xref: /openbmc/linux/mm/memcontrol.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 /* Active memory cgroup to use from an interrupt context */
77 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78 
79 /* Socket memory accounting disabled? */
80 static bool cgroup_memory_nosocket;
81 
82 /* Kernel memory accounting disabled? */
83 static bool cgroup_memory_nokmem;
84 
85 /* Whether the swap controller is active */
86 #ifdef CONFIG_MEMCG_SWAP
87 bool cgroup_memory_noswap __read_mostly;
88 #else
89 #define cgroup_memory_noswap		1
90 #endif
91 
92 #ifdef CONFIG_CGROUP_WRITEBACK
93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94 #endif
95 
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
98 {
99 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 }
101 
102 #define THRESHOLDS_EVENTS_TARGET 128
103 #define SOFTLIMIT_EVENTS_TARGET 1024
104 
105 /*
106  * Cgroups above their limits are maintained in a RB-Tree, independent of
107  * their hierarchy representation
108  */
109 
110 struct mem_cgroup_tree_per_node {
111 	struct rb_root rb_root;
112 	struct rb_node *rb_rightmost;
113 	spinlock_t lock;
114 };
115 
116 struct mem_cgroup_tree {
117 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118 };
119 
120 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121 
122 /* for OOM */
123 struct mem_cgroup_eventfd_list {
124 	struct list_head list;
125 	struct eventfd_ctx *eventfd;
126 };
127 
128 /*
129  * cgroup_event represents events which userspace want to receive.
130  */
131 struct mem_cgroup_event {
132 	/*
133 	 * memcg which the event belongs to.
134 	 */
135 	struct mem_cgroup *memcg;
136 	/*
137 	 * eventfd to signal userspace about the event.
138 	 */
139 	struct eventfd_ctx *eventfd;
140 	/*
141 	 * Each of these stored in a list by the cgroup.
142 	 */
143 	struct list_head list;
144 	/*
145 	 * register_event() callback will be used to add new userspace
146 	 * waiter for changes related to this event.  Use eventfd_signal()
147 	 * on eventfd to send notification to userspace.
148 	 */
149 	int (*register_event)(struct mem_cgroup *memcg,
150 			      struct eventfd_ctx *eventfd, const char *args);
151 	/*
152 	 * unregister_event() callback will be called when userspace closes
153 	 * the eventfd or on cgroup removing.  This callback must be set,
154 	 * if you want provide notification functionality.
155 	 */
156 	void (*unregister_event)(struct mem_cgroup *memcg,
157 				 struct eventfd_ctx *eventfd);
158 	/*
159 	 * All fields below needed to unregister event when
160 	 * userspace closes eventfd.
161 	 */
162 	poll_table pt;
163 	wait_queue_head_t *wqh;
164 	wait_queue_entry_t wait;
165 	struct work_struct remove;
166 };
167 
168 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170 
171 /* Stuffs for move charges at task migration. */
172 /*
173  * Types of charges to be moved.
174  */
175 #define MOVE_ANON	0x1U
176 #define MOVE_FILE	0x2U
177 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
178 
179 /* "mc" and its members are protected by cgroup_mutex */
180 static struct move_charge_struct {
181 	spinlock_t	  lock; /* for from, to */
182 	struct mm_struct  *mm;
183 	struct mem_cgroup *from;
184 	struct mem_cgroup *to;
185 	unsigned long flags;
186 	unsigned long precharge;
187 	unsigned long moved_charge;
188 	unsigned long moved_swap;
189 	struct task_struct *moving_task;	/* a task moving charges */
190 	wait_queue_head_t waitq;		/* a waitq for other context */
191 } mc = {
192 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194 };
195 
196 /*
197  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198  * limit reclaim to prevent infinite loops, if they ever occur.
199  */
200 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
201 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
202 
203 /* for encoding cft->private value on file */
204 enum res_type {
205 	_MEM,
206 	_MEMSWAP,
207 	_OOM_TYPE,
208 	_KMEM,
209 	_TCP,
210 };
211 
212 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
213 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
214 #define MEMFILE_ATTR(val)	((val) & 0xffff)
215 /* Used for OOM nofiier */
216 #define OOM_CONTROL		(0)
217 
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)		\
224 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
225 	     iter != NULL;				\
226 	     iter = mem_cgroup_iter(root, iter, NULL))
227 
228 #define for_each_mem_cgroup(iter)			\
229 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(NULL, iter, NULL))
232 
233 static inline bool should_force_charge(void)
234 {
235 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 		(current->flags & PF_EXITING);
237 }
238 
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 	if (!memcg)
243 		memcg = root_mem_cgroup;
244 	return &memcg->vmpressure;
245 }
246 
247 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248 {
249 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250 }
251 
252 #ifdef CONFIG_MEMCG_KMEM
253 extern spinlock_t css_set_lock;
254 
255 static void obj_cgroup_release(struct percpu_ref *ref)
256 {
257 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 	struct mem_cgroup *memcg;
259 	unsigned int nr_bytes;
260 	unsigned int nr_pages;
261 	unsigned long flags;
262 
263 	/*
264 	 * At this point all allocated objects are freed, and
265 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 	 *
268 	 * The following sequence can lead to it:
269 	 * 1) CPU0: objcg == stock->cached_objcg
270 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 	 *          PAGE_SIZE bytes are charged
272 	 * 3) CPU1: a process from another memcg is allocating something,
273 	 *          the stock if flushed,
274 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
275 	 * 5) CPU0: we do release this object,
276 	 *          92 bytes are added to stock->nr_bytes
277 	 * 6) CPU0: stock is flushed,
278 	 *          92 bytes are added to objcg->nr_charged_bytes
279 	 *
280 	 * In the result, nr_charged_bytes == PAGE_SIZE.
281 	 * This page will be uncharged in obj_cgroup_release().
282 	 */
283 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 	nr_pages = nr_bytes >> PAGE_SHIFT;
286 
287 	spin_lock_irqsave(&css_set_lock, flags);
288 	memcg = obj_cgroup_memcg(objcg);
289 	if (nr_pages)
290 		__memcg_kmem_uncharge(memcg, nr_pages);
291 	list_del(&objcg->list);
292 	mem_cgroup_put(memcg);
293 	spin_unlock_irqrestore(&css_set_lock, flags);
294 
295 	percpu_ref_exit(ref);
296 	kfree_rcu(objcg, rcu);
297 }
298 
299 static struct obj_cgroup *obj_cgroup_alloc(void)
300 {
301 	struct obj_cgroup *objcg;
302 	int ret;
303 
304 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 	if (!objcg)
306 		return NULL;
307 
308 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 			      GFP_KERNEL);
310 	if (ret) {
311 		kfree(objcg);
312 		return NULL;
313 	}
314 	INIT_LIST_HEAD(&objcg->list);
315 	return objcg;
316 }
317 
318 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 				  struct mem_cgroup *parent)
320 {
321 	struct obj_cgroup *objcg, *iter;
322 
323 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324 
325 	spin_lock_irq(&css_set_lock);
326 
327 	/* Move active objcg to the parent's list */
328 	xchg(&objcg->memcg, parent);
329 	css_get(&parent->css);
330 	list_add(&objcg->list, &parent->objcg_list);
331 
332 	/* Move already reparented objcgs to the parent's list */
333 	list_for_each_entry(iter, &memcg->objcg_list, list) {
334 		css_get(&parent->css);
335 		xchg(&iter->memcg, parent);
336 		css_put(&memcg->css);
337 	}
338 	list_splice(&memcg->objcg_list, &parent->objcg_list);
339 
340 	spin_unlock_irq(&css_set_lock);
341 
342 	percpu_ref_kill(&objcg->refcnt);
343 }
344 
345 /*
346  * This will be used as a shrinker list's index.
347  * The main reason for not using cgroup id for this:
348  *  this works better in sparse environments, where we have a lot of memcgs,
349  *  but only a few kmem-limited. Or also, if we have, for instance, 200
350  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
351  *  200 entry array for that.
352  *
353  * The current size of the caches array is stored in memcg_nr_cache_ids. It
354  * will double each time we have to increase it.
355  */
356 static DEFINE_IDA(memcg_cache_ida);
357 int memcg_nr_cache_ids;
358 
359 /* Protects memcg_nr_cache_ids */
360 static DECLARE_RWSEM(memcg_cache_ids_sem);
361 
362 void memcg_get_cache_ids(void)
363 {
364 	down_read(&memcg_cache_ids_sem);
365 }
366 
367 void memcg_put_cache_ids(void)
368 {
369 	up_read(&memcg_cache_ids_sem);
370 }
371 
372 /*
373  * MIN_SIZE is different than 1, because we would like to avoid going through
374  * the alloc/free process all the time. In a small machine, 4 kmem-limited
375  * cgroups is a reasonable guess. In the future, it could be a parameter or
376  * tunable, but that is strictly not necessary.
377  *
378  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379  * this constant directly from cgroup, but it is understandable that this is
380  * better kept as an internal representation in cgroup.c. In any case, the
381  * cgrp_id space is not getting any smaller, and we don't have to necessarily
382  * increase ours as well if it increases.
383  */
384 #define MEMCG_CACHES_MIN_SIZE 4
385 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386 
387 /*
388  * A lot of the calls to the cache allocation functions are expected to be
389  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390  * conditional to this static branch, we'll have to allow modules that does
391  * kmem_cache_alloc and the such to see this symbol as well
392  */
393 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394 EXPORT_SYMBOL(memcg_kmem_enabled_key);
395 #endif
396 
397 static int memcg_shrinker_map_size;
398 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399 
400 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401 {
402 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403 }
404 
405 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 					 int size, int old_size)
407 {
408 	struct memcg_shrinker_map *new, *old;
409 	int nid;
410 
411 	lockdep_assert_held(&memcg_shrinker_map_mutex);
412 
413 	for_each_node(nid) {
414 		old = rcu_dereference_protected(
415 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 		/* Not yet online memcg */
417 		if (!old)
418 			return 0;
419 
420 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 		if (!new)
422 			return -ENOMEM;
423 
424 		/* Set all old bits, clear all new bits */
425 		memset(new->map, (int)0xff, old_size);
426 		memset((void *)new->map + old_size, 0, size - old_size);
427 
428 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 	}
431 
432 	return 0;
433 }
434 
435 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436 {
437 	struct mem_cgroup_per_node *pn;
438 	struct memcg_shrinker_map *map;
439 	int nid;
440 
441 	if (mem_cgroup_is_root(memcg))
442 		return;
443 
444 	for_each_node(nid) {
445 		pn = mem_cgroup_nodeinfo(memcg, nid);
446 		map = rcu_dereference_protected(pn->shrinker_map, true);
447 		if (map)
448 			kvfree(map);
449 		rcu_assign_pointer(pn->shrinker_map, NULL);
450 	}
451 }
452 
453 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454 {
455 	struct memcg_shrinker_map *map;
456 	int nid, size, ret = 0;
457 
458 	if (mem_cgroup_is_root(memcg))
459 		return 0;
460 
461 	mutex_lock(&memcg_shrinker_map_mutex);
462 	size = memcg_shrinker_map_size;
463 	for_each_node(nid) {
464 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 		if (!map) {
466 			memcg_free_shrinker_maps(memcg);
467 			ret = -ENOMEM;
468 			break;
469 		}
470 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 	}
472 	mutex_unlock(&memcg_shrinker_map_mutex);
473 
474 	return ret;
475 }
476 
477 int memcg_expand_shrinker_maps(int new_id)
478 {
479 	int size, old_size, ret = 0;
480 	struct mem_cgroup *memcg;
481 
482 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 	old_size = memcg_shrinker_map_size;
484 	if (size <= old_size)
485 		return 0;
486 
487 	mutex_lock(&memcg_shrinker_map_mutex);
488 	if (!root_mem_cgroup)
489 		goto unlock;
490 
491 	for_each_mem_cgroup(memcg) {
492 		if (mem_cgroup_is_root(memcg))
493 			continue;
494 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 		if (ret) {
496 			mem_cgroup_iter_break(NULL, memcg);
497 			goto unlock;
498 		}
499 	}
500 unlock:
501 	if (!ret)
502 		memcg_shrinker_map_size = size;
503 	mutex_unlock(&memcg_shrinker_map_mutex);
504 	return ret;
505 }
506 
507 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508 {
509 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 		struct memcg_shrinker_map *map;
511 
512 		rcu_read_lock();
513 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 		/* Pairs with smp mb in shrink_slab() */
515 		smp_mb__before_atomic();
516 		set_bit(shrinker_id, map->map);
517 		rcu_read_unlock();
518 	}
519 }
520 
521 /**
522  * mem_cgroup_css_from_page - css of the memcg associated with a page
523  * @page: page of interest
524  *
525  * If memcg is bound to the default hierarchy, css of the memcg associated
526  * with @page is returned.  The returned css remains associated with @page
527  * until it is released.
528  *
529  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530  * is returned.
531  */
532 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533 {
534 	struct mem_cgroup *memcg;
535 
536 	memcg = page->mem_cgroup;
537 
538 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 		memcg = root_mem_cgroup;
540 
541 	return &memcg->css;
542 }
543 
544 /**
545  * page_cgroup_ino - return inode number of the memcg a page is charged to
546  * @page: the page
547  *
548  * Look up the closest online ancestor of the memory cgroup @page is charged to
549  * and return its inode number or 0 if @page is not charged to any cgroup. It
550  * is safe to call this function without holding a reference to @page.
551  *
552  * Note, this function is inherently racy, because there is nothing to prevent
553  * the cgroup inode from getting torn down and potentially reallocated a moment
554  * after page_cgroup_ino() returns, so it only should be used by callers that
555  * do not care (such as procfs interfaces).
556  */
557 ino_t page_cgroup_ino(struct page *page)
558 {
559 	struct mem_cgroup *memcg;
560 	unsigned long ino = 0;
561 
562 	rcu_read_lock();
563 	memcg = page->mem_cgroup;
564 
565 	/*
566 	 * The lowest bit set means that memcg isn't a valid
567 	 * memcg pointer, but a obj_cgroups pointer.
568 	 * In this case the page is shared and doesn't belong
569 	 * to any specific memory cgroup.
570 	 */
571 	if ((unsigned long) memcg & 0x1UL)
572 		memcg = NULL;
573 
574 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 		memcg = parent_mem_cgroup(memcg);
576 	if (memcg)
577 		ino = cgroup_ino(memcg->css.cgroup);
578 	rcu_read_unlock();
579 	return ino;
580 }
581 
582 static struct mem_cgroup_per_node *
583 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584 {
585 	int nid = page_to_nid(page);
586 
587 	return memcg->nodeinfo[nid];
588 }
589 
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_node(int nid)
592 {
593 	return soft_limit_tree.rb_tree_per_node[nid];
594 }
595 
596 static struct mem_cgroup_tree_per_node *
597 soft_limit_tree_from_page(struct page *page)
598 {
599 	int nid = page_to_nid(page);
600 
601 	return soft_limit_tree.rb_tree_per_node[nid];
602 }
603 
604 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 					 struct mem_cgroup_tree_per_node *mctz,
606 					 unsigned long new_usage_in_excess)
607 {
608 	struct rb_node **p = &mctz->rb_root.rb_node;
609 	struct rb_node *parent = NULL;
610 	struct mem_cgroup_per_node *mz_node;
611 	bool rightmost = true;
612 
613 	if (mz->on_tree)
614 		return;
615 
616 	mz->usage_in_excess = new_usage_in_excess;
617 	if (!mz->usage_in_excess)
618 		return;
619 	while (*p) {
620 		parent = *p;
621 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622 					tree_node);
623 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
624 			p = &(*p)->rb_left;
625 			rightmost = false;
626 		}
627 
628 		/*
629 		 * We can't avoid mem cgroups that are over their soft
630 		 * limit by the same amount
631 		 */
632 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
633 			p = &(*p)->rb_right;
634 	}
635 
636 	if (rightmost)
637 		mctz->rb_rightmost = &mz->tree_node;
638 
639 	rb_link_node(&mz->tree_node, parent, p);
640 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
641 	mz->on_tree = true;
642 }
643 
644 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
645 					 struct mem_cgroup_tree_per_node *mctz)
646 {
647 	if (!mz->on_tree)
648 		return;
649 
650 	if (&mz->tree_node == mctz->rb_rightmost)
651 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
652 
653 	rb_erase(&mz->tree_node, &mctz->rb_root);
654 	mz->on_tree = false;
655 }
656 
657 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
658 				       struct mem_cgroup_tree_per_node *mctz)
659 {
660 	unsigned long flags;
661 
662 	spin_lock_irqsave(&mctz->lock, flags);
663 	__mem_cgroup_remove_exceeded(mz, mctz);
664 	spin_unlock_irqrestore(&mctz->lock, flags);
665 }
666 
667 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
668 {
669 	unsigned long nr_pages = page_counter_read(&memcg->memory);
670 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
671 	unsigned long excess = 0;
672 
673 	if (nr_pages > soft_limit)
674 		excess = nr_pages - soft_limit;
675 
676 	return excess;
677 }
678 
679 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
680 {
681 	unsigned long excess;
682 	struct mem_cgroup_per_node *mz;
683 	struct mem_cgroup_tree_per_node *mctz;
684 
685 	mctz = soft_limit_tree_from_page(page);
686 	if (!mctz)
687 		return;
688 	/*
689 	 * Necessary to update all ancestors when hierarchy is used.
690 	 * because their event counter is not touched.
691 	 */
692 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
693 		mz = mem_cgroup_page_nodeinfo(memcg, page);
694 		excess = soft_limit_excess(memcg);
695 		/*
696 		 * We have to update the tree if mz is on RB-tree or
697 		 * mem is over its softlimit.
698 		 */
699 		if (excess || mz->on_tree) {
700 			unsigned long flags;
701 
702 			spin_lock_irqsave(&mctz->lock, flags);
703 			/* if on-tree, remove it */
704 			if (mz->on_tree)
705 				__mem_cgroup_remove_exceeded(mz, mctz);
706 			/*
707 			 * Insert again. mz->usage_in_excess will be updated.
708 			 * If excess is 0, no tree ops.
709 			 */
710 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
711 			spin_unlock_irqrestore(&mctz->lock, flags);
712 		}
713 	}
714 }
715 
716 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
717 {
718 	struct mem_cgroup_tree_per_node *mctz;
719 	struct mem_cgroup_per_node *mz;
720 	int nid;
721 
722 	for_each_node(nid) {
723 		mz = mem_cgroup_nodeinfo(memcg, nid);
724 		mctz = soft_limit_tree_node(nid);
725 		if (mctz)
726 			mem_cgroup_remove_exceeded(mz, mctz);
727 	}
728 }
729 
730 static struct mem_cgroup_per_node *
731 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
732 {
733 	struct mem_cgroup_per_node *mz;
734 
735 retry:
736 	mz = NULL;
737 	if (!mctz->rb_rightmost)
738 		goto done;		/* Nothing to reclaim from */
739 
740 	mz = rb_entry(mctz->rb_rightmost,
741 		      struct mem_cgroup_per_node, tree_node);
742 	/*
743 	 * Remove the node now but someone else can add it back,
744 	 * we will to add it back at the end of reclaim to its correct
745 	 * position in the tree.
746 	 */
747 	__mem_cgroup_remove_exceeded(mz, mctz);
748 	if (!soft_limit_excess(mz->memcg) ||
749 	    !css_tryget(&mz->memcg->css))
750 		goto retry;
751 done:
752 	return mz;
753 }
754 
755 static struct mem_cgroup_per_node *
756 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
757 {
758 	struct mem_cgroup_per_node *mz;
759 
760 	spin_lock_irq(&mctz->lock);
761 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
762 	spin_unlock_irq(&mctz->lock);
763 	return mz;
764 }
765 
766 /**
767  * __mod_memcg_state - update cgroup memory statistics
768  * @memcg: the memory cgroup
769  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
770  * @val: delta to add to the counter, can be negative
771  */
772 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
773 {
774 	long x, threshold = MEMCG_CHARGE_BATCH;
775 
776 	if (mem_cgroup_disabled())
777 		return;
778 
779 	if (memcg_stat_item_in_bytes(idx))
780 		threshold <<= PAGE_SHIFT;
781 
782 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
783 	if (unlikely(abs(x) > threshold)) {
784 		struct mem_cgroup *mi;
785 
786 		/*
787 		 * Batch local counters to keep them in sync with
788 		 * the hierarchical ones.
789 		 */
790 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
791 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
792 			atomic_long_add(x, &mi->vmstats[idx]);
793 		x = 0;
794 	}
795 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
796 }
797 
798 static struct mem_cgroup_per_node *
799 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
800 {
801 	struct mem_cgroup *parent;
802 
803 	parent = parent_mem_cgroup(pn->memcg);
804 	if (!parent)
805 		return NULL;
806 	return mem_cgroup_nodeinfo(parent, nid);
807 }
808 
809 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
810 			      int val)
811 {
812 	struct mem_cgroup_per_node *pn;
813 	struct mem_cgroup *memcg;
814 	long x, threshold = MEMCG_CHARGE_BATCH;
815 
816 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
817 	memcg = pn->memcg;
818 
819 	/* Update memcg */
820 	__mod_memcg_state(memcg, idx, val);
821 
822 	/* Update lruvec */
823 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
824 
825 	if (vmstat_item_in_bytes(idx))
826 		threshold <<= PAGE_SHIFT;
827 
828 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
829 	if (unlikely(abs(x) > threshold)) {
830 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
831 		struct mem_cgroup_per_node *pi;
832 
833 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
834 			atomic_long_add(x, &pi->lruvec_stat[idx]);
835 		x = 0;
836 	}
837 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
838 }
839 
840 /**
841  * __mod_lruvec_state - update lruvec memory statistics
842  * @lruvec: the lruvec
843  * @idx: the stat item
844  * @val: delta to add to the counter, can be negative
845  *
846  * The lruvec is the intersection of the NUMA node and a cgroup. This
847  * function updates the all three counters that are affected by a
848  * change of state at this level: per-node, per-cgroup, per-lruvec.
849  */
850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 			int val)
852 {
853 	/* Update node */
854 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855 
856 	/* Update memcg and lruvec */
857 	if (!mem_cgroup_disabled())
858 		__mod_memcg_lruvec_state(lruvec, idx, val);
859 }
860 
861 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
862 {
863 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
864 	struct mem_cgroup *memcg;
865 	struct lruvec *lruvec;
866 
867 	rcu_read_lock();
868 	memcg = mem_cgroup_from_obj(p);
869 
870 	/* Untracked pages have no memcg, no lruvec. Update only the node */
871 	if (!memcg || memcg == root_mem_cgroup) {
872 		__mod_node_page_state(pgdat, idx, val);
873 	} else {
874 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
875 		__mod_lruvec_state(lruvec, idx, val);
876 	}
877 	rcu_read_unlock();
878 }
879 
880 void mod_memcg_obj_state(void *p, int idx, int val)
881 {
882 	struct mem_cgroup *memcg;
883 
884 	rcu_read_lock();
885 	memcg = mem_cgroup_from_obj(p);
886 	if (memcg)
887 		mod_memcg_state(memcg, idx, val);
888 	rcu_read_unlock();
889 }
890 
891 /**
892  * __count_memcg_events - account VM events in a cgroup
893  * @memcg: the memory cgroup
894  * @idx: the event item
895  * @count: the number of events that occured
896  */
897 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
898 			  unsigned long count)
899 {
900 	unsigned long x;
901 
902 	if (mem_cgroup_disabled())
903 		return;
904 
905 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
906 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
907 		struct mem_cgroup *mi;
908 
909 		/*
910 		 * Batch local counters to keep them in sync with
911 		 * the hierarchical ones.
912 		 */
913 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
914 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
915 			atomic_long_add(x, &mi->vmevents[idx]);
916 		x = 0;
917 	}
918 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
919 }
920 
921 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
922 {
923 	return atomic_long_read(&memcg->vmevents[event]);
924 }
925 
926 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
927 {
928 	long x = 0;
929 	int cpu;
930 
931 	for_each_possible_cpu(cpu)
932 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
933 	return x;
934 }
935 
936 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
937 					 struct page *page,
938 					 int nr_pages)
939 {
940 	/* pagein of a big page is an event. So, ignore page size */
941 	if (nr_pages > 0)
942 		__count_memcg_events(memcg, PGPGIN, 1);
943 	else {
944 		__count_memcg_events(memcg, PGPGOUT, 1);
945 		nr_pages = -nr_pages; /* for event */
946 	}
947 
948 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
949 }
950 
951 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
952 				       enum mem_cgroup_events_target target)
953 {
954 	unsigned long val, next;
955 
956 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
957 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
958 	/* from time_after() in jiffies.h */
959 	if ((long)(next - val) < 0) {
960 		switch (target) {
961 		case MEM_CGROUP_TARGET_THRESH:
962 			next = val + THRESHOLDS_EVENTS_TARGET;
963 			break;
964 		case MEM_CGROUP_TARGET_SOFTLIMIT:
965 			next = val + SOFTLIMIT_EVENTS_TARGET;
966 			break;
967 		default:
968 			break;
969 		}
970 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
971 		return true;
972 	}
973 	return false;
974 }
975 
976 /*
977  * Check events in order.
978  *
979  */
980 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
981 {
982 	/* threshold event is triggered in finer grain than soft limit */
983 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
984 						MEM_CGROUP_TARGET_THRESH))) {
985 		bool do_softlimit;
986 
987 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
988 						MEM_CGROUP_TARGET_SOFTLIMIT);
989 		mem_cgroup_threshold(memcg);
990 		if (unlikely(do_softlimit))
991 			mem_cgroup_update_tree(memcg, page);
992 	}
993 }
994 
995 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
996 {
997 	/*
998 	 * mm_update_next_owner() may clear mm->owner to NULL
999 	 * if it races with swapoff, page migration, etc.
1000 	 * So this can be called with p == NULL.
1001 	 */
1002 	if (unlikely(!p))
1003 		return NULL;
1004 
1005 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1006 }
1007 EXPORT_SYMBOL(mem_cgroup_from_task);
1008 
1009 /**
1010  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1011  * @mm: mm from which memcg should be extracted. It can be NULL.
1012  *
1013  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1014  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1015  * returned.
1016  */
1017 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1018 {
1019 	struct mem_cgroup *memcg;
1020 
1021 	if (mem_cgroup_disabled())
1022 		return NULL;
1023 
1024 	rcu_read_lock();
1025 	do {
1026 		/*
1027 		 * Page cache insertions can happen withou an
1028 		 * actual mm context, e.g. during disk probing
1029 		 * on boot, loopback IO, acct() writes etc.
1030 		 */
1031 		if (unlikely(!mm))
1032 			memcg = root_mem_cgroup;
1033 		else {
1034 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1035 			if (unlikely(!memcg))
1036 				memcg = root_mem_cgroup;
1037 		}
1038 	} while (!css_tryget(&memcg->css));
1039 	rcu_read_unlock();
1040 	return memcg;
1041 }
1042 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1043 
1044 /**
1045  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1046  * @page: page from which memcg should be extracted.
1047  *
1048  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1049  * root_mem_cgroup is returned.
