xref: /openbmc/linux/mm/memcontrol.c (revision a44e4f3a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account		0
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char *const mem_cgroup_lru_names[] = {
102 	"inactive_anon",
103 	"active_anon",
104 	"inactive_file",
105 	"active_file",
106 	"unevictable",
107 };
108 
109 #define THRESHOLDS_EVENTS_TARGET 128
110 #define SOFTLIMIT_EVENTS_TARGET 1024
111 #define NUMAINFO_EVENTS_TARGET	1024
112 
113 /*
114  * Cgroups above their limits are maintained in a RB-Tree, independent of
115  * their hierarchy representation
116  */
117 
118 struct mem_cgroup_tree_per_node {
119 	struct rb_root rb_root;
120 	struct rb_node *rb_rightmost;
121 	spinlock_t lock;
122 };
123 
124 struct mem_cgroup_tree {
125 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126 };
127 
128 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129 
130 /* for OOM */
131 struct mem_cgroup_eventfd_list {
132 	struct list_head list;
133 	struct eventfd_ctx *eventfd;
134 };
135 
136 /*
137  * cgroup_event represents events which userspace want to receive.
138  */
139 struct mem_cgroup_event {
140 	/*
141 	 * memcg which the event belongs to.
142 	 */
143 	struct mem_cgroup *memcg;
144 	/*
145 	 * eventfd to signal userspace about the event.
146 	 */
147 	struct eventfd_ctx *eventfd;
148 	/*
149 	 * Each of these stored in a list by the cgroup.
150 	 */
151 	struct list_head list;
152 	/*
153 	 * register_event() callback will be used to add new userspace
154 	 * waiter for changes related to this event.  Use eventfd_signal()
155 	 * on eventfd to send notification to userspace.
156 	 */
157 	int (*register_event)(struct mem_cgroup *memcg,
158 			      struct eventfd_ctx *eventfd, const char *args);
159 	/*
160 	 * unregister_event() callback will be called when userspace closes
161 	 * the eventfd or on cgroup removing.  This callback must be set,
162 	 * if you want provide notification functionality.
163 	 */
164 	void (*unregister_event)(struct mem_cgroup *memcg,
165 				 struct eventfd_ctx *eventfd);
166 	/*
167 	 * All fields below needed to unregister event when
168 	 * userspace closes eventfd.
169 	 */
170 	poll_table pt;
171 	wait_queue_head_t *wqh;
172 	wait_queue_entry_t wait;
173 	struct work_struct remove;
174 };
175 
176 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178 
179 /* Stuffs for move charges at task migration. */
180 /*
181  * Types of charges to be moved.
182  */
183 #define MOVE_ANON	0x1U
184 #define MOVE_FILE	0x2U
185 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
186 
187 /* "mc" and its members are protected by cgroup_mutex */
188 static struct move_charge_struct {
189 	spinlock_t	  lock; /* for from, to */
190 	struct mm_struct  *mm;
191 	struct mem_cgroup *from;
192 	struct mem_cgroup *to;
193 	unsigned long flags;
194 	unsigned long precharge;
195 	unsigned long moved_charge;
196 	unsigned long moved_swap;
197 	struct task_struct *moving_task;	/* a task moving charges */
198 	wait_queue_head_t waitq;		/* a waitq for other context */
199 } mc = {
200 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
201 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202 };
203 
204 /*
205  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206  * limit reclaim to prevent infinite loops, if they ever occur.
207  */
208 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
209 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
210 
211 enum charge_type {
212 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
213 	MEM_CGROUP_CHARGE_TYPE_ANON,
214 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
215 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
216 	NR_CHARGE_TYPE,
217 };
218 
219 /* for encoding cft->private value on file */
220 enum res_type {
221 	_MEM,
222 	_MEMSWAP,
223 	_OOM_TYPE,
224 	_KMEM,
225 	_TCP,
226 };
227 
228 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
229 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
230 #define MEMFILE_ATTR(val)	((val) & 0xffff)
231 /* Used for OOM nofiier */
232 #define OOM_CONTROL		(0)
233 
234 /*
235  * Iteration constructs for visiting all cgroups (under a tree).  If
236  * loops are exited prematurely (break), mem_cgroup_iter_break() must
237  * be used for reference counting.
238  */
239 #define for_each_mem_cgroup_tree(iter, root)		\
240 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
241 	     iter != NULL;				\
242 	     iter = mem_cgroup_iter(root, iter, NULL))
243 
244 #define for_each_mem_cgroup(iter)			\
245 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
246 	     iter != NULL;				\
247 	     iter = mem_cgroup_iter(NULL, iter, NULL))
248 
249 static inline bool should_force_charge(void)
250 {
251 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 		(current->flags & PF_EXITING);
253 }
254 
255 /* Some nice accessors for the vmpressure. */
256 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257 {
258 	if (!memcg)
259 		memcg = root_mem_cgroup;
260 	return &memcg->vmpressure;
261 }
262 
263 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264 {
265 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266 }
267 
268 #ifdef CONFIG_MEMCG_KMEM
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 struct workqueue_struct *memcg_kmem_cache_wq;
321 #endif
322 
323 static int memcg_shrinker_map_size;
324 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325 
326 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327 {
328 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329 }
330 
331 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 					 int size, int old_size)
333 {
334 	struct memcg_shrinker_map *new, *old;
335 	int nid;
336 
337 	lockdep_assert_held(&memcg_shrinker_map_mutex);
338 
339 	for_each_node(nid) {
340 		old = rcu_dereference_protected(
341 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 		/* Not yet online memcg */
343 		if (!old)
344 			return 0;
345 
346 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 		if (!new)
348 			return -ENOMEM;
349 
350 		/* Set all old bits, clear all new bits */
351 		memset(new->map, (int)0xff, old_size);
352 		memset((void *)new->map + old_size, 0, size - old_size);
353 
354 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 	}
357 
358 	return 0;
359 }
360 
361 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362 {
363 	struct mem_cgroup_per_node *pn;
364 	struct memcg_shrinker_map *map;
365 	int nid;
366 
367 	if (mem_cgroup_is_root(memcg))
368 		return;
369 
370 	for_each_node(nid) {
371 		pn = mem_cgroup_nodeinfo(memcg, nid);
372 		map = rcu_dereference_protected(pn->shrinker_map, true);
373 		if (map)
374 			kvfree(map);
375 		rcu_assign_pointer(pn->shrinker_map, NULL);
376 	}
377 }
378 
379 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380 {
381 	struct memcg_shrinker_map *map;
382 	int nid, size, ret = 0;
383 
384 	if (mem_cgroup_is_root(memcg))
385 		return 0;
386 
387 	mutex_lock(&memcg_shrinker_map_mutex);
388 	size = memcg_shrinker_map_size;
389 	for_each_node(nid) {
390 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 		if (!map) {
392 			memcg_free_shrinker_maps(memcg);
393 			ret = -ENOMEM;
394 			break;
395 		}
396 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 	}
398 	mutex_unlock(&memcg_shrinker_map_mutex);
399 
400 	return ret;
401 }
402 
403 int memcg_expand_shrinker_maps(int new_id)
404 {
405 	int size, old_size, ret = 0;
406 	struct mem_cgroup *memcg;
407 
408 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 	old_size = memcg_shrinker_map_size;
410 	if (size <= old_size)
411 		return 0;
412 
413 	mutex_lock(&memcg_shrinker_map_mutex);
414 	if (!root_mem_cgroup)
415 		goto unlock;
416 
417 	for_each_mem_cgroup(memcg) {
418 		if (mem_cgroup_is_root(memcg))
419 			continue;
420 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 		if (ret)
422 			goto unlock;
423 	}
424 unlock:
425 	if (!ret)
426 		memcg_shrinker_map_size = size;
427 	mutex_unlock(&memcg_shrinker_map_mutex);
428 	return ret;
429 }
430 
431 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
432 {
433 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
434 		struct memcg_shrinker_map *map;
435 
436 		rcu_read_lock();
437 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
438 		/* Pairs with smp mb in shrink_slab() */
439 		smp_mb__before_atomic();
440 		set_bit(shrinker_id, map->map);
441 		rcu_read_unlock();
442 	}
443 }
444 
445 /**
446  * mem_cgroup_css_from_page - css of the memcg associated with a page
447  * @page: page of interest
448  *
449  * If memcg is bound to the default hierarchy, css of the memcg associated
450  * with @page is returned.  The returned css remains associated with @page
451  * until it is released.
452  *
453  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
454  * is returned.
455  */
456 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
457 {
458 	struct mem_cgroup *memcg;
459 
460 	memcg = page->mem_cgroup;
461 
462 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
463 		memcg = root_mem_cgroup;
464 
465 	return &memcg->css;
466 }
467 
468 /**
469  * page_cgroup_ino - return inode number of the memcg a page is charged to
470  * @page: the page
471  *
472  * Look up the closest online ancestor of the memory cgroup @page is charged to
473  * and return its inode number or 0 if @page is not charged to any cgroup. It
474  * is safe to call this function without holding a reference to @page.
475  *
476  * Note, this function is inherently racy, because there is nothing to prevent
477  * the cgroup inode from getting torn down and potentially reallocated a moment
478  * after page_cgroup_ino() returns, so it only should be used by callers that
479  * do not care (such as procfs interfaces).
480  */
481 ino_t page_cgroup_ino(struct page *page)
482 {
483 	struct mem_cgroup *memcg;
484 	unsigned long ino = 0;
485 
486 	rcu_read_lock();
487 	if (PageSlab(page) && !PageTail(page))
488 		memcg = memcg_from_slab_page(page);
489 	else
490 		memcg = READ_ONCE(page->mem_cgroup);
491 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 		memcg = parent_mem_cgroup(memcg);
493 	if (memcg)
494 		ino = cgroup_ino(memcg->css.cgroup);
495 	rcu_read_unlock();
496 	return ino;
497 }
498 
499 static struct mem_cgroup_per_node *
500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501 {
502 	int nid = page_to_nid(page);
503 
504 	return memcg->nodeinfo[nid];
505 }
506 
507 static struct mem_cgroup_tree_per_node *
508 soft_limit_tree_node(int nid)
509 {
510 	return soft_limit_tree.rb_tree_per_node[nid];
511 }
512 
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_from_page(struct page *page)
515 {
516 	int nid = page_to_nid(page);
517 
518 	return soft_limit_tree.rb_tree_per_node[nid];
519 }
520 
521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 					 struct mem_cgroup_tree_per_node *mctz,
523 					 unsigned long new_usage_in_excess)
524 {
525 	struct rb_node **p = &mctz->rb_root.rb_node;
526 	struct rb_node *parent = NULL;
527 	struct mem_cgroup_per_node *mz_node;
528 	bool rightmost = true;
529 
530 	if (mz->on_tree)
531 		return;
532 
533 	mz->usage_in_excess = new_usage_in_excess;
534 	if (!mz->usage_in_excess)
535 		return;
536 	while (*p) {
537 		parent = *p;
538 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539 					tree_node);
540 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
541 			p = &(*p)->rb_left;
542 			rightmost = false;
543 		}
544 
545 		/*
546 		 * We can't avoid mem cgroups that are over their soft
547 		 * limit by the same amount
548 		 */
549 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 			p = &(*p)->rb_right;
551 	}
552 
553 	if (rightmost)
554 		mctz->rb_rightmost = &mz->tree_node;
555 
556 	rb_link_node(&mz->tree_node, parent, p);
557 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 	mz->on_tree = true;
559 }
560 
561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 					 struct mem_cgroup_tree_per_node *mctz)
563 {
564 	if (!mz->on_tree)
565 		return;
566 
567 	if (&mz->tree_node == mctz->rb_rightmost)
568 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
569 
570 	rb_erase(&mz->tree_node, &mctz->rb_root);
571 	mz->on_tree = false;
572 }
573 
574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 				       struct mem_cgroup_tree_per_node *mctz)
576 {
577 	unsigned long flags;
578 
579 	spin_lock_irqsave(&mctz->lock, flags);
580 	__mem_cgroup_remove_exceeded(mz, mctz);
581 	spin_unlock_irqrestore(&mctz->lock, flags);
582 }
583 
584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585 {
586 	unsigned long nr_pages = page_counter_read(&memcg->memory);
587 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 	unsigned long excess = 0;
589 
590 	if (nr_pages > soft_limit)
591 		excess = nr_pages - soft_limit;
592 
593 	return excess;
594 }
595 
596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597 {
598 	unsigned long excess;
599 	struct mem_cgroup_per_node *mz;
600 	struct mem_cgroup_tree_per_node *mctz;
601 
602 	mctz = soft_limit_tree_from_page(page);
603 	if (!mctz)
604 		return;
605 	/*
606 	 * Necessary to update all ancestors when hierarchy is used.
607 	 * because their event counter is not touched.
608 	 */
609 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 		mz = mem_cgroup_page_nodeinfo(memcg, page);
611 		excess = soft_limit_excess(memcg);
612 		/*
613 		 * We have to update the tree if mz is on RB-tree or
614 		 * mem is over its softlimit.
615 		 */
616 		if (excess || mz->on_tree) {
617 			unsigned long flags;
618 
619 			spin_lock_irqsave(&mctz->lock, flags);
620 			/* if on-tree, remove it */
621 			if (mz->on_tree)
622 				__mem_cgroup_remove_exceeded(mz, mctz);
623 			/*
624 			 * Insert again. mz->usage_in_excess will be updated.
625 			 * If excess is 0, no tree ops.
626 			 */
627 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
628 			spin_unlock_irqrestore(&mctz->lock, flags);
629 		}
630 	}
631 }
632 
633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634 {
635 	struct mem_cgroup_tree_per_node *mctz;
636 	struct mem_cgroup_per_node *mz;
637 	int nid;
638 
639 	for_each_node(nid) {
640 		mz = mem_cgroup_nodeinfo(memcg, nid);
641 		mctz = soft_limit_tree_node(nid);
642 		if (mctz)
643 			mem_cgroup_remove_exceeded(mz, mctz);
644 	}
645 }
646 
647 static struct mem_cgroup_per_node *
648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649 {
650 	struct mem_cgroup_per_node *mz;
651 
652 retry:
653 	mz = NULL;
654 	if (!mctz->rb_rightmost)
655 		goto done;		/* Nothing to reclaim from */
656 
657 	mz = rb_entry(mctz->rb_rightmost,
658 		      struct mem_cgroup_per_node, tree_node);
659 	/*
660 	 * Remove the node now but someone else can add it back,
661 	 * we will to add it back at the end of reclaim to its correct
662 	 * position in the tree.
663 	 */
664 	__mem_cgroup_remove_exceeded(mz, mctz);
665 	if (!soft_limit_excess(mz->memcg) ||
666 	    !css_tryget_online(&mz->memcg->css))
667 		goto retry;
668 done:
669 	return mz;
670 }
671 
672 static struct mem_cgroup_per_node *
673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674 {
675 	struct mem_cgroup_per_node *mz;
676 
677 	spin_lock_irq(&mctz->lock);
678 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 	spin_unlock_irq(&mctz->lock);
680 	return mz;
681 }
682 
683 /**
684  * __mod_memcg_state - update cgroup memory statistics
685  * @memcg: the memory cgroup
686  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
687  * @val: delta to add to the counter, can be negative
688  */
689 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
690 {
691 	long x;
692 
693 	if (mem_cgroup_disabled())
694 		return;
695 
696 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
698 		struct mem_cgroup *mi;
699 
700 		/*
701 		 * Batch local counters to keep them in sync with
702 		 * the hierarchical ones.
703 		 */
704 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
705 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
706 			atomic_long_add(x, &mi->vmstats[idx]);
707 		x = 0;
708 	}
709 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
710 }
711 
712 static struct mem_cgroup_per_node *
713 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
714 {
715 	struct mem_cgroup *parent;
716 
717 	parent = parent_mem_cgroup(pn->memcg);
718 	if (!parent)
719 		return NULL;
720 	return mem_cgroup_nodeinfo(parent, nid);
721 }
722 
723 /**
724  * __mod_lruvec_state - update lruvec memory statistics
725  * @lruvec: the lruvec
726  * @idx: the stat item
727  * @val: delta to add to the counter, can be negative
728  *
729  * The lruvec is the intersection of the NUMA node and a cgroup. This
730  * function updates the all three counters that are affected by a
731  * change of state at this level: per-node, per-cgroup, per-lruvec.
732  */
733 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
734 			int val)
735 {
736 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
737 	struct mem_cgroup_per_node *pn;
738 	struct mem_cgroup *memcg;
739 	long x;
740 
741 	/* Update node */
742 	__mod_node_page_state(pgdat, idx, val);
743 
744 	if (mem_cgroup_disabled())
745 		return;
746 
747 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
748 	memcg = pn->memcg;
749 
750 	/* Update memcg */
751 	__mod_memcg_state(memcg, idx, val);
752 
753 	/* Update lruvec */
754 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
755 
756 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
757 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
758 		struct mem_cgroup_per_node *pi;
759 
760 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
761 			atomic_long_add(x, &pi->lruvec_stat[idx]);
762 		x = 0;
763 	}
764 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
765 }
766 
767 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
768 {
769 	struct page *page = virt_to_head_page(p);
770 	pg_data_t *pgdat = page_pgdat(page);
771 	struct mem_cgroup *memcg;
772 	struct lruvec *lruvec;
773 
774 	rcu_read_lock();
775 	memcg = memcg_from_slab_page(page);
776 
777 	/* Untracked pages have no memcg, no lruvec. Update only the node */
778 	if (!memcg || memcg == root_mem_cgroup) {
779 		__mod_node_page_state(pgdat, idx, val);
780 	} else {
781 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
782 		__mod_lruvec_state(lruvec, idx, val);
783 	}
784 	rcu_read_unlock();
785 }
786 
787 /**
788  * __count_memcg_events - account VM events in a cgroup
789  * @memcg: the memory cgroup
790  * @idx: the event item
791  * @count: the number of events that occured
792  */
793 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
794 			  unsigned long count)
795 {
796 	unsigned long x;
797 
798 	if (mem_cgroup_disabled())
799 		return;
800 
801 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
802 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
803 		struct mem_cgroup *mi;
804 
805 		/*
806 		 * Batch local counters to keep them in sync with
807 		 * the hierarchical ones.
808 		 */
809 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
810 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
811 			atomic_long_add(x, &mi->vmevents[idx]);
812 		x = 0;
813 	}
814 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
815 }
816 
817 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
818 {
819 	return atomic_long_read(&memcg->vmevents[event]);
820 }
821 
822 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
823 {
824 	long x = 0;
825 	int cpu;
826 
827 	for_each_possible_cpu(cpu)
828 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
829 	return x;
830 }
831 
832 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
833 					 struct page *page,
834 					 bool compound, int nr_pages)
835 {
836 	/*
837 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
838 	 * counted as CACHE even if it's on ANON LRU.
839 	 */
840 	if (PageAnon(page))
841 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
842 	else {
843 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
844 		if (PageSwapBacked(page))
845 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
846 	}
847 
848 	if (compound) {
849 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
850 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
851 	}
852 
853 	/* pagein of a big page is an event. So, ignore page size */
854 	if (nr_pages > 0)
855 		__count_memcg_events(memcg, PGPGIN, 1);
856 	else {
857 		__count_memcg_events(memcg, PGPGOUT, 1);
858 		nr_pages = -nr_pages; /* for event */
859 	}
860 
861 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
862 }
863 
864 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
865 				       enum mem_cgroup_events_target target)
866 {
867 	unsigned long val, next;
868 
869 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
870 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
871 	/* from time_after() in jiffies.h */
872 	if ((long)(next - val) < 0) {
873 		switch (target) {
874 		case MEM_CGROUP_TARGET_THRESH:
875 			next = val + THRESHOLDS_EVENTS_TARGET;
876 			break;
877 		case MEM_CGROUP_TARGET_SOFTLIMIT:
878 			next = val + SOFTLIMIT_EVENTS_TARGET;
879 			break;
880 		case MEM_CGROUP_TARGET_NUMAINFO:
881 			next = val + NUMAINFO_EVENTS_TARGET;
882 			break;
883 		default:
884 			break;
885 		}
886 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887 		return true;
888 	}
889 	return false;
890 }
891 
892 /*
893  * Check events in order.
894  *
895  */
896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 {
898 	/* threshold event is triggered in finer grain than soft limit */
899 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 						MEM_CGROUP_TARGET_THRESH))) {
901 		bool do_softlimit;
902 		bool do_numainfo __maybe_unused;
903 
904 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 						MEM_CGROUP_TARGET_SOFTLIMIT);
906 #if MAX_NUMNODES > 1
907 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
908 						MEM_CGROUP_TARGET_NUMAINFO);
909 #endif
910 		mem_cgroup_threshold(memcg);
911 		if (unlikely(do_softlimit))
912 			mem_cgroup_update_tree(memcg, page);
913 #if MAX_NUMNODES > 1
914 		if (unlikely(do_numainfo))
915 			atomic_inc(&memcg->numainfo_events);
916 #endif
917 	}
918 }
919 
920 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
921 {
922 	/*
923 	 * mm_update_next_owner() may clear mm->owner to NULL
924 	 * if it races with swapoff, page migration, etc.
925 	 * So this can be called with p == NULL.
926 	 */
927 	if (unlikely(!p))
928 		return NULL;
929 
930 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
931 }
932 EXPORT_SYMBOL(mem_cgroup_from_task);
933 
934 /**
935  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
936  * @mm: mm from which memcg should be extracted. It can be NULL.
937  *
938  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
939  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
940  * returned.
941  */
942 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
943 {
944 	struct mem_cgroup *memcg;
945 
946 	if (mem_cgroup_disabled())
947 		return NULL;
948 
949 	rcu_read_lock();
950 	do {
951 		/*
952 		 * Page cache insertions can happen withou an
953 		 * actual mm context, e.g. during disk probing
954 		 * on boot, loopback IO, acct() writes etc.
955 		 */
956 		if (unlikely(!mm))
957 			memcg = root_mem_cgroup;
958 		else {
959 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
960 			if (unlikely(!memcg))
961 				memcg = root_mem_cgroup;
962 		}
963 	} while (!css_tryget_online(&memcg->css));
964 	rcu_read_unlock();
965 	return memcg;
966 }
967 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968 
969 /**
970  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
971  * @page: page from which memcg should be extracted.
972  *
973  * Obtain a reference on page->memcg and returns it if successful. Otherwise
974  * root_mem_cgroup is returned.
975  */
976 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
977 {
978 	struct mem_cgroup *memcg = page->mem_cgroup;
979 
980 	if (mem_cgroup_disabled())
981 		return NULL;
982 
983 	rcu_read_lock();
984 	if (!memcg || !css_tryget_online(&memcg->css))
985 		memcg = root_mem_cgroup;
986 	rcu_read_unlock();
987 	return memcg;
988 }
989 EXPORT_SYMBOL(get_mem_cgroup_from_page);
990 
991 /**
992  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
993  */
994 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
995 {
996 	if (unlikely(current->active_memcg)) {
997 		struct mem_cgroup *memcg = root_mem_cgroup;
998 
999 		rcu_read_lock();
1000 		if (css_tryget_online(&current->active_memcg->css))
1001 			memcg = current->active_memcg;
1002 		rcu_read_unlock();
1003 		return memcg;
1004 	}
1005 	return get_mem_cgroup_from_mm(current->mm);
1006 }
1007 
1008 /**
1009  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010  * @root: hierarchy root
1011  * @prev: previously returned memcg, NULL on first invocation
1012  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013  *
1014  * Returns references to children of the hierarchy below @root, or
1015  * @root itself, or %NULL after a full round-trip.
1016  *
1017  * Caller must pass the return value in @prev on subsequent
1018  * invocations for reference counting, or use mem_cgroup_iter_break()
1019  * to cancel a hierarchy walk before the round-trip is complete.
1020  *
1021  * Reclaimers can specify a node and a priority level in @reclaim to
1022  * divide up the memcgs in the hierarchy among all concurrent
1023  * reclaimers operating on the same node and priority.
1024  */
1025 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1026 				   struct mem_cgroup *prev,
1027 				   struct mem_cgroup_reclaim_cookie *reclaim)
1028 {
1029 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1030 	struct cgroup_subsys_state *css = NULL;
1031 	struct mem_cgroup *memcg = NULL;
1032 	struct mem_cgroup *pos = NULL;
1033 
1034 	if (mem_cgroup_disabled())
1035 		return NULL;
1036 
1037 	if (!root)
1038 		root = root_mem_cgroup;
1039 
1040 	if (prev && !reclaim)
1041 		pos = prev;
1042 
1043 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1044 		if (prev)
1045 			goto out;
1046 		return root;
1047 	}
1048 
1049 	rcu_read_lock();
1050 
1051 	if (reclaim) {
1052 		struct mem_cgroup_per_node *mz;
1053 
1054 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1055 		iter = &mz->iter[reclaim->priority];
1056 
1057 		if (prev && reclaim->generation != iter->generation)
1058 			goto out_unlock;
1059 
1060 		while (1) {
1061 			pos = READ_ONCE(iter->position);
1062 			if (!pos || css_tryget(&pos->css))
1063 				break;
1064 			/*
1065 			 * css reference reached zero, so iter->position will
1066 			 * be cleared by ->css_released. However, we should not
1067 			 * rely on this happening soon, because ->css_released
1068 			 * is called from a work queue, and by busy-waiting we
1069 			 * might block it. So we clear iter->position right
1070 			 * away.
1071 			 */
1072 			(void)cmpxchg(&iter->position, pos, NULL);
1073 		}
1074 	}
1075 
1076 	if (pos)
1077 		css = &pos->css;
1078 
1079 	for (;;) {
1080 		css = css_next_descendant_pre(css, &root->css);
1081 		if (!css) {
1082 			/*
1083 			 * Reclaimers share the hierarchy walk, and a
1084 			 * new one might jump in right at the end of
1085 			 * the hierarchy - make sure they see at least
1086 			 * one group and restart from the beginning.
1087 			 */
1088 			if (!prev)
1089 				continue;
1090 			break;
1091 		}
1092 
1093 		/*
1094 		 * Verify the css and acquire a reference.  The root
1095 		 * is provided by the caller, so we know it's alive
1096 		 * and kicking, and don't take an extra reference.
1097 		 */
1098 		memcg = mem_cgroup_from_css(css);
1099 
1100 		if (css == &root->css)
1101 			break;
1102 
1103 		if (css_tryget(css))
1104 			break;
1105 
1106 		memcg = NULL;
1107 	}
1108 
1109 	if (reclaim) {
1110 		/*
1111 		 * The position could have already been updated by a competing
1112 		 * thread, so check that the value hasn't changed since we read
1113 		 * it to avoid reclaiming from the same cgroup twice.
