1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/res_counter.h> 21 #include <linux/memcontrol.h> 22 #include <linux/cgroup.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/smp.h> 26 #include <linux/page-flags.h> 27 #include <linux/backing-dev.h> 28 #include <linux/bit_spinlock.h> 29 #include <linux/rcupdate.h> 30 #include <linux/limits.h> 31 #include <linux/mutex.h> 32 #include <linux/slab.h> 33 #include <linux/swap.h> 34 #include <linux/spinlock.h> 35 #include <linux/fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mm_inline.h> 39 #include <linux/page_cgroup.h> 40 #include "internal.h" 41 42 #include <asm/uaccess.h> 43 44 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 45 #define MEM_CGROUP_RECLAIM_RETRIES 5 46 47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */ 49 int do_swap_account __read_mostly; 50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/ 51 #else 52 #define do_swap_account (0) 53 #endif 54 55 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */ 56 57 /* 58 * Statistics for memory cgroup. 59 */ 60 enum mem_cgroup_stat_index { 61 /* 62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 63 */ 64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 65 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */ 66 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ 67 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ 68 69 MEM_CGROUP_STAT_NSTATS, 70 }; 71 72 struct mem_cgroup_stat_cpu { 73 s64 count[MEM_CGROUP_STAT_NSTATS]; 74 } ____cacheline_aligned_in_smp; 75 76 struct mem_cgroup_stat { 77 struct mem_cgroup_stat_cpu cpustat[0]; 78 }; 79 80 /* 81 * For accounting under irq disable, no need for increment preempt count. 82 */ 83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat, 84 enum mem_cgroup_stat_index idx, int val) 85 { 86 stat->count[idx] += val; 87 } 88 89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, 90 enum mem_cgroup_stat_index idx) 91 { 92 int cpu; 93 s64 ret = 0; 94 for_each_possible_cpu(cpu) 95 ret += stat->cpustat[cpu].count[idx]; 96 return ret; 97 } 98 99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat) 100 { 101 s64 ret; 102 103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE); 104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS); 105 return ret; 106 } 107 108 /* 109 * per-zone information in memory controller. 110 */ 111 struct mem_cgroup_per_zone { 112 /* 113 * spin_lock to protect the per cgroup LRU 114 */ 115 struct list_head lists[NR_LRU_LISTS]; 116 unsigned long count[NR_LRU_LISTS]; 117 118 struct zone_reclaim_stat reclaim_stat; 119 }; 120 /* Macro for accessing counter */ 121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 122 123 struct mem_cgroup_per_node { 124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 125 }; 126 127 struct mem_cgroup_lru_info { 128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 129 }; 130 131 /* 132 * The memory controller data structure. The memory controller controls both 133 * page cache and RSS per cgroup. We would eventually like to provide 134 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 135 * to help the administrator determine what knobs to tune. 136 * 137 * TODO: Add a water mark for the memory controller. Reclaim will begin when 138 * we hit the water mark. May be even add a low water mark, such that 139 * no reclaim occurs from a cgroup at it's low water mark, this is 140 * a feature that will be implemented much later in the future. 141 */ 142 struct mem_cgroup { 143 struct cgroup_subsys_state css; 144 /* 145 * the counter to account for memory usage 146 */ 147 struct res_counter res; 148 /* 149 * the counter to account for mem+swap usage. 150 */ 151 struct res_counter memsw; 152 /* 153 * Per cgroup active and inactive list, similar to the 154 * per zone LRU lists. 155 */ 156 struct mem_cgroup_lru_info info; 157 158 /* 159 protect against reclaim related member. 160 */ 161 spinlock_t reclaim_param_lock; 162 163 int prev_priority; /* for recording reclaim priority */ 164 165 /* 166 * While reclaiming in a hiearchy, we cache the last child we 167 * reclaimed from. 168 */ 169 int last_scanned_child; 170 /* 171 * Should the accounting and control be hierarchical, per subtree? 172 */ 173 bool use_hierarchy; 174 unsigned long last_oom_jiffies; 175 atomic_t refcnt; 176 177 unsigned int swappiness; 178 179 /* 180 * statistics. This must be placed at the end of memcg. 181 */ 182 struct mem_cgroup_stat stat; 183 }; 184 185 enum charge_type { 186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 187 MEM_CGROUP_CHARGE_TYPE_MAPPED, 188 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 189 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 191 NR_CHARGE_TYPE, 192 }; 193 194 /* only for here (for easy reading.) */ 195 #define PCGF_CACHE (1UL << PCG_CACHE) 196 #define PCGF_USED (1UL << PCG_USED) 197 #define PCGF_LOCK (1UL << PCG_LOCK) 198 static const unsigned long 199 pcg_default_flags[NR_CHARGE_TYPE] = { 200 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */ 201 PCGF_USED | PCGF_LOCK, /* Anon */ 202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ 203 0, /* FORCE */ 204 }; 205 206 /* for encoding cft->private value on file */ 207 #define _MEM (0) 208 #define _MEMSWAP (1) 209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 211 #define MEMFILE_ATTR(val) ((val) & 0xffff) 212 213 static void mem_cgroup_get(struct mem_cgroup *mem); 214 static void mem_cgroup_put(struct mem_cgroup *mem); 215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 216 217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 218 struct page_cgroup *pc, 219 bool charge) 220 { 221 int val = (charge)? 1 : -1; 222 struct mem_cgroup_stat *stat = &mem->stat; 223 struct mem_cgroup_stat_cpu *cpustat; 224 int cpu = get_cpu(); 225 226 cpustat = &stat->cpustat[cpu]; 227 if (PageCgroupCache(pc)) 228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); 229 else 230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val); 231 232 if (charge) 233 __mem_cgroup_stat_add_safe(cpustat, 234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1); 235 else 236 __mem_cgroup_stat_add_safe(cpustat, 237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); 238 put_cpu(); 239 } 240 241 static struct mem_cgroup_per_zone * 242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 243 { 244 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 245 } 246 247 static struct mem_cgroup_per_zone * 248 page_cgroup_zoneinfo(struct page_cgroup *pc) 249 { 250 struct mem_cgroup *mem = pc->mem_cgroup; 251 int nid = page_cgroup_nid(pc); 252 int zid = page_cgroup_zid(pc); 253 254 if (!mem) 255 return NULL; 256 257 return mem_cgroup_zoneinfo(mem, nid, zid); 258 } 259 260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, 261 enum lru_list idx) 262 { 263 int nid, zid; 264 struct mem_cgroup_per_zone *mz; 265 u64 total = 0; 266 267 for_each_online_node(nid) 268 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 269 mz = mem_cgroup_zoneinfo(mem, nid, zid); 270 total += MEM_CGROUP_ZSTAT(mz, idx); 271 } 272 return total; 273 } 274 275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 276 { 277 return container_of(cgroup_subsys_state(cont, 278 mem_cgroup_subsys_id), struct mem_cgroup, 279 css); 280 } 281 282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 283 { 284 /* 285 * mm_update_next_owner() may clear mm->owner to NULL 286 * if it races with swapoff, page migration, etc. 287 * So this can be called with p == NULL. 288 */ 289 if (unlikely(!p)) 290 return NULL; 291 292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 293 struct mem_cgroup, css); 294 } 295 296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 297 { 298 struct mem_cgroup *mem = NULL; 299 300 if (!mm) 301 return NULL; 302 /* 303 * Because we have no locks, mm->owner's may be being moved to other 304 * cgroup. We use css_tryget() here even if this looks 305 * pessimistic (rather than adding locks here). 