xref: /openbmc/linux/mm/memcontrol.c (revision aac5987a)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char * const mem_cgroup_stat_names[] = {
104 	"cache",
105 	"rss",
106 	"rss_huge",
107 	"mapped_file",
108 	"dirty",
109 	"writeback",
110 	"swap",
111 };
112 
113 static const char * const mem_cgroup_events_names[] = {
114 	"pgpgin",
115 	"pgpgout",
116 	"pgfault",
117 	"pgmajfault",
118 };
119 
120 static const char * const mem_cgroup_lru_names[] = {
121 	"inactive_anon",
122 	"active_anon",
123 	"inactive_file",
124 	"active_file",
125 	"unevictable",
126 };
127 
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET	1024
131 
132 /*
133  * Cgroups above their limits are maintained in a RB-Tree, independent of
134  * their hierarchy representation
135  */
136 
137 struct mem_cgroup_tree_per_node {
138 	struct rb_root rb_root;
139 	spinlock_t lock;
140 };
141 
142 struct mem_cgroup_tree {
143 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145 
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147 
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 	struct list_head list;
151 	struct eventfd_ctx *eventfd;
152 };
153 
154 /*
155  * cgroup_event represents events which userspace want to receive.
156  */
157 struct mem_cgroup_event {
158 	/*
159 	 * memcg which the event belongs to.
160 	 */
161 	struct mem_cgroup *memcg;
162 	/*
163 	 * eventfd to signal userspace about the event.
164 	 */
165 	struct eventfd_ctx *eventfd;
166 	/*
167 	 * Each of these stored in a list by the cgroup.
168 	 */
169 	struct list_head list;
170 	/*
171 	 * register_event() callback will be used to add new userspace
172 	 * waiter for changes related to this event.  Use eventfd_signal()
173 	 * on eventfd to send notification to userspace.
174 	 */
175 	int (*register_event)(struct mem_cgroup *memcg,
176 			      struct eventfd_ctx *eventfd, const char *args);
177 	/*
178 	 * unregister_event() callback will be called when userspace closes
179 	 * the eventfd or on cgroup removing.  This callback must be set,
180 	 * if you want provide notification functionality.
181 	 */
182 	void (*unregister_event)(struct mem_cgroup *memcg,
183 				 struct eventfd_ctx *eventfd);
184 	/*
185 	 * All fields below needed to unregister event when
186 	 * userspace closes eventfd.
187 	 */
188 	poll_table pt;
189 	wait_queue_head_t *wqh;
190 	wait_queue_t wait;
191 	struct work_struct remove;
192 };
193 
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196 
197 /* Stuffs for move charges at task migration. */
198 /*
199  * Types of charges to be moved.
200  */
201 #define MOVE_ANON	0x1U
202 #define MOVE_FILE	0x2U
203 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
204 
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 	spinlock_t	  lock; /* for from, to */
208 	struct mm_struct  *mm;
209 	struct mem_cgroup *from;
210 	struct mem_cgroup *to;
211 	unsigned long flags;
212 	unsigned long precharge;
213 	unsigned long moved_charge;
214 	unsigned long moved_swap;
215 	struct task_struct *moving_task;	/* a task moving charges */
216 	wait_queue_head_t waitq;		/* a waitq for other context */
217 } mc = {
218 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
219 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
220 };
221 
222 /*
223  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
224  * limit reclaim to prevent infinite loops, if they ever occur.
225  */
226 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
227 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
228 
229 enum charge_type {
230 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
231 	MEM_CGROUP_CHARGE_TYPE_ANON,
232 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
233 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
234 	NR_CHARGE_TYPE,
235 };
236 
237 /* for encoding cft->private value on file */
238 enum res_type {
239 	_MEM,
240 	_MEMSWAP,
241 	_OOM_TYPE,
242 	_KMEM,
243 	_TCP,
244 };
245 
246 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
247 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
248 #define MEMFILE_ATTR(val)	((val) & 0xffff)
249 /* Used for OOM nofiier */
250 #define OOM_CONTROL		(0)
251 
252 /* Some nice accessors for the vmpressure. */
253 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
254 {
255 	if (!memcg)
256 		memcg = root_mem_cgroup;
257 	return &memcg->vmpressure;
258 }
259 
260 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
261 {
262 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
263 }
264 
265 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
266 {
267 	return (memcg == root_mem_cgroup);
268 }
269 
270 #ifndef CONFIG_SLOB
271 /*
272  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
273  * The main reason for not using cgroup id for this:
274  *  this works better in sparse environments, where we have a lot of memcgs,
275  *  but only a few kmem-limited. Or also, if we have, for instance, 200
276  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
277  *  200 entry array for that.
278  *
279  * The current size of the caches array is stored in memcg_nr_cache_ids. It
280  * will double each time we have to increase it.
281  */
282 static DEFINE_IDA(memcg_cache_ida);
283 int memcg_nr_cache_ids;
284 
285 /* Protects memcg_nr_cache_ids */
286 static DECLARE_RWSEM(memcg_cache_ids_sem);
287 
288 void memcg_get_cache_ids(void)
289 {
290 	down_read(&memcg_cache_ids_sem);
291 }
292 
293 void memcg_put_cache_ids(void)
294 {
295 	up_read(&memcg_cache_ids_sem);
296 }
297 
298 /*
299  * MIN_SIZE is different than 1, because we would like to avoid going through
300  * the alloc/free process all the time. In a small machine, 4 kmem-limited
301  * cgroups is a reasonable guess. In the future, it could be a parameter or
302  * tunable, but that is strictly not necessary.
303  *
304  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305  * this constant directly from cgroup, but it is understandable that this is
306  * better kept as an internal representation in cgroup.c. In any case, the
307  * cgrp_id space is not getting any smaller, and we don't have to necessarily
308  * increase ours as well if it increases.
309  */
310 #define MEMCG_CACHES_MIN_SIZE 4
311 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312 
313 /*
314  * A lot of the calls to the cache allocation functions are expected to be
315  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316  * conditional to this static branch, we'll have to allow modules that does
317  * kmem_cache_alloc and the such to see this symbol as well
318  */
319 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320 EXPORT_SYMBOL(memcg_kmem_enabled_key);
321 
322 struct workqueue_struct *memcg_kmem_cache_wq;
323 
324 #endif /* !CONFIG_SLOB */
325 
326 /**
327  * mem_cgroup_css_from_page - css of the memcg associated with a page
328  * @page: page of interest
329  *
330  * If memcg is bound to the default hierarchy, css of the memcg associated
331  * with @page is returned.  The returned css remains associated with @page
332  * until it is released.
333  *
334  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
335  * is returned.
336  */
337 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338 {
339 	struct mem_cgroup *memcg;
340 
341 	memcg = page->mem_cgroup;
342 
343 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 		memcg = root_mem_cgroup;
345 
346 	return &memcg->css;
347 }
348 
349 /**
350  * page_cgroup_ino - return inode number of the memcg a page is charged to
351  * @page: the page
352  *
353  * Look up the closest online ancestor of the memory cgroup @page is charged to
354  * and return its inode number or 0 if @page is not charged to any cgroup. It
355  * is safe to call this function without holding a reference to @page.
356  *
357  * Note, this function is inherently racy, because there is nothing to prevent
358  * the cgroup inode from getting torn down and potentially reallocated a moment
359  * after page_cgroup_ino() returns, so it only should be used by callers that
360  * do not care (such as procfs interfaces).
361  */
362 ino_t page_cgroup_ino(struct page *page)
363 {
364 	struct mem_cgroup *memcg;
365 	unsigned long ino = 0;
366 
367 	rcu_read_lock();
368 	memcg = READ_ONCE(page->mem_cgroup);
369 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
370 		memcg = parent_mem_cgroup(memcg);
371 	if (memcg)
372 		ino = cgroup_ino(memcg->css.cgroup);
373 	rcu_read_unlock();
374 	return ino;
375 }
376 
377 static struct mem_cgroup_per_node *
378 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
379 {
380 	int nid = page_to_nid(page);
381 
382 	return memcg->nodeinfo[nid];
383 }
384 
385 static struct mem_cgroup_tree_per_node *
386 soft_limit_tree_node(int nid)
387 {
388 	return soft_limit_tree.rb_tree_per_node[nid];
389 }
390 
391 static struct mem_cgroup_tree_per_node *
392 soft_limit_tree_from_page(struct page *page)
393 {
394 	int nid = page_to_nid(page);
395 
396 	return soft_limit_tree.rb_tree_per_node[nid];
397 }
398 
399 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
400 					 struct mem_cgroup_tree_per_node *mctz,
401 					 unsigned long new_usage_in_excess)
402 {
403 	struct rb_node **p = &mctz->rb_root.rb_node;
404 	struct rb_node *parent = NULL;
405 	struct mem_cgroup_per_node *mz_node;
406 
407 	if (mz->on_tree)
408 		return;
409 
410 	mz->usage_in_excess = new_usage_in_excess;
411 	if (!mz->usage_in_excess)
412 		return;
413 	while (*p) {
414 		parent = *p;
415 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
416 					tree_node);
417 		if (mz->usage_in_excess < mz_node->usage_in_excess)
418 			p = &(*p)->rb_left;
419 		/*
420 		 * We can't avoid mem cgroups that are over their soft
421 		 * limit by the same amount
422 		 */
423 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
424 			p = &(*p)->rb_right;
425 	}
426 	rb_link_node(&mz->tree_node, parent, p);
427 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
428 	mz->on_tree = true;
429 }
430 
431 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
432 					 struct mem_cgroup_tree_per_node *mctz)
433 {
434 	if (!mz->on_tree)
435 		return;
436 	rb_erase(&mz->tree_node, &mctz->rb_root);
437 	mz->on_tree = false;
438 }
439 
440 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
441 				       struct mem_cgroup_tree_per_node *mctz)
442 {
443 	unsigned long flags;
444 
445 	spin_lock_irqsave(&mctz->lock, flags);
446 	__mem_cgroup_remove_exceeded(mz, mctz);
447 	spin_unlock_irqrestore(&mctz->lock, flags);
448 }
449 
450 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
451 {
452 	unsigned long nr_pages = page_counter_read(&memcg->memory);
453 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
454 	unsigned long excess = 0;
455 
456 	if (nr_pages > soft_limit)
457 		excess = nr_pages - soft_limit;
458 
459 	return excess;
460 }
461 
462 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
463 {
464 	unsigned long excess;
465 	struct mem_cgroup_per_node *mz;
466 	struct mem_cgroup_tree_per_node *mctz;
467 
468 	mctz = soft_limit_tree_from_page(page);
469 	/*
470 	 * Necessary to update all ancestors when hierarchy is used.
471 	 * because their event counter is not touched.
472 	 */
473 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
474 		mz = mem_cgroup_page_nodeinfo(memcg, page);
475 		excess = soft_limit_excess(memcg);
476 		/*
477 		 * We have to update the tree if mz is on RB-tree or
478 		 * mem is over its softlimit.
479 		 */
480 		if (excess || mz->on_tree) {
481 			unsigned long flags;
482 
483 			spin_lock_irqsave(&mctz->lock, flags);
484 			/* if on-tree, remove it */
485 			if (mz->on_tree)
486 				__mem_cgroup_remove_exceeded(mz, mctz);
487 			/*
488 			 * Insert again. mz->usage_in_excess will be updated.
489 			 * If excess is 0, no tree ops.
490 			 */
491 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
492 			spin_unlock_irqrestore(&mctz->lock, flags);
493 		}
494 	}
495 }
496 
497 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
498 {
499 	struct mem_cgroup_tree_per_node *mctz;
500 	struct mem_cgroup_per_node *mz;
501 	int nid;
502 
503 	for_each_node(nid) {
504 		mz = mem_cgroup_nodeinfo(memcg, nid);
505 		mctz = soft_limit_tree_node(nid);
506 		mem_cgroup_remove_exceeded(mz, mctz);
507 	}
508 }
509 
510 static struct mem_cgroup_per_node *
511 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
512 {
513 	struct rb_node *rightmost = NULL;
514 	struct mem_cgroup_per_node *mz;
515 
516 retry:
517 	mz = NULL;
518 	rightmost = rb_last(&mctz->rb_root);
519 	if (!rightmost)
520 		goto done;		/* Nothing to reclaim from */
521 
522 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
523 	/*
524 	 * Remove the node now but someone else can add it back,
525 	 * we will to add it back at the end of reclaim to its correct
526 	 * position in the tree.
527 	 */
528 	__mem_cgroup_remove_exceeded(mz, mctz);
529 	if (!soft_limit_excess(mz->memcg) ||
530 	    !css_tryget_online(&mz->memcg->css))
531 		goto retry;
532 done:
533 	return mz;
534 }
535 
536 static struct mem_cgroup_per_node *
537 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
538 {
539 	struct mem_cgroup_per_node *mz;
540 
541 	spin_lock_irq(&mctz->lock);
542 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
543 	spin_unlock_irq(&mctz->lock);
544 	return mz;
545 }
546 
547 /*
548  * Return page count for single (non recursive) @memcg.
549  *
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronization of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threshold and synchronization as vmstat[] should be
566  * implemented.
567  */
568 static unsigned long
569 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
570 {
571 	long val = 0;
572 	int cpu;
573 
574 	/* Per-cpu values can be negative, use a signed accumulator */
575 	for_each_possible_cpu(cpu)
576 		val += per_cpu(memcg->stat->count[idx], cpu);
577 	/*
578 	 * Summing races with updates, so val may be negative.  Avoid exposing
579 	 * transient negative values.
580 	 */
581 	if (val < 0)
582 		val = 0;
583 	return val;
584 }
585 
586 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
587 					    enum mem_cgroup_events_index idx)
588 {
589 	unsigned long val = 0;
590 	int cpu;
591 
592 	for_each_possible_cpu(cpu)
593 		val += per_cpu(memcg->stat->events[idx], cpu);
594 	return val;
595 }
596 
597 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
598 					 struct page *page,
599 					 bool compound, int nr_pages)
600 {
601 	/*
602 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
603 	 * counted as CACHE even if it's on ANON LRU.
604 	 */
605 	if (PageAnon(page))
606 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
607 				nr_pages);
608 	else
609 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
610 				nr_pages);
611 
612 	if (compound) {
613 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
614 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
615 				nr_pages);
616 	}
617 
618 	/* pagein of a big page is an event. So, ignore page size */
619 	if (nr_pages > 0)
620 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
621 	else {
622 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
623 		nr_pages = -nr_pages; /* for event */
624 	}
625 
626 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
627 }
628 
629 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
630 					   int nid, unsigned int lru_mask)
631 {
632 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
633 	unsigned long nr = 0;
634 	enum lru_list lru;
635 
636 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
637 
638 	for_each_lru(lru) {
639 		if (!(BIT(lru) & lru_mask))
640 			continue;
641 		nr += mem_cgroup_get_lru_size(lruvec, lru);
642 	}
643 	return nr;
644 }
645 
646 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
647 			unsigned int lru_mask)
648 {
649 	unsigned long nr = 0;
650 	int nid;
651 
652 	for_each_node_state(nid, N_MEMORY)
653 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
654 	return nr;
655 }
656 
657 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
658 				       enum mem_cgroup_events_target target)
659 {
660 	unsigned long val, next;
661 
662 	val = __this_cpu_read(memcg->stat->nr_page_events);
663 	next = __this_cpu_read(memcg->stat->targets[target]);
664 	/* from time_after() in jiffies.h */
665 	if ((long)next - (long)val < 0) {
666 		switch (target) {
667 		case MEM_CGROUP_TARGET_THRESH:
668 			next = val + THRESHOLDS_EVENTS_TARGET;
669 			break;
670 		case MEM_CGROUP_TARGET_SOFTLIMIT:
671 			next = val + SOFTLIMIT_EVENTS_TARGET;
672 			break;
673 		case MEM_CGROUP_TARGET_NUMAINFO:
674 			next = val + NUMAINFO_EVENTS_TARGET;
675 			break;
676 		default:
677 			break;
678 		}
679 		__this_cpu_write(memcg->stat->targets[target], next);
680 		return true;
681 	}
682 	return false;
683 }
684 
685 /*
686  * Check events in order.
687  *
688  */
689 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
690 {
691 	/* threshold event is triggered in finer grain than soft limit */
692 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
693 						MEM_CGROUP_TARGET_THRESH))) {
694 		bool do_softlimit;
695 		bool do_numainfo __maybe_unused;
696 
697 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
698 						MEM_CGROUP_TARGET_SOFTLIMIT);
699 #if MAX_NUMNODES > 1
700 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
701 						MEM_CGROUP_TARGET_NUMAINFO);
702 #endif
703 		mem_cgroup_threshold(memcg);
704 		if (unlikely(do_softlimit))
705 			mem_cgroup_update_tree(memcg, page);
706 #if MAX_NUMNODES > 1
707 		if (unlikely(do_numainfo))
708 			atomic_inc(&memcg->numainfo_events);
709 #endif
710 	}
711 }
712 
713 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
714 {
715 	/*
716 	 * mm_update_next_owner() may clear mm->owner to NULL
717 	 * if it races with swapoff, page migration, etc.
718 	 * So this can be called with p == NULL.
719 	 */
720 	if (unlikely(!p))
721 		return NULL;
722 
723 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
724 }
725 EXPORT_SYMBOL(mem_cgroup_from_task);
726 
727 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
728 {
729 	struct mem_cgroup *memcg = NULL;
730 
731 	rcu_read_lock();
732 	do {
733 		/*
734 		 * Page cache insertions can happen withou an
735 		 * actual mm context, e.g. during disk probing
736 		 * on boot, loopback IO, acct() writes etc.
737 		 */
738 		if (unlikely(!mm))
739 			memcg = root_mem_cgroup;
740 		else {
741 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
742 			if (unlikely(!memcg))
743 				memcg = root_mem_cgroup;
744 		}
745 	} while (!css_tryget_online(&memcg->css));
746 	rcu_read_unlock();
747 	return memcg;
748 }
749 
750 /**
751  * mem_cgroup_iter - iterate over memory cgroup hierarchy
752  * @root: hierarchy root
753  * @prev: previously returned memcg, NULL on first invocation
754  * @reclaim: cookie for shared reclaim walks, NULL for full walks
755  *
756  * Returns references to children of the hierarchy below @root, or
757  * @root itself, or %NULL after a full round-trip.
758  *
759  * Caller must pass the return value in @prev on subsequent
760  * invocations for reference counting, or use mem_cgroup_iter_break()
761  * to cancel a hierarchy walk before the round-trip is complete.
762  *
763  * Reclaimers can specify a zone and a priority level in @reclaim to
764  * divide up the memcgs in the hierarchy among all concurrent
765  * reclaimers operating on the same zone and priority.
766  */
767 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
768 				   struct mem_cgroup *prev,
769 				   struct mem_cgroup_reclaim_cookie *reclaim)
770 {
771 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
772 	struct cgroup_subsys_state *css = NULL;
773 	struct mem_cgroup *memcg = NULL;
774 	struct mem_cgroup *pos = NULL;
775 
776 	if (mem_cgroup_disabled())
777 		return NULL;
778 
779 	if (!root)
780 		root = root_mem_cgroup;
781 
782 	if (prev && !reclaim)
783 		pos = prev;
784 
785 	if (!root->use_hierarchy && root != root_mem_cgroup) {
786 		if (prev)
787 			goto out;
788 		return root;
789 	}
790 
791 	rcu_read_lock();
792 
793 	if (reclaim) {
794 		struct mem_cgroup_per_node *mz;
795 
796 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
797 		iter = &mz->iter[reclaim->priority];
798 
799 		if (prev && reclaim->generation != iter->generation)
800 			goto out_unlock;
801 
802 		while (1) {
803 			pos = READ_ONCE(iter->position);
804 			if (!pos || css_tryget(&pos->css))
805 				break;
806 			/*
807 			 * css reference reached zero, so iter->position will
808 			 * be cleared by ->css_released. However, we should not
809 			 * rely on this happening soon, because ->css_released
810 			 * is called from a work queue, and by busy-waiting we
811 			 * might block it. So we clear iter->position right
812 			 * away.
813 			 */
814 			(void)cmpxchg(&iter->position, pos, NULL);
815 		}
816 	}
817 
818 	if (pos)
819 		css = &pos->css;
820 
821 	for (;;) {
822 		css = css_next_descendant_pre(css, &root->css);
823 		if (!css) {
824 			/*
825 			 * Reclaimers share the hierarchy walk, and a
826 			 * new one might jump in right at the end of
827 			 * the hierarchy - make sure they see at least
828 			 * one group and restart from the beginning.
829 			 */
830 			if (!prev)
831 				continue;
832 			break;
833 		}
834 
835 		/*
836 		 * Verify the css and acquire a reference.  The root
837 		 * is provided by the caller, so we know it's alive
838 		 * and kicking, and don't take an extra reference.
839 		 */
840 		memcg = mem_cgroup_from_css(css);
841 
842 		if (css == &root->css)
843 			break;
844 
845 		if (css_tryget(css))
846 			break;
847 
848 		memcg = NULL;
849 	}
850 
851 	if (reclaim) {
852 		/*
853 		 * The position could have already been updated by a competing
854 		 * thread, so check that the value hasn't changed since we read
855 		 * it to avoid reclaiming from the same cgroup twice.
856 		 */
857 		(void)cmpxchg(&iter->position, pos, memcg);
858 
859 		if (pos)
860 			css_put(&pos->css);
861 
862 		if (!memcg)
863 			iter->generation++;
864 		else if (!prev)
865 			reclaim->generation = iter->generation;
866 	}
867 
868 out_unlock:
869 	rcu_read_unlock();
870 out:
871 	if (prev && prev != root)
872 		css_put(&prev->css);
873 
874 	return memcg;
875 }
876 
877 /**
878  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
879  * @root: hierarchy root
880  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
881  */
882 void mem_cgroup_iter_break(struct mem_cgroup *root,
883 			   struct mem_cgroup *prev)
884 {
885 	if (!root)
886 		root = root_mem_cgroup;
887 	if (prev && prev != root)
888 		css_put(&prev->css);
889 }
890 
891 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
892 {
893 	struct mem_cgroup *memcg = dead_memcg;
894 	struct mem_cgroup_reclaim_iter *iter;
895 	struct mem_cgroup_per_node *mz;
896 	int nid;
897 	int i;
898 
899 	while ((memcg = parent_mem_cgroup(memcg))) {
900 		for_each_node(nid) {
901 			mz = mem_cgroup_nodeinfo(memcg, nid);
902 			for (i = 0; i <= DEF_PRIORITY; i++) {
903 				iter = &mz->iter[i];
904 				cmpxchg(&iter->position,
905 					dead_memcg, NULL);
906 			}
907 		}
908 	}
909 }
910 
911 /*
912  * Iteration constructs for visiting all cgroups (under a tree).  If
913  * loops are exited prematurely (break), mem_cgroup_iter_break() must
914  * be used for reference counting.
