1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/file.h> 62 #include <linux/tracehook.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include "internal.h" 66 #include <net/sock.h> 67 #include <net/ip.h> 68 #include "slab.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 82 83 /* Socket memory accounting disabled? */ 84 static bool cgroup_memory_nosocket __ro_after_init; 85 86 /* Kernel memory accounting disabled? */ 87 bool cgroup_memory_nokmem __ro_after_init; 88 89 /* Whether the swap controller is active */ 90 #ifdef CONFIG_MEMCG_SWAP 91 bool cgroup_memory_noswap __ro_after_init; 92 #else 93 #define cgroup_memory_noswap 1 94 #endif 95 96 #ifdef CONFIG_CGROUP_WRITEBACK 97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 98 #endif 99 100 /* Whether legacy memory+swap accounting is active */ 101 static bool do_memsw_account(void) 102 { 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 104 } 105 106 /* memcg and lruvec stats flushing */ 107 static void flush_memcg_stats_dwork(struct work_struct *w); 108 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 109 static DEFINE_SPINLOCK(stats_flush_lock); 110 111 #define THRESHOLDS_EVENTS_TARGET 128 112 #define SOFTLIMIT_EVENTS_TARGET 1024 113 114 /* 115 * Cgroups above their limits are maintained in a RB-Tree, independent of 116 * their hierarchy representation 117 */ 118 119 struct mem_cgroup_tree_per_node { 120 struct rb_root rb_root; 121 struct rb_node *rb_rightmost; 122 spinlock_t lock; 123 }; 124 125 struct mem_cgroup_tree { 126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 127 }; 128 129 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 130 131 /* for OOM */ 132 struct mem_cgroup_eventfd_list { 133 struct list_head list; 134 struct eventfd_ctx *eventfd; 135 }; 136 137 /* 138 * cgroup_event represents events which userspace want to receive. 139 */ 140 struct mem_cgroup_event { 141 /* 142 * memcg which the event belongs to. 143 */ 144 struct mem_cgroup *memcg; 145 /* 146 * eventfd to signal userspace about the event. 147 */ 148 struct eventfd_ctx *eventfd; 149 /* 150 * Each of these stored in a list by the cgroup. 151 */ 152 struct list_head list; 153 /* 154 * register_event() callback will be used to add new userspace 155 * waiter for changes related to this event. Use eventfd_signal() 156 * on eventfd to send notification to userspace. 157 */ 158 int (*register_event)(struct mem_cgroup *memcg, 159 struct eventfd_ctx *eventfd, const char *args); 160 /* 161 * unregister_event() callback will be called when userspace closes 162 * the eventfd or on cgroup removing. This callback must be set, 163 * if you want provide notification functionality. 164 */ 165 void (*unregister_event)(struct mem_cgroup *memcg, 166 struct eventfd_ctx *eventfd); 167 /* 168 * All fields below needed to unregister event when 169 * userspace closes eventfd. 170 */ 171 poll_table pt; 172 wait_queue_head_t *wqh; 173 wait_queue_entry_t wait; 174 struct work_struct remove; 175 }; 176 177 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 179 180 /* Stuffs for move charges at task migration. */ 181 /* 182 * Types of charges to be moved. 183 */ 184 #define MOVE_ANON 0x1U 185 #define MOVE_FILE 0x2U 186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 187 188 /* "mc" and its members are protected by cgroup_mutex */ 189 static struct move_charge_struct { 190 spinlock_t lock; /* for from, to */ 191 struct mm_struct *mm; 192 struct mem_cgroup *from; 193 struct mem_cgroup *to; 194 unsigned long flags; 195 unsigned long precharge; 196 unsigned long moved_charge; 197 unsigned long moved_swap; 198 struct task_struct *moving_task; /* a task moving charges */ 199 wait_queue_head_t waitq; /* a waitq for other context */ 200 } mc = { 201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 203 }; 204 205 /* 206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 207 * limit reclaim to prevent infinite loops, if they ever occur. 208 */ 209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 211 212 /* for encoding cft->private value on file */ 213 enum res_type { 214 _MEM, 215 _MEMSWAP, 216 _OOM_TYPE, 217 _KMEM, 218 _TCP, 219 }; 220 221 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 222 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 223 #define MEMFILE_ATTR(val) ((val) & 0xffff) 224 /* Used for OOM notifier */ 225 #define OOM_CONTROL (0) 226 227 /* 228 * Iteration constructs for visiting all cgroups (under a tree). If 229 * loops are exited prematurely (break), mem_cgroup_iter_break() must 230 * be used for reference counting. 231 */ 232 #define for_each_mem_cgroup_tree(iter, root) \ 233 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 234 iter != NULL; \ 235 iter = mem_cgroup_iter(root, iter, NULL)) 236 237 #define for_each_mem_cgroup(iter) \ 238 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 239 iter != NULL; \ 240 iter = mem_cgroup_iter(NULL, iter, NULL)) 241 242 static inline bool should_force_charge(void) 243 { 244 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 245 (current->flags & PF_EXITING); 246 } 247 248 /* Some nice accessors for the vmpressure. */ 249 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 250 { 251 if (!memcg) 252 memcg = root_mem_cgroup; 253 return &memcg->vmpressure; 254 } 255 256 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 257 { 258 return container_of(vmpr, struct mem_cgroup, vmpressure); 259 } 260 261 #ifdef CONFIG_MEMCG_KMEM 262 extern spinlock_t css_set_lock; 263 264 bool mem_cgroup_kmem_disabled(void) 265 { 266 return cgroup_memory_nokmem; 267 } 268 269 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 270 unsigned int nr_pages); 271 272 static void obj_cgroup_release(struct percpu_ref *ref) 273 { 274 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 275 unsigned int nr_bytes; 276 unsigned int nr_pages; 277 unsigned long flags; 278 279 /* 280 * At this point all allocated objects are freed, and 281 * objcg->nr_charged_bytes can't have an arbitrary byte value. 282 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 283 * 284 * The following sequence can lead to it: 285 * 1) CPU0: objcg == stock->cached_objcg 286 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 287 * PAGE_SIZE bytes are charged 288 * 3) CPU1: a process from another memcg is allocating something, 289 * the stock if flushed, 290 * objcg->nr_charged_bytes = PAGE_SIZE - 92 291 * 5) CPU0: we do release this object, 292 * 92 bytes are added to stock->nr_bytes 293 * 6) CPU0: stock is flushed, 294 * 92 bytes are added to objcg->nr_charged_bytes 295 * 296 * In the result, nr_charged_bytes == PAGE_SIZE. 297 * This page will be uncharged in obj_cgroup_release(). 298 */ 299 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 300 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 301 nr_pages = nr_bytes >> PAGE_SHIFT; 302 303 if (nr_pages) 304 obj_cgroup_uncharge_pages(objcg, nr_pages); 305 306 spin_lock_irqsave(&css_set_lock, flags); 307 list_del(&objcg->list); 308 spin_unlock_irqrestore(&css_set_lock, flags); 309 310 percpu_ref_exit(ref); 311 kfree_rcu(objcg, rcu); 312 } 313 314 static struct obj_cgroup *obj_cgroup_alloc(void) 315 { 316 struct obj_cgroup *objcg; 317 int ret; 318 319 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 320 if (!objcg) 321 return NULL; 322 323 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 324 GFP_KERNEL); 325 if (ret) { 326 kfree(objcg); 327 return NULL; 328 } 329 INIT_LIST_HEAD(&objcg->list); 330 return objcg; 331 } 332 333 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 334 struct mem_cgroup *parent) 335 { 336 struct obj_cgroup *objcg, *iter; 337 338 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 339 340 spin_lock_irq(&css_set_lock); 341 342 /* 1) Ready to reparent active objcg. */ 343 list_add(&objcg->list, &memcg->objcg_list); 344 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 345 list_for_each_entry(iter, &memcg->objcg_list, list) 346 WRITE_ONCE(iter->memcg, parent); 347 /* 3) Move already reparented objcgs to the parent's list */ 348 list_splice(&memcg->objcg_list, &parent->objcg_list); 349 350 spin_unlock_irq(&css_set_lock); 351 352 percpu_ref_kill(&objcg->refcnt); 353 } 354 355 /* 356 * This will be used as a shrinker list's index. 357 * The main reason for not using cgroup id for this: 358 * this works better in sparse environments, where we have a lot of memcgs, 359 * but only a few kmem-limited. Or also, if we have, for instance, 200 360 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 361 * 200 entry array for that. 362 * 363 * The current size of the caches array is stored in memcg_nr_cache_ids. It 364 * will double each time we have to increase it. 365 */ 366 static DEFINE_IDA(memcg_cache_ida); 367 int memcg_nr_cache_ids; 368 369 /* Protects memcg_nr_cache_ids */ 370 static DECLARE_RWSEM(memcg_cache_ids_sem); 371 372 void memcg_get_cache_ids(void) 373 { 374 down_read(&memcg_cache_ids_sem); 375 } 376 377 void memcg_put_cache_ids(void) 378 { 379 up_read(&memcg_cache_ids_sem); 380 } 381 382 /* 383 * MIN_SIZE is different than 1, because we would like to avoid going through 384 * the alloc/free process all the time. In a small machine, 4 kmem-limited 385 * cgroups is a reasonable guess. In the future, it could be a parameter or 386 * tunable, but that is strictly not necessary. 387 * 388 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 389 * this constant directly from cgroup, but it is understandable that this is 390 * better kept as an internal representation in cgroup.c. In any case, the 391 * cgrp_id space is not getting any smaller, and we don't have to necessarily 392 * increase ours as well if it increases. 393 */ 394 #define MEMCG_CACHES_MIN_SIZE 4 395 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 396 397 /* 398 * A lot of the calls to the cache allocation functions are expected to be 399 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 400 * conditional to this static branch, we'll have to allow modules that does 401 * kmem_cache_alloc and the such to see this symbol as well 402 */ 403 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 404 EXPORT_SYMBOL(memcg_kmem_enabled_key); 405 #endif 406 407 /** 408 * mem_cgroup_css_from_page - css of the memcg associated with a page 409 * @page: page of interest 410 * 411 * If memcg is bound to the default hierarchy, css of the memcg associated 412 * with @page is returned. The returned css remains associated with @page 413 * until it is released. 414 * 415 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 416 * is returned. 417 */ 418 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 419 { 420 struct mem_cgroup *memcg; 421 422 memcg = page_memcg(page); 423 424 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 425 memcg = root_mem_cgroup; 426 427 return &memcg->css; 428 } 429 430 /** 431 * page_cgroup_ino - return inode number of the memcg a page is charged to 432 * @page: the page 433 * 434 * Look up the closest online ancestor of the memory cgroup @page is charged to 435 * and return its inode number or 0 if @page is not charged to any cgroup. It 436 * is safe to call this function without holding a reference to @page. 437 * 438 * Note, this function is inherently racy, because there is nothing to prevent 439 * the cgroup inode from getting torn down and potentially reallocated a moment 440 * after page_cgroup_ino() returns, so it only should be used by callers that 441 * do not care (such as procfs interfaces). 442 */ 443 ino_t page_cgroup_ino(struct page *page) 444 { 445 struct mem_cgroup *memcg; 446 unsigned long ino = 0; 447 448 rcu_read_lock(); 449 memcg = page_memcg_check(page); 450 451 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 452 memcg = parent_mem_cgroup(memcg); 453 if (memcg) 454 ino = cgroup_ino(memcg->css.cgroup); 455 rcu_read_unlock(); 456 return ino; 457 } 458 459 static struct mem_cgroup_per_node * 460 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 461 { 462 int nid = page_to_nid(page); 463 464 return memcg->nodeinfo[nid]; 465 } 466 467 static struct mem_cgroup_tree_per_node * 468 soft_limit_tree_node(int nid) 469 { 470 return soft_limit_tree.rb_tree_per_node[nid]; 471 } 472 473 static struct mem_cgroup_tree_per_node * 474 soft_limit_tree_from_page(struct page *page) 475 { 476 int nid = page_to_nid(page); 477 478 return soft_limit_tree.rb_tree_per_node[nid]; 479 } 480 481 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 482 struct mem_cgroup_tree_per_node *mctz, 483 unsigned long new_usage_in_excess) 484 { 485 struct rb_node **p = &mctz->rb_root.rb_node; 486 struct rb_node *parent = NULL; 487 struct mem_cgroup_per_node *mz_node; 488 bool rightmost = true; 489 490 if (mz->on_tree) 491 return; 492 493 mz->usage_in_excess = new_usage_in_excess; 494 if (!mz->usage_in_excess) 495 return; 496 while (*p) { 497 parent = *p; 498 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 499 tree_node); 500 if (mz->usage_in_excess < mz_node->usage_in_excess) { 501 p = &(*p)->rb_left; 502 rightmost = false; 503 } else { 504 p = &(*p)->rb_right; 505 } 506 } 507 508 if (rightmost) 509 mctz->rb_rightmost = &mz->tree_node; 510 511 rb_link_node(&mz->tree_node, parent, p); 512 rb_insert_color(&mz->tree_node, &mctz->rb_root); 513 mz->on_tree = true; 514 } 515 516 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 517 struct mem_cgroup_tree_per_node *mctz) 518 { 519 if (!mz->on_tree) 520 return; 521 522 if (&mz->tree_node == mctz->rb_rightmost) 523 mctz->rb_rightmost = rb_prev(&mz->tree_node); 524 525 rb_erase(&mz->tree_node, &mctz->rb_root); 526 mz->on_tree = false; 527 } 528 529 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 530 struct mem_cgroup_tree_per_node *mctz) 531 { 532 unsigned long flags; 533 534 spin_lock_irqsave(&mctz->lock, flags); 535 __mem_cgroup_remove_exceeded(mz, mctz); 536 spin_unlock_irqrestore(&mctz->lock, flags); 537 } 538 539 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 540 { 541 unsigned long nr_pages = page_counter_read(&memcg->memory); 542 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 543 unsigned long excess = 0; 544 545 if (nr_pages > soft_limit) 546 excess = nr_pages - soft_limit; 547 548 return excess; 549 } 550 551 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 552 { 553 unsigned long excess; 554 struct mem_cgroup_per_node *mz; 555 struct mem_cgroup_tree_per_node *mctz; 556 557 mctz = soft_limit_tree_from_page(page); 558 if (!mctz) 559 return; 560 /* 561 * Necessary to update all ancestors when hierarchy is used. 562 * because their event counter is not touched. 563 */ 564 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 565 mz = mem_cgroup_page_nodeinfo(memcg, page); 566 excess = soft_limit_excess(memcg); 567 /* 568 * We have to update the tree if mz is on RB-tree or 569 * mem is over its softlimit. 570 */ 571 if (excess || mz->on_tree) { 572 unsigned long flags; 573 574 spin_lock_irqsave(&mctz->lock, flags); 575 /* if on-tree, remove it */ 576 if (mz->on_tree) 577 __mem_cgroup_remove_exceeded(mz, mctz); 578 /* 579 * Insert again. mz->usage_in_excess will be updated. 580 * If excess is 0, no tree ops. 581 */ 582 __mem_cgroup_insert_exceeded(mz, mctz, excess); 583 spin_unlock_irqrestore(&mctz->lock, flags); 584 } 585 } 586 } 587 588 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 589 { 590 struct mem_cgroup_tree_per_node *mctz; 591 struct mem_cgroup_per_node *mz; 592 int nid; 593 594 for_each_node(nid) { 595 mz = memcg->nodeinfo[nid]; 596 mctz = soft_limit_tree_node(nid); 597 if (mctz) 598 mem_cgroup_remove_exceeded(mz, mctz); 599 } 600 } 601 602 static struct mem_cgroup_per_node * 603 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 604 { 605 struct mem_cgroup_per_node *mz; 606 607 retry: 608 mz = NULL; 609 if (!mctz->rb_rightmost) 610 goto done; /* Nothing to reclaim from */ 611 612 mz = rb_entry(mctz->rb_rightmost, 613 struct mem_cgroup_per_node, tree_node); 614 /* 615 * Remove the node now but someone else can add it back, 616 * we will to add it back at the end of reclaim to its correct 617 * position in the tree. 618 */ 619 __mem_cgroup_remove_exceeded(mz, mctz); 620 if (!soft_limit_excess(mz->memcg) || 621 !css_tryget(&mz->memcg->css)) 622 goto retry; 623 done: 624 return mz; 625 } 626 627 static struct mem_cgroup_per_node * 628 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 629 { 630 struct mem_cgroup_per_node *mz; 631 632 spin_lock_irq(&mctz->lock); 633 mz = __mem_cgroup_largest_soft_limit_node(mctz); 634 spin_unlock_irq(&mctz->lock); 635 return mz; 636 } 637 638 /** 639 * __mod_memcg_state - update cgroup memory statistics 640 * @memcg: the memory cgroup 641 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 642 * @val: delta to add to the counter, can be negative 643 */ 644 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 645 { 646 if (mem_cgroup_disabled()) 647 return; 648 649 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 650 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 651 } 652 653 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 654 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 655 { 656 long x = 0; 657 int cpu; 658 659 for_each_possible_cpu(cpu) 660 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 661 #ifdef CONFIG_SMP 662 if (x < 0) 663 x = 0; 664 #endif 665 return x; 666 } 667 668 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 669 int val) 670 { 671 struct mem_cgroup_per_node *pn; 672 struct mem_cgroup *memcg; 673 674 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 675 memcg = pn->memcg; 676 677 /* Update memcg */ 678 __mod_memcg_state(memcg, idx, val); 679 680 /* Update lruvec */ 681 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 682 } 683 684 /** 685 * __mod_lruvec_state - update lruvec memory statistics 686 * @lruvec: the lruvec 687 * @idx: the stat item 688 * @val: delta to add to the counter, can be negative 689 * 690 * The lruvec is the intersection of the NUMA node and a cgroup. This 691 * function updates the all three counters that are affected by a 692 * change of state at this level: per-node, per-cgroup, per-lruvec. 693 */ 694 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 695 int val) 696 { 697 /* Update node */ 698 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 699 700 /* Update memcg and lruvec */ 701 if (!mem_cgroup_disabled()) 702 __mod_memcg_lruvec_state(lruvec, idx, val); 703 } 704 705 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 706 int val) 707 { 708 struct page *head = compound_head(page); /* rmap on tail pages */ 709 struct mem_cgroup *memcg; 710 pg_data_t *pgdat = page_pgdat(page); 711 struct lruvec *lruvec; 712 713 rcu_read_lock(); 714 memcg = page_memcg(head); 715 /* Untracked pages have no memcg, no lruvec. Update only the node */ 716 if (!memcg) { 717 rcu_read_unlock(); 718 __mod_node_page_state(pgdat, idx, val); 719 return; 720 } 721 722 lruvec = mem_cgroup_lruvec(memcg, pgdat); 723 __mod_lruvec_state(lruvec, idx, val); 724 rcu_read_unlock(); 725 } 726 EXPORT_SYMBOL(__mod_lruvec_page_state); 727 728 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 729 { 730 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 731 struct mem_cgroup *memcg; 732 struct lruvec *lruvec; 733 734 rcu_read_lock(); 735 memcg = mem_cgroup_from_obj(p); 736 737 /* 738 * Untracked pages have no memcg, no lruvec. Update only the 739 * node. If we reparent the slab objects to the root memcg, 740 * when we free the slab object, we need to update the per-memcg 741 * vmstats to keep it correct for the root memcg. 742 */ 743 if (!memcg) { 744 __mod_node_page_state(pgdat, idx, val); 745 } else { 746 lruvec = mem_cgroup_lruvec(memcg, pgdat); 747 __mod_lruvec_state(lruvec, idx, val); 748 } 749 rcu_read_unlock(); 750 } 751 752 /* 753 * mod_objcg_mlstate() may be called with irq enabled, so 754 * mod_memcg_lruvec_state() should be used. 755 */ 756 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 757 struct pglist_data *pgdat, 758 enum node_stat_item idx, int nr) 759 { 760 struct mem_cgroup *memcg; 761 struct lruvec *lruvec; 762 763 rcu_read_lock(); 764 memcg = obj_cgroup_memcg(objcg); 765 lruvec = mem_cgroup_lruvec(memcg, pgdat); 766 mod_memcg_lruvec_state(lruvec, idx, nr); 767 rcu_read_unlock(); 768 } 769 770 /** 771 * __count_memcg_events - account VM events in a cgroup 772 * @memcg: the memory cgroup 773 * @idx: the event item 774 * @count: the number of events that occurred 775 */ 776 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 777 unsigned long count) 778 { 779 if (mem_cgroup_disabled()) 780 return; 781 782 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 783 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 784 } 785 786 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 787 { 788 return READ_ONCE(memcg->vmstats.events[event]); 789 } 790 791 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 792 { 793 long x = 0; 794 int cpu; 795 796 for_each_possible_cpu(cpu) 797 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 798 return x; 799 } 800 801 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 802 struct page *page, 803 int nr_pages) 804 { 805 /* pagein of a big page is an event. So, ignore page size */ 806 if (nr_pages > 0) 807 __count_memcg_events(memcg, PGPGIN, 1); 808 else { 809 __count_memcg_events(memcg, PGPGOUT, 1); 810 nr_pages = -nr_pages; /* for event */ 811 } 812 813 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 814 } 815 816 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 817 enum mem_cgroup_events_target target) 818 { 819 unsigned long val, next; 820 821 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 822 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 823 /* from time_after() in jiffies.h */ 824 if ((long)(next - val) < 0) { 825 switch (target) { 826 case MEM_CGROUP_TARGET_THRESH: 827 next = val + THRESHOLDS_EVENTS_TARGET; 828 break; 829 case MEM_CGROUP_TARGET_SOFTLIMIT: 830 next = val + SOFTLIMIT_EVENTS_TARGET; 831 break; 832 default: 833 break; 834 } 835 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 836 return true; 837 } 838 return false; 839 } 840 841 /* 842 * Check events in order. 843 * 844 */ 845 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 846 { 847 /* threshold event is triggered in finer grain than soft limit */ 848 if (unlikely(mem_cgroup_event_ratelimit(memcg, 849 MEM_CGROUP_TARGET_THRESH))) { 850 bool do_softlimit; 851 852 do_softlimit = mem_cgroup_event_ratelimit(memcg, 853 MEM_CGROUP_TARGET_SOFTLIMIT); 854 mem_cgroup_threshold(memcg); 855 if (unlikely(do_softlimit)) 856 mem_cgroup_update_tree(memcg, page); 857 } 858 } 859 860 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 861 { 862 /* 863 * mm_update_next_owner() may clear mm->owner to NULL 864 * if it races with swapoff, page migration, etc. 865 * So this can be called with p == NULL. 866 */ 867 if (unlikely(!p)) 868 return NULL; 869 870 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 871 } 872 EXPORT_SYMBOL(mem_cgroup_from_task); 873 874 static __always_inline struct mem_cgroup *active_memcg(void) 875 { 876 if (!in_task()) 877 return this_cpu_read(int_active_memcg); 878 else 879 return current->active_memcg; 880 } 881 882 /** 883 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 884 * @mm: mm from which memcg should be extracted. It can be NULL. 885 * 886 * Obtain a reference on mm->memcg and returns it if successful. If mm 887 * is NULL, then the memcg is chosen as follows: 888 * 1) The active memcg, if set. 889 * 2) current->mm->memcg, if available 890 * 3) root memcg 891 * If mem_cgroup is disabled, NULL is returned. 892 */ 893 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 894 { 895 struct mem_cgroup *memcg; 896 897 if (mem_cgroup_disabled()) 898 return NULL; 899 900 /* 901 * Page cache insertions can happen without an 902 * actual mm context, e.g. during disk probing 903 * on boot, loopback IO, acct() writes etc. 904 * 905 * No need to css_get on root memcg as the reference 906 * counting is disabled on the root level in the 907 * cgroup core. See CSS_NO_REF. 908 */ 909 if (unlikely(!mm)) { 910 memcg = active_memcg(); 911 if (unlikely(memcg)) { 912 /* remote memcg must hold a ref */ 913 css_get(&memcg->css); 914 return memcg; 915 } 916 mm = current->mm; 917 if (unlikely(!mm)) 918 return root_mem_cgroup; 919 } 920 921 rcu_read_lock(); 922 do { 923 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 924 if (unlikely(!memcg)) 925 memcg = root_mem_cgroup; 926 } while (!css_tryget(&memcg->css)); 927 rcu_read_unlock(); 928 return memcg; 929 } 930 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 931 932 static __always_inline bool memcg_kmem_bypass(void) 933 { 934 /* Allow remote memcg charging from any context. */ 935 if (unlikely(active_memcg())) 936 return false; 937 938 /* Memcg to charge can't be determined. */ 939 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 940 return true; 941 942 return false; 943 } 944 945 /** 946 * mem_cgroup_iter - iterate over memory cgroup hierarchy 947 * @root: hierarchy root 948 * @prev: previously returned memcg, NULL on first invocation 949 * @reclaim: cookie for shared reclaim walks, NULL for full walks 950 * 951 * Returns references to children of the hierarchy below @root, or 952 * @root itself, or %NULL after a full round-trip. 953 * 954 * Caller must pass the return value in @prev on subsequent 955 * invocations for reference counting, or use mem_cgroup_iter_break() 956 * to cancel a hierarchy walk before the round-trip is complete. 957 * 958 * Reclaimers can specify a node in @reclaim to divide up the memcgs 959 * in the hierarchy among all concurrent reclaimers operating on the 960 * same node. 961 */ 962 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 963 struct mem_cgroup *prev, 964 struct mem_cgroup_reclaim_cookie *reclaim) 965 { 966 struct mem_cgroup_reclaim_iter *iter; 967 struct cgroup_subsys_state *css = NULL; 968 struct mem_cgroup *memcg = NULL; 969 struct mem_cgroup *pos = NULL; 970 971 if (mem_cgroup_disabled()) 972 return NULL; 973 974 if (!root) 975 root = root_mem_cgroup; 976 977 if (prev && !reclaim) 978 pos = prev; 979 980 rcu_read_lock(); 981 982 if (reclaim) { 983 struct mem_cgroup_per_node *mz; 984 985 mz = root->nodeinfo[reclaim->pgdat->node_id]; 986 iter = &mz->iter; 987 988 if (prev && reclaim->generation != iter->generation) 989 goto out_unlock; 990 991 while (1) { 992 pos = READ_ONCE(iter->position); 993 if (!pos || css_tryget(&pos->css)) 994 break; 995 /* 996 * css reference reached zero, so iter->position will 997 * be cleared by ->css_released. However, we should not 998 * rely on this happening soon, because ->css_released 999 * is called from a work queue, and by busy-waiting we 1000 * might block it. So we clear iter->position right 1001 * away. 1002 */ 1003 (void)cmpxchg(&iter->position, pos, NULL); 1004 } 1005 } 1006 1007 if (pos) 1008 css = &pos->css; 1009 1010 for (;;) { 1011 css = css_next_descendant_pre(css, &root->css); 1012 if (!css) { 1013 /* 1014 * Reclaimers share the hierarchy walk, and a 1015 * new one might jump in right at the end of 1016 * the hierarchy - make sure they see at least 1017 * one group and restart from the beginning. 