1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/smp.h> 43 #include <linux/page-flags.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/limits.h> 48 #include <linux/export.h> 49 #include <linux/mutex.h> 50 #include <linux/rbtree.h> 51 #include <linux/slab.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/spinlock.h> 55 #include <linux/eventfd.h> 56 #include <linux/poll.h> 57 #include <linux/sort.h> 58 #include <linux/fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/vmpressure.h> 61 #include <linux/mm_inline.h> 62 #include <linux/swap_cgroup.h> 63 #include <linux/cpu.h> 64 #include <linux/oom.h> 65 #include <linux/lockdep.h> 66 #include <linux/file.h> 67 #include <linux/tracehook.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 #define MEM_CGROUP_RECLAIM_RETRIES 5 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 int do_swap_account __read_mostly; 93 #else 94 #define do_swap_account 0 95 #endif 96 97 /* Whether legacy memory+swap accounting is active */ 98 static bool do_memsw_account(void) 99 { 100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 101 } 102 103 static const char * const mem_cgroup_stat_names[] = { 104 "cache", 105 "rss", 106 "rss_huge", 107 "mapped_file", 108 "dirty", 109 "writeback", 110 "swap", 111 }; 112 113 static const char * const mem_cgroup_events_names[] = { 114 "pgpgin", 115 "pgpgout", 116 "pgfault", 117 "pgmajfault", 118 }; 119 120 static const char * const mem_cgroup_lru_names[] = { 121 "inactive_anon", 122 "active_anon", 123 "inactive_file", 124 "active_file", 125 "unevictable", 126 }; 127 128 #define THRESHOLDS_EVENTS_TARGET 128 129 #define SOFTLIMIT_EVENTS_TARGET 1024 130 #define NUMAINFO_EVENTS_TARGET 1024 131 132 /* 133 * Cgroups above their limits are maintained in a RB-Tree, independent of 134 * their hierarchy representation 135 */ 136 137 struct mem_cgroup_tree_per_node { 138 struct rb_root rb_root; 139 spinlock_t lock; 140 }; 141 142 struct mem_cgroup_tree { 143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 144 }; 145 146 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 147 148 /* for OOM */ 149 struct mem_cgroup_eventfd_list { 150 struct list_head list; 151 struct eventfd_ctx *eventfd; 152 }; 153 154 /* 155 * cgroup_event represents events which userspace want to receive. 156 */ 157 struct mem_cgroup_event { 158 /* 159 * memcg which the event belongs to. 160 */ 161 struct mem_cgroup *memcg; 162 /* 163 * eventfd to signal userspace about the event. 164 */ 165 struct eventfd_ctx *eventfd; 166 /* 167 * Each of these stored in a list by the cgroup. 168 */ 169 struct list_head list; 170 /* 171 * register_event() callback will be used to add new userspace 172 * waiter for changes related to this event. Use eventfd_signal() 173 * on eventfd to send notification to userspace. 174 */ 175 int (*register_event)(struct mem_cgroup *memcg, 176 struct eventfd_ctx *eventfd, const char *args); 177 /* 178 * unregister_event() callback will be called when userspace closes 179 * the eventfd or on cgroup removing. This callback must be set, 180 * if you want provide notification functionality. 181 */ 182 void (*unregister_event)(struct mem_cgroup *memcg, 183 struct eventfd_ctx *eventfd); 184 /* 185 * All fields below needed to unregister event when 186 * userspace closes eventfd. 187 */ 188 poll_table pt; 189 wait_queue_head_t *wqh; 190 wait_queue_t wait; 191 struct work_struct remove; 192 }; 193 194 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 196 197 /* Stuffs for move charges at task migration. */ 198 /* 199 * Types of charges to be moved. 200 */ 201 #define MOVE_ANON 0x1U 202 #define MOVE_FILE 0x2U 203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 204 205 /* "mc" and its members are protected by cgroup_mutex */ 206 static struct move_charge_struct { 207 spinlock_t lock; /* for from, to */ 208 struct mm_struct *mm; 209 struct mem_cgroup *from; 210 struct mem_cgroup *to; 211 unsigned long flags; 212 unsigned long precharge; 213 unsigned long moved_charge; 214 unsigned long moved_swap; 215 struct task_struct *moving_task; /* a task moving charges */ 216 wait_queue_head_t waitq; /* a waitq for other context */ 217 } mc = { 218 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 219 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 220 }; 221 222 /* 223 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 224 * limit reclaim to prevent infinite loops, if they ever occur. 225 */ 226 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 227 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 228 229 enum charge_type { 230 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 231 MEM_CGROUP_CHARGE_TYPE_ANON, 232 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 233 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 234 NR_CHARGE_TYPE, 235 }; 236 237 /* for encoding cft->private value on file */ 238 enum res_type { 239 _MEM, 240 _MEMSWAP, 241 _OOM_TYPE, 242 _KMEM, 243 _TCP, 244 }; 245 246 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 247 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 248 #define MEMFILE_ATTR(val) ((val) & 0xffff) 249 /* Used for OOM nofiier */ 250 #define OOM_CONTROL (0) 251 252 /* Some nice accessors for the vmpressure. */ 253 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 254 { 255 if (!memcg) 256 memcg = root_mem_cgroup; 257 return &memcg->vmpressure; 258 } 259 260 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 261 { 262 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 263 } 264 265 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 266 { 267 return (memcg == root_mem_cgroup); 268 } 269 270 #ifndef CONFIG_SLOB 271 /* 272 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 273 * The main reason for not using cgroup id for this: 274 * this works better in sparse environments, where we have a lot of memcgs, 275 * but only a few kmem-limited. Or also, if we have, for instance, 200 276 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 277 * 200 entry array for that. 278 * 279 * The current size of the caches array is stored in memcg_nr_cache_ids. It 280 * will double each time we have to increase it. 281 */ 282 static DEFINE_IDA(memcg_cache_ida); 283 int memcg_nr_cache_ids; 284 285 /* Protects memcg_nr_cache_ids */ 286 static DECLARE_RWSEM(memcg_cache_ids_sem); 287 288 void memcg_get_cache_ids(void) 289 { 290 down_read(&memcg_cache_ids_sem); 291 } 292 293 void memcg_put_cache_ids(void) 294 { 295 up_read(&memcg_cache_ids_sem); 296 } 297 298 /* 299 * MIN_SIZE is different than 1, because we would like to avoid going through 300 * the alloc/free process all the time. In a small machine, 4 kmem-limited 301 * cgroups is a reasonable guess. In the future, it could be a parameter or 302 * tunable, but that is strictly not necessary. 303 * 304 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 305 * this constant directly from cgroup, but it is understandable that this is 306 * better kept as an internal representation in cgroup.c. In any case, the 307 * cgrp_id space is not getting any smaller, and we don't have to necessarily 308 * increase ours as well if it increases. 309 */ 310 #define MEMCG_CACHES_MIN_SIZE 4 311 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 312 313 /* 314 * A lot of the calls to the cache allocation functions are expected to be 315 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 316 * conditional to this static branch, we'll have to allow modules that does 317 * kmem_cache_alloc and the such to see this symbol as well 318 */ 319 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 320 EXPORT_SYMBOL(memcg_kmem_enabled_key); 321 322 struct workqueue_struct *memcg_kmem_cache_wq; 323 324 #endif /* !CONFIG_SLOB */ 325 326 /** 327 * mem_cgroup_css_from_page - css of the memcg associated with a page 328 * @page: page of interest 329 * 330 * If memcg is bound to the default hierarchy, css of the memcg associated 331 * with @page is returned. The returned css remains associated with @page 332 * until it is released. 333 * 334 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 335 * is returned. 336 */ 337 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 338 { 339 struct mem_cgroup *memcg; 340 341 memcg = page->mem_cgroup; 342 343 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 344 memcg = root_mem_cgroup; 345 346 return &memcg->css; 347 } 348 349 /** 350 * page_cgroup_ino - return inode number of the memcg a page is charged to 351 * @page: the page 352 * 353 * Look up the closest online ancestor of the memory cgroup @page is charged to 354 * and return its inode number or 0 if @page is not charged to any cgroup. It 355 * is safe to call this function without holding a reference to @page. 356 * 357 * Note, this function is inherently racy, because there is nothing to prevent 358 * the cgroup inode from getting torn down and potentially reallocated a moment 359 * after page_cgroup_ino() returns, so it only should be used by callers that 360 * do not care (such as procfs interfaces). 361 */ 362 ino_t page_cgroup_ino(struct page *page) 363 { 364 struct mem_cgroup *memcg; 365 unsigned long ino = 0; 366 367 rcu_read_lock(); 368 memcg = READ_ONCE(page->mem_cgroup); 369 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 370 memcg = parent_mem_cgroup(memcg); 371 if (memcg) 372 ino = cgroup_ino(memcg->css.cgroup); 373 rcu_read_unlock(); 374 return ino; 375 } 376 377 static struct mem_cgroup_per_node * 378 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 379 { 380 int nid = page_to_nid(page); 381 382 return memcg->nodeinfo[nid]; 383 } 384 385 static struct mem_cgroup_tree_per_node * 386 soft_limit_tree_node(int nid) 387 { 388 return soft_limit_tree.rb_tree_per_node[nid]; 389 } 390 391 static struct mem_cgroup_tree_per_node * 392 soft_limit_tree_from_page(struct page *page) 393 { 394 int nid = page_to_nid(page); 395 396 return soft_limit_tree.rb_tree_per_node[nid]; 397 } 398 399 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 400 struct mem_cgroup_tree_per_node *mctz, 401 unsigned long new_usage_in_excess) 402 { 403 struct rb_node **p = &mctz->rb_root.rb_node; 404 struct rb_node *parent = NULL; 405 struct mem_cgroup_per_node *mz_node; 406 407 if (mz->on_tree) 408 return; 409 410 mz->usage_in_excess = new_usage_in_excess; 411 if (!mz->usage_in_excess) 412 return; 413 while (*p) { 414 parent = *p; 415 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 416 tree_node); 417 if (mz->usage_in_excess < mz_node->usage_in_excess) 418 p = &(*p)->rb_left; 419 /* 420 * We can't avoid mem cgroups that are over their soft 421 * limit by the same amount 422 */ 423 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 424 p = &(*p)->rb_right; 425 } 426 rb_link_node(&mz->tree_node, parent, p); 427 rb_insert_color(&mz->tree_node, &mctz->rb_root); 428 mz->on_tree = true; 429 } 430 431 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 432 struct mem_cgroup_tree_per_node *mctz) 433 { 434 if (!mz->on_tree) 435 return; 436 rb_erase(&mz->tree_node, &mctz->rb_root); 437 mz->on_tree = false; 438 } 439 440 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 441 struct mem_cgroup_tree_per_node *mctz) 442 { 443 unsigned long flags; 444 445 spin_lock_irqsave(&mctz->lock, flags); 446 __mem_cgroup_remove_exceeded(mz, mctz); 447 spin_unlock_irqrestore(&mctz->lock, flags); 448 } 449 450 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 451 { 452 unsigned long nr_pages = page_counter_read(&memcg->memory); 453 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 454 unsigned long excess = 0; 455 456 if (nr_pages > soft_limit) 457 excess = nr_pages - soft_limit; 458 459 return excess; 460 } 461 462 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 463 { 464 unsigned long excess; 465 struct mem_cgroup_per_node *mz; 466 struct mem_cgroup_tree_per_node *mctz; 467 468 mctz = soft_limit_tree_from_page(page); 469 /* 470 * Necessary to update all ancestors when hierarchy is used. 471 * because their event counter is not touched. 472 */ 473 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 474 mz = mem_cgroup_page_nodeinfo(memcg, page); 475 excess = soft_limit_excess(memcg); 476 /* 477 * We have to update the tree if mz is on RB-tree or 478 * mem is over its softlimit. 479 */ 480 if (excess || mz->on_tree) { 481 unsigned long flags; 482 483 spin_lock_irqsave(&mctz->lock, flags); 484 /* if on-tree, remove it */ 485 if (mz->on_tree) 486 __mem_cgroup_remove_exceeded(mz, mctz); 487 /* 488 * Insert again. mz->usage_in_excess will be updated. 489 * If excess is 0, no tree ops. 490 */ 491 __mem_cgroup_insert_exceeded(mz, mctz, excess); 492 spin_unlock_irqrestore(&mctz->lock, flags); 493 } 494 } 495 } 496 497 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 498 { 499 struct mem_cgroup_tree_per_node *mctz; 500 struct mem_cgroup_per_node *mz; 501 int nid; 502 503 for_each_node(nid) { 504 mz = mem_cgroup_nodeinfo(memcg, nid); 505 mctz = soft_limit_tree_node(nid); 506 mem_cgroup_remove_exceeded(mz, mctz); 507 } 508 } 509 510 static struct mem_cgroup_per_node * 511 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 512 { 513 struct rb_node *rightmost = NULL; 514 struct mem_cgroup_per_node *mz; 515 516 retry: 517 mz = NULL; 518 rightmost = rb_last(&mctz->rb_root); 519 if (!rightmost) 520 goto done; /* Nothing to reclaim from */ 521 522 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node); 523 /* 524 * Remove the node now but someone else can add it back, 525 * we will to add it back at the end of reclaim to its correct 526 * position in the tree. 527 */ 528 __mem_cgroup_remove_exceeded(mz, mctz); 529 if (!soft_limit_excess(mz->memcg) || 530 !css_tryget_online(&mz->memcg->css)) 531 goto retry; 532 done: 533 return mz; 534 } 535 536 static struct mem_cgroup_per_node * 537 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 538 { 539 struct mem_cgroup_per_node *mz; 540 541 spin_lock_irq(&mctz->lock); 542 mz = __mem_cgroup_largest_soft_limit_node(mctz); 543 spin_unlock_irq(&mctz->lock); 544 return mz; 545 } 546 547 /* 548 * Return page count for single (non recursive) @memcg. 549 * 550 * Implementation Note: reading percpu statistics for memcg. 551 * 552 * Both of vmstat[] and percpu_counter has threshold and do periodic 553 * synchronization to implement "quick" read. There are trade-off between 554 * reading cost and precision of value. Then, we may have a chance to implement 555 * a periodic synchronization of counter in memcg's counter. 556 * 557 * But this _read() function is used for user interface now. The user accounts 558 * memory usage by memory cgroup and he _always_ requires exact value because 559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 560 * have to visit all online cpus and make sum. So, for now, unnecessary 561 * synchronization is not implemented. (just implemented for cpu hotplug) 562 * 563 * If there are kernel internal actions which can make use of some not-exact 564 * value, and reading all cpu value can be performance bottleneck in some 565 * common workload, threshold and synchronization as vmstat[] should be 566 * implemented. 567 */ 568 static unsigned long 569 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 570 { 571 long val = 0; 572 int cpu; 573 574 /* Per-cpu values can be negative, use a signed accumulator */ 575 for_each_possible_cpu(cpu) 576 val += per_cpu(memcg->stat->count[idx], cpu); 577 /* 578 * Summing races with updates, so val may be negative. Avoid exposing 579 * transient negative values. 580 */ 581 if (val < 0) 582 val = 0; 583 return val; 584 } 585 586 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 587 enum mem_cgroup_events_index idx) 588 { 589 unsigned long val = 0; 590 int cpu; 591 592 for_each_possible_cpu(cpu) 593 val += per_cpu(memcg->stat->events[idx], cpu); 594 return val; 595 } 596 597 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 598 struct page *page, 599 bool compound, int nr_pages) 600 { 601 /* 602 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 603 * counted as CACHE even if it's on ANON LRU. 604 */ 605 if (PageAnon(page)) 606 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 607 nr_pages); 608 else 609 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 610 nr_pages); 611 612 if (compound) { 613 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 614 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 615 nr_pages); 616 } 617 618 /* pagein of a big page is an event. So, ignore page size */ 619 if (nr_pages > 0) 620 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 621 else { 622 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 623 nr_pages = -nr_pages; /* for event */ 624 } 625 626 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 627 } 628 629 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 630 int nid, unsigned int lru_mask) 631 { 632 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 633 unsigned long nr = 0; 634 enum lru_list lru; 635 636 VM_BUG_ON((unsigned)nid >= nr_node_ids); 637 638 for_each_lru(lru) { 639 if (!(BIT(lru) & lru_mask)) 640 continue; 641 nr += mem_cgroup_get_lru_size(lruvec, lru); 642 } 643 return nr; 644 } 645 646 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 647 unsigned int lru_mask) 648 { 649 unsigned long nr = 0; 650 int nid; 651 652 for_each_node_state(nid, N_MEMORY) 653 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 654 return nr; 655 } 656 657 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 658 enum mem_cgroup_events_target target) 659 { 660 unsigned long val, next; 661 662 val = __this_cpu_read(memcg->stat->nr_page_events); 663 next = __this_cpu_read(memcg->stat->targets[target]); 664 /* from time_after() in jiffies.h */ 665 if ((long)next - (long)val < 0) { 666 switch (target) { 667 case MEM_CGROUP_TARGET_THRESH: 668 next = val + THRESHOLDS_EVENTS_TARGET; 669 break; 670 case MEM_CGROUP_TARGET_SOFTLIMIT: 671 next = val + SOFTLIMIT_EVENTS_TARGET; 672 break; 673 case MEM_CGROUP_TARGET_NUMAINFO: 674 next = val + NUMAINFO_EVENTS_TARGET; 675 break; 676 default: 677 break; 678 } 679 __this_cpu_write(memcg->stat->targets[target], next); 680 return true; 681 } 682 return false; 683 } 684 685 /* 686 * Check events in order. 687 * 688 */ 689 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 690 { 691 /* threshold event is triggered in finer grain than soft limit */ 692 if (unlikely(mem_cgroup_event_ratelimit(memcg, 693 MEM_CGROUP_TARGET_THRESH))) { 694 bool do_softlimit; 695 bool do_numainfo __maybe_unused; 696 697 do_softlimit = mem_cgroup_event_ratelimit(memcg, 698 MEM_CGROUP_TARGET_SOFTLIMIT); 699 #if MAX_NUMNODES > 1 700 do_numainfo = mem_cgroup_event_ratelimit(memcg, 701 MEM_CGROUP_TARGET_NUMAINFO); 702 #endif 703 mem_cgroup_threshold(memcg); 704 if (unlikely(do_softlimit)) 705 mem_cgroup_update_tree(memcg, page); 706 #if MAX_NUMNODES > 1 707 if (unlikely(do_numainfo)) 708 atomic_inc(&memcg->numainfo_events); 709 #endif 710 } 711 } 712 713 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 714 { 715 /* 716 * mm_update_next_owner() may clear mm->owner to NULL 717 * if it races with swapoff, page migration, etc. 718 * So this can be called with p == NULL. 719 */ 720 if (unlikely(!p)) 721 return NULL; 722 723 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 724 } 725 EXPORT_SYMBOL(mem_cgroup_from_task); 726 727 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 728 { 729 struct mem_cgroup *memcg = NULL; 730 731 rcu_read_lock(); 732 do { 733 /* 734 * Page cache insertions can happen withou an 735 * actual mm context, e.g. during disk probing 736 * on boot, loopback IO, acct() writes etc. 737 */ 738 if (unlikely(!mm)) 739 memcg = root_mem_cgroup; 740 else { 741 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 742 if (unlikely(!memcg)) 743 memcg = root_mem_cgroup; 744 } 745 } while (!css_tryget_online(&memcg->css)); 746 rcu_read_unlock(); 747 return memcg; 748 } 749 750 /** 751 * mem_cgroup_iter - iterate over memory cgroup hierarchy 752 * @root: hierarchy root 753 * @prev: previously returned memcg, NULL on first invocation 754 * @reclaim: cookie for shared reclaim walks, NULL for full walks 755 * 756 * Returns references to children of the hierarchy below @root, or 757 * @root itself, or %NULL after a full round-trip. 758 * 759 * Caller must pass the return value in @prev on subsequent 760 * invocations for reference counting, or use mem_cgroup_iter_break() 761 * to cancel a hierarchy walk before the round-trip is complete. 762 * 763 * Reclaimers can specify a zone and a priority level in @reclaim to 764 * divide up the memcgs in the hierarchy among all concurrent 765 * reclaimers operating on the same zone and priority. 766 */ 767 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 768 struct mem_cgroup *prev, 769 struct mem_cgroup_reclaim_cookie *reclaim) 770 { 771 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 772 struct cgroup_subsys_state *css = NULL; 773 struct mem_cgroup *memcg = NULL; 774 struct mem_cgroup *pos = NULL; 775 776 if (mem_cgroup_disabled()) 777 return NULL; 778 779 if (!root) 780 root = root_mem_cgroup; 781 782 if (prev && !reclaim) 783 pos = prev; 784 785 if (!root->use_hierarchy && root != root_mem_cgroup) { 786 if (prev) 787 goto out; 788 return root; 789 } 790 791 rcu_read_lock(); 792 793 if (reclaim) { 794 struct mem_cgroup_per_node *mz; 795 796 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 797 iter = &mz->iter[reclaim->priority]; 798 799 if (prev && reclaim->generation != iter->generation) 800 goto out_unlock; 801 802 while (1) { 803 pos = READ_ONCE(iter->position); 804 if (!pos || css_tryget(&pos->css)) 805 break; 806 /* 807 * css reference reached zero, so iter->position will 808 * be cleared by ->css_released. However, we should not 809 * rely on this happening soon, because ->css_released 810 * is called from a work queue, and by busy-waiting we 811 * might block it. So we clear iter->position right 812 * away. 813 */ 814 (void)cmpxchg(&iter->position, pos, NULL); 815 } 816 } 817 818 if (pos) 819 css = &pos->css; 820 821 for (;;) { 822 css = css_next_descendant_pre(css, &root->css); 823 if (!css) { 824 /* 825 * Reclaimers share the hierarchy walk, and a 826 * new one might jump in right at the end of 827 * the hierarchy - make sure they see at least 828 * one group and restart from the beginning. 