xref: /openbmc/linux/mm/memcontrol.c (revision aded0023)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85 
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88 
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91 
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_KMEM,
211 	_TCP,
212 };
213 
214 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)	((val) & 0xffff)
217 
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)		\
224 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
225 	     iter != NULL;				\
226 	     iter = mem_cgroup_iter(root, iter, NULL))
227 
228 #define for_each_mem_cgroup(iter)			\
229 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(NULL, iter, NULL))
232 
233 static inline bool task_is_dying(void)
234 {
235 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 		(current->flags & PF_EXITING);
237 }
238 
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 	if (!memcg)
243 		memcg = root_mem_cgroup;
244 	return &memcg->vmpressure;
245 }
246 
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249 	return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251 
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254 
255 bool mem_cgroup_kmem_disabled(void)
256 {
257 	return cgroup_memory_nokmem;
258 }
259 
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 				      unsigned int nr_pages);
262 
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 	unsigned int nr_bytes;
267 	unsigned int nr_pages;
268 	unsigned long flags;
269 
270 	/*
271 	 * At this point all allocated objects are freed, and
272 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 	 *
275 	 * The following sequence can lead to it:
276 	 * 1) CPU0: objcg == stock->cached_objcg
277 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 	 *          PAGE_SIZE bytes are charged
279 	 * 3) CPU1: a process from another memcg is allocating something,
280 	 *          the stock if flushed,
281 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282 	 * 5) CPU0: we do release this object,
283 	 *          92 bytes are added to stock->nr_bytes
284 	 * 6) CPU0: stock is flushed,
285 	 *          92 bytes are added to objcg->nr_charged_bytes
286 	 *
287 	 * In the result, nr_charged_bytes == PAGE_SIZE.
288 	 * This page will be uncharged in obj_cgroup_release().
289 	 */
290 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 	nr_pages = nr_bytes >> PAGE_SHIFT;
293 
294 	if (nr_pages)
295 		obj_cgroup_uncharge_pages(objcg, nr_pages);
296 
297 	spin_lock_irqsave(&objcg_lock, flags);
298 	list_del(&objcg->list);
299 	spin_unlock_irqrestore(&objcg_lock, flags);
300 
301 	percpu_ref_exit(ref);
302 	kfree_rcu(objcg, rcu);
303 }
304 
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 	struct obj_cgroup *objcg;
308 	int ret;
309 
310 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 	if (!objcg)
312 		return NULL;
313 
314 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 			      GFP_KERNEL);
316 	if (ret) {
317 		kfree(objcg);
318 		return NULL;
319 	}
320 	INIT_LIST_HEAD(&objcg->list);
321 	return objcg;
322 }
323 
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 				  struct mem_cgroup *parent)
326 {
327 	struct obj_cgroup *objcg, *iter;
328 
329 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330 
331 	spin_lock_irq(&objcg_lock);
332 
333 	/* 1) Ready to reparent active objcg. */
334 	list_add(&objcg->list, &memcg->objcg_list);
335 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
336 	list_for_each_entry(iter, &memcg->objcg_list, list)
337 		WRITE_ONCE(iter->memcg, parent);
338 	/* 3) Move already reparented objcgs to the parent's list */
339 	list_splice(&memcg->objcg_list, &parent->objcg_list);
340 
341 	spin_unlock_irq(&objcg_lock);
342 
343 	percpu_ref_kill(&objcg->refcnt);
344 }
345 
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354 
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358 
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372 	struct mem_cgroup *memcg = folio_memcg(folio);
373 
374 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 		memcg = root_mem_cgroup;
376 
377 	return &memcg->css;
378 }
379 
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395 	struct mem_cgroup *memcg;
396 	unsigned long ino = 0;
397 
398 	rcu_read_lock();
399 	/* page_folio() is racy here, but the entire function is racy anyway */
400 	memcg = folio_memcg_check(page_folio(page));
401 
402 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 		memcg = parent_mem_cgroup(memcg);
404 	if (memcg)
405 		ino = cgroup_ino(memcg->css.cgroup);
406 	rcu_read_unlock();
407 	return ino;
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 					 struct mem_cgroup_tree_per_node *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_node *mz_node;
417 	bool rightmost = true;
418 
419 	if (mz->on_tree)
420 		return;
421 
422 	mz->usage_in_excess = new_usage_in_excess;
423 	if (!mz->usage_in_excess)
424 		return;
425 	while (*p) {
426 		parent = *p;
427 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 					tree_node);
429 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 			p = &(*p)->rb_left;
431 			rightmost = false;
432 		} else {
433 			p = &(*p)->rb_right;
434 		}
435 	}
436 
437 	if (rightmost)
438 		mctz->rb_rightmost = &mz->tree_node;
439 
440 	rb_link_node(&mz->tree_node, parent, p);
441 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 	mz->on_tree = true;
443 }
444 
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 					 struct mem_cgroup_tree_per_node *mctz)
447 {
448 	if (!mz->on_tree)
449 		return;
450 
451 	if (&mz->tree_node == mctz->rb_rightmost)
452 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
453 
454 	rb_erase(&mz->tree_node, &mctz->rb_root);
455 	mz->on_tree = false;
456 }
457 
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 				       struct mem_cgroup_tree_per_node *mctz)
460 {
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&mctz->lock, flags);
464 	__mem_cgroup_remove_exceeded(mz, mctz);
465 	spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467 
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 	unsigned long nr_pages = page_counter_read(&memcg->memory);
471 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 	unsigned long excess = 0;
473 
474 	if (nr_pages > soft_limit)
475 		excess = nr_pages - soft_limit;
476 
477 	return excess;
478 }
479 
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 	unsigned long excess;
483 	struct mem_cgroup_per_node *mz;
484 	struct mem_cgroup_tree_per_node *mctz;
485 
486 	if (lru_gen_enabled()) {
487 		if (soft_limit_excess(memcg))
488 			lru_gen_soft_reclaim(memcg, nid);
489 		return;
490 	}
491 
492 	mctz = soft_limit_tree.rb_tree_per_node[nid];
493 	if (!mctz)
494 		return;
495 	/*
496 	 * Necessary to update all ancestors when hierarchy is used.
497 	 * because their event counter is not touched.
498 	 */
499 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 		mz = memcg->nodeinfo[nid];
501 		excess = soft_limit_excess(memcg);
502 		/*
503 		 * We have to update the tree if mz is on RB-tree or
504 		 * mem is over its softlimit.
505 		 */
506 		if (excess || mz->on_tree) {
507 			unsigned long flags;
508 
509 			spin_lock_irqsave(&mctz->lock, flags);
510 			/* if on-tree, remove it */
511 			if (mz->on_tree)
512 				__mem_cgroup_remove_exceeded(mz, mctz);
513 			/*
514 			 * Insert again. mz->usage_in_excess will be updated.
515 			 * If excess is 0, no tree ops.
516 			 */
517 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
518 			spin_unlock_irqrestore(&mctz->lock, flags);
519 		}
520 	}
521 }
522 
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525 	struct mem_cgroup_tree_per_node *mctz;
526 	struct mem_cgroup_per_node *mz;
527 	int nid;
528 
529 	for_each_node(nid) {
530 		mz = memcg->nodeinfo[nid];
531 		mctz = soft_limit_tree.rb_tree_per_node[nid];
532 		if (mctz)
533 			mem_cgroup_remove_exceeded(mz, mctz);
534 	}
535 }
536 
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540 	struct mem_cgroup_per_node *mz;
541 
542 retry:
543 	mz = NULL;
544 	if (!mctz->rb_rightmost)
545 		goto done;		/* Nothing to reclaim from */
546 
547 	mz = rb_entry(mctz->rb_rightmost,
548 		      struct mem_cgroup_per_node, tree_node);
549 	/*
550 	 * Remove the node now but someone else can add it back,
551 	 * we will to add it back at the end of reclaim to its correct
552 	 * position in the tree.
553 	 */
554 	__mem_cgroup_remove_exceeded(mz, mctz);
555 	if (!soft_limit_excess(mz->memcg) ||
556 	    !css_tryget(&mz->memcg->css))
557 		goto retry;
558 done:
559 	return mz;
560 }
561 
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565 	struct mem_cgroup_per_node *mz;
566 
567 	spin_lock_irq(&mctz->lock);
568 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 	spin_unlock_irq(&mctz->lock);
570 	return mz;
571 }
572 
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594 
595 #define FLUSH_TIME (2UL*HZ)
596 
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605 	preempt_disable_nested();
606 	VM_WARN_ON_IRQS_ENABLED();
607 }
608 
609 static void __memcg_stats_lock(void)
610 {
611 	preempt_disable_nested();
612 }
613 
614 static void memcg_stats_unlock(void)
615 {
616 	preempt_enable_nested();
617 }
618 
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621 	unsigned int x;
622 
623 	if (!val)
624 		return;
625 
626 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627 
628 	x = __this_cpu_add_return(stats_updates, abs(val));
629 	if (x > MEMCG_CHARGE_BATCH) {
630 		/*
631 		 * If stats_flush_threshold exceeds the threshold
632 		 * (>num_online_cpus()), cgroup stats update will be triggered
633 		 * in __mem_cgroup_flush_stats(). Increasing this var further
634 		 * is redundant and simply adds overhead in atomic update.
635 		 */
636 		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 		__this_cpu_write(stats_updates, 0);
639 	}
640 }
641 
642 static void do_flush_stats(void)
643 {
644 	/*
645 	 * We always flush the entire tree, so concurrent flushers can just
646 	 * skip. This avoids a thundering herd problem on the rstat global lock
647 	 * from memcg flushers (e.g. reclaim, refault, etc).
648 	 */
649 	if (atomic_read(&stats_flush_ongoing) ||
650 	    atomic_xchg(&stats_flush_ongoing, 1))
651 		return;
652 
653 	WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654 
655 	cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656 
657 	atomic_set(&stats_flush_threshold, 0);
658 	atomic_set(&stats_flush_ongoing, 0);
659 }
660 
661 void mem_cgroup_flush_stats(void)
662 {
663 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 		do_flush_stats();
665 }
666 
667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669 	if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670 		mem_cgroup_flush_stats();
671 }
672 
673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675 	/*
676 	 * Always flush here so that flushing in latency-sensitive paths is
677 	 * as cheap as possible.
678 	 */
679 	do_flush_stats();
680 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682 
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685 	PGPGIN,
686 	PGPGOUT,
687 	PGSCAN_KSWAPD,
688 	PGSCAN_DIRECT,
689 	PGSCAN_KHUGEPAGED,
690 	PGSTEAL_KSWAPD,
691 	PGSTEAL_DIRECT,
692 	PGSTEAL_KHUGEPAGED,
693 	PGFAULT,
694 	PGMAJFAULT,
695 	PGREFILL,
696 	PGACTIVATE,
697 	PGDEACTIVATE,
698 	PGLAZYFREE,
699 	PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 	ZSWPIN,
702 	ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 	THP_FAULT_ALLOC,
706 	THP_COLLAPSE_ALLOC,
707 #endif
708 };
709 
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712 
713 static void init_memcg_events(void)
714 {
715 	int i;
716 
717 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720 
721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723 	return mem_cgroup_events_index[idx] - 1;
724 }
725 
726 struct memcg_vmstats_percpu {
727 	/* Local (CPU and cgroup) page state & events */
728 	long			state[MEMCG_NR_STAT];
729 	unsigned long		events[NR_MEMCG_EVENTS];
730 
731 	/* Delta calculation for lockless upward propagation */
732 	long			state_prev[MEMCG_NR_STAT];
733 	unsigned long		events_prev[NR_MEMCG_EVENTS];
734 
735 	/* Cgroup1: threshold notifications & softlimit tree updates */
736 	unsigned long		nr_page_events;
737 	unsigned long		targets[MEM_CGROUP_NTARGETS];
738 };
739 
740 struct memcg_vmstats {
741 	/* Aggregated (CPU and subtree) page state & events */
742 	long			state[MEMCG_NR_STAT];
743 	unsigned long		events[NR_MEMCG_EVENTS];
744 
745 	/* Pending child counts during tree propagation */
746 	long			state_pending[MEMCG_NR_STAT];
747 	unsigned long		events_pending[NR_MEMCG_EVENTS];
748 };
749 
750 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
751 {
752 	long x = READ_ONCE(memcg->vmstats->state[idx]);
753 #ifdef CONFIG_SMP
754 	if (x < 0)
755 		x = 0;
756 #endif
757 	return x;
758 }
759 
760 /**
761  * __mod_memcg_state - update cgroup memory statistics
762  * @memcg: the memory cgroup
763  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764  * @val: delta to add to the counter, can be negative
765  */
766 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767 {
768 	if (mem_cgroup_disabled())
769 		return;
770 
771 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
772 	memcg_rstat_updated(memcg, val);
773 }
774 
775 /* idx can be of type enum memcg_stat_item or node_stat_item. */
776 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
777 {
778 	long x = 0;
779 	int cpu;
780 
781 	for_each_possible_cpu(cpu)
782 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
783 #ifdef CONFIG_SMP
784 	if (x < 0)
785 		x = 0;
786 #endif
787 	return x;
788 }
789 
790 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
791 			      int val)
792 {
793 	struct mem_cgroup_per_node *pn;
794 	struct mem_cgroup *memcg;
795 
796 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
797 	memcg = pn->memcg;
798 
799 	/*
800 	 * The caller from rmap relay on disabled preemption becase they never
801 	 * update their counter from in-interrupt context. For these two
802 	 * counters we check that the update is never performed from an
803 	 * interrupt context while other caller need to have disabled interrupt.
804 	 */
805 	__memcg_stats_lock();
806 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
807 		switch (idx) {
808 		case NR_ANON_MAPPED:
809 		case NR_FILE_MAPPED:
810 		case NR_ANON_THPS:
811 		case NR_SHMEM_PMDMAPPED:
812 		case NR_FILE_PMDMAPPED:
813 			WARN_ON_ONCE(!in_task());
814 			break;
815 		default:
816 			VM_WARN_ON_IRQS_ENABLED();
817 		}
818 	}
819 
820 	/* Update memcg */
821 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
822 
823 	/* Update lruvec */
824 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
825 
826 	memcg_rstat_updated(memcg, val);
827 	memcg_stats_unlock();
828 }
829 
830 /**
831  * __mod_lruvec_state - update lruvec memory statistics
832  * @lruvec: the lruvec
833  * @idx: the stat item
834  * @val: delta to add to the counter, can be negative
835  *
836  * The lruvec is the intersection of the NUMA node and a cgroup. This
837  * function updates the all three counters that are affected by a
838  * change of state at this level: per-node, per-cgroup, per-lruvec.
839  */
840 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
841 			int val)
842 {
843 	/* Update node */
844 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845 
846 	/* Update memcg and lruvec */
847 	if (!mem_cgroup_disabled())
848 		__mod_memcg_lruvec_state(lruvec, idx, val);
849 }
850 
851 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
852 			     int val)
853 {
854 	struct page *head = compound_head(page); /* rmap on tail pages */
855 	struct mem_cgroup *memcg;
856 	pg_data_t *pgdat = page_pgdat(page);
857 	struct lruvec *lruvec;
858 
859 	rcu_read_lock();
860 	memcg = page_memcg(head);
861 	/* Untracked pages have no memcg, no lruvec. Update only the node */
862 	if (!memcg) {
863 		rcu_read_unlock();
864 		__mod_node_page_state(pgdat, idx, val);
865 		return;
866 	}
867 
868 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
869 	__mod_lruvec_state(lruvec, idx, val);
870 	rcu_read_unlock();
871 }
872 EXPORT_SYMBOL(__mod_lruvec_page_state);
873 
874 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
875 {
876 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
877 	struct mem_cgroup *memcg;
878 	struct lruvec *lruvec;
879 
880 	rcu_read_lock();
881 	memcg = mem_cgroup_from_slab_obj(p);
882 
883 	/*
884 	 * Untracked pages have no memcg, no lruvec. Update only the
885 	 * node. If we reparent the slab objects to the root memcg,
886 	 * when we free the slab object, we need to update the per-memcg
887 	 * vmstats to keep it correct for the root memcg.
888 	 */
889 	if (!memcg) {
890 		__mod_node_page_state(pgdat, idx, val);
891 	} else {
892 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
893 		__mod_lruvec_state(lruvec, idx, val);
894 	}
895 	rcu_read_unlock();
896 }
897 
898 /**
899  * __count_memcg_events - account VM events in a cgroup
900  * @memcg: the memory cgroup
901  * @idx: the event item
902  * @count: the number of events that occurred
903  */
904 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905 			  unsigned long count)
906 {
907 	int index = memcg_events_index(idx);
908 
909 	if (mem_cgroup_disabled() || index < 0)
910 		return;
911 
912 	memcg_stats_lock();
913 	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
914 	memcg_rstat_updated(memcg, count);
915 	memcg_stats_unlock();
916 }
917 
918 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
919 {
920 	int index = memcg_events_index(event);
921 
922 	if (index < 0)
923 		return 0;
924 	return READ_ONCE(memcg->vmstats->events[index]);
925 }
926 
927 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
928 {
929 	long x = 0;
930 	int cpu;
931 	int index = memcg_events_index(event);
932 
933 	if (index < 0)
934 		return 0;
935 
936 	for_each_possible_cpu(cpu)
937 		x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
938 	return x;
939 }
940 
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 					 int nr_pages)
943 {
944 	/* pagein of a big page is an event. So, ignore page size */
945 	if (nr_pages > 0)
946 		__count_memcg_events(memcg, PGPGIN, 1);
947 	else {
948 		__count_memcg_events(memcg, PGPGOUT, 1);
949 		nr_pages = -nr_pages; /* for event */
950 	}
951 
952 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
953 }
954 
955 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956 				       enum mem_cgroup_events_target target)
957 {
958 	unsigned long val, next;
959 
960 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
962 	/* from time_after() in jiffies.h */
963 	if ((long)(next - val) < 0) {
964 		switch (target) {
965 		case MEM_CGROUP_TARGET_THRESH:
966 			next = val + THRESHOLDS_EVENTS_TARGET;
967 			break;
968 		case MEM_CGROUP_TARGET_SOFTLIMIT:
969 			next = val + SOFTLIMIT_EVENTS_TARGET;
970 			break;
971 		default:
972 			break;
973 		}
974 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
975 		return true;
976 	}
977 	return false;
978 }
979 
980 /*
981  * Check events in order.
982  *
983  */
984 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
985 {
986 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
987 		return;
988 
989 	/* threshold event is triggered in finer grain than soft limit */
990 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
991 						MEM_CGROUP_TARGET_THRESH))) {
992 		bool do_softlimit;
993 
994 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 						MEM_CGROUP_TARGET_SOFTLIMIT);
996 		mem_cgroup_threshold(memcg);
997 		if (unlikely(do_softlimit))
998 			mem_cgroup_update_tree(memcg, nid);
999 	}
1000 }
1001 
1002 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1003 {
1004 	/*
1005 	 * mm_update_next_owner() may clear mm->owner to NULL
1006 	 * if it races with swapoff, page migration, etc.
1007 	 * So this can be called with p == NULL.
1008 	 */
1009 	if (unlikely(!p))
1010 		return NULL;
1011 
1012 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1013 }
1014 EXPORT_SYMBOL(mem_cgroup_from_task);
1015 
1016 static __always_inline struct mem_cgroup *active_memcg(void)
1017 {
1018 	if (!in_task())
1019 		return this_cpu_read(int_active_memcg);
1020 	else
1021 		return current->active_memcg;
1022 }
1023 
1024 /**
1025  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1026  * @mm: mm from which memcg should be extracted. It can be NULL.
1027  *
1028  * Obtain a reference on mm->memcg and returns it if successful. If mm
1029  * is NULL, then the memcg is chosen as follows:
1030  * 1) The active memcg, if set.
1031  * 2) current->mm->memcg, if available
1032  * 3) root memcg
1033  * If mem_cgroup is disabled, NULL is returned.
1034  */
1035 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1036 {
1037 	struct mem_cgroup *memcg;
1038 
1039 	if (mem_cgroup_disabled())
1040 		return NULL;
1041 
1042 	/*
1043 	 * Page cache insertions can happen without an
1044 	 * actual mm context, e.g. during disk probing
1045 	 * on boot, loopback IO, acct() writes etc.
1046 	 *
1047 	 * No need to css_get on root memcg as the reference
1048 	 * counting is disabled on the root level in the
1049 	 * cgroup core. See CSS_NO_REF.
1050 	 */
1051 	if (unlikely(!mm)) {
1052 		memcg = active_memcg();
1053 		if (unlikely(memcg)) {
1054 			/* remote memcg must hold a ref */
1055 			css_get(&memcg->css);
1056 			return memcg;
1057 		}
1058 		mm = current->mm;
1059 		if (unlikely(!mm))
1060 			return root_mem_cgroup;
1061 	}
1062 
1063 	rcu_read_lock();
1064 	do {
1065 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066 		if (unlikely(!memcg))
1067 			memcg = root_mem_cgroup;
1068 	} while (!css_tryget(&memcg->css));
1069 	rcu_read_unlock();
1070 	return memcg;
1071 }
1072 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1073 
1074 static __always_inline bool memcg_kmem_bypass(void)
1075 {
1076 	/* Allow remote memcg charging from any context. */
1077 	if (unlikely(active_memcg()))
1078 		return false;
1079 
1080 	/* Memcg to charge can't be determined. */
1081 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1082 		return true;
1083 
1084 	return false;
1085 }
1086 
1087 /**
1088  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1089  * @root: hierarchy root
1090  * @prev: previously returned memcg, NULL on first invocation
1091  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1092  *
1093  * Returns references to children of the hierarchy below @root, or
1094  * @root itself, or %NULL after a full round-trip.
1095  *
1096  * Caller must pass the return value in @prev on subsequent
1097  * invocations for reference counting, or use mem_cgroup_iter_break()
1098  * to cancel a hierarchy walk before the round-trip is complete.
1099  *
1100  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1101  * in the hierarchy among all concurrent reclaimers operating on the
1102  * same node.
1103  */
1104 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1105 				   struct mem_cgroup *prev,
1106 				   struct mem_cgroup_reclaim_cookie *reclaim)
1107 {
1108 	struct mem_cgroup_reclaim_iter *iter;
1109 	struct cgroup_subsys_state *css = NULL;
1110 	struct mem_cgroup *memcg = NULL;
1111 	struct mem_cgroup *pos = NULL;
1112 
1113 	if (mem_cgroup_disabled())
1114 		return NULL;
1115 
1116 	if (!root)
1117 		root = root_mem_cgroup;
1118 
1119 	rcu_read_lock();
1120 
1121 	if (reclaim) {
1122 		struct mem_cgroup_per_node *mz;
1123 
1124 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1125 		iter = &mz->iter;
1126 
1127 		/*
1128 		 * On start, join the current reclaim iteration cycle.
1129 		 * Exit when a concurrent walker completes it.
1130 		 */
1131 		if (!prev)
1132 			reclaim->generation = iter->generation;
1133 		else if (reclaim->generation != iter->generation)
1134 			goto out_unlock;
1135 
1136 		while (1) {
1137 			pos = READ_ONCE(iter->position);
1138 			if (!pos || css_tryget(&pos->css))
1139 				break;
1140 			/*
1141 			 * css reference reached zero, so iter->position will
1142 			 * be cleared by ->css_released. However, we should not
1143 			 * rely on this happening soon, because ->css_released
1144 			 * is called from a work queue, and by busy-waiting we
1145 			 * might block it. So we clear iter->position right
1146 			 * away.
1147 			 */
1148 			(void)cmpxchg(&iter->position, pos, NULL);
1149 		}
1150 	} else if (prev) {
1151 		pos = prev;
1152 	}
1153 
1154 	if (pos)
1155 		css = &pos->css;
1156 
1157 	for (;;) {
1158 		css = css_next_descendant_pre(css, &root->css);
1159 		if (!css) {
1160 			/*
1161 			 * Reclaimers share the hierarchy walk, and a
1162 			 * new one might jump in right at the end of
1163 			 * the hierarchy - make sure they see at least
1164 			 * one group and restart from the beginning.
1165 			 */
1166 			if (!prev)
1167 				continue;
1168 			break;
1169 		}
1170 
1171 		/*
1172 		 * Verify the css and acquire a reference.  The root
1173 		 * is provided by the caller, so we know it's alive
1174 		 * and kicking, and don't take an extra reference.
1175 		 */
1176 		if (css == &root->css || css_tryget(css)) {
1177 			memcg = mem_cgroup_from_css(css);
1178 			break;
1179 		}
1180 	}
1181 
1182 	if (reclaim) {
1183 		/*
1184 		 * The position could have already been updated by a competing
1185 		 * thread, so check that the value hasn't changed since we read
1186 		 * it to avoid reclaiming from the same cgroup twice.
1187 		 */
1188 		(void)cmpxchg(&iter->position, pos, memcg);
1189 
1190 		if (pos)
1191 			css_put(&pos->css);
1192 
1193 		if (!memcg)
1194 			iter->generation++;
1195 	}
1196 
1197 out_unlock:
1198 	rcu_read_unlock();
1199 	if (prev && prev != root)
1200 		css_put(&prev->css);
1201 
1202 	return memcg;
1203 }
1204 
1205 /**
1206  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1207  * @root: hierarchy root
1208  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1209  */
1210 void mem_cgroup_iter_break(struct mem_cgroup *root,
1211 			   struct mem_cgroup *prev)
1212 {
1213 	if (!root)
1214 		root = root_mem_cgroup;
1215 	if (prev && prev != root)
1216 		css_put(&prev->css);
1217 }
1218 
1219 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1220 					struct mem_cgroup *dead_memcg)
1221 {
1222 	struct mem_cgroup_reclaim_iter *iter;
1223 	struct mem_cgroup_per_node *mz;
1224 	int nid;
1225 
1226 	for_each_node(nid) {
1227 		mz = from->nodeinfo[nid];
1228 		iter = &mz->iter;
1229 		cmpxchg(&iter->position, dead_memcg, NULL);
1230 	}
1231 }
1232 
1233 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1234 {
1235 	struct mem_cgroup *memcg = dead_memcg;
1236 	struct mem_cgroup *last;
1237 
1238 	do {
1239 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1240 		last = memcg;
1241 	} while ((memcg = parent_mem_cgroup(memcg)));
1242 
1243 	/*
1244 	 * When cgroup1 non-hierarchy mode is used,
1245 	 * parent_mem_cgroup() does not walk all the way up to the
1246 	 * cgroup root (root_mem_cgroup). So we have to handle
1247 	 * dead_memcg from cgroup root separately.
1248 	 */
1249 	if (!mem_cgroup_is_root(last))
1250 		__invalidate_reclaim_iterators(root_mem_cgroup,
1251 						dead_memcg);
1252 }
1253 
1254 /**
1255  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1256  * @memcg: hierarchy root
1257  * @fn: function to call for each task
1258  * @arg: argument passed to @fn
1259  *
1260  * This function iterates over tasks attached to @memcg or to any of its
1261  * descendants and calls @fn for each task. If @fn returns a non-zero
1262  * value, the function breaks the iteration loop. Otherwise, it will iterate
1263  * over all tasks and return 0.
1264  *
1265  * This function must not be called for the root memory cgroup.
1266  */
1267 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1268 			   int (*fn)(struct task_struct *, void *), void *arg)
1269 {
1270 	struct mem_cgroup *iter;
1271 	int ret = 0;
1272 
1273 	BUG_ON(mem_cgroup_is_root(memcg));
1274 
1275 	for_each_mem_cgroup_tree(iter, memcg) {
1276 		struct css_task_iter it;
1277 		struct task_struct *task;
1278 
1279 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1280 		while (!ret && (task = css_task_iter_next(&it)))
1281 			ret = fn(task, arg);
1282 		css_task_iter_end(&it);
1283 		if (ret) {
1284 			mem_cgroup_iter_break(memcg, iter);
1285 			break;
1286 		}
1287 	}
1288 }
1289 
1290 #ifdef CONFIG_DEBUG_VM
1291 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292 {
1293 	struct mem_cgroup *memcg;
1294 
1295 	if (mem_cgroup_disabled())
1296 		return;
1297 
1298 	memcg = folio_memcg(folio);
1299 
1300 	if (!memcg)
1301 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1302 	else
1303 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1304 }
1305 #endif
1306 
1307 /**
1308  * folio_lruvec_lock - Lock the lruvec for a folio.
1309  * @folio: Pointer to the folio.
