1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char *const mem_cgroup_lru_names[] = { 102 "inactive_anon", 103 "active_anon", 104 "inactive_file", 105 "active_file", 106 "unevictable", 107 }; 108 109 #define THRESHOLDS_EVENTS_TARGET 128 110 #define SOFTLIMIT_EVENTS_TARGET 1024 111 #define NUMAINFO_EVENTS_TARGET 1024 112 113 /* 114 * Cgroups above their limits are maintained in a RB-Tree, independent of 115 * their hierarchy representation 116 */ 117 118 struct mem_cgroup_tree_per_node { 119 struct rb_root rb_root; 120 struct rb_node *rb_rightmost; 121 spinlock_t lock; 122 }; 123 124 struct mem_cgroup_tree { 125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 126 }; 127 128 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 129 130 /* for OOM */ 131 struct mem_cgroup_eventfd_list { 132 struct list_head list; 133 struct eventfd_ctx *eventfd; 134 }; 135 136 /* 137 * cgroup_event represents events which userspace want to receive. 138 */ 139 struct mem_cgroup_event { 140 /* 141 * memcg which the event belongs to. 142 */ 143 struct mem_cgroup *memcg; 144 /* 145 * eventfd to signal userspace about the event. 146 */ 147 struct eventfd_ctx *eventfd; 148 /* 149 * Each of these stored in a list by the cgroup. 150 */ 151 struct list_head list; 152 /* 153 * register_event() callback will be used to add new userspace 154 * waiter for changes related to this event. Use eventfd_signal() 155 * on eventfd to send notification to userspace. 156 */ 157 int (*register_event)(struct mem_cgroup *memcg, 158 struct eventfd_ctx *eventfd, const char *args); 159 /* 160 * unregister_event() callback will be called when userspace closes 161 * the eventfd or on cgroup removing. This callback must be set, 162 * if you want provide notification functionality. 163 */ 164 void (*unregister_event)(struct mem_cgroup *memcg, 165 struct eventfd_ctx *eventfd); 166 /* 167 * All fields below needed to unregister event when 168 * userspace closes eventfd. 169 */ 170 poll_table pt; 171 wait_queue_head_t *wqh; 172 wait_queue_entry_t wait; 173 struct work_struct remove; 174 }; 175 176 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 177 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 178 179 /* Stuffs for move charges at task migration. */ 180 /* 181 * Types of charges to be moved. 182 */ 183 #define MOVE_ANON 0x1U 184 #define MOVE_FILE 0x2U 185 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 186 187 /* "mc" and its members are protected by cgroup_mutex */ 188 static struct move_charge_struct { 189 spinlock_t lock; /* for from, to */ 190 struct mm_struct *mm; 191 struct mem_cgroup *from; 192 struct mem_cgroup *to; 193 unsigned long flags; 194 unsigned long precharge; 195 unsigned long moved_charge; 196 unsigned long moved_swap; 197 struct task_struct *moving_task; /* a task moving charges */ 198 wait_queue_head_t waitq; /* a waitq for other context */ 199 } mc = { 200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 202 }; 203 204 /* 205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 206 * limit reclaim to prevent infinite loops, if they ever occur. 207 */ 208 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 209 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 210 211 enum charge_type { 212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 213 MEM_CGROUP_CHARGE_TYPE_ANON, 214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 216 NR_CHARGE_TYPE, 217 }; 218 219 /* for encoding cft->private value on file */ 220 enum res_type { 221 _MEM, 222 _MEMSWAP, 223 _OOM_TYPE, 224 _KMEM, 225 _TCP, 226 }; 227 228 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 229 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 230 #define MEMFILE_ATTR(val) ((val) & 0xffff) 231 /* Used for OOM nofiier */ 232 #define OOM_CONTROL (0) 233 234 /* 235 * Iteration constructs for visiting all cgroups (under a tree). If 236 * loops are exited prematurely (break), mem_cgroup_iter_break() must 237 * be used for reference counting. 238 */ 239 #define for_each_mem_cgroup_tree(iter, root) \ 240 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 241 iter != NULL; \ 242 iter = mem_cgroup_iter(root, iter, NULL)) 243 244 #define for_each_mem_cgroup(iter) \ 245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 246 iter != NULL; \ 247 iter = mem_cgroup_iter(NULL, iter, NULL)) 248 249 static inline bool should_force_charge(void) 250 { 251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 252 (current->flags & PF_EXITING); 253 } 254 255 /* Some nice accessors for the vmpressure. */ 256 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 257 { 258 if (!memcg) 259 memcg = root_mem_cgroup; 260 return &memcg->vmpressure; 261 } 262 263 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 264 { 265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 266 } 267 268 #ifdef CONFIG_MEMCG_KMEM 269 /* 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 271 * The main reason for not using cgroup id for this: 272 * this works better in sparse environments, where we have a lot of memcgs, 273 * but only a few kmem-limited. Or also, if we have, for instance, 200 274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 275 * 200 entry array for that. 276 * 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It 278 * will double each time we have to increase it. 279 */ 280 static DEFINE_IDA(memcg_cache_ida); 281 int memcg_nr_cache_ids; 282 283 /* Protects memcg_nr_cache_ids */ 284 static DECLARE_RWSEM(memcg_cache_ids_sem); 285 286 void memcg_get_cache_ids(void) 287 { 288 down_read(&memcg_cache_ids_sem); 289 } 290 291 void memcg_put_cache_ids(void) 292 { 293 up_read(&memcg_cache_ids_sem); 294 } 295 296 /* 297 * MIN_SIZE is different than 1, because we would like to avoid going through 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited 299 * cgroups is a reasonable guess. In the future, it could be a parameter or 300 * tunable, but that is strictly not necessary. 301 * 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 303 * this constant directly from cgroup, but it is understandable that this is 304 * better kept as an internal representation in cgroup.c. In any case, the 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily 306 * increase ours as well if it increases. 307 */ 308 #define MEMCG_CACHES_MIN_SIZE 4 309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 310 311 /* 312 * A lot of the calls to the cache allocation functions are expected to be 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 314 * conditional to this static branch, we'll have to allow modules that does 315 * kmem_cache_alloc and the such to see this symbol as well 316 */ 317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 318 EXPORT_SYMBOL(memcg_kmem_enabled_key); 319 320 struct workqueue_struct *memcg_kmem_cache_wq; 321 #endif 322 323 static int memcg_shrinker_map_size; 324 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 325 326 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 327 { 328 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 329 } 330 331 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 332 int size, int old_size) 333 { 334 struct memcg_shrinker_map *new, *old; 335 int nid; 336 337 lockdep_assert_held(&memcg_shrinker_map_mutex); 338 339 for_each_node(nid) { 340 old = rcu_dereference_protected( 341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 342 /* Not yet online memcg */ 343 if (!old) 344 return 0; 345 346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 347 if (!new) 348 return -ENOMEM; 349 350 /* Set all old bits, clear all new bits */ 351 memset(new->map, (int)0xff, old_size); 352 memset((void *)new->map + old_size, 0, size - old_size); 353 354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 356 } 357 358 return 0; 359 } 360 361 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 362 { 363 struct mem_cgroup_per_node *pn; 364 struct memcg_shrinker_map *map; 365 int nid; 366 367 if (mem_cgroup_is_root(memcg)) 368 return; 369 370 for_each_node(nid) { 371 pn = mem_cgroup_nodeinfo(memcg, nid); 372 map = rcu_dereference_protected(pn->shrinker_map, true); 373 if (map) 374 kvfree(map); 375 rcu_assign_pointer(pn->shrinker_map, NULL); 376 } 377 } 378 379 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 380 { 381 struct memcg_shrinker_map *map; 382 int nid, size, ret = 0; 383 384 if (mem_cgroup_is_root(memcg)) 385 return 0; 386 387 mutex_lock(&memcg_shrinker_map_mutex); 388 size = memcg_shrinker_map_size; 389 for_each_node(nid) { 390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 391 if (!map) { 392 memcg_free_shrinker_maps(memcg); 393 ret = -ENOMEM; 394 break; 395 } 396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 397 } 398 mutex_unlock(&memcg_shrinker_map_mutex); 399 400 return ret; 401 } 402 403 int memcg_expand_shrinker_maps(int new_id) 404 { 405 int size, old_size, ret = 0; 406 struct mem_cgroup *memcg; 407 408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 409 old_size = memcg_shrinker_map_size; 410 if (size <= old_size) 411 return 0; 412 413 mutex_lock(&memcg_shrinker_map_mutex); 414 if (!root_mem_cgroup) 415 goto unlock; 416 417 for_each_mem_cgroup(memcg) { 418 if (mem_cgroup_is_root(memcg)) 419 continue; 420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 421 if (ret) 422 goto unlock; 423 } 424 unlock: 425 if (!ret) 426 memcg_shrinker_map_size = size; 427 mutex_unlock(&memcg_shrinker_map_mutex); 428 return ret; 429 } 430 431 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 432 { 433 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 434 struct memcg_shrinker_map *map; 435 436 rcu_read_lock(); 437 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 438 /* Pairs with smp mb in shrink_slab() */ 439 smp_mb__before_atomic(); 440 set_bit(shrinker_id, map->map); 441 rcu_read_unlock(); 442 } 443 } 444 445 /** 446 * mem_cgroup_css_from_page - css of the memcg associated with a page 447 * @page: page of interest 448 * 449 * If memcg is bound to the default hierarchy, css of the memcg associated 450 * with @page is returned. The returned css remains associated with @page 451 * until it is released. 452 * 453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 454 * is returned. 455 */ 456 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 457 { 458 struct mem_cgroup *memcg; 459 460 memcg = page->mem_cgroup; 461 462 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 463 memcg = root_mem_cgroup; 464 465 return &memcg->css; 466 } 467 468 /** 469 * page_cgroup_ino - return inode number of the memcg a page is charged to 470 * @page: the page 471 * 472 * Look up the closest online ancestor of the memory cgroup @page is charged to 473 * and return its inode number or 0 if @page is not charged to any cgroup. It 474 * is safe to call this function without holding a reference to @page. 475 * 476 * Note, this function is inherently racy, because there is nothing to prevent 477 * the cgroup inode from getting torn down and potentially reallocated a moment 478 * after page_cgroup_ino() returns, so it only should be used by callers that 479 * do not care (such as procfs interfaces). 480 */ 481 ino_t page_cgroup_ino(struct page *page) 482 { 483 struct mem_cgroup *memcg; 484 unsigned long ino = 0; 485 486 rcu_read_lock(); 487 if (PageSlab(page) && !PageTail(page)) 488 memcg = memcg_from_slab_page(page); 489 else 490 memcg = READ_ONCE(page->mem_cgroup); 491 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 492 memcg = parent_mem_cgroup(memcg); 493 if (memcg) 494 ino = cgroup_ino(memcg->css.cgroup); 495 rcu_read_unlock(); 496 return ino; 497 } 498 499 static struct mem_cgroup_per_node * 500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 501 { 502 int nid = page_to_nid(page); 503 504 return memcg->nodeinfo[nid]; 505 } 506 507 static struct mem_cgroup_tree_per_node * 508 soft_limit_tree_node(int nid) 509 { 510 return soft_limit_tree.rb_tree_per_node[nid]; 511 } 512 513 static struct mem_cgroup_tree_per_node * 514 soft_limit_tree_from_page(struct page *page) 515 { 516 int nid = page_to_nid(page); 517 518 return soft_limit_tree.rb_tree_per_node[nid]; 519 } 520 521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 522 struct mem_cgroup_tree_per_node *mctz, 523 unsigned long new_usage_in_excess) 524 { 525 struct rb_node **p = &mctz->rb_root.rb_node; 526 struct rb_node *parent = NULL; 527 struct mem_cgroup_per_node *mz_node; 528 bool rightmost = true; 529 530 if (mz->on_tree) 531 return; 532 533 mz->usage_in_excess = new_usage_in_excess; 534 if (!mz->usage_in_excess) 535 return; 536 while (*p) { 537 parent = *p; 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 539 tree_node); 540 if (mz->usage_in_excess < mz_node->usage_in_excess) { 541 p = &(*p)->rb_left; 542 rightmost = false; 543 } 544 545 /* 546 * We can't avoid mem cgroups that are over their soft 547 * limit by the same amount 548 */ 549 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 550 p = &(*p)->rb_right; 551 } 552 553 if (rightmost) 554 mctz->rb_rightmost = &mz->tree_node; 555 556 rb_link_node(&mz->tree_node, parent, p); 557 rb_insert_color(&mz->tree_node, &mctz->rb_root); 558 mz->on_tree = true; 559 } 560 561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 562 struct mem_cgroup_tree_per_node *mctz) 563 { 564 if (!mz->on_tree) 565 return; 566 567 if (&mz->tree_node == mctz->rb_rightmost) 568 mctz->rb_rightmost = rb_prev(&mz->tree_node); 569 570 rb_erase(&mz->tree_node, &mctz->rb_root); 571 mz->on_tree = false; 572 } 573 574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 575 struct mem_cgroup_tree_per_node *mctz) 576 { 577 unsigned long flags; 578 579 spin_lock_irqsave(&mctz->lock, flags); 580 __mem_cgroup_remove_exceeded(mz, mctz); 581 spin_unlock_irqrestore(&mctz->lock, flags); 582 } 583 584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 585 { 586 unsigned long nr_pages = page_counter_read(&memcg->memory); 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 588 unsigned long excess = 0; 589 590 if (nr_pages > soft_limit) 591 excess = nr_pages - soft_limit; 592 593 return excess; 594 } 595 596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 597 { 598 unsigned long excess; 599 struct mem_cgroup_per_node *mz; 600 struct mem_cgroup_tree_per_node *mctz; 601 602 mctz = soft_limit_tree_from_page(page); 603 if (!mctz) 604 return; 605 /* 606 * Necessary to update all ancestors when hierarchy is used. 607 * because their event counter is not touched. 608 */ 609 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 610 mz = mem_cgroup_page_nodeinfo(memcg, page); 611 excess = soft_limit_excess(memcg); 612 /* 613 * We have to update the tree if mz is on RB-tree or 614 * mem is over its softlimit. 615 */ 616 if (excess || mz->on_tree) { 617 unsigned long flags; 618 619 spin_lock_irqsave(&mctz->lock, flags); 620 /* if on-tree, remove it */ 621 if (mz->on_tree) 622 __mem_cgroup_remove_exceeded(mz, mctz); 623 /* 624 * Insert again. mz->usage_in_excess will be updated. 625 * If excess is 0, no tree ops. 626 */ 627 __mem_cgroup_insert_exceeded(mz, mctz, excess); 628 spin_unlock_irqrestore(&mctz->lock, flags); 629 } 630 } 631 } 632 633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 634 { 635 struct mem_cgroup_tree_per_node *mctz; 636 struct mem_cgroup_per_node *mz; 637 int nid; 638 639 for_each_node(nid) { 640 mz = mem_cgroup_nodeinfo(memcg, nid); 641 mctz = soft_limit_tree_node(nid); 642 if (mctz) 643 mem_cgroup_remove_exceeded(mz, mctz); 644 } 645 } 646 647 static struct mem_cgroup_per_node * 648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 649 { 650 struct mem_cgroup_per_node *mz; 651 652 retry: 653 mz = NULL; 654 if (!mctz->rb_rightmost) 655 goto done; /* Nothing to reclaim from */ 656 657 mz = rb_entry(mctz->rb_rightmost, 658 struct mem_cgroup_per_node, tree_node); 659 /* 660 * Remove the node now but someone else can add it back, 661 * we will to add it back at the end of reclaim to its correct 662 * position in the tree. 663 */ 664 __mem_cgroup_remove_exceeded(mz, mctz); 665 if (!soft_limit_excess(mz->memcg) || 666 !css_tryget_online(&mz->memcg->css)) 667 goto retry; 668 done: 669 return mz; 670 } 671 672 static struct mem_cgroup_per_node * 673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 674 { 675 struct mem_cgroup_per_node *mz; 676 677 spin_lock_irq(&mctz->lock); 678 mz = __mem_cgroup_largest_soft_limit_node(mctz); 679 spin_unlock_irq(&mctz->lock); 680 return mz; 681 } 682 683 /** 684 * __mod_memcg_state - update cgroup memory statistics 685 * @memcg: the memory cgroup 686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 687 * @val: delta to add to the counter, can be negative 688 */ 689 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 690 { 691 long x; 692 693 if (mem_cgroup_disabled()) 694 return; 695 696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 698 struct mem_cgroup *mi; 699 700 /* 701 * Batch local counters to keep them in sync with 702 * the hierarchical ones. 703 */ 704 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 705 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 706 atomic_long_add(x, &mi->vmstats[idx]); 707 x = 0; 708 } 709 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 710 } 711 712 static struct mem_cgroup_per_node * 713 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 714 { 715 struct mem_cgroup *parent; 716 717 parent = parent_mem_cgroup(pn->memcg); 718 if (!parent) 719 return NULL; 720 return mem_cgroup_nodeinfo(parent, nid); 721 } 722 723 /** 724 * __mod_lruvec_state - update lruvec memory statistics 725 * @lruvec: the lruvec 726 * @idx: the stat item 727 * @val: delta to add to the counter, can be negative 728 * 729 * The lruvec is the intersection of the NUMA node and a cgroup. This 730 * function updates the all three counters that are affected by a 731 * change of state at this level: per-node, per-cgroup, per-lruvec. 732 */ 733 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 734 int val) 735 { 736 pg_data_t *pgdat = lruvec_pgdat(lruvec); 737 struct mem_cgroup_per_node *pn; 738 struct mem_cgroup *memcg; 739 long x; 740 741 /* Update node */ 742 __mod_node_page_state(pgdat, idx, val); 743 744 if (mem_cgroup_disabled()) 745 return; 746 747 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 748 memcg = pn->memcg; 749 750 /* Update memcg */ 751 __mod_memcg_state(memcg, idx, val); 752 753 /* Update lruvec */ 754 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 755 756 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 757 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 758 struct mem_cgroup_per_node *pi; 759 760 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 761 atomic_long_add(x, &pi->lruvec_stat[idx]); 762 x = 0; 763 } 764 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 765 } 766 767 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 768 { 769 struct page *page = virt_to_head_page(p); 770 pg_data_t *pgdat = page_pgdat(page); 771 struct mem_cgroup *memcg; 772 struct lruvec *lruvec; 773 774 rcu_read_lock(); 775 memcg = memcg_from_slab_page(page); 776 777 /* Untracked pages have no memcg, no lruvec. Update only the node */ 778 if (!memcg || memcg == root_mem_cgroup) { 779 __mod_node_page_state(pgdat, idx, val); 780 } else { 781 lruvec = mem_cgroup_lruvec(pgdat, memcg); 782 __mod_lruvec_state(lruvec, idx, val); 783 } 784 rcu_read_unlock(); 785 } 786 787 /** 788 * __count_memcg_events - account VM events in a cgroup 789 * @memcg: the memory cgroup 790 * @idx: the event item 791 * @count: the number of events that occured 792 */ 793 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 794 unsigned long count) 795 { 796 unsigned long x; 797 798 if (mem_cgroup_disabled()) 799 return; 800 801 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 802 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 803 struct mem_cgroup *mi; 804 805 /* 806 * Batch local counters to keep them in sync with 807 * the hierarchical ones. 808 */ 809 __this_cpu_add(memcg->vmstats_local->events[idx], x); 810 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 811 atomic_long_add(x, &mi->vmevents[idx]); 812 x = 0; 813 } 814 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 815 } 816 817 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 818 { 819 return atomic_long_read(&memcg->vmevents[event]); 820 } 821 822 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 823 { 824 long x = 0; 825 int cpu; 826 827 for_each_possible_cpu(cpu) 828 x += per_cpu(memcg->vmstats_local->events[event], cpu); 829 return x; 830 } 831 832 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 833 struct page *page, 834 bool compound, int nr_pages) 835 { 836 /* 837 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 838 * counted as CACHE even if it's on ANON LRU. 839 */ 840 if (PageAnon(page)) 841 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 842 else { 843 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 844 if (PageSwapBacked(page)) 845 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 846 } 847 848 if (compound) { 849 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 850 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 851 } 852 853 /* pagein of a big page is an event. So, ignore page size */ 854 if (nr_pages > 0) 855 __count_memcg_events(memcg, PGPGIN, 1); 856 else { 857 __count_memcg_events(memcg, PGPGOUT, 1); 858 nr_pages = -nr_pages; /* for event */ 859 } 860 861 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 862 } 863 864 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 865 enum mem_cgroup_events_target target) 866 { 867 unsigned long val, next; 868 869 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 870 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 871 /* from time_after() in jiffies.h */ 872 if ((long)(next - val) < 0) { 873 switch (target) { 874 case MEM_CGROUP_TARGET_THRESH: 875 next = val + THRESHOLDS_EVENTS_TARGET; 876 break; 877 case MEM_CGROUP_TARGET_SOFTLIMIT: 878 next = val + SOFTLIMIT_EVENTS_TARGET; 879 break; 880 case MEM_CGROUP_TARGET_NUMAINFO: 881 next = val + NUMAINFO_EVENTS_TARGET; 882 break; 883 default: 884 break; 885 } 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 887 return true; 888 } 889 return false; 890 } 891 892 /* 893 * Check events in order. 894 * 895 */ 896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 897 { 898 /* threshold event is triggered in finer grain than soft limit */ 899 if (unlikely(mem_cgroup_event_ratelimit(memcg, 900 MEM_CGROUP_TARGET_THRESH))) { 901 bool do_softlimit; 902 bool do_numainfo __maybe_unused; 903 904 do_softlimit = mem_cgroup_event_ratelimit(memcg, 905 MEM_CGROUP_TARGET_SOFTLIMIT); 906 #if MAX_NUMNODES > 1 907 do_numainfo = mem_cgroup_event_ratelimit(memcg, 908 MEM_CGROUP_TARGET_NUMAINFO); 909 #endif 910 mem_cgroup_threshold(memcg); 911 if (unlikely(do_softlimit)) 912 mem_cgroup_update_tree(memcg, page); 913 #if MAX_NUMNODES > 1 914 if (unlikely(do_numainfo)) 915 atomic_inc(&memcg->numainfo_events); 916 #endif 917 } 918 } 919 920 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 921 { 922 /* 923 * mm_update_next_owner() may clear mm->owner to NULL 924 * if it races with swapoff, page migration, etc. 925 * So this can be called with p == NULL. 926 */ 927 if (unlikely(!p)) 928 return NULL; 929 930 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 931 } 932 EXPORT_SYMBOL(mem_cgroup_from_task); 933 934 /** 935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 936 * @mm: mm from which memcg should be extracted. It can be NULL. 937 * 938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 940 * returned. 941 */ 942 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 943 { 944 struct mem_cgroup *memcg; 945 946 if (mem_cgroup_disabled()) 947 return NULL; 948 949 rcu_read_lock(); 950 do { 951 /* 952 * Page cache insertions can happen withou an 953 * actual mm context, e.g. during disk probing 954 * on boot, loopback IO, acct() writes etc. 955 */ 956 if (unlikely(!mm)) 957 memcg = root_mem_cgroup; 958 else { 959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 960 if (unlikely(!memcg)) 961 memcg = root_mem_cgroup; 962 } 963 } while (!css_tryget_online(&memcg->css)); 964 rcu_read_unlock(); 965 return memcg; 966 } 967 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 968 969 /** 970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 971 * @page: page from which memcg should be extracted. 972 * 973 * Obtain a reference on page->memcg and returns it if successful. Otherwise 974 * root_mem_cgroup is returned. 975 */ 976 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 977 { 978 struct mem_cgroup *memcg = page->mem_cgroup; 979 980 if (mem_cgroup_disabled()) 981 return NULL; 982 983 rcu_read_lock(); 984 if (!memcg || !css_tryget_online(&memcg->css)) 985 memcg = root_mem_cgroup; 986 rcu_read_unlock(); 987 return memcg; 988 } 989 EXPORT_SYMBOL(get_mem_cgroup_from_page); 990 991 /** 992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 993 */ 994 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 995 { 996 if (unlikely(current->active_memcg)) { 997 struct mem_cgroup *memcg = root_mem_cgroup; 998 999 rcu_read_lock(); 1000 if (css_tryget_online(¤t->active_memcg->css)) 1001 memcg = current->active_memcg; 1002 rcu_read_unlock(); 1003 return memcg; 1004 } 1005 return get_mem_cgroup_from_mm(current->mm); 1006 } 1007 1008 /** 1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1010 * @root: hierarchy root 1011 * @prev: previously returned memcg, NULL on first invocation 1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1013 * 1014 * Returns references to children of the hierarchy below @root, or 1015 * @root itself, or %NULL after a full round-trip. 1016 * 1017 * Caller must pass the return value in @prev on subsequent 1018 * invocations for reference counting, or use mem_cgroup_iter_break() 1019 * to cancel a hierarchy walk before the round-trip is complete. 1020 * 1021 * Reclaimers can specify a node and a priority level in @reclaim to 1022 * divide up the memcgs in the hierarchy among all concurrent 1023 * reclaimers operating on the same node and priority. 