xref: /openbmc/linux/mm/memcontrol.c (revision 9cfc5c90)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71 
72 #include <asm/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 #define MEM_CGROUP_RECLAIM_RETRIES	5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 static const char * const mem_cgroup_stat_names[] = {
91 	"cache",
92 	"rss",
93 	"rss_huge",
94 	"mapped_file",
95 	"dirty",
96 	"writeback",
97 	"swap",
98 };
99 
100 static const char * const mem_cgroup_events_names[] = {
101 	"pgpgin",
102 	"pgpgout",
103 	"pgfault",
104 	"pgmajfault",
105 };
106 
107 static const char * const mem_cgroup_lru_names[] = {
108 	"inactive_anon",
109 	"active_anon",
110 	"inactive_file",
111 	"active_file",
112 	"unevictable",
113 };
114 
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET	1024
118 
119 /*
120  * Cgroups above their limits are maintained in a RB-Tree, independent of
121  * their hierarchy representation
122  */
123 
124 struct mem_cgroup_tree_per_zone {
125 	struct rb_root rb_root;
126 	spinlock_t lock;
127 };
128 
129 struct mem_cgroup_tree_per_node {
130 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132 
133 struct mem_cgroup_tree {
134 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136 
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138 
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 	struct list_head list;
142 	struct eventfd_ctx *eventfd;
143 };
144 
145 /*
146  * cgroup_event represents events which userspace want to receive.
147  */
148 struct mem_cgroup_event {
149 	/*
150 	 * memcg which the event belongs to.
151 	 */
152 	struct mem_cgroup *memcg;
153 	/*
154 	 * eventfd to signal userspace about the event.
155 	 */
156 	struct eventfd_ctx *eventfd;
157 	/*
158 	 * Each of these stored in a list by the cgroup.
159 	 */
160 	struct list_head list;
161 	/*
162 	 * register_event() callback will be used to add new userspace
163 	 * waiter for changes related to this event.  Use eventfd_signal()
164 	 * on eventfd to send notification to userspace.
165 	 */
166 	int (*register_event)(struct mem_cgroup *memcg,
167 			      struct eventfd_ctx *eventfd, const char *args);
168 	/*
169 	 * unregister_event() callback will be called when userspace closes
170 	 * the eventfd or on cgroup removing.  This callback must be set,
171 	 * if you want provide notification functionality.
172 	 */
173 	void (*unregister_event)(struct mem_cgroup *memcg,
174 				 struct eventfd_ctx *eventfd);
175 	/*
176 	 * All fields below needed to unregister event when
177 	 * userspace closes eventfd.
178 	 */
179 	poll_table pt;
180 	wait_queue_head_t *wqh;
181 	wait_queue_t wait;
182 	struct work_struct remove;
183 };
184 
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187 
188 /* Stuffs for move charges at task migration. */
189 /*
190  * Types of charges to be moved.
191  */
192 #define MOVE_ANON	0x1U
193 #define MOVE_FILE	0x2U
194 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195 
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 	spinlock_t	  lock; /* for from, to */
199 	struct mem_cgroup *from;
200 	struct mem_cgroup *to;
201 	unsigned long flags;
202 	unsigned long precharge;
203 	unsigned long moved_charge;
204 	unsigned long moved_swap;
205 	struct task_struct *moving_task;	/* a task moving charges */
206 	wait_queue_head_t waitq;		/* a waitq for other context */
207 } mc = {
208 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210 };
211 
212 /*
213  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214  * limit reclaim to prevent infinite loops, if they ever occur.
215  */
216 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
217 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
218 
219 enum charge_type {
220 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221 	MEM_CGROUP_CHARGE_TYPE_ANON,
222 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
223 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
224 	NR_CHARGE_TYPE,
225 };
226 
227 /* for encoding cft->private value on file */
228 enum res_type {
229 	_MEM,
230 	_MEMSWAP,
231 	_OOM_TYPE,
232 	_KMEM,
233 };
234 
235 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
236 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
237 #define MEMFILE_ATTR(val)	((val) & 0xffff)
238 /* Used for OOM nofiier */
239 #define OOM_CONTROL		(0)
240 
241 /*
242  * The memcg_create_mutex will be held whenever a new cgroup is created.
243  * As a consequence, any change that needs to protect against new child cgroups
244  * appearing has to hold it as well.
245  */
246 static DEFINE_MUTEX(memcg_create_mutex);
247 
248 /* Some nice accessors for the vmpressure. */
249 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 {
251 	if (!memcg)
252 		memcg = root_mem_cgroup;
253 	return &memcg->vmpressure;
254 }
255 
256 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257 {
258 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 }
260 
261 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262 {
263 	return (memcg == root_mem_cgroup);
264 }
265 
266 /*
267  * We restrict the id in the range of [1, 65535], so it can fit into
268  * an unsigned short.
269  */
270 #define MEM_CGROUP_ID_MAX	USHRT_MAX
271 
272 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273 {
274 	return memcg->css.id;
275 }
276 
277 /*
278  * A helper function to get mem_cgroup from ID. must be called under
279  * rcu_read_lock().  The caller is responsible for calling
280  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281  * refcnt from swap can be called against removed memcg.)
282  */
283 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284 {
285 	struct cgroup_subsys_state *css;
286 
287 	css = css_from_id(id, &memory_cgrp_subsys);
288 	return mem_cgroup_from_css(css);
289 }
290 
291 /* Writing them here to avoid exposing memcg's inner layout */
292 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
293 
294 void sock_update_memcg(struct sock *sk)
295 {
296 	if (mem_cgroup_sockets_enabled) {
297 		struct mem_cgroup *memcg;
298 		struct cg_proto *cg_proto;
299 
300 		BUG_ON(!sk->sk_prot->proto_cgroup);
301 
302 		/* Socket cloning can throw us here with sk_cgrp already
303 		 * filled. It won't however, necessarily happen from
304 		 * process context. So the test for root memcg given
305 		 * the current task's memcg won't help us in this case.
306 		 *
307 		 * Respecting the original socket's memcg is a better
308 		 * decision in this case.
309 		 */
310 		if (sk->sk_cgrp) {
311 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
312 			css_get(&sk->sk_cgrp->memcg->css);
313 			return;
314 		}
315 
316 		rcu_read_lock();
317 		memcg = mem_cgroup_from_task(current);
318 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
319 		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
320 		    css_tryget_online(&memcg->css)) {
321 			sk->sk_cgrp = cg_proto;
322 		}
323 		rcu_read_unlock();
324 	}
325 }
326 EXPORT_SYMBOL(sock_update_memcg);
327 
328 void sock_release_memcg(struct sock *sk)
329 {
330 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
331 		struct mem_cgroup *memcg;
332 		WARN_ON(!sk->sk_cgrp->memcg);
333 		memcg = sk->sk_cgrp->memcg;
334 		css_put(&sk->sk_cgrp->memcg->css);
335 	}
336 }
337 
338 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339 {
340 	if (!memcg || mem_cgroup_is_root(memcg))
341 		return NULL;
342 
343 	return &memcg->tcp_mem;
344 }
345 EXPORT_SYMBOL(tcp_proto_cgroup);
346 
347 #endif
348 
349 #ifdef CONFIG_MEMCG_KMEM
350 /*
351  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363 
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366 
367 void memcg_get_cache_ids(void)
368 {
369 	down_read(&memcg_cache_ids_sem);
370 }
371 
372 void memcg_put_cache_ids(void)
373 {
374 	up_read(&memcg_cache_ids_sem);
375 }
376 
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391 
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 struct static_key memcg_kmem_enabled_key;
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 
401 #endif /* CONFIG_MEMCG_KMEM */
402 
403 static struct mem_cgroup_per_zone *
404 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405 {
406 	int nid = zone_to_nid(zone);
407 	int zid = zone_idx(zone);
408 
409 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 }
411 
412 /**
413  * mem_cgroup_css_from_page - css of the memcg associated with a page
414  * @page: page of interest
415  *
416  * If memcg is bound to the default hierarchy, css of the memcg associated
417  * with @page is returned.  The returned css remains associated with @page
418  * until it is released.
419  *
420  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421  * is returned.
422  *
423  * XXX: The above description of behavior on the default hierarchy isn't
424  * strictly true yet as replace_page_cache_page() can modify the
425  * association before @page is released even on the default hierarchy;
426  * however, the current and planned usages don't mix the the two functions
427  * and replace_page_cache_page() will soon be updated to make the invariant
428  * actually true.
429  */
430 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431 {
432 	struct mem_cgroup *memcg;
433 
434 	rcu_read_lock();
435 
436 	memcg = page->mem_cgroup;
437 
438 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
439 		memcg = root_mem_cgroup;
440 
441 	rcu_read_unlock();
442 	return &memcg->css;
443 }
444 
445 /**
446  * page_cgroup_ino - return inode number of the memcg a page is charged to
447  * @page: the page
448  *
449  * Look up the closest online ancestor of the memory cgroup @page is charged to
450  * and return its inode number or 0 if @page is not charged to any cgroup. It
451  * is safe to call this function without holding a reference to @page.
452  *
453  * Note, this function is inherently racy, because there is nothing to prevent
454  * the cgroup inode from getting torn down and potentially reallocated a moment
455  * after page_cgroup_ino() returns, so it only should be used by callers that
456  * do not care (such as procfs interfaces).
457  */
458 ino_t page_cgroup_ino(struct page *page)
459 {
460 	struct mem_cgroup *memcg;
461 	unsigned long ino = 0;
462 
463 	rcu_read_lock();
464 	memcg = READ_ONCE(page->mem_cgroup);
465 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 		memcg = parent_mem_cgroup(memcg);
467 	if (memcg)
468 		ino = cgroup_ino(memcg->css.cgroup);
469 	rcu_read_unlock();
470 	return ino;
471 }
472 
473 static struct mem_cgroup_per_zone *
474 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475 {
476 	int nid = page_to_nid(page);
477 	int zid = page_zonenum(page);
478 
479 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
480 }
481 
482 static struct mem_cgroup_tree_per_zone *
483 soft_limit_tree_node_zone(int nid, int zid)
484 {
485 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486 }
487 
488 static struct mem_cgroup_tree_per_zone *
489 soft_limit_tree_from_page(struct page *page)
490 {
491 	int nid = page_to_nid(page);
492 	int zid = page_zonenum(page);
493 
494 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495 }
496 
497 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 					 struct mem_cgroup_tree_per_zone *mctz,
499 					 unsigned long new_usage_in_excess)
500 {
501 	struct rb_node **p = &mctz->rb_root.rb_node;
502 	struct rb_node *parent = NULL;
503 	struct mem_cgroup_per_zone *mz_node;
504 
505 	if (mz->on_tree)
506 		return;
507 
508 	mz->usage_in_excess = new_usage_in_excess;
509 	if (!mz->usage_in_excess)
510 		return;
511 	while (*p) {
512 		parent = *p;
513 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 					tree_node);
515 		if (mz->usage_in_excess < mz_node->usage_in_excess)
516 			p = &(*p)->rb_left;
517 		/*
518 		 * We can't avoid mem cgroups that are over their soft
519 		 * limit by the same amount
520 		 */
521 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 			p = &(*p)->rb_right;
523 	}
524 	rb_link_node(&mz->tree_node, parent, p);
525 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 	mz->on_tree = true;
527 }
528 
529 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 					 struct mem_cgroup_tree_per_zone *mctz)
531 {
532 	if (!mz->on_tree)
533 		return;
534 	rb_erase(&mz->tree_node, &mctz->rb_root);
535 	mz->on_tree = false;
536 }
537 
538 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 				       struct mem_cgroup_tree_per_zone *mctz)
540 {
541 	unsigned long flags;
542 
543 	spin_lock_irqsave(&mctz->lock, flags);
544 	__mem_cgroup_remove_exceeded(mz, mctz);
545 	spin_unlock_irqrestore(&mctz->lock, flags);
546 }
547 
548 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549 {
550 	unsigned long nr_pages = page_counter_read(&memcg->memory);
551 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
552 	unsigned long excess = 0;
553 
554 	if (nr_pages > soft_limit)
555 		excess = nr_pages - soft_limit;
556 
557 	return excess;
558 }
559 
560 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561 {
562 	unsigned long excess;
563 	struct mem_cgroup_per_zone *mz;
564 	struct mem_cgroup_tree_per_zone *mctz;
565 
566 	mctz = soft_limit_tree_from_page(page);
567 	/*
568 	 * Necessary to update all ancestors when hierarchy is used.
569 	 * because their event counter is not touched.
570 	 */
571 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572 		mz = mem_cgroup_page_zoneinfo(memcg, page);
573 		excess = soft_limit_excess(memcg);
574 		/*
575 		 * We have to update the tree if mz is on RB-tree or
576 		 * mem is over its softlimit.
577 		 */
578 		if (excess || mz->on_tree) {
579 			unsigned long flags;
580 
581 			spin_lock_irqsave(&mctz->lock, flags);
582 			/* if on-tree, remove it */
583 			if (mz->on_tree)
584 				__mem_cgroup_remove_exceeded(mz, mctz);
585 			/*
586 			 * Insert again. mz->usage_in_excess will be updated.
587 			 * If excess is 0, no tree ops.
588 			 */
589 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
590 			spin_unlock_irqrestore(&mctz->lock, flags);
591 		}
592 	}
593 }
594 
595 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596 {
597 	struct mem_cgroup_tree_per_zone *mctz;
598 	struct mem_cgroup_per_zone *mz;
599 	int nid, zid;
600 
601 	for_each_node(nid) {
602 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 			mctz = soft_limit_tree_node_zone(nid, zid);
605 			mem_cgroup_remove_exceeded(mz, mctz);
606 		}
607 	}
608 }
609 
610 static struct mem_cgroup_per_zone *
611 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612 {
613 	struct rb_node *rightmost = NULL;
614 	struct mem_cgroup_per_zone *mz;
615 
616 retry:
617 	mz = NULL;
618 	rightmost = rb_last(&mctz->rb_root);
619 	if (!rightmost)
620 		goto done;		/* Nothing to reclaim from */
621 
622 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 	/*
624 	 * Remove the node now but someone else can add it back,
625 	 * we will to add it back at the end of reclaim to its correct
626 	 * position in the tree.
627 	 */
628 	__mem_cgroup_remove_exceeded(mz, mctz);
629 	if (!soft_limit_excess(mz->memcg) ||
630 	    !css_tryget_online(&mz->memcg->css))
631 		goto retry;
632 done:
633 	return mz;
634 }
635 
636 static struct mem_cgroup_per_zone *
637 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638 {
639 	struct mem_cgroup_per_zone *mz;
640 
641 	spin_lock_irq(&mctz->lock);
642 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
643 	spin_unlock_irq(&mctz->lock);
644 	return mz;
645 }
646 
647 /*
648  * Return page count for single (non recursive) @memcg.
649  *
650  * Implementation Note: reading percpu statistics for memcg.
651  *
652  * Both of vmstat[] and percpu_counter has threshold and do periodic
653  * synchronization to implement "quick" read. There are trade-off between
654  * reading cost and precision of value. Then, we may have a chance to implement
655  * a periodic synchronization of counter in memcg's counter.
656  *
657  * But this _read() function is used for user interface now. The user accounts
658  * memory usage by memory cgroup and he _always_ requires exact value because
659  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660  * have to visit all online cpus and make sum. So, for now, unnecessary
661  * synchronization is not implemented. (just implemented for cpu hotplug)
662  *
663  * If there are kernel internal actions which can make use of some not-exact
664  * value, and reading all cpu value can be performance bottleneck in some
665  * common workload, threshold and synchronization as vmstat[] should be
666  * implemented.
667  */
668 static unsigned long
669 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
670 {
671 	long val = 0;
672 	int cpu;
673 
674 	/* Per-cpu values can be negative, use a signed accumulator */
675 	for_each_possible_cpu(cpu)
676 		val += per_cpu(memcg->stat->count[idx], cpu);
677 	/*
678 	 * Summing races with updates, so val may be negative.  Avoid exposing
679 	 * transient negative values.
680 	 */
681 	if (val < 0)
682 		val = 0;
683 	return val;
684 }
685 
686 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
687 					    enum mem_cgroup_events_index idx)
688 {
689 	unsigned long val = 0;
690 	int cpu;
691 
692 	for_each_possible_cpu(cpu)
693 		val += per_cpu(memcg->stat->events[idx], cpu);
694 	return val;
695 }
696 
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 					 struct page *page,
699 					 int nr_pages)
700 {
701 	/*
702 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 	 * counted as CACHE even if it's on ANON LRU.
704 	 */
705 	if (PageAnon(page))
706 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707 				nr_pages);
708 	else
709 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710 				nr_pages);
711 
712 	if (PageTransHuge(page))
713 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 				nr_pages);
715 
716 	/* pagein of a big page is an event. So, ignore page size */
717 	if (nr_pages > 0)
718 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
719 	else {
720 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
721 		nr_pages = -nr_pages; /* for event */
722 	}
723 
724 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
725 }
726 
727 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 						  int nid,
729 						  unsigned int lru_mask)
730 {
731 	unsigned long nr = 0;
732 	int zid;
733 
734 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
735 
736 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 		struct mem_cgroup_per_zone *mz;
738 		enum lru_list lru;
739 
740 		for_each_lru(lru) {
741 			if (!(BIT(lru) & lru_mask))
742 				continue;
743 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 			nr += mz->lru_size[lru];
745 		}
746 	}
747 	return nr;
748 }
749 
750 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751 			unsigned int lru_mask)
752 {
753 	unsigned long nr = 0;
754 	int nid;
755 
756 	for_each_node_state(nid, N_MEMORY)
757 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 	return nr;
759 }
760 
761 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 				       enum mem_cgroup_events_target target)
763 {
764 	unsigned long val, next;
765 
766 	val = __this_cpu_read(memcg->stat->nr_page_events);
767 	next = __this_cpu_read(memcg->stat->targets[target]);
768 	/* from time_after() in jiffies.h */
769 	if ((long)next - (long)val < 0) {
770 		switch (target) {
771 		case MEM_CGROUP_TARGET_THRESH:
772 			next = val + THRESHOLDS_EVENTS_TARGET;
773 			break;
774 		case MEM_CGROUP_TARGET_SOFTLIMIT:
775 			next = val + SOFTLIMIT_EVENTS_TARGET;
776 			break;
777 		case MEM_CGROUP_TARGET_NUMAINFO:
778 			next = val + NUMAINFO_EVENTS_TARGET;
779 			break;
780 		default:
781 			break;
782 		}
783 		__this_cpu_write(memcg->stat->targets[target], next);
784 		return true;
785 	}
786 	return false;
787 }
788 
789 /*
790  * Check events in order.
791  *
792  */
793 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 {
795 	/* threshold event is triggered in finer grain than soft limit */
796 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 						MEM_CGROUP_TARGET_THRESH))) {
798 		bool do_softlimit;
799 		bool do_numainfo __maybe_unused;
800 
801 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 						MEM_CGROUP_TARGET_SOFTLIMIT);
803 #if MAX_NUMNODES > 1
804 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 						MEM_CGROUP_TARGET_NUMAINFO);
806 #endif
807 		mem_cgroup_threshold(memcg);
808 		if (unlikely(do_softlimit))
809 			mem_cgroup_update_tree(memcg, page);
810 #if MAX_NUMNODES > 1
811 		if (unlikely(do_numainfo))
812 			atomic_inc(&memcg->numainfo_events);
813 #endif
814 	}
815 }
816 
817 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818 {
819 	/*
820 	 * mm_update_next_owner() may clear mm->owner to NULL
821 	 * if it races with swapoff, page migration, etc.
822 	 * So this can be called with p == NULL.
823 	 */
824 	if (unlikely(!p))
825 		return NULL;
826 
827 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
828 }
829 EXPORT_SYMBOL(mem_cgroup_from_task);
830 
831 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
832 {
833 	struct mem_cgroup *memcg = NULL;
834 
835 	rcu_read_lock();
836 	do {
837 		/*
838 		 * Page cache insertions can happen withou an
839 		 * actual mm context, e.g. during disk probing
840 		 * on boot, loopback IO, acct() writes etc.
841 		 */
842 		if (unlikely(!mm))
843 			memcg = root_mem_cgroup;
844 		else {
845 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 			if (unlikely(!memcg))
847 				memcg = root_mem_cgroup;
848 		}
849 	} while (!css_tryget_online(&memcg->css));
850 	rcu_read_unlock();
851 	return memcg;
852 }
853 
854 /**
855  * mem_cgroup_iter - iterate over memory cgroup hierarchy
856  * @root: hierarchy root
857  * @prev: previously returned memcg, NULL on first invocation
858  * @reclaim: cookie for shared reclaim walks, NULL for full walks
859  *
860  * Returns references to children of the hierarchy below @root, or
861  * @root itself, or %NULL after a full round-trip.
862  *
863  * Caller must pass the return value in @prev on subsequent
864  * invocations for reference counting, or use mem_cgroup_iter_break()
865  * to cancel a hierarchy walk before the round-trip is complete.
866  *
867  * Reclaimers can specify a zone and a priority level in @reclaim to
868  * divide up the memcgs in the hierarchy among all concurrent
869  * reclaimers operating on the same zone and priority.