1018 */ 1019 if (!prev) 1020 continue; 1021 break; 1022 } 1023 1024 /* 1025 * Verify the css and acquire a reference. The root 1026 * is provided by the caller, so we know it's alive 1027 * and kicking, and don't take an extra reference. 1028 */ 1029 memcg = mem_cgroup_from_css(css); 1030 1031 if (css == &root->css) 1032 break; 1033 1034 if (css_tryget(css)) 1035 break; 1036 1037 memcg = NULL; 1038 } 1039 1040 if (reclaim) { 1041 /* 1042 * The position could have already been updated by a competing 1043 * thread, so check that the value hasn't changed since we read 1044 * it to avoid reclaiming from the same cgroup twice. 1045 */ 1046 (void)cmpxchg(&iter->position, pos, memcg); 1047 1048 if (pos) 1049 css_put(&pos->css); 1050 1051 if (!memcg) 1052 iter->generation++; 1053 else if (!prev) 1054 reclaim->generation = iter->generation; 1055 } 1056 1057 out_unlock: 1058 rcu_read_unlock(); 1059 if (prev && prev != root) 1060 css_put(&prev->css); 1061 1062 return memcg; 1063 } 1064 1065 /** 1066 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1067 * @root: hierarchy root 1068 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1069 */ 1070 void mem_cgroup_iter_break(struct mem_cgroup *root, 1071 struct mem_cgroup *prev) 1072 { 1073 if (!root) 1074 root = root_mem_cgroup; 1075 if (prev && prev != root) 1076 css_put(&prev->css); 1077 } 1078 1079 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1080 struct mem_cgroup *dead_memcg) 1081 { 1082 struct mem_cgroup_reclaim_iter *iter; 1083 struct mem_cgroup_per_node *mz; 1084 int nid; 1085 1086 for_each_node(nid) { 1087 mz = from->nodeinfo[nid]; 1088 iter = &mz->iter; 1089 cmpxchg(&iter->position, dead_memcg, NULL); 1090 } 1091 } 1092 1093 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1094 { 1095 struct mem_cgroup *memcg = dead_memcg; 1096 struct mem_cgroup *last; 1097 1098 do { 1099 __invalidate_reclaim_iterators(memcg, dead_memcg); 1100 last = memcg; 1101 } while ((memcg = parent_mem_cgroup(memcg))); 1102 1103 /* 1104 * When cgruop1 non-hierarchy mode is used, 1105 * parent_mem_cgroup() does not walk all the way up to the 1106 * cgroup root (root_mem_cgroup). So we have to handle 1107 * dead_memcg from cgroup root separately. 1108 */ 1109 if (last != root_mem_cgroup) 1110 __invalidate_reclaim_iterators(root_mem_cgroup, 1111 dead_memcg); 1112 } 1113 1114 /** 1115 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1116 * @memcg: hierarchy root 1117 * @fn: function to call for each task 1118 * @arg: argument passed to @fn 1119 * 1120 * This function iterates over tasks attached to @memcg or to any of its 1121 * descendants and calls @fn for each task. If @fn returns a non-zero 1122 * value, the function breaks the iteration loop and returns the value. 1123 * Otherwise, it will iterate over all tasks and return 0. 1124 * 1125 * This function must not be called for the root memory cgroup. 1126 */ 1127 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1128 int (*fn)(struct task_struct *, void *), void *arg) 1129 { 1130 struct mem_cgroup *iter; 1131 int ret = 0; 1132 1133 BUG_ON(memcg == root_mem_cgroup); 1134 1135 for_each_mem_cgroup_tree(iter, memcg) { 1136 struct css_task_iter it; 1137 struct task_struct *task; 1138 1139 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1140 while (!ret && (task = css_task_iter_next(&it))) 1141 ret = fn(task, arg); 1142 css_task_iter_end(&it); 1143 if (ret) { 1144 mem_cgroup_iter_break(memcg, iter); 1145 break; 1146 } 1147 } 1148 return ret; 1149 } 1150 1151 #ifdef CONFIG_DEBUG_VM 1152 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1153 { 1154 struct mem_cgroup *memcg; 1155 1156 if (mem_cgroup_disabled()) 1157 return; 1158 1159 memcg = page_memcg(page); 1160 1161 if (!memcg) 1162 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page); 1163 else 1164 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page); 1165 } 1166 #endif 1167 1168 /** 1169 * lock_page_lruvec - lock and return lruvec for a given page. 1170 * @page: the page 1171 * 1172 * These functions are safe to use under any of the following conditions: 1173 * - page locked 1174 * - PageLRU cleared 1175 * - lock_page_memcg() 1176 * - page->_refcount is zero 1177 */ 1178 struct lruvec *lock_page_lruvec(struct page *page) 1179 { 1180 struct lruvec *lruvec; 1181 1182 lruvec = mem_cgroup_page_lruvec(page); 1183 spin_lock(&lruvec->lru_lock); 1184 1185 lruvec_memcg_debug(lruvec, page); 1186 1187 return lruvec; 1188 } 1189 1190 struct lruvec *lock_page_lruvec_irq(struct page *page) 1191 { 1192 struct lruvec *lruvec; 1193 1194 lruvec = mem_cgroup_page_lruvec(page); 1195 spin_lock_irq(&lruvec->lru_lock); 1196 1197 lruvec_memcg_debug(lruvec, page); 1198 1199 return lruvec; 1200 } 1201 1202 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags) 1203 { 1204 struct lruvec *lruvec; 1205 1206 lruvec = mem_cgroup_page_lruvec(page); 1207 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1208 1209 lruvec_memcg_debug(lruvec, page); 1210 1211 return lruvec; 1212 } 1213 1214 /** 1215 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1216 * @lruvec: mem_cgroup per zone lru vector 1217 * @lru: index of lru list the page is sitting on 1218 * @zid: zone id of the accounted pages 1219 * @nr_pages: positive when adding or negative when removing 1220 * 1221 * This function must be called under lru_lock, just before a page is added 1222 * to or just after a page is removed from an lru list (that ordering being 1223 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1224 */ 1225 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1226 int zid, int nr_pages) 1227 { 1228 struct mem_cgroup_per_node *mz; 1229 unsigned long *lru_size; 1230 long size; 1231 1232 if (mem_cgroup_disabled()) 1233 return; 1234 1235 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1236 lru_size = &mz->lru_zone_size[zid][lru]; 1237 1238 if (nr_pages < 0) 1239 *lru_size += nr_pages; 1240 1241 size = *lru_size; 1242 if (WARN_ONCE(size < 0, 1243 "%s(%p, %d, %d): lru_size %ld\n", 1244 __func__, lruvec, lru, nr_pages, size)) { 1245 VM_BUG_ON(1); 1246 *lru_size = 0; 1247 } 1248 1249 if (nr_pages > 0) 1250 *lru_size += nr_pages; 1251 } 1252 1253 /** 1254 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1255 * @memcg: the memory cgroup 1256 * 1257 * Returns the maximum amount of memory @mem can be charged with, in 1258 * pages. 1259 */ 1260 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1261 { 1262 unsigned long margin = 0; 1263 unsigned long count; 1264 unsigned long limit; 1265 1266 count = page_counter_read(&memcg->memory); 1267 limit = READ_ONCE(memcg->memory.max); 1268 if (count < limit) 1269 margin = limit - count; 1270 1271 if (do_memsw_account()) { 1272 count = page_counter_read(&memcg->memsw); 1273 limit = READ_ONCE(memcg->memsw.max); 1274 if (count < limit) 1275 margin = min(margin, limit - count); 1276 else 1277 margin = 0; 1278 } 1279 1280 return margin; 1281 } 1282 1283 /* 1284 * A routine for checking "mem" is under move_account() or not. 1285 * 1286 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1287 * moving cgroups. This is for waiting at high-memory pressure 1288 * caused by "move". 1289 */ 1290 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1291 { 1292 struct mem_cgroup *from; 1293 struct mem_cgroup *to; 1294 bool ret = false; 1295 /* 1296 * Unlike task_move routines, we access mc.to, mc.from not under 1297 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1298 */ 1299 spin_lock(&mc.lock); 1300 from = mc.from; 1301 to = mc.to; 1302 if (!from) 1303 goto unlock; 1304 1305 ret = mem_cgroup_is_descendant(from, memcg) || 1306 mem_cgroup_is_descendant(to, memcg); 1307 unlock: 1308 spin_unlock(&mc.lock); 1309 return ret; 1310 } 1311 1312 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1313 { 1314 if (mc.moving_task && current != mc.moving_task) { 1315 if (mem_cgroup_under_move(memcg)) { 1316 DEFINE_WAIT(wait); 1317 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1318 /* moving charge context might have finished. */ 1319 if (mc.moving_task) 1320 schedule(); 1321 finish_wait(&mc.waitq, &wait); 1322 return true; 1323 } 1324 } 1325 return false; 1326 } 1327 1328 struct memory_stat { 1329 const char *name; 1330 unsigned int idx; 1331 }; 1332 1333 static const struct memory_stat memory_stats[] = { 1334 { "anon", NR_ANON_MAPPED }, 1335 { "file", NR_FILE_PAGES }, 1336 { "kernel_stack", NR_KERNEL_STACK_KB }, 1337 { "pagetables", NR_PAGETABLE }, 1338 { "percpu", MEMCG_PERCPU_B }, 1339 { "sock", MEMCG_SOCK }, 1340 { "shmem", NR_SHMEM }, 1341 { "file_mapped", NR_FILE_MAPPED }, 1342 { "file_dirty", NR_FILE_DIRTY }, 1343 { "file_writeback", NR_WRITEBACK }, 1344 #ifdef CONFIG_SWAP 1345 { "swapcached", NR_SWAPCACHE }, 1346 #endif 1347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1348 { "anon_thp", NR_ANON_THPS }, 1349 { "file_thp", NR_FILE_THPS }, 1350 { "shmem_thp", NR_SHMEM_THPS }, 1351 #endif 1352 { "inactive_anon", NR_INACTIVE_ANON }, 1353 { "active_anon", NR_ACTIVE_ANON }, 1354 { "inactive_file", NR_INACTIVE_FILE }, 1355 { "active_file", NR_ACTIVE_FILE }, 1356 { "unevictable", NR_UNEVICTABLE }, 1357 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1358 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1359 1360 /* The memory events */ 1361 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1362 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1363 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1364 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1365 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1366 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1367 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1368 }; 1369 1370 /* Translate stat items to the correct unit for memory.stat output */ 1371 static int memcg_page_state_unit(int item) 1372 { 1373 switch (item) { 1374 case MEMCG_PERCPU_B: 1375 case NR_SLAB_RECLAIMABLE_B: 1376 case NR_SLAB_UNRECLAIMABLE_B: 1377 case WORKINGSET_REFAULT_ANON: 1378 case WORKINGSET_REFAULT_FILE: 1379 case WORKINGSET_ACTIVATE_ANON: 1380 case WORKINGSET_ACTIVATE_FILE: 1381 case WORKINGSET_RESTORE_ANON: 1382 case WORKINGSET_RESTORE_FILE: 1383 case WORKINGSET_NODERECLAIM: 1384 return 1; 1385 case NR_KERNEL_STACK_KB: 1386 return SZ_1K; 1387 default: 1388 return PAGE_SIZE; 1389 } 1390 } 1391 1392 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1393 int item) 1394 { 1395 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1396 } 1397 1398 static char *memory_stat_format(struct mem_cgroup *memcg) 1399 { 1400 struct seq_buf s; 1401 int i; 1402 1403 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1404 if (!s.buffer) 1405 return NULL; 1406 1407 /* 1408 * Provide statistics on the state of the memory subsystem as 1409 * well as cumulative event counters that show past behavior. 1410 * 1411 * This list is ordered following a combination of these gradients: 1412 * 1) generic big picture -> specifics and details 1413 * 2) reflecting userspace activity -> reflecting kernel heuristics 1414 * 1415 * Current memory state: 1416 */ 1417 cgroup_rstat_flush(memcg->css.cgroup); 1418 1419 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1420 u64 size; 1421 1422 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1423 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1424 1425 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1426 size += memcg_page_state_output(memcg, 1427 NR_SLAB_RECLAIMABLE_B); 1428 seq_buf_printf(&s, "slab %llu\n", size); 1429 } 1430 } 1431 1432 /* Accumulated memory events */ 1433 1434 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1435 memcg_events(memcg, PGFAULT)); 1436 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1437 memcg_events(memcg, PGMAJFAULT)); 1438 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1439 memcg_events(memcg, PGREFILL)); 1440 seq_buf_printf(&s, "pgscan %lu\n", 1441 memcg_events(memcg, PGSCAN_KSWAPD) + 1442 memcg_events(memcg, PGSCAN_DIRECT)); 1443 seq_buf_printf(&s, "pgsteal %lu\n", 1444 memcg_events(memcg, PGSTEAL_KSWAPD) + 1445 memcg_events(memcg, PGSTEAL_DIRECT)); 1446 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1447 memcg_events(memcg, PGACTIVATE)); 1448 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1449 memcg_events(memcg, PGDEACTIVATE)); 1450 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1451 memcg_events(memcg, PGLAZYFREE)); 1452 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1453 memcg_events(memcg, PGLAZYFREED)); 1454 1455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1456 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1457 memcg_events(memcg, THP_FAULT_ALLOC)); 1458 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1459 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1460 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1461 1462 /* The above should easily fit into one page */ 1463 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1464 1465 return s.buffer; 1466 } 1467 1468 #define K(x) ((x) << (PAGE_SHIFT-10)) 1469 /** 1470 * mem_cgroup_print_oom_context: Print OOM information relevant to 1471 * memory controller. 1472 * @memcg: The memory cgroup that went over limit 1473 * @p: Task that is going to be killed 1474 * 1475 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1476 * enabled 1477 */ 1478 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1479 { 1480 rcu_read_lock(); 1481 1482 if (memcg) { 1483 pr_cont(",oom_memcg="); 1484 pr_cont_cgroup_path(memcg->css.cgroup); 1485 } else 1486 pr_cont(",global_oom"); 1487 if (p) { 1488 pr_cont(",task_memcg="); 1489 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1490 } 1491 rcu_read_unlock(); 1492 } 1493 1494 /** 1495 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1496 * memory controller. 1497 * @memcg: The memory cgroup that went over limit 1498 */ 1499 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1500 { 1501 char *buf; 1502 1503 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1504 K((u64)page_counter_read(&memcg->memory)), 1505 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1506 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1507 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1508 K((u64)page_counter_read(&memcg->swap)), 1509 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1510 else { 1511 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1512 K((u64)page_counter_read(&memcg->memsw)), 1513 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1514 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1515 K((u64)page_counter_read(&memcg->kmem)), 1516 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1517 } 1518 1519 pr_info("Memory cgroup stats for "); 1520 pr_cont_cgroup_path(memcg->css.cgroup); 1521 pr_cont(":"); 1522 buf = memory_stat_format(memcg); 1523 if (!buf) 1524 return; 1525 pr_info("%s", buf); 1526 kfree(buf); 1527 } 1528 1529 /* 1530 * Return the memory (and swap, if configured) limit for a memcg. 1531 */ 1532 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1533 { 1534 unsigned long max = READ_ONCE(memcg->memory.max); 1535 1536 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1537 if (mem_cgroup_swappiness(memcg)) 1538 max += min(READ_ONCE(memcg->swap.max), 1539 (unsigned long)total_swap_pages); 1540 } else { /* v1 */ 1541 if (mem_cgroup_swappiness(memcg)) { 1542 /* Calculate swap excess capacity from memsw limit */ 1543 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1544 1545 max += min(swap, (unsigned long)total_swap_pages); 1546 } 1547 } 1548 return max; 1549 } 1550 1551 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1552 { 1553 return page_counter_read(&memcg->memory); 1554 } 1555 1556 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1557 int order) 1558 { 1559 struct oom_control oc = { 1560 .zonelist = NULL, 1561 .nodemask = NULL, 1562 .memcg = memcg, 1563 .gfp_mask = gfp_mask, 1564 .order = order, 1565 }; 1566 bool ret = true; 1567 1568 if (mutex_lock_killable(&oom_lock)) 1569 return true; 1570 1571 if (mem_cgroup_margin(memcg) >= (1 << order)) 1572 goto unlock; 1573 1574 /* 1575 * A few threads which were not waiting at mutex_lock_killable() can 1576 * fail to bail out. Therefore, check again after holding oom_lock. 1577 */ 1578 ret = should_force_charge() || out_of_memory(&oc); 1579 1580 unlock: 1581 mutex_unlock(&oom_lock); 1582 return ret; 1583 } 1584 1585 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1586 pg_data_t *pgdat, 1587 gfp_t gfp_mask, 1588 unsigned long *total_scanned) 1589 { 1590 struct mem_cgroup *victim = NULL; 1591 int total = 0; 1592 int loop = 0; 1593 unsigned long excess; 1594 unsigned long nr_scanned; 1595 struct mem_cgroup_reclaim_cookie reclaim = { 1596 .pgdat = pgdat, 1597 }; 1598 1599 excess = soft_limit_excess(root_memcg); 1600 1601 while (1) { 1602 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1603 if (!victim) { 1604 loop++; 1605 if (loop >= 2) { 1606 /* 1607 * If we have not been able to reclaim 1608 * anything, it might because there are 1609 * no reclaimable pages under this hierarchy 1610 */ 1611 if (!total) 1612 break; 1613 /* 1614 * We want to do more targeted reclaim. 1615 * excess >> 2 is not to excessive so as to 1616 * reclaim too much, nor too less that we keep 1617 * coming back to reclaim from this cgroup 1618 */ 1619 if (total >= (excess >> 2) || 1620 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1621 break; 1622 } 1623 continue; 1624 } 1625 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1626 pgdat, &nr_scanned); 1627 *total_scanned += nr_scanned; 1628 if (!soft_limit_excess(root_memcg)) 1629 break; 1630 } 1631 mem_cgroup_iter_break(root_memcg, victim); 1632 return total; 1633 } 1634 1635 #ifdef CONFIG_LOCKDEP 1636 static struct lockdep_map memcg_oom_lock_dep_map = { 1637 .name = "memcg_oom_lock", 1638 }; 1639 #endif 1640 1641 static DEFINE_SPINLOCK(memcg_oom_lock); 1642 1643 /* 1644 * Check OOM-Killer is already running under our hierarchy. 1645 * If someone is running, return false. 1646 */ 1647 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1648 { 1649 struct mem_cgroup *iter, *failed = NULL; 1650 1651 spin_lock(&memcg_oom_lock); 1652 1653 for_each_mem_cgroup_tree(iter, memcg) { 1654 if (iter->oom_lock) { 1655 /* 1656 * this subtree of our hierarchy is already locked 1657 * so we cannot give a lock. 1658 */ 1659 failed = iter; 1660 mem_cgroup_iter_break(memcg, iter); 1661 break; 1662 } else 1663 iter->oom_lock = true; 1664 } 1665 1666 if (failed) { 1667 /* 1668 * OK, we failed to lock the whole subtree so we have 1669 * to clean up what we set up to the failing subtree 1670 */ 1671 for_each_mem_cgroup_tree(iter, memcg) { 1672 if (iter == failed) { 1673 mem_cgroup_iter_break(memcg, iter); 1674 break; 1675 } 1676 iter->oom_lock = false; 1677 } 1678 } else 1679 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1680 1681 spin_unlock(&memcg_oom_lock); 1682 1683 return !failed; 1684 } 1685 1686 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1687 { 1688 struct mem_cgroup *iter; 1689 1690 spin_lock(&memcg_oom_lock); 1691 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1692 for_each_mem_cgroup_tree(iter, memcg) 1693 iter->oom_lock = false; 1694 spin_unlock(&memcg_oom_lock); 1695 } 1696 1697 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1698 { 1699 struct mem_cgroup *iter; 1700 1701 spin_lock(&memcg_oom_lock); 1702 for_each_mem_cgroup_tree(iter, memcg) 1703 iter->under_oom++; 1704 spin_unlock(&memcg_oom_lock); 1705 } 1706 1707 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1708 { 1709 struct mem_cgroup *iter; 1710 1711 /* 1712 * Be careful about under_oom underflows because a child memcg 1713 * could have been added after mem_cgroup_mark_under_oom. 1714 */ 1715 spin_lock(&memcg_oom_lock); 1716 for_each_mem_cgroup_tree(iter, memcg) 1717 if (iter->under_oom > 0) 1718 iter->under_oom--; 1719 spin_unlock(&memcg_oom_lock); 1720 } 1721 1722 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1723 1724 struct oom_wait_info { 1725 struct mem_cgroup *memcg; 1726 wait_queue_entry_t wait; 1727 }; 1728 1729 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1730 unsigned mode, int sync, void *arg) 1731 { 1732 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1733 struct mem_cgroup *oom_wait_memcg; 1734 struct oom_wait_info *oom_wait_info; 1735 1736 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1737 oom_wait_memcg = oom_wait_info->memcg; 1738 1739 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1740 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1741 return 0; 1742 return autoremove_wake_function(wait, mode, sync, arg); 1743 } 1744 1745 static void memcg_oom_recover(struct mem_cgroup *memcg) 1746 { 1747 /* 1748 * For the following lockless ->under_oom test, the only required 1749 * guarantee is that it must see the state asserted by an OOM when 1750 * this function is called as a result of userland actions 1751 * triggered by the notification of the OOM. This is trivially 1752 * achieved by invoking mem_cgroup_mark_under_oom() before 1753 * triggering notification. 1754 */ 1755 if (memcg && memcg->under_oom) 1756 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1757 } 1758 1759 enum oom_status { 1760 OOM_SUCCESS, 1761 OOM_FAILED, 1762 OOM_ASYNC, 1763 OOM_SKIPPED 1764 }; 1765 1766 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1767 { 1768 enum oom_status ret; 1769 bool locked; 1770 1771 if (order > PAGE_ALLOC_COSTLY_ORDER) 1772 return OOM_SKIPPED; 1773 1774 memcg_memory_event(memcg, MEMCG_OOM); 1775 1776 /* 1777 * We are in the middle of the charge context here, so we 1778 * don't want to block when potentially sitting on a callstack 1779 * that holds all kinds of filesystem and mm locks. 1780 * 1781 * cgroup1 allows disabling the OOM killer and waiting for outside 1782 * handling until the charge can succeed; remember the context and put 1783 * the task to sleep at the end of the page fault when all locks are 1784 * released. 1785 * 1786 * On the other hand, in-kernel OOM killer allows for an async victim 1787 * memory reclaim (oom_reaper) and that means that we are not solely 1788 * relying on the oom victim to make a forward progress and we can 1789 * invoke the oom killer here. 1790 * 1791 * Please note that mem_cgroup_out_of_memory might fail to find a 1792 * victim and then we have to bail out from the charge path. 1793 */ 1794 if (memcg->oom_kill_disable) { 1795 if (!current->in_user_fault) 1796 return OOM_SKIPPED; 1797 css_get(&memcg->css); 1798 current->memcg_in_oom = memcg; 1799 current->memcg_oom_gfp_mask = mask; 1800 current->memcg_oom_order = order; 1801 1802 return OOM_ASYNC; 1803 } 1804 1805 mem_cgroup_mark_under_oom(memcg); 1806 1807 locked = mem_cgroup_oom_trylock(memcg); 1808 1809 if (locked) 1810 mem_cgroup_oom_notify(memcg); 1811 1812 mem_cgroup_unmark_under_oom(memcg); 1813 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1814 ret = OOM_SUCCESS; 1815 else 1816 ret = OOM_FAILED; 1817 1818 if (locked) 1819 mem_cgroup_oom_unlock(memcg); 1820 1821 return ret; 1822 } 1823 1824 /** 1825 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1826 * @handle: actually kill/wait or just clean up the OOM state 1827 * 1828 * This has to be called at the end of a page fault if the memcg OOM 1829 * handler was enabled. 1830 * 1831 * Memcg supports userspace OOM handling where failed allocations must 1832 * sleep on a waitqueue until the userspace task resolves the 1833 * situation. Sleeping directly in the charge context with all kinds 1834 * of locks held is not a good idea, instead we remember an OOM state 1835 * in the task and mem_cgroup_oom_synchronize() has to be called at 1836 * the end of the page fault to complete the OOM handling. 1837 * 1838 * Returns %true if an ongoing memcg OOM situation was detected and 1839 * completed, %false otherwise. 1840 */ 1841 bool mem_cgroup_oom_synchronize(bool handle) 1842 { 1843 struct mem_cgroup *memcg = current->memcg_in_oom; 1844 struct oom_wait_info owait; 1845 bool locked; 1846 1847 /* OOM is global, do not handle */ 1848 if (!memcg) 1849 return false; 1850 1851 if (!handle) 1852 goto cleanup; 1853 1854 owait.memcg = memcg; 1855 owait.wait.flags = 0; 1856 owait.wait.func = memcg_oom_wake_function; 1857 owait.wait.private = current; 1858 INIT_LIST_HEAD(&owait.wait.entry); 1859 1860 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1861 mem_cgroup_mark_under_oom(memcg); 1862 1863 locked = mem_cgroup_oom_trylock(memcg); 1864 1865 if (locked) 1866 mem_cgroup_oom_notify(memcg); 1867 1868 if (locked && !memcg->oom_kill_disable) { 1869 mem_cgroup_unmark_under_oom(memcg); 1870 finish_wait(&memcg_oom_waitq, &owait.wait); 1871 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1872 current->memcg_oom_order); 1873 } else { 1874 schedule(); 1875 mem_cgroup_unmark_under_oom(memcg); 1876 finish_wait(&memcg_oom_waitq, &owait.wait); 1877 } 1878 1879 if (locked) { 1880 mem_cgroup_oom_unlock(memcg); 1881 /* 1882 * There is no guarantee that an OOM-lock contender 1883 * sees the wakeups triggered by the OOM kill 1884 * uncharges. Wake any sleepers explicitly. 1885 */ 1886 memcg_oom_recover(memcg); 1887 } 1888 cleanup: 1889 current->memcg_in_oom = NULL; 1890 css_put(&memcg->css); 1891 return true; 1892 } 1893 1894 /** 1895 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1896 * @victim: task to be killed by the OOM killer 1897 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1898 * 1899 * Returns a pointer to a memory cgroup, which has to be cleaned up 1900 * by killing all belonging OOM-killable tasks. 1901 * 1902 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1903 */ 1904 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1905 struct mem_cgroup *oom_domain) 1906 { 1907 struct mem_cgroup *oom_group = NULL; 1908 struct mem_cgroup *memcg; 1909 1910 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1911 return NULL; 1912 1913 if (!oom_domain) 1914 oom_domain = root_mem_cgroup; 1915 1916 rcu_read_lock(); 1917 1918 memcg = mem_cgroup_from_task(victim); 1919 if (memcg == root_mem_cgroup) 1920 goto out; 1921 1922 /* 1923 * If the victim task has been asynchronously moved to a different 1924 * memory cgroup, we might end up killing tasks outside oom_domain. 