xref: /openbmc/linux/mm/memcontrol.c (revision a234ca0f)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65 #else
66 #define do_swap_account		(0)
67 #endif
68 
69 /*
70  * Per memcg event counter is incremented at every pagein/pageout. This counter
71  * is used for trigger some periodic events. This is straightforward and better
72  * than using jiffies etc. to handle periodic memcg event.
73  *
74  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75  */
76 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78 
79 /*
80  * Statistics for memory cgroup.
81  */
82 enum mem_cgroup_stat_index {
83 	/*
84 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 	 */
86 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
87 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
88 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
90 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
91 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92 	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
93 
94 	MEM_CGROUP_STAT_NSTATS,
95 };
96 
97 struct mem_cgroup_stat_cpu {
98 	s64 count[MEM_CGROUP_STAT_NSTATS];
99 };
100 
101 /*
102  * per-zone information in memory controller.
103  */
104 struct mem_cgroup_per_zone {
105 	/*
106 	 * spin_lock to protect the per cgroup LRU
107 	 */
108 	struct list_head	lists[NR_LRU_LISTS];
109 	unsigned long		count[NR_LRU_LISTS];
110 
111 	struct zone_reclaim_stat reclaim_stat;
112 	struct rb_node		tree_node;	/* RB tree node */
113 	unsigned long long	usage_in_excess;/* Set to the value by which */
114 						/* the soft limit is exceeded*/
115 	bool			on_tree;
116 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
117 						/* use container_of	   */
118 };
119 /* Macro for accessing counter */
120 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
121 
122 struct mem_cgroup_per_node {
123 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
124 };
125 
126 struct mem_cgroup_lru_info {
127 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
128 };
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 struct mem_cgroup_threshold {
151 	struct eventfd_ctx *eventfd;
152 	u64 threshold;
153 };
154 
155 /* For threshold */
156 struct mem_cgroup_threshold_ary {
157 	/* An array index points to threshold just below usage. */
158 	int current_threshold;
159 	/* Size of entries[] */
160 	unsigned int size;
161 	/* Array of thresholds */
162 	struct mem_cgroup_threshold entries[0];
163 };
164 
165 struct mem_cgroup_thresholds {
166 	/* Primary thresholds array */
167 	struct mem_cgroup_threshold_ary *primary;
168 	/*
169 	 * Spare threshold array.
170 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 	 * It must be able to store at least primary->size - 1 entries.
172 	 */
173 	struct mem_cgroup_threshold_ary *spare;
174 };
175 
176 /* for OOM */
177 struct mem_cgroup_eventfd_list {
178 	struct list_head list;
179 	struct eventfd_ctx *eventfd;
180 };
181 
182 static void mem_cgroup_threshold(struct mem_cgroup *mem);
183 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
184 
185 /*
186  * The memory controller data structure. The memory controller controls both
187  * page cache and RSS per cgroup. We would eventually like to provide
188  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
189  * to help the administrator determine what knobs to tune.
190  *
191  * TODO: Add a water mark for the memory controller. Reclaim will begin when
192  * we hit the water mark. May be even add a low water mark, such that
193  * no reclaim occurs from a cgroup at it's low water mark, this is
194  * a feature that will be implemented much later in the future.
195  */
196 struct mem_cgroup {
197 	struct cgroup_subsys_state css;
198 	/*
199 	 * the counter to account for memory usage
200 	 */
201 	struct res_counter res;
202 	/*
203 	 * the counter to account for mem+swap usage.
204 	 */
205 	struct res_counter memsw;
206 	/*
207 	 * Per cgroup active and inactive list, similar to the
208 	 * per zone LRU lists.
209 	 */
210 	struct mem_cgroup_lru_info info;
211 
212 	/*
213 	  protect against reclaim related member.
214 	*/
215 	spinlock_t reclaim_param_lock;
216 
217 	/*
218 	 * While reclaiming in a hierarchy, we cache the last child we
219 	 * reclaimed from.
220 	 */
221 	int last_scanned_child;
222 	/*
223 	 * Should the accounting and control be hierarchical, per subtree?
224 	 */
225 	bool use_hierarchy;
226 	atomic_t	oom_lock;
227 	atomic_t	refcnt;
228 
229 	unsigned int	swappiness;
230 	/* OOM-Killer disable */
231 	int		oom_kill_disable;
232 
233 	/* set when res.limit == memsw.limit */
234 	bool		memsw_is_minimum;
235 
236 	/* protect arrays of thresholds */
237 	struct mutex thresholds_lock;
238 
239 	/* thresholds for memory usage. RCU-protected */
240 	struct mem_cgroup_thresholds thresholds;
241 
242 	/* thresholds for mem+swap usage. RCU-protected */
243 	struct mem_cgroup_thresholds memsw_thresholds;
244 
245 	/* For oom notifier event fd */
246 	struct list_head oom_notify;
247 
248 	/*
249 	 * Should we move charges of a task when a task is moved into this
250 	 * mem_cgroup ? And what type of charges should we move ?
251 	 */
252 	unsigned long 	move_charge_at_immigrate;
253 	/*
254 	 * percpu counter.
255 	 */
256 	struct mem_cgroup_stat_cpu *stat;
257 };
258 
259 /* Stuffs for move charges at task migration. */
260 /*
261  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
262  * left-shifted bitmap of these types.
263  */
264 enum move_type {
265 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
266 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
267 	NR_MOVE_TYPE,
268 };
269 
270 /* "mc" and its members are protected by cgroup_mutex */
271 static struct move_charge_struct {
272 	spinlock_t	  lock; /* for from, to, moving_task */
273 	struct mem_cgroup *from;
274 	struct mem_cgroup *to;
275 	unsigned long precharge;
276 	unsigned long moved_charge;
277 	unsigned long moved_swap;
278 	struct task_struct *moving_task;	/* a task moving charges */
279 	wait_queue_head_t waitq;		/* a waitq for other context */
280 } mc = {
281 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
282 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
283 };
284 
285 static bool move_anon(void)
286 {
287 	return test_bit(MOVE_CHARGE_TYPE_ANON,
288 					&mc.to->move_charge_at_immigrate);
289 }
290 
291 static bool move_file(void)
292 {
293 	return test_bit(MOVE_CHARGE_TYPE_FILE,
294 					&mc.to->move_charge_at_immigrate);
295 }
296 
297 /*
298  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
299  * limit reclaim to prevent infinite loops, if they ever occur.
300  */
301 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
302 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
303 
304 enum charge_type {
305 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
306 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
307 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
308 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
309 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
310 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
311 	NR_CHARGE_TYPE,
312 };
313 
314 /* only for here (for easy reading.) */
315 #define PCGF_CACHE	(1UL << PCG_CACHE)
316 #define PCGF_USED	(1UL << PCG_USED)
317 #define PCGF_LOCK	(1UL << PCG_LOCK)
318 /* Not used, but added here for completeness */
319 #define PCGF_ACCT	(1UL << PCG_ACCT)
320 
321 /* for encoding cft->private value on file */
322 #define _MEM			(0)
323 #define _MEMSWAP		(1)
324 #define _OOM_TYPE		(2)
325 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
326 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
327 #define MEMFILE_ATTR(val)	((val) & 0xffff)
328 /* Used for OOM nofiier */
329 #define OOM_CONTROL		(0)
330 
331 /*
332  * Reclaim flags for mem_cgroup_hierarchical_reclaim
333  */
334 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
335 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
336 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
337 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
338 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
339 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
340 
341 static void mem_cgroup_get(struct mem_cgroup *mem);
342 static void mem_cgroup_put(struct mem_cgroup *mem);
343 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
344 static void drain_all_stock_async(void);
345 
346 static struct mem_cgroup_per_zone *
347 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
348 {
349 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
350 }
351 
352 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
353 {
354 	return &mem->css;
355 }
356 
357 static struct mem_cgroup_per_zone *
358 page_cgroup_zoneinfo(struct page_cgroup *pc)
359 {
360 	struct mem_cgroup *mem = pc->mem_cgroup;
361 	int nid = page_cgroup_nid(pc);
362 	int zid = page_cgroup_zid(pc);
363 
364 	if (!mem)
365 		return NULL;
366 
367 	return mem_cgroup_zoneinfo(mem, nid, zid);
368 }
369 
370 static struct mem_cgroup_tree_per_zone *
371 soft_limit_tree_node_zone(int nid, int zid)
372 {
373 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
374 }
375 
376 static struct mem_cgroup_tree_per_zone *
377 soft_limit_tree_from_page(struct page *page)
378 {
379 	int nid = page_to_nid(page);
380 	int zid = page_zonenum(page);
381 
382 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383 }
384 
385 static void
386 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
387 				struct mem_cgroup_per_zone *mz,
388 				struct mem_cgroup_tree_per_zone *mctz,
389 				unsigned long long new_usage_in_excess)
390 {
391 	struct rb_node **p = &mctz->rb_root.rb_node;
392 	struct rb_node *parent = NULL;
393 	struct mem_cgroup_per_zone *mz_node;
394 
395 	if (mz->on_tree)
396 		return;
397 
398 	mz->usage_in_excess = new_usage_in_excess;
399 	if (!mz->usage_in_excess)
400 		return;
401 	while (*p) {
402 		parent = *p;
403 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
404 					tree_node);
405 		if (mz->usage_in_excess < mz_node->usage_in_excess)
406 			p = &(*p)->rb_left;
407 		/*
408 		 * We can't avoid mem cgroups that are over their soft
409 		 * limit by the same amount
410 		 */
411 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 			p = &(*p)->rb_right;
413 	}
414 	rb_link_node(&mz->tree_node, parent, p);
415 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
416 	mz->on_tree = true;
417 }
418 
419 static void
420 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
421 				struct mem_cgroup_per_zone *mz,
422 				struct mem_cgroup_tree_per_zone *mctz)
423 {
424 	if (!mz->on_tree)
425 		return;
426 	rb_erase(&mz->tree_node, &mctz->rb_root);
427 	mz->on_tree = false;
428 }
429 
430 static void
431 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
432 				struct mem_cgroup_per_zone *mz,
433 				struct mem_cgroup_tree_per_zone *mctz)
434 {
435 	spin_lock(&mctz->lock);
436 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
437 	spin_unlock(&mctz->lock);
438 }
439 
440 
441 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
442 {
443 	unsigned long long excess;
444 	struct mem_cgroup_per_zone *mz;
445 	struct mem_cgroup_tree_per_zone *mctz;
446 	int nid = page_to_nid(page);
447 	int zid = page_zonenum(page);
448 	mctz = soft_limit_tree_from_page(page);
449 
450 	/*
451 	 * Necessary to update all ancestors when hierarchy is used.
452 	 * because their event counter is not touched.
453 	 */
454 	for (; mem; mem = parent_mem_cgroup(mem)) {
455 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
456 		excess = res_counter_soft_limit_excess(&mem->res);
457 		/*
458 		 * We have to update the tree if mz is on RB-tree or
459 		 * mem is over its softlimit.
460 		 */
461 		if (excess || mz->on_tree) {
462 			spin_lock(&mctz->lock);
463 			/* if on-tree, remove it */
464 			if (mz->on_tree)
465 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
466 			/*
467 			 * Insert again. mz->usage_in_excess will be updated.
468 			 * If excess is 0, no tree ops.
469 			 */
470 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
471 			spin_unlock(&mctz->lock);
472 		}
473 	}
474 }
475 
476 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
477 {
478 	int node, zone;
479 	struct mem_cgroup_per_zone *mz;
480 	struct mem_cgroup_tree_per_zone *mctz;
481 
482 	for_each_node_state(node, N_POSSIBLE) {
483 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
484 			mz = mem_cgroup_zoneinfo(mem, node, zone);
485 			mctz = soft_limit_tree_node_zone(node, zone);
486 			mem_cgroup_remove_exceeded(mem, mz, mctz);
487 		}
488 	}
489 }
490 
491 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
492 {
493 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
494 }
495 
496 static struct mem_cgroup_per_zone *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
498 {
499 	struct rb_node *rightmost = NULL;
500 	struct mem_cgroup_per_zone *mz;
501 
502 retry:
503 	mz = NULL;
504 	rightmost = rb_last(&mctz->rb_root);
505 	if (!rightmost)
506 		goto done;		/* Nothing to reclaim from */
507 
508 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
509 	/*
510 	 * Remove the node now but someone else can add it back,
511 	 * we will to add it back at the end of reclaim to its correct
512 	 * position in the tree.
513 	 */
514 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516 		!css_tryget(&mz->mem->css))
517 		goto retry;
518 done:
519 	return mz;
520 }
521 
522 static struct mem_cgroup_per_zone *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525 	struct mem_cgroup_per_zone *mz;
526 
527 	spin_lock(&mctz->lock);
528 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 	spin_unlock(&mctz->lock);
530 	return mz;
531 }
532 
533 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
534 		enum mem_cgroup_stat_index idx)
535 {
536 	int cpu;
537 	s64 val = 0;
538 
539 	for_each_possible_cpu(cpu)
540 		val += per_cpu(mem->stat->count[idx], cpu);
541 	return val;
542 }
543 
544 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
545 {
546 	s64 ret;
547 
548 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
549 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
550 	return ret;
551 }
552 
553 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
554 					 bool charge)
555 {
556 	int val = (charge) ? 1 : -1;
557 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
558 }
559 
560 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
561 					 struct page_cgroup *pc,
562 					 bool charge)
563 {
564 	int val = (charge) ? 1 : -1;
565 
566 	preempt_disable();
567 
568 	if (PageCgroupCache(pc))
569 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
570 	else
571 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
572 
573 	if (charge)
574 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
575 	else
576 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
577 	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
578 
579 	preempt_enable();
580 }
581 
582 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
583 					enum lru_list idx)
584 {
585 	int nid, zid;
586 	struct mem_cgroup_per_zone *mz;
587 	u64 total = 0;
588 
589 	for_each_online_node(nid)
590 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
591 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
592 			total += MEM_CGROUP_ZSTAT(mz, idx);
593 		}
594 	return total;
595 }
596 
597 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
598 {
599 	s64 val;
600 
601 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
602 
603 	return !(val & ((1 << event_mask_shift) - 1));
604 }
605 
606 /*
607  * Check events in order.
608  *
609  */
610 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
611 {
612 	/* threshold event is triggered in finer grain than soft limit */
613 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
614 		mem_cgroup_threshold(mem);
615 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
616 			mem_cgroup_update_tree(mem, page);
617 	}
618 }
619 
620 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
621 {
622 	return container_of(cgroup_subsys_state(cont,
623 				mem_cgroup_subsys_id), struct mem_cgroup,
624 				css);
625 }
626 
627 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
628 {
629 	/*
630 	 * mm_update_next_owner() may clear mm->owner to NULL
631 	 * if it races with swapoff, page migration, etc.
632 	 * So this can be called with p == NULL.
633 	 */
634 	if (unlikely(!p))
635 		return NULL;
636 
637 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
638 				struct mem_cgroup, css);
639 }
640 
641 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
642 {
643 	struct mem_cgroup *mem = NULL;
644 
645 	if (!mm)
646 		return NULL;
647 	/*
648 	 * Because we have no locks, mm->owner's may be being moved to other
649 	 * cgroup. We use css_tryget() here even if this looks
650 	 * pessimistic (rather than adding locks here).
651 	 */
652 	rcu_read_lock();
653 	do {
654 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
655 		if (unlikely(!mem))
656 			break;
657 	} while (!css_tryget(&mem->css));
658 	rcu_read_unlock();
659 	return mem;
660 }
661 
662 /*
663  * Call callback function against all cgroup under hierarchy tree.
664  */
665 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
666 			  int (*func)(struct mem_cgroup *, void *))
667 {
668 	int found, ret, nextid;
669 	struct cgroup_subsys_state *css;
670 	struct mem_cgroup *mem;
671 
672 	if (!root->use_hierarchy)
673 		return (*func)(root, data);
674 
675 	nextid = 1;
676 	do {
677 		ret = 0;
678 		mem = NULL;
679 
680 		rcu_read_lock();
681 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
682 				   &found);
683 		if (css && css_tryget(css))
684 			mem = container_of(css, struct mem_cgroup, css);
685 		rcu_read_unlock();
686 
687 		if (mem) {
688 			ret = (*func)(mem, data);
689 			css_put(&mem->css);
690 		}
691 		nextid = found + 1;
692 	} while (!ret && css);
693 
694 	return ret;
695 }
696 
697 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
698 {
699 	return (mem == root_mem_cgroup);
700 }
701 
702 /*
703  * Following LRU functions are allowed to be used without PCG_LOCK.
704  * Operations are called by routine of global LRU independently from memcg.
705  * What we have to take care of here is validness of pc->mem_cgroup.
706  *
707  * Changes to pc->mem_cgroup happens when
708  * 1. charge
709  * 2. moving account
710  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
711  * It is added to LRU before charge.
712  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
713  * When moving account, the page is not on LRU. It's isolated.
714  */
715 
716 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
717 {
718 	struct page_cgroup *pc;
719 	struct mem_cgroup_per_zone *mz;
720 
721 	if (mem_cgroup_disabled())
722 		return;
723 	pc = lookup_page_cgroup(page);
724 	/* can happen while we handle swapcache. */
725 	if (!TestClearPageCgroupAcctLRU(pc))
726 		return;
727 	VM_BUG_ON(!pc->mem_cgroup);
728 	/*
729 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
730 	 * removed from global LRU.