1310  *
1311  * These functions are safe to use under any of the following conditions:
1312  * - folio locked
1313  * - folio_test_lru false
1314  * - folio_memcg_lock()
1315  * - folio frozen (refcount of 0)
1316  *
1317  * Return: The lruvec this folio is on with its lock held.
1318  */
1319 struct lruvec *folio_lruvec_lock(struct folio *folio)
1320 {
1321 	struct lruvec *lruvec = folio_lruvec(folio);
1322 
1323 	spin_lock(&lruvec->lru_lock);
1324 	lruvec_memcg_debug(lruvec, folio);
1325 
1326 	return lruvec;
1327 }
1328 
1329 /**
1330  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1331  * @folio: Pointer to the folio.
1332  *
1333  * These functions are safe to use under any of the following conditions:
1334  * - folio locked
1335  * - folio_test_lru false
1336  * - folio_memcg_lock()
1337  * - folio frozen (refcount of 0)
1338  *
1339  * Return: The lruvec this folio is on with its lock held and interrupts
1340  * disabled.
1341  */
1342 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1343 {
1344 	struct lruvec *lruvec = folio_lruvec(folio);
1345 
1346 	spin_lock_irq(&lruvec->lru_lock);
1347 	lruvec_memcg_debug(lruvec, folio);
1348 
1349 	return lruvec;
1350 }
1351 
1352 /**
1353  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1354  * @folio: Pointer to the folio.
1355  * @flags: Pointer to irqsave flags.
1356  *
1357  * These functions are safe to use under any of the following conditions:
1358  * - folio locked
1359  * - folio_test_lru false
1360  * - folio_memcg_lock()
1361  * - folio frozen (refcount of 0)
1362  *
1363  * Return: The lruvec this folio is on with its lock held and interrupts
1364  * disabled.
1365  */
1366 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1367 		unsigned long *flags)
1368 {
1369 	struct lruvec *lruvec = folio_lruvec(folio);
1370 
1371 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1372 	lruvec_memcg_debug(lruvec, folio);
1373 
1374 	return lruvec;
1375 }
1376 
1377 /**
1378  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1379  * @lruvec: mem_cgroup per zone lru vector
1380  * @lru: index of lru list the page is sitting on
1381  * @zid: zone id of the accounted pages
1382  * @nr_pages: positive when adding or negative when removing
1383  *
1384  * This function must be called under lru_lock, just before a page is added
1385  * to or just after a page is removed from an lru list.
1386  */
1387 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1388 				int zid, int nr_pages)
1389 {
1390 	struct mem_cgroup_per_node *mz;
1391 	unsigned long *lru_size;
1392 	long size;
1393 
1394 	if (mem_cgroup_disabled())
1395 		return;
1396 
1397 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1398 	lru_size = &mz->lru_zone_size[zid][lru];
1399 
1400 	if (nr_pages < 0)
1401 		*lru_size += nr_pages;
1402 
1403 	size = *lru_size;
1404 	if (WARN_ONCE(size < 0,
1405 		"%s(%p, %d, %d): lru_size %ld\n",
1406 		__func__, lruvec, lru, nr_pages, size)) {
1407 		VM_BUG_ON(1);
1408 		*lru_size = 0;
1409 	}
1410 
1411 	if (nr_pages > 0)
1412 		*lru_size += nr_pages;
1413 }
1414 
1415 /**
1416  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1417  * @memcg: the memory cgroup
1418  *
1419  * Returns the maximum amount of memory @mem can be charged with, in
1420  * pages.
1421  */
1422 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1423 {
1424 	unsigned long margin = 0;
1425 	unsigned long count;
1426 	unsigned long limit;
1427 
1428 	count = page_counter_read(&memcg->memory);
1429 	limit = READ_ONCE(memcg->memory.max);
1430 	if (count < limit)
1431 		margin = limit - count;
1432 
1433 	if (do_memsw_account()) {
1434 		count = page_counter_read(&memcg->memsw);
1435 		limit = READ_ONCE(memcg->memsw.max);
1436 		if (count < limit)
1437 			margin = min(margin, limit - count);
1438 		else
1439 			margin = 0;
1440 	}
1441 
1442 	return margin;
1443 }
1444 
1445 /*
1446  * A routine for checking "mem" is under move_account() or not.
1447  *
1448  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1449  * moving cgroups. This is for waiting at high-memory pressure
1450  * caused by "move".
1451  */
1452 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1453 {
1454 	struct mem_cgroup *from;
1455 	struct mem_cgroup *to;
1456 	bool ret = false;
1457 	/*
1458 	 * Unlike task_move routines, we access mc.to, mc.from not under
1459 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1460 	 */
1461 	spin_lock(&mc.lock);
1462 	from = mc.from;
1463 	to = mc.to;
1464 	if (!from)
1465 		goto unlock;
1466 
1467 	ret = mem_cgroup_is_descendant(from, memcg) ||
1468 		mem_cgroup_is_descendant(to, memcg);
1469 unlock:
1470 	spin_unlock(&mc.lock);
1471 	return ret;
1472 }
1473 
1474 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1475 {
1476 	if (mc.moving_task && current != mc.moving_task) {
1477 		if (mem_cgroup_under_move(memcg)) {
1478 			DEFINE_WAIT(wait);
1479 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1480 			/* moving charge context might have finished. */
1481 			if (mc.moving_task)
1482 				schedule();
1483 			finish_wait(&mc.waitq, &wait);
1484 			return true;
1485 		}
1486 	}
1487 	return false;
1488 }
1489 
1490 struct memory_stat {
1491 	const char *name;
1492 	unsigned int idx;
1493 };
1494 
1495 static const struct memory_stat memory_stats[] = {
1496 	{ "anon",			NR_ANON_MAPPED			},
1497 	{ "file",			NR_FILE_PAGES			},
1498 	{ "kernel",			MEMCG_KMEM			},
1499 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1500 	{ "pagetables",			NR_PAGETABLE			},
1501 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1502 	{ "percpu",			MEMCG_PERCPU_B			},
1503 	{ "sock",			MEMCG_SOCK			},
1504 	{ "vmalloc",			MEMCG_VMALLOC			},
1505 	{ "shmem",			NR_SHMEM			},
1506 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1507 	{ "zswap",			MEMCG_ZSWAP_B			},
1508 	{ "zswapped",			MEMCG_ZSWAPPED			},
1509 #endif
1510 	{ "file_mapped",		NR_FILE_MAPPED			},
1511 	{ "file_dirty",			NR_FILE_DIRTY			},
1512 	{ "file_writeback",		NR_WRITEBACK			},
1513 #ifdef CONFIG_SWAP
1514 	{ "swapcached",			NR_SWAPCACHE			},
1515 #endif
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 	{ "anon_thp",			NR_ANON_THPS			},
1518 	{ "file_thp",			NR_FILE_THPS			},
1519 	{ "shmem_thp",			NR_SHMEM_THPS			},
1520 #endif
1521 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1522 	{ "active_anon",		NR_ACTIVE_ANON			},
1523 	{ "inactive_file",		NR_INACTIVE_FILE		},
1524 	{ "active_file",		NR_ACTIVE_FILE			},
1525 	{ "unevictable",		NR_UNEVICTABLE			},
1526 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1527 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1528 
1529 	/* The memory events */
1530 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1531 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1532 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1533 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1534 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1535 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1536 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1537 };
1538 
1539 /* Translate stat items to the correct unit for memory.stat output */
1540 static int memcg_page_state_unit(int item)
1541 {
1542 	switch (item) {
1543 	case MEMCG_PERCPU_B:
1544 	case MEMCG_ZSWAP_B:
1545 	case NR_SLAB_RECLAIMABLE_B:
1546 	case NR_SLAB_UNRECLAIMABLE_B:
1547 	case WORKINGSET_REFAULT_ANON:
1548 	case WORKINGSET_REFAULT_FILE:
1549 	case WORKINGSET_ACTIVATE_ANON:
1550 	case WORKINGSET_ACTIVATE_FILE:
1551 	case WORKINGSET_RESTORE_ANON:
1552 	case WORKINGSET_RESTORE_FILE:
1553 	case WORKINGSET_NODERECLAIM:
1554 		return 1;
1555 	case NR_KERNEL_STACK_KB:
1556 		return SZ_1K;
1557 	default:
1558 		return PAGE_SIZE;
1559 	}
1560 }
1561 
1562 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1563 						    int item)
1564 {
1565 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1566 }
1567 
1568 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1569 {
1570 	int i;
1571 
1572 	/*
1573 	 * Provide statistics on the state of the memory subsystem as
1574 	 * well as cumulative event counters that show past behavior.
1575 	 *
1576 	 * This list is ordered following a combination of these gradients:
1577 	 * 1) generic big picture -> specifics and details
1578 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1579 	 *
1580 	 * Current memory state:
1581 	 */
1582 	mem_cgroup_flush_stats();
1583 
1584 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1585 		u64 size;
1586 
1587 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1588 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1589 
1590 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1591 			size += memcg_page_state_output(memcg,
1592 							NR_SLAB_RECLAIMABLE_B);
1593 			seq_buf_printf(s, "slab %llu\n", size);
1594 		}
1595 	}
1596 
1597 	/* Accumulated memory events */
1598 	seq_buf_printf(s, "pgscan %lu\n",
1599 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1600 		       memcg_events(memcg, PGSCAN_DIRECT) +
1601 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1602 	seq_buf_printf(s, "pgsteal %lu\n",
1603 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1604 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1605 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1606 
1607 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1608 		if (memcg_vm_event_stat[i] == PGPGIN ||
1609 		    memcg_vm_event_stat[i] == PGPGOUT)
1610 			continue;
1611 
1612 		seq_buf_printf(s, "%s %lu\n",
1613 			       vm_event_name(memcg_vm_event_stat[i]),
1614 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1615 	}
1616 
1617 	/* The above should easily fit into one page */
1618 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1619 }
1620 
1621 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1622 
1623 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1624 {
1625 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1626 		memcg_stat_format(memcg, s);
1627 	else
1628 		memcg1_stat_format(memcg, s);
1629 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1630 }
1631 
1632 #define K(x) ((x) << (PAGE_SHIFT-10))
1633 /**
1634  * mem_cgroup_print_oom_context: Print OOM information relevant to
1635  * memory controller.
1636  * @memcg: The memory cgroup that went over limit
1637  * @p: Task that is going to be killed
1638  *
1639  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1640  * enabled
1641  */
1642 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1643 {
1644 	rcu_read_lock();
1645 
1646 	if (memcg) {
1647 		pr_cont(",oom_memcg=");
1648 		pr_cont_cgroup_path(memcg->css.cgroup);
1649 	} else
1650 		pr_cont(",global_oom");
1651 	if (p) {
1652 		pr_cont(",task_memcg=");
1653 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1654 	}
1655 	rcu_read_unlock();
1656 }
1657 
1658 /**
1659  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1660  * memory controller.
1661  * @memcg: The memory cgroup that went over limit
1662  */
1663 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1664 {
1665 	/* Use static buffer, for the caller is holding oom_lock. */
1666 	static char buf[PAGE_SIZE];
1667 	struct seq_buf s;
1668 
1669 	lockdep_assert_held(&oom_lock);
1670 
1671 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1672 		K((u64)page_counter_read(&memcg->memory)),
1673 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1674 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1675 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676 			K((u64)page_counter_read(&memcg->swap)),
1677 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1678 	else {
1679 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1680 			K((u64)page_counter_read(&memcg->memsw)),
1681 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1682 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1683 			K((u64)page_counter_read(&memcg->kmem)),
1684 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1685 	}
1686 
1687 	pr_info("Memory cgroup stats for ");
1688 	pr_cont_cgroup_path(memcg->css.cgroup);
1689 	pr_cont(":");
1690 	seq_buf_init(&s, buf, sizeof(buf));
1691 	memory_stat_format(memcg, &s);
1692 	seq_buf_do_printk(&s, KERN_INFO);
1693 }
1694 
1695 /*
1696  * Return the memory (and swap, if configured) limit for a memcg.
1697  */
1698 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1699 {
1700 	unsigned long max = READ_ONCE(memcg->memory.max);
1701 
1702 	if (do_memsw_account()) {
1703 		if (mem_cgroup_swappiness(memcg)) {
1704 			/* Calculate swap excess capacity from memsw limit */
1705 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1706 
1707 			max += min(swap, (unsigned long)total_swap_pages);
1708 		}
1709 	} else {
1710 		if (mem_cgroup_swappiness(memcg))
1711 			max += min(READ_ONCE(memcg->swap.max),
1712 				   (unsigned long)total_swap_pages);
1713 	}
1714 	return max;
1715 }
1716 
1717 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1718 {
1719 	return page_counter_read(&memcg->memory);
1720 }
1721 
1722 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1723 				     int order)
1724 {
1725 	struct oom_control oc = {
1726 		.zonelist = NULL,
1727 		.nodemask = NULL,
1728 		.memcg = memcg,
1729 		.gfp_mask = gfp_mask,
1730 		.order = order,
1731 	};
1732 	bool ret = true;
1733 
1734 	if (mutex_lock_killable(&oom_lock))
1735 		return true;
1736 
1737 	if (mem_cgroup_margin(memcg) >= (1 << order))
1738 		goto unlock;
1739 
1740 	/*
1741 	 * A few threads which were not waiting at mutex_lock_killable() can
1742 	 * fail to bail out. Therefore, check again after holding oom_lock.
1743 	 */
1744 	ret = task_is_dying() || out_of_memory(&oc);
1745 
1746 unlock:
1747 	mutex_unlock(&oom_lock);
1748 	return ret;
1749 }
1750 
1751 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1752 				   pg_data_t *pgdat,
1753 				   gfp_t gfp_mask,
1754 				   unsigned long *total_scanned)
1755 {
1756 	struct mem_cgroup *victim = NULL;
1757 	int total = 0;
1758 	int loop = 0;
1759 	unsigned long excess;
1760 	unsigned long nr_scanned;
1761 	struct mem_cgroup_reclaim_cookie reclaim = {
1762 		.pgdat = pgdat,
1763 	};
1764 
1765 	excess = soft_limit_excess(root_memcg);
1766 
1767 	while (1) {
1768 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1769 		if (!victim) {
1770 			loop++;
1771 			if (loop >= 2) {
1772 				/*
1773 				 * If we have not been able to reclaim
1774 				 * anything, it might because there are
1775 				 * no reclaimable pages under this hierarchy
1776 				 */
1777 				if (!total)
1778 					break;
1779 				/*
1780 				 * We want to do more targeted reclaim.
1781 				 * excess >> 2 is not to excessive so as to
1782 				 * reclaim too much, nor too less that we keep
1783 				 * coming back to reclaim from this cgroup
1784 				 */
1785 				if (total >= (excess >> 2) ||
1786 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1787 					break;
1788 			}
1789 			continue;
1790 		}
1791 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1792 					pgdat, &nr_scanned);
1793 		*total_scanned += nr_scanned;
1794 		if (!soft_limit_excess(root_memcg))
1795 			break;
1796 	}
1797 	mem_cgroup_iter_break(root_memcg, victim);
1798 	return total;
1799 }
1800 
1801 #ifdef CONFIG_LOCKDEP
1802 static struct lockdep_map memcg_oom_lock_dep_map = {
1803 	.name = "memcg_oom_lock",
1804 };
1805 #endif
1806 
1807 static DEFINE_SPINLOCK(memcg_oom_lock);
1808 
1809 /*
1810  * Check OOM-Killer is already running under our hierarchy.
1811  * If someone is running, return false.
1812  */
1813 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1814 {
1815 	struct mem_cgroup *iter, *failed = NULL;
1816 
1817 	spin_lock(&memcg_oom_lock);
1818 
1819 	for_each_mem_cgroup_tree(iter, memcg) {
1820 		if (iter->oom_lock) {
1821 			/*
1822 			 * this subtree of our hierarchy is already locked
1823 			 * so we cannot give a lock.
1824 			 */
1825 			failed = iter;
1826 			mem_cgroup_iter_break(memcg, iter);
1827 			break;
1828 		} else
1829 			iter->oom_lock = true;
1830 	}
1831 
1832 	if (failed) {
1833 		/*
1834 		 * OK, we failed to lock the whole subtree so we have
1835 		 * to clean up what we set up to the failing subtree
1836 		 */
1837 		for_each_mem_cgroup_tree(iter, memcg) {
1838 			if (iter == failed) {
1839 				mem_cgroup_iter_break(memcg, iter);
1840 				break;
1841 			}
1842 			iter->oom_lock = false;
1843 		}
1844 	} else
1845 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1846 
1847 	spin_unlock(&memcg_oom_lock);
1848 
1849 	return !failed;
1850 }
1851 
1852 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1853 {
1854 	struct mem_cgroup *iter;
1855 
1856 	spin_lock(&memcg_oom_lock);
1857 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1858 	for_each_mem_cgroup_tree(iter, memcg)
1859 		iter->oom_lock = false;
1860 	spin_unlock(&memcg_oom_lock);
1861 }
1862 
1863 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1864 {
1865 	struct mem_cgroup *iter;
1866 
1867 	spin_lock(&memcg_oom_lock);
1868 	for_each_mem_cgroup_tree(iter, memcg)
1869 		iter->under_oom++;
1870 	spin_unlock(&memcg_oom_lock);
1871 }
1872 
1873 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1874 {
1875 	struct mem_cgroup *iter;
1876 
1877 	/*
1878 	 * Be careful about under_oom underflows because a child memcg
1879 	 * could have been added after mem_cgroup_mark_under_oom.
1880 	 */
1881 	spin_lock(&memcg_oom_lock);
1882 	for_each_mem_cgroup_tree(iter, memcg)
1883 		if (iter->under_oom > 0)
1884 			iter->under_oom--;
1885 	spin_unlock(&memcg_oom_lock);
1886 }
1887 
1888 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1889 
1890 struct oom_wait_info {
1891 	struct mem_cgroup *memcg;
1892 	wait_queue_entry_t	wait;
1893 };
1894 
1895 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1896 	unsigned mode, int sync, void *arg)
1897 {
1898 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1899 	struct mem_cgroup *oom_wait_memcg;
1900 	struct oom_wait_info *oom_wait_info;
1901 
1902 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1903 	oom_wait_memcg = oom_wait_info->memcg;
1904 
1905 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1906 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1907 		return 0;
1908 	return autoremove_wake_function(wait, mode, sync, arg);
1909 }
1910 
1911 static void memcg_oom_recover(struct mem_cgroup *memcg)
1912 {
1913 	/*
1914 	 * For the following lockless ->under_oom test, the only required
1915 	 * guarantee is that it must see the state asserted by an OOM when
1916 	 * this function is called as a result of userland actions
1917 	 * triggered by the notification of the OOM.  This is trivially
1918 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1919 	 * triggering notification.
1920 	 */
1921 	if (memcg && memcg->under_oom)
1922 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1923 }
1924 
1925 /*
1926  * Returns true if successfully killed one or more processes. Though in some
1927  * corner cases it can return true even without killing any process.
1928  */
1929 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1930 {
1931 	bool locked, ret;
1932 
1933 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1934 		return false;
1935 
1936 	memcg_memory_event(memcg, MEMCG_OOM);
1937 
1938 	/*
1939 	 * We are in the middle of the charge context here, so we
1940 	 * don't want to block when potentially sitting on a callstack
1941 	 * that holds all kinds of filesystem and mm locks.
1942 	 *
1943 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1944 	 * handling until the charge can succeed; remember the context and put
1945 	 * the task to sleep at the end of the page fault when all locks are
1946 	 * released.
1947 	 *
1948 	 * On the other hand, in-kernel OOM killer allows for an async victim
1949 	 * memory reclaim (oom_reaper) and that means that we are not solely
1950 	 * relying on the oom victim to make a forward progress and we can
1951 	 * invoke the oom killer here.
1952 	 *
1953 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1954 	 * victim and then we have to bail out from the charge path.
1955 	 */
1956 	if (READ_ONCE(memcg->oom_kill_disable)) {
1957 		if (current->in_user_fault) {
1958 			css_get(&memcg->css);
1959 			current->memcg_in_oom = memcg;
1960 			current->memcg_oom_gfp_mask = mask;
1961 			current->memcg_oom_order = order;
1962 		}
1963 		return false;
1964 	}
1965 
1966 	mem_cgroup_mark_under_oom(memcg);
1967 
1968 	locked = mem_cgroup_oom_trylock(memcg);
1969 
1970 	if (locked)
1971 		mem_cgroup_oom_notify(memcg);
1972 
1973 	mem_cgroup_unmark_under_oom(memcg);
1974 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1975 
1976 	if (locked)
1977 		mem_cgroup_oom_unlock(memcg);
1978 
1979 	return ret;
1980 }
1981 
1982 /**
1983  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1984  * @handle: actually kill/wait or just clean up the OOM state
1985  *
1986  * This has to be called at the end of a page fault if the memcg OOM
1987  * handler was enabled.
1988  *
1989  * Memcg supports userspace OOM handling where failed allocations must
1990  * sleep on a waitqueue until the userspace task resolves the
1991  * situation.  Sleeping directly in the charge context with all kinds
1992  * of locks held is not a good idea, instead we remember an OOM state
1993  * in the task and mem_cgroup_oom_synchronize() has to be called at
1994  * the end of the page fault to complete the OOM handling.
1995  *
1996  * Returns %true if an ongoing memcg OOM situation was detected and
1997  * completed, %false otherwise.
1998  */
1999 bool mem_cgroup_oom_synchronize(bool handle)
2000 {
2001 	struct mem_cgroup *memcg = current->memcg_in_oom;
2002 	struct oom_wait_info owait;
2003 	bool locked;
2004 
2005 	/* OOM is global, do not handle */
2006 	if (!memcg)
2007 		return false;
2008 
2009 	if (!handle)
2010 		goto cleanup;
2011 
2012 	owait.memcg = memcg;
2013 	owait.wait.flags = 0;
2014 	owait.wait.func = memcg_oom_wake_function;
2015 	owait.wait.private = current;
2016 	INIT_LIST_HEAD(&owait.wait.entry);
2017 
2018 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2019 	mem_cgroup_mark_under_oom(memcg);
2020 
2021 	locked = mem_cgroup_oom_trylock(memcg);
2022 
2023 	if (locked)
2024 		mem_cgroup_oom_notify(memcg);
2025 
2026 	schedule();
2027 	mem_cgroup_unmark_under_oom(memcg);
2028 	finish_wait(&memcg_oom_waitq, &owait.wait);
2029 
2030 	if (locked)
2031 		mem_cgroup_oom_unlock(memcg);
2032 cleanup:
2033 	current->memcg_in_oom = NULL;
2034 	css_put(&memcg->css);
2035 	return true;
2036 }
2037 
2038 /**
2039  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2040  * @victim: task to be killed by the OOM killer
2041  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2042  *
2043  * Returns a pointer to a memory cgroup, which has to be cleaned up
2044  * by killing all belonging OOM-killable tasks.
2045  *
2046  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2047  */
2048 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2049 					    struct mem_cgroup *oom_domain)
2050 {
2051 	struct mem_cgroup *oom_group = NULL;
2052 	struct mem_cgroup *memcg;
2053 
2054 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2055 		return NULL;
2056 
2057 	if (!oom_domain)
2058 		oom_domain = root_mem_cgroup;
2059 
2060 	rcu_read_lock();
2061 
2062 	memcg = mem_cgroup_from_task(victim);
2063 	if (mem_cgroup_is_root(memcg))
2064 		goto out;
2065 
2066 	/*
2067 	 * If the victim task has been asynchronously moved to a different
2068 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2069 	 * In this case it's better to ignore memory.group.oom.
2070 	 */
2071 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2072 		goto out;
2073 
2074 	/*
2075 	 * Traverse the memory cgroup hierarchy from the victim task's
2076 	 * cgroup up to the OOMing cgroup (or root) to find the
2077 	 * highest-level memory cgroup with oom.group set.
2078 	 */
2079 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2080 		if (READ_ONCE(memcg->oom_group))
2081 			oom_group = memcg;
2082 
2083 		if (memcg == oom_domain)
2084 			break;
2085 	}
2086 
2087 	if (oom_group)
2088 		css_get(&oom_group->css);
2089 out:
2090 	rcu_read_unlock();
2091 
2092 	return oom_group;
2093 }
2094 
2095 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2096 {
2097 	pr_info("Tasks in ");
2098 	pr_cont_cgroup_path(memcg->css.cgroup);
2099 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2100 }
2101 
2102 /**
2103  * folio_memcg_lock - Bind a folio to its memcg.
2104  * @folio: The folio.
2105  *
2106  * This function prevents unlocked LRU folios from being moved to
2107  * another cgroup.
2108  *
2109  * It ensures lifetime of the bound memcg.  The caller is responsible
2110  * for the lifetime of the folio.
2111  */
2112 void folio_memcg_lock(struct folio *folio)
2113 {
2114 	struct mem_cgroup *memcg;
2115 	unsigned long flags;
2116 
2117 	/*
2118 	 * The RCU lock is held throughout the transaction.  The fast
2119 	 * path can get away without acquiring the memcg->move_lock
2120 	 * because page moving starts with an RCU grace period.
2121          */
2122 	rcu_read_lock();
2123 
2124 	if (mem_cgroup_disabled())
2125 		return;
2126 again:
2127 	memcg = folio_memcg(folio);
2128 	if (unlikely(!memcg))
2129 		return;
2130 
2131 #ifdef CONFIG_PROVE_LOCKING
2132 	local_irq_save(flags);
2133 	might_lock(&memcg->move_lock);
2134 	local_irq_restore(flags);
2135 #endif
2136 
2137 	if (atomic_read(&memcg->moving_account) <= 0)
2138 		return;
2139 
2140 	spin_lock_irqsave(&memcg->move_lock, flags);
2141 	if (memcg != folio_memcg(folio)) {
2142 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2143 		goto again;
2144 	}
2145 
2146 	/*
2147 	 * When charge migration first begins, we can have multiple
2148 	 * critical sections holding the fast-path RCU lock and one
2149 	 * holding the slowpath move_lock. Track the task who has the
2150 	 * move_lock for folio_memcg_unlock().
2151 	 */
2152 	memcg->move_lock_task = current;
2153 	memcg->move_lock_flags = flags;
2154 }
2155 
2156 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2157 {
2158 	if (memcg && memcg->move_lock_task == current) {
2159 		unsigned long flags = memcg->move_lock_flags;
2160 
2161 		memcg->move_lock_task = NULL;
2162 		memcg->move_lock_flags = 0;
2163 
2164 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2165 	}
2166 
2167 	rcu_read_unlock();
2168 }
2169 
2170 /**
2171  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2172  * @folio: The folio.
2173  *
2174  * This releases the binding created by folio_memcg_lock().  This does
2175  * not change the accounting of this folio to its memcg, but it does
2176  * permit others to change it.
2177  */
2178 void folio_memcg_unlock(struct folio *folio)
2179 {
2180 	__folio_memcg_unlock(folio_memcg(folio));
2181 }
2182 
2183 struct memcg_stock_pcp {
2184 	local_lock_t stock_lock;
2185 	struct mem_cgroup *cached; /* this never be root cgroup */
2186 	unsigned int nr_pages;
2187 
2188 #ifdef CONFIG_MEMCG_KMEM
2189 	struct obj_cgroup *cached_objcg;
2190 	struct pglist_data *cached_pgdat;
2191 	unsigned int nr_bytes;
2192 	int nr_slab_reclaimable_b;
2193 	int nr_slab_unreclaimable_b;
2194 #endif
2195 
2196 	struct work_struct work;
2197 	unsigned long flags;
2198 #define FLUSHING_CACHED_CHARGE	0
2199 };
2200 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2201 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2202 };
2203 static DEFINE_MUTEX(percpu_charge_mutex);
2204 
2205 #ifdef CONFIG_MEMCG_KMEM
2206 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2207 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2208 				     struct mem_cgroup *root_memcg);
2209 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2210 
2211 #else
2212 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2213 {
2214 	return NULL;
2215 }
2216 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2217 				     struct mem_cgroup *root_memcg)
2218 {
2219 	return false;
2220 }
2221 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2222 {
2223 }
2224 #endif
2225 
2226 /**
2227  * consume_stock: Try to consume stocked charge on this cpu.
2228  * @memcg: memcg to consume from.
2229  * @nr_pages: how many pages to charge.
2230  *
2231  * The charges will only happen if @memcg matches the current cpu's memcg
2232  * stock, and at least @nr_pages are available in that stock.  Failure to
2233  * service an allocation will refill the stock.
