmem.tcp.limit_in_bytes", 4866 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4867 .write = mem_cgroup_write, 4868 .read_u64 = mem_cgroup_read_u64, 4869 }, 4870 { 4871 .name = "kmem.tcp.usage_in_bytes", 4872 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4873 .read_u64 = mem_cgroup_read_u64, 4874 }, 4875 { 4876 .name = "kmem.tcp.failcnt", 4877 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4878 .write = mem_cgroup_reset, 4879 .read_u64 = mem_cgroup_read_u64, 4880 }, 4881 { 4882 .name = "kmem.tcp.max_usage_in_bytes", 4883 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4884 .write = mem_cgroup_reset, 4885 .read_u64 = mem_cgroup_read_u64, 4886 }, 4887 { }, /* terminate */ 4888 }; 4889 4890 /* 4891 * Private memory cgroup IDR 4892 * 4893 * Swap-out records and page cache shadow entries need to store memcg 4894 * references in constrained space, so we maintain an ID space that is 4895 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4896 * memory-controlled cgroups to 64k. 4897 * 4898 * However, there usually are many references to the oflline CSS after 4899 * the cgroup has been destroyed, such as page cache or reclaimable 4900 * slab objects, that don't need to hang on to the ID. We want to keep 4901 * those dead CSS from occupying IDs, or we might quickly exhaust the 4902 * relatively small ID space and prevent the creation of new cgroups 4903 * even when there are much fewer than 64k cgroups - possibly none. 4904 * 4905 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4906 * be freed and recycled when it's no longer needed, which is usually 4907 * when the CSS is offlined. 4908 * 4909 * The only exception to that are records of swapped out tmpfs/shmem 4910 * pages that need to be attributed to live ancestors on swapin. But 4911 * those references are manageable from userspace. 4912 */ 4913 4914 static DEFINE_IDR(mem_cgroup_idr); 4915 4916 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4917 { 4918 if (memcg->id.id > 0) { 4919 idr_remove(&mem_cgroup_idr, memcg->id.id); 4920 memcg->id.id = 0; 4921 } 4922 } 4923 4924 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4925 { 4926 refcount_add(n, &memcg->id.ref); 4927 } 4928 4929 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4930 { 4931 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4932 mem_cgroup_id_remove(memcg); 4933 4934 /* Memcg ID pins CSS */ 4935 css_put(&memcg->css); 4936 } 4937 } 4938 4939 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4940 { 4941 mem_cgroup_id_put_many(memcg, 1); 4942 } 4943 4944 /** 4945 * mem_cgroup_from_id - look up a memcg from a memcg id 4946 * @id: the memcg id to look up 4947 * 4948 * Caller must hold rcu_read_lock(). 4949 */ 4950 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4951 { 4952 WARN_ON_ONCE(!rcu_read_lock_held()); 4953 return idr_find(&mem_cgroup_idr, id); 4954 } 4955 4956 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4957 { 4958 struct mem_cgroup_per_node *pn; 4959 int tmp = node; 4960 /* 4961 * This routine is called against possible nodes. 4962 * But it's BUG to call kmalloc() against offline node. 4963 * 4964 * TODO: this routine can waste much memory for nodes which will 4965 * never be onlined. It's better to use memory hotplug callback 4966 * function. 4967 */ 4968 if (!node_state(node, N_NORMAL_MEMORY)) 4969 tmp = -1; 4970 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4971 if (!pn) 4972 return 1; 4973 4974 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4975 if (!pn->lruvec_stat_local) { 4976 kfree(pn); 4977 return 1; 4978 } 4979 4980 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4981 if (!pn->lruvec_stat_cpu) { 4982 free_percpu(pn->lruvec_stat_local); 4983 kfree(pn); 4984 return 1; 4985 } 4986 4987 lruvec_init(&pn->lruvec); 4988 pn->usage_in_excess = 0; 4989 pn->on_tree = false; 4990 pn->memcg = memcg; 4991 4992 memcg->nodeinfo[node] = pn; 4993 return 0; 4994 } 4995 4996 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4997 { 4998 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4999 5000 if (!pn) 5001 return; 5002 5003 free_percpu(pn->lruvec_stat_cpu); 5004 free_percpu(pn->lruvec_stat_local); 5005 kfree(pn); 5006 } 5007 5008 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5009 { 5010 int node; 5011 5012 /* 5013 * Flush percpu vmstats and vmevents to guarantee the value correctness 5014 * on parent's and all ancestor levels. 5015 */ 5016 memcg_flush_percpu_vmstats(memcg, false); 5017 memcg_flush_percpu_vmevents(memcg); 5018 for_each_node(node) 5019 free_mem_cgroup_per_node_info(memcg, node); 5020 free_percpu(memcg->vmstats_percpu); 5021 free_percpu(memcg->vmstats_local); 5022 kfree(memcg); 5023 } 5024 5025 static void mem_cgroup_free(struct mem_cgroup *memcg) 5026 { 5027 memcg_wb_domain_exit(memcg); 5028 __mem_cgroup_free(memcg); 5029 } 5030 5031 static struct mem_cgroup *mem_cgroup_alloc(void) 5032 { 5033 struct mem_cgroup *memcg; 5034 unsigned int size; 5035 int node; 5036 int __maybe_unused i; 5037 5038 size = sizeof(struct mem_cgroup); 5039 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5040 5041 memcg = kzalloc(size, GFP_KERNEL); 5042 if (!memcg) 5043 return NULL; 5044 5045 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5046 1, MEM_CGROUP_ID_MAX, 5047 GFP_KERNEL); 5048 if (memcg->id.id < 0) 5049 goto fail; 5050 5051 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 5052 if (!memcg->vmstats_local) 5053 goto fail; 5054 5055 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 5056 if (!memcg->vmstats_percpu) 5057 goto fail; 5058 5059 for_each_node(node) 5060 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5061 goto fail; 5062 5063 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5064 goto fail; 5065 5066 INIT_WORK(&memcg->high_work, high_work_func); 5067 memcg->last_scanned_node = MAX_NUMNODES; 5068 INIT_LIST_HEAD(&memcg->oom_notify); 5069 mutex_init(&memcg->thresholds_lock); 5070 spin_lock_init(&memcg->move_lock); 5071 vmpressure_init(&memcg->vmpressure); 5072 INIT_LIST_HEAD(&memcg->event_list); 5073 spin_lock_init(&memcg->event_list_lock); 5074 memcg->socket_pressure = jiffies; 5075 #ifdef CONFIG_MEMCG_KMEM 5076 memcg->kmemcg_id = -1; 5077 #endif 5078 #ifdef CONFIG_CGROUP_WRITEBACK 5079 INIT_LIST_HEAD(&memcg->cgwb_list); 5080 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5081 memcg->cgwb_frn[i].done = 5082 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5083 #endif 5084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5085 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5086 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5087 memcg->deferred_split_queue.split_queue_len = 0; 5088 #endif 5089 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5090 return memcg; 5091 fail: 5092 mem_cgroup_id_remove(memcg); 5093 __mem_cgroup_free(memcg); 5094 return NULL; 5095 } 5096 5097 static struct cgroup_subsys_state * __ref 5098 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5099 { 5100 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5101 struct mem_cgroup *memcg; 5102 long error = -ENOMEM; 5103 5104 memcg = mem_cgroup_alloc(); 5105 if (!memcg) 5106 return ERR_PTR(error); 5107 5108 memcg->high = PAGE_COUNTER_MAX; 5109 memcg->soft_limit = PAGE_COUNTER_MAX; 5110 if (parent) { 5111 memcg->swappiness = mem_cgroup_swappiness(parent); 5112 memcg->oom_kill_disable = parent->oom_kill_disable; 5113 } 5114 if (parent && parent->use_hierarchy) { 5115 memcg->use_hierarchy = true; 5116 page_counter_init(&memcg->memory, &parent->memory); 5117 page_counter_init(&memcg->swap, &parent->swap); 5118 page_counter_init(&memcg->memsw, &parent->memsw); 5119 page_counter_init(&memcg->kmem, &parent->kmem); 5120 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5121 } else { 5122 page_counter_init(&memcg->memory, NULL); 5123 page_counter_init(&memcg->swap, NULL); 5124 page_counter_init(&memcg->memsw, NULL); 5125 page_counter_init(&memcg->kmem, NULL); 5126 page_counter_init(&memcg->tcpmem, NULL); 5127 /* 5128 * Deeper hierachy with use_hierarchy == false doesn't make 5129 * much sense so let cgroup subsystem know about this 5130 * unfortunate state in our controller. 