915  */
916 #define for_each_mem_cgroup_tree(iter, root)		\
917 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
918 	     iter != NULL;				\
919 	     iter = mem_cgroup_iter(root, iter, NULL))
920 
921 #define for_each_mem_cgroup(iter)			\
922 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
923 	     iter != NULL;				\
924 	     iter = mem_cgroup_iter(NULL, iter, NULL))
925 
926 /**
927  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
928  * @memcg: hierarchy root
929  * @fn: function to call for each task
930  * @arg: argument passed to @fn
931  *
932  * This function iterates over tasks attached to @memcg or to any of its
933  * descendants and calls @fn for each task. If @fn returns a non-zero
934  * value, the function breaks the iteration loop and returns the value.
935  * Otherwise, it will iterate over all tasks and return 0.
936  *
937  * This function must not be called for the root memory cgroup.
938  */
939 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
940 			  int (*fn)(struct task_struct *, void *), void *arg)
941 {
942 	struct mem_cgroup *iter;
943 	int ret = 0;
944 
945 	BUG_ON(memcg == root_mem_cgroup);
946 
947 	for_each_mem_cgroup_tree(iter, memcg) {
948 		struct css_task_iter it;
949 		struct task_struct *task;
950 
951 		css_task_iter_start(&iter->css, &it);
952 		while (!ret && (task = css_task_iter_next(&it)))
953 			ret = fn(task, arg);
954 		css_task_iter_end(&it);
955 		if (ret) {
956 			mem_cgroup_iter_break(memcg, iter);
957 			break;
958 		}
959 	}
960 	return ret;
961 }
962 
963 /**
964  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
965  * @page: the page
966  * @zone: zone of the page
967  *
968  * This function is only safe when following the LRU page isolation
969  * and putback protocol: the LRU lock must be held, and the page must
970  * either be PageLRU() or the caller must have isolated/allocated it.
971  */
972 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
973 {
974 	struct mem_cgroup_per_node *mz;
975 	struct mem_cgroup *memcg;
976 	struct lruvec *lruvec;
977 
978 	if (mem_cgroup_disabled()) {
979 		lruvec = &pgdat->lruvec;
980 		goto out;
981 	}
982 
983 	memcg = page->mem_cgroup;
984 	/*
985 	 * Swapcache readahead pages are added to the LRU - and
986 	 * possibly migrated - before they are charged.
987 	 */
988 	if (!memcg)
989 		memcg = root_mem_cgroup;
990 
991 	mz = mem_cgroup_page_nodeinfo(memcg, page);
992 	lruvec = &mz->lruvec;
993 out:
994 	/*
995 	 * Since a node can be onlined after the mem_cgroup was created,
996 	 * we have to be prepared to initialize lruvec->zone here;
997 	 * and if offlined then reonlined, we need to reinitialize it.
998 	 */
999 	if (unlikely(lruvec->pgdat != pgdat))
1000 		lruvec->pgdat = pgdat;
1001 	return lruvec;
1002 }
1003 
1004 /**
1005  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1006  * @lruvec: mem_cgroup per zone lru vector
1007  * @lru: index of lru list the page is sitting on
1008  * @zid: zone id of the accounted pages
1009  * @nr_pages: positive when adding or negative when removing
1010  *
1011  * This function must be called under lru_lock, just before a page is added
1012  * to or just after a page is removed from an lru list (that ordering being
1013  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1014  */
1015 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1016 				int zid, int nr_pages)
1017 {
1018 	struct mem_cgroup_per_node *mz;
1019 	unsigned long *lru_size;
1020 	long size;
1021 
1022 	if (mem_cgroup_disabled())
1023 		return;
1024 
1025 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1026 	lru_size = &mz->lru_zone_size[zid][lru];
1027 
1028 	if (nr_pages < 0)
1029 		*lru_size += nr_pages;
1030 
1031 	size = *lru_size;
1032 	if (WARN_ONCE(size < 0,
1033 		"%s(%p, %d, %d): lru_size %ld\n",
1034 		__func__, lruvec, lru, nr_pages, size)) {
1035 		VM_BUG_ON(1);
1036 		*lru_size = 0;
1037 	}
1038 
1039 	if (nr_pages > 0)
1040 		*lru_size += nr_pages;
1041 }
1042 
1043 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044 {
1045 	struct mem_cgroup *task_memcg;
1046 	struct task_struct *p;
1047 	bool ret;
1048 
1049 	p = find_lock_task_mm(task);
1050 	if (p) {
1051 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1052 		task_unlock(p);
1053 	} else {
1054 		/*
1055 		 * All threads may have already detached their mm's, but the oom
1056 		 * killer still needs to detect if they have already been oom
1057 		 * killed to prevent needlessly killing additional tasks.
1058 		 */
1059 		rcu_read_lock();
1060 		task_memcg = mem_cgroup_from_task(task);
1061 		css_get(&task_memcg->css);
1062 		rcu_read_unlock();
1063 	}
1064 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1065 	css_put(&task_memcg->css);
1066 	return ret;
1067 }
1068 
1069 /**
1070  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1071  * @memcg: the memory cgroup
1072  *
1073  * Returns the maximum amount of memory @mem can be charged with, in
1074  * pages.
1075  */
1076 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077 {
1078 	unsigned long margin = 0;
1079 	unsigned long count;
1080 	unsigned long limit;
1081 
1082 	count = page_counter_read(&memcg->memory);
1083 	limit = READ_ONCE(memcg->memory.limit);
1084 	if (count < limit)
1085 		margin = limit - count;
1086 
1087 	if (do_memsw_account()) {
1088 		count = page_counter_read(&memcg->memsw);
1089 		limit = READ_ONCE(memcg->memsw.limit);
1090 		if (count <= limit)
1091 			margin = min(margin, limit - count);
1092 		else
1093 			margin = 0;
1094 	}
1095 
1096 	return margin;
1097 }
1098 
1099 /*
1100  * A routine for checking "mem" is under move_account() or not.
1101  *
1102  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1103  * moving cgroups. This is for waiting at high-memory pressure
1104  * caused by "move".
1105  */
1106 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1107 {
1108 	struct mem_cgroup *from;
1109 	struct mem_cgroup *to;
1110 	bool ret = false;
1111 	/*
1112 	 * Unlike task_move routines, we access mc.to, mc.from not under
1113 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1114 	 */
1115 	spin_lock(&mc.lock);
1116 	from = mc.from;
1117 	to = mc.to;
1118 	if (!from)
1119 		goto unlock;
1120 
1121 	ret = mem_cgroup_is_descendant(from, memcg) ||
1122 		mem_cgroup_is_descendant(to, memcg);
1123 unlock:
1124 	spin_unlock(&mc.lock);
1125 	return ret;
1126 }
1127 
1128 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1129 {
1130 	if (mc.moving_task && current != mc.moving_task) {
1131 		if (mem_cgroup_under_move(memcg)) {
1132 			DEFINE_WAIT(wait);
1133 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1134 			/* moving charge context might have finished. */
1135 			if (mc.moving_task)
1136 				schedule();
1137 			finish_wait(&mc.waitq, &wait);
1138 			return true;
1139 		}
1140 	}
1141 	return false;
1142 }
1143 
1144 #define K(x) ((x) << (PAGE_SHIFT-10))
1145 /**
1146  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1147  * @memcg: The memory cgroup that went over limit
1148  * @p: Task that is going to be killed
1149  *
1150  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1151  * enabled
1152  */
1153 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1154 {
1155 	struct mem_cgroup *iter;
1156 	unsigned int i;
1157 
1158 	rcu_read_lock();
1159 
1160 	if (p) {
1161 		pr_info("Task in ");
1162 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1163 		pr_cont(" killed as a result of limit of ");
1164 	} else {
1165 		pr_info("Memory limit reached of cgroup ");
1166 	}
1167 
1168 	pr_cont_cgroup_path(memcg->css.cgroup);
1169 	pr_cont("\n");
1170 
1171 	rcu_read_unlock();
1172 
1173 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1174 		K((u64)page_counter_read(&memcg->memory)),
1175 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1176 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1177 		K((u64)page_counter_read(&memcg->memsw)),
1178 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1179 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1180 		K((u64)page_counter_read(&memcg->kmem)),
1181 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1182 
1183 	for_each_mem_cgroup_tree(iter, memcg) {
1184 		pr_info("Memory cgroup stats for ");
1185 		pr_cont_cgroup_path(iter->css.cgroup);
1186 		pr_cont(":");
1187 
1188 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1189 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1190 				continue;
1191 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1192 				K(mem_cgroup_read_stat(iter, i)));
1193 		}
1194 
1195 		for (i = 0; i < NR_LRU_LISTS; i++)
1196 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1197 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1198 
1199 		pr_cont("\n");
1200 	}
1201 }
1202 
1203 /*
1204  * This function returns the number of memcg under hierarchy tree. Returns
1205  * 1(self count) if no children.
1206  */
1207 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1208 {
1209 	int num = 0;
1210 	struct mem_cgroup *iter;
1211 
1212 	for_each_mem_cgroup_tree(iter, memcg)
1213 		num++;
1214 	return num;
1215 }
1216 
1217 /*
1218  * Return the memory (and swap, if configured) limit for a memcg.
1219  */
1220 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1221 {
1222 	unsigned long limit;
1223 
1224 	limit = memcg->memory.limit;
1225 	if (mem_cgroup_swappiness(memcg)) {
1226 		unsigned long memsw_limit;
1227 		unsigned long swap_limit;
1228 
1229 		memsw_limit = memcg->memsw.limit;
1230 		swap_limit = memcg->swap.limit;
1231 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1232 		limit = min(limit + swap_limit, memsw_limit);
1233 	}
1234 	return limit;
1235 }
1236 
1237 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1238 				     int order)
1239 {
1240 	struct oom_control oc = {
1241 		.zonelist = NULL,
1242 		.nodemask = NULL,
1243 		.memcg = memcg,
1244 		.gfp_mask = gfp_mask,
1245 		.order = order,
1246 	};
1247 	bool ret;
1248 
1249 	mutex_lock(&oom_lock);
1250 	ret = out_of_memory(&oc);
1251 	mutex_unlock(&oom_lock);
1252 	return ret;
1253 }
1254 
1255 #if MAX_NUMNODES > 1
1256 
1257 /**
1258  * test_mem_cgroup_node_reclaimable
1259  * @memcg: the target memcg
1260  * @nid: the node ID to be checked.
1261  * @noswap : specify true here if the user wants flle only information.
1262  *
1263  * This function returns whether the specified memcg contains any
1264  * reclaimable pages on a node. Returns true if there are any reclaimable
1265  * pages in the node.
1266  */
1267 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1268 		int nid, bool noswap)
1269 {
1270 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1271 		return true;
1272 	if (noswap || !total_swap_pages)
1273 		return false;
1274 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1275 		return true;
1276 	return false;
1277 
1278 }
1279 
1280 /*
1281  * Always updating the nodemask is not very good - even if we have an empty
1282  * list or the wrong list here, we can start from some node and traverse all
1283  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1284  *
1285  */
1286 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1287 {
1288 	int nid;
1289 	/*
1290 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1291 	 * pagein/pageout changes since the last update.
1292 	 */
1293 	if (!atomic_read(&memcg->numainfo_events))
1294 		return;
1295 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1296 		return;
1297 
1298 	/* make a nodemask where this memcg uses memory from */
1299 	memcg->scan_nodes = node_states[N_MEMORY];
1300 
1301 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1302 
1303 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1304 			node_clear(nid, memcg->scan_nodes);
1305 	}
1306 
1307 	atomic_set(&memcg->numainfo_events, 0);
1308 	atomic_set(&memcg->numainfo_updating, 0);
1309 }
1310 
1311 /*
1312  * Selecting a node where we start reclaim from. Because what we need is just
1313  * reducing usage counter, start from anywhere is O,K. Considering
1314  * memory reclaim from current node, there are pros. and cons.
1315  *
1316  * Freeing memory from current node means freeing memory from a node which
1317  * we'll use or we've used. So, it may make LRU bad. And if several threads
1318  * hit limits, it will see a contention on a node. But freeing from remote
1319  * node means more costs for memory reclaim because of memory latency.
1320  *
1321  * Now, we use round-robin. Better algorithm is welcomed.
1322  */
1323 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1324 {
1325 	int node;
1326 
1327 	mem_cgroup_may_update_nodemask(memcg);
1328 	node = memcg->last_scanned_node;
1329 
1330 	node = next_node_in(node, memcg->scan_nodes);
1331 	/*
1332 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1333 	 * last time it really checked all the LRUs due to rate limiting.
1334 	 * Fallback to the current node in that case for simplicity.
1335 	 */
1336 	if (unlikely(node == MAX_NUMNODES))
1337 		node = numa_node_id();
1338 
1339 	memcg->last_scanned_node = node;
1340 	return node;
1341 }
1342 #else
1343 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1344 {
1345 	return 0;
1346 }
1347 #endif
1348 
1349 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1350 				   pg_data_t *pgdat,
1351 				   gfp_t gfp_mask,
1352 				   unsigned long *total_scanned)
1353 {
1354 	struct mem_cgroup *victim = NULL;
1355 	int total = 0;
1356 	int loop = 0;
1357 	unsigned long excess;
1358 	unsigned long nr_scanned;
1359 	struct mem_cgroup_reclaim_cookie reclaim = {
1360 		.pgdat = pgdat,
1361 		.priority = 0,
1362 	};
1363 
1364 	excess = soft_limit_excess(root_memcg);
1365 
1366 	while (1) {
1367 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1368 		if (!victim) {
1369 			loop++;
1370 			if (loop >= 2) {
1371 				/*
1372 				 * If we have not been able to reclaim
1373 				 * anything, it might because there are
1374 				 * no reclaimable pages under this hierarchy
1375 				 */
1376 				if (!total)
1377 					break;
1378 				/*
1379 				 * We want to do more targeted reclaim.
1380 				 * excess >> 2 is not to excessive so as to
1381 				 * reclaim too much, nor too less that we keep
1382 				 * coming back to reclaim from this cgroup
1383 				 */
1384 				if (total >= (excess >> 2) ||
1385 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1386 					break;
1387 			}
1388 			continue;
1389 		}
1390 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1391 					pgdat, &nr_scanned);
1392 		*total_scanned += nr_scanned;
1393 		if (!soft_limit_excess(root_memcg))
1394 			break;
1395 	}
1396 	mem_cgroup_iter_break(root_memcg, victim);
1397 	return total;
1398 }
1399 
1400 #ifdef CONFIG_LOCKDEP
1401 static struct lockdep_map memcg_oom_lock_dep_map = {
1402 	.name = "memcg_oom_lock",
1403 };
1404 #endif
1405 
1406 static DEFINE_SPINLOCK(memcg_oom_lock);
1407 
1408 /*
1409  * Check OOM-Killer is already running under our hierarchy.
1410  * If someone is running, return false.
1411  */
1412 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1413 {
1414 	struct mem_cgroup *iter, *failed = NULL;
1415 
1416 	spin_lock(&memcg_oom_lock);
1417 
1418 	for_each_mem_cgroup_tree(iter, memcg) {
1419 		if (iter->oom_lock) {
1420 			/*
1421 			 * this subtree of our hierarchy is already locked
1422 			 * so we cannot give a lock.
1423 			 */
1424 			failed = iter;
1425 			mem_cgroup_iter_break(memcg, iter);
1426 			break;
1427 		} else
1428 			iter->oom_lock = true;
1429 	}
1430 
1431 	if (failed) {
1432 		/*
1433 		 * OK, we failed to lock the whole subtree so we have
1434 		 * to clean up what we set up to the failing subtree
1435 		 */
1436 		for_each_mem_cgroup_tree(iter, memcg) {
1437 			if (iter == failed) {
1438 				mem_cgroup_iter_break(memcg, iter);
1439 				break;
1440 			}
1441 			iter->oom_lock = false;
1442 		}
1443 	} else
1444 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1445 
1446 	spin_unlock(&memcg_oom_lock);
1447 
1448 	return !failed;
1449 }
1450 
1451 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1452 {
1453 	struct mem_cgroup *iter;
1454 
1455 	spin_lock(&memcg_oom_lock);
1456 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1457 	for_each_mem_cgroup_tree(iter, memcg)
1458 		iter->oom_lock = false;
1459 	spin_unlock(&memcg_oom_lock);
1460 }
1461 
1462 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1463 {
1464 	struct mem_cgroup *iter;
1465 
1466 	spin_lock(&memcg_oom_lock);
1467 	for_each_mem_cgroup_tree(iter, memcg)
1468 		iter->under_oom++;
1469 	spin_unlock(&memcg_oom_lock);
1470 }
1471 
1472 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1473 {
1474 	struct mem_cgroup *iter;
1475 
1476 	/*
1477 	 * When a new child is created while the hierarchy is under oom,
1478 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1479 	 */
1480 	spin_lock(&memcg_oom_lock);
1481 	for_each_mem_cgroup_tree(iter, memcg)
1482 		if (iter->under_oom > 0)
1483 			iter->under_oom--;
1484 	spin_unlock(&memcg_oom_lock);
1485 }
1486 
1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1488 
1489 struct oom_wait_info {
1490 	struct mem_cgroup *memcg;
1491 	wait_queue_t	wait;
1492 };
1493 
1494 static int memcg_oom_wake_function(wait_queue_t *wait,
1495 	unsigned mode, int sync, void *arg)
1496 {
1497 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1498 	struct mem_cgroup *oom_wait_memcg;
1499 	struct oom_wait_info *oom_wait_info;
1500 
1501 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1502 	oom_wait_memcg = oom_wait_info->memcg;
1503 
1504 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1505 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1506 		return 0;
1507 	return autoremove_wake_function(wait, mode, sync, arg);
1508 }
1509 
1510 static void memcg_oom_recover(struct mem_cgroup *memcg)
1511 {
1512 	/*
1513 	 * For the following lockless ->under_oom test, the only required
1514 	 * guarantee is that it must see the state asserted by an OOM when
1515 	 * this function is called as a result of userland actions
1516 	 * triggered by the notification of the OOM.  This is trivially
1517 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1518 	 * triggering notification.
1519 	 */
1520 	if (memcg && memcg->under_oom)
1521 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1522 }
1523 
1524 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1525 {
1526 	if (!current->memcg_may_oom)
1527 		return;
1528 	/*
1529 	 * We are in the middle of the charge context here, so we
1530 	 * don't want to block when potentially sitting on a callstack
1531 	 * that holds all kinds of filesystem and mm locks.
1532 	 *
1533 	 * Also, the caller may handle a failed allocation gracefully
1534 	 * (like optional page cache readahead) and so an OOM killer
1535 	 * invocation might not even be necessary.
1536 	 *
1537 	 * That's why we don't do anything here except remember the
1538 	 * OOM context and then deal with it at the end of the page
1539 	 * fault when the stack is unwound, the locks are released,
1540 	 * and when we know whether the fault was overall successful.
1541 	 */
1542 	css_get(&memcg->css);
1543 	current->memcg_in_oom = memcg;
1544 	current->memcg_oom_gfp_mask = mask;
1545 	current->memcg_oom_order = order;
1546 }
1547 
1548 /**
1549  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1550  * @handle: actually kill/wait or just clean up the OOM state
1551  *
1552  * This has to be called at the end of a page fault if the memcg OOM
1553  * handler was enabled.
1554  *
1555  * Memcg supports userspace OOM handling where failed allocations must
1556  * sleep on a waitqueue until the userspace task resolves the
1557  * situation.  Sleeping directly in the charge context with all kinds
1558  * of locks held is not a good idea, instead we remember an OOM state
1559  * in the task and mem_cgroup_oom_synchronize() has to be called at
1560  * the end of the page fault to complete the OOM handling.
1561  *
1562  * Returns %true if an ongoing memcg OOM situation was detected and
1563  * completed, %false otherwise.
1564  */
1565 bool mem_cgroup_oom_synchronize(bool handle)
1566 {
1567 	struct mem_cgroup *memcg = current->memcg_in_oom;
1568 	struct oom_wait_info owait;
1569 	bool locked;
1570 
1571 	/* OOM is global, do not handle */
1572 	if (!memcg)
1573 		return false;
1574 
1575 	if (!handle)
1576 		goto cleanup;
1577 
1578 	owait.memcg = memcg;
1579 	owait.wait.flags = 0;
1580 	owait.wait.func = memcg_oom_wake_function;
1581 	owait.wait.private = current;
1582 	INIT_LIST_HEAD(&owait.wait.task_list);
1583 
1584 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1585 	mem_cgroup_mark_under_oom(memcg);
1586 
1587 	locked = mem_cgroup_oom_trylock(memcg);
1588 
1589 	if (locked)
1590 		mem_cgroup_oom_notify(memcg);
1591 
1592 	if (locked && !memcg->oom_kill_disable) {
1593 		mem_cgroup_unmark_under_oom(memcg);
1594 		finish_wait(&memcg_oom_waitq, &owait.wait);
1595 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1596 					 current->memcg_oom_order);
1597 	} else {
1598 		schedule();
1599 		mem_cgroup_unmark_under_oom(memcg);
1600 		finish_wait(&memcg_oom_waitq, &owait.wait);
1601 	}
1602 
1603 	if (locked) {
1604 		mem_cgroup_oom_unlock(memcg);
1605 		/*
1606 		 * There is no guarantee that an OOM-lock contender
1607 		 * sees the wakeups triggered by the OOM kill
1608 		 * uncharges.  Wake any sleepers explicitely.
1609 		 */
1610 		memcg_oom_recover(memcg);
1611 	}
1612 cleanup:
1613 	current->memcg_in_oom = NULL;
1614 	css_put(&memcg->css);
1615 	return true;
1616 }
1617 
1618 /**
1619  * lock_page_memcg - lock a page->mem_cgroup binding
1620  * @page: the page
1621  *
1622  * This function protects unlocked LRU pages from being moved to
1623  * another cgroup and stabilizes their page->mem_cgroup binding.
1624  */
1625 void lock_page_memcg(struct page *page)
1626 {
1627 	struct mem_cgroup *memcg;
1628 	unsigned long flags;
1629 
1630 	/*
1631 	 * The RCU lock is held throughout the transaction.  The fast
1632 	 * path can get away without acquiring the memcg->move_lock
1633 	 * because page moving starts with an RCU grace period.