2234  *
2235  * returns true if successful, false otherwise.
2236  */
2237 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238 {
2239 	struct memcg_stock_pcp *stock;
2240 	unsigned long flags;
2241 	bool ret = false;
2242 
2243 	if (nr_pages > MEMCG_CHARGE_BATCH)
2244 		return ret;
2245 
2246 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2247 
2248 	stock = this_cpu_ptr(&memcg_stock);
2249 	if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2250 		stock->nr_pages -= nr_pages;
2251 		ret = true;
2252 	}
2253 
2254 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2255 
2256 	return ret;
2257 }
2258 
2259 /*
2260  * Returns stocks cached in percpu and reset cached information.
2261  */
2262 static void drain_stock(struct memcg_stock_pcp *stock)
2263 {
2264 	struct mem_cgroup *old = READ_ONCE(stock->cached);
2265 
2266 	if (!old)
2267 		return;
2268 
2269 	if (stock->nr_pages) {
2270 		page_counter_uncharge(&old->memory, stock->nr_pages);
2271 		if (do_memsw_account())
2272 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2273 		stock->nr_pages = 0;
2274 	}
2275 
2276 	css_put(&old->css);
2277 	WRITE_ONCE(stock->cached, NULL);
2278 }
2279 
2280 static void drain_local_stock(struct work_struct *dummy)
2281 {
2282 	struct memcg_stock_pcp *stock;
2283 	struct obj_cgroup *old = NULL;
2284 	unsigned long flags;
2285 
2286 	/*
2287 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2288 	 * drain_stock races is that we always operate on local CPU stock
2289 	 * here with IRQ disabled
2290 	 */
2291 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2292 
2293 	stock = this_cpu_ptr(&memcg_stock);
2294 	old = drain_obj_stock(stock);
2295 	drain_stock(stock);
2296 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2297 
2298 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2299 	if (old)
2300 		obj_cgroup_put(old);
2301 }
2302 
2303 /*
2304  * Cache charges(val) to local per_cpu area.
2305  * This will be consumed by consume_stock() function, later.
2306  */
2307 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 {
2309 	struct memcg_stock_pcp *stock;
2310 
2311 	stock = this_cpu_ptr(&memcg_stock);
2312 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2313 		drain_stock(stock);
2314 		css_get(&memcg->css);
2315 		WRITE_ONCE(stock->cached, memcg);
2316 	}
2317 	stock->nr_pages += nr_pages;
2318 
2319 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2320 		drain_stock(stock);
2321 }
2322 
2323 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2324 {
2325 	unsigned long flags;
2326 
2327 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2328 	__refill_stock(memcg, nr_pages);
2329 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2330 }
2331 
2332 /*
2333  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2334  * of the hierarchy under it.
2335  */
2336 static void drain_all_stock(struct mem_cgroup *root_memcg)
2337 {
2338 	int cpu, curcpu;
2339 
2340 	/* If someone's already draining, avoid adding running more workers. */
2341 	if (!mutex_trylock(&percpu_charge_mutex))
2342 		return;
2343 	/*
2344 	 * Notify other cpus that system-wide "drain" is running
2345 	 * We do not care about races with the cpu hotplug because cpu down
2346 	 * as well as workers from this path always operate on the local
2347 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2348 	 */
2349 	migrate_disable();
2350 	curcpu = smp_processor_id();
2351 	for_each_online_cpu(cpu) {
2352 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2353 		struct mem_cgroup *memcg;
2354 		bool flush = false;
2355 
2356 		rcu_read_lock();
2357 		memcg = READ_ONCE(stock->cached);
2358 		if (memcg && stock->nr_pages &&
2359 		    mem_cgroup_is_descendant(memcg, root_memcg))
2360 			flush = true;
2361 		else if (obj_stock_flush_required(stock, root_memcg))
2362 			flush = true;
2363 		rcu_read_unlock();
2364 
2365 		if (flush &&
2366 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2367 			if (cpu == curcpu)
2368 				drain_local_stock(&stock->work);
2369 			else if (!cpu_is_isolated(cpu))
2370 				schedule_work_on(cpu, &stock->work);
2371 		}
2372 	}
2373 	migrate_enable();
2374 	mutex_unlock(&percpu_charge_mutex);
2375 }
2376 
2377 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2378 {
2379 	struct memcg_stock_pcp *stock;
2380 
2381 	stock = &per_cpu(memcg_stock, cpu);
2382 	drain_stock(stock);
2383 
2384 	return 0;
2385 }
2386 
2387 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2388 				  unsigned int nr_pages,
2389 				  gfp_t gfp_mask)
2390 {
2391 	unsigned long nr_reclaimed = 0;
2392 
2393 	do {
2394 		unsigned long pflags;
2395 
2396 		if (page_counter_read(&memcg->memory) <=
2397 		    READ_ONCE(memcg->memory.high))
2398 			continue;
2399 
2400 		memcg_memory_event(memcg, MEMCG_HIGH);
2401 
2402 		psi_memstall_enter(&pflags);
2403 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2404 							gfp_mask,
2405 							MEMCG_RECLAIM_MAY_SWAP);
2406 		psi_memstall_leave(&pflags);
2407 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2408 		 !mem_cgroup_is_root(memcg));
2409 
2410 	return nr_reclaimed;
2411 }
2412 
2413 static void high_work_func(struct work_struct *work)
2414 {
2415 	struct mem_cgroup *memcg;
2416 
2417 	memcg = container_of(work, struct mem_cgroup, high_work);
2418 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2419 }
2420 
2421 /*
2422  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2423  * enough to still cause a significant slowdown in most cases, while still
2424  * allowing diagnostics and tracing to proceed without becoming stuck.
2425  */
2426 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2427 
2428 /*
2429  * When calculating the delay, we use these either side of the exponentiation to
2430  * maintain precision and scale to a reasonable number of jiffies (see the table
2431  * below.
2432  *
2433  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2434  *   overage ratio to a delay.
2435  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2436  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2437  *   to produce a reasonable delay curve.
2438  *
2439  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2440  * reasonable delay curve compared to precision-adjusted overage, not
2441  * penalising heavily at first, but still making sure that growth beyond the
2442  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2443  * example, with a high of 100 megabytes:
2444  *
2445  *  +-------+------------------------+
2446  *  | usage | time to allocate in ms |
2447  *  +-------+------------------------+
2448  *  | 100M  |                      0 |
2449  *  | 101M  |                      6 |
2450  *  | 102M  |                     25 |
2451  *  | 103M  |                     57 |
2452  *  | 104M  |                    102 |
2453  *  | 105M  |                    159 |
2454  *  | 106M  |                    230 |
2455  *  | 107M  |                    313 |
2456  *  | 108M  |                    409 |
2457  *  | 109M  |                    518 |
2458  *  | 110M  |                    639 |
2459  *  | 111M  |                    774 |
2460  *  | 112M  |                    921 |
2461  *  | 113M  |                   1081 |
2462  *  | 114M  |                   1254 |
2463  *  | 115M  |                   1439 |
2464  *  | 116M  |                   1638 |
2465  *  | 117M  |                   1849 |
2466  *  | 118M  |                   2000 |
2467  *  | 119M  |                   2000 |
2468  *  | 120M  |                   2000 |
2469  *  +-------+------------------------+
2470  */
2471  #define MEMCG_DELAY_PRECISION_SHIFT 20
2472  #define MEMCG_DELAY_SCALING_SHIFT 14
2473 
2474 static u64 calculate_overage(unsigned long usage, unsigned long high)
2475 {
2476 	u64 overage;
2477 
2478 	if (usage <= high)
2479 		return 0;
2480 
2481 	/*
2482 	 * Prevent division by 0 in overage calculation by acting as if
2483 	 * it was a threshold of 1 page
2484 	 */
2485 	high = max(high, 1UL);
2486 
2487 	overage = usage - high;
2488 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2489 	return div64_u64(overage, high);
2490 }
2491 
2492 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2493 {
2494 	u64 overage, max_overage = 0;
2495 
2496 	do {
2497 		overage = calculate_overage(page_counter_read(&memcg->memory),
2498 					    READ_ONCE(memcg->memory.high));
2499 		max_overage = max(overage, max_overage);
2500 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2501 		 !mem_cgroup_is_root(memcg));
2502 
2503 	return max_overage;
2504 }
2505 
2506 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2507 {
2508 	u64 overage, max_overage = 0;
2509 
2510 	do {
2511 		overage = calculate_overage(page_counter_read(&memcg->swap),
2512 					    READ_ONCE(memcg->swap.high));
2513 		if (overage)
2514 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2515 		max_overage = max(overage, max_overage);
2516 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2517 		 !mem_cgroup_is_root(memcg));
2518 
2519 	return max_overage;
2520 }
2521 
2522 /*
2523  * Get the number of jiffies that we should penalise a mischievous cgroup which
2524  * is exceeding its memory.high by checking both it and its ancestors.
2525  */
2526 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2527 					  unsigned int nr_pages,
2528 					  u64 max_overage)
2529 {
2530 	unsigned long penalty_jiffies;
2531 
2532 	if (!max_overage)
2533 		return 0;
2534 
2535 	/*
2536 	 * We use overage compared to memory.high to calculate the number of
2537 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2538 	 * fairly lenient on small overages, and increasingly harsh when the
2539 	 * memcg in question makes it clear that it has no intention of stopping
2540 	 * its crazy behaviour, so we exponentially increase the delay based on
2541 	 * overage amount.
2542 	 */
2543 	penalty_jiffies = max_overage * max_overage * HZ;
2544 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2545 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2546 
2547 	/*
2548 	 * Factor in the task's own contribution to the overage, such that four
2549 	 * N-sized allocations are throttled approximately the same as one
2550 	 * 4N-sized allocation.
2551 	 *
2552 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2553 	 * larger the current charge patch is than that.
2554 	 */
2555 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2556 }
2557 
2558 /*
2559  * Scheduled by try_charge() to be executed from the userland return path
2560  * and reclaims memory over the high limit.
2561  */
2562 void mem_cgroup_handle_over_high(void)
2563 {
2564 	unsigned long penalty_jiffies;
2565 	unsigned long pflags;
2566 	unsigned long nr_reclaimed;
2567 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2568 	int nr_retries = MAX_RECLAIM_RETRIES;
2569 	struct mem_cgroup *memcg;
2570 	bool in_retry = false;
2571 
2572 	if (likely(!nr_pages))
2573 		return;
2574 
2575 	memcg = get_mem_cgroup_from_mm(current->mm);
2576 	current->memcg_nr_pages_over_high = 0;
2577 
2578 retry_reclaim:
2579 	/*
2580 	 * The allocating task should reclaim at least the batch size, but for
2581 	 * subsequent retries we only want to do what's necessary to prevent oom
2582 	 * or breaching resource isolation.
2583 	 *
2584 	 * This is distinct from memory.max or page allocator behaviour because
2585 	 * memory.high is currently batched, whereas memory.max and the page
2586 	 * allocator run every time an allocation is made.
2587 	 */
2588 	nr_reclaimed = reclaim_high(memcg,
2589 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2590 				    GFP_KERNEL);
2591 
2592 	/*
2593 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2594 	 * allocators proactively to slow down excessive growth.
2595 	 */
2596 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2597 					       mem_find_max_overage(memcg));
2598 
2599 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2600 						swap_find_max_overage(memcg));
2601 
2602 	/*
2603 	 * Clamp the max delay per usermode return so as to still keep the
2604 	 * application moving forwards and also permit diagnostics, albeit
2605 	 * extremely slowly.
2606 	 */
2607 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2608 
2609 	/*
2610 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2611 	 * that it's not even worth doing, in an attempt to be nice to those who
2612 	 * go only a small amount over their memory.high value and maybe haven't
2613 	 * been aggressively reclaimed enough yet.
2614 	 */
2615 	if (penalty_jiffies <= HZ / 100)
2616 		goto out;
2617 
2618 	/*
2619 	 * If reclaim is making forward progress but we're still over
2620 	 * memory.high, we want to encourage that rather than doing allocator
2621 	 * throttling.
2622 	 */
2623 	if (nr_reclaimed || nr_retries--) {
2624 		in_retry = true;
2625 		goto retry_reclaim;
2626 	}
2627 
2628 	/*
2629 	 * If we exit early, we're guaranteed to die (since
2630 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2631 	 * need to account for any ill-begotten jiffies to pay them off later.
2632 	 */
2633 	psi_memstall_enter(&pflags);
2634 	schedule_timeout_killable(penalty_jiffies);
2635 	psi_memstall_leave(&pflags);
2636 
2637 out:
2638 	css_put(&memcg->css);
2639 }
2640 
2641 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2642 			unsigned int nr_pages)
2643 {
2644 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2645 	int nr_retries = MAX_RECLAIM_RETRIES;
2646 	struct mem_cgroup *mem_over_limit;
2647 	struct page_counter *counter;
2648 	unsigned long nr_reclaimed;
2649 	bool passed_oom = false;
2650 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2651 	bool drained = false;
2652 	bool raised_max_event = false;
2653 	unsigned long pflags;
2654 
2655 retry:
2656 	if (consume_stock(memcg, nr_pages))
2657 		return 0;
2658 
2659 	if (!do_memsw_account() ||
2660 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2661 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2662 			goto done_restock;
2663 		if (do_memsw_account())
2664 			page_counter_uncharge(&memcg->memsw, batch);
2665 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2666 	} else {
2667 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2668 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2669 	}
2670 
2671 	if (batch > nr_pages) {
2672 		batch = nr_pages;
2673 		goto retry;
2674 	}
2675 
2676 	/*
2677 	 * Prevent unbounded recursion when reclaim operations need to
2678 	 * allocate memory. This might exceed the limits temporarily,
2679 	 * but we prefer facilitating memory reclaim and getting back
2680 	 * under the limit over triggering OOM kills in these cases.
2681 	 */
2682 	if (unlikely(current->flags & PF_MEMALLOC))
2683 		goto force;
2684 
2685 	if (unlikely(task_in_memcg_oom(current)))
2686 		goto nomem;
2687 
2688 	if (!gfpflags_allow_blocking(gfp_mask))
2689 		goto nomem;
2690 
2691 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2692 	raised_max_event = true;
2693 
2694 	psi_memstall_enter(&pflags);
2695 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2696 						    gfp_mask, reclaim_options);
2697 	psi_memstall_leave(&pflags);
2698 
2699 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2700 		goto retry;
2701 
2702 	if (!drained) {
2703 		drain_all_stock(mem_over_limit);
2704 		drained = true;
2705 		goto retry;
2706 	}
2707 
2708 	if (gfp_mask & __GFP_NORETRY)
2709 		goto nomem;
2710 	/*
2711 	 * Even though the limit is exceeded at this point, reclaim
2712 	 * may have been able to free some pages.  Retry the charge
2713 	 * before killing the task.
2714 	 *
2715 	 * Only for regular pages, though: huge pages are rather
2716 	 * unlikely to succeed so close to the limit, and we fall back
2717 	 * to regular pages anyway in case of failure.
2718 	 */
2719 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2720 		goto retry;
2721 	/*
2722 	 * At task move, charge accounts can be doubly counted. So, it's
2723 	 * better to wait until the end of task_move if something is going on.
2724 	 */
2725 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2726 		goto retry;
2727 
2728 	if (nr_retries--)
2729 		goto retry;
2730 
2731 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2732 		goto nomem;
2733 
2734 	/* Avoid endless loop for tasks bypassed by the oom killer */
2735 	if (passed_oom && task_is_dying())
2736 		goto nomem;
2737 
2738 	/*
2739 	 * keep retrying as long as the memcg oom killer is able to make
2740 	 * a forward progress or bypass the charge if the oom killer
2741 	 * couldn't make any progress.
2742 	 */
2743 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2744 			   get_order(nr_pages * PAGE_SIZE))) {
2745 		passed_oom = true;
2746 		nr_retries = MAX_RECLAIM_RETRIES;
2747 		goto retry;
2748 	}
2749 nomem:
2750 	/*
2751 	 * Memcg doesn't have a dedicated reserve for atomic
2752 	 * allocations. But like the global atomic pool, we need to
2753 	 * put the burden of reclaim on regular allocation requests
2754 	 * and let these go through as privileged allocations.
2755 	 */
2756 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2757 		return -ENOMEM;
2758 force:
2759 	/*
2760 	 * If the allocation has to be enforced, don't forget to raise
2761 	 * a MEMCG_MAX event.
2762 	 */
2763 	if (!raised_max_event)
2764 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2765 
2766 	/*
2767 	 * The allocation either can't fail or will lead to more memory
2768 	 * being freed very soon.  Allow memory usage go over the limit
2769 	 * temporarily by force charging it.
2770 	 */
2771 	page_counter_charge(&memcg->memory, nr_pages);
2772 	if (do_memsw_account())
2773 		page_counter_charge(&memcg->memsw, nr_pages);
2774 
2775 	return 0;
2776 
2777 done_restock:
2778 	if (batch > nr_pages)
2779 		refill_stock(memcg, batch - nr_pages);
2780 
2781 	/*
2782 	 * If the hierarchy is above the normal consumption range, schedule
2783 	 * reclaim on returning to userland.  We can perform reclaim here
2784 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2785 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2786 	 * not recorded as it most likely matches current's and won't
2787 	 * change in the meantime.  As high limit is checked again before
2788 	 * reclaim, the cost of mismatch is negligible.
2789 	 */
2790 	do {
2791 		bool mem_high, swap_high;
2792 
2793 		mem_high = page_counter_read(&memcg->memory) >
2794 			READ_ONCE(memcg->memory.high);
2795 		swap_high = page_counter_read(&memcg->swap) >
2796 			READ_ONCE(memcg->swap.high);
2797 
2798 		/* Don't bother a random interrupted task */
2799 		if (!in_task()) {
2800 			if (mem_high) {
2801 				schedule_work(&memcg->high_work);
2802 				break;
2803 			}
2804 			continue;
2805 		}
2806 
2807 		if (mem_high || swap_high) {
2808 			/*
2809 			 * The allocating tasks in this cgroup will need to do
2810 			 * reclaim or be throttled to prevent further growth
2811 			 * of the memory or swap footprints.
2812 			 *
2813 			 * Target some best-effort fairness between the tasks,
2814 			 * and distribute reclaim work and delay penalties
2815 			 * based on how much each task is actually allocating.
2816 			 */
2817 			current->memcg_nr_pages_over_high += batch;
2818 			set_notify_resume(current);
2819 			break;
2820 		}
2821 	} while ((memcg = parent_mem_cgroup(memcg)));
2822 
2823 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2824 	    !(current->flags & PF_MEMALLOC) &&
2825 	    gfpflags_allow_blocking(gfp_mask)) {
2826 		mem_cgroup_handle_over_high();
2827 	}
2828 	return 0;
2829 }
2830 
2831 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2832 			     unsigned int nr_pages)
2833 {
2834 	if (mem_cgroup_is_root(memcg))
2835 		return 0;
2836 
2837 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2838 }
2839 
2840 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2841 {
2842 	if (mem_cgroup_is_root(memcg))
2843 		return;
2844 
2845 	page_counter_uncharge(&memcg->memory, nr_pages);
2846 	if (do_memsw_account())
2847 		page_counter_uncharge(&memcg->memsw, nr_pages);
2848 }
2849 
2850 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2851 {
2852 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2853 	/*
2854 	 * Any of the following ensures page's memcg stability:
2855 	 *
2856 	 * - the page lock
2857 	 * - LRU isolation
2858 	 * - folio_memcg_lock()
2859 	 * - exclusive reference
2860 	 * - mem_cgroup_trylock_pages()
2861 	 */
2862 	folio->memcg_data = (unsigned long)memcg;
2863 }
2864 
2865 #ifdef CONFIG_MEMCG_KMEM
2866 /*
2867  * The allocated objcg pointers array is not accounted directly.
2868  * Moreover, it should not come from DMA buffer and is not readily
2869  * reclaimable. So those GFP bits should be masked off.
2870  */
2871 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2872 
2873 /*
2874  * mod_objcg_mlstate() may be called with irq enabled, so
2875  * mod_memcg_lruvec_state() should be used.
2876  */
2877 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2878 				     struct pglist_data *pgdat,
2879 				     enum node_stat_item idx, int nr)
2880 {
2881 	struct mem_cgroup *memcg;
2882 	struct lruvec *lruvec;
2883 
2884 	rcu_read_lock();
2885 	memcg = obj_cgroup_memcg(objcg);
2886 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2887 	mod_memcg_lruvec_state(lruvec, idx, nr);
2888 	rcu_read_unlock();
2889 }
2890 
2891 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2892 				 gfp_t gfp, bool new_slab)
2893 {
2894 	unsigned int objects = objs_per_slab(s, slab);
2895 	unsigned long memcg_data;
2896 	void *vec;
2897 
2898 	gfp &= ~OBJCGS_CLEAR_MASK;
2899 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2900 			   slab_nid(slab));
2901 	if (!vec)
2902 		return -ENOMEM;
2903 
2904 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2905 	if (new_slab) {
2906 		/*
2907 		 * If the slab is brand new and nobody can yet access its
2908 		 * memcg_data, no synchronization is required and memcg_data can
2909 		 * be simply assigned.
2910 		 */
2911 		slab->memcg_data = memcg_data;
2912 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2913 		/*
2914 		 * If the slab is already in use, somebody can allocate and
2915 		 * assign obj_cgroups in parallel. In this case the existing
2916 		 * objcg vector should be reused.
2917 		 */
2918 		kfree(vec);
2919 		return 0;
2920 	}
2921 
2922 	kmemleak_not_leak(vec);
2923 	return 0;
2924 }
2925 
2926 static __always_inline
2927 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2928 {
2929 	/*
2930 	 * Slab objects are accounted individually, not per-page.
2931 	 * Memcg membership data for each individual object is saved in
2932 	 * slab->memcg_data.
2933 	 */
2934 	if (folio_test_slab(folio)) {
2935 		struct obj_cgroup **objcgs;
2936 		struct slab *slab;
2937 		unsigned int off;
2938 
2939 		slab = folio_slab(folio);
2940 		objcgs = slab_objcgs(slab);
2941 		if (!objcgs)
2942 			return NULL;
2943 
2944 		off = obj_to_index(slab->slab_cache, slab, p);
2945 		if (objcgs[off])
2946 			return obj_cgroup_memcg(objcgs[off]);
2947 
2948 		return NULL;
2949 	}
2950 
2951 	/*
2952 	 * folio_memcg_check() is used here, because in theory we can encounter
2953 	 * a folio where the slab flag has been cleared already, but
2954 	 * slab->memcg_data has not been freed yet
2955 	 * folio_memcg_check() will guarantee that a proper memory
2956 	 * cgroup pointer or NULL will be returned.
2957 	 */
2958 	return folio_memcg_check(folio);
2959 }
2960 
2961 /*
2962  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2963  *
2964  * A passed kernel object can be a slab object, vmalloc object or a generic
2965  * kernel page, so different mechanisms for getting the memory cgroup pointer
2966  * should be used.
2967  *
2968  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2969  * can not know for sure how the kernel object is implemented.
2970  * mem_cgroup_from_obj() can be safely used in such cases.
2971  *
2972  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2973  * cgroup_mutex, etc.
2974  */
2975 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2976 {
2977 	struct folio *folio;
2978 
2979 	if (mem_cgroup_disabled())
2980 		return NULL;
2981 
2982 	if (unlikely(is_vmalloc_addr(p)))
2983 		folio = page_folio(vmalloc_to_page(p));
2984 	else
2985 		folio = virt_to_folio(p);
2986 
2987 	return mem_cgroup_from_obj_folio(folio, p);
2988 }
2989 
2990 /*
2991  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2993  * allocated using vmalloc().
2994  *
2995  * A passed kernel object must be a slab object or a generic kernel page.
2996  *
2997  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2998  * cgroup_mutex, etc.
2999  */
3000 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3001 {
3002 	if (mem_cgroup_disabled())
3003 		return NULL;
3004 
3005 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3006 }
3007 
3008 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3009 {
3010 	struct obj_cgroup *objcg = NULL;
3011 
3012 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3013 		objcg = rcu_dereference(memcg->objcg);
3014 		if (objcg && obj_cgroup_tryget(objcg))
3015 			break;
3016 		objcg = NULL;
3017 	}
3018 	return objcg;
3019 }
3020 
3021 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3022 {
3023 	struct obj_cgroup *objcg = NULL;
3024 	struct mem_cgroup *memcg;
3025 
3026 	if (memcg_kmem_bypass())
3027 		return NULL;
3028 
3029 	rcu_read_lock();
3030 	if (unlikely(active_memcg()))
3031 		memcg = active_memcg();
3032 	else
3033 		memcg = mem_cgroup_from_task(current);
3034 	objcg = __get_obj_cgroup_from_memcg(memcg);
3035 	rcu_read_unlock();
3036 	return objcg;
3037 }
3038 
3039 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3040 {
3041 	struct obj_cgroup *objcg;
3042 
3043 	if (!memcg_kmem_online())
3044 		return NULL;
3045 
3046 	if (PageMemcgKmem(page)) {
3047 		objcg = __folio_objcg(page_folio(page));
3048 		obj_cgroup_get(objcg);
3049 	} else {
3050 		struct mem_cgroup *memcg;
3051 
3052 		rcu_read_lock();
3053 		memcg = __folio_memcg(page_folio(page));
3054 		if (memcg)
3055 			objcg = __get_obj_cgroup_from_memcg(memcg);
3056 		else
3057 			objcg = NULL;
3058 		rcu_read_unlock();
3059 	}
3060 	return objcg;
3061 }
3062 
3063 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3064 {
3065 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3066 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3067 		if (nr_pages > 0)
3068 			page_counter_charge(&memcg->kmem, nr_pages);
3069 		else
3070 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3071 	}
3072 }
3073 
3074 
3075 /*
3076  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3077  * @objcg: object cgroup to uncharge
3078  * @nr_pages: number of pages to uncharge
3079  */
3080 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3081 				      unsigned int nr_pages)
3082 {
3083 	struct mem_cgroup *memcg;
3084 
3085 	memcg = get_mem_cgroup_from_objcg(objcg);
3086 
3087 	memcg_account_kmem(memcg, -nr_pages);
3088 	refill_stock(memcg, nr_pages);
3089 
3090 	css_put(&memcg->css);
3091 }
3092 
3093 /*
3094  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3095  * @objcg: object cgroup to charge
3096  * @gfp: reclaim mode
3097  * @nr_pages: number of pages to charge
3098  *
3099  * Returns 0 on success, an error code on failure.
3100  */
3101 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3102 				   unsigned int nr_pages)
3103 {
3104 	struct mem_cgroup *memcg;
3105 	int ret;
3106 
3107 	memcg = get_mem_cgroup_from_objcg(objcg);
3108 
3109 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3110 	if (ret)
3111 		goto out;
3112 
3113 	memcg_account_kmem(memcg, nr_pages);
3114 out:
3115 	css_put(&memcg->css);
3116 
3117 	return ret;
3118 }
3119 
3120 /**
3121  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3122  * @page: page to charge
3123  * @gfp: reclaim mode
3124  * @order: allocation order
3125  *
3126  * Returns 0 on success, an error code on failure.
3127  */
3128 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3129 {
3130 	struct obj_cgroup *objcg;
3131 	int ret = 0;
3132 
3133 	objcg = get_obj_cgroup_from_current();
3134 	if (objcg) {
3135 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3136 		if (!ret) {
3137 			page->memcg_data = (unsigned long)objcg |
3138 				MEMCG_DATA_KMEM;
3139 			return 0;
3140 		}
3141 		obj_cgroup_put(objcg);
3142 	}
3143 	return ret;
3144 }
3145 
3146 /**
3147  * __memcg_kmem_uncharge_page: uncharge a kmem page
3148  * @page: page to uncharge
3149  * @order: allocation order
3150  */
3151 void __memcg_kmem_uncharge_page(struct page *page, int order)
3152 {
3153 	struct folio *folio = page_folio(page);
3154 	struct obj_cgroup *objcg;
3155 	unsigned int nr_pages = 1 << order;
3156 
3157 	if (!folio_memcg_kmem(folio))
3158 		return;
3159 
3160 	objcg = __folio_objcg(folio);
3161 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3162 	folio->memcg_data = 0;
3163 	obj_cgroup_put(objcg);
3164 }
3165 
3166 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3167 		     enum node_stat_item idx, int nr)
3168 {
3169 	struct memcg_stock_pcp *stock;
3170 	struct obj_cgroup *old = NULL;
3171 	unsigned long flags;
3172 	int *bytes;
3173 
3174 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3175 	stock = this_cpu_ptr(&memcg_stock);
3176 
3177 	/*
3178 	 * Save vmstat data in stock and skip vmstat array update unless
3179 	 * accumulating over a page of vmstat data or when pgdat or idx
3180 	 * changes.