1050  */
1051 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1052 {
1053 	struct mem_cgroup *memcg = page->mem_cgroup;
1054 
1055 	if (mem_cgroup_disabled())
1056 		return NULL;
1057 
1058 	rcu_read_lock();
1059 	/* Page should not get uncharged and freed memcg under us. */
1060 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1061 		memcg = root_mem_cgroup;
1062 	rcu_read_unlock();
1063 	return memcg;
1064 }
1065 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1066 
1067 static __always_inline struct mem_cgroup *active_memcg(void)
1068 {
1069 	if (in_interrupt())
1070 		return this_cpu_read(int_active_memcg);
1071 	else
1072 		return current->active_memcg;
1073 }
1074 
1075 static __always_inline struct mem_cgroup *get_active_memcg(void)
1076 {
1077 	struct mem_cgroup *memcg;
1078 
1079 	rcu_read_lock();
1080 	memcg = active_memcg();
1081 	if (memcg) {
1082 		/* current->active_memcg must hold a ref. */
1083 		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1084 			memcg = root_mem_cgroup;
1085 		else
1086 			memcg = current->active_memcg;
1087 	}
1088 	rcu_read_unlock();
1089 
1090 	return memcg;
1091 }
1092 
1093 static __always_inline bool memcg_kmem_bypass(void)
1094 {
1095 	/* Allow remote memcg charging from any context. */
1096 	if (unlikely(active_memcg()))
1097 		return false;
1098 
1099 	/* Memcg to charge can't be determined. */
1100 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1101 		return true;
1102 
1103 	return false;
1104 }
1105 
1106 /**
1107  * If active memcg is set, do not fallback to current->mm->memcg.
1108  */
1109 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1110 {
1111 	if (memcg_kmem_bypass())
1112 		return NULL;
1113 
1114 	if (unlikely(active_memcg()))
1115 		return get_active_memcg();
1116 
1117 	return get_mem_cgroup_from_mm(current->mm);
1118 }
1119 
1120 /**
1121  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1122  * @root: hierarchy root
1123  * @prev: previously returned memcg, NULL on first invocation
1124  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1125  *
1126  * Returns references to children of the hierarchy below @root, or
1127  * @root itself, or %NULL after a full round-trip.
1128  *
1129  * Caller must pass the return value in @prev on subsequent
1130  * invocations for reference counting, or use mem_cgroup_iter_break()
1131  * to cancel a hierarchy walk before the round-trip is complete.
1132  *
1133  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1134  * in the hierarchy among all concurrent reclaimers operating on the
1135  * same node.
1136  */
1137 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1138 				   struct mem_cgroup *prev,
1139 				   struct mem_cgroup_reclaim_cookie *reclaim)
1140 {
1141 	struct mem_cgroup_reclaim_iter *iter;
1142 	struct cgroup_subsys_state *css = NULL;
1143 	struct mem_cgroup *memcg = NULL;
1144 	struct mem_cgroup *pos = NULL;
1145 
1146 	if (mem_cgroup_disabled())
1147 		return NULL;
1148 
1149 	if (!root)
1150 		root = root_mem_cgroup;
1151 
1152 	if (prev && !reclaim)
1153 		pos = prev;
1154 
1155 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1156 		if (prev)
1157 			goto out;
1158 		return root;
1159 	}
1160 
1161 	rcu_read_lock();
1162 
1163 	if (reclaim) {
1164 		struct mem_cgroup_per_node *mz;
1165 
1166 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1167 		iter = &mz->iter;
1168 
1169 		if (prev && reclaim->generation != iter->generation)
1170 			goto out_unlock;
1171 
1172 		while (1) {
1173 			pos = READ_ONCE(iter->position);
1174 			if (!pos || css_tryget(&pos->css))
1175 				break;
1176 			/*
1177 			 * css reference reached zero, so iter->position will
1178 			 * be cleared by ->css_released. However, we should not
1179 			 * rely on this happening soon, because ->css_released
1180 			 * is called from a work queue, and by busy-waiting we
1181 			 * might block it. So we clear iter->position right
1182 			 * away.
1183 			 */
1184 			(void)cmpxchg(&iter->position, pos, NULL);
1185 		}
1186 	}
1187 
1188 	if (pos)
1189 		css = &pos->css;
1190 
1191 	for (;;) {
1192 		css = css_next_descendant_pre(css, &root->css);
1193 		if (!css) {
1194 			/*
1195 			 * Reclaimers share the hierarchy walk, and a
1196 			 * new one might jump in right at the end of
1197 			 * the hierarchy - make sure they see at least
1198 			 * one group and restart from the beginning.
1199 			 */
1200 			if (!prev)
1201 				continue;
1202 			break;
1203 		}
1204 
1205 		/*
1206 		 * Verify the css and acquire a reference.  The root
1207 		 * is provided by the caller, so we know it's alive
1208 		 * and kicking, and don't take an extra reference.
1209 		 */
1210 		memcg = mem_cgroup_from_css(css);
1211 
1212 		if (css == &root->css)
1213 			break;
1214 
1215 		if (css_tryget(css))
1216 			break;
1217 
1218 		memcg = NULL;
1219 	}
1220 
1221 	if (reclaim) {
1222 		/*
1223 		 * The position could have already been updated by a competing
1224 		 * thread, so check that the value hasn't changed since we read
1225 		 * it to avoid reclaiming from the same cgroup twice.
1226 		 */
1227 		(void)cmpxchg(&iter->position, pos, memcg);
1228 
1229 		if (pos)
1230 			css_put(&pos->css);
1231 
1232 		if (!memcg)
1233 			iter->generation++;
1234 		else if (!prev)
1235 			reclaim->generation = iter->generation;
1236 	}
1237 
1238 out_unlock:
1239 	rcu_read_unlock();
1240 out:
1241 	if (prev && prev != root)
1242 		css_put(&prev->css);
1243 
1244 	return memcg;
1245 }
1246 
1247 /**
1248  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1249  * @root: hierarchy root
1250  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1251  */
1252 void mem_cgroup_iter_break(struct mem_cgroup *root,
1253 			   struct mem_cgroup *prev)
1254 {
1255 	if (!root)
1256 		root = root_mem_cgroup;
1257 	if (prev && prev != root)
1258 		css_put(&prev->css);
1259 }
1260 
1261 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1262 					struct mem_cgroup *dead_memcg)
1263 {
1264 	struct mem_cgroup_reclaim_iter *iter;
1265 	struct mem_cgroup_per_node *mz;
1266 	int nid;
1267 
1268 	for_each_node(nid) {
1269 		mz = mem_cgroup_nodeinfo(from, nid);
1270 		iter = &mz->iter;
1271 		cmpxchg(&iter->position, dead_memcg, NULL);
1272 	}
1273 }
1274 
1275 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1276 {
1277 	struct mem_cgroup *memcg = dead_memcg;
1278 	struct mem_cgroup *last;
1279 
1280 	do {
1281 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1282 		last = memcg;
1283 	} while ((memcg = parent_mem_cgroup(memcg)));
1284 
1285 	/*
1286 	 * When cgruop1 non-hierarchy mode is used,
1287 	 * parent_mem_cgroup() does not walk all the way up to the
1288 	 * cgroup root (root_mem_cgroup). So we have to handle
1289 	 * dead_memcg from cgroup root separately.
1290 	 */
1291 	if (last != root_mem_cgroup)
1292 		__invalidate_reclaim_iterators(root_mem_cgroup,
1293 						dead_memcg);
1294 }
1295 
1296 /**
1297  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1298  * @memcg: hierarchy root
1299  * @fn: function to call for each task
1300  * @arg: argument passed to @fn
1301  *
1302  * This function iterates over tasks attached to @memcg or to any of its
1303  * descendants and calls @fn for each task. If @fn returns a non-zero
1304  * value, the function breaks the iteration loop and returns the value.
1305  * Otherwise, it will iterate over all tasks and return 0.
1306  *
1307  * This function must not be called for the root memory cgroup.
1308  */
1309 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1310 			  int (*fn)(struct task_struct *, void *), void *arg)
1311 {
1312 	struct mem_cgroup *iter;
1313 	int ret = 0;
1314 
1315 	BUG_ON(memcg == root_mem_cgroup);
1316 
1317 	for_each_mem_cgroup_tree(iter, memcg) {
1318 		struct css_task_iter it;
1319 		struct task_struct *task;
1320 
1321 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1322 		while (!ret && (task = css_task_iter_next(&it)))
1323 			ret = fn(task, arg);
1324 		css_task_iter_end(&it);
1325 		if (ret) {
1326 			mem_cgroup_iter_break(memcg, iter);
1327 			break;
1328 		}
1329 	}
1330 	return ret;
1331 }
1332 
1333 /**
1334  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1335  * @page: the page
1336  * @pgdat: pgdat of the page
1337  *
1338  * This function relies on page->mem_cgroup being stable - see the
1339  * access rules in commit_charge().
1340  */
1341 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1342 {
1343 	struct mem_cgroup_per_node *mz;
1344 	struct mem_cgroup *memcg;
1345 	struct lruvec *lruvec;
1346 
1347 	if (mem_cgroup_disabled()) {
1348 		lruvec = &pgdat->__lruvec;
1349 		goto out;
1350 	}
1351 
1352 	memcg = page->mem_cgroup;
1353 	/*
1354 	 * Swapcache readahead pages are added to the LRU - and
1355 	 * possibly migrated - before they are charged.
1356 	 */
1357 	if (!memcg)
1358 		memcg = root_mem_cgroup;
1359 
1360 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1361 	lruvec = &mz->lruvec;
1362 out:
1363 	/*
1364 	 * Since a node can be onlined after the mem_cgroup was created,
1365 	 * we have to be prepared to initialize lruvec->zone here;
1366 	 * and if offlined then reonlined, we need to reinitialize it.
1367 	 */
1368 	if (unlikely(lruvec->pgdat != pgdat))
1369 		lruvec->pgdat = pgdat;
1370 	return lruvec;
1371 }
1372 
1373 /**
1374  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1375  * @lruvec: mem_cgroup per zone lru vector
1376  * @lru: index of lru list the page is sitting on
1377  * @zid: zone id of the accounted pages
1378  * @nr_pages: positive when adding or negative when removing
1379  *
1380  * This function must be called under lru_lock, just before a page is added
1381  * to or just after a page is removed from an lru list (that ordering being
1382  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1383  */
1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385 				int zid, int nr_pages)
1386 {
1387 	struct mem_cgroup_per_node *mz;
1388 	unsigned long *lru_size;
1389 	long size;
1390 
1391 	if (mem_cgroup_disabled())
1392 		return;
1393 
1394 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395 	lru_size = &mz->lru_zone_size[zid][lru];
1396 
1397 	if (nr_pages < 0)
1398 		*lru_size += nr_pages;
1399 
1400 	size = *lru_size;
1401 	if (WARN_ONCE(size < 0,
1402 		"%s(%p, %d, %d): lru_size %ld\n",
1403 		__func__, lruvec, lru, nr_pages, size)) {
1404 		VM_BUG_ON(1);
1405 		*lru_size = 0;
1406 	}
1407 
1408 	if (nr_pages > 0)
1409 		*lru_size += nr_pages;
1410 }
1411 
1412 /**
1413  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414  * @memcg: the memory cgroup
1415  *
1416  * Returns the maximum amount of memory @mem can be charged with, in
1417  * pages.
1418  */
1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421 	unsigned long margin = 0;
1422 	unsigned long count;
1423 	unsigned long limit;
1424 
1425 	count = page_counter_read(&memcg->memory);
1426 	limit = READ_ONCE(memcg->memory.max);
1427 	if (count < limit)
1428 		margin = limit - count;
1429 
1430 	if (do_memsw_account()) {
1431 		count = page_counter_read(&memcg->memsw);
1432 		limit = READ_ONCE(memcg->memsw.max);
1433 		if (count < limit)
1434 			margin = min(margin, limit - count);
1435 		else
1436 			margin = 0;
1437 	}
1438 
1439 	return margin;
1440 }
1441 
1442 /*
1443  * A routine for checking "mem" is under move_account() or not.
1444  *
1445  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446  * moving cgroups. This is for waiting at high-memory pressure
1447  * caused by "move".
1448  */
1449 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450 {
1451 	struct mem_cgroup *from;
1452 	struct mem_cgroup *to;
1453 	bool ret = false;
1454 	/*
1455 	 * Unlike task_move routines, we access mc.to, mc.from not under
1456 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457 	 */
1458 	spin_lock(&mc.lock);
1459 	from = mc.from;
1460 	to = mc.to;
1461 	if (!from)
1462 		goto unlock;
1463 
1464 	ret = mem_cgroup_is_descendant(from, memcg) ||
1465 		mem_cgroup_is_descendant(to, memcg);
1466 unlock:
1467 	spin_unlock(&mc.lock);
1468 	return ret;
1469 }
1470 
1471 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 {
1473 	if (mc.moving_task && current != mc.moving_task) {
1474 		if (mem_cgroup_under_move(memcg)) {
1475 			DEFINE_WAIT(wait);
1476 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477 			/* moving charge context might have finished. */
1478 			if (mc.moving_task)
1479 				schedule();
1480 			finish_wait(&mc.waitq, &wait);
1481 			return true;
1482 		}
1483 	}
1484 	return false;
1485 }
1486 
1487 struct memory_stat {
1488 	const char *name;
1489 	unsigned int ratio;
1490 	unsigned int idx;
1491 };
1492 
1493 static struct memory_stat memory_stats[] = {
1494 	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
1495 	{ "file", PAGE_SIZE, NR_FILE_PAGES },
1496 	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1497 	{ "percpu", 1, MEMCG_PERCPU_B },
1498 	{ "sock", PAGE_SIZE, MEMCG_SOCK },
1499 	{ "shmem", PAGE_SIZE, NR_SHMEM },
1500 	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1501 	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1502 	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1503 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1504 	/*
1505 	 * The ratio will be initialized in memory_stats_init(). Because
1506 	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1507 	 * constant(e.g. powerpc).
1508 	 */
1509 	{ "anon_thp", 0, NR_ANON_THPS },
1510 #endif
1511 	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1512 	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1513 	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1514 	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1515 	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1516 
1517 	/*
1518 	 * Note: The slab_reclaimable and slab_unreclaimable must be
1519 	 * together and slab_reclaimable must be in front.
1520 	 */
1521 	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1522 	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1523 
1524 	/* The memory events */
1525 	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1526 	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1527 	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1528 	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1529 	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1530 	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1531 	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1532 };
1533 
1534 static int __init memory_stats_init(void)
1535 {
1536 	int i;
1537 
1538 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1540 		if (memory_stats[i].idx == NR_ANON_THPS)
1541 			memory_stats[i].ratio = HPAGE_PMD_SIZE;
1542 #endif
1543 		VM_BUG_ON(!memory_stats[i].ratio);
1544 		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1545 	}
1546 
1547 	return 0;
1548 }
1549 pure_initcall(memory_stats_init);
1550 
1551 static char *memory_stat_format(struct mem_cgroup *memcg)
1552 {
1553 	struct seq_buf s;
1554 	int i;
1555 
1556 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1557 	if (!s.buffer)
1558 		return NULL;
1559 
1560 	/*
1561 	 * Provide statistics on the state of the memory subsystem as
1562 	 * well as cumulative event counters that show past behavior.
1563 	 *
1564 	 * This list is ordered following a combination of these gradients:
1565 	 * 1) generic big picture -> specifics and details
1566 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1567 	 *
1568 	 * Current memory state:
1569 	 */
1570 
1571 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1572 		u64 size;
1573 
1574 		size = memcg_page_state(memcg, memory_stats[i].idx);
1575 		size *= memory_stats[i].ratio;
1576 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1577 
1578 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1579 			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1580 			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1581 			seq_buf_printf(&s, "slab %llu\n", size);
1582 		}
1583 	}
1584 
1585 	/* Accumulated memory events */
1586 
1587 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1588 		       memcg_events(memcg, PGFAULT));
1589 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1590 		       memcg_events(memcg, PGMAJFAULT));
1591 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1592 		       memcg_events(memcg, PGREFILL));
1593 	seq_buf_printf(&s, "pgscan %lu\n",
1594 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1595 		       memcg_events(memcg, PGSCAN_DIRECT));
1596 	seq_buf_printf(&s, "pgsteal %lu\n",
1597 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1598 		       memcg_events(memcg, PGSTEAL_DIRECT));
1599 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1600 		       memcg_events(memcg, PGACTIVATE));
1601 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1602 		       memcg_events(memcg, PGDEACTIVATE));
1603 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1604 		       memcg_events(memcg, PGLAZYFREE));
1605 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1606 		       memcg_events(memcg, PGLAZYFREED));
1607 
1608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1610 		       memcg_events(memcg, THP_FAULT_ALLOC));
1611 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1612 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1613 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1614 
1615 	/* The above should easily fit into one page */
1616 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1617 
1618 	return s.buffer;
1619 }
1620 
1621 #define K(x) ((x) << (PAGE_SHIFT-10))
1622 /**
1623  * mem_cgroup_print_oom_context: Print OOM information relevant to
1624  * memory controller.
1625  * @memcg: The memory cgroup that went over limit
1626  * @p: Task that is going to be killed
1627  *
1628  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1629  * enabled
1630  */
1631 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1632 {
1633 	rcu_read_lock();
1634 
1635 	if (memcg) {
1636 		pr_cont(",oom_memcg=");
1637 		pr_cont_cgroup_path(memcg->css.cgroup);
1638 	} else
1639 		pr_cont(",global_oom");
1640 	if (p) {
1641 		pr_cont(",task_memcg=");
1642 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1643 	}
1644 	rcu_read_unlock();
1645 }
1646 
1647 /**
1648  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1649  * memory controller.
1650  * @memcg: The memory cgroup that went over limit
1651  */
1652 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1653 {
1654 	char *buf;
1655 
1656 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1657 		K((u64)page_counter_read(&memcg->memory)),
1658 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1659 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1660 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1661 			K((u64)page_counter_read(&memcg->swap)),
1662 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1663 	else {
1664 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1665 			K((u64)page_counter_read(&memcg->memsw)),
1666 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1667 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1668 			K((u64)page_counter_read(&memcg->kmem)),
1669 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1670 	}
1671 
1672 	pr_info("Memory cgroup stats for ");
1673 	pr_cont_cgroup_path(memcg->css.cgroup);
1674 	pr_cont(":");
1675 	buf = memory_stat_format(memcg);
1676 	if (!buf)
1677 		return;
1678 	pr_info("%s", buf);
1679 	kfree(buf);
1680 }
1681 
1682 /*
1683  * Return the memory (and swap, if configured) limit for a memcg.
1684  */
1685 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1686 {
1687 	unsigned long max = READ_ONCE(memcg->memory.max);
1688 
1689 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1690 		if (mem_cgroup_swappiness(memcg))
1691 			max += min(READ_ONCE(memcg->swap.max),
1692 				   (unsigned long)total_swap_pages);
1693 	} else { /* v1 */
1694 		if (mem_cgroup_swappiness(memcg)) {
1695 			/* Calculate swap excess capacity from memsw limit */
1696 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1697 
1698 			max += min(swap, (unsigned long)total_swap_pages);
1699 		}
1700 	}
1701 	return max;
1702 }
1703 
1704 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1705 {
1706 	return page_counter_read(&memcg->memory);
1707 }
1708 
1709 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1710 				     int order)
1711 {
1712 	struct oom_control oc = {
1713 		.zonelist = NULL,
1714 		.nodemask = NULL,
1715 		.memcg = memcg,
1716 		.gfp_mask = gfp_mask,
1717 		.order = order,
1718 	};
1719 	bool ret = true;
1720 
1721 	if (mutex_lock_killable(&oom_lock))
1722 		return true;
1723 
1724 	if (mem_cgroup_margin(memcg) >= (1 << order))
1725 		goto unlock;
1726 
1727 	/*
1728 	 * A few threads which were not waiting at mutex_lock_killable() can
1729 	 * fail to bail out. Therefore, check again after holding oom_lock.
1730 	 */
1731 	ret = should_force_charge() || out_of_memory(&oc);
1732 
1733 unlock:
1734 	mutex_unlock(&oom_lock);
1735 	return ret;
1736 }
1737 
1738 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1739 				   pg_data_t *pgdat,
1740 				   gfp_t gfp_mask,
1741 				   unsigned long *total_scanned)
1742 {
1743 	struct mem_cgroup *victim = NULL;
1744 	int total = 0;
1745 	int loop = 0;
1746 	unsigned long excess;
1747 	unsigned long nr_scanned;
1748 	struct mem_cgroup_reclaim_cookie reclaim = {
1749 		.pgdat = pgdat,
1750 	};
1751 
1752 	excess = soft_limit_excess(root_memcg);
1753 
1754 	while (1) {
1755 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1756 		if (!victim) {
1757 			loop++;
1758 			if (loop >= 2) {
1759 				/*
1760 				 * If we have not been able to reclaim
1761 				 * anything, it might because there are
1762 				 * no reclaimable pages under this hierarchy
1763 				 */
1764 				if (!total)
1765 					break;
1766 				/*
1767 				 * We want to do more targeted reclaim.
1768 				 * excess >> 2 is not to excessive so as to
1769 				 * reclaim too much, nor too less that we keep
1770 				 * coming back to reclaim from this cgroup
1771 				 */
1772 				if (total >= (excess >> 2) ||
1773 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1774 					break;
1775 			}
1776 			continue;
1777 		}
1778 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1779 					pgdat, &nr_scanned);
1780 		*total_scanned += nr_scanned;
1781 		if (!soft_limit_excess(root_memcg))
1782 			break;
1783 	}
1784 	mem_cgroup_iter_break(root_memcg, victim);
1785 	return total;
1786 }
1787 
1788 #ifdef CONFIG_LOCKDEP
1789 static struct lockdep_map memcg_oom_lock_dep_map = {
1790 	.name = "memcg_oom_lock",
1791 };
1792 #endif
1793 
1794 static DEFINE_SPINLOCK(memcg_oom_lock);
1795 
1796 /*
1797  * Check OOM-Killer is already running under our hierarchy.
1798  * If someone is running, return false.
1799  */
1800 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1801 {
1802 	struct mem_cgroup *iter, *failed = NULL;
1803 
1804 	spin_lock(&memcg_oom_lock);
1805 
1806 	for_each_mem_cgroup_tree(iter, memcg) {
1807 		if (iter->oom_lock) {
1808 			/*
1809 			 * this subtree of our hierarchy is already locked
1810 			 * so we cannot give a lock.
1811 			 */
1812 			failed = iter;
1813 			mem_cgroup_iter_break(memcg, iter);
1814 			break;
1815 		} else
1816 			iter->oom_lock = true;
1817 	}
1818 
1819 	if (failed) {
1820 		/*
1821 		 * OK, we failed to lock the whole subtree so we have
1822 		 * to clean up what we set up to the failing subtree
1823 		 */
1824 		for_each_mem_cgroup_tree(iter, memcg) {
1825 			if (iter == failed) {
1826 				mem_cgroup_iter_break(memcg, iter);
1827 				break;
1828 			}
1829 			iter->oom_lock = false;
1830 		}
1831 	} else
1832 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1833 
1834 	spin_unlock(&memcg_oom_lock);
1835 
1836 	return !failed;
1837 }
1838 
1839 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1840 {
1841 	struct mem_cgroup *iter;
1842 
1843 	spin_lock(&memcg_oom_lock);
1844 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1845 	for_each_mem_cgroup_tree(iter, memcg)
1846 		iter->oom_lock = false;
1847 	spin_unlock(&memcg_oom_lock);
1848 }
1849 
1850 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1851 {
1852 	struct mem_cgroup *iter;
1853 
1854 	spin_lock(&memcg_oom_lock);
1855 	for_each_mem_cgroup_tree(iter, memcg)
1856 		iter->under_oom++;
1857 	spin_unlock(&memcg_oom_lock);
1858 }
1859 
1860 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1861 {
1862 	struct mem_cgroup *iter;
1863 
1864 	/*
1865 	 * Be careful about under_oom underflows becase a child memcg
1866 	 * could have been added after mem_cgroup_mark_under_oom.
1867 	 */
1868 	spin_lock(&memcg_oom_lock);
1869 	for_each_mem_cgroup_tree(iter, memcg)
1870 		if (iter->under_oom > 0)
1871 			iter->under_oom--;
1872 	spin_unlock(&memcg_oom_lock);
1873 }
1874 
1875 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1876 
1877 struct oom_wait_info {
1878 	struct mem_cgroup *memcg;
1879 	wait_queue_entry_t	wait;
1880 };
1881 
1882 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1883 	unsigned mode, int sync, void *arg)
1884 {
1885 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1886 	struct mem_cgroup *oom_wait_memcg;
1887 	struct oom_wait_info *oom_wait_info;
1888 
1889 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1890 	oom_wait_memcg = oom_wait_info->memcg;
1891 
1892 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1893 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1894 		return 0;
1895 	return autoremove_wake_function(wait, mode, sync, arg);
1896 }
1897 
1898 static void memcg_oom_recover(struct mem_cgroup *memcg)
1899 {
1900 	/*
1901 	 * For the following lockless ->under_oom test, the only required
1902 	 * guarantee is that it must see the state asserted by an OOM when
1903 	 * this function is called as a result of userland actions
1904 	 * triggered by the notification of the OOM.  This is trivially
1905 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1906 	 * triggering notification.
1907 	 */
1908 	if (memcg && memcg->under_oom)
1909 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1910 }
1911 
1912 enum oom_status {
1913 	OOM_SUCCESS,
1914 	OOM_FAILED,
1915 	OOM_ASYNC,
1916 	OOM_SKIPPED
1917 };
1918 
1919 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1920 {
1921 	enum oom_status ret;
1922 	bool locked;
1923 
1924 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1925 		return OOM_SKIPPED;
1926 
1927 	memcg_memory_event(memcg, MEMCG_OOM);
1928 
1929 	/*
1930 	 * We are in the middle of the charge context here, so we
1931 	 * don't want to block when potentially sitting on a callstack
1932 	 * that holds all kinds of filesystem and mm locks.
1933 	 *
1934 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1935 	 * handling until the charge can succeed; remember the context and put
1936 	 * the task to sleep at the end of the page fault when all locks are
1937 	 * released.
1938 	 *
1939 	 * On the other hand, in-kernel OOM killer allows for an async victim
1940 	 * memory reclaim (oom_reaper) and that means that we are not solely
1941 	 * relying on the oom victim to make a forward progress and we can
1942 	 * invoke the oom killer here.
1943 	 *
1944 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1945 	 * victim and then we have to bail out from the charge path.
1946 	 */
1947 	if (memcg->oom_kill_disable) {
1948 		if (!current->in_user_fault)
1949 			return OOM_SKIPPED;
1950 		css_get(&memcg->css);
1951 		current->memcg_in_oom = memcg;
1952 		current->memcg_oom_gfp_mask = mask;
1953 		current->memcg_oom_order = order;
1954 
1955 		return OOM_ASYNC;
1956 	}
1957 
1958 	mem_cgroup_mark_under_oom(memcg);
1959 
1960 	locked = mem_cgroup_oom_trylock(memcg);
1961 
1962 	if (locked)
1963 		mem_cgroup_oom_notify(memcg);
1964 
1965 	mem_cgroup_unmark_under_oom(memcg);
1966 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1967 		ret = OOM_SUCCESS;
1968 	else
1969 		ret = OOM_FAILED;
1970 
1971 	if (locked)
1972 		mem_cgroup_oom_unlock(memcg);
1973 
1974 	return ret;
1975 }
1976 
1977 /**
1978  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1979  * @handle: actually kill/wait or just clean up the OOM state
1980  *
1981  * This has to be called at the end of a page fault if the memcg OOM
1982  * handler was enabled.
1983  *
1984  * Memcg supports userspace OOM handling where failed allocations must
1985  * sleep on a waitqueue until the userspace task resolves the
1986  * situation.  Sleeping directly in the charge context with all kinds
1987  * of locks held is not a good idea, instead we remember an OOM state
1988  * in the task and mem_cgroup_oom_synchronize() has to be called at
1989  * the end of the page fault to complete the OOM handling.
1990  *
1991  * Returns %true if an ongoing memcg OOM situation was detected and
1992  * completed, %false otherwise.
