1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/export.h> 37 #include <linux/mutex.h> 38 #include <linux/rbtree.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 #include <net/sock.h> 54 #include <net/tcp_memcontrol.h> 55 56 #include <asm/uaccess.h> 57 58 #include <trace/events/vmscan.h> 59 60 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 61 #define MEM_CGROUP_RECLAIM_RETRIES 5 62 static struct mem_cgroup *root_mem_cgroup __read_mostly; 63 64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 66 int do_swap_account __read_mostly; 67 68 /* for remember boot option*/ 69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED 70 static int really_do_swap_account __initdata = 1; 71 #else 72 static int really_do_swap_account __initdata = 0; 73 #endif 74 75 #else 76 #define do_swap_account 0 77 #endif 78 79 80 /* 81 * Statistics for memory cgroup. 82 */ 83 enum mem_cgroup_stat_index { 84 /* 85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 86 */ 87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ 91 MEM_CGROUP_STAT_NSTATS, 92 }; 93 94 static const char * const mem_cgroup_stat_names[] = { 95 "cache", 96 "rss", 97 "mapped_file", 98 "swap", 99 }; 100 101 enum mem_cgroup_events_index { 102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 106 MEM_CGROUP_EVENTS_NSTATS, 107 }; 108 109 static const char * const mem_cgroup_events_names[] = { 110 "pgpgin", 111 "pgpgout", 112 "pgfault", 113 "pgmajfault", 114 }; 115 116 /* 117 * Per memcg event counter is incremented at every pagein/pageout. With THP, 118 * it will be incremated by the number of pages. This counter is used for 119 * for trigger some periodic events. This is straightforward and better 120 * than using jiffies etc. to handle periodic memcg event. 121 */ 122 enum mem_cgroup_events_target { 123 MEM_CGROUP_TARGET_THRESH, 124 MEM_CGROUP_TARGET_SOFTLIMIT, 125 MEM_CGROUP_TARGET_NUMAINFO, 126 MEM_CGROUP_NTARGETS, 127 }; 128 #define THRESHOLDS_EVENTS_TARGET 128 129 #define SOFTLIMIT_EVENTS_TARGET 1024 130 #define NUMAINFO_EVENTS_TARGET 1024 131 132 struct mem_cgroup_stat_cpu { 133 long count[MEM_CGROUP_STAT_NSTATS]; 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 135 unsigned long nr_page_events; 136 unsigned long targets[MEM_CGROUP_NTARGETS]; 137 }; 138 139 struct mem_cgroup_reclaim_iter { 140 /* css_id of the last scanned hierarchy member */ 141 int position; 142 /* scan generation, increased every round-trip */ 143 unsigned int generation; 144 }; 145 146 /* 147 * per-zone information in memory controller. 148 */ 149 struct mem_cgroup_per_zone { 150 struct lruvec lruvec; 151 unsigned long lru_size[NR_LRU_LISTS]; 152 153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 154 155 struct rb_node tree_node; /* RB tree node */ 156 unsigned long long usage_in_excess;/* Set to the value by which */ 157 /* the soft limit is exceeded*/ 158 bool on_tree; 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 160 /* use container_of */ 161 }; 162 163 struct mem_cgroup_per_node { 164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 165 }; 166 167 struct mem_cgroup_lru_info { 168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 169 }; 170 171 /* 172 * Cgroups above their limits are maintained in a RB-Tree, independent of 173 * their hierarchy representation 174 */ 175 176 struct mem_cgroup_tree_per_zone { 177 struct rb_root rb_root; 178 spinlock_t lock; 179 }; 180 181 struct mem_cgroup_tree_per_node { 182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 183 }; 184 185 struct mem_cgroup_tree { 186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 187 }; 188 189 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 190 191 struct mem_cgroup_threshold { 192 struct eventfd_ctx *eventfd; 193 u64 threshold; 194 }; 195 196 /* For threshold */ 197 struct mem_cgroup_threshold_ary { 198 /* An array index points to threshold just below or equal to usage. */ 199 int current_threshold; 200 /* Size of entries[] */ 201 unsigned int size; 202 /* Array of thresholds */ 203 struct mem_cgroup_threshold entries[0]; 204 }; 205 206 struct mem_cgroup_thresholds { 207 /* Primary thresholds array */ 208 struct mem_cgroup_threshold_ary *primary; 209 /* 210 * Spare threshold array. 211 * This is needed to make mem_cgroup_unregister_event() "never fail". 212 * It must be able to store at least primary->size - 1 entries. 213 */ 214 struct mem_cgroup_threshold_ary *spare; 215 }; 216 217 /* for OOM */ 218 struct mem_cgroup_eventfd_list { 219 struct list_head list; 220 struct eventfd_ctx *eventfd; 221 }; 222 223 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 225 226 /* 227 * The memory controller data structure. The memory controller controls both 228 * page cache and RSS per cgroup. We would eventually like to provide 229 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 230 * to help the administrator determine what knobs to tune. 231 * 232 * TODO: Add a water mark for the memory controller. Reclaim will begin when 233 * we hit the water mark. May be even add a low water mark, such that 234 * no reclaim occurs from a cgroup at it's low water mark, this is 235 * a feature that will be implemented much later in the future. 236 */ 237 struct mem_cgroup { 238 struct cgroup_subsys_state css; 239 /* 240 * the counter to account for memory usage 241 */ 242 struct res_counter res; 243 244 union { 245 /* 246 * the counter to account for mem+swap usage. 247 */ 248 struct res_counter memsw; 249 250 /* 251 * rcu_freeing is used only when freeing struct mem_cgroup, 252 * so put it into a union to avoid wasting more memory. 253 * It must be disjoint from the css field. It could be 254 * in a union with the res field, but res plays a much 255 * larger part in mem_cgroup life than memsw, and might 256 * be of interest, even at time of free, when debugging. 257 * So share rcu_head with the less interesting memsw. 258 */ 259 struct rcu_head rcu_freeing; 260 /* 261 * We also need some space for a worker in deferred freeing. 262 * By the time we call it, rcu_freeing is no longer in use. 263 */ 264 struct work_struct work_freeing; 265 }; 266 267 /* 268 * Per cgroup active and inactive list, similar to the 269 * per zone LRU lists. 270 */ 271 struct mem_cgroup_lru_info info; 272 int last_scanned_node; 273 #if MAX_NUMNODES > 1 274 nodemask_t scan_nodes; 275 atomic_t numainfo_events; 276 atomic_t numainfo_updating; 277 #endif 278 /* 279 * Should the accounting and control be hierarchical, per subtree? 280 */ 281 bool use_hierarchy; 282 283 bool oom_lock; 284 atomic_t under_oom; 285 286 atomic_t refcnt; 287 288 int swappiness; 289 /* OOM-Killer disable */ 290 int oom_kill_disable; 291 292 /* set when res.limit == memsw.limit */ 293 bool memsw_is_minimum; 294 295 /* protect arrays of thresholds */ 296 struct mutex thresholds_lock; 297 298 /* thresholds for memory usage. RCU-protected */ 299 struct mem_cgroup_thresholds thresholds; 300 301 /* thresholds for mem+swap usage. RCU-protected */ 302 struct mem_cgroup_thresholds memsw_thresholds; 303 304 /* For oom notifier event fd */ 305 struct list_head oom_notify; 306 307 /* 308 * Should we move charges of a task when a task is moved into this 309 * mem_cgroup ? And what type of charges should we move ? 310 */ 311 unsigned long move_charge_at_immigrate; 312 /* 313 * set > 0 if pages under this cgroup are moving to other cgroup. 314 */ 315 atomic_t moving_account; 316 /* taken only while moving_account > 0 */ 317 spinlock_t move_lock; 318 /* 319 * percpu counter. 320 */ 321 struct mem_cgroup_stat_cpu __percpu *stat; 322 /* 323 * used when a cpu is offlined or other synchronizations 324 * See mem_cgroup_read_stat(). 325 */ 326 struct mem_cgroup_stat_cpu nocpu_base; 327 spinlock_t pcp_counter_lock; 328 329 #ifdef CONFIG_INET 330 struct tcp_memcontrol tcp_mem; 331 #endif 332 }; 333 334 /* Stuffs for move charges at task migration. */ 335 /* 336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 337 * left-shifted bitmap of these types. 338 */ 339 enum move_type { 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 342 NR_MOVE_TYPE, 343 }; 344 345 /* "mc" and its members are protected by cgroup_mutex */ 346 static struct move_charge_struct { 347 spinlock_t lock; /* for from, to */ 348 struct mem_cgroup *from; 349 struct mem_cgroup *to; 350 unsigned long precharge; 351 unsigned long moved_charge; 352 unsigned long moved_swap; 353 struct task_struct *moving_task; /* a task moving charges */ 354 wait_queue_head_t waitq; /* a waitq for other context */ 355 } mc = { 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 358 }; 359 360 static bool move_anon(void) 361 { 362 return test_bit(MOVE_CHARGE_TYPE_ANON, 363 &mc.to->move_charge_at_immigrate); 364 } 365 366 static bool move_file(void) 367 { 368 return test_bit(MOVE_CHARGE_TYPE_FILE, 369 &mc.to->move_charge_at_immigrate); 370 } 371 372 /* 373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 374 * limit reclaim to prevent infinite loops, if they ever occur. 375 */ 376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 378 379 enum charge_type { 380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 381 MEM_CGROUP_CHARGE_TYPE_MAPPED, 382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 383 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 384 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 385 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 386 NR_CHARGE_TYPE, 387 }; 388 389 /* for encoding cft->private value on file */ 390 #define _MEM (0) 391 #define _MEMSWAP (1) 392 #define _OOM_TYPE (2) 393 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 394 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 395 #define MEMFILE_ATTR(val) ((val) & 0xffff) 396 /* Used for OOM nofiier */ 397 #define OOM_CONTROL (0) 398 399 /* 400 * Reclaim flags for mem_cgroup_hierarchical_reclaim 401 */ 402 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 403 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 404 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 405 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 406 407 static void mem_cgroup_get(struct mem_cgroup *memcg); 408 static void mem_cgroup_put(struct mem_cgroup *memcg); 409 410 /* Writing them here to avoid exposing memcg's inner layout */ 411 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 412 #include <net/sock.h> 413 #include <net/ip.h> 414 415 static bool mem_cgroup_is_root(struct mem_cgroup *memcg); 416 void sock_update_memcg(struct sock *sk) 417 { 418 if (mem_cgroup_sockets_enabled) { 419 struct mem_cgroup *memcg; 420 struct cg_proto *cg_proto; 421 422 BUG_ON(!sk->sk_prot->proto_cgroup); 423 424 /* Socket cloning can throw us here with sk_cgrp already 425 * filled. It won't however, necessarily happen from 426 * process context. So the test for root memcg given 427 * the current task's memcg won't help us in this case. 428 * 429 * Respecting the original socket's memcg is a better 430 * decision in this case. 431 */ 432 if (sk->sk_cgrp) { 433 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 434 mem_cgroup_get(sk->sk_cgrp->memcg); 435 return; 436 } 437 438 rcu_read_lock(); 439 memcg = mem_cgroup_from_task(current); 440 cg_proto = sk->sk_prot->proto_cgroup(memcg); 441 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 442 mem_cgroup_get(memcg); 443 sk->sk_cgrp = cg_proto; 444 } 445 rcu_read_unlock(); 446 } 447 } 448 EXPORT_SYMBOL(sock_update_memcg); 449 450 void sock_release_memcg(struct sock *sk) 451 { 452 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 453 struct mem_cgroup *memcg; 454 WARN_ON(!sk->sk_cgrp->memcg); 455 memcg = sk->sk_cgrp->memcg; 456 mem_cgroup_put(memcg); 457 } 458 } 459 460 #ifdef CONFIG_INET 461 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 462 { 463 if (!memcg || mem_cgroup_is_root(memcg)) 464 return NULL; 465 466 return &memcg->tcp_mem.cg_proto; 467 } 468 EXPORT_SYMBOL(tcp_proto_cgroup); 469 #endif /* CONFIG_INET */ 470 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */ 471 472 #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) 473 static void disarm_sock_keys(struct mem_cgroup *memcg) 474 { 475 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 476 return; 477 static_key_slow_dec(&memcg_socket_limit_enabled); 478 } 479 #else 480 static void disarm_sock_keys(struct mem_cgroup *memcg) 481 { 482 } 483 #endif 484 485 static void drain_all_stock_async(struct mem_cgroup *memcg); 486 487 static struct mem_cgroup_per_zone * 488 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 489 { 490 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 491 } 492 493 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 494 { 495 return &memcg->css; 496 } 497 498 static struct mem_cgroup_per_zone * 499 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 500 { 501 int nid = page_to_nid(page); 502 int zid = page_zonenum(page); 503 504 return mem_cgroup_zoneinfo(memcg, nid, zid); 505 } 506 507 static struct mem_cgroup_tree_per_zone * 508 soft_limit_tree_node_zone(int nid, int zid) 509 { 510 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 511 } 512 513 static struct mem_cgroup_tree_per_zone * 514 soft_limit_tree_from_page(struct page *page) 515 { 516 int nid = page_to_nid(page); 517 int zid = page_zonenum(page); 518 519 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 520 } 521 522 static void 523 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 524 struct mem_cgroup_per_zone *mz, 525 struct mem_cgroup_tree_per_zone *mctz, 526 unsigned long long new_usage_in_excess) 527 { 528 struct rb_node **p = &mctz->rb_root.rb_node; 529 struct rb_node *parent = NULL; 530 struct mem_cgroup_per_zone *mz_node; 531 532 if (mz->on_tree) 533 return; 534 535 mz->usage_in_excess = new_usage_in_excess; 536 if (!mz->usage_in_excess) 537 return; 538 while (*p) { 539 parent = *p; 540 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 541 tree_node); 542 if (mz->usage_in_excess < mz_node->usage_in_excess) 543 p = &(*p)->rb_left; 544 /* 545 * We can't avoid mem cgroups that are over their soft 546 * limit by the same amount 547 */ 548 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 549 p = &(*p)->rb_right; 550 } 551 rb_link_node(&mz->tree_node, parent, p); 552 rb_insert_color(&mz->tree_node, &mctz->rb_root); 553 mz->on_tree = true; 554 } 555 556 static void 557 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 558 struct mem_cgroup_per_zone *mz, 559 struct mem_cgroup_tree_per_zone *mctz) 560 { 561 if (!mz->on_tree) 562 return; 563 rb_erase(&mz->tree_node, &mctz->rb_root); 564 mz->on_tree = false; 565 } 566 567 static void 568 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 569 struct mem_cgroup_per_zone *mz, 570 struct mem_cgroup_tree_per_zone *mctz) 571 { 572 spin_lock(&mctz->lock); 573 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 574 spin_unlock(&mctz->lock); 575 } 576 577 578 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 579 { 580 unsigned long long excess; 581 struct mem_cgroup_per_zone *mz; 582 struct mem_cgroup_tree_per_zone *mctz; 583 int nid = page_to_nid(page); 584 int zid = page_zonenum(page); 585 mctz = soft_limit_tree_from_page(page); 586 587 /* 588 * Necessary to update all ancestors when hierarchy is used. 589 * because their event counter is not touched. 590 */ 591 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 592 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 593 excess = res_counter_soft_limit_excess(&memcg->res); 594 /* 595 * We have to update the tree if mz is on RB-tree or 596 * mem is over its softlimit. 597 */ 598 if (excess || mz->on_tree) { 599 spin_lock(&mctz->lock); 600 /* if on-tree, remove it */ 601 if (mz->on_tree) 602 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 603 /* 604 * Insert again. mz->usage_in_excess will be updated. 605 * If excess is 0, no tree ops. 606 */ 607 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 608 spin_unlock(&mctz->lock); 609 } 610 } 611 } 612 613 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 614 { 615 int node, zone; 616 struct mem_cgroup_per_zone *mz; 617 struct mem_cgroup_tree_per_zone *mctz; 618 619 for_each_node(node) { 620 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 621 mz = mem_cgroup_zoneinfo(memcg, node, zone); 622 mctz = soft_limit_tree_node_zone(node, zone); 623 mem_cgroup_remove_exceeded(memcg, mz, mctz); 624 } 625 } 626 } 627 628 static struct mem_cgroup_per_zone * 629 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 630 { 631 struct rb_node *rightmost = NULL; 632 struct mem_cgroup_per_zone *mz; 633 634 retry: 635 mz = NULL; 636 rightmost = rb_last(&mctz->rb_root); 637 if (!rightmost) 638 goto done; /* Nothing to reclaim from */ 639 640 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 641 /* 642 * Remove the node now but someone else can add it back, 643 * we will to add it back at the end of reclaim to its correct 644 * position in the tree. 645 */ 646 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 647 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 648 !css_tryget(&mz->memcg->css)) 649 goto retry; 650 done: 651 return mz; 652 } 653 654 static struct mem_cgroup_per_zone * 655 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 656 { 657 struct mem_cgroup_per_zone *mz; 658 659 spin_lock(&mctz->lock); 660 mz = __mem_cgroup_largest_soft_limit_node(mctz); 661 spin_unlock(&mctz->lock); 662 return mz; 663 } 664 665 /* 666 * Implementation Note: reading percpu statistics for memcg. 667 * 668 * Both of vmstat[] and percpu_counter has threshold and do periodic 669 * synchronization to implement "quick" read. There are trade-off between 670 * reading cost and precision of value. Then, we may have a chance to implement 671 * a periodic synchronizion of counter in memcg's counter. 672 * 673 * But this _read() function is used for user interface now. The user accounts 674 * memory usage by memory cgroup and he _always_ requires exact value because 675 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 676 * have to visit all online cpus and make sum. So, for now, unnecessary 677 * synchronization is not implemented. (just implemented for cpu hotplug) 678 * 679 * If there are kernel internal actions which can make use of some not-exact 680 * value, and reading all cpu value can be performance bottleneck in some 681 * common workload, threashold and synchonization as vmstat[] should be 682 * implemented. 683 */ 684 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 685 enum mem_cgroup_stat_index idx) 686 { 687 long val = 0; 688 int cpu; 689 690 get_online_cpus(); 691 for_each_online_cpu(cpu) 692 val += per_cpu(memcg->stat->count[idx], cpu); 693 #ifdef CONFIG_HOTPLUG_CPU 694 spin_lock(&memcg->pcp_counter_lock); 695 val += memcg->nocpu_base.count[idx]; 696 spin_unlock(&memcg->pcp_counter_lock); 697 #endif 698 put_online_cpus(); 699 return val; 700 } 701 702 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 703 bool charge) 704 { 705 int val = (charge) ? 