3181 	 */
3182 	if (READ_ONCE(stock->cached_objcg) != objcg) {
3183 		old = drain_obj_stock(stock);
3184 		obj_cgroup_get(objcg);
3185 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3186 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3187 		WRITE_ONCE(stock->cached_objcg, objcg);
3188 		stock->cached_pgdat = pgdat;
3189 	} else if (stock->cached_pgdat != pgdat) {
3190 		/* Flush the existing cached vmstat data */
3191 		struct pglist_data *oldpg = stock->cached_pgdat;
3192 
3193 		if (stock->nr_slab_reclaimable_b) {
3194 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3195 					  stock->nr_slab_reclaimable_b);
3196 			stock->nr_slab_reclaimable_b = 0;
3197 		}
3198 		if (stock->nr_slab_unreclaimable_b) {
3199 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3200 					  stock->nr_slab_unreclaimable_b);
3201 			stock->nr_slab_unreclaimable_b = 0;
3202 		}
3203 		stock->cached_pgdat = pgdat;
3204 	}
3205 
3206 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3207 					       : &stock->nr_slab_unreclaimable_b;
3208 	/*
3209 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3210 	 * cached locally at least once before pushing it out.
3211 	 */
3212 	if (!*bytes) {
3213 		*bytes = nr;
3214 		nr = 0;
3215 	} else {
3216 		*bytes += nr;
3217 		if (abs(*bytes) > PAGE_SIZE) {
3218 			nr = *bytes;
3219 			*bytes = 0;
3220 		} else {
3221 			nr = 0;
3222 		}
3223 	}
3224 	if (nr)
3225 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3226 
3227 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3228 	if (old)
3229 		obj_cgroup_put(old);
3230 }
3231 
3232 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3233 {
3234 	struct memcg_stock_pcp *stock;
3235 	unsigned long flags;
3236 	bool ret = false;
3237 
3238 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3239 
3240 	stock = this_cpu_ptr(&memcg_stock);
3241 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3242 		stock->nr_bytes -= nr_bytes;
3243 		ret = true;
3244 	}
3245 
3246 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3247 
3248 	return ret;
3249 }
3250 
3251 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3252 {
3253 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3254 
3255 	if (!old)
3256 		return NULL;
3257 
3258 	if (stock->nr_bytes) {
3259 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3260 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3261 
3262 		if (nr_pages) {
3263 			struct mem_cgroup *memcg;
3264 
3265 			memcg = get_mem_cgroup_from_objcg(old);
3266 
3267 			memcg_account_kmem(memcg, -nr_pages);
3268 			__refill_stock(memcg, nr_pages);
3269 
3270 			css_put(&memcg->css);
3271 		}
3272 
3273 		/*
3274 		 * The leftover is flushed to the centralized per-memcg value.
3275 		 * On the next attempt to refill obj stock it will be moved
3276 		 * to a per-cpu stock (probably, on an other CPU), see
3277 		 * refill_obj_stock().
3278 		 *
3279 		 * How often it's flushed is a trade-off between the memory
3280 		 * limit enforcement accuracy and potential CPU contention,
3281 		 * so it might be changed in the future.
3282 		 */
3283 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3284 		stock->nr_bytes = 0;
3285 	}
3286 
3287 	/*
3288 	 * Flush the vmstat data in current stock
3289 	 */
3290 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3291 		if (stock->nr_slab_reclaimable_b) {
3292 			mod_objcg_mlstate(old, stock->cached_pgdat,
3293 					  NR_SLAB_RECLAIMABLE_B,
3294 					  stock->nr_slab_reclaimable_b);
3295 			stock->nr_slab_reclaimable_b = 0;
3296 		}
3297 		if (stock->nr_slab_unreclaimable_b) {
3298 			mod_objcg_mlstate(old, stock->cached_pgdat,
3299 					  NR_SLAB_UNRECLAIMABLE_B,
3300 					  stock->nr_slab_unreclaimable_b);
3301 			stock->nr_slab_unreclaimable_b = 0;
3302 		}
3303 		stock->cached_pgdat = NULL;
3304 	}
3305 
3306 	WRITE_ONCE(stock->cached_objcg, NULL);
3307 	/*
3308 	 * The `old' objects needs to be released by the caller via
3309 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3310 	 */
3311 	return old;
3312 }
3313 
3314 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3315 				     struct mem_cgroup *root_memcg)
3316 {
3317 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3318 	struct mem_cgroup *memcg;
3319 
3320 	if (objcg) {
3321 		memcg = obj_cgroup_memcg(objcg);
3322 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3323 			return true;
3324 	}
3325 
3326 	return false;
3327 }
3328 
3329 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3330 			     bool allow_uncharge)
3331 {
3332 	struct memcg_stock_pcp *stock;
3333 	struct obj_cgroup *old = NULL;
3334 	unsigned long flags;
3335 	unsigned int nr_pages = 0;
3336 
3337 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3338 
3339 	stock = this_cpu_ptr(&memcg_stock);
3340 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3341 		old = drain_obj_stock(stock);
3342 		obj_cgroup_get(objcg);
3343 		WRITE_ONCE(stock->cached_objcg, objcg);
3344 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3345 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3346 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3347 	}
3348 	stock->nr_bytes += nr_bytes;
3349 
3350 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3351 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3352 		stock->nr_bytes &= (PAGE_SIZE - 1);
3353 	}
3354 
3355 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3356 	if (old)
3357 		obj_cgroup_put(old);
3358 
3359 	if (nr_pages)
3360 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3361 }
3362 
3363 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3364 {
3365 	unsigned int nr_pages, nr_bytes;
3366 	int ret;
3367 
3368 	if (consume_obj_stock(objcg, size))
3369 		return 0;
3370 
3371 	/*
3372 	 * In theory, objcg->nr_charged_bytes can have enough
3373 	 * pre-charged bytes to satisfy the allocation. However,
3374 	 * flushing objcg->nr_charged_bytes requires two atomic
3375 	 * operations, and objcg->nr_charged_bytes can't be big.
3376 	 * The shared objcg->nr_charged_bytes can also become a
3377 	 * performance bottleneck if all tasks of the same memcg are
3378 	 * trying to update it. So it's better to ignore it and try
3379 	 * grab some new pages. The stock's nr_bytes will be flushed to
3380 	 * objcg->nr_charged_bytes later on when objcg changes.
3381 	 *
3382 	 * The stock's nr_bytes may contain enough pre-charged bytes
3383 	 * to allow one less page from being charged, but we can't rely
3384 	 * on the pre-charged bytes not being changed outside of
3385 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3386 	 * pre-charged bytes as well when charging pages. To avoid a
3387 	 * page uncharge right after a page charge, we set the
3388 	 * allow_uncharge flag to false when calling refill_obj_stock()
3389 	 * to temporarily allow the pre-charged bytes to exceed the page
3390 	 * size limit. The maximum reachable value of the pre-charged
3391 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3392 	 * race.
3393 	 */
3394 	nr_pages = size >> PAGE_SHIFT;
3395 	nr_bytes = size & (PAGE_SIZE - 1);
3396 
3397 	if (nr_bytes)
3398 		nr_pages += 1;
3399 
3400 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3401 	if (!ret && nr_bytes)
3402 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3403 
3404 	return ret;
3405 }
3406 
3407 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3408 {
3409 	refill_obj_stock(objcg, size, true);
3410 }
3411 
3412 #endif /* CONFIG_MEMCG_KMEM */
3413 
3414 /*
3415  * Because page_memcg(head) is not set on tails, set it now.
3416  */
3417 void split_page_memcg(struct page *head, unsigned int nr)
3418 {
3419 	struct folio *folio = page_folio(head);
3420 	struct mem_cgroup *memcg = folio_memcg(folio);
3421 	int i;
3422 
3423 	if (mem_cgroup_disabled() || !memcg)
3424 		return;
3425 
3426 	for (i = 1; i < nr; i++)
3427 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3428 
3429 	if (folio_memcg_kmem(folio))
3430 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3431 	else
3432 		css_get_many(&memcg->css, nr - 1);
3433 }
3434 
3435 #ifdef CONFIG_SWAP
3436 /**
3437  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3438  * @entry: swap entry to be moved
3439  * @from:  mem_cgroup which the entry is moved from
3440  * @to:  mem_cgroup which the entry is moved to
3441  *
3442  * It succeeds only when the swap_cgroup's record for this entry is the same
3443  * as the mem_cgroup's id of @from.
3444  *
3445  * Returns 0 on success, -EINVAL on failure.
3446  *
3447  * The caller must have charged to @to, IOW, called page_counter_charge() about
3448  * both res and memsw, and called css_get().
3449  */
3450 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3451 				struct mem_cgroup *from, struct mem_cgroup *to)
3452 {
3453 	unsigned short old_id, new_id;
3454 
3455 	old_id = mem_cgroup_id(from);
3456 	new_id = mem_cgroup_id(to);
3457 
3458 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3459 		mod_memcg_state(from, MEMCG_SWAP, -1);
3460 		mod_memcg_state(to, MEMCG_SWAP, 1);
3461 		return 0;
3462 	}
3463 	return -EINVAL;
3464 }
3465 #else
3466 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3467 				struct mem_cgroup *from, struct mem_cgroup *to)
3468 {
3469 	return -EINVAL;
3470 }
3471 #endif
3472 
3473 static DEFINE_MUTEX(memcg_max_mutex);
3474 
3475 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3476 				 unsigned long max, bool memsw)
3477 {
3478 	bool enlarge = false;
3479 	bool drained = false;
3480 	int ret;
3481 	bool limits_invariant;
3482 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3483 
3484 	do {
3485 		if (signal_pending(current)) {
3486 			ret = -EINTR;
3487 			break;
3488 		}
3489 
3490 		mutex_lock(&memcg_max_mutex);
3491 		/*
3492 		 * Make sure that the new limit (memsw or memory limit) doesn't
3493 		 * break our basic invariant rule memory.max <= memsw.max.
3494 		 */
3495 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3496 					   max <= memcg->memsw.max;
3497 		if (!limits_invariant) {
3498 			mutex_unlock(&memcg_max_mutex);
3499 			ret = -EINVAL;
3500 			break;
3501 		}
3502 		if (max > counter->max)
3503 			enlarge = true;
3504 		ret = page_counter_set_max(counter, max);
3505 		mutex_unlock(&memcg_max_mutex);
3506 
3507 		if (!ret)
3508 			break;
3509 
3510 		if (!drained) {
3511 			drain_all_stock(memcg);
3512 			drained = true;
3513 			continue;
3514 		}
3515 
3516 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3517 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3518 			ret = -EBUSY;
3519 			break;
3520 		}
3521 	} while (true);
3522 
3523 	if (!ret && enlarge)
3524 		memcg_oom_recover(memcg);
3525 
3526 	return ret;
3527 }
3528 
3529 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3530 					    gfp_t gfp_mask,
3531 					    unsigned long *total_scanned)
3532 {
3533 	unsigned long nr_reclaimed = 0;
3534 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3535 	unsigned long reclaimed;
3536 	int loop = 0;
3537 	struct mem_cgroup_tree_per_node *mctz;
3538 	unsigned long excess;
3539 
3540 	if (lru_gen_enabled())
3541 		return 0;
3542 
3543 	if (order > 0)
3544 		return 0;
3545 
3546 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3547 
3548 	/*
3549 	 * Do not even bother to check the largest node if the root
3550 	 * is empty. Do it lockless to prevent lock bouncing. Races
3551 	 * are acceptable as soft limit is best effort anyway.
3552 	 */
3553 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3554 		return 0;
3555 
3556 	/*
3557 	 * This loop can run a while, specially if mem_cgroup's continuously
3558 	 * keep exceeding their soft limit and putting the system under
3559 	 * pressure
3560 	 */
3561 	do {
3562 		if (next_mz)
3563 			mz = next_mz;
3564 		else
3565 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3566 		if (!mz)
3567 			break;
3568 
3569 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3570 						    gfp_mask, total_scanned);
3571 		nr_reclaimed += reclaimed;
3572 		spin_lock_irq(&mctz->lock);
3573 
3574 		/*
3575 		 * If we failed to reclaim anything from this memory cgroup
3576 		 * it is time to move on to the next cgroup
3577 		 */
3578 		next_mz = NULL;
3579 		if (!reclaimed)
3580 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3581 
3582 		excess = soft_limit_excess(mz->memcg);
3583 		/*
3584 		 * One school of thought says that we should not add
3585 		 * back the node to the tree if reclaim returns 0.
3586 		 * But our reclaim could return 0, simply because due
3587 		 * to priority we are exposing a smaller subset of
3588 		 * memory to reclaim from. Consider this as a longer
3589 		 * term TODO.
3590 		 */
3591 		/* If excess == 0, no tree ops */
3592 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3593 		spin_unlock_irq(&mctz->lock);
3594 		css_put(&mz->memcg->css);
3595 		loop++;
3596 		/*
3597 		 * Could not reclaim anything and there are no more
3598 		 * mem cgroups to try or we seem to be looping without
3599 		 * reclaiming anything.
3600 		 */
3601 		if (!nr_reclaimed &&
3602 			(next_mz == NULL ||
3603 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3604 			break;
3605 	} while (!nr_reclaimed);
3606 	if (next_mz)
3607 		css_put(&next_mz->memcg->css);
3608 	return nr_reclaimed;
3609 }
3610 
3611 /*
3612  * Reclaims as many pages from the given memcg as possible.
3613  *
3614  * Caller is responsible for holding css reference for memcg.
3615  */
3616 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3617 {
3618 	int nr_retries = MAX_RECLAIM_RETRIES;
3619 
3620 	/* we call try-to-free pages for make this cgroup empty */
3621 	lru_add_drain_all();
3622 
3623 	drain_all_stock(memcg);
3624 
3625 	/* try to free all pages in this cgroup */
3626 	while (nr_retries && page_counter_read(&memcg->memory)) {
3627 		if (signal_pending(current))
3628 			return -EINTR;
3629 
3630 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3631 						  MEMCG_RECLAIM_MAY_SWAP))
3632 			nr_retries--;
3633 	}
3634 
3635 	return 0;
3636 }
3637 
3638 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3639 					    char *buf, size_t nbytes,
3640 					    loff_t off)
3641 {
3642 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3643 
3644 	if (mem_cgroup_is_root(memcg))
3645 		return -EINVAL;
3646 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3647 }
3648 
3649 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3650 				     struct cftype *cft)
3651 {
3652 	return 1;
3653 }
3654 
3655 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3656 				      struct cftype *cft, u64 val)
3657 {
3658 	if (val == 1)
3659 		return 0;
3660 
3661 	pr_warn_once("Non-hierarchical mode is deprecated. "
3662 		     "Please report your usecase to linux-mm@kvack.org if you "
3663 		     "depend on this functionality.\n");
3664 
3665 	return -EINVAL;
3666 }
3667 
3668 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3669 {
3670 	unsigned long val;
3671 
3672 	if (mem_cgroup_is_root(memcg)) {
3673 		/*
3674 		 * Approximate root's usage from global state. This isn't
3675 		 * perfect, but the root usage was always an approximation.
3676 		 */
3677 		val = global_node_page_state(NR_FILE_PAGES) +
3678 			global_node_page_state(NR_ANON_MAPPED);
3679 		if (swap)
3680 			val += total_swap_pages - get_nr_swap_pages();
3681 	} else {
3682 		if (!swap)
3683 			val = page_counter_read(&memcg->memory);
3684 		else
3685 			val = page_counter_read(&memcg->memsw);
3686 	}
3687 	return val;
3688 }
3689 
3690 enum {
3691 	RES_USAGE,
3692 	RES_LIMIT,
3693 	RES_MAX_USAGE,
3694 	RES_FAILCNT,
3695 	RES_SOFT_LIMIT,
3696 };
3697 
3698 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3699 			       struct cftype *cft)
3700 {
3701 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3702 	struct page_counter *counter;
3703 
3704 	switch (MEMFILE_TYPE(cft->private)) {
3705 	case _MEM:
3706 		counter = &memcg->memory;
3707 		break;
3708 	case _MEMSWAP:
3709 		counter = &memcg->memsw;
3710 		break;
3711 	case _KMEM:
3712 		counter = &memcg->kmem;
3713 		break;
3714 	case _TCP:
3715 		counter = &memcg->tcpmem;
3716 		break;
3717 	default:
3718 		BUG();
3719 	}
3720 
3721 	switch (MEMFILE_ATTR(cft->private)) {
3722 	case RES_USAGE:
3723 		if (counter == &memcg->memory)
3724 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3725 		if (counter == &memcg->memsw)
3726 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3727 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3728 	case RES_LIMIT:
3729 		return (u64)counter->max * PAGE_SIZE;
3730 	case RES_MAX_USAGE:
3731 		return (u64)counter->watermark * PAGE_SIZE;
3732 	case RES_FAILCNT:
3733 		return counter->failcnt;
3734 	case RES_SOFT_LIMIT:
3735 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3736 	default:
3737 		BUG();
3738 	}
3739 }
3740 
3741 /*
3742  * This function doesn't do anything useful. Its only job is to provide a read
3743  * handler for a file so that cgroup_file_mode() will add read permissions.
3744  */
3745 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3746 				     __always_unused void *v)
3747 {
3748 	return -EINVAL;
3749 }
3750 
3751 #ifdef CONFIG_MEMCG_KMEM
3752 static int memcg_online_kmem(struct mem_cgroup *memcg)
3753 {
3754 	struct obj_cgroup *objcg;
3755 
3756 	if (mem_cgroup_kmem_disabled())
3757 		return 0;
3758 
3759 	if (unlikely(mem_cgroup_is_root(memcg)))
3760 		return 0;
3761 
3762 	objcg = obj_cgroup_alloc();
3763 	if (!objcg)
3764 		return -ENOMEM;
3765 
3766 	objcg->memcg = memcg;
3767 	rcu_assign_pointer(memcg->objcg, objcg);
3768 
3769 	static_branch_enable(&memcg_kmem_online_key);
3770 
3771 	memcg->kmemcg_id = memcg->id.id;
3772 
3773 	return 0;
3774 }
3775 
3776 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3777 {
3778 	struct mem_cgroup *parent;
3779 
3780 	if (mem_cgroup_kmem_disabled())
3781 		return;
3782 
3783 	if (unlikely(mem_cgroup_is_root(memcg)))
3784 		return;
3785 
3786 	parent = parent_mem_cgroup(memcg);
3787 	if (!parent)
3788 		parent = root_mem_cgroup;
3789 
3790 	memcg_reparent_objcgs(memcg, parent);
3791 
3792 	/*
3793 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3794 	 * corresponding to this cgroup are guaranteed to remain empty.
3795 	 * The ordering is imposed by list_lru_node->lock taken by
3796 	 * memcg_reparent_list_lrus().
3797 	 */
3798 	memcg_reparent_list_lrus(memcg, parent);
3799 }
3800 #else
3801 static int memcg_online_kmem(struct mem_cgroup *memcg)
3802 {
3803 	return 0;
3804 }
3805 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3806 {
3807 }
3808 #endif /* CONFIG_MEMCG_KMEM */
3809 
3810 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3811 {
3812 	int ret;
3813 
3814 	mutex_lock(&memcg_max_mutex);
3815 
3816 	ret = page_counter_set_max(&memcg->tcpmem, max);
3817 	if (ret)
3818 		goto out;
3819 
3820 	if (!memcg->tcpmem_active) {
3821 		/*
3822 		 * The active flag needs to be written after the static_key
3823 		 * update. This is what guarantees that the socket activation
3824 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3825 		 * for details, and note that we don't mark any socket as
3826 		 * belonging to this memcg until that flag is up.
3827 		 *
3828 		 * We need to do this, because static_keys will span multiple
3829 		 * sites, but we can't control their order. If we mark a socket
3830 		 * as accounted, but the accounting functions are not patched in
3831 		 * yet, we'll lose accounting.
3832 		 *
3833 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3834 		 * because when this value change, the code to process it is not
3835 		 * patched in yet.
3836 		 */
3837 		static_branch_inc(&memcg_sockets_enabled_key);
3838 		memcg->tcpmem_active = true;
3839 	}
3840 out:
3841 	mutex_unlock(&memcg_max_mutex);
3842 	return ret;
3843 }
3844 
3845 /*
3846  * The user of this function is...
3847  * RES_LIMIT.
3848  */
3849 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3850 				char *buf, size_t nbytes, loff_t off)
3851 {
3852 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3853 	unsigned long nr_pages;
3854 	int ret;
3855 
3856 	buf = strstrip(buf);
3857 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3858 	if (ret)
3859 		return ret;
3860 
3861 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3862 	case RES_LIMIT:
3863 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3864 			ret = -EINVAL;
3865 			break;
3866 		}
3867 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3868 		case _MEM:
3869 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3870 			break;
3871 		case _MEMSWAP:
3872 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3873 			break;
3874 		case _KMEM:
3875 			/* kmem.limit_in_bytes is deprecated. */
3876 			ret = -EOPNOTSUPP;
3877 			break;
3878 		case _TCP:
3879 			ret = memcg_update_tcp_max(memcg, nr_pages);
3880 			break;
3881 		}
3882 		break;
3883 	case RES_SOFT_LIMIT:
3884 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3885 			ret = -EOPNOTSUPP;
3886 		} else {
3887 			WRITE_ONCE(memcg->soft_limit, nr_pages);
3888 			ret = 0;
3889 		}
3890 		break;
3891 	}
3892 	return ret ?: nbytes;
3893 }
3894 
3895 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3896 				size_t nbytes, loff_t off)
3897 {
3898 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3899 	struct page_counter *counter;
3900 
3901 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3902 	case _MEM:
3903 		counter = &memcg->memory;
3904 		break;
3905 	case _MEMSWAP:
3906 		counter = &memcg->memsw;
3907 		break;
3908 	case _KMEM:
3909 		counter = &memcg->kmem;
3910 		break;
3911 	case _TCP:
3912 		counter = &memcg->tcpmem;
3913 		break;
3914 	default:
3915 		BUG();
3916 	}
3917 
3918 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3919 	case RES_MAX_USAGE:
3920 		page_counter_reset_watermark(counter);
3921 		break;
3922 	case RES_FAILCNT:
3923 		counter->failcnt = 0;
3924 		break;
3925 	default:
3926 		BUG();
3927 	}
3928 
3929 	return nbytes;
3930 }
3931 
3932 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3933 					struct cftype *cft)
3934 {
3935 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3936 }
3937 
3938 #ifdef CONFIG_MMU
3939 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3940 					struct cftype *cft, u64 val)
3941 {
3942 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3943 
3944 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3945 		     "Please report your usecase to linux-mm@kvack.org if you "
3946 		     "depend on this functionality.\n");
3947 
3948 	if (val & ~MOVE_MASK)
3949 		return -EINVAL;
3950 
3951 	/*
3952 	 * No kind of locking is needed in here, because ->can_attach() will
3953 	 * check this value once in the beginning of the process, and then carry
3954 	 * on with stale data. This means that changes to this value will only
3955 	 * affect task migrations starting after the change.
3956 	 */
3957 	memcg->move_charge_at_immigrate = val;
3958 	return 0;
3959 }
3960 #else
3961 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3962 					struct cftype *cft, u64 val)
3963 {
3964 	return -ENOSYS;
3965 }
3966 #endif
3967 
3968 #ifdef CONFIG_NUMA
3969 
3970 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3971 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3972 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3973 
3974 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3975 				int nid, unsigned int lru_mask, bool tree)
3976 {
3977 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3978 	unsigned long nr = 0;
3979 	enum lru_list lru;
3980 
3981 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3982 
3983 	for_each_lru(lru) {
3984 		if (!(BIT(lru) & lru_mask))
3985 			continue;
3986 		if (tree)
3987 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3988 		else
3989 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3990 	}
3991 	return nr;
3992 }
3993 
3994 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3995 					     unsigned int lru_mask,
3996 					     bool tree)
3997 {
3998 	unsigned long nr = 0;
3999 	enum lru_list lru;
4000 
4001 	for_each_lru(lru) {
4002 		if (!(BIT(lru) & lru_mask))
4003 			continue;
4004 		if (tree)
4005 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4006 		else
4007 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4008 	}
4009 	return nr;
4010 }
4011 
4012 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4013 {
4014 	struct numa_stat {
4015 		const char *name;
4016 		unsigned int lru_mask;
4017 	};
4018 
4019 	static const struct numa_stat stats[] = {
4020 		{ "total", LRU_ALL },
4021 		{ "file", LRU_ALL_FILE },
4022 		{ "anon", LRU_ALL_ANON },
4023 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4024 	};
4025 	const struct numa_stat *stat;
4026 	int nid;
4027 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4028 
4029 	mem_cgroup_flush_stats();
4030 
4031 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4032 		seq_printf(m, "%s=%lu", stat->name,
4033 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4034 						   false));
4035 		for_each_node_state(nid, N_MEMORY)
4036 			seq_printf(m, " N%d=%lu", nid,
4037 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4038 							stat->lru_mask, false));
4039 		seq_putc(m, '\n');
4040 	}
4041 
4042 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4043 
4044 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4045 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4046 						   true));
4047 		for_each_node_state(nid, N_MEMORY)
4048 			seq_printf(m, " N%d=%lu", nid,
4049 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4050 							stat->lru_mask, true));
4051 		seq_putc(m, '\n');
4052 	}
4053 
4054 	return 0;
4055 }
4056 #endif /* CONFIG_NUMA */
4057 
4058 static const unsigned int memcg1_stats[] = {
4059 	NR_FILE_PAGES,
4060 	NR_ANON_MAPPED,
4061 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4062 	NR_ANON_THPS,
4063 #endif
4064 	NR_SHMEM,
4065 	NR_FILE_MAPPED,
4066 	NR_FILE_DIRTY,
4067 	NR_WRITEBACK,
4068 	WORKINGSET_REFAULT_ANON,
4069 	WORKINGSET_REFAULT_FILE,
4070 	MEMCG_SWAP,
4071 };
4072 
4073 static const char *const memcg1_stat_names[] = {
4074 	"cache",
4075 	"rss",
4076 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4077 	"rss_huge",
4078 #endif
4079 	"shmem",
4080 	"mapped_file",
4081 	"dirty",
4082 	"writeback",
4083 	"workingset_refault_anon",
4084 	"workingset_refault_file",
4085 	"swap",
4086 };
4087 
4088 /* Universal VM events cgroup1 shows, original sort order */
4089 static const unsigned int memcg1_events[] = {
4090 	PGPGIN,
4091 	PGPGOUT,
4092 	PGFAULT,
4093 	PGMAJFAULT,
4094 };
4095 
4096 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4097 {
4098 	unsigned long memory, memsw;
4099 	struct mem_cgroup *mi;
4100 	unsigned int i;
4101 
4102 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4103 
4104 	mem_cgroup_flush_stats();
4105 
4106 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4107 		unsigned long nr;
4108 
4109 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4110 			continue;
4111 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4112 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4113 			   nr * memcg_page_state_unit(memcg1_stats[i]));
4114 	}
4115 
4116 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4117 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4118 			       memcg_events_local(memcg, memcg1_events[i]));
4119 
4120 	for (i = 0; i < NR_LRU_LISTS; i++)
4121 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4122 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4123 			       PAGE_SIZE);
4124 
4125 	/* Hierarchical information */
4126 	memory = memsw = PAGE_COUNTER_MAX;
4127 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4128 		memory = min(memory, READ_ONCE(mi->memory.max));
4129 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4130 	}
4131 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4132 		       (u64)memory * PAGE_SIZE);
4133 	if (do_memsw_account())
4134 		seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4135 			       (u64)memsw * PAGE_SIZE);
4136 
4137 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4138 		unsigned long nr;
4139 
4140 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4141 			continue;
4142 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4143 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4144 			   (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4145 	}
4146 
4147 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4148 		seq_buf_printf(s, "total_%s %llu\n",
4149 			       vm_event_name(memcg1_events[i]),
4150 			       (u64)memcg_events(memcg, memcg1_events[i]));
4151 
4152 	for (i = 0; i < NR_LRU_LISTS; i++)
4153 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4154 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4155 			       PAGE_SIZE);
4156 
4157 #ifdef CONFIG_DEBUG_VM
4158 	{
4159 		pg_data_t *pgdat;
4160 		struct mem_cgroup_per_node *mz;
4161 		unsigned long anon_cost = 0;
4162 		unsigned long file_cost = 0;
4163 
4164 		for_each_online_pgdat(pgdat) {
4165 			mz = memcg->nodeinfo[pgdat->node_id];
4166 
4167 			anon_cost += mz->lruvec.anon_cost;
4168 			file_cost += mz->lruvec.file_cost;
4169 		}
4170 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4171 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
4172 	}
4173 #endif
4174 }
4175 
4176 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4177 				      struct cftype *cft)
4178 {
4179 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4180 
4181 	return mem_cgroup_swappiness(memcg);
4182 }
4183 
4184 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4185 				       struct cftype *cft, u64 val)
4186 {
4187 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4188 
4189 	if (val > 200)
4190 		return -EINVAL;
4191 
4192 	if (!mem_cgroup_is_root(memcg))
4193 		WRITE_ONCE(memcg->swappiness, val);
4194 	else
4195 		WRITE_ONCE(vm_swappiness, val);
4196 
4197 	return 0;
4198 }
4199 
4200 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4201 {
4202 	struct mem_cgroup_threshold_ary *t;
4203 	unsigned long usage;
4204 	int i;
4205 
4206 	rcu_read_lock();
4207 	if (!swap)
4208 		t = rcu_dereference(memcg->thresholds.primary);
4209 	else
4210 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4211 
4212 	if (!t)
4213 		goto unlock;
4214 
4215 	usage = mem_cgroup_usage(memcg, swap);
4216 
4217 	/*
4218 	 * current_threshold points to threshold just below or equal to usage.