1114 		 */
1115 		(void)cmpxchg(&iter->position, pos, memcg);
1116 
1117 		if (pos)
1118 			css_put(&pos->css);
1119 
1120 		if (!memcg)
1121 			iter->generation++;
1122 		else if (!prev)
1123 			reclaim->generation = iter->generation;
1124 	}
1125 
1126 out_unlock:
1127 	rcu_read_unlock();
1128 out:
1129 	if (prev && prev != root)
1130 		css_put(&prev->css);
1131 
1132 	return memcg;
1133 }
1134 
1135 /**
1136  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137  * @root: hierarchy root
1138  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139  */
1140 void mem_cgroup_iter_break(struct mem_cgroup *root,
1141 			   struct mem_cgroup *prev)
1142 {
1143 	if (!root)
1144 		root = root_mem_cgroup;
1145 	if (prev && prev != root)
1146 		css_put(&prev->css);
1147 }
1148 
1149 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150 					struct mem_cgroup *dead_memcg)
1151 {
1152 	struct mem_cgroup_reclaim_iter *iter;
1153 	struct mem_cgroup_per_node *mz;
1154 	int nid;
1155 	int i;
1156 
1157 	for_each_node(nid) {
1158 		mz = mem_cgroup_nodeinfo(from, nid);
1159 		for (i = 0; i <= DEF_PRIORITY; i++) {
1160 			iter = &mz->iter[i];
1161 			cmpxchg(&iter->position,
1162 				dead_memcg, NULL);
1163 		}
1164 	}
1165 }
1166 
1167 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1168 {
1169 	struct mem_cgroup *memcg = dead_memcg;
1170 	struct mem_cgroup *last;
1171 
1172 	do {
1173 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1174 		last = memcg;
1175 	} while ((memcg = parent_mem_cgroup(memcg)));
1176 
1177 	/*
1178 	 * When cgruop1 non-hierarchy mode is used,
1179 	 * parent_mem_cgroup() does not walk all the way up to the
1180 	 * cgroup root (root_mem_cgroup). So we have to handle
1181 	 * dead_memcg from cgroup root separately.
1182 	 */
1183 	if (last != root_mem_cgroup)
1184 		__invalidate_reclaim_iterators(root_mem_cgroup,
1185 						dead_memcg);
1186 }
1187 
1188 /**
1189  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1190  * @memcg: hierarchy root
1191  * @fn: function to call for each task
1192  * @arg: argument passed to @fn
1193  *
1194  * This function iterates over tasks attached to @memcg or to any of its
1195  * descendants and calls @fn for each task. If @fn returns a non-zero
1196  * value, the function breaks the iteration loop and returns the value.
1197  * Otherwise, it will iterate over all tasks and return 0.
1198  *
1199  * This function must not be called for the root memory cgroup.
1200  */
1201 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1202 			  int (*fn)(struct task_struct *, void *), void *arg)
1203 {
1204 	struct mem_cgroup *iter;
1205 	int ret = 0;
1206 
1207 	BUG_ON(memcg == root_mem_cgroup);
1208 
1209 	for_each_mem_cgroup_tree(iter, memcg) {
1210 		struct css_task_iter it;
1211 		struct task_struct *task;
1212 
1213 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1214 		while (!ret && (task = css_task_iter_next(&it)))
1215 			ret = fn(task, arg);
1216 		css_task_iter_end(&it);
1217 		if (ret) {
1218 			mem_cgroup_iter_break(memcg, iter);
1219 			break;
1220 		}
1221 	}
1222 	return ret;
1223 }
1224 
1225 /**
1226  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1227  * @page: the page
1228  * @pgdat: pgdat of the page
1229  *
1230  * This function is only safe when following the LRU page isolation
1231  * and putback protocol: the LRU lock must be held, and the page must
1232  * either be PageLRU() or the caller must have isolated/allocated it.
1233  */
1234 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1235 {
1236 	struct mem_cgroup_per_node *mz;
1237 	struct mem_cgroup *memcg;
1238 	struct lruvec *lruvec;
1239 
1240 	if (mem_cgroup_disabled()) {
1241 		lruvec = &pgdat->lruvec;
1242 		goto out;
1243 	}
1244 
1245 	memcg = page->mem_cgroup;
1246 	/*
1247 	 * Swapcache readahead pages are added to the LRU - and
1248 	 * possibly migrated - before they are charged.
1249 	 */
1250 	if (!memcg)
1251 		memcg = root_mem_cgroup;
1252 
1253 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1254 	lruvec = &mz->lruvec;
1255 out:
1256 	/*
1257 	 * Since a node can be onlined after the mem_cgroup was created,
1258 	 * we have to be prepared to initialize lruvec->zone here;
1259 	 * and if offlined then reonlined, we need to reinitialize it.
1260 	 */
1261 	if (unlikely(lruvec->pgdat != pgdat))
1262 		lruvec->pgdat = pgdat;
1263 	return lruvec;
1264 }
1265 
1266 /**
1267  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268  * @lruvec: mem_cgroup per zone lru vector
1269  * @lru: index of lru list the page is sitting on
1270  * @zid: zone id of the accounted pages
1271  * @nr_pages: positive when adding or negative when removing
1272  *
1273  * This function must be called under lru_lock, just before a page is added
1274  * to or just after a page is removed from an lru list (that ordering being
1275  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1276  */
1277 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1278 				int zid, int nr_pages)
1279 {
1280 	struct mem_cgroup_per_node *mz;
1281 	unsigned long *lru_size;
1282 	long size;
1283 
1284 	if (mem_cgroup_disabled())
1285 		return;
1286 
1287 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1288 	lru_size = &mz->lru_zone_size[zid][lru];
1289 
1290 	if (nr_pages < 0)
1291 		*lru_size += nr_pages;
1292 
1293 	size = *lru_size;
1294 	if (WARN_ONCE(size < 0,
1295 		"%s(%p, %d, %d): lru_size %ld\n",
1296 		__func__, lruvec, lru, nr_pages, size)) {
1297 		VM_BUG_ON(1);
1298 		*lru_size = 0;
1299 	}
1300 
1301 	if (nr_pages > 0)
1302 		*lru_size += nr_pages;
1303 }
1304 
1305 /**
1306  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1307  * @memcg: the memory cgroup
1308  *
1309  * Returns the maximum amount of memory @mem can be charged with, in
1310  * pages.
1311  */
1312 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1313 {
1314 	unsigned long margin = 0;
1315 	unsigned long count;
1316 	unsigned long limit;
1317 
1318 	count = page_counter_read(&memcg->memory);
1319 	limit = READ_ONCE(memcg->memory.max);
1320 	if (count < limit)
1321 		margin = limit - count;
1322 
1323 	if (do_memsw_account()) {
1324 		count = page_counter_read(&memcg->memsw);
1325 		limit = READ_ONCE(memcg->memsw.max);
1326 		if (count <= limit)
1327 			margin = min(margin, limit - count);
1328 		else
1329 			margin = 0;
1330 	}
1331 
1332 	return margin;
1333 }
1334 
1335 /*
1336  * A routine for checking "mem" is under move_account() or not.
1337  *
1338  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339  * moving cgroups. This is for waiting at high-memory pressure
1340  * caused by "move".
1341  */
1342 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1343 {
1344 	struct mem_cgroup *from;
1345 	struct mem_cgroup *to;
1346 	bool ret = false;
1347 	/*
1348 	 * Unlike task_move routines, we access mc.to, mc.from not under
1349 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350 	 */
1351 	spin_lock(&mc.lock);
1352 	from = mc.from;
1353 	to = mc.to;
1354 	if (!from)
1355 		goto unlock;
1356 
1357 	ret = mem_cgroup_is_descendant(from, memcg) ||
1358 		mem_cgroup_is_descendant(to, memcg);
1359 unlock:
1360 	spin_unlock(&mc.lock);
1361 	return ret;
1362 }
1363 
1364 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1365 {
1366 	if (mc.moving_task && current != mc.moving_task) {
1367 		if (mem_cgroup_under_move(memcg)) {
1368 			DEFINE_WAIT(wait);
1369 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370 			/* moving charge context might have finished. */
1371 			if (mc.moving_task)
1372 				schedule();
1373 			finish_wait(&mc.waitq, &wait);
1374 			return true;
1375 		}
1376 	}
1377 	return false;
1378 }
1379 
1380 static char *memory_stat_format(struct mem_cgroup *memcg)
1381 {
1382 	struct seq_buf s;
1383 	int i;
1384 
1385 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1386 	if (!s.buffer)
1387 		return NULL;
1388 
1389 	/*
1390 	 * Provide statistics on the state of the memory subsystem as
1391 	 * well as cumulative event counters that show past behavior.
1392 	 *
1393 	 * This list is ordered following a combination of these gradients:
1394 	 * 1) generic big picture -> specifics and details
1395 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1396 	 *
1397 	 * Current memory state:
1398 	 */
1399 
1400 	seq_buf_printf(&s, "anon %llu\n",
1401 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1402 		       PAGE_SIZE);
1403 	seq_buf_printf(&s, "file %llu\n",
1404 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1405 		       PAGE_SIZE);
1406 	seq_buf_printf(&s, "kernel_stack %llu\n",
1407 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1408 		       1024);
1409 	seq_buf_printf(&s, "slab %llu\n",
1410 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1411 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1412 		       PAGE_SIZE);
1413 	seq_buf_printf(&s, "sock %llu\n",
1414 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1415 		       PAGE_SIZE);
1416 
1417 	seq_buf_printf(&s, "shmem %llu\n",
1418 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1419 		       PAGE_SIZE);
1420 	seq_buf_printf(&s, "file_mapped %llu\n",
1421 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1422 		       PAGE_SIZE);
1423 	seq_buf_printf(&s, "file_dirty %llu\n",
1424 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1425 		       PAGE_SIZE);
1426 	seq_buf_printf(&s, "file_writeback %llu\n",
1427 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1428 		       PAGE_SIZE);
1429 
1430 	/*
1431 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1432 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1433 	 * arse because it requires migrating the work out of rmap to a place
1434 	 * where the page->mem_cgroup is set up and stable.
1435 	 */
1436 	seq_buf_printf(&s, "anon_thp %llu\n",
1437 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1438 		       PAGE_SIZE);
1439 
1440 	for (i = 0; i < NR_LRU_LISTS; i++)
1441 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1442 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1443 			       PAGE_SIZE);
1444 
1445 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1446 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1447 		       PAGE_SIZE);
1448 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1449 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1450 		       PAGE_SIZE);
1451 
1452 	/* Accumulated memory events */
1453 
1454 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1455 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1456 
1457 	seq_buf_printf(&s, "workingset_refault %lu\n",
1458 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1459 	seq_buf_printf(&s, "workingset_activate %lu\n",
1460 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1461 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1462 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1463 
1464 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1465 	seq_buf_printf(&s, "pgscan %lu\n",
1466 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1467 		       memcg_events(memcg, PGSCAN_DIRECT));
1468 	seq_buf_printf(&s, "pgsteal %lu\n",
1469 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1470 		       memcg_events(memcg, PGSTEAL_DIRECT));
1471 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1472 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1473 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1474 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1475 
1476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477 	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1478 		       memcg_events(memcg, THP_FAULT_ALLOC));
1479 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1480 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482 
1483 	/* The above should easily fit into one page */
1484 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485 
1486 	return s.buffer;
1487 }
1488 
1489 #define K(x) ((x) << (PAGE_SHIFT-10))
1490 /**
1491  * mem_cgroup_print_oom_context: Print OOM information relevant to
1492  * memory controller.
1493  * @memcg: The memory cgroup that went over limit
1494  * @p: Task that is going to be killed
1495  *
1496  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497  * enabled
1498  */
1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500 {
1501 	rcu_read_lock();
1502 
1503 	if (memcg) {
1504 		pr_cont(",oom_memcg=");
1505 		pr_cont_cgroup_path(memcg->css.cgroup);
1506 	} else
1507 		pr_cont(",global_oom");
1508 	if (p) {
1509 		pr_cont(",task_memcg=");
1510 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1511 	}
1512 	rcu_read_unlock();
1513 }
1514 
1515 /**
1516  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517  * memory controller.
1518  * @memcg: The memory cgroup that went over limit
1519  */
1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521 {
1522 	char *buf;
1523 
1524 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 		K((u64)page_counter_read(&memcg->memory)),
1526 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1527 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 			K((u64)page_counter_read(&memcg->swap)),
1530 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1531 	else {
1532 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 			K((u64)page_counter_read(&memcg->memsw)),
1534 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 			K((u64)page_counter_read(&memcg->kmem)),
1537 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538 	}
1539 
1540 	pr_info("Memory cgroup stats for ");
1541 	pr_cont_cgroup_path(memcg->css.cgroup);
1542 	pr_cont(":");
1543 	buf = memory_stat_format(memcg);
1544 	if (!buf)
1545 		return;
1546 	pr_info("%s", buf);
1547 	kfree(buf);
1548 }
1549 
1550 /*
1551  * Return the memory (and swap, if configured) limit for a memcg.
1552  */
1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1554 {
1555 	unsigned long max;
1556 
1557 	max = memcg->memory.max;
1558 	if (mem_cgroup_swappiness(memcg)) {
1559 		unsigned long memsw_max;
1560 		unsigned long swap_max;
1561 
1562 		memsw_max = memcg->memsw.max;
1563 		swap_max = memcg->swap.max;
1564 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565 		max = min(max + swap_max, memsw_max);
1566 	}
1567 	return max;
1568 }
1569 
1570 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1571 {
1572 	return page_counter_read(&memcg->memory);
1573 }
1574 
1575 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1576 				     int order)
1577 {
1578 	struct oom_control oc = {
1579 		.zonelist = NULL,
1580 		.nodemask = NULL,
1581 		.memcg = memcg,
1582 		.gfp_mask = gfp_mask,
1583 		.order = order,
1584 	};
1585 	bool ret;
1586 
1587 	if (mutex_lock_killable(&oom_lock))
1588 		return true;
1589 	/*
1590 	 * A few threads which were not waiting at mutex_lock_killable() can
1591 	 * fail to bail out. Therefore, check again after holding oom_lock.
1592 	 */
1593 	ret = should_force_charge() || out_of_memory(&oc);
1594 	mutex_unlock(&oom_lock);
1595 	return ret;
1596 }
1597 
1598 #if MAX_NUMNODES > 1
1599 
1600 /**
1601  * test_mem_cgroup_node_reclaimable
1602  * @memcg: the target memcg
1603  * @nid: the node ID to be checked.
1604  * @noswap : specify true here if the user wants flle only information.
1605  *
1606  * This function returns whether the specified memcg contains any
1607  * reclaimable pages on a node. Returns true if there are any reclaimable
1608  * pages in the node.
1609  */
1610 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1611 		int nid, bool noswap)
1612 {
1613 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1614 
1615 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1616 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1617 		return true;
1618 	if (noswap || !total_swap_pages)
1619 		return false;
1620 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1621 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1622 		return true;
1623 	return false;
1624 
1625 }
1626 
1627 /*
1628  * Always updating the nodemask is not very good - even if we have an empty
1629  * list or the wrong list here, we can start from some node and traverse all
1630  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1631  *
1632  */
1633 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1634 {
1635 	int nid;
1636 	/*
1637 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638 	 * pagein/pageout changes since the last update.
1639 	 */
1640 	if (!atomic_read(&memcg->numainfo_events))
1641 		return;
1642 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1643 		return;
1644 
1645 	/* make a nodemask where this memcg uses memory from */
1646 	memcg->scan_nodes = node_states[N_MEMORY];
1647 
1648 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1649 
1650 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651 			node_clear(nid, memcg->scan_nodes);
1652 	}
1653 
1654 	atomic_set(&memcg->numainfo_events, 0);
1655 	atomic_set(&memcg->numainfo_updating, 0);
1656 }
1657 
1658 /*
1659  * Selecting a node where we start reclaim from. Because what we need is just
1660  * reducing usage counter, start from anywhere is O,K. Considering
1661  * memory reclaim from current node, there are pros. and cons.
1662  *
1663  * Freeing memory from current node means freeing memory from a node which
1664  * we'll use or we've used. So, it may make LRU bad. And if several threads
1665  * hit limits, it will see a contention on a node. But freeing from remote
1666  * node means more costs for memory reclaim because of memory latency.
1667  *
1668  * Now, we use round-robin. Better algorithm is welcomed.
1669  */
1670 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1671 {
1672 	int node;
1673 
1674 	mem_cgroup_may_update_nodemask(memcg);
1675 	node = memcg->last_scanned_node;
1676 
1677 	node = next_node_in(node, memcg->scan_nodes);
1678 	/*
1679 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1680 	 * last time it really checked all the LRUs due to rate limiting.
1681 	 * Fallback to the current node in that case for simplicity.
1682 	 */
1683 	if (unlikely(node == MAX_NUMNODES))
1684 		node = numa_node_id();
1685 
1686 	memcg->last_scanned_node = node;
1687 	return node;
1688 }
1689 #else
1690 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1691 {
1692 	return 0;
1693 }
1694 #endif
1695 
1696 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1697 				   pg_data_t *pgdat,
1698 				   gfp_t gfp_mask,
1699 				   unsigned long *total_scanned)
1700 {
1701 	struct mem_cgroup *victim = NULL;
1702 	int total = 0;
1703 	int loop = 0;
1704 	unsigned long excess;
1705 	unsigned long nr_scanned;
1706 	struct mem_cgroup_reclaim_cookie reclaim = {
1707 		.pgdat = pgdat,
1708 		.priority = 0,
1709 	};
1710 
1711 	excess = soft_limit_excess(root_memcg);
1712 
1713 	while (1) {
1714 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1715 		if (!victim) {
1716 			loop++;
1717 			if (loop >= 2) {
1718 				/*
1719 				 * If we have not been able to reclaim
1720 				 * anything, it might because there are
1721 				 * no reclaimable pages under this hierarchy
1722 				 */
1723 				if (!total)
1724 					break;
1725 				/*
1726 				 * We want to do more targeted reclaim.
1727 				 * excess >> 2 is not to excessive so as to
1728 				 * reclaim too much, nor too less that we keep
1729 				 * coming back to reclaim from this cgroup
1730 				 */
1731 				if (total >= (excess >> 2) ||
1732 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1733 					break;
1734 			}
1735 			continue;
1736 		}
1737 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1738 					pgdat, &nr_scanned);
1739 		*total_scanned += nr_scanned;
1740 		if (!soft_limit_excess(root_memcg))
1741 			break;
1742 	}
1743 	mem_cgroup_iter_break(root_memcg, victim);
1744 	return total;
1745 }
1746 
1747 #ifdef CONFIG_LOCKDEP
1748 static struct lockdep_map memcg_oom_lock_dep_map = {
1749 	.name = "memcg_oom_lock",
1750 };
1751 #endif
1752 
1753 static DEFINE_SPINLOCK(memcg_oom_lock);
1754 
1755 /*
1756  * Check OOM-Killer is already running under our hierarchy.
1757  * If someone is running, return false.
1758  */
1759 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1760 {
1761 	struct mem_cgroup *iter, *failed = NULL;
1762 
1763 	spin_lock(&memcg_oom_lock);
1764 
1765 	for_each_mem_cgroup_tree(iter, memcg) {
1766 		if (iter->oom_lock) {
1767 			/*
1768 			 * this subtree of our hierarchy is already locked
1769 			 * so we cannot give a lock.
1770 			 */
1771 			failed = iter;
1772 			mem_cgroup_iter_break(memcg, iter);
1773 			break;
1774 		} else
1775 			iter->oom_lock = true;
1776 	}
1777 
1778 	if (failed) {
1779 		/*
1780 		 * OK, we failed to lock the whole subtree so we have
1781 		 * to clean up what we set up to the failing subtree
1782 		 */
1783 		for_each_mem_cgroup_tree(iter, memcg) {
1784 			if (iter == failed) {
1785 				mem_cgroup_iter_break(memcg, iter);
1786 				break;
1787 			}
1788 			iter->oom_lock = false;
1789 		}
1790 	} else
1791 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1792 
1793 	spin_unlock(&memcg_oom_lock);
1794 
1795 	return !failed;
1796 }
1797 
1798 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1799 {
1800 	struct mem_cgroup *iter;
1801 
1802 	spin_lock(&memcg_oom_lock);
1803 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1804 	for_each_mem_cgroup_tree(iter, memcg)
1805 		iter->oom_lock = false;
1806 	spin_unlock(&memcg_oom_lock);
1807 }
1808 
1809 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1810 {
1811 	struct mem_cgroup *iter;
1812 
1813 	spin_lock(&memcg_oom_lock);
1814 	for_each_mem_cgroup_tree(iter, memcg)
1815 		iter->under_oom++;
1816 	spin_unlock(&memcg_oom_lock);
1817 }
1818 
1819 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1820 {
1821 	struct mem_cgroup *iter;
1822 
1823 	/*
1824 	 * When a new child is created while the hierarchy is under oom,
1825 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1826 	 */
1827 	spin_lock(&memcg_oom_lock);
1828 	for_each_mem_cgroup_tree(iter, memcg)
1829 		if (iter->under_oom > 0)
1830 			iter->under_oom--;
1831 	spin_unlock(&memcg_oom_lock);
1832 }
1833 
1834 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1835 
1836 struct oom_wait_info {
1837 	struct mem_cgroup *memcg;
1838 	wait_queue_entry_t	wait;
1839 };
1840 
1841 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1842 	unsigned mode, int sync, void *arg)
1843 {
1844 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1845 	struct mem_cgroup *oom_wait_memcg;
1846 	struct oom_wait_info *oom_wait_info;
1847 
1848 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849 	oom_wait_memcg = oom_wait_info->memcg;
1850 
1851 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1852 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1853 		return 0;
1854 	return autoremove_wake_function(wait, mode, sync, arg);
1855 }
1856 
1857 static void memcg_oom_recover(struct mem_cgroup *memcg)
1858 {
1859 	/*
1860 	 * For the following lockless ->under_oom test, the only required
1861 	 * guarantee is that it must see the state asserted by an OOM when
1862 	 * this function is called as a result of userland actions
1863 	 * triggered by the notification of the OOM.  This is trivially
1864 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1865 	 * triggering notification.
1866 	 */
1867 	if (memcg && memcg->under_oom)
1868 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1869 }
1870 
1871 enum oom_status {
1872 	OOM_SUCCESS,
1873 	OOM_FAILED,
1874 	OOM_ASYNC,
1875 	OOM_SKIPPED
1876 };
1877 
1878 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1879 {
1880 	enum oom_status ret;
1881 	bool locked;
1882 
1883 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1884 		return OOM_SKIPPED;
1885 
1886 	memcg_memory_event(memcg, MEMCG_OOM);
1887 
1888 	/*
1889 	 * We are in the middle of the charge context here, so we
1890 	 * don't want to block when potentially sitting on a callstack
1891 	 * that holds all kinds of filesystem and mm locks.
1892 	 *
1893 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1894 	 * handling until the charge can succeed; remember the context and put
1895 	 * the task to sleep at the end of the page fault when all locks are
1896 	 * released.
1897 	 *
1898 	 * On the other hand, in-kernel OOM killer allows for an async victim
1899 	 * memory reclaim (oom_reaper) and that means that we are not solely
1900 	 * relying on the oom victim to make a forward progress and we can
1901 	 * invoke the oom killer here.
1902 	 *
1903 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1904 	 * victim and then we have to bail out from the charge path.
1905 	 */
1906 	if (memcg->oom_kill_disable) {
1907 		if (!current->in_user_fault)
1908 			return OOM_SKIPPED;
1909 		css_get(&memcg->css);
1910 		current->memcg_in_oom = memcg;
1911 		current->memcg_oom_gfp_mask = mask;
1912 		current->memcg_oom_order = order;
1913 
1914 		return OOM_ASYNC;
1915 	}
1916 
1917 	mem_cgroup_mark_under_oom(memcg);
1918 
1919 	locked = mem_cgroup_oom_trylock(memcg);
1920 
1921 	if (locked)
1922 		mem_cgroup_oom_notify(memcg);
1923 
1924 	mem_cgroup_unmark_under_oom(memcg);
1925 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1926 		ret = OOM_SUCCESS;
1927 	else
1928 		ret = OOM_FAILED;
1929 
1930 	if (locked)
1931 		mem_cgroup_oom_unlock(memcg);
1932 
1933 	return ret;
1934 }
1935 
1936 /**
1937  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1938  * @handle: actually kill/wait or just clean up the OOM state
1939  *
1940  * This has to be called at the end of a page fault if the memcg OOM
1941  * handler was enabled.
1942  *
1943  * Memcg supports userspace OOM handling where failed allocations must
1944  * sleep on a waitqueue until the userspace task resolves the
1945  * situation.  Sleeping directly in the charge context with all kinds
1946  * of locks held is not a good idea, instead we remember an OOM state
1947  * in the task and mem_cgroup_oom_synchronize() has to be called at
1948  * the end of the page fault to complete the OOM handling.
1949  *
1950  * Returns %true if an ongoing memcg OOM situation was detected and
1951  * completed, %false otherwise.
1952  */
1953 bool mem_cgroup_oom_synchronize(bool handle)
1954 {
1955 	struct mem_cgroup *memcg = current->memcg_in_oom;
1956 	struct oom_wait_info owait;
1957 	bool locked;
1958 
1959 	/* OOM is global, do not handle */
1960 	if (!memcg)
1961 		return false;
1962 
1963 	if (!handle)
1964 		goto cleanup;
1965 
1966 	owait.memcg = memcg;
1967 	owait.wait.flags = 0;
1968 	owait.wait.func = memcg_oom_wake_function;
1969 	owait.wait.private = current;
1970 	INIT_LIST_HEAD(&owait.wait.entry);
1971 
1972 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1973 	mem_cgroup_mark_under_oom(memcg);
1974 
1975 	locked = mem_cgroup_oom_trylock(memcg);
1976 
1977 	if (locked)
1978 		mem_cgroup_oom_notify(memcg);
1979 
1980 	if (locked && !memcg->oom_kill_disable) {
1981 		mem_cgroup_unmark_under_oom(memcg);
1982 		finish_wait(&memcg_oom_waitq, &owait.wait);
1983 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1984 					 current->memcg_oom_order);
1985 	} else {
1986 		schedule();
1987 		mem_cgroup_unmark_under_oom(memcg);
1988 		finish_wait(&memcg_oom_waitq, &owait.wait);
1989 	}
1990 
1991 	if (locked) {
1992 		mem_cgroup_oom_unlock(memcg);
1993 		/*
1994 		 * There is no guarantee that an OOM-lock contender
1995 		 * sees the wakeups triggered by the OOM kill
1996 		 * uncharges.  Wake any sleepers explicitely.
1997 		 */
1998 		memcg_oom_recover(memcg);
1999 	}
2000 cleanup:
2001 	current->memcg_in_oom = NULL;
2002 	css_put(&memcg->css);
2003 	return true;
2004 }
2005 
2006 /**
2007  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2008  * @victim: task to be killed by the OOM killer
2009  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2010  *
2011  * Returns a pointer to a memory cgroup, which has to be cleaned up
2012  * by killing all belonging OOM-killable tasks.
