xref: /openbmc/linux/mm/memcontrol.c (revision af958a38)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64 
65 #include <asm/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71 
72 #define MEM_CGROUP_RECLAIM_RETRIES	5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78 
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85 
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 
91 static const char * const mem_cgroup_stat_names[] = {
92 	"cache",
93 	"rss",
94 	"rss_huge",
95 	"mapped_file",
96 	"writeback",
97 	"swap",
98 };
99 
100 enum mem_cgroup_events_index {
101 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
102 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
104 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 	MEM_CGROUP_EVENTS_NSTATS,
106 };
107 
108 static const char * const mem_cgroup_events_names[] = {
109 	"pgpgin",
110 	"pgpgout",
111 	"pgfault",
112 	"pgmajfault",
113 };
114 
115 static const char * const mem_cgroup_lru_names[] = {
116 	"inactive_anon",
117 	"active_anon",
118 	"inactive_file",
119 	"active_file",
120 	"unevictable",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct mem_cgroup_reclaim_iter {
147 	/*
148 	 * last scanned hierarchy member. Valid only if last_dead_count
149 	 * matches memcg->dead_count of the hierarchy root group.
150 	 */
151 	struct mem_cgroup *last_visited;
152 	int last_dead_count;
153 
154 	/* scan generation, increased every round-trip */
155 	unsigned int generation;
156 };
157 
158 /*
159  * per-zone information in memory controller.
160  */
161 struct mem_cgroup_per_zone {
162 	struct lruvec		lruvec;
163 	unsigned long		lru_size[NR_LRU_LISTS];
164 
165 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 
167 	struct rb_node		tree_node;	/* RB tree node */
168 	unsigned long long	usage_in_excess;/* Set to the value by which */
169 						/* the soft limit is exceeded*/
170 	bool			on_tree;
171 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172 						/* use container_of	   */
173 };
174 
175 struct mem_cgroup_per_node {
176 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178 
179 /*
180  * Cgroups above their limits are maintained in a RB-Tree, independent of
181  * their hierarchy representation
182  */
183 
184 struct mem_cgroup_tree_per_zone {
185 	struct rb_root rb_root;
186 	spinlock_t lock;
187 };
188 
189 struct mem_cgroup_tree_per_node {
190 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192 
193 struct mem_cgroup_tree {
194 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196 
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 
199 struct mem_cgroup_threshold {
200 	struct eventfd_ctx *eventfd;
201 	u64 threshold;
202 };
203 
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 	/* An array index points to threshold just below or equal to usage. */
207 	int current_threshold;
208 	/* Size of entries[] */
209 	unsigned int size;
210 	/* Array of thresholds */
211 	struct mem_cgroup_threshold entries[0];
212 };
213 
214 struct mem_cgroup_thresholds {
215 	/* Primary thresholds array */
216 	struct mem_cgroup_threshold_ary *primary;
217 	/*
218 	 * Spare threshold array.
219 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 	 * It must be able to store at least primary->size - 1 entries.
221 	 */
222 	struct mem_cgroup_threshold_ary *spare;
223 };
224 
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 	struct list_head list;
228 	struct eventfd_ctx *eventfd;
229 };
230 
231 /*
232  * cgroup_event represents events which userspace want to receive.
233  */
234 struct mem_cgroup_event {
235 	/*
236 	 * memcg which the event belongs to.
237 	 */
238 	struct mem_cgroup *memcg;
239 	/*
240 	 * eventfd to signal userspace about the event.
241 	 */
242 	struct eventfd_ctx *eventfd;
243 	/*
244 	 * Each of these stored in a list by the cgroup.
245 	 */
246 	struct list_head list;
247 	/*
248 	 * register_event() callback will be used to add new userspace
249 	 * waiter for changes related to this event.  Use eventfd_signal()
250 	 * on eventfd to send notification to userspace.
251 	 */
252 	int (*register_event)(struct mem_cgroup *memcg,
253 			      struct eventfd_ctx *eventfd, const char *args);
254 	/*
255 	 * unregister_event() callback will be called when userspace closes
256 	 * the eventfd or on cgroup removing.  This callback must be set,
257 	 * if you want provide notification functionality.
258 	 */
259 	void (*unregister_event)(struct mem_cgroup *memcg,
260 				 struct eventfd_ctx *eventfd);
261 	/*
262 	 * All fields below needed to unregister event when
263 	 * userspace closes eventfd.
264 	 */
265 	poll_table pt;
266 	wait_queue_head_t *wqh;
267 	wait_queue_t wait;
268 	struct work_struct remove;
269 };
270 
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273 
274 /*
275  * The memory controller data structure. The memory controller controls both
276  * page cache and RSS per cgroup. We would eventually like to provide
277  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278  * to help the administrator determine what knobs to tune.
279  *
280  * TODO: Add a water mark for the memory controller. Reclaim will begin when
281  * we hit the water mark. May be even add a low water mark, such that
282  * no reclaim occurs from a cgroup at it's low water mark, this is
283  * a feature that will be implemented much later in the future.
284  */
285 struct mem_cgroup {
286 	struct cgroup_subsys_state css;
287 	/*
288 	 * the counter to account for memory usage
289 	 */
290 	struct res_counter res;
291 
292 	/* vmpressure notifications */
293 	struct vmpressure vmpressure;
294 
295 	/*
296 	 * the counter to account for mem+swap usage.
297 	 */
298 	struct res_counter memsw;
299 
300 	/*
301 	 * the counter to account for kernel memory usage.
302 	 */
303 	struct res_counter kmem;
304 	/*
305 	 * Should the accounting and control be hierarchical, per subtree?
306 	 */
307 	bool use_hierarchy;
308 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 
310 	bool		oom_lock;
311 	atomic_t	under_oom;
312 	atomic_t	oom_wakeups;
313 
314 	int	swappiness;
315 	/* OOM-Killer disable */
316 	int		oom_kill_disable;
317 
318 	/* set when res.limit == memsw.limit */
319 	bool		memsw_is_minimum;
320 
321 	/* protect arrays of thresholds */
322 	struct mutex thresholds_lock;
323 
324 	/* thresholds for memory usage. RCU-protected */
325 	struct mem_cgroup_thresholds thresholds;
326 
327 	/* thresholds for mem+swap usage. RCU-protected */
328 	struct mem_cgroup_thresholds memsw_thresholds;
329 
330 	/* For oom notifier event fd */
331 	struct list_head oom_notify;
332 
333 	/*
334 	 * Should we move charges of a task when a task is moved into this
335 	 * mem_cgroup ? And what type of charges should we move ?
336 	 */
337 	unsigned long move_charge_at_immigrate;
338 	/*
339 	 * set > 0 if pages under this cgroup are moving to other cgroup.
340 	 */
341 	atomic_t	moving_account;
342 	/* taken only while moving_account > 0 */
343 	spinlock_t	move_lock;
344 	/*
345 	 * percpu counter.
346 	 */
347 	struct mem_cgroup_stat_cpu __percpu *stat;
348 	/*
349 	 * used when a cpu is offlined or other synchronizations
350 	 * See mem_cgroup_read_stat().
351 	 */
352 	struct mem_cgroup_stat_cpu nocpu_base;
353 	spinlock_t pcp_counter_lock;
354 
355 	atomic_t	dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 	struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 	/* analogous to slab_common's slab_caches list, but per-memcg;
361 	 * protected by memcg_slab_mutex */
362 	struct list_head memcg_slab_caches;
363         /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 	int kmemcg_id;
365 #endif
366 
367 	int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 	nodemask_t	scan_nodes;
370 	atomic_t	numainfo_events;
371 	atomic_t	numainfo_updating;
372 #endif
373 
374 	/* List of events which userspace want to receive */
375 	struct list_head event_list;
376 	spinlock_t event_list_lock;
377 
378 	struct mem_cgroup_per_node *nodeinfo[0];
379 	/* WARNING: nodeinfo must be the last member here */
380 };
381 
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387 
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393 
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398 
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 	/*
402 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 	 * will call css_put() if it sees the memcg is dead.
404 	 */
405 	smp_wmb();
406 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409 
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 				  &memcg->kmem_account_flags);
414 }
415 #endif
416 
417 /* Stuffs for move charges at task migration. */
418 /*
419  * Types of charges to be moved. "move_charge_at_immitgrate" and
420  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421  */
422 enum move_type {
423 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 	NR_MOVE_TYPE,
426 };
427 
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 	spinlock_t	  lock; /* for from, to */
431 	struct mem_cgroup *from;
432 	struct mem_cgroup *to;
433 	unsigned long immigrate_flags;
434 	unsigned long precharge;
435 	unsigned long moved_charge;
436 	unsigned long moved_swap;
437 	struct task_struct *moving_task;	/* a task moving charges */
438 	wait_queue_head_t waitq;		/* a waitq for other context */
439 } mc = {
440 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443 
444 static bool move_anon(void)
445 {
446 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448 
449 static bool move_file(void)
450 {
451 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453 
454 /*
455  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456  * limit reclaim to prevent infinite loops, if they ever occur.
457  */
458 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460 
461 enum charge_type {
462 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 	MEM_CGROUP_CHARGE_TYPE_ANON,
464 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
465 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 	NR_CHARGE_TYPE,
467 };
468 
469 /* for encoding cft->private value on file */
470 enum res_type {
471 	_MEM,
472 	_MEMSWAP,
473 	_OOM_TYPE,
474 	_KMEM,
475 };
476 
477 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
478 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val)	((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL		(0)
482 
483 /*
484  * Reclaim flags for mem_cgroup_hierarchical_reclaim
485  */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490 
491 /*
492  * The memcg_create_mutex will be held whenever a new cgroup is created.
493  * As a consequence, any change that needs to protect against new child cgroups
494  * appearing has to hold it as well.
495  */
496 static DEFINE_MUTEX(memcg_create_mutex);
497 
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502 
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 	if (!memcg)
507 		memcg = root_mem_cgroup;
508 	return &memcg->vmpressure;
509 }
510 
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515 
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 	return (memcg == root_mem_cgroup);
519 }
520 
521 /*
522  * We restrict the id in the range of [1, 65535], so it can fit into
523  * an unsigned short.
524  */
525 #define MEM_CGROUP_ID_MAX	USHRT_MAX
526 
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 	return memcg->css.id;
530 }
531 
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533 {
534 	struct cgroup_subsys_state *css;
535 
536 	css = css_from_id(id, &memory_cgrp_subsys);
537 	return mem_cgroup_from_css(css);
538 }
539 
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
542 
543 void sock_update_memcg(struct sock *sk)
544 {
545 	if (mem_cgroup_sockets_enabled) {
546 		struct mem_cgroup *memcg;
547 		struct cg_proto *cg_proto;
548 
549 		BUG_ON(!sk->sk_prot->proto_cgroup);
550 
551 		/* Socket cloning can throw us here with sk_cgrp already
552 		 * filled. It won't however, necessarily happen from
553 		 * process context. So the test for root memcg given
554 		 * the current task's memcg won't help us in this case.
555 		 *
556 		 * Respecting the original socket's memcg is a better
557 		 * decision in this case.
558 		 */
559 		if (sk->sk_cgrp) {
560 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 			css_get(&sk->sk_cgrp->memcg->css);
562 			return;
563 		}
564 
565 		rcu_read_lock();
566 		memcg = mem_cgroup_from_task(current);
567 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 		if (!mem_cgroup_is_root(memcg) &&
569 		    memcg_proto_active(cg_proto) &&
570 		    css_tryget_online(&memcg->css)) {
571 			sk->sk_cgrp = cg_proto;
572 		}
573 		rcu_read_unlock();
574 	}
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577 
578 void sock_release_memcg(struct sock *sk)
579 {
580 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 		struct mem_cgroup *memcg;
582 		WARN_ON(!sk->sk_cgrp->memcg);
583 		memcg = sk->sk_cgrp->memcg;
584 		css_put(&sk->sk_cgrp->memcg->css);
585 	}
586 }
587 
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 	if (!memcg || mem_cgroup_is_root(memcg))
591 		return NULL;
592 
593 	return &memcg->tcp_mem;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596 
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 	if (!memcg_proto_activated(&memcg->tcp_mem))
600 		return;
601 	static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608 
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612  * The main reason for not using cgroup id for this:
613  *  this works better in sparse environments, where we have a lot of memcgs,
614  *  but only a few kmem-limited. Or also, if we have, for instance, 200
615  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
616  *  200 entry array for that.
617  *
618  * The current size of the caches array is stored in
619  * memcg_limited_groups_array_size.  It will double each time we have to
620  * increase it.
621  */
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
624 
625 /*
626  * MIN_SIZE is different than 1, because we would like to avoid going through
627  * the alloc/free process all the time. In a small machine, 4 kmem-limited
628  * cgroups is a reasonable guess. In the future, it could be a parameter or
629  * tunable, but that is strictly not necessary.
630  *
631  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632  * this constant directly from cgroup, but it is understandable that this is
633  * better kept as an internal representation in cgroup.c. In any case, the
634  * cgrp_id space is not getting any smaller, and we don't have to necessarily
635  * increase ours as well if it increases.
636  */
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639 
640 /*
641  * A lot of the calls to the cache allocation functions are expected to be
642  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643  * conditional to this static branch, we'll have to allow modules that does
644  * kmem_cache_alloc and the such to see this symbol as well
645  */
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
648 
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 {
651 	if (memcg_kmem_is_active(memcg)) {
652 		static_key_slow_dec(&memcg_kmem_enabled_key);
653 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 	}
655 	/*
656 	 * This check can't live in kmem destruction function,
657 	 * since the charges will outlive the cgroup
658 	 */
659 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 }
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
663 {
664 }
665 #endif /* CONFIG_MEMCG_KMEM */
666 
667 static void disarm_static_keys(struct mem_cgroup *memcg)
668 {
669 	disarm_sock_keys(memcg);
670 	disarm_kmem_keys(memcg);
671 }
672 
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
674 
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677 {
678 	int nid = zone_to_nid(zone);
679 	int zid = zone_idx(zone);
680 
681 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683 
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 	return &memcg->css;
687 }
688 
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 	int nid = page_to_nid(page);
693 	int zid = page_zonenum(page);
694 
695 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 }
697 
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703 
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 	int nid = page_to_nid(page);
708 	int zid = page_zonenum(page);
709 
710 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712 
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 					 struct mem_cgroup_tree_per_zone *mctz,
715 					 unsigned long long new_usage_in_excess)
716 {
717 	struct rb_node **p = &mctz->rb_root.rb_node;
718 	struct rb_node *parent = NULL;
719 	struct mem_cgroup_per_zone *mz_node;
720 
721 	if (mz->on_tree)
722 		return;
723 
724 	mz->usage_in_excess = new_usage_in_excess;
725 	if (!mz->usage_in_excess)
726 		return;
727 	while (*p) {
728 		parent = *p;
729 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 					tree_node);
731 		if (mz->usage_in_excess < mz_node->usage_in_excess)
732 			p = &(*p)->rb_left;
733 		/*
734 		 * We can't avoid mem cgroups that are over their soft
735 		 * limit by the same amount
736 		 */
737 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 			p = &(*p)->rb_right;
739 	}
740 	rb_link_node(&mz->tree_node, parent, p);
741 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 	mz->on_tree = true;
743 }
744 
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 					 struct mem_cgroup_tree_per_zone *mctz)
747 {
748 	if (!mz->on_tree)
749 		return;
750 	rb_erase(&mz->tree_node, &mctz->rb_root);
751 	mz->on_tree = false;
752 }
753 
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 				       struct mem_cgroup_tree_per_zone *mctz)
756 {
757 	unsigned long flags;
758 
759 	spin_lock_irqsave(&mctz->lock, flags);
760 	__mem_cgroup_remove_exceeded(mz, mctz);
761 	spin_unlock_irqrestore(&mctz->lock, flags);
762 }
763 
764 
765 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
766 {
767 	unsigned long long excess;
768 	struct mem_cgroup_per_zone *mz;
769 	struct mem_cgroup_tree_per_zone *mctz;
770 
771 	mctz = soft_limit_tree_from_page(page);
772 	/*
773 	 * Necessary to update all ancestors when hierarchy is used.
774 	 * because their event counter is not touched.
775 	 */
776 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
777 		mz = mem_cgroup_page_zoneinfo(memcg, page);
778 		excess = res_counter_soft_limit_excess(&memcg->res);
779 		/*
780 		 * We have to update the tree if mz is on RB-tree or
781 		 * mem is over its softlimit.
782 		 */
783 		if (excess || mz->on_tree) {
784 			unsigned long flags;
785 
786 			spin_lock_irqsave(&mctz->lock, flags);
787 			/* if on-tree, remove it */
788 			if (mz->on_tree)
789 				__mem_cgroup_remove_exceeded(mz, mctz);
790 			/*
791 			 * Insert again. mz->usage_in_excess will be updated.
792 			 * If excess is 0, no tree ops.
793 			 */
794 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
795 			spin_unlock_irqrestore(&mctz->lock, flags);
796 		}
797 	}
798 }
799 
800 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
801 {
802 	struct mem_cgroup_tree_per_zone *mctz;
803 	struct mem_cgroup_per_zone *mz;
804 	int nid, zid;
805 
806 	for_each_node(nid) {
807 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
808 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
809 			mctz = soft_limit_tree_node_zone(nid, zid);
810 			mem_cgroup_remove_exceeded(mz, mctz);
811 		}
812 	}
813 }
814 
815 static struct mem_cgroup_per_zone *
816 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
817 {
818 	struct rb_node *rightmost = NULL;
819 	struct mem_cgroup_per_zone *mz;
820 
821 retry:
822 	mz = NULL;
823 	rightmost = rb_last(&mctz->rb_root);
824 	if (!rightmost)
825 		goto done;		/* Nothing to reclaim from */
826 
827 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
828 	/*
829 	 * Remove the node now but someone else can add it back,
830 	 * we will to add it back at the end of reclaim to its correct
831 	 * position in the tree.
832 	 */
833 	__mem_cgroup_remove_exceeded(mz, mctz);
834 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
835 	    !css_tryget_online(&mz->memcg->css))
836 		goto retry;
837 done:
838 	return mz;
839 }
840 
841 static struct mem_cgroup_per_zone *
842 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
843 {
844 	struct mem_cgroup_per_zone *mz;
845 
846 	spin_lock_irq(&mctz->lock);
847 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
848 	spin_unlock_irq(&mctz->lock);
849 	return mz;
850 }
851 
852 /*
853  * Implementation Note: reading percpu statistics for memcg.
854  *
855  * Both of vmstat[] and percpu_counter has threshold and do periodic
856  * synchronization to implement "quick" read. There are trade-off between
857  * reading cost and precision of value. Then, we may have a chance to implement
858  * a periodic synchronizion of counter in memcg's counter.
859  *
860  * But this _read() function is used for user interface now. The user accounts
861  * memory usage by memory cgroup and he _always_ requires exact value because
862  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
863  * have to visit all online cpus and make sum. So, for now, unnecessary
864  * synchronization is not implemented. (just implemented for cpu hotplug)
865  *
866  * If there are kernel internal actions which can make use of some not-exact
867  * value, and reading all cpu value can be performance bottleneck in some
868  * common workload, threashold and synchonization as vmstat[] should be
869  * implemented.
870  */
871 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
872 				 enum mem_cgroup_stat_index idx)
873 {
874 	long val = 0;
875 	int cpu;
876 
877 	get_online_cpus();
878 	for_each_online_cpu(cpu)
879 		val += per_cpu(memcg->stat->count[idx], cpu);
880 #ifdef CONFIG_HOTPLUG_CPU
881 	spin_lock(&memcg->pcp_counter_lock);
882 	val += memcg->nocpu_base.count[idx];
883 	spin_unlock(&memcg->pcp_counter_lock);
884 #endif
885 	put_online_cpus();
886 	return val;
887 }
888 
889 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
890 					    enum mem_cgroup_events_index idx)
891 {
892 	unsigned long val = 0;
893 	int cpu;
894 
895 	get_online_cpus();
896 	for_each_online_cpu(cpu)
897 		val += per_cpu(memcg->stat->events[idx], cpu);
898 #ifdef CONFIG_HOTPLUG_CPU
899 	spin_lock(&memcg->pcp_counter_lock);
900 	val += memcg->nocpu_base.events[idx];
901 	spin_unlock(&memcg->pcp_counter_lock);
902 #endif
903 	put_online_cpus();
904 	return val;
905 }
906 
907 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
908 					 struct page *page,
909 					 int nr_pages)
910 {
911 	/*
912 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
913 	 * counted as CACHE even if it's on ANON LRU.
914 	 */
915 	if (PageAnon(page))
916 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
917 				nr_pages);
918 	else
919 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
920 				nr_pages);
921 
922 	if (PageTransHuge(page))
923 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
924 				nr_pages);
925 
926 	/* pagein of a big page is an event. So, ignore page size */
927 	if (nr_pages > 0)
928 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
929 	else {
930 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
931 		nr_pages = -nr_pages; /* for event */
932 	}
933 
934 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
935 }
936 
937 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
938 {
939 	struct mem_cgroup_per_zone *mz;
940 
941 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
942 	return mz->lru_size[lru];
943 }
944 
945 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
946 						  int nid,
947 						  unsigned int lru_mask)
948 {
949 	unsigned long nr = 0;
950 	int zid;
951 
952 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
953 
954 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
955 		struct mem_cgroup_per_zone *mz;
956 		enum lru_list lru;
957 
958 		for_each_lru(lru) {
959 			if (!(BIT(lru) & lru_mask))
960 				continue;
961 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
962 			nr += mz->lru_size[lru];
963 		}
964 	}
965 	return nr;
966 }
967 
968 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
969 			unsigned int lru_mask)
970 {
971 	unsigned long nr = 0;
972 	int nid;
973 
974 	for_each_node_state(nid, N_MEMORY)
975 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
976 	return nr;
977 }
978 
979 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
980 				       enum mem_cgroup_events_target target)
981 {
982 	unsigned long val, next;
983 
984 	val = __this_cpu_read(memcg->stat->nr_page_events);
985 	next = __this_cpu_read(memcg->stat->targets[target]);
986 	/* from time_after() in jiffies.h */
987 	if ((long)next - (long)val < 0) {
988 		switch (target) {
989 		case MEM_CGROUP_TARGET_THRESH:
990 			next = val + THRESHOLDS_EVENTS_TARGET;
991 			break;
992 		case MEM_CGROUP_TARGET_SOFTLIMIT:
993 			next = val + SOFTLIMIT_EVENTS_TARGET;
994 			break;
995 		case MEM_CGROUP_TARGET_NUMAINFO:
996 			next = val + NUMAINFO_EVENTS_TARGET;
997 			break;
998 		default:
999 			break;
1000 		}
1001 		__this_cpu_write(memcg->stat->targets[target], next);
1002 		return true;
1003 	}
1004 	return false;
1005 }
1006 
1007 /*
1008  * Check events in order.
1009  *
1010  */
1011 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1012 {
1013 	/* threshold event is triggered in finer grain than soft limit */
1014 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 						MEM_CGROUP_TARGET_THRESH))) {
1016 		bool do_softlimit;
1017 		bool do_numainfo __maybe_unused;
1018 
1019 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 						MEM_CGROUP_TARGET_SOFTLIMIT);
1021 #if MAX_NUMNODES > 1
1022 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 						MEM_CGROUP_TARGET_NUMAINFO);
1024 #endif
1025 		mem_cgroup_threshold(memcg);
1026 		if (unlikely(do_softlimit))
1027 			mem_cgroup_update_tree(memcg, page);
1028 #if MAX_NUMNODES > 1
1029 		if (unlikely(do_numainfo))
1030 			atomic_inc(&memcg->numainfo_events);
1031 #endif
1032 	}
1033 }
1034 
1035 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1036 {
1037 	/*
1038 	 * mm_update_next_owner() may clear mm->owner to NULL
1039 	 * if it races with swapoff, page migration, etc.
1040 	 * So this can be called with p == NULL.
1041 	 */
1042 	if (unlikely(!p))
1043 		return NULL;
1044 
1045 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1046 }
1047 
1048 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1049 {
1050 	struct mem_cgroup *memcg = NULL;
1051 
1052 	rcu_read_lock();
1053 	do {
1054 		/*
1055 		 * Page cache insertions can happen withou an
1056 		 * actual mm context, e.g. during disk probing
1057 		 * on boot, loopback IO, acct() writes etc.
1058 		 */
1059 		if (unlikely(!mm))
1060 			memcg = root_mem_cgroup;
1061 		else {
1062 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 			if (unlikely(!memcg))
1064 				memcg = root_mem_cgroup;
1065 		}
1066 	} while (!css_tryget_online(&memcg->css));
1067 	rcu_read_unlock();
1068 	return memcg;
1069 }
1070 
1071 /*
1072  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073  * ref. count) or NULL if the whole root's subtree has been visited.
1074  *
1075  * helper function to be used by mem_cgroup_iter
1076  */
1077 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078 		struct mem_cgroup *last_visited)
1079 {
1080 	struct cgroup_subsys_state *prev_css, *next_css;
1081 
1082 	prev_css = last_visited ? &last_visited->css : NULL;
1083 skip_node:
1084 	next_css = css_next_descendant_pre(prev_css, &root->css);
1085 
1086 	/*
1087 	 * Even if we found a group we have to make sure it is
1088 	 * alive. css && !memcg means that the groups should be
1089 	 * skipped and we should continue the tree walk.
