1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/file.h> 62 #include <linux/tracehook.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include "internal.h" 66 #include <net/sock.h> 67 #include <net/ip.h> 68 #include "slab.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 bool cgroup_memory_noswap __read_mostly; 91 #else 92 #define cgroup_memory_noswap 1 93 #endif 94 95 #ifdef CONFIG_CGROUP_WRITEBACK 96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 97 #endif 98 99 /* Whether legacy memory+swap accounting is active */ 100 static bool do_memsw_account(void) 101 { 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 103 } 104 105 #define THRESHOLDS_EVENTS_TARGET 128 106 #define SOFTLIMIT_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 /* for encoding cft->private value on file */ 207 enum res_type { 208 _MEM, 209 _MEMSWAP, 210 _OOM_TYPE, 211 _KMEM, 212 _TCP, 213 }; 214 215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 217 #define MEMFILE_ATTR(val) ((val) & 0xffff) 218 /* Used for OOM nofiier */ 219 #define OOM_CONTROL (0) 220 221 /* 222 * Iteration constructs for visiting all cgroups (under a tree). If 223 * loops are exited prematurely (break), mem_cgroup_iter_break() must 224 * be used for reference counting. 225 */ 226 #define for_each_mem_cgroup_tree(iter, root) \ 227 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 228 iter != NULL; \ 229 iter = mem_cgroup_iter(root, iter, NULL)) 230 231 #define for_each_mem_cgroup(iter) \ 232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 233 iter != NULL; \ 234 iter = mem_cgroup_iter(NULL, iter, NULL)) 235 236 static inline bool should_force_charge(void) 237 { 238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 239 (current->flags & PF_EXITING); 240 } 241 242 /* Some nice accessors for the vmpressure. */ 243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 244 { 245 if (!memcg) 246 memcg = root_mem_cgroup; 247 return &memcg->vmpressure; 248 } 249 250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 251 { 252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 253 } 254 255 #ifdef CONFIG_MEMCG_KMEM 256 extern spinlock_t css_set_lock; 257 258 static void obj_cgroup_release(struct percpu_ref *ref) 259 { 260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 261 struct mem_cgroup *memcg; 262 unsigned int nr_bytes; 263 unsigned int nr_pages; 264 unsigned long flags; 265 266 /* 267 * At this point all allocated objects are freed, and 268 * objcg->nr_charged_bytes can't have an arbitrary byte value. 269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 270 * 271 * The following sequence can lead to it: 272 * 1) CPU0: objcg == stock->cached_objcg 273 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 274 * PAGE_SIZE bytes are charged 275 * 3) CPU1: a process from another memcg is allocating something, 276 * the stock if flushed, 277 * objcg->nr_charged_bytes = PAGE_SIZE - 92 278 * 5) CPU0: we do release this object, 279 * 92 bytes are added to stock->nr_bytes 280 * 6) CPU0: stock is flushed, 281 * 92 bytes are added to objcg->nr_charged_bytes 282 * 283 * In the result, nr_charged_bytes == PAGE_SIZE. 284 * This page will be uncharged in obj_cgroup_release(). 285 */ 286 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 288 nr_pages = nr_bytes >> PAGE_SHIFT; 289 290 spin_lock_irqsave(&css_set_lock, flags); 291 memcg = obj_cgroup_memcg(objcg); 292 if (nr_pages) 293 __memcg_kmem_uncharge(memcg, nr_pages); 294 list_del(&objcg->list); 295 mem_cgroup_put(memcg); 296 spin_unlock_irqrestore(&css_set_lock, flags); 297 298 percpu_ref_exit(ref); 299 kfree_rcu(objcg, rcu); 300 } 301 302 static struct obj_cgroup *obj_cgroup_alloc(void) 303 { 304 struct obj_cgroup *objcg; 305 int ret; 306 307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 308 if (!objcg) 309 return NULL; 310 311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 312 GFP_KERNEL); 313 if (ret) { 314 kfree(objcg); 315 return NULL; 316 } 317 INIT_LIST_HEAD(&objcg->list); 318 return objcg; 319 } 320 321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 322 struct mem_cgroup *parent) 323 { 324 struct obj_cgroup *objcg, *iter; 325 326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 327 328 spin_lock_irq(&css_set_lock); 329 330 /* Move active objcg to the parent's list */ 331 xchg(&objcg->memcg, parent); 332 css_get(&parent->css); 333 list_add(&objcg->list, &parent->objcg_list); 334 335 /* Move already reparented objcgs to the parent's list */ 336 list_for_each_entry(iter, &memcg->objcg_list, list) { 337 css_get(&parent->css); 338 xchg(&iter->memcg, parent); 339 css_put(&memcg->css); 340 } 341 list_splice(&memcg->objcg_list, &parent->objcg_list); 342 343 spin_unlock_irq(&css_set_lock); 344 345 percpu_ref_kill(&objcg->refcnt); 346 } 347 348 /* 349 * This will be used as a shrinker list's index. 350 * The main reason for not using cgroup id for this: 351 * this works better in sparse environments, where we have a lot of memcgs, 352 * but only a few kmem-limited. Or also, if we have, for instance, 200 353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 354 * 200 entry array for that. 355 * 356 * The current size of the caches array is stored in memcg_nr_cache_ids. It 357 * will double each time we have to increase it. 358 */ 359 static DEFINE_IDA(memcg_cache_ida); 360 int memcg_nr_cache_ids; 361 362 /* Protects memcg_nr_cache_ids */ 363 static DECLARE_RWSEM(memcg_cache_ids_sem); 364 365 void memcg_get_cache_ids(void) 366 { 367 down_read(&memcg_cache_ids_sem); 368 } 369 370 void memcg_put_cache_ids(void) 371 { 372 up_read(&memcg_cache_ids_sem); 373 } 374 375 /* 376 * MIN_SIZE is different than 1, because we would like to avoid going through 377 * the alloc/free process all the time. In a small machine, 4 kmem-limited 378 * cgroups is a reasonable guess. In the future, it could be a parameter or 379 * tunable, but that is strictly not necessary. 380 * 381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 382 * this constant directly from cgroup, but it is understandable that this is 383 * better kept as an internal representation in cgroup.c. In any case, the 384 * cgrp_id space is not getting any smaller, and we don't have to necessarily 385 * increase ours as well if it increases. 386 */ 387 #define MEMCG_CACHES_MIN_SIZE 4 388 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 389 390 /* 391 * A lot of the calls to the cache allocation functions are expected to be 392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 393 * conditional to this static branch, we'll have to allow modules that does 394 * kmem_cache_alloc and the such to see this symbol as well 395 */ 396 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 397 EXPORT_SYMBOL(memcg_kmem_enabled_key); 398 #endif 399 400 static int memcg_shrinker_map_size; 401 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 402 403 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 404 { 405 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 406 } 407 408 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 409 int size, int old_size) 410 { 411 struct memcg_shrinker_map *new, *old; 412 int nid; 413 414 lockdep_assert_held(&memcg_shrinker_map_mutex); 415 416 for_each_node(nid) { 417 old = rcu_dereference_protected( 418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 419 /* Not yet online memcg */ 420 if (!old) 421 return 0; 422 423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 424 if (!new) 425 return -ENOMEM; 426 427 /* Set all old bits, clear all new bits */ 428 memset(new->map, (int)0xff, old_size); 429 memset((void *)new->map + old_size, 0, size - old_size); 430 431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 433 } 434 435 return 0; 436 } 437 438 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 439 { 440 struct mem_cgroup_per_node *pn; 441 struct memcg_shrinker_map *map; 442 int nid; 443 444 if (mem_cgroup_is_root(memcg)) 445 return; 446 447 for_each_node(nid) { 448 pn = mem_cgroup_nodeinfo(memcg, nid); 449 map = rcu_dereference_protected(pn->shrinker_map, true); 450 if (map) 451 kvfree(map); 452 rcu_assign_pointer(pn->shrinker_map, NULL); 453 } 454 } 455 456 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 457 { 458 struct memcg_shrinker_map *map; 459 int nid, size, ret = 0; 460 461 if (mem_cgroup_is_root(memcg)) 462 return 0; 463 464 mutex_lock(&memcg_shrinker_map_mutex); 465 size = memcg_shrinker_map_size; 466 for_each_node(nid) { 467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 468 if (!map) { 469 memcg_free_shrinker_maps(memcg); 470 ret = -ENOMEM; 471 break; 472 } 473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 474 } 475 mutex_unlock(&memcg_shrinker_map_mutex); 476 477 return ret; 478 } 479 480 int memcg_expand_shrinker_maps(int new_id) 481 { 482 int size, old_size, ret = 0; 483 struct mem_cgroup *memcg; 484 485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 486 old_size = memcg_shrinker_map_size; 487 if (size <= old_size) 488 return 0; 489 490 mutex_lock(&memcg_shrinker_map_mutex); 491 if (!root_mem_cgroup) 492 goto unlock; 493 494 for_each_mem_cgroup(memcg) { 495 if (mem_cgroup_is_root(memcg)) 496 continue; 497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 498 if (ret) { 499 mem_cgroup_iter_break(NULL, memcg); 500 goto unlock; 501 } 502 } 503 unlock: 504 if (!ret) 505 memcg_shrinker_map_size = size; 506 mutex_unlock(&memcg_shrinker_map_mutex); 507 return ret; 508 } 509 510 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 511 { 512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 513 struct memcg_shrinker_map *map; 514 515 rcu_read_lock(); 516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 517 /* Pairs with smp mb in shrink_slab() */ 518 smp_mb__before_atomic(); 519 set_bit(shrinker_id, map->map); 520 rcu_read_unlock(); 521 } 522 } 523 524 /** 525 * mem_cgroup_css_from_page - css of the memcg associated with a page 526 * @page: page of interest 527 * 528 * If memcg is bound to the default hierarchy, css of the memcg associated 529 * with @page is returned. The returned css remains associated with @page 530 * until it is released. 531 * 532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 533 * is returned. 534 */ 535 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 536 { 537 struct mem_cgroup *memcg; 538 539 memcg = page_memcg(page); 540 541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 542 memcg = root_mem_cgroup; 543 544 return &memcg->css; 545 } 546 547 /** 548 * page_cgroup_ino - return inode number of the memcg a page is charged to 549 * @page: the page 550 * 551 * Look up the closest online ancestor of the memory cgroup @page is charged to 552 * and return its inode number or 0 if @page is not charged to any cgroup. It 553 * is safe to call this function without holding a reference to @page. 554 * 555 * Note, this function is inherently racy, because there is nothing to prevent 556 * the cgroup inode from getting torn down and potentially reallocated a moment 557 * after page_cgroup_ino() returns, so it only should be used by callers that 558 * do not care (such as procfs interfaces). 559 */ 560 ino_t page_cgroup_ino(struct page *page) 561 { 562 struct mem_cgroup *memcg; 563 unsigned long ino = 0; 564 565 rcu_read_lock(); 566 memcg = page_memcg_check(page); 567 568 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 569 memcg = parent_mem_cgroup(memcg); 570 if (memcg) 571 ino = cgroup_ino(memcg->css.cgroup); 572 rcu_read_unlock(); 573 return ino; 574 } 575 576 static struct mem_cgroup_per_node * 577 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 578 { 579 int nid = page_to_nid(page); 580 581 return memcg->nodeinfo[nid]; 582 } 583 584 static struct mem_cgroup_tree_per_node * 585 soft_limit_tree_node(int nid) 586 { 587 return soft_limit_tree.rb_tree_per_node[nid]; 588 } 589 590 static struct mem_cgroup_tree_per_node * 591 soft_limit_tree_from_page(struct page *page) 592 { 593 int nid = page_to_nid(page); 594 595 return soft_limit_tree.rb_tree_per_node[nid]; 596 } 597 598 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 599 struct mem_cgroup_tree_per_node *mctz, 600 unsigned long new_usage_in_excess) 601 { 602 struct rb_node **p = &mctz->rb_root.rb_node; 603 struct rb_node *parent = NULL; 604 struct mem_cgroup_per_node *mz_node; 605 bool rightmost = true; 606 607 if (mz->on_tree) 608 return; 609 610 mz->usage_in_excess = new_usage_in_excess; 611 if (!mz->usage_in_excess) 612 return; 613 while (*p) { 614 parent = *p; 615 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 616 tree_node); 617 if (mz->usage_in_excess < mz_node->usage_in_excess) { 618 p = &(*p)->rb_left; 619 rightmost = false; 620 } else { 621 p = &(*p)->rb_right; 622 } 623 } 624 625 if (rightmost) 626 mctz->rb_rightmost = &mz->tree_node; 627 628 rb_link_node(&mz->tree_node, parent, p); 629 rb_insert_color(&mz->tree_node, &mctz->rb_root); 630 mz->on_tree = true; 631 } 632 633 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 634 struct mem_cgroup_tree_per_node *mctz) 635 { 636 if (!mz->on_tree) 637 return; 638 639 if (&mz->tree_node == mctz->rb_rightmost) 640 mctz->rb_rightmost = rb_prev(&mz->tree_node); 641 642 rb_erase(&mz->tree_node, &mctz->rb_root); 643 mz->on_tree = false; 644 } 645 646 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 647 struct mem_cgroup_tree_per_node *mctz) 648 { 649 unsigned long flags; 650 651 spin_lock_irqsave(&mctz->lock, flags); 652 __mem_cgroup_remove_exceeded(mz, mctz); 653 spin_unlock_irqrestore(&mctz->lock, flags); 654 } 655 656 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 657 { 658 unsigned long nr_pages = page_counter_read(&memcg->memory); 659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 660 unsigned long excess = 0; 661 662 if (nr_pages > soft_limit) 663 excess = nr_pages - soft_limit; 664 665 return excess; 666 } 667 668 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 669 { 670 unsigned long excess; 671 struct mem_cgroup_per_node *mz; 672 struct mem_cgroup_tree_per_node *mctz; 673 674 mctz = soft_limit_tree_from_page(page); 675 if (!mctz) 676 return; 677 /* 678 * Necessary to update all ancestors when hierarchy is used. 679 * because their event counter is not touched. 680 */ 681 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 682 mz = mem_cgroup_page_nodeinfo(memcg, page); 683 excess = soft_limit_excess(memcg); 684 /* 685 * We have to update the tree if mz is on RB-tree or 686 * mem is over its softlimit. 687 */ 688 if (excess || mz->on_tree) { 689 unsigned long flags; 690 691 spin_lock_irqsave(&mctz->lock, flags); 692 /* if on-tree, remove it */ 693 if (mz->on_tree) 694 __mem_cgroup_remove_exceeded(mz, mctz); 695 /* 696 * Insert again. mz->usage_in_excess will be updated. 697 * If excess is 0, no tree ops. 698 */ 699 __mem_cgroup_insert_exceeded(mz, mctz, excess); 700 spin_unlock_irqrestore(&mctz->lock, flags); 701 } 702 } 703 } 704 705 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 706 { 707 struct mem_cgroup_tree_per_node *mctz; 708 struct mem_cgroup_per_node *mz; 709 int nid; 710 711 for_each_node(nid) { 712 mz = mem_cgroup_nodeinfo(memcg, nid); 713 mctz = soft_limit_tree_node(nid); 714 if (mctz) 715 mem_cgroup_remove_exceeded(mz, mctz); 716 } 717 } 718 719 static struct mem_cgroup_per_node * 720 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 721 { 722 struct mem_cgroup_per_node *mz; 723 724 retry: 725 mz = NULL; 726 if (!mctz->rb_rightmost) 727 goto done; /* Nothing to reclaim from */ 728 729 mz = rb_entry(mctz->rb_rightmost, 730 struct mem_cgroup_per_node, tree_node); 731 /* 732 * Remove the node now but someone else can add it back, 733 * we will to add it back at the end of reclaim to its correct 734 * position in the tree. 735 */ 736 __mem_cgroup_remove_exceeded(mz, mctz); 737 if (!soft_limit_excess(mz->memcg) || 738 !css_tryget(&mz->memcg->css)) 739 goto retry; 740 done: 741 return mz; 742 } 743 744 static struct mem_cgroup_per_node * 745 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 746 { 747 struct mem_cgroup_per_node *mz; 748 749 spin_lock_irq(&mctz->lock); 750 mz = __mem_cgroup_largest_soft_limit_node(mctz); 751 spin_unlock_irq(&mctz->lock); 752 return mz; 753 } 754 755 /** 756 * __mod_memcg_state - update cgroup memory statistics 757 * @memcg: the memory cgroup 758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 759 * @val: delta to add to the counter, can be negative 760 */ 761 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 762 { 763 long x, threshold = MEMCG_CHARGE_BATCH; 764 765 if (mem_cgroup_disabled()) 766 return; 767 768 if (memcg_stat_item_in_bytes(idx)) 769 threshold <<= PAGE_SHIFT; 770 771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 772 if (unlikely(abs(x) > threshold)) { 773 struct mem_cgroup *mi; 774 775 /* 776 * Batch local counters to keep them in sync with 777 * the hierarchical ones. 778 */ 779 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 781 atomic_long_add(x, &mi->vmstats[idx]); 782 x = 0; 783 } 784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 785 } 786 787 static struct mem_cgroup_per_node * 788 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 789 { 790 struct mem_cgroup *parent; 791 792 parent = parent_mem_cgroup(pn->memcg); 793 if (!parent) 794 return NULL; 795 return mem_cgroup_nodeinfo(parent, nid); 796 } 797 798 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 799 int val) 800 { 801 struct mem_cgroup_per_node *pn; 802 struct mem_cgroup *memcg; 803 long x, threshold = MEMCG_CHARGE_BATCH; 804 805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 806 memcg = pn->memcg; 807 808 /* Update memcg */ 809 __mod_memcg_state(memcg, idx, val); 810 811 /* Update lruvec */ 812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 813 814 if (vmstat_item_in_bytes(idx)) 815 threshold <<= PAGE_SHIFT; 816 817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 818 if (unlikely(abs(x) > threshold)) { 819 pg_data_t *pgdat = lruvec_pgdat(lruvec); 820 struct mem_cgroup_per_node *pi; 821 822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 823 atomic_long_add(x, &pi->lruvec_stat[idx]); 824 x = 0; 825 } 826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 827 } 828 829 /** 830 * __mod_lruvec_state - update lruvec memory statistics 831 * @lruvec: the lruvec 832 * @idx: the stat item 833 * @val: delta to add to the counter, can be negative 834 * 835 * The lruvec is the intersection of the NUMA node and a cgroup. This 836 * function updates the all three counters that are affected by a 837 * change of state at this level: per-node, per-cgroup, per-lruvec. 838 */ 839 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 840 int val) 841 { 842 /* Update node */ 843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 844 845 /* Update memcg and lruvec */ 846 if (!mem_cgroup_disabled()) 847 __mod_memcg_lruvec_state(lruvec, idx, val); 848 } 849 850 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 851 int val) 852 { 853 struct page *head = compound_head(page); /* rmap on tail pages */ 854 struct mem_cgroup *memcg = page_memcg(head); 855 pg_data_t *pgdat = page_pgdat(page); 856 struct lruvec *lruvec; 857 858 /* Untracked pages have no memcg, no lruvec. Update only the node */ 859 if (!memcg) { 860 __mod_node_page_state(pgdat, idx, val); 861 return; 862 } 863 864 lruvec = mem_cgroup_lruvec(memcg, pgdat); 865 __mod_lruvec_state(lruvec, idx, val); 866 } 867 EXPORT_SYMBOL(__mod_lruvec_page_state); 868 869 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 870 { 871 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 872 struct mem_cgroup *memcg; 873 struct lruvec *lruvec; 874 875 rcu_read_lock(); 876 memcg = mem_cgroup_from_obj(p); 877 878 /* 879 * Untracked pages have no memcg, no lruvec. Update only the 880 * node. If we reparent the slab objects to the root memcg, 881 * when we free the slab object, we need to update the per-memcg 882 * vmstats to keep it correct for the root memcg. 883 */ 884 if (!memcg) { 885 __mod_node_page_state(pgdat, idx, val); 886 } else { 887 lruvec = mem_cgroup_lruvec(memcg, pgdat); 888 __mod_lruvec_state(lruvec, idx, val); 889 } 890 rcu_read_unlock(); 891 } 892 893 /** 894 * __count_memcg_events - account VM events in a cgroup 895 * @memcg: the memory cgroup 896 * @idx: the event item 897 * @count: the number of events that occured 898 */ 899 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 900 unsigned long count) 901 { 902 unsigned long x; 903 904 if (mem_cgroup_disabled()) 905 return; 906 907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 908 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 909 struct mem_cgroup *mi; 910 911 /* 912 * Batch local counters to keep them in sync with 913 * the hierarchical ones. 914 */ 915 __this_cpu_add(memcg->vmstats_local->events[idx], x); 916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 917 atomic_long_add(x, &mi->vmevents[idx]); 918 x = 0; 919 } 920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 921 } 922 923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 924 { 925 return atomic_long_read(&memcg->vmevents[event]); 926 } 927 928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 929 { 930 long x = 0; 931 int cpu; 932 933 for_each_possible_cpu(cpu) 934 x += per_cpu(memcg->vmstats_local->events[event], cpu); 935 return x; 936 } 937 938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 939 struct page *page, 940 int nr_pages) 941 { 942 /* pagein of a big page is an event. So, ignore page size */ 943 if (nr_pages > 0) 944 __count_memcg_events(memcg, PGPGIN, 1); 945 else { 946 __count_memcg_events(memcg, PGPGOUT, 1); 947 nr_pages = -nr_pages; /* for event */ 948 } 949 950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 951 } 952 953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 954 enum mem_cgroup_events_target target) 955 { 956 unsigned long val, next; 957 958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 960 /* from time_after() in jiffies.h */ 961 if ((long)(next - val) < 0) { 962 switch (target) { 963 case MEM_CGROUP_TARGET_THRESH: 964 next = val + THRESHOLDS_EVENTS_TARGET; 965 break; 966 case MEM_CGROUP_TARGET_SOFTLIMIT: 967 next = val + SOFTLIMIT_EVENTS_TARGET; 968 break; 969 default: 970 break; 971 } 972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 973 return true; 974 } 975 return false; 976 } 977 978 /* 979 * Check events in order. 980 * 981 */ 982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 983 { 984 /* threshold event is triggered in finer grain than soft limit */ 985 if (unlikely(mem_cgroup_event_ratelimit(memcg, 986 MEM_CGROUP_TARGET_THRESH))) { 987 bool do_softlimit; 988 989 do_softlimit = mem_cgroup_event_ratelimit(memcg, 990 MEM_CGROUP_TARGET_SOFTLIMIT); 991 mem_cgroup_threshold(memcg); 992 if (unlikely(do_softlimit)) 993 mem_cgroup_update_tree(memcg, page); 994 } 995 } 996 997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 998 { 999 /* 1000 * mm_update_next_owner() may clear mm->owner to NULL 1001 * if it races with swapoff, page migration, etc. 1002 * So this can be called with p == NULL. 1003 */ 1004 if (unlikely(!p)) 1005 return NULL; 1006 1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1008 } 1009 EXPORT_SYMBOL(mem_cgroup_from_task); 1010 1011 /** 1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1013 * @mm: mm from which memcg should be extracted. It can be NULL. 1014 * 1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 1017 * returned. 1018 */ 1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1020 { 1021 struct mem_cgroup *memcg; 1022 1023 if (mem_cgroup_disabled()) 1024 return NULL; 1025 1026 rcu_read_lock(); 1027 do { 1028 /* 1029 * Page cache insertions can happen withou an 1030 * actual mm context, e.g. during disk probing 1031 * on boot, loopback IO, acct() writes etc. 1032 */ 1033 if (unlikely(!mm)) 1034 memcg = root_mem_cgroup; 1035 else { 1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1037 if (unlikely(!memcg)) 1038 memcg = root_mem_cgroup; 1039 } 1040 } while (!css_tryget(&memcg->css)); 1041 rcu_read_unlock(); 1042 return memcg; 1043 } 1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1045 1046 /** 1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 1048 * @page: page from which memcg should be extracted. 1049 * 1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise 1051 * root_mem_cgroup is returned. 1052 */ 1053 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1054 { 1055 struct mem_cgroup *memcg = page_memcg(page); 1056 1057 if (mem_cgroup_disabled()) 1058 return NULL; 1059 1060 rcu_read_lock(); 1061 /* Page should not get uncharged and freed memcg under us. */ 1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1063 memcg = root_mem_cgroup; 1064 rcu_read_unlock(); 1065 return memcg; 1066 } 1067 EXPORT_SYMBOL(get_mem_cgroup_from_page); 1068 1069 static __always_inline struct mem_cgroup *active_memcg(void) 1070 { 1071 if (in_interrupt()) 1072 return this_cpu_read(int_active_memcg); 1073 else 1074 return current->active_memcg; 1075 } 1076 1077 static __always_inline struct mem_cgroup *get_active_memcg(void) 1078 { 1079 struct mem_cgroup *memcg; 1080 1081 rcu_read_lock(); 1082 memcg = active_memcg(); 1083 if (memcg) { 1084 /* current->active_memcg must hold a ref. */ 1085 if (WARN_ON_ONCE(!css_tryget(&memcg->css))) 1086 memcg = root_mem_cgroup; 1087 else 1088 memcg = current->active_memcg; 1089 } 1090 rcu_read_unlock(); 1091 1092 return memcg; 1093 } 1094 1095 static __always_inline bool memcg_kmem_bypass(void) 1096 { 1097 /* Allow remote memcg charging from any context. */ 1098 if (unlikely(active_memcg())) 1099 return false; 1100 1101 /* Memcg to charge can't be determined. */ 1102 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 1103 return true; 1104 1105 return false; 1106 } 1107 1108 /** 1109 * If active memcg is set, do not fallback to current->mm->memcg. 