1634 	 */
1635 	rcu_read_lock();
1636 
1637 	if (mem_cgroup_disabled())
1638 		return;
1639 again:
1640 	memcg = page->mem_cgroup;
1641 	if (unlikely(!memcg))
1642 		return;
1643 
1644 	if (atomic_read(&memcg->moving_account) <= 0)
1645 		return;
1646 
1647 	spin_lock_irqsave(&memcg->move_lock, flags);
1648 	if (memcg != page->mem_cgroup) {
1649 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1650 		goto again;
1651 	}
1652 
1653 	/*
1654 	 * When charge migration first begins, we can have locked and
1655 	 * unlocked page stat updates happening concurrently.  Track
1656 	 * the task who has the lock for unlock_page_memcg().
1657 	 */
1658 	memcg->move_lock_task = current;
1659 	memcg->move_lock_flags = flags;
1660 
1661 	return;
1662 }
1663 EXPORT_SYMBOL(lock_page_memcg);
1664 
1665 /**
1666  * unlock_page_memcg - unlock a page->mem_cgroup binding
1667  * @page: the page
1668  */
1669 void unlock_page_memcg(struct page *page)
1670 {
1671 	struct mem_cgroup *memcg = page->mem_cgroup;
1672 
1673 	if (memcg && memcg->move_lock_task == current) {
1674 		unsigned long flags = memcg->move_lock_flags;
1675 
1676 		memcg->move_lock_task = NULL;
1677 		memcg->move_lock_flags = 0;
1678 
1679 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1680 	}
1681 
1682 	rcu_read_unlock();
1683 }
1684 EXPORT_SYMBOL(unlock_page_memcg);
1685 
1686 /*
1687  * size of first charge trial. "32" comes from vmscan.c's magic value.
1688  * TODO: maybe necessary to use big numbers in big irons.
1689  */
1690 #define CHARGE_BATCH	32U
1691 struct memcg_stock_pcp {
1692 	struct mem_cgroup *cached; /* this never be root cgroup */
1693 	unsigned int nr_pages;
1694 	struct work_struct work;
1695 	unsigned long flags;
1696 #define FLUSHING_CACHED_CHARGE	0
1697 };
1698 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1699 static DEFINE_MUTEX(percpu_charge_mutex);
1700 
1701 /**
1702  * consume_stock: Try to consume stocked charge on this cpu.
1703  * @memcg: memcg to consume from.
1704  * @nr_pages: how many pages to charge.
1705  *
1706  * The charges will only happen if @memcg matches the current cpu's memcg
1707  * stock, and at least @nr_pages are available in that stock.  Failure to
1708  * service an allocation will refill the stock.
1709  *
1710  * returns true if successful, false otherwise.
1711  */
1712 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1713 {
1714 	struct memcg_stock_pcp *stock;
1715 	unsigned long flags;
1716 	bool ret = false;
1717 
1718 	if (nr_pages > CHARGE_BATCH)
1719 		return ret;
1720 
1721 	local_irq_save(flags);
1722 
1723 	stock = this_cpu_ptr(&memcg_stock);
1724 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1725 		stock->nr_pages -= nr_pages;
1726 		ret = true;
1727 	}
1728 
1729 	local_irq_restore(flags);
1730 
1731 	return ret;
1732 }
1733 
1734 /*
1735  * Returns stocks cached in percpu and reset cached information.
1736  */
1737 static void drain_stock(struct memcg_stock_pcp *stock)
1738 {
1739 	struct mem_cgroup *old = stock->cached;
1740 
1741 	if (stock->nr_pages) {
1742 		page_counter_uncharge(&old->memory, stock->nr_pages);
1743 		if (do_memsw_account())
1744 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1745 		css_put_many(&old->css, stock->nr_pages);
1746 		stock->nr_pages = 0;
1747 	}
1748 	stock->cached = NULL;
1749 }
1750 
1751 static void drain_local_stock(struct work_struct *dummy)
1752 {
1753 	struct memcg_stock_pcp *stock;
1754 	unsigned long flags;
1755 
1756 	local_irq_save(flags);
1757 
1758 	stock = this_cpu_ptr(&memcg_stock);
1759 	drain_stock(stock);
1760 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1761 
1762 	local_irq_restore(flags);
1763 }
1764 
1765 /*
1766  * Cache charges(val) to local per_cpu area.
1767  * This will be consumed by consume_stock() function, later.
1768  */
1769 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1770 {
1771 	struct memcg_stock_pcp *stock;
1772 	unsigned long flags;
1773 
1774 	local_irq_save(flags);
1775 
1776 	stock = this_cpu_ptr(&memcg_stock);
1777 	if (stock->cached != memcg) { /* reset if necessary */
1778 		drain_stock(stock);
1779 		stock->cached = memcg;
1780 	}
1781 	stock->nr_pages += nr_pages;
1782 
1783 	local_irq_restore(flags);
1784 }
1785 
1786 /*
1787  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1788  * of the hierarchy under it.
1789  */
1790 static void drain_all_stock(struct mem_cgroup *root_memcg)
1791 {
1792 	int cpu, curcpu;
1793 
1794 	/* If someone's already draining, avoid adding running more workers. */
1795 	if (!mutex_trylock(&percpu_charge_mutex))
1796 		return;
1797 	/* Notify other cpus that system-wide "drain" is running */
1798 	get_online_cpus();
1799 	curcpu = get_cpu();
1800 	for_each_online_cpu(cpu) {
1801 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1802 		struct mem_cgroup *memcg;
1803 
1804 		memcg = stock->cached;
1805 		if (!memcg || !stock->nr_pages)
1806 			continue;
1807 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1808 			continue;
1809 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1810 			if (cpu == curcpu)
1811 				drain_local_stock(&stock->work);
1812 			else
1813 				schedule_work_on(cpu, &stock->work);
1814 		}
1815 	}
1816 	put_cpu();
1817 	put_online_cpus();
1818 	mutex_unlock(&percpu_charge_mutex);
1819 }
1820 
1821 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1822 {
1823 	struct memcg_stock_pcp *stock;
1824 
1825 	stock = &per_cpu(memcg_stock, cpu);
1826 	drain_stock(stock);
1827 	return 0;
1828 }
1829 
1830 static void reclaim_high(struct mem_cgroup *memcg,
1831 			 unsigned int nr_pages,
1832 			 gfp_t gfp_mask)
1833 {
1834 	do {
1835 		if (page_counter_read(&memcg->memory) <= memcg->high)
1836 			continue;
1837 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1838 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1839 	} while ((memcg = parent_mem_cgroup(memcg)));
1840 }
1841 
1842 static void high_work_func(struct work_struct *work)
1843 {
1844 	struct mem_cgroup *memcg;
1845 
1846 	memcg = container_of(work, struct mem_cgroup, high_work);
1847 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1848 }
1849 
1850 /*
1851  * Scheduled by try_charge() to be executed from the userland return path
1852  * and reclaims memory over the high limit.
1853  */
1854 void mem_cgroup_handle_over_high(void)
1855 {
1856 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1857 	struct mem_cgroup *memcg;
1858 
1859 	if (likely(!nr_pages))
1860 		return;
1861 
1862 	memcg = get_mem_cgroup_from_mm(current->mm);
1863 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1864 	css_put(&memcg->css);
1865 	current->memcg_nr_pages_over_high = 0;
1866 }
1867 
1868 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1869 		      unsigned int nr_pages)
1870 {
1871 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1872 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1873 	struct mem_cgroup *mem_over_limit;
1874 	struct page_counter *counter;
1875 	unsigned long nr_reclaimed;
1876 	bool may_swap = true;
1877 	bool drained = false;
1878 
1879 	if (mem_cgroup_is_root(memcg))
1880 		return 0;
1881 retry:
1882 	if (consume_stock(memcg, nr_pages))
1883 		return 0;
1884 
1885 	if (!do_memsw_account() ||
1886 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1887 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1888 			goto done_restock;
1889 		if (do_memsw_account())
1890 			page_counter_uncharge(&memcg->memsw, batch);
1891 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1892 	} else {
1893 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1894 		may_swap = false;
1895 	}
1896 
1897 	if (batch > nr_pages) {
1898 		batch = nr_pages;
1899 		goto retry;
1900 	}
1901 
1902 	/*
1903 	 * Unlike in global OOM situations, memcg is not in a physical
1904 	 * memory shortage.  Allow dying and OOM-killed tasks to
1905 	 * bypass the last charges so that they can exit quickly and
1906 	 * free their memory.
1907 	 */
1908 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1909 		     fatal_signal_pending(current) ||
1910 		     current->flags & PF_EXITING))
1911 		goto force;
1912 
1913 	/*
1914 	 * Prevent unbounded recursion when reclaim operations need to
1915 	 * allocate memory. This might exceed the limits temporarily,
1916 	 * but we prefer facilitating memory reclaim and getting back
1917 	 * under the limit over triggering OOM kills in these cases.
1918 	 */
1919 	if (unlikely(current->flags & PF_MEMALLOC))
1920 		goto force;
1921 
1922 	if (unlikely(task_in_memcg_oom(current)))
1923 		goto nomem;
1924 
1925 	if (!gfpflags_allow_blocking(gfp_mask))
1926 		goto nomem;
1927 
1928 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1929 
1930 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1931 						    gfp_mask, may_swap);
1932 
1933 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1934 		goto retry;
1935 
1936 	if (!drained) {
1937 		drain_all_stock(mem_over_limit);
1938 		drained = true;
1939 		goto retry;
1940 	}
1941 
1942 	if (gfp_mask & __GFP_NORETRY)
1943 		goto nomem;
1944 	/*
1945 	 * Even though the limit is exceeded at this point, reclaim
1946 	 * may have been able to free some pages.  Retry the charge
1947 	 * before killing the task.
1948 	 *
1949 	 * Only for regular pages, though: huge pages are rather
1950 	 * unlikely to succeed so close to the limit, and we fall back
1951 	 * to regular pages anyway in case of failure.
1952 	 */
1953 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1954 		goto retry;
1955 	/*
1956 	 * At task move, charge accounts can be doubly counted. So, it's
1957 	 * better to wait until the end of task_move if something is going on.
1958 	 */
1959 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1960 		goto retry;
1961 
1962 	if (nr_retries--)
1963 		goto retry;
1964 
1965 	if (gfp_mask & __GFP_NOFAIL)
1966 		goto force;
1967 
1968 	if (fatal_signal_pending(current))
1969 		goto force;
1970 
1971 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1972 
1973 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1974 		       get_order(nr_pages * PAGE_SIZE));
1975 nomem:
1976 	if (!(gfp_mask & __GFP_NOFAIL))
1977 		return -ENOMEM;
1978 force:
1979 	/*
1980 	 * The allocation either can't fail or will lead to more memory
1981 	 * being freed very soon.  Allow memory usage go over the limit
1982 	 * temporarily by force charging it.
1983 	 */
1984 	page_counter_charge(&memcg->memory, nr_pages);
1985 	if (do_memsw_account())
1986 		page_counter_charge(&memcg->memsw, nr_pages);
1987 	css_get_many(&memcg->css, nr_pages);
1988 
1989 	return 0;
1990 
1991 done_restock:
1992 	css_get_many(&memcg->css, batch);
1993 	if (batch > nr_pages)
1994 		refill_stock(memcg, batch - nr_pages);
1995 
1996 	/*
1997 	 * If the hierarchy is above the normal consumption range, schedule
1998 	 * reclaim on returning to userland.  We can perform reclaim here
1999 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2000 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2001 	 * not recorded as it most likely matches current's and won't
2002 	 * change in the meantime.  As high limit is checked again before
2003 	 * reclaim, the cost of mismatch is negligible.
2004 	 */
2005 	do {
2006 		if (page_counter_read(&memcg->memory) > memcg->high) {
2007 			/* Don't bother a random interrupted task */
2008 			if (in_interrupt()) {
2009 				schedule_work(&memcg->high_work);
2010 				break;
2011 			}
2012 			current->memcg_nr_pages_over_high += batch;
2013 			set_notify_resume(current);
2014 			break;
2015 		}
2016 	} while ((memcg = parent_mem_cgroup(memcg)));
2017 
2018 	return 0;
2019 }
2020 
2021 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2022 {
2023 	if (mem_cgroup_is_root(memcg))
2024 		return;
2025 
2026 	page_counter_uncharge(&memcg->memory, nr_pages);
2027 	if (do_memsw_account())
2028 		page_counter_uncharge(&memcg->memsw, nr_pages);
2029 
2030 	css_put_many(&memcg->css, nr_pages);
2031 }
2032 
2033 static void lock_page_lru(struct page *page, int *isolated)
2034 {
2035 	struct zone *zone = page_zone(page);
2036 
2037 	spin_lock_irq(zone_lru_lock(zone));
2038 	if (PageLRU(page)) {
2039 		struct lruvec *lruvec;
2040 
2041 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2042 		ClearPageLRU(page);
2043 		del_page_from_lru_list(page, lruvec, page_lru(page));
2044 		*isolated = 1;
2045 	} else
2046 		*isolated = 0;
2047 }
2048 
2049 static void unlock_page_lru(struct page *page, int isolated)
2050 {
2051 	struct zone *zone = page_zone(page);
2052 
2053 	if (isolated) {
2054 		struct lruvec *lruvec;
2055 
2056 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2057 		VM_BUG_ON_PAGE(PageLRU(page), page);
2058 		SetPageLRU(page);
2059 		add_page_to_lru_list(page, lruvec, page_lru(page));
2060 	}
2061 	spin_unlock_irq(zone_lru_lock(zone));
2062 }
2063 
2064 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2065 			  bool lrucare)
2066 {
2067 	int isolated;
2068 
2069 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2070 
2071 	/*
2072 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2073 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2074 	 */
2075 	if (lrucare)
2076 		lock_page_lru(page, &isolated);
2077 
2078 	/*
2079 	 * Nobody should be changing or seriously looking at
2080 	 * page->mem_cgroup at this point:
2081 	 *
2082 	 * - the page is uncharged
2083 	 *
2084 	 * - the page is off-LRU
2085 	 *
2086 	 * - an anonymous fault has exclusive page access, except for
2087 	 *   a locked page table
2088 	 *
2089 	 * - a page cache insertion, a swapin fault, or a migration
2090 	 *   have the page locked
2091 	 */
2092 	page->mem_cgroup = memcg;
2093 
2094 	if (lrucare)
2095 		unlock_page_lru(page, isolated);
2096 }
2097 
2098 #ifndef CONFIG_SLOB
2099 static int memcg_alloc_cache_id(void)
2100 {
2101 	int id, size;
2102 	int err;
2103 
2104 	id = ida_simple_get(&memcg_cache_ida,
2105 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2106 	if (id < 0)
2107 		return id;
2108 
2109 	if (id < memcg_nr_cache_ids)
2110 		return id;
2111 
2112 	/*
2113 	 * There's no space for the new id in memcg_caches arrays,
2114 	 * so we have to grow them.
2115 	 */
2116 	down_write(&memcg_cache_ids_sem);
2117 
2118 	size = 2 * (id + 1);
2119 	if (size < MEMCG_CACHES_MIN_SIZE)
2120 		size = MEMCG_CACHES_MIN_SIZE;
2121 	else if (size > MEMCG_CACHES_MAX_SIZE)
2122 		size = MEMCG_CACHES_MAX_SIZE;
2123 
2124 	err = memcg_update_all_caches(size);
2125 	if (!err)
2126 		err = memcg_update_all_list_lrus(size);
2127 	if (!err)
2128 		memcg_nr_cache_ids = size;
2129 
2130 	up_write(&memcg_cache_ids_sem);
2131 
2132 	if (err) {
2133 		ida_simple_remove(&memcg_cache_ida, id);
2134 		return err;
2135 	}
2136 	return id;
2137 }
2138 
2139 static void memcg_free_cache_id(int id)
2140 {
2141 	ida_simple_remove(&memcg_cache_ida, id);
2142 }
2143 
2144 struct memcg_kmem_cache_create_work {
2145 	struct mem_cgroup *memcg;
2146 	struct kmem_cache *cachep;
2147 	struct work_struct work;
2148 };
2149 
2150 static void memcg_kmem_cache_create_func(struct work_struct *w)
2151 {
2152 	struct memcg_kmem_cache_create_work *cw =
2153 		container_of(w, struct memcg_kmem_cache_create_work, work);
2154 	struct mem_cgroup *memcg = cw->memcg;
2155 	struct kmem_cache *cachep = cw->cachep;
2156 
2157 	memcg_create_kmem_cache(memcg, cachep);
2158 
2159 	css_put(&memcg->css);
2160 	kfree(cw);
2161 }
2162 
2163 /*
2164  * Enqueue the creation of a per-memcg kmem_cache.
2165  */
2166 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2167 					       struct kmem_cache *cachep)
2168 {
2169 	struct memcg_kmem_cache_create_work *cw;
2170 
2171 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2172 	if (!cw)
2173 		return;
2174 
2175 	css_get(&memcg->css);
2176 
2177 	cw->memcg = memcg;
2178 	cw->cachep = cachep;
2179 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2180 
2181 	queue_work(memcg_kmem_cache_wq, &cw->work);
2182 }
2183 
2184 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2185 					     struct kmem_cache *cachep)
2186 {
2187 	/*
2188 	 * We need to stop accounting when we kmalloc, because if the
2189 	 * corresponding kmalloc cache is not yet created, the first allocation
2190 	 * in __memcg_schedule_kmem_cache_create will recurse.
2191 	 *
2192 	 * However, it is better to enclose the whole function. Depending on
2193 	 * the debugging options enabled, INIT_WORK(), for instance, can
2194 	 * trigger an allocation. This too, will make us recurse. Because at
2195 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2196 	 * the safest choice is to do it like this, wrapping the whole function.
2197 	 */
2198 	current->memcg_kmem_skip_account = 1;
2199 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2200 	current->memcg_kmem_skip_account = 0;
2201 }
2202 
2203 static inline bool memcg_kmem_bypass(void)
2204 {
2205 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2206 		return true;
2207 	return false;
2208 }
2209 
2210 /**
2211  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2212  * @cachep: the original global kmem cache
2213  *
2214  * Return the kmem_cache we're supposed to use for a slab allocation.
2215  * We try to use the current memcg's version of the cache.
2216  *
2217  * If the cache does not exist yet, if we are the first user of it, we
2218  * create it asynchronously in a workqueue and let the current allocation
2219  * go through with the original cache.
2220  *
2221  * This function takes a reference to the cache it returns to assure it
2222  * won't get destroyed while we are working with it. Once the caller is
2223  * done with it, memcg_kmem_put_cache() must be called to release the
2224  * reference.
2225  */
2226 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2227 {
2228 	struct mem_cgroup *memcg;
2229 	struct kmem_cache *memcg_cachep;
2230 	int kmemcg_id;
2231 
2232 	VM_BUG_ON(!is_root_cache(cachep));
2233 
2234 	if (memcg_kmem_bypass())
2235 		return cachep;
2236 
2237 	if (current->memcg_kmem_skip_account)
2238 		return cachep;
2239 
2240 	memcg = get_mem_cgroup_from_mm(current->mm);
2241 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2242 	if (kmemcg_id < 0)
2243 		goto out;
2244 
2245 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2246 	if (likely(memcg_cachep))
2247 		return memcg_cachep;
2248 
2249 	/*
2250 	 * If we are in a safe context (can wait, and not in interrupt
2251 	 * context), we could be be predictable and return right away.
2252 	 * This would guarantee that the allocation being performed
2253 	 * already belongs in the new cache.
2254 	 *
2255 	 * However, there are some clashes that can arrive from locking.
2256 	 * For instance, because we acquire the slab_mutex while doing
2257 	 * memcg_create_kmem_cache, this means no further allocation
2258 	 * could happen with the slab_mutex held. So it's better to
2259 	 * defer everything.
2260 	 */
2261 	memcg_schedule_kmem_cache_create(memcg, cachep);
2262 out:
2263 	css_put(&memcg->css);
2264 	return cachep;
2265 }
2266 
2267 /**
2268  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2269  * @cachep: the cache returned by memcg_kmem_get_cache
2270  */
2271 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2272 {
2273 	if (!is_root_cache(cachep))
2274 		css_put(&cachep->memcg_params.memcg->css);
2275 }
2276 
2277 /**
2278  * memcg_kmem_charge: charge a kmem page
2279  * @page: page to charge
2280  * @gfp: reclaim mode
2281  * @order: allocation order
2282  * @memcg: memory cgroup to charge
2283  *
2284  * Returns 0 on success, an error code on failure.
2285  */
2286 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2287 			    struct mem_cgroup *memcg)
2288 {
2289 	unsigned int nr_pages = 1 << order;
2290 	struct page_counter *counter;
2291 	int ret;
2292 
2293 	ret = try_charge(memcg, gfp, nr_pages);
2294 	if (ret)
2295 		return ret;
2296 
2297 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2298 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2299 		cancel_charge(memcg, nr_pages);
2300 		return -ENOMEM;
2301 	}
2302 
2303 	page->mem_cgroup = memcg;
2304 
2305 	return 0;
2306 }
2307 
2308 /**
2309  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2310  * @page: page to charge
2311  * @gfp: reclaim mode
2312  * @order: allocation order
2313  *
2314  * Returns 0 on success, an error code on failure.
2315  */
2316 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2317 {
2318 	struct mem_cgroup *memcg;
2319 	int ret = 0;
2320 
2321 	if (memcg_kmem_bypass())
2322 		return 0;
2323 
2324 	memcg = get_mem_cgroup_from_mm(current->mm);
2325 	if (!mem_cgroup_is_root(memcg)) {
2326 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2327 		if (!ret)
2328 			__SetPageKmemcg(page);
2329 	}
2330 	css_put(&memcg->css);
2331 	return ret;
2332 }
2333 /**
2334  * memcg_kmem_uncharge: uncharge a kmem page
2335  * @page: page to uncharge
2336  * @order: allocation order
2337  */
2338 void memcg_kmem_uncharge(struct page *page, int order)
2339 {
2340 	struct mem_cgroup *memcg = page->mem_cgroup;
2341 	unsigned int nr_pages = 1 << order;
2342 
2343 	if (!memcg)
2344 		return;
2345 
2346 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2347 
2348 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2349 		page_counter_uncharge(&memcg->kmem, nr_pages);
2350 
2351 	page_counter_uncharge(&memcg->memory, nr_pages);
2352 	if (do_memsw_account())
2353 		page_counter_uncharge(&memcg->memsw, nr_pages);
2354 
2355 	page->mem_cgroup = NULL;
2356 
2357 	/* slab pages do not have PageKmemcg flag set */
2358 	if (PageKmemcg(page))
2359 		__ClearPageKmemcg(page);
2360 
2361 	css_put_many(&memcg->css, nr_pages);
2362 }
2363 #endif /* !CONFIG_SLOB */
2364 
2365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2366 
2367 /*
2368  * Because tail pages are not marked as "used", set it. We're under
2369  * zone_lru_lock and migration entries setup in all page mappings.