870  */
871 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
872 				   struct mem_cgroup *prev,
873 				   struct mem_cgroup_reclaim_cookie *reclaim)
874 {
875 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
876 	struct cgroup_subsys_state *css = NULL;
877 	struct mem_cgroup *memcg = NULL;
878 	struct mem_cgroup *pos = NULL;
879 
880 	if (mem_cgroup_disabled())
881 		return NULL;
882 
883 	if (!root)
884 		root = root_mem_cgroup;
885 
886 	if (prev && !reclaim)
887 		pos = prev;
888 
889 	if (!root->use_hierarchy && root != root_mem_cgroup) {
890 		if (prev)
891 			goto out;
892 		return root;
893 	}
894 
895 	rcu_read_lock();
896 
897 	if (reclaim) {
898 		struct mem_cgroup_per_zone *mz;
899 
900 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 		iter = &mz->iter[reclaim->priority];
902 
903 		if (prev && reclaim->generation != iter->generation)
904 			goto out_unlock;
905 
906 		do {
907 			pos = READ_ONCE(iter->position);
908 			/*
909 			 * A racing update may change the position and
910 			 * put the last reference, hence css_tryget(),
911 			 * or retry to see the updated position.
912 			 */
913 		} while (pos && !css_tryget(&pos->css));
914 	}
915 
916 	if (pos)
917 		css = &pos->css;
918 
919 	for (;;) {
920 		css = css_next_descendant_pre(css, &root->css);
921 		if (!css) {
922 			/*
923 			 * Reclaimers share the hierarchy walk, and a
924 			 * new one might jump in right at the end of
925 			 * the hierarchy - make sure they see at least
926 			 * one group and restart from the beginning.
927 			 */
928 			if (!prev)
929 				continue;
930 			break;
931 		}
932 
933 		/*
934 		 * Verify the css and acquire a reference.  The root
935 		 * is provided by the caller, so we know it's alive
936 		 * and kicking, and don't take an extra reference.
937 		 */
938 		memcg = mem_cgroup_from_css(css);
939 
940 		if (css == &root->css)
941 			break;
942 
943 		if (css_tryget(css)) {
944 			/*
945 			 * Make sure the memcg is initialized:
946 			 * mem_cgroup_css_online() orders the the
947 			 * initialization against setting the flag.
948 			 */
949 			if (smp_load_acquire(&memcg->initialized))
950 				break;
951 
952 			css_put(css);
953 		}
954 
955 		memcg = NULL;
956 	}
957 
958 	if (reclaim) {
959 		if (cmpxchg(&iter->position, pos, memcg) == pos) {
960 			if (memcg)
961 				css_get(&memcg->css);
962 			if (pos)
963 				css_put(&pos->css);
964 		}
965 
966 		/*
967 		 * pairs with css_tryget when dereferencing iter->position
968 		 * above.
969 		 */
970 		if (pos)
971 			css_put(&pos->css);
972 
973 		if (!memcg)
974 			iter->generation++;
975 		else if (!prev)
976 			reclaim->generation = iter->generation;
977 	}
978 
979 out_unlock:
980 	rcu_read_unlock();
981 out:
982 	if (prev && prev != root)
983 		css_put(&prev->css);
984 
985 	return memcg;
986 }
987 
988 /**
989  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990  * @root: hierarchy root
991  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992  */
993 void mem_cgroup_iter_break(struct mem_cgroup *root,
994 			   struct mem_cgroup *prev)
995 {
996 	if (!root)
997 		root = root_mem_cgroup;
998 	if (prev && prev != root)
999 		css_put(&prev->css);
1000 }
1001 
1002 /*
1003  * Iteration constructs for visiting all cgroups (under a tree).  If
1004  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005  * be used for reference counting.
1006  */
1007 #define for_each_mem_cgroup_tree(iter, root)		\
1008 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1009 	     iter != NULL;				\
1010 	     iter = mem_cgroup_iter(root, iter, NULL))
1011 
1012 #define for_each_mem_cgroup(iter)			\
1013 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1014 	     iter != NULL;				\
1015 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1016 
1017 /**
1018  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1019  * @zone: zone of the wanted lruvec
1020  * @memcg: memcg of the wanted lruvec
1021  *
1022  * Returns the lru list vector holding pages for the given @zone and
1023  * @mem.  This can be the global zone lruvec, if the memory controller
1024  * is disabled.
1025  */
1026 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1027 				      struct mem_cgroup *memcg)
1028 {
1029 	struct mem_cgroup_per_zone *mz;
1030 	struct lruvec *lruvec;
1031 
1032 	if (mem_cgroup_disabled()) {
1033 		lruvec = &zone->lruvec;
1034 		goto out;
1035 	}
1036 
1037 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1038 	lruvec = &mz->lruvec;
1039 out:
1040 	/*
1041 	 * Since a node can be onlined after the mem_cgroup was created,
1042 	 * we have to be prepared to initialize lruvec->zone here;
1043 	 * and if offlined then reonlined, we need to reinitialize it.
1044 	 */
1045 	if (unlikely(lruvec->zone != zone))
1046 		lruvec->zone = zone;
1047 	return lruvec;
1048 }
1049 
1050 /**
1051  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1052  * @page: the page
1053  * @zone: zone of the page
1054  *
1055  * This function is only safe when following the LRU page isolation
1056  * and putback protocol: the LRU lock must be held, and the page must
1057  * either be PageLRU() or the caller must have isolated/allocated it.
1058  */
1059 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1060 {
1061 	struct mem_cgroup_per_zone *mz;
1062 	struct mem_cgroup *memcg;
1063 	struct lruvec *lruvec;
1064 
1065 	if (mem_cgroup_disabled()) {
1066 		lruvec = &zone->lruvec;
1067 		goto out;
1068 	}
1069 
1070 	memcg = page->mem_cgroup;
1071 	/*
1072 	 * Swapcache readahead pages are added to the LRU - and
1073 	 * possibly migrated - before they are charged.
1074 	 */
1075 	if (!memcg)
1076 		memcg = root_mem_cgroup;
1077 
1078 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1079 	lruvec = &mz->lruvec;
1080 out:
1081 	/*
1082 	 * Since a node can be onlined after the mem_cgroup was created,
1083 	 * we have to be prepared to initialize lruvec->zone here;
1084 	 * and if offlined then reonlined, we need to reinitialize it.
1085 	 */
1086 	if (unlikely(lruvec->zone != zone))
1087 		lruvec->zone = zone;
1088 	return lruvec;
1089 }
1090 
1091 /**
1092  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1093  * @lruvec: mem_cgroup per zone lru vector
1094  * @lru: index of lru list the page is sitting on
1095  * @nr_pages: positive when adding or negative when removing
1096  *
1097  * This function must be called when a page is added to or removed from an
1098  * lru list.
1099  */
1100 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1101 				int nr_pages)
1102 {
1103 	struct mem_cgroup_per_zone *mz;
1104 	unsigned long *lru_size;
1105 
1106 	if (mem_cgroup_disabled())
1107 		return;
1108 
1109 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1110 	lru_size = mz->lru_size + lru;
1111 	*lru_size += nr_pages;
1112 	VM_BUG_ON((long)(*lru_size) < 0);
1113 }
1114 
1115 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1116 {
1117 	struct mem_cgroup *task_memcg;
1118 	struct task_struct *p;
1119 	bool ret;
1120 
1121 	p = find_lock_task_mm(task);
1122 	if (p) {
1123 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1124 		task_unlock(p);
1125 	} else {
1126 		/*
1127 		 * All threads may have already detached their mm's, but the oom
1128 		 * killer still needs to detect if they have already been oom
1129 		 * killed to prevent needlessly killing additional tasks.
1130 		 */
1131 		rcu_read_lock();
1132 		task_memcg = mem_cgroup_from_task(task);
1133 		css_get(&task_memcg->css);
1134 		rcu_read_unlock();
1135 	}
1136 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1137 	css_put(&task_memcg->css);
1138 	return ret;
1139 }
1140 
1141 #define mem_cgroup_from_counter(counter, member)	\
1142 	container_of(counter, struct mem_cgroup, member)
1143 
1144 /**
1145  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1146  * @memcg: the memory cgroup
1147  *
1148  * Returns the maximum amount of memory @mem can be charged with, in
1149  * pages.
1150  */
1151 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1152 {
1153 	unsigned long margin = 0;
1154 	unsigned long count;
1155 	unsigned long limit;
1156 
1157 	count = page_counter_read(&memcg->memory);
1158 	limit = READ_ONCE(memcg->memory.limit);
1159 	if (count < limit)
1160 		margin = limit - count;
1161 
1162 	if (do_swap_account) {
1163 		count = page_counter_read(&memcg->memsw);
1164 		limit = READ_ONCE(memcg->memsw.limit);
1165 		if (count <= limit)
1166 			margin = min(margin, limit - count);
1167 	}
1168 
1169 	return margin;
1170 }
1171 
1172 /*
1173  * A routine for checking "mem" is under move_account() or not.
1174  *
1175  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1176  * moving cgroups. This is for waiting at high-memory pressure
1177  * caused by "move".
1178  */
1179 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1180 {
1181 	struct mem_cgroup *from;
1182 	struct mem_cgroup *to;
1183 	bool ret = false;
1184 	/*
1185 	 * Unlike task_move routines, we access mc.to, mc.from not under
1186 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1187 	 */
1188 	spin_lock(&mc.lock);
1189 	from = mc.from;
1190 	to = mc.to;
1191 	if (!from)
1192 		goto unlock;
1193 
1194 	ret = mem_cgroup_is_descendant(from, memcg) ||
1195 		mem_cgroup_is_descendant(to, memcg);
1196 unlock:
1197 	spin_unlock(&mc.lock);
1198 	return ret;
1199 }
1200 
1201 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1202 {
1203 	if (mc.moving_task && current != mc.moving_task) {
1204 		if (mem_cgroup_under_move(memcg)) {
1205 			DEFINE_WAIT(wait);
1206 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1207 			/* moving charge context might have finished. */
1208 			if (mc.moving_task)
1209 				schedule();
1210 			finish_wait(&mc.waitq, &wait);
1211 			return true;
1212 		}
1213 	}
1214 	return false;
1215 }
1216 
1217 #define K(x) ((x) << (PAGE_SHIFT-10))
1218 /**
1219  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1220  * @memcg: The memory cgroup that went over limit
1221  * @p: Task that is going to be killed
1222  *
1223  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1224  * enabled
1225  */
1226 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1227 {
1228 	/* oom_info_lock ensures that parallel ooms do not interleave */
1229 	static DEFINE_MUTEX(oom_info_lock);
1230 	struct mem_cgroup *iter;
1231 	unsigned int i;
1232 
1233 	mutex_lock(&oom_info_lock);
1234 	rcu_read_lock();
1235 
1236 	if (p) {
1237 		pr_info("Task in ");
1238 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1239 		pr_cont(" killed as a result of limit of ");
1240 	} else {
1241 		pr_info("Memory limit reached of cgroup ");
1242 	}
1243 
1244 	pr_cont_cgroup_path(memcg->css.cgroup);
1245 	pr_cont("\n");
1246 
1247 	rcu_read_unlock();
1248 
1249 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1250 		K((u64)page_counter_read(&memcg->memory)),
1251 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1252 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1253 		K((u64)page_counter_read(&memcg->memsw)),
1254 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1255 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1256 		K((u64)page_counter_read(&memcg->kmem)),
1257 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1258 
1259 	for_each_mem_cgroup_tree(iter, memcg) {
1260 		pr_info("Memory cgroup stats for ");
1261 		pr_cont_cgroup_path(iter->css.cgroup);
1262 		pr_cont(":");
1263 
1264 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1265 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1266 				continue;
1267 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1268 				K(mem_cgroup_read_stat(iter, i)));
1269 		}
1270 
1271 		for (i = 0; i < NR_LRU_LISTS; i++)
1272 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1273 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1274 
1275 		pr_cont("\n");
1276 	}
1277 	mutex_unlock(&oom_info_lock);
1278 }
1279 
1280 /*
1281  * This function returns the number of memcg under hierarchy tree. Returns
1282  * 1(self count) if no children.
1283  */
1284 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1285 {
1286 	int num = 0;
1287 	struct mem_cgroup *iter;
1288 
1289 	for_each_mem_cgroup_tree(iter, memcg)
1290 		num++;
1291 	return num;
1292 }
1293 
1294 /*
1295  * Return the memory (and swap, if configured) limit for a memcg.
1296  */
1297 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1298 {
1299 	unsigned long limit;
1300 
1301 	limit = memcg->memory.limit;
1302 	if (mem_cgroup_swappiness(memcg)) {
1303 		unsigned long memsw_limit;
1304 
1305 		memsw_limit = memcg->memsw.limit;
1306 		limit = min(limit + total_swap_pages, memsw_limit);
1307 	}
1308 	return limit;
1309 }
1310 
1311 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1312 				     int order)
1313 {
1314 	struct oom_control oc = {
1315 		.zonelist = NULL,
1316 		.nodemask = NULL,
1317 		.gfp_mask = gfp_mask,
1318 		.order = order,
1319 	};
1320 	struct mem_cgroup *iter;
1321 	unsigned long chosen_points = 0;
1322 	unsigned long totalpages;
1323 	unsigned int points = 0;
1324 	struct task_struct *chosen = NULL;
1325 
1326 	mutex_lock(&oom_lock);
1327 
1328 	/*
1329 	 * If current has a pending SIGKILL or is exiting, then automatically
1330 	 * select it.  The goal is to allow it to allocate so that it may
1331 	 * quickly exit and free its memory.
1332 	 */
1333 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1334 		mark_oom_victim(current);
1335 		goto unlock;
1336 	}
1337 
1338 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1339 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1340 	for_each_mem_cgroup_tree(iter, memcg) {
1341 		struct css_task_iter it;
1342 		struct task_struct *task;
1343 
1344 		css_task_iter_start(&iter->css, &it);
1345 		while ((task = css_task_iter_next(&it))) {
1346 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1347 			case OOM_SCAN_SELECT:
1348 				if (chosen)
1349 					put_task_struct(chosen);
1350 				chosen = task;
1351 				chosen_points = ULONG_MAX;
1352 				get_task_struct(chosen);
1353 				/* fall through */
1354 			case OOM_SCAN_CONTINUE:
1355 				continue;
1356 			case OOM_SCAN_ABORT:
1357 				css_task_iter_end(&it);
1358 				mem_cgroup_iter_break(memcg, iter);
1359 				if (chosen)
1360 					put_task_struct(chosen);
1361 				goto unlock;
1362 			case OOM_SCAN_OK:
1363 				break;
1364 			};
1365 			points = oom_badness(task, memcg, NULL, totalpages);
1366 			if (!points || points < chosen_points)
1367 				continue;
1368 			/* Prefer thread group leaders for display purposes */
1369 			if (points == chosen_points &&
1370 			    thread_group_leader(chosen))
1371 				continue;
1372 
1373 			if (chosen)
1374 				put_task_struct(chosen);
1375 			chosen = task;
1376 			chosen_points = points;
1377 			get_task_struct(chosen);
1378 		}
1379 		css_task_iter_end(&it);
1380 	}
1381 
1382 	if (chosen) {
1383 		points = chosen_points * 1000 / totalpages;
1384 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1385 				 "Memory cgroup out of memory");
1386 	}
1387 unlock:
1388 	mutex_unlock(&oom_lock);
1389 }
1390 
1391 #if MAX_NUMNODES > 1
1392 
1393 /**
1394  * test_mem_cgroup_node_reclaimable
1395  * @memcg: the target memcg
1396  * @nid: the node ID to be checked.
1397  * @noswap : specify true here if the user wants flle only information.
1398  *
1399  * This function returns whether the specified memcg contains any
1400  * reclaimable pages on a node. Returns true if there are any reclaimable
1401  * pages in the node.
1402  */
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 		int nid, bool noswap)
1405 {
1406 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 		return true;
1408 	if (noswap || !total_swap_pages)
1409 		return false;
1410 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 		return true;
1412 	return false;
1413 
1414 }
1415 
1416 /*
1417  * Always updating the nodemask is not very good - even if we have an empty
1418  * list or the wrong list here, we can start from some node and traverse all
1419  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420  *
1421  */
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 {
1424 	int nid;
1425 	/*
1426 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 	 * pagein/pageout changes since the last update.
1428 	 */
1429 	if (!atomic_read(&memcg->numainfo_events))
1430 		return;
1431 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 		return;
1433 
1434 	/* make a nodemask where this memcg uses memory from */
1435 	memcg->scan_nodes = node_states[N_MEMORY];
1436 
1437 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1438 
1439 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 			node_clear(nid, memcg->scan_nodes);
1441 	}
1442 
1443 	atomic_set(&memcg->numainfo_events, 0);
1444 	atomic_set(&memcg->numainfo_updating, 0);
1445 }
1446 
1447 /*
1448  * Selecting a node where we start reclaim from. Because what we need is just
1449  * reducing usage counter, start from anywhere is O,K. Considering
1450  * memory reclaim from current node, there are pros. and cons.
1451  *
1452  * Freeing memory from current node means freeing memory from a node which
1453  * we'll use or we've used. So, it may make LRU bad. And if several threads
1454  * hit limits, it will see a contention on a node. But freeing from remote
1455  * node means more costs for memory reclaim because of memory latency.
1456  *
1457  * Now, we use round-robin. Better algorithm is welcomed.
1458  */
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 {
1461 	int node;
1462 
1463 	mem_cgroup_may_update_nodemask(memcg);
1464 	node = memcg->last_scanned_node;
1465 
1466 	node = next_node(node, memcg->scan_nodes);
1467 	if (node == MAX_NUMNODES)
1468 		node = first_node(memcg->scan_nodes);
1469 	/*
1470 	 * We call this when we hit limit, not when pages are added to LRU.
1471 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1472 	 * memcg is too small and all pages are not on LRU. In that case,
1473 	 * we use curret node.
1474 	 */
1475 	if (unlikely(node == MAX_NUMNODES))
1476 		node = numa_node_id();
1477 
1478 	memcg->last_scanned_node = node;
1479 	return node;
1480 }
1481 #else
1482 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1483 {
1484 	return 0;
1485 }
1486 #endif
1487 
1488 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1489 				   struct zone *zone,
1490 				   gfp_t gfp_mask,
1491 				   unsigned long *total_scanned)
1492 {
1493 	struct mem_cgroup *victim = NULL;
1494 	int total = 0;
1495 	int loop = 0;
1496 	unsigned long excess;
1497 	unsigned long nr_scanned;
1498 	struct mem_cgroup_reclaim_cookie reclaim = {
1499 		.zone = zone,
1500 		.priority = 0,
1501 	};
1502 
1503 	excess = soft_limit_excess(root_memcg);
1504 
1505 	while (1) {
1506 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1507 		if (!victim) {
1508 			loop++;
1509 			if (loop >= 2) {
1510 				/*
1511 				 * If we have not been able to reclaim
1512 				 * anything, it might because there are
1513 				 * no reclaimable pages under this hierarchy
1514 				 */
1515 				if (!total)
1516 					break;
1517 				/*
1518 				 * We want to do more targeted reclaim.
1519 				 * excess >> 2 is not to excessive so as to
1520 				 * reclaim too much, nor too less that we keep
1521 				 * coming back to reclaim from this cgroup
1522 				 */
1523 				if (total >= (excess >> 2) ||
1524 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1525 					break;
1526 			}
1527 			continue;
1528 		}
1529 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1530 						     zone, &nr_scanned);
1531 		*total_scanned += nr_scanned;
1532 		if (!soft_limit_excess(root_memcg))
1533 			break;
1534 	}
1535 	mem_cgroup_iter_break(root_memcg, victim);
1536 	return total;
1537 }
1538 
1539 #ifdef CONFIG_LOCKDEP
1540 static struct lockdep_map memcg_oom_lock_dep_map = {
1541 	.name = "memcg_oom_lock",
1542 };
1543 #endif
1544 
1545 static DEFINE_SPINLOCK(memcg_oom_lock);
1546 
1547 /*
1548  * Check OOM-Killer is already running under our hierarchy.
1549  * If someone is running, return false.
1550  */
1551 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1552 {
1553 	struct mem_cgroup *iter, *failed = NULL;
1554 
1555 	spin_lock(&memcg_oom_lock);
1556 
1557 	for_each_mem_cgroup_tree(iter, memcg) {
1558 		if (iter->oom_lock) {
1559 			/*
1560 			 * this subtree of our hierarchy is already locked
1561 			 * so we cannot give a lock.
