xref: /openbmc/linux/mm/memcontrol.c (revision a2cce7a9)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 #define MEM_CGROUP_RECLAIM_RETRIES	5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81 
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account		0
87 #endif
88 
89 static const char * const mem_cgroup_stat_names[] = {
90 	"cache",
91 	"rss",
92 	"rss_huge",
93 	"mapped_file",
94 	"dirty",
95 	"writeback",
96 	"swap",
97 };
98 
99 static const char * const mem_cgroup_events_names[] = {
100 	"pgpgin",
101 	"pgpgout",
102 	"pgfault",
103 	"pgmajfault",
104 };
105 
106 static const char * const mem_cgroup_lru_names[] = {
107 	"inactive_anon",
108 	"active_anon",
109 	"inactive_file",
110 	"active_file",
111 	"unevictable",
112 };
113 
114 #define THRESHOLDS_EVENTS_TARGET 128
115 #define SOFTLIMIT_EVENTS_TARGET 1024
116 #define NUMAINFO_EVENTS_TARGET	1024
117 
118 /*
119  * Cgroups above their limits are maintained in a RB-Tree, independent of
120  * their hierarchy representation
121  */
122 
123 struct mem_cgroup_tree_per_zone {
124 	struct rb_root rb_root;
125 	spinlock_t lock;
126 };
127 
128 struct mem_cgroup_tree_per_node {
129 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
130 };
131 
132 struct mem_cgroup_tree {
133 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
134 };
135 
136 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
137 
138 /* for OOM */
139 struct mem_cgroup_eventfd_list {
140 	struct list_head list;
141 	struct eventfd_ctx *eventfd;
142 };
143 
144 /*
145  * cgroup_event represents events which userspace want to receive.
146  */
147 struct mem_cgroup_event {
148 	/*
149 	 * memcg which the event belongs to.
150 	 */
151 	struct mem_cgroup *memcg;
152 	/*
153 	 * eventfd to signal userspace about the event.
154 	 */
155 	struct eventfd_ctx *eventfd;
156 	/*
157 	 * Each of these stored in a list by the cgroup.
158 	 */
159 	struct list_head list;
160 	/*
161 	 * register_event() callback will be used to add new userspace
162 	 * waiter for changes related to this event.  Use eventfd_signal()
163 	 * on eventfd to send notification to userspace.
164 	 */
165 	int (*register_event)(struct mem_cgroup *memcg,
166 			      struct eventfd_ctx *eventfd, const char *args);
167 	/*
168 	 * unregister_event() callback will be called when userspace closes
169 	 * the eventfd or on cgroup removing.  This callback must be set,
170 	 * if you want provide notification functionality.
171 	 */
172 	void (*unregister_event)(struct mem_cgroup *memcg,
173 				 struct eventfd_ctx *eventfd);
174 	/*
175 	 * All fields below needed to unregister event when
176 	 * userspace closes eventfd.
177 	 */
178 	poll_table pt;
179 	wait_queue_head_t *wqh;
180 	wait_queue_t wait;
181 	struct work_struct remove;
182 };
183 
184 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
185 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
186 
187 /* Stuffs for move charges at task migration. */
188 /*
189  * Types of charges to be moved.
190  */
191 #define MOVE_ANON	0x1U
192 #define MOVE_FILE	0x2U
193 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
194 
195 /* "mc" and its members are protected by cgroup_mutex */
196 static struct move_charge_struct {
197 	spinlock_t	  lock; /* for from, to */
198 	struct mem_cgroup *from;
199 	struct mem_cgroup *to;
200 	unsigned long flags;
201 	unsigned long precharge;
202 	unsigned long moved_charge;
203 	unsigned long moved_swap;
204 	struct task_struct *moving_task;	/* a task moving charges */
205 	wait_queue_head_t waitq;		/* a waitq for other context */
206 } mc = {
207 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
208 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
209 };
210 
211 /*
212  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
213  * limit reclaim to prevent infinite loops, if they ever occur.
214  */
215 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
216 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
217 
218 enum charge_type {
219 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
220 	MEM_CGROUP_CHARGE_TYPE_ANON,
221 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
222 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
223 	NR_CHARGE_TYPE,
224 };
225 
226 /* for encoding cft->private value on file */
227 enum res_type {
228 	_MEM,
229 	_MEMSWAP,
230 	_OOM_TYPE,
231 	_KMEM,
232 };
233 
234 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
235 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
236 #define MEMFILE_ATTR(val)	((val) & 0xffff)
237 /* Used for OOM nofiier */
238 #define OOM_CONTROL		(0)
239 
240 /*
241  * The memcg_create_mutex will be held whenever a new cgroup is created.
242  * As a consequence, any change that needs to protect against new child cgroups
243  * appearing has to hold it as well.
244  */
245 static DEFINE_MUTEX(memcg_create_mutex);
246 
247 /* Some nice accessors for the vmpressure. */
248 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249 {
250 	if (!memcg)
251 		memcg = root_mem_cgroup;
252 	return &memcg->vmpressure;
253 }
254 
255 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 {
257 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
258 }
259 
260 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
261 {
262 	return (memcg == root_mem_cgroup);
263 }
264 
265 /*
266  * We restrict the id in the range of [1, 65535], so it can fit into
267  * an unsigned short.
268  */
269 #define MEM_CGROUP_ID_MAX	USHRT_MAX
270 
271 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
272 {
273 	return memcg->css.id;
274 }
275 
276 /*
277  * A helper function to get mem_cgroup from ID. must be called under
278  * rcu_read_lock().  The caller is responsible for calling
279  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
280  * refcnt from swap can be called against removed memcg.)
281  */
282 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
283 {
284 	struct cgroup_subsys_state *css;
285 
286 	css = css_from_id(id, &memory_cgrp_subsys);
287 	return mem_cgroup_from_css(css);
288 }
289 
290 /* Writing them here to avoid exposing memcg's inner layout */
291 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
292 
293 void sock_update_memcg(struct sock *sk)
294 {
295 	if (mem_cgroup_sockets_enabled) {
296 		struct mem_cgroup *memcg;
297 		struct cg_proto *cg_proto;
298 
299 		BUG_ON(!sk->sk_prot->proto_cgroup);
300 
301 		/* Socket cloning can throw us here with sk_cgrp already
302 		 * filled. It won't however, necessarily happen from
303 		 * process context. So the test for root memcg given
304 		 * the current task's memcg won't help us in this case.
305 		 *
306 		 * Respecting the original socket's memcg is a better
307 		 * decision in this case.
308 		 */
309 		if (sk->sk_cgrp) {
310 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
311 			css_get(&sk->sk_cgrp->memcg->css);
312 			return;
313 		}
314 
315 		rcu_read_lock();
316 		memcg = mem_cgroup_from_task(current);
317 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
318 		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
319 		    css_tryget_online(&memcg->css)) {
320 			sk->sk_cgrp = cg_proto;
321 		}
322 		rcu_read_unlock();
323 	}
324 }
325 EXPORT_SYMBOL(sock_update_memcg);
326 
327 void sock_release_memcg(struct sock *sk)
328 {
329 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
330 		struct mem_cgroup *memcg;
331 		WARN_ON(!sk->sk_cgrp->memcg);
332 		memcg = sk->sk_cgrp->memcg;
333 		css_put(&sk->sk_cgrp->memcg->css);
334 	}
335 }
336 
337 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
338 {
339 	if (!memcg || mem_cgroup_is_root(memcg))
340 		return NULL;
341 
342 	return &memcg->tcp_mem;
343 }
344 EXPORT_SYMBOL(tcp_proto_cgroup);
345 
346 #endif
347 
348 #ifdef CONFIG_MEMCG_KMEM
349 /*
350  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
351  * The main reason for not using cgroup id for this:
352  *  this works better in sparse environments, where we have a lot of memcgs,
353  *  but only a few kmem-limited. Or also, if we have, for instance, 200
354  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
355  *  200 entry array for that.
356  *
357  * The current size of the caches array is stored in memcg_nr_cache_ids. It
358  * will double each time we have to increase it.
359  */
360 static DEFINE_IDA(memcg_cache_ida);
361 int memcg_nr_cache_ids;
362 
363 /* Protects memcg_nr_cache_ids */
364 static DECLARE_RWSEM(memcg_cache_ids_sem);
365 
366 void memcg_get_cache_ids(void)
367 {
368 	down_read(&memcg_cache_ids_sem);
369 }
370 
371 void memcg_put_cache_ids(void)
372 {
373 	up_read(&memcg_cache_ids_sem);
374 }
375 
376 /*
377  * MIN_SIZE is different than 1, because we would like to avoid going through
378  * the alloc/free process all the time. In a small machine, 4 kmem-limited
379  * cgroups is a reasonable guess. In the future, it could be a parameter or
380  * tunable, but that is strictly not necessary.
381  *
382  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
383  * this constant directly from cgroup, but it is understandable that this is
384  * better kept as an internal representation in cgroup.c. In any case, the
385  * cgrp_id space is not getting any smaller, and we don't have to necessarily
386  * increase ours as well if it increases.
387  */
388 #define MEMCG_CACHES_MIN_SIZE 4
389 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
390 
391 /*
392  * A lot of the calls to the cache allocation functions are expected to be
393  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
394  * conditional to this static branch, we'll have to allow modules that does
395  * kmem_cache_alloc and the such to see this symbol as well
396  */
397 struct static_key memcg_kmem_enabled_key;
398 EXPORT_SYMBOL(memcg_kmem_enabled_key);
399 
400 #endif /* CONFIG_MEMCG_KMEM */
401 
402 static struct mem_cgroup_per_zone *
403 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
404 {
405 	int nid = zone_to_nid(zone);
406 	int zid = zone_idx(zone);
407 
408 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
409 }
410 
411 /**
412  * mem_cgroup_css_from_page - css of the memcg associated with a page
413  * @page: page of interest
414  *
415  * If memcg is bound to the default hierarchy, css of the memcg associated
416  * with @page is returned.  The returned css remains associated with @page
417  * until it is released.
418  *
419  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
420  * is returned.
421  *
422  * XXX: The above description of behavior on the default hierarchy isn't
423  * strictly true yet as replace_page_cache_page() can modify the
424  * association before @page is released even on the default hierarchy;
425  * however, the current and planned usages don't mix the the two functions
426  * and replace_page_cache_page() will soon be updated to make the invariant
427  * actually true.
428  */
429 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
430 {
431 	struct mem_cgroup *memcg;
432 
433 	rcu_read_lock();
434 
435 	memcg = page->mem_cgroup;
436 
437 	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
438 		memcg = root_mem_cgroup;
439 
440 	rcu_read_unlock();
441 	return &memcg->css;
442 }
443 
444 /**
445  * page_cgroup_ino - return inode number of the memcg a page is charged to
446  * @page: the page
447  *
448  * Look up the closest online ancestor of the memory cgroup @page is charged to
449  * and return its inode number or 0 if @page is not charged to any cgroup. It
450  * is safe to call this function without holding a reference to @page.
451  *
452  * Note, this function is inherently racy, because there is nothing to prevent
453  * the cgroup inode from getting torn down and potentially reallocated a moment
454  * after page_cgroup_ino() returns, so it only should be used by callers that
455  * do not care (such as procfs interfaces).
456  */
457 ino_t page_cgroup_ino(struct page *page)
458 {
459 	struct mem_cgroup *memcg;
460 	unsigned long ino = 0;
461 
462 	rcu_read_lock();
463 	memcg = READ_ONCE(page->mem_cgroup);
464 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
465 		memcg = parent_mem_cgroup(memcg);
466 	if (memcg)
467 		ino = cgroup_ino(memcg->css.cgroup);
468 	rcu_read_unlock();
469 	return ino;
470 }
471 
472 static struct mem_cgroup_per_zone *
473 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
474 {
475 	int nid = page_to_nid(page);
476 	int zid = page_zonenum(page);
477 
478 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
479 }
480 
481 static struct mem_cgroup_tree_per_zone *
482 soft_limit_tree_node_zone(int nid, int zid)
483 {
484 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
485 }
486 
487 static struct mem_cgroup_tree_per_zone *
488 soft_limit_tree_from_page(struct page *page)
489 {
490 	int nid = page_to_nid(page);
491 	int zid = page_zonenum(page);
492 
493 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
494 }
495 
496 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
497 					 struct mem_cgroup_tree_per_zone *mctz,
498 					 unsigned long new_usage_in_excess)
499 {
500 	struct rb_node **p = &mctz->rb_root.rb_node;
501 	struct rb_node *parent = NULL;
502 	struct mem_cgroup_per_zone *mz_node;
503 
504 	if (mz->on_tree)
505 		return;
506 
507 	mz->usage_in_excess = new_usage_in_excess;
508 	if (!mz->usage_in_excess)
509 		return;
510 	while (*p) {
511 		parent = *p;
512 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 					tree_node);
514 		if (mz->usage_in_excess < mz_node->usage_in_excess)
515 			p = &(*p)->rb_left;
516 		/*
517 		 * We can't avoid mem cgroups that are over their soft
518 		 * limit by the same amount
519 		 */
520 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 			p = &(*p)->rb_right;
522 	}
523 	rb_link_node(&mz->tree_node, parent, p);
524 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 	mz->on_tree = true;
526 }
527 
528 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
529 					 struct mem_cgroup_tree_per_zone *mctz)
530 {
531 	if (!mz->on_tree)
532 		return;
533 	rb_erase(&mz->tree_node, &mctz->rb_root);
534 	mz->on_tree = false;
535 }
536 
537 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
538 				       struct mem_cgroup_tree_per_zone *mctz)
539 {
540 	unsigned long flags;
541 
542 	spin_lock_irqsave(&mctz->lock, flags);
543 	__mem_cgroup_remove_exceeded(mz, mctz);
544 	spin_unlock_irqrestore(&mctz->lock, flags);
545 }
546 
547 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
548 {
549 	unsigned long nr_pages = page_counter_read(&memcg->memory);
550 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
551 	unsigned long excess = 0;
552 
553 	if (nr_pages > soft_limit)
554 		excess = nr_pages - soft_limit;
555 
556 	return excess;
557 }
558 
559 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
560 {
561 	unsigned long excess;
562 	struct mem_cgroup_per_zone *mz;
563 	struct mem_cgroup_tree_per_zone *mctz;
564 
565 	mctz = soft_limit_tree_from_page(page);
566 	/*
567 	 * Necessary to update all ancestors when hierarchy is used.
568 	 * because their event counter is not touched.
569 	 */
570 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
571 		mz = mem_cgroup_page_zoneinfo(memcg, page);
572 		excess = soft_limit_excess(memcg);
573 		/*
574 		 * We have to update the tree if mz is on RB-tree or
575 		 * mem is over its softlimit.
576 		 */
577 		if (excess || mz->on_tree) {
578 			unsigned long flags;
579 
580 			spin_lock_irqsave(&mctz->lock, flags);
581 			/* if on-tree, remove it */
582 			if (mz->on_tree)
583 				__mem_cgroup_remove_exceeded(mz, mctz);
584 			/*
585 			 * Insert again. mz->usage_in_excess will be updated.
586 			 * If excess is 0, no tree ops.
587 			 */
588 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
589 			spin_unlock_irqrestore(&mctz->lock, flags);
590 		}
591 	}
592 }
593 
594 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
595 {
596 	struct mem_cgroup_tree_per_zone *mctz;
597 	struct mem_cgroup_per_zone *mz;
598 	int nid, zid;
599 
600 	for_each_node(nid) {
601 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
602 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
603 			mctz = soft_limit_tree_node_zone(nid, zid);
604 			mem_cgroup_remove_exceeded(mz, mctz);
605 		}
606 	}
607 }
608 
609 static struct mem_cgroup_per_zone *
610 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
611 {
612 	struct rb_node *rightmost = NULL;
613 	struct mem_cgroup_per_zone *mz;
614 
615 retry:
616 	mz = NULL;
617 	rightmost = rb_last(&mctz->rb_root);
618 	if (!rightmost)
619 		goto done;		/* Nothing to reclaim from */
620 
621 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
622 	/*
623 	 * Remove the node now but someone else can add it back,
624 	 * we will to add it back at the end of reclaim to its correct
625 	 * position in the tree.
626 	 */
627 	__mem_cgroup_remove_exceeded(mz, mctz);
628 	if (!soft_limit_excess(mz->memcg) ||
629 	    !css_tryget_online(&mz->memcg->css))
630 		goto retry;
631 done:
632 	return mz;
633 }
634 
635 static struct mem_cgroup_per_zone *
636 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
637 {
638 	struct mem_cgroup_per_zone *mz;
639 
640 	spin_lock_irq(&mctz->lock);
641 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
642 	spin_unlock_irq(&mctz->lock);
643 	return mz;
644 }
645 
646 /*
647  * Return page count for single (non recursive) @memcg.
648  *
649  * Implementation Note: reading percpu statistics for memcg.
650  *
651  * Both of vmstat[] and percpu_counter has threshold and do periodic
652  * synchronization to implement "quick" read. There are trade-off between
653  * reading cost and precision of value. Then, we may have a chance to implement
654  * a periodic synchronization of counter in memcg's counter.
655  *
656  * But this _read() function is used for user interface now. The user accounts
657  * memory usage by memory cgroup and he _always_ requires exact value because
658  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
659  * have to visit all online cpus and make sum. So, for now, unnecessary
660  * synchronization is not implemented. (just implemented for cpu hotplug)
661  *
662  * If there are kernel internal actions which can make use of some not-exact
663  * value, and reading all cpu value can be performance bottleneck in some
664  * common workload, threshold and synchronization as vmstat[] should be
665  * implemented.
666  */
667 static unsigned long
668 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
669 {
670 	long val = 0;
671 	int cpu;
672 
673 	/* Per-cpu values can be negative, use a signed accumulator */
674 	for_each_possible_cpu(cpu)
675 		val += per_cpu(memcg->stat->count[idx], cpu);
676 	/*
677 	 * Summing races with updates, so val may be negative.  Avoid exposing
678 	 * transient negative values.
679 	 */
680 	if (val < 0)
681 		val = 0;
682 	return val;
683 }
684 
685 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
686 					    enum mem_cgroup_events_index idx)
687 {
688 	unsigned long val = 0;
689 	int cpu;
690 
691 	for_each_possible_cpu(cpu)
692 		val += per_cpu(memcg->stat->events[idx], cpu);
693 	return val;
694 }
695 
696 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697 					 struct page *page,
698 					 int nr_pages)
699 {
700 	/*
701 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
702 	 * counted as CACHE even if it's on ANON LRU.
703 	 */
704 	if (PageAnon(page))
705 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
706 				nr_pages);
707 	else
708 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
709 				nr_pages);
710 
711 	if (PageTransHuge(page))
712 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
713 				nr_pages);
714 
715 	/* pagein of a big page is an event. So, ignore page size */
716 	if (nr_pages > 0)
717 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
718 	else {
719 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
720 		nr_pages = -nr_pages; /* for event */
721 	}
722 
723 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
724 }
725 
726 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
727 						  int nid,
728 						  unsigned int lru_mask)
729 {
730 	unsigned long nr = 0;
731 	int zid;
732 
733 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
734 
735 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
736 		struct mem_cgroup_per_zone *mz;
737 		enum lru_list lru;
738 
739 		for_each_lru(lru) {
740 			if (!(BIT(lru) & lru_mask))
741 				continue;
742 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
743 			nr += mz->lru_size[lru];
744 		}
745 	}
746 	return nr;
747 }
748 
749 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
750 			unsigned int lru_mask)
751 {
752 	unsigned long nr = 0;
753 	int nid;
754 
755 	for_each_node_state(nid, N_MEMORY)
756 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
757 	return nr;
758 }
759 
760 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
761 				       enum mem_cgroup_events_target target)
762 {
763 	unsigned long val, next;
764 
765 	val = __this_cpu_read(memcg->stat->nr_page_events);
766 	next = __this_cpu_read(memcg->stat->targets[target]);
767 	/* from time_after() in jiffies.h */
768 	if ((long)next - (long)val < 0) {
769 		switch (target) {
770 		case MEM_CGROUP_TARGET_THRESH:
771 			next = val + THRESHOLDS_EVENTS_TARGET;
772 			break;
773 		case MEM_CGROUP_TARGET_SOFTLIMIT:
774 			next = val + SOFTLIMIT_EVENTS_TARGET;
775 			break;
776 		case MEM_CGROUP_TARGET_NUMAINFO:
777 			next = val + NUMAINFO_EVENTS_TARGET;
778 			break;
779 		default:
780 			break;
781 		}
782 		__this_cpu_write(memcg->stat->targets[target], next);
783 		return true;
784 	}
785 	return false;
786 }
787 
788 /*
789  * Check events in order.
790  *
791  */
792 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
793 {
794 	/* threshold event is triggered in finer grain than soft limit */
795 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
796 						MEM_CGROUP_TARGET_THRESH))) {
797 		bool do_softlimit;
798 		bool do_numainfo __maybe_unused;
799 
800 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
801 						MEM_CGROUP_TARGET_SOFTLIMIT);
802 #if MAX_NUMNODES > 1
803 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
804 						MEM_CGROUP_TARGET_NUMAINFO);
805 #endif
806 		mem_cgroup_threshold(memcg);
807 		if (unlikely(do_softlimit))
808 			mem_cgroup_update_tree(memcg, page);
809 #if MAX_NUMNODES > 1
810 		if (unlikely(do_numainfo))
811 			atomic_inc(&memcg->numainfo_events);
812 #endif
813 	}
814 }
815 
816 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
817 {
818 	/*
819 	 * mm_update_next_owner() may clear mm->owner to NULL
820 	 * if it races with swapoff, page migration, etc.
821 	 * So this can be called with p == NULL.