829 */ 830 if (!prev) 831 continue; 832 break; 833 } 834 835 /* 836 * Verify the css and acquire a reference. The root 837 * is provided by the caller, so we know it's alive 838 * and kicking, and don't take an extra reference. 839 */ 840 memcg = mem_cgroup_from_css(css); 841 842 if (css == &root->css) 843 break; 844 845 if (css_tryget(css)) 846 break; 847 848 memcg = NULL; 849 } 850 851 if (reclaim) { 852 /* 853 * The position could have already been updated by a competing 854 * thread, so check that the value hasn't changed since we read 855 * it to avoid reclaiming from the same cgroup twice. 856 */ 857 (void)cmpxchg(&iter->position, pos, memcg); 858 859 if (pos) 860 css_put(&pos->css); 861 862 if (!memcg) 863 iter->generation++; 864 else if (!prev) 865 reclaim->generation = iter->generation; 866 } 867 868 out_unlock: 869 rcu_read_unlock(); 870 out: 871 if (prev && prev != root) 872 css_put(&prev->css); 873 874 return memcg; 875 } 876 877 /** 878 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 879 * @root: hierarchy root 880 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 881 */ 882 void mem_cgroup_iter_break(struct mem_cgroup *root, 883 struct mem_cgroup *prev) 884 { 885 if (!root) 886 root = root_mem_cgroup; 887 if (prev && prev != root) 888 css_put(&prev->css); 889 } 890 891 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 892 { 893 struct mem_cgroup *memcg = dead_memcg; 894 struct mem_cgroup_reclaim_iter *iter; 895 struct mem_cgroup_per_node *mz; 896 int nid; 897 int i; 898 899 while ((memcg = parent_mem_cgroup(memcg))) { 900 for_each_node(nid) { 901 mz = mem_cgroup_nodeinfo(memcg, nid); 902 for (i = 0; i <= DEF_PRIORITY; i++) { 903 iter = &mz->iter[i]; 904 cmpxchg(&iter->position, 905 dead_memcg, NULL); 906 } 907 } 908 } 909 } 910 911 /* 912 * Iteration constructs for visiting all cgroups (under a tree). If 913 * loops are exited prematurely (break), mem_cgroup_iter_break() must 914 * be used for reference counting. 915 */ 916 #define for_each_mem_cgroup_tree(iter, root) \ 917 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 918 iter != NULL; \ 919 iter = mem_cgroup_iter(root, iter, NULL)) 920 921 #define for_each_mem_cgroup(iter) \ 922 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 923 iter != NULL; \ 924 iter = mem_cgroup_iter(NULL, iter, NULL)) 925 926 /** 927 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 928 * @memcg: hierarchy root 929 * @fn: function to call for each task 930 * @arg: argument passed to @fn 931 * 932 * This function iterates over tasks attached to @memcg or to any of its 933 * descendants and calls @fn for each task. If @fn returns a non-zero 934 * value, the function breaks the iteration loop and returns the value. 935 * Otherwise, it will iterate over all tasks and return 0. 936 * 937 * This function must not be called for the root memory cgroup. 938 */ 939 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 940 int (*fn)(struct task_struct *, void *), void *arg) 941 { 942 struct mem_cgroup *iter; 943 int ret = 0; 944 945 BUG_ON(memcg == root_mem_cgroup); 946 947 for_each_mem_cgroup_tree(iter, memcg) { 948 struct css_task_iter it; 949 struct task_struct *task; 950 951 css_task_iter_start(&iter->css, &it); 952 while (!ret && (task = css_task_iter_next(&it))) 953 ret = fn(task, arg); 954 css_task_iter_end(&it); 955 if (ret) { 956 mem_cgroup_iter_break(memcg, iter); 957 break; 958 } 959 } 960 return ret; 961 } 962 963 /** 964 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 965 * @page: the page 966 * @zone: zone of the page 967 * 968 * This function is only safe when following the LRU page isolation 969 * and putback protocol: the LRU lock must be held, and the page must 970 * either be PageLRU() or the caller must have isolated/allocated it. 971 */ 972 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 973 { 974 struct mem_cgroup_per_node *mz; 975 struct mem_cgroup *memcg; 976 struct lruvec *lruvec; 977 978 if (mem_cgroup_disabled()) { 979 lruvec = &pgdat->lruvec; 980 goto out; 981 } 982 983 memcg = page->mem_cgroup; 984 /* 985 * Swapcache readahead pages are added to the LRU - and 986 * possibly migrated - before they are charged. 987 */ 988 if (!memcg) 989 memcg = root_mem_cgroup; 990 991 mz = mem_cgroup_page_nodeinfo(memcg, page); 992 lruvec = &mz->lruvec; 993 out: 994 /* 995 * Since a node can be onlined after the mem_cgroup was created, 996 * we have to be prepared to initialize lruvec->zone here; 997 * and if offlined then reonlined, we need to reinitialize it. 998 */ 999 if (unlikely(lruvec->pgdat != pgdat)) 1000 lruvec->pgdat = pgdat; 1001 return lruvec; 1002 } 1003 1004 /** 1005 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1006 * @lruvec: mem_cgroup per zone lru vector 1007 * @lru: index of lru list the page is sitting on 1008 * @zid: zone id of the accounted pages 1009 * @nr_pages: positive when adding or negative when removing 1010 * 1011 * This function must be called under lru_lock, just before a page is added 1012 * to or just after a page is removed from an lru list (that ordering being 1013 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1014 */ 1015 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1016 int zid, int nr_pages) 1017 { 1018 struct mem_cgroup_per_node *mz; 1019 unsigned long *lru_size; 1020 long size; 1021 1022 if (mem_cgroup_disabled()) 1023 return; 1024 1025 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1026 lru_size = &mz->lru_zone_size[zid][lru]; 1027 1028 if (nr_pages < 0) 1029 *lru_size += nr_pages; 1030 1031 size = *lru_size; 1032 if (WARN_ONCE(size < 0, 1033 "%s(%p, %d, %d): lru_size %ld\n", 1034 __func__, lruvec, lru, nr_pages, size)) { 1035 VM_BUG_ON(1); 1036 *lru_size = 0; 1037 } 1038 1039 if (nr_pages > 0) 1040 *lru_size += nr_pages; 1041 } 1042 1043 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1044 { 1045 struct mem_cgroup *task_memcg; 1046 struct task_struct *p; 1047 bool ret; 1048 1049 p = find_lock_task_mm(task); 1050 if (p) { 1051 task_memcg = get_mem_cgroup_from_mm(p->mm); 1052 task_unlock(p); 1053 } else { 1054 /* 1055 * All threads may have already detached their mm's, but the oom 1056 * killer still needs to detect if they have already been oom 1057 * killed to prevent needlessly killing additional tasks. 1058 */ 1059 rcu_read_lock(); 1060 task_memcg = mem_cgroup_from_task(task); 1061 css_get(&task_memcg->css); 1062 rcu_read_unlock(); 1063 } 1064 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1065 css_put(&task_memcg->css); 1066 return ret; 1067 } 1068 1069 /** 1070 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1071 * @memcg: the memory cgroup 1072 * 1073 * Returns the maximum amount of memory @mem can be charged with, in 1074 * pages. 1075 */ 1076 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1077 { 1078 unsigned long margin = 0; 1079 unsigned long count; 1080 unsigned long limit; 1081 1082 count = page_counter_read(&memcg->memory); 1083 limit = READ_ONCE(memcg->memory.limit); 1084 if (count < limit) 1085 margin = limit - count; 1086 1087 if (do_memsw_account()) { 1088 count = page_counter_read(&memcg->memsw); 1089 limit = READ_ONCE(memcg->memsw.limit); 1090 if (count <= limit) 1091 margin = min(margin, limit - count); 1092 else 1093 margin = 0; 1094 } 1095 1096 return margin; 1097 } 1098 1099 /* 1100 * A routine for checking "mem" is under move_account() or not. 1101 * 1102 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1103 * moving cgroups. This is for waiting at high-memory pressure 1104 * caused by "move". 1105 */ 1106 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1107 { 1108 struct mem_cgroup *from; 1109 struct mem_cgroup *to; 1110 bool ret = false; 1111 /* 1112 * Unlike task_move routines, we access mc.to, mc.from not under 1113 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1114 */ 1115 spin_lock(&mc.lock); 1116 from = mc.from; 1117 to = mc.to; 1118 if (!from) 1119 goto unlock; 1120 1121 ret = mem_cgroup_is_descendant(from, memcg) || 1122 mem_cgroup_is_descendant(to, memcg); 1123 unlock: 1124 spin_unlock(&mc.lock); 1125 return ret; 1126 } 1127 1128 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1129 { 1130 if (mc.moving_task && current != mc.moving_task) { 1131 if (mem_cgroup_under_move(memcg)) { 1132 DEFINE_WAIT(wait); 1133 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1134 /* moving charge context might have finished. */ 1135 if (mc.moving_task) 1136 schedule(); 1137 finish_wait(&mc.waitq, &wait); 1138 return true; 1139 } 1140 } 1141 return false; 1142 } 1143 1144 #define K(x) ((x) << (PAGE_SHIFT-10)) 1145 /** 1146 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1147 * @memcg: The memory cgroup that went over limit 1148 * @p: Task that is going to be killed 1149 * 1150 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1151 * enabled 1152 */ 1153 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1154 { 1155 struct mem_cgroup *iter; 1156 unsigned int i; 1157 1158 rcu_read_lock(); 1159 1160 if (p) { 1161 pr_info("Task in "); 1162 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1163 pr_cont(" killed as a result of limit of "); 1164 } else { 1165 pr_info("Memory limit reached of cgroup "); 1166 } 1167 1168 pr_cont_cgroup_path(memcg->css.cgroup); 1169 pr_cont("\n"); 1170 1171 rcu_read_unlock(); 1172 1173 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1174 K((u64)page_counter_read(&memcg->memory)), 1175 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1176 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1177 K((u64)page_counter_read(&memcg->memsw)), 1178 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1179 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1180 K((u64)page_counter_read(&memcg->kmem)), 1181 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1182 1183 for_each_mem_cgroup_tree(iter, memcg) { 1184 pr_info("Memory cgroup stats for "); 1185 pr_cont_cgroup_path(iter->css.cgroup); 1186 pr_cont(":"); 1187 1188 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1189 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1190 continue; 1191 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1192 K(mem_cgroup_read_stat(iter, i))); 1193 } 1194 1195 for (i = 0; i < NR_LRU_LISTS; i++) 1196 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1197 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1198 1199 pr_cont("\n"); 1200 } 1201 } 1202 1203 /* 1204 * This function returns the number of memcg under hierarchy tree. Returns 1205 * 1(self count) if no children. 1206 */ 1207 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1208 { 1209 int num = 0; 1210 struct mem_cgroup *iter; 1211 1212 for_each_mem_cgroup_tree(iter, memcg) 1213 num++; 1214 return num; 1215 } 1216 1217 /* 1218 * Return the memory (and swap, if configured) limit for a memcg. 1219 */ 1220 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1221 { 1222 unsigned long limit; 1223 1224 limit = memcg->memory.limit; 1225 if (mem_cgroup_swappiness(memcg)) { 1226 unsigned long memsw_limit; 1227 unsigned long swap_limit; 1228 1229 memsw_limit = memcg->memsw.limit; 1230 swap_limit = memcg->swap.limit; 1231 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1232 limit = min(limit + swap_limit, memsw_limit); 1233 } 1234 return limit; 1235 } 1236 1237 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1238 int order) 1239 { 1240 struct oom_control oc = { 1241 .zonelist = NULL, 1242 .nodemask = NULL, 1243 .memcg = memcg, 1244 .gfp_mask = gfp_mask, 1245 .order = order, 1246 }; 1247 bool ret; 1248 1249 mutex_lock(&oom_lock); 1250 ret = out_of_memory(&oc); 1251 mutex_unlock(&oom_lock); 1252 return ret; 1253 } 1254 1255 #if MAX_NUMNODES > 1 1256 1257 /** 1258 * test_mem_cgroup_node_reclaimable 1259 * @memcg: the target memcg 1260 * @nid: the node ID to be checked. 1261 * @noswap : specify true here if the user wants flle only information. 1262 * 1263 * This function returns whether the specified memcg contains any 1264 * reclaimable pages on a node. Returns true if there are any reclaimable 1265 * pages in the node. 1266 */ 1267 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1268 int nid, bool noswap) 1269 { 1270 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1271 return true; 1272 if (noswap || !total_swap_pages) 1273 return false; 1274 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1275 return true; 1276 return false; 1277 1278 } 1279 1280 /* 1281 * Always updating the nodemask is not very good - even if we have an empty 1282 * list or the wrong list here, we can start from some node and traverse all 1283 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1284 * 1285 */ 1286 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1287 { 1288 int nid; 1289 /* 1290 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1291 * pagein/pageout changes since the last update. 1292 */ 1293 if (!atomic_read(&memcg->numainfo_events)) 1294 return; 1295 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1296 return; 1297 1298 /* make a nodemask where this memcg uses memory from */ 1299 memcg->scan_nodes = node_states[N_MEMORY]; 1300 1301 for_each_node_mask(nid, node_states[N_MEMORY]) { 1302 1303 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1304 node_clear(nid, memcg->scan_nodes); 1305 } 1306 1307 atomic_set(&memcg->numainfo_events, 0); 1308 atomic_set(&memcg->numainfo_updating, 0); 1309 } 1310 1311 /* 1312 * Selecting a node where we start reclaim from. Because what we need is just 1313 * reducing usage counter, start from anywhere is O,K. Considering 1314 * memory reclaim from current node, there are pros. and cons. 1315 * 1316 * Freeing memory from current node means freeing memory from a node which 1317 * we'll use or we've used. So, it may make LRU bad. And if several threads 1318 * hit limits, it will see a contention on a node. But freeing from remote 1319 * node means more costs for memory reclaim because of memory latency. 1320 * 1321 * Now, we use round-robin. Better algorithm is welcomed. 1322 */ 1323 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1324 { 1325 int node; 1326 1327 mem_cgroup_may_update_nodemask(memcg); 1328 node = memcg->last_scanned_node; 1329 1330 node = next_node_in(node, memcg->scan_nodes); 1331 /* 1332 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1333 * last time it really checked all the LRUs due to rate limiting. 1334 * Fallback to the current node in that case for simplicity. 1335 */ 1336 if (unlikely(node == MAX_NUMNODES)) 1337 node = numa_node_id(); 1338 1339 memcg->last_scanned_node = node; 1340 return node; 1341 } 1342 #else 1343 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1344 { 1345 return 0; 1346 } 1347 #endif 1348 1349 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1350 pg_data_t *pgdat, 1351 gfp_t gfp_mask, 1352 unsigned long *total_scanned) 1353 { 1354 struct mem_cgroup *victim = NULL; 1355 int total = 0; 1356 int loop = 0; 1357 unsigned long excess; 1358 unsigned long nr_scanned; 1359 struct mem_cgroup_reclaim_cookie reclaim = { 1360 .pgdat = pgdat, 1361 .priority = 0, 1362 }; 1363 1364 excess = soft_limit_excess(root_memcg); 1365 1366 while (1) { 1367 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1368 if (!victim) { 1369 loop++; 1370 if (loop >= 2) { 1371 /* 1372 * If we have not been able to reclaim 1373 * anything, it might because there are 1374 * no reclaimable pages under this hierarchy 1375 */ 1376 if (!total) 1377 break; 1378 /* 1379 * We want to do more targeted reclaim. 1380 * excess >> 2 is not to excessive so as to 1381 * reclaim too much, nor too less that we keep 1382 * coming back to reclaim from this cgroup 1383 */ 1384 if (total >= (excess >> 2) || 1385 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1386 break; 1387 } 1388 continue; 1389 } 1390 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1391 pgdat, &nr_scanned); 1392 *total_scanned += nr_scanned; 1393 if (!soft_limit_excess(root_memcg)) 1394 break; 1395 } 1396 mem_cgroup_iter_break(root_memcg, victim); 1397 return total; 1398 } 1399 1400 #ifdef CONFIG_LOCKDEP 1401 static struct lockdep_map memcg_oom_lock_dep_map = { 1402 .name = "memcg_oom_lock", 1403 }; 1404 #endif 1405 1406 static DEFINE_SPINLOCK(memcg_oom_lock); 1407 1408 /* 1409 * Check OOM-Killer is already running under our hierarchy. 1410 * If someone is running, return false. 1411 */ 1412 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1413 { 1414 struct mem_cgroup *iter, *failed = NULL; 1415 1416 spin_lock(&memcg_oom_lock); 1417 1418 for_each_mem_cgroup_tree(iter, memcg) { 1419 if (iter->oom_lock) { 1420 /* 1421 * this subtree of our hierarchy is already locked 1422 * so we cannot give a lock. 1423 */ 1424 failed = iter; 1425 mem_cgroup_iter_break(memcg, iter); 1426 break; 1427 } else 1428 iter->oom_lock = true; 1429 } 1430 1431 if (failed) { 1432 /* 1433 * OK, we failed to lock the whole subtree so we have 1434 * to clean up what we set up to the failing subtree 1435 */ 1436 for_each_mem_cgroup_tree(iter, memcg) { 1437 if (iter == failed) { 1438 mem_cgroup_iter_break(memcg, iter); 1439 break; 1440 } 1441 iter->oom_lock = false; 1442 } 1443 } else 1444 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1445 1446 spin_unlock(&memcg_oom_lock); 1447 1448 return !failed; 1449 } 1450 1451 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1452 { 1453 struct mem_cgroup *iter; 1454 1455 spin_lock(&memcg_oom_lock); 1456 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1457 for_each_mem_cgroup_tree(iter, memcg) 1458 iter->oom_lock = false; 1459 spin_unlock(&memcg_oom_lock); 1460 } 1461 1462 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1463 { 1464 struct mem_cgroup *iter; 1465 1466 spin_lock(&memcg_oom_lock); 1467 for_each_mem_cgroup_tree(iter, memcg) 1468 iter->under_oom++; 1469 spin_unlock(&memcg_oom_lock); 1470 } 1471 1472 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1473 { 1474 struct mem_cgroup *iter; 1475 1476 /* 1477 * When a new child is created while the hierarchy is under oom, 1478 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1479 */ 1480 spin_lock(&memcg_oom_lock); 1481 for_each_mem_cgroup_tree(iter, memcg) 1482 if (iter->under_oom > 0) 1483 iter->under_oom--; 1484 spin_unlock(&memcg_oom_lock); 1485 } 1486 1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1488 1489 struct oom_wait_info { 1490 struct mem_cgroup *memcg; 1491 wait_queue_t wait; 1492 }; 1493 1494 static int memcg_oom_wake_function(wait_queue_t *wait, 1495 unsigned mode, int sync, void *arg) 1496 { 1497 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1498 struct mem_cgroup *oom_wait_memcg; 1499 struct oom_wait_info *oom_wait_info; 1500 1501 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1502 oom_wait_memcg = oom_wait_info->memcg; 1503 1504 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1505 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1506 return 0; 1507 return autoremove_wake_function(wait, mode, sync, arg); 1508 } 1509 1510 static void memcg_oom_recover(struct mem_cgroup *memcg) 1511 { 1512 /* 1513 * For the following lockless ->under_oom test, the only required 1514 * guarantee is that it must see the state asserted by an OOM when 1515 * this function is called as a result of userland actions 1516 * triggered by the notification of the OOM. This is trivially 1517 * achieved by invoking mem_cgroup_mark_under_oom() before 1518 * triggering notification. 1519 */ 1520 if (memcg && memcg->under_oom) 1521 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1522 } 1523 1524 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1525 { 1526 if (!current->memcg_may_oom) 1527 return; 1528 /* 1529 * We are in the middle of the charge context here, so we 1530 * don't want to block when potentially sitting on a callstack 1531 * that holds all kinds of filesystem and mm locks. 1532 * 1533 * Also, the caller may handle a failed allocation gracefully 1534 * (like optional page cache readahead) and so an OOM killer 1535 * invocation might not even be necessary. 1536 * 1537 * That's why we don't do anything here except remember the 1538 * OOM context and then deal with it at the end of the page 1539 * fault when the stack is unwound, the locks are released, 1540 * and when we know whether the fault was overall successful. 1541 */ 1542 css_get(&memcg->css); 1543 current->memcg_in_oom = memcg; 1544 current->memcg_oom_gfp_mask = mask; 1545 current->memcg_oom_order = order; 1546 } 1547 1548 /** 1549 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1550 * @handle: actually kill/wait or just clean up the OOM state 1551 * 1552 * This has to be called at the end of a page fault if the memcg OOM 1553 * handler was enabled. 