5131 */ 5132 if (parent != root_mem_cgroup) 5133 memory_cgrp_subsys.broken_hierarchy = true; 5134 } 5135 5136 /* The following stuff does not apply to the root */ 5137 if (!parent) { 5138 #ifdef CONFIG_MEMCG_KMEM 5139 INIT_LIST_HEAD(&memcg->kmem_caches); 5140 #endif 5141 root_mem_cgroup = memcg; 5142 return &memcg->css; 5143 } 5144 5145 error = memcg_online_kmem(memcg); 5146 if (error) 5147 goto fail; 5148 5149 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5150 static_branch_inc(&memcg_sockets_enabled_key); 5151 5152 return &memcg->css; 5153 fail: 5154 mem_cgroup_id_remove(memcg); 5155 mem_cgroup_free(memcg); 5156 return ERR_PTR(-ENOMEM); 5157 } 5158 5159 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5160 { 5161 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5162 5163 /* 5164 * A memcg must be visible for memcg_expand_shrinker_maps() 5165 * by the time the maps are allocated. So, we allocate maps 5166 * here, when for_each_mem_cgroup() can't skip it. 5167 */ 5168 if (memcg_alloc_shrinker_maps(memcg)) { 5169 mem_cgroup_id_remove(memcg); 5170 return -ENOMEM; 5171 } 5172 5173 /* Online state pins memcg ID, memcg ID pins CSS */ 5174 refcount_set(&memcg->id.ref, 1); 5175 css_get(css); 5176 return 0; 5177 } 5178 5179 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5180 { 5181 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5182 struct mem_cgroup_event *event, *tmp; 5183 5184 /* 5185 * Unregister events and notify userspace. 5186 * Notify userspace about cgroup removing only after rmdir of cgroup 5187 * directory to avoid race between userspace and kernelspace. 5188 */ 5189 spin_lock(&memcg->event_list_lock); 5190 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5191 list_del_init(&event->list); 5192 schedule_work(&event->remove); 5193 } 5194 spin_unlock(&memcg->event_list_lock); 5195 5196 page_counter_set_min(&memcg->memory, 0); 5197 page_counter_set_low(&memcg->memory, 0); 5198 5199 memcg_offline_kmem(memcg); 5200 wb_memcg_offline(memcg); 5201 5202 drain_all_stock(memcg); 5203 5204 mem_cgroup_id_put(memcg); 5205 } 5206 5207 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5208 { 5209 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5210 5211 invalidate_reclaim_iterators(memcg); 5212 } 5213 5214 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5215 { 5216 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5217 int __maybe_unused i; 5218 5219 #ifdef CONFIG_CGROUP_WRITEBACK 5220 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5221 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5222 #endif 5223 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5224 static_branch_dec(&memcg_sockets_enabled_key); 5225 5226 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5227 static_branch_dec(&memcg_sockets_enabled_key); 5228 5229 vmpressure_cleanup(&memcg->vmpressure); 5230 cancel_work_sync(&memcg->high_work); 5231 mem_cgroup_remove_from_trees(memcg); 5232 memcg_free_shrinker_maps(memcg); 5233 memcg_free_kmem(memcg); 5234 mem_cgroup_free(memcg); 5235 } 5236 5237 /** 5238 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5239 * @css: the target css 5240 * 5241 * Reset the states of the mem_cgroup associated with @css. This is 5242 * invoked when the userland requests disabling on the default hierarchy 5243 * but the memcg is pinned through dependency. The memcg should stop 5244 * applying policies and should revert to the vanilla state as it may be 5245 * made visible again. 5246 * 5247 * The current implementation only resets the essential configurations. 5248 * This needs to be expanded to cover all the visible parts. 5249 */ 5250 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5251 { 5252 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5253 5254 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5255 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5256 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5257 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5258 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5259 page_counter_set_min(&memcg->memory, 0); 5260 page_counter_set_low(&memcg->memory, 0); 5261 memcg->high = PAGE_COUNTER_MAX; 5262 memcg->soft_limit = PAGE_COUNTER_MAX; 5263 memcg_wb_domain_size_changed(memcg); 5264 } 5265 5266 #ifdef CONFIG_MMU 5267 /* Handlers for move charge at task migration. */ 5268 static int mem_cgroup_do_precharge(unsigned long count) 5269 { 5270 int ret; 5271 5272 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5273 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5274 if (!ret) { 5275 mc.precharge += count; 5276 return ret; 5277 } 5278 5279 /* Try charges one by one with reclaim, but do not retry */ 5280 while (count--) { 5281 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5282 if (ret) 5283 return ret; 5284 mc.precharge++; 5285 cond_resched(); 5286 } 5287 return 0; 5288 } 5289 5290 union mc_target { 5291 struct page *page; 5292 swp_entry_t ent; 5293 }; 5294 5295 enum mc_target_type { 5296 MC_TARGET_NONE = 0, 5297 MC_TARGET_PAGE, 5298 MC_TARGET_SWAP, 5299 MC_TARGET_DEVICE, 5300 }; 5301 5302 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5303 unsigned long addr, pte_t ptent) 5304 { 5305 struct page *page = vm_normal_page(vma, addr, ptent); 5306 5307 if (!page || !page_mapped(page)) 5308 return NULL; 5309 if (PageAnon(page)) { 5310 if (!(mc.flags & MOVE_ANON)) 5311 return NULL; 5312 } else { 5313 if (!(mc.flags & MOVE_FILE)) 5314 return NULL; 5315 } 5316 if (!get_page_unless_zero(page)) 5317 return NULL; 5318 5319 return page; 5320 } 5321 5322 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5323 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5324 pte_t ptent, swp_entry_t *entry) 5325 { 5326 struct page *page = NULL; 5327 swp_entry_t ent = pte_to_swp_entry(ptent); 5328 5329 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5330 return NULL; 5331 5332 /* 5333 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5334 * a device and because they are not accessible by CPU they are store 5335 * as special swap entry in the CPU page table. 5336 */ 5337 if (is_device_private_entry(ent)) { 5338 page = device_private_entry_to_page(ent); 5339 /* 5340 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5341 * a refcount of 1 when free (unlike normal page) 5342 */ 5343 if (!page_ref_add_unless(page, 1, 1)) 5344 return NULL; 5345 return page; 5346 } 5347 5348 /* 5349 * Because lookup_swap_cache() updates some statistics counter, 5350 * we call find_get_page() with swapper_space directly. 5351 */ 5352 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5353 if (do_memsw_account()) 5354 entry->val = ent.val; 5355 5356 return page; 5357 } 5358 #else 5359 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5360 pte_t ptent, swp_entry_t *entry) 5361 { 5362 return NULL; 5363 } 5364 #endif 5365 5366 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5367 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5368 { 5369 struct page *page = NULL; 5370 struct address_space *mapping; 5371 pgoff_t pgoff; 5372 5373 if (!vma->vm_file) /* anonymous vma */ 5374 return NULL; 5375 if (!(mc.flags & MOVE_FILE)) 5376 return NULL; 5377 5378 mapping = vma->vm_file->f_mapping; 5379 pgoff = linear_page_index(vma, addr); 5380 5381 /* page is moved even if it's not RSS of this task(page-faulted). */ 5382 #ifdef CONFIG_SWAP 5383 /* shmem/tmpfs may report page out on swap: account for that too. */ 5384 if (shmem_mapping(mapping)) { 5385 page = find_get_entry(mapping, pgoff); 5386 if (xa_is_value(page)) { 5387 swp_entry_t swp = radix_to_swp_entry(page); 5388 if (do_memsw_account()) 5389 *entry = swp; 5390 page = find_get_page(swap_address_space(swp), 5391 swp_offset(swp)); 5392 } 5393 } else 5394 page = find_get_page(mapping, pgoff); 5395 #else 5396 page = find_get_page(mapping, pgoff); 5397 #endif 5398 return page; 5399 } 5400 5401 /** 5402 * mem_cgroup_move_account - move account of the page 5403 * @page: the page 5404 * @compound: charge the page as compound or small page 5405 * @from: mem_cgroup which the page is moved from. 5406 * @to: mem_cgroup which the page is moved to. @from != @to. 5407 * 5408 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5409 * 5410 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5411 * from old cgroup. 5412 */ 5413 static int mem_cgroup_move_account(struct page *page, 5414 bool compound, 5415 struct mem_cgroup *from, 5416 struct mem_cgroup *to) 5417 { 5418 unsigned long flags; 5419 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5420 int ret; 5421 bool anon; 5422 5423 VM_BUG_ON(from == to); 5424 VM_BUG_ON_PAGE(PageLRU(page), page); 5425 VM_BUG_ON(compound && !PageTransHuge(page)); 5426 5427 /* 5428 * Prevent mem_cgroup_migrate() from looking at 5429 * page->mem_cgroup of its source page while we change it. 5430 */ 5431 ret = -EBUSY; 5432 if (!trylock_page(page)) 5433 goto out; 5434 5435 ret = -EINVAL; 5436 if (page->mem_cgroup != from) 5437 goto out_unlock; 5438 5439 anon = PageAnon(page); 5440 5441 spin_lock_irqsave(&from->move_lock, flags); 5442 5443 if (!anon && page_mapped(page)) { 5444 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 5445 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 5446 } 5447 5448 /* 5449 * move_lock grabbed above and caller set from->moving_account, so 5450 * mod_memcg_page_state will serialize updates to PageDirty. 5451 * So mapping should be stable for dirty pages. 