2013  *
2014  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2015  */
2016 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2017 					    struct mem_cgroup *oom_domain)
2018 {
2019 	struct mem_cgroup *oom_group = NULL;
2020 	struct mem_cgroup *memcg;
2021 
2022 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2023 		return NULL;
2024 
2025 	if (!oom_domain)
2026 		oom_domain = root_mem_cgroup;
2027 
2028 	rcu_read_lock();
2029 
2030 	memcg = mem_cgroup_from_task(victim);
2031 	if (memcg == root_mem_cgroup)
2032 		goto out;
2033 
2034 	/*
2035 	 * Traverse the memory cgroup hierarchy from the victim task's
2036 	 * cgroup up to the OOMing cgroup (or root) to find the
2037 	 * highest-level memory cgroup with oom.group set.
2038 	 */
2039 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2040 		if (memcg->oom_group)
2041 			oom_group = memcg;
2042 
2043 		if (memcg == oom_domain)
2044 			break;
2045 	}
2046 
2047 	if (oom_group)
2048 		css_get(&oom_group->css);
2049 out:
2050 	rcu_read_unlock();
2051 
2052 	return oom_group;
2053 }
2054 
2055 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2056 {
2057 	pr_info("Tasks in ");
2058 	pr_cont_cgroup_path(memcg->css.cgroup);
2059 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2060 }
2061 
2062 /**
2063  * lock_page_memcg - lock a page->mem_cgroup binding
2064  * @page: the page
2065  *
2066  * This function protects unlocked LRU pages from being moved to
2067  * another cgroup.
2068  *
2069  * It ensures lifetime of the returned memcg. Caller is responsible
2070  * for the lifetime of the page; __unlock_page_memcg() is available
2071  * when @page might get freed inside the locked section.
2072  */
2073 struct mem_cgroup *lock_page_memcg(struct page *page)
2074 {
2075 	struct mem_cgroup *memcg;
2076 	unsigned long flags;
2077 
2078 	/*
2079 	 * The RCU lock is held throughout the transaction.  The fast
2080 	 * path can get away without acquiring the memcg->move_lock
2081 	 * because page moving starts with an RCU grace period.
2082 	 *
2083 	 * The RCU lock also protects the memcg from being freed when
2084 	 * the page state that is going to change is the only thing
2085 	 * preventing the page itself from being freed. E.g. writeback
2086 	 * doesn't hold a page reference and relies on PG_writeback to
2087 	 * keep off truncation, migration and so forth.
2088          */
2089 	rcu_read_lock();
2090 
2091 	if (mem_cgroup_disabled())
2092 		return NULL;
2093 again:
2094 	memcg = page->mem_cgroup;
2095 	if (unlikely(!memcg))
2096 		return NULL;
2097 
2098 	if (atomic_read(&memcg->moving_account) <= 0)
2099 		return memcg;
2100 
2101 	spin_lock_irqsave(&memcg->move_lock, flags);
2102 	if (memcg != page->mem_cgroup) {
2103 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2104 		goto again;
2105 	}
2106 
2107 	/*
2108 	 * When charge migration first begins, we can have locked and
2109 	 * unlocked page stat updates happening concurrently.  Track
2110 	 * the task who has the lock for unlock_page_memcg().
2111 	 */
2112 	memcg->move_lock_task = current;
2113 	memcg->move_lock_flags = flags;
2114 
2115 	return memcg;
2116 }
2117 EXPORT_SYMBOL(lock_page_memcg);
2118 
2119 /**
2120  * __unlock_page_memcg - unlock and unpin a memcg
2121  * @memcg: the memcg
2122  *
2123  * Unlock and unpin a memcg returned by lock_page_memcg().
2124  */
2125 void __unlock_page_memcg(struct mem_cgroup *memcg)
2126 {
2127 	if (memcg && memcg->move_lock_task == current) {
2128 		unsigned long flags = memcg->move_lock_flags;
2129 
2130 		memcg->move_lock_task = NULL;
2131 		memcg->move_lock_flags = 0;
2132 
2133 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2134 	}
2135 
2136 	rcu_read_unlock();
2137 }
2138 
2139 /**
2140  * unlock_page_memcg - unlock a page->mem_cgroup binding
2141  * @page: the page
2142  */
2143 void unlock_page_memcg(struct page *page)
2144 {
2145 	__unlock_page_memcg(page->mem_cgroup);
2146 }
2147 EXPORT_SYMBOL(unlock_page_memcg);
2148 
2149 struct memcg_stock_pcp {
2150 	struct mem_cgroup *cached; /* this never be root cgroup */
2151 	unsigned int nr_pages;
2152 	struct work_struct work;
2153 	unsigned long flags;
2154 #define FLUSHING_CACHED_CHARGE	0
2155 };
2156 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2157 static DEFINE_MUTEX(percpu_charge_mutex);
2158 
2159 /**
2160  * consume_stock: Try to consume stocked charge on this cpu.
2161  * @memcg: memcg to consume from.
2162  * @nr_pages: how many pages to charge.
2163  *
2164  * The charges will only happen if @memcg matches the current cpu's memcg
2165  * stock, and at least @nr_pages are available in that stock.  Failure to
2166  * service an allocation will refill the stock.
2167  *
2168  * returns true if successful, false otherwise.
2169  */
2170 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2171 {
2172 	struct memcg_stock_pcp *stock;
2173 	unsigned long flags;
2174 	bool ret = false;
2175 
2176 	if (nr_pages > MEMCG_CHARGE_BATCH)
2177 		return ret;
2178 
2179 	local_irq_save(flags);
2180 
2181 	stock = this_cpu_ptr(&memcg_stock);
2182 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2183 		stock->nr_pages -= nr_pages;
2184 		ret = true;
2185 	}
2186 
2187 	local_irq_restore(flags);
2188 
2189 	return ret;
2190 }
2191 
2192 /*
2193  * Returns stocks cached in percpu and reset cached information.
2194  */
2195 static void drain_stock(struct memcg_stock_pcp *stock)
2196 {
2197 	struct mem_cgroup *old = stock->cached;
2198 
2199 	if (stock->nr_pages) {
2200 		page_counter_uncharge(&old->memory, stock->nr_pages);
2201 		if (do_memsw_account())
2202 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2203 		css_put_many(&old->css, stock->nr_pages);
2204 		stock->nr_pages = 0;
2205 	}
2206 	stock->cached = NULL;
2207 }
2208 
2209 static void drain_local_stock(struct work_struct *dummy)
2210 {
2211 	struct memcg_stock_pcp *stock;
2212 	unsigned long flags;
2213 
2214 	/*
2215 	 * The only protection from memory hotplug vs. drain_stock races is
2216 	 * that we always operate on local CPU stock here with IRQ disabled
2217 	 */
2218 	local_irq_save(flags);
2219 
2220 	stock = this_cpu_ptr(&memcg_stock);
2221 	drain_stock(stock);
2222 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2223 
2224 	local_irq_restore(flags);
2225 }
2226 
2227 /*
2228  * Cache charges(val) to local per_cpu area.
2229  * This will be consumed by consume_stock() function, later.
2230  */
2231 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2232 {
2233 	struct memcg_stock_pcp *stock;
2234 	unsigned long flags;
2235 
2236 	local_irq_save(flags);
2237 
2238 	stock = this_cpu_ptr(&memcg_stock);
2239 	if (stock->cached != memcg) { /* reset if necessary */
2240 		drain_stock(stock);
2241 		stock->cached = memcg;
2242 	}
2243 	stock->nr_pages += nr_pages;
2244 
2245 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2246 		drain_stock(stock);
2247 
2248 	local_irq_restore(flags);
2249 }
2250 
2251 /*
2252  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2253  * of the hierarchy under it.
2254  */
2255 static void drain_all_stock(struct mem_cgroup *root_memcg)
2256 {
2257 	int cpu, curcpu;
2258 
2259 	/* If someone's already draining, avoid adding running more workers. */
2260 	if (!mutex_trylock(&percpu_charge_mutex))
2261 		return;
2262 	/*
2263 	 * Notify other cpus that system-wide "drain" is running
2264 	 * We do not care about races with the cpu hotplug because cpu down
2265 	 * as well as workers from this path always operate on the local
2266 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2267 	 */
2268 	curcpu = get_cpu();
2269 	for_each_online_cpu(cpu) {
2270 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2271 		struct mem_cgroup *memcg;
2272 		bool flush = false;
2273 
2274 		rcu_read_lock();
2275 		memcg = stock->cached;
2276 		if (memcg && stock->nr_pages &&
2277 		    mem_cgroup_is_descendant(memcg, root_memcg))
2278 			flush = true;
2279 		rcu_read_unlock();
2280 
2281 		if (flush &&
2282 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2283 			if (cpu == curcpu)
2284 				drain_local_stock(&stock->work);
2285 			else
2286 				schedule_work_on(cpu, &stock->work);
2287 		}
2288 	}
2289 	put_cpu();
2290 	mutex_unlock(&percpu_charge_mutex);
2291 }
2292 
2293 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2294 {
2295 	struct memcg_stock_pcp *stock;
2296 	struct mem_cgroup *memcg, *mi;
2297 
2298 	stock = &per_cpu(memcg_stock, cpu);
2299 	drain_stock(stock);
2300 
2301 	for_each_mem_cgroup(memcg) {
2302 		int i;
2303 
2304 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2305 			int nid;
2306 			long x;
2307 
2308 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2309 			if (x)
2310 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2311 					atomic_long_add(x, &memcg->vmstats[i]);
2312 
2313 			if (i >= NR_VM_NODE_STAT_ITEMS)
2314 				continue;
2315 
2316 			for_each_node(nid) {
2317 				struct mem_cgroup_per_node *pn;
2318 
2319 				pn = mem_cgroup_nodeinfo(memcg, nid);
2320 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2321 				if (x)
2322 					do {
2323 						atomic_long_add(x, &pn->lruvec_stat[i]);
2324 					} while ((pn = parent_nodeinfo(pn, nid)));
2325 			}
2326 		}
2327 
2328 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2329 			long x;
2330 
2331 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2332 			if (x)
2333 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2334 					atomic_long_add(x, &memcg->vmevents[i]);
2335 		}
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static void reclaim_high(struct mem_cgroup *memcg,
2342 			 unsigned int nr_pages,
2343 			 gfp_t gfp_mask)
2344 {
2345 	do {
2346 		if (page_counter_read(&memcg->memory) <= memcg->high)
2347 			continue;
2348 		memcg_memory_event(memcg, MEMCG_HIGH);
2349 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2350 	} while ((memcg = parent_mem_cgroup(memcg)));
2351 }
2352 
2353 static void high_work_func(struct work_struct *work)
2354 {
2355 	struct mem_cgroup *memcg;
2356 
2357 	memcg = container_of(work, struct mem_cgroup, high_work);
2358 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2359 }
2360 
2361 /*
2362  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2363  * enough to still cause a significant slowdown in most cases, while still
2364  * allowing diagnostics and tracing to proceed without becoming stuck.
2365  */
2366 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2367 
2368 /*
2369  * When calculating the delay, we use these either side of the exponentiation to
2370  * maintain precision and scale to a reasonable number of jiffies (see the table
2371  * below.
2372  *
2373  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2374  *   overage ratio to a delay.
2375  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2376  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2377  *   to produce a reasonable delay curve.
2378  *
2379  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2380  * reasonable delay curve compared to precision-adjusted overage, not
2381  * penalising heavily at first, but still making sure that growth beyond the
2382  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2383  * example, with a high of 100 megabytes:
2384  *
2385  *  +-------+------------------------+
2386  *  | usage | time to allocate in ms |
2387  *  +-------+------------------------+
2388  *  | 100M  |                      0 |
2389  *  | 101M  |                      6 |
2390  *  | 102M  |                     25 |
2391  *  | 103M  |                     57 |
2392  *  | 104M  |                    102 |
2393  *  | 105M  |                    159 |
2394  *  | 106M  |                    230 |
2395  *  | 107M  |                    313 |
2396  *  | 108M  |                    409 |
2397  *  | 109M  |                    518 |
2398  *  | 110M  |                    639 |
2399  *  | 111M  |                    774 |
2400  *  | 112M  |                    921 |
2401  *  | 113M  |                   1081 |
2402  *  | 114M  |                   1254 |
2403  *  | 115M  |                   1439 |
2404  *  | 116M  |                   1638 |
2405  *  | 117M  |                   1849 |
2406  *  | 118M  |                   2000 |
2407  *  | 119M  |                   2000 |
2408  *  | 120M  |                   2000 |
2409  *  +-------+------------------------+
2410  */
2411  #define MEMCG_DELAY_PRECISION_SHIFT 20
2412  #define MEMCG_DELAY_SCALING_SHIFT 14
2413 
2414 /*
2415  * Scheduled by try_charge() to be executed from the userland return path
2416  * and reclaims memory over the high limit.
2417  */
2418 void mem_cgroup_handle_over_high(void)
2419 {
2420 	unsigned long usage, high, clamped_high;
2421 	unsigned long pflags;
2422 	unsigned long penalty_jiffies, overage;
2423 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2424 	struct mem_cgroup *memcg;
2425 
2426 	if (likely(!nr_pages))
2427 		return;
2428 
2429 	memcg = get_mem_cgroup_from_mm(current->mm);
2430 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2431 	current->memcg_nr_pages_over_high = 0;
2432 
2433 	/*
2434 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2435 	 * allocators proactively to slow down excessive growth.
2436 	 *
2437 	 * We use overage compared to memory.high to calculate the number of
2438 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2439 	 * fairly lenient on small overages, and increasingly harsh when the
2440 	 * memcg in question makes it clear that it has no intention of stopping
2441 	 * its crazy behaviour, so we exponentially increase the delay based on
2442 	 * overage amount.
2443 	 */
2444 
2445 	usage = page_counter_read(&memcg->memory);
2446 	high = READ_ONCE(memcg->high);
2447 
2448 	if (usage <= high)
2449 		goto out;
2450 
2451 	/*
2452 	 * Prevent division by 0 in overage calculation by acting as if it was a
2453 	 * threshold of 1 page
2454 	 */
2455 	clamped_high = max(high, 1UL);
2456 
2457 	overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2458 			  clamped_high);
2459 
2460 	penalty_jiffies = ((u64)overage * overage * HZ)
2461 		>> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2462 
2463 	/*
2464 	 * Factor in the task's own contribution to the overage, such that four
2465 	 * N-sized allocations are throttled approximately the same as one
2466 	 * 4N-sized allocation.
2467 	 *
2468 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2469 	 * larger the current charge patch is than that.
2470 	 */
2471 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2472 
2473 	/*
2474 	 * Clamp the max delay per usermode return so as to still keep the
2475 	 * application moving forwards and also permit diagnostics, albeit
2476 	 * extremely slowly.
2477 	 */
2478 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2479 
2480 	/*
2481 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2482 	 * that it's not even worth doing, in an attempt to be nice to those who
2483 	 * go only a small amount over their memory.high value and maybe haven't
2484 	 * been aggressively reclaimed enough yet.
2485 	 */
2486 	if (penalty_jiffies <= HZ / 100)
2487 		goto out;
2488 
2489 	/*
2490 	 * If we exit early, we're guaranteed to die (since
2491 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2492 	 * need to account for any ill-begotten jiffies to pay them off later.
2493 	 */
2494 	psi_memstall_enter(&pflags);
2495 	schedule_timeout_killable(penalty_jiffies);
2496 	psi_memstall_leave(&pflags);
2497 
2498 out:
2499 	css_put(&memcg->css);
2500 }
2501 
2502 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2503 		      unsigned int nr_pages)
2504 {
2505 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2506 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2507 	struct mem_cgroup *mem_over_limit;
2508 	struct page_counter *counter;
2509 	unsigned long nr_reclaimed;
2510 	bool may_swap = true;
2511 	bool drained = false;
2512 	enum oom_status oom_status;
2513 
2514 	if (mem_cgroup_is_root(memcg))
2515 		return 0;
2516 retry:
2517 	if (consume_stock(memcg, nr_pages))
2518 		return 0;
2519 
2520 	if (!do_memsw_account() ||
2521 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2522 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2523 			goto done_restock;
2524 		if (do_memsw_account())
2525 			page_counter_uncharge(&memcg->memsw, batch);
2526 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2527 	} else {
2528 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2529 		may_swap = false;
2530 	}
2531 
2532 	if (batch > nr_pages) {
2533 		batch = nr_pages;
2534 		goto retry;
2535 	}
2536 
2537 	/*
2538 	 * Memcg doesn't have a dedicated reserve for atomic
2539 	 * allocations. But like the global atomic pool, we need to
2540 	 * put the burden of reclaim on regular allocation requests
2541 	 * and let these go through as privileged allocations.
2542 	 */
2543 	if (gfp_mask & __GFP_ATOMIC)
2544 		goto force;
2545 
2546 	/*
2547 	 * Unlike in global OOM situations, memcg is not in a physical
2548 	 * memory shortage.  Allow dying and OOM-killed tasks to
2549 	 * bypass the last charges so that they can exit quickly and
2550 	 * free their memory.
2551 	 */
2552 	if (unlikely(should_force_charge()))
2553 		goto force;
2554 
2555 	/*
2556 	 * Prevent unbounded recursion when reclaim operations need to
2557 	 * allocate memory. This might exceed the limits temporarily,
2558 	 * but we prefer facilitating memory reclaim and getting back
2559 	 * under the limit over triggering OOM kills in these cases.
2560 	 */
2561 	if (unlikely(current->flags & PF_MEMALLOC))
2562 		goto force;
2563 
2564 	if (unlikely(task_in_memcg_oom(current)))
2565 		goto nomem;
2566 
2567 	if (!gfpflags_allow_blocking(gfp_mask))
2568 		goto nomem;
2569 
2570 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2571 
2572 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2573 						    gfp_mask, may_swap);
2574 
2575 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2576 		goto retry;
2577 
2578 	if (!drained) {
2579 		drain_all_stock(mem_over_limit);
2580 		drained = true;
2581 		goto retry;
2582 	}
2583 
2584 	if (gfp_mask & __GFP_NORETRY)
2585 		goto nomem;
2586 	/*
2587 	 * Even though the limit is exceeded at this point, reclaim
2588 	 * may have been able to free some pages.  Retry the charge
2589 	 * before killing the task.
2590 	 *
2591 	 * Only for regular pages, though: huge pages are rather
2592 	 * unlikely to succeed so close to the limit, and we fall back
2593 	 * to regular pages anyway in case of failure.
2594 	 */
2595 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2596 		goto retry;
2597 	/*
2598 	 * At task move, charge accounts can be doubly counted. So, it's
2599 	 * better to wait until the end of task_move if something is going on.
2600 	 */
2601 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2602 		goto retry;
2603 
2604 	if (nr_retries--)
2605 		goto retry;
2606 
2607 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2608 		goto nomem;
2609 
2610 	if (gfp_mask & __GFP_NOFAIL)
2611 		goto force;
2612 
2613 	if (fatal_signal_pending(current))
2614 		goto force;
2615 
2616 	/*
2617 	 * keep retrying as long as the memcg oom killer is able to make
2618 	 * a forward progress or bypass the charge if the oom killer
2619 	 * couldn't make any progress.
2620 	 */
2621 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2622 		       get_order(nr_pages * PAGE_SIZE));
2623 	switch (oom_status) {
2624 	case OOM_SUCCESS:
2625 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2626 		goto retry;
2627 	case OOM_FAILED:
2628 		goto force;
2629 	default:
2630 		goto nomem;
2631 	}
2632 nomem:
2633 	if (!(gfp_mask & __GFP_NOFAIL))
2634 		return -ENOMEM;
2635 force:
2636 	/*
2637 	 * The allocation either can't fail or will lead to more memory
2638 	 * being freed very soon.  Allow memory usage go over the limit
2639 	 * temporarily by force charging it.
2640 	 */
2641 	page_counter_charge(&memcg->memory, nr_pages);
2642 	if (do_memsw_account())
2643 		page_counter_charge(&memcg->memsw, nr_pages);
2644 	css_get_many(&memcg->css, nr_pages);
2645 
2646 	return 0;
2647 
2648 done_restock:
2649 	css_get_many(&memcg->css, batch);
2650 	if (batch > nr_pages)
2651 		refill_stock(memcg, batch - nr_pages);
2652 
2653 	/*
2654 	 * If the hierarchy is above the normal consumption range, schedule
2655 	 * reclaim on returning to userland.  We can perform reclaim here
2656 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2657 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2658 	 * not recorded as it most likely matches current's and won't
2659 	 * change in the meantime.  As high limit is checked again before
2660 	 * reclaim, the cost of mismatch is negligible.
2661 	 */
2662 	do {
2663 		if (page_counter_read(&memcg->memory) > memcg->high) {
2664 			/* Don't bother a random interrupted task */
2665 			if (in_interrupt()) {
2666 				schedule_work(&memcg->high_work);
2667 				break;
2668 			}
2669 			current->memcg_nr_pages_over_high += batch;
2670 			set_notify_resume(current);
2671 			break;
2672 		}
2673 	} while ((memcg = parent_mem_cgroup(memcg)));
2674 
2675 	return 0;
2676 }
2677 
2678 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2679 {
2680 	if (mem_cgroup_is_root(memcg))
2681 		return;
2682 
2683 	page_counter_uncharge(&memcg->memory, nr_pages);
2684 	if (do_memsw_account())
2685 		page_counter_uncharge(&memcg->memsw, nr_pages);
2686 
2687 	css_put_many(&memcg->css, nr_pages);
2688 }
2689 
2690 static void lock_page_lru(struct page *page, int *isolated)
2691 {
2692 	pg_data_t *pgdat = page_pgdat(page);
2693 
2694 	spin_lock_irq(&pgdat->lru_lock);
2695 	if (PageLRU(page)) {
2696 		struct lruvec *lruvec;
2697 
2698 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2699 		ClearPageLRU(page);
2700 		del_page_from_lru_list(page, lruvec, page_lru(page));
2701 		*isolated = 1;
2702 	} else
2703 		*isolated = 0;
2704 }
2705 
2706 static void unlock_page_lru(struct page *page, int isolated)
2707 {
2708 	pg_data_t *pgdat = page_pgdat(page);
2709 
2710 	if (isolated) {
2711 		struct lruvec *lruvec;
2712 
2713 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2714 		VM_BUG_ON_PAGE(PageLRU(page), page);
2715 		SetPageLRU(page);
2716 		add_page_to_lru_list(page, lruvec, page_lru(page));
2717 	}
2718 	spin_unlock_irq(&pgdat->lru_lock);
2719 }
2720 
2721 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2722 			  bool lrucare)
2723 {
2724 	int isolated;
2725 
2726 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2727 
2728 	/*
2729 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2730 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2731 	 */
2732 	if (lrucare)
2733 		lock_page_lru(page, &isolated);
2734 
2735 	/*
2736 	 * Nobody should be changing or seriously looking at
2737 	 * page->mem_cgroup at this point:
2738 	 *
2739 	 * - the page is uncharged
2740 	 *
2741 	 * - the page is off-LRU
2742 	 *
2743 	 * - an anonymous fault has exclusive page access, except for
2744 	 *   a locked page table
2745 	 *
2746 	 * - a page cache insertion, a swapin fault, or a migration
2747 	 *   have the page locked
2748 	 */
2749 	page->mem_cgroup = memcg;
2750 
2751 	if (lrucare)
2752 		unlock_page_lru(page, isolated);
2753 }
2754 
2755 #ifdef CONFIG_MEMCG_KMEM
2756 static int memcg_alloc_cache_id(void)
2757 {
2758 	int id, size;
2759 	int err;
2760 
2761 	id = ida_simple_get(&memcg_cache_ida,
2762 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2763 	if (id < 0)
2764 		return id;
2765 
2766 	if (id < memcg_nr_cache_ids)
2767 		return id;
2768 
2769 	/*
2770 	 * There's no space for the new id in memcg_caches arrays,
2771 	 * so we have to grow them.
2772 	 */
2773 	down_write(&memcg_cache_ids_sem);
2774 
2775 	size = 2 * (id + 1);
2776 	if (size < MEMCG_CACHES_MIN_SIZE)
2777 		size = MEMCG_CACHES_MIN_SIZE;
2778 	else if (size > MEMCG_CACHES_MAX_SIZE)
2779 		size = MEMCG_CACHES_MAX_SIZE;
2780 
2781 	err = memcg_update_all_caches(size);
2782 	if (!err)
2783 		err = memcg_update_all_list_lrus(size);
2784 	if (!err)
2785 		memcg_nr_cache_ids = size;
2786 
2787 	up_write(&memcg_cache_ids_sem);
2788 
2789 	if (err) {
2790 		ida_simple_remove(&memcg_cache_ida, id);
2791 		return err;
2792 	}
2793 	return id;
2794 }
2795 
2796 static void memcg_free_cache_id(int id)
2797 {
2798 	ida_simple_remove(&memcg_cache_ida, id);
2799 }
2800 
2801 struct memcg_kmem_cache_create_work {
2802 	struct mem_cgroup *memcg;
2803 	struct kmem_cache *cachep;
2804 	struct work_struct work;
2805 };
2806 
2807 static void memcg_kmem_cache_create_func(struct work_struct *w)
2808 {
2809 	struct memcg_kmem_cache_create_work *cw =
2810 		container_of(w, struct memcg_kmem_cache_create_work, work);
2811 	struct mem_cgroup *memcg = cw->memcg;
2812 	struct kmem_cache *cachep = cw->cachep;
2813 
2814 	memcg_create_kmem_cache(memcg, cachep);
2815 
2816 	css_put(&memcg->css);
2817 	kfree(cw);
2818 }
2819 
2820 /*
2821  * Enqueue the creation of a per-memcg kmem_cache.
2822  */
2823 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2824 					       struct kmem_cache *cachep)
2825 {
2826 	struct memcg_kmem_cache_create_work *cw;
2827 
2828 	if (!css_tryget_online(&memcg->css))
2829 		return;
2830 
2831 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2832 	if (!cw)
2833 		return;
2834 
2835 	cw->memcg = memcg;
2836 	cw->cachep = cachep;
2837 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2838 
2839 	queue_work(memcg_kmem_cache_wq, &cw->work);
2840 }
2841 
2842 static inline bool memcg_kmem_bypass(void)
2843 {
2844 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2845 		return true;
2846 	return false;
2847 }
2848 
2849 /**
2850  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2851  * @cachep: the original global kmem cache
2852  *
2853  * Return the kmem_cache we're supposed to use for a slab allocation.
2854  * We try to use the current memcg's version of the cache.
2855  *
2856  * If the cache does not exist yet, if we are the first user of it, we
2857  * create it asynchronously in a workqueue and let the current allocation
2858  * go through with the original cache.
2859  *
2860  * This function takes a reference to the cache it returns to assure it
2861  * won't get destroyed while we are working with it. Once the caller is
2862  * done with it, memcg_kmem_put_cache() must be called to release the
2863  * reference.