822 	 */
823 	if (unlikely(!p))
824 		return NULL;
825 
826 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
827 }
828 EXPORT_SYMBOL(mem_cgroup_from_task);
829 
830 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
831 {
832 	struct mem_cgroup *memcg = NULL;
833 
834 	rcu_read_lock();
835 	do {
836 		/*
837 		 * Page cache insertions can happen withou an
838 		 * actual mm context, e.g. during disk probing
839 		 * on boot, loopback IO, acct() writes etc.
840 		 */
841 		if (unlikely(!mm))
842 			memcg = root_mem_cgroup;
843 		else {
844 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 			if (unlikely(!memcg))
846 				memcg = root_mem_cgroup;
847 		}
848 	} while (!css_tryget_online(&memcg->css));
849 	rcu_read_unlock();
850 	return memcg;
851 }
852 
853 /**
854  * mem_cgroup_iter - iterate over memory cgroup hierarchy
855  * @root: hierarchy root
856  * @prev: previously returned memcg, NULL on first invocation
857  * @reclaim: cookie for shared reclaim walks, NULL for full walks
858  *
859  * Returns references to children of the hierarchy below @root, or
860  * @root itself, or %NULL after a full round-trip.
861  *
862  * Caller must pass the return value in @prev on subsequent
863  * invocations for reference counting, or use mem_cgroup_iter_break()
864  * to cancel a hierarchy walk before the round-trip is complete.
865  *
866  * Reclaimers can specify a zone and a priority level in @reclaim to
867  * divide up the memcgs in the hierarchy among all concurrent
868  * reclaimers operating on the same zone and priority.
869  */
870 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
871 				   struct mem_cgroup *prev,
872 				   struct mem_cgroup_reclaim_cookie *reclaim)
873 {
874 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
875 	struct cgroup_subsys_state *css = NULL;
876 	struct mem_cgroup *memcg = NULL;
877 	struct mem_cgroup *pos = NULL;
878 
879 	if (mem_cgroup_disabled())
880 		return NULL;
881 
882 	if (!root)
883 		root = root_mem_cgroup;
884 
885 	if (prev && !reclaim)
886 		pos = prev;
887 
888 	if (!root->use_hierarchy && root != root_mem_cgroup) {
889 		if (prev)
890 			goto out;
891 		return root;
892 	}
893 
894 	rcu_read_lock();
895 
896 	if (reclaim) {
897 		struct mem_cgroup_per_zone *mz;
898 
899 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
900 		iter = &mz->iter[reclaim->priority];
901 
902 		if (prev && reclaim->generation != iter->generation)
903 			goto out_unlock;
904 
905 		do {
906 			pos = READ_ONCE(iter->position);
907 			/*
908 			 * A racing update may change the position and
909 			 * put the last reference, hence css_tryget(),
910 			 * or retry to see the updated position.
911 			 */
912 		} while (pos && !css_tryget(&pos->css));
913 	}
914 
915 	if (pos)
916 		css = &pos->css;
917 
918 	for (;;) {
919 		css = css_next_descendant_pre(css, &root->css);
920 		if (!css) {
921 			/*
922 			 * Reclaimers share the hierarchy walk, and a
923 			 * new one might jump in right at the end of
924 			 * the hierarchy - make sure they see at least
925 			 * one group and restart from the beginning.
926 			 */
927 			if (!prev)
928 				continue;
929 			break;
930 		}
931 
932 		/*
933 		 * Verify the css and acquire a reference.  The root
934 		 * is provided by the caller, so we know it's alive
935 		 * and kicking, and don't take an extra reference.
936 		 */
937 		memcg = mem_cgroup_from_css(css);
938 
939 		if (css == &root->css)
940 			break;
941 
942 		if (css_tryget(css)) {
943 			/*
944 			 * Make sure the memcg is initialized:
945 			 * mem_cgroup_css_online() orders the the
946 			 * initialization against setting the flag.
947 			 */
948 			if (smp_load_acquire(&memcg->initialized))
949 				break;
950 
951 			css_put(css);
952 		}
953 
954 		memcg = NULL;
955 	}
956 
957 	if (reclaim) {
958 		if (cmpxchg(&iter->position, pos, memcg) == pos) {
959 			if (memcg)
960 				css_get(&memcg->css);
961 			if (pos)
962 				css_put(&pos->css);
963 		}
964 
965 		/*
966 		 * pairs with css_tryget when dereferencing iter->position
967 		 * above.
968 		 */
969 		if (pos)
970 			css_put(&pos->css);
971 
972 		if (!memcg)
973 			iter->generation++;
974 		else if (!prev)
975 			reclaim->generation = iter->generation;
976 	}
977 
978 out_unlock:
979 	rcu_read_unlock();
980 out:
981 	if (prev && prev != root)
982 		css_put(&prev->css);
983 
984 	return memcg;
985 }
986 
987 /**
988  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
989  * @root: hierarchy root
990  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
991  */
992 void mem_cgroup_iter_break(struct mem_cgroup *root,
993 			   struct mem_cgroup *prev)
994 {
995 	if (!root)
996 		root = root_mem_cgroup;
997 	if (prev && prev != root)
998 		css_put(&prev->css);
999 }
1000 
1001 /*
1002  * Iteration constructs for visiting all cgroups (under a tree).  If
1003  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1004  * be used for reference counting.
1005  */
1006 #define for_each_mem_cgroup_tree(iter, root)		\
1007 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1008 	     iter != NULL;				\
1009 	     iter = mem_cgroup_iter(root, iter, NULL))
1010 
1011 #define for_each_mem_cgroup(iter)			\
1012 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1013 	     iter != NULL;				\
1014 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1015 
1016 /**
1017  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1018  * @zone: zone of the wanted lruvec
1019  * @memcg: memcg of the wanted lruvec
1020  *
1021  * Returns the lru list vector holding pages for the given @zone and
1022  * @mem.  This can be the global zone lruvec, if the memory controller
1023  * is disabled.
1024  */
1025 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1026 				      struct mem_cgroup *memcg)
1027 {
1028 	struct mem_cgroup_per_zone *mz;
1029 	struct lruvec *lruvec;
1030 
1031 	if (mem_cgroup_disabled()) {
1032 		lruvec = &zone->lruvec;
1033 		goto out;
1034 	}
1035 
1036 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1037 	lruvec = &mz->lruvec;
1038 out:
1039 	/*
1040 	 * Since a node can be onlined after the mem_cgroup was created,
1041 	 * we have to be prepared to initialize lruvec->zone here;
1042 	 * and if offlined then reonlined, we need to reinitialize it.
1043 	 */
1044 	if (unlikely(lruvec->zone != zone))
1045 		lruvec->zone = zone;
1046 	return lruvec;
1047 }
1048 
1049 /**
1050  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1051  * @page: the page
1052  * @zone: zone of the page
1053  *
1054  * This function is only safe when following the LRU page isolation
1055  * and putback protocol: the LRU lock must be held, and the page must
1056  * either be PageLRU() or the caller must have isolated/allocated it.
1057  */
1058 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1059 {
1060 	struct mem_cgroup_per_zone *mz;
1061 	struct mem_cgroup *memcg;
1062 	struct lruvec *lruvec;
1063 
1064 	if (mem_cgroup_disabled()) {
1065 		lruvec = &zone->lruvec;
1066 		goto out;
1067 	}
1068 
1069 	memcg = page->mem_cgroup;
1070 	/*
1071 	 * Swapcache readahead pages are added to the LRU - and
1072 	 * possibly migrated - before they are charged.
1073 	 */
1074 	if (!memcg)
1075 		memcg = root_mem_cgroup;
1076 
1077 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1078 	lruvec = &mz->lruvec;
1079 out:
1080 	/*
1081 	 * Since a node can be onlined after the mem_cgroup was created,
1082 	 * we have to be prepared to initialize lruvec->zone here;
1083 	 * and if offlined then reonlined, we need to reinitialize it.
1084 	 */
1085 	if (unlikely(lruvec->zone != zone))
1086 		lruvec->zone = zone;
1087 	return lruvec;
1088 }
1089 
1090 /**
1091  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1092  * @lruvec: mem_cgroup per zone lru vector
1093  * @lru: index of lru list the page is sitting on
1094  * @nr_pages: positive when adding or negative when removing
1095  *
1096  * This function must be called when a page is added to or removed from an
1097  * lru list.
1098  */
1099 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1100 				int nr_pages)
1101 {
1102 	struct mem_cgroup_per_zone *mz;
1103 	unsigned long *lru_size;
1104 
1105 	if (mem_cgroup_disabled())
1106 		return;
1107 
1108 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1109 	lru_size = mz->lru_size + lru;
1110 	*lru_size += nr_pages;
1111 	VM_BUG_ON((long)(*lru_size) < 0);
1112 }
1113 
1114 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1115 {
1116 	struct mem_cgroup *task_memcg;
1117 	struct task_struct *p;
1118 	bool ret;
1119 
1120 	p = find_lock_task_mm(task);
1121 	if (p) {
1122 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1123 		task_unlock(p);
1124 	} else {
1125 		/*
1126 		 * All threads may have already detached their mm's, but the oom
1127 		 * killer still needs to detect if they have already been oom
1128 		 * killed to prevent needlessly killing additional tasks.
1129 		 */
1130 		rcu_read_lock();
1131 		task_memcg = mem_cgroup_from_task(task);
1132 		css_get(&task_memcg->css);
1133 		rcu_read_unlock();
1134 	}
1135 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1136 	css_put(&task_memcg->css);
1137 	return ret;
1138 }
1139 
1140 #define mem_cgroup_from_counter(counter, member)	\
1141 	container_of(counter, struct mem_cgroup, member)
1142 
1143 /**
1144  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1145  * @memcg: the memory cgroup
1146  *
1147  * Returns the maximum amount of memory @mem can be charged with, in
1148  * pages.
1149  */
1150 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1151 {
1152 	unsigned long margin = 0;
1153 	unsigned long count;
1154 	unsigned long limit;
1155 
1156 	count = page_counter_read(&memcg->memory);
1157 	limit = READ_ONCE(memcg->memory.limit);
1158 	if (count < limit)
1159 		margin = limit - count;
1160 
1161 	if (do_swap_account) {
1162 		count = page_counter_read(&memcg->memsw);
1163 		limit = READ_ONCE(memcg->memsw.limit);
1164 		if (count <= limit)
1165 			margin = min(margin, limit - count);
1166 	}
1167 
1168 	return margin;
1169 }
1170 
1171 /*
1172  * A routine for checking "mem" is under move_account() or not.
1173  *
1174  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1175  * moving cgroups. This is for waiting at high-memory pressure
1176  * caused by "move".
1177  */
1178 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1179 {
1180 	struct mem_cgroup *from;
1181 	struct mem_cgroup *to;
1182 	bool ret = false;
1183 	/*
1184 	 * Unlike task_move routines, we access mc.to, mc.from not under
1185 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1186 	 */
1187 	spin_lock(&mc.lock);
1188 	from = mc.from;
1189 	to = mc.to;
1190 	if (!from)
1191 		goto unlock;
1192 
1193 	ret = mem_cgroup_is_descendant(from, memcg) ||
1194 		mem_cgroup_is_descendant(to, memcg);
1195 unlock:
1196 	spin_unlock(&mc.lock);
1197 	return ret;
1198 }
1199 
1200 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1201 {
1202 	if (mc.moving_task && current != mc.moving_task) {
1203 		if (mem_cgroup_under_move(memcg)) {
1204 			DEFINE_WAIT(wait);
1205 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1206 			/* moving charge context might have finished. */
1207 			if (mc.moving_task)
1208 				schedule();
1209 			finish_wait(&mc.waitq, &wait);
1210 			return true;
1211 		}
1212 	}
1213 	return false;
1214 }
1215 
1216 #define K(x) ((x) << (PAGE_SHIFT-10))
1217 /**
1218  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1219  * @memcg: The memory cgroup that went over limit
1220  * @p: Task that is going to be killed
1221  *
1222  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1223  * enabled
1224  */
1225 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1226 {
1227 	/* oom_info_lock ensures that parallel ooms do not interleave */
1228 	static DEFINE_MUTEX(oom_info_lock);
1229 	struct mem_cgroup *iter;
1230 	unsigned int i;
1231 
1232 	mutex_lock(&oom_info_lock);
1233 	rcu_read_lock();
1234 
1235 	if (p) {
1236 		pr_info("Task in ");
1237 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1238 		pr_cont(" killed as a result of limit of ");
1239 	} else {
1240 		pr_info("Memory limit reached of cgroup ");
1241 	}
1242 
1243 	pr_cont_cgroup_path(memcg->css.cgroup);
1244 	pr_cont("\n");
1245 
1246 	rcu_read_unlock();
1247 
1248 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1249 		K((u64)page_counter_read(&memcg->memory)),
1250 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1251 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1252 		K((u64)page_counter_read(&memcg->memsw)),
1253 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1254 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1255 		K((u64)page_counter_read(&memcg->kmem)),
1256 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1257 
1258 	for_each_mem_cgroup_tree(iter, memcg) {
1259 		pr_info("Memory cgroup stats for ");
1260 		pr_cont_cgroup_path(iter->css.cgroup);
1261 		pr_cont(":");
1262 
1263 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1264 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1265 				continue;
1266 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1267 				K(mem_cgroup_read_stat(iter, i)));
1268 		}
1269 
1270 		for (i = 0; i < NR_LRU_LISTS; i++)
1271 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1272 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1273 
1274 		pr_cont("\n");
1275 	}
1276 	mutex_unlock(&oom_info_lock);
1277 }
1278 
1279 /*
1280  * This function returns the number of memcg under hierarchy tree. Returns
1281  * 1(self count) if no children.
1282  */
1283 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1284 {
1285 	int num = 0;
1286 	struct mem_cgroup *iter;
1287 
1288 	for_each_mem_cgroup_tree(iter, memcg)
1289 		num++;
1290 	return num;
1291 }
1292 
1293 /*
1294  * Return the memory (and swap, if configured) limit for a memcg.
1295  */
1296 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1297 {
1298 	unsigned long limit;
1299 
1300 	limit = memcg->memory.limit;
1301 	if (mem_cgroup_swappiness(memcg)) {
1302 		unsigned long memsw_limit;
1303 
1304 		memsw_limit = memcg->memsw.limit;
1305 		limit = min(limit + total_swap_pages, memsw_limit);
1306 	}
1307 	return limit;
1308 }
1309 
1310 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1311 				     int order)
1312 {
1313 	struct oom_control oc = {
1314 		.zonelist = NULL,
1315 		.nodemask = NULL,
1316 		.gfp_mask = gfp_mask,
1317 		.order = order,
1318 	};
1319 	struct mem_cgroup *iter;
1320 	unsigned long chosen_points = 0;
1321 	unsigned long totalpages;
1322 	unsigned int points = 0;
1323 	struct task_struct *chosen = NULL;
1324 
1325 	mutex_lock(&oom_lock);
1326 
1327 	/*
1328 	 * If current has a pending SIGKILL or is exiting, then automatically
1329 	 * select it.  The goal is to allow it to allocate so that it may
1330 	 * quickly exit and free its memory.
1331 	 */
1332 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1333 		mark_oom_victim(current);
1334 		goto unlock;
1335 	}
1336 
1337 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1338 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1339 	for_each_mem_cgroup_tree(iter, memcg) {
1340 		struct css_task_iter it;
1341 		struct task_struct *task;
1342 
1343 		css_task_iter_start(&iter->css, &it);
1344 		while ((task = css_task_iter_next(&it))) {
1345 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1346 			case OOM_SCAN_SELECT:
1347 				if (chosen)
1348 					put_task_struct(chosen);
1349 				chosen = task;
1350 				chosen_points = ULONG_MAX;
1351 				get_task_struct(chosen);
1352 				/* fall through */
1353 			case OOM_SCAN_CONTINUE:
1354 				continue;
1355 			case OOM_SCAN_ABORT:
1356 				css_task_iter_end(&it);
1357 				mem_cgroup_iter_break(memcg, iter);
1358 				if (chosen)
1359 					put_task_struct(chosen);
1360 				goto unlock;
1361 			case OOM_SCAN_OK:
1362 				break;
1363 			};
1364 			points = oom_badness(task, memcg, NULL, totalpages);
1365 			if (!points || points < chosen_points)
1366 				continue;
1367 			/* Prefer thread group leaders for display purposes */
1368 			if (points == chosen_points &&
1369 			    thread_group_leader(chosen))
1370 				continue;
1371 
1372 			if (chosen)
1373 				put_task_struct(chosen);
1374 			chosen = task;
1375 			chosen_points = points;
1376 			get_task_struct(chosen);
1377 		}
1378 		css_task_iter_end(&it);
1379 	}
1380 
1381 	if (chosen) {
1382 		points = chosen_points * 1000 / totalpages;
1383 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1384 				 "Memory cgroup out of memory");
1385 	}
1386 unlock:
1387 	mutex_unlock(&oom_lock);
1388 }
1389 
1390 #if MAX_NUMNODES > 1
1391 
1392 /**
1393  * test_mem_cgroup_node_reclaimable
1394  * @memcg: the target memcg
1395  * @nid: the node ID to be checked.
1396  * @noswap : specify true here if the user wants flle only information.
1397  *
1398  * This function returns whether the specified memcg contains any
1399  * reclaimable pages on a node. Returns true if there are any reclaimable
1400  * pages in the node.
1401  */
1402 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1403 		int nid, bool noswap)
1404 {
1405 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1406 		return true;
1407 	if (noswap || !total_swap_pages)
1408 		return false;
1409 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1410 		return true;
1411 	return false;
1412 
1413 }
1414 
1415 /*
1416  * Always updating the nodemask is not very good - even if we have an empty
1417  * list or the wrong list here, we can start from some node and traverse all
1418  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1419  *
1420  */
1421 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1422 {
1423 	int nid;
1424 	/*
1425 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1426 	 * pagein/pageout changes since the last update.
1427 	 */
1428 	if (!atomic_read(&memcg->numainfo_events))
1429 		return;
1430 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1431 		return;
1432 
1433 	/* make a nodemask where this memcg uses memory from */
1434 	memcg->scan_nodes = node_states[N_MEMORY];
1435 
1436 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1437 
1438 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1439 			node_clear(nid, memcg->scan_nodes);
1440 	}
1441 
1442 	atomic_set(&memcg->numainfo_events, 0);
1443 	atomic_set(&memcg->numainfo_updating, 0);
1444 }
1445 
1446 /*
1447  * Selecting a node where we start reclaim from. Because what we need is just
1448  * reducing usage counter, start from anywhere is O,K. Considering
1449  * memory reclaim from current node, there are pros. and cons.
1450  *
1451  * Freeing memory from current node means freeing memory from a node which
1452  * we'll use or we've used. So, it may make LRU bad. And if several threads
1453  * hit limits, it will see a contention on a node. But freeing from remote
1454  * node means more costs for memory reclaim because of memory latency.
1455  *
1456  * Now, we use round-robin. Better algorithm is welcomed.
1457  */
1458 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1459 {
1460 	int node;
1461 
1462 	mem_cgroup_may_update_nodemask(memcg);
1463 	node = memcg->last_scanned_node;
1464 
1465 	node = next_node(node, memcg->scan_nodes);
1466 	if (node == MAX_NUMNODES)
1467 		node = first_node(memcg->scan_nodes);
1468 	/*
1469 	 * We call this when we hit limit, not when pages are added to LRU.
1470 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1471 	 * memcg is too small and all pages are not on LRU. In that case,
1472 	 * we use curret node.
1473 	 */
1474 	if (unlikely(node == MAX_NUMNODES))
1475 		node = numa_node_id();
1476 
1477 	memcg->last_scanned_node = node;
1478 	return node;
1479 }
1480 #else
1481 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1482 {
1483 	return 0;
1484 }
1485 #endif
1486 
1487 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1488 				   struct zone *zone,
1489 				   gfp_t gfp_mask,
1490 				   unsigned long *total_scanned)
1491 {
1492 	struct mem_cgroup *victim = NULL;
1493 	int total = 0;
1494 	int loop = 0;
1495 	unsigned long excess;
1496 	unsigned long nr_scanned;
1497 	struct mem_cgroup_reclaim_cookie reclaim = {
1498 		.zone = zone,
1499 		.priority = 0,
1500 	};
1501 
1502 	excess = soft_limit_excess(root_memcg);
1503 
1504 	while (1) {
1505 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1506 		if (!victim) {
1507 			loop++;
1508 			if (loop >= 2) {
1509 				/*
1510 				 * If we have not been able to reclaim
1511 				 * anything, it might because there are
1512 				 * no reclaimable pages under this hierarchy
1513 				 */
1514 				if (!total)
1515 					break;
1516 				/*
1517 				 * We want to do more targeted reclaim.
1518 				 * excess >> 2 is not to excessive so as to
1519 				 * reclaim too much, nor too less that we keep
1520 				 * coming back to reclaim from this cgroup
1521 				 */
1522 				if (total >= (excess >> 2) ||
1523 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1524 					break;
1525 			}
1526 			continue;
1527 		}
1528 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1529 						     zone, &nr_scanned);
1530 		*total_scanned += nr_scanned;
1531 		if (!soft_limit_excess(root_memcg))
1532 			break;
1533 	}
1534 	mem_cgroup_iter_break(root_memcg, victim);
1535 	return total;
1536 }
1537 
1538 #ifdef CONFIG_LOCKDEP
1539 static struct lockdep_map memcg_oom_lock_dep_map = {
1540 	.name = "memcg_oom_lock",
1541 };
1542 #endif
1543 
1544 static DEFINE_SPINLOCK(memcg_oom_lock);
1545 
1546 /*
1547  * Check OOM-Killer is already running under our hierarchy.
1548  * If someone is running, return false.