1 : -1; 706 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); 707 } 708 709 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 710 enum mem_cgroup_events_index idx) 711 { 712 unsigned long val = 0; 713 int cpu; 714 715 for_each_online_cpu(cpu) 716 val += per_cpu(memcg->stat->events[idx], cpu); 717 #ifdef CONFIG_HOTPLUG_CPU 718 spin_lock(&memcg->pcp_counter_lock); 719 val += memcg->nocpu_base.events[idx]; 720 spin_unlock(&memcg->pcp_counter_lock); 721 #endif 722 return val; 723 } 724 725 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 726 bool anon, int nr_pages) 727 { 728 preempt_disable(); 729 730 /* 731 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 732 * counted as CACHE even if it's on ANON LRU. 733 */ 734 if (anon) 735 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 736 nr_pages); 737 else 738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 739 nr_pages); 740 741 /* pagein of a big page is an event. So, ignore page size */ 742 if (nr_pages > 0) 743 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 744 else { 745 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 746 nr_pages = -nr_pages; /* for event */ 747 } 748 749 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 750 751 preempt_enable(); 752 } 753 754 unsigned long 755 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 756 { 757 struct mem_cgroup_per_zone *mz; 758 759 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 760 return mz->lru_size[lru]; 761 } 762 763 static unsigned long 764 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 765 unsigned int lru_mask) 766 { 767 struct mem_cgroup_per_zone *mz; 768 enum lru_list lru; 769 unsigned long ret = 0; 770 771 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 772 773 for_each_lru(lru) { 774 if (BIT(lru) & lru_mask) 775 ret += mz->lru_size[lru]; 776 } 777 return ret; 778 } 779 780 static unsigned long 781 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 782 int nid, unsigned int lru_mask) 783 { 784 u64 total = 0; 785 int zid; 786 787 for (zid = 0; zid < MAX_NR_ZONES; zid++) 788 total += mem_cgroup_zone_nr_lru_pages(memcg, 789 nid, zid, lru_mask); 790 791 return total; 792 } 793 794 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 795 unsigned int lru_mask) 796 { 797 int nid; 798 u64 total = 0; 799 800 for_each_node_state(nid, N_HIGH_MEMORY) 801 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 802 return total; 803 } 804 805 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 806 enum mem_cgroup_events_target target) 807 { 808 unsigned long val, next; 809 810 val = __this_cpu_read(memcg->stat->nr_page_events); 811 next = __this_cpu_read(memcg->stat->targets[target]); 812 /* from time_after() in jiffies.h */ 813 if ((long)next - (long)val < 0) { 814 switch (target) { 815 case MEM_CGROUP_TARGET_THRESH: 816 next = val + THRESHOLDS_EVENTS_TARGET; 817 break; 818 case MEM_CGROUP_TARGET_SOFTLIMIT: 819 next = val + SOFTLIMIT_EVENTS_TARGET; 820 break; 821 case MEM_CGROUP_TARGET_NUMAINFO: 822 next = val + NUMAINFO_EVENTS_TARGET; 823 break; 824 default: 825 break; 826 } 827 __this_cpu_write(memcg->stat->targets[target], next); 828 return true; 829 } 830 return false; 831 } 832 833 /* 834 * Check events in order. 835 * 836 */ 837 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 838 { 839 preempt_disable(); 840 /* threshold event is triggered in finer grain than soft limit */ 841 if (unlikely(mem_cgroup_event_ratelimit(memcg, 842 MEM_CGROUP_TARGET_THRESH))) { 843 bool do_softlimit; 844 bool do_numainfo __maybe_unused; 845 846 do_softlimit = mem_cgroup_event_ratelimit(memcg, 847 MEM_CGROUP_TARGET_SOFTLIMIT); 848 #if MAX_NUMNODES > 1 849 do_numainfo = mem_cgroup_event_ratelimit(memcg, 850 MEM_CGROUP_TARGET_NUMAINFO); 851 #endif 852 preempt_enable(); 853 854 mem_cgroup_threshold(memcg); 855 if (unlikely(do_softlimit)) 856 mem_cgroup_update_tree(memcg, page); 857 #if MAX_NUMNODES > 1 858 if (unlikely(do_numainfo)) 859 atomic_inc(&memcg->numainfo_events); 860 #endif 861 } else 862 preempt_enable(); 863 } 864 865 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 866 { 867 return container_of(cgroup_subsys_state(cont, 868 mem_cgroup_subsys_id), struct mem_cgroup, 869 css); 870 } 871 872 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 873 { 874 /* 875 * mm_update_next_owner() may clear mm->owner to NULL 876 * if it races with swapoff, page migration, etc. 877 * So this can be called with p == NULL. 878 */ 879 if (unlikely(!p)) 880 return NULL; 881 882 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 883 struct mem_cgroup, css); 884 } 885 886 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 887 { 888 struct mem_cgroup *memcg = NULL; 889 890 if (!mm) 891 return NULL; 892 /* 893 * Because we have no locks, mm->owner's may be being moved to other 894 * cgroup. We use css_tryget() here even if this looks 895 * pessimistic (rather than adding locks here). 896 */ 897 rcu_read_lock(); 898 do { 899 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 900 if (unlikely(!memcg)) 901 break; 902 } while (!css_tryget(&memcg->css)); 903 rcu_read_unlock(); 904 return memcg; 905 } 906 907 /** 908 * mem_cgroup_iter - iterate over memory cgroup hierarchy 909 * @root: hierarchy root 910 * @prev: previously returned memcg, NULL on first invocation 911 * @reclaim: cookie for shared reclaim walks, NULL for full walks 912 * 913 * Returns references to children of the hierarchy below @root, or 914 * @root itself, or %NULL after a full round-trip. 915 * 916 * Caller must pass the return value in @prev on subsequent 917 * invocations for reference counting, or use mem_cgroup_iter_break() 918 * to cancel a hierarchy walk before the round-trip is complete. 919 * 920 * Reclaimers can specify a zone and a priority level in @reclaim to 921 * divide up the memcgs in the hierarchy among all concurrent 922 * reclaimers operating on the same zone and priority. 923 */ 924 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 925 struct mem_cgroup *prev, 926 struct mem_cgroup_reclaim_cookie *reclaim) 927 { 928 struct mem_cgroup *memcg = NULL; 929 int id = 0; 930 931 if (mem_cgroup_disabled()) 932 return NULL; 933 934 if (!root) 935 root = root_mem_cgroup; 936 937 if (prev && !reclaim) 938 id = css_id(&prev->css); 939 940 if (prev && prev != root) 941 css_put(&prev->css); 942 943 if (!root->use_hierarchy && root != root_mem_cgroup) { 944 if (prev) 945 return NULL; 946 return root; 947 } 948 949 while (!memcg) { 950 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 951 struct cgroup_subsys_state *css; 952 953 if (reclaim) { 954 int nid = zone_to_nid(reclaim->zone); 955 int zid = zone_idx(reclaim->zone); 956 struct mem_cgroup_per_zone *mz; 957 958 mz = mem_cgroup_zoneinfo(root, nid, zid); 959 iter = &mz->reclaim_iter[reclaim->priority]; 960 if (prev && reclaim->generation != iter->generation) 961 return NULL; 962 id = iter->position; 963 } 964 965 rcu_read_lock(); 966 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 967 if (css) { 968 if (css == &root->css || css_tryget(css)) 969 memcg = container_of(css, 970 struct mem_cgroup, css); 971 } else 972 id = 0; 973 rcu_read_unlock(); 974 975 if (reclaim) { 976 iter->position = id; 977 if (!css) 978 iter->generation++; 979 else if (!prev && memcg) 980 reclaim->generation = iter->generation; 981 } 982 983 if (prev && !css) 984 return NULL; 985 } 986 return memcg; 987 } 988 989 /** 990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 991 * @root: hierarchy root 992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 993 */ 994 void mem_cgroup_iter_break(struct mem_cgroup *root, 995 struct mem_cgroup *prev) 996 { 997 if (!root) 998 root = root_mem_cgroup; 999 if (prev && prev != root) 1000 css_put(&prev->css); 1001 } 1002 1003 /* 1004 * Iteration constructs for visiting all cgroups (under a tree). If 1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1006 * be used for reference counting. 1007 */ 1008 #define for_each_mem_cgroup_tree(iter, root) \ 1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1010 iter != NULL; \ 1011 iter = mem_cgroup_iter(root, iter, NULL)) 1012 1013 #define for_each_mem_cgroup(iter) \ 1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1015 iter != NULL; \ 1016 iter = mem_cgroup_iter(NULL, iter, NULL)) 1017 1018 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1019 { 1020 return (memcg == root_mem_cgroup); 1021 } 1022 1023 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1024 { 1025 struct mem_cgroup *memcg; 1026 1027 if (!mm) 1028 return; 1029 1030 rcu_read_lock(); 1031 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1032 if (unlikely(!memcg)) 1033 goto out; 1034 1035 switch (idx) { 1036 case PGFAULT: 1037 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1038 break; 1039 case PGMAJFAULT: 1040 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1041 break; 1042 default: 1043 BUG(); 1044 } 1045 out: 1046 rcu_read_unlock(); 1047 } 1048 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 1049 1050 /** 1051 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1052 * @zone: zone of the wanted lruvec 1053 * @memcg: memcg of the wanted lruvec 1054 * 1055 * Returns the lru list vector holding pages for the given @zone and 1056 * @mem. This can be the global zone lruvec, if the memory controller 1057 * is disabled. 1058 */ 1059 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1060 struct mem_cgroup *memcg) 1061 { 1062 struct mem_cgroup_per_zone *mz; 1063 1064 if (mem_cgroup_disabled()) 1065 return &zone->lruvec; 1066 1067 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1068 return &mz->lruvec; 1069 } 1070 1071 /* 1072 * Following LRU functions are allowed to be used without PCG_LOCK. 1073 * Operations are called by routine of global LRU independently from memcg. 1074 * What we have to take care of here is validness of pc->mem_cgroup. 1075 * 1076 * Changes to pc->mem_cgroup happens when 1077 * 1. charge 1078 * 2. moving account 1079 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1080 * It is added to LRU before charge. 1081 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1082 * When moving account, the page is not on LRU. It's isolated. 1083 */ 1084 1085 /** 1086 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1087 * @page: the page 1088 * @zone: zone of the page 1089 */ 1090 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1091 { 1092 struct mem_cgroup_per_zone *mz; 1093 struct mem_cgroup *memcg; 1094 struct page_cgroup *pc; 1095 1096 if (mem_cgroup_disabled()) 1097 return &zone->lruvec; 1098 1099 pc = lookup_page_cgroup(page); 1100 memcg = pc->mem_cgroup; 1101 1102 /* 1103 * Surreptitiously switch any uncharged offlist page to root: 1104 * an uncharged page off lru does nothing to secure 1105 * its former mem_cgroup from sudden removal. 1106 * 1107 * Our caller holds lru_lock, and PageCgroupUsed is updated 1108 * under page_cgroup lock: between them, they make all uses 1109 * of pc->mem_cgroup safe. 1110 */ 1111 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1112 pc->mem_cgroup = memcg = root_mem_cgroup; 1113 1114 mz = page_cgroup_zoneinfo(memcg, page); 1115 return &mz->lruvec; 1116 } 1117 1118 /** 1119 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1120 * @lruvec: mem_cgroup per zone lru vector 1121 * @lru: index of lru list the page is sitting on 1122 * @nr_pages: positive when adding or negative when removing 1123 * 1124 * This function must be called when a page is added to or removed from an 1125 * lru list. 1126 */ 1127 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1128 int nr_pages) 1129 { 1130 struct mem_cgroup_per_zone *mz; 1131 unsigned long *lru_size; 1132 1133 if (mem_cgroup_disabled()) 1134 return; 1135 1136 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1137 lru_size = mz->lru_size + lru; 1138 *lru_size += nr_pages; 1139 VM_BUG_ON((long)(*lru_size) < 0); 1140 } 1141 1142 /* 1143 * Checks whether given mem is same or in the root_mem_cgroup's 1144 * hierarchy subtree 1145 */ 1146 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1147 struct mem_cgroup *memcg) 1148 { 1149 if (root_memcg == memcg) 1150 return true; 1151 if (!root_memcg->use_hierarchy || !memcg) 1152 return false; 1153 return css_is_ancestor(&memcg->css, &root_memcg->css); 1154 } 1155 1156 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1157 struct mem_cgroup *memcg) 1158 { 1159 bool ret; 1160 1161 rcu_read_lock(); 1162 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1163 rcu_read_unlock(); 1164 return ret; 1165 } 1166 1167 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1168 { 1169 int ret; 1170 struct mem_cgroup *curr = NULL; 1171 struct task_struct *p; 1172 1173 p = find_lock_task_mm(task); 1174 if (p) { 1175 curr = try_get_mem_cgroup_from_mm(p->mm); 1176 task_unlock(p); 1177 } else { 1178 /* 1179 * All threads may have already detached their mm's, but the oom 1180 * killer still needs to detect if they have already been oom 1181 * killed to prevent needlessly killing additional tasks. 1182 */ 1183 task_lock(task); 1184 curr = mem_cgroup_from_task(task); 1185 if (curr) 1186 css_get(&curr->css); 1187 task_unlock(task); 1188 } 1189 if (!curr) 1190 return 0; 1191 /* 1192 * We should check use_hierarchy of "memcg" not "curr". Because checking 1193 * use_hierarchy of "curr" here make this function true if hierarchy is 1194 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1195 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1196 */ 1197 ret = mem_cgroup_same_or_subtree(memcg, curr); 1198 css_put(&curr->css); 1199 return ret; 1200 } 1201 1202 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1203 { 1204 unsigned long inactive_ratio; 1205 unsigned long inactive; 1206 unsigned long active; 1207 unsigned long gb; 1208 1209 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1210 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1211 1212 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1213 if (gb) 1214 inactive_ratio = int_sqrt(10 * gb); 1215 else 1216 inactive_ratio = 1; 1217 1218 return inactive * inactive_ratio < active; 1219 } 1220 1221 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1222 { 1223 unsigned long active; 1224 unsigned long inactive; 1225 1226 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1227 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1228 1229 return (active > inactive); 1230 } 1231 1232 #define mem_cgroup_from_res_counter(counter, member) \ 1233 container_of(counter, struct mem_cgroup, member) 1234 1235 /** 1236 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1237 * @memcg: the memory cgroup 1238 * 1239 * Returns the maximum amount of memory @mem can be charged with, in 1240 * pages. 1241 */ 1242 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1243 { 1244 unsigned long long margin; 1245 1246 margin = res_counter_margin(&memcg->res); 1247 if (do_swap_account) 1248 margin = min(margin, res_counter_margin(&memcg->memsw)); 1249 return margin >> PAGE_SHIFT; 1250 } 1251 1252 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1253 { 1254 struct cgroup *cgrp = memcg->css.cgroup; 1255 1256 /* root ? */ 1257 if (cgrp->parent == NULL) 1258 return vm_swappiness; 1259 1260 return memcg->swappiness; 1261 } 1262 1263 /* 1264 * memcg->moving_account is used for checking possibility that some thread is 1265 * calling move_account(). When a thread on CPU-A starts moving pages under 1266 * a memcg, other threads should check memcg->moving_account under 1267 * rcu_read_lock(), like this: 1268 * 1269 * CPU-A CPU-B 1270 * rcu_read_lock() 1271 * memcg->moving_account+1 if (memcg->mocing_account) 1272 * take heavy locks. 1273 * synchronize_rcu() update something. 1274 * rcu_read_unlock() 1275 * start move here. 1276 */ 1277 1278 /* for quick checking without looking up memcg */ 1279 atomic_t memcg_moving __read_mostly; 1280 1281 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1282 { 1283 atomic_inc(&memcg_moving); 1284 atomic_inc(&memcg->moving_account); 1285 synchronize_rcu(); 1286 } 1287 1288 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1289 { 1290 /* 1291 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1292 * We check NULL in callee rather than caller. 1293 */ 1294 if (memcg) { 1295 atomic_dec(&memcg_moving); 1296 atomic_dec(&memcg->moving_account); 1297 } 1298 } 1299 1300 /* 1301 * 2 routines for checking "mem" is under move_account() or not. 1302 * 1303 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1304 * is used for avoiding races in accounting. If true, 1305 * pc->mem_cgroup may be overwritten. 1306 * 1307 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1308 * under hierarchy of moving cgroups. This is for 1309 * waiting at hith-memory prressure caused by "move". 1310 */ 1311 1312 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1313 { 1314 VM_BUG_ON(!rcu_read_lock_held()); 1315 return atomic_read(&memcg->moving_account) > 0; 1316 } 1317 1318 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1319 { 1320 struct mem_cgroup *from; 1321 struct mem_cgroup *to; 1322 bool ret = false; 1323 /* 1324 * Unlike task_move routines, we access mc.to, mc.from not under 1325 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1326 */ 1327 spin_lock(&mc.lock); 1328 from = mc.from; 1329 to = mc.to; 1330 if (!from) 1331 goto unlock; 1332 1333 ret = mem_cgroup_same_or_subtree(memcg, from) 1334 || mem_cgroup_same_or_subtree(memcg, to); 1335 unlock: 1336 spin_unlock(&mc.lock); 1337 return ret; 1338 } 1339 1340 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1341 { 1342 if (mc.moving_task && current != mc.moving_task) { 1343 if (mem_cgroup_under_move(memcg)) { 1344 DEFINE_WAIT(wait); 1345 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1346 /* moving charge context might have finished. */ 1347 if (mc.moving_task) 1348 schedule(); 1349 finish_wait(&mc.waitq, &wait); 1350 return true; 1351 } 1352 } 1353 return false; 1354 } 1355 1356 /* 1357 * Take this lock when 1358 * - a code tries to modify page's memcg while it's USED. 1359 * - a code tries to modify page state accounting in a memcg. 1360 * see mem_cgroup_stolen(), too. 1361 */ 1362 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1363 unsigned long *flags) 1364 { 1365 spin_lock_irqsave(&memcg->move_lock, *flags); 1366 } 1367 1368 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1369 unsigned long *flags) 1370 { 1371 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1372 } 1373 1374 /** 1375 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1376 * @memcg: The memory cgroup that went over limit 1377 * @p: Task that is going to be killed 1378 * 1379 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1380 * enabled 1381 */ 1382 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1383 { 1384 struct cgroup *task_cgrp; 1385 struct cgroup *mem_cgrp; 1386 /* 1387 * Need a buffer in BSS, can't rely on allocations. The code relies 1388 * on the assumption that OOM is serialized for memory controller. 1389 * If this assumption is broken, revisit this code. 1390 */ 1391 static char memcg_name[PATH_MAX]; 1392 int ret; 1393 1394 if (!memcg || !p) 1395 return; 1396 1397 rcu_read_lock(); 1398 1399 mem_cgrp = memcg->css.cgroup; 1400 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1401 1402 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1403 if (ret < 0) { 1404 /* 1405 * Unfortunately, we are unable to convert to a useful name 1406 * But we'll still print out the usage information 1407 */ 1408 rcu_read_unlock(); 1409 goto done; 1410 } 1411 rcu_read_unlock(); 1412 1413 printk(KERN_INFO "Task in %s killed", memcg_name); 1414 1415 rcu_read_lock(); 1416 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1417 if (ret < 0) { 1418 rcu_read_unlock(); 1419 goto done; 1420 } 1421 rcu_read_unlock(); 1422 1423 /* 1424 * Continues from above, so we don't need an KERN_ level 1425 */ 1426 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1427 done: 1428 1429 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1430 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1431 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1432 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1433 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1434 "failcnt %llu\n", 1435 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1436 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1437 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1438 } 1439 1440 /* 1441 * This function returns the number of memcg under hierarchy tree. Returns 1442 * 1(self count) if no children. 1443 */ 1444 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1445 { 1446 int num = 0; 1447 struct mem_cgroup *iter; 1448 1449 for_each_mem_cgroup_tree(iter, memcg) 1450 num++; 1451 return num; 1452 } 1453 1454 /* 1455 * Return the memory (and swap, if configured) limit for a memcg. 