1925 * In this case it's better to ignore memory.group.oom. 1926 */ 1927 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1928 goto out; 1929 1930 /* 1931 * Traverse the memory cgroup hierarchy from the victim task's 1932 * cgroup up to the OOMing cgroup (or root) to find the 1933 * highest-level memory cgroup with oom.group set. 1934 */ 1935 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1936 if (memcg->oom_group) 1937 oom_group = memcg; 1938 1939 if (memcg == oom_domain) 1940 break; 1941 } 1942 1943 if (oom_group) 1944 css_get(&oom_group->css); 1945 out: 1946 rcu_read_unlock(); 1947 1948 return oom_group; 1949 } 1950 1951 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1952 { 1953 pr_info("Tasks in "); 1954 pr_cont_cgroup_path(memcg->css.cgroup); 1955 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1956 } 1957 1958 /** 1959 * lock_page_memcg - lock a page and memcg binding 1960 * @page: the page 1961 * 1962 * This function protects unlocked LRU pages from being moved to 1963 * another cgroup. 1964 * 1965 * It ensures lifetime of the locked memcg. Caller is responsible 1966 * for the lifetime of the page. 1967 */ 1968 void lock_page_memcg(struct page *page) 1969 { 1970 struct page *head = compound_head(page); /* rmap on tail pages */ 1971 struct mem_cgroup *memcg; 1972 unsigned long flags; 1973 1974 /* 1975 * The RCU lock is held throughout the transaction. The fast 1976 * path can get away without acquiring the memcg->move_lock 1977 * because page moving starts with an RCU grace period. 1978 */ 1979 rcu_read_lock(); 1980 1981 if (mem_cgroup_disabled()) 1982 return; 1983 again: 1984 memcg = page_memcg(head); 1985 if (unlikely(!memcg)) 1986 return; 1987 1988 #ifdef CONFIG_PROVE_LOCKING 1989 local_irq_save(flags); 1990 might_lock(&memcg->move_lock); 1991 local_irq_restore(flags); 1992 #endif 1993 1994 if (atomic_read(&memcg->moving_account) <= 0) 1995 return; 1996 1997 spin_lock_irqsave(&memcg->move_lock, flags); 1998 if (memcg != page_memcg(head)) { 1999 spin_unlock_irqrestore(&memcg->move_lock, flags); 2000 goto again; 2001 } 2002 2003 /* 2004 * When charge migration first begins, we can have multiple 2005 * critical sections holding the fast-path RCU lock and one 2006 * holding the slowpath move_lock. Track the task who has the 2007 * move_lock for unlock_page_memcg(). 2008 */ 2009 memcg->move_lock_task = current; 2010 memcg->move_lock_flags = flags; 2011 } 2012 EXPORT_SYMBOL(lock_page_memcg); 2013 2014 static void __unlock_page_memcg(struct mem_cgroup *memcg) 2015 { 2016 if (memcg && memcg->move_lock_task == current) { 2017 unsigned long flags = memcg->move_lock_flags; 2018 2019 memcg->move_lock_task = NULL; 2020 memcg->move_lock_flags = 0; 2021 2022 spin_unlock_irqrestore(&memcg->move_lock, flags); 2023 } 2024 2025 rcu_read_unlock(); 2026 } 2027 2028 /** 2029 * unlock_page_memcg - unlock a page and memcg binding 2030 * @page: the page 2031 */ 2032 void unlock_page_memcg(struct page *page) 2033 { 2034 struct page *head = compound_head(page); 2035 2036 __unlock_page_memcg(page_memcg(head)); 2037 } 2038 EXPORT_SYMBOL(unlock_page_memcg); 2039 2040 struct obj_stock { 2041 #ifdef CONFIG_MEMCG_KMEM 2042 struct obj_cgroup *cached_objcg; 2043 struct pglist_data *cached_pgdat; 2044 unsigned int nr_bytes; 2045 int nr_slab_reclaimable_b; 2046 int nr_slab_unreclaimable_b; 2047 #else 2048 int dummy[0]; 2049 #endif 2050 }; 2051 2052 struct memcg_stock_pcp { 2053 struct mem_cgroup *cached; /* this never be root cgroup */ 2054 unsigned int nr_pages; 2055 struct obj_stock task_obj; 2056 struct obj_stock irq_obj; 2057 2058 struct work_struct work; 2059 unsigned long flags; 2060 #define FLUSHING_CACHED_CHARGE 0 2061 }; 2062 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2063 static DEFINE_MUTEX(percpu_charge_mutex); 2064 2065 #ifdef CONFIG_MEMCG_KMEM 2066 static void drain_obj_stock(struct obj_stock *stock); 2067 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2068 struct mem_cgroup *root_memcg); 2069 2070 #else 2071 static inline void drain_obj_stock(struct obj_stock *stock) 2072 { 2073 } 2074 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2075 struct mem_cgroup *root_memcg) 2076 { 2077 return false; 2078 } 2079 #endif 2080 2081 /* 2082 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable 2083 * sequence used in this case to access content from object stock is slow. 2084 * To optimize for user context access, there are now two object stocks for 2085 * task context and interrupt context access respectively. 2086 * 2087 * The task context object stock can be accessed by disabling preemption only 2088 * which is cheap in non-preempt kernel. The interrupt context object stock 2089 * can only be accessed after disabling interrupt. User context code can 2090 * access interrupt object stock, but not vice versa. 2091 */ 2092 static inline struct obj_stock *get_obj_stock(unsigned long *pflags) 2093 { 2094 struct memcg_stock_pcp *stock; 2095 2096 if (likely(in_task())) { 2097 *pflags = 0UL; 2098 preempt_disable(); 2099 stock = this_cpu_ptr(&memcg_stock); 2100 return &stock->task_obj; 2101 } 2102 2103 local_irq_save(*pflags); 2104 stock = this_cpu_ptr(&memcg_stock); 2105 return &stock->irq_obj; 2106 } 2107 2108 static inline void put_obj_stock(unsigned long flags) 2109 { 2110 if (likely(in_task())) 2111 preempt_enable(); 2112 else 2113 local_irq_restore(flags); 2114 } 2115 2116 /** 2117 * consume_stock: Try to consume stocked charge on this cpu. 2118 * @memcg: memcg to consume from. 2119 * @nr_pages: how many pages to charge. 2120 * 2121 * The charges will only happen if @memcg matches the current cpu's memcg 2122 * stock, and at least @nr_pages are available in that stock. Failure to 2123 * service an allocation will refill the stock. 2124 * 2125 * returns true if successful, false otherwise. 2126 */ 2127 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2128 { 2129 struct memcg_stock_pcp *stock; 2130 unsigned long flags; 2131 bool ret = false; 2132 2133 if (nr_pages > MEMCG_CHARGE_BATCH) 2134 return ret; 2135 2136 local_irq_save(flags); 2137 2138 stock = this_cpu_ptr(&memcg_stock); 2139 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2140 stock->nr_pages -= nr_pages; 2141 ret = true; 2142 } 2143 2144 local_irq_restore(flags); 2145 2146 return ret; 2147 } 2148 2149 /* 2150 * Returns stocks cached in percpu and reset cached information. 2151 */ 2152 static void drain_stock(struct memcg_stock_pcp *stock) 2153 { 2154 struct mem_cgroup *old = stock->cached; 2155 2156 if (!old) 2157 return; 2158 2159 if (stock->nr_pages) { 2160 page_counter_uncharge(&old->memory, stock->nr_pages); 2161 if (do_memsw_account()) 2162 page_counter_uncharge(&old->memsw, stock->nr_pages); 2163 stock->nr_pages = 0; 2164 } 2165 2166 css_put(&old->css); 2167 stock->cached = NULL; 2168 } 2169 2170 static void drain_local_stock(struct work_struct *dummy) 2171 { 2172 struct memcg_stock_pcp *stock; 2173 unsigned long flags; 2174 2175 /* 2176 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2177 * drain_stock races is that we always operate on local CPU stock 2178 * here with IRQ disabled 2179 */ 2180 local_irq_save(flags); 2181 2182 stock = this_cpu_ptr(&memcg_stock); 2183 drain_obj_stock(&stock->irq_obj); 2184 if (in_task()) 2185 drain_obj_stock(&stock->task_obj); 2186 drain_stock(stock); 2187 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2188 2189 local_irq_restore(flags); 2190 } 2191 2192 /* 2193 * Cache charges(val) to local per_cpu area. 2194 * This will be consumed by consume_stock() function, later. 2195 */ 2196 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2197 { 2198 struct memcg_stock_pcp *stock; 2199 unsigned long flags; 2200 2201 local_irq_save(flags); 2202 2203 stock = this_cpu_ptr(&memcg_stock); 2204 if (stock->cached != memcg) { /* reset if necessary */ 2205 drain_stock(stock); 2206 css_get(&memcg->css); 2207 stock->cached = memcg; 2208 } 2209 stock->nr_pages += nr_pages; 2210 2211 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2212 drain_stock(stock); 2213 2214 local_irq_restore(flags); 2215 } 2216 2217 /* 2218 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2219 * of the hierarchy under it. 2220 */ 2221 static void drain_all_stock(struct mem_cgroup *root_memcg) 2222 { 2223 int cpu, curcpu; 2224 2225 /* If someone's already draining, avoid adding running more workers. */ 2226 if (!mutex_trylock(&percpu_charge_mutex)) 2227 return; 2228 /* 2229 * Notify other cpus that system-wide "drain" is running 2230 * We do not care about races with the cpu hotplug because cpu down 2231 * as well as workers from this path always operate on the local 2232 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2233 */ 2234 curcpu = get_cpu(); 2235 for_each_online_cpu(cpu) { 2236 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2237 struct mem_cgroup *memcg; 2238 bool flush = false; 2239 2240 rcu_read_lock(); 2241 memcg = stock->cached; 2242 if (memcg && stock->nr_pages && 2243 mem_cgroup_is_descendant(memcg, root_memcg)) 2244 flush = true; 2245 else if (obj_stock_flush_required(stock, root_memcg)) 2246 flush = true; 2247 rcu_read_unlock(); 2248 2249 if (flush && 2250 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2251 if (cpu == curcpu) 2252 drain_local_stock(&stock->work); 2253 else 2254 schedule_work_on(cpu, &stock->work); 2255 } 2256 } 2257 put_cpu(); 2258 mutex_unlock(&percpu_charge_mutex); 2259 } 2260 2261 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2262 { 2263 struct memcg_stock_pcp *stock; 2264 2265 stock = &per_cpu(memcg_stock, cpu); 2266 drain_stock(stock); 2267 2268 return 0; 2269 } 2270 2271 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2272 unsigned int nr_pages, 2273 gfp_t gfp_mask) 2274 { 2275 unsigned long nr_reclaimed = 0; 2276 2277 do { 2278 unsigned long pflags; 2279 2280 if (page_counter_read(&memcg->memory) <= 2281 READ_ONCE(memcg->memory.high)) 2282 continue; 2283 2284 memcg_memory_event(memcg, MEMCG_HIGH); 2285 2286 psi_memstall_enter(&pflags); 2287 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2288 gfp_mask, true); 2289 psi_memstall_leave(&pflags); 2290 } while ((memcg = parent_mem_cgroup(memcg)) && 2291 !mem_cgroup_is_root(memcg)); 2292 2293 return nr_reclaimed; 2294 } 2295 2296 static void high_work_func(struct work_struct *work) 2297 { 2298 struct mem_cgroup *memcg; 2299 2300 memcg = container_of(work, struct mem_cgroup, high_work); 2301 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2302 } 2303 2304 /* 2305 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2306 * enough to still cause a significant slowdown in most cases, while still 2307 * allowing diagnostics and tracing to proceed without becoming stuck. 2308 */ 2309 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2310 2311 /* 2312 * When calculating the delay, we use these either side of the exponentiation to 2313 * maintain precision and scale to a reasonable number of jiffies (see the table 2314 * below. 2315 * 2316 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2317 * overage ratio to a delay. 2318 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2319 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2320 * to produce a reasonable delay curve. 2321 * 2322 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2323 * reasonable delay curve compared to precision-adjusted overage, not 2324 * penalising heavily at first, but still making sure that growth beyond the 2325 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2326 * example, with a high of 100 megabytes: 2327 * 2328 * +-------+------------------------+ 2329 * | usage | time to allocate in ms | 2330 * +-------+------------------------+ 2331 * | 100M | 0 | 2332 * | 101M | 6 | 2333 * | 102M | 25 | 2334 * | 103M | 57 | 2335 * | 104M | 102 | 2336 * | 105M | 159 | 2337 * | 106M | 230 | 2338 * | 107M | 313 | 2339 * | 108M | 409 | 2340 * | 109M | 518 | 2341 * | 110M | 639 | 2342 * | 111M | 774 | 2343 * | 112M | 921 | 2344 * | 113M | 1081 | 2345 * | 114M | 1254 | 2346 * | 115M | 1439 | 2347 * | 116M | 1638 | 2348 * | 117M | 1849 | 2349 * | 118M | 2000 | 2350 * | 119M | 2000 | 2351 * | 120M | 2000 | 2352 * +-------+------------------------+ 2353 */ 2354 #define MEMCG_DELAY_PRECISION_SHIFT 20 2355 #define MEMCG_DELAY_SCALING_SHIFT 14 2356 2357 static u64 calculate_overage(unsigned long usage, unsigned long high) 2358 { 2359 u64 overage; 2360 2361 if (usage <= high) 2362 return 0; 2363 2364 /* 2365 * Prevent division by 0 in overage calculation by acting as if 2366 * it was a threshold of 1 page 2367 */ 2368 high = max(high, 1UL); 2369 2370 overage = usage - high; 2371 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2372 return div64_u64(overage, high); 2373 } 2374 2375 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2376 { 2377 u64 overage, max_overage = 0; 2378 2379 do { 2380 overage = calculate_overage(page_counter_read(&memcg->memory), 2381 READ_ONCE(memcg->memory.high)); 2382 max_overage = max(overage, max_overage); 2383 } while ((memcg = parent_mem_cgroup(memcg)) && 2384 !mem_cgroup_is_root(memcg)); 2385 2386 return max_overage; 2387 } 2388 2389 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2390 { 2391 u64 overage, max_overage = 0; 2392 2393 do { 2394 overage = calculate_overage(page_counter_read(&memcg->swap), 2395 READ_ONCE(memcg->swap.high)); 2396 if (overage) 2397 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2398 max_overage = max(overage, max_overage); 2399 } while ((memcg = parent_mem_cgroup(memcg)) && 2400 !mem_cgroup_is_root(memcg)); 2401 2402 return max_overage; 2403 } 2404 2405 /* 2406 * Get the number of jiffies that we should penalise a mischievous cgroup which 2407 * is exceeding its memory.high by checking both it and its ancestors. 2408 */ 2409 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2410 unsigned int nr_pages, 2411 u64 max_overage) 2412 { 2413 unsigned long penalty_jiffies; 2414 2415 if (!max_overage) 2416 return 0; 2417 2418 /* 2419 * We use overage compared to memory.high to calculate the number of 2420 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2421 * fairly lenient on small overages, and increasingly harsh when the 2422 * memcg in question makes it clear that it has no intention of stopping 2423 * its crazy behaviour, so we exponentially increase the delay based on 2424 * overage amount. 2425 */ 2426 penalty_jiffies = max_overage * max_overage * HZ; 2427 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2428 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2429 2430 /* 2431 * Factor in the task's own contribution to the overage, such that four 2432 * N-sized allocations are throttled approximately the same as one 2433 * 4N-sized allocation. 2434 * 2435 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2436 * larger the current charge patch is than that. 2437 */ 2438 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2439 } 2440 2441 /* 2442 * Scheduled by try_charge() to be executed from the userland return path 2443 * and reclaims memory over the high limit. 2444 */ 2445 void mem_cgroup_handle_over_high(void) 2446 { 2447 unsigned long penalty_jiffies; 2448 unsigned long pflags; 2449 unsigned long nr_reclaimed; 2450 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2451 int nr_retries = MAX_RECLAIM_RETRIES; 2452 struct mem_cgroup *memcg; 2453 bool in_retry = false; 2454 2455 if (likely(!nr_pages)) 2456 return; 2457 2458 memcg = get_mem_cgroup_from_mm(current->mm); 2459 current->memcg_nr_pages_over_high = 0; 2460 2461 retry_reclaim: 2462 /* 2463 * The allocating task should reclaim at least the batch size, but for 2464 * subsequent retries we only want to do what's necessary to prevent oom 2465 * or breaching resource isolation. 2466 * 2467 * This is distinct from memory.max or page allocator behaviour because 2468 * memory.high is currently batched, whereas memory.max and the page 2469 * allocator run every time an allocation is made. 2470 */ 2471 nr_reclaimed = reclaim_high(memcg, 2472 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2473 GFP_KERNEL); 2474 2475 /* 2476 * memory.high is breached and reclaim is unable to keep up. Throttle 2477 * allocators proactively to slow down excessive growth. 2478 */ 2479 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2480 mem_find_max_overage(memcg)); 2481 2482 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2483 swap_find_max_overage(memcg)); 2484 2485 /* 2486 * Clamp the max delay per usermode return so as to still keep the 2487 * application moving forwards and also permit diagnostics, albeit 2488 * extremely slowly. 2489 */ 2490 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2491 2492 /* 2493 * Don't sleep if the amount of jiffies this memcg owes us is so low 2494 * that it's not even worth doing, in an attempt to be nice to those who 2495 * go only a small amount over their memory.high value and maybe haven't 2496 * been aggressively reclaimed enough yet. 2497 */ 2498 if (penalty_jiffies <= HZ / 100) 2499 goto out; 2500 2501 /* 2502 * If reclaim is making forward progress but we're still over 2503 * memory.high, we want to encourage that rather than doing allocator 2504 * throttling. 2505 */ 2506 if (nr_reclaimed || nr_retries--) { 2507 in_retry = true; 2508 goto retry_reclaim; 2509 } 2510 2511 /* 2512 * If we exit early, we're guaranteed to die (since 2513 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2514 * need to account for any ill-begotten jiffies to pay them off later. 2515 */ 2516 psi_memstall_enter(&pflags); 2517 schedule_timeout_killable(penalty_jiffies); 2518 psi_memstall_leave(&pflags); 2519 2520 out: 2521 css_put(&memcg->css); 2522 } 2523 2524 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2525 unsigned int nr_pages) 2526 { 2527 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2528 int nr_retries = MAX_RECLAIM_RETRIES; 2529 struct mem_cgroup *mem_over_limit; 2530 struct page_counter *counter; 2531 enum oom_status oom_status; 2532 unsigned long nr_reclaimed; 2533 bool may_swap = true; 2534 bool drained = false; 2535 unsigned long pflags; 2536 2537 retry: 2538 if (consume_stock(memcg, nr_pages)) 2539 return 0; 2540 2541 if (!do_memsw_account() || 2542 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2543 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2544 goto done_restock; 2545 if (do_memsw_account()) 2546 page_counter_uncharge(&memcg->memsw, batch); 2547 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2548 } else { 2549 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2550 may_swap = false; 2551 } 2552 2553 if (batch > nr_pages) { 2554 batch = nr_pages; 2555 goto retry; 2556 } 2557 2558 /* 2559 * Memcg doesn't have a dedicated reserve for atomic 2560 * allocations. But like the global atomic pool, we need to 2561 * put the burden of reclaim on regular allocation requests 2562 * and let these go through as privileged allocations. 2563 */ 2564 if (gfp_mask & __GFP_ATOMIC) 2565 goto force; 2566 2567 /* 2568 * Unlike in global OOM situations, memcg is not in a physical 2569 * memory shortage. Allow dying and OOM-killed tasks to 2570 * bypass the last charges so that they can exit quickly and 2571 * free their memory. 2572 */ 2573 if (unlikely(should_force_charge())) 2574 goto force; 2575 2576 /* 2577 * Prevent unbounded recursion when reclaim operations need to 2578 * allocate memory. This might exceed the limits temporarily, 2579 * but we prefer facilitating memory reclaim and getting back 2580 * under the limit over triggering OOM kills in these cases. 2581 */ 2582 if (unlikely(current->flags & PF_MEMALLOC)) 2583 goto force; 2584 2585 if (unlikely(task_in_memcg_oom(current))) 2586 goto nomem; 2587 2588 if (!gfpflags_allow_blocking(gfp_mask)) 2589 goto nomem; 2590 2591 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2592 2593 psi_memstall_enter(&pflags); 2594 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2595 gfp_mask, may_swap); 2596 psi_memstall_leave(&pflags); 2597 2598 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2599 goto retry; 2600 2601 if (!drained) { 2602 drain_all_stock(mem_over_limit); 2603 drained = true; 2604 goto retry; 2605 } 2606 2607 if (gfp_mask & __GFP_NORETRY) 2608 goto nomem; 2609 /* 2610 * Even though the limit is exceeded at this point, reclaim 2611 * may have been able to free some pages. Retry the charge 2612 * before killing the task. 2613 * 2614 * Only for regular pages, though: huge pages are rather 2615 * unlikely to succeed so close to the limit, and we fall back 2616 * to regular pages anyway in case of failure. 2617 */ 2618 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2619 goto retry; 2620 /* 2621 * At task move, charge accounts can be doubly counted. So, it's 2622 * better to wait until the end of task_move if something is going on. 2623 */ 2624 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2625 goto retry; 2626 2627 if (nr_retries--) 2628 goto retry; 2629 2630 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2631 goto nomem; 2632 2633 if (fatal_signal_pending(current)) 2634 goto force; 2635 2636 /* 2637 * keep retrying as long as the memcg oom killer is able to make 2638 * a forward progress or bypass the charge if the oom killer 2639 * couldn't make any progress. 2640 */ 2641 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2642 get_order(nr_pages * PAGE_SIZE)); 2643 switch (oom_status) { 2644 case OOM_SUCCESS: 2645 nr_retries = MAX_RECLAIM_RETRIES; 2646 goto retry; 2647 case OOM_FAILED: 2648 goto force; 2649 default: 2650 goto nomem; 2651 } 2652 nomem: 2653 if (!(gfp_mask & __GFP_NOFAIL)) 2654 return -ENOMEM; 2655 force: 2656 /* 2657 * The allocation either can't fail or will lead to more memory 2658 * being freed very soon. Allow memory usage go over the limit 2659 * temporarily by force charging it. 2660 */ 2661 page_counter_charge(&memcg->memory, nr_pages); 2662 if (do_memsw_account()) 2663 page_counter_charge(&memcg->memsw, nr_pages); 2664 2665 return 0; 2666 2667 done_restock: 2668 if (batch > nr_pages) 2669 refill_stock(memcg, batch - nr_pages); 2670 2671 /* 2672 * If the hierarchy is above the normal consumption range, schedule 2673 * reclaim on returning to userland. We can perform reclaim here 2674 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2675 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2676 * not recorded as it most likely matches current's and won't 2677 * change in the meantime. As high limit is checked again before 2678 * reclaim, the cost of mismatch is negligible. 2679 */ 2680 do { 2681 bool mem_high, swap_high; 2682 2683 mem_high = page_counter_read(&memcg->memory) > 2684 READ_ONCE(memcg->memory.high); 2685 swap_high = page_counter_read(&memcg->swap) > 2686 READ_ONCE(memcg->swap.high); 2687 2688 /* Don't bother a random interrupted task */ 2689 if (in_interrupt()) { 2690 if (mem_high) { 2691 schedule_work(&memcg->high_work); 2692 break; 2693 } 2694 continue; 2695 } 2696 2697 if (mem_high || swap_high) { 2698 /* 2699 * The allocating tasks in this cgroup will need to do 2700 * reclaim or be throttled to prevent further growth 2701 * of the memory or swap footprints. 2702 * 2703 * Target some best-effort fairness between the tasks, 2704 * and distribute reclaim work and delay penalties 2705 * based on how much each task is actually allocating. 2706 */ 2707 current->memcg_nr_pages_over_high += batch; 2708 set_notify_resume(current); 2709 break; 2710 } 2711 } while ((memcg = parent_mem_cgroup(memcg))); 2712 2713 return 0; 2714 } 2715 2716 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2717 unsigned int nr_pages) 2718 { 2719 if (mem_cgroup_is_root(memcg)) 2720 return 0; 2721 2722 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2723 } 2724 2725 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2726 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2727 { 2728 if (mem_cgroup_is_root(memcg)) 2729 return; 2730 2731 page_counter_uncharge(&memcg->memory, nr_pages); 2732 if (do_memsw_account()) 2733 page_counter_uncharge(&memcg->memsw, nr_pages); 2734 } 2735 #endif 2736 2737 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2738 { 2739 VM_BUG_ON_PAGE(page_memcg(page), page); 2740 /* 2741 * Any of the following ensures page's memcg stability: 2742 * 2743 * - the page lock 2744 * - LRU isolation 2745 * - lock_page_memcg() 2746 * - exclusive reference 2747 */ 2748 page->memcg_data = (unsigned long)memcg; 2749 } 2750 2751 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 2752 { 2753 struct mem_cgroup *memcg; 2754 2755 rcu_read_lock(); 2756 retry: 2757 memcg = obj_cgroup_memcg(objcg); 2758 if (unlikely(!css_tryget(&memcg->css))) 2759 goto retry; 2760 rcu_read_unlock(); 2761 2762 return memcg; 2763 } 2764 2765 #ifdef CONFIG_MEMCG_KMEM 2766 /* 2767 * The allocated objcg pointers array is not accounted directly. 2768 * Moreover, it should not come from DMA buffer and is not readily 2769 * reclaimable. So those GFP bits should be masked off. 2770 */ 2771 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2772 2773 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2774 gfp_t gfp, bool new_page) 2775 { 2776 unsigned int objects = objs_per_slab_page(s, page); 2777 unsigned long memcg_data; 2778 void *vec; 2779 2780 gfp &= ~OBJCGS_CLEAR_MASK; 2781 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2782 page_to_nid(page)); 2783 if (!vec) 2784 return -ENOMEM; 2785 2786 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2787 if (new_page) { 2788 /* 2789 * If the slab page is brand new and nobody can yet access 2790 * it's memcg_data, no synchronization is required and 2791 * memcg_data can be simply assigned. 2792 */ 2793 page->memcg_data = memcg_data; 2794 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) { 2795 /* 2796 * If the slab page is already in use, somebody can allocate 2797 * and assign obj_cgroups in parallel. In this case the existing 2798 * objcg vector should be reused. 2799 */ 2800 kfree(vec); 2801 return 0; 2802 } 2803 2804 kmemleak_not_leak(vec); 2805 return 0; 2806 } 2807 2808 /* 2809 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2810 * 2811 * A passed kernel object can be a slab object or a generic kernel page, so 2812 * different mechanisms for getting the memory cgroup pointer should be used. 2813 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2814 * can not know for sure how the kernel object is implemented. 2815 * mem_cgroup_from_obj() can be safely used in such cases. 2816 * 2817 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2818 * cgroup_mutex, etc. 2819 */ 2820 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2821 { 2822 struct page *page; 2823 2824 if (mem_cgroup_disabled()) 2825 return NULL; 2826 2827 page = virt_to_head_page(p); 2828 2829 /* 2830 * Slab objects are accounted individually, not per-page. 2831 * Memcg membership data for each individual object is saved in 2832 * the page->obj_cgroups. 