1993  */
1994 bool mem_cgroup_oom_synchronize(bool handle)
1995 {
1996 	struct mem_cgroup *memcg = current->memcg_in_oom;
1997 	struct oom_wait_info owait;
1998 	bool locked;
1999 
2000 	/* OOM is global, do not handle */
2001 	if (!memcg)
2002 		return false;
2003 
2004 	if (!handle)
2005 		goto cleanup;
2006 
2007 	owait.memcg = memcg;
2008 	owait.wait.flags = 0;
2009 	owait.wait.func = memcg_oom_wake_function;
2010 	owait.wait.private = current;
2011 	INIT_LIST_HEAD(&owait.wait.entry);
2012 
2013 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2014 	mem_cgroup_mark_under_oom(memcg);
2015 
2016 	locked = mem_cgroup_oom_trylock(memcg);
2017 
2018 	if (locked)
2019 		mem_cgroup_oom_notify(memcg);
2020 
2021 	if (locked && !memcg->oom_kill_disable) {
2022 		mem_cgroup_unmark_under_oom(memcg);
2023 		finish_wait(&memcg_oom_waitq, &owait.wait);
2024 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2025 					 current->memcg_oom_order);
2026 	} else {
2027 		schedule();
2028 		mem_cgroup_unmark_under_oom(memcg);
2029 		finish_wait(&memcg_oom_waitq, &owait.wait);
2030 	}
2031 
2032 	if (locked) {
2033 		mem_cgroup_oom_unlock(memcg);
2034 		/*
2035 		 * There is no guarantee that an OOM-lock contender
2036 		 * sees the wakeups triggered by the OOM kill
2037 		 * uncharges.  Wake any sleepers explicitely.
2038 		 */
2039 		memcg_oom_recover(memcg);
2040 	}
2041 cleanup:
2042 	current->memcg_in_oom = NULL;
2043 	css_put(&memcg->css);
2044 	return true;
2045 }
2046 
2047 /**
2048  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2049  * @victim: task to be killed by the OOM killer
2050  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2051  *
2052  * Returns a pointer to a memory cgroup, which has to be cleaned up
2053  * by killing all belonging OOM-killable tasks.
2054  *
2055  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2056  */
2057 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2058 					    struct mem_cgroup *oom_domain)
2059 {
2060 	struct mem_cgroup *oom_group = NULL;
2061 	struct mem_cgroup *memcg;
2062 
2063 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2064 		return NULL;
2065 
2066 	if (!oom_domain)
2067 		oom_domain = root_mem_cgroup;
2068 
2069 	rcu_read_lock();
2070 
2071 	memcg = mem_cgroup_from_task(victim);
2072 	if (memcg == root_mem_cgroup)
2073 		goto out;
2074 
2075 	/*
2076 	 * If the victim task has been asynchronously moved to a different
2077 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2078 	 * In this case it's better to ignore memory.group.oom.
2079 	 */
2080 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2081 		goto out;
2082 
2083 	/*
2084 	 * Traverse the memory cgroup hierarchy from the victim task's
2085 	 * cgroup up to the OOMing cgroup (or root) to find the
2086 	 * highest-level memory cgroup with oom.group set.
2087 	 */
2088 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2089 		if (memcg->oom_group)
2090 			oom_group = memcg;
2091 
2092 		if (memcg == oom_domain)
2093 			break;
2094 	}
2095 
2096 	if (oom_group)
2097 		css_get(&oom_group->css);
2098 out:
2099 	rcu_read_unlock();
2100 
2101 	return oom_group;
2102 }
2103 
2104 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2105 {
2106 	pr_info("Tasks in ");
2107 	pr_cont_cgroup_path(memcg->css.cgroup);
2108 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2109 }
2110 
2111 /**
2112  * lock_page_memcg - lock a page->mem_cgroup binding
2113  * @page: the page
2114  *
2115  * This function protects unlocked LRU pages from being moved to
2116  * another cgroup.
2117  *
2118  * It ensures lifetime of the returned memcg. Caller is responsible
2119  * for the lifetime of the page; __unlock_page_memcg() is available
2120  * when @page might get freed inside the locked section.
2121  */
2122 struct mem_cgroup *lock_page_memcg(struct page *page)
2123 {
2124 	struct page *head = compound_head(page); /* rmap on tail pages */
2125 	struct mem_cgroup *memcg;
2126 	unsigned long flags;
2127 
2128 	/*
2129 	 * The RCU lock is held throughout the transaction.  The fast
2130 	 * path can get away without acquiring the memcg->move_lock
2131 	 * because page moving starts with an RCU grace period.
2132 	 *
2133 	 * The RCU lock also protects the memcg from being freed when
2134 	 * the page state that is going to change is the only thing
2135 	 * preventing the page itself from being freed. E.g. writeback
2136 	 * doesn't hold a page reference and relies on PG_writeback to
2137 	 * keep off truncation, migration and so forth.
2138          */
2139 	rcu_read_lock();
2140 
2141 	if (mem_cgroup_disabled())
2142 		return NULL;
2143 again:
2144 	memcg = head->mem_cgroup;
2145 	if (unlikely(!memcg))
2146 		return NULL;
2147 
2148 	if (atomic_read(&memcg->moving_account) <= 0)
2149 		return memcg;
2150 
2151 	spin_lock_irqsave(&memcg->move_lock, flags);
2152 	if (memcg != head->mem_cgroup) {
2153 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2154 		goto again;
2155 	}
2156 
2157 	/*
2158 	 * When charge migration first begins, we can have locked and
2159 	 * unlocked page stat updates happening concurrently.  Track
2160 	 * the task who has the lock for unlock_page_memcg().
2161 	 */
2162 	memcg->move_lock_task = current;
2163 	memcg->move_lock_flags = flags;
2164 
2165 	return memcg;
2166 }
2167 EXPORT_SYMBOL(lock_page_memcg);
2168 
2169 /**
2170  * __unlock_page_memcg - unlock and unpin a memcg
2171  * @memcg: the memcg
2172  *
2173  * Unlock and unpin a memcg returned by lock_page_memcg().
2174  */
2175 void __unlock_page_memcg(struct mem_cgroup *memcg)
2176 {
2177 	if (memcg && memcg->move_lock_task == current) {
2178 		unsigned long flags = memcg->move_lock_flags;
2179 
2180 		memcg->move_lock_task = NULL;
2181 		memcg->move_lock_flags = 0;
2182 
2183 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2184 	}
2185 
2186 	rcu_read_unlock();
2187 }
2188 
2189 /**
2190  * unlock_page_memcg - unlock a page->mem_cgroup binding
2191  * @page: the page
2192  */
2193 void unlock_page_memcg(struct page *page)
2194 {
2195 	struct page *head = compound_head(page);
2196 
2197 	__unlock_page_memcg(head->mem_cgroup);
2198 }
2199 EXPORT_SYMBOL(unlock_page_memcg);
2200 
2201 struct memcg_stock_pcp {
2202 	struct mem_cgroup *cached; /* this never be root cgroup */
2203 	unsigned int nr_pages;
2204 
2205 #ifdef CONFIG_MEMCG_KMEM
2206 	struct obj_cgroup *cached_objcg;
2207 	unsigned int nr_bytes;
2208 #endif
2209 
2210 	struct work_struct work;
2211 	unsigned long flags;
2212 #define FLUSHING_CACHED_CHARGE	0
2213 };
2214 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2215 static DEFINE_MUTEX(percpu_charge_mutex);
2216 
2217 #ifdef CONFIG_MEMCG_KMEM
2218 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2219 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2220 				     struct mem_cgroup *root_memcg);
2221 
2222 #else
2223 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2224 {
2225 }
2226 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2227 				     struct mem_cgroup *root_memcg)
2228 {
2229 	return false;
2230 }
2231 #endif
2232 
2233 /**
2234  * consume_stock: Try to consume stocked charge on this cpu.
2235  * @memcg: memcg to consume from.
2236  * @nr_pages: how many pages to charge.
2237  *
2238  * The charges will only happen if @memcg matches the current cpu's memcg
2239  * stock, and at least @nr_pages are available in that stock.  Failure to
2240  * service an allocation will refill the stock.
2241  *
2242  * returns true if successful, false otherwise.
2243  */
2244 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2245 {
2246 	struct memcg_stock_pcp *stock;
2247 	unsigned long flags;
2248 	bool ret = false;
2249 
2250 	if (nr_pages > MEMCG_CHARGE_BATCH)
2251 		return ret;
2252 
2253 	local_irq_save(flags);
2254 
2255 	stock = this_cpu_ptr(&memcg_stock);
2256 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2257 		stock->nr_pages -= nr_pages;
2258 		ret = true;
2259 	}
2260 
2261 	local_irq_restore(flags);
2262 
2263 	return ret;
2264 }
2265 
2266 /*
2267  * Returns stocks cached in percpu and reset cached information.
2268  */
2269 static void drain_stock(struct memcg_stock_pcp *stock)
2270 {
2271 	struct mem_cgroup *old = stock->cached;
2272 
2273 	if (!old)
2274 		return;
2275 
2276 	if (stock->nr_pages) {
2277 		page_counter_uncharge(&old->memory, stock->nr_pages);
2278 		if (do_memsw_account())
2279 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2280 		stock->nr_pages = 0;
2281 	}
2282 
2283 	css_put(&old->css);
2284 	stock->cached = NULL;
2285 }
2286 
2287 static void drain_local_stock(struct work_struct *dummy)
2288 {
2289 	struct memcg_stock_pcp *stock;
2290 	unsigned long flags;
2291 
2292 	/*
2293 	 * The only protection from memory hotplug vs. drain_stock races is
2294 	 * that we always operate on local CPU stock here with IRQ disabled
2295 	 */
2296 	local_irq_save(flags);
2297 
2298 	stock = this_cpu_ptr(&memcg_stock);
2299 	drain_obj_stock(stock);
2300 	drain_stock(stock);
2301 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2302 
2303 	local_irq_restore(flags);
2304 }
2305 
2306 /*
2307  * Cache charges(val) to local per_cpu area.
2308  * This will be consumed by consume_stock() function, later.
2309  */
2310 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2311 {
2312 	struct memcg_stock_pcp *stock;
2313 	unsigned long flags;
2314 
2315 	local_irq_save(flags);
2316 
2317 	stock = this_cpu_ptr(&memcg_stock);
2318 	if (stock->cached != memcg) { /* reset if necessary */
2319 		drain_stock(stock);
2320 		css_get(&memcg->css);
2321 		stock->cached = memcg;
2322 	}
2323 	stock->nr_pages += nr_pages;
2324 
2325 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2326 		drain_stock(stock);
2327 
2328 	local_irq_restore(flags);
2329 }
2330 
2331 /*
2332  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2333  * of the hierarchy under it.
2334  */
2335 static void drain_all_stock(struct mem_cgroup *root_memcg)
2336 {
2337 	int cpu, curcpu;
2338 
2339 	/* If someone's already draining, avoid adding running more workers. */
2340 	if (!mutex_trylock(&percpu_charge_mutex))
2341 		return;
2342 	/*
2343 	 * Notify other cpus that system-wide "drain" is running
2344 	 * We do not care about races with the cpu hotplug because cpu down
2345 	 * as well as workers from this path always operate on the local
2346 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2347 	 */
2348 	curcpu = get_cpu();
2349 	for_each_online_cpu(cpu) {
2350 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2351 		struct mem_cgroup *memcg;
2352 		bool flush = false;
2353 
2354 		rcu_read_lock();
2355 		memcg = stock->cached;
2356 		if (memcg && stock->nr_pages &&
2357 		    mem_cgroup_is_descendant(memcg, root_memcg))
2358 			flush = true;
2359 		if (obj_stock_flush_required(stock, root_memcg))
2360 			flush = true;
2361 		rcu_read_unlock();
2362 
2363 		if (flush &&
2364 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2365 			if (cpu == curcpu)
2366 				drain_local_stock(&stock->work);
2367 			else
2368 				schedule_work_on(cpu, &stock->work);
2369 		}
2370 	}
2371 	put_cpu();
2372 	mutex_unlock(&percpu_charge_mutex);
2373 }
2374 
2375 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2376 {
2377 	struct memcg_stock_pcp *stock;
2378 	struct mem_cgroup *memcg, *mi;
2379 
2380 	stock = &per_cpu(memcg_stock, cpu);
2381 	drain_stock(stock);
2382 
2383 	for_each_mem_cgroup(memcg) {
2384 		int i;
2385 
2386 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2387 			int nid;
2388 			long x;
2389 
2390 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2391 			if (x)
2392 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2393 					atomic_long_add(x, &memcg->vmstats[i]);
2394 
2395 			if (i >= NR_VM_NODE_STAT_ITEMS)
2396 				continue;
2397 
2398 			for_each_node(nid) {
2399 				struct mem_cgroup_per_node *pn;
2400 
2401 				pn = mem_cgroup_nodeinfo(memcg, nid);
2402 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2403 				if (x)
2404 					do {
2405 						atomic_long_add(x, &pn->lruvec_stat[i]);
2406 					} while ((pn = parent_nodeinfo(pn, nid)));
2407 			}
2408 		}
2409 
2410 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2411 			long x;
2412 
2413 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2414 			if (x)
2415 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2416 					atomic_long_add(x, &memcg->vmevents[i]);
2417 		}
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2424 				  unsigned int nr_pages,
2425 				  gfp_t gfp_mask)
2426 {
2427 	unsigned long nr_reclaimed = 0;
2428 
2429 	do {
2430 		unsigned long pflags;
2431 
2432 		if (page_counter_read(&memcg->memory) <=
2433 		    READ_ONCE(memcg->memory.high))
2434 			continue;
2435 
2436 		memcg_memory_event(memcg, MEMCG_HIGH);
2437 
2438 		psi_memstall_enter(&pflags);
2439 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2440 							     gfp_mask, true);
2441 		psi_memstall_leave(&pflags);
2442 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2443 		 !mem_cgroup_is_root(memcg));
2444 
2445 	return nr_reclaimed;
2446 }
2447 
2448 static void high_work_func(struct work_struct *work)
2449 {
2450 	struct mem_cgroup *memcg;
2451 
2452 	memcg = container_of(work, struct mem_cgroup, high_work);
2453 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2454 }
2455 
2456 /*
2457  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2458  * enough to still cause a significant slowdown in most cases, while still
2459  * allowing diagnostics and tracing to proceed without becoming stuck.
2460  */
2461 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2462 
2463 /*
2464  * When calculating the delay, we use these either side of the exponentiation to
2465  * maintain precision and scale to a reasonable number of jiffies (see the table
2466  * below.
2467  *
2468  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2469  *   overage ratio to a delay.
2470  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2471  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2472  *   to produce a reasonable delay curve.
2473  *
2474  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2475  * reasonable delay curve compared to precision-adjusted overage, not
2476  * penalising heavily at first, but still making sure that growth beyond the
2477  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2478  * example, with a high of 100 megabytes:
2479  *
2480  *  +-------+------------------------+
2481  *  | usage | time to allocate in ms |
2482  *  +-------+------------------------+
2483  *  | 100M  |                      0 |
2484  *  | 101M  |                      6 |
2485  *  | 102M  |                     25 |
2486  *  | 103M  |                     57 |
2487  *  | 104M  |                    102 |
2488  *  | 105M  |                    159 |
2489  *  | 106M  |                    230 |
2490  *  | 107M  |                    313 |
2491  *  | 108M  |                    409 |
2492  *  | 109M  |                    518 |
2493  *  | 110M  |                    639 |
2494  *  | 111M  |                    774 |
2495  *  | 112M  |                    921 |
2496  *  | 113M  |                   1081 |
2497  *  | 114M  |                   1254 |
2498  *  | 115M  |                   1439 |
2499  *  | 116M  |                   1638 |
2500  *  | 117M  |                   1849 |
2501  *  | 118M  |                   2000 |
2502  *  | 119M  |                   2000 |
2503  *  | 120M  |                   2000 |
2504  *  +-------+------------------------+
2505  */
2506  #define MEMCG_DELAY_PRECISION_SHIFT 20
2507  #define MEMCG_DELAY_SCALING_SHIFT 14
2508 
2509 static u64 calculate_overage(unsigned long usage, unsigned long high)
2510 {
2511 	u64 overage;
2512 
2513 	if (usage <= high)
2514 		return 0;
2515 
2516 	/*
2517 	 * Prevent division by 0 in overage calculation by acting as if
2518 	 * it was a threshold of 1 page
2519 	 */
2520 	high = max(high, 1UL);
2521 
2522 	overage = usage - high;
2523 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2524 	return div64_u64(overage, high);
2525 }
2526 
2527 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2528 {
2529 	u64 overage, max_overage = 0;
2530 
2531 	do {
2532 		overage = calculate_overage(page_counter_read(&memcg->memory),
2533 					    READ_ONCE(memcg->memory.high));
2534 		max_overage = max(overage, max_overage);
2535 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2536 		 !mem_cgroup_is_root(memcg));
2537 
2538 	return max_overage;
2539 }
2540 
2541 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2542 {
2543 	u64 overage, max_overage = 0;
2544 
2545 	do {
2546 		overage = calculate_overage(page_counter_read(&memcg->swap),
2547 					    READ_ONCE(memcg->swap.high));
2548 		if (overage)
2549 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2550 		max_overage = max(overage, max_overage);
2551 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2552 		 !mem_cgroup_is_root(memcg));
2553 
2554 	return max_overage;
2555 }
2556 
2557 /*
2558  * Get the number of jiffies that we should penalise a mischievous cgroup which
2559  * is exceeding its memory.high by checking both it and its ancestors.
2560  */
2561 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2562 					  unsigned int nr_pages,
2563 					  u64 max_overage)
2564 {
2565 	unsigned long penalty_jiffies;
2566 
2567 	if (!max_overage)
2568 		return 0;
2569 
2570 	/*
2571 	 * We use overage compared to memory.high to calculate the number of
2572 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2573 	 * fairly lenient on small overages, and increasingly harsh when the
2574 	 * memcg in question makes it clear that it has no intention of stopping
2575 	 * its crazy behaviour, so we exponentially increase the delay based on
2576 	 * overage amount.
2577 	 */
2578 	penalty_jiffies = max_overage * max_overage * HZ;
2579 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2580 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2581 
2582 	/*
2583 	 * Factor in the task's own contribution to the overage, such that four
2584 	 * N-sized allocations are throttled approximately the same as one
2585 	 * 4N-sized allocation.
2586 	 *
2587 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2588 	 * larger the current charge patch is than that.
2589 	 */
2590 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2591 }
2592 
2593 /*
2594  * Scheduled by try_charge() to be executed from the userland return path
2595  * and reclaims memory over the high limit.
2596  */
2597 void mem_cgroup_handle_over_high(void)
2598 {
2599 	unsigned long penalty_jiffies;
2600 	unsigned long pflags;
2601 	unsigned long nr_reclaimed;
2602 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2603 	int nr_retries = MAX_RECLAIM_RETRIES;
2604 	struct mem_cgroup *memcg;
2605 	bool in_retry = false;
2606 
2607 	if (likely(!nr_pages))
2608 		return;
2609 
2610 	memcg = get_mem_cgroup_from_mm(current->mm);
2611 	current->memcg_nr_pages_over_high = 0;
2612 
2613 retry_reclaim:
2614 	/*
2615 	 * The allocating task should reclaim at least the batch size, but for
2616 	 * subsequent retries we only want to do what's necessary to prevent oom
2617 	 * or breaching resource isolation.
2618 	 *
2619 	 * This is distinct from memory.max or page allocator behaviour because
2620 	 * memory.high is currently batched, whereas memory.max and the page
2621 	 * allocator run every time an allocation is made.
2622 	 */
2623 	nr_reclaimed = reclaim_high(memcg,
2624 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2625 				    GFP_KERNEL);
2626 
2627 	/*
2628 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2629 	 * allocators proactively to slow down excessive growth.
2630 	 */
2631 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2632 					       mem_find_max_overage(memcg));
2633 
2634 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2635 						swap_find_max_overage(memcg));
2636 
2637 	/*
2638 	 * Clamp the max delay per usermode return so as to still keep the
2639 	 * application moving forwards and also permit diagnostics, albeit
2640 	 * extremely slowly.
2641 	 */
2642 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2643 
2644 	/*
2645 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2646 	 * that it's not even worth doing, in an attempt to be nice to those who
2647 	 * go only a small amount over their memory.high value and maybe haven't
2648 	 * been aggressively reclaimed enough yet.
2649 	 */
2650 	if (penalty_jiffies <= HZ / 100)
2651 		goto out;
2652 
2653 	/*
2654 	 * If reclaim is making forward progress but we're still over
2655 	 * memory.high, we want to encourage that rather than doing allocator
2656 	 * throttling.
2657 	 */
2658 	if (nr_reclaimed || nr_retries--) {
2659 		in_retry = true;
2660 		goto retry_reclaim;
2661 	}
2662 
2663 	/*
2664 	 * If we exit early, we're guaranteed to die (since
2665 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2666 	 * need to account for any ill-begotten jiffies to pay them off later.
2667 	 */
2668 	psi_memstall_enter(&pflags);
2669 	schedule_timeout_killable(penalty_jiffies);
2670 	psi_memstall_leave(&pflags);
2671 
2672 out:
2673 	css_put(&memcg->css);
2674 }
2675 
2676 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2677 		      unsigned int nr_pages)
2678 {
2679 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2680 	int nr_retries = MAX_RECLAIM_RETRIES;
2681 	struct mem_cgroup *mem_over_limit;
2682 	struct page_counter *counter;
2683 	enum oom_status oom_status;
2684 	unsigned long nr_reclaimed;
2685 	bool may_swap = true;
2686 	bool drained = false;
2687 	unsigned long pflags;
2688 
2689 	if (mem_cgroup_is_root(memcg))
2690 		return 0;
2691 retry:
2692 	if (consume_stock(memcg, nr_pages))
2693 		return 0;
2694 
2695 	if (!do_memsw_account() ||
2696 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2697 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2698 			goto done_restock;
2699 		if (do_memsw_account())
2700 			page_counter_uncharge(&memcg->memsw, batch);
2701 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2702 	} else {
2703 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2704 		may_swap = false;
2705 	}
2706 
2707 	if (batch > nr_pages) {
2708 		batch = nr_pages;
2709 		goto retry;
2710 	}
2711 
2712 	/*
2713 	 * Memcg doesn't have a dedicated reserve for atomic
2714 	 * allocations. But like the global atomic pool, we need to
2715 	 * put the burden of reclaim on regular allocation requests
2716 	 * and let these go through as privileged allocations.
2717 	 */
2718 	if (gfp_mask & __GFP_ATOMIC)
2719 		goto force;
2720 
2721 	/*
2722 	 * Unlike in global OOM situations, memcg is not in a physical
2723 	 * memory shortage.  Allow dying and OOM-killed tasks to
2724 	 * bypass the last charges so that they can exit quickly and
2725 	 * free their memory.
2726 	 */
2727 	if (unlikely(should_force_charge()))
2728 		goto force;
2729 
2730 	/*
2731 	 * Prevent unbounded recursion when reclaim operations need to
2732 	 * allocate memory. This might exceed the limits temporarily,
2733 	 * but we prefer facilitating memory reclaim and getting back
2734 	 * under the limit over triggering OOM kills in these cases.
2735 	 */
2736 	if (unlikely(current->flags & PF_MEMALLOC))
2737 		goto force;
2738 
2739 	if (unlikely(task_in_memcg_oom(current)))
2740 		goto nomem;
2741 
2742 	if (!gfpflags_allow_blocking(gfp_mask))
2743 		goto nomem;
2744 
2745 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2746 
2747 	psi_memstall_enter(&pflags);
2748 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2749 						    gfp_mask, may_swap);
2750 	psi_memstall_leave(&pflags);
2751 
2752 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2753 		goto retry;
2754 
2755 	if (!drained) {
2756 		drain_all_stock(mem_over_limit);
2757 		drained = true;
2758 		goto retry;
2759 	}
2760 
2761 	if (gfp_mask & __GFP_NORETRY)
2762 		goto nomem;
2763 	/*
2764 	 * Even though the limit is exceeded at this point, reclaim
2765 	 * may have been able to free some pages.  Retry the charge
2766 	 * before killing the task.
2767 	 *
2768 	 * Only for regular pages, though: huge pages are rather
2769 	 * unlikely to succeed so close to the limit, and we fall back
2770 	 * to regular pages anyway in case of failure.
2771 	 */
2772 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2773 		goto retry;
2774 	/*
2775 	 * At task move, charge accounts can be doubly counted. So, it's
2776 	 * better to wait until the end of task_move if something is going on.
2777 	 */
2778 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2779 		goto retry;
2780 
2781 	if (nr_retries--)
2782 		goto retry;
2783 
2784 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2785 		goto nomem;
2786 
2787 	if (gfp_mask & __GFP_NOFAIL)
2788 		goto force;
2789 
2790 	if (fatal_signal_pending(current))
2791 		goto force;
2792 
2793 	/*
2794 	 * keep retrying as long as the memcg oom killer is able to make
2795 	 * a forward progress or bypass the charge if the oom killer
2796 	 * couldn't make any progress.
2797 	 */
2798 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2799 		       get_order(nr_pages * PAGE_SIZE));
2800 	switch (oom_status) {
2801 	case OOM_SUCCESS:
2802 		nr_retries = MAX_RECLAIM_RETRIES;
2803 		goto retry;
2804 	case OOM_FAILED:
2805 		goto force;
2806 	default:
2807 		goto nomem;
2808 	}
2809 nomem:
2810 	if (!(gfp_mask & __GFP_NOFAIL))
2811 		return -ENOMEM;
2812 force:
2813 	/*
2814 	 * The allocation either can't fail or will lead to more memory
2815 	 * being freed very soon.  Allow memory usage go over the limit
2816 	 * temporarily by force charging it.
2817 	 */
2818 	page_counter_charge(&memcg->memory, nr_pages);
2819 	if (do_memsw_account())
2820 		page_counter_charge(&memcg->memsw, nr_pages);
2821 
2822 	return 0;
2823 
2824 done_restock:
2825 	if (batch > nr_pages)
2826 		refill_stock(memcg, batch - nr_pages);
2827 
2828 	/*
2829 	 * If the hierarchy is above the normal consumption range, schedule
2830 	 * reclaim on returning to userland.  We can perform reclaim here
2831 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2832 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2833 	 * not recorded as it most likely matches current's and won't
2834 	 * change in the meantime.  As high limit is checked again before
2835 	 * reclaim, the cost of mismatch is negligible.
2836 	 */
2837 	do {
2838 		bool mem_high, swap_high;
2839 
2840 		mem_high = page_counter_read(&memcg->memory) >
2841 			READ_ONCE(memcg->memory.high);
2842 		swap_high = page_counter_read(&memcg->swap) >
2843 			READ_ONCE(memcg->swap.high);
2844 
2845 		/* Don't bother a random interrupted task */
2846 		if (in_interrupt()) {
2847 			if (mem_high) {
2848 				schedule_work(&memcg->high_work);
2849 				break;
2850 			}
2851 			continue;
2852 		}
2853 
2854 		if (mem_high || swap_high) {
2855 			/*
2856 			 * The allocating tasks in this cgroup will need to do
2857 			 * reclaim or be throttled to prevent further growth
2858 			 * of the memory or swap footprints.
2859 			 *
2860 			 * Target some best-effort fairness between the tasks,
2861 			 * and distribute reclaim work and delay penalties
2862 			 * based on how much each task is actually allocating.