2370  */
2371 void mem_cgroup_split_huge_fixup(struct page *head)
2372 {
2373 	int i;
2374 
2375 	if (mem_cgroup_disabled())
2376 		return;
2377 
2378 	for (i = 1; i < HPAGE_PMD_NR; i++)
2379 		head[i].mem_cgroup = head->mem_cgroup;
2380 
2381 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2382 		       HPAGE_PMD_NR);
2383 }
2384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2385 
2386 #ifdef CONFIG_MEMCG_SWAP
2387 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2388 					 bool charge)
2389 {
2390 	int val = (charge) ? 1 : -1;
2391 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2392 }
2393 
2394 /**
2395  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2396  * @entry: swap entry to be moved
2397  * @from:  mem_cgroup which the entry is moved from
2398  * @to:  mem_cgroup which the entry is moved to
2399  *
2400  * It succeeds only when the swap_cgroup's record for this entry is the same
2401  * as the mem_cgroup's id of @from.
2402  *
2403  * Returns 0 on success, -EINVAL on failure.
2404  *
2405  * The caller must have charged to @to, IOW, called page_counter_charge() about
2406  * both res and memsw, and called css_get().
2407  */
2408 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2409 				struct mem_cgroup *from, struct mem_cgroup *to)
2410 {
2411 	unsigned short old_id, new_id;
2412 
2413 	old_id = mem_cgroup_id(from);
2414 	new_id = mem_cgroup_id(to);
2415 
2416 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2417 		mem_cgroup_swap_statistics(from, false);
2418 		mem_cgroup_swap_statistics(to, true);
2419 		return 0;
2420 	}
2421 	return -EINVAL;
2422 }
2423 #else
2424 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 				struct mem_cgroup *from, struct mem_cgroup *to)
2426 {
2427 	return -EINVAL;
2428 }
2429 #endif
2430 
2431 static DEFINE_MUTEX(memcg_limit_mutex);
2432 
2433 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2434 				   unsigned long limit)
2435 {
2436 	unsigned long curusage;
2437 	unsigned long oldusage;
2438 	bool enlarge = false;
2439 	int retry_count;
2440 	int ret;
2441 
2442 	/*
2443 	 * For keeping hierarchical_reclaim simple, how long we should retry
2444 	 * is depends on callers. We set our retry-count to be function
2445 	 * of # of children which we should visit in this loop.
2446 	 */
2447 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2448 		      mem_cgroup_count_children(memcg);
2449 
2450 	oldusage = page_counter_read(&memcg->memory);
2451 
2452 	do {
2453 		if (signal_pending(current)) {
2454 			ret = -EINTR;
2455 			break;
2456 		}
2457 
2458 		mutex_lock(&memcg_limit_mutex);
2459 		if (limit > memcg->memsw.limit) {
2460 			mutex_unlock(&memcg_limit_mutex);
2461 			ret = -EINVAL;
2462 			break;
2463 		}
2464 		if (limit > memcg->memory.limit)
2465 			enlarge = true;
2466 		ret = page_counter_limit(&memcg->memory, limit);
2467 		mutex_unlock(&memcg_limit_mutex);
2468 
2469 		if (!ret)
2470 			break;
2471 
2472 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2473 
2474 		curusage = page_counter_read(&memcg->memory);
2475 		/* Usage is reduced ? */
2476 		if (curusage >= oldusage)
2477 			retry_count--;
2478 		else
2479 			oldusage = curusage;
2480 	} while (retry_count);
2481 
2482 	if (!ret && enlarge)
2483 		memcg_oom_recover(memcg);
2484 
2485 	return ret;
2486 }
2487 
2488 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2489 					 unsigned long limit)
2490 {
2491 	unsigned long curusage;
2492 	unsigned long oldusage;
2493 	bool enlarge = false;
2494 	int retry_count;
2495 	int ret;
2496 
2497 	/* see mem_cgroup_resize_res_limit */
2498 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2499 		      mem_cgroup_count_children(memcg);
2500 
2501 	oldusage = page_counter_read(&memcg->memsw);
2502 
2503 	do {
2504 		if (signal_pending(current)) {
2505 			ret = -EINTR;
2506 			break;
2507 		}
2508 
2509 		mutex_lock(&memcg_limit_mutex);
2510 		if (limit < memcg->memory.limit) {
2511 			mutex_unlock(&memcg_limit_mutex);
2512 			ret = -EINVAL;
2513 			break;
2514 		}
2515 		if (limit > memcg->memsw.limit)
2516 			enlarge = true;
2517 		ret = page_counter_limit(&memcg->memsw, limit);
2518 		mutex_unlock(&memcg_limit_mutex);
2519 
2520 		if (!ret)
2521 			break;
2522 
2523 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2524 
2525 		curusage = page_counter_read(&memcg->memsw);
2526 		/* Usage is reduced ? */
2527 		if (curusage >= oldusage)
2528 			retry_count--;
2529 		else
2530 			oldusage = curusage;
2531 	} while (retry_count);
2532 
2533 	if (!ret && enlarge)
2534 		memcg_oom_recover(memcg);
2535 
2536 	return ret;
2537 }
2538 
2539 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2540 					    gfp_t gfp_mask,
2541 					    unsigned long *total_scanned)
2542 {
2543 	unsigned long nr_reclaimed = 0;
2544 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2545 	unsigned long reclaimed;
2546 	int loop = 0;
2547 	struct mem_cgroup_tree_per_node *mctz;
2548 	unsigned long excess;
2549 	unsigned long nr_scanned;
2550 
2551 	if (order > 0)
2552 		return 0;
2553 
2554 	mctz = soft_limit_tree_node(pgdat->node_id);
2555 
2556 	/*
2557 	 * Do not even bother to check the largest node if the root
2558 	 * is empty. Do it lockless to prevent lock bouncing. Races
2559 	 * are acceptable as soft limit is best effort anyway.
2560 	 */
2561 	if (RB_EMPTY_ROOT(&mctz->rb_root))
2562 		return 0;
2563 
2564 	/*
2565 	 * This loop can run a while, specially if mem_cgroup's continuously
2566 	 * keep exceeding their soft limit and putting the system under
2567 	 * pressure
2568 	 */
2569 	do {
2570 		if (next_mz)
2571 			mz = next_mz;
2572 		else
2573 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 		if (!mz)
2575 			break;
2576 
2577 		nr_scanned = 0;
2578 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2579 						    gfp_mask, &nr_scanned);
2580 		nr_reclaimed += reclaimed;
2581 		*total_scanned += nr_scanned;
2582 		spin_lock_irq(&mctz->lock);
2583 		__mem_cgroup_remove_exceeded(mz, mctz);
2584 
2585 		/*
2586 		 * If we failed to reclaim anything from this memory cgroup
2587 		 * it is time to move on to the next cgroup
2588 		 */
2589 		next_mz = NULL;
2590 		if (!reclaimed)
2591 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592 
2593 		excess = soft_limit_excess(mz->memcg);
2594 		/*
2595 		 * One school of thought says that we should not add
2596 		 * back the node to the tree if reclaim returns 0.
2597 		 * But our reclaim could return 0, simply because due
2598 		 * to priority we are exposing a smaller subset of
2599 		 * memory to reclaim from. Consider this as a longer
2600 		 * term TODO.
2601 		 */
2602 		/* If excess == 0, no tree ops */
2603 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 		spin_unlock_irq(&mctz->lock);
2605 		css_put(&mz->memcg->css);
2606 		loop++;
2607 		/*
2608 		 * Could not reclaim anything and there are no more
2609 		 * mem cgroups to try or we seem to be looping without
2610 		 * reclaiming anything.
2611 		 */
2612 		if (!nr_reclaimed &&
2613 			(next_mz == NULL ||
2614 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 			break;
2616 	} while (!nr_reclaimed);
2617 	if (next_mz)
2618 		css_put(&next_mz->memcg->css);
2619 	return nr_reclaimed;
2620 }
2621 
2622 /*
2623  * Test whether @memcg has children, dead or alive.  Note that this
2624  * function doesn't care whether @memcg has use_hierarchy enabled and
2625  * returns %true if there are child csses according to the cgroup
2626  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2627  */
2628 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629 {
2630 	bool ret;
2631 
2632 	rcu_read_lock();
2633 	ret = css_next_child(NULL, &memcg->css);
2634 	rcu_read_unlock();
2635 	return ret;
2636 }
2637 
2638 /*
2639  * Reclaims as many pages from the given memcg as possible.
2640  *
2641  * Caller is responsible for holding css reference for memcg.
2642  */
2643 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2644 {
2645 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2646 
2647 	/* we call try-to-free pages for make this cgroup empty */
2648 	lru_add_drain_all();
2649 	/* try to free all pages in this cgroup */
2650 	while (nr_retries && page_counter_read(&memcg->memory)) {
2651 		int progress;
2652 
2653 		if (signal_pending(current))
2654 			return -EINTR;
2655 
2656 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2657 							GFP_KERNEL, true);
2658 		if (!progress) {
2659 			nr_retries--;
2660 			/* maybe some writeback is necessary */
2661 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2662 		}
2663 
2664 	}
2665 
2666 	return 0;
2667 }
2668 
2669 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2670 					    char *buf, size_t nbytes,
2671 					    loff_t off)
2672 {
2673 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674 
2675 	if (mem_cgroup_is_root(memcg))
2676 		return -EINVAL;
2677 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2678 }
2679 
2680 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2681 				     struct cftype *cft)
2682 {
2683 	return mem_cgroup_from_css(css)->use_hierarchy;
2684 }
2685 
2686 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2687 				      struct cftype *cft, u64 val)
2688 {
2689 	int retval = 0;
2690 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2691 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692 
2693 	if (memcg->use_hierarchy == val)
2694 		return 0;
2695 
2696 	/*
2697 	 * If parent's use_hierarchy is set, we can't make any modifications
2698 	 * in the child subtrees. If it is unset, then the change can
2699 	 * occur, provided the current cgroup has no children.
2700 	 *
2701 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2702 	 * set if there are no children.
2703 	 */
2704 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2705 				(val == 1 || val == 0)) {
2706 		if (!memcg_has_children(memcg))
2707 			memcg->use_hierarchy = val;
2708 		else
2709 			retval = -EBUSY;
2710 	} else
2711 		retval = -EINVAL;
2712 
2713 	return retval;
2714 }
2715 
2716 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 {
2718 	struct mem_cgroup *iter;
2719 	int i;
2720 
2721 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722 
2723 	for_each_mem_cgroup_tree(iter, memcg) {
2724 		for (i = 0; i < MEMCG_NR_STAT; i++)
2725 			stat[i] += mem_cgroup_read_stat(iter, i);
2726 	}
2727 }
2728 
2729 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 {
2731 	struct mem_cgroup *iter;
2732 	int i;
2733 
2734 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735 
2736 	for_each_mem_cgroup_tree(iter, memcg) {
2737 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2738 			events[i] += mem_cgroup_read_events(iter, i);
2739 	}
2740 }
2741 
2742 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743 {
2744 	unsigned long val = 0;
2745 
2746 	if (mem_cgroup_is_root(memcg)) {
2747 		struct mem_cgroup *iter;
2748 
2749 		for_each_mem_cgroup_tree(iter, memcg) {
2750 			val += mem_cgroup_read_stat(iter,
2751 					MEM_CGROUP_STAT_CACHE);
2752 			val += mem_cgroup_read_stat(iter,
2753 					MEM_CGROUP_STAT_RSS);
2754 			if (swap)
2755 				val += mem_cgroup_read_stat(iter,
2756 						MEM_CGROUP_STAT_SWAP);
2757 		}
2758 	} else {
2759 		if (!swap)
2760 			val = page_counter_read(&memcg->memory);
2761 		else
2762 			val = page_counter_read(&memcg->memsw);
2763 	}
2764 	return val;
2765 }
2766 
2767 enum {
2768 	RES_USAGE,
2769 	RES_LIMIT,
2770 	RES_MAX_USAGE,
2771 	RES_FAILCNT,
2772 	RES_SOFT_LIMIT,
2773 };
2774 
2775 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2776 			       struct cftype *cft)
2777 {
2778 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2779 	struct page_counter *counter;
2780 
2781 	switch (MEMFILE_TYPE(cft->private)) {
2782 	case _MEM:
2783 		counter = &memcg->memory;
2784 		break;
2785 	case _MEMSWAP:
2786 		counter = &memcg->memsw;
2787 		break;
2788 	case _KMEM:
2789 		counter = &memcg->kmem;
2790 		break;
2791 	case _TCP:
2792 		counter = &memcg->tcpmem;
2793 		break;
2794 	default:
2795 		BUG();
2796 	}
2797 
2798 	switch (MEMFILE_ATTR(cft->private)) {
2799 	case RES_USAGE:
2800 		if (counter == &memcg->memory)
2801 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2802 		if (counter == &memcg->memsw)
2803 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2804 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2805 	case RES_LIMIT:
2806 		return (u64)counter->limit * PAGE_SIZE;
2807 	case RES_MAX_USAGE:
2808 		return (u64)counter->watermark * PAGE_SIZE;
2809 	case RES_FAILCNT:
2810 		return counter->failcnt;
2811 	case RES_SOFT_LIMIT:
2812 		return (u64)memcg->soft_limit * PAGE_SIZE;
2813 	default:
2814 		BUG();
2815 	}
2816 }
2817 
2818 #ifndef CONFIG_SLOB
2819 static int memcg_online_kmem(struct mem_cgroup *memcg)
2820 {
2821 	int memcg_id;
2822 
2823 	if (cgroup_memory_nokmem)
2824 		return 0;
2825 
2826 	BUG_ON(memcg->kmemcg_id >= 0);
2827 	BUG_ON(memcg->kmem_state);
2828 
2829 	memcg_id = memcg_alloc_cache_id();
2830 	if (memcg_id < 0)
2831 		return memcg_id;
2832 
2833 	static_branch_inc(&memcg_kmem_enabled_key);
2834 	/*
2835 	 * A memory cgroup is considered kmem-online as soon as it gets
2836 	 * kmemcg_id. Setting the id after enabling static branching will
2837 	 * guarantee no one starts accounting before all call sites are
2838 	 * patched.
2839 	 */
2840 	memcg->kmemcg_id = memcg_id;
2841 	memcg->kmem_state = KMEM_ONLINE;
2842 	INIT_LIST_HEAD(&memcg->kmem_caches);
2843 
2844 	return 0;
2845 }
2846 
2847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848 {
2849 	struct cgroup_subsys_state *css;
2850 	struct mem_cgroup *parent, *child;
2851 	int kmemcg_id;
2852 
2853 	if (memcg->kmem_state != KMEM_ONLINE)
2854 		return;
2855 	/*
2856 	 * Clear the online state before clearing memcg_caches array
2857 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 	 * guarantees that no cache will be created for this cgroup
2859 	 * after we are done (see memcg_create_kmem_cache()).
2860 	 */
2861 	memcg->kmem_state = KMEM_ALLOCATED;
2862 
2863 	memcg_deactivate_kmem_caches(memcg);
2864 
2865 	kmemcg_id = memcg->kmemcg_id;
2866 	BUG_ON(kmemcg_id < 0);
2867 
2868 	parent = parent_mem_cgroup(memcg);
2869 	if (!parent)
2870 		parent = root_mem_cgroup;
2871 
2872 	/*
2873 	 * Change kmemcg_id of this cgroup and all its descendants to the
2874 	 * parent's id, and then move all entries from this cgroup's list_lrus
2875 	 * to ones of the parent. After we have finished, all list_lrus
2876 	 * corresponding to this cgroup are guaranteed to remain empty. The
2877 	 * ordering is imposed by list_lru_node->lock taken by
2878 	 * memcg_drain_all_list_lrus().
2879 	 */
2880 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2881 	css_for_each_descendant_pre(css, &memcg->css) {
2882 		child = mem_cgroup_from_css(css);
2883 		BUG_ON(child->kmemcg_id != kmemcg_id);
2884 		child->kmemcg_id = parent->kmemcg_id;
2885 		if (!memcg->use_hierarchy)
2886 			break;
2887 	}
2888 	rcu_read_unlock();
2889 
2890 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891 
2892 	memcg_free_cache_id(kmemcg_id);
2893 }
2894 
2895 static void memcg_free_kmem(struct mem_cgroup *memcg)
2896 {
2897 	/* css_alloc() failed, offlining didn't happen */
2898 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2899 		memcg_offline_kmem(memcg);
2900 
2901 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2902 		memcg_destroy_kmem_caches(memcg);
2903 		static_branch_dec(&memcg_kmem_enabled_key);
2904 		WARN_ON(page_counter_read(&memcg->kmem));
2905 	}
2906 }
2907 #else
2908 static int memcg_online_kmem(struct mem_cgroup *memcg)
2909 {
2910 	return 0;
2911 }
2912 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 static void memcg_free_kmem(struct mem_cgroup *memcg)
2916 {
2917 }
2918 #endif /* !CONFIG_SLOB */
2919 
2920 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2921 				   unsigned long limit)
2922 {
2923 	int ret;
2924 
2925 	mutex_lock(&memcg_limit_mutex);
2926 	ret = page_counter_limit(&memcg->kmem, limit);
2927 	mutex_unlock(&memcg_limit_mutex);
2928 	return ret;
2929 }
2930 
2931 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2932 {
2933 	int ret;
2934 
2935 	mutex_lock(&memcg_limit_mutex);
2936 
2937 	ret = page_counter_limit(&memcg->tcpmem, limit);
2938 	if (ret)
2939 		goto out;
2940 
2941 	if (!memcg->tcpmem_active) {
2942 		/*
2943 		 * The active flag needs to be written after the static_key
2944 		 * update. This is what guarantees that the socket activation
2945 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2946 		 * for details, and note that we don't mark any socket as
2947 		 * belonging to this memcg until that flag is up.
2948 		 *
2949 		 * We need to do this, because static_keys will span multiple
2950 		 * sites, but we can't control their order. If we mark a socket
2951 		 * as accounted, but the accounting functions are not patched in
2952 		 * yet, we'll lose accounting.
2953 		 *
2954 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2955 		 * because when this value change, the code to process it is not
2956 		 * patched in yet.
2957 		 */
2958 		static_branch_inc(&memcg_sockets_enabled_key);
2959 		memcg->tcpmem_active = true;
2960 	}
2961 out:
2962 	mutex_unlock(&memcg_limit_mutex);
2963 	return ret;
2964 }
2965 
2966 /*
2967  * The user of this function is...
2968  * RES_LIMIT.
2969  */
2970 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 				char *buf, size_t nbytes, loff_t off)
2972 {
2973 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2974 	unsigned long nr_pages;
2975 	int ret;
2976 
2977 	buf = strstrip(buf);
2978 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2979 	if (ret)
2980 		return ret;
2981 
2982 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983 	case RES_LIMIT:
2984 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 			ret = -EINVAL;
2986 			break;
2987 		}
2988 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 		case _MEM:
2990 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2991 			break;
2992 		case _MEMSWAP:
2993 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2994 			break;
2995 		case _KMEM:
2996 			ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 			break;
2998 		case _TCP:
2999 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3000 			break;
3001 		}
3002 		break;
3003 	case RES_SOFT_LIMIT:
3004 		memcg->soft_limit = nr_pages;
3005 		ret = 0;
3006 		break;
3007 	}
3008 	return ret ?: nbytes;
3009 }
3010 
3011 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3012 				size_t nbytes, loff_t off)
3013 {
3014 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015 	struct page_counter *counter;
3016 
3017 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 	case _MEM:
3019 		counter = &memcg->memory;
3020 		break;
3021 	case _MEMSWAP:
3022 		counter = &memcg->memsw;
3023 		break;
3024 	case _KMEM:
3025 		counter = &memcg->kmem;
3026 		break;
3027 	case _TCP:
3028 		counter = &memcg->tcpmem;
3029 		break;
3030 	default:
3031 		BUG();
3032 	}
3033 
3034 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035 	case RES_MAX_USAGE:
3036 		page_counter_reset_watermark(counter);
3037 		break;
3038 	case RES_FAILCNT:
3039 		counter->failcnt = 0;
3040 		break;
3041 	default:
3042 		BUG();
3043 	}
3044 
3045 	return nbytes;
3046 }
3047 
3048 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3049 					struct cftype *cft)
3050 {
3051 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3052 }
3053 
3054 #ifdef CONFIG_MMU
3055 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3056 					struct cftype *cft, u64 val)
3057 {
3058 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3059 
3060 	if (val & ~MOVE_MASK)
3061 		return -EINVAL;
3062 
3063 	/*
3064 	 * No kind of locking is needed in here, because ->can_attach() will
3065 	 * check this value once in the beginning of the process, and then carry
3066 	 * on with stale data. This means that changes to this value will only
3067 	 * affect task migrations starting after the change.