1456 */ 1457 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1458 { 1459 u64 limit; 1460 u64 memsw; 1461 1462 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1463 limit += total_swap_pages << PAGE_SHIFT; 1464 1465 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1466 /* 1467 * If memsw is finite and limits the amount of swap space available 1468 * to this memcg, return that limit. 1469 */ 1470 return min(limit, memsw); 1471 } 1472 1473 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1474 gfp_t gfp_mask, 1475 unsigned long flags) 1476 { 1477 unsigned long total = 0; 1478 bool noswap = false; 1479 int loop; 1480 1481 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1482 noswap = true; 1483 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1484 noswap = true; 1485 1486 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1487 if (loop) 1488 drain_all_stock_async(memcg); 1489 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1490 /* 1491 * Allow limit shrinkers, which are triggered directly 1492 * by userspace, to catch signals and stop reclaim 1493 * after minimal progress, regardless of the margin. 1494 */ 1495 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1496 break; 1497 if (mem_cgroup_margin(memcg)) 1498 break; 1499 /* 1500 * If nothing was reclaimed after two attempts, there 1501 * may be no reclaimable pages in this hierarchy. 1502 */ 1503 if (loop && !total) 1504 break; 1505 } 1506 return total; 1507 } 1508 1509 /** 1510 * test_mem_cgroup_node_reclaimable 1511 * @memcg: the target memcg 1512 * @nid: the node ID to be checked. 1513 * @noswap : specify true here if the user wants flle only information. 1514 * 1515 * This function returns whether the specified memcg contains any 1516 * reclaimable pages on a node. Returns true if there are any reclaimable 1517 * pages in the node. 1518 */ 1519 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1520 int nid, bool noswap) 1521 { 1522 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1523 return true; 1524 if (noswap || !total_swap_pages) 1525 return false; 1526 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1527 return true; 1528 return false; 1529 1530 } 1531 #if MAX_NUMNODES > 1 1532 1533 /* 1534 * Always updating the nodemask is not very good - even if we have an empty 1535 * list or the wrong list here, we can start from some node and traverse all 1536 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1537 * 1538 */ 1539 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1540 { 1541 int nid; 1542 /* 1543 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1544 * pagein/pageout changes since the last update. 1545 */ 1546 if (!atomic_read(&memcg->numainfo_events)) 1547 return; 1548 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1549 return; 1550 1551 /* make a nodemask where this memcg uses memory from */ 1552 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1553 1554 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1555 1556 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1557 node_clear(nid, memcg->scan_nodes); 1558 } 1559 1560 atomic_set(&memcg->numainfo_events, 0); 1561 atomic_set(&memcg->numainfo_updating, 0); 1562 } 1563 1564 /* 1565 * Selecting a node where we start reclaim from. Because what we need is just 1566 * reducing usage counter, start from anywhere is O,K. Considering 1567 * memory reclaim from current node, there are pros. and cons. 1568 * 1569 * Freeing memory from current node means freeing memory from a node which 1570 * we'll use or we've used. So, it may make LRU bad. And if several threads 1571 * hit limits, it will see a contention on a node. But freeing from remote 1572 * node means more costs for memory reclaim because of memory latency. 1573 * 1574 * Now, we use round-robin. Better algorithm is welcomed. 1575 */ 1576 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1577 { 1578 int node; 1579 1580 mem_cgroup_may_update_nodemask(memcg); 1581 node = memcg->last_scanned_node; 1582 1583 node = next_node(node, memcg->scan_nodes); 1584 if (node == MAX_NUMNODES) 1585 node = first_node(memcg->scan_nodes); 1586 /* 1587 * We call this when we hit limit, not when pages are added to LRU. 1588 * No LRU may hold pages because all pages are UNEVICTABLE or 1589 * memcg is too small and all pages are not on LRU. In that case, 1590 * we use curret node. 1591 */ 1592 if (unlikely(node == MAX_NUMNODES)) 1593 node = numa_node_id(); 1594 1595 memcg->last_scanned_node = node; 1596 return node; 1597 } 1598 1599 /* 1600 * Check all nodes whether it contains reclaimable pages or not. 1601 * For quick scan, we make use of scan_nodes. This will allow us to skip 1602 * unused nodes. But scan_nodes is lazily updated and may not cotain 1603 * enough new information. We need to do double check. 1604 */ 1605 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1606 { 1607 int nid; 1608 1609 /* 1610 * quick check...making use of scan_node. 1611 * We can skip unused nodes. 1612 */ 1613 if (!nodes_empty(memcg->scan_nodes)) { 1614 for (nid = first_node(memcg->scan_nodes); 1615 nid < MAX_NUMNODES; 1616 nid = next_node(nid, memcg->scan_nodes)) { 1617 1618 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1619 return true; 1620 } 1621 } 1622 /* 1623 * Check rest of nodes. 1624 */ 1625 for_each_node_state(nid, N_HIGH_MEMORY) { 1626 if (node_isset(nid, memcg->scan_nodes)) 1627 continue; 1628 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1629 return true; 1630 } 1631 return false; 1632 } 1633 1634 #else 1635 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1636 { 1637 return 0; 1638 } 1639 1640 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1641 { 1642 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1643 } 1644 #endif 1645 1646 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1647 struct zone *zone, 1648 gfp_t gfp_mask, 1649 unsigned long *total_scanned) 1650 { 1651 struct mem_cgroup *victim = NULL; 1652 int total = 0; 1653 int loop = 0; 1654 unsigned long excess; 1655 unsigned long nr_scanned; 1656 struct mem_cgroup_reclaim_cookie reclaim = { 1657 .zone = zone, 1658 .priority = 0, 1659 }; 1660 1661 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1662 1663 while (1) { 1664 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1665 if (!victim) { 1666 loop++; 1667 if (loop >= 2) { 1668 /* 1669 * If we have not been able to reclaim 1670 * anything, it might because there are 1671 * no reclaimable pages under this hierarchy 1672 */ 1673 if (!total) 1674 break; 1675 /* 1676 * We want to do more targeted reclaim. 1677 * excess >> 2 is not to excessive so as to 1678 * reclaim too much, nor too less that we keep 1679 * coming back to reclaim from this cgroup 1680 */ 1681 if (total >= (excess >> 2) || 1682 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1683 break; 1684 } 1685 continue; 1686 } 1687 if (!mem_cgroup_reclaimable(victim, false)) 1688 continue; 1689 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1690 zone, &nr_scanned); 1691 *total_scanned += nr_scanned; 1692 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1693 break; 1694 } 1695 mem_cgroup_iter_break(root_memcg, victim); 1696 return total; 1697 } 1698 1699 /* 1700 * Check OOM-Killer is already running under our hierarchy. 1701 * If someone is running, return false. 1702 * Has to be called with memcg_oom_lock 1703 */ 1704 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1705 { 1706 struct mem_cgroup *iter, *failed = NULL; 1707 1708 for_each_mem_cgroup_tree(iter, memcg) { 1709 if (iter->oom_lock) { 1710 /* 1711 * this subtree of our hierarchy is already locked 1712 * so we cannot give a lock. 1713 */ 1714 failed = iter; 1715 mem_cgroup_iter_break(memcg, iter); 1716 break; 1717 } else 1718 iter->oom_lock = true; 1719 } 1720 1721 if (!failed) 1722 return true; 1723 1724 /* 1725 * OK, we failed to lock the whole subtree so we have to clean up 1726 * what we set up to the failing subtree 1727 */ 1728 for_each_mem_cgroup_tree(iter, memcg) { 1729 if (iter == failed) { 1730 mem_cgroup_iter_break(memcg, iter); 1731 break; 1732 } 1733 iter->oom_lock = false; 1734 } 1735 return false; 1736 } 1737 1738 /* 1739 * Has to be called with memcg_oom_lock 1740 */ 1741 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1742 { 1743 struct mem_cgroup *iter; 1744 1745 for_each_mem_cgroup_tree(iter, memcg) 1746 iter->oom_lock = false; 1747 return 0; 1748 } 1749 1750 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1751 { 1752 struct mem_cgroup *iter; 1753 1754 for_each_mem_cgroup_tree(iter, memcg) 1755 atomic_inc(&iter->under_oom); 1756 } 1757 1758 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1759 { 1760 struct mem_cgroup *iter; 1761 1762 /* 1763 * When a new child is created while the hierarchy is under oom, 1764 * mem_cgroup_oom_lock() may not be called. We have to use 1765 * atomic_add_unless() here. 1766 */ 1767 for_each_mem_cgroup_tree(iter, memcg) 1768 atomic_add_unless(&iter->under_oom, -1, 0); 1769 } 1770 1771 static DEFINE_SPINLOCK(memcg_oom_lock); 1772 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1773 1774 struct oom_wait_info { 1775 struct mem_cgroup *memcg; 1776 wait_queue_t wait; 1777 }; 1778 1779 static int memcg_oom_wake_function(wait_queue_t *wait, 1780 unsigned mode, int sync, void *arg) 1781 { 1782 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1783 struct mem_cgroup *oom_wait_memcg; 1784 struct oom_wait_info *oom_wait_info; 1785 1786 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1787 oom_wait_memcg = oom_wait_info->memcg; 1788 1789 /* 1790 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 1791 * Then we can use css_is_ancestor without taking care of RCU. 1792 */ 1793 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1794 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1795 return 0; 1796 return autoremove_wake_function(wait, mode, sync, arg); 1797 } 1798 1799 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1800 { 1801 /* for filtering, pass "memcg" as argument. */ 1802 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1803 } 1804 1805 static void memcg_oom_recover(struct mem_cgroup *memcg) 1806 { 1807 if (memcg && atomic_read(&memcg->under_oom)) 1808 memcg_wakeup_oom(memcg); 1809 } 1810 1811 /* 1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1813 */ 1814 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 1815 int order) 1816 { 1817 struct oom_wait_info owait; 1818 bool locked, need_to_kill; 1819 1820 owait.memcg = memcg; 1821 owait.wait.flags = 0; 1822 owait.wait.func = memcg_oom_wake_function; 1823 owait.wait.private = current; 1824 INIT_LIST_HEAD(&owait.wait.task_list); 1825 need_to_kill = true; 1826 mem_cgroup_mark_under_oom(memcg); 1827 1828 /* At first, try to OOM lock hierarchy under memcg.*/ 1829 spin_lock(&memcg_oom_lock); 1830 locked = mem_cgroup_oom_lock(memcg); 1831 /* 1832 * Even if signal_pending(), we can't quit charge() loop without 1833 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1834 * under OOM is always welcomed, use TASK_KILLABLE here. 1835 */ 1836 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1837 if (!locked || memcg->oom_kill_disable) 1838 need_to_kill = false; 1839 if (locked) 1840 mem_cgroup_oom_notify(memcg); 1841 spin_unlock(&memcg_oom_lock); 1842 1843 if (need_to_kill) { 1844 finish_wait(&memcg_oom_waitq, &owait.wait); 1845 mem_cgroup_out_of_memory(memcg, mask, order); 1846 } else { 1847 schedule(); 1848 finish_wait(&memcg_oom_waitq, &owait.wait); 1849 } 1850 spin_lock(&memcg_oom_lock); 1851 if (locked) 1852 mem_cgroup_oom_unlock(memcg); 1853 memcg_wakeup_oom(memcg); 1854 spin_unlock(&memcg_oom_lock); 1855 1856 mem_cgroup_unmark_under_oom(memcg); 1857 1858 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1859 return false; 1860 /* Give chance to dying process */ 1861 schedule_timeout_uninterruptible(1); 1862 return true; 1863 } 1864 1865 /* 1866 * Currently used to update mapped file statistics, but the routine can be 1867 * generalized to update other statistics as well. 1868 * 1869 * Notes: Race condition 1870 * 1871 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1872 * it tends to be costly. But considering some conditions, we doesn't need 1873 * to do so _always_. 1874 * 1875 * Considering "charge", lock_page_cgroup() is not required because all 1876 * file-stat operations happen after a page is attached to radix-tree. There 1877 * are no race with "charge". 1878 * 1879 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1880 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1881 * if there are race with "uncharge". Statistics itself is properly handled 1882 * by flags. 1883 * 1884 * Considering "move", this is an only case we see a race. To make the race 1885 * small, we check mm->moving_account and detect there are possibility of race 1886 * If there is, we take a lock. 1887 */ 1888 1889 void __mem_cgroup_begin_update_page_stat(struct page *page, 1890 bool *locked, unsigned long *flags) 1891 { 1892 struct mem_cgroup *memcg; 1893 struct page_cgroup *pc; 1894 1895 pc = lookup_page_cgroup(page); 1896 again: 1897 memcg = pc->mem_cgroup; 1898 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1899 return; 1900 /* 1901 * If this memory cgroup is not under account moving, we don't 1902 * need to take move_lock_page_cgroup(). Because we already hold 1903 * rcu_read_lock(), any calls to move_account will be delayed until 1904 * rcu_read_unlock() if mem_cgroup_stolen() == true. 1905 */ 1906 if (!mem_cgroup_stolen(memcg)) 1907 return; 1908 1909 move_lock_mem_cgroup(memcg, flags); 1910 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 1911 move_unlock_mem_cgroup(memcg, flags); 1912 goto again; 1913 } 1914 *locked = true; 1915 } 1916 1917 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 1918 { 1919 struct page_cgroup *pc = lookup_page_cgroup(page); 1920 1921 /* 1922 * It's guaranteed that pc->mem_cgroup never changes while 1923 * lock is held because a routine modifies pc->mem_cgroup 1924 * should take move_lock_page_cgroup(). 1925 */ 1926 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 1927 } 1928 1929 void mem_cgroup_update_page_stat(struct page *page, 1930 enum mem_cgroup_page_stat_item idx, int val) 1931 { 1932 struct mem_cgroup *memcg; 1933 struct page_cgroup *pc = lookup_page_cgroup(page); 1934 unsigned long uninitialized_var(flags); 1935 1936 if (mem_cgroup_disabled()) 1937 return; 1938 1939 memcg = pc->mem_cgroup; 1940 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1941 return; 1942 1943 switch (idx) { 1944 case MEMCG_NR_FILE_MAPPED: 1945 idx = MEM_CGROUP_STAT_FILE_MAPPED; 1946 break; 1947 default: 1948 BUG(); 1949 } 1950 1951 this_cpu_add(memcg->stat->count[idx], val); 1952 } 1953 1954 /* 1955 * size of first charge trial. "32" comes from vmscan.c's magic value. 1956 * TODO: maybe necessary to use big numbers in big irons. 1957 */ 1958 #define CHARGE_BATCH 32U 1959 struct memcg_stock_pcp { 1960 struct mem_cgroup *cached; /* this never be root cgroup */ 1961 unsigned int nr_pages; 1962 struct work_struct work; 1963 unsigned long flags; 1964 #define FLUSHING_CACHED_CHARGE 0 1965 }; 1966 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1967 static DEFINE_MUTEX(percpu_charge_mutex); 1968 1969 /* 1970 * Try to consume stocked charge on this cpu. If success, one page is consumed 1971 * from local stock and true is returned. If the stock is 0 or charges from a 1972 * cgroup which is not current target, returns false. This stock will be 1973 * refilled. 1974 */ 1975 static bool consume_stock(struct mem_cgroup *memcg) 1976 { 1977 struct memcg_stock_pcp *stock; 1978 bool ret = true; 1979 1980 stock = &get_cpu_var(memcg_stock); 1981 if (memcg == stock->cached && stock->nr_pages) 1982 stock->nr_pages--; 1983 else /* need to call res_counter_charge */ 1984 ret = false; 1985 put_cpu_var(memcg_stock); 1986 return ret; 1987 } 1988 1989 /* 1990 * Returns stocks cached in percpu to res_counter and reset cached information. 1991 */ 1992 static void drain_stock(struct memcg_stock_pcp *stock) 1993 { 1994 struct mem_cgroup *old = stock->cached; 1995 1996 if (stock->nr_pages) { 1997 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 1998 1999 res_counter_uncharge(&old->res, bytes); 2000 if (do_swap_account) 2001 res_counter_uncharge(&old->memsw, bytes); 2002 stock->nr_pages = 0; 2003 } 2004 stock->cached = NULL; 2005 } 2006 2007 /* 2008 * This must be called under preempt disabled or must be called by 2009 * a thread which is pinned to local cpu. 2010 */ 2011 static void drain_local_stock(struct work_struct *dummy) 2012 { 2013 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2014 drain_stock(stock); 2015 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2016 } 2017 2018 /* 2019 * Cache charges(val) which is from res_counter, to local per_cpu area. 2020 * This will be consumed by consume_stock() function, later. 2021 */ 2022 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2023 { 2024 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2025 2026 if (stock->cached != memcg) { /* reset if necessary */ 2027 drain_stock(stock); 2028 stock->cached = memcg; 2029 } 2030 stock->nr_pages += nr_pages; 2031 put_cpu_var(memcg_stock); 2032 } 2033 2034 /* 2035 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2036 * of the hierarchy under it. sync flag says whether we should block 2037 * until the work is done. 2038 */ 2039 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2040 { 2041 int cpu, curcpu; 2042 2043 /* Notify other cpus that system-wide "drain" is running */ 2044 get_online_cpus(); 2045 curcpu = get_cpu(); 2046 for_each_online_cpu(cpu) { 2047 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2048 struct mem_cgroup *memcg; 2049 2050 memcg = stock->cached; 2051 if (!memcg || !stock->nr_pages) 2052 continue; 2053 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2054 continue; 2055 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2056 if (cpu == curcpu) 2057 drain_local_stock(&stock->work); 2058 else 2059 schedule_work_on(cpu, &stock->work); 2060 } 2061 } 2062 put_cpu(); 2063 2064 if (!sync) 2065 goto out; 2066 2067 for_each_online_cpu(cpu) { 2068 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2069 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2070 flush_work(&stock->work); 2071 } 2072 out: 2073 put_online_cpus(); 2074 } 2075 2076 /* 2077 * Tries to drain stocked charges in other cpus. This function is asynchronous 2078 * and just put a work per cpu for draining localy on each cpu. Caller can 2079 * expects some charges will be back to res_counter later but cannot wait for 2080 * it. 2081 */ 2082 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2083 { 2084 /* 2085 * If someone calls draining, avoid adding more kworker runs. 2086 */ 2087 if (!mutex_trylock(&percpu_charge_mutex)) 2088 return; 2089 drain_all_stock(root_memcg, false); 2090 mutex_unlock(&percpu_charge_mutex); 2091 } 2092 2093 /* This is a synchronous drain interface. */ 2094 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2095 { 2096 /* called when force_empty is called */ 2097 mutex_lock(&percpu_charge_mutex); 2098 drain_all_stock(root_memcg, true); 2099 mutex_unlock(&percpu_charge_mutex); 2100 } 2101 2102 /* 2103 * This function drains percpu counter value from DEAD cpu and 2104 * move it to local cpu. Note that this function can be preempted. 