xref: /openbmc/linux/mm/memcontrol.c (revision 9cdb81c7)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		(0)
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 	MEM_CGROUP_STAT_NSTATS,
93 };
94 
95 enum mem_cgroup_events_index {
96 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
97 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
98 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
99 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
100 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 	MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104  * Per memcg event counter is incremented at every pagein/pageout. With THP,
105  * it will be incremated by the number of pages. This counter is used for
106  * for trigger some periodic events. This is straightforward and better
107  * than using jiffies etc. to handle periodic memcg event.
108  */
109 enum mem_cgroup_events_target {
110 	MEM_CGROUP_TARGET_THRESH,
111 	MEM_CGROUP_TARGET_SOFTLIMIT,
112 	MEM_CGROUP_TARGET_NUMAINFO,
113 	MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET (128)
116 #define SOFTLIMIT_EVENTS_TARGET (1024)
117 #define NUMAINFO_EVENTS_TARGET	(1024)
118 
119 struct mem_cgroup_stat_cpu {
120 	long count[MEM_CGROUP_STAT_NSTATS];
121 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 	unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124 
125 struct mem_cgroup_reclaim_iter {
126 	/* css_id of the last scanned hierarchy member */
127 	int position;
128 	/* scan generation, increased every round-trip */
129 	unsigned int generation;
130 };
131 
132 /*
133  * per-zone information in memory controller.
134  */
135 struct mem_cgroup_per_zone {
136 	struct lruvec		lruvec;
137 	unsigned long		lru_size[NR_LRU_LISTS];
138 
139 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140 
141 	struct zone_reclaim_stat reclaim_stat;
142 	struct rb_node		tree_node;	/* RB tree node */
143 	unsigned long long	usage_in_excess;/* Set to the value by which */
144 						/* the soft limit is exceeded*/
145 	bool			on_tree;
146 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
147 						/* use container_of	   */
148 };
149 
150 struct mem_cgroup_per_node {
151 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152 };
153 
154 struct mem_cgroup_lru_info {
155 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156 };
157 
158 /*
159  * Cgroups above their limits are maintained in a RB-Tree, independent of
160  * their hierarchy representation
161  */
162 
163 struct mem_cgroup_tree_per_zone {
164 	struct rb_root rb_root;
165 	spinlock_t lock;
166 };
167 
168 struct mem_cgroup_tree_per_node {
169 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170 };
171 
172 struct mem_cgroup_tree {
173 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174 };
175 
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177 
178 struct mem_cgroup_threshold {
179 	struct eventfd_ctx *eventfd;
180 	u64 threshold;
181 };
182 
183 /* For threshold */
184 struct mem_cgroup_threshold_ary {
185 	/* An array index points to threshold just below usage. */
186 	int current_threshold;
187 	/* Size of entries[] */
188 	unsigned int size;
189 	/* Array of thresholds */
190 	struct mem_cgroup_threshold entries[0];
191 };
192 
193 struct mem_cgroup_thresholds {
194 	/* Primary thresholds array */
195 	struct mem_cgroup_threshold_ary *primary;
196 	/*
197 	 * Spare threshold array.
198 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 	 * It must be able to store at least primary->size - 1 entries.
200 	 */
201 	struct mem_cgroup_threshold_ary *spare;
202 };
203 
204 /* for OOM */
205 struct mem_cgroup_eventfd_list {
206 	struct list_head list;
207 	struct eventfd_ctx *eventfd;
208 };
209 
210 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212 
213 /*
214  * The memory controller data structure. The memory controller controls both
215  * page cache and RSS per cgroup. We would eventually like to provide
216  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217  * to help the administrator determine what knobs to tune.
218  *
219  * TODO: Add a water mark for the memory controller. Reclaim will begin when
220  * we hit the water mark. May be even add a low water mark, such that
221  * no reclaim occurs from a cgroup at it's low water mark, this is
222  * a feature that will be implemented much later in the future.
223  */
224 struct mem_cgroup {
225 	struct cgroup_subsys_state css;
226 	/*
227 	 * the counter to account for memory usage
228 	 */
229 	struct res_counter res;
230 
231 	union {
232 		/*
233 		 * the counter to account for mem+swap usage.
234 		 */
235 		struct res_counter memsw;
236 
237 		/*
238 		 * rcu_freeing is used only when freeing struct mem_cgroup,
239 		 * so put it into a union to avoid wasting more memory.
240 		 * It must be disjoint from the css field.  It could be
241 		 * in a union with the res field, but res plays a much
242 		 * larger part in mem_cgroup life than memsw, and might
243 		 * be of interest, even at time of free, when debugging.
244 		 * So share rcu_head with the less interesting memsw.
245 		 */
246 		struct rcu_head rcu_freeing;
247 		/*
248 		 * But when using vfree(), that cannot be done at
249 		 * interrupt time, so we must then queue the work.
250 		 */
251 		struct work_struct work_freeing;
252 	};
253 
254 	/*
255 	 * Per cgroup active and inactive list, similar to the
256 	 * per zone LRU lists.
257 	 */
258 	struct mem_cgroup_lru_info info;
259 	int last_scanned_node;
260 #if MAX_NUMNODES > 1
261 	nodemask_t	scan_nodes;
262 	atomic_t	numainfo_events;
263 	atomic_t	numainfo_updating;
264 #endif
265 	/*
266 	 * Should the accounting and control be hierarchical, per subtree?
267 	 */
268 	bool use_hierarchy;
269 
270 	bool		oom_lock;
271 	atomic_t	under_oom;
272 
273 	atomic_t	refcnt;
274 
275 	int	swappiness;
276 	/* OOM-Killer disable */
277 	int		oom_kill_disable;
278 
279 	/* set when res.limit == memsw.limit */
280 	bool		memsw_is_minimum;
281 
282 	/* protect arrays of thresholds */
283 	struct mutex thresholds_lock;
284 
285 	/* thresholds for memory usage. RCU-protected */
286 	struct mem_cgroup_thresholds thresholds;
287 
288 	/* thresholds for mem+swap usage. RCU-protected */
289 	struct mem_cgroup_thresholds memsw_thresholds;
290 
291 	/* For oom notifier event fd */
292 	struct list_head oom_notify;
293 
294 	/*
295 	 * Should we move charges of a task when a task is moved into this
296 	 * mem_cgroup ? And what type of charges should we move ?
297 	 */
298 	unsigned long 	move_charge_at_immigrate;
299 	/*
300 	 * set > 0 if pages under this cgroup are moving to other cgroup.
301 	 */
302 	atomic_t	moving_account;
303 	/* taken only while moving_account > 0 */
304 	spinlock_t	move_lock;
305 	/*
306 	 * percpu counter.
307 	 */
308 	struct mem_cgroup_stat_cpu *stat;
309 	/*
310 	 * used when a cpu is offlined or other synchronizations
311 	 * See mem_cgroup_read_stat().
312 	 */
313 	struct mem_cgroup_stat_cpu nocpu_base;
314 	spinlock_t pcp_counter_lock;
315 
316 #ifdef CONFIG_INET
317 	struct tcp_memcontrol tcp_mem;
318 #endif
319 };
320 
321 /* Stuffs for move charges at task migration. */
322 /*
323  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324  * left-shifted bitmap of these types.
325  */
326 enum move_type {
327 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
328 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
329 	NR_MOVE_TYPE,
330 };
331 
332 /* "mc" and its members are protected by cgroup_mutex */
333 static struct move_charge_struct {
334 	spinlock_t	  lock; /* for from, to */
335 	struct mem_cgroup *from;
336 	struct mem_cgroup *to;
337 	unsigned long precharge;
338 	unsigned long moved_charge;
339 	unsigned long moved_swap;
340 	struct task_struct *moving_task;	/* a task moving charges */
341 	wait_queue_head_t waitq;		/* a waitq for other context */
342 } mc = {
343 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345 };
346 
347 static bool move_anon(void)
348 {
349 	return test_bit(MOVE_CHARGE_TYPE_ANON,
350 					&mc.to->move_charge_at_immigrate);
351 }
352 
353 static bool move_file(void)
354 {
355 	return test_bit(MOVE_CHARGE_TYPE_FILE,
356 					&mc.to->move_charge_at_immigrate);
357 }
358 
359 /*
360  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361  * limit reclaim to prevent infinite loops, if they ever occur.
362  */
363 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
364 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
365 
366 enum charge_type {
367 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
369 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
370 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
371 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
372 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
373 	NR_CHARGE_TYPE,
374 };
375 
376 /* for encoding cft->private value on file */
377 #define _MEM			(0)
378 #define _MEMSWAP		(1)
379 #define _OOM_TYPE		(2)
380 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
381 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
382 #define MEMFILE_ATTR(val)	((val) & 0xffff)
383 /* Used for OOM nofiier */
384 #define OOM_CONTROL		(0)
385 
386 /*
387  * Reclaim flags for mem_cgroup_hierarchical_reclaim
388  */
389 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
390 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
392 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393 
394 static void mem_cgroup_get(struct mem_cgroup *memcg);
395 static void mem_cgroup_put(struct mem_cgroup *memcg);
396 
397 /* Writing them here to avoid exposing memcg's inner layout */
398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
399 #include <net/sock.h>
400 #include <net/ip.h>
401 
402 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403 void sock_update_memcg(struct sock *sk)
404 {
405 	if (mem_cgroup_sockets_enabled) {
406 		struct mem_cgroup *memcg;
407 
408 		BUG_ON(!sk->sk_prot->proto_cgroup);
409 
410 		/* Socket cloning can throw us here with sk_cgrp already
411 		 * filled. It won't however, necessarily happen from
412 		 * process context. So the test for root memcg given
413 		 * the current task's memcg won't help us in this case.
414 		 *
415 		 * Respecting the original socket's memcg is a better
416 		 * decision in this case.
417 		 */
418 		if (sk->sk_cgrp) {
419 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 			mem_cgroup_get(sk->sk_cgrp->memcg);
421 			return;
422 		}
423 
424 		rcu_read_lock();
425 		memcg = mem_cgroup_from_task(current);
426 		if (!mem_cgroup_is_root(memcg)) {
427 			mem_cgroup_get(memcg);
428 			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 		}
430 		rcu_read_unlock();
431 	}
432 }
433 EXPORT_SYMBOL(sock_update_memcg);
434 
435 void sock_release_memcg(struct sock *sk)
436 {
437 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
438 		struct mem_cgroup *memcg;
439 		WARN_ON(!sk->sk_cgrp->memcg);
440 		memcg = sk->sk_cgrp->memcg;
441 		mem_cgroup_put(memcg);
442 	}
443 }
444 
445 #ifdef CONFIG_INET
446 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447 {
448 	if (!memcg || mem_cgroup_is_root(memcg))
449 		return NULL;
450 
451 	return &memcg->tcp_mem.cg_proto;
452 }
453 EXPORT_SYMBOL(tcp_proto_cgroup);
454 #endif /* CONFIG_INET */
455 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456 
457 static void drain_all_stock_async(struct mem_cgroup *memcg);
458 
459 static struct mem_cgroup_per_zone *
460 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461 {
462 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 }
464 
465 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466 {
467 	return &memcg->css;
468 }
469 
470 static struct mem_cgroup_per_zone *
471 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472 {
473 	int nid = page_to_nid(page);
474 	int zid = page_zonenum(page);
475 
476 	return mem_cgroup_zoneinfo(memcg, nid, zid);
477 }
478 
479 static struct mem_cgroup_tree_per_zone *
480 soft_limit_tree_node_zone(int nid, int zid)
481 {
482 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483 }
484 
485 static struct mem_cgroup_tree_per_zone *
486 soft_limit_tree_from_page(struct page *page)
487 {
488 	int nid = page_to_nid(page);
489 	int zid = page_zonenum(page);
490 
491 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492 }
493 
494 static void
495 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496 				struct mem_cgroup_per_zone *mz,
497 				struct mem_cgroup_tree_per_zone *mctz,
498 				unsigned long long new_usage_in_excess)
499 {
500 	struct rb_node **p = &mctz->rb_root.rb_node;
501 	struct rb_node *parent = NULL;
502 	struct mem_cgroup_per_zone *mz_node;
503 
504 	if (mz->on_tree)
505 		return;
506 
507 	mz->usage_in_excess = new_usage_in_excess;
508 	if (!mz->usage_in_excess)
509 		return;
510 	while (*p) {
511 		parent = *p;
512 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 					tree_node);
514 		if (mz->usage_in_excess < mz_node->usage_in_excess)
515 			p = &(*p)->rb_left;
516 		/*
517 		 * We can't avoid mem cgroups that are over their soft
518 		 * limit by the same amount
519 		 */
520 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 			p = &(*p)->rb_right;
522 	}
523 	rb_link_node(&mz->tree_node, parent, p);
524 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 	mz->on_tree = true;
526 }
527 
528 static void
529 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 				struct mem_cgroup_per_zone *mz,
531 				struct mem_cgroup_tree_per_zone *mctz)
532 {
533 	if (!mz->on_tree)
534 		return;
535 	rb_erase(&mz->tree_node, &mctz->rb_root);
536 	mz->on_tree = false;
537 }
538 
539 static void
540 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 				struct mem_cgroup_per_zone *mz,
542 				struct mem_cgroup_tree_per_zone *mctz)
543 {
544 	spin_lock(&mctz->lock);
545 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 	spin_unlock(&mctz->lock);
547 }
548 
549 
550 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551 {
552 	unsigned long long excess;
553 	struct mem_cgroup_per_zone *mz;
554 	struct mem_cgroup_tree_per_zone *mctz;
555 	int nid = page_to_nid(page);
556 	int zid = page_zonenum(page);
557 	mctz = soft_limit_tree_from_page(page);
558 
559 	/*
560 	 * Necessary to update all ancestors when hierarchy is used.
561 	 * because their event counter is not touched.
562 	 */
563 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 		excess = res_counter_soft_limit_excess(&memcg->res);
566 		/*
567 		 * We have to update the tree if mz is on RB-tree or
568 		 * mem is over its softlimit.
569 		 */
570 		if (excess || mz->on_tree) {
571 			spin_lock(&mctz->lock);
572 			/* if on-tree, remove it */
573 			if (mz->on_tree)
574 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
575 			/*
576 			 * Insert again. mz->usage_in_excess will be updated.
577 			 * If excess is 0, no tree ops.
578 			 */
579 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 			spin_unlock(&mctz->lock);
581 		}
582 	}
583 }
584 
585 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 {
587 	int node, zone;
588 	struct mem_cgroup_per_zone *mz;
589 	struct mem_cgroup_tree_per_zone *mctz;
590 
591 	for_each_node(node) {
592 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
594 			mctz = soft_limit_tree_node_zone(node, zone);
595 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 		}
597 	}
598 }
599 
600 static struct mem_cgroup_per_zone *
601 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602 {
603 	struct rb_node *rightmost = NULL;
604 	struct mem_cgroup_per_zone *mz;
605 
606 retry:
607 	mz = NULL;
608 	rightmost = rb_last(&mctz->rb_root);
609 	if (!rightmost)
610 		goto done;		/* Nothing to reclaim from */
611 
612 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 	/*
614 	 * Remove the node now but someone else can add it back,
615 	 * we will to add it back at the end of reclaim to its correct
616 	 * position in the tree.
617 	 */
618 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 		!css_tryget(&mz->memcg->css))
621 		goto retry;
622 done:
623 	return mz;
624 }
625 
626 static struct mem_cgroup_per_zone *
627 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628 {
629 	struct mem_cgroup_per_zone *mz;
630 
631 	spin_lock(&mctz->lock);
632 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 	spin_unlock(&mctz->lock);
634 	return mz;
635 }
636 
637 /*
638  * Implementation Note: reading percpu statistics for memcg.
639  *
640  * Both of vmstat[] and percpu_counter has threshold and do periodic
641  * synchronization to implement "quick" read. There are trade-off between
642  * reading cost and precision of value. Then, we may have a chance to implement
643  * a periodic synchronizion of counter in memcg's counter.
644  *
645  * But this _read() function is used for user interface now. The user accounts
646  * memory usage by memory cgroup and he _always_ requires exact value because
647  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648  * have to visit all online cpus and make sum. So, for now, unnecessary
649  * synchronization is not implemented. (just implemented for cpu hotplug)
650  *
651  * If there are kernel internal actions which can make use of some not-exact
652  * value, and reading all cpu value can be performance bottleneck in some
653  * common workload, threashold and synchonization as vmstat[] should be
654  * implemented.
655  */
656 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657 				 enum mem_cgroup_stat_index idx)
658 {
659 	long val = 0;
660 	int cpu;
661 
662 	get_online_cpus();
663 	for_each_online_cpu(cpu)
664 		val += per_cpu(memcg->stat->count[idx], cpu);
665 #ifdef CONFIG_HOTPLUG_CPU
666 	spin_lock(&memcg->pcp_counter_lock);
667 	val += memcg->nocpu_base.count[idx];
668 	spin_unlock(&memcg->pcp_counter_lock);
669 #endif
670 	put_online_cpus();
671 	return val;
672 }
673 
674 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 					 bool charge)
676 {
677 	int val = (charge) ? 1 : -1;
678 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 }
680 
681 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 					    enum mem_cgroup_events_index idx)
683 {
684 	unsigned long val = 0;
685 	int cpu;
686 
687 	for_each_online_cpu(cpu)
688 		val += per_cpu(memcg->stat->events[idx], cpu);
689 #ifdef CONFIG_HOTPLUG_CPU
690 	spin_lock(&memcg->pcp_counter_lock);
691 	val += memcg->nocpu_base.events[idx];
692 	spin_unlock(&memcg->pcp_counter_lock);
693 #endif
694 	return val;
695 }
696 
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 					 bool anon, int nr_pages)
699 {
700 	preempt_disable();
701 
702 	/*
703 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 	 * counted as CACHE even if it's on ANON LRU.