2833 */ 2834 if (page_objcgs_check(page)) { 2835 struct obj_cgroup *objcg; 2836 unsigned int off; 2837 2838 off = obj_to_index(page->slab_cache, page, p); 2839 objcg = page_objcgs(page)[off]; 2840 if (objcg) 2841 return obj_cgroup_memcg(objcg); 2842 2843 return NULL; 2844 } 2845 2846 /* 2847 * page_memcg_check() is used here, because page_has_obj_cgroups() 2848 * check above could fail because the object cgroups vector wasn't set 2849 * at that moment, but it can be set concurrently. 2850 * page_memcg_check(page) will guarantee that a proper memory 2851 * cgroup pointer or NULL will be returned. 2852 */ 2853 return page_memcg_check(page); 2854 } 2855 2856 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2857 { 2858 struct obj_cgroup *objcg = NULL; 2859 struct mem_cgroup *memcg; 2860 2861 if (memcg_kmem_bypass()) 2862 return NULL; 2863 2864 rcu_read_lock(); 2865 if (unlikely(active_memcg())) 2866 memcg = active_memcg(); 2867 else 2868 memcg = mem_cgroup_from_task(current); 2869 2870 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2871 objcg = rcu_dereference(memcg->objcg); 2872 if (objcg && obj_cgroup_tryget(objcg)) 2873 break; 2874 objcg = NULL; 2875 } 2876 rcu_read_unlock(); 2877 2878 return objcg; 2879 } 2880 2881 static int memcg_alloc_cache_id(void) 2882 { 2883 int id, size; 2884 int err; 2885 2886 id = ida_simple_get(&memcg_cache_ida, 2887 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2888 if (id < 0) 2889 return id; 2890 2891 if (id < memcg_nr_cache_ids) 2892 return id; 2893 2894 /* 2895 * There's no space for the new id in memcg_caches arrays, 2896 * so we have to grow them. 2897 */ 2898 down_write(&memcg_cache_ids_sem); 2899 2900 size = 2 * (id + 1); 2901 if (size < MEMCG_CACHES_MIN_SIZE) 2902 size = MEMCG_CACHES_MIN_SIZE; 2903 else if (size > MEMCG_CACHES_MAX_SIZE) 2904 size = MEMCG_CACHES_MAX_SIZE; 2905 2906 err = memcg_update_all_list_lrus(size); 2907 if (!err) 2908 memcg_nr_cache_ids = size; 2909 2910 up_write(&memcg_cache_ids_sem); 2911 2912 if (err) { 2913 ida_simple_remove(&memcg_cache_ida, id); 2914 return err; 2915 } 2916 return id; 2917 } 2918 2919 static void memcg_free_cache_id(int id) 2920 { 2921 ida_simple_remove(&memcg_cache_ida, id); 2922 } 2923 2924 /* 2925 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2926 * @objcg: object cgroup to uncharge 2927 * @nr_pages: number of pages to uncharge 2928 */ 2929 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2930 unsigned int nr_pages) 2931 { 2932 struct mem_cgroup *memcg; 2933 2934 memcg = get_mem_cgroup_from_objcg(objcg); 2935 2936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2937 page_counter_uncharge(&memcg->kmem, nr_pages); 2938 refill_stock(memcg, nr_pages); 2939 2940 css_put(&memcg->css); 2941 } 2942 2943 /* 2944 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2945 * @objcg: object cgroup to charge 2946 * @gfp: reclaim mode 2947 * @nr_pages: number of pages to charge 2948 * 2949 * Returns 0 on success, an error code on failure. 2950 */ 2951 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2952 unsigned int nr_pages) 2953 { 2954 struct page_counter *counter; 2955 struct mem_cgroup *memcg; 2956 int ret; 2957 2958 memcg = get_mem_cgroup_from_objcg(objcg); 2959 2960 ret = try_charge_memcg(memcg, gfp, nr_pages); 2961 if (ret) 2962 goto out; 2963 2964 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2965 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2966 2967 /* 2968 * Enforce __GFP_NOFAIL allocation because callers are not 2969 * prepared to see failures and likely do not have any failure 2970 * handling code. 2971 */ 2972 if (gfp & __GFP_NOFAIL) { 2973 page_counter_charge(&memcg->kmem, nr_pages); 2974 goto out; 2975 } 2976 cancel_charge(memcg, nr_pages); 2977 ret = -ENOMEM; 2978 } 2979 out: 2980 css_put(&memcg->css); 2981 2982 return ret; 2983 } 2984 2985 /** 2986 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2987 * @page: page to charge 2988 * @gfp: reclaim mode 2989 * @order: allocation order 2990 * 2991 * Returns 0 on success, an error code on failure. 2992 */ 2993 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2994 { 2995 struct obj_cgroup *objcg; 2996 int ret = 0; 2997 2998 objcg = get_obj_cgroup_from_current(); 2999 if (objcg) { 3000 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3001 if (!ret) { 3002 page->memcg_data = (unsigned long)objcg | 3003 MEMCG_DATA_KMEM; 3004 return 0; 3005 } 3006 obj_cgroup_put(objcg); 3007 } 3008 return ret; 3009 } 3010 3011 /** 3012 * __memcg_kmem_uncharge_page: uncharge a kmem page 3013 * @page: page to uncharge 3014 * @order: allocation order 3015 */ 3016 void __memcg_kmem_uncharge_page(struct page *page, int order) 3017 { 3018 struct obj_cgroup *objcg; 3019 unsigned int nr_pages = 1 << order; 3020 3021 if (!PageMemcgKmem(page)) 3022 return; 3023 3024 objcg = __page_objcg(page); 3025 obj_cgroup_uncharge_pages(objcg, nr_pages); 3026 page->memcg_data = 0; 3027 obj_cgroup_put(objcg); 3028 } 3029 3030 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3031 enum node_stat_item idx, int nr) 3032 { 3033 unsigned long flags; 3034 struct obj_stock *stock = get_obj_stock(&flags); 3035 int *bytes; 3036 3037 /* 3038 * Save vmstat data in stock and skip vmstat array update unless 3039 * accumulating over a page of vmstat data or when pgdat or idx 3040 * changes. 3041 */ 3042 if (stock->cached_objcg != objcg) { 3043 drain_obj_stock(stock); 3044 obj_cgroup_get(objcg); 3045 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3046 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3047 stock->cached_objcg = objcg; 3048 stock->cached_pgdat = pgdat; 3049 } else if (stock->cached_pgdat != pgdat) { 3050 /* Flush the existing cached vmstat data */ 3051 struct pglist_data *oldpg = stock->cached_pgdat; 3052 3053 if (stock->nr_slab_reclaimable_b) { 3054 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3055 stock->nr_slab_reclaimable_b); 3056 stock->nr_slab_reclaimable_b = 0; 3057 } 3058 if (stock->nr_slab_unreclaimable_b) { 3059 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3060 stock->nr_slab_unreclaimable_b); 3061 stock->nr_slab_unreclaimable_b = 0; 3062 } 3063 stock->cached_pgdat = pgdat; 3064 } 3065 3066 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3067 : &stock->nr_slab_unreclaimable_b; 3068 /* 3069 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3070 * cached locally at least once before pushing it out. 3071 */ 3072 if (!*bytes) { 3073 *bytes = nr; 3074 nr = 0; 3075 } else { 3076 *bytes += nr; 3077 if (abs(*bytes) > PAGE_SIZE) { 3078 nr = *bytes; 3079 *bytes = 0; 3080 } else { 3081 nr = 0; 3082 } 3083 } 3084 if (nr) 3085 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3086 3087 put_obj_stock(flags); 3088 } 3089 3090 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3091 { 3092 unsigned long flags; 3093 struct obj_stock *stock = get_obj_stock(&flags); 3094 bool ret = false; 3095 3096 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3097 stock->nr_bytes -= nr_bytes; 3098 ret = true; 3099 } 3100 3101 put_obj_stock(flags); 3102 3103 return ret; 3104 } 3105 3106 static void drain_obj_stock(struct obj_stock *stock) 3107 { 3108 struct obj_cgroup *old = stock->cached_objcg; 3109 3110 if (!old) 3111 return; 3112 3113 if (stock->nr_bytes) { 3114 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3115 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3116 3117 if (nr_pages) 3118 obj_cgroup_uncharge_pages(old, nr_pages); 3119 3120 /* 3121 * The leftover is flushed to the centralized per-memcg value. 3122 * On the next attempt to refill obj stock it will be moved 3123 * to a per-cpu stock (probably, on an other CPU), see 3124 * refill_obj_stock(). 3125 * 3126 * How often it's flushed is a trade-off between the memory 3127 * limit enforcement accuracy and potential CPU contention, 3128 * so it might be changed in the future. 3129 */ 3130 atomic_add(nr_bytes, &old->nr_charged_bytes); 3131 stock->nr_bytes = 0; 3132 } 3133 3134 /* 3135 * Flush the vmstat data in current stock 3136 */ 3137 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3138 if (stock->nr_slab_reclaimable_b) { 3139 mod_objcg_mlstate(old, stock->cached_pgdat, 3140 NR_SLAB_RECLAIMABLE_B, 3141 stock->nr_slab_reclaimable_b); 3142 stock->nr_slab_reclaimable_b = 0; 3143 } 3144 if (stock->nr_slab_unreclaimable_b) { 3145 mod_objcg_mlstate(old, stock->cached_pgdat, 3146 NR_SLAB_UNRECLAIMABLE_B, 3147 stock->nr_slab_unreclaimable_b); 3148 stock->nr_slab_unreclaimable_b = 0; 3149 } 3150 stock->cached_pgdat = NULL; 3151 } 3152 3153 obj_cgroup_put(old); 3154 stock->cached_objcg = NULL; 3155 } 3156 3157 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3158 struct mem_cgroup *root_memcg) 3159 { 3160 struct mem_cgroup *memcg; 3161 3162 if (in_task() && stock->task_obj.cached_objcg) { 3163 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg); 3164 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3165 return true; 3166 } 3167 if (stock->irq_obj.cached_objcg) { 3168 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg); 3169 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3170 return true; 3171 } 3172 3173 return false; 3174 } 3175 3176 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3177 bool allow_uncharge) 3178 { 3179 unsigned long flags; 3180 struct obj_stock *stock = get_obj_stock(&flags); 3181 unsigned int nr_pages = 0; 3182 3183 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3184 drain_obj_stock(stock); 3185 obj_cgroup_get(objcg); 3186 stock->cached_objcg = objcg; 3187 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3188 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3189 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3190 } 3191 stock->nr_bytes += nr_bytes; 3192 3193 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3194 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3195 stock->nr_bytes &= (PAGE_SIZE - 1); 3196 } 3197 3198 put_obj_stock(flags); 3199 3200 if (nr_pages) 3201 obj_cgroup_uncharge_pages(objcg, nr_pages); 3202 } 3203 3204 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3205 { 3206 unsigned int nr_pages, nr_bytes; 3207 int ret; 3208 3209 if (consume_obj_stock(objcg, size)) 3210 return 0; 3211 3212 /* 3213 * In theory, objcg->nr_charged_bytes can have enough 3214 * pre-charged bytes to satisfy the allocation. However, 3215 * flushing objcg->nr_charged_bytes requires two atomic 3216 * operations, and objcg->nr_charged_bytes can't be big. 3217 * The shared objcg->nr_charged_bytes can also become a 3218 * performance bottleneck if all tasks of the same memcg are 3219 * trying to update it. So it's better to ignore it and try 3220 * grab some new pages. The stock's nr_bytes will be flushed to 3221 * objcg->nr_charged_bytes later on when objcg changes. 3222 * 3223 * The stock's nr_bytes may contain enough pre-charged bytes 3224 * to allow one less page from being charged, but we can't rely 3225 * on the pre-charged bytes not being changed outside of 3226 * consume_obj_stock() or refill_obj_stock(). So ignore those 3227 * pre-charged bytes as well when charging pages. To avoid a 3228 * page uncharge right after a page charge, we set the 3229 * allow_uncharge flag to false when calling refill_obj_stock() 3230 * to temporarily allow the pre-charged bytes to exceed the page 3231 * size limit. The maximum reachable value of the pre-charged 3232 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3233 * race. 3234 */ 3235 nr_pages = size >> PAGE_SHIFT; 3236 nr_bytes = size & (PAGE_SIZE - 1); 3237 3238 if (nr_bytes) 3239 nr_pages += 1; 3240 3241 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3242 if (!ret && nr_bytes) 3243 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3244 3245 return ret; 3246 } 3247 3248 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3249 { 3250 refill_obj_stock(objcg, size, true); 3251 } 3252 3253 #endif /* CONFIG_MEMCG_KMEM */ 3254 3255 /* 3256 * Because page_memcg(head) is not set on tails, set it now. 3257 */ 3258 void split_page_memcg(struct page *head, unsigned int nr) 3259 { 3260 struct mem_cgroup *memcg = page_memcg(head); 3261 int i; 3262 3263 if (mem_cgroup_disabled() || !memcg) 3264 return; 3265 3266 for (i = 1; i < nr; i++) 3267 head[i].memcg_data = head->memcg_data; 3268 3269 if (PageMemcgKmem(head)) 3270 obj_cgroup_get_many(__page_objcg(head), nr - 1); 3271 else 3272 css_get_many(&memcg->css, nr - 1); 3273 } 3274 3275 #ifdef CONFIG_MEMCG_SWAP 3276 /** 3277 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3278 * @entry: swap entry to be moved 3279 * @from: mem_cgroup which the entry is moved from 3280 * @to: mem_cgroup which the entry is moved to 3281 * 3282 * It succeeds only when the swap_cgroup's record for this entry is the same 3283 * as the mem_cgroup's id of @from. 3284 * 3285 * Returns 0 on success, -EINVAL on failure. 3286 * 3287 * The caller must have charged to @to, IOW, called page_counter_charge() about 3288 * both res and memsw, and called css_get(). 3289 */ 3290 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3291 struct mem_cgroup *from, struct mem_cgroup *to) 3292 { 3293 unsigned short old_id, new_id; 3294 3295 old_id = mem_cgroup_id(from); 3296 new_id = mem_cgroup_id(to); 3297 3298 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3299 mod_memcg_state(from, MEMCG_SWAP, -1); 3300 mod_memcg_state(to, MEMCG_SWAP, 1); 3301 return 0; 3302 } 3303 return -EINVAL; 3304 } 3305 #else 3306 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3307 struct mem_cgroup *from, struct mem_cgroup *to) 3308 { 3309 return -EINVAL; 3310 } 3311 #endif 3312 3313 static DEFINE_MUTEX(memcg_max_mutex); 3314 3315 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3316 unsigned long max, bool memsw) 3317 { 3318 bool enlarge = false; 3319 bool drained = false; 3320 int ret; 3321 bool limits_invariant; 3322 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3323 3324 do { 3325 if (signal_pending(current)) { 3326 ret = -EINTR; 3327 break; 3328 } 3329 3330 mutex_lock(&memcg_max_mutex); 3331 /* 3332 * Make sure that the new limit (memsw or memory limit) doesn't 3333 * break our basic invariant rule memory.max <= memsw.max. 3334 */ 3335 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3336 max <= memcg->memsw.max; 3337 if (!limits_invariant) { 3338 mutex_unlock(&memcg_max_mutex); 3339 ret = -EINVAL; 3340 break; 3341 } 3342 if (max > counter->max) 3343 enlarge = true; 3344 ret = page_counter_set_max(counter, max); 3345 mutex_unlock(&memcg_max_mutex); 3346 3347 if (!ret) 3348 break; 3349 3350 if (!drained) { 3351 drain_all_stock(memcg); 3352 drained = true; 3353 continue; 3354 } 3355 3356 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3357 GFP_KERNEL, !memsw)) { 3358 ret = -EBUSY; 3359 break; 3360 } 3361 } while (true); 3362 3363 if (!ret && enlarge) 3364 memcg_oom_recover(memcg); 3365 3366 return ret; 3367 } 3368 3369 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3370 gfp_t gfp_mask, 3371 unsigned long *total_scanned) 3372 { 3373 unsigned long nr_reclaimed = 0; 3374 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3375 unsigned long reclaimed; 3376 int loop = 0; 3377 struct mem_cgroup_tree_per_node *mctz; 3378 unsigned long excess; 3379 unsigned long nr_scanned; 3380 3381 if (order > 0) 3382 return 0; 3383 3384 mctz = soft_limit_tree_node(pgdat->node_id); 3385 3386 /* 3387 * Do not even bother to check the largest node if the root 3388 * is empty. Do it lockless to prevent lock bouncing. Races 3389 * are acceptable as soft limit is best effort anyway. 3390 */ 3391 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3392 return 0; 3393 3394 /* 3395 * This loop can run a while, specially if mem_cgroup's continuously 3396 * keep exceeding their soft limit and putting the system under 3397 * pressure 3398 */ 3399 do { 3400 if (next_mz) 3401 mz = next_mz; 3402 else 3403 mz = mem_cgroup_largest_soft_limit_node(mctz); 3404 if (!mz) 3405 break; 3406 3407 nr_scanned = 0; 3408 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3409 gfp_mask, &nr_scanned); 3410 nr_reclaimed += reclaimed; 3411 *total_scanned += nr_scanned; 3412 spin_lock_irq(&mctz->lock); 3413 __mem_cgroup_remove_exceeded(mz, mctz); 3414 3415 /* 3416 * If we failed to reclaim anything from this memory cgroup 3417 * it is time to move on to the next cgroup 3418 */ 3419 next_mz = NULL; 3420 if (!reclaimed) 3421 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3422 3423 excess = soft_limit_excess(mz->memcg); 3424 /* 3425 * One school of thought says that we should not add 3426 * back the node to the tree if reclaim returns 0. 3427 * But our reclaim could return 0, simply because due 3428 * to priority we are exposing a smaller subset of 3429 * memory to reclaim from. Consider this as a longer 3430 * term TODO. 3431 */ 3432 /* If excess == 0, no tree ops */ 3433 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3434 spin_unlock_irq(&mctz->lock); 3435 css_put(&mz->memcg->css); 3436 loop++; 3437 /* 3438 * Could not reclaim anything and there are no more 3439 * mem cgroups to try or we seem to be looping without 3440 * reclaiming anything. 3441 */ 3442 if (!nr_reclaimed && 3443 (next_mz == NULL || 3444 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3445 break; 3446 } while (!nr_reclaimed); 3447 if (next_mz) 3448 css_put(&next_mz->memcg->css); 3449 return nr_reclaimed; 3450 } 3451 3452 /* 3453 * Reclaims as many pages from the given memcg as possible. 3454 * 3455 * Caller is responsible for holding css reference for memcg. 3456 */ 3457 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3458 { 3459 int nr_retries = MAX_RECLAIM_RETRIES; 3460 3461 /* we call try-to-free pages for make this cgroup empty */ 3462 lru_add_drain_all(); 3463 3464 drain_all_stock(memcg); 3465 3466 /* try to free all pages in this cgroup */ 3467 while (nr_retries && page_counter_read(&memcg->memory)) { 3468 int progress; 3469 3470 if (signal_pending(current)) 3471 return -EINTR; 3472 3473 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3474 GFP_KERNEL, true); 3475 if (!progress) { 3476 nr_retries--; 3477 /* maybe some writeback is necessary */ 3478 congestion_wait(BLK_RW_ASYNC, HZ/10); 3479 } 3480 3481 } 3482 3483 return 0; 3484 } 3485 3486 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3487 char *buf, size_t nbytes, 3488 loff_t off) 3489 { 3490 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3491 3492 if (mem_cgroup_is_root(memcg)) 3493 return -EINVAL; 3494 return mem_cgroup_force_empty(memcg) ?: nbytes; 3495 } 3496 3497 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3498 struct cftype *cft) 3499 { 3500 return 1; 3501 } 3502 3503 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3504 struct cftype *cft, u64 val) 3505 { 3506 if (val == 1) 3507 return 0; 3508 3509 pr_warn_once("Non-hierarchical mode is deprecated. " 3510 "Please report your usecase to linux-mm@kvack.org if you " 3511 "depend on this functionality.\n"); 3512 3513 return -EINVAL; 3514 } 3515 3516 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3517 { 3518 unsigned long val; 3519 3520 if (mem_cgroup_is_root(memcg)) { 3521 /* mem_cgroup_threshold() calls here from irqsafe context */ 3522 cgroup_rstat_flush_irqsafe(memcg->css.cgroup); 3523 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3524 memcg_page_state(memcg, NR_ANON_MAPPED); 3525 if (swap) 3526 val += memcg_page_state(memcg, MEMCG_SWAP); 3527 } else { 3528 if (!swap) 3529 val = page_counter_read(&memcg->memory); 3530 else 3531 val = page_counter_read(&memcg->memsw); 3532 } 3533 return val; 3534 } 3535 3536 enum { 3537 RES_USAGE, 3538 RES_LIMIT, 3539 RES_MAX_USAGE, 3540 RES_FAILCNT, 3541 RES_SOFT_LIMIT, 3542 }; 3543 3544 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3545 struct cftype *cft) 3546 { 3547 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3548 struct page_counter *counter; 3549 3550 switch (MEMFILE_TYPE(cft->private)) { 3551 case _MEM: 3552 counter = &memcg->memory; 3553 break; 3554 case _MEMSWAP: 3555 counter = &memcg->memsw; 3556 break; 3557 case _KMEM: 3558 counter = &memcg->kmem; 3559 break; 3560 case _TCP: 3561 counter = &memcg->tcpmem; 3562 break; 3563 default: 3564 BUG(); 3565 } 3566 3567 switch (MEMFILE_ATTR(cft->private)) { 3568 case RES_USAGE: 3569 if (counter == &memcg->memory) 3570 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3571 if (counter == &memcg->memsw) 3572 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3573 return (u64)page_counter_read(counter) * PAGE_SIZE; 3574 case RES_LIMIT: 3575 return (u64)counter->max * PAGE_SIZE; 3576 case RES_MAX_USAGE: 3577 return (u64)counter->watermark * PAGE_SIZE; 3578 case RES_FAILCNT: 3579 return counter->failcnt; 3580 case RES_SOFT_LIMIT: 3581 return (u64)memcg->soft_limit * PAGE_SIZE; 3582 default: 3583 BUG(); 3584 } 3585 } 3586 3587 #ifdef CONFIG_MEMCG_KMEM 3588 static int memcg_online_kmem(struct mem_cgroup *memcg) 3589 { 3590 struct obj_cgroup *objcg; 3591 int memcg_id; 3592 3593 if (cgroup_memory_nokmem) 3594 return 0; 3595 3596 BUG_ON(memcg->kmemcg_id >= 0); 3597 BUG_ON(memcg->kmem_state); 3598 3599 memcg_id = memcg_alloc_cache_id(); 3600 if (memcg_id < 0) 3601 return memcg_id; 3602 3603 objcg = obj_cgroup_alloc(); 3604 if (!objcg) { 3605 memcg_free_cache_id(memcg_id); 3606 return -ENOMEM; 3607 } 3608 objcg->memcg = memcg; 3609 rcu_assign_pointer(memcg->objcg, objcg); 3610 3611 static_branch_enable(&memcg_kmem_enabled_key); 3612 3613 memcg->kmemcg_id = memcg_id; 3614 memcg->kmem_state = KMEM_ONLINE; 3615 3616 return 0; 3617 } 3618 3619 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3620 { 3621 struct cgroup_subsys_state *css; 3622 struct mem_cgroup *parent, *child; 3623 int kmemcg_id; 3624 3625 if (memcg->kmem_state != KMEM_ONLINE) 3626 return; 3627 3628 memcg->kmem_state = KMEM_ALLOCATED; 3629 3630 parent = parent_mem_cgroup(memcg); 3631 if (!parent) 3632 parent = root_mem_cgroup; 3633 3634 memcg_reparent_objcgs(memcg, parent); 3635 3636 kmemcg_id = memcg->kmemcg_id; 3637 BUG_ON(kmemcg_id < 0); 3638 3639 /* 3640 * Change kmemcg_id of this cgroup and all its descendants to the 3641 * parent's id, and then move all entries from this cgroup's list_lrus 3642 * to ones of the parent. After we have finished, all list_lrus 3643 * corresponding to this cgroup are guaranteed to remain empty. The 3644 * ordering is imposed by list_lru_node->lock taken by 3645 * memcg_drain_all_list_lrus(). 3646 */ 3647 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3648 css_for_each_descendant_pre(css, &memcg->css) { 3649 child = mem_cgroup_from_css(css); 3650 BUG_ON(child->kmemcg_id != kmemcg_id); 3651 child->kmemcg_id = parent->kmemcg_id; 3652 } 3653 rcu_read_unlock(); 3654 3655 memcg_drain_all_list_lrus(kmemcg_id, parent); 3656 3657 memcg_free_cache_id(kmemcg_id); 3658 } 3659 3660 static void memcg_free_kmem(struct mem_cgroup *memcg) 3661 { 3662 /* css_alloc() failed, offlining didn't happen */ 3663 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3664 memcg_offline_kmem(memcg); 3665 } 3666 #else 3667 static int memcg_online_kmem(struct mem_cgroup *memcg) 3668 { 3669 return 0; 3670 } 3671 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3672 { 3673 } 3674 static void memcg_free_kmem(struct mem_cgroup *memcg) 3675 { 3676 } 3677 #endif /* CONFIG_MEMCG_KMEM */ 3678 3679 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3680 unsigned long max) 3681 { 3682 int ret; 3683 3684 mutex_lock(&memcg_max_mutex); 3685 ret = page_counter_set_max(&memcg->kmem, max); 3686 mutex_unlock(&memcg_max_mutex); 3687 return ret; 3688 } 3689 3690 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3691 { 3692 int ret; 3693 3694 mutex_lock(&memcg_max_mutex); 3695 3696 ret = page_counter_set_max(&memcg->tcpmem, max); 3697 if (ret) 3698 goto out; 3699 3700 if (!memcg->tcpmem_active) { 3701 /* 3702 * The active flag needs to be written after the static_key 3703 * update. This is what guarantees that the socket activation 3704 * function is the last one to run. See mem_cgroup_sk_alloc() 3705 * for details, and note that we don't mark any socket as 3706 * belonging to this memcg until that flag is up. 3707 * 3708 * We need to do this, because static_keys will span multiple 3709 * sites, but we can't control their order. If we mark a socket 3710 * as accounted, but the accounting functions are not patched in 3711 * yet, we'll lose accounting. 3712 * 3713 * We never race with the readers in mem_cgroup_sk_alloc(), 3714 * because when this value change, the code to process it is not 3715 * patched in yet. 3716 */ 3717 static_branch_inc(&memcg_sockets_enabled_key); 3718 memcg->tcpmem_active = true; 3719 } 3720 out: 3721 mutex_unlock(&memcg_max_mutex); 3722 return ret; 3723 } 3724 3725 /* 3726 * The user of this function is... 3727 * RES_LIMIT. 3728 */ 3729 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3730 char *buf, size_t nbytes, loff_t off) 3731 { 3732 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3733 unsigned long nr_pages; 3734 int ret; 3735 3736 buf = strstrip(buf); 3737 ret = page_counter_memparse(buf, "-1", &nr_pages); 3738 if (ret) 3739 return ret; 3740 3741 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3742 case RES_LIMIT: 3743 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3744 ret = -EINVAL; 3745 break; 3746 } 3747 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3748 case _MEM: 3749 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3750 break; 3751 case _MEMSWAP: 3752 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3753 break; 3754 case _KMEM: 3755 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3756 "Please report your usecase to linux-mm@kvack.org if you " 3757 "depend on this functionality.\n"); 3758 ret = memcg_update_kmem_max(memcg, nr_pages); 3759 break; 3760 case _TCP: 3761 ret = memcg_update_tcp_max(memcg, nr_pages); 3762 break; 3763 } 3764 break; 3765 case RES_SOFT_LIMIT: 3766 memcg->soft_limit = nr_pages; 3767 ret = 0; 3768 break; 3769 } 3770 return ret ?: nbytes; 3771 } 3772 3773 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3774 size_t nbytes, loff_t off) 3775 { 3776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3777 struct page_counter *counter; 3778 3779 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3780 case _MEM: 3781 counter = &memcg->memory; 3782 break; 3783 case _MEMSWAP: 3784 counter = &memcg->memsw; 3785 break; 3786 case _KMEM: 3787 counter = &memcg->kmem; 3788 break; 3789 case _TCP: 3790 counter = &memcg->tcpmem; 3791 break; 3792 default: 3793 BUG(); 3794 } 3795 3796 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3797 case RES_MAX_USAGE: 3798 page_counter_reset_watermark(counter); 3799 break; 3800 case RES_FAILCNT: 3801 counter->failcnt = 0; 3802 break; 3803 default: 3804 BUG(); 3805 } 3806 3807 return nbytes; 3808 } 3809 3810 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3811 struct cftype *cft) 3812 { 3813 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3814 } 3815 3816 #ifdef CONFIG_MMU 3817 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3818 struct cftype *cft, u64 val) 3819 { 3820 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3821 3822 if (val & ~MOVE_MASK) 3823 return -EINVAL; 3824 3825 /* 3826 * No kind of locking is needed in here, because ->can_attach() will 3827 * check this value once in the beginning of the process, and then carry 3828 * on with stale data. This means that changes to this value will only 3829 * affect task migrations starting after the change. 