1554 * 1555 * Memcg supports userspace OOM handling where failed allocations must 1556 * sleep on a waitqueue until the userspace task resolves the 1557 * situation. Sleeping directly in the charge context with all kinds 1558 * of locks held is not a good idea, instead we remember an OOM state 1559 * in the task and mem_cgroup_oom_synchronize() has to be called at 1560 * the end of the page fault to complete the OOM handling. 1561 * 1562 * Returns %true if an ongoing memcg OOM situation was detected and 1563 * completed, %false otherwise. 1564 */ 1565 bool mem_cgroup_oom_synchronize(bool handle) 1566 { 1567 struct mem_cgroup *memcg = current->memcg_in_oom; 1568 struct oom_wait_info owait; 1569 bool locked; 1570 1571 /* OOM is global, do not handle */ 1572 if (!memcg) 1573 return false; 1574 1575 if (!handle) 1576 goto cleanup; 1577 1578 owait.memcg = memcg; 1579 owait.wait.flags = 0; 1580 owait.wait.func = memcg_oom_wake_function; 1581 owait.wait.private = current; 1582 INIT_LIST_HEAD(&owait.wait.task_list); 1583 1584 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1585 mem_cgroup_mark_under_oom(memcg); 1586 1587 locked = mem_cgroup_oom_trylock(memcg); 1588 1589 if (locked) 1590 mem_cgroup_oom_notify(memcg); 1591 1592 if (locked && !memcg->oom_kill_disable) { 1593 mem_cgroup_unmark_under_oom(memcg); 1594 finish_wait(&memcg_oom_waitq, &owait.wait); 1595 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1596 current->memcg_oom_order); 1597 } else { 1598 schedule(); 1599 mem_cgroup_unmark_under_oom(memcg); 1600 finish_wait(&memcg_oom_waitq, &owait.wait); 1601 } 1602 1603 if (locked) { 1604 mem_cgroup_oom_unlock(memcg); 1605 /* 1606 * There is no guarantee that an OOM-lock contender 1607 * sees the wakeups triggered by the OOM kill 1608 * uncharges. Wake any sleepers explicitely. 1609 */ 1610 memcg_oom_recover(memcg); 1611 } 1612 cleanup: 1613 current->memcg_in_oom = NULL; 1614 css_put(&memcg->css); 1615 return true; 1616 } 1617 1618 /** 1619 * lock_page_memcg - lock a page->mem_cgroup binding 1620 * @page: the page 1621 * 1622 * This function protects unlocked LRU pages from being moved to 1623 * another cgroup and stabilizes their page->mem_cgroup binding. 1624 */ 1625 void lock_page_memcg(struct page *page) 1626 { 1627 struct mem_cgroup *memcg; 1628 unsigned long flags; 1629 1630 /* 1631 * The RCU lock is held throughout the transaction. The fast 1632 * path can get away without acquiring the memcg->move_lock 1633 * because page moving starts with an RCU grace period. 1634 */ 1635 rcu_read_lock(); 1636 1637 if (mem_cgroup_disabled()) 1638 return; 1639 again: 1640 memcg = page->mem_cgroup; 1641 if (unlikely(!memcg)) 1642 return; 1643 1644 if (atomic_read(&memcg->moving_account) <= 0) 1645 return; 1646 1647 spin_lock_irqsave(&memcg->move_lock, flags); 1648 if (memcg != page->mem_cgroup) { 1649 spin_unlock_irqrestore(&memcg->move_lock, flags); 1650 goto again; 1651 } 1652 1653 /* 1654 * When charge migration first begins, we can have locked and 1655 * unlocked page stat updates happening concurrently. Track 1656 * the task who has the lock for unlock_page_memcg(). 1657 */ 1658 memcg->move_lock_task = current; 1659 memcg->move_lock_flags = flags; 1660 1661 return; 1662 } 1663 EXPORT_SYMBOL(lock_page_memcg); 1664 1665 /** 1666 * unlock_page_memcg - unlock a page->mem_cgroup binding 1667 * @page: the page 1668 */ 1669 void unlock_page_memcg(struct page *page) 1670 { 1671 struct mem_cgroup *memcg = page->mem_cgroup; 1672 1673 if (memcg && memcg->move_lock_task == current) { 1674 unsigned long flags = memcg->move_lock_flags; 1675 1676 memcg->move_lock_task = NULL; 1677 memcg->move_lock_flags = 0; 1678 1679 spin_unlock_irqrestore(&memcg->move_lock, flags); 1680 } 1681 1682 rcu_read_unlock(); 1683 } 1684 EXPORT_SYMBOL(unlock_page_memcg); 1685 1686 /* 1687 * size of first charge trial. "32" comes from vmscan.c's magic value. 1688 * TODO: maybe necessary to use big numbers in big irons. 1689 */ 1690 #define CHARGE_BATCH 32U 1691 struct memcg_stock_pcp { 1692 struct mem_cgroup *cached; /* this never be root cgroup */ 1693 unsigned int nr_pages; 1694 struct work_struct work; 1695 unsigned long flags; 1696 #define FLUSHING_CACHED_CHARGE 0 1697 }; 1698 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1699 static DEFINE_MUTEX(percpu_charge_mutex); 1700 1701 /** 1702 * consume_stock: Try to consume stocked charge on this cpu. 1703 * @memcg: memcg to consume from. 1704 * @nr_pages: how many pages to charge. 1705 * 1706 * The charges will only happen if @memcg matches the current cpu's memcg 1707 * stock, and at least @nr_pages are available in that stock. Failure to 1708 * service an allocation will refill the stock. 1709 * 1710 * returns true if successful, false otherwise. 1711 */ 1712 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1713 { 1714 struct memcg_stock_pcp *stock; 1715 unsigned long flags; 1716 bool ret = false; 1717 1718 if (nr_pages > CHARGE_BATCH) 1719 return ret; 1720 1721 local_irq_save(flags); 1722 1723 stock = this_cpu_ptr(&memcg_stock); 1724 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1725 stock->nr_pages -= nr_pages; 1726 ret = true; 1727 } 1728 1729 local_irq_restore(flags); 1730 1731 return ret; 1732 } 1733 1734 /* 1735 * Returns stocks cached in percpu and reset cached information. 1736 */ 1737 static void drain_stock(struct memcg_stock_pcp *stock) 1738 { 1739 struct mem_cgroup *old = stock->cached; 1740 1741 if (stock->nr_pages) { 1742 page_counter_uncharge(&old->memory, stock->nr_pages); 1743 if (do_memsw_account()) 1744 page_counter_uncharge(&old->memsw, stock->nr_pages); 1745 css_put_many(&old->css, stock->nr_pages); 1746 stock->nr_pages = 0; 1747 } 1748 stock->cached = NULL; 1749 } 1750 1751 static void drain_local_stock(struct work_struct *dummy) 1752 { 1753 struct memcg_stock_pcp *stock; 1754 unsigned long flags; 1755 1756 local_irq_save(flags); 1757 1758 stock = this_cpu_ptr(&memcg_stock); 1759 drain_stock(stock); 1760 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1761 1762 local_irq_restore(flags); 1763 } 1764 1765 /* 1766 * Cache charges(val) to local per_cpu area. 1767 * This will be consumed by consume_stock() function, later. 1768 */ 1769 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1770 { 1771 struct memcg_stock_pcp *stock; 1772 unsigned long flags; 1773 1774 local_irq_save(flags); 1775 1776 stock = this_cpu_ptr(&memcg_stock); 1777 if (stock->cached != memcg) { /* reset if necessary */ 1778 drain_stock(stock); 1779 stock->cached = memcg; 1780 } 1781 stock->nr_pages += nr_pages; 1782 1783 local_irq_restore(flags); 1784 } 1785 1786 /* 1787 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1788 * of the hierarchy under it. 1789 */ 1790 static void drain_all_stock(struct mem_cgroup *root_memcg) 1791 { 1792 int cpu, curcpu; 1793 1794 /* If someone's already draining, avoid adding running more workers. */ 1795 if (!mutex_trylock(&percpu_charge_mutex)) 1796 return; 1797 /* Notify other cpus that system-wide "drain" is running */ 1798 get_online_cpus(); 1799 curcpu = get_cpu(); 1800 for_each_online_cpu(cpu) { 1801 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1802 struct mem_cgroup *memcg; 1803 1804 memcg = stock->cached; 1805 if (!memcg || !stock->nr_pages) 1806 continue; 1807 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1808 continue; 1809 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1810 if (cpu == curcpu) 1811 drain_local_stock(&stock->work); 1812 else 1813 schedule_work_on(cpu, &stock->work); 1814 } 1815 } 1816 put_cpu(); 1817 put_online_cpus(); 1818 mutex_unlock(&percpu_charge_mutex); 1819 } 1820 1821 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1822 { 1823 struct memcg_stock_pcp *stock; 1824 1825 stock = &per_cpu(memcg_stock, cpu); 1826 drain_stock(stock); 1827 return 0; 1828 } 1829 1830 static void reclaim_high(struct mem_cgroup *memcg, 1831 unsigned int nr_pages, 1832 gfp_t gfp_mask) 1833 { 1834 do { 1835 if (page_counter_read(&memcg->memory) <= memcg->high) 1836 continue; 1837 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1838 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1839 } while ((memcg = parent_mem_cgroup(memcg))); 1840 } 1841 1842 static void high_work_func(struct work_struct *work) 1843 { 1844 struct mem_cgroup *memcg; 1845 1846 memcg = container_of(work, struct mem_cgroup, high_work); 1847 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1848 } 1849 1850 /* 1851 * Scheduled by try_charge() to be executed from the userland return path 1852 * and reclaims memory over the high limit. 1853 */ 1854 void mem_cgroup_handle_over_high(void) 1855 { 1856 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1857 struct mem_cgroup *memcg; 1858 1859 if (likely(!nr_pages)) 1860 return; 1861 1862 memcg = get_mem_cgroup_from_mm(current->mm); 1863 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1864 css_put(&memcg->css); 1865 current->memcg_nr_pages_over_high = 0; 1866 } 1867 1868 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1869 unsigned int nr_pages) 1870 { 1871 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1872 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1873 struct mem_cgroup *mem_over_limit; 1874 struct page_counter *counter; 1875 unsigned long nr_reclaimed; 1876 bool may_swap = true; 1877 bool drained = false; 1878 1879 if (mem_cgroup_is_root(memcg)) 1880 return 0; 1881 retry: 1882 if (consume_stock(memcg, nr_pages)) 1883 return 0; 1884 1885 if (!do_memsw_account() || 1886 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1887 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1888 goto done_restock; 1889 if (do_memsw_account()) 1890 page_counter_uncharge(&memcg->memsw, batch); 1891 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1892 } else { 1893 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1894 may_swap = false; 1895 } 1896 1897 if (batch > nr_pages) { 1898 batch = nr_pages; 1899 goto retry; 1900 } 1901 1902 /* 1903 * Unlike in global OOM situations, memcg is not in a physical 1904 * memory shortage. Allow dying and OOM-killed tasks to 1905 * bypass the last charges so that they can exit quickly and 1906 * free their memory. 1907 */ 1908 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1909 fatal_signal_pending(current) || 1910 current->flags & PF_EXITING)) 1911 goto force; 1912 1913 /* 1914 * Prevent unbounded recursion when reclaim operations need to 1915 * allocate memory. This might exceed the limits temporarily, 1916 * but we prefer facilitating memory reclaim and getting back 1917 * under the limit over triggering OOM kills in these cases. 1918 */ 1919 if (unlikely(current->flags & PF_MEMALLOC)) 1920 goto force; 1921 1922 if (unlikely(task_in_memcg_oom(current))) 1923 goto nomem; 1924 1925 if (!gfpflags_allow_blocking(gfp_mask)) 1926 goto nomem; 1927 1928 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1929 1930 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1931 gfp_mask, may_swap); 1932 1933 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1934 goto retry; 1935 1936 if (!drained) { 1937 drain_all_stock(mem_over_limit); 1938 drained = true; 1939 goto retry; 1940 } 1941 1942 if (gfp_mask & __GFP_NORETRY) 1943 goto nomem; 1944 /* 1945 * Even though the limit is exceeded at this point, reclaim 1946 * may have been able to free some pages. Retry the charge 1947 * before killing the task. 1948 * 1949 * Only for regular pages, though: huge pages are rather 1950 * unlikely to succeed so close to the limit, and we fall back 1951 * to regular pages anyway in case of failure. 1952 */ 1953 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1954 goto retry; 1955 /* 1956 * At task move, charge accounts can be doubly counted. So, it's 1957 * better to wait until the end of task_move if something is going on. 1958 */ 1959 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1960 goto retry; 1961 1962 if (nr_retries--) 1963 goto retry; 1964 1965 if (gfp_mask & __GFP_NOFAIL) 1966 goto force; 1967 1968 if (fatal_signal_pending(current)) 1969 goto force; 1970 1971 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 1972 1973 mem_cgroup_oom(mem_over_limit, gfp_mask, 1974 get_order(nr_pages * PAGE_SIZE)); 1975 nomem: 1976 if (!(gfp_mask & __GFP_NOFAIL)) 1977 return -ENOMEM; 1978 force: 1979 /* 1980 * The allocation either can't fail or will lead to more memory 1981 * being freed very soon. Allow memory usage go over the limit 1982 * temporarily by force charging it. 1983 */ 1984 page_counter_charge(&memcg->memory, nr_pages); 1985 if (do_memsw_account()) 1986 page_counter_charge(&memcg->memsw, nr_pages); 1987 css_get_many(&memcg->css, nr_pages); 1988 1989 return 0; 1990 1991 done_restock: 1992 css_get_many(&memcg->css, batch); 1993 if (batch > nr_pages) 1994 refill_stock(memcg, batch - nr_pages); 1995 1996 /* 1997 * If the hierarchy is above the normal consumption range, schedule 1998 * reclaim on returning to userland. We can perform reclaim here 1999 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2000 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2001 * not recorded as it most likely matches current's and won't 2002 * change in the meantime. As high limit is checked again before 2003 * reclaim, the cost of mismatch is negligible. 2004 */ 2005 do { 2006 if (page_counter_read(&memcg->memory) > memcg->high) { 2007 /* Don't bother a random interrupted task */ 2008 if (in_interrupt()) { 2009 schedule_work(&memcg->high_work); 2010 break; 2011 } 2012 current->memcg_nr_pages_over_high += batch; 2013 set_notify_resume(current); 2014 break; 2015 } 2016 } while ((memcg = parent_mem_cgroup(memcg))); 2017 2018 return 0; 2019 } 2020 2021 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2022 { 2023 if (mem_cgroup_is_root(memcg)) 2024 return; 2025 2026 page_counter_uncharge(&memcg->memory, nr_pages); 2027 if (do_memsw_account()) 2028 page_counter_uncharge(&memcg->memsw, nr_pages); 2029 2030 css_put_many(&memcg->css, nr_pages); 2031 } 2032 2033 static void lock_page_lru(struct page *page, int *isolated) 2034 { 2035 struct zone *zone = page_zone(page); 2036 2037 spin_lock_irq(zone_lru_lock(zone)); 2038 if (PageLRU(page)) { 2039 struct lruvec *lruvec; 2040 2041 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2042 ClearPageLRU(page); 2043 del_page_from_lru_list(page, lruvec, page_lru(page)); 2044 *isolated = 1; 2045 } else 2046 *isolated = 0; 2047 } 2048 2049 static void unlock_page_lru(struct page *page, int isolated) 2050 { 2051 struct zone *zone = page_zone(page); 2052 2053 if (isolated) { 2054 struct lruvec *lruvec; 2055 2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2057 VM_BUG_ON_PAGE(PageLRU(page), page); 2058 SetPageLRU(page); 2059 add_page_to_lru_list(page, lruvec, page_lru(page)); 2060 } 2061 spin_unlock_irq(zone_lru_lock(zone)); 2062 } 2063 2064 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2065 bool lrucare) 2066 { 2067 int isolated; 2068 2069 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2070 2071 /* 2072 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2073 * may already be on some other mem_cgroup's LRU. Take care of it. 2074 */ 2075 if (lrucare) 2076 lock_page_lru(page, &isolated); 2077 2078 /* 2079 * Nobody should be changing or seriously looking at 2080 * page->mem_cgroup at this point: 2081 * 2082 * - the page is uncharged 2083 * 2084 * - the page is off-LRU 2085 * 2086 * - an anonymous fault has exclusive page access, except for 2087 * a locked page table 2088 * 2089 * - a page cache insertion, a swapin fault, or a migration 2090 * have the page locked 2091 */ 2092 page->mem_cgroup = memcg; 2093 2094 if (lrucare) 2095 unlock_page_lru(page, isolated); 2096 } 2097 2098 #ifndef CONFIG_SLOB 2099 static int memcg_alloc_cache_id(void) 2100 { 2101 int id, size; 2102 int err; 2103 2104 id = ida_simple_get(&memcg_cache_ida, 2105 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2106 if (id < 0) 2107 return id; 2108 2109 if (id < memcg_nr_cache_ids) 2110 return id; 2111 2112 /* 2113 * There's no space for the new id in memcg_caches arrays, 2114 * so we have to grow them. 2115 */ 2116 down_write(&memcg_cache_ids_sem); 2117 2118 size = 2 * (id + 1); 2119 if (size < MEMCG_CACHES_MIN_SIZE) 2120 size = MEMCG_CACHES_MIN_SIZE; 2121 else if (size > MEMCG_CACHES_MAX_SIZE) 2122 size = MEMCG_CACHES_MAX_SIZE; 2123 2124 err = memcg_update_all_caches(size); 2125 if (!err) 2126 err = memcg_update_all_list_lrus(size); 2127 if (!err) 2128 memcg_nr_cache_ids = size; 2129 2130 up_write(&memcg_cache_ids_sem); 2131 2132 if (err) { 2133 ida_simple_remove(&memcg_cache_ida, id); 2134 return err; 2135 } 2136 return id; 2137 } 2138 2139 static void memcg_free_cache_id(int id) 2140 { 2141 ida_simple_remove(&memcg_cache_ida, id); 2142 } 2143 2144 struct memcg_kmem_cache_create_work { 2145 struct mem_cgroup *memcg; 2146 struct kmem_cache *cachep; 2147 struct work_struct work; 2148 }; 2149 2150 static void memcg_kmem_cache_create_func(struct work_struct *w) 2151 { 2152 struct memcg_kmem_cache_create_work *cw = 2153 container_of(w, struct memcg_kmem_cache_create_work, work); 2154 struct mem_cgroup *memcg = cw->memcg; 2155 struct kmem_cache *cachep = cw->cachep; 2156 2157 memcg_create_kmem_cache(memcg, cachep); 2158 2159 css_put(&memcg->css); 2160 kfree(cw); 2161 } 2162 2163 /* 2164 * Enqueue the creation of a per-memcg kmem_cache. 2165 */ 2166 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2167 struct kmem_cache *cachep) 2168 { 2169 struct memcg_kmem_cache_create_work *cw; 2170 2171 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2172 if (!cw) 2173 return; 2174 2175 css_get(&memcg->css); 2176 2177 cw->memcg = memcg; 2178 cw->cachep = cachep; 2179 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2180 2181 queue_work(memcg_kmem_cache_wq, &cw->work); 2182 } 2183 2184 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2185 struct kmem_cache *cachep) 2186 { 2187 /* 2188 * We need to stop accounting when we kmalloc, because if the 2189 * corresponding kmalloc cache is not yet created, the first allocation 2190 * in __memcg_schedule_kmem_cache_create will recurse. 2191 * 2192 * However, it is better to enclose the whole function. Depending on 2193 * the debugging options enabled, INIT_WORK(), for instance, can 2194 * trigger an allocation. This too, will make us recurse. Because at 2195 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2196 * the safest choice is to do it like this, wrapping the whole function. 2197 */ 2198 current->memcg_kmem_skip_account = 1; 2199 __memcg_schedule_kmem_cache_create(memcg, cachep); 2200 current->memcg_kmem_skip_account = 0; 2201 } 2202 2203 static inline bool memcg_kmem_bypass(void) 2204 { 2205 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2206 return true; 2207 return false; 2208 } 2209 2210 /** 2211 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2212 * @cachep: the original global kmem cache 2213 * 2214 * Return the kmem_cache we're supposed to use for a slab allocation. 2215 * We try to use the current memcg's version of the cache. 2216 * 2217 * If the cache does not exist yet, if we are the first user of it, we 2218 * create it asynchronously in a workqueue and let the current allocation 2219 * go through with the original cache. 2220 * 2221 * This function takes a reference to the cache it returns to assure it 2222 * won't get destroyed while we are working with it. Once the caller is 2223 * done with it, memcg_kmem_put_cache() must be called to release the 2224 * reference. 2225 */ 2226 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2227 { 2228 struct mem_cgroup *memcg; 2229 struct kmem_cache *memcg_cachep; 2230 int kmemcg_id; 2231 2232 VM_BUG_ON(!is_root_cache(cachep)); 2233 2234 if (memcg_kmem_bypass()) 2235 return cachep; 2236 2237 if (current->memcg_kmem_skip_account) 2238 return cachep; 2239 2240 memcg = get_mem_cgroup_from_mm(current->mm); 2241 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2242 if (kmemcg_id < 0) 2243 goto out; 2244 2245 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2246 if (likely(memcg_cachep)) 2247 return memcg_cachep; 2248 2249 /* 2250 * If we are in a safe context (can wait, and not in interrupt 2251 * context), we could be be predictable and return right away. 2252 * This would guarantee that the allocation being performed 2253 * already belongs in the new cache. 2254 * 2255 * However, there are some clashes that can arrive from locking. 2256 * For instance, because we acquire the slab_mutex while doing 2257 * memcg_create_kmem_cache, this means no further allocation 2258 * could happen with the slab_mutex held. So it's better to 2259 * defer everything. 2260 */ 2261 memcg_schedule_kmem_cache_create(memcg, cachep); 2262 out: 2263 css_put(&memcg->css); 2264 return cachep; 2265 } 2266 2267 /** 2268 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2269 * @cachep: the cache returned by memcg_kmem_get_cache 2270 */ 2271 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2272 { 2273 if (!is_root_cache(cachep)) 2274 css_put(&cachep->memcg_params.memcg->css); 2275 } 2276 2277 /** 2278 * memcg_kmem_charge: charge a kmem page 2279 * @page: page to charge 2280 * @gfp: reclaim mode 2281 * @order: allocation order 2282 * @memcg: memory cgroup to charge 2283 * 2284 * Returns 0 on success, an error code on failure. 