306 */ 307 rcu_read_lock(); 308 do { 309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 310 if (unlikely(!mem)) 311 break; 312 } while (!css_tryget(&mem->css)); 313 rcu_read_unlock(); 314 return mem; 315 } 316 317 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem) 318 { 319 if (!mem) 320 return true; 321 return css_is_removed(&mem->css); 322 } 323 324 325 /* 326 * Call callback function against all cgroup under hierarchy tree. 327 */ 328 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, 329 int (*func)(struct mem_cgroup *, void *)) 330 { 331 int found, ret, nextid; 332 struct cgroup_subsys_state *css; 333 struct mem_cgroup *mem; 334 335 if (!root->use_hierarchy) 336 return (*func)(root, data); 337 338 nextid = 1; 339 do { 340 ret = 0; 341 mem = NULL; 342 343 rcu_read_lock(); 344 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, 345 &found); 346 if (css && css_tryget(css)) 347 mem = container_of(css, struct mem_cgroup, css); 348 rcu_read_unlock(); 349 350 if (mem) { 351 ret = (*func)(mem, data); 352 css_put(&mem->css); 353 } 354 nextid = found + 1; 355 } while (!ret && css); 356 357 return ret; 358 } 359 360 /* 361 * Following LRU functions are allowed to be used without PCG_LOCK. 362 * Operations are called by routine of global LRU independently from memcg. 363 * What we have to take care of here is validness of pc->mem_cgroup. 364 * 365 * Changes to pc->mem_cgroup happens when 366 * 1. charge 367 * 2. moving account 368 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 369 * It is added to LRU before charge. 370 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 371 * When moving account, the page is not on LRU. It's isolated. 372 */ 373 374 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) 375 { 376 struct page_cgroup *pc; 377 struct mem_cgroup *mem; 378 struct mem_cgroup_per_zone *mz; 379 380 if (mem_cgroup_disabled()) 381 return; 382 pc = lookup_page_cgroup(page); 383 /* can happen while we handle swapcache. */ 384 if (list_empty(&pc->lru) || !pc->mem_cgroup) 385 return; 386 /* 387 * We don't check PCG_USED bit. It's cleared when the "page" is finally 388 * removed from global LRU. 389 */ 390 mz = page_cgroup_zoneinfo(pc); 391 mem = pc->mem_cgroup; 392 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 393 list_del_init(&pc->lru); 394 return; 395 } 396 397 void mem_cgroup_del_lru(struct page *page) 398 { 399 mem_cgroup_del_lru_list(page, page_lru(page)); 400 } 401 402 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) 403 { 404 struct mem_cgroup_per_zone *mz; 405 struct page_cgroup *pc; 406 407 if (mem_cgroup_disabled()) 408 return; 409 410 pc = lookup_page_cgroup(page); 411 /* 412 * Used bit is set without atomic ops but after smp_wmb(). 413 * For making pc->mem_cgroup visible, insert smp_rmb() here. 414 */ 415 smp_rmb(); 416 /* unused page is not rotated. */ 417 if (!PageCgroupUsed(pc)) 418 return; 419 mz = page_cgroup_zoneinfo(pc); 420 list_move(&pc->lru, &mz->lists[lru]); 421 } 422 423 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) 424 { 425 struct page_cgroup *pc; 426 struct mem_cgroup_per_zone *mz; 427 428 if (mem_cgroup_disabled()) 429 return; 430 pc = lookup_page_cgroup(page); 431 /* 432 * Used bit is set without atomic ops but after smp_wmb(). 433 * For making pc->mem_cgroup visible, insert smp_rmb() here. 434 */ 435 smp_rmb(); 436 if (!PageCgroupUsed(pc)) 437 return; 438 439 mz = page_cgroup_zoneinfo(pc); 440 MEM_CGROUP_ZSTAT(mz, lru) += 1; 441 list_add(&pc->lru, &mz->lists[lru]); 442 } 443 444 /* 445 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to 446 * lru because the page may.be reused after it's fully uncharged (because of 447 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge 448 * it again. This function is only used to charge SwapCache. It's done under 449 * lock_page and expected that zone->lru_lock is never held. 450 */ 451 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) 452 { 453 unsigned long flags; 454 struct zone *zone = page_zone(page); 455 struct page_cgroup *pc = lookup_page_cgroup(page); 456 457 spin_lock_irqsave(&zone->lru_lock, flags); 458 /* 459 * Forget old LRU when this page_cgroup is *not* used. This Used bit 460 * is guarded by lock_page() because the page is SwapCache. 461 */ 462 if (!PageCgroupUsed(pc)) 463 mem_cgroup_del_lru_list(page, page_lru(page)); 464 spin_unlock_irqrestore(&zone->lru_lock, flags); 465 } 466 467 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) 468 { 469 unsigned long flags; 470 struct zone *zone = page_zone(page); 471 struct page_cgroup *pc = lookup_page_cgroup(page); 472 473 spin_lock_irqsave(&zone->lru_lock, flags); 474 /* link when the page is linked to LRU but page_cgroup isn't */ 475 if (PageLRU(page) && list_empty(&pc->lru)) 476 mem_cgroup_add_lru_list(page, page_lru(page)); 477 spin_unlock_irqrestore(&zone->lru_lock, flags); 478 } 479 480 481 void mem_cgroup_move_lists(struct page *page, 482 enum lru_list from, enum lru_list to) 483 { 484 if (mem_cgroup_disabled()) 485 return; 486 mem_cgroup_del_lru_list(page, from); 487 mem_cgroup_add_lru_list(page, to); 488 } 489 490 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 491 { 492 int ret; 493 struct mem_cgroup *curr = NULL; 494 495 task_lock(task); 496 rcu_read_lock(); 497 curr = try_get_mem_cgroup_from_mm(task->mm); 498 rcu_read_unlock(); 499 task_unlock(task); 500 if (!curr) 501 return 0; 502 if (curr->use_hierarchy) 503 ret = css_is_ancestor(&curr->css, &mem->css); 504 else 505 ret = (curr == mem); 506 css_put(&curr->css); 507 return ret; 508 } 509 510 /* 511 * prev_priority control...this will be used in memory reclaim path. 512 */ 513 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) 514 { 515 int prev_priority; 516 517 spin_lock(&mem->reclaim_param_lock); 518 prev_priority = mem->prev_priority; 519 spin_unlock(&mem->reclaim_param_lock); 520 521 return prev_priority; 522 } 523 524 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) 525 { 526 spin_lock(&mem->reclaim_param_lock); 527 if (priority < mem->prev_priority) 528 mem->prev_priority = priority; 529 spin_unlock(&mem->reclaim_param_lock); 530 } 531 532 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) 533 { 534 spin_lock(&mem->reclaim_param_lock); 535 mem->prev_priority = priority; 536 spin_unlock(&mem->reclaim_param_lock); 537 } 538 539 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) 540 { 541 unsigned long active; 542 unsigned long inactive; 543 unsigned long gb; 544 unsigned long inactive_ratio; 545 546 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); 547 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); 548 549 gb = (inactive + active) >> (30 - PAGE_SHIFT); 550 if (gb) 551 inactive_ratio = int_sqrt(10 * gb); 552 else 553 inactive_ratio = 1; 554 555 if (present_pages) { 556 present_pages[0] = inactive; 557 present_pages[1] = active; 558 } 559 560 return inactive_ratio; 561 } 562 563 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) 564 { 565 unsigned long active; 566 unsigned long inactive; 567 unsigned long present_pages[2]; 568 unsigned long inactive_ratio; 569 570 inactive_ratio = calc_inactive_ratio(memcg, present_pages); 571 572 inactive = present_pages[0]; 573 active = present_pages[1]; 574 575 if (inactive * inactive_ratio < active) 576 return 1; 577 578 return 0; 579 } 580 581 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, 582 struct zone *zone, 583 enum lru_list lru) 584 { 585 int nid = zone->zone_pgdat->node_id; 586 int zid = zone_idx(zone); 587 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 588 589 return MEM_CGROUP_ZSTAT(mz, lru); 590 } 591 592 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 593 struct zone *zone) 594 { 595 int nid = zone->zone_pgdat->node_id; 596 int zid = zone_idx(zone); 597 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 598 599 return &mz->reclaim_stat; 600 } 601 602 struct zone_reclaim_stat * 603 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 604 { 605 struct page_cgroup *pc; 606 struct mem_cgroup_per_zone *mz; 607 608 if (mem_cgroup_disabled()) 609 return NULL; 610 611 pc = lookup_page_cgroup(page); 612 /* 613 * Used bit is set without atomic ops but after smp_wmb(). 