2863 			 */
2864 			current->memcg_nr_pages_over_high += batch;
2865 			set_notify_resume(current);
2866 			break;
2867 		}
2868 	} while ((memcg = parent_mem_cgroup(memcg)));
2869 
2870 	return 0;
2871 }
2872 
2873 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2874 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2875 {
2876 	if (mem_cgroup_is_root(memcg))
2877 		return;
2878 
2879 	page_counter_uncharge(&memcg->memory, nr_pages);
2880 	if (do_memsw_account())
2881 		page_counter_uncharge(&memcg->memsw, nr_pages);
2882 }
2883 #endif
2884 
2885 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2886 {
2887 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2888 	/*
2889 	 * Any of the following ensures page->mem_cgroup stability:
2890 	 *
2891 	 * - the page lock
2892 	 * - LRU isolation
2893 	 * - lock_page_memcg()
2894 	 * - exclusive reference
2895 	 */
2896 	page->mem_cgroup = memcg;
2897 }
2898 
2899 #ifdef CONFIG_MEMCG_KMEM
2900 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2901 				 gfp_t gfp)
2902 {
2903 	unsigned int objects = objs_per_slab_page(s, page);
2904 	void *vec;
2905 
2906 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2907 			   page_to_nid(page));
2908 	if (!vec)
2909 		return -ENOMEM;
2910 
2911 	if (cmpxchg(&page->obj_cgroups, NULL,
2912 		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2913 		kfree(vec);
2914 	else
2915 		kmemleak_not_leak(vec);
2916 
2917 	return 0;
2918 }
2919 
2920 /*
2921  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2922  *
2923  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2924  * cgroup_mutex, etc.
2925  */
2926 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2927 {
2928 	struct page *page;
2929 
2930 	if (mem_cgroup_disabled())
2931 		return NULL;
2932 
2933 	page = virt_to_head_page(p);
2934 
2935 	/*
2936 	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2937 	 * or a pointer to obj_cgroup vector. In the latter case the lowest
2938 	 * bit of the pointer is set.
2939 	 * The page->mem_cgroup pointer can be asynchronously changed
2940 	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2941 	 * from a valid memcg pointer to objcg vector or back.
2942 	 */
2943 	if (!page->mem_cgroup)
2944 		return NULL;
2945 
2946 	/*
2947 	 * Slab objects are accounted individually, not per-page.
2948 	 * Memcg membership data for each individual object is saved in
2949 	 * the page->obj_cgroups.
2950 	 */
2951 	if (page_has_obj_cgroups(page)) {
2952 		struct obj_cgroup *objcg;
2953 		unsigned int off;
2954 
2955 		off = obj_to_index(page->slab_cache, page, p);
2956 		objcg = page_obj_cgroups(page)[off];
2957 		if (objcg)
2958 			return obj_cgroup_memcg(objcg);
2959 
2960 		return NULL;
2961 	}
2962 
2963 	/* All other pages use page->mem_cgroup */
2964 	return page->mem_cgroup;
2965 }
2966 
2967 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2968 {
2969 	struct obj_cgroup *objcg = NULL;
2970 	struct mem_cgroup *memcg;
2971 
2972 	if (memcg_kmem_bypass())
2973 		return NULL;
2974 
2975 	rcu_read_lock();
2976 	if (unlikely(active_memcg()))
2977 		memcg = active_memcg();
2978 	else
2979 		memcg = mem_cgroup_from_task(current);
2980 
2981 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2982 		objcg = rcu_dereference(memcg->objcg);
2983 		if (objcg && obj_cgroup_tryget(objcg))
2984 			break;
2985 	}
2986 	rcu_read_unlock();
2987 
2988 	return objcg;
2989 }
2990 
2991 static int memcg_alloc_cache_id(void)
2992 {
2993 	int id, size;
2994 	int err;
2995 
2996 	id = ida_simple_get(&memcg_cache_ida,
2997 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2998 	if (id < 0)
2999 		return id;
3000 
3001 	if (id < memcg_nr_cache_ids)
3002 		return id;
3003 
3004 	/*
3005 	 * There's no space for the new id in memcg_caches arrays,
3006 	 * so we have to grow them.
3007 	 */
3008 	down_write(&memcg_cache_ids_sem);
3009 
3010 	size = 2 * (id + 1);
3011 	if (size < MEMCG_CACHES_MIN_SIZE)
3012 		size = MEMCG_CACHES_MIN_SIZE;
3013 	else if (size > MEMCG_CACHES_MAX_SIZE)
3014 		size = MEMCG_CACHES_MAX_SIZE;
3015 
3016 	err = memcg_update_all_list_lrus(size);
3017 	if (!err)
3018 		memcg_nr_cache_ids = size;
3019 
3020 	up_write(&memcg_cache_ids_sem);
3021 
3022 	if (err) {
3023 		ida_simple_remove(&memcg_cache_ida, id);
3024 		return err;
3025 	}
3026 	return id;
3027 }
3028 
3029 static void memcg_free_cache_id(int id)
3030 {
3031 	ida_simple_remove(&memcg_cache_ida, id);
3032 }
3033 
3034 /**
3035  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3036  * @memcg: memory cgroup to charge
3037  * @gfp: reclaim mode
3038  * @nr_pages: number of pages to charge
3039  *
3040  * Returns 0 on success, an error code on failure.
3041  */
3042 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3043 			unsigned int nr_pages)
3044 {
3045 	struct page_counter *counter;
3046 	int ret;
3047 
3048 	ret = try_charge(memcg, gfp, nr_pages);
3049 	if (ret)
3050 		return ret;
3051 
3052 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3053 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3054 
3055 		/*
3056 		 * Enforce __GFP_NOFAIL allocation because callers are not
3057 		 * prepared to see failures and likely do not have any failure
3058 		 * handling code.
3059 		 */
3060 		if (gfp & __GFP_NOFAIL) {
3061 			page_counter_charge(&memcg->kmem, nr_pages);
3062 			return 0;
3063 		}
3064 		cancel_charge(memcg, nr_pages);
3065 		return -ENOMEM;
3066 	}
3067 	return 0;
3068 }
3069 
3070 /**
3071  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3072  * @memcg: memcg to uncharge
3073  * @nr_pages: number of pages to uncharge
3074  */
3075 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3076 {
3077 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3078 		page_counter_uncharge(&memcg->kmem, nr_pages);
3079 
3080 	page_counter_uncharge(&memcg->memory, nr_pages);
3081 	if (do_memsw_account())
3082 		page_counter_uncharge(&memcg->memsw, nr_pages);
3083 }
3084 
3085 /**
3086  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3087  * @page: page to charge
3088  * @gfp: reclaim mode
3089  * @order: allocation order
3090  *
3091  * Returns 0 on success, an error code on failure.
3092  */
3093 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3094 {
3095 	struct mem_cgroup *memcg;
3096 	int ret = 0;
3097 
3098 	memcg = get_mem_cgroup_from_current();
3099 	if (memcg && !mem_cgroup_is_root(memcg)) {
3100 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3101 		if (!ret) {
3102 			page->mem_cgroup = memcg;
3103 			__SetPageKmemcg(page);
3104 			return 0;
3105 		}
3106 		css_put(&memcg->css);
3107 	}
3108 	return ret;
3109 }
3110 
3111 /**
3112  * __memcg_kmem_uncharge_page: uncharge a kmem page
3113  * @page: page to uncharge
3114  * @order: allocation order
3115  */
3116 void __memcg_kmem_uncharge_page(struct page *page, int order)
3117 {
3118 	struct mem_cgroup *memcg = page->mem_cgroup;
3119 	unsigned int nr_pages = 1 << order;
3120 
3121 	if (!memcg)
3122 		return;
3123 
3124 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3125 	__memcg_kmem_uncharge(memcg, nr_pages);
3126 	page->mem_cgroup = NULL;
3127 	css_put(&memcg->css);
3128 
3129 	/* slab pages do not have PageKmemcg flag set */
3130 	if (PageKmemcg(page))
3131 		__ClearPageKmemcg(page);
3132 }
3133 
3134 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3135 {
3136 	struct memcg_stock_pcp *stock;
3137 	unsigned long flags;
3138 	bool ret = false;
3139 
3140 	local_irq_save(flags);
3141 
3142 	stock = this_cpu_ptr(&memcg_stock);
3143 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3144 		stock->nr_bytes -= nr_bytes;
3145 		ret = true;
3146 	}
3147 
3148 	local_irq_restore(flags);
3149 
3150 	return ret;
3151 }
3152 
3153 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3154 {
3155 	struct obj_cgroup *old = stock->cached_objcg;
3156 
3157 	if (!old)
3158 		return;
3159 
3160 	if (stock->nr_bytes) {
3161 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3162 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3163 
3164 		if (nr_pages) {
3165 			rcu_read_lock();
3166 			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3167 			rcu_read_unlock();
3168 		}
3169 
3170 		/*
3171 		 * The leftover is flushed to the centralized per-memcg value.
3172 		 * On the next attempt to refill obj stock it will be moved
3173 		 * to a per-cpu stock (probably, on an other CPU), see
3174 		 * refill_obj_stock().
3175 		 *
3176 		 * How often it's flushed is a trade-off between the memory
3177 		 * limit enforcement accuracy and potential CPU contention,
3178 		 * so it might be changed in the future.
3179 		 */
3180 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3181 		stock->nr_bytes = 0;
3182 	}
3183 
3184 	obj_cgroup_put(old);
3185 	stock->cached_objcg = NULL;
3186 }
3187 
3188 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3189 				     struct mem_cgroup *root_memcg)
3190 {
3191 	struct mem_cgroup *memcg;
3192 
3193 	if (stock->cached_objcg) {
3194 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3195 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3196 			return true;
3197 	}
3198 
3199 	return false;
3200 }
3201 
3202 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3203 {
3204 	struct memcg_stock_pcp *stock;
3205 	unsigned long flags;
3206 
3207 	local_irq_save(flags);
3208 
3209 	stock = this_cpu_ptr(&memcg_stock);
3210 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3211 		drain_obj_stock(stock);
3212 		obj_cgroup_get(objcg);
3213 		stock->cached_objcg = objcg;
3214 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3215 	}
3216 	stock->nr_bytes += nr_bytes;
3217 
3218 	if (stock->nr_bytes > PAGE_SIZE)
3219 		drain_obj_stock(stock);
3220 
3221 	local_irq_restore(flags);
3222 }
3223 
3224 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3225 {
3226 	struct mem_cgroup *memcg;
3227 	unsigned int nr_pages, nr_bytes;
3228 	int ret;
3229 
3230 	if (consume_obj_stock(objcg, size))
3231 		return 0;
3232 
3233 	/*
3234 	 * In theory, memcg->nr_charged_bytes can have enough
3235 	 * pre-charged bytes to satisfy the allocation. However,
3236 	 * flushing memcg->nr_charged_bytes requires two atomic
3237 	 * operations, and memcg->nr_charged_bytes can't be big,
3238 	 * so it's better to ignore it and try grab some new pages.
3239 	 * memcg->nr_charged_bytes will be flushed in
3240 	 * refill_obj_stock(), called from this function or
3241 	 * independently later.
3242 	 */
3243 	rcu_read_lock();
3244 	memcg = obj_cgroup_memcg(objcg);
3245 	css_get(&memcg->css);
3246 	rcu_read_unlock();
3247 
3248 	nr_pages = size >> PAGE_SHIFT;
3249 	nr_bytes = size & (PAGE_SIZE - 1);
3250 
3251 	if (nr_bytes)
3252 		nr_pages += 1;
3253 
3254 	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3255 	if (!ret && nr_bytes)
3256 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3257 
3258 	css_put(&memcg->css);
3259 	return ret;
3260 }
3261 
3262 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3263 {
3264 	refill_obj_stock(objcg, size);
3265 }
3266 
3267 #endif /* CONFIG_MEMCG_KMEM */
3268 
3269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3270 
3271 /*
3272  * Because tail pages are not marked as "used", set it. We're under
3273  * pgdat->lru_lock and migration entries setup in all page mappings.
3274  */
3275 void mem_cgroup_split_huge_fixup(struct page *head)
3276 {
3277 	struct mem_cgroup *memcg = head->mem_cgroup;
3278 	int i;
3279 
3280 	if (mem_cgroup_disabled())
3281 		return;
3282 
3283 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3284 		css_get(&memcg->css);
3285 		head[i].mem_cgroup = memcg;
3286 	}
3287 }
3288 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3289 
3290 #ifdef CONFIG_MEMCG_SWAP
3291 /**
3292  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3293  * @entry: swap entry to be moved
3294  * @from:  mem_cgroup which the entry is moved from
3295  * @to:  mem_cgroup which the entry is moved to
3296  *
3297  * It succeeds only when the swap_cgroup's record for this entry is the same
3298  * as the mem_cgroup's id of @from.
3299  *
3300  * Returns 0 on success, -EINVAL on failure.
3301  *
3302  * The caller must have charged to @to, IOW, called page_counter_charge() about
3303  * both res and memsw, and called css_get().
3304  */
3305 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3306 				struct mem_cgroup *from, struct mem_cgroup *to)
3307 {
3308 	unsigned short old_id, new_id;
3309 
3310 	old_id = mem_cgroup_id(from);
3311 	new_id = mem_cgroup_id(to);
3312 
3313 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3314 		mod_memcg_state(from, MEMCG_SWAP, -1);
3315 		mod_memcg_state(to, MEMCG_SWAP, 1);
3316 		return 0;
3317 	}
3318 	return -EINVAL;
3319 }
3320 #else
3321 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3322 				struct mem_cgroup *from, struct mem_cgroup *to)
3323 {
3324 	return -EINVAL;
3325 }
3326 #endif
3327 
3328 static DEFINE_MUTEX(memcg_max_mutex);
3329 
3330 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3331 				 unsigned long max, bool memsw)
3332 {
3333 	bool enlarge = false;
3334 	bool drained = false;
3335 	int ret;
3336 	bool limits_invariant;
3337 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3338 
3339 	do {
3340 		if (signal_pending(current)) {
3341 			ret = -EINTR;
3342 			break;
3343 		}
3344 
3345 		mutex_lock(&memcg_max_mutex);
3346 		/*
3347 		 * Make sure that the new limit (memsw or memory limit) doesn't
3348 		 * break our basic invariant rule memory.max <= memsw.max.
3349 		 */
3350 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3351 					   max <= memcg->memsw.max;
3352 		if (!limits_invariant) {
3353 			mutex_unlock(&memcg_max_mutex);
3354 			ret = -EINVAL;
3355 			break;
3356 		}
3357 		if (max > counter->max)
3358 			enlarge = true;
3359 		ret = page_counter_set_max(counter, max);
3360 		mutex_unlock(&memcg_max_mutex);
3361 
3362 		if (!ret)
3363 			break;
3364 
3365 		if (!drained) {
3366 			drain_all_stock(memcg);
3367 			drained = true;
3368 			continue;
3369 		}
3370 
3371 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3372 					GFP_KERNEL, !memsw)) {
3373 			ret = -EBUSY;
3374 			break;
3375 		}
3376 	} while (true);
3377 
3378 	if (!ret && enlarge)
3379 		memcg_oom_recover(memcg);
3380 
3381 	return ret;
3382 }
3383 
3384 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3385 					    gfp_t gfp_mask,
3386 					    unsigned long *total_scanned)
3387 {
3388 	unsigned long nr_reclaimed = 0;
3389 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3390 	unsigned long reclaimed;
3391 	int loop = 0;
3392 	struct mem_cgroup_tree_per_node *mctz;
3393 	unsigned long excess;
3394 	unsigned long nr_scanned;
3395 
3396 	if (order > 0)
3397 		return 0;
3398 
3399 	mctz = soft_limit_tree_node(pgdat->node_id);
3400 
3401 	/*
3402 	 * Do not even bother to check the largest node if the root
3403 	 * is empty. Do it lockless to prevent lock bouncing. Races
3404 	 * are acceptable as soft limit is best effort anyway.
3405 	 */
3406 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3407 		return 0;
3408 
3409 	/*
3410 	 * This loop can run a while, specially if mem_cgroup's continuously
3411 	 * keep exceeding their soft limit and putting the system under
3412 	 * pressure
3413 	 */
3414 	do {
3415 		if (next_mz)
3416 			mz = next_mz;
3417 		else
3418 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3419 		if (!mz)
3420 			break;
3421 
3422 		nr_scanned = 0;
3423 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3424 						    gfp_mask, &nr_scanned);
3425 		nr_reclaimed += reclaimed;
3426 		*total_scanned += nr_scanned;
3427 		spin_lock_irq(&mctz->lock);
3428 		__mem_cgroup_remove_exceeded(mz, mctz);
3429 
3430 		/*
3431 		 * If we failed to reclaim anything from this memory cgroup
3432 		 * it is time to move on to the next cgroup
3433 		 */
3434 		next_mz = NULL;
3435 		if (!reclaimed)
3436 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3437 
3438 		excess = soft_limit_excess(mz->memcg);
3439 		/*
3440 		 * One school of thought says that we should not add
3441 		 * back the node to the tree if reclaim returns 0.
3442 		 * But our reclaim could return 0, simply because due
3443 		 * to priority we are exposing a smaller subset of
3444 		 * memory to reclaim from. Consider this as a longer
3445 		 * term TODO.
3446 		 */
3447 		/* If excess == 0, no tree ops */
3448 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3449 		spin_unlock_irq(&mctz->lock);
3450 		css_put(&mz->memcg->css);
3451 		loop++;
3452 		/*
3453 		 * Could not reclaim anything and there are no more
3454 		 * mem cgroups to try or we seem to be looping without
3455 		 * reclaiming anything.
3456 		 */
3457 		if (!nr_reclaimed &&
3458 			(next_mz == NULL ||
3459 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3460 			break;
3461 	} while (!nr_reclaimed);
3462 	if (next_mz)
3463 		css_put(&next_mz->memcg->css);
3464 	return nr_reclaimed;
3465 }
3466 
3467 /*
3468  * Test whether @memcg has children, dead or alive.  Note that this
3469  * function doesn't care whether @memcg has use_hierarchy enabled and
3470  * returns %true if there are child csses according to the cgroup
3471  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3472  */
3473 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3474 {
3475 	bool ret;
3476 
3477 	rcu_read_lock();
3478 	ret = css_next_child(NULL, &memcg->css);
3479 	rcu_read_unlock();
3480 	return ret;
3481 }
3482 
3483 /*
3484  * Reclaims as many pages from the given memcg as possible.
3485  *
3486  * Caller is responsible for holding css reference for memcg.
3487  */
3488 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3489 {
3490 	int nr_retries = MAX_RECLAIM_RETRIES;
3491 
3492 	/* we call try-to-free pages for make this cgroup empty */
3493 	lru_add_drain_all();
3494 
3495 	drain_all_stock(memcg);
3496 
3497 	/* try to free all pages in this cgroup */
3498 	while (nr_retries && page_counter_read(&memcg->memory)) {
3499 		int progress;
3500 
3501 		if (signal_pending(current))
3502 			return -EINTR;
3503 
3504 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3505 							GFP_KERNEL, true);
3506 		if (!progress) {
3507 			nr_retries--;
3508 			/* maybe some writeback is necessary */
3509 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3510 		}
3511 
3512 	}
3513 
3514 	return 0;
3515 }
3516 
3517 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3518 					    char *buf, size_t nbytes,
3519 					    loff_t off)
3520 {
3521 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3522 
3523 	if (mem_cgroup_is_root(memcg))
3524 		return -EINVAL;
3525 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3526 }
3527 
3528 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3529 				     struct cftype *cft)
3530 {
3531 	return mem_cgroup_from_css(css)->use_hierarchy;
3532 }
3533 
3534 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3535 				      struct cftype *cft, u64 val)
3536 {
3537 	int retval = 0;
3538 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3539 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3540 
3541 	if (memcg->use_hierarchy == val)
3542 		return 0;
3543 
3544 	/*
3545 	 * If parent's use_hierarchy is set, we can't make any modifications
3546 	 * in the child subtrees. If it is unset, then the change can
3547 	 * occur, provided the current cgroup has no children.
3548 	 *
3549 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3550 	 * set if there are no children.
3551 	 */
3552 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3553 				(val == 1 || val == 0)) {
3554 		if (!memcg_has_children(memcg))
3555 			memcg->use_hierarchy = val;
3556 		else
3557 			retval = -EBUSY;
3558 	} else
3559 		retval = -EINVAL;
3560 
3561 	return retval;
3562 }
3563 
3564 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3565 {
3566 	unsigned long val;
3567 
3568 	if (mem_cgroup_is_root(memcg)) {
3569 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3570 			memcg_page_state(memcg, NR_ANON_MAPPED);
3571 		if (swap)
3572 			val += memcg_page_state(memcg, MEMCG_SWAP);
3573 	} else {
3574 		if (!swap)
3575 			val = page_counter_read(&memcg->memory);
3576 		else
3577 			val = page_counter_read(&memcg->memsw);
3578 	}
3579 	return val;
3580 }
3581 
3582 enum {
3583 	RES_USAGE,
3584 	RES_LIMIT,
3585 	RES_MAX_USAGE,
3586 	RES_FAILCNT,
3587 	RES_SOFT_LIMIT,
3588 };
3589 
3590 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3591 			       struct cftype *cft)
3592 {
3593 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3594 	struct page_counter *counter;
3595 
3596 	switch (MEMFILE_TYPE(cft->private)) {
3597 	case _MEM:
3598 		counter = &memcg->memory;
3599 		break;
3600 	case _MEMSWAP:
3601 		counter = &memcg->memsw;
3602 		break;
3603 	case _KMEM:
3604 		counter = &memcg->kmem;
3605 		break;
3606 	case _TCP:
3607 		counter = &memcg->tcpmem;
3608 		break;
3609 	default:
3610 		BUG();
3611 	}
3612 
3613 	switch (MEMFILE_ATTR(cft->private)) {
3614 	case RES_USAGE:
3615 		if (counter == &memcg->memory)
3616 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3617 		if (counter == &memcg->memsw)
3618 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3619 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3620 	case RES_LIMIT:
3621 		return (u64)counter->max * PAGE_SIZE;
3622 	case RES_MAX_USAGE:
3623 		return (u64)counter->watermark * PAGE_SIZE;
3624 	case RES_FAILCNT:
3625 		return counter->failcnt;
3626 	case RES_SOFT_LIMIT:
3627 		return (u64)memcg->soft_limit * PAGE_SIZE;
3628 	default:
3629 		BUG();
3630 	}
3631 }
3632 
3633 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3634 {
3635 	unsigned long stat[MEMCG_NR_STAT] = {0};
3636 	struct mem_cgroup *mi;
3637 	int node, cpu, i;
3638 
3639 	for_each_online_cpu(cpu)
3640 		for (i = 0; i < MEMCG_NR_STAT; i++)
3641 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3642 
3643 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3644 		for (i = 0; i < MEMCG_NR_STAT; i++)
3645 			atomic_long_add(stat[i], &mi->vmstats[i]);
3646 
3647 	for_each_node(node) {
3648 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3649 		struct mem_cgroup_per_node *pi;
3650 
3651 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3652 			stat[i] = 0;
3653 
3654 		for_each_online_cpu(cpu)
3655 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3656 				stat[i] += per_cpu(
3657 					pn->lruvec_stat_cpu->count[i], cpu);
3658 
3659 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3660 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3661 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3662 	}
3663 }
3664 
3665 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3666 {
3667 	unsigned long events[NR_VM_EVENT_ITEMS];
3668 	struct mem_cgroup *mi;
3669 	int cpu, i;
3670 
3671 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3672 		events[i] = 0;
3673 
3674 	for_each_online_cpu(cpu)
3675 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3676 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3677 					     cpu);
3678 
3679 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3680 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3681 			atomic_long_add(events[i], &mi->vmevents[i]);
3682 }
3683 
3684 #ifdef CONFIG_MEMCG_KMEM
3685 static int memcg_online_kmem(struct mem_cgroup *memcg)
3686 {
3687 	struct obj_cgroup *objcg;
3688 	int memcg_id;
3689 
3690 	if (cgroup_memory_nokmem)
3691 		return 0;
3692 
3693 	BUG_ON(memcg->kmemcg_id >= 0);
3694 	BUG_ON(memcg->kmem_state);
3695 
3696 	memcg_id = memcg_alloc_cache_id();
3697 	if (memcg_id < 0)
3698 		return memcg_id;
3699 
3700 	objcg = obj_cgroup_alloc();
3701 	if (!objcg) {
3702 		memcg_free_cache_id(memcg_id);
3703 		return -ENOMEM;
3704 	}
3705 	objcg->memcg = memcg;
3706 	rcu_assign_pointer(memcg->objcg, objcg);
3707 
3708 	static_branch_enable(&memcg_kmem_enabled_key);
3709 
3710 	/*
3711 	 * A memory cgroup is considered kmem-online as soon as it gets
3712 	 * kmemcg_id. Setting the id after enabling static branching will
3713 	 * guarantee no one starts accounting before all call sites are
3714 	 * patched.
3715 	 */
3716 	memcg->kmemcg_id = memcg_id;
3717 	memcg->kmem_state = KMEM_ONLINE;
3718 
3719 	return 0;
3720 }
3721 
3722 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3723 {
3724 	struct cgroup_subsys_state *css;
3725 	struct mem_cgroup *parent, *child;
3726 	int kmemcg_id;
3727 
3728 	if (memcg->kmem_state != KMEM_ONLINE)
3729 		return;
3730 
3731 	memcg->kmem_state = KMEM_ALLOCATED;
3732 
3733 	parent = parent_mem_cgroup(memcg);
3734 	if (!parent)
3735 		parent = root_mem_cgroup;
3736 
3737 	memcg_reparent_objcgs(memcg, parent);
3738 
3739 	kmemcg_id = memcg->kmemcg_id;
3740 	BUG_ON(kmemcg_id < 0);
3741 
3742 	/*
3743 	 * Change kmemcg_id of this cgroup and all its descendants to the
3744 	 * parent's id, and then move all entries from this cgroup's list_lrus
3745 	 * to ones of the parent. After we have finished, all list_lrus
3746 	 * corresponding to this cgroup are guaranteed to remain empty. The
3747 	 * ordering is imposed by list_lru_node->lock taken by
3748 	 * memcg_drain_all_list_lrus().
3749 	 */
3750 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3751 	css_for_each_descendant_pre(css, &memcg->css) {
3752 		child = mem_cgroup_from_css(css);
3753 		BUG_ON(child->kmemcg_id != kmemcg_id);
3754 		child->kmemcg_id = parent->kmemcg_id;
3755 		if (!memcg->use_hierarchy)
3756 			break;
3757 	}
3758 	rcu_read_unlock();
3759 
3760 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3761 
3762 	memcg_free_cache_id(kmemcg_id);
3763 }
3764 
3765 static void memcg_free_kmem(struct mem_cgroup *memcg)
3766 {
3767 	/* css_alloc() failed, offlining didn't happen */
3768 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3769 		memcg_offline_kmem(memcg);
3770 }
3771 #else
3772 static int memcg_online_kmem(struct mem_cgroup *memcg)
3773 {
3774 	return 0;
3775 }
3776 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3777 {
3778 }
3779 static void memcg_free_kmem(struct mem_cgroup *memcg)
3780 {
3781 }
3782 #endif /* CONFIG_MEMCG_KMEM */
3783 
3784 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3785 				 unsigned long max)
3786 {
3787 	int ret;
3788 
3789 	mutex_lock(&memcg_max_mutex);
3790 	ret = page_counter_set_max(&memcg->kmem, max);
3791 	mutex_unlock(&memcg_max_mutex);
3792 	return ret;
3793 }
3794 
3795 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3796 {
3797 	int ret;
3798 
3799 	mutex_lock(&memcg_max_mutex);
3800 
3801 	ret = page_counter_set_max(&memcg->tcpmem, max);
3802 	if (ret)
3803 		goto out;
3804 
3805 	if (!memcg->tcpmem_active) {
3806 		/*
3807 		 * The active flag needs to be written after the static_key
3808 		 * update. This is what guarantees that the socket activation
3809 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3810 		 * for details, and note that we don't mark any socket as
3811 		 * belonging to this memcg until that flag is up.
3812 		 *
3813 		 * We need to do this, because static_keys will span multiple
3814 		 * sites, but we can't control their order. If we mark a socket
3815 		 * as accounted, but the accounting functions are not patched in
3816 		 * yet, we'll lose accounting.