705 	 */
706 	if (anon)
707 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 				nr_pages);
709 	else
710 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 				nr_pages);
712 
713 	/* pagein of a big page is an event. So, ignore page size */
714 	if (nr_pages > 0)
715 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716 	else {
717 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 		nr_pages = -nr_pages; /* for event */
719 	}
720 
721 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722 
723 	preempt_enable();
724 }
725 
726 unsigned long
727 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728 			unsigned int lru_mask)
729 {
730 	struct mem_cgroup_per_zone *mz;
731 	enum lru_list lru;
732 	unsigned long ret = 0;
733 
734 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735 
736 	for_each_lru(lru) {
737 		if (BIT(lru) & lru_mask)
738 			ret += mz->lru_size[lru];
739 	}
740 	return ret;
741 }
742 
743 static unsigned long
744 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 			int nid, unsigned int lru_mask)
746 {
747 	u64 total = 0;
748 	int zid;
749 
750 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 		total += mem_cgroup_zone_nr_lru_pages(memcg,
752 						nid, zid, lru_mask);
753 
754 	return total;
755 }
756 
757 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758 			unsigned int lru_mask)
759 {
760 	int nid;
761 	u64 total = 0;
762 
763 	for_each_node_state(nid, N_HIGH_MEMORY)
764 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765 	return total;
766 }
767 
768 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 				       enum mem_cgroup_events_target target)
770 {
771 	unsigned long val, next;
772 
773 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 	next = __this_cpu_read(memcg->stat->targets[target]);
775 	/* from time_after() in jiffies.h */
776 	if ((long)next - (long)val < 0) {
777 		switch (target) {
778 		case MEM_CGROUP_TARGET_THRESH:
779 			next = val + THRESHOLDS_EVENTS_TARGET;
780 			break;
781 		case MEM_CGROUP_TARGET_SOFTLIMIT:
782 			next = val + SOFTLIMIT_EVENTS_TARGET;
783 			break;
784 		case MEM_CGROUP_TARGET_NUMAINFO:
785 			next = val + NUMAINFO_EVENTS_TARGET;
786 			break;
787 		default:
788 			break;
789 		}
790 		__this_cpu_write(memcg->stat->targets[target], next);
791 		return true;
792 	}
793 	return false;
794 }
795 
796 /*
797  * Check events in order.
798  *
799  */
800 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801 {
802 	preempt_disable();
803 	/* threshold event is triggered in finer grain than soft limit */
804 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 						MEM_CGROUP_TARGET_THRESH))) {
806 		bool do_softlimit;
807 		bool do_numainfo __maybe_unused;
808 
809 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 						MEM_CGROUP_TARGET_SOFTLIMIT);
811 #if MAX_NUMNODES > 1
812 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 						MEM_CGROUP_TARGET_NUMAINFO);
814 #endif
815 		preempt_enable();
816 
817 		mem_cgroup_threshold(memcg);
818 		if (unlikely(do_softlimit))
819 			mem_cgroup_update_tree(memcg, page);
820 #if MAX_NUMNODES > 1
821 		if (unlikely(do_numainfo))
822 			atomic_inc(&memcg->numainfo_events);
823 #endif
824 	} else
825 		preempt_enable();
826 }
827 
828 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
829 {
830 	return container_of(cgroup_subsys_state(cont,
831 				mem_cgroup_subsys_id), struct mem_cgroup,
832 				css);
833 }
834 
835 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836 {
837 	/*
838 	 * mm_update_next_owner() may clear mm->owner to NULL
839 	 * if it races with swapoff, page migration, etc.
840 	 * So this can be called with p == NULL.
841 	 */
842 	if (unlikely(!p))
843 		return NULL;
844 
845 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 				struct mem_cgroup, css);
847 }
848 
849 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850 {
851 	struct mem_cgroup *memcg = NULL;
852 
853 	if (!mm)
854 		return NULL;
855 	/*
856 	 * Because we have no locks, mm->owner's may be being moved to other
857 	 * cgroup. We use css_tryget() here even if this looks
858 	 * pessimistic (rather than adding locks here).
859 	 */
860 	rcu_read_lock();
861 	do {
862 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 		if (unlikely(!memcg))
864 			break;
865 	} while (!css_tryget(&memcg->css));
866 	rcu_read_unlock();
867 	return memcg;
868 }
869 
870 /**
871  * mem_cgroup_iter - iterate over memory cgroup hierarchy
872  * @root: hierarchy root
873  * @prev: previously returned memcg, NULL on first invocation
874  * @reclaim: cookie for shared reclaim walks, NULL for full walks
875  *
876  * Returns references to children of the hierarchy below @root, or
877  * @root itself, or %NULL after a full round-trip.
878  *
879  * Caller must pass the return value in @prev on subsequent
880  * invocations for reference counting, or use mem_cgroup_iter_break()
881  * to cancel a hierarchy walk before the round-trip is complete.
882  *
883  * Reclaimers can specify a zone and a priority level in @reclaim to
884  * divide up the memcgs in the hierarchy among all concurrent
885  * reclaimers operating on the same zone and priority.
886  */
887 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 				   struct mem_cgroup *prev,
889 				   struct mem_cgroup_reclaim_cookie *reclaim)
890 {
891 	struct mem_cgroup *memcg = NULL;
892 	int id = 0;
893 
894 	if (mem_cgroup_disabled())
895 		return NULL;
896 
897 	if (!root)
898 		root = root_mem_cgroup;
899 
900 	if (prev && !reclaim)
901 		id = css_id(&prev->css);
902 
903 	if (prev && prev != root)
904 		css_put(&prev->css);
905 
906 	if (!root->use_hierarchy && root != root_mem_cgroup) {
907 		if (prev)
908 			return NULL;
909 		return root;
910 	}
911 
912 	while (!memcg) {
913 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914 		struct cgroup_subsys_state *css;
915 
916 		if (reclaim) {
917 			int nid = zone_to_nid(reclaim->zone);
918 			int zid = zone_idx(reclaim->zone);
919 			struct mem_cgroup_per_zone *mz;
920 
921 			mz = mem_cgroup_zoneinfo(root, nid, zid);
922 			iter = &mz->reclaim_iter[reclaim->priority];
923 			if (prev && reclaim->generation != iter->generation)
924 				return NULL;
925 			id = iter->position;
926 		}
927 
928 		rcu_read_lock();
929 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 		if (css) {
931 			if (css == &root->css || css_tryget(css))
932 				memcg = container_of(css,
933 						     struct mem_cgroup, css);
934 		} else
935 			id = 0;
936 		rcu_read_unlock();
937 
938 		if (reclaim) {
939 			iter->position = id;
940 			if (!css)
941 				iter->generation++;
942 			else if (!prev && memcg)
943 				reclaim->generation = iter->generation;
944 		}
945 
946 		if (prev && !css)
947 			return NULL;
948 	}
949 	return memcg;
950 }
951 
952 /**
953  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954  * @root: hierarchy root
955  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956  */
957 void mem_cgroup_iter_break(struct mem_cgroup *root,
958 			   struct mem_cgroup *prev)
959 {
960 	if (!root)
961 		root = root_mem_cgroup;
962 	if (prev && prev != root)
963 		css_put(&prev->css);
964 }
965 
966 /*
967  * Iteration constructs for visiting all cgroups (under a tree).  If
968  * loops are exited prematurely (break), mem_cgroup_iter_break() must
969  * be used for reference counting.
970  */
971 #define for_each_mem_cgroup_tree(iter, root)		\
972 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
973 	     iter != NULL;				\
974 	     iter = mem_cgroup_iter(root, iter, NULL))
975 
976 #define for_each_mem_cgroup(iter)			\
977 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
978 	     iter != NULL;				\
979 	     iter = mem_cgroup_iter(NULL, iter, NULL))
980 
981 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982 {
983 	return (memcg == root_mem_cgroup);
984 }
985 
986 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987 {
988 	struct mem_cgroup *memcg;
989 
990 	if (!mm)
991 		return;
992 
993 	rcu_read_lock();
994 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 	if (unlikely(!memcg))
996 		goto out;
997 
998 	switch (idx) {
999 	case PGFAULT:
1000 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 		break;
1002 	case PGMAJFAULT:
1003 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 		break;
1005 	default:
1006 		BUG();
1007 	}
1008 out:
1009 	rcu_read_unlock();
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012 
1013 /**
1014  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015  * @zone: zone of the wanted lruvec
1016  * @mem: memcg of the wanted lruvec
1017  *
1018  * Returns the lru list vector holding pages for the given @zone and
1019  * @mem.  This can be the global zone lruvec, if the memory controller
1020  * is disabled.
1021  */
1022 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 				      struct mem_cgroup *memcg)
1024 {
1025 	struct mem_cgroup_per_zone *mz;
1026 
1027 	if (mem_cgroup_disabled())
1028 		return &zone->lruvec;
1029 
1030 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 	return &mz->lruvec;
1032 }
1033 
1034 /*
1035  * Following LRU functions are allowed to be used without PCG_LOCK.
1036  * Operations are called by routine of global LRU independently from memcg.
1037  * What we have to take care of here is validness of pc->mem_cgroup.
1038  *
1039  * Changes to pc->mem_cgroup happens when
1040  * 1. charge
1041  * 2. moving account
1042  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043  * It is added to LRU before charge.
1044  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045  * When moving account, the page is not on LRU. It's isolated.
1046  */
1047 
1048 /**
1049  * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050  * @zone: zone of the page
1051  * @page: the page
1052  * @lru: current lru
1053  *
1054  * This function accounts for @page being added to @lru, and returns
1055  * the lruvec for the given @zone and the memcg @page is charged to.
1056  *
1057  * The callsite is then responsible for physically linking the page to
1058  * the returned lruvec->lists[@lru].
1059  */
1060 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 				       enum lru_list lru)
1062 {
1063 	struct mem_cgroup_per_zone *mz;
1064 	struct mem_cgroup *memcg;
1065 	struct page_cgroup *pc;
1066 
1067 	if (mem_cgroup_disabled())
1068 		return &zone->lruvec;
1069 
1070 	pc = lookup_page_cgroup(page);
1071 	memcg = pc->mem_cgroup;
1072 
1073 	/*
1074 	 * Surreptitiously switch any uncharged page to root:
1075 	 * an uncharged page off lru does nothing to secure
1076 	 * its former mem_cgroup from sudden removal.
1077 	 *
1078 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 	 * under page_cgroup lock: between them, they make all uses
1080 	 * of pc->mem_cgroup safe.
1081 	 */
1082 	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 		pc->mem_cgroup = memcg = root_mem_cgroup;
1084 
1085 	mz = page_cgroup_zoneinfo(memcg, page);
1086 	/* compound_order() is stabilized through lru_lock */
1087 	mz->lru_size[lru] += 1 << compound_order(page);
1088 	return &mz->lruvec;
1089 }
1090 
1091 /**
1092  * mem_cgroup_lru_del_list - account for removing an lru page
1093  * @page: the page
1094  * @lru: target lru
1095  *
1096  * This function accounts for @page being removed from @lru.
1097  *
1098  * The callsite is then responsible for physically unlinking
1099  * @page->lru.
1100  */
1101 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102 {
1103 	struct mem_cgroup_per_zone *mz;
1104 	struct mem_cgroup *memcg;
1105 	struct page_cgroup *pc;
1106 
1107 	if (mem_cgroup_disabled())
1108 		return;
1109 
1110 	pc = lookup_page_cgroup(page);
1111 	memcg = pc->mem_cgroup;
1112 	VM_BUG_ON(!memcg);
1113 	mz = page_cgroup_zoneinfo(memcg, page);
1114 	/* huge page split is done under lru_lock. so, we have no races. */
1115 	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 	mz->lru_size[lru] -= 1 << compound_order(page);
1117 }
1118 
1119 void mem_cgroup_lru_del(struct page *page)
1120 {
1121 	mem_cgroup_lru_del_list(page, page_lru(page));
1122 }
1123 
1124 /**
1125  * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126  * @zone: zone of the page
1127  * @page: the page
1128  * @from: current lru
1129  * @to: target lru
1130  *
1131  * This function accounts for @page being moved between the lrus @from
1132  * and @to, and returns the lruvec for the given @zone and the memcg
1133  * @page is charged to.
1134  *
1135  * The callsite is then responsible for physically relinking
1136  * @page->lru to the returned lruvec->lists[@to].
1137  */
1138 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 					 struct page *page,
1140 					 enum lru_list from,
1141 					 enum lru_list to)
1142 {
1143 	/* XXX: Optimize this, especially for @from == @to */
1144 	mem_cgroup_lru_del_list(page, from);
1145 	return mem_cgroup_lru_add_list(zone, page, to);
1146 }
1147 
1148 /*
1149  * Checks whether given mem is same or in the root_mem_cgroup's
1150  * hierarchy subtree
1151  */
1152 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 		struct mem_cgroup *memcg)
1154 {
1155 	if (root_memcg != memcg) {
1156 		return (root_memcg->use_hierarchy &&
1157 			css_is_ancestor(&memcg->css, &root_memcg->css));
1158 	}
1159 
1160 	return true;
1161 }
1162 
1163 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 {
1165 	int ret;
1166 	struct mem_cgroup *curr = NULL;
1167 	struct task_struct *p;
1168 
1169 	p = find_lock_task_mm(task);
1170 	if (p) {
1171 		curr = try_get_mem_cgroup_from_mm(p->mm);
1172 		task_unlock(p);
1173 	} else {
1174 		/*
1175 		 * All threads may have already detached their mm's, but the oom
1176 		 * killer still needs to detect if they have already been oom
1177 		 * killed to prevent needlessly killing additional tasks.
1178 		 */
1179 		task_lock(task);
1180 		curr = mem_cgroup_from_task(task);
1181 		if (curr)
1182 			css_get(&curr->css);
1183 		task_unlock(task);
1184 	}
1185 	if (!curr)
1186 		return 0;
1187 	/*
1188 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192 	 */
1193 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1194 	css_put(&curr->css);
1195 	return ret;
1196 }
1197 
1198 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1199 {
1200 	unsigned long inactive_ratio;
1201 	int nid = zone_to_nid(zone);
1202 	int zid = zone_idx(zone);
1203 	unsigned long inactive;
1204 	unsigned long active;
1205 	unsigned long gb;
1206 
1207 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 						BIT(LRU_INACTIVE_ANON));
1209 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 					      BIT(LRU_ACTIVE_ANON));
1211 
1212 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 	if (gb)
1214 		inactive_ratio = int_sqrt(10 * gb);
1215 	else
1216 		inactive_ratio = 1;
1217 
1218 	return inactive * inactive_ratio < active;
1219 }
1220 
1221 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1222 {
1223 	unsigned long active;
1224 	unsigned long inactive;
1225 	int zid = zone_idx(zone);
1226 	int nid = zone_to_nid(zone);
1227 
1228 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 						BIT(LRU_INACTIVE_FILE));
1230 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 					      BIT(LRU_ACTIVE_FILE));
1232 
1233 	return (active > inactive);
1234 }
1235 
1236 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 						      struct zone *zone)
1238 {
1239 	int nid = zone_to_nid(zone);
1240 	int zid = zone_idx(zone);
1241 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1242 
1243 	return &mz->reclaim_stat;
1244 }
1245 
1246 struct zone_reclaim_stat *
1247 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1248 {
1249 	struct page_cgroup *pc;
1250 	struct mem_cgroup_per_zone *mz;
1251 
1252 	if (mem_cgroup_disabled())
1253 		return NULL;
1254 
1255 	pc = lookup_page_cgroup(page);
1256 	if (!PageCgroupUsed(pc))
1257 		return NULL;
1258 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 	smp_rmb();
1260 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1261 	return &mz->reclaim_stat;
1262 }
1263 
1264 #define mem_cgroup_from_res_counter(counter, member)	\
1265 	container_of(counter, struct mem_cgroup, member)
1266 
1267 /**
1268  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269  * @mem: the memory cgroup
1270  *
1271  * Returns the maximum amount of memory @mem can be charged with, in
1272  * pages.
1273  */
1274 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1275 {
1276 	unsigned long long margin;
1277 
1278 	margin = res_counter_margin(&memcg->res);
1279 	if (do_swap_account)
1280 		margin = min(margin, res_counter_margin(&memcg->memsw));
1281 	return margin >> PAGE_SHIFT;
1282 }
1283 
1284 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1285 {
1286 	struct cgroup *cgrp = memcg->css.cgroup;
1287 
1288 	/* root ? */
1289 	if (cgrp->parent == NULL)
1290 		return vm_swappiness;
1291 
1292 	return memcg->swappiness;
1293 }
1294 
1295 /*
1296  * memcg->moving_account is used for checking possibility that some thread is
1297  * calling move_account(). When a thread on CPU-A starts moving pages under
1298  * a memcg, other threads should check memcg->moving_account under
1299  * rcu_read_lock(), like this:
1300  *
1301  *         CPU-A                                    CPU-B
1302  *                                              rcu_read_lock()
1303  *         memcg->moving_account+1              if (memcg->mocing_account)
1304  *                                                   take heavy locks.
1305  *         synchronize_rcu()                    update something.
1306  *                                              rcu_read_unlock()
1307  *         start move here.
1308  */
1309 
1310 /* for quick checking without looking up memcg */
1311 atomic_t memcg_moving __read_mostly;
1312 
1313 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1314 {
1315 	atomic_inc(&memcg_moving);
1316 	atomic_inc(&memcg->moving_account);
1317 	synchronize_rcu();
1318 }
1319 
1320 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1321 {
1322 	/*
1323 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1324 	 * We check NULL in callee rather than caller.