731 	 */
732 	mz = page_cgroup_zoneinfo(pc);
733 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
734 	if (mem_cgroup_is_root(pc->mem_cgroup))
735 		return;
736 	VM_BUG_ON(list_empty(&pc->lru));
737 	list_del_init(&pc->lru);
738 	return;
739 }
740 
741 void mem_cgroup_del_lru(struct page *page)
742 {
743 	mem_cgroup_del_lru_list(page, page_lru(page));
744 }
745 
746 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
747 {
748 	struct mem_cgroup_per_zone *mz;
749 	struct page_cgroup *pc;
750 
751 	if (mem_cgroup_disabled())
752 		return;
753 
754 	pc = lookup_page_cgroup(page);
755 	/*
756 	 * Used bit is set without atomic ops but after smp_wmb().
757 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
758 	 */
759 	smp_rmb();
760 	/* unused or root page is not rotated. */
761 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
762 		return;
763 	mz = page_cgroup_zoneinfo(pc);
764 	list_move(&pc->lru, &mz->lists[lru]);
765 }
766 
767 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
768 {
769 	struct page_cgroup *pc;
770 	struct mem_cgroup_per_zone *mz;
771 
772 	if (mem_cgroup_disabled())
773 		return;
774 	pc = lookup_page_cgroup(page);
775 	VM_BUG_ON(PageCgroupAcctLRU(pc));
776 	/*
777 	 * Used bit is set without atomic ops but after smp_wmb().
778 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
779 	 */
780 	smp_rmb();
781 	if (!PageCgroupUsed(pc))
782 		return;
783 
784 	mz = page_cgroup_zoneinfo(pc);
785 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
786 	SetPageCgroupAcctLRU(pc);
787 	if (mem_cgroup_is_root(pc->mem_cgroup))
788 		return;
789 	list_add(&pc->lru, &mz->lists[lru]);
790 }
791 
792 /*
793  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
794  * lru because the page may.be reused after it's fully uncharged (because of
795  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
796  * it again. This function is only used to charge SwapCache. It's done under
797  * lock_page and expected that zone->lru_lock is never held.
798  */
799 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
800 {
801 	unsigned long flags;
802 	struct zone *zone = page_zone(page);
803 	struct page_cgroup *pc = lookup_page_cgroup(page);
804 
805 	spin_lock_irqsave(&zone->lru_lock, flags);
806 	/*
807 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
808 	 * is guarded by lock_page() because the page is SwapCache.
809 	 */
810 	if (!PageCgroupUsed(pc))
811 		mem_cgroup_del_lru_list(page, page_lru(page));
812 	spin_unlock_irqrestore(&zone->lru_lock, flags);
813 }
814 
815 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
816 {
817 	unsigned long flags;
818 	struct zone *zone = page_zone(page);
819 	struct page_cgroup *pc = lookup_page_cgroup(page);
820 
821 	spin_lock_irqsave(&zone->lru_lock, flags);
822 	/* link when the page is linked to LRU but page_cgroup isn't */
823 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
824 		mem_cgroup_add_lru_list(page, page_lru(page));
825 	spin_unlock_irqrestore(&zone->lru_lock, flags);
826 }
827 
828 
829 void mem_cgroup_move_lists(struct page *page,
830 			   enum lru_list from, enum lru_list to)
831 {
832 	if (mem_cgroup_disabled())
833 		return;
834 	mem_cgroup_del_lru_list(page, from);
835 	mem_cgroup_add_lru_list(page, to);
836 }
837 
838 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
839 {
840 	int ret;
841 	struct mem_cgroup *curr = NULL;
842 	struct task_struct *p;
843 
844 	p = find_lock_task_mm(task);
845 	if (!p)
846 		return 0;
847 	curr = try_get_mem_cgroup_from_mm(p->mm);
848 	task_unlock(p);
849 	if (!curr)
850 		return 0;
851 	/*
852 	 * We should check use_hierarchy of "mem" not "curr". Because checking
853 	 * use_hierarchy of "curr" here make this function true if hierarchy is
854 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
855 	 * hierarchy(even if use_hierarchy is disabled in "mem").
856 	 */
857 	if (mem->use_hierarchy)
858 		ret = css_is_ancestor(&curr->css, &mem->css);
859 	else
860 		ret = (curr == mem);
861 	css_put(&curr->css);
862 	return ret;
863 }
864 
865 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
866 {
867 	unsigned long active;
868 	unsigned long inactive;
869 	unsigned long gb;
870 	unsigned long inactive_ratio;
871 
872 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
873 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
874 
875 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
876 	if (gb)
877 		inactive_ratio = int_sqrt(10 * gb);
878 	else
879 		inactive_ratio = 1;
880 
881 	if (present_pages) {
882 		present_pages[0] = inactive;
883 		present_pages[1] = active;
884 	}
885 
886 	return inactive_ratio;
887 }
888 
889 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
890 {
891 	unsigned long active;
892 	unsigned long inactive;
893 	unsigned long present_pages[2];
894 	unsigned long inactive_ratio;
895 
896 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
897 
898 	inactive = present_pages[0];
899 	active = present_pages[1];
900 
901 	if (inactive * inactive_ratio < active)
902 		return 1;
903 
904 	return 0;
905 }
906 
907 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
908 {
909 	unsigned long active;
910 	unsigned long inactive;
911 
912 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
913 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
914 
915 	return (active > inactive);
916 }
917 
918 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
919 				       struct zone *zone,
920 				       enum lru_list lru)
921 {
922 	int nid = zone_to_nid(zone);
923 	int zid = zone_idx(zone);
924 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
925 
926 	return MEM_CGROUP_ZSTAT(mz, lru);
927 }
928 
929 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
930 						      struct zone *zone)
931 {
932 	int nid = zone_to_nid(zone);
933 	int zid = zone_idx(zone);
934 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
935 
936 	return &mz->reclaim_stat;
937 }
938 
939 struct zone_reclaim_stat *
940 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
941 {
942 	struct page_cgroup *pc;
943 	struct mem_cgroup_per_zone *mz;
944 
945 	if (mem_cgroup_disabled())
946 		return NULL;
947 
948 	pc = lookup_page_cgroup(page);
949 	/*
950 	 * Used bit is set without atomic ops but after smp_wmb().
951 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
952 	 */
953 	smp_rmb();
954 	if (!PageCgroupUsed(pc))
955 		return NULL;
956 
957 	mz = page_cgroup_zoneinfo(pc);
958 	if (!mz)
959 		return NULL;
960 
961 	return &mz->reclaim_stat;
962 }
963 
964 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
965 					struct list_head *dst,
966 					unsigned long *scanned, int order,
967 					int mode, struct zone *z,
968 					struct mem_cgroup *mem_cont,
969 					int active, int file)
970 {
971 	unsigned long nr_taken = 0;
972 	struct page *page;
973 	unsigned long scan;
974 	LIST_HEAD(pc_list);
975 	struct list_head *src;
976 	struct page_cgroup *pc, *tmp;
977 	int nid = zone_to_nid(z);
978 	int zid = zone_idx(z);
979 	struct mem_cgroup_per_zone *mz;
980 	int lru = LRU_FILE * file + active;
981 	int ret;
982 
983 	BUG_ON(!mem_cont);
984 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
985 	src = &mz->lists[lru];
986 
987 	scan = 0;
988 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
989 		if (scan >= nr_to_scan)
990 			break;
991 
992 		page = pc->page;
993 		if (unlikely(!PageCgroupUsed(pc)))
994 			continue;
995 		if (unlikely(!PageLRU(page)))
996 			continue;
997 
998 		scan++;
999 		ret = __isolate_lru_page(page, mode, file);
1000 		switch (ret) {
1001 		case 0:
1002 			list_move(&page->lru, dst);
1003 			mem_cgroup_del_lru(page);
1004 			nr_taken++;
1005 			break;
1006 		case -EBUSY:
1007 			/* we don't affect global LRU but rotate in our LRU */
1008 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1009 			break;
1010 		default:
1011 			break;
1012 		}
1013 	}
1014 
1015 	*scanned = scan;
1016 
1017 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1018 				      0, 0, 0, mode);
1019 
1020 	return nr_taken;
1021 }
1022 
1023 #define mem_cgroup_from_res_counter(counter, member)	\
1024 	container_of(counter, struct mem_cgroup, member)
1025 
1026 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1027 {
1028 	if (do_swap_account) {
1029 		if (res_counter_check_under_limit(&mem->res) &&
1030 			res_counter_check_under_limit(&mem->memsw))
1031 			return true;
1032 	} else
1033 		if (res_counter_check_under_limit(&mem->res))
1034 			return true;
1035 	return false;
1036 }
1037 
1038 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1039 {
1040 	struct cgroup *cgrp = memcg->css.cgroup;
1041 	unsigned int swappiness;
1042 
1043 	/* root ? */
1044 	if (cgrp->parent == NULL)
1045 		return vm_swappiness;
1046 
1047 	spin_lock(&memcg->reclaim_param_lock);
1048 	swappiness = memcg->swappiness;
1049 	spin_unlock(&memcg->reclaim_param_lock);
1050 
1051 	return swappiness;
1052 }
1053 
1054 /* A routine for testing mem is not under move_account */
1055 
1056 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1057 {
1058 	struct mem_cgroup *from;
1059 	struct mem_cgroup *to;
1060 	bool ret = false;
1061 	/*
1062 	 * Unlike task_move routines, we access mc.to, mc.from not under
1063 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1064 	 */
1065 	spin_lock(&mc.lock);
1066 	from = mc.from;
1067 	to = mc.to;
1068 	if (!from)
1069 		goto unlock;
1070 	if (from == mem || to == mem
1071 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1072 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1073 		ret = true;
1074 unlock:
1075 	spin_unlock(&mc.lock);
1076 	return ret;
1077 }
1078 
1079 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1080 {
1081 	if (mc.moving_task && current != mc.moving_task) {
1082 		if (mem_cgroup_under_move(mem)) {
1083 			DEFINE_WAIT(wait);
1084 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1085 			/* moving charge context might have finished. */
1086 			if (mc.moving_task)
1087 				schedule();
1088 			finish_wait(&mc.waitq, &wait);
1089 			return true;
1090 		}
1091 	}
1092 	return false;
1093 }
1094 
1095 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1096 {
1097 	int *val = data;
1098 	(*val)++;
1099 	return 0;
1100 }
1101 
1102 /**
1103  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1104  * @memcg: The memory cgroup that went over limit
1105  * @p: Task that is going to be killed
1106  *
1107  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1108  * enabled
1109  */
1110 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1111 {
1112 	struct cgroup *task_cgrp;
1113 	struct cgroup *mem_cgrp;
1114 	/*
1115 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1116 	 * on the assumption that OOM is serialized for memory controller.
1117 	 * If this assumption is broken, revisit this code.
1118 	 */
1119 	static char memcg_name[PATH_MAX];
1120 	int ret;
1121 
1122 	if (!memcg || !p)
1123 		return;
1124 
1125 
1126 	rcu_read_lock();
1127 
1128 	mem_cgrp = memcg->css.cgroup;
1129 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1130 
1131 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1132 	if (ret < 0) {
1133 		/*
1134 		 * Unfortunately, we are unable to convert to a useful name
1135 		 * But we'll still print out the usage information
1136 		 */
1137 		rcu_read_unlock();
1138 		goto done;
1139 	}
1140 	rcu_read_unlock();
1141 
1142 	printk(KERN_INFO "Task in %s killed", memcg_name);
1143 
1144 	rcu_read_lock();
1145 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1146 	if (ret < 0) {
1147 		rcu_read_unlock();
1148 		goto done;
1149 	}
1150 	rcu_read_unlock();
1151 
1152 	/*
1153 	 * Continues from above, so we don't need an KERN_ level
1154 	 */
1155 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1156 done:
1157 
1158 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1159 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1160 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1161 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1162 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1163 		"failcnt %llu\n",
1164 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1165 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1166 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1167 }
1168 
1169 /*
1170  * This function returns the number of memcg under hierarchy tree. Returns
1171  * 1(self count) if no children.
1172  */
1173 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1174 {
1175 	int num = 0;
1176  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1177 	return num;
1178 }
1179 
1180 /*
1181  * Return the memory (and swap, if configured) limit for a memcg.
1182  */
1183 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1184 {
1185 	u64 limit;
1186 	u64 memsw;
1187 
1188 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1189 			total_swap_pages;
1190 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1191 	/*
1192 	 * If memsw is finite and limits the amount of swap space available
1193 	 * to this memcg, return that limit.
1194 	 */
1195 	return min(limit, memsw);
1196 }
1197 
1198 /*
1199  * Visit the first child (need not be the first child as per the ordering
1200  * of the cgroup list, since we track last_scanned_child) of @mem and use
1201  * that to reclaim free pages from.
1202  */
1203 static struct mem_cgroup *
1204 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1205 {
1206 	struct mem_cgroup *ret = NULL;
1207 	struct cgroup_subsys_state *css;
1208 	int nextid, found;
1209 
1210 	if (!root_mem->use_hierarchy) {
1211 		css_get(&root_mem->css);
1212 		ret = root_mem;
1213 	}
1214 
1215 	while (!ret) {
1216 		rcu_read_lock();
1217 		nextid = root_mem->last_scanned_child + 1;
1218 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1219 				   &found);
1220 		if (css && css_tryget(css))
1221 			ret = container_of(css, struct mem_cgroup, css);
1222 
1223 		rcu_read_unlock();
1224 		/* Updates scanning parameter */
1225 		spin_lock(&root_mem->reclaim_param_lock);
1226 		if (!css) {
1227 			/* this means start scan from ID:1 */
1228 			root_mem->last_scanned_child = 0;
1229 		} else
1230 			root_mem->last_scanned_child = found;
1231 		spin_unlock(&root_mem->reclaim_param_lock);
1232 	}
1233 
1234 	return ret;
1235 }
1236 
1237 /*
1238  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1239  * we reclaimed from, so that we don't end up penalizing one child extensively
1240  * based on its position in the children list.
1241  *
1242  * root_mem is the original ancestor that we've been reclaim from.
1243  *
1244  * We give up and return to the caller when we visit root_mem twice.
1245  * (other groups can be removed while we're walking....)
1246  *
1247  * If shrink==true, for avoiding to free too much, this returns immedieately.
1248  */
1249 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1250 						struct zone *zone,
1251 						gfp_t gfp_mask,
1252 						unsigned long reclaim_options)
1253 {
1254 	struct mem_cgroup *victim;
1255 	int ret, total = 0;
1256 	int loop = 0;
1257 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1258 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1259 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1260 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1261 
1262 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1263 	if (root_mem->memsw_is_minimum)
1264 		noswap = true;
1265 
1266 	while (1) {
1267 		victim = mem_cgroup_select_victim(root_mem);
1268 		if (victim == root_mem) {
1269 			loop++;
1270 			if (loop >= 1)
1271 				drain_all_stock_async();
1272 			if (loop >= 2) {
1273 				/*
1274 				 * If we have not been able to reclaim
1275 				 * anything, it might because there are
1276 				 * no reclaimable pages under this hierarchy
1277 				 */
1278 				if (!check_soft || !total) {
1279 					css_put(&victim->css);
1280 					break;
1281 				}
1282 				/*
1283 				 * We want to do more targetted reclaim.
1284 				 * excess >> 2 is not to excessive so as to
1285 				 * reclaim too much, nor too less that we keep
1286 				 * coming back to reclaim from this cgroup
1287 				 */
1288 				if (total >= (excess >> 2) ||
1289 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1290 					css_put(&victim->css);
1291 					break;
1292 				}
1293 			}
1294 		}
1295 		if (!mem_cgroup_local_usage(victim)) {
1296 			/* this cgroup's local usage == 0 */
1297 			css_put(&victim->css);
1298 			continue;
1299 		}
1300 		/* we use swappiness of local cgroup */
1301 		if (check_soft)
1302 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1303 				noswap, get_swappiness(victim), zone);
1304 		else
1305 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1306 						noswap, get_swappiness(victim));
1307 		css_put(&victim->css);
1308 		/*
1309 		 * At shrinking usage, we can't check we should stop here or
1310 		 * reclaim more. It's depends on callers. last_scanned_child
1311 		 * will work enough for keeping fairness under tree.
1312 		 */
1313 		if (shrink)
1314 			return ret;
1315 		total += ret;
1316 		if (check_soft) {
1317 			if (res_counter_check_under_soft_limit(&root_mem->res))
1318 				return total;
1319 		} else if (mem_cgroup_check_under_limit(root_mem))
1320 			return 1 + total;
1321 	}
1322 	return total;
1323 }
1324 
1325 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1326 {
1327 	int *val = (int *)data;
1328 	int x;
1329 	/*
1330 	 * Logically, we can stop scanning immediately when we find
1331 	 * a memcg is already locked. But condidering unlock ops and
1332 	 * creation/removal of memcg, scan-all is simple operation.
1333 	 */
1334 	x = atomic_inc_return(&mem->oom_lock);
1335 	*val = max(x, *val);
1336 	return 0;
1337 }
1338 /*
1339  * Check OOM-Killer is already running under our hierarchy.
1340  * If someone is running, return false.
1341  */
1342 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1343 {
1344 	int lock_count = 0;
1345 
1346 	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1347 
1348 	if (lock_count == 1)
1349 		return true;
1350 	return false;
1351 }
1352 
1353 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1354 {
1355 	/*
1356 	 * When a new child is created while the hierarchy is under oom,
1357 	 * mem_cgroup_oom_lock() may not be called. We have to use
1358 	 * atomic_add_unless() here.