1090 	 * last_visited css is safe to use because it is
1091 	 * protected by css_get and the tree walk is rcu safe.
1092 	 *
1093 	 * We do not take a reference on the root of the tree walk
1094 	 * because we might race with the root removal when it would
1095 	 * be the only node in the iterated hierarchy and mem_cgroup_iter
1096 	 * would end up in an endless loop because it expects that at
1097 	 * least one valid node will be returned. Root cannot disappear
1098 	 * because caller of the iterator should hold it already so
1099 	 * skipping css reference should be safe.
1100 	 */
1101 	if (next_css) {
1102 		if ((next_css == &root->css) ||
1103 		    ((next_css->flags & CSS_ONLINE) &&
1104 		     css_tryget_online(next_css)))
1105 			return mem_cgroup_from_css(next_css);
1106 
1107 		prev_css = next_css;
1108 		goto skip_node;
1109 	}
1110 
1111 	return NULL;
1112 }
1113 
1114 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1115 {
1116 	/*
1117 	 * When a group in the hierarchy below root is destroyed, the
1118 	 * hierarchy iterator can no longer be trusted since it might
1119 	 * have pointed to the destroyed group.  Invalidate it.
1120 	 */
1121 	atomic_inc(&root->dead_count);
1122 }
1123 
1124 static struct mem_cgroup *
1125 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1126 		     struct mem_cgroup *root,
1127 		     int *sequence)
1128 {
1129 	struct mem_cgroup *position = NULL;
1130 	/*
1131 	 * A cgroup destruction happens in two stages: offlining and
1132 	 * release.  They are separated by a RCU grace period.
1133 	 *
1134 	 * If the iterator is valid, we may still race with an
1135 	 * offlining.  The RCU lock ensures the object won't be
1136 	 * released, tryget will fail if we lost the race.
1137 	 */
1138 	*sequence = atomic_read(&root->dead_count);
1139 	if (iter->last_dead_count == *sequence) {
1140 		smp_rmb();
1141 		position = iter->last_visited;
1142 
1143 		/*
1144 		 * We cannot take a reference to root because we might race
1145 		 * with root removal and returning NULL would end up in
1146 		 * an endless loop on the iterator user level when root
1147 		 * would be returned all the time.
1148 		 */
1149 		if (position && position != root &&
1150 		    !css_tryget_online(&position->css))
1151 			position = NULL;
1152 	}
1153 	return position;
1154 }
1155 
1156 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1157 				   struct mem_cgroup *last_visited,
1158 				   struct mem_cgroup *new_position,
1159 				   struct mem_cgroup *root,
1160 				   int sequence)
1161 {
1162 	/* root reference counting symmetric to mem_cgroup_iter_load */
1163 	if (last_visited && last_visited != root)
1164 		css_put(&last_visited->css);
1165 	/*
1166 	 * We store the sequence count from the time @last_visited was
1167 	 * loaded successfully instead of rereading it here so that we
1168 	 * don't lose destruction events in between.  We could have
1169 	 * raced with the destruction of @new_position after all.
1170 	 */
1171 	iter->last_visited = new_position;
1172 	smp_wmb();
1173 	iter->last_dead_count = sequence;
1174 }
1175 
1176 /**
1177  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1178  * @root: hierarchy root
1179  * @prev: previously returned memcg, NULL on first invocation
1180  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1181  *
1182  * Returns references to children of the hierarchy below @root, or
1183  * @root itself, or %NULL after a full round-trip.
1184  *
1185  * Caller must pass the return value in @prev on subsequent
1186  * invocations for reference counting, or use mem_cgroup_iter_break()
1187  * to cancel a hierarchy walk before the round-trip is complete.
1188  *
1189  * Reclaimers can specify a zone and a priority level in @reclaim to
1190  * divide up the memcgs in the hierarchy among all concurrent
1191  * reclaimers operating on the same zone and priority.
1192  */
1193 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1194 				   struct mem_cgroup *prev,
1195 				   struct mem_cgroup_reclaim_cookie *reclaim)
1196 {
1197 	struct mem_cgroup *memcg = NULL;
1198 	struct mem_cgroup *last_visited = NULL;
1199 
1200 	if (mem_cgroup_disabled())
1201 		return NULL;
1202 
1203 	if (!root)
1204 		root = root_mem_cgroup;
1205 
1206 	if (prev && !reclaim)
1207 		last_visited = prev;
1208 
1209 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1210 		if (prev)
1211 			goto out_css_put;
1212 		return root;
1213 	}
1214 
1215 	rcu_read_lock();
1216 	while (!memcg) {
1217 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1218 		int uninitialized_var(seq);
1219 
1220 		if (reclaim) {
1221 			struct mem_cgroup_per_zone *mz;
1222 
1223 			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1224 			iter = &mz->reclaim_iter[reclaim->priority];
1225 			if (prev && reclaim->generation != iter->generation) {
1226 				iter->last_visited = NULL;
1227 				goto out_unlock;
1228 			}
1229 
1230 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1231 		}
1232 
1233 		memcg = __mem_cgroup_iter_next(root, last_visited);
1234 
1235 		if (reclaim) {
1236 			mem_cgroup_iter_update(iter, last_visited, memcg, root,
1237 					seq);
1238 
1239 			if (!memcg)
1240 				iter->generation++;
1241 			else if (!prev && memcg)
1242 				reclaim->generation = iter->generation;
1243 		}
1244 
1245 		if (prev && !memcg)
1246 			goto out_unlock;
1247 	}
1248 out_unlock:
1249 	rcu_read_unlock();
1250 out_css_put:
1251 	if (prev && prev != root)
1252 		css_put(&prev->css);
1253 
1254 	return memcg;
1255 }
1256 
1257 /**
1258  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259  * @root: hierarchy root
1260  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261  */
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 			   struct mem_cgroup *prev)
1264 {
1265 	if (!root)
1266 		root = root_mem_cgroup;
1267 	if (prev && prev != root)
1268 		css_put(&prev->css);
1269 }
1270 
1271 /*
1272  * Iteration constructs for visiting all cgroups (under a tree).  If
1273  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274  * be used for reference counting.
1275  */
1276 #define for_each_mem_cgroup_tree(iter, root)		\
1277 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1278 	     iter != NULL;				\
1279 	     iter = mem_cgroup_iter(root, iter, NULL))
1280 
1281 #define for_each_mem_cgroup(iter)			\
1282 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1283 	     iter != NULL;				\
1284 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1285 
1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1287 {
1288 	struct mem_cgroup *memcg;
1289 
1290 	rcu_read_lock();
1291 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 	if (unlikely(!memcg))
1293 		goto out;
1294 
1295 	switch (idx) {
1296 	case PGFAULT:
1297 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 		break;
1299 	case PGMAJFAULT:
1300 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 		break;
1302 	default:
1303 		BUG();
1304 	}
1305 out:
1306 	rcu_read_unlock();
1307 }
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1309 
1310 /**
1311  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312  * @zone: zone of the wanted lruvec
1313  * @memcg: memcg of the wanted lruvec
1314  *
1315  * Returns the lru list vector holding pages for the given @zone and
1316  * @mem.  This can be the global zone lruvec, if the memory controller
1317  * is disabled.
1318  */
1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 				      struct mem_cgroup *memcg)
1321 {
1322 	struct mem_cgroup_per_zone *mz;
1323 	struct lruvec *lruvec;
1324 
1325 	if (mem_cgroup_disabled()) {
1326 		lruvec = &zone->lruvec;
1327 		goto out;
1328 	}
1329 
1330 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1331 	lruvec = &mz->lruvec;
1332 out:
1333 	/*
1334 	 * Since a node can be onlined after the mem_cgroup was created,
1335 	 * we have to be prepared to initialize lruvec->zone here;
1336 	 * and if offlined then reonlined, we need to reinitialize it.
1337 	 */
1338 	if (unlikely(lruvec->zone != zone))
1339 		lruvec->zone = zone;
1340 	return lruvec;
1341 }
1342 
1343 /**
1344  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1345  * @page: the page
1346  * @zone: zone of the page
1347  */
1348 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1349 {
1350 	struct mem_cgroup_per_zone *mz;
1351 	struct mem_cgroup *memcg;
1352 	struct page_cgroup *pc;
1353 	struct lruvec *lruvec;
1354 
1355 	if (mem_cgroup_disabled()) {
1356 		lruvec = &zone->lruvec;
1357 		goto out;
1358 	}
1359 
1360 	pc = lookup_page_cgroup(page);
1361 	memcg = pc->mem_cgroup;
1362 
1363 	/*
1364 	 * Surreptitiously switch any uncharged offlist page to root:
1365 	 * an uncharged page off lru does nothing to secure
1366 	 * its former mem_cgroup from sudden removal.
1367 	 *
1368 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1369 	 * under page_cgroup lock: between them, they make all uses
1370 	 * of pc->mem_cgroup safe.
1371 	 */
1372 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1373 		pc->mem_cgroup = memcg = root_mem_cgroup;
1374 
1375 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1376 	lruvec = &mz->lruvec;
1377 out:
1378 	/*
1379 	 * Since a node can be onlined after the mem_cgroup was created,
1380 	 * we have to be prepared to initialize lruvec->zone here;
1381 	 * and if offlined then reonlined, we need to reinitialize it.
1382 	 */
1383 	if (unlikely(lruvec->zone != zone))
1384 		lruvec->zone = zone;
1385 	return lruvec;
1386 }
1387 
1388 /**
1389  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1390  * @lruvec: mem_cgroup per zone lru vector
1391  * @lru: index of lru list the page is sitting on
1392  * @nr_pages: positive when adding or negative when removing
1393  *
1394  * This function must be called when a page is added to or removed from an
1395  * lru list.
1396  */
1397 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1398 				int nr_pages)
1399 {
1400 	struct mem_cgroup_per_zone *mz;
1401 	unsigned long *lru_size;
1402 
1403 	if (mem_cgroup_disabled())
1404 		return;
1405 
1406 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1407 	lru_size = mz->lru_size + lru;
1408 	*lru_size += nr_pages;
1409 	VM_BUG_ON((long)(*lru_size) < 0);
1410 }
1411 
1412 /*
1413  * Checks whether given mem is same or in the root_mem_cgroup's
1414  * hierarchy subtree
1415  */
1416 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1417 				  struct mem_cgroup *memcg)
1418 {
1419 	if (root_memcg == memcg)
1420 		return true;
1421 	if (!root_memcg->use_hierarchy || !memcg)
1422 		return false;
1423 	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1424 }
1425 
1426 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1427 				       struct mem_cgroup *memcg)
1428 {
1429 	bool ret;
1430 
1431 	rcu_read_lock();
1432 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1433 	rcu_read_unlock();
1434 	return ret;
1435 }
1436 
1437 bool task_in_mem_cgroup(struct task_struct *task,
1438 			const struct mem_cgroup *memcg)
1439 {
1440 	struct mem_cgroup *curr = NULL;
1441 	struct task_struct *p;
1442 	bool ret;
1443 
1444 	p = find_lock_task_mm(task);
1445 	if (p) {
1446 		curr = get_mem_cgroup_from_mm(p->mm);
1447 		task_unlock(p);
1448 	} else {
1449 		/*
1450 		 * All threads may have already detached their mm's, but the oom
1451 		 * killer still needs to detect if they have already been oom
1452 		 * killed to prevent needlessly killing additional tasks.
1453 		 */
1454 		rcu_read_lock();
1455 		curr = mem_cgroup_from_task(task);
1456 		if (curr)
1457 			css_get(&curr->css);
1458 		rcu_read_unlock();
1459 	}
1460 	/*
1461 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1464 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1465 	 */
1466 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1467 	css_put(&curr->css);
1468 	return ret;
1469 }
1470 
1471 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1472 {
1473 	unsigned long inactive_ratio;
1474 	unsigned long inactive;
1475 	unsigned long active;
1476 	unsigned long gb;
1477 
1478 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1479 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1480 
1481 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1482 	if (gb)
1483 		inactive_ratio = int_sqrt(10 * gb);
1484 	else
1485 		inactive_ratio = 1;
1486 
1487 	return inactive * inactive_ratio < active;
1488 }
1489 
1490 #define mem_cgroup_from_res_counter(counter, member)	\
1491 	container_of(counter, struct mem_cgroup, member)
1492 
1493 /**
1494  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1495  * @memcg: the memory cgroup
1496  *
1497  * Returns the maximum amount of memory @mem can be charged with, in
1498  * pages.
1499  */
1500 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1501 {
1502 	unsigned long long margin;
1503 
1504 	margin = res_counter_margin(&memcg->res);
1505 	if (do_swap_account)
1506 		margin = min(margin, res_counter_margin(&memcg->memsw));
1507 	return margin >> PAGE_SHIFT;
1508 }
1509 
1510 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1511 {
1512 	/* root ? */
1513 	if (mem_cgroup_disabled() || !memcg->css.parent)
1514 		return vm_swappiness;
1515 
1516 	return memcg->swappiness;
1517 }
1518 
1519 /*
1520  * memcg->moving_account is used for checking possibility that some thread is
1521  * calling move_account(). When a thread on CPU-A starts moving pages under
1522  * a memcg, other threads should check memcg->moving_account under
1523  * rcu_read_lock(), like this:
1524  *
1525  *         CPU-A                                    CPU-B
1526  *                                              rcu_read_lock()
1527  *         memcg->moving_account+1              if (memcg->mocing_account)
1528  *                                                   take heavy locks.
1529  *         synchronize_rcu()                    update something.
1530  *                                              rcu_read_unlock()
1531  *         start move here.
1532  */
1533 
1534 /* for quick checking without looking up memcg */
1535 atomic_t memcg_moving __read_mostly;
1536 
1537 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1538 {
1539 	atomic_inc(&memcg_moving);
1540 	atomic_inc(&memcg->moving_account);
1541 	synchronize_rcu();
1542 }
1543 
1544 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1545 {
1546 	/*
1547 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1548 	 * We check NULL in callee rather than caller.
1549 	 */
1550 	if (memcg) {
1551 		atomic_dec(&memcg_moving);
1552 		atomic_dec(&memcg->moving_account);
1553 	}
1554 }
1555 
1556 /*
1557  * A routine for checking "mem" is under move_account() or not.
1558  *
1559  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1560  * moving cgroups. This is for waiting at high-memory pressure
1561  * caused by "move".
1562  */
1563 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564 {
1565 	struct mem_cgroup *from;
1566 	struct mem_cgroup *to;
1567 	bool ret = false;
1568 	/*
1569 	 * Unlike task_move routines, we access mc.to, mc.from not under
1570 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1571 	 */
1572 	spin_lock(&mc.lock);
1573 	from = mc.from;
1574 	to = mc.to;
1575 	if (!from)
1576 		goto unlock;
1577 
1578 	ret = mem_cgroup_same_or_subtree(memcg, from)
1579 		|| mem_cgroup_same_or_subtree(memcg, to);
1580 unlock:
1581 	spin_unlock(&mc.lock);
1582 	return ret;
1583 }
1584 
1585 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 {
1587 	if (mc.moving_task && current != mc.moving_task) {
1588 		if (mem_cgroup_under_move(memcg)) {
1589 			DEFINE_WAIT(wait);
1590 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1591 			/* moving charge context might have finished. */
1592 			if (mc.moving_task)
1593 				schedule();
1594 			finish_wait(&mc.waitq, &wait);
1595 			return true;
1596 		}
1597 	}
1598 	return false;
1599 }
1600 
1601 /*
1602  * Take this lock when
1603  * - a code tries to modify page's memcg while it's USED.
1604  * - a code tries to modify page state accounting in a memcg.
1605  */
1606 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1607 				  unsigned long *flags)
1608 {
1609 	spin_lock_irqsave(&memcg->move_lock, *flags);
1610 }
1611 
1612 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1613 				unsigned long *flags)
1614 {
1615 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1616 }
1617 
1618 #define K(x) ((x) << (PAGE_SHIFT-10))
1619 /**
1620  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1621  * @memcg: The memory cgroup that went over limit
1622  * @p: Task that is going to be killed
1623  *
1624  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1625  * enabled
1626  */
1627 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1628 {
1629 	/* oom_info_lock ensures that parallel ooms do not interleave */
1630 	static DEFINE_MUTEX(oom_info_lock);
1631 	struct mem_cgroup *iter;
1632 	unsigned int i;
1633 
1634 	if (!p)
1635 		return;
1636 
1637 	mutex_lock(&oom_info_lock);
1638 	rcu_read_lock();
1639 
1640 	pr_info("Task in ");
1641 	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1642 	pr_info(" killed as a result of limit of ");
1643 	pr_cont_cgroup_path(memcg->css.cgroup);
1644 	pr_info("\n");
1645 
1646 	rcu_read_unlock();
1647 
1648 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1649 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1650 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1651 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1652 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1653 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1654 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1655 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1656 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1657 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1658 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1659 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1660 
1661 	for_each_mem_cgroup_tree(iter, memcg) {
1662 		pr_info("Memory cgroup stats for ");
1663 		pr_cont_cgroup_path(iter->css.cgroup);
1664 		pr_cont(":");
1665 
1666 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1667 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1668 				continue;
1669 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1670 				K(mem_cgroup_read_stat(iter, i)));
1671 		}
1672 
1673 		for (i = 0; i < NR_LRU_LISTS; i++)
1674 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1675 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1676 
1677 		pr_cont("\n");
1678 	}
1679 	mutex_unlock(&oom_info_lock);
1680 }
1681 
1682 /*
1683  * This function returns the number of memcg under hierarchy tree. Returns
1684  * 1(self count) if no children.
1685  */
1686 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1687 {
1688 	int num = 0;
1689 	struct mem_cgroup *iter;
1690 
1691 	for_each_mem_cgroup_tree(iter, memcg)
1692 		num++;
1693 	return num;
1694 }
1695 
1696 /*
1697  * Return the memory (and swap, if configured) limit for a memcg.
1698  */
1699 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1700 {
1701 	u64 limit;
1702 
1703 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1704 
1705 	/*
1706 	 * Do not consider swap space if we cannot swap due to swappiness
1707 	 */
1708 	if (mem_cgroup_swappiness(memcg)) {
1709 		u64 memsw;
1710 
1711 		limit += total_swap_pages << PAGE_SHIFT;
1712 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1713 
1714 		/*
1715 		 * If memsw is finite and limits the amount of swap space
1716 		 * available to this memcg, return that limit.
1717 		 */
1718 		limit = min(limit, memsw);
1719 	}
1720 
1721 	return limit;
1722 }
1723 
1724 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1725 				     int order)
1726 {
1727 	struct mem_cgroup *iter;
1728 	unsigned long chosen_points = 0;
1729 	unsigned long totalpages;
1730 	unsigned int points = 0;
1731 	struct task_struct *chosen = NULL;
1732 
1733 	/*
1734 	 * If current has a pending SIGKILL or is exiting, then automatically
1735 	 * select it.  The goal is to allow it to allocate so that it may
1736 	 * quickly exit and free its memory.
1737 	 */
1738 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1739 		set_thread_flag(TIF_MEMDIE);
1740 		return;
1741 	}
1742 
1743 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1744 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1745 	for_each_mem_cgroup_tree(iter, memcg) {
1746 		struct css_task_iter it;
1747 		struct task_struct *task;
1748 
1749 		css_task_iter_start(&iter->css, &it);
1750 		while ((task = css_task_iter_next(&it))) {
1751 			switch (oom_scan_process_thread(task, totalpages, NULL,
1752 							false)) {
1753 			case OOM_SCAN_SELECT:
1754 				if (chosen)
1755 					put_task_struct(chosen);
1756 				chosen = task;
1757 				chosen_points = ULONG_MAX;
1758 				get_task_struct(chosen);
1759 				/* fall through */
1760 			case OOM_SCAN_CONTINUE:
1761 				continue;
1762 			case OOM_SCAN_ABORT:
1763 				css_task_iter_end(&it);
1764 				mem_cgroup_iter_break(memcg, iter);
1765 				if (chosen)
1766 					put_task_struct(chosen);
1767 				return;
1768 			case OOM_SCAN_OK:
1769 				break;
1770 			};
1771 			points = oom_badness(task, memcg, NULL, totalpages);
1772 			if (!points || points < chosen_points)
1773 				continue;
1774 			/* Prefer thread group leaders for display purposes */
1775 			if (points == chosen_points &&
1776 			    thread_group_leader(chosen))
1777 				continue;
1778 
1779 			if (chosen)
1780 				put_task_struct(chosen);
1781 			chosen = task;
1782 			chosen_points = points;
1783 			get_task_struct(chosen);
1784 		}
1785 		css_task_iter_end(&it);
1786 	}
1787 
1788 	if (!chosen)
1789 		return;
1790 	points = chosen_points * 1000 / totalpages;
1791 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1792 			 NULL, "Memory cgroup out of memory");
1793 }
1794 
1795 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1796 					gfp_t gfp_mask,
1797 					unsigned long flags)
1798 {
1799 	unsigned long total = 0;
1800 	bool noswap = false;
1801 	int loop;
1802 
1803 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1804 		noswap = true;
1805 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1806 		noswap = true;
1807 
1808 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1809 		if (loop)
1810 			drain_all_stock_async(memcg);
1811 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1812 		/*
1813 		 * Allow limit shrinkers, which are triggered directly
1814 		 * by userspace, to catch signals and stop reclaim
1815 		 * after minimal progress, regardless of the margin.
1816 		 */
1817 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1818 			break;
1819 		if (mem_cgroup_margin(memcg))
1820 			break;
1821 		/*
1822 		 * If nothing was reclaimed after two attempts, there
1823 		 * may be no reclaimable pages in this hierarchy.
1824 		 */
1825 		if (loop && !total)
1826 			break;
1827 	}
1828 	return total;
1829 }
1830 
1831 /**
1832  * test_mem_cgroup_node_reclaimable
1833  * @memcg: the target memcg
1834  * @nid: the node ID to be checked.
1835  * @noswap : specify true here if the user wants flle only information.
1836  *
1837  * This function returns whether the specified memcg contains any
1838  * reclaimable pages on a node. Returns true if there are any reclaimable
1839  * pages in the node.
1840  */
1841 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1842 		int nid, bool noswap)
1843 {
1844 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1845 		return true;
1846 	if (noswap || !total_swap_pages)
1847 		return false;
1848 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1849 		return true;
1850 	return false;
1851 
1852 }
1853 #if MAX_NUMNODES > 1
1854 
1855 /*
1856  * Always updating the nodemask is not very good - even if we have an empty
1857  * list or the wrong list here, we can start from some node and traverse all
1858  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1859  *
1860  */
1861 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1862 {
1863 	int nid;
1864 	/*
1865 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1866 	 * pagein/pageout changes since the last update.
1867 	 */
1868 	if (!atomic_read(&memcg->numainfo_events))
1869 		return;
1870 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1871 		return;
1872 
1873 	/* make a nodemask where this memcg uses memory from */
1874 	memcg->scan_nodes = node_states[N_MEMORY];
1875 
1876 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1877 
1878 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1879 			node_clear(nid, memcg->scan_nodes);
1880 	}
1881 
1882 	atomic_set(&memcg->numainfo_events, 0);
1883 	atomic_set(&memcg->numainfo_updating, 0);
1884 }
1885 
1886 /*
1887  * Selecting a node where we start reclaim from. Because what we need is just
1888  * reducing usage counter, start from anywhere is O,K. Considering
1889  * memory reclaim from current node, there are pros. and cons.
1890  *
1891  * Freeing memory from current node means freeing memory from a node which
1892  * we'll use or we've used. So, it may make LRU bad. And if several threads
1893  * hit limits, it will see a contention on a node. But freeing from remote
1894  * node means more costs for memory reclaim because of memory latency.
1895  *
1896  * Now, we use round-robin. Better algorithm is welcomed.
1897  */
1898 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1899 {
1900 	int node;
1901 
1902 	mem_cgroup_may_update_nodemask(memcg);
1903 	node = memcg->last_scanned_node;
1904 
1905 	node = next_node(node, memcg->scan_nodes);
1906 	if (node == MAX_NUMNODES)
1907 		node = first_node(memcg->scan_nodes);
1908 	/*
1909 	 * We call this when we hit limit, not when pages are added to LRU.
1910 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1911 	 * memcg is too small and all pages are not on LRU. In that case,
1912 	 * we use curret node.
1913 	 */
1914 	if (unlikely(node == MAX_NUMNODES))
1915 		node = numa_node_id();
1916 
1917 	memcg->last_scanned_node = node;
1918 	return node;
1919 }
1920 
1921 /*
1922  * Check all nodes whether it contains reclaimable pages or not.
1923  * For quick scan, we make use of scan_nodes. This will allow us to skip
1924  * unused nodes. But scan_nodes is lazily updated and may not cotain
1925  * enough new information. We need to do double check.
1926  */
1927 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1928 {
1929 	int nid;
1930 
1931 	/*
1932 	 * quick check...making use of scan_node.
1933 	 * We can skip unused nodes.