1325 	 */
1326 	if (memcg) {
1327 		atomic_dec(&memcg_moving);
1328 		atomic_dec(&memcg->moving_account);
1329 	}
1330 }
1331 
1332 /*
1333  * 2 routines for checking "mem" is under move_account() or not.
1334  *
1335  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1336  *			  is used for avoiding races in accounting.  If true,
1337  *			  pc->mem_cgroup may be overwritten.
1338  *
1339  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1340  *			  under hierarchy of moving cgroups. This is for
1341  *			  waiting at hith-memory prressure caused by "move".
1342  */
1343 
1344 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1345 {
1346 	VM_BUG_ON(!rcu_read_lock_held());
1347 	return atomic_read(&memcg->moving_account) > 0;
1348 }
1349 
1350 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1351 {
1352 	struct mem_cgroup *from;
1353 	struct mem_cgroup *to;
1354 	bool ret = false;
1355 	/*
1356 	 * Unlike task_move routines, we access mc.to, mc.from not under
1357 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1358 	 */
1359 	spin_lock(&mc.lock);
1360 	from = mc.from;
1361 	to = mc.to;
1362 	if (!from)
1363 		goto unlock;
1364 
1365 	ret = mem_cgroup_same_or_subtree(memcg, from)
1366 		|| mem_cgroup_same_or_subtree(memcg, to);
1367 unlock:
1368 	spin_unlock(&mc.lock);
1369 	return ret;
1370 }
1371 
1372 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1373 {
1374 	if (mc.moving_task && current != mc.moving_task) {
1375 		if (mem_cgroup_under_move(memcg)) {
1376 			DEFINE_WAIT(wait);
1377 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1378 			/* moving charge context might have finished. */
1379 			if (mc.moving_task)
1380 				schedule();
1381 			finish_wait(&mc.waitq, &wait);
1382 			return true;
1383 		}
1384 	}
1385 	return false;
1386 }
1387 
1388 /*
1389  * Take this lock when
1390  * - a code tries to modify page's memcg while it's USED.
1391  * - a code tries to modify page state accounting in a memcg.
1392  * see mem_cgroup_stolen(), too.
1393  */
1394 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1395 				  unsigned long *flags)
1396 {
1397 	spin_lock_irqsave(&memcg->move_lock, *flags);
1398 }
1399 
1400 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1401 				unsigned long *flags)
1402 {
1403 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1404 }
1405 
1406 /**
1407  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1408  * @memcg: The memory cgroup that went over limit
1409  * @p: Task that is going to be killed
1410  *
1411  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1412  * enabled
1413  */
1414 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1415 {
1416 	struct cgroup *task_cgrp;
1417 	struct cgroup *mem_cgrp;
1418 	/*
1419 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1420 	 * on the assumption that OOM is serialized for memory controller.
1421 	 * If this assumption is broken, revisit this code.
1422 	 */
1423 	static char memcg_name[PATH_MAX];
1424 	int ret;
1425 
1426 	if (!memcg || !p)
1427 		return;
1428 
1429 	rcu_read_lock();
1430 
1431 	mem_cgrp = memcg->css.cgroup;
1432 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1433 
1434 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1435 	if (ret < 0) {
1436 		/*
1437 		 * Unfortunately, we are unable to convert to a useful name
1438 		 * But we'll still print out the usage information
1439 		 */
1440 		rcu_read_unlock();
1441 		goto done;
1442 	}
1443 	rcu_read_unlock();
1444 
1445 	printk(KERN_INFO "Task in %s killed", memcg_name);
1446 
1447 	rcu_read_lock();
1448 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1449 	if (ret < 0) {
1450 		rcu_read_unlock();
1451 		goto done;
1452 	}
1453 	rcu_read_unlock();
1454 
1455 	/*
1456 	 * Continues from above, so we don't need an KERN_ level
1457 	 */
1458 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1459 done:
1460 
1461 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1462 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1463 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1464 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1465 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1466 		"failcnt %llu\n",
1467 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1468 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1469 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1470 }
1471 
1472 /*
1473  * This function returns the number of memcg under hierarchy tree. Returns
1474  * 1(self count) if no children.
1475  */
1476 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1477 {
1478 	int num = 0;
1479 	struct mem_cgroup *iter;
1480 
1481 	for_each_mem_cgroup_tree(iter, memcg)
1482 		num++;
1483 	return num;
1484 }
1485 
1486 /*
1487  * Return the memory (and swap, if configured) limit for a memcg.
1488  */
1489 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1490 {
1491 	u64 limit;
1492 	u64 memsw;
1493 
1494 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1495 	limit += total_swap_pages << PAGE_SHIFT;
1496 
1497 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1498 	/*
1499 	 * If memsw is finite and limits the amount of swap space available
1500 	 * to this memcg, return that limit.
1501 	 */
1502 	return min(limit, memsw);
1503 }
1504 
1505 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1506 					gfp_t gfp_mask,
1507 					unsigned long flags)
1508 {
1509 	unsigned long total = 0;
1510 	bool noswap = false;
1511 	int loop;
1512 
1513 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1514 		noswap = true;
1515 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1516 		noswap = true;
1517 
1518 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1519 		if (loop)
1520 			drain_all_stock_async(memcg);
1521 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1522 		/*
1523 		 * Allow limit shrinkers, which are triggered directly
1524 		 * by userspace, to catch signals and stop reclaim
1525 		 * after minimal progress, regardless of the margin.
1526 		 */
1527 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1528 			break;
1529 		if (mem_cgroup_margin(memcg))
1530 			break;
1531 		/*
1532 		 * If nothing was reclaimed after two attempts, there
1533 		 * may be no reclaimable pages in this hierarchy.
1534 		 */
1535 		if (loop && !total)
1536 			break;
1537 	}
1538 	return total;
1539 }
1540 
1541 /**
1542  * test_mem_cgroup_node_reclaimable
1543  * @mem: the target memcg
1544  * @nid: the node ID to be checked.
1545  * @noswap : specify true here if the user wants flle only information.
1546  *
1547  * This function returns whether the specified memcg contains any
1548  * reclaimable pages on a node. Returns true if there are any reclaimable
1549  * pages in the node.
1550  */
1551 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1552 		int nid, bool noswap)
1553 {
1554 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1555 		return true;
1556 	if (noswap || !total_swap_pages)
1557 		return false;
1558 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1559 		return true;
1560 	return false;
1561 
1562 }
1563 #if MAX_NUMNODES > 1
1564 
1565 /*
1566  * Always updating the nodemask is not very good - even if we have an empty
1567  * list or the wrong list here, we can start from some node and traverse all
1568  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1569  *
1570  */
1571 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1572 {
1573 	int nid;
1574 	/*
1575 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1576 	 * pagein/pageout changes since the last update.
1577 	 */
1578 	if (!atomic_read(&memcg->numainfo_events))
1579 		return;
1580 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1581 		return;
1582 
1583 	/* make a nodemask where this memcg uses memory from */
1584 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1585 
1586 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1587 
1588 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1589 			node_clear(nid, memcg->scan_nodes);
1590 	}
1591 
1592 	atomic_set(&memcg->numainfo_events, 0);
1593 	atomic_set(&memcg->numainfo_updating, 0);
1594 }
1595 
1596 /*
1597  * Selecting a node where we start reclaim from. Because what we need is just
1598  * reducing usage counter, start from anywhere is O,K. Considering
1599  * memory reclaim from current node, there are pros. and cons.
1600  *
1601  * Freeing memory from current node means freeing memory from a node which
1602  * we'll use or we've used. So, it may make LRU bad. And if several threads
1603  * hit limits, it will see a contention on a node. But freeing from remote
1604  * node means more costs for memory reclaim because of memory latency.
1605  *
1606  * Now, we use round-robin. Better algorithm is welcomed.
1607  */
1608 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1609 {
1610 	int node;
1611 
1612 	mem_cgroup_may_update_nodemask(memcg);
1613 	node = memcg->last_scanned_node;
1614 
1615 	node = next_node(node, memcg->scan_nodes);
1616 	if (node == MAX_NUMNODES)
1617 		node = first_node(memcg->scan_nodes);
1618 	/*
1619 	 * We call this when we hit limit, not when pages are added to LRU.
1620 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1621 	 * memcg is too small and all pages are not on LRU. In that case,
1622 	 * we use curret node.
1623 	 */
1624 	if (unlikely(node == MAX_NUMNODES))
1625 		node = numa_node_id();
1626 
1627 	memcg->last_scanned_node = node;
1628 	return node;
1629 }
1630 
1631 /*
1632  * Check all nodes whether it contains reclaimable pages or not.
1633  * For quick scan, we make use of scan_nodes. This will allow us to skip
1634  * unused nodes. But scan_nodes is lazily updated and may not cotain
1635  * enough new information. We need to do double check.
1636  */
1637 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1638 {
1639 	int nid;
1640 
1641 	/*
1642 	 * quick check...making use of scan_node.
1643 	 * We can skip unused nodes.
1644 	 */
1645 	if (!nodes_empty(memcg->scan_nodes)) {
1646 		for (nid = first_node(memcg->scan_nodes);
1647 		     nid < MAX_NUMNODES;
1648 		     nid = next_node(nid, memcg->scan_nodes)) {
1649 
1650 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1651 				return true;
1652 		}
1653 	}
1654 	/*
1655 	 * Check rest of nodes.
1656 	 */
1657 	for_each_node_state(nid, N_HIGH_MEMORY) {
1658 		if (node_isset(nid, memcg->scan_nodes))
1659 			continue;
1660 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1661 			return true;
1662 	}
1663 	return false;
1664 }
1665 
1666 #else
1667 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1668 {
1669 	return 0;
1670 }
1671 
1672 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673 {
1674 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1675 }
1676 #endif
1677 
1678 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1679 				   struct zone *zone,
1680 				   gfp_t gfp_mask,
1681 				   unsigned long *total_scanned)
1682 {
1683 	struct mem_cgroup *victim = NULL;
1684 	int total = 0;
1685 	int loop = 0;
1686 	unsigned long excess;
1687 	unsigned long nr_scanned;
1688 	struct mem_cgroup_reclaim_cookie reclaim = {
1689 		.zone = zone,
1690 		.priority = 0,
1691 	};
1692 
1693 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1694 
1695 	while (1) {
1696 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1697 		if (!victim) {
1698 			loop++;
1699 			if (loop >= 2) {
1700 				/*
1701 				 * If we have not been able to reclaim
1702 				 * anything, it might because there are
1703 				 * no reclaimable pages under this hierarchy
1704 				 */
1705 				if (!total)
1706 					break;
1707 				/*
1708 				 * We want to do more targeted reclaim.
1709 				 * excess >> 2 is not to excessive so as to
1710 				 * reclaim too much, nor too less that we keep
1711 				 * coming back to reclaim from this cgroup
1712 				 */
1713 				if (total >= (excess >> 2) ||
1714 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1715 					break;
1716 			}
1717 			continue;
1718 		}
1719 		if (!mem_cgroup_reclaimable(victim, false))
1720 			continue;
1721 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1722 						     zone, &nr_scanned);
1723 		*total_scanned += nr_scanned;
1724 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1725 			break;
1726 	}
1727 	mem_cgroup_iter_break(root_memcg, victim);
1728 	return total;
1729 }
1730 
1731 /*
1732  * Check OOM-Killer is already running under our hierarchy.
1733  * If someone is running, return false.
1734  * Has to be called with memcg_oom_lock
1735  */
1736 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1737 {
1738 	struct mem_cgroup *iter, *failed = NULL;
1739 
1740 	for_each_mem_cgroup_tree(iter, memcg) {
1741 		if (iter->oom_lock) {
1742 			/*
1743 			 * this subtree of our hierarchy is already locked
1744 			 * so we cannot give a lock.
1745 			 */
1746 			failed = iter;
1747 			mem_cgroup_iter_break(memcg, iter);
1748 			break;
1749 		} else
1750 			iter->oom_lock = true;
1751 	}
1752 
1753 	if (!failed)
1754 		return true;
1755 
1756 	/*
1757 	 * OK, we failed to lock the whole subtree so we have to clean up
1758 	 * what we set up to the failing subtree
1759 	 */
1760 	for_each_mem_cgroup_tree(iter, memcg) {
1761 		if (iter == failed) {
1762 			mem_cgroup_iter_break(memcg, iter);
1763 			break;
1764 		}
1765 		iter->oom_lock = false;
1766 	}
1767 	return false;
1768 }
1769 
1770 /*
1771  * Has to be called with memcg_oom_lock
1772  */
1773 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1774 {
1775 	struct mem_cgroup *iter;
1776 
1777 	for_each_mem_cgroup_tree(iter, memcg)
1778 		iter->oom_lock = false;
1779 	return 0;
1780 }
1781 
1782 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1783 {
1784 	struct mem_cgroup *iter;
1785 
1786 	for_each_mem_cgroup_tree(iter, memcg)
1787 		atomic_inc(&iter->under_oom);
1788 }
1789 
1790 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1791 {
1792 	struct mem_cgroup *iter;
1793 
1794 	/*
1795 	 * When a new child is created while the hierarchy is under oom,
1796 	 * mem_cgroup_oom_lock() may not be called. We have to use
1797 	 * atomic_add_unless() here.
1798 	 */
1799 	for_each_mem_cgroup_tree(iter, memcg)
1800 		atomic_add_unless(&iter->under_oom, -1, 0);
1801 }
1802 
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1805 
1806 struct oom_wait_info {
1807 	struct mem_cgroup *memcg;
1808 	wait_queue_t	wait;
1809 };
1810 
1811 static int memcg_oom_wake_function(wait_queue_t *wait,
1812 	unsigned mode, int sync, void *arg)
1813 {
1814 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1815 	struct mem_cgroup *oom_wait_memcg;
1816 	struct oom_wait_info *oom_wait_info;
1817 
1818 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1819 	oom_wait_memcg = oom_wait_info->memcg;
1820 
1821 	/*
1822 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1823 	 * Then we can use css_is_ancestor without taking care of RCU.
1824 	 */
1825 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1826 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1827 		return 0;
1828 	return autoremove_wake_function(wait, mode, sync, arg);
1829 }
1830 
1831 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1832 {
1833 	/* for filtering, pass "memcg" as argument. */
1834 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1835 }
1836 
1837 static void memcg_oom_recover(struct mem_cgroup *memcg)
1838 {
1839 	if (memcg && atomic_read(&memcg->under_oom))
1840 		memcg_wakeup_oom(memcg);
1841 }
1842 
1843 /*
1844  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1845  */
1846 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1847 {
1848 	struct oom_wait_info owait;
1849 	bool locked, need_to_kill;
1850 
1851 	owait.memcg = memcg;
1852 	owait.wait.flags = 0;
1853 	owait.wait.func = memcg_oom_wake_function;
1854 	owait.wait.private = current;
1855 	INIT_LIST_HEAD(&owait.wait.task_list);
1856 	need_to_kill = true;
1857 	mem_cgroup_mark_under_oom(memcg);
1858 
1859 	/* At first, try to OOM lock hierarchy under memcg.*/
1860 	spin_lock(&memcg_oom_lock);
1861 	locked = mem_cgroup_oom_lock(memcg);
1862 	/*
1863 	 * Even if signal_pending(), we can't quit charge() loop without
1864 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1865 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1866 	 */
1867 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1868 	if (!locked || memcg->oom_kill_disable)
1869 		need_to_kill = false;
1870 	if (locked)
1871 		mem_cgroup_oom_notify(memcg);
1872 	spin_unlock(&memcg_oom_lock);
1873 
1874 	if (need_to_kill) {
1875 		finish_wait(&memcg_oom_waitq, &owait.wait);
1876 		mem_cgroup_out_of_memory(memcg, mask, order);
1877 	} else {
1878 		schedule();
1879 		finish_wait(&memcg_oom_waitq, &owait.wait);
1880 	}
1881 	spin_lock(&memcg_oom_lock);
1882 	if (locked)
1883 		mem_cgroup_oom_unlock(memcg);
1884 	memcg_wakeup_oom(memcg);
1885 	spin_unlock(&memcg_oom_lock);
1886 
1887 	mem_cgroup_unmark_under_oom(memcg);
1888 
1889 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1890 		return false;
1891 	/* Give chance to dying process */
1892 	schedule_timeout_uninterruptible(1);
1893 	return true;
1894 }
1895 
1896 /*
1897  * Currently used to update mapped file statistics, but the routine can be
1898  * generalized to update other statistics as well.
1899  *
1900  * Notes: Race condition
1901  *
1902  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1903  * it tends to be costly. But considering some conditions, we doesn't need
1904  * to do so _always_.
1905  *
1906  * Considering "charge", lock_page_cgroup() is not required because all
1907  * file-stat operations happen after a page is attached to radix-tree. There
1908  * are no race with "charge".
1909  *
1910  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1911  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1912  * if there are race with "uncharge". Statistics itself is properly handled
1913  * by flags.
1914  *
1915  * Considering "move", this is an only case we see a race. To make the race
1916  * small, we check mm->moving_account and detect there are possibility of race
1917  * If there is, we take a lock.