1110 */ 1111 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1112 { 1113 if (memcg_kmem_bypass()) 1114 return NULL; 1115 1116 if (unlikely(active_memcg())) 1117 return get_active_memcg(); 1118 1119 return get_mem_cgroup_from_mm(current->mm); 1120 } 1121 1122 /** 1123 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1124 * @root: hierarchy root 1125 * @prev: previously returned memcg, NULL on first invocation 1126 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1127 * 1128 * Returns references to children of the hierarchy below @root, or 1129 * @root itself, or %NULL after a full round-trip. 1130 * 1131 * Caller must pass the return value in @prev on subsequent 1132 * invocations for reference counting, or use mem_cgroup_iter_break() 1133 * to cancel a hierarchy walk before the round-trip is complete. 1134 * 1135 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1136 * in the hierarchy among all concurrent reclaimers operating on the 1137 * same node. 1138 */ 1139 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1140 struct mem_cgroup *prev, 1141 struct mem_cgroup_reclaim_cookie *reclaim) 1142 { 1143 struct mem_cgroup_reclaim_iter *iter; 1144 struct cgroup_subsys_state *css = NULL; 1145 struct mem_cgroup *memcg = NULL; 1146 struct mem_cgroup *pos = NULL; 1147 1148 if (mem_cgroup_disabled()) 1149 return NULL; 1150 1151 if (!root) 1152 root = root_mem_cgroup; 1153 1154 if (prev && !reclaim) 1155 pos = prev; 1156 1157 rcu_read_lock(); 1158 1159 if (reclaim) { 1160 struct mem_cgroup_per_node *mz; 1161 1162 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1163 iter = &mz->iter; 1164 1165 if (prev && reclaim->generation != iter->generation) 1166 goto out_unlock; 1167 1168 while (1) { 1169 pos = READ_ONCE(iter->position); 1170 if (!pos || css_tryget(&pos->css)) 1171 break; 1172 /* 1173 * css reference reached zero, so iter->position will 1174 * be cleared by ->css_released. However, we should not 1175 * rely on this happening soon, because ->css_released 1176 * is called from a work queue, and by busy-waiting we 1177 * might block it. So we clear iter->position right 1178 * away. 1179 */ 1180 (void)cmpxchg(&iter->position, pos, NULL); 1181 } 1182 } 1183 1184 if (pos) 1185 css = &pos->css; 1186 1187 for (;;) { 1188 css = css_next_descendant_pre(css, &root->css); 1189 if (!css) { 1190 /* 1191 * Reclaimers share the hierarchy walk, and a 1192 * new one might jump in right at the end of 1193 * the hierarchy - make sure they see at least 1194 * one group and restart from the beginning. 1195 */ 1196 if (!prev) 1197 continue; 1198 break; 1199 } 1200 1201 /* 1202 * Verify the css and acquire a reference. The root 1203 * is provided by the caller, so we know it's alive 1204 * and kicking, and don't take an extra reference. 1205 */ 1206 memcg = mem_cgroup_from_css(css); 1207 1208 if (css == &root->css) 1209 break; 1210 1211 if (css_tryget(css)) 1212 break; 1213 1214 memcg = NULL; 1215 } 1216 1217 if (reclaim) { 1218 /* 1219 * The position could have already been updated by a competing 1220 * thread, so check that the value hasn't changed since we read 1221 * it to avoid reclaiming from the same cgroup twice. 1222 */ 1223 (void)cmpxchg(&iter->position, pos, memcg); 1224 1225 if (pos) 1226 css_put(&pos->css); 1227 1228 if (!memcg) 1229 iter->generation++; 1230 else if (!prev) 1231 reclaim->generation = iter->generation; 1232 } 1233 1234 out_unlock: 1235 rcu_read_unlock(); 1236 if (prev && prev != root) 1237 css_put(&prev->css); 1238 1239 return memcg; 1240 } 1241 1242 /** 1243 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1244 * @root: hierarchy root 1245 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1246 */ 1247 void mem_cgroup_iter_break(struct mem_cgroup *root, 1248 struct mem_cgroup *prev) 1249 { 1250 if (!root) 1251 root = root_mem_cgroup; 1252 if (prev && prev != root) 1253 css_put(&prev->css); 1254 } 1255 1256 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1257 struct mem_cgroup *dead_memcg) 1258 { 1259 struct mem_cgroup_reclaim_iter *iter; 1260 struct mem_cgroup_per_node *mz; 1261 int nid; 1262 1263 for_each_node(nid) { 1264 mz = mem_cgroup_nodeinfo(from, nid); 1265 iter = &mz->iter; 1266 cmpxchg(&iter->position, dead_memcg, NULL); 1267 } 1268 } 1269 1270 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1271 { 1272 struct mem_cgroup *memcg = dead_memcg; 1273 struct mem_cgroup *last; 1274 1275 do { 1276 __invalidate_reclaim_iterators(memcg, dead_memcg); 1277 last = memcg; 1278 } while ((memcg = parent_mem_cgroup(memcg))); 1279 1280 /* 1281 * When cgruop1 non-hierarchy mode is used, 1282 * parent_mem_cgroup() does not walk all the way up to the 1283 * cgroup root (root_mem_cgroup). So we have to handle 1284 * dead_memcg from cgroup root separately. 1285 */ 1286 if (last != root_mem_cgroup) 1287 __invalidate_reclaim_iterators(root_mem_cgroup, 1288 dead_memcg); 1289 } 1290 1291 /** 1292 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1293 * @memcg: hierarchy root 1294 * @fn: function to call for each task 1295 * @arg: argument passed to @fn 1296 * 1297 * This function iterates over tasks attached to @memcg or to any of its 1298 * descendants and calls @fn for each task. If @fn returns a non-zero 1299 * value, the function breaks the iteration loop and returns the value. 1300 * Otherwise, it will iterate over all tasks and return 0. 1301 * 1302 * This function must not be called for the root memory cgroup. 1303 */ 1304 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1305 int (*fn)(struct task_struct *, void *), void *arg) 1306 { 1307 struct mem_cgroup *iter; 1308 int ret = 0; 1309 1310 BUG_ON(memcg == root_mem_cgroup); 1311 1312 for_each_mem_cgroup_tree(iter, memcg) { 1313 struct css_task_iter it; 1314 struct task_struct *task; 1315 1316 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1317 while (!ret && (task = css_task_iter_next(&it))) 1318 ret = fn(task, arg); 1319 css_task_iter_end(&it); 1320 if (ret) { 1321 mem_cgroup_iter_break(memcg, iter); 1322 break; 1323 } 1324 } 1325 return ret; 1326 } 1327 1328 #ifdef CONFIG_DEBUG_VM 1329 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1330 { 1331 struct mem_cgroup *memcg; 1332 1333 if (mem_cgroup_disabled()) 1334 return; 1335 1336 memcg = page_memcg(page); 1337 1338 if (!memcg) 1339 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page); 1340 else 1341 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page); 1342 } 1343 #endif 1344 1345 /** 1346 * lock_page_lruvec - lock and return lruvec for a given page. 1347 * @page: the page 1348 * 1349 * This series functions should be used in either conditions: 1350 * PageLRU is cleared or unset 1351 * or page->_refcount is zero 1352 * or page is locked. 1353 */ 1354 struct lruvec *lock_page_lruvec(struct page *page) 1355 { 1356 struct lruvec *lruvec; 1357 struct pglist_data *pgdat = page_pgdat(page); 1358 1359 rcu_read_lock(); 1360 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1361 spin_lock(&lruvec->lru_lock); 1362 rcu_read_unlock(); 1363 1364 lruvec_memcg_debug(lruvec, page); 1365 1366 return lruvec; 1367 } 1368 1369 struct lruvec *lock_page_lruvec_irq(struct page *page) 1370 { 1371 struct lruvec *lruvec; 1372 struct pglist_data *pgdat = page_pgdat(page); 1373 1374 rcu_read_lock(); 1375 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1376 spin_lock_irq(&lruvec->lru_lock); 1377 rcu_read_unlock(); 1378 1379 lruvec_memcg_debug(lruvec, page); 1380 1381 return lruvec; 1382 } 1383 1384 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags) 1385 { 1386 struct lruvec *lruvec; 1387 struct pglist_data *pgdat = page_pgdat(page); 1388 1389 rcu_read_lock(); 1390 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1391 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1392 rcu_read_unlock(); 1393 1394 lruvec_memcg_debug(lruvec, page); 1395 1396 return lruvec; 1397 } 1398 1399 /** 1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1401 * @lruvec: mem_cgroup per zone lru vector 1402 * @lru: index of lru list the page is sitting on 1403 * @zid: zone id of the accounted pages 1404 * @nr_pages: positive when adding or negative when removing 1405 * 1406 * This function must be called under lru_lock, just before a page is added 1407 * to or just after a page is removed from an lru list (that ordering being 1408 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1409 */ 1410 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1411 int zid, int nr_pages) 1412 { 1413 struct mem_cgroup_per_node *mz; 1414 unsigned long *lru_size; 1415 long size; 1416 1417 if (mem_cgroup_disabled()) 1418 return; 1419 1420 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1421 lru_size = &mz->lru_zone_size[zid][lru]; 1422 1423 if (nr_pages < 0) 1424 *lru_size += nr_pages; 1425 1426 size = *lru_size; 1427 if (WARN_ONCE(size < 0, 1428 "%s(%p, %d, %d): lru_size %ld\n", 1429 __func__, lruvec, lru, nr_pages, size)) { 1430 VM_BUG_ON(1); 1431 *lru_size = 0; 1432 } 1433 1434 if (nr_pages > 0) 1435 *lru_size += nr_pages; 1436 } 1437 1438 /** 1439 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1440 * @memcg: the memory cgroup 1441 * 1442 * Returns the maximum amount of memory @mem can be charged with, in 1443 * pages. 1444 */ 1445 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1446 { 1447 unsigned long margin = 0; 1448 unsigned long count; 1449 unsigned long limit; 1450 1451 count = page_counter_read(&memcg->memory); 1452 limit = READ_ONCE(memcg->memory.max); 1453 if (count < limit) 1454 margin = limit - count; 1455 1456 if (do_memsw_account()) { 1457 count = page_counter_read(&memcg->memsw); 1458 limit = READ_ONCE(memcg->memsw.max); 1459 if (count < limit) 1460 margin = min(margin, limit - count); 1461 else 1462 margin = 0; 1463 } 1464 1465 return margin; 1466 } 1467 1468 /* 1469 * A routine for checking "mem" is under move_account() or not. 1470 * 1471 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1472 * moving cgroups. This is for waiting at high-memory pressure 1473 * caused by "move". 1474 */ 1475 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1476 { 1477 struct mem_cgroup *from; 1478 struct mem_cgroup *to; 1479 bool ret = false; 1480 /* 1481 * Unlike task_move routines, we access mc.to, mc.from not under 1482 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1483 */ 1484 spin_lock(&mc.lock); 1485 from = mc.from; 1486 to = mc.to; 1487 if (!from) 1488 goto unlock; 1489 1490 ret = mem_cgroup_is_descendant(from, memcg) || 1491 mem_cgroup_is_descendant(to, memcg); 1492 unlock: 1493 spin_unlock(&mc.lock); 1494 return ret; 1495 } 1496 1497 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1498 { 1499 if (mc.moving_task && current != mc.moving_task) { 1500 if (mem_cgroup_under_move(memcg)) { 1501 DEFINE_WAIT(wait); 1502 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1503 /* moving charge context might have finished. */ 1504 if (mc.moving_task) 1505 schedule(); 1506 finish_wait(&mc.waitq, &wait); 1507 return true; 1508 } 1509 } 1510 return false; 1511 } 1512 1513 struct memory_stat { 1514 const char *name; 1515 unsigned int ratio; 1516 unsigned int idx; 1517 }; 1518 1519 static struct memory_stat memory_stats[] = { 1520 { "anon", PAGE_SIZE, NR_ANON_MAPPED }, 1521 { "file", PAGE_SIZE, NR_FILE_PAGES }, 1522 { "kernel_stack", 1024, NR_KERNEL_STACK_KB }, 1523 { "pagetables", PAGE_SIZE, NR_PAGETABLE }, 1524 { "percpu", 1, MEMCG_PERCPU_B }, 1525 { "sock", PAGE_SIZE, MEMCG_SOCK }, 1526 { "shmem", PAGE_SIZE, NR_SHMEM }, 1527 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED }, 1528 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY }, 1529 { "file_writeback", PAGE_SIZE, NR_WRITEBACK }, 1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1531 /* 1532 * The ratio will be initialized in memory_stats_init(). Because 1533 * on some architectures, the macro of HPAGE_PMD_SIZE is not 1534 * constant(e.g. powerpc). 1535 */ 1536 { "anon_thp", 0, NR_ANON_THPS }, 1537 { "file_thp", 0, NR_FILE_THPS }, 1538 { "shmem_thp", 0, NR_SHMEM_THPS }, 1539 #endif 1540 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON }, 1541 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON }, 1542 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE }, 1543 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE }, 1544 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE }, 1545 1546 /* 1547 * Note: The slab_reclaimable and slab_unreclaimable must be 1548 * together and slab_reclaimable must be in front. 1549 */ 1550 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B }, 1551 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B }, 1552 1553 /* The memory events */ 1554 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON }, 1555 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE }, 1556 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON }, 1557 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE }, 1558 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON }, 1559 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE }, 1560 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM }, 1561 }; 1562 1563 static int __init memory_stats_init(void) 1564 { 1565 int i; 1566 1567 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1569 if (memory_stats[i].idx == NR_ANON_THPS || 1570 memory_stats[i].idx == NR_FILE_THPS || 1571 memory_stats[i].idx == NR_SHMEM_THPS) 1572 memory_stats[i].ratio = HPAGE_PMD_SIZE; 1573 #endif 1574 VM_BUG_ON(!memory_stats[i].ratio); 1575 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT); 1576 } 1577 1578 return 0; 1579 } 1580 pure_initcall(memory_stats_init); 1581 1582 static char *memory_stat_format(struct mem_cgroup *memcg) 1583 { 1584 struct seq_buf s; 1585 int i; 1586 1587 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1588 if (!s.buffer) 1589 return NULL; 1590 1591 /* 1592 * Provide statistics on the state of the memory subsystem as 1593 * well as cumulative event counters that show past behavior. 1594 * 1595 * This list is ordered following a combination of these gradients: 1596 * 1) generic big picture -> specifics and details 1597 * 2) reflecting userspace activity -> reflecting kernel heuristics 1598 * 1599 * Current memory state: 1600 */ 1601 1602 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1603 u64 size; 1604 1605 size = memcg_page_state(memcg, memory_stats[i].idx); 1606 size *= memory_stats[i].ratio; 1607 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1608 1609 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1610 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) + 1611 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B); 1612 seq_buf_printf(&s, "slab %llu\n", size); 1613 } 1614 } 1615 1616 /* Accumulated memory events */ 1617 1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1619 memcg_events(memcg, PGFAULT)); 1620 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1621 memcg_events(memcg, PGMAJFAULT)); 1622 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1623 memcg_events(memcg, PGREFILL)); 1624 seq_buf_printf(&s, "pgscan %lu\n", 1625 memcg_events(memcg, PGSCAN_KSWAPD) + 1626 memcg_events(memcg, PGSCAN_DIRECT)); 1627 seq_buf_printf(&s, "pgsteal %lu\n", 1628 memcg_events(memcg, PGSTEAL_KSWAPD) + 1629 memcg_events(memcg, PGSTEAL_DIRECT)); 1630 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1631 memcg_events(memcg, PGACTIVATE)); 1632 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1633 memcg_events(memcg, PGDEACTIVATE)); 1634 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1635 memcg_events(memcg, PGLAZYFREE)); 1636 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1637 memcg_events(memcg, PGLAZYFREED)); 1638 1639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1640 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1641 memcg_events(memcg, THP_FAULT_ALLOC)); 1642 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1643 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1644 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1645 1646 /* The above should easily fit into one page */ 1647 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1648 1649 return s.buffer; 1650 } 1651 1652 #define K(x) ((x) << (PAGE_SHIFT-10)) 1653 /** 1654 * mem_cgroup_print_oom_context: Print OOM information relevant to 1655 * memory controller. 1656 * @memcg: The memory cgroup that went over limit 1657 * @p: Task that is going to be killed 1658 * 1659 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1660 * enabled 1661 */ 1662 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1663 { 1664 rcu_read_lock(); 1665 1666 if (memcg) { 1667 pr_cont(",oom_memcg="); 1668 pr_cont_cgroup_path(memcg->css.cgroup); 1669 } else 1670 pr_cont(",global_oom"); 1671 if (p) { 1672 pr_cont(",task_memcg="); 1673 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1674 } 1675 rcu_read_unlock(); 1676 } 1677 1678 /** 1679 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1680 * memory controller. 1681 * @memcg: The memory cgroup that went over limit 1682 */ 1683 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1684 { 1685 char *buf; 1686 1687 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1688 K((u64)page_counter_read(&memcg->memory)), 1689 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1690 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1691 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1692 K((u64)page_counter_read(&memcg->swap)), 1693 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1694 else { 1695 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1696 K((u64)page_counter_read(&memcg->memsw)), 1697 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1698 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1699 K((u64)page_counter_read(&memcg->kmem)), 1700 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1701 } 1702 1703 pr_info("Memory cgroup stats for "); 1704 pr_cont_cgroup_path(memcg->css.cgroup); 1705 pr_cont(":"); 1706 buf = memory_stat_format(memcg); 1707 if (!buf) 1708 return; 1709 pr_info("%s", buf); 1710 kfree(buf); 1711 } 1712 1713 /* 1714 * Return the memory (and swap, if configured) limit for a memcg. 1715 */ 1716 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1717 { 1718 unsigned long max = READ_ONCE(memcg->memory.max); 1719 1720 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1721 if (mem_cgroup_swappiness(memcg)) 1722 max += min(READ_ONCE(memcg->swap.max), 1723 (unsigned long)total_swap_pages); 1724 } else { /* v1 */ 1725 if (mem_cgroup_swappiness(memcg)) { 1726 /* Calculate swap excess capacity from memsw limit */ 1727 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1728 1729 max += min(swap, (unsigned long)total_swap_pages); 1730 } 1731 } 1732 return max; 1733 } 1734 1735 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1736 { 1737 return page_counter_read(&memcg->memory); 1738 } 1739 1740 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1741 int order) 1742 { 1743 struct oom_control oc = { 1744 .zonelist = NULL, 1745 .nodemask = NULL, 1746 .memcg = memcg, 1747 .gfp_mask = gfp_mask, 1748 .order = order, 1749 }; 1750 bool ret = true; 1751 1752 if (mutex_lock_killable(&oom_lock)) 1753 return true; 1754 1755 if (mem_cgroup_margin(memcg) >= (1 << order)) 1756 goto unlock; 1757 1758 /* 1759 * A few threads which were not waiting at mutex_lock_killable() can 1760 * fail to bail out. Therefore, check again after holding oom_lock. 1761 */ 1762 ret = should_force_charge() || out_of_memory(&oc); 1763 1764 unlock: 1765 mutex_unlock(&oom_lock); 1766 return ret; 1767 } 1768 1769 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1770 pg_data_t *pgdat, 1771 gfp_t gfp_mask, 1772 unsigned long *total_scanned) 1773 { 1774 struct mem_cgroup *victim = NULL; 1775 int total = 0; 1776 int loop = 0; 1777 unsigned long excess; 1778 unsigned long nr_scanned; 1779 struct mem_cgroup_reclaim_cookie reclaim = { 1780 .pgdat = pgdat, 1781 }; 1782 1783 excess = soft_limit_excess(root_memcg); 1784 1785 while (1) { 1786 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1787 if (!victim) { 1788 loop++; 1789 if (loop >= 2) { 1790 /* 1791 * If we have not been able to reclaim 1792 * anything, it might because there are 1793 * no reclaimable pages under this hierarchy 1794 */ 1795 if (!total) 1796 break; 1797 /* 1798 * We want to do more targeted reclaim. 1799 * excess >> 2 is not to excessive so as to 1800 * reclaim too much, nor too less that we keep 1801 * coming back to reclaim from this cgroup 1802 */ 1803 if (total >= (excess >> 2) || 1804 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1805 break; 1806 } 1807 continue; 1808 } 1809 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1810 pgdat, &nr_scanned); 1811 *total_scanned += nr_scanned; 1812 if (!soft_limit_excess(root_memcg)) 1813 break; 1814 } 1815 mem_cgroup_iter_break(root_memcg, victim); 1816 return total; 1817 } 1818 1819 #ifdef CONFIG_LOCKDEP 1820 static struct lockdep_map memcg_oom_lock_dep_map = { 1821 .name = "memcg_oom_lock", 1822 }; 1823 #endif 1824 1825 static DEFINE_SPINLOCK(memcg_oom_lock); 1826 1827 /* 1828 * Check OOM-Killer is already running under our hierarchy. 1829 * If someone is running, return false. 1830 */ 1831 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1832 { 1833 struct mem_cgroup *iter, *failed = NULL; 1834 1835 spin_lock(&memcg_oom_lock); 1836 1837 for_each_mem_cgroup_tree(iter, memcg) { 1838 if (iter->oom_lock) { 1839 /* 1840 * this subtree of our hierarchy is already locked 1841 * so we cannot give a lock. 1842 */ 1843 failed = iter; 1844 mem_cgroup_iter_break(memcg, iter); 1845 break; 1846 } else 1847 iter->oom_lock = true; 1848 } 1849 1850 if (failed) { 1851 /* 1852 * OK, we failed to lock the whole subtree so we have 1853 * to clean up what we set up to the failing subtree 1854 */ 1855 for_each_mem_cgroup_tree(iter, memcg) { 1856 if (iter == failed) { 1857 mem_cgroup_iter_break(memcg, iter); 1858 break; 1859 } 1860 iter->oom_lock = false; 1861 } 1862 } else 1863 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1864 1865 spin_unlock(&memcg_oom_lock); 1866 1867 return !failed; 1868 } 1869 1870 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1871 { 1872 struct mem_cgroup *iter; 1873 1874 spin_lock(&memcg_oom_lock); 1875 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1876 for_each_mem_cgroup_tree(iter, memcg) 1877 iter->oom_lock = false; 1878 spin_unlock(&memcg_oom_lock); 1879 } 1880 1881 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1882 { 1883 struct mem_cgroup *iter; 1884 1885 spin_lock(&memcg_oom_lock); 1886 for_each_mem_cgroup_tree(iter, memcg) 1887 iter->under_oom++; 1888 spin_unlock(&memcg_oom_lock); 1889 } 1890 1891 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1892 { 1893 struct mem_cgroup *iter; 1894 1895 /* 1896 * Be careful about under_oom underflows becase a child memcg 1897 * could have been added after mem_cgroup_mark_under_oom. 1898 */ 1899 spin_lock(&memcg_oom_lock); 1900 for_each_mem_cgroup_tree(iter, memcg) 1901 if (iter->under_oom > 0) 1902 iter->under_oom--; 1903 spin_unlock(&memcg_oom_lock); 1904 } 1905 1906 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1907 1908 struct oom_wait_info { 1909 struct mem_cgroup *memcg; 1910 wait_queue_entry_t wait; 1911 }; 1912 1913 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1914 unsigned mode, int sync, void *arg) 1915 { 1916 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1917 struct mem_cgroup *oom_wait_memcg; 1918 struct oom_wait_info *oom_wait_info; 1919 1920 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1921 oom_wait_memcg = oom_wait_info->memcg; 1922 1923 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1924 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1925 return 0; 1926 return autoremove_wake_function(wait, mode, sync, arg); 1927 } 1928 1929 static void memcg_oom_recover(struct mem_cgroup *memcg) 1930 { 1931 /* 1932 * For the following lockless ->under_oom test, the only required 1933 * guarantee is that it must see the state asserted by an OOM when 1934 * this function is called as a result of userland actions 1935 * triggered by the notification of the OOM. This is trivially 1936 * achieved by invoking mem_cgroup_mark_under_oom() before 1937 * triggering notification. 1938 */ 1939 if (memcg && memcg->under_oom) 1940 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1941 } 1942 1943 enum oom_status { 1944 OOM_SUCCESS, 1945 OOM_FAILED, 1946 OOM_ASYNC, 1947 OOM_SKIPPED 1948 }; 1949 1950 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1951 { 1952 enum oom_status ret; 1953 bool locked; 1954 1955 if (order > PAGE_ALLOC_COSTLY_ORDER) 1956 return OOM_SKIPPED; 1957 1958 memcg_memory_event(memcg, MEMCG_OOM); 1959 1960 /* 1961 * We are in the middle of the charge context here, so we 1962 * don't want to block when potentially sitting on a callstack 1963 * that holds all kinds of filesystem and mm locks. 1964 * 1965 * cgroup1 allows disabling the OOM killer and waiting for outside 1966 * handling until the charge can succeed; remember the context and put 1967 * the task to sleep at the end of the page fault when all locks are 1968 * released. 1969 * 1970 * On the other hand, in-kernel OOM killer allows for an async victim 1971 * memory reclaim (oom_reaper) and that means that we are not solely 1972 * relying on the oom victim to make a forward progress and we can 1973 * invoke the oom killer here. 1974 * 1975 * Please note that mem_cgroup_out_of_memory might fail to find a 1976 * victim and then we have to bail out from the charge path. 1977 */ 1978 if (memcg->oom_kill_disable) { 1979 if (!current->in_user_fault) 1980 return OOM_SKIPPED; 1981 css_get(&memcg->css); 1982 current->memcg_in_oom = memcg; 1983 current->memcg_oom_gfp_mask = mask; 1984 current->memcg_oom_order = order; 1985 1986 return OOM_ASYNC; 1987 } 1988 1989 mem_cgroup_mark_under_oom(memcg); 1990 1991 locked = mem_cgroup_oom_trylock(memcg); 1992 1993 if (locked) 1994 mem_cgroup_oom_notify(memcg); 1995 1996 mem_cgroup_unmark_under_oom(memcg); 1997 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1998 ret = OOM_SUCCESS; 1999 else 2000 ret = OOM_FAILED; 2001 2002 if (locked) 2003 mem_cgroup_oom_unlock(memcg); 2004 2005 return ret; 2006 } 2007 2008 /** 2009 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2010 * @handle: actually kill/wait or just clean up the OOM state 2011 * 2012 * This has to be called at the end of a page fault if the memcg OOM 2013 * handler was enabled. 