2105 */ 2106 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2107 { 2108 int i; 2109 2110 spin_lock(&memcg->pcp_counter_lock); 2111 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2112 long x = per_cpu(memcg->stat->count[i], cpu); 2113 2114 per_cpu(memcg->stat->count[i], cpu) = 0; 2115 memcg->nocpu_base.count[i] += x; 2116 } 2117 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2118 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2119 2120 per_cpu(memcg->stat->events[i], cpu) = 0; 2121 memcg->nocpu_base.events[i] += x; 2122 } 2123 spin_unlock(&memcg->pcp_counter_lock); 2124 } 2125 2126 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2127 unsigned long action, 2128 void *hcpu) 2129 { 2130 int cpu = (unsigned long)hcpu; 2131 struct memcg_stock_pcp *stock; 2132 struct mem_cgroup *iter; 2133 2134 if (action == CPU_ONLINE) 2135 return NOTIFY_OK; 2136 2137 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2138 return NOTIFY_OK; 2139 2140 for_each_mem_cgroup(iter) 2141 mem_cgroup_drain_pcp_counter(iter, cpu); 2142 2143 stock = &per_cpu(memcg_stock, cpu); 2144 drain_stock(stock); 2145 return NOTIFY_OK; 2146 } 2147 2148 2149 /* See __mem_cgroup_try_charge() for details */ 2150 enum { 2151 CHARGE_OK, /* success */ 2152 CHARGE_RETRY, /* need to retry but retry is not bad */ 2153 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2154 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2155 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2156 }; 2157 2158 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2159 unsigned int nr_pages, bool oom_check) 2160 { 2161 unsigned long csize = nr_pages * PAGE_SIZE; 2162 struct mem_cgroup *mem_over_limit; 2163 struct res_counter *fail_res; 2164 unsigned long flags = 0; 2165 int ret; 2166 2167 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2168 2169 if (likely(!ret)) { 2170 if (!do_swap_account) 2171 return CHARGE_OK; 2172 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2173 if (likely(!ret)) 2174 return CHARGE_OK; 2175 2176 res_counter_uncharge(&memcg->res, csize); 2177 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2178 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2179 } else 2180 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2181 /* 2182 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2183 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2184 * 2185 * Never reclaim on behalf of optional batching, retry with a 2186 * single page instead. 2187 */ 2188 if (nr_pages == CHARGE_BATCH) 2189 return CHARGE_RETRY; 2190 2191 if (!(gfp_mask & __GFP_WAIT)) 2192 return CHARGE_WOULDBLOCK; 2193 2194 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2195 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2196 return CHARGE_RETRY; 2197 /* 2198 * Even though the limit is exceeded at this point, reclaim 2199 * may have been able to free some pages. Retry the charge 2200 * before killing the task. 2201 * 2202 * Only for regular pages, though: huge pages are rather 2203 * unlikely to succeed so close to the limit, and we fall back 2204 * to regular pages anyway in case of failure. 2205 */ 2206 if (nr_pages == 1 && ret) 2207 return CHARGE_RETRY; 2208 2209 /* 2210 * At task move, charge accounts can be doubly counted. So, it's 2211 * better to wait until the end of task_move if something is going on. 2212 */ 2213 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2214 return CHARGE_RETRY; 2215 2216 /* If we don't need to call oom-killer at el, return immediately */ 2217 if (!oom_check) 2218 return CHARGE_NOMEM; 2219 /* check OOM */ 2220 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2221 return CHARGE_OOM_DIE; 2222 2223 return CHARGE_RETRY; 2224 } 2225 2226 /* 2227 * __mem_cgroup_try_charge() does 2228 * 1. detect memcg to be charged against from passed *mm and *ptr, 2229 * 2. update res_counter 2230 * 3. call memory reclaim if necessary. 2231 * 2232 * In some special case, if the task is fatal, fatal_signal_pending() or 2233 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2234 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2235 * as possible without any hazards. 2: all pages should have a valid 2236 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2237 * pointer, that is treated as a charge to root_mem_cgroup. 2238 * 2239 * So __mem_cgroup_try_charge() will return 2240 * 0 ... on success, filling *ptr with a valid memcg pointer. 2241 * -ENOMEM ... charge failure because of resource limits. 2242 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2243 * 2244 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2245 * the oom-killer can be invoked. 2246 */ 2247 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2248 gfp_t gfp_mask, 2249 unsigned int nr_pages, 2250 struct mem_cgroup **ptr, 2251 bool oom) 2252 { 2253 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2254 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2255 struct mem_cgroup *memcg = NULL; 2256 int ret; 2257 2258 /* 2259 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2260 * in system level. So, allow to go ahead dying process in addition to 2261 * MEMDIE process. 2262 */ 2263 if (unlikely(test_thread_flag(TIF_MEMDIE) 2264 || fatal_signal_pending(current))) 2265 goto bypass; 2266 2267 /* 2268 * We always charge the cgroup the mm_struct belongs to. 2269 * The mm_struct's mem_cgroup changes on task migration if the 2270 * thread group leader migrates. It's possible that mm is not 2271 * set, if so charge the init_mm (happens for pagecache usage). 2272 */ 2273 if (!*ptr && !mm) 2274 *ptr = root_mem_cgroup; 2275 again: 2276 if (*ptr) { /* css should be a valid one */ 2277 memcg = *ptr; 2278 VM_BUG_ON(css_is_removed(&memcg->css)); 2279 if (mem_cgroup_is_root(memcg)) 2280 goto done; 2281 if (nr_pages == 1 && consume_stock(memcg)) 2282 goto done; 2283 css_get(&memcg->css); 2284 } else { 2285 struct task_struct *p; 2286 2287 rcu_read_lock(); 2288 p = rcu_dereference(mm->owner); 2289 /* 2290 * Because we don't have task_lock(), "p" can exit. 2291 * In that case, "memcg" can point to root or p can be NULL with 2292 * race with swapoff. Then, we have small risk of mis-accouning. 2293 * But such kind of mis-account by race always happens because 2294 * we don't have cgroup_mutex(). It's overkill and we allo that 2295 * small race, here. 2296 * (*) swapoff at el will charge against mm-struct not against 2297 * task-struct. So, mm->owner can be NULL. 2298 */ 2299 memcg = mem_cgroup_from_task(p); 2300 if (!memcg) 2301 memcg = root_mem_cgroup; 2302 if (mem_cgroup_is_root(memcg)) { 2303 rcu_read_unlock(); 2304 goto done; 2305 } 2306 if (nr_pages == 1 && consume_stock(memcg)) { 2307 /* 2308 * It seems dagerous to access memcg without css_get(). 2309 * But considering how consume_stok works, it's not 2310 * necessary. If consume_stock success, some charges 2311 * from this memcg are cached on this cpu. So, we 2312 * don't need to call css_get()/css_tryget() before 2313 * calling consume_stock(). 2314 */ 2315 rcu_read_unlock(); 2316 goto done; 2317 } 2318 /* after here, we may be blocked. we need to get refcnt */ 2319 if (!css_tryget(&memcg->css)) { 2320 rcu_read_unlock(); 2321 goto again; 2322 } 2323 rcu_read_unlock(); 2324 } 2325 2326 do { 2327 bool oom_check; 2328 2329 /* If killed, bypass charge */ 2330 if (fatal_signal_pending(current)) { 2331 css_put(&memcg->css); 2332 goto bypass; 2333 } 2334 2335 oom_check = false; 2336 if (oom && !nr_oom_retries) { 2337 oom_check = true; 2338 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2339 } 2340 2341 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2342 switch (ret) { 2343 case CHARGE_OK: 2344 break; 2345 case CHARGE_RETRY: /* not in OOM situation but retry */ 2346 batch = nr_pages; 2347 css_put(&memcg->css); 2348 memcg = NULL; 2349 goto again; 2350 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2351 css_put(&memcg->css); 2352 goto nomem; 2353 case CHARGE_NOMEM: /* OOM routine works */ 2354 if (!oom) { 2355 css_put(&memcg->css); 2356 goto nomem; 2357 } 2358 /* If oom, we never return -ENOMEM */ 2359 nr_oom_retries--; 2360 break; 2361 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2362 css_put(&memcg->css); 2363 goto bypass; 2364 } 2365 } while (ret != CHARGE_OK); 2366 2367 if (batch > nr_pages) 2368 refill_stock(memcg, batch - nr_pages); 2369 css_put(&memcg->css); 2370 done: 2371 *ptr = memcg; 2372 return 0; 2373 nomem: 2374 *ptr = NULL; 2375 return -ENOMEM; 2376 bypass: 2377 *ptr = root_mem_cgroup; 2378 return -EINTR; 2379 } 2380 2381 /* 2382 * Somemtimes we have to undo a charge we got by try_charge(). 2383 * This function is for that and do uncharge, put css's refcnt. 2384 * gotten by try_charge(). 2385 */ 2386 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2387 unsigned int nr_pages) 2388 { 2389 if (!mem_cgroup_is_root(memcg)) { 2390 unsigned long bytes = nr_pages * PAGE_SIZE; 2391 2392 res_counter_uncharge(&memcg->res, bytes); 2393 if (do_swap_account) 2394 res_counter_uncharge(&memcg->memsw, bytes); 2395 } 2396 } 2397 2398 /* 2399 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2400 * This is useful when moving usage to parent cgroup. 2401 */ 2402 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2403 unsigned int nr_pages) 2404 { 2405 unsigned long bytes = nr_pages * PAGE_SIZE; 2406 2407 if (mem_cgroup_is_root(memcg)) 2408 return; 2409 2410 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2411 if (do_swap_account) 2412 res_counter_uncharge_until(&memcg->memsw, 2413 memcg->memsw.parent, bytes); 2414 } 2415 2416 /* 2417 * A helper function to get mem_cgroup from ID. must be called under 2418 * rcu_read_lock(). The caller must check css_is_removed() or some if 2419 * it's concern. (dropping refcnt from swap can be called against removed 2420 * memcg.) 2421 */ 2422 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2423 { 2424 struct cgroup_subsys_state *css; 2425 2426 /* ID 0 is unused ID */ 2427 if (!id) 2428 return NULL; 2429 css = css_lookup(&mem_cgroup_subsys, id); 2430 if (!css) 2431 return NULL; 2432 return container_of(css, struct mem_cgroup, css); 2433 } 2434 2435 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2436 { 2437 struct mem_cgroup *memcg = NULL; 2438 struct page_cgroup *pc; 2439 unsigned short id; 2440 swp_entry_t ent; 2441 2442 VM_BUG_ON(!PageLocked(page)); 2443 2444 pc = lookup_page_cgroup(page); 2445 lock_page_cgroup(pc); 2446 if (PageCgroupUsed(pc)) { 2447 memcg = pc->mem_cgroup; 2448 if (memcg && !css_tryget(&memcg->css)) 2449 memcg = NULL; 2450 } else if (PageSwapCache(page)) { 2451 ent.val = page_private(page); 2452 id = lookup_swap_cgroup_id(ent); 2453 rcu_read_lock(); 2454 memcg = mem_cgroup_lookup(id); 2455 if (memcg && !css_tryget(&memcg->css)) 2456 memcg = NULL; 2457 rcu_read_unlock(); 2458 } 2459 unlock_page_cgroup(pc); 2460 return memcg; 2461 } 2462 2463 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2464 struct page *page, 2465 unsigned int nr_pages, 2466 enum charge_type ctype, 2467 bool lrucare) 2468 { 2469 struct page_cgroup *pc = lookup_page_cgroup(page); 2470 struct zone *uninitialized_var(zone); 2471 struct lruvec *lruvec; 2472 bool was_on_lru = false; 2473 bool anon; 2474 2475 lock_page_cgroup(pc); 2476 if (unlikely(PageCgroupUsed(pc))) { 2477 unlock_page_cgroup(pc); 2478 __mem_cgroup_cancel_charge(memcg, nr_pages); 2479 return; 2480 } 2481 /* 2482 * we don't need page_cgroup_lock about tail pages, becase they are not 2483 * accessed by any other context at this point. 2484 */ 2485 2486 /* 2487 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2488 * may already be on some other mem_cgroup's LRU. Take care of it. 2489 */ 2490 if (lrucare) { 2491 zone = page_zone(page); 2492 spin_lock_irq(&zone->lru_lock); 2493 if (PageLRU(page)) { 2494 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2495 ClearPageLRU(page); 2496 del_page_from_lru_list(page, lruvec, page_lru(page)); 2497 was_on_lru = true; 2498 } 2499 } 2500 2501 pc->mem_cgroup = memcg; 2502 /* 2503 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2504 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2505 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2506 * before USED bit, we need memory barrier here. 2507 * See mem_cgroup_add_lru_list(), etc. 2508 */ 2509 smp_wmb(); 2510 SetPageCgroupUsed(pc); 2511 2512 if (lrucare) { 2513 if (was_on_lru) { 2514 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2515 VM_BUG_ON(PageLRU(page)); 2516 SetPageLRU(page); 2517 add_page_to_lru_list(page, lruvec, page_lru(page)); 2518 } 2519 spin_unlock_irq(&zone->lru_lock); 2520 } 2521 2522 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) 2523 anon = true; 2524 else 2525 anon = false; 2526 2527 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2528 unlock_page_cgroup(pc); 2529 2530 /* 2531 * "charge_statistics" updated event counter. Then, check it. 2532 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2533 * if they exceeds softlimit. 2534 */ 2535 memcg_check_events(memcg, page); 2536 } 2537 2538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2539 2540 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 2541 /* 2542 * Because tail pages are not marked as "used", set it. We're under 2543 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2544 * charge/uncharge will be never happen and move_account() is done under 2545 * compound_lock(), so we don't have to take care of races. 2546 */ 2547 void mem_cgroup_split_huge_fixup(struct page *head) 2548 { 2549 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2550 struct page_cgroup *pc; 2551 int i; 2552 2553 if (mem_cgroup_disabled()) 2554 return; 2555 for (i = 1; i < HPAGE_PMD_NR; i++) { 2556 pc = head_pc + i; 2557 pc->mem_cgroup = head_pc->mem_cgroup; 2558 smp_wmb();/* see __commit_charge() */ 2559 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2560 } 2561 } 2562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2563 2564 /** 2565 * mem_cgroup_move_account - move account of the page 2566 * @page: the page 2567 * @nr_pages: number of regular pages (>1 for huge pages) 2568 * @pc: page_cgroup of the page. 2569 * @from: mem_cgroup which the page is moved from. 2570 * @to: mem_cgroup which the page is moved to. @from != @to. 2571 * 2572 * The caller must confirm following. 2573 * - page is not on LRU (isolate_page() is useful.) 2574 * - compound_lock is held when nr_pages > 1 2575 * 2576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 2577 * from old cgroup. 2578 */ 2579 static int mem_cgroup_move_account(struct page *page, 2580 unsigned int nr_pages, 2581 struct page_cgroup *pc, 2582 struct mem_cgroup *from, 2583 struct mem_cgroup *to) 2584 { 2585 unsigned long flags; 2586 int ret; 2587 bool anon = PageAnon(page); 2588 2589 VM_BUG_ON(from == to); 2590 VM_BUG_ON(PageLRU(page)); 2591 /* 2592 * The page is isolated from LRU. So, collapse function 2593 * will not handle this page. But page splitting can happen. 2594 * Do this check under compound_page_lock(). The caller should 2595 * hold it. 2596 */ 2597 ret = -EBUSY; 2598 if (nr_pages > 1 && !PageTransHuge(page)) 2599 goto out; 2600 2601 lock_page_cgroup(pc); 2602 2603 ret = -EINVAL; 2604 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2605 goto unlock; 2606 2607 move_lock_mem_cgroup(from, &flags); 2608 2609 if (!anon && page_mapped(page)) { 2610 /* Update mapped_file data for mem_cgroup */ 2611 preempt_disable(); 2612 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2613 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2614 preempt_enable(); 2615 } 2616 mem_cgroup_charge_statistics(from, anon, -nr_pages); 2617 2618 /* caller should have done css_get */ 2619 pc->mem_cgroup = to; 2620 mem_cgroup_charge_statistics(to, anon, nr_pages); 2621 /* 2622 * We charges against "to" which may not have any tasks. Then, "to" 2623 * can be under rmdir(). But in current implementation, caller of 2624 * this function is just force_empty() and move charge, so it's 2625 * guaranteed that "to" is never removed. So, we don't check rmdir 2626 * status here. 2627 */ 2628 move_unlock_mem_cgroup(from, &flags); 2629 ret = 0; 2630 unlock: 2631 unlock_page_cgroup(pc); 2632 /* 2633 * check events 2634 */ 2635 memcg_check_events(to, page); 2636 memcg_check_events(from, page); 2637 out: 2638 return ret; 2639 } 2640 2641 /* 2642 * move charges to its parent. 2643 */ 2644 2645 static int mem_cgroup_move_parent(struct page *page, 2646 struct page_cgroup *pc, 2647 struct mem_cgroup *child, 2648 gfp_t gfp_mask) 2649 { 2650 struct mem_cgroup *parent; 2651 unsigned int nr_pages; 2652 unsigned long uninitialized_var(flags); 2653 int ret; 2654 2655 /* Is ROOT ? */ 2656 if (mem_cgroup_is_root(child)) 2657 return -EINVAL; 2658 2659 ret = -EBUSY; 2660 if (!get_page_unless_zero(page)) 2661 goto out; 2662 if (isolate_lru_page(page)) 2663 goto put; 2664 2665 nr_pages = hpage_nr_pages(page); 2666 2667 parent = parent_mem_cgroup(child); 2668 /* 2669 * If no parent, move charges to root cgroup. 2670 */ 2671 if (!parent) 2672 parent = root_mem_cgroup; 2673 2674 if (nr_pages > 1) 2675 flags = compound_lock_irqsave(page); 2676 2677 ret = mem_cgroup_move_account(page, nr_pages, 2678 pc, child, parent); 2679 if (!ret) 2680 __mem_cgroup_cancel_local_charge(child, nr_pages); 2681 2682 if (nr_pages > 1) 2683 compound_unlock_irqrestore(page, flags); 2684 putback_lru_page(page); 2685 put: 2686 put_page(page); 2687 out: 2688 return ret; 2689 } 2690 2691 /* 2692 * Charge the memory controller for page usage. 2693 * Return 2694 * 0 if the charge was successful 2695 * < 0 if the cgroup is over its limit 2696 */ 2697 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2698 gfp_t gfp_mask, enum charge_type ctype) 2699 { 2700 struct mem_cgroup *memcg = NULL; 2701 unsigned int nr_pages = 1; 2702 bool oom = true; 2703 int ret; 2704 2705 if (PageTransHuge(page)) { 2706 nr_pages <<= compound_order(page); 2707 VM_BUG_ON(!PageTransHuge(page)); 2708 /* 2709 * Never OOM-kill a process for a huge page. The 2710 * fault handler will fall back to regular pages. 2711 */ 2712 oom = false; 2713 } 2714 2715 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2716 if (ret == -ENOMEM) 2717 return ret; 2718 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 2719 return 0; 2720 } 2721 2722 int mem_cgroup_newpage_charge(struct page *page, 2723 struct mm_struct *mm, gfp_t gfp_mask) 2724 { 2725 if (mem_cgroup_disabled()) 2726 return 0; 2727 VM_BUG_ON(page_mapped(page)); 2728 VM_BUG_ON(page->mapping && !PageAnon(page)); 2729 VM_BUG_ON(!mm); 2730 return mem_cgroup_charge_common(page, mm, gfp_mask, 2731 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2732 } 2733 2734 static void 2735 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2736 enum charge_type ctype); 2737 2738 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2739 gfp_t gfp_mask) 2740 { 2741 struct mem_cgroup *memcg = NULL; 2742 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2743 int ret; 2744 2745 if (mem_cgroup_disabled()) 2746 return 0; 2747 if (PageCompound(page)) 2748 return 0; 2749 2750 if (unlikely(!mm)) 2751 mm = &init_mm; 2752 if (!page_is_file_cache(page)) 2753 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 2754 2755 if (!PageSwapCache(page)) 2756 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2757 else { /* page is swapcache/shmem */ 2758 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg); 2759 if (!ret) 2760 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2761 } 2762 return ret; 2763 } 2764 2765 /* 2766 * While swap-in, try_charge -> commit or cancel, the page is locked. 2767 * And when try_charge() successfully returns, one refcnt to memcg without 2768 * struct page_cgroup is acquired. This refcnt will be consumed by 2769 * "commit()" or removed by "cancel()" 2770 */ 2771 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2772 struct page *page, 2773 gfp_t mask, struct mem_cgroup **memcgp) 2774 { 2775 struct mem_cgroup *memcg; 2776 int ret; 2777 2778 *memcgp = NULL; 2779 2780 if (mem_cgroup_disabled()) 2781 return 0; 2782 2783 if (!do_swap_account) 2784 goto charge_cur_mm; 2785 /* 2786 * A racing thread's fault, or swapoff, may have already updated 2787 * the pte, and even removed page from swap cache: in those cases 2788 * do_swap_page()'s pte_same() test will fail; but there's also a 2789 * KSM case which does need to charge the page. 2790 */ 2791 if (!PageSwapCache(page)) 2792 goto charge_cur_mm; 2793 memcg = try_get_mem_cgroup_from_page(page); 2794 if (!memcg) 2795 goto charge_cur_mm; 2796 *memcgp = memcg; 2797 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2798 css_put(&memcg->css); 2799 if (ret == -EINTR) 2800 ret = 0; 2801 return ret; 2802 charge_cur_mm: 2803 if (unlikely(!mm)) 2804 mm = &init_mm; 2805 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2806 if (ret == -EINTR) 2807 ret = 0; 2808 return ret; 2809 } 2810 2811 static void 2812 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2813 enum charge_type ctype) 2814 { 2815 if (mem_cgroup_disabled()) 2816 return; 2817 if (!memcg) 2818 return; 2819 cgroup_exclude_rmdir(&memcg->css); 2820 2821 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 2822 /* 2823 * Now swap is on-memory. This means this page may be 2824 * counted both as mem and swap....double count. 