xref: /openbmc/linux/mm/memcontrol.c (revision b9ccfda2)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		0
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_NSTATS,
92 };
93 
94 static const char * const mem_cgroup_stat_names[] = {
95 	"cache",
96 	"rss",
97 	"mapped_file",
98 	"swap",
99 };
100 
101 enum mem_cgroup_events_index {
102 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
103 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
105 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 	MEM_CGROUP_EVENTS_NSTATS,
107 };
108 
109 static const char * const mem_cgroup_events_names[] = {
110 	"pgpgin",
111 	"pgpgout",
112 	"pgfault",
113 	"pgmajfault",
114 };
115 
116 /*
117  * Per memcg event counter is incremented at every pagein/pageout. With THP,
118  * it will be incremated by the number of pages. This counter is used for
119  * for trigger some periodic events. This is straightforward and better
120  * than using jiffies etc. to handle periodic memcg event.
121  */
122 enum mem_cgroup_events_target {
123 	MEM_CGROUP_TARGET_THRESH,
124 	MEM_CGROUP_TARGET_SOFTLIMIT,
125 	MEM_CGROUP_TARGET_NUMAINFO,
126 	MEM_CGROUP_NTARGETS,
127 };
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET	1024
131 
132 struct mem_cgroup_stat_cpu {
133 	long count[MEM_CGROUP_STAT_NSTATS];
134 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 	unsigned long nr_page_events;
136 	unsigned long targets[MEM_CGROUP_NTARGETS];
137 };
138 
139 struct mem_cgroup_reclaim_iter {
140 	/* css_id of the last scanned hierarchy member */
141 	int position;
142 	/* scan generation, increased every round-trip */
143 	unsigned int generation;
144 };
145 
146 /*
147  * per-zone information in memory controller.
148  */
149 struct mem_cgroup_per_zone {
150 	struct lruvec		lruvec;
151 	unsigned long		lru_size[NR_LRU_LISTS];
152 
153 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154 
155 	struct rb_node		tree_node;	/* RB tree node */
156 	unsigned long long	usage_in_excess;/* Set to the value by which */
157 						/* the soft limit is exceeded*/
158 	bool			on_tree;
159 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160 						/* use container_of	   */
161 };
162 
163 struct mem_cgroup_per_node {
164 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 };
166 
167 struct mem_cgroup_lru_info {
168 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 };
170 
171 /*
172  * Cgroups above their limits are maintained in a RB-Tree, independent of
173  * their hierarchy representation
174  */
175 
176 struct mem_cgroup_tree_per_zone {
177 	struct rb_root rb_root;
178 	spinlock_t lock;
179 };
180 
181 struct mem_cgroup_tree_per_node {
182 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 };
184 
185 struct mem_cgroup_tree {
186 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 };
188 
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190 
191 struct mem_cgroup_threshold {
192 	struct eventfd_ctx *eventfd;
193 	u64 threshold;
194 };
195 
196 /* For threshold */
197 struct mem_cgroup_threshold_ary {
198 	/* An array index points to threshold just below or equal to usage. */
199 	int current_threshold;
200 	/* Size of entries[] */
201 	unsigned int size;
202 	/* Array of thresholds */
203 	struct mem_cgroup_threshold entries[0];
204 };
205 
206 struct mem_cgroup_thresholds {
207 	/* Primary thresholds array */
208 	struct mem_cgroup_threshold_ary *primary;
209 	/*
210 	 * Spare threshold array.
211 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 	 * It must be able to store at least primary->size - 1 entries.
213 	 */
214 	struct mem_cgroup_threshold_ary *spare;
215 };
216 
217 /* for OOM */
218 struct mem_cgroup_eventfd_list {
219 	struct list_head list;
220 	struct eventfd_ctx *eventfd;
221 };
222 
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225 
226 /*
227  * The memory controller data structure. The memory controller controls both
228  * page cache and RSS per cgroup. We would eventually like to provide
229  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230  * to help the administrator determine what knobs to tune.
231  *
232  * TODO: Add a water mark for the memory controller. Reclaim will begin when
233  * we hit the water mark. May be even add a low water mark, such that
234  * no reclaim occurs from a cgroup at it's low water mark, this is
235  * a feature that will be implemented much later in the future.
236  */
237 struct mem_cgroup {
238 	struct cgroup_subsys_state css;
239 	/*
240 	 * the counter to account for memory usage
241 	 */
242 	struct res_counter res;
243 
244 	union {
245 		/*
246 		 * the counter to account for mem+swap usage.
247 		 */
248 		struct res_counter memsw;
249 
250 		/*
251 		 * rcu_freeing is used only when freeing struct mem_cgroup,
252 		 * so put it into a union to avoid wasting more memory.
253 		 * It must be disjoint from the css field.  It could be
254 		 * in a union with the res field, but res plays a much
255 		 * larger part in mem_cgroup life than memsw, and might
256 		 * be of interest, even at time of free, when debugging.
257 		 * So share rcu_head with the less interesting memsw.
258 		 */
259 		struct rcu_head rcu_freeing;
260 		/*
261 		 * We also need some space for a worker in deferred freeing.
262 		 * By the time we call it, rcu_freeing is no longer in use.
263 		 */
264 		struct work_struct work_freeing;
265 	};
266 
267 	/*
268 	 * Per cgroup active and inactive list, similar to the
269 	 * per zone LRU lists.
270 	 */
271 	struct mem_cgroup_lru_info info;
272 	int last_scanned_node;
273 #if MAX_NUMNODES > 1
274 	nodemask_t	scan_nodes;
275 	atomic_t	numainfo_events;
276 	atomic_t	numainfo_updating;
277 #endif
278 	/*
279 	 * Should the accounting and control be hierarchical, per subtree?
280 	 */
281 	bool use_hierarchy;
282 
283 	bool		oom_lock;
284 	atomic_t	under_oom;
285 
286 	atomic_t	refcnt;
287 
288 	int	swappiness;
289 	/* OOM-Killer disable */
290 	int		oom_kill_disable;
291 
292 	/* set when res.limit == memsw.limit */
293 	bool		memsw_is_minimum;
294 
295 	/* protect arrays of thresholds */
296 	struct mutex thresholds_lock;
297 
298 	/* thresholds for memory usage. RCU-protected */
299 	struct mem_cgroup_thresholds thresholds;
300 
301 	/* thresholds for mem+swap usage. RCU-protected */
302 	struct mem_cgroup_thresholds memsw_thresholds;
303 
304 	/* For oom notifier event fd */
305 	struct list_head oom_notify;
306 
307 	/*
308 	 * Should we move charges of a task when a task is moved into this
309 	 * mem_cgroup ? And what type of charges should we move ?
310 	 */
311 	unsigned long 	move_charge_at_immigrate;
312 	/*
313 	 * set > 0 if pages under this cgroup are moving to other cgroup.
314 	 */
315 	atomic_t	moving_account;
316 	/* taken only while moving_account > 0 */
317 	spinlock_t	move_lock;
318 	/*
319 	 * percpu counter.
320 	 */
321 	struct mem_cgroup_stat_cpu __percpu *stat;
322 	/*
323 	 * used when a cpu is offlined or other synchronizations
324 	 * See mem_cgroup_read_stat().
325 	 */
326 	struct mem_cgroup_stat_cpu nocpu_base;
327 	spinlock_t pcp_counter_lock;
328 
329 #ifdef CONFIG_INET
330 	struct tcp_memcontrol tcp_mem;
331 #endif
332 };
333 
334 /* Stuffs for move charges at task migration. */
335 /*
336  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337  * left-shifted bitmap of these types.
338  */
339 enum move_type {
340 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 	NR_MOVE_TYPE,
343 };
344 
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 	spinlock_t	  lock; /* for from, to */
348 	struct mem_cgroup *from;
349 	struct mem_cgroup *to;
350 	unsigned long precharge;
351 	unsigned long moved_charge;
352 	unsigned long moved_swap;
353 	struct task_struct *moving_task;	/* a task moving charges */
354 	wait_queue_head_t waitq;		/* a waitq for other context */
355 } mc = {
356 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 };
359 
360 static bool move_anon(void)
361 {
362 	return test_bit(MOVE_CHARGE_TYPE_ANON,
363 					&mc.to->move_charge_at_immigrate);
364 }
365 
366 static bool move_file(void)
367 {
368 	return test_bit(MOVE_CHARGE_TYPE_FILE,
369 					&mc.to->move_charge_at_immigrate);
370 }
371 
372 /*
373  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374  * limit reclaim to prevent infinite loops, if they ever occur.
375  */
376 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
377 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378 
379 enum charge_type {
380 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
382 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
383 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
384 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
385 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
386 	NR_CHARGE_TYPE,
387 };
388 
389 /* for encoding cft->private value on file */
390 #define _MEM			(0)
391 #define _MEMSWAP		(1)
392 #define _OOM_TYPE		(2)
393 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
394 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
395 #define MEMFILE_ATTR(val)	((val) & 0xffff)
396 /* Used for OOM nofiier */
397 #define OOM_CONTROL		(0)
398 
399 /*
400  * Reclaim flags for mem_cgroup_hierarchical_reclaim
401  */
402 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
403 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
404 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
405 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406 
407 static void mem_cgroup_get(struct mem_cgroup *memcg);
408 static void mem_cgroup_put(struct mem_cgroup *memcg);
409 
410 /* Writing them here to avoid exposing memcg's inner layout */
411 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
412 #include <net/sock.h>
413 #include <net/ip.h>
414 
415 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
416 void sock_update_memcg(struct sock *sk)
417 {
418 	if (mem_cgroup_sockets_enabled) {
419 		struct mem_cgroup *memcg;
420 		struct cg_proto *cg_proto;
421 
422 		BUG_ON(!sk->sk_prot->proto_cgroup);
423 
424 		/* Socket cloning can throw us here with sk_cgrp already
425 		 * filled. It won't however, necessarily happen from
426 		 * process context. So the test for root memcg given
427 		 * the current task's memcg won't help us in this case.
428 		 *
429 		 * Respecting the original socket's memcg is a better
430 		 * decision in this case.
431 		 */
432 		if (sk->sk_cgrp) {
433 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
434 			mem_cgroup_get(sk->sk_cgrp->memcg);
435 			return;
436 		}
437 
438 		rcu_read_lock();
439 		memcg = mem_cgroup_from_task(current);
440 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
441 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
442 			mem_cgroup_get(memcg);
443 			sk->sk_cgrp = cg_proto;
444 		}
445 		rcu_read_unlock();
446 	}
447 }
448 EXPORT_SYMBOL(sock_update_memcg);
449 
450 void sock_release_memcg(struct sock *sk)
451 {
452 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
453 		struct mem_cgroup *memcg;
454 		WARN_ON(!sk->sk_cgrp->memcg);
455 		memcg = sk->sk_cgrp->memcg;
456 		mem_cgroup_put(memcg);
457 	}
458 }
459 
460 #ifdef CONFIG_INET
461 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
462 {
463 	if (!memcg || mem_cgroup_is_root(memcg))
464 		return NULL;
465 
466 	return &memcg->tcp_mem.cg_proto;
467 }
468 EXPORT_SYMBOL(tcp_proto_cgroup);
469 #endif /* CONFIG_INET */
470 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
471 
472 #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
473 static void disarm_sock_keys(struct mem_cgroup *memcg)
474 {
475 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
476 		return;
477 	static_key_slow_dec(&memcg_socket_limit_enabled);
478 }
479 #else
480 static void disarm_sock_keys(struct mem_cgroup *memcg)
481 {
482 }
483 #endif
484 
485 static void drain_all_stock_async(struct mem_cgroup *memcg);
486 
487 static struct mem_cgroup_per_zone *
488 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
489 {
490 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
491 }
492 
493 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
494 {
495 	return &memcg->css;
496 }
497 
498 static struct mem_cgroup_per_zone *
499 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
500 {
501 	int nid = page_to_nid(page);
502 	int zid = page_zonenum(page);
503 
504 	return mem_cgroup_zoneinfo(memcg, nid, zid);
505 }
506 
507 static struct mem_cgroup_tree_per_zone *
508 soft_limit_tree_node_zone(int nid, int zid)
509 {
510 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
511 }
512 
513 static struct mem_cgroup_tree_per_zone *
514 soft_limit_tree_from_page(struct page *page)
515 {
516 	int nid = page_to_nid(page);
517 	int zid = page_zonenum(page);
518 
519 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
520 }
521 
522 static void
523 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
524 				struct mem_cgroup_per_zone *mz,
525 				struct mem_cgroup_tree_per_zone *mctz,
526 				unsigned long long new_usage_in_excess)
527 {
528 	struct rb_node **p = &mctz->rb_root.rb_node;
529 	struct rb_node *parent = NULL;
530 	struct mem_cgroup_per_zone *mz_node;
531 
532 	if (mz->on_tree)
533 		return;
534 
535 	mz->usage_in_excess = new_usage_in_excess;
536 	if (!mz->usage_in_excess)
537 		return;
538 	while (*p) {
539 		parent = *p;
540 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
541 					tree_node);
542 		if (mz->usage_in_excess < mz_node->usage_in_excess)
543 			p = &(*p)->rb_left;
544 		/*
545 		 * We can't avoid mem cgroups that are over their soft
546 		 * limit by the same amount
547 		 */
548 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
549 			p = &(*p)->rb_right;
550 	}
551 	rb_link_node(&mz->tree_node, parent, p);
552 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
553 	mz->on_tree = true;
554 }
555 
556 static void
557 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
558 				struct mem_cgroup_per_zone *mz,
559 				struct mem_cgroup_tree_per_zone *mctz)
560 {
561 	if (!mz->on_tree)
562 		return;
563 	rb_erase(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = false;
565 }
566 
567 static void
568 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
569 				struct mem_cgroup_per_zone *mz,
570 				struct mem_cgroup_tree_per_zone *mctz)
571 {
572 	spin_lock(&mctz->lock);
573 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 	spin_unlock(&mctz->lock);
575 }
576 
577 
578 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
579 {
580 	unsigned long long excess;
581 	struct mem_cgroup_per_zone *mz;
582 	struct mem_cgroup_tree_per_zone *mctz;
583 	int nid = page_to_nid(page);
584 	int zid = page_zonenum(page);
585 	mctz = soft_limit_tree_from_page(page);
586 
587 	/*
588 	 * Necessary to update all ancestors when hierarchy is used.
589 	 * because their event counter is not touched.
590 	 */
591 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
592 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
593 		excess = res_counter_soft_limit_excess(&memcg->res);
594 		/*
595 		 * We have to update the tree if mz is on RB-tree or
596 		 * mem is over its softlimit.
597 		 */
598 		if (excess || mz->on_tree) {
599 			spin_lock(&mctz->lock);
600 			/* if on-tree, remove it */
601 			if (mz->on_tree)
602 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
603 			/*
604 			 * Insert again. mz->usage_in_excess will be updated.
605 			 * If excess is 0, no tree ops.
606 			 */
607 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
608 			spin_unlock(&mctz->lock);
609 		}
610 	}
611 }
612 
613 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
614 {
615 	int node, zone;
616 	struct mem_cgroup_per_zone *mz;
617 	struct mem_cgroup_tree_per_zone *mctz;
618 
619 	for_each_node(node) {
620 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
621 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
622 			mctz = soft_limit_tree_node_zone(node, zone);
623 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
624 		}
625 	}
626 }
627 
628 static struct mem_cgroup_per_zone *
629 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
630 {
631 	struct rb_node *rightmost = NULL;
632 	struct mem_cgroup_per_zone *mz;
633 
634 retry:
635 	mz = NULL;
636 	rightmost = rb_last(&mctz->rb_root);
637 	if (!rightmost)
638 		goto done;		/* Nothing to reclaim from */
639 
640 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
641 	/*
642 	 * Remove the node now but someone else can add it back,
643 	 * we will to add it back at the end of reclaim to its correct
644 	 * position in the tree.
645 	 */
646 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
647 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
648 		!css_tryget(&mz->memcg->css))
649 		goto retry;
650 done:
651 	return mz;
652 }
653 
654 static struct mem_cgroup_per_zone *
655 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
656 {
657 	struct mem_cgroup_per_zone *mz;
658 
659 	spin_lock(&mctz->lock);
660 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
661 	spin_unlock(&mctz->lock);
662 	return mz;
663 }
664 
665 /*
666  * Implementation Note: reading percpu statistics for memcg.
667  *
668  * Both of vmstat[] and percpu_counter has threshold and do periodic
669  * synchronization to implement "quick" read. There are trade-off between
670  * reading cost and precision of value. Then, we may have a chance to implement
671  * a periodic synchronizion of counter in memcg's counter.
672  *
673  * But this _read() function is used for user interface now. The user accounts
674  * memory usage by memory cgroup and he _always_ requires exact value because
675  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
676  * have to visit all online cpus and make sum. So, for now, unnecessary
677  * synchronization is not implemented. (just implemented for cpu hotplug)
678  *
679  * If there are kernel internal actions which can make use of some not-exact
680  * value, and reading all cpu value can be performance bottleneck in some
681  * common workload, threashold and synchonization as vmstat[] should be
682  * implemented.
683  */
684 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
685 				 enum mem_cgroup_stat_index idx)
686 {
687 	long val = 0;
688 	int cpu;
689 
690 	get_online_cpus();
691 	for_each_online_cpu(cpu)
692 		val += per_cpu(memcg->stat->count[idx], cpu);
693 #ifdef CONFIG_HOTPLUG_CPU
694 	spin_lock(&memcg->pcp_counter_lock);
695 	val += memcg->nocpu_base.count[idx];
696 	spin_unlock(&memcg->pcp_counter_lock);
697 #endif
698 	put_online_cpus();
699 	return val;
700 }
701 
702 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
703 					 bool charge)
704 {
705 	int val = (charge) ? 1 : -1;
706 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
707 }
708 
709 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
710 					    enum mem_cgroup_events_index idx)
711 {
712 	unsigned long val = 0;
713 	int cpu;
714 
715 	for_each_online_cpu(cpu)
716 		val += per_cpu(memcg->stat->events[idx], cpu);
717 #ifdef CONFIG_HOTPLUG_CPU
718 	spin_lock(&memcg->pcp_counter_lock);
719 	val += memcg->nocpu_base.events[idx];
720 	spin_unlock(&memcg->pcp_counter_lock);
721 #endif
722 	return val;
723 }
724 
725 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
726 					 bool anon, int nr_pages)
727 {
728 	preempt_disable();
729 
730 	/*
731 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
732 	 * counted as CACHE even if it's on ANON LRU.
733 	 */
734 	if (anon)
735 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736 				nr_pages);
737 	else
738 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739 				nr_pages);
740 
741 	/* pagein of a big page is an event. So, ignore page size */
742 	if (nr_pages > 0)
743 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
744 	else {
745 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
746 		nr_pages = -nr_pages; /* for event */
747 	}
748 
749 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
750 
751 	preempt_enable();
752 }
753 
754 unsigned long
755 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
756 {
757 	struct mem_cgroup_per_zone *mz;
758 
759 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
760 	return mz->lru_size[lru];
761 }
762 
763 static unsigned long
764 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
765 			unsigned int lru_mask)
766 {
767 	struct mem_cgroup_per_zone *mz;
768 	enum lru_list lru;
769 	unsigned long ret = 0;
770 
771 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
772 
773 	for_each_lru(lru) {
774 		if (BIT(lru) & lru_mask)
775 			ret += mz->lru_size[lru];
776 	}
777 	return ret;
778 }
779 
780 static unsigned long
781 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
782 			int nid, unsigned int lru_mask)
783 {
784 	u64 total = 0;
785 	int zid;
786 
787 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
788 		total += mem_cgroup_zone_nr_lru_pages(memcg,
789 						nid, zid, lru_mask);
790 
791 	return total;
792 }
793 
794 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
795 			unsigned int lru_mask)
796 {
797 	int nid;
798 	u64 total = 0;
799 
800 	for_each_node_state(nid, N_HIGH_MEMORY)
801 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
802 	return total;
803 }
804 
805 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
806 				       enum mem_cgroup_events_target target)
807 {
808 	unsigned long val, next;
809 
810 	val = __this_cpu_read(memcg->stat->nr_page_events);
811 	next = __this_cpu_read(memcg->stat->targets[target]);
812 	/* from time_after() in jiffies.h */
813 	if ((long)next - (long)val < 0) {
814 		switch (target) {
815 		case MEM_CGROUP_TARGET_THRESH:
816 			next = val + THRESHOLDS_EVENTS_TARGET;
817 			break;
818 		case MEM_CGROUP_TARGET_SOFTLIMIT:
819 			next = val + SOFTLIMIT_EVENTS_TARGET;
820 			break;
821 		case MEM_CGROUP_TARGET_NUMAINFO:
822 			next = val + NUMAINFO_EVENTS_TARGET;
823 			break;
824 		default:
825 			break;
826 		}
827 		__this_cpu_write(memcg->stat->targets[target], next);
828 		return true;
829 	}
830 	return false;
831 }
832 
833 /*
834  * Check events in order.