2864  */
2865 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2866 {
2867 	struct mem_cgroup *memcg;
2868 	struct kmem_cache *memcg_cachep;
2869 	struct memcg_cache_array *arr;
2870 	int kmemcg_id;
2871 
2872 	VM_BUG_ON(!is_root_cache(cachep));
2873 
2874 	if (memcg_kmem_bypass())
2875 		return cachep;
2876 
2877 	rcu_read_lock();
2878 
2879 	if (unlikely(current->active_memcg))
2880 		memcg = current->active_memcg;
2881 	else
2882 		memcg = mem_cgroup_from_task(current);
2883 
2884 	if (!memcg || memcg == root_mem_cgroup)
2885 		goto out_unlock;
2886 
2887 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2888 	if (kmemcg_id < 0)
2889 		goto out_unlock;
2890 
2891 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2892 
2893 	/*
2894 	 * Make sure we will access the up-to-date value. The code updating
2895 	 * memcg_caches issues a write barrier to match the data dependency
2896 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2897 	 */
2898 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2899 
2900 	/*
2901 	 * If we are in a safe context (can wait, and not in interrupt
2902 	 * context), we could be be predictable and return right away.
2903 	 * This would guarantee that the allocation being performed
2904 	 * already belongs in the new cache.
2905 	 *
2906 	 * However, there are some clashes that can arrive from locking.
2907 	 * For instance, because we acquire the slab_mutex while doing
2908 	 * memcg_create_kmem_cache, this means no further allocation
2909 	 * could happen with the slab_mutex held. So it's better to
2910 	 * defer everything.
2911 	 *
2912 	 * If the memcg is dying or memcg_cache is about to be released,
2913 	 * don't bother creating new kmem_caches. Because memcg_cachep
2914 	 * is ZEROed as the fist step of kmem offlining, we don't need
2915 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2916 	 * memcg_schedule_kmem_cache_create() will prevent us from
2917 	 * creation of a new kmem_cache.
2918 	 */
2919 	if (unlikely(!memcg_cachep))
2920 		memcg_schedule_kmem_cache_create(memcg, cachep);
2921 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2922 		cachep = memcg_cachep;
2923 out_unlock:
2924 	rcu_read_unlock();
2925 	return cachep;
2926 }
2927 
2928 /**
2929  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2930  * @cachep: the cache returned by memcg_kmem_get_cache
2931  */
2932 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2933 {
2934 	if (!is_root_cache(cachep))
2935 		percpu_ref_put(&cachep->memcg_params.refcnt);
2936 }
2937 
2938 /**
2939  * __memcg_kmem_charge_memcg: charge a kmem page
2940  * @page: page to charge
2941  * @gfp: reclaim mode
2942  * @order: allocation order
2943  * @memcg: memory cgroup to charge
2944  *
2945  * Returns 0 on success, an error code on failure.
2946  */
2947 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2948 			    struct mem_cgroup *memcg)
2949 {
2950 	unsigned int nr_pages = 1 << order;
2951 	struct page_counter *counter;
2952 	int ret;
2953 
2954 	ret = try_charge(memcg, gfp, nr_pages);
2955 	if (ret)
2956 		return ret;
2957 
2958 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2959 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2960 
2961 		/*
2962 		 * Enforce __GFP_NOFAIL allocation because callers are not
2963 		 * prepared to see failures and likely do not have any failure
2964 		 * handling code.
2965 		 */
2966 		if (gfp & __GFP_NOFAIL) {
2967 			page_counter_charge(&memcg->kmem, nr_pages);
2968 			return 0;
2969 		}
2970 		cancel_charge(memcg, nr_pages);
2971 		return -ENOMEM;
2972 	}
2973 	return 0;
2974 }
2975 
2976 /**
2977  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2978  * @page: page to charge
2979  * @gfp: reclaim mode
2980  * @order: allocation order
2981  *
2982  * Returns 0 on success, an error code on failure.
2983  */
2984 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2985 {
2986 	struct mem_cgroup *memcg;
2987 	int ret = 0;
2988 
2989 	if (memcg_kmem_bypass())
2990 		return 0;
2991 
2992 	memcg = get_mem_cgroup_from_current();
2993 	if (!mem_cgroup_is_root(memcg)) {
2994 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2995 		if (!ret) {
2996 			page->mem_cgroup = memcg;
2997 			__SetPageKmemcg(page);
2998 		}
2999 	}
3000 	css_put(&memcg->css);
3001 	return ret;
3002 }
3003 
3004 /**
3005  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
3006  * @memcg: memcg to uncharge
3007  * @nr_pages: number of pages to uncharge
3008  */
3009 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3010 				 unsigned int nr_pages)
3011 {
3012 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3013 		page_counter_uncharge(&memcg->kmem, nr_pages);
3014 
3015 	page_counter_uncharge(&memcg->memory, nr_pages);
3016 	if (do_memsw_account())
3017 		page_counter_uncharge(&memcg->memsw, nr_pages);
3018 }
3019 /**
3020  * __memcg_kmem_uncharge: uncharge a kmem page
3021  * @page: page to uncharge
3022  * @order: allocation order
3023  */
3024 void __memcg_kmem_uncharge(struct page *page, int order)
3025 {
3026 	struct mem_cgroup *memcg = page->mem_cgroup;
3027 	unsigned int nr_pages = 1 << order;
3028 
3029 	if (!memcg)
3030 		return;
3031 
3032 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3033 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
3034 	page->mem_cgroup = NULL;
3035 
3036 	/* slab pages do not have PageKmemcg flag set */
3037 	if (PageKmemcg(page))
3038 		__ClearPageKmemcg(page);
3039 
3040 	css_put_many(&memcg->css, nr_pages);
3041 }
3042 #endif /* CONFIG_MEMCG_KMEM */
3043 
3044 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3045 
3046 /*
3047  * Because tail pages are not marked as "used", set it. We're under
3048  * pgdat->lru_lock and migration entries setup in all page mappings.
3049  */
3050 void mem_cgroup_split_huge_fixup(struct page *head)
3051 {
3052 	int i;
3053 
3054 	if (mem_cgroup_disabled())
3055 		return;
3056 
3057 	for (i = 1; i < HPAGE_PMD_NR; i++)
3058 		head[i].mem_cgroup = head->mem_cgroup;
3059 
3060 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3061 }
3062 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3063 
3064 #ifdef CONFIG_MEMCG_SWAP
3065 /**
3066  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3067  * @entry: swap entry to be moved
3068  * @from:  mem_cgroup which the entry is moved from
3069  * @to:  mem_cgroup which the entry is moved to
3070  *
3071  * It succeeds only when the swap_cgroup's record for this entry is the same
3072  * as the mem_cgroup's id of @from.
3073  *
3074  * Returns 0 on success, -EINVAL on failure.
3075  *
3076  * The caller must have charged to @to, IOW, called page_counter_charge() about
3077  * both res and memsw, and called css_get().
3078  */
3079 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3080 				struct mem_cgroup *from, struct mem_cgroup *to)
3081 {
3082 	unsigned short old_id, new_id;
3083 
3084 	old_id = mem_cgroup_id(from);
3085 	new_id = mem_cgroup_id(to);
3086 
3087 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3088 		mod_memcg_state(from, MEMCG_SWAP, -1);
3089 		mod_memcg_state(to, MEMCG_SWAP, 1);
3090 		return 0;
3091 	}
3092 	return -EINVAL;
3093 }
3094 #else
3095 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3096 				struct mem_cgroup *from, struct mem_cgroup *to)
3097 {
3098 	return -EINVAL;
3099 }
3100 #endif
3101 
3102 static DEFINE_MUTEX(memcg_max_mutex);
3103 
3104 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3105 				 unsigned long max, bool memsw)
3106 {
3107 	bool enlarge = false;
3108 	bool drained = false;
3109 	int ret;
3110 	bool limits_invariant;
3111 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3112 
3113 	do {
3114 		if (signal_pending(current)) {
3115 			ret = -EINTR;
3116 			break;
3117 		}
3118 
3119 		mutex_lock(&memcg_max_mutex);
3120 		/*
3121 		 * Make sure that the new limit (memsw or memory limit) doesn't
3122 		 * break our basic invariant rule memory.max <= memsw.max.
3123 		 */
3124 		limits_invariant = memsw ? max >= memcg->memory.max :
3125 					   max <= memcg->memsw.max;
3126 		if (!limits_invariant) {
3127 			mutex_unlock(&memcg_max_mutex);
3128 			ret = -EINVAL;
3129 			break;
3130 		}
3131 		if (max > counter->max)
3132 			enlarge = true;
3133 		ret = page_counter_set_max(counter, max);
3134 		mutex_unlock(&memcg_max_mutex);
3135 
3136 		if (!ret)
3137 			break;
3138 
3139 		if (!drained) {
3140 			drain_all_stock(memcg);
3141 			drained = true;
3142 			continue;
3143 		}
3144 
3145 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3146 					GFP_KERNEL, !memsw)) {
3147 			ret = -EBUSY;
3148 			break;
3149 		}
3150 	} while (true);
3151 
3152 	if (!ret && enlarge)
3153 		memcg_oom_recover(memcg);
3154 
3155 	return ret;
3156 }
3157 
3158 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3159 					    gfp_t gfp_mask,
3160 					    unsigned long *total_scanned)
3161 {
3162 	unsigned long nr_reclaimed = 0;
3163 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3164 	unsigned long reclaimed;
3165 	int loop = 0;
3166 	struct mem_cgroup_tree_per_node *mctz;
3167 	unsigned long excess;
3168 	unsigned long nr_scanned;
3169 
3170 	if (order > 0)
3171 		return 0;
3172 
3173 	mctz = soft_limit_tree_node(pgdat->node_id);
3174 
3175 	/*
3176 	 * Do not even bother to check the largest node if the root
3177 	 * is empty. Do it lockless to prevent lock bouncing. Races
3178 	 * are acceptable as soft limit is best effort anyway.
3179 	 */
3180 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3181 		return 0;
3182 
3183 	/*
3184 	 * This loop can run a while, specially if mem_cgroup's continuously
3185 	 * keep exceeding their soft limit and putting the system under
3186 	 * pressure
3187 	 */
3188 	do {
3189 		if (next_mz)
3190 			mz = next_mz;
3191 		else
3192 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3193 		if (!mz)
3194 			break;
3195 
3196 		nr_scanned = 0;
3197 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3198 						    gfp_mask, &nr_scanned);
3199 		nr_reclaimed += reclaimed;
3200 		*total_scanned += nr_scanned;
3201 		spin_lock_irq(&mctz->lock);
3202 		__mem_cgroup_remove_exceeded(mz, mctz);
3203 
3204 		/*
3205 		 * If we failed to reclaim anything from this memory cgroup
3206 		 * it is time to move on to the next cgroup
3207 		 */
3208 		next_mz = NULL;
3209 		if (!reclaimed)
3210 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3211 
3212 		excess = soft_limit_excess(mz->memcg);
3213 		/*
3214 		 * One school of thought says that we should not add
3215 		 * back the node to the tree if reclaim returns 0.
3216 		 * But our reclaim could return 0, simply because due
3217 		 * to priority we are exposing a smaller subset of
3218 		 * memory to reclaim from. Consider this as a longer
3219 		 * term TODO.
3220 		 */
3221 		/* If excess == 0, no tree ops */
3222 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3223 		spin_unlock_irq(&mctz->lock);
3224 		css_put(&mz->memcg->css);
3225 		loop++;
3226 		/*
3227 		 * Could not reclaim anything and there are no more
3228 		 * mem cgroups to try or we seem to be looping without
3229 		 * reclaiming anything.
3230 		 */
3231 		if (!nr_reclaimed &&
3232 			(next_mz == NULL ||
3233 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3234 			break;
3235 	} while (!nr_reclaimed);
3236 	if (next_mz)
3237 		css_put(&next_mz->memcg->css);
3238 	return nr_reclaimed;
3239 }
3240 
3241 /*
3242  * Test whether @memcg has children, dead or alive.  Note that this
3243  * function doesn't care whether @memcg has use_hierarchy enabled and
3244  * returns %true if there are child csses according to the cgroup
3245  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3246  */
3247 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3248 {
3249 	bool ret;
3250 
3251 	rcu_read_lock();
3252 	ret = css_next_child(NULL, &memcg->css);
3253 	rcu_read_unlock();
3254 	return ret;
3255 }
3256 
3257 /*
3258  * Reclaims as many pages from the given memcg as possible.
3259  *
3260  * Caller is responsible for holding css reference for memcg.
3261  */
3262 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3263 {
3264 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3265 
3266 	/* we call try-to-free pages for make this cgroup empty */
3267 	lru_add_drain_all();
3268 
3269 	drain_all_stock(memcg);
3270 
3271 	/* try to free all pages in this cgroup */
3272 	while (nr_retries && page_counter_read(&memcg->memory)) {
3273 		int progress;
3274 
3275 		if (signal_pending(current))
3276 			return -EINTR;
3277 
3278 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3279 							GFP_KERNEL, true);
3280 		if (!progress) {
3281 			nr_retries--;
3282 			/* maybe some writeback is necessary */
3283 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3284 		}
3285 
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3292 					    char *buf, size_t nbytes,
3293 					    loff_t off)
3294 {
3295 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3296 
3297 	if (mem_cgroup_is_root(memcg))
3298 		return -EINVAL;
3299 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3300 }
3301 
3302 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3303 				     struct cftype *cft)
3304 {
3305 	return mem_cgroup_from_css(css)->use_hierarchy;
3306 }
3307 
3308 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3309 				      struct cftype *cft, u64 val)
3310 {
3311 	int retval = 0;
3312 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3313 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3314 
3315 	if (memcg->use_hierarchy == val)
3316 		return 0;
3317 
3318 	/*
3319 	 * If parent's use_hierarchy is set, we can't make any modifications
3320 	 * in the child subtrees. If it is unset, then the change can
3321 	 * occur, provided the current cgroup has no children.
3322 	 *
3323 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3324 	 * set if there are no children.
3325 	 */
3326 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3327 				(val == 1 || val == 0)) {
3328 		if (!memcg_has_children(memcg))
3329 			memcg->use_hierarchy = val;
3330 		else
3331 			retval = -EBUSY;
3332 	} else
3333 		retval = -EINVAL;
3334 
3335 	return retval;
3336 }
3337 
3338 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3339 {
3340 	unsigned long val;
3341 
3342 	if (mem_cgroup_is_root(memcg)) {
3343 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3344 			memcg_page_state(memcg, MEMCG_RSS);
3345 		if (swap)
3346 			val += memcg_page_state(memcg, MEMCG_SWAP);
3347 	} else {
3348 		if (!swap)
3349 			val = page_counter_read(&memcg->memory);
3350 		else
3351 			val = page_counter_read(&memcg->memsw);
3352 	}
3353 	return val;
3354 }
3355 
3356 enum {
3357 	RES_USAGE,
3358 	RES_LIMIT,
3359 	RES_MAX_USAGE,
3360 	RES_FAILCNT,
3361 	RES_SOFT_LIMIT,
3362 };
3363 
3364 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3365 			       struct cftype *cft)
3366 {
3367 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3368 	struct page_counter *counter;
3369 
3370 	switch (MEMFILE_TYPE(cft->private)) {
3371 	case _MEM:
3372 		counter = &memcg->memory;
3373 		break;
3374 	case _MEMSWAP:
3375 		counter = &memcg->memsw;
3376 		break;
3377 	case _KMEM:
3378 		counter = &memcg->kmem;
3379 		break;
3380 	case _TCP:
3381 		counter = &memcg->tcpmem;
3382 		break;
3383 	default:
3384 		BUG();
3385 	}
3386 
3387 	switch (MEMFILE_ATTR(cft->private)) {
3388 	case RES_USAGE:
3389 		if (counter == &memcg->memory)
3390 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3391 		if (counter == &memcg->memsw)
3392 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3393 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3394 	case RES_LIMIT:
3395 		return (u64)counter->max * PAGE_SIZE;
3396 	case RES_MAX_USAGE:
3397 		return (u64)counter->watermark * PAGE_SIZE;
3398 	case RES_FAILCNT:
3399 		return counter->failcnt;
3400 	case RES_SOFT_LIMIT:
3401 		return (u64)memcg->soft_limit * PAGE_SIZE;
3402 	default:
3403 		BUG();
3404 	}
3405 }
3406 
3407 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3408 {
3409 	unsigned long stat[MEMCG_NR_STAT];
3410 	struct mem_cgroup *mi;
3411 	int node, cpu, i;
3412 	int min_idx, max_idx;
3413 
3414 	if (slab_only) {
3415 		min_idx = NR_SLAB_RECLAIMABLE;
3416 		max_idx = NR_SLAB_UNRECLAIMABLE;
3417 	} else {
3418 		min_idx = 0;
3419 		max_idx = MEMCG_NR_STAT;
3420 	}
3421 
3422 	for (i = min_idx; i < max_idx; i++)
3423 		stat[i] = 0;
3424 
3425 	for_each_online_cpu(cpu)
3426 		for (i = min_idx; i < max_idx; i++)
3427 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3428 
3429 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3430 		for (i = min_idx; i < max_idx; i++)
3431 			atomic_long_add(stat[i], &mi->vmstats[i]);
3432 
3433 	if (!slab_only)
3434 		max_idx = NR_VM_NODE_STAT_ITEMS;
3435 
3436 	for_each_node(node) {
3437 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3438 		struct mem_cgroup_per_node *pi;
3439 
3440 		for (i = min_idx; i < max_idx; i++)
3441 			stat[i] = 0;
3442 
3443 		for_each_online_cpu(cpu)
3444 			for (i = min_idx; i < max_idx; i++)
3445 				stat[i] += per_cpu(
3446 					pn->lruvec_stat_cpu->count[i], cpu);
3447 
3448 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3449 			for (i = min_idx; i < max_idx; i++)
3450 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3451 	}
3452 }
3453 
3454 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3455 {
3456 	unsigned long events[NR_VM_EVENT_ITEMS];
3457 	struct mem_cgroup *mi;
3458 	int cpu, i;
3459 
3460 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3461 		events[i] = 0;
3462 
3463 	for_each_online_cpu(cpu)
3464 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3465 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3466 					     cpu);
3467 
3468 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3469 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3470 			atomic_long_add(events[i], &mi->vmevents[i]);
3471 }
3472 
3473 #ifdef CONFIG_MEMCG_KMEM
3474 static int memcg_online_kmem(struct mem_cgroup *memcg)
3475 {
3476 	int memcg_id;
3477 
3478 	if (cgroup_memory_nokmem)
3479 		return 0;
3480 
3481 	BUG_ON(memcg->kmemcg_id >= 0);
3482 	BUG_ON(memcg->kmem_state);
3483 
3484 	memcg_id = memcg_alloc_cache_id();
3485 	if (memcg_id < 0)
3486 		return memcg_id;
3487 
3488 	static_branch_inc(&memcg_kmem_enabled_key);
3489 	/*
3490 	 * A memory cgroup is considered kmem-online as soon as it gets
3491 	 * kmemcg_id. Setting the id after enabling static branching will
3492 	 * guarantee no one starts accounting before all call sites are
3493 	 * patched.
3494 	 */
3495 	memcg->kmemcg_id = memcg_id;
3496 	memcg->kmem_state = KMEM_ONLINE;
3497 	INIT_LIST_HEAD(&memcg->kmem_caches);
3498 
3499 	return 0;
3500 }
3501 
3502 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3503 {
3504 	struct cgroup_subsys_state *css;
3505 	struct mem_cgroup *parent, *child;
3506 	int kmemcg_id;
3507 
3508 	if (memcg->kmem_state != KMEM_ONLINE)
3509 		return;
3510 	/*
3511 	 * Clear the online state before clearing memcg_caches array
3512 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3513 	 * guarantees that no cache will be created for this cgroup
3514 	 * after we are done (see memcg_create_kmem_cache()).
3515 	 */
3516 	memcg->kmem_state = KMEM_ALLOCATED;
3517 
3518 	parent = parent_mem_cgroup(memcg);
3519 	if (!parent)
3520 		parent = root_mem_cgroup;
3521 
3522 	/*
3523 	 * Deactivate and reparent kmem_caches. Then flush percpu
3524 	 * slab statistics to have precise values at the parent and
3525 	 * all ancestor levels. It's required to keep slab stats
3526 	 * accurate after the reparenting of kmem_caches.
3527 	 */
3528 	memcg_deactivate_kmem_caches(memcg, parent);
3529 	memcg_flush_percpu_vmstats(memcg, true);
3530 
3531 	kmemcg_id = memcg->kmemcg_id;
3532 	BUG_ON(kmemcg_id < 0);
3533 
3534 	/*
3535 	 * Change kmemcg_id of this cgroup and all its descendants to the
3536 	 * parent's id, and then move all entries from this cgroup's list_lrus
3537 	 * to ones of the parent. After we have finished, all list_lrus
3538 	 * corresponding to this cgroup are guaranteed to remain empty. The
3539 	 * ordering is imposed by list_lru_node->lock taken by
3540 	 * memcg_drain_all_list_lrus().
3541 	 */
3542 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3543 	css_for_each_descendant_pre(css, &memcg->css) {
3544 		child = mem_cgroup_from_css(css);
3545 		BUG_ON(child->kmemcg_id != kmemcg_id);
3546 		child->kmemcg_id = parent->kmemcg_id;
3547 		if (!memcg->use_hierarchy)
3548 			break;
3549 	}
3550 	rcu_read_unlock();
3551 
3552 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3553 
3554 	memcg_free_cache_id(kmemcg_id);
3555 }
3556 
3557 static void memcg_free_kmem(struct mem_cgroup *memcg)
3558 {
3559 	/* css_alloc() failed, offlining didn't happen */
3560 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3561 		memcg_offline_kmem(memcg);
3562 
3563 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3564 		WARN_ON(!list_empty(&memcg->kmem_caches));
3565 		static_branch_dec(&memcg_kmem_enabled_key);
3566 	}
3567 }
3568 #else
3569 static int memcg_online_kmem(struct mem_cgroup *memcg)
3570 {
3571 	return 0;
3572 }
3573 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3574 {
3575 }
3576 static void memcg_free_kmem(struct mem_cgroup *memcg)
3577 {
3578 }
3579 #endif /* CONFIG_MEMCG_KMEM */
3580 
3581 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3582 				 unsigned long max)
3583 {
3584 	int ret;
3585 
3586 	mutex_lock(&memcg_max_mutex);
3587 	ret = page_counter_set_max(&memcg->kmem, max);
3588 	mutex_unlock(&memcg_max_mutex);
3589 	return ret;
3590 }
3591 
3592 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3593 {
3594 	int ret;
3595 
3596 	mutex_lock(&memcg_max_mutex);
3597 
3598 	ret = page_counter_set_max(&memcg->tcpmem, max);
3599 	if (ret)
3600 		goto out;
3601 
3602 	if (!memcg->tcpmem_active) {
3603 		/*
3604 		 * The active flag needs to be written after the static_key
3605 		 * update. This is what guarantees that the socket activation
3606 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3607 		 * for details, and note that we don't mark any socket as
3608 		 * belonging to this memcg until that flag is up.
3609 		 *
3610 		 * We need to do this, because static_keys will span multiple
3611 		 * sites, but we can't control their order. If we mark a socket
3612 		 * as accounted, but the accounting functions are not patched in
3613 		 * yet, we'll lose accounting.
3614 		 *
3615 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3616 		 * because when this value change, the code to process it is not
3617 		 * patched in yet.
3618 		 */
3619 		static_branch_inc(&memcg_sockets_enabled_key);
3620 		memcg->tcpmem_active = true;
3621 	}
3622 out:
3623 	mutex_unlock(&memcg_max_mutex);
3624 	return ret;
3625 }
3626 
3627 /*
3628  * The user of this function is...
3629  * RES_LIMIT.
3630  */
3631 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3632 				char *buf, size_t nbytes, loff_t off)
3633 {
3634 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3635 	unsigned long nr_pages;
3636 	int ret;
3637 
3638 	buf = strstrip(buf);
3639 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3640 	if (ret)
3641 		return ret;
3642 
3643 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3644 	case RES_LIMIT:
3645 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3646 			ret = -EINVAL;
3647 			break;
3648 		}
3649 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3650 		case _MEM:
3651 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3652 			break;
3653 		case _MEMSWAP:
3654 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3655 			break;
3656 		case _KMEM:
3657 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3658 				     "Please report your usecase to linux-mm@kvack.org if you "
3659 				     "depend on this functionality.\n");
3660 			ret = memcg_update_kmem_max(memcg, nr_pages);
3661 			break;
3662 		case _TCP:
3663 			ret = memcg_update_tcp_max(memcg, nr_pages);
3664 			break;
3665 		}
3666 		break;
3667 	case RES_SOFT_LIMIT:
3668 		memcg->soft_limit = nr_pages;
3669 		ret = 0;
3670 		break;
3671 	}
3672 	return ret ?: nbytes;
3673 }
3674 
3675 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3676 				size_t nbytes, loff_t off)
3677 {
3678 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3679 	struct page_counter *counter;
3680 
3681 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3682 	case _MEM:
3683 		counter = &memcg->memory;
3684 		break;
3685 	case _MEMSWAP:
3686 		counter = &memcg->memsw;
3687 		break;
3688 	case _KMEM:
3689 		counter = &memcg->kmem;
3690 		break;
3691 	case _TCP:
3692 		counter = &memcg->tcpmem;
3693 		break;
3694 	default:
3695 		BUG();
3696 	}
3697 
3698 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3699 	case RES_MAX_USAGE:
3700 		page_counter_reset_watermark(counter);
3701 		break;
3702 	case RES_FAILCNT:
3703 		counter->failcnt = 0;
3704 		break;
3705 	default:
3706 		BUG();
3707 	}
3708 
3709 	return nbytes;
3710 }
3711 
3712 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3713 					struct cftype *cft)
3714 {
3715 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3716 }
3717 
3718 #ifdef CONFIG_MMU
3719 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3720 					struct cftype *cft, u64 val)
3721 {
3722 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3723 
3724 	if (val & ~MOVE_MASK)
3725 		return -EINVAL;
3726 
3727 	/*
3728 	 * No kind of locking is needed in here, because ->can_attach() will
3729 	 * check this value once in the beginning of the process, and then carry
3730 	 * on with stale data. This means that changes to this value will only
3731 	 * affect task migrations starting after the change.