3830 */ 3831 memcg->move_charge_at_immigrate = val; 3832 return 0; 3833 } 3834 #else 3835 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3836 struct cftype *cft, u64 val) 3837 { 3838 return -ENOSYS; 3839 } 3840 #endif 3841 3842 #ifdef CONFIG_NUMA 3843 3844 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3845 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3846 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3847 3848 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3849 int nid, unsigned int lru_mask, bool tree) 3850 { 3851 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3852 unsigned long nr = 0; 3853 enum lru_list lru; 3854 3855 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3856 3857 for_each_lru(lru) { 3858 if (!(BIT(lru) & lru_mask)) 3859 continue; 3860 if (tree) 3861 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3862 else 3863 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3864 } 3865 return nr; 3866 } 3867 3868 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3869 unsigned int lru_mask, 3870 bool tree) 3871 { 3872 unsigned long nr = 0; 3873 enum lru_list lru; 3874 3875 for_each_lru(lru) { 3876 if (!(BIT(lru) & lru_mask)) 3877 continue; 3878 if (tree) 3879 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3880 else 3881 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3882 } 3883 return nr; 3884 } 3885 3886 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3887 { 3888 struct numa_stat { 3889 const char *name; 3890 unsigned int lru_mask; 3891 }; 3892 3893 static const struct numa_stat stats[] = { 3894 { "total", LRU_ALL }, 3895 { "file", LRU_ALL_FILE }, 3896 { "anon", LRU_ALL_ANON }, 3897 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3898 }; 3899 const struct numa_stat *stat; 3900 int nid; 3901 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3902 3903 cgroup_rstat_flush(memcg->css.cgroup); 3904 3905 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3906 seq_printf(m, "%s=%lu", stat->name, 3907 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3908 false)); 3909 for_each_node_state(nid, N_MEMORY) 3910 seq_printf(m, " N%d=%lu", nid, 3911 mem_cgroup_node_nr_lru_pages(memcg, nid, 3912 stat->lru_mask, false)); 3913 seq_putc(m, '\n'); 3914 } 3915 3916 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3917 3918 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3919 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3920 true)); 3921 for_each_node_state(nid, N_MEMORY) 3922 seq_printf(m, " N%d=%lu", nid, 3923 mem_cgroup_node_nr_lru_pages(memcg, nid, 3924 stat->lru_mask, true)); 3925 seq_putc(m, '\n'); 3926 } 3927 3928 return 0; 3929 } 3930 #endif /* CONFIG_NUMA */ 3931 3932 static const unsigned int memcg1_stats[] = { 3933 NR_FILE_PAGES, 3934 NR_ANON_MAPPED, 3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3936 NR_ANON_THPS, 3937 #endif 3938 NR_SHMEM, 3939 NR_FILE_MAPPED, 3940 NR_FILE_DIRTY, 3941 NR_WRITEBACK, 3942 MEMCG_SWAP, 3943 }; 3944 3945 static const char *const memcg1_stat_names[] = { 3946 "cache", 3947 "rss", 3948 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3949 "rss_huge", 3950 #endif 3951 "shmem", 3952 "mapped_file", 3953 "dirty", 3954 "writeback", 3955 "swap", 3956 }; 3957 3958 /* Universal VM events cgroup1 shows, original sort order */ 3959 static const unsigned int memcg1_events[] = { 3960 PGPGIN, 3961 PGPGOUT, 3962 PGFAULT, 3963 PGMAJFAULT, 3964 }; 3965 3966 static int memcg_stat_show(struct seq_file *m, void *v) 3967 { 3968 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3969 unsigned long memory, memsw; 3970 struct mem_cgroup *mi; 3971 unsigned int i; 3972 3973 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3974 3975 cgroup_rstat_flush(memcg->css.cgroup); 3976 3977 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3978 unsigned long nr; 3979 3980 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3981 continue; 3982 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3983 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3984 } 3985 3986 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3987 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3988 memcg_events_local(memcg, memcg1_events[i])); 3989 3990 for (i = 0; i < NR_LRU_LISTS; i++) 3991 seq_printf(m, "%s %lu\n", lru_list_name(i), 3992 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3993 PAGE_SIZE); 3994 3995 /* Hierarchical information */ 3996 memory = memsw = PAGE_COUNTER_MAX; 3997 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3998 memory = min(memory, READ_ONCE(mi->memory.max)); 3999 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4000 } 4001 seq_printf(m, "hierarchical_memory_limit %llu\n", 4002 (u64)memory * PAGE_SIZE); 4003 if (do_memsw_account()) 4004 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4005 (u64)memsw * PAGE_SIZE); 4006 4007 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4008 unsigned long nr; 4009 4010 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4011 continue; 4012 nr = memcg_page_state(memcg, memcg1_stats[i]); 4013 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4014 (u64)nr * PAGE_SIZE); 4015 } 4016 4017 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4018 seq_printf(m, "total_%s %llu\n", 4019 vm_event_name(memcg1_events[i]), 4020 (u64)memcg_events(memcg, memcg1_events[i])); 4021 4022 for (i = 0; i < NR_LRU_LISTS; i++) 4023 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4024 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4025 PAGE_SIZE); 4026 4027 #ifdef CONFIG_DEBUG_VM 4028 { 4029 pg_data_t *pgdat; 4030 struct mem_cgroup_per_node *mz; 4031 unsigned long anon_cost = 0; 4032 unsigned long file_cost = 0; 4033 4034 for_each_online_pgdat(pgdat) { 4035 mz = memcg->nodeinfo[pgdat->node_id]; 4036 4037 anon_cost += mz->lruvec.anon_cost; 4038 file_cost += mz->lruvec.file_cost; 4039 } 4040 seq_printf(m, "anon_cost %lu\n", anon_cost); 4041 seq_printf(m, "file_cost %lu\n", file_cost); 4042 } 4043 #endif 4044 4045 return 0; 4046 } 4047 4048 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4049 struct cftype *cft) 4050 { 4051 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4052 4053 return mem_cgroup_swappiness(memcg); 4054 } 4055 4056 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4057 struct cftype *cft, u64 val) 4058 { 4059 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4060 4061 if (val > 200) 4062 return -EINVAL; 4063 4064 if (!mem_cgroup_is_root(memcg)) 4065 memcg->swappiness = val; 4066 else 4067 vm_swappiness = val; 4068 4069 return 0; 4070 } 4071 4072 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4073 { 4074 struct mem_cgroup_threshold_ary *t; 4075 unsigned long usage; 4076 int i; 4077 4078 rcu_read_lock(); 4079 if (!swap) 4080 t = rcu_dereference(memcg->thresholds.primary); 4081 else 4082 t = rcu_dereference(memcg->memsw_thresholds.primary); 4083 4084 if (!t) 4085 goto unlock; 4086 4087 usage = mem_cgroup_usage(memcg, swap); 4088 4089 /* 4090 * current_threshold points to threshold just below or equal to usage. 4091 * If it's not true, a threshold was crossed after last 4092 * call of __mem_cgroup_threshold(). 4093 */ 4094 i = t->current_threshold; 4095 4096 /* 4097 * Iterate backward over array of thresholds starting from 4098 * current_threshold and check if a threshold is crossed. 4099 * If none of thresholds below usage is crossed, we read 4100 * only one element of the array here. 4101 */ 4102 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4103 eventfd_signal(t->entries[i].eventfd, 1); 4104 4105 /* i = current_threshold + 1 */ 4106 i++; 4107 4108 /* 4109 * Iterate forward over array of thresholds starting from 4110 * current_threshold+1 and check if a threshold is crossed. 4111 * If none of thresholds above usage is crossed, we read 4112 * only one element of the array here. 4113 */ 4114 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4115 eventfd_signal(t->entries[i].eventfd, 1); 4116 4117 /* Update current_threshold */ 4118 t->current_threshold = i - 1; 4119 unlock: 4120 rcu_read_unlock(); 4121 } 4122 4123 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4124 { 4125 while (memcg) { 4126 __mem_cgroup_threshold(memcg, false); 4127 if (do_memsw_account()) 4128 __mem_cgroup_threshold(memcg, true); 4129 4130 memcg = parent_mem_cgroup(memcg); 4131 } 4132 } 4133 4134 static int compare_thresholds(const void *a, const void *b) 4135 { 4136 const struct mem_cgroup_threshold *_a = a; 4137 const struct mem_cgroup_threshold *_b = b; 4138 4139 if (_a->threshold > _b->threshold) 4140 return 1; 4141 4142 if (_a->threshold < _b->threshold) 4143 return -1; 4144 4145 return 0; 4146 } 4147 4148 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4149 { 4150 struct mem_cgroup_eventfd_list *ev; 4151 4152 spin_lock(&memcg_oom_lock); 4153 4154 list_for_each_entry(ev, &memcg->oom_notify, list) 4155 eventfd_signal(ev->eventfd, 1); 4156 4157 spin_unlock(&memcg_oom_lock); 4158 return 0; 4159 } 4160 4161 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4162 { 4163 struct mem_cgroup *iter; 4164 4165 for_each_mem_cgroup_tree(iter, memcg) 4166 mem_cgroup_oom_notify_cb(iter); 4167 } 4168 4169 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4170 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4171 { 4172 struct mem_cgroup_thresholds *thresholds; 4173 struct mem_cgroup_threshold_ary *new; 4174 unsigned long threshold; 4175 unsigned long usage; 4176 int i, size, ret; 4177 4178 ret = page_counter_memparse(args, "-1", &threshold); 4179 if (ret) 4180 return ret; 4181 4182 mutex_lock(&memcg->thresholds_lock); 4183 4184 if (type == _MEM) { 4185 thresholds = &memcg->thresholds; 4186 usage = mem_cgroup_usage(memcg, false); 4187 } else if (type == _MEMSWAP) { 4188 thresholds = &memcg->memsw_thresholds; 4189 usage = mem_cgroup_usage(memcg, true); 4190 } else 4191 BUG(); 4192 4193 /* Check if a threshold crossed before adding a new one */ 4194 if (thresholds->primary) 4195 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4196 4197 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4198 4199 /* Allocate memory for new array of thresholds */ 4200 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4201 if (!new) { 4202 ret = -ENOMEM; 4203 goto unlock; 4204 } 4205 new->size = size; 4206 4207 /* Copy thresholds (if any) to new array */ 4208 if (thresholds->primary) 4209 memcpy(new->entries, thresholds->primary->entries, 4210 flex_array_size(new, entries, size - 1)); 4211 4212 /* Add new threshold */ 4213 new->entries[size - 1].eventfd = eventfd; 4214 new->entries[size - 1].threshold = threshold; 4215 4216 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4217 sort(new->entries, size, sizeof(*new->entries), 4218 compare_thresholds, NULL); 4219 4220 /* Find current threshold */ 4221 new->current_threshold = -1; 4222 for (i = 0; i < size; i++) { 4223 if (new->entries[i].threshold <= usage) { 4224 /* 4225 * new->current_threshold will not be used until 4226 * rcu_assign_pointer(), so it's safe to increment 4227 * it here. 4228 */ 4229 ++new->current_threshold; 4230 } else 4231 break; 4232 } 4233 4234 /* Free old spare buffer and save old primary buffer as spare */ 4235 kfree(thresholds->spare); 4236 thresholds->spare = thresholds->primary; 4237 4238 rcu_assign_pointer(thresholds->primary, new); 4239 4240 /* To be sure that nobody uses thresholds */ 4241 synchronize_rcu(); 4242 4243 unlock: 4244 mutex_unlock(&memcg->thresholds_lock); 4245 4246 return ret; 4247 } 4248 4249 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4250 struct eventfd_ctx *eventfd, const char *args) 4251 { 4252 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4253 } 4254 4255 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4256 struct eventfd_ctx *eventfd, const char *args) 4257 { 4258 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4259 } 4260 4261 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4262 struct eventfd_ctx *eventfd, enum res_type type) 4263 { 4264 struct mem_cgroup_thresholds *thresholds; 4265 struct mem_cgroup_threshold_ary *new; 4266 unsigned long usage; 4267 int i, j, size, entries; 4268 4269 mutex_lock(&memcg->thresholds_lock); 4270 4271 if (type == _MEM) { 4272 thresholds = &memcg->thresholds; 4273 usage = mem_cgroup_usage(memcg, false); 4274 } else if (type == _MEMSWAP) { 4275 thresholds = &memcg->memsw_thresholds; 4276 usage = mem_cgroup_usage(memcg, true); 4277 } else 4278 BUG(); 4279 4280 if (!thresholds->primary) 4281 goto unlock; 4282 4283 /* Check if a threshold crossed before removing */ 4284 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4285 4286 /* Calculate new number of threshold */ 4287 size = entries = 0; 4288 for (i = 0; i < thresholds->primary->size; i++) { 4289 if (thresholds->primary->entries[i].eventfd != eventfd) 4290 size++; 4291 else 4292 entries++; 4293 } 4294 4295 new = thresholds->spare; 4296 4297 /* If no items related to eventfd have been cleared, nothing to do */ 4298 if (!entries) 4299 goto unlock; 4300 4301 /* Set thresholds array to NULL if we don't have thresholds */ 4302 if (!size) { 4303 kfree(new); 4304 new = NULL; 4305 goto swap_buffers; 4306 } 4307 4308 new->size = size; 4309 4310 /* Copy thresholds and find current threshold */ 4311 new->current_threshold = -1; 4312 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4313 if (thresholds->primary->entries[i].eventfd == eventfd) 4314 continue; 4315 4316 new->entries[j] = thresholds->primary->entries[i]; 4317 if (new->entries[j].threshold <= usage) { 4318 /* 4319 * new->current_threshold will not be used 4320 * until rcu_assign_pointer(), so it's safe to increment 4321 * it here. 4322 */ 4323 ++new->current_threshold; 4324 } 4325 j++; 4326 } 4327 4328 swap_buffers: 4329 /* Swap primary and spare array */ 4330 thresholds->spare = thresholds->primary; 4331 4332 rcu_assign_pointer(thresholds->primary, new); 4333 4334 /* To be sure that nobody uses thresholds */ 4335 synchronize_rcu(); 4336 4337 /* If all events are unregistered, free the spare array */ 4338 if (!new) { 4339 kfree(thresholds->spare); 4340 thresholds->spare = NULL; 4341 } 4342 unlock: 4343 mutex_unlock(&memcg->thresholds_lock); 4344 } 4345 4346 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4347 struct eventfd_ctx *eventfd) 4348 { 4349 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4350 } 4351 4352 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4353 struct eventfd_ctx *eventfd) 4354 { 4355 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4356 } 4357 4358 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4359 struct eventfd_ctx *eventfd, const char *args) 4360 { 4361 struct mem_cgroup_eventfd_list *event; 4362 4363 event = kmalloc(sizeof(*event), GFP_KERNEL); 4364 if (!event) 4365 return -ENOMEM; 4366 4367 spin_lock(&memcg_oom_lock); 4368 4369 event->eventfd = eventfd; 4370 list_add(&event->list, &memcg->oom_notify); 4371 4372 /* already in OOM ? */ 4373 if (memcg->under_oom) 4374 eventfd_signal(eventfd, 1); 4375 spin_unlock(&memcg_oom_lock); 4376 4377 return 0; 4378 } 4379 4380 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4381 struct eventfd_ctx *eventfd) 4382 { 4383 struct mem_cgroup_eventfd_list *ev, *tmp; 4384 4385 spin_lock(&memcg_oom_lock); 4386 4387 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4388 if (ev->eventfd == eventfd) { 4389 list_del(&ev->list); 4390 kfree(ev); 4391 } 4392 } 4393 4394 spin_unlock(&memcg_oom_lock); 4395 } 4396 4397 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4398 { 4399 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4400 4401 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4402 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4403 seq_printf(sf, "oom_kill %lu\n", 4404 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4405 return 0; 4406 } 4407 4408 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4409 struct cftype *cft, u64 val) 4410 { 4411 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4412 4413 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4414 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4415 return -EINVAL; 4416 4417 memcg->oom_kill_disable = val; 4418 if (!val) 4419 memcg_oom_recover(memcg); 4420 4421 return 0; 4422 } 4423 4424 #ifdef CONFIG_CGROUP_WRITEBACK 4425 4426 #include <trace/events/writeback.h> 4427 4428 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4429 { 4430 return wb_domain_init(&memcg->cgwb_domain, gfp); 4431 } 4432 4433 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4434 { 4435 wb_domain_exit(&memcg->cgwb_domain); 4436 } 4437 4438 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4439 { 4440 wb_domain_size_changed(&memcg->cgwb_domain); 4441 } 4442 4443 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4444 { 4445 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4446 4447 if (!memcg->css.parent) 4448 return NULL; 4449 4450 return &memcg->cgwb_domain; 4451 } 4452 4453 /** 4454 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4455 * @wb: bdi_writeback in question 4456 * @pfilepages: out parameter for number of file pages 4457 * @pheadroom: out parameter for number of allocatable pages according to memcg 4458 * @pdirty: out parameter for number of dirty pages 4459 * @pwriteback: out parameter for number of pages under writeback 4460 * 4461 * Determine the numbers of file, headroom, dirty, and writeback pages in 4462 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4463 * is a bit more involved. 4464 * 4465 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4466 * headroom is calculated as the lowest headroom of itself and the 4467 * ancestors. Note that this doesn't consider the actual amount of 4468 * available memory in the system. The caller should further cap 4469 * *@pheadroom accordingly. 4470 */ 4471 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4472 unsigned long *pheadroom, unsigned long *pdirty, 4473 unsigned long *pwriteback) 4474 { 4475 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4476 struct mem_cgroup *parent; 4477 4478 cgroup_rstat_flush_irqsafe(memcg->css.cgroup); 4479 4480 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4481 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4482 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4483 memcg_page_state(memcg, NR_ACTIVE_FILE); 4484 4485 *pheadroom = PAGE_COUNTER_MAX; 4486 while ((parent = parent_mem_cgroup(memcg))) { 4487 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4488 READ_ONCE(memcg->memory.high)); 4489 unsigned long used = page_counter_read(&memcg->memory); 4490 4491 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4492 memcg = parent; 4493 } 4494 } 4495 4496 /* 4497 * Foreign dirty flushing 4498 * 4499 * There's an inherent mismatch between memcg and writeback. The former 4500 * tracks ownership per-page while the latter per-inode. This was a 4501 * deliberate design decision because honoring per-page ownership in the 4502 * writeback path is complicated, may lead to higher CPU and IO overheads 4503 * and deemed unnecessary given that write-sharing an inode across 4504 * different cgroups isn't a common use-case. 4505 * 4506 * Combined with inode majority-writer ownership switching, this works well 4507 * enough in most cases but there are some pathological cases. For 4508 * example, let's say there are two cgroups A and B which keep writing to 4509 * different but confined parts of the same inode. B owns the inode and 4510 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4511 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4512 * triggering background writeback. A will be slowed down without a way to 4513 * make writeback of the dirty pages happen. 4514 * 4515 * Conditions like the above can lead to a cgroup getting repeatedly and 4516 * severely throttled after making some progress after each 4517 * dirty_expire_interval while the underlying IO device is almost 4518 * completely idle. 4519 * 4520 * Solving this problem completely requires matching the ownership tracking 4521 * granularities between memcg and writeback in either direction. However, 4522 * the more egregious behaviors can be avoided by simply remembering the 4523 * most recent foreign dirtying events and initiating remote flushes on 4524 * them when local writeback isn't enough to keep the memory clean enough. 4525 * 4526 * The following two functions implement such mechanism. When a foreign 4527 * page - a page whose memcg and writeback ownerships don't match - is 4528 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4529 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4530 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4531 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4532 * foreign bdi_writebacks which haven't expired. Both the numbers of 4533 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4534 * limited to MEMCG_CGWB_FRN_CNT. 4535 * 4536 * The mechanism only remembers IDs and doesn't hold any object references. 4537 * As being wrong occasionally doesn't matter, updates and accesses to the 4538 * records are lockless and racy. 4539 */ 4540 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4541 struct bdi_writeback *wb) 4542 { 4543 struct mem_cgroup *memcg = page_memcg(page); 4544 struct memcg_cgwb_frn *frn; 4545 u64 now = get_jiffies_64(); 4546 u64 oldest_at = now; 4547 int oldest = -1; 4548 int i; 4549 4550 trace_track_foreign_dirty(page, wb); 4551 4552 /* 4553 * Pick the slot to use. If there is already a slot for @wb, keep 4554 * using it. If not replace the oldest one which isn't being 4555 * written out. 4556 */ 4557 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4558 frn = &memcg->cgwb_frn[i]; 4559 if (frn->bdi_id == wb->bdi->id && 4560 frn->memcg_id == wb->memcg_css->id) 4561 break; 4562 if (time_before64(frn->at, oldest_at) && 4563 atomic_read(&frn->done.cnt) == 1) { 4564 oldest = i; 4565 oldest_at = frn->at; 4566 } 4567 } 4568 4569 if (i < MEMCG_CGWB_FRN_CNT) { 4570 /* 4571 * Re-using an existing one. Update timestamp lazily to 4572 * avoid making the cacheline hot. We want them to be 4573 * reasonably up-to-date and significantly shorter than 4574 * dirty_expire_interval as that's what expires the record. 4575 * Use the shorter of 1s and dirty_expire_interval / 8. 4576 */ 4577 unsigned long update_intv = 4578 min_t(unsigned long, HZ, 4579 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4580 4581 if (time_before64(frn->at, now - update_intv)) 4582 frn->at = now; 4583 } else if (oldest >= 0) { 4584 /* replace the oldest free one */ 4585 frn = &memcg->cgwb_frn[oldest]; 4586 frn->bdi_id = wb->bdi->id; 4587 frn->memcg_id = wb->memcg_css->id; 4588 frn->at = now; 4589 } 4590 } 4591 4592 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4593 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4594 { 4595 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4596 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4597 u64 now = jiffies_64; 4598 int i; 4599 4600 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4601 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4602 4603 /* 4604 * If the record is older than dirty_expire_interval, 4605 * writeback on it has already started. No need to kick it 4606 * off again. Also, don't start a new one if there's 4607 * already one in flight. 4608 */ 4609 if (time_after64(frn->at, now - intv) && 4610 atomic_read(&frn->done.cnt) == 1) { 4611 frn->at = 0; 4612 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4613 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4614 WB_REASON_FOREIGN_FLUSH, 4615 &frn->done); 4616 } 4617 } 4618 } 4619 4620 #else /* CONFIG_CGROUP_WRITEBACK */ 4621 4622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4623 { 4624 return 0; 4625 } 4626 4627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4628 { 4629 } 4630 4631 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4632 { 4633 } 4634 4635 #endif /* CONFIG_CGROUP_WRITEBACK */ 4636 4637 /* 4638 * DO NOT USE IN NEW FILES. 4639 * 4640 * "cgroup.event_control" implementation. 4641 * 4642 * This is way over-engineered. It tries to support fully configurable 4643 * events for each user. Such level of flexibility is completely 4644 * unnecessary especially in the light of the planned unified hierarchy. 4645 * 4646 * Please deprecate this and replace with something simpler if at all 4647 * possible. 4648 */ 4649 4650 /* 4651 * Unregister event and free resources. 4652 * 4653 * Gets called from workqueue. 4654 */ 4655 static void memcg_event_remove(struct work_struct *work) 4656 { 4657 struct mem_cgroup_event *event = 4658 container_of(work, struct mem_cgroup_event, remove); 4659 struct mem_cgroup *memcg = event->memcg; 4660 4661 remove_wait_queue(event->wqh, &event->wait); 4662 4663 event->unregister_event(memcg, event->eventfd); 4664 4665 /* Notify userspace the event is going away. */ 4666 eventfd_signal(event->eventfd, 1); 4667 4668 eventfd_ctx_put(event->eventfd); 4669 kfree(event); 4670 css_put(&memcg->css); 4671 } 4672 4673 /* 4674 * Gets called on EPOLLHUP on eventfd when user closes it. 4675 * 4676 * Called with wqh->lock held and interrupts disabled. 4677 */ 4678 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4679 int sync, void *key) 4680 { 4681 struct mem_cgroup_event *event = 4682 container_of(wait, struct mem_cgroup_event, wait); 4683 struct mem_cgroup *memcg = event->memcg; 4684 __poll_t flags = key_to_poll(key); 4685 4686 if (flags & EPOLLHUP) { 4687 /* 4688 * If the event has been detached at cgroup removal, we 4689 * can simply return knowing the other side will cleanup 4690 * for us. 4691 * 4692 * We can't race against event freeing since the other 4693 * side will require wqh->lock via remove_wait_queue(), 4694 * which we hold. 4695 */ 4696 spin_lock(&memcg->event_list_lock); 4697 if (!list_empty(&event->list)) { 4698 list_del_init(&event->list); 4699 /* 4700 * We are in atomic context, but cgroup_event_remove() 4701 * may sleep, so we have to call it in workqueue. 