3817 		 *
3818 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3819 		 * because when this value change, the code to process it is not
3820 		 * patched in yet.
3821 		 */
3822 		static_branch_inc(&memcg_sockets_enabled_key);
3823 		memcg->tcpmem_active = true;
3824 	}
3825 out:
3826 	mutex_unlock(&memcg_max_mutex);
3827 	return ret;
3828 }
3829 
3830 /*
3831  * The user of this function is...
3832  * RES_LIMIT.
3833  */
3834 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3835 				char *buf, size_t nbytes, loff_t off)
3836 {
3837 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838 	unsigned long nr_pages;
3839 	int ret;
3840 
3841 	buf = strstrip(buf);
3842 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3843 	if (ret)
3844 		return ret;
3845 
3846 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3847 	case RES_LIMIT:
3848 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3849 			ret = -EINVAL;
3850 			break;
3851 		}
3852 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3853 		case _MEM:
3854 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3855 			break;
3856 		case _MEMSWAP:
3857 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3858 			break;
3859 		case _KMEM:
3860 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3861 				     "Please report your usecase to linux-mm@kvack.org if you "
3862 				     "depend on this functionality.\n");
3863 			ret = memcg_update_kmem_max(memcg, nr_pages);
3864 			break;
3865 		case _TCP:
3866 			ret = memcg_update_tcp_max(memcg, nr_pages);
3867 			break;
3868 		}
3869 		break;
3870 	case RES_SOFT_LIMIT:
3871 		memcg->soft_limit = nr_pages;
3872 		ret = 0;
3873 		break;
3874 	}
3875 	return ret ?: nbytes;
3876 }
3877 
3878 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3879 				size_t nbytes, loff_t off)
3880 {
3881 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3882 	struct page_counter *counter;
3883 
3884 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3885 	case _MEM:
3886 		counter = &memcg->memory;
3887 		break;
3888 	case _MEMSWAP:
3889 		counter = &memcg->memsw;
3890 		break;
3891 	case _KMEM:
3892 		counter = &memcg->kmem;
3893 		break;
3894 	case _TCP:
3895 		counter = &memcg->tcpmem;
3896 		break;
3897 	default:
3898 		BUG();
3899 	}
3900 
3901 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3902 	case RES_MAX_USAGE:
3903 		page_counter_reset_watermark(counter);
3904 		break;
3905 	case RES_FAILCNT:
3906 		counter->failcnt = 0;
3907 		break;
3908 	default:
3909 		BUG();
3910 	}
3911 
3912 	return nbytes;
3913 }
3914 
3915 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3916 					struct cftype *cft)
3917 {
3918 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3919 }
3920 
3921 #ifdef CONFIG_MMU
3922 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3923 					struct cftype *cft, u64 val)
3924 {
3925 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3926 
3927 	if (val & ~MOVE_MASK)
3928 		return -EINVAL;
3929 
3930 	/*
3931 	 * No kind of locking is needed in here, because ->can_attach() will
3932 	 * check this value once in the beginning of the process, and then carry
3933 	 * on with stale data. This means that changes to this value will only
3934 	 * affect task migrations starting after the change.
3935 	 */
3936 	memcg->move_charge_at_immigrate = val;
3937 	return 0;
3938 }
3939 #else
3940 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3941 					struct cftype *cft, u64 val)
3942 {
3943 	return -ENOSYS;
3944 }
3945 #endif
3946 
3947 #ifdef CONFIG_NUMA
3948 
3949 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3950 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3951 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3952 
3953 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3954 				int nid, unsigned int lru_mask, bool tree)
3955 {
3956 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3957 	unsigned long nr = 0;
3958 	enum lru_list lru;
3959 
3960 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3961 
3962 	for_each_lru(lru) {
3963 		if (!(BIT(lru) & lru_mask))
3964 			continue;
3965 		if (tree)
3966 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3967 		else
3968 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3969 	}
3970 	return nr;
3971 }
3972 
3973 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3974 					     unsigned int lru_mask,
3975 					     bool tree)
3976 {
3977 	unsigned long nr = 0;
3978 	enum lru_list lru;
3979 
3980 	for_each_lru(lru) {
3981 		if (!(BIT(lru) & lru_mask))
3982 			continue;
3983 		if (tree)
3984 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3985 		else
3986 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3987 	}
3988 	return nr;
3989 }
3990 
3991 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3992 {
3993 	struct numa_stat {
3994 		const char *name;
3995 		unsigned int lru_mask;
3996 	};
3997 
3998 	static const struct numa_stat stats[] = {
3999 		{ "total", LRU_ALL },
4000 		{ "file", LRU_ALL_FILE },
4001 		{ "anon", LRU_ALL_ANON },
4002 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4003 	};
4004 	const struct numa_stat *stat;
4005 	int nid;
4006 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4007 
4008 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4009 		seq_printf(m, "%s=%lu", stat->name,
4010 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4011 						   false));
4012 		for_each_node_state(nid, N_MEMORY)
4013 			seq_printf(m, " N%d=%lu", nid,
4014 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4015 							stat->lru_mask, false));
4016 		seq_putc(m, '\n');
4017 	}
4018 
4019 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4020 
4021 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4022 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4023 						   true));
4024 		for_each_node_state(nid, N_MEMORY)
4025 			seq_printf(m, " N%d=%lu", nid,
4026 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4027 							stat->lru_mask, true));
4028 		seq_putc(m, '\n');
4029 	}
4030 
4031 	return 0;
4032 }
4033 #endif /* CONFIG_NUMA */
4034 
4035 static const unsigned int memcg1_stats[] = {
4036 	NR_FILE_PAGES,
4037 	NR_ANON_MAPPED,
4038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4039 	NR_ANON_THPS,
4040 #endif
4041 	NR_SHMEM,
4042 	NR_FILE_MAPPED,
4043 	NR_FILE_DIRTY,
4044 	NR_WRITEBACK,
4045 	MEMCG_SWAP,
4046 };
4047 
4048 static const char *const memcg1_stat_names[] = {
4049 	"cache",
4050 	"rss",
4051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4052 	"rss_huge",
4053 #endif
4054 	"shmem",
4055 	"mapped_file",
4056 	"dirty",
4057 	"writeback",
4058 	"swap",
4059 };
4060 
4061 /* Universal VM events cgroup1 shows, original sort order */
4062 static const unsigned int memcg1_events[] = {
4063 	PGPGIN,
4064 	PGPGOUT,
4065 	PGFAULT,
4066 	PGMAJFAULT,
4067 };
4068 
4069 static int memcg_stat_show(struct seq_file *m, void *v)
4070 {
4071 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4072 	unsigned long memory, memsw;
4073 	struct mem_cgroup *mi;
4074 	unsigned int i;
4075 
4076 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4077 
4078 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4079 		unsigned long nr;
4080 
4081 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4082 			continue;
4083 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4085 		if (memcg1_stats[i] == NR_ANON_THPS)
4086 			nr *= HPAGE_PMD_NR;
4087 #endif
4088 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4089 	}
4090 
4091 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4092 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4093 			   memcg_events_local(memcg, memcg1_events[i]));
4094 
4095 	for (i = 0; i < NR_LRU_LISTS; i++)
4096 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4097 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4098 			   PAGE_SIZE);
4099 
4100 	/* Hierarchical information */
4101 	memory = memsw = PAGE_COUNTER_MAX;
4102 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4103 		memory = min(memory, READ_ONCE(mi->memory.max));
4104 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4105 	}
4106 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4107 		   (u64)memory * PAGE_SIZE);
4108 	if (do_memsw_account())
4109 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4110 			   (u64)memsw * PAGE_SIZE);
4111 
4112 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4113 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4114 			continue;
4115 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4116 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4117 			   PAGE_SIZE);
4118 	}
4119 
4120 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4121 		seq_printf(m, "total_%s %llu\n",
4122 			   vm_event_name(memcg1_events[i]),
4123 			   (u64)memcg_events(memcg, memcg1_events[i]));
4124 
4125 	for (i = 0; i < NR_LRU_LISTS; i++)
4126 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4127 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4128 			   PAGE_SIZE);
4129 
4130 #ifdef CONFIG_DEBUG_VM
4131 	{
4132 		pg_data_t *pgdat;
4133 		struct mem_cgroup_per_node *mz;
4134 		unsigned long anon_cost = 0;
4135 		unsigned long file_cost = 0;
4136 
4137 		for_each_online_pgdat(pgdat) {
4138 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4139 
4140 			anon_cost += mz->lruvec.anon_cost;
4141 			file_cost += mz->lruvec.file_cost;
4142 		}
4143 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4144 		seq_printf(m, "file_cost %lu\n", file_cost);
4145 	}
4146 #endif
4147 
4148 	return 0;
4149 }
4150 
4151 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4152 				      struct cftype *cft)
4153 {
4154 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4155 
4156 	return mem_cgroup_swappiness(memcg);
4157 }
4158 
4159 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4160 				       struct cftype *cft, u64 val)
4161 {
4162 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4163 
4164 	if (val > 100)
4165 		return -EINVAL;
4166 
4167 	if (css->parent)
4168 		memcg->swappiness = val;
4169 	else
4170 		vm_swappiness = val;
4171 
4172 	return 0;
4173 }
4174 
4175 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4176 {
4177 	struct mem_cgroup_threshold_ary *t;
4178 	unsigned long usage;
4179 	int i;
4180 
4181 	rcu_read_lock();
4182 	if (!swap)
4183 		t = rcu_dereference(memcg->thresholds.primary);
4184 	else
4185 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4186 
4187 	if (!t)
4188 		goto unlock;
4189 
4190 	usage = mem_cgroup_usage(memcg, swap);
4191 
4192 	/*
4193 	 * current_threshold points to threshold just below or equal to usage.
4194 	 * If it's not true, a threshold was crossed after last
4195 	 * call of __mem_cgroup_threshold().
4196 	 */
4197 	i = t->current_threshold;
4198 
4199 	/*
4200 	 * Iterate backward over array of thresholds starting from
4201 	 * current_threshold and check if a threshold is crossed.
4202 	 * If none of thresholds below usage is crossed, we read
4203 	 * only one element of the array here.
4204 	 */
4205 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4206 		eventfd_signal(t->entries[i].eventfd, 1);
4207 
4208 	/* i = current_threshold + 1 */
4209 	i++;
4210 
4211 	/*
4212 	 * Iterate forward over array of thresholds starting from
4213 	 * current_threshold+1 and check if a threshold is crossed.
4214 	 * If none of thresholds above usage is crossed, we read
4215 	 * only one element of the array here.
4216 	 */
4217 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4218 		eventfd_signal(t->entries[i].eventfd, 1);
4219 
4220 	/* Update current_threshold */
4221 	t->current_threshold = i - 1;
4222 unlock:
4223 	rcu_read_unlock();
4224 }
4225 
4226 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4227 {
4228 	while (memcg) {
4229 		__mem_cgroup_threshold(memcg, false);
4230 		if (do_memsw_account())
4231 			__mem_cgroup_threshold(memcg, true);
4232 
4233 		memcg = parent_mem_cgroup(memcg);
4234 	}
4235 }
4236 
4237 static int compare_thresholds(const void *a, const void *b)
4238 {
4239 	const struct mem_cgroup_threshold *_a = a;
4240 	const struct mem_cgroup_threshold *_b = b;
4241 
4242 	if (_a->threshold > _b->threshold)
4243 		return 1;
4244 
4245 	if (_a->threshold < _b->threshold)
4246 		return -1;
4247 
4248 	return 0;
4249 }
4250 
4251 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4252 {
4253 	struct mem_cgroup_eventfd_list *ev;
4254 
4255 	spin_lock(&memcg_oom_lock);
4256 
4257 	list_for_each_entry(ev, &memcg->oom_notify, list)
4258 		eventfd_signal(ev->eventfd, 1);
4259 
4260 	spin_unlock(&memcg_oom_lock);
4261 	return 0;
4262 }
4263 
4264 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4265 {
4266 	struct mem_cgroup *iter;
4267 
4268 	for_each_mem_cgroup_tree(iter, memcg)
4269 		mem_cgroup_oom_notify_cb(iter);
4270 }
4271 
4272 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4273 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4274 {
4275 	struct mem_cgroup_thresholds *thresholds;
4276 	struct mem_cgroup_threshold_ary *new;
4277 	unsigned long threshold;
4278 	unsigned long usage;
4279 	int i, size, ret;
4280 
4281 	ret = page_counter_memparse(args, "-1", &threshold);
4282 	if (ret)
4283 		return ret;
4284 
4285 	mutex_lock(&memcg->thresholds_lock);
4286 
4287 	if (type == _MEM) {
4288 		thresholds = &memcg->thresholds;
4289 		usage = mem_cgroup_usage(memcg, false);
4290 	} else if (type == _MEMSWAP) {
4291 		thresholds = &memcg->memsw_thresholds;
4292 		usage = mem_cgroup_usage(memcg, true);
4293 	} else
4294 		BUG();
4295 
4296 	/* Check if a threshold crossed before adding a new one */
4297 	if (thresholds->primary)
4298 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4299 
4300 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4301 
4302 	/* Allocate memory for new array of thresholds */
4303 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4304 	if (!new) {
4305 		ret = -ENOMEM;
4306 		goto unlock;
4307 	}
4308 	new->size = size;
4309 
4310 	/* Copy thresholds (if any) to new array */
4311 	if (thresholds->primary)
4312 		memcpy(new->entries, thresholds->primary->entries,
4313 		       flex_array_size(new, entries, size - 1));
4314 
4315 	/* Add new threshold */
4316 	new->entries[size - 1].eventfd = eventfd;
4317 	new->entries[size - 1].threshold = threshold;
4318 
4319 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4320 	sort(new->entries, size, sizeof(*new->entries),
4321 			compare_thresholds, NULL);
4322 
4323 	/* Find current threshold */
4324 	new->current_threshold = -1;
4325 	for (i = 0; i < size; i++) {
4326 		if (new->entries[i].threshold <= usage) {
4327 			/*
4328 			 * new->current_threshold will not be used until
4329 			 * rcu_assign_pointer(), so it's safe to increment
4330 			 * it here.
4331 			 */
4332 			++new->current_threshold;
4333 		} else
4334 			break;
4335 	}
4336 
4337 	/* Free old spare buffer and save old primary buffer as spare */
4338 	kfree(thresholds->spare);
4339 	thresholds->spare = thresholds->primary;
4340 
4341 	rcu_assign_pointer(thresholds->primary, new);
4342 
4343 	/* To be sure that nobody uses thresholds */
4344 	synchronize_rcu();
4345 
4346 unlock:
4347 	mutex_unlock(&memcg->thresholds_lock);
4348 
4349 	return ret;
4350 }
4351 
4352 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4353 	struct eventfd_ctx *eventfd, const char *args)
4354 {
4355 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4356 }
4357 
4358 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4359 	struct eventfd_ctx *eventfd, const char *args)
4360 {
4361 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4362 }
4363 
4364 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4365 	struct eventfd_ctx *eventfd, enum res_type type)
4366 {
4367 	struct mem_cgroup_thresholds *thresholds;
4368 	struct mem_cgroup_threshold_ary *new;
4369 	unsigned long usage;
4370 	int i, j, size, entries;
4371 
4372 	mutex_lock(&memcg->thresholds_lock);
4373 
4374 	if (type == _MEM) {
4375 		thresholds = &memcg->thresholds;
4376 		usage = mem_cgroup_usage(memcg, false);
4377 	} else if (type == _MEMSWAP) {
4378 		thresholds = &memcg->memsw_thresholds;
4379 		usage = mem_cgroup_usage(memcg, true);
4380 	} else
4381 		BUG();
4382 
4383 	if (!thresholds->primary)
4384 		goto unlock;
4385 
4386 	/* Check if a threshold crossed before removing */
4387 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4388 
4389 	/* Calculate new number of threshold */
4390 	size = entries = 0;
4391 	for (i = 0; i < thresholds->primary->size; i++) {
4392 		if (thresholds->primary->entries[i].eventfd != eventfd)
4393 			size++;
4394 		else
4395 			entries++;
4396 	}
4397 
4398 	new = thresholds->spare;
4399 
4400 	/* If no items related to eventfd have been cleared, nothing to do */
4401 	if (!entries)
4402 		goto unlock;
4403 
4404 	/* Set thresholds array to NULL if we don't have thresholds */
4405 	if (!size) {
4406 		kfree(new);
4407 		new = NULL;
4408 		goto swap_buffers;
4409 	}
4410 
4411 	new->size = size;
4412 
4413 	/* Copy thresholds and find current threshold */
4414 	new->current_threshold = -1;
4415 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4416 		if (thresholds->primary->entries[i].eventfd == eventfd)
4417 			continue;
4418 
4419 		new->entries[j] = thresholds->primary->entries[i];
4420 		if (new->entries[j].threshold <= usage) {
4421 			/*
4422 			 * new->current_threshold will not be used
4423 			 * until rcu_assign_pointer(), so it's safe to increment
4424 			 * it here.
4425 			 */
4426 			++new->current_threshold;
4427 		}
4428 		j++;
4429 	}
4430 
4431 swap_buffers:
4432 	/* Swap primary and spare array */
4433 	thresholds->spare = thresholds->primary;
4434 
4435 	rcu_assign_pointer(thresholds->primary, new);
4436 
4437 	/* To be sure that nobody uses thresholds */
4438 	synchronize_rcu();
4439 
4440 	/* If all events are unregistered, free the spare array */
4441 	if (!new) {
4442 		kfree(thresholds->spare);
4443 		thresholds->spare = NULL;
4444 	}
4445 unlock:
4446 	mutex_unlock(&memcg->thresholds_lock);
4447 }
4448 
4449 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4450 	struct eventfd_ctx *eventfd)
4451 {
4452 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4453 }
4454 
4455 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4456 	struct eventfd_ctx *eventfd)
4457 {
4458 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4459 }
4460 
4461 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4462 	struct eventfd_ctx *eventfd, const char *args)
4463 {
4464 	struct mem_cgroup_eventfd_list *event;
4465 
4466 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4467 	if (!event)
4468 		return -ENOMEM;
4469 
4470 	spin_lock(&memcg_oom_lock);
4471 
4472 	event->eventfd = eventfd;
4473 	list_add(&event->list, &memcg->oom_notify);
4474 
4475 	/* already in OOM ? */
4476 	if (memcg->under_oom)
4477 		eventfd_signal(eventfd, 1);
4478 	spin_unlock(&memcg_oom_lock);
4479 
4480 	return 0;
4481 }
4482 
4483 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4484 	struct eventfd_ctx *eventfd)
4485 {
4486 	struct mem_cgroup_eventfd_list *ev, *tmp;
4487 
4488 	spin_lock(&memcg_oom_lock);
4489 
4490 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4491 		if (ev->eventfd == eventfd) {
4492 			list_del(&ev->list);
4493 			kfree(ev);
4494 		}
4495 	}
4496 
4497 	spin_unlock(&memcg_oom_lock);
4498 }
4499 
4500 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4501 {
4502 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4503 
4504 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4505 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4506 	seq_printf(sf, "oom_kill %lu\n",
4507 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4508 	return 0;
4509 }
4510 
4511 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4512 	struct cftype *cft, u64 val)
4513 {
4514 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4515 
4516 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4517 	if (!css->parent || !((val == 0) || (val == 1)))
4518 		return -EINVAL;
4519 
4520 	memcg->oom_kill_disable = val;
4521 	if (!val)
4522 		memcg_oom_recover(memcg);
4523 
4524 	return 0;
4525 }
4526 
4527 #ifdef CONFIG_CGROUP_WRITEBACK
4528 
4529 #include <trace/events/writeback.h>
4530 
4531 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4532 {
4533 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4534 }
4535 
4536 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4537 {
4538 	wb_domain_exit(&memcg->cgwb_domain);
4539 }
4540 
4541 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4542 {
4543 	wb_domain_size_changed(&memcg->cgwb_domain);
4544 }
4545 
4546 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4547 {
4548 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4549 
4550 	if (!memcg->css.parent)
4551 		return NULL;
4552 
4553 	return &memcg->cgwb_domain;
4554 }
4555 
4556 /*
4557  * idx can be of type enum memcg_stat_item or node_stat_item.
4558  * Keep in sync with memcg_exact_page().
4559  */
4560 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4561 {
4562 	long x = atomic_long_read(&memcg->vmstats[idx]);
4563 	int cpu;
4564 
4565 	for_each_online_cpu(cpu)
4566 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4567 	if (x < 0)
4568 		x = 0;
4569 	return x;
4570 }
4571 
4572 /**
4573  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4574  * @wb: bdi_writeback in question
4575  * @pfilepages: out parameter for number of file pages
4576  * @pheadroom: out parameter for number of allocatable pages according to memcg
4577  * @pdirty: out parameter for number of dirty pages
4578  * @pwriteback: out parameter for number of pages under writeback
4579  *
4580  * Determine the numbers of file, headroom, dirty, and writeback pages in
4581  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4582  * is a bit more involved.
4583  *
4584  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4585  * headroom is calculated as the lowest headroom of itself and the
4586  * ancestors.  Note that this doesn't consider the actual amount of
4587  * available memory in the system.  The caller should further cap
4588  * *@pheadroom accordingly.
4589  */
4590 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4591 			 unsigned long *pheadroom, unsigned long *pdirty,
4592 			 unsigned long *pwriteback)
4593 {
4594 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4595 	struct mem_cgroup *parent;
4596 
4597 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4598 
4599 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4600 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4601 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4602 	*pheadroom = PAGE_COUNTER_MAX;
4603 
4604 	while ((parent = parent_mem_cgroup(memcg))) {
4605 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4606 					    READ_ONCE(memcg->memory.high));
4607 		unsigned long used = page_counter_read(&memcg->memory);
4608 
4609 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4610 		memcg = parent;
4611 	}
4612 }
4613 
4614 /*
4615  * Foreign dirty flushing
4616  *
4617  * There's an inherent mismatch between memcg and writeback.  The former
4618  * trackes ownership per-page while the latter per-inode.  This was a
4619  * deliberate design decision because honoring per-page ownership in the
4620  * writeback path is complicated, may lead to higher CPU and IO overheads
4621  * and deemed unnecessary given that write-sharing an inode across
4622  * different cgroups isn't a common use-case.
4623  *
4624  * Combined with inode majority-writer ownership switching, this works well
4625  * enough in most cases but there are some pathological cases.  For
4626  * example, let's say there are two cgroups A and B which keep writing to
4627  * different but confined parts of the same inode.  B owns the inode and
4628  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4629  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4630  * triggering background writeback.  A will be slowed down without a way to
4631  * make writeback of the dirty pages happen.
4632  *
4633  * Conditions like the above can lead to a cgroup getting repatedly and
4634  * severely throttled after making some progress after each
4635  * dirty_expire_interval while the underyling IO device is almost
4636  * completely idle.
4637  *
4638  * Solving this problem completely requires matching the ownership tracking
4639  * granularities between memcg and writeback in either direction.  However,
4640  * the more egregious behaviors can be avoided by simply remembering the
4641  * most recent foreign dirtying events and initiating remote flushes on
4642  * them when local writeback isn't enough to keep the memory clean enough.
4643  *
4644  * The following two functions implement such mechanism.  When a foreign
4645  * page - a page whose memcg and writeback ownerships don't match - is
4646  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4647  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4648  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4649  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4650  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4651  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4652  * limited to MEMCG_CGWB_FRN_CNT.
4653  *
4654  * The mechanism only remembers IDs and doesn't hold any object references.
4655  * As being wrong occasionally doesn't matter, updates and accesses to the
4656  * records are lockless and racy.
4657  */
4658 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4659 					     struct bdi_writeback *wb)
4660 {
4661 	struct mem_cgroup *memcg = page->mem_cgroup;
4662 	struct memcg_cgwb_frn *frn;
4663 	u64 now = get_jiffies_64();
4664 	u64 oldest_at = now;
4665 	int oldest = -1;
4666 	int i;
4667 
4668 	trace_track_foreign_dirty(page, wb);
4669 
4670 	/*
4671 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4672 	 * using it.  If not replace the oldest one which isn't being
4673 	 * written out.
4674 	 */
4675 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4676 		frn = &memcg->cgwb_frn[i];
4677 		if (frn->bdi_id == wb->bdi->id &&
4678 		    frn->memcg_id == wb->memcg_css->id)
4679 			break;
4680 		if (time_before64(frn->at, oldest_at) &&
4681 		    atomic_read(&frn->done.cnt) == 1) {
4682 			oldest = i;
4683 			oldest_at = frn->at;
4684 		}
4685 	}
4686 
4687 	if (i < MEMCG_CGWB_FRN_CNT) {
4688 		/*
4689 		 * Re-using an existing one.  Update timestamp lazily to
4690 		 * avoid making the cacheline hot.  We want them to be
4691 		 * reasonably up-to-date and significantly shorter than
4692 		 * dirty_expire_interval as that's what expires the record.
4693 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4694 		 */
4695 		unsigned long update_intv =
4696 			min_t(unsigned long, HZ,
4697 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4698 
4699 		if (time_before64(frn->at, now - update_intv))
4700 			frn->at = now;
4701 	} else if (oldest >= 0) {
4702 		/* replace the oldest free one */
4703 		frn = &memcg->cgwb_frn[oldest];
4704 		frn->bdi_id = wb->bdi->id;
4705 		frn->memcg_id = wb->memcg_css->id;
4706 		frn->at = now;
4707 	}
4708 }
4709 
4710 /* issue foreign writeback flushes for recorded foreign dirtying events */
4711 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4712 {
4713 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4714 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4715 	u64 now = jiffies_64;
4716 	int i;
4717 
4718 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4719 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4720 
4721 		/*
4722 		 * If the record is older than dirty_expire_interval,
4723 		 * writeback on it has already started.  No need to kick it
4724 		 * off again.  Also, don't start a new one if there's
4725 		 * already one in flight.
4726 		 */
4727 		if (time_after64(frn->at, now - intv) &&
4728 		    atomic_read(&frn->done.cnt) == 1) {
4729 			frn->at = 0;
4730 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4731 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4732 					       WB_REASON_FOREIGN_FLUSH,
4733 					       &frn->done);
4734 		}
4735 	}
4736 }
4737 
4738 #else	/* CONFIG_CGROUP_WRITEBACK */
4739 
4740 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4741 {
4742 	return 0;
4743 }
4744 
4745 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4746 {
4747 }
4748 
4749 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4750 {
4751 }
4752 
4753 #endif	/* CONFIG_CGROUP_WRITEBACK */
4754 
4755 /*
4756  * DO NOT USE IN NEW FILES.
4757  *
4758  * "cgroup.event_control" implementation.
4759  *
4760  * This is way over-engineered.  It tries to support fully configurable
4761  * events for each user.  Such level of flexibility is completely
4762  * unnecessary especially in the light of the planned unified hierarchy.
4763  *
4764  * Please deprecate this and replace with something simpler if at all
4765  * possible.
4766  */
4767 
4768 /*
4769  * Unregister event and free resources.
4770  *
4771  * Gets called from workqueue.
4772  */
4773 static void memcg_event_remove(struct work_struct *work)
4774 {
4775 	struct mem_cgroup_event *event =
4776 		container_of(work, struct mem_cgroup_event, remove);
4777 	struct mem_cgroup *memcg = event->memcg;
4778 
4779 	remove_wait_queue(event->wqh, &event->wait);
4780 
4781 	event->unregister_event(memcg, event->eventfd);
4782 
4783 	/* Notify userspace the event is going away. */
4784 	eventfd_signal(event->eventfd, 1);
4785 
4786 	eventfd_ctx_put(event->eventfd);
4787 	kfree(event);
4788 	css_put(&memcg->css);
4789 }
4790 
4791 /*
4792  * Gets called on EPOLLHUP on eventfd when user closes it.