3732 	 */
3733 	memcg->move_charge_at_immigrate = val;
3734 	return 0;
3735 }
3736 #else
3737 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3738 					struct cftype *cft, u64 val)
3739 {
3740 	return -ENOSYS;
3741 }
3742 #endif
3743 
3744 #ifdef CONFIG_NUMA
3745 
3746 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3747 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3748 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3749 
3750 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3751 					   int nid, unsigned int lru_mask)
3752 {
3753 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3754 	unsigned long nr = 0;
3755 	enum lru_list lru;
3756 
3757 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3758 
3759 	for_each_lru(lru) {
3760 		if (!(BIT(lru) & lru_mask))
3761 			continue;
3762 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3763 	}
3764 	return nr;
3765 }
3766 
3767 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3768 					     unsigned int lru_mask)
3769 {
3770 	unsigned long nr = 0;
3771 	enum lru_list lru;
3772 
3773 	for_each_lru(lru) {
3774 		if (!(BIT(lru) & lru_mask))
3775 			continue;
3776 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3777 	}
3778 	return nr;
3779 }
3780 
3781 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3782 {
3783 	struct numa_stat {
3784 		const char *name;
3785 		unsigned int lru_mask;
3786 	};
3787 
3788 	static const struct numa_stat stats[] = {
3789 		{ "total", LRU_ALL },
3790 		{ "file", LRU_ALL_FILE },
3791 		{ "anon", LRU_ALL_ANON },
3792 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3793 	};
3794 	const struct numa_stat *stat;
3795 	int nid;
3796 	unsigned long nr;
3797 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3798 
3799 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3800 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3801 		seq_printf(m, "%s=%lu", stat->name, nr);
3802 		for_each_node_state(nid, N_MEMORY) {
3803 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3804 							  stat->lru_mask);
3805 			seq_printf(m, " N%d=%lu", nid, nr);
3806 		}
3807 		seq_putc(m, '\n');
3808 	}
3809 
3810 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3811 		struct mem_cgroup *iter;
3812 
3813 		nr = 0;
3814 		for_each_mem_cgroup_tree(iter, memcg)
3815 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3816 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3817 		for_each_node_state(nid, N_MEMORY) {
3818 			nr = 0;
3819 			for_each_mem_cgroup_tree(iter, memcg)
3820 				nr += mem_cgroup_node_nr_lru_pages(
3821 					iter, nid, stat->lru_mask);
3822 			seq_printf(m, " N%d=%lu", nid, nr);
3823 		}
3824 		seq_putc(m, '\n');
3825 	}
3826 
3827 	return 0;
3828 }
3829 #endif /* CONFIG_NUMA */
3830 
3831 static const unsigned int memcg1_stats[] = {
3832 	MEMCG_CACHE,
3833 	MEMCG_RSS,
3834 	MEMCG_RSS_HUGE,
3835 	NR_SHMEM,
3836 	NR_FILE_MAPPED,
3837 	NR_FILE_DIRTY,
3838 	NR_WRITEBACK,
3839 	MEMCG_SWAP,
3840 };
3841 
3842 static const char *const memcg1_stat_names[] = {
3843 	"cache",
3844 	"rss",
3845 	"rss_huge",
3846 	"shmem",
3847 	"mapped_file",
3848 	"dirty",
3849 	"writeback",
3850 	"swap",
3851 };
3852 
3853 /* Universal VM events cgroup1 shows, original sort order */
3854 static const unsigned int memcg1_events[] = {
3855 	PGPGIN,
3856 	PGPGOUT,
3857 	PGFAULT,
3858 	PGMAJFAULT,
3859 };
3860 
3861 static const char *const memcg1_event_names[] = {
3862 	"pgpgin",
3863 	"pgpgout",
3864 	"pgfault",
3865 	"pgmajfault",
3866 };
3867 
3868 static int memcg_stat_show(struct seq_file *m, void *v)
3869 {
3870 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3871 	unsigned long memory, memsw;
3872 	struct mem_cgroup *mi;
3873 	unsigned int i;
3874 
3875 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3876 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3877 
3878 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3879 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3880 			continue;
3881 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3882 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3883 			   PAGE_SIZE);
3884 	}
3885 
3886 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3887 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3888 			   memcg_events_local(memcg, memcg1_events[i]));
3889 
3890 	for (i = 0; i < NR_LRU_LISTS; i++)
3891 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3892 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3893 			   PAGE_SIZE);
3894 
3895 	/* Hierarchical information */
3896 	memory = memsw = PAGE_COUNTER_MAX;
3897 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3898 		memory = min(memory, mi->memory.max);
3899 		memsw = min(memsw, mi->memsw.max);
3900 	}
3901 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3902 		   (u64)memory * PAGE_SIZE);
3903 	if (do_memsw_account())
3904 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3905 			   (u64)memsw * PAGE_SIZE);
3906 
3907 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3908 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3909 			continue;
3910 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3911 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3912 			   PAGE_SIZE);
3913 	}
3914 
3915 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3916 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3917 			   (u64)memcg_events(memcg, memcg1_events[i]));
3918 
3919 	for (i = 0; i < NR_LRU_LISTS; i++)
3920 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3921 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3922 			   PAGE_SIZE);
3923 
3924 #ifdef CONFIG_DEBUG_VM
3925 	{
3926 		pg_data_t *pgdat;
3927 		struct mem_cgroup_per_node *mz;
3928 		struct zone_reclaim_stat *rstat;
3929 		unsigned long recent_rotated[2] = {0, 0};
3930 		unsigned long recent_scanned[2] = {0, 0};
3931 
3932 		for_each_online_pgdat(pgdat) {
3933 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3934 			rstat = &mz->lruvec.reclaim_stat;
3935 
3936 			recent_rotated[0] += rstat->recent_rotated[0];
3937 			recent_rotated[1] += rstat->recent_rotated[1];
3938 			recent_scanned[0] += rstat->recent_scanned[0];
3939 			recent_scanned[1] += rstat->recent_scanned[1];
3940 		}
3941 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3942 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3943 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3944 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3945 	}
3946 #endif
3947 
3948 	return 0;
3949 }
3950 
3951 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3952 				      struct cftype *cft)
3953 {
3954 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3955 
3956 	return mem_cgroup_swappiness(memcg);
3957 }
3958 
3959 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3960 				       struct cftype *cft, u64 val)
3961 {
3962 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3963 
3964 	if (val > 100)
3965 		return -EINVAL;
3966 
3967 	if (css->parent)
3968 		memcg->swappiness = val;
3969 	else
3970 		vm_swappiness = val;
3971 
3972 	return 0;
3973 }
3974 
3975 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3976 {
3977 	struct mem_cgroup_threshold_ary *t;
3978 	unsigned long usage;
3979 	int i;
3980 
3981 	rcu_read_lock();
3982 	if (!swap)
3983 		t = rcu_dereference(memcg->thresholds.primary);
3984 	else
3985 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3986 
3987 	if (!t)
3988 		goto unlock;
3989 
3990 	usage = mem_cgroup_usage(memcg, swap);
3991 
3992 	/*
3993 	 * current_threshold points to threshold just below or equal to usage.
3994 	 * If it's not true, a threshold was crossed after last
3995 	 * call of __mem_cgroup_threshold().
3996 	 */
3997 	i = t->current_threshold;
3998 
3999 	/*
4000 	 * Iterate backward over array of thresholds starting from
4001 	 * current_threshold and check if a threshold is crossed.
4002 	 * If none of thresholds below usage is crossed, we read
4003 	 * only one element of the array here.
4004 	 */
4005 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4006 		eventfd_signal(t->entries[i].eventfd, 1);
4007 
4008 	/* i = current_threshold + 1 */
4009 	i++;
4010 
4011 	/*
4012 	 * Iterate forward over array of thresholds starting from
4013 	 * current_threshold+1 and check if a threshold is crossed.
4014 	 * If none of thresholds above usage is crossed, we read
4015 	 * only one element of the array here.
4016 	 */
4017 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4018 		eventfd_signal(t->entries[i].eventfd, 1);
4019 
4020 	/* Update current_threshold */
4021 	t->current_threshold = i - 1;
4022 unlock:
4023 	rcu_read_unlock();
4024 }
4025 
4026 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4027 {
4028 	while (memcg) {
4029 		__mem_cgroup_threshold(memcg, false);
4030 		if (do_memsw_account())
4031 			__mem_cgroup_threshold(memcg, true);
4032 
4033 		memcg = parent_mem_cgroup(memcg);
4034 	}
4035 }
4036 
4037 static int compare_thresholds(const void *a, const void *b)
4038 {
4039 	const struct mem_cgroup_threshold *_a = a;
4040 	const struct mem_cgroup_threshold *_b = b;
4041 
4042 	if (_a->threshold > _b->threshold)
4043 		return 1;
4044 
4045 	if (_a->threshold < _b->threshold)
4046 		return -1;
4047 
4048 	return 0;
4049 }
4050 
4051 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4052 {
4053 	struct mem_cgroup_eventfd_list *ev;
4054 
4055 	spin_lock(&memcg_oom_lock);
4056 
4057 	list_for_each_entry(ev, &memcg->oom_notify, list)
4058 		eventfd_signal(ev->eventfd, 1);
4059 
4060 	spin_unlock(&memcg_oom_lock);
4061 	return 0;
4062 }
4063 
4064 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4065 {
4066 	struct mem_cgroup *iter;
4067 
4068 	for_each_mem_cgroup_tree(iter, memcg)
4069 		mem_cgroup_oom_notify_cb(iter);
4070 }
4071 
4072 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4073 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4074 {
4075 	struct mem_cgroup_thresholds *thresholds;
4076 	struct mem_cgroup_threshold_ary *new;
4077 	unsigned long threshold;
4078 	unsigned long usage;
4079 	int i, size, ret;
4080 
4081 	ret = page_counter_memparse(args, "-1", &threshold);
4082 	if (ret)
4083 		return ret;
4084 
4085 	mutex_lock(&memcg->thresholds_lock);
4086 
4087 	if (type == _MEM) {
4088 		thresholds = &memcg->thresholds;
4089 		usage = mem_cgroup_usage(memcg, false);
4090 	} else if (type == _MEMSWAP) {
4091 		thresholds = &memcg->memsw_thresholds;
4092 		usage = mem_cgroup_usage(memcg, true);
4093 	} else
4094 		BUG();
4095 
4096 	/* Check if a threshold crossed before adding a new one */
4097 	if (thresholds->primary)
4098 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4099 
4100 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4101 
4102 	/* Allocate memory for new array of thresholds */
4103 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4104 	if (!new) {
4105 		ret = -ENOMEM;
4106 		goto unlock;
4107 	}
4108 	new->size = size;
4109 
4110 	/* Copy thresholds (if any) to new array */
4111 	if (thresholds->primary) {
4112 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4113 				sizeof(struct mem_cgroup_threshold));
4114 	}
4115 
4116 	/* Add new threshold */
4117 	new->entries[size - 1].eventfd = eventfd;
4118 	new->entries[size - 1].threshold = threshold;
4119 
4120 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4121 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4122 			compare_thresholds, NULL);
4123 
4124 	/* Find current threshold */
4125 	new->current_threshold = -1;
4126 	for (i = 0; i < size; i++) {
4127 		if (new->entries[i].threshold <= usage) {
4128 			/*
4129 			 * new->current_threshold will not be used until
4130 			 * rcu_assign_pointer(), so it's safe to increment
4131 			 * it here.
4132 			 */
4133 			++new->current_threshold;
4134 		} else
4135 			break;
4136 	}
4137 
4138 	/* Free old spare buffer and save old primary buffer as spare */
4139 	kfree(thresholds->spare);
4140 	thresholds->spare = thresholds->primary;
4141 
4142 	rcu_assign_pointer(thresholds->primary, new);
4143 
4144 	/* To be sure that nobody uses thresholds */
4145 	synchronize_rcu();
4146 
4147 unlock:
4148 	mutex_unlock(&memcg->thresholds_lock);
4149 
4150 	return ret;
4151 }
4152 
4153 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4154 	struct eventfd_ctx *eventfd, const char *args)
4155 {
4156 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4157 }
4158 
4159 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4160 	struct eventfd_ctx *eventfd, const char *args)
4161 {
4162 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4163 }
4164 
4165 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4166 	struct eventfd_ctx *eventfd, enum res_type type)
4167 {
4168 	struct mem_cgroup_thresholds *thresholds;
4169 	struct mem_cgroup_threshold_ary *new;
4170 	unsigned long usage;
4171 	int i, j, size;
4172 
4173 	mutex_lock(&memcg->thresholds_lock);
4174 
4175 	if (type == _MEM) {
4176 		thresholds = &memcg->thresholds;
4177 		usage = mem_cgroup_usage(memcg, false);
4178 	} else if (type == _MEMSWAP) {
4179 		thresholds = &memcg->memsw_thresholds;
4180 		usage = mem_cgroup_usage(memcg, true);
4181 	} else
4182 		BUG();
4183 
4184 	if (!thresholds->primary)
4185 		goto unlock;
4186 
4187 	/* Check if a threshold crossed before removing */
4188 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4189 
4190 	/* Calculate new number of threshold */
4191 	size = 0;
4192 	for (i = 0; i < thresholds->primary->size; i++) {
4193 		if (thresholds->primary->entries[i].eventfd != eventfd)
4194 			size++;
4195 	}
4196 
4197 	new = thresholds->spare;
4198 
4199 	/* Set thresholds array to NULL if we don't have thresholds */
4200 	if (!size) {
4201 		kfree(new);
4202 		new = NULL;
4203 		goto swap_buffers;
4204 	}
4205 
4206 	new->size = size;
4207 
4208 	/* Copy thresholds and find current threshold */
4209 	new->current_threshold = -1;
4210 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4211 		if (thresholds->primary->entries[i].eventfd == eventfd)
4212 			continue;
4213 
4214 		new->entries[j] = thresholds->primary->entries[i];
4215 		if (new->entries[j].threshold <= usage) {
4216 			/*
4217 			 * new->current_threshold will not be used
4218 			 * until rcu_assign_pointer(), so it's safe to increment
4219 			 * it here.
4220 			 */
4221 			++new->current_threshold;
4222 		}
4223 		j++;
4224 	}
4225 
4226 swap_buffers:
4227 	/* Swap primary and spare array */
4228 	thresholds->spare = thresholds->primary;
4229 
4230 	rcu_assign_pointer(thresholds->primary, new);
4231 
4232 	/* To be sure that nobody uses thresholds */
4233 	synchronize_rcu();
4234 
4235 	/* If all events are unregistered, free the spare array */
4236 	if (!new) {
4237 		kfree(thresholds->spare);
4238 		thresholds->spare = NULL;
4239 	}
4240 unlock:
4241 	mutex_unlock(&memcg->thresholds_lock);
4242 }
4243 
4244 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4245 	struct eventfd_ctx *eventfd)
4246 {
4247 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4248 }
4249 
4250 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4251 	struct eventfd_ctx *eventfd)
4252 {
4253 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4254 }
4255 
4256 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4257 	struct eventfd_ctx *eventfd, const char *args)
4258 {
4259 	struct mem_cgroup_eventfd_list *event;
4260 
4261 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4262 	if (!event)
4263 		return -ENOMEM;
4264 
4265 	spin_lock(&memcg_oom_lock);
4266 
4267 	event->eventfd = eventfd;
4268 	list_add(&event->list, &memcg->oom_notify);
4269 
4270 	/* already in OOM ? */
4271 	if (memcg->under_oom)
4272 		eventfd_signal(eventfd, 1);
4273 	spin_unlock(&memcg_oom_lock);
4274 
4275 	return 0;
4276 }
4277 
4278 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4279 	struct eventfd_ctx *eventfd)
4280 {
4281 	struct mem_cgroup_eventfd_list *ev, *tmp;
4282 
4283 	spin_lock(&memcg_oom_lock);
4284 
4285 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4286 		if (ev->eventfd == eventfd) {
4287 			list_del(&ev->list);
4288 			kfree(ev);
4289 		}
4290 	}
4291 
4292 	spin_unlock(&memcg_oom_lock);
4293 }
4294 
4295 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4296 {
4297 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4298 
4299 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4300 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4301 	seq_printf(sf, "oom_kill %lu\n",
4302 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4303 	return 0;
4304 }
4305 
4306 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4307 	struct cftype *cft, u64 val)
4308 {
4309 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310 
4311 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4312 	if (!css->parent || !((val == 0) || (val == 1)))
4313 		return -EINVAL;
4314 
4315 	memcg->oom_kill_disable = val;
4316 	if (!val)
4317 		memcg_oom_recover(memcg);
4318 
4319 	return 0;
4320 }
4321 
4322 #ifdef CONFIG_CGROUP_WRITEBACK
4323 
4324 #include <trace/events/writeback.h>
4325 
4326 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4327 {
4328 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4329 }
4330 
4331 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4332 {
4333 	wb_domain_exit(&memcg->cgwb_domain);
4334 }
4335 
4336 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4337 {
4338 	wb_domain_size_changed(&memcg->cgwb_domain);
4339 }
4340 
4341 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4342 {
4343 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4344 
4345 	if (!memcg->css.parent)
4346 		return NULL;
4347 
4348 	return &memcg->cgwb_domain;
4349 }
4350 
4351 /*
4352  * idx can be of type enum memcg_stat_item or node_stat_item.
4353  * Keep in sync with memcg_exact_page().
4354  */
4355 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4356 {
4357 	long x = atomic_long_read(&memcg->vmstats[idx]);
4358 	int cpu;
4359 
4360 	for_each_online_cpu(cpu)
4361 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4362 	if (x < 0)
4363 		x = 0;
4364 	return x;
4365 }
4366 
4367 /**
4368  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4369  * @wb: bdi_writeback in question
4370  * @pfilepages: out parameter for number of file pages
4371  * @pheadroom: out parameter for number of allocatable pages according to memcg
4372  * @pdirty: out parameter for number of dirty pages
4373  * @pwriteback: out parameter for number of pages under writeback
4374  *
4375  * Determine the numbers of file, headroom, dirty, and writeback pages in
4376  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4377  * is a bit more involved.
4378  *
4379  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4380  * headroom is calculated as the lowest headroom of itself and the
4381  * ancestors.  Note that this doesn't consider the actual amount of
4382  * available memory in the system.  The caller should further cap
4383  * *@pheadroom accordingly.
4384  */
4385 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4386 			 unsigned long *pheadroom, unsigned long *pdirty,
4387 			 unsigned long *pwriteback)
4388 {
4389 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4390 	struct mem_cgroup *parent;
4391 
4392 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4393 
4394 	/* this should eventually include NR_UNSTABLE_NFS */
4395 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4396 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4397 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4398 	*pheadroom = PAGE_COUNTER_MAX;
4399 
4400 	while ((parent = parent_mem_cgroup(memcg))) {
4401 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4402 		unsigned long used = page_counter_read(&memcg->memory);
4403 
4404 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4405 		memcg = parent;
4406 	}
4407 }
4408 
4409 /*
4410  * Foreign dirty flushing
4411  *
4412  * There's an inherent mismatch between memcg and writeback.  The former
4413  * trackes ownership per-page while the latter per-inode.  This was a
4414  * deliberate design decision because honoring per-page ownership in the
4415  * writeback path is complicated, may lead to higher CPU and IO overheads
4416  * and deemed unnecessary given that write-sharing an inode across
4417  * different cgroups isn't a common use-case.
4418  *
4419  * Combined with inode majority-writer ownership switching, this works well
4420  * enough in most cases but there are some pathological cases.  For
4421  * example, let's say there are two cgroups A and B which keep writing to
4422  * different but confined parts of the same inode.  B owns the inode and
4423  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4424  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4425  * triggering background writeback.  A will be slowed down without a way to
4426  * make writeback of the dirty pages happen.
4427  *
4428  * Conditions like the above can lead to a cgroup getting repatedly and
4429  * severely throttled after making some progress after each
4430  * dirty_expire_interval while the underyling IO device is almost
4431  * completely idle.
4432  *
4433  * Solving this problem completely requires matching the ownership tracking
4434  * granularities between memcg and writeback in either direction.  However,
4435  * the more egregious behaviors can be avoided by simply remembering the
4436  * most recent foreign dirtying events and initiating remote flushes on
4437  * them when local writeback isn't enough to keep the memory clean enough.
4438  *
4439  * The following two functions implement such mechanism.  When a foreign
4440  * page - a page whose memcg and writeback ownerships don't match - is
4441  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4442  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4443  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4444  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4445  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4446  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4447  * limited to MEMCG_CGWB_FRN_CNT.
4448  *
4449  * The mechanism only remembers IDs and doesn't hold any object references.
4450  * As being wrong occasionally doesn't matter, updates and accesses to the
4451  * records are lockless and racy.
4452  */
4453 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4454 					     struct bdi_writeback *wb)
4455 {
4456 	struct mem_cgroup *memcg = page->mem_cgroup;
4457 	struct memcg_cgwb_frn *frn;
4458 	u64 now = get_jiffies_64();
4459 	u64 oldest_at = now;
4460 	int oldest = -1;
4461 	int i;
4462 
4463 	trace_track_foreign_dirty(page, wb);
4464 
4465 	/*
4466 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4467 	 * using it.  If not replace the oldest one which isn't being
4468 	 * written out.
4469 	 */
4470 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4471 		frn = &memcg->cgwb_frn[i];
4472 		if (frn->bdi_id == wb->bdi->id &&
4473 		    frn->memcg_id == wb->memcg_css->id)
4474 			break;
4475 		if (time_before64(frn->at, oldest_at) &&
4476 		    atomic_read(&frn->done.cnt) == 1) {
4477 			oldest = i;
4478 			oldest_at = frn->at;
4479 		}
4480 	}
4481 
4482 	if (i < MEMCG_CGWB_FRN_CNT) {
4483 		/*
4484 		 * Re-using an existing one.  Update timestamp lazily to
4485 		 * avoid making the cacheline hot.  We want them to be
4486 		 * reasonably up-to-date and significantly shorter than
4487 		 * dirty_expire_interval as that's what expires the record.
4488 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4489 		 */
4490 		unsigned long update_intv =
4491 			min_t(unsigned long, HZ,
4492 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4493 
4494 		if (time_before64(frn->at, now - update_intv))
4495 			frn->at = now;
4496 	} else if (oldest >= 0) {
4497 		/* replace the oldest free one */
4498 		frn = &memcg->cgwb_frn[oldest];
4499 		frn->bdi_id = wb->bdi->id;
4500 		frn->memcg_id = wb->memcg_css->id;
4501 		frn->at = now;
4502 	}
4503 }
4504 
4505 /* issue foreign writeback flushes for recorded foreign dirtying events */
4506 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4507 {
4508 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4509 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4510 	u64 now = jiffies_64;
4511 	int i;
4512 
4513 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4514 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4515 
4516 		/*
4517 		 * If the record is older than dirty_expire_interval,
4518 		 * writeback on it has already started.  No need to kick it
4519 		 * off again.  Also, don't start a new one if there's
4520 		 * already one in flight.
4521 		 */
4522 		if (time_after64(frn->at, now - intv) &&
4523 		    atomic_read(&frn->done.cnt) == 1) {
4524 			frn->at = 0;
4525 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4526 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4527 					       WB_REASON_FOREIGN_FLUSH,
4528 					       &frn->done);
4529 		}
4530 	}
4531 }
4532 
4533 #else	/* CONFIG_CGROUP_WRITEBACK */
4534 
4535 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4536 {
4537 	return 0;
4538 }
4539 
4540 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4541 {
4542 }
4543 
4544 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4545 {
4546 }
4547 
4548 #endif	/* CONFIG_CGROUP_WRITEBACK */
4549 
4550 /*
4551  * DO NOT USE IN NEW FILES.
4552  *
4553  * "cgroup.event_control" implementation.
4554  *
4555  * This is way over-engineered.  It tries to support fully configurable
4556  * events for each user.  Such level of flexibility is completely
4557  * unnecessary especially in the light of the planned unified hierarchy.
4558  *
4559  * Please deprecate this and replace with something simpler if at all
4560  * possible.
4561  */
4562 
4563 /*
4564  * Unregister event and free resources.
4565  *
4566  * Gets called from workqueue.
4567  */
4568 static void memcg_event_remove(struct work_struct *work)
4569 {
4570 	struct mem_cgroup_event *event =
4571 		container_of(work, struct mem_cgroup_event, remove);
4572 	struct mem_cgroup *memcg = event->memcg;
4573 
4574 	remove_wait_queue(event->wqh, &event->wait);
4575 
4576 	event->unregister_event(memcg, event->eventfd);
4577 
4578 	/* Notify userspace the event is going away. */
4579 	eventfd_signal(event->eventfd, 1);
4580 
4581 	eventfd_ctx_put(event->eventfd);
4582 	kfree(event);
4583 	css_put(&memcg->css);
4584 }
4585 
4586 /*
4587  * Gets called on EPOLLHUP on eventfd when user closes it.
4588  *
4589  * Called with wqh->lock held and interrupts disabled.
4590  */
4591 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4592 			    int sync, void *key)
4593 {
4594 	struct mem_cgroup_event *event =
4595 		container_of(wait, struct mem_cgroup_event, wait);
4596 	struct mem_cgroup *memcg = event->memcg;
4597 	__poll_t flags = key_to_poll(key);
4598 
4599 	if (flags & EPOLLHUP) {
4600 		/*
4601 		 * If the event has been detached at cgroup removal, we
4602 		 * can simply return knowing the other side will cleanup
4603 		 * for us.
4604 		 *
4605 		 * We can't race against event freeing since the other
4606 		 * side will require wqh->lock via remove_wait_queue(),
4607 		 * which we hold.
4608 		 */
4609 		spin_lock(&memcg->event_list_lock);
4610 		if (!list_empty(&event->list)) {
4611 			list_del_init(&event->list);
4612 			/*
4613 			 * We are in atomic context, but cgroup_event_remove()
4614 			 * may sleep, so we have to call it in workqueue.
4615 			 */
4616 			schedule_work(&event->remove);
4617 		}
4618 		spin_unlock(&memcg->event_list_lock);
4619 	}
4620 
4621 	return 0;
4622 }
4623 
4624 static void memcg_event_ptable_queue_proc(struct file *file,
4625 		wait_queue_head_t *wqh, poll_table *pt)
4626 {
4627 	struct mem_cgroup_event *event =
4628 		container_of(pt, struct mem_cgroup_event, pt);
4629 
4630 	event->wqh = wqh;
4631 	add_wait_queue(wqh, &event->wait);
4632 }
4633 
4634 /*
4635  * DO NOT USE IN NEW FILES.
4636  *
4637  * Parse input and register new cgroup event handler.
4638  *
4639  * Input must be in format '<event_fd> <control_fd> <args>'.
4640  * Interpretation of args is defined by control file implementation.
4641  */
4642 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4643 					 char *buf, size_t nbytes, loff_t off)
4644 {
4645 	struct cgroup_subsys_state *css = of_css(of);
4646 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4647 	struct mem_cgroup_event *event;
4648 	struct cgroup_subsys_state *cfile_css;
4649 	unsigned int efd, cfd;
4650 	struct fd efile;
4651 	struct fd cfile;
4652 	const char *name;
4653 	char *endp;
4654 	int ret;
4655 
4656 	buf = strstrip(buf);
4657 
4658 	efd = simple_strtoul(buf, &endp, 10);
4659 	if (*endp != ' ')
4660 		return -EINVAL;
4661 	buf = endp + 1;
4662 
4663 	cfd = simple_strtoul(buf, &endp, 10);
4664 	if ((*endp != ' ') && (*endp != '\0'))
4665 		return -EINVAL;
4666 	buf = endp + 1;
4667 
4668 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4669 	if (!event)
4670 		return -ENOMEM;
4671 
4672 	event->memcg = memcg;
4673 	INIT_LIST_HEAD(&event->list);
4674 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4675 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4676 	INIT_WORK(&event->remove, memcg_event_remove);
4677 
4678 	efile = fdget(efd);
4679 	if (!efile.file) {
4680 		ret = -EBADF;
4681 		goto out_kfree;
4682 	}
4683 
4684 	event->eventfd = eventfd_ctx_fileget(efile.file);
4685 	if (IS_ERR(event->eventfd)) {
4686 		ret = PTR_ERR(event->eventfd);
4687 		goto out_put_efile;
4688 	}
4689 
4690 	cfile = fdget(cfd);
4691 	if (!cfile.file) {
4692 		ret = -EBADF;
4693 		goto out_put_eventfd;
4694 	}
4695 
4696 	/* the process need read permission on control file */
4697 	/* AV: shouldn't we check that it's been opened for read instead? */
4698 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4699 	if (ret < 0)
4700 		goto out_put_cfile;
4701 
4702 	/*
4703 	 * Determine the event callbacks and set them in @event.  This used
4704 	 * to be done via struct cftype but cgroup core no longer knows
4705 	 * about these events.  The following is crude but the whole thing
4706 	 * is for compatibility anyway.