614 * For making pc->mem_cgroup visible, insert smp_rmb() here. 615 */ 616 smp_rmb(); 617 if (!PageCgroupUsed(pc)) 618 return NULL; 619 620 mz = page_cgroup_zoneinfo(pc); 621 if (!mz) 622 return NULL; 623 624 return &mz->reclaim_stat; 625 } 626 627 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 628 struct list_head *dst, 629 unsigned long *scanned, int order, 630 int mode, struct zone *z, 631 struct mem_cgroup *mem_cont, 632 int active, int file) 633 { 634 unsigned long nr_taken = 0; 635 struct page *page; 636 unsigned long scan; 637 LIST_HEAD(pc_list); 638 struct list_head *src; 639 struct page_cgroup *pc, *tmp; 640 int nid = z->zone_pgdat->node_id; 641 int zid = zone_idx(z); 642 struct mem_cgroup_per_zone *mz; 643 int lru = LRU_FILE * !!file + !!active; 644 645 BUG_ON(!mem_cont); 646 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 647 src = &mz->lists[lru]; 648 649 scan = 0; 650 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 651 if (scan >= nr_to_scan) 652 break; 653 654 page = pc->page; 655 if (unlikely(!PageCgroupUsed(pc))) 656 continue; 657 if (unlikely(!PageLRU(page))) 658 continue; 659 660 scan++; 661 if (__isolate_lru_page(page, mode, file) == 0) { 662 list_move(&page->lru, dst); 663 nr_taken++; 664 } 665 } 666 667 *scanned = scan; 668 return nr_taken; 669 } 670 671 #define mem_cgroup_from_res_counter(counter, member) \ 672 container_of(counter, struct mem_cgroup, member) 673 674 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) 675 { 676 if (do_swap_account) { 677 if (res_counter_check_under_limit(&mem->res) && 678 res_counter_check_under_limit(&mem->memsw)) 679 return true; 680 } else 681 if (res_counter_check_under_limit(&mem->res)) 682 return true; 683 return false; 684 } 685 686 static unsigned int get_swappiness(struct mem_cgroup *memcg) 687 { 688 struct cgroup *cgrp = memcg->css.cgroup; 689 unsigned int swappiness; 690 691 /* root ? */ 692 if (cgrp->parent == NULL) 693 return vm_swappiness; 694 695 spin_lock(&memcg->reclaim_param_lock); 696 swappiness = memcg->swappiness; 697 spin_unlock(&memcg->reclaim_param_lock); 698 699 return swappiness; 700 } 701 702 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) 703 { 704 int *val = data; 705 (*val)++; 706 return 0; 707 } 708 709 /** 710 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode. 711 * @memcg: The memory cgroup that went over limit 712 * @p: Task that is going to be killed 713 * 714 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 715 * enabled 716 */ 717 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 718 { 719 struct cgroup *task_cgrp; 720 struct cgroup *mem_cgrp; 721 /* 722 * Need a buffer in BSS, can't rely on allocations. The code relies 723 * on the assumption that OOM is serialized for memory controller. 724 * If this assumption is broken, revisit this code. 725 */ 726 static char memcg_name[PATH_MAX]; 727 int ret; 728 729 if (!memcg) 730 return; 731 732 733 rcu_read_lock(); 734 735 mem_cgrp = memcg->css.cgroup; 736 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 737 738 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 739 if (ret < 0) { 740 /* 741 * Unfortunately, we are unable to convert to a useful name 742 * But we'll still print out the usage information 743 */ 744 rcu_read_unlock(); 745 goto done; 746 } 747 rcu_read_unlock(); 748 749 printk(KERN_INFO "Task in %s killed", memcg_name); 750 751 rcu_read_lock(); 752 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 753 if (ret < 0) { 754 rcu_read_unlock(); 755 goto done; 756 } 757 rcu_read_unlock(); 758 759 /* 760 * Continues from above, so we don't need an KERN_ level 761 */ 762 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 763 done: 764 765 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 766 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 767 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 768 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 769 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 770 "failcnt %llu\n", 771 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 772 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 773 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 774 } 775 776 /* 777 * This function returns the number of memcg under hierarchy tree. Returns 778 * 1(self count) if no children. 779 */ 780 static int mem_cgroup_count_children(struct mem_cgroup *mem) 781 { 782 int num = 0; 783 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); 784 return num; 785 } 786 787 /* 788 * Visit the first child (need not be the first child as per the ordering 789 * of the cgroup list, since we track last_scanned_child) of @mem and use 790 * that to reclaim free pages from. 791 */ 792 static struct mem_cgroup * 793 mem_cgroup_select_victim(struct mem_cgroup *root_mem) 794 { 795 struct mem_cgroup *ret = NULL; 796 struct cgroup_subsys_state *css; 797 int nextid, found; 798 799 if (!root_mem->use_hierarchy) { 800 css_get(&root_mem->css); 801 ret = root_mem; 802 } 803 804 while (!ret) { 805 rcu_read_lock(); 806 nextid = root_mem->last_scanned_child + 1; 807 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 808 &found); 809 if (css && css_tryget(css)) 810 ret = container_of(css, struct mem_cgroup, css); 811 812 rcu_read_unlock(); 813 /* Updates scanning parameter */ 814 spin_lock(&root_mem->reclaim_param_lock); 815 if (!css) { 816 /* this means start scan from ID:1 */ 817 root_mem->last_scanned_child = 0; 818 } else 819 root_mem->last_scanned_child = found; 820 spin_unlock(&root_mem->reclaim_param_lock); 821 } 822 823 return ret; 824 } 825 826 /* 827 * Scan the hierarchy if needed to reclaim memory. We remember the last child 828 * we reclaimed from, so that we don't end up penalizing one child extensively 829 * based on its position in the children list. 830 * 831 * root_mem is the original ancestor that we've been reclaim from. 832 * 833 * We give up and return to the caller when we visit root_mem twice. 834 * (other groups can be removed while we're walking....) 835 * 836 * If shrink==true, for avoiding to free too much, this returns immedieately. 837 */ 838 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 839 gfp_t gfp_mask, bool noswap, bool shrink) 840 { 841 struct mem_cgroup *victim; 842 int ret, total = 0; 843 int loop = 0; 844 845 while (loop < 2) { 846 victim = mem_cgroup_select_victim(root_mem); 847 if (victim == root_mem) 848 loop++; 849 if (!mem_cgroup_local_usage(&victim->stat)) { 850 /* this cgroup's local usage == 0 */ 851 css_put(&victim->css); 852 continue; 853 } 854 /* we use swappiness of local cgroup */ 855 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap, 856 get_swappiness(victim)); 857 css_put(&victim->css); 858 /* 859 * At shrinking usage, we can't check we should stop here or 860 * reclaim more. It's depends on callers. last_scanned_child 861 * will work enough for keeping fairness under tree. 862 */ 863 if (shrink) 864 return ret; 865 total += ret; 866 if (mem_cgroup_check_under_limit(root_mem)) 867 return 1 + total; 868 } 869 return total; 870 } 871 872 bool mem_cgroup_oom_called(struct task_struct *task) 873 { 874 bool ret = false; 875 struct mem_cgroup *mem; 876 struct mm_struct *mm; 877 878 rcu_read_lock(); 879 mm = task->mm; 880 if (!mm) 881 mm = &init_mm; 882 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 883 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) 884 ret = true; 885 rcu_read_unlock(); 886 return ret; 887 } 888 889 static int record_last_oom_cb(struct mem_cgroup *mem, void *data) 890 { 891 mem->last_oom_jiffies = jiffies; 892 return 0; 893 } 894 895 static void record_last_oom(struct mem_cgroup *mem) 896 { 897 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb); 898 } 899 900 901 /* 902 * Unlike exported interface, "oom" parameter is added. if oom==true, 903 * oom-killer can be invoked. 904 */ 905 static int __mem_cgroup_try_charge(struct mm_struct *mm, 906 gfp_t gfp_mask, struct mem_cgroup **memcg, 907 bool oom) 908 { 909 struct mem_cgroup *mem, *mem_over_limit; 910 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 911 struct res_counter *fail_res; 912 913 if (unlikely(test_thread_flag(TIF_MEMDIE))) { 914 /* Don't account this! */ 915 *memcg = NULL; 916 return 0; 917 } 918 919 /* 920 * We always charge the cgroup the mm_struct belongs to. 921 * The mm_struct's mem_cgroup changes on task migration if the 922 * thread group leader migrates. It's possible that mm is not 923 * set, if so charge the init_mm (happens for pagecache usage). 924 */ 925 mem = *memcg; 926 if (likely(!mem)) { 927 mem = try_get_mem_cgroup_from_mm(mm); 928 *memcg = mem; 929 } else { 930 css_get(&mem->css); 931 } 932 if (unlikely(!mem)) 933 return 0; 934 935 VM_BUG_ON(!mem || mem_cgroup_is_obsolete(mem)); 936 937 while (1) { 938 int ret; 939 bool noswap = false; 940 941 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res); 942 if (likely(!ret)) { 943 if (!do_swap_account) 944 break; 945 ret = res_counter_charge(&mem->memsw, PAGE_SIZE, 946 &fail_res); 947 if (likely(!ret)) 948 break; 949 /* mem+swap counter fails */ 950 res_counter_uncharge(&mem->res, PAGE_SIZE); 951 noswap = true; 952 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 953 memsw); 954 } else 955 /* mem counter fails */ 956 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 957 res); 958 959 if (!(gfp_mask & __GFP_WAIT)) 960 goto nomem; 961 962 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, 963 noswap, false); 964 if (ret) 965 continue; 966 967 /* 968 * try_to_free_mem_cgroup_pages() might not give us a full 969 * picture of reclaim. Some pages are reclaimed and might be 970 * moved to swap cache or just unmapped from the cgroup. 