1934 	 */
1935 	if (!nodes_empty(memcg->scan_nodes)) {
1936 		for (nid = first_node(memcg->scan_nodes);
1937 		     nid < MAX_NUMNODES;
1938 		     nid = next_node(nid, memcg->scan_nodes)) {
1939 
1940 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1941 				return true;
1942 		}
1943 	}
1944 	/*
1945 	 * Check rest of nodes.
1946 	 */
1947 	for_each_node_state(nid, N_MEMORY) {
1948 		if (node_isset(nid, memcg->scan_nodes))
1949 			continue;
1950 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1951 			return true;
1952 	}
1953 	return false;
1954 }
1955 
1956 #else
1957 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1958 {
1959 	return 0;
1960 }
1961 
1962 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1963 {
1964 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1965 }
1966 #endif
1967 
1968 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1969 				   struct zone *zone,
1970 				   gfp_t gfp_mask,
1971 				   unsigned long *total_scanned)
1972 {
1973 	struct mem_cgroup *victim = NULL;
1974 	int total = 0;
1975 	int loop = 0;
1976 	unsigned long excess;
1977 	unsigned long nr_scanned;
1978 	struct mem_cgroup_reclaim_cookie reclaim = {
1979 		.zone = zone,
1980 		.priority = 0,
1981 	};
1982 
1983 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1984 
1985 	while (1) {
1986 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1987 		if (!victim) {
1988 			loop++;
1989 			if (loop >= 2) {
1990 				/*
1991 				 * If we have not been able to reclaim
1992 				 * anything, it might because there are
1993 				 * no reclaimable pages under this hierarchy
1994 				 */
1995 				if (!total)
1996 					break;
1997 				/*
1998 				 * We want to do more targeted reclaim.
1999 				 * excess >> 2 is not to excessive so as to
2000 				 * reclaim too much, nor too less that we keep
2001 				 * coming back to reclaim from this cgroup
2002 				 */
2003 				if (total >= (excess >> 2) ||
2004 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2005 					break;
2006 			}
2007 			continue;
2008 		}
2009 		if (!mem_cgroup_reclaimable(victim, false))
2010 			continue;
2011 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2012 						     zone, &nr_scanned);
2013 		*total_scanned += nr_scanned;
2014 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2015 			break;
2016 	}
2017 	mem_cgroup_iter_break(root_memcg, victim);
2018 	return total;
2019 }
2020 
2021 #ifdef CONFIG_LOCKDEP
2022 static struct lockdep_map memcg_oom_lock_dep_map = {
2023 	.name = "memcg_oom_lock",
2024 };
2025 #endif
2026 
2027 static DEFINE_SPINLOCK(memcg_oom_lock);
2028 
2029 /*
2030  * Check OOM-Killer is already running under our hierarchy.
2031  * If someone is running, return false.
2032  */
2033 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2034 {
2035 	struct mem_cgroup *iter, *failed = NULL;
2036 
2037 	spin_lock(&memcg_oom_lock);
2038 
2039 	for_each_mem_cgroup_tree(iter, memcg) {
2040 		if (iter->oom_lock) {
2041 			/*
2042 			 * this subtree of our hierarchy is already locked
2043 			 * so we cannot give a lock.
2044 			 */
2045 			failed = iter;
2046 			mem_cgroup_iter_break(memcg, iter);
2047 			break;
2048 		} else
2049 			iter->oom_lock = true;
2050 	}
2051 
2052 	if (failed) {
2053 		/*
2054 		 * OK, we failed to lock the whole subtree so we have
2055 		 * to clean up what we set up to the failing subtree
2056 		 */
2057 		for_each_mem_cgroup_tree(iter, memcg) {
2058 			if (iter == failed) {
2059 				mem_cgroup_iter_break(memcg, iter);
2060 				break;
2061 			}
2062 			iter->oom_lock = false;
2063 		}
2064 	} else
2065 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2066 
2067 	spin_unlock(&memcg_oom_lock);
2068 
2069 	return !failed;
2070 }
2071 
2072 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2073 {
2074 	struct mem_cgroup *iter;
2075 
2076 	spin_lock(&memcg_oom_lock);
2077 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2078 	for_each_mem_cgroup_tree(iter, memcg)
2079 		iter->oom_lock = false;
2080 	spin_unlock(&memcg_oom_lock);
2081 }
2082 
2083 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2084 {
2085 	struct mem_cgroup *iter;
2086 
2087 	for_each_mem_cgroup_tree(iter, memcg)
2088 		atomic_inc(&iter->under_oom);
2089 }
2090 
2091 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2092 {
2093 	struct mem_cgroup *iter;
2094 
2095 	/*
2096 	 * When a new child is created while the hierarchy is under oom,
2097 	 * mem_cgroup_oom_lock() may not be called. We have to use
2098 	 * atomic_add_unless() here.
2099 	 */
2100 	for_each_mem_cgroup_tree(iter, memcg)
2101 		atomic_add_unless(&iter->under_oom, -1, 0);
2102 }
2103 
2104 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2105 
2106 struct oom_wait_info {
2107 	struct mem_cgroup *memcg;
2108 	wait_queue_t	wait;
2109 };
2110 
2111 static int memcg_oom_wake_function(wait_queue_t *wait,
2112 	unsigned mode, int sync, void *arg)
2113 {
2114 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2115 	struct mem_cgroup *oom_wait_memcg;
2116 	struct oom_wait_info *oom_wait_info;
2117 
2118 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2119 	oom_wait_memcg = oom_wait_info->memcg;
2120 
2121 	/*
2122 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2123 	 * Then we can use css_is_ancestor without taking care of RCU.
2124 	 */
2125 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2126 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2127 		return 0;
2128 	return autoremove_wake_function(wait, mode, sync, arg);
2129 }
2130 
2131 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2132 {
2133 	atomic_inc(&memcg->oom_wakeups);
2134 	/* for filtering, pass "memcg" as argument. */
2135 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2136 }
2137 
2138 static void memcg_oom_recover(struct mem_cgroup *memcg)
2139 {
2140 	if (memcg && atomic_read(&memcg->under_oom))
2141 		memcg_wakeup_oom(memcg);
2142 }
2143 
2144 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2145 {
2146 	if (!current->memcg_oom.may_oom)
2147 		return;
2148 	/*
2149 	 * We are in the middle of the charge context here, so we
2150 	 * don't want to block when potentially sitting on a callstack
2151 	 * that holds all kinds of filesystem and mm locks.
2152 	 *
2153 	 * Also, the caller may handle a failed allocation gracefully
2154 	 * (like optional page cache readahead) and so an OOM killer
2155 	 * invocation might not even be necessary.
2156 	 *
2157 	 * That's why we don't do anything here except remember the
2158 	 * OOM context and then deal with it at the end of the page
2159 	 * fault when the stack is unwound, the locks are released,
2160 	 * and when we know whether the fault was overall successful.
2161 	 */
2162 	css_get(&memcg->css);
2163 	current->memcg_oom.memcg = memcg;
2164 	current->memcg_oom.gfp_mask = mask;
2165 	current->memcg_oom.order = order;
2166 }
2167 
2168 /**
2169  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2170  * @handle: actually kill/wait or just clean up the OOM state
2171  *
2172  * This has to be called at the end of a page fault if the memcg OOM
2173  * handler was enabled.
2174  *
2175  * Memcg supports userspace OOM handling where failed allocations must
2176  * sleep on a waitqueue until the userspace task resolves the
2177  * situation.  Sleeping directly in the charge context with all kinds
2178  * of locks held is not a good idea, instead we remember an OOM state
2179  * in the task and mem_cgroup_oom_synchronize() has to be called at
2180  * the end of the page fault to complete the OOM handling.
2181  *
2182  * Returns %true if an ongoing memcg OOM situation was detected and
2183  * completed, %false otherwise.
2184  */
2185 bool mem_cgroup_oom_synchronize(bool handle)
2186 {
2187 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2188 	struct oom_wait_info owait;
2189 	bool locked;
2190 
2191 	/* OOM is global, do not handle */
2192 	if (!memcg)
2193 		return false;
2194 
2195 	if (!handle)
2196 		goto cleanup;
2197 
2198 	owait.memcg = memcg;
2199 	owait.wait.flags = 0;
2200 	owait.wait.func = memcg_oom_wake_function;
2201 	owait.wait.private = current;
2202 	INIT_LIST_HEAD(&owait.wait.task_list);
2203 
2204 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2205 	mem_cgroup_mark_under_oom(memcg);
2206 
2207 	locked = mem_cgroup_oom_trylock(memcg);
2208 
2209 	if (locked)
2210 		mem_cgroup_oom_notify(memcg);
2211 
2212 	if (locked && !memcg->oom_kill_disable) {
2213 		mem_cgroup_unmark_under_oom(memcg);
2214 		finish_wait(&memcg_oom_waitq, &owait.wait);
2215 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2216 					 current->memcg_oom.order);
2217 	} else {
2218 		schedule();
2219 		mem_cgroup_unmark_under_oom(memcg);
2220 		finish_wait(&memcg_oom_waitq, &owait.wait);
2221 	}
2222 
2223 	if (locked) {
2224 		mem_cgroup_oom_unlock(memcg);
2225 		/*
2226 		 * There is no guarantee that an OOM-lock contender
2227 		 * sees the wakeups triggered by the OOM kill
2228 		 * uncharges.  Wake any sleepers explicitely.
2229 		 */
2230 		memcg_oom_recover(memcg);
2231 	}
2232 cleanup:
2233 	current->memcg_oom.memcg = NULL;
2234 	css_put(&memcg->css);
2235 	return true;
2236 }
2237 
2238 /*
2239  * Used to update mapped file or writeback or other statistics.
2240  *
2241  * Notes: Race condition
2242  *
2243  * Charging occurs during page instantiation, while the page is
2244  * unmapped and locked in page migration, or while the page table is
2245  * locked in THP migration.  No race is possible.
2246  *
2247  * Uncharge happens to pages with zero references, no race possible.
2248  *
2249  * Charge moving between groups is protected by checking mm->moving
2250  * account and taking the move_lock in the slowpath.
2251  */
2252 
2253 void __mem_cgroup_begin_update_page_stat(struct page *page,
2254 				bool *locked, unsigned long *flags)
2255 {
2256 	struct mem_cgroup *memcg;
2257 	struct page_cgroup *pc;
2258 
2259 	pc = lookup_page_cgroup(page);
2260 again:
2261 	memcg = pc->mem_cgroup;
2262 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2263 		return;
2264 	/*
2265 	 * If this memory cgroup is not under account moving, we don't
2266 	 * need to take move_lock_mem_cgroup(). Because we already hold
2267 	 * rcu_read_lock(), any calls to move_account will be delayed until
2268 	 * rcu_read_unlock().
2269 	 */
2270 	VM_BUG_ON(!rcu_read_lock_held());
2271 	if (atomic_read(&memcg->moving_account) <= 0)
2272 		return;
2273 
2274 	move_lock_mem_cgroup(memcg, flags);
2275 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2276 		move_unlock_mem_cgroup(memcg, flags);
2277 		goto again;
2278 	}
2279 	*locked = true;
2280 }
2281 
2282 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2283 {
2284 	struct page_cgroup *pc = lookup_page_cgroup(page);
2285 
2286 	/*
2287 	 * It's guaranteed that pc->mem_cgroup never changes while
2288 	 * lock is held because a routine modifies pc->mem_cgroup
2289 	 * should take move_lock_mem_cgroup().
2290 	 */
2291 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2292 }
2293 
2294 void mem_cgroup_update_page_stat(struct page *page,
2295 				 enum mem_cgroup_stat_index idx, int val)
2296 {
2297 	struct mem_cgroup *memcg;
2298 	struct page_cgroup *pc = lookup_page_cgroup(page);
2299 	unsigned long uninitialized_var(flags);
2300 
2301 	if (mem_cgroup_disabled())
2302 		return;
2303 
2304 	VM_BUG_ON(!rcu_read_lock_held());
2305 	memcg = pc->mem_cgroup;
2306 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2307 		return;
2308 
2309 	this_cpu_add(memcg->stat->count[idx], val);
2310 }
2311 
2312 /*
2313  * size of first charge trial. "32" comes from vmscan.c's magic value.
2314  * TODO: maybe necessary to use big numbers in big irons.
2315  */
2316 #define CHARGE_BATCH	32U
2317 struct memcg_stock_pcp {
2318 	struct mem_cgroup *cached; /* this never be root cgroup */
2319 	unsigned int nr_pages;
2320 	struct work_struct work;
2321 	unsigned long flags;
2322 #define FLUSHING_CACHED_CHARGE	0
2323 };
2324 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2325 static DEFINE_MUTEX(percpu_charge_mutex);
2326 
2327 /**
2328  * consume_stock: Try to consume stocked charge on this cpu.
2329  * @memcg: memcg to consume from.
2330  * @nr_pages: how many pages to charge.
2331  *
2332  * The charges will only happen if @memcg matches the current cpu's memcg
2333  * stock, and at least @nr_pages are available in that stock.  Failure to
2334  * service an allocation will refill the stock.
2335  *
2336  * returns true if successful, false otherwise.
2337  */
2338 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2339 {
2340 	struct memcg_stock_pcp *stock;
2341 	bool ret = true;
2342 
2343 	if (nr_pages > CHARGE_BATCH)
2344 		return false;
2345 
2346 	stock = &get_cpu_var(memcg_stock);
2347 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2348 		stock->nr_pages -= nr_pages;
2349 	else /* need to call res_counter_charge */
2350 		ret = false;
2351 	put_cpu_var(memcg_stock);
2352 	return ret;
2353 }
2354 
2355 /*
2356  * Returns stocks cached in percpu to res_counter and reset cached information.
2357  */
2358 static void drain_stock(struct memcg_stock_pcp *stock)
2359 {
2360 	struct mem_cgroup *old = stock->cached;
2361 
2362 	if (stock->nr_pages) {
2363 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2364 
2365 		res_counter_uncharge(&old->res, bytes);
2366 		if (do_swap_account)
2367 			res_counter_uncharge(&old->memsw, bytes);
2368 		stock->nr_pages = 0;
2369 	}
2370 	stock->cached = NULL;
2371 }
2372 
2373 /*
2374  * This must be called under preempt disabled or must be called by
2375  * a thread which is pinned to local cpu.
2376  */
2377 static void drain_local_stock(struct work_struct *dummy)
2378 {
2379 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2380 	drain_stock(stock);
2381 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2382 }
2383 
2384 static void __init memcg_stock_init(void)
2385 {
2386 	int cpu;
2387 
2388 	for_each_possible_cpu(cpu) {
2389 		struct memcg_stock_pcp *stock =
2390 					&per_cpu(memcg_stock, cpu);
2391 		INIT_WORK(&stock->work, drain_local_stock);
2392 	}
2393 }
2394 
2395 /*
2396  * Cache charges(val) which is from res_counter, to local per_cpu area.
2397  * This will be consumed by consume_stock() function, later.
2398  */
2399 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2400 {
2401 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2402 
2403 	if (stock->cached != memcg) { /* reset if necessary */
2404 		drain_stock(stock);
2405 		stock->cached = memcg;
2406 	}
2407 	stock->nr_pages += nr_pages;
2408 	put_cpu_var(memcg_stock);
2409 }
2410 
2411 /*
2412  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2413  * of the hierarchy under it. sync flag says whether we should block
2414  * until the work is done.
2415  */
2416 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2417 {
2418 	int cpu, curcpu;
2419 
2420 	/* Notify other cpus that system-wide "drain" is running */
2421 	get_online_cpus();
2422 	curcpu = get_cpu();
2423 	for_each_online_cpu(cpu) {
2424 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2425 		struct mem_cgroup *memcg;
2426 
2427 		memcg = stock->cached;
2428 		if (!memcg || !stock->nr_pages)
2429 			continue;
2430 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2431 			continue;
2432 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2433 			if (cpu == curcpu)
2434 				drain_local_stock(&stock->work);
2435 			else
2436 				schedule_work_on(cpu, &stock->work);
2437 		}
2438 	}
2439 	put_cpu();
2440 
2441 	if (!sync)
2442 		goto out;
2443 
2444 	for_each_online_cpu(cpu) {
2445 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2446 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2447 			flush_work(&stock->work);
2448 	}
2449 out:
2450 	put_online_cpus();
2451 }
2452 
2453 /*
2454  * Tries to drain stocked charges in other cpus. This function is asynchronous
2455  * and just put a work per cpu for draining localy on each cpu. Caller can
2456  * expects some charges will be back to res_counter later but cannot wait for
2457  * it.
2458  */
2459 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2460 {
2461 	/*
2462 	 * If someone calls draining, avoid adding more kworker runs.
2463 	 */
2464 	if (!mutex_trylock(&percpu_charge_mutex))
2465 		return;
2466 	drain_all_stock(root_memcg, false);
2467 	mutex_unlock(&percpu_charge_mutex);
2468 }
2469 
2470 /* This is a synchronous drain interface. */
2471 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2472 {
2473 	/* called when force_empty is called */
2474 	mutex_lock(&percpu_charge_mutex);
2475 	drain_all_stock(root_memcg, true);
2476 	mutex_unlock(&percpu_charge_mutex);
2477 }
2478 
2479 /*
2480  * This function drains percpu counter value from DEAD cpu and
2481  * move it to local cpu. Note that this function can be preempted.
2482  */
2483 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2484 {
2485 	int i;
2486 
2487 	spin_lock(&memcg->pcp_counter_lock);
2488 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2489 		long x = per_cpu(memcg->stat->count[i], cpu);
2490 
2491 		per_cpu(memcg->stat->count[i], cpu) = 0;
2492 		memcg->nocpu_base.count[i] += x;
2493 	}
2494 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2495 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2496 
2497 		per_cpu(memcg->stat->events[i], cpu) = 0;
2498 		memcg->nocpu_base.events[i] += x;
2499 	}
2500 	spin_unlock(&memcg->pcp_counter_lock);
2501 }
2502 
2503 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2504 					unsigned long action,
2505 					void *hcpu)
2506 {
2507 	int cpu = (unsigned long)hcpu;
2508 	struct memcg_stock_pcp *stock;
2509 	struct mem_cgroup *iter;
2510 
2511 	if (action == CPU_ONLINE)
2512 		return NOTIFY_OK;
2513 
2514 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2515 		return NOTIFY_OK;
2516 
2517 	for_each_mem_cgroup(iter)
2518 		mem_cgroup_drain_pcp_counter(iter, cpu);
2519 
2520 	stock = &per_cpu(memcg_stock, cpu);
2521 	drain_stock(stock);
2522 	return NOTIFY_OK;
2523 }
2524 
2525 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2526 		      unsigned int nr_pages)
2527 {
2528 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2529 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2530 	struct mem_cgroup *mem_over_limit;
2531 	struct res_counter *fail_res;
2532 	unsigned long nr_reclaimed;
2533 	unsigned long flags = 0;
2534 	unsigned long long size;
2535 	int ret = 0;
2536 
2537 	if (mem_cgroup_is_root(memcg))
2538 		goto done;
2539 retry:
2540 	if (consume_stock(memcg, nr_pages))
2541 		goto done;
2542 
2543 	size = batch * PAGE_SIZE;
2544 	if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2545 		if (!do_swap_account)
2546 			goto done_restock;
2547 		if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2548 			goto done_restock;
2549 		res_counter_uncharge(&memcg->res, size);
2550 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2551 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2552 	} else
2553 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2554 
2555 	if (batch > nr_pages) {
2556 		batch = nr_pages;
2557 		goto retry;
2558 	}
2559 
2560 	/*
2561 	 * Unlike in global OOM situations, memcg is not in a physical
2562 	 * memory shortage.  Allow dying and OOM-killed tasks to
2563 	 * bypass the last charges so that they can exit quickly and
2564 	 * free their memory.
2565 	 */
2566 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2567 		     fatal_signal_pending(current) ||
2568 		     current->flags & PF_EXITING))
2569 		goto bypass;
2570 
2571 	if (unlikely(task_in_memcg_oom(current)))
2572 		goto nomem;
2573 
2574 	if (!(gfp_mask & __GFP_WAIT))
2575 		goto nomem;
2576 
2577 	nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2578 
2579 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2580 		goto retry;
2581 
2582 	if (gfp_mask & __GFP_NORETRY)
2583 		goto nomem;
2584 	/*
2585 	 * Even though the limit is exceeded at this point, reclaim
2586 	 * may have been able to free some pages.  Retry the charge
2587 	 * before killing the task.
2588 	 *
2589 	 * Only for regular pages, though: huge pages are rather
2590 	 * unlikely to succeed so close to the limit, and we fall back
2591 	 * to regular pages anyway in case of failure.
2592 	 */
2593 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2594 		goto retry;
2595 	/*
2596 	 * At task move, charge accounts can be doubly counted. So, it's
2597 	 * better to wait until the end of task_move if something is going on.
2598 	 */
2599 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2600 		goto retry;
2601 
2602 	if (nr_retries--)
2603 		goto retry;
2604 
2605 	if (gfp_mask & __GFP_NOFAIL)
2606 		goto bypass;
2607 
2608 	if (fatal_signal_pending(current))
2609 		goto bypass;
2610 
2611 	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2612 nomem:
2613 	if (!(gfp_mask & __GFP_NOFAIL))
2614 		return -ENOMEM;
2615 bypass:
2616 	return -EINTR;
2617 
2618 done_restock:
2619 	if (batch > nr_pages)
2620 		refill_stock(memcg, batch - nr_pages);
2621 done:
2622 	return ret;
2623 }
2624 
2625 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2626 {
2627 	unsigned long bytes = nr_pages * PAGE_SIZE;
2628 
2629 	if (mem_cgroup_is_root(memcg))
2630 		return;
2631 
2632 	res_counter_uncharge(&memcg->res, bytes);
2633 	if (do_swap_account)
2634 		res_counter_uncharge(&memcg->memsw, bytes);
2635 }
2636 
2637 /*
2638  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2639  * This is useful when moving usage to parent cgroup.
2640  */
2641 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2642 					unsigned int nr_pages)
2643 {
2644 	unsigned long bytes = nr_pages * PAGE_SIZE;
2645 
2646 	if (mem_cgroup_is_root(memcg))
2647 		return;
2648 
2649 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2650 	if (do_swap_account)
2651 		res_counter_uncharge_until(&memcg->memsw,
2652 						memcg->memsw.parent, bytes);
2653 }
2654 
2655 /*
2656  * A helper function to get mem_cgroup from ID. must be called under
2657  * rcu_read_lock().  The caller is responsible for calling
2658  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2659  * refcnt from swap can be called against removed memcg.)
2660  */
2661 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2662 {
2663 	/* ID 0 is unused ID */
2664 	if (!id)
2665 		return NULL;
2666 	return mem_cgroup_from_id(id);
2667 }
2668 
2669 /*
2670  * try_get_mem_cgroup_from_page - look up page's memcg association
2671  * @page: the page
2672  *
2673  * Look up, get a css reference, and return the memcg that owns @page.
2674  *
2675  * The page must be locked to prevent racing with swap-in and page
2676  * cache charges.  If coming from an unlocked page table, the caller
2677  * must ensure the page is on the LRU or this can race with charging.
2678  */
2679 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2680 {
2681 	struct mem_cgroup *memcg = NULL;
2682 	struct page_cgroup *pc;
2683 	unsigned short id;
2684 	swp_entry_t ent;
2685 
2686 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2687 
2688 	pc = lookup_page_cgroup(page);
2689 	if (PageCgroupUsed(pc)) {
2690 		memcg = pc->mem_cgroup;
2691 		if (memcg && !css_tryget_online(&memcg->css))
2692 			memcg = NULL;
2693 	} else if (PageSwapCache(page)) {
2694 		ent.val = page_private(page);
2695 		id = lookup_swap_cgroup_id(ent);
2696 		rcu_read_lock();
2697 		memcg = mem_cgroup_lookup(id);
2698 		if (memcg && !css_tryget_online(&memcg->css))
2699 			memcg = NULL;
2700 		rcu_read_unlock();
2701 	}
2702 	return memcg;
2703 }
2704 
2705 static void lock_page_lru(struct page *page, int *isolated)
2706 {
2707 	struct zone *zone = page_zone(page);
2708 
2709 	spin_lock_irq(&zone->lru_lock);
2710 	if (PageLRU(page)) {
2711 		struct lruvec *lruvec;
2712 
2713 		lruvec = mem_cgroup_page_lruvec(page, zone);
2714 		ClearPageLRU(page);
2715 		del_page_from_lru_list(page, lruvec, page_lru(page));
2716 		*isolated = 1;
2717 	} else
2718 		*isolated = 0;
2719 }
2720 
2721 static void unlock_page_lru(struct page *page, int isolated)
2722 {
2723 	struct zone *zone = page_zone(page);
2724 
2725 	if (isolated) {
2726 		struct lruvec *lruvec;
2727 
2728 		lruvec = mem_cgroup_page_lruvec(page, zone);
2729 		VM_BUG_ON_PAGE(PageLRU(page), page);
2730 		SetPageLRU(page);
2731 		add_page_to_lru_list(page, lruvec, page_lru(page));
2732 	}
2733 	spin_unlock_irq(&zone->lru_lock);
2734 }
2735 
2736 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2737 			  bool lrucare)
2738 {
2739 	struct page_cgroup *pc = lookup_page_cgroup(page);
2740 	int isolated;
2741 
2742 	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2743 	/*
2744 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2745 	 * accessed by any other context at this point.