835  *
836  */
837 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
838 {
839 	preempt_disable();
840 	/* threshold event is triggered in finer grain than soft limit */
841 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
842 						MEM_CGROUP_TARGET_THRESH))) {
843 		bool do_softlimit;
844 		bool do_numainfo __maybe_unused;
845 
846 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
847 						MEM_CGROUP_TARGET_SOFTLIMIT);
848 #if MAX_NUMNODES > 1
849 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
850 						MEM_CGROUP_TARGET_NUMAINFO);
851 #endif
852 		preempt_enable();
853 
854 		mem_cgroup_threshold(memcg);
855 		if (unlikely(do_softlimit))
856 			mem_cgroup_update_tree(memcg, page);
857 #if MAX_NUMNODES > 1
858 		if (unlikely(do_numainfo))
859 			atomic_inc(&memcg->numainfo_events);
860 #endif
861 	} else
862 		preempt_enable();
863 }
864 
865 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
866 {
867 	return container_of(cgroup_subsys_state(cont,
868 				mem_cgroup_subsys_id), struct mem_cgroup,
869 				css);
870 }
871 
872 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
873 {
874 	/*
875 	 * mm_update_next_owner() may clear mm->owner to NULL
876 	 * if it races with swapoff, page migration, etc.
877 	 * So this can be called with p == NULL.
878 	 */
879 	if (unlikely(!p))
880 		return NULL;
881 
882 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
883 				struct mem_cgroup, css);
884 }
885 
886 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
887 {
888 	struct mem_cgroup *memcg = NULL;
889 
890 	if (!mm)
891 		return NULL;
892 	/*
893 	 * Because we have no locks, mm->owner's may be being moved to other
894 	 * cgroup. We use css_tryget() here even if this looks
895 	 * pessimistic (rather than adding locks here).
896 	 */
897 	rcu_read_lock();
898 	do {
899 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
900 		if (unlikely(!memcg))
901 			break;
902 	} while (!css_tryget(&memcg->css));
903 	rcu_read_unlock();
904 	return memcg;
905 }
906 
907 /**
908  * mem_cgroup_iter - iterate over memory cgroup hierarchy
909  * @root: hierarchy root
910  * @prev: previously returned memcg, NULL on first invocation
911  * @reclaim: cookie for shared reclaim walks, NULL for full walks
912  *
913  * Returns references to children of the hierarchy below @root, or
914  * @root itself, or %NULL after a full round-trip.
915  *
916  * Caller must pass the return value in @prev on subsequent
917  * invocations for reference counting, or use mem_cgroup_iter_break()
918  * to cancel a hierarchy walk before the round-trip is complete.
919  *
920  * Reclaimers can specify a zone and a priority level in @reclaim to
921  * divide up the memcgs in the hierarchy among all concurrent
922  * reclaimers operating on the same zone and priority.
923  */
924 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
925 				   struct mem_cgroup *prev,
926 				   struct mem_cgroup_reclaim_cookie *reclaim)
927 {
928 	struct mem_cgroup *memcg = NULL;
929 	int id = 0;
930 
931 	if (mem_cgroup_disabled())
932 		return NULL;
933 
934 	if (!root)
935 		root = root_mem_cgroup;
936 
937 	if (prev && !reclaim)
938 		id = css_id(&prev->css);
939 
940 	if (prev && prev != root)
941 		css_put(&prev->css);
942 
943 	if (!root->use_hierarchy && root != root_mem_cgroup) {
944 		if (prev)
945 			return NULL;
946 		return root;
947 	}
948 
949 	while (!memcg) {
950 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
951 		struct cgroup_subsys_state *css;
952 
953 		if (reclaim) {
954 			int nid = zone_to_nid(reclaim->zone);
955 			int zid = zone_idx(reclaim->zone);
956 			struct mem_cgroup_per_zone *mz;
957 
958 			mz = mem_cgroup_zoneinfo(root, nid, zid);
959 			iter = &mz->reclaim_iter[reclaim->priority];
960 			if (prev && reclaim->generation != iter->generation)
961 				return NULL;
962 			id = iter->position;
963 		}
964 
965 		rcu_read_lock();
966 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
967 		if (css) {
968 			if (css == &root->css || css_tryget(css))
969 				memcg = container_of(css,
970 						     struct mem_cgroup, css);
971 		} else
972 			id = 0;
973 		rcu_read_unlock();
974 
975 		if (reclaim) {
976 			iter->position = id;
977 			if (!css)
978 				iter->generation++;
979 			else if (!prev && memcg)
980 				reclaim->generation = iter->generation;
981 		}
982 
983 		if (prev && !css)
984 			return NULL;
985 	}
986 	return memcg;
987 }
988 
989 /**
990  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991  * @root: hierarchy root
992  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993  */
994 void mem_cgroup_iter_break(struct mem_cgroup *root,
995 			   struct mem_cgroup *prev)
996 {
997 	if (!root)
998 		root = root_mem_cgroup;
999 	if (prev && prev != root)
1000 		css_put(&prev->css);
1001 }
1002 
1003 /*
1004  * Iteration constructs for visiting all cgroups (under a tree).  If
1005  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006  * be used for reference counting.
1007  */
1008 #define for_each_mem_cgroup_tree(iter, root)		\
1009 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1010 	     iter != NULL;				\
1011 	     iter = mem_cgroup_iter(root, iter, NULL))
1012 
1013 #define for_each_mem_cgroup(iter)			\
1014 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1015 	     iter != NULL;				\
1016 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1017 
1018 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1019 {
1020 	return (memcg == root_mem_cgroup);
1021 }
1022 
1023 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1024 {
1025 	struct mem_cgroup *memcg;
1026 
1027 	if (!mm)
1028 		return;
1029 
1030 	rcu_read_lock();
1031 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1032 	if (unlikely(!memcg))
1033 		goto out;
1034 
1035 	switch (idx) {
1036 	case PGFAULT:
1037 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1038 		break;
1039 	case PGMAJFAULT:
1040 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1041 		break;
1042 	default:
1043 		BUG();
1044 	}
1045 out:
1046 	rcu_read_unlock();
1047 }
1048 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1049 
1050 /**
1051  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1052  * @zone: zone of the wanted lruvec
1053  * @memcg: memcg of the wanted lruvec
1054  *
1055  * Returns the lru list vector holding pages for the given @zone and
1056  * @mem.  This can be the global zone lruvec, if the memory controller
1057  * is disabled.
1058  */
1059 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1060 				      struct mem_cgroup *memcg)
1061 {
1062 	struct mem_cgroup_per_zone *mz;
1063 
1064 	if (mem_cgroup_disabled())
1065 		return &zone->lruvec;
1066 
1067 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1068 	return &mz->lruvec;
1069 }
1070 
1071 /*
1072  * Following LRU functions are allowed to be used without PCG_LOCK.
1073  * Operations are called by routine of global LRU independently from memcg.
1074  * What we have to take care of here is validness of pc->mem_cgroup.
1075  *
1076  * Changes to pc->mem_cgroup happens when
1077  * 1. charge
1078  * 2. moving account
1079  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1080  * It is added to LRU before charge.
1081  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1082  * When moving account, the page is not on LRU. It's isolated.
1083  */
1084 
1085 /**
1086  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1087  * @page: the page
1088  * @zone: zone of the page
1089  */
1090 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1091 {
1092 	struct mem_cgroup_per_zone *mz;
1093 	struct mem_cgroup *memcg;
1094 	struct page_cgroup *pc;
1095 
1096 	if (mem_cgroup_disabled())
1097 		return &zone->lruvec;
1098 
1099 	pc = lookup_page_cgroup(page);
1100 	memcg = pc->mem_cgroup;
1101 
1102 	/*
1103 	 * Surreptitiously switch any uncharged offlist page to root:
1104 	 * an uncharged page off lru does nothing to secure
1105 	 * its former mem_cgroup from sudden removal.
1106 	 *
1107 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1108 	 * under page_cgroup lock: between them, they make all uses
1109 	 * of pc->mem_cgroup safe.
1110 	 */
1111 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1112 		pc->mem_cgroup = memcg = root_mem_cgroup;
1113 
1114 	mz = page_cgroup_zoneinfo(memcg, page);
1115 	return &mz->lruvec;
1116 }
1117 
1118 /**
1119  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1120  * @lruvec: mem_cgroup per zone lru vector
1121  * @lru: index of lru list the page is sitting on
1122  * @nr_pages: positive when adding or negative when removing
1123  *
1124  * This function must be called when a page is added to or removed from an
1125  * lru list.
1126  */
1127 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1128 				int nr_pages)
1129 {
1130 	struct mem_cgroup_per_zone *mz;
1131 	unsigned long *lru_size;
1132 
1133 	if (mem_cgroup_disabled())
1134 		return;
1135 
1136 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1137 	lru_size = mz->lru_size + lru;
1138 	*lru_size += nr_pages;
1139 	VM_BUG_ON((long)(*lru_size) < 0);
1140 }
1141 
1142 /*
1143  * Checks whether given mem is same or in the root_mem_cgroup's
1144  * hierarchy subtree
1145  */
1146 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1147 				  struct mem_cgroup *memcg)
1148 {
1149 	if (root_memcg == memcg)
1150 		return true;
1151 	if (!root_memcg->use_hierarchy || !memcg)
1152 		return false;
1153 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1154 }
1155 
1156 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1157 				       struct mem_cgroup *memcg)
1158 {
1159 	bool ret;
1160 
1161 	rcu_read_lock();
1162 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1163 	rcu_read_unlock();
1164 	return ret;
1165 }
1166 
1167 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1168 {
1169 	int ret;
1170 	struct mem_cgroup *curr = NULL;
1171 	struct task_struct *p;
1172 
1173 	p = find_lock_task_mm(task);
1174 	if (p) {
1175 		curr = try_get_mem_cgroup_from_mm(p->mm);
1176 		task_unlock(p);
1177 	} else {
1178 		/*
1179 		 * All threads may have already detached their mm's, but the oom
1180 		 * killer still needs to detect if they have already been oom
1181 		 * killed to prevent needlessly killing additional tasks.
1182 		 */
1183 		task_lock(task);
1184 		curr = mem_cgroup_from_task(task);
1185 		if (curr)
1186 			css_get(&curr->css);
1187 		task_unlock(task);
1188 	}
1189 	if (!curr)
1190 		return 0;
1191 	/*
1192 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1193 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1194 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1195 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1196 	 */
1197 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1198 	css_put(&curr->css);
1199 	return ret;
1200 }
1201 
1202 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1203 {
1204 	unsigned long inactive_ratio;
1205 	unsigned long inactive;
1206 	unsigned long active;
1207 	unsigned long gb;
1208 
1209 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1210 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1211 
1212 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 	if (gb)
1214 		inactive_ratio = int_sqrt(10 * gb);
1215 	else
1216 		inactive_ratio = 1;
1217 
1218 	return inactive * inactive_ratio < active;
1219 }
1220 
1221 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1222 {
1223 	unsigned long active;
1224 	unsigned long inactive;
1225 
1226 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1227 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1228 
1229 	return (active > inactive);
1230 }
1231 
1232 #define mem_cgroup_from_res_counter(counter, member)	\
1233 	container_of(counter, struct mem_cgroup, member)
1234 
1235 /**
1236  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1237  * @memcg: the memory cgroup
1238  *
1239  * Returns the maximum amount of memory @mem can be charged with, in
1240  * pages.
1241  */
1242 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1243 {
1244 	unsigned long long margin;
1245 
1246 	margin = res_counter_margin(&memcg->res);
1247 	if (do_swap_account)
1248 		margin = min(margin, res_counter_margin(&memcg->memsw));
1249 	return margin >> PAGE_SHIFT;
1250 }
1251 
1252 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1253 {
1254 	struct cgroup *cgrp = memcg->css.cgroup;
1255 
1256 	/* root ? */
1257 	if (cgrp->parent == NULL)
1258 		return vm_swappiness;
1259 
1260 	return memcg->swappiness;
1261 }
1262 
1263 /*
1264  * memcg->moving_account is used for checking possibility that some thread is
1265  * calling move_account(). When a thread on CPU-A starts moving pages under
1266  * a memcg, other threads should check memcg->moving_account under
1267  * rcu_read_lock(), like this:
1268  *
1269  *         CPU-A                                    CPU-B
1270  *                                              rcu_read_lock()
1271  *         memcg->moving_account+1              if (memcg->mocing_account)
1272  *                                                   take heavy locks.
1273  *         synchronize_rcu()                    update something.
1274  *                                              rcu_read_unlock()
1275  *         start move here.
1276  */
1277 
1278 /* for quick checking without looking up memcg */
1279 atomic_t memcg_moving __read_mostly;
1280 
1281 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1282 {
1283 	atomic_inc(&memcg_moving);
1284 	atomic_inc(&memcg->moving_account);
1285 	synchronize_rcu();
1286 }
1287 
1288 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1289 {
1290 	/*
1291 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1292 	 * We check NULL in callee rather than caller.
1293 	 */
1294 	if (memcg) {
1295 		atomic_dec(&memcg_moving);
1296 		atomic_dec(&memcg->moving_account);
1297 	}
1298 }
1299 
1300 /*
1301  * 2 routines for checking "mem" is under move_account() or not.
1302  *
1303  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1304  *			  is used for avoiding races in accounting.  If true,
1305  *			  pc->mem_cgroup may be overwritten.
1306  *
1307  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1308  *			  under hierarchy of moving cgroups. This is for
1309  *			  waiting at hith-memory prressure caused by "move".
1310  */
1311 
1312 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1313 {
1314 	VM_BUG_ON(!rcu_read_lock_held());
1315 	return atomic_read(&memcg->moving_account) > 0;
1316 }
1317 
1318 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1319 {
1320 	struct mem_cgroup *from;
1321 	struct mem_cgroup *to;
1322 	bool ret = false;
1323 	/*
1324 	 * Unlike task_move routines, we access mc.to, mc.from not under
1325 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1326 	 */
1327 	spin_lock(&mc.lock);
1328 	from = mc.from;
1329 	to = mc.to;
1330 	if (!from)
1331 		goto unlock;
1332 
1333 	ret = mem_cgroup_same_or_subtree(memcg, from)
1334 		|| mem_cgroup_same_or_subtree(memcg, to);
1335 unlock:
1336 	spin_unlock(&mc.lock);
1337 	return ret;
1338 }
1339 
1340 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1341 {
1342 	if (mc.moving_task && current != mc.moving_task) {
1343 		if (mem_cgroup_under_move(memcg)) {
1344 			DEFINE_WAIT(wait);
1345 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1346 			/* moving charge context might have finished. */
1347 			if (mc.moving_task)
1348 				schedule();
1349 			finish_wait(&mc.waitq, &wait);
1350 			return true;
1351 		}
1352 	}
1353 	return false;
1354 }
1355 
1356 /*
1357  * Take this lock when
1358  * - a code tries to modify page's memcg while it's USED.
1359  * - a code tries to modify page state accounting in a memcg.
1360  * see mem_cgroup_stolen(), too.
1361  */
1362 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1363 				  unsigned long *flags)
1364 {
1365 	spin_lock_irqsave(&memcg->move_lock, *flags);
1366 }
1367 
1368 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1369 				unsigned long *flags)
1370 {
1371 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1372 }
1373 
1374 /**
1375  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1376  * @memcg: The memory cgroup that went over limit
1377  * @p: Task that is going to be killed
1378  *
1379  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1380  * enabled
1381  */
1382 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1383 {
1384 	struct cgroup *task_cgrp;
1385 	struct cgroup *mem_cgrp;
1386 	/*
1387 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1388 	 * on the assumption that OOM is serialized for memory controller.
1389 	 * If this assumption is broken, revisit this code.
1390 	 */
1391 	static char memcg_name[PATH_MAX];
1392 	int ret;
1393 
1394 	if (!memcg || !p)
1395 		return;
1396 
1397 	rcu_read_lock();
1398 
1399 	mem_cgrp = memcg->css.cgroup;
1400 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1401 
1402 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1403 	if (ret < 0) {
1404 		/*
1405 		 * Unfortunately, we are unable to convert to a useful name
1406 		 * But we'll still print out the usage information
1407 		 */
1408 		rcu_read_unlock();
1409 		goto done;
1410 	}
1411 	rcu_read_unlock();
1412 
1413 	printk(KERN_INFO "Task in %s killed", memcg_name);
1414 
1415 	rcu_read_lock();
1416 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1417 	if (ret < 0) {
1418 		rcu_read_unlock();
1419 		goto done;
1420 	}
1421 	rcu_read_unlock();
1422 
1423 	/*
1424 	 * Continues from above, so we don't need an KERN_ level
1425 	 */
1426 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1427 done:
1428 
1429 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1431 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1432 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1433 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1434 		"failcnt %llu\n",
1435 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1436 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1437 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1438 }
1439 
1440 /*
1441  * This function returns the number of memcg under hierarchy tree. Returns
1442  * 1(self count) if no children.
1443  */
1444 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445 {
1446 	int num = 0;
1447 	struct mem_cgroup *iter;
1448 
1449 	for_each_mem_cgroup_tree(iter, memcg)
1450 		num++;
1451 	return num;
1452 }
1453 
1454 /*
1455  * Return the memory (and swap, if configured) limit for a memcg.
1456  */
1457 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1458 {
1459 	u64 limit;
1460 	u64 memsw;
1461 
1462 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1463 	limit += total_swap_pages << PAGE_SHIFT;
1464 
1465 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466 	/*
1467 	 * If memsw is finite and limits the amount of swap space available
1468 	 * to this memcg, return that limit.
1469 	 */
1470 	return min(limit, memsw);
1471 }
1472 
1473 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1474 					gfp_t gfp_mask,
1475 					unsigned long flags)
1476 {
1477 	unsigned long total = 0;
1478 	bool noswap = false;
1479 	int loop;
1480 
1481 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1482 		noswap = true;
1483 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1484 		noswap = true;
1485 
1486 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1487 		if (loop)
1488 			drain_all_stock_async(memcg);
1489 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1490 		/*
1491 		 * Allow limit shrinkers, which are triggered directly
1492 		 * by userspace, to catch signals and stop reclaim
1493 		 * after minimal progress, regardless of the margin.
1494 		 */
1495 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1496 			break;
1497 		if (mem_cgroup_margin(memcg))
1498 			break;
1499 		/*
1500 		 * If nothing was reclaimed after two attempts, there
1501 		 * may be no reclaimable pages in this hierarchy.
1502 		 */
1503 		if (loop && !total)
1504 			break;
1505 	}
1506 	return total;
1507 }
1508 
1509 /**
1510  * test_mem_cgroup_node_reclaimable
1511  * @memcg: the target memcg
1512  * @nid: the node ID to be checked.
1513  * @noswap : specify true here if the user wants flle only information.
1514  *
1515  * This function returns whether the specified memcg contains any
1516  * reclaimable pages on a node. Returns true if there are any reclaimable
1517  * pages in the node.
1518  */
1519 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1520 		int nid, bool noswap)
1521 {
1522 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1523 		return true;
1524 	if (noswap || !total_swap_pages)
1525 		return false;
1526 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1527 		return true;
1528 	return false;
1529 
1530 }
1531 #if MAX_NUMNODES > 1
1532 
1533 /*
1534  * Always updating the nodemask is not very good - even if we have an empty
1535  * list or the wrong list here, we can start from some node and traverse all
1536  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1537  *
1538  */
1539 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1540 {
1541 	int nid;
1542 	/*
1543 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544 	 * pagein/pageout changes since the last update.
1545 	 */
1546 	if (!atomic_read(&memcg->numainfo_events))
1547 		return;
1548 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1549 		return;
1550 
1551 	/* make a nodemask where this memcg uses memory from */
1552 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1553 
1554 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1555 
1556 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1557 			node_clear(nid, memcg->scan_nodes);
1558 	}
1559 
1560 	atomic_set(&memcg->numainfo_events, 0);
1561 	atomic_set(&memcg->numainfo_updating, 0);
1562 }
1563 
1564 /*
1565  * Selecting a node where we start reclaim from. Because what we need is just
1566  * reducing usage counter, start from anywhere is O,K. Considering
1567  * memory reclaim from current node, there are pros. and cons.