2825 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2826 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2827 * may call delete_from_swap_cache() before reach here. 2828 */ 2829 if (do_swap_account && PageSwapCache(page)) { 2830 swp_entry_t ent = {.val = page_private(page)}; 2831 mem_cgroup_uncharge_swap(ent); 2832 } 2833 /* 2834 * At swapin, we may charge account against cgroup which has no tasks. 2835 * So, rmdir()->pre_destroy() can be called while we do this charge. 2836 * In that case, we need to call pre_destroy() again. check it here. 2837 */ 2838 cgroup_release_and_wakeup_rmdir(&memcg->css); 2839 } 2840 2841 void mem_cgroup_commit_charge_swapin(struct page *page, 2842 struct mem_cgroup *memcg) 2843 { 2844 __mem_cgroup_commit_charge_swapin(page, memcg, 2845 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2846 } 2847 2848 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2849 { 2850 if (mem_cgroup_disabled()) 2851 return; 2852 if (!memcg) 2853 return; 2854 __mem_cgroup_cancel_charge(memcg, 1); 2855 } 2856 2857 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2858 unsigned int nr_pages, 2859 const enum charge_type ctype) 2860 { 2861 struct memcg_batch_info *batch = NULL; 2862 bool uncharge_memsw = true; 2863 2864 /* If swapout, usage of swap doesn't decrease */ 2865 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2866 uncharge_memsw = false; 2867 2868 batch = ¤t->memcg_batch; 2869 /* 2870 * In usual, we do css_get() when we remember memcg pointer. 2871 * But in this case, we keep res->usage until end of a series of 2872 * uncharges. Then, it's ok to ignore memcg's refcnt. 2873 */ 2874 if (!batch->memcg) 2875 batch->memcg = memcg; 2876 /* 2877 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2878 * In those cases, all pages freed continuously can be expected to be in 2879 * the same cgroup and we have chance to coalesce uncharges. 2880 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2881 * because we want to do uncharge as soon as possible. 2882 */ 2883 2884 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2885 goto direct_uncharge; 2886 2887 if (nr_pages > 1) 2888 goto direct_uncharge; 2889 2890 /* 2891 * In typical case, batch->memcg == mem. This means we can 2892 * merge a series of uncharges to an uncharge of res_counter. 2893 * If not, we uncharge res_counter ony by one. 2894 */ 2895 if (batch->memcg != memcg) 2896 goto direct_uncharge; 2897 /* remember freed charge and uncharge it later */ 2898 batch->nr_pages++; 2899 if (uncharge_memsw) 2900 batch->memsw_nr_pages++; 2901 return; 2902 direct_uncharge: 2903 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2904 if (uncharge_memsw) 2905 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2906 if (unlikely(batch->memcg != memcg)) 2907 memcg_oom_recover(memcg); 2908 } 2909 2910 /* 2911 * uncharge if !page_mapped(page) 2912 */ 2913 static struct mem_cgroup * 2914 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 2915 { 2916 struct mem_cgroup *memcg = NULL; 2917 unsigned int nr_pages = 1; 2918 struct page_cgroup *pc; 2919 bool anon; 2920 2921 if (mem_cgroup_disabled()) 2922 return NULL; 2923 2924 if (PageSwapCache(page)) 2925 return NULL; 2926 2927 if (PageTransHuge(page)) { 2928 nr_pages <<= compound_order(page); 2929 VM_BUG_ON(!PageTransHuge(page)); 2930 } 2931 /* 2932 * Check if our page_cgroup is valid 2933 */ 2934 pc = lookup_page_cgroup(page); 2935 if (unlikely(!PageCgroupUsed(pc))) 2936 return NULL; 2937 2938 lock_page_cgroup(pc); 2939 2940 memcg = pc->mem_cgroup; 2941 2942 if (!PageCgroupUsed(pc)) 2943 goto unlock_out; 2944 2945 anon = PageAnon(page); 2946 2947 switch (ctype) { 2948 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2949 /* 2950 * Generally PageAnon tells if it's the anon statistics to be 2951 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 2952 * used before page reached the stage of being marked PageAnon. 2953 */ 2954 anon = true; 2955 /* fallthrough */ 2956 case MEM_CGROUP_CHARGE_TYPE_DROP: 2957 /* See mem_cgroup_prepare_migration() */ 2958 if (page_mapped(page) || PageCgroupMigration(pc)) 2959 goto unlock_out; 2960 break; 2961 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 2962 if (!PageAnon(page)) { /* Shared memory */ 2963 if (page->mapping && !page_is_file_cache(page)) 2964 goto unlock_out; 2965 } else if (page_mapped(page)) /* Anon */ 2966 goto unlock_out; 2967 break; 2968 default: 2969 break; 2970 } 2971 2972 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 2973 2974 ClearPageCgroupUsed(pc); 2975 /* 2976 * pc->mem_cgroup is not cleared here. It will be accessed when it's 2977 * freed from LRU. This is safe because uncharged page is expected not 2978 * to be reused (freed soon). Exception is SwapCache, it's handled by 2979 * special functions. 2980 */ 2981 2982 unlock_page_cgroup(pc); 2983 /* 2984 * even after unlock, we have memcg->res.usage here and this memcg 2985 * will never be freed. 2986 */ 2987 memcg_check_events(memcg, page); 2988 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 2989 mem_cgroup_swap_statistics(memcg, true); 2990 mem_cgroup_get(memcg); 2991 } 2992 if (!mem_cgroup_is_root(memcg)) 2993 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 2994 2995 return memcg; 2996 2997 unlock_out: 2998 unlock_page_cgroup(pc); 2999 return NULL; 3000 } 3001 3002 void mem_cgroup_uncharge_page(struct page *page) 3003 { 3004 /* early check. */ 3005 if (page_mapped(page)) 3006 return; 3007 VM_BUG_ON(page->mapping && !PageAnon(page)); 3008 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 3009 } 3010 3011 void mem_cgroup_uncharge_cache_page(struct page *page) 3012 { 3013 VM_BUG_ON(page_mapped(page)); 3014 VM_BUG_ON(page->mapping); 3015 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 3016 } 3017 3018 /* 3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3020 * In that cases, pages are freed continuously and we can expect pages 3021 * are in the same memcg. All these calls itself limits the number of 3022 * pages freed at once, then uncharge_start/end() is called properly. 3023 * This may be called prural(2) times in a context, 3024 */ 3025 3026 void mem_cgroup_uncharge_start(void) 3027 { 3028 current->memcg_batch.do_batch++; 3029 /* We can do nest. */ 3030 if (current->memcg_batch.do_batch == 1) { 3031 current->memcg_batch.memcg = NULL; 3032 current->memcg_batch.nr_pages = 0; 3033 current->memcg_batch.memsw_nr_pages = 0; 3034 } 3035 } 3036 3037 void mem_cgroup_uncharge_end(void) 3038 { 3039 struct memcg_batch_info *batch = ¤t->memcg_batch; 3040 3041 if (!batch->do_batch) 3042 return; 3043 3044 batch->do_batch--; 3045 if (batch->do_batch) /* If stacked, do nothing. */ 3046 return; 3047 3048 if (!batch->memcg) 3049 return; 3050 /* 3051 * This "batch->memcg" is valid without any css_get/put etc... 3052 * bacause we hide charges behind us. 3053 */ 3054 if (batch->nr_pages) 3055 res_counter_uncharge(&batch->memcg->res, 3056 batch->nr_pages * PAGE_SIZE); 3057 if (batch->memsw_nr_pages) 3058 res_counter_uncharge(&batch->memcg->memsw, 3059 batch->memsw_nr_pages * PAGE_SIZE); 3060 memcg_oom_recover(batch->memcg); 3061 /* forget this pointer (for sanity check) */ 3062 batch->memcg = NULL; 3063 } 3064 3065 #ifdef CONFIG_SWAP 3066 /* 3067 * called after __delete_from_swap_cache() and drop "page" account. 3068 * memcg information is recorded to swap_cgroup of "ent" 3069 */ 3070 void 3071 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3072 { 3073 struct mem_cgroup *memcg; 3074 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3075 3076 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3077 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3078 3079 memcg = __mem_cgroup_uncharge_common(page, ctype); 3080 3081 /* 3082 * record memcg information, if swapout && memcg != NULL, 3083 * mem_cgroup_get() was called in uncharge(). 3084 */ 3085 if (do_swap_account && swapout && memcg) 3086 swap_cgroup_record(ent, css_id(&memcg->css)); 3087 } 3088 #endif 3089 3090 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 3091 /* 3092 * called from swap_entry_free(). remove record in swap_cgroup and 3093 * uncharge "memsw" account. 3094 */ 3095 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3096 { 3097 struct mem_cgroup *memcg; 3098 unsigned short id; 3099 3100 if (!do_swap_account) 3101 return; 3102 3103 id = swap_cgroup_record(ent, 0); 3104 rcu_read_lock(); 3105 memcg = mem_cgroup_lookup(id); 3106 if (memcg) { 3107 /* 3108 * We uncharge this because swap is freed. 3109 * This memcg can be obsolete one. We avoid calling css_tryget 3110 */ 3111 if (!mem_cgroup_is_root(memcg)) 3112 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3113 mem_cgroup_swap_statistics(memcg, false); 3114 mem_cgroup_put(memcg); 3115 } 3116 rcu_read_unlock(); 3117 } 3118 3119 /** 3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3121 * @entry: swap entry to be moved 3122 * @from: mem_cgroup which the entry is moved from 3123 * @to: mem_cgroup which the entry is moved to 3124 * 3125 * It succeeds only when the swap_cgroup's record for this entry is the same 3126 * as the mem_cgroup's id of @from. 3127 * 3128 * Returns 0 on success, -EINVAL on failure. 3129 * 3130 * The caller must have charged to @to, IOW, called res_counter_charge() about 3131 * both res and memsw, and called css_get(). 3132 */ 3133 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3134 struct mem_cgroup *from, struct mem_cgroup *to) 3135 { 3136 unsigned short old_id, new_id; 3137 3138 old_id = css_id(&from->css); 3139 new_id = css_id(&to->css); 3140 3141 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3142 mem_cgroup_swap_statistics(from, false); 3143 mem_cgroup_swap_statistics(to, true); 3144 /* 3145 * This function is only called from task migration context now. 3146 * It postpones res_counter and refcount handling till the end 3147 * of task migration(mem_cgroup_clear_mc()) for performance 3148 * improvement. But we cannot postpone mem_cgroup_get(to) 3149 * because if the process that has been moved to @to does 3150 * swap-in, the refcount of @to might be decreased to 0. 3151 */ 3152 mem_cgroup_get(to); 3153 return 0; 3154 } 3155 return -EINVAL; 3156 } 3157 #else 3158 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3159 struct mem_cgroup *from, struct mem_cgroup *to) 3160 { 3161 return -EINVAL; 3162 } 3163 #endif 3164 3165 /* 3166 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3167 * page belongs to. 3168 */ 3169 int mem_cgroup_prepare_migration(struct page *page, 3170 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask) 3171 { 3172 struct mem_cgroup *memcg = NULL; 3173 struct page_cgroup *pc; 3174 enum charge_type ctype; 3175 int ret = 0; 3176 3177 *memcgp = NULL; 3178 3179 VM_BUG_ON(PageTransHuge(page)); 3180 if (mem_cgroup_disabled()) 3181 return 0; 3182 3183 pc = lookup_page_cgroup(page); 3184 lock_page_cgroup(pc); 3185 if (PageCgroupUsed(pc)) { 3186 memcg = pc->mem_cgroup; 3187 css_get(&memcg->css); 3188 /* 3189 * At migrating an anonymous page, its mapcount goes down 3190 * to 0 and uncharge() will be called. But, even if it's fully 3191 * unmapped, migration may fail and this page has to be 3192 * charged again. We set MIGRATION flag here and delay uncharge 3193 * until end_migration() is called 3194 * 3195 * Corner Case Thinking 3196 * A) 3197 * When the old page was mapped as Anon and it's unmap-and-freed 3198 * while migration was ongoing. 3199 * If unmap finds the old page, uncharge() of it will be delayed 3200 * until end_migration(). If unmap finds a new page, it's 3201 * uncharged when it make mapcount to be 1->0. If unmap code 3202 * finds swap_migration_entry, the new page will not be mapped 3203 * and end_migration() will find it(mapcount==0). 3204 * 3205 * B) 3206 * When the old page was mapped but migraion fails, the kernel 3207 * remaps it. A charge for it is kept by MIGRATION flag even 3208 * if mapcount goes down to 0. We can do remap successfully 3209 * without charging it again. 3210 * 3211 * C) 3212 * The "old" page is under lock_page() until the end of 3213 * migration, so, the old page itself will not be swapped-out. 3214 * If the new page is swapped out before end_migraton, our 3215 * hook to usual swap-out path will catch the event. 3216 */ 3217 if (PageAnon(page)) 3218 SetPageCgroupMigration(pc); 3219 } 3220 unlock_page_cgroup(pc); 3221 /* 3222 * If the page is not charged at this point, 3223 * we return here. 3224 */ 3225 if (!memcg) 3226 return 0; 3227 3228 *memcgp = memcg; 3229 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false); 3230 css_put(&memcg->css);/* drop extra refcnt */ 3231 if (ret) { 3232 if (PageAnon(page)) { 3233 lock_page_cgroup(pc); 3234 ClearPageCgroupMigration(pc); 3235 unlock_page_cgroup(pc); 3236 /* 3237 * The old page may be fully unmapped while we kept it. 3238 */ 3239 mem_cgroup_uncharge_page(page); 3240 } 3241 /* we'll need to revisit this error code (we have -EINTR) */ 3242 return -ENOMEM; 3243 } 3244 /* 3245 * We charge new page before it's used/mapped. So, even if unlock_page() 3246 * is called before end_migration, we can catch all events on this new 3247 * page. In the case new page is migrated but not remapped, new page's 3248 * mapcount will be finally 0 and we call uncharge in end_migration(). 3249 */ 3250 if (PageAnon(page)) 3251 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 3252 else if (page_is_file_cache(page)) 3253 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3254 else 3255 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3256 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); 3257 return ret; 3258 } 3259 3260 /* remove redundant charge if migration failed*/ 3261 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3262 struct page *oldpage, struct page *newpage, bool migration_ok) 3263 { 3264 struct page *used, *unused; 3265 struct page_cgroup *pc; 3266 bool anon; 3267 3268 if (!memcg) 3269 return; 3270 /* blocks rmdir() */ 3271 cgroup_exclude_rmdir(&memcg->css); 3272 if (!migration_ok) { 3273 used = oldpage; 3274 unused = newpage; 3275 } else { 3276 used = newpage; 3277 unused = oldpage; 3278 } 3279 /* 3280 * We disallowed uncharge of pages under migration because mapcount 3281 * of the page goes down to zero, temporarly. 3282 * Clear the flag and check the page should be charged. 3283 */ 3284 pc = lookup_page_cgroup(oldpage); 3285 lock_page_cgroup(pc); 3286 ClearPageCgroupMigration(pc); 3287 unlock_page_cgroup(pc); 3288 anon = PageAnon(used); 3289 __mem_cgroup_uncharge_common(unused, 3290 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED 3291 : MEM_CGROUP_CHARGE_TYPE_CACHE); 3292 3293 /* 3294 * If a page is a file cache, radix-tree replacement is very atomic 3295 * and we can skip this check. When it was an Anon page, its mapcount 3296 * goes down to 0. But because we added MIGRATION flage, it's not 3297 * uncharged yet. There are several case but page->mapcount check 3298 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3299 * check. (see prepare_charge() also) 3300 */ 3301 if (anon) 3302 mem_cgroup_uncharge_page(used); 3303 /* 3304 * At migration, we may charge account against cgroup which has no 3305 * tasks. 3306 * So, rmdir()->pre_destroy() can be called while we do this charge. 3307 * In that case, we need to call pre_destroy() again. check it here. 3308 */ 3309 cgroup_release_and_wakeup_rmdir(&memcg->css); 3310 } 3311 3312 /* 3313 * At replace page cache, newpage is not under any memcg but it's on 3314 * LRU. So, this function doesn't touch res_counter but handles LRU 3315 * in correct way. Both pages are locked so we cannot race with uncharge. 3316 */ 3317 void mem_cgroup_replace_page_cache(struct page *oldpage, 3318 struct page *newpage) 3319 { 3320 struct mem_cgroup *memcg = NULL; 3321 struct page_cgroup *pc; 3322 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3323 3324 if (mem_cgroup_disabled()) 3325 return; 3326 3327 pc = lookup_page_cgroup(oldpage); 3328 /* fix accounting on old pages */ 3329 lock_page_cgroup(pc); 3330 if (PageCgroupUsed(pc)) { 3331 memcg = pc->mem_cgroup; 3332 mem_cgroup_charge_statistics(memcg, false, -1); 3333 ClearPageCgroupUsed(pc); 3334 } 3335 unlock_page_cgroup(pc); 3336 3337 /* 3338 * When called from shmem_replace_page(), in some cases the 3339 * oldpage has already been charged, and in some cases not. 3340 */ 3341 if (!memcg) 3342 return; 3343 3344 if (PageSwapBacked(oldpage)) 3345 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3346 3347 /* 3348 * Even if newpage->mapping was NULL before starting replacement, 3349 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3350 * LRU while we overwrite pc->mem_cgroup. 3351 */ 3352 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 3353 } 3354 3355 #ifdef CONFIG_DEBUG_VM 3356 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3357 { 3358 struct page_cgroup *pc; 3359 3360 pc = lookup_page_cgroup(page); 3361 /* 3362 * Can be NULL while feeding pages into the page allocator for 3363 * the first time, i.e. during boot or memory hotplug; 3364 * or when mem_cgroup_disabled(). 3365 */ 3366 if (likely(pc) && PageCgroupUsed(pc)) 3367 return pc; 3368 return NULL; 3369 } 3370 3371 bool mem_cgroup_bad_page_check(struct page *page) 3372 { 3373 if (mem_cgroup_disabled()) 3374 return false; 3375 3376 return lookup_page_cgroup_used(page) != NULL; 3377 } 3378 3379 void mem_cgroup_print_bad_page(struct page *page) 3380 { 3381 struct page_cgroup *pc; 3382 3383 pc = lookup_page_cgroup_used(page); 3384 if (pc) { 3385 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3386 pc, pc->flags, pc->mem_cgroup); 3387 } 3388 } 3389 #endif 3390 3391 static DEFINE_MUTEX(set_limit_mutex); 3392 3393 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3394 unsigned long long val) 3395 { 3396 int retry_count; 3397 u64 memswlimit, memlimit; 3398 int ret = 0; 3399 int children = mem_cgroup_count_children(memcg); 3400 u64 curusage, oldusage; 3401 int enlarge; 3402 3403 /* 3404 * For keeping hierarchical_reclaim simple, how long we should retry 3405 * is depends on callers. We set our retry-count to be function 3406 * of # of children which we should visit in this loop. 3407 */ 3408 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3409 3410 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3411 3412 enlarge = 0; 3413 while (retry_count) { 3414 if (signal_pending(current)) { 3415 ret = -EINTR; 3416 break; 3417 } 3418 /* 3419 * Rather than hide all in some function, I do this in 3420 * open coded manner. You see what this really does. 3421 * We have to guarantee memcg->res.limit < memcg->memsw.limit. 