2746 	 */
2747 
2748 	/*
2749 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2750 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2751 	 */
2752 	if (lrucare)
2753 		lock_page_lru(page, &isolated);
2754 
2755 	/*
2756 	 * Nobody should be changing or seriously looking at
2757 	 * pc->mem_cgroup and pc->flags at this point:
2758 	 *
2759 	 * - the page is uncharged
2760 	 *
2761 	 * - the page is off-LRU
2762 	 *
2763 	 * - an anonymous fault has exclusive page access, except for
2764 	 *   a locked page table
2765 	 *
2766 	 * - a page cache insertion, a swapin fault, or a migration
2767 	 *   have the page locked
2768 	 */
2769 	pc->mem_cgroup = memcg;
2770 	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2771 
2772 	if (lrucare)
2773 		unlock_page_lru(page, isolated);
2774 }
2775 
2776 static DEFINE_MUTEX(set_limit_mutex);
2777 
2778 #ifdef CONFIG_MEMCG_KMEM
2779 /*
2780  * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2781  * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2782  */
2783 static DEFINE_MUTEX(memcg_slab_mutex);
2784 
2785 static DEFINE_MUTEX(activate_kmem_mutex);
2786 
2787 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2788 {
2789 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2790 		memcg_kmem_is_active(memcg);
2791 }
2792 
2793 /*
2794  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2795  * in the memcg_cache_params struct.
2796  */
2797 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2798 {
2799 	struct kmem_cache *cachep;
2800 
2801 	VM_BUG_ON(p->is_root_cache);
2802 	cachep = p->root_cache;
2803 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2804 }
2805 
2806 #ifdef CONFIG_SLABINFO
2807 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2808 {
2809 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2810 	struct memcg_cache_params *params;
2811 
2812 	if (!memcg_can_account_kmem(memcg))
2813 		return -EIO;
2814 
2815 	print_slabinfo_header(m);
2816 
2817 	mutex_lock(&memcg_slab_mutex);
2818 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2819 		cache_show(memcg_params_to_cache(params), m);
2820 	mutex_unlock(&memcg_slab_mutex);
2821 
2822 	return 0;
2823 }
2824 #endif
2825 
2826 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2827 {
2828 	struct res_counter *fail_res;
2829 	int ret = 0;
2830 
2831 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2832 	if (ret)
2833 		return ret;
2834 
2835 	ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2836 	if (ret == -EINTR)  {
2837 		/*
2838 		 * try_charge() chose to bypass to root due to OOM kill or
2839 		 * fatal signal.  Since our only options are to either fail
2840 		 * the allocation or charge it to this cgroup, do it as a
2841 		 * temporary condition. But we can't fail. From a kmem/slab
2842 		 * perspective, the cache has already been selected, by
2843 		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2844 		 * our minds.
2845 		 *
2846 		 * This condition will only trigger if the task entered
2847 		 * memcg_charge_kmem in a sane state, but was OOM-killed
2848 		 * during try_charge() above. Tasks that were already dying
2849 		 * when the allocation triggers should have been already
2850 		 * directed to the root cgroup in memcontrol.h
2851 		 */
2852 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
2853 		if (do_swap_account)
2854 			res_counter_charge_nofail(&memcg->memsw, size,
2855 						  &fail_res);
2856 		ret = 0;
2857 	} else if (ret)
2858 		res_counter_uncharge(&memcg->kmem, size);
2859 
2860 	return ret;
2861 }
2862 
2863 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2864 {
2865 	res_counter_uncharge(&memcg->res, size);
2866 	if (do_swap_account)
2867 		res_counter_uncharge(&memcg->memsw, size);
2868 
2869 	/* Not down to 0 */
2870 	if (res_counter_uncharge(&memcg->kmem, size))
2871 		return;
2872 
2873 	/*
2874 	 * Releases a reference taken in kmem_cgroup_css_offline in case
2875 	 * this last uncharge is racing with the offlining code or it is
2876 	 * outliving the memcg existence.
2877 	 *
2878 	 * The memory barrier imposed by test&clear is paired with the
2879 	 * explicit one in memcg_kmem_mark_dead().
2880 	 */
2881 	if (memcg_kmem_test_and_clear_dead(memcg))
2882 		css_put(&memcg->css);
2883 }
2884 
2885 /*
2886  * helper for acessing a memcg's index. It will be used as an index in the
2887  * child cache array in kmem_cache, and also to derive its name. This function
2888  * will return -1 when this is not a kmem-limited memcg.
2889  */
2890 int memcg_cache_id(struct mem_cgroup *memcg)
2891 {
2892 	return memcg ? memcg->kmemcg_id : -1;
2893 }
2894 
2895 static size_t memcg_caches_array_size(int num_groups)
2896 {
2897 	ssize_t size;
2898 	if (num_groups <= 0)
2899 		return 0;
2900 
2901 	size = 2 * num_groups;
2902 	if (size < MEMCG_CACHES_MIN_SIZE)
2903 		size = MEMCG_CACHES_MIN_SIZE;
2904 	else if (size > MEMCG_CACHES_MAX_SIZE)
2905 		size = MEMCG_CACHES_MAX_SIZE;
2906 
2907 	return size;
2908 }
2909 
2910 /*
2911  * We should update the current array size iff all caches updates succeed. This
2912  * can only be done from the slab side. The slab mutex needs to be held when
2913  * calling this.
2914  */
2915 void memcg_update_array_size(int num)
2916 {
2917 	if (num > memcg_limited_groups_array_size)
2918 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
2919 }
2920 
2921 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2922 {
2923 	struct memcg_cache_params *cur_params = s->memcg_params;
2924 
2925 	VM_BUG_ON(!is_root_cache(s));
2926 
2927 	if (num_groups > memcg_limited_groups_array_size) {
2928 		int i;
2929 		struct memcg_cache_params *new_params;
2930 		ssize_t size = memcg_caches_array_size(num_groups);
2931 
2932 		size *= sizeof(void *);
2933 		size += offsetof(struct memcg_cache_params, memcg_caches);
2934 
2935 		new_params = kzalloc(size, GFP_KERNEL);
2936 		if (!new_params)
2937 			return -ENOMEM;
2938 
2939 		new_params->is_root_cache = true;
2940 
2941 		/*
2942 		 * There is the chance it will be bigger than
2943 		 * memcg_limited_groups_array_size, if we failed an allocation
2944 		 * in a cache, in which case all caches updated before it, will
2945 		 * have a bigger array.
2946 		 *
2947 		 * But if that is the case, the data after
2948 		 * memcg_limited_groups_array_size is certainly unused
2949 		 */
2950 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
2951 			if (!cur_params->memcg_caches[i])
2952 				continue;
2953 			new_params->memcg_caches[i] =
2954 						cur_params->memcg_caches[i];
2955 		}
2956 
2957 		/*
2958 		 * Ideally, we would wait until all caches succeed, and only
2959 		 * then free the old one. But this is not worth the extra
2960 		 * pointer per-cache we'd have to have for this.
2961 		 *
2962 		 * It is not a big deal if some caches are left with a size
2963 		 * bigger than the others. And all updates will reset this
2964 		 * anyway.
2965 		 */
2966 		rcu_assign_pointer(s->memcg_params, new_params);
2967 		if (cur_params)
2968 			kfree_rcu(cur_params, rcu_head);
2969 	}
2970 	return 0;
2971 }
2972 
2973 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
2974 			     struct kmem_cache *root_cache)
2975 {
2976 	size_t size;
2977 
2978 	if (!memcg_kmem_enabled())
2979 		return 0;
2980 
2981 	if (!memcg) {
2982 		size = offsetof(struct memcg_cache_params, memcg_caches);
2983 		size += memcg_limited_groups_array_size * sizeof(void *);
2984 	} else
2985 		size = sizeof(struct memcg_cache_params);
2986 
2987 	s->memcg_params = kzalloc(size, GFP_KERNEL);
2988 	if (!s->memcg_params)
2989 		return -ENOMEM;
2990 
2991 	if (memcg) {
2992 		s->memcg_params->memcg = memcg;
2993 		s->memcg_params->root_cache = root_cache;
2994 		css_get(&memcg->css);
2995 	} else
2996 		s->memcg_params->is_root_cache = true;
2997 
2998 	return 0;
2999 }
3000 
3001 void memcg_free_cache_params(struct kmem_cache *s)
3002 {
3003 	if (!s->memcg_params)
3004 		return;
3005 	if (!s->memcg_params->is_root_cache)
3006 		css_put(&s->memcg_params->memcg->css);
3007 	kfree(s->memcg_params);
3008 }
3009 
3010 static void memcg_register_cache(struct mem_cgroup *memcg,
3011 				 struct kmem_cache *root_cache)
3012 {
3013 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3014 						     memcg_slab_mutex */
3015 	struct kmem_cache *cachep;
3016 	int id;
3017 
3018 	lockdep_assert_held(&memcg_slab_mutex);
3019 
3020 	id = memcg_cache_id(memcg);
3021 
3022 	/*
3023 	 * Since per-memcg caches are created asynchronously on first
3024 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
3025 	 * create the same cache, but only one of them may succeed.
3026 	 */
3027 	if (cache_from_memcg_idx(root_cache, id))
3028 		return;
3029 
3030 	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3031 	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3032 	/*
3033 	 * If we could not create a memcg cache, do not complain, because
3034 	 * that's not critical at all as we can always proceed with the root
3035 	 * cache.
3036 	 */
3037 	if (!cachep)
3038 		return;
3039 
3040 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3041 
3042 	/*
3043 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3044 	 * barrier here to ensure nobody will see the kmem_cache partially
3045 	 * initialized.
3046 	 */
3047 	smp_wmb();
3048 
3049 	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3050 	root_cache->memcg_params->memcg_caches[id] = cachep;
3051 }
3052 
3053 static void memcg_unregister_cache(struct kmem_cache *cachep)
3054 {
3055 	struct kmem_cache *root_cache;
3056 	struct mem_cgroup *memcg;
3057 	int id;
3058 
3059 	lockdep_assert_held(&memcg_slab_mutex);
3060 
3061 	BUG_ON(is_root_cache(cachep));
3062 
3063 	root_cache = cachep->memcg_params->root_cache;
3064 	memcg = cachep->memcg_params->memcg;
3065 	id = memcg_cache_id(memcg);
3066 
3067 	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3068 	root_cache->memcg_params->memcg_caches[id] = NULL;
3069 
3070 	list_del(&cachep->memcg_params->list);
3071 
3072 	kmem_cache_destroy(cachep);
3073 }
3074 
3075 /*
3076  * During the creation a new cache, we need to disable our accounting mechanism
3077  * altogether. This is true even if we are not creating, but rather just
3078  * enqueing new caches to be created.
3079  *
3080  * This is because that process will trigger allocations; some visible, like
3081  * explicit kmallocs to auxiliary data structures, name strings and internal
3082  * cache structures; some well concealed, like INIT_WORK() that can allocate
3083  * objects during debug.
3084  *
3085  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3086  * to it. This may not be a bounded recursion: since the first cache creation
3087  * failed to complete (waiting on the allocation), we'll just try to create the
3088  * cache again, failing at the same point.
3089  *
3090  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3091  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3092  * inside the following two functions.
3093  */
3094 static inline void memcg_stop_kmem_account(void)
3095 {
3096 	VM_BUG_ON(!current->mm);
3097 	current->memcg_kmem_skip_account++;
3098 }
3099 
3100 static inline void memcg_resume_kmem_account(void)
3101 {
3102 	VM_BUG_ON(!current->mm);
3103 	current->memcg_kmem_skip_account--;
3104 }
3105 
3106 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3107 {
3108 	struct kmem_cache *c;
3109 	int i, failed = 0;
3110 
3111 	mutex_lock(&memcg_slab_mutex);
3112 	for_each_memcg_cache_index(i) {
3113 		c = cache_from_memcg_idx(s, i);
3114 		if (!c)
3115 			continue;
3116 
3117 		memcg_unregister_cache(c);
3118 
3119 		if (cache_from_memcg_idx(s, i))
3120 			failed++;
3121 	}
3122 	mutex_unlock(&memcg_slab_mutex);
3123 	return failed;
3124 }
3125 
3126 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3127 {
3128 	struct kmem_cache *cachep;
3129 	struct memcg_cache_params *params, *tmp;
3130 
3131 	if (!memcg_kmem_is_active(memcg))
3132 		return;
3133 
3134 	mutex_lock(&memcg_slab_mutex);
3135 	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3136 		cachep = memcg_params_to_cache(params);
3137 		kmem_cache_shrink(cachep);
3138 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3139 			memcg_unregister_cache(cachep);
3140 	}
3141 	mutex_unlock(&memcg_slab_mutex);
3142 }
3143 
3144 struct memcg_register_cache_work {
3145 	struct mem_cgroup *memcg;
3146 	struct kmem_cache *cachep;
3147 	struct work_struct work;
3148 };
3149 
3150 static void memcg_register_cache_func(struct work_struct *w)
3151 {
3152 	struct memcg_register_cache_work *cw =
3153 		container_of(w, struct memcg_register_cache_work, work);
3154 	struct mem_cgroup *memcg = cw->memcg;
3155 	struct kmem_cache *cachep = cw->cachep;
3156 
3157 	mutex_lock(&memcg_slab_mutex);
3158 	memcg_register_cache(memcg, cachep);
3159 	mutex_unlock(&memcg_slab_mutex);
3160 
3161 	css_put(&memcg->css);
3162 	kfree(cw);
3163 }
3164 
3165 /*
3166  * Enqueue the creation of a per-memcg kmem_cache.
3167  */
3168 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3169 					    struct kmem_cache *cachep)
3170 {
3171 	struct memcg_register_cache_work *cw;
3172 
3173 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3174 	if (cw == NULL) {
3175 		css_put(&memcg->css);
3176 		return;
3177 	}
3178 
3179 	cw->memcg = memcg;
3180 	cw->cachep = cachep;
3181 
3182 	INIT_WORK(&cw->work, memcg_register_cache_func);
3183 	schedule_work(&cw->work);
3184 }
3185 
3186 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3187 					  struct kmem_cache *cachep)
3188 {
3189 	/*
3190 	 * We need to stop accounting when we kmalloc, because if the
3191 	 * corresponding kmalloc cache is not yet created, the first allocation
3192 	 * in __memcg_schedule_register_cache will recurse.
3193 	 *
3194 	 * However, it is better to enclose the whole function. Depending on
3195 	 * the debugging options enabled, INIT_WORK(), for instance, can
3196 	 * trigger an allocation. This too, will make us recurse. Because at
3197 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3198 	 * the safest choice is to do it like this, wrapping the whole function.
3199 	 */
3200 	memcg_stop_kmem_account();
3201 	__memcg_schedule_register_cache(memcg, cachep);
3202 	memcg_resume_kmem_account();
3203 }
3204 
3205 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3206 {
3207 	int res;
3208 
3209 	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3210 				PAGE_SIZE << order);
3211 	if (!res)
3212 		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3213 	return res;
3214 }
3215 
3216 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3217 {
3218 	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3219 	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3220 }
3221 
3222 /*
3223  * Return the kmem_cache we're supposed to use for a slab allocation.
3224  * We try to use the current memcg's version of the cache.
3225  *
3226  * If the cache does not exist yet, if we are the first user of it,
3227  * we either create it immediately, if possible, or create it asynchronously
3228  * in a workqueue.
3229  * In the latter case, we will let the current allocation go through with
3230  * the original cache.
3231  *
3232  * Can't be called in interrupt context or from kernel threads.
3233  * This function needs to be called with rcu_read_lock() held.
3234  */
3235 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3236 					  gfp_t gfp)
3237 {
3238 	struct mem_cgroup *memcg;
3239 	struct kmem_cache *memcg_cachep;
3240 
3241 	VM_BUG_ON(!cachep->memcg_params);
3242 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3243 
3244 	if (!current->mm || current->memcg_kmem_skip_account)
3245 		return cachep;
3246 
3247 	rcu_read_lock();
3248 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3249 
3250 	if (!memcg_can_account_kmem(memcg))
3251 		goto out;
3252 
3253 	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3254 	if (likely(memcg_cachep)) {
3255 		cachep = memcg_cachep;
3256 		goto out;
3257 	}
3258 
3259 	/* The corresponding put will be done in the workqueue. */
3260 	if (!css_tryget_online(&memcg->css))
3261 		goto out;
3262 	rcu_read_unlock();
3263 
3264 	/*
3265 	 * If we are in a safe context (can wait, and not in interrupt
3266 	 * context), we could be be predictable and return right away.
3267 	 * This would guarantee that the allocation being performed
3268 	 * already belongs in the new cache.
3269 	 *
3270 	 * However, there are some clashes that can arrive from locking.
3271 	 * For instance, because we acquire the slab_mutex while doing
3272 	 * memcg_create_kmem_cache, this means no further allocation
3273 	 * could happen with the slab_mutex held. So it's better to
3274 	 * defer everything.
3275 	 */
3276 	memcg_schedule_register_cache(memcg, cachep);
3277 	return cachep;
3278 out:
3279 	rcu_read_unlock();
3280 	return cachep;
3281 }
3282 
3283 /*
3284  * We need to verify if the allocation against current->mm->owner's memcg is
3285  * possible for the given order. But the page is not allocated yet, so we'll
3286  * need a further commit step to do the final arrangements.
3287  *
3288  * It is possible for the task to switch cgroups in this mean time, so at
3289  * commit time, we can't rely on task conversion any longer.  We'll then use
3290  * the handle argument to return to the caller which cgroup we should commit
3291  * against. We could also return the memcg directly and avoid the pointer
3292  * passing, but a boolean return value gives better semantics considering
3293  * the compiled-out case as well.
3294  *
3295  * Returning true means the allocation is possible.
3296  */
3297 bool
3298 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3299 {
3300 	struct mem_cgroup *memcg;
3301 	int ret;
3302 
3303 	*_memcg = NULL;
3304 
3305 	/*
3306 	 * Disabling accounting is only relevant for some specific memcg
3307 	 * internal allocations. Therefore we would initially not have such
3308 	 * check here, since direct calls to the page allocator that are
3309 	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3310 	 * outside memcg core. We are mostly concerned with cache allocations,
3311 	 * and by having this test at memcg_kmem_get_cache, we are already able
3312 	 * to relay the allocation to the root cache and bypass the memcg cache
3313 	 * altogether.
3314 	 *
3315 	 * There is one exception, though: the SLUB allocator does not create
3316 	 * large order caches, but rather service large kmallocs directly from
3317 	 * the page allocator. Therefore, the following sequence when backed by
3318 	 * the SLUB allocator:
3319 	 *
3320 	 *	memcg_stop_kmem_account();
3321 	 *	kmalloc(<large_number>)
3322 	 *	memcg_resume_kmem_account();
3323 	 *
3324 	 * would effectively ignore the fact that we should skip accounting,
3325 	 * since it will drive us directly to this function without passing
3326 	 * through the cache selector memcg_kmem_get_cache. Such large
3327 	 * allocations are extremely rare but can happen, for instance, for the
3328 	 * cache arrays. We bring this test here.
3329 	 */
3330 	if (!current->mm || current->memcg_kmem_skip_account)
3331 		return true;
3332 
3333 	memcg = get_mem_cgroup_from_mm(current->mm);
3334 
3335 	if (!memcg_can_account_kmem(memcg)) {
3336 		css_put(&memcg->css);
3337 		return true;
3338 	}
3339 
3340 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3341 	if (!ret)
3342 		*_memcg = memcg;
3343 
3344 	css_put(&memcg->css);
3345 	return (ret == 0);
3346 }
3347 
3348 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3349 			      int order)
3350 {
3351 	struct page_cgroup *pc;
3352 
3353 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3354 
3355 	/* The page allocation failed. Revert */
3356 	if (!page) {
3357 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3358 		return;
3359 	}
3360 	/*
3361 	 * The page is freshly allocated and not visible to any
3362 	 * outside callers yet.  Set up pc non-atomically.
3363 	 */
3364 	pc = lookup_page_cgroup(page);
3365 	pc->mem_cgroup = memcg;
3366 	pc->flags = PCG_USED;
3367 }
3368 
3369 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3370 {
3371 	struct mem_cgroup *memcg = NULL;
3372 	struct page_cgroup *pc;
3373 
3374 
3375 	pc = lookup_page_cgroup(page);
3376 	if (!PageCgroupUsed(pc))
3377 		return;
3378 
3379 	memcg = pc->mem_cgroup;
3380 	pc->flags = 0;
3381 
3382 	/*
3383 	 * We trust that only if there is a memcg associated with the page, it
3384 	 * is a valid allocation
3385 	 */
3386 	if (!memcg)
3387 		return;
3388 
3389 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3390 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3391 }
3392 #else
3393 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3394 {
3395 }
3396 #endif /* CONFIG_MEMCG_KMEM */
3397 
3398 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3399 
3400 /*
3401  * Because tail pages are not marked as "used", set it. We're under
3402  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3403  * charge/uncharge will be never happen and move_account() is done under
3404  * compound_lock(), so we don't have to take care of races.
3405  */
3406 void mem_cgroup_split_huge_fixup(struct page *head)
3407 {
3408 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3409 	struct page_cgroup *pc;
3410 	struct mem_cgroup *memcg;
3411 	int i;
3412 
3413 	if (mem_cgroup_disabled())
3414 		return;
3415 
3416 	memcg = head_pc->mem_cgroup;
3417 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3418 		pc = head_pc + i;
3419 		pc->mem_cgroup = memcg;
3420 		pc->flags = head_pc->flags;
3421 	}
3422 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3423 		       HPAGE_PMD_NR);
3424 }
3425 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3426 
3427 /**
3428  * mem_cgroup_move_account - move account of the page
3429  * @page: the page
3430  * @nr_pages: number of regular pages (>1 for huge pages)
3431  * @pc:	page_cgroup of the page.
3432  * @from: mem_cgroup which the page is moved from.
3433  * @to:	mem_cgroup which the page is moved to. @from != @to.
3434  *
3435  * The caller must confirm following.
3436  * - page is not on LRU (isolate_page() is useful.)
3437  * - compound_lock is held when nr_pages > 1
3438  *
3439  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3440  * from old cgroup.
3441  */
3442 static int mem_cgroup_move_account(struct page *page,
3443 				   unsigned int nr_pages,
3444 				   struct page_cgroup *pc,
3445 				   struct mem_cgroup *from,
3446 				   struct mem_cgroup *to)
3447 {
3448 	unsigned long flags;
3449 	int ret;
3450 
3451 	VM_BUG_ON(from == to);
3452 	VM_BUG_ON_PAGE(PageLRU(page), page);
3453 	/*
3454 	 * The page is isolated from LRU. So, collapse function
3455 	 * will not handle this page. But page splitting can happen.
3456 	 * Do this check under compound_page_lock(). The caller should
3457 	 * hold it.
3458 	 */
3459 	ret = -EBUSY;
3460 	if (nr_pages > 1 && !PageTransHuge(page))
3461 		goto out;
3462 
3463 	/*
3464 	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3465 	 * of its source page while we change it: page migration takes
3466 	 * both pages off the LRU, but page cache replacement doesn't.
3467 	 */
3468 	if (!trylock_page(page))
3469 		goto out;
3470 
3471 	ret = -EINVAL;
3472 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3473 		goto out_unlock;
3474 
3475 	move_lock_mem_cgroup(from, &flags);
3476 
3477 	if (!PageAnon(page) && page_mapped(page)) {
3478 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3479 			       nr_pages);
3480 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3481 			       nr_pages);
3482 	}
3483 
3484 	if (PageWriteback(page)) {
3485 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3486 			       nr_pages);
3487 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3488 			       nr_pages);
3489 	}
3490 
3491 	/*
3492 	 * It is safe to change pc->mem_cgroup here because the page
3493 	 * is referenced, charged, and isolated - we can't race with
3494 	 * uncharging, charging, migration, or LRU putback.
3495 	 */
3496 
3497 	/* caller should have done css_get */
3498 	pc->mem_cgroup = to;
3499 	move_unlock_mem_cgroup(from, &flags);
3500 	ret = 0;
3501 
3502 	local_irq_disable();
3503 	mem_cgroup_charge_statistics(to, page, nr_pages);
3504 	memcg_check_events(to, page);
3505 	mem_cgroup_charge_statistics(from, page, -nr_pages);
3506 	memcg_check_events(from, page);
3507 	local_irq_enable();
3508 out_unlock:
3509 	unlock_page(page);
3510 out:
3511 	return ret;
3512 }
3513 
3514 /**
3515  * mem_cgroup_move_parent - moves page to the parent group
3516  * @page: the page to move
3517  * @pc: page_cgroup of the page
3518  * @child: page's cgroup
3519  *
3520  * move charges to its parent or the root cgroup if the group has no
3521  * parent (aka use_hierarchy==0).
3522  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3523  * mem_cgroup_move_account fails) the failure is always temporary and
3524  * it signals a race with a page removal/uncharge or migration. In the
3525  * first case the page is on the way out and it will vanish from the LRU
3526  * on the next attempt and the call should be retried later.