1568  *
1569  * Freeing memory from current node means freeing memory from a node which
1570  * we'll use or we've used. So, it may make LRU bad. And if several threads
1571  * hit limits, it will see a contention on a node. But freeing from remote
1572  * node means more costs for memory reclaim because of memory latency.
1573  *
1574  * Now, we use round-robin. Better algorithm is welcomed.
1575  */
1576 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577 {
1578 	int node;
1579 
1580 	mem_cgroup_may_update_nodemask(memcg);
1581 	node = memcg->last_scanned_node;
1582 
1583 	node = next_node(node, memcg->scan_nodes);
1584 	if (node == MAX_NUMNODES)
1585 		node = first_node(memcg->scan_nodes);
1586 	/*
1587 	 * We call this when we hit limit, not when pages are added to LRU.
1588 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1589 	 * memcg is too small and all pages are not on LRU. In that case,
1590 	 * we use curret node.
1591 	 */
1592 	if (unlikely(node == MAX_NUMNODES))
1593 		node = numa_node_id();
1594 
1595 	memcg->last_scanned_node = node;
1596 	return node;
1597 }
1598 
1599 /*
1600  * Check all nodes whether it contains reclaimable pages or not.
1601  * For quick scan, we make use of scan_nodes. This will allow us to skip
1602  * unused nodes. But scan_nodes is lazily updated and may not cotain
1603  * enough new information. We need to do double check.
1604  */
1605 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1606 {
1607 	int nid;
1608 
1609 	/*
1610 	 * quick check...making use of scan_node.
1611 	 * We can skip unused nodes.
1612 	 */
1613 	if (!nodes_empty(memcg->scan_nodes)) {
1614 		for (nid = first_node(memcg->scan_nodes);
1615 		     nid < MAX_NUMNODES;
1616 		     nid = next_node(nid, memcg->scan_nodes)) {
1617 
1618 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1619 				return true;
1620 		}
1621 	}
1622 	/*
1623 	 * Check rest of nodes.
1624 	 */
1625 	for_each_node_state(nid, N_HIGH_MEMORY) {
1626 		if (node_isset(nid, memcg->scan_nodes))
1627 			continue;
1628 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1629 			return true;
1630 	}
1631 	return false;
1632 }
1633 
1634 #else
1635 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1636 {
1637 	return 0;
1638 }
1639 
1640 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1641 {
1642 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1643 }
1644 #endif
1645 
1646 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1647 				   struct zone *zone,
1648 				   gfp_t gfp_mask,
1649 				   unsigned long *total_scanned)
1650 {
1651 	struct mem_cgroup *victim = NULL;
1652 	int total = 0;
1653 	int loop = 0;
1654 	unsigned long excess;
1655 	unsigned long nr_scanned;
1656 	struct mem_cgroup_reclaim_cookie reclaim = {
1657 		.zone = zone,
1658 		.priority = 0,
1659 	};
1660 
1661 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1662 
1663 	while (1) {
1664 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1665 		if (!victim) {
1666 			loop++;
1667 			if (loop >= 2) {
1668 				/*
1669 				 * If we have not been able to reclaim
1670 				 * anything, it might because there are
1671 				 * no reclaimable pages under this hierarchy
1672 				 */
1673 				if (!total)
1674 					break;
1675 				/*
1676 				 * We want to do more targeted reclaim.
1677 				 * excess >> 2 is not to excessive so as to
1678 				 * reclaim too much, nor too less that we keep
1679 				 * coming back to reclaim from this cgroup
1680 				 */
1681 				if (total >= (excess >> 2) ||
1682 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1683 					break;
1684 			}
1685 			continue;
1686 		}
1687 		if (!mem_cgroup_reclaimable(victim, false))
1688 			continue;
1689 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1690 						     zone, &nr_scanned);
1691 		*total_scanned += nr_scanned;
1692 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1693 			break;
1694 	}
1695 	mem_cgroup_iter_break(root_memcg, victim);
1696 	return total;
1697 }
1698 
1699 /*
1700  * Check OOM-Killer is already running under our hierarchy.
1701  * If someone is running, return false.
1702  * Has to be called with memcg_oom_lock
1703  */
1704 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1705 {
1706 	struct mem_cgroup *iter, *failed = NULL;
1707 
1708 	for_each_mem_cgroup_tree(iter, memcg) {
1709 		if (iter->oom_lock) {
1710 			/*
1711 			 * this subtree of our hierarchy is already locked
1712 			 * so we cannot give a lock.
1713 			 */
1714 			failed = iter;
1715 			mem_cgroup_iter_break(memcg, iter);
1716 			break;
1717 		} else
1718 			iter->oom_lock = true;
1719 	}
1720 
1721 	if (!failed)
1722 		return true;
1723 
1724 	/*
1725 	 * OK, we failed to lock the whole subtree so we have to clean up
1726 	 * what we set up to the failing subtree
1727 	 */
1728 	for_each_mem_cgroup_tree(iter, memcg) {
1729 		if (iter == failed) {
1730 			mem_cgroup_iter_break(memcg, iter);
1731 			break;
1732 		}
1733 		iter->oom_lock = false;
1734 	}
1735 	return false;
1736 }
1737 
1738 /*
1739  * Has to be called with memcg_oom_lock
1740  */
1741 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1742 {
1743 	struct mem_cgroup *iter;
1744 
1745 	for_each_mem_cgroup_tree(iter, memcg)
1746 		iter->oom_lock = false;
1747 	return 0;
1748 }
1749 
1750 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1751 {
1752 	struct mem_cgroup *iter;
1753 
1754 	for_each_mem_cgroup_tree(iter, memcg)
1755 		atomic_inc(&iter->under_oom);
1756 }
1757 
1758 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1759 {
1760 	struct mem_cgroup *iter;
1761 
1762 	/*
1763 	 * When a new child is created while the hierarchy is under oom,
1764 	 * mem_cgroup_oom_lock() may not be called. We have to use
1765 	 * atomic_add_unless() here.
1766 	 */
1767 	for_each_mem_cgroup_tree(iter, memcg)
1768 		atomic_add_unless(&iter->under_oom, -1, 0);
1769 }
1770 
1771 static DEFINE_SPINLOCK(memcg_oom_lock);
1772 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1773 
1774 struct oom_wait_info {
1775 	struct mem_cgroup *memcg;
1776 	wait_queue_t	wait;
1777 };
1778 
1779 static int memcg_oom_wake_function(wait_queue_t *wait,
1780 	unsigned mode, int sync, void *arg)
1781 {
1782 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1783 	struct mem_cgroup *oom_wait_memcg;
1784 	struct oom_wait_info *oom_wait_info;
1785 
1786 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1787 	oom_wait_memcg = oom_wait_info->memcg;
1788 
1789 	/*
1790 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1791 	 * Then we can use css_is_ancestor without taking care of RCU.
1792 	 */
1793 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1794 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1795 		return 0;
1796 	return autoremove_wake_function(wait, mode, sync, arg);
1797 }
1798 
1799 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1800 {
1801 	/* for filtering, pass "memcg" as argument. */
1802 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1803 }
1804 
1805 static void memcg_oom_recover(struct mem_cgroup *memcg)
1806 {
1807 	if (memcg && atomic_read(&memcg->under_oom))
1808 		memcg_wakeup_oom(memcg);
1809 }
1810 
1811 /*
1812  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1813  */
1814 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1815 				  int order)
1816 {
1817 	struct oom_wait_info owait;
1818 	bool locked, need_to_kill;
1819 
1820 	owait.memcg = memcg;
1821 	owait.wait.flags = 0;
1822 	owait.wait.func = memcg_oom_wake_function;
1823 	owait.wait.private = current;
1824 	INIT_LIST_HEAD(&owait.wait.task_list);
1825 	need_to_kill = true;
1826 	mem_cgroup_mark_under_oom(memcg);
1827 
1828 	/* At first, try to OOM lock hierarchy under memcg.*/
1829 	spin_lock(&memcg_oom_lock);
1830 	locked = mem_cgroup_oom_lock(memcg);
1831 	/*
1832 	 * Even if signal_pending(), we can't quit charge() loop without
1833 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1834 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1835 	 */
1836 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1837 	if (!locked || memcg->oom_kill_disable)
1838 		need_to_kill = false;
1839 	if (locked)
1840 		mem_cgroup_oom_notify(memcg);
1841 	spin_unlock(&memcg_oom_lock);
1842 
1843 	if (need_to_kill) {
1844 		finish_wait(&memcg_oom_waitq, &owait.wait);
1845 		mem_cgroup_out_of_memory(memcg, mask, order);
1846 	} else {
1847 		schedule();
1848 		finish_wait(&memcg_oom_waitq, &owait.wait);
1849 	}
1850 	spin_lock(&memcg_oom_lock);
1851 	if (locked)
1852 		mem_cgroup_oom_unlock(memcg);
1853 	memcg_wakeup_oom(memcg);
1854 	spin_unlock(&memcg_oom_lock);
1855 
1856 	mem_cgroup_unmark_under_oom(memcg);
1857 
1858 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1859 		return false;
1860 	/* Give chance to dying process */
1861 	schedule_timeout_uninterruptible(1);
1862 	return true;
1863 }
1864 
1865 /*
1866  * Currently used to update mapped file statistics, but the routine can be
1867  * generalized to update other statistics as well.
1868  *
1869  * Notes: Race condition
1870  *
1871  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1872  * it tends to be costly. But considering some conditions, we doesn't need
1873  * to do so _always_.
1874  *
1875  * Considering "charge", lock_page_cgroup() is not required because all
1876  * file-stat operations happen after a page is attached to radix-tree. There
1877  * are no race with "charge".
1878  *
1879  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1880  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1881  * if there are race with "uncharge". Statistics itself is properly handled
1882  * by flags.
1883  *
1884  * Considering "move", this is an only case we see a race. To make the race
1885  * small, we check mm->moving_account and detect there are possibility of race
1886  * If there is, we take a lock.
1887  */
1888 
1889 void __mem_cgroup_begin_update_page_stat(struct page *page,
1890 				bool *locked, unsigned long *flags)
1891 {
1892 	struct mem_cgroup *memcg;
1893 	struct page_cgroup *pc;
1894 
1895 	pc = lookup_page_cgroup(page);
1896 again:
1897 	memcg = pc->mem_cgroup;
1898 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1899 		return;
1900 	/*
1901 	 * If this memory cgroup is not under account moving, we don't
1902 	 * need to take move_lock_page_cgroup(). Because we already hold
1903 	 * rcu_read_lock(), any calls to move_account will be delayed until
1904 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1905 	 */
1906 	if (!mem_cgroup_stolen(memcg))
1907 		return;
1908 
1909 	move_lock_mem_cgroup(memcg, flags);
1910 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1911 		move_unlock_mem_cgroup(memcg, flags);
1912 		goto again;
1913 	}
1914 	*locked = true;
1915 }
1916 
1917 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1918 {
1919 	struct page_cgroup *pc = lookup_page_cgroup(page);
1920 
1921 	/*
1922 	 * It's guaranteed that pc->mem_cgroup never changes while
1923 	 * lock is held because a routine modifies pc->mem_cgroup
1924 	 * should take move_lock_page_cgroup().
1925 	 */
1926 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1927 }
1928 
1929 void mem_cgroup_update_page_stat(struct page *page,
1930 				 enum mem_cgroup_page_stat_item idx, int val)
1931 {
1932 	struct mem_cgroup *memcg;
1933 	struct page_cgroup *pc = lookup_page_cgroup(page);
1934 	unsigned long uninitialized_var(flags);
1935 
1936 	if (mem_cgroup_disabled())
1937 		return;
1938 
1939 	memcg = pc->mem_cgroup;
1940 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1941 		return;
1942 
1943 	switch (idx) {
1944 	case MEMCG_NR_FILE_MAPPED:
1945 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1946 		break;
1947 	default:
1948 		BUG();
1949 	}
1950 
1951 	this_cpu_add(memcg->stat->count[idx], val);
1952 }
1953 
1954 /*
1955  * size of first charge trial. "32" comes from vmscan.c's magic value.
1956  * TODO: maybe necessary to use big numbers in big irons.
1957  */
1958 #define CHARGE_BATCH	32U
1959 struct memcg_stock_pcp {
1960 	struct mem_cgroup *cached; /* this never be root cgroup */
1961 	unsigned int nr_pages;
1962 	struct work_struct work;
1963 	unsigned long flags;
1964 #define FLUSHING_CACHED_CHARGE	0
1965 };
1966 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1967 static DEFINE_MUTEX(percpu_charge_mutex);
1968 
1969 /*
1970  * Try to consume stocked charge on this cpu. If success, one page is consumed
1971  * from local stock and true is returned. If the stock is 0 or charges from a
1972  * cgroup which is not current target, returns false. This stock will be
1973  * refilled.
1974  */
1975 static bool consume_stock(struct mem_cgroup *memcg)
1976 {
1977 	struct memcg_stock_pcp *stock;
1978 	bool ret = true;
1979 
1980 	stock = &get_cpu_var(memcg_stock);
1981 	if (memcg == stock->cached && stock->nr_pages)
1982 		stock->nr_pages--;
1983 	else /* need to call res_counter_charge */
1984 		ret = false;
1985 	put_cpu_var(memcg_stock);
1986 	return ret;
1987 }
1988 
1989 /*
1990  * Returns stocks cached in percpu to res_counter and reset cached information.
1991  */
1992 static void drain_stock(struct memcg_stock_pcp *stock)
1993 {
1994 	struct mem_cgroup *old = stock->cached;
1995 
1996 	if (stock->nr_pages) {
1997 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1998 
1999 		res_counter_uncharge(&old->res, bytes);
2000 		if (do_swap_account)
2001 			res_counter_uncharge(&old->memsw, bytes);
2002 		stock->nr_pages = 0;
2003 	}
2004 	stock->cached = NULL;
2005 }
2006 
2007 /*
2008  * This must be called under preempt disabled or must be called by
2009  * a thread which is pinned to local cpu.
2010  */
2011 static void drain_local_stock(struct work_struct *dummy)
2012 {
2013 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2014 	drain_stock(stock);
2015 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2016 }
2017 
2018 /*
2019  * Cache charges(val) which is from res_counter, to local per_cpu area.
2020  * This will be consumed by consume_stock() function, later.
2021  */
2022 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2023 {
2024 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2025 
2026 	if (stock->cached != memcg) { /* reset if necessary */
2027 		drain_stock(stock);
2028 		stock->cached = memcg;
2029 	}
2030 	stock->nr_pages += nr_pages;
2031 	put_cpu_var(memcg_stock);
2032 }
2033 
2034 /*
2035  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2036  * of the hierarchy under it. sync flag says whether we should block
2037  * until the work is done.
2038  */
2039 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2040 {
2041 	int cpu, curcpu;
2042 
2043 	/* Notify other cpus that system-wide "drain" is running */
2044 	get_online_cpus();
2045 	curcpu = get_cpu();
2046 	for_each_online_cpu(cpu) {
2047 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2048 		struct mem_cgroup *memcg;
2049 
2050 		memcg = stock->cached;
2051 		if (!memcg || !stock->nr_pages)
2052 			continue;
2053 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2054 			continue;
2055 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2056 			if (cpu == curcpu)
2057 				drain_local_stock(&stock->work);
2058 			else
2059 				schedule_work_on(cpu, &stock->work);
2060 		}
2061 	}
2062 	put_cpu();
2063 
2064 	if (!sync)
2065 		goto out;
2066 
2067 	for_each_online_cpu(cpu) {
2068 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2069 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2070 			flush_work(&stock->work);
2071 	}
2072 out:
2073  	put_online_cpus();
2074 }
2075 
2076 /*
2077  * Tries to drain stocked charges in other cpus. This function is asynchronous
2078  * and just put a work per cpu for draining localy on each cpu. Caller can
2079  * expects some charges will be back to res_counter later but cannot wait for
2080  * it.
2081  */
2082 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2083 {
2084 	/*
2085 	 * If someone calls draining, avoid adding more kworker runs.
2086 	 */
2087 	if (!mutex_trylock(&percpu_charge_mutex))
2088 		return;
2089 	drain_all_stock(root_memcg, false);
2090 	mutex_unlock(&percpu_charge_mutex);
2091 }
2092 
2093 /* This is a synchronous drain interface. */
2094 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2095 {
2096 	/* called when force_empty is called */
2097 	mutex_lock(&percpu_charge_mutex);
2098 	drain_all_stock(root_memcg, true);
2099 	mutex_unlock(&percpu_charge_mutex);
2100 }
2101 
2102 /*
2103  * This function drains percpu counter value from DEAD cpu and
2104  * move it to local cpu. Note that this function can be preempted.
2105  */
2106 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2107 {
2108 	int i;
2109 
2110 	spin_lock(&memcg->pcp_counter_lock);
2111 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2112 		long x = per_cpu(memcg->stat->count[i], cpu);
2113 
2114 		per_cpu(memcg->stat->count[i], cpu) = 0;
2115 		memcg->nocpu_base.count[i] += x;
2116 	}
2117 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2118 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2119 
2120 		per_cpu(memcg->stat->events[i], cpu) = 0;
2121 		memcg->nocpu_base.events[i] += x;
2122 	}
2123 	spin_unlock(&memcg->pcp_counter_lock);
2124 }
2125 
2126 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2127 					unsigned long action,
2128 					void *hcpu)
2129 {
2130 	int cpu = (unsigned long)hcpu;
2131 	struct memcg_stock_pcp *stock;
2132 	struct mem_cgroup *iter;
2133 
2134 	if (action == CPU_ONLINE)
2135 		return NOTIFY_OK;
2136 
2137 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2138 		return NOTIFY_OK;
2139 
2140 	for_each_mem_cgroup(iter)
2141 		mem_cgroup_drain_pcp_counter(iter, cpu);
2142 
2143 	stock = &per_cpu(memcg_stock, cpu);
2144 	drain_stock(stock);
2145 	return NOTIFY_OK;
2146 }
2147 
2148 
2149 /* See __mem_cgroup_try_charge() for details */
2150 enum {
2151 	CHARGE_OK,		/* success */
2152 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2153 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2154 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2155 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2156 };
2157 
2158 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2159 				unsigned int nr_pages, bool oom_check)
2160 {
2161 	unsigned long csize = nr_pages * PAGE_SIZE;
2162 	struct mem_cgroup *mem_over_limit;
2163 	struct res_counter *fail_res;
2164 	unsigned long flags = 0;
2165 	int ret;
2166 
2167 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2168 
2169 	if (likely(!ret)) {
2170 		if (!do_swap_account)
2171 			return CHARGE_OK;
2172 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2173 		if (likely(!ret))
2174 			return CHARGE_OK;
2175 
2176 		res_counter_uncharge(&memcg->res, csize);
2177 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2178 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2179 	} else
2180 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2181 	/*
2182 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2183 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2184 	 *
2185 	 * Never reclaim on behalf of optional batching, retry with a
2186 	 * single page instead.
2187 	 */
2188 	if (nr_pages == CHARGE_BATCH)
2189 		return CHARGE_RETRY;
2190 
2191 	if (!(gfp_mask & __GFP_WAIT))
2192 		return CHARGE_WOULDBLOCK;
2193 
2194 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2195 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2196 		return CHARGE_RETRY;
2197 	/*
2198 	 * Even though the limit is exceeded at this point, reclaim
2199 	 * may have been able to free some pages.  Retry the charge
2200 	 * before killing the task.
2201 	 *
2202 	 * Only for regular pages, though: huge pages are rather
2203 	 * unlikely to succeed so close to the limit, and we fall back
2204 	 * to regular pages anyway in case of failure.
2205 	 */
2206 	if (nr_pages == 1 && ret)
2207 		return CHARGE_RETRY;
2208 
2209 	/*
2210 	 * At task move, charge accounts can be doubly counted. So, it's
2211 	 * better to wait until the end of task_move if something is going on.
2212 	 */
2213 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2214 		return CHARGE_RETRY;
2215 
2216 	/* If we don't need to call oom-killer at el, return immediately */
2217 	if (!oom_check)
2218 		return CHARGE_NOMEM;
2219 	/* check OOM */
2220 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2221 		return CHARGE_OOM_DIE;
2222 
2223 	return CHARGE_RETRY;
2224 }
2225 
2226 /*
2227  * __mem_cgroup_try_charge() does
2228  * 1. detect memcg to be charged against from passed *mm and *ptr,
2229  * 2. update res_counter
2230  * 3. call memory reclaim if necessary.
2231  *
2232  * In some special case, if the task is fatal, fatal_signal_pending() or
2233  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2234  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2235  * as possible without any hazards. 2: all pages should have a valid
2236  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2237  * pointer, that is treated as a charge to root_mem_cgroup.
2238  *
2239  * So __mem_cgroup_try_charge() will return
2240  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2241  *  -ENOMEM ...  charge failure because of resource limits.