1359 	 */
1360 	atomic_add_unless(&mem->oom_lock, -1, 0);
1361 	return 0;
1362 }
1363 
1364 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1365 {
1366 	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
1367 }
1368 
1369 static DEFINE_MUTEX(memcg_oom_mutex);
1370 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1371 
1372 struct oom_wait_info {
1373 	struct mem_cgroup *mem;
1374 	wait_queue_t	wait;
1375 };
1376 
1377 static int memcg_oom_wake_function(wait_queue_t *wait,
1378 	unsigned mode, int sync, void *arg)
1379 {
1380 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1381 	struct oom_wait_info *oom_wait_info;
1382 
1383 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1384 
1385 	if (oom_wait_info->mem == wake_mem)
1386 		goto wakeup;
1387 	/* if no hierarchy, no match */
1388 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1389 		return 0;
1390 	/*
1391 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1392 	 * Then we can use css_is_ancestor without taking care of RCU.
1393 	 */
1394 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1395 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1396 		return 0;
1397 
1398 wakeup:
1399 	return autoremove_wake_function(wait, mode, sync, arg);
1400 }
1401 
1402 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1403 {
1404 	/* for filtering, pass "mem" as argument. */
1405 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1406 }
1407 
1408 static void memcg_oom_recover(struct mem_cgroup *mem)
1409 {
1410 	if (mem && atomic_read(&mem->oom_lock))
1411 		memcg_wakeup_oom(mem);
1412 }
1413 
1414 /*
1415  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1416  */
1417 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1418 {
1419 	struct oom_wait_info owait;
1420 	bool locked, need_to_kill;
1421 
1422 	owait.mem = mem;
1423 	owait.wait.flags = 0;
1424 	owait.wait.func = memcg_oom_wake_function;
1425 	owait.wait.private = current;
1426 	INIT_LIST_HEAD(&owait.wait.task_list);
1427 	need_to_kill = true;
1428 	/* At first, try to OOM lock hierarchy under mem.*/
1429 	mutex_lock(&memcg_oom_mutex);
1430 	locked = mem_cgroup_oom_lock(mem);
1431 	/*
1432 	 * Even if signal_pending(), we can't quit charge() loop without
1433 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1434 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1435 	 */
1436 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1437 	if (!locked || mem->oom_kill_disable)
1438 		need_to_kill = false;
1439 	if (locked)
1440 		mem_cgroup_oom_notify(mem);
1441 	mutex_unlock(&memcg_oom_mutex);
1442 
1443 	if (need_to_kill) {
1444 		finish_wait(&memcg_oom_waitq, &owait.wait);
1445 		mem_cgroup_out_of_memory(mem, mask);
1446 	} else {
1447 		schedule();
1448 		finish_wait(&memcg_oom_waitq, &owait.wait);
1449 	}
1450 	mutex_lock(&memcg_oom_mutex);
1451 	mem_cgroup_oom_unlock(mem);
1452 	memcg_wakeup_oom(mem);
1453 	mutex_unlock(&memcg_oom_mutex);
1454 
1455 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1456 		return false;
1457 	/* Give chance to dying process */
1458 	schedule_timeout(1);
1459 	return true;
1460 }
1461 
1462 /*
1463  * Currently used to update mapped file statistics, but the routine can be
1464  * generalized to update other statistics as well.
1465  */
1466 void mem_cgroup_update_file_mapped(struct page *page, int val)
1467 {
1468 	struct mem_cgroup *mem;
1469 	struct page_cgroup *pc;
1470 
1471 	pc = lookup_page_cgroup(page);
1472 	if (unlikely(!pc))
1473 		return;
1474 
1475 	lock_page_cgroup(pc);
1476 	mem = pc->mem_cgroup;
1477 	if (!mem || !PageCgroupUsed(pc))
1478 		goto done;
1479 
1480 	/*
1481 	 * Preemption is already disabled. We can use __this_cpu_xxx
1482 	 */
1483 	if (val > 0) {
1484 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1485 		SetPageCgroupFileMapped(pc);
1486 	} else {
1487 		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1488 		ClearPageCgroupFileMapped(pc);
1489 	}
1490 
1491 done:
1492 	unlock_page_cgroup(pc);
1493 }
1494 
1495 /*
1496  * size of first charge trial. "32" comes from vmscan.c's magic value.
1497  * TODO: maybe necessary to use big numbers in big irons.
1498  */
1499 #define CHARGE_SIZE	(32 * PAGE_SIZE)
1500 struct memcg_stock_pcp {
1501 	struct mem_cgroup *cached; /* this never be root cgroup */
1502 	int charge;
1503 	struct work_struct work;
1504 };
1505 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1506 static atomic_t memcg_drain_count;
1507 
1508 /*
1509  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1510  * from local stock and true is returned. If the stock is 0 or charges from a
1511  * cgroup which is not current target, returns false. This stock will be
1512  * refilled.
1513  */
1514 static bool consume_stock(struct mem_cgroup *mem)
1515 {
1516 	struct memcg_stock_pcp *stock;
1517 	bool ret = true;
1518 
1519 	stock = &get_cpu_var(memcg_stock);
1520 	if (mem == stock->cached && stock->charge)
1521 		stock->charge -= PAGE_SIZE;
1522 	else /* need to call res_counter_charge */
1523 		ret = false;
1524 	put_cpu_var(memcg_stock);
1525 	return ret;
1526 }
1527 
1528 /*
1529  * Returns stocks cached in percpu to res_counter and reset cached information.
1530  */
1531 static void drain_stock(struct memcg_stock_pcp *stock)
1532 {
1533 	struct mem_cgroup *old = stock->cached;
1534 
1535 	if (stock->charge) {
1536 		res_counter_uncharge(&old->res, stock->charge);
1537 		if (do_swap_account)
1538 			res_counter_uncharge(&old->memsw, stock->charge);
1539 	}
1540 	stock->cached = NULL;
1541 	stock->charge = 0;
1542 }
1543 
1544 /*
1545  * This must be called under preempt disabled or must be called by
1546  * a thread which is pinned to local cpu.
1547  */
1548 static void drain_local_stock(struct work_struct *dummy)
1549 {
1550 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1551 	drain_stock(stock);
1552 }
1553 
1554 /*
1555  * Cache charges(val) which is from res_counter, to local per_cpu area.
1556  * This will be consumed by consume_stock() function, later.
1557  */
1558 static void refill_stock(struct mem_cgroup *mem, int val)
1559 {
1560 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1561 
1562 	if (stock->cached != mem) { /* reset if necessary */
1563 		drain_stock(stock);
1564 		stock->cached = mem;
1565 	}
1566 	stock->charge += val;
1567 	put_cpu_var(memcg_stock);
1568 }
1569 
1570 /*
1571  * Tries to drain stocked charges in other cpus. This function is asynchronous
1572  * and just put a work per cpu for draining localy on each cpu. Caller can
1573  * expects some charges will be back to res_counter later but cannot wait for
1574  * it.
1575  */
1576 static void drain_all_stock_async(void)
1577 {
1578 	int cpu;
1579 	/* This function is for scheduling "drain" in asynchronous way.
1580 	 * The result of "drain" is not directly handled by callers. Then,
1581 	 * if someone is calling drain, we don't have to call drain more.
1582 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1583 	 * there is a race. We just do loose check here.
1584 	 */
1585 	if (atomic_read(&memcg_drain_count))
1586 		return;
1587 	/* Notify other cpus that system-wide "drain" is running */
1588 	atomic_inc(&memcg_drain_count);
1589 	get_online_cpus();
1590 	for_each_online_cpu(cpu) {
1591 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1592 		schedule_work_on(cpu, &stock->work);
1593 	}
1594  	put_online_cpus();
1595 	atomic_dec(&memcg_drain_count);
1596 	/* We don't wait for flush_work */
1597 }
1598 
1599 /* This is a synchronous drain interface. */
1600 static void drain_all_stock_sync(void)
1601 {
1602 	/* called when force_empty is called */
1603 	atomic_inc(&memcg_drain_count);
1604 	schedule_on_each_cpu(drain_local_stock);
1605 	atomic_dec(&memcg_drain_count);
1606 }
1607 
1608 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1609 					unsigned long action,
1610 					void *hcpu)
1611 {
1612 	int cpu = (unsigned long)hcpu;
1613 	struct memcg_stock_pcp *stock;
1614 
1615 	if (action != CPU_DEAD)
1616 		return NOTIFY_OK;
1617 	stock = &per_cpu(memcg_stock, cpu);
1618 	drain_stock(stock);
1619 	return NOTIFY_OK;
1620 }
1621 
1622 
1623 /* See __mem_cgroup_try_charge() for details */
1624 enum {
1625 	CHARGE_OK,		/* success */
1626 	CHARGE_RETRY,		/* need to retry but retry is not bad */
1627 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1628 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1629 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1630 };
1631 
1632 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1633 				int csize, bool oom_check)
1634 {
1635 	struct mem_cgroup *mem_over_limit;
1636 	struct res_counter *fail_res;
1637 	unsigned long flags = 0;
1638 	int ret;
1639 
1640 	ret = res_counter_charge(&mem->res, csize, &fail_res);
1641 
1642 	if (likely(!ret)) {
1643 		if (!do_swap_account)
1644 			return CHARGE_OK;
1645 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1646 		if (likely(!ret))
1647 			return CHARGE_OK;
1648 
1649 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1650 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1651 	} else
1652 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1653 
1654 	if (csize > PAGE_SIZE) /* change csize and retry */
1655 		return CHARGE_RETRY;
1656 
1657 	if (!(gfp_mask & __GFP_WAIT))
1658 		return CHARGE_WOULDBLOCK;
1659 
1660 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1661 					gfp_mask, flags);
1662 	/*
1663 	 * try_to_free_mem_cgroup_pages() might not give us a full
1664 	 * picture of reclaim. Some pages are reclaimed and might be
1665 	 * moved to swap cache or just unmapped from the cgroup.
1666 	 * Check the limit again to see if the reclaim reduced the
1667 	 * current usage of the cgroup before giving up
1668 	 */
1669 	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1670 		return CHARGE_RETRY;
1671 
1672 	/*
1673 	 * At task move, charge accounts can be doubly counted. So, it's
1674 	 * better to wait until the end of task_move if something is going on.
1675 	 */
1676 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1677 		return CHARGE_RETRY;
1678 
1679 	/* If we don't need to call oom-killer at el, return immediately */
1680 	if (!oom_check)
1681 		return CHARGE_NOMEM;
1682 	/* check OOM */
1683 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1684 		return CHARGE_OOM_DIE;
1685 
1686 	return CHARGE_RETRY;
1687 }
1688 
1689 /*
1690  * Unlike exported interface, "oom" parameter is added. if oom==true,
1691  * oom-killer can be invoked.
1692  */
1693 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1694 		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1695 {
1696 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1697 	struct mem_cgroup *mem = NULL;
1698 	int ret;
1699 	int csize = CHARGE_SIZE;
1700 
1701 	/*
1702 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1703 	 * in system level. So, allow to go ahead dying process in addition to
1704 	 * MEMDIE process.
1705 	 */
1706 	if (unlikely(test_thread_flag(TIF_MEMDIE)
1707 		     || fatal_signal_pending(current)))
1708 		goto bypass;
1709 
1710 	/*
1711 	 * We always charge the cgroup the mm_struct belongs to.
1712 	 * The mm_struct's mem_cgroup changes on task migration if the
1713 	 * thread group leader migrates. It's possible that mm is not
1714 	 * set, if so charge the init_mm (happens for pagecache usage).
1715 	 */
1716 	if (!*memcg && !mm)
1717 		goto bypass;
1718 again:
1719 	if (*memcg) { /* css should be a valid one */
1720 		mem = *memcg;
1721 		VM_BUG_ON(css_is_removed(&mem->css));
1722 		if (mem_cgroup_is_root(mem))
1723 			goto done;
1724 		if (consume_stock(mem))
1725 			goto done;
1726 		css_get(&mem->css);
1727 	} else {
1728 		struct task_struct *p;
1729 
1730 		rcu_read_lock();
1731 		p = rcu_dereference(mm->owner);
1732 		VM_BUG_ON(!p);
1733 		/*
1734 		 * because we don't have task_lock(), "p" can exit while
1735 		 * we're here. In that case, "mem" can point to root
1736 		 * cgroup but never be NULL. (and task_struct itself is freed
1737 		 * by RCU, cgroup itself is RCU safe.) Then, we have small
1738 		 * risk here to get wrong cgroup. But such kind of mis-account
1739 		 * by race always happens because we don't have cgroup_mutex().
1740 		 * It's overkill and we allow that small race, here.
1741 		 */
1742 		mem = mem_cgroup_from_task(p);
1743 		VM_BUG_ON(!mem);
1744 		if (mem_cgroup_is_root(mem)) {
1745 			rcu_read_unlock();
1746 			goto done;
1747 		}
1748 		if (consume_stock(mem)) {
1749 			/*
1750 			 * It seems dagerous to access memcg without css_get().
1751 			 * But considering how consume_stok works, it's not
1752 			 * necessary. If consume_stock success, some charges
1753 			 * from this memcg are cached on this cpu. So, we
1754 			 * don't need to call css_get()/css_tryget() before
1755 			 * calling consume_stock().
1756 			 */
1757 			rcu_read_unlock();
1758 			goto done;
1759 		}
1760 		/* after here, we may be blocked. we need to get refcnt */
1761 		if (!css_tryget(&mem->css)) {
1762 			rcu_read_unlock();
1763 			goto again;
1764 		}
1765 		rcu_read_unlock();
1766 	}
1767 
1768 	do {
1769 		bool oom_check;
1770 
1771 		/* If killed, bypass charge */
1772 		if (fatal_signal_pending(current)) {
1773 			css_put(&mem->css);
1774 			goto bypass;
1775 		}
1776 
1777 		oom_check = false;
1778 		if (oom && !nr_oom_retries) {
1779 			oom_check = true;
1780 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1781 		}
1782 
1783 		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1784 
1785 		switch (ret) {
1786 		case CHARGE_OK:
1787 			break;
1788 		case CHARGE_RETRY: /* not in OOM situation but retry */
1789 			csize = PAGE_SIZE;
1790 			css_put(&mem->css);
1791 			mem = NULL;
1792 			goto again;
1793 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1794 			css_put(&mem->css);
1795 			goto nomem;
1796 		case CHARGE_NOMEM: /* OOM routine works */
1797 			if (!oom) {
1798 				css_put(&mem->css);
1799 				goto nomem;
1800 			}
1801 			/* If oom, we never return -ENOMEM */
1802 			nr_oom_retries--;
1803 			break;
1804 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1805 			css_put(&mem->css);
1806 			goto bypass;
1807 		}
1808 	} while (ret != CHARGE_OK);
1809 
1810 	if (csize > PAGE_SIZE)
1811 		refill_stock(mem, csize - PAGE_SIZE);
1812 	css_put(&mem->css);
1813 done:
1814 	*memcg = mem;
1815 	return 0;
1816 nomem:
1817 	*memcg = NULL;
1818 	return -ENOMEM;
1819 bypass:
1820 	*memcg = NULL;
1821 	return 0;
1822 }
1823 
1824 /*
1825  * Somemtimes we have to undo a charge we got by try_charge().
1826  * This function is for that and do uncharge, put css's refcnt.
1827  * gotten by try_charge().
1828  */
1829 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1830 							unsigned long count)
1831 {
1832 	if (!mem_cgroup_is_root(mem)) {
1833 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1834 		if (do_swap_account)
1835 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1836 	}
1837 }
1838 
1839 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1840 {
1841 	__mem_cgroup_cancel_charge(mem, 1);
1842 }
1843 
1844 /*
1845  * A helper function to get mem_cgroup from ID. must be called under
1846  * rcu_read_lock(). The caller must check css_is_removed() or some if
1847  * it's concern. (dropping refcnt from swap can be called against removed
1848  * memcg.)
1849  */
1850 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1851 {
1852 	struct cgroup_subsys_state *css;
1853 
1854 	/* ID 0 is unused ID */
1855 	if (!id)
1856 		return NULL;
1857 	css = css_lookup(&mem_cgroup_subsys, id);
1858 	if (!css)
1859 		return NULL;
1860 	return container_of(css, struct mem_cgroup, css);
1861 }
1862 
1863 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1864 {
1865 	struct mem_cgroup *mem = NULL;
1866 	struct page_cgroup *pc;
1867 	unsigned short id;
1868 	swp_entry_t ent;
1869 
1870 	VM_BUG_ON(!PageLocked(page));
1871 
1872 	pc = lookup_page_cgroup(page);
1873 	lock_page_cgroup(pc);
1874 	if (PageCgroupUsed(pc)) {
1875 		mem = pc->mem_cgroup;
1876 		if (mem && !css_tryget(&mem->css))
1877 			mem = NULL;
1878 	} else if (PageSwapCache(page)) {
1879 		ent.val = page_private(page);
1880 		id = lookup_swap_cgroup(ent);
1881 		rcu_read_lock();
1882 		mem = mem_cgroup_lookup(id);
1883 		if (mem && !css_tryget(&mem->css))
1884 			mem = NULL;
1885 		rcu_read_unlock();
1886 	}
1887 	unlock_page_cgroup(pc);
1888 	return mem;
1889 }
1890 
1891 /*
1892  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1893  * USED state. If already USED, uncharge and return.
1894  */
1895 
1896 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1897 				     struct page_cgroup *pc,
1898 				     enum charge_type ctype)
1899 {
1900 	/* try_charge() can return NULL to *memcg, taking care of it. */
1901 	if (!mem)
1902 		return;
1903 
1904 	lock_page_cgroup(pc);
1905 	if (unlikely(PageCgroupUsed(pc))) {
1906 		unlock_page_cgroup(pc);
1907 		mem_cgroup_cancel_charge(mem);
1908 		return;
1909 	}
1910 
1911 	pc->mem_cgroup = mem;
1912 	/*
1913 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1914 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1915 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1916 	 * before USED bit, we need memory barrier here.