5452 */ 5453 if (!anon && PageDirty(page)) { 5454 struct address_space *mapping = page_mapping(page); 5455 5456 if (mapping_cap_account_dirty(mapping)) { 5457 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 5458 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 5459 } 5460 } 5461 5462 if (PageWriteback(page)) { 5463 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 5464 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 5465 } 5466 5467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5468 if (compound && !list_empty(page_deferred_list(page))) { 5469 spin_lock(&from->deferred_split_queue.split_queue_lock); 5470 list_del_init(page_deferred_list(page)); 5471 from->deferred_split_queue.split_queue_len--; 5472 spin_unlock(&from->deferred_split_queue.split_queue_lock); 5473 } 5474 #endif 5475 /* 5476 * It is safe to change page->mem_cgroup here because the page 5477 * is referenced, charged, and isolated - we can't race with 5478 * uncharging, charging, migration, or LRU putback. 5479 */ 5480 5481 /* caller should have done css_get */ 5482 page->mem_cgroup = to; 5483 5484 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5485 if (compound && list_empty(page_deferred_list(page))) { 5486 spin_lock(&to->deferred_split_queue.split_queue_lock); 5487 list_add_tail(page_deferred_list(page), 5488 &to->deferred_split_queue.split_queue); 5489 to->deferred_split_queue.split_queue_len++; 5490 spin_unlock(&to->deferred_split_queue.split_queue_lock); 5491 } 5492 #endif 5493 5494 spin_unlock_irqrestore(&from->move_lock, flags); 5495 5496 ret = 0; 5497 5498 local_irq_disable(); 5499 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5500 memcg_check_events(to, page); 5501 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5502 memcg_check_events(from, page); 5503 local_irq_enable(); 5504 out_unlock: 5505 unlock_page(page); 5506 out: 5507 return ret; 5508 } 5509 5510 /** 5511 * get_mctgt_type - get target type of moving charge 5512 * @vma: the vma the pte to be checked belongs 5513 * @addr: the address corresponding to the pte to be checked 5514 * @ptent: the pte to be checked 5515 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5516 * 5517 * Returns 5518 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5519 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5520 * move charge. if @target is not NULL, the page is stored in target->page 5521 * with extra refcnt got(Callers should handle it). 5522 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5523 * target for charge migration. if @target is not NULL, the entry is stored 5524 * in target->ent. 5525 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5526 * (so ZONE_DEVICE page and thus not on the lru). 5527 * For now we such page is charge like a regular page would be as for all 5528 * intent and purposes it is just special memory taking the place of a 5529 * regular page. 5530 * 5531 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5532 * 5533 * Called with pte lock held. 5534 */ 5535 5536 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5537 unsigned long addr, pte_t ptent, union mc_target *target) 5538 { 5539 struct page *page = NULL; 5540 enum mc_target_type ret = MC_TARGET_NONE; 5541 swp_entry_t ent = { .val = 0 }; 5542 5543 if (pte_present(ptent)) 5544 page = mc_handle_present_pte(vma, addr, ptent); 5545 else if (is_swap_pte(ptent)) 5546 page = mc_handle_swap_pte(vma, ptent, &ent); 5547 else if (pte_none(ptent)) 5548 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5549 5550 if (!page && !ent.val) 5551 return ret; 5552 if (page) { 5553 /* 5554 * Do only loose check w/o serialization. 5555 * mem_cgroup_move_account() checks the page is valid or 5556 * not under LRU exclusion. 5557 */ 5558 if (page->mem_cgroup == mc.from) { 5559 ret = MC_TARGET_PAGE; 5560 if (is_device_private_page(page)) 5561 ret = MC_TARGET_DEVICE; 5562 if (target) 5563 target->page = page; 5564 } 5565 if (!ret || !target) 5566 put_page(page); 5567 } 5568 /* 5569 * There is a swap entry and a page doesn't exist or isn't charged. 5570 * But we cannot move a tail-page in a THP. 5571 */ 5572 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5573 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5574 ret = MC_TARGET_SWAP; 5575 if (target) 5576 target->ent = ent; 5577 } 5578 return ret; 5579 } 5580 5581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5582 /* 5583 * We don't consider PMD mapped swapping or file mapped pages because THP does 5584 * not support them for now. 5585 * Caller should make sure that pmd_trans_huge(pmd) is true. 5586 */ 5587 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5588 unsigned long addr, pmd_t pmd, union mc_target *target) 5589 { 5590 struct page *page = NULL; 5591 enum mc_target_type ret = MC_TARGET_NONE; 5592 5593 if (unlikely(is_swap_pmd(pmd))) { 5594 VM_BUG_ON(thp_migration_supported() && 5595 !is_pmd_migration_entry(pmd)); 5596 return ret; 5597 } 5598 page = pmd_page(pmd); 5599 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5600 if (!(mc.flags & MOVE_ANON)) 5601 return ret; 5602 if (page->mem_cgroup == mc.from) { 5603 ret = MC_TARGET_PAGE; 5604 if (target) { 5605 get_page(page); 5606 target->page = page; 5607 } 5608 } 5609 return ret; 5610 } 5611 #else 5612 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5613 unsigned long addr, pmd_t pmd, union mc_target *target) 5614 { 5615 return MC_TARGET_NONE; 5616 } 5617 #endif 5618 5619 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5620 unsigned long addr, unsigned long end, 5621 struct mm_walk *walk) 5622 { 5623 struct vm_area_struct *vma = walk->vma; 5624 pte_t *pte; 5625 spinlock_t *ptl; 5626 5627 ptl = pmd_trans_huge_lock(pmd, vma); 5628 if (ptl) { 5629 /* 5630 * Note their can not be MC_TARGET_DEVICE for now as we do not 5631 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5632 * this might change. 5633 */ 5634 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5635 mc.precharge += HPAGE_PMD_NR; 5636 spin_unlock(ptl); 5637 return 0; 5638 } 5639 5640 if (pmd_trans_unstable(pmd)) 5641 return 0; 5642 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5643 for (; addr != end; pte++, addr += PAGE_SIZE) 5644 if (get_mctgt_type(vma, addr, *pte, NULL)) 5645 mc.precharge++; /* increment precharge temporarily */ 5646 pte_unmap_unlock(pte - 1, ptl); 5647 cond_resched(); 5648 5649 return 0; 5650 } 5651 5652 static const struct mm_walk_ops precharge_walk_ops = { 5653 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5654 }; 5655 5656 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5657 { 5658 unsigned long precharge; 5659 5660 down_read(&mm->mmap_sem); 5661 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5662 up_read(&mm->mmap_sem); 5663 5664 precharge = mc.precharge; 5665 mc.precharge = 0; 5666 5667 return precharge; 5668 } 5669 5670 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5671 { 5672 unsigned long precharge = mem_cgroup_count_precharge(mm); 5673 5674 VM_BUG_ON(mc.moving_task); 5675 mc.moving_task = current; 5676 return mem_cgroup_do_precharge(precharge); 5677 } 5678 5679 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5680 static void __mem_cgroup_clear_mc(void) 5681 { 5682 struct mem_cgroup *from = mc.from; 5683 struct mem_cgroup *to = mc.to; 5684 5685 /* we must uncharge all the leftover precharges from mc.to */ 5686 if (mc.precharge) { 5687 cancel_charge(mc.to, mc.precharge); 5688 mc.precharge = 0; 5689 } 5690 /* 5691 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5692 * we must uncharge here. 5693 */ 5694 if (mc.moved_charge) { 5695 cancel_charge(mc.from, mc.moved_charge); 5696 mc.moved_charge = 0; 5697 } 5698 /* we must fixup refcnts and charges */ 5699 if (mc.moved_swap) { 5700 /* uncharge swap account from the old cgroup */ 5701 if (!mem_cgroup_is_root(mc.from)) 5702 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5703 5704 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5705 5706 /* 5707 * we charged both to->memory and to->memsw, so we 5708 * should uncharge to->memory. 5709 */ 5710 if (!mem_cgroup_is_root(mc.to)) 5711 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5712 5713 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5714 css_put_many(&mc.to->css, mc.moved_swap); 5715 5716 mc.moved_swap = 0; 5717 } 5718 memcg_oom_recover(from); 5719 memcg_oom_recover(to); 5720 wake_up_all(&mc.waitq); 5721 } 5722 5723 static void mem_cgroup_clear_mc(void) 5724 { 5725 struct mm_struct *mm = mc.mm; 5726 5727 /* 5728 * we must clear moving_task before waking up waiters at the end of 5729 * task migration. 