2285 */ 2286 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2287 struct mem_cgroup *memcg) 2288 { 2289 unsigned int nr_pages = 1 << order; 2290 struct page_counter *counter; 2291 int ret; 2292 2293 ret = try_charge(memcg, gfp, nr_pages); 2294 if (ret) 2295 return ret; 2296 2297 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2298 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2299 cancel_charge(memcg, nr_pages); 2300 return -ENOMEM; 2301 } 2302 2303 page->mem_cgroup = memcg; 2304 2305 return 0; 2306 } 2307 2308 /** 2309 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2310 * @page: page to charge 2311 * @gfp: reclaim mode 2312 * @order: allocation order 2313 * 2314 * Returns 0 on success, an error code on failure. 2315 */ 2316 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2317 { 2318 struct mem_cgroup *memcg; 2319 int ret = 0; 2320 2321 if (memcg_kmem_bypass()) 2322 return 0; 2323 2324 memcg = get_mem_cgroup_from_mm(current->mm); 2325 if (!mem_cgroup_is_root(memcg)) { 2326 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2327 if (!ret) 2328 __SetPageKmemcg(page); 2329 } 2330 css_put(&memcg->css); 2331 return ret; 2332 } 2333 /** 2334 * memcg_kmem_uncharge: uncharge a kmem page 2335 * @page: page to uncharge 2336 * @order: allocation order 2337 */ 2338 void memcg_kmem_uncharge(struct page *page, int order) 2339 { 2340 struct mem_cgroup *memcg = page->mem_cgroup; 2341 unsigned int nr_pages = 1 << order; 2342 2343 if (!memcg) 2344 return; 2345 2346 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2347 2348 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2349 page_counter_uncharge(&memcg->kmem, nr_pages); 2350 2351 page_counter_uncharge(&memcg->memory, nr_pages); 2352 if (do_memsw_account()) 2353 page_counter_uncharge(&memcg->memsw, nr_pages); 2354 2355 page->mem_cgroup = NULL; 2356 2357 /* slab pages do not have PageKmemcg flag set */ 2358 if (PageKmemcg(page)) 2359 __ClearPageKmemcg(page); 2360 2361 css_put_many(&memcg->css, nr_pages); 2362 } 2363 #endif /* !CONFIG_SLOB */ 2364 2365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2366 2367 /* 2368 * Because tail pages are not marked as "used", set it. We're under 2369 * zone_lru_lock and migration entries setup in all page mappings. 2370 */ 2371 void mem_cgroup_split_huge_fixup(struct page *head) 2372 { 2373 int i; 2374 2375 if (mem_cgroup_disabled()) 2376 return; 2377 2378 for (i = 1; i < HPAGE_PMD_NR; i++) 2379 head[i].mem_cgroup = head->mem_cgroup; 2380 2381 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2382 HPAGE_PMD_NR); 2383 } 2384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2385 2386 #ifdef CONFIG_MEMCG_SWAP 2387 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2388 bool charge) 2389 { 2390 int val = (charge) ? 1 : -1; 2391 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2392 } 2393 2394 /** 2395 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2396 * @entry: swap entry to be moved 2397 * @from: mem_cgroup which the entry is moved from 2398 * @to: mem_cgroup which the entry is moved to 2399 * 2400 * It succeeds only when the swap_cgroup's record for this entry is the same 2401 * as the mem_cgroup's id of @from. 2402 * 2403 * Returns 0 on success, -EINVAL on failure. 2404 * 2405 * The caller must have charged to @to, IOW, called page_counter_charge() about 2406 * both res and memsw, and called css_get(). 2407 */ 2408 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2409 struct mem_cgroup *from, struct mem_cgroup *to) 2410 { 2411 unsigned short old_id, new_id; 2412 2413 old_id = mem_cgroup_id(from); 2414 new_id = mem_cgroup_id(to); 2415 2416 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2417 mem_cgroup_swap_statistics(from, false); 2418 mem_cgroup_swap_statistics(to, true); 2419 return 0; 2420 } 2421 return -EINVAL; 2422 } 2423 #else 2424 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2425 struct mem_cgroup *from, struct mem_cgroup *to) 2426 { 2427 return -EINVAL; 2428 } 2429 #endif 2430 2431 static DEFINE_MUTEX(memcg_limit_mutex); 2432 2433 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2434 unsigned long limit) 2435 { 2436 unsigned long curusage; 2437 unsigned long oldusage; 2438 bool enlarge = false; 2439 int retry_count; 2440 int ret; 2441 2442 /* 2443 * For keeping hierarchical_reclaim simple, how long we should retry 2444 * is depends on callers. We set our retry-count to be function 2445 * of # of children which we should visit in this loop. 2446 */ 2447 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2448 mem_cgroup_count_children(memcg); 2449 2450 oldusage = page_counter_read(&memcg->memory); 2451 2452 do { 2453 if (signal_pending(current)) { 2454 ret = -EINTR; 2455 break; 2456 } 2457 2458 mutex_lock(&memcg_limit_mutex); 2459 if (limit > memcg->memsw.limit) { 2460 mutex_unlock(&memcg_limit_mutex); 2461 ret = -EINVAL; 2462 break; 2463 } 2464 if (limit > memcg->memory.limit) 2465 enlarge = true; 2466 ret = page_counter_limit(&memcg->memory, limit); 2467 mutex_unlock(&memcg_limit_mutex); 2468 2469 if (!ret) 2470 break; 2471 2472 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2473 2474 curusage = page_counter_read(&memcg->memory); 2475 /* Usage is reduced ? */ 2476 if (curusage >= oldusage) 2477 retry_count--; 2478 else 2479 oldusage = curusage; 2480 } while (retry_count); 2481 2482 if (!ret && enlarge) 2483 memcg_oom_recover(memcg); 2484 2485 return ret; 2486 } 2487 2488 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2489 unsigned long limit) 2490 { 2491 unsigned long curusage; 2492 unsigned long oldusage; 2493 bool enlarge = false; 2494 int retry_count; 2495 int ret; 2496 2497 /* see mem_cgroup_resize_res_limit */ 2498 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2499 mem_cgroup_count_children(memcg); 2500 2501 oldusage = page_counter_read(&memcg->memsw); 2502 2503 do { 2504 if (signal_pending(current)) { 2505 ret = -EINTR; 2506 break; 2507 } 2508 2509 mutex_lock(&memcg_limit_mutex); 2510 if (limit < memcg->memory.limit) { 2511 mutex_unlock(&memcg_limit_mutex); 2512 ret = -EINVAL; 2513 break; 2514 } 2515 if (limit > memcg->memsw.limit) 2516 enlarge = true; 2517 ret = page_counter_limit(&memcg->memsw, limit); 2518 mutex_unlock(&memcg_limit_mutex); 2519 2520 if (!ret) 2521 break; 2522 2523 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2524 2525 curusage = page_counter_read(&memcg->memsw); 2526 /* Usage is reduced ? */ 2527 if (curusage >= oldusage) 2528 retry_count--; 2529 else 2530 oldusage = curusage; 2531 } while (retry_count); 2532 2533 if (!ret && enlarge) 2534 memcg_oom_recover(memcg); 2535 2536 return ret; 2537 } 2538 2539 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2540 gfp_t gfp_mask, 2541 unsigned long *total_scanned) 2542 { 2543 unsigned long nr_reclaimed = 0; 2544 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2545 unsigned long reclaimed; 2546 int loop = 0; 2547 struct mem_cgroup_tree_per_node *mctz; 2548 unsigned long excess; 2549 unsigned long nr_scanned; 2550 2551 if (order > 0) 2552 return 0; 2553 2554 mctz = soft_limit_tree_node(pgdat->node_id); 2555 2556 /* 2557 * Do not even bother to check the largest node if the root 2558 * is empty. Do it lockless to prevent lock bouncing. Races 2559 * are acceptable as soft limit is best effort anyway. 2560 */ 2561 if (RB_EMPTY_ROOT(&mctz->rb_root)) 2562 return 0; 2563 2564 /* 2565 * This loop can run a while, specially if mem_cgroup's continuously 2566 * keep exceeding their soft limit and putting the system under 2567 * pressure 2568 */ 2569 do { 2570 if (next_mz) 2571 mz = next_mz; 2572 else 2573 mz = mem_cgroup_largest_soft_limit_node(mctz); 2574 if (!mz) 2575 break; 2576 2577 nr_scanned = 0; 2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2579 gfp_mask, &nr_scanned); 2580 nr_reclaimed += reclaimed; 2581 *total_scanned += nr_scanned; 2582 spin_lock_irq(&mctz->lock); 2583 __mem_cgroup_remove_exceeded(mz, mctz); 2584 2585 /* 2586 * If we failed to reclaim anything from this memory cgroup 2587 * it is time to move on to the next cgroup 2588 */ 2589 next_mz = NULL; 2590 if (!reclaimed) 2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2592 2593 excess = soft_limit_excess(mz->memcg); 2594 /* 2595 * One school of thought says that we should not add 2596 * back the node to the tree if reclaim returns 0. 2597 * But our reclaim could return 0, simply because due 2598 * to priority we are exposing a smaller subset of 2599 * memory to reclaim from. Consider this as a longer 2600 * term TODO. 2601 */ 2602 /* If excess == 0, no tree ops */ 2603 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2604 spin_unlock_irq(&mctz->lock); 2605 css_put(&mz->memcg->css); 2606 loop++; 2607 /* 2608 * Could not reclaim anything and there are no more 2609 * mem cgroups to try or we seem to be looping without 2610 * reclaiming anything. 2611 */ 2612 if (!nr_reclaimed && 2613 (next_mz == NULL || 2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2615 break; 2616 } while (!nr_reclaimed); 2617 if (next_mz) 2618 css_put(&next_mz->memcg->css); 2619 return nr_reclaimed; 2620 } 2621 2622 /* 2623 * Test whether @memcg has children, dead or alive. Note that this 2624 * function doesn't care whether @memcg has use_hierarchy enabled and 2625 * returns %true if there are child csses according to the cgroup 2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2627 */ 2628 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2629 { 2630 bool ret; 2631 2632 rcu_read_lock(); 2633 ret = css_next_child(NULL, &memcg->css); 2634 rcu_read_unlock(); 2635 return ret; 2636 } 2637 2638 /* 2639 * Reclaims as many pages from the given memcg as possible. 2640 * 2641 * Caller is responsible for holding css reference for memcg. 2642 */ 2643 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2644 { 2645 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2646 2647 /* we call try-to-free pages for make this cgroup empty */ 2648 lru_add_drain_all(); 2649 /* try to free all pages in this cgroup */ 2650 while (nr_retries && page_counter_read(&memcg->memory)) { 2651 int progress; 2652 2653 if (signal_pending(current)) 2654 return -EINTR; 2655 2656 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2657 GFP_KERNEL, true); 2658 if (!progress) { 2659 nr_retries--; 2660 /* maybe some writeback is necessary */ 2661 congestion_wait(BLK_RW_ASYNC, HZ/10); 2662 } 2663 2664 } 2665 2666 return 0; 2667 } 2668 2669 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2670 char *buf, size_t nbytes, 2671 loff_t off) 2672 { 2673 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2674 2675 if (mem_cgroup_is_root(memcg)) 2676 return -EINVAL; 2677 return mem_cgroup_force_empty(memcg) ?: nbytes; 2678 } 2679 2680 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2681 struct cftype *cft) 2682 { 2683 return mem_cgroup_from_css(css)->use_hierarchy; 2684 } 2685 2686 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2687 struct cftype *cft, u64 val) 2688 { 2689 int retval = 0; 2690 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2691 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2692 2693 if (memcg->use_hierarchy == val) 2694 return 0; 2695 2696 /* 2697 * If parent's use_hierarchy is set, we can't make any modifications 2698 * in the child subtrees. If it is unset, then the change can 2699 * occur, provided the current cgroup has no children. 2700 * 2701 * For the root cgroup, parent_mem is NULL, we allow value to be 2702 * set if there are no children. 2703 */ 2704 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2705 (val == 1 || val == 0)) { 2706 if (!memcg_has_children(memcg)) 2707 memcg->use_hierarchy = val; 2708 else 2709 retval = -EBUSY; 2710 } else 2711 retval = -EINVAL; 2712 2713 return retval; 2714 } 2715 2716 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2717 { 2718 struct mem_cgroup *iter; 2719 int i; 2720 2721 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2722 2723 for_each_mem_cgroup_tree(iter, memcg) { 2724 for (i = 0; i < MEMCG_NR_STAT; i++) 2725 stat[i] += mem_cgroup_read_stat(iter, i); 2726 } 2727 } 2728 2729 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2730 { 2731 struct mem_cgroup *iter; 2732 int i; 2733 2734 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2735 2736 for_each_mem_cgroup_tree(iter, memcg) { 2737 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2738 events[i] += mem_cgroup_read_events(iter, i); 2739 } 2740 } 2741 2742 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2743 { 2744 unsigned long val = 0; 2745 2746 if (mem_cgroup_is_root(memcg)) { 2747 struct mem_cgroup *iter; 2748 2749 for_each_mem_cgroup_tree(iter, memcg) { 2750 val += mem_cgroup_read_stat(iter, 2751 MEM_CGROUP_STAT_CACHE); 2752 val += mem_cgroup_read_stat(iter, 2753 MEM_CGROUP_STAT_RSS); 2754 if (swap) 2755 val += mem_cgroup_read_stat(iter, 2756 MEM_CGROUP_STAT_SWAP); 2757 } 2758 } else { 2759 if (!swap) 2760 val = page_counter_read(&memcg->memory); 2761 else 2762 val = page_counter_read(&memcg->memsw); 2763 } 2764 return val; 2765 } 2766 2767 enum { 2768 RES_USAGE, 2769 RES_LIMIT, 2770 RES_MAX_USAGE, 2771 RES_FAILCNT, 2772 RES_SOFT_LIMIT, 2773 }; 2774 2775 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2776 struct cftype *cft) 2777 { 2778 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2779 struct page_counter *counter; 2780 2781 switch (MEMFILE_TYPE(cft->private)) { 2782 case _MEM: 2783 counter = &memcg->memory; 2784 break; 2785 case _MEMSWAP: 2786 counter = &memcg->memsw; 2787 break; 2788 case _KMEM: 2789 counter = &memcg->kmem; 2790 break; 2791 case _TCP: 2792 counter = &memcg->tcpmem; 2793 break; 2794 default: 2795 BUG(); 2796 } 2797 2798 switch (MEMFILE_ATTR(cft->private)) { 2799 case RES_USAGE: 2800 if (counter == &memcg->memory) 2801 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2802 if (counter == &memcg->memsw) 2803 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2804 return (u64)page_counter_read(counter) * PAGE_SIZE; 2805 case RES_LIMIT: 2806 return (u64)counter->limit * PAGE_SIZE; 2807 case RES_MAX_USAGE: 2808 return (u64)counter->watermark * PAGE_SIZE; 2809 case RES_FAILCNT: 2810 return counter->failcnt; 2811 case RES_SOFT_LIMIT: 2812 return (u64)memcg->soft_limit * PAGE_SIZE; 2813 default: 2814 BUG(); 2815 } 2816 } 2817 2818 #ifndef CONFIG_SLOB 2819 static int memcg_online_kmem(struct mem_cgroup *memcg) 2820 { 2821 int memcg_id; 2822 2823 if (cgroup_memory_nokmem) 2824 return 0; 2825 2826 BUG_ON(memcg->kmemcg_id >= 0); 2827 BUG_ON(memcg->kmem_state); 2828 2829 memcg_id = memcg_alloc_cache_id(); 2830 if (memcg_id < 0) 2831 return memcg_id; 2832 2833 static_branch_inc(&memcg_kmem_enabled_key); 2834 /* 2835 * A memory cgroup is considered kmem-online as soon as it gets 2836 * kmemcg_id. Setting the id after enabling static branching will 2837 * guarantee no one starts accounting before all call sites are 2838 * patched. 2839 */ 2840 memcg->kmemcg_id = memcg_id; 2841 memcg->kmem_state = KMEM_ONLINE; 2842 INIT_LIST_HEAD(&memcg->kmem_caches); 2843 2844 return 0; 2845 } 2846 2847 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2848 { 2849 struct cgroup_subsys_state *css; 2850 struct mem_cgroup *parent, *child; 2851 int kmemcg_id; 2852 2853 if (memcg->kmem_state != KMEM_ONLINE) 2854 return; 2855 /* 2856 * Clear the online state before clearing memcg_caches array 2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2858 * guarantees that no cache will be created for this cgroup 2859 * after we are done (see memcg_create_kmem_cache()). 2860 */ 2861 memcg->kmem_state = KMEM_ALLOCATED; 2862 2863 memcg_deactivate_kmem_caches(memcg); 2864 2865 kmemcg_id = memcg->kmemcg_id; 2866 BUG_ON(kmemcg_id < 0); 2867 2868 parent = parent_mem_cgroup(memcg); 2869 if (!parent) 2870 parent = root_mem_cgroup; 2871 2872 /* 2873 * Change kmemcg_id of this cgroup and all its descendants to the 2874 * parent's id, and then move all entries from this cgroup's list_lrus 2875 * to ones of the parent. After we have finished, all list_lrus 2876 * corresponding to this cgroup are guaranteed to remain empty. The 2877 * ordering is imposed by list_lru_node->lock taken by 2878 * memcg_drain_all_list_lrus(). 2879 */ 2880 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2881 css_for_each_descendant_pre(css, &memcg->css) { 2882 child = mem_cgroup_from_css(css); 2883 BUG_ON(child->kmemcg_id != kmemcg_id); 2884 child->kmemcg_id = parent->kmemcg_id; 2885 if (!memcg->use_hierarchy) 2886 break; 2887 } 2888 rcu_read_unlock(); 2889 2890 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2891 2892 memcg_free_cache_id(kmemcg_id); 2893 } 2894 2895 static void memcg_free_kmem(struct mem_cgroup *memcg) 2896 { 2897 /* css_alloc() failed, offlining didn't happen */ 2898 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2899 memcg_offline_kmem(memcg); 2900 2901 if (memcg->kmem_state == KMEM_ALLOCATED) { 2902 memcg_destroy_kmem_caches(memcg); 2903 static_branch_dec(&memcg_kmem_enabled_key); 2904 WARN_ON(page_counter_read(&memcg->kmem)); 2905 } 2906 } 2907 #else 2908 static int memcg_online_kmem(struct mem_cgroup *memcg) 2909 { 2910 return 0; 2911 } 2912 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2913 { 2914 } 2915 static void memcg_free_kmem(struct mem_cgroup *memcg) 2916 { 2917 } 2918 #endif /* !CONFIG_SLOB */ 2919 2920 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2921 unsigned long limit) 2922 { 2923 int ret; 2924 2925 mutex_lock(&memcg_limit_mutex); 2926 ret = page_counter_limit(&memcg->kmem, limit); 2927 mutex_unlock(&memcg_limit_mutex); 2928 return ret; 2929 } 2930 2931 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2932 { 2933 int ret; 2934 2935 mutex_lock(&memcg_limit_mutex); 2936 2937 ret = page_counter_limit(&memcg->tcpmem, limit); 2938 if (ret) 2939 goto out; 2940 2941 if (!memcg->tcpmem_active) { 2942 /* 2943 * The active flag needs to be written after the static_key 2944 * update. This is what guarantees that the socket activation 2945 * function is the last one to run. See mem_cgroup_sk_alloc() 2946 * for details, and note that we don't mark any socket as 2947 * belonging to this memcg until that flag is up. 2948 * 2949 * We need to do this, because static_keys will span multiple 2950 * sites, but we can't control their order. If we mark a socket 2951 * as accounted, but the accounting functions are not patched in 2952 * yet, we'll lose accounting. 2953 * 2954 * We never race with the readers in mem_cgroup_sk_alloc(), 2955 * because when this value change, the code to process it is not 2956 * patched in yet. 2957 */ 2958 static_branch_inc(&memcg_sockets_enabled_key); 2959 memcg->tcpmem_active = true; 2960 } 2961 out: 2962 mutex_unlock(&memcg_limit_mutex); 2963 return ret; 2964 } 2965 2966 /* 2967 * The user of this function is... 2968 * RES_LIMIT. 2969 */ 2970 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2971 char *buf, size_t nbytes, loff_t off) 2972 { 2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2974 unsigned long nr_pages; 2975 int ret; 2976 2977 buf = strstrip(buf); 2978 ret = page_counter_memparse(buf, "-1", &nr_pages); 2979 if (ret) 2980 return ret; 2981 2982 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2983 case RES_LIMIT: 2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2985 ret = -EINVAL; 2986 break; 2987 } 2988 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2989 case _MEM: 2990 ret = mem_cgroup_resize_limit(memcg, nr_pages); 2991 break; 2992 case _MEMSWAP: 2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 2994 break; 2995 case _KMEM: 2996 ret = memcg_update_kmem_limit(memcg, nr_pages); 2997 break; 2998 case _TCP: 2999 ret = memcg_update_tcp_limit(memcg, nr_pages); 3000 break; 3001 } 3002 break; 3003 case RES_SOFT_LIMIT: 3004 memcg->soft_limit = nr_pages; 3005 ret = 0; 3006 break; 3007 } 3008 return ret ?: nbytes; 3009 } 3010 3011 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3012 size_t nbytes, loff_t off) 3013 { 3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3015 struct page_counter *counter; 3016 3017 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3018 case _MEM: 3019 counter = &memcg->memory; 3020 break; 3021 case _MEMSWAP: 3022 counter = &memcg->memsw; 3023 break; 3024 case _KMEM: 3025 counter = &memcg->kmem; 3026 break; 3027 case _TCP: 3028 counter = &memcg->tcpmem; 3029 break; 3030 default: 3031 BUG(); 3032 } 3033 3034 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3035 case RES_MAX_USAGE: 3036 page_counter_reset_watermark(counter); 3037 break; 3038 case RES_FAILCNT: 3039 counter->failcnt = 0; 3040 break; 3041 default: 3042 BUG(); 3043 } 3044 3045 return nbytes; 3046 } 3047 3048 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3049 struct cftype *cft) 3050 { 3051 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3052 } 3053 3054 #ifdef CONFIG_MMU 3055 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3056 struct cftype *cft, u64 val) 3057 { 3058 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3059 3060 if (val & ~MOVE_MASK) 3061 return -EINVAL; 3062 3063 /* 3064 * No kind of locking is needed in here, because ->can_attach() will 3065 * check this value once in the beginning of the process, and then carry 3066 * on with stale data. This means that changes to this value will only 3067 * affect task migrations starting after the change. 