4702 */ 4703 schedule_work(&event->remove); 4704 } 4705 spin_unlock(&memcg->event_list_lock); 4706 } 4707 4708 return 0; 4709 } 4710 4711 static void memcg_event_ptable_queue_proc(struct file *file, 4712 wait_queue_head_t *wqh, poll_table *pt) 4713 { 4714 struct mem_cgroup_event *event = 4715 container_of(pt, struct mem_cgroup_event, pt); 4716 4717 event->wqh = wqh; 4718 add_wait_queue(wqh, &event->wait); 4719 } 4720 4721 /* 4722 * DO NOT USE IN NEW FILES. 4723 * 4724 * Parse input and register new cgroup event handler. 4725 * 4726 * Input must be in format '<event_fd> <control_fd> <args>'. 4727 * Interpretation of args is defined by control file implementation. 4728 */ 4729 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4730 char *buf, size_t nbytes, loff_t off) 4731 { 4732 struct cgroup_subsys_state *css = of_css(of); 4733 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4734 struct mem_cgroup_event *event; 4735 struct cgroup_subsys_state *cfile_css; 4736 unsigned int efd, cfd; 4737 struct fd efile; 4738 struct fd cfile; 4739 const char *name; 4740 char *endp; 4741 int ret; 4742 4743 buf = strstrip(buf); 4744 4745 efd = simple_strtoul(buf, &endp, 10); 4746 if (*endp != ' ') 4747 return -EINVAL; 4748 buf = endp + 1; 4749 4750 cfd = simple_strtoul(buf, &endp, 10); 4751 if ((*endp != ' ') && (*endp != '\0')) 4752 return -EINVAL; 4753 buf = endp + 1; 4754 4755 event = kzalloc(sizeof(*event), GFP_KERNEL); 4756 if (!event) 4757 return -ENOMEM; 4758 4759 event->memcg = memcg; 4760 INIT_LIST_HEAD(&event->list); 4761 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4762 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4763 INIT_WORK(&event->remove, memcg_event_remove); 4764 4765 efile = fdget(efd); 4766 if (!efile.file) { 4767 ret = -EBADF; 4768 goto out_kfree; 4769 } 4770 4771 event->eventfd = eventfd_ctx_fileget(efile.file); 4772 if (IS_ERR(event->eventfd)) { 4773 ret = PTR_ERR(event->eventfd); 4774 goto out_put_efile; 4775 } 4776 4777 cfile = fdget(cfd); 4778 if (!cfile.file) { 4779 ret = -EBADF; 4780 goto out_put_eventfd; 4781 } 4782 4783 /* the process need read permission on control file */ 4784 /* AV: shouldn't we check that it's been opened for read instead? */ 4785 ret = file_permission(cfile.file, MAY_READ); 4786 if (ret < 0) 4787 goto out_put_cfile; 4788 4789 /* 4790 * Determine the event callbacks and set them in @event. This used 4791 * to be done via struct cftype but cgroup core no longer knows 4792 * about these events. The following is crude but the whole thing 4793 * is for compatibility anyway. 4794 * 4795 * DO NOT ADD NEW FILES. 4796 */ 4797 name = cfile.file->f_path.dentry->d_name.name; 4798 4799 if (!strcmp(name, "memory.usage_in_bytes")) { 4800 event->register_event = mem_cgroup_usage_register_event; 4801 event->unregister_event = mem_cgroup_usage_unregister_event; 4802 } else if (!strcmp(name, "memory.oom_control")) { 4803 event->register_event = mem_cgroup_oom_register_event; 4804 event->unregister_event = mem_cgroup_oom_unregister_event; 4805 } else if (!strcmp(name, "memory.pressure_level")) { 4806 event->register_event = vmpressure_register_event; 4807 event->unregister_event = vmpressure_unregister_event; 4808 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4809 event->register_event = memsw_cgroup_usage_register_event; 4810 event->unregister_event = memsw_cgroup_usage_unregister_event; 4811 } else { 4812 ret = -EINVAL; 4813 goto out_put_cfile; 4814 } 4815 4816 /* 4817 * Verify @cfile should belong to @css. Also, remaining events are 4818 * automatically removed on cgroup destruction but the removal is 4819 * asynchronous, so take an extra ref on @css. 4820 */ 4821 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4822 &memory_cgrp_subsys); 4823 ret = -EINVAL; 4824 if (IS_ERR(cfile_css)) 4825 goto out_put_cfile; 4826 if (cfile_css != css) { 4827 css_put(cfile_css); 4828 goto out_put_cfile; 4829 } 4830 4831 ret = event->register_event(memcg, event->eventfd, buf); 4832 if (ret) 4833 goto out_put_css; 4834 4835 vfs_poll(efile.file, &event->pt); 4836 4837 spin_lock_irq(&memcg->event_list_lock); 4838 list_add(&event->list, &memcg->event_list); 4839 spin_unlock_irq(&memcg->event_list_lock); 4840 4841 fdput(cfile); 4842 fdput(efile); 4843 4844 return nbytes; 4845 4846 out_put_css: 4847 css_put(css); 4848 out_put_cfile: 4849 fdput(cfile); 4850 out_put_eventfd: 4851 eventfd_ctx_put(event->eventfd); 4852 out_put_efile: 4853 fdput(efile); 4854 out_kfree: 4855 kfree(event); 4856 4857 return ret; 4858 } 4859 4860 static struct cftype mem_cgroup_legacy_files[] = { 4861 { 4862 .name = "usage_in_bytes", 4863 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4864 .read_u64 = mem_cgroup_read_u64, 4865 }, 4866 { 4867 .name = "max_usage_in_bytes", 4868 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4869 .write = mem_cgroup_reset, 4870 .read_u64 = mem_cgroup_read_u64, 4871 }, 4872 { 4873 .name = "limit_in_bytes", 4874 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4875 .write = mem_cgroup_write, 4876 .read_u64 = mem_cgroup_read_u64, 4877 }, 4878 { 4879 .name = "soft_limit_in_bytes", 4880 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4881 .write = mem_cgroup_write, 4882 .read_u64 = mem_cgroup_read_u64, 4883 }, 4884 { 4885 .name = "failcnt", 4886 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4887 .write = mem_cgroup_reset, 4888 .read_u64 = mem_cgroup_read_u64, 4889 }, 4890 { 4891 .name = "stat", 4892 .seq_show = memcg_stat_show, 4893 }, 4894 { 4895 .name = "force_empty", 4896 .write = mem_cgroup_force_empty_write, 4897 }, 4898 { 4899 .name = "use_hierarchy", 4900 .write_u64 = mem_cgroup_hierarchy_write, 4901 .read_u64 = mem_cgroup_hierarchy_read, 4902 }, 4903 { 4904 .name = "cgroup.event_control", /* XXX: for compat */ 4905 .write = memcg_write_event_control, 4906 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4907 }, 4908 { 4909 .name = "swappiness", 4910 .read_u64 = mem_cgroup_swappiness_read, 4911 .write_u64 = mem_cgroup_swappiness_write, 4912 }, 4913 { 4914 .name = "move_charge_at_immigrate", 4915 .read_u64 = mem_cgroup_move_charge_read, 4916 .write_u64 = mem_cgroup_move_charge_write, 4917 }, 4918 { 4919 .name = "oom_control", 4920 .seq_show = mem_cgroup_oom_control_read, 4921 .write_u64 = mem_cgroup_oom_control_write, 4922 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4923 }, 4924 { 4925 .name = "pressure_level", 4926 }, 4927 #ifdef CONFIG_NUMA 4928 { 4929 .name = "numa_stat", 4930 .seq_show = memcg_numa_stat_show, 4931 }, 4932 #endif 4933 { 4934 .name = "kmem.limit_in_bytes", 4935 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4936 .write = mem_cgroup_write, 4937 .read_u64 = mem_cgroup_read_u64, 4938 }, 4939 { 4940 .name = "kmem.usage_in_bytes", 4941 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4942 .read_u64 = mem_cgroup_read_u64, 4943 }, 4944 { 4945 .name = "kmem.failcnt", 4946 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4947 .write = mem_cgroup_reset, 4948 .read_u64 = mem_cgroup_read_u64, 4949 }, 4950 { 4951 .name = "kmem.max_usage_in_bytes", 4952 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4953 .write = mem_cgroup_reset, 4954 .read_u64 = mem_cgroup_read_u64, 4955 }, 4956 #if defined(CONFIG_MEMCG_KMEM) && \ 4957 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4958 { 4959 .name = "kmem.slabinfo", 4960 .seq_show = memcg_slab_show, 4961 }, 4962 #endif 4963 { 4964 .name = "kmem.tcp.limit_in_bytes", 4965 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4966 .write = mem_cgroup_write, 4967 .read_u64 = mem_cgroup_read_u64, 4968 }, 4969 { 4970 .name = "kmem.tcp.usage_in_bytes", 4971 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4972 .read_u64 = mem_cgroup_read_u64, 4973 }, 4974 { 4975 .name = "kmem.tcp.failcnt", 4976 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4977 .write = mem_cgroup_reset, 4978 .read_u64 = mem_cgroup_read_u64, 4979 }, 4980 { 4981 .name = "kmem.tcp.max_usage_in_bytes", 4982 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4983 .write = mem_cgroup_reset, 4984 .read_u64 = mem_cgroup_read_u64, 4985 }, 4986 { }, /* terminate */ 4987 }; 4988 4989 /* 4990 * Private memory cgroup IDR 4991 * 4992 * Swap-out records and page cache shadow entries need to store memcg 4993 * references in constrained space, so we maintain an ID space that is 4994 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4995 * memory-controlled cgroups to 64k. 4996 * 4997 * However, there usually are many references to the offline CSS after 4998 * the cgroup has been destroyed, such as page cache or reclaimable 4999 * slab objects, that don't need to hang on to the ID. We want to keep 5000 * those dead CSS from occupying IDs, or we might quickly exhaust the 5001 * relatively small ID space and prevent the creation of new cgroups 5002 * even when there are much fewer than 64k cgroups - possibly none. 5003 * 5004 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5005 * be freed and recycled when it's no longer needed, which is usually 5006 * when the CSS is offlined. 5007 * 5008 * The only exception to that are records of swapped out tmpfs/shmem 5009 * pages that need to be attributed to live ancestors on swapin. But 5010 * those references are manageable from userspace. 5011 */ 5012 5013 static DEFINE_IDR(mem_cgroup_idr); 5014 5015 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5016 { 5017 if (memcg->id.id > 0) { 5018 idr_remove(&mem_cgroup_idr, memcg->id.id); 5019 memcg->id.id = 0; 5020 } 5021 } 5022 5023 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5024 unsigned int n) 5025 { 5026 refcount_add(n, &memcg->id.ref); 5027 } 5028 5029 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5030 { 5031 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5032 mem_cgroup_id_remove(memcg); 5033 5034 /* Memcg ID pins CSS */ 5035 css_put(&memcg->css); 5036 } 5037 } 5038 5039 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5040 { 5041 mem_cgroup_id_put_many(memcg, 1); 5042 } 5043 5044 /** 5045 * mem_cgroup_from_id - look up a memcg from a memcg id 5046 * @id: the memcg id to look up 5047 * 5048 * Caller must hold rcu_read_lock(). 5049 */ 5050 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5051 { 5052 WARN_ON_ONCE(!rcu_read_lock_held()); 5053 return idr_find(&mem_cgroup_idr, id); 5054 } 5055 5056 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5057 { 5058 struct mem_cgroup_per_node *pn; 5059 int tmp = node; 5060 /* 5061 * This routine is called against possible nodes. 5062 * But it's BUG to call kmalloc() against offline node. 5063 * 5064 * TODO: this routine can waste much memory for nodes which will 5065 * never be onlined. It's better to use memory hotplug callback 5066 * function. 5067 */ 5068 if (!node_state(node, N_NORMAL_MEMORY)) 5069 tmp = -1; 5070 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5071 if (!pn) 5072 return 1; 5073 5074 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5075 GFP_KERNEL_ACCOUNT); 5076 if (!pn->lruvec_stats_percpu) { 5077 kfree(pn); 5078 return 1; 5079 } 5080 5081 lruvec_init(&pn->lruvec); 5082 pn->usage_in_excess = 0; 5083 pn->on_tree = false; 5084 pn->memcg = memcg; 5085 5086 memcg->nodeinfo[node] = pn; 5087 return 0; 5088 } 5089 5090 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5091 { 5092 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5093 5094 if (!pn) 5095 return; 5096 5097 free_percpu(pn->lruvec_stats_percpu); 5098 kfree(pn); 5099 } 5100 5101 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5102 { 5103 int node; 5104 5105 for_each_node(node) 5106 free_mem_cgroup_per_node_info(memcg, node); 5107 free_percpu(memcg->vmstats_percpu); 5108 kfree(memcg); 5109 } 5110 5111 static void mem_cgroup_free(struct mem_cgroup *memcg) 5112 { 5113 memcg_wb_domain_exit(memcg); 5114 __mem_cgroup_free(memcg); 5115 } 5116 5117 static struct mem_cgroup *mem_cgroup_alloc(void) 5118 { 5119 struct mem_cgroup *memcg; 5120 unsigned int size; 5121 int node; 5122 int __maybe_unused i; 5123 long error = -ENOMEM; 5124 5125 size = sizeof(struct mem_cgroup); 5126 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5127 5128 memcg = kzalloc(size, GFP_KERNEL); 5129 if (!memcg) 5130 return ERR_PTR(error); 5131 5132 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5133 1, MEM_CGROUP_ID_MAX, 5134 GFP_KERNEL); 5135 if (memcg->id.id < 0) { 5136 error = memcg->id.id; 5137 goto fail; 5138 } 5139 5140 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5141 GFP_KERNEL_ACCOUNT); 5142 if (!memcg->vmstats_percpu) 5143 goto fail; 5144 5145 for_each_node(node) 5146 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5147 goto fail; 5148 5149 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5150 goto fail; 5151 5152 INIT_WORK(&memcg->high_work, high_work_func); 5153 INIT_LIST_HEAD(&memcg->oom_notify); 5154 mutex_init(&memcg->thresholds_lock); 5155 spin_lock_init(&memcg->move_lock); 5156 vmpressure_init(&memcg->vmpressure); 5157 INIT_LIST_HEAD(&memcg->event_list); 5158 spin_lock_init(&memcg->event_list_lock); 5159 memcg->socket_pressure = jiffies; 5160 #ifdef CONFIG_MEMCG_KMEM 5161 memcg->kmemcg_id = -1; 5162 INIT_LIST_HEAD(&memcg->objcg_list); 5163 #endif 5164 #ifdef CONFIG_CGROUP_WRITEBACK 5165 INIT_LIST_HEAD(&memcg->cgwb_list); 5166 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5167 memcg->cgwb_frn[i].done = 5168 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5169 #endif 5170 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5171 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5172 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5173 memcg->deferred_split_queue.split_queue_len = 0; 5174 #endif 5175 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5176 return memcg; 5177 fail: 5178 mem_cgroup_id_remove(memcg); 5179 __mem_cgroup_free(memcg); 5180 return ERR_PTR(error); 5181 } 5182 5183 static struct cgroup_subsys_state * __ref 5184 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5185 { 5186 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5187 struct mem_cgroup *memcg, *old_memcg; 5188 long error = -ENOMEM; 5189 5190 old_memcg = set_active_memcg(parent); 5191 memcg = mem_cgroup_alloc(); 5192 set_active_memcg(old_memcg); 5193 if (IS_ERR(memcg)) 5194 return ERR_CAST(memcg); 5195 5196 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5197 memcg->soft_limit = PAGE_COUNTER_MAX; 5198 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5199 if (parent) { 5200 memcg->swappiness = mem_cgroup_swappiness(parent); 5201 memcg->oom_kill_disable = parent->oom_kill_disable; 5202 5203 page_counter_init(&memcg->memory, &parent->memory); 5204 page_counter_init(&memcg->swap, &parent->swap); 5205 page_counter_init(&memcg->kmem, &parent->kmem); 5206 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5207 } else { 5208 page_counter_init(&memcg->memory, NULL); 5209 page_counter_init(&memcg->swap, NULL); 5210 page_counter_init(&memcg->kmem, NULL); 5211 page_counter_init(&memcg->tcpmem, NULL); 5212 5213 root_mem_cgroup = memcg; 5214 return &memcg->css; 5215 } 5216 5217 /* The following stuff does not apply to the root */ 5218 error = memcg_online_kmem(memcg); 5219 if (error) 5220 goto fail; 5221 5222 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5223 static_branch_inc(&memcg_sockets_enabled_key); 5224 5225 return &memcg->css; 5226 fail: 5227 mem_cgroup_id_remove(memcg); 5228 mem_cgroup_free(memcg); 5229 return ERR_PTR(error); 5230 } 5231 5232 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5233 { 5234 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5235 5236 /* 5237 * A memcg must be visible for expand_shrinker_info() 5238 * by the time the maps are allocated. So, we allocate maps 5239 * here, when for_each_mem_cgroup() can't skip it. 5240 */ 5241 if (alloc_shrinker_info(memcg)) { 5242 mem_cgroup_id_remove(memcg); 5243 return -ENOMEM; 5244 } 5245 5246 /* Online state pins memcg ID, memcg ID pins CSS */ 5247 refcount_set(&memcg->id.ref, 1); 5248 css_get(css); 5249 5250 if (unlikely(mem_cgroup_is_root(memcg))) 5251 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5252 2UL*HZ); 5253 return 0; 5254 } 5255 5256 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5257 { 5258 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5259 struct mem_cgroup_event *event, *tmp; 5260 5261 /* 5262 * Unregister events and notify userspace. 5263 * Notify userspace about cgroup removing only after rmdir of cgroup 5264 * directory to avoid race between userspace and kernelspace. 5265 */ 5266 spin_lock_irq(&memcg->event_list_lock); 5267 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5268 list_del_init(&event->list); 5269 schedule_work(&event->remove); 5270 } 5271 spin_unlock_irq(&memcg->event_list_lock); 5272 5273 page_counter_set_min(&memcg->memory, 0); 5274 page_counter_set_low(&memcg->memory, 0); 5275 5276 memcg_offline_kmem(memcg); 5277 reparent_shrinker_deferred(memcg); 5278 wb_memcg_offline(memcg); 5279 5280 drain_all_stock(memcg); 5281 5282 mem_cgroup_id_put(memcg); 5283 } 5284 5285 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5286 { 5287 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5288 5289 invalidate_reclaim_iterators(memcg); 5290 } 5291 5292 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5293 { 5294 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5295 int __maybe_unused i; 5296 5297 #ifdef CONFIG_CGROUP_WRITEBACK 5298 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5299 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5300 #endif 5301 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5302 static_branch_dec(&memcg_sockets_enabled_key); 5303 5304 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5305 static_branch_dec(&memcg_sockets_enabled_key); 5306 5307 vmpressure_cleanup(&memcg->vmpressure); 5308 cancel_work_sync(&memcg->high_work); 5309 mem_cgroup_remove_from_trees(memcg); 5310 free_shrinker_info(memcg); 5311 memcg_free_kmem(memcg); 5312 mem_cgroup_free(memcg); 5313 } 5314 5315 /** 5316 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5317 * @css: the target css 5318 * 5319 * Reset the states of the mem_cgroup associated with @css. This is 5320 * invoked when the userland requests disabling on the default hierarchy 5321 * but the memcg is pinned through dependency. The memcg should stop 5322 * applying policies and should revert to the vanilla state as it may be 5323 * made visible again. 5324 * 5325 * The current implementation only resets the essential configurations. 5326 * This needs to be expanded to cover all the visible parts. 5327 */ 5328 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5329 { 5330 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5331 5332 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5333 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5334 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5335 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5336 page_counter_set_min(&memcg->memory, 0); 5337 page_counter_set_low(&memcg->memory, 0); 5338 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5339 memcg->soft_limit = PAGE_COUNTER_MAX; 5340 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5341 memcg_wb_domain_size_changed(memcg); 5342 } 5343 5344 void mem_cgroup_flush_stats(void) 5345 { 5346 if (!spin_trylock(&stats_flush_lock)) 5347 return; 5348 5349 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 5350 spin_unlock(&stats_flush_lock); 5351 } 5352 5353 static void flush_memcg_stats_dwork(struct work_struct *w) 5354 { 5355 mem_cgroup_flush_stats(); 5356 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ); 5357 } 5358 5359 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5360 { 5361 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5362 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5363 struct memcg_vmstats_percpu *statc; 5364 long delta, v; 5365 int i, nid; 5366 5367 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5368 5369 for (i = 0; i < MEMCG_NR_STAT; i++) { 5370 /* 5371 * Collect the aggregated propagation counts of groups 5372 * below us. We're in a per-cpu loop here and this is 5373 * a global counter, so the first cycle will get them. 5374 */ 5375 delta = memcg->vmstats.state_pending[i]; 5376 if (delta) 5377 memcg->vmstats.state_pending[i] = 0; 5378 5379 /* Add CPU changes on this level since the last flush */ 5380 v = READ_ONCE(statc->state[i]); 5381 if (v != statc->state_prev[i]) { 5382 delta += v - statc->state_prev[i]; 5383 statc->state_prev[i] = v; 5384 } 5385 5386 if (!delta) 5387 continue; 5388 5389 /* Aggregate counts on this level and propagate upwards */ 5390 memcg->vmstats.state[i] += delta; 5391 if (parent) 5392 parent->vmstats.state_pending[i] += delta; 5393 } 5394 5395 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5396 delta = memcg->vmstats.events_pending[i]; 5397 if (delta) 5398 memcg->vmstats.events_pending[i] = 0; 5399 5400 v = READ_ONCE(statc->events[i]); 5401 if (v != statc->events_prev[i]) { 5402 delta += v - statc->events_prev[i]; 5403 statc->events_prev[i] = v; 5404 } 5405 5406 if (!delta) 5407 continue; 5408 5409 memcg->vmstats.events[i] += delta; 5410 if (parent) 5411 parent->vmstats.events_pending[i] += delta; 5412 } 5413 5414 for_each_node_state(nid, N_MEMORY) { 5415 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5416 struct mem_cgroup_per_node *ppn = NULL; 5417 struct lruvec_stats_percpu *lstatc; 5418 5419 if (parent) 5420 ppn = parent->nodeinfo[nid]; 5421 5422 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5423 5424 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5425 delta = pn->lruvec_stats.state_pending[i]; 5426 if (delta) 5427 pn->lruvec_stats.state_pending[i] = 0; 5428 5429 v = READ_ONCE(lstatc->state[i]); 5430 if (v != lstatc->state_prev[i]) { 5431 delta += v - lstatc->state_prev[i]; 5432 lstatc->state_prev[i] = v; 5433 } 5434 5435 if (!delta) 5436 continue; 5437 5438 pn->lruvec_stats.state[i] += delta; 5439 if (ppn) 5440 ppn->lruvec_stats.state_pending[i] += delta; 5441 } 5442 } 5443 } 5444 5445 #ifdef CONFIG_MMU 5446 /* Handlers for move charge at task migration. */ 5447 static int mem_cgroup_do_precharge(unsigned long count) 5448 { 5449 int ret; 5450 5451 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5452 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5453 if (!ret) { 5454 mc.precharge += count; 5455 return ret; 5456 } 5457 5458 /* Try charges one by one with reclaim, but do not retry */ 5459 while (count--) { 5460 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5461 if (ret) 5462 return ret; 5463 mc.precharge++; 5464 cond_resched(); 5465 } 5466 return 0; 5467 } 5468 5469 union mc_target { 5470 struct page *page; 5471 swp_entry_t ent; 5472 }; 5473 5474 enum mc_target_type { 5475 MC_TARGET_NONE = 0, 5476 MC_TARGET_PAGE, 5477 MC_TARGET_SWAP, 5478 MC_TARGET_DEVICE, 5479 }; 5480 5481 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5482 unsigned long addr, pte_t ptent) 5483 { 5484 struct page *page = vm_normal_page(vma, addr, ptent); 5485 5486 if (!page || !page_mapped(page)) 5487 return NULL; 5488 if (PageAnon(page)) { 5489 if (!(mc.flags & MOVE_ANON)) 5490 return NULL; 5491 } else { 5492 if (!(mc.flags & MOVE_FILE)) 5493 return NULL; 5494 } 5495 if (!get_page_unless_zero(page)) 5496 return NULL; 5497 5498 return page; 5499 } 5500 5501 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5502 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5503 pte_t ptent, swp_entry_t *entry) 5504 { 5505 struct page *page = NULL; 5506 swp_entry_t ent = pte_to_swp_entry(ptent); 5507 5508 if (!(mc.flags & MOVE_ANON)) 5509 return NULL; 5510 5511 /* 5512 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5513 * a device and because they are not accessible by CPU they are store 5514 * as special swap entry in the CPU page table. 5515 */ 5516 if (is_device_private_entry(ent)) { 5517 page = pfn_swap_entry_to_page(ent); 5518 /* 5519 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5520 * a refcount of 1 when free (unlike normal page) 5521 */ 5522 if (!page_ref_add_unless(page, 1, 1)) 5523 return NULL; 5524 return page; 5525 } 5526 5527 if (non_swap_entry(ent)) 5528 return NULL; 5529 5530 /* 5531 * Because lookup_swap_cache() updates some statistics counter, 5532 * we call find_get_page() with swapper_space directly. 5533 */ 5534 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5535 entry->val = ent.val; 5536 5537 return page; 5538 } 5539 #else 5540 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5541 pte_t ptent, swp_entry_t *entry) 5542 { 5543 return NULL; 5544 } 5545 #endif 5546 5547 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5548 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5549 { 5550 if (!vma->vm_file) /* anonymous vma */ 5551 return NULL; 5552 if (!(mc.flags & MOVE_FILE)) 5553 return NULL; 5554 5555 /* page is moved even if it's not RSS of this task(page-faulted). */ 5556 /* shmem/tmpfs may report page out on swap: account for that too. */ 5557 return find_get_incore_page(vma->vm_file->f_mapping, 5558 linear_page_index(vma, addr)); 5559 } 5560 5561 /** 5562 * mem_cgroup_move_account - move account of the page 5563 * @page: the page 5564 * @compound: charge the page as compound or small page 5565 * @from: mem_cgroup which the page is moved from. 5566 * @to: mem_cgroup which the page is moved to. @from != @to. 5567 * 5568 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5569 * 5570 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5571 * from old cgroup. 5572 */ 5573 static int mem_cgroup_move_account(struct page *page, 5574 bool compound, 5575 struct mem_cgroup *from, 5576 struct mem_cgroup *to) 5577 { 5578 struct lruvec *from_vec, *to_vec; 5579 struct pglist_data *pgdat; 5580 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1; 5581 int ret; 5582 5583 VM_BUG_ON(from == to); 5584 VM_BUG_ON_PAGE(PageLRU(page), page); 5585 VM_BUG_ON(compound && !PageTransHuge(page)); 5586 5587 /* 5588 * Prevent mem_cgroup_migrate() from looking at 5589 * page's memory cgroup of its source page while we change it. 5590 */ 5591 ret = -EBUSY; 5592 if (!trylock_page(page)) 5593 goto out; 5594 5595 ret = -EINVAL; 5596 if (page_memcg(page) != from) 5597 goto out_unlock; 5598 5599 pgdat = page_pgdat(page); 5600 from_vec = mem_cgroup_lruvec(from, pgdat); 5601 to_vec = mem_cgroup_lruvec(to, pgdat); 5602 5603 lock_page_memcg(page); 5604 5605 if (PageAnon(page)) { 5606 if (page_mapped(page)) { 5607 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5608 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5609 if (PageTransHuge(page)) { 5610 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5611 -nr_pages); 5612 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5613 nr_pages); 5614 } 5615 } 5616 } else { 5617 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5618 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5619 5620 if (PageSwapBacked(page)) { 5621 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5622 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5623 } 5624 5625 if (page_mapped(page)) { 5626 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5627 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5628 } 5629 5630 if (PageDirty(page)) { 5631 struct address_space *mapping = page_mapping(page); 5632 5633 if (mapping_can_writeback(mapping)) { 5634 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5635 -nr_pages); 5636 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5637 nr_pages); 5638 } 5639 } 5640 } 5641 5642 if (PageWriteback(page)) { 5643 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5644 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5645 } 5646 5647 /* 5648 * All state has been migrated, let's switch to the new memcg. 