1917 	 * See mem_cgroup_add_lru_list(), etc.
1918  	 */
1919 	smp_wmb();
1920 	switch (ctype) {
1921 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1922 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1923 		SetPageCgroupCache(pc);
1924 		SetPageCgroupUsed(pc);
1925 		break;
1926 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1927 		ClearPageCgroupCache(pc);
1928 		SetPageCgroupUsed(pc);
1929 		break;
1930 	default:
1931 		break;
1932 	}
1933 
1934 	mem_cgroup_charge_statistics(mem, pc, true);
1935 
1936 	unlock_page_cgroup(pc);
1937 	/*
1938 	 * "charge_statistics" updated event counter. Then, check it.
1939 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1940 	 * if they exceeds softlimit.
1941 	 */
1942 	memcg_check_events(mem, pc->page);
1943 }
1944 
1945 /**
1946  * __mem_cgroup_move_account - move account of the page
1947  * @pc:	page_cgroup of the page.
1948  * @from: mem_cgroup which the page is moved from.
1949  * @to:	mem_cgroup which the page is moved to. @from != @to.
1950  * @uncharge: whether we should call uncharge and css_put against @from.
1951  *
1952  * The caller must confirm following.
1953  * - page is not on LRU (isolate_page() is useful.)
1954  * - the pc is locked, used, and ->mem_cgroup points to @from.
1955  *
1956  * This function doesn't do "charge" nor css_get to new cgroup. It should be
1957  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1958  * true, this function does "uncharge" from old cgroup, but it doesn't if
1959  * @uncharge is false, so a caller should do "uncharge".
1960  */
1961 
1962 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1963 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1964 {
1965 	VM_BUG_ON(from == to);
1966 	VM_BUG_ON(PageLRU(pc->page));
1967 	VM_BUG_ON(!PageCgroupLocked(pc));
1968 	VM_BUG_ON(!PageCgroupUsed(pc));
1969 	VM_BUG_ON(pc->mem_cgroup != from);
1970 
1971 	if (PageCgroupFileMapped(pc)) {
1972 		/* Update mapped_file data for mem_cgroup */
1973 		preempt_disable();
1974 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1975 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1976 		preempt_enable();
1977 	}
1978 	mem_cgroup_charge_statistics(from, pc, false);
1979 	if (uncharge)
1980 		/* This is not "cancel", but cancel_charge does all we need. */
1981 		mem_cgroup_cancel_charge(from);
1982 
1983 	/* caller should have done css_get */
1984 	pc->mem_cgroup = to;
1985 	mem_cgroup_charge_statistics(to, pc, true);
1986 	/*
1987 	 * We charges against "to" which may not have any tasks. Then, "to"
1988 	 * can be under rmdir(). But in current implementation, caller of
1989 	 * this function is just force_empty() and move charge, so it's
1990 	 * garanteed that "to" is never removed. So, we don't check rmdir
1991 	 * status here.
1992 	 */
1993 }
1994 
1995 /*
1996  * check whether the @pc is valid for moving account and call
1997  * __mem_cgroup_move_account()
1998  */
1999 static int mem_cgroup_move_account(struct page_cgroup *pc,
2000 		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2001 {
2002 	int ret = -EINVAL;
2003 	lock_page_cgroup(pc);
2004 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2005 		__mem_cgroup_move_account(pc, from, to, uncharge);
2006 		ret = 0;
2007 	}
2008 	unlock_page_cgroup(pc);
2009 	/*
2010 	 * check events
2011 	 */
2012 	memcg_check_events(to, pc->page);
2013 	memcg_check_events(from, pc->page);
2014 	return ret;
2015 }
2016 
2017 /*
2018  * move charges to its parent.
2019  */
2020 
2021 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2022 				  struct mem_cgroup *child,
2023 				  gfp_t gfp_mask)
2024 {
2025 	struct page *page = pc->page;
2026 	struct cgroup *cg = child->css.cgroup;
2027 	struct cgroup *pcg = cg->parent;
2028 	struct mem_cgroup *parent;
2029 	int ret;
2030 
2031 	/* Is ROOT ? */
2032 	if (!pcg)
2033 		return -EINVAL;
2034 
2035 	ret = -EBUSY;
2036 	if (!get_page_unless_zero(page))
2037 		goto out;
2038 	if (isolate_lru_page(page))
2039 		goto put;
2040 
2041 	parent = mem_cgroup_from_cont(pcg);
2042 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2043 	if (ret || !parent)
2044 		goto put_back;
2045 
2046 	ret = mem_cgroup_move_account(pc, child, parent, true);
2047 	if (ret)
2048 		mem_cgroup_cancel_charge(parent);
2049 put_back:
2050 	putback_lru_page(page);
2051 put:
2052 	put_page(page);
2053 out:
2054 	return ret;
2055 }
2056 
2057 /*
2058  * Charge the memory controller for page usage.
2059  * Return
2060  * 0 if the charge was successful
2061  * < 0 if the cgroup is over its limit
2062  */
2063 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2064 				gfp_t gfp_mask, enum charge_type ctype)
2065 {
2066 	struct mem_cgroup *mem = NULL;
2067 	struct page_cgroup *pc;
2068 	int ret;
2069 
2070 	pc = lookup_page_cgroup(page);
2071 	/* can happen at boot */
2072 	if (unlikely(!pc))
2073 		return 0;
2074 	prefetchw(pc);
2075 
2076 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2077 	if (ret || !mem)
2078 		return ret;
2079 
2080 	__mem_cgroup_commit_charge(mem, pc, ctype);
2081 	return 0;
2082 }
2083 
2084 int mem_cgroup_newpage_charge(struct page *page,
2085 			      struct mm_struct *mm, gfp_t gfp_mask)
2086 {
2087 	if (mem_cgroup_disabled())
2088 		return 0;
2089 	if (PageCompound(page))
2090 		return 0;
2091 	/*
2092 	 * If already mapped, we don't have to account.
2093 	 * If page cache, page->mapping has address_space.
2094 	 * But page->mapping may have out-of-use anon_vma pointer,
2095 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2096 	 * is NULL.
2097   	 */
2098 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2099 		return 0;
2100 	if (unlikely(!mm))
2101 		mm = &init_mm;
2102 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2103 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2104 }
2105 
2106 static void
2107 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2108 					enum charge_type ctype);
2109 
2110 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2111 				gfp_t gfp_mask)
2112 {
2113 	int ret;
2114 
2115 	if (mem_cgroup_disabled())
2116 		return 0;
2117 	if (PageCompound(page))
2118 		return 0;
2119 	/*
2120 	 * Corner case handling. This is called from add_to_page_cache()
2121 	 * in usual. But some FS (shmem) precharges this page before calling it
2122 	 * and call add_to_page_cache() with GFP_NOWAIT.
2123 	 *
2124 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2125 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2126 	 * charge twice. (It works but has to pay a bit larger cost.)
2127 	 * And when the page is SwapCache, it should take swap information
2128 	 * into account. This is under lock_page() now.
2129 	 */
2130 	if (!(gfp_mask & __GFP_WAIT)) {
2131 		struct page_cgroup *pc;
2132 
2133 		pc = lookup_page_cgroup(page);
2134 		if (!pc)
2135 			return 0;
2136 		lock_page_cgroup(pc);
2137 		if (PageCgroupUsed(pc)) {
2138 			unlock_page_cgroup(pc);
2139 			return 0;
2140 		}
2141 		unlock_page_cgroup(pc);
2142 	}
2143 
2144 	if (unlikely(!mm))
2145 		mm = &init_mm;
2146 
2147 	if (page_is_file_cache(page))
2148 		return mem_cgroup_charge_common(page, mm, gfp_mask,
2149 				MEM_CGROUP_CHARGE_TYPE_CACHE);
2150 
2151 	/* shmem */
2152 	if (PageSwapCache(page)) {
2153 		struct mem_cgroup *mem = NULL;
2154 
2155 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2156 		if (!ret)
2157 			__mem_cgroup_commit_charge_swapin(page, mem,
2158 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2159 	} else
2160 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2161 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2162 
2163 	return ret;
2164 }
2165 
2166 /*
2167  * While swap-in, try_charge -> commit or cancel, the page is locked.
2168  * And when try_charge() successfully returns, one refcnt to memcg without
2169  * struct page_cgroup is acquired. This refcnt will be consumed by
2170  * "commit()" or removed by "cancel()"
2171  */
2172 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2173 				 struct page *page,
2174 				 gfp_t mask, struct mem_cgroup **ptr)
2175 {
2176 	struct mem_cgroup *mem;
2177 	int ret;
2178 
2179 	if (mem_cgroup_disabled())
2180 		return 0;
2181 
2182 	if (!do_swap_account)
2183 		goto charge_cur_mm;
2184 	/*
2185 	 * A racing thread's fault, or swapoff, may have already updated
2186 	 * the pte, and even removed page from swap cache: in those cases
2187 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2188 	 * KSM case which does need to charge the page.
2189 	 */
2190 	if (!PageSwapCache(page))
2191 		goto charge_cur_mm;
2192 	mem = try_get_mem_cgroup_from_page(page);
2193 	if (!mem)
2194 		goto charge_cur_mm;
2195 	*ptr = mem;
2196 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2197 	css_put(&mem->css);
2198 	return ret;
2199 charge_cur_mm:
2200 	if (unlikely(!mm))
2201 		mm = &init_mm;
2202 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2203 }
2204 
2205 static void
2206 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2207 					enum charge_type ctype)
2208 {
2209 	struct page_cgroup *pc;
2210 
2211 	if (mem_cgroup_disabled())
2212 		return;
2213 	if (!ptr)
2214 		return;
2215 	cgroup_exclude_rmdir(&ptr->css);
2216 	pc = lookup_page_cgroup(page);
2217 	mem_cgroup_lru_del_before_commit_swapcache(page);
2218 	__mem_cgroup_commit_charge(ptr, pc, ctype);
2219 	mem_cgroup_lru_add_after_commit_swapcache(page);
2220 	/*
2221 	 * Now swap is on-memory. This means this page may be
2222 	 * counted both as mem and swap....double count.
2223 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2224 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2225 	 * may call delete_from_swap_cache() before reach here.
2226 	 */
2227 	if (do_swap_account && PageSwapCache(page)) {
2228 		swp_entry_t ent = {.val = page_private(page)};
2229 		unsigned short id;
2230 		struct mem_cgroup *memcg;
2231 
2232 		id = swap_cgroup_record(ent, 0);
2233 		rcu_read_lock();
2234 		memcg = mem_cgroup_lookup(id);
2235 		if (memcg) {
2236 			/*
2237 			 * This recorded memcg can be obsolete one. So, avoid
2238 			 * calling css_tryget
2239 			 */
2240 			if (!mem_cgroup_is_root(memcg))
2241 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2242 			mem_cgroup_swap_statistics(memcg, false);
2243 			mem_cgroup_put(memcg);
2244 		}
2245 		rcu_read_unlock();
2246 	}
2247 	/*
2248 	 * At swapin, we may charge account against cgroup which has no tasks.
2249 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2250 	 * In that case, we need to call pre_destroy() again. check it here.
2251 	 */
2252 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2253 }
2254 
2255 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2256 {
2257 	__mem_cgroup_commit_charge_swapin(page, ptr,
2258 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2259 }
2260 
2261 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2262 {
2263 	if (mem_cgroup_disabled())
2264 		return;
2265 	if (!mem)
2266 		return;
2267 	mem_cgroup_cancel_charge(mem);
2268 }
2269 
2270 static void
2271 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2272 {
2273 	struct memcg_batch_info *batch = NULL;
2274 	bool uncharge_memsw = true;
2275 	/* If swapout, usage of swap doesn't decrease */
2276 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2277 		uncharge_memsw = false;
2278 
2279 	batch = &current->memcg_batch;
2280 	/*
2281 	 * In usual, we do css_get() when we remember memcg pointer.
2282 	 * But in this case, we keep res->usage until end of a series of
2283 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2284 	 */
2285 	if (!batch->memcg)
2286 		batch->memcg = mem;
2287 	/*
2288 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2289 	 * In those cases, all pages freed continously can be expected to be in
2290 	 * the same cgroup and we have chance to coalesce uncharges.
2291 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2292 	 * because we want to do uncharge as soon as possible.
2293 	 */
2294 
2295 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2296 		goto direct_uncharge;
2297 
2298 	/*
2299 	 * In typical case, batch->memcg == mem. This means we can
2300 	 * merge a series of uncharges to an uncharge of res_counter.
2301 	 * If not, we uncharge res_counter ony by one.
2302 	 */
2303 	if (batch->memcg != mem)
2304 		goto direct_uncharge;
2305 	/* remember freed charge and uncharge it later */
2306 	batch->bytes += PAGE_SIZE;
2307 	if (uncharge_memsw)
2308 		batch->memsw_bytes += PAGE_SIZE;
2309 	return;
2310 direct_uncharge:
2311 	res_counter_uncharge(&mem->res, PAGE_SIZE);
2312 	if (uncharge_memsw)
2313 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2314 	if (unlikely(batch->memcg != mem))
2315 		memcg_oom_recover(mem);
2316 	return;
2317 }
2318 
2319 /*
2320  * uncharge if !page_mapped(page)
2321  */
2322 static struct mem_cgroup *
2323 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2324 {
2325 	struct page_cgroup *pc;
2326 	struct mem_cgroup *mem = NULL;
2327 
2328 	if (mem_cgroup_disabled())
2329 		return NULL;
2330 
2331 	if (PageSwapCache(page))
2332 		return NULL;
2333 
2334 	/*
2335 	 * Check if our page_cgroup is valid
2336 	 */
2337 	pc = lookup_page_cgroup(page);
2338 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2339 		return NULL;
2340 
2341 	lock_page_cgroup(pc);
2342 
2343 	mem = pc->mem_cgroup;
2344 
2345 	if (!PageCgroupUsed(pc))
2346 		goto unlock_out;
2347 
2348 	switch (ctype) {
2349 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2350 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2351 		/* See mem_cgroup_prepare_migration() */
2352 		if (page_mapped(page) || PageCgroupMigration(pc))
2353 			goto unlock_out;
2354 		break;
2355 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2356 		if (!PageAnon(page)) {	/* Shared memory */
2357 			if (page->mapping && !page_is_file_cache(page))
2358 				goto unlock_out;
2359 		} else if (page_mapped(page)) /* Anon */
2360 				goto unlock_out;
2361 		break;
2362 	default:
2363 		break;
2364 	}
2365 
2366 	mem_cgroup_charge_statistics(mem, pc, false);
2367 
2368 	ClearPageCgroupUsed(pc);
2369 	/*
2370 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2371 	 * freed from LRU. This is safe because uncharged page is expected not
2372 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2373 	 * special functions.
2374 	 */
2375 
2376 	unlock_page_cgroup(pc);
2377 	/*
2378 	 * even after unlock, we have mem->res.usage here and this memcg
2379 	 * will never be freed.
2380 	 */
2381 	memcg_check_events(mem, page);
2382 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2383 		mem_cgroup_swap_statistics(mem, true);
2384 		mem_cgroup_get(mem);
2385 	}
2386 	if (!mem_cgroup_is_root(mem))
2387 		__do_uncharge(mem, ctype);
2388 
2389 	return mem;
2390 
2391 unlock_out:
2392 	unlock_page_cgroup(pc);
2393 	return NULL;
2394 }
2395 
2396 void mem_cgroup_uncharge_page(struct page *page)
2397 {
2398 	/* early check. */
2399 	if (page_mapped(page))
2400 		return;
2401 	if (page->mapping && !PageAnon(page))
2402 		return;
2403 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2404 }
2405 
2406 void mem_cgroup_uncharge_cache_page(struct page *page)
2407 {
2408 	VM_BUG_ON(page_mapped(page));
2409 	VM_BUG_ON(page->mapping);
2410 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2411 }
2412 
2413 /*
2414  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2415  * In that cases, pages are freed continuously and we can expect pages
2416  * are in the same memcg. All these calls itself limits the number of
2417  * pages freed at once, then uncharge_start/end() is called properly.
2418  * This may be called prural(2) times in a context,
2419  */
2420 
2421 void mem_cgroup_uncharge_start(void)
2422 {
2423 	current->memcg_batch.do_batch++;
2424 	/* We can do nest. */
2425 	if (current->memcg_batch.do_batch == 1) {
2426 		current->memcg_batch.memcg = NULL;
2427 		current->memcg_batch.bytes = 0;
2428 		current->memcg_batch.memsw_bytes = 0;
2429 	}
2430 }
2431 
2432 void mem_cgroup_uncharge_end(void)
2433 {
2434 	struct memcg_batch_info *batch = &current->memcg_batch;
2435 
2436 	if (!batch->do_batch)
2437 		return;
2438 
2439 	batch->do_batch--;
2440 	if (batch->do_batch) /* If stacked, do nothing. */
2441 		return;
2442 
2443 	if (!batch->memcg)
2444 		return;
2445 	/*
2446 	 * This "batch->memcg" is valid without any css_get/put etc...
2447 	 * bacause we hide charges behind us.
2448 	 */
2449 	if (batch->bytes)
2450 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2451 	if (batch->memsw_bytes)
2452 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2453 	memcg_oom_recover(batch->memcg);
2454 	/* forget this pointer (for sanity check) */
2455 	batch->memcg = NULL;
2456 }
2457 
2458 #ifdef CONFIG_SWAP
2459 /*
2460  * called after __delete_from_swap_cache() and drop "page" account.