1562 			 */
1563 			failed = iter;
1564 			mem_cgroup_iter_break(memcg, iter);
1565 			break;
1566 		} else
1567 			iter->oom_lock = true;
1568 	}
1569 
1570 	if (failed) {
1571 		/*
1572 		 * OK, we failed to lock the whole subtree so we have
1573 		 * to clean up what we set up to the failing subtree
1574 		 */
1575 		for_each_mem_cgroup_tree(iter, memcg) {
1576 			if (iter == failed) {
1577 				mem_cgroup_iter_break(memcg, iter);
1578 				break;
1579 			}
1580 			iter->oom_lock = false;
1581 		}
1582 	} else
1583 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1584 
1585 	spin_unlock(&memcg_oom_lock);
1586 
1587 	return !failed;
1588 }
1589 
1590 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1591 {
1592 	struct mem_cgroup *iter;
1593 
1594 	spin_lock(&memcg_oom_lock);
1595 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1596 	for_each_mem_cgroup_tree(iter, memcg)
1597 		iter->oom_lock = false;
1598 	spin_unlock(&memcg_oom_lock);
1599 }
1600 
1601 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1602 {
1603 	struct mem_cgroup *iter;
1604 
1605 	spin_lock(&memcg_oom_lock);
1606 	for_each_mem_cgroup_tree(iter, memcg)
1607 		iter->under_oom++;
1608 	spin_unlock(&memcg_oom_lock);
1609 }
1610 
1611 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1612 {
1613 	struct mem_cgroup *iter;
1614 
1615 	/*
1616 	 * When a new child is created while the hierarchy is under oom,
1617 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1618 	 */
1619 	spin_lock(&memcg_oom_lock);
1620 	for_each_mem_cgroup_tree(iter, memcg)
1621 		if (iter->under_oom > 0)
1622 			iter->under_oom--;
1623 	spin_unlock(&memcg_oom_lock);
1624 }
1625 
1626 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1627 
1628 struct oom_wait_info {
1629 	struct mem_cgroup *memcg;
1630 	wait_queue_t	wait;
1631 };
1632 
1633 static int memcg_oom_wake_function(wait_queue_t *wait,
1634 	unsigned mode, int sync, void *arg)
1635 {
1636 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1637 	struct mem_cgroup *oom_wait_memcg;
1638 	struct oom_wait_info *oom_wait_info;
1639 
1640 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1641 	oom_wait_memcg = oom_wait_info->memcg;
1642 
1643 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1644 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1645 		return 0;
1646 	return autoremove_wake_function(wait, mode, sync, arg);
1647 }
1648 
1649 static void memcg_oom_recover(struct mem_cgroup *memcg)
1650 {
1651 	/*
1652 	 * For the following lockless ->under_oom test, the only required
1653 	 * guarantee is that it must see the state asserted by an OOM when
1654 	 * this function is called as a result of userland actions
1655 	 * triggered by the notification of the OOM.  This is trivially
1656 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1657 	 * triggering notification.
1658 	 */
1659 	if (memcg && memcg->under_oom)
1660 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1661 }
1662 
1663 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1664 {
1665 	if (!current->memcg_may_oom)
1666 		return;
1667 	/*
1668 	 * We are in the middle of the charge context here, so we
1669 	 * don't want to block when potentially sitting on a callstack
1670 	 * that holds all kinds of filesystem and mm locks.
1671 	 *
1672 	 * Also, the caller may handle a failed allocation gracefully
1673 	 * (like optional page cache readahead) and so an OOM killer
1674 	 * invocation might not even be necessary.
1675 	 *
1676 	 * That's why we don't do anything here except remember the
1677 	 * OOM context and then deal with it at the end of the page
1678 	 * fault when the stack is unwound, the locks are released,
1679 	 * and when we know whether the fault was overall successful.
1680 	 */
1681 	css_get(&memcg->css);
1682 	current->memcg_in_oom = memcg;
1683 	current->memcg_oom_gfp_mask = mask;
1684 	current->memcg_oom_order = order;
1685 }
1686 
1687 /**
1688  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1689  * @handle: actually kill/wait or just clean up the OOM state
1690  *
1691  * This has to be called at the end of a page fault if the memcg OOM
1692  * handler was enabled.
1693  *
1694  * Memcg supports userspace OOM handling where failed allocations must
1695  * sleep on a waitqueue until the userspace task resolves the
1696  * situation.  Sleeping directly in the charge context with all kinds
1697  * of locks held is not a good idea, instead we remember an OOM state
1698  * in the task and mem_cgroup_oom_synchronize() has to be called at
1699  * the end of the page fault to complete the OOM handling.
1700  *
1701  * Returns %true if an ongoing memcg OOM situation was detected and
1702  * completed, %false otherwise.
1703  */
1704 bool mem_cgroup_oom_synchronize(bool handle)
1705 {
1706 	struct mem_cgroup *memcg = current->memcg_in_oom;
1707 	struct oom_wait_info owait;
1708 	bool locked;
1709 
1710 	/* OOM is global, do not handle */
1711 	if (!memcg)
1712 		return false;
1713 
1714 	if (!handle || oom_killer_disabled)
1715 		goto cleanup;
1716 
1717 	owait.memcg = memcg;
1718 	owait.wait.flags = 0;
1719 	owait.wait.func = memcg_oom_wake_function;
1720 	owait.wait.private = current;
1721 	INIT_LIST_HEAD(&owait.wait.task_list);
1722 
1723 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1724 	mem_cgroup_mark_under_oom(memcg);
1725 
1726 	locked = mem_cgroup_oom_trylock(memcg);
1727 
1728 	if (locked)
1729 		mem_cgroup_oom_notify(memcg);
1730 
1731 	if (locked && !memcg->oom_kill_disable) {
1732 		mem_cgroup_unmark_under_oom(memcg);
1733 		finish_wait(&memcg_oom_waitq, &owait.wait);
1734 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1735 					 current->memcg_oom_order);
1736 	} else {
1737 		schedule();
1738 		mem_cgroup_unmark_under_oom(memcg);
1739 		finish_wait(&memcg_oom_waitq, &owait.wait);
1740 	}
1741 
1742 	if (locked) {
1743 		mem_cgroup_oom_unlock(memcg);
1744 		/*
1745 		 * There is no guarantee that an OOM-lock contender
1746 		 * sees the wakeups triggered by the OOM kill
1747 		 * uncharges.  Wake any sleepers explicitely.
1748 		 */
1749 		memcg_oom_recover(memcg);
1750 	}
1751 cleanup:
1752 	current->memcg_in_oom = NULL;
1753 	css_put(&memcg->css);
1754 	return true;
1755 }
1756 
1757 /**
1758  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1759  * @page: page that is going to change accounted state
1760  *
1761  * This function must mark the beginning of an accounted page state
1762  * change to prevent double accounting when the page is concurrently
1763  * being moved to another memcg:
1764  *
1765  *   memcg = mem_cgroup_begin_page_stat(page);
1766  *   if (TestClearPageState(page))
1767  *     mem_cgroup_update_page_stat(memcg, state, -1);
1768  *   mem_cgroup_end_page_stat(memcg);
1769  */
1770 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1771 {
1772 	struct mem_cgroup *memcg;
1773 	unsigned long flags;
1774 
1775 	/*
1776 	 * The RCU lock is held throughout the transaction.  The fast
1777 	 * path can get away without acquiring the memcg->move_lock
1778 	 * because page moving starts with an RCU grace period.
1779 	 *
1780 	 * The RCU lock also protects the memcg from being freed when
1781 	 * the page state that is going to change is the only thing
1782 	 * preventing the page from being uncharged.
1783 	 * E.g. end-writeback clearing PageWriteback(), which allows
1784 	 * migration to go ahead and uncharge the page before the
1785 	 * account transaction might be complete.
1786 	 */
1787 	rcu_read_lock();
1788 
1789 	if (mem_cgroup_disabled())
1790 		return NULL;
1791 again:
1792 	memcg = page->mem_cgroup;
1793 	if (unlikely(!memcg))
1794 		return NULL;
1795 
1796 	if (atomic_read(&memcg->moving_account) <= 0)
1797 		return memcg;
1798 
1799 	spin_lock_irqsave(&memcg->move_lock, flags);
1800 	if (memcg != page->mem_cgroup) {
1801 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1802 		goto again;
1803 	}
1804 
1805 	/*
1806 	 * When charge migration first begins, we can have locked and
1807 	 * unlocked page stat updates happening concurrently.  Track
1808 	 * the task who has the lock for mem_cgroup_end_page_stat().
1809 	 */
1810 	memcg->move_lock_task = current;
1811 	memcg->move_lock_flags = flags;
1812 
1813 	return memcg;
1814 }
1815 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1816 
1817 /**
1818  * mem_cgroup_end_page_stat - finish a page state statistics transaction
1819  * @memcg: the memcg that was accounted against
1820  */
1821 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1822 {
1823 	if (memcg && memcg->move_lock_task == current) {
1824 		unsigned long flags = memcg->move_lock_flags;
1825 
1826 		memcg->move_lock_task = NULL;
1827 		memcg->move_lock_flags = 0;
1828 
1829 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1830 	}
1831 
1832 	rcu_read_unlock();
1833 }
1834 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1835 
1836 /*
1837  * size of first charge trial. "32" comes from vmscan.c's magic value.
1838  * TODO: maybe necessary to use big numbers in big irons.
1839  */
1840 #define CHARGE_BATCH	32U
1841 struct memcg_stock_pcp {
1842 	struct mem_cgroup *cached; /* this never be root cgroup */
1843 	unsigned int nr_pages;
1844 	struct work_struct work;
1845 	unsigned long flags;
1846 #define FLUSHING_CACHED_CHARGE	0
1847 };
1848 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1849 static DEFINE_MUTEX(percpu_charge_mutex);
1850 
1851 /**
1852  * consume_stock: Try to consume stocked charge on this cpu.
1853  * @memcg: memcg to consume from.
1854  * @nr_pages: how many pages to charge.
1855  *
1856  * The charges will only happen if @memcg matches the current cpu's memcg
1857  * stock, and at least @nr_pages are available in that stock.  Failure to
1858  * service an allocation will refill the stock.
1859  *
1860  * returns true if successful, false otherwise.
1861  */
1862 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1863 {
1864 	struct memcg_stock_pcp *stock;
1865 	bool ret = false;
1866 
1867 	if (nr_pages > CHARGE_BATCH)
1868 		return ret;
1869 
1870 	stock = &get_cpu_var(memcg_stock);
1871 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1872 		stock->nr_pages -= nr_pages;
1873 		ret = true;
1874 	}
1875 	put_cpu_var(memcg_stock);
1876 	return ret;
1877 }
1878 
1879 /*
1880  * Returns stocks cached in percpu and reset cached information.
1881  */
1882 static void drain_stock(struct memcg_stock_pcp *stock)
1883 {
1884 	struct mem_cgroup *old = stock->cached;
1885 
1886 	if (stock->nr_pages) {
1887 		page_counter_uncharge(&old->memory, stock->nr_pages);
1888 		if (do_swap_account)
1889 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1890 		css_put_many(&old->css, stock->nr_pages);
1891 		stock->nr_pages = 0;
1892 	}
1893 	stock->cached = NULL;
1894 }
1895 
1896 /*
1897  * This must be called under preempt disabled or must be called by
1898  * a thread which is pinned to local cpu.
1899  */
1900 static void drain_local_stock(struct work_struct *dummy)
1901 {
1902 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1903 	drain_stock(stock);
1904 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1905 }
1906 
1907 /*
1908  * Cache charges(val) to local per_cpu area.
1909  * This will be consumed by consume_stock() function, later.
1910  */
1911 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1912 {
1913 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1914 
1915 	if (stock->cached != memcg) { /* reset if necessary */
1916 		drain_stock(stock);
1917 		stock->cached = memcg;
1918 	}
1919 	stock->nr_pages += nr_pages;
1920 	put_cpu_var(memcg_stock);
1921 }
1922 
1923 /*
1924  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1925  * of the hierarchy under it.
1926  */
1927 static void drain_all_stock(struct mem_cgroup *root_memcg)
1928 {
1929 	int cpu, curcpu;
1930 
1931 	/* If someone's already draining, avoid adding running more workers. */
1932 	if (!mutex_trylock(&percpu_charge_mutex))
1933 		return;
1934 	/* Notify other cpus that system-wide "drain" is running */
1935 	get_online_cpus();
1936 	curcpu = get_cpu();
1937 	for_each_online_cpu(cpu) {
1938 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1939 		struct mem_cgroup *memcg;
1940 
1941 		memcg = stock->cached;
1942 		if (!memcg || !stock->nr_pages)
1943 			continue;
1944 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1945 			continue;
1946 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1947 			if (cpu == curcpu)
1948 				drain_local_stock(&stock->work);
1949 			else
1950 				schedule_work_on(cpu, &stock->work);
1951 		}
1952 	}
1953 	put_cpu();
1954 	put_online_cpus();
1955 	mutex_unlock(&percpu_charge_mutex);
1956 }
1957 
1958 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1959 					unsigned long action,
1960 					void *hcpu)
1961 {
1962 	int cpu = (unsigned long)hcpu;
1963 	struct memcg_stock_pcp *stock;
1964 
1965 	if (action == CPU_ONLINE)
1966 		return NOTIFY_OK;
1967 
1968 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1969 		return NOTIFY_OK;
1970 
1971 	stock = &per_cpu(memcg_stock, cpu);
1972 	drain_stock(stock);
1973 	return NOTIFY_OK;
1974 }
1975 
1976 /*
1977  * Scheduled by try_charge() to be executed from the userland return path
1978  * and reclaims memory over the high limit.
1979  */
1980 void mem_cgroup_handle_over_high(void)
1981 {
1982 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1983 	struct mem_cgroup *memcg, *pos;
1984 
1985 	if (likely(!nr_pages))
1986 		return;
1987 
1988 	pos = memcg = get_mem_cgroup_from_mm(current->mm);
1989 
1990 	do {
1991 		if (page_counter_read(&pos->memory) <= pos->high)
1992 			continue;
1993 		mem_cgroup_events(pos, MEMCG_HIGH, 1);
1994 		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
1995 	} while ((pos = parent_mem_cgroup(pos)));
1996 
1997 	css_put(&memcg->css);
1998 	current->memcg_nr_pages_over_high = 0;
1999 }
2000 
2001 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2002 		      unsigned int nr_pages)
2003 {
2004 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2005 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2006 	struct mem_cgroup *mem_over_limit;
2007 	struct page_counter *counter;
2008 	unsigned long nr_reclaimed;
2009 	bool may_swap = true;
2010 	bool drained = false;
2011 
2012 	if (mem_cgroup_is_root(memcg))
2013 		return 0;
2014 retry:
2015 	if (consume_stock(memcg, nr_pages))
2016 		return 0;
2017 
2018 	if (!do_swap_account ||
2019 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2020 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2021 			goto done_restock;
2022 		if (do_swap_account)
2023 			page_counter_uncharge(&memcg->memsw, batch);
2024 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2025 	} else {
2026 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2027 		may_swap = false;
2028 	}
2029 
2030 	if (batch > nr_pages) {
2031 		batch = nr_pages;
2032 		goto retry;
2033 	}
2034 
2035 	/*
2036 	 * Unlike in global OOM situations, memcg is not in a physical
2037 	 * memory shortage.  Allow dying and OOM-killed tasks to
2038 	 * bypass the last charges so that they can exit quickly and
2039 	 * free their memory.
2040 	 */
2041 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2042 		     fatal_signal_pending(current) ||
2043 		     current->flags & PF_EXITING))
2044 		goto force;
2045 
2046 	if (unlikely(task_in_memcg_oom(current)))
2047 		goto nomem;
2048 
2049 	if (!gfpflags_allow_blocking(gfp_mask))
2050 		goto nomem;
2051 
2052 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2053 
2054 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2055 						    gfp_mask, may_swap);
2056 
2057 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2058 		goto retry;
2059 
2060 	if (!drained) {
2061 		drain_all_stock(mem_over_limit);
2062 		drained = true;
2063 		goto retry;
2064 	}
2065 
2066 	if (gfp_mask & __GFP_NORETRY)
2067 		goto nomem;
2068 	/*
2069 	 * Even though the limit is exceeded at this point, reclaim
2070 	 * may have been able to free some pages.  Retry the charge
2071 	 * before killing the task.
2072 	 *
2073 	 * Only for regular pages, though: huge pages are rather
2074 	 * unlikely to succeed so close to the limit, and we fall back
2075 	 * to regular pages anyway in case of failure.
2076 	 */
2077 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2078 		goto retry;
2079 	/*
2080 	 * At task move, charge accounts can be doubly counted. So, it's
2081 	 * better to wait until the end of task_move if something is going on.
2082 	 */
2083 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2084 		goto retry;
2085 
2086 	if (nr_retries--)
2087 		goto retry;
2088 
2089 	if (gfp_mask & __GFP_NOFAIL)
2090 		goto force;
2091 
2092 	if (fatal_signal_pending(current))
2093 		goto force;
2094 
2095 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2096 
2097 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2098 		       get_order(nr_pages * PAGE_SIZE));
2099 nomem:
2100 	if (!(gfp_mask & __GFP_NOFAIL))
2101 		return -ENOMEM;
2102 force:
2103 	/*
2104 	 * The allocation either can't fail or will lead to more memory
2105 	 * being freed very soon.  Allow memory usage go over the limit
2106 	 * temporarily by force charging it.
2107 	 */
2108 	page_counter_charge(&memcg->memory, nr_pages);
2109 	if (do_swap_account)
2110 		page_counter_charge(&memcg->memsw, nr_pages);
2111 	css_get_many(&memcg->css, nr_pages);
2112 
2113 	return 0;
2114 
2115 done_restock:
2116 	css_get_many(&memcg->css, batch);
2117 	if (batch > nr_pages)
2118 		refill_stock(memcg, batch - nr_pages);
2119 
2120 	/*
2121 	 * If the hierarchy is above the normal consumption range, schedule
2122 	 * reclaim on returning to userland.  We can perform reclaim here
2123 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2124 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2125 	 * not recorded as it most likely matches current's and won't
2126 	 * change in the meantime.  As high limit is checked again before
2127 	 * reclaim, the cost of mismatch is negligible.
2128 	 */
2129 	do {
2130 		if (page_counter_read(&memcg->memory) > memcg->high) {
2131 			current->memcg_nr_pages_over_high += nr_pages;
2132 			set_notify_resume(current);
2133 			break;
2134 		}
2135 	} while ((memcg = parent_mem_cgroup(memcg)));
2136 
2137 	return 0;
2138 }
2139 
2140 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2141 {
2142 	if (mem_cgroup_is_root(memcg))
2143 		return;
2144 
2145 	page_counter_uncharge(&memcg->memory, nr_pages);
2146 	if (do_swap_account)
2147 		page_counter_uncharge(&memcg->memsw, nr_pages);
2148 
2149 	css_put_many(&memcg->css, nr_pages);
2150 }
2151 
2152 static void lock_page_lru(struct page *page, int *isolated)
2153 {
2154 	struct zone *zone = page_zone(page);
2155 
2156 	spin_lock_irq(&zone->lru_lock);
2157 	if (PageLRU(page)) {
2158 		struct lruvec *lruvec;
2159 
2160 		lruvec = mem_cgroup_page_lruvec(page, zone);
2161 		ClearPageLRU(page);
2162 		del_page_from_lru_list(page, lruvec, page_lru(page));
2163 		*isolated = 1;
2164 	} else
2165 		*isolated = 0;
2166 }
2167 
2168 static void unlock_page_lru(struct page *page, int isolated)
2169 {
2170 	struct zone *zone = page_zone(page);
2171 
2172 	if (isolated) {
2173 		struct lruvec *lruvec;
2174 
2175 		lruvec = mem_cgroup_page_lruvec(page, zone);
2176 		VM_BUG_ON_PAGE(PageLRU(page), page);
2177 		SetPageLRU(page);
2178 		add_page_to_lru_list(page, lruvec, page_lru(page));
2179 	}
2180 	spin_unlock_irq(&zone->lru_lock);
2181 }
2182 
2183 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2184 			  bool lrucare)
2185 {
2186 	int isolated;
2187 
2188 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2189 
2190 	/*
2191 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2192 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2193 	 */
2194 	if (lrucare)
2195 		lock_page_lru(page, &isolated);
2196 
2197 	/*
2198 	 * Nobody should be changing or seriously looking at
2199 	 * page->mem_cgroup at this point:
2200 	 *
2201 	 * - the page is uncharged
2202 	 *
2203 	 * - the page is off-LRU
2204 	 *
2205 	 * - an anonymous fault has exclusive page access, except for
2206 	 *   a locked page table
2207 	 *
2208 	 * - a page cache insertion, a swapin fault, or a migration
2209 	 *   have the page locked
2210 	 */
2211 	page->mem_cgroup = memcg;
2212 
2213 	if (lrucare)
2214 		unlock_page_lru(page, isolated);
2215 }
2216 
2217 #ifdef CONFIG_MEMCG_KMEM
2218 static int memcg_alloc_cache_id(void)
2219 {
2220 	int id, size;
2221 	int err;
2222 
2223 	id = ida_simple_get(&memcg_cache_ida,
2224 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2225 	if (id < 0)
2226 		return id;
2227 
2228 	if (id < memcg_nr_cache_ids)
2229 		return id;
2230 
2231 	/*
2232 	 * There's no space for the new id in memcg_caches arrays,
2233 	 * so we have to grow them.