5649 * 5650 * It is safe to change page's memcg here because the page 5651 * is referenced, charged, isolated, and locked: we can't race 5652 * with (un)charging, migration, LRU putback, or anything else 5653 * that would rely on a stable page's memory cgroup. 5654 * 5655 * Note that lock_page_memcg is a memcg lock, not a page lock, 5656 * to save space. As soon as we switch page's memory cgroup to a 5657 * new memcg that isn't locked, the above state can change 5658 * concurrently again. Make sure we're truly done with it. 5659 */ 5660 smp_mb(); 5661 5662 css_get(&to->css); 5663 css_put(&from->css); 5664 5665 page->memcg_data = (unsigned long)to; 5666 5667 __unlock_page_memcg(from); 5668 5669 ret = 0; 5670 5671 local_irq_disable(); 5672 mem_cgroup_charge_statistics(to, page, nr_pages); 5673 memcg_check_events(to, page); 5674 mem_cgroup_charge_statistics(from, page, -nr_pages); 5675 memcg_check_events(from, page); 5676 local_irq_enable(); 5677 out_unlock: 5678 unlock_page(page); 5679 out: 5680 return ret; 5681 } 5682 5683 /** 5684 * get_mctgt_type - get target type of moving charge 5685 * @vma: the vma the pte to be checked belongs 5686 * @addr: the address corresponding to the pte to be checked 5687 * @ptent: the pte to be checked 5688 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5689 * 5690 * Returns 5691 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5692 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5693 * move charge. if @target is not NULL, the page is stored in target->page 5694 * with extra refcnt got(Callers should handle it). 5695 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5696 * target for charge migration. if @target is not NULL, the entry is stored 5697 * in target->ent. 5698 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5699 * (so ZONE_DEVICE page and thus not on the lru). 5700 * For now we such page is charge like a regular page would be as for all 5701 * intent and purposes it is just special memory taking the place of a 5702 * regular page. 5703 * 5704 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5705 * 5706 * Called with pte lock held. 5707 */ 5708 5709 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5710 unsigned long addr, pte_t ptent, union mc_target *target) 5711 { 5712 struct page *page = NULL; 5713 enum mc_target_type ret = MC_TARGET_NONE; 5714 swp_entry_t ent = { .val = 0 }; 5715 5716 if (pte_present(ptent)) 5717 page = mc_handle_present_pte(vma, addr, ptent); 5718 else if (is_swap_pte(ptent)) 5719 page = mc_handle_swap_pte(vma, ptent, &ent); 5720 else if (pte_none(ptent)) 5721 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5722 5723 if (!page && !ent.val) 5724 return ret; 5725 if (page) { 5726 /* 5727 * Do only loose check w/o serialization. 5728 * mem_cgroup_move_account() checks the page is valid or 5729 * not under LRU exclusion. 5730 */ 5731 if (page_memcg(page) == mc.from) { 5732 ret = MC_TARGET_PAGE; 5733 if (is_device_private_page(page)) 5734 ret = MC_TARGET_DEVICE; 5735 if (target) 5736 target->page = page; 5737 } 5738 if (!ret || !target) 5739 put_page(page); 5740 } 5741 /* 5742 * There is a swap entry and a page doesn't exist or isn't charged. 5743 * But we cannot move a tail-page in a THP. 5744 */ 5745 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5746 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5747 ret = MC_TARGET_SWAP; 5748 if (target) 5749 target->ent = ent; 5750 } 5751 return ret; 5752 } 5753 5754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5755 /* 5756 * We don't consider PMD mapped swapping or file mapped pages because THP does 5757 * not support them for now. 5758 * Caller should make sure that pmd_trans_huge(pmd) is true. 5759 */ 5760 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5761 unsigned long addr, pmd_t pmd, union mc_target *target) 5762 { 5763 struct page *page = NULL; 5764 enum mc_target_type ret = MC_TARGET_NONE; 5765 5766 if (unlikely(is_swap_pmd(pmd))) { 5767 VM_BUG_ON(thp_migration_supported() && 5768 !is_pmd_migration_entry(pmd)); 5769 return ret; 5770 } 5771 page = pmd_page(pmd); 5772 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5773 if (!(mc.flags & MOVE_ANON)) 5774 return ret; 5775 if (page_memcg(page) == mc.from) { 5776 ret = MC_TARGET_PAGE; 5777 if (target) { 5778 get_page(page); 5779 target->page = page; 5780 } 5781 } 5782 return ret; 5783 } 5784 #else 5785 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5786 unsigned long addr, pmd_t pmd, union mc_target *target) 5787 { 5788 return MC_TARGET_NONE; 5789 } 5790 #endif 5791 5792 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5793 unsigned long addr, unsigned long end, 5794 struct mm_walk *walk) 5795 { 5796 struct vm_area_struct *vma = walk->vma; 5797 pte_t *pte; 5798 spinlock_t *ptl; 5799 5800 ptl = pmd_trans_huge_lock(pmd, vma); 5801 if (ptl) { 5802 /* 5803 * Note their can not be MC_TARGET_DEVICE for now as we do not 5804 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5805 * this might change. 5806 */ 5807 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5808 mc.precharge += HPAGE_PMD_NR; 5809 spin_unlock(ptl); 5810 return 0; 5811 } 5812 5813 if (pmd_trans_unstable(pmd)) 5814 return 0; 5815 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5816 for (; addr != end; pte++, addr += PAGE_SIZE) 5817 if (get_mctgt_type(vma, addr, *pte, NULL)) 5818 mc.precharge++; /* increment precharge temporarily */ 5819 pte_unmap_unlock(pte - 1, ptl); 5820 cond_resched(); 5821 5822 return 0; 5823 } 5824 5825 static const struct mm_walk_ops precharge_walk_ops = { 5826 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5827 }; 5828 5829 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5830 { 5831 unsigned long precharge; 5832 5833 mmap_read_lock(mm); 5834 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5835 mmap_read_unlock(mm); 5836 5837 precharge = mc.precharge; 5838 mc.precharge = 0; 5839 5840 return precharge; 5841 } 5842 5843 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5844 { 5845 unsigned long precharge = mem_cgroup_count_precharge(mm); 5846 5847 VM_BUG_ON(mc.moving_task); 5848 mc.moving_task = current; 5849 return mem_cgroup_do_precharge(precharge); 5850 } 5851 5852 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5853 static void __mem_cgroup_clear_mc(void) 5854 { 5855 struct mem_cgroup *from = mc.from; 5856 struct mem_cgroup *to = mc.to; 5857 5858 /* we must uncharge all the leftover precharges from mc.to */ 5859 if (mc.precharge) { 5860 cancel_charge(mc.to, mc.precharge); 5861 mc.precharge = 0; 5862 } 5863 /* 5864 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5865 * we must uncharge here. 5866 */ 5867 if (mc.moved_charge) { 5868 cancel_charge(mc.from, mc.moved_charge); 5869 mc.moved_charge = 0; 5870 } 5871 /* we must fixup refcnts and charges */ 5872 if (mc.moved_swap) { 5873 /* uncharge swap account from the old cgroup */ 5874 if (!mem_cgroup_is_root(mc.from)) 5875 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5876 5877 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5878 5879 /* 5880 * we charged both to->memory and to->memsw, so we 5881 * should uncharge to->memory. 5882 */ 5883 if (!mem_cgroup_is_root(mc.to)) 5884 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5885 5886 mc.moved_swap = 0; 5887 } 5888 memcg_oom_recover(from); 5889 memcg_oom_recover(to); 5890 wake_up_all(&mc.waitq); 5891 } 5892 5893 static void mem_cgroup_clear_mc(void) 5894 { 5895 struct mm_struct *mm = mc.mm; 5896 5897 /* 5898 * we must clear moving_task before waking up waiters at the end of 5899 * task migration. 5900 */ 5901 mc.moving_task = NULL; 5902 __mem_cgroup_clear_mc(); 5903 spin_lock(&mc.lock); 5904 mc.from = NULL; 5905 mc.to = NULL; 5906 mc.mm = NULL; 5907 spin_unlock(&mc.lock); 5908 5909 mmput(mm); 5910 } 5911 5912 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5913 { 5914 struct cgroup_subsys_state *css; 5915 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5916 struct mem_cgroup *from; 5917 struct task_struct *leader, *p; 5918 struct mm_struct *mm; 5919 unsigned long move_flags; 5920 int ret = 0; 5921 5922 /* charge immigration isn't supported on the default hierarchy */ 5923 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5924 return 0; 5925 5926 /* 5927 * Multi-process migrations only happen on the default hierarchy 5928 * where charge immigration is not used. Perform charge 5929 * immigration if @tset contains a leader and whine if there are 5930 * multiple. 5931 */ 5932 p = NULL; 5933 cgroup_taskset_for_each_leader(leader, css, tset) { 5934 WARN_ON_ONCE(p); 5935 p = leader; 5936 memcg = mem_cgroup_from_css(css); 5937 } 5938 if (!p) 5939 return 0; 5940 5941 /* 5942 * We are now committed to this value whatever it is. Changes in this 5943 * tunable will only affect upcoming migrations, not the current one. 5944 * So we need to save it, and keep it going. 5945 */ 5946 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5947 if (!move_flags) 5948 return 0; 5949 5950 from = mem_cgroup_from_task(p); 5951 5952 VM_BUG_ON(from == memcg); 5953 5954 mm = get_task_mm(p); 5955 if (!mm) 5956 return 0; 5957 /* We move charges only when we move a owner of the mm */ 5958 if (mm->owner == p) { 5959 VM_BUG_ON(mc.from); 5960 VM_BUG_ON(mc.to); 5961 VM_BUG_ON(mc.precharge); 5962 VM_BUG_ON(mc.moved_charge); 5963 VM_BUG_ON(mc.moved_swap); 5964 5965 spin_lock(&mc.lock); 5966 mc.mm = mm; 5967 mc.from = from; 5968 mc.to = memcg; 5969 mc.flags = move_flags; 5970 spin_unlock(&mc.lock); 5971 /* We set mc.moving_task later */ 5972 5973 ret = mem_cgroup_precharge_mc(mm); 5974 if (ret) 5975 mem_cgroup_clear_mc(); 5976 } else { 5977 mmput(mm); 5978 } 5979 return ret; 5980 } 5981 5982 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5983 { 5984 if (mc.to) 5985 mem_cgroup_clear_mc(); 5986 } 5987 5988 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5989 unsigned long addr, unsigned long end, 5990 struct mm_walk *walk) 5991 { 5992 int ret = 0; 5993 struct vm_area_struct *vma = walk->vma; 5994 pte_t *pte; 5995 spinlock_t *ptl; 5996 enum mc_target_type target_type; 5997 union mc_target target; 5998 struct page *page; 5999 6000 ptl = pmd_trans_huge_lock(pmd, vma); 6001 if (ptl) { 6002 if (mc.precharge < HPAGE_PMD_NR) { 6003 spin_unlock(ptl); 6004 return 0; 6005 } 6006 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6007 if (target_type == MC_TARGET_PAGE) { 6008 page = target.page; 6009 if (!isolate_lru_page(page)) { 6010 if (!mem_cgroup_move_account(page, true, 6011 mc.from, mc.to)) { 6012 mc.precharge -= HPAGE_PMD_NR; 6013 mc.moved_charge += HPAGE_PMD_NR; 6014 } 6015 putback_lru_page(page); 6016 } 6017 put_page(page); 6018 } else if (target_type == MC_TARGET_DEVICE) { 6019 page = target.page; 6020 if (!mem_cgroup_move_account(page, true, 6021 mc.from, mc.to)) { 6022 mc.precharge -= HPAGE_PMD_NR; 6023 mc.moved_charge += HPAGE_PMD_NR; 6024 } 6025 put_page(page); 6026 } 6027 spin_unlock(ptl); 6028 return 0; 6029 } 6030 6031 if (pmd_trans_unstable(pmd)) 6032 return 0; 6033 retry: 6034 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6035 for (; addr != end; addr += PAGE_SIZE) { 6036 pte_t ptent = *(pte++); 6037 bool device = false; 6038 swp_entry_t ent; 6039 6040 if (!mc.precharge) 6041 break; 6042 6043 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6044 case MC_TARGET_DEVICE: 6045 device = true; 6046 fallthrough; 6047 case MC_TARGET_PAGE: 6048 page = target.page; 6049 /* 6050 * We can have a part of the split pmd here. Moving it 6051 * can be done but it would be too convoluted so simply 6052 * ignore such a partial THP and keep it in original 6053 * memcg. There should be somebody mapping the head. 6054 */ 6055 if (PageTransCompound(page)) 6056 goto put; 6057 if (!device && isolate_lru_page(page)) 6058 goto put; 6059 if (!mem_cgroup_move_account(page, false, 6060 mc.from, mc.to)) { 6061 mc.precharge--; 6062 /* we uncharge from mc.from later. */ 6063 mc.moved_charge++; 6064 } 6065 if (!device) 6066 putback_lru_page(page); 6067 put: /* get_mctgt_type() gets the page */ 6068 put_page(page); 6069 break; 6070 case MC_TARGET_SWAP: 6071 ent = target.ent; 6072 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6073 mc.precharge--; 6074 mem_cgroup_id_get_many(mc.to, 1); 6075 /* we fixup other refcnts and charges later. */ 6076 mc.moved_swap++; 6077 } 6078 break; 6079 default: 6080 break; 6081 } 6082 } 6083 pte_unmap_unlock(pte - 1, ptl); 6084 cond_resched(); 6085 6086 if (addr != end) { 6087 /* 6088 * We have consumed all precharges we got in can_attach(). 6089 * We try charge one by one, but don't do any additional 6090 * charges to mc.to if we have failed in charge once in attach() 6091 * phase. 6092 */ 6093 ret = mem_cgroup_do_precharge(1); 6094 if (!ret) 6095 goto retry; 6096 } 6097 6098 return ret; 6099 } 6100 6101 static const struct mm_walk_ops charge_walk_ops = { 6102 .pmd_entry = mem_cgroup_move_charge_pte_range, 6103 }; 6104 6105 static void mem_cgroup_move_charge(void) 6106 { 6107 lru_add_drain_all(); 6108 /* 6109 * Signal lock_page_memcg() to take the memcg's move_lock 6110 * while we're moving its pages to another memcg. Then wait 6111 * for already started RCU-only updates to finish. 6112 */ 6113 atomic_inc(&mc.from->moving_account); 6114 synchronize_rcu(); 6115 retry: 6116 if (unlikely(!mmap_read_trylock(mc.mm))) { 6117 /* 6118 * Someone who are holding the mmap_lock might be waiting in 6119 * waitq. So we cancel all extra charges, wake up all waiters, 6120 * and retry. Because we cancel precharges, we might not be able 6121 * to move enough charges, but moving charge is a best-effort 6122 * feature anyway, so it wouldn't be a big problem. 6123 */ 6124 __mem_cgroup_clear_mc(); 6125 cond_resched(); 6126 goto retry; 6127 } 6128 /* 6129 * When we have consumed all precharges and failed in doing 6130 * additional charge, the page walk just aborts. 6131 */ 6132 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6133 NULL); 6134 6135 mmap_read_unlock(mc.mm); 6136 atomic_dec(&mc.from->moving_account); 6137 } 6138 6139 static void mem_cgroup_move_task(void) 6140 { 6141 if (mc.to) { 6142 mem_cgroup_move_charge(); 6143 mem_cgroup_clear_mc(); 6144 } 6145 } 6146 #else /* !CONFIG_MMU */ 6147 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6148 { 6149 return 0; 6150 } 6151 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6152 { 6153 } 6154 static void mem_cgroup_move_task(void) 6155 { 6156 } 6157 #endif 6158 6159 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6160 { 6161 if (value == PAGE_COUNTER_MAX) 6162 seq_puts(m, "max\n"); 6163 else 6164 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6165 6166 return 0; 6167 } 6168 6169 static u64 memory_current_read(struct cgroup_subsys_state *css, 6170 struct cftype *cft) 6171 { 6172 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6173 6174 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6175 } 6176 6177 static int memory_min_show(struct seq_file *m, void *v) 6178 { 6179 return seq_puts_memcg_tunable(m, 6180 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6181 } 6182 6183 static ssize_t memory_min_write(struct kernfs_open_file *of, 6184 char *buf, size_t nbytes, loff_t off) 6185 { 6186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6187 unsigned long min; 6188 int err; 6189 6190 buf = strstrip(buf); 6191 err = page_counter_memparse(buf, "max", &min); 6192 if (err) 6193 return err; 6194 6195 page_counter_set_min(&memcg->memory, min); 6196 6197 return nbytes; 6198 } 6199 6200 static int memory_low_show(struct seq_file *m, void *v) 6201 { 6202 return seq_puts_memcg_tunable(m, 6203 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6204 } 6205 6206 static ssize_t memory_low_write(struct kernfs_open_file *of, 6207 char *buf, size_t nbytes, loff_t off) 6208 { 6209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6210 unsigned long low; 6211 int err; 6212 6213 buf = strstrip(buf); 6214 err = page_counter_memparse(buf, "max", &low); 6215 if (err) 6216 return err; 6217 6218 page_counter_set_low(&memcg->memory, low); 6219 6220 return nbytes; 6221 } 6222 6223 static int memory_high_show(struct seq_file *m, void *v) 6224 { 6225 return seq_puts_memcg_tunable(m, 6226 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6227 } 6228 6229 static ssize_t memory_high_write(struct kernfs_open_file *of, 6230 char *buf, size_t nbytes, loff_t off) 6231 { 6232 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6233 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6234 bool drained = false; 6235 unsigned long high; 6236 int err; 6237 6238 buf = strstrip(buf); 6239 err = page_counter_memparse(buf, "max", &high); 6240 if (err) 6241 return err; 6242 6243 page_counter_set_high(&memcg->memory, high); 6244 6245 for (;;) { 6246 unsigned long nr_pages = page_counter_read(&memcg->memory); 6247 unsigned long reclaimed; 6248 6249 if (nr_pages <= high) 6250 break; 6251 6252 if (signal_pending(current)) 6253 break; 6254 6255 if (!drained) { 6256 drain_all_stock(memcg); 6257 drained = true; 6258 continue; 6259 } 6260 6261 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6262 GFP_KERNEL, true); 6263 6264 if (!reclaimed && !nr_retries--) 6265 break; 6266 } 6267 6268 memcg_wb_domain_size_changed(memcg); 6269 return nbytes; 6270 } 6271 6272 static int memory_max_show(struct seq_file *m, void *v) 6273 { 6274 return seq_puts_memcg_tunable(m, 6275 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6276 } 6277 6278 static ssize_t memory_max_write(struct kernfs_open_file *of, 6279 char *buf, size_t nbytes, loff_t off) 6280 { 6281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6282 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6283 bool drained = false; 6284 unsigned long max; 6285 int err; 6286 6287 buf = strstrip(buf); 6288 err = page_counter_memparse(buf, "max", &max); 6289 if (err) 6290 return err; 6291 6292 xchg(&memcg->memory.max, max); 6293 6294 for (;;) { 6295 unsigned long nr_pages = page_counter_read(&memcg->memory); 6296 6297 if (nr_pages <= max) 6298 break; 6299 6300 if (signal_pending(current)) 6301 break; 6302 6303 if (!drained) { 6304 drain_all_stock(memcg); 6305 drained = true; 6306 continue; 6307 } 6308 6309 if (nr_reclaims) { 6310 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6311 GFP_KERNEL, true)) 6312 nr_reclaims--; 6313 continue; 6314 } 6315 6316 memcg_memory_event(memcg, MEMCG_OOM); 6317 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6318 break; 6319 } 6320 6321 memcg_wb_domain_size_changed(memcg); 6322 return nbytes; 6323 } 6324 6325 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6326 { 6327 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6328 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6329 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6330 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6331 seq_printf(m, "oom_kill %lu\n", 6332 atomic_long_read(&events[MEMCG_OOM_KILL])); 6333 } 6334 6335 static int memory_events_show(struct seq_file *m, void *v) 6336 { 6337 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6338 6339 __memory_events_show(m, memcg->memory_events); 6340 return 0; 6341 } 6342 6343 static int memory_events_local_show(struct seq_file *m, void *v) 6344 { 6345 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6346 6347 __memory_events_show(m, memcg->memory_events_local); 6348 return 0; 6349 } 6350 6351 static int memory_stat_show(struct seq_file *m, void *v) 6352 { 6353 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6354 char *buf; 6355 6356 buf = memory_stat_format(memcg); 6357 if (!buf) 6358 return -ENOMEM; 6359 seq_puts(m, buf); 6360 kfree(buf); 6361 return 0; 6362 } 6363 6364 #ifdef CONFIG_NUMA 6365 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6366 int item) 6367 { 6368 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6369 } 6370 6371 static int memory_numa_stat_show(struct seq_file *m, void *v) 6372 { 6373 int i; 6374 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6375 6376 cgroup_rstat_flush(memcg->css.cgroup); 6377 6378 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6379 int nid; 6380 6381 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6382 continue; 6383 6384 seq_printf(m, "%s", memory_stats[i].name); 6385 for_each_node_state(nid, N_MEMORY) { 6386 u64 size; 6387 struct lruvec *lruvec; 6388 6389 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6390 size = lruvec_page_state_output(lruvec, 6391 memory_stats[i].idx); 6392 seq_printf(m, " N%d=%llu", nid, size); 6393 } 6394 seq_putc(m, '\n'); 6395 } 6396 6397 return 0; 6398 } 6399 #endif 6400 6401 static int memory_oom_group_show(struct seq_file *m, void *v) 6402 { 6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6404 6405 seq_printf(m, "%d\n", memcg->oom_group); 6406 6407 return 0; 6408 } 6409 6410 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6411 char *buf, size_t nbytes, loff_t off) 6412 { 6413 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6414 int ret, oom_group; 6415 6416 buf = strstrip(buf); 6417 if (!buf) 6418 return -EINVAL; 6419 6420 ret = kstrtoint(buf, 0, &oom_group); 6421 if (ret) 6422 return ret; 6423 6424 if (oom_group != 0 && oom_group != 1) 6425 return -EINVAL; 6426 6427 memcg->oom_group = oom_group; 6428 6429 return nbytes; 6430 } 6431 6432 static struct cftype memory_files[] = { 6433 { 6434 .name = "current", 6435 .flags = CFTYPE_NOT_ON_ROOT, 6436 .read_u64 = memory_current_read, 6437 }, 6438 { 6439 .name = "min", 6440 .flags = CFTYPE_NOT_ON_ROOT, 6441 .seq_show = memory_min_show, 6442 .write = memory_min_write, 6443 }, 6444 { 6445 .name = "low", 6446 .flags = CFTYPE_NOT_ON_ROOT, 6447 .seq_show = memory_low_show, 6448 .write = memory_low_write, 6449 }, 6450 { 6451 .name = "high", 6452 .flags = CFTYPE_NOT_ON_ROOT, 6453 .seq_show = memory_high_show, 6454 .write = memory_high_write, 6455 }, 6456 { 6457 .name = "max", 6458 .flags = CFTYPE_NOT_ON_ROOT, 6459 .seq_show = memory_max_show, 6460 .write = memory_max_write, 6461 }, 6462 { 6463 .name = "events", 6464 .flags = CFTYPE_NOT_ON_ROOT, 6465 .file_offset = offsetof(struct mem_cgroup, events_file), 6466 .seq_show = memory_events_show, 6467 }, 6468 { 6469 .name = "events.local", 6470 .flags = CFTYPE_NOT_ON_ROOT, 6471 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6472 .seq_show = memory_events_local_show, 6473 }, 6474 { 6475 .name = "stat", 6476 .seq_show = memory_stat_show, 6477 }, 6478 #ifdef CONFIG_NUMA 6479 { 6480 .name = "numa_stat", 6481 .seq_show = memory_numa_stat_show, 6482 }, 6483 #endif 6484 { 6485 .name = "oom.group", 6486 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6487 .seq_show = memory_oom_group_show, 6488 .write = memory_oom_group_write, 6489 }, 6490 { } /* terminate */ 6491 }; 6492 6493 struct cgroup_subsys memory_cgrp_subsys = { 6494 .css_alloc = mem_cgroup_css_alloc, 6495 .css_online = mem_cgroup_css_online, 6496 .css_offline = mem_cgroup_css_offline, 6497 .css_released = mem_cgroup_css_released, 6498 .css_free = mem_cgroup_css_free, 6499 .css_reset = mem_cgroup_css_reset, 6500 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6501 .can_attach = mem_cgroup_can_attach, 6502 .cancel_attach = mem_cgroup_cancel_attach, 6503 .post_attach = mem_cgroup_move_task, 6504 .dfl_cftypes = memory_files, 6505 .legacy_cftypes = mem_cgroup_legacy_files, 6506 .early_init = 0, 6507 }; 6508 6509 /* 6510 * This function calculates an individual cgroup's effective 6511 * protection which is derived from its own memory.min/low, its 6512 * parent's and siblings' settings, as well as the actual memory 6513 * distribution in the tree. 6514 * 6515 * The following rules apply to the effective protection values: 6516 * 6517 * 1. At the first level of reclaim, effective protection is equal to 6518 * the declared protection in memory.min and memory.low. 6519 * 6520 * 2. To enable safe delegation of the protection configuration, at 6521 * subsequent levels the effective protection is capped to the 6522 * parent's effective protection. 6523 * 6524 * 3. To make complex and dynamic subtrees easier to configure, the 6525 * user is allowed to overcommit the declared protection at a given 6526 * level. If that is the case, the parent's effective protection is 6527 * distributed to the children in proportion to how much protection 6528 * they have declared and how much of it they are utilizing. 6529 * 6530 * This makes distribution proportional, but also work-conserving: 6531 * if one cgroup claims much more protection than it uses memory, 6532 * the unused remainder is available to its siblings. 6533 * 6534 * 4. Conversely, when the declared protection is undercommitted at a 6535 * given level, the distribution of the larger parental protection 6536 * budget is NOT proportional. A cgroup's protection from a sibling 6537 * is capped to its own memory.min/low setting. 6538 * 6539 * 5. However, to allow protecting recursive subtrees from each other 6540 * without having to declare each individual cgroup's fixed share 6541 * of the ancestor's claim to protection, any unutilized - 6542 * "floating" - protection from up the tree is distributed in 6543 * proportion to each cgroup's *usage*. This makes the protection 6544 * neutral wrt sibling cgroups and lets them compete freely over 6545 * the shared parental protection budget, but it protects the 6546 * subtree as a whole from neighboring subtrees. 6547 * 6548 * Note that 4. and 5. are not in conflict: 4. is about protecting 6549 * against immediate siblings whereas 5. is about protecting against 6550 * neighboring subtrees. 6551 */ 6552 static unsigned long effective_protection(unsigned long usage, 6553 unsigned long parent_usage, 6554 unsigned long setting, 6555 unsigned long parent_effective, 6556 unsigned long siblings_protected) 6557 { 6558 unsigned long protected; 6559 unsigned long ep; 6560 6561 protected = min(usage, setting); 6562 /* 6563 * If all cgroups at this level combined claim and use more 6564 * protection then what the parent affords them, distribute 6565 * shares in proportion to utilization. 