1918  */
1919 
1920 void __mem_cgroup_begin_update_page_stat(struct page *page,
1921 				bool *locked, unsigned long *flags)
1922 {
1923 	struct mem_cgroup *memcg;
1924 	struct page_cgroup *pc;
1925 
1926 	pc = lookup_page_cgroup(page);
1927 again:
1928 	memcg = pc->mem_cgroup;
1929 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1930 		return;
1931 	/*
1932 	 * If this memory cgroup is not under account moving, we don't
1933 	 * need to take move_lock_page_cgroup(). Because we already hold
1934 	 * rcu_read_lock(), any calls to move_account will be delayed until
1935 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1936 	 */
1937 	if (!mem_cgroup_stolen(memcg))
1938 		return;
1939 
1940 	move_lock_mem_cgroup(memcg, flags);
1941 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1942 		move_unlock_mem_cgroup(memcg, flags);
1943 		goto again;
1944 	}
1945 	*locked = true;
1946 }
1947 
1948 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1949 {
1950 	struct page_cgroup *pc = lookup_page_cgroup(page);
1951 
1952 	/*
1953 	 * It's guaranteed that pc->mem_cgroup never changes while
1954 	 * lock is held because a routine modifies pc->mem_cgroup
1955 	 * should take move_lock_page_cgroup().
1956 	 */
1957 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1958 }
1959 
1960 void mem_cgroup_update_page_stat(struct page *page,
1961 				 enum mem_cgroup_page_stat_item idx, int val)
1962 {
1963 	struct mem_cgroup *memcg;
1964 	struct page_cgroup *pc = lookup_page_cgroup(page);
1965 	unsigned long uninitialized_var(flags);
1966 
1967 	if (mem_cgroup_disabled())
1968 		return;
1969 
1970 	memcg = pc->mem_cgroup;
1971 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1972 		return;
1973 
1974 	switch (idx) {
1975 	case MEMCG_NR_FILE_MAPPED:
1976 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1977 		break;
1978 	default:
1979 		BUG();
1980 	}
1981 
1982 	this_cpu_add(memcg->stat->count[idx], val);
1983 }
1984 
1985 /*
1986  * size of first charge trial. "32" comes from vmscan.c's magic value.
1987  * TODO: maybe necessary to use big numbers in big irons.
1988  */
1989 #define CHARGE_BATCH	32U
1990 struct memcg_stock_pcp {
1991 	struct mem_cgroup *cached; /* this never be root cgroup */
1992 	unsigned int nr_pages;
1993 	struct work_struct work;
1994 	unsigned long flags;
1995 #define FLUSHING_CACHED_CHARGE	(0)
1996 };
1997 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1998 static DEFINE_MUTEX(percpu_charge_mutex);
1999 
2000 /*
2001  * Try to consume stocked charge on this cpu. If success, one page is consumed
2002  * from local stock and true is returned. If the stock is 0 or charges from a
2003  * cgroup which is not current target, returns false. This stock will be
2004  * refilled.
2005  */
2006 static bool consume_stock(struct mem_cgroup *memcg)
2007 {
2008 	struct memcg_stock_pcp *stock;
2009 	bool ret = true;
2010 
2011 	stock = &get_cpu_var(memcg_stock);
2012 	if (memcg == stock->cached && stock->nr_pages)
2013 		stock->nr_pages--;
2014 	else /* need to call res_counter_charge */
2015 		ret = false;
2016 	put_cpu_var(memcg_stock);
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Returns stocks cached in percpu to res_counter and reset cached information.
2022  */
2023 static void drain_stock(struct memcg_stock_pcp *stock)
2024 {
2025 	struct mem_cgroup *old = stock->cached;
2026 
2027 	if (stock->nr_pages) {
2028 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2029 
2030 		res_counter_uncharge(&old->res, bytes);
2031 		if (do_swap_account)
2032 			res_counter_uncharge(&old->memsw, bytes);
2033 		stock->nr_pages = 0;
2034 	}
2035 	stock->cached = NULL;
2036 }
2037 
2038 /*
2039  * This must be called under preempt disabled or must be called by
2040  * a thread which is pinned to local cpu.
2041  */
2042 static void drain_local_stock(struct work_struct *dummy)
2043 {
2044 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2045 	drain_stock(stock);
2046 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2047 }
2048 
2049 /*
2050  * Cache charges(val) which is from res_counter, to local per_cpu area.
2051  * This will be consumed by consume_stock() function, later.
2052  */
2053 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2054 {
2055 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2056 
2057 	if (stock->cached != memcg) { /* reset if necessary */
2058 		drain_stock(stock);
2059 		stock->cached = memcg;
2060 	}
2061 	stock->nr_pages += nr_pages;
2062 	put_cpu_var(memcg_stock);
2063 }
2064 
2065 /*
2066  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2067  * of the hierarchy under it. sync flag says whether we should block
2068  * until the work is done.
2069  */
2070 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2071 {
2072 	int cpu, curcpu;
2073 
2074 	/* Notify other cpus that system-wide "drain" is running */
2075 	get_online_cpus();
2076 	curcpu = get_cpu();
2077 	for_each_online_cpu(cpu) {
2078 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2079 		struct mem_cgroup *memcg;
2080 
2081 		memcg = stock->cached;
2082 		if (!memcg || !stock->nr_pages)
2083 			continue;
2084 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2085 			continue;
2086 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2087 			if (cpu == curcpu)
2088 				drain_local_stock(&stock->work);
2089 			else
2090 				schedule_work_on(cpu, &stock->work);
2091 		}
2092 	}
2093 	put_cpu();
2094 
2095 	if (!sync)
2096 		goto out;
2097 
2098 	for_each_online_cpu(cpu) {
2099 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2100 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2101 			flush_work(&stock->work);
2102 	}
2103 out:
2104  	put_online_cpus();
2105 }
2106 
2107 /*
2108  * Tries to drain stocked charges in other cpus. This function is asynchronous
2109  * and just put a work per cpu for draining localy on each cpu. Caller can
2110  * expects some charges will be back to res_counter later but cannot wait for
2111  * it.
2112  */
2113 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2114 {
2115 	/*
2116 	 * If someone calls draining, avoid adding more kworker runs.
2117 	 */
2118 	if (!mutex_trylock(&percpu_charge_mutex))
2119 		return;
2120 	drain_all_stock(root_memcg, false);
2121 	mutex_unlock(&percpu_charge_mutex);
2122 }
2123 
2124 /* This is a synchronous drain interface. */
2125 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2126 {
2127 	/* called when force_empty is called */
2128 	mutex_lock(&percpu_charge_mutex);
2129 	drain_all_stock(root_memcg, true);
2130 	mutex_unlock(&percpu_charge_mutex);
2131 }
2132 
2133 /*
2134  * This function drains percpu counter value from DEAD cpu and
2135  * move it to local cpu. Note that this function can be preempted.
2136  */
2137 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2138 {
2139 	int i;
2140 
2141 	spin_lock(&memcg->pcp_counter_lock);
2142 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2143 		long x = per_cpu(memcg->stat->count[i], cpu);
2144 
2145 		per_cpu(memcg->stat->count[i], cpu) = 0;
2146 		memcg->nocpu_base.count[i] += x;
2147 	}
2148 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2149 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2150 
2151 		per_cpu(memcg->stat->events[i], cpu) = 0;
2152 		memcg->nocpu_base.events[i] += x;
2153 	}
2154 	spin_unlock(&memcg->pcp_counter_lock);
2155 }
2156 
2157 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2158 					unsigned long action,
2159 					void *hcpu)
2160 {
2161 	int cpu = (unsigned long)hcpu;
2162 	struct memcg_stock_pcp *stock;
2163 	struct mem_cgroup *iter;
2164 
2165 	if (action == CPU_ONLINE)
2166 		return NOTIFY_OK;
2167 
2168 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2169 		return NOTIFY_OK;
2170 
2171 	for_each_mem_cgroup(iter)
2172 		mem_cgroup_drain_pcp_counter(iter, cpu);
2173 
2174 	stock = &per_cpu(memcg_stock, cpu);
2175 	drain_stock(stock);
2176 	return NOTIFY_OK;
2177 }
2178 
2179 
2180 /* See __mem_cgroup_try_charge() for details */
2181 enum {
2182 	CHARGE_OK,		/* success */
2183 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2184 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2185 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2186 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2187 };
2188 
2189 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2190 				unsigned int nr_pages, bool oom_check)
2191 {
2192 	unsigned long csize = nr_pages * PAGE_SIZE;
2193 	struct mem_cgroup *mem_over_limit;
2194 	struct res_counter *fail_res;
2195 	unsigned long flags = 0;
2196 	int ret;
2197 
2198 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2199 
2200 	if (likely(!ret)) {
2201 		if (!do_swap_account)
2202 			return CHARGE_OK;
2203 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2204 		if (likely(!ret))
2205 			return CHARGE_OK;
2206 
2207 		res_counter_uncharge(&memcg->res, csize);
2208 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2209 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2210 	} else
2211 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2212 	/*
2213 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2214 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2215 	 *
2216 	 * Never reclaim on behalf of optional batching, retry with a
2217 	 * single page instead.
2218 	 */
2219 	if (nr_pages == CHARGE_BATCH)
2220 		return CHARGE_RETRY;
2221 
2222 	if (!(gfp_mask & __GFP_WAIT))
2223 		return CHARGE_WOULDBLOCK;
2224 
2225 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2226 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2227 		return CHARGE_RETRY;
2228 	/*
2229 	 * Even though the limit is exceeded at this point, reclaim
2230 	 * may have been able to free some pages.  Retry the charge
2231 	 * before killing the task.
2232 	 *
2233 	 * Only for regular pages, though: huge pages are rather
2234 	 * unlikely to succeed so close to the limit, and we fall back
2235 	 * to regular pages anyway in case of failure.
2236 	 */
2237 	if (nr_pages == 1 && ret)
2238 		return CHARGE_RETRY;
2239 
2240 	/*
2241 	 * At task move, charge accounts can be doubly counted. So, it's
2242 	 * better to wait until the end of task_move if something is going on.
2243 	 */
2244 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2245 		return CHARGE_RETRY;
2246 
2247 	/* If we don't need to call oom-killer at el, return immediately */
2248 	if (!oom_check)
2249 		return CHARGE_NOMEM;
2250 	/* check OOM */
2251 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2252 		return CHARGE_OOM_DIE;
2253 
2254 	return CHARGE_RETRY;
2255 }
2256 
2257 /*
2258  * __mem_cgroup_try_charge() does
2259  * 1. detect memcg to be charged against from passed *mm and *ptr,
2260  * 2. update res_counter
2261  * 3. call memory reclaim if necessary.
2262  *
2263  * In some special case, if the task is fatal, fatal_signal_pending() or
2264  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2265  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2266  * as possible without any hazards. 2: all pages should have a valid
2267  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2268  * pointer, that is treated as a charge to root_mem_cgroup.
2269  *
2270  * So __mem_cgroup_try_charge() will return
2271  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2272  *  -ENOMEM ...  charge failure because of resource limits.
2273  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2274  *
2275  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2276  * the oom-killer can be invoked.
2277  */
2278 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2279 				   gfp_t gfp_mask,
2280 				   unsigned int nr_pages,
2281 				   struct mem_cgroup **ptr,
2282 				   bool oom)
2283 {
2284 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2285 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2286 	struct mem_cgroup *memcg = NULL;
2287 	int ret;
2288 
2289 	/*
2290 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2291 	 * in system level. So, allow to go ahead dying process in addition to
2292 	 * MEMDIE process.
2293 	 */
2294 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2295 		     || fatal_signal_pending(current)))
2296 		goto bypass;
2297 
2298 	/*
2299 	 * We always charge the cgroup the mm_struct belongs to.
2300 	 * The mm_struct's mem_cgroup changes on task migration if the
2301 	 * thread group leader migrates. It's possible that mm is not
2302 	 * set, if so charge the init_mm (happens for pagecache usage).
2303 	 */
2304 	if (!*ptr && !mm)
2305 		*ptr = root_mem_cgroup;
2306 again:
2307 	if (*ptr) { /* css should be a valid one */
2308 		memcg = *ptr;
2309 		VM_BUG_ON(css_is_removed(&memcg->css));
2310 		if (mem_cgroup_is_root(memcg))
2311 			goto done;
2312 		if (nr_pages == 1 && consume_stock(memcg))
2313 			goto done;
2314 		css_get(&memcg->css);
2315 	} else {
2316 		struct task_struct *p;
2317 
2318 		rcu_read_lock();
2319 		p = rcu_dereference(mm->owner);
2320 		/*
2321 		 * Because we don't have task_lock(), "p" can exit.
2322 		 * In that case, "memcg" can point to root or p can be NULL with
2323 		 * race with swapoff. Then, we have small risk of mis-accouning.
2324 		 * But such kind of mis-account by race always happens because
2325 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2326 		 * small race, here.
2327 		 * (*) swapoff at el will charge against mm-struct not against
2328 		 * task-struct. So, mm->owner can be NULL.
2329 		 */
2330 		memcg = mem_cgroup_from_task(p);
2331 		if (!memcg)
2332 			memcg = root_mem_cgroup;
2333 		if (mem_cgroup_is_root(memcg)) {
2334 			rcu_read_unlock();
2335 			goto done;
2336 		}
2337 		if (nr_pages == 1 && consume_stock(memcg)) {
2338 			/*
2339 			 * It seems dagerous to access memcg without css_get().
2340 			 * But considering how consume_stok works, it's not
2341 			 * necessary. If consume_stock success, some charges
2342 			 * from this memcg are cached on this cpu. So, we
2343 			 * don't need to call css_get()/css_tryget() before
2344 			 * calling consume_stock().
2345 			 */
2346 			rcu_read_unlock();
2347 			goto done;
2348 		}
2349 		/* after here, we may be blocked. we need to get refcnt */
2350 		if (!css_tryget(&memcg->css)) {
2351 			rcu_read_unlock();
2352 			goto again;
2353 		}
2354 		rcu_read_unlock();
2355 	}
2356 
2357 	do {
2358 		bool oom_check;
2359 
2360 		/* If killed, bypass charge */
2361 		if (fatal_signal_pending(current)) {
2362 			css_put(&memcg->css);
2363 			goto bypass;
2364 		}
2365 
2366 		oom_check = false;
2367 		if (oom && !nr_oom_retries) {
2368 			oom_check = true;
2369 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2370 		}
2371 
2372 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2373 		switch (ret) {
2374 		case CHARGE_OK:
2375 			break;
2376 		case CHARGE_RETRY: /* not in OOM situation but retry */
2377 			batch = nr_pages;
2378 			css_put(&memcg->css);
2379 			memcg = NULL;
2380 			goto again;
2381 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2382 			css_put(&memcg->css);
2383 			goto nomem;
2384 		case CHARGE_NOMEM: /* OOM routine works */
2385 			if (!oom) {
2386 				css_put(&memcg->css);
2387 				goto nomem;
2388 			}
2389 			/* If oom, we never return -ENOMEM */
2390 			nr_oom_retries--;
2391 			break;
2392 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2393 			css_put(&memcg->css);
2394 			goto bypass;
2395 		}
2396 	} while (ret != CHARGE_OK);
2397 
2398 	if (batch > nr_pages)
2399 		refill_stock(memcg, batch - nr_pages);
2400 	css_put(&memcg->css);
2401 done:
2402 	*ptr = memcg;
2403 	return 0;
2404 nomem:
2405 	*ptr = NULL;
2406 	return -ENOMEM;
2407 bypass:
2408 	*ptr = root_mem_cgroup;
2409 	return -EINTR;
2410 }
2411 
2412 /*
2413  * Somemtimes we have to undo a charge we got by try_charge().
2414  * This function is for that and do uncharge, put css's refcnt.
2415  * gotten by try_charge().
2416  */
2417 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2418 				       unsigned int nr_pages)
2419 {
2420 	if (!mem_cgroup_is_root(memcg)) {
2421 		unsigned long bytes = nr_pages * PAGE_SIZE;
2422 
2423 		res_counter_uncharge(&memcg->res, bytes);
2424 		if (do_swap_account)
2425 			res_counter_uncharge(&memcg->memsw, bytes);
2426 	}
2427 }
2428 
2429 /*
2430  * A helper function to get mem_cgroup from ID. must be called under
2431  * rcu_read_lock(). The caller must check css_is_removed() or some if
2432  * it's concern. (dropping refcnt from swap can be called against removed
2433  * memcg.)
2434  */
2435 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2436 {
2437 	struct cgroup_subsys_state *css;
2438 
2439 	/* ID 0 is unused ID */
2440 	if (!id)
2441 		return NULL;
2442 	css = css_lookup(&mem_cgroup_subsys, id);
2443 	if (!css)
2444 		return NULL;
2445 	return container_of(css, struct mem_cgroup, css);
2446 }
2447 
2448 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2449 {
2450 	struct mem_cgroup *memcg = NULL;
2451 	struct page_cgroup *pc;
2452 	unsigned short id;
2453 	swp_entry_t ent;
2454 
2455 	VM_BUG_ON(!PageLocked(page));
2456 
2457 	pc = lookup_page_cgroup(page);
2458 	lock_page_cgroup(pc);
2459 	if (PageCgroupUsed(pc)) {
2460 		memcg = pc->mem_cgroup;
2461 		if (memcg && !css_tryget(&memcg->css))
2462 			memcg = NULL;
2463 	} else if (PageSwapCache(page)) {
2464 		ent.val = page_private(page);
2465 		id = lookup_swap_cgroup_id(ent);
2466 		rcu_read_lock();
2467 		memcg = mem_cgroup_lookup(id);
2468 		if (memcg && !css_tryget(&memcg->css))
2469 			memcg = NULL;
2470 		rcu_read_unlock();
2471 	}
2472 	unlock_page_cgroup(pc);
2473 	return memcg;
2474 }
2475 
2476 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2477 				       struct page *page,
2478 				       unsigned int nr_pages,
2479 				       struct page_cgroup *pc,
2480 				       enum charge_type ctype,
2481 				       bool lrucare)
2482 {
2483 	struct zone *uninitialized_var(zone);
2484 	bool was_on_lru = false;
2485 	bool anon;
2486 
2487 	lock_page_cgroup(pc);
2488 	if (unlikely(PageCgroupUsed(pc))) {
2489 		unlock_page_cgroup(pc);
2490 		__mem_cgroup_cancel_charge(memcg, nr_pages);
2491 		return;
2492 	}
2493 	/*
2494 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2495 	 * accessed by any other context at this point.