3068 	 */
3069 	memcg->move_charge_at_immigrate = val;
3070 	return 0;
3071 }
3072 #else
3073 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3074 					struct cftype *cft, u64 val)
3075 {
3076 	return -ENOSYS;
3077 }
3078 #endif
3079 
3080 #ifdef CONFIG_NUMA
3081 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3082 {
3083 	struct numa_stat {
3084 		const char *name;
3085 		unsigned int lru_mask;
3086 	};
3087 
3088 	static const struct numa_stat stats[] = {
3089 		{ "total", LRU_ALL },
3090 		{ "file", LRU_ALL_FILE },
3091 		{ "anon", LRU_ALL_ANON },
3092 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3093 	};
3094 	const struct numa_stat *stat;
3095 	int nid;
3096 	unsigned long nr;
3097 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3098 
3099 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3101 		seq_printf(m, "%s=%lu", stat->name, nr);
3102 		for_each_node_state(nid, N_MEMORY) {
3103 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104 							  stat->lru_mask);
3105 			seq_printf(m, " N%d=%lu", nid, nr);
3106 		}
3107 		seq_putc(m, '\n');
3108 	}
3109 
3110 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 		struct mem_cgroup *iter;
3112 
3113 		nr = 0;
3114 		for_each_mem_cgroup_tree(iter, memcg)
3115 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3116 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3117 		for_each_node_state(nid, N_MEMORY) {
3118 			nr = 0;
3119 			for_each_mem_cgroup_tree(iter, memcg)
3120 				nr += mem_cgroup_node_nr_lru_pages(
3121 					iter, nid, stat->lru_mask);
3122 			seq_printf(m, " N%d=%lu", nid, nr);
3123 		}
3124 		seq_putc(m, '\n');
3125 	}
3126 
3127 	return 0;
3128 }
3129 #endif /* CONFIG_NUMA */
3130 
3131 static int memcg_stat_show(struct seq_file *m, void *v)
3132 {
3133 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134 	unsigned long memory, memsw;
3135 	struct mem_cgroup *mi;
3136 	unsigned int i;
3137 
3138 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3139 		     MEM_CGROUP_STAT_NSTATS);
3140 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3141 		     MEM_CGROUP_EVENTS_NSTATS);
3142 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143 
3144 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3145 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3146 			continue;
3147 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3148 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3149 	}
3150 
3151 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3152 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3153 			   mem_cgroup_read_events(memcg, i));
3154 
3155 	for (i = 0; i < NR_LRU_LISTS; i++)
3156 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158 
3159 	/* Hierarchical information */
3160 	memory = memsw = PAGE_COUNTER_MAX;
3161 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 		memory = min(memory, mi->memory.limit);
3163 		memsw = min(memsw, mi->memsw.limit);
3164 	}
3165 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 		   (u64)memory * PAGE_SIZE);
3167 	if (do_memsw_account())
3168 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 			   (u64)memsw * PAGE_SIZE);
3170 
3171 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172 		unsigned long long val = 0;
3173 
3174 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175 			continue;
3176 		for_each_mem_cgroup_tree(mi, memcg)
3177 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3178 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3179 	}
3180 
3181 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3182 		unsigned long long val = 0;
3183 
3184 		for_each_mem_cgroup_tree(mi, memcg)
3185 			val += mem_cgroup_read_events(mi, i);
3186 		seq_printf(m, "total_%s %llu\n",
3187 			   mem_cgroup_events_names[i], val);
3188 	}
3189 
3190 	for (i = 0; i < NR_LRU_LISTS; i++) {
3191 		unsigned long long val = 0;
3192 
3193 		for_each_mem_cgroup_tree(mi, memcg)
3194 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196 	}
3197 
3198 #ifdef CONFIG_DEBUG_VM
3199 	{
3200 		pg_data_t *pgdat;
3201 		struct mem_cgroup_per_node *mz;
3202 		struct zone_reclaim_stat *rstat;
3203 		unsigned long recent_rotated[2] = {0, 0};
3204 		unsigned long recent_scanned[2] = {0, 0};
3205 
3206 		for_each_online_pgdat(pgdat) {
3207 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3208 			rstat = &mz->lruvec.reclaim_stat;
3209 
3210 			recent_rotated[0] += rstat->recent_rotated[0];
3211 			recent_rotated[1] += rstat->recent_rotated[1];
3212 			recent_scanned[0] += rstat->recent_scanned[0];
3213 			recent_scanned[1] += rstat->recent_scanned[1];
3214 		}
3215 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3219 	}
3220 #endif
3221 
3222 	return 0;
3223 }
3224 
3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 				      struct cftype *cft)
3227 {
3228 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229 
3230 	return mem_cgroup_swappiness(memcg);
3231 }
3232 
3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 				       struct cftype *cft, u64 val)
3235 {
3236 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3237 
3238 	if (val > 100)
3239 		return -EINVAL;
3240 
3241 	if (css->parent)
3242 		memcg->swappiness = val;
3243 	else
3244 		vm_swappiness = val;
3245 
3246 	return 0;
3247 }
3248 
3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 {
3251 	struct mem_cgroup_threshold_ary *t;
3252 	unsigned long usage;
3253 	int i;
3254 
3255 	rcu_read_lock();
3256 	if (!swap)
3257 		t = rcu_dereference(memcg->thresholds.primary);
3258 	else
3259 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3260 
3261 	if (!t)
3262 		goto unlock;
3263 
3264 	usage = mem_cgroup_usage(memcg, swap);
3265 
3266 	/*
3267 	 * current_threshold points to threshold just below or equal to usage.
3268 	 * If it's not true, a threshold was crossed after last
3269 	 * call of __mem_cgroup_threshold().
3270 	 */
3271 	i = t->current_threshold;
3272 
3273 	/*
3274 	 * Iterate backward over array of thresholds starting from
3275 	 * current_threshold and check if a threshold is crossed.
3276 	 * If none of thresholds below usage is crossed, we read
3277 	 * only one element of the array here.
3278 	 */
3279 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 		eventfd_signal(t->entries[i].eventfd, 1);
3281 
3282 	/* i = current_threshold + 1 */
3283 	i++;
3284 
3285 	/*
3286 	 * Iterate forward over array of thresholds starting from
3287 	 * current_threshold+1 and check if a threshold is crossed.
3288 	 * If none of thresholds above usage is crossed, we read
3289 	 * only one element of the array here.
3290 	 */
3291 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 		eventfd_signal(t->entries[i].eventfd, 1);
3293 
3294 	/* Update current_threshold */
3295 	t->current_threshold = i - 1;
3296 unlock:
3297 	rcu_read_unlock();
3298 }
3299 
3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301 {
3302 	while (memcg) {
3303 		__mem_cgroup_threshold(memcg, false);
3304 		if (do_memsw_account())
3305 			__mem_cgroup_threshold(memcg, true);
3306 
3307 		memcg = parent_mem_cgroup(memcg);
3308 	}
3309 }
3310 
3311 static int compare_thresholds(const void *a, const void *b)
3312 {
3313 	const struct mem_cgroup_threshold *_a = a;
3314 	const struct mem_cgroup_threshold *_b = b;
3315 
3316 	if (_a->threshold > _b->threshold)
3317 		return 1;
3318 
3319 	if (_a->threshold < _b->threshold)
3320 		return -1;
3321 
3322 	return 0;
3323 }
3324 
3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 {
3327 	struct mem_cgroup_eventfd_list *ev;
3328 
3329 	spin_lock(&memcg_oom_lock);
3330 
3331 	list_for_each_entry(ev, &memcg->oom_notify, list)
3332 		eventfd_signal(ev->eventfd, 1);
3333 
3334 	spin_unlock(&memcg_oom_lock);
3335 	return 0;
3336 }
3337 
3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 {
3340 	struct mem_cgroup *iter;
3341 
3342 	for_each_mem_cgroup_tree(iter, memcg)
3343 		mem_cgroup_oom_notify_cb(iter);
3344 }
3345 
3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3347 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 {
3349 	struct mem_cgroup_thresholds *thresholds;
3350 	struct mem_cgroup_threshold_ary *new;
3351 	unsigned long threshold;
3352 	unsigned long usage;
3353 	int i, size, ret;
3354 
3355 	ret = page_counter_memparse(args, "-1", &threshold);
3356 	if (ret)
3357 		return ret;
3358 
3359 	mutex_lock(&memcg->thresholds_lock);
3360 
3361 	if (type == _MEM) {
3362 		thresholds = &memcg->thresholds;
3363 		usage = mem_cgroup_usage(memcg, false);
3364 	} else if (type == _MEMSWAP) {
3365 		thresholds = &memcg->memsw_thresholds;
3366 		usage = mem_cgroup_usage(memcg, true);
3367 	} else
3368 		BUG();
3369 
3370 	/* Check if a threshold crossed before adding a new one */
3371 	if (thresholds->primary)
3372 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373 
3374 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375 
3376 	/* Allocate memory for new array of thresholds */
3377 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378 			GFP_KERNEL);
3379 	if (!new) {
3380 		ret = -ENOMEM;
3381 		goto unlock;
3382 	}
3383 	new->size = size;
3384 
3385 	/* Copy thresholds (if any) to new array */
3386 	if (thresholds->primary) {
3387 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388 				sizeof(struct mem_cgroup_threshold));
3389 	}
3390 
3391 	/* Add new threshold */
3392 	new->entries[size - 1].eventfd = eventfd;
3393 	new->entries[size - 1].threshold = threshold;
3394 
3395 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3396 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397 			compare_thresholds, NULL);
3398 
3399 	/* Find current threshold */
3400 	new->current_threshold = -1;
3401 	for (i = 0; i < size; i++) {
3402 		if (new->entries[i].threshold <= usage) {
3403 			/*
3404 			 * new->current_threshold will not be used until
3405 			 * rcu_assign_pointer(), so it's safe to increment
3406 			 * it here.
3407 			 */
3408 			++new->current_threshold;
3409 		} else
3410 			break;
3411 	}
3412 
3413 	/* Free old spare buffer and save old primary buffer as spare */
3414 	kfree(thresholds->spare);
3415 	thresholds->spare = thresholds->primary;
3416 
3417 	rcu_assign_pointer(thresholds->primary, new);
3418 
3419 	/* To be sure that nobody uses thresholds */
3420 	synchronize_rcu();
3421 
3422 unlock:
3423 	mutex_unlock(&memcg->thresholds_lock);
3424 
3425 	return ret;
3426 }
3427 
3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3429 	struct eventfd_ctx *eventfd, const char *args)
3430 {
3431 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 }
3433 
3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 	struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 }
3439 
3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3441 	struct eventfd_ctx *eventfd, enum res_type type)
3442 {
3443 	struct mem_cgroup_thresholds *thresholds;
3444 	struct mem_cgroup_threshold_ary *new;
3445 	unsigned long usage;
3446 	int i, j, size;
3447 
3448 	mutex_lock(&memcg->thresholds_lock);
3449 
3450 	if (type == _MEM) {
3451 		thresholds = &memcg->thresholds;
3452 		usage = mem_cgroup_usage(memcg, false);
3453 	} else if (type == _MEMSWAP) {
3454 		thresholds = &memcg->memsw_thresholds;
3455 		usage = mem_cgroup_usage(memcg, true);
3456 	} else
3457 		BUG();
3458 
3459 	if (!thresholds->primary)
3460 		goto unlock;
3461 
3462 	/* Check if a threshold crossed before removing */
3463 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464 
3465 	/* Calculate new number of threshold */
3466 	size = 0;
3467 	for (i = 0; i < thresholds->primary->size; i++) {
3468 		if (thresholds->primary->entries[i].eventfd != eventfd)
3469 			size++;
3470 	}
3471 
3472 	new = thresholds->spare;
3473 
3474 	/* Set thresholds array to NULL if we don't have thresholds */
3475 	if (!size) {
3476 		kfree(new);
3477 		new = NULL;
3478 		goto swap_buffers;
3479 	}
3480 
3481 	new->size = size;
3482 
3483 	/* Copy thresholds and find current threshold */
3484 	new->current_threshold = -1;
3485 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 		if (thresholds->primary->entries[i].eventfd == eventfd)
3487 			continue;
3488 
3489 		new->entries[j] = thresholds->primary->entries[i];
3490 		if (new->entries[j].threshold <= usage) {
3491 			/*
3492 			 * new->current_threshold will not be used
3493 			 * until rcu_assign_pointer(), so it's safe to increment
3494 			 * it here.
3495 			 */
3496 			++new->current_threshold;
3497 		}
3498 		j++;
3499 	}
3500 
3501 swap_buffers:
3502 	/* Swap primary and spare array */
3503 	thresholds->spare = thresholds->primary;
3504 
3505 	rcu_assign_pointer(thresholds->primary, new);
3506 
3507 	/* To be sure that nobody uses thresholds */
3508 	synchronize_rcu();
3509 
3510 	/* If all events are unregistered, free the spare array */
3511 	if (!new) {
3512 		kfree(thresholds->spare);
3513 		thresholds->spare = NULL;
3514 	}
3515 unlock:
3516 	mutex_unlock(&memcg->thresholds_lock);
3517 }
3518 
3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520 	struct eventfd_ctx *eventfd)
3521 {
3522 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 }
3524 
3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 	struct eventfd_ctx *eventfd)
3527 {
3528 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 }
3530 
3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3532 	struct eventfd_ctx *eventfd, const char *args)
3533 {
3534 	struct mem_cgroup_eventfd_list *event;
3535 
3536 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3537 	if (!event)
3538 		return -ENOMEM;
3539 
3540 	spin_lock(&memcg_oom_lock);
3541 
3542 	event->eventfd = eventfd;
3543 	list_add(&event->list, &memcg->oom_notify);
3544 
3545 	/* already in OOM ? */
3546 	if (memcg->under_oom)
3547 		eventfd_signal(eventfd, 1);
3548 	spin_unlock(&memcg_oom_lock);
3549 
3550 	return 0;
3551 }
3552 
3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3554 	struct eventfd_ctx *eventfd)
3555 {
3556 	struct mem_cgroup_eventfd_list *ev, *tmp;
3557 
3558 	spin_lock(&memcg_oom_lock);
3559 
3560 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3561 		if (ev->eventfd == eventfd) {
3562 			list_del(&ev->list);
3563 			kfree(ev);
3564 		}
3565 	}
3566 
3567 	spin_unlock(&memcg_oom_lock);
3568 }
3569 
3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 {
3572 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573 
3574 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576 	return 0;
3577 }
3578 
3579 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3580 	struct cftype *cft, u64 val)
3581 {
3582 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583 
3584 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3585 	if (!css->parent || !((val == 0) || (val == 1)))
3586 		return -EINVAL;
3587 
3588 	memcg->oom_kill_disable = val;
3589 	if (!val)
3590 		memcg_oom_recover(memcg);
3591 
3592 	return 0;
3593 }
3594 
3595 #ifdef CONFIG_CGROUP_WRITEBACK
3596 
3597 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598 {
3599 	return &memcg->cgwb_list;
3600 }
3601 
3602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603 {
3604 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3605 }
3606 
3607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608 {
3609 	wb_domain_exit(&memcg->cgwb_domain);
3610 }
3611 
3612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613 {
3614 	wb_domain_size_changed(&memcg->cgwb_domain);
3615 }
3616 
3617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618 {
3619 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620 
3621 	if (!memcg->css.parent)
3622 		return NULL;
3623 
3624 	return &memcg->cgwb_domain;
3625 }
3626 
3627 /**
3628  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629  * @wb: bdi_writeback in question
3630  * @pfilepages: out parameter for number of file pages
3631  * @pheadroom: out parameter for number of allocatable pages according to memcg
3632  * @pdirty: out parameter for number of dirty pages
3633  * @pwriteback: out parameter for number of pages under writeback
3634  *
3635  * Determine the numbers of file, headroom, dirty, and writeback pages in
3636  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3637  * is a bit more involved.
3638  *
3639  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3640  * headroom is calculated as the lowest headroom of itself and the
3641  * ancestors.  Note that this doesn't consider the actual amount of
3642  * available memory in the system.  The caller should further cap
3643  * *@pheadroom accordingly.
3644  */
3645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646 			 unsigned long *pheadroom, unsigned long *pdirty,
3647 			 unsigned long *pwriteback)
3648 {
3649 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650 	struct mem_cgroup *parent;
3651 
3652 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653 
3654 	/* this should eventually include NR_UNSTABLE_NFS */
3655 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3656 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657 						     (1 << LRU_ACTIVE_FILE));
3658 	*pheadroom = PAGE_COUNTER_MAX;
3659 
3660 	while ((parent = parent_mem_cgroup(memcg))) {
3661 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662 		unsigned long used = page_counter_read(&memcg->memory);
3663 
3664 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3665 		memcg = parent;
3666 	}
3667 }
3668 
3669 #else	/* CONFIG_CGROUP_WRITEBACK */
3670 
3671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672 {
3673 	return 0;
3674 }
3675 
3676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677 {
3678 }
3679 
3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681 {
3682 }
3683 
3684 #endif	/* CONFIG_CGROUP_WRITEBACK */
3685 
3686 /*
3687  * DO NOT USE IN NEW FILES.
3688  *
3689  * "cgroup.event_control" implementation.
3690  *
3691  * This is way over-engineered.  It tries to support fully configurable
3692  * events for each user.  Such level of flexibility is completely
3693  * unnecessary especially in the light of the planned unified hierarchy.
3694  *
3695  * Please deprecate this and replace with something simpler if at all
3696  * possible.
3697  */
3698 
3699 /*
3700  * Unregister event and free resources.
3701  *
3702  * Gets called from workqueue.
3703  */
3704 static void memcg_event_remove(struct work_struct *work)
3705 {
3706 	struct mem_cgroup_event *event =
3707 		container_of(work, struct mem_cgroup_event, remove);
3708 	struct mem_cgroup *memcg = event->memcg;
3709 
3710 	remove_wait_queue(event->wqh, &event->wait);
3711 
3712 	event->unregister_event(memcg, event->eventfd);
3713 
3714 	/* Notify userspace the event is going away. */
3715 	eventfd_signal(event->eventfd, 1);
3716 
3717 	eventfd_ctx_put(event->eventfd);
3718 	kfree(event);
3719 	css_put(&memcg->css);
3720 }
3721 
3722 /*
3723  * Gets called on POLLHUP on eventfd when user closes it.
3724  *
3725  * Called with wqh->lock held and interrupts disabled.
3726  */
3727 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728 			    int sync, void *key)
3729 {
3730 	struct mem_cgroup_event *event =
3731 		container_of(wait, struct mem_cgroup_event, wait);
3732 	struct mem_cgroup *memcg = event->memcg;
3733 	unsigned long flags = (unsigned long)key;
3734 
3735 	if (flags & POLLHUP) {
3736 		/*
3737 		 * If the event has been detached at cgroup removal, we
3738 		 * can simply return knowing the other side will cleanup
3739 		 * for us.
3740 		 *
3741 		 * We can't race against event freeing since the other
3742 		 * side will require wqh->lock via remove_wait_queue(),
3743 		 * which we hold.
3744 		 */
3745 		spin_lock(&memcg->event_list_lock);
3746 		if (!list_empty(&event->list)) {
3747 			list_del_init(&event->list);
3748 			/*
3749 			 * We are in atomic context, but cgroup_event_remove()
3750 			 * may sleep, so we have to call it in workqueue.
3751 			 */
3752 			schedule_work(&event->remove);
3753 		}
3754 		spin_unlock(&memcg->event_list_lock);
3755 	}
3756 
3757 	return 0;
3758 }
3759 
3760 static void memcg_event_ptable_queue_proc(struct file *file,
3761 		wait_queue_head_t *wqh, poll_table *pt)
3762 {
3763 	struct mem_cgroup_event *event =
3764 		container_of(pt, struct mem_cgroup_event, pt);
3765 
3766 	event->wqh = wqh;
3767 	add_wait_queue(wqh, &event->wait);
3768 }
3769 
3770 /*
3771  * DO NOT USE IN NEW FILES.
3772  *
3773  * Parse input and register new cgroup event handler.
3774  *
3775  * Input must be in format '<event_fd> <control_fd> <args>'.
3776  * Interpretation of args is defined by control file implementation.
3777  */
3778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779 					 char *buf, size_t nbytes, loff_t off)
3780 {
3781 	struct cgroup_subsys_state *css = of_css(of);
3782 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783 	struct mem_cgroup_event *event;
3784 	struct cgroup_subsys_state *cfile_css;
3785 	unsigned int efd, cfd;
3786 	struct fd efile;
3787 	struct fd cfile;
3788 	const char *name;
3789 	char *endp;
3790 	int ret;
3791 
3792 	buf = strstrip(buf);
3793 
3794 	efd = simple_strtoul(buf, &endp, 10);
3795 	if (*endp != ' ')
3796 		return -EINVAL;
3797 	buf = endp + 1;
3798 
3799 	cfd = simple_strtoul(buf, &endp, 10);
3800 	if ((*endp != ' ') && (*endp != '\0'))
3801 		return -EINVAL;
3802 	buf = endp + 1;
3803 
3804 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3805 	if (!event)
3806 		return -ENOMEM;
3807 
3808 	event->memcg = memcg;
3809 	INIT_LIST_HEAD(&event->list);
3810 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812 	INIT_WORK(&event->remove, memcg_event_remove);
3813 
3814 	efile = fdget(efd);
3815 	if (!efile.file) {
3816 		ret = -EBADF;
3817 		goto out_kfree;
3818 	}
3819 
3820 	event->eventfd = eventfd_ctx_fileget(efile.file);
3821 	if (IS_ERR(event->eventfd)) {
3822 		ret = PTR_ERR(event->eventfd);
3823 		goto out_put_efile;
3824 	}
3825 
3826 	cfile = fdget(cfd);
3827 	if (!cfile.file) {
3828 		ret = -EBADF;
3829 		goto out_put_eventfd;
3830 	}
3831 
3832 	/* the process need read permission on control file */
3833 	/* AV: shouldn't we check that it's been opened for read instead? */
3834 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835 	if (ret < 0)
3836 		goto out_put_cfile;
3837 
3838 	/*
3839 	 * Determine the event callbacks and set them in @event.  This used
3840 	 * to be done via struct cftype but cgroup core no longer knows
3841 	 * about these events.  The following is crude but the whole thing
3842 	 * is for compatibility anyway.
3843 	 *
3844 	 * DO NOT ADD NEW FILES.
3845 	 */
3846 	name = cfile.file->f_path.dentry->d_name.name;
3847 
3848 	if (!strcmp(name, "memory.usage_in_bytes")) {
3849 		event->register_event = mem_cgroup_usage_register_event;
3850 		event->unregister_event = mem_cgroup_usage_unregister_event;
3851 	} else if (!strcmp(name, "memory.oom_control")) {
3852 		event->register_event = mem_cgroup_oom_register_event;
3853 		event->unregister_event = mem_cgroup_oom_unregister_event;
3854 	} else if (!strcmp(name, "memory.pressure_level")) {
3855 		event->register_event = vmpressure_register_event;
3856 		event->unregister_event = vmpressure_unregister_event;
3857 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3858 		event->register_event = memsw_cgroup_usage_register_event;
3859 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3860 	} else {
3861 		ret = -EINVAL;
3862 		goto out_put_cfile;
3863 	}
3864 
3865 	/*
3866 	 * Verify @cfile should belong to @css.  Also, remaining events are
3867 	 * automatically removed on cgroup destruction but the removal is
3868 	 * asynchronous, so take an extra ref on @css.