4793  *
4794  * Called with wqh->lock held and interrupts disabled.
4795  */
4796 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4797 			    int sync, void *key)
4798 {
4799 	struct mem_cgroup_event *event =
4800 		container_of(wait, struct mem_cgroup_event, wait);
4801 	struct mem_cgroup *memcg = event->memcg;
4802 	__poll_t flags = key_to_poll(key);
4803 
4804 	if (flags & EPOLLHUP) {
4805 		/*
4806 		 * If the event has been detached at cgroup removal, we
4807 		 * can simply return knowing the other side will cleanup
4808 		 * for us.
4809 		 *
4810 		 * We can't race against event freeing since the other
4811 		 * side will require wqh->lock via remove_wait_queue(),
4812 		 * which we hold.
4813 		 */
4814 		spin_lock(&memcg->event_list_lock);
4815 		if (!list_empty(&event->list)) {
4816 			list_del_init(&event->list);
4817 			/*
4818 			 * We are in atomic context, but cgroup_event_remove()
4819 			 * may sleep, so we have to call it in workqueue.
4820 			 */
4821 			schedule_work(&event->remove);
4822 		}
4823 		spin_unlock(&memcg->event_list_lock);
4824 	}
4825 
4826 	return 0;
4827 }
4828 
4829 static void memcg_event_ptable_queue_proc(struct file *file,
4830 		wait_queue_head_t *wqh, poll_table *pt)
4831 {
4832 	struct mem_cgroup_event *event =
4833 		container_of(pt, struct mem_cgroup_event, pt);
4834 
4835 	event->wqh = wqh;
4836 	add_wait_queue(wqh, &event->wait);
4837 }
4838 
4839 /*
4840  * DO NOT USE IN NEW FILES.
4841  *
4842  * Parse input and register new cgroup event handler.
4843  *
4844  * Input must be in format '<event_fd> <control_fd> <args>'.
4845  * Interpretation of args is defined by control file implementation.
4846  */
4847 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4848 					 char *buf, size_t nbytes, loff_t off)
4849 {
4850 	struct cgroup_subsys_state *css = of_css(of);
4851 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4852 	struct mem_cgroup_event *event;
4853 	struct cgroup_subsys_state *cfile_css;
4854 	unsigned int efd, cfd;
4855 	struct fd efile;
4856 	struct fd cfile;
4857 	const char *name;
4858 	char *endp;
4859 	int ret;
4860 
4861 	buf = strstrip(buf);
4862 
4863 	efd = simple_strtoul(buf, &endp, 10);
4864 	if (*endp != ' ')
4865 		return -EINVAL;
4866 	buf = endp + 1;
4867 
4868 	cfd = simple_strtoul(buf, &endp, 10);
4869 	if ((*endp != ' ') && (*endp != '\0'))
4870 		return -EINVAL;
4871 	buf = endp + 1;
4872 
4873 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4874 	if (!event)
4875 		return -ENOMEM;
4876 
4877 	event->memcg = memcg;
4878 	INIT_LIST_HEAD(&event->list);
4879 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4880 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4881 	INIT_WORK(&event->remove, memcg_event_remove);
4882 
4883 	efile = fdget(efd);
4884 	if (!efile.file) {
4885 		ret = -EBADF;
4886 		goto out_kfree;
4887 	}
4888 
4889 	event->eventfd = eventfd_ctx_fileget(efile.file);
4890 	if (IS_ERR(event->eventfd)) {
4891 		ret = PTR_ERR(event->eventfd);
4892 		goto out_put_efile;
4893 	}
4894 
4895 	cfile = fdget(cfd);
4896 	if (!cfile.file) {
4897 		ret = -EBADF;
4898 		goto out_put_eventfd;
4899 	}
4900 
4901 	/* the process need read permission on control file */
4902 	/* AV: shouldn't we check that it's been opened for read instead? */
4903 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4904 	if (ret < 0)
4905 		goto out_put_cfile;
4906 
4907 	/*
4908 	 * Determine the event callbacks and set them in @event.  This used
4909 	 * to be done via struct cftype but cgroup core no longer knows
4910 	 * about these events.  The following is crude but the whole thing
4911 	 * is for compatibility anyway.
4912 	 *
4913 	 * DO NOT ADD NEW FILES.
4914 	 */
4915 	name = cfile.file->f_path.dentry->d_name.name;
4916 
4917 	if (!strcmp(name, "memory.usage_in_bytes")) {
4918 		event->register_event = mem_cgroup_usage_register_event;
4919 		event->unregister_event = mem_cgroup_usage_unregister_event;
4920 	} else if (!strcmp(name, "memory.oom_control")) {
4921 		event->register_event = mem_cgroup_oom_register_event;
4922 		event->unregister_event = mem_cgroup_oom_unregister_event;
4923 	} else if (!strcmp(name, "memory.pressure_level")) {
4924 		event->register_event = vmpressure_register_event;
4925 		event->unregister_event = vmpressure_unregister_event;
4926 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4927 		event->register_event = memsw_cgroup_usage_register_event;
4928 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4929 	} else {
4930 		ret = -EINVAL;
4931 		goto out_put_cfile;
4932 	}
4933 
4934 	/*
4935 	 * Verify @cfile should belong to @css.  Also, remaining events are
4936 	 * automatically removed on cgroup destruction but the removal is
4937 	 * asynchronous, so take an extra ref on @css.
4938 	 */
4939 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4940 					       &memory_cgrp_subsys);
4941 	ret = -EINVAL;
4942 	if (IS_ERR(cfile_css))
4943 		goto out_put_cfile;
4944 	if (cfile_css != css) {
4945 		css_put(cfile_css);
4946 		goto out_put_cfile;
4947 	}
4948 
4949 	ret = event->register_event(memcg, event->eventfd, buf);
4950 	if (ret)
4951 		goto out_put_css;
4952 
4953 	vfs_poll(efile.file, &event->pt);
4954 
4955 	spin_lock(&memcg->event_list_lock);
4956 	list_add(&event->list, &memcg->event_list);
4957 	spin_unlock(&memcg->event_list_lock);
4958 
4959 	fdput(cfile);
4960 	fdput(efile);
4961 
4962 	return nbytes;
4963 
4964 out_put_css:
4965 	css_put(css);
4966 out_put_cfile:
4967 	fdput(cfile);
4968 out_put_eventfd:
4969 	eventfd_ctx_put(event->eventfd);
4970 out_put_efile:
4971 	fdput(efile);
4972 out_kfree:
4973 	kfree(event);
4974 
4975 	return ret;
4976 }
4977 
4978 static struct cftype mem_cgroup_legacy_files[] = {
4979 	{
4980 		.name = "usage_in_bytes",
4981 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4982 		.read_u64 = mem_cgroup_read_u64,
4983 	},
4984 	{
4985 		.name = "max_usage_in_bytes",
4986 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4987 		.write = mem_cgroup_reset,
4988 		.read_u64 = mem_cgroup_read_u64,
4989 	},
4990 	{
4991 		.name = "limit_in_bytes",
4992 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4993 		.write = mem_cgroup_write,
4994 		.read_u64 = mem_cgroup_read_u64,
4995 	},
4996 	{
4997 		.name = "soft_limit_in_bytes",
4998 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4999 		.write = mem_cgroup_write,
5000 		.read_u64 = mem_cgroup_read_u64,
5001 	},
5002 	{
5003 		.name = "failcnt",
5004 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5005 		.write = mem_cgroup_reset,
5006 		.read_u64 = mem_cgroup_read_u64,
5007 	},
5008 	{
5009 		.name = "stat",
5010 		.seq_show = memcg_stat_show,
5011 	},
5012 	{
5013 		.name = "force_empty",
5014 		.write = mem_cgroup_force_empty_write,
5015 	},
5016 	{
5017 		.name = "use_hierarchy",
5018 		.write_u64 = mem_cgroup_hierarchy_write,
5019 		.read_u64 = mem_cgroup_hierarchy_read,
5020 	},
5021 	{
5022 		.name = "cgroup.event_control",		/* XXX: for compat */
5023 		.write = memcg_write_event_control,
5024 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5025 	},
5026 	{
5027 		.name = "swappiness",
5028 		.read_u64 = mem_cgroup_swappiness_read,
5029 		.write_u64 = mem_cgroup_swappiness_write,
5030 	},
5031 	{
5032 		.name = "move_charge_at_immigrate",
5033 		.read_u64 = mem_cgroup_move_charge_read,
5034 		.write_u64 = mem_cgroup_move_charge_write,
5035 	},
5036 	{
5037 		.name = "oom_control",
5038 		.seq_show = mem_cgroup_oom_control_read,
5039 		.write_u64 = mem_cgroup_oom_control_write,
5040 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5041 	},
5042 	{
5043 		.name = "pressure_level",
5044 	},
5045 #ifdef CONFIG_NUMA
5046 	{
5047 		.name = "numa_stat",
5048 		.seq_show = memcg_numa_stat_show,
5049 	},
5050 #endif
5051 	{
5052 		.name = "kmem.limit_in_bytes",
5053 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5054 		.write = mem_cgroup_write,
5055 		.read_u64 = mem_cgroup_read_u64,
5056 	},
5057 	{
5058 		.name = "kmem.usage_in_bytes",
5059 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5060 		.read_u64 = mem_cgroup_read_u64,
5061 	},
5062 	{
5063 		.name = "kmem.failcnt",
5064 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5065 		.write = mem_cgroup_reset,
5066 		.read_u64 = mem_cgroup_read_u64,
5067 	},
5068 	{
5069 		.name = "kmem.max_usage_in_bytes",
5070 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5071 		.write = mem_cgroup_reset,
5072 		.read_u64 = mem_cgroup_read_u64,
5073 	},
5074 #if defined(CONFIG_MEMCG_KMEM) && \
5075 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5076 	{
5077 		.name = "kmem.slabinfo",
5078 		.seq_show = memcg_slab_show,
5079 	},
5080 #endif
5081 	{
5082 		.name = "kmem.tcp.limit_in_bytes",
5083 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5084 		.write = mem_cgroup_write,
5085 		.read_u64 = mem_cgroup_read_u64,
5086 	},
5087 	{
5088 		.name = "kmem.tcp.usage_in_bytes",
5089 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5090 		.read_u64 = mem_cgroup_read_u64,
5091 	},
5092 	{
5093 		.name = "kmem.tcp.failcnt",
5094 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5095 		.write = mem_cgroup_reset,
5096 		.read_u64 = mem_cgroup_read_u64,
5097 	},
5098 	{
5099 		.name = "kmem.tcp.max_usage_in_bytes",
5100 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5101 		.write = mem_cgroup_reset,
5102 		.read_u64 = mem_cgroup_read_u64,
5103 	},
5104 	{ },	/* terminate */
5105 };
5106 
5107 /*
5108  * Private memory cgroup IDR
5109  *
5110  * Swap-out records and page cache shadow entries need to store memcg
5111  * references in constrained space, so we maintain an ID space that is
5112  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5113  * memory-controlled cgroups to 64k.
5114  *
5115  * However, there usually are many references to the offline CSS after
5116  * the cgroup has been destroyed, such as page cache or reclaimable
5117  * slab objects, that don't need to hang on to the ID. We want to keep
5118  * those dead CSS from occupying IDs, or we might quickly exhaust the
5119  * relatively small ID space and prevent the creation of new cgroups
5120  * even when there are much fewer than 64k cgroups - possibly none.
5121  *
5122  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5123  * be freed and recycled when it's no longer needed, which is usually
5124  * when the CSS is offlined.
5125  *
5126  * The only exception to that are records of swapped out tmpfs/shmem
5127  * pages that need to be attributed to live ancestors on swapin. But
5128  * those references are manageable from userspace.
5129  */
5130 
5131 static DEFINE_IDR(mem_cgroup_idr);
5132 
5133 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5134 {
5135 	if (memcg->id.id > 0) {
5136 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5137 		memcg->id.id = 0;
5138 	}
5139 }
5140 
5141 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5142 						  unsigned int n)
5143 {
5144 	refcount_add(n, &memcg->id.ref);
5145 }
5146 
5147 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5148 {
5149 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5150 		mem_cgroup_id_remove(memcg);
5151 
5152 		/* Memcg ID pins CSS */
5153 		css_put(&memcg->css);
5154 	}
5155 }
5156 
5157 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5158 {
5159 	mem_cgroup_id_put_many(memcg, 1);
5160 }
5161 
5162 /**
5163  * mem_cgroup_from_id - look up a memcg from a memcg id
5164  * @id: the memcg id to look up
5165  *
5166  * Caller must hold rcu_read_lock().
5167  */
5168 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5169 {
5170 	WARN_ON_ONCE(!rcu_read_lock_held());
5171 	return idr_find(&mem_cgroup_idr, id);
5172 }
5173 
5174 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5175 {
5176 	struct mem_cgroup_per_node *pn;
5177 	int tmp = node;
5178 	/*
5179 	 * This routine is called against possible nodes.
5180 	 * But it's BUG to call kmalloc() against offline node.
5181 	 *
5182 	 * TODO: this routine can waste much memory for nodes which will
5183 	 *       never be onlined. It's better to use memory hotplug callback
5184 	 *       function.
5185 	 */
5186 	if (!node_state(node, N_NORMAL_MEMORY))
5187 		tmp = -1;
5188 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5189 	if (!pn)
5190 		return 1;
5191 
5192 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5193 						 GFP_KERNEL_ACCOUNT);
5194 	if (!pn->lruvec_stat_local) {
5195 		kfree(pn);
5196 		return 1;
5197 	}
5198 
5199 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5200 					       GFP_KERNEL_ACCOUNT);
5201 	if (!pn->lruvec_stat_cpu) {
5202 		free_percpu(pn->lruvec_stat_local);
5203 		kfree(pn);
5204 		return 1;
5205 	}
5206 
5207 	lruvec_init(&pn->lruvec);
5208 	pn->usage_in_excess = 0;
5209 	pn->on_tree = false;
5210 	pn->memcg = memcg;
5211 
5212 	memcg->nodeinfo[node] = pn;
5213 	return 0;
5214 }
5215 
5216 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5217 {
5218 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5219 
5220 	if (!pn)
5221 		return;
5222 
5223 	free_percpu(pn->lruvec_stat_cpu);
5224 	free_percpu(pn->lruvec_stat_local);
5225 	kfree(pn);
5226 }
5227 
5228 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5229 {
5230 	int node;
5231 
5232 	for_each_node(node)
5233 		free_mem_cgroup_per_node_info(memcg, node);
5234 	free_percpu(memcg->vmstats_percpu);
5235 	free_percpu(memcg->vmstats_local);
5236 	kfree(memcg);
5237 }
5238 
5239 static void mem_cgroup_free(struct mem_cgroup *memcg)
5240 {
5241 	memcg_wb_domain_exit(memcg);
5242 	/*
5243 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5244 	 * on parent's and all ancestor levels.
5245 	 */
5246 	memcg_flush_percpu_vmstats(memcg);
5247 	memcg_flush_percpu_vmevents(memcg);
5248 	__mem_cgroup_free(memcg);
5249 }
5250 
5251 static struct mem_cgroup *mem_cgroup_alloc(void)
5252 {
5253 	struct mem_cgroup *memcg;
5254 	unsigned int size;
5255 	int node;
5256 	int __maybe_unused i;
5257 	long error = -ENOMEM;
5258 
5259 	size = sizeof(struct mem_cgroup);
5260 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5261 
5262 	memcg = kzalloc(size, GFP_KERNEL);
5263 	if (!memcg)
5264 		return ERR_PTR(error);
5265 
5266 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5267 				 1, MEM_CGROUP_ID_MAX,
5268 				 GFP_KERNEL);
5269 	if (memcg->id.id < 0) {
5270 		error = memcg->id.id;
5271 		goto fail;
5272 	}
5273 
5274 	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5275 						GFP_KERNEL_ACCOUNT);
5276 	if (!memcg->vmstats_local)
5277 		goto fail;
5278 
5279 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5280 						 GFP_KERNEL_ACCOUNT);
5281 	if (!memcg->vmstats_percpu)
5282 		goto fail;
5283 
5284 	for_each_node(node)
5285 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5286 			goto fail;
5287 
5288 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5289 		goto fail;
5290 
5291 	INIT_WORK(&memcg->high_work, high_work_func);
5292 	INIT_LIST_HEAD(&memcg->oom_notify);
5293 	mutex_init(&memcg->thresholds_lock);
5294 	spin_lock_init(&memcg->move_lock);
5295 	vmpressure_init(&memcg->vmpressure);
5296 	INIT_LIST_HEAD(&memcg->event_list);
5297 	spin_lock_init(&memcg->event_list_lock);
5298 	memcg->socket_pressure = jiffies;
5299 #ifdef CONFIG_MEMCG_KMEM
5300 	memcg->kmemcg_id = -1;
5301 	INIT_LIST_HEAD(&memcg->objcg_list);
5302 #endif
5303 #ifdef CONFIG_CGROUP_WRITEBACK
5304 	INIT_LIST_HEAD(&memcg->cgwb_list);
5305 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5306 		memcg->cgwb_frn[i].done =
5307 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5308 #endif
5309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5310 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5311 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5312 	memcg->deferred_split_queue.split_queue_len = 0;
5313 #endif
5314 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5315 	return memcg;
5316 fail:
5317 	mem_cgroup_id_remove(memcg);
5318 	__mem_cgroup_free(memcg);
5319 	return ERR_PTR(error);
5320 }
5321 
5322 static struct cgroup_subsys_state * __ref
5323 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5324 {
5325 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5326 	struct mem_cgroup *memcg, *old_memcg;
5327 	long error = -ENOMEM;
5328 
5329 	old_memcg = set_active_memcg(parent);
5330 	memcg = mem_cgroup_alloc();
5331 	set_active_memcg(old_memcg);
5332 	if (IS_ERR(memcg))
5333 		return ERR_CAST(memcg);
5334 
5335 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5336 	memcg->soft_limit = PAGE_COUNTER_MAX;
5337 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5338 	if (parent) {
5339 		memcg->swappiness = mem_cgroup_swappiness(parent);
5340 		memcg->oom_kill_disable = parent->oom_kill_disable;
5341 	}
5342 	if (parent && parent->use_hierarchy) {
5343 		memcg->use_hierarchy = true;
5344 		page_counter_init(&memcg->memory, &parent->memory);
5345 		page_counter_init(&memcg->swap, &parent->swap);
5346 		page_counter_init(&memcg->kmem, &parent->kmem);
5347 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5348 	} else {
5349 		page_counter_init(&memcg->memory, NULL);
5350 		page_counter_init(&memcg->swap, NULL);
5351 		page_counter_init(&memcg->kmem, NULL);
5352 		page_counter_init(&memcg->tcpmem, NULL);
5353 		/*
5354 		 * Deeper hierachy with use_hierarchy == false doesn't make
5355 		 * much sense so let cgroup subsystem know about this
5356 		 * unfortunate state in our controller.
5357 		 */
5358 		if (parent != root_mem_cgroup)
5359 			memory_cgrp_subsys.broken_hierarchy = true;
5360 	}
5361 
5362 	/* The following stuff does not apply to the root */
5363 	if (!parent) {
5364 		root_mem_cgroup = memcg;
5365 		return &memcg->css;
5366 	}
5367 
5368 	error = memcg_online_kmem(memcg);
5369 	if (error)
5370 		goto fail;
5371 
5372 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373 		static_branch_inc(&memcg_sockets_enabled_key);
5374 
5375 	return &memcg->css;
5376 fail:
5377 	mem_cgroup_id_remove(memcg);
5378 	mem_cgroup_free(memcg);
5379 	return ERR_PTR(error);
5380 }
5381 
5382 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5383 {
5384 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5385 
5386 	/*
5387 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5388 	 * by the time the maps are allocated. So, we allocate maps
5389 	 * here, when for_each_mem_cgroup() can't skip it.
5390 	 */
5391 	if (memcg_alloc_shrinker_maps(memcg)) {
5392 		mem_cgroup_id_remove(memcg);
5393 		return -ENOMEM;
5394 	}
5395 
5396 	/* Online state pins memcg ID, memcg ID pins CSS */
5397 	refcount_set(&memcg->id.ref, 1);
5398 	css_get(css);
5399 	return 0;
5400 }
5401 
5402 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5403 {
5404 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5405 	struct mem_cgroup_event *event, *tmp;
5406 
5407 	/*
5408 	 * Unregister events and notify userspace.
5409 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5410 	 * directory to avoid race between userspace and kernelspace.
5411 	 */
5412 	spin_lock(&memcg->event_list_lock);
5413 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5414 		list_del_init(&event->list);
5415 		schedule_work(&event->remove);
5416 	}
5417 	spin_unlock(&memcg->event_list_lock);
5418 
5419 	page_counter_set_min(&memcg->memory, 0);
5420 	page_counter_set_low(&memcg->memory, 0);
5421 
5422 	memcg_offline_kmem(memcg);
5423 	wb_memcg_offline(memcg);
5424 
5425 	drain_all_stock(memcg);
5426 
5427 	mem_cgroup_id_put(memcg);
5428 }
5429 
5430 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5431 {
5432 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5433 
5434 	invalidate_reclaim_iterators(memcg);
5435 }
5436 
5437 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5438 {
5439 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5440 	int __maybe_unused i;
5441 
5442 #ifdef CONFIG_CGROUP_WRITEBACK
5443 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5444 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5445 #endif
5446 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5447 		static_branch_dec(&memcg_sockets_enabled_key);
5448 
5449 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5450 		static_branch_dec(&memcg_sockets_enabled_key);
5451 
5452 	vmpressure_cleanup(&memcg->vmpressure);
5453 	cancel_work_sync(&memcg->high_work);
5454 	mem_cgroup_remove_from_trees(memcg);
5455 	memcg_free_shrinker_maps(memcg);
5456 	memcg_free_kmem(memcg);
5457 	mem_cgroup_free(memcg);
5458 }
5459 
5460 /**
5461  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5462  * @css: the target css
5463  *
5464  * Reset the states of the mem_cgroup associated with @css.  This is
5465  * invoked when the userland requests disabling on the default hierarchy
5466  * but the memcg is pinned through dependency.  The memcg should stop
5467  * applying policies and should revert to the vanilla state as it may be
5468  * made visible again.
5469  *
5470  * The current implementation only resets the essential configurations.
5471  * This needs to be expanded to cover all the visible parts.
5472  */
5473 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5474 {
5475 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5476 
5477 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5478 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5479 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5480 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5481 	page_counter_set_min(&memcg->memory, 0);
5482 	page_counter_set_low(&memcg->memory, 0);
5483 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5484 	memcg->soft_limit = PAGE_COUNTER_MAX;
5485 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5486 	memcg_wb_domain_size_changed(memcg);
5487 }
5488 
5489 #ifdef CONFIG_MMU
5490 /* Handlers for move charge at task migration. */
5491 static int mem_cgroup_do_precharge(unsigned long count)
5492 {
5493 	int ret;
5494 
5495 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5496 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5497 	if (!ret) {
5498 		mc.precharge += count;
5499 		return ret;
5500 	}
5501 
5502 	/* Try charges one by one with reclaim, but do not retry */
5503 	while (count--) {
5504 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5505 		if (ret)
5506 			return ret;
5507 		mc.precharge++;
5508 		cond_resched();
5509 	}
5510 	return 0;
5511 }
5512 
5513 union mc_target {
5514 	struct page	*page;
5515 	swp_entry_t	ent;
5516 };
5517 
5518 enum mc_target_type {
5519 	MC_TARGET_NONE = 0,
5520 	MC_TARGET_PAGE,
5521 	MC_TARGET_SWAP,
5522 	MC_TARGET_DEVICE,
5523 };
5524 
5525 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5526 						unsigned long addr, pte_t ptent)
5527 {
5528 	struct page *page = vm_normal_page(vma, addr, ptent);
5529 
5530 	if (!page || !page_mapped(page))
5531 		return NULL;
5532 	if (PageAnon(page)) {
5533 		if (!(mc.flags & MOVE_ANON))
5534 			return NULL;
5535 	} else {
5536 		if (!(mc.flags & MOVE_FILE))
5537 			return NULL;
5538 	}
5539 	if (!get_page_unless_zero(page))
5540 		return NULL;
5541 
5542 	return page;
5543 }
5544 
5545 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5546 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5547 			pte_t ptent, swp_entry_t *entry)
5548 {
5549 	struct page *page = NULL;
5550 	swp_entry_t ent = pte_to_swp_entry(ptent);
5551 
5552 	if (!(mc.flags & MOVE_ANON))
5553 		return NULL;
5554 
5555 	/*
5556 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5557 	 * a device and because they are not accessible by CPU they are store
5558 	 * as special swap entry in the CPU page table.
5559 	 */
5560 	if (is_device_private_entry(ent)) {
5561 		page = device_private_entry_to_page(ent);
5562 		/*
5563 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5564 		 * a refcount of 1 when free (unlike normal page)
5565 		 */
5566 		if (!page_ref_add_unless(page, 1, 1))
5567 			return NULL;
5568 		return page;
5569 	}
5570 
5571 	if (non_swap_entry(ent))
5572 		return NULL;
5573 
5574 	/*
5575 	 * Because lookup_swap_cache() updates some statistics counter,
5576 	 * we call find_get_page() with swapper_space directly.
5577 	 */
5578 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5579 	entry->val = ent.val;
5580 
5581 	return page;
5582 }
5583 #else
5584 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5585 			pte_t ptent, swp_entry_t *entry)
5586 {
5587 	return NULL;
5588 }
5589 #endif
5590 
5591 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5592 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5593 {
5594 	if (!vma->vm_file) /* anonymous vma */
5595 		return NULL;
5596 	if (!(mc.flags & MOVE_FILE))
5597 		return NULL;
5598 
5599 	/* page is moved even if it's not RSS of this task(page-faulted). */
5600 	/* shmem/tmpfs may report page out on swap: account for that too. */
5601 	return find_get_incore_page(vma->vm_file->f_mapping,
5602 			linear_page_index(vma, addr));
5603 }
5604 
5605 /**
5606  * mem_cgroup_move_account - move account of the page
5607  * @page: the page
5608  * @compound: charge the page as compound or small page
5609  * @from: mem_cgroup which the page is moved from.
5610  * @to:	mem_cgroup which the page is moved to. @from != @to.
5611  *
5612  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5613  *
5614  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5615  * from old cgroup.
5616  */
5617 static int mem_cgroup_move_account(struct page *page,
5618 				   bool compound,
5619 				   struct mem_cgroup *from,
5620 				   struct mem_cgroup *to)
5621 {
5622 	struct lruvec *from_vec, *to_vec;
5623 	struct pglist_data *pgdat;
5624 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5625 	int ret;
5626 
5627 	VM_BUG_ON(from == to);
5628 	VM_BUG_ON_PAGE(PageLRU(page), page);
5629 	VM_BUG_ON(compound && !PageTransHuge(page));
5630 
5631 	/*
5632 	 * Prevent mem_cgroup_migrate() from looking at
5633 	 * page->mem_cgroup of its source page while we change it.