5730 */ 5731 mc.moving_task = NULL; 5732 __mem_cgroup_clear_mc(); 5733 spin_lock(&mc.lock); 5734 mc.from = NULL; 5735 mc.to = NULL; 5736 mc.mm = NULL; 5737 spin_unlock(&mc.lock); 5738 5739 mmput(mm); 5740 } 5741 5742 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5743 { 5744 struct cgroup_subsys_state *css; 5745 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5746 struct mem_cgroup *from; 5747 struct task_struct *leader, *p; 5748 struct mm_struct *mm; 5749 unsigned long move_flags; 5750 int ret = 0; 5751 5752 /* charge immigration isn't supported on the default hierarchy */ 5753 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5754 return 0; 5755 5756 /* 5757 * Multi-process migrations only happen on the default hierarchy 5758 * where charge immigration is not used. Perform charge 5759 * immigration if @tset contains a leader and whine if there are 5760 * multiple. 5761 */ 5762 p = NULL; 5763 cgroup_taskset_for_each_leader(leader, css, tset) { 5764 WARN_ON_ONCE(p); 5765 p = leader; 5766 memcg = mem_cgroup_from_css(css); 5767 } 5768 if (!p) 5769 return 0; 5770 5771 /* 5772 * We are now commited to this value whatever it is. Changes in this 5773 * tunable will only affect upcoming migrations, not the current one. 5774 * So we need to save it, and keep it going. 5775 */ 5776 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5777 if (!move_flags) 5778 return 0; 5779 5780 from = mem_cgroup_from_task(p); 5781 5782 VM_BUG_ON(from == memcg); 5783 5784 mm = get_task_mm(p); 5785 if (!mm) 5786 return 0; 5787 /* We move charges only when we move a owner of the mm */ 5788 if (mm->owner == p) { 5789 VM_BUG_ON(mc.from); 5790 VM_BUG_ON(mc.to); 5791 VM_BUG_ON(mc.precharge); 5792 VM_BUG_ON(mc.moved_charge); 5793 VM_BUG_ON(mc.moved_swap); 5794 5795 spin_lock(&mc.lock); 5796 mc.mm = mm; 5797 mc.from = from; 5798 mc.to = memcg; 5799 mc.flags = move_flags; 5800 spin_unlock(&mc.lock); 5801 /* We set mc.moving_task later */ 5802 5803 ret = mem_cgroup_precharge_mc(mm); 5804 if (ret) 5805 mem_cgroup_clear_mc(); 5806 } else { 5807 mmput(mm); 5808 } 5809 return ret; 5810 } 5811 5812 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5813 { 5814 if (mc.to) 5815 mem_cgroup_clear_mc(); 5816 } 5817 5818 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5819 unsigned long addr, unsigned long end, 5820 struct mm_walk *walk) 5821 { 5822 int ret = 0; 5823 struct vm_area_struct *vma = walk->vma; 5824 pte_t *pte; 5825 spinlock_t *ptl; 5826 enum mc_target_type target_type; 5827 union mc_target target; 5828 struct page *page; 5829 5830 ptl = pmd_trans_huge_lock(pmd, vma); 5831 if (ptl) { 5832 if (mc.precharge < HPAGE_PMD_NR) { 5833 spin_unlock(ptl); 5834 return 0; 5835 } 5836 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5837 if (target_type == MC_TARGET_PAGE) { 5838 page = target.page; 5839 if (!isolate_lru_page(page)) { 5840 if (!mem_cgroup_move_account(page, true, 5841 mc.from, mc.to)) { 5842 mc.precharge -= HPAGE_PMD_NR; 5843 mc.moved_charge += HPAGE_PMD_NR; 5844 } 5845 putback_lru_page(page); 5846 } 5847 put_page(page); 5848 } else if (target_type == MC_TARGET_DEVICE) { 5849 page = target.page; 5850 if (!mem_cgroup_move_account(page, true, 5851 mc.from, mc.to)) { 5852 mc.precharge -= HPAGE_PMD_NR; 5853 mc.moved_charge += HPAGE_PMD_NR; 5854 } 5855 put_page(page); 5856 } 5857 spin_unlock(ptl); 5858 return 0; 5859 } 5860 5861 if (pmd_trans_unstable(pmd)) 5862 return 0; 5863 retry: 5864 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5865 for (; addr != end; addr += PAGE_SIZE) { 5866 pte_t ptent = *(pte++); 5867 bool device = false; 5868 swp_entry_t ent; 5869 5870 if (!mc.precharge) 5871 break; 5872 5873 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5874 case MC_TARGET_DEVICE: 5875 device = true; 5876 /* fall through */ 5877 case MC_TARGET_PAGE: 5878 page = target.page; 5879 /* 5880 * We can have a part of the split pmd here. Moving it 5881 * can be done but it would be too convoluted so simply 5882 * ignore such a partial THP and keep it in original 5883 * memcg. There should be somebody mapping the head. 5884 */ 5885 if (PageTransCompound(page)) 5886 goto put; 5887 if (!device && isolate_lru_page(page)) 5888 goto put; 5889 if (!mem_cgroup_move_account(page, false, 5890 mc.from, mc.to)) { 5891 mc.precharge--; 5892 /* we uncharge from mc.from later. */ 5893 mc.moved_charge++; 5894 } 5895 if (!device) 5896 putback_lru_page(page); 5897 put: /* get_mctgt_type() gets the page */ 5898 put_page(page); 5899 break; 5900 case MC_TARGET_SWAP: 5901 ent = target.ent; 5902 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5903 mc.precharge--; 5904 /* we fixup refcnts and charges later. */ 5905 mc.moved_swap++; 5906 } 5907 break; 5908 default: 5909 break; 5910 } 5911 } 5912 pte_unmap_unlock(pte - 1, ptl); 5913 cond_resched(); 5914 5915 if (addr != end) { 5916 /* 5917 * We have consumed all precharges we got in can_attach(). 5918 * We try charge one by one, but don't do any additional 5919 * charges to mc.to if we have failed in charge once in attach() 5920 * phase. 5921 */ 5922 ret = mem_cgroup_do_precharge(1); 5923 if (!ret) 5924 goto retry; 5925 } 5926 5927 return ret; 5928 } 5929 5930 static const struct mm_walk_ops charge_walk_ops = { 5931 .pmd_entry = mem_cgroup_move_charge_pte_range, 5932 }; 5933 5934 static void mem_cgroup_move_charge(void) 5935 { 5936 lru_add_drain_all(); 5937 /* 5938 * Signal lock_page_memcg() to take the memcg's move_lock 5939 * while we're moving its pages to another memcg. Then wait 5940 * for already started RCU-only updates to finish. 5941 */ 5942 atomic_inc(&mc.from->moving_account); 5943 synchronize_rcu(); 5944 retry: 5945 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5946 /* 5947 * Someone who are holding the mmap_sem might be waiting in 5948 * waitq. So we cancel all extra charges, wake up all waiters, 5949 * and retry. Because we cancel precharges, we might not be able 5950 * to move enough charges, but moving charge is a best-effort 5951 * feature anyway, so it wouldn't be a big problem. 5952 */ 5953 __mem_cgroup_clear_mc(); 5954 cond_resched(); 5955 goto retry; 5956 } 5957 /* 5958 * When we have consumed all precharges and failed in doing 5959 * additional charge, the page walk just aborts. 5960 */ 5961 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5962 NULL); 5963 5964 up_read(&mc.mm->mmap_sem); 5965 atomic_dec(&mc.from->moving_account); 5966 } 5967 5968 static void mem_cgroup_move_task(void) 5969 { 5970 if (mc.to) { 5971 mem_cgroup_move_charge(); 5972 mem_cgroup_clear_mc(); 5973 } 5974 } 5975 #else /* !CONFIG_MMU */ 5976 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5977 { 5978 return 0; 5979 } 5980 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5981 { 5982 } 5983 static void mem_cgroup_move_task(void) 5984 { 5985 } 5986 #endif 5987 5988 /* 5989 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5990 * to verify whether we're attached to the default hierarchy on each mount 5991 * attempt. 5992 */ 5993 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5994 { 5995 /* 5996 * use_hierarchy is forced on the default hierarchy. cgroup core 5997 * guarantees that @root doesn't have any children, so turning it 5998 * on for the root memcg is enough. 5999 */ 6000 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6001 root_mem_cgroup->use_hierarchy = true; 6002 else 6003 root_mem_cgroup->use_hierarchy = false; 6004 } 6005 6006 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6007 { 6008 if (value == PAGE_COUNTER_MAX) 6009 seq_puts(m, "max\n"); 6010 else 6011 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6012 6013 return 0; 6014 } 6015 6016 static u64 memory_current_read(struct cgroup_subsys_state *css, 6017 struct cftype *cft) 6018 { 6019 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6020 6021 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6022 } 6023 6024 static int memory_min_show(struct seq_file *m, void *v) 6025 { 6026 return seq_puts_memcg_tunable(m, 6027 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6028 } 6029 6030 static ssize_t memory_min_write(struct kernfs_open_file *of, 6031 char *buf, size_t nbytes, loff_t off) 6032 { 6033 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6034 unsigned long min; 6035 int err; 6036 6037 buf = strstrip(buf); 6038 err = page_counter_memparse(buf, "max", &min); 6039 if (err) 6040 return err; 6041 6042 page_counter_set_min(&memcg->memory, min); 6043 6044 return nbytes; 6045 } 6046 6047 static int memory_low_show(struct seq_file *m, void *v) 6048 { 6049 return seq_puts_memcg_tunable(m, 6050 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6051 } 6052 6053 static ssize_t memory_low_write(struct kernfs_open_file *of, 6054 char *buf, size_t nbytes, loff_t off) 6055 { 6056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6057 unsigned long low; 6058 int err; 6059 6060 buf = strstrip(buf); 6061 err = page_counter_memparse(buf, "max", &low); 6062 if (err) 6063 return err; 6064 6065 