2014 * 2015 * Memcg supports userspace OOM handling where failed allocations must 2016 * sleep on a waitqueue until the userspace task resolves the 2017 * situation. Sleeping directly in the charge context with all kinds 2018 * of locks held is not a good idea, instead we remember an OOM state 2019 * in the task and mem_cgroup_oom_synchronize() has to be called at 2020 * the end of the page fault to complete the OOM handling. 2021 * 2022 * Returns %true if an ongoing memcg OOM situation was detected and 2023 * completed, %false otherwise. 2024 */ 2025 bool mem_cgroup_oom_synchronize(bool handle) 2026 { 2027 struct mem_cgroup *memcg = current->memcg_in_oom; 2028 struct oom_wait_info owait; 2029 bool locked; 2030 2031 /* OOM is global, do not handle */ 2032 if (!memcg) 2033 return false; 2034 2035 if (!handle) 2036 goto cleanup; 2037 2038 owait.memcg = memcg; 2039 owait.wait.flags = 0; 2040 owait.wait.func = memcg_oom_wake_function; 2041 owait.wait.private = current; 2042 INIT_LIST_HEAD(&owait.wait.entry); 2043 2044 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2045 mem_cgroup_mark_under_oom(memcg); 2046 2047 locked = mem_cgroup_oom_trylock(memcg); 2048 2049 if (locked) 2050 mem_cgroup_oom_notify(memcg); 2051 2052 if (locked && !memcg->oom_kill_disable) { 2053 mem_cgroup_unmark_under_oom(memcg); 2054 finish_wait(&memcg_oom_waitq, &owait.wait); 2055 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 2056 current->memcg_oom_order); 2057 } else { 2058 schedule(); 2059 mem_cgroup_unmark_under_oom(memcg); 2060 finish_wait(&memcg_oom_waitq, &owait.wait); 2061 } 2062 2063 if (locked) { 2064 mem_cgroup_oom_unlock(memcg); 2065 /* 2066 * There is no guarantee that an OOM-lock contender 2067 * sees the wakeups triggered by the OOM kill 2068 * uncharges. Wake any sleepers explicitely. 2069 */ 2070 memcg_oom_recover(memcg); 2071 } 2072 cleanup: 2073 current->memcg_in_oom = NULL; 2074 css_put(&memcg->css); 2075 return true; 2076 } 2077 2078 /** 2079 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2080 * @victim: task to be killed by the OOM killer 2081 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2082 * 2083 * Returns a pointer to a memory cgroup, which has to be cleaned up 2084 * by killing all belonging OOM-killable tasks. 2085 * 2086 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2087 */ 2088 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2089 struct mem_cgroup *oom_domain) 2090 { 2091 struct mem_cgroup *oom_group = NULL; 2092 struct mem_cgroup *memcg; 2093 2094 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2095 return NULL; 2096 2097 if (!oom_domain) 2098 oom_domain = root_mem_cgroup; 2099 2100 rcu_read_lock(); 2101 2102 memcg = mem_cgroup_from_task(victim); 2103 if (memcg == root_mem_cgroup) 2104 goto out; 2105 2106 /* 2107 * If the victim task has been asynchronously moved to a different 2108 * memory cgroup, we might end up killing tasks outside oom_domain. 2109 * In this case it's better to ignore memory.group.oom. 2110 */ 2111 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2112 goto out; 2113 2114 /* 2115 * Traverse the memory cgroup hierarchy from the victim task's 2116 * cgroup up to the OOMing cgroup (or root) to find the 2117 * highest-level memory cgroup with oom.group set. 2118 */ 2119 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2120 if (memcg->oom_group) 2121 oom_group = memcg; 2122 2123 if (memcg == oom_domain) 2124 break; 2125 } 2126 2127 if (oom_group) 2128 css_get(&oom_group->css); 2129 out: 2130 rcu_read_unlock(); 2131 2132 return oom_group; 2133 } 2134 2135 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2136 { 2137 pr_info("Tasks in "); 2138 pr_cont_cgroup_path(memcg->css.cgroup); 2139 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2140 } 2141 2142 /** 2143 * lock_page_memcg - lock a page and memcg binding 2144 * @page: the page 2145 * 2146 * This function protects unlocked LRU pages from being moved to 2147 * another cgroup. 2148 * 2149 * It ensures lifetime of the returned memcg. Caller is responsible 2150 * for the lifetime of the page; __unlock_page_memcg() is available 2151 * when @page might get freed inside the locked section. 2152 */ 2153 struct mem_cgroup *lock_page_memcg(struct page *page) 2154 { 2155 struct page *head = compound_head(page); /* rmap on tail pages */ 2156 struct mem_cgroup *memcg; 2157 unsigned long flags; 2158 2159 /* 2160 * The RCU lock is held throughout the transaction. The fast 2161 * path can get away without acquiring the memcg->move_lock 2162 * because page moving starts with an RCU grace period. 2163 * 2164 * The RCU lock also protects the memcg from being freed when 2165 * the page state that is going to change is the only thing 2166 * preventing the page itself from being freed. E.g. writeback 2167 * doesn't hold a page reference and relies on PG_writeback to 2168 * keep off truncation, migration and so forth. 2169 */ 2170 rcu_read_lock(); 2171 2172 if (mem_cgroup_disabled()) 2173 return NULL; 2174 again: 2175 memcg = page_memcg(head); 2176 if (unlikely(!memcg)) 2177 return NULL; 2178 2179 #ifdef CONFIG_PROVE_LOCKING 2180 local_irq_save(flags); 2181 might_lock(&memcg->move_lock); 2182 local_irq_restore(flags); 2183 #endif 2184 2185 if (atomic_read(&memcg->moving_account) <= 0) 2186 return memcg; 2187 2188 spin_lock_irqsave(&memcg->move_lock, flags); 2189 if (memcg != page_memcg(head)) { 2190 spin_unlock_irqrestore(&memcg->move_lock, flags); 2191 goto again; 2192 } 2193 2194 /* 2195 * When charge migration first begins, we can have locked and 2196 * unlocked page stat updates happening concurrently. Track 2197 * the task who has the lock for unlock_page_memcg(). 2198 */ 2199 memcg->move_lock_task = current; 2200 memcg->move_lock_flags = flags; 2201 2202 return memcg; 2203 } 2204 EXPORT_SYMBOL(lock_page_memcg); 2205 2206 /** 2207 * __unlock_page_memcg - unlock and unpin a memcg 2208 * @memcg: the memcg 2209 * 2210 * Unlock and unpin a memcg returned by lock_page_memcg(). 2211 */ 2212 void __unlock_page_memcg(struct mem_cgroup *memcg) 2213 { 2214 if (memcg && memcg->move_lock_task == current) { 2215 unsigned long flags = memcg->move_lock_flags; 2216 2217 memcg->move_lock_task = NULL; 2218 memcg->move_lock_flags = 0; 2219 2220 spin_unlock_irqrestore(&memcg->move_lock, flags); 2221 } 2222 2223 rcu_read_unlock(); 2224 } 2225 2226 /** 2227 * unlock_page_memcg - unlock a page and memcg binding 2228 * @page: the page 2229 */ 2230 void unlock_page_memcg(struct page *page) 2231 { 2232 struct page *head = compound_head(page); 2233 2234 __unlock_page_memcg(page_memcg(head)); 2235 } 2236 EXPORT_SYMBOL(unlock_page_memcg); 2237 2238 struct memcg_stock_pcp { 2239 struct mem_cgroup *cached; /* this never be root cgroup */ 2240 unsigned int nr_pages; 2241 2242 #ifdef CONFIG_MEMCG_KMEM 2243 struct obj_cgroup *cached_objcg; 2244 unsigned int nr_bytes; 2245 #endif 2246 2247 struct work_struct work; 2248 unsigned long flags; 2249 #define FLUSHING_CACHED_CHARGE 0 2250 }; 2251 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2252 static DEFINE_MUTEX(percpu_charge_mutex); 2253 2254 #ifdef CONFIG_MEMCG_KMEM 2255 static void drain_obj_stock(struct memcg_stock_pcp *stock); 2256 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2257 struct mem_cgroup *root_memcg); 2258 2259 #else 2260 static inline void drain_obj_stock(struct memcg_stock_pcp *stock) 2261 { 2262 } 2263 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2264 struct mem_cgroup *root_memcg) 2265 { 2266 return false; 2267 } 2268 #endif 2269 2270 /** 2271 * consume_stock: Try to consume stocked charge on this cpu. 2272 * @memcg: memcg to consume from. 2273 * @nr_pages: how many pages to charge. 2274 * 2275 * The charges will only happen if @memcg matches the current cpu's memcg 2276 * stock, and at least @nr_pages are available in that stock. Failure to 2277 * service an allocation will refill the stock. 2278 * 2279 * returns true if successful, false otherwise. 2280 */ 2281 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2282 { 2283 struct memcg_stock_pcp *stock; 2284 unsigned long flags; 2285 bool ret = false; 2286 2287 if (nr_pages > MEMCG_CHARGE_BATCH) 2288 return ret; 2289 2290 local_irq_save(flags); 2291 2292 stock = this_cpu_ptr(&memcg_stock); 2293 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2294 stock->nr_pages -= nr_pages; 2295 ret = true; 2296 } 2297 2298 local_irq_restore(flags); 2299 2300 return ret; 2301 } 2302 2303 /* 2304 * Returns stocks cached in percpu and reset cached information. 2305 */ 2306 static void drain_stock(struct memcg_stock_pcp *stock) 2307 { 2308 struct mem_cgroup *old = stock->cached; 2309 2310 if (!old) 2311 return; 2312 2313 if (stock->nr_pages) { 2314 page_counter_uncharge(&old->memory, stock->nr_pages); 2315 if (do_memsw_account()) 2316 page_counter_uncharge(&old->memsw, stock->nr_pages); 2317 stock->nr_pages = 0; 2318 } 2319 2320 css_put(&old->css); 2321 stock->cached = NULL; 2322 } 2323 2324 static void drain_local_stock(struct work_struct *dummy) 2325 { 2326 struct memcg_stock_pcp *stock; 2327 unsigned long flags; 2328 2329 /* 2330 * The only protection from memory hotplug vs. drain_stock races is 2331 * that we always operate on local CPU stock here with IRQ disabled 2332 */ 2333 local_irq_save(flags); 2334 2335 stock = this_cpu_ptr(&memcg_stock); 2336 drain_obj_stock(stock); 2337 drain_stock(stock); 2338 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2339 2340 local_irq_restore(flags); 2341 } 2342 2343 /* 2344 * Cache charges(val) to local per_cpu area. 2345 * This will be consumed by consume_stock() function, later. 2346 */ 2347 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2348 { 2349 struct memcg_stock_pcp *stock; 2350 unsigned long flags; 2351 2352 local_irq_save(flags); 2353 2354 stock = this_cpu_ptr(&memcg_stock); 2355 if (stock->cached != memcg) { /* reset if necessary */ 2356 drain_stock(stock); 2357 css_get(&memcg->css); 2358 stock->cached = memcg; 2359 } 2360 stock->nr_pages += nr_pages; 2361 2362 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2363 drain_stock(stock); 2364 2365 local_irq_restore(flags); 2366 } 2367 2368 /* 2369 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2370 * of the hierarchy under it. 2371 */ 2372 static void drain_all_stock(struct mem_cgroup *root_memcg) 2373 { 2374 int cpu, curcpu; 2375 2376 /* If someone's already draining, avoid adding running more workers. */ 2377 if (!mutex_trylock(&percpu_charge_mutex)) 2378 return; 2379 /* 2380 * Notify other cpus that system-wide "drain" is running 2381 * We do not care about races with the cpu hotplug because cpu down 2382 * as well as workers from this path always operate on the local 2383 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2384 */ 2385 curcpu = get_cpu(); 2386 for_each_online_cpu(cpu) { 2387 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2388 struct mem_cgroup *memcg; 2389 bool flush = false; 2390 2391 rcu_read_lock(); 2392 memcg = stock->cached; 2393 if (memcg && stock->nr_pages && 2394 mem_cgroup_is_descendant(memcg, root_memcg)) 2395 flush = true; 2396 if (obj_stock_flush_required(stock, root_memcg)) 2397 flush = true; 2398 rcu_read_unlock(); 2399 2400 if (flush && 2401 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2402 if (cpu == curcpu) 2403 drain_local_stock(&stock->work); 2404 else 2405 schedule_work_on(cpu, &stock->work); 2406 } 2407 } 2408 put_cpu(); 2409 mutex_unlock(&percpu_charge_mutex); 2410 } 2411 2412 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2413 { 2414 struct memcg_stock_pcp *stock; 2415 struct mem_cgroup *memcg, *mi; 2416 2417 stock = &per_cpu(memcg_stock, cpu); 2418 drain_stock(stock); 2419 2420 for_each_mem_cgroup(memcg) { 2421 int i; 2422 2423 for (i = 0; i < MEMCG_NR_STAT; i++) { 2424 int nid; 2425 long x; 2426 2427 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2428 if (x) 2429 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2430 atomic_long_add(x, &memcg->vmstats[i]); 2431 2432 if (i >= NR_VM_NODE_STAT_ITEMS) 2433 continue; 2434 2435 for_each_node(nid) { 2436 struct mem_cgroup_per_node *pn; 2437 2438 pn = mem_cgroup_nodeinfo(memcg, nid); 2439 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2440 if (x) 2441 do { 2442 atomic_long_add(x, &pn->lruvec_stat[i]); 2443 } while ((pn = parent_nodeinfo(pn, nid))); 2444 } 2445 } 2446 2447 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2448 long x; 2449 2450 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2451 if (x) 2452 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2453 atomic_long_add(x, &memcg->vmevents[i]); 2454 } 2455 } 2456 2457 return 0; 2458 } 2459 2460 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2461 unsigned int nr_pages, 2462 gfp_t gfp_mask) 2463 { 2464 unsigned long nr_reclaimed = 0; 2465 2466 do { 2467 unsigned long pflags; 2468 2469 if (page_counter_read(&memcg->memory) <= 2470 READ_ONCE(memcg->memory.high)) 2471 continue; 2472 2473 memcg_memory_event(memcg, MEMCG_HIGH); 2474 2475 psi_memstall_enter(&pflags); 2476 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2477 gfp_mask, true); 2478 psi_memstall_leave(&pflags); 2479 } while ((memcg = parent_mem_cgroup(memcg)) && 2480 !mem_cgroup_is_root(memcg)); 2481 2482 return nr_reclaimed; 2483 } 2484 2485 static void high_work_func(struct work_struct *work) 2486 { 2487 struct mem_cgroup *memcg; 2488 2489 memcg = container_of(work, struct mem_cgroup, high_work); 2490 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2491 } 2492 2493 /* 2494 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2495 * enough to still cause a significant slowdown in most cases, while still 2496 * allowing diagnostics and tracing to proceed without becoming stuck. 2497 */ 2498 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2499 2500 /* 2501 * When calculating the delay, we use these either side of the exponentiation to 2502 * maintain precision and scale to a reasonable number of jiffies (see the table 2503 * below. 2504 * 2505 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2506 * overage ratio to a delay. 2507 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2508 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2509 * to produce a reasonable delay curve. 2510 * 2511 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2512 * reasonable delay curve compared to precision-adjusted overage, not 2513 * penalising heavily at first, but still making sure that growth beyond the 2514 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2515 * example, with a high of 100 megabytes: 2516 * 2517 * +-------+------------------------+ 2518 * | usage | time to allocate in ms | 2519 * +-------+------------------------+ 2520 * | 100M | 0 | 2521 * | 101M | 6 | 2522 * | 102M | 25 | 2523 * | 103M | 57 | 2524 * | 104M | 102 | 2525 * | 105M | 159 | 2526 * | 106M | 230 | 2527 * | 107M | 313 | 2528 * | 108M | 409 | 2529 * | 109M | 518 | 2530 * | 110M | 639 | 2531 * | 111M | 774 | 2532 * | 112M | 921 | 2533 * | 113M | 1081 | 2534 * | 114M | 1254 | 2535 * | 115M | 1439 | 2536 * | 116M | 1638 | 2537 * | 117M | 1849 | 2538 * | 118M | 2000 | 2539 * | 119M | 2000 | 2540 * | 120M | 2000 | 2541 * +-------+------------------------+ 2542 */ 2543 #define MEMCG_DELAY_PRECISION_SHIFT 20 2544 #define MEMCG_DELAY_SCALING_SHIFT 14 2545 2546 static u64 calculate_overage(unsigned long usage, unsigned long high) 2547 { 2548 u64 overage; 2549 2550 if (usage <= high) 2551 return 0; 2552 2553 /* 2554 * Prevent division by 0 in overage calculation by acting as if 2555 * it was a threshold of 1 page 2556 */ 2557 high = max(high, 1UL); 2558 2559 overage = usage - high; 2560 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2561 return div64_u64(overage, high); 2562 } 2563 2564 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2565 { 2566 u64 overage, max_overage = 0; 2567 2568 do { 2569 overage = calculate_overage(page_counter_read(&memcg->memory), 2570 READ_ONCE(memcg->memory.high)); 2571 max_overage = max(overage, max_overage); 2572 } while ((memcg = parent_mem_cgroup(memcg)) && 2573 !mem_cgroup_is_root(memcg)); 2574 2575 return max_overage; 2576 } 2577 2578 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2579 { 2580 u64 overage, max_overage = 0; 2581 2582 do { 2583 overage = calculate_overage(page_counter_read(&memcg->swap), 2584 READ_ONCE(memcg->swap.high)); 2585 if (overage) 2586 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2587 max_overage = max(overage, max_overage); 2588 } while ((memcg = parent_mem_cgroup(memcg)) && 2589 !mem_cgroup_is_root(memcg)); 2590 2591 return max_overage; 2592 } 2593 2594 /* 2595 * Get the number of jiffies that we should penalise a mischievous cgroup which 2596 * is exceeding its memory.high by checking both it and its ancestors. 2597 */ 2598 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2599 unsigned int nr_pages, 2600 u64 max_overage) 2601 { 2602 unsigned long penalty_jiffies; 2603 2604 if (!max_overage) 2605 return 0; 2606 2607 /* 2608 * We use overage compared to memory.high to calculate the number of 2609 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2610 * fairly lenient on small overages, and increasingly harsh when the 2611 * memcg in question makes it clear that it has no intention of stopping 2612 * its crazy behaviour, so we exponentially increase the delay based on 2613 * overage amount. 2614 */ 2615 penalty_jiffies = max_overage * max_overage * HZ; 2616 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2617 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2618 2619 /* 2620 * Factor in the task's own contribution to the overage, such that four 2621 * N-sized allocations are throttled approximately the same as one 2622 * 4N-sized allocation. 2623 * 2624 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2625 * larger the current charge patch is than that. 2626 */ 2627 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2628 } 2629 2630 /* 2631 * Scheduled by try_charge() to be executed from the userland return path 2632 * and reclaims memory over the high limit. 2633 */ 2634 void mem_cgroup_handle_over_high(void) 2635 { 2636 unsigned long penalty_jiffies; 2637 unsigned long pflags; 2638 unsigned long nr_reclaimed; 2639 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2640 int nr_retries = MAX_RECLAIM_RETRIES; 2641 struct mem_cgroup *memcg; 2642 bool in_retry = false; 2643 2644 if (likely(!nr_pages)) 2645 return; 2646 2647 memcg = get_mem_cgroup_from_mm(current->mm); 2648 current->memcg_nr_pages_over_high = 0; 2649 2650 retry_reclaim: 2651 /* 2652 * The allocating task should reclaim at least the batch size, but for 2653 * subsequent retries we only want to do what's necessary to prevent oom 2654 * or breaching resource isolation. 2655 * 2656 * This is distinct from memory.max or page allocator behaviour because 2657 * memory.high is currently batched, whereas memory.max and the page 2658 * allocator run every time an allocation is made. 2659 */ 2660 nr_reclaimed = reclaim_high(memcg, 2661 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2662 GFP_KERNEL); 2663 2664 /* 2665 * memory.high is breached and reclaim is unable to keep up. Throttle 2666 * allocators proactively to slow down excessive growth. 2667 */ 2668 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2669 mem_find_max_overage(memcg)); 2670 2671 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2672 swap_find_max_overage(memcg)); 2673 2674 /* 2675 * Clamp the max delay per usermode return so as to still keep the 2676 * application moving forwards and also permit diagnostics, albeit 2677 * extremely slowly. 2678 */ 2679 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2680 2681 /* 2682 * Don't sleep if the amount of jiffies this memcg owes us is so low 2683 * that it's not even worth doing, in an attempt to be nice to those who 2684 * go only a small amount over their memory.high value and maybe haven't 2685 * been aggressively reclaimed enough yet. 2686 */ 2687 if (penalty_jiffies <= HZ / 100) 2688 goto out; 2689 2690 /* 2691 * If reclaim is making forward progress but we're still over 2692 * memory.high, we want to encourage that rather than doing allocator 2693 * throttling. 2694 */ 2695 if (nr_reclaimed || nr_retries--) { 2696 in_retry = true; 2697 goto retry_reclaim; 2698 } 2699 2700 /* 2701 * If we exit early, we're guaranteed to die (since 2702 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2703 * need to account for any ill-begotten jiffies to pay them off later. 2704 */ 2705 psi_memstall_enter(&pflags); 2706 schedule_timeout_killable(penalty_jiffies); 2707 psi_memstall_leave(&pflags); 2708 2709 out: 2710 css_put(&memcg->css); 2711 } 2712 2713 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2714 unsigned int nr_pages) 2715 { 2716 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2717 int nr_retries = MAX_RECLAIM_RETRIES; 2718 struct mem_cgroup *mem_over_limit; 2719 struct page_counter *counter; 2720 enum oom_status oom_status; 2721 unsigned long nr_reclaimed; 2722 bool may_swap = true; 2723 bool drained = false; 2724 unsigned long pflags; 2725 2726 if (mem_cgroup_is_root(memcg)) 2727 return 0; 2728 retry: 2729 if (consume_stock(memcg, nr_pages)) 2730 return 0; 2731 2732 if (!do_memsw_account() || 2733 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2734 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2735 goto done_restock; 2736 if (do_memsw_account()) 2737 page_counter_uncharge(&memcg->memsw, batch); 2738 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2739 } else { 2740 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2741 may_swap = false; 2742 } 2743 2744 if (batch > nr_pages) { 2745 batch = nr_pages; 2746 goto retry; 2747 } 2748 2749 /* 2750 * Memcg doesn't have a dedicated reserve for atomic 2751 * allocations. But like the global atomic pool, we need to 2752 * put the burden of reclaim on regular allocation requests 2753 * and let these go through as privileged allocations. 2754 */ 2755 if (gfp_mask & __GFP_ATOMIC) 2756 goto force; 2757 2758 /* 2759 * Unlike in global OOM situations, memcg is not in a physical 2760 * memory shortage. Allow dying and OOM-killed tasks to 2761 * bypass the last charges so that they can exit quickly and 2762 * free their memory. 2763 */ 2764 if (unlikely(should_force_charge())) 2765 goto force; 2766 2767 /* 2768 * Prevent unbounded recursion when reclaim operations need to 2769 * allocate memory. This might exceed the limits temporarily, 2770 * but we prefer facilitating memory reclaim and getting back 2771 * under the limit over triggering OOM kills in these cases. 2772 */ 2773 if (unlikely(current->flags & PF_MEMALLOC)) 2774 goto force; 2775 2776 if (unlikely(task_in_memcg_oom(current))) 2777 goto nomem; 2778 2779 if (!gfpflags_allow_blocking(gfp_mask)) 2780 goto nomem; 2781 2782 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2783 2784 psi_memstall_enter(&pflags); 2785 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2786 gfp_mask, may_swap); 2787 psi_memstall_leave(&pflags); 2788 2789 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2790 goto retry; 2791 2792 if (!drained) { 2793 drain_all_stock(mem_over_limit); 2794 drained = true; 2795 goto retry; 2796 } 2797 2798 if (gfp_mask & __GFP_NORETRY) 2799 goto nomem; 2800 /* 2801 * Even though the limit is exceeded at this point, reclaim 2802 * may have been able to free some pages. Retry the charge 2803 * before killing the task. 2804 * 2805 * Only for regular pages, though: huge pages are rather 2806 * unlikely to succeed so close to the limit, and we fall back 2807 * to regular pages anyway in case of failure. 2808 */ 2809 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2810 goto retry; 2811 /* 2812 * At task move, charge accounts can be doubly counted. So, it's 2813 * better to wait until the end of task_move if something is going on. 2814 */ 2815 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2816 goto retry; 2817 2818 if (nr_retries--) 2819 goto retry; 2820 2821 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2822 goto nomem; 2823 2824 if (gfp_mask & __GFP_NOFAIL) 2825 goto force; 2826 2827 if (fatal_signal_pending(current)) 2828 goto force; 2829 2830 /* 2831 * keep retrying as long as the memcg oom killer is able to make 2832 * a forward progress or bypass the charge if the oom killer 2833 * couldn't make any progress. 2834 */ 2835 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2836 get_order(nr_pages * PAGE_SIZE)); 2837 switch (oom_status) { 2838 case OOM_SUCCESS: 2839 nr_retries = MAX_RECLAIM_RETRIES; 2840 goto retry; 2841 case OOM_FAILED: 2842 goto force; 2843 default: 2844 goto nomem; 2845 } 2846 nomem: 2847 if (!(gfp_mask & __GFP_NOFAIL)) 2848 return -ENOMEM; 2849 force: 2850 /* 2851 * The allocation either can't fail or will lead to more memory 2852 * being freed very soon. Allow memory usage go over the limit 2853 * temporarily by force charging it. 2854 */ 2855 page_counter_charge(&memcg->memory, nr_pages); 2856 if (do_memsw_account()) 2857 page_counter_charge(&memcg->memsw, nr_pages); 2858 2859 return 0; 2860 2861 done_restock: 2862 if (batch > nr_pages) 2863 refill_stock(memcg, batch - nr_pages); 2864 2865 /* 2866 * If the hierarchy is above the normal consumption range, schedule 2867 * reclaim on returning to userland. We can perform reclaim here 2868 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2869 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2870 * not recorded as it most likely matches current's and won't 2871 * change in the meantime. As high limit is checked again before 2872 * reclaim, the cost of mismatch is negligible. 2873 */ 2874 do { 2875 bool mem_high, swap_high; 2876 2877 mem_high = page_counter_read(&memcg->memory) > 2878 READ_ONCE(memcg->memory.high); 2879 swap_high = page_counter_read(&memcg->swap) > 2880 READ_ONCE(memcg->swap.high); 2881 2882 /* Don't bother a random interrupted task */ 2883 if (in_interrupt()) { 2884 if (mem_high) { 2885 schedule_work(&memcg->high_work); 2886 break; 2887 } 2888 continue; 2889 } 2890 2891 if (mem_high || swap_high) { 2892 /* 2893 * The allocating tasks in this cgroup will need to do 2894 * reclaim or be throttled to prevent further growth 2895 * of the memory or swap footprints. 