1549  */
1550 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1551 {
1552 	struct mem_cgroup *iter, *failed = NULL;
1553 
1554 	spin_lock(&memcg_oom_lock);
1555 
1556 	for_each_mem_cgroup_tree(iter, memcg) {
1557 		if (iter->oom_lock) {
1558 			/*
1559 			 * this subtree of our hierarchy is already locked
1560 			 * so we cannot give a lock.
1561 			 */
1562 			failed = iter;
1563 			mem_cgroup_iter_break(memcg, iter);
1564 			break;
1565 		} else
1566 			iter->oom_lock = true;
1567 	}
1568 
1569 	if (failed) {
1570 		/*
1571 		 * OK, we failed to lock the whole subtree so we have
1572 		 * to clean up what we set up to the failing subtree
1573 		 */
1574 		for_each_mem_cgroup_tree(iter, memcg) {
1575 			if (iter == failed) {
1576 				mem_cgroup_iter_break(memcg, iter);
1577 				break;
1578 			}
1579 			iter->oom_lock = false;
1580 		}
1581 	} else
1582 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1583 
1584 	spin_unlock(&memcg_oom_lock);
1585 
1586 	return !failed;
1587 }
1588 
1589 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1590 {
1591 	struct mem_cgroup *iter;
1592 
1593 	spin_lock(&memcg_oom_lock);
1594 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1595 	for_each_mem_cgroup_tree(iter, memcg)
1596 		iter->oom_lock = false;
1597 	spin_unlock(&memcg_oom_lock);
1598 }
1599 
1600 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1601 {
1602 	struct mem_cgroup *iter;
1603 
1604 	spin_lock(&memcg_oom_lock);
1605 	for_each_mem_cgroup_tree(iter, memcg)
1606 		iter->under_oom++;
1607 	spin_unlock(&memcg_oom_lock);
1608 }
1609 
1610 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1611 {
1612 	struct mem_cgroup *iter;
1613 
1614 	/*
1615 	 * When a new child is created while the hierarchy is under oom,
1616 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1617 	 */
1618 	spin_lock(&memcg_oom_lock);
1619 	for_each_mem_cgroup_tree(iter, memcg)
1620 		if (iter->under_oom > 0)
1621 			iter->under_oom--;
1622 	spin_unlock(&memcg_oom_lock);
1623 }
1624 
1625 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1626 
1627 struct oom_wait_info {
1628 	struct mem_cgroup *memcg;
1629 	wait_queue_t	wait;
1630 };
1631 
1632 static int memcg_oom_wake_function(wait_queue_t *wait,
1633 	unsigned mode, int sync, void *arg)
1634 {
1635 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1636 	struct mem_cgroup *oom_wait_memcg;
1637 	struct oom_wait_info *oom_wait_info;
1638 
1639 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1640 	oom_wait_memcg = oom_wait_info->memcg;
1641 
1642 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1643 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1644 		return 0;
1645 	return autoremove_wake_function(wait, mode, sync, arg);
1646 }
1647 
1648 static void memcg_oom_recover(struct mem_cgroup *memcg)
1649 {
1650 	/*
1651 	 * For the following lockless ->under_oom test, the only required
1652 	 * guarantee is that it must see the state asserted by an OOM when
1653 	 * this function is called as a result of userland actions
1654 	 * triggered by the notification of the OOM.  This is trivially
1655 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1656 	 * triggering notification.
1657 	 */
1658 	if (memcg && memcg->under_oom)
1659 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1660 }
1661 
1662 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1663 {
1664 	if (!current->memcg_oom.may_oom)
1665 		return;
1666 	/*
1667 	 * We are in the middle of the charge context here, so we
1668 	 * don't want to block when potentially sitting on a callstack
1669 	 * that holds all kinds of filesystem and mm locks.
1670 	 *
1671 	 * Also, the caller may handle a failed allocation gracefully
1672 	 * (like optional page cache readahead) and so an OOM killer
1673 	 * invocation might not even be necessary.
1674 	 *
1675 	 * That's why we don't do anything here except remember the
1676 	 * OOM context and then deal with it at the end of the page
1677 	 * fault when the stack is unwound, the locks are released,
1678 	 * and when we know whether the fault was overall successful.
1679 	 */
1680 	css_get(&memcg->css);
1681 	current->memcg_oom.memcg = memcg;
1682 	current->memcg_oom.gfp_mask = mask;
1683 	current->memcg_oom.order = order;
1684 }
1685 
1686 /**
1687  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1688  * @handle: actually kill/wait or just clean up the OOM state
1689  *
1690  * This has to be called at the end of a page fault if the memcg OOM
1691  * handler was enabled.
1692  *
1693  * Memcg supports userspace OOM handling where failed allocations must
1694  * sleep on a waitqueue until the userspace task resolves the
1695  * situation.  Sleeping directly in the charge context with all kinds
1696  * of locks held is not a good idea, instead we remember an OOM state
1697  * in the task and mem_cgroup_oom_synchronize() has to be called at
1698  * the end of the page fault to complete the OOM handling.
1699  *
1700  * Returns %true if an ongoing memcg OOM situation was detected and
1701  * completed, %false otherwise.
1702  */
1703 bool mem_cgroup_oom_synchronize(bool handle)
1704 {
1705 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1706 	struct oom_wait_info owait;
1707 	bool locked;
1708 
1709 	/* OOM is global, do not handle */
1710 	if (!memcg)
1711 		return false;
1712 
1713 	if (!handle || oom_killer_disabled)
1714 		goto cleanup;
1715 
1716 	owait.memcg = memcg;
1717 	owait.wait.flags = 0;
1718 	owait.wait.func = memcg_oom_wake_function;
1719 	owait.wait.private = current;
1720 	INIT_LIST_HEAD(&owait.wait.task_list);
1721 
1722 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1723 	mem_cgroup_mark_under_oom(memcg);
1724 
1725 	locked = mem_cgroup_oom_trylock(memcg);
1726 
1727 	if (locked)
1728 		mem_cgroup_oom_notify(memcg);
1729 
1730 	if (locked && !memcg->oom_kill_disable) {
1731 		mem_cgroup_unmark_under_oom(memcg);
1732 		finish_wait(&memcg_oom_waitq, &owait.wait);
1733 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1734 					 current->memcg_oom.order);
1735 	} else {
1736 		schedule();
1737 		mem_cgroup_unmark_under_oom(memcg);
1738 		finish_wait(&memcg_oom_waitq, &owait.wait);
1739 	}
1740 
1741 	if (locked) {
1742 		mem_cgroup_oom_unlock(memcg);
1743 		/*
1744 		 * There is no guarantee that an OOM-lock contender
1745 		 * sees the wakeups triggered by the OOM kill
1746 		 * uncharges.  Wake any sleepers explicitely.
1747 		 */
1748 		memcg_oom_recover(memcg);
1749 	}
1750 cleanup:
1751 	current->memcg_oom.memcg = NULL;
1752 	css_put(&memcg->css);
1753 	return true;
1754 }
1755 
1756 /**
1757  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1758  * @page: page that is going to change accounted state
1759  *
1760  * This function must mark the beginning of an accounted page state
1761  * change to prevent double accounting when the page is concurrently
1762  * being moved to another memcg:
1763  *
1764  *   memcg = mem_cgroup_begin_page_stat(page);
1765  *   if (TestClearPageState(page))
1766  *     mem_cgroup_update_page_stat(memcg, state, -1);
1767  *   mem_cgroup_end_page_stat(memcg);
1768  */
1769 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1770 {
1771 	struct mem_cgroup *memcg;
1772 	unsigned long flags;
1773 
1774 	/*
1775 	 * The RCU lock is held throughout the transaction.  The fast
1776 	 * path can get away without acquiring the memcg->move_lock
1777 	 * because page moving starts with an RCU grace period.
1778 	 *
1779 	 * The RCU lock also protects the memcg from being freed when
1780 	 * the page state that is going to change is the only thing
1781 	 * preventing the page from being uncharged.
1782 	 * E.g. end-writeback clearing PageWriteback(), which allows
1783 	 * migration to go ahead and uncharge the page before the
1784 	 * account transaction might be complete.
1785 	 */
1786 	rcu_read_lock();
1787 
1788 	if (mem_cgroup_disabled())
1789 		return NULL;
1790 again:
1791 	memcg = page->mem_cgroup;
1792 	if (unlikely(!memcg))
1793 		return NULL;
1794 
1795 	if (atomic_read(&memcg->moving_account) <= 0)
1796 		return memcg;
1797 
1798 	spin_lock_irqsave(&memcg->move_lock, flags);
1799 	if (memcg != page->mem_cgroup) {
1800 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1801 		goto again;
1802 	}
1803 
1804 	/*
1805 	 * When charge migration first begins, we can have locked and
1806 	 * unlocked page stat updates happening concurrently.  Track
1807 	 * the task who has the lock for mem_cgroup_end_page_stat().
1808 	 */
1809 	memcg->move_lock_task = current;
1810 	memcg->move_lock_flags = flags;
1811 
1812 	return memcg;
1813 }
1814 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1815 
1816 /**
1817  * mem_cgroup_end_page_stat - finish a page state statistics transaction
1818  * @memcg: the memcg that was accounted against
1819  */
1820 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1821 {
1822 	if (memcg && memcg->move_lock_task == current) {
1823 		unsigned long flags = memcg->move_lock_flags;
1824 
1825 		memcg->move_lock_task = NULL;
1826 		memcg->move_lock_flags = 0;
1827 
1828 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1829 	}
1830 
1831 	rcu_read_unlock();
1832 }
1833 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1834 
1835 /*
1836  * size of first charge trial. "32" comes from vmscan.c's magic value.
1837  * TODO: maybe necessary to use big numbers in big irons.
1838  */
1839 #define CHARGE_BATCH	32U
1840 struct memcg_stock_pcp {
1841 	struct mem_cgroup *cached; /* this never be root cgroup */
1842 	unsigned int nr_pages;
1843 	struct work_struct work;
1844 	unsigned long flags;
1845 #define FLUSHING_CACHED_CHARGE	0
1846 };
1847 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1848 static DEFINE_MUTEX(percpu_charge_mutex);
1849 
1850 /**
1851  * consume_stock: Try to consume stocked charge on this cpu.
1852  * @memcg: memcg to consume from.
1853  * @nr_pages: how many pages to charge.
1854  *
1855  * The charges will only happen if @memcg matches the current cpu's memcg
1856  * stock, and at least @nr_pages are available in that stock.  Failure to
1857  * service an allocation will refill the stock.
1858  *
1859  * returns true if successful, false otherwise.
1860  */
1861 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1862 {
1863 	struct memcg_stock_pcp *stock;
1864 	bool ret = false;
1865 
1866 	if (nr_pages > CHARGE_BATCH)
1867 		return ret;
1868 
1869 	stock = &get_cpu_var(memcg_stock);
1870 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1871 		stock->nr_pages -= nr_pages;
1872 		ret = true;
1873 	}
1874 	put_cpu_var(memcg_stock);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Returns stocks cached in percpu and reset cached information.
1880  */
1881 static void drain_stock(struct memcg_stock_pcp *stock)
1882 {
1883 	struct mem_cgroup *old = stock->cached;
1884 
1885 	if (stock->nr_pages) {
1886 		page_counter_uncharge(&old->memory, stock->nr_pages);
1887 		if (do_swap_account)
1888 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1889 		css_put_many(&old->css, stock->nr_pages);
1890 		stock->nr_pages = 0;
1891 	}
1892 	stock->cached = NULL;
1893 }
1894 
1895 /*
1896  * This must be called under preempt disabled or must be called by
1897  * a thread which is pinned to local cpu.
1898  */
1899 static void drain_local_stock(struct work_struct *dummy)
1900 {
1901 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1902 	drain_stock(stock);
1903 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1904 }
1905 
1906 /*
1907  * Cache charges(val) to local per_cpu area.
1908  * This will be consumed by consume_stock() function, later.
1909  */
1910 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1911 {
1912 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1913 
1914 	if (stock->cached != memcg) { /* reset if necessary */
1915 		drain_stock(stock);
1916 		stock->cached = memcg;
1917 	}
1918 	stock->nr_pages += nr_pages;
1919 	put_cpu_var(memcg_stock);
1920 }
1921 
1922 /*
1923  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1924  * of the hierarchy under it.
1925  */
1926 static void drain_all_stock(struct mem_cgroup *root_memcg)
1927 {
1928 	int cpu, curcpu;
1929 
1930 	/* If someone's already draining, avoid adding running more workers. */
1931 	if (!mutex_trylock(&percpu_charge_mutex))
1932 		return;
1933 	/* Notify other cpus that system-wide "drain" is running */
1934 	get_online_cpus();
1935 	curcpu = get_cpu();
1936 	for_each_online_cpu(cpu) {
1937 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1938 		struct mem_cgroup *memcg;
1939 
1940 		memcg = stock->cached;
1941 		if (!memcg || !stock->nr_pages)
1942 			continue;
1943 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1944 			continue;
1945 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1946 			if (cpu == curcpu)
1947 				drain_local_stock(&stock->work);
1948 			else
1949 				schedule_work_on(cpu, &stock->work);
1950 		}
1951 	}
1952 	put_cpu();
1953 	put_online_cpus();
1954 	mutex_unlock(&percpu_charge_mutex);
1955 }
1956 
1957 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1958 					unsigned long action,
1959 					void *hcpu)
1960 {
1961 	int cpu = (unsigned long)hcpu;
1962 	struct memcg_stock_pcp *stock;
1963 
1964 	if (action == CPU_ONLINE)
1965 		return NOTIFY_OK;
1966 
1967 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1968 		return NOTIFY_OK;
1969 
1970 	stock = &per_cpu(memcg_stock, cpu);
1971 	drain_stock(stock);
1972 	return NOTIFY_OK;
1973 }
1974 
1975 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1976 		      unsigned int nr_pages)
1977 {
1978 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1979 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1980 	struct mem_cgroup *mem_over_limit;
1981 	struct page_counter *counter;
1982 	unsigned long nr_reclaimed;
1983 	bool may_swap = true;
1984 	bool drained = false;
1985 	int ret = 0;
1986 
1987 	if (mem_cgroup_is_root(memcg))
1988 		goto done;
1989 retry:
1990 	if (consume_stock(memcg, nr_pages))
1991 		goto done;
1992 
1993 	if (!do_swap_account ||
1994 	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1995 		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
1996 			goto done_restock;
1997 		if (do_swap_account)
1998 			page_counter_uncharge(&memcg->memsw, batch);
1999 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2000 	} else {
2001 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2002 		may_swap = false;
2003 	}
2004 
2005 	if (batch > nr_pages) {
2006 		batch = nr_pages;
2007 		goto retry;
2008 	}
2009 
2010 	/*
2011 	 * Unlike in global OOM situations, memcg is not in a physical
2012 	 * memory shortage.  Allow dying and OOM-killed tasks to
2013 	 * bypass the last charges so that they can exit quickly and
2014 	 * free their memory.
2015 	 */
2016 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2017 		     fatal_signal_pending(current) ||
2018 		     current->flags & PF_EXITING))
2019 		goto bypass;
2020 
2021 	if (unlikely(task_in_memcg_oom(current)))
2022 		goto nomem;
2023 
2024 	if (!(gfp_mask & __GFP_WAIT))
2025 		goto nomem;
2026 
2027 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2028 
2029 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2030 						    gfp_mask, may_swap);
2031 
2032 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2033 		goto retry;
2034 
2035 	if (!drained) {
2036 		drain_all_stock(mem_over_limit);
2037 		drained = true;
2038 		goto retry;
2039 	}
2040 
2041 	if (gfp_mask & __GFP_NORETRY)
2042 		goto nomem;
2043 	/*
2044 	 * Even though the limit is exceeded at this point, reclaim
2045 	 * may have been able to free some pages.  Retry the charge
2046 	 * before killing the task.
2047 	 *
2048 	 * Only for regular pages, though: huge pages are rather
2049 	 * unlikely to succeed so close to the limit, and we fall back
2050 	 * to regular pages anyway in case of failure.
2051 	 */
2052 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2053 		goto retry;
2054 	/*
2055 	 * At task move, charge accounts can be doubly counted. So, it's
2056 	 * better to wait until the end of task_move if something is going on.
2057 	 */
2058 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2059 		goto retry;
2060 
2061 	if (nr_retries--)
2062 		goto retry;
2063 
2064 	if (gfp_mask & __GFP_NOFAIL)
2065 		goto bypass;
2066 
2067 	if (fatal_signal_pending(current))
2068 		goto bypass;
2069 
2070 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2071 
2072 	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2073 nomem:
2074 	if (!(gfp_mask & __GFP_NOFAIL))
2075 		return -ENOMEM;
2076 bypass:
2077 	return -EINTR;
2078 
2079 done_restock:
2080 	css_get_many(&memcg->css, batch);
2081 	if (batch > nr_pages)
2082 		refill_stock(memcg, batch - nr_pages);
2083 	if (!(gfp_mask & __GFP_WAIT))
2084 		goto done;
2085 	/*
2086 	 * If the hierarchy is above the normal consumption range,
2087 	 * make the charging task trim their excess contribution.
2088 	 */
2089 	do {
2090 		if (page_counter_read(&memcg->memory) <= memcg->high)
2091 			continue;
2092 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2093 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2094 	} while ((memcg = parent_mem_cgroup(memcg)));
2095 done:
2096 	return ret;
2097 }
2098 
2099 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2100 {
2101 	if (mem_cgroup_is_root(memcg))
2102 		return;
2103 
2104 	page_counter_uncharge(&memcg->memory, nr_pages);
2105 	if (do_swap_account)
2106 		page_counter_uncharge(&memcg->memsw, nr_pages);
2107 
2108 	css_put_many(&memcg->css, nr_pages);
2109 }
2110 
2111 static void lock_page_lru(struct page *page, int *isolated)
2112 {
2113 	struct zone *zone = page_zone(page);
2114 
2115 	spin_lock_irq(&zone->lru_lock);
2116 	if (PageLRU(page)) {
2117 		struct lruvec *lruvec;
2118 
2119 		lruvec = mem_cgroup_page_lruvec(page, zone);
2120 		ClearPageLRU(page);
2121 		del_page_from_lru_list(page, lruvec, page_lru(page));
2122 		*isolated = 1;
2123 	} else
2124 		*isolated = 0;
2125 }
2126 
2127 static void unlock_page_lru(struct page *page, int isolated)
2128 {
2129 	struct zone *zone = page_zone(page);
2130 
2131 	if (isolated) {
2132 		struct lruvec *lruvec;
2133 
2134 		lruvec = mem_cgroup_page_lruvec(page, zone);
2135 		VM_BUG_ON_PAGE(PageLRU(page), page);
2136 		SetPageLRU(page);
2137 		add_page_to_lru_list(page, lruvec, page_lru(page));
2138 	}
2139 	spin_unlock_irq(&zone->lru_lock);
2140 }
2141 
2142 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2143 			  bool lrucare)
2144 {
2145 	int isolated;
2146 
2147 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2148 
2149 	/*
2150 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2151 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2152 	 */
2153 	if (lrucare)
2154 		lock_page_lru(page, &isolated);
2155 
2156 	/*
2157 	 * Nobody should be changing or seriously looking at
2158 	 * page->mem_cgroup at this point:
2159 	 *
2160 	 * - the page is uncharged
2161 	 *
2162 	 * - the page is off-LRU
2163 	 *
2164 	 * - an anonymous fault has exclusive page access, except for
2165 	 *   a locked page table
2166 	 *
2167 	 * - a page cache insertion, a swapin fault, or a migration
2168 	 *   have the page locked
2169 	 */
2170 	page->mem_cgroup = memcg;
2171 
2172 	if (lrucare)
2173 		unlock_page_lru(page, isolated);
2174 }
2175 
2176 #ifdef CONFIG_MEMCG_KMEM
2177 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2178 		      unsigned long nr_pages)
2179 {
2180 	struct page_counter *counter;
2181 	int ret = 0;
2182 
2183 	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2184 	if (ret < 0)
2185 		return ret;
2186 
2187 	ret = try_charge(memcg, gfp, nr_pages);
2188 	if (ret == -EINTR)  {
2189 		/*
2190 		 * try_charge() chose to bypass to root due to OOM kill or
2191 		 * fatal signal.  Since our only options are to either fail
2192 		 * the allocation or charge it to this cgroup, do it as a
2193 		 * temporary condition. But we can't fail. From a kmem/slab
2194 		 * perspective, the cache has already been selected, by
2195 		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2196 		 * our minds.
2197 		 *
2198 		 * This condition will only trigger if the task entered
2199 		 * memcg_charge_kmem in a sane state, but was OOM-killed
2200 		 * during try_charge() above. Tasks that were already dying
2201 		 * when the allocation triggers should have been already
2202 		 * directed to the root cgroup in memcontrol.h
2203 		 */
2204 		page_counter_charge(&memcg->memory, nr_pages);
2205 		if (do_swap_account)
2206 			page_counter_charge(&memcg->memsw, nr_pages);
2207 		css_get_many(&memcg->css, nr_pages);
2208 		ret = 0;
2209 	} else if (ret)
2210 		page_counter_uncharge(&memcg->kmem, nr_pages);
2211 
2212 	return ret;
2213 }
2214 
2215 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2216 {
2217 	page_counter_uncharge(&memcg->memory, nr_pages);
2218 	if (do_swap_account)
2219 		page_counter_uncharge(&memcg->memsw, nr_pages);
2220 
2221 	page_counter_uncharge(&memcg->kmem, nr_pages);
2222 
2223 	css_put_many(&memcg->css, nr_pages);
2224 }
2225 
2226 static int memcg_alloc_cache_id(void)
2227 {
2228 	int id, size;
2229 	int err;
2230 
2231 	id = ida_simple_get(&memcg_cache_ida,
2232 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2233 	if (id < 0)
2234 		return id;
2235 
2236 	if (id < memcg_nr_cache_ids)
2237 		return id;
2238 
2239 	/*
2240 	 * There's no space for the new id in memcg_caches arrays,
2241 	 * so we have to grow them.