3527  * Isolation from the LRU fails only if page has been isolated from
3528  * the LRU since we looked at it and that usually means either global
3529  * reclaim or migration going on. The page will either get back to the
3530  * LRU or vanish.
3531  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3532  * (!PageCgroupUsed) or moved to a different group. The page will
3533  * disappear in the next attempt.
3534  */
3535 static int mem_cgroup_move_parent(struct page *page,
3536 				  struct page_cgroup *pc,
3537 				  struct mem_cgroup *child)
3538 {
3539 	struct mem_cgroup *parent;
3540 	unsigned int nr_pages;
3541 	unsigned long uninitialized_var(flags);
3542 	int ret;
3543 
3544 	VM_BUG_ON(mem_cgroup_is_root(child));
3545 
3546 	ret = -EBUSY;
3547 	if (!get_page_unless_zero(page))
3548 		goto out;
3549 	if (isolate_lru_page(page))
3550 		goto put;
3551 
3552 	nr_pages = hpage_nr_pages(page);
3553 
3554 	parent = parent_mem_cgroup(child);
3555 	/*
3556 	 * If no parent, move charges to root cgroup.
3557 	 */
3558 	if (!parent)
3559 		parent = root_mem_cgroup;
3560 
3561 	if (nr_pages > 1) {
3562 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3563 		flags = compound_lock_irqsave(page);
3564 	}
3565 
3566 	ret = mem_cgroup_move_account(page, nr_pages,
3567 				pc, child, parent);
3568 	if (!ret)
3569 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3570 
3571 	if (nr_pages > 1)
3572 		compound_unlock_irqrestore(page, flags);
3573 	putback_lru_page(page);
3574 put:
3575 	put_page(page);
3576 out:
3577 	return ret;
3578 }
3579 
3580 #ifdef CONFIG_MEMCG_SWAP
3581 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3582 					 bool charge)
3583 {
3584 	int val = (charge) ? 1 : -1;
3585 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3586 }
3587 
3588 /**
3589  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3590  * @entry: swap entry to be moved
3591  * @from:  mem_cgroup which the entry is moved from
3592  * @to:  mem_cgroup which the entry is moved to
3593  *
3594  * It succeeds only when the swap_cgroup's record for this entry is the same
3595  * as the mem_cgroup's id of @from.
3596  *
3597  * Returns 0 on success, -EINVAL on failure.
3598  *
3599  * The caller must have charged to @to, IOW, called res_counter_charge() about
3600  * both res and memsw, and called css_get().
3601  */
3602 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3603 				struct mem_cgroup *from, struct mem_cgroup *to)
3604 {
3605 	unsigned short old_id, new_id;
3606 
3607 	old_id = mem_cgroup_id(from);
3608 	new_id = mem_cgroup_id(to);
3609 
3610 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3611 		mem_cgroup_swap_statistics(from, false);
3612 		mem_cgroup_swap_statistics(to, true);
3613 		/*
3614 		 * This function is only called from task migration context now.
3615 		 * It postpones res_counter and refcount handling till the end
3616 		 * of task migration(mem_cgroup_clear_mc()) for performance
3617 		 * improvement. But we cannot postpone css_get(to)  because if
3618 		 * the process that has been moved to @to does swap-in, the
3619 		 * refcount of @to might be decreased to 0.
3620 		 *
3621 		 * We are in attach() phase, so the cgroup is guaranteed to be
3622 		 * alive, so we can just call css_get().
3623 		 */
3624 		css_get(&to->css);
3625 		return 0;
3626 	}
3627 	return -EINVAL;
3628 }
3629 #else
3630 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3631 				struct mem_cgroup *from, struct mem_cgroup *to)
3632 {
3633 	return -EINVAL;
3634 }
3635 #endif
3636 
3637 #ifdef CONFIG_DEBUG_VM
3638 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3639 {
3640 	struct page_cgroup *pc;
3641 
3642 	pc = lookup_page_cgroup(page);
3643 	/*
3644 	 * Can be NULL while feeding pages into the page allocator for
3645 	 * the first time, i.e. during boot or memory hotplug;
3646 	 * or when mem_cgroup_disabled().
3647 	 */
3648 	if (likely(pc) && PageCgroupUsed(pc))
3649 		return pc;
3650 	return NULL;
3651 }
3652 
3653 bool mem_cgroup_bad_page_check(struct page *page)
3654 {
3655 	if (mem_cgroup_disabled())
3656 		return false;
3657 
3658 	return lookup_page_cgroup_used(page) != NULL;
3659 }
3660 
3661 void mem_cgroup_print_bad_page(struct page *page)
3662 {
3663 	struct page_cgroup *pc;
3664 
3665 	pc = lookup_page_cgroup_used(page);
3666 	if (pc) {
3667 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3668 			 pc, pc->flags, pc->mem_cgroup);
3669 	}
3670 }
3671 #endif
3672 
3673 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3674 				unsigned long long val)
3675 {
3676 	int retry_count;
3677 	u64 memswlimit, memlimit;
3678 	int ret = 0;
3679 	int children = mem_cgroup_count_children(memcg);
3680 	u64 curusage, oldusage;
3681 	int enlarge;
3682 
3683 	/*
3684 	 * For keeping hierarchical_reclaim simple, how long we should retry
3685 	 * is depends on callers. We set our retry-count to be function
3686 	 * of # of children which we should visit in this loop.
3687 	 */
3688 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3689 
3690 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3691 
3692 	enlarge = 0;
3693 	while (retry_count) {
3694 		if (signal_pending(current)) {
3695 			ret = -EINTR;
3696 			break;
3697 		}
3698 		/*
3699 		 * Rather than hide all in some function, I do this in
3700 		 * open coded manner. You see what this really does.
3701 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3702 		 */
3703 		mutex_lock(&set_limit_mutex);
3704 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3705 		if (memswlimit < val) {
3706 			ret = -EINVAL;
3707 			mutex_unlock(&set_limit_mutex);
3708 			break;
3709 		}
3710 
3711 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3712 		if (memlimit < val)
3713 			enlarge = 1;
3714 
3715 		ret = res_counter_set_limit(&memcg->res, val);
3716 		if (!ret) {
3717 			if (memswlimit == val)
3718 				memcg->memsw_is_minimum = true;
3719 			else
3720 				memcg->memsw_is_minimum = false;
3721 		}
3722 		mutex_unlock(&set_limit_mutex);
3723 
3724 		if (!ret)
3725 			break;
3726 
3727 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3728 				   MEM_CGROUP_RECLAIM_SHRINK);
3729 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3730 		/* Usage is reduced ? */
3731 		if (curusage >= oldusage)
3732 			retry_count--;
3733 		else
3734 			oldusage = curusage;
3735 	}
3736 	if (!ret && enlarge)
3737 		memcg_oom_recover(memcg);
3738 
3739 	return ret;
3740 }
3741 
3742 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3743 					unsigned long long val)
3744 {
3745 	int retry_count;
3746 	u64 memlimit, memswlimit, oldusage, curusage;
3747 	int children = mem_cgroup_count_children(memcg);
3748 	int ret = -EBUSY;
3749 	int enlarge = 0;
3750 
3751 	/* see mem_cgroup_resize_res_limit */
3752 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3753 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3754 	while (retry_count) {
3755 		if (signal_pending(current)) {
3756 			ret = -EINTR;
3757 			break;
3758 		}
3759 		/*
3760 		 * Rather than hide all in some function, I do this in
3761 		 * open coded manner. You see what this really does.
3762 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3763 		 */
3764 		mutex_lock(&set_limit_mutex);
3765 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3766 		if (memlimit > val) {
3767 			ret = -EINVAL;
3768 			mutex_unlock(&set_limit_mutex);
3769 			break;
3770 		}
3771 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3772 		if (memswlimit < val)
3773 			enlarge = 1;
3774 		ret = res_counter_set_limit(&memcg->memsw, val);
3775 		if (!ret) {
3776 			if (memlimit == val)
3777 				memcg->memsw_is_minimum = true;
3778 			else
3779 				memcg->memsw_is_minimum = false;
3780 		}
3781 		mutex_unlock(&set_limit_mutex);
3782 
3783 		if (!ret)
3784 			break;
3785 
3786 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3787 				   MEM_CGROUP_RECLAIM_NOSWAP |
3788 				   MEM_CGROUP_RECLAIM_SHRINK);
3789 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3790 		/* Usage is reduced ? */
3791 		if (curusage >= oldusage)
3792 			retry_count--;
3793 		else
3794 			oldusage = curusage;
3795 	}
3796 	if (!ret && enlarge)
3797 		memcg_oom_recover(memcg);
3798 	return ret;
3799 }
3800 
3801 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3802 					    gfp_t gfp_mask,
3803 					    unsigned long *total_scanned)
3804 {
3805 	unsigned long nr_reclaimed = 0;
3806 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3807 	unsigned long reclaimed;
3808 	int loop = 0;
3809 	struct mem_cgroup_tree_per_zone *mctz;
3810 	unsigned long long excess;
3811 	unsigned long nr_scanned;
3812 
3813 	if (order > 0)
3814 		return 0;
3815 
3816 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3817 	/*
3818 	 * This loop can run a while, specially if mem_cgroup's continuously
3819 	 * keep exceeding their soft limit and putting the system under
3820 	 * pressure
3821 	 */
3822 	do {
3823 		if (next_mz)
3824 			mz = next_mz;
3825 		else
3826 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3827 		if (!mz)
3828 			break;
3829 
3830 		nr_scanned = 0;
3831 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3832 						    gfp_mask, &nr_scanned);
3833 		nr_reclaimed += reclaimed;
3834 		*total_scanned += nr_scanned;
3835 		spin_lock_irq(&mctz->lock);
3836 
3837 		/*
3838 		 * If we failed to reclaim anything from this memory cgroup
3839 		 * it is time to move on to the next cgroup
3840 		 */
3841 		next_mz = NULL;
3842 		if (!reclaimed) {
3843 			do {
3844 				/*
3845 				 * Loop until we find yet another one.
3846 				 *
3847 				 * By the time we get the soft_limit lock
3848 				 * again, someone might have aded the
3849 				 * group back on the RB tree. Iterate to
3850 				 * make sure we get a different mem.
3851 				 * mem_cgroup_largest_soft_limit_node returns
3852 				 * NULL if no other cgroup is present on
3853 				 * the tree
3854 				 */
3855 				next_mz =
3856 				__mem_cgroup_largest_soft_limit_node(mctz);
3857 				if (next_mz == mz)
3858 					css_put(&next_mz->memcg->css);
3859 				else /* next_mz == NULL or other memcg */
3860 					break;
3861 			} while (1);
3862 		}
3863 		__mem_cgroup_remove_exceeded(mz, mctz);
3864 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3865 		/*
3866 		 * One school of thought says that we should not add
3867 		 * back the node to the tree if reclaim returns 0.
3868 		 * But our reclaim could return 0, simply because due
3869 		 * to priority we are exposing a smaller subset of
3870 		 * memory to reclaim from. Consider this as a longer
3871 		 * term TODO.
3872 		 */
3873 		/* If excess == 0, no tree ops */
3874 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3875 		spin_unlock_irq(&mctz->lock);
3876 		css_put(&mz->memcg->css);
3877 		loop++;
3878 		/*
3879 		 * Could not reclaim anything and there are no more
3880 		 * mem cgroups to try or we seem to be looping without
3881 		 * reclaiming anything.
3882 		 */
3883 		if (!nr_reclaimed &&
3884 			(next_mz == NULL ||
3885 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3886 			break;
3887 	} while (!nr_reclaimed);
3888 	if (next_mz)
3889 		css_put(&next_mz->memcg->css);
3890 	return nr_reclaimed;
3891 }
3892 
3893 /**
3894  * mem_cgroup_force_empty_list - clears LRU of a group
3895  * @memcg: group to clear
3896  * @node: NUMA node
3897  * @zid: zone id
3898  * @lru: lru to to clear
3899  *
3900  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3901  * reclaim the pages page themselves - pages are moved to the parent (or root)
3902  * group.
3903  */
3904 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3905 				int node, int zid, enum lru_list lru)
3906 {
3907 	struct lruvec *lruvec;
3908 	unsigned long flags;
3909 	struct list_head *list;
3910 	struct page *busy;
3911 	struct zone *zone;
3912 
3913 	zone = &NODE_DATA(node)->node_zones[zid];
3914 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3915 	list = &lruvec->lists[lru];
3916 
3917 	busy = NULL;
3918 	do {
3919 		struct page_cgroup *pc;
3920 		struct page *page;
3921 
3922 		spin_lock_irqsave(&zone->lru_lock, flags);
3923 		if (list_empty(list)) {
3924 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3925 			break;
3926 		}
3927 		page = list_entry(list->prev, struct page, lru);
3928 		if (busy == page) {
3929 			list_move(&page->lru, list);
3930 			busy = NULL;
3931 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3932 			continue;
3933 		}
3934 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3935 
3936 		pc = lookup_page_cgroup(page);
3937 
3938 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3939 			/* found lock contention or "pc" is obsolete. */
3940 			busy = page;
3941 		} else
3942 			busy = NULL;
3943 		cond_resched();
3944 	} while (!list_empty(list));
3945 }
3946 
3947 /*
3948  * make mem_cgroup's charge to be 0 if there is no task by moving
3949  * all the charges and pages to the parent.
3950  * This enables deleting this mem_cgroup.
3951  *
3952  * Caller is responsible for holding css reference on the memcg.
3953  */
3954 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3955 {
3956 	int node, zid;
3957 	u64 usage;
3958 
3959 	do {
3960 		/* This is for making all *used* pages to be on LRU. */
3961 		lru_add_drain_all();
3962 		drain_all_stock_sync(memcg);
3963 		mem_cgroup_start_move(memcg);
3964 		for_each_node_state(node, N_MEMORY) {
3965 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3966 				enum lru_list lru;
3967 				for_each_lru(lru) {
3968 					mem_cgroup_force_empty_list(memcg,
3969 							node, zid, lru);
3970 				}
3971 			}
3972 		}
3973 		mem_cgroup_end_move(memcg);
3974 		memcg_oom_recover(memcg);
3975 		cond_resched();
3976 
3977 		/*
3978 		 * Kernel memory may not necessarily be trackable to a specific
3979 		 * process. So they are not migrated, and therefore we can't
3980 		 * expect their value to drop to 0 here.
3981 		 * Having res filled up with kmem only is enough.
3982 		 *
3983 		 * This is a safety check because mem_cgroup_force_empty_list
3984 		 * could have raced with mem_cgroup_replace_page_cache callers
3985 		 * so the lru seemed empty but the page could have been added
3986 		 * right after the check. RES_USAGE should be safe as we always
3987 		 * charge before adding to the LRU.
3988 		 */
3989 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3990 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
3991 	} while (usage > 0);
3992 }
3993 
3994 /*
3995  * Test whether @memcg has children, dead or alive.  Note that this
3996  * function doesn't care whether @memcg has use_hierarchy enabled and
3997  * returns %true if there are child csses according to the cgroup
3998  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3999  */
4000 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4001 {
4002 	bool ret;
4003 
4004 	/*
4005 	 * The lock does not prevent addition or deletion of children, but
4006 	 * it prevents a new child from being initialized based on this
4007 	 * parent in css_online(), so it's enough to decide whether
4008 	 * hierarchically inherited attributes can still be changed or not.
4009 	 */
4010 	lockdep_assert_held(&memcg_create_mutex);
4011 
4012 	rcu_read_lock();
4013 	ret = css_next_child(NULL, &memcg->css);
4014 	rcu_read_unlock();
4015 	return ret;
4016 }
4017 
4018 /*
4019  * Reclaims as many pages from the given memcg as possible and moves
4020  * the rest to the parent.
4021  *
4022  * Caller is responsible for holding css reference for memcg.
4023  */
4024 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4025 {
4026 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4027 
4028 	/* we call try-to-free pages for make this cgroup empty */
4029 	lru_add_drain_all();
4030 	/* try to free all pages in this cgroup */
4031 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4032 		int progress;
4033 
4034 		if (signal_pending(current))
4035 			return -EINTR;
4036 
4037 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4038 						false);
4039 		if (!progress) {
4040 			nr_retries--;
4041 			/* maybe some writeback is necessary */
4042 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4043 		}
4044 
4045 	}
4046 
4047 	return 0;
4048 }
4049 
4050 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4051 					    char *buf, size_t nbytes,
4052 					    loff_t off)
4053 {
4054 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4055 
4056 	if (mem_cgroup_is_root(memcg))
4057 		return -EINVAL;
4058 	return mem_cgroup_force_empty(memcg) ?: nbytes;
4059 }
4060 
4061 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4062 				     struct cftype *cft)
4063 {
4064 	return mem_cgroup_from_css(css)->use_hierarchy;
4065 }
4066 
4067 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4068 				      struct cftype *cft, u64 val)
4069 {
4070 	int retval = 0;
4071 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4072 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4073 
4074 	mutex_lock(&memcg_create_mutex);
4075 
4076 	if (memcg->use_hierarchy == val)
4077 		goto out;
4078 
4079 	/*
4080 	 * If parent's use_hierarchy is set, we can't make any modifications
4081 	 * in the child subtrees. If it is unset, then the change can
4082 	 * occur, provided the current cgroup has no children.
4083 	 *
4084 	 * For the root cgroup, parent_mem is NULL, we allow value to be
4085 	 * set if there are no children.
4086 	 */
4087 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4088 				(val == 1 || val == 0)) {
4089 		if (!memcg_has_children(memcg))
4090 			memcg->use_hierarchy = val;
4091 		else
4092 			retval = -EBUSY;
4093 	} else
4094 		retval = -EINVAL;
4095 
4096 out:
4097 	mutex_unlock(&memcg_create_mutex);
4098 
4099 	return retval;
4100 }
4101 
4102 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4103 					       enum mem_cgroup_stat_index idx)
4104 {
4105 	struct mem_cgroup *iter;
4106 	long val = 0;
4107 
4108 	/* Per-cpu values can be negative, use a signed accumulator */
4109 	for_each_mem_cgroup_tree(iter, memcg)
4110 		val += mem_cgroup_read_stat(iter, idx);
4111 
4112 	if (val < 0) /* race ? */
4113 		val = 0;
4114 	return val;
4115 }
4116 
4117 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4118 {
4119 	u64 val;
4120 
4121 	if (!mem_cgroup_is_root(memcg)) {
4122 		if (!swap)
4123 			return res_counter_read_u64(&memcg->res, RES_USAGE);
4124 		else
4125 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4126 	}
4127 
4128 	/*
4129 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4130 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4131 	 */
4132 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4133 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4134 
4135 	if (swap)
4136 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4137 
4138 	return val << PAGE_SHIFT;
4139 }
4140 
4141 
4142 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4143 			       struct cftype *cft)
4144 {
4145 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4146 	enum res_type type = MEMFILE_TYPE(cft->private);
4147 	int name = MEMFILE_ATTR(cft->private);
4148 
4149 	switch (type) {
4150 	case _MEM:
4151 		if (name == RES_USAGE)
4152 			return mem_cgroup_usage(memcg, false);
4153 		return res_counter_read_u64(&memcg->res, name);
4154 	case _MEMSWAP:
4155 		if (name == RES_USAGE)
4156 			return mem_cgroup_usage(memcg, true);
4157 		return res_counter_read_u64(&memcg->memsw, name);
4158 	case _KMEM:
4159 		return res_counter_read_u64(&memcg->kmem, name);
4160 		break;
4161 	default:
4162 		BUG();
4163 	}
4164 }
4165 
4166 #ifdef CONFIG_MEMCG_KMEM
4167 /* should be called with activate_kmem_mutex held */
4168 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4169 				 unsigned long long limit)
4170 {
4171 	int err = 0;
4172 	int memcg_id;
4173 
4174 	if (memcg_kmem_is_active(memcg))
4175 		return 0;
4176 
4177 	/*
4178 	 * We are going to allocate memory for data shared by all memory
4179 	 * cgroups so let's stop accounting here.
4180 	 */
4181 	memcg_stop_kmem_account();
4182 
4183 	/*
4184 	 * For simplicity, we won't allow this to be disabled.  It also can't
4185 	 * be changed if the cgroup has children already, or if tasks had
4186 	 * already joined.
4187 	 *
4188 	 * If tasks join before we set the limit, a person looking at
4189 	 * kmem.usage_in_bytes will have no way to determine when it took
4190 	 * place, which makes the value quite meaningless.
4191 	 *
4192 	 * After it first became limited, changes in the value of the limit are
4193 	 * of course permitted.
4194 	 */
4195 	mutex_lock(&memcg_create_mutex);
4196 	if (cgroup_has_tasks(memcg->css.cgroup) ||
4197 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4198 		err = -EBUSY;
4199 	mutex_unlock(&memcg_create_mutex);
4200 	if (err)
4201 		goto out;
4202 
4203 	memcg_id = ida_simple_get(&kmem_limited_groups,
4204 				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4205 	if (memcg_id < 0) {
4206 		err = memcg_id;
4207 		goto out;
4208 	}
4209 
4210 	/*
4211 	 * Make sure we have enough space for this cgroup in each root cache's
4212 	 * memcg_params.
4213 	 */
4214 	mutex_lock(&memcg_slab_mutex);
4215 	err = memcg_update_all_caches(memcg_id + 1);
4216 	mutex_unlock(&memcg_slab_mutex);
4217 	if (err)
4218 		goto out_rmid;
4219 
4220 	memcg->kmemcg_id = memcg_id;
4221 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4222 
4223 	/*
4224 	 * We couldn't have accounted to this cgroup, because it hasn't got the
4225 	 * active bit set yet, so this should succeed.
4226 	 */
4227 	err = res_counter_set_limit(&memcg->kmem, limit);
4228 	VM_BUG_ON(err);
4229 
4230 	static_key_slow_inc(&memcg_kmem_enabled_key);
4231 	/*
4232 	 * Setting the active bit after enabling static branching will
4233 	 * guarantee no one starts accounting before all call sites are
4234 	 * patched.
4235 	 */
4236 	memcg_kmem_set_active(memcg);
4237 out:
4238 	memcg_resume_kmem_account();
4239 	return err;
4240 
4241 out_rmid:
4242 	ida_simple_remove(&kmem_limited_groups, memcg_id);
4243 	goto out;
4244 }
4245 
4246 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4247 			       unsigned long long limit)
4248 {
4249 	int ret;
4250 
4251 	mutex_lock(&activate_kmem_mutex);
4252 	ret = __memcg_activate_kmem(memcg, limit);
4253 	mutex_unlock(&activate_kmem_mutex);
4254 	return ret;
4255 }
4256 
4257 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4258 				   unsigned long long val)
4259 {
4260 	int ret;
4261 
4262 	if (!memcg_kmem_is_active(memcg))
4263 		ret = memcg_activate_kmem(memcg, val);
4264 	else
4265 		ret = res_counter_set_limit(&memcg->kmem, val);
4266 	return ret;
4267 }
4268 
4269 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4270 {
4271 	int ret = 0;
4272 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4273 
4274 	if (!parent)
4275 		return 0;
4276 
4277 	mutex_lock(&activate_kmem_mutex);
4278 	/*
4279 	 * If the parent cgroup is not kmem-active now, it cannot be activated
4280 	 * after this point, because it has at least one child already.
4281 	 */
4282 	if (memcg_kmem_is_active(parent))
4283 		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4284 	mutex_unlock(&activate_kmem_mutex);
4285 	return ret;
4286 }
4287 #else
4288 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4289 				   unsigned long long val)
4290 {
4291 	return -EINVAL;
4292 }
4293 #endif /* CONFIG_MEMCG_KMEM */
4294 
4295 /*
4296  * The user of this function is...
4297  * RES_LIMIT.