2896 * 2897 * Target some best-effort fairness between the tasks, 2898 * and distribute reclaim work and delay penalties 2899 * based on how much each task is actually allocating. 2900 */ 2901 current->memcg_nr_pages_over_high += batch; 2902 set_notify_resume(current); 2903 break; 2904 } 2905 } while ((memcg = parent_mem_cgroup(memcg))); 2906 2907 return 0; 2908 } 2909 2910 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2911 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2912 { 2913 if (mem_cgroup_is_root(memcg)) 2914 return; 2915 2916 page_counter_uncharge(&memcg->memory, nr_pages); 2917 if (do_memsw_account()) 2918 page_counter_uncharge(&memcg->memsw, nr_pages); 2919 } 2920 #endif 2921 2922 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2923 { 2924 VM_BUG_ON_PAGE(page_memcg(page), page); 2925 /* 2926 * Any of the following ensures page's memcg stability: 2927 * 2928 * - the page lock 2929 * - LRU isolation 2930 * - lock_page_memcg() 2931 * - exclusive reference 2932 */ 2933 page->memcg_data = (unsigned long)memcg; 2934 } 2935 2936 #ifdef CONFIG_MEMCG_KMEM 2937 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2938 gfp_t gfp) 2939 { 2940 unsigned int objects = objs_per_slab_page(s, page); 2941 void *vec; 2942 2943 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2944 page_to_nid(page)); 2945 if (!vec) 2946 return -ENOMEM; 2947 2948 if (!set_page_objcgs(page, vec)) 2949 kfree(vec); 2950 else 2951 kmemleak_not_leak(vec); 2952 2953 return 0; 2954 } 2955 2956 /* 2957 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2958 * 2959 * A passed kernel object can be a slab object or a generic kernel page, so 2960 * different mechanisms for getting the memory cgroup pointer should be used. 2961 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2962 * can not know for sure how the kernel object is implemented. 2963 * mem_cgroup_from_obj() can be safely used in such cases. 2964 * 2965 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2966 * cgroup_mutex, etc. 2967 */ 2968 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2969 { 2970 struct page *page; 2971 2972 if (mem_cgroup_disabled()) 2973 return NULL; 2974 2975 page = virt_to_head_page(p); 2976 2977 /* 2978 * Slab objects are accounted individually, not per-page. 2979 * Memcg membership data for each individual object is saved in 2980 * the page->obj_cgroups. 2981 */ 2982 if (page_objcgs_check(page)) { 2983 struct obj_cgroup *objcg; 2984 unsigned int off; 2985 2986 off = obj_to_index(page->slab_cache, page, p); 2987 objcg = page_objcgs(page)[off]; 2988 if (objcg) 2989 return obj_cgroup_memcg(objcg); 2990 2991 return NULL; 2992 } 2993 2994 /* 2995 * page_memcg_check() is used here, because page_has_obj_cgroups() 2996 * check above could fail because the object cgroups vector wasn't set 2997 * at that moment, but it can be set concurrently. 2998 * page_memcg_check(page) will guarantee that a proper memory 2999 * cgroup pointer or NULL will be returned. 3000 */ 3001 return page_memcg_check(page); 3002 } 3003 3004 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 3005 { 3006 struct obj_cgroup *objcg = NULL; 3007 struct mem_cgroup *memcg; 3008 3009 if (memcg_kmem_bypass()) 3010 return NULL; 3011 3012 rcu_read_lock(); 3013 if (unlikely(active_memcg())) 3014 memcg = active_memcg(); 3015 else 3016 memcg = mem_cgroup_from_task(current); 3017 3018 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 3019 objcg = rcu_dereference(memcg->objcg); 3020 if (objcg && obj_cgroup_tryget(objcg)) 3021 break; 3022 objcg = NULL; 3023 } 3024 rcu_read_unlock(); 3025 3026 return objcg; 3027 } 3028 3029 static int memcg_alloc_cache_id(void) 3030 { 3031 int id, size; 3032 int err; 3033 3034 id = ida_simple_get(&memcg_cache_ida, 3035 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3036 if (id < 0) 3037 return id; 3038 3039 if (id < memcg_nr_cache_ids) 3040 return id; 3041 3042 /* 3043 * There's no space for the new id in memcg_caches arrays, 3044 * so we have to grow them. 3045 */ 3046 down_write(&memcg_cache_ids_sem); 3047 3048 size = 2 * (id + 1); 3049 if (size < MEMCG_CACHES_MIN_SIZE) 3050 size = MEMCG_CACHES_MIN_SIZE; 3051 else if (size > MEMCG_CACHES_MAX_SIZE) 3052 size = MEMCG_CACHES_MAX_SIZE; 3053 3054 err = memcg_update_all_list_lrus(size); 3055 if (!err) 3056 memcg_nr_cache_ids = size; 3057 3058 up_write(&memcg_cache_ids_sem); 3059 3060 if (err) { 3061 ida_simple_remove(&memcg_cache_ida, id); 3062 return err; 3063 } 3064 return id; 3065 } 3066 3067 static void memcg_free_cache_id(int id) 3068 { 3069 ida_simple_remove(&memcg_cache_ida, id); 3070 } 3071 3072 /** 3073 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 3074 * @memcg: memory cgroup to charge 3075 * @gfp: reclaim mode 3076 * @nr_pages: number of pages to charge 3077 * 3078 * Returns 0 on success, an error code on failure. 3079 */ 3080 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 3081 unsigned int nr_pages) 3082 { 3083 struct page_counter *counter; 3084 int ret; 3085 3086 ret = try_charge(memcg, gfp, nr_pages); 3087 if (ret) 3088 return ret; 3089 3090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 3091 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 3092 3093 /* 3094 * Enforce __GFP_NOFAIL allocation because callers are not 3095 * prepared to see failures and likely do not have any failure 3096 * handling code. 3097 */ 3098 if (gfp & __GFP_NOFAIL) { 3099 page_counter_charge(&memcg->kmem, nr_pages); 3100 return 0; 3101 } 3102 cancel_charge(memcg, nr_pages); 3103 return -ENOMEM; 3104 } 3105 return 0; 3106 } 3107 3108 /** 3109 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 3110 * @memcg: memcg to uncharge 3111 * @nr_pages: number of pages to uncharge 3112 */ 3113 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 3114 { 3115 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3116 page_counter_uncharge(&memcg->kmem, nr_pages); 3117 3118 refill_stock(memcg, nr_pages); 3119 } 3120 3121 /** 3122 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3123 * @page: page to charge 3124 * @gfp: reclaim mode 3125 * @order: allocation order 3126 * 3127 * Returns 0 on success, an error code on failure. 3128 */ 3129 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3130 { 3131 struct mem_cgroup *memcg; 3132 int ret = 0; 3133 3134 memcg = get_mem_cgroup_from_current(); 3135 if (memcg && !mem_cgroup_is_root(memcg)) { 3136 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 3137 if (!ret) { 3138 page->memcg_data = (unsigned long)memcg | 3139 MEMCG_DATA_KMEM; 3140 return 0; 3141 } 3142 css_put(&memcg->css); 3143 } 3144 return ret; 3145 } 3146 3147 /** 3148 * __memcg_kmem_uncharge_page: uncharge a kmem page 3149 * @page: page to uncharge 3150 * @order: allocation order 3151 */ 3152 void __memcg_kmem_uncharge_page(struct page *page, int order) 3153 { 3154 struct mem_cgroup *memcg = page_memcg(page); 3155 unsigned int nr_pages = 1 << order; 3156 3157 if (!memcg) 3158 return; 3159 3160 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3161 __memcg_kmem_uncharge(memcg, nr_pages); 3162 page->memcg_data = 0; 3163 css_put(&memcg->css); 3164 } 3165 3166 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3167 { 3168 struct memcg_stock_pcp *stock; 3169 unsigned long flags; 3170 bool ret = false; 3171 3172 local_irq_save(flags); 3173 3174 stock = this_cpu_ptr(&memcg_stock); 3175 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3176 stock->nr_bytes -= nr_bytes; 3177 ret = true; 3178 } 3179 3180 local_irq_restore(flags); 3181 3182 return ret; 3183 } 3184 3185 static void drain_obj_stock(struct memcg_stock_pcp *stock) 3186 { 3187 struct obj_cgroup *old = stock->cached_objcg; 3188 3189 if (!old) 3190 return; 3191 3192 if (stock->nr_bytes) { 3193 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3194 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3195 3196 if (nr_pages) { 3197 rcu_read_lock(); 3198 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages); 3199 rcu_read_unlock(); 3200 } 3201 3202 /* 3203 * The leftover is flushed to the centralized per-memcg value. 3204 * On the next attempt to refill obj stock it will be moved 3205 * to a per-cpu stock (probably, on an other CPU), see 3206 * refill_obj_stock(). 3207 * 3208 * How often it's flushed is a trade-off between the memory 3209 * limit enforcement accuracy and potential CPU contention, 3210 * so it might be changed in the future. 3211 */ 3212 atomic_add(nr_bytes, &old->nr_charged_bytes); 3213 stock->nr_bytes = 0; 3214 } 3215 3216 obj_cgroup_put(old); 3217 stock->cached_objcg = NULL; 3218 } 3219 3220 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3221 struct mem_cgroup *root_memcg) 3222 { 3223 struct mem_cgroup *memcg; 3224 3225 if (stock->cached_objcg) { 3226 memcg = obj_cgroup_memcg(stock->cached_objcg); 3227 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3228 return true; 3229 } 3230 3231 return false; 3232 } 3233 3234 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3235 { 3236 struct memcg_stock_pcp *stock; 3237 unsigned long flags; 3238 3239 local_irq_save(flags); 3240 3241 stock = this_cpu_ptr(&memcg_stock); 3242 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3243 drain_obj_stock(stock); 3244 obj_cgroup_get(objcg); 3245 stock->cached_objcg = objcg; 3246 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0); 3247 } 3248 stock->nr_bytes += nr_bytes; 3249 3250 if (stock->nr_bytes > PAGE_SIZE) 3251 drain_obj_stock(stock); 3252 3253 local_irq_restore(flags); 3254 } 3255 3256 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3257 { 3258 struct mem_cgroup *memcg; 3259 unsigned int nr_pages, nr_bytes; 3260 int ret; 3261 3262 if (consume_obj_stock(objcg, size)) 3263 return 0; 3264 3265 /* 3266 * In theory, memcg->nr_charged_bytes can have enough 3267 * pre-charged bytes to satisfy the allocation. However, 3268 * flushing memcg->nr_charged_bytes requires two atomic 3269 * operations, and memcg->nr_charged_bytes can't be big, 3270 * so it's better to ignore it and try grab some new pages. 3271 * memcg->nr_charged_bytes will be flushed in 3272 * refill_obj_stock(), called from this function or 3273 * independently later. 3274 */ 3275 rcu_read_lock(); 3276 retry: 3277 memcg = obj_cgroup_memcg(objcg); 3278 if (unlikely(!css_tryget(&memcg->css))) 3279 goto retry; 3280 rcu_read_unlock(); 3281 3282 nr_pages = size >> PAGE_SHIFT; 3283 nr_bytes = size & (PAGE_SIZE - 1); 3284 3285 if (nr_bytes) 3286 nr_pages += 1; 3287 3288 ret = __memcg_kmem_charge(memcg, gfp, nr_pages); 3289 if (!ret && nr_bytes) 3290 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes); 3291 3292 css_put(&memcg->css); 3293 return ret; 3294 } 3295 3296 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3297 { 3298 refill_obj_stock(objcg, size); 3299 } 3300 3301 #endif /* CONFIG_MEMCG_KMEM */ 3302 3303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3304 /* 3305 * Because page_memcg(head) is not set on compound tails, set it now. 3306 */ 3307 void mem_cgroup_split_huge_fixup(struct page *head) 3308 { 3309 struct mem_cgroup *memcg = page_memcg(head); 3310 int i; 3311 3312 if (mem_cgroup_disabled()) 3313 return; 3314 3315 for (i = 1; i < HPAGE_PMD_NR; i++) { 3316 css_get(&memcg->css); 3317 head[i].memcg_data = (unsigned long)memcg; 3318 } 3319 } 3320 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3321 3322 #ifdef CONFIG_MEMCG_SWAP 3323 /** 3324 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3325 * @entry: swap entry to be moved 3326 * @from: mem_cgroup which the entry is moved from 3327 * @to: mem_cgroup which the entry is moved to 3328 * 3329 * It succeeds only when the swap_cgroup's record for this entry is the same 3330 * as the mem_cgroup's id of @from. 3331 * 3332 * Returns 0 on success, -EINVAL on failure. 3333 * 3334 * The caller must have charged to @to, IOW, called page_counter_charge() about 3335 * both res and memsw, and called css_get(). 3336 */ 3337 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3338 struct mem_cgroup *from, struct mem_cgroup *to) 3339 { 3340 unsigned short old_id, new_id; 3341 3342 old_id = mem_cgroup_id(from); 3343 new_id = mem_cgroup_id(to); 3344 3345 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3346 mod_memcg_state(from, MEMCG_SWAP, -1); 3347 mod_memcg_state(to, MEMCG_SWAP, 1); 3348 return 0; 3349 } 3350 return -EINVAL; 3351 } 3352 #else 3353 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3354 struct mem_cgroup *from, struct mem_cgroup *to) 3355 { 3356 return -EINVAL; 3357 } 3358 #endif 3359 3360 static DEFINE_MUTEX(memcg_max_mutex); 3361 3362 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3363 unsigned long max, bool memsw) 3364 { 3365 bool enlarge = false; 3366 bool drained = false; 3367 int ret; 3368 bool limits_invariant; 3369 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3370 3371 do { 3372 if (signal_pending(current)) { 3373 ret = -EINTR; 3374 break; 3375 } 3376 3377 mutex_lock(&memcg_max_mutex); 3378 /* 3379 * Make sure that the new limit (memsw or memory limit) doesn't 3380 * break our basic invariant rule memory.max <= memsw.max. 3381 */ 3382 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3383 max <= memcg->memsw.max; 3384 if (!limits_invariant) { 3385 mutex_unlock(&memcg_max_mutex); 3386 ret = -EINVAL; 3387 break; 3388 } 3389 if (max > counter->max) 3390 enlarge = true; 3391 ret = page_counter_set_max(counter, max); 3392 mutex_unlock(&memcg_max_mutex); 3393 3394 if (!ret) 3395 break; 3396 3397 if (!drained) { 3398 drain_all_stock(memcg); 3399 drained = true; 3400 continue; 3401 } 3402 3403 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3404 GFP_KERNEL, !memsw)) { 3405 ret = -EBUSY; 3406 break; 3407 } 3408 } while (true); 3409 3410 if (!ret && enlarge) 3411 memcg_oom_recover(memcg); 3412 3413 return ret; 3414 } 3415 3416 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3417 gfp_t gfp_mask, 3418 unsigned long *total_scanned) 3419 { 3420 unsigned long nr_reclaimed = 0; 3421 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3422 unsigned long reclaimed; 3423 int loop = 0; 3424 struct mem_cgroup_tree_per_node *mctz; 3425 unsigned long excess; 3426 unsigned long nr_scanned; 3427 3428 if (order > 0) 3429 return 0; 3430 3431 mctz = soft_limit_tree_node(pgdat->node_id); 3432 3433 /* 3434 * Do not even bother to check the largest node if the root 3435 * is empty. Do it lockless to prevent lock bouncing. Races 3436 * are acceptable as soft limit is best effort anyway. 3437 */ 3438 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3439 return 0; 3440 3441 /* 3442 * This loop can run a while, specially if mem_cgroup's continuously 3443 * keep exceeding their soft limit and putting the system under 3444 * pressure 3445 */ 3446 do { 3447 if (next_mz) 3448 mz = next_mz; 3449 else 3450 mz = mem_cgroup_largest_soft_limit_node(mctz); 3451 if (!mz) 3452 break; 3453 3454 nr_scanned = 0; 3455 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3456 gfp_mask, &nr_scanned); 3457 nr_reclaimed += reclaimed; 3458 *total_scanned += nr_scanned; 3459 spin_lock_irq(&mctz->lock); 3460 __mem_cgroup_remove_exceeded(mz, mctz); 3461 3462 /* 3463 * If we failed to reclaim anything from this memory cgroup 3464 * it is time to move on to the next cgroup 3465 */ 3466 next_mz = NULL; 3467 if (!reclaimed) 3468 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3469 3470 excess = soft_limit_excess(mz->memcg); 3471 /* 3472 * One school of thought says that we should not add 3473 * back the node to the tree if reclaim returns 0. 3474 * But our reclaim could return 0, simply because due 3475 * to priority we are exposing a smaller subset of 3476 * memory to reclaim from. Consider this as a longer 3477 * term TODO. 3478 */ 3479 /* If excess == 0, no tree ops */ 3480 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3481 spin_unlock_irq(&mctz->lock); 3482 css_put(&mz->memcg->css); 3483 loop++; 3484 /* 3485 * Could not reclaim anything and there are no more 3486 * mem cgroups to try or we seem to be looping without 3487 * reclaiming anything. 3488 */ 3489 if (!nr_reclaimed && 3490 (next_mz == NULL || 3491 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3492 break; 3493 } while (!nr_reclaimed); 3494 if (next_mz) 3495 css_put(&next_mz->memcg->css); 3496 return nr_reclaimed; 3497 } 3498 3499 /* 3500 * Reclaims as many pages from the given memcg as possible. 3501 * 3502 * Caller is responsible for holding css reference for memcg. 3503 */ 3504 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3505 { 3506 int nr_retries = MAX_RECLAIM_RETRIES; 3507 3508 /* we call try-to-free pages for make this cgroup empty */ 3509 lru_add_drain_all(); 3510 3511 drain_all_stock(memcg); 3512 3513 /* try to free all pages in this cgroup */ 3514 while (nr_retries && page_counter_read(&memcg->memory)) { 3515 int progress; 3516 3517 if (signal_pending(current)) 3518 return -EINTR; 3519 3520 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3521 GFP_KERNEL, true); 3522 if (!progress) { 3523 nr_retries--; 3524 /* maybe some writeback is necessary */ 3525 congestion_wait(BLK_RW_ASYNC, HZ/10); 3526 } 3527 3528 } 3529 3530 return 0; 3531 } 3532 3533 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3534 char *buf, size_t nbytes, 3535 loff_t off) 3536 { 3537 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3538 3539 if (mem_cgroup_is_root(memcg)) 3540 return -EINVAL; 3541 return mem_cgroup_force_empty(memcg) ?: nbytes; 3542 } 3543 3544 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3545 struct cftype *cft) 3546 { 3547 return 1; 3548 } 3549 3550 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3551 struct cftype *cft, u64 val) 3552 { 3553 if (val == 1) 3554 return 0; 3555 3556 pr_warn_once("Non-hierarchical mode is deprecated. " 3557 "Please report your usecase to linux-mm@kvack.org if you " 3558 "depend on this functionality.\n"); 3559 3560 return -EINVAL; 3561 } 3562 3563 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3564 { 3565 unsigned long val; 3566 3567 if (mem_cgroup_is_root(memcg)) { 3568 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3569 memcg_page_state(memcg, NR_ANON_MAPPED); 3570 if (swap) 3571 val += memcg_page_state(memcg, MEMCG_SWAP); 3572 } else { 3573 if (!swap) 3574 val = page_counter_read(&memcg->memory); 3575 else 3576 val = page_counter_read(&memcg->memsw); 3577 } 3578 return val; 3579 } 3580 3581 enum { 3582 RES_USAGE, 3583 RES_LIMIT, 3584 RES_MAX_USAGE, 3585 RES_FAILCNT, 3586 RES_SOFT_LIMIT, 3587 }; 3588 3589 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3590 struct cftype *cft) 3591 { 3592 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3593 struct page_counter *counter; 3594 3595 switch (MEMFILE_TYPE(cft->private)) { 3596 case _MEM: 3597 counter = &memcg->memory; 3598 break; 3599 case _MEMSWAP: 3600 counter = &memcg->memsw; 3601 break; 3602 case _KMEM: 3603 counter = &memcg->kmem; 3604 break; 3605 case _TCP: 3606 counter = &memcg->tcpmem; 3607 break; 3608 default: 3609 BUG(); 3610 } 3611 3612 switch (MEMFILE_ATTR(cft->private)) { 3613 case RES_USAGE: 3614 if (counter == &memcg->memory) 3615 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3616 if (counter == &memcg->memsw) 3617 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3618 return (u64)page_counter_read(counter) * PAGE_SIZE; 3619 case RES_LIMIT: 3620 return (u64)counter->max * PAGE_SIZE; 3621 case RES_MAX_USAGE: 3622 return (u64)counter->watermark * PAGE_SIZE; 3623 case RES_FAILCNT: 3624 return counter->failcnt; 3625 case RES_SOFT_LIMIT: 3626 return (u64)memcg->soft_limit * PAGE_SIZE; 3627 default: 3628 BUG(); 3629 } 3630 } 3631 3632 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3633 { 3634 unsigned long stat[MEMCG_NR_STAT] = {0}; 3635 struct mem_cgroup *mi; 3636 int node, cpu, i; 3637 3638 for_each_online_cpu(cpu) 3639 for (i = 0; i < MEMCG_NR_STAT; i++) 3640 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3641 3642 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3643 for (i = 0; i < MEMCG_NR_STAT; i++) 3644 atomic_long_add(stat[i], &mi->vmstats[i]); 3645 3646 for_each_node(node) { 3647 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3648 struct mem_cgroup_per_node *pi; 3649 3650 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3651 stat[i] = 0; 3652 3653 for_each_online_cpu(cpu) 3654 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3655 stat[i] += per_cpu( 3656 pn->lruvec_stat_cpu->count[i], cpu); 3657 3658 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3659 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3660 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3661 } 3662 } 3663 3664 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3665 { 3666 unsigned long events[NR_VM_EVENT_ITEMS]; 3667 struct mem_cgroup *mi; 3668 int cpu, i; 3669 3670 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3671 events[i] = 0; 3672 3673 for_each_online_cpu(cpu) 3674 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3675 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3676 cpu); 3677 3678 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3679 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3680 atomic_long_add(events[i], &mi->vmevents[i]); 3681 } 3682 3683 #ifdef CONFIG_MEMCG_KMEM 3684 static int memcg_online_kmem(struct mem_cgroup *memcg) 3685 { 3686 struct obj_cgroup *objcg; 3687 int memcg_id; 3688 3689 if (cgroup_memory_nokmem) 3690 return 0; 3691 3692 BUG_ON(memcg->kmemcg_id >= 0); 3693 BUG_ON(memcg->kmem_state); 3694 3695 memcg_id = memcg_alloc_cache_id(); 3696 if (memcg_id < 0) 3697 return memcg_id; 3698 3699 objcg = obj_cgroup_alloc(); 3700 if (!objcg) { 3701 memcg_free_cache_id(memcg_id); 3702 return -ENOMEM; 3703 } 3704 objcg->memcg = memcg; 3705 rcu_assign_pointer(memcg->objcg, objcg); 3706 3707 static_branch_enable(&memcg_kmem_enabled_key); 3708 3709 memcg->kmemcg_id = memcg_id; 3710 memcg->kmem_state = KMEM_ONLINE; 3711 3712 return 0; 3713 } 3714 3715 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3716 { 3717 struct cgroup_subsys_state *css; 3718 struct mem_cgroup *parent, *child; 3719 int kmemcg_id; 3720 3721 if (memcg->kmem_state != KMEM_ONLINE) 3722 return; 3723 3724 memcg->kmem_state = KMEM_ALLOCATED; 3725 3726 parent = parent_mem_cgroup(memcg); 3727 if (!parent) 3728 parent = root_mem_cgroup; 3729 3730 memcg_reparent_objcgs(memcg, parent); 3731 3732 kmemcg_id = memcg->kmemcg_id; 3733 BUG_ON(kmemcg_id < 0); 3734 3735 /* 3736 * Change kmemcg_id of this cgroup and all its descendants to the 3737 * parent's id, and then move all entries from this cgroup's list_lrus 3738 * to ones of the parent. After we have finished, all list_lrus 3739 * corresponding to this cgroup are guaranteed to remain empty. The 3740 * ordering is imposed by list_lru_node->lock taken by 3741 * memcg_drain_all_list_lrus(). 3742 */ 3743 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3744 css_for_each_descendant_pre(css, &memcg->css) { 3745 child = mem_cgroup_from_css(css); 3746 BUG_ON(child->kmemcg_id != kmemcg_id); 3747 child->kmemcg_id = parent->kmemcg_id; 3748 } 3749 rcu_read_unlock(); 3750 3751 memcg_drain_all_list_lrus(kmemcg_id, parent); 3752 3753 memcg_free_cache_id(kmemcg_id); 3754 } 3755 3756 static void memcg_free_kmem(struct mem_cgroup *memcg) 3757 { 3758 /* css_alloc() failed, offlining didn't happen */ 3759 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3760 memcg_offline_kmem(memcg); 3761 } 3762 #else 3763 static int memcg_online_kmem(struct mem_cgroup *memcg) 3764 { 3765 return 0; 3766 } 3767 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3768 { 3769 } 3770 static void memcg_free_kmem(struct mem_cgroup *memcg) 3771 { 3772 } 3773 #endif /* CONFIG_MEMCG_KMEM */ 3774 3775 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3776 unsigned long max) 3777 { 3778 int ret; 3779 3780 mutex_lock(&memcg_max_mutex); 3781 ret = page_counter_set_max(&memcg->kmem, max); 3782 mutex_unlock(&memcg_max_mutex); 3783 return ret; 3784 } 3785 3786 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3787 { 3788 int ret; 3789 3790 mutex_lock(&memcg_max_mutex); 3791 3792 ret = page_counter_set_max(&memcg->tcpmem, max); 3793 if (ret) 3794 goto out; 3795 3796 if (!memcg->tcpmem_active) { 3797 /* 3798 * The active flag needs to be written after the static_key 3799 * update. This is what guarantees that the socket activation 3800 * function is the last one to run. See mem_cgroup_sk_alloc() 3801 * for details, and note that we don't mark any socket as 3802 * belonging to this memcg until that flag is up. 3803 * 3804 * We need to do this, because static_keys will span multiple 3805 * sites, but we can't control their order. If we mark a socket 3806 * as accounted, but the accounting functions are not patched in 3807 * yet, we'll lose accounting. 3808 * 3809 * We never race with the readers in mem_cgroup_sk_alloc(), 3810 * because when this value change, the code to process it is not 3811 * patched in yet. 3812 */ 3813 static_branch_inc(&memcg_sockets_enabled_key); 3814 memcg->tcpmem_active = true; 3815 } 3816 out: 3817 mutex_unlock(&memcg_max_mutex); 3818 return ret; 3819 } 3820 3821 /* 3822 * The user of this function is... 3823 * RES_LIMIT. 3824 */ 3825 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3826 char *buf, size_t nbytes, loff_t off) 3827 { 3828 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3829 unsigned long nr_pages; 3830 int ret; 3831 3832 buf = strstrip(buf); 3833 ret = page_counter_memparse(buf, "-1", &nr_pages); 3834 if (ret) 3835 return ret; 3836 3837 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3838 case RES_LIMIT: 3839 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3840 ret = -EINVAL; 3841 break; 3842 } 3843 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3844 case _MEM: 3845 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3846 break; 3847 case _MEMSWAP: 3848 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3849 break; 3850 case _KMEM: 3851 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3852 "Please report your usecase to linux-mm@kvack.org if you " 3853 "depend on this functionality.