3068 */ 3069 memcg->move_charge_at_immigrate = val; 3070 return 0; 3071 } 3072 #else 3073 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3074 struct cftype *cft, u64 val) 3075 { 3076 return -ENOSYS; 3077 } 3078 #endif 3079 3080 #ifdef CONFIG_NUMA 3081 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3082 { 3083 struct numa_stat { 3084 const char *name; 3085 unsigned int lru_mask; 3086 }; 3087 3088 static const struct numa_stat stats[] = { 3089 { "total", LRU_ALL }, 3090 { "file", LRU_ALL_FILE }, 3091 { "anon", LRU_ALL_ANON }, 3092 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3093 }; 3094 const struct numa_stat *stat; 3095 int nid; 3096 unsigned long nr; 3097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3098 3099 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3100 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3101 seq_printf(m, "%s=%lu", stat->name, nr); 3102 for_each_node_state(nid, N_MEMORY) { 3103 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3104 stat->lru_mask); 3105 seq_printf(m, " N%d=%lu", nid, nr); 3106 } 3107 seq_putc(m, '\n'); 3108 } 3109 3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3111 struct mem_cgroup *iter; 3112 3113 nr = 0; 3114 for_each_mem_cgroup_tree(iter, memcg) 3115 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3116 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3117 for_each_node_state(nid, N_MEMORY) { 3118 nr = 0; 3119 for_each_mem_cgroup_tree(iter, memcg) 3120 nr += mem_cgroup_node_nr_lru_pages( 3121 iter, nid, stat->lru_mask); 3122 seq_printf(m, " N%d=%lu", nid, nr); 3123 } 3124 seq_putc(m, '\n'); 3125 } 3126 3127 return 0; 3128 } 3129 #endif /* CONFIG_NUMA */ 3130 3131 static int memcg_stat_show(struct seq_file *m, void *v) 3132 { 3133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3134 unsigned long memory, memsw; 3135 struct mem_cgroup *mi; 3136 unsigned int i; 3137 3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3139 MEM_CGROUP_STAT_NSTATS); 3140 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3141 MEM_CGROUP_EVENTS_NSTATS); 3142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3143 3144 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3145 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3146 continue; 3147 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3148 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3149 } 3150 3151 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3152 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3153 mem_cgroup_read_events(memcg, i)); 3154 3155 for (i = 0; i < NR_LRU_LISTS; i++) 3156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3158 3159 /* Hierarchical information */ 3160 memory = memsw = PAGE_COUNTER_MAX; 3161 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3162 memory = min(memory, mi->memory.limit); 3163 memsw = min(memsw, mi->memsw.limit); 3164 } 3165 seq_printf(m, "hierarchical_memory_limit %llu\n", 3166 (u64)memory * PAGE_SIZE); 3167 if (do_memsw_account()) 3168 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3169 (u64)memsw * PAGE_SIZE); 3170 3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3172 unsigned long long val = 0; 3173 3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3175 continue; 3176 for_each_mem_cgroup_tree(mi, memcg) 3177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3178 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3179 } 3180 3181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3182 unsigned long long val = 0; 3183 3184 for_each_mem_cgroup_tree(mi, memcg) 3185 val += mem_cgroup_read_events(mi, i); 3186 seq_printf(m, "total_%s %llu\n", 3187 mem_cgroup_events_names[i], val); 3188 } 3189 3190 for (i = 0; i < NR_LRU_LISTS; i++) { 3191 unsigned long long val = 0; 3192 3193 for_each_mem_cgroup_tree(mi, memcg) 3194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3196 } 3197 3198 #ifdef CONFIG_DEBUG_VM 3199 { 3200 pg_data_t *pgdat; 3201 struct mem_cgroup_per_node *mz; 3202 struct zone_reclaim_stat *rstat; 3203 unsigned long recent_rotated[2] = {0, 0}; 3204 unsigned long recent_scanned[2] = {0, 0}; 3205 3206 for_each_online_pgdat(pgdat) { 3207 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3208 rstat = &mz->lruvec.reclaim_stat; 3209 3210 recent_rotated[0] += rstat->recent_rotated[0]; 3211 recent_rotated[1] += rstat->recent_rotated[1]; 3212 recent_scanned[0] += rstat->recent_scanned[0]; 3213 recent_scanned[1] += rstat->recent_scanned[1]; 3214 } 3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3219 } 3220 #endif 3221 3222 return 0; 3223 } 3224 3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3226 struct cftype *cft) 3227 { 3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3229 3230 return mem_cgroup_swappiness(memcg); 3231 } 3232 3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3234 struct cftype *cft, u64 val) 3235 { 3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3237 3238 if (val > 100) 3239 return -EINVAL; 3240 3241 if (css->parent) 3242 memcg->swappiness = val; 3243 else 3244 vm_swappiness = val; 3245 3246 return 0; 3247 } 3248 3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3250 { 3251 struct mem_cgroup_threshold_ary *t; 3252 unsigned long usage; 3253 int i; 3254 3255 rcu_read_lock(); 3256 if (!swap) 3257 t = rcu_dereference(memcg->thresholds.primary); 3258 else 3259 t = rcu_dereference(memcg->memsw_thresholds.primary); 3260 3261 if (!t) 3262 goto unlock; 3263 3264 usage = mem_cgroup_usage(memcg, swap); 3265 3266 /* 3267 * current_threshold points to threshold just below or equal to usage. 3268 * If it's not true, a threshold was crossed after last 3269 * call of __mem_cgroup_threshold(). 3270 */ 3271 i = t->current_threshold; 3272 3273 /* 3274 * Iterate backward over array of thresholds starting from 3275 * current_threshold and check if a threshold is crossed. 3276 * If none of thresholds below usage is crossed, we read 3277 * only one element of the array here. 3278 */ 3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3280 eventfd_signal(t->entries[i].eventfd, 1); 3281 3282 /* i = current_threshold + 1 */ 3283 i++; 3284 3285 /* 3286 * Iterate forward over array of thresholds starting from 3287 * current_threshold+1 and check if a threshold is crossed. 3288 * If none of thresholds above usage is crossed, we read 3289 * only one element of the array here. 3290 */ 3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3292 eventfd_signal(t->entries[i].eventfd, 1); 3293 3294 /* Update current_threshold */ 3295 t->current_threshold = i - 1; 3296 unlock: 3297 rcu_read_unlock(); 3298 } 3299 3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3301 { 3302 while (memcg) { 3303 __mem_cgroup_threshold(memcg, false); 3304 if (do_memsw_account()) 3305 __mem_cgroup_threshold(memcg, true); 3306 3307 memcg = parent_mem_cgroup(memcg); 3308 } 3309 } 3310 3311 static int compare_thresholds(const void *a, const void *b) 3312 { 3313 const struct mem_cgroup_threshold *_a = a; 3314 const struct mem_cgroup_threshold *_b = b; 3315 3316 if (_a->threshold > _b->threshold) 3317 return 1; 3318 3319 if (_a->threshold < _b->threshold) 3320 return -1; 3321 3322 return 0; 3323 } 3324 3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3326 { 3327 struct mem_cgroup_eventfd_list *ev; 3328 3329 spin_lock(&memcg_oom_lock); 3330 3331 list_for_each_entry(ev, &memcg->oom_notify, list) 3332 eventfd_signal(ev->eventfd, 1); 3333 3334 spin_unlock(&memcg_oom_lock); 3335 return 0; 3336 } 3337 3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3339 { 3340 struct mem_cgroup *iter; 3341 3342 for_each_mem_cgroup_tree(iter, memcg) 3343 mem_cgroup_oom_notify_cb(iter); 3344 } 3345 3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3348 { 3349 struct mem_cgroup_thresholds *thresholds; 3350 struct mem_cgroup_threshold_ary *new; 3351 unsigned long threshold; 3352 unsigned long usage; 3353 int i, size, ret; 3354 3355 ret = page_counter_memparse(args, "-1", &threshold); 3356 if (ret) 3357 return ret; 3358 3359 mutex_lock(&memcg->thresholds_lock); 3360 3361 if (type == _MEM) { 3362 thresholds = &memcg->thresholds; 3363 usage = mem_cgroup_usage(memcg, false); 3364 } else if (type == _MEMSWAP) { 3365 thresholds = &memcg->memsw_thresholds; 3366 usage = mem_cgroup_usage(memcg, true); 3367 } else 3368 BUG(); 3369 3370 /* Check if a threshold crossed before adding a new one */ 3371 if (thresholds->primary) 3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3373 3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3375 3376 /* Allocate memory for new array of thresholds */ 3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3378 GFP_KERNEL); 3379 if (!new) { 3380 ret = -ENOMEM; 3381 goto unlock; 3382 } 3383 new->size = size; 3384 3385 /* Copy thresholds (if any) to new array */ 3386 if (thresholds->primary) { 3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3388 sizeof(struct mem_cgroup_threshold)); 3389 } 3390 3391 /* Add new threshold */ 3392 new->entries[size - 1].eventfd = eventfd; 3393 new->entries[size - 1].threshold = threshold; 3394 3395 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3397 compare_thresholds, NULL); 3398 3399 /* Find current threshold */ 3400 new->current_threshold = -1; 3401 for (i = 0; i < size; i++) { 3402 if (new->entries[i].threshold <= usage) { 3403 /* 3404 * new->current_threshold will not be used until 3405 * rcu_assign_pointer(), so it's safe to increment 3406 * it here. 3407 */ 3408 ++new->current_threshold; 3409 } else 3410 break; 3411 } 3412 3413 /* Free old spare buffer and save old primary buffer as spare */ 3414 kfree(thresholds->spare); 3415 thresholds->spare = thresholds->primary; 3416 3417 rcu_assign_pointer(thresholds->primary, new); 3418 3419 /* To be sure that nobody uses thresholds */ 3420 synchronize_rcu(); 3421 3422 unlock: 3423 mutex_unlock(&memcg->thresholds_lock); 3424 3425 return ret; 3426 } 3427 3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3429 struct eventfd_ctx *eventfd, const char *args) 3430 { 3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3432 } 3433 3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3435 struct eventfd_ctx *eventfd, const char *args) 3436 { 3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3438 } 3439 3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3441 struct eventfd_ctx *eventfd, enum res_type type) 3442 { 3443 struct mem_cgroup_thresholds *thresholds; 3444 struct mem_cgroup_threshold_ary *new; 3445 unsigned long usage; 3446 int i, j, size; 3447 3448 mutex_lock(&memcg->thresholds_lock); 3449 3450 if (type == _MEM) { 3451 thresholds = &memcg->thresholds; 3452 usage = mem_cgroup_usage(memcg, false); 3453 } else if (type == _MEMSWAP) { 3454 thresholds = &memcg->memsw_thresholds; 3455 usage = mem_cgroup_usage(memcg, true); 3456 } else 3457 BUG(); 3458 3459 if (!thresholds->primary) 3460 goto unlock; 3461 3462 /* Check if a threshold crossed before removing */ 3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3464 3465 /* Calculate new number of threshold */ 3466 size = 0; 3467 for (i = 0; i < thresholds->primary->size; i++) { 3468 if (thresholds->primary->entries[i].eventfd != eventfd) 3469 size++; 3470 } 3471 3472 new = thresholds->spare; 3473 3474 /* Set thresholds array to NULL if we don't have thresholds */ 3475 if (!size) { 3476 kfree(new); 3477 new = NULL; 3478 goto swap_buffers; 3479 } 3480 3481 new->size = size; 3482 3483 /* Copy thresholds and find current threshold */ 3484 new->current_threshold = -1; 3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3486 if (thresholds->primary->entries[i].eventfd == eventfd) 3487 continue; 3488 3489 new->entries[j] = thresholds->primary->entries[i]; 3490 if (new->entries[j].threshold <= usage) { 3491 /* 3492 * new->current_threshold will not be used 3493 * until rcu_assign_pointer(), so it's safe to increment 3494 * it here. 3495 */ 3496 ++new->current_threshold; 3497 } 3498 j++; 3499 } 3500 3501 swap_buffers: 3502 /* Swap primary and spare array */ 3503 thresholds->spare = thresholds->primary; 3504 3505 rcu_assign_pointer(thresholds->primary, new); 3506 3507 /* To be sure that nobody uses thresholds */ 3508 synchronize_rcu(); 3509 3510 /* If all events are unregistered, free the spare array */ 3511 if (!new) { 3512 kfree(thresholds->spare); 3513 thresholds->spare = NULL; 3514 } 3515 unlock: 3516 mutex_unlock(&memcg->thresholds_lock); 3517 } 3518 3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3520 struct eventfd_ctx *eventfd) 3521 { 3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3523 } 3524 3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3526 struct eventfd_ctx *eventfd) 3527 { 3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3529 } 3530 3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3532 struct eventfd_ctx *eventfd, const char *args) 3533 { 3534 struct mem_cgroup_eventfd_list *event; 3535 3536 event = kmalloc(sizeof(*event), GFP_KERNEL); 3537 if (!event) 3538 return -ENOMEM; 3539 3540 spin_lock(&memcg_oom_lock); 3541 3542 event->eventfd = eventfd; 3543 list_add(&event->list, &memcg->oom_notify); 3544 3545 /* already in OOM ? */ 3546 if (memcg->under_oom) 3547 eventfd_signal(eventfd, 1); 3548 spin_unlock(&memcg_oom_lock); 3549 3550 return 0; 3551 } 3552 3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3554 struct eventfd_ctx *eventfd) 3555 { 3556 struct mem_cgroup_eventfd_list *ev, *tmp; 3557 3558 spin_lock(&memcg_oom_lock); 3559 3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3561 if (ev->eventfd == eventfd) { 3562 list_del(&ev->list); 3563 kfree(ev); 3564 } 3565 } 3566 3567 spin_unlock(&memcg_oom_lock); 3568 } 3569 3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3571 { 3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3573 3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3576 return 0; 3577 } 3578 3579 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3580 struct cftype *cft, u64 val) 3581 { 3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3583 3584 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3585 if (!css->parent || !((val == 0) || (val == 1))) 3586 return -EINVAL; 3587 3588 memcg->oom_kill_disable = val; 3589 if (!val) 3590 memcg_oom_recover(memcg); 3591 3592 return 0; 3593 } 3594 3595 #ifdef CONFIG_CGROUP_WRITEBACK 3596 3597 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3598 { 3599 return &memcg->cgwb_list; 3600 } 3601 3602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3603 { 3604 return wb_domain_init(&memcg->cgwb_domain, gfp); 3605 } 3606 3607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3608 { 3609 wb_domain_exit(&memcg->cgwb_domain); 3610 } 3611 3612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3613 { 3614 wb_domain_size_changed(&memcg->cgwb_domain); 3615 } 3616 3617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3618 { 3619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3620 3621 if (!memcg->css.parent) 3622 return NULL; 3623 3624 return &memcg->cgwb_domain; 3625 } 3626 3627 /** 3628 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3629 * @wb: bdi_writeback in question 3630 * @pfilepages: out parameter for number of file pages 3631 * @pheadroom: out parameter for number of allocatable pages according to memcg 3632 * @pdirty: out parameter for number of dirty pages 3633 * @pwriteback: out parameter for number of pages under writeback 3634 * 3635 * Determine the numbers of file, headroom, dirty, and writeback pages in 3636 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3637 * is a bit more involved. 3638 * 3639 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3640 * headroom is calculated as the lowest headroom of itself and the 3641 * ancestors. Note that this doesn't consider the actual amount of 3642 * available memory in the system. The caller should further cap 3643 * *@pheadroom accordingly. 3644 */ 3645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3646 unsigned long *pheadroom, unsigned long *pdirty, 3647 unsigned long *pwriteback) 3648 { 3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3650 struct mem_cgroup *parent; 3651 3652 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3653 3654 /* this should eventually include NR_UNSTABLE_NFS */ 3655 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3656 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3657 (1 << LRU_ACTIVE_FILE)); 3658 *pheadroom = PAGE_COUNTER_MAX; 3659 3660 while ((parent = parent_mem_cgroup(memcg))) { 3661 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3662 unsigned long used = page_counter_read(&memcg->memory); 3663 3664 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3665 memcg = parent; 3666 } 3667 } 3668 3669 #else /* CONFIG_CGROUP_WRITEBACK */ 3670 3671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3672 { 3673 return 0; 3674 } 3675 3676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3677 { 3678 } 3679 3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3681 { 3682 } 3683 3684 #endif /* CONFIG_CGROUP_WRITEBACK */ 3685 3686 /* 3687 * DO NOT USE IN NEW FILES. 3688 * 3689 * "cgroup.event_control" implementation. 3690 * 3691 * This is way over-engineered. It tries to support fully configurable 3692 * events for each user. Such level of flexibility is completely 3693 * unnecessary especially in the light of the planned unified hierarchy. 3694 * 3695 * Please deprecate this and replace with something simpler if at all 3696 * possible. 3697 */ 3698 3699 /* 3700 * Unregister event and free resources. 3701 * 3702 * Gets called from workqueue. 3703 */ 3704 static void memcg_event_remove(struct work_struct *work) 3705 { 3706 struct mem_cgroup_event *event = 3707 container_of(work, struct mem_cgroup_event, remove); 3708 struct mem_cgroup *memcg = event->memcg; 3709 3710 remove_wait_queue(event->wqh, &event->wait); 3711 3712 event->unregister_event(memcg, event->eventfd); 3713 3714 /* Notify userspace the event is going away. */ 3715 eventfd_signal(event->eventfd, 1); 3716 3717 eventfd_ctx_put(event->eventfd); 3718 kfree(event); 3719 css_put(&memcg->css); 3720 } 3721 3722 /* 3723 * Gets called on POLLHUP on eventfd when user closes it. 3724 * 3725 * Called with wqh->lock held and interrupts disabled. 3726 */ 3727 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3728 int sync, void *key) 3729 { 3730 struct mem_cgroup_event *event = 3731 container_of(wait, struct mem_cgroup_event, wait); 3732 struct mem_cgroup *memcg = event->memcg; 3733 unsigned long flags = (unsigned long)key; 3734 3735 if (flags & POLLHUP) { 3736 /* 3737 * If the event has been detached at cgroup removal, we 3738 * can simply return knowing the other side will cleanup 3739 * for us. 3740 * 3741 * We can't race against event freeing since the other 3742 * side will require wqh->lock via remove_wait_queue(), 3743 * which we hold. 3744 */ 3745 spin_lock(&memcg->event_list_lock); 3746 if (!list_empty(&event->list)) { 3747 list_del_init(&event->list); 3748 /* 3749 * We are in atomic context, but cgroup_event_remove() 3750 * may sleep, so we have to call it in workqueue. 3751 */ 3752 schedule_work(&event->remove); 3753 } 3754 spin_unlock(&memcg->event_list_lock); 3755 } 3756 3757 return 0; 3758 } 3759 3760 static void memcg_event_ptable_queue_proc(struct file *file, 3761 wait_queue_head_t *wqh, poll_table *pt) 3762 { 3763 struct mem_cgroup_event *event = 3764 container_of(pt, struct mem_cgroup_event, pt); 3765 3766 event->wqh = wqh; 3767 add_wait_queue(wqh, &event->wait); 3768 } 3769 3770 /* 3771 * DO NOT USE IN NEW FILES. 3772 * 3773 * Parse input and register new cgroup event handler. 3774 * 3775 * Input must be in format '<event_fd> <control_fd> <args>'. 3776 * Interpretation of args is defined by control file implementation. 3777 */ 3778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3779 char *buf, size_t nbytes, loff_t off) 3780 { 3781 struct cgroup_subsys_state *css = of_css(of); 3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3783 struct mem_cgroup_event *event; 3784 struct cgroup_subsys_state *cfile_css; 3785 unsigned int efd, cfd; 3786 struct fd efile; 3787 struct fd cfile; 3788 const char *name; 3789 char *endp; 3790 int ret; 3791 3792 buf = strstrip(buf); 3793 3794 efd = simple_strtoul(buf, &endp, 10); 3795 if (*endp != ' ') 3796 return -EINVAL; 3797 buf = endp + 1; 3798 3799 cfd = simple_strtoul(buf, &endp, 10); 3800 if ((*endp != ' ') && (*endp != '\0')) 3801 return -EINVAL; 3802 buf = endp + 1; 3803 3804 event = kzalloc(sizeof(*event), GFP_KERNEL); 3805 if (!event) 3806 return -ENOMEM; 3807 3808 event->memcg = memcg; 3809 INIT_LIST_HEAD(&event->list); 3810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3811 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3812 INIT_WORK(&event->remove, memcg_event_remove); 3813 3814 efile = fdget(efd); 3815 if (!efile.file) { 3816 ret = -EBADF; 3817 goto out_kfree; 3818 } 3819 3820 event->eventfd = eventfd_ctx_fileget(efile.file); 3821 if (IS_ERR(event->eventfd)) { 3822 ret = PTR_ERR(event->eventfd); 3823 goto out_put_efile; 3824 } 3825 3826 cfile = fdget(cfd); 3827 if (!cfile.file) { 3828 ret = -EBADF; 3829 goto out_put_eventfd; 3830 } 3831 3832 /* the process need read permission on control file */ 3833 /* AV: shouldn't we check that it's been opened for read instead? */ 3834 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3835 if (ret < 0) 3836 goto out_put_cfile; 3837 3838 /* 3839 * Determine the event callbacks and set them in @event. This used 3840 * to be done via struct cftype but cgroup core no longer knows 3841 * about these events. The following is crude but the whole thing 3842 * is for compatibility anyway. 3843 * 3844 * DO NOT ADD NEW FILES. 