4298  */
4299 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4300 				char *buf, size_t nbytes, loff_t off)
4301 {
4302 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4303 	enum res_type type;
4304 	int name;
4305 	unsigned long long val;
4306 	int ret;
4307 
4308 	buf = strstrip(buf);
4309 	type = MEMFILE_TYPE(of_cft(of)->private);
4310 	name = MEMFILE_ATTR(of_cft(of)->private);
4311 
4312 	switch (name) {
4313 	case RES_LIMIT:
4314 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4315 			ret = -EINVAL;
4316 			break;
4317 		}
4318 		/* This function does all necessary parse...reuse it */
4319 		ret = res_counter_memparse_write_strategy(buf, &val);
4320 		if (ret)
4321 			break;
4322 		if (type == _MEM)
4323 			ret = mem_cgroup_resize_limit(memcg, val);
4324 		else if (type == _MEMSWAP)
4325 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4326 		else if (type == _KMEM)
4327 			ret = memcg_update_kmem_limit(memcg, val);
4328 		else
4329 			return -EINVAL;
4330 		break;
4331 	case RES_SOFT_LIMIT:
4332 		ret = res_counter_memparse_write_strategy(buf, &val);
4333 		if (ret)
4334 			break;
4335 		/*
4336 		 * For memsw, soft limits are hard to implement in terms
4337 		 * of semantics, for now, we support soft limits for
4338 		 * control without swap
4339 		 */
4340 		if (type == _MEM)
4341 			ret = res_counter_set_soft_limit(&memcg->res, val);
4342 		else
4343 			ret = -EINVAL;
4344 		break;
4345 	default:
4346 		ret = -EINVAL; /* should be BUG() ? */
4347 		break;
4348 	}
4349 	return ret ?: nbytes;
4350 }
4351 
4352 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4353 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4354 {
4355 	unsigned long long min_limit, min_memsw_limit, tmp;
4356 
4357 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4358 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4359 	if (!memcg->use_hierarchy)
4360 		goto out;
4361 
4362 	while (memcg->css.parent) {
4363 		memcg = mem_cgroup_from_css(memcg->css.parent);
4364 		if (!memcg->use_hierarchy)
4365 			break;
4366 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4367 		min_limit = min(min_limit, tmp);
4368 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4369 		min_memsw_limit = min(min_memsw_limit, tmp);
4370 	}
4371 out:
4372 	*mem_limit = min_limit;
4373 	*memsw_limit = min_memsw_limit;
4374 }
4375 
4376 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4377 				size_t nbytes, loff_t off)
4378 {
4379 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4380 	int name;
4381 	enum res_type type;
4382 
4383 	type = MEMFILE_TYPE(of_cft(of)->private);
4384 	name = MEMFILE_ATTR(of_cft(of)->private);
4385 
4386 	switch (name) {
4387 	case RES_MAX_USAGE:
4388 		if (type == _MEM)
4389 			res_counter_reset_max(&memcg->res);
4390 		else if (type == _MEMSWAP)
4391 			res_counter_reset_max(&memcg->memsw);
4392 		else if (type == _KMEM)
4393 			res_counter_reset_max(&memcg->kmem);
4394 		else
4395 			return -EINVAL;
4396 		break;
4397 	case RES_FAILCNT:
4398 		if (type == _MEM)
4399 			res_counter_reset_failcnt(&memcg->res);
4400 		else if (type == _MEMSWAP)
4401 			res_counter_reset_failcnt(&memcg->memsw);
4402 		else if (type == _KMEM)
4403 			res_counter_reset_failcnt(&memcg->kmem);
4404 		else
4405 			return -EINVAL;
4406 		break;
4407 	}
4408 
4409 	return nbytes;
4410 }
4411 
4412 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4413 					struct cftype *cft)
4414 {
4415 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4416 }
4417 
4418 #ifdef CONFIG_MMU
4419 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4420 					struct cftype *cft, u64 val)
4421 {
4422 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4423 
4424 	if (val >= (1 << NR_MOVE_TYPE))
4425 		return -EINVAL;
4426 
4427 	/*
4428 	 * No kind of locking is needed in here, because ->can_attach() will
4429 	 * check this value once in the beginning of the process, and then carry
4430 	 * on with stale data. This means that changes to this value will only
4431 	 * affect task migrations starting after the change.
4432 	 */
4433 	memcg->move_charge_at_immigrate = val;
4434 	return 0;
4435 }
4436 #else
4437 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4438 					struct cftype *cft, u64 val)
4439 {
4440 	return -ENOSYS;
4441 }
4442 #endif
4443 
4444 #ifdef CONFIG_NUMA
4445 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4446 {
4447 	struct numa_stat {
4448 		const char *name;
4449 		unsigned int lru_mask;
4450 	};
4451 
4452 	static const struct numa_stat stats[] = {
4453 		{ "total", LRU_ALL },
4454 		{ "file", LRU_ALL_FILE },
4455 		{ "anon", LRU_ALL_ANON },
4456 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4457 	};
4458 	const struct numa_stat *stat;
4459 	int nid;
4460 	unsigned long nr;
4461 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4462 
4463 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4464 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4465 		seq_printf(m, "%s=%lu", stat->name, nr);
4466 		for_each_node_state(nid, N_MEMORY) {
4467 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4468 							  stat->lru_mask);
4469 			seq_printf(m, " N%d=%lu", nid, nr);
4470 		}
4471 		seq_putc(m, '\n');
4472 	}
4473 
4474 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4475 		struct mem_cgroup *iter;
4476 
4477 		nr = 0;
4478 		for_each_mem_cgroup_tree(iter, memcg)
4479 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4480 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4481 		for_each_node_state(nid, N_MEMORY) {
4482 			nr = 0;
4483 			for_each_mem_cgroup_tree(iter, memcg)
4484 				nr += mem_cgroup_node_nr_lru_pages(
4485 					iter, nid, stat->lru_mask);
4486 			seq_printf(m, " N%d=%lu", nid, nr);
4487 		}
4488 		seq_putc(m, '\n');
4489 	}
4490 
4491 	return 0;
4492 }
4493 #endif /* CONFIG_NUMA */
4494 
4495 static inline void mem_cgroup_lru_names_not_uptodate(void)
4496 {
4497 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4498 }
4499 
4500 static int memcg_stat_show(struct seq_file *m, void *v)
4501 {
4502 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4503 	struct mem_cgroup *mi;
4504 	unsigned int i;
4505 
4506 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4507 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4508 			continue;
4509 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4510 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4511 	}
4512 
4513 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4514 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4515 			   mem_cgroup_read_events(memcg, i));
4516 
4517 	for (i = 0; i < NR_LRU_LISTS; i++)
4518 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4519 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4520 
4521 	/* Hierarchical information */
4522 	{
4523 		unsigned long long limit, memsw_limit;
4524 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4525 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4526 		if (do_swap_account)
4527 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4528 				   memsw_limit);
4529 	}
4530 
4531 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4532 		long long val = 0;
4533 
4534 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4535 			continue;
4536 		for_each_mem_cgroup_tree(mi, memcg)
4537 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4538 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4539 	}
4540 
4541 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4542 		unsigned long long val = 0;
4543 
4544 		for_each_mem_cgroup_tree(mi, memcg)
4545 			val += mem_cgroup_read_events(mi, i);
4546 		seq_printf(m, "total_%s %llu\n",
4547 			   mem_cgroup_events_names[i], val);
4548 	}
4549 
4550 	for (i = 0; i < NR_LRU_LISTS; i++) {
4551 		unsigned long long val = 0;
4552 
4553 		for_each_mem_cgroup_tree(mi, memcg)
4554 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4555 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4556 	}
4557 
4558 #ifdef CONFIG_DEBUG_VM
4559 	{
4560 		int nid, zid;
4561 		struct mem_cgroup_per_zone *mz;
4562 		struct zone_reclaim_stat *rstat;
4563 		unsigned long recent_rotated[2] = {0, 0};
4564 		unsigned long recent_scanned[2] = {0, 0};
4565 
4566 		for_each_online_node(nid)
4567 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4568 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4569 				rstat = &mz->lruvec.reclaim_stat;
4570 
4571 				recent_rotated[0] += rstat->recent_rotated[0];
4572 				recent_rotated[1] += rstat->recent_rotated[1];
4573 				recent_scanned[0] += rstat->recent_scanned[0];
4574 				recent_scanned[1] += rstat->recent_scanned[1];
4575 			}
4576 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4577 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4578 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4579 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4580 	}
4581 #endif
4582 
4583 	return 0;
4584 }
4585 
4586 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4587 				      struct cftype *cft)
4588 {
4589 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4590 
4591 	return mem_cgroup_swappiness(memcg);
4592 }
4593 
4594 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4595 				       struct cftype *cft, u64 val)
4596 {
4597 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598 
4599 	if (val > 100)
4600 		return -EINVAL;
4601 
4602 	if (css->parent)
4603 		memcg->swappiness = val;
4604 	else
4605 		vm_swappiness = val;
4606 
4607 	return 0;
4608 }
4609 
4610 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4611 {
4612 	struct mem_cgroup_threshold_ary *t;
4613 	u64 usage;
4614 	int i;
4615 
4616 	rcu_read_lock();
4617 	if (!swap)
4618 		t = rcu_dereference(memcg->thresholds.primary);
4619 	else
4620 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4621 
4622 	if (!t)
4623 		goto unlock;
4624 
4625 	usage = mem_cgroup_usage(memcg, swap);
4626 
4627 	/*
4628 	 * current_threshold points to threshold just below or equal to usage.
4629 	 * If it's not true, a threshold was crossed after last
4630 	 * call of __mem_cgroup_threshold().
4631 	 */
4632 	i = t->current_threshold;
4633 
4634 	/*
4635 	 * Iterate backward over array of thresholds starting from
4636 	 * current_threshold and check if a threshold is crossed.
4637 	 * If none of thresholds below usage is crossed, we read
4638 	 * only one element of the array here.
4639 	 */
4640 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4641 		eventfd_signal(t->entries[i].eventfd, 1);
4642 
4643 	/* i = current_threshold + 1 */
4644 	i++;
4645 
4646 	/*
4647 	 * Iterate forward over array of thresholds starting from
4648 	 * current_threshold+1 and check if a threshold is crossed.
4649 	 * If none of thresholds above usage is crossed, we read
4650 	 * only one element of the array here.
4651 	 */
4652 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4653 		eventfd_signal(t->entries[i].eventfd, 1);
4654 
4655 	/* Update current_threshold */
4656 	t->current_threshold = i - 1;
4657 unlock:
4658 	rcu_read_unlock();
4659 }
4660 
4661 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4662 {
4663 	while (memcg) {
4664 		__mem_cgroup_threshold(memcg, false);
4665 		if (do_swap_account)
4666 			__mem_cgroup_threshold(memcg, true);
4667 
4668 		memcg = parent_mem_cgroup(memcg);
4669 	}
4670 }
4671 
4672 static int compare_thresholds(const void *a, const void *b)
4673 {
4674 	const struct mem_cgroup_threshold *_a = a;
4675 	const struct mem_cgroup_threshold *_b = b;
4676 
4677 	if (_a->threshold > _b->threshold)
4678 		return 1;
4679 
4680 	if (_a->threshold < _b->threshold)
4681 		return -1;
4682 
4683 	return 0;
4684 }
4685 
4686 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4687 {
4688 	struct mem_cgroup_eventfd_list *ev;
4689 
4690 	spin_lock(&memcg_oom_lock);
4691 
4692 	list_for_each_entry(ev, &memcg->oom_notify, list)
4693 		eventfd_signal(ev->eventfd, 1);
4694 
4695 	spin_unlock(&memcg_oom_lock);
4696 	return 0;
4697 }
4698 
4699 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4700 {
4701 	struct mem_cgroup *iter;
4702 
4703 	for_each_mem_cgroup_tree(iter, memcg)
4704 		mem_cgroup_oom_notify_cb(iter);
4705 }
4706 
4707 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4708 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4709 {
4710 	struct mem_cgroup_thresholds *thresholds;
4711 	struct mem_cgroup_threshold_ary *new;
4712 	u64 threshold, usage;
4713 	int i, size, ret;
4714 
4715 	ret = res_counter_memparse_write_strategy(args, &threshold);
4716 	if (ret)
4717 		return ret;
4718 
4719 	mutex_lock(&memcg->thresholds_lock);
4720 
4721 	if (type == _MEM) {
4722 		thresholds = &memcg->thresholds;
4723 		usage = mem_cgroup_usage(memcg, false);
4724 	} else if (type == _MEMSWAP) {
4725 		thresholds = &memcg->memsw_thresholds;
4726 		usage = mem_cgroup_usage(memcg, true);
4727 	} else
4728 		BUG();
4729 
4730 	/* Check if a threshold crossed before adding a new one */
4731 	if (thresholds->primary)
4732 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4733 
4734 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4735 
4736 	/* Allocate memory for new array of thresholds */
4737 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4738 			GFP_KERNEL);
4739 	if (!new) {
4740 		ret = -ENOMEM;
4741 		goto unlock;
4742 	}
4743 	new->size = size;
4744 
4745 	/* Copy thresholds (if any) to new array */
4746 	if (thresholds->primary) {
4747 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4748 				sizeof(struct mem_cgroup_threshold));
4749 	}
4750 
4751 	/* Add new threshold */
4752 	new->entries[size - 1].eventfd = eventfd;
4753 	new->entries[size - 1].threshold = threshold;
4754 
4755 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4756 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4757 			compare_thresholds, NULL);
4758 
4759 	/* Find current threshold */
4760 	new->current_threshold = -1;
4761 	for (i = 0; i < size; i++) {
4762 		if (new->entries[i].threshold <= usage) {
4763 			/*
4764 			 * new->current_threshold will not be used until
4765 			 * rcu_assign_pointer(), so it's safe to increment
4766 			 * it here.
4767 			 */
4768 			++new->current_threshold;
4769 		} else
4770 			break;
4771 	}
4772 
4773 	/* Free old spare buffer and save old primary buffer as spare */
4774 	kfree(thresholds->spare);
4775 	thresholds->spare = thresholds->primary;
4776 
4777 	rcu_assign_pointer(thresholds->primary, new);
4778 
4779 	/* To be sure that nobody uses thresholds */
4780 	synchronize_rcu();
4781 
4782 unlock:
4783 	mutex_unlock(&memcg->thresholds_lock);
4784 
4785 	return ret;
4786 }
4787 
4788 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4789 	struct eventfd_ctx *eventfd, const char *args)
4790 {
4791 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4792 }
4793 
4794 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4795 	struct eventfd_ctx *eventfd, const char *args)
4796 {
4797 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4798 }
4799 
4800 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4801 	struct eventfd_ctx *eventfd, enum res_type type)
4802 {
4803 	struct mem_cgroup_thresholds *thresholds;
4804 	struct mem_cgroup_threshold_ary *new;
4805 	u64 usage;
4806 	int i, j, size;
4807 
4808 	mutex_lock(&memcg->thresholds_lock);
4809 
4810 	if (type == _MEM) {
4811 		thresholds = &memcg->thresholds;
4812 		usage = mem_cgroup_usage(memcg, false);
4813 	} else if (type == _MEMSWAP) {
4814 		thresholds = &memcg->memsw_thresholds;
4815 		usage = mem_cgroup_usage(memcg, true);
4816 	} else
4817 		BUG();
4818 
4819 	if (!thresholds->primary)
4820 		goto unlock;
4821 
4822 	/* Check if a threshold crossed before removing */
4823 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4824 
4825 	/* Calculate new number of threshold */
4826 	size = 0;
4827 	for (i = 0; i < thresholds->primary->size; i++) {
4828 		if (thresholds->primary->entries[i].eventfd != eventfd)
4829 			size++;
4830 	}
4831 
4832 	new = thresholds->spare;
4833 
4834 	/* Set thresholds array to NULL if we don't have thresholds */
4835 	if (!size) {
4836 		kfree(new);
4837 		new = NULL;
4838 		goto swap_buffers;
4839 	}
4840 
4841 	new->size = size;
4842 
4843 	/* Copy thresholds and find current threshold */
4844 	new->current_threshold = -1;
4845 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4846 		if (thresholds->primary->entries[i].eventfd == eventfd)
4847 			continue;
4848 
4849 		new->entries[j] = thresholds->primary->entries[i];
4850 		if (new->entries[j].threshold <= usage) {
4851 			/*
4852 			 * new->current_threshold will not be used
4853 			 * until rcu_assign_pointer(), so it's safe to increment
4854 			 * it here.
4855 			 */
4856 			++new->current_threshold;
4857 		}
4858 		j++;
4859 	}
4860 
4861 swap_buffers:
4862 	/* Swap primary and spare array */
4863 	thresholds->spare = thresholds->primary;
4864 	/* If all events are unregistered, free the spare array */
4865 	if (!new) {
4866 		kfree(thresholds->spare);
4867 		thresholds->spare = NULL;
4868 	}
4869 
4870 	rcu_assign_pointer(thresholds->primary, new);
4871 
4872 	/* To be sure that nobody uses thresholds */
4873 	synchronize_rcu();
4874 unlock:
4875 	mutex_unlock(&memcg->thresholds_lock);
4876 }
4877 
4878 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4879 	struct eventfd_ctx *eventfd)
4880 {
4881 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4882 }
4883 
4884 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4885 	struct eventfd_ctx *eventfd)
4886 {
4887 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4888 }
4889 
4890 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4891 	struct eventfd_ctx *eventfd, const char *args)
4892 {
4893 	struct mem_cgroup_eventfd_list *event;
4894 
4895 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4896 	if (!event)
4897 		return -ENOMEM;
4898 
4899 	spin_lock(&memcg_oom_lock);
4900 
4901 	event->eventfd = eventfd;
4902 	list_add(&event->list, &memcg->oom_notify);
4903 
4904 	/* already in OOM ? */
4905 	if (atomic_read(&memcg->under_oom))
4906 		eventfd_signal(eventfd, 1);
4907 	spin_unlock(&memcg_oom_lock);
4908 
4909 	return 0;
4910 }
4911 
4912 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4913 	struct eventfd_ctx *eventfd)
4914 {
4915 	struct mem_cgroup_eventfd_list *ev, *tmp;
4916 
4917 	spin_lock(&memcg_oom_lock);
4918 
4919 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4920 		if (ev->eventfd == eventfd) {
4921 			list_del(&ev->list);
4922 			kfree(ev);
4923 		}
4924 	}
4925 
4926 	spin_unlock(&memcg_oom_lock);
4927 }
4928 
4929 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4930 {
4931 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4932 
4933 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4934 	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4935 	return 0;
4936 }
4937 
4938 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4939 	struct cftype *cft, u64 val)
4940 {
4941 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942 
4943 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4944 	if (!css->parent || !((val == 0) || (val == 1)))
4945 		return -EINVAL;
4946 
4947 	memcg->oom_kill_disable = val;
4948 	if (!val)
4949 		memcg_oom_recover(memcg);
4950 
4951 	return 0;
4952 }
4953 
4954 #ifdef CONFIG_MEMCG_KMEM
4955 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4956 {
4957 	int ret;
4958 
4959 	memcg->kmemcg_id = -1;
4960 	ret = memcg_propagate_kmem(memcg);
4961 	if (ret)
4962 		return ret;
4963 
4964 	return mem_cgroup_sockets_init(memcg, ss);
4965 }
4966 
4967 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4968 {
4969 	mem_cgroup_sockets_destroy(memcg);
4970 }
4971 
4972 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4973 {
4974 	if (!memcg_kmem_is_active(memcg))
4975 		return;
4976 
4977 	/*
4978 	 * kmem charges can outlive the cgroup. In the case of slab
4979 	 * pages, for instance, a page contain objects from various
4980 	 * processes. As we prevent from taking a reference for every
4981 	 * such allocation we have to be careful when doing uncharge
4982 	 * (see memcg_uncharge_kmem) and here during offlining.
4983 	 *
4984 	 * The idea is that that only the _last_ uncharge which sees
4985 	 * the dead memcg will drop the last reference. An additional
4986 	 * reference is taken here before the group is marked dead
4987 	 * which is then paired with css_put during uncharge resp. here.
4988 	 *
4989 	 * Although this might sound strange as this path is called from
4990 	 * css_offline() when the referencemight have dropped down to 0 and
4991 	 * shouldn't be incremented anymore (css_tryget_online() would
4992 	 * fail) we do not have other options because of the kmem
4993 	 * allocations lifetime.
4994 	 */
4995 	css_get(&memcg->css);
4996 
4997 	memcg_kmem_mark_dead(memcg);
4998 
4999 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5000 		return;
5001 
5002 	if (memcg_kmem_test_and_clear_dead(memcg))
5003 		css_put(&memcg->css);
5004 }
5005 #else
5006 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5007 {
5008 	return 0;
5009 }
5010 
5011 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5012 {
5013 }
5014 
5015 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5016 {
5017 }
5018 #endif
5019 
5020 /*
5021  * DO NOT USE IN NEW FILES.
5022  *
5023  * "cgroup.event_control" implementation.
5024  *
5025  * This is way over-engineered.  It tries to support fully configurable
5026  * events for each user.  Such level of flexibility is completely
5027  * unnecessary especially in the light of the planned unified hierarchy.
5028  *
5029  * Please deprecate this and replace with something simpler if at all
5030  * possible.
5031  */
5032 
5033 /*
5034  * Unregister event and free resources.
5035  *
5036  * Gets called from workqueue.
5037  */
5038 static void memcg_event_remove(struct work_struct *work)
5039 {
5040 	struct mem_cgroup_event *event =
5041 		container_of(work, struct mem_cgroup_event, remove);
5042 	struct mem_cgroup *memcg = event->memcg;
5043 
5044 	remove_wait_queue(event->wqh, &event->wait);
5045 
5046 	event->unregister_event(memcg, event->eventfd);
5047 
5048 	/* Notify userspace the event is going away. */
5049 	eventfd_signal(event->eventfd, 1);
5050 
5051 	eventfd_ctx_put(event->eventfd);
5052 	kfree(event);
5053 	css_put(&memcg->css);
5054 }
5055 
5056 /*
5057  * Gets called on POLLHUP on eventfd when user closes it.
5058  *
5059  * Called with wqh->lock held and interrupts disabled.
5060  */
5061 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5062 			    int sync, void *key)
5063 {
5064 	struct mem_cgroup_event *event =
5065 		container_of(wait, struct mem_cgroup_event, wait);
5066 	struct mem_cgroup *memcg = event->memcg;
5067 	unsigned long flags = (unsigned long)key;
5068 
5069 	if (flags & POLLHUP) {
5070 		/*
5071 		 * If the event has been detached at cgroup removal, we
5072 		 * can simply return knowing the other side will cleanup
5073 		 * for us.
5074 		 *
5075 		 * We can't race against event freeing since the other
5076 		 * side will require wqh->lock via remove_wait_queue(),
5077 		 * which we hold.
5078 		 */
5079 		spin_lock(&memcg->event_list_lock);
5080 		if (!list_empty(&event->list)) {
5081 			list_del_init(&event->list);
5082 			/*
5083 			 * We are in atomic context, but cgroup_event_remove()
5084 			 * may sleep, so we have to call it in workqueue.
5085 			 */
5086 			schedule_work(&event->remove);
5087 		}
5088 		spin_unlock(&memcg->event_list_lock);
5089 	}
5090 
5091 	return 0;
5092 }
5093 
5094 static void memcg_event_ptable_queue_proc(struct file *file,
5095 		wait_queue_head_t *wqh, poll_table *pt)
5096 {
5097 	struct mem_cgroup_event *event =
5098 		container_of(pt, struct mem_cgroup_event, pt);
5099 
5100 	event->wqh = wqh;
5101 	add_wait_queue(wqh, &event->wait);
5102 }
5103 
5104 /*
5105  * DO NOT USE IN NEW FILES.
5106  *
5107  * Parse input and register new cgroup event handler.
5108  *
5109  * Input must be in format '<event_fd> <control_fd> <args>'.
5110  * Interpretation of args is defined by control file implementation.
5111  */
5112 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5113 					 char *buf, size_t nbytes, loff_t off)
5114 {
5115 	struct cgroup_subsys_state *css = of_css(of);
5116 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5117 	struct mem_cgroup_event *event;
5118 	struct cgroup_subsys_state *cfile_css;
5119 	unsigned int efd, cfd;
5120 	struct fd efile;
5121 	struct fd cfile;
5122 	const char *name;
5123 	char *endp;
5124 	int ret;
5125 
5126 	buf = strstrip(buf);
5127 
5128 	efd = simple_strtoul(buf, &endp, 10);
5129 	if (*endp != ' ')
5130 		return -EINVAL;
5131 	buf = endp + 1;
5132 
5133 	cfd = simple_strtoul(buf, &endp, 10);
5134 	if ((*endp != ' ') && (*endp != '\0'))
5135 		return -EINVAL;
5136 	buf = endp + 1;
5137 
5138 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5139 	if (!event)
5140 		return -ENOMEM;
5141 
5142 	event->memcg = memcg;
5143 	INIT_LIST_HEAD(&event->list);
5144 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5145 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5146 	INIT_WORK(&event->remove, memcg_event_remove);
5147 
5148 	efile = fdget(efd);
5149 	if (!efile.file) {
5150 		ret = -EBADF;
5151 		goto out_kfree;
5152 	}
5153 
5154 	event->eventfd = eventfd_ctx_fileget(efile.file);
5155 	if (IS_ERR(event->eventfd)) {
5156 		ret = PTR_ERR(event->eventfd);
5157 		goto out_put_efile;
5158 	}
5159 
5160 	cfile = fdget(cfd);
5161 	if (!cfile.file) {
5162 		ret = -EBADF;
5163 		goto out_put_eventfd;
5164 	}
5165 
5166 	/* the process need read permission on control file */
5167 	/* AV: shouldn't we check that it's been opened for read instead? */
5168 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
5169 	if (ret < 0)
5170 		goto out_put_cfile;
5171 
5172 	/*
5173 	 * Determine the event callbacks and set them in @event.  This used
5174 	 * to be done via struct cftype but cgroup core no longer knows
5175 	 * about these events.  The following is crude but the whole thing
5176 	 * is for compatibility anyway.
5177 	 *
5178 	 * DO NOT ADD NEW FILES.
5179 	 */
5180 	name = cfile.file->f_dentry->d_name.name;
5181 
5182 	if (!strcmp(name, "memory.usage_in_bytes")) {
5183 		event->register_event = mem_cgroup_usage_register_event;
5184 		event->unregister_event = mem_cgroup_usage_unregister_event;
5185 	} else if (!strcmp(name, "memory.oom_control")) {
5186 		event->register_event = mem_cgroup_oom_register_event;
5187 		event->unregister_event = mem_cgroup_oom_unregister_event;
5188 	} else if (!strcmp(name, "memory.pressure_level")) {
5189 		event->register_event = vmpressure_register_event;
5190 		event->unregister_event = vmpressure_unregister_event;
5191 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5192 		event->register_event = memsw_cgroup_usage_register_event;
5193 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5194 	} else {
5195 		ret = -EINVAL;
5196 		goto out_put_cfile;
5197 	}
5198 
5199 	/*
5200 	 * Verify @cfile should belong to @css.  Also, remaining events are
5201 	 * automatically removed on cgroup destruction but the removal is
5202 	 * asynchronous, so take an extra ref on @css.