2461  * memcg information is recorded to swap_cgroup of "ent"
2462  */
2463 void
2464 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2465 {
2466 	struct mem_cgroup *memcg;
2467 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2468 
2469 	if (!swapout) /* this was a swap cache but the swap is unused ! */
2470 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2471 
2472 	memcg = __mem_cgroup_uncharge_common(page, ctype);
2473 
2474 	/*
2475 	 * record memcg information,  if swapout && memcg != NULL,
2476 	 * mem_cgroup_get() was called in uncharge().
2477 	 */
2478 	if (do_swap_account && swapout && memcg)
2479 		swap_cgroup_record(ent, css_id(&memcg->css));
2480 }
2481 #endif
2482 
2483 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2484 /*
2485  * called from swap_entry_free(). remove record in swap_cgroup and
2486  * uncharge "memsw" account.
2487  */
2488 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2489 {
2490 	struct mem_cgroup *memcg;
2491 	unsigned short id;
2492 
2493 	if (!do_swap_account)
2494 		return;
2495 
2496 	id = swap_cgroup_record(ent, 0);
2497 	rcu_read_lock();
2498 	memcg = mem_cgroup_lookup(id);
2499 	if (memcg) {
2500 		/*
2501 		 * We uncharge this because swap is freed.
2502 		 * This memcg can be obsolete one. We avoid calling css_tryget
2503 		 */
2504 		if (!mem_cgroup_is_root(memcg))
2505 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2506 		mem_cgroup_swap_statistics(memcg, false);
2507 		mem_cgroup_put(memcg);
2508 	}
2509 	rcu_read_unlock();
2510 }
2511 
2512 /**
2513  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2514  * @entry: swap entry to be moved
2515  * @from:  mem_cgroup which the entry is moved from
2516  * @to:  mem_cgroup which the entry is moved to
2517  * @need_fixup: whether we should fixup res_counters and refcounts.
2518  *
2519  * It succeeds only when the swap_cgroup's record for this entry is the same
2520  * as the mem_cgroup's id of @from.
2521  *
2522  * Returns 0 on success, -EINVAL on failure.
2523  *
2524  * The caller must have charged to @to, IOW, called res_counter_charge() about
2525  * both res and memsw, and called css_get().
2526  */
2527 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2528 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2529 {
2530 	unsigned short old_id, new_id;
2531 
2532 	old_id = css_id(&from->css);
2533 	new_id = css_id(&to->css);
2534 
2535 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2536 		mem_cgroup_swap_statistics(from, false);
2537 		mem_cgroup_swap_statistics(to, true);
2538 		/*
2539 		 * This function is only called from task migration context now.
2540 		 * It postpones res_counter and refcount handling till the end
2541 		 * of task migration(mem_cgroup_clear_mc()) for performance
2542 		 * improvement. But we cannot postpone mem_cgroup_get(to)
2543 		 * because if the process that has been moved to @to does
2544 		 * swap-in, the refcount of @to might be decreased to 0.
2545 		 */
2546 		mem_cgroup_get(to);
2547 		if (need_fixup) {
2548 			if (!mem_cgroup_is_root(from))
2549 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2550 			mem_cgroup_put(from);
2551 			/*
2552 			 * we charged both to->res and to->memsw, so we should
2553 			 * uncharge to->res.
2554 			 */
2555 			if (!mem_cgroup_is_root(to))
2556 				res_counter_uncharge(&to->res, PAGE_SIZE);
2557 		}
2558 		return 0;
2559 	}
2560 	return -EINVAL;
2561 }
2562 #else
2563 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2564 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2565 {
2566 	return -EINVAL;
2567 }
2568 #endif
2569 
2570 /*
2571  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2572  * page belongs to.
2573  */
2574 int mem_cgroup_prepare_migration(struct page *page,
2575 	struct page *newpage, struct mem_cgroup **ptr)
2576 {
2577 	struct page_cgroup *pc;
2578 	struct mem_cgroup *mem = NULL;
2579 	enum charge_type ctype;
2580 	int ret = 0;
2581 
2582 	if (mem_cgroup_disabled())
2583 		return 0;
2584 
2585 	pc = lookup_page_cgroup(page);
2586 	lock_page_cgroup(pc);
2587 	if (PageCgroupUsed(pc)) {
2588 		mem = pc->mem_cgroup;
2589 		css_get(&mem->css);
2590 		/*
2591 		 * At migrating an anonymous page, its mapcount goes down
2592 		 * to 0 and uncharge() will be called. But, even if it's fully
2593 		 * unmapped, migration may fail and this page has to be
2594 		 * charged again. We set MIGRATION flag here and delay uncharge
2595 		 * until end_migration() is called
2596 		 *
2597 		 * Corner Case Thinking
2598 		 * A)
2599 		 * When the old page was mapped as Anon and it's unmap-and-freed
2600 		 * while migration was ongoing.
2601 		 * If unmap finds the old page, uncharge() of it will be delayed
2602 		 * until end_migration(). If unmap finds a new page, it's
2603 		 * uncharged when it make mapcount to be 1->0. If unmap code
2604 		 * finds swap_migration_entry, the new page will not be mapped
2605 		 * and end_migration() will find it(mapcount==0).
2606 		 *
2607 		 * B)
2608 		 * When the old page was mapped but migraion fails, the kernel
2609 		 * remaps it. A charge for it is kept by MIGRATION flag even
2610 		 * if mapcount goes down to 0. We can do remap successfully
2611 		 * without charging it again.
2612 		 *
2613 		 * C)
2614 		 * The "old" page is under lock_page() until the end of
2615 		 * migration, so, the old page itself will not be swapped-out.
2616 		 * If the new page is swapped out before end_migraton, our
2617 		 * hook to usual swap-out path will catch the event.
2618 		 */
2619 		if (PageAnon(page))
2620 			SetPageCgroupMigration(pc);
2621 	}
2622 	unlock_page_cgroup(pc);
2623 	/*
2624 	 * If the page is not charged at this point,
2625 	 * we return here.
2626 	 */
2627 	if (!mem)
2628 		return 0;
2629 
2630 	*ptr = mem;
2631 	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2632 	css_put(&mem->css);/* drop extra refcnt */
2633 	if (ret || *ptr == NULL) {
2634 		if (PageAnon(page)) {
2635 			lock_page_cgroup(pc);
2636 			ClearPageCgroupMigration(pc);
2637 			unlock_page_cgroup(pc);
2638 			/*
2639 			 * The old page may be fully unmapped while we kept it.
2640 			 */
2641 			mem_cgroup_uncharge_page(page);
2642 		}
2643 		return -ENOMEM;
2644 	}
2645 	/*
2646 	 * We charge new page before it's used/mapped. So, even if unlock_page()
2647 	 * is called before end_migration, we can catch all events on this new
2648 	 * page. In the case new page is migrated but not remapped, new page's
2649 	 * mapcount will be finally 0 and we call uncharge in end_migration().
2650 	 */
2651 	pc = lookup_page_cgroup(newpage);
2652 	if (PageAnon(page))
2653 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2654 	else if (page_is_file_cache(page))
2655 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2656 	else
2657 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2658 	__mem_cgroup_commit_charge(mem, pc, ctype);
2659 	return ret;
2660 }
2661 
2662 /* remove redundant charge if migration failed*/
2663 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2664 	struct page *oldpage, struct page *newpage)
2665 {
2666 	struct page *used, *unused;
2667 	struct page_cgroup *pc;
2668 
2669 	if (!mem)
2670 		return;
2671 	/* blocks rmdir() */
2672 	cgroup_exclude_rmdir(&mem->css);
2673 	/* at migration success, oldpage->mapping is NULL. */
2674 	if (oldpage->mapping) {
2675 		used = oldpage;
2676 		unused = newpage;
2677 	} else {
2678 		used = newpage;
2679 		unused = oldpage;
2680 	}
2681 	/*
2682 	 * We disallowed uncharge of pages under migration because mapcount
2683 	 * of the page goes down to zero, temporarly.
2684 	 * Clear the flag and check the page should be charged.
2685 	 */
2686 	pc = lookup_page_cgroup(oldpage);
2687 	lock_page_cgroup(pc);
2688 	ClearPageCgroupMigration(pc);
2689 	unlock_page_cgroup(pc);
2690 
2691 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2692 
2693 	/*
2694 	 * If a page is a file cache, radix-tree replacement is very atomic
2695 	 * and we can skip this check. When it was an Anon page, its mapcount
2696 	 * goes down to 0. But because we added MIGRATION flage, it's not
2697 	 * uncharged yet. There are several case but page->mapcount check
2698 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2699 	 * check. (see prepare_charge() also)
2700 	 */
2701 	if (PageAnon(used))
2702 		mem_cgroup_uncharge_page(used);
2703 	/*
2704 	 * At migration, we may charge account against cgroup which has no
2705 	 * tasks.
2706 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2707 	 * In that case, we need to call pre_destroy() again. check it here.
2708 	 */
2709 	cgroup_release_and_wakeup_rmdir(&mem->css);
2710 }
2711 
2712 /*
2713  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2714  * Calling hierarchical_reclaim is not enough because we should update
2715  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2716  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2717  * not from the memcg which this page would be charged to.
2718  * try_charge_swapin does all of these works properly.
2719  */
2720 int mem_cgroup_shmem_charge_fallback(struct page *page,
2721 			    struct mm_struct *mm,
2722 			    gfp_t gfp_mask)
2723 {
2724 	struct mem_cgroup *mem = NULL;
2725 	int ret;
2726 
2727 	if (mem_cgroup_disabled())
2728 		return 0;
2729 
2730 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2731 	if (!ret)
2732 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2733 
2734 	return ret;
2735 }
2736 
2737 static DEFINE_MUTEX(set_limit_mutex);
2738 
2739 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2740 				unsigned long long val)
2741 {
2742 	int retry_count;
2743 	u64 memswlimit, memlimit;
2744 	int ret = 0;
2745 	int children = mem_cgroup_count_children(memcg);
2746 	u64 curusage, oldusage;
2747 	int enlarge;
2748 
2749 	/*
2750 	 * For keeping hierarchical_reclaim simple, how long we should retry
2751 	 * is depends on callers. We set our retry-count to be function
2752 	 * of # of children which we should visit in this loop.
2753 	 */
2754 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2755 
2756 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2757 
2758 	enlarge = 0;
2759 	while (retry_count) {
2760 		if (signal_pending(current)) {
2761 			ret = -EINTR;
2762 			break;
2763 		}
2764 		/*
2765 		 * Rather than hide all in some function, I do this in
2766 		 * open coded manner. You see what this really does.
2767 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2768 		 */
2769 		mutex_lock(&set_limit_mutex);
2770 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2771 		if (memswlimit < val) {
2772 			ret = -EINVAL;
2773 			mutex_unlock(&set_limit_mutex);
2774 			break;
2775 		}
2776 
2777 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2778 		if (memlimit < val)
2779 			enlarge = 1;
2780 
2781 		ret = res_counter_set_limit(&memcg->res, val);
2782 		if (!ret) {
2783 			if (memswlimit == val)
2784 				memcg->memsw_is_minimum = true;
2785 			else
2786 				memcg->memsw_is_minimum = false;
2787 		}
2788 		mutex_unlock(&set_limit_mutex);
2789 
2790 		if (!ret)
2791 			break;
2792 
2793 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2794 						MEM_CGROUP_RECLAIM_SHRINK);
2795 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2796 		/* Usage is reduced ? */
2797   		if (curusage >= oldusage)
2798 			retry_count--;
2799 		else
2800 			oldusage = curusage;
2801 	}
2802 	if (!ret && enlarge)
2803 		memcg_oom_recover(memcg);
2804 
2805 	return ret;
2806 }
2807 
2808 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2809 					unsigned long long val)
2810 {
2811 	int retry_count;
2812 	u64 memlimit, memswlimit, oldusage, curusage;
2813 	int children = mem_cgroup_count_children(memcg);
2814 	int ret = -EBUSY;
2815 	int enlarge = 0;
2816 
2817 	/* see mem_cgroup_resize_res_limit */
2818  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2819 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2820 	while (retry_count) {
2821 		if (signal_pending(current)) {
2822 			ret = -EINTR;
2823 			break;
2824 		}
2825 		/*
2826 		 * Rather than hide all in some function, I do this in
2827 		 * open coded manner. You see what this really does.
2828 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2829 		 */
2830 		mutex_lock(&set_limit_mutex);
2831 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2832 		if (memlimit > val) {
2833 			ret = -EINVAL;
2834 			mutex_unlock(&set_limit_mutex);
2835 			break;
2836 		}
2837 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2838 		if (memswlimit < val)
2839 			enlarge = 1;
2840 		ret = res_counter_set_limit(&memcg->memsw, val);
2841 		if (!ret) {
2842 			if (memlimit == val)
2843 				memcg->memsw_is_minimum = true;
2844 			else
2845 				memcg->memsw_is_minimum = false;
2846 		}
2847 		mutex_unlock(&set_limit_mutex);
2848 
2849 		if (!ret)
2850 			break;
2851 
2852 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2853 						MEM_CGROUP_RECLAIM_NOSWAP |
2854 						MEM_CGROUP_RECLAIM_SHRINK);
2855 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2856 		/* Usage is reduced ? */
2857 		if (curusage >= oldusage)
2858 			retry_count--;
2859 		else
2860 			oldusage = curusage;
2861 	}
2862 	if (!ret && enlarge)
2863 		memcg_oom_recover(memcg);
2864 	return ret;
2865 }
2866 
2867 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2868 					    gfp_t gfp_mask)
2869 {
2870 	unsigned long nr_reclaimed = 0;
2871 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2872 	unsigned long reclaimed;
2873 	int loop = 0;
2874 	struct mem_cgroup_tree_per_zone *mctz;
2875 	unsigned long long excess;
2876 
2877 	if (order > 0)
2878 		return 0;
2879 
2880 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2881 	/*
2882 	 * This loop can run a while, specially if mem_cgroup's continuously
2883 	 * keep exceeding their soft limit and putting the system under
2884 	 * pressure
2885 	 */
2886 	do {
2887 		if (next_mz)
2888 			mz = next_mz;
2889 		else
2890 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2891 		if (!mz)
2892 			break;
2893 
2894 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2895 						gfp_mask,
2896 						MEM_CGROUP_RECLAIM_SOFT);
2897 		nr_reclaimed += reclaimed;
2898 		spin_lock(&mctz->lock);
2899 
2900 		/*
2901 		 * If we failed to reclaim anything from this memory cgroup
2902 		 * it is time to move on to the next cgroup
2903 		 */
2904 		next_mz = NULL;
2905 		if (!reclaimed) {
2906 			do {
2907 				/*
2908 				 * Loop until we find yet another one.
2909 				 *
2910 				 * By the time we get the soft_limit lock
2911 				 * again, someone might have aded the
2912 				 * group back on the RB tree. Iterate to
2913 				 * make sure we get a different mem.
2914 				 * mem_cgroup_largest_soft_limit_node returns
2915 				 * NULL if no other cgroup is present on
2916 				 * the tree
2917 				 */
2918 				next_mz =
2919 				__mem_cgroup_largest_soft_limit_node(mctz);
2920 				if (next_mz == mz) {
2921 					css_put(&next_mz->mem->css);
2922 					next_mz = NULL;
2923 				} else /* next_mz == NULL or other memcg */
2924 					break;
2925 			} while (1);
2926 		}
2927 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2928 		excess = res_counter_soft_limit_excess(&mz->mem->res);
2929 		/*
2930 		 * One school of thought says that we should not add
2931 		 * back the node to the tree if reclaim returns 0.
2932 		 * But our reclaim could return 0, simply because due
2933 		 * to priority we are exposing a smaller subset of
2934 		 * memory to reclaim from. Consider this as a longer
2935 		 * term TODO.
2936 		 */
2937 		/* If excess == 0, no tree ops */
2938 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2939 		spin_unlock(&mctz->lock);
2940 		css_put(&mz->mem->css);
2941 		loop++;
2942 		/*
2943 		 * Could not reclaim anything and there are no more
2944 		 * mem cgroups to try or we seem to be looping without
2945 		 * reclaiming anything.
2946 		 */
2947 		if (!nr_reclaimed &&
2948 			(next_mz == NULL ||
2949 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2950 			break;
2951 	} while (!nr_reclaimed);
2952 	if (next_mz)
2953 		css_put(&next_mz->mem->css);
2954 	return nr_reclaimed;
2955 }
2956 
2957 /*
2958  * This routine traverse page_cgroup in given list and drop them all.
2959  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2960  */
2961 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2962 				int node, int zid, enum lru_list lru)
2963 {
2964 	struct zone *zone;
2965 	struct mem_cgroup_per_zone *mz;
2966 	struct page_cgroup *pc, *busy;
2967 	unsigned long flags, loop;
2968 	struct list_head *list;
2969 	int ret = 0;
2970 
2971 	zone = &NODE_DATA(node)->node_zones[zid];
2972 	mz = mem_cgroup_zoneinfo(mem, node, zid);
2973 	list = &mz->lists[lru];
2974 
2975 	loop = MEM_CGROUP_ZSTAT(mz, lru);
2976 	/* give some margin against EBUSY etc...*/
2977 	loop += 256;
2978 	busy = NULL;
2979 	while (loop--) {
2980 		ret = 0;
2981 		spin_lock_irqsave(&zone->lru_lock, flags);
2982 		if (list_empty(list)) {
2983 			spin_unlock_irqrestore(&zone->lru_lock, flags);
2984 			break;
2985 		}
2986 		pc = list_entry(list->prev, struct page_cgroup, lru);
2987 		if (busy == pc) {
2988 			list_move(&pc->lru, list);
2989 			busy = NULL;
2990 			spin_unlock_irqrestore(&zone->lru_lock, flags);
2991 			continue;
2992 		}
2993 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2994 
2995 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2996 		if (ret == -ENOMEM)
2997 			break;
2998 
2999 		if (ret == -EBUSY || ret == -EINVAL) {
3000 			/* found lock contention or "pc" is obsolete. */
3001 			busy = pc;
3002 			cond_resched();
3003 		} else
3004 			busy = NULL;
3005 	}
3006 
3007 	if (!ret && !list_empty(list))
3008 		return -EBUSY;
3009 	return ret;
3010 }
3011 
3012 /*
3013  * make mem_cgroup's charge to be 0 if there is no task.