971 * Check the limit again to see if the reclaim reduced the 972 * current usage of the cgroup before giving up 973 * 974 */ 975 if (mem_cgroup_check_under_limit(mem_over_limit)) 976 continue; 977 978 if (!nr_retries--) { 979 if (oom) { 980 mutex_lock(&memcg_tasklist); 981 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); 982 mutex_unlock(&memcg_tasklist); 983 record_last_oom(mem_over_limit); 984 } 985 goto nomem; 986 } 987 } 988 return 0; 989 nomem: 990 css_put(&mem->css); 991 return -ENOMEM; 992 } 993 994 995 /* 996 * A helper function to get mem_cgroup from ID. must be called under 997 * rcu_read_lock(). The caller must check css_is_removed() or some if 998 * it's concern. (dropping refcnt from swap can be called against removed 999 * memcg.) 1000 */ 1001 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 1002 { 1003 struct cgroup_subsys_state *css; 1004 1005 /* ID 0 is unused ID */ 1006 if (!id) 1007 return NULL; 1008 css = css_lookup(&mem_cgroup_subsys, id); 1009 if (!css) 1010 return NULL; 1011 return container_of(css, struct mem_cgroup, css); 1012 } 1013 1014 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) 1015 { 1016 struct mem_cgroup *mem; 1017 struct page_cgroup *pc; 1018 unsigned short id; 1019 swp_entry_t ent; 1020 1021 VM_BUG_ON(!PageLocked(page)); 1022 1023 if (!PageSwapCache(page)) 1024 return NULL; 1025 1026 pc = lookup_page_cgroup(page); 1027 lock_page_cgroup(pc); 1028 if (PageCgroupUsed(pc)) { 1029 mem = pc->mem_cgroup; 1030 if (mem && !css_tryget(&mem->css)) 1031 mem = NULL; 1032 } else { 1033 ent.val = page_private(page); 1034 id = lookup_swap_cgroup(ent); 1035 rcu_read_lock(); 1036 mem = mem_cgroup_lookup(id); 1037 if (mem && !css_tryget(&mem->css)) 1038 mem = NULL; 1039 rcu_read_unlock(); 1040 } 1041 unlock_page_cgroup(pc); 1042 return mem; 1043 } 1044 1045 /* 1046 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be 1047 * USED state. If already USED, uncharge and return. 1048 */ 1049 1050 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 1051 struct page_cgroup *pc, 1052 enum charge_type ctype) 1053 { 1054 /* try_charge() can return NULL to *memcg, taking care of it. */ 1055 if (!mem) 1056 return; 1057 1058 lock_page_cgroup(pc); 1059 if (unlikely(PageCgroupUsed(pc))) { 1060 unlock_page_cgroup(pc); 1061 res_counter_uncharge(&mem->res, PAGE_SIZE); 1062 if (do_swap_account) 1063 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1064 css_put(&mem->css); 1065 return; 1066 } 1067 pc->mem_cgroup = mem; 1068 smp_wmb(); 1069 pc->flags = pcg_default_flags[ctype]; 1070 1071 mem_cgroup_charge_statistics(mem, pc, true); 1072 1073 unlock_page_cgroup(pc); 1074 } 1075 1076 /** 1077 * mem_cgroup_move_account - move account of the page 1078 * @pc: page_cgroup of the page. 1079 * @from: mem_cgroup which the page is moved from. 1080 * @to: mem_cgroup which the page is moved to. @from != @to. 1081 * 1082 * The caller must confirm following. 1083 * - page is not on LRU (isolate_page() is useful.) 1084 * 1085 * returns 0 at success, 1086 * returns -EBUSY when lock is busy or "pc" is unstable. 1087 * 1088 * This function does "uncharge" from old cgroup but doesn't do "charge" to 1089 * new cgroup. It should be done by a caller. 1090 */ 1091 1092 static int mem_cgroup_move_account(struct page_cgroup *pc, 1093 struct mem_cgroup *from, struct mem_cgroup *to) 1094 { 1095 struct mem_cgroup_per_zone *from_mz, *to_mz; 1096 int nid, zid; 1097 int ret = -EBUSY; 1098 1099 VM_BUG_ON(from == to); 1100 VM_BUG_ON(PageLRU(pc->page)); 1101 1102 nid = page_cgroup_nid(pc); 1103 zid = page_cgroup_zid(pc); 1104 from_mz = mem_cgroup_zoneinfo(from, nid, zid); 1105 to_mz = mem_cgroup_zoneinfo(to, nid, zid); 1106 1107 if (!trylock_page_cgroup(pc)) 1108 return ret; 1109 1110 if (!PageCgroupUsed(pc)) 1111 goto out; 1112 1113 if (pc->mem_cgroup != from) 1114 goto out; 1115 1116 res_counter_uncharge(&from->res, PAGE_SIZE); 1117 mem_cgroup_charge_statistics(from, pc, false); 1118 if (do_swap_account) 1119 res_counter_uncharge(&from->memsw, PAGE_SIZE); 1120 css_put(&from->css); 1121 1122 css_get(&to->css); 1123 pc->mem_cgroup = to; 1124 mem_cgroup_charge_statistics(to, pc, true); 1125 ret = 0; 1126 out: 1127 unlock_page_cgroup(pc); 1128 return ret; 1129 } 1130 1131 /* 1132 * move charges to its parent. 1133 */ 1134 1135 static int mem_cgroup_move_parent(struct page_cgroup *pc, 1136 struct mem_cgroup *child, 1137 gfp_t gfp_mask) 1138 { 1139 struct page *page = pc->page; 1140 struct cgroup *cg = child->css.cgroup; 1141 struct cgroup *pcg = cg->parent; 1142 struct mem_cgroup *parent; 1143 int ret; 1144 1145 /* Is ROOT ? */ 1146 if (!pcg) 1147 return -EINVAL; 1148 1149 1150 parent = mem_cgroup_from_cont(pcg); 1151 1152 1153 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); 1154 if (ret || !parent) 1155 return ret; 1156 1157 if (!get_page_unless_zero(page)) { 1158 ret = -EBUSY; 1159 goto uncharge; 1160 } 1161 1162 ret = isolate_lru_page(page); 1163 1164 if (ret) 1165 goto cancel; 1166 1167 ret = mem_cgroup_move_account(pc, child, parent); 1168 1169 putback_lru_page(page); 1170 if (!ret) { 1171 put_page(page); 1172 /* drop extra refcnt by try_charge() */ 1173 css_put(&parent->css); 1174 return 0; 1175 } 1176 1177 cancel: 1178 put_page(page); 1179 uncharge: 1180 /* drop extra refcnt by try_charge() */ 1181 css_put(&parent->css); 1182 /* uncharge if move fails */ 1183 res_counter_uncharge(&parent->res, PAGE_SIZE); 1184 if (do_swap_account) 1185 res_counter_uncharge(&parent->memsw, PAGE_SIZE); 1186 return ret; 1187 } 1188 1189 /* 1190 * Charge the memory controller for page usage. 1191 * Return 1192 * 0 if the charge was successful 1193 * < 0 if the cgroup is over its limit 1194 */ 1195 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 1196 gfp_t gfp_mask, enum charge_type ctype, 1197 struct mem_cgroup *memcg) 1198 { 1199 struct mem_cgroup *mem; 1200 struct page_cgroup *pc; 1201 int ret; 1202 1203 pc = lookup_page_cgroup(page); 1204 /* can happen at boot */ 1205 if (unlikely(!pc)) 1206 return 0; 1207 prefetchw(pc); 1208 1209 mem = memcg; 1210 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); 1211 if (ret || !mem) 1212 return ret; 1213 1214 __mem_cgroup_commit_charge(mem, pc, ctype); 1215 return 0; 1216 } 1217 1218 int mem_cgroup_newpage_charge(struct page *page, 1219 struct mm_struct *mm, gfp_t gfp_mask) 1220 { 1221 if (mem_cgroup_disabled()) 1222 return 0; 1223 if (PageCompound(page)) 1224 return 0; 1225 /* 1226 * If already mapped, we don't have to account. 1227 * If page cache, page->mapping has address_space. 1228 * But page->mapping may have out-of-use anon_vma pointer, 1229 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping 1230 * is NULL. 1231 */ 1232 if (page_mapped(page) || (page->mapping && !PageAnon(page))) 1233 return 0; 1234 if (unlikely(!mm)) 1235 mm = &init_mm; 1236 return mem_cgroup_charge_common(page, mm, gfp_mask, 1237 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); 1238 } 1239 1240 static void 1241 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1242 enum charge_type ctype); 1243 1244 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 1245 gfp_t gfp_mask) 1246 { 1247 struct mem_cgroup *mem = NULL; 1248 int ret; 1249 1250 if (mem_cgroup_disabled()) 1251 return 0; 1252 if (PageCompound(page)) 1253 return 0; 1254 /* 1255 * Corner case handling. This is called from add_to_page_cache() 1256 * in usual. But some FS (shmem) precharges this page before calling it 1257 * and call add_to_page_cache() with GFP_NOWAIT. 1258 * 1259 * For GFP_NOWAIT case, the page may be pre-charged before calling 1260 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 1261 * charge twice. (It works but has to pay a bit larger cost.) 1262 * And when the page is SwapCache, it should take swap information 1263 * into account. This is under lock_page() now. 1264 */ 1265 if (!(gfp_mask & __GFP_WAIT)) { 1266 struct page_cgroup *pc; 1267 1268 1269 pc = lookup_page_cgroup(page); 1270 if (!pc) 1271 return 0; 1272 lock_page_cgroup(pc); 1273 if (PageCgroupUsed(pc)) { 1274 unlock_page_cgroup(pc); 1275 return 0; 1276 } 1277 unlock_page_cgroup(pc); 1278 } 1279 1280 if (unlikely(!mm && !mem)) 1281 mm = &init_mm; 1282 1283 if (page_is_file_cache(page)) 1284 return mem_cgroup_charge_common(page, mm, gfp_mask, 1285 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); 1286 1287 /* shmem */ 1288 if (PageSwapCache(page)) { 1289 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1290 if (!ret) 1291 __mem_cgroup_commit_charge_swapin(page, mem, 1292 MEM_CGROUP_CHARGE_TYPE_SHMEM); 1293 } else 1294 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 1295 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); 1296 1297 return ret; 1298 } 1299 1300 /* 1301 * While swap-in, try_charge -> commit or cancel, the page is locked. 