3422 */ 3423 mutex_lock(&set_limit_mutex); 3424 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3425 if (memswlimit < val) { 3426 ret = -EINVAL; 3427 mutex_unlock(&set_limit_mutex); 3428 break; 3429 } 3430 3431 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3432 if (memlimit < val) 3433 enlarge = 1; 3434 3435 ret = res_counter_set_limit(&memcg->res, val); 3436 if (!ret) { 3437 if (memswlimit == val) 3438 memcg->memsw_is_minimum = true; 3439 else 3440 memcg->memsw_is_minimum = false; 3441 } 3442 mutex_unlock(&set_limit_mutex); 3443 3444 if (!ret) 3445 break; 3446 3447 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3448 MEM_CGROUP_RECLAIM_SHRINK); 3449 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3450 /* Usage is reduced ? */ 3451 if (curusage >= oldusage) 3452 retry_count--; 3453 else 3454 oldusage = curusage; 3455 } 3456 if (!ret && enlarge) 3457 memcg_oom_recover(memcg); 3458 3459 return ret; 3460 } 3461 3462 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3463 unsigned long long val) 3464 { 3465 int retry_count; 3466 u64 memlimit, memswlimit, oldusage, curusage; 3467 int children = mem_cgroup_count_children(memcg); 3468 int ret = -EBUSY; 3469 int enlarge = 0; 3470 3471 /* see mem_cgroup_resize_res_limit */ 3472 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3473 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3474 while (retry_count) { 3475 if (signal_pending(current)) { 3476 ret = -EINTR; 3477 break; 3478 } 3479 /* 3480 * Rather than hide all in some function, I do this in 3481 * open coded manner. You see what this really does. 3482 * We have to guarantee memcg->res.limit < memcg->memsw.limit. 3483 */ 3484 mutex_lock(&set_limit_mutex); 3485 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3486 if (memlimit > val) { 3487 ret = -EINVAL; 3488 mutex_unlock(&set_limit_mutex); 3489 break; 3490 } 3491 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3492 if (memswlimit < val) 3493 enlarge = 1; 3494 ret = res_counter_set_limit(&memcg->memsw, val); 3495 if (!ret) { 3496 if (memlimit == val) 3497 memcg->memsw_is_minimum = true; 3498 else 3499 memcg->memsw_is_minimum = false; 3500 } 3501 mutex_unlock(&set_limit_mutex); 3502 3503 if (!ret) 3504 break; 3505 3506 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3507 MEM_CGROUP_RECLAIM_NOSWAP | 3508 MEM_CGROUP_RECLAIM_SHRINK); 3509 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3510 /* Usage is reduced ? */ 3511 if (curusage >= oldusage) 3512 retry_count--; 3513 else 3514 oldusage = curusage; 3515 } 3516 if (!ret && enlarge) 3517 memcg_oom_recover(memcg); 3518 return ret; 3519 } 3520 3521 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3522 gfp_t gfp_mask, 3523 unsigned long *total_scanned) 3524 { 3525 unsigned long nr_reclaimed = 0; 3526 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3527 unsigned long reclaimed; 3528 int loop = 0; 3529 struct mem_cgroup_tree_per_zone *mctz; 3530 unsigned long long excess; 3531 unsigned long nr_scanned; 3532 3533 if (order > 0) 3534 return 0; 3535 3536 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3537 /* 3538 * This loop can run a while, specially if mem_cgroup's continuously 3539 * keep exceeding their soft limit and putting the system under 3540 * pressure 3541 */ 3542 do { 3543 if (next_mz) 3544 mz = next_mz; 3545 else 3546 mz = mem_cgroup_largest_soft_limit_node(mctz); 3547 if (!mz) 3548 break; 3549 3550 nr_scanned = 0; 3551 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3552 gfp_mask, &nr_scanned); 3553 nr_reclaimed += reclaimed; 3554 *total_scanned += nr_scanned; 3555 spin_lock(&mctz->lock); 3556 3557 /* 3558 * If we failed to reclaim anything from this memory cgroup 3559 * it is time to move on to the next cgroup 3560 */ 3561 next_mz = NULL; 3562 if (!reclaimed) { 3563 do { 3564 /* 3565 * Loop until we find yet another one. 3566 * 3567 * By the time we get the soft_limit lock 3568 * again, someone might have aded the 3569 * group back on the RB tree. Iterate to 3570 * make sure we get a different mem. 3571 * mem_cgroup_largest_soft_limit_node returns 3572 * NULL if no other cgroup is present on 3573 * the tree 3574 */ 3575 next_mz = 3576 __mem_cgroup_largest_soft_limit_node(mctz); 3577 if (next_mz == mz) 3578 css_put(&next_mz->memcg->css); 3579 else /* next_mz == NULL or other memcg */ 3580 break; 3581 } while (1); 3582 } 3583 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 3584 excess = res_counter_soft_limit_excess(&mz->memcg->res); 3585 /* 3586 * One school of thought says that we should not add 3587 * back the node to the tree if reclaim returns 0. 3588 * But our reclaim could return 0, simply because due 3589 * to priority we are exposing a smaller subset of 3590 * memory to reclaim from. Consider this as a longer 3591 * term TODO. 3592 */ 3593 /* If excess == 0, no tree ops */ 3594 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 3595 spin_unlock(&mctz->lock); 3596 css_put(&mz->memcg->css); 3597 loop++; 3598 /* 3599 * Could not reclaim anything and there are no more 3600 * mem cgroups to try or we seem to be looping without 3601 * reclaiming anything. 3602 */ 3603 if (!nr_reclaimed && 3604 (next_mz == NULL || 3605 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3606 break; 3607 } while (!nr_reclaimed); 3608 if (next_mz) 3609 css_put(&next_mz->memcg->css); 3610 return nr_reclaimed; 3611 } 3612 3613 /* 3614 * This routine traverse page_cgroup in given list and drop them all. 3615 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 3616 */ 3617 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3618 int node, int zid, enum lru_list lru) 3619 { 3620 struct mem_cgroup_per_zone *mz; 3621 unsigned long flags, loop; 3622 struct list_head *list; 3623 struct page *busy; 3624 struct zone *zone; 3625 int ret = 0; 3626 3627 zone = &NODE_DATA(node)->node_zones[zid]; 3628 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3629 list = &mz->lruvec.lists[lru]; 3630 3631 loop = mz->lru_size[lru]; 3632 /* give some margin against EBUSY etc...*/ 3633 loop += 256; 3634 busy = NULL; 3635 while (loop--) { 3636 struct page_cgroup *pc; 3637 struct page *page; 3638 3639 ret = 0; 3640 spin_lock_irqsave(&zone->lru_lock, flags); 3641 if (list_empty(list)) { 3642 spin_unlock_irqrestore(&zone->lru_lock, flags); 3643 break; 3644 } 3645 page = list_entry(list->prev, struct page, lru); 3646 if (busy == page) { 3647 list_move(&page->lru, list); 3648 busy = NULL; 3649 spin_unlock_irqrestore(&zone->lru_lock, flags); 3650 continue; 3651 } 3652 spin_unlock_irqrestore(&zone->lru_lock, flags); 3653 3654 pc = lookup_page_cgroup(page); 3655 3656 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL); 3657 if (ret == -ENOMEM || ret == -EINTR) 3658 break; 3659 3660 if (ret == -EBUSY || ret == -EINVAL) { 3661 /* found lock contention or "pc" is obsolete. */ 3662 busy = page; 3663 cond_resched(); 3664 } else 3665 busy = NULL; 3666 } 3667 3668 if (!ret && !list_empty(list)) 3669 return -EBUSY; 3670 return ret; 3671 } 3672 3673 /* 3674 * make mem_cgroup's charge to be 0 if there is no task. 3675 * This enables deleting this mem_cgroup. 3676 */ 3677 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3678 { 3679 int ret; 3680 int node, zid, shrink; 3681 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3682 struct cgroup *cgrp = memcg->css.cgroup; 3683 3684 css_get(&memcg->css); 3685 3686 shrink = 0; 3687 /* should free all ? */ 3688 if (free_all) 3689 goto try_to_free; 3690 move_account: 3691 do { 3692 ret = -EBUSY; 3693 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3694 goto out; 3695 ret = -EINTR; 3696 if (signal_pending(current)) 3697 goto out; 3698 /* This is for making all *used* pages to be on LRU. */ 3699 lru_add_drain_all(); 3700 drain_all_stock_sync(memcg); 3701 ret = 0; 3702 mem_cgroup_start_move(memcg); 3703 for_each_node_state(node, N_HIGH_MEMORY) { 3704 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3705 enum lru_list lru; 3706 for_each_lru(lru) { 3707 ret = mem_cgroup_force_empty_list(memcg, 3708 node, zid, lru); 3709 if (ret) 3710 break; 3711 } 3712 } 3713 if (ret) 3714 break; 3715 } 3716 mem_cgroup_end_move(memcg); 3717 memcg_oom_recover(memcg); 3718 /* it seems parent cgroup doesn't have enough mem */ 3719 if (ret == -ENOMEM) 3720 goto try_to_free; 3721 cond_resched(); 3722 /* "ret" should also be checked to ensure all lists are empty. */ 3723 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); 3724 out: 3725 css_put(&memcg->css); 3726 return ret; 3727 3728 try_to_free: 3729 /* returns EBUSY if there is a task or if we come here twice. */ 3730 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3731 ret = -EBUSY; 3732 goto out; 3733 } 3734 /* we call try-to-free pages for make this cgroup empty */ 3735 lru_add_drain_all(); 3736 /* try to free all pages in this cgroup */ 3737 shrink = 1; 3738 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 3739 int progress; 3740 3741 if (signal_pending(current)) { 3742 ret = -EINTR; 3743 goto out; 3744 } 3745 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3746 false); 3747 if (!progress) { 3748 nr_retries--; 3749 /* maybe some writeback is necessary */ 3750 congestion_wait(BLK_RW_ASYNC, HZ/10); 3751 } 3752 3753 } 3754 lru_add_drain(); 3755 /* try move_account...there may be some *locked* pages. */ 3756 goto move_account; 3757 } 3758 3759 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3760 { 3761 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3762 } 3763 3764 3765 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3766 { 3767 return mem_cgroup_from_cont(cont)->use_hierarchy; 3768 } 3769 3770 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3771 u64 val) 3772 { 3773 int retval = 0; 3774 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3775 struct cgroup *parent = cont->parent; 3776 struct mem_cgroup *parent_memcg = NULL; 3777 3778 if (parent) 3779 parent_memcg = mem_cgroup_from_cont(parent); 3780 3781 cgroup_lock(); 3782 /* 3783 * If parent's use_hierarchy is set, we can't make any modifications 3784 * in the child subtrees. If it is unset, then the change can 3785 * occur, provided the current cgroup has no children. 3786 * 3787 * For the root cgroup, parent_mem is NULL, we allow value to be 3788 * set if there are no children. 3789 */ 3790 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3791 (val == 1 || val == 0)) { 3792 if (list_empty(&cont->children)) 3793 memcg->use_hierarchy = val; 3794 else 3795 retval = -EBUSY; 3796 } else 3797 retval = -EINVAL; 3798 cgroup_unlock(); 3799 3800 return retval; 3801 } 3802 3803 3804 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3805 enum mem_cgroup_stat_index idx) 3806 { 3807 struct mem_cgroup *iter; 3808 long val = 0; 3809 3810 /* Per-cpu values can be negative, use a signed accumulator */ 3811 for_each_mem_cgroup_tree(iter, memcg) 3812 val += mem_cgroup_read_stat(iter, idx); 3813 3814 if (val < 0) /* race ? */ 3815 val = 0; 3816 return val; 3817 } 3818 3819 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3820 { 3821 u64 val; 3822 3823 if (!mem_cgroup_is_root(memcg)) { 3824 if (!swap) 3825 return res_counter_read_u64(&memcg->res, RES_USAGE); 3826 else 3827 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3828 } 3829 3830 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3831 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3832 3833 if (swap) 3834 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT); 3835 3836 return val << PAGE_SHIFT; 3837 } 3838 3839 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 3840 struct file *file, char __user *buf, 3841 size_t nbytes, loff_t *ppos) 3842 { 3843 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3844 char str[64]; 3845 u64 val; 3846 int type, name, len; 3847 3848 type = MEMFILE_TYPE(cft->private); 3849 name = MEMFILE_ATTR(cft->private); 3850 3851 if (!do_swap_account && type == _MEMSWAP) 3852 return -EOPNOTSUPP; 3853 3854 switch (type) { 3855 case _MEM: 3856 if (name == RES_USAGE) 3857 val = mem_cgroup_usage(memcg, false); 3858 else 3859 val = res_counter_read_u64(&memcg->res, name); 3860 break; 3861 case _MEMSWAP: 3862 if (name == RES_USAGE) 3863 val = mem_cgroup_usage(memcg, true); 3864 else 3865 val = res_counter_read_u64(&memcg->memsw, name); 3866 break; 3867 default: 3868 BUG(); 3869 } 3870 3871 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 3872 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 3873 } 3874 /* 3875 * The user of this function is... 3876 * RES_LIMIT. 3877 */ 3878 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3879 const char *buffer) 3880 { 3881 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3882 int type, name; 3883 unsigned long long val; 3884 int ret; 3885 3886 type = MEMFILE_TYPE(cft->private); 3887 name = MEMFILE_ATTR(cft->private); 3888 3889 if (!do_swap_account && type == _MEMSWAP) 3890 return -EOPNOTSUPP; 3891 3892 switch (name) { 3893 case RES_LIMIT: 3894 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3895 ret = -EINVAL; 3896 break; 3897 } 3898 /* This function does all necessary parse...reuse it */ 3899 ret = res_counter_memparse_write_strategy(buffer, &val); 3900 if (ret) 3901 break; 3902 if (type == _MEM) 3903 ret = mem_cgroup_resize_limit(memcg, val); 3904 else 3905 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3906 break; 3907 case RES_SOFT_LIMIT: 3908 ret = res_counter_memparse_write_strategy(buffer, &val); 3909 if (ret) 3910 break; 3911 /* 3912 * For memsw, soft limits are hard to implement in terms 3913 * of semantics, for now, we support soft limits for 3914 * control without swap 3915 */ 3916 if (type == _MEM) 3917 ret = res_counter_set_soft_limit(&memcg->res, val); 3918 else 3919 ret = -EINVAL; 3920 break; 3921 default: 3922 ret = -EINVAL; /* should be BUG() ? */ 3923 break; 3924 } 3925 return ret; 3926 } 3927 3928 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3929 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3930 { 3931 struct cgroup *cgroup; 3932 unsigned long long min_limit, min_memsw_limit, tmp; 3933 3934 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3935 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3936 cgroup = memcg->css.cgroup; 3937 if (!memcg->use_hierarchy) 3938 goto out; 3939 3940 while (cgroup->parent) { 3941 cgroup = cgroup->parent; 3942 memcg = mem_cgroup_from_cont(cgroup); 3943 if (!memcg->use_hierarchy) 3944 break; 3945 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 3946 min_limit = min(min_limit, tmp); 3947 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3948 min_memsw_limit = min(min_memsw_limit, tmp); 3949 } 3950 out: 3951 *mem_limit = min_limit; 3952 *memsw_limit = min_memsw_limit; 3953 } 3954 3955 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 3956 { 3957 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3958 int type, name; 3959 3960 type = MEMFILE_TYPE(event); 3961 name = MEMFILE_ATTR(event); 3962 3963 if (!do_swap_account && type == _MEMSWAP) 3964 return -EOPNOTSUPP; 3965 3966 switch (name) { 3967 case RES_MAX_USAGE: 3968 if (type == _MEM) 3969 res_counter_reset_max(&memcg->res); 3970 else 3971 res_counter_reset_max(&memcg->memsw); 3972 break; 3973 case RES_FAILCNT: 3974 if (type == _MEM) 3975 res_counter_reset_failcnt(&memcg->res); 3976 else 3977 res_counter_reset_failcnt(&memcg->memsw); 3978 break; 3979 } 3980 3981 return 0; 3982 } 3983 3984 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 3985 struct cftype *cft) 3986 { 3987 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 3988 } 3989 3990 #ifdef CONFIG_MMU 3991 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3992 struct cftype *cft, u64 val) 3993 { 3994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3995 3996 if (val >= (1 << NR_MOVE_TYPE)) 3997 return -EINVAL; 3998 /* 3999 * We check this value several times in both in can_attach() and 4000 * attach(), so we need cgroup lock to prevent this value from being 4001 * inconsistent. 4002 */ 4003 cgroup_lock(); 4004 memcg->move_charge_at_immigrate = val; 4005 cgroup_unlock(); 4006 4007 return 0; 4008 } 4009 #else 4010 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4011 struct cftype *cft, u64 val) 4012 { 4013 return -ENOSYS; 4014 } 4015 #endif 4016 4017 #ifdef CONFIG_NUMA 4018 static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft, 4019 struct seq_file *m) 4020 { 4021 int nid; 4022 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4023 unsigned long node_nr; 4024 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4025 4026 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 4027 seq_printf(m, "total=%lu", total_nr); 4028 for_each_node_state(nid, N_HIGH_MEMORY) { 4029 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 4030 seq_printf(m, " N%d=%lu", nid, node_nr); 4031 } 4032 seq_putc(m, '\n'); 4033 4034 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 4035 seq_printf(m, "file=%lu", file_nr); 4036 for_each_node_state(nid, N_HIGH_MEMORY) { 4037 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4038 LRU_ALL_FILE); 4039 seq_printf(m, " N%d=%lu", nid, node_nr); 4040 } 4041 seq_putc(m, '\n'); 4042 4043 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 4044 seq_printf(m, "anon=%lu", anon_nr); 4045 for_each_node_state(nid, N_HIGH_MEMORY) { 4046 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4047 LRU_ALL_ANON); 4048 seq_printf(m, " N%d=%lu", nid, node_nr); 4049 } 4050 seq_putc(m, '\n'); 4051 4052 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4053 seq_printf(m, "unevictable=%lu", unevictable_nr); 4054 for_each_node_state(nid, N_HIGH_MEMORY) { 4055 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4056 BIT(LRU_UNEVICTABLE)); 4057 seq_printf(m, " N%d=%lu", nid, node_nr); 4058 } 4059 seq_putc(m, '\n'); 4060 return 0; 4061 } 4062 #endif /* CONFIG_NUMA */ 4063 4064 static const char * const mem_cgroup_lru_names[] = { 4065 "inactive_anon", 4066 "active_anon", 4067 "inactive_file", 4068 "active_file", 4069 "unevictable", 4070 }; 4071 4072 static inline void mem_cgroup_lru_names_not_uptodate(void) 4073 { 4074 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 4075 } 4076 4077 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 4078 struct seq_file *m) 4079 { 4080 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4081 struct mem_cgroup *mi; 4082 unsigned int i; 4083 4084 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4085 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account) 4086 continue; 4087 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 4088 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 4089 } 4090 4091 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 4092 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 4093 mem_cgroup_read_events(memcg, i)); 4094 4095 for (i = 0; i < NR_LRU_LISTS; i++) 4096 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 4097 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 4098 4099 /* Hierarchical information */ 4100 { 4101 unsigned long long limit, memsw_limit; 4102 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 4103 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 4104 if (do_swap_account) 4105 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4106 memsw_limit); 4107 } 4108 4109 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4110 long long val = 0; 4111 4112 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account) 4113 continue; 4114 for_each_mem_cgroup_tree(mi, memcg) 4115 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 4116 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 4117 } 4118 4119 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 4120 unsigned long long val = 0; 4121 4122 for_each_mem_cgroup_tree(mi, memcg) 4123 val += mem_cgroup_read_events(mi, i); 4124 seq_printf(m, "total_%s %llu\n", 4125 mem_cgroup_events_names[i], val); 4126 } 4127 4128 for (i = 0; i < NR_LRU_LISTS; i++) { 4129 unsigned long long val = 0; 4130 4131 for_each_mem_cgroup_tree(mi, memcg) 4132 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 4133 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 4134 } 4135 4136 #ifdef CONFIG_DEBUG_VM 4137 { 4138 int nid, zid; 4139 struct mem_cgroup_per_zone *mz; 4140 struct zone_reclaim_stat *rstat; 4141 unsigned long recent_rotated[2] = {0, 0}; 4142 unsigned long recent_scanned[2] = {0, 0}; 4143 4144 for_each_online_node(nid) 4145 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4146 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 4147 rstat = &mz->lruvec.reclaim_stat; 4148 4149 recent_rotated[0] += rstat->recent_rotated[0]; 4150 recent_rotated[1] += rstat->recent_rotated[1]; 4151 recent_scanned[0] += rstat->recent_scanned[0]; 4152 recent_scanned[1] += rstat->recent_scanned[1]; 4153 } 4154 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 4155 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 4156 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 4157 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 4158 } 4159 #endif 4160 4161 return 0; 4162 } 4163 4164 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4165 { 4166 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4167 4168 return mem_cgroup_swappiness(memcg); 4169 } 4170 4171 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4172 u64 val) 4173 { 4174 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4175 struct mem_cgroup *parent; 4176 4177 if (val > 100) 4178 return -EINVAL; 4179 4180 if (cgrp->parent == NULL) 4181 return -EINVAL; 4182 4183 parent = mem_cgroup_from_cont(cgrp->parent); 4184 4185 cgroup_lock(); 4186 4187 /* If under hierarchy, only empty-root can set this value */ 4188 if ((parent->use_hierarchy) || 4189 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4190 cgroup_unlock(); 4191 return -EINVAL; 4192 } 4193 4194 memcg->swappiness = val; 4195 4196 cgroup_unlock(); 4197 4198 return 0; 4199 } 4200 4201 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4202 { 4203 struct mem_cgroup_threshold_ary *t; 4204 u64 usage; 4205 int i; 4206 4207 rcu_read_lock(); 4208 if (!swap) 4209 t = rcu_dereference(memcg->thresholds.primary); 4210 else 4211 t = rcu_dereference(memcg->memsw_thresholds.primary); 4212 4213 if (!t) 4214 goto unlock; 4215 4216 usage = mem_cgroup_usage(memcg, swap); 4217 4218 /* 4219 * current_threshold points to threshold just below or equal to usage. 