page_counter_set_low(&memcg->memory, low); 6066 6067 return nbytes; 6068 } 6069 6070 static int memory_high_show(struct seq_file *m, void *v) 6071 { 6072 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 6073 } 6074 6075 static ssize_t memory_high_write(struct kernfs_open_file *of, 6076 char *buf, size_t nbytes, loff_t off) 6077 { 6078 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6079 unsigned long nr_pages; 6080 unsigned long high; 6081 int err; 6082 6083 buf = strstrip(buf); 6084 err = page_counter_memparse(buf, "max", &high); 6085 if (err) 6086 return err; 6087 6088 memcg->high = high; 6089 6090 nr_pages = page_counter_read(&memcg->memory); 6091 if (nr_pages > high) 6092 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6093 GFP_KERNEL, true); 6094 6095 memcg_wb_domain_size_changed(memcg); 6096 return nbytes; 6097 } 6098 6099 static int memory_max_show(struct seq_file *m, void *v) 6100 { 6101 return seq_puts_memcg_tunable(m, 6102 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6103 } 6104 6105 static ssize_t memory_max_write(struct kernfs_open_file *of, 6106 char *buf, size_t nbytes, loff_t off) 6107 { 6108 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6109 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6110 bool drained = false; 6111 unsigned long max; 6112 int err; 6113 6114 buf = strstrip(buf); 6115 err = page_counter_memparse(buf, "max", &max); 6116 if (err) 6117 return err; 6118 6119 xchg(&memcg->memory.max, max); 6120 6121 for (;;) { 6122 unsigned long nr_pages = page_counter_read(&memcg->memory); 6123 6124 if (nr_pages <= max) 6125 break; 6126 6127 if (signal_pending(current)) { 6128 err = -EINTR; 6129 break; 6130 } 6131 6132 if (!drained) { 6133 drain_all_stock(memcg); 6134 drained = true; 6135 continue; 6136 } 6137 6138 if (nr_reclaims) { 6139 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6140 GFP_KERNEL, true)) 6141 nr_reclaims--; 6142 continue; 6143 } 6144 6145 memcg_memory_event(memcg, MEMCG_OOM); 6146 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6147 break; 6148 } 6149 6150 memcg_wb_domain_size_changed(memcg); 6151 return nbytes; 6152 } 6153 6154 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6155 { 6156 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6157 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6158 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6159 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6160 seq_printf(m, "oom_kill %lu\n", 6161 atomic_long_read(&events[MEMCG_OOM_KILL])); 6162 } 6163 6164 static int memory_events_show(struct seq_file *m, void *v) 6165 { 6166 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6167 6168 __memory_events_show(m, memcg->memory_events); 6169 return 0; 6170 } 6171 6172 static int memory_events_local_show(struct seq_file *m, void *v) 6173 { 6174 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6175 6176 __memory_events_show(m, memcg->memory_events_local); 6177 return 0; 6178 } 6179 6180 static int memory_stat_show(struct seq_file *m, void *v) 6181 { 6182 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6183 char *buf; 6184 6185 buf = memory_stat_format(memcg); 6186 if (!buf) 6187 return -ENOMEM; 6188 seq_puts(m, buf); 6189 kfree(buf); 6190 return 0; 6191 } 6192 6193 static int memory_oom_group_show(struct seq_file *m, void *v) 6194 { 6195 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6196 6197 seq_printf(m, "%d\n", memcg->oom_group); 6198 6199 return 0; 6200 } 6201 6202 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6203 char *buf, size_t nbytes, loff_t off) 6204 { 6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6206 int ret, oom_group; 6207 6208 buf = strstrip(buf); 6209 if (!buf) 6210 return -EINVAL; 6211 6212 ret = kstrtoint(buf, 0, &oom_group); 6213 if (ret) 6214 return ret; 6215 6216 if (oom_group != 0 && oom_group != 1) 6217 return -EINVAL; 6218 6219 memcg->oom_group = oom_group; 6220 6221 return nbytes; 6222 } 6223 6224 static struct cftype memory_files[] = { 6225 { 6226 .name = "current", 6227 .flags = CFTYPE_NOT_ON_ROOT, 6228 .read_u64 = memory_current_read, 6229 }, 6230 { 6231 .name = "min", 6232 .flags = CFTYPE_NOT_ON_ROOT, 6233 .seq_show = memory_min_show, 6234 .write = memory_min_write, 6235 }, 6236 { 6237 .name = "low", 6238 .flags = CFTYPE_NOT_ON_ROOT, 6239 .seq_show = memory_low_show, 6240 .write = memory_low_write, 6241 }, 6242 { 6243 .name = "high", 6244 .flags = CFTYPE_NOT_ON_ROOT, 6245 .seq_show = memory_high_show, 6246 .write = memory_high_write, 6247 }, 6248 { 6249 .name = "max", 6250 .flags = CFTYPE_NOT_ON_ROOT, 6251 .seq_show = memory_max_show, 6252 .write = memory_max_write, 6253 }, 6254 { 6255 .name = "events", 6256 .flags = CFTYPE_NOT_ON_ROOT, 6257 .file_offset = offsetof(struct mem_cgroup, events_file), 6258 .seq_show = memory_events_show, 6259 }, 6260 { 6261 .name = "events.local", 6262 .flags = CFTYPE_NOT_ON_ROOT, 6263 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6264 .seq_show = memory_events_local_show, 6265 }, 6266 { 6267 .name = "stat", 6268 .flags = CFTYPE_NOT_ON_ROOT, 6269 .seq_show = memory_stat_show, 6270 }, 6271 { 6272 .name = "oom.group", 6273 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6274 .seq_show = memory_oom_group_show, 6275 .write = memory_oom_group_write, 6276 }, 6277 { } /* terminate */ 6278 }; 6279 6280 struct cgroup_subsys memory_cgrp_subsys = { 6281 .css_alloc = mem_cgroup_css_alloc, 6282 .css_online = mem_cgroup_css_online, 6283 .css_offline = mem_cgroup_css_offline, 6284 .css_released = mem_cgroup_css_released, 6285 .css_free = mem_cgroup_css_free, 6286 .css_reset = mem_cgroup_css_reset, 6287 .can_attach = mem_cgroup_can_attach, 6288 .cancel_attach = mem_cgroup_cancel_attach, 6289 .post_attach = mem_cgroup_move_task, 6290 .bind = mem_cgroup_bind, 6291 .dfl_cftypes = memory_files, 6292 .legacy_cftypes = mem_cgroup_legacy_files, 6293 .early_init = 0, 6294 }; 6295 6296 /** 6297 * mem_cgroup_protected - check if memory consumption is in the normal range 6298 * @root: the top ancestor of the sub-tree being checked 6299 * @memcg: the memory cgroup to check 6300 * 6301 * WARNING: This function is not stateless! It can only be used as part 6302 * of a top-down tree iteration, not for isolated queries. 6303 * 6304 * Returns one of the following: 6305 * MEMCG_PROT_NONE: cgroup memory is not protected 6306 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6307 * an unprotected supply of reclaimable memory from other cgroups. 6308 * MEMCG_PROT_MIN: cgroup memory is protected 6309 * 6310 * @root is exclusive; it is never protected when looked at directly 6311 * 6312 * To provide a proper hierarchical behavior, effective memory.min/low values 6313 * are used. Below is the description of how effective memory.low is calculated. 6314 * Effective memory.min values is calculated in the same way. 6315 * 6316 * Effective memory.low is always equal or less than the original memory.low. 6317 * If there is no memory.low overcommittment (which is always true for 6318 * top-level memory cgroups), these two values are equal. 6319 * Otherwise, it's a part of parent's effective memory.low, 6320 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6321 * memory.low usages, where memory.low usage is the size of actually 6322 * protected memory. 6323 * 6324 * low_usage 6325 * elow = min( memory.low, parent->elow * ------------------ ), 6326 * siblings_low_usage 6327 * 6328 * | memory.current, if memory.current < memory.low 6329 * low_usage = | 6330 * | 0, otherwise. 6331 * 6332 * 6333 * Such definition of the effective memory.low provides the expected 6334 * hierarchical behavior: parent's memory.low value is limiting 6335 * children, unprotected memory is reclaimed first and cgroups, 6336 * which are not using their guarantee do not affect actual memory 6337 * distribution. 6338 * 6339 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6340 * 6341 * A A/memory.low = 2G, A/memory.current = 6G 6342 * //\\ 6343 * BC DE B/memory.low = 3G B/memory.current = 2G 6344 * C/memory.low = 1G C/memory.current = 2G 6345 * D/memory.low = 0 D/memory.current = 2G 6346 * E/memory.low = 10G E/memory.current = 0 6347 * 6348 * and the memory pressure is applied, the following memory distribution 6349 * is expected (approximately): 6350 * 6351 * A/memory.current = 2G 6352 * 6353 * B/memory.current = 1.3G 6354 * C/memory.current = 0.6G 6355 * D/memory.current = 0 6356 * E/memory.current = 0 6357 * 6358 * These calculations require constant tracking of the actual low usages 6359 * (see propagate_protected_usage()), as well as recursive calculation of 6360 * effective memory.low values. But as we do call mem_cgroup_protected() 6361 * path for each memory cgroup top-down from the reclaim, 6362 * it's possible to optimize this part, and save calculated elow 6363 * for next usage. This part is intentionally racy, but it's ok, 6364 * as memory.low is a best-effort mechanism. 