5203 	 */
5204 	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5205 					       &memory_cgrp_subsys);
5206 	ret = -EINVAL;
5207 	if (IS_ERR(cfile_css))
5208 		goto out_put_cfile;
5209 	if (cfile_css != css) {
5210 		css_put(cfile_css);
5211 		goto out_put_cfile;
5212 	}
5213 
5214 	ret = event->register_event(memcg, event->eventfd, buf);
5215 	if (ret)
5216 		goto out_put_css;
5217 
5218 	efile.file->f_op->poll(efile.file, &event->pt);
5219 
5220 	spin_lock(&memcg->event_list_lock);
5221 	list_add(&event->list, &memcg->event_list);
5222 	spin_unlock(&memcg->event_list_lock);
5223 
5224 	fdput(cfile);
5225 	fdput(efile);
5226 
5227 	return nbytes;
5228 
5229 out_put_css:
5230 	css_put(css);
5231 out_put_cfile:
5232 	fdput(cfile);
5233 out_put_eventfd:
5234 	eventfd_ctx_put(event->eventfd);
5235 out_put_efile:
5236 	fdput(efile);
5237 out_kfree:
5238 	kfree(event);
5239 
5240 	return ret;
5241 }
5242 
5243 static struct cftype mem_cgroup_files[] = {
5244 	{
5245 		.name = "usage_in_bytes",
5246 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5247 		.read_u64 = mem_cgroup_read_u64,
5248 	},
5249 	{
5250 		.name = "max_usage_in_bytes",
5251 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5252 		.write = mem_cgroup_reset,
5253 		.read_u64 = mem_cgroup_read_u64,
5254 	},
5255 	{
5256 		.name = "limit_in_bytes",
5257 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5258 		.write = mem_cgroup_write,
5259 		.read_u64 = mem_cgroup_read_u64,
5260 	},
5261 	{
5262 		.name = "soft_limit_in_bytes",
5263 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5264 		.write = mem_cgroup_write,
5265 		.read_u64 = mem_cgroup_read_u64,
5266 	},
5267 	{
5268 		.name = "failcnt",
5269 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5270 		.write = mem_cgroup_reset,
5271 		.read_u64 = mem_cgroup_read_u64,
5272 	},
5273 	{
5274 		.name = "stat",
5275 		.seq_show = memcg_stat_show,
5276 	},
5277 	{
5278 		.name = "force_empty",
5279 		.write = mem_cgroup_force_empty_write,
5280 	},
5281 	{
5282 		.name = "use_hierarchy",
5283 		.write_u64 = mem_cgroup_hierarchy_write,
5284 		.read_u64 = mem_cgroup_hierarchy_read,
5285 	},
5286 	{
5287 		.name = "cgroup.event_control",		/* XXX: for compat */
5288 		.write = memcg_write_event_control,
5289 		.flags = CFTYPE_NO_PREFIX,
5290 		.mode = S_IWUGO,
5291 	},
5292 	{
5293 		.name = "swappiness",
5294 		.read_u64 = mem_cgroup_swappiness_read,
5295 		.write_u64 = mem_cgroup_swappiness_write,
5296 	},
5297 	{
5298 		.name = "move_charge_at_immigrate",
5299 		.read_u64 = mem_cgroup_move_charge_read,
5300 		.write_u64 = mem_cgroup_move_charge_write,
5301 	},
5302 	{
5303 		.name = "oom_control",
5304 		.seq_show = mem_cgroup_oom_control_read,
5305 		.write_u64 = mem_cgroup_oom_control_write,
5306 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5307 	},
5308 	{
5309 		.name = "pressure_level",
5310 	},
5311 #ifdef CONFIG_NUMA
5312 	{
5313 		.name = "numa_stat",
5314 		.seq_show = memcg_numa_stat_show,
5315 	},
5316 #endif
5317 #ifdef CONFIG_MEMCG_KMEM
5318 	{
5319 		.name = "kmem.limit_in_bytes",
5320 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5321 		.write = mem_cgroup_write,
5322 		.read_u64 = mem_cgroup_read_u64,
5323 	},
5324 	{
5325 		.name = "kmem.usage_in_bytes",
5326 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5327 		.read_u64 = mem_cgroup_read_u64,
5328 	},
5329 	{
5330 		.name = "kmem.failcnt",
5331 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5332 		.write = mem_cgroup_reset,
5333 		.read_u64 = mem_cgroup_read_u64,
5334 	},
5335 	{
5336 		.name = "kmem.max_usage_in_bytes",
5337 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5338 		.write = mem_cgroup_reset,
5339 		.read_u64 = mem_cgroup_read_u64,
5340 	},
5341 #ifdef CONFIG_SLABINFO
5342 	{
5343 		.name = "kmem.slabinfo",
5344 		.seq_show = mem_cgroup_slabinfo_read,
5345 	},
5346 #endif
5347 #endif
5348 	{ },	/* terminate */
5349 };
5350 
5351 #ifdef CONFIG_MEMCG_SWAP
5352 static struct cftype memsw_cgroup_files[] = {
5353 	{
5354 		.name = "memsw.usage_in_bytes",
5355 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5356 		.read_u64 = mem_cgroup_read_u64,
5357 	},
5358 	{
5359 		.name = "memsw.max_usage_in_bytes",
5360 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5361 		.write = mem_cgroup_reset,
5362 		.read_u64 = mem_cgroup_read_u64,
5363 	},
5364 	{
5365 		.name = "memsw.limit_in_bytes",
5366 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5367 		.write = mem_cgroup_write,
5368 		.read_u64 = mem_cgroup_read_u64,
5369 	},
5370 	{
5371 		.name = "memsw.failcnt",
5372 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5373 		.write = mem_cgroup_reset,
5374 		.read_u64 = mem_cgroup_read_u64,
5375 	},
5376 	{ },	/* terminate */
5377 };
5378 #endif
5379 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5380 {
5381 	struct mem_cgroup_per_node *pn;
5382 	struct mem_cgroup_per_zone *mz;
5383 	int zone, tmp = node;
5384 	/*
5385 	 * This routine is called against possible nodes.
5386 	 * But it's BUG to call kmalloc() against offline node.
5387 	 *
5388 	 * TODO: this routine can waste much memory for nodes which will
5389 	 *       never be onlined. It's better to use memory hotplug callback
5390 	 *       function.
5391 	 */
5392 	if (!node_state(node, N_NORMAL_MEMORY))
5393 		tmp = -1;
5394 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5395 	if (!pn)
5396 		return 1;
5397 
5398 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5399 		mz = &pn->zoneinfo[zone];
5400 		lruvec_init(&mz->lruvec);
5401 		mz->usage_in_excess = 0;
5402 		mz->on_tree = false;
5403 		mz->memcg = memcg;
5404 	}
5405 	memcg->nodeinfo[node] = pn;
5406 	return 0;
5407 }
5408 
5409 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5410 {
5411 	kfree(memcg->nodeinfo[node]);
5412 }
5413 
5414 static struct mem_cgroup *mem_cgroup_alloc(void)
5415 {
5416 	struct mem_cgroup *memcg;
5417 	size_t size;
5418 
5419 	size = sizeof(struct mem_cgroup);
5420 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5421 
5422 	memcg = kzalloc(size, GFP_KERNEL);
5423 	if (!memcg)
5424 		return NULL;
5425 
5426 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5427 	if (!memcg->stat)
5428 		goto out_free;
5429 	spin_lock_init(&memcg->pcp_counter_lock);
5430 	return memcg;
5431 
5432 out_free:
5433 	kfree(memcg);
5434 	return NULL;
5435 }
5436 
5437 /*
5438  * At destroying mem_cgroup, references from swap_cgroup can remain.
5439  * (scanning all at force_empty is too costly...)
5440  *
5441  * Instead of clearing all references at force_empty, we remember
5442  * the number of reference from swap_cgroup and free mem_cgroup when
5443  * it goes down to 0.
5444  *
5445  * Removal of cgroup itself succeeds regardless of refs from swap.
5446  */
5447 
5448 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5449 {
5450 	int node;
5451 
5452 	mem_cgroup_remove_from_trees(memcg);
5453 
5454 	for_each_node(node)
5455 		free_mem_cgroup_per_zone_info(memcg, node);
5456 
5457 	free_percpu(memcg->stat);
5458 
5459 	/*
5460 	 * We need to make sure that (at least for now), the jump label
5461 	 * destruction code runs outside of the cgroup lock. This is because
5462 	 * get_online_cpus(), which is called from the static_branch update,
5463 	 * can't be called inside the cgroup_lock. cpusets are the ones
5464 	 * enforcing this dependency, so if they ever change, we might as well.
5465 	 *
5466 	 * schedule_work() will guarantee this happens. Be careful if you need
5467 	 * to move this code around, and make sure it is outside
5468 	 * the cgroup_lock.
5469 	 */
5470 	disarm_static_keys(memcg);
5471 	kfree(memcg);
5472 }
5473 
5474 /*
5475  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5476  */
5477 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5478 {
5479 	if (!memcg->res.parent)
5480 		return NULL;
5481 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5482 }
5483 EXPORT_SYMBOL(parent_mem_cgroup);
5484 
5485 static void __init mem_cgroup_soft_limit_tree_init(void)
5486 {
5487 	struct mem_cgroup_tree_per_node *rtpn;
5488 	struct mem_cgroup_tree_per_zone *rtpz;
5489 	int tmp, node, zone;
5490 
5491 	for_each_node(node) {
5492 		tmp = node;
5493 		if (!node_state(node, N_NORMAL_MEMORY))
5494 			tmp = -1;
5495 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5496 		BUG_ON(!rtpn);
5497 
5498 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5499 
5500 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5501 			rtpz = &rtpn->rb_tree_per_zone[zone];
5502 			rtpz->rb_root = RB_ROOT;
5503 			spin_lock_init(&rtpz->lock);
5504 		}
5505 	}
5506 }
5507 
5508 static struct cgroup_subsys_state * __ref
5509 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5510 {
5511 	struct mem_cgroup *memcg;
5512 	long error = -ENOMEM;
5513 	int node;
5514 
5515 	memcg = mem_cgroup_alloc();
5516 	if (!memcg)
5517 		return ERR_PTR(error);
5518 
5519 	for_each_node(node)
5520 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5521 			goto free_out;
5522 
5523 	/* root ? */
5524 	if (parent_css == NULL) {
5525 		root_mem_cgroup = memcg;
5526 		res_counter_init(&memcg->res, NULL);
5527 		res_counter_init(&memcg->memsw, NULL);
5528 		res_counter_init(&memcg->kmem, NULL);
5529 	}
5530 
5531 	memcg->last_scanned_node = MAX_NUMNODES;
5532 	INIT_LIST_HEAD(&memcg->oom_notify);
5533 	memcg->move_charge_at_immigrate = 0;
5534 	mutex_init(&memcg->thresholds_lock);
5535 	spin_lock_init(&memcg->move_lock);
5536 	vmpressure_init(&memcg->vmpressure);
5537 	INIT_LIST_HEAD(&memcg->event_list);
5538 	spin_lock_init(&memcg->event_list_lock);
5539 
5540 	return &memcg->css;
5541 
5542 free_out:
5543 	__mem_cgroup_free(memcg);
5544 	return ERR_PTR(error);
5545 }
5546 
5547 static int
5548 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5549 {
5550 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5551 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5552 
5553 	if (css->id > MEM_CGROUP_ID_MAX)
5554 		return -ENOSPC;
5555 
5556 	if (!parent)
5557 		return 0;
5558 
5559 	mutex_lock(&memcg_create_mutex);
5560 
5561 	memcg->use_hierarchy = parent->use_hierarchy;
5562 	memcg->oom_kill_disable = parent->oom_kill_disable;
5563 	memcg->swappiness = mem_cgroup_swappiness(parent);
5564 
5565 	if (parent->use_hierarchy) {
5566 		res_counter_init(&memcg->res, &parent->res);
5567 		res_counter_init(&memcg->memsw, &parent->memsw);
5568 		res_counter_init(&memcg->kmem, &parent->kmem);
5569 
5570 		/*
5571 		 * No need to take a reference to the parent because cgroup
5572 		 * core guarantees its existence.
5573 		 */
5574 	} else {
5575 		res_counter_init(&memcg->res, NULL);
5576 		res_counter_init(&memcg->memsw, NULL);
5577 		res_counter_init(&memcg->kmem, NULL);
5578 		/*
5579 		 * Deeper hierachy with use_hierarchy == false doesn't make
5580 		 * much sense so let cgroup subsystem know about this
5581 		 * unfortunate state in our controller.
5582 		 */
5583 		if (parent != root_mem_cgroup)
5584 			memory_cgrp_subsys.broken_hierarchy = true;
5585 	}
5586 	mutex_unlock(&memcg_create_mutex);
5587 
5588 	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
5589 }
5590 
5591 /*
5592  * Announce all parents that a group from their hierarchy is gone.
5593  */
5594 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5595 {
5596 	struct mem_cgroup *parent = memcg;
5597 
5598 	while ((parent = parent_mem_cgroup(parent)))
5599 		mem_cgroup_iter_invalidate(parent);
5600 
5601 	/*
5602 	 * if the root memcg is not hierarchical we have to check it
5603 	 * explicitely.
5604 	 */
5605 	if (!root_mem_cgroup->use_hierarchy)
5606 		mem_cgroup_iter_invalidate(root_mem_cgroup);
5607 }
5608 
5609 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5610 {
5611 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5612 	struct mem_cgroup_event *event, *tmp;
5613 	struct cgroup_subsys_state *iter;
5614 
5615 	/*
5616 	 * Unregister events and notify userspace.
5617 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5618 	 * directory to avoid race between userspace and kernelspace.
5619 	 */
5620 	spin_lock(&memcg->event_list_lock);
5621 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5622 		list_del_init(&event->list);
5623 		schedule_work(&event->remove);
5624 	}
5625 	spin_unlock(&memcg->event_list_lock);
5626 
5627 	kmem_cgroup_css_offline(memcg);
5628 
5629 	mem_cgroup_invalidate_reclaim_iterators(memcg);
5630 
5631 	/*
5632 	 * This requires that offlining is serialized.  Right now that is
5633 	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5634 	 */
5635 	css_for_each_descendant_post(iter, css)
5636 		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5637 
5638 	memcg_unregister_all_caches(memcg);
5639 	vmpressure_cleanup(&memcg->vmpressure);
5640 }
5641 
5642 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5643 {
5644 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5645 	/*
5646 	 * XXX: css_offline() would be where we should reparent all
5647 	 * memory to prepare the cgroup for destruction.  However,
5648 	 * memcg does not do css_tryget_online() and res_counter charging
5649 	 * under the same RCU lock region, which means that charging
5650 	 * could race with offlining.  Offlining only happens to
5651 	 * cgroups with no tasks in them but charges can show up
5652 	 * without any tasks from the swapin path when the target
5653 	 * memcg is looked up from the swapout record and not from the
5654 	 * current task as it usually is.  A race like this can leak
5655 	 * charges and put pages with stale cgroup pointers into
5656 	 * circulation:
5657 	 *
5658 	 * #0                        #1
5659 	 *                           lookup_swap_cgroup_id()
5660 	 *                           rcu_read_lock()
5661 	 *                           mem_cgroup_lookup()
5662 	 *                           css_tryget_online()
5663 	 *                           rcu_read_unlock()
5664 	 * disable css_tryget_online()
5665 	 * call_rcu()
5666 	 *   offline_css()
5667 	 *     reparent_charges()
5668 	 *                           res_counter_charge()
5669 	 *                           css_put()
5670 	 *                             css_free()
5671 	 *                           pc->mem_cgroup = dead memcg
5672 	 *                           add page to lru
5673 	 *
5674 	 * The bulk of the charges are still moved in offline_css() to
5675 	 * avoid pinning a lot of pages in case a long-term reference
5676 	 * like a swapout record is deferring the css_free() to long
5677 	 * after offlining.  But this makes sure we catch any charges
5678 	 * made after offlining:
5679 	 */
5680 	mem_cgroup_reparent_charges(memcg);
5681 
5682 	memcg_destroy_kmem(memcg);
5683 	__mem_cgroup_free(memcg);
5684 }
5685 
5686 /**
5687  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5688  * @css: the target css
5689  *
5690  * Reset the states of the mem_cgroup associated with @css.  This is
5691  * invoked when the userland requests disabling on the default hierarchy
5692  * but the memcg is pinned through dependency.  The memcg should stop
5693  * applying policies and should revert to the vanilla state as it may be
5694  * made visible again.
5695  *
5696  * The current implementation only resets the essential configurations.
5697  * This needs to be expanded to cover all the visible parts.
5698  */
5699 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5700 {
5701 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5702 
5703 	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5704 	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5705 	memcg_update_kmem_limit(memcg, ULLONG_MAX);
5706 	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5707 }
5708 
5709 #ifdef CONFIG_MMU
5710 /* Handlers for move charge at task migration. */
5711 static int mem_cgroup_do_precharge(unsigned long count)
5712 {
5713 	int ret;
5714 
5715 	/* Try a single bulk charge without reclaim first */
5716 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5717 	if (!ret) {
5718 		mc.precharge += count;
5719 		return ret;
5720 	}
5721 	if (ret == -EINTR) {
5722 		cancel_charge(root_mem_cgroup, count);
5723 		return ret;
5724 	}
5725 
5726 	/* Try charges one by one with reclaim */
5727 	while (count--) {
5728 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5729 		/*
5730 		 * In case of failure, any residual charges against
5731 		 * mc.to will be dropped by mem_cgroup_clear_mc()
5732 		 * later on.  However, cancel any charges that are
5733 		 * bypassed to root right away or they'll be lost.
5734 		 */
5735 		if (ret == -EINTR)
5736 			cancel_charge(root_mem_cgroup, 1);
5737 		if (ret)
5738 			return ret;
5739 		mc.precharge++;
5740 		cond_resched();
5741 	}
5742 	return 0;
5743 }
5744 
5745 /**
5746  * get_mctgt_type - get target type of moving charge
5747  * @vma: the vma the pte to be checked belongs
5748  * @addr: the address corresponding to the pte to be checked
5749  * @ptent: the pte to be checked
5750  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5751  *
5752  * Returns
5753  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5754  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5755  *     move charge. if @target is not NULL, the page is stored in target->page
5756  *     with extra refcnt got(Callers should handle it).
5757  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5758  *     target for charge migration. if @target is not NULL, the entry is stored
5759  *     in target->ent.
5760  *
5761  * Called with pte lock held.
5762  */
5763 union mc_target {
5764 	struct page	*page;
5765 	swp_entry_t	ent;
5766 };
5767 
5768 enum mc_target_type {
5769 	MC_TARGET_NONE = 0,
5770 	MC_TARGET_PAGE,
5771 	MC_TARGET_SWAP,
5772 };
5773 
5774 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5775 						unsigned long addr, pte_t ptent)
5776 {
5777 	struct page *page = vm_normal_page(vma, addr, ptent);
5778 
5779 	if (!page || !page_mapped(page))
5780 		return NULL;
5781 	if (PageAnon(page)) {
5782 		/* we don't move shared anon */
5783 		if (!move_anon())
5784 			return NULL;
5785 	} else if (!move_file())
5786 		/* we ignore mapcount for file pages */
5787 		return NULL;
5788 	if (!get_page_unless_zero(page))
5789 		return NULL;
5790 
5791 	return page;
5792 }
5793 
5794 #ifdef CONFIG_SWAP
5795 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5796 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5797 {
5798 	struct page *page = NULL;
5799 	swp_entry_t ent = pte_to_swp_entry(ptent);
5800 
5801 	if (!move_anon() || non_swap_entry(ent))
5802 		return NULL;
5803 	/*
5804 	 * Because lookup_swap_cache() updates some statistics counter,
5805 	 * we call find_get_page() with swapper_space directly.
5806 	 */
5807 	page = find_get_page(swap_address_space(ent), ent.val);
5808 	if (do_swap_account)
5809 		entry->val = ent.val;
5810 
5811 	return page;
5812 }
5813 #else
5814 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5815 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5816 {
5817 	return NULL;
5818 }
5819 #endif
5820 
5821 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5822 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5823 {
5824 	struct page *page = NULL;
5825 	struct address_space *mapping;
5826 	pgoff_t pgoff;
5827 
5828 	if (!vma->vm_file) /* anonymous vma */
5829 		return NULL;
5830 	if (!move_file())
5831 		return NULL;
5832 
5833 	mapping = vma->vm_file->f_mapping;
5834 	if (pte_none(ptent))
5835 		pgoff = linear_page_index(vma, addr);
5836 	else /* pte_file(ptent) is true */
5837 		pgoff = pte_to_pgoff(ptent);
5838 
5839 	/* page is moved even if it's not RSS of this task(page-faulted). */
5840 #ifdef CONFIG_SWAP
5841 	/* shmem/tmpfs may report page out on swap: account for that too. */
5842 	if (shmem_mapping(mapping)) {
5843 		page = find_get_entry(mapping, pgoff);
5844 		if (radix_tree_exceptional_entry(page)) {
5845 			swp_entry_t swp = radix_to_swp_entry(page);
5846 			if (do_swap_account)
5847 				*entry = swp;
5848 			page = find_get_page(swap_address_space(swp), swp.val);
5849 		}
5850 	} else
5851 		page = find_get_page(mapping, pgoff);
5852 #else
5853 	page = find_get_page(mapping, pgoff);
5854 #endif
5855 	return page;
5856 }
5857 
5858 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5859 		unsigned long addr, pte_t ptent, union mc_target *target)
5860 {
5861 	struct page *page = NULL;
5862 	struct page_cgroup *pc;
5863 	enum mc_target_type ret = MC_TARGET_NONE;
5864 	swp_entry_t ent = { .val = 0 };
5865 
5866 	if (pte_present(ptent))
5867 		page = mc_handle_present_pte(vma, addr, ptent);
5868 	else if (is_swap_pte(ptent))
5869 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5870 	else if (pte_none(ptent) || pte_file(ptent))
5871 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5872 
5873 	if (!page && !ent.val)
5874 		return ret;
5875 	if (page) {
5876 		pc = lookup_page_cgroup(page);
5877 		/*
5878 		 * Do only loose check w/o serialization.
5879 		 * mem_cgroup_move_account() checks the pc is valid or
5880 		 * not under LRU exclusion.
5881 		 */
5882 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5883 			ret = MC_TARGET_PAGE;
5884 			if (target)
5885 				target->page = page;
5886 		}
5887 		if (!ret || !target)
5888 			put_page(page);
5889 	}
5890 	/* There is a swap entry and a page doesn't exist or isn't charged */
5891 	if (ent.val && !ret &&
5892 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5893 		ret = MC_TARGET_SWAP;
5894 		if (target)
5895 			target->ent = ent;
5896 	}
5897 	return ret;
5898 }
5899 
5900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5901 /*
5902  * We don't consider swapping or file mapped pages because THP does not
5903  * support them for now.
5904  * Caller should make sure that pmd_trans_huge(pmd) is true.
5905  */
5906 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5907 		unsigned long addr, pmd_t pmd, union mc_target *target)
5908 {
5909 	struct page *page = NULL;
5910 	struct page_cgroup *pc;
5911 	enum mc_target_type ret = MC_TARGET_NONE;
5912 
5913 	page = pmd_page(pmd);
5914 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5915 	if (!move_anon())
5916 		return ret;
5917 	pc = lookup_page_cgroup(page);
5918 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5919 		ret = MC_TARGET_PAGE;
5920 		if (target) {
5921 			get_page(page);
5922 			target->page = page;
5923 		}
5924 	}
5925 	return ret;
5926 }
5927 #else
5928 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5929 		unsigned long addr, pmd_t pmd, union mc_target *target)
5930 {
5931 	return MC_TARGET_NONE;
5932 }
5933 #endif
5934 
5935 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5936 					unsigned long addr, unsigned long end,
5937 					struct mm_walk *walk)
5938 {
5939 	struct vm_area_struct *vma = walk->private;
5940 	pte_t *pte;
5941 	spinlock_t *ptl;
5942 
5943 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5944 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5945 			mc.precharge += HPAGE_PMD_NR;
5946 		spin_unlock(ptl);
5947 		return 0;
5948 	}
5949 
5950 	if (pmd_trans_unstable(pmd))
5951 		return 0;
5952 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5953 	for (; addr != end; pte++, addr += PAGE_SIZE)
5954 		if (get_mctgt_type(vma, addr, *pte, NULL))
5955 			mc.precharge++;	/* increment precharge temporarily */
5956 	pte_unmap_unlock(pte - 1, ptl);
5957 	cond_resched();
5958 
5959 	return 0;
5960 }
5961 
5962 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5963 {
5964 	unsigned long precharge;
5965 	struct vm_area_struct *vma;
5966 
5967 	down_read(&mm->mmap_sem);
5968 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5969 		struct mm_walk mem_cgroup_count_precharge_walk = {
5970 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5971 			.mm = mm,
5972 			.private = vma,
5973 		};
5974 		if (is_vm_hugetlb_page(vma))
5975 			continue;
5976 		walk_page_range(vma->vm_start, vma->vm_end,
5977 					&mem_cgroup_count_precharge_walk);
5978 	}
5979 	up_read(&mm->mmap_sem);
5980 
5981 	precharge = mc.precharge;
5982 	mc.precharge = 0;
5983 
5984 	return precharge;
5985 }
5986 
5987 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5988 {
5989 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5990 
5991 	VM_BUG_ON(mc.moving_task);
5992 	mc.moving_task = current;
5993 	return mem_cgroup_do_precharge(precharge);
5994 }
5995 
5996 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5997 static void __mem_cgroup_clear_mc(void)
5998 {
5999 	struct mem_cgroup *from = mc.from;
6000 	struct mem_cgroup *to = mc.to;
6001 	int i;
6002 
6003 	/* we must uncharge all the leftover precharges from mc.to */
6004 	if (mc.precharge) {
6005 		cancel_charge(mc.to, mc.precharge);
6006 		mc.precharge = 0;
6007 	}
6008 	/*
6009 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6010 	 * we must uncharge here.