4707 	 *
4708 	 * DO NOT ADD NEW FILES.
4709 	 */
4710 	name = cfile.file->f_path.dentry->d_name.name;
4711 
4712 	if (!strcmp(name, "memory.usage_in_bytes")) {
4713 		event->register_event = mem_cgroup_usage_register_event;
4714 		event->unregister_event = mem_cgroup_usage_unregister_event;
4715 	} else if (!strcmp(name, "memory.oom_control")) {
4716 		event->register_event = mem_cgroup_oom_register_event;
4717 		event->unregister_event = mem_cgroup_oom_unregister_event;
4718 	} else if (!strcmp(name, "memory.pressure_level")) {
4719 		event->register_event = vmpressure_register_event;
4720 		event->unregister_event = vmpressure_unregister_event;
4721 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4722 		event->register_event = memsw_cgroup_usage_register_event;
4723 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4724 	} else {
4725 		ret = -EINVAL;
4726 		goto out_put_cfile;
4727 	}
4728 
4729 	/*
4730 	 * Verify @cfile should belong to @css.  Also, remaining events are
4731 	 * automatically removed on cgroup destruction but the removal is
4732 	 * asynchronous, so take an extra ref on @css.
4733 	 */
4734 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4735 					       &memory_cgrp_subsys);
4736 	ret = -EINVAL;
4737 	if (IS_ERR(cfile_css))
4738 		goto out_put_cfile;
4739 	if (cfile_css != css) {
4740 		css_put(cfile_css);
4741 		goto out_put_cfile;
4742 	}
4743 
4744 	ret = event->register_event(memcg, event->eventfd, buf);
4745 	if (ret)
4746 		goto out_put_css;
4747 
4748 	vfs_poll(efile.file, &event->pt);
4749 
4750 	spin_lock(&memcg->event_list_lock);
4751 	list_add(&event->list, &memcg->event_list);
4752 	spin_unlock(&memcg->event_list_lock);
4753 
4754 	fdput(cfile);
4755 	fdput(efile);
4756 
4757 	return nbytes;
4758 
4759 out_put_css:
4760 	css_put(css);
4761 out_put_cfile:
4762 	fdput(cfile);
4763 out_put_eventfd:
4764 	eventfd_ctx_put(event->eventfd);
4765 out_put_efile:
4766 	fdput(efile);
4767 out_kfree:
4768 	kfree(event);
4769 
4770 	return ret;
4771 }
4772 
4773 static struct cftype mem_cgroup_legacy_files[] = {
4774 	{
4775 		.name = "usage_in_bytes",
4776 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4777 		.read_u64 = mem_cgroup_read_u64,
4778 	},
4779 	{
4780 		.name = "max_usage_in_bytes",
4781 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4782 		.write = mem_cgroup_reset,
4783 		.read_u64 = mem_cgroup_read_u64,
4784 	},
4785 	{
4786 		.name = "limit_in_bytes",
4787 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4788 		.write = mem_cgroup_write,
4789 		.read_u64 = mem_cgroup_read_u64,
4790 	},
4791 	{
4792 		.name = "soft_limit_in_bytes",
4793 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4794 		.write = mem_cgroup_write,
4795 		.read_u64 = mem_cgroup_read_u64,
4796 	},
4797 	{
4798 		.name = "failcnt",
4799 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4800 		.write = mem_cgroup_reset,
4801 		.read_u64 = mem_cgroup_read_u64,
4802 	},
4803 	{
4804 		.name = "stat",
4805 		.seq_show = memcg_stat_show,
4806 	},
4807 	{
4808 		.name = "force_empty",
4809 		.write = mem_cgroup_force_empty_write,
4810 	},
4811 	{
4812 		.name = "use_hierarchy",
4813 		.write_u64 = mem_cgroup_hierarchy_write,
4814 		.read_u64 = mem_cgroup_hierarchy_read,
4815 	},
4816 	{
4817 		.name = "cgroup.event_control",		/* XXX: for compat */
4818 		.write = memcg_write_event_control,
4819 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4820 	},
4821 	{
4822 		.name = "swappiness",
4823 		.read_u64 = mem_cgroup_swappiness_read,
4824 		.write_u64 = mem_cgroup_swappiness_write,
4825 	},
4826 	{
4827 		.name = "move_charge_at_immigrate",
4828 		.read_u64 = mem_cgroup_move_charge_read,
4829 		.write_u64 = mem_cgroup_move_charge_write,
4830 	},
4831 	{
4832 		.name = "oom_control",
4833 		.seq_show = mem_cgroup_oom_control_read,
4834 		.write_u64 = mem_cgroup_oom_control_write,
4835 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4836 	},
4837 	{
4838 		.name = "pressure_level",
4839 	},
4840 #ifdef CONFIG_NUMA
4841 	{
4842 		.name = "numa_stat",
4843 		.seq_show = memcg_numa_stat_show,
4844 	},
4845 #endif
4846 	{
4847 		.name = "kmem.limit_in_bytes",
4848 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4849 		.write = mem_cgroup_write,
4850 		.read_u64 = mem_cgroup_read_u64,
4851 	},
4852 	{
4853 		.name = "kmem.usage_in_bytes",
4854 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4855 		.read_u64 = mem_cgroup_read_u64,
4856 	},
4857 	{
4858 		.name = "kmem.failcnt",
4859 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4860 		.write = mem_cgroup_reset,
4861 		.read_u64 = mem_cgroup_read_u64,
4862 	},
4863 	{
4864 		.name = "kmem.max_usage_in_bytes",
4865 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4866 		.write = mem_cgroup_reset,
4867 		.read_u64 = mem_cgroup_read_u64,
4868 	},
4869 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4870 	{
4871 		.name = "kmem.slabinfo",
4872 		.seq_start = memcg_slab_start,
4873 		.seq_next = memcg_slab_next,
4874 		.seq_stop = memcg_slab_stop,
4875 		.seq_show = memcg_slab_show,
4876 	},
4877 #endif
4878 	{
4879 		.name = "kmem.tcp.limit_in_bytes",
4880 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4881 		.write = mem_cgroup_write,
4882 		.read_u64 = mem_cgroup_read_u64,
4883 	},
4884 	{
4885 		.name = "kmem.tcp.usage_in_bytes",
4886 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4887 		.read_u64 = mem_cgroup_read_u64,
4888 	},
4889 	{
4890 		.name = "kmem.tcp.failcnt",
4891 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4892 		.write = mem_cgroup_reset,
4893 		.read_u64 = mem_cgroup_read_u64,
4894 	},
4895 	{
4896 		.name = "kmem.tcp.max_usage_in_bytes",
4897 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4898 		.write = mem_cgroup_reset,
4899 		.read_u64 = mem_cgroup_read_u64,
4900 	},
4901 	{ },	/* terminate */
4902 };
4903 
4904 /*
4905  * Private memory cgroup IDR
4906  *
4907  * Swap-out records and page cache shadow entries need to store memcg
4908  * references in constrained space, so we maintain an ID space that is
4909  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4910  * memory-controlled cgroups to 64k.
4911  *
4912  * However, there usually are many references to the oflline CSS after
4913  * the cgroup has been destroyed, such as page cache or reclaimable
4914  * slab objects, that don't need to hang on to the ID. We want to keep
4915  * those dead CSS from occupying IDs, or we might quickly exhaust the
4916  * relatively small ID space and prevent the creation of new cgroups
4917  * even when there are much fewer than 64k cgroups - possibly none.
4918  *
4919  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4920  * be freed and recycled when it's no longer needed, which is usually
4921  * when the CSS is offlined.
4922  *
4923  * The only exception to that are records of swapped out tmpfs/shmem
4924  * pages that need to be attributed to live ancestors on swapin. But
4925  * those references are manageable from userspace.
4926  */
4927 
4928 static DEFINE_IDR(mem_cgroup_idr);
4929 
4930 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4931 {
4932 	if (memcg->id.id > 0) {
4933 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4934 		memcg->id.id = 0;
4935 	}
4936 }
4937 
4938 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4939 {
4940 	refcount_add(n, &memcg->id.ref);
4941 }
4942 
4943 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4944 {
4945 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4946 		mem_cgroup_id_remove(memcg);
4947 
4948 		/* Memcg ID pins CSS */
4949 		css_put(&memcg->css);
4950 	}
4951 }
4952 
4953 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4954 {
4955 	mem_cgroup_id_put_many(memcg, 1);
4956 }
4957 
4958 /**
4959  * mem_cgroup_from_id - look up a memcg from a memcg id
4960  * @id: the memcg id to look up
4961  *
4962  * Caller must hold rcu_read_lock().
4963  */
4964 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4965 {
4966 	WARN_ON_ONCE(!rcu_read_lock_held());
4967 	return idr_find(&mem_cgroup_idr, id);
4968 }
4969 
4970 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4971 {
4972 	struct mem_cgroup_per_node *pn;
4973 	int tmp = node;
4974 	/*
4975 	 * This routine is called against possible nodes.
4976 	 * But it's BUG to call kmalloc() against offline node.
4977 	 *
4978 	 * TODO: this routine can waste much memory for nodes which will
4979 	 *       never be onlined. It's better to use memory hotplug callback
4980 	 *       function.
4981 	 */
4982 	if (!node_state(node, N_NORMAL_MEMORY))
4983 		tmp = -1;
4984 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4985 	if (!pn)
4986 		return 1;
4987 
4988 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4989 	if (!pn->lruvec_stat_local) {
4990 		kfree(pn);
4991 		return 1;
4992 	}
4993 
4994 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4995 	if (!pn->lruvec_stat_cpu) {
4996 		free_percpu(pn->lruvec_stat_local);
4997 		kfree(pn);
4998 		return 1;
4999 	}
5000 
5001 	lruvec_init(&pn->lruvec);
5002 	pn->usage_in_excess = 0;
5003 	pn->on_tree = false;
5004 	pn->memcg = memcg;
5005 
5006 	memcg->nodeinfo[node] = pn;
5007 	return 0;
5008 }
5009 
5010 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5011 {
5012 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5013 
5014 	if (!pn)
5015 		return;
5016 
5017 	free_percpu(pn->lruvec_stat_cpu);
5018 	free_percpu(pn->lruvec_stat_local);
5019 	kfree(pn);
5020 }
5021 
5022 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5023 {
5024 	int node;
5025 
5026 	for_each_node(node)
5027 		free_mem_cgroup_per_node_info(memcg, node);
5028 	free_percpu(memcg->vmstats_percpu);
5029 	free_percpu(memcg->vmstats_local);
5030 	kfree(memcg);
5031 }
5032 
5033 static void mem_cgroup_free(struct mem_cgroup *memcg)
5034 {
5035 	memcg_wb_domain_exit(memcg);
5036 	/*
5037 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5038 	 * on parent's and all ancestor levels.
5039 	 */
5040 	memcg_flush_percpu_vmstats(memcg, false);
5041 	memcg_flush_percpu_vmevents(memcg);
5042 	__mem_cgroup_free(memcg);
5043 }
5044 
5045 static struct mem_cgroup *mem_cgroup_alloc(void)
5046 {
5047 	struct mem_cgroup *memcg;
5048 	unsigned int size;
5049 	int node;
5050 	int __maybe_unused i;
5051 
5052 	size = sizeof(struct mem_cgroup);
5053 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5054 
5055 	memcg = kzalloc(size, GFP_KERNEL);
5056 	if (!memcg)
5057 		return NULL;
5058 
5059 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5060 				 1, MEM_CGROUP_ID_MAX,
5061 				 GFP_KERNEL);
5062 	if (memcg->id.id < 0)
5063 		goto fail;
5064 
5065 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5066 	if (!memcg->vmstats_local)
5067 		goto fail;
5068 
5069 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5070 	if (!memcg->vmstats_percpu)
5071 		goto fail;
5072 
5073 	for_each_node(node)
5074 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5075 			goto fail;
5076 
5077 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5078 		goto fail;
5079 
5080 	INIT_WORK(&memcg->high_work, high_work_func);
5081 	memcg->last_scanned_node = MAX_NUMNODES;
5082 	INIT_LIST_HEAD(&memcg->oom_notify);
5083 	mutex_init(&memcg->thresholds_lock);
5084 	spin_lock_init(&memcg->move_lock);
5085 	vmpressure_init(&memcg->vmpressure);
5086 	INIT_LIST_HEAD(&memcg->event_list);
5087 	spin_lock_init(&memcg->event_list_lock);
5088 	memcg->socket_pressure = jiffies;
5089 #ifdef CONFIG_MEMCG_KMEM
5090 	memcg->kmemcg_id = -1;
5091 #endif
5092 #ifdef CONFIG_CGROUP_WRITEBACK
5093 	INIT_LIST_HEAD(&memcg->cgwb_list);
5094 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5095 		memcg->cgwb_frn[i].done =
5096 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5097 #endif
5098 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5099 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5100 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5101 	memcg->deferred_split_queue.split_queue_len = 0;
5102 #endif
5103 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5104 	return memcg;
5105 fail:
5106 	mem_cgroup_id_remove(memcg);
5107 	__mem_cgroup_free(memcg);
5108 	return NULL;
5109 }
5110 
5111 static struct cgroup_subsys_state * __ref
5112 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5113 {
5114 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5115 	struct mem_cgroup *memcg;
5116 	long error = -ENOMEM;
5117 
5118 	memcg = mem_cgroup_alloc();
5119 	if (!memcg)
5120 		return ERR_PTR(error);
5121 
5122 	memcg->high = PAGE_COUNTER_MAX;
5123 	memcg->soft_limit = PAGE_COUNTER_MAX;
5124 	if (parent) {
5125 		memcg->swappiness = mem_cgroup_swappiness(parent);
5126 		memcg->oom_kill_disable = parent->oom_kill_disable;
5127 	}
5128 	if (parent && parent->use_hierarchy) {
5129 		memcg->use_hierarchy = true;
5130 		page_counter_init(&memcg->memory, &parent->memory);
5131 		page_counter_init(&memcg->swap, &parent->swap);
5132 		page_counter_init(&memcg->memsw, &parent->memsw);
5133 		page_counter_init(&memcg->kmem, &parent->kmem);
5134 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5135 	} else {
5136 		page_counter_init(&memcg->memory, NULL);
5137 		page_counter_init(&memcg->swap, NULL);
5138 		page_counter_init(&memcg->memsw, NULL);
5139 		page_counter_init(&memcg->kmem, NULL);
5140 		page_counter_init(&memcg->tcpmem, NULL);
5141 		/*
5142 		 * Deeper hierachy with use_hierarchy == false doesn't make
5143 		 * much sense so let cgroup subsystem know about this
5144 		 * unfortunate state in our controller.
5145 		 */
5146 		if (parent != root_mem_cgroup)
5147 			memory_cgrp_subsys.broken_hierarchy = true;
5148 	}
5149 
5150 	/* The following stuff does not apply to the root */
5151 	if (!parent) {
5152 #ifdef CONFIG_MEMCG_KMEM
5153 		INIT_LIST_HEAD(&memcg->kmem_caches);
5154 #endif
5155 		root_mem_cgroup = memcg;
5156 		return &memcg->css;
5157 	}
5158 
5159 	error = memcg_online_kmem(memcg);
5160 	if (error)
5161 		goto fail;
5162 
5163 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5164 		static_branch_inc(&memcg_sockets_enabled_key);
5165 
5166 	return &memcg->css;
5167 fail:
5168 	mem_cgroup_id_remove(memcg);
5169 	mem_cgroup_free(memcg);
5170 	return ERR_PTR(-ENOMEM);
5171 }
5172 
5173 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5174 {
5175 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5176 
5177 	/*
5178 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5179 	 * by the time the maps are allocated. So, we allocate maps
5180 	 * here, when for_each_mem_cgroup() can't skip it.
5181 	 */
5182 	if (memcg_alloc_shrinker_maps(memcg)) {
5183 		mem_cgroup_id_remove(memcg);
5184 		return -ENOMEM;
5185 	}
5186 
5187 	/* Online state pins memcg ID, memcg ID pins CSS */
5188 	refcount_set(&memcg->id.ref, 1);
5189 	css_get(css);
5190 	return 0;
5191 }
5192 
5193 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5194 {
5195 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5196 	struct mem_cgroup_event *event, *tmp;
5197 
5198 	/*
5199 	 * Unregister events and notify userspace.
5200 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5201 	 * directory to avoid race between userspace and kernelspace.
5202 	 */
5203 	spin_lock(&memcg->event_list_lock);
5204 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5205 		list_del_init(&event->list);
5206 		schedule_work(&event->remove);
5207 	}
5208 	spin_unlock(&memcg->event_list_lock);
5209 
5210 	page_counter_set_min(&memcg->memory, 0);
5211 	page_counter_set_low(&memcg->memory, 0);
5212 
5213 	memcg_offline_kmem(memcg);
5214 	wb_memcg_offline(memcg);
5215 
5216 	drain_all_stock(memcg);
5217 
5218 	mem_cgroup_id_put(memcg);
5219 }
5220 
5221 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5222 {
5223 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5224 
5225 	invalidate_reclaim_iterators(memcg);
5226 }
5227 
5228 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5229 {
5230 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5231 	int __maybe_unused i;
5232 
5233 #ifdef CONFIG_CGROUP_WRITEBACK
5234 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5235 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5236 #endif
5237 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5238 		static_branch_dec(&memcg_sockets_enabled_key);
5239 
5240 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5241 		static_branch_dec(&memcg_sockets_enabled_key);
5242 
5243 	vmpressure_cleanup(&memcg->vmpressure);
5244 	cancel_work_sync(&memcg->high_work);
5245 	mem_cgroup_remove_from_trees(memcg);
5246 	memcg_free_shrinker_maps(memcg);
5247 	memcg_free_kmem(memcg);
5248 	mem_cgroup_free(memcg);
5249 }
5250 
5251 /**
5252  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5253  * @css: the target css
5254  *
5255  * Reset the states of the mem_cgroup associated with @css.  This is
5256  * invoked when the userland requests disabling on the default hierarchy
5257  * but the memcg is pinned through dependency.  The memcg should stop
5258  * applying policies and should revert to the vanilla state as it may be
5259  * made visible again.
5260  *
5261  * The current implementation only resets the essential configurations.
5262  * This needs to be expanded to cover all the visible parts.
5263  */
5264 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5265 {
5266 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5267 
5268 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5269 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5270 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5271 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5272 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5273 	page_counter_set_min(&memcg->memory, 0);
5274 	page_counter_set_low(&memcg->memory, 0);
5275 	memcg->high = PAGE_COUNTER_MAX;
5276 	memcg->soft_limit = PAGE_COUNTER_MAX;
5277 	memcg_wb_domain_size_changed(memcg);
5278 }
5279 
5280 #ifdef CONFIG_MMU
5281 /* Handlers for move charge at task migration. */
5282 static int mem_cgroup_do_precharge(unsigned long count)
5283 {
5284 	int ret;
5285 
5286 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5287 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5288 	if (!ret) {
5289 		mc.precharge += count;
5290 		return ret;
5291 	}
5292 
5293 	/* Try charges one by one with reclaim, but do not retry */
5294 	while (count--) {
5295 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5296 		if (ret)
5297 			return ret;
5298 		mc.precharge++;
5299 		cond_resched();
5300 	}
5301 	return 0;
5302 }
5303 
5304 union mc_target {
5305 	struct page	*page;
5306 	swp_entry_t	ent;
5307 };
5308 
5309 enum mc_target_type {
5310 	MC_TARGET_NONE = 0,
5311 	MC_TARGET_PAGE,
5312 	MC_TARGET_SWAP,
5313 	MC_TARGET_DEVICE,
5314 };
5315 
5316 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5317 						unsigned long addr, pte_t ptent)
5318 {
5319 	struct page *page = vm_normal_page(vma, addr, ptent);
5320 
5321 	if (!page || !page_mapped(page))
5322 		return NULL;
5323 	if (PageAnon(page)) {
5324 		if (!(mc.flags & MOVE_ANON))
5325 			return NULL;
5326 	} else {
5327 		if (!(mc.flags & MOVE_FILE))
5328 			return NULL;
5329 	}
5330 	if (!get_page_unless_zero(page))
5331 		return NULL;
5332 
5333 	return page;
5334 }
5335 
5336 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5337 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5338 			pte_t ptent, swp_entry_t *entry)
5339 {
5340 	struct page *page = NULL;
5341 	swp_entry_t ent = pte_to_swp_entry(ptent);
5342 
5343 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5344 		return NULL;
5345 
5346 	/*
5347 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5348 	 * a device and because they are not accessible by CPU they are store
5349 	 * as special swap entry in the CPU page table.
5350 	 */
5351 	if (is_device_private_entry(ent)) {
5352 		page = device_private_entry_to_page(ent);
5353 		/*
5354 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5355 		 * a refcount of 1 when free (unlike normal page)
5356 		 */
5357 		if (!page_ref_add_unless(page, 1, 1))
5358 			return NULL;
5359 		return page;
5360 	}
5361 
5362 	/*
5363 	 * Because lookup_swap_cache() updates some statistics counter,
5364 	 * we call find_get_page() with swapper_space directly.
5365 	 */
5366 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5367 	if (do_memsw_account())
5368 		entry->val = ent.val;
5369 
5370 	return page;
5371 }
5372 #else
5373 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5374 			pte_t ptent, swp_entry_t *entry)
5375 {
5376 	return NULL;
5377 }
5378 #endif
5379 
5380 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5381 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5382 {
5383 	struct page *page = NULL;
5384 	struct address_space *mapping;
5385 	pgoff_t pgoff;
5386 
5387 	if (!vma->vm_file) /* anonymous vma */
5388 		return NULL;
5389 	if (!(mc.flags & MOVE_FILE))
5390 		return NULL;
5391 
5392 	mapping = vma->vm_file->f_mapping;
5393 	pgoff = linear_page_index(vma, addr);
5394 
5395 	/* page is moved even if it's not RSS of this task(page-faulted). */
5396 #ifdef CONFIG_SWAP
5397 	/* shmem/tmpfs may report page out on swap: account for that too. */
5398 	if (shmem_mapping(mapping)) {
5399 		page = find_get_entry(mapping, pgoff);
5400 		if (xa_is_value(page)) {
5401 			swp_entry_t swp = radix_to_swp_entry(page);
5402 			if (do_memsw_account())
5403 				*entry = swp;
5404 			page = find_get_page(swap_address_space(swp),
5405 					     swp_offset(swp));
5406 		}
5407 	} else
5408 		page = find_get_page(mapping, pgoff);
5409 #else
5410 	page = find_get_page(mapping, pgoff);
5411 #endif
5412 	return page;
5413 }
5414 
5415 /**
5416  * mem_cgroup_move_account - move account of the page
5417  * @page: the page
5418  * @compound: charge the page as compound or small page
5419  * @from: mem_cgroup which the page is moved from.
5420  * @to:	mem_cgroup which the page is moved to. @from != @to.
5421  *
5422  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5423  *
5424  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5425  * from old cgroup.
5426  */
5427 static int mem_cgroup_move_account(struct page *page,
5428 				   bool compound,
5429 				   struct mem_cgroup *from,
5430 				   struct mem_cgroup *to)
5431 {
5432 	struct lruvec *from_vec, *to_vec;
5433 	struct pglist_data *pgdat;
5434 	unsigned long flags;
5435 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436 	int ret;
5437 	bool anon;
5438 
5439 	VM_BUG_ON(from == to);
5440 	VM_BUG_ON_PAGE(PageLRU(page), page);
5441 	VM_BUG_ON(compound && !PageTransHuge(page));
5442 
5443 	/*
5444 	 * Prevent mem_cgroup_migrate() from looking at
5445 	 * page->mem_cgroup of its source page while we change it.
5446 	 */
5447 	ret = -EBUSY;
5448 	if (!trylock_page(page))
5449 		goto out;
5450 
5451 	ret = -EINVAL;
5452 	if (page->mem_cgroup != from)
5453 		goto out_unlock;
5454 
5455 	anon = PageAnon(page);
5456 
5457 	pgdat = page_pgdat(page);
5458 	from_vec = mem_cgroup_lruvec(pgdat, from);
5459 	to_vec = mem_cgroup_lruvec(pgdat, to);
5460 
5461 	spin_lock_irqsave(&from->move_lock, flags);
5462 
5463 	if (!anon && page_mapped(page)) {
5464 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5465 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5466 	}
5467 
5468 	/*
5469 	 * move_lock grabbed above and caller set from->moving_account, so
5470 	 * mod_memcg_page_state will serialize updates to PageDirty.
5471 	 * So mapping should be stable for dirty pages.
5472 	 */
5473 	if (!anon && PageDirty(page)) {
5474 		struct address_space *mapping = page_mapping(page);
5475 
5476 		if (mapping_cap_account_dirty(mapping)) {
5477 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5478 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5479 		}
5480 	}
5481 
5482 	if (PageWriteback(page)) {
5483 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5484 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5485 	}
5486 
5487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5488 	if (compound && !list_empty(page_deferred_list(page))) {
5489 		spin_lock(&from->deferred_split_queue.split_queue_lock);
5490 		list_del_init(page_deferred_list(page));
5491 		from->deferred_split_queue.split_queue_len--;
5492 		spin_unlock(&from->deferred_split_queue.split_queue_lock);
5493 	}
5494 #endif
5495 	/*
5496 	 * It is safe to change page->mem_cgroup here because the page
5497 	 * is referenced, charged, and isolated - we can't race with
5498 	 * uncharging, charging, migration, or LRU putback.
5499 	 */
5500 
5501 	/* caller should have done css_get */
5502 	page->mem_cgroup = to;
5503 
5504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5505 	if (compound && list_empty(page_deferred_list(page))) {
5506 		spin_lock(&to->deferred_split_queue.split_queue_lock);
5507 		list_add_tail(page_deferred_list(page),
5508 			      &to->deferred_split_queue.split_queue);
5509 		to->deferred_split_queue.split_queue_len++;
5510 		spin_unlock(&to->deferred_split_queue.split_queue_lock);
5511 	}
5512 #endif
5513 
5514 	spin_unlock_irqrestore(&from->move_lock, flags);
5515 
5516 	ret = 0;
5517 
5518 	local_irq_disable();
5519 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5520 	memcg_check_events(to, page);
5521 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5522 	memcg_check_events(from, page);
5523 	local_irq_enable();
5524 out_unlock:
5525 	unlock_page(page);
5526 out:
5527 	return ret;
5528 }
5529 
5530 /**
5531  * get_mctgt_type - get target type of moving charge
5532  * @vma: the vma the pte to be checked belongs
5533  * @addr: the address corresponding to the pte to be checked
5534  * @ptent: the pte to be checked
5535  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5536  *
5537  * Returns
5538  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5539  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5540  *     move charge. if @target is not NULL, the page is stored in target->page
5541  *     with extra refcnt got(Callers should handle it).