3869 	 */
3870 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3871 					       &memory_cgrp_subsys);
3872 	ret = -EINVAL;
3873 	if (IS_ERR(cfile_css))
3874 		goto out_put_cfile;
3875 	if (cfile_css != css) {
3876 		css_put(cfile_css);
3877 		goto out_put_cfile;
3878 	}
3879 
3880 	ret = event->register_event(memcg, event->eventfd, buf);
3881 	if (ret)
3882 		goto out_put_css;
3883 
3884 	efile.file->f_op->poll(efile.file, &event->pt);
3885 
3886 	spin_lock(&memcg->event_list_lock);
3887 	list_add(&event->list, &memcg->event_list);
3888 	spin_unlock(&memcg->event_list_lock);
3889 
3890 	fdput(cfile);
3891 	fdput(efile);
3892 
3893 	return nbytes;
3894 
3895 out_put_css:
3896 	css_put(css);
3897 out_put_cfile:
3898 	fdput(cfile);
3899 out_put_eventfd:
3900 	eventfd_ctx_put(event->eventfd);
3901 out_put_efile:
3902 	fdput(efile);
3903 out_kfree:
3904 	kfree(event);
3905 
3906 	return ret;
3907 }
3908 
3909 static struct cftype mem_cgroup_legacy_files[] = {
3910 	{
3911 		.name = "usage_in_bytes",
3912 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3913 		.read_u64 = mem_cgroup_read_u64,
3914 	},
3915 	{
3916 		.name = "max_usage_in_bytes",
3917 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3918 		.write = mem_cgroup_reset,
3919 		.read_u64 = mem_cgroup_read_u64,
3920 	},
3921 	{
3922 		.name = "limit_in_bytes",
3923 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3924 		.write = mem_cgroup_write,
3925 		.read_u64 = mem_cgroup_read_u64,
3926 	},
3927 	{
3928 		.name = "soft_limit_in_bytes",
3929 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3930 		.write = mem_cgroup_write,
3931 		.read_u64 = mem_cgroup_read_u64,
3932 	},
3933 	{
3934 		.name = "failcnt",
3935 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3936 		.write = mem_cgroup_reset,
3937 		.read_u64 = mem_cgroup_read_u64,
3938 	},
3939 	{
3940 		.name = "stat",
3941 		.seq_show = memcg_stat_show,
3942 	},
3943 	{
3944 		.name = "force_empty",
3945 		.write = mem_cgroup_force_empty_write,
3946 	},
3947 	{
3948 		.name = "use_hierarchy",
3949 		.write_u64 = mem_cgroup_hierarchy_write,
3950 		.read_u64 = mem_cgroup_hierarchy_read,
3951 	},
3952 	{
3953 		.name = "cgroup.event_control",		/* XXX: for compat */
3954 		.write = memcg_write_event_control,
3955 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3956 	},
3957 	{
3958 		.name = "swappiness",
3959 		.read_u64 = mem_cgroup_swappiness_read,
3960 		.write_u64 = mem_cgroup_swappiness_write,
3961 	},
3962 	{
3963 		.name = "move_charge_at_immigrate",
3964 		.read_u64 = mem_cgroup_move_charge_read,
3965 		.write_u64 = mem_cgroup_move_charge_write,
3966 	},
3967 	{
3968 		.name = "oom_control",
3969 		.seq_show = mem_cgroup_oom_control_read,
3970 		.write_u64 = mem_cgroup_oom_control_write,
3971 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 	},
3973 	{
3974 		.name = "pressure_level",
3975 	},
3976 #ifdef CONFIG_NUMA
3977 	{
3978 		.name = "numa_stat",
3979 		.seq_show = memcg_numa_stat_show,
3980 	},
3981 #endif
3982 	{
3983 		.name = "kmem.limit_in_bytes",
3984 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3985 		.write = mem_cgroup_write,
3986 		.read_u64 = mem_cgroup_read_u64,
3987 	},
3988 	{
3989 		.name = "kmem.usage_in_bytes",
3990 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3991 		.read_u64 = mem_cgroup_read_u64,
3992 	},
3993 	{
3994 		.name = "kmem.failcnt",
3995 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3996 		.write = mem_cgroup_reset,
3997 		.read_u64 = mem_cgroup_read_u64,
3998 	},
3999 	{
4000 		.name = "kmem.max_usage_in_bytes",
4001 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4002 		.write = mem_cgroup_reset,
4003 		.read_u64 = mem_cgroup_read_u64,
4004 	},
4005 #ifdef CONFIG_SLABINFO
4006 	{
4007 		.name = "kmem.slabinfo",
4008 		.seq_start = memcg_slab_start,
4009 		.seq_next = memcg_slab_next,
4010 		.seq_stop = memcg_slab_stop,
4011 		.seq_show = memcg_slab_show,
4012 	},
4013 #endif
4014 	{
4015 		.name = "kmem.tcp.limit_in_bytes",
4016 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017 		.write = mem_cgroup_write,
4018 		.read_u64 = mem_cgroup_read_u64,
4019 	},
4020 	{
4021 		.name = "kmem.tcp.usage_in_bytes",
4022 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023 		.read_u64 = mem_cgroup_read_u64,
4024 	},
4025 	{
4026 		.name = "kmem.tcp.failcnt",
4027 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028 		.write = mem_cgroup_reset,
4029 		.read_u64 = mem_cgroup_read_u64,
4030 	},
4031 	{
4032 		.name = "kmem.tcp.max_usage_in_bytes",
4033 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034 		.write = mem_cgroup_reset,
4035 		.read_u64 = mem_cgroup_read_u64,
4036 	},
4037 	{ },	/* terminate */
4038 };
4039 
4040 /*
4041  * Private memory cgroup IDR
4042  *
4043  * Swap-out records and page cache shadow entries need to store memcg
4044  * references in constrained space, so we maintain an ID space that is
4045  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4046  * memory-controlled cgroups to 64k.
4047  *
4048  * However, there usually are many references to the oflline CSS after
4049  * the cgroup has been destroyed, such as page cache or reclaimable
4050  * slab objects, that don't need to hang on to the ID. We want to keep
4051  * those dead CSS from occupying IDs, or we might quickly exhaust the
4052  * relatively small ID space and prevent the creation of new cgroups
4053  * even when there are much fewer than 64k cgroups - possibly none.
4054  *
4055  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4056  * be freed and recycled when it's no longer needed, which is usually
4057  * when the CSS is offlined.
4058  *
4059  * The only exception to that are records of swapped out tmpfs/shmem
4060  * pages that need to be attributed to live ancestors on swapin. But
4061  * those references are manageable from userspace.
4062  */
4063 
4064 static DEFINE_IDR(mem_cgroup_idr);
4065 
4066 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4067 {
4068 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4069 	atomic_add(n, &memcg->id.ref);
4070 }
4071 
4072 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4073 {
4074 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4075 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4076 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4077 		memcg->id.id = 0;
4078 
4079 		/* Memcg ID pins CSS */
4080 		css_put(&memcg->css);
4081 	}
4082 }
4083 
4084 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4085 {
4086 	mem_cgroup_id_get_many(memcg, 1);
4087 }
4088 
4089 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4090 {
4091 	mem_cgroup_id_put_many(memcg, 1);
4092 }
4093 
4094 /**
4095  * mem_cgroup_from_id - look up a memcg from a memcg id
4096  * @id: the memcg id to look up
4097  *
4098  * Caller must hold rcu_read_lock().
4099  */
4100 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4101 {
4102 	WARN_ON_ONCE(!rcu_read_lock_held());
4103 	return idr_find(&mem_cgroup_idr, id);
4104 }
4105 
4106 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4107 {
4108 	struct mem_cgroup_per_node *pn;
4109 	int tmp = node;
4110 	/*
4111 	 * This routine is called against possible nodes.
4112 	 * But it's BUG to call kmalloc() against offline node.
4113 	 *
4114 	 * TODO: this routine can waste much memory for nodes which will
4115 	 *       never be onlined. It's better to use memory hotplug callback
4116 	 *       function.
4117 	 */
4118 	if (!node_state(node, N_NORMAL_MEMORY))
4119 		tmp = -1;
4120 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4121 	if (!pn)
4122 		return 1;
4123 
4124 	lruvec_init(&pn->lruvec);
4125 	pn->usage_in_excess = 0;
4126 	pn->on_tree = false;
4127 	pn->memcg = memcg;
4128 
4129 	memcg->nodeinfo[node] = pn;
4130 	return 0;
4131 }
4132 
4133 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4134 {
4135 	kfree(memcg->nodeinfo[node]);
4136 }
4137 
4138 static void mem_cgroup_free(struct mem_cgroup *memcg)
4139 {
4140 	int node;
4141 
4142 	memcg_wb_domain_exit(memcg);
4143 	for_each_node(node)
4144 		free_mem_cgroup_per_node_info(memcg, node);
4145 	free_percpu(memcg->stat);
4146 	kfree(memcg);
4147 }
4148 
4149 static struct mem_cgroup *mem_cgroup_alloc(void)
4150 {
4151 	struct mem_cgroup *memcg;
4152 	size_t size;
4153 	int node;
4154 
4155 	size = sizeof(struct mem_cgroup);
4156 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4157 
4158 	memcg = kzalloc(size, GFP_KERNEL);
4159 	if (!memcg)
4160 		return NULL;
4161 
4162 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4163 				 1, MEM_CGROUP_ID_MAX,
4164 				 GFP_KERNEL);
4165 	if (memcg->id.id < 0)
4166 		goto fail;
4167 
4168 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4169 	if (!memcg->stat)
4170 		goto fail;
4171 
4172 	for_each_node(node)
4173 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4174 			goto fail;
4175 
4176 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4177 		goto fail;
4178 
4179 	INIT_WORK(&memcg->high_work, high_work_func);
4180 	memcg->last_scanned_node = MAX_NUMNODES;
4181 	INIT_LIST_HEAD(&memcg->oom_notify);
4182 	mutex_init(&memcg->thresholds_lock);
4183 	spin_lock_init(&memcg->move_lock);
4184 	vmpressure_init(&memcg->vmpressure);
4185 	INIT_LIST_HEAD(&memcg->event_list);
4186 	spin_lock_init(&memcg->event_list_lock);
4187 	memcg->socket_pressure = jiffies;
4188 #ifndef CONFIG_SLOB
4189 	memcg->kmemcg_id = -1;
4190 #endif
4191 #ifdef CONFIG_CGROUP_WRITEBACK
4192 	INIT_LIST_HEAD(&memcg->cgwb_list);
4193 #endif
4194 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4195 	return memcg;
4196 fail:
4197 	if (memcg->id.id > 0)
4198 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4199 	mem_cgroup_free(memcg);
4200 	return NULL;
4201 }
4202 
4203 static struct cgroup_subsys_state * __ref
4204 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4205 {
4206 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4207 	struct mem_cgroup *memcg;
4208 	long error = -ENOMEM;
4209 
4210 	memcg = mem_cgroup_alloc();
4211 	if (!memcg)
4212 		return ERR_PTR(error);
4213 
4214 	memcg->high = PAGE_COUNTER_MAX;
4215 	memcg->soft_limit = PAGE_COUNTER_MAX;
4216 	if (parent) {
4217 		memcg->swappiness = mem_cgroup_swappiness(parent);
4218 		memcg->oom_kill_disable = parent->oom_kill_disable;
4219 	}
4220 	if (parent && parent->use_hierarchy) {
4221 		memcg->use_hierarchy = true;
4222 		page_counter_init(&memcg->memory, &parent->memory);
4223 		page_counter_init(&memcg->swap, &parent->swap);
4224 		page_counter_init(&memcg->memsw, &parent->memsw);
4225 		page_counter_init(&memcg->kmem, &parent->kmem);
4226 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4227 	} else {
4228 		page_counter_init(&memcg->memory, NULL);
4229 		page_counter_init(&memcg->swap, NULL);
4230 		page_counter_init(&memcg->memsw, NULL);
4231 		page_counter_init(&memcg->kmem, NULL);
4232 		page_counter_init(&memcg->tcpmem, NULL);
4233 		/*
4234 		 * Deeper hierachy with use_hierarchy == false doesn't make
4235 		 * much sense so let cgroup subsystem know about this
4236 		 * unfortunate state in our controller.
4237 		 */
4238 		if (parent != root_mem_cgroup)
4239 			memory_cgrp_subsys.broken_hierarchy = true;
4240 	}
4241 
4242 	/* The following stuff does not apply to the root */
4243 	if (!parent) {
4244 		root_mem_cgroup = memcg;
4245 		return &memcg->css;
4246 	}
4247 
4248 	error = memcg_online_kmem(memcg);
4249 	if (error)
4250 		goto fail;
4251 
4252 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4253 		static_branch_inc(&memcg_sockets_enabled_key);
4254 
4255 	return &memcg->css;
4256 fail:
4257 	mem_cgroup_free(memcg);
4258 	return ERR_PTR(-ENOMEM);
4259 }
4260 
4261 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4262 {
4263 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4264 
4265 	/* Online state pins memcg ID, memcg ID pins CSS */
4266 	atomic_set(&memcg->id.ref, 1);
4267 	css_get(css);
4268 	return 0;
4269 }
4270 
4271 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4272 {
4273 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4274 	struct mem_cgroup_event *event, *tmp;
4275 
4276 	/*
4277 	 * Unregister events and notify userspace.
4278 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4279 	 * directory to avoid race between userspace and kernelspace.
4280 	 */
4281 	spin_lock(&memcg->event_list_lock);
4282 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4283 		list_del_init(&event->list);
4284 		schedule_work(&event->remove);
4285 	}
4286 	spin_unlock(&memcg->event_list_lock);
4287 
4288 	memcg_offline_kmem(memcg);
4289 	wb_memcg_offline(memcg);
4290 
4291 	mem_cgroup_id_put(memcg);
4292 }
4293 
4294 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4295 {
4296 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4297 
4298 	invalidate_reclaim_iterators(memcg);
4299 }
4300 
4301 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4302 {
4303 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4304 
4305 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4306 		static_branch_dec(&memcg_sockets_enabled_key);
4307 
4308 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4309 		static_branch_dec(&memcg_sockets_enabled_key);
4310 
4311 	vmpressure_cleanup(&memcg->vmpressure);
4312 	cancel_work_sync(&memcg->high_work);
4313 	mem_cgroup_remove_from_trees(memcg);
4314 	memcg_free_kmem(memcg);
4315 	mem_cgroup_free(memcg);
4316 }
4317 
4318 /**
4319  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4320  * @css: the target css
4321  *
4322  * Reset the states of the mem_cgroup associated with @css.  This is
4323  * invoked when the userland requests disabling on the default hierarchy
4324  * but the memcg is pinned through dependency.  The memcg should stop
4325  * applying policies and should revert to the vanilla state as it may be
4326  * made visible again.
4327  *
4328  * The current implementation only resets the essential configurations.
4329  * This needs to be expanded to cover all the visible parts.
4330  */
4331 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4332 {
4333 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4334 
4335 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4336 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4337 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4338 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4339 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4340 	memcg->low = 0;
4341 	memcg->high = PAGE_COUNTER_MAX;
4342 	memcg->soft_limit = PAGE_COUNTER_MAX;
4343 	memcg_wb_domain_size_changed(memcg);
4344 }
4345 
4346 #ifdef CONFIG_MMU
4347 /* Handlers for move charge at task migration. */
4348 static int mem_cgroup_do_precharge(unsigned long count)
4349 {
4350 	int ret;
4351 
4352 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4353 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4354 	if (!ret) {
4355 		mc.precharge += count;
4356 		return ret;
4357 	}
4358 
4359 	/* Try charges one by one with reclaim, but do not retry */
4360 	while (count--) {
4361 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4362 		if (ret)
4363 			return ret;
4364 		mc.precharge++;
4365 		cond_resched();
4366 	}
4367 	return 0;
4368 }
4369 
4370 union mc_target {
4371 	struct page	*page;
4372 	swp_entry_t	ent;
4373 };
4374 
4375 enum mc_target_type {
4376 	MC_TARGET_NONE = 0,
4377 	MC_TARGET_PAGE,
4378 	MC_TARGET_SWAP,
4379 };
4380 
4381 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4382 						unsigned long addr, pte_t ptent)
4383 {
4384 	struct page *page = vm_normal_page(vma, addr, ptent);
4385 
4386 	if (!page || !page_mapped(page))
4387 		return NULL;
4388 	if (PageAnon(page)) {
4389 		if (!(mc.flags & MOVE_ANON))
4390 			return NULL;
4391 	} else {
4392 		if (!(mc.flags & MOVE_FILE))
4393 			return NULL;
4394 	}
4395 	if (!get_page_unless_zero(page))
4396 		return NULL;
4397 
4398 	return page;
4399 }
4400 
4401 #ifdef CONFIG_SWAP
4402 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4403 			pte_t ptent, swp_entry_t *entry)
4404 {
4405 	struct page *page = NULL;
4406 	swp_entry_t ent = pte_to_swp_entry(ptent);
4407 
4408 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4409 		return NULL;
4410 	/*
4411 	 * Because lookup_swap_cache() updates some statistics counter,
4412 	 * we call find_get_page() with swapper_space directly.
4413 	 */
4414 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4415 	if (do_memsw_account())
4416 		entry->val = ent.val;
4417 
4418 	return page;
4419 }
4420 #else
4421 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4422 			pte_t ptent, swp_entry_t *entry)
4423 {
4424 	return NULL;
4425 }
4426 #endif
4427 
4428 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4429 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4430 {
4431 	struct page *page = NULL;
4432 	struct address_space *mapping;
4433 	pgoff_t pgoff;
4434 
4435 	if (!vma->vm_file) /* anonymous vma */
4436 		return NULL;
4437 	if (!(mc.flags & MOVE_FILE))
4438 		return NULL;
4439 
4440 	mapping = vma->vm_file->f_mapping;
4441 	pgoff = linear_page_index(vma, addr);
4442 
4443 	/* page is moved even if it's not RSS of this task(page-faulted). */
4444 #ifdef CONFIG_SWAP
4445 	/* shmem/tmpfs may report page out on swap: account for that too. */
4446 	if (shmem_mapping(mapping)) {
4447 		page = find_get_entry(mapping, pgoff);
4448 		if (radix_tree_exceptional_entry(page)) {
4449 			swp_entry_t swp = radix_to_swp_entry(page);
4450 			if (do_memsw_account())
4451 				*entry = swp;
4452 			page = find_get_page(swap_address_space(swp),
4453 					     swp_offset(swp));
4454 		}
4455 	} else
4456 		page = find_get_page(mapping, pgoff);
4457 #else
4458 	page = find_get_page(mapping, pgoff);
4459 #endif
4460 	return page;
4461 }
4462 
4463 /**
4464  * mem_cgroup_move_account - move account of the page
4465  * @page: the page
4466  * @compound: charge the page as compound or small page
4467  * @from: mem_cgroup which the page is moved from.
4468  * @to:	mem_cgroup which the page is moved to. @from != @to.
4469  *
4470  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4471  *
4472  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4473  * from old cgroup.
4474  */
4475 static int mem_cgroup_move_account(struct page *page,
4476 				   bool compound,
4477 				   struct mem_cgroup *from,
4478 				   struct mem_cgroup *to)
4479 {
4480 	unsigned long flags;
4481 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4482 	int ret;
4483 	bool anon;
4484 
4485 	VM_BUG_ON(from == to);
4486 	VM_BUG_ON_PAGE(PageLRU(page), page);
4487 	VM_BUG_ON(compound && !PageTransHuge(page));
4488 
4489 	/*
4490 	 * Prevent mem_cgroup_migrate() from looking at
4491 	 * page->mem_cgroup of its source page while we change it.
4492 	 */
4493 	ret = -EBUSY;
4494 	if (!trylock_page(page))
4495 		goto out;
4496 
4497 	ret = -EINVAL;
4498 	if (page->mem_cgroup != from)
4499 		goto out_unlock;
4500 
4501 	anon = PageAnon(page);
4502 
4503 	spin_lock_irqsave(&from->move_lock, flags);
4504 
4505 	if (!anon && page_mapped(page)) {
4506 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4507 			       nr_pages);
4508 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4509 			       nr_pages);
4510 	}
4511 
4512 	/*
4513 	 * move_lock grabbed above and caller set from->moving_account, so
4514 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4515 	 * So mapping should be stable for dirty pages.
4516 	 */
4517 	if (!anon && PageDirty(page)) {
4518 		struct address_space *mapping = page_mapping(page);
4519 
4520 		if (mapping_cap_account_dirty(mapping)) {
4521 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4522 				       nr_pages);
4523 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4524 				       nr_pages);
4525 		}
4526 	}
4527 
4528 	if (PageWriteback(page)) {
4529 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4530 			       nr_pages);
4531 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4532 			       nr_pages);
4533 	}
4534 
4535 	/*
4536 	 * It is safe to change page->mem_cgroup here because the page
4537 	 * is referenced, charged, and isolated - we can't race with
4538 	 * uncharging, charging, migration, or LRU putback.
4539 	 */
4540 
4541 	/* caller should have done css_get */
4542 	page->mem_cgroup = to;
4543 	spin_unlock_irqrestore(&from->move_lock, flags);
4544 
4545 	ret = 0;
4546 
4547 	local_irq_disable();
4548 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4549 	memcg_check_events(to, page);
4550 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4551 	memcg_check_events(from, page);
4552 	local_irq_enable();
4553 out_unlock:
4554 	unlock_page(page);
4555 out:
4556 	return ret;
4557 }
4558 
4559 /**
4560  * get_mctgt_type - get target type of moving charge
4561  * @vma: the vma the pte to be checked belongs
4562  * @addr: the address corresponding to the pte to be checked
4563  * @ptent: the pte to be checked
4564  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4565  *
4566  * Returns
4567  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4568  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4569  *     move charge. if @target is not NULL, the page is stored in target->page
4570  *     with extra refcnt got(Callers should handle it).
4571  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4572  *     target for charge migration. if @target is not NULL, the entry is stored
4573  *     in target->ent.
4574  *
4575  * Called with pte lock held.
4576  */
4577 
4578 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4579 		unsigned long addr, pte_t ptent, union mc_target *target)
4580 {
4581 	struct page *page = NULL;
4582 	enum mc_target_type ret = MC_TARGET_NONE;
4583 	swp_entry_t ent = { .val = 0 };
4584 
4585 	if (pte_present(ptent))
4586 		page = mc_handle_present_pte(vma, addr, ptent);
4587 	else if (is_swap_pte(ptent))
4588 		page = mc_handle_swap_pte(vma, ptent, &ent);
4589 	else if (pte_none(ptent))
4590 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4591 
4592 	if (!page && !ent.val)
4593 		return ret;
4594 	if (page) {
4595 		/*
4596 		 * Do only loose check w/o serialization.
4597 		 * mem_cgroup_move_account() checks the page is valid or
4598 		 * not under LRU exclusion.
4599 		 */
4600 		if (page->mem_cgroup == mc.from) {
4601 			ret = MC_TARGET_PAGE;
4602 			if (target)
4603 				target->page = page;
4604 		}
4605 		if (!ret || !target)
4606 			put_page(page);
4607 	}
4608 	/* There is a swap entry and a page doesn't exist or isn't charged */
4609 	if (ent.val && !ret &&
4610 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4611 		ret = MC_TARGET_SWAP;
4612 		if (target)
4613 			target->ent = ent;
4614 	}
4615 	return ret;
4616 }
4617 
4618 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4619 /*
4620  * We don't consider swapping or file mapped pages because THP does not
4621  * support them for now.