2234 	 */
2235 	down_write(&memcg_cache_ids_sem);
2236 
2237 	size = 2 * (id + 1);
2238 	if (size < MEMCG_CACHES_MIN_SIZE)
2239 		size = MEMCG_CACHES_MIN_SIZE;
2240 	else if (size > MEMCG_CACHES_MAX_SIZE)
2241 		size = MEMCG_CACHES_MAX_SIZE;
2242 
2243 	err = memcg_update_all_caches(size);
2244 	if (!err)
2245 		err = memcg_update_all_list_lrus(size);
2246 	if (!err)
2247 		memcg_nr_cache_ids = size;
2248 
2249 	up_write(&memcg_cache_ids_sem);
2250 
2251 	if (err) {
2252 		ida_simple_remove(&memcg_cache_ida, id);
2253 		return err;
2254 	}
2255 	return id;
2256 }
2257 
2258 static void memcg_free_cache_id(int id)
2259 {
2260 	ida_simple_remove(&memcg_cache_ida, id);
2261 }
2262 
2263 struct memcg_kmem_cache_create_work {
2264 	struct mem_cgroup *memcg;
2265 	struct kmem_cache *cachep;
2266 	struct work_struct work;
2267 };
2268 
2269 static void memcg_kmem_cache_create_func(struct work_struct *w)
2270 {
2271 	struct memcg_kmem_cache_create_work *cw =
2272 		container_of(w, struct memcg_kmem_cache_create_work, work);
2273 	struct mem_cgroup *memcg = cw->memcg;
2274 	struct kmem_cache *cachep = cw->cachep;
2275 
2276 	memcg_create_kmem_cache(memcg, cachep);
2277 
2278 	css_put(&memcg->css);
2279 	kfree(cw);
2280 }
2281 
2282 /*
2283  * Enqueue the creation of a per-memcg kmem_cache.
2284  */
2285 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2286 					       struct kmem_cache *cachep)
2287 {
2288 	struct memcg_kmem_cache_create_work *cw;
2289 
2290 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2291 	if (!cw)
2292 		return;
2293 
2294 	css_get(&memcg->css);
2295 
2296 	cw->memcg = memcg;
2297 	cw->cachep = cachep;
2298 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2299 
2300 	schedule_work(&cw->work);
2301 }
2302 
2303 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2304 					     struct kmem_cache *cachep)
2305 {
2306 	/*
2307 	 * We need to stop accounting when we kmalloc, because if the
2308 	 * corresponding kmalloc cache is not yet created, the first allocation
2309 	 * in __memcg_schedule_kmem_cache_create will recurse.
2310 	 *
2311 	 * However, it is better to enclose the whole function. Depending on
2312 	 * the debugging options enabled, INIT_WORK(), for instance, can
2313 	 * trigger an allocation. This too, will make us recurse. Because at
2314 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2315 	 * the safest choice is to do it like this, wrapping the whole function.
2316 	 */
2317 	current->memcg_kmem_skip_account = 1;
2318 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2319 	current->memcg_kmem_skip_account = 0;
2320 }
2321 
2322 /*
2323  * Return the kmem_cache we're supposed to use for a slab allocation.
2324  * We try to use the current memcg's version of the cache.
2325  *
2326  * If the cache does not exist yet, if we are the first user of it,
2327  * we either create it immediately, if possible, or create it asynchronously
2328  * in a workqueue.
2329  * In the latter case, we will let the current allocation go through with
2330  * the original cache.
2331  *
2332  * Can't be called in interrupt context or from kernel threads.
2333  * This function needs to be called with rcu_read_lock() held.
2334  */
2335 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2336 {
2337 	struct mem_cgroup *memcg;
2338 	struct kmem_cache *memcg_cachep;
2339 	int kmemcg_id;
2340 
2341 	VM_BUG_ON(!is_root_cache(cachep));
2342 
2343 	if (current->memcg_kmem_skip_account)
2344 		return cachep;
2345 
2346 	memcg = get_mem_cgroup_from_mm(current->mm);
2347 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2348 	if (kmemcg_id < 0)
2349 		goto out;
2350 
2351 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2352 	if (likely(memcg_cachep))
2353 		return memcg_cachep;
2354 
2355 	/*
2356 	 * If we are in a safe context (can wait, and not in interrupt
2357 	 * context), we could be be predictable and return right away.
2358 	 * This would guarantee that the allocation being performed
2359 	 * already belongs in the new cache.
2360 	 *
2361 	 * However, there are some clashes that can arrive from locking.
2362 	 * For instance, because we acquire the slab_mutex while doing
2363 	 * memcg_create_kmem_cache, this means no further allocation
2364 	 * could happen with the slab_mutex held. So it's better to
2365 	 * defer everything.
2366 	 */
2367 	memcg_schedule_kmem_cache_create(memcg, cachep);
2368 out:
2369 	css_put(&memcg->css);
2370 	return cachep;
2371 }
2372 
2373 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2374 {
2375 	if (!is_root_cache(cachep))
2376 		css_put(&cachep->memcg_params.memcg->css);
2377 }
2378 
2379 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2380 			      struct mem_cgroup *memcg)
2381 {
2382 	unsigned int nr_pages = 1 << order;
2383 	struct page_counter *counter;
2384 	int ret;
2385 
2386 	if (!memcg_kmem_is_active(memcg))
2387 		return 0;
2388 
2389 	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2390 		return -ENOMEM;
2391 
2392 	ret = try_charge(memcg, gfp, nr_pages);
2393 	if (ret) {
2394 		page_counter_uncharge(&memcg->kmem, nr_pages);
2395 		return ret;
2396 	}
2397 
2398 	page->mem_cgroup = memcg;
2399 
2400 	return 0;
2401 }
2402 
2403 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2404 {
2405 	struct mem_cgroup *memcg;
2406 	int ret;
2407 
2408 	memcg = get_mem_cgroup_from_mm(current->mm);
2409 	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2410 	css_put(&memcg->css);
2411 	return ret;
2412 }
2413 
2414 void __memcg_kmem_uncharge(struct page *page, int order)
2415 {
2416 	struct mem_cgroup *memcg = page->mem_cgroup;
2417 	unsigned int nr_pages = 1 << order;
2418 
2419 	if (!memcg)
2420 		return;
2421 
2422 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2423 
2424 	page_counter_uncharge(&memcg->kmem, nr_pages);
2425 	page_counter_uncharge(&memcg->memory, nr_pages);
2426 	if (do_swap_account)
2427 		page_counter_uncharge(&memcg->memsw, nr_pages);
2428 
2429 	page->mem_cgroup = NULL;
2430 	css_put_many(&memcg->css, nr_pages);
2431 }
2432 #endif /* CONFIG_MEMCG_KMEM */
2433 
2434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2435 
2436 /*
2437  * Because tail pages are not marked as "used", set it. We're under
2438  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2439  * charge/uncharge will be never happen and move_account() is done under
2440  * compound_lock(), so we don't have to take care of races.
2441  */
2442 void mem_cgroup_split_huge_fixup(struct page *head)
2443 {
2444 	int i;
2445 
2446 	if (mem_cgroup_disabled())
2447 		return;
2448 
2449 	for (i = 1; i < HPAGE_PMD_NR; i++)
2450 		head[i].mem_cgroup = head->mem_cgroup;
2451 
2452 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2453 		       HPAGE_PMD_NR);
2454 }
2455 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2456 
2457 #ifdef CONFIG_MEMCG_SWAP
2458 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2459 					 bool charge)
2460 {
2461 	int val = (charge) ? 1 : -1;
2462 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2463 }
2464 
2465 /**
2466  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2467  * @entry: swap entry to be moved
2468  * @from:  mem_cgroup which the entry is moved from
2469  * @to:  mem_cgroup which the entry is moved to
2470  *
2471  * It succeeds only when the swap_cgroup's record for this entry is the same
2472  * as the mem_cgroup's id of @from.
2473  *
2474  * Returns 0 on success, -EINVAL on failure.
2475  *
2476  * The caller must have charged to @to, IOW, called page_counter_charge() about
2477  * both res and memsw, and called css_get().
2478  */
2479 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2480 				struct mem_cgroup *from, struct mem_cgroup *to)
2481 {
2482 	unsigned short old_id, new_id;
2483 
2484 	old_id = mem_cgroup_id(from);
2485 	new_id = mem_cgroup_id(to);
2486 
2487 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2488 		mem_cgroup_swap_statistics(from, false);
2489 		mem_cgroup_swap_statistics(to, true);
2490 		return 0;
2491 	}
2492 	return -EINVAL;
2493 }
2494 #else
2495 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2496 				struct mem_cgroup *from, struct mem_cgroup *to)
2497 {
2498 	return -EINVAL;
2499 }
2500 #endif
2501 
2502 static DEFINE_MUTEX(memcg_limit_mutex);
2503 
2504 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2505 				   unsigned long limit)
2506 {
2507 	unsigned long curusage;
2508 	unsigned long oldusage;
2509 	bool enlarge = false;
2510 	int retry_count;
2511 	int ret;
2512 
2513 	/*
2514 	 * For keeping hierarchical_reclaim simple, how long we should retry
2515 	 * is depends on callers. We set our retry-count to be function
2516 	 * of # of children which we should visit in this loop.
2517 	 */
2518 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2519 		      mem_cgroup_count_children(memcg);
2520 
2521 	oldusage = page_counter_read(&memcg->memory);
2522 
2523 	do {
2524 		if (signal_pending(current)) {
2525 			ret = -EINTR;
2526 			break;
2527 		}
2528 
2529 		mutex_lock(&memcg_limit_mutex);
2530 		if (limit > memcg->memsw.limit) {
2531 			mutex_unlock(&memcg_limit_mutex);
2532 			ret = -EINVAL;
2533 			break;
2534 		}
2535 		if (limit > memcg->memory.limit)
2536 			enlarge = true;
2537 		ret = page_counter_limit(&memcg->memory, limit);
2538 		mutex_unlock(&memcg_limit_mutex);
2539 
2540 		if (!ret)
2541 			break;
2542 
2543 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2544 
2545 		curusage = page_counter_read(&memcg->memory);
2546 		/* Usage is reduced ? */
2547 		if (curusage >= oldusage)
2548 			retry_count--;
2549 		else
2550 			oldusage = curusage;
2551 	} while (retry_count);
2552 
2553 	if (!ret && enlarge)
2554 		memcg_oom_recover(memcg);
2555 
2556 	return ret;
2557 }
2558 
2559 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2560 					 unsigned long limit)
2561 {
2562 	unsigned long curusage;
2563 	unsigned long oldusage;
2564 	bool enlarge = false;
2565 	int retry_count;
2566 	int ret;
2567 
2568 	/* see mem_cgroup_resize_res_limit */
2569 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2570 		      mem_cgroup_count_children(memcg);
2571 
2572 	oldusage = page_counter_read(&memcg->memsw);
2573 
2574 	do {
2575 		if (signal_pending(current)) {
2576 			ret = -EINTR;
2577 			break;
2578 		}
2579 
2580 		mutex_lock(&memcg_limit_mutex);
2581 		if (limit < memcg->memory.limit) {
2582 			mutex_unlock(&memcg_limit_mutex);
2583 			ret = -EINVAL;
2584 			break;
2585 		}
2586 		if (limit > memcg->memsw.limit)
2587 			enlarge = true;
2588 		ret = page_counter_limit(&memcg->memsw, limit);
2589 		mutex_unlock(&memcg_limit_mutex);
2590 
2591 		if (!ret)
2592 			break;
2593 
2594 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2595 
2596 		curusage = page_counter_read(&memcg->memsw);
2597 		/* Usage is reduced ? */
2598 		if (curusage >= oldusage)
2599 			retry_count--;
2600 		else
2601 			oldusage = curusage;
2602 	} while (retry_count);
2603 
2604 	if (!ret && enlarge)
2605 		memcg_oom_recover(memcg);
2606 
2607 	return ret;
2608 }
2609 
2610 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2611 					    gfp_t gfp_mask,
2612 					    unsigned long *total_scanned)
2613 {
2614 	unsigned long nr_reclaimed = 0;
2615 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2616 	unsigned long reclaimed;
2617 	int loop = 0;
2618 	struct mem_cgroup_tree_per_zone *mctz;
2619 	unsigned long excess;
2620 	unsigned long nr_scanned;
2621 
2622 	if (order > 0)
2623 		return 0;
2624 
2625 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2626 	/*
2627 	 * This loop can run a while, specially if mem_cgroup's continuously
2628 	 * keep exceeding their soft limit and putting the system under
2629 	 * pressure
2630 	 */
2631 	do {
2632 		if (next_mz)
2633 			mz = next_mz;
2634 		else
2635 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2636 		if (!mz)
2637 			break;
2638 
2639 		nr_scanned = 0;
2640 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2641 						    gfp_mask, &nr_scanned);
2642 		nr_reclaimed += reclaimed;
2643 		*total_scanned += nr_scanned;
2644 		spin_lock_irq(&mctz->lock);
2645 		__mem_cgroup_remove_exceeded(mz, mctz);
2646 
2647 		/*
2648 		 * If we failed to reclaim anything from this memory cgroup
2649 		 * it is time to move on to the next cgroup
2650 		 */
2651 		next_mz = NULL;
2652 		if (!reclaimed)
2653 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2654 
2655 		excess = soft_limit_excess(mz->memcg);
2656 		/*
2657 		 * One school of thought says that we should not add
2658 		 * back the node to the tree if reclaim returns 0.
2659 		 * But our reclaim could return 0, simply because due
2660 		 * to priority we are exposing a smaller subset of
2661 		 * memory to reclaim from. Consider this as a longer
2662 		 * term TODO.
2663 		 */
2664 		/* If excess == 0, no tree ops */
2665 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2666 		spin_unlock_irq(&mctz->lock);
2667 		css_put(&mz->memcg->css);
2668 		loop++;
2669 		/*
2670 		 * Could not reclaim anything and there are no more
2671 		 * mem cgroups to try or we seem to be looping without
2672 		 * reclaiming anything.
2673 		 */
2674 		if (!nr_reclaimed &&
2675 			(next_mz == NULL ||
2676 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2677 			break;
2678 	} while (!nr_reclaimed);
2679 	if (next_mz)
2680 		css_put(&next_mz->memcg->css);
2681 	return nr_reclaimed;
2682 }
2683 
2684 /*
2685  * Test whether @memcg has children, dead or alive.  Note that this
2686  * function doesn't care whether @memcg has use_hierarchy enabled and
2687  * returns %true if there are child csses according to the cgroup
2688  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2689  */
2690 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2691 {
2692 	bool ret;
2693 
2694 	/*
2695 	 * The lock does not prevent addition or deletion of children, but
2696 	 * it prevents a new child from being initialized based on this
2697 	 * parent in css_online(), so it's enough to decide whether
2698 	 * hierarchically inherited attributes can still be changed or not.
2699 	 */
2700 	lockdep_assert_held(&memcg_create_mutex);
2701 
2702 	rcu_read_lock();
2703 	ret = css_next_child(NULL, &memcg->css);
2704 	rcu_read_unlock();
2705 	return ret;
2706 }
2707 
2708 /*
2709  * Reclaims as many pages from the given memcg as possible and moves
2710  * the rest to the parent.
2711  *
2712  * Caller is responsible for holding css reference for memcg.
2713  */
2714 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2715 {
2716 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2717 
2718 	/* we call try-to-free pages for make this cgroup empty */
2719 	lru_add_drain_all();
2720 	/* try to free all pages in this cgroup */
2721 	while (nr_retries && page_counter_read(&memcg->memory)) {
2722 		int progress;
2723 
2724 		if (signal_pending(current))
2725 			return -EINTR;
2726 
2727 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2728 							GFP_KERNEL, true);
2729 		if (!progress) {
2730 			nr_retries--;
2731 			/* maybe some writeback is necessary */
2732 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2733 		}
2734 
2735 	}
2736 
2737 	return 0;
2738 }
2739 
2740 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2741 					    char *buf, size_t nbytes,
2742 					    loff_t off)
2743 {
2744 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2745 
2746 	if (mem_cgroup_is_root(memcg))
2747 		return -EINVAL;
2748 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2749 }
2750 
2751 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2752 				     struct cftype *cft)
2753 {
2754 	return mem_cgroup_from_css(css)->use_hierarchy;
2755 }
2756 
2757 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2758 				      struct cftype *cft, u64 val)
2759 {
2760 	int retval = 0;
2761 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2762 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2763 
2764 	mutex_lock(&memcg_create_mutex);
2765 
2766 	if (memcg->use_hierarchy == val)
2767 		goto out;
2768 
2769 	/*
2770 	 * If parent's use_hierarchy is set, we can't make any modifications
2771 	 * in the child subtrees. If it is unset, then the change can
2772 	 * occur, provided the current cgroup has no children.
2773 	 *
2774 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2775 	 * set if there are no children.
2776 	 */
2777 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2778 				(val == 1 || val == 0)) {
2779 		if (!memcg_has_children(memcg))
2780 			memcg->use_hierarchy = val;
2781 		else
2782 			retval = -EBUSY;
2783 	} else
2784 		retval = -EINVAL;
2785 
2786 out:
2787 	mutex_unlock(&memcg_create_mutex);
2788 
2789 	return retval;
2790 }
2791 
2792 static unsigned long tree_stat(struct mem_cgroup *memcg,
2793 			       enum mem_cgroup_stat_index idx)
2794 {
2795 	struct mem_cgroup *iter;
2796 	unsigned long val = 0;
2797 
2798 	for_each_mem_cgroup_tree(iter, memcg)
2799 		val += mem_cgroup_read_stat(iter, idx);
2800 
2801 	return val;
2802 }
2803 
2804 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2805 {
2806 	unsigned long val;
2807 
2808 	if (mem_cgroup_is_root(memcg)) {
2809 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2810 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2811 		if (swap)
2812 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2813 	} else {
2814 		if (!swap)
2815 			val = page_counter_read(&memcg->memory);
2816 		else
2817 			val = page_counter_read(&memcg->memsw);
2818 	}
2819 	return val;
2820 }
2821 
2822 enum {
2823 	RES_USAGE,
2824 	RES_LIMIT,
2825 	RES_MAX_USAGE,
2826 	RES_FAILCNT,
2827 	RES_SOFT_LIMIT,
2828 };
2829 
2830 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2831 			       struct cftype *cft)
2832 {
2833 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2834 	struct page_counter *counter;
2835 
2836 	switch (MEMFILE_TYPE(cft->private)) {
2837 	case _MEM:
2838 		counter = &memcg->memory;
2839 		break;
2840 	case _MEMSWAP:
2841 		counter = &memcg->memsw;
2842 		break;
2843 	case _KMEM:
2844 		counter = &memcg->kmem;
2845 		break;
2846 	default:
2847 		BUG();
2848 	}
2849 
2850 	switch (MEMFILE_ATTR(cft->private)) {
2851 	case RES_USAGE:
2852 		if (counter == &memcg->memory)
2853 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2854 		if (counter == &memcg->memsw)
2855 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2856 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2857 	case RES_LIMIT:
2858 		return (u64)counter->limit * PAGE_SIZE;
2859 	case RES_MAX_USAGE:
2860 		return (u64)counter->watermark * PAGE_SIZE;
2861 	case RES_FAILCNT:
2862 		return counter->failcnt;
2863 	case RES_SOFT_LIMIT:
2864 		return (u64)memcg->soft_limit * PAGE_SIZE;
2865 	default:
2866 		BUG();
2867 	}
2868 }
2869 
2870 #ifdef CONFIG_MEMCG_KMEM
2871 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2872 			       unsigned long nr_pages)
2873 {
2874 	int err = 0;
2875 	int memcg_id;
2876 
2877 	BUG_ON(memcg->kmemcg_id >= 0);
2878 	BUG_ON(memcg->kmem_acct_activated);
2879 	BUG_ON(memcg->kmem_acct_active);
2880 
2881 	/*
2882 	 * For simplicity, we won't allow this to be disabled.  It also can't
2883 	 * be changed if the cgroup has children already, or if tasks had
2884 	 * already joined.
2885 	 *
2886 	 * If tasks join before we set the limit, a person looking at
2887 	 * kmem.usage_in_bytes will have no way to determine when it took
2888 	 * place, which makes the value quite meaningless.
2889 	 *
2890 	 * After it first became limited, changes in the value of the limit are
2891 	 * of course permitted.
2892 	 */
2893 	mutex_lock(&memcg_create_mutex);
2894 	if (cgroup_is_populated(memcg->css.cgroup) ||
2895 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2896 		err = -EBUSY;
2897 	mutex_unlock(&memcg_create_mutex);
2898 	if (err)
2899 		goto out;
2900 
2901 	memcg_id = memcg_alloc_cache_id();
2902 	if (memcg_id < 0) {
2903 		err = memcg_id;
2904 		goto out;
2905 	}
2906 
2907 	/*
2908 	 * We couldn't have accounted to this cgroup, because it hasn't got
2909 	 * activated yet, so this should succeed.
2910 	 */
2911 	err = page_counter_limit(&memcg->kmem, nr_pages);
2912 	VM_BUG_ON(err);
2913 
2914 	static_key_slow_inc(&memcg_kmem_enabled_key);
2915 	/*
2916 	 * A memory cgroup is considered kmem-active as soon as it gets
2917 	 * kmemcg_id. Setting the id after enabling static branching will
2918 	 * guarantee no one starts accounting before all call sites are
2919 	 * patched.