6365 */ 6366 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6367 struct mem_cgroup *memcg) 6368 { 6369 struct mem_cgroup *parent; 6370 unsigned long emin, parent_emin; 6371 unsigned long elow, parent_elow; 6372 unsigned long usage; 6373 6374 if (mem_cgroup_disabled()) 6375 return MEMCG_PROT_NONE; 6376 6377 if (!root) 6378 root = root_mem_cgroup; 6379 if (memcg == root) 6380 return MEMCG_PROT_NONE; 6381 6382 usage = page_counter_read(&memcg->memory); 6383 if (!usage) 6384 return MEMCG_PROT_NONE; 6385 6386 emin = memcg->memory.min; 6387 elow = memcg->memory.low; 6388 6389 parent = parent_mem_cgroup(memcg); 6390 /* No parent means a non-hierarchical mode on v1 memcg */ 6391 if (!parent) 6392 return MEMCG_PROT_NONE; 6393 6394 if (parent == root) 6395 goto exit; 6396 6397 parent_emin = READ_ONCE(parent->memory.emin); 6398 emin = min(emin, parent_emin); 6399 if (emin && parent_emin) { 6400 unsigned long min_usage, siblings_min_usage; 6401 6402 min_usage = min(usage, memcg->memory.min); 6403 siblings_min_usage = atomic_long_read( 6404 &parent->memory.children_min_usage); 6405 6406 if (min_usage && siblings_min_usage) 6407 emin = min(emin, parent_emin * min_usage / 6408 siblings_min_usage); 6409 } 6410 6411 parent_elow = READ_ONCE(parent->memory.elow); 6412 elow = min(elow, parent_elow); 6413 if (elow && parent_elow) { 6414 unsigned long low_usage, siblings_low_usage; 6415 6416 low_usage = min(usage, memcg->memory.low); 6417 siblings_low_usage = atomic_long_read( 6418 &parent->memory.children_low_usage); 6419 6420 if (low_usage && siblings_low_usage) 6421 elow = min(elow, parent_elow * low_usage / 6422 siblings_low_usage); 6423 } 6424 6425 exit: 6426 memcg->memory.emin = emin; 6427 memcg->memory.elow = elow; 6428 6429 if (usage <= emin) 6430 return MEMCG_PROT_MIN; 6431 else if (usage <= elow) 6432 return MEMCG_PROT_LOW; 6433 else 6434 return MEMCG_PROT_NONE; 6435 } 6436 6437 /** 6438 * mem_cgroup_try_charge - try charging a page 6439 * @page: page to charge 6440 * @mm: mm context of the victim 6441 * @gfp_mask: reclaim mode 6442 * @memcgp: charged memcg return 6443 * @compound: charge the page as compound or small page 6444 * 6445 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6446 * pages according to @gfp_mask if necessary. 6447 * 6448 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6449 * Otherwise, an error code is returned. 6450 * 6451 * After page->mapping has been set up, the caller must finalize the 6452 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6453 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6454 */ 6455 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6456 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6457 bool compound) 6458 { 6459 struct mem_cgroup *memcg = NULL; 6460 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6461 int ret = 0; 6462 6463 if (mem_cgroup_disabled()) 6464 goto out; 6465 6466 if (PageSwapCache(page)) { 6467 /* 6468 * Every swap fault against a single page tries to charge the 6469 * page, bail as early as possible. shmem_unuse() encounters 6470 * already charged pages, too. The USED bit is protected by 6471 * the page lock, which serializes swap cache removal, which 6472 * in turn serializes uncharging. 6473 */ 6474 VM_BUG_ON_PAGE(!PageLocked(page), page); 6475 if (compound_head(page)->mem_cgroup) 6476 goto out; 6477 6478 if (do_swap_account) { 6479 swp_entry_t ent = { .val = page_private(page), }; 6480 unsigned short id = lookup_swap_cgroup_id(ent); 6481 6482 rcu_read_lock(); 6483 memcg = mem_cgroup_from_id(id); 6484 if (memcg && !css_tryget_online(&memcg->css)) 6485 memcg = NULL; 6486 rcu_read_unlock(); 6487 } 6488 } 6489 6490 if (!memcg) 6491 memcg = get_mem_cgroup_from_mm(mm); 6492 6493 ret = try_charge(memcg, gfp_mask, nr_pages); 6494 6495 css_put(&memcg->css); 6496 out: 6497 *memcgp = memcg; 6498 return ret; 6499 } 6500 6501 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6502 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6503 bool compound) 6504 { 6505 struct mem_cgroup *memcg; 6506 int ret; 6507 6508 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6509 memcg = *memcgp; 6510 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6511 return ret; 6512 } 6513 6514 /** 6515 * mem_cgroup_commit_charge - commit a page charge 6516 * @page: page to charge 6517 * @memcg: memcg to charge the page to 6518 * @lrucare: page might be on LRU already 6519 * @compound: charge the page as compound or small page 6520 * 6521 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6522 * after page->mapping has been set up. This must happen atomically 6523 * as part of the page instantiation, i.e. under the page table lock 6524 * for anonymous pages, under the page lock for page and swap cache. 6525 * 6526 * In addition, the page must not be on the LRU during the commit, to 6527 * prevent racing with task migration. If it might be, use @lrucare. 6528 * 6529 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6530 */ 6531 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6532 bool lrucare, bool compound) 6533 { 6534 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6535 6536 VM_BUG_ON_PAGE(!page->mapping, page); 6537 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6538 6539 if (mem_cgroup_disabled()) 6540 return; 6541 /* 6542 * Swap faults will attempt to charge the same page multiple 6543 * times. But reuse_swap_page() might have removed the page 6544 * from swapcache already, so we can't check PageSwapCache(). 6545 */ 6546 if (!memcg) 6547 return; 6548 6549 commit_charge(page, memcg, lrucare); 6550 6551 local_irq_disable(); 6552 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6553 memcg_check_events(memcg, page); 6554 local_irq_enable(); 6555 6556 if (do_memsw_account() && PageSwapCache(page)) { 6557 swp_entry_t entry = { .val = page_private(page) }; 6558 /* 6559 * The swap entry might not get freed for a long time, 6560 * let's not wait for it. The page already received a 6561 * memory+swap charge, drop the swap entry duplicate. 6562 */ 6563 mem_cgroup_uncharge_swap(entry, nr_pages); 6564 } 6565 } 6566 6567 /** 6568 * mem_cgroup_cancel_charge - cancel a page charge 6569 * @page: page to charge 6570 * @memcg: memcg to charge the page to 6571 * @compound: charge the page as compound or small page 6572 * 6573 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6574 */ 6575 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6576 bool compound) 6577 { 6578 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6579 6580 if (mem_cgroup_disabled()) 6581 return; 6582 /* 6583 * Swap faults will attempt to charge the same page multiple 6584 * times. But reuse_swap_page() might have removed the page 6585 * from swapcache already, so we can't check PageSwapCache(). 6586 */ 6587 if (!memcg) 6588 return; 6589 6590 cancel_charge(memcg, nr_pages); 6591 } 6592 6593 struct uncharge_gather { 6594 struct mem_cgroup *memcg; 6595 unsigned long pgpgout; 6596 unsigned long nr_anon; 6597 unsigned long nr_file; 6598 unsigned long nr_kmem; 6599 unsigned long nr_huge; 6600 unsigned long nr_shmem; 6601 struct page *dummy_page; 6602 }; 6603 6604 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6605 { 6606 memset(ug, 0, sizeof(*ug)); 6607 } 6608 6609 static void uncharge_batch(const struct uncharge_gather *ug) 6610 { 6611 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6612 unsigned long flags; 6613 6614 if (!mem_cgroup_is_root(ug->memcg)) { 6615 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6616 if (do_memsw_account()) 6617 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6618 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6619 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6620 memcg_oom_recover(ug->memcg); 6621 } 6622 6623 local_irq_save(flags); 6624 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6625 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6626 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6627 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6628 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6629 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6630 memcg_check_events(ug->memcg, ug->dummy_page); 6631 local_irq_restore(flags); 6632 6633 if (!mem_cgroup_is_root(ug->memcg)) 6634 css_put_many(&ug->memcg->css, nr_pages); 6635 } 6636 6637 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6638 { 6639 VM_BUG_ON_PAGE(PageLRU(page), page); 6640 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6641 !PageHWPoison(page) , page); 6642 6643 if (!page->mem_cgroup) 6644 return; 6645 6646 /* 6647 * Nobody should be changing or seriously looking at 6648 * page->mem_cgroup at this point, we have fully 6649 * exclusive access to the page. 6650 */ 6651 6652 if (ug->memcg != page->mem_cgroup) { 6653 if (ug->memcg) { 6654 uncharge_batch(ug); 6655 uncharge_gather_clear(ug); 6656 } 6657 ug->memcg = page->mem_cgroup; 6658 } 6659 6660 if (!PageKmemcg(page)) { 6661 unsigned int nr_pages = 1; 6662 6663 if (PageTransHuge(page)) { 6664 nr_pages = compound_nr(page); 6665 ug->nr_huge += nr_pages; 6666 } 6667 if (PageAnon(page)) 6668 ug->nr_anon += nr_pages; 6669 else { 6670 ug->nr_file += nr_pages; 6671 if (PageSwapBacked(page)) 6672 ug->nr_shmem += nr_pages; 6673 } 6674 ug->pgpgout++; 6675 } else { 6676 ug->nr_kmem += compound_nr(page); 6677 __ClearPageKmemcg(page); 6678 } 6679 6680 ug->dummy_page = page; 6681 page->mem_cgroup = NULL; 6682 } 6683 6684 static void uncharge_list(struct list_head *page_list) 6685 { 6686 struct uncharge_gather ug; 6687 struct list_head *next; 6688 6689 uncharge_gather_clear(&ug); 6690 6691 /* 6692 * Note that the list can be a single page->lru; hence the 6693 * do-while loop instead of a simple list_for_each_entry(). 