2496 	 */
2497 
2498 	/*
2499 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2500 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2501 	 */
2502 	if (lrucare) {
2503 		zone = page_zone(page);
2504 		spin_lock_irq(&zone->lru_lock);
2505 		if (PageLRU(page)) {
2506 			ClearPageLRU(page);
2507 			del_page_from_lru_list(zone, page, page_lru(page));
2508 			was_on_lru = true;
2509 		}
2510 	}
2511 
2512 	pc->mem_cgroup = memcg;
2513 	/*
2514 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2515 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2516 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2517 	 * before USED bit, we need memory barrier here.
2518 	 * See mem_cgroup_add_lru_list(), etc.
2519  	 */
2520 	smp_wmb();
2521 	SetPageCgroupUsed(pc);
2522 
2523 	if (lrucare) {
2524 		if (was_on_lru) {
2525 			VM_BUG_ON(PageLRU(page));
2526 			SetPageLRU(page);
2527 			add_page_to_lru_list(zone, page, page_lru(page));
2528 		}
2529 		spin_unlock_irq(&zone->lru_lock);
2530 	}
2531 
2532 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2533 		anon = true;
2534 	else
2535 		anon = false;
2536 
2537 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2538 	unlock_page_cgroup(pc);
2539 
2540 	/*
2541 	 * "charge_statistics" updated event counter. Then, check it.
2542 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2543 	 * if they exceeds softlimit.
2544 	 */
2545 	memcg_check_events(memcg, page);
2546 }
2547 
2548 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2549 
2550 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2551 /*
2552  * Because tail pages are not marked as "used", set it. We're under
2553  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2554  * charge/uncharge will be never happen and move_account() is done under
2555  * compound_lock(), so we don't have to take care of races.
2556  */
2557 void mem_cgroup_split_huge_fixup(struct page *head)
2558 {
2559 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2560 	struct page_cgroup *pc;
2561 	int i;
2562 
2563 	if (mem_cgroup_disabled())
2564 		return;
2565 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2566 		pc = head_pc + i;
2567 		pc->mem_cgroup = head_pc->mem_cgroup;
2568 		smp_wmb();/* see __commit_charge() */
2569 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2570 	}
2571 }
2572 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2573 
2574 /**
2575  * mem_cgroup_move_account - move account of the page
2576  * @page: the page
2577  * @nr_pages: number of regular pages (>1 for huge pages)
2578  * @pc:	page_cgroup of the page.
2579  * @from: mem_cgroup which the page is moved from.
2580  * @to:	mem_cgroup which the page is moved to. @from != @to.
2581  * @uncharge: whether we should call uncharge and css_put against @from.
2582  *
2583  * The caller must confirm following.
2584  * - page is not on LRU (isolate_page() is useful.)
2585  * - compound_lock is held when nr_pages > 1
2586  *
2587  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2588  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2589  * true, this function does "uncharge" from old cgroup, but it doesn't if
2590  * @uncharge is false, so a caller should do "uncharge".
2591  */
2592 static int mem_cgroup_move_account(struct page *page,
2593 				   unsigned int nr_pages,
2594 				   struct page_cgroup *pc,
2595 				   struct mem_cgroup *from,
2596 				   struct mem_cgroup *to,
2597 				   bool uncharge)
2598 {
2599 	unsigned long flags;
2600 	int ret;
2601 	bool anon = PageAnon(page);
2602 
2603 	VM_BUG_ON(from == to);
2604 	VM_BUG_ON(PageLRU(page));
2605 	/*
2606 	 * The page is isolated from LRU. So, collapse function
2607 	 * will not handle this page. But page splitting can happen.
2608 	 * Do this check under compound_page_lock(). The caller should
2609 	 * hold it.
2610 	 */
2611 	ret = -EBUSY;
2612 	if (nr_pages > 1 && !PageTransHuge(page))
2613 		goto out;
2614 
2615 	lock_page_cgroup(pc);
2616 
2617 	ret = -EINVAL;
2618 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2619 		goto unlock;
2620 
2621 	move_lock_mem_cgroup(from, &flags);
2622 
2623 	if (!anon && page_mapped(page)) {
2624 		/* Update mapped_file data for mem_cgroup */
2625 		preempt_disable();
2626 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2627 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2628 		preempt_enable();
2629 	}
2630 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2631 	if (uncharge)
2632 		/* This is not "cancel", but cancel_charge does all we need. */
2633 		__mem_cgroup_cancel_charge(from, nr_pages);
2634 
2635 	/* caller should have done css_get */
2636 	pc->mem_cgroup = to;
2637 	mem_cgroup_charge_statistics(to, anon, nr_pages);
2638 	/*
2639 	 * We charges against "to" which may not have any tasks. Then, "to"
2640 	 * can be under rmdir(). But in current implementation, caller of
2641 	 * this function is just force_empty() and move charge, so it's
2642 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2643 	 * status here.
2644 	 */
2645 	move_unlock_mem_cgroup(from, &flags);
2646 	ret = 0;
2647 unlock:
2648 	unlock_page_cgroup(pc);
2649 	/*
2650 	 * check events
2651 	 */
2652 	memcg_check_events(to, page);
2653 	memcg_check_events(from, page);
2654 out:
2655 	return ret;
2656 }
2657 
2658 /*
2659  * move charges to its parent.
2660  */
2661 
2662 static int mem_cgroup_move_parent(struct page *page,
2663 				  struct page_cgroup *pc,
2664 				  struct mem_cgroup *child,
2665 				  gfp_t gfp_mask)
2666 {
2667 	struct cgroup *cg = child->css.cgroup;
2668 	struct cgroup *pcg = cg->parent;
2669 	struct mem_cgroup *parent;
2670 	unsigned int nr_pages;
2671 	unsigned long uninitialized_var(flags);
2672 	int ret;
2673 
2674 	/* Is ROOT ? */
2675 	if (!pcg)
2676 		return -EINVAL;
2677 
2678 	ret = -EBUSY;
2679 	if (!get_page_unless_zero(page))
2680 		goto out;
2681 	if (isolate_lru_page(page))
2682 		goto put;
2683 
2684 	nr_pages = hpage_nr_pages(page);
2685 
2686 	parent = mem_cgroup_from_cont(pcg);
2687 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2688 	if (ret)
2689 		goto put_back;
2690 
2691 	if (nr_pages > 1)
2692 		flags = compound_lock_irqsave(page);
2693 
2694 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2695 	if (ret)
2696 		__mem_cgroup_cancel_charge(parent, nr_pages);
2697 
2698 	if (nr_pages > 1)
2699 		compound_unlock_irqrestore(page, flags);
2700 put_back:
2701 	putback_lru_page(page);
2702 put:
2703 	put_page(page);
2704 out:
2705 	return ret;
2706 }
2707 
2708 /*
2709  * Charge the memory controller for page usage.
2710  * Return
2711  * 0 if the charge was successful
2712  * < 0 if the cgroup is over its limit
2713  */
2714 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2715 				gfp_t gfp_mask, enum charge_type ctype)
2716 {
2717 	struct mem_cgroup *memcg = NULL;
2718 	unsigned int nr_pages = 1;
2719 	struct page_cgroup *pc;
2720 	bool oom = true;
2721 	int ret;
2722 
2723 	if (PageTransHuge(page)) {
2724 		nr_pages <<= compound_order(page);
2725 		VM_BUG_ON(!PageTransHuge(page));
2726 		/*
2727 		 * Never OOM-kill a process for a huge page.  The
2728 		 * fault handler will fall back to regular pages.
2729 		 */
2730 		oom = false;
2731 	}
2732 
2733 	pc = lookup_page_cgroup(page);
2734 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2735 	if (ret == -ENOMEM)
2736 		return ret;
2737 	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2738 	return 0;
2739 }
2740 
2741 int mem_cgroup_newpage_charge(struct page *page,
2742 			      struct mm_struct *mm, gfp_t gfp_mask)
2743 {
2744 	if (mem_cgroup_disabled())
2745 		return 0;
2746 	VM_BUG_ON(page_mapped(page));
2747 	VM_BUG_ON(page->mapping && !PageAnon(page));
2748 	VM_BUG_ON(!mm);
2749 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2750 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2751 }
2752 
2753 static void
2754 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2755 					enum charge_type ctype);
2756 
2757 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2758 				gfp_t gfp_mask)
2759 {
2760 	struct mem_cgroup *memcg = NULL;
2761 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2762 	int ret;
2763 
2764 	if (mem_cgroup_disabled())
2765 		return 0;
2766 	if (PageCompound(page))
2767 		return 0;
2768 
2769 	if (unlikely(!mm))
2770 		mm = &init_mm;
2771 	if (!page_is_file_cache(page))
2772 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2773 
2774 	if (!PageSwapCache(page))
2775 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2776 	else { /* page is swapcache/shmem */
2777 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2778 		if (!ret)
2779 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2780 	}
2781 	return ret;
2782 }
2783 
2784 /*
2785  * While swap-in, try_charge -> commit or cancel, the page is locked.
2786  * And when try_charge() successfully returns, one refcnt to memcg without
2787  * struct page_cgroup is acquired. This refcnt will be consumed by
2788  * "commit()" or removed by "cancel()"
2789  */
2790 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2791 				 struct page *page,
2792 				 gfp_t mask, struct mem_cgroup **memcgp)
2793 {
2794 	struct mem_cgroup *memcg;
2795 	int ret;
2796 
2797 	*memcgp = NULL;
2798 
2799 	if (mem_cgroup_disabled())
2800 		return 0;
2801 
2802 	if (!do_swap_account)
2803 		goto charge_cur_mm;
2804 	/*
2805 	 * A racing thread's fault, or swapoff, may have already updated
2806 	 * the pte, and even removed page from swap cache: in those cases
2807 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2808 	 * KSM case which does need to charge the page.
2809 	 */
2810 	if (!PageSwapCache(page))
2811 		goto charge_cur_mm;
2812 	memcg = try_get_mem_cgroup_from_page(page);
2813 	if (!memcg)
2814 		goto charge_cur_mm;
2815 	*memcgp = memcg;
2816 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2817 	css_put(&memcg->css);
2818 	if (ret == -EINTR)
2819 		ret = 0;
2820 	return ret;
2821 charge_cur_mm:
2822 	if (unlikely(!mm))
2823 		mm = &init_mm;
2824 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2825 	if (ret == -EINTR)
2826 		ret = 0;
2827 	return ret;
2828 }
2829 
2830 static void
2831 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2832 					enum charge_type ctype)
2833 {
2834 	struct page_cgroup *pc;
2835 
2836 	if (mem_cgroup_disabled())
2837 		return;
2838 	if (!memcg)
2839 		return;
2840 	cgroup_exclude_rmdir(&memcg->css);
2841 
2842 	pc = lookup_page_cgroup(page);
2843 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2844 	/*
2845 	 * Now swap is on-memory. This means this page may be
2846 	 * counted both as mem and swap....double count.
2847 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2848 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2849 	 * may call delete_from_swap_cache() before reach here.
2850 	 */
2851 	if (do_swap_account && PageSwapCache(page)) {
2852 		swp_entry_t ent = {.val = page_private(page)};
2853 		struct mem_cgroup *swap_memcg;
2854 		unsigned short id;
2855 
2856 		id = swap_cgroup_record(ent, 0);
2857 		rcu_read_lock();
2858 		swap_memcg = mem_cgroup_lookup(id);
2859 		if (swap_memcg) {
2860 			/*
2861 			 * This recorded memcg can be obsolete one. So, avoid
2862 			 * calling css_tryget
2863 			 */
2864 			if (!mem_cgroup_is_root(swap_memcg))
2865 				res_counter_uncharge(&swap_memcg->memsw,
2866 						     PAGE_SIZE);
2867 			mem_cgroup_swap_statistics(swap_memcg, false);
2868 			mem_cgroup_put(swap_memcg);
2869 		}
2870 		rcu_read_unlock();
2871 	}
2872 	/*
2873 	 * At swapin, we may charge account against cgroup which has no tasks.
2874 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2875 	 * In that case, we need to call pre_destroy() again. check it here.
2876 	 */
2877 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2878 }
2879 
2880 void mem_cgroup_commit_charge_swapin(struct page *page,
2881 				     struct mem_cgroup *memcg)
2882 {
2883 	__mem_cgroup_commit_charge_swapin(page, memcg,
2884 					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2885 }
2886 
2887 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2888 {
2889 	if (mem_cgroup_disabled())
2890 		return;
2891 	if (!memcg)
2892 		return;
2893 	__mem_cgroup_cancel_charge(memcg, 1);
2894 }
2895 
2896 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2897 				   unsigned int nr_pages,
2898 				   const enum charge_type ctype)
2899 {
2900 	struct memcg_batch_info *batch = NULL;
2901 	bool uncharge_memsw = true;
2902 
2903 	/* If swapout, usage of swap doesn't decrease */
2904 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2905 		uncharge_memsw = false;
2906 
2907 	batch = &current->memcg_batch;
2908 	/*
2909 	 * In usual, we do css_get() when we remember memcg pointer.
2910 	 * But in this case, we keep res->usage until end of a series of
2911 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2912 	 */
2913 	if (!batch->memcg)
2914 		batch->memcg = memcg;
2915 	/*
2916 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2917 	 * In those cases, all pages freed continuously can be expected to be in
2918 	 * the same cgroup and we have chance to coalesce uncharges.
2919 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2920 	 * because we want to do uncharge as soon as possible.
2921 	 */
2922 
2923 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2924 		goto direct_uncharge;
2925 
2926 	if (nr_pages > 1)
2927 		goto direct_uncharge;
2928 
2929 	/*
2930 	 * In typical case, batch->memcg == mem. This means we can
2931 	 * merge a series of uncharges to an uncharge of res_counter.
2932 	 * If not, we uncharge res_counter ony by one.
2933 	 */
2934 	if (batch->memcg != memcg)
2935 		goto direct_uncharge;
2936 	/* remember freed charge and uncharge it later */
2937 	batch->nr_pages++;
2938 	if (uncharge_memsw)
2939 		batch->memsw_nr_pages++;
2940 	return;
2941 direct_uncharge:
2942 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2943 	if (uncharge_memsw)
2944 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2945 	if (unlikely(batch->memcg != memcg))
2946 		memcg_oom_recover(memcg);
2947 }
2948 
2949 /*
2950  * uncharge if !page_mapped(page)
2951  */
2952 static struct mem_cgroup *
2953 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2954 {
2955 	struct mem_cgroup *memcg = NULL;
2956 	unsigned int nr_pages = 1;
2957 	struct page_cgroup *pc;
2958 	bool anon;
2959 
2960 	if (mem_cgroup_disabled())
2961 		return NULL;
2962 
2963 	if (PageSwapCache(page))
2964 		return NULL;
2965 
2966 	if (PageTransHuge(page)) {
2967 		nr_pages <<= compound_order(page);
2968 		VM_BUG_ON(!PageTransHuge(page));
2969 	}
2970 	/*
2971 	 * Check if our page_cgroup is valid
2972 	 */
2973 	pc = lookup_page_cgroup(page);
2974 	if (unlikely(!PageCgroupUsed(pc)))
2975 		return NULL;
2976 
2977 	lock_page_cgroup(pc);
2978 
2979 	memcg = pc->mem_cgroup;
2980 
2981 	if (!PageCgroupUsed(pc))
2982 		goto unlock_out;
2983 
2984 	anon = PageAnon(page);
2985 
2986 	switch (ctype) {
2987 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2988 		/*
2989 		 * Generally PageAnon tells if it's the anon statistics to be
2990 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2991 		 * used before page reached the stage of being marked PageAnon.
2992 		 */
2993 		anon = true;
2994 		/* fallthrough */
2995 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2996 		/* See mem_cgroup_prepare_migration() */
2997 		if (page_mapped(page) || PageCgroupMigration(pc))
2998 			goto unlock_out;
2999 		break;
3000 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3001 		if (!PageAnon(page)) {	/* Shared memory */
3002 			if (page->mapping && !page_is_file_cache(page))
3003 				goto unlock_out;
3004 		} else if (page_mapped(page)) /* Anon */
3005 				goto unlock_out;
3006 		break;
3007 	default:
3008 		break;
3009 	}
3010 
3011 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3012 
3013 	ClearPageCgroupUsed(pc);
3014 	/*
3015 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3016 	 * freed from LRU. This is safe because uncharged page is expected not
3017 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3018 	 * special functions.
3019 	 */
3020 
3021 	unlock_page_cgroup(pc);
3022 	/*
3023 	 * even after unlock, we have memcg->res.usage here and this memcg
3024 	 * will never be freed.