2920 	 */
2921 	memcg->kmemcg_id = memcg_id;
2922 	memcg->kmem_acct_activated = true;
2923 	memcg->kmem_acct_active = true;
2924 out:
2925 	return err;
2926 }
2927 
2928 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2929 				   unsigned long limit)
2930 {
2931 	int ret;
2932 
2933 	mutex_lock(&memcg_limit_mutex);
2934 	if (!memcg_kmem_is_active(memcg))
2935 		ret = memcg_activate_kmem(memcg, limit);
2936 	else
2937 		ret = page_counter_limit(&memcg->kmem, limit);
2938 	mutex_unlock(&memcg_limit_mutex);
2939 	return ret;
2940 }
2941 
2942 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2943 {
2944 	int ret = 0;
2945 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2946 
2947 	if (!parent)
2948 		return 0;
2949 
2950 	mutex_lock(&memcg_limit_mutex);
2951 	/*
2952 	 * If the parent cgroup is not kmem-active now, it cannot be activated
2953 	 * after this point, because it has at least one child already.
2954 	 */
2955 	if (memcg_kmem_is_active(parent))
2956 		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2957 	mutex_unlock(&memcg_limit_mutex);
2958 	return ret;
2959 }
2960 #else
2961 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2962 				   unsigned long limit)
2963 {
2964 	return -EINVAL;
2965 }
2966 #endif /* CONFIG_MEMCG_KMEM */
2967 
2968 /*
2969  * The user of this function is...
2970  * RES_LIMIT.
2971  */
2972 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2973 				char *buf, size_t nbytes, loff_t off)
2974 {
2975 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2976 	unsigned long nr_pages;
2977 	int ret;
2978 
2979 	buf = strstrip(buf);
2980 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2981 	if (ret)
2982 		return ret;
2983 
2984 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2985 	case RES_LIMIT:
2986 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2987 			ret = -EINVAL;
2988 			break;
2989 		}
2990 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2991 		case _MEM:
2992 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2993 			break;
2994 		case _MEMSWAP:
2995 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2996 			break;
2997 		case _KMEM:
2998 			ret = memcg_update_kmem_limit(memcg, nr_pages);
2999 			break;
3000 		}
3001 		break;
3002 	case RES_SOFT_LIMIT:
3003 		memcg->soft_limit = nr_pages;
3004 		ret = 0;
3005 		break;
3006 	}
3007 	return ret ?: nbytes;
3008 }
3009 
3010 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011 				size_t nbytes, loff_t off)
3012 {
3013 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014 	struct page_counter *counter;
3015 
3016 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 	case _MEM:
3018 		counter = &memcg->memory;
3019 		break;
3020 	case _MEMSWAP:
3021 		counter = &memcg->memsw;
3022 		break;
3023 	case _KMEM:
3024 		counter = &memcg->kmem;
3025 		break;
3026 	default:
3027 		BUG();
3028 	}
3029 
3030 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3031 	case RES_MAX_USAGE:
3032 		page_counter_reset_watermark(counter);
3033 		break;
3034 	case RES_FAILCNT:
3035 		counter->failcnt = 0;
3036 		break;
3037 	default:
3038 		BUG();
3039 	}
3040 
3041 	return nbytes;
3042 }
3043 
3044 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3045 					struct cftype *cft)
3046 {
3047 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3048 }
3049 
3050 #ifdef CONFIG_MMU
3051 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3052 					struct cftype *cft, u64 val)
3053 {
3054 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3055 
3056 	if (val & ~MOVE_MASK)
3057 		return -EINVAL;
3058 
3059 	/*
3060 	 * No kind of locking is needed in here, because ->can_attach() will
3061 	 * check this value once in the beginning of the process, and then carry
3062 	 * on with stale data. This means that changes to this value will only
3063 	 * affect task migrations starting after the change.
3064 	 */
3065 	memcg->move_charge_at_immigrate = val;
3066 	return 0;
3067 }
3068 #else
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 					struct cftype *cft, u64 val)
3071 {
3072 	return -ENOSYS;
3073 }
3074 #endif
3075 
3076 #ifdef CONFIG_NUMA
3077 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3078 {
3079 	struct numa_stat {
3080 		const char *name;
3081 		unsigned int lru_mask;
3082 	};
3083 
3084 	static const struct numa_stat stats[] = {
3085 		{ "total", LRU_ALL },
3086 		{ "file", LRU_ALL_FILE },
3087 		{ "anon", LRU_ALL_ANON },
3088 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3089 	};
3090 	const struct numa_stat *stat;
3091 	int nid;
3092 	unsigned long nr;
3093 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3094 
3095 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3096 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3097 		seq_printf(m, "%s=%lu", stat->name, nr);
3098 		for_each_node_state(nid, N_MEMORY) {
3099 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3100 							  stat->lru_mask);
3101 			seq_printf(m, " N%d=%lu", nid, nr);
3102 		}
3103 		seq_putc(m, '\n');
3104 	}
3105 
3106 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3107 		struct mem_cgroup *iter;
3108 
3109 		nr = 0;
3110 		for_each_mem_cgroup_tree(iter, memcg)
3111 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3112 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3113 		for_each_node_state(nid, N_MEMORY) {
3114 			nr = 0;
3115 			for_each_mem_cgroup_tree(iter, memcg)
3116 				nr += mem_cgroup_node_nr_lru_pages(
3117 					iter, nid, stat->lru_mask);
3118 			seq_printf(m, " N%d=%lu", nid, nr);
3119 		}
3120 		seq_putc(m, '\n');
3121 	}
3122 
3123 	return 0;
3124 }
3125 #endif /* CONFIG_NUMA */
3126 
3127 static int memcg_stat_show(struct seq_file *m, void *v)
3128 {
3129 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3130 	unsigned long memory, memsw;
3131 	struct mem_cgroup *mi;
3132 	unsigned int i;
3133 
3134 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3135 		     MEM_CGROUP_STAT_NSTATS);
3136 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3137 		     MEM_CGROUP_EVENTS_NSTATS);
3138 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3139 
3140 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3141 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3142 			continue;
3143 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3144 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3145 	}
3146 
3147 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3148 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3149 			   mem_cgroup_read_events(memcg, i));
3150 
3151 	for (i = 0; i < NR_LRU_LISTS; i++)
3152 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3153 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3154 
3155 	/* Hierarchical information */
3156 	memory = memsw = PAGE_COUNTER_MAX;
3157 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3158 		memory = min(memory, mi->memory.limit);
3159 		memsw = min(memsw, mi->memsw.limit);
3160 	}
3161 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3162 		   (u64)memory * PAGE_SIZE);
3163 	if (do_swap_account)
3164 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3165 			   (u64)memsw * PAGE_SIZE);
3166 
3167 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3168 		unsigned long long val = 0;
3169 
3170 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3171 			continue;
3172 		for_each_mem_cgroup_tree(mi, memcg)
3173 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3174 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3175 	}
3176 
3177 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3178 		unsigned long long val = 0;
3179 
3180 		for_each_mem_cgroup_tree(mi, memcg)
3181 			val += mem_cgroup_read_events(mi, i);
3182 		seq_printf(m, "total_%s %llu\n",
3183 			   mem_cgroup_events_names[i], val);
3184 	}
3185 
3186 	for (i = 0; i < NR_LRU_LISTS; i++) {
3187 		unsigned long long val = 0;
3188 
3189 		for_each_mem_cgroup_tree(mi, memcg)
3190 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3191 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3192 	}
3193 
3194 #ifdef CONFIG_DEBUG_VM
3195 	{
3196 		int nid, zid;
3197 		struct mem_cgroup_per_zone *mz;
3198 		struct zone_reclaim_stat *rstat;
3199 		unsigned long recent_rotated[2] = {0, 0};
3200 		unsigned long recent_scanned[2] = {0, 0};
3201 
3202 		for_each_online_node(nid)
3203 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3204 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3205 				rstat = &mz->lruvec.reclaim_stat;
3206 
3207 				recent_rotated[0] += rstat->recent_rotated[0];
3208 				recent_rotated[1] += rstat->recent_rotated[1];
3209 				recent_scanned[0] += rstat->recent_scanned[0];
3210 				recent_scanned[1] += rstat->recent_scanned[1];
3211 			}
3212 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3216 	}
3217 #endif
3218 
3219 	return 0;
3220 }
3221 
3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223 				      struct cftype *cft)
3224 {
3225 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226 
3227 	return mem_cgroup_swappiness(memcg);
3228 }
3229 
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231 				       struct cftype *cft, u64 val)
3232 {
3233 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3234 
3235 	if (val > 100)
3236 		return -EINVAL;
3237 
3238 	if (css->parent)
3239 		memcg->swappiness = val;
3240 	else
3241 		vm_swappiness = val;
3242 
3243 	return 0;
3244 }
3245 
3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247 {
3248 	struct mem_cgroup_threshold_ary *t;
3249 	unsigned long usage;
3250 	int i;
3251 
3252 	rcu_read_lock();
3253 	if (!swap)
3254 		t = rcu_dereference(memcg->thresholds.primary);
3255 	else
3256 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3257 
3258 	if (!t)
3259 		goto unlock;
3260 
3261 	usage = mem_cgroup_usage(memcg, swap);
3262 
3263 	/*
3264 	 * current_threshold points to threshold just below or equal to usage.
3265 	 * If it's not true, a threshold was crossed after last
3266 	 * call of __mem_cgroup_threshold().
3267 	 */
3268 	i = t->current_threshold;
3269 
3270 	/*
3271 	 * Iterate backward over array of thresholds starting from
3272 	 * current_threshold and check if a threshold is crossed.
3273 	 * If none of thresholds below usage is crossed, we read
3274 	 * only one element of the array here.
3275 	 */
3276 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277 		eventfd_signal(t->entries[i].eventfd, 1);
3278 
3279 	/* i = current_threshold + 1 */
3280 	i++;
3281 
3282 	/*
3283 	 * Iterate forward over array of thresholds starting from
3284 	 * current_threshold+1 and check if a threshold is crossed.
3285 	 * If none of thresholds above usage is crossed, we read
3286 	 * only one element of the array here.
3287 	 */
3288 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289 		eventfd_signal(t->entries[i].eventfd, 1);
3290 
3291 	/* Update current_threshold */
3292 	t->current_threshold = i - 1;
3293 unlock:
3294 	rcu_read_unlock();
3295 }
3296 
3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298 {
3299 	while (memcg) {
3300 		__mem_cgroup_threshold(memcg, false);
3301 		if (do_swap_account)
3302 			__mem_cgroup_threshold(memcg, true);
3303 
3304 		memcg = parent_mem_cgroup(memcg);
3305 	}
3306 }
3307 
3308 static int compare_thresholds(const void *a, const void *b)
3309 {
3310 	const struct mem_cgroup_threshold *_a = a;
3311 	const struct mem_cgroup_threshold *_b = b;
3312 
3313 	if (_a->threshold > _b->threshold)
3314 		return 1;
3315 
3316 	if (_a->threshold < _b->threshold)
3317 		return -1;
3318 
3319 	return 0;
3320 }
3321 
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3323 {
3324 	struct mem_cgroup_eventfd_list *ev;
3325 
3326 	spin_lock(&memcg_oom_lock);
3327 
3328 	list_for_each_entry(ev, &memcg->oom_notify, list)
3329 		eventfd_signal(ev->eventfd, 1);
3330 
3331 	spin_unlock(&memcg_oom_lock);
3332 	return 0;
3333 }
3334 
3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3336 {
3337 	struct mem_cgroup *iter;
3338 
3339 	for_each_mem_cgroup_tree(iter, memcg)
3340 		mem_cgroup_oom_notify_cb(iter);
3341 }
3342 
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3344 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345 {
3346 	struct mem_cgroup_thresholds *thresholds;
3347 	struct mem_cgroup_threshold_ary *new;
3348 	unsigned long threshold;
3349 	unsigned long usage;
3350 	int i, size, ret;
3351 
3352 	ret = page_counter_memparse(args, "-1", &threshold);
3353 	if (ret)
3354 		return ret;
3355 
3356 	mutex_lock(&memcg->thresholds_lock);
3357 
3358 	if (type == _MEM) {
3359 		thresholds = &memcg->thresholds;
3360 		usage = mem_cgroup_usage(memcg, false);
3361 	} else if (type == _MEMSWAP) {
3362 		thresholds = &memcg->memsw_thresholds;
3363 		usage = mem_cgroup_usage(memcg, true);
3364 	} else
3365 		BUG();
3366 
3367 	/* Check if a threshold crossed before adding a new one */
3368 	if (thresholds->primary)
3369 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370 
3371 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372 
3373 	/* Allocate memory for new array of thresholds */
3374 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375 			GFP_KERNEL);
3376 	if (!new) {
3377 		ret = -ENOMEM;
3378 		goto unlock;
3379 	}
3380 	new->size = size;
3381 
3382 	/* Copy thresholds (if any) to new array */
3383 	if (thresholds->primary) {
3384 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385 				sizeof(struct mem_cgroup_threshold));
3386 	}
3387 
3388 	/* Add new threshold */
3389 	new->entries[size - 1].eventfd = eventfd;
3390 	new->entries[size - 1].threshold = threshold;
3391 
3392 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3393 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394 			compare_thresholds, NULL);
3395 
3396 	/* Find current threshold */
3397 	new->current_threshold = -1;
3398 	for (i = 0; i < size; i++) {
3399 		if (new->entries[i].threshold <= usage) {
3400 			/*
3401 			 * new->current_threshold will not be used until
3402 			 * rcu_assign_pointer(), so it's safe to increment
3403 			 * it here.
3404 			 */
3405 			++new->current_threshold;
3406 		} else
3407 			break;
3408 	}
3409 
3410 	/* Free old spare buffer and save old primary buffer as spare */
3411 	kfree(thresholds->spare);
3412 	thresholds->spare = thresholds->primary;
3413 
3414 	rcu_assign_pointer(thresholds->primary, new);
3415 
3416 	/* To be sure that nobody uses thresholds */
3417 	synchronize_rcu();
3418 
3419 unlock:
3420 	mutex_unlock(&memcg->thresholds_lock);
3421 
3422 	return ret;
3423 }
3424 
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3426 	struct eventfd_ctx *eventfd, const char *args)
3427 {
3428 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3429 }
3430 
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432 	struct eventfd_ctx *eventfd, const char *args)
3433 {
3434 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3435 }
3436 
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3438 	struct eventfd_ctx *eventfd, enum res_type type)
3439 {
3440 	struct mem_cgroup_thresholds *thresholds;
3441 	struct mem_cgroup_threshold_ary *new;
3442 	unsigned long usage;
3443 	int i, j, size;
3444 
3445 	mutex_lock(&memcg->thresholds_lock);
3446 
3447 	if (type == _MEM) {
3448 		thresholds = &memcg->thresholds;
3449 		usage = mem_cgroup_usage(memcg, false);
3450 	} else if (type == _MEMSWAP) {
3451 		thresholds = &memcg->memsw_thresholds;
3452 		usage = mem_cgroup_usage(memcg, true);
3453 	} else
3454 		BUG();
3455 
3456 	if (!thresholds->primary)
3457 		goto unlock;
3458 
3459 	/* Check if a threshold crossed before removing */
3460 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461 
3462 	/* Calculate new number of threshold */
3463 	size = 0;
3464 	for (i = 0; i < thresholds->primary->size; i++) {
3465 		if (thresholds->primary->entries[i].eventfd != eventfd)
3466 			size++;
3467 	}
3468 
3469 	new = thresholds->spare;
3470 
3471 	/* Set thresholds array to NULL if we don't have thresholds */
3472 	if (!size) {
3473 		kfree(new);
3474 		new = NULL;
3475 		goto swap_buffers;
3476 	}
3477 
3478 	new->size = size;
3479 
3480 	/* Copy thresholds and find current threshold */
3481 	new->current_threshold = -1;
3482 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483 		if (thresholds->primary->entries[i].eventfd == eventfd)
3484 			continue;
3485 
3486 		new->entries[j] = thresholds->primary->entries[i];
3487 		if (new->entries[j].threshold <= usage) {
3488 			/*
3489 			 * new->current_threshold will not be used
3490 			 * until rcu_assign_pointer(), so it's safe to increment
3491 			 * it here.
3492 			 */
3493 			++new->current_threshold;
3494 		}
3495 		j++;
3496 	}
3497 
3498 swap_buffers:
3499 	/* Swap primary and spare array */
3500 	thresholds->spare = thresholds->primary;
3501 	/* If all events are unregistered, free the spare array */
3502 	if (!new) {
3503 		kfree(thresholds->spare);
3504 		thresholds->spare = NULL;
3505 	}
3506 
3507 	rcu_assign_pointer(thresholds->primary, new);
3508 
3509 	/* To be sure that nobody uses thresholds */
3510 	synchronize_rcu();
3511 unlock:
3512 	mutex_unlock(&memcg->thresholds_lock);
3513 }
3514 
3515 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3516 	struct eventfd_ctx *eventfd)
3517 {
3518 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3519 }
3520 
3521 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3522 	struct eventfd_ctx *eventfd)
3523 {
3524 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3525 }
3526 
3527 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3528 	struct eventfd_ctx *eventfd, const char *args)
3529 {
3530 	struct mem_cgroup_eventfd_list *event;
3531 
3532 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3533 	if (!event)
3534 		return -ENOMEM;
3535 
3536 	spin_lock(&memcg_oom_lock);
3537 
3538 	event->eventfd = eventfd;
3539 	list_add(&event->list, &memcg->oom_notify);
3540 
3541 	/* already in OOM ? */
3542 	if (memcg->under_oom)
3543 		eventfd_signal(eventfd, 1);
3544 	spin_unlock(&memcg_oom_lock);
3545 
3546 	return 0;
3547 }
3548 
3549 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3550 	struct eventfd_ctx *eventfd)
3551 {
3552 	struct mem_cgroup_eventfd_list *ev, *tmp;
3553 
3554 	spin_lock(&memcg_oom_lock);
3555 
3556 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3557 		if (ev->eventfd == eventfd) {
3558 			list_del(&ev->list);
3559 			kfree(ev);
3560 		}
3561 	}
3562 
3563 	spin_unlock(&memcg_oom_lock);
3564 }
3565 
3566 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3567 {
3568 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3569 
3570 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3571 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3572 	return 0;
3573 }
3574 
3575 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3576 	struct cftype *cft, u64 val)
3577 {
3578 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3579 
3580 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3581 	if (!css->parent || !((val == 0) || (val == 1)))
3582 		return -EINVAL;
3583 
3584 	memcg->oom_kill_disable = val;
3585 	if (!val)
3586 		memcg_oom_recover(memcg);
3587 
3588 	return 0;
3589 }
3590 
3591 #ifdef CONFIG_MEMCG_KMEM
3592 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3593 {
3594 	int ret;
3595 
3596 	ret = memcg_propagate_kmem(memcg);
3597 	if (ret)
3598 		return ret;
3599 
3600 	return mem_cgroup_sockets_init(memcg, ss);
3601 }
3602 
3603 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3604 {
3605 	struct cgroup_subsys_state *css;
3606 	struct mem_cgroup *parent, *child;
3607 	int kmemcg_id;
3608 
3609 	if (!memcg->kmem_acct_active)
3610 		return;
3611 
3612 	/*
3613 	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3614 	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3615 	 * guarantees no cache will be created for this cgroup after we are
3616 	 * done (see memcg_create_kmem_cache()).
3617 	 */
3618 	memcg->kmem_acct_active = false;
3619 
3620 	memcg_deactivate_kmem_caches(memcg);
3621 
3622 	kmemcg_id = memcg->kmemcg_id;
3623 	BUG_ON(kmemcg_id < 0);
3624 
3625 	parent = parent_mem_cgroup(memcg);
3626 	if (!parent)
3627 		parent = root_mem_cgroup;
3628 
3629 	/*
3630 	 * Change kmemcg_id of this cgroup and all its descendants to the
3631 	 * parent's id, and then move all entries from this cgroup's list_lrus
3632 	 * to ones of the parent. After we have finished, all list_lrus
3633 	 * corresponding to this cgroup are guaranteed to remain empty. The
3634 	 * ordering is imposed by list_lru_node->lock taken by
3635 	 * memcg_drain_all_list_lrus().
3636 	 */
3637 	css_for_each_descendant_pre(css, &memcg->css) {
3638 		child = mem_cgroup_from_css(css);
3639 		BUG_ON(child->kmemcg_id != kmemcg_id);
3640 		child->kmemcg_id = parent->kmemcg_id;
3641 		if (!memcg->use_hierarchy)
3642 			break;
3643 	}
3644 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3645 
3646 	memcg_free_cache_id(kmemcg_id);
3647 }
3648 
3649 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3650 {
3651 	if (memcg->kmem_acct_activated) {
3652 		memcg_destroy_kmem_caches(memcg);
3653 		static_key_slow_dec(&memcg_kmem_enabled_key);
3654 		WARN_ON(page_counter_read(&memcg->kmem));
3655 	}
3656 	mem_cgroup_sockets_destroy(memcg);
3657 }
3658 #else
3659 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3660 {
3661 	return 0;
3662 }
3663 
3664 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3665 {
3666 }
3667 
3668 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3669 {
3670 }
3671 #endif
3672 
3673 #ifdef CONFIG_CGROUP_WRITEBACK
3674 
3675 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3676 {
3677 	return &memcg->cgwb_list;
3678 }
3679 
3680 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3681 {
3682 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3683 }
3684 
3685 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3686 {
3687 	wb_domain_exit(&memcg->cgwb_domain);
3688 }
3689 
3690 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3691 {
3692 	wb_domain_size_changed(&memcg->cgwb_domain);
3693 }
3694 
3695 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3696 {
3697 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3698 
3699 	if (!memcg->css.parent)
3700 		return NULL;
3701 
3702 	return &memcg->cgwb_domain;
3703 }
3704 
3705 /**
3706  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3707  * @wb: bdi_writeback in question
3708  * @pfilepages: out parameter for number of file pages
3709  * @pheadroom: out parameter for number of allocatable pages according to memcg
3710  * @pdirty: out parameter for number of dirty pages
3711  * @pwriteback: out parameter for number of pages under writeback
3712  *
3713  * Determine the numbers of file, headroom, dirty, and writeback pages in
3714  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3715  * is a bit more involved.