2242 	 */
2243 	down_write(&memcg_cache_ids_sem);
2244 
2245 	size = 2 * (id + 1);
2246 	if (size < MEMCG_CACHES_MIN_SIZE)
2247 		size = MEMCG_CACHES_MIN_SIZE;
2248 	else if (size > MEMCG_CACHES_MAX_SIZE)
2249 		size = MEMCG_CACHES_MAX_SIZE;
2250 
2251 	err = memcg_update_all_caches(size);
2252 	if (!err)
2253 		err = memcg_update_all_list_lrus(size);
2254 	if (!err)
2255 		memcg_nr_cache_ids = size;
2256 
2257 	up_write(&memcg_cache_ids_sem);
2258 
2259 	if (err) {
2260 		ida_simple_remove(&memcg_cache_ida, id);
2261 		return err;
2262 	}
2263 	return id;
2264 }
2265 
2266 static void memcg_free_cache_id(int id)
2267 {
2268 	ida_simple_remove(&memcg_cache_ida, id);
2269 }
2270 
2271 struct memcg_kmem_cache_create_work {
2272 	struct mem_cgroup *memcg;
2273 	struct kmem_cache *cachep;
2274 	struct work_struct work;
2275 };
2276 
2277 static void memcg_kmem_cache_create_func(struct work_struct *w)
2278 {
2279 	struct memcg_kmem_cache_create_work *cw =
2280 		container_of(w, struct memcg_kmem_cache_create_work, work);
2281 	struct mem_cgroup *memcg = cw->memcg;
2282 	struct kmem_cache *cachep = cw->cachep;
2283 
2284 	memcg_create_kmem_cache(memcg, cachep);
2285 
2286 	css_put(&memcg->css);
2287 	kfree(cw);
2288 }
2289 
2290 /*
2291  * Enqueue the creation of a per-memcg kmem_cache.
2292  */
2293 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2294 					       struct kmem_cache *cachep)
2295 {
2296 	struct memcg_kmem_cache_create_work *cw;
2297 
2298 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2299 	if (!cw)
2300 		return;
2301 
2302 	css_get(&memcg->css);
2303 
2304 	cw->memcg = memcg;
2305 	cw->cachep = cachep;
2306 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2307 
2308 	schedule_work(&cw->work);
2309 }
2310 
2311 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2312 					     struct kmem_cache *cachep)
2313 {
2314 	/*
2315 	 * We need to stop accounting when we kmalloc, because if the
2316 	 * corresponding kmalloc cache is not yet created, the first allocation
2317 	 * in __memcg_schedule_kmem_cache_create will recurse.
2318 	 *
2319 	 * However, it is better to enclose the whole function. Depending on
2320 	 * the debugging options enabled, INIT_WORK(), for instance, can
2321 	 * trigger an allocation. This too, will make us recurse. Because at
2322 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2323 	 * the safest choice is to do it like this, wrapping the whole function.
2324 	 */
2325 	current->memcg_kmem_skip_account = 1;
2326 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2327 	current->memcg_kmem_skip_account = 0;
2328 }
2329 
2330 /*
2331  * Return the kmem_cache we're supposed to use for a slab allocation.
2332  * We try to use the current memcg's version of the cache.
2333  *
2334  * If the cache does not exist yet, if we are the first user of it,
2335  * we either create it immediately, if possible, or create it asynchronously
2336  * in a workqueue.
2337  * In the latter case, we will let the current allocation go through with
2338  * the original cache.
2339  *
2340  * Can't be called in interrupt context or from kernel threads.
2341  * This function needs to be called with rcu_read_lock() held.
2342  */
2343 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2344 {
2345 	struct mem_cgroup *memcg;
2346 	struct kmem_cache *memcg_cachep;
2347 	int kmemcg_id;
2348 
2349 	VM_BUG_ON(!is_root_cache(cachep));
2350 
2351 	if (current->memcg_kmem_skip_account)
2352 		return cachep;
2353 
2354 	memcg = get_mem_cgroup_from_mm(current->mm);
2355 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2356 	if (kmemcg_id < 0)
2357 		goto out;
2358 
2359 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2360 	if (likely(memcg_cachep))
2361 		return memcg_cachep;
2362 
2363 	/*
2364 	 * If we are in a safe context (can wait, and not in interrupt
2365 	 * context), we could be be predictable and return right away.
2366 	 * This would guarantee that the allocation being performed
2367 	 * already belongs in the new cache.
2368 	 *
2369 	 * However, there are some clashes that can arrive from locking.
2370 	 * For instance, because we acquire the slab_mutex while doing
2371 	 * memcg_create_kmem_cache, this means no further allocation
2372 	 * could happen with the slab_mutex held. So it's better to
2373 	 * defer everything.
2374 	 */
2375 	memcg_schedule_kmem_cache_create(memcg, cachep);
2376 out:
2377 	css_put(&memcg->css);
2378 	return cachep;
2379 }
2380 
2381 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2382 {
2383 	if (!is_root_cache(cachep))
2384 		css_put(&cachep->memcg_params.memcg->css);
2385 }
2386 
2387 /*
2388  * We need to verify if the allocation against current->mm->owner's memcg is
2389  * possible for the given order. But the page is not allocated yet, so we'll
2390  * need a further commit step to do the final arrangements.
2391  *
2392  * It is possible for the task to switch cgroups in this mean time, so at
2393  * commit time, we can't rely on task conversion any longer.  We'll then use
2394  * the handle argument to return to the caller which cgroup we should commit
2395  * against. We could also return the memcg directly and avoid the pointer
2396  * passing, but a boolean return value gives better semantics considering
2397  * the compiled-out case as well.
2398  *
2399  * Returning true means the allocation is possible.
2400  */
2401 bool
2402 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2403 {
2404 	struct mem_cgroup *memcg;
2405 	int ret;
2406 
2407 	*_memcg = NULL;
2408 
2409 	memcg = get_mem_cgroup_from_mm(current->mm);
2410 
2411 	if (!memcg_kmem_is_active(memcg)) {
2412 		css_put(&memcg->css);
2413 		return true;
2414 	}
2415 
2416 	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2417 	if (!ret)
2418 		*_memcg = memcg;
2419 
2420 	css_put(&memcg->css);
2421 	return (ret == 0);
2422 }
2423 
2424 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2425 			      int order)
2426 {
2427 	VM_BUG_ON(mem_cgroup_is_root(memcg));
2428 
2429 	/* The page allocation failed. Revert */
2430 	if (!page) {
2431 		memcg_uncharge_kmem(memcg, 1 << order);
2432 		return;
2433 	}
2434 	page->mem_cgroup = memcg;
2435 }
2436 
2437 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2438 {
2439 	struct mem_cgroup *memcg = page->mem_cgroup;
2440 
2441 	if (!memcg)
2442 		return;
2443 
2444 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2445 
2446 	memcg_uncharge_kmem(memcg, 1 << order);
2447 	page->mem_cgroup = NULL;
2448 }
2449 
2450 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2451 {
2452 	struct mem_cgroup *memcg = NULL;
2453 	struct kmem_cache *cachep;
2454 	struct page *page;
2455 
2456 	page = virt_to_head_page(ptr);
2457 	if (PageSlab(page)) {
2458 		cachep = page->slab_cache;
2459 		if (!is_root_cache(cachep))
2460 			memcg = cachep->memcg_params.memcg;
2461 	} else
2462 		/* page allocated by alloc_kmem_pages */
2463 		memcg = page->mem_cgroup;
2464 
2465 	return memcg;
2466 }
2467 #endif /* CONFIG_MEMCG_KMEM */
2468 
2469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2470 
2471 /*
2472  * Because tail pages are not marked as "used", set it. We're under
2473  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2474  * charge/uncharge will be never happen and move_account() is done under
2475  * compound_lock(), so we don't have to take care of races.
2476  */
2477 void mem_cgroup_split_huge_fixup(struct page *head)
2478 {
2479 	int i;
2480 
2481 	if (mem_cgroup_disabled())
2482 		return;
2483 
2484 	for (i = 1; i < HPAGE_PMD_NR; i++)
2485 		head[i].mem_cgroup = head->mem_cgroup;
2486 
2487 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2488 		       HPAGE_PMD_NR);
2489 }
2490 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2491 
2492 #ifdef CONFIG_MEMCG_SWAP
2493 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2494 					 bool charge)
2495 {
2496 	int val = (charge) ? 1 : -1;
2497 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2498 }
2499 
2500 /**
2501  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2502  * @entry: swap entry to be moved
2503  * @from:  mem_cgroup which the entry is moved from
2504  * @to:  mem_cgroup which the entry is moved to
2505  *
2506  * It succeeds only when the swap_cgroup's record for this entry is the same
2507  * as the mem_cgroup's id of @from.
2508  *
2509  * Returns 0 on success, -EINVAL on failure.
2510  *
2511  * The caller must have charged to @to, IOW, called page_counter_charge() about
2512  * both res and memsw, and called css_get().
2513  */
2514 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2515 				struct mem_cgroup *from, struct mem_cgroup *to)
2516 {
2517 	unsigned short old_id, new_id;
2518 
2519 	old_id = mem_cgroup_id(from);
2520 	new_id = mem_cgroup_id(to);
2521 
2522 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2523 		mem_cgroup_swap_statistics(from, false);
2524 		mem_cgroup_swap_statistics(to, true);
2525 		return 0;
2526 	}
2527 	return -EINVAL;
2528 }
2529 #else
2530 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2531 				struct mem_cgroup *from, struct mem_cgroup *to)
2532 {
2533 	return -EINVAL;
2534 }
2535 #endif
2536 
2537 static DEFINE_MUTEX(memcg_limit_mutex);
2538 
2539 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2540 				   unsigned long limit)
2541 {
2542 	unsigned long curusage;
2543 	unsigned long oldusage;
2544 	bool enlarge = false;
2545 	int retry_count;
2546 	int ret;
2547 
2548 	/*
2549 	 * For keeping hierarchical_reclaim simple, how long we should retry
2550 	 * is depends on callers. We set our retry-count to be function
2551 	 * of # of children which we should visit in this loop.
2552 	 */
2553 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2554 		      mem_cgroup_count_children(memcg);
2555 
2556 	oldusage = page_counter_read(&memcg->memory);
2557 
2558 	do {
2559 		if (signal_pending(current)) {
2560 			ret = -EINTR;
2561 			break;
2562 		}
2563 
2564 		mutex_lock(&memcg_limit_mutex);
2565 		if (limit > memcg->memsw.limit) {
2566 			mutex_unlock(&memcg_limit_mutex);
2567 			ret = -EINVAL;
2568 			break;
2569 		}
2570 		if (limit > memcg->memory.limit)
2571 			enlarge = true;
2572 		ret = page_counter_limit(&memcg->memory, limit);
2573 		mutex_unlock(&memcg_limit_mutex);
2574 
2575 		if (!ret)
2576 			break;
2577 
2578 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2579 
2580 		curusage = page_counter_read(&memcg->memory);
2581 		/* Usage is reduced ? */
2582 		if (curusage >= oldusage)
2583 			retry_count--;
2584 		else
2585 			oldusage = curusage;
2586 	} while (retry_count);
2587 
2588 	if (!ret && enlarge)
2589 		memcg_oom_recover(memcg);
2590 
2591 	return ret;
2592 }
2593 
2594 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2595 					 unsigned long limit)
2596 {
2597 	unsigned long curusage;
2598 	unsigned long oldusage;
2599 	bool enlarge = false;
2600 	int retry_count;
2601 	int ret;
2602 
2603 	/* see mem_cgroup_resize_res_limit */
2604 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2605 		      mem_cgroup_count_children(memcg);
2606 
2607 	oldusage = page_counter_read(&memcg->memsw);
2608 
2609 	do {
2610 		if (signal_pending(current)) {
2611 			ret = -EINTR;
2612 			break;
2613 		}
2614 
2615 		mutex_lock(&memcg_limit_mutex);
2616 		if (limit < memcg->memory.limit) {
2617 			mutex_unlock(&memcg_limit_mutex);
2618 			ret = -EINVAL;
2619 			break;
2620 		}
2621 		if (limit > memcg->memsw.limit)
2622 			enlarge = true;
2623 		ret = page_counter_limit(&memcg->memsw, limit);
2624 		mutex_unlock(&memcg_limit_mutex);
2625 
2626 		if (!ret)
2627 			break;
2628 
2629 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2630 
2631 		curusage = page_counter_read(&memcg->memsw);
2632 		/* Usage is reduced ? */
2633 		if (curusage >= oldusage)
2634 			retry_count--;
2635 		else
2636 			oldusage = curusage;
2637 	} while (retry_count);
2638 
2639 	if (!ret && enlarge)
2640 		memcg_oom_recover(memcg);
2641 
2642 	return ret;
2643 }
2644 
2645 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2646 					    gfp_t gfp_mask,
2647 					    unsigned long *total_scanned)
2648 {
2649 	unsigned long nr_reclaimed = 0;
2650 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2651 	unsigned long reclaimed;
2652 	int loop = 0;
2653 	struct mem_cgroup_tree_per_zone *mctz;
2654 	unsigned long excess;
2655 	unsigned long nr_scanned;
2656 
2657 	if (order > 0)
2658 		return 0;
2659 
2660 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2661 	/*
2662 	 * This loop can run a while, specially if mem_cgroup's continuously
2663 	 * keep exceeding their soft limit and putting the system under
2664 	 * pressure
2665 	 */
2666 	do {
2667 		if (next_mz)
2668 			mz = next_mz;
2669 		else
2670 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2671 		if (!mz)
2672 			break;
2673 
2674 		nr_scanned = 0;
2675 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2676 						    gfp_mask, &nr_scanned);
2677 		nr_reclaimed += reclaimed;
2678 		*total_scanned += nr_scanned;
2679 		spin_lock_irq(&mctz->lock);
2680 		__mem_cgroup_remove_exceeded(mz, mctz);
2681 
2682 		/*
2683 		 * If we failed to reclaim anything from this memory cgroup
2684 		 * it is time to move on to the next cgroup
2685 		 */
2686 		next_mz = NULL;
2687 		if (!reclaimed)
2688 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2689 
2690 		excess = soft_limit_excess(mz->memcg);
2691 		/*
2692 		 * One school of thought says that we should not add
2693 		 * back the node to the tree if reclaim returns 0.
2694 		 * But our reclaim could return 0, simply because due
2695 		 * to priority we are exposing a smaller subset of
2696 		 * memory to reclaim from. Consider this as a longer
2697 		 * term TODO.
2698 		 */
2699 		/* If excess == 0, no tree ops */
2700 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2701 		spin_unlock_irq(&mctz->lock);
2702 		css_put(&mz->memcg->css);
2703 		loop++;
2704 		/*
2705 		 * Could not reclaim anything and there are no more
2706 		 * mem cgroups to try or we seem to be looping without
2707 		 * reclaiming anything.
2708 		 */
2709 		if (!nr_reclaimed &&
2710 			(next_mz == NULL ||
2711 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2712 			break;
2713 	} while (!nr_reclaimed);
2714 	if (next_mz)
2715 		css_put(&next_mz->memcg->css);
2716 	return nr_reclaimed;
2717 }
2718 
2719 /*
2720  * Test whether @memcg has children, dead or alive.  Note that this
2721  * function doesn't care whether @memcg has use_hierarchy enabled and
2722  * returns %true if there are child csses according to the cgroup
2723  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2724  */
2725 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2726 {
2727 	bool ret;
2728 
2729 	/*
2730 	 * The lock does not prevent addition or deletion of children, but
2731 	 * it prevents a new child from being initialized based on this
2732 	 * parent in css_online(), so it's enough to decide whether
2733 	 * hierarchically inherited attributes can still be changed or not.
2734 	 */
2735 	lockdep_assert_held(&memcg_create_mutex);
2736 
2737 	rcu_read_lock();
2738 	ret = css_next_child(NULL, &memcg->css);
2739 	rcu_read_unlock();
2740 	return ret;
2741 }
2742 
2743 /*
2744  * Reclaims as many pages from the given memcg as possible and moves
2745  * the rest to the parent.
2746  *
2747  * Caller is responsible for holding css reference for memcg.
2748  */
2749 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2750 {
2751 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2752 
2753 	/* we call try-to-free pages for make this cgroup empty */
2754 	lru_add_drain_all();
2755 	/* try to free all pages in this cgroup */
2756 	while (nr_retries && page_counter_read(&memcg->memory)) {
2757 		int progress;
2758 
2759 		if (signal_pending(current))
2760 			return -EINTR;
2761 
2762 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2763 							GFP_KERNEL, true);
2764 		if (!progress) {
2765 			nr_retries--;
2766 			/* maybe some writeback is necessary */
2767 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2768 		}
2769 
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2776 					    char *buf, size_t nbytes,
2777 					    loff_t off)
2778 {
2779 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2780 
2781 	if (mem_cgroup_is_root(memcg))
2782 		return -EINVAL;
2783 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2784 }
2785 
2786 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2787 				     struct cftype *cft)
2788 {
2789 	return mem_cgroup_from_css(css)->use_hierarchy;
2790 }
2791 
2792 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2793 				      struct cftype *cft, u64 val)
2794 {
2795 	int retval = 0;
2796 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2797 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2798 
2799 	mutex_lock(&memcg_create_mutex);
2800 
2801 	if (memcg->use_hierarchy == val)
2802 		goto out;
2803 
2804 	/*
2805 	 * If parent's use_hierarchy is set, we can't make any modifications
2806 	 * in the child subtrees. If it is unset, then the change can
2807 	 * occur, provided the current cgroup has no children.
2808 	 *
2809 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2810 	 * set if there are no children.
2811 	 */
2812 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2813 				(val == 1 || val == 0)) {
2814 		if (!memcg_has_children(memcg))
2815 			memcg->use_hierarchy = val;
2816 		else
2817 			retval = -EBUSY;
2818 	} else
2819 		retval = -EINVAL;
2820 
2821 out:
2822 	mutex_unlock(&memcg_create_mutex);
2823 
2824 	return retval;
2825 }
2826 
2827 static unsigned long tree_stat(struct mem_cgroup *memcg,
2828 			       enum mem_cgroup_stat_index idx)
2829 {
2830 	struct mem_cgroup *iter;
2831 	unsigned long val = 0;
2832 
2833 	for_each_mem_cgroup_tree(iter, memcg)
2834 		val += mem_cgroup_read_stat(iter, idx);
2835 
2836 	return val;
2837 }
2838 
2839 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2840 {
2841 	u64 val;
2842 
2843 	if (mem_cgroup_is_root(memcg)) {
2844 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2845 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2846 		if (swap)
2847 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2848 	} else {
2849 		if (!swap)
2850 			val = page_counter_read(&memcg->memory);
2851 		else
2852 			val = page_counter_read(&memcg->memsw);
2853 	}
2854 	return val << PAGE_SHIFT;
2855 }
2856 
2857 enum {
2858 	RES_USAGE,
2859 	RES_LIMIT,
2860 	RES_MAX_USAGE,
2861 	RES_FAILCNT,
2862 	RES_SOFT_LIMIT,
2863 };
2864 
2865 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2866 			       struct cftype *cft)
2867 {
2868 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2869 	struct page_counter *counter;
2870 
2871 	switch (MEMFILE_TYPE(cft->private)) {
2872 	case _MEM:
2873 		counter = &memcg->memory;
2874 		break;
2875 	case _MEMSWAP:
2876 		counter = &memcg->memsw;
2877 		break;
2878 	case _KMEM:
2879 		counter = &memcg->kmem;
2880 		break;
2881 	default:
2882 		BUG();
2883 	}
2884 
2885 	switch (MEMFILE_ATTR(cft->private)) {
2886 	case RES_USAGE:
2887 		if (counter == &memcg->memory)
2888 			return mem_cgroup_usage(memcg, false);
2889 		if (counter == &memcg->memsw)
2890 			return mem_cgroup_usage(memcg, true);
2891 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2892 	case RES_LIMIT:
2893 		return (u64)counter->limit * PAGE_SIZE;
2894 	case RES_MAX_USAGE:
2895 		return (u64)counter->watermark * PAGE_SIZE;
2896 	case RES_FAILCNT:
2897 		return counter->failcnt;
2898 	case RES_SOFT_LIMIT:
2899 		return (u64)memcg->soft_limit * PAGE_SIZE;
2900 	default:
2901 		BUG();
2902 	}
2903 }
2904 
2905 #ifdef CONFIG_MEMCG_KMEM
2906 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2907 			       unsigned long nr_pages)
2908 {
2909 	int err = 0;
2910 	int memcg_id;
2911 
2912 	BUG_ON(memcg->kmemcg_id >= 0);
2913 	BUG_ON(memcg->kmem_acct_activated);
2914 	BUG_ON(memcg->kmem_acct_active);
2915 
2916 	/*
2917 	 * For simplicity, we won't allow this to be disabled.  It also can't
2918 	 * be changed if the cgroup has children already, or if tasks had
2919 	 * already joined.
2920 	 *
2921 	 * If tasks join before we set the limit, a person looking at
2922 	 * kmem.usage_in_bytes will have no way to determine when it took
2923 	 * place, which makes the value quite meaningless.
2924 	 *
2925 	 * After it first became limited, changes in the value of the limit are
2926 	 * of course permitted.