2242  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2243  *
2244  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2245  * the oom-killer can be invoked.
2246  */
2247 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2248 				   gfp_t gfp_mask,
2249 				   unsigned int nr_pages,
2250 				   struct mem_cgroup **ptr,
2251 				   bool oom)
2252 {
2253 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2254 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2255 	struct mem_cgroup *memcg = NULL;
2256 	int ret;
2257 
2258 	/*
2259 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2260 	 * in system level. So, allow to go ahead dying process in addition to
2261 	 * MEMDIE process.
2262 	 */
2263 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2264 		     || fatal_signal_pending(current)))
2265 		goto bypass;
2266 
2267 	/*
2268 	 * We always charge the cgroup the mm_struct belongs to.
2269 	 * The mm_struct's mem_cgroup changes on task migration if the
2270 	 * thread group leader migrates. It's possible that mm is not
2271 	 * set, if so charge the init_mm (happens for pagecache usage).
2272 	 */
2273 	if (!*ptr && !mm)
2274 		*ptr = root_mem_cgroup;
2275 again:
2276 	if (*ptr) { /* css should be a valid one */
2277 		memcg = *ptr;
2278 		VM_BUG_ON(css_is_removed(&memcg->css));
2279 		if (mem_cgroup_is_root(memcg))
2280 			goto done;
2281 		if (nr_pages == 1 && consume_stock(memcg))
2282 			goto done;
2283 		css_get(&memcg->css);
2284 	} else {
2285 		struct task_struct *p;
2286 
2287 		rcu_read_lock();
2288 		p = rcu_dereference(mm->owner);
2289 		/*
2290 		 * Because we don't have task_lock(), "p" can exit.
2291 		 * In that case, "memcg" can point to root or p can be NULL with
2292 		 * race with swapoff. Then, we have small risk of mis-accouning.
2293 		 * But such kind of mis-account by race always happens because
2294 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2295 		 * small race, here.
2296 		 * (*) swapoff at el will charge against mm-struct not against
2297 		 * task-struct. So, mm->owner can be NULL.
2298 		 */
2299 		memcg = mem_cgroup_from_task(p);
2300 		if (!memcg)
2301 			memcg = root_mem_cgroup;
2302 		if (mem_cgroup_is_root(memcg)) {
2303 			rcu_read_unlock();
2304 			goto done;
2305 		}
2306 		if (nr_pages == 1 && consume_stock(memcg)) {
2307 			/*
2308 			 * It seems dagerous to access memcg without css_get().
2309 			 * But considering how consume_stok works, it's not
2310 			 * necessary. If consume_stock success, some charges
2311 			 * from this memcg are cached on this cpu. So, we
2312 			 * don't need to call css_get()/css_tryget() before
2313 			 * calling consume_stock().
2314 			 */
2315 			rcu_read_unlock();
2316 			goto done;
2317 		}
2318 		/* after here, we may be blocked. we need to get refcnt */
2319 		if (!css_tryget(&memcg->css)) {
2320 			rcu_read_unlock();
2321 			goto again;
2322 		}
2323 		rcu_read_unlock();
2324 	}
2325 
2326 	do {
2327 		bool oom_check;
2328 
2329 		/* If killed, bypass charge */
2330 		if (fatal_signal_pending(current)) {
2331 			css_put(&memcg->css);
2332 			goto bypass;
2333 		}
2334 
2335 		oom_check = false;
2336 		if (oom && !nr_oom_retries) {
2337 			oom_check = true;
2338 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2339 		}
2340 
2341 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2342 		switch (ret) {
2343 		case CHARGE_OK:
2344 			break;
2345 		case CHARGE_RETRY: /* not in OOM situation but retry */
2346 			batch = nr_pages;
2347 			css_put(&memcg->css);
2348 			memcg = NULL;
2349 			goto again;
2350 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2351 			css_put(&memcg->css);
2352 			goto nomem;
2353 		case CHARGE_NOMEM: /* OOM routine works */
2354 			if (!oom) {
2355 				css_put(&memcg->css);
2356 				goto nomem;
2357 			}
2358 			/* If oom, we never return -ENOMEM */
2359 			nr_oom_retries--;
2360 			break;
2361 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2362 			css_put(&memcg->css);
2363 			goto bypass;
2364 		}
2365 	} while (ret != CHARGE_OK);
2366 
2367 	if (batch > nr_pages)
2368 		refill_stock(memcg, batch - nr_pages);
2369 	css_put(&memcg->css);
2370 done:
2371 	*ptr = memcg;
2372 	return 0;
2373 nomem:
2374 	*ptr = NULL;
2375 	return -ENOMEM;
2376 bypass:
2377 	*ptr = root_mem_cgroup;
2378 	return -EINTR;
2379 }
2380 
2381 /*
2382  * Somemtimes we have to undo a charge we got by try_charge().
2383  * This function is for that and do uncharge, put css's refcnt.
2384  * gotten by try_charge().
2385  */
2386 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2387 				       unsigned int nr_pages)
2388 {
2389 	if (!mem_cgroup_is_root(memcg)) {
2390 		unsigned long bytes = nr_pages * PAGE_SIZE;
2391 
2392 		res_counter_uncharge(&memcg->res, bytes);
2393 		if (do_swap_account)
2394 			res_counter_uncharge(&memcg->memsw, bytes);
2395 	}
2396 }
2397 
2398 /*
2399  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2400  * This is useful when moving usage to parent cgroup.
2401  */
2402 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2403 					unsigned int nr_pages)
2404 {
2405 	unsigned long bytes = nr_pages * PAGE_SIZE;
2406 
2407 	if (mem_cgroup_is_root(memcg))
2408 		return;
2409 
2410 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2411 	if (do_swap_account)
2412 		res_counter_uncharge_until(&memcg->memsw,
2413 						memcg->memsw.parent, bytes);
2414 }
2415 
2416 /*
2417  * A helper function to get mem_cgroup from ID. must be called under
2418  * rcu_read_lock(). The caller must check css_is_removed() or some if
2419  * it's concern. (dropping refcnt from swap can be called against removed
2420  * memcg.)
2421  */
2422 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2423 {
2424 	struct cgroup_subsys_state *css;
2425 
2426 	/* ID 0 is unused ID */
2427 	if (!id)
2428 		return NULL;
2429 	css = css_lookup(&mem_cgroup_subsys, id);
2430 	if (!css)
2431 		return NULL;
2432 	return container_of(css, struct mem_cgroup, css);
2433 }
2434 
2435 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2436 {
2437 	struct mem_cgroup *memcg = NULL;
2438 	struct page_cgroup *pc;
2439 	unsigned short id;
2440 	swp_entry_t ent;
2441 
2442 	VM_BUG_ON(!PageLocked(page));
2443 
2444 	pc = lookup_page_cgroup(page);
2445 	lock_page_cgroup(pc);
2446 	if (PageCgroupUsed(pc)) {
2447 		memcg = pc->mem_cgroup;
2448 		if (memcg && !css_tryget(&memcg->css))
2449 			memcg = NULL;
2450 	} else if (PageSwapCache(page)) {
2451 		ent.val = page_private(page);
2452 		id = lookup_swap_cgroup_id(ent);
2453 		rcu_read_lock();
2454 		memcg = mem_cgroup_lookup(id);
2455 		if (memcg && !css_tryget(&memcg->css))
2456 			memcg = NULL;
2457 		rcu_read_unlock();
2458 	}
2459 	unlock_page_cgroup(pc);
2460 	return memcg;
2461 }
2462 
2463 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2464 				       struct page *page,
2465 				       unsigned int nr_pages,
2466 				       enum charge_type ctype,
2467 				       bool lrucare)
2468 {
2469 	struct page_cgroup *pc = lookup_page_cgroup(page);
2470 	struct zone *uninitialized_var(zone);
2471 	struct lruvec *lruvec;
2472 	bool was_on_lru = false;
2473 	bool anon;
2474 
2475 	lock_page_cgroup(pc);
2476 	if (unlikely(PageCgroupUsed(pc))) {
2477 		unlock_page_cgroup(pc);
2478 		__mem_cgroup_cancel_charge(memcg, nr_pages);
2479 		return;
2480 	}
2481 	/*
2482 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2483 	 * accessed by any other context at this point.
2484 	 */
2485 
2486 	/*
2487 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2488 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2489 	 */
2490 	if (lrucare) {
2491 		zone = page_zone(page);
2492 		spin_lock_irq(&zone->lru_lock);
2493 		if (PageLRU(page)) {
2494 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2495 			ClearPageLRU(page);
2496 			del_page_from_lru_list(page, lruvec, page_lru(page));
2497 			was_on_lru = true;
2498 		}
2499 	}
2500 
2501 	pc->mem_cgroup = memcg;
2502 	/*
2503 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2504 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2505 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2506 	 * before USED bit, we need memory barrier here.
2507 	 * See mem_cgroup_add_lru_list(), etc.
2508  	 */
2509 	smp_wmb();
2510 	SetPageCgroupUsed(pc);
2511 
2512 	if (lrucare) {
2513 		if (was_on_lru) {
2514 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2515 			VM_BUG_ON(PageLRU(page));
2516 			SetPageLRU(page);
2517 			add_page_to_lru_list(page, lruvec, page_lru(page));
2518 		}
2519 		spin_unlock_irq(&zone->lru_lock);
2520 	}
2521 
2522 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2523 		anon = true;
2524 	else
2525 		anon = false;
2526 
2527 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2528 	unlock_page_cgroup(pc);
2529 
2530 	/*
2531 	 * "charge_statistics" updated event counter. Then, check it.
2532 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2533 	 * if they exceeds softlimit.
2534 	 */
2535 	memcg_check_events(memcg, page);
2536 }
2537 
2538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2539 
2540 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2541 /*
2542  * Because tail pages are not marked as "used", set it. We're under
2543  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544  * charge/uncharge will be never happen and move_account() is done under
2545  * compound_lock(), so we don't have to take care of races.
2546  */
2547 void mem_cgroup_split_huge_fixup(struct page *head)
2548 {
2549 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550 	struct page_cgroup *pc;
2551 	int i;
2552 
2553 	if (mem_cgroup_disabled())
2554 		return;
2555 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2556 		pc = head_pc + i;
2557 		pc->mem_cgroup = head_pc->mem_cgroup;
2558 		smp_wmb();/* see __commit_charge() */
2559 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2560 	}
2561 }
2562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2563 
2564 /**
2565  * mem_cgroup_move_account - move account of the page
2566  * @page: the page
2567  * @nr_pages: number of regular pages (>1 for huge pages)
2568  * @pc:	page_cgroup of the page.
2569  * @from: mem_cgroup which the page is moved from.
2570  * @to:	mem_cgroup which the page is moved to. @from != @to.
2571  *
2572  * The caller must confirm following.
2573  * - page is not on LRU (isolate_page() is useful.)
2574  * - compound_lock is held when nr_pages > 1
2575  *
2576  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2577  * from old cgroup.
2578  */
2579 static int mem_cgroup_move_account(struct page *page,
2580 				   unsigned int nr_pages,
2581 				   struct page_cgroup *pc,
2582 				   struct mem_cgroup *from,
2583 				   struct mem_cgroup *to)
2584 {
2585 	unsigned long flags;
2586 	int ret;
2587 	bool anon = PageAnon(page);
2588 
2589 	VM_BUG_ON(from == to);
2590 	VM_BUG_ON(PageLRU(page));
2591 	/*
2592 	 * The page is isolated from LRU. So, collapse function
2593 	 * will not handle this page. But page splitting can happen.
2594 	 * Do this check under compound_page_lock(). The caller should
2595 	 * hold it.
2596 	 */
2597 	ret = -EBUSY;
2598 	if (nr_pages > 1 && !PageTransHuge(page))
2599 		goto out;
2600 
2601 	lock_page_cgroup(pc);
2602 
2603 	ret = -EINVAL;
2604 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2605 		goto unlock;
2606 
2607 	move_lock_mem_cgroup(from, &flags);
2608 
2609 	if (!anon && page_mapped(page)) {
2610 		/* Update mapped_file data for mem_cgroup */
2611 		preempt_disable();
2612 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2613 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2614 		preempt_enable();
2615 	}
2616 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2617 
2618 	/* caller should have done css_get */
2619 	pc->mem_cgroup = to;
2620 	mem_cgroup_charge_statistics(to, anon, nr_pages);
2621 	/*
2622 	 * We charges against "to" which may not have any tasks. Then, "to"
2623 	 * can be under rmdir(). But in current implementation, caller of
2624 	 * this function is just force_empty() and move charge, so it's
2625 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2626 	 * status here.
2627 	 */
2628 	move_unlock_mem_cgroup(from, &flags);
2629 	ret = 0;
2630 unlock:
2631 	unlock_page_cgroup(pc);
2632 	/*
2633 	 * check events
2634 	 */
2635 	memcg_check_events(to, page);
2636 	memcg_check_events(from, page);
2637 out:
2638 	return ret;
2639 }
2640 
2641 /*
2642  * move charges to its parent.
2643  */
2644 
2645 static int mem_cgroup_move_parent(struct page *page,
2646 				  struct page_cgroup *pc,
2647 				  struct mem_cgroup *child,
2648 				  gfp_t gfp_mask)
2649 {
2650 	struct mem_cgroup *parent;
2651 	unsigned int nr_pages;
2652 	unsigned long uninitialized_var(flags);
2653 	int ret;
2654 
2655 	/* Is ROOT ? */
2656 	if (mem_cgroup_is_root(child))
2657 		return -EINVAL;
2658 
2659 	ret = -EBUSY;
2660 	if (!get_page_unless_zero(page))
2661 		goto out;
2662 	if (isolate_lru_page(page))
2663 		goto put;
2664 
2665 	nr_pages = hpage_nr_pages(page);
2666 
2667 	parent = parent_mem_cgroup(child);
2668 	/*
2669 	 * If no parent, move charges to root cgroup.
2670 	 */
2671 	if (!parent)
2672 		parent = root_mem_cgroup;
2673 
2674 	if (nr_pages > 1)
2675 		flags = compound_lock_irqsave(page);
2676 
2677 	ret = mem_cgroup_move_account(page, nr_pages,
2678 				pc, child, parent);
2679 	if (!ret)
2680 		__mem_cgroup_cancel_local_charge(child, nr_pages);
2681 
2682 	if (nr_pages > 1)
2683 		compound_unlock_irqrestore(page, flags);
2684 	putback_lru_page(page);
2685 put:
2686 	put_page(page);
2687 out:
2688 	return ret;
2689 }
2690 
2691 /*
2692  * Charge the memory controller for page usage.
2693  * Return
2694  * 0 if the charge was successful
2695  * < 0 if the cgroup is over its limit
2696  */
2697 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2698 				gfp_t gfp_mask, enum charge_type ctype)
2699 {
2700 	struct mem_cgroup *memcg = NULL;
2701 	unsigned int nr_pages = 1;
2702 	bool oom = true;
2703 	int ret;
2704 
2705 	if (PageTransHuge(page)) {
2706 		nr_pages <<= compound_order(page);
2707 		VM_BUG_ON(!PageTransHuge(page));
2708 		/*
2709 		 * Never OOM-kill a process for a huge page.  The
2710 		 * fault handler will fall back to regular pages.
2711 		 */
2712 		oom = false;
2713 	}
2714 
2715 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2716 	if (ret == -ENOMEM)
2717 		return ret;
2718 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2719 	return 0;
2720 }
2721 
2722 int mem_cgroup_newpage_charge(struct page *page,
2723 			      struct mm_struct *mm, gfp_t gfp_mask)
2724 {
2725 	if (mem_cgroup_disabled())
2726 		return 0;
2727 	VM_BUG_ON(page_mapped(page));
2728 	VM_BUG_ON(page->mapping && !PageAnon(page));
2729 	VM_BUG_ON(!mm);
2730 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2731 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2732 }
2733 
2734 static void
2735 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2736 					enum charge_type ctype);
2737 
2738 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2739 				gfp_t gfp_mask)
2740 {
2741 	struct mem_cgroup *memcg = NULL;
2742 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2743 	int ret;
2744 
2745 	if (mem_cgroup_disabled())
2746 		return 0;
2747 	if (PageCompound(page))
2748 		return 0;
2749 
2750 	if (unlikely(!mm))
2751 		mm = &init_mm;
2752 	if (!page_is_file_cache(page))
2753 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2754 
2755 	if (!PageSwapCache(page))
2756 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2757 	else { /* page is swapcache/shmem */
2758 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2759 		if (!ret)
2760 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2761 	}
2762 	return ret;
2763 }
2764 
2765 /*
2766  * While swap-in, try_charge -> commit or cancel, the page is locked.
2767  * And when try_charge() successfully returns, one refcnt to memcg without
2768  * struct page_cgroup is acquired. This refcnt will be consumed by
2769  * "commit()" or removed by "cancel()"
2770  */
2771 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2772 				 struct page *page,
2773 				 gfp_t mask, struct mem_cgroup **memcgp)
2774 {
2775 	struct mem_cgroup *memcg;
2776 	int ret;
2777 
2778 	*memcgp = NULL;
2779 
2780 	if (mem_cgroup_disabled())
2781 		return 0;
2782 
2783 	if (!do_swap_account)
2784 		goto charge_cur_mm;
2785 	/*
2786 	 * A racing thread's fault, or swapoff, may have already updated
2787 	 * the pte, and even removed page from swap cache: in those cases
2788 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2789 	 * KSM case which does need to charge the page.
2790 	 */
2791 	if (!PageSwapCache(page))
2792 		goto charge_cur_mm;
2793 	memcg = try_get_mem_cgroup_from_page(page);
2794 	if (!memcg)
2795 		goto charge_cur_mm;
2796 	*memcgp = memcg;
2797 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2798 	css_put(&memcg->css);
2799 	if (ret == -EINTR)
2800 		ret = 0;
2801 	return ret;
2802 charge_cur_mm:
2803 	if (unlikely(!mm))
2804 		mm = &init_mm;
2805 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2806 	if (ret == -EINTR)
2807 		ret = 0;
2808 	return ret;
2809 }
2810 
2811 static void
2812 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2813 					enum charge_type ctype)
2814 {
2815 	if (mem_cgroup_disabled())
2816 		return;
2817 	if (!memcg)
2818 		return;
2819 	cgroup_exclude_rmdir(&memcg->css);
2820 
2821 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2822 	/*
2823 	 * Now swap is on-memory. This means this page may be
2824 	 * counted both as mem and swap....double count.
2825 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2826 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2827 	 * may call delete_from_swap_cache() before reach here.
2828 	 */
2829 	if (do_swap_account && PageSwapCache(page)) {
2830 		swp_entry_t ent = {.val = page_private(page)};
2831 		mem_cgroup_uncharge_swap(ent);
2832 	}
2833 	/*
2834 	 * At swapin, we may charge account against cgroup which has no tasks.
2835 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2836 	 * In that case, we need to call pre_destroy() again. check it here.
2837 	 */
2838 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2839 }
2840 
2841 void mem_cgroup_commit_charge_swapin(struct page *page,
2842 				     struct mem_cgroup *memcg)
2843 {
2844 	__mem_cgroup_commit_charge_swapin(page, memcg,
2845 					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2846 }
2847 
2848 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2849 {
2850 	if (mem_cgroup_disabled())
2851 		return;
2852 	if (!memcg)
2853 		return;
2854 	__mem_cgroup_cancel_charge(memcg, 1);
2855 }
2856 
2857 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2858 				   unsigned int nr_pages,
2859 				   const enum charge_type ctype)
2860 {
2861 	struct memcg_batch_info *batch = NULL;
2862 	bool uncharge_memsw = true;
2863 
2864 	/* If swapout, usage of swap doesn't decrease */
2865 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2866 		uncharge_memsw = false;
2867 
2868 	batch = &current->memcg_batch;
2869 	/*
2870 	 * In usual, we do css_get() when we remember memcg pointer.
2871 	 * But in this case, we keep res->usage until end of a series of
2872 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2873 	 */
2874 	if (!batch->memcg)
2875 		batch->memcg = memcg;
2876 	/*
2877 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2878 	 * In those cases, all pages freed continuously can be expected to be in
2879 	 * the same cgroup and we have chance to coalesce uncharges.
2880 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2881 	 * because we want to do uncharge as soon as possible.
2882 	 */
2883 
2884 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2885 		goto direct_uncharge;
2886 
2887 	if (nr_pages > 1)
2888 		goto direct_uncharge;
2889 
2890 	/*
2891 	 * In typical case, batch->memcg == mem. This means we can
2892 	 * merge a series of uncharges to an uncharge of res_counter.