1024 */ 1025 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1026 struct mem_cgroup *prev, 1027 struct mem_cgroup_reclaim_cookie *reclaim) 1028 { 1029 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1030 struct cgroup_subsys_state *css = NULL; 1031 struct mem_cgroup *memcg = NULL; 1032 struct mem_cgroup *pos = NULL; 1033 1034 if (mem_cgroup_disabled()) 1035 return NULL; 1036 1037 if (!root) 1038 root = root_mem_cgroup; 1039 1040 if (prev && !reclaim) 1041 pos = prev; 1042 1043 if (!root->use_hierarchy && root != root_mem_cgroup) { 1044 if (prev) 1045 goto out; 1046 return root; 1047 } 1048 1049 rcu_read_lock(); 1050 1051 if (reclaim) { 1052 struct mem_cgroup_per_node *mz; 1053 1054 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1055 iter = &mz->iter[reclaim->priority]; 1056 1057 if (prev && reclaim->generation != iter->generation) 1058 goto out_unlock; 1059 1060 while (1) { 1061 pos = READ_ONCE(iter->position); 1062 if (!pos || css_tryget(&pos->css)) 1063 break; 1064 /* 1065 * css reference reached zero, so iter->position will 1066 * be cleared by ->css_released. However, we should not 1067 * rely on this happening soon, because ->css_released 1068 * is called from a work queue, and by busy-waiting we 1069 * might block it. So we clear iter->position right 1070 * away. 1071 */ 1072 (void)cmpxchg(&iter->position, pos, NULL); 1073 } 1074 } 1075 1076 if (pos) 1077 css = &pos->css; 1078 1079 for (;;) { 1080 css = css_next_descendant_pre(css, &root->css); 1081 if (!css) { 1082 /* 1083 * Reclaimers share the hierarchy walk, and a 1084 * new one might jump in right at the end of 1085 * the hierarchy - make sure they see at least 1086 * one group and restart from the beginning. 1087 */ 1088 if (!prev) 1089 continue; 1090 break; 1091 } 1092 1093 /* 1094 * Verify the css and acquire a reference. The root 1095 * is provided by the caller, so we know it's alive 1096 * and kicking, and don't take an extra reference. 1097 */ 1098 memcg = mem_cgroup_from_css(css); 1099 1100 if (css == &root->css) 1101 break; 1102 1103 if (css_tryget(css)) 1104 break; 1105 1106 memcg = NULL; 1107 } 1108 1109 if (reclaim) { 1110 /* 1111 * The position could have already been updated by a competing 1112 * thread, so check that the value hasn't changed since we read 1113 * it to avoid reclaiming from the same cgroup twice. 1114 */ 1115 (void)cmpxchg(&iter->position, pos, memcg); 1116 1117 if (pos) 1118 css_put(&pos->css); 1119 1120 if (!memcg) 1121 iter->generation++; 1122 else if (!prev) 1123 reclaim->generation = iter->generation; 1124 } 1125 1126 out_unlock: 1127 rcu_read_unlock(); 1128 out: 1129 if (prev && prev != root) 1130 css_put(&prev->css); 1131 1132 return memcg; 1133 } 1134 1135 /** 1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1137 * @root: hierarchy root 1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1139 */ 1140 void mem_cgroup_iter_break(struct mem_cgroup *root, 1141 struct mem_cgroup *prev) 1142 { 1143 if (!root) 1144 root = root_mem_cgroup; 1145 if (prev && prev != root) 1146 css_put(&prev->css); 1147 } 1148 1149 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1150 struct mem_cgroup *dead_memcg) 1151 { 1152 struct mem_cgroup_reclaim_iter *iter; 1153 struct mem_cgroup_per_node *mz; 1154 int nid; 1155 int i; 1156 1157 for_each_node(nid) { 1158 mz = mem_cgroup_nodeinfo(from, nid); 1159 for (i = 0; i <= DEF_PRIORITY; i++) { 1160 iter = &mz->iter[i]; 1161 cmpxchg(&iter->position, 1162 dead_memcg, NULL); 1163 } 1164 } 1165 } 1166 1167 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1168 { 1169 struct mem_cgroup *memcg = dead_memcg; 1170 struct mem_cgroup *last; 1171 1172 do { 1173 __invalidate_reclaim_iterators(memcg, dead_memcg); 1174 last = memcg; 1175 } while ((memcg = parent_mem_cgroup(memcg))); 1176 1177 /* 1178 * When cgruop1 non-hierarchy mode is used, 1179 * parent_mem_cgroup() does not walk all the way up to the 1180 * cgroup root (root_mem_cgroup). So we have to handle 1181 * dead_memcg from cgroup root separately. 1182 */ 1183 if (last != root_mem_cgroup) 1184 __invalidate_reclaim_iterators(root_mem_cgroup, 1185 dead_memcg); 1186 } 1187 1188 /** 1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1190 * @memcg: hierarchy root 1191 * @fn: function to call for each task 1192 * @arg: argument passed to @fn 1193 * 1194 * This function iterates over tasks attached to @memcg or to any of its 1195 * descendants and calls @fn for each task. If @fn returns a non-zero 1196 * value, the function breaks the iteration loop and returns the value. 1197 * Otherwise, it will iterate over all tasks and return 0. 1198 * 1199 * This function must not be called for the root memory cgroup. 1200 */ 1201 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1202 int (*fn)(struct task_struct *, void *), void *arg) 1203 { 1204 struct mem_cgroup *iter; 1205 int ret = 0; 1206 1207 BUG_ON(memcg == root_mem_cgroup); 1208 1209 for_each_mem_cgroup_tree(iter, memcg) { 1210 struct css_task_iter it; 1211 struct task_struct *task; 1212 1213 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1214 while (!ret && (task = css_task_iter_next(&it))) 1215 ret = fn(task, arg); 1216 css_task_iter_end(&it); 1217 if (ret) { 1218 mem_cgroup_iter_break(memcg, iter); 1219 break; 1220 } 1221 } 1222 return ret; 1223 } 1224 1225 /** 1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1227 * @page: the page 1228 * @pgdat: pgdat of the page 1229 * 1230 * This function is only safe when following the LRU page isolation 1231 * and putback protocol: the LRU lock must be held, and the page must 1232 * either be PageLRU() or the caller must have isolated/allocated it. 1233 */ 1234 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1235 { 1236 struct mem_cgroup_per_node *mz; 1237 struct mem_cgroup *memcg; 1238 struct lruvec *lruvec; 1239 1240 if (mem_cgroup_disabled()) { 1241 lruvec = &pgdat->lruvec; 1242 goto out; 1243 } 1244 1245 memcg = page->mem_cgroup; 1246 /* 1247 * Swapcache readahead pages are added to the LRU - and 1248 * possibly migrated - before they are charged. 1249 */ 1250 if (!memcg) 1251 memcg = root_mem_cgroup; 1252 1253 mz = mem_cgroup_page_nodeinfo(memcg, page); 1254 lruvec = &mz->lruvec; 1255 out: 1256 /* 1257 * Since a node can be onlined after the mem_cgroup was created, 1258 * we have to be prepared to initialize lruvec->zone here; 1259 * and if offlined then reonlined, we need to reinitialize it. 1260 */ 1261 if (unlikely(lruvec->pgdat != pgdat)) 1262 lruvec->pgdat = pgdat; 1263 return lruvec; 1264 } 1265 1266 /** 1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1268 * @lruvec: mem_cgroup per zone lru vector 1269 * @lru: index of lru list the page is sitting on 1270 * @zid: zone id of the accounted pages 1271 * @nr_pages: positive when adding or negative when removing 1272 * 1273 * This function must be called under lru_lock, just before a page is added 1274 * to or just after a page is removed from an lru list (that ordering being 1275 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1276 */ 1277 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1278 int zid, int nr_pages) 1279 { 1280 struct mem_cgroup_per_node *mz; 1281 unsigned long *lru_size; 1282 long size; 1283 1284 if (mem_cgroup_disabled()) 1285 return; 1286 1287 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1288 lru_size = &mz->lru_zone_size[zid][lru]; 1289 1290 if (nr_pages < 0) 1291 *lru_size += nr_pages; 1292 1293 size = *lru_size; 1294 if (WARN_ONCE(size < 0, 1295 "%s(%p, %d, %d): lru_size %ld\n", 1296 __func__, lruvec, lru, nr_pages, size)) { 1297 VM_BUG_ON(1); 1298 *lru_size = 0; 1299 } 1300 1301 if (nr_pages > 0) 1302 *lru_size += nr_pages; 1303 } 1304 1305 /** 1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1307 * @memcg: the memory cgroup 1308 * 1309 * Returns the maximum amount of memory @mem can be charged with, in 1310 * pages. 1311 */ 1312 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1313 { 1314 unsigned long margin = 0; 1315 unsigned long count; 1316 unsigned long limit; 1317 1318 count = page_counter_read(&memcg->memory); 1319 limit = READ_ONCE(memcg->memory.max); 1320 if (count < limit) 1321 margin = limit - count; 1322 1323 if (do_memsw_account()) { 1324 count = page_counter_read(&memcg->memsw); 1325 limit = READ_ONCE(memcg->memsw.max); 1326 if (count <= limit) 1327 margin = min(margin, limit - count); 1328 else 1329 margin = 0; 1330 } 1331 1332 return margin; 1333 } 1334 1335 /* 1336 * A routine for checking "mem" is under move_account() or not. 1337 * 1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1339 * moving cgroups. This is for waiting at high-memory pressure 1340 * caused by "move". 1341 */ 1342 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1343 { 1344 struct mem_cgroup *from; 1345 struct mem_cgroup *to; 1346 bool ret = false; 1347 /* 1348 * Unlike task_move routines, we access mc.to, mc.from not under 1349 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1350 */ 1351 spin_lock(&mc.lock); 1352 from = mc.from; 1353 to = mc.to; 1354 if (!from) 1355 goto unlock; 1356 1357 ret = mem_cgroup_is_descendant(from, memcg) || 1358 mem_cgroup_is_descendant(to, memcg); 1359 unlock: 1360 spin_unlock(&mc.lock); 1361 return ret; 1362 } 1363 1364 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1365 { 1366 if (mc.moving_task && current != mc.moving_task) { 1367 if (mem_cgroup_under_move(memcg)) { 1368 DEFINE_WAIT(wait); 1369 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1370 /* moving charge context might have finished. */ 1371 if (mc.moving_task) 1372 schedule(); 1373 finish_wait(&mc.waitq, &wait); 1374 return true; 1375 } 1376 } 1377 return false; 1378 } 1379 1380 static char *memory_stat_format(struct mem_cgroup *memcg) 1381 { 1382 struct seq_buf s; 1383 int i; 1384 1385 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1386 if (!s.buffer) 1387 return NULL; 1388 1389 /* 1390 * Provide statistics on the state of the memory subsystem as 1391 * well as cumulative event counters that show past behavior. 1392 * 1393 * This list is ordered following a combination of these gradients: 1394 * 1) generic big picture -> specifics and details 1395 * 2) reflecting userspace activity -> reflecting kernel heuristics 1396 * 1397 * Current memory state: 1398 */ 1399 1400 seq_buf_printf(&s, "anon %llu\n", 1401 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1402 PAGE_SIZE); 1403 seq_buf_printf(&s, "file %llu\n", 1404 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1405 PAGE_SIZE); 1406 seq_buf_printf(&s, "kernel_stack %llu\n", 1407 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1408 1024); 1409 seq_buf_printf(&s, "slab %llu\n", 1410 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1411 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1412 PAGE_SIZE); 1413 seq_buf_printf(&s, "sock %llu\n", 1414 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1415 PAGE_SIZE); 1416 1417 seq_buf_printf(&s, "shmem %llu\n", 1418 (u64)memcg_page_state(memcg, NR_SHMEM) * 1419 PAGE_SIZE); 1420 seq_buf_printf(&s, "file_mapped %llu\n", 1421 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1422 PAGE_SIZE); 1423 seq_buf_printf(&s, "file_dirty %llu\n", 1424 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1425 PAGE_SIZE); 1426 seq_buf_printf(&s, "file_writeback %llu\n", 1427 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1428 PAGE_SIZE); 1429 1430 /* 1431 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1432 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1433 * arse because it requires migrating the work out of rmap to a place 1434 * where the page->mem_cgroup is set up and stable. 1435 */ 1436 seq_buf_printf(&s, "anon_thp %llu\n", 1437 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1438 PAGE_SIZE); 1439 1440 for (i = 0; i < NR_LRU_LISTS; i++) 1441 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], 1442 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1443 PAGE_SIZE); 1444 1445 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1446 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1447 PAGE_SIZE); 1448 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1449 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1450 PAGE_SIZE); 1451 1452 /* Accumulated memory events */ 1453 1454 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 1455 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 1456 1457 seq_buf_printf(&s, "workingset_refault %lu\n", 1458 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1459 seq_buf_printf(&s, "workingset_activate %lu\n", 1460 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1461 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1462 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1463 1464 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 1465 seq_buf_printf(&s, "pgscan %lu\n", 1466 memcg_events(memcg, PGSCAN_KSWAPD) + 1467 memcg_events(memcg, PGSCAN_DIRECT)); 1468 seq_buf_printf(&s, "pgsteal %lu\n", 1469 memcg_events(memcg, PGSTEAL_KSWAPD) + 1470 memcg_events(memcg, PGSTEAL_DIRECT)); 1471 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 1472 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 1473 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 1474 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 1475 1476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1477 seq_buf_printf(&s, "thp_fault_alloc %lu\n", 1478 memcg_events(memcg, THP_FAULT_ALLOC)); 1479 seq_buf_printf(&s, "thp_collapse_alloc %lu\n", 1480 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1482 1483 /* The above should easily fit into one page */ 1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1485 1486 return s.buffer; 1487 } 1488 1489 #define K(x) ((x) << (PAGE_SHIFT-10)) 1490 /** 1491 * mem_cgroup_print_oom_context: Print OOM information relevant to 1492 * memory controller. 1493 * @memcg: The memory cgroup that went over limit 1494 * @p: Task that is going to be killed 1495 * 1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1497 * enabled 1498 */ 1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1500 { 1501 rcu_read_lock(); 1502 1503 if (memcg) { 1504 pr_cont(",oom_memcg="); 1505 pr_cont_cgroup_path(memcg->css.cgroup); 1506 } else 1507 pr_cont(",global_oom"); 1508 if (p) { 1509 pr_cont(",task_memcg="); 1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1511 } 1512 rcu_read_unlock(); 1513 } 1514 1515 /** 1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1517 * memory controller. 1518 * @memcg: The memory cgroup that went over limit 1519 */ 1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1521 { 1522 char *buf; 1523 1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1525 K((u64)page_counter_read(&memcg->memory)), 1526 K((u64)memcg->memory.max), memcg->memory.failcnt); 1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1529 K((u64)page_counter_read(&memcg->swap)), 1530 K((u64)memcg->swap.max), memcg->swap.failcnt); 1531 else { 1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1533 K((u64)page_counter_read(&memcg->memsw)), 1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1536 K((u64)page_counter_read(&memcg->kmem)), 1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1538 } 1539 1540 pr_info("Memory cgroup stats for "); 1541 pr_cont_cgroup_path(memcg->css.cgroup); 1542 pr_cont(":"); 1543 buf = memory_stat_format(memcg); 1544 if (!buf) 1545 return; 1546 pr_info("%s", buf); 1547 kfree(buf); 1548 } 1549 1550 /* 1551 * Return the memory (and swap, if configured) limit for a memcg. 1552 */ 1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1554 { 1555 unsigned long max; 1556 1557 max = memcg->memory.max; 1558 if (mem_cgroup_swappiness(memcg)) { 1559 unsigned long memsw_max; 1560 unsigned long swap_max; 1561 1562 memsw_max = memcg->memsw.max; 1563 swap_max = memcg->swap.max; 1564 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1565 max = min(max + swap_max, memsw_max); 1566 } 1567 return max; 1568 } 1569 1570 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1571 { 1572 return page_counter_read(&memcg->memory); 1573 } 1574 1575 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1576 int order) 1577 { 1578 struct oom_control oc = { 1579 .zonelist = NULL, 1580 .nodemask = NULL, 1581 .memcg = memcg, 1582 .gfp_mask = gfp_mask, 1583 .order = order, 1584 }; 1585 bool ret; 1586 1587 if (mutex_lock_killable(&oom_lock)) 1588 return true; 1589 /* 1590 * A few threads which were not waiting at mutex_lock_killable() can 1591 * fail to bail out. Therefore, check again after holding oom_lock. 1592 */ 1593 ret = should_force_charge() || out_of_memory(&oc); 1594 mutex_unlock(&oom_lock); 1595 return ret; 1596 } 1597 1598 #if MAX_NUMNODES > 1 1599 1600 /** 1601 * test_mem_cgroup_node_reclaimable 1602 * @memcg: the target memcg 1603 * @nid: the node ID to be checked. 1604 * @noswap : specify true here if the user wants flle only information. 1605 * 1606 * This function returns whether the specified memcg contains any 1607 * reclaimable pages on a node. Returns true if there are any reclaimable 1608 * pages in the node. 1609 */ 1610 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1611 int nid, bool noswap) 1612 { 1613 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1614 1615 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1616 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1617 return true; 1618 if (noswap || !total_swap_pages) 1619 return false; 1620 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1621 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1622 return true; 1623 return false; 1624 1625 } 1626 1627 /* 1628 * Always updating the nodemask is not very good - even if we have an empty 1629 * list or the wrong list here, we can start from some node and traverse all 1630 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1631 * 1632 */ 1633 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1634 { 1635 int nid; 1636 /* 1637 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1638 * pagein/pageout changes since the last update. 1639 */ 1640 if (!atomic_read(&memcg->numainfo_events)) 1641 return; 1642 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1643 return; 1644 1645 /* make a nodemask where this memcg uses memory from */ 1646 memcg->scan_nodes = node_states[N_MEMORY]; 1647 1648 for_each_node_mask(nid, node_states[N_MEMORY]) { 1649 1650 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1651 node_clear(nid, memcg->scan_nodes); 1652 } 1653 1654 atomic_set(&memcg->numainfo_events, 0); 1655 atomic_set(&memcg->numainfo_updating, 0); 1656 } 1657 1658 /* 1659 * Selecting a node where we start reclaim from. Because what we need is just 1660 * reducing usage counter, start from anywhere is O,K. Considering 1661 * memory reclaim from current node, there are pros. and cons. 1662 * 1663 * Freeing memory from current node means freeing memory from a node which 1664 * we'll use or we've used. So, it may make LRU bad. And if several threads 1665 * hit limits, it will see a contention on a node. But freeing from remote 1666 * node means more costs for memory reclaim because of memory latency. 1667 * 1668 * Now, we use round-robin. Better algorithm is welcomed. 1669 */ 1670 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1671 { 1672 int node; 1673 1674 mem_cgroup_may_update_nodemask(memcg); 1675 node = memcg->last_scanned_node; 1676 1677 node = next_node_in(node, memcg->scan_nodes); 1678 /* 1679 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1680 * last time it really checked all the LRUs due to rate limiting. 1681 * Fallback to the current node in that case for simplicity. 1682 */ 1683 if (unlikely(node == MAX_NUMNODES)) 1684 node = numa_node_id(); 1685 1686 memcg->last_scanned_node = node; 1687 return node; 1688 } 1689 #else 1690 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1691 { 1692 return 0; 1693 } 1694 #endif 1695 1696 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1697 pg_data_t *pgdat, 1698 gfp_t gfp_mask, 1699 unsigned long *total_scanned) 1700 { 1701 struct mem_cgroup *victim = NULL; 1702 int total = 0; 1703 int loop = 0; 1704 unsigned long excess; 1705 unsigned long nr_scanned; 1706 struct mem_cgroup_reclaim_cookie reclaim = { 1707 .pgdat = pgdat, 1708 .priority = 0, 1709 }; 1710 1711 excess = soft_limit_excess(root_memcg); 1712 1713 while (1) { 1714 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1715 if (!victim) { 1716 loop++; 1717 if (loop >= 2) { 1718 /* 1719 * If we have not been able to reclaim 1720 * anything, it might because there are 1721 * no reclaimable pages under this hierarchy 1722 */ 1723 if (!total) 1724 break; 1725 /* 1726 * We want to do more targeted reclaim. 1727 * excess >> 2 is not to excessive so as to 1728 * reclaim too much, nor too less that we keep 1729 * coming back to reclaim from this cgroup 1730 */ 1731 if (total >= (excess >> 2) || 1732 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1733 break; 1734 } 1735 continue; 1736 } 1737 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1738 pgdat, &nr_scanned); 1739 *total_scanned += nr_scanned; 1740 if (!soft_limit_excess(root_memcg)) 1741 break; 1742 } 1743 mem_cgroup_iter_break(root_memcg, victim); 1744 return total; 1745 } 1746 1747 #ifdef CONFIG_LOCKDEP 1748 static struct lockdep_map memcg_oom_lock_dep_map = { 1749 .name = "memcg_oom_lock", 1750 }; 1751 #endif 1752 1753 static DEFINE_SPINLOCK(memcg_oom_lock); 1754 1755 /* 1756 * Check OOM-Killer is already running under our hierarchy. 1757 * If someone is running, return false. 1758 */ 1759 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1760 { 1761 struct mem_cgroup *iter, *failed = NULL; 1762 1763 spin_lock(&memcg_oom_lock); 1764 1765 for_each_mem_cgroup_tree(iter, memcg) { 1766 if (iter->oom_lock) { 1767 /* 1768 * this subtree of our hierarchy is already locked 1769 * so we cannot give a lock. 1770 */ 1771 failed = iter; 1772 mem_cgroup_iter_break(memcg, iter); 1773 break; 1774 } else 1775 iter->oom_lock = true; 1776 } 1777 1778 if (failed) { 1779 /* 1780 * OK, we failed to lock the whole subtree so we have 1781 * to clean up what we set up to the failing subtree 1782 */ 1783 for_each_mem_cgroup_tree(iter, memcg) { 1784 if (iter == failed) { 1785 mem_cgroup_iter_break(memcg, iter); 1786 break; 1787 } 1788 iter->oom_lock = false; 1789 } 1790 } else 1791 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1792 1793 spin_unlock(&memcg_oom_lock); 1794 1795 return !failed; 1796 } 1797 1798 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1799 { 1800 struct mem_cgroup *iter; 1801 1802 spin_lock(&memcg_oom_lock); 1803 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1804 for_each_mem_cgroup_tree(iter, memcg) 1805 iter->oom_lock = false; 1806 spin_unlock(&memcg_oom_lock); 1807 } 1808 1809 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1810 { 1811 struct mem_cgroup *iter; 1812 1813 spin_lock(&memcg_oom_lock); 1814 for_each_mem_cgroup_tree(iter, memcg) 1815 iter->under_oom++; 1816 spin_unlock(&memcg_oom_lock); 1817 } 1818 1819 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1820 { 1821 struct mem_cgroup *iter; 1822 1823 /* 1824 * When a new child is created while the hierarchy is under oom, 1825 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1826 */ 1827 spin_lock(&memcg_oom_lock); 1828 for_each_mem_cgroup_tree(iter, memcg) 1829 if (iter->under_oom > 0) 1830 iter->under_oom--; 1831 spin_unlock(&memcg_oom_lock); 1832 } 1833 1834 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1835 1836 struct oom_wait_info { 1837 struct mem_cgroup *memcg; 1838 wait_queue_entry_t wait; 1839 }; 1840 1841 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1842 unsigned mode, int sync, void *arg) 1843 { 1844 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1845 struct mem_cgroup *oom_wait_memcg; 1846 struct oom_wait_info *oom_wait_info; 1847 1848 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1849 oom_wait_memcg = oom_wait_info->memcg; 1850 1851 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1852 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1853 return 0; 1854 return autoremove_wake_function(wait, mode, sync, arg); 1855 } 1856 1857 static void memcg_oom_recover(struct mem_cgroup *memcg) 1858 { 1859 /* 1860 * For the following lockless ->under_oom test, the only required 1861 * guarantee is that it must see the state asserted by an OOM when 1862 * this function is called as a result of userland actions 1863 * triggered by the notification of the OOM. This is trivially 1864 * achieved by invoking mem_cgroup_mark_under_oom() before 1865 * triggering notification. 1866 */ 1867 if (memcg && memcg->under_oom) 1868 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1869 } 1870 1871 enum oom_status { 1872 OOM_SUCCESS, 1873 OOM_FAILED, 1874 OOM_ASYNC, 1875 OOM_SKIPPED 1876 }; 1877 1878 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1879 { 1880 enum oom_status ret; 1881 bool locked; 1882 1883 if (order > PAGE_ALLOC_COSTLY_ORDER) 1884 return OOM_SKIPPED; 1885 1886 memcg_memory_event(memcg, MEMCG_OOM); 1887 1888 /* 1889 * We are in the middle of the charge context here, so we 1890 * don't want to block when potentially sitting on a callstack 1891 * that holds all kinds of filesystem and mm locks. 1892 * 1893 * cgroup1 allows disabling the OOM killer and waiting for outside 1894 * handling until the charge can succeed; remember the context and put 1895 * the task to sleep at the end of the page fault when all locks are 1896 * released. 1897 * 1898 * On the other hand, in-kernel OOM killer allows for an async victim 1899 * memory reclaim (oom_reaper) and that means that we are not solely 1900 * relying on the oom victim to make a forward progress and we can 1901 * invoke the oom killer here. 1902 * 1903 * Please note that mem_cgroup_out_of_memory might fail to find a 1904 * victim and then we have to bail out from the charge path. 1905 */ 1906 if (memcg->oom_kill_disable) { 1907 if (!current->in_user_fault) 1908 return OOM_SKIPPED; 1909 css_get(&memcg->css); 1910 current->memcg_in_oom = memcg; 1911 current->memcg_oom_gfp_mask = mask; 1912 current->memcg_oom_order = order; 1913 1914 return OOM_ASYNC; 1915 } 1916 1917 mem_cgroup_mark_under_oom(memcg); 1918 1919 locked = mem_cgroup_oom_trylock(memcg); 1920 1921 if (locked) 1922 mem_cgroup_oom_notify(memcg); 1923 1924 mem_cgroup_unmark_under_oom(memcg); 1925 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1926 ret = OOM_SUCCESS; 1927 else 1928 ret = OOM_FAILED; 1929 1930 if (locked) 1931 mem_cgroup_oom_unlock(memcg); 1932 1933 return ret; 1934 } 1935 1936 /** 1937 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1938 * @handle: actually kill/wait or just clean up the OOM state 1939 * 1940 * This has to be called at the end of a page fault if the memcg OOM 1941 * handler was enabled. 