2927 	 */
2928 	mutex_lock(&memcg_create_mutex);
2929 	if (cgroup_has_tasks(memcg->css.cgroup) ||
2930 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2931 		err = -EBUSY;
2932 	mutex_unlock(&memcg_create_mutex);
2933 	if (err)
2934 		goto out;
2935 
2936 	memcg_id = memcg_alloc_cache_id();
2937 	if (memcg_id < 0) {
2938 		err = memcg_id;
2939 		goto out;
2940 	}
2941 
2942 	/*
2943 	 * We couldn't have accounted to this cgroup, because it hasn't got
2944 	 * activated yet, so this should succeed.
2945 	 */
2946 	err = page_counter_limit(&memcg->kmem, nr_pages);
2947 	VM_BUG_ON(err);
2948 
2949 	static_key_slow_inc(&memcg_kmem_enabled_key);
2950 	/*
2951 	 * A memory cgroup is considered kmem-active as soon as it gets
2952 	 * kmemcg_id. Setting the id after enabling static branching will
2953 	 * guarantee no one starts accounting before all call sites are
2954 	 * patched.
2955 	 */
2956 	memcg->kmemcg_id = memcg_id;
2957 	memcg->kmem_acct_activated = true;
2958 	memcg->kmem_acct_active = true;
2959 out:
2960 	return err;
2961 }
2962 
2963 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2964 				   unsigned long limit)
2965 {
2966 	int ret;
2967 
2968 	mutex_lock(&memcg_limit_mutex);
2969 	if (!memcg_kmem_is_active(memcg))
2970 		ret = memcg_activate_kmem(memcg, limit);
2971 	else
2972 		ret = page_counter_limit(&memcg->kmem, limit);
2973 	mutex_unlock(&memcg_limit_mutex);
2974 	return ret;
2975 }
2976 
2977 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2978 {
2979 	int ret = 0;
2980 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2981 
2982 	if (!parent)
2983 		return 0;
2984 
2985 	mutex_lock(&memcg_limit_mutex);
2986 	/*
2987 	 * If the parent cgroup is not kmem-active now, it cannot be activated
2988 	 * after this point, because it has at least one child already.
2989 	 */
2990 	if (memcg_kmem_is_active(parent))
2991 		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2992 	mutex_unlock(&memcg_limit_mutex);
2993 	return ret;
2994 }
2995 #else
2996 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2997 				   unsigned long limit)
2998 {
2999 	return -EINVAL;
3000 }
3001 #endif /* CONFIG_MEMCG_KMEM */
3002 
3003 /*
3004  * The user of this function is...
3005  * RES_LIMIT.
3006  */
3007 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3008 				char *buf, size_t nbytes, loff_t off)
3009 {
3010 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3011 	unsigned long nr_pages;
3012 	int ret;
3013 
3014 	buf = strstrip(buf);
3015 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3016 	if (ret)
3017 		return ret;
3018 
3019 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3020 	case RES_LIMIT:
3021 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3022 			ret = -EINVAL;
3023 			break;
3024 		}
3025 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3026 		case _MEM:
3027 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3028 			break;
3029 		case _MEMSWAP:
3030 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3031 			break;
3032 		case _KMEM:
3033 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3034 			break;
3035 		}
3036 		break;
3037 	case RES_SOFT_LIMIT:
3038 		memcg->soft_limit = nr_pages;
3039 		ret = 0;
3040 		break;
3041 	}
3042 	return ret ?: nbytes;
3043 }
3044 
3045 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3046 				size_t nbytes, loff_t off)
3047 {
3048 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3049 	struct page_counter *counter;
3050 
3051 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3052 	case _MEM:
3053 		counter = &memcg->memory;
3054 		break;
3055 	case _MEMSWAP:
3056 		counter = &memcg->memsw;
3057 		break;
3058 	case _KMEM:
3059 		counter = &memcg->kmem;
3060 		break;
3061 	default:
3062 		BUG();
3063 	}
3064 
3065 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3066 	case RES_MAX_USAGE:
3067 		page_counter_reset_watermark(counter);
3068 		break;
3069 	case RES_FAILCNT:
3070 		counter->failcnt = 0;
3071 		break;
3072 	default:
3073 		BUG();
3074 	}
3075 
3076 	return nbytes;
3077 }
3078 
3079 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3080 					struct cftype *cft)
3081 {
3082 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3083 }
3084 
3085 #ifdef CONFIG_MMU
3086 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087 					struct cftype *cft, u64 val)
3088 {
3089 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3090 
3091 	if (val & ~MOVE_MASK)
3092 		return -EINVAL;
3093 
3094 	/*
3095 	 * No kind of locking is needed in here, because ->can_attach() will
3096 	 * check this value once in the beginning of the process, and then carry
3097 	 * on with stale data. This means that changes to this value will only
3098 	 * affect task migrations starting after the change.
3099 	 */
3100 	memcg->move_charge_at_immigrate = val;
3101 	return 0;
3102 }
3103 #else
3104 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3105 					struct cftype *cft, u64 val)
3106 {
3107 	return -ENOSYS;
3108 }
3109 #endif
3110 
3111 #ifdef CONFIG_NUMA
3112 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3113 {
3114 	struct numa_stat {
3115 		const char *name;
3116 		unsigned int lru_mask;
3117 	};
3118 
3119 	static const struct numa_stat stats[] = {
3120 		{ "total", LRU_ALL },
3121 		{ "file", LRU_ALL_FILE },
3122 		{ "anon", LRU_ALL_ANON },
3123 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3124 	};
3125 	const struct numa_stat *stat;
3126 	int nid;
3127 	unsigned long nr;
3128 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3129 
3130 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3132 		seq_printf(m, "%s=%lu", stat->name, nr);
3133 		for_each_node_state(nid, N_MEMORY) {
3134 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3135 							  stat->lru_mask);
3136 			seq_printf(m, " N%d=%lu", nid, nr);
3137 		}
3138 		seq_putc(m, '\n');
3139 	}
3140 
3141 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3142 		struct mem_cgroup *iter;
3143 
3144 		nr = 0;
3145 		for_each_mem_cgroup_tree(iter, memcg)
3146 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3147 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3148 		for_each_node_state(nid, N_MEMORY) {
3149 			nr = 0;
3150 			for_each_mem_cgroup_tree(iter, memcg)
3151 				nr += mem_cgroup_node_nr_lru_pages(
3152 					iter, nid, stat->lru_mask);
3153 			seq_printf(m, " N%d=%lu", nid, nr);
3154 		}
3155 		seq_putc(m, '\n');
3156 	}
3157 
3158 	return 0;
3159 }
3160 #endif /* CONFIG_NUMA */
3161 
3162 static int memcg_stat_show(struct seq_file *m, void *v)
3163 {
3164 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3165 	unsigned long memory, memsw;
3166 	struct mem_cgroup *mi;
3167 	unsigned int i;
3168 
3169 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3170 		     MEM_CGROUP_STAT_NSTATS);
3171 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3172 		     MEM_CGROUP_EVENTS_NSTATS);
3173 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3174 
3175 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3176 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3177 			continue;
3178 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3179 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3180 	}
3181 
3182 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3183 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3184 			   mem_cgroup_read_events(memcg, i));
3185 
3186 	for (i = 0; i < NR_LRU_LISTS; i++)
3187 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3188 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3189 
3190 	/* Hierarchical information */
3191 	memory = memsw = PAGE_COUNTER_MAX;
3192 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3193 		memory = min(memory, mi->memory.limit);
3194 		memsw = min(memsw, mi->memsw.limit);
3195 	}
3196 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3197 		   (u64)memory * PAGE_SIZE);
3198 	if (do_swap_account)
3199 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3200 			   (u64)memsw * PAGE_SIZE);
3201 
3202 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3203 		unsigned long long val = 0;
3204 
3205 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3206 			continue;
3207 		for_each_mem_cgroup_tree(mi, memcg)
3208 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3209 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3210 	}
3211 
3212 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3213 		unsigned long long val = 0;
3214 
3215 		for_each_mem_cgroup_tree(mi, memcg)
3216 			val += mem_cgroup_read_events(mi, i);
3217 		seq_printf(m, "total_%s %llu\n",
3218 			   mem_cgroup_events_names[i], val);
3219 	}
3220 
3221 	for (i = 0; i < NR_LRU_LISTS; i++) {
3222 		unsigned long long val = 0;
3223 
3224 		for_each_mem_cgroup_tree(mi, memcg)
3225 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3226 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3227 	}
3228 
3229 #ifdef CONFIG_DEBUG_VM
3230 	{
3231 		int nid, zid;
3232 		struct mem_cgroup_per_zone *mz;
3233 		struct zone_reclaim_stat *rstat;
3234 		unsigned long recent_rotated[2] = {0, 0};
3235 		unsigned long recent_scanned[2] = {0, 0};
3236 
3237 		for_each_online_node(nid)
3238 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3239 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3240 				rstat = &mz->lruvec.reclaim_stat;
3241 
3242 				recent_rotated[0] += rstat->recent_rotated[0];
3243 				recent_rotated[1] += rstat->recent_rotated[1];
3244 				recent_scanned[0] += rstat->recent_scanned[0];
3245 				recent_scanned[1] += rstat->recent_scanned[1];
3246 			}
3247 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3248 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3249 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3250 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3251 	}
3252 #endif
3253 
3254 	return 0;
3255 }
3256 
3257 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3258 				      struct cftype *cft)
3259 {
3260 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3261 
3262 	return mem_cgroup_swappiness(memcg);
3263 }
3264 
3265 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3266 				       struct cftype *cft, u64 val)
3267 {
3268 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3269 
3270 	if (val > 100)
3271 		return -EINVAL;
3272 
3273 	if (css->parent)
3274 		memcg->swappiness = val;
3275 	else
3276 		vm_swappiness = val;
3277 
3278 	return 0;
3279 }
3280 
3281 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3282 {
3283 	struct mem_cgroup_threshold_ary *t;
3284 	unsigned long usage;
3285 	int i;
3286 
3287 	rcu_read_lock();
3288 	if (!swap)
3289 		t = rcu_dereference(memcg->thresholds.primary);
3290 	else
3291 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3292 
3293 	if (!t)
3294 		goto unlock;
3295 
3296 	usage = mem_cgroup_usage(memcg, swap);
3297 
3298 	/*
3299 	 * current_threshold points to threshold just below or equal to usage.
3300 	 * If it's not true, a threshold was crossed after last
3301 	 * call of __mem_cgroup_threshold().
3302 	 */
3303 	i = t->current_threshold;
3304 
3305 	/*
3306 	 * Iterate backward over array of thresholds starting from
3307 	 * current_threshold and check if a threshold is crossed.
3308 	 * If none of thresholds below usage is crossed, we read
3309 	 * only one element of the array here.
3310 	 */
3311 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3312 		eventfd_signal(t->entries[i].eventfd, 1);
3313 
3314 	/* i = current_threshold + 1 */
3315 	i++;
3316 
3317 	/*
3318 	 * Iterate forward over array of thresholds starting from
3319 	 * current_threshold+1 and check if a threshold is crossed.
3320 	 * If none of thresholds above usage is crossed, we read
3321 	 * only one element of the array here.
3322 	 */
3323 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3324 		eventfd_signal(t->entries[i].eventfd, 1);
3325 
3326 	/* Update current_threshold */
3327 	t->current_threshold = i - 1;
3328 unlock:
3329 	rcu_read_unlock();
3330 }
3331 
3332 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3333 {
3334 	while (memcg) {
3335 		__mem_cgroup_threshold(memcg, false);
3336 		if (do_swap_account)
3337 			__mem_cgroup_threshold(memcg, true);
3338 
3339 		memcg = parent_mem_cgroup(memcg);
3340 	}
3341 }
3342 
3343 static int compare_thresholds(const void *a, const void *b)
3344 {
3345 	const struct mem_cgroup_threshold *_a = a;
3346 	const struct mem_cgroup_threshold *_b = b;
3347 
3348 	if (_a->threshold > _b->threshold)
3349 		return 1;
3350 
3351 	if (_a->threshold < _b->threshold)
3352 		return -1;
3353 
3354 	return 0;
3355 }
3356 
3357 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3358 {
3359 	struct mem_cgroup_eventfd_list *ev;
3360 
3361 	spin_lock(&memcg_oom_lock);
3362 
3363 	list_for_each_entry(ev, &memcg->oom_notify, list)
3364 		eventfd_signal(ev->eventfd, 1);
3365 
3366 	spin_unlock(&memcg_oom_lock);
3367 	return 0;
3368 }
3369 
3370 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3371 {
3372 	struct mem_cgroup *iter;
3373 
3374 	for_each_mem_cgroup_tree(iter, memcg)
3375 		mem_cgroup_oom_notify_cb(iter);
3376 }
3377 
3378 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3379 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3380 {
3381 	struct mem_cgroup_thresholds *thresholds;
3382 	struct mem_cgroup_threshold_ary *new;
3383 	unsigned long threshold;
3384 	unsigned long usage;
3385 	int i, size, ret;
3386 
3387 	ret = page_counter_memparse(args, "-1", &threshold);
3388 	if (ret)
3389 		return ret;
3390 
3391 	mutex_lock(&memcg->thresholds_lock);
3392 
3393 	if (type == _MEM) {
3394 		thresholds = &memcg->thresholds;
3395 		usage = mem_cgroup_usage(memcg, false);
3396 	} else if (type == _MEMSWAP) {
3397 		thresholds = &memcg->memsw_thresholds;
3398 		usage = mem_cgroup_usage(memcg, true);
3399 	} else
3400 		BUG();
3401 
3402 	/* Check if a threshold crossed before adding a new one */
3403 	if (thresholds->primary)
3404 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3405 
3406 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3407 
3408 	/* Allocate memory for new array of thresholds */
3409 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3410 			GFP_KERNEL);
3411 	if (!new) {
3412 		ret = -ENOMEM;
3413 		goto unlock;
3414 	}
3415 	new->size = size;
3416 
3417 	/* Copy thresholds (if any) to new array */
3418 	if (thresholds->primary) {
3419 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3420 				sizeof(struct mem_cgroup_threshold));
3421 	}
3422 
3423 	/* Add new threshold */
3424 	new->entries[size - 1].eventfd = eventfd;
3425 	new->entries[size - 1].threshold = threshold;
3426 
3427 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3428 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3429 			compare_thresholds, NULL);
3430 
3431 	/* Find current threshold */
3432 	new->current_threshold = -1;
3433 	for (i = 0; i < size; i++) {
3434 		if (new->entries[i].threshold <= usage) {
3435 			/*
3436 			 * new->current_threshold will not be used until
3437 			 * rcu_assign_pointer(), so it's safe to increment
3438 			 * it here.
3439 			 */
3440 			++new->current_threshold;
3441 		} else
3442 			break;
3443 	}
3444 
3445 	/* Free old spare buffer and save old primary buffer as spare */
3446 	kfree(thresholds->spare);
3447 	thresholds->spare = thresholds->primary;
3448 
3449 	rcu_assign_pointer(thresholds->primary, new);
3450 
3451 	/* To be sure that nobody uses thresholds */
3452 	synchronize_rcu();
3453 
3454 unlock:
3455 	mutex_unlock(&memcg->thresholds_lock);
3456 
3457 	return ret;
3458 }
3459 
3460 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3461 	struct eventfd_ctx *eventfd, const char *args)
3462 {
3463 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3464 }
3465 
3466 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3467 	struct eventfd_ctx *eventfd, const char *args)
3468 {
3469 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3470 }
3471 
3472 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3473 	struct eventfd_ctx *eventfd, enum res_type type)
3474 {
3475 	struct mem_cgroup_thresholds *thresholds;
3476 	struct mem_cgroup_threshold_ary *new;
3477 	unsigned long usage;
3478 	int i, j, size;
3479 
3480 	mutex_lock(&memcg->thresholds_lock);
3481 
3482 	if (type == _MEM) {
3483 		thresholds = &memcg->thresholds;
3484 		usage = mem_cgroup_usage(memcg, false);
3485 	} else if (type == _MEMSWAP) {
3486 		thresholds = &memcg->memsw_thresholds;
3487 		usage = mem_cgroup_usage(memcg, true);
3488 	} else
3489 		BUG();
3490 
3491 	if (!thresholds->primary)
3492 		goto unlock;
3493 
3494 	/* Check if a threshold crossed before removing */
3495 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3496 
3497 	/* Calculate new number of threshold */
3498 	size = 0;
3499 	for (i = 0; i < thresholds->primary->size; i++) {
3500 		if (thresholds->primary->entries[i].eventfd != eventfd)
3501 			size++;
3502 	}
3503 
3504 	new = thresholds->spare;
3505 
3506 	/* Set thresholds array to NULL if we don't have thresholds */
3507 	if (!size) {
3508 		kfree(new);
3509 		new = NULL;
3510 		goto swap_buffers;
3511 	}
3512 
3513 	new->size = size;
3514 
3515 	/* Copy thresholds and find current threshold */
3516 	new->current_threshold = -1;
3517 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3518 		if (thresholds->primary->entries[i].eventfd == eventfd)
3519 			continue;
3520 
3521 		new->entries[j] = thresholds->primary->entries[i];
3522 		if (new->entries[j].threshold <= usage) {
3523 			/*
3524 			 * new->current_threshold will not be used
3525 			 * until rcu_assign_pointer(), so it's safe to increment
3526 			 * it here.
3527 			 */
3528 			++new->current_threshold;
3529 		}
3530 		j++;
3531 	}
3532 
3533 swap_buffers:
3534 	/* Swap primary and spare array */
3535 	thresholds->spare = thresholds->primary;
3536 	/* If all events are unregistered, free the spare array */
3537 	if (!new) {
3538 		kfree(thresholds->spare);
3539 		thresholds->spare = NULL;
3540 	}
3541 
3542 	rcu_assign_pointer(thresholds->primary, new);
3543 
3544 	/* To be sure that nobody uses thresholds */
3545 	synchronize_rcu();
3546 unlock:
3547 	mutex_unlock(&memcg->thresholds_lock);
3548 }
3549 
3550 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3551 	struct eventfd_ctx *eventfd)
3552 {
3553 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3554 }
3555 
3556 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3557 	struct eventfd_ctx *eventfd)
3558 {
3559 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3560 }
3561 
3562 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3563 	struct eventfd_ctx *eventfd, const char *args)
3564 {
3565 	struct mem_cgroup_eventfd_list *event;
3566 
3567 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3568 	if (!event)
3569 		return -ENOMEM;
3570 
3571 	spin_lock(&memcg_oom_lock);
3572 
3573 	event->eventfd = eventfd;
3574 	list_add(&event->list, &memcg->oom_notify);
3575 
3576 	/* already in OOM ? */
3577 	if (memcg->under_oom)
3578 		eventfd_signal(eventfd, 1);
3579 	spin_unlock(&memcg_oom_lock);
3580 
3581 	return 0;
3582 }
3583 
3584 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3585 	struct eventfd_ctx *eventfd)
3586 {
3587 	struct mem_cgroup_eventfd_list *ev, *tmp;
3588 
3589 	spin_lock(&memcg_oom_lock);
3590 
3591 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3592 		if (ev->eventfd == eventfd) {
3593 			list_del(&ev->list);
3594 			kfree(ev);
3595 		}
3596 	}
3597 
3598 	spin_unlock(&memcg_oom_lock);
3599 }
3600 
3601 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3602 {
3603 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3604 
3605 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3606 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3607 	return 0;
3608 }
3609 
3610 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3611 	struct cftype *cft, u64 val)
3612 {
3613 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3614 
3615 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3616 	if (!css->parent || !((val == 0) || (val == 1)))
3617 		return -EINVAL;
3618 
3619 	memcg->oom_kill_disable = val;
3620 	if (!val)
3621 		memcg_oom_recover(memcg);
3622 
3623 	return 0;
3624 }
3625 
3626 #ifdef CONFIG_MEMCG_KMEM
3627 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3628 {
3629 	int ret;
3630 
3631 	ret = memcg_propagate_kmem(memcg);
3632 	if (ret)
3633 		return ret;
3634 
3635 	return mem_cgroup_sockets_init(memcg, ss);
3636 }
3637 
3638 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3639 {
3640 	struct cgroup_subsys_state *css;
3641 	struct mem_cgroup *parent, *child;
3642 	int kmemcg_id;
3643 
3644 	if (!memcg->kmem_acct_active)
3645 		return;
3646 
3647 	/*
3648 	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3649 	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3650 	 * guarantees no cache will be created for this cgroup after we are
3651 	 * done (see memcg_create_kmem_cache()).
3652 	 */
3653 	memcg->kmem_acct_active = false;
3654 
3655 	memcg_deactivate_kmem_caches(memcg);
3656 
3657 	kmemcg_id = memcg->kmemcg_id;
3658 	BUG_ON(kmemcg_id < 0);
3659 
3660 	parent = parent_mem_cgroup(memcg);
3661 	if (!parent)
3662 		parent = root_mem_cgroup;
3663 
3664 	/*
3665 	 * Change kmemcg_id of this cgroup and all its descendants to the
3666 	 * parent's id, and then move all entries from this cgroup's list_lrus
3667 	 * to ones of the parent. After we have finished, all list_lrus
3668 	 * corresponding to this cgroup are guaranteed to remain empty. The
3669 	 * ordering is imposed by list_lru_node->lock taken by
3670 	 * memcg_drain_all_list_lrus().