4219 	 * If it's not true, a threshold was crossed after last
4220 	 * call of __mem_cgroup_threshold().
4221 	 */
4222 	i = t->current_threshold;
4223 
4224 	/*
4225 	 * Iterate backward over array of thresholds starting from
4226 	 * current_threshold and check if a threshold is crossed.
4227 	 * If none of thresholds below usage is crossed, we read
4228 	 * only one element of the array here.
4229 	 */
4230 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4231 		eventfd_signal(t->entries[i].eventfd, 1);
4232 
4233 	/* i = current_threshold + 1 */
4234 	i++;
4235 
4236 	/*
4237 	 * Iterate forward over array of thresholds starting from
4238 	 * current_threshold+1 and check if a threshold is crossed.
4239 	 * If none of thresholds above usage is crossed, we read
4240 	 * only one element of the array here.
4241 	 */
4242 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4243 		eventfd_signal(t->entries[i].eventfd, 1);
4244 
4245 	/* Update current_threshold */
4246 	t->current_threshold = i - 1;
4247 unlock:
4248 	rcu_read_unlock();
4249 }
4250 
4251 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4252 {
4253 	while (memcg) {
4254 		__mem_cgroup_threshold(memcg, false);
4255 		if (do_memsw_account())
4256 			__mem_cgroup_threshold(memcg, true);
4257 
4258 		memcg = parent_mem_cgroup(memcg);
4259 	}
4260 }
4261 
4262 static int compare_thresholds(const void *a, const void *b)
4263 {
4264 	const struct mem_cgroup_threshold *_a = a;
4265 	const struct mem_cgroup_threshold *_b = b;
4266 
4267 	if (_a->threshold > _b->threshold)
4268 		return 1;
4269 
4270 	if (_a->threshold < _b->threshold)
4271 		return -1;
4272 
4273 	return 0;
4274 }
4275 
4276 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4277 {
4278 	struct mem_cgroup_eventfd_list *ev;
4279 
4280 	spin_lock(&memcg_oom_lock);
4281 
4282 	list_for_each_entry(ev, &memcg->oom_notify, list)
4283 		eventfd_signal(ev->eventfd, 1);
4284 
4285 	spin_unlock(&memcg_oom_lock);
4286 	return 0;
4287 }
4288 
4289 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4290 {
4291 	struct mem_cgroup *iter;
4292 
4293 	for_each_mem_cgroup_tree(iter, memcg)
4294 		mem_cgroup_oom_notify_cb(iter);
4295 }
4296 
4297 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4298 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4299 {
4300 	struct mem_cgroup_thresholds *thresholds;
4301 	struct mem_cgroup_threshold_ary *new;
4302 	unsigned long threshold;
4303 	unsigned long usage;
4304 	int i, size, ret;
4305 
4306 	ret = page_counter_memparse(args, "-1", &threshold);
4307 	if (ret)
4308 		return ret;
4309 
4310 	mutex_lock(&memcg->thresholds_lock);
4311 
4312 	if (type == _MEM) {
4313 		thresholds = &memcg->thresholds;
4314 		usage = mem_cgroup_usage(memcg, false);
4315 	} else if (type == _MEMSWAP) {
4316 		thresholds = &memcg->memsw_thresholds;
4317 		usage = mem_cgroup_usage(memcg, true);
4318 	} else
4319 		BUG();
4320 
4321 	/* Check if a threshold crossed before adding a new one */
4322 	if (thresholds->primary)
4323 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4324 
4325 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4326 
4327 	/* Allocate memory for new array of thresholds */
4328 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4329 	if (!new) {
4330 		ret = -ENOMEM;
4331 		goto unlock;
4332 	}
4333 	new->size = size;
4334 
4335 	/* Copy thresholds (if any) to new array */
4336 	if (thresholds->primary)
4337 		memcpy(new->entries, thresholds->primary->entries,
4338 		       flex_array_size(new, entries, size - 1));
4339 
4340 	/* Add new threshold */
4341 	new->entries[size - 1].eventfd = eventfd;
4342 	new->entries[size - 1].threshold = threshold;
4343 
4344 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4345 	sort(new->entries, size, sizeof(*new->entries),
4346 			compare_thresholds, NULL);
4347 
4348 	/* Find current threshold */
4349 	new->current_threshold = -1;
4350 	for (i = 0; i < size; i++) {
4351 		if (new->entries[i].threshold <= usage) {
4352 			/*
4353 			 * new->current_threshold will not be used until
4354 			 * rcu_assign_pointer(), so it's safe to increment
4355 			 * it here.
4356 			 */
4357 			++new->current_threshold;
4358 		} else
4359 			break;
4360 	}
4361 
4362 	/* Free old spare buffer and save old primary buffer as spare */
4363 	kfree(thresholds->spare);
4364 	thresholds->spare = thresholds->primary;
4365 
4366 	rcu_assign_pointer(thresholds->primary, new);
4367 
4368 	/* To be sure that nobody uses thresholds */
4369 	synchronize_rcu();
4370 
4371 unlock:
4372 	mutex_unlock(&memcg->thresholds_lock);
4373 
4374 	return ret;
4375 }
4376 
4377 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4378 	struct eventfd_ctx *eventfd, const char *args)
4379 {
4380 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4381 }
4382 
4383 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4384 	struct eventfd_ctx *eventfd, const char *args)
4385 {
4386 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4387 }
4388 
4389 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4390 	struct eventfd_ctx *eventfd, enum res_type type)
4391 {
4392 	struct mem_cgroup_thresholds *thresholds;
4393 	struct mem_cgroup_threshold_ary *new;
4394 	unsigned long usage;
4395 	int i, j, size, entries;
4396 
4397 	mutex_lock(&memcg->thresholds_lock);
4398 
4399 	if (type == _MEM) {
4400 		thresholds = &memcg->thresholds;
4401 		usage = mem_cgroup_usage(memcg, false);
4402 	} else if (type == _MEMSWAP) {
4403 		thresholds = &memcg->memsw_thresholds;
4404 		usage = mem_cgroup_usage(memcg, true);
4405 	} else
4406 		BUG();
4407 
4408 	if (!thresholds->primary)
4409 		goto unlock;
4410 
4411 	/* Check if a threshold crossed before removing */
4412 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4413 
4414 	/* Calculate new number of threshold */
4415 	size = entries = 0;
4416 	for (i = 0; i < thresholds->primary->size; i++) {
4417 		if (thresholds->primary->entries[i].eventfd != eventfd)
4418 			size++;
4419 		else
4420 			entries++;
4421 	}
4422 
4423 	new = thresholds->spare;
4424 
4425 	/* If no items related to eventfd have been cleared, nothing to do */
4426 	if (!entries)
4427 		goto unlock;
4428 
4429 	/* Set thresholds array to NULL if we don't have thresholds */
4430 	if (!size) {
4431 		kfree(new);
4432 		new = NULL;
4433 		goto swap_buffers;
4434 	}
4435 
4436 	new->size = size;
4437 
4438 	/* Copy thresholds and find current threshold */
4439 	new->current_threshold = -1;
4440 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4441 		if (thresholds->primary->entries[i].eventfd == eventfd)
4442 			continue;
4443 
4444 		new->entries[j] = thresholds->primary->entries[i];
4445 		if (new->entries[j].threshold <= usage) {
4446 			/*
4447 			 * new->current_threshold will not be used
4448 			 * until rcu_assign_pointer(), so it's safe to increment
4449 			 * it here.
4450 			 */
4451 			++new->current_threshold;
4452 		}
4453 		j++;
4454 	}
4455 
4456 swap_buffers:
4457 	/* Swap primary and spare array */
4458 	thresholds->spare = thresholds->primary;
4459 
4460 	rcu_assign_pointer(thresholds->primary, new);
4461 
4462 	/* To be sure that nobody uses thresholds */
4463 	synchronize_rcu();
4464 
4465 	/* If all events are unregistered, free the spare array */
4466 	if (!new) {
4467 		kfree(thresholds->spare);
4468 		thresholds->spare = NULL;
4469 	}
4470 unlock:
4471 	mutex_unlock(&memcg->thresholds_lock);
4472 }
4473 
4474 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4475 	struct eventfd_ctx *eventfd)
4476 {
4477 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4478 }
4479 
4480 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4481 	struct eventfd_ctx *eventfd)
4482 {
4483 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4484 }
4485 
4486 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4487 	struct eventfd_ctx *eventfd, const char *args)
4488 {
4489 	struct mem_cgroup_eventfd_list *event;
4490 
4491 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4492 	if (!event)
4493 		return -ENOMEM;
4494 
4495 	spin_lock(&memcg_oom_lock);
4496 
4497 	event->eventfd = eventfd;
4498 	list_add(&event->list, &memcg->oom_notify);
4499 
4500 	/* already in OOM ? */
4501 	if (memcg->under_oom)
4502 		eventfd_signal(eventfd, 1);
4503 	spin_unlock(&memcg_oom_lock);
4504 
4505 	return 0;
4506 }
4507 
4508 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4509 	struct eventfd_ctx *eventfd)
4510 {
4511 	struct mem_cgroup_eventfd_list *ev, *tmp;
4512 
4513 	spin_lock(&memcg_oom_lock);
4514 
4515 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4516 		if (ev->eventfd == eventfd) {
4517 			list_del(&ev->list);
4518 			kfree(ev);
4519 		}
4520 	}
4521 
4522 	spin_unlock(&memcg_oom_lock);
4523 }
4524 
4525 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4526 {
4527 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4528 
4529 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4530 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4531 	seq_printf(sf, "oom_kill %lu\n",
4532 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4533 	return 0;
4534 }
4535 
4536 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4537 	struct cftype *cft, u64 val)
4538 {
4539 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4540 
4541 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4542 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4543 		return -EINVAL;
4544 
4545 	WRITE_ONCE(memcg->oom_kill_disable, val);
4546 	if (!val)
4547 		memcg_oom_recover(memcg);
4548 
4549 	return 0;
4550 }
4551 
4552 #ifdef CONFIG_CGROUP_WRITEBACK
4553 
4554 #include <trace/events/writeback.h>
4555 
4556 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4557 {
4558 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4559 }
4560 
4561 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4562 {
4563 	wb_domain_exit(&memcg->cgwb_domain);
4564 }
4565 
4566 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4567 {
4568 	wb_domain_size_changed(&memcg->cgwb_domain);
4569 }
4570 
4571 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4572 {
4573 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4574 
4575 	if (!memcg->css.parent)
4576 		return NULL;
4577 
4578 	return &memcg->cgwb_domain;
4579 }
4580 
4581 /**
4582  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4583  * @wb: bdi_writeback in question
4584  * @pfilepages: out parameter for number of file pages
4585  * @pheadroom: out parameter for number of allocatable pages according to memcg
4586  * @pdirty: out parameter for number of dirty pages
4587  * @pwriteback: out parameter for number of pages under writeback
4588  *
4589  * Determine the numbers of file, headroom, dirty, and writeback pages in
4590  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4591  * is a bit more involved.
4592  *
4593  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4594  * headroom is calculated as the lowest headroom of itself and the
4595  * ancestors.  Note that this doesn't consider the actual amount of
4596  * available memory in the system.  The caller should further cap
4597  * *@pheadroom accordingly.
4598  */
4599 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4600 			 unsigned long *pheadroom, unsigned long *pdirty,
4601 			 unsigned long *pwriteback)
4602 {
4603 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4604 	struct mem_cgroup *parent;
4605 
4606 	mem_cgroup_flush_stats();
4607 
4608 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4609 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4610 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4611 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4612 
4613 	*pheadroom = PAGE_COUNTER_MAX;
4614 	while ((parent = parent_mem_cgroup(memcg))) {
4615 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4616 					    READ_ONCE(memcg->memory.high));
4617 		unsigned long used = page_counter_read(&memcg->memory);
4618 
4619 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4620 		memcg = parent;
4621 	}
4622 }
4623 
4624 /*
4625  * Foreign dirty flushing
4626  *
4627  * There's an inherent mismatch between memcg and writeback.  The former
4628  * tracks ownership per-page while the latter per-inode.  This was a
4629  * deliberate design decision because honoring per-page ownership in the
4630  * writeback path is complicated, may lead to higher CPU and IO overheads
4631  * and deemed unnecessary given that write-sharing an inode across
4632  * different cgroups isn't a common use-case.
4633  *
4634  * Combined with inode majority-writer ownership switching, this works well
4635  * enough in most cases but there are some pathological cases.  For
4636  * example, let's say there are two cgroups A and B which keep writing to
4637  * different but confined parts of the same inode.  B owns the inode and
4638  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4639  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4640  * triggering background writeback.  A will be slowed down without a way to
4641  * make writeback of the dirty pages happen.
4642  *
4643  * Conditions like the above can lead to a cgroup getting repeatedly and
4644  * severely throttled after making some progress after each
4645  * dirty_expire_interval while the underlying IO device is almost
4646  * completely idle.
4647  *
4648  * Solving this problem completely requires matching the ownership tracking
4649  * granularities between memcg and writeback in either direction.  However,
4650  * the more egregious behaviors can be avoided by simply remembering the
4651  * most recent foreign dirtying events and initiating remote flushes on
4652  * them when local writeback isn't enough to keep the memory clean enough.
4653  *
4654  * The following two functions implement such mechanism.  When a foreign
4655  * page - a page whose memcg and writeback ownerships don't match - is
4656  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4657  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4658  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4659  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4660  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4661  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4662  * limited to MEMCG_CGWB_FRN_CNT.
4663  *
4664  * The mechanism only remembers IDs and doesn't hold any object references.
4665  * As being wrong occasionally doesn't matter, updates and accesses to the
4666  * records are lockless and racy.
4667  */
4668 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4669 					     struct bdi_writeback *wb)
4670 {
4671 	struct mem_cgroup *memcg = folio_memcg(folio);
4672 	struct memcg_cgwb_frn *frn;
4673 	u64 now = get_jiffies_64();
4674 	u64 oldest_at = now;
4675 	int oldest = -1;
4676 	int i;
4677 
4678 	trace_track_foreign_dirty(folio, wb);
4679 
4680 	/*
4681 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4682 	 * using it.  If not replace the oldest one which isn't being
4683 	 * written out.
4684 	 */
4685 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4686 		frn = &memcg->cgwb_frn[i];
4687 		if (frn->bdi_id == wb->bdi->id &&
4688 		    frn->memcg_id == wb->memcg_css->id)
4689 			break;
4690 		if (time_before64(frn->at, oldest_at) &&
4691 		    atomic_read(&frn->done.cnt) == 1) {
4692 			oldest = i;
4693 			oldest_at = frn->at;
4694 		}
4695 	}
4696 
4697 	if (i < MEMCG_CGWB_FRN_CNT) {
4698 		/*
4699 		 * Re-using an existing one.  Update timestamp lazily to
4700 		 * avoid making the cacheline hot.  We want them to be
4701 		 * reasonably up-to-date and significantly shorter than
4702 		 * dirty_expire_interval as that's what expires the record.
4703 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4704 		 */
4705 		unsigned long update_intv =
4706 			min_t(unsigned long, HZ,
4707 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4708 
4709 		if (time_before64(frn->at, now - update_intv))
4710 			frn->at = now;
4711 	} else if (oldest >= 0) {
4712 		/* replace the oldest free one */
4713 		frn = &memcg->cgwb_frn[oldest];
4714 		frn->bdi_id = wb->bdi->id;
4715 		frn->memcg_id = wb->memcg_css->id;
4716 		frn->at = now;
4717 	}
4718 }
4719 
4720 /* issue foreign writeback flushes for recorded foreign dirtying events */
4721 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4722 {
4723 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4724 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4725 	u64 now = jiffies_64;
4726 	int i;
4727 
4728 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4729 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4730 
4731 		/*
4732 		 * If the record is older than dirty_expire_interval,
4733 		 * writeback on it has already started.  No need to kick it
4734 		 * off again.  Also, don't start a new one if there's
4735 		 * already one in flight.
4736 		 */
4737 		if (time_after64(frn->at, now - intv) &&
4738 		    atomic_read(&frn->done.cnt) == 1) {
4739 			frn->at = 0;
4740 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4741 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4742 					       WB_REASON_FOREIGN_FLUSH,
4743 					       &frn->done);
4744 		}
4745 	}
4746 }
4747 
4748 #else	/* CONFIG_CGROUP_WRITEBACK */
4749 
4750 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4751 {
4752 	return 0;
4753 }
4754 
4755 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4756 {
4757 }
4758 
4759 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4760 {
4761 }
4762 
4763 #endif	/* CONFIG_CGROUP_WRITEBACK */
4764 
4765 /*
4766  * DO NOT USE IN NEW FILES.
4767  *
4768  * "cgroup.event_control" implementation.
4769  *
4770  * This is way over-engineered.  It tries to support fully configurable
4771  * events for each user.  Such level of flexibility is completely
4772  * unnecessary especially in the light of the planned unified hierarchy.
4773  *
4774  * Please deprecate this and replace with something simpler if at all
4775  * possible.
4776  */
4777 
4778 /*
4779  * Unregister event and free resources.
4780  *
4781  * Gets called from workqueue.
4782  */
4783 static void memcg_event_remove(struct work_struct *work)
4784 {
4785 	struct mem_cgroup_event *event =
4786 		container_of(work, struct mem_cgroup_event, remove);
4787 	struct mem_cgroup *memcg = event->memcg;
4788 
4789 	remove_wait_queue(event->wqh, &event->wait);
4790 
4791 	event->unregister_event(memcg, event->eventfd);
4792 
4793 	/* Notify userspace the event is going away. */
4794 	eventfd_signal(event->eventfd, 1);
4795 
4796 	eventfd_ctx_put(event->eventfd);
4797 	kfree(event);
4798 	css_put(&memcg->css);
4799 }
4800 
4801 /*
4802  * Gets called on EPOLLHUP on eventfd when user closes it.
4803  *
4804  * Called with wqh->lock held and interrupts disabled.
4805  */
4806 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4807 			    int sync, void *key)
4808 {
4809 	struct mem_cgroup_event *event =
4810 		container_of(wait, struct mem_cgroup_event, wait);
4811 	struct mem_cgroup *memcg = event->memcg;
4812 	__poll_t flags = key_to_poll(key);
4813 
4814 	if (flags & EPOLLHUP) {
4815 		/*
4816 		 * If the event has been detached at cgroup removal, we
4817 		 * can simply return knowing the other side will cleanup
4818 		 * for us.
4819 		 *
4820 		 * We can't race against event freeing since the other
4821 		 * side will require wqh->lock via remove_wait_queue(),
4822 		 * which we hold.
4823 		 */
4824 		spin_lock(&memcg->event_list_lock);
4825 		if (!list_empty(&event->list)) {
4826 			list_del_init(&event->list);
4827 			/*
4828 			 * We are in atomic context, but cgroup_event_remove()
4829 			 * may sleep, so we have to call it in workqueue.
4830 			 */
4831 			schedule_work(&event->remove);
4832 		}
4833 		spin_unlock(&memcg->event_list_lock);
4834 	}
4835 
4836 	return 0;
4837 }
4838 
4839 static void memcg_event_ptable_queue_proc(struct file *file,
4840 		wait_queue_head_t *wqh, poll_table *pt)
4841 {
4842 	struct mem_cgroup_event *event =
4843 		container_of(pt, struct mem_cgroup_event, pt);
4844 
4845 	event->wqh = wqh;
4846 	add_wait_queue(wqh, &event->wait);
4847 }
4848 
4849 /*
4850  * DO NOT USE IN NEW FILES.
4851  *
4852  * Parse input and register new cgroup event handler.
4853  *
4854  * Input must be in format '<event_fd> <control_fd> <args>'.
4855  * Interpretation of args is defined by control file implementation.
4856  */
4857 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4858 					 char *buf, size_t nbytes, loff_t off)
4859 {
4860 	struct cgroup_subsys_state *css = of_css(of);
4861 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4862 	struct mem_cgroup_event *event;
4863 	struct cgroup_subsys_state *cfile_css;
4864 	unsigned int efd, cfd;
4865 	struct fd efile;
4866 	struct fd cfile;
4867 	struct dentry *cdentry;
4868 	const char *name;
4869 	char *endp;
4870 	int ret;
4871 
4872 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4873 		return -EOPNOTSUPP;
4874 
4875 	buf = strstrip(buf);
4876 
4877 	efd = simple_strtoul(buf, &endp, 10);
4878 	if (*endp != ' ')
4879 		return -EINVAL;
4880 	buf = endp + 1;
4881 
4882 	cfd = simple_strtoul(buf, &endp, 10);
4883 	if ((*endp != ' ') && (*endp != '\0'))
4884 		return -EINVAL;
4885 	buf = endp + 1;
4886 
4887 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4888 	if (!event)
4889 		return -ENOMEM;
4890 
4891 	event->memcg = memcg;
4892 	INIT_LIST_HEAD(&event->list);
4893 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4894 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4895 	INIT_WORK(&event->remove, memcg_event_remove);
4896 
4897 	efile = fdget(efd);
4898 	if (!efile.file) {
4899 		ret = -EBADF;
4900 		goto out_kfree;
4901 	}
4902 
4903 	event->eventfd = eventfd_ctx_fileget(efile.file);
4904 	if (IS_ERR(event->eventfd)) {
4905 		ret = PTR_ERR(event->eventfd);
4906 		goto out_put_efile;
4907 	}
4908 
4909 	cfile = fdget(cfd);
4910 	if (!cfile.file) {
4911 		ret = -EBADF;
4912 		goto out_put_eventfd;
4913 	}
4914 
4915 	/* the process need read permission on control file */
4916 	/* AV: shouldn't we check that it's been opened for read instead? */
4917 	ret = file_permission(cfile.file, MAY_READ);
4918 	if (ret < 0)
4919 		goto out_put_cfile;
4920 
4921 	/*
4922 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4923 	 * file can't be renamed, it's safe to access its name afterwards.
4924 	 */
4925 	cdentry = cfile.file->f_path.dentry;
4926 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4927 		ret = -EINVAL;
4928 		goto out_put_cfile;
4929 	}
4930 
4931 	/*
4932 	 * Determine the event callbacks and set them in @event.  This used
4933 	 * to be done via struct cftype but cgroup core no longer knows
4934 	 * about these events.  The following is crude but the whole thing
4935 	 * is for compatibility anyway.
4936 	 *
4937 	 * DO NOT ADD NEW FILES.
4938 	 */
4939 	name = cdentry->d_name.name;
4940 
4941 	if (!strcmp(name, "memory.usage_in_bytes")) {
4942 		event->register_event = mem_cgroup_usage_register_event;
4943 		event->unregister_event = mem_cgroup_usage_unregister_event;
4944 	} else if (!strcmp(name, "memory.oom_control")) {
4945 		event->register_event = mem_cgroup_oom_register_event;
4946 		event->unregister_event = mem_cgroup_oom_unregister_event;
4947 	} else if (!strcmp(name, "memory.pressure_level")) {
4948 		event->register_event = vmpressure_register_event;
4949 		event->unregister_event = vmpressure_unregister_event;
4950 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4951 		event->register_event = memsw_cgroup_usage_register_event;
4952 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4953 	} else {
4954 		ret = -EINVAL;
4955 		goto out_put_cfile;
4956 	}
4957 
4958 	/*
4959 	 * Verify @cfile should belong to @css.  Also, remaining events are
4960 	 * automatically removed on cgroup destruction but the removal is
4961 	 * asynchronous, so take an extra ref on @css.
4962 	 */
4963 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4964 					       &memory_cgrp_subsys);
4965 	ret = -EINVAL;
4966 	if (IS_ERR(cfile_css))
4967 		goto out_put_cfile;
4968 	if (cfile_css != css) {
4969 		css_put(cfile_css);
4970 		goto out_put_cfile;
4971 	}
4972 
4973 	ret = event->register_event(memcg, event->eventfd, buf);
4974 	if (ret)
4975 		goto out_put_css;
4976 
4977 	vfs_poll(efile.file, &event->pt);
4978 
4979 	spin_lock_irq(&memcg->event_list_lock);
4980 	list_add(&event->list, &memcg->event_list);
4981 	spin_unlock_irq(&memcg->event_list_lock);
4982 
4983 	fdput(cfile);
4984 	fdput(efile);
4985 
4986 	return nbytes;
4987 
4988 out_put_css:
4989 	css_put(css);
4990 out_put_cfile:
4991 	fdput(cfile);
4992 out_put_eventfd:
4993 	eventfd_ctx_put(event->eventfd);
4994 out_put_efile:
4995 	fdput(efile);
4996 out_kfree:
4997 	kfree(event);
4998 
4999 	return ret;
5000 }
5001 
5002 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5003 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5004 {
5005 	/*
5006 	 * Deprecated.