5634 	 */
5635 	ret = -EBUSY;
5636 	if (!trylock_page(page))
5637 		goto out;
5638 
5639 	ret = -EINVAL;
5640 	if (page->mem_cgroup != from)
5641 		goto out_unlock;
5642 
5643 	pgdat = page_pgdat(page);
5644 	from_vec = mem_cgroup_lruvec(from, pgdat);
5645 	to_vec = mem_cgroup_lruvec(to, pgdat);
5646 
5647 	lock_page_memcg(page);
5648 
5649 	if (PageAnon(page)) {
5650 		if (page_mapped(page)) {
5651 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5652 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5653 			if (PageTransHuge(page)) {
5654 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5655 						   -nr_pages);
5656 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5657 						   nr_pages);
5658 			}
5659 
5660 		}
5661 	} else {
5662 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5663 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5664 
5665 		if (PageSwapBacked(page)) {
5666 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5667 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5668 		}
5669 
5670 		if (page_mapped(page)) {
5671 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5672 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5673 		}
5674 
5675 		if (PageDirty(page)) {
5676 			struct address_space *mapping = page_mapping(page);
5677 
5678 			if (mapping_can_writeback(mapping)) {
5679 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5680 						   -nr_pages);
5681 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5682 						   nr_pages);
5683 			}
5684 		}
5685 	}
5686 
5687 	if (PageWriteback(page)) {
5688 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5689 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5690 	}
5691 
5692 	/*
5693 	 * All state has been migrated, let's switch to the new memcg.
5694 	 *
5695 	 * It is safe to change page->mem_cgroup here because the page
5696 	 * is referenced, charged, isolated, and locked: we can't race
5697 	 * with (un)charging, migration, LRU putback, or anything else
5698 	 * that would rely on a stable page->mem_cgroup.
5699 	 *
5700 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5701 	 * to save space. As soon as we switch page->mem_cgroup to a
5702 	 * new memcg that isn't locked, the above state can change
5703 	 * concurrently again. Make sure we're truly done with it.
5704 	 */
5705 	smp_mb();
5706 
5707 	css_get(&to->css);
5708 	css_put(&from->css);
5709 
5710 	page->mem_cgroup = to;
5711 
5712 	__unlock_page_memcg(from);
5713 
5714 	ret = 0;
5715 
5716 	local_irq_disable();
5717 	mem_cgroup_charge_statistics(to, page, nr_pages);
5718 	memcg_check_events(to, page);
5719 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5720 	memcg_check_events(from, page);
5721 	local_irq_enable();
5722 out_unlock:
5723 	unlock_page(page);
5724 out:
5725 	return ret;
5726 }
5727 
5728 /**
5729  * get_mctgt_type - get target type of moving charge
5730  * @vma: the vma the pte to be checked belongs
5731  * @addr: the address corresponding to the pte to be checked
5732  * @ptent: the pte to be checked
5733  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5734  *
5735  * Returns
5736  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5737  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5738  *     move charge. if @target is not NULL, the page is stored in target->page
5739  *     with extra refcnt got(Callers should handle it).
5740  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5741  *     target for charge migration. if @target is not NULL, the entry is stored
5742  *     in target->ent.
5743  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5744  *     (so ZONE_DEVICE page and thus not on the lru).
5745  *     For now we such page is charge like a regular page would be as for all
5746  *     intent and purposes it is just special memory taking the place of a
5747  *     regular page.
5748  *
5749  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5750  *
5751  * Called with pte lock held.
5752  */
5753 
5754 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5755 		unsigned long addr, pte_t ptent, union mc_target *target)
5756 {
5757 	struct page *page = NULL;
5758 	enum mc_target_type ret = MC_TARGET_NONE;
5759 	swp_entry_t ent = { .val = 0 };
5760 
5761 	if (pte_present(ptent))
5762 		page = mc_handle_present_pte(vma, addr, ptent);
5763 	else if (is_swap_pte(ptent))
5764 		page = mc_handle_swap_pte(vma, ptent, &ent);
5765 	else if (pte_none(ptent))
5766 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5767 
5768 	if (!page && !ent.val)
5769 		return ret;
5770 	if (page) {
5771 		/*
5772 		 * Do only loose check w/o serialization.
5773 		 * mem_cgroup_move_account() checks the page is valid or
5774 		 * not under LRU exclusion.
5775 		 */
5776 		if (page->mem_cgroup == mc.from) {
5777 			ret = MC_TARGET_PAGE;
5778 			if (is_device_private_page(page))
5779 				ret = MC_TARGET_DEVICE;
5780 			if (target)
5781 				target->page = page;
5782 		}
5783 		if (!ret || !target)
5784 			put_page(page);
5785 	}
5786 	/*
5787 	 * There is a swap entry and a page doesn't exist or isn't charged.
5788 	 * But we cannot move a tail-page in a THP.
5789 	 */
5790 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5791 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5792 		ret = MC_TARGET_SWAP;
5793 		if (target)
5794 			target->ent = ent;
5795 	}
5796 	return ret;
5797 }
5798 
5799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5800 /*
5801  * We don't consider PMD mapped swapping or file mapped pages because THP does
5802  * not support them for now.
5803  * Caller should make sure that pmd_trans_huge(pmd) is true.
5804  */
5805 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5806 		unsigned long addr, pmd_t pmd, union mc_target *target)
5807 {
5808 	struct page *page = NULL;
5809 	enum mc_target_type ret = MC_TARGET_NONE;
5810 
5811 	if (unlikely(is_swap_pmd(pmd))) {
5812 		VM_BUG_ON(thp_migration_supported() &&
5813 				  !is_pmd_migration_entry(pmd));
5814 		return ret;
5815 	}
5816 	page = pmd_page(pmd);
5817 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5818 	if (!(mc.flags & MOVE_ANON))
5819 		return ret;
5820 	if (page->mem_cgroup == mc.from) {
5821 		ret = MC_TARGET_PAGE;
5822 		if (target) {
5823 			get_page(page);
5824 			target->page = page;
5825 		}
5826 	}
5827 	return ret;
5828 }
5829 #else
5830 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5831 		unsigned long addr, pmd_t pmd, union mc_target *target)
5832 {
5833 	return MC_TARGET_NONE;
5834 }
5835 #endif
5836 
5837 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5838 					unsigned long addr, unsigned long end,
5839 					struct mm_walk *walk)
5840 {
5841 	struct vm_area_struct *vma = walk->vma;
5842 	pte_t *pte;
5843 	spinlock_t *ptl;
5844 
5845 	ptl = pmd_trans_huge_lock(pmd, vma);
5846 	if (ptl) {
5847 		/*
5848 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5849 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5850 		 * this might change.
5851 		 */
5852 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5853 			mc.precharge += HPAGE_PMD_NR;
5854 		spin_unlock(ptl);
5855 		return 0;
5856 	}
5857 
5858 	if (pmd_trans_unstable(pmd))
5859 		return 0;
5860 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5861 	for (; addr != end; pte++, addr += PAGE_SIZE)
5862 		if (get_mctgt_type(vma, addr, *pte, NULL))
5863 			mc.precharge++;	/* increment precharge temporarily */
5864 	pte_unmap_unlock(pte - 1, ptl);
5865 	cond_resched();
5866 
5867 	return 0;
5868 }
5869 
5870 static const struct mm_walk_ops precharge_walk_ops = {
5871 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5872 };
5873 
5874 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5875 {
5876 	unsigned long precharge;
5877 
5878 	mmap_read_lock(mm);
5879 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5880 	mmap_read_unlock(mm);
5881 
5882 	precharge = mc.precharge;
5883 	mc.precharge = 0;
5884 
5885 	return precharge;
5886 }
5887 
5888 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5889 {
5890 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5891 
5892 	VM_BUG_ON(mc.moving_task);
5893 	mc.moving_task = current;
5894 	return mem_cgroup_do_precharge(precharge);
5895 }
5896 
5897 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5898 static void __mem_cgroup_clear_mc(void)
5899 {
5900 	struct mem_cgroup *from = mc.from;
5901 	struct mem_cgroup *to = mc.to;
5902 
5903 	/* we must uncharge all the leftover precharges from mc.to */
5904 	if (mc.precharge) {
5905 		cancel_charge(mc.to, mc.precharge);
5906 		mc.precharge = 0;
5907 	}
5908 	/*
5909 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5910 	 * we must uncharge here.
5911 	 */
5912 	if (mc.moved_charge) {
5913 		cancel_charge(mc.from, mc.moved_charge);
5914 		mc.moved_charge = 0;
5915 	}
5916 	/* we must fixup refcnts and charges */
5917 	if (mc.moved_swap) {
5918 		/* uncharge swap account from the old cgroup */
5919 		if (!mem_cgroup_is_root(mc.from))
5920 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5921 
5922 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5923 
5924 		/*
5925 		 * we charged both to->memory and to->memsw, so we
5926 		 * should uncharge to->memory.
5927 		 */
5928 		if (!mem_cgroup_is_root(mc.to))
5929 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5930 
5931 		mc.moved_swap = 0;
5932 	}
5933 	memcg_oom_recover(from);
5934 	memcg_oom_recover(to);
5935 	wake_up_all(&mc.waitq);
5936 }
5937 
5938 static void mem_cgroup_clear_mc(void)
5939 {
5940 	struct mm_struct *mm = mc.mm;
5941 
5942 	/*
5943 	 * we must clear moving_task before waking up waiters at the end of
5944 	 * task migration.
5945 	 */
5946 	mc.moving_task = NULL;
5947 	__mem_cgroup_clear_mc();
5948 	spin_lock(&mc.lock);
5949 	mc.from = NULL;
5950 	mc.to = NULL;
5951 	mc.mm = NULL;
5952 	spin_unlock(&mc.lock);
5953 
5954 	mmput(mm);
5955 }
5956 
5957 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5958 {
5959 	struct cgroup_subsys_state *css;
5960 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5961 	struct mem_cgroup *from;
5962 	struct task_struct *leader, *p;
5963 	struct mm_struct *mm;
5964 	unsigned long move_flags;
5965 	int ret = 0;
5966 
5967 	/* charge immigration isn't supported on the default hierarchy */
5968 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5969 		return 0;
5970 
5971 	/*
5972 	 * Multi-process migrations only happen on the default hierarchy
5973 	 * where charge immigration is not used.  Perform charge
5974 	 * immigration if @tset contains a leader and whine if there are
5975 	 * multiple.
5976 	 */
5977 	p = NULL;
5978 	cgroup_taskset_for_each_leader(leader, css, tset) {
5979 		WARN_ON_ONCE(p);
5980 		p = leader;
5981 		memcg = mem_cgroup_from_css(css);
5982 	}
5983 	if (!p)
5984 		return 0;
5985 
5986 	/*
5987 	 * We are now commited to this value whatever it is. Changes in this
5988 	 * tunable will only affect upcoming migrations, not the current one.
5989 	 * So we need to save it, and keep it going.
5990 	 */
5991 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5992 	if (!move_flags)
5993 		return 0;
5994 
5995 	from = mem_cgroup_from_task(p);
5996 
5997 	VM_BUG_ON(from == memcg);
5998 
5999 	mm = get_task_mm(p);
6000 	if (!mm)
6001 		return 0;
6002 	/* We move charges only when we move a owner of the mm */
6003 	if (mm->owner == p) {
6004 		VM_BUG_ON(mc.from);
6005 		VM_BUG_ON(mc.to);
6006 		VM_BUG_ON(mc.precharge);
6007 		VM_BUG_ON(mc.moved_charge);
6008 		VM_BUG_ON(mc.moved_swap);
6009 
6010 		spin_lock(&mc.lock);
6011 		mc.mm = mm;
6012 		mc.from = from;
6013 		mc.to = memcg;
6014 		mc.flags = move_flags;
6015 		spin_unlock(&mc.lock);
6016 		/* We set mc.moving_task later */
6017 
6018 		ret = mem_cgroup_precharge_mc(mm);
6019 		if (ret)
6020 			mem_cgroup_clear_mc();
6021 	} else {
6022 		mmput(mm);
6023 	}
6024 	return ret;
6025 }
6026 
6027 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6028 {
6029 	if (mc.to)
6030 		mem_cgroup_clear_mc();
6031 }
6032 
6033 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6034 				unsigned long addr, unsigned long end,
6035 				struct mm_walk *walk)
6036 {
6037 	int ret = 0;
6038 	struct vm_area_struct *vma = walk->vma;
6039 	pte_t *pte;
6040 	spinlock_t *ptl;
6041 	enum mc_target_type target_type;
6042 	union mc_target target;
6043 	struct page *page;
6044 
6045 	ptl = pmd_trans_huge_lock(pmd, vma);
6046 	if (ptl) {
6047 		if (mc.precharge < HPAGE_PMD_NR) {
6048 			spin_unlock(ptl);
6049 			return 0;
6050 		}
6051 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6052 		if (target_type == MC_TARGET_PAGE) {
6053 			page = target.page;
6054 			if (!isolate_lru_page(page)) {
6055 				if (!mem_cgroup_move_account(page, true,
6056 							     mc.from, mc.to)) {
6057 					mc.precharge -= HPAGE_PMD_NR;
6058 					mc.moved_charge += HPAGE_PMD_NR;
6059 				}
6060 				putback_lru_page(page);
6061 			}
6062 			put_page(page);
6063 		} else if (target_type == MC_TARGET_DEVICE) {
6064 			page = target.page;
6065 			if (!mem_cgroup_move_account(page, true,
6066 						     mc.from, mc.to)) {
6067 				mc.precharge -= HPAGE_PMD_NR;
6068 				mc.moved_charge += HPAGE_PMD_NR;
6069 			}
6070 			put_page(page);
6071 		}
6072 		spin_unlock(ptl);
6073 		return 0;
6074 	}
6075 
6076 	if (pmd_trans_unstable(pmd))
6077 		return 0;
6078 retry:
6079 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6080 	for (; addr != end; addr += PAGE_SIZE) {
6081 		pte_t ptent = *(pte++);
6082 		bool device = false;
6083 		swp_entry_t ent;
6084 
6085 		if (!mc.precharge)
6086 			break;
6087 
6088 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6089 		case MC_TARGET_DEVICE:
6090 			device = true;
6091 			fallthrough;
6092 		case MC_TARGET_PAGE:
6093 			page = target.page;
6094 			/*
6095 			 * We can have a part of the split pmd here. Moving it
6096 			 * can be done but it would be too convoluted so simply
6097 			 * ignore such a partial THP and keep it in original
6098 			 * memcg. There should be somebody mapping the head.
6099 			 */
6100 			if (PageTransCompound(page))
6101 				goto put;
6102 			if (!device && isolate_lru_page(page))
6103 				goto put;
6104 			if (!mem_cgroup_move_account(page, false,
6105 						mc.from, mc.to)) {
6106 				mc.precharge--;
6107 				/* we uncharge from mc.from later. */
6108 				mc.moved_charge++;
6109 			}
6110 			if (!device)
6111 				putback_lru_page(page);
6112 put:			/* get_mctgt_type() gets the page */
6113 			put_page(page);
6114 			break;
6115 		case MC_TARGET_SWAP:
6116 			ent = target.ent;
6117 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6118 				mc.precharge--;
6119 				mem_cgroup_id_get_many(mc.to, 1);
6120 				/* we fixup other refcnts and charges later. */
6121 				mc.moved_swap++;
6122 			}
6123 			break;
6124 		default:
6125 			break;
6126 		}
6127 	}
6128 	pte_unmap_unlock(pte - 1, ptl);
6129 	cond_resched();
6130 
6131 	if (addr != end) {
6132 		/*
6133 		 * We have consumed all precharges we got in can_attach().
6134 		 * We try charge one by one, but don't do any additional
6135 		 * charges to mc.to if we have failed in charge once in attach()
6136 		 * phase.
6137 		 */
6138 		ret = mem_cgroup_do_precharge(1);
6139 		if (!ret)
6140 			goto retry;
6141 	}
6142 
6143 	return ret;
6144 }
6145 
6146 static const struct mm_walk_ops charge_walk_ops = {
6147 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6148 };
6149 
6150 static void mem_cgroup_move_charge(void)
6151 {
6152 	lru_add_drain_all();
6153 	/*
6154 	 * Signal lock_page_memcg() to take the memcg's move_lock
6155 	 * while we're moving its pages to another memcg. Then wait
6156 	 * for already started RCU-only updates to finish.
6157 	 */
6158 	atomic_inc(&mc.from->moving_account);
6159 	synchronize_rcu();
6160 retry:
6161 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6162 		/*
6163 		 * Someone who are holding the mmap_lock might be waiting in
6164 		 * waitq. So we cancel all extra charges, wake up all waiters,
6165 		 * and retry. Because we cancel precharges, we might not be able
6166 		 * to move enough charges, but moving charge is a best-effort
6167 		 * feature anyway, so it wouldn't be a big problem.
6168 		 */
6169 		__mem_cgroup_clear_mc();
6170 		cond_resched();
6171 		goto retry;
6172 	}
6173 	/*
6174 	 * When we have consumed all precharges and failed in doing
6175 	 * additional charge, the page walk just aborts.
6176 	 */
6177 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6178 			NULL);
6179 
6180 	mmap_read_unlock(mc.mm);
6181 	atomic_dec(&mc.from->moving_account);
6182 }
6183 
6184 static void mem_cgroup_move_task(void)
6185 {
6186 	if (mc.to) {
6187 		mem_cgroup_move_charge();
6188 		mem_cgroup_clear_mc();
6189 	}
6190 }
6191 #else	/* !CONFIG_MMU */
6192 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6193 {
6194 	return 0;
6195 }
6196 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6197 {
6198 }
6199 static void mem_cgroup_move_task(void)
6200 {
6201 }
6202 #endif
6203 
6204 /*
6205  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6206  * to verify whether we're attached to the default hierarchy on each mount
6207  * attempt.
6208  */
6209 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6210 {
6211 	/*
6212 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6213 	 * guarantees that @root doesn't have any children, so turning it
6214 	 * on for the root memcg is enough.
6215 	 */
6216 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6217 		root_mem_cgroup->use_hierarchy = true;
6218 	else
6219 		root_mem_cgroup->use_hierarchy = false;
6220 }
6221 
6222 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6223 {
6224 	if (value == PAGE_COUNTER_MAX)
6225 		seq_puts(m, "max\n");
6226 	else
6227 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6228 
6229 	return 0;
6230 }
6231 
6232 static u64 memory_current_read(struct cgroup_subsys_state *css,
6233 			       struct cftype *cft)
6234 {
6235 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6236 
6237 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6238 }
6239 
6240 static int memory_min_show(struct seq_file *m, void *v)
6241 {
6242 	return seq_puts_memcg_tunable(m,
6243 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6244 }
6245 
6246 static ssize_t memory_min_write(struct kernfs_open_file *of,
6247 				char *buf, size_t nbytes, loff_t off)
6248 {
6249 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6250 	unsigned long min;
6251 	int err;
6252 
6253 	buf = strstrip(buf);
6254 	err = page_counter_memparse(buf, "max", &min);
6255 	if (err)
6256 		return err;
6257 
6258 	page_counter_set_min(&memcg->memory, min);
6259 
6260 	return nbytes;
6261 }
6262 
6263 static int memory_low_show(struct seq_file *m, void *v)
6264 {
6265 	return seq_puts_memcg_tunable(m,
6266 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6267 }
6268 
6269 static ssize_t memory_low_write(struct kernfs_open_file *of,
6270 				char *buf, size_t nbytes, loff_t off)
6271 {
6272 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6273 	unsigned long low;
6274 	int err;
6275 
6276 	buf = strstrip(buf);
6277 	err = page_counter_memparse(buf, "max", &low);
6278 	if (err)
6279 		return err;
6280 
6281 	page_counter_set_low(&memcg->memory, low);
6282 
6283 	return nbytes;
6284 }
6285 
6286 static int memory_high_show(struct seq_file *m, void *v)
6287 {
6288 	return seq_puts_memcg_tunable(m,
6289 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6290 }
6291 
6292 static ssize_t memory_high_write(struct kernfs_open_file *of,
6293 				 char *buf, size_t nbytes, loff_t off)
6294 {
6295 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6296 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6297 	bool drained = false;
6298 	unsigned long high;
6299 	int err;
6300 
6301 	buf = strstrip(buf);
6302 	err = page_counter_memparse(buf, "max", &high);
6303 	if (err)
6304 		return err;
6305 
6306 	for (;;) {
6307 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6308 		unsigned long reclaimed;
6309 
6310 		if (nr_pages <= high)
6311 			break;
6312 
6313 		if (signal_pending(current))
6314 			break;
6315 
6316 		if (!drained) {
6317 			drain_all_stock(memcg);
6318 			drained = true;
6319 			continue;
6320 		}
6321 
6322 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6323 							 GFP_KERNEL, true);
6324 
6325 		if (!reclaimed && !nr_retries--)
6326 			break;
6327 	}
6328 
6329 	page_counter_set_high(&memcg->memory, high);
6330 
6331 	memcg_wb_domain_size_changed(memcg);
6332 
6333 	return nbytes;
6334 }
6335 
6336 static int memory_max_show(struct seq_file *m, void *v)
6337 {
6338 	return seq_puts_memcg_tunable(m,
6339 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6340 }
6341 
6342 static ssize_t memory_max_write(struct kernfs_open_file *of,
6343 				char *buf, size_t nbytes, loff_t off)
6344 {
6345 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6346 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6347 	bool drained = false;
6348 	unsigned long max;
6349 	int err;
6350 
6351 	buf = strstrip(buf);
6352 	err = page_counter_memparse(buf, "max", &max);
6353 	if (err)
6354 		return err;
6355 
6356 	xchg(&memcg->memory.max, max);
6357 
6358 	for (;;) {
6359 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6360 
6361 		if (nr_pages <= max)
6362 			break;
6363 
6364 		if (signal_pending(current))
6365 			break;
6366 
6367 		if (!drained) {
6368 			drain_all_stock(memcg);
6369 			drained = true;
6370 			continue;
6371 		}
6372 
6373 		if (nr_reclaims) {
6374 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6375 							  GFP_KERNEL, true))
6376 				nr_reclaims--;
6377 			continue;
6378 		}
6379 
6380 		memcg_memory_event(memcg, MEMCG_OOM);
6381 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6382 			break;
6383 	}
6384 
6385 	memcg_wb_domain_size_changed(memcg);
6386 	return nbytes;
6387 }
6388 
6389 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6390 {
6391 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6392 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6393 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6394 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6395 	seq_printf(m, "oom_kill %lu\n",
6396 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6397 }
6398 
6399 static int memory_events_show(struct seq_file *m, void *v)
6400 {
6401 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6402 
6403 	__memory_events_show(m, memcg->memory_events);
6404 	return 0;
6405 }
6406 
6407 static int memory_events_local_show(struct seq_file *m, void *v)
6408 {
6409 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6410 
6411 	__memory_events_show(m, memcg->memory_events_local);
6412 	return 0;
6413 }
6414 
6415 static int memory_stat_show(struct seq_file *m, void *v)
6416 {
6417 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6418 	char *buf;
6419 
6420 	buf = memory_stat_format(memcg);
6421 	if (!buf)
6422 		return -ENOMEM;
6423 	seq_puts(m, buf);
6424 	kfree(buf);
6425 	return 0;
6426 }
6427 
6428 #ifdef CONFIG_NUMA
6429 static int memory_numa_stat_show(struct seq_file *m, void *v)
6430 {
6431 	int i;
6432 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6433 
6434 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6435 		int nid;
6436 
6437 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6438 			continue;
6439 
6440 		seq_printf(m, "%s", memory_stats[i].name);
6441 		for_each_node_state(nid, N_MEMORY) {
6442 			u64 size;
6443 			struct lruvec *lruvec;
6444 
6445 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6446 			size = lruvec_page_state(lruvec, memory_stats[i].idx);
6447 			size *= memory_stats[i].ratio;
6448 			seq_printf(m, " N%d=%llu", nid, size);
6449 		}
6450 		seq_putc(m, '\n');
6451 	}
6452 
6453 	return 0;
6454 }
6455 #endif
6456 
6457 static int memory_oom_group_show(struct seq_file *m, void *v)
6458 {
6459 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6460 
6461 	seq_printf(m, "%d\n", memcg->oom_group);
6462 
6463 	return 0;
6464 }
6465 
6466 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6467 				      char *buf, size_t nbytes, loff_t off)
6468 {
6469 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6470 	int ret, oom_group;
6471 
6472 	buf = strstrip(buf);
6473 	if (!buf)
6474 		return -EINVAL;
6475 
6476 	ret = kstrtoint(buf, 0, &oom_group);
6477 	if (ret)
6478 		return ret;
6479 
6480 	if (oom_group != 0 && oom_group != 1)
6481 		return -EINVAL;
6482 
6483 	memcg->oom_group = oom_group;
6484 
6485 	return nbytes;
6486 }
6487 
6488 static struct cftype memory_files[] = {
6489 	{
6490 		.name = "current",
6491 		.flags = CFTYPE_NOT_ON_ROOT,
6492 		.read_u64 = memory_current_read,
6493 	},
6494 	{
6495 		.name = "min",
6496 		.flags = CFTYPE_NOT_ON_ROOT,
6497 		.seq_show = memory_min_show,
6498 		.write = memory_min_write,
6499 	},
6500 	{
6501 		.name = "low",
6502 		.flags = CFTYPE_NOT_ON_ROOT,
6503 		.seq_show = memory_low_show,
6504 		.write = memory_low_write,
6505 	},
6506 	{
6507 		.name = "high",
6508 		.flags = CFTYPE_NOT_ON_ROOT,
6509 		.seq_show = memory_high_show,
6510 		.write = memory_high_write,
6511 	},
6512 	{
6513 		.name = "max",
6514 		.flags = CFTYPE_NOT_ON_ROOT,
6515 		.seq_show = memory_max_show,
6516 		.write = memory_max_write,
6517 	},
6518 	{
6519 		.name = "events",
6520 		.flags = CFTYPE_NOT_ON_ROOT,
6521 		.file_offset = offsetof(struct mem_cgroup, events_file),
6522 		.seq_show = memory_events_show,
6523 	},
6524 	{
6525 		.name = "events.local",
6526 		.flags = CFTYPE_NOT_ON_ROOT,
6527 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6528 		.seq_show = memory_events_local_show,
6529 	},
6530 	{
6531 		.name = "stat",
6532 		.seq_show = memory_stat_show,
6533 	},
6534 #ifdef CONFIG_NUMA
6535 	{
6536 		.name = "numa_stat",
6537 		.seq_show = memory_numa_stat_show,
6538 	},
6539 #endif
6540 	{
6541 		.name = "oom.group",
6542 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6543 		.seq_show = memory_oom_group_show,
6544 		.write = memory_oom_group_write,
6545 	},
6546 	{ }	/* terminate */
6547 };
6548 
6549 struct cgroup_subsys memory_cgrp_subsys = {
6550 	.css_alloc = mem_cgroup_css_alloc,
6551 	.css_online = mem_cgroup_css_online,
6552 	.css_offline = mem_cgroup_css_offline,
6553 	.css_released = mem_cgroup_css_released,
6554 	.css_free = mem_cgroup_css_free,
6555 	.css_reset = mem_cgroup_css_reset,
6556 	.can_attach = mem_cgroup_can_attach,
6557 	.cancel_attach = mem_cgroup_cancel_attach,
6558 	.post_attach = mem_cgroup_move_task,
6559 	.bind = mem_cgroup_bind,
6560 	.dfl_cftypes = memory_files,
6561 	.legacy_cftypes = mem_cgroup_legacy_files,
6562 	.early_init = 0,
6563 };
6564 
6565 /*
6566  * This function calculates an individual cgroup's effective
6567  * protection which is derived from its own memory.min/low, its
6568  * parent's and siblings' settings, as well as the actual memory
6569  * distribution in the tree.
6570  *
6571  * The following rules apply to the effective protection values:
6572  *
6573  * 1. At the first level of reclaim, effective protection is equal to
6574  *    the declared protection in memory.min and memory.low.
6575  *
6576  * 2. To enable safe delegation of the protection configuration, at
6577  *    subsequent levels the effective protection is capped to the
6578  *    parent's effective protection.
6579  *
6580  * 3. To make complex and dynamic subtrees easier to configure, the
6581  *    user is allowed to overcommit the declared protection at a given
6582  *    level. If that is the case, the parent's effective protection is
6583  *    distributed to the children in proportion to how much protection
6584  *    they have declared and how much of it they are utilizing.