3671 	 */
3672 	css_for_each_descendant_pre(css, &memcg->css) {
3673 		child = mem_cgroup_from_css(css);
3674 		BUG_ON(child->kmemcg_id != kmemcg_id);
3675 		child->kmemcg_id = parent->kmemcg_id;
3676 		if (!memcg->use_hierarchy)
3677 			break;
3678 	}
3679 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3680 
3681 	memcg_free_cache_id(kmemcg_id);
3682 }
3683 
3684 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3685 {
3686 	if (memcg->kmem_acct_activated) {
3687 		memcg_destroy_kmem_caches(memcg);
3688 		static_key_slow_dec(&memcg_kmem_enabled_key);
3689 		WARN_ON(page_counter_read(&memcg->kmem));
3690 	}
3691 	mem_cgroup_sockets_destroy(memcg);
3692 }
3693 #else
3694 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3695 {
3696 	return 0;
3697 }
3698 
3699 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3700 {
3701 }
3702 
3703 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3704 {
3705 }
3706 #endif
3707 
3708 #ifdef CONFIG_CGROUP_WRITEBACK
3709 
3710 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3711 {
3712 	return &memcg->cgwb_list;
3713 }
3714 
3715 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3716 {
3717 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3718 }
3719 
3720 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3721 {
3722 	wb_domain_exit(&memcg->cgwb_domain);
3723 }
3724 
3725 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3726 {
3727 	wb_domain_size_changed(&memcg->cgwb_domain);
3728 }
3729 
3730 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3731 {
3732 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3733 
3734 	if (!memcg->css.parent)
3735 		return NULL;
3736 
3737 	return &memcg->cgwb_domain;
3738 }
3739 
3740 /**
3741  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3742  * @wb: bdi_writeback in question
3743  * @pavail: out parameter for number of available pages
3744  * @pdirty: out parameter for number of dirty pages
3745  * @pwriteback: out parameter for number of pages under writeback
3746  *
3747  * Determine the numbers of available, dirty, and writeback pages in @wb's
3748  * memcg.  Dirty and writeback are self-explanatory.  Available is a bit
3749  * more involved.
3750  *
3751  * A memcg's headroom is "min(max, high) - used".  The available memory is
3752  * calculated as the lowest headroom of itself and the ancestors plus the
3753  * number of pages already being used for file pages.  Note that this
3754  * doesn't consider the actual amount of available memory in the system.
3755  * The caller should further cap *@pavail accordingly.
3756  */
3757 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
3758 			 unsigned long *pdirty, unsigned long *pwriteback)
3759 {
3760 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3761 	struct mem_cgroup *parent;
3762 	unsigned long head_room = PAGE_COUNTER_MAX;
3763 	unsigned long file_pages;
3764 
3765 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3766 
3767 	/* this should eventually include NR_UNSTABLE_NFS */
3768 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3769 
3770 	file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3771 						    (1 << LRU_ACTIVE_FILE));
3772 	while ((parent = parent_mem_cgroup(memcg))) {
3773 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3774 		unsigned long used = page_counter_read(&memcg->memory);
3775 
3776 		head_room = min(head_room, ceiling - min(ceiling, used));
3777 		memcg = parent;
3778 	}
3779 
3780 	*pavail = file_pages + head_room;
3781 }
3782 
3783 #else	/* CONFIG_CGROUP_WRITEBACK */
3784 
3785 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3786 {
3787 	return 0;
3788 }
3789 
3790 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3791 {
3792 }
3793 
3794 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3795 {
3796 }
3797 
3798 #endif	/* CONFIG_CGROUP_WRITEBACK */
3799 
3800 /*
3801  * DO NOT USE IN NEW FILES.
3802  *
3803  * "cgroup.event_control" implementation.
3804  *
3805  * This is way over-engineered.  It tries to support fully configurable
3806  * events for each user.  Such level of flexibility is completely
3807  * unnecessary especially in the light of the planned unified hierarchy.
3808  *
3809  * Please deprecate this and replace with something simpler if at all
3810  * possible.
3811  */
3812 
3813 /*
3814  * Unregister event and free resources.
3815  *
3816  * Gets called from workqueue.
3817  */
3818 static void memcg_event_remove(struct work_struct *work)
3819 {
3820 	struct mem_cgroup_event *event =
3821 		container_of(work, struct mem_cgroup_event, remove);
3822 	struct mem_cgroup *memcg = event->memcg;
3823 
3824 	remove_wait_queue(event->wqh, &event->wait);
3825 
3826 	event->unregister_event(memcg, event->eventfd);
3827 
3828 	/* Notify userspace the event is going away. */
3829 	eventfd_signal(event->eventfd, 1);
3830 
3831 	eventfd_ctx_put(event->eventfd);
3832 	kfree(event);
3833 	css_put(&memcg->css);
3834 }
3835 
3836 /*
3837  * Gets called on POLLHUP on eventfd when user closes it.
3838  *
3839  * Called with wqh->lock held and interrupts disabled.
3840  */
3841 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3842 			    int sync, void *key)
3843 {
3844 	struct mem_cgroup_event *event =
3845 		container_of(wait, struct mem_cgroup_event, wait);
3846 	struct mem_cgroup *memcg = event->memcg;
3847 	unsigned long flags = (unsigned long)key;
3848 
3849 	if (flags & POLLHUP) {
3850 		/*
3851 		 * If the event has been detached at cgroup removal, we
3852 		 * can simply return knowing the other side will cleanup
3853 		 * for us.
3854 		 *
3855 		 * We can't race against event freeing since the other
3856 		 * side will require wqh->lock via remove_wait_queue(),
3857 		 * which we hold.
3858 		 */
3859 		spin_lock(&memcg->event_list_lock);
3860 		if (!list_empty(&event->list)) {
3861 			list_del_init(&event->list);
3862 			/*
3863 			 * We are in atomic context, but cgroup_event_remove()
3864 			 * may sleep, so we have to call it in workqueue.
3865 			 */
3866 			schedule_work(&event->remove);
3867 		}
3868 		spin_unlock(&memcg->event_list_lock);
3869 	}
3870 
3871 	return 0;
3872 }
3873 
3874 static void memcg_event_ptable_queue_proc(struct file *file,
3875 		wait_queue_head_t *wqh, poll_table *pt)
3876 {
3877 	struct mem_cgroup_event *event =
3878 		container_of(pt, struct mem_cgroup_event, pt);
3879 
3880 	event->wqh = wqh;
3881 	add_wait_queue(wqh, &event->wait);
3882 }
3883 
3884 /*
3885  * DO NOT USE IN NEW FILES.
3886  *
3887  * Parse input and register new cgroup event handler.
3888  *
3889  * Input must be in format '<event_fd> <control_fd> <args>'.
3890  * Interpretation of args is defined by control file implementation.
3891  */
3892 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3893 					 char *buf, size_t nbytes, loff_t off)
3894 {
3895 	struct cgroup_subsys_state *css = of_css(of);
3896 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897 	struct mem_cgroup_event *event;
3898 	struct cgroup_subsys_state *cfile_css;
3899 	unsigned int efd, cfd;
3900 	struct fd efile;
3901 	struct fd cfile;
3902 	const char *name;
3903 	char *endp;
3904 	int ret;
3905 
3906 	buf = strstrip(buf);
3907 
3908 	efd = simple_strtoul(buf, &endp, 10);
3909 	if (*endp != ' ')
3910 		return -EINVAL;
3911 	buf = endp + 1;
3912 
3913 	cfd = simple_strtoul(buf, &endp, 10);
3914 	if ((*endp != ' ') && (*endp != '\0'))
3915 		return -EINVAL;
3916 	buf = endp + 1;
3917 
3918 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3919 	if (!event)
3920 		return -ENOMEM;
3921 
3922 	event->memcg = memcg;
3923 	INIT_LIST_HEAD(&event->list);
3924 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3925 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3926 	INIT_WORK(&event->remove, memcg_event_remove);
3927 
3928 	efile = fdget(efd);
3929 	if (!efile.file) {
3930 		ret = -EBADF;
3931 		goto out_kfree;
3932 	}
3933 
3934 	event->eventfd = eventfd_ctx_fileget(efile.file);
3935 	if (IS_ERR(event->eventfd)) {
3936 		ret = PTR_ERR(event->eventfd);
3937 		goto out_put_efile;
3938 	}
3939 
3940 	cfile = fdget(cfd);
3941 	if (!cfile.file) {
3942 		ret = -EBADF;
3943 		goto out_put_eventfd;
3944 	}
3945 
3946 	/* the process need read permission on control file */
3947 	/* AV: shouldn't we check that it's been opened for read instead? */
3948 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3949 	if (ret < 0)
3950 		goto out_put_cfile;
3951 
3952 	/*
3953 	 * Determine the event callbacks and set them in @event.  This used
3954 	 * to be done via struct cftype but cgroup core no longer knows
3955 	 * about these events.  The following is crude but the whole thing
3956 	 * is for compatibility anyway.
3957 	 *
3958 	 * DO NOT ADD NEW FILES.
3959 	 */
3960 	name = cfile.file->f_path.dentry->d_name.name;
3961 
3962 	if (!strcmp(name, "memory.usage_in_bytes")) {
3963 		event->register_event = mem_cgroup_usage_register_event;
3964 		event->unregister_event = mem_cgroup_usage_unregister_event;
3965 	} else if (!strcmp(name, "memory.oom_control")) {
3966 		event->register_event = mem_cgroup_oom_register_event;
3967 		event->unregister_event = mem_cgroup_oom_unregister_event;
3968 	} else if (!strcmp(name, "memory.pressure_level")) {
3969 		event->register_event = vmpressure_register_event;
3970 		event->unregister_event = vmpressure_unregister_event;
3971 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3972 		event->register_event = memsw_cgroup_usage_register_event;
3973 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3974 	} else {
3975 		ret = -EINVAL;
3976 		goto out_put_cfile;
3977 	}
3978 
3979 	/*
3980 	 * Verify @cfile should belong to @css.  Also, remaining events are
3981 	 * automatically removed on cgroup destruction but the removal is
3982 	 * asynchronous, so take an extra ref on @css.
3983 	 */
3984 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3985 					       &memory_cgrp_subsys);
3986 	ret = -EINVAL;
3987 	if (IS_ERR(cfile_css))
3988 		goto out_put_cfile;
3989 	if (cfile_css != css) {
3990 		css_put(cfile_css);
3991 		goto out_put_cfile;
3992 	}
3993 
3994 	ret = event->register_event(memcg, event->eventfd, buf);
3995 	if (ret)
3996 		goto out_put_css;
3997 
3998 	efile.file->f_op->poll(efile.file, &event->pt);
3999 
4000 	spin_lock(&memcg->event_list_lock);
4001 	list_add(&event->list, &memcg->event_list);
4002 	spin_unlock(&memcg->event_list_lock);
4003 
4004 	fdput(cfile);
4005 	fdput(efile);
4006 
4007 	return nbytes;
4008 
4009 out_put_css:
4010 	css_put(css);
4011 out_put_cfile:
4012 	fdput(cfile);
4013 out_put_eventfd:
4014 	eventfd_ctx_put(event->eventfd);
4015 out_put_efile:
4016 	fdput(efile);
4017 out_kfree:
4018 	kfree(event);
4019 
4020 	return ret;
4021 }
4022 
4023 static struct cftype mem_cgroup_legacy_files[] = {
4024 	{
4025 		.name = "usage_in_bytes",
4026 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4027 		.read_u64 = mem_cgroup_read_u64,
4028 	},
4029 	{
4030 		.name = "max_usage_in_bytes",
4031 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4032 		.write = mem_cgroup_reset,
4033 		.read_u64 = mem_cgroup_read_u64,
4034 	},
4035 	{
4036 		.name = "limit_in_bytes",
4037 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4038 		.write = mem_cgroup_write,
4039 		.read_u64 = mem_cgroup_read_u64,
4040 	},
4041 	{
4042 		.name = "soft_limit_in_bytes",
4043 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4044 		.write = mem_cgroup_write,
4045 		.read_u64 = mem_cgroup_read_u64,
4046 	},
4047 	{
4048 		.name = "failcnt",
4049 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4050 		.write = mem_cgroup_reset,
4051 		.read_u64 = mem_cgroup_read_u64,
4052 	},
4053 	{
4054 		.name = "stat",
4055 		.seq_show = memcg_stat_show,
4056 	},
4057 	{
4058 		.name = "force_empty",
4059 		.write = mem_cgroup_force_empty_write,
4060 	},
4061 	{
4062 		.name = "use_hierarchy",
4063 		.write_u64 = mem_cgroup_hierarchy_write,
4064 		.read_u64 = mem_cgroup_hierarchy_read,
4065 	},
4066 	{
4067 		.name = "cgroup.event_control",		/* XXX: for compat */
4068 		.write = memcg_write_event_control,
4069 		.flags = CFTYPE_NO_PREFIX,
4070 		.mode = S_IWUGO,
4071 	},
4072 	{
4073 		.name = "swappiness",
4074 		.read_u64 = mem_cgroup_swappiness_read,
4075 		.write_u64 = mem_cgroup_swappiness_write,
4076 	},
4077 	{
4078 		.name = "move_charge_at_immigrate",
4079 		.read_u64 = mem_cgroup_move_charge_read,
4080 		.write_u64 = mem_cgroup_move_charge_write,
4081 	},
4082 	{
4083 		.name = "oom_control",
4084 		.seq_show = mem_cgroup_oom_control_read,
4085 		.write_u64 = mem_cgroup_oom_control_write,
4086 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4087 	},
4088 	{
4089 		.name = "pressure_level",
4090 	},
4091 #ifdef CONFIG_NUMA
4092 	{
4093 		.name = "numa_stat",
4094 		.seq_show = memcg_numa_stat_show,
4095 	},
4096 #endif
4097 #ifdef CONFIG_MEMCG_KMEM
4098 	{
4099 		.name = "kmem.limit_in_bytes",
4100 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4101 		.write = mem_cgroup_write,
4102 		.read_u64 = mem_cgroup_read_u64,
4103 	},
4104 	{
4105 		.name = "kmem.usage_in_bytes",
4106 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4107 		.read_u64 = mem_cgroup_read_u64,
4108 	},
4109 	{
4110 		.name = "kmem.failcnt",
4111 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4112 		.write = mem_cgroup_reset,
4113 		.read_u64 = mem_cgroup_read_u64,
4114 	},
4115 	{
4116 		.name = "kmem.max_usage_in_bytes",
4117 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4118 		.write = mem_cgroup_reset,
4119 		.read_u64 = mem_cgroup_read_u64,
4120 	},
4121 #ifdef CONFIG_SLABINFO
4122 	{
4123 		.name = "kmem.slabinfo",
4124 		.seq_start = slab_start,
4125 		.seq_next = slab_next,
4126 		.seq_stop = slab_stop,
4127 		.seq_show = memcg_slab_show,
4128 	},
4129 #endif
4130 #endif
4131 	{ },	/* terminate */
4132 };
4133 
4134 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4135 {
4136 	struct mem_cgroup_per_node *pn;
4137 	struct mem_cgroup_per_zone *mz;
4138 	int zone, tmp = node;
4139 	/*
4140 	 * This routine is called against possible nodes.
4141 	 * But it's BUG to call kmalloc() against offline node.
4142 	 *
4143 	 * TODO: this routine can waste much memory for nodes which will
4144 	 *       never be onlined. It's better to use memory hotplug callback
4145 	 *       function.
4146 	 */
4147 	if (!node_state(node, N_NORMAL_MEMORY))
4148 		tmp = -1;
4149 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4150 	if (!pn)
4151 		return 1;
4152 
4153 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4154 		mz = &pn->zoneinfo[zone];
4155 		lruvec_init(&mz->lruvec);
4156 		mz->usage_in_excess = 0;
4157 		mz->on_tree = false;
4158 		mz->memcg = memcg;
4159 	}
4160 	memcg->nodeinfo[node] = pn;
4161 	return 0;
4162 }
4163 
4164 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4165 {
4166 	kfree(memcg->nodeinfo[node]);
4167 }
4168 
4169 static struct mem_cgroup *mem_cgroup_alloc(void)
4170 {
4171 	struct mem_cgroup *memcg;
4172 	size_t size;
4173 
4174 	size = sizeof(struct mem_cgroup);
4175 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4176 
4177 	memcg = kzalloc(size, GFP_KERNEL);
4178 	if (!memcg)
4179 		return NULL;
4180 
4181 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4182 	if (!memcg->stat)
4183 		goto out_free;
4184 
4185 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4186 		goto out_free_stat;
4187 
4188 	return memcg;
4189 
4190 out_free_stat:
4191 	free_percpu(memcg->stat);
4192 out_free:
4193 	kfree(memcg);
4194 	return NULL;
4195 }
4196 
4197 /*
4198  * At destroying mem_cgroup, references from swap_cgroup can remain.
4199  * (scanning all at force_empty is too costly...)
4200  *
4201  * Instead of clearing all references at force_empty, we remember
4202  * the number of reference from swap_cgroup and free mem_cgroup when
4203  * it goes down to 0.
4204  *
4205  * Removal of cgroup itself succeeds regardless of refs from swap.
4206  */
4207 
4208 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4209 {
4210 	int node;
4211 
4212 	mem_cgroup_remove_from_trees(memcg);
4213 
4214 	for_each_node(node)
4215 		free_mem_cgroup_per_zone_info(memcg, node);
4216 
4217 	free_percpu(memcg->stat);
4218 	memcg_wb_domain_exit(memcg);
4219 	kfree(memcg);
4220 }
4221 
4222 /*
4223  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4224  */
4225 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4226 {
4227 	if (!memcg->memory.parent)
4228 		return NULL;
4229 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4230 }
4231 EXPORT_SYMBOL(parent_mem_cgroup);
4232 
4233 static struct cgroup_subsys_state * __ref
4234 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4235 {
4236 	struct mem_cgroup *memcg;
4237 	long error = -ENOMEM;
4238 	int node;
4239 
4240 	memcg = mem_cgroup_alloc();
4241 	if (!memcg)
4242 		return ERR_PTR(error);
4243 
4244 	for_each_node(node)
4245 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4246 			goto free_out;
4247 
4248 	/* root ? */
4249 	if (parent_css == NULL) {
4250 		root_mem_cgroup = memcg;
4251 		mem_cgroup_root_css = &memcg->css;
4252 		page_counter_init(&memcg->memory, NULL);
4253 		memcg->high = PAGE_COUNTER_MAX;
4254 		memcg->soft_limit = PAGE_COUNTER_MAX;
4255 		page_counter_init(&memcg->memsw, NULL);
4256 		page_counter_init(&memcg->kmem, NULL);
4257 	}
4258 
4259 	memcg->last_scanned_node = MAX_NUMNODES;
4260 	INIT_LIST_HEAD(&memcg->oom_notify);
4261 	memcg->move_charge_at_immigrate = 0;
4262 	mutex_init(&memcg->thresholds_lock);
4263 	spin_lock_init(&memcg->move_lock);
4264 	vmpressure_init(&memcg->vmpressure);
4265 	INIT_LIST_HEAD(&memcg->event_list);
4266 	spin_lock_init(&memcg->event_list_lock);
4267 #ifdef CONFIG_MEMCG_KMEM
4268 	memcg->kmemcg_id = -1;
4269 #endif
4270 #ifdef CONFIG_CGROUP_WRITEBACK
4271 	INIT_LIST_HEAD(&memcg->cgwb_list);
4272 #endif
4273 	return &memcg->css;
4274 
4275 free_out:
4276 	__mem_cgroup_free(memcg);
4277 	return ERR_PTR(error);
4278 }
4279 
4280 static int
4281 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4282 {
4283 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4285 	int ret;
4286 
4287 	if (css->id > MEM_CGROUP_ID_MAX)
4288 		return -ENOSPC;
4289 
4290 	if (!parent)
4291 		return 0;
4292 
4293 	mutex_lock(&memcg_create_mutex);
4294 
4295 	memcg->use_hierarchy = parent->use_hierarchy;
4296 	memcg->oom_kill_disable = parent->oom_kill_disable;
4297 	memcg->swappiness = mem_cgroup_swappiness(parent);
4298 
4299 	if (parent->use_hierarchy) {
4300 		page_counter_init(&memcg->memory, &parent->memory);
4301 		memcg->high = PAGE_COUNTER_MAX;
4302 		memcg->soft_limit = PAGE_COUNTER_MAX;
4303 		page_counter_init(&memcg->memsw, &parent->memsw);
4304 		page_counter_init(&memcg->kmem, &parent->kmem);
4305 
4306 		/*
4307 		 * No need to take a reference to the parent because cgroup
4308 		 * core guarantees its existence.
4309 		 */
4310 	} else {
4311 		page_counter_init(&memcg->memory, NULL);
4312 		memcg->high = PAGE_COUNTER_MAX;
4313 		memcg->soft_limit = PAGE_COUNTER_MAX;
4314 		page_counter_init(&memcg->memsw, NULL);
4315 		page_counter_init(&memcg->kmem, NULL);
4316 		/*
4317 		 * Deeper hierachy with use_hierarchy == false doesn't make
4318 		 * much sense so let cgroup subsystem know about this
4319 		 * unfortunate state in our controller.
4320 		 */
4321 		if (parent != root_mem_cgroup)
4322 			memory_cgrp_subsys.broken_hierarchy = true;
4323 	}
4324 	mutex_unlock(&memcg_create_mutex);
4325 
4326 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4327 	if (ret)
4328 		return ret;
4329 
4330 	/*
4331 	 * Make sure the memcg is initialized: mem_cgroup_iter()
4332 	 * orders reading memcg->initialized against its callers
4333 	 * reading the memcg members.
4334 	 */
4335 	smp_store_release(&memcg->initialized, 1);
4336 
4337 	return 0;
4338 }
4339 
4340 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4341 {
4342 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4343 	struct mem_cgroup_event *event, *tmp;
4344 
4345 	/*
4346 	 * Unregister events and notify userspace.
4347 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4348 	 * directory to avoid race between userspace and kernelspace.