3014  * This enables deleting this mem_cgroup.
3015  */
3016 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3017 {
3018 	int ret;
3019 	int node, zid, shrink;
3020 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3021 	struct cgroup *cgrp = mem->css.cgroup;
3022 
3023 	css_get(&mem->css);
3024 
3025 	shrink = 0;
3026 	/* should free all ? */
3027 	if (free_all)
3028 		goto try_to_free;
3029 move_account:
3030 	do {
3031 		ret = -EBUSY;
3032 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3033 			goto out;
3034 		ret = -EINTR;
3035 		if (signal_pending(current))
3036 			goto out;
3037 		/* This is for making all *used* pages to be on LRU. */
3038 		lru_add_drain_all();
3039 		drain_all_stock_sync();
3040 		ret = 0;
3041 		for_each_node_state(node, N_HIGH_MEMORY) {
3042 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3043 				enum lru_list l;
3044 				for_each_lru(l) {
3045 					ret = mem_cgroup_force_empty_list(mem,
3046 							node, zid, l);
3047 					if (ret)
3048 						break;
3049 				}
3050 			}
3051 			if (ret)
3052 				break;
3053 		}
3054 		memcg_oom_recover(mem);
3055 		/* it seems parent cgroup doesn't have enough mem */
3056 		if (ret == -ENOMEM)
3057 			goto try_to_free;
3058 		cond_resched();
3059 	/* "ret" should also be checked to ensure all lists are empty. */
3060 	} while (mem->res.usage > 0 || ret);
3061 out:
3062 	css_put(&mem->css);
3063 	return ret;
3064 
3065 try_to_free:
3066 	/* returns EBUSY if there is a task or if we come here twice. */
3067 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3068 		ret = -EBUSY;
3069 		goto out;
3070 	}
3071 	/* we call try-to-free pages for make this cgroup empty */
3072 	lru_add_drain_all();
3073 	/* try to free all pages in this cgroup */
3074 	shrink = 1;
3075 	while (nr_retries && mem->res.usage > 0) {
3076 		int progress;
3077 
3078 		if (signal_pending(current)) {
3079 			ret = -EINTR;
3080 			goto out;
3081 		}
3082 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3083 						false, get_swappiness(mem));
3084 		if (!progress) {
3085 			nr_retries--;
3086 			/* maybe some writeback is necessary */
3087 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3088 		}
3089 
3090 	}
3091 	lru_add_drain();
3092 	/* try move_account...there may be some *locked* pages. */
3093 	goto move_account;
3094 }
3095 
3096 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3097 {
3098 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3099 }
3100 
3101 
3102 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3103 {
3104 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3105 }
3106 
3107 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3108 					u64 val)
3109 {
3110 	int retval = 0;
3111 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3112 	struct cgroup *parent = cont->parent;
3113 	struct mem_cgroup *parent_mem = NULL;
3114 
3115 	if (parent)
3116 		parent_mem = mem_cgroup_from_cont(parent);
3117 
3118 	cgroup_lock();
3119 	/*
3120 	 * If parent's use_hierarchy is set, we can't make any modifications
3121 	 * in the child subtrees. If it is unset, then the change can
3122 	 * occur, provided the current cgroup has no children.
3123 	 *
3124 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3125 	 * set if there are no children.
3126 	 */
3127 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3128 				(val == 1 || val == 0)) {
3129 		if (list_empty(&cont->children))
3130 			mem->use_hierarchy = val;
3131 		else
3132 			retval = -EBUSY;
3133 	} else
3134 		retval = -EINVAL;
3135 	cgroup_unlock();
3136 
3137 	return retval;
3138 }
3139 
3140 struct mem_cgroup_idx_data {
3141 	s64 val;
3142 	enum mem_cgroup_stat_index idx;
3143 };
3144 
3145 static int
3146 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3147 {
3148 	struct mem_cgroup_idx_data *d = data;
3149 	d->val += mem_cgroup_read_stat(mem, d->idx);
3150 	return 0;
3151 }
3152 
3153 static void
3154 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3155 				enum mem_cgroup_stat_index idx, s64 *val)
3156 {
3157 	struct mem_cgroup_idx_data d;
3158 	d.idx = idx;
3159 	d.val = 0;
3160 	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3161 	*val = d.val;
3162 }
3163 
3164 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3165 {
3166 	u64 idx_val, val;
3167 
3168 	if (!mem_cgroup_is_root(mem)) {
3169 		if (!swap)
3170 			return res_counter_read_u64(&mem->res, RES_USAGE);
3171 		else
3172 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3173 	}
3174 
3175 	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3176 	val = idx_val;
3177 	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3178 	val += idx_val;
3179 
3180 	if (swap) {
3181 		mem_cgroup_get_recursive_idx_stat(mem,
3182 				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3183 		val += idx_val;
3184 	}
3185 
3186 	return val << PAGE_SHIFT;
3187 }
3188 
3189 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3190 {
3191 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3192 	u64 val;
3193 	int type, name;
3194 
3195 	type = MEMFILE_TYPE(cft->private);
3196 	name = MEMFILE_ATTR(cft->private);
3197 	switch (type) {
3198 	case _MEM:
3199 		if (name == RES_USAGE)
3200 			val = mem_cgroup_usage(mem, false);
3201 		else
3202 			val = res_counter_read_u64(&mem->res, name);
3203 		break;
3204 	case _MEMSWAP:
3205 		if (name == RES_USAGE)
3206 			val = mem_cgroup_usage(mem, true);
3207 		else
3208 			val = res_counter_read_u64(&mem->memsw, name);
3209 		break;
3210 	default:
3211 		BUG();
3212 		break;
3213 	}
3214 	return val;
3215 }
3216 /*
3217  * The user of this function is...
3218  * RES_LIMIT.
3219  */
3220 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3221 			    const char *buffer)
3222 {
3223 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3224 	int type, name;
3225 	unsigned long long val;
3226 	int ret;
3227 
3228 	type = MEMFILE_TYPE(cft->private);
3229 	name = MEMFILE_ATTR(cft->private);
3230 	switch (name) {
3231 	case RES_LIMIT:
3232 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3233 			ret = -EINVAL;
3234 			break;
3235 		}
3236 		/* This function does all necessary parse...reuse it */
3237 		ret = res_counter_memparse_write_strategy(buffer, &val);
3238 		if (ret)
3239 			break;
3240 		if (type == _MEM)
3241 			ret = mem_cgroup_resize_limit(memcg, val);
3242 		else
3243 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3244 		break;
3245 	case RES_SOFT_LIMIT:
3246 		ret = res_counter_memparse_write_strategy(buffer, &val);
3247 		if (ret)
3248 			break;
3249 		/*
3250 		 * For memsw, soft limits are hard to implement in terms
3251 		 * of semantics, for now, we support soft limits for
3252 		 * control without swap
3253 		 */
3254 		if (type == _MEM)
3255 			ret = res_counter_set_soft_limit(&memcg->res, val);
3256 		else
3257 			ret = -EINVAL;
3258 		break;
3259 	default:
3260 		ret = -EINVAL; /* should be BUG() ? */
3261 		break;
3262 	}
3263 	return ret;
3264 }
3265 
3266 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3267 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3268 {
3269 	struct cgroup *cgroup;
3270 	unsigned long long min_limit, min_memsw_limit, tmp;
3271 
3272 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3273 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3274 	cgroup = memcg->css.cgroup;
3275 	if (!memcg->use_hierarchy)
3276 		goto out;
3277 
3278 	while (cgroup->parent) {
3279 		cgroup = cgroup->parent;
3280 		memcg = mem_cgroup_from_cont(cgroup);
3281 		if (!memcg->use_hierarchy)
3282 			break;
3283 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3284 		min_limit = min(min_limit, tmp);
3285 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3286 		min_memsw_limit = min(min_memsw_limit, tmp);
3287 	}
3288 out:
3289 	*mem_limit = min_limit;
3290 	*memsw_limit = min_memsw_limit;
3291 	return;
3292 }
3293 
3294 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3295 {
3296 	struct mem_cgroup *mem;
3297 	int type, name;
3298 
3299 	mem = mem_cgroup_from_cont(cont);
3300 	type = MEMFILE_TYPE(event);
3301 	name = MEMFILE_ATTR(event);
3302 	switch (name) {
3303 	case RES_MAX_USAGE:
3304 		if (type == _MEM)
3305 			res_counter_reset_max(&mem->res);
3306 		else
3307 			res_counter_reset_max(&mem->memsw);
3308 		break;
3309 	case RES_FAILCNT:
3310 		if (type == _MEM)
3311 			res_counter_reset_failcnt(&mem->res);
3312 		else
3313 			res_counter_reset_failcnt(&mem->memsw);
3314 		break;
3315 	}
3316 
3317 	return 0;
3318 }
3319 
3320 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3321 					struct cftype *cft)
3322 {
3323 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3324 }
3325 
3326 #ifdef CONFIG_MMU
3327 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3328 					struct cftype *cft, u64 val)
3329 {
3330 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3331 
3332 	if (val >= (1 << NR_MOVE_TYPE))
3333 		return -EINVAL;
3334 	/*
3335 	 * We check this value several times in both in can_attach() and
3336 	 * attach(), so we need cgroup lock to prevent this value from being
3337 	 * inconsistent.
3338 	 */
3339 	cgroup_lock();
3340 	mem->move_charge_at_immigrate = val;
3341 	cgroup_unlock();
3342 
3343 	return 0;
3344 }
3345 #else
3346 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3347 					struct cftype *cft, u64 val)
3348 {
3349 	return -ENOSYS;
3350 }
3351 #endif
3352 
3353 
3354 /* For read statistics */
3355 enum {
3356 	MCS_CACHE,
3357 	MCS_RSS,
3358 	MCS_FILE_MAPPED,
3359 	MCS_PGPGIN,
3360 	MCS_PGPGOUT,
3361 	MCS_SWAP,
3362 	MCS_INACTIVE_ANON,
3363 	MCS_ACTIVE_ANON,
3364 	MCS_INACTIVE_FILE,
3365 	MCS_ACTIVE_FILE,
3366 	MCS_UNEVICTABLE,
3367 	NR_MCS_STAT,
3368 };
3369 
3370 struct mcs_total_stat {
3371 	s64 stat[NR_MCS_STAT];
3372 };
3373 
3374 struct {
3375 	char *local_name;
3376 	char *total_name;
3377 } memcg_stat_strings[NR_MCS_STAT] = {
3378 	{"cache", "total_cache"},
3379 	{"rss", "total_rss"},
3380 	{"mapped_file", "total_mapped_file"},
3381 	{"pgpgin", "total_pgpgin"},
3382 	{"pgpgout", "total_pgpgout"},
3383 	{"swap", "total_swap"},
3384 	{"inactive_anon", "total_inactive_anon"},
3385 	{"active_anon", "total_active_anon"},
3386 	{"inactive_file", "total_inactive_file"},
3387 	{"active_file", "total_active_file"},
3388 	{"unevictable", "total_unevictable"}
3389 };
3390 
3391 
3392 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3393 {
3394 	struct mcs_total_stat *s = data;
3395 	s64 val;
3396 
3397 	/* per cpu stat */
3398 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3399 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3400 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3401 	s->stat[MCS_RSS] += val * PAGE_SIZE;
3402 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3403 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3404 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3405 	s->stat[MCS_PGPGIN] += val;
3406 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3407 	s->stat[MCS_PGPGOUT] += val;
3408 	if (do_swap_account) {
3409 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3410 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3411 	}
3412 
3413 	/* per zone stat */
3414 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3415 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3416 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3417 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3418 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3419 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3420 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3421 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3422 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3423 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3424 	return 0;
3425 }
3426 
3427 static void
3428 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3429 {
3430 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3431 }
3432 
3433 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3434 				 struct cgroup_map_cb *cb)
3435 {
3436 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3437 	struct mcs_total_stat mystat;
3438 	int i;
3439 
3440 	memset(&mystat, 0, sizeof(mystat));
3441 	mem_cgroup_get_local_stat(mem_cont, &mystat);
3442 
3443 	for (i = 0; i < NR_MCS_STAT; i++) {
3444 		if (i == MCS_SWAP && !do_swap_account)
3445 			continue;
3446 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3447 	}
3448 
3449 	/* Hierarchical information */
3450 	{
3451 		unsigned long long limit, memsw_limit;
3452 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3453 		cb->fill(cb, "hierarchical_memory_limit", limit);
3454 		if (do_swap_account)
3455 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3456 	}
3457 
3458 	memset(&mystat, 0, sizeof(mystat));
3459 	mem_cgroup_get_total_stat(mem_cont, &mystat);
3460 	for (i = 0; i < NR_MCS_STAT; i++) {
3461 		if (i == MCS_SWAP && !do_swap_account)
3462 			continue;
3463 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3464 	}
3465 
3466 #ifdef CONFIG_DEBUG_VM
3467 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3468 
3469 	{
3470 		int nid, zid;
3471 		struct mem_cgroup_per_zone *mz;
3472 		unsigned long recent_rotated[2] = {0, 0};
3473 		unsigned long recent_scanned[2] = {0, 0};
3474 
3475 		for_each_online_node(nid)
3476 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3477 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3478 
3479 				recent_rotated[0] +=
3480 					mz->reclaim_stat.recent_rotated[0];
3481 				recent_rotated[1] +=
3482 					mz->reclaim_stat.recent_rotated[1];
3483 				recent_scanned[0] +=
3484 					mz->reclaim_stat.recent_scanned[0];
3485 				recent_scanned[1] +=
3486 					mz->reclaim_stat.recent_scanned[1];
3487 			}
3488 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3489 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3490 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3491 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3492 	}
3493 #endif
3494 
3495 	return 0;
3496 }
3497 
3498 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3499 {
3500 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3501 
3502 	return get_swappiness(memcg);
3503 }
3504 
3505 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3506 				       u64 val)
3507 {
3508 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3509 	struct mem_cgroup *parent;
3510 
3511 	if (val > 100)
3512 		return -EINVAL;
3513 
3514 	if (cgrp->parent == NULL)
3515 		return -EINVAL;
3516 
3517 	parent = mem_cgroup_from_cont(cgrp->parent);
3518 
3519 	cgroup_lock();
3520 
3521 	/* If under hierarchy, only empty-root can set this value */
3522 	if ((parent->use_hierarchy) ||
3523 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3524 		cgroup_unlock();
3525 		return -EINVAL;
3526 	}
3527 
3528 	spin_lock(&memcg->reclaim_param_lock);
3529 	memcg->swappiness = val;
3530 	spin_unlock(&memcg->reclaim_param_lock);
3531 
3532 	cgroup_unlock();
3533 
3534 	return 0;
3535 }
3536 
3537 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3538 {
3539 	struct mem_cgroup_threshold_ary *t;
3540 	u64 usage;
3541 	int i;
3542 
3543 	rcu_read_lock();
3544 	if (!swap)
3545 		t = rcu_dereference(memcg->thresholds.primary);
3546 	else
3547 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3548 
3549 	if (!t)
3550 		goto unlock;
3551 
3552 	usage = mem_cgroup_usage(memcg, swap);
3553 
3554 	/*
3555 	 * current_threshold points to threshold just below usage.
3556 	 * If it's not true, a threshold was crossed after last
3557 	 * call of __mem_cgroup_threshold().
3558 	 */
3559 	i = t->current_threshold;
3560 
3561 	/*
3562 	 * Iterate backward over array of thresholds starting from
3563 	 * current_threshold and check if a threshold is crossed.
3564 	 * If none of thresholds below usage is crossed, we read
3565 	 * only one element of the array here.
3566 	 */
3567 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3568 		eventfd_signal(t->entries[i].eventfd, 1);
3569 
3570 	/* i = current_threshold + 1 */
3571 	i++;
3572 
3573 	/*
3574 	 * Iterate forward over array of thresholds starting from
3575 	 * current_threshold+1 and check if a threshold is crossed.
3576 	 * If none of thresholds above usage is crossed, we read
3577 	 * only one element of the array here.