3845 */ 3846 name = cfile.file->f_path.dentry->d_name.name; 3847 3848 if (!strcmp(name, "memory.usage_in_bytes")) { 3849 event->register_event = mem_cgroup_usage_register_event; 3850 event->unregister_event = mem_cgroup_usage_unregister_event; 3851 } else if (!strcmp(name, "memory.oom_control")) { 3852 event->register_event = mem_cgroup_oom_register_event; 3853 event->unregister_event = mem_cgroup_oom_unregister_event; 3854 } else if (!strcmp(name, "memory.pressure_level")) { 3855 event->register_event = vmpressure_register_event; 3856 event->unregister_event = vmpressure_unregister_event; 3857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3858 event->register_event = memsw_cgroup_usage_register_event; 3859 event->unregister_event = memsw_cgroup_usage_unregister_event; 3860 } else { 3861 ret = -EINVAL; 3862 goto out_put_cfile; 3863 } 3864 3865 /* 3866 * Verify @cfile should belong to @css. Also, remaining events are 3867 * automatically removed on cgroup destruction but the removal is 3868 * asynchronous, so take an extra ref on @css. 3869 */ 3870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3871 &memory_cgrp_subsys); 3872 ret = -EINVAL; 3873 if (IS_ERR(cfile_css)) 3874 goto out_put_cfile; 3875 if (cfile_css != css) { 3876 css_put(cfile_css); 3877 goto out_put_cfile; 3878 } 3879 3880 ret = event->register_event(memcg, event->eventfd, buf); 3881 if (ret) 3882 goto out_put_css; 3883 3884 efile.file->f_op->poll(efile.file, &event->pt); 3885 3886 spin_lock(&memcg->event_list_lock); 3887 list_add(&event->list, &memcg->event_list); 3888 spin_unlock(&memcg->event_list_lock); 3889 3890 fdput(cfile); 3891 fdput(efile); 3892 3893 return nbytes; 3894 3895 out_put_css: 3896 css_put(css); 3897 out_put_cfile: 3898 fdput(cfile); 3899 out_put_eventfd: 3900 eventfd_ctx_put(event->eventfd); 3901 out_put_efile: 3902 fdput(efile); 3903 out_kfree: 3904 kfree(event); 3905 3906 return ret; 3907 } 3908 3909 static struct cftype mem_cgroup_legacy_files[] = { 3910 { 3911 .name = "usage_in_bytes", 3912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3913 .read_u64 = mem_cgroup_read_u64, 3914 }, 3915 { 3916 .name = "max_usage_in_bytes", 3917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3918 .write = mem_cgroup_reset, 3919 .read_u64 = mem_cgroup_read_u64, 3920 }, 3921 { 3922 .name = "limit_in_bytes", 3923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3924 .write = mem_cgroup_write, 3925 .read_u64 = mem_cgroup_read_u64, 3926 }, 3927 { 3928 .name = "soft_limit_in_bytes", 3929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3930 .write = mem_cgroup_write, 3931 .read_u64 = mem_cgroup_read_u64, 3932 }, 3933 { 3934 .name = "failcnt", 3935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3936 .write = mem_cgroup_reset, 3937 .read_u64 = mem_cgroup_read_u64, 3938 }, 3939 { 3940 .name = "stat", 3941 .seq_show = memcg_stat_show, 3942 }, 3943 { 3944 .name = "force_empty", 3945 .write = mem_cgroup_force_empty_write, 3946 }, 3947 { 3948 .name = "use_hierarchy", 3949 .write_u64 = mem_cgroup_hierarchy_write, 3950 .read_u64 = mem_cgroup_hierarchy_read, 3951 }, 3952 { 3953 .name = "cgroup.event_control", /* XXX: for compat */ 3954 .write = memcg_write_event_control, 3955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3956 }, 3957 { 3958 .name = "swappiness", 3959 .read_u64 = mem_cgroup_swappiness_read, 3960 .write_u64 = mem_cgroup_swappiness_write, 3961 }, 3962 { 3963 .name = "move_charge_at_immigrate", 3964 .read_u64 = mem_cgroup_move_charge_read, 3965 .write_u64 = mem_cgroup_move_charge_write, 3966 }, 3967 { 3968 .name = "oom_control", 3969 .seq_show = mem_cgroup_oom_control_read, 3970 .write_u64 = mem_cgroup_oom_control_write, 3971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3972 }, 3973 { 3974 .name = "pressure_level", 3975 }, 3976 #ifdef CONFIG_NUMA 3977 { 3978 .name = "numa_stat", 3979 .seq_show = memcg_numa_stat_show, 3980 }, 3981 #endif 3982 { 3983 .name = "kmem.limit_in_bytes", 3984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3985 .write = mem_cgroup_write, 3986 .read_u64 = mem_cgroup_read_u64, 3987 }, 3988 { 3989 .name = "kmem.usage_in_bytes", 3990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 3991 .read_u64 = mem_cgroup_read_u64, 3992 }, 3993 { 3994 .name = "kmem.failcnt", 3995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 3996 .write = mem_cgroup_reset, 3997 .read_u64 = mem_cgroup_read_u64, 3998 }, 3999 { 4000 .name = "kmem.max_usage_in_bytes", 4001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4002 .write = mem_cgroup_reset, 4003 .read_u64 = mem_cgroup_read_u64, 4004 }, 4005 #ifdef CONFIG_SLABINFO 4006 { 4007 .name = "kmem.slabinfo", 4008 .seq_start = memcg_slab_start, 4009 .seq_next = memcg_slab_next, 4010 .seq_stop = memcg_slab_stop, 4011 .seq_show = memcg_slab_show, 4012 }, 4013 #endif 4014 { 4015 .name = "kmem.tcp.limit_in_bytes", 4016 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4017 .write = mem_cgroup_write, 4018 .read_u64 = mem_cgroup_read_u64, 4019 }, 4020 { 4021 .name = "kmem.tcp.usage_in_bytes", 4022 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4023 .read_u64 = mem_cgroup_read_u64, 4024 }, 4025 { 4026 .name = "kmem.tcp.failcnt", 4027 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4028 .write = mem_cgroup_reset, 4029 .read_u64 = mem_cgroup_read_u64, 4030 }, 4031 { 4032 .name = "kmem.tcp.max_usage_in_bytes", 4033 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4034 .write = mem_cgroup_reset, 4035 .read_u64 = mem_cgroup_read_u64, 4036 }, 4037 { }, /* terminate */ 4038 }; 4039 4040 /* 4041 * Private memory cgroup IDR 4042 * 4043 * Swap-out records and page cache shadow entries need to store memcg 4044 * references in constrained space, so we maintain an ID space that is 4045 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4046 * memory-controlled cgroups to 64k. 4047 * 4048 * However, there usually are many references to the oflline CSS after 4049 * the cgroup has been destroyed, such as page cache or reclaimable 4050 * slab objects, that don't need to hang on to the ID. We want to keep 4051 * those dead CSS from occupying IDs, or we might quickly exhaust the 4052 * relatively small ID space and prevent the creation of new cgroups 4053 * even when there are much fewer than 64k cgroups - possibly none. 4054 * 4055 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4056 * be freed and recycled when it's no longer needed, which is usually 4057 * when the CSS is offlined. 4058 * 4059 * The only exception to that are records of swapped out tmpfs/shmem 4060 * pages that need to be attributed to live ancestors on swapin. But 4061 * those references are manageable from userspace. 4062 */ 4063 4064 static DEFINE_IDR(mem_cgroup_idr); 4065 4066 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4067 { 4068 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); 4069 atomic_add(n, &memcg->id.ref); 4070 } 4071 4072 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4073 { 4074 VM_BUG_ON(atomic_read(&memcg->id.ref) < n); 4075 if (atomic_sub_and_test(n, &memcg->id.ref)) { 4076 idr_remove(&mem_cgroup_idr, memcg->id.id); 4077 memcg->id.id = 0; 4078 4079 /* Memcg ID pins CSS */ 4080 css_put(&memcg->css); 4081 } 4082 } 4083 4084 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4085 { 4086 mem_cgroup_id_get_many(memcg, 1); 4087 } 4088 4089 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4090 { 4091 mem_cgroup_id_put_many(memcg, 1); 4092 } 4093 4094 /** 4095 * mem_cgroup_from_id - look up a memcg from a memcg id 4096 * @id: the memcg id to look up 4097 * 4098 * Caller must hold rcu_read_lock(). 4099 */ 4100 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4101 { 4102 WARN_ON_ONCE(!rcu_read_lock_held()); 4103 return idr_find(&mem_cgroup_idr, id); 4104 } 4105 4106 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4107 { 4108 struct mem_cgroup_per_node *pn; 4109 int tmp = node; 4110 /* 4111 * This routine is called against possible nodes. 4112 * But it's BUG to call kmalloc() against offline node. 4113 * 4114 * TODO: this routine can waste much memory for nodes which will 4115 * never be onlined. It's better to use memory hotplug callback 4116 * function. 4117 */ 4118 if (!node_state(node, N_NORMAL_MEMORY)) 4119 tmp = -1; 4120 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4121 if (!pn) 4122 return 1; 4123 4124 lruvec_init(&pn->lruvec); 4125 pn->usage_in_excess = 0; 4126 pn->on_tree = false; 4127 pn->memcg = memcg; 4128 4129 memcg->nodeinfo[node] = pn; 4130 return 0; 4131 } 4132 4133 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4134 { 4135 kfree(memcg->nodeinfo[node]); 4136 } 4137 4138 static void mem_cgroup_free(struct mem_cgroup *memcg) 4139 { 4140 int node; 4141 4142 memcg_wb_domain_exit(memcg); 4143 for_each_node(node) 4144 free_mem_cgroup_per_node_info(memcg, node); 4145 free_percpu(memcg->stat); 4146 kfree(memcg); 4147 } 4148 4149 static struct mem_cgroup *mem_cgroup_alloc(void) 4150 { 4151 struct mem_cgroup *memcg; 4152 size_t size; 4153 int node; 4154 4155 size = sizeof(struct mem_cgroup); 4156 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4157 4158 memcg = kzalloc(size, GFP_KERNEL); 4159 if (!memcg) 4160 return NULL; 4161 4162 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4163 1, MEM_CGROUP_ID_MAX, 4164 GFP_KERNEL); 4165 if (memcg->id.id < 0) 4166 goto fail; 4167 4168 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4169 if (!memcg->stat) 4170 goto fail; 4171 4172 for_each_node(node) 4173 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4174 goto fail; 4175 4176 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4177 goto fail; 4178 4179 INIT_WORK(&memcg->high_work, high_work_func); 4180 memcg->last_scanned_node = MAX_NUMNODES; 4181 INIT_LIST_HEAD(&memcg->oom_notify); 4182 mutex_init(&memcg->thresholds_lock); 4183 spin_lock_init(&memcg->move_lock); 4184 vmpressure_init(&memcg->vmpressure); 4185 INIT_LIST_HEAD(&memcg->event_list); 4186 spin_lock_init(&memcg->event_list_lock); 4187 memcg->socket_pressure = jiffies; 4188 #ifndef CONFIG_SLOB 4189 memcg->kmemcg_id = -1; 4190 #endif 4191 #ifdef CONFIG_CGROUP_WRITEBACK 4192 INIT_LIST_HEAD(&memcg->cgwb_list); 4193 #endif 4194 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4195 return memcg; 4196 fail: 4197 if (memcg->id.id > 0) 4198 idr_remove(&mem_cgroup_idr, memcg->id.id); 4199 mem_cgroup_free(memcg); 4200 return NULL; 4201 } 4202 4203 static struct cgroup_subsys_state * __ref 4204 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4205 { 4206 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4207 struct mem_cgroup *memcg; 4208 long error = -ENOMEM; 4209 4210 memcg = mem_cgroup_alloc(); 4211 if (!memcg) 4212 return ERR_PTR(error); 4213 4214 memcg->high = PAGE_COUNTER_MAX; 4215 memcg->soft_limit = PAGE_COUNTER_MAX; 4216 if (parent) { 4217 memcg->swappiness = mem_cgroup_swappiness(parent); 4218 memcg->oom_kill_disable = parent->oom_kill_disable; 4219 } 4220 if (parent && parent->use_hierarchy) { 4221 memcg->use_hierarchy = true; 4222 page_counter_init(&memcg->memory, &parent->memory); 4223 page_counter_init(&memcg->swap, &parent->swap); 4224 page_counter_init(&memcg->memsw, &parent->memsw); 4225 page_counter_init(&memcg->kmem, &parent->kmem); 4226 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4227 } else { 4228 page_counter_init(&memcg->memory, NULL); 4229 page_counter_init(&memcg->swap, NULL); 4230 page_counter_init(&memcg->memsw, NULL); 4231 page_counter_init(&memcg->kmem, NULL); 4232 page_counter_init(&memcg->tcpmem, NULL); 4233 /* 4234 * Deeper hierachy with use_hierarchy == false doesn't make 4235 * much sense so let cgroup subsystem know about this 4236 * unfortunate state in our controller. 4237 */ 4238 if (parent != root_mem_cgroup) 4239 memory_cgrp_subsys.broken_hierarchy = true; 4240 } 4241 4242 /* The following stuff does not apply to the root */ 4243 if (!parent) { 4244 root_mem_cgroup = memcg; 4245 return &memcg->css; 4246 } 4247 4248 error = memcg_online_kmem(memcg); 4249 if (error) 4250 goto fail; 4251 4252 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4253 static_branch_inc(&memcg_sockets_enabled_key); 4254 4255 return &memcg->css; 4256 fail: 4257 mem_cgroup_free(memcg); 4258 return ERR_PTR(-ENOMEM); 4259 } 4260 4261 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4262 { 4263 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4264 4265 /* Online state pins memcg ID, memcg ID pins CSS */ 4266 atomic_set(&memcg->id.ref, 1); 4267 css_get(css); 4268 return 0; 4269 } 4270 4271 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4272 { 4273 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4274 struct mem_cgroup_event *event, *tmp; 4275 4276 /* 4277 * Unregister events and notify userspace. 4278 * Notify userspace about cgroup removing only after rmdir of cgroup 4279 * directory to avoid race between userspace and kernelspace. 4280 */ 4281 spin_lock(&memcg->event_list_lock); 4282 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4283 list_del_init(&event->list); 4284 schedule_work(&event->remove); 4285 } 4286 spin_unlock(&memcg->event_list_lock); 4287 4288 memcg_offline_kmem(memcg); 4289 wb_memcg_offline(memcg); 4290 4291 mem_cgroup_id_put(memcg); 4292 } 4293 4294 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4295 { 4296 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4297 4298 invalidate_reclaim_iterators(memcg); 4299 } 4300 4301 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4302 { 4303 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4304 4305 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4306 static_branch_dec(&memcg_sockets_enabled_key); 4307 4308 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4309 static_branch_dec(&memcg_sockets_enabled_key); 4310 4311 vmpressure_cleanup(&memcg->vmpressure); 4312 cancel_work_sync(&memcg->high_work); 4313 mem_cgroup_remove_from_trees(memcg); 4314 memcg_free_kmem(memcg); 4315 mem_cgroup_free(memcg); 4316 } 4317 4318 /** 4319 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4320 * @css: the target css 4321 * 4322 * Reset the states of the mem_cgroup associated with @css. This is 4323 * invoked when the userland requests disabling on the default hierarchy 4324 * but the memcg is pinned through dependency. The memcg should stop 4325 * applying policies and should revert to the vanilla state as it may be 4326 * made visible again. 4327 * 4328 * The current implementation only resets the essential configurations. 4329 * This needs to be expanded to cover all the visible parts. 4330 */ 4331 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4332 { 4333 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4334 4335 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4336 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4337 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4338 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4339 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4340 memcg->low = 0; 4341 memcg->high = PAGE_COUNTER_MAX; 4342 memcg->soft_limit = PAGE_COUNTER_MAX; 4343 memcg_wb_domain_size_changed(memcg); 4344 } 4345 4346 #ifdef CONFIG_MMU 4347 /* Handlers for move charge at task migration. */ 4348 static int mem_cgroup_do_precharge(unsigned long count) 4349 { 4350 int ret; 4351 4352 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4353 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4354 if (!ret) { 4355 mc.precharge += count; 4356 return ret; 4357 } 4358 4359 /* Try charges one by one with reclaim, but do not retry */ 4360 while (count--) { 4361 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4362 if (ret) 4363 return ret; 4364 mc.precharge++; 4365 cond_resched(); 4366 } 4367 return 0; 4368 } 4369 4370 union mc_target { 4371 struct page *page; 4372 swp_entry_t ent; 4373 }; 4374 4375 enum mc_target_type { 4376 MC_TARGET_NONE = 0, 4377 MC_TARGET_PAGE, 4378 MC_TARGET_SWAP, 4379 }; 4380 4381 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4382 unsigned long addr, pte_t ptent) 4383 { 4384 struct page *page = vm_normal_page(vma, addr, ptent); 4385 4386 if (!page || !page_mapped(page)) 4387 return NULL; 4388 if (PageAnon(page)) { 4389 if (!(mc.flags & MOVE_ANON)) 4390 return NULL; 4391 } else { 4392 if (!(mc.flags & MOVE_FILE)) 4393 return NULL; 4394 } 4395 if (!get_page_unless_zero(page)) 4396 return NULL; 4397 4398 return page; 4399 } 4400 4401 #ifdef CONFIG_SWAP 4402 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4403 pte_t ptent, swp_entry_t *entry) 4404 { 4405 struct page *page = NULL; 4406 swp_entry_t ent = pte_to_swp_entry(ptent); 4407 4408 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4409 return NULL; 4410 /* 4411 * Because lookup_swap_cache() updates some statistics counter, 4412 * we call find_get_page() with swapper_space directly. 4413 */ 4414 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4415 if (do_memsw_account()) 4416 entry->val = ent.val; 4417 4418 return page; 4419 } 4420 #else 4421 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4422 pte_t ptent, swp_entry_t *entry) 4423 { 4424 return NULL; 4425 } 4426 #endif 4427 4428 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4429 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4430 { 4431 struct page *page = NULL; 4432 struct address_space *mapping; 4433 pgoff_t pgoff; 4434 4435 if (!vma->vm_file) /* anonymous vma */ 4436 return NULL; 4437 if (!(mc.flags & MOVE_FILE)) 4438 return NULL; 4439 4440 mapping = vma->vm_file->f_mapping; 4441 pgoff = linear_page_index(vma, addr); 4442 4443 /* page is moved even if it's not RSS of this task(page-faulted). */ 4444 #ifdef CONFIG_SWAP 4445 /* shmem/tmpfs may report page out on swap: account for that too. */ 4446 if (shmem_mapping(mapping)) { 4447 page = find_get_entry(mapping, pgoff); 4448 if (radix_tree_exceptional_entry(page)) { 4449 swp_entry_t swp = radix_to_swp_entry(page); 4450 if (do_memsw_account()) 4451 *entry = swp; 4452 page = find_get_page(swap_address_space(swp), 4453 swp_offset(swp)); 4454 } 4455 } else 4456 page = find_get_page(mapping, pgoff); 4457 #else 4458 page = find_get_page(mapping, pgoff); 4459 #endif 4460 return page; 4461 } 4462 4463 /** 4464 * mem_cgroup_move_account - move account of the page 4465 * @page: the page 4466 * @compound: charge the page as compound or small page 4467 * @from: mem_cgroup which the page is moved from. 4468 * @to: mem_cgroup which the page is moved to. @from != @to. 4469 * 4470 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4471 * 4472 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4473 * from old cgroup. 4474 */ 4475 static int mem_cgroup_move_account(struct page *page, 4476 bool compound, 4477 struct mem_cgroup *from, 4478 struct mem_cgroup *to) 4479 { 4480 unsigned long flags; 4481 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4482 int ret; 4483 bool anon; 4484 4485 VM_BUG_ON(from == to); 4486 VM_BUG_ON_PAGE(PageLRU(page), page); 4487 VM_BUG_ON(compound && !PageTransHuge(page)); 4488 4489 /* 4490 * Prevent mem_cgroup_migrate() from looking at 4491 * page->mem_cgroup of its source page while we change it. 4492 */ 4493 ret = -EBUSY; 4494 if (!trylock_page(page)) 4495 goto out; 4496 4497 ret = -EINVAL; 4498 if (page->mem_cgroup != from) 4499 goto out_unlock; 4500 4501 anon = PageAnon(page); 4502 4503 spin_lock_irqsave(&from->move_lock, flags); 4504 4505 if (!anon && page_mapped(page)) { 4506 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4507 nr_pages); 4508 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4509 nr_pages); 4510 } 4511 4512 /* 4513 * move_lock grabbed above and caller set from->moving_account, so 4514 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4515 * So mapping should be stable for dirty pages. 4516 */ 4517 if (!anon && PageDirty(page)) { 4518 struct address_space *mapping = page_mapping(page); 4519 4520 if (mapping_cap_account_dirty(mapping)) { 4521 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4522 nr_pages); 4523 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4524 nr_pages); 4525 } 4526 } 4527 4528 if (PageWriteback(page)) { 4529 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4530 nr_pages); 4531 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4532 nr_pages); 4533 } 4534 4535 /* 4536 * It is safe to change page->mem_cgroup here because the page 4537 * is referenced, charged, and isolated - we can't race with 4538 * uncharging, charging, migration, or LRU putback. 4539 */ 4540 4541 /* caller should have done css_get */ 4542 page->mem_cgroup = to; 4543 spin_unlock_irqrestore(&from->move_lock, flags); 4544 4545 ret = 0; 4546 4547 local_irq_disable(); 4548 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4549 memcg_check_events(to, page); 4550 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4551 memcg_check_events(from, page); 4552 local_irq_enable(); 4553 out_unlock: 4554 unlock_page(page); 4555 out: 4556 return ret; 4557 } 4558 4559 /** 4560 * get_mctgt_type - get target type of moving charge 4561 * @vma: the vma the pte to be checked belongs 4562 * @addr: the address corresponding to the pte to be checked 4563 * @ptent: the pte to be checked 4564 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4565 * 4566 * Returns 4567 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4568 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4569 * move charge. if @target is not NULL, the page is stored in target->page 4570 * with extra refcnt got(Callers should handle it). 4571 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4572 * target for charge migration. if @target is not NULL, the entry is stored 4573 * in target->ent. 4574 * 4575 * Called with pte lock held. 4576 */ 4577 4578 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4579 unsigned long addr, pte_t ptent, union mc_target *target) 4580 { 4581 struct page *page = NULL; 4582 enum mc_target_type ret = MC_TARGET_NONE; 4583 swp_entry_t ent = { .val = 0 }; 4584 4585 if (pte_present(ptent)) 4586 page = mc_handle_present_pte(vma, addr, ptent); 4587 else if (is_swap_pte(ptent)) 4588 page = mc_handle_swap_pte(vma, ptent, &ent); 4589 else if (pte_none(ptent)) 4590 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4591 4592 if (!page && !ent.val) 4593 return ret; 4594 if (page) { 4595 /* 4596 * Do only loose check w/o serialization. 