6694 */ 6695 next = page_list->next; 6696 do { 6697 struct page *page; 6698 6699 page = list_entry(next, struct page, lru); 6700 next = page->lru.next; 6701 6702 uncharge_page(page, &ug); 6703 } while (next != page_list); 6704 6705 if (ug.memcg) 6706 uncharge_batch(&ug); 6707 } 6708 6709 /** 6710 * mem_cgroup_uncharge - uncharge a page 6711 * @page: page to uncharge 6712 * 6713 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6714 * mem_cgroup_commit_charge(). 6715 */ 6716 void mem_cgroup_uncharge(struct page *page) 6717 { 6718 struct uncharge_gather ug; 6719 6720 if (mem_cgroup_disabled()) 6721 return; 6722 6723 /* Don't touch page->lru of any random page, pre-check: */ 6724 if (!page->mem_cgroup) 6725 return; 6726 6727 uncharge_gather_clear(&ug); 6728 uncharge_page(page, &ug); 6729 uncharge_batch(&ug); 6730 } 6731 6732 /** 6733 * mem_cgroup_uncharge_list - uncharge a list of page 6734 * @page_list: list of pages to uncharge 6735 * 6736 * Uncharge a list of pages previously charged with 6737 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6738 */ 6739 void mem_cgroup_uncharge_list(struct list_head *page_list) 6740 { 6741 if (mem_cgroup_disabled()) 6742 return; 6743 6744 if (!list_empty(page_list)) 6745 uncharge_list(page_list); 6746 } 6747 6748 /** 6749 * mem_cgroup_migrate - charge a page's replacement 6750 * @oldpage: currently circulating page 6751 * @newpage: replacement page 6752 * 6753 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6754 * be uncharged upon free. 6755 * 6756 * Both pages must be locked, @newpage->mapping must be set up. 6757 */ 6758 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6759 { 6760 struct mem_cgroup *memcg; 6761 unsigned int nr_pages; 6762 bool compound; 6763 unsigned long flags; 6764 6765 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6766 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6767 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6768 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6769 newpage); 6770 6771 if (mem_cgroup_disabled()) 6772 return; 6773 6774 /* Page cache replacement: new page already charged? */ 6775 if (newpage->mem_cgroup) 6776 return; 6777 6778 /* Swapcache readahead pages can get replaced before being charged */ 6779 memcg = oldpage->mem_cgroup; 6780 if (!memcg) 6781 return; 6782 6783 /* Force-charge the new page. The old one will be freed soon */ 6784 compound = PageTransHuge(newpage); 6785 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6786 6787 page_counter_charge(&memcg->memory, nr_pages); 6788 if (do_memsw_account()) 6789 page_counter_charge(&memcg->memsw, nr_pages); 6790 css_get_many(&memcg->css, nr_pages); 6791 6792 commit_charge(newpage, memcg, false); 6793 6794 local_irq_save(flags); 6795 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6796 memcg_check_events(memcg, newpage); 6797 local_irq_restore(flags); 6798 } 6799 6800 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6801 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6802 6803 void mem_cgroup_sk_alloc(struct sock *sk) 6804 { 6805 struct mem_cgroup *memcg; 6806 6807 if (!mem_cgroup_sockets_enabled) 6808 return; 6809 6810 /* 6811 * Socket cloning can throw us here with sk_memcg already 6812 * filled. It won't however, necessarily happen from 6813 * process context. So the test for root memcg given 6814 * the current task's memcg won't help us in this case. 6815 * 6816 * Respecting the original socket's memcg is a better 6817 * decision in this case. 6818 */ 6819 if (sk->sk_memcg) { 6820 css_get(&sk->sk_memcg->css); 6821 return; 6822 } 6823 6824 rcu_read_lock(); 6825 memcg = mem_cgroup_from_task(current); 6826 if (memcg == root_mem_cgroup) 6827 goto out; 6828 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6829 goto out; 6830 if (css_tryget_online(&memcg->css)) 6831 sk->sk_memcg = memcg; 6832 out: 6833 rcu_read_unlock(); 6834 } 6835 6836 void mem_cgroup_sk_free(struct sock *sk) 6837 { 6838 if (sk->sk_memcg) 6839 css_put(&sk->sk_memcg->css); 6840 } 6841 6842 /** 6843 * mem_cgroup_charge_skmem - charge socket memory 6844 * @memcg: memcg to charge 6845 * @nr_pages: number of pages to charge 6846 * 6847 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6848 * @memcg's configured limit, %false if the charge had to be forced. 6849 */ 6850 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6851 { 6852 gfp_t gfp_mask = GFP_KERNEL; 6853 6854 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6855 struct page_counter *fail; 6856 6857 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6858 memcg->tcpmem_pressure = 0; 6859 return true; 6860 } 6861 page_counter_charge(&memcg->tcpmem, nr_pages); 6862 memcg->tcpmem_pressure = 1; 6863 return false; 6864 } 6865 6866 /* Don't block in the packet receive path */ 6867 if (in_softirq()) 6868 gfp_mask = GFP_NOWAIT; 6869 6870 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6871 6872 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6873 return true; 6874 6875 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6876 return false; 6877 } 6878 6879 /** 6880 * mem_cgroup_uncharge_skmem - uncharge socket memory 6881 * @memcg: memcg to uncharge 6882 * @nr_pages: number of pages to uncharge 6883 */ 6884 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6885 { 6886 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6887 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6888 return; 6889 } 6890 6891 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6892 6893 refill_stock(memcg, nr_pages); 6894 } 6895 6896 static int __init cgroup_memory(char *s) 6897 { 6898 char *token; 6899 6900 while ((token = strsep(&s, ",")) != NULL) { 6901 if (!*token) 6902 continue; 6903 if (!strcmp(token, "nosocket")) 6904 cgroup_memory_nosocket = true; 6905 if (!strcmp(token, "nokmem")) 6906 cgroup_memory_nokmem = true; 6907 } 6908 return 0; 6909 } 6910 __setup("cgroup.memory=", cgroup_memory); 6911 6912 /* 6913 * subsys_initcall() for memory controller. 6914 * 6915 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6916 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6917 * basically everything that doesn't depend on a specific mem_cgroup structure 6918 * should be initialized from here. 6919 */ 6920 static int __init mem_cgroup_init(void) 6921 { 6922 int cpu, node; 6923 6924 #ifdef CONFIG_MEMCG_KMEM 6925 /* 6926 * Kmem cache creation is mostly done with the slab_mutex held, 6927 * so use a workqueue with limited concurrency to avoid stalling 6928 * all worker threads in case lots of cgroups are created and 6929 * destroyed simultaneously. 6930 */ 6931 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6932 BUG_ON(!memcg_kmem_cache_wq); 6933 #endif 6934 6935 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6936 memcg_hotplug_cpu_dead); 6937 6938 for_each_possible_cpu(cpu) 6939 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6940 drain_local_stock); 6941 6942 for_each_node(node) { 6943 struct mem_cgroup_tree_per_node *rtpn; 6944 6945 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6946 node_online(node) ? node : NUMA_NO_NODE); 6947 6948 rtpn->rb_root = RB_ROOT; 6949 rtpn->rb_rightmost = NULL; 6950 spin_lock_init(&rtpn->lock); 6951 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6952 } 6953 6954 return 0; 6955 } 6956 subsys_initcall(mem_cgroup_init); 6957 6958 #ifdef CONFIG_MEMCG_SWAP 6959 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6960 { 6961 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6962 /* 6963 * The root cgroup cannot be destroyed, so it's refcount must 6964 * always be >= 1. 