5007 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5008 	 */
5009 	return 0;
5010 }
5011 #endif
5012 
5013 static int memory_stat_show(struct seq_file *m, void *v);
5014 
5015 static struct cftype mem_cgroup_legacy_files[] = {
5016 	{
5017 		.name = "usage_in_bytes",
5018 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5019 		.read_u64 = mem_cgroup_read_u64,
5020 	},
5021 	{
5022 		.name = "max_usage_in_bytes",
5023 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5024 		.write = mem_cgroup_reset,
5025 		.read_u64 = mem_cgroup_read_u64,
5026 	},
5027 	{
5028 		.name = "limit_in_bytes",
5029 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5030 		.write = mem_cgroup_write,
5031 		.read_u64 = mem_cgroup_read_u64,
5032 	},
5033 	{
5034 		.name = "soft_limit_in_bytes",
5035 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5036 		.write = mem_cgroup_write,
5037 		.read_u64 = mem_cgroup_read_u64,
5038 	},
5039 	{
5040 		.name = "failcnt",
5041 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5042 		.write = mem_cgroup_reset,
5043 		.read_u64 = mem_cgroup_read_u64,
5044 	},
5045 	{
5046 		.name = "stat",
5047 		.seq_show = memory_stat_show,
5048 	},
5049 	{
5050 		.name = "force_empty",
5051 		.write = mem_cgroup_force_empty_write,
5052 	},
5053 	{
5054 		.name = "use_hierarchy",
5055 		.write_u64 = mem_cgroup_hierarchy_write,
5056 		.read_u64 = mem_cgroup_hierarchy_read,
5057 	},
5058 	{
5059 		.name = "cgroup.event_control",		/* XXX: for compat */
5060 		.write = memcg_write_event_control,
5061 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5062 	},
5063 	{
5064 		.name = "swappiness",
5065 		.read_u64 = mem_cgroup_swappiness_read,
5066 		.write_u64 = mem_cgroup_swappiness_write,
5067 	},
5068 	{
5069 		.name = "move_charge_at_immigrate",
5070 		.read_u64 = mem_cgroup_move_charge_read,
5071 		.write_u64 = mem_cgroup_move_charge_write,
5072 	},
5073 	{
5074 		.name = "oom_control",
5075 		.seq_show = mem_cgroup_oom_control_read,
5076 		.write_u64 = mem_cgroup_oom_control_write,
5077 	},
5078 	{
5079 		.name = "pressure_level",
5080 		.seq_show = mem_cgroup_dummy_seq_show,
5081 	},
5082 #ifdef CONFIG_NUMA
5083 	{
5084 		.name = "numa_stat",
5085 		.seq_show = memcg_numa_stat_show,
5086 	},
5087 #endif
5088 	{
5089 		.name = "kmem.limit_in_bytes",
5090 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5091 		.write = mem_cgroup_write,
5092 		.read_u64 = mem_cgroup_read_u64,
5093 	},
5094 	{
5095 		.name = "kmem.usage_in_bytes",
5096 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5097 		.read_u64 = mem_cgroup_read_u64,
5098 	},
5099 	{
5100 		.name = "kmem.failcnt",
5101 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5102 		.write = mem_cgroup_reset,
5103 		.read_u64 = mem_cgroup_read_u64,
5104 	},
5105 	{
5106 		.name = "kmem.max_usage_in_bytes",
5107 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5108 		.write = mem_cgroup_reset,
5109 		.read_u64 = mem_cgroup_read_u64,
5110 	},
5111 #if defined(CONFIG_MEMCG_KMEM) && \
5112 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5113 	{
5114 		.name = "kmem.slabinfo",
5115 		.seq_show = mem_cgroup_slab_show,
5116 	},
5117 #endif
5118 	{
5119 		.name = "kmem.tcp.limit_in_bytes",
5120 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5121 		.write = mem_cgroup_write,
5122 		.read_u64 = mem_cgroup_read_u64,
5123 	},
5124 	{
5125 		.name = "kmem.tcp.usage_in_bytes",
5126 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5127 		.read_u64 = mem_cgroup_read_u64,
5128 	},
5129 	{
5130 		.name = "kmem.tcp.failcnt",
5131 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5132 		.write = mem_cgroup_reset,
5133 		.read_u64 = mem_cgroup_read_u64,
5134 	},
5135 	{
5136 		.name = "kmem.tcp.max_usage_in_bytes",
5137 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5138 		.write = mem_cgroup_reset,
5139 		.read_u64 = mem_cgroup_read_u64,
5140 	},
5141 	{ },	/* terminate */
5142 };
5143 
5144 /*
5145  * Private memory cgroup IDR
5146  *
5147  * Swap-out records and page cache shadow entries need to store memcg
5148  * references in constrained space, so we maintain an ID space that is
5149  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5150  * memory-controlled cgroups to 64k.
5151  *
5152  * However, there usually are many references to the offline CSS after
5153  * the cgroup has been destroyed, such as page cache or reclaimable
5154  * slab objects, that don't need to hang on to the ID. We want to keep
5155  * those dead CSS from occupying IDs, or we might quickly exhaust the
5156  * relatively small ID space and prevent the creation of new cgroups
5157  * even when there are much fewer than 64k cgroups - possibly none.
5158  *
5159  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5160  * be freed and recycled when it's no longer needed, which is usually
5161  * when the CSS is offlined.
5162  *
5163  * The only exception to that are records of swapped out tmpfs/shmem
5164  * pages that need to be attributed to live ancestors on swapin. But
5165  * those references are manageable from userspace.
5166  */
5167 
5168 static DEFINE_IDR(mem_cgroup_idr);
5169 
5170 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5171 {
5172 	if (memcg->id.id > 0) {
5173 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5174 		memcg->id.id = 0;
5175 	}
5176 }
5177 
5178 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5179 						  unsigned int n)
5180 {
5181 	refcount_add(n, &memcg->id.ref);
5182 }
5183 
5184 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5185 {
5186 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5187 		mem_cgroup_id_remove(memcg);
5188 
5189 		/* Memcg ID pins CSS */
5190 		css_put(&memcg->css);
5191 	}
5192 }
5193 
5194 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5195 {
5196 	mem_cgroup_id_put_many(memcg, 1);
5197 }
5198 
5199 /**
5200  * mem_cgroup_from_id - look up a memcg from a memcg id
5201  * @id: the memcg id to look up
5202  *
5203  * Caller must hold rcu_read_lock().
5204  */
5205 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5206 {
5207 	WARN_ON_ONCE(!rcu_read_lock_held());
5208 	return idr_find(&mem_cgroup_idr, id);
5209 }
5210 
5211 #ifdef CONFIG_SHRINKER_DEBUG
5212 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5213 {
5214 	struct cgroup *cgrp;
5215 	struct cgroup_subsys_state *css;
5216 	struct mem_cgroup *memcg;
5217 
5218 	cgrp = cgroup_get_from_id(ino);
5219 	if (IS_ERR(cgrp))
5220 		return ERR_CAST(cgrp);
5221 
5222 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5223 	if (css)
5224 		memcg = container_of(css, struct mem_cgroup, css);
5225 	else
5226 		memcg = ERR_PTR(-ENOENT);
5227 
5228 	cgroup_put(cgrp);
5229 
5230 	return memcg;
5231 }
5232 #endif
5233 
5234 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5235 {
5236 	struct mem_cgroup_per_node *pn;
5237 
5238 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5239 	if (!pn)
5240 		return 1;
5241 
5242 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5243 						   GFP_KERNEL_ACCOUNT);
5244 	if (!pn->lruvec_stats_percpu) {
5245 		kfree(pn);
5246 		return 1;
5247 	}
5248 
5249 	lruvec_init(&pn->lruvec);
5250 	pn->memcg = memcg;
5251 
5252 	memcg->nodeinfo[node] = pn;
5253 	return 0;
5254 }
5255 
5256 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5257 {
5258 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5259 
5260 	if (!pn)
5261 		return;
5262 
5263 	free_percpu(pn->lruvec_stats_percpu);
5264 	kfree(pn);
5265 }
5266 
5267 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5268 {
5269 	int node;
5270 
5271 	for_each_node(node)
5272 		free_mem_cgroup_per_node_info(memcg, node);
5273 	kfree(memcg->vmstats);
5274 	free_percpu(memcg->vmstats_percpu);
5275 	kfree(memcg);
5276 }
5277 
5278 static void mem_cgroup_free(struct mem_cgroup *memcg)
5279 {
5280 	lru_gen_exit_memcg(memcg);
5281 	memcg_wb_domain_exit(memcg);
5282 	__mem_cgroup_free(memcg);
5283 }
5284 
5285 static struct mem_cgroup *mem_cgroup_alloc(void)
5286 {
5287 	struct mem_cgroup *memcg;
5288 	int node;
5289 	int __maybe_unused i;
5290 	long error = -ENOMEM;
5291 
5292 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5293 	if (!memcg)
5294 		return ERR_PTR(error);
5295 
5296 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5297 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5298 	if (memcg->id.id < 0) {
5299 		error = memcg->id.id;
5300 		goto fail;
5301 	}
5302 
5303 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5304 	if (!memcg->vmstats)
5305 		goto fail;
5306 
5307 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5308 						 GFP_KERNEL_ACCOUNT);
5309 	if (!memcg->vmstats_percpu)
5310 		goto fail;
5311 
5312 	for_each_node(node)
5313 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5314 			goto fail;
5315 
5316 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5317 		goto fail;
5318 
5319 	INIT_WORK(&memcg->high_work, high_work_func);
5320 	INIT_LIST_HEAD(&memcg->oom_notify);
5321 	mutex_init(&memcg->thresholds_lock);
5322 	spin_lock_init(&memcg->move_lock);
5323 	vmpressure_init(&memcg->vmpressure);
5324 	INIT_LIST_HEAD(&memcg->event_list);
5325 	spin_lock_init(&memcg->event_list_lock);
5326 	memcg->socket_pressure = jiffies;
5327 #ifdef CONFIG_MEMCG_KMEM
5328 	memcg->kmemcg_id = -1;
5329 	INIT_LIST_HEAD(&memcg->objcg_list);
5330 #endif
5331 #ifdef CONFIG_CGROUP_WRITEBACK
5332 	INIT_LIST_HEAD(&memcg->cgwb_list);
5333 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5334 		memcg->cgwb_frn[i].done =
5335 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5336 #endif
5337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5338 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5339 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5340 	memcg->deferred_split_queue.split_queue_len = 0;
5341 #endif
5342 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5343 	lru_gen_init_memcg(memcg);
5344 	return memcg;
5345 fail:
5346 	mem_cgroup_id_remove(memcg);
5347 	__mem_cgroup_free(memcg);
5348 	return ERR_PTR(error);
5349 }
5350 
5351 static struct cgroup_subsys_state * __ref
5352 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5353 {
5354 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5355 	struct mem_cgroup *memcg, *old_memcg;
5356 
5357 	old_memcg = set_active_memcg(parent);
5358 	memcg = mem_cgroup_alloc();
5359 	set_active_memcg(old_memcg);
5360 	if (IS_ERR(memcg))
5361 		return ERR_CAST(memcg);
5362 
5363 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5364 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5365 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5366 	memcg->zswap_max = PAGE_COUNTER_MAX;
5367 #endif
5368 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5369 	if (parent) {
5370 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5371 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5372 
5373 		page_counter_init(&memcg->memory, &parent->memory);
5374 		page_counter_init(&memcg->swap, &parent->swap);
5375 		page_counter_init(&memcg->kmem, &parent->kmem);
5376 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5377 	} else {
5378 		init_memcg_events();
5379 		page_counter_init(&memcg->memory, NULL);
5380 		page_counter_init(&memcg->swap, NULL);
5381 		page_counter_init(&memcg->kmem, NULL);
5382 		page_counter_init(&memcg->tcpmem, NULL);
5383 
5384 		root_mem_cgroup = memcg;
5385 		return &memcg->css;
5386 	}
5387 
5388 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5389 		static_branch_inc(&memcg_sockets_enabled_key);
5390 
5391 #if defined(CONFIG_MEMCG_KMEM)
5392 	if (!cgroup_memory_nobpf)
5393 		static_branch_inc(&memcg_bpf_enabled_key);
5394 #endif
5395 
5396 	return &memcg->css;
5397 }
5398 
5399 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5400 {
5401 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402 
5403 	if (memcg_online_kmem(memcg))
5404 		goto remove_id;
5405 
5406 	/*
5407 	 * A memcg must be visible for expand_shrinker_info()
5408 	 * by the time the maps are allocated. So, we allocate maps
5409 	 * here, when for_each_mem_cgroup() can't skip it.
5410 	 */
5411 	if (alloc_shrinker_info(memcg))
5412 		goto offline_kmem;
5413 
5414 	/* Online state pins memcg ID, memcg ID pins CSS */
5415 	refcount_set(&memcg->id.ref, 1);
5416 	css_get(css);
5417 
5418 	if (unlikely(mem_cgroup_is_root(memcg)))
5419 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5420 				   FLUSH_TIME);
5421 	lru_gen_online_memcg(memcg);
5422 	return 0;
5423 offline_kmem:
5424 	memcg_offline_kmem(memcg);
5425 remove_id:
5426 	mem_cgroup_id_remove(memcg);
5427 	return -ENOMEM;
5428 }
5429 
5430 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5431 {
5432 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5433 	struct mem_cgroup_event *event, *tmp;
5434 
5435 	/*
5436 	 * Unregister events and notify userspace.
5437 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5438 	 * directory to avoid race between userspace and kernelspace.
5439 	 */
5440 	spin_lock_irq(&memcg->event_list_lock);
5441 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5442 		list_del_init(&event->list);
5443 		schedule_work(&event->remove);
5444 	}
5445 	spin_unlock_irq(&memcg->event_list_lock);
5446 
5447 	page_counter_set_min(&memcg->memory, 0);
5448 	page_counter_set_low(&memcg->memory, 0);
5449 
5450 	memcg_offline_kmem(memcg);
5451 	reparent_shrinker_deferred(memcg);
5452 	wb_memcg_offline(memcg);
5453 	lru_gen_offline_memcg(memcg);
5454 
5455 	drain_all_stock(memcg);
5456 
5457 	mem_cgroup_id_put(memcg);
5458 }
5459 
5460 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5461 {
5462 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5463 
5464 	invalidate_reclaim_iterators(memcg);
5465 	lru_gen_release_memcg(memcg);
5466 }
5467 
5468 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5469 {
5470 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5471 	int __maybe_unused i;
5472 
5473 #ifdef CONFIG_CGROUP_WRITEBACK
5474 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5475 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5476 #endif
5477 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5478 		static_branch_dec(&memcg_sockets_enabled_key);
5479 
5480 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5481 		static_branch_dec(&memcg_sockets_enabled_key);
5482 
5483 #if defined(CONFIG_MEMCG_KMEM)
5484 	if (!cgroup_memory_nobpf)
5485 		static_branch_dec(&memcg_bpf_enabled_key);
5486 #endif
5487 
5488 	vmpressure_cleanup(&memcg->vmpressure);
5489 	cancel_work_sync(&memcg->high_work);
5490 	mem_cgroup_remove_from_trees(memcg);
5491 	free_shrinker_info(memcg);
5492 	mem_cgroup_free(memcg);
5493 }
5494 
5495 /**
5496  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5497  * @css: the target css
5498  *
5499  * Reset the states of the mem_cgroup associated with @css.  This is
5500  * invoked when the userland requests disabling on the default hierarchy
5501  * but the memcg is pinned through dependency.  The memcg should stop
5502  * applying policies and should revert to the vanilla state as it may be
5503  * made visible again.
5504  *
5505  * The current implementation only resets the essential configurations.
5506  * This needs to be expanded to cover all the visible parts.
5507  */
5508 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5509 {
5510 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511 
5512 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5513 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5514 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5515 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5516 	page_counter_set_min(&memcg->memory, 0);
5517 	page_counter_set_low(&memcg->memory, 0);
5518 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5519 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5520 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5521 	memcg_wb_domain_size_changed(memcg);
5522 }
5523 
5524 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5525 {
5526 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5527 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5528 	struct memcg_vmstats_percpu *statc;
5529 	long delta, v;
5530 	int i, nid;
5531 
5532 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5533 
5534 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5535 		/*
5536 		 * Collect the aggregated propagation counts of groups
5537 		 * below us. We're in a per-cpu loop here and this is
5538 		 * a global counter, so the first cycle will get them.
5539 		 */
5540 		delta = memcg->vmstats->state_pending[i];
5541 		if (delta)
5542 			memcg->vmstats->state_pending[i] = 0;
5543 
5544 		/* Add CPU changes on this level since the last flush */
5545 		v = READ_ONCE(statc->state[i]);
5546 		if (v != statc->state_prev[i]) {
5547 			delta += v - statc->state_prev[i];
5548 			statc->state_prev[i] = v;
5549 		}
5550 
5551 		if (!delta)
5552 			continue;
5553 
5554 		/* Aggregate counts on this level and propagate upwards */
5555 		memcg->vmstats->state[i] += delta;
5556 		if (parent)
5557 			parent->vmstats->state_pending[i] += delta;
5558 	}
5559 
5560 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5561 		delta = memcg->vmstats->events_pending[i];
5562 		if (delta)
5563 			memcg->vmstats->events_pending[i] = 0;
5564 
5565 		v = READ_ONCE(statc->events[i]);
5566 		if (v != statc->events_prev[i]) {
5567 			delta += v - statc->events_prev[i];
5568 			statc->events_prev[i] = v;
5569 		}
5570 
5571 		if (!delta)
5572 			continue;
5573 
5574 		memcg->vmstats->events[i] += delta;
5575 		if (parent)
5576 			parent->vmstats->events_pending[i] += delta;
5577 	}
5578 
5579 	for_each_node_state(nid, N_MEMORY) {
5580 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5581 		struct mem_cgroup_per_node *ppn = NULL;
5582 		struct lruvec_stats_percpu *lstatc;
5583 
5584 		if (parent)
5585 			ppn = parent->nodeinfo[nid];
5586 
5587 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5588 
5589 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5590 			delta = pn->lruvec_stats.state_pending[i];
5591 			if (delta)
5592 				pn->lruvec_stats.state_pending[i] = 0;
5593 
5594 			v = READ_ONCE(lstatc->state[i]);
5595 			if (v != lstatc->state_prev[i]) {
5596 				delta += v - lstatc->state_prev[i];
5597 				lstatc->state_prev[i] = v;
5598 			}
5599 
5600 			if (!delta)
5601 				continue;
5602 
5603 			pn->lruvec_stats.state[i] += delta;
5604 			if (ppn)
5605 				ppn->lruvec_stats.state_pending[i] += delta;
5606 		}
5607 	}
5608 }
5609 
5610 #ifdef CONFIG_MMU
5611 /* Handlers for move charge at task migration. */
5612 static int mem_cgroup_do_precharge(unsigned long count)
5613 {
5614 	int ret;
5615 
5616 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5617 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5618 	if (!ret) {
5619 		mc.precharge += count;
5620 		return ret;
5621 	}
5622 
5623 	/* Try charges one by one with reclaim, but do not retry */
5624 	while (count--) {
5625 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5626 		if (ret)
5627 			return ret;
5628 		mc.precharge++;
5629 		cond_resched();
5630 	}
5631 	return 0;
5632 }
5633 
5634 union mc_target {
5635 	struct page	*page;
5636 	swp_entry_t	ent;
5637 };
5638 
5639 enum mc_target_type {
5640 	MC_TARGET_NONE = 0,
5641 	MC_TARGET_PAGE,
5642 	MC_TARGET_SWAP,
5643 	MC_TARGET_DEVICE,
5644 };
5645 
5646 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5647 						unsigned long addr, pte_t ptent)
5648 {
5649 	struct page *page = vm_normal_page(vma, addr, ptent);
5650 
5651 	if (!page || !page_mapped(page))
5652 		return NULL;
5653 	if (PageAnon(page)) {
5654 		if (!(mc.flags & MOVE_ANON))
5655 			return NULL;
5656 	} else {
5657 		if (!(mc.flags & MOVE_FILE))
5658 			return NULL;
5659 	}
5660 	if (!get_page_unless_zero(page))
5661 		return NULL;
5662 
5663 	return page;
5664 }
5665 
5666 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5667 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5668 			pte_t ptent, swp_entry_t *entry)
5669 {
5670 	struct page *page = NULL;
5671 	swp_entry_t ent = pte_to_swp_entry(ptent);
5672 
5673 	if (!(mc.flags & MOVE_ANON))
5674 		return NULL;
5675 
5676 	/*
5677 	 * Handle device private pages that are not accessible by the CPU, but
5678 	 * stored as special swap entries in the page table.
5679 	 */
5680 	if (is_device_private_entry(ent)) {
5681 		page = pfn_swap_entry_to_page(ent);
5682 		if (!get_page_unless_zero(page))
5683 			return NULL;
5684 		return page;
5685 	}
5686 
5687 	if (non_swap_entry(ent))
5688 		return NULL;
5689 
5690 	/*
5691 	 * Because swap_cache_get_folio() updates some statistics counter,
5692 	 * we call find_get_page() with swapper_space directly.
5693 	 */
5694 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5695 	entry->val = ent.val;
5696 
5697 	return page;
5698 }
5699 #else
5700 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5701 			pte_t ptent, swp_entry_t *entry)
5702 {
5703 	return NULL;
5704 }
5705 #endif
5706 
5707 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5708 			unsigned long addr, pte_t ptent)
5709 {
5710 	unsigned long index;
5711 	struct folio *folio;
5712 
5713 	if (!vma->vm_file) /* anonymous vma */
5714 		return NULL;
5715 	if (!(mc.flags & MOVE_FILE))
5716 		return NULL;
5717 
5718 	/* folio is moved even if it's not RSS of this task(page-faulted). */
5719 	/* shmem/tmpfs may report page out on swap: account for that too. */
5720 	index = linear_page_index(vma, addr);
5721 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5722 	if (IS_ERR(folio))
5723 		return NULL;
5724 	return folio_file_page(folio, index);
5725 }
5726 
5727 /**
5728  * mem_cgroup_move_account - move account of the page
5729  * @page: the page
5730  * @compound: charge the page as compound or small page
5731  * @from: mem_cgroup which the page is moved from.
5732  * @to:	mem_cgroup which the page is moved to. @from != @to.
5733  *
5734  * The page must be locked and not on the LRU.
5735  *
5736  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5737  * from old cgroup.
5738  */
5739 static int mem_cgroup_move_account(struct page *page,
5740 				   bool compound,
5741 				   struct mem_cgroup *from,
5742 				   struct mem_cgroup *to)
5743 {
5744 	struct folio *folio = page_folio(page);
5745 	struct lruvec *from_vec, *to_vec;
5746 	struct pglist_data *pgdat;
5747 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5748 	int nid, ret;
5749 
5750 	VM_BUG_ON(from == to);
5751 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5752 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5753 	VM_BUG_ON(compound && !folio_test_large(folio));
5754 
5755 	ret = -EINVAL;
5756 	if (folio_memcg(folio) != from)
5757 		goto out;
5758 
5759 	pgdat = folio_pgdat(folio);
5760 	from_vec = mem_cgroup_lruvec(from, pgdat);
5761 	to_vec = mem_cgroup_lruvec(to, pgdat);
5762 
5763 	folio_memcg_lock(folio);
5764 
5765 	if (folio_test_anon(folio)) {
5766 		if (folio_mapped(folio)) {
5767 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5768 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5769 			if (folio_test_transhuge(folio)) {
5770 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5771 						   -nr_pages);
5772 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5773 						   nr_pages);
5774 			}
5775 		}
5776 	} else {
5777 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5778 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5779 
5780 		if (folio_test_swapbacked(folio)) {
5781 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5782 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5783 		}
5784 
5785 		if (folio_mapped(folio)) {
5786 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5787 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5788 		}
5789 
5790 		if (folio_test_dirty(folio)) {
5791 			struct address_space *mapping = folio_mapping(folio);
5792 
5793 			if (mapping_can_writeback(mapping)) {
5794 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5795 						   -nr_pages);
5796 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5797 						   nr_pages);
5798 			}
5799 		}
5800 	}
5801 
5802 #ifdef CONFIG_SWAP
5803 	if (folio_test_swapcache(folio)) {
5804 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5805 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5806 	}
5807 #endif
5808 	if (folio_test_writeback(folio)) {
5809 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5810 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5811 	}
5812 
5813 	/*
5814 	 * All state has been migrated, let's switch to the new memcg.
5815 	 *
5816 	 * It is safe to change page's memcg here because the page
5817 	 * is referenced, charged, isolated, and locked: we can't race
5818 	 * with (un)charging, migration, LRU putback, or anything else
5819 	 * that would rely on a stable page's memory cgroup.
5820 	 *
5821 	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5822 	 * to save space. As soon as we switch page's memory cgroup to a
5823 	 * new memcg that isn't locked, the above state can change
5824 	 * concurrently again. Make sure we're truly done with it.
5825 	 */
5826 	smp_mb();
5827 
5828 	css_get(&to->css);
5829 	css_put(&from->css);
5830 
5831 	folio->memcg_data = (unsigned long)to;
5832 
5833 	__folio_memcg_unlock(from);
5834 
5835 	ret = 0;
5836 	nid = folio_nid(folio);
5837 
5838 	local_irq_disable();
5839 	mem_cgroup_charge_statistics(to, nr_pages);
5840 	memcg_check_events(to, nid);
5841 	mem_cgroup_charge_statistics(from, -nr_pages);
5842 	memcg_check_events(from, nid);
5843 	local_irq_enable();
5844 out:
5845 	return ret;
5846 }
5847 
5848 /**
5849  * get_mctgt_type - get target type of moving charge
5850  * @vma: the vma the pte to be checked belongs
5851  * @addr: the address corresponding to the pte to be checked
5852  * @ptent: the pte to be checked
5853  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5854  *
5855  * Returns
5856  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5857  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5858  *     move charge. if @target is not NULL, the page is stored in target->page
5859  *     with extra refcnt got(Callers should handle it).
5860  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5861  *     target for charge migration. if @target is not NULL, the entry is stored
5862  *     in target->ent.
5863  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5864  *   thus not on the lru.
5865  *     For now we such page is charge like a regular page would be as for all
5866  *     intent and purposes it is just special memory taking the place of a
5867  *     regular page.
5868  *
5869  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5870  *
5871  * Called with pte lock held.
5872  */
5873 
5874 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5875 		unsigned long addr, pte_t ptent, union mc_target *target)
5876 {
5877 	struct page *page = NULL;
5878 	enum mc_target_type ret = MC_TARGET_NONE;
5879 	swp_entry_t ent = { .val = 0 };
5880 
5881 	if (pte_present(ptent))
5882 		page = mc_handle_present_pte(vma, addr, ptent);
5883 	else if (pte_none_mostly(ptent))
5884 		/*
5885 		 * PTE markers should be treated as a none pte here, separated
5886 		 * from other swap handling below.
5887 		 */
5888 		page = mc_handle_file_pte(vma, addr, ptent);
5889 	else if (is_swap_pte(ptent))
5890 		page = mc_handle_swap_pte(vma, ptent, &ent);
5891 
5892 	if (target && page) {
5893 		if (!trylock_page(page)) {
5894 			put_page(page);
5895 			return ret;
5896 		}
5897 		/*
5898 		 * page_mapped() must be stable during the move. This
5899 		 * pte is locked, so if it's present, the page cannot
5900 		 * become unmapped. If it isn't, we have only partial
5901 		 * control over the mapped state: the page lock will
5902 		 * prevent new faults against pagecache and swapcache,
5903 		 * so an unmapped page cannot become mapped. However,
5904 		 * if the page is already mapped elsewhere, it can
5905 		 * unmap, and there is nothing we can do about it.
5906 		 * Alas, skip moving the page in this case.
5907 		 */
5908 		if (!pte_present(ptent) && page_mapped(page)) {
5909 			unlock_page(page);
5910 			put_page(page);
5911 			return ret;
5912 		}
5913 	}
5914 
5915 	if (!page && !ent.val)
5916 		return ret;
5917 	if (page) {
5918 		/*
5919 		 * Do only loose check w/o serialization.
5920 		 * mem_cgroup_move_account() checks the page is valid or
5921 		 * not under LRU exclusion.
5922 		 */
5923 		if (page_memcg(page) == mc.from) {
5924 			ret = MC_TARGET_PAGE;
5925 			if (is_device_private_page(page) ||
5926 			    is_device_coherent_page(page))
5927 				ret = MC_TARGET_DEVICE;
5928 			if (target)
5929 				target->page = page;
5930 		}
5931 		if (!ret || !target) {
5932 			if (target)
5933 				unlock_page(page);
5934 			put_page(page);
5935 		}
5936 	}
5937 	/*
5938 	 * There is a swap entry and a page doesn't exist or isn't charged.
5939 	 * But we cannot move a tail-page in a THP.
5940 	 */
5941 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5942 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5943 		ret = MC_TARGET_SWAP;
5944 		if (target)
5945 			target->ent = ent;
5946 	}
5947 	return ret;
5948 }
5949 
5950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5951 /*
5952  * We don't consider PMD mapped swapping or file mapped pages because THP does
5953  * not support them for now.
5954  * Caller should make sure that pmd_trans_huge(pmd) is true.
5955  */
5956 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5957 		unsigned long addr, pmd_t pmd, union mc_target *target)
5958 {
5959 	struct page *page = NULL;
5960 	enum mc_target_type ret = MC_TARGET_NONE;
5961 
5962 	if (unlikely(is_swap_pmd(pmd))) {
5963 		VM_BUG_ON(thp_migration_supported() &&
5964 				  !is_pmd_migration_entry(pmd));
5965 		return ret;
5966 	}
5967 	page = pmd_page(pmd);
5968 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5969 	if (!(mc.flags & MOVE_ANON))
5970 		return ret;
5971 	if (page_memcg(page) == mc.from) {
5972 		ret = MC_TARGET_PAGE;
5973 		if (target) {
5974 			get_page(page);
5975 			if (!trylock_page(page)) {
5976 				put_page(page);
5977 				return MC_TARGET_NONE;
5978 			}
5979 			target->page = page;
5980 		}
5981 	}
5982 	return ret;
5983 }
5984 #else
5985 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5986 		unsigned long addr, pmd_t pmd, union mc_target *target)
5987 {
5988 	return MC_TARGET_NONE;
5989 }
5990 #endif
5991 
5992 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5993 					unsigned long addr, unsigned long end,
5994 					struct mm_walk *walk)
5995 {
5996 	struct vm_area_struct *vma = walk->vma;
5997 	pte_t *pte;
5998 	spinlock_t *ptl;
5999 
6000 	ptl = pmd_trans_huge_lock(pmd, vma);
6001 	if (ptl) {
6002 		/*
6003 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6004 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6005 		 * this might change.