3025 	 */
3026 	memcg_check_events(memcg, page);
3027 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3028 		mem_cgroup_swap_statistics(memcg, true);
3029 		mem_cgroup_get(memcg);
3030 	}
3031 	if (!mem_cgroup_is_root(memcg))
3032 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3033 
3034 	return memcg;
3035 
3036 unlock_out:
3037 	unlock_page_cgroup(pc);
3038 	return NULL;
3039 }
3040 
3041 void mem_cgroup_uncharge_page(struct page *page)
3042 {
3043 	/* early check. */
3044 	if (page_mapped(page))
3045 		return;
3046 	VM_BUG_ON(page->mapping && !PageAnon(page));
3047 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3048 }
3049 
3050 void mem_cgroup_uncharge_cache_page(struct page *page)
3051 {
3052 	VM_BUG_ON(page_mapped(page));
3053 	VM_BUG_ON(page->mapping);
3054 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3055 }
3056 
3057 /*
3058  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3059  * In that cases, pages are freed continuously and we can expect pages
3060  * are in the same memcg. All these calls itself limits the number of
3061  * pages freed at once, then uncharge_start/end() is called properly.
3062  * This may be called prural(2) times in a context,
3063  */
3064 
3065 void mem_cgroup_uncharge_start(void)
3066 {
3067 	current->memcg_batch.do_batch++;
3068 	/* We can do nest. */
3069 	if (current->memcg_batch.do_batch == 1) {
3070 		current->memcg_batch.memcg = NULL;
3071 		current->memcg_batch.nr_pages = 0;
3072 		current->memcg_batch.memsw_nr_pages = 0;
3073 	}
3074 }
3075 
3076 void mem_cgroup_uncharge_end(void)
3077 {
3078 	struct memcg_batch_info *batch = &current->memcg_batch;
3079 
3080 	if (!batch->do_batch)
3081 		return;
3082 
3083 	batch->do_batch--;
3084 	if (batch->do_batch) /* If stacked, do nothing. */
3085 		return;
3086 
3087 	if (!batch->memcg)
3088 		return;
3089 	/*
3090 	 * This "batch->memcg" is valid without any css_get/put etc...
3091 	 * bacause we hide charges behind us.
3092 	 */
3093 	if (batch->nr_pages)
3094 		res_counter_uncharge(&batch->memcg->res,
3095 				     batch->nr_pages * PAGE_SIZE);
3096 	if (batch->memsw_nr_pages)
3097 		res_counter_uncharge(&batch->memcg->memsw,
3098 				     batch->memsw_nr_pages * PAGE_SIZE);
3099 	memcg_oom_recover(batch->memcg);
3100 	/* forget this pointer (for sanity check) */
3101 	batch->memcg = NULL;
3102 }
3103 
3104 #ifdef CONFIG_SWAP
3105 /*
3106  * called after __delete_from_swap_cache() and drop "page" account.
3107  * memcg information is recorded to swap_cgroup of "ent"
3108  */
3109 void
3110 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3111 {
3112 	struct mem_cgroup *memcg;
3113 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3114 
3115 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3116 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3117 
3118 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3119 
3120 	/*
3121 	 * record memcg information,  if swapout && memcg != NULL,
3122 	 * mem_cgroup_get() was called in uncharge().
3123 	 */
3124 	if (do_swap_account && swapout && memcg)
3125 		swap_cgroup_record(ent, css_id(&memcg->css));
3126 }
3127 #endif
3128 
3129 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3130 /*
3131  * called from swap_entry_free(). remove record in swap_cgroup and
3132  * uncharge "memsw" account.
3133  */
3134 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3135 {
3136 	struct mem_cgroup *memcg;
3137 	unsigned short id;
3138 
3139 	if (!do_swap_account)
3140 		return;
3141 
3142 	id = swap_cgroup_record(ent, 0);
3143 	rcu_read_lock();
3144 	memcg = mem_cgroup_lookup(id);
3145 	if (memcg) {
3146 		/*
3147 		 * We uncharge this because swap is freed.
3148 		 * This memcg can be obsolete one. We avoid calling css_tryget
3149 		 */
3150 		if (!mem_cgroup_is_root(memcg))
3151 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3152 		mem_cgroup_swap_statistics(memcg, false);
3153 		mem_cgroup_put(memcg);
3154 	}
3155 	rcu_read_unlock();
3156 }
3157 
3158 /**
3159  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3160  * @entry: swap entry to be moved
3161  * @from:  mem_cgroup which the entry is moved from
3162  * @to:  mem_cgroup which the entry is moved to
3163  * @need_fixup: whether we should fixup res_counters and refcounts.
3164  *
3165  * It succeeds only when the swap_cgroup's record for this entry is the same
3166  * as the mem_cgroup's id of @from.
3167  *
3168  * Returns 0 on success, -EINVAL on failure.
3169  *
3170  * The caller must have charged to @to, IOW, called res_counter_charge() about
3171  * both res and memsw, and called css_get().
3172  */
3173 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3174 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3175 {
3176 	unsigned short old_id, new_id;
3177 
3178 	old_id = css_id(&from->css);
3179 	new_id = css_id(&to->css);
3180 
3181 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3182 		mem_cgroup_swap_statistics(from, false);
3183 		mem_cgroup_swap_statistics(to, true);
3184 		/*
3185 		 * This function is only called from task migration context now.
3186 		 * It postpones res_counter and refcount handling till the end
3187 		 * of task migration(mem_cgroup_clear_mc()) for performance
3188 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3189 		 * because if the process that has been moved to @to does
3190 		 * swap-in, the refcount of @to might be decreased to 0.
3191 		 */
3192 		mem_cgroup_get(to);
3193 		if (need_fixup) {
3194 			if (!mem_cgroup_is_root(from))
3195 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3196 			mem_cgroup_put(from);
3197 			/*
3198 			 * we charged both to->res and to->memsw, so we should
3199 			 * uncharge to->res.
3200 			 */
3201 			if (!mem_cgroup_is_root(to))
3202 				res_counter_uncharge(&to->res, PAGE_SIZE);
3203 		}
3204 		return 0;
3205 	}
3206 	return -EINVAL;
3207 }
3208 #else
3209 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3210 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3211 {
3212 	return -EINVAL;
3213 }
3214 #endif
3215 
3216 /*
3217  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3218  * page belongs to.
3219  */
3220 int mem_cgroup_prepare_migration(struct page *page,
3221 	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3222 {
3223 	struct mem_cgroup *memcg = NULL;
3224 	struct page_cgroup *pc;
3225 	enum charge_type ctype;
3226 	int ret = 0;
3227 
3228 	*memcgp = NULL;
3229 
3230 	VM_BUG_ON(PageTransHuge(page));
3231 	if (mem_cgroup_disabled())
3232 		return 0;
3233 
3234 	pc = lookup_page_cgroup(page);
3235 	lock_page_cgroup(pc);
3236 	if (PageCgroupUsed(pc)) {
3237 		memcg = pc->mem_cgroup;
3238 		css_get(&memcg->css);
3239 		/*
3240 		 * At migrating an anonymous page, its mapcount goes down
3241 		 * to 0 and uncharge() will be called. But, even if it's fully
3242 		 * unmapped, migration may fail and this page has to be
3243 		 * charged again. We set MIGRATION flag here and delay uncharge
3244 		 * until end_migration() is called
3245 		 *
3246 		 * Corner Case Thinking
3247 		 * A)
3248 		 * When the old page was mapped as Anon and it's unmap-and-freed
3249 		 * while migration was ongoing.
3250 		 * If unmap finds the old page, uncharge() of it will be delayed
3251 		 * until end_migration(). If unmap finds a new page, it's
3252 		 * uncharged when it make mapcount to be 1->0. If unmap code
3253 		 * finds swap_migration_entry, the new page will not be mapped
3254 		 * and end_migration() will find it(mapcount==0).
3255 		 *
3256 		 * B)
3257 		 * When the old page was mapped but migraion fails, the kernel
3258 		 * remaps it. A charge for it is kept by MIGRATION flag even
3259 		 * if mapcount goes down to 0. We can do remap successfully
3260 		 * without charging it again.
3261 		 *
3262 		 * C)
3263 		 * The "old" page is under lock_page() until the end of
3264 		 * migration, so, the old page itself will not be swapped-out.
3265 		 * If the new page is swapped out before end_migraton, our
3266 		 * hook to usual swap-out path will catch the event.
3267 		 */
3268 		if (PageAnon(page))
3269 			SetPageCgroupMigration(pc);
3270 	}
3271 	unlock_page_cgroup(pc);
3272 	/*
3273 	 * If the page is not charged at this point,
3274 	 * we return here.
3275 	 */
3276 	if (!memcg)
3277 		return 0;
3278 
3279 	*memcgp = memcg;
3280 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3281 	css_put(&memcg->css);/* drop extra refcnt */
3282 	if (ret) {
3283 		if (PageAnon(page)) {
3284 			lock_page_cgroup(pc);
3285 			ClearPageCgroupMigration(pc);
3286 			unlock_page_cgroup(pc);
3287 			/*
3288 			 * The old page may be fully unmapped while we kept it.
3289 			 */
3290 			mem_cgroup_uncharge_page(page);
3291 		}
3292 		/* we'll need to revisit this error code (we have -EINTR) */
3293 		return -ENOMEM;
3294 	}
3295 	/*
3296 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3297 	 * is called before end_migration, we can catch all events on this new
3298 	 * page. In the case new page is migrated but not remapped, new page's
3299 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3300 	 */
3301 	pc = lookup_page_cgroup(newpage);
3302 	if (PageAnon(page))
3303 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3304 	else if (page_is_file_cache(page))
3305 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3306 	else
3307 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3308 	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3309 	return ret;
3310 }
3311 
3312 /* remove redundant charge if migration failed*/
3313 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3314 	struct page *oldpage, struct page *newpage, bool migration_ok)
3315 {
3316 	struct page *used, *unused;
3317 	struct page_cgroup *pc;
3318 	bool anon;
3319 
3320 	if (!memcg)
3321 		return;
3322 	/* blocks rmdir() */
3323 	cgroup_exclude_rmdir(&memcg->css);
3324 	if (!migration_ok) {
3325 		used = oldpage;
3326 		unused = newpage;
3327 	} else {
3328 		used = newpage;
3329 		unused = oldpage;
3330 	}
3331 	/*
3332 	 * We disallowed uncharge of pages under migration because mapcount
3333 	 * of the page goes down to zero, temporarly.
3334 	 * Clear the flag and check the page should be charged.
3335 	 */
3336 	pc = lookup_page_cgroup(oldpage);
3337 	lock_page_cgroup(pc);
3338 	ClearPageCgroupMigration(pc);
3339 	unlock_page_cgroup(pc);
3340 	anon = PageAnon(used);
3341 	__mem_cgroup_uncharge_common(unused,
3342 		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3343 		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3344 
3345 	/*
3346 	 * If a page is a file cache, radix-tree replacement is very atomic
3347 	 * and we can skip this check. When it was an Anon page, its mapcount
3348 	 * goes down to 0. But because we added MIGRATION flage, it's not
3349 	 * uncharged yet. There are several case but page->mapcount check
3350 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3351 	 * check. (see prepare_charge() also)
3352 	 */
3353 	if (anon)
3354 		mem_cgroup_uncharge_page(used);
3355 	/*
3356 	 * At migration, we may charge account against cgroup which has no
3357 	 * tasks.
3358 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3359 	 * In that case, we need to call pre_destroy() again. check it here.
3360 	 */
3361 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3362 }
3363 
3364 /*
3365  * At replace page cache, newpage is not under any memcg but it's on
3366  * LRU. So, this function doesn't touch res_counter but handles LRU
3367  * in correct way. Both pages are locked so we cannot race with uncharge.
3368  */
3369 void mem_cgroup_replace_page_cache(struct page *oldpage,
3370 				  struct page *newpage)
3371 {
3372 	struct mem_cgroup *memcg;
3373 	struct page_cgroup *pc;
3374 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3375 
3376 	if (mem_cgroup_disabled())
3377 		return;
3378 
3379 	pc = lookup_page_cgroup(oldpage);
3380 	/* fix accounting on old pages */
3381 	lock_page_cgroup(pc);
3382 	memcg = pc->mem_cgroup;
3383 	mem_cgroup_charge_statistics(memcg, false, -1);
3384 	ClearPageCgroupUsed(pc);
3385 	unlock_page_cgroup(pc);
3386 
3387 	if (PageSwapBacked(oldpage))
3388 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3389 
3390 	/*
3391 	 * Even if newpage->mapping was NULL before starting replacement,
3392 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3393 	 * LRU while we overwrite pc->mem_cgroup.
3394 	 */
3395 	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3396 }
3397 
3398 #ifdef CONFIG_DEBUG_VM
3399 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3400 {
3401 	struct page_cgroup *pc;
3402 
3403 	pc = lookup_page_cgroup(page);
3404 	/*
3405 	 * Can be NULL while feeding pages into the page allocator for
3406 	 * the first time, i.e. during boot or memory hotplug;
3407 	 * or when mem_cgroup_disabled().
3408 	 */
3409 	if (likely(pc) && PageCgroupUsed(pc))
3410 		return pc;
3411 	return NULL;
3412 }
3413 
3414 bool mem_cgroup_bad_page_check(struct page *page)
3415 {
3416 	if (mem_cgroup_disabled())
3417 		return false;
3418 
3419 	return lookup_page_cgroup_used(page) != NULL;
3420 }
3421 
3422 void mem_cgroup_print_bad_page(struct page *page)
3423 {
3424 	struct page_cgroup *pc;
3425 
3426 	pc = lookup_page_cgroup_used(page);
3427 	if (pc) {
3428 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3429 		       pc, pc->flags, pc->mem_cgroup);
3430 	}
3431 }
3432 #endif
3433 
3434 static DEFINE_MUTEX(set_limit_mutex);
3435 
3436 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3437 				unsigned long long val)
3438 {
3439 	int retry_count;
3440 	u64 memswlimit, memlimit;
3441 	int ret = 0;
3442 	int children = mem_cgroup_count_children(memcg);
3443 	u64 curusage, oldusage;
3444 	int enlarge;
3445 
3446 	/*
3447 	 * For keeping hierarchical_reclaim simple, how long we should retry
3448 	 * is depends on callers. We set our retry-count to be function
3449 	 * of # of children which we should visit in this loop.
3450 	 */
3451 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3452 
3453 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3454 
3455 	enlarge = 0;
3456 	while (retry_count) {
3457 		if (signal_pending(current)) {
3458 			ret = -EINTR;
3459 			break;
3460 		}
3461 		/*
3462 		 * Rather than hide all in some function, I do this in
3463 		 * open coded manner. You see what this really does.
3464 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3465 		 */
3466 		mutex_lock(&set_limit_mutex);
3467 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3468 		if (memswlimit < val) {
3469 			ret = -EINVAL;
3470 			mutex_unlock(&set_limit_mutex);
3471 			break;
3472 		}
3473 
3474 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3475 		if (memlimit < val)
3476 			enlarge = 1;
3477 
3478 		ret = res_counter_set_limit(&memcg->res, val);
3479 		if (!ret) {
3480 			if (memswlimit == val)
3481 				memcg->memsw_is_minimum = true;
3482 			else
3483 				memcg->memsw_is_minimum = false;
3484 		}
3485 		mutex_unlock(&set_limit_mutex);
3486 
3487 		if (!ret)
3488 			break;
3489 
3490 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3491 				   MEM_CGROUP_RECLAIM_SHRINK);
3492 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3493 		/* Usage is reduced ? */
3494   		if (curusage >= oldusage)
3495 			retry_count--;
3496 		else
3497 			oldusage = curusage;
3498 	}
3499 	if (!ret && enlarge)
3500 		memcg_oom_recover(memcg);
3501 
3502 	return ret;
3503 }
3504 
3505 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3506 					unsigned long long val)
3507 {
3508 	int retry_count;
3509 	u64 memlimit, memswlimit, oldusage, curusage;
3510 	int children = mem_cgroup_count_children(memcg);
3511 	int ret = -EBUSY;
3512 	int enlarge = 0;
3513 
3514 	/* see mem_cgroup_resize_res_limit */
3515  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3516 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3517 	while (retry_count) {
3518 		if (signal_pending(current)) {
3519 			ret = -EINTR;
3520 			break;
3521 		}
3522 		/*
3523 		 * Rather than hide all in some function, I do this in
3524 		 * open coded manner. You see what this really does.
3525 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3526 		 */
3527 		mutex_lock(&set_limit_mutex);
3528 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3529 		if (memlimit > val) {
3530 			ret = -EINVAL;
3531 			mutex_unlock(&set_limit_mutex);
3532 			break;
3533 		}
3534 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3535 		if (memswlimit < val)
3536 			enlarge = 1;
3537 		ret = res_counter_set_limit(&memcg->memsw, val);
3538 		if (!ret) {
3539 			if (memlimit == val)
3540 				memcg->memsw_is_minimum = true;
3541 			else
3542 				memcg->memsw_is_minimum = false;
3543 		}
3544 		mutex_unlock(&set_limit_mutex);
3545 
3546 		if (!ret)
3547 			break;
3548 
3549 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3550 				   MEM_CGROUP_RECLAIM_NOSWAP |
3551 				   MEM_CGROUP_RECLAIM_SHRINK);
3552 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3553 		/* Usage is reduced ? */
3554 		if (curusage >= oldusage)
3555 			retry_count--;
3556 		else
3557 			oldusage = curusage;
3558 	}
3559 	if (!ret && enlarge)
3560 		memcg_oom_recover(memcg);
3561 	return ret;
3562 }
3563 
3564 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3565 					    gfp_t gfp_mask,
3566 					    unsigned long *total_scanned)
3567 {
3568 	unsigned long nr_reclaimed = 0;
3569 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3570 	unsigned long reclaimed;
3571 	int loop = 0;
3572 	struct mem_cgroup_tree_per_zone *mctz;
3573 	unsigned long long excess;
3574 	unsigned long nr_scanned;
3575 
3576 	if (order > 0)
3577 		return 0;
3578 
3579 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3580 	/*
3581 	 * This loop can run a while, specially if mem_cgroup's continuously
3582 	 * keep exceeding their soft limit and putting the system under
3583 	 * pressure
3584 	 */
3585 	do {
3586 		if (next_mz)
3587 			mz = next_mz;
3588 		else
3589 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3590 		if (!mz)
3591 			break;
3592 
3593 		nr_scanned = 0;
3594 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3595 						    gfp_mask, &nr_scanned);
3596 		nr_reclaimed += reclaimed;
3597 		*total_scanned += nr_scanned;
3598 		spin_lock(&mctz->lock);
3599 
3600 		/*
3601 		 * If we failed to reclaim anything from this memory cgroup
3602 		 * it is time to move on to the next cgroup
3603 		 */
3604 		next_mz = NULL;
3605 		if (!reclaimed) {
3606 			do {
3607 				/*
3608 				 * Loop until we find yet another one.