3716  *
3717  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3718  * headroom is calculated as the lowest headroom of itself and the
3719  * ancestors.  Note that this doesn't consider the actual amount of
3720  * available memory in the system.  The caller should further cap
3721  * *@pheadroom accordingly.
3722  */
3723 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3724 			 unsigned long *pheadroom, unsigned long *pdirty,
3725 			 unsigned long *pwriteback)
3726 {
3727 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3728 	struct mem_cgroup *parent;
3729 
3730 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3731 
3732 	/* this should eventually include NR_UNSTABLE_NFS */
3733 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3734 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3735 						     (1 << LRU_ACTIVE_FILE));
3736 	*pheadroom = PAGE_COUNTER_MAX;
3737 
3738 	while ((parent = parent_mem_cgroup(memcg))) {
3739 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3740 		unsigned long used = page_counter_read(&memcg->memory);
3741 
3742 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3743 		memcg = parent;
3744 	}
3745 }
3746 
3747 #else	/* CONFIG_CGROUP_WRITEBACK */
3748 
3749 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3750 {
3751 	return 0;
3752 }
3753 
3754 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3755 {
3756 }
3757 
3758 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3759 {
3760 }
3761 
3762 #endif	/* CONFIG_CGROUP_WRITEBACK */
3763 
3764 /*
3765  * DO NOT USE IN NEW FILES.
3766  *
3767  * "cgroup.event_control" implementation.
3768  *
3769  * This is way over-engineered.  It tries to support fully configurable
3770  * events for each user.  Such level of flexibility is completely
3771  * unnecessary especially in the light of the planned unified hierarchy.
3772  *
3773  * Please deprecate this and replace with something simpler if at all
3774  * possible.
3775  */
3776 
3777 /*
3778  * Unregister event and free resources.
3779  *
3780  * Gets called from workqueue.
3781  */
3782 static void memcg_event_remove(struct work_struct *work)
3783 {
3784 	struct mem_cgroup_event *event =
3785 		container_of(work, struct mem_cgroup_event, remove);
3786 	struct mem_cgroup *memcg = event->memcg;
3787 
3788 	remove_wait_queue(event->wqh, &event->wait);
3789 
3790 	event->unregister_event(memcg, event->eventfd);
3791 
3792 	/* Notify userspace the event is going away. */
3793 	eventfd_signal(event->eventfd, 1);
3794 
3795 	eventfd_ctx_put(event->eventfd);
3796 	kfree(event);
3797 	css_put(&memcg->css);
3798 }
3799 
3800 /*
3801  * Gets called on POLLHUP on eventfd when user closes it.
3802  *
3803  * Called with wqh->lock held and interrupts disabled.
3804  */
3805 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3806 			    int sync, void *key)
3807 {
3808 	struct mem_cgroup_event *event =
3809 		container_of(wait, struct mem_cgroup_event, wait);
3810 	struct mem_cgroup *memcg = event->memcg;
3811 	unsigned long flags = (unsigned long)key;
3812 
3813 	if (flags & POLLHUP) {
3814 		/*
3815 		 * If the event has been detached at cgroup removal, we
3816 		 * can simply return knowing the other side will cleanup
3817 		 * for us.
3818 		 *
3819 		 * We can't race against event freeing since the other
3820 		 * side will require wqh->lock via remove_wait_queue(),
3821 		 * which we hold.
3822 		 */
3823 		spin_lock(&memcg->event_list_lock);
3824 		if (!list_empty(&event->list)) {
3825 			list_del_init(&event->list);
3826 			/*
3827 			 * We are in atomic context, but cgroup_event_remove()
3828 			 * may sleep, so we have to call it in workqueue.
3829 			 */
3830 			schedule_work(&event->remove);
3831 		}
3832 		spin_unlock(&memcg->event_list_lock);
3833 	}
3834 
3835 	return 0;
3836 }
3837 
3838 static void memcg_event_ptable_queue_proc(struct file *file,
3839 		wait_queue_head_t *wqh, poll_table *pt)
3840 {
3841 	struct mem_cgroup_event *event =
3842 		container_of(pt, struct mem_cgroup_event, pt);
3843 
3844 	event->wqh = wqh;
3845 	add_wait_queue(wqh, &event->wait);
3846 }
3847 
3848 /*
3849  * DO NOT USE IN NEW FILES.
3850  *
3851  * Parse input and register new cgroup event handler.
3852  *
3853  * Input must be in format '<event_fd> <control_fd> <args>'.
3854  * Interpretation of args is defined by control file implementation.
3855  */
3856 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3857 					 char *buf, size_t nbytes, loff_t off)
3858 {
3859 	struct cgroup_subsys_state *css = of_css(of);
3860 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3861 	struct mem_cgroup_event *event;
3862 	struct cgroup_subsys_state *cfile_css;
3863 	unsigned int efd, cfd;
3864 	struct fd efile;
3865 	struct fd cfile;
3866 	const char *name;
3867 	char *endp;
3868 	int ret;
3869 
3870 	buf = strstrip(buf);
3871 
3872 	efd = simple_strtoul(buf, &endp, 10);
3873 	if (*endp != ' ')
3874 		return -EINVAL;
3875 	buf = endp + 1;
3876 
3877 	cfd = simple_strtoul(buf, &endp, 10);
3878 	if ((*endp != ' ') && (*endp != '\0'))
3879 		return -EINVAL;
3880 	buf = endp + 1;
3881 
3882 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3883 	if (!event)
3884 		return -ENOMEM;
3885 
3886 	event->memcg = memcg;
3887 	INIT_LIST_HEAD(&event->list);
3888 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3889 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3890 	INIT_WORK(&event->remove, memcg_event_remove);
3891 
3892 	efile = fdget(efd);
3893 	if (!efile.file) {
3894 		ret = -EBADF;
3895 		goto out_kfree;
3896 	}
3897 
3898 	event->eventfd = eventfd_ctx_fileget(efile.file);
3899 	if (IS_ERR(event->eventfd)) {
3900 		ret = PTR_ERR(event->eventfd);
3901 		goto out_put_efile;
3902 	}
3903 
3904 	cfile = fdget(cfd);
3905 	if (!cfile.file) {
3906 		ret = -EBADF;
3907 		goto out_put_eventfd;
3908 	}
3909 
3910 	/* the process need read permission on control file */
3911 	/* AV: shouldn't we check that it's been opened for read instead? */
3912 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3913 	if (ret < 0)
3914 		goto out_put_cfile;
3915 
3916 	/*
3917 	 * Determine the event callbacks and set them in @event.  This used
3918 	 * to be done via struct cftype but cgroup core no longer knows
3919 	 * about these events.  The following is crude but the whole thing
3920 	 * is for compatibility anyway.
3921 	 *
3922 	 * DO NOT ADD NEW FILES.
3923 	 */
3924 	name = cfile.file->f_path.dentry->d_name.name;
3925 
3926 	if (!strcmp(name, "memory.usage_in_bytes")) {
3927 		event->register_event = mem_cgroup_usage_register_event;
3928 		event->unregister_event = mem_cgroup_usage_unregister_event;
3929 	} else if (!strcmp(name, "memory.oom_control")) {
3930 		event->register_event = mem_cgroup_oom_register_event;
3931 		event->unregister_event = mem_cgroup_oom_unregister_event;
3932 	} else if (!strcmp(name, "memory.pressure_level")) {
3933 		event->register_event = vmpressure_register_event;
3934 		event->unregister_event = vmpressure_unregister_event;
3935 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3936 		event->register_event = memsw_cgroup_usage_register_event;
3937 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3938 	} else {
3939 		ret = -EINVAL;
3940 		goto out_put_cfile;
3941 	}
3942 
3943 	/*
3944 	 * Verify @cfile should belong to @css.  Also, remaining events are
3945 	 * automatically removed on cgroup destruction but the removal is
3946 	 * asynchronous, so take an extra ref on @css.
3947 	 */
3948 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3949 					       &memory_cgrp_subsys);
3950 	ret = -EINVAL;
3951 	if (IS_ERR(cfile_css))
3952 		goto out_put_cfile;
3953 	if (cfile_css != css) {
3954 		css_put(cfile_css);
3955 		goto out_put_cfile;
3956 	}
3957 
3958 	ret = event->register_event(memcg, event->eventfd, buf);
3959 	if (ret)
3960 		goto out_put_css;
3961 
3962 	efile.file->f_op->poll(efile.file, &event->pt);
3963 
3964 	spin_lock(&memcg->event_list_lock);
3965 	list_add(&event->list, &memcg->event_list);
3966 	spin_unlock(&memcg->event_list_lock);
3967 
3968 	fdput(cfile);
3969 	fdput(efile);
3970 
3971 	return nbytes;
3972 
3973 out_put_css:
3974 	css_put(css);
3975 out_put_cfile:
3976 	fdput(cfile);
3977 out_put_eventfd:
3978 	eventfd_ctx_put(event->eventfd);
3979 out_put_efile:
3980 	fdput(efile);
3981 out_kfree:
3982 	kfree(event);
3983 
3984 	return ret;
3985 }
3986 
3987 static struct cftype mem_cgroup_legacy_files[] = {
3988 	{
3989 		.name = "usage_in_bytes",
3990 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3991 		.read_u64 = mem_cgroup_read_u64,
3992 	},
3993 	{
3994 		.name = "max_usage_in_bytes",
3995 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3996 		.write = mem_cgroup_reset,
3997 		.read_u64 = mem_cgroup_read_u64,
3998 	},
3999 	{
4000 		.name = "limit_in_bytes",
4001 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4002 		.write = mem_cgroup_write,
4003 		.read_u64 = mem_cgroup_read_u64,
4004 	},
4005 	{
4006 		.name = "soft_limit_in_bytes",
4007 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4008 		.write = mem_cgroup_write,
4009 		.read_u64 = mem_cgroup_read_u64,
4010 	},
4011 	{
4012 		.name = "failcnt",
4013 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4014 		.write = mem_cgroup_reset,
4015 		.read_u64 = mem_cgroup_read_u64,
4016 	},
4017 	{
4018 		.name = "stat",
4019 		.seq_show = memcg_stat_show,
4020 	},
4021 	{
4022 		.name = "force_empty",
4023 		.write = mem_cgroup_force_empty_write,
4024 	},
4025 	{
4026 		.name = "use_hierarchy",
4027 		.write_u64 = mem_cgroup_hierarchy_write,
4028 		.read_u64 = mem_cgroup_hierarchy_read,
4029 	},
4030 	{
4031 		.name = "cgroup.event_control",		/* XXX: for compat */
4032 		.write = memcg_write_event_control,
4033 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4034 	},
4035 	{
4036 		.name = "swappiness",
4037 		.read_u64 = mem_cgroup_swappiness_read,
4038 		.write_u64 = mem_cgroup_swappiness_write,
4039 	},
4040 	{
4041 		.name = "move_charge_at_immigrate",
4042 		.read_u64 = mem_cgroup_move_charge_read,
4043 		.write_u64 = mem_cgroup_move_charge_write,
4044 	},
4045 	{
4046 		.name = "oom_control",
4047 		.seq_show = mem_cgroup_oom_control_read,
4048 		.write_u64 = mem_cgroup_oom_control_write,
4049 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4050 	},
4051 	{
4052 		.name = "pressure_level",
4053 	},
4054 #ifdef CONFIG_NUMA
4055 	{
4056 		.name = "numa_stat",
4057 		.seq_show = memcg_numa_stat_show,
4058 	},
4059 #endif
4060 #ifdef CONFIG_MEMCG_KMEM
4061 	{
4062 		.name = "kmem.limit_in_bytes",
4063 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4064 		.write = mem_cgroup_write,
4065 		.read_u64 = mem_cgroup_read_u64,
4066 	},
4067 	{
4068 		.name = "kmem.usage_in_bytes",
4069 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4070 		.read_u64 = mem_cgroup_read_u64,
4071 	},
4072 	{
4073 		.name = "kmem.failcnt",
4074 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4075 		.write = mem_cgroup_reset,
4076 		.read_u64 = mem_cgroup_read_u64,
4077 	},
4078 	{
4079 		.name = "kmem.max_usage_in_bytes",
4080 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4081 		.write = mem_cgroup_reset,
4082 		.read_u64 = mem_cgroup_read_u64,
4083 	},
4084 #ifdef CONFIG_SLABINFO
4085 	{
4086 		.name = "kmem.slabinfo",
4087 		.seq_start = slab_start,
4088 		.seq_next = slab_next,
4089 		.seq_stop = slab_stop,
4090 		.seq_show = memcg_slab_show,
4091 	},
4092 #endif
4093 #endif
4094 	{ },	/* terminate */
4095 };
4096 
4097 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4098 {
4099 	struct mem_cgroup_per_node *pn;
4100 	struct mem_cgroup_per_zone *mz;
4101 	int zone, tmp = node;
4102 	/*
4103 	 * This routine is called against possible nodes.
4104 	 * But it's BUG to call kmalloc() against offline node.
4105 	 *
4106 	 * TODO: this routine can waste much memory for nodes which will
4107 	 *       never be onlined. It's better to use memory hotplug callback
4108 	 *       function.
4109 	 */
4110 	if (!node_state(node, N_NORMAL_MEMORY))
4111 		tmp = -1;
4112 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4113 	if (!pn)
4114 		return 1;
4115 
4116 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4117 		mz = &pn->zoneinfo[zone];
4118 		lruvec_init(&mz->lruvec);
4119 		mz->usage_in_excess = 0;
4120 		mz->on_tree = false;
4121 		mz->memcg = memcg;
4122 	}
4123 	memcg->nodeinfo[node] = pn;
4124 	return 0;
4125 }
4126 
4127 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4128 {
4129 	kfree(memcg->nodeinfo[node]);
4130 }
4131 
4132 static struct mem_cgroup *mem_cgroup_alloc(void)
4133 {
4134 	struct mem_cgroup *memcg;
4135 	size_t size;
4136 
4137 	size = sizeof(struct mem_cgroup);
4138 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4139 
4140 	memcg = kzalloc(size, GFP_KERNEL);
4141 	if (!memcg)
4142 		return NULL;
4143 
4144 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4145 	if (!memcg->stat)
4146 		goto out_free;
4147 
4148 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4149 		goto out_free_stat;
4150 
4151 	return memcg;
4152 
4153 out_free_stat:
4154 	free_percpu(memcg->stat);
4155 out_free:
4156 	kfree(memcg);
4157 	return NULL;
4158 }
4159 
4160 /*
4161  * At destroying mem_cgroup, references from swap_cgroup can remain.
4162  * (scanning all at force_empty is too costly...)
4163  *
4164  * Instead of clearing all references at force_empty, we remember
4165  * the number of reference from swap_cgroup and free mem_cgroup when
4166  * it goes down to 0.
4167  *
4168  * Removal of cgroup itself succeeds regardless of refs from swap.
4169  */
4170 
4171 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4172 {
4173 	int node;
4174 
4175 	mem_cgroup_remove_from_trees(memcg);
4176 
4177 	for_each_node(node)
4178 		free_mem_cgroup_per_zone_info(memcg, node);
4179 
4180 	free_percpu(memcg->stat);
4181 	memcg_wb_domain_exit(memcg);
4182 	kfree(memcg);
4183 }
4184 
4185 /*
4186  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4187  */
4188 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4189 {
4190 	if (!memcg->memory.parent)
4191 		return NULL;
4192 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4193 }
4194 EXPORT_SYMBOL(parent_mem_cgroup);
4195 
4196 static struct cgroup_subsys_state * __ref
4197 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4198 {
4199 	struct mem_cgroup *memcg;
4200 	long error = -ENOMEM;
4201 	int node;
4202 
4203 	memcg = mem_cgroup_alloc();
4204 	if (!memcg)
4205 		return ERR_PTR(error);
4206 
4207 	for_each_node(node)
4208 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4209 			goto free_out;
4210 
4211 	/* root ? */
4212 	if (parent_css == NULL) {
4213 		root_mem_cgroup = memcg;
4214 		mem_cgroup_root_css = &memcg->css;
4215 		page_counter_init(&memcg->memory, NULL);
4216 		memcg->high = PAGE_COUNTER_MAX;
4217 		memcg->soft_limit = PAGE_COUNTER_MAX;
4218 		page_counter_init(&memcg->memsw, NULL);
4219 		page_counter_init(&memcg->kmem, NULL);
4220 	}
4221 
4222 	memcg->last_scanned_node = MAX_NUMNODES;
4223 	INIT_LIST_HEAD(&memcg->oom_notify);
4224 	memcg->move_charge_at_immigrate = 0;
4225 	mutex_init(&memcg->thresholds_lock);
4226 	spin_lock_init(&memcg->move_lock);
4227 	vmpressure_init(&memcg->vmpressure);
4228 	INIT_LIST_HEAD(&memcg->event_list);
4229 	spin_lock_init(&memcg->event_list_lock);
4230 #ifdef CONFIG_MEMCG_KMEM
4231 	memcg->kmemcg_id = -1;
4232 #endif
4233 #ifdef CONFIG_CGROUP_WRITEBACK
4234 	INIT_LIST_HEAD(&memcg->cgwb_list);
4235 #endif
4236 	return &memcg->css;
4237 
4238 free_out:
4239 	__mem_cgroup_free(memcg);
4240 	return ERR_PTR(error);
4241 }
4242 
4243 static int
4244 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4245 {
4246 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4247 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4248 	int ret;
4249 
4250 	if (css->id > MEM_CGROUP_ID_MAX)
4251 		return -ENOSPC;
4252 
4253 	if (!parent)
4254 		return 0;
4255 
4256 	mutex_lock(&memcg_create_mutex);
4257 
4258 	memcg->use_hierarchy = parent->use_hierarchy;
4259 	memcg->oom_kill_disable = parent->oom_kill_disable;
4260 	memcg->swappiness = mem_cgroup_swappiness(parent);
4261 
4262 	if (parent->use_hierarchy) {
4263 		page_counter_init(&memcg->memory, &parent->memory);
4264 		memcg->high = PAGE_COUNTER_MAX;
4265 		memcg->soft_limit = PAGE_COUNTER_MAX;
4266 		page_counter_init(&memcg->memsw, &parent->memsw);
4267 		page_counter_init(&memcg->kmem, &parent->kmem);
4268 
4269 		/*
4270 		 * No need to take a reference to the parent because cgroup
4271 		 * core guarantees its existence.
4272 		 */
4273 	} else {
4274 		page_counter_init(&memcg->memory, NULL);
4275 		memcg->high = PAGE_COUNTER_MAX;
4276 		memcg->soft_limit = PAGE_COUNTER_MAX;
4277 		page_counter_init(&memcg->memsw, NULL);
4278 		page_counter_init(&memcg->kmem, NULL);
4279 		/*
4280 		 * Deeper hierachy with use_hierarchy == false doesn't make
4281 		 * much sense so let cgroup subsystem know about this
4282 		 * unfortunate state in our controller.
4283 		 */
4284 		if (parent != root_mem_cgroup)
4285 			memory_cgrp_subsys.broken_hierarchy = true;
4286 	}
4287 	mutex_unlock(&memcg_create_mutex);
4288 
4289 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4290 	if (ret)
4291 		return ret;
4292 
4293 	/*
4294 	 * Make sure the memcg is initialized: mem_cgroup_iter()
4295 	 * orders reading memcg->initialized against its callers
4296 	 * reading the memcg members.
4297 	 */
4298 	smp_store_release(&memcg->initialized, 1);
4299 
4300 	return 0;
4301 }
4302 
4303 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4304 {
4305 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4306 	struct mem_cgroup_event *event, *tmp;
4307 
4308 	/*
4309 	 * Unregister events and notify userspace.
4310 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4311 	 * directory to avoid race between userspace and kernelspace.
4312 	 */
4313 	spin_lock(&memcg->event_list_lock);
4314 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4315 		list_del_init(&event->list);
4316 		schedule_work(&event->remove);
4317 	}
4318 	spin_unlock(&memcg->event_list_lock);
4319 
4320 	vmpressure_cleanup(&memcg->vmpressure);
4321 
4322 	memcg_deactivate_kmem(memcg);
4323 
4324 	wb_memcg_offline(memcg);
4325 }
4326 
4327 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4328 {
4329 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4330 
4331 	memcg_destroy_kmem(memcg);
4332 	__mem_cgroup_free(memcg);
4333 }
4334 
4335 /**
4336  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4337  * @css: the target css
4338  *
4339  * Reset the states of the mem_cgroup associated with @css.  This is
4340  * invoked when the userland requests disabling on the default hierarchy
4341  * but the memcg is pinned through dependency.  The memcg should stop
4342  * applying policies and should revert to the vanilla state as it may be
4343  * made visible again.