6566 * 6567 * We are using actual utilization rather than the statically 6568 * claimed protection in order to be work-conserving: claimed 6569 * but unused protection is available to siblings that would 6570 * otherwise get a smaller chunk than what they claimed. 6571 */ 6572 if (siblings_protected > parent_effective) 6573 return protected * parent_effective / siblings_protected; 6574 6575 /* 6576 * Ok, utilized protection of all children is within what the 6577 * parent affords them, so we know whatever this child claims 6578 * and utilizes is effectively protected. 6579 * 6580 * If there is unprotected usage beyond this value, reclaim 6581 * will apply pressure in proportion to that amount. 6582 * 6583 * If there is unutilized protection, the cgroup will be fully 6584 * shielded from reclaim, but we do return a smaller value for 6585 * protection than what the group could enjoy in theory. This 6586 * is okay. With the overcommit distribution above, effective 6587 * protection is always dependent on how memory is actually 6588 * consumed among the siblings anyway. 6589 */ 6590 ep = protected; 6591 6592 /* 6593 * If the children aren't claiming (all of) the protection 6594 * afforded to them by the parent, distribute the remainder in 6595 * proportion to the (unprotected) memory of each cgroup. That 6596 * way, cgroups that aren't explicitly prioritized wrt each 6597 * other compete freely over the allowance, but they are 6598 * collectively protected from neighboring trees. 6599 * 6600 * We're using unprotected memory for the weight so that if 6601 * some cgroups DO claim explicit protection, we don't protect 6602 * the same bytes twice. 6603 * 6604 * Check both usage and parent_usage against the respective 6605 * protected values. One should imply the other, but they 6606 * aren't read atomically - make sure the division is sane. 6607 */ 6608 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6609 return ep; 6610 if (parent_effective > siblings_protected && 6611 parent_usage > siblings_protected && 6612 usage > protected) { 6613 unsigned long unclaimed; 6614 6615 unclaimed = parent_effective - siblings_protected; 6616 unclaimed *= usage - protected; 6617 unclaimed /= parent_usage - siblings_protected; 6618 6619 ep += unclaimed; 6620 } 6621 6622 return ep; 6623 } 6624 6625 /** 6626 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6627 * @root: the top ancestor of the sub-tree being checked 6628 * @memcg: the memory cgroup to check 6629 * 6630 * WARNING: This function is not stateless! It can only be used as part 6631 * of a top-down tree iteration, not for isolated queries. 6632 */ 6633 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6634 struct mem_cgroup *memcg) 6635 { 6636 unsigned long usage, parent_usage; 6637 struct mem_cgroup *parent; 6638 6639 if (mem_cgroup_disabled()) 6640 return; 6641 6642 if (!root) 6643 root = root_mem_cgroup; 6644 6645 /* 6646 * Effective values of the reclaim targets are ignored so they 6647 * can be stale. Have a look at mem_cgroup_protection for more 6648 * details. 6649 * TODO: calculation should be more robust so that we do not need 6650 * that special casing. 6651 */ 6652 if (memcg == root) 6653 return; 6654 6655 usage = page_counter_read(&memcg->memory); 6656 if (!usage) 6657 return; 6658 6659 parent = parent_mem_cgroup(memcg); 6660 /* No parent means a non-hierarchical mode on v1 memcg */ 6661 if (!parent) 6662 return; 6663 6664 if (parent == root) { 6665 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6666 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6667 return; 6668 } 6669 6670 parent_usage = page_counter_read(&parent->memory); 6671 6672 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6673 READ_ONCE(memcg->memory.min), 6674 READ_ONCE(parent->memory.emin), 6675 atomic_long_read(&parent->memory.children_min_usage))); 6676 6677 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6678 READ_ONCE(memcg->memory.low), 6679 READ_ONCE(parent->memory.elow), 6680 atomic_long_read(&parent->memory.children_low_usage))); 6681 } 6682 6683 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp) 6684 { 6685 unsigned int nr_pages = thp_nr_pages(page); 6686 int ret; 6687 6688 ret = try_charge(memcg, gfp, nr_pages); 6689 if (ret) 6690 goto out; 6691 6692 css_get(&memcg->css); 6693 commit_charge(page, memcg); 6694 6695 local_irq_disable(); 6696 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6697 memcg_check_events(memcg, page); 6698 local_irq_enable(); 6699 out: 6700 return ret; 6701 } 6702 6703 /** 6704 * __mem_cgroup_charge - charge a newly allocated page to a cgroup 6705 * @page: page to charge 6706 * @mm: mm context of the victim 6707 * @gfp_mask: reclaim mode 6708 * 6709 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6710 * pages according to @gfp_mask if necessary. if @mm is NULL, try to 6711 * charge to the active memcg. 6712 * 6713 * Do not use this for pages allocated for swapin. 6714 * 6715 * Returns 0 on success. Otherwise, an error code is returned. 6716 */ 6717 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm, 6718 gfp_t gfp_mask) 6719 { 6720 struct mem_cgroup *memcg; 6721 int ret; 6722 6723 memcg = get_mem_cgroup_from_mm(mm); 6724 ret = charge_memcg(page, memcg, gfp_mask); 6725 css_put(&memcg->css); 6726 6727 return ret; 6728 } 6729 6730 /** 6731 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6732 * @page: page to charge 6733 * @mm: mm context of the victim 6734 * @gfp: reclaim mode 6735 * @entry: swap entry for which the page is allocated 6736 * 6737 * This function charges a page allocated for swapin. Please call this before 6738 * adding the page to the swapcache. 6739 * 6740 * Returns 0 on success. Otherwise, an error code is returned. 6741 */ 6742 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6743 gfp_t gfp, swp_entry_t entry) 6744 { 6745 struct mem_cgroup *memcg; 6746 unsigned short id; 6747 int ret; 6748 6749 if (mem_cgroup_disabled()) 6750 return 0; 6751 6752 id = lookup_swap_cgroup_id(entry); 6753 rcu_read_lock(); 6754 memcg = mem_cgroup_from_id(id); 6755 if (!memcg || !css_tryget_online(&memcg->css)) 6756 memcg = get_mem_cgroup_from_mm(mm); 6757 rcu_read_unlock(); 6758 6759 ret = charge_memcg(page, memcg, gfp); 6760 6761 css_put(&memcg->css); 6762 return ret; 6763 } 6764 6765 /* 6766 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6767 * @entry: swap entry for which the page is charged 6768 * 6769 * Call this function after successfully adding the charged page to swapcache. 6770 * 6771 * Note: This function assumes the page for which swap slot is being uncharged 6772 * is order 0 page. 6773 */ 6774 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6775 { 6776 /* 6777 * Cgroup1's unified memory+swap counter has been charged with the 6778 * new swapcache page, finish the transfer by uncharging the swap 6779 * slot. The swap slot would also get uncharged when it dies, but 6780 * it can stick around indefinitely and we'd count the page twice 6781 * the entire time. 6782 * 6783 * Cgroup2 has separate resource counters for memory and swap, 6784 * so this is a non-issue here. Memory and swap charge lifetimes 6785 * correspond 1:1 to page and swap slot lifetimes: we charge the 6786 * page to memory here, and uncharge swap when the slot is freed. 6787 */ 6788 if (!mem_cgroup_disabled() && do_memsw_account()) { 6789 /* 6790 * The swap entry might not get freed for a long time, 6791 * let's not wait for it. The page already received a 6792 * memory+swap charge, drop the swap entry duplicate. 6793 */ 6794 mem_cgroup_uncharge_swap(entry, 1); 6795 } 6796 } 6797 6798 struct uncharge_gather { 6799 struct mem_cgroup *memcg; 6800 unsigned long nr_memory; 6801 unsigned long pgpgout; 6802 unsigned long nr_kmem; 6803 struct page *dummy_page; 6804 }; 6805 6806 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6807 { 6808 memset(ug, 0, sizeof(*ug)); 6809 } 6810 6811 static void uncharge_batch(const struct uncharge_gather *ug) 6812 { 6813 unsigned long flags; 6814 6815 if (ug->nr_memory) { 6816 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6817 if (do_memsw_account()) 6818 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6819 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6820 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6821 memcg_oom_recover(ug->memcg); 6822 } 6823 6824 local_irq_save(flags); 6825 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6826 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6827 memcg_check_events(ug->memcg, ug->dummy_page); 6828 local_irq_restore(flags); 6829 6830 /* drop reference from uncharge_page */ 6831 css_put(&ug->memcg->css); 6832 } 6833 6834 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6835 { 6836 unsigned long nr_pages; 6837 struct mem_cgroup *memcg; 6838 struct obj_cgroup *objcg; 6839 bool use_objcg = PageMemcgKmem(page); 6840 6841 VM_BUG_ON_PAGE(PageLRU(page), page); 6842 6843 /* 6844 * Nobody should be changing or seriously looking at 6845 * page memcg or objcg at this point, we have fully 6846 * exclusive access to the page. 6847 */ 6848 if (use_objcg) { 6849 objcg = __page_objcg(page); 6850 /* 6851 * This get matches the put at the end of the function and 6852 * kmem pages do not hold memcg references anymore. 6853 */ 6854 memcg = get_mem_cgroup_from_objcg(objcg); 6855 } else { 6856 memcg = __page_memcg(page); 6857 } 6858 6859 if (!memcg) 6860 return; 6861 6862 if (ug->memcg != memcg) { 6863 if (ug->memcg) { 6864 uncharge_batch(ug); 6865 uncharge_gather_clear(ug); 6866 } 6867 ug->memcg = memcg; 6868 ug->dummy_page = page; 6869 6870 /* pairs with css_put in uncharge_batch */ 6871 css_get(&memcg->css); 6872 } 6873 6874 nr_pages = compound_nr(page); 6875 6876 if (use_objcg) { 6877 ug->nr_memory += nr_pages; 6878 ug->nr_kmem += nr_pages; 6879 6880 page->memcg_data = 0; 6881 obj_cgroup_put(objcg); 6882 } else { 6883 /* LRU pages aren't accounted at the root level */ 6884 if (!mem_cgroup_is_root(memcg)) 6885 ug->nr_memory += nr_pages; 6886 ug->pgpgout++; 6887 6888 page->memcg_data = 0; 6889 } 6890 6891 css_put(&memcg->css); 6892 } 6893 6894 /** 6895 * __mem_cgroup_uncharge - uncharge a page 6896 * @page: page to uncharge 6897 * 6898 * Uncharge a page previously charged with __mem_cgroup_charge(). 6899 */ 6900 void __mem_cgroup_uncharge(struct page *page) 6901 { 6902 struct uncharge_gather ug; 6903 6904 /* Don't touch page->lru of any random page, pre-check: */ 6905 if (!page_memcg(page)) 6906 return; 6907 6908 uncharge_gather_clear(&ug); 6909 uncharge_page(page, &ug); 6910 uncharge_batch(&ug); 6911 } 6912 6913 /** 6914 * __mem_cgroup_uncharge_list - uncharge a list of page 6915 * @page_list: list of pages to uncharge 6916 * 6917 * Uncharge a list of pages previously charged with 6918 * __mem_cgroup_charge(). 6919 */ 6920 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6921 { 6922 struct uncharge_gather ug; 6923 struct page *page; 6924 6925 uncharge_gather_clear(&ug); 6926 list_for_each_entry(page, page_list, lru) 6927 uncharge_page(page, &ug); 6928 if (ug.memcg) 6929 uncharge_batch(&ug); 6930 } 6931 6932 /** 6933 * mem_cgroup_migrate - charge a page's replacement 6934 * @oldpage: currently circulating page 6935 * @newpage: replacement page 6936 * 6937 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6938 * be uncharged upon free. 6939 * 6940 * Both pages must be locked, @newpage->mapping must be set up. 6941 */ 6942 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6943 { 6944 struct mem_cgroup *memcg; 6945 unsigned int nr_pages; 6946 unsigned long flags; 6947 6948 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6949 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6950 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6951 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6952 newpage); 6953 6954 if (mem_cgroup_disabled()) 6955 return; 6956 6957 /* Page cache replacement: new page already charged? */ 6958 if (page_memcg(newpage)) 6959 return; 6960 6961 memcg = page_memcg(oldpage); 6962 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage); 6963 if (!memcg) 6964 return; 6965 6966 /* Force-charge the new page. The old one will be freed soon */ 6967 nr_pages = thp_nr_pages(newpage); 6968 6969 if (!mem_cgroup_is_root(memcg)) { 6970 page_counter_charge(&memcg->memory, nr_pages); 6971 if (do_memsw_account()) 6972 page_counter_charge(&memcg->memsw, nr_pages); 6973 } 6974 6975 css_get(&memcg->css); 6976 commit_charge(newpage, memcg); 6977 6978 local_irq_save(flags); 6979 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 6980 memcg_check_events(memcg, newpage); 6981 local_irq_restore(flags); 6982 } 6983 6984 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6985 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6986 6987 void mem_cgroup_sk_alloc(struct sock *sk) 6988 { 6989 struct mem_cgroup *memcg; 6990 6991 if (!mem_cgroup_sockets_enabled) 6992 return; 6993 6994 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6995 if (in_interrupt()) 6996 return; 6997 6998 rcu_read_lock(); 6999 memcg = mem_cgroup_from_task(current); 7000 if (memcg == root_mem_cgroup) 7001 goto out; 7002 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7003 goto out; 7004 if (css_tryget(&memcg->css)) 7005 sk->sk_memcg = memcg; 7006 out: 7007 rcu_read_unlock(); 7008 } 7009 7010 void mem_cgroup_sk_free(struct sock *sk) 7011 { 7012 if (sk->sk_memcg) 7013 css_put(&sk->sk_memcg->css); 7014 } 7015 7016 /** 7017 * mem_cgroup_charge_skmem - charge socket memory 7018 * @memcg: memcg to charge 7019 * @nr_pages: number of pages to charge 7020 * @gfp_mask: reclaim mode 7021 * 7022 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7023 * @memcg's configured limit, %false if it doesn't. 7024 */ 7025 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7026 gfp_t gfp_mask) 7027 { 7028 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7029 struct page_counter *fail; 7030 7031 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7032 memcg->tcpmem_pressure = 0; 7033 return true; 7034 } 7035 memcg->tcpmem_pressure = 1; 7036 if (gfp_mask & __GFP_NOFAIL) { 7037 page_counter_charge(&memcg->tcpmem, nr_pages); 7038 return true; 7039 } 7040 return false; 7041 } 7042 7043 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7044 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7045 return true; 7046 } 7047 7048 return false; 7049 } 7050 7051 /** 7052 * mem_cgroup_uncharge_skmem - uncharge socket memory 7053 * @memcg: memcg to uncharge 7054 * @nr_pages: number of pages to uncharge 7055 */ 7056 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7057 { 7058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7059 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7060 return; 7061 } 7062 7063 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7064 7065 refill_stock(memcg, nr_pages); 7066 } 7067 7068 static int __init cgroup_memory(char *s) 7069 { 7070 char *token; 7071 7072 while ((token = strsep(&s, ",")) != NULL) { 7073 if (!*token) 7074 continue; 7075 if (!strcmp(token, "nosocket")) 7076 cgroup_memory_nosocket = true; 7077 if (!strcmp(token, "nokmem")) 7078 cgroup_memory_nokmem = true; 7079 } 7080 return 0; 7081 } 7082 __setup("cgroup.memory=", cgroup_memory); 7083 7084 /* 7085 * subsys_initcall() for memory controller. 7086 * 7087 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7088 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7089 * basically everything that doesn't depend on a specific mem_cgroup structure 7090 * should be initialized from here. 7091 */ 7092 static int __init mem_cgroup_init(void) 7093 { 7094 int cpu, node; 7095 7096 /* 7097 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7098 * used for per-memcg-per-cpu caching of per-node statistics. In order 7099 * to work fine, we should make sure that the overfill threshold can't 7100 * exceed S32_MAX / PAGE_SIZE. 7101 */ 7102 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7103 7104 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7105 memcg_hotplug_cpu_dead); 7106 7107 for_each_possible_cpu(cpu) 7108 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7109 drain_local_stock); 7110 7111 for_each_node(node) { 7112 struct mem_cgroup_tree_per_node *rtpn; 7113 7114 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7115 node_online(node) ? node : NUMA_NO_NODE); 7116 7117 rtpn->rb_root = RB_ROOT; 7118 rtpn->rb_rightmost = NULL; 7119 spin_lock_init(&rtpn->lock); 7120 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7121 } 7122 7123 return 0; 7124 } 7125 subsys_initcall(mem_cgroup_init); 7126 7127 #ifdef CONFIG_MEMCG_SWAP 7128 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7129 { 7130 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7131 /* 7132 * The root cgroup cannot be destroyed, so it's refcount must 7133 * always be >= 1. 7134 */ 7135 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7136 VM_BUG_ON(1); 7137 break; 7138 } 7139 memcg = parent_mem_cgroup(memcg); 7140 if (!memcg) 7141 memcg = root_mem_cgroup; 7142 } 7143 return memcg; 7144 } 7145 7146 /** 7147 * mem_cgroup_swapout - transfer a memsw charge to swap 7148 * @page: page whose memsw charge to transfer 7149 * @entry: swap entry to move the charge to 7150 * 7151 * Transfer the memsw charge of @page to @entry. 7152 */ 7153 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7154 { 7155 struct mem_cgroup *memcg, *swap_memcg; 7156 unsigned int nr_entries; 7157 unsigned short oldid; 7158 7159 VM_BUG_ON_PAGE(PageLRU(page), page); 7160 VM_BUG_ON_PAGE(page_count(page), page); 7161 7162 if (mem_cgroup_disabled()) 7163 return; 7164 7165 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7166 return; 7167 7168 memcg = page_memcg(page); 7169 7170 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7171 if (!memcg) 7172 return; 7173 7174 /* 7175 * In case the memcg owning these pages has been offlined and doesn't 7176 * have an ID allocated to it anymore, charge the closest online 7177 * ancestor for the swap instead and transfer the memory+swap charge. 7178 */ 7179 swap_memcg = mem_cgroup_id_get_online(memcg); 7180 nr_entries = thp_nr_pages(page); 7181 /* Get references for the tail pages, too */ 7182 if (nr_entries > 1) 7183 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7184 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7185 nr_entries); 7186 VM_BUG_ON_PAGE(oldid, page); 7187 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7188 7189 page->memcg_data = 0; 7190 7191 if (!mem_cgroup_is_root(memcg)) 7192 page_counter_uncharge(&memcg->memory, nr_entries); 7193 7194 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7195 if (!mem_cgroup_is_root(swap_memcg)) 7196 page_counter_charge(&swap_memcg->memsw, nr_entries); 7197 page_counter_uncharge(&memcg->memsw, nr_entries); 7198 } 7199 7200 /* 7201 * Interrupts should be disabled here because the caller holds the 7202 * i_pages lock which is taken with interrupts-off. It is 7203 * important here to have the interrupts disabled because it is the 7204 * only synchronisation we have for updating the per-CPU variables. 7205 */ 7206 VM_BUG_ON(!irqs_disabled()); 7207 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 7208 memcg_check_events(memcg, page); 7209 7210 css_put(&memcg->css); 7211 } 7212 7213 /** 7214 * __mem_cgroup_try_charge_swap - try charging swap space for a page 7215 * @page: page being added to swap 7216 * @entry: swap entry to charge 7217 * 7218 * Try to charge @page's memcg for the swap space at @entry. 7219 * 7220 * Returns 0 on success, -ENOMEM on failure. 7221 */ 7222 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7223 { 7224 unsigned int nr_pages = thp_nr_pages(page); 7225 struct page_counter *counter; 7226 struct mem_cgroup *memcg; 7227 unsigned short oldid; 7228 7229 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7230 return 0; 7231 7232 memcg = page_memcg(page); 7233 7234 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7235 if (!memcg) 7236 return 0; 7237 7238 if (!entry.val) { 7239 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7240 return 0; 7241 } 7242 7243 memcg = mem_cgroup_id_get_online(memcg); 7244 7245 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7246 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7247 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7248 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7249 mem_cgroup_id_put(memcg); 7250 return -ENOMEM; 7251 } 7252 7253 /* Get references for the tail pages, too */ 7254 if (nr_pages > 1) 7255 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7256 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7257 VM_BUG_ON_PAGE(oldid, page); 7258 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7259 7260 return 0; 7261 } 7262 7263 /** 7264 * __mem_cgroup_uncharge_swap - uncharge swap space 7265 * @entry: swap entry to uncharge 7266 * @nr_pages: the amount of swap space to uncharge 7267 */ 7268 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7269 { 7270 struct mem_cgroup *memcg; 7271 unsigned short id; 7272 7273 id = swap_cgroup_record(entry, 0, nr_pages); 7274 rcu_read_lock(); 7275 memcg = mem_cgroup_from_id(id); 7276 if (memcg) { 7277 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7278 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7279 page_counter_uncharge(&memcg->swap, nr_pages); 7280 else 7281 page_counter_uncharge(&memcg->memsw, nr_pages); 7282 } 7283 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7284 mem_cgroup_id_put_many(memcg, nr_pages); 7285 } 7286 rcu_read_unlock(); 7287 } 7288 7289 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7290 { 7291 long nr_swap_pages = get_nr_swap_pages(); 7292 7293 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7294 return nr_swap_pages; 7295 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7296 nr_swap_pages = min_t(long, nr_swap_pages, 7297 READ_ONCE(memcg->swap.max) - 7298 page_counter_read(&memcg->swap)); 7299 return nr_swap_pages; 7300 } 7301 7302 bool mem_cgroup_swap_full(struct page *page) 7303 { 7304 struct mem_cgroup *memcg; 7305 7306 VM_BUG_ON_PAGE(!PageLocked(page), page); 7307 7308 if (vm_swap_full()) 7309 return true; 7310 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7311 return false; 7312 7313 memcg = page_memcg(page); 7314 if (!memcg) 7315 return false; 7316 7317 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7318 unsigned long usage = page_counter_read(&memcg->swap); 7319 7320 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7321 usage * 2 >= READ_ONCE(memcg->swap.max)) 7322 return true; 7323 } 7324 7325 return false; 7326 } 7327 7328 static int __init setup_swap_account(char *s) 7329 { 7330 if (!strcmp(s, "1")) 7331 cgroup_memory_noswap = false; 7332 else if (!strcmp(s, "0")) 7333 cgroup_memory_noswap = true; 7334 return 1; 7335 } 7336 __setup("swapaccount=", setup_swap_account); 7337 7338 static u64 swap_current_read(struct cgroup_subsys_state *css, 7339 struct cftype *cft) 7340 { 7341 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7342 7343 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7344 } 7345 7346 static int swap_high_show(struct seq_file *m, void *v) 7347 { 7348 return seq_puts_memcg_tunable(m, 7349 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7350 } 7351 7352 static ssize_t swap_high_write(struct kernfs_open_file *of, 7353 char *buf, size_t nbytes, loff_t off) 7354 { 7355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7356 unsigned long high; 7357 int err; 7358 7359 buf = strstrip(buf); 7360 err = page_counter_memparse(buf, "max", &high); 7361 if (err) 7362 return err; 7363 7364 page_counter_set_high(&memcg->swap, high); 7365 7366 return nbytes; 7367 } 7368 7369 static int swap_max_show(struct seq_file *m, void *v) 7370 { 7371 return seq_puts_memcg_tunable(m, 7372 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7373 } 7374 7375 static ssize_t swap_max_write(struct kernfs_open_file *of, 7376 char *buf, size_t nbytes, loff_t off) 7377 { 7378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7379 unsigned long max; 7380 int err; 7381 7382 buf = strstrip(buf); 7383 err = page_counter_memparse(buf, "max", &max); 7384 if (err) 7385 return err; 7386 7387 xchg(&memcg->swap.max, max); 7388 7389 return nbytes; 7390 } 7391 7392 static int swap_events_show(struct seq_file *m, void *v) 7393 { 7394 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7395 7396 seq_printf(m, "high %lu\n", 7397 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7398 seq_printf(m, "max %lu\n", 7399 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7400 seq_printf(m, "fail %lu\n", 7401 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7402 7403 return 0; 7404 } 7405 7406 static struct cftype swap_files[] = { 7407 { 7408 .name = "swap.current", 7409 .flags = CFTYPE_NOT_ON_ROOT, 7410 .read_u64 = swap_current_read, 7411 }, 7412 { 7413 .name = "swap.high", 7414 .flags = CFTYPE_NOT_ON_ROOT, 7415 .seq_show = swap_high_show, 7416 .write = swap_high_write, 7417 }, 7418 { 7419 .name = "swap.max", 7420 .flags = CFTYPE_NOT_ON_ROOT, 7421 .seq_show = swap_max_show, 7422 .write = swap_max_write, 7423 }, 7424 { 7425 .name = "swap.events", 7426 .flags = CFTYPE_NOT_ON_ROOT, 7427 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7428 .seq_show = swap_events_show, 7429 }, 7430 { } /* terminate */ 7431 }; 7432 7433 static struct cftype memsw_files[] = { 7434 { 7435 .name = "memsw.usage_in_bytes", 7436 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7437 .read_u64 = mem_cgroup_read_u64, 7438 }, 7439 { 7440 .name = "memsw.max_usage_in_bytes", 7441 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7442 .write = mem_cgroup_reset, 7443 .read_u64 = mem_cgroup_read_u64, 7444 }, 7445 { 7446 .name = "memsw.limit_in_bytes", 7447 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7448 .write = mem_cgroup_write, 7449 .read_u64 = mem_cgroup_read_u64, 7450 }, 7451 { 7452 .name = "memsw.failcnt", 7453 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7454 .write = mem_cgroup_reset, 7455 .read_u64 = mem_cgroup_read_u64, 7456 }, 7457 { }, /* terminate */ 7458 }; 7459 7460 /* 7461 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7462 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7463 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7464 * boot parameter. This may result in premature OOPS inside 7465 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7466 */ 7467 static int __init mem_cgroup_swap_init(void) 7468 { 7469 /* No memory control -> no swap control */ 7470 if (mem_cgroup_disabled()) 7471 cgroup_memory_noswap = true; 7472 7473 if (cgroup_memory_noswap) 7474 return 0; 7475 7476 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7477 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7478 7479 return 0; 7480 } 7481 core_initcall(mem_cgroup_swap_init); 7482 7483 #endif /* CONFIG_MEMCG_SWAP */ 7484