6006 		 */
6007 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6008 			mc.precharge += HPAGE_PMD_NR;
6009 		spin_unlock(ptl);
6010 		return 0;
6011 	}
6012 
6013 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6014 	if (!pte)
6015 		return 0;
6016 	for (; addr != end; pte++, addr += PAGE_SIZE)
6017 		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6018 			mc.precharge++;	/* increment precharge temporarily */
6019 	pte_unmap_unlock(pte - 1, ptl);
6020 	cond_resched();
6021 
6022 	return 0;
6023 }
6024 
6025 static const struct mm_walk_ops precharge_walk_ops = {
6026 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6027 };
6028 
6029 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6030 {
6031 	unsigned long precharge;
6032 
6033 	mmap_read_lock(mm);
6034 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6035 	mmap_read_unlock(mm);
6036 
6037 	precharge = mc.precharge;
6038 	mc.precharge = 0;
6039 
6040 	return precharge;
6041 }
6042 
6043 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6044 {
6045 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6046 
6047 	VM_BUG_ON(mc.moving_task);
6048 	mc.moving_task = current;
6049 	return mem_cgroup_do_precharge(precharge);
6050 }
6051 
6052 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6053 static void __mem_cgroup_clear_mc(void)
6054 {
6055 	struct mem_cgroup *from = mc.from;
6056 	struct mem_cgroup *to = mc.to;
6057 
6058 	/* we must uncharge all the leftover precharges from mc.to */
6059 	if (mc.precharge) {
6060 		cancel_charge(mc.to, mc.precharge);
6061 		mc.precharge = 0;
6062 	}
6063 	/*
6064 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6065 	 * we must uncharge here.
6066 	 */
6067 	if (mc.moved_charge) {
6068 		cancel_charge(mc.from, mc.moved_charge);
6069 		mc.moved_charge = 0;
6070 	}
6071 	/* we must fixup refcnts and charges */
6072 	if (mc.moved_swap) {
6073 		/* uncharge swap account from the old cgroup */
6074 		if (!mem_cgroup_is_root(mc.from))
6075 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6076 
6077 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6078 
6079 		/*
6080 		 * we charged both to->memory and to->memsw, so we
6081 		 * should uncharge to->memory.
6082 		 */
6083 		if (!mem_cgroup_is_root(mc.to))
6084 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6085 
6086 		mc.moved_swap = 0;
6087 	}
6088 	memcg_oom_recover(from);
6089 	memcg_oom_recover(to);
6090 	wake_up_all(&mc.waitq);
6091 }
6092 
6093 static void mem_cgroup_clear_mc(void)
6094 {
6095 	struct mm_struct *mm = mc.mm;
6096 
6097 	/*
6098 	 * we must clear moving_task before waking up waiters at the end of
6099 	 * task migration.
6100 	 */
6101 	mc.moving_task = NULL;
6102 	__mem_cgroup_clear_mc();
6103 	spin_lock(&mc.lock);
6104 	mc.from = NULL;
6105 	mc.to = NULL;
6106 	mc.mm = NULL;
6107 	spin_unlock(&mc.lock);
6108 
6109 	mmput(mm);
6110 }
6111 
6112 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6113 {
6114 	struct cgroup_subsys_state *css;
6115 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6116 	struct mem_cgroup *from;
6117 	struct task_struct *leader, *p;
6118 	struct mm_struct *mm;
6119 	unsigned long move_flags;
6120 	int ret = 0;
6121 
6122 	/* charge immigration isn't supported on the default hierarchy */
6123 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6124 		return 0;
6125 
6126 	/*
6127 	 * Multi-process migrations only happen on the default hierarchy
6128 	 * where charge immigration is not used.  Perform charge
6129 	 * immigration if @tset contains a leader and whine if there are
6130 	 * multiple.
6131 	 */
6132 	p = NULL;
6133 	cgroup_taskset_for_each_leader(leader, css, tset) {
6134 		WARN_ON_ONCE(p);
6135 		p = leader;
6136 		memcg = mem_cgroup_from_css(css);
6137 	}
6138 	if (!p)
6139 		return 0;
6140 
6141 	/*
6142 	 * We are now committed to this value whatever it is. Changes in this
6143 	 * tunable will only affect upcoming migrations, not the current one.
6144 	 * So we need to save it, and keep it going.
6145 	 */
6146 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6147 	if (!move_flags)
6148 		return 0;
6149 
6150 	from = mem_cgroup_from_task(p);
6151 
6152 	VM_BUG_ON(from == memcg);
6153 
6154 	mm = get_task_mm(p);
6155 	if (!mm)
6156 		return 0;
6157 	/* We move charges only when we move a owner of the mm */
6158 	if (mm->owner == p) {
6159 		VM_BUG_ON(mc.from);
6160 		VM_BUG_ON(mc.to);
6161 		VM_BUG_ON(mc.precharge);
6162 		VM_BUG_ON(mc.moved_charge);
6163 		VM_BUG_ON(mc.moved_swap);
6164 
6165 		spin_lock(&mc.lock);
6166 		mc.mm = mm;
6167 		mc.from = from;
6168 		mc.to = memcg;
6169 		mc.flags = move_flags;
6170 		spin_unlock(&mc.lock);
6171 		/* We set mc.moving_task later */
6172 
6173 		ret = mem_cgroup_precharge_mc(mm);
6174 		if (ret)
6175 			mem_cgroup_clear_mc();
6176 	} else {
6177 		mmput(mm);
6178 	}
6179 	return ret;
6180 }
6181 
6182 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6183 {
6184 	if (mc.to)
6185 		mem_cgroup_clear_mc();
6186 }
6187 
6188 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6189 				unsigned long addr, unsigned long end,
6190 				struct mm_walk *walk)
6191 {
6192 	int ret = 0;
6193 	struct vm_area_struct *vma = walk->vma;
6194 	pte_t *pte;
6195 	spinlock_t *ptl;
6196 	enum mc_target_type target_type;
6197 	union mc_target target;
6198 	struct page *page;
6199 
6200 	ptl = pmd_trans_huge_lock(pmd, vma);
6201 	if (ptl) {
6202 		if (mc.precharge < HPAGE_PMD_NR) {
6203 			spin_unlock(ptl);
6204 			return 0;
6205 		}
6206 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6207 		if (target_type == MC_TARGET_PAGE) {
6208 			page = target.page;
6209 			if (isolate_lru_page(page)) {
6210 				if (!mem_cgroup_move_account(page, true,
6211 							     mc.from, mc.to)) {
6212 					mc.precharge -= HPAGE_PMD_NR;
6213 					mc.moved_charge += HPAGE_PMD_NR;
6214 				}
6215 				putback_lru_page(page);
6216 			}
6217 			unlock_page(page);
6218 			put_page(page);
6219 		} else if (target_type == MC_TARGET_DEVICE) {
6220 			page = target.page;
6221 			if (!mem_cgroup_move_account(page, true,
6222 						     mc.from, mc.to)) {
6223 				mc.precharge -= HPAGE_PMD_NR;
6224 				mc.moved_charge += HPAGE_PMD_NR;
6225 			}
6226 			unlock_page(page);
6227 			put_page(page);
6228 		}
6229 		spin_unlock(ptl);
6230 		return 0;
6231 	}
6232 
6233 retry:
6234 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6235 	if (!pte)
6236 		return 0;
6237 	for (; addr != end; addr += PAGE_SIZE) {
6238 		pte_t ptent = ptep_get(pte++);
6239 		bool device = false;
6240 		swp_entry_t ent;
6241 
6242 		if (!mc.precharge)
6243 			break;
6244 
6245 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6246 		case MC_TARGET_DEVICE:
6247 			device = true;
6248 			fallthrough;
6249 		case MC_TARGET_PAGE:
6250 			page = target.page;
6251 			/*
6252 			 * We can have a part of the split pmd here. Moving it
6253 			 * can be done but it would be too convoluted so simply
6254 			 * ignore such a partial THP and keep it in original
6255 			 * memcg. There should be somebody mapping the head.
6256 			 */
6257 			if (PageTransCompound(page))
6258 				goto put;
6259 			if (!device && !isolate_lru_page(page))
6260 				goto put;
6261 			if (!mem_cgroup_move_account(page, false,
6262 						mc.from, mc.to)) {
6263 				mc.precharge--;
6264 				/* we uncharge from mc.from later. */
6265 				mc.moved_charge++;
6266 			}
6267 			if (!device)
6268 				putback_lru_page(page);
6269 put:			/* get_mctgt_type() gets & locks the page */
6270 			unlock_page(page);
6271 			put_page(page);
6272 			break;
6273 		case MC_TARGET_SWAP:
6274 			ent = target.ent;
6275 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6276 				mc.precharge--;
6277 				mem_cgroup_id_get_many(mc.to, 1);
6278 				/* we fixup other refcnts and charges later. */
6279 				mc.moved_swap++;
6280 			}
6281 			break;
6282 		default:
6283 			break;
6284 		}
6285 	}
6286 	pte_unmap_unlock(pte - 1, ptl);
6287 	cond_resched();
6288 
6289 	if (addr != end) {
6290 		/*
6291 		 * We have consumed all precharges we got in can_attach().
6292 		 * We try charge one by one, but don't do any additional
6293 		 * charges to mc.to if we have failed in charge once in attach()
6294 		 * phase.
6295 		 */
6296 		ret = mem_cgroup_do_precharge(1);
6297 		if (!ret)
6298 			goto retry;
6299 	}
6300 
6301 	return ret;
6302 }
6303 
6304 static const struct mm_walk_ops charge_walk_ops = {
6305 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6306 };
6307 
6308 static void mem_cgroup_move_charge(void)
6309 {
6310 	lru_add_drain_all();
6311 	/*
6312 	 * Signal folio_memcg_lock() to take the memcg's move_lock
6313 	 * while we're moving its pages to another memcg. Then wait
6314 	 * for already started RCU-only updates to finish.
6315 	 */
6316 	atomic_inc(&mc.from->moving_account);
6317 	synchronize_rcu();
6318 retry:
6319 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6320 		/*
6321 		 * Someone who are holding the mmap_lock might be waiting in
6322 		 * waitq. So we cancel all extra charges, wake up all waiters,
6323 		 * and retry. Because we cancel precharges, we might not be able
6324 		 * to move enough charges, but moving charge is a best-effort
6325 		 * feature anyway, so it wouldn't be a big problem.
6326 		 */
6327 		__mem_cgroup_clear_mc();
6328 		cond_resched();
6329 		goto retry;
6330 	}
6331 	/*
6332 	 * When we have consumed all precharges and failed in doing
6333 	 * additional charge, the page walk just aborts.
6334 	 */
6335 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6336 	mmap_read_unlock(mc.mm);
6337 	atomic_dec(&mc.from->moving_account);
6338 }
6339 
6340 static void mem_cgroup_move_task(void)
6341 {
6342 	if (mc.to) {
6343 		mem_cgroup_move_charge();
6344 		mem_cgroup_clear_mc();
6345 	}
6346 }
6347 #else	/* !CONFIG_MMU */
6348 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6349 {
6350 	return 0;
6351 }
6352 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6353 {
6354 }
6355 static void mem_cgroup_move_task(void)
6356 {
6357 }
6358 #endif
6359 
6360 #ifdef CONFIG_LRU_GEN
6361 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6362 {
6363 	struct task_struct *task;
6364 	struct cgroup_subsys_state *css;
6365 
6366 	/* find the first leader if there is any */
6367 	cgroup_taskset_for_each_leader(task, css, tset)
6368 		break;
6369 
6370 	if (!task)
6371 		return;
6372 
6373 	task_lock(task);
6374 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6375 		lru_gen_migrate_mm(task->mm);
6376 	task_unlock(task);
6377 }
6378 #else
6379 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6380 {
6381 }
6382 #endif /* CONFIG_LRU_GEN */
6383 
6384 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6385 {
6386 	if (value == PAGE_COUNTER_MAX)
6387 		seq_puts(m, "max\n");
6388 	else
6389 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6390 
6391 	return 0;
6392 }
6393 
6394 static u64 memory_current_read(struct cgroup_subsys_state *css,
6395 			       struct cftype *cft)
6396 {
6397 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6398 
6399 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6400 }
6401 
6402 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6403 			    struct cftype *cft)
6404 {
6405 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6406 
6407 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6408 }
6409 
6410 static int memory_min_show(struct seq_file *m, void *v)
6411 {
6412 	return seq_puts_memcg_tunable(m,
6413 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6414 }
6415 
6416 static ssize_t memory_min_write(struct kernfs_open_file *of,
6417 				char *buf, size_t nbytes, loff_t off)
6418 {
6419 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6420 	unsigned long min;
6421 	int err;
6422 
6423 	buf = strstrip(buf);
6424 	err = page_counter_memparse(buf, "max", &min);
6425 	if (err)
6426 		return err;
6427 
6428 	page_counter_set_min(&memcg->memory, min);
6429 
6430 	return nbytes;
6431 }
6432 
6433 static int memory_low_show(struct seq_file *m, void *v)
6434 {
6435 	return seq_puts_memcg_tunable(m,
6436 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6437 }
6438 
6439 static ssize_t memory_low_write(struct kernfs_open_file *of,
6440 				char *buf, size_t nbytes, loff_t off)
6441 {
6442 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6443 	unsigned long low;
6444 	int err;
6445 
6446 	buf = strstrip(buf);
6447 	err = page_counter_memparse(buf, "max", &low);
6448 	if (err)
6449 		return err;
6450 
6451 	page_counter_set_low(&memcg->memory, low);
6452 
6453 	return nbytes;
6454 }
6455 
6456 static int memory_high_show(struct seq_file *m, void *v)
6457 {
6458 	return seq_puts_memcg_tunable(m,
6459 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6460 }
6461 
6462 static ssize_t memory_high_write(struct kernfs_open_file *of,
6463 				 char *buf, size_t nbytes, loff_t off)
6464 {
6465 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6466 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6467 	bool drained = false;
6468 	unsigned long high;
6469 	int err;
6470 
6471 	buf = strstrip(buf);
6472 	err = page_counter_memparse(buf, "max", &high);
6473 	if (err)
6474 		return err;
6475 
6476 	page_counter_set_high(&memcg->memory, high);
6477 
6478 	for (;;) {
6479 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6480 		unsigned long reclaimed;
6481 
6482 		if (nr_pages <= high)
6483 			break;
6484 
6485 		if (signal_pending(current))
6486 			break;
6487 
6488 		if (!drained) {
6489 			drain_all_stock(memcg);
6490 			drained = true;
6491 			continue;
6492 		}
6493 
6494 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6495 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6496 
6497 		if (!reclaimed && !nr_retries--)
6498 			break;
6499 	}
6500 
6501 	memcg_wb_domain_size_changed(memcg);
6502 	return nbytes;
6503 }
6504 
6505 static int memory_max_show(struct seq_file *m, void *v)
6506 {
6507 	return seq_puts_memcg_tunable(m,
6508 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6509 }
6510 
6511 static ssize_t memory_max_write(struct kernfs_open_file *of,
6512 				char *buf, size_t nbytes, loff_t off)
6513 {
6514 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6515 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6516 	bool drained = false;
6517 	unsigned long max;
6518 	int err;
6519 
6520 	buf = strstrip(buf);
6521 	err = page_counter_memparse(buf, "max", &max);
6522 	if (err)
6523 		return err;
6524 
6525 	xchg(&memcg->memory.max, max);
6526 
6527 	for (;;) {
6528 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6529 
6530 		if (nr_pages <= max)
6531 			break;
6532 
6533 		if (signal_pending(current))
6534 			break;
6535 
6536 		if (!drained) {
6537 			drain_all_stock(memcg);
6538 			drained = true;
6539 			continue;
6540 		}
6541 
6542 		if (nr_reclaims) {
6543 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6544 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6545 				nr_reclaims--;
6546 			continue;
6547 		}
6548 
6549 		memcg_memory_event(memcg, MEMCG_OOM);
6550 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6551 			break;
6552 	}
6553 
6554 	memcg_wb_domain_size_changed(memcg);
6555 	return nbytes;
6556 }
6557 
6558 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6559 {
6560 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6561 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6562 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6563 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6564 	seq_printf(m, "oom_kill %lu\n",
6565 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6566 	seq_printf(m, "oom_group_kill %lu\n",
6567 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6568 }
6569 
6570 static int memory_events_show(struct seq_file *m, void *v)
6571 {
6572 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6573 
6574 	__memory_events_show(m, memcg->memory_events);
6575 	return 0;
6576 }
6577 
6578 static int memory_events_local_show(struct seq_file *m, void *v)
6579 {
6580 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6581 
6582 	__memory_events_show(m, memcg->memory_events_local);
6583 	return 0;
6584 }
6585 
6586 static int memory_stat_show(struct seq_file *m, void *v)
6587 {
6588 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6589 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6590 	struct seq_buf s;
6591 
6592 	if (!buf)
6593 		return -ENOMEM;
6594 	seq_buf_init(&s, buf, PAGE_SIZE);
6595 	memory_stat_format(memcg, &s);
6596 	seq_puts(m, buf);
6597 	kfree(buf);
6598 	return 0;
6599 }
6600 
6601 #ifdef CONFIG_NUMA
6602 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6603 						     int item)
6604 {
6605 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6606 }
6607 
6608 static int memory_numa_stat_show(struct seq_file *m, void *v)
6609 {
6610 	int i;
6611 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6612 
6613 	mem_cgroup_flush_stats();
6614 
6615 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6616 		int nid;
6617 
6618 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6619 			continue;
6620 
6621 		seq_printf(m, "%s", memory_stats[i].name);
6622 		for_each_node_state(nid, N_MEMORY) {
6623 			u64 size;
6624 			struct lruvec *lruvec;
6625 
6626 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6627 			size = lruvec_page_state_output(lruvec,
6628 							memory_stats[i].idx);
6629 			seq_printf(m, " N%d=%llu", nid, size);
6630 		}
6631 		seq_putc(m, '\n');
6632 	}
6633 
6634 	return 0;
6635 }
6636 #endif
6637 
6638 static int memory_oom_group_show(struct seq_file *m, void *v)
6639 {
6640 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6641 
6642 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6643 
6644 	return 0;
6645 }
6646 
6647 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6648 				      char *buf, size_t nbytes, loff_t off)
6649 {
6650 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6651 	int ret, oom_group;
6652 
6653 	buf = strstrip(buf);
6654 	if (!buf)
6655 		return -EINVAL;
6656 
6657 	ret = kstrtoint(buf, 0, &oom_group);
6658 	if (ret)
6659 		return ret;
6660 
6661 	if (oom_group != 0 && oom_group != 1)
6662 		return -EINVAL;
6663 
6664 	WRITE_ONCE(memcg->oom_group, oom_group);
6665 
6666 	return nbytes;
6667 }
6668 
6669 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6670 			      size_t nbytes, loff_t off)
6671 {
6672 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6673 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6674 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6675 	unsigned int reclaim_options;
6676 	int err;
6677 
6678 	buf = strstrip(buf);
6679 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6680 	if (err)
6681 		return err;
6682 
6683 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6684 	while (nr_reclaimed < nr_to_reclaim) {
6685 		unsigned long reclaimed;
6686 
6687 		if (signal_pending(current))
6688 			return -EINTR;
6689 
6690 		/*
6691 		 * This is the final attempt, drain percpu lru caches in the
6692 		 * hope of introducing more evictable pages for
6693 		 * try_to_free_mem_cgroup_pages().
6694 		 */
6695 		if (!nr_retries)
6696 			lru_add_drain_all();
6697 
6698 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6699 						nr_to_reclaim - nr_reclaimed,
6700 						GFP_KERNEL, reclaim_options);
6701 
6702 		if (!reclaimed && !nr_retries--)
6703 			return -EAGAIN;
6704 
6705 		nr_reclaimed += reclaimed;
6706 	}
6707 
6708 	return nbytes;
6709 }
6710 
6711 static struct cftype memory_files[] = {
6712 	{
6713 		.name = "current",
6714 		.flags = CFTYPE_NOT_ON_ROOT,
6715 		.read_u64 = memory_current_read,
6716 	},
6717 	{
6718 		.name = "peak",
6719 		.flags = CFTYPE_NOT_ON_ROOT,
6720 		.read_u64 = memory_peak_read,
6721 	},
6722 	{
6723 		.name = "min",
6724 		.flags = CFTYPE_NOT_ON_ROOT,
6725 		.seq_show = memory_min_show,
6726 		.write = memory_min_write,
6727 	},
6728 	{
6729 		.name = "low",
6730 		.flags = CFTYPE_NOT_ON_ROOT,
6731 		.seq_show = memory_low_show,
6732 		.write = memory_low_write,
6733 	},
6734 	{
6735 		.name = "high",
6736 		.flags = CFTYPE_NOT_ON_ROOT,
6737 		.seq_show = memory_high_show,
6738 		.write = memory_high_write,
6739 	},
6740 	{
6741 		.name = "max",
6742 		.flags = CFTYPE_NOT_ON_ROOT,
6743 		.seq_show = memory_max_show,
6744 		.write = memory_max_write,
6745 	},
6746 	{
6747 		.name = "events",
6748 		.flags = CFTYPE_NOT_ON_ROOT,
6749 		.file_offset = offsetof(struct mem_cgroup, events_file),
6750 		.seq_show = memory_events_show,
6751 	},
6752 	{
6753 		.name = "events.local",
6754 		.flags = CFTYPE_NOT_ON_ROOT,
6755 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6756 		.seq_show = memory_events_local_show,
6757 	},
6758 	{
6759 		.name = "stat",
6760 		.seq_show = memory_stat_show,
6761 	},
6762 #ifdef CONFIG_NUMA
6763 	{
6764 		.name = "numa_stat",
6765 		.seq_show = memory_numa_stat_show,
6766 	},
6767 #endif
6768 	{
6769 		.name = "oom.group",
6770 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6771 		.seq_show = memory_oom_group_show,
6772 		.write = memory_oom_group_write,
6773 	},
6774 	{
6775 		.name = "reclaim",
6776 		.flags = CFTYPE_NS_DELEGATABLE,
6777 		.write = memory_reclaim,
6778 	},
6779 	{ }	/* terminate */
6780 };
6781 
6782 struct cgroup_subsys memory_cgrp_subsys = {
6783 	.css_alloc = mem_cgroup_css_alloc,
6784 	.css_online = mem_cgroup_css_online,
6785 	.css_offline = mem_cgroup_css_offline,
6786 	.css_released = mem_cgroup_css_released,
6787 	.css_free = mem_cgroup_css_free,
6788 	.css_reset = mem_cgroup_css_reset,
6789 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6790 	.can_attach = mem_cgroup_can_attach,
6791 	.attach = mem_cgroup_attach,
6792 	.cancel_attach = mem_cgroup_cancel_attach,
6793 	.post_attach = mem_cgroup_move_task,
6794 	.dfl_cftypes = memory_files,
6795 	.legacy_cftypes = mem_cgroup_legacy_files,
6796 	.early_init = 0,
6797 };
6798 
6799 /*
6800  * This function calculates an individual cgroup's effective
6801  * protection which is derived from its own memory.min/low, its
6802  * parent's and siblings' settings, as well as the actual memory
6803  * distribution in the tree.
6804  *
6805  * The following rules apply to the effective protection values:
6806  *
6807  * 1. At the first level of reclaim, effective protection is equal to
6808  *    the declared protection in memory.min and memory.low.
6809  *
6810  * 2. To enable safe delegation of the protection configuration, at
6811  *    subsequent levels the effective protection is capped to the
6812  *    parent's effective protection.
6813  *
6814  * 3. To make complex and dynamic subtrees easier to configure, the
6815  *    user is allowed to overcommit the declared protection at a given
6816  *    level. If that is the case, the parent's effective protection is
6817  *    distributed to the children in proportion to how much protection
6818  *    they have declared and how much of it they are utilizing.
6819  *
6820  *    This makes distribution proportional, but also work-conserving:
6821  *    if one cgroup claims much more protection than it uses memory,
6822  *    the unused remainder is available to its siblings.
6823  *
6824  * 4. Conversely, when the declared protection is undercommitted at a
6825  *    given level, the distribution of the larger parental protection
6826  *    budget is NOT proportional. A cgroup's protection from a sibling
6827  *    is capped to its own memory.min/low setting.
6828  *
6829  * 5. However, to allow protecting recursive subtrees from each other
6830  *    without having to declare each individual cgroup's fixed share
6831  *    of the ancestor's claim to protection, any unutilized -
6832  *    "floating" - protection from up the tree is distributed in
6833  *    proportion to each cgroup's *usage*. This makes the protection
6834  *    neutral wrt sibling cgroups and lets them compete freely over
6835  *    the shared parental protection budget, but it protects the
6836  *    subtree as a whole from neighboring subtrees.
6837  *
6838  * Note that 4. and 5. are not in conflict: 4. is about protecting
6839  * against immediate siblings whereas 5. is about protecting against
6840  * neighboring subtrees.
6841  */
6842 static unsigned long effective_protection(unsigned long usage,
6843 					  unsigned long parent_usage,
6844 					  unsigned long setting,
6845 					  unsigned long parent_effective,
6846 					  unsigned long siblings_protected)
6847 {
6848 	unsigned long protected;
6849 	unsigned long ep;
6850 
6851 	protected = min(usage, setting);
6852 	/*
6853 	 * If all cgroups at this level combined claim and use more
6854 	 * protection than what the parent affords them, distribute
6855 	 * shares in proportion to utilization.
6856 	 *
6857 	 * We are using actual utilization rather than the statically
6858 	 * claimed protection in order to be work-conserving: claimed
6859 	 * but unused protection is available to siblings that would
6860 	 * otherwise get a smaller chunk than what they claimed.
6861 	 */
6862 	if (siblings_protected > parent_effective)
6863 		return protected * parent_effective / siblings_protected;
6864 
6865 	/*
6866 	 * Ok, utilized protection of all children is within what the
6867 	 * parent affords them, so we know whatever this child claims
6868 	 * and utilizes is effectively protected.
6869 	 *
6870 	 * If there is unprotected usage beyond this value, reclaim
6871 	 * will apply pressure in proportion to that amount.
6872 	 *
6873 	 * If there is unutilized protection, the cgroup will be fully
6874 	 * shielded from reclaim, but we do return a smaller value for
6875 	 * protection than what the group could enjoy in theory. This
6876 	 * is okay. With the overcommit distribution above, effective
6877 	 * protection is always dependent on how memory is actually
6878 	 * consumed among the siblings anyway.
6879 	 */
6880 	ep = protected;
6881 
6882 	/*
6883 	 * If the children aren't claiming (all of) the protection
6884 	 * afforded to them by the parent, distribute the remainder in
6885 	 * proportion to the (unprotected) memory of each cgroup. That
6886 	 * way, cgroups that aren't explicitly prioritized wrt each
6887 	 * other compete freely over the allowance, but they are
6888 	 * collectively protected from neighboring trees.
6889 	 *
6890 	 * We're using unprotected memory for the weight so that if
6891 	 * some cgroups DO claim explicit protection, we don't protect
6892 	 * the same bytes twice.
6893 	 *
6894 	 * Check both usage and parent_usage against the respective
6895 	 * protected values. One should imply the other, but they
6896 	 * aren't read atomically - make sure the division is sane.
6897 	 */
6898 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6899 		return ep;
6900 	if (parent_effective > siblings_protected &&
6901 	    parent_usage > siblings_protected &&
6902 	    usage > protected) {
6903 		unsigned long unclaimed;
6904 
6905 		unclaimed = parent_effective - siblings_protected;
6906 		unclaimed *= usage - protected;
6907 		unclaimed /= parent_usage - siblings_protected;
6908 
6909 		ep += unclaimed;
6910 	}
6911 
6912 	return ep;
6913 }
6914 
6915 /**
6916  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6917  * @root: the top ancestor of the sub-tree being checked
6918  * @memcg: the memory cgroup to check
6919  *
6920  * WARNING: This function is not stateless! It can only be used as part
6921  *          of a top-down tree iteration, not for isolated queries.