3609 				 *
3610 				 * By the time we get the soft_limit lock
3611 				 * again, someone might have aded the
3612 				 * group back on the RB tree. Iterate to
3613 				 * make sure we get a different mem.
3614 				 * mem_cgroup_largest_soft_limit_node returns
3615 				 * NULL if no other cgroup is present on
3616 				 * the tree
3617 				 */
3618 				next_mz =
3619 				__mem_cgroup_largest_soft_limit_node(mctz);
3620 				if (next_mz == mz)
3621 					css_put(&next_mz->memcg->css);
3622 				else /* next_mz == NULL or other memcg */
3623 					break;
3624 			} while (1);
3625 		}
3626 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3627 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3628 		/*
3629 		 * One school of thought says that we should not add
3630 		 * back the node to the tree if reclaim returns 0.
3631 		 * But our reclaim could return 0, simply because due
3632 		 * to priority we are exposing a smaller subset of
3633 		 * memory to reclaim from. Consider this as a longer
3634 		 * term TODO.
3635 		 */
3636 		/* If excess == 0, no tree ops */
3637 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3638 		spin_unlock(&mctz->lock);
3639 		css_put(&mz->memcg->css);
3640 		loop++;
3641 		/*
3642 		 * Could not reclaim anything and there are no more
3643 		 * mem cgroups to try or we seem to be looping without
3644 		 * reclaiming anything.
3645 		 */
3646 		if (!nr_reclaimed &&
3647 			(next_mz == NULL ||
3648 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3649 			break;
3650 	} while (!nr_reclaimed);
3651 	if (next_mz)
3652 		css_put(&next_mz->memcg->css);
3653 	return nr_reclaimed;
3654 }
3655 
3656 /*
3657  * This routine traverse page_cgroup in given list and drop them all.
3658  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3659  */
3660 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3661 				int node, int zid, enum lru_list lru)
3662 {
3663 	struct mem_cgroup_per_zone *mz;
3664 	unsigned long flags, loop;
3665 	struct list_head *list;
3666 	struct page *busy;
3667 	struct zone *zone;
3668 	int ret = 0;
3669 
3670 	zone = &NODE_DATA(node)->node_zones[zid];
3671 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3672 	list = &mz->lruvec.lists[lru];
3673 
3674 	loop = mz->lru_size[lru];
3675 	/* give some margin against EBUSY etc...*/
3676 	loop += 256;
3677 	busy = NULL;
3678 	while (loop--) {
3679 		struct page_cgroup *pc;
3680 		struct page *page;
3681 
3682 		ret = 0;
3683 		spin_lock_irqsave(&zone->lru_lock, flags);
3684 		if (list_empty(list)) {
3685 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3686 			break;
3687 		}
3688 		page = list_entry(list->prev, struct page, lru);
3689 		if (busy == page) {
3690 			list_move(&page->lru, list);
3691 			busy = NULL;
3692 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3693 			continue;
3694 		}
3695 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3696 
3697 		pc = lookup_page_cgroup(page);
3698 
3699 		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3700 		if (ret == -ENOMEM || ret == -EINTR)
3701 			break;
3702 
3703 		if (ret == -EBUSY || ret == -EINVAL) {
3704 			/* found lock contention or "pc" is obsolete. */
3705 			busy = page;
3706 			cond_resched();
3707 		} else
3708 			busy = NULL;
3709 	}
3710 
3711 	if (!ret && !list_empty(list))
3712 		return -EBUSY;
3713 	return ret;
3714 }
3715 
3716 /*
3717  * make mem_cgroup's charge to be 0 if there is no task.
3718  * This enables deleting this mem_cgroup.
3719  */
3720 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3721 {
3722 	int ret;
3723 	int node, zid, shrink;
3724 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3725 	struct cgroup *cgrp = memcg->css.cgroup;
3726 
3727 	css_get(&memcg->css);
3728 
3729 	shrink = 0;
3730 	/* should free all ? */
3731 	if (free_all)
3732 		goto try_to_free;
3733 move_account:
3734 	do {
3735 		ret = -EBUSY;
3736 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3737 			goto out;
3738 		ret = -EINTR;
3739 		if (signal_pending(current))
3740 			goto out;
3741 		/* This is for making all *used* pages to be on LRU. */
3742 		lru_add_drain_all();
3743 		drain_all_stock_sync(memcg);
3744 		ret = 0;
3745 		mem_cgroup_start_move(memcg);
3746 		for_each_node_state(node, N_HIGH_MEMORY) {
3747 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3748 				enum lru_list lru;
3749 				for_each_lru(lru) {
3750 					ret = mem_cgroup_force_empty_list(memcg,
3751 							node, zid, lru);
3752 					if (ret)
3753 						break;
3754 				}
3755 			}
3756 			if (ret)
3757 				break;
3758 		}
3759 		mem_cgroup_end_move(memcg);
3760 		memcg_oom_recover(memcg);
3761 		/* it seems parent cgroup doesn't have enough mem */
3762 		if (ret == -ENOMEM)
3763 			goto try_to_free;
3764 		cond_resched();
3765 	/* "ret" should also be checked to ensure all lists are empty. */
3766 	} while (memcg->res.usage > 0 || ret);
3767 out:
3768 	css_put(&memcg->css);
3769 	return ret;
3770 
3771 try_to_free:
3772 	/* returns EBUSY if there is a task or if we come here twice. */
3773 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3774 		ret = -EBUSY;
3775 		goto out;
3776 	}
3777 	/* we call try-to-free pages for make this cgroup empty */
3778 	lru_add_drain_all();
3779 	/* try to free all pages in this cgroup */
3780 	shrink = 1;
3781 	while (nr_retries && memcg->res.usage > 0) {
3782 		int progress;
3783 
3784 		if (signal_pending(current)) {
3785 			ret = -EINTR;
3786 			goto out;
3787 		}
3788 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3789 						false);
3790 		if (!progress) {
3791 			nr_retries--;
3792 			/* maybe some writeback is necessary */
3793 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3794 		}
3795 
3796 	}
3797 	lru_add_drain();
3798 	/* try move_account...there may be some *locked* pages. */
3799 	goto move_account;
3800 }
3801 
3802 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3803 {
3804 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3805 }
3806 
3807 
3808 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3809 {
3810 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3811 }
3812 
3813 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3814 					u64 val)
3815 {
3816 	int retval = 0;
3817 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3818 	struct cgroup *parent = cont->parent;
3819 	struct mem_cgroup *parent_memcg = NULL;
3820 
3821 	if (parent)
3822 		parent_memcg = mem_cgroup_from_cont(parent);
3823 
3824 	cgroup_lock();
3825 	/*
3826 	 * If parent's use_hierarchy is set, we can't make any modifications
3827 	 * in the child subtrees. If it is unset, then the change can
3828 	 * occur, provided the current cgroup has no children.
3829 	 *
3830 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3831 	 * set if there are no children.
3832 	 */
3833 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3834 				(val == 1 || val == 0)) {
3835 		if (list_empty(&cont->children))
3836 			memcg->use_hierarchy = val;
3837 		else
3838 			retval = -EBUSY;
3839 	} else
3840 		retval = -EINVAL;
3841 	cgroup_unlock();
3842 
3843 	return retval;
3844 }
3845 
3846 
3847 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3848 					       enum mem_cgroup_stat_index idx)
3849 {
3850 	struct mem_cgroup *iter;
3851 	long val = 0;
3852 
3853 	/* Per-cpu values can be negative, use a signed accumulator */
3854 	for_each_mem_cgroup_tree(iter, memcg)
3855 		val += mem_cgroup_read_stat(iter, idx);
3856 
3857 	if (val < 0) /* race ? */
3858 		val = 0;
3859 	return val;
3860 }
3861 
3862 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3863 {
3864 	u64 val;
3865 
3866 	if (!mem_cgroup_is_root(memcg)) {
3867 		if (!swap)
3868 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3869 		else
3870 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3871 	}
3872 
3873 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3874 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3875 
3876 	if (swap)
3877 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3878 
3879 	return val << PAGE_SHIFT;
3880 }
3881 
3882 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3883 {
3884 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3885 	u64 val;
3886 	int type, name;
3887 
3888 	type = MEMFILE_TYPE(cft->private);
3889 	name = MEMFILE_ATTR(cft->private);
3890 	switch (type) {
3891 	case _MEM:
3892 		if (name == RES_USAGE)
3893 			val = mem_cgroup_usage(memcg, false);
3894 		else
3895 			val = res_counter_read_u64(&memcg->res, name);
3896 		break;
3897 	case _MEMSWAP:
3898 		if (name == RES_USAGE)
3899 			val = mem_cgroup_usage(memcg, true);
3900 		else
3901 			val = res_counter_read_u64(&memcg->memsw, name);
3902 		break;
3903 	default:
3904 		BUG();
3905 	}
3906 	return val;
3907 }
3908 /*
3909  * The user of this function is...
3910  * RES_LIMIT.
3911  */
3912 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3913 			    const char *buffer)
3914 {
3915 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3916 	int type, name;
3917 	unsigned long long val;
3918 	int ret;
3919 
3920 	type = MEMFILE_TYPE(cft->private);
3921 	name = MEMFILE_ATTR(cft->private);
3922 	switch (name) {
3923 	case RES_LIMIT:
3924 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3925 			ret = -EINVAL;
3926 			break;
3927 		}
3928 		/* This function does all necessary parse...reuse it */
3929 		ret = res_counter_memparse_write_strategy(buffer, &val);
3930 		if (ret)
3931 			break;
3932 		if (type == _MEM)
3933 			ret = mem_cgroup_resize_limit(memcg, val);
3934 		else
3935 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3936 		break;
3937 	case RES_SOFT_LIMIT:
3938 		ret = res_counter_memparse_write_strategy(buffer, &val);
3939 		if (ret)
3940 			break;
3941 		/*
3942 		 * For memsw, soft limits are hard to implement in terms
3943 		 * of semantics, for now, we support soft limits for
3944 		 * control without swap
3945 		 */
3946 		if (type == _MEM)
3947 			ret = res_counter_set_soft_limit(&memcg->res, val);
3948 		else
3949 			ret = -EINVAL;
3950 		break;
3951 	default:
3952 		ret = -EINVAL; /* should be BUG() ? */
3953 		break;
3954 	}
3955 	return ret;
3956 }
3957 
3958 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3959 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3960 {
3961 	struct cgroup *cgroup;
3962 	unsigned long long min_limit, min_memsw_limit, tmp;
3963 
3964 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3965 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3966 	cgroup = memcg->css.cgroup;
3967 	if (!memcg->use_hierarchy)
3968 		goto out;
3969 
3970 	while (cgroup->parent) {
3971 		cgroup = cgroup->parent;
3972 		memcg = mem_cgroup_from_cont(cgroup);
3973 		if (!memcg->use_hierarchy)
3974 			break;
3975 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3976 		min_limit = min(min_limit, tmp);
3977 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3978 		min_memsw_limit = min(min_memsw_limit, tmp);
3979 	}
3980 out:
3981 	*mem_limit = min_limit;
3982 	*memsw_limit = min_memsw_limit;
3983 }
3984 
3985 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3986 {
3987 	struct mem_cgroup *memcg;
3988 	int type, name;
3989 
3990 	memcg = mem_cgroup_from_cont(cont);
3991 	type = MEMFILE_TYPE(event);
3992 	name = MEMFILE_ATTR(event);
3993 	switch (name) {
3994 	case RES_MAX_USAGE:
3995 		if (type == _MEM)
3996 			res_counter_reset_max(&memcg->res);
3997 		else
3998 			res_counter_reset_max(&memcg->memsw);
3999 		break;
4000 	case RES_FAILCNT:
4001 		if (type == _MEM)
4002 			res_counter_reset_failcnt(&memcg->res);
4003 		else
4004 			res_counter_reset_failcnt(&memcg->memsw);
4005 		break;
4006 	}
4007 
4008 	return 0;
4009 }
4010 
4011 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4012 					struct cftype *cft)
4013 {
4014 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4015 }
4016 
4017 #ifdef CONFIG_MMU
4018 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4019 					struct cftype *cft, u64 val)
4020 {
4021 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4022 
4023 	if (val >= (1 << NR_MOVE_TYPE))
4024 		return -EINVAL;
4025 	/*
4026 	 * We check this value several times in both in can_attach() and
4027 	 * attach(), so we need cgroup lock to prevent this value from being
4028 	 * inconsistent.
4029 	 */
4030 	cgroup_lock();
4031 	memcg->move_charge_at_immigrate = val;
4032 	cgroup_unlock();
4033 
4034 	return 0;
4035 }
4036 #else
4037 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4038 					struct cftype *cft, u64 val)
4039 {
4040 	return -ENOSYS;
4041 }
4042 #endif
4043 
4044 
4045 /* For read statistics */
4046 enum {
4047 	MCS_CACHE,
4048 	MCS_RSS,
4049 	MCS_FILE_MAPPED,
4050 	MCS_PGPGIN,
4051 	MCS_PGPGOUT,
4052 	MCS_SWAP,
4053 	MCS_PGFAULT,
4054 	MCS_PGMAJFAULT,
4055 	MCS_INACTIVE_ANON,
4056 	MCS_ACTIVE_ANON,
4057 	MCS_INACTIVE_FILE,
4058 	MCS_ACTIVE_FILE,
4059 	MCS_UNEVICTABLE,
4060 	NR_MCS_STAT,
4061 };
4062 
4063 struct mcs_total_stat {
4064 	s64 stat[NR_MCS_STAT];
4065 };
4066 
4067 struct {
4068 	char *local_name;
4069 	char *total_name;
4070 } memcg_stat_strings[NR_MCS_STAT] = {
4071 	{"cache", "total_cache"},
4072 	{"rss", "total_rss"},
4073 	{"mapped_file", "total_mapped_file"},
4074 	{"pgpgin", "total_pgpgin"},
4075 	{"pgpgout", "total_pgpgout"},
4076 	{"swap", "total_swap"},
4077 	{"pgfault", "total_pgfault"},
4078 	{"pgmajfault", "total_pgmajfault"},
4079 	{"inactive_anon", "total_inactive_anon"},
4080 	{"active_anon", "total_active_anon"},
4081 	{"inactive_file", "total_inactive_file"},
4082 	{"active_file", "total_active_file"},
4083 	{"unevictable", "total_unevictable"}
4084 };
4085 
4086 
4087 static void
4088 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4089 {
4090 	s64 val;
4091 
4092 	/* per cpu stat */
4093 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4094 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4095 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4096 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4097 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4098 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4099 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4100 	s->stat[MCS_PGPGIN] += val;
4101 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4102 	s->stat[MCS_PGPGOUT] += val;
4103 	if (do_swap_account) {
4104 		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4105 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4106 	}
4107 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4108 	s->stat[MCS_PGFAULT] += val;
4109 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4110 	s->stat[MCS_PGMAJFAULT] += val;
4111 
4112 	/* per zone stat */
4113 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4114 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4115 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4116 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4117 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4118 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4119 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4120 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4121 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4122 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4123 }
4124 
4125 static void
4126 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4127 {
4128 	struct mem_cgroup *iter;
4129 
4130 	for_each_mem_cgroup_tree(iter, memcg)
4131 		mem_cgroup_get_local_stat(iter, s);
4132 }
4133 
4134 #ifdef CONFIG_NUMA
4135 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4136 {
4137 	int nid;
4138 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4139 	unsigned long node_nr;
4140 	struct cgroup *cont = m->private;
4141 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4142 
4143 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4144 	seq_printf(m, "total=%lu", total_nr);
4145 	for_each_node_state(nid, N_HIGH_MEMORY) {
4146 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4147 		seq_printf(m, " N%d=%lu", nid, node_nr);
4148 	}
4149 	seq_putc(m, '\n');
4150 
4151 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4152 	seq_printf(m, "file=%lu", file_nr);
4153 	for_each_node_state(nid, N_HIGH_MEMORY) {
4154 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4155 				LRU_ALL_FILE);
4156 		seq_printf(m, " N%d=%lu", nid, node_nr);
4157 	}
4158 	seq_putc(m, '\n');
4159 
4160 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4161 	seq_printf(m, "anon=%lu", anon_nr);
4162 	for_each_node_state(nid, N_HIGH_MEMORY) {
4163 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4164 				LRU_ALL_ANON);
4165 		seq_printf(m, " N%d=%lu", nid, node_nr);
4166 	}
4167 	seq_putc(m, '\n');
4168 
4169 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4170 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4171 	for_each_node_state(nid, N_HIGH_MEMORY) {
4172 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4173 				BIT(LRU_UNEVICTABLE));
4174 		seq_printf(m, " N%d=%lu", nid, node_nr);
4175 	}
4176 	seq_putc(m, '\n');
4177 	return 0;
4178 }
4179 #endif /* CONFIG_NUMA */
4180 
4181 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4182 				 struct cgroup_map_cb *cb)
4183 {
4184 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4185 	struct mcs_total_stat mystat;
4186 	int i;
4187 
4188 	memset(&mystat, 0, sizeof(mystat));
4189 	mem_cgroup_get_local_stat(memcg, &mystat);
4190 
4191 
4192 	for (i = 0; i < NR_MCS_STAT; i++) {
4193 		if (i == MCS_SWAP && !do_swap_account)
4194 			continue;
4195 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4196 	}
4197 
4198 	/* Hierarchical information */
4199 	{
4200 		unsigned long long limit, memsw_limit;
4201 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4202 		cb->fill(cb, "hierarchical_memory_limit", limit);
4203 		if (do_swap_account)
4204 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4205 	}
4206 
4207 	memset(&mystat, 0, sizeof(mystat));
4208 	mem_cgroup_get_total_stat(memcg, &mystat);
4209 	for (i = 0; i < NR_MCS_STAT; i++) {
4210 		if (i == MCS_SWAP && !do_swap_account)
4211 			continue;
4212 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4213 	}
4214 
4215 #ifdef CONFIG_DEBUG_VM
4216 	{
4217 		int nid, zid;
4218 		struct mem_cgroup_per_zone *mz;
4219 		unsigned long recent_rotated[2] = {0, 0};
4220 		unsigned long recent_scanned[2] = {0, 0};
4221 
4222 		for_each_online_node(nid)
4223 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4224 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4225 
4226 				recent_rotated[0] +=
4227 					mz->reclaim_stat.recent_rotated[0];
4228 				recent_rotated[1] +=
4229 					mz->reclaim_stat.recent_rotated[1];
4230 				recent_scanned[0] +=
4231 					mz->reclaim_stat.recent_scanned[0];
4232 				recent_scanned[1] +=
4233 					mz->reclaim_stat.recent_scanned[1];
4234 			}
4235 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4236 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4237 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4238 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4239 	}
4240 #endif
4241 
4242 	return 0;
4243 }
4244 
4245 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4246 {
4247 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4248 
4249 	return mem_cgroup_swappiness(memcg);
4250 }
4251 
4252 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4253 				       u64 val)
4254 {
4255 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4256 	struct mem_cgroup *parent;
4257 
4258 	if (val > 100)
4259 		return -EINVAL;
4260 
4261 	if (cgrp->parent == NULL)
4262 		return -EINVAL;
4263 
4264 	parent = mem_cgroup_from_cont(cgrp->parent);
4265 
4266 	cgroup_lock();
4267 
4268 	/* If under hierarchy, only empty-root can set this value */
4269 	if ((parent->use_hierarchy) ||
4270 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4271 		cgroup_unlock();
4272 		return -EINVAL;
4273 	}
4274 
4275 	memcg->swappiness = val;
4276 
4277 	cgroup_unlock();
4278 
4279 	return 0;
4280 }
4281 
4282 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4283 {
4284 	struct mem_cgroup_threshold_ary *t;
4285 	u64 usage;
4286 	int i;
4287 
4288 	rcu_read_lock();
4289 	if (!swap)
4290 		t = rcu_dereference(memcg->thresholds.primary);
4291 	else
4292 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4293 
4294 	if (!t)
4295 		goto unlock;
4296 
4297 	usage = mem_cgroup_usage(memcg, swap);
4298 
4299 	/*
4300 	 * current_threshold points to threshold just below usage.