4344  *
4345  * The current implementation only resets the essential configurations.
4346  * This needs to be expanded to cover all the visible parts.
4347  */
4348 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4349 {
4350 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4351 
4352 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4353 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4354 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4355 	memcg->low = 0;
4356 	memcg->high = PAGE_COUNTER_MAX;
4357 	memcg->soft_limit = PAGE_COUNTER_MAX;
4358 	memcg_wb_domain_size_changed(memcg);
4359 }
4360 
4361 #ifdef CONFIG_MMU
4362 /* Handlers for move charge at task migration. */
4363 static int mem_cgroup_do_precharge(unsigned long count)
4364 {
4365 	int ret;
4366 
4367 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4368 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4369 	if (!ret) {
4370 		mc.precharge += count;
4371 		return ret;
4372 	}
4373 
4374 	/* Try charges one by one with reclaim */
4375 	while (count--) {
4376 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4377 		if (ret)
4378 			return ret;
4379 		mc.precharge++;
4380 		cond_resched();
4381 	}
4382 	return 0;
4383 }
4384 
4385 /**
4386  * get_mctgt_type - get target type of moving charge
4387  * @vma: the vma the pte to be checked belongs
4388  * @addr: the address corresponding to the pte to be checked
4389  * @ptent: the pte to be checked
4390  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4391  *
4392  * Returns
4393  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4394  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4395  *     move charge. if @target is not NULL, the page is stored in target->page
4396  *     with extra refcnt got(Callers should handle it).
4397  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4398  *     target for charge migration. if @target is not NULL, the entry is stored
4399  *     in target->ent.
4400  *
4401  * Called with pte lock held.
4402  */
4403 union mc_target {
4404 	struct page	*page;
4405 	swp_entry_t	ent;
4406 };
4407 
4408 enum mc_target_type {
4409 	MC_TARGET_NONE = 0,
4410 	MC_TARGET_PAGE,
4411 	MC_TARGET_SWAP,
4412 };
4413 
4414 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4415 						unsigned long addr, pte_t ptent)
4416 {
4417 	struct page *page = vm_normal_page(vma, addr, ptent);
4418 
4419 	if (!page || !page_mapped(page))
4420 		return NULL;
4421 	if (PageAnon(page)) {
4422 		if (!(mc.flags & MOVE_ANON))
4423 			return NULL;
4424 	} else {
4425 		if (!(mc.flags & MOVE_FILE))
4426 			return NULL;
4427 	}
4428 	if (!get_page_unless_zero(page))
4429 		return NULL;
4430 
4431 	return page;
4432 }
4433 
4434 #ifdef CONFIG_SWAP
4435 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4436 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4437 {
4438 	struct page *page = NULL;
4439 	swp_entry_t ent = pte_to_swp_entry(ptent);
4440 
4441 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4442 		return NULL;
4443 	/*
4444 	 * Because lookup_swap_cache() updates some statistics counter,
4445 	 * we call find_get_page() with swapper_space directly.
4446 	 */
4447 	page = find_get_page(swap_address_space(ent), ent.val);
4448 	if (do_swap_account)
4449 		entry->val = ent.val;
4450 
4451 	return page;
4452 }
4453 #else
4454 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4455 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4456 {
4457 	return NULL;
4458 }
4459 #endif
4460 
4461 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4462 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4463 {
4464 	struct page *page = NULL;
4465 	struct address_space *mapping;
4466 	pgoff_t pgoff;
4467 
4468 	if (!vma->vm_file) /* anonymous vma */
4469 		return NULL;
4470 	if (!(mc.flags & MOVE_FILE))
4471 		return NULL;
4472 
4473 	mapping = vma->vm_file->f_mapping;
4474 	pgoff = linear_page_index(vma, addr);
4475 
4476 	/* page is moved even if it's not RSS of this task(page-faulted). */
4477 #ifdef CONFIG_SWAP
4478 	/* shmem/tmpfs may report page out on swap: account for that too. */
4479 	if (shmem_mapping(mapping)) {
4480 		page = find_get_entry(mapping, pgoff);
4481 		if (radix_tree_exceptional_entry(page)) {
4482 			swp_entry_t swp = radix_to_swp_entry(page);
4483 			if (do_swap_account)
4484 				*entry = swp;
4485 			page = find_get_page(swap_address_space(swp), swp.val);
4486 		}
4487 	} else
4488 		page = find_get_page(mapping, pgoff);
4489 #else
4490 	page = find_get_page(mapping, pgoff);
4491 #endif
4492 	return page;
4493 }
4494 
4495 /**
4496  * mem_cgroup_move_account - move account of the page
4497  * @page: the page
4498  * @nr_pages: number of regular pages (>1 for huge pages)
4499  * @from: mem_cgroup which the page is moved from.
4500  * @to:	mem_cgroup which the page is moved to. @from != @to.
4501  *
4502  * The caller must confirm following.
4503  * - page is not on LRU (isolate_page() is useful.)
4504  * - compound_lock is held when nr_pages > 1
4505  *
4506  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4507  * from old cgroup.
4508  */
4509 static int mem_cgroup_move_account(struct page *page,
4510 				   unsigned int nr_pages,
4511 				   struct mem_cgroup *from,
4512 				   struct mem_cgroup *to)
4513 {
4514 	unsigned long flags;
4515 	int ret;
4516 	bool anon;
4517 
4518 	VM_BUG_ON(from == to);
4519 	VM_BUG_ON_PAGE(PageLRU(page), page);
4520 	/*
4521 	 * The page is isolated from LRU. So, collapse function
4522 	 * will not handle this page. But page splitting can happen.
4523 	 * Do this check under compound_page_lock(). The caller should
4524 	 * hold it.
4525 	 */
4526 	ret = -EBUSY;
4527 	if (nr_pages > 1 && !PageTransHuge(page))
4528 		goto out;
4529 
4530 	/*
4531 	 * Prevent mem_cgroup_replace_page() from looking at
4532 	 * page->mem_cgroup of its source page while we change it.
4533 	 */
4534 	if (!trylock_page(page))
4535 		goto out;
4536 
4537 	ret = -EINVAL;
4538 	if (page->mem_cgroup != from)
4539 		goto out_unlock;
4540 
4541 	anon = PageAnon(page);
4542 
4543 	spin_lock_irqsave(&from->move_lock, flags);
4544 
4545 	if (!anon && page_mapped(page)) {
4546 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4547 			       nr_pages);
4548 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4549 			       nr_pages);
4550 	}
4551 
4552 	/*
4553 	 * move_lock grabbed above and caller set from->moving_account, so
4554 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4555 	 * So mapping should be stable for dirty pages.
4556 	 */
4557 	if (!anon && PageDirty(page)) {
4558 		struct address_space *mapping = page_mapping(page);
4559 
4560 		if (mapping_cap_account_dirty(mapping)) {
4561 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4562 				       nr_pages);
4563 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4564 				       nr_pages);
4565 		}
4566 	}
4567 
4568 	if (PageWriteback(page)) {
4569 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4570 			       nr_pages);
4571 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4572 			       nr_pages);
4573 	}
4574 
4575 	/*
4576 	 * It is safe to change page->mem_cgroup here because the page
4577 	 * is referenced, charged, and isolated - we can't race with
4578 	 * uncharging, charging, migration, or LRU putback.
4579 	 */
4580 
4581 	/* caller should have done css_get */
4582 	page->mem_cgroup = to;
4583 	spin_unlock_irqrestore(&from->move_lock, flags);
4584 
4585 	ret = 0;
4586 
4587 	local_irq_disable();
4588 	mem_cgroup_charge_statistics(to, page, nr_pages);
4589 	memcg_check_events(to, page);
4590 	mem_cgroup_charge_statistics(from, page, -nr_pages);
4591 	memcg_check_events(from, page);
4592 	local_irq_enable();
4593 out_unlock:
4594 	unlock_page(page);
4595 out:
4596 	return ret;
4597 }
4598 
4599 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4600 		unsigned long addr, pte_t ptent, union mc_target *target)
4601 {
4602 	struct page *page = NULL;
4603 	enum mc_target_type ret = MC_TARGET_NONE;
4604 	swp_entry_t ent = { .val = 0 };
4605 
4606 	if (pte_present(ptent))
4607 		page = mc_handle_present_pte(vma, addr, ptent);
4608 	else if (is_swap_pte(ptent))
4609 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4610 	else if (pte_none(ptent))
4611 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4612 
4613 	if (!page && !ent.val)
4614 		return ret;
4615 	if (page) {
4616 		/*
4617 		 * Do only loose check w/o serialization.
4618 		 * mem_cgroup_move_account() checks the page is valid or
4619 		 * not under LRU exclusion.
4620 		 */
4621 		if (page->mem_cgroup == mc.from) {
4622 			ret = MC_TARGET_PAGE;
4623 			if (target)
4624 				target->page = page;
4625 		}
4626 		if (!ret || !target)
4627 			put_page(page);
4628 	}
4629 	/* There is a swap entry and a page doesn't exist or isn't charged */
4630 	if (ent.val && !ret &&
4631 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4632 		ret = MC_TARGET_SWAP;
4633 		if (target)
4634 			target->ent = ent;
4635 	}
4636 	return ret;
4637 }
4638 
4639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4640 /*
4641  * We don't consider swapping or file mapped pages because THP does not
4642  * support them for now.
4643  * Caller should make sure that pmd_trans_huge(pmd) is true.
4644  */
4645 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4646 		unsigned long addr, pmd_t pmd, union mc_target *target)
4647 {
4648 	struct page *page = NULL;
4649 	enum mc_target_type ret = MC_TARGET_NONE;
4650 
4651 	page = pmd_page(pmd);
4652 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4653 	if (!(mc.flags & MOVE_ANON))
4654 		return ret;
4655 	if (page->mem_cgroup == mc.from) {
4656 		ret = MC_TARGET_PAGE;
4657 		if (target) {
4658 			get_page(page);
4659 			target->page = page;
4660 		}
4661 	}
4662 	return ret;
4663 }
4664 #else
4665 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4666 		unsigned long addr, pmd_t pmd, union mc_target *target)
4667 {
4668 	return MC_TARGET_NONE;
4669 }
4670 #endif
4671 
4672 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4673 					unsigned long addr, unsigned long end,
4674 					struct mm_walk *walk)
4675 {
4676 	struct vm_area_struct *vma = walk->vma;
4677 	pte_t *pte;
4678 	spinlock_t *ptl;
4679 
4680 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4681 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4682 			mc.precharge += HPAGE_PMD_NR;
4683 		spin_unlock(ptl);
4684 		return 0;
4685 	}
4686 
4687 	if (pmd_trans_unstable(pmd))
4688 		return 0;
4689 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4690 	for (; addr != end; pte++, addr += PAGE_SIZE)
4691 		if (get_mctgt_type(vma, addr, *pte, NULL))
4692 			mc.precharge++;	/* increment precharge temporarily */
4693 	pte_unmap_unlock(pte - 1, ptl);
4694 	cond_resched();
4695 
4696 	return 0;
4697 }
4698 
4699 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4700 {
4701 	unsigned long precharge;
4702 
4703 	struct mm_walk mem_cgroup_count_precharge_walk = {
4704 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4705 		.mm = mm,
4706 	};
4707 	down_read(&mm->mmap_sem);
4708 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4709 	up_read(&mm->mmap_sem);
4710 
4711 	precharge = mc.precharge;
4712 	mc.precharge = 0;
4713 
4714 	return precharge;
4715 }
4716 
4717 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4718 {
4719 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4720 
4721 	VM_BUG_ON(mc.moving_task);
4722 	mc.moving_task = current;
4723 	return mem_cgroup_do_precharge(precharge);
4724 }
4725 
4726 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4727 static void __mem_cgroup_clear_mc(void)
4728 {
4729 	struct mem_cgroup *from = mc.from;
4730 	struct mem_cgroup *to = mc.to;
4731 
4732 	/* we must uncharge all the leftover precharges from mc.to */
4733 	if (mc.precharge) {
4734 		cancel_charge(mc.to, mc.precharge);
4735 		mc.precharge = 0;
4736 	}
4737 	/*
4738 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4739 	 * we must uncharge here.
4740 	 */
4741 	if (mc.moved_charge) {
4742 		cancel_charge(mc.from, mc.moved_charge);
4743 		mc.moved_charge = 0;
4744 	}
4745 	/* we must fixup refcnts and charges */
4746 	if (mc.moved_swap) {
4747 		/* uncharge swap account from the old cgroup */
4748 		if (!mem_cgroup_is_root(mc.from))
4749 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4750 
4751 		/*
4752 		 * we charged both to->memory and to->memsw, so we
4753 		 * should uncharge to->memory.
4754 		 */
4755 		if (!mem_cgroup_is_root(mc.to))
4756 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4757 
4758 		css_put_many(&mc.from->css, mc.moved_swap);
4759 
4760 		/* we've already done css_get(mc.to) */
4761 		mc.moved_swap = 0;
4762 	}
4763 	memcg_oom_recover(from);
4764 	memcg_oom_recover(to);
4765 	wake_up_all(&mc.waitq);
4766 }
4767 
4768 static void mem_cgroup_clear_mc(void)
4769 {
4770 	/*
4771 	 * we must clear moving_task before waking up waiters at the end of
4772 	 * task migration.
4773 	 */
4774 	mc.moving_task = NULL;
4775 	__mem_cgroup_clear_mc();
4776 	spin_lock(&mc.lock);
4777 	mc.from = NULL;
4778 	mc.to = NULL;
4779 	spin_unlock(&mc.lock);
4780 }
4781 
4782 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4783 				 struct cgroup_taskset *tset)
4784 {
4785 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4786 	struct mem_cgroup *from;
4787 	struct task_struct *leader, *p;
4788 	struct mm_struct *mm;
4789 	unsigned long move_flags;
4790 	int ret = 0;
4791 
4792 	/*
4793 	 * We are now commited to this value whatever it is. Changes in this
4794 	 * tunable will only affect upcoming migrations, not the current one.
4795 	 * So we need to save it, and keep it going.
4796 	 */
4797 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4798 	if (!move_flags)
4799 		return 0;
4800 
4801 	/*
4802 	 * Multi-process migrations only happen on the default hierarchy
4803 	 * where charge immigration is not used.  Perform charge
4804 	 * immigration if @tset contains a leader and whine if there are
4805 	 * multiple.
4806 	 */
4807 	p = NULL;
4808 	cgroup_taskset_for_each_leader(leader, tset) {
4809 		WARN_ON_ONCE(p);
4810 		p = leader;
4811 	}
4812 	if (!p)
4813 		return 0;
4814 
4815 	from = mem_cgroup_from_task(p);
4816 
4817 	VM_BUG_ON(from == memcg);
4818 
4819 	mm = get_task_mm(p);
4820 	if (!mm)
4821 		return 0;
4822 	/* We move charges only when we move a owner of the mm */
4823 	if (mm->owner == p) {
4824 		VM_BUG_ON(mc.from);
4825 		VM_BUG_ON(mc.to);
4826 		VM_BUG_ON(mc.precharge);
4827 		VM_BUG_ON(mc.moved_charge);
4828 		VM_BUG_ON(mc.moved_swap);
4829 
4830 		spin_lock(&mc.lock);
4831 		mc.from = from;
4832 		mc.to = memcg;
4833 		mc.flags = move_flags;
4834 		spin_unlock(&mc.lock);
4835 		/* We set mc.moving_task later */
4836 
4837 		ret = mem_cgroup_precharge_mc(mm);
4838 		if (ret)
4839 			mem_cgroup_clear_mc();
4840 	}
4841 	mmput(mm);
4842 	return ret;
4843 }
4844 
4845 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4846 				     struct cgroup_taskset *tset)
4847 {
4848 	if (mc.to)
4849 		mem_cgroup_clear_mc();
4850 }
4851 
4852 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4853 				unsigned long addr, unsigned long end,
4854 				struct mm_walk *walk)
4855 {
4856 	int ret = 0;
4857 	struct vm_area_struct *vma = walk->vma;
4858 	pte_t *pte;
4859 	spinlock_t *ptl;
4860 	enum mc_target_type target_type;
4861 	union mc_target target;
4862 	struct page *page;
4863 
4864 	/*
4865 	 * We don't take compound_lock() here but no race with splitting thp
4866 	 * happens because:
4867 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4868 	 *    under splitting, which means there's no concurrent thp split,
4869 	 *  - if another thread runs into split_huge_page() just after we
4870 	 *    entered this if-block, the thread must wait for page table lock
4871 	 *    to be unlocked in __split_huge_page_splitting(), where the main
4872 	 *    part of thp split is not executed yet.
4873 	 */
4874 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4875 		if (mc.precharge < HPAGE_PMD_NR) {
4876 			spin_unlock(ptl);
4877 			return 0;
4878 		}
4879 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4880 		if (target_type == MC_TARGET_PAGE) {
4881 			page = target.page;
4882 			if (!isolate_lru_page(page)) {
4883 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4884 							     mc.from, mc.to)) {
4885 					mc.precharge -= HPAGE_PMD_NR;
4886 					mc.moved_charge += HPAGE_PMD_NR;
4887 				}
4888 				putback_lru_page(page);
4889 			}
4890 			put_page(page);
4891 		}
4892 		spin_unlock(ptl);
4893 		return 0;
4894 	}
4895 
4896 	if (pmd_trans_unstable(pmd))
4897 		return 0;
4898 retry:
4899 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4900 	for (; addr != end; addr += PAGE_SIZE) {
4901 		pte_t ptent = *(pte++);
4902 		swp_entry_t ent;
4903 
4904 		if (!mc.precharge)
4905 			break;
4906 
4907 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4908 		case MC_TARGET_PAGE:
4909 			page = target.page;
4910 			if (isolate_lru_page(page))
4911 				goto put;
4912 			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4913 				mc.precharge--;
4914 				/* we uncharge from mc.from later. */
4915 				mc.moved_charge++;
4916 			}
4917 			putback_lru_page(page);
4918 put:			/* get_mctgt_type() gets the page */
4919 			put_page(page);
4920 			break;
4921 		case MC_TARGET_SWAP:
4922 			ent = target.ent;
4923 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4924 				mc.precharge--;
4925 				/* we fixup refcnts and charges later. */
4926 				mc.moved_swap++;
4927 			}
4928 			break;
4929 		default:
4930 			break;
4931 		}
4932 	}
4933 	pte_unmap_unlock(pte - 1, ptl);
4934 	cond_resched();
4935 
4936 	if (addr != end) {
4937 		/*
4938 		 * We have consumed all precharges we got in can_attach().
4939 		 * We try charge one by one, but don't do any additional
4940 		 * charges to mc.to if we have failed in charge once in attach()
4941 		 * phase.
4942 		 */
4943 		ret = mem_cgroup_do_precharge(1);
4944 		if (!ret)
4945 			goto retry;
4946 	}
4947 
4948 	return ret;
4949 }
4950 
4951 static void mem_cgroup_move_charge(struct mm_struct *mm)
4952 {
4953 	struct mm_walk mem_cgroup_move_charge_walk = {
4954 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4955 		.mm = mm,
4956 	};
4957 
4958 	lru_add_drain_all();
4959 	/*
4960 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4961 	 * move_lock while we're moving its pages to another memcg.
4962 	 * Then wait for already started RCU-only updates to finish.
4963 	 */
4964 	atomic_inc(&mc.from->moving_account);
4965 	synchronize_rcu();
4966 retry:
4967 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4968 		/*
4969 		 * Someone who are holding the mmap_sem might be waiting in
4970 		 * waitq. So we cancel all extra charges, wake up all waiters,
4971 		 * and retry. Because we cancel precharges, we might not be able
4972 		 * to move enough charges, but moving charge is a best-effort
4973 		 * feature anyway, so it wouldn't be a big problem.
4974 		 */
4975 		__mem_cgroup_clear_mc();
4976 		cond_resched();
4977 		goto retry;
4978 	}
4979 	/*
4980 	 * When we have consumed all precharges and failed in doing
4981 	 * additional charge, the page walk just aborts.
4982 	 */
4983 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4984 	up_read(&mm->mmap_sem);
4985 	atomic_dec(&mc.from->moving_account);
4986 }
4987 
4988 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
4989 				 struct cgroup_taskset *tset)
4990 {
4991 	struct task_struct *p = cgroup_taskset_first(tset);
4992 	struct mm_struct *mm = get_task_mm(p);
4993 
4994 	if (mm) {
4995 		if (mc.to)
4996 			mem_cgroup_move_charge(mm);
4997 		mmput(mm);
4998 	}
4999 	if (mc.to)
5000 		mem_cgroup_clear_mc();
5001 }
5002 #else	/* !CONFIG_MMU */
5003 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5004 				 struct cgroup_taskset *tset)
5005 {
5006 	return 0;
5007 }
5008 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5009 				     struct cgroup_taskset *tset)
5010 {
5011 }
5012 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5013 				 struct cgroup_taskset *tset)
5014 {
5015 }
5016 #endif
5017 
5018 /*
5019  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5020  * to verify whether we're attached to the default hierarchy on each mount
5021  * attempt.