4597 * mem_cgroup_move_account() checks the page is valid or 4598 * not under LRU exclusion. 4599 */ 4600 if (page->mem_cgroup == mc.from) { 4601 ret = MC_TARGET_PAGE; 4602 if (target) 4603 target->page = page; 4604 } 4605 if (!ret || !target) 4606 put_page(page); 4607 } 4608 /* There is a swap entry and a page doesn't exist or isn't charged */ 4609 if (ent.val && !ret && 4610 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4611 ret = MC_TARGET_SWAP; 4612 if (target) 4613 target->ent = ent; 4614 } 4615 return ret; 4616 } 4617 4618 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4619 /* 4620 * We don't consider swapping or file mapped pages because THP does not 4621 * support them for now. 4622 * Caller should make sure that pmd_trans_huge(pmd) is true. 4623 */ 4624 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4625 unsigned long addr, pmd_t pmd, union mc_target *target) 4626 { 4627 struct page *page = NULL; 4628 enum mc_target_type ret = MC_TARGET_NONE; 4629 4630 page = pmd_page(pmd); 4631 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4632 if (!(mc.flags & MOVE_ANON)) 4633 return ret; 4634 if (page->mem_cgroup == mc.from) { 4635 ret = MC_TARGET_PAGE; 4636 if (target) { 4637 get_page(page); 4638 target->page = page; 4639 } 4640 } 4641 return ret; 4642 } 4643 #else 4644 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4645 unsigned long addr, pmd_t pmd, union mc_target *target) 4646 { 4647 return MC_TARGET_NONE; 4648 } 4649 #endif 4650 4651 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4652 unsigned long addr, unsigned long end, 4653 struct mm_walk *walk) 4654 { 4655 struct vm_area_struct *vma = walk->vma; 4656 pte_t *pte; 4657 spinlock_t *ptl; 4658 4659 ptl = pmd_trans_huge_lock(pmd, vma); 4660 if (ptl) { 4661 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4662 mc.precharge += HPAGE_PMD_NR; 4663 spin_unlock(ptl); 4664 return 0; 4665 } 4666 4667 if (pmd_trans_unstable(pmd)) 4668 return 0; 4669 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4670 for (; addr != end; pte++, addr += PAGE_SIZE) 4671 if (get_mctgt_type(vma, addr, *pte, NULL)) 4672 mc.precharge++; /* increment precharge temporarily */ 4673 pte_unmap_unlock(pte - 1, ptl); 4674 cond_resched(); 4675 4676 return 0; 4677 } 4678 4679 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4680 { 4681 unsigned long precharge; 4682 4683 struct mm_walk mem_cgroup_count_precharge_walk = { 4684 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4685 .mm = mm, 4686 }; 4687 down_read(&mm->mmap_sem); 4688 walk_page_range(0, mm->highest_vm_end, 4689 &mem_cgroup_count_precharge_walk); 4690 up_read(&mm->mmap_sem); 4691 4692 precharge = mc.precharge; 4693 mc.precharge = 0; 4694 4695 return precharge; 4696 } 4697 4698 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4699 { 4700 unsigned long precharge = mem_cgroup_count_precharge(mm); 4701 4702 VM_BUG_ON(mc.moving_task); 4703 mc.moving_task = current; 4704 return mem_cgroup_do_precharge(precharge); 4705 } 4706 4707 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4708 static void __mem_cgroup_clear_mc(void) 4709 { 4710 struct mem_cgroup *from = mc.from; 4711 struct mem_cgroup *to = mc.to; 4712 4713 /* we must uncharge all the leftover precharges from mc.to */ 4714 if (mc.precharge) { 4715 cancel_charge(mc.to, mc.precharge); 4716 mc.precharge = 0; 4717 } 4718 /* 4719 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4720 * we must uncharge here. 4721 */ 4722 if (mc.moved_charge) { 4723 cancel_charge(mc.from, mc.moved_charge); 4724 mc.moved_charge = 0; 4725 } 4726 /* we must fixup refcnts and charges */ 4727 if (mc.moved_swap) { 4728 /* uncharge swap account from the old cgroup */ 4729 if (!mem_cgroup_is_root(mc.from)) 4730 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4731 4732 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 4733 4734 /* 4735 * we charged both to->memory and to->memsw, so we 4736 * should uncharge to->memory. 4737 */ 4738 if (!mem_cgroup_is_root(mc.to)) 4739 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4740 4741 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 4742 css_put_many(&mc.to->css, mc.moved_swap); 4743 4744 mc.moved_swap = 0; 4745 } 4746 memcg_oom_recover(from); 4747 memcg_oom_recover(to); 4748 wake_up_all(&mc.waitq); 4749 } 4750 4751 static void mem_cgroup_clear_mc(void) 4752 { 4753 struct mm_struct *mm = mc.mm; 4754 4755 /* 4756 * we must clear moving_task before waking up waiters at the end of 4757 * task migration. 4758 */ 4759 mc.moving_task = NULL; 4760 __mem_cgroup_clear_mc(); 4761 spin_lock(&mc.lock); 4762 mc.from = NULL; 4763 mc.to = NULL; 4764 mc.mm = NULL; 4765 spin_unlock(&mc.lock); 4766 4767 mmput(mm); 4768 } 4769 4770 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4771 { 4772 struct cgroup_subsys_state *css; 4773 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4774 struct mem_cgroup *from; 4775 struct task_struct *leader, *p; 4776 struct mm_struct *mm; 4777 unsigned long move_flags; 4778 int ret = 0; 4779 4780 /* charge immigration isn't supported on the default hierarchy */ 4781 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4782 return 0; 4783 4784 /* 4785 * Multi-process migrations only happen on the default hierarchy 4786 * where charge immigration is not used. Perform charge 4787 * immigration if @tset contains a leader and whine if there are 4788 * multiple. 4789 */ 4790 p = NULL; 4791 cgroup_taskset_for_each_leader(leader, css, tset) { 4792 WARN_ON_ONCE(p); 4793 p = leader; 4794 memcg = mem_cgroup_from_css(css); 4795 } 4796 if (!p) 4797 return 0; 4798 4799 /* 4800 * We are now commited to this value whatever it is. Changes in this 4801 * tunable will only affect upcoming migrations, not the current one. 4802 * So we need to save it, and keep it going. 4803 */ 4804 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4805 if (!move_flags) 4806 return 0; 4807 4808 from = mem_cgroup_from_task(p); 4809 4810 VM_BUG_ON(from == memcg); 4811 4812 mm = get_task_mm(p); 4813 if (!mm) 4814 return 0; 4815 /* We move charges only when we move a owner of the mm */ 4816 if (mm->owner == p) { 4817 VM_BUG_ON(mc.from); 4818 VM_BUG_ON(mc.to); 4819 VM_BUG_ON(mc.precharge); 4820 VM_BUG_ON(mc.moved_charge); 4821 VM_BUG_ON(mc.moved_swap); 4822 4823 spin_lock(&mc.lock); 4824 mc.mm = mm; 4825 mc.from = from; 4826 mc.to = memcg; 4827 mc.flags = move_flags; 4828 spin_unlock(&mc.lock); 4829 /* We set mc.moving_task later */ 4830 4831 ret = mem_cgroup_precharge_mc(mm); 4832 if (ret) 4833 mem_cgroup_clear_mc(); 4834 } else { 4835 mmput(mm); 4836 } 4837 return ret; 4838 } 4839 4840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4841 { 4842 if (mc.to) 4843 mem_cgroup_clear_mc(); 4844 } 4845 4846 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4847 unsigned long addr, unsigned long end, 4848 struct mm_walk *walk) 4849 { 4850 int ret = 0; 4851 struct vm_area_struct *vma = walk->vma; 4852 pte_t *pte; 4853 spinlock_t *ptl; 4854 enum mc_target_type target_type; 4855 union mc_target target; 4856 struct page *page; 4857 4858 ptl = pmd_trans_huge_lock(pmd, vma); 4859 if (ptl) { 4860 if (mc.precharge < HPAGE_PMD_NR) { 4861 spin_unlock(ptl); 4862 return 0; 4863 } 4864 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4865 if (target_type == MC_TARGET_PAGE) { 4866 page = target.page; 4867 if (!isolate_lru_page(page)) { 4868 if (!mem_cgroup_move_account(page, true, 4869 mc.from, mc.to)) { 4870 mc.precharge -= HPAGE_PMD_NR; 4871 mc.moved_charge += HPAGE_PMD_NR; 4872 } 4873 putback_lru_page(page); 4874 } 4875 put_page(page); 4876 } 4877 spin_unlock(ptl); 4878 return 0; 4879 } 4880 4881 if (pmd_trans_unstable(pmd)) 4882 return 0; 4883 retry: 4884 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4885 for (; addr != end; addr += PAGE_SIZE) { 4886 pte_t ptent = *(pte++); 4887 swp_entry_t ent; 4888 4889 if (!mc.precharge) 4890 break; 4891 4892 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4893 case MC_TARGET_PAGE: 4894 page = target.page; 4895 /* 4896 * We can have a part of the split pmd here. Moving it 4897 * can be done but it would be too convoluted so simply 4898 * ignore such a partial THP and keep it in original 4899 * memcg. There should be somebody mapping the head. 4900 */ 4901 if (PageTransCompound(page)) 4902 goto put; 4903 if (isolate_lru_page(page)) 4904 goto put; 4905 if (!mem_cgroup_move_account(page, false, 4906 mc.from, mc.to)) { 4907 mc.precharge--; 4908 /* we uncharge from mc.from later. */ 4909 mc.moved_charge++; 4910 } 4911 putback_lru_page(page); 4912 put: /* get_mctgt_type() gets the page */ 4913 put_page(page); 4914 break; 4915 case MC_TARGET_SWAP: 4916 ent = target.ent; 4917 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4918 mc.precharge--; 4919 /* we fixup refcnts and charges later. */ 4920 mc.moved_swap++; 4921 } 4922 break; 4923 default: 4924 break; 4925 } 4926 } 4927 pte_unmap_unlock(pte - 1, ptl); 4928 cond_resched(); 4929 4930 if (addr != end) { 4931 /* 4932 * We have consumed all precharges we got in can_attach(). 4933 * We try charge one by one, but don't do any additional 4934 * charges to mc.to if we have failed in charge once in attach() 4935 * phase. 4936 */ 4937 ret = mem_cgroup_do_precharge(1); 4938 if (!ret) 4939 goto retry; 4940 } 4941 4942 return ret; 4943 } 4944 4945 static void mem_cgroup_move_charge(void) 4946 { 4947 struct mm_walk mem_cgroup_move_charge_walk = { 4948 .pmd_entry = mem_cgroup_move_charge_pte_range, 4949 .mm = mc.mm, 4950 }; 4951 4952 lru_add_drain_all(); 4953 /* 4954 * Signal lock_page_memcg() to take the memcg's move_lock 4955 * while we're moving its pages to another memcg. Then wait 4956 * for already started RCU-only updates to finish. 4957 */ 4958 atomic_inc(&mc.from->moving_account); 4959 synchronize_rcu(); 4960 retry: 4961 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4962 /* 4963 * Someone who are holding the mmap_sem might be waiting in 4964 * waitq. So we cancel all extra charges, wake up all waiters, 4965 * and retry. Because we cancel precharges, we might not be able 4966 * to move enough charges, but moving charge is a best-effort 4967 * feature anyway, so it wouldn't be a big problem. 4968 */ 4969 __mem_cgroup_clear_mc(); 4970 cond_resched(); 4971 goto retry; 4972 } 4973 /* 4974 * When we have consumed all precharges and failed in doing 4975 * additional charge, the page walk just aborts. 4976 */ 4977 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 4978 4979 up_read(&mc.mm->mmap_sem); 4980 atomic_dec(&mc.from->moving_account); 4981 } 4982 4983 static void mem_cgroup_move_task(void) 4984 { 4985 if (mc.to) { 4986 mem_cgroup_move_charge(); 4987 mem_cgroup_clear_mc(); 4988 } 4989 } 4990 #else /* !CONFIG_MMU */ 4991 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4992 { 4993 return 0; 4994 } 4995 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4996 { 4997 } 4998 static void mem_cgroup_move_task(void) 4999 { 5000 } 5001 #endif 5002 5003 /* 5004 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5005 * to verify whether we're attached to the default hierarchy on each mount 5006 * attempt. 5007 */ 5008 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5009 { 5010 /* 5011 * use_hierarchy is forced on the default hierarchy. cgroup core 5012 * guarantees that @root doesn't have any children, so turning it 5013 * on for the root memcg is enough. 5014 */ 5015 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5016 root_mem_cgroup->use_hierarchy = true; 5017 else 5018 root_mem_cgroup->use_hierarchy = false; 5019 } 5020 5021 static u64 memory_current_read(struct cgroup_subsys_state *css, 5022 struct cftype *cft) 5023 { 5024 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5025 5026 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5027 } 5028 5029 static int memory_low_show(struct seq_file *m, void *v) 5030 { 5031 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5032 unsigned long low = READ_ONCE(memcg->low); 5033 5034 if (low == PAGE_COUNTER_MAX) 5035 seq_puts(m, "max\n"); 5036 else 5037 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5038 5039 return 0; 5040 } 5041 5042 static ssize_t memory_low_write(struct kernfs_open_file *of, 5043 char *buf, size_t nbytes, loff_t off) 5044 { 5045 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5046 unsigned long low; 5047 int err; 5048 5049 buf = strstrip(buf); 5050 err = page_counter_memparse(buf, "max", &low); 5051 if (err) 5052 return err; 5053 5054 memcg->low = low; 5055 5056 return nbytes; 5057 } 5058 5059 static int memory_high_show(struct seq_file *m, void *v) 5060 { 5061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5062 unsigned long high = READ_ONCE(memcg->high); 5063 5064 if (high == PAGE_COUNTER_MAX) 5065 seq_puts(m, "max\n"); 5066 else 5067 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5068 5069 return 0; 5070 } 5071 5072 static ssize_t memory_high_write(struct kernfs_open_file *of, 5073 char *buf, size_t nbytes, loff_t off) 5074 { 5075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5076 unsigned long nr_pages; 5077 unsigned long high; 5078 int err; 5079 5080 buf = strstrip(buf); 5081 err = page_counter_memparse(buf, "max", &high); 5082 if (err) 5083 return err; 5084 5085 memcg->high = high; 5086 5087 nr_pages = page_counter_read(&memcg->memory); 5088 if (nr_pages > high) 5089 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5090 GFP_KERNEL, true); 5091 5092 memcg_wb_domain_size_changed(memcg); 5093 return nbytes; 5094 } 5095 5096 static int memory_max_show(struct seq_file *m, void *v) 5097 { 5098 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5099 unsigned long max = READ_ONCE(memcg->memory.limit); 5100 5101 if (max == PAGE_COUNTER_MAX) 5102 seq_puts(m, "max\n"); 5103 else 5104 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5105 5106 return 0; 5107 } 5108 5109 static ssize_t memory_max_write(struct kernfs_open_file *of, 5110 char *buf, size_t nbytes, loff_t off) 5111 { 5112 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5113 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5114 bool drained = false; 5115 unsigned long max; 5116 int err; 5117 5118 buf = strstrip(buf); 5119 err = page_counter_memparse(buf, "max", &max); 5120 if (err) 5121 return err; 5122 5123 xchg(&memcg->memory.limit, max); 5124 5125 for (;;) { 5126 unsigned long nr_pages = page_counter_read(&memcg->memory); 5127 5128 if (nr_pages <= max) 5129 break; 5130 5131 if (signal_pending(current)) { 5132 err = -EINTR; 5133 break; 5134 } 5135 5136 if (!drained) { 5137 drain_all_stock(memcg); 5138 drained = true; 5139 continue; 5140 } 5141 5142 if (nr_reclaims) { 5143 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5144 GFP_KERNEL, true)) 5145 nr_reclaims--; 5146 continue; 5147 } 5148 5149 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5150 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5151 break; 5152 } 5153 5154 memcg_wb_domain_size_changed(memcg); 5155 return nbytes; 5156 } 5157 5158 static int memory_events_show(struct seq_file *m, void *v) 5159 { 5160 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5161 5162 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5163 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5164 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5165 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5166 5167 return 0; 5168 } 5169 5170 static int memory_stat_show(struct seq_file *m, void *v) 5171 { 5172 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5173 unsigned long stat[MEMCG_NR_STAT]; 5174 unsigned long events[MEMCG_NR_EVENTS]; 5175 int i; 5176 5177 /* 5178 * Provide statistics on the state of the memory subsystem as 5179 * well as cumulative event counters that show past behavior. 5180 * 5181 * This list is ordered following a combination of these gradients: 5182 * 1) generic big picture -> specifics and details 5183 * 2) reflecting userspace activity -> reflecting kernel heuristics 5184 * 5185 * Current memory state: 5186 */ 5187 5188 tree_stat(memcg, stat); 5189 tree_events(memcg, events); 5190 5191 seq_printf(m, "anon %llu\n", 5192 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5193 seq_printf(m, "file %llu\n", 5194 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5195 seq_printf(m, "kernel_stack %llu\n", 5196 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); 5197 seq_printf(m, "slab %llu\n", 5198 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5199 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5200 seq_printf(m, "sock %llu\n", 5201 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5202 5203 seq_printf(m, "file_mapped %llu\n", 5204 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5205 seq_printf(m, "file_dirty %llu\n", 5206 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5207 seq_printf(m, "file_writeback %llu\n", 5208 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5209 5210 for (i = 0; i < NR_LRU_LISTS; i++) { 5211 struct mem_cgroup *mi; 5212 unsigned long val = 0; 5213 5214 for_each_mem_cgroup_tree(mi, memcg) 5215 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5216 seq_printf(m, "%s %llu\n", 5217 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5218 } 5219 5220 seq_printf(m, "slab_reclaimable %llu\n", 5221 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5222 seq_printf(m, "slab_unreclaimable %llu\n", 5223 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5224 5225 /* Accumulated memory events */ 5226 5227 seq_printf(m, "pgfault %lu\n", 5228 events[MEM_CGROUP_EVENTS_PGFAULT]); 5229 seq_printf(m, "pgmajfault %lu\n", 5230 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5231 5232 return 0; 5233 } 5234 5235 static struct cftype memory_files[] = { 5236 { 5237 .name = "current", 5238 .flags = CFTYPE_NOT_ON_ROOT, 5239 .read_u64 = memory_current_read, 5240 }, 5241 { 5242 .name = "low", 5243 .flags = CFTYPE_NOT_ON_ROOT, 5244 .seq_show = memory_low_show, 5245 .write = memory_low_write, 5246 }, 5247 { 5248 .name = "high", 5249 .flags = CFTYPE_NOT_ON_ROOT, 5250 .seq_show = memory_high_show, 5251 .write = memory_high_write, 5252 }, 5253 { 5254 .name = "max", 5255 .flags = CFTYPE_NOT_ON_ROOT, 5256 .seq_show = memory_max_show, 5257 .write = memory_max_write, 5258 }, 5259 { 5260 .name = "events", 5261 .flags = CFTYPE_NOT_ON_ROOT, 5262 .file_offset = offsetof(struct mem_cgroup, events_file), 5263 .seq_show = memory_events_show, 5264 }, 5265 { 5266 .name = "stat", 5267 .flags = CFTYPE_NOT_ON_ROOT, 5268 .seq_show = memory_stat_show, 5269 }, 5270 { } /* terminate */ 5271 }; 5272 5273 struct cgroup_subsys memory_cgrp_subsys = { 5274 .css_alloc = mem_cgroup_css_alloc, 5275 .css_online = mem_cgroup_css_online, 5276 .css_offline = mem_cgroup_css_offline, 5277 .css_released = mem_cgroup_css_released, 5278 .css_free = mem_cgroup_css_free, 5279 .css_reset = mem_cgroup_css_reset, 5280 .can_attach = mem_cgroup_can_attach, 5281 .cancel_attach = mem_cgroup_cancel_attach, 5282 .post_attach = mem_cgroup_move_task, 5283 .bind = mem_cgroup_bind, 5284 .dfl_cftypes = memory_files, 5285 .legacy_cftypes = mem_cgroup_legacy_files, 5286 .early_init = 0, 5287 }; 5288 5289 /** 5290 * mem_cgroup_low - check if memory consumption is below the normal range 5291 * @root: the highest ancestor to consider 5292 * @memcg: the memory cgroup to check 5293 * 5294 * Returns %true if memory consumption of @memcg, and that of all 5295 * configurable ancestors up to @root, is below the normal range. 5296 */ 5297 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5298 { 5299 if (mem_cgroup_disabled()) 5300 return false; 5301 5302 /* 5303 * The toplevel group doesn't have a configurable range, so 5304 * it's never low when looked at directly, and it is not 5305 * considered an ancestor when assessing the hierarchy. 5306 */ 5307 5308 if (memcg == root_mem_cgroup) 5309 return false; 5310 5311 if (page_counter_read(&memcg->memory) >= memcg->low) 5312 return false; 5313 5314 while (memcg != root) { 5315 memcg = parent_mem_cgroup(memcg); 5316 5317 if (memcg == root_mem_cgroup) 5318 break; 5319 5320 if (page_counter_read(&memcg->memory) >= memcg->low) 5321 return false; 5322 } 5323 return true; 5324 } 5325 5326 /** 5327 * mem_cgroup_try_charge - try charging a page 5328 * @page: page to charge 5329 * @mm: mm context of the victim 5330 * @gfp_mask: reclaim mode 5331 * @memcgp: charged memcg return 5332 * @compound: charge the page as compound or small page 5333 * 5334 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5335 * pages according to @gfp_mask if necessary. 5336 * 5337 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5338 * Otherwise, an error code is returned. 5339 * 5340 * After page->mapping has been set up, the caller must finalize the 5341 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5342 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5343 */ 5344 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5345 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5346 bool compound) 5347 { 5348 struct mem_cgroup *memcg = NULL; 5349 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5350 int ret = 0; 5351 5352 if (mem_cgroup_disabled()) 5353 goto out; 5354 5355 if (PageSwapCache(page)) { 5356 /* 5357 * Every swap fault against a single page tries to charge the 5358 * page, bail as early as possible. shmem_unuse() encounters 5359 * already charged pages, too. The USED bit is protected by 5360 * the page lock, which serializes swap cache removal, which 5361 * in turn serializes uncharging. 