1302 * And when try_charge() successfully returns, one refcnt to memcg without 1303 * struct page_cgroup is aquired. This refcnt will be cumsumed by 1304 * "commit()" or removed by "cancel()" 1305 */ 1306 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 1307 struct page *page, 1308 gfp_t mask, struct mem_cgroup **ptr) 1309 { 1310 struct mem_cgroup *mem; 1311 int ret; 1312 1313 if (mem_cgroup_disabled()) 1314 return 0; 1315 1316 if (!do_swap_account) 1317 goto charge_cur_mm; 1318 /* 1319 * A racing thread's fault, or swapoff, may have already updated 1320 * the pte, and even removed page from swap cache: return success 1321 * to go on to do_swap_page()'s pte_same() test, which should fail. 1322 */ 1323 if (!PageSwapCache(page)) 1324 return 0; 1325 mem = try_get_mem_cgroup_from_swapcache(page); 1326 if (!mem) 1327 goto charge_cur_mm; 1328 *ptr = mem; 1329 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); 1330 /* drop extra refcnt from tryget */ 1331 css_put(&mem->css); 1332 return ret; 1333 charge_cur_mm: 1334 if (unlikely(!mm)) 1335 mm = &init_mm; 1336 return __mem_cgroup_try_charge(mm, mask, ptr, true); 1337 } 1338 1339 static void 1340 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1341 enum charge_type ctype) 1342 { 1343 struct page_cgroup *pc; 1344 1345 if (mem_cgroup_disabled()) 1346 return; 1347 if (!ptr) 1348 return; 1349 pc = lookup_page_cgroup(page); 1350 mem_cgroup_lru_del_before_commit_swapcache(page); 1351 __mem_cgroup_commit_charge(ptr, pc, ctype); 1352 mem_cgroup_lru_add_after_commit_swapcache(page); 1353 /* 1354 * Now swap is on-memory. This means this page may be 1355 * counted both as mem and swap....double count. 1356 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 1357 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 1358 * may call delete_from_swap_cache() before reach here. 1359 */ 1360 if (do_swap_account && PageSwapCache(page)) { 1361 swp_entry_t ent = {.val = page_private(page)}; 1362 unsigned short id; 1363 struct mem_cgroup *memcg; 1364 1365 id = swap_cgroup_record(ent, 0); 1366 rcu_read_lock(); 1367 memcg = mem_cgroup_lookup(id); 1368 if (memcg) { 1369 /* 1370 * This recorded memcg can be obsolete one. So, avoid 1371 * calling css_tryget 1372 */ 1373 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1374 mem_cgroup_put(memcg); 1375 } 1376 rcu_read_unlock(); 1377 } 1378 /* add this page(page_cgroup) to the LRU we want. */ 1379 1380 } 1381 1382 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 1383 { 1384 __mem_cgroup_commit_charge_swapin(page, ptr, 1385 MEM_CGROUP_CHARGE_TYPE_MAPPED); 1386 } 1387 1388 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 1389 { 1390 if (mem_cgroup_disabled()) 1391 return; 1392 if (!mem) 1393 return; 1394 res_counter_uncharge(&mem->res, PAGE_SIZE); 1395 if (do_swap_account) 1396 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1397 css_put(&mem->css); 1398 } 1399 1400 1401 /* 1402 * uncharge if !page_mapped(page) 1403 */ 1404 static struct mem_cgroup * 1405 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 1406 { 1407 struct page_cgroup *pc; 1408 struct mem_cgroup *mem = NULL; 1409 struct mem_cgroup_per_zone *mz; 1410 1411 if (mem_cgroup_disabled()) 1412 return NULL; 1413 1414 if (PageSwapCache(page)) 1415 return NULL; 1416 1417 /* 1418 * Check if our page_cgroup is valid 1419 */ 1420 pc = lookup_page_cgroup(page); 1421 if (unlikely(!pc || !PageCgroupUsed(pc))) 1422 return NULL; 1423 1424 lock_page_cgroup(pc); 1425 1426 mem = pc->mem_cgroup; 1427 1428 if (!PageCgroupUsed(pc)) 1429 goto unlock_out; 1430 1431 switch (ctype) { 1432 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 1433 if (page_mapped(page)) 1434 goto unlock_out; 1435 break; 1436 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 1437 if (!PageAnon(page)) { /* Shared memory */ 1438 if (page->mapping && !page_is_file_cache(page)) 1439 goto unlock_out; 1440 } else if (page_mapped(page)) /* Anon */ 1441 goto unlock_out; 1442 break; 1443 default: 1444 break; 1445 } 1446 1447 res_counter_uncharge(&mem->res, PAGE_SIZE); 1448 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) 1449 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1450 mem_cgroup_charge_statistics(mem, pc, false); 1451 1452 ClearPageCgroupUsed(pc); 1453 /* 1454 * pc->mem_cgroup is not cleared here. It will be accessed when it's 1455 * freed from LRU. This is safe because uncharged page is expected not 1456 * to be reused (freed soon). Exception is SwapCache, it's handled by 1457 * special functions. 1458 */ 1459 1460 mz = page_cgroup_zoneinfo(pc); 1461 unlock_page_cgroup(pc); 1462 1463 /* at swapout, this memcg will be accessed to record to swap */ 1464 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 1465 css_put(&mem->css); 1466 1467 return mem; 1468 1469 unlock_out: 1470 unlock_page_cgroup(pc); 1471 return NULL; 1472 } 1473 1474 void mem_cgroup_uncharge_page(struct page *page) 1475 { 1476 /* early check. */ 1477 if (page_mapped(page)) 1478 return; 1479 if (page->mapping && !PageAnon(page)) 1480 return; 1481 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 1482 } 1483 1484 void mem_cgroup_uncharge_cache_page(struct page *page) 1485 { 1486 VM_BUG_ON(page_mapped(page)); 1487 VM_BUG_ON(page->mapping); 1488 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 1489 } 1490 1491 /* 1492 * called from __delete_from_swap_cache() and drop "page" account. 1493 * memcg information is recorded to swap_cgroup of "ent" 1494 */ 1495 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) 1496 { 1497 struct mem_cgroup *memcg; 1498 1499 memcg = __mem_cgroup_uncharge_common(page, 1500 MEM_CGROUP_CHARGE_TYPE_SWAPOUT); 1501 /* record memcg information */ 1502 if (do_swap_account && memcg) { 1503 swap_cgroup_record(ent, css_id(&memcg->css)); 1504 mem_cgroup_get(memcg); 1505 } 1506 if (memcg) 1507 css_put(&memcg->css); 1508 } 1509 1510 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 1511 /* 1512 * called from swap_entry_free(). remove record in swap_cgroup and 1513 * uncharge "memsw" account. 1514 */ 1515 void mem_cgroup_uncharge_swap(swp_entry_t ent) 1516 { 1517 struct mem_cgroup *memcg; 1518 unsigned short id; 1519 1520 if (!do_swap_account) 1521 return; 1522 1523 id = swap_cgroup_record(ent, 0); 1524 rcu_read_lock(); 1525 memcg = mem_cgroup_lookup(id); 1526 if (memcg) { 1527 /* 1528 * We uncharge this because swap is freed. 1529 * This memcg can be obsolete one. We avoid calling css_tryget 1530 */ 1531 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1532 mem_cgroup_put(memcg); 1533 } 1534 rcu_read_unlock(); 1535 } 1536 #endif 1537 1538 /* 1539 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 1540 * page belongs to. 1541 */ 1542 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) 1543 { 1544 struct page_cgroup *pc; 1545 struct mem_cgroup *mem = NULL; 1546 int ret = 0; 1547 1548 if (mem_cgroup_disabled()) 1549 return 0; 1550 1551 pc = lookup_page_cgroup(page); 1552 lock_page_cgroup(pc); 1553 if (PageCgroupUsed(pc)) { 1554 mem = pc->mem_cgroup; 1555 css_get(&mem->css); 1556 } 1557 unlock_page_cgroup(pc); 1558 1559 if (mem) { 1560 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); 1561 css_put(&mem->css); 1562 } 1563 *ptr = mem; 1564 return ret; 1565 } 1566 1567 /* remove redundant charge if migration failed*/ 1568 void mem_cgroup_end_migration(struct mem_cgroup *mem, 1569 struct page *oldpage, struct page *newpage) 1570 { 1571 struct page *target, *unused; 1572 struct page_cgroup *pc; 1573 enum charge_type ctype; 1574 1575 if (!mem) 1576 return; 1577 1578 /* at migration success, oldpage->mapping is NULL. */ 1579 if (oldpage->mapping) { 1580 target = oldpage; 1581 unused = NULL; 1582 } else { 1583 target = newpage; 1584 unused = oldpage; 1585 } 1586 1587 if (PageAnon(target)) 1588 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 1589 else if (page_is_file_cache(target)) 1590 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 1591 else 1592 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 1593 1594 /* unused page is not on radix-tree now. */ 1595 if (unused) 1596 __mem_cgroup_uncharge_common(unused, ctype); 1597 1598 pc = lookup_page_cgroup(target); 1599 /* 1600 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. 