6011 	 */
6012 	if (mc.moved_charge) {
6013 		cancel_charge(mc.from, mc.moved_charge);
6014 		mc.moved_charge = 0;
6015 	}
6016 	/* we must fixup refcnts and charges */
6017 	if (mc.moved_swap) {
6018 		/* uncharge swap account from the old cgroup */
6019 		if (!mem_cgroup_is_root(mc.from))
6020 			res_counter_uncharge(&mc.from->memsw,
6021 					     PAGE_SIZE * mc.moved_swap);
6022 
6023 		for (i = 0; i < mc.moved_swap; i++)
6024 			css_put(&mc.from->css);
6025 
6026 		/*
6027 		 * we charged both to->res and to->memsw, so we should
6028 		 * uncharge to->res.
6029 		 */
6030 		if (!mem_cgroup_is_root(mc.to))
6031 			res_counter_uncharge(&mc.to->res,
6032 					     PAGE_SIZE * mc.moved_swap);
6033 		/* we've already done css_get(mc.to) */
6034 		mc.moved_swap = 0;
6035 	}
6036 	memcg_oom_recover(from);
6037 	memcg_oom_recover(to);
6038 	wake_up_all(&mc.waitq);
6039 }
6040 
6041 static void mem_cgroup_clear_mc(void)
6042 {
6043 	struct mem_cgroup *from = mc.from;
6044 
6045 	/*
6046 	 * we must clear moving_task before waking up waiters at the end of
6047 	 * task migration.
6048 	 */
6049 	mc.moving_task = NULL;
6050 	__mem_cgroup_clear_mc();
6051 	spin_lock(&mc.lock);
6052 	mc.from = NULL;
6053 	mc.to = NULL;
6054 	spin_unlock(&mc.lock);
6055 	mem_cgroup_end_move(from);
6056 }
6057 
6058 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6059 				 struct cgroup_taskset *tset)
6060 {
6061 	struct task_struct *p = cgroup_taskset_first(tset);
6062 	int ret = 0;
6063 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6064 	unsigned long move_charge_at_immigrate;
6065 
6066 	/*
6067 	 * We are now commited to this value whatever it is. Changes in this
6068 	 * tunable will only affect upcoming migrations, not the current one.
6069 	 * So we need to save it, and keep it going.
6070 	 */
6071 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6072 	if (move_charge_at_immigrate) {
6073 		struct mm_struct *mm;
6074 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6075 
6076 		VM_BUG_ON(from == memcg);
6077 
6078 		mm = get_task_mm(p);
6079 		if (!mm)
6080 			return 0;
6081 		/* We move charges only when we move a owner of the mm */
6082 		if (mm->owner == p) {
6083 			VM_BUG_ON(mc.from);
6084 			VM_BUG_ON(mc.to);
6085 			VM_BUG_ON(mc.precharge);
6086 			VM_BUG_ON(mc.moved_charge);
6087 			VM_BUG_ON(mc.moved_swap);
6088 			mem_cgroup_start_move(from);
6089 			spin_lock(&mc.lock);
6090 			mc.from = from;
6091 			mc.to = memcg;
6092 			mc.immigrate_flags = move_charge_at_immigrate;
6093 			spin_unlock(&mc.lock);
6094 			/* We set mc.moving_task later */
6095 
6096 			ret = mem_cgroup_precharge_mc(mm);
6097 			if (ret)
6098 				mem_cgroup_clear_mc();
6099 		}
6100 		mmput(mm);
6101 	}
6102 	return ret;
6103 }
6104 
6105 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6106 				     struct cgroup_taskset *tset)
6107 {
6108 	mem_cgroup_clear_mc();
6109 }
6110 
6111 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6112 				unsigned long addr, unsigned long end,
6113 				struct mm_walk *walk)
6114 {
6115 	int ret = 0;
6116 	struct vm_area_struct *vma = walk->private;
6117 	pte_t *pte;
6118 	spinlock_t *ptl;
6119 	enum mc_target_type target_type;
6120 	union mc_target target;
6121 	struct page *page;
6122 	struct page_cgroup *pc;
6123 
6124 	/*
6125 	 * We don't take compound_lock() here but no race with splitting thp
6126 	 * happens because:
6127 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6128 	 *    under splitting, which means there's no concurrent thp split,
6129 	 *  - if another thread runs into split_huge_page() just after we
6130 	 *    entered this if-block, the thread must wait for page table lock
6131 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6132 	 *    part of thp split is not executed yet.
6133 	 */
6134 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6135 		if (mc.precharge < HPAGE_PMD_NR) {
6136 			spin_unlock(ptl);
6137 			return 0;
6138 		}
6139 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6140 		if (target_type == MC_TARGET_PAGE) {
6141 			page = target.page;
6142 			if (!isolate_lru_page(page)) {
6143 				pc = lookup_page_cgroup(page);
6144 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6145 							pc, mc.from, mc.to)) {
6146 					mc.precharge -= HPAGE_PMD_NR;
6147 					mc.moved_charge += HPAGE_PMD_NR;
6148 				}
6149 				putback_lru_page(page);
6150 			}
6151 			put_page(page);
6152 		}
6153 		spin_unlock(ptl);
6154 		return 0;
6155 	}
6156 
6157 	if (pmd_trans_unstable(pmd))
6158 		return 0;
6159 retry:
6160 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6161 	for (; addr != end; addr += PAGE_SIZE) {
6162 		pte_t ptent = *(pte++);
6163 		swp_entry_t ent;
6164 
6165 		if (!mc.precharge)
6166 			break;
6167 
6168 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6169 		case MC_TARGET_PAGE:
6170 			page = target.page;
6171 			if (isolate_lru_page(page))
6172 				goto put;
6173 			pc = lookup_page_cgroup(page);
6174 			if (!mem_cgroup_move_account(page, 1, pc,
6175 						     mc.from, mc.to)) {
6176 				mc.precharge--;
6177 				/* we uncharge from mc.from later. */
6178 				mc.moved_charge++;
6179 			}
6180 			putback_lru_page(page);
6181 put:			/* get_mctgt_type() gets the page */
6182 			put_page(page);
6183 			break;
6184 		case MC_TARGET_SWAP:
6185 			ent = target.ent;
6186 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6187 				mc.precharge--;
6188 				/* we fixup refcnts and charges later. */
6189 				mc.moved_swap++;
6190 			}
6191 			break;
6192 		default:
6193 			break;
6194 		}
6195 	}
6196 	pte_unmap_unlock(pte - 1, ptl);
6197 	cond_resched();
6198 
6199 	if (addr != end) {
6200 		/*
6201 		 * We have consumed all precharges we got in can_attach().
6202 		 * We try charge one by one, but don't do any additional
6203 		 * charges to mc.to if we have failed in charge once in attach()
6204 		 * phase.
6205 		 */
6206 		ret = mem_cgroup_do_precharge(1);
6207 		if (!ret)
6208 			goto retry;
6209 	}
6210 
6211 	return ret;
6212 }
6213 
6214 static void mem_cgroup_move_charge(struct mm_struct *mm)
6215 {
6216 	struct vm_area_struct *vma;
6217 
6218 	lru_add_drain_all();
6219 retry:
6220 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6221 		/*
6222 		 * Someone who are holding the mmap_sem might be waiting in
6223 		 * waitq. So we cancel all extra charges, wake up all waiters,
6224 		 * and retry. Because we cancel precharges, we might not be able
6225 		 * to move enough charges, but moving charge is a best-effort
6226 		 * feature anyway, so it wouldn't be a big problem.
6227 		 */
6228 		__mem_cgroup_clear_mc();
6229 		cond_resched();
6230 		goto retry;
6231 	}
6232 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6233 		int ret;
6234 		struct mm_walk mem_cgroup_move_charge_walk = {
6235 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6236 			.mm = mm,
6237 			.private = vma,
6238 		};
6239 		if (is_vm_hugetlb_page(vma))
6240 			continue;
6241 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6242 						&mem_cgroup_move_charge_walk);
6243 		if (ret)
6244 			/*
6245 			 * means we have consumed all precharges and failed in
6246 			 * doing additional charge. Just abandon here.
6247 			 */
6248 			break;
6249 	}
6250 	up_read(&mm->mmap_sem);
6251 }
6252 
6253 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6254 				 struct cgroup_taskset *tset)
6255 {
6256 	struct task_struct *p = cgroup_taskset_first(tset);
6257 	struct mm_struct *mm = get_task_mm(p);
6258 
6259 	if (mm) {
6260 		if (mc.to)
6261 			mem_cgroup_move_charge(mm);
6262 		mmput(mm);
6263 	}
6264 	if (mc.to)
6265 		mem_cgroup_clear_mc();
6266 }
6267 #else	/* !CONFIG_MMU */
6268 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6269 				 struct cgroup_taskset *tset)
6270 {
6271 	return 0;
6272 }
6273 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6274 				     struct cgroup_taskset *tset)
6275 {
6276 }
6277 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6278 				 struct cgroup_taskset *tset)
6279 {
6280 }
6281 #endif
6282 
6283 /*
6284  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6285  * to verify whether we're attached to the default hierarchy on each mount
6286  * attempt.
6287  */
6288 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6289 {
6290 	/*
6291 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6292 	 * guarantees that @root doesn't have any children, so turning it
6293 	 * on for the root memcg is enough.
6294 	 */
6295 	if (cgroup_on_dfl(root_css->cgroup))
6296 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6297 }
6298 
6299 struct cgroup_subsys memory_cgrp_subsys = {
6300 	.css_alloc = mem_cgroup_css_alloc,
6301 	.css_online = mem_cgroup_css_online,
6302 	.css_offline = mem_cgroup_css_offline,
6303 	.css_free = mem_cgroup_css_free,
6304 	.css_reset = mem_cgroup_css_reset,
6305 	.can_attach = mem_cgroup_can_attach,
6306 	.cancel_attach = mem_cgroup_cancel_attach,
6307 	.attach = mem_cgroup_move_task,
6308 	.bind = mem_cgroup_bind,
6309 	.legacy_cftypes = mem_cgroup_files,
6310 	.early_init = 0,
6311 };
6312 
6313 #ifdef CONFIG_MEMCG_SWAP
6314 static int __init enable_swap_account(char *s)
6315 {
6316 	if (!strcmp(s, "1"))
6317 		really_do_swap_account = 1;
6318 	else if (!strcmp(s, "0"))
6319 		really_do_swap_account = 0;
6320 	return 1;
6321 }
6322 __setup("swapaccount=", enable_swap_account);
6323 
6324 static void __init memsw_file_init(void)
6325 {
6326 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6327 					  memsw_cgroup_files));
6328 }
6329 
6330 static void __init enable_swap_cgroup(void)
6331 {
6332 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6333 		do_swap_account = 1;
6334 		memsw_file_init();
6335 	}
6336 }
6337 
6338 #else
6339 static void __init enable_swap_cgroup(void)
6340 {
6341 }
6342 #endif
6343 
6344 #ifdef CONFIG_MEMCG_SWAP
6345 /**
6346  * mem_cgroup_swapout - transfer a memsw charge to swap
6347  * @page: page whose memsw charge to transfer
6348  * @entry: swap entry to move the charge to
6349  *
6350  * Transfer the memsw charge of @page to @entry.
6351  */
6352 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6353 {
6354 	struct page_cgroup *pc;
6355 	unsigned short oldid;
6356 
6357 	VM_BUG_ON_PAGE(PageLRU(page), page);
6358 	VM_BUG_ON_PAGE(page_count(page), page);
6359 
6360 	if (!do_swap_account)
6361 		return;
6362 
6363 	pc = lookup_page_cgroup(page);
6364 
6365 	/* Readahead page, never charged */
6366 	if (!PageCgroupUsed(pc))
6367 		return;
6368 
6369 	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6370 
6371 	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6372 	VM_BUG_ON_PAGE(oldid, page);
6373 
6374 	pc->flags &= ~PCG_MEMSW;
6375 	css_get(&pc->mem_cgroup->css);
6376 	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6377 }
6378 
6379 /**
6380  * mem_cgroup_uncharge_swap - uncharge a swap entry
6381  * @entry: swap entry to uncharge
6382  *
6383  * Drop the memsw charge associated with @entry.
6384  */
6385 void mem_cgroup_uncharge_swap(swp_entry_t entry)
6386 {
6387 	struct mem_cgroup *memcg;
6388 	unsigned short id;
6389 
6390 	if (!do_swap_account)
6391 		return;
6392 
6393 	id = swap_cgroup_record(entry, 0);
6394 	rcu_read_lock();
6395 	memcg = mem_cgroup_lookup(id);
6396 	if (memcg) {
6397 		if (!mem_cgroup_is_root(memcg))
6398 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6399 		mem_cgroup_swap_statistics(memcg, false);
6400 		css_put(&memcg->css);
6401 	}
6402 	rcu_read_unlock();
6403 }
6404 #endif
6405 
6406 /**
6407  * mem_cgroup_try_charge - try charging a page
6408  * @page: page to charge
6409  * @mm: mm context of the victim
6410  * @gfp_mask: reclaim mode
6411  * @memcgp: charged memcg return
6412  *
6413  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6414  * pages according to @gfp_mask if necessary.
6415  *
6416  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6417  * Otherwise, an error code is returned.
6418  *
6419  * After page->mapping has been set up, the caller must finalize the
6420  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6421  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6422  */
6423 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6424 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
6425 {
6426 	struct mem_cgroup *memcg = NULL;
6427 	unsigned int nr_pages = 1;
6428 	int ret = 0;
6429 
6430 	if (mem_cgroup_disabled())
6431 		goto out;
6432 
6433 	if (PageSwapCache(page)) {
6434 		struct page_cgroup *pc = lookup_page_cgroup(page);
6435 		/*
6436 		 * Every swap fault against a single page tries to charge the
6437 		 * page, bail as early as possible.  shmem_unuse() encounters
6438 		 * already charged pages, too.  The USED bit is protected by
6439 		 * the page lock, which serializes swap cache removal, which
6440 		 * in turn serializes uncharging.
6441 		 */
6442 		if (PageCgroupUsed(pc))
6443 			goto out;
6444 	}
6445 
6446 	if (PageTransHuge(page)) {
6447 		nr_pages <<= compound_order(page);
6448 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6449 	}
6450 
6451 	if (do_swap_account && PageSwapCache(page))
6452 		memcg = try_get_mem_cgroup_from_page(page);
6453 	if (!memcg)
6454 		memcg = get_mem_cgroup_from_mm(mm);
6455 
6456 	ret = try_charge(memcg, gfp_mask, nr_pages);
6457 
6458 	css_put(&memcg->css);
6459 
6460 	if (ret == -EINTR) {
6461 		memcg = root_mem_cgroup;
6462 		ret = 0;
6463 	}
6464 out:
6465 	*memcgp = memcg;
6466 	return ret;
6467 }
6468 
6469 /**
6470  * mem_cgroup_commit_charge - commit a page charge
6471  * @page: page to charge
6472  * @memcg: memcg to charge the page to
6473  * @lrucare: page might be on LRU already
6474  *
6475  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6476  * after page->mapping has been set up.  This must happen atomically
6477  * as part of the page instantiation, i.e. under the page table lock
6478  * for anonymous pages, under the page lock for page and swap cache.
6479  *
6480  * In addition, the page must not be on the LRU during the commit, to
6481  * prevent racing with task migration.  If it might be, use @lrucare.
6482  *
6483  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6484  */
6485 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6486 			      bool lrucare)
6487 {
6488 	unsigned int nr_pages = 1;
6489 
6490 	VM_BUG_ON_PAGE(!page->mapping, page);
6491 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6492 
6493 	if (mem_cgroup_disabled())
6494 		return;
6495 	/*
6496 	 * Swap faults will attempt to charge the same page multiple
6497 	 * times.  But reuse_swap_page() might have removed the page
6498 	 * from swapcache already, so we can't check PageSwapCache().
6499 	 */
6500 	if (!memcg)
6501 		return;
6502 
6503 	commit_charge(page, memcg, lrucare);
6504 
6505 	if (PageTransHuge(page)) {
6506 		nr_pages <<= compound_order(page);
6507 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6508 	}
6509 
6510 	local_irq_disable();
6511 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6512 	memcg_check_events(memcg, page);
6513 	local_irq_enable();
6514 
6515 	if (do_swap_account && PageSwapCache(page)) {
6516 		swp_entry_t entry = { .val = page_private(page) };
6517 		/*
6518 		 * The swap entry might not get freed for a long time,
6519 		 * let's not wait for it.  The page already received a
6520 		 * memory+swap charge, drop the swap entry duplicate.
6521 		 */
6522 		mem_cgroup_uncharge_swap(entry);
6523 	}
6524 }
6525 
6526 /**
6527  * mem_cgroup_cancel_charge - cancel a page charge
6528  * @page: page to charge
6529  * @memcg: memcg to charge the page to
6530  *
6531  * Cancel a charge transaction started by mem_cgroup_try_charge().
6532  */
6533 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6534 {
6535 	unsigned int nr_pages = 1;
6536 
6537 	if (mem_cgroup_disabled())
6538 		return;
6539 	/*
6540 	 * Swap faults will attempt to charge the same page multiple
6541 	 * times.  But reuse_swap_page() might have removed the page
6542 	 * from swapcache already, so we can't check PageSwapCache().
6543 	 */
6544 	if (!memcg)
6545 		return;
6546 
6547 	if (PageTransHuge(page)) {
6548 		nr_pages <<= compound_order(page);
6549 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6550 	}
6551 
6552 	cancel_charge(memcg, nr_pages);
6553 }
6554 
6555 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6556 			   unsigned long nr_mem, unsigned long nr_memsw,
6557 			   unsigned long nr_anon, unsigned long nr_file,
6558 			   unsigned long nr_huge, struct page *dummy_page)
6559 {
6560 	unsigned long flags;
6561 
6562 	if (!mem_cgroup_is_root(memcg)) {
6563 		if (nr_mem)
6564 			res_counter_uncharge(&memcg->res,
6565 					     nr_mem * PAGE_SIZE);
6566 		if (nr_memsw)
6567 			res_counter_uncharge(&memcg->memsw,
6568 					     nr_memsw * PAGE_SIZE);
6569 		memcg_oom_recover(memcg);
6570 	}
6571 
6572 	local_irq_save(flags);
6573 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6574 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6575 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6576 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6577 	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6578 	memcg_check_events(memcg, dummy_page);
6579 	local_irq_restore(flags);
6580 }
6581 
6582 static void uncharge_list(struct list_head *page_list)
6583 {
6584 	struct mem_cgroup *memcg = NULL;
6585 	unsigned long nr_memsw = 0;
6586 	unsigned long nr_anon = 0;
6587 	unsigned long nr_file = 0;
6588 	unsigned long nr_huge = 0;
6589 	unsigned long pgpgout = 0;
6590 	unsigned long nr_mem = 0;
6591 	struct list_head *next;
6592 	struct page *page;
6593 
6594 	next = page_list->next;
6595 	do {
6596 		unsigned int nr_pages = 1;
6597 		struct page_cgroup *pc;
6598 
6599 		page = list_entry(next, struct page, lru);
6600 		next = page->lru.next;
6601 
6602 		VM_BUG_ON_PAGE(PageLRU(page), page);
6603 		VM_BUG_ON_PAGE(page_count(page), page);
6604 
6605 		pc = lookup_page_cgroup(page);
6606 		if (!PageCgroupUsed(pc))
6607 			continue;
6608 
6609 		/*
6610 		 * Nobody should be changing or seriously looking at
6611 		 * pc->mem_cgroup and pc->flags at this point, we have
6612 		 * fully exclusive access to the page.
6613 		 */
6614 
6615 		if (memcg != pc->mem_cgroup) {
6616 			if (memcg) {
6617 				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6618 					       nr_anon, nr_file, nr_huge, page);
6619 				pgpgout = nr_mem = nr_memsw = 0;
6620 				nr_anon = nr_file = nr_huge = 0;
6621 			}
6622 			memcg = pc->mem_cgroup;
6623 		}
6624 
6625 		if (PageTransHuge(page)) {
6626 			nr_pages <<= compound_order(page);
6627 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6628 			nr_huge += nr_pages;
6629 		}
6630 
6631 		if (PageAnon(page))
6632 			nr_anon += nr_pages;
6633 		else
6634 			nr_file += nr_pages;
6635 
6636 		if (pc->flags & PCG_MEM)
6637 			nr_mem += nr_pages;
6638 		if (pc->flags & PCG_MEMSW)
6639 			nr_memsw += nr_pages;
6640 		pc->flags = 0;
6641 
6642 		pgpgout++;
6643 	} while (next != page_list);
6644 
6645 	if (memcg)
6646 		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6647 			       nr_anon, nr_file, nr_huge, page);
6648 }
6649 
6650 /**
6651  * mem_cgroup_uncharge - uncharge a page
6652  * @page: page to uncharge
6653  *
6654  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6655  * mem_cgroup_commit_charge().
6656  */
6657 void mem_cgroup_uncharge(struct page *page)
6658 {
6659 	struct page_cgroup *pc;
6660 
6661 	if (mem_cgroup_disabled())
6662 		return;
6663 
6664 	/* Don't touch page->lru of any random page, pre-check: */
6665 	pc = lookup_page_cgroup(page);
6666 	if (!PageCgroupUsed(pc))
6667 		return;
6668 
6669 	INIT_LIST_HEAD(&page->lru);
6670 	uncharge_list(&page->lru);
6671 }
6672 
6673 /**
6674  * mem_cgroup_uncharge_list - uncharge a list of page
6675  * @page_list: list of pages to uncharge
6676  *
6677  * Uncharge a list of pages previously charged with
6678  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6679  */
6680 void mem_cgroup_uncharge_list(struct list_head *page_list)
6681 {
6682 	if (mem_cgroup_disabled())
6683 		return;
6684 
6685 	if (!list_empty(page_list))
6686 		uncharge_list(page_list);
6687 }
6688 
6689 /**
6690  * mem_cgroup_migrate - migrate a charge to another page
6691  * @oldpage: currently charged page
6692  * @newpage: page to transfer the charge to
6693  * @lrucare: both pages might be on the LRU already
6694  *
6695  * Migrate the charge from @oldpage to @newpage.
6696  *
6697  * Both pages must be locked, @newpage->mapping must be set up.
6698  */
6699 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6700 			bool lrucare)
6701 {
6702 	struct page_cgroup *pc;
6703 	int isolated;
6704 
6705 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6706 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6707 	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6708 	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6709 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6710 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6711 		       newpage);
6712 
6713 	if (mem_cgroup_disabled())
6714 		return;
6715 
6716 	/* Page cache replacement: new page already charged? */
6717 	pc = lookup_page_cgroup(newpage);
6718 	if (PageCgroupUsed(pc))
6719 		return;
6720 
6721 	/* Re-entrant migration: old page already uncharged? */
6722 	pc = lookup_page_cgroup(oldpage);
6723 	if (!PageCgroupUsed(pc))
6724 		return;
6725 
6726 	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6727 	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6728 
6729 	if (lrucare)
6730 		lock_page_lru(oldpage, &isolated);
6731 
6732 	pc->flags = 0;
6733 
6734 	if (lrucare)
6735 		unlock_page_lru(oldpage, isolated);
6736 
6737 	commit_charge(newpage, pc->mem_cgroup, lrucare);
6738 }
6739 
6740 /*
6741  * subsys_initcall() for memory controller.
6742  *
6743  * Some parts like hotcpu_notifier() have to be initialized from this context
6744  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6745  * everything that doesn't depend on a specific mem_cgroup structure should
6746  * be initialized from here.
6747  */
6748 static int __init mem_cgroup_init(void)
6749 {
6750 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6751 	enable_swap_cgroup();
6752 	mem_cgroup_soft_limit_tree_init();
6753 	memcg_stock_init();
6754 	return 0;
6755 }
6756 subsys_initcall(mem_cgroup_init);
6757