6922  */
6923 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6924 				     struct mem_cgroup *memcg)
6925 {
6926 	unsigned long usage, parent_usage;
6927 	struct mem_cgroup *parent;
6928 
6929 	if (mem_cgroup_disabled())
6930 		return;
6931 
6932 	if (!root)
6933 		root = root_mem_cgroup;
6934 
6935 	/*
6936 	 * Effective values of the reclaim targets are ignored so they
6937 	 * can be stale. Have a look at mem_cgroup_protection for more
6938 	 * details.
6939 	 * TODO: calculation should be more robust so that we do not need
6940 	 * that special casing.
6941 	 */
6942 	if (memcg == root)
6943 		return;
6944 
6945 	usage = page_counter_read(&memcg->memory);
6946 	if (!usage)
6947 		return;
6948 
6949 	parent = parent_mem_cgroup(memcg);
6950 
6951 	if (parent == root) {
6952 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6953 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6954 		return;
6955 	}
6956 
6957 	parent_usage = page_counter_read(&parent->memory);
6958 
6959 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6960 			READ_ONCE(memcg->memory.min),
6961 			READ_ONCE(parent->memory.emin),
6962 			atomic_long_read(&parent->memory.children_min_usage)));
6963 
6964 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6965 			READ_ONCE(memcg->memory.low),
6966 			READ_ONCE(parent->memory.elow),
6967 			atomic_long_read(&parent->memory.children_low_usage)));
6968 }
6969 
6970 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6971 			gfp_t gfp)
6972 {
6973 	long nr_pages = folio_nr_pages(folio);
6974 	int ret;
6975 
6976 	ret = try_charge(memcg, gfp, nr_pages);
6977 	if (ret)
6978 		goto out;
6979 
6980 	css_get(&memcg->css);
6981 	commit_charge(folio, memcg);
6982 
6983 	local_irq_disable();
6984 	mem_cgroup_charge_statistics(memcg, nr_pages);
6985 	memcg_check_events(memcg, folio_nid(folio));
6986 	local_irq_enable();
6987 out:
6988 	return ret;
6989 }
6990 
6991 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6992 {
6993 	struct mem_cgroup *memcg;
6994 	int ret;
6995 
6996 	memcg = get_mem_cgroup_from_mm(mm);
6997 	ret = charge_memcg(folio, memcg, gfp);
6998 	css_put(&memcg->css);
6999 
7000 	return ret;
7001 }
7002 
7003 /**
7004  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7005  * @folio: folio to charge.
7006  * @mm: mm context of the victim
7007  * @gfp: reclaim mode
7008  * @entry: swap entry for which the folio is allocated
7009  *
7010  * This function charges a folio allocated for swapin. Please call this before
7011  * adding the folio to the swapcache.
7012  *
7013  * Returns 0 on success. Otherwise, an error code is returned.
7014  */
7015 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7016 				  gfp_t gfp, swp_entry_t entry)
7017 {
7018 	struct mem_cgroup *memcg;
7019 	unsigned short id;
7020 	int ret;
7021 
7022 	if (mem_cgroup_disabled())
7023 		return 0;
7024 
7025 	id = lookup_swap_cgroup_id(entry);
7026 	rcu_read_lock();
7027 	memcg = mem_cgroup_from_id(id);
7028 	if (!memcg || !css_tryget_online(&memcg->css))
7029 		memcg = get_mem_cgroup_from_mm(mm);
7030 	rcu_read_unlock();
7031 
7032 	ret = charge_memcg(folio, memcg, gfp);
7033 
7034 	css_put(&memcg->css);
7035 	return ret;
7036 }
7037 
7038 /*
7039  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7040  * @entry: swap entry for which the page is charged
7041  *
7042  * Call this function after successfully adding the charged page to swapcache.
7043  *
7044  * Note: This function assumes the page for which swap slot is being uncharged
7045  * is order 0 page.
7046  */
7047 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7048 {
7049 	/*
7050 	 * Cgroup1's unified memory+swap counter has been charged with the
7051 	 * new swapcache page, finish the transfer by uncharging the swap
7052 	 * slot. The swap slot would also get uncharged when it dies, but
7053 	 * it can stick around indefinitely and we'd count the page twice
7054 	 * the entire time.
7055 	 *
7056 	 * Cgroup2 has separate resource counters for memory and swap,
7057 	 * so this is a non-issue here. Memory and swap charge lifetimes
7058 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7059 	 * page to memory here, and uncharge swap when the slot is freed.
7060 	 */
7061 	if (!mem_cgroup_disabled() && do_memsw_account()) {
7062 		/*
7063 		 * The swap entry might not get freed for a long time,
7064 		 * let's not wait for it.  The page already received a
7065 		 * memory+swap charge, drop the swap entry duplicate.
7066 		 */
7067 		mem_cgroup_uncharge_swap(entry, 1);
7068 	}
7069 }
7070 
7071 struct uncharge_gather {
7072 	struct mem_cgroup *memcg;
7073 	unsigned long nr_memory;
7074 	unsigned long pgpgout;
7075 	unsigned long nr_kmem;
7076 	int nid;
7077 };
7078 
7079 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7080 {
7081 	memset(ug, 0, sizeof(*ug));
7082 }
7083 
7084 static void uncharge_batch(const struct uncharge_gather *ug)
7085 {
7086 	unsigned long flags;
7087 
7088 	if (ug->nr_memory) {
7089 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7090 		if (do_memsw_account())
7091 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7092 		if (ug->nr_kmem)
7093 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7094 		memcg_oom_recover(ug->memcg);
7095 	}
7096 
7097 	local_irq_save(flags);
7098 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7099 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7100 	memcg_check_events(ug->memcg, ug->nid);
7101 	local_irq_restore(flags);
7102 
7103 	/* drop reference from uncharge_folio */
7104 	css_put(&ug->memcg->css);
7105 }
7106 
7107 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7108 {
7109 	long nr_pages;
7110 	struct mem_cgroup *memcg;
7111 	struct obj_cgroup *objcg;
7112 
7113 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7114 
7115 	/*
7116 	 * Nobody should be changing or seriously looking at
7117 	 * folio memcg or objcg at this point, we have fully
7118 	 * exclusive access to the folio.
7119 	 */
7120 	if (folio_memcg_kmem(folio)) {
7121 		objcg = __folio_objcg(folio);
7122 		/*
7123 		 * This get matches the put at the end of the function and
7124 		 * kmem pages do not hold memcg references anymore.
7125 		 */
7126 		memcg = get_mem_cgroup_from_objcg(objcg);
7127 	} else {
7128 		memcg = __folio_memcg(folio);
7129 	}
7130 
7131 	if (!memcg)
7132 		return;
7133 
7134 	if (ug->memcg != memcg) {
7135 		if (ug->memcg) {
7136 			uncharge_batch(ug);
7137 			uncharge_gather_clear(ug);
7138 		}
7139 		ug->memcg = memcg;
7140 		ug->nid = folio_nid(folio);
7141 
7142 		/* pairs with css_put in uncharge_batch */
7143 		css_get(&memcg->css);
7144 	}
7145 
7146 	nr_pages = folio_nr_pages(folio);
7147 
7148 	if (folio_memcg_kmem(folio)) {
7149 		ug->nr_memory += nr_pages;
7150 		ug->nr_kmem += nr_pages;
7151 
7152 		folio->memcg_data = 0;
7153 		obj_cgroup_put(objcg);
7154 	} else {
7155 		/* LRU pages aren't accounted at the root level */
7156 		if (!mem_cgroup_is_root(memcg))
7157 			ug->nr_memory += nr_pages;
7158 		ug->pgpgout++;
7159 
7160 		folio->memcg_data = 0;
7161 	}
7162 
7163 	css_put(&memcg->css);
7164 }
7165 
7166 void __mem_cgroup_uncharge(struct folio *folio)
7167 {
7168 	struct uncharge_gather ug;
7169 
7170 	/* Don't touch folio->lru of any random page, pre-check: */
7171 	if (!folio_memcg(folio))
7172 		return;
7173 
7174 	uncharge_gather_clear(&ug);
7175 	uncharge_folio(folio, &ug);
7176 	uncharge_batch(&ug);
7177 }
7178 
7179 /**
7180  * __mem_cgroup_uncharge_list - uncharge a list of page
7181  * @page_list: list of pages to uncharge
7182  *
7183  * Uncharge a list of pages previously charged with
7184  * __mem_cgroup_charge().
7185  */
7186 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7187 {
7188 	struct uncharge_gather ug;
7189 	struct folio *folio;
7190 
7191 	uncharge_gather_clear(&ug);
7192 	list_for_each_entry(folio, page_list, lru)
7193 		uncharge_folio(folio, &ug);
7194 	if (ug.memcg)
7195 		uncharge_batch(&ug);
7196 }
7197 
7198 /**
7199  * mem_cgroup_migrate - Charge a folio's replacement.
7200  * @old: Currently circulating folio.
7201  * @new: Replacement folio.
7202  *
7203  * Charge @new as a replacement folio for @old. @old will
7204  * be uncharged upon free.
7205  *
7206  * Both folios must be locked, @new->mapping must be set up.
7207  */
7208 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7209 {
7210 	struct mem_cgroup *memcg;
7211 	long nr_pages = folio_nr_pages(new);
7212 	unsigned long flags;
7213 
7214 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7215 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7216 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7217 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7218 
7219 	if (mem_cgroup_disabled())
7220 		return;
7221 
7222 	/* Page cache replacement: new folio already charged? */
7223 	if (folio_memcg(new))
7224 		return;
7225 
7226 	memcg = folio_memcg(old);
7227 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7228 	if (!memcg)
7229 		return;
7230 
7231 	/* Force-charge the new page. The old one will be freed soon */
7232 	if (!mem_cgroup_is_root(memcg)) {
7233 		page_counter_charge(&memcg->memory, nr_pages);
7234 		if (do_memsw_account())
7235 			page_counter_charge(&memcg->memsw, nr_pages);
7236 	}
7237 
7238 	css_get(&memcg->css);
7239 	commit_charge(new, memcg);
7240 
7241 	local_irq_save(flags);
7242 	mem_cgroup_charge_statistics(memcg, nr_pages);
7243 	memcg_check_events(memcg, folio_nid(new));
7244 	local_irq_restore(flags);
7245 }
7246 
7247 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7248 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7249 
7250 void mem_cgroup_sk_alloc(struct sock *sk)
7251 {
7252 	struct mem_cgroup *memcg;
7253 
7254 	if (!mem_cgroup_sockets_enabled)
7255 		return;
7256 
7257 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7258 	if (!in_task())
7259 		return;
7260 
7261 	rcu_read_lock();
7262 	memcg = mem_cgroup_from_task(current);
7263 	if (mem_cgroup_is_root(memcg))
7264 		goto out;
7265 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7266 		goto out;
7267 	if (css_tryget(&memcg->css))
7268 		sk->sk_memcg = memcg;
7269 out:
7270 	rcu_read_unlock();
7271 }
7272 
7273 void mem_cgroup_sk_free(struct sock *sk)
7274 {
7275 	if (sk->sk_memcg)
7276 		css_put(&sk->sk_memcg->css);
7277 }
7278 
7279 /**
7280  * mem_cgroup_charge_skmem - charge socket memory
7281  * @memcg: memcg to charge
7282  * @nr_pages: number of pages to charge
7283  * @gfp_mask: reclaim mode
7284  *
7285  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7286  * @memcg's configured limit, %false if it doesn't.
7287  */
7288 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7289 			     gfp_t gfp_mask)
7290 {
7291 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7292 		struct page_counter *fail;
7293 
7294 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7295 			memcg->tcpmem_pressure = 0;
7296 			return true;
7297 		}
7298 		memcg->tcpmem_pressure = 1;
7299 		if (gfp_mask & __GFP_NOFAIL) {
7300 			page_counter_charge(&memcg->tcpmem, nr_pages);
7301 			return true;
7302 		}
7303 		return false;
7304 	}
7305 
7306 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7307 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7308 		return true;
7309 	}
7310 
7311 	return false;
7312 }
7313 
7314 /**
7315  * mem_cgroup_uncharge_skmem - uncharge socket memory
7316  * @memcg: memcg to uncharge
7317  * @nr_pages: number of pages to uncharge
7318  */
7319 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7320 {
7321 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7322 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7323 		return;
7324 	}
7325 
7326 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7327 
7328 	refill_stock(memcg, nr_pages);
7329 }
7330 
7331 static int __init cgroup_memory(char *s)
7332 {
7333 	char *token;
7334 
7335 	while ((token = strsep(&s, ",")) != NULL) {
7336 		if (!*token)
7337 			continue;
7338 		if (!strcmp(token, "nosocket"))
7339 			cgroup_memory_nosocket = true;
7340 		if (!strcmp(token, "nokmem"))
7341 			cgroup_memory_nokmem = true;
7342 		if (!strcmp(token, "nobpf"))
7343 			cgroup_memory_nobpf = true;
7344 	}
7345 	return 1;
7346 }
7347 __setup("cgroup.memory=", cgroup_memory);
7348 
7349 /*
7350  * subsys_initcall() for memory controller.
7351  *
7352  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7353  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7354  * basically everything that doesn't depend on a specific mem_cgroup structure
7355  * should be initialized from here.
7356  */
7357 static int __init mem_cgroup_init(void)
7358 {
7359 	int cpu, node;
7360 
7361 	/*
7362 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7363 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7364 	 * to work fine, we should make sure that the overfill threshold can't
7365 	 * exceed S32_MAX / PAGE_SIZE.
7366 	 */
7367 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7368 
7369 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7370 				  memcg_hotplug_cpu_dead);
7371 
7372 	for_each_possible_cpu(cpu)
7373 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7374 			  drain_local_stock);
7375 
7376 	for_each_node(node) {
7377 		struct mem_cgroup_tree_per_node *rtpn;
7378 
7379 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7380 
7381 		rtpn->rb_root = RB_ROOT;
7382 		rtpn->rb_rightmost = NULL;
7383 		spin_lock_init(&rtpn->lock);
7384 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7385 	}
7386 
7387 	return 0;
7388 }
7389 subsys_initcall(mem_cgroup_init);
7390 
7391 #ifdef CONFIG_SWAP
7392 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7393 {
7394 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7395 		/*
7396 		 * The root cgroup cannot be destroyed, so it's refcount must
7397 		 * always be >= 1.
7398 		 */
7399 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7400 			VM_BUG_ON(1);
7401 			break;
7402 		}
7403 		memcg = parent_mem_cgroup(memcg);
7404 		if (!memcg)
7405 			memcg = root_mem_cgroup;
7406 	}
7407 	return memcg;
7408 }
7409 
7410 /**
7411  * mem_cgroup_swapout - transfer a memsw charge to swap
7412  * @folio: folio whose memsw charge to transfer
7413  * @entry: swap entry to move the charge to
7414  *
7415  * Transfer the memsw charge of @folio to @entry.
7416  */
7417 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7418 {
7419 	struct mem_cgroup *memcg, *swap_memcg;
7420 	unsigned int nr_entries;
7421 	unsigned short oldid;
7422 
7423 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7424 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7425 
7426 	if (mem_cgroup_disabled())
7427 		return;
7428 
7429 	if (!do_memsw_account())
7430 		return;
7431 
7432 	memcg = folio_memcg(folio);
7433 
7434 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7435 	if (!memcg)
7436 		return;
7437 
7438 	/*
7439 	 * In case the memcg owning these pages has been offlined and doesn't
7440 	 * have an ID allocated to it anymore, charge the closest online
7441 	 * ancestor for the swap instead and transfer the memory+swap charge.
7442 	 */
7443 	swap_memcg = mem_cgroup_id_get_online(memcg);
7444 	nr_entries = folio_nr_pages(folio);
7445 	/* Get references for the tail pages, too */
7446 	if (nr_entries > 1)
7447 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7448 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7449 				   nr_entries);
7450 	VM_BUG_ON_FOLIO(oldid, folio);
7451 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7452 
7453 	folio->memcg_data = 0;
7454 
7455 	if (!mem_cgroup_is_root(memcg))
7456 		page_counter_uncharge(&memcg->memory, nr_entries);
7457 
7458 	if (memcg != swap_memcg) {
7459 		if (!mem_cgroup_is_root(swap_memcg))
7460 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7461 		page_counter_uncharge(&memcg->memsw, nr_entries);
7462 	}
7463 
7464 	/*
7465 	 * Interrupts should be disabled here because the caller holds the
7466 	 * i_pages lock which is taken with interrupts-off. It is
7467 	 * important here to have the interrupts disabled because it is the
7468 	 * only synchronisation we have for updating the per-CPU variables.
7469 	 */
7470 	memcg_stats_lock();
7471 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7472 	memcg_stats_unlock();
7473 	memcg_check_events(memcg, folio_nid(folio));
7474 
7475 	css_put(&memcg->css);
7476 }
7477 
7478 /**
7479  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7480  * @folio: folio being added to swap
7481  * @entry: swap entry to charge
7482  *
7483  * Try to charge @folio's memcg for the swap space at @entry.
7484  *
7485  * Returns 0 on success, -ENOMEM on failure.
7486  */
7487 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7488 {
7489 	unsigned int nr_pages = folio_nr_pages(folio);
7490 	struct page_counter *counter;
7491 	struct mem_cgroup *memcg;
7492 	unsigned short oldid;
7493 
7494 	if (do_memsw_account())
7495 		return 0;
7496 
7497 	memcg = folio_memcg(folio);
7498 
7499 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7500 	if (!memcg)
7501 		return 0;
7502 
7503 	if (!entry.val) {
7504 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7505 		return 0;
7506 	}
7507 
7508 	memcg = mem_cgroup_id_get_online(memcg);
7509 
7510 	if (!mem_cgroup_is_root(memcg) &&
7511 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7512 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7513 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7514 		mem_cgroup_id_put(memcg);
7515 		return -ENOMEM;
7516 	}
7517 
7518 	/* Get references for the tail pages, too */
7519 	if (nr_pages > 1)
7520 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7521 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7522 	VM_BUG_ON_FOLIO(oldid, folio);
7523 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7524 
7525 	return 0;
7526 }
7527 
7528 /**
7529  * __mem_cgroup_uncharge_swap - uncharge swap space
7530  * @entry: swap entry to uncharge
7531  * @nr_pages: the amount of swap space to uncharge
7532  */
7533 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7534 {
7535 	struct mem_cgroup *memcg;
7536 	unsigned short id;
7537 
7538 	if (mem_cgroup_disabled())
7539 		return;
7540 
7541 	id = swap_cgroup_record(entry, 0, nr_pages);
7542 	rcu_read_lock();
7543 	memcg = mem_cgroup_from_id(id);
7544 	if (memcg) {
7545 		if (!mem_cgroup_is_root(memcg)) {
7546 			if (do_memsw_account())
7547 				page_counter_uncharge(&memcg->memsw, nr_pages);
7548 			else
7549 				page_counter_uncharge(&memcg->swap, nr_pages);
7550 		}
7551 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7552 		mem_cgroup_id_put_many(memcg, nr_pages);
7553 	}
7554 	rcu_read_unlock();
7555 }
7556 
7557 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7558 {
7559 	long nr_swap_pages = get_nr_swap_pages();
7560 
7561 	if (mem_cgroup_disabled() || do_memsw_account())
7562 		return nr_swap_pages;
7563 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7564 		nr_swap_pages = min_t(long, nr_swap_pages,
7565 				      READ_ONCE(memcg->swap.max) -
7566 				      page_counter_read(&memcg->swap));
7567 	return nr_swap_pages;
7568 }
7569 
7570 bool mem_cgroup_swap_full(struct folio *folio)
7571 {
7572 	struct mem_cgroup *memcg;
7573 
7574 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7575 
7576 	if (vm_swap_full())
7577 		return true;
7578 	if (do_memsw_account())
7579 		return false;
7580 
7581 	memcg = folio_memcg(folio);
7582 	if (!memcg)
7583 		return false;
7584 
7585 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7586 		unsigned long usage = page_counter_read(&memcg->swap);
7587 
7588 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7589 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7590 			return true;
7591 	}
7592 
7593 	return false;
7594 }
7595 
7596 static int __init setup_swap_account(char *s)
7597 {
7598 	pr_warn_once("The swapaccount= commandline option is deprecated. "
7599 		     "Please report your usecase to linux-mm@kvack.org if you "
7600 		     "depend on this functionality.\n");
7601 	return 1;
7602 }
7603 __setup("swapaccount=", setup_swap_account);
7604 
7605 static u64 swap_current_read(struct cgroup_subsys_state *css,
7606 			     struct cftype *cft)
7607 {
7608 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7609 
7610 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7611 }
7612 
7613 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7614 			  struct cftype *cft)
7615 {
7616 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7617 
7618 	return (u64)memcg->swap.watermark * PAGE_SIZE;
7619 }
7620 
7621 static int swap_high_show(struct seq_file *m, void *v)
7622 {
7623 	return seq_puts_memcg_tunable(m,
7624 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7625 }
7626 
7627 static ssize_t swap_high_write(struct kernfs_open_file *of,
7628 			       char *buf, size_t nbytes, loff_t off)
7629 {
7630 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7631 	unsigned long high;
7632 	int err;
7633 
7634 	buf = strstrip(buf);
7635 	err = page_counter_memparse(buf, "max", &high);
7636 	if (err)
7637 		return err;
7638 
7639 	page_counter_set_high(&memcg->swap, high);
7640 
7641 	return nbytes;
7642 }
7643 
7644 static int swap_max_show(struct seq_file *m, void *v)
7645 {
7646 	return seq_puts_memcg_tunable(m,
7647 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7648 }
7649 
7650 static ssize_t swap_max_write(struct kernfs_open_file *of,
7651 			      char *buf, size_t nbytes, loff_t off)
7652 {
7653 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7654 	unsigned long max;
7655 	int err;
7656 
7657 	buf = strstrip(buf);
7658 	err = page_counter_memparse(buf, "max", &max);
7659 	if (err)
7660 		return err;
7661 
7662 	xchg(&memcg->swap.max, max);
7663 
7664 	return nbytes;
7665 }
7666 
7667 static int swap_events_show(struct seq_file *m, void *v)
7668 {
7669 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7670 
7671 	seq_printf(m, "high %lu\n",
7672 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7673 	seq_printf(m, "max %lu\n",
7674 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7675 	seq_printf(m, "fail %lu\n",
7676 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7677 
7678 	return 0;
7679 }
7680 
7681 static struct cftype swap_files[] = {
7682 	{
7683 		.name = "swap.current",
7684 		.flags = CFTYPE_NOT_ON_ROOT,
7685 		.read_u64 = swap_current_read,
7686 	},
7687 	{
7688 		.name = "swap.high",
7689 		.flags = CFTYPE_NOT_ON_ROOT,
7690 		.seq_show = swap_high_show,
7691 		.write = swap_high_write,
7692 	},
7693 	{
7694 		.name = "swap.max",
7695 		.flags = CFTYPE_NOT_ON_ROOT,
7696 		.seq_show = swap_max_show,
7697 		.write = swap_max_write,
7698 	},
7699 	{
7700 		.name = "swap.peak",
7701 		.flags = CFTYPE_NOT_ON_ROOT,
7702 		.read_u64 = swap_peak_read,
7703 	},
7704 	{
7705 		.name = "swap.events",
7706 		.flags = CFTYPE_NOT_ON_ROOT,
7707 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7708 		.seq_show = swap_events_show,
7709 	},
7710 	{ }	/* terminate */
7711 };
7712 
7713 static struct cftype memsw_files[] = {
7714 	{
7715 		.name = "memsw.usage_in_bytes",
7716 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7717 		.read_u64 = mem_cgroup_read_u64,
7718 	},
7719 	{
7720 		.name = "memsw.max_usage_in_bytes",
7721 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7722 		.write = mem_cgroup_reset,
7723 		.read_u64 = mem_cgroup_read_u64,
7724 	},
7725 	{
7726 		.name = "memsw.limit_in_bytes",
7727 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7728 		.write = mem_cgroup_write,
7729 		.read_u64 = mem_cgroup_read_u64,
7730 	},
7731 	{
7732 		.name = "memsw.failcnt",
7733 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7734 		.write = mem_cgroup_reset,
7735 		.read_u64 = mem_cgroup_read_u64,
7736 	},
7737 	{ },	/* terminate */
7738 };
7739 
7740 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7741 /**
7742  * obj_cgroup_may_zswap - check if this cgroup can zswap
7743  * @objcg: the object cgroup
7744  *
7745  * Check if the hierarchical zswap limit has been reached.
7746  *
7747  * This doesn't check for specific headroom, and it is not atomic
7748  * either. But with zswap, the size of the allocation is only known
7749  * once compression has occured, and this optimistic pre-check avoids
7750  * spending cycles on compression when there is already no room left
7751  * or zswap is disabled altogether somewhere in the hierarchy.
7752  */
7753 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7754 {
7755 	struct mem_cgroup *memcg, *original_memcg;
7756 	bool ret = true;
7757 
7758 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7759 		return true;
7760 
7761 	original_memcg = get_mem_cgroup_from_objcg(objcg);
7762 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7763 	     memcg = parent_mem_cgroup(memcg)) {
7764 		unsigned long max = READ_ONCE(memcg->zswap_max);
7765 		unsigned long pages;
7766 
7767 		if (max == PAGE_COUNTER_MAX)
7768 			continue;
7769 		if (max == 0) {
7770 			ret = false;
7771 			break;
7772 		}
7773 
7774 		cgroup_rstat_flush(memcg->css.cgroup);
7775 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7776 		if (pages < max)
7777 			continue;
7778 		ret = false;
7779 		break;
7780 	}
7781 	mem_cgroup_put(original_memcg);
7782 	return ret;
7783 }
7784 
7785 /**
7786  * obj_cgroup_charge_zswap - charge compression backend memory
7787  * @objcg: the object cgroup
7788  * @size: size of compressed object
7789  *
7790  * This forces the charge after obj_cgroup_may_swap() allowed
7791  * compression and storage in zwap for this cgroup to go ahead.
7792  */
7793 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7794 {
7795 	struct mem_cgroup *memcg;
7796 
7797 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7798 		return;
7799 
7800 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7801 
7802 	/* PF_MEMALLOC context, charging must succeed */
7803 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7804 		VM_WARN_ON_ONCE(1);
7805 
7806 	rcu_read_lock();
7807 	memcg = obj_cgroup_memcg(objcg);
7808 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7809 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7810 	rcu_read_unlock();
7811 }
7812 
7813 /**
7814  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7815  * @objcg: the object cgroup
7816  * @size: size of compressed object
7817  *
7818  * Uncharges zswap memory on page in.
7819  */
7820 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7821 {
7822 	struct mem_cgroup *memcg;
7823 
7824 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7825 		return;
7826 
7827 	obj_cgroup_uncharge(objcg, size);
7828 
7829 	rcu_read_lock();
7830 	memcg = obj_cgroup_memcg(objcg);
7831 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7832 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7833 	rcu_read_unlock();
7834 }
7835 
7836 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7837 			      struct cftype *cft)
7838 {
7839 	cgroup_rstat_flush(css->cgroup);
7840 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7841 }
7842 
7843 static int zswap_max_show(struct seq_file *m, void *v)
7844 {
7845 	return seq_puts_memcg_tunable(m,
7846 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7847 }
7848 
7849 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7850 			       char *buf, size_t nbytes, loff_t off)
7851 {
7852 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7853 	unsigned long max;
7854 	int err;
7855 
7856 	buf = strstrip(buf);
7857 	err = page_counter_memparse(buf, "max", &max);
7858 	if (err)
7859 		return err;
7860 
7861 	xchg(&memcg->zswap_max, max);
7862 
7863 	return nbytes;
7864 }
7865 
7866 static struct cftype zswap_files[] = {
7867 	{
7868 		.name = "zswap.current",
7869 		.flags = CFTYPE_NOT_ON_ROOT,
7870 		.read_u64 = zswap_current_read,
7871 	},
7872 	{
7873 		.name = "zswap.max",
7874 		.flags = CFTYPE_NOT_ON_ROOT,
7875 		.seq_show = zswap_max_show,
7876 		.write = zswap_max_write,
7877 	},
7878 	{ }	/* terminate */
7879 };
7880 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7881 
7882 static int __init mem_cgroup_swap_init(void)
7883 {
7884 	if (mem_cgroup_disabled())
7885 		return 0;
7886 
7887 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7888 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7889 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7890 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7891 #endif
7892 	return 0;
7893 }
7894 subsys_initcall(mem_cgroup_swap_init);
7895 
7896 #endif /* CONFIG_SWAP */
7897