4622  * Caller should make sure that pmd_trans_huge(pmd) is true.
4623  */
4624 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4625 		unsigned long addr, pmd_t pmd, union mc_target *target)
4626 {
4627 	struct page *page = NULL;
4628 	enum mc_target_type ret = MC_TARGET_NONE;
4629 
4630 	page = pmd_page(pmd);
4631 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4632 	if (!(mc.flags & MOVE_ANON))
4633 		return ret;
4634 	if (page->mem_cgroup == mc.from) {
4635 		ret = MC_TARGET_PAGE;
4636 		if (target) {
4637 			get_page(page);
4638 			target->page = page;
4639 		}
4640 	}
4641 	return ret;
4642 }
4643 #else
4644 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4645 		unsigned long addr, pmd_t pmd, union mc_target *target)
4646 {
4647 	return MC_TARGET_NONE;
4648 }
4649 #endif
4650 
4651 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4652 					unsigned long addr, unsigned long end,
4653 					struct mm_walk *walk)
4654 {
4655 	struct vm_area_struct *vma = walk->vma;
4656 	pte_t *pte;
4657 	spinlock_t *ptl;
4658 
4659 	ptl = pmd_trans_huge_lock(pmd, vma);
4660 	if (ptl) {
4661 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4662 			mc.precharge += HPAGE_PMD_NR;
4663 		spin_unlock(ptl);
4664 		return 0;
4665 	}
4666 
4667 	if (pmd_trans_unstable(pmd))
4668 		return 0;
4669 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4670 	for (; addr != end; pte++, addr += PAGE_SIZE)
4671 		if (get_mctgt_type(vma, addr, *pte, NULL))
4672 			mc.precharge++;	/* increment precharge temporarily */
4673 	pte_unmap_unlock(pte - 1, ptl);
4674 	cond_resched();
4675 
4676 	return 0;
4677 }
4678 
4679 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4680 {
4681 	unsigned long precharge;
4682 
4683 	struct mm_walk mem_cgroup_count_precharge_walk = {
4684 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4685 		.mm = mm,
4686 	};
4687 	down_read(&mm->mmap_sem);
4688 	walk_page_range(0, mm->highest_vm_end,
4689 			&mem_cgroup_count_precharge_walk);
4690 	up_read(&mm->mmap_sem);
4691 
4692 	precharge = mc.precharge;
4693 	mc.precharge = 0;
4694 
4695 	return precharge;
4696 }
4697 
4698 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4699 {
4700 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4701 
4702 	VM_BUG_ON(mc.moving_task);
4703 	mc.moving_task = current;
4704 	return mem_cgroup_do_precharge(precharge);
4705 }
4706 
4707 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4708 static void __mem_cgroup_clear_mc(void)
4709 {
4710 	struct mem_cgroup *from = mc.from;
4711 	struct mem_cgroup *to = mc.to;
4712 
4713 	/* we must uncharge all the leftover precharges from mc.to */
4714 	if (mc.precharge) {
4715 		cancel_charge(mc.to, mc.precharge);
4716 		mc.precharge = 0;
4717 	}
4718 	/*
4719 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4720 	 * we must uncharge here.
4721 	 */
4722 	if (mc.moved_charge) {
4723 		cancel_charge(mc.from, mc.moved_charge);
4724 		mc.moved_charge = 0;
4725 	}
4726 	/* we must fixup refcnts and charges */
4727 	if (mc.moved_swap) {
4728 		/* uncharge swap account from the old cgroup */
4729 		if (!mem_cgroup_is_root(mc.from))
4730 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4731 
4732 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4733 
4734 		/*
4735 		 * we charged both to->memory and to->memsw, so we
4736 		 * should uncharge to->memory.
4737 		 */
4738 		if (!mem_cgroup_is_root(mc.to))
4739 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4740 
4741 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4742 		css_put_many(&mc.to->css, mc.moved_swap);
4743 
4744 		mc.moved_swap = 0;
4745 	}
4746 	memcg_oom_recover(from);
4747 	memcg_oom_recover(to);
4748 	wake_up_all(&mc.waitq);
4749 }
4750 
4751 static void mem_cgroup_clear_mc(void)
4752 {
4753 	struct mm_struct *mm = mc.mm;
4754 
4755 	/*
4756 	 * we must clear moving_task before waking up waiters at the end of
4757 	 * task migration.
4758 	 */
4759 	mc.moving_task = NULL;
4760 	__mem_cgroup_clear_mc();
4761 	spin_lock(&mc.lock);
4762 	mc.from = NULL;
4763 	mc.to = NULL;
4764 	mc.mm = NULL;
4765 	spin_unlock(&mc.lock);
4766 
4767 	mmput(mm);
4768 }
4769 
4770 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4771 {
4772 	struct cgroup_subsys_state *css;
4773 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4774 	struct mem_cgroup *from;
4775 	struct task_struct *leader, *p;
4776 	struct mm_struct *mm;
4777 	unsigned long move_flags;
4778 	int ret = 0;
4779 
4780 	/* charge immigration isn't supported on the default hierarchy */
4781 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4782 		return 0;
4783 
4784 	/*
4785 	 * Multi-process migrations only happen on the default hierarchy
4786 	 * where charge immigration is not used.  Perform charge
4787 	 * immigration if @tset contains a leader and whine if there are
4788 	 * multiple.
4789 	 */
4790 	p = NULL;
4791 	cgroup_taskset_for_each_leader(leader, css, tset) {
4792 		WARN_ON_ONCE(p);
4793 		p = leader;
4794 		memcg = mem_cgroup_from_css(css);
4795 	}
4796 	if (!p)
4797 		return 0;
4798 
4799 	/*
4800 	 * We are now commited to this value whatever it is. Changes in this
4801 	 * tunable will only affect upcoming migrations, not the current one.
4802 	 * So we need to save it, and keep it going.
4803 	 */
4804 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4805 	if (!move_flags)
4806 		return 0;
4807 
4808 	from = mem_cgroup_from_task(p);
4809 
4810 	VM_BUG_ON(from == memcg);
4811 
4812 	mm = get_task_mm(p);
4813 	if (!mm)
4814 		return 0;
4815 	/* We move charges only when we move a owner of the mm */
4816 	if (mm->owner == p) {
4817 		VM_BUG_ON(mc.from);
4818 		VM_BUG_ON(mc.to);
4819 		VM_BUG_ON(mc.precharge);
4820 		VM_BUG_ON(mc.moved_charge);
4821 		VM_BUG_ON(mc.moved_swap);
4822 
4823 		spin_lock(&mc.lock);
4824 		mc.mm = mm;
4825 		mc.from = from;
4826 		mc.to = memcg;
4827 		mc.flags = move_flags;
4828 		spin_unlock(&mc.lock);
4829 		/* We set mc.moving_task later */
4830 
4831 		ret = mem_cgroup_precharge_mc(mm);
4832 		if (ret)
4833 			mem_cgroup_clear_mc();
4834 	} else {
4835 		mmput(mm);
4836 	}
4837 	return ret;
4838 }
4839 
4840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4841 {
4842 	if (mc.to)
4843 		mem_cgroup_clear_mc();
4844 }
4845 
4846 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4847 				unsigned long addr, unsigned long end,
4848 				struct mm_walk *walk)
4849 {
4850 	int ret = 0;
4851 	struct vm_area_struct *vma = walk->vma;
4852 	pte_t *pte;
4853 	spinlock_t *ptl;
4854 	enum mc_target_type target_type;
4855 	union mc_target target;
4856 	struct page *page;
4857 
4858 	ptl = pmd_trans_huge_lock(pmd, vma);
4859 	if (ptl) {
4860 		if (mc.precharge < HPAGE_PMD_NR) {
4861 			spin_unlock(ptl);
4862 			return 0;
4863 		}
4864 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4865 		if (target_type == MC_TARGET_PAGE) {
4866 			page = target.page;
4867 			if (!isolate_lru_page(page)) {
4868 				if (!mem_cgroup_move_account(page, true,
4869 							     mc.from, mc.to)) {
4870 					mc.precharge -= HPAGE_PMD_NR;
4871 					mc.moved_charge += HPAGE_PMD_NR;
4872 				}
4873 				putback_lru_page(page);
4874 			}
4875 			put_page(page);
4876 		}
4877 		spin_unlock(ptl);
4878 		return 0;
4879 	}
4880 
4881 	if (pmd_trans_unstable(pmd))
4882 		return 0;
4883 retry:
4884 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4885 	for (; addr != end; addr += PAGE_SIZE) {
4886 		pte_t ptent = *(pte++);
4887 		swp_entry_t ent;
4888 
4889 		if (!mc.precharge)
4890 			break;
4891 
4892 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4893 		case MC_TARGET_PAGE:
4894 			page = target.page;
4895 			/*
4896 			 * We can have a part of the split pmd here. Moving it
4897 			 * can be done but it would be too convoluted so simply
4898 			 * ignore such a partial THP and keep it in original
4899 			 * memcg. There should be somebody mapping the head.
4900 			 */
4901 			if (PageTransCompound(page))
4902 				goto put;
4903 			if (isolate_lru_page(page))
4904 				goto put;
4905 			if (!mem_cgroup_move_account(page, false,
4906 						mc.from, mc.to)) {
4907 				mc.precharge--;
4908 				/* we uncharge from mc.from later. */
4909 				mc.moved_charge++;
4910 			}
4911 			putback_lru_page(page);
4912 put:			/* get_mctgt_type() gets the page */
4913 			put_page(page);
4914 			break;
4915 		case MC_TARGET_SWAP:
4916 			ent = target.ent;
4917 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4918 				mc.precharge--;
4919 				/* we fixup refcnts and charges later. */
4920 				mc.moved_swap++;
4921 			}
4922 			break;
4923 		default:
4924 			break;
4925 		}
4926 	}
4927 	pte_unmap_unlock(pte - 1, ptl);
4928 	cond_resched();
4929 
4930 	if (addr != end) {
4931 		/*
4932 		 * We have consumed all precharges we got in can_attach().
4933 		 * We try charge one by one, but don't do any additional
4934 		 * charges to mc.to if we have failed in charge once in attach()
4935 		 * phase.
4936 		 */
4937 		ret = mem_cgroup_do_precharge(1);
4938 		if (!ret)
4939 			goto retry;
4940 	}
4941 
4942 	return ret;
4943 }
4944 
4945 static void mem_cgroup_move_charge(void)
4946 {
4947 	struct mm_walk mem_cgroup_move_charge_walk = {
4948 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4949 		.mm = mc.mm,
4950 	};
4951 
4952 	lru_add_drain_all();
4953 	/*
4954 	 * Signal lock_page_memcg() to take the memcg's move_lock
4955 	 * while we're moving its pages to another memcg. Then wait
4956 	 * for already started RCU-only updates to finish.
4957 	 */
4958 	atomic_inc(&mc.from->moving_account);
4959 	synchronize_rcu();
4960 retry:
4961 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4962 		/*
4963 		 * Someone who are holding the mmap_sem might be waiting in
4964 		 * waitq. So we cancel all extra charges, wake up all waiters,
4965 		 * and retry. Because we cancel precharges, we might not be able
4966 		 * to move enough charges, but moving charge is a best-effort
4967 		 * feature anyway, so it wouldn't be a big problem.
4968 		 */
4969 		__mem_cgroup_clear_mc();
4970 		cond_resched();
4971 		goto retry;
4972 	}
4973 	/*
4974 	 * When we have consumed all precharges and failed in doing
4975 	 * additional charge, the page walk just aborts.
4976 	 */
4977 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4978 
4979 	up_read(&mc.mm->mmap_sem);
4980 	atomic_dec(&mc.from->moving_account);
4981 }
4982 
4983 static void mem_cgroup_move_task(void)
4984 {
4985 	if (mc.to) {
4986 		mem_cgroup_move_charge();
4987 		mem_cgroup_clear_mc();
4988 	}
4989 }
4990 #else	/* !CONFIG_MMU */
4991 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4992 {
4993 	return 0;
4994 }
4995 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4996 {
4997 }
4998 static void mem_cgroup_move_task(void)
4999 {
5000 }
5001 #endif
5002 
5003 /*
5004  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5005  * to verify whether we're attached to the default hierarchy on each mount
5006  * attempt.
5007  */
5008 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5009 {
5010 	/*
5011 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5012 	 * guarantees that @root doesn't have any children, so turning it
5013 	 * on for the root memcg is enough.
5014 	 */
5015 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5016 		root_mem_cgroup->use_hierarchy = true;
5017 	else
5018 		root_mem_cgroup->use_hierarchy = false;
5019 }
5020 
5021 static u64 memory_current_read(struct cgroup_subsys_state *css,
5022 			       struct cftype *cft)
5023 {
5024 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5025 
5026 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5027 }
5028 
5029 static int memory_low_show(struct seq_file *m, void *v)
5030 {
5031 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5032 	unsigned long low = READ_ONCE(memcg->low);
5033 
5034 	if (low == PAGE_COUNTER_MAX)
5035 		seq_puts(m, "max\n");
5036 	else
5037 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5038 
5039 	return 0;
5040 }
5041 
5042 static ssize_t memory_low_write(struct kernfs_open_file *of,
5043 				char *buf, size_t nbytes, loff_t off)
5044 {
5045 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5046 	unsigned long low;
5047 	int err;
5048 
5049 	buf = strstrip(buf);
5050 	err = page_counter_memparse(buf, "max", &low);
5051 	if (err)
5052 		return err;
5053 
5054 	memcg->low = low;
5055 
5056 	return nbytes;
5057 }
5058 
5059 static int memory_high_show(struct seq_file *m, void *v)
5060 {
5061 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5062 	unsigned long high = READ_ONCE(memcg->high);
5063 
5064 	if (high == PAGE_COUNTER_MAX)
5065 		seq_puts(m, "max\n");
5066 	else
5067 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5068 
5069 	return 0;
5070 }
5071 
5072 static ssize_t memory_high_write(struct kernfs_open_file *of,
5073 				 char *buf, size_t nbytes, loff_t off)
5074 {
5075 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5076 	unsigned long nr_pages;
5077 	unsigned long high;
5078 	int err;
5079 
5080 	buf = strstrip(buf);
5081 	err = page_counter_memparse(buf, "max", &high);
5082 	if (err)
5083 		return err;
5084 
5085 	memcg->high = high;
5086 
5087 	nr_pages = page_counter_read(&memcg->memory);
5088 	if (nr_pages > high)
5089 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5090 					     GFP_KERNEL, true);
5091 
5092 	memcg_wb_domain_size_changed(memcg);
5093 	return nbytes;
5094 }
5095 
5096 static int memory_max_show(struct seq_file *m, void *v)
5097 {
5098 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5099 	unsigned long max = READ_ONCE(memcg->memory.limit);
5100 
5101 	if (max == PAGE_COUNTER_MAX)
5102 		seq_puts(m, "max\n");
5103 	else
5104 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5105 
5106 	return 0;
5107 }
5108 
5109 static ssize_t memory_max_write(struct kernfs_open_file *of,
5110 				char *buf, size_t nbytes, loff_t off)
5111 {
5112 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5113 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5114 	bool drained = false;
5115 	unsigned long max;
5116 	int err;
5117 
5118 	buf = strstrip(buf);
5119 	err = page_counter_memparse(buf, "max", &max);
5120 	if (err)
5121 		return err;
5122 
5123 	xchg(&memcg->memory.limit, max);
5124 
5125 	for (;;) {
5126 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5127 
5128 		if (nr_pages <= max)
5129 			break;
5130 
5131 		if (signal_pending(current)) {
5132 			err = -EINTR;
5133 			break;
5134 		}
5135 
5136 		if (!drained) {
5137 			drain_all_stock(memcg);
5138 			drained = true;
5139 			continue;
5140 		}
5141 
5142 		if (nr_reclaims) {
5143 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5144 							  GFP_KERNEL, true))
5145 				nr_reclaims--;
5146 			continue;
5147 		}
5148 
5149 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5150 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5151 			break;
5152 	}
5153 
5154 	memcg_wb_domain_size_changed(memcg);
5155 	return nbytes;
5156 }
5157 
5158 static int memory_events_show(struct seq_file *m, void *v)
5159 {
5160 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5161 
5162 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5163 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5164 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5165 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5166 
5167 	return 0;
5168 }
5169 
5170 static int memory_stat_show(struct seq_file *m, void *v)
5171 {
5172 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5173 	unsigned long stat[MEMCG_NR_STAT];
5174 	unsigned long events[MEMCG_NR_EVENTS];
5175 	int i;
5176 
5177 	/*
5178 	 * Provide statistics on the state of the memory subsystem as
5179 	 * well as cumulative event counters that show past behavior.
5180 	 *
5181 	 * This list is ordered following a combination of these gradients:
5182 	 * 1) generic big picture -> specifics and details
5183 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5184 	 *
5185 	 * Current memory state:
5186 	 */
5187 
5188 	tree_stat(memcg, stat);
5189 	tree_events(memcg, events);
5190 
5191 	seq_printf(m, "anon %llu\n",
5192 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5193 	seq_printf(m, "file %llu\n",
5194 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5195 	seq_printf(m, "kernel_stack %llu\n",
5196 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5197 	seq_printf(m, "slab %llu\n",
5198 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5199 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5200 	seq_printf(m, "sock %llu\n",
5201 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5202 
5203 	seq_printf(m, "file_mapped %llu\n",
5204 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5205 	seq_printf(m, "file_dirty %llu\n",
5206 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5207 	seq_printf(m, "file_writeback %llu\n",
5208 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5209 
5210 	for (i = 0; i < NR_LRU_LISTS; i++) {
5211 		struct mem_cgroup *mi;
5212 		unsigned long val = 0;
5213 
5214 		for_each_mem_cgroup_tree(mi, memcg)
5215 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5216 		seq_printf(m, "%s %llu\n",
5217 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5218 	}
5219 
5220 	seq_printf(m, "slab_reclaimable %llu\n",
5221 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5222 	seq_printf(m, "slab_unreclaimable %llu\n",
5223 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5224 
5225 	/* Accumulated memory events */
5226 
5227 	seq_printf(m, "pgfault %lu\n",
5228 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5229 	seq_printf(m, "pgmajfault %lu\n",
5230 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5231 
5232 	return 0;
5233 }
5234 
5235 static struct cftype memory_files[] = {
5236 	{
5237 		.name = "current",
5238 		.flags = CFTYPE_NOT_ON_ROOT,
5239 		.read_u64 = memory_current_read,
5240 	},
5241 	{
5242 		.name = "low",
5243 		.flags = CFTYPE_NOT_ON_ROOT,
5244 		.seq_show = memory_low_show,
5245 		.write = memory_low_write,
5246 	},
5247 	{
5248 		.name = "high",
5249 		.flags = CFTYPE_NOT_ON_ROOT,
5250 		.seq_show = memory_high_show,
5251 		.write = memory_high_write,
5252 	},
5253 	{
5254 		.name = "max",
5255 		.flags = CFTYPE_NOT_ON_ROOT,
5256 		.seq_show = memory_max_show,
5257 		.write = memory_max_write,
5258 	},
5259 	{
5260 		.name = "events",
5261 		.flags = CFTYPE_NOT_ON_ROOT,
5262 		.file_offset = offsetof(struct mem_cgroup, events_file),
5263 		.seq_show = memory_events_show,
5264 	},
5265 	{
5266 		.name = "stat",
5267 		.flags = CFTYPE_NOT_ON_ROOT,
5268 		.seq_show = memory_stat_show,
5269 	},
5270 	{ }	/* terminate */
5271 };
5272 
5273 struct cgroup_subsys memory_cgrp_subsys = {
5274 	.css_alloc = mem_cgroup_css_alloc,
5275 	.css_online = mem_cgroup_css_online,
5276 	.css_offline = mem_cgroup_css_offline,
5277 	.css_released = mem_cgroup_css_released,
5278 	.css_free = mem_cgroup_css_free,
5279 	.css_reset = mem_cgroup_css_reset,
5280 	.can_attach = mem_cgroup_can_attach,
5281 	.cancel_attach = mem_cgroup_cancel_attach,
5282 	.post_attach = mem_cgroup_move_task,
5283 	.bind = mem_cgroup_bind,
5284 	.dfl_cftypes = memory_files,
5285 	.legacy_cftypes = mem_cgroup_legacy_files,
5286 	.early_init = 0,
5287 };
5288 
5289 /**
5290  * mem_cgroup_low - check if memory consumption is below the normal range
5291  * @root: the highest ancestor to consider
5292  * @memcg: the memory cgroup to check
5293  *
5294  * Returns %true if memory consumption of @memcg, and that of all
5295  * configurable ancestors up to @root, is below the normal range.
5296  */
5297 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5298 {
5299 	if (mem_cgroup_disabled())
5300 		return false;
5301 
5302 	/*
5303 	 * The toplevel group doesn't have a configurable range, so
5304 	 * it's never low when looked at directly, and it is not
5305 	 * considered an ancestor when assessing the hierarchy.
5306 	 */
5307 
5308 	if (memcg == root_mem_cgroup)
5309 		return false;
5310 
5311 	if (page_counter_read(&memcg->memory) >= memcg->low)
5312 		return false;
5313 
5314 	while (memcg != root) {
5315 		memcg = parent_mem_cgroup(memcg);
5316 
5317 		if (memcg == root_mem_cgroup)
5318 			break;
5319 
5320 		if (page_counter_read(&memcg->memory) >= memcg->low)
5321 			return false;
5322 	}
5323 	return true;
5324 }
5325 
5326 /**
5327  * mem_cgroup_try_charge - try charging a page
5328  * @page: page to charge
5329  * @mm: mm context of the victim
5330  * @gfp_mask: reclaim mode
5331  * @memcgp: charged memcg return
5332  * @compound: charge the page as compound or small page
5333  *
5334  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5335  * pages according to @gfp_mask if necessary.
5336  *
5337  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5338  * Otherwise, an error code is returned.
5339  *
5340  * After page->mapping has been set up, the caller must finalize the
5341  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5342  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5343  */
5344 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5345 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5346 			  bool compound)
5347 {
5348 	struct mem_cgroup *memcg = NULL;
5349 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5350 	int ret = 0;
5351 
5352 	if (mem_cgroup_disabled())
5353 		goto out;
5354 
5355 	if (PageSwapCache(page)) {
5356 		/*
5357 		 * Every swap fault against a single page tries to charge the
5358 		 * page, bail as early as possible.  shmem_unuse() encounters
5359 		 * already charged pages, too.  The USED bit is protected by
5360 		 * the page lock, which serializes swap cache removal, which
5361 		 * in turn serializes uncharging.