2893 	 * If not, we uncharge res_counter ony by one.
2894 	 */
2895 	if (batch->memcg != memcg)
2896 		goto direct_uncharge;
2897 	/* remember freed charge and uncharge it later */
2898 	batch->nr_pages++;
2899 	if (uncharge_memsw)
2900 		batch->memsw_nr_pages++;
2901 	return;
2902 direct_uncharge:
2903 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2904 	if (uncharge_memsw)
2905 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2906 	if (unlikely(batch->memcg != memcg))
2907 		memcg_oom_recover(memcg);
2908 }
2909 
2910 /*
2911  * uncharge if !page_mapped(page)
2912  */
2913 static struct mem_cgroup *
2914 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2915 {
2916 	struct mem_cgroup *memcg = NULL;
2917 	unsigned int nr_pages = 1;
2918 	struct page_cgroup *pc;
2919 	bool anon;
2920 
2921 	if (mem_cgroup_disabled())
2922 		return NULL;
2923 
2924 	if (PageSwapCache(page))
2925 		return NULL;
2926 
2927 	if (PageTransHuge(page)) {
2928 		nr_pages <<= compound_order(page);
2929 		VM_BUG_ON(!PageTransHuge(page));
2930 	}
2931 	/*
2932 	 * Check if our page_cgroup is valid
2933 	 */
2934 	pc = lookup_page_cgroup(page);
2935 	if (unlikely(!PageCgroupUsed(pc)))
2936 		return NULL;
2937 
2938 	lock_page_cgroup(pc);
2939 
2940 	memcg = pc->mem_cgroup;
2941 
2942 	if (!PageCgroupUsed(pc))
2943 		goto unlock_out;
2944 
2945 	anon = PageAnon(page);
2946 
2947 	switch (ctype) {
2948 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2949 		/*
2950 		 * Generally PageAnon tells if it's the anon statistics to be
2951 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2952 		 * used before page reached the stage of being marked PageAnon.
2953 		 */
2954 		anon = true;
2955 		/* fallthrough */
2956 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2957 		/* See mem_cgroup_prepare_migration() */
2958 		if (page_mapped(page) || PageCgroupMigration(pc))
2959 			goto unlock_out;
2960 		break;
2961 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2962 		if (!PageAnon(page)) {	/* Shared memory */
2963 			if (page->mapping && !page_is_file_cache(page))
2964 				goto unlock_out;
2965 		} else if (page_mapped(page)) /* Anon */
2966 				goto unlock_out;
2967 		break;
2968 	default:
2969 		break;
2970 	}
2971 
2972 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2973 
2974 	ClearPageCgroupUsed(pc);
2975 	/*
2976 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2977 	 * freed from LRU. This is safe because uncharged page is expected not
2978 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2979 	 * special functions.
2980 	 */
2981 
2982 	unlock_page_cgroup(pc);
2983 	/*
2984 	 * even after unlock, we have memcg->res.usage here and this memcg
2985 	 * will never be freed.
2986 	 */
2987 	memcg_check_events(memcg, page);
2988 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2989 		mem_cgroup_swap_statistics(memcg, true);
2990 		mem_cgroup_get(memcg);
2991 	}
2992 	if (!mem_cgroup_is_root(memcg))
2993 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2994 
2995 	return memcg;
2996 
2997 unlock_out:
2998 	unlock_page_cgroup(pc);
2999 	return NULL;
3000 }
3001 
3002 void mem_cgroup_uncharge_page(struct page *page)
3003 {
3004 	/* early check. */
3005 	if (page_mapped(page))
3006 		return;
3007 	VM_BUG_ON(page->mapping && !PageAnon(page));
3008 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3009 }
3010 
3011 void mem_cgroup_uncharge_cache_page(struct page *page)
3012 {
3013 	VM_BUG_ON(page_mapped(page));
3014 	VM_BUG_ON(page->mapping);
3015 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3016 }
3017 
3018 /*
3019  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3020  * In that cases, pages are freed continuously and we can expect pages
3021  * are in the same memcg. All these calls itself limits the number of
3022  * pages freed at once, then uncharge_start/end() is called properly.
3023  * This may be called prural(2) times in a context,
3024  */
3025 
3026 void mem_cgroup_uncharge_start(void)
3027 {
3028 	current->memcg_batch.do_batch++;
3029 	/* We can do nest. */
3030 	if (current->memcg_batch.do_batch == 1) {
3031 		current->memcg_batch.memcg = NULL;
3032 		current->memcg_batch.nr_pages = 0;
3033 		current->memcg_batch.memsw_nr_pages = 0;
3034 	}
3035 }
3036 
3037 void mem_cgroup_uncharge_end(void)
3038 {
3039 	struct memcg_batch_info *batch = &current->memcg_batch;
3040 
3041 	if (!batch->do_batch)
3042 		return;
3043 
3044 	batch->do_batch--;
3045 	if (batch->do_batch) /* If stacked, do nothing. */
3046 		return;
3047 
3048 	if (!batch->memcg)
3049 		return;
3050 	/*
3051 	 * This "batch->memcg" is valid without any css_get/put etc...
3052 	 * bacause we hide charges behind us.
3053 	 */
3054 	if (batch->nr_pages)
3055 		res_counter_uncharge(&batch->memcg->res,
3056 				     batch->nr_pages * PAGE_SIZE);
3057 	if (batch->memsw_nr_pages)
3058 		res_counter_uncharge(&batch->memcg->memsw,
3059 				     batch->memsw_nr_pages * PAGE_SIZE);
3060 	memcg_oom_recover(batch->memcg);
3061 	/* forget this pointer (for sanity check) */
3062 	batch->memcg = NULL;
3063 }
3064 
3065 #ifdef CONFIG_SWAP
3066 /*
3067  * called after __delete_from_swap_cache() and drop "page" account.
3068  * memcg information is recorded to swap_cgroup of "ent"
3069  */
3070 void
3071 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3072 {
3073 	struct mem_cgroup *memcg;
3074 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3075 
3076 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3077 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3078 
3079 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3080 
3081 	/*
3082 	 * record memcg information,  if swapout && memcg != NULL,
3083 	 * mem_cgroup_get() was called in uncharge().
3084 	 */
3085 	if (do_swap_account && swapout && memcg)
3086 		swap_cgroup_record(ent, css_id(&memcg->css));
3087 }
3088 #endif
3089 
3090 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3091 /*
3092  * called from swap_entry_free(). remove record in swap_cgroup and
3093  * uncharge "memsw" account.
3094  */
3095 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3096 {
3097 	struct mem_cgroup *memcg;
3098 	unsigned short id;
3099 
3100 	if (!do_swap_account)
3101 		return;
3102 
3103 	id = swap_cgroup_record(ent, 0);
3104 	rcu_read_lock();
3105 	memcg = mem_cgroup_lookup(id);
3106 	if (memcg) {
3107 		/*
3108 		 * We uncharge this because swap is freed.
3109 		 * This memcg can be obsolete one. We avoid calling css_tryget
3110 		 */
3111 		if (!mem_cgroup_is_root(memcg))
3112 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3113 		mem_cgroup_swap_statistics(memcg, false);
3114 		mem_cgroup_put(memcg);
3115 	}
3116 	rcu_read_unlock();
3117 }
3118 
3119 /**
3120  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3121  * @entry: swap entry to be moved
3122  * @from:  mem_cgroup which the entry is moved from
3123  * @to:  mem_cgroup which the entry is moved to
3124  *
3125  * It succeeds only when the swap_cgroup's record for this entry is the same
3126  * as the mem_cgroup's id of @from.
3127  *
3128  * Returns 0 on success, -EINVAL on failure.
3129  *
3130  * The caller must have charged to @to, IOW, called res_counter_charge() about
3131  * both res and memsw, and called css_get().
3132  */
3133 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3134 				struct mem_cgroup *from, struct mem_cgroup *to)
3135 {
3136 	unsigned short old_id, new_id;
3137 
3138 	old_id = css_id(&from->css);
3139 	new_id = css_id(&to->css);
3140 
3141 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3142 		mem_cgroup_swap_statistics(from, false);
3143 		mem_cgroup_swap_statistics(to, true);
3144 		/*
3145 		 * This function is only called from task migration context now.
3146 		 * It postpones res_counter and refcount handling till the end
3147 		 * of task migration(mem_cgroup_clear_mc()) for performance
3148 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3149 		 * because if the process that has been moved to @to does
3150 		 * swap-in, the refcount of @to might be decreased to 0.
3151 		 */
3152 		mem_cgroup_get(to);
3153 		return 0;
3154 	}
3155 	return -EINVAL;
3156 }
3157 #else
3158 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3159 				struct mem_cgroup *from, struct mem_cgroup *to)
3160 {
3161 	return -EINVAL;
3162 }
3163 #endif
3164 
3165 /*
3166  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3167  * page belongs to.
3168  */
3169 int mem_cgroup_prepare_migration(struct page *page,
3170 	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3171 {
3172 	struct mem_cgroup *memcg = NULL;
3173 	struct page_cgroup *pc;
3174 	enum charge_type ctype;
3175 	int ret = 0;
3176 
3177 	*memcgp = NULL;
3178 
3179 	VM_BUG_ON(PageTransHuge(page));
3180 	if (mem_cgroup_disabled())
3181 		return 0;
3182 
3183 	pc = lookup_page_cgroup(page);
3184 	lock_page_cgroup(pc);
3185 	if (PageCgroupUsed(pc)) {
3186 		memcg = pc->mem_cgroup;
3187 		css_get(&memcg->css);
3188 		/*
3189 		 * At migrating an anonymous page, its mapcount goes down
3190 		 * to 0 and uncharge() will be called. But, even if it's fully
3191 		 * unmapped, migration may fail and this page has to be
3192 		 * charged again. We set MIGRATION flag here and delay uncharge
3193 		 * until end_migration() is called
3194 		 *
3195 		 * Corner Case Thinking
3196 		 * A)
3197 		 * When the old page was mapped as Anon and it's unmap-and-freed
3198 		 * while migration was ongoing.
3199 		 * If unmap finds the old page, uncharge() of it will be delayed
3200 		 * until end_migration(). If unmap finds a new page, it's
3201 		 * uncharged when it make mapcount to be 1->0. If unmap code
3202 		 * finds swap_migration_entry, the new page will not be mapped
3203 		 * and end_migration() will find it(mapcount==0).
3204 		 *
3205 		 * B)
3206 		 * When the old page was mapped but migraion fails, the kernel
3207 		 * remaps it. A charge for it is kept by MIGRATION flag even
3208 		 * if mapcount goes down to 0. We can do remap successfully
3209 		 * without charging it again.
3210 		 *
3211 		 * C)
3212 		 * The "old" page is under lock_page() until the end of
3213 		 * migration, so, the old page itself will not be swapped-out.
3214 		 * If the new page is swapped out before end_migraton, our
3215 		 * hook to usual swap-out path will catch the event.
3216 		 */
3217 		if (PageAnon(page))
3218 			SetPageCgroupMigration(pc);
3219 	}
3220 	unlock_page_cgroup(pc);
3221 	/*
3222 	 * If the page is not charged at this point,
3223 	 * we return here.
3224 	 */
3225 	if (!memcg)
3226 		return 0;
3227 
3228 	*memcgp = memcg;
3229 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3230 	css_put(&memcg->css);/* drop extra refcnt */
3231 	if (ret) {
3232 		if (PageAnon(page)) {
3233 			lock_page_cgroup(pc);
3234 			ClearPageCgroupMigration(pc);
3235 			unlock_page_cgroup(pc);
3236 			/*
3237 			 * The old page may be fully unmapped while we kept it.
3238 			 */
3239 			mem_cgroup_uncharge_page(page);
3240 		}
3241 		/* we'll need to revisit this error code (we have -EINTR) */
3242 		return -ENOMEM;
3243 	}
3244 	/*
3245 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3246 	 * is called before end_migration, we can catch all events on this new
3247 	 * page. In the case new page is migrated but not remapped, new page's
3248 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3249 	 */
3250 	if (PageAnon(page))
3251 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3252 	else if (page_is_file_cache(page))
3253 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3254 	else
3255 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3256 	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3257 	return ret;
3258 }
3259 
3260 /* remove redundant charge if migration failed*/
3261 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3262 	struct page *oldpage, struct page *newpage, bool migration_ok)
3263 {
3264 	struct page *used, *unused;
3265 	struct page_cgroup *pc;
3266 	bool anon;
3267 
3268 	if (!memcg)
3269 		return;
3270 	/* blocks rmdir() */
3271 	cgroup_exclude_rmdir(&memcg->css);
3272 	if (!migration_ok) {
3273 		used = oldpage;
3274 		unused = newpage;
3275 	} else {
3276 		used = newpage;
3277 		unused = oldpage;
3278 	}
3279 	/*
3280 	 * We disallowed uncharge of pages under migration because mapcount
3281 	 * of the page goes down to zero, temporarly.
3282 	 * Clear the flag and check the page should be charged.
3283 	 */
3284 	pc = lookup_page_cgroup(oldpage);
3285 	lock_page_cgroup(pc);
3286 	ClearPageCgroupMigration(pc);
3287 	unlock_page_cgroup(pc);
3288 	anon = PageAnon(used);
3289 	__mem_cgroup_uncharge_common(unused,
3290 		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3291 		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3292 
3293 	/*
3294 	 * If a page is a file cache, radix-tree replacement is very atomic
3295 	 * and we can skip this check. When it was an Anon page, its mapcount
3296 	 * goes down to 0. But because we added MIGRATION flage, it's not
3297 	 * uncharged yet. There are several case but page->mapcount check
3298 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3299 	 * check. (see prepare_charge() also)
3300 	 */
3301 	if (anon)
3302 		mem_cgroup_uncharge_page(used);
3303 	/*
3304 	 * At migration, we may charge account against cgroup which has no
3305 	 * tasks.
3306 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3307 	 * In that case, we need to call pre_destroy() again. check it here.
3308 	 */
3309 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3310 }
3311 
3312 /*
3313  * At replace page cache, newpage is not under any memcg but it's on
3314  * LRU. So, this function doesn't touch res_counter but handles LRU
3315  * in correct way. Both pages are locked so we cannot race with uncharge.
3316  */
3317 void mem_cgroup_replace_page_cache(struct page *oldpage,
3318 				  struct page *newpage)
3319 {
3320 	struct mem_cgroup *memcg = NULL;
3321 	struct page_cgroup *pc;
3322 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323 
3324 	if (mem_cgroup_disabled())
3325 		return;
3326 
3327 	pc = lookup_page_cgroup(oldpage);
3328 	/* fix accounting on old pages */
3329 	lock_page_cgroup(pc);
3330 	if (PageCgroupUsed(pc)) {
3331 		memcg = pc->mem_cgroup;
3332 		mem_cgroup_charge_statistics(memcg, false, -1);
3333 		ClearPageCgroupUsed(pc);
3334 	}
3335 	unlock_page_cgroup(pc);
3336 
3337 	/*
3338 	 * When called from shmem_replace_page(), in some cases the
3339 	 * oldpage has already been charged, and in some cases not.
3340 	 */
3341 	if (!memcg)
3342 		return;
3343 
3344 	if (PageSwapBacked(oldpage))
3345 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3346 
3347 	/*
3348 	 * Even if newpage->mapping was NULL before starting replacement,
3349 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3350 	 * LRU while we overwrite pc->mem_cgroup.
3351 	 */
3352 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3353 }
3354 
3355 #ifdef CONFIG_DEBUG_VM
3356 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3357 {
3358 	struct page_cgroup *pc;
3359 
3360 	pc = lookup_page_cgroup(page);
3361 	/*
3362 	 * Can be NULL while feeding pages into the page allocator for
3363 	 * the first time, i.e. during boot or memory hotplug;
3364 	 * or when mem_cgroup_disabled().
3365 	 */
3366 	if (likely(pc) && PageCgroupUsed(pc))
3367 		return pc;
3368 	return NULL;
3369 }
3370 
3371 bool mem_cgroup_bad_page_check(struct page *page)
3372 {
3373 	if (mem_cgroup_disabled())
3374 		return false;
3375 
3376 	return lookup_page_cgroup_used(page) != NULL;
3377 }
3378 
3379 void mem_cgroup_print_bad_page(struct page *page)
3380 {
3381 	struct page_cgroup *pc;
3382 
3383 	pc = lookup_page_cgroup_used(page);
3384 	if (pc) {
3385 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3386 		       pc, pc->flags, pc->mem_cgroup);
3387 	}
3388 }
3389 #endif
3390 
3391 static DEFINE_MUTEX(set_limit_mutex);
3392 
3393 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3394 				unsigned long long val)
3395 {
3396 	int retry_count;
3397 	u64 memswlimit, memlimit;
3398 	int ret = 0;
3399 	int children = mem_cgroup_count_children(memcg);
3400 	u64 curusage, oldusage;
3401 	int enlarge;
3402 
3403 	/*
3404 	 * For keeping hierarchical_reclaim simple, how long we should retry
3405 	 * is depends on callers. We set our retry-count to be function
3406 	 * of # of children which we should visit in this loop.
3407 	 */
3408 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3409 
3410 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3411 
3412 	enlarge = 0;
3413 	while (retry_count) {
3414 		if (signal_pending(current)) {
3415 			ret = -EINTR;
3416 			break;
3417 		}
3418 		/*
3419 		 * Rather than hide all in some function, I do this in
3420 		 * open coded manner. You see what this really does.
3421 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3422 		 */
3423 		mutex_lock(&set_limit_mutex);
3424 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3425 		if (memswlimit < val) {
3426 			ret = -EINVAL;
3427 			mutex_unlock(&set_limit_mutex);
3428 			break;
3429 		}
3430 
3431 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3432 		if (memlimit < val)
3433 			enlarge = 1;
3434 
3435 		ret = res_counter_set_limit(&memcg->res, val);
3436 		if (!ret) {
3437 			if (memswlimit == val)
3438 				memcg->memsw_is_minimum = true;
3439 			else
3440 				memcg->memsw_is_minimum = false;
3441 		}
3442 		mutex_unlock(&set_limit_mutex);
3443 
3444 		if (!ret)
3445 			break;
3446 
3447 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3448 				   MEM_CGROUP_RECLAIM_SHRINK);
3449 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3450 		/* Usage is reduced ? */
3451   		if (curusage >= oldusage)
3452 			retry_count--;
3453 		else
3454 			oldusage = curusage;
3455 	}
3456 	if (!ret && enlarge)
3457 		memcg_oom_recover(memcg);
3458 
3459 	return ret;
3460 }
3461 
3462 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3463 					unsigned long long val)
3464 {
3465 	int retry_count;
3466 	u64 memlimit, memswlimit, oldusage, curusage;
3467 	int children = mem_cgroup_count_children(memcg);
3468 	int ret = -EBUSY;
3469 	int enlarge = 0;
3470 
3471 	/* see mem_cgroup_resize_res_limit */
3472  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3473 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3474 	while (retry_count) {
3475 		if (signal_pending(current)) {
3476 			ret = -EINTR;
3477 			break;
3478 		}
3479 		/*
3480 		 * Rather than hide all in some function, I do this in
3481 		 * open coded manner. You see what this really does.
3482 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3483 		 */
3484 		mutex_lock(&set_limit_mutex);
3485 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3486 		if (memlimit > val) {
3487 			ret = -EINVAL;
3488 			mutex_unlock(&set_limit_mutex);
3489 			break;
3490 		}
3491 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3492 		if (memswlimit < val)
3493 			enlarge = 1;
3494 		ret = res_counter_set_limit(&memcg->memsw, val);
3495 		if (!ret) {
3496 			if (memlimit == val)
3497 				memcg->memsw_is_minimum = true;
3498 			else
3499 				memcg->memsw_is_minimum = false;
3500 		}
3501 		mutex_unlock(&set_limit_mutex);
3502 
3503 		if (!ret)
3504 			break;
3505 
3506 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3507 				   MEM_CGROUP_RECLAIM_NOSWAP |
3508 				   MEM_CGROUP_RECLAIM_SHRINK);
3509 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3510 		/* Usage is reduced ? */
3511 		if (curusage >= oldusage)
3512 			retry_count--;
3513 		else
3514 			oldusage = curusage;
3515 	}
3516 	if (!ret && enlarge)
3517 		memcg_oom_recover(memcg);
3518 	return ret;
3519 }
3520 
3521 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3522 					    gfp_t gfp_mask,
3523 					    unsigned long *total_scanned)
3524 {
3525 	unsigned long nr_reclaimed = 0;
3526 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3527 	unsigned long reclaimed;
3528 	int loop = 0;
3529 	struct mem_cgroup_tree_per_zone *mctz;
3530 	unsigned long long excess;
3531 	unsigned long nr_scanned;
3532 
3533 	if (order > 0)
3534 		return 0;
3535 
3536 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3537 	/*
3538 	 * This loop can run a while, specially if mem_cgroup's continuously
3539 	 * keep exceeding their soft limit and putting the system under
3540 	 * pressure
3541 	 */
3542 	do {
3543 		if (next_mz)
3544 			mz = next_mz;
3545 		else
3546 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3547 		if (!mz)
3548 			break;
3549 
3550 		nr_scanned = 0;
3551 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3552 						    gfp_mask, &nr_scanned);
3553 		nr_reclaimed += reclaimed;
3554 		*total_scanned += nr_scanned;
3555 		spin_lock(&mctz->lock);
3556 
3557 		/*
3558 		 * If we failed to reclaim anything from this memory cgroup
3559 		 * it is time to move on to the next cgroup
3560 		 */
3561 		next_mz = NULL;
3562 		if (!reclaimed) {
3563 			do {
3564 				/*
3565 				 * Loop until we find yet another one.