1942 * 1943 * Memcg supports userspace OOM handling where failed allocations must 1944 * sleep on a waitqueue until the userspace task resolves the 1945 * situation. Sleeping directly in the charge context with all kinds 1946 * of locks held is not a good idea, instead we remember an OOM state 1947 * in the task and mem_cgroup_oom_synchronize() has to be called at 1948 * the end of the page fault to complete the OOM handling. 1949 * 1950 * Returns %true if an ongoing memcg OOM situation was detected and 1951 * completed, %false otherwise. 1952 */ 1953 bool mem_cgroup_oom_synchronize(bool handle) 1954 { 1955 struct mem_cgroup *memcg = current->memcg_in_oom; 1956 struct oom_wait_info owait; 1957 bool locked; 1958 1959 /* OOM is global, do not handle */ 1960 if (!memcg) 1961 return false; 1962 1963 if (!handle) 1964 goto cleanup; 1965 1966 owait.memcg = memcg; 1967 owait.wait.flags = 0; 1968 owait.wait.func = memcg_oom_wake_function; 1969 owait.wait.private = current; 1970 INIT_LIST_HEAD(&owait.wait.entry); 1971 1972 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1973 mem_cgroup_mark_under_oom(memcg); 1974 1975 locked = mem_cgroup_oom_trylock(memcg); 1976 1977 if (locked) 1978 mem_cgroup_oom_notify(memcg); 1979 1980 if (locked && !memcg->oom_kill_disable) { 1981 mem_cgroup_unmark_under_oom(memcg); 1982 finish_wait(&memcg_oom_waitq, &owait.wait); 1983 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1984 current->memcg_oom_order); 1985 } else { 1986 schedule(); 1987 mem_cgroup_unmark_under_oom(memcg); 1988 finish_wait(&memcg_oom_waitq, &owait.wait); 1989 } 1990 1991 if (locked) { 1992 mem_cgroup_oom_unlock(memcg); 1993 /* 1994 * There is no guarantee that an OOM-lock contender 1995 * sees the wakeups triggered by the OOM kill 1996 * uncharges. Wake any sleepers explicitely. 1997 */ 1998 memcg_oom_recover(memcg); 1999 } 2000 cleanup: 2001 current->memcg_in_oom = NULL; 2002 css_put(&memcg->css); 2003 return true; 2004 } 2005 2006 /** 2007 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2008 * @victim: task to be killed by the OOM killer 2009 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2010 * 2011 * Returns a pointer to a memory cgroup, which has to be cleaned up 2012 * by killing all belonging OOM-killable tasks. 2013 * 2014 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2015 */ 2016 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2017 struct mem_cgroup *oom_domain) 2018 { 2019 struct mem_cgroup *oom_group = NULL; 2020 struct mem_cgroup *memcg; 2021 2022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2023 return NULL; 2024 2025 if (!oom_domain) 2026 oom_domain = root_mem_cgroup; 2027 2028 rcu_read_lock(); 2029 2030 memcg = mem_cgroup_from_task(victim); 2031 if (memcg == root_mem_cgroup) 2032 goto out; 2033 2034 /* 2035 * Traverse the memory cgroup hierarchy from the victim task's 2036 * cgroup up to the OOMing cgroup (or root) to find the 2037 * highest-level memory cgroup with oom.group set. 2038 */ 2039 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2040 if (memcg->oom_group) 2041 oom_group = memcg; 2042 2043 if (memcg == oom_domain) 2044 break; 2045 } 2046 2047 if (oom_group) 2048 css_get(&oom_group->css); 2049 out: 2050 rcu_read_unlock(); 2051 2052 return oom_group; 2053 } 2054 2055 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2056 { 2057 pr_info("Tasks in "); 2058 pr_cont_cgroup_path(memcg->css.cgroup); 2059 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2060 } 2061 2062 /** 2063 * lock_page_memcg - lock a page->mem_cgroup binding 2064 * @page: the page 2065 * 2066 * This function protects unlocked LRU pages from being moved to 2067 * another cgroup. 2068 * 2069 * It ensures lifetime of the returned memcg. Caller is responsible 2070 * for the lifetime of the page; __unlock_page_memcg() is available 2071 * when @page might get freed inside the locked section. 2072 */ 2073 struct mem_cgroup *lock_page_memcg(struct page *page) 2074 { 2075 struct mem_cgroup *memcg; 2076 unsigned long flags; 2077 2078 /* 2079 * The RCU lock is held throughout the transaction. The fast 2080 * path can get away without acquiring the memcg->move_lock 2081 * because page moving starts with an RCU grace period. 2082 * 2083 * The RCU lock also protects the memcg from being freed when 2084 * the page state that is going to change is the only thing 2085 * preventing the page itself from being freed. E.g. writeback 2086 * doesn't hold a page reference and relies on PG_writeback to 2087 * keep off truncation, migration and so forth. 2088 */ 2089 rcu_read_lock(); 2090 2091 if (mem_cgroup_disabled()) 2092 return NULL; 2093 again: 2094 memcg = page->mem_cgroup; 2095 if (unlikely(!memcg)) 2096 return NULL; 2097 2098 if (atomic_read(&memcg->moving_account) <= 0) 2099 return memcg; 2100 2101 spin_lock_irqsave(&memcg->move_lock, flags); 2102 if (memcg != page->mem_cgroup) { 2103 spin_unlock_irqrestore(&memcg->move_lock, flags); 2104 goto again; 2105 } 2106 2107 /* 2108 * When charge migration first begins, we can have locked and 2109 * unlocked page stat updates happening concurrently. Track 2110 * the task who has the lock for unlock_page_memcg(). 2111 */ 2112 memcg->move_lock_task = current; 2113 memcg->move_lock_flags = flags; 2114 2115 return memcg; 2116 } 2117 EXPORT_SYMBOL(lock_page_memcg); 2118 2119 /** 2120 * __unlock_page_memcg - unlock and unpin a memcg 2121 * @memcg: the memcg 2122 * 2123 * Unlock and unpin a memcg returned by lock_page_memcg(). 2124 */ 2125 void __unlock_page_memcg(struct mem_cgroup *memcg) 2126 { 2127 if (memcg && memcg->move_lock_task == current) { 2128 unsigned long flags = memcg->move_lock_flags; 2129 2130 memcg->move_lock_task = NULL; 2131 memcg->move_lock_flags = 0; 2132 2133 spin_unlock_irqrestore(&memcg->move_lock, flags); 2134 } 2135 2136 rcu_read_unlock(); 2137 } 2138 2139 /** 2140 * unlock_page_memcg - unlock a page->mem_cgroup binding 2141 * @page: the page 2142 */ 2143 void unlock_page_memcg(struct page *page) 2144 { 2145 __unlock_page_memcg(page->mem_cgroup); 2146 } 2147 EXPORT_SYMBOL(unlock_page_memcg); 2148 2149 struct memcg_stock_pcp { 2150 struct mem_cgroup *cached; /* this never be root cgroup */ 2151 unsigned int nr_pages; 2152 struct work_struct work; 2153 unsigned long flags; 2154 #define FLUSHING_CACHED_CHARGE 0 2155 }; 2156 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2157 static DEFINE_MUTEX(percpu_charge_mutex); 2158 2159 /** 2160 * consume_stock: Try to consume stocked charge on this cpu. 2161 * @memcg: memcg to consume from. 2162 * @nr_pages: how many pages to charge. 2163 * 2164 * The charges will only happen if @memcg matches the current cpu's memcg 2165 * stock, and at least @nr_pages are available in that stock. Failure to 2166 * service an allocation will refill the stock. 2167 * 2168 * returns true if successful, false otherwise. 2169 */ 2170 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2171 { 2172 struct memcg_stock_pcp *stock; 2173 unsigned long flags; 2174 bool ret = false; 2175 2176 if (nr_pages > MEMCG_CHARGE_BATCH) 2177 return ret; 2178 2179 local_irq_save(flags); 2180 2181 stock = this_cpu_ptr(&memcg_stock); 2182 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2183 stock->nr_pages -= nr_pages; 2184 ret = true; 2185 } 2186 2187 local_irq_restore(flags); 2188 2189 return ret; 2190 } 2191 2192 /* 2193 * Returns stocks cached in percpu and reset cached information. 2194 */ 2195 static void drain_stock(struct memcg_stock_pcp *stock) 2196 { 2197 struct mem_cgroup *old = stock->cached; 2198 2199 if (stock->nr_pages) { 2200 page_counter_uncharge(&old->memory, stock->nr_pages); 2201 if (do_memsw_account()) 2202 page_counter_uncharge(&old->memsw, stock->nr_pages); 2203 css_put_many(&old->css, stock->nr_pages); 2204 stock->nr_pages = 0; 2205 } 2206 stock->cached = NULL; 2207 } 2208 2209 static void drain_local_stock(struct work_struct *dummy) 2210 { 2211 struct memcg_stock_pcp *stock; 2212 unsigned long flags; 2213 2214 /* 2215 * The only protection from memory hotplug vs. drain_stock races is 2216 * that we always operate on local CPU stock here with IRQ disabled 2217 */ 2218 local_irq_save(flags); 2219 2220 stock = this_cpu_ptr(&memcg_stock); 2221 drain_stock(stock); 2222 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2223 2224 local_irq_restore(flags); 2225 } 2226 2227 /* 2228 * Cache charges(val) to local per_cpu area. 2229 * This will be consumed by consume_stock() function, later. 2230 */ 2231 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2232 { 2233 struct memcg_stock_pcp *stock; 2234 unsigned long flags; 2235 2236 local_irq_save(flags); 2237 2238 stock = this_cpu_ptr(&memcg_stock); 2239 if (stock->cached != memcg) { /* reset if necessary */ 2240 drain_stock(stock); 2241 stock->cached = memcg; 2242 } 2243 stock->nr_pages += nr_pages; 2244 2245 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2246 drain_stock(stock); 2247 2248 local_irq_restore(flags); 2249 } 2250 2251 /* 2252 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2253 * of the hierarchy under it. 2254 */ 2255 static void drain_all_stock(struct mem_cgroup *root_memcg) 2256 { 2257 int cpu, curcpu; 2258 2259 /* If someone's already draining, avoid adding running more workers. */ 2260 if (!mutex_trylock(&percpu_charge_mutex)) 2261 return; 2262 /* 2263 * Notify other cpus that system-wide "drain" is running 2264 * We do not care about races with the cpu hotplug because cpu down 2265 * as well as workers from this path always operate on the local 2266 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2267 */ 2268 curcpu = get_cpu(); 2269 for_each_online_cpu(cpu) { 2270 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2271 struct mem_cgroup *memcg; 2272 bool flush = false; 2273 2274 rcu_read_lock(); 2275 memcg = stock->cached; 2276 if (memcg && stock->nr_pages && 2277 mem_cgroup_is_descendant(memcg, root_memcg)) 2278 flush = true; 2279 rcu_read_unlock(); 2280 2281 if (flush && 2282 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2283 if (cpu == curcpu) 2284 drain_local_stock(&stock->work); 2285 else 2286 schedule_work_on(cpu, &stock->work); 2287 } 2288 } 2289 put_cpu(); 2290 mutex_unlock(&percpu_charge_mutex); 2291 } 2292 2293 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2294 { 2295 struct memcg_stock_pcp *stock; 2296 struct mem_cgroup *memcg, *mi; 2297 2298 stock = &per_cpu(memcg_stock, cpu); 2299 drain_stock(stock); 2300 2301 for_each_mem_cgroup(memcg) { 2302 int i; 2303 2304 for (i = 0; i < MEMCG_NR_STAT; i++) { 2305 int nid; 2306 long x; 2307 2308 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2309 if (x) 2310 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2311 atomic_long_add(x, &memcg->vmstats[i]); 2312 2313 if (i >= NR_VM_NODE_STAT_ITEMS) 2314 continue; 2315 2316 for_each_node(nid) { 2317 struct mem_cgroup_per_node *pn; 2318 2319 pn = mem_cgroup_nodeinfo(memcg, nid); 2320 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2321 if (x) 2322 do { 2323 atomic_long_add(x, &pn->lruvec_stat[i]); 2324 } while ((pn = parent_nodeinfo(pn, nid))); 2325 } 2326 } 2327 2328 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2329 long x; 2330 2331 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2332 if (x) 2333 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2334 atomic_long_add(x, &memcg->vmevents[i]); 2335 } 2336 } 2337 2338 return 0; 2339 } 2340 2341 static void reclaim_high(struct mem_cgroup *memcg, 2342 unsigned int nr_pages, 2343 gfp_t gfp_mask) 2344 { 2345 do { 2346 if (page_counter_read(&memcg->memory) <= memcg->high) 2347 continue; 2348 memcg_memory_event(memcg, MEMCG_HIGH); 2349 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2350 } while ((memcg = parent_mem_cgroup(memcg))); 2351 } 2352 2353 static void high_work_func(struct work_struct *work) 2354 { 2355 struct mem_cgroup *memcg; 2356 2357 memcg = container_of(work, struct mem_cgroup, high_work); 2358 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2359 } 2360 2361 /* 2362 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2363 * enough to still cause a significant slowdown in most cases, while still 2364 * allowing diagnostics and tracing to proceed without becoming stuck. 2365 */ 2366 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2367 2368 /* 2369 * When calculating the delay, we use these either side of the exponentiation to 2370 * maintain precision and scale to a reasonable number of jiffies (see the table 2371 * below. 2372 * 2373 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2374 * overage ratio to a delay. 2375 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2376 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2377 * to produce a reasonable delay curve. 2378 * 2379 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2380 * reasonable delay curve compared to precision-adjusted overage, not 2381 * penalising heavily at first, but still making sure that growth beyond the 2382 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2383 * example, with a high of 100 megabytes: 2384 * 2385 * +-------+------------------------+ 2386 * | usage | time to allocate in ms | 2387 * +-------+------------------------+ 2388 * | 100M | 0 | 2389 * | 101M | 6 | 2390 * | 102M | 25 | 2391 * | 103M | 57 | 2392 * | 104M | 102 | 2393 * | 105M | 159 | 2394 * | 106M | 230 | 2395 * | 107M | 313 | 2396 * | 108M | 409 | 2397 * | 109M | 518 | 2398 * | 110M | 639 | 2399 * | 111M | 774 | 2400 * | 112M | 921 | 2401 * | 113M | 1081 | 2402 * | 114M | 1254 | 2403 * | 115M | 1439 | 2404 * | 116M | 1638 | 2405 * | 117M | 1849 | 2406 * | 118M | 2000 | 2407 * | 119M | 2000 | 2408 * | 120M | 2000 | 2409 * +-------+------------------------+ 2410 */ 2411 #define MEMCG_DELAY_PRECISION_SHIFT 20 2412 #define MEMCG_DELAY_SCALING_SHIFT 14 2413 2414 /* 2415 * Scheduled by try_charge() to be executed from the userland return path 2416 * and reclaims memory over the high limit. 2417 */ 2418 void mem_cgroup_handle_over_high(void) 2419 { 2420 unsigned long usage, high, clamped_high; 2421 unsigned long pflags; 2422 unsigned long penalty_jiffies, overage; 2423 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2424 struct mem_cgroup *memcg; 2425 2426 if (likely(!nr_pages)) 2427 return; 2428 2429 memcg = get_mem_cgroup_from_mm(current->mm); 2430 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2431 current->memcg_nr_pages_over_high = 0; 2432 2433 /* 2434 * memory.high is breached and reclaim is unable to keep up. Throttle 2435 * allocators proactively to slow down excessive growth. 2436 * 2437 * We use overage compared to memory.high to calculate the number of 2438 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2439 * fairly lenient on small overages, and increasingly harsh when the 2440 * memcg in question makes it clear that it has no intention of stopping 2441 * its crazy behaviour, so we exponentially increase the delay based on 2442 * overage amount. 2443 */ 2444 2445 usage = page_counter_read(&memcg->memory); 2446 high = READ_ONCE(memcg->high); 2447 2448 if (usage <= high) 2449 goto out; 2450 2451 /* 2452 * Prevent division by 0 in overage calculation by acting as if it was a 2453 * threshold of 1 page 2454 */ 2455 clamped_high = max(high, 1UL); 2456 2457 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT, 2458 clamped_high); 2459 2460 penalty_jiffies = ((u64)overage * overage * HZ) 2461 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT); 2462 2463 /* 2464 * Factor in the task's own contribution to the overage, such that four 2465 * N-sized allocations are throttled approximately the same as one 2466 * 4N-sized allocation. 2467 * 2468 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2469 * larger the current charge patch is than that. 2470 */ 2471 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2472 2473 /* 2474 * Clamp the max delay per usermode return so as to still keep the 2475 * application moving forwards and also permit diagnostics, albeit 2476 * extremely slowly. 2477 */ 2478 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2479 2480 /* 2481 * Don't sleep if the amount of jiffies this memcg owes us is so low 2482 * that it's not even worth doing, in an attempt to be nice to those who 2483 * go only a small amount over their memory.high value and maybe haven't 2484 * been aggressively reclaimed enough yet. 2485 */ 2486 if (penalty_jiffies <= HZ / 100) 2487 goto out; 2488 2489 /* 2490 * If we exit early, we're guaranteed to die (since 2491 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2492 * need to account for any ill-begotten jiffies to pay them off later. 2493 */ 2494 psi_memstall_enter(&pflags); 2495 schedule_timeout_killable(penalty_jiffies); 2496 psi_memstall_leave(&pflags); 2497 2498 out: 2499 css_put(&memcg->css); 2500 } 2501 2502 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2503 unsigned int nr_pages) 2504 { 2505 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2506 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2507 struct mem_cgroup *mem_over_limit; 2508 struct page_counter *counter; 2509 unsigned long nr_reclaimed; 2510 bool may_swap = true; 2511 bool drained = false; 2512 enum oom_status oom_status; 2513 2514 if (mem_cgroup_is_root(memcg)) 2515 return 0; 2516 retry: 2517 if (consume_stock(memcg, nr_pages)) 2518 return 0; 2519 2520 if (!do_memsw_account() || 2521 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2522 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2523 goto done_restock; 2524 if (do_memsw_account()) 2525 page_counter_uncharge(&memcg->memsw, batch); 2526 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2527 } else { 2528 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2529 may_swap = false; 2530 } 2531 2532 if (batch > nr_pages) { 2533 batch = nr_pages; 2534 goto retry; 2535 } 2536 2537 /* 2538 * Memcg doesn't have a dedicated reserve for atomic 2539 * allocations. But like the global atomic pool, we need to 2540 * put the burden of reclaim on regular allocation requests 2541 * and let these go through as privileged allocations. 2542 */ 2543 if (gfp_mask & __GFP_ATOMIC) 2544 goto force; 2545 2546 /* 2547 * Unlike in global OOM situations, memcg is not in a physical 2548 * memory shortage. Allow dying and OOM-killed tasks to 2549 * bypass the last charges so that they can exit quickly and 2550 * free their memory. 2551 */ 2552 if (unlikely(should_force_charge())) 2553 goto force; 2554 2555 /* 2556 * Prevent unbounded recursion when reclaim operations need to 2557 * allocate memory. This might exceed the limits temporarily, 2558 * but we prefer facilitating memory reclaim and getting back 2559 * under the limit over triggering OOM kills in these cases. 2560 */ 2561 if (unlikely(current->flags & PF_MEMALLOC)) 2562 goto force; 2563 2564 if (unlikely(task_in_memcg_oom(current))) 2565 goto nomem; 2566 2567 if (!gfpflags_allow_blocking(gfp_mask)) 2568 goto nomem; 2569 2570 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2571 2572 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2573 gfp_mask, may_swap); 2574 2575 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2576 goto retry; 2577 2578 if (!drained) { 2579 drain_all_stock(mem_over_limit); 2580 drained = true; 2581 goto retry; 2582 } 2583 2584 if (gfp_mask & __GFP_NORETRY) 2585 goto nomem; 2586 /* 2587 * Even though the limit is exceeded at this point, reclaim 2588 * may have been able to free some pages. Retry the charge 2589 * before killing the task. 2590 * 2591 * Only for regular pages, though: huge pages are rather 2592 * unlikely to succeed so close to the limit, and we fall back 2593 * to regular pages anyway in case of failure. 2594 */ 2595 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2596 goto retry; 2597 /* 2598 * At task move, charge accounts can be doubly counted. So, it's 2599 * better to wait until the end of task_move if something is going on. 2600 */ 2601 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2602 goto retry; 2603 2604 if (nr_retries--) 2605 goto retry; 2606 2607 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2608 goto nomem; 2609 2610 if (gfp_mask & __GFP_NOFAIL) 2611 goto force; 2612 2613 if (fatal_signal_pending(current)) 2614 goto force; 2615 2616 /* 2617 * keep retrying as long as the memcg oom killer is able to make 2618 * a forward progress or bypass the charge if the oom killer 2619 * couldn't make any progress. 2620 */ 2621 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2622 get_order(nr_pages * PAGE_SIZE)); 2623 switch (oom_status) { 2624 case OOM_SUCCESS: 2625 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2626 goto retry; 2627 case OOM_FAILED: 2628 goto force; 2629 default: 2630 goto nomem; 2631 } 2632 nomem: 2633 if (!(gfp_mask & __GFP_NOFAIL)) 2634 return -ENOMEM; 2635 force: 2636 /* 2637 * The allocation either can't fail or will lead to more memory 2638 * being freed very soon. Allow memory usage go over the limit 2639 * temporarily by force charging it. 2640 */ 2641 page_counter_charge(&memcg->memory, nr_pages); 2642 if (do_memsw_account()) 2643 page_counter_charge(&memcg->memsw, nr_pages); 2644 css_get_many(&memcg->css, nr_pages); 2645 2646 return 0; 2647 2648 done_restock: 2649 css_get_many(&memcg->css, batch); 2650 if (batch > nr_pages) 2651 refill_stock(memcg, batch - nr_pages); 2652 2653 /* 2654 * If the hierarchy is above the normal consumption range, schedule 2655 * reclaim on returning to userland. We can perform reclaim here 2656 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2657 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2658 * not recorded as it most likely matches current's and won't 2659 * change in the meantime. As high limit is checked again before 2660 * reclaim, the cost of mismatch is negligible. 2661 */ 2662 do { 2663 if (page_counter_read(&memcg->memory) > memcg->high) { 2664 /* Don't bother a random interrupted task */ 2665 if (in_interrupt()) { 2666 schedule_work(&memcg->high_work); 2667 break; 2668 } 2669 current->memcg_nr_pages_over_high += batch; 2670 set_notify_resume(current); 2671 break; 2672 } 2673 } while ((memcg = parent_mem_cgroup(memcg))); 2674 2675 return 0; 2676 } 2677 2678 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2679 { 2680 if (mem_cgroup_is_root(memcg)) 2681 return; 2682 2683 page_counter_uncharge(&memcg->memory, nr_pages); 2684 if (do_memsw_account()) 2685 page_counter_uncharge(&memcg->memsw, nr_pages); 2686 2687 css_put_many(&memcg->css, nr_pages); 2688 } 2689 2690 static void lock_page_lru(struct page *page, int *isolated) 2691 { 2692 pg_data_t *pgdat = page_pgdat(page); 2693 2694 spin_lock_irq(&pgdat->lru_lock); 2695 if (PageLRU(page)) { 2696 struct lruvec *lruvec; 2697 2698 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2699 ClearPageLRU(page); 2700 del_page_from_lru_list(page, lruvec, page_lru(page)); 2701 *isolated = 1; 2702 } else 2703 *isolated = 0; 2704 } 2705 2706 static void unlock_page_lru(struct page *page, int isolated) 2707 { 2708 pg_data_t *pgdat = page_pgdat(page); 2709 2710 if (isolated) { 2711 struct lruvec *lruvec; 2712 2713 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2714 VM_BUG_ON_PAGE(PageLRU(page), page); 2715 SetPageLRU(page); 2716 add_page_to_lru_list(page, lruvec, page_lru(page)); 2717 } 2718 spin_unlock_irq(&pgdat->lru_lock); 2719 } 2720 2721 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2722 bool lrucare) 2723 { 2724 int isolated; 2725 2726 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2727 2728 /* 2729 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2730 * may already be on some other mem_cgroup's LRU. Take care of it. 2731 */ 2732 if (lrucare) 2733 lock_page_lru(page, &isolated); 2734 2735 /* 2736 * Nobody should be changing or seriously looking at 2737 * page->mem_cgroup at this point: 2738 * 2739 * - the page is uncharged 2740 * 2741 * - the page is off-LRU 2742 * 2743 * - an anonymous fault has exclusive page access, except for 2744 * a locked page table 2745 * 2746 * - a page cache insertion, a swapin fault, or a migration 2747 * have the page locked 2748 */ 2749 page->mem_cgroup = memcg; 2750 2751 if (lrucare) 2752 unlock_page_lru(page, isolated); 2753 } 2754 2755 #ifdef CONFIG_MEMCG_KMEM 2756 static int memcg_alloc_cache_id(void) 2757 { 2758 int id, size; 2759 int err; 2760 2761 id = ida_simple_get(&memcg_cache_ida, 2762 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2763 if (id < 0) 2764 return id; 2765 2766 if (id < memcg_nr_cache_ids) 2767 return id; 2768 2769 /* 2770 * There's no space for the new id in memcg_caches arrays, 2771 * so we have to grow them. 2772 */ 2773 down_write(&memcg_cache_ids_sem); 2774 2775 size = 2 * (id + 1); 2776 if (size < MEMCG_CACHES_MIN_SIZE) 2777 size = MEMCG_CACHES_MIN_SIZE; 2778 else if (size > MEMCG_CACHES_MAX_SIZE) 2779 size = MEMCG_CACHES_MAX_SIZE; 2780 2781 err = memcg_update_all_caches(size); 2782 if (!err) 2783 err = memcg_update_all_list_lrus(size); 2784 if (!err) 2785 memcg_nr_cache_ids = size; 2786 2787 up_write(&memcg_cache_ids_sem); 2788 2789 if (err) { 2790 ida_simple_remove(&memcg_cache_ida, id); 2791 return err; 2792 } 2793 return id; 2794 } 2795 2796 static void memcg_free_cache_id(int id) 2797 { 2798 ida_simple_remove(&memcg_cache_ida, id); 2799 } 2800 2801 struct memcg_kmem_cache_create_work { 2802 struct mem_cgroup *memcg; 2803 struct kmem_cache *cachep; 2804 struct work_struct work; 2805 }; 2806 2807 static void memcg_kmem_cache_create_func(struct work_struct *w) 2808 { 2809 struct memcg_kmem_cache_create_work *cw = 2810 container_of(w, struct memcg_kmem_cache_create_work, work); 2811 struct mem_cgroup *memcg = cw->memcg; 2812 struct kmem_cache *cachep = cw->cachep; 2813 2814 memcg_create_kmem_cache(memcg, cachep); 2815 2816 css_put(&memcg->css); 2817 kfree(cw); 2818 } 2819 2820 /* 2821 * Enqueue the creation of a per-memcg kmem_cache. 