4349 	 */
4350 	spin_lock(&memcg->event_list_lock);
4351 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4352 		list_del_init(&event->list);
4353 		schedule_work(&event->remove);
4354 	}
4355 	spin_unlock(&memcg->event_list_lock);
4356 
4357 	vmpressure_cleanup(&memcg->vmpressure);
4358 
4359 	memcg_deactivate_kmem(memcg);
4360 
4361 	wb_memcg_offline(memcg);
4362 }
4363 
4364 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4365 {
4366 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367 
4368 	memcg_destroy_kmem(memcg);
4369 	__mem_cgroup_free(memcg);
4370 }
4371 
4372 /**
4373  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4374  * @css: the target css
4375  *
4376  * Reset the states of the mem_cgroup associated with @css.  This is
4377  * invoked when the userland requests disabling on the default hierarchy
4378  * but the memcg is pinned through dependency.  The memcg should stop
4379  * applying policies and should revert to the vanilla state as it may be
4380  * made visible again.
4381  *
4382  * The current implementation only resets the essential configurations.
4383  * This needs to be expanded to cover all the visible parts.
4384  */
4385 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4386 {
4387 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388 
4389 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4390 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4391 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4392 	memcg->low = 0;
4393 	memcg->high = PAGE_COUNTER_MAX;
4394 	memcg->soft_limit = PAGE_COUNTER_MAX;
4395 	memcg_wb_domain_size_changed(memcg);
4396 }
4397 
4398 #ifdef CONFIG_MMU
4399 /* Handlers for move charge at task migration. */
4400 static int mem_cgroup_do_precharge(unsigned long count)
4401 {
4402 	int ret;
4403 
4404 	/* Try a single bulk charge without reclaim first */
4405 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4406 	if (!ret) {
4407 		mc.precharge += count;
4408 		return ret;
4409 	}
4410 	if (ret == -EINTR) {
4411 		cancel_charge(root_mem_cgroup, count);
4412 		return ret;
4413 	}
4414 
4415 	/* Try charges one by one with reclaim */
4416 	while (count--) {
4417 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4418 		/*
4419 		 * In case of failure, any residual charges against
4420 		 * mc.to will be dropped by mem_cgroup_clear_mc()
4421 		 * later on.  However, cancel any charges that are
4422 		 * bypassed to root right away or they'll be lost.
4423 		 */
4424 		if (ret == -EINTR)
4425 			cancel_charge(root_mem_cgroup, 1);
4426 		if (ret)
4427 			return ret;
4428 		mc.precharge++;
4429 		cond_resched();
4430 	}
4431 	return 0;
4432 }
4433 
4434 /**
4435  * get_mctgt_type - get target type of moving charge
4436  * @vma: the vma the pte to be checked belongs
4437  * @addr: the address corresponding to the pte to be checked
4438  * @ptent: the pte to be checked
4439  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4440  *
4441  * Returns
4442  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4443  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4444  *     move charge. if @target is not NULL, the page is stored in target->page
4445  *     with extra refcnt got(Callers should handle it).
4446  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4447  *     target for charge migration. if @target is not NULL, the entry is stored
4448  *     in target->ent.
4449  *
4450  * Called with pte lock held.
4451  */
4452 union mc_target {
4453 	struct page	*page;
4454 	swp_entry_t	ent;
4455 };
4456 
4457 enum mc_target_type {
4458 	MC_TARGET_NONE = 0,
4459 	MC_TARGET_PAGE,
4460 	MC_TARGET_SWAP,
4461 };
4462 
4463 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4464 						unsigned long addr, pte_t ptent)
4465 {
4466 	struct page *page = vm_normal_page(vma, addr, ptent);
4467 
4468 	if (!page || !page_mapped(page))
4469 		return NULL;
4470 	if (PageAnon(page)) {
4471 		if (!(mc.flags & MOVE_ANON))
4472 			return NULL;
4473 	} else {
4474 		if (!(mc.flags & MOVE_FILE))
4475 			return NULL;
4476 	}
4477 	if (!get_page_unless_zero(page))
4478 		return NULL;
4479 
4480 	return page;
4481 }
4482 
4483 #ifdef CONFIG_SWAP
4484 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4485 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4486 {
4487 	struct page *page = NULL;
4488 	swp_entry_t ent = pte_to_swp_entry(ptent);
4489 
4490 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4491 		return NULL;
4492 	/*
4493 	 * Because lookup_swap_cache() updates some statistics counter,
4494 	 * we call find_get_page() with swapper_space directly.
4495 	 */
4496 	page = find_get_page(swap_address_space(ent), ent.val);
4497 	if (do_swap_account)
4498 		entry->val = ent.val;
4499 
4500 	return page;
4501 }
4502 #else
4503 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4504 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4505 {
4506 	return NULL;
4507 }
4508 #endif
4509 
4510 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4511 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4512 {
4513 	struct page *page = NULL;
4514 	struct address_space *mapping;
4515 	pgoff_t pgoff;
4516 
4517 	if (!vma->vm_file) /* anonymous vma */
4518 		return NULL;
4519 	if (!(mc.flags & MOVE_FILE))
4520 		return NULL;
4521 
4522 	mapping = vma->vm_file->f_mapping;
4523 	pgoff = linear_page_index(vma, addr);
4524 
4525 	/* page is moved even if it's not RSS of this task(page-faulted). */
4526 #ifdef CONFIG_SWAP
4527 	/* shmem/tmpfs may report page out on swap: account for that too. */
4528 	if (shmem_mapping(mapping)) {
4529 		page = find_get_entry(mapping, pgoff);
4530 		if (radix_tree_exceptional_entry(page)) {
4531 			swp_entry_t swp = radix_to_swp_entry(page);
4532 			if (do_swap_account)
4533 				*entry = swp;
4534 			page = find_get_page(swap_address_space(swp), swp.val);
4535 		}
4536 	} else
4537 		page = find_get_page(mapping, pgoff);
4538 #else
4539 	page = find_get_page(mapping, pgoff);
4540 #endif
4541 	return page;
4542 }
4543 
4544 /**
4545  * mem_cgroup_move_account - move account of the page
4546  * @page: the page
4547  * @nr_pages: number of regular pages (>1 for huge pages)
4548  * @from: mem_cgroup which the page is moved from.
4549  * @to:	mem_cgroup which the page is moved to. @from != @to.
4550  *
4551  * The caller must confirm following.
4552  * - page is not on LRU (isolate_page() is useful.)
4553  * - compound_lock is held when nr_pages > 1
4554  *
4555  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4556  * from old cgroup.
4557  */
4558 static int mem_cgroup_move_account(struct page *page,
4559 				   unsigned int nr_pages,
4560 				   struct mem_cgroup *from,
4561 				   struct mem_cgroup *to)
4562 {
4563 	unsigned long flags;
4564 	int ret;
4565 	bool anon;
4566 
4567 	VM_BUG_ON(from == to);
4568 	VM_BUG_ON_PAGE(PageLRU(page), page);
4569 	/*
4570 	 * The page is isolated from LRU. So, collapse function
4571 	 * will not handle this page. But page splitting can happen.
4572 	 * Do this check under compound_page_lock(). The caller should
4573 	 * hold it.
4574 	 */
4575 	ret = -EBUSY;
4576 	if (nr_pages > 1 && !PageTransHuge(page))
4577 		goto out;
4578 
4579 	/*
4580 	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4581 	 * of its source page while we change it: page migration takes
4582 	 * both pages off the LRU, but page cache replacement doesn't.
4583 	 */
4584 	if (!trylock_page(page))
4585 		goto out;
4586 
4587 	ret = -EINVAL;
4588 	if (page->mem_cgroup != from)
4589 		goto out_unlock;
4590 
4591 	anon = PageAnon(page);
4592 
4593 	spin_lock_irqsave(&from->move_lock, flags);
4594 
4595 	if (!anon && page_mapped(page)) {
4596 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4597 			       nr_pages);
4598 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4599 			       nr_pages);
4600 	}
4601 
4602 	/*
4603 	 * move_lock grabbed above and caller set from->moving_account, so
4604 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4605 	 * So mapping should be stable for dirty pages.
4606 	 */
4607 	if (!anon && PageDirty(page)) {
4608 		struct address_space *mapping = page_mapping(page);
4609 
4610 		if (mapping_cap_account_dirty(mapping)) {
4611 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4612 				       nr_pages);
4613 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4614 				       nr_pages);
4615 		}
4616 	}
4617 
4618 	if (PageWriteback(page)) {
4619 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4620 			       nr_pages);
4621 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4622 			       nr_pages);
4623 	}
4624 
4625 	/*
4626 	 * It is safe to change page->mem_cgroup here because the page
4627 	 * is referenced, charged, and isolated - we can't race with
4628 	 * uncharging, charging, migration, or LRU putback.
4629 	 */
4630 
4631 	/* caller should have done css_get */
4632 	page->mem_cgroup = to;
4633 	spin_unlock_irqrestore(&from->move_lock, flags);
4634 
4635 	ret = 0;
4636 
4637 	local_irq_disable();
4638 	mem_cgroup_charge_statistics(to, page, nr_pages);
4639 	memcg_check_events(to, page);
4640 	mem_cgroup_charge_statistics(from, page, -nr_pages);
4641 	memcg_check_events(from, page);
4642 	local_irq_enable();
4643 out_unlock:
4644 	unlock_page(page);
4645 out:
4646 	return ret;
4647 }
4648 
4649 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4650 		unsigned long addr, pte_t ptent, union mc_target *target)
4651 {
4652 	struct page *page = NULL;
4653 	enum mc_target_type ret = MC_TARGET_NONE;
4654 	swp_entry_t ent = { .val = 0 };
4655 
4656 	if (pte_present(ptent))
4657 		page = mc_handle_present_pte(vma, addr, ptent);
4658 	else if (is_swap_pte(ptent))
4659 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4660 	else if (pte_none(ptent))
4661 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4662 
4663 	if (!page && !ent.val)
4664 		return ret;
4665 	if (page) {
4666 		/*
4667 		 * Do only loose check w/o serialization.
4668 		 * mem_cgroup_move_account() checks the page is valid or
4669 		 * not under LRU exclusion.
4670 		 */
4671 		if (page->mem_cgroup == mc.from) {
4672 			ret = MC_TARGET_PAGE;
4673 			if (target)
4674 				target->page = page;
4675 		}
4676 		if (!ret || !target)
4677 			put_page(page);
4678 	}
4679 	/* There is a swap entry and a page doesn't exist or isn't charged */
4680 	if (ent.val && !ret &&
4681 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4682 		ret = MC_TARGET_SWAP;
4683 		if (target)
4684 			target->ent = ent;
4685 	}
4686 	return ret;
4687 }
4688 
4689 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4690 /*
4691  * We don't consider swapping or file mapped pages because THP does not
4692  * support them for now.
4693  * Caller should make sure that pmd_trans_huge(pmd) is true.
4694  */
4695 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4696 		unsigned long addr, pmd_t pmd, union mc_target *target)
4697 {
4698 	struct page *page = NULL;
4699 	enum mc_target_type ret = MC_TARGET_NONE;
4700 
4701 	page = pmd_page(pmd);
4702 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4703 	if (!(mc.flags & MOVE_ANON))
4704 		return ret;
4705 	if (page->mem_cgroup == mc.from) {
4706 		ret = MC_TARGET_PAGE;
4707 		if (target) {
4708 			get_page(page);
4709 			target->page = page;
4710 		}
4711 	}
4712 	return ret;
4713 }
4714 #else
4715 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4716 		unsigned long addr, pmd_t pmd, union mc_target *target)
4717 {
4718 	return MC_TARGET_NONE;
4719 }
4720 #endif
4721 
4722 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4723 					unsigned long addr, unsigned long end,
4724 					struct mm_walk *walk)
4725 {
4726 	struct vm_area_struct *vma = walk->vma;
4727 	pte_t *pte;
4728 	spinlock_t *ptl;
4729 
4730 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4731 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4732 			mc.precharge += HPAGE_PMD_NR;
4733 		spin_unlock(ptl);
4734 		return 0;
4735 	}
4736 
4737 	if (pmd_trans_unstable(pmd))
4738 		return 0;
4739 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4740 	for (; addr != end; pte++, addr += PAGE_SIZE)
4741 		if (get_mctgt_type(vma, addr, *pte, NULL))
4742 			mc.precharge++;	/* increment precharge temporarily */
4743 	pte_unmap_unlock(pte - 1, ptl);
4744 	cond_resched();
4745 
4746 	return 0;
4747 }
4748 
4749 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4750 {
4751 	unsigned long precharge;
4752 
4753 	struct mm_walk mem_cgroup_count_precharge_walk = {
4754 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4755 		.mm = mm,
4756 	};
4757 	down_read(&mm->mmap_sem);
4758 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4759 	up_read(&mm->mmap_sem);
4760 
4761 	precharge = mc.precharge;
4762 	mc.precharge = 0;
4763 
4764 	return precharge;
4765 }
4766 
4767 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4768 {
4769 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4770 
4771 	VM_BUG_ON(mc.moving_task);
4772 	mc.moving_task = current;
4773 	return mem_cgroup_do_precharge(precharge);
4774 }
4775 
4776 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4777 static void __mem_cgroup_clear_mc(void)
4778 {
4779 	struct mem_cgroup *from = mc.from;
4780 	struct mem_cgroup *to = mc.to;
4781 
4782 	/* we must uncharge all the leftover precharges from mc.to */
4783 	if (mc.precharge) {
4784 		cancel_charge(mc.to, mc.precharge);
4785 		mc.precharge = 0;
4786 	}
4787 	/*
4788 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4789 	 * we must uncharge here.
4790 	 */
4791 	if (mc.moved_charge) {
4792 		cancel_charge(mc.from, mc.moved_charge);
4793 		mc.moved_charge = 0;
4794 	}
4795 	/* we must fixup refcnts and charges */
4796 	if (mc.moved_swap) {
4797 		/* uncharge swap account from the old cgroup */
4798 		if (!mem_cgroup_is_root(mc.from))
4799 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4800 
4801 		/*
4802 		 * we charged both to->memory and to->memsw, so we
4803 		 * should uncharge to->memory.
4804 		 */
4805 		if (!mem_cgroup_is_root(mc.to))
4806 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4807 
4808 		css_put_many(&mc.from->css, mc.moved_swap);
4809 
4810 		/* we've already done css_get(mc.to) */
4811 		mc.moved_swap = 0;
4812 	}
4813 	memcg_oom_recover(from);
4814 	memcg_oom_recover(to);
4815 	wake_up_all(&mc.waitq);
4816 }
4817 
4818 static void mem_cgroup_clear_mc(void)
4819 {
4820 	/*
4821 	 * we must clear moving_task before waking up waiters at the end of
4822 	 * task migration.
4823 	 */
4824 	mc.moving_task = NULL;
4825 	__mem_cgroup_clear_mc();
4826 	spin_lock(&mc.lock);
4827 	mc.from = NULL;
4828 	mc.to = NULL;
4829 	spin_unlock(&mc.lock);
4830 }
4831 
4832 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4833 				 struct cgroup_taskset *tset)
4834 {
4835 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4836 	struct mem_cgroup *from;
4837 	struct task_struct *p;
4838 	struct mm_struct *mm;
4839 	unsigned long move_flags;
4840 	int ret = 0;
4841 
4842 	/*
4843 	 * We are now commited to this value whatever it is. Changes in this
4844 	 * tunable will only affect upcoming migrations, not the current one.
4845 	 * So we need to save it, and keep it going.
4846 	 */
4847 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4848 	if (!move_flags)
4849 		return 0;
4850 
4851 	p = cgroup_taskset_first(tset);
4852 	from = mem_cgroup_from_task(p);
4853 
4854 	VM_BUG_ON(from == memcg);
4855 
4856 	mm = get_task_mm(p);
4857 	if (!mm)
4858 		return 0;
4859 	/* We move charges only when we move a owner of the mm */
4860 	if (mm->owner == p) {
4861 		VM_BUG_ON(mc.from);
4862 		VM_BUG_ON(mc.to);
4863 		VM_BUG_ON(mc.precharge);
4864 		VM_BUG_ON(mc.moved_charge);
4865 		VM_BUG_ON(mc.moved_swap);
4866 
4867 		spin_lock(&mc.lock);
4868 		mc.from = from;
4869 		mc.to = memcg;
4870 		mc.flags = move_flags;
4871 		spin_unlock(&mc.lock);
4872 		/* We set mc.moving_task later */
4873 
4874 		ret = mem_cgroup_precharge_mc(mm);
4875 		if (ret)
4876 			mem_cgroup_clear_mc();
4877 	}
4878 	mmput(mm);
4879 	return ret;
4880 }
4881 
4882 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4883 				     struct cgroup_taskset *tset)
4884 {
4885 	if (mc.to)
4886 		mem_cgroup_clear_mc();
4887 }
4888 
4889 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4890 				unsigned long addr, unsigned long end,
4891 				struct mm_walk *walk)
4892 {
4893 	int ret = 0;
4894 	struct vm_area_struct *vma = walk->vma;
4895 	pte_t *pte;
4896 	spinlock_t *ptl;
4897 	enum mc_target_type target_type;
4898 	union mc_target target;
4899 	struct page *page;
4900 
4901 	/*
4902 	 * We don't take compound_lock() here but no race with splitting thp
4903 	 * happens because:
4904 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4905 	 *    under splitting, which means there's no concurrent thp split,
4906 	 *  - if another thread runs into split_huge_page() just after we
4907 	 *    entered this if-block, the thread must wait for page table lock
4908 	 *    to be unlocked in __split_huge_page_splitting(), where the main
4909 	 *    part of thp split is not executed yet.
4910 	 */
4911 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4912 		if (mc.precharge < HPAGE_PMD_NR) {
4913 			spin_unlock(ptl);
4914 			return 0;
4915 		}
4916 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4917 		if (target_type == MC_TARGET_PAGE) {
4918 			page = target.page;
4919 			if (!isolate_lru_page(page)) {
4920 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4921 							     mc.from, mc.to)) {
4922 					mc.precharge -= HPAGE_PMD_NR;
4923 					mc.moved_charge += HPAGE_PMD_NR;
4924 				}
4925 				putback_lru_page(page);
4926 			}
4927 			put_page(page);
4928 		}
4929 		spin_unlock(ptl);
4930 		return 0;
4931 	}
4932 
4933 	if (pmd_trans_unstable(pmd))
4934 		return 0;
4935 retry:
4936 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4937 	for (; addr != end; addr += PAGE_SIZE) {
4938 		pte_t ptent = *(pte++);
4939 		swp_entry_t ent;
4940 
4941 		if (!mc.precharge)
4942 			break;
4943 
4944 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4945 		case MC_TARGET_PAGE:
4946 			page = target.page;
4947 			if (isolate_lru_page(page))
4948 				goto put;
4949 			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4950 				mc.precharge--;
4951 				/* we uncharge from mc.from later. */
4952 				mc.moved_charge++;
4953 			}
4954 			putback_lru_page(page);
4955 put:			/* get_mctgt_type() gets the page */
4956 			put_page(page);
4957 			break;
4958 		case MC_TARGET_SWAP:
4959 			ent = target.ent;
4960 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4961 				mc.precharge--;
4962 				/* we fixup refcnts and charges later. */
4963 				mc.moved_swap++;
4964 			}
4965 			break;
4966 		default:
4967 			break;
4968 		}
4969 	}
4970 	pte_unmap_unlock(pte - 1, ptl);
4971 	cond_resched();
4972 
4973 	if (addr != end) {
4974 		/*
4975 		 * We have consumed all precharges we got in can_attach().
4976 		 * We try charge one by one, but don't do any additional
4977 		 * charges to mc.to if we have failed in charge once in attach()
4978 		 * phase.
4979 		 */
4980 		ret = mem_cgroup_do_precharge(1);
4981 		if (!ret)
4982 			goto retry;
4983 	}
4984 
4985 	return ret;
4986 }
4987 
4988 static void mem_cgroup_move_charge(struct mm_struct *mm)
4989 {
4990 	struct mm_walk mem_cgroup_move_charge_walk = {
4991 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4992 		.mm = mm,
4993 	};
4994 
4995 	lru_add_drain_all();
4996 	/*
4997 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4998 	 * move_lock while we're moving its pages to another memcg.
4999 	 * Then wait for already started RCU-only updates to finish.
5000 	 */
5001 	atomic_inc(&mc.from->moving_account);
5002 	synchronize_rcu();
5003 retry:
5004 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5005 		/*
5006 		 * Someone who are holding the mmap_sem might be waiting in
5007 		 * waitq. So we cancel all extra charges, wake up all waiters,
5008 		 * and retry. Because we cancel precharges, we might not be able
5009 		 * to move enough charges, but moving charge is a best-effort
5010 		 * feature anyway, so it wouldn't be a big problem.
5011 		 */
5012 		__mem_cgroup_clear_mc();
5013 		cond_resched();
5014 		goto retry;
5015 	}
5016 	/*
5017 	 * When we have consumed all precharges and failed in doing
5018 	 * additional charge, the page walk just aborts.
5019 	 */
5020 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5021 	up_read(&mm->mmap_sem);
5022 	atomic_dec(&mc.from->moving_account);
5023 }
5024 
5025 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5026 				 struct cgroup_taskset *tset)
5027 {
5028 	struct task_struct *p = cgroup_taskset_first(tset);
5029 	struct mm_struct *mm = get_task_mm(p);
5030 
5031 	if (mm) {
5032 		if (mc.to)
5033 			mem_cgroup_move_charge(mm);
5034 		mmput(mm);
5035 	}
5036 	if (mc.to)
5037 		mem_cgroup_clear_mc();
5038 }
5039 #else	/* !CONFIG_MMU */
5040 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5041 				 struct cgroup_taskset *tset)
5042 {
5043 	return 0;
5044 }
5045 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5046 				     struct cgroup_taskset *tset)
5047 {
5048 }
5049 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5050 				 struct cgroup_taskset *tset)
5051 {
5052 }
5053 #endif
5054 
5055 /*
5056  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5057  * to verify whether we're attached to the default hierarchy on each mount
5058  * attempt.