5542  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5543  *     target for charge migration. if @target is not NULL, the entry is stored
5544  *     in target->ent.
5545  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5546  *     (so ZONE_DEVICE page and thus not on the lru).
5547  *     For now we such page is charge like a regular page would be as for all
5548  *     intent and purposes it is just special memory taking the place of a
5549  *     regular page.
5550  *
5551  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5552  *
5553  * Called with pte lock held.
5554  */
5555 
5556 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5557 		unsigned long addr, pte_t ptent, union mc_target *target)
5558 {
5559 	struct page *page = NULL;
5560 	enum mc_target_type ret = MC_TARGET_NONE;
5561 	swp_entry_t ent = { .val = 0 };
5562 
5563 	if (pte_present(ptent))
5564 		page = mc_handle_present_pte(vma, addr, ptent);
5565 	else if (is_swap_pte(ptent))
5566 		page = mc_handle_swap_pte(vma, ptent, &ent);
5567 	else if (pte_none(ptent))
5568 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5569 
5570 	if (!page && !ent.val)
5571 		return ret;
5572 	if (page) {
5573 		/*
5574 		 * Do only loose check w/o serialization.
5575 		 * mem_cgroup_move_account() checks the page is valid or
5576 		 * not under LRU exclusion.
5577 		 */
5578 		if (page->mem_cgroup == mc.from) {
5579 			ret = MC_TARGET_PAGE;
5580 			if (is_device_private_page(page))
5581 				ret = MC_TARGET_DEVICE;
5582 			if (target)
5583 				target->page = page;
5584 		}
5585 		if (!ret || !target)
5586 			put_page(page);
5587 	}
5588 	/*
5589 	 * There is a swap entry and a page doesn't exist or isn't charged.
5590 	 * But we cannot move a tail-page in a THP.
5591 	 */
5592 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5593 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5594 		ret = MC_TARGET_SWAP;
5595 		if (target)
5596 			target->ent = ent;
5597 	}
5598 	return ret;
5599 }
5600 
5601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5602 /*
5603  * We don't consider PMD mapped swapping or file mapped pages because THP does
5604  * not support them for now.
5605  * Caller should make sure that pmd_trans_huge(pmd) is true.
5606  */
5607 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5608 		unsigned long addr, pmd_t pmd, union mc_target *target)
5609 {
5610 	struct page *page = NULL;
5611 	enum mc_target_type ret = MC_TARGET_NONE;
5612 
5613 	if (unlikely(is_swap_pmd(pmd))) {
5614 		VM_BUG_ON(thp_migration_supported() &&
5615 				  !is_pmd_migration_entry(pmd));
5616 		return ret;
5617 	}
5618 	page = pmd_page(pmd);
5619 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5620 	if (!(mc.flags & MOVE_ANON))
5621 		return ret;
5622 	if (page->mem_cgroup == mc.from) {
5623 		ret = MC_TARGET_PAGE;
5624 		if (target) {
5625 			get_page(page);
5626 			target->page = page;
5627 		}
5628 	}
5629 	return ret;
5630 }
5631 #else
5632 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5633 		unsigned long addr, pmd_t pmd, union mc_target *target)
5634 {
5635 	return MC_TARGET_NONE;
5636 }
5637 #endif
5638 
5639 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5640 					unsigned long addr, unsigned long end,
5641 					struct mm_walk *walk)
5642 {
5643 	struct vm_area_struct *vma = walk->vma;
5644 	pte_t *pte;
5645 	spinlock_t *ptl;
5646 
5647 	ptl = pmd_trans_huge_lock(pmd, vma);
5648 	if (ptl) {
5649 		/*
5650 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5651 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5652 		 * this might change.
5653 		 */
5654 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5655 			mc.precharge += HPAGE_PMD_NR;
5656 		spin_unlock(ptl);
5657 		return 0;
5658 	}
5659 
5660 	if (pmd_trans_unstable(pmd))
5661 		return 0;
5662 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5663 	for (; addr != end; pte++, addr += PAGE_SIZE)
5664 		if (get_mctgt_type(vma, addr, *pte, NULL))
5665 			mc.precharge++;	/* increment precharge temporarily */
5666 	pte_unmap_unlock(pte - 1, ptl);
5667 	cond_resched();
5668 
5669 	return 0;
5670 }
5671 
5672 static const struct mm_walk_ops precharge_walk_ops = {
5673 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5674 };
5675 
5676 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5677 {
5678 	unsigned long precharge;
5679 
5680 	down_read(&mm->mmap_sem);
5681 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5682 	up_read(&mm->mmap_sem);
5683 
5684 	precharge = mc.precharge;
5685 	mc.precharge = 0;
5686 
5687 	return precharge;
5688 }
5689 
5690 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5691 {
5692 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5693 
5694 	VM_BUG_ON(mc.moving_task);
5695 	mc.moving_task = current;
5696 	return mem_cgroup_do_precharge(precharge);
5697 }
5698 
5699 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5700 static void __mem_cgroup_clear_mc(void)
5701 {
5702 	struct mem_cgroup *from = mc.from;
5703 	struct mem_cgroup *to = mc.to;
5704 
5705 	/* we must uncharge all the leftover precharges from mc.to */
5706 	if (mc.precharge) {
5707 		cancel_charge(mc.to, mc.precharge);
5708 		mc.precharge = 0;
5709 	}
5710 	/*
5711 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5712 	 * we must uncharge here.
5713 	 */
5714 	if (mc.moved_charge) {
5715 		cancel_charge(mc.from, mc.moved_charge);
5716 		mc.moved_charge = 0;
5717 	}
5718 	/* we must fixup refcnts and charges */
5719 	if (mc.moved_swap) {
5720 		/* uncharge swap account from the old cgroup */
5721 		if (!mem_cgroup_is_root(mc.from))
5722 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5723 
5724 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5725 
5726 		/*
5727 		 * we charged both to->memory and to->memsw, so we
5728 		 * should uncharge to->memory.
5729 		 */
5730 		if (!mem_cgroup_is_root(mc.to))
5731 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5732 
5733 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5734 		css_put_many(&mc.to->css, mc.moved_swap);
5735 
5736 		mc.moved_swap = 0;
5737 	}
5738 	memcg_oom_recover(from);
5739 	memcg_oom_recover(to);
5740 	wake_up_all(&mc.waitq);
5741 }
5742 
5743 static void mem_cgroup_clear_mc(void)
5744 {
5745 	struct mm_struct *mm = mc.mm;
5746 
5747 	/*
5748 	 * we must clear moving_task before waking up waiters at the end of
5749 	 * task migration.
5750 	 */
5751 	mc.moving_task = NULL;
5752 	__mem_cgroup_clear_mc();
5753 	spin_lock(&mc.lock);
5754 	mc.from = NULL;
5755 	mc.to = NULL;
5756 	mc.mm = NULL;
5757 	spin_unlock(&mc.lock);
5758 
5759 	mmput(mm);
5760 }
5761 
5762 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5763 {
5764 	struct cgroup_subsys_state *css;
5765 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5766 	struct mem_cgroup *from;
5767 	struct task_struct *leader, *p;
5768 	struct mm_struct *mm;
5769 	unsigned long move_flags;
5770 	int ret = 0;
5771 
5772 	/* charge immigration isn't supported on the default hierarchy */
5773 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5774 		return 0;
5775 
5776 	/*
5777 	 * Multi-process migrations only happen on the default hierarchy
5778 	 * where charge immigration is not used.  Perform charge
5779 	 * immigration if @tset contains a leader and whine if there are
5780 	 * multiple.
5781 	 */
5782 	p = NULL;
5783 	cgroup_taskset_for_each_leader(leader, css, tset) {
5784 		WARN_ON_ONCE(p);
5785 		p = leader;
5786 		memcg = mem_cgroup_from_css(css);
5787 	}
5788 	if (!p)
5789 		return 0;
5790 
5791 	/*
5792 	 * We are now commited to this value whatever it is. Changes in this
5793 	 * tunable will only affect upcoming migrations, not the current one.
5794 	 * So we need to save it, and keep it going.
5795 	 */
5796 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5797 	if (!move_flags)
5798 		return 0;
5799 
5800 	from = mem_cgroup_from_task(p);
5801 
5802 	VM_BUG_ON(from == memcg);
5803 
5804 	mm = get_task_mm(p);
5805 	if (!mm)
5806 		return 0;
5807 	/* We move charges only when we move a owner of the mm */
5808 	if (mm->owner == p) {
5809 		VM_BUG_ON(mc.from);
5810 		VM_BUG_ON(mc.to);
5811 		VM_BUG_ON(mc.precharge);
5812 		VM_BUG_ON(mc.moved_charge);
5813 		VM_BUG_ON(mc.moved_swap);
5814 
5815 		spin_lock(&mc.lock);
5816 		mc.mm = mm;
5817 		mc.from = from;
5818 		mc.to = memcg;
5819 		mc.flags = move_flags;
5820 		spin_unlock(&mc.lock);
5821 		/* We set mc.moving_task later */
5822 
5823 		ret = mem_cgroup_precharge_mc(mm);
5824 		if (ret)
5825 			mem_cgroup_clear_mc();
5826 	} else {
5827 		mmput(mm);
5828 	}
5829 	return ret;
5830 }
5831 
5832 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5833 {
5834 	if (mc.to)
5835 		mem_cgroup_clear_mc();
5836 }
5837 
5838 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5839 				unsigned long addr, unsigned long end,
5840 				struct mm_walk *walk)
5841 {
5842 	int ret = 0;
5843 	struct vm_area_struct *vma = walk->vma;
5844 	pte_t *pte;
5845 	spinlock_t *ptl;
5846 	enum mc_target_type target_type;
5847 	union mc_target target;
5848 	struct page *page;
5849 
5850 	ptl = pmd_trans_huge_lock(pmd, vma);
5851 	if (ptl) {
5852 		if (mc.precharge < HPAGE_PMD_NR) {
5853 			spin_unlock(ptl);
5854 			return 0;
5855 		}
5856 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5857 		if (target_type == MC_TARGET_PAGE) {
5858 			page = target.page;
5859 			if (!isolate_lru_page(page)) {
5860 				if (!mem_cgroup_move_account(page, true,
5861 							     mc.from, mc.to)) {
5862 					mc.precharge -= HPAGE_PMD_NR;
5863 					mc.moved_charge += HPAGE_PMD_NR;
5864 				}
5865 				putback_lru_page(page);
5866 			}
5867 			put_page(page);
5868 		} else if (target_type == MC_TARGET_DEVICE) {
5869 			page = target.page;
5870 			if (!mem_cgroup_move_account(page, true,
5871 						     mc.from, mc.to)) {
5872 				mc.precharge -= HPAGE_PMD_NR;
5873 				mc.moved_charge += HPAGE_PMD_NR;
5874 			}
5875 			put_page(page);
5876 		}
5877 		spin_unlock(ptl);
5878 		return 0;
5879 	}
5880 
5881 	if (pmd_trans_unstable(pmd))
5882 		return 0;
5883 retry:
5884 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5885 	for (; addr != end; addr += PAGE_SIZE) {
5886 		pte_t ptent = *(pte++);
5887 		bool device = false;
5888 		swp_entry_t ent;
5889 
5890 		if (!mc.precharge)
5891 			break;
5892 
5893 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5894 		case MC_TARGET_DEVICE:
5895 			device = true;
5896 			/* fall through */
5897 		case MC_TARGET_PAGE:
5898 			page = target.page;
5899 			/*
5900 			 * We can have a part of the split pmd here. Moving it
5901 			 * can be done but it would be too convoluted so simply
5902 			 * ignore such a partial THP and keep it in original
5903 			 * memcg. There should be somebody mapping the head.
5904 			 */
5905 			if (PageTransCompound(page))
5906 				goto put;
5907 			if (!device && isolate_lru_page(page))
5908 				goto put;
5909 			if (!mem_cgroup_move_account(page, false,
5910 						mc.from, mc.to)) {
5911 				mc.precharge--;
5912 				/* we uncharge from mc.from later. */
5913 				mc.moved_charge++;
5914 			}
5915 			if (!device)
5916 				putback_lru_page(page);
5917 put:			/* get_mctgt_type() gets the page */
5918 			put_page(page);
5919 			break;
5920 		case MC_TARGET_SWAP:
5921 			ent = target.ent;
5922 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5923 				mc.precharge--;
5924 				/* we fixup refcnts and charges later. */
5925 				mc.moved_swap++;
5926 			}
5927 			break;
5928 		default:
5929 			break;
5930 		}
5931 	}
5932 	pte_unmap_unlock(pte - 1, ptl);
5933 	cond_resched();
5934 
5935 	if (addr != end) {
5936 		/*
5937 		 * We have consumed all precharges we got in can_attach().
5938 		 * We try charge one by one, but don't do any additional
5939 		 * charges to mc.to if we have failed in charge once in attach()
5940 		 * phase.
5941 		 */
5942 		ret = mem_cgroup_do_precharge(1);
5943 		if (!ret)
5944 			goto retry;
5945 	}
5946 
5947 	return ret;
5948 }
5949 
5950 static const struct mm_walk_ops charge_walk_ops = {
5951 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5952 };
5953 
5954 static void mem_cgroup_move_charge(void)
5955 {
5956 	lru_add_drain_all();
5957 	/*
5958 	 * Signal lock_page_memcg() to take the memcg's move_lock
5959 	 * while we're moving its pages to another memcg. Then wait
5960 	 * for already started RCU-only updates to finish.
5961 	 */
5962 	atomic_inc(&mc.from->moving_account);
5963 	synchronize_rcu();
5964 retry:
5965 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5966 		/*
5967 		 * Someone who are holding the mmap_sem might be waiting in
5968 		 * waitq. So we cancel all extra charges, wake up all waiters,
5969 		 * and retry. Because we cancel precharges, we might not be able
5970 		 * to move enough charges, but moving charge is a best-effort
5971 		 * feature anyway, so it wouldn't be a big problem.
5972 		 */
5973 		__mem_cgroup_clear_mc();
5974 		cond_resched();
5975 		goto retry;
5976 	}
5977 	/*
5978 	 * When we have consumed all precharges and failed in doing
5979 	 * additional charge, the page walk just aborts.
5980 	 */
5981 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5982 			NULL);
5983 
5984 	up_read(&mc.mm->mmap_sem);
5985 	atomic_dec(&mc.from->moving_account);
5986 }
5987 
5988 static void mem_cgroup_move_task(void)
5989 {
5990 	if (mc.to) {
5991 		mem_cgroup_move_charge();
5992 		mem_cgroup_clear_mc();
5993 	}
5994 }
5995 #else	/* !CONFIG_MMU */
5996 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5997 {
5998 	return 0;
5999 }
6000 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6001 {
6002 }
6003 static void mem_cgroup_move_task(void)
6004 {
6005 }
6006 #endif
6007 
6008 /*
6009  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6010  * to verify whether we're attached to the default hierarchy on each mount
6011  * attempt.
6012  */
6013 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6014 {
6015 	/*
6016 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6017 	 * guarantees that @root doesn't have any children, so turning it
6018 	 * on for the root memcg is enough.
6019 	 */
6020 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6021 		root_mem_cgroup->use_hierarchy = true;
6022 	else
6023 		root_mem_cgroup->use_hierarchy = false;
6024 }
6025 
6026 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6027 {
6028 	if (value == PAGE_COUNTER_MAX)
6029 		seq_puts(m, "max\n");
6030 	else
6031 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6032 
6033 	return 0;
6034 }
6035 
6036 static u64 memory_current_read(struct cgroup_subsys_state *css,
6037 			       struct cftype *cft)
6038 {
6039 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6040 
6041 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6042 }
6043 
6044 static int memory_min_show(struct seq_file *m, void *v)
6045 {
6046 	return seq_puts_memcg_tunable(m,
6047 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6048 }
6049 
6050 static ssize_t memory_min_write(struct kernfs_open_file *of,
6051 				char *buf, size_t nbytes, loff_t off)
6052 {
6053 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6054 	unsigned long min;
6055 	int err;
6056 
6057 	buf = strstrip(buf);
6058 	err = page_counter_memparse(buf, "max", &min);
6059 	if (err)
6060 		return err;
6061 
6062 	page_counter_set_min(&memcg->memory, min);
6063 
6064 	return nbytes;
6065 }
6066 
6067 static int memory_low_show(struct seq_file *m, void *v)
6068 {
6069 	return seq_puts_memcg_tunable(m,
6070 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6071 }
6072 
6073 static ssize_t memory_low_write(struct kernfs_open_file *of,
6074 				char *buf, size_t nbytes, loff_t off)
6075 {
6076 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6077 	unsigned long low;
6078 	int err;
6079 
6080 	buf = strstrip(buf);
6081 	err = page_counter_memparse(buf, "max", &low);
6082 	if (err)
6083 		return err;
6084 
6085 	page_counter_set_low(&memcg->memory, low);
6086 
6087 	return nbytes;
6088 }
6089 
6090 static int memory_high_show(struct seq_file *m, void *v)
6091 {
6092 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6093 }
6094 
6095 static ssize_t memory_high_write(struct kernfs_open_file *of,
6096 				 char *buf, size_t nbytes, loff_t off)
6097 {
6098 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6099 	unsigned long nr_pages;
6100 	unsigned long high;
6101 	int err;
6102 
6103 	buf = strstrip(buf);
6104 	err = page_counter_memparse(buf, "max", &high);
6105 	if (err)
6106 		return err;
6107 
6108 	memcg->high = high;
6109 
6110 	nr_pages = page_counter_read(&memcg->memory);
6111 	if (nr_pages > high)
6112 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6113 					     GFP_KERNEL, true);
6114 
6115 	memcg_wb_domain_size_changed(memcg);
6116 	return nbytes;
6117 }
6118 
6119 static int memory_max_show(struct seq_file *m, void *v)
6120 {
6121 	return seq_puts_memcg_tunable(m,
6122 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6123 }
6124 
6125 static ssize_t memory_max_write(struct kernfs_open_file *of,
6126 				char *buf, size_t nbytes, loff_t off)
6127 {
6128 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6129 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6130 	bool drained = false;
6131 	unsigned long max;
6132 	int err;
6133 
6134 	buf = strstrip(buf);
6135 	err = page_counter_memparse(buf, "max", &max);
6136 	if (err)
6137 		return err;
6138 
6139 	xchg(&memcg->memory.max, max);
6140 
6141 	for (;;) {
6142 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6143 
6144 		if (nr_pages <= max)
6145 			break;
6146 
6147 		if (signal_pending(current)) {
6148 			err = -EINTR;
6149 			break;
6150 		}
6151 
6152 		if (!drained) {
6153 			drain_all_stock(memcg);
6154 			drained = true;
6155 			continue;
6156 		}
6157 
6158 		if (nr_reclaims) {
6159 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6160 							  GFP_KERNEL, true))
6161 				nr_reclaims--;
6162 			continue;
6163 		}
6164 
6165 		memcg_memory_event(memcg, MEMCG_OOM);
6166 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6167 			break;
6168 	}
6169 
6170 	memcg_wb_domain_size_changed(memcg);
6171 	return nbytes;
6172 }
6173 
6174 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6175 {
6176 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6177 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6178 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6179 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6180 	seq_printf(m, "oom_kill %lu\n",
6181 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6182 }
6183 
6184 static int memory_events_show(struct seq_file *m, void *v)
6185 {
6186 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6187 
6188 	__memory_events_show(m, memcg->memory_events);
6189 	return 0;
6190 }
6191 
6192 static int memory_events_local_show(struct seq_file *m, void *v)
6193 {
6194 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6195 
6196 	__memory_events_show(m, memcg->memory_events_local);
6197 	return 0;
6198 }
6199 
6200 static int memory_stat_show(struct seq_file *m, void *v)
6201 {
6202 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6203 	char *buf;
6204 
6205 	buf = memory_stat_format(memcg);
6206 	if (!buf)
6207 		return -ENOMEM;
6208 	seq_puts(m, buf);
6209 	kfree(buf);
6210 	return 0;
6211 }
6212 
6213 static int memory_oom_group_show(struct seq_file *m, void *v)
6214 {
6215 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6216 
6217 	seq_printf(m, "%d\n", memcg->oom_group);
6218 
6219 	return 0;
6220 }
6221 
6222 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6223 				      char *buf, size_t nbytes, loff_t off)
6224 {
6225 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6226 	int ret, oom_group;
6227 
6228 	buf = strstrip(buf);
6229 	if (!buf)
6230 		return -EINVAL;
6231 
6232 	ret = kstrtoint(buf, 0, &oom_group);
6233 	if (ret)
6234 		return ret;
6235 
6236 	if (oom_group != 0 && oom_group != 1)
6237 		return -EINVAL;
6238 
6239 	memcg->oom_group = oom_group;
6240 
6241 	return nbytes;
6242 }
6243 
6244 static struct cftype memory_files[] = {
6245 	{
6246 		.name = "current",
6247 		.flags = CFTYPE_NOT_ON_ROOT,
6248 		.read_u64 = memory_current_read,
6249 	},
6250 	{
6251 		.name = "min",
6252 		.flags = CFTYPE_NOT_ON_ROOT,
6253 		.seq_show = memory_min_show,
6254 		.write = memory_min_write,
6255 	},
6256 	{
6257 		.name = "low",
6258 		.flags = CFTYPE_NOT_ON_ROOT,
6259 		.seq_show = memory_low_show,
6260 		.write = memory_low_write,
6261 	},
6262 	{
6263 		.name = "high",
6264 		.flags = CFTYPE_NOT_ON_ROOT,
6265 		.seq_show = memory_high_show,
6266 		.write = memory_high_write,
6267 	},
6268 	{
6269 		.name = "max",
6270 		.flags = CFTYPE_NOT_ON_ROOT,
6271 		.seq_show = memory_max_show,
6272 		.write = memory_max_write,
6273 	},
6274 	{
6275 		.name = "events",
6276 		.flags = CFTYPE_NOT_ON_ROOT,
6277 		.file_offset = offsetof(struct mem_cgroup, events_file),
6278 		.seq_show = memory_events_show,
6279 	},
6280 	{
6281 		.name = "events.local",
6282 		.flags = CFTYPE_NOT_ON_ROOT,
6283 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6284 		.seq_show = memory_events_local_show,
6285 	},
6286 	{
6287 		.name = "stat",
6288 		.flags = CFTYPE_NOT_ON_ROOT,
6289 		.seq_show = memory_stat_show,
6290 	},
6291 	{
6292 		.name = "oom.group",
6293 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6294 		.seq_show = memory_oom_group_show,
6295 		.write = memory_oom_group_write,
6296 	},
6297 	{ }	/* terminate */
6298 };
6299 
6300 struct cgroup_subsys memory_cgrp_subsys = {
6301 	.css_alloc = mem_cgroup_css_alloc,
6302 	.css_online = mem_cgroup_css_online,
6303 	.css_offline = mem_cgroup_css_offline,
6304 	.css_released = mem_cgroup_css_released,
6305 	.css_free = mem_cgroup_css_free,
6306 	.css_reset = mem_cgroup_css_reset,
6307 	.can_attach = mem_cgroup_can_attach,
6308 	.cancel_attach = mem_cgroup_cancel_attach,
6309 	.post_attach = mem_cgroup_move_task,
6310 	.bind = mem_cgroup_bind,
6311 	.dfl_cftypes = memory_files,
6312 	.legacy_cftypes = mem_cgroup_legacy_files,
6313 	.early_init = 0,
6314 };
6315 
6316 /**
6317  * mem_cgroup_protected - check if memory consumption is in the normal range
6318  * @root: the top ancestor of the sub-tree being checked
6319  * @memcg: the memory cgroup to check
6320  *
6321  * WARNING: This function is not stateless! It can only be used as part
6322  *          of a top-down tree iteration, not for isolated queries.
6323  *
6324  * Returns one of the following:
6325  *   MEMCG_PROT_NONE: cgroup memory is not protected
6326  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6327  *     an unprotected supply of reclaimable memory from other cgroups.
6328  *   MEMCG_PROT_MIN: cgroup memory is protected
6329  *
6330  * @root is exclusive; it is never protected when looked at directly
6331  *
6332  * To provide a proper hierarchical behavior, effective memory.min/low values
6333  * are used. Below is the description of how effective memory.low is calculated.
6334  * Effective memory.min values is calculated in the same way.
6335  *
6336  * Effective memory.low is always equal or less than the original memory.low.
6337  * If there is no memory.low overcommittment (which is always true for
6338  * top-level memory cgroups), these two values are equal.
6339  * Otherwise, it's a part of parent's effective memory.low,
6340  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6341  * memory.low usages, where memory.low usage is the size of actually
6342  * protected memory.
6343  *
6344  *                                             low_usage
6345  * elow = min( memory.low, parent->elow * ------------------ ),
6346  *                                        siblings_low_usage
6347  *
6348  *             | memory.current, if memory.current < memory.low
6349  * low_usage = |
6350  *	       | 0, otherwise.
6351  *
6352  *
6353  * Such definition of the effective memory.low provides the expected
6354  * hierarchical behavior: parent's memory.low value is limiting
6355  * children, unprotected memory is reclaimed first and cgroups,
6356  * which are not using their guarantee do not affect actual memory
6357  * distribution.
6358  *
6359  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6360  *
6361  *     A      A/memory.low = 2G, A/memory.current = 6G
6362  *    //\\
6363  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6364  *            C/memory.low = 1G  C/memory.current = 2G
6365  *            D/memory.low = 0   D/memory.current = 2G
6366  *            E/memory.low = 10G E/memory.current = 0
6367  *
6368  * and the memory pressure is applied, the following memory distribution
6369  * is expected (approximately):
6370  *
6371  *     A/memory.current = 2G
6372  *
6373  *     B/memory.current = 1.3G
6374  *     C/memory.current = 0.6G
6375  *     D/memory.current = 0
6376  *     E/memory.current = 0
6377  *
6378  * These calculations require constant tracking of the actual low usages
6379  * (see propagate_protected_usage()), as well as recursive calculation of
6380  * effective memory.low values. But as we do call mem_cgroup_protected()
6381  * path for each memory cgroup top-down from the reclaim,
6382  * it's possible to optimize this part, and save calculated elow
6383  * for next usage. This part is intentionally racy, but it's ok,
6384  * as memory.low is a best-effort mechanism.