2822 */ 2823 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2824 struct kmem_cache *cachep) 2825 { 2826 struct memcg_kmem_cache_create_work *cw; 2827 2828 if (!css_tryget_online(&memcg->css)) 2829 return; 2830 2831 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2832 if (!cw) 2833 return; 2834 2835 cw->memcg = memcg; 2836 cw->cachep = cachep; 2837 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2838 2839 queue_work(memcg_kmem_cache_wq, &cw->work); 2840 } 2841 2842 static inline bool memcg_kmem_bypass(void) 2843 { 2844 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2845 return true; 2846 return false; 2847 } 2848 2849 /** 2850 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2851 * @cachep: the original global kmem cache 2852 * 2853 * Return the kmem_cache we're supposed to use for a slab allocation. 2854 * We try to use the current memcg's version of the cache. 2855 * 2856 * If the cache does not exist yet, if we are the first user of it, we 2857 * create it asynchronously in a workqueue and let the current allocation 2858 * go through with the original cache. 2859 * 2860 * This function takes a reference to the cache it returns to assure it 2861 * won't get destroyed while we are working with it. Once the caller is 2862 * done with it, memcg_kmem_put_cache() must be called to release the 2863 * reference. 2864 */ 2865 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2866 { 2867 struct mem_cgroup *memcg; 2868 struct kmem_cache *memcg_cachep; 2869 struct memcg_cache_array *arr; 2870 int kmemcg_id; 2871 2872 VM_BUG_ON(!is_root_cache(cachep)); 2873 2874 if (memcg_kmem_bypass()) 2875 return cachep; 2876 2877 rcu_read_lock(); 2878 2879 if (unlikely(current->active_memcg)) 2880 memcg = current->active_memcg; 2881 else 2882 memcg = mem_cgroup_from_task(current); 2883 2884 if (!memcg || memcg == root_mem_cgroup) 2885 goto out_unlock; 2886 2887 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2888 if (kmemcg_id < 0) 2889 goto out_unlock; 2890 2891 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2892 2893 /* 2894 * Make sure we will access the up-to-date value. The code updating 2895 * memcg_caches issues a write barrier to match the data dependency 2896 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2897 */ 2898 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2899 2900 /* 2901 * If we are in a safe context (can wait, and not in interrupt 2902 * context), we could be be predictable and return right away. 2903 * This would guarantee that the allocation being performed 2904 * already belongs in the new cache. 2905 * 2906 * However, there are some clashes that can arrive from locking. 2907 * For instance, because we acquire the slab_mutex while doing 2908 * memcg_create_kmem_cache, this means no further allocation 2909 * could happen with the slab_mutex held. So it's better to 2910 * defer everything. 2911 * 2912 * If the memcg is dying or memcg_cache is about to be released, 2913 * don't bother creating new kmem_caches. Because memcg_cachep 2914 * is ZEROed as the fist step of kmem offlining, we don't need 2915 * percpu_ref_tryget_live() here. css_tryget_online() check in 2916 * memcg_schedule_kmem_cache_create() will prevent us from 2917 * creation of a new kmem_cache. 2918 */ 2919 if (unlikely(!memcg_cachep)) 2920 memcg_schedule_kmem_cache_create(memcg, cachep); 2921 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2922 cachep = memcg_cachep; 2923 out_unlock: 2924 rcu_read_unlock(); 2925 return cachep; 2926 } 2927 2928 /** 2929 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2930 * @cachep: the cache returned by memcg_kmem_get_cache 2931 */ 2932 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2933 { 2934 if (!is_root_cache(cachep)) 2935 percpu_ref_put(&cachep->memcg_params.refcnt); 2936 } 2937 2938 /** 2939 * __memcg_kmem_charge_memcg: charge a kmem page 2940 * @page: page to charge 2941 * @gfp: reclaim mode 2942 * @order: allocation order 2943 * @memcg: memory cgroup to charge 2944 * 2945 * Returns 0 on success, an error code on failure. 2946 */ 2947 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2948 struct mem_cgroup *memcg) 2949 { 2950 unsigned int nr_pages = 1 << order; 2951 struct page_counter *counter; 2952 int ret; 2953 2954 ret = try_charge(memcg, gfp, nr_pages); 2955 if (ret) 2956 return ret; 2957 2958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2959 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2960 2961 /* 2962 * Enforce __GFP_NOFAIL allocation because callers are not 2963 * prepared to see failures and likely do not have any failure 2964 * handling code. 2965 */ 2966 if (gfp & __GFP_NOFAIL) { 2967 page_counter_charge(&memcg->kmem, nr_pages); 2968 return 0; 2969 } 2970 cancel_charge(memcg, nr_pages); 2971 return -ENOMEM; 2972 } 2973 return 0; 2974 } 2975 2976 /** 2977 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2978 * @page: page to charge 2979 * @gfp: reclaim mode 2980 * @order: allocation order 2981 * 2982 * Returns 0 on success, an error code on failure. 2983 */ 2984 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2985 { 2986 struct mem_cgroup *memcg; 2987 int ret = 0; 2988 2989 if (memcg_kmem_bypass()) 2990 return 0; 2991 2992 memcg = get_mem_cgroup_from_current(); 2993 if (!mem_cgroup_is_root(memcg)) { 2994 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2995 if (!ret) { 2996 page->mem_cgroup = memcg; 2997 __SetPageKmemcg(page); 2998 } 2999 } 3000 css_put(&memcg->css); 3001 return ret; 3002 } 3003 3004 /** 3005 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 3006 * @memcg: memcg to uncharge 3007 * @nr_pages: number of pages to uncharge 3008 */ 3009 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 3010 unsigned int nr_pages) 3011 { 3012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3013 page_counter_uncharge(&memcg->kmem, nr_pages); 3014 3015 page_counter_uncharge(&memcg->memory, nr_pages); 3016 if (do_memsw_account()) 3017 page_counter_uncharge(&memcg->memsw, nr_pages); 3018 } 3019 /** 3020 * __memcg_kmem_uncharge: uncharge a kmem page 3021 * @page: page to uncharge 3022 * @order: allocation order 3023 */ 3024 void __memcg_kmem_uncharge(struct page *page, int order) 3025 { 3026 struct mem_cgroup *memcg = page->mem_cgroup; 3027 unsigned int nr_pages = 1 << order; 3028 3029 if (!memcg) 3030 return; 3031 3032 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3033 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 3034 page->mem_cgroup = NULL; 3035 3036 /* slab pages do not have PageKmemcg flag set */ 3037 if (PageKmemcg(page)) 3038 __ClearPageKmemcg(page); 3039 3040 css_put_many(&memcg->css, nr_pages); 3041 } 3042 #endif /* CONFIG_MEMCG_KMEM */ 3043 3044 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3045 3046 /* 3047 * Because tail pages are not marked as "used", set it. We're under 3048 * pgdat->lru_lock and migration entries setup in all page mappings. 3049 */ 3050 void mem_cgroup_split_huge_fixup(struct page *head) 3051 { 3052 int i; 3053 3054 if (mem_cgroup_disabled()) 3055 return; 3056 3057 for (i = 1; i < HPAGE_PMD_NR; i++) 3058 head[i].mem_cgroup = head->mem_cgroup; 3059 3060 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 3061 } 3062 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3063 3064 #ifdef CONFIG_MEMCG_SWAP 3065 /** 3066 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3067 * @entry: swap entry to be moved 3068 * @from: mem_cgroup which the entry is moved from 3069 * @to: mem_cgroup which the entry is moved to 3070 * 3071 * It succeeds only when the swap_cgroup's record for this entry is the same 3072 * as the mem_cgroup's id of @from. 3073 * 3074 * Returns 0 on success, -EINVAL on failure. 3075 * 3076 * The caller must have charged to @to, IOW, called page_counter_charge() about 3077 * both res and memsw, and called css_get(). 3078 */ 3079 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3080 struct mem_cgroup *from, struct mem_cgroup *to) 3081 { 3082 unsigned short old_id, new_id; 3083 3084 old_id = mem_cgroup_id(from); 3085 new_id = mem_cgroup_id(to); 3086 3087 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3088 mod_memcg_state(from, MEMCG_SWAP, -1); 3089 mod_memcg_state(to, MEMCG_SWAP, 1); 3090 return 0; 3091 } 3092 return -EINVAL; 3093 } 3094 #else 3095 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3096 struct mem_cgroup *from, struct mem_cgroup *to) 3097 { 3098 return -EINVAL; 3099 } 3100 #endif 3101 3102 static DEFINE_MUTEX(memcg_max_mutex); 3103 3104 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3105 unsigned long max, bool memsw) 3106 { 3107 bool enlarge = false; 3108 bool drained = false; 3109 int ret; 3110 bool limits_invariant; 3111 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3112 3113 do { 3114 if (signal_pending(current)) { 3115 ret = -EINTR; 3116 break; 3117 } 3118 3119 mutex_lock(&memcg_max_mutex); 3120 /* 3121 * Make sure that the new limit (memsw or memory limit) doesn't 3122 * break our basic invariant rule memory.max <= memsw.max. 3123 */ 3124 limits_invariant = memsw ? max >= memcg->memory.max : 3125 max <= memcg->memsw.max; 3126 if (!limits_invariant) { 3127 mutex_unlock(&memcg_max_mutex); 3128 ret = -EINVAL; 3129 break; 3130 } 3131 if (max > counter->max) 3132 enlarge = true; 3133 ret = page_counter_set_max(counter, max); 3134 mutex_unlock(&memcg_max_mutex); 3135 3136 if (!ret) 3137 break; 3138 3139 if (!drained) { 3140 drain_all_stock(memcg); 3141 drained = true; 3142 continue; 3143 } 3144 3145 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3146 GFP_KERNEL, !memsw)) { 3147 ret = -EBUSY; 3148 break; 3149 } 3150 } while (true); 3151 3152 if (!ret && enlarge) 3153 memcg_oom_recover(memcg); 3154 3155 return ret; 3156 } 3157 3158 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3159 gfp_t gfp_mask, 3160 unsigned long *total_scanned) 3161 { 3162 unsigned long nr_reclaimed = 0; 3163 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3164 unsigned long reclaimed; 3165 int loop = 0; 3166 struct mem_cgroup_tree_per_node *mctz; 3167 unsigned long excess; 3168 unsigned long nr_scanned; 3169 3170 if (order > 0) 3171 return 0; 3172 3173 mctz = soft_limit_tree_node(pgdat->node_id); 3174 3175 /* 3176 * Do not even bother to check the largest node if the root 3177 * is empty. Do it lockless to prevent lock bouncing. Races 3178 * are acceptable as soft limit is best effort anyway. 3179 */ 3180 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3181 return 0; 3182 3183 /* 3184 * This loop can run a while, specially if mem_cgroup's continuously 3185 * keep exceeding their soft limit and putting the system under 3186 * pressure 3187 */ 3188 do { 3189 if (next_mz) 3190 mz = next_mz; 3191 else 3192 mz = mem_cgroup_largest_soft_limit_node(mctz); 3193 if (!mz) 3194 break; 3195 3196 nr_scanned = 0; 3197 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3198 gfp_mask, &nr_scanned); 3199 nr_reclaimed += reclaimed; 3200 *total_scanned += nr_scanned; 3201 spin_lock_irq(&mctz->lock); 3202 __mem_cgroup_remove_exceeded(mz, mctz); 3203 3204 /* 3205 * If we failed to reclaim anything from this memory cgroup 3206 * it is time to move on to the next cgroup 3207 */ 3208 next_mz = NULL; 3209 if (!reclaimed) 3210 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3211 3212 excess = soft_limit_excess(mz->memcg); 3213 /* 3214 * One school of thought says that we should not add 3215 * back the node to the tree if reclaim returns 0. 3216 * But our reclaim could return 0, simply because due 3217 * to priority we are exposing a smaller subset of 3218 * memory to reclaim from. Consider this as a longer 3219 * term TODO. 3220 */ 3221 /* If excess == 0, no tree ops */ 3222 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3223 spin_unlock_irq(&mctz->lock); 3224 css_put(&mz->memcg->css); 3225 loop++; 3226 /* 3227 * Could not reclaim anything and there are no more 3228 * mem cgroups to try or we seem to be looping without 3229 * reclaiming anything. 3230 */ 3231 if (!nr_reclaimed && 3232 (next_mz == NULL || 3233 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3234 break; 3235 } while (!nr_reclaimed); 3236 if (next_mz) 3237 css_put(&next_mz->memcg->css); 3238 return nr_reclaimed; 3239 } 3240 3241 /* 3242 * Test whether @memcg has children, dead or alive. Note that this 3243 * function doesn't care whether @memcg has use_hierarchy enabled and 3244 * returns %true if there are child csses according to the cgroup 3245 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3246 */ 3247 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3248 { 3249 bool ret; 3250 3251 rcu_read_lock(); 3252 ret = css_next_child(NULL, &memcg->css); 3253 rcu_read_unlock(); 3254 return ret; 3255 } 3256 3257 /* 3258 * Reclaims as many pages from the given memcg as possible. 3259 * 3260 * Caller is responsible for holding css reference for memcg. 3261 */ 3262 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3263 { 3264 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3265 3266 /* we call try-to-free pages for make this cgroup empty */ 3267 lru_add_drain_all(); 3268 3269 drain_all_stock(memcg); 3270 3271 /* try to free all pages in this cgroup */ 3272 while (nr_retries && page_counter_read(&memcg->memory)) { 3273 int progress; 3274 3275 if (signal_pending(current)) 3276 return -EINTR; 3277 3278 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3279 GFP_KERNEL, true); 3280 if (!progress) { 3281 nr_retries--; 3282 /* maybe some writeback is necessary */ 3283 congestion_wait(BLK_RW_ASYNC, HZ/10); 3284 } 3285 3286 } 3287 3288 return 0; 3289 } 3290 3291 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3292 char *buf, size_t nbytes, 3293 loff_t off) 3294 { 3295 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3296 3297 if (mem_cgroup_is_root(memcg)) 3298 return -EINVAL; 3299 return mem_cgroup_force_empty(memcg) ?: nbytes; 3300 } 3301 3302 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3303 struct cftype *cft) 3304 { 3305 return mem_cgroup_from_css(css)->use_hierarchy; 3306 } 3307 3308 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3309 struct cftype *cft, u64 val) 3310 { 3311 int retval = 0; 3312 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3313 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3314 3315 if (memcg->use_hierarchy == val) 3316 return 0; 3317 3318 /* 3319 * If parent's use_hierarchy is set, we can't make any modifications 3320 * in the child subtrees. If it is unset, then the change can 3321 * occur, provided the current cgroup has no children. 3322 * 3323 * For the root cgroup, parent_mem is NULL, we allow value to be 3324 * set if there are no children. 3325 */ 3326 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3327 (val == 1 || val == 0)) { 3328 if (!memcg_has_children(memcg)) 3329 memcg->use_hierarchy = val; 3330 else 3331 retval = -EBUSY; 3332 } else 3333 retval = -EINVAL; 3334 3335 return retval; 3336 } 3337 3338 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3339 { 3340 unsigned long val; 3341 3342 if (mem_cgroup_is_root(memcg)) { 3343 val = memcg_page_state(memcg, MEMCG_CACHE) + 3344 memcg_page_state(memcg, MEMCG_RSS); 3345 if (swap) 3346 val += memcg_page_state(memcg, MEMCG_SWAP); 3347 } else { 3348 if (!swap) 3349 val = page_counter_read(&memcg->memory); 3350 else 3351 val = page_counter_read(&memcg->memsw); 3352 } 3353 return val; 3354 } 3355 3356 enum { 3357 RES_USAGE, 3358 RES_LIMIT, 3359 RES_MAX_USAGE, 3360 RES_FAILCNT, 3361 RES_SOFT_LIMIT, 3362 }; 3363 3364 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3365 struct cftype *cft) 3366 { 3367 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3368 struct page_counter *counter; 3369 3370 switch (MEMFILE_TYPE(cft->private)) { 3371 case _MEM: 3372 counter = &memcg->memory; 3373 break; 3374 case _MEMSWAP: 3375 counter = &memcg->memsw; 3376 break; 3377 case _KMEM: 3378 counter = &memcg->kmem; 3379 break; 3380 case _TCP: 3381 counter = &memcg->tcpmem; 3382 break; 3383 default: 3384 BUG(); 3385 } 3386 3387 switch (MEMFILE_ATTR(cft->private)) { 3388 case RES_USAGE: 3389 if (counter == &memcg->memory) 3390 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3391 if (counter == &memcg->memsw) 3392 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3393 return (u64)page_counter_read(counter) * PAGE_SIZE; 3394 case RES_LIMIT: 3395 return (u64)counter->max * PAGE_SIZE; 3396 case RES_MAX_USAGE: 3397 return (u64)counter->watermark * PAGE_SIZE; 3398 case RES_FAILCNT: 3399 return counter->failcnt; 3400 case RES_SOFT_LIMIT: 3401 return (u64)memcg->soft_limit * PAGE_SIZE; 3402 default: 3403 BUG(); 3404 } 3405 } 3406 3407 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only) 3408 { 3409 unsigned long stat[MEMCG_NR_STAT]; 3410 struct mem_cgroup *mi; 3411 int node, cpu, i; 3412 int min_idx, max_idx; 3413 3414 if (slab_only) { 3415 min_idx = NR_SLAB_RECLAIMABLE; 3416 max_idx = NR_SLAB_UNRECLAIMABLE; 3417 } else { 3418 min_idx = 0; 3419 max_idx = MEMCG_NR_STAT; 3420 } 3421 3422 for (i = min_idx; i < max_idx; i++) 3423 stat[i] = 0; 3424 3425 for_each_online_cpu(cpu) 3426 for (i = min_idx; i < max_idx; i++) 3427 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3428 3429 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3430 for (i = min_idx; i < max_idx; i++) 3431 atomic_long_add(stat[i], &mi->vmstats[i]); 3432 3433 if (!slab_only) 3434 max_idx = NR_VM_NODE_STAT_ITEMS; 3435 3436 for_each_node(node) { 3437 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3438 struct mem_cgroup_per_node *pi; 3439 3440 for (i = min_idx; i < max_idx; i++) 3441 stat[i] = 0; 3442 3443 for_each_online_cpu(cpu) 3444 for (i = min_idx; i < max_idx; i++) 3445 stat[i] += per_cpu( 3446 pn->lruvec_stat_cpu->count[i], cpu); 3447 3448 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3449 for (i = min_idx; i < max_idx; i++) 3450 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3451 } 3452 } 3453 3454 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3455 { 3456 unsigned long events[NR_VM_EVENT_ITEMS]; 3457 struct mem_cgroup *mi; 3458 int cpu, i; 3459 3460 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3461 events[i] = 0; 3462 3463 for_each_online_cpu(cpu) 3464 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3465 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3466 cpu); 3467 3468 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3469 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3470 atomic_long_add(events[i], &mi->vmevents[i]); 3471 } 3472 3473 #ifdef CONFIG_MEMCG_KMEM 3474 static int memcg_online_kmem(struct mem_cgroup *memcg) 3475 { 3476 int memcg_id; 3477 3478 if (cgroup_memory_nokmem) 3479 return 0; 3480 3481 BUG_ON(memcg->kmemcg_id >= 0); 3482 BUG_ON(memcg->kmem_state); 3483 3484 memcg_id = memcg_alloc_cache_id(); 3485 if (memcg_id < 0) 3486 return memcg_id; 3487 3488 static_branch_inc(&memcg_kmem_enabled_key); 3489 /* 3490 * A memory cgroup is considered kmem-online as soon as it gets 3491 * kmemcg_id. Setting the id after enabling static branching will 3492 * guarantee no one starts accounting before all call sites are 3493 * patched. 3494 */ 3495 memcg->kmemcg_id = memcg_id; 3496 memcg->kmem_state = KMEM_ONLINE; 3497 INIT_LIST_HEAD(&memcg->kmem_caches); 3498 3499 return 0; 3500 } 3501 3502 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3503 { 3504 struct cgroup_subsys_state *css; 3505 struct mem_cgroup *parent, *child; 3506 int kmemcg_id; 3507 3508 if (memcg->kmem_state != KMEM_ONLINE) 3509 return; 3510 /* 3511 * Clear the online state before clearing memcg_caches array 3512 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3513 * guarantees that no cache will be created for this cgroup 3514 * after we are done (see memcg_create_kmem_cache()). 3515 */ 3516 memcg->kmem_state = KMEM_ALLOCATED; 3517 3518 parent = parent_mem_cgroup(memcg); 3519 if (!parent) 3520 parent = root_mem_cgroup; 3521 3522 /* 3523 * Deactivate and reparent kmem_caches. Then flush percpu 3524 * slab statistics to have precise values at the parent and 3525 * all ancestor levels. It's required to keep slab stats 3526 * accurate after the reparenting of kmem_caches. 3527 */ 3528 memcg_deactivate_kmem_caches(memcg, parent); 3529 memcg_flush_percpu_vmstats(memcg, true); 3530 3531 kmemcg_id = memcg->kmemcg_id; 3532 BUG_ON(kmemcg_id < 0); 3533 3534 /* 3535 * Change kmemcg_id of this cgroup and all its descendants to the 3536 * parent's id, and then move all entries from this cgroup's list_lrus 3537 * to ones of the parent. After we have finished, all list_lrus 3538 * corresponding to this cgroup are guaranteed to remain empty. The 3539 * ordering is imposed by list_lru_node->lock taken by 3540 * memcg_drain_all_list_lrus(). 3541 */ 3542 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3543 css_for_each_descendant_pre(css, &memcg->css) { 3544 child = mem_cgroup_from_css(css); 3545 BUG_ON(child->kmemcg_id != kmemcg_id); 3546 child->kmemcg_id = parent->kmemcg_id; 3547 if (!memcg->use_hierarchy) 3548 break; 3549 } 3550 rcu_read_unlock(); 3551 3552 memcg_drain_all_list_lrus(kmemcg_id, parent); 3553 3554 memcg_free_cache_id(kmemcg_id); 3555 } 3556 3557 static void memcg_free_kmem(struct mem_cgroup *memcg) 3558 { 3559 /* css_alloc() failed, offlining didn't happen */ 3560 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3561 memcg_offline_kmem(memcg); 3562 3563 if (memcg->kmem_state == KMEM_ALLOCATED) { 3564 WARN_ON(!list_empty(&memcg->kmem_caches)); 3565 static_branch_dec(&memcg_kmem_enabled_key); 3566 } 3567 } 3568 #else 3569 static int memcg_online_kmem(struct mem_cgroup *memcg) 3570 { 3571 return 0; 3572 } 3573 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3574 { 3575 } 3576 static void memcg_free_kmem(struct mem_cgroup *memcg) 3577 { 3578 } 3579 #endif /* CONFIG_MEMCG_KMEM */ 3580 3581 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3582 unsigned long max) 3583 { 3584 int ret; 3585 3586 mutex_lock(&memcg_max_mutex); 3587 ret = page_counter_set_max(&memcg->kmem, max); 3588 mutex_unlock(&memcg_max_mutex); 3589 return ret; 3590 } 3591 3592 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3593 { 3594 int ret; 3595 3596 mutex_lock(&memcg_max_mutex); 3597 3598 ret = page_counter_set_max(&memcg->tcpmem, max); 3599 if (ret) 3600 goto out; 3601 3602 if (!memcg->tcpmem_active) { 3603 /* 3604 * The active flag needs to be written after the static_key 3605 * update. This is what guarantees that the socket activation 3606 * function is the last one to run. See mem_cgroup_sk_alloc() 3607 * for details, and note that we don't mark any socket as 3608 * belonging to this memcg until that flag is up. 3609 * 3610 * We need to do this, because static_keys will span multiple 3611 * sites, but we can't control their order. If we mark a socket 3612 * as accounted, but the accounting functions are not patched in 3613 * yet, we'll lose accounting. 3614 * 3615 * We never race with the readers in mem_cgroup_sk_alloc(), 3616 * because when this value change, the code to process it is not 3617 * patched in yet. 3618 */ 3619 static_branch_inc(&memcg_sockets_enabled_key); 3620 memcg->tcpmem_active = true; 3621 } 3622 out: 3623 mutex_unlock(&memcg_max_mutex); 3624 return ret; 3625 } 3626 3627 /* 3628 * The user of this function is... 3629 * RES_LIMIT. 3630 */ 3631 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3632 char *buf, size_t nbytes, loff_t off) 3633 { 3634 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3635 unsigned long nr_pages; 3636 int ret; 3637 3638 buf = strstrip(buf); 3639 ret = page_counter_memparse(buf, "-1", &nr_pages); 3640 if (ret) 3641 return ret; 3642 3643 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3644 case RES_LIMIT: 3645 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3646 ret = -EINVAL; 3647 break; 3648 } 3649 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3650 case _MEM: 3651 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3652 break; 3653 case _MEMSWAP: 3654 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3655 break; 3656 case _KMEM: 3657 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3658 "Please report your usecase to linux-mm@kvack.org if you " 3659 "depend on this functionality.\n"); 3660 ret = memcg_update_kmem_max(memcg, nr_pages); 3661 break; 3662 case _TCP: 3663 ret = memcg_update_tcp_max(memcg, nr_pages); 3664 break; 3665 } 3666 break; 3667 case RES_SOFT_LIMIT: 3668 memcg->soft_limit = nr_pages; 3669 ret = 0; 3670 break; 3671 } 3672 return ret ?: nbytes; 3673 } 3674 3675 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3676 size_t nbytes, loff_t off) 3677 { 3678 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3679 struct page_counter *counter; 3680 3681 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3682 case _MEM: 3683 counter = &memcg->memory; 3684 break; 3685 case _MEMSWAP: 3686 counter = &memcg->memsw; 3687 break; 3688 case _KMEM: 3689 counter = &memcg->kmem; 3690 break; 3691 case _TCP: 3692 counter = &memcg->tcpmem; 3693 break; 3694 default: 3695 BUG(); 3696 } 3697 3698 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3699 case RES_MAX_USAGE: 3700 page_counter_reset_watermark(counter); 3701 break; 3702 case RES_FAILCNT: 3703 counter->failcnt = 0; 3704 break; 3705 default: 3706 BUG(); 3707 } 3708 3709 return nbytes; 3710 } 3711 3712 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3713 struct cftype *cft) 3714 { 3715 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3716 } 3717 3718 #ifdef CONFIG_MMU 3719 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3720 struct cftype *cft, u64 val) 3721 { 3722 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3723 3724 if (val & ~MOVE_MASK) 3725 return -EINVAL; 3726 3727 /* 3728 * No kind of locking is needed in here, because ->can_attach() will 3729 * check this value once in the beginning of the process, and then carry 3730 * on with stale data. This means that changes to this value will only 3731 * affect task migrations starting after the change. 