\n"); 3854 ret = memcg_update_kmem_max(memcg, nr_pages); 3855 break; 3856 case _TCP: 3857 ret = memcg_update_tcp_max(memcg, nr_pages); 3858 break; 3859 } 3860 break; 3861 case RES_SOFT_LIMIT: 3862 memcg->soft_limit = nr_pages; 3863 ret = 0; 3864 break; 3865 } 3866 return ret ?: nbytes; 3867 } 3868 3869 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3870 size_t nbytes, loff_t off) 3871 { 3872 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3873 struct page_counter *counter; 3874 3875 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3876 case _MEM: 3877 counter = &memcg->memory; 3878 break; 3879 case _MEMSWAP: 3880 counter = &memcg->memsw; 3881 break; 3882 case _KMEM: 3883 counter = &memcg->kmem; 3884 break; 3885 case _TCP: 3886 counter = &memcg->tcpmem; 3887 break; 3888 default: 3889 BUG(); 3890 } 3891 3892 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3893 case RES_MAX_USAGE: 3894 page_counter_reset_watermark(counter); 3895 break; 3896 case RES_FAILCNT: 3897 counter->failcnt = 0; 3898 break; 3899 default: 3900 BUG(); 3901 } 3902 3903 return nbytes; 3904 } 3905 3906 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3907 struct cftype *cft) 3908 { 3909 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3910 } 3911 3912 #ifdef CONFIG_MMU 3913 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3914 struct cftype *cft, u64 val) 3915 { 3916 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3917 3918 if (val & ~MOVE_MASK) 3919 return -EINVAL; 3920 3921 /* 3922 * No kind of locking is needed in here, because ->can_attach() will 3923 * check this value once in the beginning of the process, and then carry 3924 * on with stale data. This means that changes to this value will only 3925 * affect task migrations starting after the change. 3926 */ 3927 memcg->move_charge_at_immigrate = val; 3928 return 0; 3929 } 3930 #else 3931 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3932 struct cftype *cft, u64 val) 3933 { 3934 return -ENOSYS; 3935 } 3936 #endif 3937 3938 #ifdef CONFIG_NUMA 3939 3940 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3941 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3942 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3943 3944 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3945 int nid, unsigned int lru_mask, bool tree) 3946 { 3947 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3948 unsigned long nr = 0; 3949 enum lru_list lru; 3950 3951 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3952 3953 for_each_lru(lru) { 3954 if (!(BIT(lru) & lru_mask)) 3955 continue; 3956 if (tree) 3957 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3958 else 3959 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3960 } 3961 return nr; 3962 } 3963 3964 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3965 unsigned int lru_mask, 3966 bool tree) 3967 { 3968 unsigned long nr = 0; 3969 enum lru_list lru; 3970 3971 for_each_lru(lru) { 3972 if (!(BIT(lru) & lru_mask)) 3973 continue; 3974 if (tree) 3975 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3976 else 3977 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3978 } 3979 return nr; 3980 } 3981 3982 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3983 { 3984 struct numa_stat { 3985 const char *name; 3986 unsigned int lru_mask; 3987 }; 3988 3989 static const struct numa_stat stats[] = { 3990 { "total", LRU_ALL }, 3991 { "file", LRU_ALL_FILE }, 3992 { "anon", LRU_ALL_ANON }, 3993 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3994 }; 3995 const struct numa_stat *stat; 3996 int nid; 3997 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3998 3999 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4000 seq_printf(m, "%s=%lu", stat->name, 4001 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4002 false)); 4003 for_each_node_state(nid, N_MEMORY) 4004 seq_printf(m, " N%d=%lu", nid, 4005 mem_cgroup_node_nr_lru_pages(memcg, nid, 4006 stat->lru_mask, false)); 4007 seq_putc(m, '\n'); 4008 } 4009 4010 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4011 4012 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4013 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4014 true)); 4015 for_each_node_state(nid, N_MEMORY) 4016 seq_printf(m, " N%d=%lu", nid, 4017 mem_cgroup_node_nr_lru_pages(memcg, nid, 4018 stat->lru_mask, true)); 4019 seq_putc(m, '\n'); 4020 } 4021 4022 return 0; 4023 } 4024 #endif /* CONFIG_NUMA */ 4025 4026 static const unsigned int memcg1_stats[] = { 4027 NR_FILE_PAGES, 4028 NR_ANON_MAPPED, 4029 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4030 NR_ANON_THPS, 4031 #endif 4032 NR_SHMEM, 4033 NR_FILE_MAPPED, 4034 NR_FILE_DIRTY, 4035 NR_WRITEBACK, 4036 MEMCG_SWAP, 4037 }; 4038 4039 static const char *const memcg1_stat_names[] = { 4040 "cache", 4041 "rss", 4042 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4043 "rss_huge", 4044 #endif 4045 "shmem", 4046 "mapped_file", 4047 "dirty", 4048 "writeback", 4049 "swap", 4050 }; 4051 4052 /* Universal VM events cgroup1 shows, original sort order */ 4053 static const unsigned int memcg1_events[] = { 4054 PGPGIN, 4055 PGPGOUT, 4056 PGFAULT, 4057 PGMAJFAULT, 4058 }; 4059 4060 static int memcg_stat_show(struct seq_file *m, void *v) 4061 { 4062 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4063 unsigned long memory, memsw; 4064 struct mem_cgroup *mi; 4065 unsigned int i; 4066 4067 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4068 4069 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4070 unsigned long nr; 4071 4072 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4073 continue; 4074 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4076 if (memcg1_stats[i] == NR_ANON_THPS) 4077 nr *= HPAGE_PMD_NR; 4078 #endif 4079 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 4080 } 4081 4082 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4083 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4084 memcg_events_local(memcg, memcg1_events[i])); 4085 4086 for (i = 0; i < NR_LRU_LISTS; i++) 4087 seq_printf(m, "%s %lu\n", lru_list_name(i), 4088 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4089 PAGE_SIZE); 4090 4091 /* Hierarchical information */ 4092 memory = memsw = PAGE_COUNTER_MAX; 4093 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4094 memory = min(memory, READ_ONCE(mi->memory.max)); 4095 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4096 } 4097 seq_printf(m, "hierarchical_memory_limit %llu\n", 4098 (u64)memory * PAGE_SIZE); 4099 if (do_memsw_account()) 4100 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4101 (u64)memsw * PAGE_SIZE); 4102 4103 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4104 unsigned long nr; 4105 4106 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4107 continue; 4108 nr = memcg_page_state(memcg, memcg1_stats[i]); 4109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4110 if (memcg1_stats[i] == NR_ANON_THPS) 4111 nr *= HPAGE_PMD_NR; 4112 #endif 4113 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4114 (u64)nr * PAGE_SIZE); 4115 } 4116 4117 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4118 seq_printf(m, "total_%s %llu\n", 4119 vm_event_name(memcg1_events[i]), 4120 (u64)memcg_events(memcg, memcg1_events[i])); 4121 4122 for (i = 0; i < NR_LRU_LISTS; i++) 4123 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4124 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4125 PAGE_SIZE); 4126 4127 #ifdef CONFIG_DEBUG_VM 4128 { 4129 pg_data_t *pgdat; 4130 struct mem_cgroup_per_node *mz; 4131 unsigned long anon_cost = 0; 4132 unsigned long file_cost = 0; 4133 4134 for_each_online_pgdat(pgdat) { 4135 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 4136 4137 anon_cost += mz->lruvec.anon_cost; 4138 file_cost += mz->lruvec.file_cost; 4139 } 4140 seq_printf(m, "anon_cost %lu\n", anon_cost); 4141 seq_printf(m, "file_cost %lu\n", file_cost); 4142 } 4143 #endif 4144 4145 return 0; 4146 } 4147 4148 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4149 struct cftype *cft) 4150 { 4151 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4152 4153 return mem_cgroup_swappiness(memcg); 4154 } 4155 4156 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4157 struct cftype *cft, u64 val) 4158 { 4159 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4160 4161 if (val > 100) 4162 return -EINVAL; 4163 4164 if (css->parent) 4165 memcg->swappiness = val; 4166 else 4167 vm_swappiness = val; 4168 4169 return 0; 4170 } 4171 4172 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4173 { 4174 struct mem_cgroup_threshold_ary *t; 4175 unsigned long usage; 4176 int i; 4177 4178 rcu_read_lock(); 4179 if (!swap) 4180 t = rcu_dereference(memcg->thresholds.primary); 4181 else 4182 t = rcu_dereference(memcg->memsw_thresholds.primary); 4183 4184 if (!t) 4185 goto unlock; 4186 4187 usage = mem_cgroup_usage(memcg, swap); 4188 4189 /* 4190 * current_threshold points to threshold just below or equal to usage. 4191 * If it's not true, a threshold was crossed after last 4192 * call of __mem_cgroup_threshold(). 4193 */ 4194 i = t->current_threshold; 4195 4196 /* 4197 * Iterate backward over array of thresholds starting from 4198 * current_threshold and check if a threshold is crossed. 4199 * If none of thresholds below usage is crossed, we read 4200 * only one element of the array here. 4201 */ 4202 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4203 eventfd_signal(t->entries[i].eventfd, 1); 4204 4205 /* i = current_threshold + 1 */ 4206 i++; 4207 4208 /* 4209 * Iterate forward over array of thresholds starting from 4210 * current_threshold+1 and check if a threshold is crossed. 4211 * If none of thresholds above usage is crossed, we read 4212 * only one element of the array here. 4213 */ 4214 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4215 eventfd_signal(t->entries[i].eventfd, 1); 4216 4217 /* Update current_threshold */ 4218 t->current_threshold = i - 1; 4219 unlock: 4220 rcu_read_unlock(); 4221 } 4222 4223 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4224 { 4225 while (memcg) { 4226 __mem_cgroup_threshold(memcg, false); 4227 if (do_memsw_account()) 4228 __mem_cgroup_threshold(memcg, true); 4229 4230 memcg = parent_mem_cgroup(memcg); 4231 } 4232 } 4233 4234 static int compare_thresholds(const void *a, const void *b) 4235 { 4236 const struct mem_cgroup_threshold *_a = a; 4237 const struct mem_cgroup_threshold *_b = b; 4238 4239 if (_a->threshold > _b->threshold) 4240 return 1; 4241 4242 if (_a->threshold < _b->threshold) 4243 return -1; 4244 4245 return 0; 4246 } 4247 4248 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4249 { 4250 struct mem_cgroup_eventfd_list *ev; 4251 4252 spin_lock(&memcg_oom_lock); 4253 4254 list_for_each_entry(ev, &memcg->oom_notify, list) 4255 eventfd_signal(ev->eventfd, 1); 4256 4257 spin_unlock(&memcg_oom_lock); 4258 return 0; 4259 } 4260 4261 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4262 { 4263 struct mem_cgroup *iter; 4264 4265 for_each_mem_cgroup_tree(iter, memcg) 4266 mem_cgroup_oom_notify_cb(iter); 4267 } 4268 4269 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4270 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4271 { 4272 struct mem_cgroup_thresholds *thresholds; 4273 struct mem_cgroup_threshold_ary *new; 4274 unsigned long threshold; 4275 unsigned long usage; 4276 int i, size, ret; 4277 4278 ret = page_counter_memparse(args, "-1", &threshold); 4279 if (ret) 4280 return ret; 4281 4282 mutex_lock(&memcg->thresholds_lock); 4283 4284 if (type == _MEM) { 4285 thresholds = &memcg->thresholds; 4286 usage = mem_cgroup_usage(memcg, false); 4287 } else if (type == _MEMSWAP) { 4288 thresholds = &memcg->memsw_thresholds; 4289 usage = mem_cgroup_usage(memcg, true); 4290 } else 4291 BUG(); 4292 4293 /* Check if a threshold crossed before adding a new one */ 4294 if (thresholds->primary) 4295 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4296 4297 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4298 4299 /* Allocate memory for new array of thresholds */ 4300 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4301 if (!new) { 4302 ret = -ENOMEM; 4303 goto unlock; 4304 } 4305 new->size = size; 4306 4307 /* Copy thresholds (if any) to new array */ 4308 if (thresholds->primary) 4309 memcpy(new->entries, thresholds->primary->entries, 4310 flex_array_size(new, entries, size - 1)); 4311 4312 /* Add new threshold */ 4313 new->entries[size - 1].eventfd = eventfd; 4314 new->entries[size - 1].threshold = threshold; 4315 4316 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4317 sort(new->entries, size, sizeof(*new->entries), 4318 compare_thresholds, NULL); 4319 4320 /* Find current threshold */ 4321 new->current_threshold = -1; 4322 for (i = 0; i < size; i++) { 4323 if (new->entries[i].threshold <= usage) { 4324 /* 4325 * new->current_threshold will not be used until 4326 * rcu_assign_pointer(), so it's safe to increment 4327 * it here. 4328 */ 4329 ++new->current_threshold; 4330 } else 4331 break; 4332 } 4333 4334 /* Free old spare buffer and save old primary buffer as spare */ 4335 kfree(thresholds->spare); 4336 thresholds->spare = thresholds->primary; 4337 4338 rcu_assign_pointer(thresholds->primary, new); 4339 4340 /* To be sure that nobody uses thresholds */ 4341 synchronize_rcu(); 4342 4343 unlock: 4344 mutex_unlock(&memcg->thresholds_lock); 4345 4346 return ret; 4347 } 4348 4349 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4350 struct eventfd_ctx *eventfd, const char *args) 4351 { 4352 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4353 } 4354 4355 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4356 struct eventfd_ctx *eventfd, const char *args) 4357 { 4358 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4359 } 4360 4361 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4362 struct eventfd_ctx *eventfd, enum res_type type) 4363 { 4364 struct mem_cgroup_thresholds *thresholds; 4365 struct mem_cgroup_threshold_ary *new; 4366 unsigned long usage; 4367 int i, j, size, entries; 4368 4369 mutex_lock(&memcg->thresholds_lock); 4370 4371 if (type == _MEM) { 4372 thresholds = &memcg->thresholds; 4373 usage = mem_cgroup_usage(memcg, false); 4374 } else if (type == _MEMSWAP) { 4375 thresholds = &memcg->memsw_thresholds; 4376 usage = mem_cgroup_usage(memcg, true); 4377 } else 4378 BUG(); 4379 4380 if (!thresholds->primary) 4381 goto unlock; 4382 4383 /* Check if a threshold crossed before removing */ 4384 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4385 4386 /* Calculate new number of threshold */ 4387 size = entries = 0; 4388 for (i = 0; i < thresholds->primary->size; i++) { 4389 if (thresholds->primary->entries[i].eventfd != eventfd) 4390 size++; 4391 else 4392 entries++; 4393 } 4394 4395 new = thresholds->spare; 4396 4397 /* If no items related to eventfd have been cleared, nothing to do */ 4398 if (!entries) 4399 goto unlock; 4400 4401 /* Set thresholds array to NULL if we don't have thresholds */ 4402 if (!size) { 4403 kfree(new); 4404 new = NULL; 4405 goto swap_buffers; 4406 } 4407 4408 new->size = size; 4409 4410 /* Copy thresholds and find current threshold */ 4411 new->current_threshold = -1; 4412 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4413 if (thresholds->primary->entries[i].eventfd == eventfd) 4414 continue; 4415 4416 new->entries[j] = thresholds->primary->entries[i]; 4417 if (new->entries[j].threshold <= usage) { 4418 /* 4419 * new->current_threshold will not be used 4420 * until rcu_assign_pointer(), so it's safe to increment 4421 * it here. 4422 */ 4423 ++new->current_threshold; 4424 } 4425 j++; 4426 } 4427 4428 swap_buffers: 4429 /* Swap primary and spare array */ 4430 thresholds->spare = thresholds->primary; 4431 4432 rcu_assign_pointer(thresholds->primary, new); 4433 4434 /* To be sure that nobody uses thresholds */ 4435 synchronize_rcu(); 4436 4437 /* If all events are unregistered, free the spare array */ 4438 if (!new) { 4439 kfree(thresholds->spare); 4440 thresholds->spare = NULL; 4441 } 4442 unlock: 4443 mutex_unlock(&memcg->thresholds_lock); 4444 } 4445 4446 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4447 struct eventfd_ctx *eventfd) 4448 { 4449 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4450 } 4451 4452 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4453 struct eventfd_ctx *eventfd) 4454 { 4455 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4456 } 4457 4458 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4459 struct eventfd_ctx *eventfd, const char *args) 4460 { 4461 struct mem_cgroup_eventfd_list *event; 4462 4463 event = kmalloc(sizeof(*event), GFP_KERNEL); 4464 if (!event) 4465 return -ENOMEM; 4466 4467 spin_lock(&memcg_oom_lock); 4468 4469 event->eventfd = eventfd; 4470 list_add(&event->list, &memcg->oom_notify); 4471 4472 /* already in OOM ? */ 4473 if (memcg->under_oom) 4474 eventfd_signal(eventfd, 1); 4475 spin_unlock(&memcg_oom_lock); 4476 4477 return 0; 4478 } 4479 4480 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4481 struct eventfd_ctx *eventfd) 4482 { 4483 struct mem_cgroup_eventfd_list *ev, *tmp; 4484 4485 spin_lock(&memcg_oom_lock); 4486 4487 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4488 if (ev->eventfd == eventfd) { 4489 list_del(&ev->list); 4490 kfree(ev); 4491 } 4492 } 4493 4494 spin_unlock(&memcg_oom_lock); 4495 } 4496 4497 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4498 { 4499 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4500 4501 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4502 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4503 seq_printf(sf, "oom_kill %lu\n", 4504 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4505 return 0; 4506 } 4507 4508 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4509 struct cftype *cft, u64 val) 4510 { 4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4512 4513 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4514 if (!css->parent || !((val == 0) || (val == 1))) 4515 return -EINVAL; 4516 4517 memcg->oom_kill_disable = val; 4518 if (!val) 4519 memcg_oom_recover(memcg); 4520 4521 return 0; 4522 } 4523 4524 #ifdef CONFIG_CGROUP_WRITEBACK 4525 4526 #include <trace/events/writeback.h> 4527 4528 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4529 { 4530 return wb_domain_init(&memcg->cgwb_domain, gfp); 4531 } 4532 4533 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4534 { 4535 wb_domain_exit(&memcg->cgwb_domain); 4536 } 4537 4538 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4539 { 4540 wb_domain_size_changed(&memcg->cgwb_domain); 4541 } 4542 4543 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4544 { 4545 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4546 4547 if (!memcg->css.parent) 4548 return NULL; 4549 4550 return &memcg->cgwb_domain; 4551 } 4552 4553 /* 4554 * idx can be of type enum memcg_stat_item or node_stat_item. 4555 * Keep in sync with memcg_exact_page(). 4556 */ 4557 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4558 { 4559 long x = atomic_long_read(&memcg->vmstats[idx]); 4560 int cpu; 4561 4562 for_each_online_cpu(cpu) 4563 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4564 if (x < 0) 4565 x = 0; 4566 return x; 4567 } 4568 4569 /** 4570 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4571 * @wb: bdi_writeback in question 4572 * @pfilepages: out parameter for number of file pages 4573 * @pheadroom: out parameter for number of allocatable pages according to memcg 4574 * @pdirty: out parameter for number of dirty pages 4575 * @pwriteback: out parameter for number of pages under writeback 4576 * 4577 * Determine the numbers of file, headroom, dirty, and writeback pages in 4578 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4579 * is a bit more involved. 4580 * 4581 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4582 * headroom is calculated as the lowest headroom of itself and the 4583 * ancestors. Note that this doesn't consider the actual amount of 4584 * available memory in the system. The caller should further cap 4585 * *@pheadroom accordingly. 4586 */ 4587 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4588 unsigned long *pheadroom, unsigned long *pdirty, 4589 unsigned long *pwriteback) 4590 { 4591 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4592 struct mem_cgroup *parent; 4593 4594 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4595 4596 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4597 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4598 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4599 *pheadroom = PAGE_COUNTER_MAX; 4600 4601 while ((parent = parent_mem_cgroup(memcg))) { 4602 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4603 READ_ONCE(memcg->memory.high)); 4604 unsigned long used = page_counter_read(&memcg->memory); 4605 4606 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4607 memcg = parent; 4608 } 4609 } 4610 4611 /* 4612 * Foreign dirty flushing 4613 * 4614 * There's an inherent mismatch between memcg and writeback. The former 4615 * trackes ownership per-page while the latter per-inode. This was a 4616 * deliberate design decision because honoring per-page ownership in the 4617 * writeback path is complicated, may lead to higher CPU and IO overheads 4618 * and deemed unnecessary given that write-sharing an inode across 4619 * different cgroups isn't a common use-case. 4620 * 4621 * Combined with inode majority-writer ownership switching, this works well 4622 * enough in most cases but there are some pathological cases. For 4623 * example, let's say there are two cgroups A and B which keep writing to 4624 * different but confined parts of the same inode. B owns the inode and 4625 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4626 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4627 * triggering background writeback. A will be slowed down without a way to 4628 * make writeback of the dirty pages happen. 4629 * 4630 * Conditions like the above can lead to a cgroup getting repatedly and 4631 * severely throttled after making some progress after each 4632 * dirty_expire_interval while the underyling IO device is almost 4633 * completely idle. 4634 * 4635 * Solving this problem completely requires matching the ownership tracking 4636 * granularities between memcg and writeback in either direction. However, 4637 * the more egregious behaviors can be avoided by simply remembering the 4638 * most recent foreign dirtying events and initiating remote flushes on 4639 * them when local writeback isn't enough to keep the memory clean enough. 4640 * 4641 * The following two functions implement such mechanism. When a foreign 4642 * page - a page whose memcg and writeback ownerships don't match - is 4643 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4644 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4645 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4646 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4647 * foreign bdi_writebacks which haven't expired. Both the numbers of 4648 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4649 * limited to MEMCG_CGWB_FRN_CNT. 4650 * 4651 * The mechanism only remembers IDs and doesn't hold any object references. 4652 * As being wrong occasionally doesn't matter, updates and accesses to the 4653 * records are lockless and racy. 4654 */ 4655 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4656 struct bdi_writeback *wb) 4657 { 4658 struct mem_cgroup *memcg = page_memcg(page); 4659 struct memcg_cgwb_frn *frn; 4660 u64 now = get_jiffies_64(); 4661 u64 oldest_at = now; 4662 int oldest = -1; 4663 int i; 4664 4665 trace_track_foreign_dirty(page, wb); 4666 4667 /* 4668 * Pick the slot to use. If there is already a slot for @wb, keep 4669 * using it. If not replace the oldest one which isn't being 4670 * written out. 4671 */ 4672 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4673 frn = &memcg->cgwb_frn[i]; 4674 if (frn->bdi_id == wb->bdi->id && 4675 frn->memcg_id == wb->memcg_css->id) 4676 break; 4677 if (time_before64(frn->at, oldest_at) && 4678 atomic_read(&frn->done.cnt) == 1) { 4679 oldest = i; 4680 oldest_at = frn->at; 4681 } 4682 } 4683 4684 if (i < MEMCG_CGWB_FRN_CNT) { 4685 /* 4686 * Re-using an existing one. Update timestamp lazily to 4687 * avoid making the cacheline hot. We want them to be 4688 * reasonably up-to-date and significantly shorter than 4689 * dirty_expire_interval as that's what expires the record. 4690 * Use the shorter of 1s and dirty_expire_interval / 8. 4691 */ 4692 unsigned long update_intv = 4693 min_t(unsigned long, HZ, 4694 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4695 4696 if (time_before64(frn->at, now - update_intv)) 4697 frn->at = now; 4698 } else if (oldest >= 0) { 4699 /* replace the oldest free one */ 4700 frn = &memcg->cgwb_frn[oldest]; 4701 frn->bdi_id = wb->bdi->id; 4702 frn->memcg_id = wb->memcg_css->id; 4703 frn->at = now; 4704 } 4705 } 4706 4707 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4708 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4709 { 4710 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4711 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4712 u64 now = jiffies_64; 4713 int i; 4714 4715 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4716 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4717 4718 /* 4719 * If the record is older than dirty_expire_interval, 4720 * writeback on it has already started. No need to kick it 4721 * off again. Also, don't start a new one if there's 4722 * already one in flight. 4723 */ 4724 if (time_after64(frn->at, now - intv) && 4725 atomic_read(&frn->done.cnt) == 1) { 4726 frn->at = 0; 4727 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4728 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4729 WB_REASON_FOREIGN_FLUSH, 4730 &frn->done); 4731 } 4732 } 4733 } 4734 4735 #else /* CONFIG_CGROUP_WRITEBACK */ 4736 4737 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4738 { 4739 return 0; 4740 } 4741 4742 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4743 { 4744 } 4745 4746 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4747 { 4748 } 4749 4750 #endif /* CONFIG_CGROUP_WRITEBACK */ 4751 4752 /* 4753 * DO NOT USE IN NEW FILES. 