1601 * So, double-counting is effectively avoided. 1602 */ 1603 __mem_cgroup_commit_charge(mem, pc, ctype); 1604 1605 /* 1606 * Both of oldpage and newpage are still under lock_page(). 1607 * Then, we don't have to care about race in radix-tree. 1608 * But we have to be careful that this page is unmapped or not. 1609 * 1610 * There is a case for !page_mapped(). At the start of 1611 * migration, oldpage was mapped. But now, it's zapped. 1612 * But we know *target* page is not freed/reused under us. 1613 * mem_cgroup_uncharge_page() does all necessary checks. 1614 */ 1615 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) 1616 mem_cgroup_uncharge_page(target); 1617 } 1618 1619 /* 1620 * A call to try to shrink memory usage on charge failure at shmem's swapin. 1621 * Calling hierarchical_reclaim is not enough because we should update 1622 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. 1623 * Moreover considering hierarchy, we should reclaim from the mem_over_limit, 1624 * not from the memcg which this page would be charged to. 1625 * try_charge_swapin does all of these works properly. 1626 */ 1627 int mem_cgroup_shmem_charge_fallback(struct page *page, 1628 struct mm_struct *mm, 1629 gfp_t gfp_mask) 1630 { 1631 struct mem_cgroup *mem = NULL; 1632 int ret; 1633 1634 if (mem_cgroup_disabled()) 1635 return 0; 1636 1637 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1638 if (!ret) 1639 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ 1640 1641 return ret; 1642 } 1643 1644 static DEFINE_MUTEX(set_limit_mutex); 1645 1646 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 1647 unsigned long long val) 1648 { 1649 int retry_count; 1650 int progress; 1651 u64 memswlimit; 1652 int ret = 0; 1653 int children = mem_cgroup_count_children(memcg); 1654 u64 curusage, oldusage; 1655 1656 /* 1657 * For keeping hierarchical_reclaim simple, how long we should retry 1658 * is depends on callers. We set our retry-count to be function 1659 * of # of children which we should visit in this loop. 1660 */ 1661 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 1662 1663 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 1664 1665 while (retry_count) { 1666 if (signal_pending(current)) { 1667 ret = -EINTR; 1668 break; 1669 } 1670 /* 1671 * Rather than hide all in some function, I do this in 1672 * open coded manner. You see what this really does. 1673 * We have to guarantee mem->res.limit < mem->memsw.limit. 1674 */ 1675 mutex_lock(&set_limit_mutex); 1676 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1677 if (memswlimit < val) { 1678 ret = -EINVAL; 1679 mutex_unlock(&set_limit_mutex); 1680 break; 1681 } 1682 ret = res_counter_set_limit(&memcg->res, val); 1683 mutex_unlock(&set_limit_mutex); 1684 1685 if (!ret) 1686 break; 1687 1688 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, 1689 false, true); 1690 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 1691 /* Usage is reduced ? */ 1692 if (curusage >= oldusage) 1693 retry_count--; 1694 else 1695 oldusage = curusage; 1696 } 1697 1698 return ret; 1699 } 1700 1701 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 1702 unsigned long long val) 1703 { 1704 int retry_count; 1705 u64 memlimit, oldusage, curusage; 1706 int children = mem_cgroup_count_children(memcg); 1707 int ret = -EBUSY; 1708 1709 if (!do_swap_account) 1710 return -EINVAL; 1711 /* see mem_cgroup_resize_res_limit */ 1712 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 1713 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1714 while (retry_count) { 1715 if (signal_pending(current)) { 1716 ret = -EINTR; 1717 break; 1718 } 1719 /* 1720 * Rather than hide all in some function, I do this in 1721 * open coded manner. You see what this really does. 1722 * We have to guarantee mem->res.limit < mem->memsw.limit. 1723 */ 1724 mutex_lock(&set_limit_mutex); 1725 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1726 if (memlimit > val) { 1727 ret = -EINVAL; 1728 mutex_unlock(&set_limit_mutex); 1729 break; 1730 } 1731 ret = res_counter_set_limit(&memcg->memsw, val); 1732 mutex_unlock(&set_limit_mutex); 1733 1734 if (!ret) 1735 break; 1736 1737 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true); 1738 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1739 /* Usage is reduced ? */ 1740 if (curusage >= oldusage) 1741 retry_count--; 1742 else 1743 oldusage = curusage; 1744 } 1745 return ret; 1746 } 1747 1748 /* 1749 * This routine traverse page_cgroup in given list and drop them all. 1750 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 1751 */ 1752 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 1753 int node, int zid, enum lru_list lru) 1754 { 1755 struct zone *zone; 1756 struct mem_cgroup_per_zone *mz; 1757 struct page_cgroup *pc, *busy; 1758 unsigned long flags, loop; 1759 struct list_head *list; 1760 int ret = 0; 1761 1762 zone = &NODE_DATA(node)->node_zones[zid]; 1763 mz = mem_cgroup_zoneinfo(mem, node, zid); 1764 list = &mz->lists[lru]; 1765 1766 loop = MEM_CGROUP_ZSTAT(mz, lru); 1767 /* give some margin against EBUSY etc...*/ 1768 loop += 256; 1769 busy = NULL; 1770 while (loop--) { 1771 ret = 0; 1772 spin_lock_irqsave(&zone->lru_lock, flags); 1773 if (list_empty(list)) { 1774 spin_unlock_irqrestore(&zone->lru_lock, flags); 1775 break; 1776 } 1777 pc = list_entry(list->prev, struct page_cgroup, lru); 1778 if (busy == pc) { 1779 list_move(&pc->lru, list); 1780 busy = 0; 1781 spin_unlock_irqrestore(&zone->lru_lock, flags); 1782 continue; 1783 } 1784 spin_unlock_irqrestore(&zone->lru_lock, flags); 1785 1786 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); 1787 if (ret == -ENOMEM) 1788 break; 1789 1790 if (ret == -EBUSY || ret == -EINVAL) { 1791 /* found lock contention or "pc" is obsolete. */ 1792 busy = pc; 1793 cond_resched(); 1794 } else 1795 busy = NULL; 1796 } 1797 1798 if (!ret && !list_empty(list)) 1799 return -EBUSY; 1800 return ret; 1801 } 1802 1803 /* 1804 * make mem_cgroup's charge to be 0 if there is no task. 1805 * This enables deleting this mem_cgroup. 1806 */ 1807 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 1808 { 1809 int ret; 1810 int node, zid, shrink; 1811 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1812 struct cgroup *cgrp = mem->css.cgroup; 1813 1814 css_get(&mem->css); 1815 1816 shrink = 0; 1817 /* should free all ? */ 1818 if (free_all) 1819 goto try_to_free; 1820 move_account: 1821 while (mem->res.usage > 0) { 1822 ret = -EBUSY; 1823 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 1824 goto out; 1825 ret = -EINTR; 1826 if (signal_pending(current)) 1827 goto out; 1828 /* This is for making all *used* pages to be on LRU. */ 1829 lru_add_drain_all(); 1830 ret = 0; 1831 for_each_node_state(node, N_HIGH_MEMORY) { 1832 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 1833 enum lru_list l; 1834 for_each_lru(l) { 1835 ret = mem_cgroup_force_empty_list(mem, 1836 node, zid, l); 1837 if (ret) 1838 break; 1839 } 1840 } 1841 if (ret) 1842 break; 1843 } 1844 /* it seems parent cgroup doesn't have enough mem */ 1845 if (ret == -ENOMEM) 1846 goto try_to_free; 1847 cond_resched(); 1848 } 1849 ret = 0; 1850 out: 1851 css_put(&mem->css); 1852 return ret; 1853 1854 try_to_free: 1855 /* returns EBUSY if there is a task or if we come here twice. */ 1856 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 1857 ret = -EBUSY; 1858 goto out; 1859 } 1860 /* we call try-to-free pages for make this cgroup empty */ 1861 lru_add_drain_all(); 1862 /* try to free all pages in this cgroup */ 1863 shrink = 1; 1864 while (nr_retries && mem->res.usage > 0) { 1865 int progress; 1866 1867 if (signal_pending(current)) { 1868 ret = -EINTR; 1869 goto out; 1870 } 1871 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 1872 false, get_swappiness(mem)); 1873 if (!progress) { 1874 nr_retries--; 1875 /* maybe some writeback is necessary */ 1876 congestion_wait(WRITE, HZ/10); 1877 } 1878 1879 } 1880 lru_add_drain(); 1881 /* try move_account...there may be some *locked* pages. */ 1882 if (mem->res.usage) 1883 goto move_account; 1884 ret = 0; 1885 goto out; 1886 } 1887 1888 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 1889 { 1890 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 1891 } 1892 1893 1894 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 1895 { 1896 return mem_cgroup_from_cont(cont)->use_hierarchy; 1897 } 1898 1899 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 1900 u64 val) 1901 { 1902 int retval = 0; 1903 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 1904 struct cgroup *parent = cont->parent; 1905 struct mem_cgroup *parent_mem = NULL; 1906 1907 if (parent) 1908 parent_mem = mem_cgroup_from_cont(parent); 1909 1910 cgroup_lock(); 1911 /* 1912 * If parent's use_hiearchy is set, we can't make any modifications 1913 * in the child subtrees. If it is unset, then the change can 1914 * occur, provided the current cgroup has no children. 