3732 */ 3733 memcg->move_charge_at_immigrate = val; 3734 return 0; 3735 } 3736 #else 3737 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3738 struct cftype *cft, u64 val) 3739 { 3740 return -ENOSYS; 3741 } 3742 #endif 3743 3744 #ifdef CONFIG_NUMA 3745 3746 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3747 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3748 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3749 3750 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3751 int nid, unsigned int lru_mask) 3752 { 3753 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3754 unsigned long nr = 0; 3755 enum lru_list lru; 3756 3757 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3758 3759 for_each_lru(lru) { 3760 if (!(BIT(lru) & lru_mask)) 3761 continue; 3762 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3763 } 3764 return nr; 3765 } 3766 3767 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3768 unsigned int lru_mask) 3769 { 3770 unsigned long nr = 0; 3771 enum lru_list lru; 3772 3773 for_each_lru(lru) { 3774 if (!(BIT(lru) & lru_mask)) 3775 continue; 3776 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3777 } 3778 return nr; 3779 } 3780 3781 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3782 { 3783 struct numa_stat { 3784 const char *name; 3785 unsigned int lru_mask; 3786 }; 3787 3788 static const struct numa_stat stats[] = { 3789 { "total", LRU_ALL }, 3790 { "file", LRU_ALL_FILE }, 3791 { "anon", LRU_ALL_ANON }, 3792 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3793 }; 3794 const struct numa_stat *stat; 3795 int nid; 3796 unsigned long nr; 3797 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3798 3799 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3800 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3801 seq_printf(m, "%s=%lu", stat->name, nr); 3802 for_each_node_state(nid, N_MEMORY) { 3803 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3804 stat->lru_mask); 3805 seq_printf(m, " N%d=%lu", nid, nr); 3806 } 3807 seq_putc(m, '\n'); 3808 } 3809 3810 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3811 struct mem_cgroup *iter; 3812 3813 nr = 0; 3814 for_each_mem_cgroup_tree(iter, memcg) 3815 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3816 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3817 for_each_node_state(nid, N_MEMORY) { 3818 nr = 0; 3819 for_each_mem_cgroup_tree(iter, memcg) 3820 nr += mem_cgroup_node_nr_lru_pages( 3821 iter, nid, stat->lru_mask); 3822 seq_printf(m, " N%d=%lu", nid, nr); 3823 } 3824 seq_putc(m, '\n'); 3825 } 3826 3827 return 0; 3828 } 3829 #endif /* CONFIG_NUMA */ 3830 3831 static const unsigned int memcg1_stats[] = { 3832 MEMCG_CACHE, 3833 MEMCG_RSS, 3834 MEMCG_RSS_HUGE, 3835 NR_SHMEM, 3836 NR_FILE_MAPPED, 3837 NR_FILE_DIRTY, 3838 NR_WRITEBACK, 3839 MEMCG_SWAP, 3840 }; 3841 3842 static const char *const memcg1_stat_names[] = { 3843 "cache", 3844 "rss", 3845 "rss_huge", 3846 "shmem", 3847 "mapped_file", 3848 "dirty", 3849 "writeback", 3850 "swap", 3851 }; 3852 3853 /* Universal VM events cgroup1 shows, original sort order */ 3854 static const unsigned int memcg1_events[] = { 3855 PGPGIN, 3856 PGPGOUT, 3857 PGFAULT, 3858 PGMAJFAULT, 3859 }; 3860 3861 static const char *const memcg1_event_names[] = { 3862 "pgpgin", 3863 "pgpgout", 3864 "pgfault", 3865 "pgmajfault", 3866 }; 3867 3868 static int memcg_stat_show(struct seq_file *m, void *v) 3869 { 3870 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3871 unsigned long memory, memsw; 3872 struct mem_cgroup *mi; 3873 unsigned int i; 3874 3875 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3876 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3877 3878 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3879 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3880 continue; 3881 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3882 memcg_page_state_local(memcg, memcg1_stats[i]) * 3883 PAGE_SIZE); 3884 } 3885 3886 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3887 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3888 memcg_events_local(memcg, memcg1_events[i])); 3889 3890 for (i = 0; i < NR_LRU_LISTS; i++) 3891 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3892 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3893 PAGE_SIZE); 3894 3895 /* Hierarchical information */ 3896 memory = memsw = PAGE_COUNTER_MAX; 3897 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3898 memory = min(memory, mi->memory.max); 3899 memsw = min(memsw, mi->memsw.max); 3900 } 3901 seq_printf(m, "hierarchical_memory_limit %llu\n", 3902 (u64)memory * PAGE_SIZE); 3903 if (do_memsw_account()) 3904 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3905 (u64)memsw * PAGE_SIZE); 3906 3907 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3908 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3909 continue; 3910 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3911 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3912 PAGE_SIZE); 3913 } 3914 3915 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3916 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3917 (u64)memcg_events(memcg, memcg1_events[i])); 3918 3919 for (i = 0; i < NR_LRU_LISTS; i++) 3920 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3921 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3922 PAGE_SIZE); 3923 3924 #ifdef CONFIG_DEBUG_VM 3925 { 3926 pg_data_t *pgdat; 3927 struct mem_cgroup_per_node *mz; 3928 struct zone_reclaim_stat *rstat; 3929 unsigned long recent_rotated[2] = {0, 0}; 3930 unsigned long recent_scanned[2] = {0, 0}; 3931 3932 for_each_online_pgdat(pgdat) { 3933 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3934 rstat = &mz->lruvec.reclaim_stat; 3935 3936 recent_rotated[0] += rstat->recent_rotated[0]; 3937 recent_rotated[1] += rstat->recent_rotated[1]; 3938 recent_scanned[0] += rstat->recent_scanned[0]; 3939 recent_scanned[1] += rstat->recent_scanned[1]; 3940 } 3941 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3942 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3943 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3944 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3945 } 3946 #endif 3947 3948 return 0; 3949 } 3950 3951 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3952 struct cftype *cft) 3953 { 3954 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3955 3956 return mem_cgroup_swappiness(memcg); 3957 } 3958 3959 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3960 struct cftype *cft, u64 val) 3961 { 3962 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3963 3964 if (val > 100) 3965 return -EINVAL; 3966 3967 if (css->parent) 3968 memcg->swappiness = val; 3969 else 3970 vm_swappiness = val; 3971 3972 return 0; 3973 } 3974 3975 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3976 { 3977 struct mem_cgroup_threshold_ary *t; 3978 unsigned long usage; 3979 int i; 3980 3981 rcu_read_lock(); 3982 if (!swap) 3983 t = rcu_dereference(memcg->thresholds.primary); 3984 else 3985 t = rcu_dereference(memcg->memsw_thresholds.primary); 3986 3987 if (!t) 3988 goto unlock; 3989 3990 usage = mem_cgroup_usage(memcg, swap); 3991 3992 /* 3993 * current_threshold points to threshold just below or equal to usage. 3994 * If it's not true, a threshold was crossed after last 3995 * call of __mem_cgroup_threshold(). 3996 */ 3997 i = t->current_threshold; 3998 3999 /* 4000 * Iterate backward over array of thresholds starting from 4001 * current_threshold and check if a threshold is crossed. 4002 * If none of thresholds below usage is crossed, we read 4003 * only one element of the array here. 4004 */ 4005 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4006 eventfd_signal(t->entries[i].eventfd, 1); 4007 4008 /* i = current_threshold + 1 */ 4009 i++; 4010 4011 /* 4012 * Iterate forward over array of thresholds starting from 4013 * current_threshold+1 and check if a threshold is crossed. 4014 * If none of thresholds above usage is crossed, we read 4015 * only one element of the array here. 4016 */ 4017 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4018 eventfd_signal(t->entries[i].eventfd, 1); 4019 4020 /* Update current_threshold */ 4021 t->current_threshold = i - 1; 4022 unlock: 4023 rcu_read_unlock(); 4024 } 4025 4026 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4027 { 4028 while (memcg) { 4029 __mem_cgroup_threshold(memcg, false); 4030 if (do_memsw_account()) 4031 __mem_cgroup_threshold(memcg, true); 4032 4033 memcg = parent_mem_cgroup(memcg); 4034 } 4035 } 4036 4037 static int compare_thresholds(const void *a, const void *b) 4038 { 4039 const struct mem_cgroup_threshold *_a = a; 4040 const struct mem_cgroup_threshold *_b = b; 4041 4042 if (_a->threshold > _b->threshold) 4043 return 1; 4044 4045 if (_a->threshold < _b->threshold) 4046 return -1; 4047 4048 return 0; 4049 } 4050 4051 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4052 { 4053 struct mem_cgroup_eventfd_list *ev; 4054 4055 spin_lock(&memcg_oom_lock); 4056 4057 list_for_each_entry(ev, &memcg->oom_notify, list) 4058 eventfd_signal(ev->eventfd, 1); 4059 4060 spin_unlock(&memcg_oom_lock); 4061 return 0; 4062 } 4063 4064 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4065 { 4066 struct mem_cgroup *iter; 4067 4068 for_each_mem_cgroup_tree(iter, memcg) 4069 mem_cgroup_oom_notify_cb(iter); 4070 } 4071 4072 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4073 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4074 { 4075 struct mem_cgroup_thresholds *thresholds; 4076 struct mem_cgroup_threshold_ary *new; 4077 unsigned long threshold; 4078 unsigned long usage; 4079 int i, size, ret; 4080 4081 ret = page_counter_memparse(args, "-1", &threshold); 4082 if (ret) 4083 return ret; 4084 4085 mutex_lock(&memcg->thresholds_lock); 4086 4087 if (type == _MEM) { 4088 thresholds = &memcg->thresholds; 4089 usage = mem_cgroup_usage(memcg, false); 4090 } else if (type == _MEMSWAP) { 4091 thresholds = &memcg->memsw_thresholds; 4092 usage = mem_cgroup_usage(memcg, true); 4093 } else 4094 BUG(); 4095 4096 /* Check if a threshold crossed before adding a new one */ 4097 if (thresholds->primary) 4098 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4099 4100 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4101 4102 /* Allocate memory for new array of thresholds */ 4103 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4104 if (!new) { 4105 ret = -ENOMEM; 4106 goto unlock; 4107 } 4108 new->size = size; 4109 4110 /* Copy thresholds (if any) to new array */ 4111 if (thresholds->primary) { 4112 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4113 sizeof(struct mem_cgroup_threshold)); 4114 } 4115 4116 /* Add new threshold */ 4117 new->entries[size - 1].eventfd = eventfd; 4118 new->entries[size - 1].threshold = threshold; 4119 4120 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4121 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4122 compare_thresholds, NULL); 4123 4124 /* Find current threshold */ 4125 new->current_threshold = -1; 4126 for (i = 0; i < size; i++) { 4127 if (new->entries[i].threshold <= usage) { 4128 /* 4129 * new->current_threshold will not be used until 4130 * rcu_assign_pointer(), so it's safe to increment 4131 * it here. 4132 */ 4133 ++new->current_threshold; 4134 } else 4135 break; 4136 } 4137 4138 /* Free old spare buffer and save old primary buffer as spare */ 4139 kfree(thresholds->spare); 4140 thresholds->spare = thresholds->primary; 4141 4142 rcu_assign_pointer(thresholds->primary, new); 4143 4144 /* To be sure that nobody uses thresholds */ 4145 synchronize_rcu(); 4146 4147 unlock: 4148 mutex_unlock(&memcg->thresholds_lock); 4149 4150 return ret; 4151 } 4152 4153 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4154 struct eventfd_ctx *eventfd, const char *args) 4155 { 4156 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4157 } 4158 4159 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4160 struct eventfd_ctx *eventfd, const char *args) 4161 { 4162 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4163 } 4164 4165 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4166 struct eventfd_ctx *eventfd, enum res_type type) 4167 { 4168 struct mem_cgroup_thresholds *thresholds; 4169 struct mem_cgroup_threshold_ary *new; 4170 unsigned long usage; 4171 int i, j, size; 4172 4173 mutex_lock(&memcg->thresholds_lock); 4174 4175 if (type == _MEM) { 4176 thresholds = &memcg->thresholds; 4177 usage = mem_cgroup_usage(memcg, false); 4178 } else if (type == _MEMSWAP) { 4179 thresholds = &memcg->memsw_thresholds; 4180 usage = mem_cgroup_usage(memcg, true); 4181 } else 4182 BUG(); 4183 4184 if (!thresholds->primary) 4185 goto unlock; 4186 4187 /* Check if a threshold crossed before removing */ 4188 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4189 4190 /* Calculate new number of threshold */ 4191 size = 0; 4192 for (i = 0; i < thresholds->primary->size; i++) { 4193 if (thresholds->primary->entries[i].eventfd != eventfd) 4194 size++; 4195 } 4196 4197 new = thresholds->spare; 4198 4199 /* Set thresholds array to NULL if we don't have thresholds */ 4200 if (!size) { 4201 kfree(new); 4202 new = NULL; 4203 goto swap_buffers; 4204 } 4205 4206 new->size = size; 4207 4208 /* Copy thresholds and find current threshold */ 4209 new->current_threshold = -1; 4210 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4211 if (thresholds->primary->entries[i].eventfd == eventfd) 4212 continue; 4213 4214 new->entries[j] = thresholds->primary->entries[i]; 4215 if (new->entries[j].threshold <= usage) { 4216 /* 4217 * new->current_threshold will not be used 4218 * until rcu_assign_pointer(), so it's safe to increment 4219 * it here. 4220 */ 4221 ++new->current_threshold; 4222 } 4223 j++; 4224 } 4225 4226 swap_buffers: 4227 /* Swap primary and spare array */ 4228 thresholds->spare = thresholds->primary; 4229 4230 rcu_assign_pointer(thresholds->primary, new); 4231 4232 /* To be sure that nobody uses thresholds */ 4233 synchronize_rcu(); 4234 4235 /* If all events are unregistered, free the spare array */ 4236 if (!new) { 4237 kfree(thresholds->spare); 4238 thresholds->spare = NULL; 4239 } 4240 unlock: 4241 mutex_unlock(&memcg->thresholds_lock); 4242 } 4243 4244 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4245 struct eventfd_ctx *eventfd) 4246 { 4247 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4248 } 4249 4250 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4251 struct eventfd_ctx *eventfd) 4252 { 4253 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4254 } 4255 4256 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4257 struct eventfd_ctx *eventfd, const char *args) 4258 { 4259 struct mem_cgroup_eventfd_list *event; 4260 4261 event = kmalloc(sizeof(*event), GFP_KERNEL); 4262 if (!event) 4263 return -ENOMEM; 4264 4265 spin_lock(&memcg_oom_lock); 4266 4267 event->eventfd = eventfd; 4268 list_add(&event->list, &memcg->oom_notify); 4269 4270 /* already in OOM ? */ 4271 if (memcg->under_oom) 4272 eventfd_signal(eventfd, 1); 4273 spin_unlock(&memcg_oom_lock); 4274 4275 return 0; 4276 } 4277 4278 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4279 struct eventfd_ctx *eventfd) 4280 { 4281 struct mem_cgroup_eventfd_list *ev, *tmp; 4282 4283 spin_lock(&memcg_oom_lock); 4284 4285 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4286 if (ev->eventfd == eventfd) { 4287 list_del(&ev->list); 4288 kfree(ev); 4289 } 4290 } 4291 4292 spin_unlock(&memcg_oom_lock); 4293 } 4294 4295 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4296 { 4297 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4298 4299 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4300 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4301 seq_printf(sf, "oom_kill %lu\n", 4302 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4303 return 0; 4304 } 4305 4306 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4307 struct cftype *cft, u64 val) 4308 { 4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4310 4311 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4312 if (!css->parent || !((val == 0) || (val == 1))) 4313 return -EINVAL; 4314 4315 memcg->oom_kill_disable = val; 4316 if (!val) 4317 memcg_oom_recover(memcg); 4318 4319 return 0; 4320 } 4321 4322 #ifdef CONFIG_CGROUP_WRITEBACK 4323 4324 #include <trace/events/writeback.h> 4325 4326 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4327 { 4328 return wb_domain_init(&memcg->cgwb_domain, gfp); 4329 } 4330 4331 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4332 { 4333 wb_domain_exit(&memcg->cgwb_domain); 4334 } 4335 4336 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4337 { 4338 wb_domain_size_changed(&memcg->cgwb_domain); 4339 } 4340 4341 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4342 { 4343 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4344 4345 if (!memcg->css.parent) 4346 return NULL; 4347 4348 return &memcg->cgwb_domain; 4349 } 4350 4351 /* 4352 * idx can be of type enum memcg_stat_item or node_stat_item. 4353 * Keep in sync with memcg_exact_page(). 4354 */ 4355 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4356 { 4357 long x = atomic_long_read(&memcg->vmstats[idx]); 4358 int cpu; 4359 4360 for_each_online_cpu(cpu) 4361 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4362 if (x < 0) 4363 x = 0; 4364 return x; 4365 } 4366 4367 /** 4368 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4369 * @wb: bdi_writeback in question 4370 * @pfilepages: out parameter for number of file pages 4371 * @pheadroom: out parameter for number of allocatable pages according to memcg 4372 * @pdirty: out parameter for number of dirty pages 4373 * @pwriteback: out parameter for number of pages under writeback 4374 * 4375 * Determine the numbers of file, headroom, dirty, and writeback pages in 4376 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4377 * is a bit more involved. 4378 * 4379 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4380 * headroom is calculated as the lowest headroom of itself and the 4381 * ancestors. Note that this doesn't consider the actual amount of 4382 * available memory in the system. The caller should further cap 4383 * *@pheadroom accordingly. 4384 */ 4385 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4386 unsigned long *pheadroom, unsigned long *pdirty, 4387 unsigned long *pwriteback) 4388 { 4389 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4390 struct mem_cgroup *parent; 4391 4392 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4393 4394 /* this should eventually include NR_UNSTABLE_NFS */ 4395 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4396 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4397 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4398 *pheadroom = PAGE_COUNTER_MAX; 4399 4400 while ((parent = parent_mem_cgroup(memcg))) { 4401 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4402 unsigned long used = page_counter_read(&memcg->memory); 4403 4404 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4405 memcg = parent; 4406 } 4407 } 4408 4409 /* 4410 * Foreign dirty flushing 4411 * 4412 * There's an inherent mismatch between memcg and writeback. The former 4413 * trackes ownership per-page while the latter per-inode. This was a 4414 * deliberate design decision because honoring per-page ownership in the 4415 * writeback path is complicated, may lead to higher CPU and IO overheads 4416 * and deemed unnecessary given that write-sharing an inode across 4417 * different cgroups isn't a common use-case. 4418 * 4419 * Combined with inode majority-writer ownership switching, this works well 4420 * enough in most cases but there are some pathological cases. For 4421 * example, let's say there are two cgroups A and B which keep writing to 4422 * different but confined parts of the same inode. B owns the inode and 4423 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4424 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4425 * triggering background writeback. A will be slowed down without a way to 4426 * make writeback of the dirty pages happen. 4427 * 4428 * Conditions like the above can lead to a cgroup getting repatedly and 4429 * severely throttled after making some progress after each 4430 * dirty_expire_interval while the underyling IO device is almost 4431 * completely idle. 4432 * 4433 * Solving this problem completely requires matching the ownership tracking 4434 * granularities between memcg and writeback in either direction. However, 4435 * the more egregious behaviors can be avoided by simply remembering the 4436 * most recent foreign dirtying events and initiating remote flushes on 4437 * them when local writeback isn't enough to keep the memory clean enough. 4438 * 4439 * The following two functions implement such mechanism. When a foreign 4440 * page - a page whose memcg and writeback ownerships don't match - is 4441 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4442 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4443 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4444 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4445 * foreign bdi_writebacks which haven't expired. Both the numbers of 4446 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4447 * limited to MEMCG_CGWB_FRN_CNT. 4448 * 4449 * The mechanism only remembers IDs and doesn't hold any object references. 4450 * As being wrong occasionally doesn't matter, updates and accesses to the 4451 * records are lockless and racy. 4452 */ 4453 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4454 struct bdi_writeback *wb) 4455 { 4456 struct mem_cgroup *memcg = page->mem_cgroup; 4457 struct memcg_cgwb_frn *frn; 4458 u64 now = get_jiffies_64(); 4459 u64 oldest_at = now; 4460 int oldest = -1; 4461 int i; 4462 4463 trace_track_foreign_dirty(page, wb); 4464 4465 /* 4466 * Pick the slot to use. If there is already a slot for @wb, keep 4467 * using it. If not replace the oldest one which isn't being 4468 * written out. 4469 */ 4470 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4471 frn = &memcg->cgwb_frn[i]; 4472 if (frn->bdi_id == wb->bdi->id && 4473 frn->memcg_id == wb->memcg_css->id) 4474 break; 4475 if (time_before64(frn->at, oldest_at) && 4476 atomic_read(&frn->done.cnt) == 1) { 4477 oldest = i; 4478 oldest_at = frn->at; 4479 } 4480 } 4481 4482 if (i < MEMCG_CGWB_FRN_CNT) { 4483 /* 4484 * Re-using an existing one. Update timestamp lazily to 4485 * avoid making the cacheline hot. We want them to be 4486 * reasonably up-to-date and significantly shorter than 4487 * dirty_expire_interval as that's what expires the record. 4488 * Use the shorter of 1s and dirty_expire_interval / 8. 4489 */ 4490 unsigned long update_intv = 4491 min_t(unsigned long, HZ, 4492 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4493 4494 if (time_before64(frn->at, now - update_intv)) 4495 frn->at = now; 4496 } else if (oldest >= 0) { 4497 /* replace the oldest free one */ 4498 frn = &memcg->cgwb_frn[oldest]; 4499 frn->bdi_id = wb->bdi->id; 4500 frn->memcg_id = wb->memcg_css->id; 4501 frn->at = now; 4502 } 4503 } 4504 4505 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4506 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4507 { 4508 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4509 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4510 u64 now = jiffies_64; 4511 int i; 4512 4513 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4514 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4515 4516 /* 4517 * If the record is older than dirty_expire_interval, 4518 * writeback on it has already started. No need to kick it 4519 * off again. Also, don't start a new one if there's 4520 * already one in flight. 4521 */ 4522 if (time_after64(frn->at, now - intv) && 4523 atomic_read(&frn->done.cnt) == 1) { 4524 frn->at = 0; 4525 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4526 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4527 WB_REASON_FOREIGN_FLUSH, 4528 &frn->done); 4529 } 4530 } 4531 } 4532 4533 #else /* CONFIG_CGROUP_WRITEBACK */ 4534 4535 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4536 { 4537 return 0; 4538 } 4539 4540 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4541 { 4542 } 4543 4544 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4545 { 4546 } 4547 4548 #endif /* CONFIG_CGROUP_WRITEBACK */ 4549 4550 /* 4551 * DO NOT USE IN NEW FILES. 4552 * 4553 * "cgroup.event_control" implementation. 4554 * 4555 * This is way over-engineered. It tries to support fully configurable 4556 * events for each user. Such level of flexibility is completely 4557 * unnecessary especially in the light of the planned unified hierarchy. 4558 * 4559 * Please deprecate this and replace with something simpler if at all 4560 * possible. 4561 */ 4562 4563 /* 4564 * Unregister event and free resources. 4565 * 4566 * Gets called from workqueue. 4567 */ 4568 static void memcg_event_remove(struct work_struct *work) 4569 { 4570 struct mem_cgroup_event *event = 4571 container_of(work, struct mem_cgroup_event, remove); 4572 struct mem_cgroup *memcg = event->memcg; 4573 4574 remove_wait_queue(event->wqh, &event->wait); 4575 4576 event->unregister_event(memcg, event->eventfd); 4577 4578 /* Notify userspace the event is going away. */ 4579 eventfd_signal(event->eventfd, 1); 4580 4581 eventfd_ctx_put(event->eventfd); 4582 kfree(event); 4583 css_put(&memcg->css); 4584 } 4585 4586 /* 4587 * Gets called on EPOLLHUP on eventfd when user closes it. 4588 * 4589 * Called with wqh->lock held and interrupts disabled. 