4754 * 4755 * "cgroup.event_control" implementation. 4756 * 4757 * This is way over-engineered. It tries to support fully configurable 4758 * events for each user. Such level of flexibility is completely 4759 * unnecessary especially in the light of the planned unified hierarchy. 4760 * 4761 * Please deprecate this and replace with something simpler if at all 4762 * possible. 4763 */ 4764 4765 /* 4766 * Unregister event and free resources. 4767 * 4768 * Gets called from workqueue. 4769 */ 4770 static void memcg_event_remove(struct work_struct *work) 4771 { 4772 struct mem_cgroup_event *event = 4773 container_of(work, struct mem_cgroup_event, remove); 4774 struct mem_cgroup *memcg = event->memcg; 4775 4776 remove_wait_queue(event->wqh, &event->wait); 4777 4778 event->unregister_event(memcg, event->eventfd); 4779 4780 /* Notify userspace the event is going away. */ 4781 eventfd_signal(event->eventfd, 1); 4782 4783 eventfd_ctx_put(event->eventfd); 4784 kfree(event); 4785 css_put(&memcg->css); 4786 } 4787 4788 /* 4789 * Gets called on EPOLLHUP on eventfd when user closes it. 4790 * 4791 * Called with wqh->lock held and interrupts disabled. 4792 */ 4793 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4794 int sync, void *key) 4795 { 4796 struct mem_cgroup_event *event = 4797 container_of(wait, struct mem_cgroup_event, wait); 4798 struct mem_cgroup *memcg = event->memcg; 4799 __poll_t flags = key_to_poll(key); 4800 4801 if (flags & EPOLLHUP) { 4802 /* 4803 * If the event has been detached at cgroup removal, we 4804 * can simply return knowing the other side will cleanup 4805 * for us. 4806 * 4807 * We can't race against event freeing since the other 4808 * side will require wqh->lock via remove_wait_queue(), 4809 * which we hold. 4810 */ 4811 spin_lock(&memcg->event_list_lock); 4812 if (!list_empty(&event->list)) { 4813 list_del_init(&event->list); 4814 /* 4815 * We are in atomic context, but cgroup_event_remove() 4816 * may sleep, so we have to call it in workqueue. 4817 */ 4818 schedule_work(&event->remove); 4819 } 4820 spin_unlock(&memcg->event_list_lock); 4821 } 4822 4823 return 0; 4824 } 4825 4826 static void memcg_event_ptable_queue_proc(struct file *file, 4827 wait_queue_head_t *wqh, poll_table *pt) 4828 { 4829 struct mem_cgroup_event *event = 4830 container_of(pt, struct mem_cgroup_event, pt); 4831 4832 event->wqh = wqh; 4833 add_wait_queue(wqh, &event->wait); 4834 } 4835 4836 /* 4837 * DO NOT USE IN NEW FILES. 4838 * 4839 * Parse input and register new cgroup event handler. 4840 * 4841 * Input must be in format '<event_fd> <control_fd> <args>'. 4842 * Interpretation of args is defined by control file implementation. 4843 */ 4844 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4845 char *buf, size_t nbytes, loff_t off) 4846 { 4847 struct cgroup_subsys_state *css = of_css(of); 4848 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4849 struct mem_cgroup_event *event; 4850 struct cgroup_subsys_state *cfile_css; 4851 unsigned int efd, cfd; 4852 struct fd efile; 4853 struct fd cfile; 4854 const char *name; 4855 char *endp; 4856 int ret; 4857 4858 buf = strstrip(buf); 4859 4860 efd = simple_strtoul(buf, &endp, 10); 4861 if (*endp != ' ') 4862 return -EINVAL; 4863 buf = endp + 1; 4864 4865 cfd = simple_strtoul(buf, &endp, 10); 4866 if ((*endp != ' ') && (*endp != '\0')) 4867 return -EINVAL; 4868 buf = endp + 1; 4869 4870 event = kzalloc(sizeof(*event), GFP_KERNEL); 4871 if (!event) 4872 return -ENOMEM; 4873 4874 event->memcg = memcg; 4875 INIT_LIST_HEAD(&event->list); 4876 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4877 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4878 INIT_WORK(&event->remove, memcg_event_remove); 4879 4880 efile = fdget(efd); 4881 if (!efile.file) { 4882 ret = -EBADF; 4883 goto out_kfree; 4884 } 4885 4886 event->eventfd = eventfd_ctx_fileget(efile.file); 4887 if (IS_ERR(event->eventfd)) { 4888 ret = PTR_ERR(event->eventfd); 4889 goto out_put_efile; 4890 } 4891 4892 cfile = fdget(cfd); 4893 if (!cfile.file) { 4894 ret = -EBADF; 4895 goto out_put_eventfd; 4896 } 4897 4898 /* the process need read permission on control file */ 4899 /* AV: shouldn't we check that it's been opened for read instead? */ 4900 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4901 if (ret < 0) 4902 goto out_put_cfile; 4903 4904 /* 4905 * Determine the event callbacks and set them in @event. This used 4906 * to be done via struct cftype but cgroup core no longer knows 4907 * about these events. The following is crude but the whole thing 4908 * is for compatibility anyway. 4909 * 4910 * DO NOT ADD NEW FILES. 4911 */ 4912 name = cfile.file->f_path.dentry->d_name.name; 4913 4914 if (!strcmp(name, "memory.usage_in_bytes")) { 4915 event->register_event = mem_cgroup_usage_register_event; 4916 event->unregister_event = mem_cgroup_usage_unregister_event; 4917 } else if (!strcmp(name, "memory.oom_control")) { 4918 event->register_event = mem_cgroup_oom_register_event; 4919 event->unregister_event = mem_cgroup_oom_unregister_event; 4920 } else if (!strcmp(name, "memory.pressure_level")) { 4921 event->register_event = vmpressure_register_event; 4922 event->unregister_event = vmpressure_unregister_event; 4923 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4924 event->register_event = memsw_cgroup_usage_register_event; 4925 event->unregister_event = memsw_cgroup_usage_unregister_event; 4926 } else { 4927 ret = -EINVAL; 4928 goto out_put_cfile; 4929 } 4930 4931 /* 4932 * Verify @cfile should belong to @css. Also, remaining events are 4933 * automatically removed on cgroup destruction but the removal is 4934 * asynchronous, so take an extra ref on @css. 4935 */ 4936 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4937 &memory_cgrp_subsys); 4938 ret = -EINVAL; 4939 if (IS_ERR(cfile_css)) 4940 goto out_put_cfile; 4941 if (cfile_css != css) { 4942 css_put(cfile_css); 4943 goto out_put_cfile; 4944 } 4945 4946 ret = event->register_event(memcg, event->eventfd, buf); 4947 if (ret) 4948 goto out_put_css; 4949 4950 vfs_poll(efile.file, &event->pt); 4951 4952 spin_lock(&memcg->event_list_lock); 4953 list_add(&event->list, &memcg->event_list); 4954 spin_unlock(&memcg->event_list_lock); 4955 4956 fdput(cfile); 4957 fdput(efile); 4958 4959 return nbytes; 4960 4961 out_put_css: 4962 css_put(css); 4963 out_put_cfile: 4964 fdput(cfile); 4965 out_put_eventfd: 4966 eventfd_ctx_put(event->eventfd); 4967 out_put_efile: 4968 fdput(efile); 4969 out_kfree: 4970 kfree(event); 4971 4972 return ret; 4973 } 4974 4975 static struct cftype mem_cgroup_legacy_files[] = { 4976 { 4977 .name = "usage_in_bytes", 4978 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4979 .read_u64 = mem_cgroup_read_u64, 4980 }, 4981 { 4982 .name = "max_usage_in_bytes", 4983 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4984 .write = mem_cgroup_reset, 4985 .read_u64 = mem_cgroup_read_u64, 4986 }, 4987 { 4988 .name = "limit_in_bytes", 4989 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4990 .write = mem_cgroup_write, 4991 .read_u64 = mem_cgroup_read_u64, 4992 }, 4993 { 4994 .name = "soft_limit_in_bytes", 4995 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4996 .write = mem_cgroup_write, 4997 .read_u64 = mem_cgroup_read_u64, 4998 }, 4999 { 5000 .name = "failcnt", 5001 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5002 .write = mem_cgroup_reset, 5003 .read_u64 = mem_cgroup_read_u64, 5004 }, 5005 { 5006 .name = "stat", 5007 .seq_show = memcg_stat_show, 5008 }, 5009 { 5010 .name = "force_empty", 5011 .write = mem_cgroup_force_empty_write, 5012 }, 5013 { 5014 .name = "use_hierarchy", 5015 .write_u64 = mem_cgroup_hierarchy_write, 5016 .read_u64 = mem_cgroup_hierarchy_read, 5017 }, 5018 { 5019 .name = "cgroup.event_control", /* XXX: for compat */ 5020 .write = memcg_write_event_control, 5021 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5022 }, 5023 { 5024 .name = "swappiness", 5025 .read_u64 = mem_cgroup_swappiness_read, 5026 .write_u64 = mem_cgroup_swappiness_write, 5027 }, 5028 { 5029 .name = "move_charge_at_immigrate", 5030 .read_u64 = mem_cgroup_move_charge_read, 5031 .write_u64 = mem_cgroup_move_charge_write, 5032 }, 5033 { 5034 .name = "oom_control", 5035 .seq_show = mem_cgroup_oom_control_read, 5036 .write_u64 = mem_cgroup_oom_control_write, 5037 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5038 }, 5039 { 5040 .name = "pressure_level", 5041 }, 5042 #ifdef CONFIG_NUMA 5043 { 5044 .name = "numa_stat", 5045 .seq_show = memcg_numa_stat_show, 5046 }, 5047 #endif 5048 { 5049 .name = "kmem.limit_in_bytes", 5050 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5051 .write = mem_cgroup_write, 5052 .read_u64 = mem_cgroup_read_u64, 5053 }, 5054 { 5055 .name = "kmem.usage_in_bytes", 5056 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5057 .read_u64 = mem_cgroup_read_u64, 5058 }, 5059 { 5060 .name = "kmem.failcnt", 5061 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5062 .write = mem_cgroup_reset, 5063 .read_u64 = mem_cgroup_read_u64, 5064 }, 5065 { 5066 .name = "kmem.max_usage_in_bytes", 5067 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5068 .write = mem_cgroup_reset, 5069 .read_u64 = mem_cgroup_read_u64, 5070 }, 5071 #if defined(CONFIG_MEMCG_KMEM) && \ 5072 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5073 { 5074 .name = "kmem.slabinfo", 5075 .seq_show = memcg_slab_show, 5076 }, 5077 #endif 5078 { 5079 .name = "kmem.tcp.limit_in_bytes", 5080 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5081 .write = mem_cgroup_write, 5082 .read_u64 = mem_cgroup_read_u64, 5083 }, 5084 { 5085 .name = "kmem.tcp.usage_in_bytes", 5086 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5087 .read_u64 = mem_cgroup_read_u64, 5088 }, 5089 { 5090 .name = "kmem.tcp.failcnt", 5091 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5092 .write = mem_cgroup_reset, 5093 .read_u64 = mem_cgroup_read_u64, 5094 }, 5095 { 5096 .name = "kmem.tcp.max_usage_in_bytes", 5097 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5098 .write = mem_cgroup_reset, 5099 .read_u64 = mem_cgroup_read_u64, 5100 }, 5101 { }, /* terminate */ 5102 }; 5103 5104 /* 5105 * Private memory cgroup IDR 5106 * 5107 * Swap-out records and page cache shadow entries need to store memcg 5108 * references in constrained space, so we maintain an ID space that is 5109 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5110 * memory-controlled cgroups to 64k. 5111 * 5112 * However, there usually are many references to the offline CSS after 5113 * the cgroup has been destroyed, such as page cache or reclaimable 5114 * slab objects, that don't need to hang on to the ID. We want to keep 5115 * those dead CSS from occupying IDs, or we might quickly exhaust the 5116 * relatively small ID space and prevent the creation of new cgroups 5117 * even when there are much fewer than 64k cgroups - possibly none. 5118 * 5119 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5120 * be freed and recycled when it's no longer needed, which is usually 5121 * when the CSS is offlined. 5122 * 5123 * The only exception to that are records of swapped out tmpfs/shmem 5124 * pages that need to be attributed to live ancestors on swapin. But 5125 * those references are manageable from userspace. 5126 */ 5127 5128 static DEFINE_IDR(mem_cgroup_idr); 5129 5130 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5131 { 5132 if (memcg->id.id > 0) { 5133 idr_remove(&mem_cgroup_idr, memcg->id.id); 5134 memcg->id.id = 0; 5135 } 5136 } 5137 5138 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5139 unsigned int n) 5140 { 5141 refcount_add(n, &memcg->id.ref); 5142 } 5143 5144 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5145 { 5146 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5147 mem_cgroup_id_remove(memcg); 5148 5149 /* Memcg ID pins CSS */ 5150 css_put(&memcg->css); 5151 } 5152 } 5153 5154 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5155 { 5156 mem_cgroup_id_put_many(memcg, 1); 5157 } 5158 5159 /** 5160 * mem_cgroup_from_id - look up a memcg from a memcg id 5161 * @id: the memcg id to look up 5162 * 5163 * Caller must hold rcu_read_lock(). 5164 */ 5165 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5166 { 5167 WARN_ON_ONCE(!rcu_read_lock_held()); 5168 return idr_find(&mem_cgroup_idr, id); 5169 } 5170 5171 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5172 { 5173 struct mem_cgroup_per_node *pn; 5174 int tmp = node; 5175 /* 5176 * This routine is called against possible nodes. 5177 * But it's BUG to call kmalloc() against offline node. 5178 * 5179 * TODO: this routine can waste much memory for nodes which will 5180 * never be onlined. It's better to use memory hotplug callback 5181 * function. 5182 */ 5183 if (!node_state(node, N_NORMAL_MEMORY)) 5184 tmp = -1; 5185 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5186 if (!pn) 5187 return 1; 5188 5189 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat, 5190 GFP_KERNEL_ACCOUNT); 5191 if (!pn->lruvec_stat_local) { 5192 kfree(pn); 5193 return 1; 5194 } 5195 5196 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat, 5197 GFP_KERNEL_ACCOUNT); 5198 if (!pn->lruvec_stat_cpu) { 5199 free_percpu(pn->lruvec_stat_local); 5200 kfree(pn); 5201 return 1; 5202 } 5203 5204 lruvec_init(&pn->lruvec); 5205 pn->usage_in_excess = 0; 5206 pn->on_tree = false; 5207 pn->memcg = memcg; 5208 5209 memcg->nodeinfo[node] = pn; 5210 return 0; 5211 } 5212 5213 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5214 { 5215 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5216 5217 if (!pn) 5218 return; 5219 5220 free_percpu(pn->lruvec_stat_cpu); 5221 free_percpu(pn->lruvec_stat_local); 5222 kfree(pn); 5223 } 5224 5225 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5226 { 5227 int node; 5228 5229 for_each_node(node) 5230 free_mem_cgroup_per_node_info(memcg, node); 5231 free_percpu(memcg->vmstats_percpu); 5232 free_percpu(memcg->vmstats_local); 5233 kfree(memcg); 5234 } 5235 5236 static void mem_cgroup_free(struct mem_cgroup *memcg) 5237 { 5238 memcg_wb_domain_exit(memcg); 5239 /* 5240 * Flush percpu vmstats and vmevents to guarantee the value correctness 5241 * on parent's and all ancestor levels. 5242 */ 5243 memcg_flush_percpu_vmstats(memcg); 5244 memcg_flush_percpu_vmevents(memcg); 5245 __mem_cgroup_free(memcg); 5246 } 5247 5248 static struct mem_cgroup *mem_cgroup_alloc(void) 5249 { 5250 struct mem_cgroup *memcg; 5251 unsigned int size; 5252 int node; 5253 int __maybe_unused i; 5254 long error = -ENOMEM; 5255 5256 size = sizeof(struct mem_cgroup); 5257 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5258 5259 memcg = kzalloc(size, GFP_KERNEL); 5260 if (!memcg) 5261 return ERR_PTR(error); 5262 5263 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5264 1, MEM_CGROUP_ID_MAX, 5265 GFP_KERNEL); 5266 if (memcg->id.id < 0) { 5267 error = memcg->id.id; 5268 goto fail; 5269 } 5270 5271 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5272 GFP_KERNEL_ACCOUNT); 5273 if (!memcg->vmstats_local) 5274 goto fail; 5275 5276 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5277 GFP_KERNEL_ACCOUNT); 5278 if (!memcg->vmstats_percpu) 5279 goto fail; 5280 5281 for_each_node(node) 5282 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5283 goto fail; 5284 5285 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5286 goto fail; 5287 5288 INIT_WORK(&memcg->high_work, high_work_func); 5289 INIT_LIST_HEAD(&memcg->oom_notify); 5290 mutex_init(&memcg->thresholds_lock); 5291 spin_lock_init(&memcg->move_lock); 5292 vmpressure_init(&memcg->vmpressure); 5293 INIT_LIST_HEAD(&memcg->event_list); 5294 spin_lock_init(&memcg->event_list_lock); 5295 memcg->socket_pressure = jiffies; 5296 #ifdef CONFIG_MEMCG_KMEM 5297 memcg->kmemcg_id = -1; 5298 INIT_LIST_HEAD(&memcg->objcg_list); 5299 #endif 5300 #ifdef CONFIG_CGROUP_WRITEBACK 5301 INIT_LIST_HEAD(&memcg->cgwb_list); 5302 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5303 memcg->cgwb_frn[i].done = 5304 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5305 #endif 5306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5307 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5308 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5309 memcg->deferred_split_queue.split_queue_len = 0; 5310 #endif 5311 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5312 return memcg; 5313 fail: 5314 mem_cgroup_id_remove(memcg); 5315 __mem_cgroup_free(memcg); 5316 return ERR_PTR(error); 5317 } 5318 5319 static struct cgroup_subsys_state * __ref 5320 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5321 { 5322 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5323 struct mem_cgroup *memcg, *old_memcg; 5324 long error = -ENOMEM; 5325 5326 old_memcg = set_active_memcg(parent); 5327 memcg = mem_cgroup_alloc(); 5328 set_active_memcg(old_memcg); 5329 if (IS_ERR(memcg)) 5330 return ERR_CAST(memcg); 5331 5332 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5333 memcg->soft_limit = PAGE_COUNTER_MAX; 5334 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5335 if (parent) { 5336 memcg->swappiness = mem_cgroup_swappiness(parent); 5337 memcg->oom_kill_disable = parent->oom_kill_disable; 5338 5339 page_counter_init(&memcg->memory, &parent->memory); 5340 page_counter_init(&memcg->swap, &parent->swap); 5341 page_counter_init(&memcg->kmem, &parent->kmem); 5342 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5343 } else { 5344 page_counter_init(&memcg->memory, NULL); 5345 page_counter_init(&memcg->swap, NULL); 5346 page_counter_init(&memcg->kmem, NULL); 5347 page_counter_init(&memcg->tcpmem, NULL); 5348 5349 root_mem_cgroup = memcg; 5350 return &memcg->css; 5351 } 5352 5353 /* The following stuff does not apply to the root */ 5354 error = memcg_online_kmem(memcg); 5355 if (error) 5356 goto fail; 5357 5358 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5359 static_branch_inc(&memcg_sockets_enabled_key); 5360 5361 return &memcg->css; 5362 fail: 5363 mem_cgroup_id_remove(memcg); 5364 mem_cgroup_free(memcg); 5365 return ERR_PTR(error); 5366 } 5367 5368 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5369 { 5370 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5371 5372 /* 5373 * A memcg must be visible for memcg_expand_shrinker_maps() 5374 * by the time the maps are allocated. So, we allocate maps 5375 * here, when for_each_mem_cgroup() can't skip it. 5376 */ 5377 if (memcg_alloc_shrinker_maps(memcg)) { 5378 mem_cgroup_id_remove(memcg); 5379 return -ENOMEM; 5380 } 5381 5382 /* Online state pins memcg ID, memcg ID pins CSS */ 5383 refcount_set(&memcg->id.ref, 1); 5384 css_get(css); 5385 return 0; 5386 } 5387 5388 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5389 { 5390 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5391 struct mem_cgroup_event *event, *tmp; 5392 5393 /* 5394 * Unregister events and notify userspace. 5395 * Notify userspace about cgroup removing only after rmdir of cgroup 5396 * directory to avoid race between userspace and kernelspace. 5397 */ 5398 spin_lock(&memcg->event_list_lock); 5399 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5400 list_del_init(&event->list); 5401 schedule_work(&event->remove); 5402 } 5403 spin_unlock(&memcg->event_list_lock); 5404 5405 page_counter_set_min(&memcg->memory, 0); 5406 page_counter_set_low(&memcg->memory, 0); 5407 5408 memcg_offline_kmem(memcg); 5409 wb_memcg_offline(memcg); 5410 5411 drain_all_stock(memcg); 5412 5413 mem_cgroup_id_put(memcg); 5414 } 5415 5416 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5417 { 5418 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5419 5420 invalidate_reclaim_iterators(memcg); 5421 } 5422 5423 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5424 { 5425 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5426 int __maybe_unused i; 5427 5428 #ifdef CONFIG_CGROUP_WRITEBACK 5429 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5430 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5431 #endif 5432 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5433 static_branch_dec(&memcg_sockets_enabled_key); 5434 5435 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5436 static_branch_dec(&memcg_sockets_enabled_key); 5437 5438 vmpressure_cleanup(&memcg->vmpressure); 5439 cancel_work_sync(&memcg->high_work); 5440 mem_cgroup_remove_from_trees(memcg); 5441 memcg_free_shrinker_maps(memcg); 5442 memcg_free_kmem(memcg); 5443 mem_cgroup_free(memcg); 5444 } 5445 5446 /** 5447 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5448 * @css: the target css 5449 * 5450 * Reset the states of the mem_cgroup associated with @css. This is 5451 * invoked when the userland requests disabling on the default hierarchy 5452 * but the memcg is pinned through dependency. The memcg should stop 5453 * applying policies and should revert to the vanilla state as it may be 5454 * made visible again. 5455 * 5456 * The current implementation only resets the essential configurations. 5457 * This needs to be expanded to cover all the visible parts. 5458 */ 5459 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5460 { 5461 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5462 5463 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5464 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5465 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5466 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5467 page_counter_set_min(&memcg->memory, 0); 5468 page_counter_set_low(&memcg->memory, 0); 5469 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5470 memcg->soft_limit = PAGE_COUNTER_MAX; 5471 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5472 memcg_wb_domain_size_changed(memcg); 5473 } 5474 5475 #ifdef CONFIG_MMU 5476 /* Handlers for move charge at task migration. */ 5477 static int mem_cgroup_do_precharge(unsigned long count) 5478 { 5479 int ret; 5480 5481 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5482 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5483 if (!ret) { 5484 mc.precharge += count; 5485 return ret; 5486 } 5487 5488 /* Try charges one by one with reclaim, but do not retry */ 5489 while (count--) { 5490 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5491 if (ret) 5492 return ret; 5493 mc.precharge++; 5494 cond_resched(); 5495 } 5496 return 0; 5497 } 5498 5499 union mc_target { 5500 struct page *page; 5501 swp_entry_t ent; 5502 }; 5503 5504 enum mc_target_type { 5505 MC_TARGET_NONE = 0, 5506 MC_TARGET_PAGE, 5507 MC_TARGET_SWAP, 5508 MC_TARGET_DEVICE, 5509 }; 5510 5511 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5512 unsigned long addr, pte_t ptent) 5513 { 5514 struct page *page = vm_normal_page(vma, addr, ptent); 5515 5516 if (!page || !page_mapped(page)) 5517 return NULL; 5518 if (PageAnon(page)) { 5519 if (!(mc.flags & MOVE_ANON)) 5520 return NULL; 5521 } else { 5522 if (!(mc.flags & MOVE_FILE)) 5523 return NULL; 5524 } 5525 if (!get_page_unless_zero(page)) 5526 return NULL; 5527 5528 return page; 5529 } 5530 5531 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5532 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5533 pte_t ptent, swp_entry_t *entry) 5534 { 5535 struct page *page = NULL; 5536 swp_entry_t ent = pte_to_swp_entry(ptent); 5537 5538 if (!(mc.flags & MOVE_ANON)) 5539 return NULL; 5540 5541 /* 5542 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5543 * a device and because they are not accessible by CPU they are store 5544 * as special swap entry in the CPU page table. 5545 */ 5546 if (is_device_private_entry(ent)) { 5547 page = device_private_entry_to_page(ent); 5548 /* 5549 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5550 * a refcount of 1 when free (unlike normal page) 5551 */ 5552 if (!page_ref_add_unless(page, 1, 1)) 5553 return NULL; 5554 return page; 5555 } 5556 5557 if (non_swap_entry(ent)) 5558 return NULL; 5559 5560 /* 5561 * Because lookup_swap_cache() updates some statistics counter, 5562 * we call find_get_page() with swapper_space directly. 5563 */ 5564 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5565 entry->val = ent.val; 5566 5567 return page; 5568 } 5569 #else 5570 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5571 pte_t ptent, swp_entry_t *entry) 5572 { 5573 return NULL; 5574 } 5575 #endif 5576 5577 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5578 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5579 { 5580 if (!vma->vm_file) /* anonymous vma */ 5581 return NULL; 5582 if (!(mc.flags & MOVE_FILE)) 5583 return NULL; 5584 5585 /* page is moved even if it's not RSS of this task(page-faulted). */ 5586 /* shmem/tmpfs may report page out on swap: account for that too. */ 5587 return find_get_incore_page(vma->vm_file->f_mapping, 5588 linear_page_index(vma, addr)); 5589 } 5590 5591 /** 5592 * mem_cgroup_move_account - move account of the page 5593 * @page: the page 5594 * @compound: charge the page as compound or small page 5595 * @from: mem_cgroup which the page is moved from. 5596 * @to: mem_cgroup which the page is moved to. @from != @to. 5597 * 5598 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5599 * 5600 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5601 * from old cgroup. 