5022  */
5023 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5024 {
5025 	/*
5026 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5027 	 * guarantees that @root doesn't have any children, so turning it
5028 	 * on for the root memcg is enough.
5029 	 */
5030 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5031 		root_mem_cgroup->use_hierarchy = true;
5032 	else
5033 		root_mem_cgroup->use_hierarchy = false;
5034 }
5035 
5036 static u64 memory_current_read(struct cgroup_subsys_state *css,
5037 			       struct cftype *cft)
5038 {
5039 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5040 
5041 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5042 }
5043 
5044 static int memory_low_show(struct seq_file *m, void *v)
5045 {
5046 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5047 	unsigned long low = READ_ONCE(memcg->low);
5048 
5049 	if (low == PAGE_COUNTER_MAX)
5050 		seq_puts(m, "max\n");
5051 	else
5052 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5053 
5054 	return 0;
5055 }
5056 
5057 static ssize_t memory_low_write(struct kernfs_open_file *of,
5058 				char *buf, size_t nbytes, loff_t off)
5059 {
5060 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5061 	unsigned long low;
5062 	int err;
5063 
5064 	buf = strstrip(buf);
5065 	err = page_counter_memparse(buf, "max", &low);
5066 	if (err)
5067 		return err;
5068 
5069 	memcg->low = low;
5070 
5071 	return nbytes;
5072 }
5073 
5074 static int memory_high_show(struct seq_file *m, void *v)
5075 {
5076 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5077 	unsigned long high = READ_ONCE(memcg->high);
5078 
5079 	if (high == PAGE_COUNTER_MAX)
5080 		seq_puts(m, "max\n");
5081 	else
5082 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5083 
5084 	return 0;
5085 }
5086 
5087 static ssize_t memory_high_write(struct kernfs_open_file *of,
5088 				 char *buf, size_t nbytes, loff_t off)
5089 {
5090 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5091 	unsigned long high;
5092 	int err;
5093 
5094 	buf = strstrip(buf);
5095 	err = page_counter_memparse(buf, "max", &high);
5096 	if (err)
5097 		return err;
5098 
5099 	memcg->high = high;
5100 
5101 	memcg_wb_domain_size_changed(memcg);
5102 	return nbytes;
5103 }
5104 
5105 static int memory_max_show(struct seq_file *m, void *v)
5106 {
5107 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5108 	unsigned long max = READ_ONCE(memcg->memory.limit);
5109 
5110 	if (max == PAGE_COUNTER_MAX)
5111 		seq_puts(m, "max\n");
5112 	else
5113 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5114 
5115 	return 0;
5116 }
5117 
5118 static ssize_t memory_max_write(struct kernfs_open_file *of,
5119 				char *buf, size_t nbytes, loff_t off)
5120 {
5121 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5122 	unsigned long max;
5123 	int err;
5124 
5125 	buf = strstrip(buf);
5126 	err = page_counter_memparse(buf, "max", &max);
5127 	if (err)
5128 		return err;
5129 
5130 	err = mem_cgroup_resize_limit(memcg, max);
5131 	if (err)
5132 		return err;
5133 
5134 	memcg_wb_domain_size_changed(memcg);
5135 	return nbytes;
5136 }
5137 
5138 static int memory_events_show(struct seq_file *m, void *v)
5139 {
5140 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5141 
5142 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5143 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5144 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5145 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5146 
5147 	return 0;
5148 }
5149 
5150 static struct cftype memory_files[] = {
5151 	{
5152 		.name = "current",
5153 		.flags = CFTYPE_NOT_ON_ROOT,
5154 		.read_u64 = memory_current_read,
5155 	},
5156 	{
5157 		.name = "low",
5158 		.flags = CFTYPE_NOT_ON_ROOT,
5159 		.seq_show = memory_low_show,
5160 		.write = memory_low_write,
5161 	},
5162 	{
5163 		.name = "high",
5164 		.flags = CFTYPE_NOT_ON_ROOT,
5165 		.seq_show = memory_high_show,
5166 		.write = memory_high_write,
5167 	},
5168 	{
5169 		.name = "max",
5170 		.flags = CFTYPE_NOT_ON_ROOT,
5171 		.seq_show = memory_max_show,
5172 		.write = memory_max_write,
5173 	},
5174 	{
5175 		.name = "events",
5176 		.flags = CFTYPE_NOT_ON_ROOT,
5177 		.file_offset = offsetof(struct mem_cgroup, events_file),
5178 		.seq_show = memory_events_show,
5179 	},
5180 	{ }	/* terminate */
5181 };
5182 
5183 struct cgroup_subsys memory_cgrp_subsys = {
5184 	.css_alloc = mem_cgroup_css_alloc,
5185 	.css_online = mem_cgroup_css_online,
5186 	.css_offline = mem_cgroup_css_offline,
5187 	.css_free = mem_cgroup_css_free,
5188 	.css_reset = mem_cgroup_css_reset,
5189 	.can_attach = mem_cgroup_can_attach,
5190 	.cancel_attach = mem_cgroup_cancel_attach,
5191 	.attach = mem_cgroup_move_task,
5192 	.bind = mem_cgroup_bind,
5193 	.dfl_cftypes = memory_files,
5194 	.legacy_cftypes = mem_cgroup_legacy_files,
5195 	.early_init = 0,
5196 };
5197 
5198 /**
5199  * mem_cgroup_low - check if memory consumption is below the normal range
5200  * @root: the highest ancestor to consider
5201  * @memcg: the memory cgroup to check
5202  *
5203  * Returns %true if memory consumption of @memcg, and that of all
5204  * configurable ancestors up to @root, is below the normal range.
5205  */
5206 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5207 {
5208 	if (mem_cgroup_disabled())
5209 		return false;
5210 
5211 	/*
5212 	 * The toplevel group doesn't have a configurable range, so
5213 	 * it's never low when looked at directly, and it is not
5214 	 * considered an ancestor when assessing the hierarchy.
5215 	 */
5216 
5217 	if (memcg == root_mem_cgroup)
5218 		return false;
5219 
5220 	if (page_counter_read(&memcg->memory) >= memcg->low)
5221 		return false;
5222 
5223 	while (memcg != root) {
5224 		memcg = parent_mem_cgroup(memcg);
5225 
5226 		if (memcg == root_mem_cgroup)
5227 			break;
5228 
5229 		if (page_counter_read(&memcg->memory) >= memcg->low)
5230 			return false;
5231 	}
5232 	return true;
5233 }
5234 
5235 /**
5236  * mem_cgroup_try_charge - try charging a page
5237  * @page: page to charge
5238  * @mm: mm context of the victim
5239  * @gfp_mask: reclaim mode
5240  * @memcgp: charged memcg return
5241  *
5242  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5243  * pages according to @gfp_mask if necessary.
5244  *
5245  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5246  * Otherwise, an error code is returned.
5247  *
5248  * After page->mapping has been set up, the caller must finalize the
5249  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5250  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5251  */
5252 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5253 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5254 {
5255 	struct mem_cgroup *memcg = NULL;
5256 	unsigned int nr_pages = 1;
5257 	int ret = 0;
5258 
5259 	if (mem_cgroup_disabled())
5260 		goto out;
5261 
5262 	if (PageSwapCache(page)) {
5263 		/*
5264 		 * Every swap fault against a single page tries to charge the
5265 		 * page, bail as early as possible.  shmem_unuse() encounters
5266 		 * already charged pages, too.  The USED bit is protected by
5267 		 * the page lock, which serializes swap cache removal, which
5268 		 * in turn serializes uncharging.
5269 		 */
5270 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5271 		if (page->mem_cgroup)
5272 			goto out;
5273 
5274 		if (do_swap_account) {
5275 			swp_entry_t ent = { .val = page_private(page), };
5276 			unsigned short id = lookup_swap_cgroup_id(ent);
5277 
5278 			rcu_read_lock();
5279 			memcg = mem_cgroup_from_id(id);
5280 			if (memcg && !css_tryget_online(&memcg->css))
5281 				memcg = NULL;
5282 			rcu_read_unlock();
5283 		}
5284 	}
5285 
5286 	if (PageTransHuge(page)) {
5287 		nr_pages <<= compound_order(page);
5288 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5289 	}
5290 
5291 	if (!memcg)
5292 		memcg = get_mem_cgroup_from_mm(mm);
5293 
5294 	ret = try_charge(memcg, gfp_mask, nr_pages);
5295 
5296 	css_put(&memcg->css);
5297 out:
5298 	*memcgp = memcg;
5299 	return ret;
5300 }
5301 
5302 /**
5303  * mem_cgroup_commit_charge - commit a page charge
5304  * @page: page to charge
5305  * @memcg: memcg to charge the page to
5306  * @lrucare: page might be on LRU already
5307  *
5308  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5309  * after page->mapping has been set up.  This must happen atomically
5310  * as part of the page instantiation, i.e. under the page table lock
5311  * for anonymous pages, under the page lock for page and swap cache.
5312  *
5313  * In addition, the page must not be on the LRU during the commit, to
5314  * prevent racing with task migration.  If it might be, use @lrucare.
5315  *
5316  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5317  */
5318 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5319 			      bool lrucare)
5320 {
5321 	unsigned int nr_pages = 1;
5322 
5323 	VM_BUG_ON_PAGE(!page->mapping, page);
5324 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5325 
5326 	if (mem_cgroup_disabled())
5327 		return;
5328 	/*
5329 	 * Swap faults will attempt to charge the same page multiple
5330 	 * times.  But reuse_swap_page() might have removed the page
5331 	 * from swapcache already, so we can't check PageSwapCache().
5332 	 */
5333 	if (!memcg)
5334 		return;
5335 
5336 	commit_charge(page, memcg, lrucare);
5337 
5338 	if (PageTransHuge(page)) {
5339 		nr_pages <<= compound_order(page);
5340 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5341 	}
5342 
5343 	local_irq_disable();
5344 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5345 	memcg_check_events(memcg, page);
5346 	local_irq_enable();
5347 
5348 	if (do_swap_account && PageSwapCache(page)) {
5349 		swp_entry_t entry = { .val = page_private(page) };
5350 		/*
5351 		 * The swap entry might not get freed for a long time,
5352 		 * let's not wait for it.  The page already received a
5353 		 * memory+swap charge, drop the swap entry duplicate.
5354 		 */
5355 		mem_cgroup_uncharge_swap(entry);
5356 	}
5357 }
5358 
5359 /**
5360  * mem_cgroup_cancel_charge - cancel a page charge
5361  * @page: page to charge
5362  * @memcg: memcg to charge the page to
5363  *
5364  * Cancel a charge transaction started by mem_cgroup_try_charge().
5365  */
5366 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5367 {
5368 	unsigned int nr_pages = 1;
5369 
5370 	if (mem_cgroup_disabled())
5371 		return;
5372 	/*
5373 	 * Swap faults will attempt to charge the same page multiple
5374 	 * times.  But reuse_swap_page() might have removed the page
5375 	 * from swapcache already, so we can't check PageSwapCache().
5376 	 */
5377 	if (!memcg)
5378 		return;
5379 
5380 	if (PageTransHuge(page)) {
5381 		nr_pages <<= compound_order(page);
5382 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5383 	}
5384 
5385 	cancel_charge(memcg, nr_pages);
5386 }
5387 
5388 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5389 			   unsigned long nr_anon, unsigned long nr_file,
5390 			   unsigned long nr_huge, struct page *dummy_page)
5391 {
5392 	unsigned long nr_pages = nr_anon + nr_file;
5393 	unsigned long flags;
5394 
5395 	if (!mem_cgroup_is_root(memcg)) {
5396 		page_counter_uncharge(&memcg->memory, nr_pages);
5397 		if (do_swap_account)
5398 			page_counter_uncharge(&memcg->memsw, nr_pages);
5399 		memcg_oom_recover(memcg);
5400 	}
5401 
5402 	local_irq_save(flags);
5403 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5404 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5405 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5406 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5407 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5408 	memcg_check_events(memcg, dummy_page);
5409 	local_irq_restore(flags);
5410 
5411 	if (!mem_cgroup_is_root(memcg))
5412 		css_put_many(&memcg->css, nr_pages);
5413 }
5414 
5415 static void uncharge_list(struct list_head *page_list)
5416 {
5417 	struct mem_cgroup *memcg = NULL;
5418 	unsigned long nr_anon = 0;
5419 	unsigned long nr_file = 0;
5420 	unsigned long nr_huge = 0;
5421 	unsigned long pgpgout = 0;
5422 	struct list_head *next;
5423 	struct page *page;
5424 
5425 	next = page_list->next;
5426 	do {
5427 		unsigned int nr_pages = 1;
5428 
5429 		page = list_entry(next, struct page, lru);
5430 		next = page->lru.next;
5431 
5432 		VM_BUG_ON_PAGE(PageLRU(page), page);
5433 		VM_BUG_ON_PAGE(page_count(page), page);
5434 
5435 		if (!page->mem_cgroup)
5436 			continue;
5437 
5438 		/*
5439 		 * Nobody should be changing or seriously looking at
5440 		 * page->mem_cgroup at this point, we have fully
5441 		 * exclusive access to the page.
5442 		 */
5443 
5444 		if (memcg != page->mem_cgroup) {
5445 			if (memcg) {
5446 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5447 					       nr_huge, page);
5448 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5449 			}
5450 			memcg = page->mem_cgroup;
5451 		}
5452 
5453 		if (PageTransHuge(page)) {
5454 			nr_pages <<= compound_order(page);
5455 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5456 			nr_huge += nr_pages;
5457 		}
5458 
5459 		if (PageAnon(page))
5460 			nr_anon += nr_pages;
5461 		else
5462 			nr_file += nr_pages;
5463 
5464 		page->mem_cgroup = NULL;
5465 
5466 		pgpgout++;
5467 	} while (next != page_list);
5468 
5469 	if (memcg)
5470 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5471 			       nr_huge, page);
5472 }
5473 
5474 /**
5475  * mem_cgroup_uncharge - uncharge a page
5476  * @page: page to uncharge
5477  *
5478  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5479  * mem_cgroup_commit_charge().
5480  */
5481 void mem_cgroup_uncharge(struct page *page)
5482 {
5483 	if (mem_cgroup_disabled())
5484 		return;
5485 
5486 	/* Don't touch page->lru of any random page, pre-check: */
5487 	if (!page->mem_cgroup)
5488 		return;
5489 
5490 	INIT_LIST_HEAD(&page->lru);
5491 	uncharge_list(&page->lru);
5492 }
5493 
5494 /**
5495  * mem_cgroup_uncharge_list - uncharge a list of page
5496  * @page_list: list of pages to uncharge
5497  *
5498  * Uncharge a list of pages previously charged with
5499  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5500  */
5501 void mem_cgroup_uncharge_list(struct list_head *page_list)
5502 {
5503 	if (mem_cgroup_disabled())
5504 		return;
5505 
5506 	if (!list_empty(page_list))
5507 		uncharge_list(page_list);
5508 }
5509 
5510 /**
5511  * mem_cgroup_replace_page - migrate a charge to another page
5512  * @oldpage: currently charged page
5513  * @newpage: page to transfer the charge to
5514  * @lrucare: either or both pages might be on the LRU already
5515  *
5516  * Migrate the charge from @oldpage to @newpage.
5517  *
5518  * Both pages must be locked, @newpage->mapping must be set up.
5519  */
5520 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5521 {
5522 	struct mem_cgroup *memcg;
5523 	int isolated;
5524 
5525 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 		       newpage);
5530 
5531 	if (mem_cgroup_disabled())
5532 		return;
5533 
5534 	/* Page cache replacement: new page already charged? */
5535 	if (newpage->mem_cgroup)
5536 		return;
5537 
5538 	/* Swapcache readahead pages can get replaced before being charged */
5539 	memcg = oldpage->mem_cgroup;
5540 	if (!memcg)
5541 		return;
5542 
5543 	lock_page_lru(oldpage, &isolated);
5544 	oldpage->mem_cgroup = NULL;
5545 	unlock_page_lru(oldpage, isolated);
5546 
5547 	commit_charge(newpage, memcg, true);
5548 }
5549 
5550 /*
5551  * subsys_initcall() for memory controller.
5552  *
5553  * Some parts like hotcpu_notifier() have to be initialized from this context
5554  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5555  * everything that doesn't depend on a specific mem_cgroup structure should
5556  * be initialized from here.
5557  */
5558 static int __init mem_cgroup_init(void)
5559 {
5560 	int cpu, node;
5561 
5562 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5563 
5564 	for_each_possible_cpu(cpu)
5565 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5566 			  drain_local_stock);
5567 
5568 	for_each_node(node) {
5569 		struct mem_cgroup_tree_per_node *rtpn;
5570 		int zone;
5571 
5572 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5573 				    node_online(node) ? node : NUMA_NO_NODE);
5574 
5575 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5576 			struct mem_cgroup_tree_per_zone *rtpz;
5577 
5578 			rtpz = &rtpn->rb_tree_per_zone[zone];
5579 			rtpz->rb_root = RB_ROOT;
5580 			spin_lock_init(&rtpz->lock);
5581 		}
5582 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5583 	}
5584 
5585 	return 0;
5586 }
5587 subsys_initcall(mem_cgroup_init);
5588 
5589 #ifdef CONFIG_MEMCG_SWAP
5590 /**
5591  * mem_cgroup_swapout - transfer a memsw charge to swap
5592  * @page: page whose memsw charge to transfer
5593  * @entry: swap entry to move the charge to
5594  *
5595  * Transfer the memsw charge of @page to @entry.
5596  */
5597 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5598 {
5599 	struct mem_cgroup *memcg;
5600 	unsigned short oldid;
5601 
5602 	VM_BUG_ON_PAGE(PageLRU(page), page);
5603 	VM_BUG_ON_PAGE(page_count(page), page);
5604 
5605 	if (!do_swap_account)
5606 		return;
5607 
5608 	memcg = page->mem_cgroup;
5609 
5610 	/* Readahead page, never charged */
5611 	if (!memcg)
5612 		return;
5613 
5614 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5615 	VM_BUG_ON_PAGE(oldid, page);
5616 	mem_cgroup_swap_statistics(memcg, true);
5617 
5618 	page->mem_cgroup = NULL;
5619 
5620 	if (!mem_cgroup_is_root(memcg))
5621 		page_counter_uncharge(&memcg->memory, 1);
5622 
5623 	/*
5624 	 * Interrupts should be disabled here because the caller holds the
5625 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5626 	 * important here to have the interrupts disabled because it is the
5627 	 * only synchronisation we have for udpating the per-CPU variables.
5628 	 */
5629 	VM_BUG_ON(!irqs_disabled());
5630 	mem_cgroup_charge_statistics(memcg, page, -1);
5631 	memcg_check_events(memcg, page);
5632 }
5633 
5634 /**
5635  * mem_cgroup_uncharge_swap - uncharge a swap entry
5636  * @entry: swap entry to uncharge
5637  *
5638  * Drop the memsw charge associated with @entry.
5639  */
5640 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5641 {
5642 	struct mem_cgroup *memcg;
5643 	unsigned short id;
5644 
5645 	if (!do_swap_account)
5646 		return;
5647 
5648 	id = swap_cgroup_record(entry, 0);
5649 	rcu_read_lock();
5650 	memcg = mem_cgroup_from_id(id);
5651 	if (memcg) {
5652 		if (!mem_cgroup_is_root(memcg))
5653 			page_counter_uncharge(&memcg->memsw, 1);
5654 		mem_cgroup_swap_statistics(memcg, false);
5655 		css_put(&memcg->css);
5656 	}
5657 	rcu_read_unlock();
5658 }
5659 
5660 /* for remember boot option*/
5661 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5662 static int really_do_swap_account __initdata = 1;
5663 #else
5664 static int really_do_swap_account __initdata;
5665 #endif
5666 
5667 static int __init enable_swap_account(char *s)
5668 {
5669 	if (!strcmp(s, "1"))
5670 		really_do_swap_account = 1;
5671 	else if (!strcmp(s, "0"))
5672 		really_do_swap_account = 0;
5673 	return 1;
5674 }
5675 __setup("swapaccount=", enable_swap_account);
5676 
5677 static struct cftype memsw_cgroup_files[] = {
5678 	{
5679 		.name = "memsw.usage_in_bytes",
5680 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5681 		.read_u64 = mem_cgroup_read_u64,
5682 	},
5683 	{
5684 		.name = "memsw.max_usage_in_bytes",
5685 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5686 		.write = mem_cgroup_reset,
5687 		.read_u64 = mem_cgroup_read_u64,
5688 	},
5689 	{
5690 		.name = "memsw.limit_in_bytes",
5691 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5692 		.write = mem_cgroup_write,
5693 		.read_u64 = mem_cgroup_read_u64,
5694 	},
5695 	{
5696 		.name = "memsw.failcnt",
5697 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5698 		.write = mem_cgroup_reset,
5699 		.read_u64 = mem_cgroup_read_u64,
5700 	},
5701 	{ },	/* terminate */
5702 };
5703 
5704 static int __init mem_cgroup_swap_init(void)
5705 {
5706 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5707 		do_swap_account = 1;
5708 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5709 						  memsw_cgroup_files));
5710 	}
5711 	return 0;
5712 }
5713 subsys_initcall(mem_cgroup_swap_init);
5714 
5715 #endif /* CONFIG_MEMCG_SWAP */
5716