6965 */ 6966 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6967 VM_BUG_ON(1); 6968 break; 6969 } 6970 memcg = parent_mem_cgroup(memcg); 6971 if (!memcg) 6972 memcg = root_mem_cgroup; 6973 } 6974 return memcg; 6975 } 6976 6977 /** 6978 * mem_cgroup_swapout - transfer a memsw charge to swap 6979 * @page: page whose memsw charge to transfer 6980 * @entry: swap entry to move the charge to 6981 * 6982 * Transfer the memsw charge of @page to @entry. 6983 */ 6984 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6985 { 6986 struct mem_cgroup *memcg, *swap_memcg; 6987 unsigned int nr_entries; 6988 unsigned short oldid; 6989 6990 VM_BUG_ON_PAGE(PageLRU(page), page); 6991 VM_BUG_ON_PAGE(page_count(page), page); 6992 6993 if (!do_memsw_account()) 6994 return; 6995 6996 memcg = page->mem_cgroup; 6997 6998 /* Readahead page, never charged */ 6999 if (!memcg) 7000 return; 7001 7002 /* 7003 * In case the memcg owning these pages has been offlined and doesn't 7004 * have an ID allocated to it anymore, charge the closest online 7005 * ancestor for the swap instead and transfer the memory+swap charge. 7006 */ 7007 swap_memcg = mem_cgroup_id_get_online(memcg); 7008 nr_entries = hpage_nr_pages(page); 7009 /* Get references for the tail pages, too */ 7010 if (nr_entries > 1) 7011 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7012 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7013 nr_entries); 7014 VM_BUG_ON_PAGE(oldid, page); 7015 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7016 7017 page->mem_cgroup = NULL; 7018 7019 if (!mem_cgroup_is_root(memcg)) 7020 page_counter_uncharge(&memcg->memory, nr_entries); 7021 7022 if (memcg != swap_memcg) { 7023 if (!mem_cgroup_is_root(swap_memcg)) 7024 page_counter_charge(&swap_memcg->memsw, nr_entries); 7025 page_counter_uncharge(&memcg->memsw, nr_entries); 7026 } 7027 7028 /* 7029 * Interrupts should be disabled here because the caller holds the 7030 * i_pages lock which is taken with interrupts-off. It is 7031 * important here to have the interrupts disabled because it is the 7032 * only synchronisation we have for updating the per-CPU variables. 7033 */ 7034 VM_BUG_ON(!irqs_disabled()); 7035 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 7036 -nr_entries); 7037 memcg_check_events(memcg, page); 7038 7039 if (!mem_cgroup_is_root(memcg)) 7040 css_put_many(&memcg->css, nr_entries); 7041 } 7042 7043 /** 7044 * mem_cgroup_try_charge_swap - try charging swap space for a page 7045 * @page: page being added to swap 7046 * @entry: swap entry to charge 7047 * 7048 * Try to charge @page's memcg for the swap space at @entry. 7049 * 7050 * Returns 0 on success, -ENOMEM on failure. 7051 */ 7052 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7053 { 7054 unsigned int nr_pages = hpage_nr_pages(page); 7055 struct page_counter *counter; 7056 struct mem_cgroup *memcg; 7057 unsigned short oldid; 7058 7059 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 7060 return 0; 7061 7062 memcg = page->mem_cgroup; 7063 7064 /* Readahead page, never charged */ 7065 if (!memcg) 7066 return 0; 7067 7068 if (!entry.val) { 7069 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7070 return 0; 7071 } 7072 7073 memcg = mem_cgroup_id_get_online(memcg); 7074 7075 if (!mem_cgroup_is_root(memcg) && 7076 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7077 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7078 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7079 mem_cgroup_id_put(memcg); 7080 return -ENOMEM; 7081 } 7082 7083 /* Get references for the tail pages, too */ 7084 if (nr_pages > 1) 7085 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7086 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7087 VM_BUG_ON_PAGE(oldid, page); 7088 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7089 7090 return 0; 7091 } 7092 7093 /** 7094 * mem_cgroup_uncharge_swap - uncharge swap space 7095 * @entry: swap entry to uncharge 7096 * @nr_pages: the amount of swap space to uncharge 7097 */ 7098 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7099 { 7100 struct mem_cgroup *memcg; 7101 unsigned short id; 7102 7103 if (!do_swap_account) 7104 return; 7105 7106 id = swap_cgroup_record(entry, 0, nr_pages); 7107 rcu_read_lock(); 7108 memcg = mem_cgroup_from_id(id); 7109 if (memcg) { 7110 if (!mem_cgroup_is_root(memcg)) { 7111 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7112 page_counter_uncharge(&memcg->swap, nr_pages); 7113 else 7114 page_counter_uncharge(&memcg->memsw, nr_pages); 7115 } 7116 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7117 mem_cgroup_id_put_many(memcg, nr_pages); 7118 } 7119 rcu_read_unlock(); 7120 } 7121 7122 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7123 { 7124 long nr_swap_pages = get_nr_swap_pages(); 7125 7126 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7127 return nr_swap_pages; 7128 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7129 nr_swap_pages = min_t(long, nr_swap_pages, 7130 READ_ONCE(memcg->swap.max) - 7131 page_counter_read(&memcg->swap)); 7132 return nr_swap_pages; 7133 } 7134 7135 bool mem_cgroup_swap_full(struct page *page) 7136 { 7137 struct mem_cgroup *memcg; 7138 7139 VM_BUG_ON_PAGE(!PageLocked(page), page); 7140 7141 if (vm_swap_full()) 7142 return true; 7143 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7144 return false; 7145 7146 memcg = page->mem_cgroup; 7147 if (!memcg) 7148 return false; 7149 7150 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7151 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 7152 return true; 7153 7154 return false; 7155 } 7156 7157 /* for remember boot option*/ 7158 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7159 static int really_do_swap_account __initdata = 1; 7160 #else 7161 static int really_do_swap_account __initdata; 7162 #endif 7163 7164 static int __init enable_swap_account(char *s) 7165 { 7166 if (!strcmp(s, "1")) 7167 really_do_swap_account = 1; 7168 else if (!strcmp(s, "0")) 7169 really_do_swap_account = 0; 7170 return 1; 7171 } 7172 __setup("swapaccount=", enable_swap_account); 7173 7174 static u64 swap_current_read(struct cgroup_subsys_state *css, 7175 struct cftype *cft) 7176 { 7177 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7178 7179 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7180 } 7181 7182 static int swap_max_show(struct seq_file *m, void *v) 7183 { 7184 return seq_puts_memcg_tunable(m, 7185 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7186 } 7187 7188 static ssize_t swap_max_write(struct kernfs_open_file *of, 7189 char *buf, size_t nbytes, loff_t off) 7190 { 7191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7192 unsigned long max; 7193 int err; 7194 7195 buf = strstrip(buf); 7196 err = page_counter_memparse(buf, "max", &max); 7197 if (err) 7198 return err; 7199 7200 xchg(&memcg->swap.max, max); 7201 7202 return nbytes; 7203 } 7204 7205 static int swap_events_show(struct seq_file *m, void *v) 7206 { 7207 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7208 7209 seq_printf(m, "max %lu\n", 7210 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7211 seq_printf(m, "fail %lu\n", 7212 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7213 7214 return 0; 7215 } 7216 7217 static struct cftype swap_files[] = { 7218 { 7219 .name = "swap.current", 7220 .flags = CFTYPE_NOT_ON_ROOT, 7221 .read_u64 = swap_current_read, 7222 }, 7223 { 7224 .name = "swap.max", 7225 .flags = CFTYPE_NOT_ON_ROOT, 7226 .seq_show = swap_max_show, 7227 .write = swap_max_write, 7228 }, 7229 { 7230 .name = "swap.events", 7231 .flags = CFTYPE_NOT_ON_ROOT, 7232 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7233 .seq_show = swap_events_show, 7234 }, 7235 { } /* terminate */ 7236 }; 7237 7238 static struct cftype memsw_cgroup_files[] = { 7239 { 7240 .name = "memsw.usage_in_bytes", 7241 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7242 .read_u64 = mem_cgroup_read_u64, 7243 }, 7244 { 7245 .name = "memsw.max_usage_in_bytes", 7246 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7247 .write = mem_cgroup_reset, 7248 .read_u64 = mem_cgroup_read_u64, 7249 }, 7250 { 7251 .name = "memsw.limit_in_bytes", 7252 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7253 .write = mem_cgroup_write, 7254 .read_u64 = mem_cgroup_read_u64, 7255 }, 7256 { 7257 .name = "memsw.failcnt", 7258 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7259 .write = mem_cgroup_reset, 7260 .read_u64 = mem_cgroup_read_u64, 7261 }, 7262 { }, /* terminate */ 7263 }; 7264 7265 static int __init mem_cgroup_swap_init(void) 7266 { 7267 if (!mem_cgroup_disabled() && really_do_swap_account) { 7268 do_swap_account = 1; 7269 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7270 swap_files)); 7271 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7272 memsw_cgroup_files)); 7273 } 7274 return 0; 7275 } 7276 subsys_initcall(mem_cgroup_swap_init); 7277 7278 #endif /* CONFIG_MEMCG_SWAP */ 7279