1915 * 1916 * For the root cgroup, parent_mem is NULL, we allow value to be 1917 * set if there are no children. 1918 */ 1919 if ((!parent_mem || !parent_mem->use_hierarchy) && 1920 (val == 1 || val == 0)) { 1921 if (list_empty(&cont->children)) 1922 mem->use_hierarchy = val; 1923 else 1924 retval = -EBUSY; 1925 } else 1926 retval = -EINVAL; 1927 cgroup_unlock(); 1928 1929 return retval; 1930 } 1931 1932 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 1933 { 1934 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 1935 u64 val = 0; 1936 int type, name; 1937 1938 type = MEMFILE_TYPE(cft->private); 1939 name = MEMFILE_ATTR(cft->private); 1940 switch (type) { 1941 case _MEM: 1942 val = res_counter_read_u64(&mem->res, name); 1943 break; 1944 case _MEMSWAP: 1945 if (do_swap_account) 1946 val = res_counter_read_u64(&mem->memsw, name); 1947 break; 1948 default: 1949 BUG(); 1950 break; 1951 } 1952 return val; 1953 } 1954 /* 1955 * The user of this function is... 1956 * RES_LIMIT. 1957 */ 1958 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 1959 const char *buffer) 1960 { 1961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 1962 int type, name; 1963 unsigned long long val; 1964 int ret; 1965 1966 type = MEMFILE_TYPE(cft->private); 1967 name = MEMFILE_ATTR(cft->private); 1968 switch (name) { 1969 case RES_LIMIT: 1970 /* This function does all necessary parse...reuse it */ 1971 ret = res_counter_memparse_write_strategy(buffer, &val); 1972 if (ret) 1973 break; 1974 if (type == _MEM) 1975 ret = mem_cgroup_resize_limit(memcg, val); 1976 else 1977 ret = mem_cgroup_resize_memsw_limit(memcg, val); 1978 break; 1979 default: 1980 ret = -EINVAL; /* should be BUG() ? */ 1981 break; 1982 } 1983 return ret; 1984 } 1985 1986 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 1987 unsigned long long *mem_limit, unsigned long long *memsw_limit) 1988 { 1989 struct cgroup *cgroup; 1990 unsigned long long min_limit, min_memsw_limit, tmp; 1991 1992 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1993 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1994 cgroup = memcg->css.cgroup; 1995 if (!memcg->use_hierarchy) 1996 goto out; 1997 1998 while (cgroup->parent) { 1999 cgroup = cgroup->parent; 2000 memcg = mem_cgroup_from_cont(cgroup); 2001 if (!memcg->use_hierarchy) 2002 break; 2003 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 2004 min_limit = min(min_limit, tmp); 2005 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2006 min_memsw_limit = min(min_memsw_limit, tmp); 2007 } 2008 out: 2009 *mem_limit = min_limit; 2010 *memsw_limit = min_memsw_limit; 2011 return; 2012 } 2013 2014 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 2015 { 2016 struct mem_cgroup *mem; 2017 int type, name; 2018 2019 mem = mem_cgroup_from_cont(cont); 2020 type = MEMFILE_TYPE(event); 2021 name = MEMFILE_ATTR(event); 2022 switch (name) { 2023 case RES_MAX_USAGE: 2024 if (type == _MEM) 2025 res_counter_reset_max(&mem->res); 2026 else 2027 res_counter_reset_max(&mem->memsw); 2028 break; 2029 case RES_FAILCNT: 2030 if (type == _MEM) 2031 res_counter_reset_failcnt(&mem->res); 2032 else 2033 res_counter_reset_failcnt(&mem->memsw); 2034 break; 2035 } 2036 return 0; 2037 } 2038 2039 2040 /* For read statistics */ 2041 enum { 2042 MCS_CACHE, 2043 MCS_RSS, 2044 MCS_PGPGIN, 2045 MCS_PGPGOUT, 2046 MCS_INACTIVE_ANON, 2047 MCS_ACTIVE_ANON, 2048 MCS_INACTIVE_FILE, 2049 MCS_ACTIVE_FILE, 2050 MCS_UNEVICTABLE, 2051 NR_MCS_STAT, 2052 }; 2053 2054 struct mcs_total_stat { 2055 s64 stat[NR_MCS_STAT]; 2056 }; 2057 2058 struct { 2059 char *local_name; 2060 char *total_name; 2061 } memcg_stat_strings[NR_MCS_STAT] = { 2062 {"cache", "total_cache"}, 2063 {"rss", "total_rss"}, 2064 {"pgpgin", "total_pgpgin"}, 2065 {"pgpgout", "total_pgpgout"}, 2066 {"inactive_anon", "total_inactive_anon"}, 2067 {"active_anon", "total_active_anon"}, 2068 {"inactive_file", "total_inactive_file"}, 2069 {"active_file", "total_active_file"}, 2070 {"unevictable", "total_unevictable"} 2071 }; 2072 2073 2074 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) 2075 { 2076 struct mcs_total_stat *s = data; 2077 s64 val; 2078 2079 /* per cpu stat */ 2080 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE); 2081 s->stat[MCS_CACHE] += val * PAGE_SIZE; 2082 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); 2083 s->stat[MCS_RSS] += val * PAGE_SIZE; 2084 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT); 2085 s->stat[MCS_PGPGIN] += val; 2086 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT); 2087 s->stat[MCS_PGPGOUT] += val; 2088 2089 /* per zone stat */ 2090 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); 2091 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 2092 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); 2093 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 2094 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); 2095 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 2096 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); 2097 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 2098 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); 2099 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 2100 return 0; 2101 } 2102 2103 static void 2104 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 2105 { 2106 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); 2107 } 2108 2109 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 2110 struct cgroup_map_cb *cb) 2111 { 2112 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 2113 struct mcs_total_stat mystat; 2114 int i; 2115 2116 memset(&mystat, 0, sizeof(mystat)); 2117 mem_cgroup_get_local_stat(mem_cont, &mystat); 2118 2119 for (i = 0; i < NR_MCS_STAT; i++) 2120 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 2121 2122 /* Hierarchical information */ 2123 { 2124 unsigned long long limit, memsw_limit; 2125 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 2126 cb->fill(cb, "hierarchical_memory_limit", limit); 2127 if (do_swap_account) 2128 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 2129 } 2130 2131 memset(&mystat, 0, sizeof(mystat)); 2132 mem_cgroup_get_total_stat(mem_cont, &mystat); 2133 for (i = 0; i < NR_MCS_STAT; i++) 2134 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 2135 2136 2137 #ifdef CONFIG_DEBUG_VM 2138 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 2139 2140 { 2141 int nid, zid; 2142 struct mem_cgroup_per_zone *mz; 2143 unsigned long recent_rotated[2] = {0, 0}; 2144 unsigned long recent_scanned[2] = {0, 0}; 2145 2146 for_each_online_node(nid) 2147 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2148 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 2149 2150 recent_rotated[0] += 2151 mz->reclaim_stat.recent_rotated[0]; 2152 recent_rotated[1] += 2153 mz->reclaim_stat.recent_rotated[1]; 2154 recent_scanned[0] += 2155 mz->reclaim_stat.recent_scanned[0]; 2156 recent_scanned[1] += 2157 mz->reclaim_stat.recent_scanned[1]; 2158 } 2159 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 2160 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 2161 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 2162 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 2163 } 2164 #endif 2165 2166 return 0; 2167 } 2168 2169 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 2170 { 2171 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 2172 2173 return get_swappiness(memcg); 2174 } 2175 2176 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 2177 u64 val) 2178 { 2179 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 2180 struct mem_cgroup *parent; 2181 2182 if (val > 100) 2183 return -EINVAL; 2184 2185 if (cgrp->parent == NULL) 2186 return -EINVAL; 2187 2188 parent = mem_cgroup_from_cont(cgrp->parent); 2189 2190 cgroup_lock(); 2191 2192 /* If under hierarchy, only empty-root can set this value */ 2193 if ((parent->use_hierarchy) || 2194 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 2195 cgroup_unlock(); 2196 return -EINVAL; 2197 } 2198 2199 spin_lock(&memcg->reclaim_param_lock); 2200 memcg->swappiness = val; 2201 spin_unlock(&memcg->reclaim_param_lock); 2202 2203 cgroup_unlock(); 2204 