3578 	 */
3579 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3580 		eventfd_signal(t->entries[i].eventfd, 1);
3581 
3582 	/* Update current_threshold */
3583 	t->current_threshold = i - 1;
3584 unlock:
3585 	rcu_read_unlock();
3586 }
3587 
3588 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3589 {
3590 	__mem_cgroup_threshold(memcg, false);
3591 	if (do_swap_account)
3592 		__mem_cgroup_threshold(memcg, true);
3593 }
3594 
3595 static int compare_thresholds(const void *a, const void *b)
3596 {
3597 	const struct mem_cgroup_threshold *_a = a;
3598 	const struct mem_cgroup_threshold *_b = b;
3599 
3600 	return _a->threshold - _b->threshold;
3601 }
3602 
3603 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3604 {
3605 	struct mem_cgroup_eventfd_list *ev;
3606 
3607 	list_for_each_entry(ev, &mem->oom_notify, list)
3608 		eventfd_signal(ev->eventfd, 1);
3609 	return 0;
3610 }
3611 
3612 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3613 {
3614 	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3615 }
3616 
3617 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3618 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3619 {
3620 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3621 	struct mem_cgroup_thresholds *thresholds;
3622 	struct mem_cgroup_threshold_ary *new;
3623 	int type = MEMFILE_TYPE(cft->private);
3624 	u64 threshold, usage;
3625 	int i, size, ret;
3626 
3627 	ret = res_counter_memparse_write_strategy(args, &threshold);
3628 	if (ret)
3629 		return ret;
3630 
3631 	mutex_lock(&memcg->thresholds_lock);
3632 
3633 	if (type == _MEM)
3634 		thresholds = &memcg->thresholds;
3635 	else if (type == _MEMSWAP)
3636 		thresholds = &memcg->memsw_thresholds;
3637 	else
3638 		BUG();
3639 
3640 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3641 
3642 	/* Check if a threshold crossed before adding a new one */
3643 	if (thresholds->primary)
3644 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3645 
3646 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3647 
3648 	/* Allocate memory for new array of thresholds */
3649 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3650 			GFP_KERNEL);
3651 	if (!new) {
3652 		ret = -ENOMEM;
3653 		goto unlock;
3654 	}
3655 	new->size = size;
3656 
3657 	/* Copy thresholds (if any) to new array */
3658 	if (thresholds->primary) {
3659 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3660 				sizeof(struct mem_cgroup_threshold));
3661 	}
3662 
3663 	/* Add new threshold */
3664 	new->entries[size - 1].eventfd = eventfd;
3665 	new->entries[size - 1].threshold = threshold;
3666 
3667 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3668 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3669 			compare_thresholds, NULL);
3670 
3671 	/* Find current threshold */
3672 	new->current_threshold = -1;
3673 	for (i = 0; i < size; i++) {
3674 		if (new->entries[i].threshold < usage) {
3675 			/*
3676 			 * new->current_threshold will not be used until
3677 			 * rcu_assign_pointer(), so it's safe to increment
3678 			 * it here.
3679 			 */
3680 			++new->current_threshold;
3681 		}
3682 	}
3683 
3684 	/* Free old spare buffer and save old primary buffer as spare */
3685 	kfree(thresholds->spare);
3686 	thresholds->spare = thresholds->primary;
3687 
3688 	rcu_assign_pointer(thresholds->primary, new);
3689 
3690 	/* To be sure that nobody uses thresholds */
3691 	synchronize_rcu();
3692 
3693 unlock:
3694 	mutex_unlock(&memcg->thresholds_lock);
3695 
3696 	return ret;
3697 }
3698 
3699 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3700 	struct cftype *cft, struct eventfd_ctx *eventfd)
3701 {
3702 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3703 	struct mem_cgroup_thresholds *thresholds;
3704 	struct mem_cgroup_threshold_ary *new;
3705 	int type = MEMFILE_TYPE(cft->private);
3706 	u64 usage;
3707 	int i, j, size;
3708 
3709 	mutex_lock(&memcg->thresholds_lock);
3710 	if (type == _MEM)
3711 		thresholds = &memcg->thresholds;
3712 	else if (type == _MEMSWAP)
3713 		thresholds = &memcg->memsw_thresholds;
3714 	else
3715 		BUG();
3716 
3717 	/*
3718 	 * Something went wrong if we trying to unregister a threshold
3719 	 * if we don't have thresholds
3720 	 */
3721 	BUG_ON(!thresholds);
3722 
3723 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3724 
3725 	/* Check if a threshold crossed before removing */
3726 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3727 
3728 	/* Calculate new number of threshold */
3729 	size = 0;
3730 	for (i = 0; i < thresholds->primary->size; i++) {
3731 		if (thresholds->primary->entries[i].eventfd != eventfd)
3732 			size++;
3733 	}
3734 
3735 	new = thresholds->spare;
3736 
3737 	/* Set thresholds array to NULL if we don't have thresholds */
3738 	if (!size) {
3739 		kfree(new);
3740 		new = NULL;
3741 		goto swap_buffers;
3742 	}
3743 
3744 	new->size = size;
3745 
3746 	/* Copy thresholds and find current threshold */
3747 	new->current_threshold = -1;
3748 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3749 		if (thresholds->primary->entries[i].eventfd == eventfd)
3750 			continue;
3751 
3752 		new->entries[j] = thresholds->primary->entries[i];
3753 		if (new->entries[j].threshold < usage) {
3754 			/*
3755 			 * new->current_threshold will not be used
3756 			 * until rcu_assign_pointer(), so it's safe to increment
3757 			 * it here.
3758 			 */
3759 			++new->current_threshold;
3760 		}
3761 		j++;
3762 	}
3763 
3764 swap_buffers:
3765 	/* Swap primary and spare array */
3766 	thresholds->spare = thresholds->primary;
3767 	rcu_assign_pointer(thresholds->primary, new);
3768 
3769 	/* To be sure that nobody uses thresholds */
3770 	synchronize_rcu();
3771 
3772 	mutex_unlock(&memcg->thresholds_lock);
3773 }
3774 
3775 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3776 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3777 {
3778 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3779 	struct mem_cgroup_eventfd_list *event;
3780 	int type = MEMFILE_TYPE(cft->private);
3781 
3782 	BUG_ON(type != _OOM_TYPE);
3783 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3784 	if (!event)
3785 		return -ENOMEM;
3786 
3787 	mutex_lock(&memcg_oom_mutex);
3788 
3789 	event->eventfd = eventfd;
3790 	list_add(&event->list, &memcg->oom_notify);
3791 
3792 	/* already in OOM ? */
3793 	if (atomic_read(&memcg->oom_lock))
3794 		eventfd_signal(eventfd, 1);
3795 	mutex_unlock(&memcg_oom_mutex);
3796 
3797 	return 0;
3798 }
3799 
3800 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3801 	struct cftype *cft, struct eventfd_ctx *eventfd)
3802 {
3803 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3804 	struct mem_cgroup_eventfd_list *ev, *tmp;
3805 	int type = MEMFILE_TYPE(cft->private);
3806 
3807 	BUG_ON(type != _OOM_TYPE);
3808 
3809 	mutex_lock(&memcg_oom_mutex);
3810 
3811 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3812 		if (ev->eventfd == eventfd) {
3813 			list_del(&ev->list);
3814 			kfree(ev);
3815 		}
3816 	}
3817 
3818 	mutex_unlock(&memcg_oom_mutex);
3819 }
3820 
3821 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3822 	struct cftype *cft,  struct cgroup_map_cb *cb)
3823 {
3824 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3825 
3826 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3827 
3828 	if (atomic_read(&mem->oom_lock))
3829 		cb->fill(cb, "under_oom", 1);
3830 	else
3831 		cb->fill(cb, "under_oom", 0);
3832 	return 0;
3833 }
3834 
3835 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3836 	struct cftype *cft, u64 val)
3837 {
3838 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3839 	struct mem_cgroup *parent;
3840 
3841 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3842 	if (!cgrp->parent || !((val == 0) || (val == 1)))
3843 		return -EINVAL;
3844 
3845 	parent = mem_cgroup_from_cont(cgrp->parent);
3846 
3847 	cgroup_lock();
3848 	/* oom-kill-disable is a flag for subhierarchy. */
3849 	if ((parent->use_hierarchy) ||
3850 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3851 		cgroup_unlock();
3852 		return -EINVAL;
3853 	}
3854 	mem->oom_kill_disable = val;
3855 	if (!val)
3856 		memcg_oom_recover(mem);
3857 	cgroup_unlock();
3858 	return 0;
3859 }
3860 
3861 static struct cftype mem_cgroup_files[] = {
3862 	{
3863 		.name = "usage_in_bytes",
3864 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3865 		.read_u64 = mem_cgroup_read,
3866 		.register_event = mem_cgroup_usage_register_event,
3867 		.unregister_event = mem_cgroup_usage_unregister_event,
3868 	},
3869 	{
3870 		.name = "max_usage_in_bytes",
3871 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3872 		.trigger = mem_cgroup_reset,
3873 		.read_u64 = mem_cgroup_read,
3874 	},
3875 	{
3876 		.name = "limit_in_bytes",
3877 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3878 		.write_string = mem_cgroup_write,
3879 		.read_u64 = mem_cgroup_read,
3880 	},
3881 	{
3882 		.name = "soft_limit_in_bytes",
3883 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3884 		.write_string = mem_cgroup_write,
3885 		.read_u64 = mem_cgroup_read,
3886 	},
3887 	{
3888 		.name = "failcnt",
3889 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3890 		.trigger = mem_cgroup_reset,
3891 		.read_u64 = mem_cgroup_read,
3892 	},
3893 	{
3894 		.name = "stat",
3895 		.read_map = mem_control_stat_show,
3896 	},
3897 	{
3898 		.name = "force_empty",
3899 		.trigger = mem_cgroup_force_empty_write,
3900 	},
3901 	{
3902 		.name = "use_hierarchy",
3903 		.write_u64 = mem_cgroup_hierarchy_write,
3904 		.read_u64 = mem_cgroup_hierarchy_read,
3905 	},
3906 	{
3907 		.name = "swappiness",
3908 		.read_u64 = mem_cgroup_swappiness_read,
3909 		.write_u64 = mem_cgroup_swappiness_write,
3910 	},
3911 	{
3912 		.name = "move_charge_at_immigrate",
3913 		.read_u64 = mem_cgroup_move_charge_read,
3914 		.write_u64 = mem_cgroup_move_charge_write,
3915 	},
3916 	{
3917 		.name = "oom_control",
3918 		.read_map = mem_cgroup_oom_control_read,
3919 		.write_u64 = mem_cgroup_oom_control_write,
3920 		.register_event = mem_cgroup_oom_register_event,
3921 		.unregister_event = mem_cgroup_oom_unregister_event,
3922 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3923 	},
3924 };
3925 
3926 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3927 static struct cftype memsw_cgroup_files[] = {
3928 	{
3929 		.name = "memsw.usage_in_bytes",
3930 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3931 		.read_u64 = mem_cgroup_read,
3932 		.register_event = mem_cgroup_usage_register_event,
3933 		.unregister_event = mem_cgroup_usage_unregister_event,
3934 	},
3935 	{
3936 		.name = "memsw.max_usage_in_bytes",
3937 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3938 		.trigger = mem_cgroup_reset,
3939 		.read_u64 = mem_cgroup_read,
3940 	},
3941 	{
3942 		.name = "memsw.limit_in_bytes",
3943 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3944 		.write_string = mem_cgroup_write,
3945 		.read_u64 = mem_cgroup_read,
3946 	},
3947 	{
3948 		.name = "memsw.failcnt",
3949 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3950 		.trigger = mem_cgroup_reset,
3951 		.read_u64 = mem_cgroup_read,
3952 	},
3953 };
3954 
3955 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3956 {
3957 	if (!do_swap_account)
3958 		return 0;
3959 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
3960 				ARRAY_SIZE(memsw_cgroup_files));
3961 };
3962 #else
3963 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3964 {
3965 	return 0;
3966 }
3967 #endif
3968 
3969 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3970 {
3971 	struct mem_cgroup_per_node *pn;
3972 	struct mem_cgroup_per_zone *mz;
3973 	enum lru_list l;
3974 	int zone, tmp = node;
3975 	/*
3976 	 * This routine is called against possible nodes.
3977 	 * But it's BUG to call kmalloc() against offline node.
3978 	 *
3979 	 * TODO: this routine can waste much memory for nodes which will
3980 	 *       never be onlined. It's better to use memory hotplug callback
3981 	 *       function.
3982 	 */
3983 	if (!node_state(node, N_NORMAL_MEMORY))
3984 		tmp = -1;
3985 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3986 	if (!pn)
3987 		return 1;
3988 
3989 	mem->info.nodeinfo[node] = pn;
3990 	memset(pn, 0, sizeof(*pn));
3991 
3992 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3993 		mz = &pn->zoneinfo[zone];
3994 		for_each_lru(l)
3995 			INIT_LIST_HEAD(&mz->lists[l]);
3996 		mz->usage_in_excess = 0;
3997 		mz->on_tree = false;
3998 		mz->mem = mem;
3999 	}
4000 	return 0;
4001 }
4002 
4003 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4004 {
4005 	kfree(mem->info.nodeinfo[node]);
4006 }
4007 
4008 static struct mem_cgroup *mem_cgroup_alloc(void)
4009 {
4010 	struct mem_cgroup *mem;
4011 	int size = sizeof(struct mem_cgroup);
4012 
4013 	/* Can be very big if MAX_NUMNODES is very big */
4014 	if (size < PAGE_SIZE)
4015 		mem = kmalloc(size, GFP_KERNEL);
4016 	else
4017 		mem = vmalloc(size);
4018 
4019 	if (!mem)
4020 		return NULL;
4021 
4022 	memset(mem, 0, size);
4023 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4024 	if (!mem->stat) {
4025 		if (size < PAGE_SIZE)
4026 			kfree(mem);
4027 		else
4028 			vfree(mem);
4029 		mem = NULL;
4030 	}
4031 	return mem;
4032 }
4033 
4034 /*
4035  * At destroying mem_cgroup, references from swap_cgroup can remain.
4036  * (scanning all at force_empty is too costly...)
4037  *
4038  * Instead of clearing all references at force_empty, we remember
4039  * the number of reference from swap_cgroup and free mem_cgroup when
4040  * it goes down to 0.
4041  *
4042  * Removal of cgroup itself succeeds regardless of refs from swap.
4043  */
4044 
4045 static void __mem_cgroup_free(struct mem_cgroup *mem)
4046 {
4047 	int node;
4048 
4049 	mem_cgroup_remove_from_trees(mem);
4050 	free_css_id(&mem_cgroup_subsys, &mem->css);
4051 
4052 	for_each_node_state(node, N_POSSIBLE)
4053 		free_mem_cgroup_per_zone_info(mem, node);
4054 
4055 	free_percpu(mem->stat);
4056 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4057 		kfree(mem);
4058 	else
4059 		vfree(mem);
4060 }
4061 
4062 static void mem_cgroup_get(struct mem_cgroup *mem)
4063 {
4064 	atomic_inc(&mem->refcnt);
4065 }
4066 
4067 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4068 {
4069 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4070 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4071 		__mem_cgroup_free(mem);
4072 		if (parent)
4073 			mem_cgroup_put(parent);
4074 	}
4075 }
4076 
4077 static void mem_cgroup_put(struct mem_cgroup *mem)
4078 {
4079 	__mem_cgroup_put(mem, 1);
4080 }
4081 
4082 /*
4083  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4084  */
4085 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4086 {
4087 	if (!mem->res.parent)
4088 		return NULL;
4089 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4090 }
4091 
4092 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4093 static void __init enable_swap_cgroup(void)
4094 {
4095 	if (!mem_cgroup_disabled() && really_do_swap_account)
4096 		do_swap_account = 1;
4097 }
4098 #else
4099 static void __init enable_swap_cgroup(void)
4100 {
4101 }
4102 #endif
4103 
4104 static int mem_cgroup_soft_limit_tree_init(void)
4105 {
4106 	struct mem_cgroup_tree_per_node *rtpn;
4107 	struct mem_cgroup_tree_per_zone *rtpz;
4108 	int tmp, node, zone;
4109 
4110 	for_each_node_state(node, N_POSSIBLE) {
4111 		tmp = node;
4112 		if (!node_state(node, N_NORMAL_MEMORY))
4113 			tmp = -1;
4114 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4115 		if (!rtpn)
4116 			return 1;
4117 
4118 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4119 
4120 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4121 			rtpz = &rtpn->rb_tree_per_zone[zone];
4122 			rtpz->rb_root = RB_ROOT;
4123 			spin_lock_init(&rtpz->lock);
4124 		}
4125 	}
4126 	return 0;
4127 }
4128 
4129 static struct cgroup_subsys_state * __ref
4130 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4131 {
4132 	struct mem_cgroup *mem, *parent;
4133 	long error = -ENOMEM;
4134 	int node;
4135 
4136 	mem = mem_cgroup_alloc();
4137 	if (!mem)
4138 		return ERR_PTR(error);
4139 
4140 	for_each_node_state(node, N_POSSIBLE)
4141 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4142 			goto free_out;
4143 
4144 	/* root ? */
4145 	if (cont->parent == NULL) {
4146 		int cpu;
4147 		enable_swap_cgroup();
4148 		parent = NULL;
4149 		root_mem_cgroup = mem;
4150 		if (mem_cgroup_soft_limit_tree_init())
4151 			goto free_out;
4152 		for_each_possible_cpu(cpu) {
4153 			struct memcg_stock_pcp *stock =
4154 						&per_cpu(memcg_stock, cpu);
4155 			INIT_WORK(&stock->work, drain_local_stock);
4156 		}
4157 		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4158 	} else {
4159 		parent = mem_cgroup_from_cont(cont->parent);
4160 		mem->use_hierarchy = parent->use_hierarchy;
4161 		mem->oom_kill_disable = parent->oom_kill_disable;
4162 	}
4163 
4164 	if (parent && parent->use_hierarchy) {
4165 		res_counter_init(&mem->res, &parent->res);
4166 		res_counter_init(&mem->memsw, &parent->memsw);
4167 		/*
4168 		 * We increment refcnt of the parent to ensure that we can
4169 		 * safely access it on res_counter_charge/uncharge.