4590 */ 4591 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4592 int sync, void *key) 4593 { 4594 struct mem_cgroup_event *event = 4595 container_of(wait, struct mem_cgroup_event, wait); 4596 struct mem_cgroup *memcg = event->memcg; 4597 __poll_t flags = key_to_poll(key); 4598 4599 if (flags & EPOLLHUP) { 4600 /* 4601 * If the event has been detached at cgroup removal, we 4602 * can simply return knowing the other side will cleanup 4603 * for us. 4604 * 4605 * We can't race against event freeing since the other 4606 * side will require wqh->lock via remove_wait_queue(), 4607 * which we hold. 4608 */ 4609 spin_lock(&memcg->event_list_lock); 4610 if (!list_empty(&event->list)) { 4611 list_del_init(&event->list); 4612 /* 4613 * We are in atomic context, but cgroup_event_remove() 4614 * may sleep, so we have to call it in workqueue. 4615 */ 4616 schedule_work(&event->remove); 4617 } 4618 spin_unlock(&memcg->event_list_lock); 4619 } 4620 4621 return 0; 4622 } 4623 4624 static void memcg_event_ptable_queue_proc(struct file *file, 4625 wait_queue_head_t *wqh, poll_table *pt) 4626 { 4627 struct mem_cgroup_event *event = 4628 container_of(pt, struct mem_cgroup_event, pt); 4629 4630 event->wqh = wqh; 4631 add_wait_queue(wqh, &event->wait); 4632 } 4633 4634 /* 4635 * DO NOT USE IN NEW FILES. 4636 * 4637 * Parse input and register new cgroup event handler. 4638 * 4639 * Input must be in format '<event_fd> <control_fd> <args>'. 4640 * Interpretation of args is defined by control file implementation. 4641 */ 4642 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4643 char *buf, size_t nbytes, loff_t off) 4644 { 4645 struct cgroup_subsys_state *css = of_css(of); 4646 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4647 struct mem_cgroup_event *event; 4648 struct cgroup_subsys_state *cfile_css; 4649 unsigned int efd, cfd; 4650 struct fd efile; 4651 struct fd cfile; 4652 const char *name; 4653 char *endp; 4654 int ret; 4655 4656 buf = strstrip(buf); 4657 4658 efd = simple_strtoul(buf, &endp, 10); 4659 if (*endp != ' ') 4660 return -EINVAL; 4661 buf = endp + 1; 4662 4663 cfd = simple_strtoul(buf, &endp, 10); 4664 if ((*endp != ' ') && (*endp != '\0')) 4665 return -EINVAL; 4666 buf = endp + 1; 4667 4668 event = kzalloc(sizeof(*event), GFP_KERNEL); 4669 if (!event) 4670 return -ENOMEM; 4671 4672 event->memcg = memcg; 4673 INIT_LIST_HEAD(&event->list); 4674 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4675 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4676 INIT_WORK(&event->remove, memcg_event_remove); 4677 4678 efile = fdget(efd); 4679 if (!efile.file) { 4680 ret = -EBADF; 4681 goto out_kfree; 4682 } 4683 4684 event->eventfd = eventfd_ctx_fileget(efile.file); 4685 if (IS_ERR(event->eventfd)) { 4686 ret = PTR_ERR(event->eventfd); 4687 goto out_put_efile; 4688 } 4689 4690 cfile = fdget(cfd); 4691 if (!cfile.file) { 4692 ret = -EBADF; 4693 goto out_put_eventfd; 4694 } 4695 4696 /* the process need read permission on control file */ 4697 /* AV: shouldn't we check that it's been opened for read instead? */ 4698 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4699 if (ret < 0) 4700 goto out_put_cfile; 4701 4702 /* 4703 * Determine the event callbacks and set them in @event. This used 4704 * to be done via struct cftype but cgroup core no longer knows 4705 * about these events. The following is crude but the whole thing 4706 * is for compatibility anyway. 4707 * 4708 * DO NOT ADD NEW FILES. 4709 */ 4710 name = cfile.file->f_path.dentry->d_name.name; 4711 4712 if (!strcmp(name, "memory.usage_in_bytes")) { 4713 event->register_event = mem_cgroup_usage_register_event; 4714 event->unregister_event = mem_cgroup_usage_unregister_event; 4715 } else if (!strcmp(name, "memory.oom_control")) { 4716 event->register_event = mem_cgroup_oom_register_event; 4717 event->unregister_event = mem_cgroup_oom_unregister_event; 4718 } else if (!strcmp(name, "memory.pressure_level")) { 4719 event->register_event = vmpressure_register_event; 4720 event->unregister_event = vmpressure_unregister_event; 4721 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4722 event->register_event = memsw_cgroup_usage_register_event; 4723 event->unregister_event = memsw_cgroup_usage_unregister_event; 4724 } else { 4725 ret = -EINVAL; 4726 goto out_put_cfile; 4727 } 4728 4729 /* 4730 * Verify @cfile should belong to @css. Also, remaining events are 4731 * automatically removed on cgroup destruction but the removal is 4732 * asynchronous, so take an extra ref on @css. 4733 */ 4734 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4735 &memory_cgrp_subsys); 4736 ret = -EINVAL; 4737 if (IS_ERR(cfile_css)) 4738 goto out_put_cfile; 4739 if (cfile_css != css) { 4740 css_put(cfile_css); 4741 goto out_put_cfile; 4742 } 4743 4744 ret = event->register_event(memcg, event->eventfd, buf); 4745 if (ret) 4746 goto out_put_css; 4747 4748 vfs_poll(efile.file, &event->pt); 4749 4750 spin_lock(&memcg->event_list_lock); 4751 list_add(&event->list, &memcg->event_list); 4752 spin_unlock(&memcg->event_list_lock); 4753 4754 fdput(cfile); 4755 fdput(efile); 4756 4757 return nbytes; 4758 4759 out_put_css: 4760 css_put(css); 4761 out_put_cfile: 4762 fdput(cfile); 4763 out_put_eventfd: 4764 eventfd_ctx_put(event->eventfd); 4765 out_put_efile: 4766 fdput(efile); 4767 out_kfree: 4768 kfree(event); 4769 4770 return ret; 4771 } 4772 4773 static struct cftype mem_cgroup_legacy_files[] = { 4774 { 4775 .name = "usage_in_bytes", 4776 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4777 .read_u64 = mem_cgroup_read_u64, 4778 }, 4779 { 4780 .name = "max_usage_in_bytes", 4781 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4782 .write = mem_cgroup_reset, 4783 .read_u64 = mem_cgroup_read_u64, 4784 }, 4785 { 4786 .name = "limit_in_bytes", 4787 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4788 .write = mem_cgroup_write, 4789 .read_u64 = mem_cgroup_read_u64, 4790 }, 4791 { 4792 .name = "soft_limit_in_bytes", 4793 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4794 .write = mem_cgroup_write, 4795 .read_u64 = mem_cgroup_read_u64, 4796 }, 4797 { 4798 .name = "failcnt", 4799 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4800 .write = mem_cgroup_reset, 4801 .read_u64 = mem_cgroup_read_u64, 4802 }, 4803 { 4804 .name = "stat", 4805 .seq_show = memcg_stat_show, 4806 }, 4807 { 4808 .name = "force_empty", 4809 .write = mem_cgroup_force_empty_write, 4810 }, 4811 { 4812 .name = "use_hierarchy", 4813 .write_u64 = mem_cgroup_hierarchy_write, 4814 .read_u64 = mem_cgroup_hierarchy_read, 4815 }, 4816 { 4817 .name = "cgroup.event_control", /* XXX: for compat */ 4818 .write = memcg_write_event_control, 4819 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4820 }, 4821 { 4822 .name = "swappiness", 4823 .read_u64 = mem_cgroup_swappiness_read, 4824 .write_u64 = mem_cgroup_swappiness_write, 4825 }, 4826 { 4827 .name = "move_charge_at_immigrate", 4828 .read_u64 = mem_cgroup_move_charge_read, 4829 .write_u64 = mem_cgroup_move_charge_write, 4830 }, 4831 { 4832 .name = "oom_control", 4833 .seq_show = mem_cgroup_oom_control_read, 4834 .write_u64 = mem_cgroup_oom_control_write, 4835 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4836 }, 4837 { 4838 .name = "pressure_level", 4839 }, 4840 #ifdef CONFIG_NUMA 4841 { 4842 .name = "numa_stat", 4843 .seq_show = memcg_numa_stat_show, 4844 }, 4845 #endif 4846 { 4847 .name = "kmem.limit_in_bytes", 4848 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4849 .write = mem_cgroup_write, 4850 .read_u64 = mem_cgroup_read_u64, 4851 }, 4852 { 4853 .name = "kmem.usage_in_bytes", 4854 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4855 .read_u64 = mem_cgroup_read_u64, 4856 }, 4857 { 4858 .name = "kmem.failcnt", 4859 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4860 .write = mem_cgroup_reset, 4861 .read_u64 = mem_cgroup_read_u64, 4862 }, 4863 { 4864 .name = "kmem.max_usage_in_bytes", 4865 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4866 .write = mem_cgroup_reset, 4867 .read_u64 = mem_cgroup_read_u64, 4868 }, 4869 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4870 { 4871 .name = "kmem.slabinfo", 4872 .seq_start = memcg_slab_start, 4873 .seq_next = memcg_slab_next, 4874 .seq_stop = memcg_slab_stop, 4875 .seq_show = memcg_slab_show, 4876 }, 4877 #endif 4878 { 4879 .name = "kmem.tcp.limit_in_bytes", 4880 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4881 .write = mem_cgroup_write, 4882 .read_u64 = mem_cgroup_read_u64, 4883 }, 4884 { 4885 .name = "kmem.tcp.usage_in_bytes", 4886 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4887 .read_u64 = mem_cgroup_read_u64, 4888 }, 4889 { 4890 .name = "kmem.tcp.failcnt", 4891 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4892 .write = mem_cgroup_reset, 4893 .read_u64 = mem_cgroup_read_u64, 4894 }, 4895 { 4896 .name = "kmem.tcp.max_usage_in_bytes", 4897 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4898 .write = mem_cgroup_reset, 4899 .read_u64 = mem_cgroup_read_u64, 4900 }, 4901 { }, /* terminate */ 4902 }; 4903 4904 /* 4905 * Private memory cgroup IDR 4906 * 4907 * Swap-out records and page cache shadow entries need to store memcg 4908 * references in constrained space, so we maintain an ID space that is 4909 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4910 * memory-controlled cgroups to 64k. 4911 * 4912 * However, there usually are many references to the oflline CSS after 4913 * the cgroup has been destroyed, such as page cache or reclaimable 4914 * slab objects, that don't need to hang on to the ID. We want to keep 4915 * those dead CSS from occupying IDs, or we might quickly exhaust the 4916 * relatively small ID space and prevent the creation of new cgroups 4917 * even when there are much fewer than 64k cgroups - possibly none. 4918 * 4919 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4920 * be freed and recycled when it's no longer needed, which is usually 4921 * when the CSS is offlined. 4922 * 4923 * The only exception to that are records of swapped out tmpfs/shmem 4924 * pages that need to be attributed to live ancestors on swapin. But 4925 * those references are manageable from userspace. 4926 */ 4927 4928 static DEFINE_IDR(mem_cgroup_idr); 4929 4930 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4931 { 4932 if (memcg->id.id > 0) { 4933 idr_remove(&mem_cgroup_idr, memcg->id.id); 4934 memcg->id.id = 0; 4935 } 4936 } 4937 4938 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4939 { 4940 refcount_add(n, &memcg->id.ref); 4941 } 4942 4943 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4944 { 4945 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4946 mem_cgroup_id_remove(memcg); 4947 4948 /* Memcg ID pins CSS */ 4949 css_put(&memcg->css); 4950 } 4951 } 4952 4953 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4954 { 4955 mem_cgroup_id_put_many(memcg, 1); 4956 } 4957 4958 /** 4959 * mem_cgroup_from_id - look up a memcg from a memcg id 4960 * @id: the memcg id to look up 4961 * 4962 * Caller must hold rcu_read_lock(). 4963 */ 4964 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4965 { 4966 WARN_ON_ONCE(!rcu_read_lock_held()); 4967 return idr_find(&mem_cgroup_idr, id); 4968 } 4969 4970 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4971 { 4972 struct mem_cgroup_per_node *pn; 4973 int tmp = node; 4974 /* 4975 * This routine is called against possible nodes. 4976 * But it's BUG to call kmalloc() against offline node. 4977 * 4978 * TODO: this routine can waste much memory for nodes which will 4979 * never be onlined. It's better to use memory hotplug callback 4980 * function. 4981 */ 4982 if (!node_state(node, N_NORMAL_MEMORY)) 4983 tmp = -1; 4984 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4985 if (!pn) 4986 return 1; 4987 4988 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4989 if (!pn->lruvec_stat_local) { 4990 kfree(pn); 4991 return 1; 4992 } 4993 4994 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4995 if (!pn->lruvec_stat_cpu) { 4996 free_percpu(pn->lruvec_stat_local); 4997 kfree(pn); 4998 return 1; 4999 } 5000 5001 lruvec_init(&pn->lruvec); 5002 pn->usage_in_excess = 0; 5003 pn->on_tree = false; 5004 pn->memcg = memcg; 5005 5006 memcg->nodeinfo[node] = pn; 5007 return 0; 5008 } 5009 5010 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5011 { 5012 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5013 5014 if (!pn) 5015 return; 5016 5017 free_percpu(pn->lruvec_stat_cpu); 5018 free_percpu(pn->lruvec_stat_local); 5019 kfree(pn); 5020 } 5021 5022 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5023 { 5024 int node; 5025 5026 for_each_node(node) 5027 free_mem_cgroup_per_node_info(memcg, node); 5028 free_percpu(memcg->vmstats_percpu); 5029 free_percpu(memcg->vmstats_local); 5030 kfree(memcg); 5031 } 5032 5033 static void mem_cgroup_free(struct mem_cgroup *memcg) 5034 { 5035 memcg_wb_domain_exit(memcg); 5036 /* 5037 * Flush percpu vmstats and vmevents to guarantee the value correctness 5038 * on parent's and all ancestor levels. 5039 */ 5040 memcg_flush_percpu_vmstats(memcg, false); 5041 memcg_flush_percpu_vmevents(memcg); 5042 __mem_cgroup_free(memcg); 5043 } 5044 5045 static struct mem_cgroup *mem_cgroup_alloc(void) 5046 { 5047 struct mem_cgroup *memcg; 5048 unsigned int size; 5049 int node; 5050 int __maybe_unused i; 5051 5052 size = sizeof(struct mem_cgroup); 5053 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5054 5055 memcg = kzalloc(size, GFP_KERNEL); 5056 if (!memcg) 5057 return NULL; 5058 5059 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5060 1, MEM_CGROUP_ID_MAX, 5061 GFP_KERNEL); 5062 if (memcg->id.id < 0) 5063 goto fail; 5064 5065 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 5066 if (!memcg->vmstats_local) 5067 goto fail; 5068 5069 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 5070 if (!memcg->vmstats_percpu) 5071 goto fail; 5072 5073 for_each_node(node) 5074 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5075 goto fail; 5076 5077 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5078 goto fail; 5079 5080 INIT_WORK(&memcg->high_work, high_work_func); 5081 memcg->last_scanned_node = MAX_NUMNODES; 5082 INIT_LIST_HEAD(&memcg->oom_notify); 5083 mutex_init(&memcg->thresholds_lock); 5084 spin_lock_init(&memcg->move_lock); 5085 vmpressure_init(&memcg->vmpressure); 5086 INIT_LIST_HEAD(&memcg->event_list); 5087 spin_lock_init(&memcg->event_list_lock); 5088 memcg->socket_pressure = jiffies; 5089 #ifdef CONFIG_MEMCG_KMEM 5090 memcg->kmemcg_id = -1; 5091 #endif 5092 #ifdef CONFIG_CGROUP_WRITEBACK 5093 INIT_LIST_HEAD(&memcg->cgwb_list); 5094 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5095 memcg->cgwb_frn[i].done = 5096 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5097 #endif 5098 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5099 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5100 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5101 memcg->deferred_split_queue.split_queue_len = 0; 5102 #endif 5103 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5104 return memcg; 5105 fail: 5106 mem_cgroup_id_remove(memcg); 5107 __mem_cgroup_free(memcg); 5108 return NULL; 5109 } 5110 5111 static struct cgroup_subsys_state * __ref 5112 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5113 { 5114 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5115 struct mem_cgroup *memcg; 5116 long error = -ENOMEM; 5117 5118 memcg = mem_cgroup_alloc(); 5119 if (!memcg) 5120 return ERR_PTR(error); 5121 5122 memcg->high = PAGE_COUNTER_MAX; 5123 memcg->soft_limit = PAGE_COUNTER_MAX; 5124 if (parent) { 5125 memcg->swappiness = mem_cgroup_swappiness(parent); 5126 memcg->oom_kill_disable = parent->oom_kill_disable; 5127 } 5128 if (parent && parent->use_hierarchy) { 5129 memcg->use_hierarchy = true; 5130 page_counter_init(&memcg->memory, &parent->memory); 5131 page_counter_init(&memcg->swap, &parent->swap); 5132 page_counter_init(&memcg->memsw, &parent->memsw); 5133 page_counter_init(&memcg->kmem, &parent->kmem); 5134 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5135 } else { 5136 page_counter_init(&memcg->memory, NULL); 5137 page_counter_init(&memcg->swap, NULL); 5138 page_counter_init(&memcg->memsw, NULL); 5139 page_counter_init(&memcg->kmem, NULL); 5140 page_counter_init(&memcg->tcpmem, NULL); 5141 /* 5142 * Deeper hierachy with use_hierarchy == false doesn't make 5143 * much sense so let cgroup subsystem know about this 5144 * unfortunate state in our controller. 5145 */ 5146 if (parent != root_mem_cgroup) 5147 memory_cgrp_subsys.broken_hierarchy = true; 5148 } 5149 5150 /* The following stuff does not apply to the root */ 5151 if (!parent) { 5152 #ifdef CONFIG_MEMCG_KMEM 5153 INIT_LIST_HEAD(&memcg->kmem_caches); 5154 #endif 5155 root_mem_cgroup = memcg; 5156 return &memcg->css; 5157 } 5158 5159 error = memcg_online_kmem(memcg); 5160 if (error) 5161 goto fail; 5162 5163 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5164 static_branch_inc(&memcg_sockets_enabled_key); 5165 5166 return &memcg->css; 5167 fail: 5168 mem_cgroup_id_remove(memcg); 5169 mem_cgroup_free(memcg); 5170 return ERR_PTR(-ENOMEM); 5171 } 5172 5173 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5174 { 5175 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5176 5177 /* 5178 * A memcg must be visible for memcg_expand_shrinker_maps() 5179 * by the time the maps are allocated. So, we allocate maps 5180 * here, when for_each_mem_cgroup() can't skip it. 5181 */ 5182 if (memcg_alloc_shrinker_maps(memcg)) { 5183 mem_cgroup_id_remove(memcg); 5184 return -ENOMEM; 5185 } 5186 5187 /* Online state pins memcg ID, memcg ID pins CSS */ 5188 refcount_set(&memcg->id.ref, 1); 5189 css_get(css); 5190 return 0; 5191 } 5192 5193 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5194 { 5195 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5196 struct mem_cgroup_event *event, *tmp; 5197 5198 /* 5199 * Unregister events and notify userspace. 5200 * Notify userspace about cgroup removing only after rmdir of cgroup 5201 * directory to avoid race between userspace and kernelspace. 5202 */ 5203 spin_lock(&memcg->event_list_lock); 5204 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5205 list_del_init(&event->list); 5206 schedule_work(&event->remove); 5207 } 5208 spin_unlock(&memcg->event_list_lock); 5209 5210 page_counter_set_min(&memcg->memory, 0); 5211 page_counter_set_low(&memcg->memory, 0); 5212 5213 memcg_offline_kmem(memcg); 5214 wb_memcg_offline(memcg); 5215 5216 drain_all_stock(memcg); 5217 5218 mem_cgroup_id_put(memcg); 5219 } 5220 5221 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5222 { 5223 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5224 5225 invalidate_reclaim_iterators(memcg); 5226 } 5227 5228 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5229 { 5230 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5231 int __maybe_unused i; 5232 5233 #ifdef CONFIG_CGROUP_WRITEBACK 5234 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5235 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5236 #endif 5237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5238 static_branch_dec(&memcg_sockets_enabled_key); 5239 5240 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5241 static_branch_dec(&memcg_sockets_enabled_key); 5242 5243 vmpressure_cleanup(&memcg->vmpressure); 5244 cancel_work_sync(&memcg->high_work); 5245 mem_cgroup_remove_from_trees(memcg); 5246 memcg_free_shrinker_maps(memcg); 5247 memcg_free_kmem(memcg); 5248 mem_cgroup_free(memcg); 5249 } 5250 5251 /** 5252 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5253 * @css: the target css 5254 * 5255 * Reset the states of the mem_cgroup associated with @css. This is 5256 * invoked when the userland requests disabling on the default hierarchy 5257 * but the memcg is pinned through dependency. The memcg should stop 5258 * applying policies and should revert to the vanilla state as it may be 5259 * made visible again. 5260 * 5261 * The current implementation only resets the essential configurations. 5262 * This needs to be expanded to cover all the visible parts. 5263 */ 5264 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5265 { 5266 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5267 5268 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5269 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5270 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5271 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5272 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5273 page_counter_set_min(&memcg->memory, 0); 5274 page_counter_set_low(&memcg->memory, 0); 5275 memcg->high = PAGE_COUNTER_MAX; 5276 memcg->soft_limit = PAGE_COUNTER_MAX; 5277 memcg_wb_domain_size_changed(memcg); 5278 } 5279 5280 #ifdef CONFIG_MMU 5281 /* Handlers for move charge at task migration. */ 5282 static int mem_cgroup_do_precharge(unsigned long count) 5283 { 5284 int ret; 5285 5286 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5287 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5288 if (!ret) { 5289 mc.precharge += count; 5290 return ret; 5291 } 5292 5293 /* Try charges one by one with reclaim, but do not retry */ 5294 while (count--) { 5295 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5296 if (ret) 5297 return ret; 5298 mc.precharge++; 5299 cond_resched(); 5300 } 5301 return 0; 5302 } 5303 5304 union mc_target { 5305 struct page *page; 5306 swp_entry_t ent; 5307 }; 5308 5309 enum mc_target_type { 5310 MC_TARGET_NONE = 0, 5311 MC_TARGET_PAGE, 5312 MC_TARGET_SWAP, 5313 MC_TARGET_DEVICE, 5314 }; 5315 5316 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5317 unsigned long addr, pte_t ptent) 5318 { 5319 struct page *page = vm_normal_page(vma, addr, ptent); 5320 5321 if (!page || !page_mapped(page)) 5322 return NULL; 5323 if (PageAnon(page)) { 5324 if (!(mc.flags & MOVE_ANON)) 5325 return NULL; 5326 } else { 5327 if (!(mc.flags & MOVE_FILE)) 5328 return NULL; 5329 } 5330 if (!get_page_unless_zero(page)) 5331 return NULL; 5332 5333 return page; 5334 } 5335 5336 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5337 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5338 pte_t ptent, swp_entry_t *entry) 5339 { 5340 struct page *page = NULL; 5341 swp_entry_t ent = pte_to_swp_entry(ptent); 5342 5343 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5344 return NULL; 5345 5346 /* 5347 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5348 * a device and because they are not accessible by CPU they are store 5349 * as special swap entry in the CPU page table. 5350 */ 5351 if (is_device_private_entry(ent)) { 5352 page = device_private_entry_to_page(ent); 5353 /* 5354 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5355 * a refcount of 1 when free (unlike normal page) 5356 */ 5357 if (!page_ref_add_unless(page, 1, 1)) 5358 return NULL; 5359 return page; 5360 } 5361 5362 /* 5363 * Because lookup_swap_cache() updates some statistics counter, 5364 * we call find_get_page() with swapper_space directly. 5365 */ 5366 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5367 if (do_memsw_account()) 5368 entry->val = ent.val; 5369 5370 return page; 5371 } 5372 #else 5373 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5374 pte_t ptent, swp_entry_t *entry) 5375 { 5376 return NULL; 5377 } 5378 #endif 5379 5380 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5381 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5382 { 5383 struct page *page = NULL; 5384 struct address_space *mapping; 5385 pgoff_t pgoff; 5386 5387 if (!vma->vm_file) /* anonymous vma */ 5388 return NULL; 5389 if (!(mc.flags & MOVE_FILE)) 5390 return NULL; 5391 5392 mapping = vma->vm_file->f_mapping; 5393 pgoff = linear_page_index(vma, addr); 5394 5395 /* page is moved even if it's not RSS of this task(page-faulted). */ 5396 #ifdef CONFIG_SWAP 5397 /* shmem/tmpfs may report page out on swap: account for that too. */ 5398 if (shmem_mapping(mapping)) { 5399 page = find_get_entry(mapping, pgoff); 5400 if (xa_is_value(page)) { 5401 swp_entry_t swp = radix_to_swp_entry(page); 5402 if (do_memsw_account()) 5403 *entry = swp; 5404 page = find_get_page(swap_address_space(swp), 5405 swp_offset(swp)); 5406 } 5407 } else 5408 page = find_get_page(mapping, pgoff); 5409 #else 5410 page = find_get_page(mapping, pgoff); 5411 #endif 5412 return page; 5413 } 5414 5415 /** 5416 * mem_cgroup_move_account - move account of the page 5417 * @page: the page 5418 * @compound: charge the page as compound or small page 5419 * @from: mem_cgroup which the page is moved from. 5420 * @to: mem_cgroup which the page is moved to. @from != @to. 5421 * 5422 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5423 * 5424 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5425 * from old cgroup. 5426 */ 5427 static int mem_cgroup_move_account(struct page *page, 5428 bool compound, 5429 struct mem_cgroup *from, 5430 struct mem_cgroup *to) 5431 { 5432 struct lruvec *from_vec, *to_vec; 5433 struct pglist_data *pgdat; 5434 unsigned long flags; 5435 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5436 int ret; 5437 bool anon; 5438 5439 VM_BUG_ON(from == to); 5440 VM_BUG_ON_PAGE(PageLRU(page), page); 5441 VM_BUG_ON(compound && !PageTransHuge(page)); 5442 5443 /* 5444 * Prevent mem_cgroup_migrate() from looking at 5445 * page->mem_cgroup of its source page while we change it. 5446 */ 5447 ret = -EBUSY; 5448 if (!trylock_page(page)) 5449 goto out; 5450 5451 ret = -EINVAL; 5452 if (page->mem_cgroup != from) 5453 goto out_unlock; 5454 5455 anon = PageAnon(page); 5456 5457 pgdat = page_pgdat(page); 5458 from_vec = mem_cgroup_lruvec(pgdat, from); 5459 to_vec = mem_cgroup_lruvec(pgdat, to); 5460 5461 spin_lock_irqsave(&from->move_lock, flags); 5462 5463 if (!anon && page_mapped(page)) { 5464 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5465 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5466 } 5467 5468 /* 5469 * move_lock grabbed above and caller set from->moving_account, so 5470 * mod_memcg_page_state will serialize updates to PageDirty. 5471 * So mapping should be stable for dirty pages. 