5059  */
5060 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5061 {
5062 	/*
5063 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5064 	 * guarantees that @root doesn't have any children, so turning it
5065 	 * on for the root memcg is enough.
5066 	 */
5067 	if (cgroup_on_dfl(root_css->cgroup))
5068 		root_mem_cgroup->use_hierarchy = true;
5069 	else
5070 		root_mem_cgroup->use_hierarchy = false;
5071 }
5072 
5073 static u64 memory_current_read(struct cgroup_subsys_state *css,
5074 			       struct cftype *cft)
5075 {
5076 	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5077 }
5078 
5079 static int memory_low_show(struct seq_file *m, void *v)
5080 {
5081 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5082 	unsigned long low = READ_ONCE(memcg->low);
5083 
5084 	if (low == PAGE_COUNTER_MAX)
5085 		seq_puts(m, "max\n");
5086 	else
5087 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5088 
5089 	return 0;
5090 }
5091 
5092 static ssize_t memory_low_write(struct kernfs_open_file *of,
5093 				char *buf, size_t nbytes, loff_t off)
5094 {
5095 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5096 	unsigned long low;
5097 	int err;
5098 
5099 	buf = strstrip(buf);
5100 	err = page_counter_memparse(buf, "max", &low);
5101 	if (err)
5102 		return err;
5103 
5104 	memcg->low = low;
5105 
5106 	return nbytes;
5107 }
5108 
5109 static int memory_high_show(struct seq_file *m, void *v)
5110 {
5111 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5112 	unsigned long high = READ_ONCE(memcg->high);
5113 
5114 	if (high == PAGE_COUNTER_MAX)
5115 		seq_puts(m, "max\n");
5116 	else
5117 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5118 
5119 	return 0;
5120 }
5121 
5122 static ssize_t memory_high_write(struct kernfs_open_file *of,
5123 				 char *buf, size_t nbytes, loff_t off)
5124 {
5125 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5126 	unsigned long high;
5127 	int err;
5128 
5129 	buf = strstrip(buf);
5130 	err = page_counter_memparse(buf, "max", &high);
5131 	if (err)
5132 		return err;
5133 
5134 	memcg->high = high;
5135 
5136 	memcg_wb_domain_size_changed(memcg);
5137 	return nbytes;
5138 }
5139 
5140 static int memory_max_show(struct seq_file *m, void *v)
5141 {
5142 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5143 	unsigned long max = READ_ONCE(memcg->memory.limit);
5144 
5145 	if (max == PAGE_COUNTER_MAX)
5146 		seq_puts(m, "max\n");
5147 	else
5148 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5149 
5150 	return 0;
5151 }
5152 
5153 static ssize_t memory_max_write(struct kernfs_open_file *of,
5154 				char *buf, size_t nbytes, loff_t off)
5155 {
5156 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5157 	unsigned long max;
5158 	int err;
5159 
5160 	buf = strstrip(buf);
5161 	err = page_counter_memparse(buf, "max", &max);
5162 	if (err)
5163 		return err;
5164 
5165 	err = mem_cgroup_resize_limit(memcg, max);
5166 	if (err)
5167 		return err;
5168 
5169 	memcg_wb_domain_size_changed(memcg);
5170 	return nbytes;
5171 }
5172 
5173 static int memory_events_show(struct seq_file *m, void *v)
5174 {
5175 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5176 
5177 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5178 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5179 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5180 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5181 
5182 	return 0;
5183 }
5184 
5185 static struct cftype memory_files[] = {
5186 	{
5187 		.name = "current",
5188 		.read_u64 = memory_current_read,
5189 	},
5190 	{
5191 		.name = "low",
5192 		.flags = CFTYPE_NOT_ON_ROOT,
5193 		.seq_show = memory_low_show,
5194 		.write = memory_low_write,
5195 	},
5196 	{
5197 		.name = "high",
5198 		.flags = CFTYPE_NOT_ON_ROOT,
5199 		.seq_show = memory_high_show,
5200 		.write = memory_high_write,
5201 	},
5202 	{
5203 		.name = "max",
5204 		.flags = CFTYPE_NOT_ON_ROOT,
5205 		.seq_show = memory_max_show,
5206 		.write = memory_max_write,
5207 	},
5208 	{
5209 		.name = "events",
5210 		.flags = CFTYPE_NOT_ON_ROOT,
5211 		.seq_show = memory_events_show,
5212 	},
5213 	{ }	/* terminate */
5214 };
5215 
5216 struct cgroup_subsys memory_cgrp_subsys = {
5217 	.css_alloc = mem_cgroup_css_alloc,
5218 	.css_online = mem_cgroup_css_online,
5219 	.css_offline = mem_cgroup_css_offline,
5220 	.css_free = mem_cgroup_css_free,
5221 	.css_reset = mem_cgroup_css_reset,
5222 	.can_attach = mem_cgroup_can_attach,
5223 	.cancel_attach = mem_cgroup_cancel_attach,
5224 	.attach = mem_cgroup_move_task,
5225 	.bind = mem_cgroup_bind,
5226 	.dfl_cftypes = memory_files,
5227 	.legacy_cftypes = mem_cgroup_legacy_files,
5228 	.early_init = 0,
5229 };
5230 
5231 /**
5232  * mem_cgroup_low - check if memory consumption is below the normal range
5233  * @root: the highest ancestor to consider
5234  * @memcg: the memory cgroup to check
5235  *
5236  * Returns %true if memory consumption of @memcg, and that of all
5237  * configurable ancestors up to @root, is below the normal range.
5238  */
5239 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5240 {
5241 	if (mem_cgroup_disabled())
5242 		return false;
5243 
5244 	/*
5245 	 * The toplevel group doesn't have a configurable range, so
5246 	 * it's never low when looked at directly, and it is not
5247 	 * considered an ancestor when assessing the hierarchy.
5248 	 */
5249 
5250 	if (memcg == root_mem_cgroup)
5251 		return false;
5252 
5253 	if (page_counter_read(&memcg->memory) >= memcg->low)
5254 		return false;
5255 
5256 	while (memcg != root) {
5257 		memcg = parent_mem_cgroup(memcg);
5258 
5259 		if (memcg == root_mem_cgroup)
5260 			break;
5261 
5262 		if (page_counter_read(&memcg->memory) >= memcg->low)
5263 			return false;
5264 	}
5265 	return true;
5266 }
5267 
5268 /**
5269  * mem_cgroup_try_charge - try charging a page
5270  * @page: page to charge
5271  * @mm: mm context of the victim
5272  * @gfp_mask: reclaim mode
5273  * @memcgp: charged memcg return
5274  *
5275  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5276  * pages according to @gfp_mask if necessary.
5277  *
5278  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5279  * Otherwise, an error code is returned.
5280  *
5281  * After page->mapping has been set up, the caller must finalize the
5282  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5283  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5284  */
5285 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5286 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5287 {
5288 	struct mem_cgroup *memcg = NULL;
5289 	unsigned int nr_pages = 1;
5290 	int ret = 0;
5291 
5292 	if (mem_cgroup_disabled())
5293 		goto out;
5294 
5295 	if (PageSwapCache(page)) {
5296 		/*
5297 		 * Every swap fault against a single page tries to charge the
5298 		 * page, bail as early as possible.  shmem_unuse() encounters
5299 		 * already charged pages, too.  The USED bit is protected by
5300 		 * the page lock, which serializes swap cache removal, which
5301 		 * in turn serializes uncharging.
5302 		 */
5303 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5304 		if (page->mem_cgroup)
5305 			goto out;
5306 
5307 		if (do_swap_account) {
5308 			swp_entry_t ent = { .val = page_private(page), };
5309 			unsigned short id = lookup_swap_cgroup_id(ent);
5310 
5311 			rcu_read_lock();
5312 			memcg = mem_cgroup_from_id(id);
5313 			if (memcg && !css_tryget_online(&memcg->css))
5314 				memcg = NULL;
5315 			rcu_read_unlock();
5316 		}
5317 	}
5318 
5319 	if (PageTransHuge(page)) {
5320 		nr_pages <<= compound_order(page);
5321 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5322 	}
5323 
5324 	if (!memcg)
5325 		memcg = get_mem_cgroup_from_mm(mm);
5326 
5327 	ret = try_charge(memcg, gfp_mask, nr_pages);
5328 
5329 	css_put(&memcg->css);
5330 
5331 	if (ret == -EINTR) {
5332 		memcg = root_mem_cgroup;
5333 		ret = 0;
5334 	}
5335 out:
5336 	*memcgp = memcg;
5337 	return ret;
5338 }
5339 
5340 /**
5341  * mem_cgroup_commit_charge - commit a page charge
5342  * @page: page to charge
5343  * @memcg: memcg to charge the page to
5344  * @lrucare: page might be on LRU already
5345  *
5346  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5347  * after page->mapping has been set up.  This must happen atomically
5348  * as part of the page instantiation, i.e. under the page table lock
5349  * for anonymous pages, under the page lock for page and swap cache.
5350  *
5351  * In addition, the page must not be on the LRU during the commit, to
5352  * prevent racing with task migration.  If it might be, use @lrucare.
5353  *
5354  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5355  */
5356 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5357 			      bool lrucare)
5358 {
5359 	unsigned int nr_pages = 1;
5360 
5361 	VM_BUG_ON_PAGE(!page->mapping, page);
5362 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5363 
5364 	if (mem_cgroup_disabled())
5365 		return;
5366 	/*
5367 	 * Swap faults will attempt to charge the same page multiple
5368 	 * times.  But reuse_swap_page() might have removed the page
5369 	 * from swapcache already, so we can't check PageSwapCache().
5370 	 */
5371 	if (!memcg)
5372 		return;
5373 
5374 	commit_charge(page, memcg, lrucare);
5375 
5376 	if (PageTransHuge(page)) {
5377 		nr_pages <<= compound_order(page);
5378 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5379 	}
5380 
5381 	local_irq_disable();
5382 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5383 	memcg_check_events(memcg, page);
5384 	local_irq_enable();
5385 
5386 	if (do_swap_account && PageSwapCache(page)) {
5387 		swp_entry_t entry = { .val = page_private(page) };
5388 		/*
5389 		 * The swap entry might not get freed for a long time,
5390 		 * let's not wait for it.  The page already received a
5391 		 * memory+swap charge, drop the swap entry duplicate.
5392 		 */
5393 		mem_cgroup_uncharge_swap(entry);
5394 	}
5395 }
5396 
5397 /**
5398  * mem_cgroup_cancel_charge - cancel a page charge
5399  * @page: page to charge
5400  * @memcg: memcg to charge the page to
5401  *
5402  * Cancel a charge transaction started by mem_cgroup_try_charge().
5403  */
5404 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5405 {
5406 	unsigned int nr_pages = 1;
5407 
5408 	if (mem_cgroup_disabled())
5409 		return;
5410 	/*
5411 	 * Swap faults will attempt to charge the same page multiple
5412 	 * times.  But reuse_swap_page() might have removed the page
5413 	 * from swapcache already, so we can't check PageSwapCache().
5414 	 */
5415 	if (!memcg)
5416 		return;
5417 
5418 	if (PageTransHuge(page)) {
5419 		nr_pages <<= compound_order(page);
5420 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5421 	}
5422 
5423 	cancel_charge(memcg, nr_pages);
5424 }
5425 
5426 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5427 			   unsigned long nr_anon, unsigned long nr_file,
5428 			   unsigned long nr_huge, struct page *dummy_page)
5429 {
5430 	unsigned long nr_pages = nr_anon + nr_file;
5431 	unsigned long flags;
5432 
5433 	if (!mem_cgroup_is_root(memcg)) {
5434 		page_counter_uncharge(&memcg->memory, nr_pages);
5435 		if (do_swap_account)
5436 			page_counter_uncharge(&memcg->memsw, nr_pages);
5437 		memcg_oom_recover(memcg);
5438 	}
5439 
5440 	local_irq_save(flags);
5441 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5442 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5443 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5444 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5445 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5446 	memcg_check_events(memcg, dummy_page);
5447 	local_irq_restore(flags);
5448 
5449 	if (!mem_cgroup_is_root(memcg))
5450 		css_put_many(&memcg->css, nr_pages);
5451 }
5452 
5453 static void uncharge_list(struct list_head *page_list)
5454 {
5455 	struct mem_cgroup *memcg = NULL;
5456 	unsigned long nr_anon = 0;
5457 	unsigned long nr_file = 0;
5458 	unsigned long nr_huge = 0;
5459 	unsigned long pgpgout = 0;
5460 	struct list_head *next;
5461 	struct page *page;
5462 
5463 	next = page_list->next;
5464 	do {
5465 		unsigned int nr_pages = 1;
5466 
5467 		page = list_entry(next, struct page, lru);
5468 		next = page->lru.next;
5469 
5470 		VM_BUG_ON_PAGE(PageLRU(page), page);
5471 		VM_BUG_ON_PAGE(page_count(page), page);
5472 
5473 		if (!page->mem_cgroup)
5474 			continue;
5475 
5476 		/*
5477 		 * Nobody should be changing or seriously looking at
5478 		 * page->mem_cgroup at this point, we have fully
5479 		 * exclusive access to the page.
5480 		 */
5481 
5482 		if (memcg != page->mem_cgroup) {
5483 			if (memcg) {
5484 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5485 					       nr_huge, page);
5486 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5487 			}
5488 			memcg = page->mem_cgroup;
5489 		}
5490 
5491 		if (PageTransHuge(page)) {
5492 			nr_pages <<= compound_order(page);
5493 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5494 			nr_huge += nr_pages;
5495 		}
5496 
5497 		if (PageAnon(page))
5498 			nr_anon += nr_pages;
5499 		else
5500 			nr_file += nr_pages;
5501 
5502 		page->mem_cgroup = NULL;
5503 
5504 		pgpgout++;
5505 	} while (next != page_list);
5506 
5507 	if (memcg)
5508 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5509 			       nr_huge, page);
5510 }
5511 
5512 /**
5513  * mem_cgroup_uncharge - uncharge a page
5514  * @page: page to uncharge
5515  *
5516  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5517  * mem_cgroup_commit_charge().
5518  */
5519 void mem_cgroup_uncharge(struct page *page)
5520 {
5521 	if (mem_cgroup_disabled())
5522 		return;
5523 
5524 	/* Don't touch page->lru of any random page, pre-check: */
5525 	if (!page->mem_cgroup)
5526 		return;
5527 
5528 	INIT_LIST_HEAD(&page->lru);
5529 	uncharge_list(&page->lru);
5530 }
5531 
5532 /**
5533  * mem_cgroup_uncharge_list - uncharge a list of page
5534  * @page_list: list of pages to uncharge
5535  *
5536  * Uncharge a list of pages previously charged with
5537  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5538  */
5539 void mem_cgroup_uncharge_list(struct list_head *page_list)
5540 {
5541 	if (mem_cgroup_disabled())
5542 		return;
5543 
5544 	if (!list_empty(page_list))
5545 		uncharge_list(page_list);
5546 }
5547 
5548 /**
5549  * mem_cgroup_migrate - migrate a charge to another page
5550  * @oldpage: currently charged page
5551  * @newpage: page to transfer the charge to
5552  * @lrucare: either or both pages might be on the LRU already
5553  *
5554  * Migrate the charge from @oldpage to @newpage.
5555  *
5556  * Both pages must be locked, @newpage->mapping must be set up.
5557  */
5558 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5559 			bool lrucare)
5560 {
5561 	struct mem_cgroup *memcg;
5562 	int isolated;
5563 
5564 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5565 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5566 	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5567 	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5568 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5569 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5570 		       newpage);
5571 
5572 	if (mem_cgroup_disabled())
5573 		return;
5574 
5575 	/* Page cache replacement: new page already charged? */
5576 	if (newpage->mem_cgroup)
5577 		return;
5578 
5579 	/*
5580 	 * Swapcache readahead pages can get migrated before being
5581 	 * charged, and migration from compaction can happen to an
5582 	 * uncharged page when the PFN walker finds a page that
5583 	 * reclaim just put back on the LRU but has not released yet.
5584 	 */
5585 	memcg = oldpage->mem_cgroup;
5586 	if (!memcg)
5587 		return;
5588 
5589 	if (lrucare)
5590 		lock_page_lru(oldpage, &isolated);
5591 
5592 	oldpage->mem_cgroup = NULL;
5593 
5594 	if (lrucare)
5595 		unlock_page_lru(oldpage, isolated);
5596 
5597 	commit_charge(newpage, memcg, lrucare);
5598 }
5599 
5600 /*
5601  * subsys_initcall() for memory controller.
5602  *
5603  * Some parts like hotcpu_notifier() have to be initialized from this context
5604  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5605  * everything that doesn't depend on a specific mem_cgroup structure should
5606  * be initialized from here.
5607  */
5608 static int __init mem_cgroup_init(void)
5609 {
5610 	int cpu, node;
5611 
5612 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5613 
5614 	for_each_possible_cpu(cpu)
5615 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5616 			  drain_local_stock);
5617 
5618 	for_each_node(node) {
5619 		struct mem_cgroup_tree_per_node *rtpn;
5620 		int zone;
5621 
5622 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5623 				    node_online(node) ? node : NUMA_NO_NODE);
5624 
5625 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5626 			struct mem_cgroup_tree_per_zone *rtpz;
5627 
5628 			rtpz = &rtpn->rb_tree_per_zone[zone];
5629 			rtpz->rb_root = RB_ROOT;
5630 			spin_lock_init(&rtpz->lock);
5631 		}
5632 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5633 	}
5634 
5635 	return 0;
5636 }
5637 subsys_initcall(mem_cgroup_init);
5638 
5639 #ifdef CONFIG_MEMCG_SWAP
5640 /**
5641  * mem_cgroup_swapout - transfer a memsw charge to swap
5642  * @page: page whose memsw charge to transfer
5643  * @entry: swap entry to move the charge to
5644  *
5645  * Transfer the memsw charge of @page to @entry.
5646  */
5647 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5648 {
5649 	struct mem_cgroup *memcg;
5650 	unsigned short oldid;
5651 
5652 	VM_BUG_ON_PAGE(PageLRU(page), page);
5653 	VM_BUG_ON_PAGE(page_count(page), page);
5654 
5655 	if (!do_swap_account)
5656 		return;
5657 
5658 	memcg = page->mem_cgroup;
5659 
5660 	/* Readahead page, never charged */
5661 	if (!memcg)
5662 		return;
5663 
5664 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5665 	VM_BUG_ON_PAGE(oldid, page);
5666 	mem_cgroup_swap_statistics(memcg, true);
5667 
5668 	page->mem_cgroup = NULL;
5669 
5670 	if (!mem_cgroup_is_root(memcg))
5671 		page_counter_uncharge(&memcg->memory, 1);
5672 
5673 	/*
5674 	 * Interrupts should be disabled here because the caller holds the
5675 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5676 	 * important here to have the interrupts disabled because it is the
5677 	 * only synchronisation we have for udpating the per-CPU variables.
5678 	 */
5679 	VM_BUG_ON(!irqs_disabled());
5680 	mem_cgroup_charge_statistics(memcg, page, -1);
5681 	memcg_check_events(memcg, page);
5682 }
5683 
5684 /**
5685  * mem_cgroup_uncharge_swap - uncharge a swap entry
5686  * @entry: swap entry to uncharge
5687  *
5688  * Drop the memsw charge associated with @entry.
5689  */
5690 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5691 {
5692 	struct mem_cgroup *memcg;
5693 	unsigned short id;
5694 
5695 	if (!do_swap_account)
5696 		return;
5697 
5698 	id = swap_cgroup_record(entry, 0);
5699 	rcu_read_lock();
5700 	memcg = mem_cgroup_from_id(id);
5701 	if (memcg) {
5702 		if (!mem_cgroup_is_root(memcg))
5703 			page_counter_uncharge(&memcg->memsw, 1);
5704 		mem_cgroup_swap_statistics(memcg, false);
5705 		css_put(&memcg->css);
5706 	}
5707 	rcu_read_unlock();
5708 }
5709 
5710 /* for remember boot option*/
5711 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5712 static int really_do_swap_account __initdata = 1;
5713 #else
5714 static int really_do_swap_account __initdata;
5715 #endif
5716 
5717 static int __init enable_swap_account(char *s)
5718 {
5719 	if (!strcmp(s, "1"))
5720 		really_do_swap_account = 1;
5721 	else if (!strcmp(s, "0"))
5722 		really_do_swap_account = 0;
5723 	return 1;
5724 }
5725 __setup("swapaccount=", enable_swap_account);
5726 
5727 static struct cftype memsw_cgroup_files[] = {
5728 	{
5729 		.name = "memsw.usage_in_bytes",
5730 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5731 		.read_u64 = mem_cgroup_read_u64,
5732 	},
5733 	{
5734 		.name = "memsw.max_usage_in_bytes",
5735 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5736 		.write = mem_cgroup_reset,
5737 		.read_u64 = mem_cgroup_read_u64,
5738 	},
5739 	{
5740 		.name = "memsw.limit_in_bytes",
5741 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5742 		.write = mem_cgroup_write,
5743 		.read_u64 = mem_cgroup_read_u64,
5744 	},
5745 	{
5746 		.name = "memsw.failcnt",
5747 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5748 		.write = mem_cgroup_reset,
5749 		.read_u64 = mem_cgroup_read_u64,
5750 	},
5751 	{ },	/* terminate */
5752 };
5753 
5754 static int __init mem_cgroup_swap_init(void)
5755 {
5756 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5757 		do_swap_account = 1;
5758 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5759 						  memsw_cgroup_files));
5760 	}
5761 	return 0;
5762 }
5763 subsys_initcall(mem_cgroup_swap_init);
5764 
5765 #endif /* CONFIG_MEMCG_SWAP */
5766