3566 				 *
3567 				 * By the time we get the soft_limit lock
3568 				 * again, someone might have aded the
3569 				 * group back on the RB tree. Iterate to
3570 				 * make sure we get a different mem.
3571 				 * mem_cgroup_largest_soft_limit_node returns
3572 				 * NULL if no other cgroup is present on
3573 				 * the tree
3574 				 */
3575 				next_mz =
3576 				__mem_cgroup_largest_soft_limit_node(mctz);
3577 				if (next_mz == mz)
3578 					css_put(&next_mz->memcg->css);
3579 				else /* next_mz == NULL or other memcg */
3580 					break;
3581 			} while (1);
3582 		}
3583 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3584 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3585 		/*
3586 		 * One school of thought says that we should not add
3587 		 * back the node to the tree if reclaim returns 0.
3588 		 * But our reclaim could return 0, simply because due
3589 		 * to priority we are exposing a smaller subset of
3590 		 * memory to reclaim from. Consider this as a longer
3591 		 * term TODO.
3592 		 */
3593 		/* If excess == 0, no tree ops */
3594 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3595 		spin_unlock(&mctz->lock);
3596 		css_put(&mz->memcg->css);
3597 		loop++;
3598 		/*
3599 		 * Could not reclaim anything and there are no more
3600 		 * mem cgroups to try or we seem to be looping without
3601 		 * reclaiming anything.
3602 		 */
3603 		if (!nr_reclaimed &&
3604 			(next_mz == NULL ||
3605 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3606 			break;
3607 	} while (!nr_reclaimed);
3608 	if (next_mz)
3609 		css_put(&next_mz->memcg->css);
3610 	return nr_reclaimed;
3611 }
3612 
3613 /*
3614  * This routine traverse page_cgroup in given list and drop them all.
3615  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3616  */
3617 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3618 				int node, int zid, enum lru_list lru)
3619 {
3620 	struct mem_cgroup_per_zone *mz;
3621 	unsigned long flags, loop;
3622 	struct list_head *list;
3623 	struct page *busy;
3624 	struct zone *zone;
3625 	int ret = 0;
3626 
3627 	zone = &NODE_DATA(node)->node_zones[zid];
3628 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3629 	list = &mz->lruvec.lists[lru];
3630 
3631 	loop = mz->lru_size[lru];
3632 	/* give some margin against EBUSY etc...*/
3633 	loop += 256;
3634 	busy = NULL;
3635 	while (loop--) {
3636 		struct page_cgroup *pc;
3637 		struct page *page;
3638 
3639 		ret = 0;
3640 		spin_lock_irqsave(&zone->lru_lock, flags);
3641 		if (list_empty(list)) {
3642 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3643 			break;
3644 		}
3645 		page = list_entry(list->prev, struct page, lru);
3646 		if (busy == page) {
3647 			list_move(&page->lru, list);
3648 			busy = NULL;
3649 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3650 			continue;
3651 		}
3652 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3653 
3654 		pc = lookup_page_cgroup(page);
3655 
3656 		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3657 		if (ret == -ENOMEM || ret == -EINTR)
3658 			break;
3659 
3660 		if (ret == -EBUSY || ret == -EINVAL) {
3661 			/* found lock contention or "pc" is obsolete. */
3662 			busy = page;
3663 			cond_resched();
3664 		} else
3665 			busy = NULL;
3666 	}
3667 
3668 	if (!ret && !list_empty(list))
3669 		return -EBUSY;
3670 	return ret;
3671 }
3672 
3673 /*
3674  * make mem_cgroup's charge to be 0 if there is no task.
3675  * This enables deleting this mem_cgroup.
3676  */
3677 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3678 {
3679 	int ret;
3680 	int node, zid, shrink;
3681 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3682 	struct cgroup *cgrp = memcg->css.cgroup;
3683 
3684 	css_get(&memcg->css);
3685 
3686 	shrink = 0;
3687 	/* should free all ? */
3688 	if (free_all)
3689 		goto try_to_free;
3690 move_account:
3691 	do {
3692 		ret = -EBUSY;
3693 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3694 			goto out;
3695 		ret = -EINTR;
3696 		if (signal_pending(current))
3697 			goto out;
3698 		/* This is for making all *used* pages to be on LRU. */
3699 		lru_add_drain_all();
3700 		drain_all_stock_sync(memcg);
3701 		ret = 0;
3702 		mem_cgroup_start_move(memcg);
3703 		for_each_node_state(node, N_HIGH_MEMORY) {
3704 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3705 				enum lru_list lru;
3706 				for_each_lru(lru) {
3707 					ret = mem_cgroup_force_empty_list(memcg,
3708 							node, zid, lru);
3709 					if (ret)
3710 						break;
3711 				}
3712 			}
3713 			if (ret)
3714 				break;
3715 		}
3716 		mem_cgroup_end_move(memcg);
3717 		memcg_oom_recover(memcg);
3718 		/* it seems parent cgroup doesn't have enough mem */
3719 		if (ret == -ENOMEM)
3720 			goto try_to_free;
3721 		cond_resched();
3722 	/* "ret" should also be checked to ensure all lists are empty. */
3723 	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3724 out:
3725 	css_put(&memcg->css);
3726 	return ret;
3727 
3728 try_to_free:
3729 	/* returns EBUSY if there is a task or if we come here twice. */
3730 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3731 		ret = -EBUSY;
3732 		goto out;
3733 	}
3734 	/* we call try-to-free pages for make this cgroup empty */
3735 	lru_add_drain_all();
3736 	/* try to free all pages in this cgroup */
3737 	shrink = 1;
3738 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3739 		int progress;
3740 
3741 		if (signal_pending(current)) {
3742 			ret = -EINTR;
3743 			goto out;
3744 		}
3745 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3746 						false);
3747 		if (!progress) {
3748 			nr_retries--;
3749 			/* maybe some writeback is necessary */
3750 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3751 		}
3752 
3753 	}
3754 	lru_add_drain();
3755 	/* try move_account...there may be some *locked* pages. */
3756 	goto move_account;
3757 }
3758 
3759 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3760 {
3761 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3762 }
3763 
3764 
3765 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3766 {
3767 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3768 }
3769 
3770 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3771 					u64 val)
3772 {
3773 	int retval = 0;
3774 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3775 	struct cgroup *parent = cont->parent;
3776 	struct mem_cgroup *parent_memcg = NULL;
3777 
3778 	if (parent)
3779 		parent_memcg = mem_cgroup_from_cont(parent);
3780 
3781 	cgroup_lock();
3782 	/*
3783 	 * If parent's use_hierarchy is set, we can't make any modifications
3784 	 * in the child subtrees. If it is unset, then the change can
3785 	 * occur, provided the current cgroup has no children.
3786 	 *
3787 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3788 	 * set if there are no children.
3789 	 */
3790 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3791 				(val == 1 || val == 0)) {
3792 		if (list_empty(&cont->children))
3793 			memcg->use_hierarchy = val;
3794 		else
3795 			retval = -EBUSY;
3796 	} else
3797 		retval = -EINVAL;
3798 	cgroup_unlock();
3799 
3800 	return retval;
3801 }
3802 
3803 
3804 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3805 					       enum mem_cgroup_stat_index idx)
3806 {
3807 	struct mem_cgroup *iter;
3808 	long val = 0;
3809 
3810 	/* Per-cpu values can be negative, use a signed accumulator */
3811 	for_each_mem_cgroup_tree(iter, memcg)
3812 		val += mem_cgroup_read_stat(iter, idx);
3813 
3814 	if (val < 0) /* race ? */
3815 		val = 0;
3816 	return val;
3817 }
3818 
3819 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3820 {
3821 	u64 val;
3822 
3823 	if (!mem_cgroup_is_root(memcg)) {
3824 		if (!swap)
3825 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3826 		else
3827 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3828 	}
3829 
3830 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3831 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3832 
3833 	if (swap)
3834 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3835 
3836 	return val << PAGE_SHIFT;
3837 }
3838 
3839 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3840 			       struct file *file, char __user *buf,
3841 			       size_t nbytes, loff_t *ppos)
3842 {
3843 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3844 	char str[64];
3845 	u64 val;
3846 	int type, name, len;
3847 
3848 	type = MEMFILE_TYPE(cft->private);
3849 	name = MEMFILE_ATTR(cft->private);
3850 
3851 	if (!do_swap_account && type == _MEMSWAP)
3852 		return -EOPNOTSUPP;
3853 
3854 	switch (type) {
3855 	case _MEM:
3856 		if (name == RES_USAGE)
3857 			val = mem_cgroup_usage(memcg, false);
3858 		else
3859 			val = res_counter_read_u64(&memcg->res, name);
3860 		break;
3861 	case _MEMSWAP:
3862 		if (name == RES_USAGE)
3863 			val = mem_cgroup_usage(memcg, true);
3864 		else
3865 			val = res_counter_read_u64(&memcg->memsw, name);
3866 		break;
3867 	default:
3868 		BUG();
3869 	}
3870 
3871 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3872 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3873 }
3874 /*
3875  * The user of this function is...
3876  * RES_LIMIT.
3877  */
3878 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3879 			    const char *buffer)
3880 {
3881 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3882 	int type, name;
3883 	unsigned long long val;
3884 	int ret;
3885 
3886 	type = MEMFILE_TYPE(cft->private);
3887 	name = MEMFILE_ATTR(cft->private);
3888 
3889 	if (!do_swap_account && type == _MEMSWAP)
3890 		return -EOPNOTSUPP;
3891 
3892 	switch (name) {
3893 	case RES_LIMIT:
3894 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3895 			ret = -EINVAL;
3896 			break;
3897 		}
3898 		/* This function does all necessary parse...reuse it */
3899 		ret = res_counter_memparse_write_strategy(buffer, &val);
3900 		if (ret)
3901 			break;
3902 		if (type == _MEM)
3903 			ret = mem_cgroup_resize_limit(memcg, val);
3904 		else
3905 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3906 		break;
3907 	case RES_SOFT_LIMIT:
3908 		ret = res_counter_memparse_write_strategy(buffer, &val);
3909 		if (ret)
3910 			break;
3911 		/*
3912 		 * For memsw, soft limits are hard to implement in terms
3913 		 * of semantics, for now, we support soft limits for
3914 		 * control without swap
3915 		 */
3916 		if (type == _MEM)
3917 			ret = res_counter_set_soft_limit(&memcg->res, val);
3918 		else
3919 			ret = -EINVAL;
3920 		break;
3921 	default:
3922 		ret = -EINVAL; /* should be BUG() ? */
3923 		break;
3924 	}
3925 	return ret;
3926 }
3927 
3928 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3929 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3930 {
3931 	struct cgroup *cgroup;
3932 	unsigned long long min_limit, min_memsw_limit, tmp;
3933 
3934 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3935 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3936 	cgroup = memcg->css.cgroup;
3937 	if (!memcg->use_hierarchy)
3938 		goto out;
3939 
3940 	while (cgroup->parent) {
3941 		cgroup = cgroup->parent;
3942 		memcg = mem_cgroup_from_cont(cgroup);
3943 		if (!memcg->use_hierarchy)
3944 			break;
3945 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3946 		min_limit = min(min_limit, tmp);
3947 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3948 		min_memsw_limit = min(min_memsw_limit, tmp);
3949 	}
3950 out:
3951 	*mem_limit = min_limit;
3952 	*memsw_limit = min_memsw_limit;
3953 }
3954 
3955 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3956 {
3957 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3958 	int type, name;
3959 
3960 	type = MEMFILE_TYPE(event);
3961 	name = MEMFILE_ATTR(event);
3962 
3963 	if (!do_swap_account && type == _MEMSWAP)
3964 		return -EOPNOTSUPP;
3965 
3966 	switch (name) {
3967 	case RES_MAX_USAGE:
3968 		if (type == _MEM)
3969 			res_counter_reset_max(&memcg->res);
3970 		else
3971 			res_counter_reset_max(&memcg->memsw);
3972 		break;
3973 	case RES_FAILCNT:
3974 		if (type == _MEM)
3975 			res_counter_reset_failcnt(&memcg->res);
3976 		else
3977 			res_counter_reset_failcnt(&memcg->memsw);
3978 		break;
3979 	}
3980 
3981 	return 0;
3982 }
3983 
3984 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3985 					struct cftype *cft)
3986 {
3987 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3988 }
3989 
3990 #ifdef CONFIG_MMU
3991 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3992 					struct cftype *cft, u64 val)
3993 {
3994 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3995 
3996 	if (val >= (1 << NR_MOVE_TYPE))
3997 		return -EINVAL;
3998 	/*
3999 	 * We check this value several times in both in can_attach() and
4000 	 * attach(), so we need cgroup lock to prevent this value from being
4001 	 * inconsistent.
4002 	 */
4003 	cgroup_lock();
4004 	memcg->move_charge_at_immigrate = val;
4005 	cgroup_unlock();
4006 
4007 	return 0;
4008 }
4009 #else
4010 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4011 					struct cftype *cft, u64 val)
4012 {
4013 	return -ENOSYS;
4014 }
4015 #endif
4016 
4017 #ifdef CONFIG_NUMA
4018 static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4019 				      struct seq_file *m)
4020 {
4021 	int nid;
4022 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4023 	unsigned long node_nr;
4024 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4025 
4026 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4027 	seq_printf(m, "total=%lu", total_nr);
4028 	for_each_node_state(nid, N_HIGH_MEMORY) {
4029 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4030 		seq_printf(m, " N%d=%lu", nid, node_nr);
4031 	}
4032 	seq_putc(m, '\n');
4033 
4034 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4035 	seq_printf(m, "file=%lu", file_nr);
4036 	for_each_node_state(nid, N_HIGH_MEMORY) {
4037 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4038 				LRU_ALL_FILE);
4039 		seq_printf(m, " N%d=%lu", nid, node_nr);
4040 	}
4041 	seq_putc(m, '\n');
4042 
4043 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4044 	seq_printf(m, "anon=%lu", anon_nr);
4045 	for_each_node_state(nid, N_HIGH_MEMORY) {
4046 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4047 				LRU_ALL_ANON);
4048 		seq_printf(m, " N%d=%lu", nid, node_nr);
4049 	}
4050 	seq_putc(m, '\n');
4051 
4052 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4053 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4054 	for_each_node_state(nid, N_HIGH_MEMORY) {
4055 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4056 				BIT(LRU_UNEVICTABLE));
4057 		seq_printf(m, " N%d=%lu", nid, node_nr);
4058 	}
4059 	seq_putc(m, '\n');
4060 	return 0;
4061 }
4062 #endif /* CONFIG_NUMA */
4063 
4064 static const char * const mem_cgroup_lru_names[] = {
4065 	"inactive_anon",
4066 	"active_anon",
4067 	"inactive_file",
4068 	"active_file",
4069 	"unevictable",
4070 };
4071 
4072 static inline void mem_cgroup_lru_names_not_uptodate(void)
4073 {
4074 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4075 }
4076 
4077 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4078 				 struct seq_file *m)
4079 {
4080 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4081 	struct mem_cgroup *mi;
4082 	unsigned int i;
4083 
4084 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4085 		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4086 			continue;
4087 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4088 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4089 	}
4090 
4091 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4092 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4093 			   mem_cgroup_read_events(memcg, i));
4094 
4095 	for (i = 0; i < NR_LRU_LISTS; i++)
4096 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4097 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4098 
4099 	/* Hierarchical information */
4100 	{
4101 		unsigned long long limit, memsw_limit;
4102 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4103 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4104 		if (do_swap_account)
4105 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4106 				   memsw_limit);
4107 	}
4108 
4109 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4110 		long long val = 0;
4111 
4112 		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4113 			continue;
4114 		for_each_mem_cgroup_tree(mi, memcg)
4115 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4116 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4117 	}
4118 
4119 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4120 		unsigned long long val = 0;
4121 
4122 		for_each_mem_cgroup_tree(mi, memcg)
4123 			val += mem_cgroup_read_events(mi, i);
4124 		seq_printf(m, "total_%s %llu\n",
4125 			   mem_cgroup_events_names[i], val);
4126 	}
4127 
4128 	for (i = 0; i < NR_LRU_LISTS; i++) {
4129 		unsigned long long val = 0;
4130 
4131 		for_each_mem_cgroup_tree(mi, memcg)
4132 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4133 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4134 	}
4135 
4136 #ifdef CONFIG_DEBUG_VM
4137 	{
4138 		int nid, zid;
4139 		struct mem_cgroup_per_zone *mz;
4140 		struct zone_reclaim_stat *rstat;
4141 		unsigned long recent_rotated[2] = {0, 0};
4142 		unsigned long recent_scanned[2] = {0, 0};
4143 
4144 		for_each_online_node(nid)
4145 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4146 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4147 				rstat = &mz->lruvec.reclaim_stat;
4148 
4149 				recent_rotated[0] += rstat->recent_rotated[0];
4150 				recent_rotated[1] += rstat->recent_rotated[1];
4151 				recent_scanned[0] += rstat->recent_scanned[0];
4152 				recent_scanned[1] += rstat->recent_scanned[1];
4153 			}
4154 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4155 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4156 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4157 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4158 	}
4159 #endif
4160 
4161 	return 0;
4162 }
4163 
4164 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4165 {
4166 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4167 
4168 	return mem_cgroup_swappiness(memcg);
4169 }
4170 
4171 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4172 				       u64 val)
4173 {
4174 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4175 	struct mem_cgroup *parent;
4176 
4177 	if (val > 100)
4178 		return -EINVAL;
4179 
4180 	if (cgrp->parent == NULL)
4181 		return -EINVAL;
4182 
4183 	parent = mem_cgroup_from_cont(cgrp->parent);
4184 
4185 	cgroup_lock();
4186 
4187 	/* If under hierarchy, only empty-root can set this value */
4188 	if ((parent->use_hierarchy) ||
4189 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4190 		cgroup_unlock();
4191 		return -EINVAL;
4192 	}
4193 
4194 	memcg->swappiness = val;
4195 
4196 	cgroup_unlock();
4197 
4198 	return 0;
4199 }
4200 
4201 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4202 {
4203 	struct mem_cgroup_threshold_ary *t;
4204 	u64 usage;
4205 	int i;
4206 
4207 	rcu_read_lock();
4208 	if (!swap)
4209 		t = rcu_dereference(memcg->thresholds.primary);
4210 	else
4211 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4212 
4213 	if (!t)
4214 		goto unlock;
4215 
4216 	usage = mem_cgroup_usage(memcg, swap);
4217 
4218 	/*
4219 	 * current_threshold points to threshold just below or equal to usage.
4220 	 * If it's not true, a threshold was crossed after last
4221 	 * call of __mem_cgroup_threshold().
4222 	 */
4223 	i = t->current_threshold;
4224 
4225 	/*
4226 	 * Iterate backward over array of thresholds starting from
4227 	 * current_threshold and check if a threshold is crossed.
4228 	 * If none of thresholds below usage is crossed, we read
4229 	 * only one element of the array here.
4230 	 */
4231 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4232 		eventfd_signal(t->entries[i].eventfd, 1);
4233 
4234 	/* i = current_threshold + 1 */
4235 	i++;
4236 
4237 	/*
4238 	 * Iterate forward over array of thresholds starting from
4239 	 * current_threshold+1 and check if a threshold is crossed.
4240 	 * If none of thresholds above usage is crossed, we read
4241 	 * only one element of the array here.