5602 */ 5603 static int mem_cgroup_move_account(struct page *page, 5604 bool compound, 5605 struct mem_cgroup *from, 5606 struct mem_cgroup *to) 5607 { 5608 struct lruvec *from_vec, *to_vec; 5609 struct pglist_data *pgdat; 5610 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1; 5611 int ret; 5612 5613 VM_BUG_ON(from == to); 5614 VM_BUG_ON_PAGE(PageLRU(page), page); 5615 VM_BUG_ON(compound && !PageTransHuge(page)); 5616 5617 /* 5618 * Prevent mem_cgroup_migrate() from looking at 5619 * page's memory cgroup of its source page while we change it. 5620 */ 5621 ret = -EBUSY; 5622 if (!trylock_page(page)) 5623 goto out; 5624 5625 ret = -EINVAL; 5626 if (page_memcg(page) != from) 5627 goto out_unlock; 5628 5629 pgdat = page_pgdat(page); 5630 from_vec = mem_cgroup_lruvec(from, pgdat); 5631 to_vec = mem_cgroup_lruvec(to, pgdat); 5632 5633 lock_page_memcg(page); 5634 5635 if (PageAnon(page)) { 5636 if (page_mapped(page)) { 5637 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5638 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5639 if (PageTransHuge(page)) { 5640 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5641 -nr_pages); 5642 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5643 nr_pages); 5644 } 5645 5646 } 5647 } else { 5648 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5649 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5650 5651 if (PageSwapBacked(page)) { 5652 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5653 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5654 } 5655 5656 if (page_mapped(page)) { 5657 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5658 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5659 } 5660 5661 if (PageDirty(page)) { 5662 struct address_space *mapping = page_mapping(page); 5663 5664 if (mapping_can_writeback(mapping)) { 5665 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5666 -nr_pages); 5667 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5668 nr_pages); 5669 } 5670 } 5671 } 5672 5673 if (PageWriteback(page)) { 5674 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5675 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5676 } 5677 5678 /* 5679 * All state has been migrated, let's switch to the new memcg. 5680 * 5681 * It is safe to change page's memcg here because the page 5682 * is referenced, charged, isolated, and locked: we can't race 5683 * with (un)charging, migration, LRU putback, or anything else 5684 * that would rely on a stable page's memory cgroup. 5685 * 5686 * Note that lock_page_memcg is a memcg lock, not a page lock, 5687 * to save space. As soon as we switch page's memory cgroup to a 5688 * new memcg that isn't locked, the above state can change 5689 * concurrently again. Make sure we're truly done with it. 5690 */ 5691 smp_mb(); 5692 5693 css_get(&to->css); 5694 css_put(&from->css); 5695 5696 page->memcg_data = (unsigned long)to; 5697 5698 __unlock_page_memcg(from); 5699 5700 ret = 0; 5701 5702 local_irq_disable(); 5703 mem_cgroup_charge_statistics(to, page, nr_pages); 5704 memcg_check_events(to, page); 5705 mem_cgroup_charge_statistics(from, page, -nr_pages); 5706 memcg_check_events(from, page); 5707 local_irq_enable(); 5708 out_unlock: 5709 unlock_page(page); 5710 out: 5711 return ret; 5712 } 5713 5714 /** 5715 * get_mctgt_type - get target type of moving charge 5716 * @vma: the vma the pte to be checked belongs 5717 * @addr: the address corresponding to the pte to be checked 5718 * @ptent: the pte to be checked 5719 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5720 * 5721 * Returns 5722 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5723 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5724 * move charge. if @target is not NULL, the page is stored in target->page 5725 * with extra refcnt got(Callers should handle it). 5726 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5727 * target for charge migration. if @target is not NULL, the entry is stored 5728 * in target->ent. 5729 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5730 * (so ZONE_DEVICE page and thus not on the lru). 5731 * For now we such page is charge like a regular page would be as for all 5732 * intent and purposes it is just special memory taking the place of a 5733 * regular page. 5734 * 5735 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5736 * 5737 * Called with pte lock held. 5738 */ 5739 5740 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5741 unsigned long addr, pte_t ptent, union mc_target *target) 5742 { 5743 struct page *page = NULL; 5744 enum mc_target_type ret = MC_TARGET_NONE; 5745 swp_entry_t ent = { .val = 0 }; 5746 5747 if (pte_present(ptent)) 5748 page = mc_handle_present_pte(vma, addr, ptent); 5749 else if (is_swap_pte(ptent)) 5750 page = mc_handle_swap_pte(vma, ptent, &ent); 5751 else if (pte_none(ptent)) 5752 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5753 5754 if (!page && !ent.val) 5755 return ret; 5756 if (page) { 5757 /* 5758 * Do only loose check w/o serialization. 5759 * mem_cgroup_move_account() checks the page is valid or 5760 * not under LRU exclusion. 5761 */ 5762 if (page_memcg(page) == mc.from) { 5763 ret = MC_TARGET_PAGE; 5764 if (is_device_private_page(page)) 5765 ret = MC_TARGET_DEVICE; 5766 if (target) 5767 target->page = page; 5768 } 5769 if (!ret || !target) 5770 put_page(page); 5771 } 5772 /* 5773 * There is a swap entry and a page doesn't exist or isn't charged. 5774 * But we cannot move a tail-page in a THP. 5775 */ 5776 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5777 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5778 ret = MC_TARGET_SWAP; 5779 if (target) 5780 target->ent = ent; 5781 } 5782 return ret; 5783 } 5784 5785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5786 /* 5787 * We don't consider PMD mapped swapping or file mapped pages because THP does 5788 * not support them for now. 5789 * Caller should make sure that pmd_trans_huge(pmd) is true. 5790 */ 5791 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5792 unsigned long addr, pmd_t pmd, union mc_target *target) 5793 { 5794 struct page *page = NULL; 5795 enum mc_target_type ret = MC_TARGET_NONE; 5796 5797 if (unlikely(is_swap_pmd(pmd))) { 5798 VM_BUG_ON(thp_migration_supported() && 5799 !is_pmd_migration_entry(pmd)); 5800 return ret; 5801 } 5802 page = pmd_page(pmd); 5803 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5804 if (!(mc.flags & MOVE_ANON)) 5805 return ret; 5806 if (page_memcg(page) == mc.from) { 5807 ret = MC_TARGET_PAGE; 5808 if (target) { 5809 get_page(page); 5810 target->page = page; 5811 } 5812 } 5813 return ret; 5814 } 5815 #else 5816 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5817 unsigned long addr, pmd_t pmd, union mc_target *target) 5818 { 5819 return MC_TARGET_NONE; 5820 } 5821 #endif 5822 5823 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5824 unsigned long addr, unsigned long end, 5825 struct mm_walk *walk) 5826 { 5827 struct vm_area_struct *vma = walk->vma; 5828 pte_t *pte; 5829 spinlock_t *ptl; 5830 5831 ptl = pmd_trans_huge_lock(pmd, vma); 5832 if (ptl) { 5833 /* 5834 * Note their can not be MC_TARGET_DEVICE for now as we do not 5835 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5836 * this might change. 5837 */ 5838 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5839 mc.precharge += HPAGE_PMD_NR; 5840 spin_unlock(ptl); 5841 return 0; 5842 } 5843 5844 if (pmd_trans_unstable(pmd)) 5845 return 0; 5846 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5847 for (; addr != end; pte++, addr += PAGE_SIZE) 5848 if (get_mctgt_type(vma, addr, *pte, NULL)) 5849 mc.precharge++; /* increment precharge temporarily */ 5850 pte_unmap_unlock(pte - 1, ptl); 5851 cond_resched(); 5852 5853 return 0; 5854 } 5855 5856 static const struct mm_walk_ops precharge_walk_ops = { 5857 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5858 }; 5859 5860 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5861 { 5862 unsigned long precharge; 5863 5864 mmap_read_lock(mm); 5865 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5866 mmap_read_unlock(mm); 5867 5868 precharge = mc.precharge; 5869 mc.precharge = 0; 5870 5871 return precharge; 5872 } 5873 5874 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5875 { 5876 unsigned long precharge = mem_cgroup_count_precharge(mm); 5877 5878 VM_BUG_ON(mc.moving_task); 5879 mc.moving_task = current; 5880 return mem_cgroup_do_precharge(precharge); 5881 } 5882 5883 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5884 static void __mem_cgroup_clear_mc(void) 5885 { 5886 struct mem_cgroup *from = mc.from; 5887 struct mem_cgroup *to = mc.to; 5888 5889 /* we must uncharge all the leftover precharges from mc.to */ 5890 if (mc.precharge) { 5891 cancel_charge(mc.to, mc.precharge); 5892 mc.precharge = 0; 5893 } 5894 /* 5895 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5896 * we must uncharge here. 5897 */ 5898 if (mc.moved_charge) { 5899 cancel_charge(mc.from, mc.moved_charge); 5900 mc.moved_charge = 0; 5901 } 5902 /* we must fixup refcnts and charges */ 5903 if (mc.moved_swap) { 5904 /* uncharge swap account from the old cgroup */ 5905 if (!mem_cgroup_is_root(mc.from)) 5906 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5907 5908 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5909 5910 /* 5911 * we charged both to->memory and to->memsw, so we 5912 * should uncharge to->memory. 5913 */ 5914 if (!mem_cgroup_is_root(mc.to)) 5915 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5916 5917 mc.moved_swap = 0; 5918 } 5919 memcg_oom_recover(from); 5920 memcg_oom_recover(to); 5921 wake_up_all(&mc.waitq); 5922 } 5923 5924 static void mem_cgroup_clear_mc(void) 5925 { 5926 struct mm_struct *mm = mc.mm; 5927 5928 /* 5929 * we must clear moving_task before waking up waiters at the end of 5930 * task migration. 5931 */ 5932 mc.moving_task = NULL; 5933 __mem_cgroup_clear_mc(); 5934 spin_lock(&mc.lock); 5935 mc.from = NULL; 5936 mc.to = NULL; 5937 mc.mm = NULL; 5938 spin_unlock(&mc.lock); 5939 5940 mmput(mm); 5941 } 5942 5943 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5944 { 5945 struct cgroup_subsys_state *css; 5946 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5947 struct mem_cgroup *from; 5948 struct task_struct *leader, *p; 5949 struct mm_struct *mm; 5950 unsigned long move_flags; 5951 int ret = 0; 5952 5953 /* charge immigration isn't supported on the default hierarchy */ 5954 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5955 return 0; 5956 5957 /* 5958 * Multi-process migrations only happen on the default hierarchy 5959 * where charge immigration is not used. Perform charge 5960 * immigration if @tset contains a leader and whine if there are 5961 * multiple. 5962 */ 5963 p = NULL; 5964 cgroup_taskset_for_each_leader(leader, css, tset) { 5965 WARN_ON_ONCE(p); 5966 p = leader; 5967 memcg = mem_cgroup_from_css(css); 5968 } 5969 if (!p) 5970 return 0; 5971 5972 /* 5973 * We are now commited to this value whatever it is. Changes in this 5974 * tunable will only affect upcoming migrations, not the current one. 5975 * So we need to save it, and keep it going. 5976 */ 5977 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5978 if (!move_flags) 5979 return 0; 5980 5981 from = mem_cgroup_from_task(p); 5982 5983 VM_BUG_ON(from == memcg); 5984 5985 mm = get_task_mm(p); 5986 if (!mm) 5987 return 0; 5988 /* We move charges only when we move a owner of the mm */ 5989 if (mm->owner == p) { 5990 VM_BUG_ON(mc.from); 5991 VM_BUG_ON(mc.to); 5992 VM_BUG_ON(mc.precharge); 5993 VM_BUG_ON(mc.moved_charge); 5994 VM_BUG_ON(mc.moved_swap); 5995 5996 spin_lock(&mc.lock); 5997 mc.mm = mm; 5998 mc.from = from; 5999 mc.to = memcg; 6000 mc.flags = move_flags; 6001 spin_unlock(&mc.lock); 6002 /* We set mc.moving_task later */ 6003 6004 ret = mem_cgroup_precharge_mc(mm); 6005 if (ret) 6006 mem_cgroup_clear_mc(); 6007 } else { 6008 mmput(mm); 6009 } 6010 return ret; 6011 } 6012 6013 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6014 { 6015 if (mc.to) 6016 mem_cgroup_clear_mc(); 6017 } 6018 6019 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6020 unsigned long addr, unsigned long end, 6021 struct mm_walk *walk) 6022 { 6023 int ret = 0; 6024 struct vm_area_struct *vma = walk->vma; 6025 pte_t *pte; 6026 spinlock_t *ptl; 6027 enum mc_target_type target_type; 6028 union mc_target target; 6029 struct page *page; 6030 6031 ptl = pmd_trans_huge_lock(pmd, vma); 6032 if (ptl) { 6033 if (mc.precharge < HPAGE_PMD_NR) { 6034 spin_unlock(ptl); 6035 return 0; 6036 } 6037 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6038 if (target_type == MC_TARGET_PAGE) { 6039 page = target.page; 6040 if (!isolate_lru_page(page)) { 6041 if (!mem_cgroup_move_account(page, true, 6042 mc.from, mc.to)) { 6043 mc.precharge -= HPAGE_PMD_NR; 6044 mc.moved_charge += HPAGE_PMD_NR; 6045 } 6046 putback_lru_page(page); 6047 } 6048 put_page(page); 6049 } else if (target_type == MC_TARGET_DEVICE) { 6050 page = target.page; 6051 if (!mem_cgroup_move_account(page, true, 6052 mc.from, mc.to)) { 6053 mc.precharge -= HPAGE_PMD_NR; 6054 mc.moved_charge += HPAGE_PMD_NR; 6055 } 6056 put_page(page); 6057 } 6058 spin_unlock(ptl); 6059 return 0; 6060 } 6061 6062 if (pmd_trans_unstable(pmd)) 6063 return 0; 6064 retry: 6065 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6066 for (; addr != end; addr += PAGE_SIZE) { 6067 pte_t ptent = *(pte++); 6068 bool device = false; 6069 swp_entry_t ent; 6070 6071 if (!mc.precharge) 6072 break; 6073 6074 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6075 case MC_TARGET_DEVICE: 6076 device = true; 6077 fallthrough; 6078 case MC_TARGET_PAGE: 6079 page = target.page; 6080 /* 6081 * We can have a part of the split pmd here. Moving it 6082 * can be done but it would be too convoluted so simply 6083 * ignore such a partial THP and keep it in original 6084 * memcg. There should be somebody mapping the head. 6085 */ 6086 if (PageTransCompound(page)) 6087 goto put; 6088 if (!device && isolate_lru_page(page)) 6089 goto put; 6090 if (!mem_cgroup_move_account(page, false, 6091 mc.from, mc.to)) { 6092 mc.precharge--; 6093 /* we uncharge from mc.from later. */ 6094 mc.moved_charge++; 6095 } 6096 if (!device) 6097 putback_lru_page(page); 6098 put: /* get_mctgt_type() gets the page */ 6099 put_page(page); 6100 break; 6101 case MC_TARGET_SWAP: 6102 ent = target.ent; 6103 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6104 mc.precharge--; 6105 mem_cgroup_id_get_many(mc.to, 1); 6106 /* we fixup other refcnts and charges later. */ 6107 mc.moved_swap++; 6108 } 6109 break; 6110 default: 6111 break; 6112 } 6113 } 6114 pte_unmap_unlock(pte - 1, ptl); 6115 cond_resched(); 6116 6117 if (addr != end) { 6118 /* 6119 * We have consumed all precharges we got in can_attach(). 6120 * We try charge one by one, but don't do any additional 6121 * charges to mc.to if we have failed in charge once in attach() 6122 * phase. 6123 */ 6124 ret = mem_cgroup_do_precharge(1); 6125 if (!ret) 6126 goto retry; 6127 } 6128 6129 return ret; 6130 } 6131 6132 static const struct mm_walk_ops charge_walk_ops = { 6133 .pmd_entry = mem_cgroup_move_charge_pte_range, 6134 }; 6135 6136 static void mem_cgroup_move_charge(void) 6137 { 6138 lru_add_drain_all(); 6139 /* 6140 * Signal lock_page_memcg() to take the memcg's move_lock 6141 * while we're moving its pages to another memcg. Then wait 6142 * for already started RCU-only updates to finish. 6143 */ 6144 atomic_inc(&mc.from->moving_account); 6145 synchronize_rcu(); 6146 retry: 6147 if (unlikely(!mmap_read_trylock(mc.mm))) { 6148 /* 6149 * Someone who are holding the mmap_lock might be waiting in 6150 * waitq. So we cancel all extra charges, wake up all waiters, 6151 * and retry. Because we cancel precharges, we might not be able 6152 * to move enough charges, but moving charge is a best-effort 6153 * feature anyway, so it wouldn't be a big problem. 6154 */ 6155 __mem_cgroup_clear_mc(); 6156 cond_resched(); 6157 goto retry; 6158 } 6159 /* 6160 * When we have consumed all precharges and failed in doing 6161 * additional charge, the page walk just aborts. 6162 */ 6163 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6164 NULL); 6165 6166 mmap_read_unlock(mc.mm); 6167 atomic_dec(&mc.from->moving_account); 6168 } 6169 6170 static void mem_cgroup_move_task(void) 6171 { 6172 if (mc.to) { 6173 mem_cgroup_move_charge(); 6174 mem_cgroup_clear_mc(); 6175 } 6176 } 6177 #else /* !CONFIG_MMU */ 6178 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6179 { 6180 return 0; 6181 } 6182 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6183 { 6184 } 6185 static void mem_cgroup_move_task(void) 6186 { 6187 } 6188 #endif 6189 6190 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6191 { 6192 if (value == PAGE_COUNTER_MAX) 6193 seq_puts(m, "max\n"); 6194 else 6195 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6196 6197 return 0; 6198 } 6199 6200 static u64 memory_current_read(struct cgroup_subsys_state *css, 6201 struct cftype *cft) 6202 { 6203 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6204 6205 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6206 } 6207 6208 static int memory_min_show(struct seq_file *m, void *v) 6209 { 6210 return seq_puts_memcg_tunable(m, 6211 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6212 } 6213 6214 static ssize_t memory_min_write(struct kernfs_open_file *of, 6215 char *buf, size_t nbytes, loff_t off) 6216 { 6217 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6218 unsigned long min; 6219 int err; 6220 6221 buf = strstrip(buf); 6222 err = page_counter_memparse(buf, "max", &min); 6223 if (err) 6224 return err; 6225 6226 page_counter_set_min(&memcg->memory, min); 6227 6228 return nbytes; 6229 } 6230 6231 static int memory_low_show(struct seq_file *m, void *v) 6232 { 6233 return seq_puts_memcg_tunable(m, 6234 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6235 } 6236 6237 static ssize_t memory_low_write(struct kernfs_open_file *of, 6238 char *buf, size_t nbytes, loff_t off) 6239 { 6240 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6241 unsigned long low; 6242 int err; 6243 6244 buf = strstrip(buf); 6245 err = page_counter_memparse(buf, "max", &low); 6246 if (err) 6247 return err; 6248 6249 page_counter_set_low(&memcg->memory, low); 6250 6251 return nbytes; 6252 } 6253 6254 static int memory_high_show(struct seq_file *m, void *v) 6255 { 6256 return seq_puts_memcg_tunable(m, 6257 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6258 } 6259 6260 static ssize_t memory_high_write(struct kernfs_open_file *of, 6261 char *buf, size_t nbytes, loff_t off) 6262 { 6263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6264 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6265 bool drained = false; 6266 unsigned long high; 6267 int err; 6268 6269 buf = strstrip(buf); 6270 err = page_counter_memparse(buf, "max", &high); 6271 if (err) 6272 return err; 6273 6274 for (;;) { 6275 unsigned long nr_pages = page_counter_read(&memcg->memory); 6276 unsigned long reclaimed; 6277 6278 if (nr_pages <= high) 6279 break; 6280 6281 if (signal_pending(current)) 6282 break; 6283 6284 if (!drained) { 6285 drain_all_stock(memcg); 6286 drained = true; 6287 continue; 6288 } 6289 6290 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6291 GFP_KERNEL, true); 6292 6293 if (!reclaimed && !nr_retries--) 6294 break; 6295 } 6296 6297 page_counter_set_high(&memcg->memory, high); 6298 6299 memcg_wb_domain_size_changed(memcg); 6300 6301 return nbytes; 6302 } 6303 6304 static int memory_max_show(struct seq_file *m, void *v) 6305 { 6306 return seq_puts_memcg_tunable(m, 6307 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6308 } 6309 6310 static ssize_t memory_max_write(struct kernfs_open_file *of, 6311 char *buf, size_t nbytes, loff_t off) 6312 { 6313 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6314 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6315 bool drained = false; 6316 unsigned long max; 6317 int err; 6318 6319 buf = strstrip(buf); 6320 err = page_counter_memparse(buf, "max", &max); 6321 if (err) 6322 return err; 6323 6324 xchg(&memcg->memory.max, max); 6325 6326 for (;;) { 6327 unsigned long nr_pages = page_counter_read(&memcg->memory); 6328 6329 if (nr_pages <= max) 6330 break; 6331 6332 if (signal_pending(current)) 6333 break; 6334 6335 if (!drained) { 6336 drain_all_stock(memcg); 6337 drained = true; 6338 continue; 6339 } 6340 6341 if (nr_reclaims) { 6342 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6343 GFP_KERNEL, true)) 6344 nr_reclaims--; 6345 continue; 6346 } 6347 6348 memcg_memory_event(memcg, MEMCG_OOM); 6349 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6350 break; 6351 } 6352 6353 memcg_wb_domain_size_changed(memcg); 6354 return nbytes; 6355 } 6356 6357 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6358 { 6359 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6360 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6361 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6362 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6363 seq_printf(m, "oom_kill %lu\n", 6364 atomic_long_read(&events[MEMCG_OOM_KILL])); 6365 } 6366 6367 static int memory_events_show(struct seq_file *m, void *v) 6368 { 6369 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6370 6371 __memory_events_show(m, memcg->memory_events); 6372 return 0; 6373 } 6374 6375 static int memory_events_local_show(struct seq_file *m, void *v) 6376 { 6377 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6378 6379 __memory_events_show(m, memcg->memory_events_local); 6380 return 0; 6381 } 6382 6383 static int memory_stat_show(struct seq_file *m, void *v) 6384 { 6385 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6386 char *buf; 6387 6388 buf = memory_stat_format(memcg); 6389 if (!buf) 6390 return -ENOMEM; 6391 seq_puts(m, buf); 6392 kfree(buf); 6393 return 0; 6394 } 6395 6396 #ifdef CONFIG_NUMA 6397 static int memory_numa_stat_show(struct seq_file *m, void *v) 6398 { 6399 int i; 6400 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6401 6402 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6403 int nid; 6404 6405 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6406 continue; 6407 6408 seq_printf(m, "%s", memory_stats[i].name); 6409 for_each_node_state(nid, N_MEMORY) { 6410 u64 size; 6411 struct lruvec *lruvec; 6412 6413 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6414 size = lruvec_page_state(lruvec, memory_stats[i].idx); 6415 size *= memory_stats[i].ratio; 6416 seq_printf(m, " N%d=%llu", nid, size); 6417 } 6418 seq_putc(m, '\n'); 6419 } 6420 6421 return 0; 6422 } 6423 #endif 6424 6425 static int memory_oom_group_show(struct seq_file *m, void *v) 6426 { 6427 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6428 6429 seq_printf(m, "%d\n", memcg->oom_group); 6430 6431 return 0; 6432 } 6433 6434 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6435 char *buf, size_t nbytes, loff_t off) 6436 { 6437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6438 int ret, oom_group; 6439 6440 buf = strstrip(buf); 6441 if (!buf) 6442 return -EINVAL; 6443 6444 ret = kstrtoint(buf, 0, &oom_group); 6445 if (ret) 6446 return ret; 6447 6448 if (oom_group != 0 && oom_group != 1) 6449 return -EINVAL; 6450 6451 memcg->oom_group = oom_group; 6452 6453 return nbytes; 6454 } 6455 6456 static struct cftype memory_files[] = { 6457 { 6458 .name = "current", 6459 .flags = CFTYPE_NOT_ON_ROOT, 6460 .read_u64 = memory_current_read, 6461 }, 6462 { 6463 .name = "min", 6464 .flags = CFTYPE_NOT_ON_ROOT, 6465 .seq_show = memory_min_show, 6466 .write = memory_min_write, 6467 }, 6468 { 6469 .name = "low", 6470 .flags = CFTYPE_NOT_ON_ROOT, 6471 .seq_show = memory_low_show, 6472 .write = memory_low_write, 6473 }, 6474 { 6475 .name = "high", 6476 .flags = CFTYPE_NOT_ON_ROOT, 6477 .seq_show = memory_high_show, 6478 .write = memory_high_write, 6479 }, 6480 { 6481 .name = "max", 6482 .flags = CFTYPE_NOT_ON_ROOT, 6483 .seq_show = memory_max_show, 6484 .write = memory_max_write, 6485 }, 6486 { 6487 .name = "events", 6488 .flags = CFTYPE_NOT_ON_ROOT, 6489 .file_offset = offsetof(struct mem_cgroup, events_file), 6490 .seq_show = memory_events_show, 6491 }, 6492 { 6493 .name = "events.local", 6494 .flags = CFTYPE_NOT_ON_ROOT, 6495 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6496 .seq_show = memory_events_local_show, 6497 }, 6498 { 6499 .name = "stat", 6500 .seq_show = memory_stat_show, 6501 }, 6502 #ifdef CONFIG_NUMA 6503 { 6504 .name = "numa_stat", 6505 .seq_show = memory_numa_stat_show, 6506 }, 6507 #endif 6508 { 6509 .name = "oom.group", 6510 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6511 .seq_show = memory_oom_group_show, 6512 .write = memory_oom_group_write, 6513 }, 6514 { } /* terminate */ 6515 }; 6516 6517 struct cgroup_subsys memory_cgrp_subsys = { 6518 .css_alloc = mem_cgroup_css_alloc, 6519 .css_online = mem_cgroup_css_online, 6520 .css_offline = mem_cgroup_css_offline, 6521 .css_released = mem_cgroup_css_released, 6522 .css_free = mem_cgroup_css_free, 6523 .css_reset = mem_cgroup_css_reset, 6524 .can_attach = mem_cgroup_can_attach, 6525 .cancel_attach = mem_cgroup_cancel_attach, 6526 .post_attach = mem_cgroup_move_task, 6527 .dfl_cftypes = memory_files, 6528 .legacy_cftypes = mem_cgroup_legacy_files, 6529 .early_init = 0, 6530 }; 6531 6532 /* 6533 * This function calculates an individual cgroup's effective 6534 * protection which is derived from its own memory.min/low, its 6535 * parent's and siblings' settings, as well as the actual memory 6536 * distribution in the tree. 6537 * 6538 * The following rules apply to the effective protection values: 6539 * 6540 * 1. At the first level of reclaim, effective protection is equal to 6541 * the declared protection in memory.min and memory.low. 6542 * 6543 * 2. To enable safe delegation of the protection configuration, at 6544 * subsequent levels the effective protection is capped to the 6545 * parent's effective protection. 6546 * 6547 * 3. To make complex and dynamic subtrees easier to configure, the 6548 * user is allowed to overcommit the declared protection at a given 6549 * level. If that is the case, the parent's effective protection is 6550 * distributed to the children in proportion to how much protection 6551 * they have declared and how much of it they are utilizing. 6552 * 6553 * This makes distribution proportional, but also work-conserving: 6554 * if one cgroup claims much more protection than it uses memory, 6555 * the unused remainder is available to its siblings. 6556 * 6557 * 4. Conversely, when the declared protection is undercommitted at a 6558 * given level, the distribution of the larger parental protection 6559 * budget is NOT proportional. A cgroup's protection from a sibling 6560 * is capped to its own memory.min/low setting. 6561 * 6562 * 5. However, to allow protecting recursive subtrees from each other 6563 * without having to declare each individual cgroup's fixed share 6564 * of the ancestor's claim to protection, any unutilized - 6565 * "floating" - protection from up the tree is distributed in 6566 * proportion to each cgroup's *usage*. This makes the protection 6567 * neutral wrt sibling cgroups and lets them compete freely over 6568 * the shared parental protection budget, but it protects the 6569 * subtree as a whole from neighboring subtrees. 