4220 * If it's not true, a threshold was crossed after last 4221 * call of __mem_cgroup_threshold(). 4222 */ 4223 i = t->current_threshold; 4224 4225 /* 4226 * Iterate backward over array of thresholds starting from 4227 * current_threshold and check if a threshold is crossed. 4228 * If none of thresholds below usage is crossed, we read 4229 * only one element of the array here. 4230 */ 4231 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4232 eventfd_signal(t->entries[i].eventfd, 1); 4233 4234 /* i = current_threshold + 1 */ 4235 i++; 4236 4237 /* 4238 * Iterate forward over array of thresholds starting from 4239 * current_threshold+1 and check if a threshold is crossed. 4240 * If none of thresholds above usage is crossed, we read 4241 * only one element of the array here. 4242 */ 4243 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4244 eventfd_signal(t->entries[i].eventfd, 1); 4245 4246 /* Update current_threshold */ 4247 t->current_threshold = i - 1; 4248 unlock: 4249 rcu_read_unlock(); 4250 } 4251 4252 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4253 { 4254 while (memcg) { 4255 __mem_cgroup_threshold(memcg, false); 4256 if (do_swap_account) 4257 __mem_cgroup_threshold(memcg, true); 4258 4259 memcg = parent_mem_cgroup(memcg); 4260 } 4261 } 4262 4263 static int compare_thresholds(const void *a, const void *b) 4264 { 4265 const struct mem_cgroup_threshold *_a = a; 4266 const struct mem_cgroup_threshold *_b = b; 4267 4268 return _a->threshold - _b->threshold; 4269 } 4270 4271 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4272 { 4273 struct mem_cgroup_eventfd_list *ev; 4274 4275 list_for_each_entry(ev, &memcg->oom_notify, list) 4276 eventfd_signal(ev->eventfd, 1); 4277 return 0; 4278 } 4279 4280 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4281 { 4282 struct mem_cgroup *iter; 4283 4284 for_each_mem_cgroup_tree(iter, memcg) 4285 mem_cgroup_oom_notify_cb(iter); 4286 } 4287 4288 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4289 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4290 { 4291 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4292 struct mem_cgroup_thresholds *thresholds; 4293 struct mem_cgroup_threshold_ary *new; 4294 int type = MEMFILE_TYPE(cft->private); 4295 u64 threshold, usage; 4296 int i, size, ret; 4297 4298 ret = res_counter_memparse_write_strategy(args, &threshold); 4299 if (ret) 4300 return ret; 4301 4302 mutex_lock(&memcg->thresholds_lock); 4303 4304 if (type == _MEM) 4305 thresholds = &memcg->thresholds; 4306 else if (type == _MEMSWAP) 4307 thresholds = &memcg->memsw_thresholds; 4308 else 4309 BUG(); 4310 4311 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4312 4313 /* Check if a threshold crossed before adding a new one */ 4314 if (thresholds->primary) 4315 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4316 4317 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4318 4319 /* Allocate memory for new array of thresholds */ 4320 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4321 GFP_KERNEL); 4322 if (!new) { 4323 ret = -ENOMEM; 4324 goto unlock; 4325 } 4326 new->size = size; 4327 4328 /* Copy thresholds (if any) to new array */ 4329 if (thresholds->primary) { 4330 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4331 sizeof(struct mem_cgroup_threshold)); 4332 } 4333 4334 /* Add new threshold */ 4335 new->entries[size - 1].eventfd = eventfd; 4336 new->entries[size - 1].threshold = threshold; 4337 4338 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4339 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4340 compare_thresholds, NULL); 4341 4342 /* Find current threshold */ 4343 new->current_threshold = -1; 4344 for (i = 0; i < size; i++) { 4345 if (new->entries[i].threshold <= usage) { 4346 /* 4347 * new->current_threshold will not be used until 4348 * rcu_assign_pointer(), so it's safe to increment 4349 * it here. 4350 */ 4351 ++new->current_threshold; 4352 } else 4353 break; 4354 } 4355 4356 /* Free old spare buffer and save old primary buffer as spare */ 4357 kfree(thresholds->spare); 4358 thresholds->spare = thresholds->primary; 4359 4360 rcu_assign_pointer(thresholds->primary, new); 4361 4362 /* To be sure that nobody uses thresholds */ 4363 synchronize_rcu(); 4364 4365 unlock: 4366 mutex_unlock(&memcg->thresholds_lock); 4367 4368 return ret; 4369 } 4370 4371 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4372 struct cftype *cft, struct eventfd_ctx *eventfd) 4373 { 4374 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4375 struct mem_cgroup_thresholds *thresholds; 4376 struct mem_cgroup_threshold_ary *new; 4377 int type = MEMFILE_TYPE(cft->private); 4378 u64 usage; 4379 int i, j, size; 4380 4381 mutex_lock(&memcg->thresholds_lock); 4382 if (type == _MEM) 4383 thresholds = &memcg->thresholds; 4384 else if (type == _MEMSWAP) 4385 thresholds = &memcg->memsw_thresholds; 4386 else 4387 BUG(); 4388 4389 if (!thresholds->primary) 4390 goto unlock; 4391 4392 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4393 4394 /* Check if a threshold crossed before removing */ 4395 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4396 4397 /* Calculate new number of threshold */ 4398 size = 0; 4399 for (i = 0; i < thresholds->primary->size; i++) { 4400 if (thresholds->primary->entries[i].eventfd != eventfd) 4401 size++; 4402 } 4403 4404 new = thresholds->spare; 4405 4406 /* Set thresholds array to NULL if we don't have thresholds */ 4407 if (!size) { 4408 kfree(new); 4409 new = NULL; 4410 goto swap_buffers; 4411 } 4412 4413 new->size = size; 4414 4415 /* Copy thresholds and find current threshold */ 4416 new->current_threshold = -1; 4417 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4418 if (thresholds->primary->entries[i].eventfd == eventfd) 4419 continue; 4420 4421 new->entries[j] = thresholds->primary->entries[i]; 4422 if (new->entries[j].threshold <= usage) { 4423 /* 4424 * new->current_threshold will not be used 4425 * until rcu_assign_pointer(), so it's safe to increment 4426 * it here. 4427 */ 4428 ++new->current_threshold; 4429 } 4430 j++; 4431 } 4432 4433 swap_buffers: 4434 /* Swap primary and spare array */ 4435 thresholds->spare = thresholds->primary; 4436 /* If all events are unregistered, free the spare array */ 4437 if (!new) { 4438 kfree(thresholds->spare); 4439 thresholds->spare = NULL; 4440 } 4441 4442 rcu_assign_pointer(thresholds->primary, new); 4443 4444 /* To be sure that nobody uses thresholds */ 4445 synchronize_rcu(); 4446 unlock: 4447 mutex_unlock(&memcg->thresholds_lock); 4448 } 4449 4450 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4451 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4452 { 4453 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4454 struct mem_cgroup_eventfd_list *event; 4455 int type = MEMFILE_TYPE(cft->private); 4456 4457 BUG_ON(type != _OOM_TYPE); 4458 event = kmalloc(sizeof(*event), GFP_KERNEL); 4459 if (!event) 4460 return -ENOMEM; 4461 4462 spin_lock(&memcg_oom_lock); 4463 4464 event->eventfd = eventfd; 4465 list_add(&event->list, &memcg->oom_notify); 4466 4467 /* already in OOM ? */ 4468 if (atomic_read(&memcg->under_oom)) 4469 eventfd_signal(eventfd, 1); 4470 spin_unlock(&memcg_oom_lock); 4471 4472 return 0; 4473 } 4474 4475 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4476 struct cftype *cft, struct eventfd_ctx *eventfd) 4477 { 4478 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4479 struct mem_cgroup_eventfd_list *ev, *tmp; 4480 int type = MEMFILE_TYPE(cft->private); 4481 4482 BUG_ON(type != _OOM_TYPE); 4483 4484 spin_lock(&memcg_oom_lock); 4485 4486 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4487 if (ev->eventfd == eventfd) { 4488 list_del(&ev->list); 4489 kfree(ev); 4490 } 4491 } 4492 4493 spin_unlock(&memcg_oom_lock); 4494 } 4495 4496 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4497 struct cftype *cft, struct cgroup_map_cb *cb) 4498 { 4499 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4500 4501 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4502 4503 if (atomic_read(&memcg->under_oom)) 4504 cb->fill(cb, "under_oom", 1); 4505 else 4506 cb->fill(cb, "under_oom", 0); 4507 return 0; 4508 } 4509 4510 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4511 struct cftype *cft, u64 val) 4512 { 4513 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4514 struct mem_cgroup *parent; 4515 4516 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4517 if (!cgrp->parent || !((val == 0) || (val == 1))) 4518 return -EINVAL; 4519 4520 parent = mem_cgroup_from_cont(cgrp->parent); 4521 4522 cgroup_lock(); 4523 /* oom-kill-disable is a flag for subhierarchy. */ 4524 if ((parent->use_hierarchy) || 4525 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4526 cgroup_unlock(); 4527 return -EINVAL; 4528 } 4529 memcg->oom_kill_disable = val; 4530 if (!val) 4531 memcg_oom_recover(memcg); 4532 cgroup_unlock(); 4533 return 0; 4534 } 4535 4536 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 4537 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4538 { 4539 return mem_cgroup_sockets_init(memcg, ss); 4540 }; 4541 4542 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4543 { 4544 mem_cgroup_sockets_destroy(memcg); 4545 } 4546 #else 4547 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4548 { 4549 return 0; 4550 } 4551 4552 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4553 { 4554 } 4555 #endif 4556 4557 static struct cftype mem_cgroup_files[] = { 4558 { 4559 .name = "usage_in_bytes", 4560 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4561 .read = mem_cgroup_read, 4562 .register_event = mem_cgroup_usage_register_event, 4563 .unregister_event = mem_cgroup_usage_unregister_event, 4564 }, 4565 { 4566 .name = "max_usage_in_bytes", 4567 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4568 .trigger = mem_cgroup_reset, 4569 .read = mem_cgroup_read, 4570 }, 4571 { 4572 .name = "limit_in_bytes", 4573 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4574 .write_string = mem_cgroup_write, 4575 .read = mem_cgroup_read, 4576 }, 4577 { 4578 .name = "soft_limit_in_bytes", 4579 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4580 .write_string = mem_cgroup_write, 4581 .read = mem_cgroup_read, 4582 }, 4583 { 4584 .name = "failcnt", 4585 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4586 .trigger = mem_cgroup_reset, 4587 .read = mem_cgroup_read, 4588 }, 4589 { 4590 .name = "stat", 4591 .read_seq_string = mem_control_stat_show, 4592 }, 4593 { 4594 .name = "force_empty", 4595 .trigger = mem_cgroup_force_empty_write, 4596 }, 4597 { 4598 .name = "use_hierarchy", 4599 .write_u64 = mem_cgroup_hierarchy_write, 4600 .read_u64 = mem_cgroup_hierarchy_read, 4601 }, 4602 { 4603 .name = "swappiness", 4604 .read_u64 = mem_cgroup_swappiness_read, 4605 .write_u64 = mem_cgroup_swappiness_write, 4606 }, 4607 { 4608 .name = "move_charge_at_immigrate", 4609 .read_u64 = mem_cgroup_move_charge_read, 4610 .write_u64 = mem_cgroup_move_charge_write, 4611 }, 4612 { 4613 .name = "oom_control", 4614 .read_map = mem_cgroup_oom_control_read, 4615 .write_u64 = mem_cgroup_oom_control_write, 4616 .register_event = mem_cgroup_oom_register_event, 4617 .unregister_event = mem_cgroup_oom_unregister_event, 4618 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4619 }, 4620 #ifdef CONFIG_NUMA 4621 { 4622 .name = "numa_stat", 4623 .read_seq_string = mem_control_numa_stat_show, 4624 }, 4625 #endif 4626 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4627 { 4628 .name = "memsw.usage_in_bytes", 4629 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4630 .read = mem_cgroup_read, 4631 .register_event = mem_cgroup_usage_register_event, 4632 .unregister_event = mem_cgroup_usage_unregister_event, 4633 }, 4634 { 4635 .name = "memsw.max_usage_in_bytes", 4636 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4637 .trigger = mem_cgroup_reset, 4638 .read = mem_cgroup_read, 4639 }, 4640 { 4641 .name = "memsw.limit_in_bytes", 4642 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4643 .write_string = mem_cgroup_write, 4644 .read = mem_cgroup_read, 4645 }, 4646 { 4647 .name = "memsw.failcnt", 4648 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4649 .trigger = mem_cgroup_reset, 4650 .read = mem_cgroup_read, 4651 }, 4652 #endif 4653 { }, /* terminate */ 4654 }; 4655 4656 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4657 { 4658 struct mem_cgroup_per_node *pn; 4659 struct mem_cgroup_per_zone *mz; 4660 int zone, tmp = node; 4661 /* 4662 * This routine is called against possible nodes. 4663 * But it's BUG to call kmalloc() against offline node. 4664 * 4665 * TODO: this routine can waste much memory for nodes which will 4666 * never be onlined. It's better to use memory hotplug callback 4667 * function. 4668 */ 4669 if (!node_state(node, N_NORMAL_MEMORY)) 4670 tmp = -1; 4671 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4672 if (!pn) 4673 return 1; 4674 4675 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4676 mz = &pn->zoneinfo[zone]; 4677 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); 4678 mz->usage_in_excess = 0; 4679 mz->on_tree = false; 4680 mz->memcg = memcg; 4681 } 4682 memcg->info.nodeinfo[node] = pn; 4683 return 0; 4684 } 4685 4686 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4687 { 4688 kfree(memcg->info.nodeinfo[node]); 4689 } 4690 4691 static struct mem_cgroup *mem_cgroup_alloc(void) 4692 { 4693 struct mem_cgroup *memcg; 4694 int size = sizeof(struct mem_cgroup); 4695 4696 /* Can be very big if MAX_NUMNODES is very big */ 4697 if (size < PAGE_SIZE) 4698 memcg = kzalloc(size, GFP_KERNEL); 4699 else 4700 memcg = vzalloc(size); 4701 4702 if (!memcg) 4703 return NULL; 4704 4705 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4706 if (!memcg->stat) 4707 goto out_free; 4708 spin_lock_init(&memcg->pcp_counter_lock); 4709 return memcg; 4710 4711 out_free: 4712 if (size < PAGE_SIZE) 4713 kfree(memcg); 4714 else 4715 vfree(memcg); 4716 return NULL; 4717 } 4718 4719 /* 4720 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 4721 * but in process context. The work_freeing structure is overlaid 4722 * on the rcu_freeing structure, which itself is overlaid on memsw. 4723 */ 4724 static void free_work(struct work_struct *work) 4725 { 4726 struct mem_cgroup *memcg; 4727 int size = sizeof(struct mem_cgroup); 4728 4729 memcg = container_of(work, struct mem_cgroup, work_freeing); 4730 /* 4731 * We need to make sure that (at least for now), the jump label 4732 * destruction code runs outside of the cgroup lock. This is because 4733 * get_online_cpus(), which is called from the static_branch update, 4734 * can't be called inside the cgroup_lock. cpusets are the ones 4735 * enforcing this dependency, so if they ever change, we might as well. 4736 * 4737 * schedule_work() will guarantee this happens. Be careful if you need 4738 * to move this code around, and make sure it is outside 4739 * the cgroup_lock. 4740 */ 4741 disarm_sock_keys(memcg); 4742 if (size < PAGE_SIZE) 4743 kfree(memcg); 4744 else 4745 vfree(memcg); 4746 } 4747 4748 static void free_rcu(struct rcu_head *rcu_head) 4749 { 4750 struct mem_cgroup *memcg; 4751 4752 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 4753 INIT_WORK(&memcg->work_freeing, free_work); 4754 schedule_work(&memcg->work_freeing); 4755 } 4756 4757 /* 4758 * At destroying mem_cgroup, references from swap_cgroup can remain. 4759 * (scanning all at force_empty is too costly...) 4760 * 4761 * Instead of clearing all references at force_empty, we remember 4762 * the number of reference from swap_cgroup and free mem_cgroup when 4763 * it goes down to 0. 4764 * 4765 * Removal of cgroup itself succeeds regardless of refs from swap. 4766 */ 4767 4768 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4769 { 4770 int node; 4771 4772 mem_cgroup_remove_from_trees(memcg); 4773 free_css_id(&mem_cgroup_subsys, &memcg->css); 4774 4775 for_each_node(node) 4776 free_mem_cgroup_per_zone_info(memcg, node); 4777 4778 free_percpu(memcg->stat); 4779 call_rcu(&memcg->rcu_freeing, free_rcu); 4780 } 4781 4782 static void mem_cgroup_get(struct mem_cgroup *memcg) 4783 { 4784 atomic_inc(&memcg->refcnt); 4785 } 4786 4787 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4788 { 4789 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4790 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4791 __mem_cgroup_free(memcg); 4792 if (parent) 4793 mem_cgroup_put(parent); 4794 } 4795 } 4796 4797 static void mem_cgroup_put(struct mem_cgroup *memcg) 4798 { 4799 __mem_cgroup_put(memcg, 1); 4800 } 4801 4802 /* 4803 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4804 */ 4805 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4806 { 4807 if (!memcg->res.parent) 4808 return NULL; 4809 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4810 } 4811 EXPORT_SYMBOL(parent_mem_cgroup); 4812 4813 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4814 static void __init enable_swap_cgroup(void) 4815 { 4816 if (!mem_cgroup_disabled() && really_do_swap_account) 4817 do_swap_account = 1; 4818 } 4819 #else 4820 static void __init enable_swap_cgroup(void) 4821 { 4822 } 4823 #endif 4824 4825 static int mem_cgroup_soft_limit_tree_init(void) 4826 { 4827 struct mem_cgroup_tree_per_node *rtpn; 4828 struct mem_cgroup_tree_per_zone *rtpz; 4829 int tmp, node, zone; 4830 4831 for_each_node(node) { 4832 tmp = node; 4833 if (!node_state(node, N_NORMAL_MEMORY)) 4834 tmp = -1; 4835 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4836 if (!rtpn) 4837 goto err_cleanup; 4838 4839 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4840 4841 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4842 rtpz = &rtpn->rb_tree_per_zone[zone]; 4843 rtpz->rb_root = RB_ROOT; 4844 spin_lock_init(&rtpz->lock); 4845 } 4846 } 4847 return 0; 4848 4849 err_cleanup: 4850 for_each_node(node) { 4851 if (!soft_limit_tree.rb_tree_per_node[node]) 4852 break; 4853 kfree(soft_limit_tree.rb_tree_per_node[node]); 4854 soft_limit_tree.rb_tree_per_node[node] = NULL; 4855 } 4856 return 1; 4857 4858 } 4859 4860 static struct cgroup_subsys_state * __ref 4861 mem_cgroup_create(struct cgroup *cont) 4862 { 4863 struct mem_cgroup *memcg, *parent; 4864 long error = -ENOMEM; 4865 int node; 4866 4867 memcg = mem_cgroup_alloc(); 4868 if (!memcg) 4869 return ERR_PTR(error); 4870 4871 for_each_node(node) 4872 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4873 goto free_out; 4874 4875 /* root ? */ 4876 if (cont->parent == NULL) { 4877 int cpu; 4878 enable_swap_cgroup(); 4879 parent = NULL; 4880 if (mem_cgroup_soft_limit_tree_init()) 4881 goto free_out; 4882 root_mem_cgroup = memcg; 4883 for_each_possible_cpu(cpu) { 4884 struct memcg_stock_pcp *stock = 4885 &per_cpu(memcg_stock, cpu); 4886 INIT_WORK(&stock->work, drain_local_stock); 4887 } 4888 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4889 } else { 4890 parent = mem_cgroup_from_cont(cont->parent); 4891 memcg->use_hierarchy = parent->use_hierarchy; 4892 memcg->oom_kill_disable = parent->oom_kill_disable; 4893 } 4894 4895 if (parent && parent->use_hierarchy) { 4896 res_counter_init(&memcg->res, &parent->res); 4897 res_counter_init(&memcg->memsw, &parent->memsw); 4898 /* 4899 * We increment refcnt of the parent to ensure that we can 4900 * safely access it on res_counter_charge/uncharge. 