5472 */ 5473 if (!anon && PageDirty(page)) { 5474 struct address_space *mapping = page_mapping(page); 5475 5476 if (mapping_cap_account_dirty(mapping)) { 5477 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5478 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5479 } 5480 } 5481 5482 if (PageWriteback(page)) { 5483 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5484 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5485 } 5486 5487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5488 if (compound && !list_empty(page_deferred_list(page))) { 5489 spin_lock(&from->deferred_split_queue.split_queue_lock); 5490 list_del_init(page_deferred_list(page)); 5491 from->deferred_split_queue.split_queue_len--; 5492 spin_unlock(&from->deferred_split_queue.split_queue_lock); 5493 } 5494 #endif 5495 /* 5496 * It is safe to change page->mem_cgroup here because the page 5497 * is referenced, charged, and isolated - we can't race with 5498 * uncharging, charging, migration, or LRU putback. 5499 */ 5500 5501 /* caller should have done css_get */ 5502 page->mem_cgroup = to; 5503 5504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5505 if (compound && list_empty(page_deferred_list(page))) { 5506 spin_lock(&to->deferred_split_queue.split_queue_lock); 5507 list_add_tail(page_deferred_list(page), 5508 &to->deferred_split_queue.split_queue); 5509 to->deferred_split_queue.split_queue_len++; 5510 spin_unlock(&to->deferred_split_queue.split_queue_lock); 5511 } 5512 #endif 5513 5514 spin_unlock_irqrestore(&from->move_lock, flags); 5515 5516 ret = 0; 5517 5518 local_irq_disable(); 5519 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5520 memcg_check_events(to, page); 5521 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5522 memcg_check_events(from, page); 5523 local_irq_enable(); 5524 out_unlock: 5525 unlock_page(page); 5526 out: 5527 return ret; 5528 } 5529 5530 /** 5531 * get_mctgt_type - get target type of moving charge 5532 * @vma: the vma the pte to be checked belongs 5533 * @addr: the address corresponding to the pte to be checked 5534 * @ptent: the pte to be checked 5535 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5536 * 5537 * Returns 5538 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5539 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5540 * move charge. if @target is not NULL, the page is stored in target->page 5541 * with extra refcnt got(Callers should handle it). 5542 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5543 * target for charge migration. if @target is not NULL, the entry is stored 5544 * in target->ent. 5545 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5546 * (so ZONE_DEVICE page and thus not on the lru). 5547 * For now we such page is charge like a regular page would be as for all 5548 * intent and purposes it is just special memory taking the place of a 5549 * regular page. 5550 * 5551 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5552 * 5553 * Called with pte lock held. 5554 */ 5555 5556 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5557 unsigned long addr, pte_t ptent, union mc_target *target) 5558 { 5559 struct page *page = NULL; 5560 enum mc_target_type ret = MC_TARGET_NONE; 5561 swp_entry_t ent = { .val = 0 }; 5562 5563 if (pte_present(ptent)) 5564 page = mc_handle_present_pte(vma, addr, ptent); 5565 else if (is_swap_pte(ptent)) 5566 page = mc_handle_swap_pte(vma, ptent, &ent); 5567 else if (pte_none(ptent)) 5568 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5569 5570 if (!page && !ent.val) 5571 return ret; 5572 if (page) { 5573 /* 5574 * Do only loose check w/o serialization. 5575 * mem_cgroup_move_account() checks the page is valid or 5576 * not under LRU exclusion. 5577 */ 5578 if (page->mem_cgroup == mc.from) { 5579 ret = MC_TARGET_PAGE; 5580 if (is_device_private_page(page)) 5581 ret = MC_TARGET_DEVICE; 5582 if (target) 5583 target->page = page; 5584 } 5585 if (!ret || !target) 5586 put_page(page); 5587 } 5588 /* 5589 * There is a swap entry and a page doesn't exist or isn't charged. 5590 * But we cannot move a tail-page in a THP. 5591 */ 5592 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5593 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5594 ret = MC_TARGET_SWAP; 5595 if (target) 5596 target->ent = ent; 5597 } 5598 return ret; 5599 } 5600 5601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5602 /* 5603 * We don't consider PMD mapped swapping or file mapped pages because THP does 5604 * not support them for now. 5605 * Caller should make sure that pmd_trans_huge(pmd) is true. 5606 */ 5607 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5608 unsigned long addr, pmd_t pmd, union mc_target *target) 5609 { 5610 struct page *page = NULL; 5611 enum mc_target_type ret = MC_TARGET_NONE; 5612 5613 if (unlikely(is_swap_pmd(pmd))) { 5614 VM_BUG_ON(thp_migration_supported() && 5615 !is_pmd_migration_entry(pmd)); 5616 return ret; 5617 } 5618 page = pmd_page(pmd); 5619 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5620 if (!(mc.flags & MOVE_ANON)) 5621 return ret; 5622 if (page->mem_cgroup == mc.from) { 5623 ret = MC_TARGET_PAGE; 5624 if (target) { 5625 get_page(page); 5626 target->page = page; 5627 } 5628 } 5629 return ret; 5630 } 5631 #else 5632 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5633 unsigned long addr, pmd_t pmd, union mc_target *target) 5634 { 5635 return MC_TARGET_NONE; 5636 } 5637 #endif 5638 5639 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5640 unsigned long addr, unsigned long end, 5641 struct mm_walk *walk) 5642 { 5643 struct vm_area_struct *vma = walk->vma; 5644 pte_t *pte; 5645 spinlock_t *ptl; 5646 5647 ptl = pmd_trans_huge_lock(pmd, vma); 5648 if (ptl) { 5649 /* 5650 * Note their can not be MC_TARGET_DEVICE for now as we do not 5651 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5652 * this might change. 5653 */ 5654 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5655 mc.precharge += HPAGE_PMD_NR; 5656 spin_unlock(ptl); 5657 return 0; 5658 } 5659 5660 if (pmd_trans_unstable(pmd)) 5661 return 0; 5662 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5663 for (; addr != end; pte++, addr += PAGE_SIZE) 5664 if (get_mctgt_type(vma, addr, *pte, NULL)) 5665 mc.precharge++; /* increment precharge temporarily */ 5666 pte_unmap_unlock(pte - 1, ptl); 5667 cond_resched(); 5668 5669 return 0; 5670 } 5671 5672 static const struct mm_walk_ops precharge_walk_ops = { 5673 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5674 }; 5675 5676 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5677 { 5678 unsigned long precharge; 5679 5680 down_read(&mm->mmap_sem); 5681 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5682 up_read(&mm->mmap_sem); 5683 5684 precharge = mc.precharge; 5685 mc.precharge = 0; 5686 5687 return precharge; 5688 } 5689 5690 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5691 { 5692 unsigned long precharge = mem_cgroup_count_precharge(mm); 5693 5694 VM_BUG_ON(mc.moving_task); 5695 mc.moving_task = current; 5696 return mem_cgroup_do_precharge(precharge); 5697 } 5698 5699 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5700 static void __mem_cgroup_clear_mc(void) 5701 { 5702 struct mem_cgroup *from = mc.from; 5703 struct mem_cgroup *to = mc.to; 5704 5705 /* we must uncharge all the leftover precharges from mc.to */ 5706 if (mc.precharge) { 5707 cancel_charge(mc.to, mc.precharge); 5708 mc.precharge = 0; 5709 } 5710 /* 5711 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5712 * we must uncharge here. 5713 */ 5714 if (mc.moved_charge) { 5715 cancel_charge(mc.from, mc.moved_charge); 5716 mc.moved_charge = 0; 5717 } 5718 /* we must fixup refcnts and charges */ 5719 if (mc.moved_swap) { 5720 /* uncharge swap account from the old cgroup */ 5721 if (!mem_cgroup_is_root(mc.from)) 5722 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5723 5724 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5725 5726 /* 5727 * we charged both to->memory and to->memsw, so we 5728 * should uncharge to->memory. 5729 */ 5730 if (!mem_cgroup_is_root(mc.to)) 5731 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5732 5733 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5734 css_put_many(&mc.to->css, mc.moved_swap); 5735 5736 mc.moved_swap = 0; 5737 } 5738 memcg_oom_recover(from); 5739 memcg_oom_recover(to); 5740 wake_up_all(&mc.waitq); 5741 } 5742 5743 static void mem_cgroup_clear_mc(void) 5744 { 5745 struct mm_struct *mm = mc.mm; 5746 5747 /* 5748 * we must clear moving_task before waking up waiters at the end of 5749 * task migration. 5750 */ 5751 mc.moving_task = NULL; 5752 __mem_cgroup_clear_mc(); 5753 spin_lock(&mc.lock); 5754 mc.from = NULL; 5755 mc.to = NULL; 5756 mc.mm = NULL; 5757 spin_unlock(&mc.lock); 5758 5759 mmput(mm); 5760 } 5761 5762 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5763 { 5764 struct cgroup_subsys_state *css; 5765 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5766 struct mem_cgroup *from; 5767 struct task_struct *leader, *p; 5768 struct mm_struct *mm; 5769 unsigned long move_flags; 5770 int ret = 0; 5771 5772 /* charge immigration isn't supported on the default hierarchy */ 5773 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5774 return 0; 5775 5776 /* 5777 * Multi-process migrations only happen on the default hierarchy 5778 * where charge immigration is not used. Perform charge 5779 * immigration if @tset contains a leader and whine if there are 5780 * multiple. 5781 */ 5782 p = NULL; 5783 cgroup_taskset_for_each_leader(leader, css, tset) { 5784 WARN_ON_ONCE(p); 5785 p = leader; 5786 memcg = mem_cgroup_from_css(css); 5787 } 5788 if (!p) 5789 return 0; 5790 5791 /* 5792 * We are now commited to this value whatever it is. Changes in this 5793 * tunable will only affect upcoming migrations, not the current one. 5794 * So we need to save it, and keep it going. 5795 */ 5796 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5797 if (!move_flags) 5798 return 0; 5799 5800 from = mem_cgroup_from_task(p); 5801 5802 VM_BUG_ON(from == memcg); 5803 5804 mm = get_task_mm(p); 5805 if (!mm) 5806 return 0; 5807 /* We move charges only when we move a owner of the mm */ 5808 if (mm->owner == p) { 5809 VM_BUG_ON(mc.from); 5810 VM_BUG_ON(mc.to); 5811 VM_BUG_ON(mc.precharge); 5812 VM_BUG_ON(mc.moved_charge); 5813 VM_BUG_ON(mc.moved_swap); 5814 5815 spin_lock(&mc.lock); 5816 mc.mm = mm; 5817 mc.from = from; 5818 mc.to = memcg; 5819 mc.flags = move_flags; 5820 spin_unlock(&mc.lock); 5821 /* We set mc.moving_task later */ 5822 5823 ret = mem_cgroup_precharge_mc(mm); 5824 if (ret) 5825 mem_cgroup_clear_mc(); 5826 } else { 5827 mmput(mm); 5828 } 5829 return ret; 5830 } 5831 5832 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5833 { 5834 if (mc.to) 5835 mem_cgroup_clear_mc(); 5836 } 5837 5838 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5839 unsigned long addr, unsigned long end, 5840 struct mm_walk *walk) 5841 { 5842 int ret = 0; 5843 struct vm_area_struct *vma = walk->vma; 5844 pte_t *pte; 5845 spinlock_t *ptl; 5846 enum mc_target_type target_type; 5847 union mc_target target; 5848 struct page *page; 5849 5850 ptl = pmd_trans_huge_lock(pmd, vma); 5851 if (ptl) { 5852 if (mc.precharge < HPAGE_PMD_NR) { 5853 spin_unlock(ptl); 5854 return 0; 5855 } 5856 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5857 if (target_type == MC_TARGET_PAGE) { 5858 page = target.page; 5859 if (!isolate_lru_page(page)) { 5860 if (!mem_cgroup_move_account(page, true, 5861 mc.from, mc.to)) { 5862 mc.precharge -= HPAGE_PMD_NR; 5863 mc.moved_charge += HPAGE_PMD_NR; 5864 } 5865 putback_lru_page(page); 5866 } 5867 put_page(page); 5868 } else if (target_type == MC_TARGET_DEVICE) { 5869 page = target.page; 5870 if (!mem_cgroup_move_account(page, true, 5871 mc.from, mc.to)) { 5872 mc.precharge -= HPAGE_PMD_NR; 5873 mc.moved_charge += HPAGE_PMD_NR; 5874 } 5875 put_page(page); 5876 } 5877 spin_unlock(ptl); 5878 return 0; 5879 } 5880 5881 if (pmd_trans_unstable(pmd)) 5882 return 0; 5883 retry: 5884 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5885 for (; addr != end; addr += PAGE_SIZE) { 5886 pte_t ptent = *(pte++); 5887 bool device = false; 5888 swp_entry_t ent; 5889 5890 if (!mc.precharge) 5891 break; 5892 5893 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5894 case MC_TARGET_DEVICE: 5895 device = true; 5896 /* fall through */ 5897 case MC_TARGET_PAGE: 5898 page = target.page; 5899 /* 5900 * We can have a part of the split pmd here. Moving it 5901 * can be done but it would be too convoluted so simply 5902 * ignore such a partial THP and keep it in original 5903 * memcg. There should be somebody mapping the head. 5904 */ 5905 if (PageTransCompound(page)) 5906 goto put; 5907 if (!device && isolate_lru_page(page)) 5908 goto put; 5909 if (!mem_cgroup_move_account(page, false, 5910 mc.from, mc.to)) { 5911 mc.precharge--; 5912 /* we uncharge from mc.from later. */ 5913 mc.moved_charge++; 5914 } 5915 if (!device) 5916 putback_lru_page(page); 5917 put: /* get_mctgt_type() gets the page */ 5918 put_page(page); 5919 break; 5920 case MC_TARGET_SWAP: 5921 ent = target.ent; 5922 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5923 mc.precharge--; 5924 /* we fixup refcnts and charges later. */ 5925 mc.moved_swap++; 5926 } 5927 break; 5928 default: 5929 break; 5930 } 5931 } 5932 pte_unmap_unlock(pte - 1, ptl); 5933 cond_resched(); 5934 5935 if (addr != end) { 5936 /* 5937 * We have consumed all precharges we got in can_attach(). 5938 * We try charge one by one, but don't do any additional 5939 * charges to mc.to if we have failed in charge once in attach() 5940 * phase. 5941 */ 5942 ret = mem_cgroup_do_precharge(1); 5943 if (!ret) 5944 goto retry; 5945 } 5946 5947 return ret; 5948 } 5949 5950 static const struct mm_walk_ops charge_walk_ops = { 5951 .pmd_entry = mem_cgroup_move_charge_pte_range, 5952 }; 5953 5954 static void mem_cgroup_move_charge(void) 5955 { 5956 lru_add_drain_all(); 5957 /* 5958 * Signal lock_page_memcg() to take the memcg's move_lock 5959 * while we're moving its pages to another memcg. Then wait 5960 * for already started RCU-only updates to finish. 5961 */ 5962 atomic_inc(&mc.from->moving_account); 5963 synchronize_rcu(); 5964 retry: 5965 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5966 /* 5967 * Someone who are holding the mmap_sem might be waiting in 5968 * waitq. So we cancel all extra charges, wake up all waiters, 5969 * and retry. Because we cancel precharges, we might not be able 5970 * to move enough charges, but moving charge is a best-effort 5971 * feature anyway, so it wouldn't be a big problem. 5972 */ 5973 __mem_cgroup_clear_mc(); 5974 cond_resched(); 5975 goto retry; 5976 } 5977 /* 5978 * When we have consumed all precharges and failed in doing 5979 * additional charge, the page walk just aborts. 5980 */ 5981 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5982 NULL); 5983 5984 up_read(&mc.mm->mmap_sem); 5985 atomic_dec(&mc.from->moving_account); 5986 } 5987 5988 static void mem_cgroup_move_task(void) 5989 { 5990 if (mc.to) { 5991 mem_cgroup_move_charge(); 5992 mem_cgroup_clear_mc(); 5993 } 5994 } 5995 #else /* !CONFIG_MMU */ 5996 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5997 { 5998 return 0; 5999 } 6000 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6001 { 6002 } 6003 static void mem_cgroup_move_task(void) 6004 { 6005 } 6006 #endif 6007 6008 /* 6009 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6010 * to verify whether we're attached to the default hierarchy on each mount 6011 * attempt. 6012 */ 6013 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6014 { 6015 /* 6016 * use_hierarchy is forced on the default hierarchy. cgroup core 6017 * guarantees that @root doesn't have any children, so turning it 6018 * on for the root memcg is enough. 6019 */ 6020 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6021 root_mem_cgroup->use_hierarchy = true; 6022 else 6023 root_mem_cgroup->use_hierarchy = false; 6024 } 6025 6026 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6027 { 6028 if (value == PAGE_COUNTER_MAX) 6029 seq_puts(m, "max\n"); 6030 else 6031 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6032 6033 return 0; 6034 } 6035 6036 static u64 memory_current_read(struct cgroup_subsys_state *css, 6037 struct cftype *cft) 6038 { 6039 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6040 6041 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6042 } 6043 6044 static int memory_min_show(struct seq_file *m, void *v) 6045 { 6046 return seq_puts_memcg_tunable(m, 6047 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6048 } 6049 6050 static ssize_t memory_min_write(struct kernfs_open_file *of, 6051 char *buf, size_t nbytes, loff_t off) 6052 { 6053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6054 unsigned long min; 6055 int err; 6056 6057 buf = strstrip(buf); 6058 err = page_counter_memparse(buf, "max", &min); 6059 if (err) 6060 return err; 6061 6062 page_counter_set_min(&memcg->memory, min); 6063 6064 return nbytes; 6065 } 6066 6067 static int memory_low_show(struct seq_file *m, void *v) 6068 { 6069 return seq_puts_memcg_tunable(m, 6070 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6071 } 6072 6073 static ssize_t memory_low_write(struct kernfs_open_file *of, 6074 char *buf, size_t nbytes, loff_t off) 6075 { 6076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6077 unsigned long low; 6078 int err; 6079 6080 buf = strstrip(buf); 6081 err = page_counter_memparse(buf, "max", &low); 6082 if (err) 6083 return err; 6084 6085 page_counter_set_low(&memcg->memory, low); 6086 6087 return nbytes; 6088 } 6089 6090 static int memory_high_show(struct seq_file *m, void *v) 6091 { 6092 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 6093 } 6094 6095 static ssize_t memory_high_write(struct kernfs_open_file *of, 6096 char *buf, size_t nbytes, loff_t off) 6097 { 6098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6099 unsigned long nr_pages; 6100 unsigned long high; 6101 int err; 6102 6103 buf = strstrip(buf); 6104 err = page_counter_memparse(buf, "max", &high); 6105 if (err) 6106 return err; 6107 6108 memcg->high = high; 6109 6110 nr_pages = page_counter_read(&memcg->memory); 6111 if (nr_pages > high) 6112 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6113 GFP_KERNEL, true); 6114 6115 memcg_wb_domain_size_changed(memcg); 6116 return nbytes; 6117 } 6118 6119 static int memory_max_show(struct seq_file *m, void *v) 6120 { 6121 return seq_puts_memcg_tunable(m, 6122 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6123 } 6124 6125 static ssize_t memory_max_write(struct kernfs_open_file *of, 6126 char *buf, size_t nbytes, loff_t off) 6127 { 6128 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6129 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6130 bool drained = false; 6131 unsigned long max; 6132 int err; 6133 6134 buf = strstrip(buf); 6135 err = page_counter_memparse(buf, "max", &max); 6136 if (err) 6137 return err; 6138 6139 xchg(&memcg->memory.max, max); 6140 6141 for (;;) { 6142 unsigned long nr_pages = page_counter_read(&memcg->memory); 6143 6144 if (nr_pages <= max) 6145 break; 6146 6147 if (signal_pending(current)) { 6148 err = -EINTR; 6149 break; 6150 } 6151 6152 if (!drained) { 6153 drain_all_stock(memcg); 6154 drained = true; 6155 continue; 6156 } 6157 6158 if (nr_reclaims) { 6159 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6160 GFP_KERNEL, true)) 6161 nr_reclaims--; 6162 continue; 6163 } 6164 6165 memcg_memory_event(memcg, MEMCG_OOM); 6166 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6167 break; 6168 } 6169 6170 memcg_wb_domain_size_changed(memcg); 6171 return nbytes; 6172 } 6173 6174 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6175 { 6176 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6177 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6178 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6179 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6180 seq_printf(m, "oom_kill %lu\n", 6181 atomic_long_read(&events[MEMCG_OOM_KILL])); 6182 } 6183 6184 static int memory_events_show(struct seq_file *m, void *v) 6185 { 6186 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6187 6188 __memory_events_show(m, memcg->memory_events); 6189 return 0; 6190 } 6191 6192 static int memory_events_local_show(struct seq_file *m, void *v) 6193 { 6194 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6195 6196 __memory_events_show(m, memcg->memory_events_local); 6197 return 0; 6198 } 6199 6200 static int memory_stat_show(struct seq_file *m, void *v) 6201 { 6202 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6203 char *buf; 6204 6205 buf = memory_stat_format(memcg); 6206 if (!buf) 6207 return -ENOMEM; 6208 seq_puts(m, buf); 6209 kfree(buf); 6210 return 0; 6211 } 6212 6213 static int memory_oom_group_show(struct seq_file *m, void *v) 6214 { 6215 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6216 6217 seq_printf(m, "%d\n", memcg->oom_group); 6218 6219 return 0; 6220 } 6221 6222 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6223 char *buf, size_t nbytes, loff_t off) 6224 { 6225 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6226 int ret, oom_group; 6227 6228 buf = strstrip(buf); 6229 if (!buf) 6230 return -EINVAL; 6231 6232 ret = kstrtoint(buf, 0, &oom_group); 6233 if (ret) 6234 return ret; 6235 6236 if (oom_group != 0 && oom_group != 1) 6237 return -EINVAL; 6238 6239 memcg->oom_group = oom_group; 6240 6241 return nbytes; 6242 } 6243 6244 static struct cftype memory_files[] = { 6245 { 6246 .name = "current", 6247 .flags = CFTYPE_NOT_ON_ROOT, 6248 .read_u64 = memory_current_read, 6249 }, 6250 { 6251 .name = "min", 6252 .flags = CFTYPE_NOT_ON_ROOT, 6253 .seq_show = memory_min_show, 6254 .write = memory_min_write, 6255 }, 6256 { 6257 .name = "low", 6258 .flags = CFTYPE_NOT_ON_ROOT, 6259 .seq_show = memory_low_show, 6260 .write = memory_low_write, 6261 }, 6262 { 6263 .name = "high", 6264 .flags = CFTYPE_NOT_ON_ROOT, 6265 .seq_show = memory_high_show, 6266 .write = memory_high_write, 6267 }, 6268 { 6269 .name = "max", 6270 .flags = CFTYPE_NOT_ON_ROOT, 6271 .seq_show = memory_max_show, 6272 .write = memory_max_write, 6273 }, 6274 { 6275 .name = "events", 6276 .flags = CFTYPE_NOT_ON_ROOT, 6277 .file_offset = offsetof(struct mem_cgroup, events_file), 6278 .seq_show = memory_events_show, 6279 }, 6280 { 6281 .name = "events.local", 6282 .flags = CFTYPE_NOT_ON_ROOT, 6283 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6284 .seq_show = memory_events_local_show, 6285 }, 6286 { 6287 .name = "stat", 6288 .flags = CFTYPE_NOT_ON_ROOT, 6289 .seq_show = memory_stat_show, 6290 }, 6291 { 6292 .name = "oom.group", 6293 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6294 .seq_show = memory_oom_group_show, 6295 .write = memory_oom_group_write, 6296 }, 6297 { } /* terminate */ 6298 }; 6299 6300 struct cgroup_subsys memory_cgrp_subsys = { 6301 .css_alloc = mem_cgroup_css_alloc, 6302 .css_online = mem_cgroup_css_online, 6303 .css_offline = mem_cgroup_css_offline, 6304 .css_released = mem_cgroup_css_released, 6305 .css_free = mem_cgroup_css_free, 6306 .css_reset = mem_cgroup_css_reset, 6307 .can_attach = mem_cgroup_can_attach, 6308 .cancel_attach = mem_cgroup_cancel_attach, 6309 .post_attach = mem_cgroup_move_task, 6310 .bind = mem_cgroup_bind, 6311 .dfl_cftypes = memory_files, 6312 .legacy_cftypes = mem_cgroup_legacy_files, 6313 .early_init = 0, 6314 }; 6315 6316 /** 6317 * mem_cgroup_protected - check if memory consumption is in the normal range 6318 * @root: the top ancestor of the sub-tree being checked 6319 * @memcg: the memory cgroup to check 6320 * 6321 * WARNING: This function is not stateless! It can only be used as part 6322 * of a top-down tree iteration, not for isolated queries. 6323 * 6324 * Returns one of the following: 6325 * MEMCG_PROT_NONE: cgroup memory is not protected 6326 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6327 * an unprotected supply of reclaimable memory from other cgroups. 6328 * MEMCG_PROT_MIN: cgroup memory is protected 6329 * 6330 * @root is exclusive; it is never protected when looked at directly 6331 * 6332 * To provide a proper hierarchical behavior, effective memory.min/low values 6333 * are used. Below is the description of how effective memory.low is calculated. 6334 * Effective memory.min values is calculated in the same way. 6335 * 6336 * Effective memory.low is always equal or less than the original memory.low. 6337 * If there is no memory.low overcommittment (which is always true for 6338 * top-level memory cgroups), these two values are equal. 6339 * Otherwise, it's a part of parent's effective memory.low, 6340 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6341 * memory.low usages, where memory.low usage is the size of actually 6342 * protected memory. 6343 * 6344 * low_usage 6345 * elow = min( memory.low, parent->elow * ------------------ ), 6346 * siblings_low_usage 6347 * 6348 * | memory.current, if memory.current < memory.low 6349 * low_usage = | 6350 * | 0, otherwise. 6351 * 6352 * 6353 * Such definition of the effective memory.low provides the expected 6354 * hierarchical behavior: parent's memory.low value is limiting 6355 * children, unprotected memory is reclaimed first and cgroups, 6356 * which are not using their guarantee do not affect actual memory 6357 * distribution. 6358 * 6359 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6360 * 6361 * A A/memory.low = 2G, A/memory.current = 6G 6362 * //\\ 6363 * BC DE B/memory.low = 3G B/memory.current = 2G 6364 * C/memory.low = 1G C/memory.current = 2G 6365 * D/memory.low = 0 D/memory.current = 2G 6366 * E/memory.low = 10G E/memory.current = 0 6367 * 6368 * and the memory pressure is applied, the following memory distribution 6369 * is expected (approximately): 6370 * 6371 * A/memory.current = 2G 6372 * 6373 * B/memory.current = 1.3G 6374 * C/memory.current = 0.6G 6375 * D/memory.current = 0 6376 * E/memory.current = 0 6377 * 6378 * These calculations require constant tracking of the actual low usages 6379 * (see propagate_protected_usage()), as well as recursive calculation of 6380 * effective memory.low values. But as we do call mem_cgroup_protected() 6381 * path for each memory cgroup top-down from the reclaim, 6382 * it's possible to optimize this part, and save calculated elow 6383 * for next usage. This part is intentionally racy, but it's ok, 6384 * as memory.low is a best-effort mechanism. 