6385  */
6386 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6387 						struct mem_cgroup *memcg)
6388 {
6389 	struct mem_cgroup *parent;
6390 	unsigned long emin, parent_emin;
6391 	unsigned long elow, parent_elow;
6392 	unsigned long usage;
6393 
6394 	if (mem_cgroup_disabled())
6395 		return MEMCG_PROT_NONE;
6396 
6397 	if (!root)
6398 		root = root_mem_cgroup;
6399 	if (memcg == root)
6400 		return MEMCG_PROT_NONE;
6401 
6402 	usage = page_counter_read(&memcg->memory);
6403 	if (!usage)
6404 		return MEMCG_PROT_NONE;
6405 
6406 	emin = memcg->memory.min;
6407 	elow = memcg->memory.low;
6408 
6409 	parent = parent_mem_cgroup(memcg);
6410 	/* No parent means a non-hierarchical mode on v1 memcg */
6411 	if (!parent)
6412 		return MEMCG_PROT_NONE;
6413 
6414 	if (parent == root)
6415 		goto exit;
6416 
6417 	parent_emin = READ_ONCE(parent->memory.emin);
6418 	emin = min(emin, parent_emin);
6419 	if (emin && parent_emin) {
6420 		unsigned long min_usage, siblings_min_usage;
6421 
6422 		min_usage = min(usage, memcg->memory.min);
6423 		siblings_min_usage = atomic_long_read(
6424 			&parent->memory.children_min_usage);
6425 
6426 		if (min_usage && siblings_min_usage)
6427 			emin = min(emin, parent_emin * min_usage /
6428 				   siblings_min_usage);
6429 	}
6430 
6431 	parent_elow = READ_ONCE(parent->memory.elow);
6432 	elow = min(elow, parent_elow);
6433 	if (elow && parent_elow) {
6434 		unsigned long low_usage, siblings_low_usage;
6435 
6436 		low_usage = min(usage, memcg->memory.low);
6437 		siblings_low_usage = atomic_long_read(
6438 			&parent->memory.children_low_usage);
6439 
6440 		if (low_usage && siblings_low_usage)
6441 			elow = min(elow, parent_elow * low_usage /
6442 				   siblings_low_usage);
6443 	}
6444 
6445 exit:
6446 	memcg->memory.emin = emin;
6447 	memcg->memory.elow = elow;
6448 
6449 	if (usage <= emin)
6450 		return MEMCG_PROT_MIN;
6451 	else if (usage <= elow)
6452 		return MEMCG_PROT_LOW;
6453 	else
6454 		return MEMCG_PROT_NONE;
6455 }
6456 
6457 /**
6458  * mem_cgroup_try_charge - try charging a page
6459  * @page: page to charge
6460  * @mm: mm context of the victim
6461  * @gfp_mask: reclaim mode
6462  * @memcgp: charged memcg return
6463  * @compound: charge the page as compound or small page
6464  *
6465  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6466  * pages according to @gfp_mask if necessary.
6467  *
6468  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6469  * Otherwise, an error code is returned.
6470  *
6471  * After page->mapping has been set up, the caller must finalize the
6472  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6473  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6474  */
6475 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6476 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6477 			  bool compound)
6478 {
6479 	struct mem_cgroup *memcg = NULL;
6480 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6481 	int ret = 0;
6482 
6483 	if (mem_cgroup_disabled())
6484 		goto out;
6485 
6486 	if (PageSwapCache(page)) {
6487 		/*
6488 		 * Every swap fault against a single page tries to charge the
6489 		 * page, bail as early as possible.  shmem_unuse() encounters
6490 		 * already charged pages, too.  The USED bit is protected by
6491 		 * the page lock, which serializes swap cache removal, which
6492 		 * in turn serializes uncharging.
6493 		 */
6494 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6495 		if (compound_head(page)->mem_cgroup)
6496 			goto out;
6497 
6498 		if (do_swap_account) {
6499 			swp_entry_t ent = { .val = page_private(page), };
6500 			unsigned short id = lookup_swap_cgroup_id(ent);
6501 
6502 			rcu_read_lock();
6503 			memcg = mem_cgroup_from_id(id);
6504 			if (memcg && !css_tryget_online(&memcg->css))
6505 				memcg = NULL;
6506 			rcu_read_unlock();
6507 		}
6508 	}
6509 
6510 	if (!memcg)
6511 		memcg = get_mem_cgroup_from_mm(mm);
6512 
6513 	ret = try_charge(memcg, gfp_mask, nr_pages);
6514 
6515 	css_put(&memcg->css);
6516 out:
6517 	*memcgp = memcg;
6518 	return ret;
6519 }
6520 
6521 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6522 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6523 			  bool compound)
6524 {
6525 	struct mem_cgroup *memcg;
6526 	int ret;
6527 
6528 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6529 	memcg = *memcgp;
6530 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6531 	return ret;
6532 }
6533 
6534 /**
6535  * mem_cgroup_commit_charge - commit a page charge
6536  * @page: page to charge
6537  * @memcg: memcg to charge the page to
6538  * @lrucare: page might be on LRU already
6539  * @compound: charge the page as compound or small page
6540  *
6541  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6542  * after page->mapping has been set up.  This must happen atomically
6543  * as part of the page instantiation, i.e. under the page table lock
6544  * for anonymous pages, under the page lock for page and swap cache.
6545  *
6546  * In addition, the page must not be on the LRU during the commit, to
6547  * prevent racing with task migration.  If it might be, use @lrucare.
6548  *
6549  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6550  */
6551 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6552 			      bool lrucare, bool compound)
6553 {
6554 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6555 
6556 	VM_BUG_ON_PAGE(!page->mapping, page);
6557 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6558 
6559 	if (mem_cgroup_disabled())
6560 		return;
6561 	/*
6562 	 * Swap faults will attempt to charge the same page multiple
6563 	 * times.  But reuse_swap_page() might have removed the page
6564 	 * from swapcache already, so we can't check PageSwapCache().
6565 	 */
6566 	if (!memcg)
6567 		return;
6568 
6569 	commit_charge(page, memcg, lrucare);
6570 
6571 	local_irq_disable();
6572 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6573 	memcg_check_events(memcg, page);
6574 	local_irq_enable();
6575 
6576 	if (do_memsw_account() && PageSwapCache(page)) {
6577 		swp_entry_t entry = { .val = page_private(page) };
6578 		/*
6579 		 * The swap entry might not get freed for a long time,
6580 		 * let's not wait for it.  The page already received a
6581 		 * memory+swap charge, drop the swap entry duplicate.
6582 		 */
6583 		mem_cgroup_uncharge_swap(entry, nr_pages);
6584 	}
6585 }
6586 
6587 /**
6588  * mem_cgroup_cancel_charge - cancel a page charge
6589  * @page: page to charge
6590  * @memcg: memcg to charge the page to
6591  * @compound: charge the page as compound or small page
6592  *
6593  * Cancel a charge transaction started by mem_cgroup_try_charge().
6594  */
6595 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6596 		bool compound)
6597 {
6598 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6599 
6600 	if (mem_cgroup_disabled())
6601 		return;
6602 	/*
6603 	 * Swap faults will attempt to charge the same page multiple
6604 	 * times.  But reuse_swap_page() might have removed the page
6605 	 * from swapcache already, so we can't check PageSwapCache().
6606 	 */
6607 	if (!memcg)
6608 		return;
6609 
6610 	cancel_charge(memcg, nr_pages);
6611 }
6612 
6613 struct uncharge_gather {
6614 	struct mem_cgroup *memcg;
6615 	unsigned long pgpgout;
6616 	unsigned long nr_anon;
6617 	unsigned long nr_file;
6618 	unsigned long nr_kmem;
6619 	unsigned long nr_huge;
6620 	unsigned long nr_shmem;
6621 	struct page *dummy_page;
6622 };
6623 
6624 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6625 {
6626 	memset(ug, 0, sizeof(*ug));
6627 }
6628 
6629 static void uncharge_batch(const struct uncharge_gather *ug)
6630 {
6631 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6632 	unsigned long flags;
6633 
6634 	if (!mem_cgroup_is_root(ug->memcg)) {
6635 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6636 		if (do_memsw_account())
6637 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6638 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6639 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6640 		memcg_oom_recover(ug->memcg);
6641 	}
6642 
6643 	local_irq_save(flags);
6644 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6645 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6646 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6647 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6648 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6649 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6650 	memcg_check_events(ug->memcg, ug->dummy_page);
6651 	local_irq_restore(flags);
6652 
6653 	if (!mem_cgroup_is_root(ug->memcg))
6654 		css_put_many(&ug->memcg->css, nr_pages);
6655 }
6656 
6657 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6658 {
6659 	VM_BUG_ON_PAGE(PageLRU(page), page);
6660 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6661 			!PageHWPoison(page) , page);
6662 
6663 	if (!page->mem_cgroup)
6664 		return;
6665 
6666 	/*
6667 	 * Nobody should be changing or seriously looking at
6668 	 * page->mem_cgroup at this point, we have fully
6669 	 * exclusive access to the page.
6670 	 */
6671 
6672 	if (ug->memcg != page->mem_cgroup) {
6673 		if (ug->memcg) {
6674 			uncharge_batch(ug);
6675 			uncharge_gather_clear(ug);
6676 		}
6677 		ug->memcg = page->mem_cgroup;
6678 	}
6679 
6680 	if (!PageKmemcg(page)) {
6681 		unsigned int nr_pages = 1;
6682 
6683 		if (PageTransHuge(page)) {
6684 			nr_pages = compound_nr(page);
6685 			ug->nr_huge += nr_pages;
6686 		}
6687 		if (PageAnon(page))
6688 			ug->nr_anon += nr_pages;
6689 		else {
6690 			ug->nr_file += nr_pages;
6691 			if (PageSwapBacked(page))
6692 				ug->nr_shmem += nr_pages;
6693 		}
6694 		ug->pgpgout++;
6695 	} else {
6696 		ug->nr_kmem += compound_nr(page);
6697 		__ClearPageKmemcg(page);
6698 	}
6699 
6700 	ug->dummy_page = page;
6701 	page->mem_cgroup = NULL;
6702 }
6703 
6704 static void uncharge_list(struct list_head *page_list)
6705 {
6706 	struct uncharge_gather ug;
6707 	struct list_head *next;
6708 
6709 	uncharge_gather_clear(&ug);
6710 
6711 	/*
6712 	 * Note that the list can be a single page->lru; hence the
6713 	 * do-while loop instead of a simple list_for_each_entry().
6714 	 */
6715 	next = page_list->next;
6716 	do {
6717 		struct page *page;
6718 
6719 		page = list_entry(next, struct page, lru);
6720 		next = page->lru.next;
6721 
6722 		uncharge_page(page, &ug);
6723 	} while (next != page_list);
6724 
6725 	if (ug.memcg)
6726 		uncharge_batch(&ug);
6727 }
6728 
6729 /**
6730  * mem_cgroup_uncharge - uncharge a page
6731  * @page: page to uncharge
6732  *
6733  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6734  * mem_cgroup_commit_charge().
6735  */
6736 void mem_cgroup_uncharge(struct page *page)
6737 {
6738 	struct uncharge_gather ug;
6739 
6740 	if (mem_cgroup_disabled())
6741 		return;
6742 
6743 	/* Don't touch page->lru of any random page, pre-check: */
6744 	if (!page->mem_cgroup)
6745 		return;
6746 
6747 	uncharge_gather_clear(&ug);
6748 	uncharge_page(page, &ug);
6749 	uncharge_batch(&ug);
6750 }
6751 
6752 /**
6753  * mem_cgroup_uncharge_list - uncharge a list of page
6754  * @page_list: list of pages to uncharge
6755  *
6756  * Uncharge a list of pages previously charged with
6757  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6758  */
6759 void mem_cgroup_uncharge_list(struct list_head *page_list)
6760 {
6761 	if (mem_cgroup_disabled())
6762 		return;
6763 
6764 	if (!list_empty(page_list))
6765 		uncharge_list(page_list);
6766 }
6767 
6768 /**
6769  * mem_cgroup_migrate - charge a page's replacement
6770  * @oldpage: currently circulating page
6771  * @newpage: replacement page
6772  *
6773  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6774  * be uncharged upon free.
6775  *
6776  * Both pages must be locked, @newpage->mapping must be set up.
6777  */
6778 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6779 {
6780 	struct mem_cgroup *memcg;
6781 	unsigned int nr_pages;
6782 	bool compound;
6783 	unsigned long flags;
6784 
6785 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6786 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6787 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6788 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6789 		       newpage);
6790 
6791 	if (mem_cgroup_disabled())
6792 		return;
6793 
6794 	/* Page cache replacement: new page already charged? */
6795 	if (newpage->mem_cgroup)
6796 		return;
6797 
6798 	/* Swapcache readahead pages can get replaced before being charged */
6799 	memcg = oldpage->mem_cgroup;
6800 	if (!memcg)
6801 		return;
6802 
6803 	/* Force-charge the new page. The old one will be freed soon */
6804 	compound = PageTransHuge(newpage);
6805 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6806 
6807 	page_counter_charge(&memcg->memory, nr_pages);
6808 	if (do_memsw_account())
6809 		page_counter_charge(&memcg->memsw, nr_pages);
6810 	css_get_many(&memcg->css, nr_pages);
6811 
6812 	commit_charge(newpage, memcg, false);
6813 
6814 	local_irq_save(flags);
6815 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6816 	memcg_check_events(memcg, newpage);
6817 	local_irq_restore(flags);
6818 }
6819 
6820 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6821 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6822 
6823 void mem_cgroup_sk_alloc(struct sock *sk)
6824 {
6825 	struct mem_cgroup *memcg;
6826 
6827 	if (!mem_cgroup_sockets_enabled)
6828 		return;
6829 
6830 	/*
6831 	 * Socket cloning can throw us here with sk_memcg already
6832 	 * filled. It won't however, necessarily happen from
6833 	 * process context. So the test for root memcg given
6834 	 * the current task's memcg won't help us in this case.
6835 	 *
6836 	 * Respecting the original socket's memcg is a better
6837 	 * decision in this case.
6838 	 */
6839 	if (sk->sk_memcg) {
6840 		css_get(&sk->sk_memcg->css);
6841 		return;
6842 	}
6843 
6844 	rcu_read_lock();
6845 	memcg = mem_cgroup_from_task(current);
6846 	if (memcg == root_mem_cgroup)
6847 		goto out;
6848 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6849 		goto out;
6850 	if (css_tryget_online(&memcg->css))
6851 		sk->sk_memcg = memcg;
6852 out:
6853 	rcu_read_unlock();
6854 }
6855 
6856 void mem_cgroup_sk_free(struct sock *sk)
6857 {
6858 	if (sk->sk_memcg)
6859 		css_put(&sk->sk_memcg->css);
6860 }
6861 
6862 /**
6863  * mem_cgroup_charge_skmem - charge socket memory
6864  * @memcg: memcg to charge
6865  * @nr_pages: number of pages to charge
6866  *
6867  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6868  * @memcg's configured limit, %false if the charge had to be forced.
6869  */
6870 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6871 {
6872 	gfp_t gfp_mask = GFP_KERNEL;
6873 
6874 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6875 		struct page_counter *fail;
6876 
6877 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6878 			memcg->tcpmem_pressure = 0;
6879 			return true;
6880 		}
6881 		page_counter_charge(&memcg->tcpmem, nr_pages);
6882 		memcg->tcpmem_pressure = 1;
6883 		return false;
6884 	}
6885 
6886 	/* Don't block in the packet receive path */
6887 	if (in_softirq())
6888 		gfp_mask = GFP_NOWAIT;
6889 
6890 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6891 
6892 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6893 		return true;
6894 
6895 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6896 	return false;
6897 }
6898 
6899 /**
6900  * mem_cgroup_uncharge_skmem - uncharge socket memory
6901  * @memcg: memcg to uncharge
6902  * @nr_pages: number of pages to uncharge
6903  */
6904 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6905 {
6906 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6907 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6908 		return;
6909 	}
6910 
6911 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6912 
6913 	refill_stock(memcg, nr_pages);
6914 }
6915 
6916 static int __init cgroup_memory(char *s)
6917 {
6918 	char *token;
6919 
6920 	while ((token = strsep(&s, ",")) != NULL) {
6921 		if (!*token)
6922 			continue;
6923 		if (!strcmp(token, "nosocket"))
6924 			cgroup_memory_nosocket = true;
6925 		if (!strcmp(token, "nokmem"))
6926 			cgroup_memory_nokmem = true;
6927 	}
6928 	return 0;
6929 }
6930 __setup("cgroup.memory=", cgroup_memory);
6931 
6932 /*
6933  * subsys_initcall() for memory controller.
6934  *
6935  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6936  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6937  * basically everything that doesn't depend on a specific mem_cgroup structure
6938  * should be initialized from here.
6939  */
6940 static int __init mem_cgroup_init(void)
6941 {
6942 	int cpu, node;
6943 
6944 #ifdef CONFIG_MEMCG_KMEM
6945 	/*
6946 	 * Kmem cache creation is mostly done with the slab_mutex held,
6947 	 * so use a workqueue with limited concurrency to avoid stalling
6948 	 * all worker threads in case lots of cgroups are created and
6949 	 * destroyed simultaneously.
6950 	 */
6951 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6952 	BUG_ON(!memcg_kmem_cache_wq);
6953 #endif
6954 
6955 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6956 				  memcg_hotplug_cpu_dead);
6957 
6958 	for_each_possible_cpu(cpu)
6959 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6960 			  drain_local_stock);
6961 
6962 	for_each_node(node) {
6963 		struct mem_cgroup_tree_per_node *rtpn;
6964 
6965 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6966 				    node_online(node) ? node : NUMA_NO_NODE);
6967 
6968 		rtpn->rb_root = RB_ROOT;
6969 		rtpn->rb_rightmost = NULL;
6970 		spin_lock_init(&rtpn->lock);
6971 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6972 	}
6973 
6974 	return 0;
6975 }
6976 subsys_initcall(mem_cgroup_init);
6977 
6978 #ifdef CONFIG_MEMCG_SWAP
6979 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6980 {
6981 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6982 		/*
6983 		 * The root cgroup cannot be destroyed, so it's refcount must
6984 		 * always be >= 1.
6985 		 */
6986 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6987 			VM_BUG_ON(1);
6988 			break;
6989 		}
6990 		memcg = parent_mem_cgroup(memcg);
6991 		if (!memcg)
6992 			memcg = root_mem_cgroup;
6993 	}
6994 	return memcg;
6995 }
6996 
6997 /**
6998  * mem_cgroup_swapout - transfer a memsw charge to swap
6999  * @page: page whose memsw charge to transfer
7000  * @entry: swap entry to move the charge to
7001  *
7002  * Transfer the memsw charge of @page to @entry.
7003  */
7004 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7005 {
7006 	struct mem_cgroup *memcg, *swap_memcg;
7007 	unsigned int nr_entries;
7008 	unsigned short oldid;
7009 
7010 	VM_BUG_ON_PAGE(PageLRU(page), page);
7011 	VM_BUG_ON_PAGE(page_count(page), page);
7012 
7013 	if (!do_memsw_account())
7014 		return;
7015 
7016 	memcg = page->mem_cgroup;
7017 
7018 	/* Readahead page, never charged */
7019 	if (!memcg)
7020 		return;
7021 
7022 	/*
7023 	 * In case the memcg owning these pages has been offlined and doesn't
7024 	 * have an ID allocated to it anymore, charge the closest online
7025 	 * ancestor for the swap instead and transfer the memory+swap charge.
7026 	 */
7027 	swap_memcg = mem_cgroup_id_get_online(memcg);
7028 	nr_entries = hpage_nr_pages(page);
7029 	/* Get references for the tail pages, too */
7030 	if (nr_entries > 1)
7031 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7032 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7033 				   nr_entries);
7034 	VM_BUG_ON_PAGE(oldid, page);
7035 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7036 
7037 	page->mem_cgroup = NULL;
7038 
7039 	if (!mem_cgroup_is_root(memcg))
7040 		page_counter_uncharge(&memcg->memory, nr_entries);
7041 
7042 	if (memcg != swap_memcg) {
7043 		if (!mem_cgroup_is_root(swap_memcg))
7044 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7045 		page_counter_uncharge(&memcg->memsw, nr_entries);
7046 	}
7047 
7048 	/*
7049 	 * Interrupts should be disabled here because the caller holds the
7050 	 * i_pages lock which is taken with interrupts-off. It is
7051 	 * important here to have the interrupts disabled because it is the
7052 	 * only synchronisation we have for updating the per-CPU variables.
7053 	 */
7054 	VM_BUG_ON(!irqs_disabled());
7055 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7056 				     -nr_entries);
7057 	memcg_check_events(memcg, page);
7058 
7059 	if (!mem_cgroup_is_root(memcg))
7060 		css_put_many(&memcg->css, nr_entries);
7061 }
7062 
7063 /**
7064  * mem_cgroup_try_charge_swap - try charging swap space for a page
7065  * @page: page being added to swap
7066  * @entry: swap entry to charge
7067  *
7068  * Try to charge @page's memcg for the swap space at @entry.
7069  *
7070  * Returns 0 on success, -ENOMEM on failure.
7071  */
7072 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7073 {
7074 	unsigned int nr_pages = hpage_nr_pages(page);
7075 	struct page_counter *counter;
7076 	struct mem_cgroup *memcg;
7077 	unsigned short oldid;
7078 
7079 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7080 		return 0;
7081 
7082 	memcg = page->mem_cgroup;
7083 
7084 	/* Readahead page, never charged */
7085 	if (!memcg)
7086 		return 0;
7087 
7088 	if (!entry.val) {
7089 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7090 		return 0;
7091 	}
7092 
7093 	memcg = mem_cgroup_id_get_online(memcg);
7094 
7095 	if (!mem_cgroup_is_root(memcg) &&
7096 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7097 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7098 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7099 		mem_cgroup_id_put(memcg);
7100 		return -ENOMEM;
7101 	}
7102 
7103 	/* Get references for the tail pages, too */
7104 	if (nr_pages > 1)
7105 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7106 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7107 	VM_BUG_ON_PAGE(oldid, page);
7108 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7109 
7110 	return 0;
7111 }
7112 
7113 /**
7114  * mem_cgroup_uncharge_swap - uncharge swap space
7115  * @entry: swap entry to uncharge
7116  * @nr_pages: the amount of swap space to uncharge
7117  */
7118 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7119 {
7120 	struct mem_cgroup *memcg;
7121 	unsigned short id;
7122 
7123 	if (!do_swap_account)
7124 		return;
7125 
7126 	id = swap_cgroup_record(entry, 0, nr_pages);
7127 	rcu_read_lock();
7128 	memcg = mem_cgroup_from_id(id);
7129 	if (memcg) {
7130 		if (!mem_cgroup_is_root(memcg)) {
7131 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7132 				page_counter_uncharge(&memcg->swap, nr_pages);
7133 			else
7134 				page_counter_uncharge(&memcg->memsw, nr_pages);
7135 		}
7136 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7137 		mem_cgroup_id_put_many(memcg, nr_pages);
7138 	}
7139 	rcu_read_unlock();
7140 }
7141 
7142 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7143 {
7144 	long nr_swap_pages = get_nr_swap_pages();
7145 
7146 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7147 		return nr_swap_pages;
7148 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7149 		nr_swap_pages = min_t(long, nr_swap_pages,
7150 				      READ_ONCE(memcg->swap.max) -
7151 				      page_counter_read(&memcg->swap));
7152 	return nr_swap_pages;
7153 }
7154 
7155 bool mem_cgroup_swap_full(struct page *page)
7156 {
7157 	struct mem_cgroup *memcg;
7158 
7159 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7160 
7161 	if (vm_swap_full())
7162 		return true;
7163 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7164 		return false;
7165 
7166 	memcg = page->mem_cgroup;
7167 	if (!memcg)
7168 		return false;
7169 
7170 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7171 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7172 			return true;
7173 
7174 	return false;
7175 }
7176 
7177 /* for remember boot option*/
7178 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7179 static int really_do_swap_account __initdata = 1;
7180 #else
7181 static int really_do_swap_account __initdata;
7182 #endif
7183 
7184 static int __init enable_swap_account(char *s)
7185 {
7186 	if (!strcmp(s, "1"))
7187 		really_do_swap_account = 1;
7188 	else if (!strcmp(s, "0"))
7189 		really_do_swap_account = 0;
7190 	return 1;
7191 }
7192 __setup("swapaccount=", enable_swap_account);
7193 
7194 static u64 swap_current_read(struct cgroup_subsys_state *css,
7195 			     struct cftype *cft)
7196 {
7197 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7198 
7199 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7200 }
7201 
7202 static int swap_max_show(struct seq_file *m, void *v)
7203 {
7204 	return seq_puts_memcg_tunable(m,
7205 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7206 }
7207 
7208 static ssize_t swap_max_write(struct kernfs_open_file *of,
7209 			      char *buf, size_t nbytes, loff_t off)
7210 {
7211 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7212 	unsigned long max;
7213 	int err;
7214 
7215 	buf = strstrip(buf);
7216 	err = page_counter_memparse(buf, "max", &max);
7217 	if (err)
7218 		return err;
7219 
7220 	xchg(&memcg->swap.max, max);
7221 
7222 	return nbytes;
7223 }
7224 
7225 static int swap_events_show(struct seq_file *m, void *v)
7226 {
7227 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7228 
7229 	seq_printf(m, "max %lu\n",
7230 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7231 	seq_printf(m, "fail %lu\n",
7232 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7233 
7234 	return 0;
7235 }
7236 
7237 static struct cftype swap_files[] = {
7238 	{
7239 		.name = "swap.current",
7240 		.flags = CFTYPE_NOT_ON_ROOT,
7241 		.read_u64 = swap_current_read,
7242 	},
7243 	{
7244 		.name = "swap.max",
7245 		.flags = CFTYPE_NOT_ON_ROOT,
7246 		.seq_show = swap_max_show,
7247 		.write = swap_max_write,
7248 	},
7249 	{
7250 		.name = "swap.events",
7251 		.flags = CFTYPE_NOT_ON_ROOT,
7252 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7253 		.seq_show = swap_events_show,
7254 	},
7255 	{ }	/* terminate */
7256 };
7257 
7258 static struct cftype memsw_cgroup_files[] = {
7259 	{
7260 		.name = "memsw.usage_in_bytes",
7261 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7262 		.read_u64 = mem_cgroup_read_u64,
7263 	},
7264 	{
7265 		.name = "memsw.max_usage_in_bytes",
7266 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7267 		.write = mem_cgroup_reset,
7268 		.read_u64 = mem_cgroup_read_u64,
7269 	},
7270 	{
7271 		.name = "memsw.limit_in_bytes",
7272 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7273 		.write = mem_cgroup_write,
7274 		.read_u64 = mem_cgroup_read_u64,
7275 	},
7276 	{
7277 		.name = "memsw.failcnt",
7278 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7279 		.write = mem_cgroup_reset,
7280 		.read_u64 = mem_cgroup_read_u64,
7281 	},
7282 	{ },	/* terminate */
7283 };
7284 
7285 static int __init mem_cgroup_swap_init(void)
7286 {
7287 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7288 		do_swap_account = 1;
7289 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7290 					       swap_files));
7291 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7292 						  memsw_cgroup_files));
7293 	}
7294 	return 0;
7295 }
7296 subsys_initcall(mem_cgroup_swap_init);
7297 
7298 #endif /* CONFIG_MEMCG_SWAP */
7299