4901 * This refcnt will be decremented when freeing this 4902 * mem_cgroup(see mem_cgroup_put). 4903 */ 4904 mem_cgroup_get(parent); 4905 } else { 4906 res_counter_init(&memcg->res, NULL); 4907 res_counter_init(&memcg->memsw, NULL); 4908 } 4909 memcg->last_scanned_node = MAX_NUMNODES; 4910 INIT_LIST_HEAD(&memcg->oom_notify); 4911 4912 if (parent) 4913 memcg->swappiness = mem_cgroup_swappiness(parent); 4914 atomic_set(&memcg->refcnt, 1); 4915 memcg->move_charge_at_immigrate = 0; 4916 mutex_init(&memcg->thresholds_lock); 4917 spin_lock_init(&memcg->move_lock); 4918 4919 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 4920 if (error) { 4921 /* 4922 * We call put now because our (and parent's) refcnts 4923 * are already in place. mem_cgroup_put() will internally 4924 * call __mem_cgroup_free, so return directly 4925 */ 4926 mem_cgroup_put(memcg); 4927 return ERR_PTR(error); 4928 } 4929 return &memcg->css; 4930 free_out: 4931 __mem_cgroup_free(memcg); 4932 return ERR_PTR(error); 4933 } 4934 4935 static int mem_cgroup_pre_destroy(struct cgroup *cont) 4936 { 4937 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4938 4939 return mem_cgroup_force_empty(memcg, false); 4940 } 4941 4942 static void mem_cgroup_destroy(struct cgroup *cont) 4943 { 4944 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4945 4946 kmem_cgroup_destroy(memcg); 4947 4948 mem_cgroup_put(memcg); 4949 } 4950 4951 #ifdef CONFIG_MMU 4952 /* Handlers for move charge at task migration. */ 4953 #define PRECHARGE_COUNT_AT_ONCE 256 4954 static int mem_cgroup_do_precharge(unsigned long count) 4955 { 4956 int ret = 0; 4957 int batch_count = PRECHARGE_COUNT_AT_ONCE; 4958 struct mem_cgroup *memcg = mc.to; 4959 4960 if (mem_cgroup_is_root(memcg)) { 4961 mc.precharge += count; 4962 /* we don't need css_get for root */ 4963 return ret; 4964 } 4965 /* try to charge at once */ 4966 if (count > 1) { 4967 struct res_counter *dummy; 4968 /* 4969 * "memcg" cannot be under rmdir() because we've already checked 4970 * by cgroup_lock_live_cgroup() that it is not removed and we 4971 * are still under the same cgroup_mutex. So we can postpone 4972 * css_get(). 4973 */ 4974 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 4975 goto one_by_one; 4976 if (do_swap_account && res_counter_charge(&memcg->memsw, 4977 PAGE_SIZE * count, &dummy)) { 4978 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 4979 goto one_by_one; 4980 } 4981 mc.precharge += count; 4982 return ret; 4983 } 4984 one_by_one: 4985 /* fall back to one by one charge */ 4986 while (count--) { 4987 if (signal_pending(current)) { 4988 ret = -EINTR; 4989 break; 4990 } 4991 if (!batch_count--) { 4992 batch_count = PRECHARGE_COUNT_AT_ONCE; 4993 cond_resched(); 4994 } 4995 ret = __mem_cgroup_try_charge(NULL, 4996 GFP_KERNEL, 1, &memcg, false); 4997 if (ret) 4998 /* mem_cgroup_clear_mc() will do uncharge later */ 4999 return ret; 5000 mc.precharge++; 5001 } 5002 return ret; 5003 } 5004 5005 /** 5006 * get_mctgt_type - get target type of moving charge 5007 * @vma: the vma the pte to be checked belongs 5008 * @addr: the address corresponding to the pte to be checked 5009 * @ptent: the pte to be checked 5010 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5011 * 5012 * Returns 5013 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5014 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5015 * move charge. if @target is not NULL, the page is stored in target->page 5016 * with extra refcnt got(Callers should handle it). 5017 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5018 * target for charge migration. if @target is not NULL, the entry is stored 5019 * in target->ent. 5020 * 5021 * Called with pte lock held. 5022 */ 5023 union mc_target { 5024 struct page *page; 5025 swp_entry_t ent; 5026 }; 5027 5028 enum mc_target_type { 5029 MC_TARGET_NONE = 0, 5030 MC_TARGET_PAGE, 5031 MC_TARGET_SWAP, 5032 }; 5033 5034 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5035 unsigned long addr, pte_t ptent) 5036 { 5037 struct page *page = vm_normal_page(vma, addr, ptent); 5038 5039 if (!page || !page_mapped(page)) 5040 return NULL; 5041 if (PageAnon(page)) { 5042 /* we don't move shared anon */ 5043 if (!move_anon()) 5044 return NULL; 5045 } else if (!move_file()) 5046 /* we ignore mapcount for file pages */ 5047 return NULL; 5048 if (!get_page_unless_zero(page)) 5049 return NULL; 5050 5051 return page; 5052 } 5053 5054 #ifdef CONFIG_SWAP 5055 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5056 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5057 { 5058 struct page *page = NULL; 5059 swp_entry_t ent = pte_to_swp_entry(ptent); 5060 5061 if (!move_anon() || non_swap_entry(ent)) 5062 return NULL; 5063 /* 5064 * Because lookup_swap_cache() updates some statistics counter, 5065 * we call find_get_page() with swapper_space directly. 5066 */ 5067 page = find_get_page(&swapper_space, ent.val); 5068 if (do_swap_account) 5069 entry->val = ent.val; 5070 5071 return page; 5072 } 5073 #else 5074 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5075 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5076 { 5077 return NULL; 5078 } 5079 #endif 5080 5081 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5082 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5083 { 5084 struct page *page = NULL; 5085 struct address_space *mapping; 5086 pgoff_t pgoff; 5087 5088 if (!vma->vm_file) /* anonymous vma */ 5089 return NULL; 5090 if (!move_file()) 5091 return NULL; 5092 5093 mapping = vma->vm_file->f_mapping; 5094 if (pte_none(ptent)) 5095 pgoff = linear_page_index(vma, addr); 5096 else /* pte_file(ptent) is true */ 5097 pgoff = pte_to_pgoff(ptent); 5098 5099 /* page is moved even if it's not RSS of this task(page-faulted). */ 5100 page = find_get_page(mapping, pgoff); 5101 5102 #ifdef CONFIG_SWAP 5103 /* shmem/tmpfs may report page out on swap: account for that too. */ 5104 if (radix_tree_exceptional_entry(page)) { 5105 swp_entry_t swap = radix_to_swp_entry(page); 5106 if (do_swap_account) 5107 *entry = swap; 5108 page = find_get_page(&swapper_space, swap.val); 5109 } 5110 #endif 5111 return page; 5112 } 5113 5114 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5115 unsigned long addr, pte_t ptent, union mc_target *target) 5116 { 5117 struct page *page = NULL; 5118 struct page_cgroup *pc; 5119 enum mc_target_type ret = MC_TARGET_NONE; 5120 swp_entry_t ent = { .val = 0 }; 5121 5122 if (pte_present(ptent)) 5123 page = mc_handle_present_pte(vma, addr, ptent); 5124 else if (is_swap_pte(ptent)) 5125 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5126 else if (pte_none(ptent) || pte_file(ptent)) 5127 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5128 5129 if (!page && !ent.val) 5130 return ret; 5131 if (page) { 5132 pc = lookup_page_cgroup(page); 5133 /* 5134 * Do only loose check w/o page_cgroup lock. 5135 * mem_cgroup_move_account() checks the pc is valid or not under 5136 * the lock. 5137 */ 5138 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5139 ret = MC_TARGET_PAGE; 5140 if (target) 5141 target->page = page; 5142 } 5143 if (!ret || !target) 5144 put_page(page); 5145 } 5146 /* There is a swap entry and a page doesn't exist or isn't charged */ 5147 if (ent.val && !ret && 5148 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5149 ret = MC_TARGET_SWAP; 5150 if (target) 5151 target->ent = ent; 5152 } 5153 return ret; 5154 } 5155 5156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5157 /* 5158 * We don't consider swapping or file mapped pages because THP does not 5159 * support them for now. 5160 * Caller should make sure that pmd_trans_huge(pmd) is true. 5161 */ 5162 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5163 unsigned long addr, pmd_t pmd, union mc_target *target) 5164 { 5165 struct page *page = NULL; 5166 struct page_cgroup *pc; 5167 enum mc_target_type ret = MC_TARGET_NONE; 5168 5169 page = pmd_page(pmd); 5170 VM_BUG_ON(!page || !PageHead(page)); 5171 if (!move_anon()) 5172 return ret; 5173 pc = lookup_page_cgroup(page); 5174 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5175 ret = MC_TARGET_PAGE; 5176 if (target) { 5177 get_page(page); 5178 target->page = page; 5179 } 5180 } 5181 return ret; 5182 } 5183 #else 5184 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5185 unsigned long addr, pmd_t pmd, union mc_target *target) 5186 { 5187 return MC_TARGET_NONE; 5188 } 5189 #endif 5190 5191 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5192 unsigned long addr, unsigned long end, 5193 struct mm_walk *walk) 5194 { 5195 struct vm_area_struct *vma = walk->private; 5196 pte_t *pte; 5197 spinlock_t *ptl; 5198 5199 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5200 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5201 mc.precharge += HPAGE_PMD_NR; 5202 spin_unlock(&vma->vm_mm->page_table_lock); 5203 return 0; 5204 } 5205 5206 if (pmd_trans_unstable(pmd)) 5207 return 0; 5208 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5209 for (; addr != end; pte++, addr += PAGE_SIZE) 5210 if (get_mctgt_type(vma, addr, *pte, NULL)) 5211 mc.precharge++; /* increment precharge temporarily */ 5212 pte_unmap_unlock(pte - 1, ptl); 5213 cond_resched(); 5214 5215 return 0; 5216 } 5217 5218 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5219 { 5220 unsigned long precharge; 5221 struct vm_area_struct *vma; 5222 5223 down_read(&mm->mmap_sem); 5224 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5225 struct mm_walk mem_cgroup_count_precharge_walk = { 5226 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5227 .mm = mm, 5228 .private = vma, 5229 }; 5230 if (is_vm_hugetlb_page(vma)) 5231 continue; 5232 walk_page_range(vma->vm_start, vma->vm_end, 5233 &mem_cgroup_count_precharge_walk); 5234 } 5235 up_read(&mm->mmap_sem); 5236 5237 precharge = mc.precharge; 5238 mc.precharge = 0; 5239 5240 return precharge; 5241 } 5242 5243 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5244 { 5245 unsigned long precharge = mem_cgroup_count_precharge(mm); 5246 5247 VM_BUG_ON(mc.moving_task); 5248 mc.moving_task = current; 5249 return mem_cgroup_do_precharge(precharge); 5250 } 5251 5252 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5253 static void __mem_cgroup_clear_mc(void) 5254 { 5255 struct mem_cgroup *from = mc.from; 5256 struct mem_cgroup *to = mc.to; 5257 5258 /* we must uncharge all the leftover precharges from mc.to */ 5259 if (mc.precharge) { 5260 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5261 mc.precharge = 0; 5262 } 5263 /* 5264 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5265 * we must uncharge here. 5266 */ 5267 if (mc.moved_charge) { 5268 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5269 mc.moved_charge = 0; 5270 } 5271 /* we must fixup refcnts and charges */ 5272 if (mc.moved_swap) { 5273 /* uncharge swap account from the old cgroup */ 5274 if (!mem_cgroup_is_root(mc.from)) 5275 res_counter_uncharge(&mc.from->memsw, 5276 PAGE_SIZE * mc.moved_swap); 5277 __mem_cgroup_put(mc.from, mc.moved_swap); 5278 5279 if (!mem_cgroup_is_root(mc.to)) { 5280 /* 5281 * we charged both to->res and to->memsw, so we should 5282 * uncharge to->res. 5283 */ 5284 res_counter_uncharge(&mc.to->res, 5285 PAGE_SIZE * mc.moved_swap); 5286 } 5287 /* we've already done mem_cgroup_get(mc.to) */ 5288 mc.moved_swap = 0; 5289 } 5290 memcg_oom_recover(from); 5291 memcg_oom_recover(to); 5292 wake_up_all(&mc.waitq); 5293 } 5294 5295 static void mem_cgroup_clear_mc(void) 5296 { 5297 struct mem_cgroup *from = mc.from; 5298 5299 /* 5300 * we must clear moving_task before waking up waiters at the end of 5301 * task migration. 5302 */ 5303 mc.moving_task = NULL; 5304 __mem_cgroup_clear_mc(); 5305 spin_lock(&mc.lock); 5306 mc.from = NULL; 5307 mc.to = NULL; 5308 spin_unlock(&mc.lock); 5309 mem_cgroup_end_move(from); 5310 } 5311 5312 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5313 struct cgroup_taskset *tset) 5314 { 5315 struct task_struct *p = cgroup_taskset_first(tset); 5316 int ret = 0; 5317 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5318 5319 if (memcg->move_charge_at_immigrate) { 5320 struct mm_struct *mm; 5321 struct mem_cgroup *from = mem_cgroup_from_task(p); 5322 5323 VM_BUG_ON(from == memcg); 5324 5325 mm = get_task_mm(p); 5326 if (!mm) 5327 return 0; 5328 /* We move charges only when we move a owner of the mm */ 5329 if (mm->owner == p) { 5330 VM_BUG_ON(mc.from); 5331 VM_BUG_ON(mc.to); 5332 VM_BUG_ON(mc.precharge); 5333 VM_BUG_ON(mc.moved_charge); 5334 VM_BUG_ON(mc.moved_swap); 5335 mem_cgroup_start_move(from); 5336 spin_lock(&mc.lock); 5337 mc.from = from; 5338 mc.to = memcg; 5339 spin_unlock(&mc.lock); 5340 /* We set mc.moving_task later */ 5341 5342 ret = mem_cgroup_precharge_mc(mm); 5343 if (ret) 5344 mem_cgroup_clear_mc(); 5345 } 5346 mmput(mm); 5347 } 5348 return ret; 5349 } 5350 5351 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5352 struct cgroup_taskset *tset) 5353 { 5354 mem_cgroup_clear_mc(); 5355 } 5356 5357 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5358 unsigned long addr, unsigned long end, 5359 struct mm_walk *walk) 5360 { 5361 int ret = 0; 5362 struct vm_area_struct *vma = walk->private; 5363 pte_t *pte; 5364 spinlock_t *ptl; 5365 enum mc_target_type target_type; 5366 union mc_target target; 5367 struct page *page; 5368 struct page_cgroup *pc; 5369 5370 /* 5371 * We don't take compound_lock() here but no race with splitting thp 5372 * happens because: 5373 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5374 * under splitting, which means there's no concurrent thp split, 5375 * - if another thread runs into split_huge_page() just after we 5376 * entered this if-block, the thread must wait for page table lock 5377 * to be unlocked in __split_huge_page_splitting(), where the main 5378 * part of thp split is not executed yet. 5379 */ 5380 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5381 if (mc.precharge < HPAGE_PMD_NR) { 5382 spin_unlock(&vma->vm_mm->page_table_lock); 5383 return 0; 5384 } 5385 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5386 if (target_type == MC_TARGET_PAGE) { 5387 page = target.page; 5388 if (!isolate_lru_page(page)) { 5389 pc = lookup_page_cgroup(page); 5390 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5391 pc, mc.from, mc.to)) { 5392 mc.precharge -= HPAGE_PMD_NR; 5393 mc.moved_charge += HPAGE_PMD_NR; 5394 } 5395 putback_lru_page(page); 5396 } 5397 put_page(page); 5398 } 5399 spin_unlock(&vma->vm_mm->page_table_lock); 5400 return 0; 5401 } 5402 5403 if (pmd_trans_unstable(pmd)) 5404 return 0; 5405 retry: 5406 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5407 for (; addr != end; addr += PAGE_SIZE) { 5408 pte_t ptent = *(pte++); 5409 swp_entry_t ent; 5410 5411 if (!mc.precharge) 5412 break; 5413 5414 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5415 case MC_TARGET_PAGE: 5416 page = target.page; 5417 if (isolate_lru_page(page)) 5418 goto put; 5419 pc = lookup_page_cgroup(page); 5420 if (!mem_cgroup_move_account(page, 1, pc, 5421 mc.from, mc.to)) { 5422 mc.precharge--; 5423 /* we uncharge from mc.from later. */ 5424 mc.moved_charge++; 5425 } 5426 putback_lru_page(page); 5427 put: /* get_mctgt_type() gets the page */ 5428 put_page(page); 5429 break; 5430 case MC_TARGET_SWAP: 5431 ent = target.ent; 5432 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5433 mc.precharge--; 5434 /* we fixup refcnts and charges later. */ 5435 mc.moved_swap++; 5436 } 5437 break; 5438 default: 5439 break; 5440 } 5441 } 5442 pte_unmap_unlock(pte - 1, ptl); 5443 cond_resched(); 5444 5445 if (addr != end) { 5446 /* 5447 * We have consumed all precharges we got in can_attach(). 5448 * We try charge one by one, but don't do any additional 5449 * charges to mc.to if we have failed in charge once in attach() 5450 * phase. 5451 */ 5452 ret = mem_cgroup_do_precharge(1); 5453 if (!ret) 5454 goto retry; 5455 } 5456 5457 return ret; 5458 } 5459 5460 static void mem_cgroup_move_charge(struct mm_struct *mm) 5461 { 5462 struct vm_area_struct *vma; 5463 5464 lru_add_drain_all(); 5465 retry: 5466 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5467 /* 5468 * Someone who are holding the mmap_sem might be waiting in 5469 * waitq. So we cancel all extra charges, wake up all waiters, 5470 * and retry. Because we cancel precharges, we might not be able 5471 * to move enough charges, but moving charge is a best-effort 5472 * feature anyway, so it wouldn't be a big problem. 5473 */ 5474 __mem_cgroup_clear_mc(); 5475 cond_resched(); 5476 goto retry; 5477 } 5478 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5479 int ret; 5480 struct mm_walk mem_cgroup_move_charge_walk = { 5481 .pmd_entry = mem_cgroup_move_charge_pte_range, 5482 .mm = mm, 5483 .private = vma, 5484 }; 5485 if (is_vm_hugetlb_page(vma)) 5486 continue; 5487 ret = walk_page_range(vma->vm_start, vma->vm_end, 5488 &mem_cgroup_move_charge_walk); 5489 if (ret) 5490 /* 5491 * means we have consumed all precharges and failed in 5492 * doing additional charge. Just abandon here. 5493 */ 5494 break; 5495 } 5496 up_read(&mm->mmap_sem); 5497 } 5498 5499 static void mem_cgroup_move_task(struct cgroup *cont, 5500 struct cgroup_taskset *tset) 5501 { 5502 struct task_struct *p = cgroup_taskset_first(tset); 5503 struct mm_struct *mm = get_task_mm(p); 5504 5505 if (mm) { 5506 if (mc.to) 5507 mem_cgroup_move_charge(mm); 5508 mmput(mm); 5509 } 5510 if (mc.to) 5511 mem_cgroup_clear_mc(); 5512 } 5513 #else /* !CONFIG_MMU */ 5514 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5515 struct cgroup_taskset *tset) 5516 { 5517 return 0; 5518 } 5519 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5520 struct cgroup_taskset *tset) 5521 { 5522 } 5523 static void mem_cgroup_move_task(struct cgroup *cont, 5524 struct cgroup_taskset *tset) 5525 { 5526 } 5527 #endif 5528 5529 struct cgroup_subsys mem_cgroup_subsys = { 5530 .name = "memory", 5531 .subsys_id = mem_cgroup_subsys_id, 5532 .create = mem_cgroup_create, 5533 .pre_destroy = mem_cgroup_pre_destroy, 5534 .destroy = mem_cgroup_destroy, 5535 .can_attach = mem_cgroup_can_attach, 5536 .cancel_attach = mem_cgroup_cancel_attach, 5537 .attach = mem_cgroup_move_task, 5538 .base_cftypes = mem_cgroup_files, 5539 .early_init = 0, 5540 .use_id = 1, 5541 .__DEPRECATED_clear_css_refs = true, 5542 }; 5543 5544 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 5545 static int __init enable_swap_account(char *s) 5546 { 5547 /* consider enabled if no parameter or 1 is given */ 5548 if (!strcmp(s, "1")) 5549 really_do_swap_account = 1; 5550 else if (!strcmp(s, "0")) 5551 really_do_swap_account = 0; 5552 return 1; 5553 } 5554 __setup("swapaccount=", enable_swap_account); 5555 5556 #endif 5557