4242 	 */
4243 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4244 		eventfd_signal(t->entries[i].eventfd, 1);
4245 
4246 	/* Update current_threshold */
4247 	t->current_threshold = i - 1;
4248 unlock:
4249 	rcu_read_unlock();
4250 }
4251 
4252 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4253 {
4254 	while (memcg) {
4255 		__mem_cgroup_threshold(memcg, false);
4256 		if (do_swap_account)
4257 			__mem_cgroup_threshold(memcg, true);
4258 
4259 		memcg = parent_mem_cgroup(memcg);
4260 	}
4261 }
4262 
4263 static int compare_thresholds(const void *a, const void *b)
4264 {
4265 	const struct mem_cgroup_threshold *_a = a;
4266 	const struct mem_cgroup_threshold *_b = b;
4267 
4268 	return _a->threshold - _b->threshold;
4269 }
4270 
4271 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4272 {
4273 	struct mem_cgroup_eventfd_list *ev;
4274 
4275 	list_for_each_entry(ev, &memcg->oom_notify, list)
4276 		eventfd_signal(ev->eventfd, 1);
4277 	return 0;
4278 }
4279 
4280 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4281 {
4282 	struct mem_cgroup *iter;
4283 
4284 	for_each_mem_cgroup_tree(iter, memcg)
4285 		mem_cgroup_oom_notify_cb(iter);
4286 }
4287 
4288 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4289 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4290 {
4291 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4292 	struct mem_cgroup_thresholds *thresholds;
4293 	struct mem_cgroup_threshold_ary *new;
4294 	int type = MEMFILE_TYPE(cft->private);
4295 	u64 threshold, usage;
4296 	int i, size, ret;
4297 
4298 	ret = res_counter_memparse_write_strategy(args, &threshold);
4299 	if (ret)
4300 		return ret;
4301 
4302 	mutex_lock(&memcg->thresholds_lock);
4303 
4304 	if (type == _MEM)
4305 		thresholds = &memcg->thresholds;
4306 	else if (type == _MEMSWAP)
4307 		thresholds = &memcg->memsw_thresholds;
4308 	else
4309 		BUG();
4310 
4311 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4312 
4313 	/* Check if a threshold crossed before adding a new one */
4314 	if (thresholds->primary)
4315 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4316 
4317 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4318 
4319 	/* Allocate memory for new array of thresholds */
4320 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4321 			GFP_KERNEL);
4322 	if (!new) {
4323 		ret = -ENOMEM;
4324 		goto unlock;
4325 	}
4326 	new->size = size;
4327 
4328 	/* Copy thresholds (if any) to new array */
4329 	if (thresholds->primary) {
4330 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4331 				sizeof(struct mem_cgroup_threshold));
4332 	}
4333 
4334 	/* Add new threshold */
4335 	new->entries[size - 1].eventfd = eventfd;
4336 	new->entries[size - 1].threshold = threshold;
4337 
4338 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4339 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4340 			compare_thresholds, NULL);
4341 
4342 	/* Find current threshold */
4343 	new->current_threshold = -1;
4344 	for (i = 0; i < size; i++) {
4345 		if (new->entries[i].threshold <= usage) {
4346 			/*
4347 			 * new->current_threshold will not be used until
4348 			 * rcu_assign_pointer(), so it's safe to increment
4349 			 * it here.
4350 			 */
4351 			++new->current_threshold;
4352 		} else
4353 			break;
4354 	}
4355 
4356 	/* Free old spare buffer and save old primary buffer as spare */
4357 	kfree(thresholds->spare);
4358 	thresholds->spare = thresholds->primary;
4359 
4360 	rcu_assign_pointer(thresholds->primary, new);
4361 
4362 	/* To be sure that nobody uses thresholds */
4363 	synchronize_rcu();
4364 
4365 unlock:
4366 	mutex_unlock(&memcg->thresholds_lock);
4367 
4368 	return ret;
4369 }
4370 
4371 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4372 	struct cftype *cft, struct eventfd_ctx *eventfd)
4373 {
4374 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4375 	struct mem_cgroup_thresholds *thresholds;
4376 	struct mem_cgroup_threshold_ary *new;
4377 	int type = MEMFILE_TYPE(cft->private);
4378 	u64 usage;
4379 	int i, j, size;
4380 
4381 	mutex_lock(&memcg->thresholds_lock);
4382 	if (type == _MEM)
4383 		thresholds = &memcg->thresholds;
4384 	else if (type == _MEMSWAP)
4385 		thresholds = &memcg->memsw_thresholds;
4386 	else
4387 		BUG();
4388 
4389 	if (!thresholds->primary)
4390 		goto unlock;
4391 
4392 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4393 
4394 	/* Check if a threshold crossed before removing */
4395 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4396 
4397 	/* Calculate new number of threshold */
4398 	size = 0;
4399 	for (i = 0; i < thresholds->primary->size; i++) {
4400 		if (thresholds->primary->entries[i].eventfd != eventfd)
4401 			size++;
4402 	}
4403 
4404 	new = thresholds->spare;
4405 
4406 	/* Set thresholds array to NULL if we don't have thresholds */
4407 	if (!size) {
4408 		kfree(new);
4409 		new = NULL;
4410 		goto swap_buffers;
4411 	}
4412 
4413 	new->size = size;
4414 
4415 	/* Copy thresholds and find current threshold */
4416 	new->current_threshold = -1;
4417 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4418 		if (thresholds->primary->entries[i].eventfd == eventfd)
4419 			continue;
4420 
4421 		new->entries[j] = thresholds->primary->entries[i];
4422 		if (new->entries[j].threshold <= usage) {
4423 			/*
4424 			 * new->current_threshold will not be used
4425 			 * until rcu_assign_pointer(), so it's safe to increment
4426 			 * it here.
4427 			 */
4428 			++new->current_threshold;
4429 		}
4430 		j++;
4431 	}
4432 
4433 swap_buffers:
4434 	/* Swap primary and spare array */
4435 	thresholds->spare = thresholds->primary;
4436 	/* If all events are unregistered, free the spare array */
4437 	if (!new) {
4438 		kfree(thresholds->spare);
4439 		thresholds->spare = NULL;
4440 	}
4441 
4442 	rcu_assign_pointer(thresholds->primary, new);
4443 
4444 	/* To be sure that nobody uses thresholds */
4445 	synchronize_rcu();
4446 unlock:
4447 	mutex_unlock(&memcg->thresholds_lock);
4448 }
4449 
4450 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4451 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4452 {
4453 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4454 	struct mem_cgroup_eventfd_list *event;
4455 	int type = MEMFILE_TYPE(cft->private);
4456 
4457 	BUG_ON(type != _OOM_TYPE);
4458 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4459 	if (!event)
4460 		return -ENOMEM;
4461 
4462 	spin_lock(&memcg_oom_lock);
4463 
4464 	event->eventfd = eventfd;
4465 	list_add(&event->list, &memcg->oom_notify);
4466 
4467 	/* already in OOM ? */
4468 	if (atomic_read(&memcg->under_oom))
4469 		eventfd_signal(eventfd, 1);
4470 	spin_unlock(&memcg_oom_lock);
4471 
4472 	return 0;
4473 }
4474 
4475 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4476 	struct cftype *cft, struct eventfd_ctx *eventfd)
4477 {
4478 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4479 	struct mem_cgroup_eventfd_list *ev, *tmp;
4480 	int type = MEMFILE_TYPE(cft->private);
4481 
4482 	BUG_ON(type != _OOM_TYPE);
4483 
4484 	spin_lock(&memcg_oom_lock);
4485 
4486 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4487 		if (ev->eventfd == eventfd) {
4488 			list_del(&ev->list);
4489 			kfree(ev);
4490 		}
4491 	}
4492 
4493 	spin_unlock(&memcg_oom_lock);
4494 }
4495 
4496 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4497 	struct cftype *cft,  struct cgroup_map_cb *cb)
4498 {
4499 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4500 
4501 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4502 
4503 	if (atomic_read(&memcg->under_oom))
4504 		cb->fill(cb, "under_oom", 1);
4505 	else
4506 		cb->fill(cb, "under_oom", 0);
4507 	return 0;
4508 }
4509 
4510 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4511 	struct cftype *cft, u64 val)
4512 {
4513 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4514 	struct mem_cgroup *parent;
4515 
4516 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4517 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4518 		return -EINVAL;
4519 
4520 	parent = mem_cgroup_from_cont(cgrp->parent);
4521 
4522 	cgroup_lock();
4523 	/* oom-kill-disable is a flag for subhierarchy. */
4524 	if ((parent->use_hierarchy) ||
4525 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4526 		cgroup_unlock();
4527 		return -EINVAL;
4528 	}
4529 	memcg->oom_kill_disable = val;
4530 	if (!val)
4531 		memcg_oom_recover(memcg);
4532 	cgroup_unlock();
4533 	return 0;
4534 }
4535 
4536 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4537 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4538 {
4539 	return mem_cgroup_sockets_init(memcg, ss);
4540 };
4541 
4542 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4543 {
4544 	mem_cgroup_sockets_destroy(memcg);
4545 }
4546 #else
4547 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4548 {
4549 	return 0;
4550 }
4551 
4552 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4553 {
4554 }
4555 #endif
4556 
4557 static struct cftype mem_cgroup_files[] = {
4558 	{
4559 		.name = "usage_in_bytes",
4560 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4561 		.read = mem_cgroup_read,
4562 		.register_event = mem_cgroup_usage_register_event,
4563 		.unregister_event = mem_cgroup_usage_unregister_event,
4564 	},
4565 	{
4566 		.name = "max_usage_in_bytes",
4567 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4568 		.trigger = mem_cgroup_reset,
4569 		.read = mem_cgroup_read,
4570 	},
4571 	{
4572 		.name = "limit_in_bytes",
4573 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4574 		.write_string = mem_cgroup_write,
4575 		.read = mem_cgroup_read,
4576 	},
4577 	{
4578 		.name = "soft_limit_in_bytes",
4579 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4580 		.write_string = mem_cgroup_write,
4581 		.read = mem_cgroup_read,
4582 	},
4583 	{
4584 		.name = "failcnt",
4585 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4586 		.trigger = mem_cgroup_reset,
4587 		.read = mem_cgroup_read,
4588 	},
4589 	{
4590 		.name = "stat",
4591 		.read_seq_string = mem_control_stat_show,
4592 	},
4593 	{
4594 		.name = "force_empty",
4595 		.trigger = mem_cgroup_force_empty_write,
4596 	},
4597 	{
4598 		.name = "use_hierarchy",
4599 		.write_u64 = mem_cgroup_hierarchy_write,
4600 		.read_u64 = mem_cgroup_hierarchy_read,
4601 	},
4602 	{
4603 		.name = "swappiness",
4604 		.read_u64 = mem_cgroup_swappiness_read,
4605 		.write_u64 = mem_cgroup_swappiness_write,
4606 	},
4607 	{
4608 		.name = "move_charge_at_immigrate",
4609 		.read_u64 = mem_cgroup_move_charge_read,
4610 		.write_u64 = mem_cgroup_move_charge_write,
4611 	},
4612 	{
4613 		.name = "oom_control",
4614 		.read_map = mem_cgroup_oom_control_read,
4615 		.write_u64 = mem_cgroup_oom_control_write,
4616 		.register_event = mem_cgroup_oom_register_event,
4617 		.unregister_event = mem_cgroup_oom_unregister_event,
4618 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4619 	},
4620 #ifdef CONFIG_NUMA
4621 	{
4622 		.name = "numa_stat",
4623 		.read_seq_string = mem_control_numa_stat_show,
4624 	},
4625 #endif
4626 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4627 	{
4628 		.name = "memsw.usage_in_bytes",
4629 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4630 		.read = mem_cgroup_read,
4631 		.register_event = mem_cgroup_usage_register_event,
4632 		.unregister_event = mem_cgroup_usage_unregister_event,
4633 	},
4634 	{
4635 		.name = "memsw.max_usage_in_bytes",
4636 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4637 		.trigger = mem_cgroup_reset,
4638 		.read = mem_cgroup_read,
4639 	},
4640 	{
4641 		.name = "memsw.limit_in_bytes",
4642 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4643 		.write_string = mem_cgroup_write,
4644 		.read = mem_cgroup_read,
4645 	},
4646 	{
4647 		.name = "memsw.failcnt",
4648 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4649 		.trigger = mem_cgroup_reset,
4650 		.read = mem_cgroup_read,
4651 	},
4652 #endif
4653 	{ },	/* terminate */
4654 };
4655 
4656 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4657 {
4658 	struct mem_cgroup_per_node *pn;
4659 	struct mem_cgroup_per_zone *mz;
4660 	int zone, tmp = node;
4661 	/*
4662 	 * This routine is called against possible nodes.
4663 	 * But it's BUG to call kmalloc() against offline node.
4664 	 *
4665 	 * TODO: this routine can waste much memory for nodes which will
4666 	 *       never be onlined. It's better to use memory hotplug callback
4667 	 *       function.
4668 	 */
4669 	if (!node_state(node, N_NORMAL_MEMORY))
4670 		tmp = -1;
4671 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4672 	if (!pn)
4673 		return 1;
4674 
4675 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4676 		mz = &pn->zoneinfo[zone];
4677 		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4678 		mz->usage_in_excess = 0;
4679 		mz->on_tree = false;
4680 		mz->memcg = memcg;
4681 	}
4682 	memcg->info.nodeinfo[node] = pn;
4683 	return 0;
4684 }
4685 
4686 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4687 {
4688 	kfree(memcg->info.nodeinfo[node]);
4689 }
4690 
4691 static struct mem_cgroup *mem_cgroup_alloc(void)
4692 {
4693 	struct mem_cgroup *memcg;
4694 	int size = sizeof(struct mem_cgroup);
4695 
4696 	/* Can be very big if MAX_NUMNODES is very big */
4697 	if (size < PAGE_SIZE)
4698 		memcg = kzalloc(size, GFP_KERNEL);
4699 	else
4700 		memcg = vzalloc(size);
4701 
4702 	if (!memcg)
4703 		return NULL;
4704 
4705 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4706 	if (!memcg->stat)
4707 		goto out_free;
4708 	spin_lock_init(&memcg->pcp_counter_lock);
4709 	return memcg;
4710 
4711 out_free:
4712 	if (size < PAGE_SIZE)
4713 		kfree(memcg);
4714 	else
4715 		vfree(memcg);
4716 	return NULL;
4717 }
4718 
4719 /*
4720  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4721  * but in process context.  The work_freeing structure is overlaid
4722  * on the rcu_freeing structure, which itself is overlaid on memsw.
4723  */
4724 static void free_work(struct work_struct *work)
4725 {
4726 	struct mem_cgroup *memcg;
4727 	int size = sizeof(struct mem_cgroup);
4728 
4729 	memcg = container_of(work, struct mem_cgroup, work_freeing);
4730 	/*
4731 	 * We need to make sure that (at least for now), the jump label
4732 	 * destruction code runs outside of the cgroup lock. This is because
4733 	 * get_online_cpus(), which is called from the static_branch update,
4734 	 * can't be called inside the cgroup_lock. cpusets are the ones
4735 	 * enforcing this dependency, so if they ever change, we might as well.
4736 	 *
4737 	 * schedule_work() will guarantee this happens. Be careful if you need
4738 	 * to move this code around, and make sure it is outside
4739 	 * the cgroup_lock.
4740 	 */
4741 	disarm_sock_keys(memcg);
4742 	if (size < PAGE_SIZE)
4743 		kfree(memcg);
4744 	else
4745 		vfree(memcg);
4746 }
4747 
4748 static void free_rcu(struct rcu_head *rcu_head)
4749 {
4750 	struct mem_cgroup *memcg;
4751 
4752 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4753 	INIT_WORK(&memcg->work_freeing, free_work);
4754 	schedule_work(&memcg->work_freeing);
4755 }
4756 
4757 /*
4758  * At destroying mem_cgroup, references from swap_cgroup can remain.
4759  * (scanning all at force_empty is too costly...)
4760  *
4761  * Instead of clearing all references at force_empty, we remember
4762  * the number of reference from swap_cgroup and free mem_cgroup when
4763  * it goes down to 0.
4764  *
4765  * Removal of cgroup itself succeeds regardless of refs from swap.
4766  */
4767 
4768 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4769 {
4770 	int node;
4771 
4772 	mem_cgroup_remove_from_trees(memcg);
4773 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4774 
4775 	for_each_node(node)
4776 		free_mem_cgroup_per_zone_info(memcg, node);
4777 
4778 	free_percpu(memcg->stat);
4779 	call_rcu(&memcg->rcu_freeing, free_rcu);
4780 }
4781 
4782 static void mem_cgroup_get(struct mem_cgroup *memcg)
4783 {
4784 	atomic_inc(&memcg->refcnt);
4785 }
4786 
4787 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4788 {
4789 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4790 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4791 		__mem_cgroup_free(memcg);
4792 		if (parent)
4793 			mem_cgroup_put(parent);
4794 	}
4795 }
4796 
4797 static void mem_cgroup_put(struct mem_cgroup *memcg)
4798 {
4799 	__mem_cgroup_put(memcg, 1);
4800 }
4801 
4802 /*
4803  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4804  */
4805 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4806 {
4807 	if (!memcg->res.parent)
4808 		return NULL;
4809 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4810 }
4811 EXPORT_SYMBOL(parent_mem_cgroup);
4812 
4813 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4814 static void __init enable_swap_cgroup(void)
4815 {
4816 	if (!mem_cgroup_disabled() && really_do_swap_account)
4817 		do_swap_account = 1;
4818 }
4819 #else
4820 static void __init enable_swap_cgroup(void)
4821 {
4822 }
4823 #endif
4824 
4825 static int mem_cgroup_soft_limit_tree_init(void)
4826 {
4827 	struct mem_cgroup_tree_per_node *rtpn;
4828 	struct mem_cgroup_tree_per_zone *rtpz;
4829 	int tmp, node, zone;
4830 
4831 	for_each_node(node) {
4832 		tmp = node;
4833 		if (!node_state(node, N_NORMAL_MEMORY))
4834 			tmp = -1;
4835 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4836 		if (!rtpn)
4837 			goto err_cleanup;
4838 
4839 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4840 
4841 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4842 			rtpz = &rtpn->rb_tree_per_zone[zone];
4843 			rtpz->rb_root = RB_ROOT;
4844 			spin_lock_init(&rtpz->lock);
4845 		}
4846 	}
4847 	return 0;
4848 
4849 err_cleanup:
4850 	for_each_node(node) {
4851 		if (!soft_limit_tree.rb_tree_per_node[node])
4852 			break;
4853 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4854 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4855 	}
4856 	return 1;
4857 
4858 }
4859 
4860 static struct cgroup_subsys_state * __ref
4861 mem_cgroup_create(struct cgroup *cont)
4862 {
4863 	struct mem_cgroup *memcg, *parent;
4864 	long error = -ENOMEM;
4865 	int node;
4866 
4867 	memcg = mem_cgroup_alloc();
4868 	if (!memcg)
4869 		return ERR_PTR(error);
4870 
4871 	for_each_node(node)
4872 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4873 			goto free_out;
4874 
4875 	/* root ? */
4876 	if (cont->parent == NULL) {
4877 		int cpu;
4878 		enable_swap_cgroup();
4879 		parent = NULL;
4880 		if (mem_cgroup_soft_limit_tree_init())
4881 			goto free_out;
4882 		root_mem_cgroup = memcg;
4883 		for_each_possible_cpu(cpu) {
4884 			struct memcg_stock_pcp *stock =
4885 						&per_cpu(memcg_stock, cpu);
4886 			INIT_WORK(&stock->work, drain_local_stock);
4887 		}
4888 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4889 	} else {
4890 		parent = mem_cgroup_from_cont(cont->parent);
4891 		memcg->use_hierarchy = parent->use_hierarchy;
4892 		memcg->oom_kill_disable = parent->oom_kill_disable;
4893 	}
4894 
4895 	if (parent && parent->use_hierarchy) {
4896 		res_counter_init(&memcg->res, &parent->res);
4897 		res_counter_init(&memcg->memsw, &parent->memsw);
4898 		/*
4899 		 * We increment refcnt of the parent to ensure that we can
4900 		 * safely access it on res_counter_charge/uncharge.
4901 		 * This refcnt will be decremented when freeing this
4902 		 * mem_cgroup(see mem_cgroup_put).