6570 * 6571 * Note that 4. and 5. are not in conflict: 4. is about protecting 6572 * against immediate siblings whereas 5. is about protecting against 6573 * neighboring subtrees. 6574 */ 6575 static unsigned long effective_protection(unsigned long usage, 6576 unsigned long parent_usage, 6577 unsigned long setting, 6578 unsigned long parent_effective, 6579 unsigned long siblings_protected) 6580 { 6581 unsigned long protected; 6582 unsigned long ep; 6583 6584 protected = min(usage, setting); 6585 /* 6586 * If all cgroups at this level combined claim and use more 6587 * protection then what the parent affords them, distribute 6588 * shares in proportion to utilization. 6589 * 6590 * We are using actual utilization rather than the statically 6591 * claimed protection in order to be work-conserving: claimed 6592 * but unused protection is available to siblings that would 6593 * otherwise get a smaller chunk than what they claimed. 6594 */ 6595 if (siblings_protected > parent_effective) 6596 return protected * parent_effective / siblings_protected; 6597 6598 /* 6599 * Ok, utilized protection of all children is within what the 6600 * parent affords them, so we know whatever this child claims 6601 * and utilizes is effectively protected. 6602 * 6603 * If there is unprotected usage beyond this value, reclaim 6604 * will apply pressure in proportion to that amount. 6605 * 6606 * If there is unutilized protection, the cgroup will be fully 6607 * shielded from reclaim, but we do return a smaller value for 6608 * protection than what the group could enjoy in theory. This 6609 * is okay. With the overcommit distribution above, effective 6610 * protection is always dependent on how memory is actually 6611 * consumed among the siblings anyway. 6612 */ 6613 ep = protected; 6614 6615 /* 6616 * If the children aren't claiming (all of) the protection 6617 * afforded to them by the parent, distribute the remainder in 6618 * proportion to the (unprotected) memory of each cgroup. That 6619 * way, cgroups that aren't explicitly prioritized wrt each 6620 * other compete freely over the allowance, but they are 6621 * collectively protected from neighboring trees. 6622 * 6623 * We're using unprotected memory for the weight so that if 6624 * some cgroups DO claim explicit protection, we don't protect 6625 * the same bytes twice. 6626 * 6627 * Check both usage and parent_usage against the respective 6628 * protected values. One should imply the other, but they 6629 * aren't read atomically - make sure the division is sane. 6630 */ 6631 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6632 return ep; 6633 if (parent_effective > siblings_protected && 6634 parent_usage > siblings_protected && 6635 usage > protected) { 6636 unsigned long unclaimed; 6637 6638 unclaimed = parent_effective - siblings_protected; 6639 unclaimed *= usage - protected; 6640 unclaimed /= parent_usage - siblings_protected; 6641 6642 ep += unclaimed; 6643 } 6644 6645 return ep; 6646 } 6647 6648 /** 6649 * mem_cgroup_protected - check if memory consumption is in the normal range 6650 * @root: the top ancestor of the sub-tree being checked 6651 * @memcg: the memory cgroup to check 6652 * 6653 * WARNING: This function is not stateless! It can only be used as part 6654 * of a top-down tree iteration, not for isolated queries. 6655 */ 6656 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6657 struct mem_cgroup *memcg) 6658 { 6659 unsigned long usage, parent_usage; 6660 struct mem_cgroup *parent; 6661 6662 if (mem_cgroup_disabled()) 6663 return; 6664 6665 if (!root) 6666 root = root_mem_cgroup; 6667 6668 /* 6669 * Effective values of the reclaim targets are ignored so they 6670 * can be stale. Have a look at mem_cgroup_protection for more 6671 * details. 6672 * TODO: calculation should be more robust so that we do not need 6673 * that special casing. 6674 */ 6675 if (memcg == root) 6676 return; 6677 6678 usage = page_counter_read(&memcg->memory); 6679 if (!usage) 6680 return; 6681 6682 parent = parent_mem_cgroup(memcg); 6683 /* No parent means a non-hierarchical mode on v1 memcg */ 6684 if (!parent) 6685 return; 6686 6687 if (parent == root) { 6688 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6689 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6690 return; 6691 } 6692 6693 parent_usage = page_counter_read(&parent->memory); 6694 6695 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6696 READ_ONCE(memcg->memory.min), 6697 READ_ONCE(parent->memory.emin), 6698 atomic_long_read(&parent->memory.children_min_usage))); 6699 6700 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6701 READ_ONCE(memcg->memory.low), 6702 READ_ONCE(parent->memory.elow), 6703 atomic_long_read(&parent->memory.children_low_usage))); 6704 } 6705 6706 /** 6707 * mem_cgroup_charge - charge a newly allocated page to a cgroup 6708 * @page: page to charge 6709 * @mm: mm context of the victim 6710 * @gfp_mask: reclaim mode 6711 * 6712 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6713 * pages according to @gfp_mask if necessary. 6714 * 6715 * Returns 0 on success. Otherwise, an error code is returned. 6716 */ 6717 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) 6718 { 6719 unsigned int nr_pages = thp_nr_pages(page); 6720 struct mem_cgroup *memcg = NULL; 6721 int ret = 0; 6722 6723 if (mem_cgroup_disabled()) 6724 goto out; 6725 6726 if (PageSwapCache(page)) { 6727 swp_entry_t ent = { .val = page_private(page), }; 6728 unsigned short id; 6729 6730 /* 6731 * Every swap fault against a single page tries to charge the 6732 * page, bail as early as possible. shmem_unuse() encounters 6733 * already charged pages, too. page and memcg binding is 6734 * protected by the page lock, which serializes swap cache 6735 * removal, which in turn serializes uncharging. 6736 */ 6737 VM_BUG_ON_PAGE(!PageLocked(page), page); 6738 if (page_memcg(compound_head(page))) 6739 goto out; 6740 6741 id = lookup_swap_cgroup_id(ent); 6742 rcu_read_lock(); 6743 memcg = mem_cgroup_from_id(id); 6744 if (memcg && !css_tryget_online(&memcg->css)) 6745 memcg = NULL; 6746 rcu_read_unlock(); 6747 } 6748 6749 if (!memcg) 6750 memcg = get_mem_cgroup_from_mm(mm); 6751 6752 ret = try_charge(memcg, gfp_mask, nr_pages); 6753 if (ret) 6754 goto out_put; 6755 6756 css_get(&memcg->css); 6757 commit_charge(page, memcg); 6758 6759 local_irq_disable(); 6760 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6761 memcg_check_events(memcg, page); 6762 local_irq_enable(); 6763 6764 if (PageSwapCache(page)) { 6765 swp_entry_t entry = { .val = page_private(page) }; 6766 /* 6767 * The swap entry might not get freed for a long time, 6768 * let's not wait for it. The page already received a 6769 * memory+swap charge, drop the swap entry duplicate. 6770 */ 6771 mem_cgroup_uncharge_swap(entry, nr_pages); 6772 } 6773 6774 out_put: 6775 css_put(&memcg->css); 6776 out: 6777 return ret; 6778 } 6779 6780 struct uncharge_gather { 6781 struct mem_cgroup *memcg; 6782 unsigned long nr_pages; 6783 unsigned long pgpgout; 6784 unsigned long nr_kmem; 6785 struct page *dummy_page; 6786 }; 6787 6788 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6789 { 6790 memset(ug, 0, sizeof(*ug)); 6791 } 6792 6793 static void uncharge_batch(const struct uncharge_gather *ug) 6794 { 6795 unsigned long flags; 6796 6797 if (!mem_cgroup_is_root(ug->memcg)) { 6798 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages); 6799 if (do_memsw_account()) 6800 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages); 6801 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6802 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6803 memcg_oom_recover(ug->memcg); 6804 } 6805 6806 local_irq_save(flags); 6807 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6808 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); 6809 memcg_check_events(ug->memcg, ug->dummy_page); 6810 local_irq_restore(flags); 6811 6812 /* drop reference from uncharge_page */ 6813 css_put(&ug->memcg->css); 6814 } 6815 6816 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6817 { 6818 unsigned long nr_pages; 6819 6820 VM_BUG_ON_PAGE(PageLRU(page), page); 6821 6822 if (!page_memcg(page)) 6823 return; 6824 6825 /* 6826 * Nobody should be changing or seriously looking at 6827 * page_memcg(page) at this point, we have fully 6828 * exclusive access to the page. 6829 */ 6830 6831 if (ug->memcg != page_memcg(page)) { 6832 if (ug->memcg) { 6833 uncharge_batch(ug); 6834 uncharge_gather_clear(ug); 6835 } 6836 ug->memcg = page_memcg(page); 6837 6838 /* pairs with css_put in uncharge_batch */ 6839 css_get(&ug->memcg->css); 6840 } 6841 6842 nr_pages = compound_nr(page); 6843 ug->nr_pages += nr_pages; 6844 6845 if (PageMemcgKmem(page)) 6846 ug->nr_kmem += nr_pages; 6847 else 6848 ug->pgpgout++; 6849 6850 ug->dummy_page = page; 6851 page->memcg_data = 0; 6852 css_put(&ug->memcg->css); 6853 } 6854 6855 static void uncharge_list(struct list_head *page_list) 6856 { 6857 struct uncharge_gather ug; 6858 struct list_head *next; 6859 6860 uncharge_gather_clear(&ug); 6861 6862 /* 6863 * Note that the list can be a single page->lru; hence the 6864 * do-while loop instead of a simple list_for_each_entry(). 6865 */ 6866 next = page_list->next; 6867 do { 6868 struct page *page; 6869 6870 page = list_entry(next, struct page, lru); 6871 next = page->lru.next; 6872 6873 uncharge_page(page, &ug); 6874 } while (next != page_list); 6875 6876 if (ug.memcg) 6877 uncharge_batch(&ug); 6878 } 6879 6880 /** 6881 * mem_cgroup_uncharge - uncharge a page 6882 * @page: page to uncharge 6883 * 6884 * Uncharge a page previously charged with mem_cgroup_charge(). 6885 */ 6886 void mem_cgroup_uncharge(struct page *page) 6887 { 6888 struct uncharge_gather ug; 6889 6890 if (mem_cgroup_disabled()) 6891 return; 6892 6893 /* Don't touch page->lru of any random page, pre-check: */ 6894 if (!page_memcg(page)) 6895 return; 6896 6897 uncharge_gather_clear(&ug); 6898 uncharge_page(page, &ug); 6899 uncharge_batch(&ug); 6900 } 6901 6902 /** 6903 * mem_cgroup_uncharge_list - uncharge a list of page 6904 * @page_list: list of pages to uncharge 6905 * 6906 * Uncharge a list of pages previously charged with 6907 * mem_cgroup_charge(). 6908 */ 6909 void mem_cgroup_uncharge_list(struct list_head *page_list) 6910 { 6911 if (mem_cgroup_disabled()) 6912 return; 6913 6914 if (!list_empty(page_list)) 6915 uncharge_list(page_list); 6916 } 6917 6918 /** 6919 * mem_cgroup_migrate - charge a page's replacement 6920 * @oldpage: currently circulating page 6921 * @newpage: replacement page 6922 * 6923 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6924 * be uncharged upon free. 6925 * 6926 * Both pages must be locked, @newpage->mapping must be set up. 6927 */ 6928 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6929 { 6930 struct mem_cgroup *memcg; 6931 unsigned int nr_pages; 6932 unsigned long flags; 6933 6934 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6935 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6936 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6937 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6938 newpage); 6939 6940 if (mem_cgroup_disabled()) 6941 return; 6942 6943 /* Page cache replacement: new page already charged? */ 6944 if (page_memcg(newpage)) 6945 return; 6946 6947 memcg = page_memcg(oldpage); 6948 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage); 6949 if (!memcg) 6950 return; 6951 6952 /* Force-charge the new page. The old one will be freed soon */ 6953 nr_pages = thp_nr_pages(newpage); 6954 6955 page_counter_charge(&memcg->memory, nr_pages); 6956 if (do_memsw_account()) 6957 page_counter_charge(&memcg->memsw, nr_pages); 6958 6959 css_get(&memcg->css); 6960 commit_charge(newpage, memcg); 6961 6962 local_irq_save(flags); 6963 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 6964 memcg_check_events(memcg, newpage); 6965 local_irq_restore(flags); 6966 } 6967 6968 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6969 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6970 6971 void mem_cgroup_sk_alloc(struct sock *sk) 6972 { 6973 struct mem_cgroup *memcg; 6974 6975 if (!mem_cgroup_sockets_enabled) 6976 return; 6977 6978 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6979 if (in_interrupt()) 6980 return; 6981 6982 rcu_read_lock(); 6983 memcg = mem_cgroup_from_task(current); 6984 if (memcg == root_mem_cgroup) 6985 goto out; 6986 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6987 goto out; 6988 if (css_tryget(&memcg->css)) 6989 sk->sk_memcg = memcg; 6990 out: 6991 rcu_read_unlock(); 6992 } 6993 6994 void mem_cgroup_sk_free(struct sock *sk) 6995 { 6996 if (sk->sk_memcg) 6997 css_put(&sk->sk_memcg->css); 6998 } 6999 7000 /** 7001 * mem_cgroup_charge_skmem - charge socket memory 7002 * @memcg: memcg to charge 7003 * @nr_pages: number of pages to charge 7004 * 7005 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7006 * @memcg's configured limit, %false if the charge had to be forced. 7007 */ 7008 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7009 { 7010 gfp_t gfp_mask = GFP_KERNEL; 7011 7012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7013 struct page_counter *fail; 7014 7015 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7016 memcg->tcpmem_pressure = 0; 7017 return true; 7018 } 7019 page_counter_charge(&memcg->tcpmem, nr_pages); 7020 memcg->tcpmem_pressure = 1; 7021 return false; 7022 } 7023 7024 /* Don't block in the packet receive path */ 7025 if (in_softirq()) 7026 gfp_mask = GFP_NOWAIT; 7027 7028 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7029 7030 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 7031 return true; 7032 7033 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 7034 return false; 7035 } 7036 7037 /** 7038 * mem_cgroup_uncharge_skmem - uncharge socket memory 7039 * @memcg: memcg to uncharge 7040 * @nr_pages: number of pages to uncharge 7041 */ 7042 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7043 { 7044 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7045 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7046 return; 7047 } 7048 7049 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7050 7051 refill_stock(memcg, nr_pages); 7052 } 7053 7054 static int __init cgroup_memory(char *s) 7055 { 7056 char *token; 7057 7058 while ((token = strsep(&s, ",")) != NULL) { 7059 if (!*token) 7060 continue; 7061 if (!strcmp(token, "nosocket")) 7062 cgroup_memory_nosocket = true; 7063 if (!strcmp(token, "nokmem")) 7064 cgroup_memory_nokmem = true; 7065 } 7066 return 0; 7067 } 7068 __setup("cgroup.memory=", cgroup_memory); 7069 7070 /* 7071 * subsys_initcall() for memory controller. 7072 * 7073 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7074 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7075 * basically everything that doesn't depend on a specific mem_cgroup structure 7076 * should be initialized from here. 7077 */ 7078 static int __init mem_cgroup_init(void) 7079 { 7080 int cpu, node; 7081 7082 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7083 memcg_hotplug_cpu_dead); 7084 7085 for_each_possible_cpu(cpu) 7086 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7087 drain_local_stock); 7088 7089 for_each_node(node) { 7090 struct mem_cgroup_tree_per_node *rtpn; 7091 7092 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7093 node_online(node) ? node : NUMA_NO_NODE); 7094 7095 rtpn->rb_root = RB_ROOT; 7096 rtpn->rb_rightmost = NULL; 7097 spin_lock_init(&rtpn->lock); 7098 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7099 } 7100 7101 return 0; 7102 } 7103 subsys_initcall(mem_cgroup_init); 7104 7105 #ifdef CONFIG_MEMCG_SWAP 7106 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7107 { 7108 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7109 /* 7110 * The root cgroup cannot be destroyed, so it's refcount must 7111 * always be >= 1. 7112 */ 7113 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7114 VM_BUG_ON(1); 7115 break; 7116 } 7117 memcg = parent_mem_cgroup(memcg); 7118 if (!memcg) 7119 memcg = root_mem_cgroup; 7120 } 7121 return memcg; 7122 } 7123 7124 /** 7125 * mem_cgroup_swapout - transfer a memsw charge to swap 7126 * @page: page whose memsw charge to transfer 7127 * @entry: swap entry to move the charge to 7128 * 7129 * Transfer the memsw charge of @page to @entry. 7130 */ 7131 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7132 { 7133 struct mem_cgroup *memcg, *swap_memcg; 7134 unsigned int nr_entries; 7135 unsigned short oldid; 7136 7137 VM_BUG_ON_PAGE(PageLRU(page), page); 7138 VM_BUG_ON_PAGE(page_count(page), page); 7139 7140 if (mem_cgroup_disabled()) 7141 return; 7142 7143 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7144 return; 7145 7146 memcg = page_memcg(page); 7147 7148 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7149 if (!memcg) 7150 return; 7151 7152 /* 7153 * In case the memcg owning these pages has been offlined and doesn't 7154 * have an ID allocated to it anymore, charge the closest online 7155 * ancestor for the swap instead and transfer the memory+swap charge. 7156 */ 7157 swap_memcg = mem_cgroup_id_get_online(memcg); 7158 nr_entries = thp_nr_pages(page); 7159 /* Get references for the tail pages, too */ 7160 if (nr_entries > 1) 7161 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7162 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7163 nr_entries); 7164 VM_BUG_ON_PAGE(oldid, page); 7165 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7166 7167 page->memcg_data = 0; 7168 7169 if (!mem_cgroup_is_root(memcg)) 7170 page_counter_uncharge(&memcg->memory, nr_entries); 7171 7172 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7173 if (!mem_cgroup_is_root(swap_memcg)) 7174 page_counter_charge(&swap_memcg->memsw, nr_entries); 7175 page_counter_uncharge(&memcg->memsw, nr_entries); 7176 } 7177 7178 /* 7179 * Interrupts should be disabled here because the caller holds the 7180 * i_pages lock which is taken with interrupts-off. It is 7181 * important here to have the interrupts disabled because it is the 7182 * only synchronisation we have for updating the per-CPU variables. 7183 */ 7184 VM_BUG_ON(!irqs_disabled()); 7185 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 7186 memcg_check_events(memcg, page); 7187 7188 css_put(&memcg->css); 7189 } 7190 7191 /** 7192 * mem_cgroup_try_charge_swap - try charging swap space for a page 7193 * @page: page being added to swap 7194 * @entry: swap entry to charge 7195 * 7196 * Try to charge @page's memcg for the swap space at @entry. 7197 * 7198 * Returns 0 on success, -ENOMEM on failure. 7199 */ 7200 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7201 { 7202 unsigned int nr_pages = thp_nr_pages(page); 7203 struct page_counter *counter; 7204 struct mem_cgroup *memcg; 7205 unsigned short oldid; 7206 7207 if (mem_cgroup_disabled()) 7208 return 0; 7209 7210 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7211 return 0; 7212 7213 memcg = page_memcg(page); 7214 7215 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7216 if (!memcg) 7217 return 0; 7218 7219 if (!entry.val) { 7220 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7221 return 0; 7222 } 7223 7224 memcg = mem_cgroup_id_get_online(memcg); 7225 7226 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7227 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7228 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7229 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7230 mem_cgroup_id_put(memcg); 7231 return -ENOMEM; 7232 } 7233 7234 /* Get references for the tail pages, too */ 7235 if (nr_pages > 1) 7236 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7237 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7238 VM_BUG_ON_PAGE(oldid, page); 7239 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7240 7241 return 0; 7242 } 7243 7244 /** 7245 * mem_cgroup_uncharge_swap - uncharge swap space 7246 * @entry: swap entry to uncharge 7247 * @nr_pages: the amount of swap space to uncharge 7248 */ 7249 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7250 { 7251 struct mem_cgroup *memcg; 7252 unsigned short id; 7253 7254 id = swap_cgroup_record(entry, 0, nr_pages); 7255 rcu_read_lock(); 7256 memcg = mem_cgroup_from_id(id); 7257 if (memcg) { 7258 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7259 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7260 page_counter_uncharge(&memcg->swap, nr_pages); 7261 else 7262 page_counter_uncharge(&memcg->memsw, nr_pages); 7263 } 7264 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7265 mem_cgroup_id_put_many(memcg, nr_pages); 7266 } 7267 rcu_read_unlock(); 7268 } 7269 7270 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7271 { 7272 long nr_swap_pages = get_nr_swap_pages(); 7273 7274 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7275 return nr_swap_pages; 7276 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7277 nr_swap_pages = min_t(long, nr_swap_pages, 7278 READ_ONCE(memcg->swap.max) - 7279 page_counter_read(&memcg->swap)); 7280 return nr_swap_pages; 7281 } 7282 7283 bool mem_cgroup_swap_full(struct page *page) 7284 { 7285 struct mem_cgroup *memcg; 7286 7287 VM_BUG_ON_PAGE(!PageLocked(page), page); 7288 7289 if (vm_swap_full()) 7290 return true; 7291 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7292 return false; 7293 7294 memcg = page_memcg(page); 7295 if (!memcg) 7296 return false; 7297 7298 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7299 unsigned long usage = page_counter_read(&memcg->swap); 7300 7301 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7302 usage * 2 >= READ_ONCE(memcg->swap.max)) 7303 return true; 7304 } 7305 7306 return false; 7307 } 7308 7309 static int __init setup_swap_account(char *s) 7310 { 7311 if (!strcmp(s, "1")) 7312 cgroup_memory_noswap = false; 7313 else if (!strcmp(s, "0")) 7314 cgroup_memory_noswap = true; 7315 return 1; 7316 } 7317 __setup("swapaccount=", setup_swap_account); 7318 7319 static u64 swap_current_read(struct cgroup_subsys_state *css, 7320 struct cftype *cft) 7321 { 7322 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7323 7324 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7325 } 7326 7327 static int swap_high_show(struct seq_file *m, void *v) 7328 { 7329 return seq_puts_memcg_tunable(m, 7330 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7331 } 7332 7333 static ssize_t swap_high_write(struct kernfs_open_file *of, 7334 char *buf, size_t nbytes, loff_t off) 7335 { 7336 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7337 unsigned long high; 7338 int err; 7339 7340 buf = strstrip(buf); 7341 err = page_counter_memparse(buf, "max", &high); 7342 if (err) 7343 return err; 7344 7345 page_counter_set_high(&memcg->swap, high); 7346 7347 return nbytes; 7348 } 7349 7350 static int swap_max_show(struct seq_file *m, void *v) 7351 { 7352 return seq_puts_memcg_tunable(m, 7353 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7354 } 7355 7356 static ssize_t swap_max_write(struct kernfs_open_file *of, 7357 char *buf, size_t nbytes, loff_t off) 7358 { 7359 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7360 unsigned long max; 7361 int err; 7362 7363 buf = strstrip(buf); 7364 err = page_counter_memparse(buf, "max", &max); 7365 if (err) 7366 return err; 7367 7368 xchg(&memcg->swap.max, max); 7369 7370 return nbytes; 7371 } 7372 7373 static int swap_events_show(struct seq_file *m, void *v) 7374 { 7375 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7376 7377 seq_printf(m, "high %lu\n", 7378 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7379 seq_printf(m, "max %lu\n", 7380 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7381 seq_printf(m, "fail %lu\n", 7382 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7383 7384 return 0; 7385 } 7386 7387 static struct cftype swap_files[] = { 7388 { 7389 .name = "swap.current", 7390 .flags = CFTYPE_NOT_ON_ROOT, 7391 .read_u64 = swap_current_read, 7392 }, 7393 { 7394 .name = "swap.high", 7395 .flags = CFTYPE_NOT_ON_ROOT, 7396 .seq_show = swap_high_show, 7397 .write = swap_high_write, 7398 }, 7399 { 7400 .name = "swap.max", 7401 .flags = CFTYPE_NOT_ON_ROOT, 7402 .seq_show = swap_max_show, 7403 .write = swap_max_write, 7404 }, 7405 { 7406 .name = "swap.events", 7407 .flags = CFTYPE_NOT_ON_ROOT, 7408 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7409 .seq_show = swap_events_show, 7410 }, 7411 { } /* terminate */ 7412 }; 7413 7414 static struct cftype memsw_files[] = { 7415 { 7416 .name = "memsw.usage_in_bytes", 7417 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7418 .read_u64 = mem_cgroup_read_u64, 7419 }, 7420 { 7421 .name = "memsw.max_usage_in_bytes", 7422 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7423 .write = mem_cgroup_reset, 7424 .read_u64 = mem_cgroup_read_u64, 7425 }, 7426 { 7427 .name = "memsw.limit_in_bytes", 7428 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7429 .write = mem_cgroup_write, 7430 .read_u64 = mem_cgroup_read_u64, 7431 }, 7432 { 7433 .name = "memsw.failcnt", 7434 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7435 .write = mem_cgroup_reset, 7436 .read_u64 = mem_cgroup_read_u64, 7437 }, 7438 { }, /* terminate */ 7439 }; 7440 7441 /* 7442 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7443 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7444 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7445 * boot parameter. This may result in premature OOPS inside 7446 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7447 */ 7448 static int __init mem_cgroup_swap_init(void) 7449 { 7450 /* No memory control -> no swap control */ 7451 if (mem_cgroup_disabled()) 7452 cgroup_memory_noswap = true; 7453 7454 if (cgroup_memory_noswap) 7455 return 0; 7456 7457 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7458 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7459 7460 return 0; 7461 } 7462 core_initcall(mem_cgroup_swap_init); 7463 7464 #endif /* CONFIG_MEMCG_SWAP */ 7465