4170 		 * This refcnt will be decremented when freeing this
4171 		 * mem_cgroup(see mem_cgroup_put).
4172 		 */
4173 		mem_cgroup_get(parent);
4174 	} else {
4175 		res_counter_init(&mem->res, NULL);
4176 		res_counter_init(&mem->memsw, NULL);
4177 	}
4178 	mem->last_scanned_child = 0;
4179 	spin_lock_init(&mem->reclaim_param_lock);
4180 	INIT_LIST_HEAD(&mem->oom_notify);
4181 
4182 	if (parent)
4183 		mem->swappiness = get_swappiness(parent);
4184 	atomic_set(&mem->refcnt, 1);
4185 	mem->move_charge_at_immigrate = 0;
4186 	mutex_init(&mem->thresholds_lock);
4187 	return &mem->css;
4188 free_out:
4189 	__mem_cgroup_free(mem);
4190 	root_mem_cgroup = NULL;
4191 	return ERR_PTR(error);
4192 }
4193 
4194 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4195 					struct cgroup *cont)
4196 {
4197 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4198 
4199 	return mem_cgroup_force_empty(mem, false);
4200 }
4201 
4202 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4203 				struct cgroup *cont)
4204 {
4205 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4206 
4207 	mem_cgroup_put(mem);
4208 }
4209 
4210 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4211 				struct cgroup *cont)
4212 {
4213 	int ret;
4214 
4215 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4216 				ARRAY_SIZE(mem_cgroup_files));
4217 
4218 	if (!ret)
4219 		ret = register_memsw_files(cont, ss);
4220 	return ret;
4221 }
4222 
4223 #ifdef CONFIG_MMU
4224 /* Handlers for move charge at task migration. */
4225 #define PRECHARGE_COUNT_AT_ONCE	256
4226 static int mem_cgroup_do_precharge(unsigned long count)
4227 {
4228 	int ret = 0;
4229 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4230 	struct mem_cgroup *mem = mc.to;
4231 
4232 	if (mem_cgroup_is_root(mem)) {
4233 		mc.precharge += count;
4234 		/* we don't need css_get for root */
4235 		return ret;
4236 	}
4237 	/* try to charge at once */
4238 	if (count > 1) {
4239 		struct res_counter *dummy;
4240 		/*
4241 		 * "mem" cannot be under rmdir() because we've already checked
4242 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4243 		 * are still under the same cgroup_mutex. So we can postpone
4244 		 * css_get().
4245 		 */
4246 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4247 			goto one_by_one;
4248 		if (do_swap_account && res_counter_charge(&mem->memsw,
4249 						PAGE_SIZE * count, &dummy)) {
4250 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4251 			goto one_by_one;
4252 		}
4253 		mc.precharge += count;
4254 		return ret;
4255 	}
4256 one_by_one:
4257 	/* fall back to one by one charge */
4258 	while (count--) {
4259 		if (signal_pending(current)) {
4260 			ret = -EINTR;
4261 			break;
4262 		}
4263 		if (!batch_count--) {
4264 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4265 			cond_resched();
4266 		}
4267 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4268 		if (ret || !mem)
4269 			/* mem_cgroup_clear_mc() will do uncharge later */
4270 			return -ENOMEM;
4271 		mc.precharge++;
4272 	}
4273 	return ret;
4274 }
4275 
4276 /**
4277  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4278  * @vma: the vma the pte to be checked belongs
4279  * @addr: the address corresponding to the pte to be checked
4280  * @ptent: the pte to be checked
4281  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4282  *
4283  * Returns
4284  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4285  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4286  *     move charge. if @target is not NULL, the page is stored in target->page
4287  *     with extra refcnt got(Callers should handle it).
4288  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4289  *     target for charge migration. if @target is not NULL, the entry is stored
4290  *     in target->ent.
4291  *
4292  * Called with pte lock held.
4293  */
4294 union mc_target {
4295 	struct page	*page;
4296 	swp_entry_t	ent;
4297 };
4298 
4299 enum mc_target_type {
4300 	MC_TARGET_NONE,	/* not used */
4301 	MC_TARGET_PAGE,
4302 	MC_TARGET_SWAP,
4303 };
4304 
4305 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4306 						unsigned long addr, pte_t ptent)
4307 {
4308 	struct page *page = vm_normal_page(vma, addr, ptent);
4309 
4310 	if (!page || !page_mapped(page))
4311 		return NULL;
4312 	if (PageAnon(page)) {
4313 		/* we don't move shared anon */
4314 		if (!move_anon() || page_mapcount(page) > 2)
4315 			return NULL;
4316 	} else if (!move_file())
4317 		/* we ignore mapcount for file pages */
4318 		return NULL;
4319 	if (!get_page_unless_zero(page))
4320 		return NULL;
4321 
4322 	return page;
4323 }
4324 
4325 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4326 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4327 {
4328 	int usage_count;
4329 	struct page *page = NULL;
4330 	swp_entry_t ent = pte_to_swp_entry(ptent);
4331 
4332 	if (!move_anon() || non_swap_entry(ent))
4333 		return NULL;
4334 	usage_count = mem_cgroup_count_swap_user(ent, &page);
4335 	if (usage_count > 1) { /* we don't move shared anon */
4336 		if (page)
4337 			put_page(page);
4338 		return NULL;
4339 	}
4340 	if (do_swap_account)
4341 		entry->val = ent.val;
4342 
4343 	return page;
4344 }
4345 
4346 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4347 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4348 {
4349 	struct page *page = NULL;
4350 	struct inode *inode;
4351 	struct address_space *mapping;
4352 	pgoff_t pgoff;
4353 
4354 	if (!vma->vm_file) /* anonymous vma */
4355 		return NULL;
4356 	if (!move_file())
4357 		return NULL;
4358 
4359 	inode = vma->vm_file->f_path.dentry->d_inode;
4360 	mapping = vma->vm_file->f_mapping;
4361 	if (pte_none(ptent))
4362 		pgoff = linear_page_index(vma, addr);
4363 	else /* pte_file(ptent) is true */
4364 		pgoff = pte_to_pgoff(ptent);
4365 
4366 	/* page is moved even if it's not RSS of this task(page-faulted). */
4367 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4368 		page = find_get_page(mapping, pgoff);
4369 	} else { /* shmem/tmpfs file. we should take account of swap too. */
4370 		swp_entry_t ent;
4371 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4372 		if (do_swap_account)
4373 			entry->val = ent.val;
4374 	}
4375 
4376 	return page;
4377 }
4378 
4379 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4380 		unsigned long addr, pte_t ptent, union mc_target *target)
4381 {
4382 	struct page *page = NULL;
4383 	struct page_cgroup *pc;
4384 	int ret = 0;
4385 	swp_entry_t ent = { .val = 0 };
4386 
4387 	if (pte_present(ptent))
4388 		page = mc_handle_present_pte(vma, addr, ptent);
4389 	else if (is_swap_pte(ptent))
4390 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4391 	else if (pte_none(ptent) || pte_file(ptent))
4392 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4393 
4394 	if (!page && !ent.val)
4395 		return 0;
4396 	if (page) {
4397 		pc = lookup_page_cgroup(page);
4398 		/*
4399 		 * Do only loose check w/o page_cgroup lock.
4400 		 * mem_cgroup_move_account() checks the pc is valid or not under
4401 		 * the lock.
4402 		 */
4403 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4404 			ret = MC_TARGET_PAGE;
4405 			if (target)
4406 				target->page = page;
4407 		}
4408 		if (!ret || !target)
4409 			put_page(page);
4410 	}
4411 	/* There is a swap entry and a page doesn't exist or isn't charged */
4412 	if (ent.val && !ret &&
4413 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4414 		ret = MC_TARGET_SWAP;
4415 		if (target)
4416 			target->ent = ent;
4417 	}
4418 	return ret;
4419 }
4420 
4421 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4422 					unsigned long addr, unsigned long end,
4423 					struct mm_walk *walk)
4424 {
4425 	struct vm_area_struct *vma = walk->private;
4426 	pte_t *pte;
4427 	spinlock_t *ptl;
4428 
4429 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4430 	for (; addr != end; pte++, addr += PAGE_SIZE)
4431 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4432 			mc.precharge++;	/* increment precharge temporarily */
4433 	pte_unmap_unlock(pte - 1, ptl);
4434 	cond_resched();
4435 
4436 	return 0;
4437 }
4438 
4439 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4440 {
4441 	unsigned long precharge;
4442 	struct vm_area_struct *vma;
4443 
4444 	down_read(&mm->mmap_sem);
4445 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4446 		struct mm_walk mem_cgroup_count_precharge_walk = {
4447 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4448 			.mm = mm,
4449 			.private = vma,
4450 		};
4451 		if (is_vm_hugetlb_page(vma))
4452 			continue;
4453 		walk_page_range(vma->vm_start, vma->vm_end,
4454 					&mem_cgroup_count_precharge_walk);
4455 	}
4456 	up_read(&mm->mmap_sem);
4457 
4458 	precharge = mc.precharge;
4459 	mc.precharge = 0;
4460 
4461 	return precharge;
4462 }
4463 
4464 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4465 {
4466 	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4467 }
4468 
4469 static void mem_cgroup_clear_mc(void)
4470 {
4471 	struct mem_cgroup *from = mc.from;
4472 	struct mem_cgroup *to = mc.to;
4473 
4474 	/* we must uncharge all the leftover precharges from mc.to */
4475 	if (mc.precharge) {
4476 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4477 		mc.precharge = 0;
4478 	}
4479 	/*
4480 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4481 	 * we must uncharge here.
4482 	 */
4483 	if (mc.moved_charge) {
4484 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4485 		mc.moved_charge = 0;
4486 	}
4487 	/* we must fixup refcnts and charges */
4488 	if (mc.moved_swap) {
4489 		/* uncharge swap account from the old cgroup */
4490 		if (!mem_cgroup_is_root(mc.from))
4491 			res_counter_uncharge(&mc.from->memsw,
4492 						PAGE_SIZE * mc.moved_swap);
4493 		__mem_cgroup_put(mc.from, mc.moved_swap);
4494 
4495 		if (!mem_cgroup_is_root(mc.to)) {
4496 			/*
4497 			 * we charged both to->res and to->memsw, so we should
4498 			 * uncharge to->res.
4499 			 */
4500 			res_counter_uncharge(&mc.to->res,
4501 						PAGE_SIZE * mc.moved_swap);
4502 		}
4503 		/* we've already done mem_cgroup_get(mc.to) */
4504 
4505 		mc.moved_swap = 0;
4506 	}
4507 	spin_lock(&mc.lock);
4508 	mc.from = NULL;
4509 	mc.to = NULL;
4510 	mc.moving_task = NULL;
4511 	spin_unlock(&mc.lock);
4512 	memcg_oom_recover(from);
4513 	memcg_oom_recover(to);
4514 	wake_up_all(&mc.waitq);
4515 }
4516 
4517 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4518 				struct cgroup *cgroup,
4519 				struct task_struct *p,
4520 				bool threadgroup)
4521 {
4522 	int ret = 0;
4523 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4524 
4525 	if (mem->move_charge_at_immigrate) {
4526 		struct mm_struct *mm;
4527 		struct mem_cgroup *from = mem_cgroup_from_task(p);
4528 
4529 		VM_BUG_ON(from == mem);
4530 
4531 		mm = get_task_mm(p);
4532 		if (!mm)
4533 			return 0;
4534 		/* We move charges only when we move a owner of the mm */
4535 		if (mm->owner == p) {
4536 			VM_BUG_ON(mc.from);
4537 			VM_BUG_ON(mc.to);
4538 			VM_BUG_ON(mc.precharge);
4539 			VM_BUG_ON(mc.moved_charge);
4540 			VM_BUG_ON(mc.moved_swap);
4541 			VM_BUG_ON(mc.moving_task);
4542 			spin_lock(&mc.lock);
4543 			mc.from = from;
4544 			mc.to = mem;
4545 			mc.precharge = 0;
4546 			mc.moved_charge = 0;
4547 			mc.moved_swap = 0;
4548 			mc.moving_task = current;
4549 			spin_unlock(&mc.lock);
4550 
4551 			ret = mem_cgroup_precharge_mc(mm);
4552 			if (ret)
4553 				mem_cgroup_clear_mc();
4554 		}
4555 		mmput(mm);
4556 	}
4557 	return ret;
4558 }
4559 
4560 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4561 				struct cgroup *cgroup,
4562 				struct task_struct *p,
4563 				bool threadgroup)
4564 {
4565 	mem_cgroup_clear_mc();
4566 }
4567 
4568 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4569 				unsigned long addr, unsigned long end,
4570 				struct mm_walk *walk)
4571 {
4572 	int ret = 0;
4573 	struct vm_area_struct *vma = walk->private;
4574 	pte_t *pte;
4575 	spinlock_t *ptl;
4576 
4577 retry:
4578 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4579 	for (; addr != end; addr += PAGE_SIZE) {
4580 		pte_t ptent = *(pte++);
4581 		union mc_target target;
4582 		int type;
4583 		struct page *page;
4584 		struct page_cgroup *pc;
4585 		swp_entry_t ent;
4586 
4587 		if (!mc.precharge)
4588 			break;
4589 
4590 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4591 		switch (type) {
4592 		case MC_TARGET_PAGE:
4593 			page = target.page;
4594 			if (isolate_lru_page(page))
4595 				goto put;
4596 			pc = lookup_page_cgroup(page);
4597 			if (!mem_cgroup_move_account(pc,
4598 						mc.from, mc.to, false)) {
4599 				mc.precharge--;
4600 				/* we uncharge from mc.from later. */
4601 				mc.moved_charge++;
4602 			}
4603 			putback_lru_page(page);
4604 put:			/* is_target_pte_for_mc() gets the page */
4605 			put_page(page);
4606 			break;
4607 		case MC_TARGET_SWAP:
4608 			ent = target.ent;
4609 			if (!mem_cgroup_move_swap_account(ent,
4610 						mc.from, mc.to, false)) {
4611 				mc.precharge--;
4612 				/* we fixup refcnts and charges later. */
4613 				mc.moved_swap++;
4614 			}
4615 			break;
4616 		default:
4617 			break;
4618 		}
4619 	}
4620 	pte_unmap_unlock(pte - 1, ptl);
4621 	cond_resched();
4622 
4623 	if (addr != end) {
4624 		/*
4625 		 * We have consumed all precharges we got in can_attach().
4626 		 * We try charge one by one, but don't do any additional
4627 		 * charges to mc.to if we have failed in charge once in attach()
4628 		 * phase.
4629 		 */
4630 		ret = mem_cgroup_do_precharge(1);
4631 		if (!ret)
4632 			goto retry;
4633 	}
4634 
4635 	return ret;
4636 }
4637 
4638 static void mem_cgroup_move_charge(struct mm_struct *mm)
4639 {
4640 	struct vm_area_struct *vma;
4641 
4642 	lru_add_drain_all();
4643 	down_read(&mm->mmap_sem);
4644 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4645 		int ret;
4646 		struct mm_walk mem_cgroup_move_charge_walk = {
4647 			.pmd_entry = mem_cgroup_move_charge_pte_range,
4648 			.mm = mm,
4649 			.private = vma,
4650 		};
4651 		if (is_vm_hugetlb_page(vma))
4652 			continue;
4653 		ret = walk_page_range(vma->vm_start, vma->vm_end,
4654 						&mem_cgroup_move_charge_walk);
4655 		if (ret)
4656 			/*
4657 			 * means we have consumed all precharges and failed in
4658 			 * doing additional charge. Just abandon here.
4659 			 */
4660 			break;
4661 	}
4662 	up_read(&mm->mmap_sem);
4663 }
4664 
4665 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4666 				struct cgroup *cont,
4667 				struct cgroup *old_cont,
4668 				struct task_struct *p,
4669 				bool threadgroup)
4670 {
4671 	struct mm_struct *mm;
4672 
4673 	if (!mc.to)
4674 		/* no need to move charge */
4675 		return;
4676 
4677 	mm = get_task_mm(p);
4678 	if (mm) {
4679 		mem_cgroup_move_charge(mm);
4680 		mmput(mm);
4681 	}
4682 	mem_cgroup_clear_mc();
4683 }
4684 #else	/* !CONFIG_MMU */
4685 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4686 				struct cgroup *cgroup,
4687 				struct task_struct *p,
4688 				bool threadgroup)
4689 {
4690 	return 0;
4691 }
4692 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4693 				struct cgroup *cgroup,
4694 				struct task_struct *p,
4695 				bool threadgroup)
4696 {
4697 }
4698 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4699 				struct cgroup *cont,
4700 				struct cgroup *old_cont,
4701 				struct task_struct *p,
4702 				bool threadgroup)
4703 {
4704 }
4705 #endif
4706 
4707 struct cgroup_subsys mem_cgroup_subsys = {
4708 	.name = "memory",
4709 	.subsys_id = mem_cgroup_subsys_id,
4710 	.create = mem_cgroup_create,
4711 	.pre_destroy = mem_cgroup_pre_destroy,
4712 	.destroy = mem_cgroup_destroy,
4713 	.populate = mem_cgroup_populate,
4714 	.can_attach = mem_cgroup_can_attach,
4715 	.cancel_attach = mem_cgroup_cancel_attach,
4716 	.attach = mem_cgroup_move_task,
4717 	.early_init = 0,
4718 	.use_id = 1,
4719 };
4720 
4721 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4722 
4723 static int __init disable_swap_account(char *s)
4724 {
4725 	really_do_swap_account = 0;
4726 	return 1;
4727 }
4728 __setup("noswapaccount", disable_swap_account);
4729 #endif
4730