2205 return 0; 2206 } 2207 2208 2209 static struct cftype mem_cgroup_files[] = { 2210 { 2211 .name = "usage_in_bytes", 2212 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 2213 .read_u64 = mem_cgroup_read, 2214 }, 2215 { 2216 .name = "max_usage_in_bytes", 2217 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 2218 .trigger = mem_cgroup_reset, 2219 .read_u64 = mem_cgroup_read, 2220 }, 2221 { 2222 .name = "limit_in_bytes", 2223 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 2224 .write_string = mem_cgroup_write, 2225 .read_u64 = mem_cgroup_read, 2226 }, 2227 { 2228 .name = "failcnt", 2229 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 2230 .trigger = mem_cgroup_reset, 2231 .read_u64 = mem_cgroup_read, 2232 }, 2233 { 2234 .name = "stat", 2235 .read_map = mem_control_stat_show, 2236 }, 2237 { 2238 .name = "force_empty", 2239 .trigger = mem_cgroup_force_empty_write, 2240 }, 2241 { 2242 .name = "use_hierarchy", 2243 .write_u64 = mem_cgroup_hierarchy_write, 2244 .read_u64 = mem_cgroup_hierarchy_read, 2245 }, 2246 { 2247 .name = "swappiness", 2248 .read_u64 = mem_cgroup_swappiness_read, 2249 .write_u64 = mem_cgroup_swappiness_write, 2250 }, 2251 }; 2252 2253 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2254 static struct cftype memsw_cgroup_files[] = { 2255 { 2256 .name = "memsw.usage_in_bytes", 2257 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 2258 .read_u64 = mem_cgroup_read, 2259 }, 2260 { 2261 .name = "memsw.max_usage_in_bytes", 2262 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 2263 .trigger = mem_cgroup_reset, 2264 .read_u64 = mem_cgroup_read, 2265 }, 2266 { 2267 .name = "memsw.limit_in_bytes", 2268 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 2269 .write_string = mem_cgroup_write, 2270 .read_u64 = mem_cgroup_read, 2271 }, 2272 { 2273 .name = "memsw.failcnt", 2274 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 2275 .trigger = mem_cgroup_reset, 2276 .read_u64 = mem_cgroup_read, 2277 }, 2278 }; 2279 2280 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 2281 { 2282 if (!do_swap_account) 2283 return 0; 2284 return cgroup_add_files(cont, ss, memsw_cgroup_files, 2285 ARRAY_SIZE(memsw_cgroup_files)); 2286 }; 2287 #else 2288 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 2289 { 2290 return 0; 2291 } 2292 #endif 2293 2294 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2295 { 2296 struct mem_cgroup_per_node *pn; 2297 struct mem_cgroup_per_zone *mz; 2298 enum lru_list l; 2299 int zone, tmp = node; 2300 /* 2301 * This routine is called against possible nodes. 2302 * But it's BUG to call kmalloc() against offline node. 2303 * 2304 * TODO: this routine can waste much memory for nodes which will 2305 * never be onlined. It's better to use memory hotplug callback 2306 * function. 2307 */ 2308 if (!node_state(node, N_NORMAL_MEMORY)) 2309 tmp = -1; 2310 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 2311 if (!pn) 2312 return 1; 2313 2314 mem->info.nodeinfo[node] = pn; 2315 memset(pn, 0, sizeof(*pn)); 2316 2317 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 2318 mz = &pn->zoneinfo[zone]; 2319 for_each_lru(l) 2320 INIT_LIST_HEAD(&mz->lists[l]); 2321 } 2322 return 0; 2323 } 2324 2325 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2326 { 2327 kfree(mem->info.nodeinfo[node]); 2328 } 2329 2330 static int mem_cgroup_size(void) 2331 { 2332 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); 2333 return sizeof(struct mem_cgroup) + cpustat_size; 2334 } 2335 2336 static struct mem_cgroup *mem_cgroup_alloc(void) 2337 { 2338 struct mem_cgroup *mem; 2339 int size = mem_cgroup_size(); 2340 2341 if (size < PAGE_SIZE) 2342 mem = kmalloc(size, GFP_KERNEL); 2343 else 2344 mem = vmalloc(size); 2345 2346 if (mem) 2347 memset(mem, 0, size); 2348 return mem; 2349 } 2350 2351 /* 2352 * At destroying mem_cgroup, references from swap_cgroup can remain. 2353 * (scanning all at force_empty is too costly...) 2354 * 2355 * Instead of clearing all references at force_empty, we remember 2356 * the number of reference from swap_cgroup and free mem_cgroup when 2357 * it goes down to 0. 2358 * 2359 * Removal of cgroup itself succeeds regardless of refs from swap. 2360 */ 2361 2362 static void __mem_cgroup_free(struct mem_cgroup *mem) 2363 { 2364 int node; 2365 2366 free_css_id(&mem_cgroup_subsys, &mem->css); 2367 2368 for_each_node_state(node, N_POSSIBLE) 2369 free_mem_cgroup_per_zone_info(mem, node); 2370 2371 if (mem_cgroup_size() < PAGE_SIZE) 2372 kfree(mem); 2373 else 2374 vfree(mem); 2375 } 2376 2377 static void mem_cgroup_get(struct mem_cgroup *mem) 2378 { 2379 atomic_inc(&mem->refcnt); 2380 } 2381 2382 static void mem_cgroup_put(struct mem_cgroup *mem) 2383 { 2384 if (atomic_dec_and_test(&mem->refcnt)) { 2385 struct mem_cgroup *parent = parent_mem_cgroup(mem); 2386 __mem_cgroup_free(mem); 2387 if (parent) 2388 mem_cgroup_put(parent); 2389 } 2390 } 2391 2392 /* 2393 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 2394 */ 2395 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 2396 { 2397 if (!mem->res.parent) 2398 return NULL; 2399 return mem_cgroup_from_res_counter(mem->res.parent, res); 2400 } 2401 2402 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2403 static void __init enable_swap_cgroup(void) 2404 { 2405 if (!mem_cgroup_disabled() && really_do_swap_account) 2406 do_swap_account = 1; 2407 } 2408 #else 2409 static void __init enable_swap_cgroup(void) 2410 { 2411 } 2412 #endif 2413 2414 static struct cgroup_subsys_state * __ref 2415 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 2416 { 2417 struct mem_cgroup *mem, *parent; 2418 long error = -ENOMEM; 2419 int node; 2420 2421 mem = mem_cgroup_alloc(); 2422 if (!mem) 2423 return ERR_PTR(error); 2424 2425 for_each_node_state(node, N_POSSIBLE) 2426 if (alloc_mem_cgroup_per_zone_info(mem, node)) 2427 goto free_out; 2428 /* root ? */ 2429 if (cont->parent == NULL) { 2430 enable_swap_cgroup(); 2431 parent = NULL; 2432 } else { 2433 parent = mem_cgroup_from_cont(cont->parent); 2434 mem->use_hierarchy = parent->use_hierarchy; 2435 } 2436 2437 if (parent && parent->use_hierarchy) { 2438 res_counter_init(&mem->res, &parent->res); 2439 res_counter_init(&mem->memsw, &parent->memsw); 2440 /* 2441 * We increment refcnt of the parent to ensure that we can 2442 * safely access it on res_counter_charge/uncharge. 2443 * This refcnt will be decremented when freeing this 2444 * mem_cgroup(see mem_cgroup_put). 2445 */ 2446 mem_cgroup_get(parent); 2447 } else { 2448 res_counter_init(&mem->res, NULL); 2449 res_counter_init(&mem->memsw, NULL); 2450 } 2451 mem->last_scanned_child = 0; 2452 spin_lock_init(&mem->reclaim_param_lock); 2453 2454 if (parent) 2455 mem->swappiness = get_swappiness(parent); 2456 atomic_set(&mem->refcnt, 1); 2457 return &mem->css; 2458 free_out: 2459 __mem_cgroup_free(mem); 2460 return ERR_PTR(error); 2461 } 2462 2463 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 2464 struct cgroup *cont) 2465 { 2466 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2467 2468 return mem_cgroup_force_empty(mem, false); 2469 } 2470 2471 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 2472 struct cgroup *cont) 2473 { 2474 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2475 2476 mem_cgroup_put(mem); 2477 } 2478 2479 static int mem_cgroup_populate(struct cgroup_subsys *ss, 2480 struct cgroup *cont) 2481 { 2482 int ret; 2483 2484 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 2485 ARRAY_SIZE(mem_cgroup_files)); 2486 2487 if (!ret) 2488 ret = register_memsw_files(cont, ss); 2489 return ret; 2490 } 2491 2492 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 2493 struct cgroup *cont, 2494 struct cgroup *old_cont, 2495 struct task_struct *p) 2496 { 2497 mutex_lock(&memcg_tasklist); 2498 /* 2499 * FIXME: It's better to move charges of this process from old 2500 * memcg to new memcg. But it's just on TODO-List now. 2501 */ 2502 mutex_unlock(&memcg_tasklist); 2503 } 2504 2505 struct cgroup_subsys mem_cgroup_subsys = { 2506 .name = "memory", 2507 .subsys_id = mem_cgroup_subsys_id, 2508 .create = mem_cgroup_create, 2509 .pre_destroy = mem_cgroup_pre_destroy, 2510 .destroy = mem_cgroup_destroy, 2511 .populate = mem_cgroup_populate, 2512 .attach = mem_cgroup_move_task, 2513 .early_init = 0, 2514 .use_id = 1, 2515 }; 2516 2517 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2518 2519 static int __init disable_swap_account(char *s) 2520 { 2521 really_do_swap_account = 0; 2522 return 1; 2523 } 2524 __setup("noswapaccount", disable_swap_account); 2525 #endif 2526