5362 */ 5363 VM_BUG_ON_PAGE(!PageLocked(page), page); 5364 if (page->mem_cgroup) 5365 goto out; 5366 5367 if (do_swap_account) { 5368 swp_entry_t ent = { .val = page_private(page), }; 5369 unsigned short id = lookup_swap_cgroup_id(ent); 5370 5371 rcu_read_lock(); 5372 memcg = mem_cgroup_from_id(id); 5373 if (memcg && !css_tryget_online(&memcg->css)) 5374 memcg = NULL; 5375 rcu_read_unlock(); 5376 } 5377 } 5378 5379 if (!memcg) 5380 memcg = get_mem_cgroup_from_mm(mm); 5381 5382 ret = try_charge(memcg, gfp_mask, nr_pages); 5383 5384 css_put(&memcg->css); 5385 out: 5386 *memcgp = memcg; 5387 return ret; 5388 } 5389 5390 /** 5391 * mem_cgroup_commit_charge - commit a page charge 5392 * @page: page to charge 5393 * @memcg: memcg to charge the page to 5394 * @lrucare: page might be on LRU already 5395 * @compound: charge the page as compound or small page 5396 * 5397 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5398 * after page->mapping has been set up. This must happen atomically 5399 * as part of the page instantiation, i.e. under the page table lock 5400 * for anonymous pages, under the page lock for page and swap cache. 5401 * 5402 * In addition, the page must not be on the LRU during the commit, to 5403 * prevent racing with task migration. If it might be, use @lrucare. 5404 * 5405 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5406 */ 5407 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5408 bool lrucare, bool compound) 5409 { 5410 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5411 5412 VM_BUG_ON_PAGE(!page->mapping, page); 5413 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5414 5415 if (mem_cgroup_disabled()) 5416 return; 5417 /* 5418 * Swap faults will attempt to charge the same page multiple 5419 * times. But reuse_swap_page() might have removed the page 5420 * from swapcache already, so we can't check PageSwapCache(). 5421 */ 5422 if (!memcg) 5423 return; 5424 5425 commit_charge(page, memcg, lrucare); 5426 5427 local_irq_disable(); 5428 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5429 memcg_check_events(memcg, page); 5430 local_irq_enable(); 5431 5432 if (do_memsw_account() && PageSwapCache(page)) { 5433 swp_entry_t entry = { .val = page_private(page) }; 5434 /* 5435 * The swap entry might not get freed for a long time, 5436 * let's not wait for it. The page already received a 5437 * memory+swap charge, drop the swap entry duplicate. 5438 */ 5439 mem_cgroup_uncharge_swap(entry); 5440 } 5441 } 5442 5443 /** 5444 * mem_cgroup_cancel_charge - cancel a page charge 5445 * @page: page to charge 5446 * @memcg: memcg to charge the page to 5447 * @compound: charge the page as compound or small page 5448 * 5449 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5450 */ 5451 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5452 bool compound) 5453 { 5454 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5455 5456 if (mem_cgroup_disabled()) 5457 return; 5458 /* 5459 * Swap faults will attempt to charge the same page multiple 5460 * times. But reuse_swap_page() might have removed the page 5461 * from swapcache already, so we can't check PageSwapCache(). 5462 */ 5463 if (!memcg) 5464 return; 5465 5466 cancel_charge(memcg, nr_pages); 5467 } 5468 5469 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5470 unsigned long nr_anon, unsigned long nr_file, 5471 unsigned long nr_huge, unsigned long nr_kmem, 5472 struct page *dummy_page) 5473 { 5474 unsigned long nr_pages = nr_anon + nr_file + nr_kmem; 5475 unsigned long flags; 5476 5477 if (!mem_cgroup_is_root(memcg)) { 5478 page_counter_uncharge(&memcg->memory, nr_pages); 5479 if (do_memsw_account()) 5480 page_counter_uncharge(&memcg->memsw, nr_pages); 5481 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem) 5482 page_counter_uncharge(&memcg->kmem, nr_kmem); 5483 memcg_oom_recover(memcg); 5484 } 5485 5486 local_irq_save(flags); 5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5489 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5490 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5491 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5492 memcg_check_events(memcg, dummy_page); 5493 local_irq_restore(flags); 5494 5495 if (!mem_cgroup_is_root(memcg)) 5496 css_put_many(&memcg->css, nr_pages); 5497 } 5498 5499 static void uncharge_list(struct list_head *page_list) 5500 { 5501 struct mem_cgroup *memcg = NULL; 5502 unsigned long nr_anon = 0; 5503 unsigned long nr_file = 0; 5504 unsigned long nr_huge = 0; 5505 unsigned long nr_kmem = 0; 5506 unsigned long pgpgout = 0; 5507 struct list_head *next; 5508 struct page *page; 5509 5510 /* 5511 * Note that the list can be a single page->lru; hence the 5512 * do-while loop instead of a simple list_for_each_entry(). 5513 */ 5514 next = page_list->next; 5515 do { 5516 page = list_entry(next, struct page, lru); 5517 next = page->lru.next; 5518 5519 VM_BUG_ON_PAGE(PageLRU(page), page); 5520 VM_BUG_ON_PAGE(page_count(page), page); 5521 5522 if (!page->mem_cgroup) 5523 continue; 5524 5525 /* 5526 * Nobody should be changing or seriously looking at 5527 * page->mem_cgroup at this point, we have fully 5528 * exclusive access to the page. 5529 */ 5530 5531 if (memcg != page->mem_cgroup) { 5532 if (memcg) { 5533 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5534 nr_huge, nr_kmem, page); 5535 pgpgout = nr_anon = nr_file = 5536 nr_huge = nr_kmem = 0; 5537 } 5538 memcg = page->mem_cgroup; 5539 } 5540 5541 if (!PageKmemcg(page)) { 5542 unsigned int nr_pages = 1; 5543 5544 if (PageTransHuge(page)) { 5545 nr_pages <<= compound_order(page); 5546 nr_huge += nr_pages; 5547 } 5548 if (PageAnon(page)) 5549 nr_anon += nr_pages; 5550 else 5551 nr_file += nr_pages; 5552 pgpgout++; 5553 } else { 5554 nr_kmem += 1 << compound_order(page); 5555 __ClearPageKmemcg(page); 5556 } 5557 5558 page->mem_cgroup = NULL; 5559 } while (next != page_list); 5560 5561 if (memcg) 5562 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5563 nr_huge, nr_kmem, page); 5564 } 5565 5566 /** 5567 * mem_cgroup_uncharge - uncharge a page 5568 * @page: page to uncharge 5569 * 5570 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5571 * mem_cgroup_commit_charge(). 5572 */ 5573 void mem_cgroup_uncharge(struct page *page) 5574 { 5575 if (mem_cgroup_disabled()) 5576 return; 5577 5578 /* Don't touch page->lru of any random page, pre-check: */ 5579 if (!page->mem_cgroup) 5580 return; 5581 5582 INIT_LIST_HEAD(&page->lru); 5583 uncharge_list(&page->lru); 5584 } 5585 5586 /** 5587 * mem_cgroup_uncharge_list - uncharge a list of page 5588 * @page_list: list of pages to uncharge 5589 * 5590 * Uncharge a list of pages previously charged with 5591 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5592 */ 5593 void mem_cgroup_uncharge_list(struct list_head *page_list) 5594 { 5595 if (mem_cgroup_disabled()) 5596 return; 5597 5598 if (!list_empty(page_list)) 5599 uncharge_list(page_list); 5600 } 5601 5602 /** 5603 * mem_cgroup_migrate - charge a page's replacement 5604 * @oldpage: currently circulating page 5605 * @newpage: replacement page 5606 * 5607 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5608 * be uncharged upon free. 5609 * 5610 * Both pages must be locked, @newpage->mapping must be set up. 5611 */ 5612 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5613 { 5614 struct mem_cgroup *memcg; 5615 unsigned int nr_pages; 5616 bool compound; 5617 unsigned long flags; 5618 5619 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5620 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5621 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5622 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5623 newpage); 5624 5625 if (mem_cgroup_disabled()) 5626 return; 5627 5628 /* Page cache replacement: new page already charged? */ 5629 if (newpage->mem_cgroup) 5630 return; 5631 5632 /* Swapcache readahead pages can get replaced before being charged */ 5633 memcg = oldpage->mem_cgroup; 5634 if (!memcg) 5635 return; 5636 5637 /* Force-charge the new page. The old one will be freed soon */ 5638 compound = PageTransHuge(newpage); 5639 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5640 5641 page_counter_charge(&memcg->memory, nr_pages); 5642 if (do_memsw_account()) 5643 page_counter_charge(&memcg->memsw, nr_pages); 5644 css_get_many(&memcg->css, nr_pages); 5645 5646 commit_charge(newpage, memcg, false); 5647 5648 local_irq_save(flags); 5649 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5650 memcg_check_events(memcg, newpage); 5651 local_irq_restore(flags); 5652 } 5653 5654 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5655 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5656 5657 void mem_cgroup_sk_alloc(struct sock *sk) 5658 { 5659 struct mem_cgroup *memcg; 5660 5661 if (!mem_cgroup_sockets_enabled) 5662 return; 5663 5664 /* 5665 * Socket cloning can throw us here with sk_memcg already 5666 * filled. It won't however, necessarily happen from 5667 * process context. So the test for root memcg given 5668 * the current task's memcg won't help us in this case. 5669 * 5670 * Respecting the original socket's memcg is a better 5671 * decision in this case. 5672 */ 5673 if (sk->sk_memcg) { 5674 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5675 css_get(&sk->sk_memcg->css); 5676 return; 5677 } 5678 5679 rcu_read_lock(); 5680 memcg = mem_cgroup_from_task(current); 5681 if (memcg == root_mem_cgroup) 5682 goto out; 5683 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5684 goto out; 5685 if (css_tryget_online(&memcg->css)) 5686 sk->sk_memcg = memcg; 5687 out: 5688 rcu_read_unlock(); 5689 } 5690 5691 void mem_cgroup_sk_free(struct sock *sk) 5692 { 5693 if (sk->sk_memcg) 5694 css_put(&sk->sk_memcg->css); 5695 } 5696 5697 /** 5698 * mem_cgroup_charge_skmem - charge socket memory 5699 * @memcg: memcg to charge 5700 * @nr_pages: number of pages to charge 5701 * 5702 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5703 * @memcg's configured limit, %false if the charge had to be forced. 5704 */ 5705 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5706 { 5707 gfp_t gfp_mask = GFP_KERNEL; 5708 5709 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5710 struct page_counter *fail; 5711 5712 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5713 memcg->tcpmem_pressure = 0; 5714 return true; 5715 } 5716 page_counter_charge(&memcg->tcpmem, nr_pages); 5717 memcg->tcpmem_pressure = 1; 5718 return false; 5719 } 5720 5721 /* Don't block in the packet receive path */ 5722 if (in_softirq()) 5723 gfp_mask = GFP_NOWAIT; 5724 5725 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5726 5727 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5728 return true; 5729 5730 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5731 return false; 5732 } 5733 5734 /** 5735 * mem_cgroup_uncharge_skmem - uncharge socket memory 5736 * @memcg - memcg to uncharge 5737 * @nr_pages - number of pages to uncharge 5738 */ 5739 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5740 { 5741 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5742 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5743 return; 5744 } 5745 5746 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5747 5748 page_counter_uncharge(&memcg->memory, nr_pages); 5749 css_put_many(&memcg->css, nr_pages); 5750 } 5751 5752 static int __init cgroup_memory(char *s) 5753 { 5754 char *token; 5755 5756 while ((token = strsep(&s, ",")) != NULL) { 5757 if (!*token) 5758 continue; 5759 if (!strcmp(token, "nosocket")) 5760 cgroup_memory_nosocket = true; 5761 if (!strcmp(token, "nokmem")) 5762 cgroup_memory_nokmem = true; 5763 } 5764 return 0; 5765 } 5766 __setup("cgroup.memory=", cgroup_memory); 5767 5768 /* 5769 * subsys_initcall() for memory controller. 5770 * 5771 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5772 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5773 * basically everything that doesn't depend on a specific mem_cgroup structure 5774 * should be initialized from here. 5775 */ 5776 static int __init mem_cgroup_init(void) 5777 { 5778 int cpu, node; 5779 5780 #ifndef CONFIG_SLOB 5781 /* 5782 * Kmem cache creation is mostly done with the slab_mutex held, 5783 * so use a workqueue with limited concurrency to avoid stalling 5784 * all worker threads in case lots of cgroups are created and 5785 * destroyed simultaneously. 5786 */ 5787 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 5788 BUG_ON(!memcg_kmem_cache_wq); 5789 #endif 5790 5791 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5792 memcg_hotplug_cpu_dead); 5793 5794 for_each_possible_cpu(cpu) 5795 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5796 drain_local_stock); 5797 5798 for_each_node(node) { 5799 struct mem_cgroup_tree_per_node *rtpn; 5800 5801 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5802 node_online(node) ? node : NUMA_NO_NODE); 5803 5804 rtpn->rb_root = RB_ROOT; 5805 spin_lock_init(&rtpn->lock); 5806 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5807 } 5808 5809 return 0; 5810 } 5811 subsys_initcall(mem_cgroup_init); 5812 5813 #ifdef CONFIG_MEMCG_SWAP 5814 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 5815 { 5816 while (!atomic_inc_not_zero(&memcg->id.ref)) { 5817 /* 5818 * The root cgroup cannot be destroyed, so it's refcount must 5819 * always be >= 1. 5820 */ 5821 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 5822 VM_BUG_ON(1); 5823 break; 5824 } 5825 memcg = parent_mem_cgroup(memcg); 5826 if (!memcg) 5827 memcg = root_mem_cgroup; 5828 } 5829 return memcg; 5830 } 5831 5832 /** 5833 * mem_cgroup_swapout - transfer a memsw charge to swap 5834 * @page: page whose memsw charge to transfer 5835 * @entry: swap entry to move the charge to 5836 * 5837 * Transfer the memsw charge of @page to @entry. 5838 */ 5839 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5840 { 5841 struct mem_cgroup *memcg, *swap_memcg; 5842 unsigned short oldid; 5843 5844 VM_BUG_ON_PAGE(PageLRU(page), page); 5845 VM_BUG_ON_PAGE(page_count(page), page); 5846 5847 if (!do_memsw_account()) 5848 return; 5849 5850 memcg = page->mem_cgroup; 5851 5852 /* Readahead page, never charged */ 5853 if (!memcg) 5854 return; 5855 5856 /* 5857 * In case the memcg owning these pages has been offlined and doesn't 5858 * have an ID allocated to it anymore, charge the closest online 5859 * ancestor for the swap instead and transfer the memory+swap charge. 5860 */ 5861 swap_memcg = mem_cgroup_id_get_online(memcg); 5862 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg)); 5863 VM_BUG_ON_PAGE(oldid, page); 5864 mem_cgroup_swap_statistics(swap_memcg, true); 5865 5866 page->mem_cgroup = NULL; 5867 5868 if (!mem_cgroup_is_root(memcg)) 5869 page_counter_uncharge(&memcg->memory, 1); 5870 5871 if (memcg != swap_memcg) { 5872 if (!mem_cgroup_is_root(swap_memcg)) 5873 page_counter_charge(&swap_memcg->memsw, 1); 5874 page_counter_uncharge(&memcg->memsw, 1); 5875 } 5876 5877 /* 5878 * Interrupts should be disabled here because the caller holds the 5879 * mapping->tree_lock lock which is taken with interrupts-off. It is 5880 * important here to have the interrupts disabled because it is the 5881 * only synchronisation we have for udpating the per-CPU variables. 5882 */ 5883 VM_BUG_ON(!irqs_disabled()); 5884 mem_cgroup_charge_statistics(memcg, page, false, -1); 5885 memcg_check_events(memcg, page); 5886 5887 if (!mem_cgroup_is_root(memcg)) 5888 css_put(&memcg->css); 5889 } 5890 5891 /* 5892 * mem_cgroup_try_charge_swap - try charging a swap entry 5893 * @page: page being added to swap 5894 * @entry: swap entry to charge 5895 * 5896 * Try to charge @entry to the memcg that @page belongs to. 5897 * 5898 * Returns 0 on success, -ENOMEM on failure. 5899 */ 5900 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5901 { 5902 struct mem_cgroup *memcg; 5903 struct page_counter *counter; 5904 unsigned short oldid; 5905 5906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5907 return 0; 5908 5909 memcg = page->mem_cgroup; 5910 5911 /* Readahead page, never charged */ 5912 if (!memcg) 5913 return 0; 5914 5915 memcg = mem_cgroup_id_get_online(memcg); 5916 5917 if (!mem_cgroup_is_root(memcg) && 5918 !page_counter_try_charge(&memcg->swap, 1, &counter)) { 5919 mem_cgroup_id_put(memcg); 5920 return -ENOMEM; 5921 } 5922 5923 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5924 VM_BUG_ON_PAGE(oldid, page); 5925 mem_cgroup_swap_statistics(memcg, true); 5926 5927 return 0; 5928 } 5929 5930 /** 5931 * mem_cgroup_uncharge_swap - uncharge a swap entry 5932 * @entry: swap entry to uncharge 5933 * 5934 * Drop the swap charge associated with @entry. 5935 */ 5936 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5937 { 5938 struct mem_cgroup *memcg; 5939 unsigned short id; 5940 5941 if (!do_swap_account) 5942 return; 5943 5944 id = swap_cgroup_record(entry, 0); 5945 rcu_read_lock(); 5946 memcg = mem_cgroup_from_id(id); 5947 if (memcg) { 5948 if (!mem_cgroup_is_root(memcg)) { 5949 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5950 page_counter_uncharge(&memcg->swap, 1); 5951 else 5952 page_counter_uncharge(&memcg->memsw, 1); 5953 } 5954 mem_cgroup_swap_statistics(memcg, false); 5955 mem_cgroup_id_put(memcg); 5956 } 5957 rcu_read_unlock(); 5958 } 5959 5960 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5961 { 5962 long nr_swap_pages = get_nr_swap_pages(); 5963 5964 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5965 return nr_swap_pages; 5966 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5967 nr_swap_pages = min_t(long, nr_swap_pages, 5968 READ_ONCE(memcg->swap.limit) - 5969 page_counter_read(&memcg->swap)); 5970 return nr_swap_pages; 5971 } 5972 5973 bool mem_cgroup_swap_full(struct page *page) 5974 { 5975 struct mem_cgroup *memcg; 5976 5977 VM_BUG_ON_PAGE(!PageLocked(page), page); 5978 5979 if (vm_swap_full()) 5980 return true; 5981 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5982 return false; 5983 5984 memcg = page->mem_cgroup; 5985 if (!memcg) 5986 return false; 5987 5988 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5989 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5990 return true; 5991 5992 return false; 5993 } 5994 5995 /* for remember boot option*/ 5996 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5997 static int really_do_swap_account __initdata = 1; 5998 #else 5999 static int really_do_swap_account __initdata; 6000 #endif 6001 6002 static int __init enable_swap_account(char *s) 6003 { 6004 if (!strcmp(s, "1")) 6005 really_do_swap_account = 1; 6006 else if (!strcmp(s, "0")) 6007 really_do_swap_account = 0; 6008 return 1; 6009 } 6010 __setup("swapaccount=", enable_swap_account); 6011 6012 static u64 swap_current_read(struct cgroup_subsys_state *css, 6013 struct cftype *cft) 6014 { 6015 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6016 6017 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6018 } 6019 6020 static int swap_max_show(struct seq_file *m, void *v) 6021 { 6022 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6023 unsigned long max = READ_ONCE(memcg->swap.limit); 6024 6025 if (max == PAGE_COUNTER_MAX) 6026 seq_puts(m, "max\n"); 6027 else 6028 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6029 6030 return 0; 6031 } 6032 6033 static ssize_t swap_max_write(struct kernfs_open_file *of, 6034 char *buf, size_t nbytes, loff_t off) 6035 { 6036 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6037 unsigned long max; 6038 int err; 6039 6040 buf = strstrip(buf); 6041 err = page_counter_memparse(buf, "max", &max); 6042 if (err) 6043 return err; 6044 6045 mutex_lock(&memcg_limit_mutex); 6046 err = page_counter_limit(&memcg->swap, max); 6047 mutex_unlock(&memcg_limit_mutex); 6048 if (err) 6049 return err; 6050 6051 return nbytes; 6052 } 6053 6054 static struct cftype swap_files[] = { 6055 { 6056 .name = "swap.current", 6057 .flags = CFTYPE_NOT_ON_ROOT, 6058 .read_u64 = swap_current_read, 6059 }, 6060 { 6061 .name = "swap.max", 6062 .flags = CFTYPE_NOT_ON_ROOT, 6063 .seq_show = swap_max_show, 6064 .write = swap_max_write, 6065 }, 6066 { } /* terminate */ 6067 }; 6068 6069 static struct cftype memsw_cgroup_files[] = { 6070 { 6071 .name = "memsw.usage_in_bytes", 6072 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6073 .read_u64 = mem_cgroup_read_u64, 6074 }, 6075 { 6076 .name = "memsw.max_usage_in_bytes", 6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6078 .write = mem_cgroup_reset, 6079 .read_u64 = mem_cgroup_read_u64, 6080 }, 6081 { 6082 .name = "memsw.limit_in_bytes", 6083 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6084 .write = mem_cgroup_write, 6085 .read_u64 = mem_cgroup_read_u64, 6086 }, 6087 { 6088 .name = "memsw.failcnt", 6089 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6090 .write = mem_cgroup_reset, 6091 .read_u64 = mem_cgroup_read_u64, 6092 }, 6093 { }, /* terminate */ 6094 }; 6095 6096 static int __init mem_cgroup_swap_init(void) 6097 { 6098 if (!mem_cgroup_disabled() && really_do_swap_account) { 6099 do_swap_account = 1; 6100 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6101 swap_files)); 6102 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6103 memsw_cgroup_files)); 6104 } 6105 return 0; 6106 } 6107 subsys_initcall(mem_cgroup_swap_init); 6108 6109 #endif /* CONFIG_MEMCG_SWAP */ 6110