6385 */ 6386 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6387 struct mem_cgroup *memcg) 6388 { 6389 struct mem_cgroup *parent; 6390 unsigned long emin, parent_emin; 6391 unsigned long elow, parent_elow; 6392 unsigned long usage; 6393 6394 if (mem_cgroup_disabled()) 6395 return MEMCG_PROT_NONE; 6396 6397 if (!root) 6398 root = root_mem_cgroup; 6399 if (memcg == root) 6400 return MEMCG_PROT_NONE; 6401 6402 usage = page_counter_read(&memcg->memory); 6403 if (!usage) 6404 return MEMCG_PROT_NONE; 6405 6406 emin = memcg->memory.min; 6407 elow = memcg->memory.low; 6408 6409 parent = parent_mem_cgroup(memcg); 6410 /* No parent means a non-hierarchical mode on v1 memcg */ 6411 if (!parent) 6412 return MEMCG_PROT_NONE; 6413 6414 if (parent == root) 6415 goto exit; 6416 6417 parent_emin = READ_ONCE(parent->memory.emin); 6418 emin = min(emin, parent_emin); 6419 if (emin && parent_emin) { 6420 unsigned long min_usage, siblings_min_usage; 6421 6422 min_usage = min(usage, memcg->memory.min); 6423 siblings_min_usage = atomic_long_read( 6424 &parent->memory.children_min_usage); 6425 6426 if (min_usage && siblings_min_usage) 6427 emin = min(emin, parent_emin * min_usage / 6428 siblings_min_usage); 6429 } 6430 6431 parent_elow = READ_ONCE(parent->memory.elow); 6432 elow = min(elow, parent_elow); 6433 if (elow && parent_elow) { 6434 unsigned long low_usage, siblings_low_usage; 6435 6436 low_usage = min(usage, memcg->memory.low); 6437 siblings_low_usage = atomic_long_read( 6438 &parent->memory.children_low_usage); 6439 6440 if (low_usage && siblings_low_usage) 6441 elow = min(elow, parent_elow * low_usage / 6442 siblings_low_usage); 6443 } 6444 6445 exit: 6446 memcg->memory.emin = emin; 6447 memcg->memory.elow = elow; 6448 6449 if (usage <= emin) 6450 return MEMCG_PROT_MIN; 6451 else if (usage <= elow) 6452 return MEMCG_PROT_LOW; 6453 else 6454 return MEMCG_PROT_NONE; 6455 } 6456 6457 /** 6458 * mem_cgroup_try_charge - try charging a page 6459 * @page: page to charge 6460 * @mm: mm context of the victim 6461 * @gfp_mask: reclaim mode 6462 * @memcgp: charged memcg return 6463 * @compound: charge the page as compound or small page 6464 * 6465 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6466 * pages according to @gfp_mask if necessary. 6467 * 6468 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6469 * Otherwise, an error code is returned. 6470 * 6471 * After page->mapping has been set up, the caller must finalize the 6472 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6473 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6474 */ 6475 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6476 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6477 bool compound) 6478 { 6479 struct mem_cgroup *memcg = NULL; 6480 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6481 int ret = 0; 6482 6483 if (mem_cgroup_disabled()) 6484 goto out; 6485 6486 if (PageSwapCache(page)) { 6487 /* 6488 * Every swap fault against a single page tries to charge the 6489 * page, bail as early as possible. shmem_unuse() encounters 6490 * already charged pages, too. The USED bit is protected by 6491 * the page lock, which serializes swap cache removal, which 6492 * in turn serializes uncharging. 6493 */ 6494 VM_BUG_ON_PAGE(!PageLocked(page), page); 6495 if (compound_head(page)->mem_cgroup) 6496 goto out; 6497 6498 if (do_swap_account) { 6499 swp_entry_t ent = { .val = page_private(page), }; 6500 unsigned short id = lookup_swap_cgroup_id(ent); 6501 6502 rcu_read_lock(); 6503 memcg = mem_cgroup_from_id(id); 6504 if (memcg && !css_tryget_online(&memcg->css)) 6505 memcg = NULL; 6506 rcu_read_unlock(); 6507 } 6508 } 6509 6510 if (!memcg) 6511 memcg = get_mem_cgroup_from_mm(mm); 6512 6513 ret = try_charge(memcg, gfp_mask, nr_pages); 6514 6515 css_put(&memcg->css); 6516 out: 6517 *memcgp = memcg; 6518 return ret; 6519 } 6520 6521 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6522 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6523 bool compound) 6524 { 6525 struct mem_cgroup *memcg; 6526 int ret; 6527 6528 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6529 memcg = *memcgp; 6530 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6531 return ret; 6532 } 6533 6534 /** 6535 * mem_cgroup_commit_charge - commit a page charge 6536 * @page: page to charge 6537 * @memcg: memcg to charge the page to 6538 * @lrucare: page might be on LRU already 6539 * @compound: charge the page as compound or small page 6540 * 6541 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6542 * after page->mapping has been set up. This must happen atomically 6543 * as part of the page instantiation, i.e. under the page table lock 6544 * for anonymous pages, under the page lock for page and swap cache. 6545 * 6546 * In addition, the page must not be on the LRU during the commit, to 6547 * prevent racing with task migration. If it might be, use @lrucare. 6548 * 6549 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6550 */ 6551 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6552 bool lrucare, bool compound) 6553 { 6554 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6555 6556 VM_BUG_ON_PAGE(!page->mapping, page); 6557 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6558 6559 if (mem_cgroup_disabled()) 6560 return; 6561 /* 6562 * Swap faults will attempt to charge the same page multiple 6563 * times. But reuse_swap_page() might have removed the page 6564 * from swapcache already, so we can't check PageSwapCache(). 6565 */ 6566 if (!memcg) 6567 return; 6568 6569 commit_charge(page, memcg, lrucare); 6570 6571 local_irq_disable(); 6572 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6573 memcg_check_events(memcg, page); 6574 local_irq_enable(); 6575 6576 if (do_memsw_account() && PageSwapCache(page)) { 6577 swp_entry_t entry = { .val = page_private(page) }; 6578 /* 6579 * The swap entry might not get freed for a long time, 6580 * let's not wait for it. The page already received a 6581 * memory+swap charge, drop the swap entry duplicate. 6582 */ 6583 mem_cgroup_uncharge_swap(entry, nr_pages); 6584 } 6585 } 6586 6587 /** 6588 * mem_cgroup_cancel_charge - cancel a page charge 6589 * @page: page to charge 6590 * @memcg: memcg to charge the page to 6591 * @compound: charge the page as compound or small page 6592 * 6593 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6594 */ 6595 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6596 bool compound) 6597 { 6598 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6599 6600 if (mem_cgroup_disabled()) 6601 return; 6602 /* 6603 * Swap faults will attempt to charge the same page multiple 6604 * times. But reuse_swap_page() might have removed the page 6605 * from swapcache already, so we can't check PageSwapCache(). 6606 */ 6607 if (!memcg) 6608 return; 6609 6610 cancel_charge(memcg, nr_pages); 6611 } 6612 6613 struct uncharge_gather { 6614 struct mem_cgroup *memcg; 6615 unsigned long pgpgout; 6616 unsigned long nr_anon; 6617 unsigned long nr_file; 6618 unsigned long nr_kmem; 6619 unsigned long nr_huge; 6620 unsigned long nr_shmem; 6621 struct page *dummy_page; 6622 }; 6623 6624 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6625 { 6626 memset(ug, 0, sizeof(*ug)); 6627 } 6628 6629 static void uncharge_batch(const struct uncharge_gather *ug) 6630 { 6631 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6632 unsigned long flags; 6633 6634 if (!mem_cgroup_is_root(ug->memcg)) { 6635 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6636 if (do_memsw_account()) 6637 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6638 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6639 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6640 memcg_oom_recover(ug->memcg); 6641 } 6642 6643 local_irq_save(flags); 6644 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6645 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6646 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6647 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6648 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6649 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6650 memcg_check_events(ug->memcg, ug->dummy_page); 6651 local_irq_restore(flags); 6652 6653 if (!mem_cgroup_is_root(ug->memcg)) 6654 css_put_many(&ug->memcg->css, nr_pages); 6655 } 6656 6657 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6658 { 6659 VM_BUG_ON_PAGE(PageLRU(page), page); 6660 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6661 !PageHWPoison(page) , page); 6662 6663 if (!page->mem_cgroup) 6664 return; 6665 6666 /* 6667 * Nobody should be changing or seriously looking at 6668 * page->mem_cgroup at this point, we have fully 6669 * exclusive access to the page. 6670 */ 6671 6672 if (ug->memcg != page->mem_cgroup) { 6673 if (ug->memcg) { 6674 uncharge_batch(ug); 6675 uncharge_gather_clear(ug); 6676 } 6677 ug->memcg = page->mem_cgroup; 6678 } 6679 6680 if (!PageKmemcg(page)) { 6681 unsigned int nr_pages = 1; 6682 6683 if (PageTransHuge(page)) { 6684 nr_pages = compound_nr(page); 6685 ug->nr_huge += nr_pages; 6686 } 6687 if (PageAnon(page)) 6688 ug->nr_anon += nr_pages; 6689 else { 6690 ug->nr_file += nr_pages; 6691 if (PageSwapBacked(page)) 6692 ug->nr_shmem += nr_pages; 6693 } 6694 ug->pgpgout++; 6695 } else { 6696 ug->nr_kmem += compound_nr(page); 6697 __ClearPageKmemcg(page); 6698 } 6699 6700 ug->dummy_page = page; 6701 page->mem_cgroup = NULL; 6702 } 6703 6704 static void uncharge_list(struct list_head *page_list) 6705 { 6706 struct uncharge_gather ug; 6707 struct list_head *next; 6708 6709 uncharge_gather_clear(&ug); 6710 6711 /* 6712 * Note that the list can be a single page->lru; hence the 6713 * do-while loop instead of a simple list_for_each_entry(). 6714 */ 6715 next = page_list->next; 6716 do { 6717 struct page *page; 6718 6719 page = list_entry(next, struct page, lru); 6720 next = page->lru.next; 6721 6722 uncharge_page(page, &ug); 6723 } while (next != page_list); 6724 6725 if (ug.memcg) 6726 uncharge_batch(&ug); 6727 } 6728 6729 /** 6730 * mem_cgroup_uncharge - uncharge a page 6731 * @page: page to uncharge 6732 * 6733 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6734 * mem_cgroup_commit_charge(). 6735 */ 6736 void mem_cgroup_uncharge(struct page *page) 6737 { 6738 struct uncharge_gather ug; 6739 6740 if (mem_cgroup_disabled()) 6741 return; 6742 6743 /* Don't touch page->lru of any random page, pre-check: */ 6744 if (!page->mem_cgroup) 6745 return; 6746 6747 uncharge_gather_clear(&ug); 6748 uncharge_page(page, &ug); 6749 uncharge_batch(&ug); 6750 } 6751 6752 /** 6753 * mem_cgroup_uncharge_list - uncharge a list of page 6754 * @page_list: list of pages to uncharge 6755 * 6756 * Uncharge a list of pages previously charged with 6757 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6758 */ 6759 void mem_cgroup_uncharge_list(struct list_head *page_list) 6760 { 6761 if (mem_cgroup_disabled()) 6762 return; 6763 6764 if (!list_empty(page_list)) 6765 uncharge_list(page_list); 6766 } 6767 6768 /** 6769 * mem_cgroup_migrate - charge a page's replacement 6770 * @oldpage: currently circulating page 6771 * @newpage: replacement page 6772 * 6773 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6774 * be uncharged upon free. 6775 * 6776 * Both pages must be locked, @newpage->mapping must be set up. 6777 */ 6778 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6779 { 6780 struct mem_cgroup *memcg; 6781 unsigned int nr_pages; 6782 bool compound; 6783 unsigned long flags; 6784 6785 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6786 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6787 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6788 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6789 newpage); 6790 6791 if (mem_cgroup_disabled()) 6792 return; 6793 6794 /* Page cache replacement: new page already charged? */ 6795 if (newpage->mem_cgroup) 6796 return; 6797 6798 /* Swapcache readahead pages can get replaced before being charged */ 6799 memcg = oldpage->mem_cgroup; 6800 if (!memcg) 6801 return; 6802 6803 /* Force-charge the new page. The old one will be freed soon */ 6804 compound = PageTransHuge(newpage); 6805 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6806 6807 page_counter_charge(&memcg->memory, nr_pages); 6808 if (do_memsw_account()) 6809 page_counter_charge(&memcg->memsw, nr_pages); 6810 css_get_many(&memcg->css, nr_pages); 6811 6812 commit_charge(newpage, memcg, false); 6813 6814 local_irq_save(flags); 6815 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6816 memcg_check_events(memcg, newpage); 6817 local_irq_restore(flags); 6818 } 6819 6820 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6821 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6822 6823 void mem_cgroup_sk_alloc(struct sock *sk) 6824 { 6825 struct mem_cgroup *memcg; 6826 6827 if (!mem_cgroup_sockets_enabled) 6828 return; 6829 6830 /* 6831 * Socket cloning can throw us here with sk_memcg already 6832 * filled. It won't however, necessarily happen from 6833 * process context. So the test for root memcg given 6834 * the current task's memcg won't help us in this case. 6835 * 6836 * Respecting the original socket's memcg is a better 6837 * decision in this case. 6838 */ 6839 if (sk->sk_memcg) { 6840 css_get(&sk->sk_memcg->css); 6841 return; 6842 } 6843 6844 rcu_read_lock(); 6845 memcg = mem_cgroup_from_task(current); 6846 if (memcg == root_mem_cgroup) 6847 goto out; 6848 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6849 goto out; 6850 if (css_tryget_online(&memcg->css)) 6851 sk->sk_memcg = memcg; 6852 out: 6853 rcu_read_unlock(); 6854 } 6855 6856 void mem_cgroup_sk_free(struct sock *sk) 6857 { 6858 if (sk->sk_memcg) 6859 css_put(&sk->sk_memcg->css); 6860 } 6861 6862 /** 6863 * mem_cgroup_charge_skmem - charge socket memory 6864 * @memcg: memcg to charge 6865 * @nr_pages: number of pages to charge 6866 * 6867 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6868 * @memcg's configured limit, %false if the charge had to be forced. 6869 */ 6870 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6871 { 6872 gfp_t gfp_mask = GFP_KERNEL; 6873 6874 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6875 struct page_counter *fail; 6876 6877 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6878 memcg->tcpmem_pressure = 0; 6879 return true; 6880 } 6881 page_counter_charge(&memcg->tcpmem, nr_pages); 6882 memcg->tcpmem_pressure = 1; 6883 return false; 6884 } 6885 6886 /* Don't block in the packet receive path */ 6887 if (in_softirq()) 6888 gfp_mask = GFP_NOWAIT; 6889 6890 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6891 6892 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6893 return true; 6894 6895 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6896 return false; 6897 } 6898 6899 /** 6900 * mem_cgroup_uncharge_skmem - uncharge socket memory 6901 * @memcg: memcg to uncharge 6902 * @nr_pages: number of pages to uncharge 6903 */ 6904 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6905 { 6906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6907 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6908 return; 6909 } 6910 6911 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6912 6913 refill_stock(memcg, nr_pages); 6914 } 6915 6916 static int __init cgroup_memory(char *s) 6917 { 6918 char *token; 6919 6920 while ((token = strsep(&s, ",")) != NULL) { 6921 if (!*token) 6922 continue; 6923 if (!strcmp(token, "nosocket")) 6924 cgroup_memory_nosocket = true; 6925 if (!strcmp(token, "nokmem")) 6926 cgroup_memory_nokmem = true; 6927 } 6928 return 0; 6929 } 6930 __setup("cgroup.memory=", cgroup_memory); 6931 6932 /* 6933 * subsys_initcall() for memory controller. 6934 * 6935 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6936 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6937 * basically everything that doesn't depend on a specific mem_cgroup structure 6938 * should be initialized from here. 6939 */ 6940 static int __init mem_cgroup_init(void) 6941 { 6942 int cpu, node; 6943 6944 #ifdef CONFIG_MEMCG_KMEM 6945 /* 6946 * Kmem cache creation is mostly done with the slab_mutex held, 6947 * so use a workqueue with limited concurrency to avoid stalling 6948 * all worker threads in case lots of cgroups are created and 6949 * destroyed simultaneously. 6950 */ 6951 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6952 BUG_ON(!memcg_kmem_cache_wq); 6953 #endif 6954 6955 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6956 memcg_hotplug_cpu_dead); 6957 6958 for_each_possible_cpu(cpu) 6959 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6960 drain_local_stock); 6961 6962 for_each_node(node) { 6963 struct mem_cgroup_tree_per_node *rtpn; 6964 6965 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6966 node_online(node) ? node : NUMA_NO_NODE); 6967 6968 rtpn->rb_root = RB_ROOT; 6969 rtpn->rb_rightmost = NULL; 6970 spin_lock_init(&rtpn->lock); 6971 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6972 } 6973 6974 return 0; 6975 } 6976 subsys_initcall(mem_cgroup_init); 6977 6978 #ifdef CONFIG_MEMCG_SWAP 6979 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6980 { 6981 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6982 /* 6983 * The root cgroup cannot be destroyed, so it's refcount must 6984 * always be >= 1. 6985 */ 6986 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6987 VM_BUG_ON(1); 6988 break; 6989 } 6990 memcg = parent_mem_cgroup(memcg); 6991 if (!memcg) 6992 memcg = root_mem_cgroup; 6993 } 6994 return memcg; 6995 } 6996 6997 /** 6998 * mem_cgroup_swapout - transfer a memsw charge to swap 6999 * @page: page whose memsw charge to transfer 7000 * @entry: swap entry to move the charge to 7001 * 7002 * Transfer the memsw charge of @page to @entry. 7003 */ 7004 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7005 { 7006 struct mem_cgroup *memcg, *swap_memcg; 7007 unsigned int nr_entries; 7008 unsigned short oldid; 7009 7010 VM_BUG_ON_PAGE(PageLRU(page), page); 7011 VM_BUG_ON_PAGE(page_count(page), page); 7012 7013 if (!do_memsw_account()) 7014 return; 7015 7016 memcg = page->mem_cgroup; 7017 7018 /* Readahead page, never charged */ 7019 if (!memcg) 7020 return; 7021 7022 /* 7023 * In case the memcg owning these pages has been offlined and doesn't 7024 * have an ID allocated to it anymore, charge the closest online 7025 * ancestor for the swap instead and transfer the memory+swap charge. 7026 */ 7027 swap_memcg = mem_cgroup_id_get_online(memcg); 7028 nr_entries = hpage_nr_pages(page); 7029 /* Get references for the tail pages, too */ 7030 if (nr_entries > 1) 7031 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7032 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7033 nr_entries); 7034 VM_BUG_ON_PAGE(oldid, page); 7035 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7036 7037 page->mem_cgroup = NULL; 7038 7039 if (!mem_cgroup_is_root(memcg)) 7040 page_counter_uncharge(&memcg->memory, nr_entries); 7041 7042 if (memcg != swap_memcg) { 7043 if (!mem_cgroup_is_root(swap_memcg)) 7044 page_counter_charge(&swap_memcg->memsw, nr_entries); 7045 page_counter_uncharge(&memcg->memsw, nr_entries); 7046 } 7047 7048 /* 7049 * Interrupts should be disabled here because the caller holds the 7050 * i_pages lock which is taken with interrupts-off. It is 7051 * important here to have the interrupts disabled because it is the 7052 * only synchronisation we have for updating the per-CPU variables. 7053 */ 7054 VM_BUG_ON(!irqs_disabled()); 7055 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 7056 -nr_entries); 7057 memcg_check_events(memcg, page); 7058 7059 if (!mem_cgroup_is_root(memcg)) 7060 css_put_many(&memcg->css, nr_entries); 7061 } 7062 7063 /** 7064 * mem_cgroup_try_charge_swap - try charging swap space for a page 7065 * @page: page being added to swap 7066 * @entry: swap entry to charge 7067 * 7068 * Try to charge @page's memcg for the swap space at @entry. 7069 * 7070 * Returns 0 on success, -ENOMEM on failure. 7071 */ 7072 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7073 { 7074 unsigned int nr_pages = hpage_nr_pages(page); 7075 struct page_counter *counter; 7076 struct mem_cgroup *memcg; 7077 unsigned short oldid; 7078 7079 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 7080 return 0; 7081 7082 memcg = page->mem_cgroup; 7083 7084 /* Readahead page, never charged */ 7085 if (!memcg) 7086 return 0; 7087 7088 if (!entry.val) { 7089 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7090 return 0; 7091 } 7092 7093 memcg = mem_cgroup_id_get_online(memcg); 7094 7095 if (!mem_cgroup_is_root(memcg) && 7096 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7097 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7098 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7099 mem_cgroup_id_put(memcg); 7100 return -ENOMEM; 7101 } 7102 7103 /* Get references for the tail pages, too */ 7104 if (nr_pages > 1) 7105 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7106 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7107 VM_BUG_ON_PAGE(oldid, page); 7108 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7109 7110 return 0; 7111 } 7112 7113 /** 7114 * mem_cgroup_uncharge_swap - uncharge swap space 7115 * @entry: swap entry to uncharge 7116 * @nr_pages: the amount of swap space to uncharge 7117 */ 7118 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7119 { 7120 struct mem_cgroup *memcg; 7121 unsigned short id; 7122 7123 if (!do_swap_account) 7124 return; 7125 7126 id = swap_cgroup_record(entry, 0, nr_pages); 7127 rcu_read_lock(); 7128 memcg = mem_cgroup_from_id(id); 7129 if (memcg) { 7130 if (!mem_cgroup_is_root(memcg)) { 7131 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7132 page_counter_uncharge(&memcg->swap, nr_pages); 7133 else 7134 page_counter_uncharge(&memcg->memsw, nr_pages); 7135 } 7136 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7137 mem_cgroup_id_put_many(memcg, nr_pages); 7138 } 7139 rcu_read_unlock(); 7140 } 7141 7142 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7143 { 7144 long nr_swap_pages = get_nr_swap_pages(); 7145 7146 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7147 return nr_swap_pages; 7148 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7149 nr_swap_pages = min_t(long, nr_swap_pages, 7150 READ_ONCE(memcg->swap.max) - 7151 page_counter_read(&memcg->swap)); 7152 return nr_swap_pages; 7153 } 7154 7155 bool mem_cgroup_swap_full(struct page *page) 7156 { 7157 struct mem_cgroup *memcg; 7158 7159 VM_BUG_ON_PAGE(!PageLocked(page), page); 7160 7161 if (vm_swap_full()) 7162 return true; 7163 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7164 return false; 7165 7166 memcg = page->mem_cgroup; 7167 if (!memcg) 7168 return false; 7169 7170 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7171 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 7172 return true; 7173 7174 return false; 7175 } 7176 7177 /* for remember boot option*/ 7178 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7179 static int really_do_swap_account __initdata = 1; 7180 #else 7181 static int really_do_swap_account __initdata; 7182 #endif 7183 7184 static int __init enable_swap_account(char *s) 7185 { 7186 if (!strcmp(s, "1")) 7187 really_do_swap_account = 1; 7188 else if (!strcmp(s, "0")) 7189 really_do_swap_account = 0; 7190 return 1; 7191 } 7192 __setup("swapaccount=", enable_swap_account); 7193 7194 static u64 swap_current_read(struct cgroup_subsys_state *css, 7195 struct cftype *cft) 7196 { 7197 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7198 7199 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7200 } 7201 7202 static int swap_max_show(struct seq_file *m, void *v) 7203 { 7204 return seq_puts_memcg_tunable(m, 7205 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7206 } 7207 7208 static ssize_t swap_max_write(struct kernfs_open_file *of, 7209 char *buf, size_t nbytes, loff_t off) 7210 { 7211 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7212 unsigned long max; 7213 int err; 7214 7215 buf = strstrip(buf); 7216 err = page_counter_memparse(buf, "max", &max); 7217 if (err) 7218 return err; 7219 7220 xchg(&memcg->swap.max, max); 7221 7222 return nbytes; 7223 } 7224 7225 static int swap_events_show(struct seq_file *m, void *v) 7226 { 7227 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7228 7229 seq_printf(m, "max %lu\n", 7230 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7231 seq_printf(m, "fail %lu\n", 7232 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7233 7234 return 0; 7235 } 7236 7237 static struct cftype swap_files[] = { 7238 { 7239 .name = "swap.current", 7240 .flags = CFTYPE_NOT_ON_ROOT, 7241 .read_u64 = swap_current_read, 7242 }, 7243 { 7244 .name = "swap.max", 7245 .flags = CFTYPE_NOT_ON_ROOT, 7246 .seq_show = swap_max_show, 7247 .write = swap_max_write, 7248 }, 7249 { 7250 .name = "swap.events", 7251 .flags = CFTYPE_NOT_ON_ROOT, 7252 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7253 .seq_show = swap_events_show, 7254 }, 7255 { } /* terminate */ 7256 }; 7257 7258 static struct cftype memsw_cgroup_files[] = { 7259 { 7260 .name = "memsw.usage_in_bytes", 7261 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7262 .read_u64 = mem_cgroup_read_u64, 7263 }, 7264 { 7265 .name = "memsw.max_usage_in_bytes", 7266 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7267 .write = mem_cgroup_reset, 7268 .read_u64 = mem_cgroup_read_u64, 7269 }, 7270 { 7271 .name = "memsw.limit_in_bytes", 7272 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7273 .write = mem_cgroup_write, 7274 .read_u64 = mem_cgroup_read_u64, 7275 }, 7276 { 7277 .name = "memsw.failcnt", 7278 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7279 .write = mem_cgroup_reset, 7280 .read_u64 = mem_cgroup_read_u64, 7281 }, 7282 { }, /* terminate */ 7283 }; 7284 7285 static int __init mem_cgroup_swap_init(void) 7286 { 7287 if (!mem_cgroup_disabled() && really_do_swap_account) { 7288 do_swap_account = 1; 7289 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7290 swap_files)); 7291 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7292 memsw_cgroup_files)); 7293 } 7294 return 0; 7295 } 7296 subsys_initcall(mem_cgroup_swap_init); 7297 7298 #endif /* CONFIG_MEMCG_SWAP */ 7299