6585  *
6586  *    This makes distribution proportional, but also work-conserving:
6587  *    if one cgroup claims much more protection than it uses memory,
6588  *    the unused remainder is available to its siblings.
6589  *
6590  * 4. Conversely, when the declared protection is undercommitted at a
6591  *    given level, the distribution of the larger parental protection
6592  *    budget is NOT proportional. A cgroup's protection from a sibling
6593  *    is capped to its own memory.min/low setting.
6594  *
6595  * 5. However, to allow protecting recursive subtrees from each other
6596  *    without having to declare each individual cgroup's fixed share
6597  *    of the ancestor's claim to protection, any unutilized -
6598  *    "floating" - protection from up the tree is distributed in
6599  *    proportion to each cgroup's *usage*. This makes the protection
6600  *    neutral wrt sibling cgroups and lets them compete freely over
6601  *    the shared parental protection budget, but it protects the
6602  *    subtree as a whole from neighboring subtrees.
6603  *
6604  * Note that 4. and 5. are not in conflict: 4. is about protecting
6605  * against immediate siblings whereas 5. is about protecting against
6606  * neighboring subtrees.
6607  */
6608 static unsigned long effective_protection(unsigned long usage,
6609 					  unsigned long parent_usage,
6610 					  unsigned long setting,
6611 					  unsigned long parent_effective,
6612 					  unsigned long siblings_protected)
6613 {
6614 	unsigned long protected;
6615 	unsigned long ep;
6616 
6617 	protected = min(usage, setting);
6618 	/*
6619 	 * If all cgroups at this level combined claim and use more
6620 	 * protection then what the parent affords them, distribute
6621 	 * shares in proportion to utilization.
6622 	 *
6623 	 * We are using actual utilization rather than the statically
6624 	 * claimed protection in order to be work-conserving: claimed
6625 	 * but unused protection is available to siblings that would
6626 	 * otherwise get a smaller chunk than what they claimed.
6627 	 */
6628 	if (siblings_protected > parent_effective)
6629 		return protected * parent_effective / siblings_protected;
6630 
6631 	/*
6632 	 * Ok, utilized protection of all children is within what the
6633 	 * parent affords them, so we know whatever this child claims
6634 	 * and utilizes is effectively protected.
6635 	 *
6636 	 * If there is unprotected usage beyond this value, reclaim
6637 	 * will apply pressure in proportion to that amount.
6638 	 *
6639 	 * If there is unutilized protection, the cgroup will be fully
6640 	 * shielded from reclaim, but we do return a smaller value for
6641 	 * protection than what the group could enjoy in theory. This
6642 	 * is okay. With the overcommit distribution above, effective
6643 	 * protection is always dependent on how memory is actually
6644 	 * consumed among the siblings anyway.
6645 	 */
6646 	ep = protected;
6647 
6648 	/*
6649 	 * If the children aren't claiming (all of) the protection
6650 	 * afforded to them by the parent, distribute the remainder in
6651 	 * proportion to the (unprotected) memory of each cgroup. That
6652 	 * way, cgroups that aren't explicitly prioritized wrt each
6653 	 * other compete freely over the allowance, but they are
6654 	 * collectively protected from neighboring trees.
6655 	 *
6656 	 * We're using unprotected memory for the weight so that if
6657 	 * some cgroups DO claim explicit protection, we don't protect
6658 	 * the same bytes twice.
6659 	 *
6660 	 * Check both usage and parent_usage against the respective
6661 	 * protected values. One should imply the other, but they
6662 	 * aren't read atomically - make sure the division is sane.
6663 	 */
6664 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6665 		return ep;
6666 	if (parent_effective > siblings_protected &&
6667 	    parent_usage > siblings_protected &&
6668 	    usage > protected) {
6669 		unsigned long unclaimed;
6670 
6671 		unclaimed = parent_effective - siblings_protected;
6672 		unclaimed *= usage - protected;
6673 		unclaimed /= parent_usage - siblings_protected;
6674 
6675 		ep += unclaimed;
6676 	}
6677 
6678 	return ep;
6679 }
6680 
6681 /**
6682  * mem_cgroup_protected - check if memory consumption is in the normal range
6683  * @root: the top ancestor of the sub-tree being checked
6684  * @memcg: the memory cgroup to check
6685  *
6686  * WARNING: This function is not stateless! It can only be used as part
6687  *          of a top-down tree iteration, not for isolated queries.
6688  */
6689 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6690 				     struct mem_cgroup *memcg)
6691 {
6692 	unsigned long usage, parent_usage;
6693 	struct mem_cgroup *parent;
6694 
6695 	if (mem_cgroup_disabled())
6696 		return;
6697 
6698 	if (!root)
6699 		root = root_mem_cgroup;
6700 
6701 	/*
6702 	 * Effective values of the reclaim targets are ignored so they
6703 	 * can be stale. Have a look at mem_cgroup_protection for more
6704 	 * details.
6705 	 * TODO: calculation should be more robust so that we do not need
6706 	 * that special casing.
6707 	 */
6708 	if (memcg == root)
6709 		return;
6710 
6711 	usage = page_counter_read(&memcg->memory);
6712 	if (!usage)
6713 		return;
6714 
6715 	parent = parent_mem_cgroup(memcg);
6716 	/* No parent means a non-hierarchical mode on v1 memcg */
6717 	if (!parent)
6718 		return;
6719 
6720 	if (parent == root) {
6721 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6722 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6723 		return;
6724 	}
6725 
6726 	parent_usage = page_counter_read(&parent->memory);
6727 
6728 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6729 			READ_ONCE(memcg->memory.min),
6730 			READ_ONCE(parent->memory.emin),
6731 			atomic_long_read(&parent->memory.children_min_usage)));
6732 
6733 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6734 			READ_ONCE(memcg->memory.low),
6735 			READ_ONCE(parent->memory.elow),
6736 			atomic_long_read(&parent->memory.children_low_usage)));
6737 }
6738 
6739 /**
6740  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6741  * @page: page to charge
6742  * @mm: mm context of the victim
6743  * @gfp_mask: reclaim mode
6744  *
6745  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6746  * pages according to @gfp_mask if necessary.
6747  *
6748  * Returns 0 on success. Otherwise, an error code is returned.
6749  */
6750 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6751 {
6752 	unsigned int nr_pages = thp_nr_pages(page);
6753 	struct mem_cgroup *memcg = NULL;
6754 	int ret = 0;
6755 
6756 	if (mem_cgroup_disabled())
6757 		goto out;
6758 
6759 	if (PageSwapCache(page)) {
6760 		swp_entry_t ent = { .val = page_private(page), };
6761 		unsigned short id;
6762 
6763 		/*
6764 		 * Every swap fault against a single page tries to charge the
6765 		 * page, bail as early as possible.  shmem_unuse() encounters
6766 		 * already charged pages, too.  page->mem_cgroup is protected
6767 		 * by the page lock, which serializes swap cache removal, which
6768 		 * in turn serializes uncharging.
6769 		 */
6770 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6771 		if (compound_head(page)->mem_cgroup)
6772 			goto out;
6773 
6774 		id = lookup_swap_cgroup_id(ent);
6775 		rcu_read_lock();
6776 		memcg = mem_cgroup_from_id(id);
6777 		if (memcg && !css_tryget_online(&memcg->css))
6778 			memcg = NULL;
6779 		rcu_read_unlock();
6780 	}
6781 
6782 	if (!memcg)
6783 		memcg = get_mem_cgroup_from_mm(mm);
6784 
6785 	ret = try_charge(memcg, gfp_mask, nr_pages);
6786 	if (ret)
6787 		goto out_put;
6788 
6789 	css_get(&memcg->css);
6790 	commit_charge(page, memcg);
6791 
6792 	local_irq_disable();
6793 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6794 	memcg_check_events(memcg, page);
6795 	local_irq_enable();
6796 
6797 	if (PageSwapCache(page)) {
6798 		swp_entry_t entry = { .val = page_private(page) };
6799 		/*
6800 		 * The swap entry might not get freed for a long time,
6801 		 * let's not wait for it.  The page already received a
6802 		 * memory+swap charge, drop the swap entry duplicate.
6803 		 */
6804 		mem_cgroup_uncharge_swap(entry, nr_pages);
6805 	}
6806 
6807 out_put:
6808 	css_put(&memcg->css);
6809 out:
6810 	return ret;
6811 }
6812 
6813 struct uncharge_gather {
6814 	struct mem_cgroup *memcg;
6815 	unsigned long nr_pages;
6816 	unsigned long pgpgout;
6817 	unsigned long nr_kmem;
6818 	struct page *dummy_page;
6819 };
6820 
6821 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6822 {
6823 	memset(ug, 0, sizeof(*ug));
6824 }
6825 
6826 static void uncharge_batch(const struct uncharge_gather *ug)
6827 {
6828 	unsigned long flags;
6829 
6830 	if (!mem_cgroup_is_root(ug->memcg)) {
6831 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6832 		if (do_memsw_account())
6833 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6834 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6835 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6836 		memcg_oom_recover(ug->memcg);
6837 	}
6838 
6839 	local_irq_save(flags);
6840 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6841 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6842 	memcg_check_events(ug->memcg, ug->dummy_page);
6843 	local_irq_restore(flags);
6844 
6845 	/* drop reference from uncharge_page */
6846 	css_put(&ug->memcg->css);
6847 }
6848 
6849 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6850 {
6851 	unsigned long nr_pages;
6852 
6853 	VM_BUG_ON_PAGE(PageLRU(page), page);
6854 
6855 	if (!page->mem_cgroup)
6856 		return;
6857 
6858 	/*
6859 	 * Nobody should be changing or seriously looking at
6860 	 * page->mem_cgroup at this point, we have fully
6861 	 * exclusive access to the page.
6862 	 */
6863 
6864 	if (ug->memcg != page->mem_cgroup) {
6865 		if (ug->memcg) {
6866 			uncharge_batch(ug);
6867 			uncharge_gather_clear(ug);
6868 		}
6869 		ug->memcg = page->mem_cgroup;
6870 
6871 		/* pairs with css_put in uncharge_batch */
6872 		css_get(&ug->memcg->css);
6873 	}
6874 
6875 	nr_pages = compound_nr(page);
6876 	ug->nr_pages += nr_pages;
6877 
6878 	if (!PageKmemcg(page)) {
6879 		ug->pgpgout++;
6880 	} else {
6881 		ug->nr_kmem += nr_pages;
6882 		__ClearPageKmemcg(page);
6883 	}
6884 
6885 	ug->dummy_page = page;
6886 	page->mem_cgroup = NULL;
6887 	css_put(&ug->memcg->css);
6888 }
6889 
6890 static void uncharge_list(struct list_head *page_list)
6891 {
6892 	struct uncharge_gather ug;
6893 	struct list_head *next;
6894 
6895 	uncharge_gather_clear(&ug);
6896 
6897 	/*
6898 	 * Note that the list can be a single page->lru; hence the
6899 	 * do-while loop instead of a simple list_for_each_entry().
6900 	 */
6901 	next = page_list->next;
6902 	do {
6903 		struct page *page;
6904 
6905 		page = list_entry(next, struct page, lru);
6906 		next = page->lru.next;
6907 
6908 		uncharge_page(page, &ug);
6909 	} while (next != page_list);
6910 
6911 	if (ug.memcg)
6912 		uncharge_batch(&ug);
6913 }
6914 
6915 /**
6916  * mem_cgroup_uncharge - uncharge a page
6917  * @page: page to uncharge
6918  *
6919  * Uncharge a page previously charged with mem_cgroup_charge().
6920  */
6921 void mem_cgroup_uncharge(struct page *page)
6922 {
6923 	struct uncharge_gather ug;
6924 
6925 	if (mem_cgroup_disabled())
6926 		return;
6927 
6928 	/* Don't touch page->lru of any random page, pre-check: */
6929 	if (!page->mem_cgroup)
6930 		return;
6931 
6932 	uncharge_gather_clear(&ug);
6933 	uncharge_page(page, &ug);
6934 	uncharge_batch(&ug);
6935 }
6936 
6937 /**
6938  * mem_cgroup_uncharge_list - uncharge a list of page
6939  * @page_list: list of pages to uncharge
6940  *
6941  * Uncharge a list of pages previously charged with
6942  * mem_cgroup_charge().
6943  */
6944 void mem_cgroup_uncharge_list(struct list_head *page_list)
6945 {
6946 	if (mem_cgroup_disabled())
6947 		return;
6948 
6949 	if (!list_empty(page_list))
6950 		uncharge_list(page_list);
6951 }
6952 
6953 /**
6954  * mem_cgroup_migrate - charge a page's replacement
6955  * @oldpage: currently circulating page
6956  * @newpage: replacement page
6957  *
6958  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6959  * be uncharged upon free.
6960  *
6961  * Both pages must be locked, @newpage->mapping must be set up.
6962  */
6963 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6964 {
6965 	struct mem_cgroup *memcg;
6966 	unsigned int nr_pages;
6967 	unsigned long flags;
6968 
6969 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6970 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6971 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6972 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6973 		       newpage);
6974 
6975 	if (mem_cgroup_disabled())
6976 		return;
6977 
6978 	/* Page cache replacement: new page already charged? */
6979 	if (newpage->mem_cgroup)
6980 		return;
6981 
6982 	/* Swapcache readahead pages can get replaced before being charged */
6983 	memcg = oldpage->mem_cgroup;
6984 	if (!memcg)
6985 		return;
6986 
6987 	/* Force-charge the new page. The old one will be freed soon */
6988 	nr_pages = thp_nr_pages(newpage);
6989 
6990 	page_counter_charge(&memcg->memory, nr_pages);
6991 	if (do_memsw_account())
6992 		page_counter_charge(&memcg->memsw, nr_pages);
6993 
6994 	css_get(&memcg->css);
6995 	commit_charge(newpage, memcg);
6996 
6997 	local_irq_save(flags);
6998 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6999 	memcg_check_events(memcg, newpage);
7000 	local_irq_restore(flags);
7001 }
7002 
7003 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7004 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7005 
7006 void mem_cgroup_sk_alloc(struct sock *sk)
7007 {
7008 	struct mem_cgroup *memcg;
7009 
7010 	if (!mem_cgroup_sockets_enabled)
7011 		return;
7012 
7013 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7014 	if (in_interrupt())
7015 		return;
7016 
7017 	rcu_read_lock();
7018 	memcg = mem_cgroup_from_task(current);
7019 	if (memcg == root_mem_cgroup)
7020 		goto out;
7021 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7022 		goto out;
7023 	if (css_tryget(&memcg->css))
7024 		sk->sk_memcg = memcg;
7025 out:
7026 	rcu_read_unlock();
7027 }
7028 
7029 void mem_cgroup_sk_free(struct sock *sk)
7030 {
7031 	if (sk->sk_memcg)
7032 		css_put(&sk->sk_memcg->css);
7033 }
7034 
7035 /**
7036  * mem_cgroup_charge_skmem - charge socket memory
7037  * @memcg: memcg to charge
7038  * @nr_pages: number of pages to charge
7039  *
7040  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7041  * @memcg's configured limit, %false if the charge had to be forced.
7042  */
7043 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7044 {
7045 	gfp_t gfp_mask = GFP_KERNEL;
7046 
7047 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7048 		struct page_counter *fail;
7049 
7050 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7051 			memcg->tcpmem_pressure = 0;
7052 			return true;
7053 		}
7054 		page_counter_charge(&memcg->tcpmem, nr_pages);
7055 		memcg->tcpmem_pressure = 1;
7056 		return false;
7057 	}
7058 
7059 	/* Don't block in the packet receive path */
7060 	if (in_softirq())
7061 		gfp_mask = GFP_NOWAIT;
7062 
7063 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7064 
7065 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7066 		return true;
7067 
7068 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7069 	return false;
7070 }
7071 
7072 /**
7073  * mem_cgroup_uncharge_skmem - uncharge socket memory
7074  * @memcg: memcg to uncharge
7075  * @nr_pages: number of pages to uncharge
7076  */
7077 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7078 {
7079 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7080 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7081 		return;
7082 	}
7083 
7084 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7085 
7086 	refill_stock(memcg, nr_pages);
7087 }
7088 
7089 static int __init cgroup_memory(char *s)
7090 {
7091 	char *token;
7092 
7093 	while ((token = strsep(&s, ",")) != NULL) {
7094 		if (!*token)
7095 			continue;
7096 		if (!strcmp(token, "nosocket"))
7097 			cgroup_memory_nosocket = true;
7098 		if (!strcmp(token, "nokmem"))
7099 			cgroup_memory_nokmem = true;
7100 	}
7101 	return 0;
7102 }
7103 __setup("cgroup.memory=", cgroup_memory);
7104 
7105 /*
7106  * subsys_initcall() for memory controller.
7107  *
7108  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7109  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7110  * basically everything that doesn't depend on a specific mem_cgroup structure
7111  * should be initialized from here.
7112  */
7113 static int __init mem_cgroup_init(void)
7114 {
7115 	int cpu, node;
7116 
7117 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7118 				  memcg_hotplug_cpu_dead);
7119 
7120 	for_each_possible_cpu(cpu)
7121 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7122 			  drain_local_stock);
7123 
7124 	for_each_node(node) {
7125 		struct mem_cgroup_tree_per_node *rtpn;
7126 
7127 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7128 				    node_online(node) ? node : NUMA_NO_NODE);
7129 
7130 		rtpn->rb_root = RB_ROOT;
7131 		rtpn->rb_rightmost = NULL;
7132 		spin_lock_init(&rtpn->lock);
7133 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7134 	}
7135 
7136 	return 0;
7137 }
7138 subsys_initcall(mem_cgroup_init);
7139 
7140 #ifdef CONFIG_MEMCG_SWAP
7141 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7142 {
7143 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7144 		/*
7145 		 * The root cgroup cannot be destroyed, so it's refcount must
7146 		 * always be >= 1.
7147 		 */
7148 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7149 			VM_BUG_ON(1);
7150 			break;
7151 		}
7152 		memcg = parent_mem_cgroup(memcg);
7153 		if (!memcg)
7154 			memcg = root_mem_cgroup;
7155 	}
7156 	return memcg;
7157 }
7158 
7159 /**
7160  * mem_cgroup_swapout - transfer a memsw charge to swap
7161  * @page: page whose memsw charge to transfer
7162  * @entry: swap entry to move the charge to
7163  *
7164  * Transfer the memsw charge of @page to @entry.
7165  */
7166 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7167 {
7168 	struct mem_cgroup *memcg, *swap_memcg;
7169 	unsigned int nr_entries;
7170 	unsigned short oldid;
7171 
7172 	VM_BUG_ON_PAGE(PageLRU(page), page);
7173 	VM_BUG_ON_PAGE(page_count(page), page);
7174 
7175 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7176 		return;
7177 
7178 	memcg = page->mem_cgroup;
7179 
7180 	/* Readahead page, never charged */
7181 	if (!memcg)
7182 		return;
7183 
7184 	/*
7185 	 * In case the memcg owning these pages has been offlined and doesn't
7186 	 * have an ID allocated to it anymore, charge the closest online
7187 	 * ancestor for the swap instead and transfer the memory+swap charge.
7188 	 */
7189 	swap_memcg = mem_cgroup_id_get_online(memcg);
7190 	nr_entries = thp_nr_pages(page);
7191 	/* Get references for the tail pages, too */
7192 	if (nr_entries > 1)
7193 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7194 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7195 				   nr_entries);
7196 	VM_BUG_ON_PAGE(oldid, page);
7197 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7198 
7199 	page->mem_cgroup = NULL;
7200 
7201 	if (!mem_cgroup_is_root(memcg))
7202 		page_counter_uncharge(&memcg->memory, nr_entries);
7203 
7204 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7205 		if (!mem_cgroup_is_root(swap_memcg))
7206 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7207 		page_counter_uncharge(&memcg->memsw, nr_entries);
7208 	}
7209 
7210 	/*
7211 	 * Interrupts should be disabled here because the caller holds the
7212 	 * i_pages lock which is taken with interrupts-off. It is
7213 	 * important here to have the interrupts disabled because it is the
7214 	 * only synchronisation we have for updating the per-CPU variables.
7215 	 */
7216 	VM_BUG_ON(!irqs_disabled());
7217 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7218 	memcg_check_events(memcg, page);
7219 
7220 	css_put(&memcg->css);
7221 }
7222 
7223 /**
7224  * mem_cgroup_try_charge_swap - try charging swap space for a page
7225  * @page: page being added to swap
7226  * @entry: swap entry to charge
7227  *
7228  * Try to charge @page's memcg for the swap space at @entry.
7229  *
7230  * Returns 0 on success, -ENOMEM on failure.
7231  */
7232 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7233 {
7234 	unsigned int nr_pages = thp_nr_pages(page);
7235 	struct page_counter *counter;
7236 	struct mem_cgroup *memcg;
7237 	unsigned short oldid;
7238 
7239 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7240 		return 0;
7241 
7242 	memcg = page->mem_cgroup;
7243 
7244 	/* Readahead page, never charged */
7245 	if (!memcg)
7246 		return 0;
7247 
7248 	if (!entry.val) {
7249 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7250 		return 0;
7251 	}
7252 
7253 	memcg = mem_cgroup_id_get_online(memcg);
7254 
7255 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7256 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7257 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7258 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7259 		mem_cgroup_id_put(memcg);
7260 		return -ENOMEM;
7261 	}
7262 
7263 	/* Get references for the tail pages, too */
7264 	if (nr_pages > 1)
7265 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7266 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7267 	VM_BUG_ON_PAGE(oldid, page);
7268 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7269 
7270 	return 0;
7271 }
7272 
7273 /**
7274  * mem_cgroup_uncharge_swap - uncharge swap space
7275  * @entry: swap entry to uncharge
7276  * @nr_pages: the amount of swap space to uncharge
7277  */
7278 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7279 {
7280 	struct mem_cgroup *memcg;
7281 	unsigned short id;
7282 
7283 	id = swap_cgroup_record(entry, 0, nr_pages);
7284 	rcu_read_lock();
7285 	memcg = mem_cgroup_from_id(id);
7286 	if (memcg) {
7287 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7288 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7289 				page_counter_uncharge(&memcg->swap, nr_pages);
7290 			else
7291 				page_counter_uncharge(&memcg->memsw, nr_pages);
7292 		}
7293 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7294 		mem_cgroup_id_put_many(memcg, nr_pages);
7295 	}
7296 	rcu_read_unlock();
7297 }
7298 
7299 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7300 {
7301 	long nr_swap_pages = get_nr_swap_pages();
7302 
7303 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7304 		return nr_swap_pages;
7305 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7306 		nr_swap_pages = min_t(long, nr_swap_pages,
7307 				      READ_ONCE(memcg->swap.max) -
7308 				      page_counter_read(&memcg->swap));
7309 	return nr_swap_pages;
7310 }
7311 
7312 bool mem_cgroup_swap_full(struct page *page)
7313 {
7314 	struct mem_cgroup *memcg;
7315 
7316 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7317 
7318 	if (vm_swap_full())
7319 		return true;
7320 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7321 		return false;
7322 
7323 	memcg = page->mem_cgroup;
7324 	if (!memcg)
7325 		return false;
7326 
7327 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7328 		unsigned long usage = page_counter_read(&memcg->swap);
7329 
7330 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7331 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7332 			return true;
7333 	}
7334 
7335 	return false;
7336 }
7337 
7338 static int __init setup_swap_account(char *s)
7339 {
7340 	if (!strcmp(s, "1"))
7341 		cgroup_memory_noswap = 0;
7342 	else if (!strcmp(s, "0"))
7343 		cgroup_memory_noswap = 1;
7344 	return 1;
7345 }
7346 __setup("swapaccount=", setup_swap_account);
7347 
7348 static u64 swap_current_read(struct cgroup_subsys_state *css,
7349 			     struct cftype *cft)
7350 {
7351 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7352 
7353 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7354 }
7355 
7356 static int swap_high_show(struct seq_file *m, void *v)
7357 {
7358 	return seq_puts_memcg_tunable(m,
7359 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7360 }
7361 
7362 static ssize_t swap_high_write(struct kernfs_open_file *of,
7363 			       char *buf, size_t nbytes, loff_t off)
7364 {
7365 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7366 	unsigned long high;
7367 	int err;
7368 
7369 	buf = strstrip(buf);
7370 	err = page_counter_memparse(buf, "max", &high);
7371 	if (err)
7372 		return err;
7373 
7374 	page_counter_set_high(&memcg->swap, high);
7375 
7376 	return nbytes;
7377 }
7378 
7379 static int swap_max_show(struct seq_file *m, void *v)
7380 {
7381 	return seq_puts_memcg_tunable(m,
7382 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7383 }
7384 
7385 static ssize_t swap_max_write(struct kernfs_open_file *of,
7386 			      char *buf, size_t nbytes, loff_t off)
7387 {
7388 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7389 	unsigned long max;
7390 	int err;
7391 
7392 	buf = strstrip(buf);
7393 	err = page_counter_memparse(buf, "max", &max);
7394 	if (err)
7395 		return err;
7396 
7397 	xchg(&memcg->swap.max, max);
7398 
7399 	return nbytes;
7400 }
7401 
7402 static int swap_events_show(struct seq_file *m, void *v)
7403 {
7404 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7405 
7406 	seq_printf(m, "high %lu\n",
7407 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7408 	seq_printf(m, "max %lu\n",
7409 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7410 	seq_printf(m, "fail %lu\n",
7411 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7412 
7413 	return 0;
7414 }
7415 
7416 static struct cftype swap_files[] = {
7417 	{
7418 		.name = "swap.current",
7419 		.flags = CFTYPE_NOT_ON_ROOT,
7420 		.read_u64 = swap_current_read,
7421 	},
7422 	{
7423 		.name = "swap.high",
7424 		.flags = CFTYPE_NOT_ON_ROOT,
7425 		.seq_show = swap_high_show,
7426 		.write = swap_high_write,
7427 	},
7428 	{
7429 		.name = "swap.max",
7430 		.flags = CFTYPE_NOT_ON_ROOT,
7431 		.seq_show = swap_max_show,
7432 		.write = swap_max_write,
7433 	},
7434 	{
7435 		.name = "swap.events",
7436 		.flags = CFTYPE_NOT_ON_ROOT,
7437 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7438 		.seq_show = swap_events_show,
7439 	},
7440 	{ }	/* terminate */
7441 };
7442 
7443 static struct cftype memsw_files[] = {
7444 	{
7445 		.name = "memsw.usage_in_bytes",
7446 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7447 		.read_u64 = mem_cgroup_read_u64,
7448 	},
7449 	{
7450 		.name = "memsw.max_usage_in_bytes",
7451 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7452 		.write = mem_cgroup_reset,
7453 		.read_u64 = mem_cgroup_read_u64,
7454 	},
7455 	{
7456 		.name = "memsw.limit_in_bytes",
7457 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7458 		.write = mem_cgroup_write,
7459 		.read_u64 = mem_cgroup_read_u64,
7460 	},
7461 	{
7462 		.name = "memsw.failcnt",
7463 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7464 		.write = mem_cgroup_reset,
7465 		.read_u64 = mem_cgroup_read_u64,
7466 	},
7467 	{ },	/* terminate */
7468 };
7469 
7470 /*
7471  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7472  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7473  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7474  * boot parameter. This may result in premature OOPS inside
7475  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7476  */
7477 static int __init mem_cgroup_swap_init(void)
7478 {
7479 	/* No memory control -> no swap control */
7480 	if (mem_cgroup_disabled())
7481 		cgroup_memory_noswap = true;
7482 
7483 	if (cgroup_memory_noswap)
7484 		return 0;
7485 
7486 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7487 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7488 
7489 	return 0;
7490 }
7491 core_initcall(mem_cgroup_swap_init);
7492 
7493 #endif /* CONFIG_MEMCG_SWAP */
7494