4903 		 */
4904 		mem_cgroup_get(parent);
4905 	} else {
4906 		res_counter_init(&memcg->res, NULL);
4907 		res_counter_init(&memcg->memsw, NULL);
4908 	}
4909 	memcg->last_scanned_node = MAX_NUMNODES;
4910 	INIT_LIST_HEAD(&memcg->oom_notify);
4911 
4912 	if (parent)
4913 		memcg->swappiness = mem_cgroup_swappiness(parent);
4914 	atomic_set(&memcg->refcnt, 1);
4915 	memcg->move_charge_at_immigrate = 0;
4916 	mutex_init(&memcg->thresholds_lock);
4917 	spin_lock_init(&memcg->move_lock);
4918 
4919 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4920 	if (error) {
4921 		/*
4922 		 * We call put now because our (and parent's) refcnts
4923 		 * are already in place. mem_cgroup_put() will internally
4924 		 * call __mem_cgroup_free, so return directly
4925 		 */
4926 		mem_cgroup_put(memcg);
4927 		return ERR_PTR(error);
4928 	}
4929 	return &memcg->css;
4930 free_out:
4931 	__mem_cgroup_free(memcg);
4932 	return ERR_PTR(error);
4933 }
4934 
4935 static int mem_cgroup_pre_destroy(struct cgroup *cont)
4936 {
4937 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4938 
4939 	return mem_cgroup_force_empty(memcg, false);
4940 }
4941 
4942 static void mem_cgroup_destroy(struct cgroup *cont)
4943 {
4944 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4945 
4946 	kmem_cgroup_destroy(memcg);
4947 
4948 	mem_cgroup_put(memcg);
4949 }
4950 
4951 #ifdef CONFIG_MMU
4952 /* Handlers for move charge at task migration. */
4953 #define PRECHARGE_COUNT_AT_ONCE	256
4954 static int mem_cgroup_do_precharge(unsigned long count)
4955 {
4956 	int ret = 0;
4957 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4958 	struct mem_cgroup *memcg = mc.to;
4959 
4960 	if (mem_cgroup_is_root(memcg)) {
4961 		mc.precharge += count;
4962 		/* we don't need css_get for root */
4963 		return ret;
4964 	}
4965 	/* try to charge at once */
4966 	if (count > 1) {
4967 		struct res_counter *dummy;
4968 		/*
4969 		 * "memcg" cannot be under rmdir() because we've already checked
4970 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4971 		 * are still under the same cgroup_mutex. So we can postpone
4972 		 * css_get().
4973 		 */
4974 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4975 			goto one_by_one;
4976 		if (do_swap_account && res_counter_charge(&memcg->memsw,
4977 						PAGE_SIZE * count, &dummy)) {
4978 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4979 			goto one_by_one;
4980 		}
4981 		mc.precharge += count;
4982 		return ret;
4983 	}
4984 one_by_one:
4985 	/* fall back to one by one charge */
4986 	while (count--) {
4987 		if (signal_pending(current)) {
4988 			ret = -EINTR;
4989 			break;
4990 		}
4991 		if (!batch_count--) {
4992 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4993 			cond_resched();
4994 		}
4995 		ret = __mem_cgroup_try_charge(NULL,
4996 					GFP_KERNEL, 1, &memcg, false);
4997 		if (ret)
4998 			/* mem_cgroup_clear_mc() will do uncharge later */
4999 			return ret;
5000 		mc.precharge++;
5001 	}
5002 	return ret;
5003 }
5004 
5005 /**
5006  * get_mctgt_type - get target type of moving charge
5007  * @vma: the vma the pte to be checked belongs
5008  * @addr: the address corresponding to the pte to be checked
5009  * @ptent: the pte to be checked
5010  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5011  *
5012  * Returns
5013  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5014  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5015  *     move charge. if @target is not NULL, the page is stored in target->page
5016  *     with extra refcnt got(Callers should handle it).
5017  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5018  *     target for charge migration. if @target is not NULL, the entry is stored
5019  *     in target->ent.
5020  *
5021  * Called with pte lock held.
5022  */
5023 union mc_target {
5024 	struct page	*page;
5025 	swp_entry_t	ent;
5026 };
5027 
5028 enum mc_target_type {
5029 	MC_TARGET_NONE = 0,
5030 	MC_TARGET_PAGE,
5031 	MC_TARGET_SWAP,
5032 };
5033 
5034 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5035 						unsigned long addr, pte_t ptent)
5036 {
5037 	struct page *page = vm_normal_page(vma, addr, ptent);
5038 
5039 	if (!page || !page_mapped(page))
5040 		return NULL;
5041 	if (PageAnon(page)) {
5042 		/* we don't move shared anon */
5043 		if (!move_anon())
5044 			return NULL;
5045 	} else if (!move_file())
5046 		/* we ignore mapcount for file pages */
5047 		return NULL;
5048 	if (!get_page_unless_zero(page))
5049 		return NULL;
5050 
5051 	return page;
5052 }
5053 
5054 #ifdef CONFIG_SWAP
5055 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5056 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5057 {
5058 	struct page *page = NULL;
5059 	swp_entry_t ent = pte_to_swp_entry(ptent);
5060 
5061 	if (!move_anon() || non_swap_entry(ent))
5062 		return NULL;
5063 	/*
5064 	 * Because lookup_swap_cache() updates some statistics counter,
5065 	 * we call find_get_page() with swapper_space directly.
5066 	 */
5067 	page = find_get_page(&swapper_space, ent.val);
5068 	if (do_swap_account)
5069 		entry->val = ent.val;
5070 
5071 	return page;
5072 }
5073 #else
5074 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5075 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5076 {
5077 	return NULL;
5078 }
5079 #endif
5080 
5081 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5082 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5083 {
5084 	struct page *page = NULL;
5085 	struct address_space *mapping;
5086 	pgoff_t pgoff;
5087 
5088 	if (!vma->vm_file) /* anonymous vma */
5089 		return NULL;
5090 	if (!move_file())
5091 		return NULL;
5092 
5093 	mapping = vma->vm_file->f_mapping;
5094 	if (pte_none(ptent))
5095 		pgoff = linear_page_index(vma, addr);
5096 	else /* pte_file(ptent) is true */
5097 		pgoff = pte_to_pgoff(ptent);
5098 
5099 	/* page is moved even if it's not RSS of this task(page-faulted). */
5100 	page = find_get_page(mapping, pgoff);
5101 
5102 #ifdef CONFIG_SWAP
5103 	/* shmem/tmpfs may report page out on swap: account for that too. */
5104 	if (radix_tree_exceptional_entry(page)) {
5105 		swp_entry_t swap = radix_to_swp_entry(page);
5106 		if (do_swap_account)
5107 			*entry = swap;
5108 		page = find_get_page(&swapper_space, swap.val);
5109 	}
5110 #endif
5111 	return page;
5112 }
5113 
5114 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5115 		unsigned long addr, pte_t ptent, union mc_target *target)
5116 {
5117 	struct page *page = NULL;
5118 	struct page_cgroup *pc;
5119 	enum mc_target_type ret = MC_TARGET_NONE;
5120 	swp_entry_t ent = { .val = 0 };
5121 
5122 	if (pte_present(ptent))
5123 		page = mc_handle_present_pte(vma, addr, ptent);
5124 	else if (is_swap_pte(ptent))
5125 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5126 	else if (pte_none(ptent) || pte_file(ptent))
5127 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5128 
5129 	if (!page && !ent.val)
5130 		return ret;
5131 	if (page) {
5132 		pc = lookup_page_cgroup(page);
5133 		/*
5134 		 * Do only loose check w/o page_cgroup lock.
5135 		 * mem_cgroup_move_account() checks the pc is valid or not under
5136 		 * the lock.
5137 		 */
5138 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5139 			ret = MC_TARGET_PAGE;
5140 			if (target)
5141 				target->page = page;
5142 		}
5143 		if (!ret || !target)
5144 			put_page(page);
5145 	}
5146 	/* There is a swap entry and a page doesn't exist or isn't charged */
5147 	if (ent.val && !ret &&
5148 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5149 		ret = MC_TARGET_SWAP;
5150 		if (target)
5151 			target->ent = ent;
5152 	}
5153 	return ret;
5154 }
5155 
5156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5157 /*
5158  * We don't consider swapping or file mapped pages because THP does not
5159  * support them for now.
5160  * Caller should make sure that pmd_trans_huge(pmd) is true.
5161  */
5162 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5163 		unsigned long addr, pmd_t pmd, union mc_target *target)
5164 {
5165 	struct page *page = NULL;
5166 	struct page_cgroup *pc;
5167 	enum mc_target_type ret = MC_TARGET_NONE;
5168 
5169 	page = pmd_page(pmd);
5170 	VM_BUG_ON(!page || !PageHead(page));
5171 	if (!move_anon())
5172 		return ret;
5173 	pc = lookup_page_cgroup(page);
5174 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5175 		ret = MC_TARGET_PAGE;
5176 		if (target) {
5177 			get_page(page);
5178 			target->page = page;
5179 		}
5180 	}
5181 	return ret;
5182 }
5183 #else
5184 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5185 		unsigned long addr, pmd_t pmd, union mc_target *target)
5186 {
5187 	return MC_TARGET_NONE;
5188 }
5189 #endif
5190 
5191 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5192 					unsigned long addr, unsigned long end,
5193 					struct mm_walk *walk)
5194 {
5195 	struct vm_area_struct *vma = walk->private;
5196 	pte_t *pte;
5197 	spinlock_t *ptl;
5198 
5199 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5200 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5201 			mc.precharge += HPAGE_PMD_NR;
5202 		spin_unlock(&vma->vm_mm->page_table_lock);
5203 		return 0;
5204 	}
5205 
5206 	if (pmd_trans_unstable(pmd))
5207 		return 0;
5208 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5209 	for (; addr != end; pte++, addr += PAGE_SIZE)
5210 		if (get_mctgt_type(vma, addr, *pte, NULL))
5211 			mc.precharge++;	/* increment precharge temporarily */
5212 	pte_unmap_unlock(pte - 1, ptl);
5213 	cond_resched();
5214 
5215 	return 0;
5216 }
5217 
5218 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5219 {
5220 	unsigned long precharge;
5221 	struct vm_area_struct *vma;
5222 
5223 	down_read(&mm->mmap_sem);
5224 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5225 		struct mm_walk mem_cgroup_count_precharge_walk = {
5226 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5227 			.mm = mm,
5228 			.private = vma,
5229 		};
5230 		if (is_vm_hugetlb_page(vma))
5231 			continue;
5232 		walk_page_range(vma->vm_start, vma->vm_end,
5233 					&mem_cgroup_count_precharge_walk);
5234 	}
5235 	up_read(&mm->mmap_sem);
5236 
5237 	precharge = mc.precharge;
5238 	mc.precharge = 0;
5239 
5240 	return precharge;
5241 }
5242 
5243 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5244 {
5245 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5246 
5247 	VM_BUG_ON(mc.moving_task);
5248 	mc.moving_task = current;
5249 	return mem_cgroup_do_precharge(precharge);
5250 }
5251 
5252 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5253 static void __mem_cgroup_clear_mc(void)
5254 {
5255 	struct mem_cgroup *from = mc.from;
5256 	struct mem_cgroup *to = mc.to;
5257 
5258 	/* we must uncharge all the leftover precharges from mc.to */
5259 	if (mc.precharge) {
5260 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5261 		mc.precharge = 0;
5262 	}
5263 	/*
5264 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5265 	 * we must uncharge here.
5266 	 */
5267 	if (mc.moved_charge) {
5268 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5269 		mc.moved_charge = 0;
5270 	}
5271 	/* we must fixup refcnts and charges */
5272 	if (mc.moved_swap) {
5273 		/* uncharge swap account from the old cgroup */
5274 		if (!mem_cgroup_is_root(mc.from))
5275 			res_counter_uncharge(&mc.from->memsw,
5276 						PAGE_SIZE * mc.moved_swap);
5277 		__mem_cgroup_put(mc.from, mc.moved_swap);
5278 
5279 		if (!mem_cgroup_is_root(mc.to)) {
5280 			/*
5281 			 * we charged both to->res and to->memsw, so we should
5282 			 * uncharge to->res.
5283 			 */
5284 			res_counter_uncharge(&mc.to->res,
5285 						PAGE_SIZE * mc.moved_swap);
5286 		}
5287 		/* we've already done mem_cgroup_get(mc.to) */
5288 		mc.moved_swap = 0;
5289 	}
5290 	memcg_oom_recover(from);
5291 	memcg_oom_recover(to);
5292 	wake_up_all(&mc.waitq);
5293 }
5294 
5295 static void mem_cgroup_clear_mc(void)
5296 {
5297 	struct mem_cgroup *from = mc.from;
5298 
5299 	/*
5300 	 * we must clear moving_task before waking up waiters at the end of
5301 	 * task migration.
5302 	 */
5303 	mc.moving_task = NULL;
5304 	__mem_cgroup_clear_mc();
5305 	spin_lock(&mc.lock);
5306 	mc.from = NULL;
5307 	mc.to = NULL;
5308 	spin_unlock(&mc.lock);
5309 	mem_cgroup_end_move(from);
5310 }
5311 
5312 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5313 				 struct cgroup_taskset *tset)
5314 {
5315 	struct task_struct *p = cgroup_taskset_first(tset);
5316 	int ret = 0;
5317 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5318 
5319 	if (memcg->move_charge_at_immigrate) {
5320 		struct mm_struct *mm;
5321 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5322 
5323 		VM_BUG_ON(from == memcg);
5324 
5325 		mm = get_task_mm(p);
5326 		if (!mm)
5327 			return 0;
5328 		/* We move charges only when we move a owner of the mm */
5329 		if (mm->owner == p) {
5330 			VM_BUG_ON(mc.from);
5331 			VM_BUG_ON(mc.to);
5332 			VM_BUG_ON(mc.precharge);
5333 			VM_BUG_ON(mc.moved_charge);
5334 			VM_BUG_ON(mc.moved_swap);
5335 			mem_cgroup_start_move(from);
5336 			spin_lock(&mc.lock);
5337 			mc.from = from;
5338 			mc.to = memcg;
5339 			spin_unlock(&mc.lock);
5340 			/* We set mc.moving_task later */
5341 
5342 			ret = mem_cgroup_precharge_mc(mm);
5343 			if (ret)
5344 				mem_cgroup_clear_mc();
5345 		}
5346 		mmput(mm);
5347 	}
5348 	return ret;
5349 }
5350 
5351 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5352 				     struct cgroup_taskset *tset)
5353 {
5354 	mem_cgroup_clear_mc();
5355 }
5356 
5357 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5358 				unsigned long addr, unsigned long end,
5359 				struct mm_walk *walk)
5360 {
5361 	int ret = 0;
5362 	struct vm_area_struct *vma = walk->private;
5363 	pte_t *pte;
5364 	spinlock_t *ptl;
5365 	enum mc_target_type target_type;
5366 	union mc_target target;
5367 	struct page *page;
5368 	struct page_cgroup *pc;
5369 
5370 	/*
5371 	 * We don't take compound_lock() here but no race with splitting thp
5372 	 * happens because:
5373 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5374 	 *    under splitting, which means there's no concurrent thp split,
5375 	 *  - if another thread runs into split_huge_page() just after we
5376 	 *    entered this if-block, the thread must wait for page table lock
5377 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5378 	 *    part of thp split is not executed yet.
5379 	 */
5380 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5381 		if (mc.precharge < HPAGE_PMD_NR) {
5382 			spin_unlock(&vma->vm_mm->page_table_lock);
5383 			return 0;
5384 		}
5385 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5386 		if (target_type == MC_TARGET_PAGE) {
5387 			page = target.page;
5388 			if (!isolate_lru_page(page)) {
5389 				pc = lookup_page_cgroup(page);
5390 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5391 							pc, mc.from, mc.to)) {
5392 					mc.precharge -= HPAGE_PMD_NR;
5393 					mc.moved_charge += HPAGE_PMD_NR;
5394 				}
5395 				putback_lru_page(page);
5396 			}
5397 			put_page(page);
5398 		}
5399 		spin_unlock(&vma->vm_mm->page_table_lock);
5400 		return 0;
5401 	}
5402 
5403 	if (pmd_trans_unstable(pmd))
5404 		return 0;
5405 retry:
5406 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5407 	for (; addr != end; addr += PAGE_SIZE) {
5408 		pte_t ptent = *(pte++);
5409 		swp_entry_t ent;
5410 
5411 		if (!mc.precharge)
5412 			break;
5413 
5414 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5415 		case MC_TARGET_PAGE:
5416 			page = target.page;
5417 			if (isolate_lru_page(page))
5418 				goto put;
5419 			pc = lookup_page_cgroup(page);
5420 			if (!mem_cgroup_move_account(page, 1, pc,
5421 						     mc.from, mc.to)) {
5422 				mc.precharge--;
5423 				/* we uncharge from mc.from later. */
5424 				mc.moved_charge++;
5425 			}
5426 			putback_lru_page(page);
5427 put:			/* get_mctgt_type() gets the page */
5428 			put_page(page);
5429 			break;
5430 		case MC_TARGET_SWAP:
5431 			ent = target.ent;
5432 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5433 				mc.precharge--;
5434 				/* we fixup refcnts and charges later. */
5435 				mc.moved_swap++;
5436 			}
5437 			break;
5438 		default:
5439 			break;
5440 		}
5441 	}
5442 	pte_unmap_unlock(pte - 1, ptl);
5443 	cond_resched();
5444 
5445 	if (addr != end) {
5446 		/*
5447 		 * We have consumed all precharges we got in can_attach().
5448 		 * We try charge one by one, but don't do any additional
5449 		 * charges to mc.to if we have failed in charge once in attach()
5450 		 * phase.
5451 		 */
5452 		ret = mem_cgroup_do_precharge(1);
5453 		if (!ret)
5454 			goto retry;
5455 	}
5456 
5457 	return ret;
5458 }
5459 
5460 static void mem_cgroup_move_charge(struct mm_struct *mm)
5461 {
5462 	struct vm_area_struct *vma;
5463 
5464 	lru_add_drain_all();
5465 retry:
5466 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5467 		/*
5468 		 * Someone who are holding the mmap_sem might be waiting in
5469 		 * waitq. So we cancel all extra charges, wake up all waiters,
5470 		 * and retry. Because we cancel precharges, we might not be able
5471 		 * to move enough charges, but moving charge is a best-effort
5472 		 * feature anyway, so it wouldn't be a big problem.
5473 		 */
5474 		__mem_cgroup_clear_mc();
5475 		cond_resched();
5476 		goto retry;
5477 	}
5478 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5479 		int ret;
5480 		struct mm_walk mem_cgroup_move_charge_walk = {
5481 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5482 			.mm = mm,
5483 			.private = vma,
5484 		};
5485 		if (is_vm_hugetlb_page(vma))
5486 			continue;
5487 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5488 						&mem_cgroup_move_charge_walk);
5489 		if (ret)
5490 			/*
5491 			 * means we have consumed all precharges and failed in
5492 			 * doing additional charge. Just abandon here.
5493 			 */
5494 			break;
5495 	}
5496 	up_read(&mm->mmap_sem);
5497 }
5498 
5499 static void mem_cgroup_move_task(struct cgroup *cont,
5500 				 struct cgroup_taskset *tset)
5501 {
5502 	struct task_struct *p = cgroup_taskset_first(tset);
5503 	struct mm_struct *mm = get_task_mm(p);
5504 
5505 	if (mm) {
5506 		if (mc.to)
5507 			mem_cgroup_move_charge(mm);
5508 		mmput(mm);
5509 	}
5510 	if (mc.to)
5511 		mem_cgroup_clear_mc();
5512 }
5513 #else	/* !CONFIG_MMU */
5514 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5515 				 struct cgroup_taskset *tset)
5516 {
5517 	return 0;
5518 }
5519 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5520 				     struct cgroup_taskset *tset)
5521 {
5522 }
5523 static void mem_cgroup_move_task(struct cgroup *cont,
5524 				 struct cgroup_taskset *tset)
5525 {
5526 }
5527 #endif
5528 
5529 struct cgroup_subsys mem_cgroup_subsys = {
5530 	.name = "memory",
5531 	.subsys_id = mem_cgroup_subsys_id,
5532 	.create = mem_cgroup_create,
5533 	.pre_destroy = mem_cgroup_pre_destroy,
5534 	.destroy = mem_cgroup_destroy,
5535 	.can_attach = mem_cgroup_can_attach,
5536 	.cancel_attach = mem_cgroup_cancel_attach,
5537 	.attach = mem_cgroup_move_task,
5538 	.base_cftypes = mem_cgroup_files,
5539 	.early_init = 0,
5540 	.use_id = 1,
5541 	.__DEPRECATED_clear_css_refs = true,
5542 };
5543 
5544 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5545 static int __init enable_swap_account(char *s)
5546 {
5547 	/* consider enabled if no parameter or 1 is given */
5548 	if (!strcmp(s, "1"))
5549 		really_do_swap_account = 1;
5550 	else if (!strcmp(s, "0"))
5551 		really_do_swap_account = 0;
5552 	return 1;
5553 }
5554 __setup("swapaccount=", enable_swap_account);
5555 
5556 #endif
5557