5362 		 */
5363 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5364 		if (page->mem_cgroup)
5365 			goto out;
5366 
5367 		if (do_swap_account) {
5368 			swp_entry_t ent = { .val = page_private(page), };
5369 			unsigned short id = lookup_swap_cgroup_id(ent);
5370 
5371 			rcu_read_lock();
5372 			memcg = mem_cgroup_from_id(id);
5373 			if (memcg && !css_tryget_online(&memcg->css))
5374 				memcg = NULL;
5375 			rcu_read_unlock();
5376 		}
5377 	}
5378 
5379 	if (!memcg)
5380 		memcg = get_mem_cgroup_from_mm(mm);
5381 
5382 	ret = try_charge(memcg, gfp_mask, nr_pages);
5383 
5384 	css_put(&memcg->css);
5385 out:
5386 	*memcgp = memcg;
5387 	return ret;
5388 }
5389 
5390 /**
5391  * mem_cgroup_commit_charge - commit a page charge
5392  * @page: page to charge
5393  * @memcg: memcg to charge the page to
5394  * @lrucare: page might be on LRU already
5395  * @compound: charge the page as compound or small page
5396  *
5397  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5398  * after page->mapping has been set up.  This must happen atomically
5399  * as part of the page instantiation, i.e. under the page table lock
5400  * for anonymous pages, under the page lock for page and swap cache.
5401  *
5402  * In addition, the page must not be on the LRU during the commit, to
5403  * prevent racing with task migration.  If it might be, use @lrucare.
5404  *
5405  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5406  */
5407 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5408 			      bool lrucare, bool compound)
5409 {
5410 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5411 
5412 	VM_BUG_ON_PAGE(!page->mapping, page);
5413 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5414 
5415 	if (mem_cgroup_disabled())
5416 		return;
5417 	/*
5418 	 * Swap faults will attempt to charge the same page multiple
5419 	 * times.  But reuse_swap_page() might have removed the page
5420 	 * from swapcache already, so we can't check PageSwapCache().
5421 	 */
5422 	if (!memcg)
5423 		return;
5424 
5425 	commit_charge(page, memcg, lrucare);
5426 
5427 	local_irq_disable();
5428 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5429 	memcg_check_events(memcg, page);
5430 	local_irq_enable();
5431 
5432 	if (do_memsw_account() && PageSwapCache(page)) {
5433 		swp_entry_t entry = { .val = page_private(page) };
5434 		/*
5435 		 * The swap entry might not get freed for a long time,
5436 		 * let's not wait for it.  The page already received a
5437 		 * memory+swap charge, drop the swap entry duplicate.
5438 		 */
5439 		mem_cgroup_uncharge_swap(entry);
5440 	}
5441 }
5442 
5443 /**
5444  * mem_cgroup_cancel_charge - cancel a page charge
5445  * @page: page to charge
5446  * @memcg: memcg to charge the page to
5447  * @compound: charge the page as compound or small page
5448  *
5449  * Cancel a charge transaction started by mem_cgroup_try_charge().
5450  */
5451 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5452 		bool compound)
5453 {
5454 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5455 
5456 	if (mem_cgroup_disabled())
5457 		return;
5458 	/*
5459 	 * Swap faults will attempt to charge the same page multiple
5460 	 * times.  But reuse_swap_page() might have removed the page
5461 	 * from swapcache already, so we can't check PageSwapCache().
5462 	 */
5463 	if (!memcg)
5464 		return;
5465 
5466 	cancel_charge(memcg, nr_pages);
5467 }
5468 
5469 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5470 			   unsigned long nr_anon, unsigned long nr_file,
5471 			   unsigned long nr_huge, unsigned long nr_kmem,
5472 			   struct page *dummy_page)
5473 {
5474 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5475 	unsigned long flags;
5476 
5477 	if (!mem_cgroup_is_root(memcg)) {
5478 		page_counter_uncharge(&memcg->memory, nr_pages);
5479 		if (do_memsw_account())
5480 			page_counter_uncharge(&memcg->memsw, nr_pages);
5481 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5482 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5483 		memcg_oom_recover(memcg);
5484 	}
5485 
5486 	local_irq_save(flags);
5487 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5488 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5489 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5490 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5491 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5492 	memcg_check_events(memcg, dummy_page);
5493 	local_irq_restore(flags);
5494 
5495 	if (!mem_cgroup_is_root(memcg))
5496 		css_put_many(&memcg->css, nr_pages);
5497 }
5498 
5499 static void uncharge_list(struct list_head *page_list)
5500 {
5501 	struct mem_cgroup *memcg = NULL;
5502 	unsigned long nr_anon = 0;
5503 	unsigned long nr_file = 0;
5504 	unsigned long nr_huge = 0;
5505 	unsigned long nr_kmem = 0;
5506 	unsigned long pgpgout = 0;
5507 	struct list_head *next;
5508 	struct page *page;
5509 
5510 	/*
5511 	 * Note that the list can be a single page->lru; hence the
5512 	 * do-while loop instead of a simple list_for_each_entry().
5513 	 */
5514 	next = page_list->next;
5515 	do {
5516 		page = list_entry(next, struct page, lru);
5517 		next = page->lru.next;
5518 
5519 		VM_BUG_ON_PAGE(PageLRU(page), page);
5520 		VM_BUG_ON_PAGE(page_count(page), page);
5521 
5522 		if (!page->mem_cgroup)
5523 			continue;
5524 
5525 		/*
5526 		 * Nobody should be changing or seriously looking at
5527 		 * page->mem_cgroup at this point, we have fully
5528 		 * exclusive access to the page.
5529 		 */
5530 
5531 		if (memcg != page->mem_cgroup) {
5532 			if (memcg) {
5533 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5534 					       nr_huge, nr_kmem, page);
5535 				pgpgout = nr_anon = nr_file =
5536 					nr_huge = nr_kmem = 0;
5537 			}
5538 			memcg = page->mem_cgroup;
5539 		}
5540 
5541 		if (!PageKmemcg(page)) {
5542 			unsigned int nr_pages = 1;
5543 
5544 			if (PageTransHuge(page)) {
5545 				nr_pages <<= compound_order(page);
5546 				nr_huge += nr_pages;
5547 			}
5548 			if (PageAnon(page))
5549 				nr_anon += nr_pages;
5550 			else
5551 				nr_file += nr_pages;
5552 			pgpgout++;
5553 		} else {
5554 			nr_kmem += 1 << compound_order(page);
5555 			__ClearPageKmemcg(page);
5556 		}
5557 
5558 		page->mem_cgroup = NULL;
5559 	} while (next != page_list);
5560 
5561 	if (memcg)
5562 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5563 			       nr_huge, nr_kmem, page);
5564 }
5565 
5566 /**
5567  * mem_cgroup_uncharge - uncharge a page
5568  * @page: page to uncharge
5569  *
5570  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5571  * mem_cgroup_commit_charge().
5572  */
5573 void mem_cgroup_uncharge(struct page *page)
5574 {
5575 	if (mem_cgroup_disabled())
5576 		return;
5577 
5578 	/* Don't touch page->lru of any random page, pre-check: */
5579 	if (!page->mem_cgroup)
5580 		return;
5581 
5582 	INIT_LIST_HEAD(&page->lru);
5583 	uncharge_list(&page->lru);
5584 }
5585 
5586 /**
5587  * mem_cgroup_uncharge_list - uncharge a list of page
5588  * @page_list: list of pages to uncharge
5589  *
5590  * Uncharge a list of pages previously charged with
5591  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5592  */
5593 void mem_cgroup_uncharge_list(struct list_head *page_list)
5594 {
5595 	if (mem_cgroup_disabled())
5596 		return;
5597 
5598 	if (!list_empty(page_list))
5599 		uncharge_list(page_list);
5600 }
5601 
5602 /**
5603  * mem_cgroup_migrate - charge a page's replacement
5604  * @oldpage: currently circulating page
5605  * @newpage: replacement page
5606  *
5607  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5608  * be uncharged upon free.
5609  *
5610  * Both pages must be locked, @newpage->mapping must be set up.
5611  */
5612 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5613 {
5614 	struct mem_cgroup *memcg;
5615 	unsigned int nr_pages;
5616 	bool compound;
5617 	unsigned long flags;
5618 
5619 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5620 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5621 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5622 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5623 		       newpage);
5624 
5625 	if (mem_cgroup_disabled())
5626 		return;
5627 
5628 	/* Page cache replacement: new page already charged? */
5629 	if (newpage->mem_cgroup)
5630 		return;
5631 
5632 	/* Swapcache readahead pages can get replaced before being charged */
5633 	memcg = oldpage->mem_cgroup;
5634 	if (!memcg)
5635 		return;
5636 
5637 	/* Force-charge the new page. The old one will be freed soon */
5638 	compound = PageTransHuge(newpage);
5639 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5640 
5641 	page_counter_charge(&memcg->memory, nr_pages);
5642 	if (do_memsw_account())
5643 		page_counter_charge(&memcg->memsw, nr_pages);
5644 	css_get_many(&memcg->css, nr_pages);
5645 
5646 	commit_charge(newpage, memcg, false);
5647 
5648 	local_irq_save(flags);
5649 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5650 	memcg_check_events(memcg, newpage);
5651 	local_irq_restore(flags);
5652 }
5653 
5654 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5655 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5656 
5657 void mem_cgroup_sk_alloc(struct sock *sk)
5658 {
5659 	struct mem_cgroup *memcg;
5660 
5661 	if (!mem_cgroup_sockets_enabled)
5662 		return;
5663 
5664 	/*
5665 	 * Socket cloning can throw us here with sk_memcg already
5666 	 * filled. It won't however, necessarily happen from
5667 	 * process context. So the test for root memcg given
5668 	 * the current task's memcg won't help us in this case.
5669 	 *
5670 	 * Respecting the original socket's memcg is a better
5671 	 * decision in this case.
5672 	 */
5673 	if (sk->sk_memcg) {
5674 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5675 		css_get(&sk->sk_memcg->css);
5676 		return;
5677 	}
5678 
5679 	rcu_read_lock();
5680 	memcg = mem_cgroup_from_task(current);
5681 	if (memcg == root_mem_cgroup)
5682 		goto out;
5683 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5684 		goto out;
5685 	if (css_tryget_online(&memcg->css))
5686 		sk->sk_memcg = memcg;
5687 out:
5688 	rcu_read_unlock();
5689 }
5690 
5691 void mem_cgroup_sk_free(struct sock *sk)
5692 {
5693 	if (sk->sk_memcg)
5694 		css_put(&sk->sk_memcg->css);
5695 }
5696 
5697 /**
5698  * mem_cgroup_charge_skmem - charge socket memory
5699  * @memcg: memcg to charge
5700  * @nr_pages: number of pages to charge
5701  *
5702  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5703  * @memcg's configured limit, %false if the charge had to be forced.
5704  */
5705 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5706 {
5707 	gfp_t gfp_mask = GFP_KERNEL;
5708 
5709 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5710 		struct page_counter *fail;
5711 
5712 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5713 			memcg->tcpmem_pressure = 0;
5714 			return true;
5715 		}
5716 		page_counter_charge(&memcg->tcpmem, nr_pages);
5717 		memcg->tcpmem_pressure = 1;
5718 		return false;
5719 	}
5720 
5721 	/* Don't block in the packet receive path */
5722 	if (in_softirq())
5723 		gfp_mask = GFP_NOWAIT;
5724 
5725 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5726 
5727 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5728 		return true;
5729 
5730 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5731 	return false;
5732 }
5733 
5734 /**
5735  * mem_cgroup_uncharge_skmem - uncharge socket memory
5736  * @memcg - memcg to uncharge
5737  * @nr_pages - number of pages to uncharge
5738  */
5739 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5740 {
5741 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5742 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5743 		return;
5744 	}
5745 
5746 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5747 
5748 	page_counter_uncharge(&memcg->memory, nr_pages);
5749 	css_put_many(&memcg->css, nr_pages);
5750 }
5751 
5752 static int __init cgroup_memory(char *s)
5753 {
5754 	char *token;
5755 
5756 	while ((token = strsep(&s, ",")) != NULL) {
5757 		if (!*token)
5758 			continue;
5759 		if (!strcmp(token, "nosocket"))
5760 			cgroup_memory_nosocket = true;
5761 		if (!strcmp(token, "nokmem"))
5762 			cgroup_memory_nokmem = true;
5763 	}
5764 	return 0;
5765 }
5766 __setup("cgroup.memory=", cgroup_memory);
5767 
5768 /*
5769  * subsys_initcall() for memory controller.
5770  *
5771  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5772  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5773  * basically everything that doesn't depend on a specific mem_cgroup structure
5774  * should be initialized from here.
5775  */
5776 static int __init mem_cgroup_init(void)
5777 {
5778 	int cpu, node;
5779 
5780 #ifndef CONFIG_SLOB
5781 	/*
5782 	 * Kmem cache creation is mostly done with the slab_mutex held,
5783 	 * so use a workqueue with limited concurrency to avoid stalling
5784 	 * all worker threads in case lots of cgroups are created and
5785 	 * destroyed simultaneously.
5786 	 */
5787 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5788 	BUG_ON(!memcg_kmem_cache_wq);
5789 #endif
5790 
5791 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5792 				  memcg_hotplug_cpu_dead);
5793 
5794 	for_each_possible_cpu(cpu)
5795 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5796 			  drain_local_stock);
5797 
5798 	for_each_node(node) {
5799 		struct mem_cgroup_tree_per_node *rtpn;
5800 
5801 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5802 				    node_online(node) ? node : NUMA_NO_NODE);
5803 
5804 		rtpn->rb_root = RB_ROOT;
5805 		spin_lock_init(&rtpn->lock);
5806 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5807 	}
5808 
5809 	return 0;
5810 }
5811 subsys_initcall(mem_cgroup_init);
5812 
5813 #ifdef CONFIG_MEMCG_SWAP
5814 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5815 {
5816 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5817 		/*
5818 		 * The root cgroup cannot be destroyed, so it's refcount must
5819 		 * always be >= 1.
5820 		 */
5821 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5822 			VM_BUG_ON(1);
5823 			break;
5824 		}
5825 		memcg = parent_mem_cgroup(memcg);
5826 		if (!memcg)
5827 			memcg = root_mem_cgroup;
5828 	}
5829 	return memcg;
5830 }
5831 
5832 /**
5833  * mem_cgroup_swapout - transfer a memsw charge to swap
5834  * @page: page whose memsw charge to transfer
5835  * @entry: swap entry to move the charge to
5836  *
5837  * Transfer the memsw charge of @page to @entry.
5838  */
5839 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5840 {
5841 	struct mem_cgroup *memcg, *swap_memcg;
5842 	unsigned short oldid;
5843 
5844 	VM_BUG_ON_PAGE(PageLRU(page), page);
5845 	VM_BUG_ON_PAGE(page_count(page), page);
5846 
5847 	if (!do_memsw_account())
5848 		return;
5849 
5850 	memcg = page->mem_cgroup;
5851 
5852 	/* Readahead page, never charged */
5853 	if (!memcg)
5854 		return;
5855 
5856 	/*
5857 	 * In case the memcg owning these pages has been offlined and doesn't
5858 	 * have an ID allocated to it anymore, charge the closest online
5859 	 * ancestor for the swap instead and transfer the memory+swap charge.
5860 	 */
5861 	swap_memcg = mem_cgroup_id_get_online(memcg);
5862 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5863 	VM_BUG_ON_PAGE(oldid, page);
5864 	mem_cgroup_swap_statistics(swap_memcg, true);
5865 
5866 	page->mem_cgroup = NULL;
5867 
5868 	if (!mem_cgroup_is_root(memcg))
5869 		page_counter_uncharge(&memcg->memory, 1);
5870 
5871 	if (memcg != swap_memcg) {
5872 		if (!mem_cgroup_is_root(swap_memcg))
5873 			page_counter_charge(&swap_memcg->memsw, 1);
5874 		page_counter_uncharge(&memcg->memsw, 1);
5875 	}
5876 
5877 	/*
5878 	 * Interrupts should be disabled here because the caller holds the
5879 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5880 	 * important here to have the interrupts disabled because it is the
5881 	 * only synchronisation we have for udpating the per-CPU variables.
5882 	 */
5883 	VM_BUG_ON(!irqs_disabled());
5884 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5885 	memcg_check_events(memcg, page);
5886 
5887 	if (!mem_cgroup_is_root(memcg))
5888 		css_put(&memcg->css);
5889 }
5890 
5891 /*
5892  * mem_cgroup_try_charge_swap - try charging a swap entry
5893  * @page: page being added to swap
5894  * @entry: swap entry to charge
5895  *
5896  * Try to charge @entry to the memcg that @page belongs to.
5897  *
5898  * Returns 0 on success, -ENOMEM on failure.
5899  */
5900 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5901 {
5902 	struct mem_cgroup *memcg;
5903 	struct page_counter *counter;
5904 	unsigned short oldid;
5905 
5906 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5907 		return 0;
5908 
5909 	memcg = page->mem_cgroup;
5910 
5911 	/* Readahead page, never charged */
5912 	if (!memcg)
5913 		return 0;
5914 
5915 	memcg = mem_cgroup_id_get_online(memcg);
5916 
5917 	if (!mem_cgroup_is_root(memcg) &&
5918 	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5919 		mem_cgroup_id_put(memcg);
5920 		return -ENOMEM;
5921 	}
5922 
5923 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5924 	VM_BUG_ON_PAGE(oldid, page);
5925 	mem_cgroup_swap_statistics(memcg, true);
5926 
5927 	return 0;
5928 }
5929 
5930 /**
5931  * mem_cgroup_uncharge_swap - uncharge a swap entry
5932  * @entry: swap entry to uncharge
5933  *
5934  * Drop the swap charge associated with @entry.
5935  */
5936 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5937 {
5938 	struct mem_cgroup *memcg;
5939 	unsigned short id;
5940 
5941 	if (!do_swap_account)
5942 		return;
5943 
5944 	id = swap_cgroup_record(entry, 0);
5945 	rcu_read_lock();
5946 	memcg = mem_cgroup_from_id(id);
5947 	if (memcg) {
5948 		if (!mem_cgroup_is_root(memcg)) {
5949 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950 				page_counter_uncharge(&memcg->swap, 1);
5951 			else
5952 				page_counter_uncharge(&memcg->memsw, 1);
5953 		}
5954 		mem_cgroup_swap_statistics(memcg, false);
5955 		mem_cgroup_id_put(memcg);
5956 	}
5957 	rcu_read_unlock();
5958 }
5959 
5960 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5961 {
5962 	long nr_swap_pages = get_nr_swap_pages();
5963 
5964 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5965 		return nr_swap_pages;
5966 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5967 		nr_swap_pages = min_t(long, nr_swap_pages,
5968 				      READ_ONCE(memcg->swap.limit) -
5969 				      page_counter_read(&memcg->swap));
5970 	return nr_swap_pages;
5971 }
5972 
5973 bool mem_cgroup_swap_full(struct page *page)
5974 {
5975 	struct mem_cgroup *memcg;
5976 
5977 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5978 
5979 	if (vm_swap_full())
5980 		return true;
5981 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5982 		return false;
5983 
5984 	memcg = page->mem_cgroup;
5985 	if (!memcg)
5986 		return false;
5987 
5988 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5989 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5990 			return true;
5991 
5992 	return false;
5993 }
5994 
5995 /* for remember boot option*/
5996 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5997 static int really_do_swap_account __initdata = 1;
5998 #else
5999 static int really_do_swap_account __initdata;
6000 #endif
6001 
6002 static int __init enable_swap_account(char *s)
6003 {
6004 	if (!strcmp(s, "1"))
6005 		really_do_swap_account = 1;
6006 	else if (!strcmp(s, "0"))
6007 		really_do_swap_account = 0;
6008 	return 1;
6009 }
6010 __setup("swapaccount=", enable_swap_account);
6011 
6012 static u64 swap_current_read(struct cgroup_subsys_state *css,
6013 			     struct cftype *cft)
6014 {
6015 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6016 
6017 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6018 }
6019 
6020 static int swap_max_show(struct seq_file *m, void *v)
6021 {
6022 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6023 	unsigned long max = READ_ONCE(memcg->swap.limit);
6024 
6025 	if (max == PAGE_COUNTER_MAX)
6026 		seq_puts(m, "max\n");
6027 	else
6028 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6029 
6030 	return 0;
6031 }
6032 
6033 static ssize_t swap_max_write(struct kernfs_open_file *of,
6034 			      char *buf, size_t nbytes, loff_t off)
6035 {
6036 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6037 	unsigned long max;
6038 	int err;
6039 
6040 	buf = strstrip(buf);
6041 	err = page_counter_memparse(buf, "max", &max);
6042 	if (err)
6043 		return err;
6044 
6045 	mutex_lock(&memcg_limit_mutex);
6046 	err = page_counter_limit(&memcg->swap, max);
6047 	mutex_unlock(&memcg_limit_mutex);
6048 	if (err)
6049 		return err;
6050 
6051 	return nbytes;
6052 }
6053 
6054 static struct cftype swap_files[] = {
6055 	{
6056 		.name = "swap.current",
6057 		.flags = CFTYPE_NOT_ON_ROOT,
6058 		.read_u64 = swap_current_read,
6059 	},
6060 	{
6061 		.name = "swap.max",
6062 		.flags = CFTYPE_NOT_ON_ROOT,
6063 		.seq_show = swap_max_show,
6064 		.write = swap_max_write,
6065 	},
6066 	{ }	/* terminate */
6067 };
6068 
6069 static struct cftype memsw_cgroup_files[] = {
6070 	{
6071 		.name = "memsw.usage_in_bytes",
6072 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6073 		.read_u64 = mem_cgroup_read_u64,
6074 	},
6075 	{
6076 		.name = "memsw.max_usage_in_bytes",
6077 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6078 		.write = mem_cgroup_reset,
6079 		.read_u64 = mem_cgroup_read_u64,
6080 	},
6081 	{
6082 		.name = "memsw.limit_in_bytes",
6083 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6084 		.write = mem_cgroup_write,
6085 		.read_u64 = mem_cgroup_read_u64,
6086 	},
6087 	{
6088 		.name = "memsw.failcnt",
6089 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6090 		.write = mem_cgroup_reset,
6091 		.read_u64 = mem_cgroup_read_u64,
6092 	},
6093 	{ },	/* terminate */
6094 };
6095 
6096 static int __init mem_cgroup_swap_init(void)
6097 {
6098 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6099 		do_swap_account = 1;
6100 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6101 					       swap_files));
6102 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6103 						  memsw_cgroup_files));
6104 	}
6105 	return 0;
6106 }
6107 subsys_initcall(mem_cgroup_swap_init);
6108 
6109 #endif /* CONFIG_MEMCG_SWAP */
6110