4301 	 * If it's not true, a threshold was crossed after last
4302 	 * call of __mem_cgroup_threshold().
4303 	 */
4304 	i = t->current_threshold;
4305 
4306 	/*
4307 	 * Iterate backward over array of thresholds starting from
4308 	 * current_threshold and check if a threshold is crossed.
4309 	 * If none of thresholds below usage is crossed, we read
4310 	 * only one element of the array here.
4311 	 */
4312 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4313 		eventfd_signal(t->entries[i].eventfd, 1);
4314 
4315 	/* i = current_threshold + 1 */
4316 	i++;
4317 
4318 	/*
4319 	 * Iterate forward over array of thresholds starting from
4320 	 * current_threshold+1 and check if a threshold is crossed.
4321 	 * If none of thresholds above usage is crossed, we read
4322 	 * only one element of the array here.
4323 	 */
4324 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4325 		eventfd_signal(t->entries[i].eventfd, 1);
4326 
4327 	/* Update current_threshold */
4328 	t->current_threshold = i - 1;
4329 unlock:
4330 	rcu_read_unlock();
4331 }
4332 
4333 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4334 {
4335 	while (memcg) {
4336 		__mem_cgroup_threshold(memcg, false);
4337 		if (do_swap_account)
4338 			__mem_cgroup_threshold(memcg, true);
4339 
4340 		memcg = parent_mem_cgroup(memcg);
4341 	}
4342 }
4343 
4344 static int compare_thresholds(const void *a, const void *b)
4345 {
4346 	const struct mem_cgroup_threshold *_a = a;
4347 	const struct mem_cgroup_threshold *_b = b;
4348 
4349 	return _a->threshold - _b->threshold;
4350 }
4351 
4352 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4353 {
4354 	struct mem_cgroup_eventfd_list *ev;
4355 
4356 	list_for_each_entry(ev, &memcg->oom_notify, list)
4357 		eventfd_signal(ev->eventfd, 1);
4358 	return 0;
4359 }
4360 
4361 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4362 {
4363 	struct mem_cgroup *iter;
4364 
4365 	for_each_mem_cgroup_tree(iter, memcg)
4366 		mem_cgroup_oom_notify_cb(iter);
4367 }
4368 
4369 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4370 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4371 {
4372 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4373 	struct mem_cgroup_thresholds *thresholds;
4374 	struct mem_cgroup_threshold_ary *new;
4375 	int type = MEMFILE_TYPE(cft->private);
4376 	u64 threshold, usage;
4377 	int i, size, ret;
4378 
4379 	ret = res_counter_memparse_write_strategy(args, &threshold);
4380 	if (ret)
4381 		return ret;
4382 
4383 	mutex_lock(&memcg->thresholds_lock);
4384 
4385 	if (type == _MEM)
4386 		thresholds = &memcg->thresholds;
4387 	else if (type == _MEMSWAP)
4388 		thresholds = &memcg->memsw_thresholds;
4389 	else
4390 		BUG();
4391 
4392 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4393 
4394 	/* Check if a threshold crossed before adding a new one */
4395 	if (thresholds->primary)
4396 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4397 
4398 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4399 
4400 	/* Allocate memory for new array of thresholds */
4401 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4402 			GFP_KERNEL);
4403 	if (!new) {
4404 		ret = -ENOMEM;
4405 		goto unlock;
4406 	}
4407 	new->size = size;
4408 
4409 	/* Copy thresholds (if any) to new array */
4410 	if (thresholds->primary) {
4411 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4412 				sizeof(struct mem_cgroup_threshold));
4413 	}
4414 
4415 	/* Add new threshold */
4416 	new->entries[size - 1].eventfd = eventfd;
4417 	new->entries[size - 1].threshold = threshold;
4418 
4419 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4420 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4421 			compare_thresholds, NULL);
4422 
4423 	/* Find current threshold */
4424 	new->current_threshold = -1;
4425 	for (i = 0; i < size; i++) {
4426 		if (new->entries[i].threshold < usage) {
4427 			/*
4428 			 * new->current_threshold will not be used until
4429 			 * rcu_assign_pointer(), so it's safe to increment
4430 			 * it here.
4431 			 */
4432 			++new->current_threshold;
4433 		}
4434 	}
4435 
4436 	/* Free old spare buffer and save old primary buffer as spare */
4437 	kfree(thresholds->spare);
4438 	thresholds->spare = thresholds->primary;
4439 
4440 	rcu_assign_pointer(thresholds->primary, new);
4441 
4442 	/* To be sure that nobody uses thresholds */
4443 	synchronize_rcu();
4444 
4445 unlock:
4446 	mutex_unlock(&memcg->thresholds_lock);
4447 
4448 	return ret;
4449 }
4450 
4451 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4452 	struct cftype *cft, struct eventfd_ctx *eventfd)
4453 {
4454 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4455 	struct mem_cgroup_thresholds *thresholds;
4456 	struct mem_cgroup_threshold_ary *new;
4457 	int type = MEMFILE_TYPE(cft->private);
4458 	u64 usage;
4459 	int i, j, size;
4460 
4461 	mutex_lock(&memcg->thresholds_lock);
4462 	if (type == _MEM)
4463 		thresholds = &memcg->thresholds;
4464 	else if (type == _MEMSWAP)
4465 		thresholds = &memcg->memsw_thresholds;
4466 	else
4467 		BUG();
4468 
4469 	if (!thresholds->primary)
4470 		goto unlock;
4471 
4472 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4473 
4474 	/* Check if a threshold crossed before removing */
4475 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4476 
4477 	/* Calculate new number of threshold */
4478 	size = 0;
4479 	for (i = 0; i < thresholds->primary->size; i++) {
4480 		if (thresholds->primary->entries[i].eventfd != eventfd)
4481 			size++;
4482 	}
4483 
4484 	new = thresholds->spare;
4485 
4486 	/* Set thresholds array to NULL if we don't have thresholds */
4487 	if (!size) {
4488 		kfree(new);
4489 		new = NULL;
4490 		goto swap_buffers;
4491 	}
4492 
4493 	new->size = size;
4494 
4495 	/* Copy thresholds and find current threshold */
4496 	new->current_threshold = -1;
4497 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4498 		if (thresholds->primary->entries[i].eventfd == eventfd)
4499 			continue;
4500 
4501 		new->entries[j] = thresholds->primary->entries[i];
4502 		if (new->entries[j].threshold < usage) {
4503 			/*
4504 			 * new->current_threshold will not be used
4505 			 * until rcu_assign_pointer(), so it's safe to increment
4506 			 * it here.
4507 			 */
4508 			++new->current_threshold;
4509 		}
4510 		j++;
4511 	}
4512 
4513 swap_buffers:
4514 	/* Swap primary and spare array */
4515 	thresholds->spare = thresholds->primary;
4516 	rcu_assign_pointer(thresholds->primary, new);
4517 
4518 	/* To be sure that nobody uses thresholds */
4519 	synchronize_rcu();
4520 unlock:
4521 	mutex_unlock(&memcg->thresholds_lock);
4522 }
4523 
4524 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4525 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4526 {
4527 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4528 	struct mem_cgroup_eventfd_list *event;
4529 	int type = MEMFILE_TYPE(cft->private);
4530 
4531 	BUG_ON(type != _OOM_TYPE);
4532 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4533 	if (!event)
4534 		return -ENOMEM;
4535 
4536 	spin_lock(&memcg_oom_lock);
4537 
4538 	event->eventfd = eventfd;
4539 	list_add(&event->list, &memcg->oom_notify);
4540 
4541 	/* already in OOM ? */
4542 	if (atomic_read(&memcg->under_oom))
4543 		eventfd_signal(eventfd, 1);
4544 	spin_unlock(&memcg_oom_lock);
4545 
4546 	return 0;
4547 }
4548 
4549 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4550 	struct cftype *cft, struct eventfd_ctx *eventfd)
4551 {
4552 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4553 	struct mem_cgroup_eventfd_list *ev, *tmp;
4554 	int type = MEMFILE_TYPE(cft->private);
4555 
4556 	BUG_ON(type != _OOM_TYPE);
4557 
4558 	spin_lock(&memcg_oom_lock);
4559 
4560 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4561 		if (ev->eventfd == eventfd) {
4562 			list_del(&ev->list);
4563 			kfree(ev);
4564 		}
4565 	}
4566 
4567 	spin_unlock(&memcg_oom_lock);
4568 }
4569 
4570 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4571 	struct cftype *cft,  struct cgroup_map_cb *cb)
4572 {
4573 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4574 
4575 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4576 
4577 	if (atomic_read(&memcg->under_oom))
4578 		cb->fill(cb, "under_oom", 1);
4579 	else
4580 		cb->fill(cb, "under_oom", 0);
4581 	return 0;
4582 }
4583 
4584 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4585 	struct cftype *cft, u64 val)
4586 {
4587 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4588 	struct mem_cgroup *parent;
4589 
4590 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4591 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4592 		return -EINVAL;
4593 
4594 	parent = mem_cgroup_from_cont(cgrp->parent);
4595 
4596 	cgroup_lock();
4597 	/* oom-kill-disable is a flag for subhierarchy. */
4598 	if ((parent->use_hierarchy) ||
4599 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4600 		cgroup_unlock();
4601 		return -EINVAL;
4602 	}
4603 	memcg->oom_kill_disable = val;
4604 	if (!val)
4605 		memcg_oom_recover(memcg);
4606 	cgroup_unlock();
4607 	return 0;
4608 }
4609 
4610 #ifdef CONFIG_NUMA
4611 static const struct file_operations mem_control_numa_stat_file_operations = {
4612 	.read = seq_read,
4613 	.llseek = seq_lseek,
4614 	.release = single_release,
4615 };
4616 
4617 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4618 {
4619 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4620 
4621 	file->f_op = &mem_control_numa_stat_file_operations;
4622 	return single_open(file, mem_control_numa_stat_show, cont);
4623 }
4624 #endif /* CONFIG_NUMA */
4625 
4626 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4627 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4628 {
4629 	/*
4630 	 * Part of this would be better living in a separate allocation
4631 	 * function, leaving us with just the cgroup tree population work.
4632 	 * We, however, depend on state such as network's proto_list that
4633 	 * is only initialized after cgroup creation. I found the less
4634 	 * cumbersome way to deal with it to defer it all to populate time
4635 	 */
4636 	return mem_cgroup_sockets_init(cont, ss);
4637 };
4638 
4639 static void kmem_cgroup_destroy(struct cgroup *cont)
4640 {
4641 	mem_cgroup_sockets_destroy(cont);
4642 }
4643 #else
4644 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4645 {
4646 	return 0;
4647 }
4648 
4649 static void kmem_cgroup_destroy(struct cgroup *cont)
4650 {
4651 }
4652 #endif
4653 
4654 static struct cftype mem_cgroup_files[] = {
4655 	{
4656 		.name = "usage_in_bytes",
4657 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4658 		.read_u64 = mem_cgroup_read,
4659 		.register_event = mem_cgroup_usage_register_event,
4660 		.unregister_event = mem_cgroup_usage_unregister_event,
4661 	},
4662 	{
4663 		.name = "max_usage_in_bytes",
4664 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4665 		.trigger = mem_cgroup_reset,
4666 		.read_u64 = mem_cgroup_read,
4667 	},
4668 	{
4669 		.name = "limit_in_bytes",
4670 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4671 		.write_string = mem_cgroup_write,
4672 		.read_u64 = mem_cgroup_read,
4673 	},
4674 	{
4675 		.name = "soft_limit_in_bytes",
4676 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4677 		.write_string = mem_cgroup_write,
4678 		.read_u64 = mem_cgroup_read,
4679 	},
4680 	{
4681 		.name = "failcnt",
4682 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4683 		.trigger = mem_cgroup_reset,
4684 		.read_u64 = mem_cgroup_read,
4685 	},
4686 	{
4687 		.name = "stat",
4688 		.read_map = mem_control_stat_show,
4689 	},
4690 	{
4691 		.name = "force_empty",
4692 		.trigger = mem_cgroup_force_empty_write,
4693 	},
4694 	{
4695 		.name = "use_hierarchy",
4696 		.write_u64 = mem_cgroup_hierarchy_write,
4697 		.read_u64 = mem_cgroup_hierarchy_read,
4698 	},
4699 	{
4700 		.name = "swappiness",
4701 		.read_u64 = mem_cgroup_swappiness_read,
4702 		.write_u64 = mem_cgroup_swappiness_write,
4703 	},
4704 	{
4705 		.name = "move_charge_at_immigrate",
4706 		.read_u64 = mem_cgroup_move_charge_read,
4707 		.write_u64 = mem_cgroup_move_charge_write,
4708 	},
4709 	{
4710 		.name = "oom_control",
4711 		.read_map = mem_cgroup_oom_control_read,
4712 		.write_u64 = mem_cgroup_oom_control_write,
4713 		.register_event = mem_cgroup_oom_register_event,
4714 		.unregister_event = mem_cgroup_oom_unregister_event,
4715 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4716 	},
4717 #ifdef CONFIG_NUMA
4718 	{
4719 		.name = "numa_stat",
4720 		.open = mem_control_numa_stat_open,
4721 		.mode = S_IRUGO,
4722 	},
4723 #endif
4724 };
4725 
4726 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4727 static struct cftype memsw_cgroup_files[] = {
4728 	{
4729 		.name = "memsw.usage_in_bytes",
4730 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4731 		.read_u64 = mem_cgroup_read,
4732 		.register_event = mem_cgroup_usage_register_event,
4733 		.unregister_event = mem_cgroup_usage_unregister_event,
4734 	},
4735 	{
4736 		.name = "memsw.max_usage_in_bytes",
4737 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4738 		.trigger = mem_cgroup_reset,
4739 		.read_u64 = mem_cgroup_read,
4740 	},
4741 	{
4742 		.name = "memsw.limit_in_bytes",
4743 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4744 		.write_string = mem_cgroup_write,
4745 		.read_u64 = mem_cgroup_read,
4746 	},
4747 	{
4748 		.name = "memsw.failcnt",
4749 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4750 		.trigger = mem_cgroup_reset,
4751 		.read_u64 = mem_cgroup_read,
4752 	},
4753 };
4754 
4755 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4756 {
4757 	if (!do_swap_account)
4758 		return 0;
4759 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4760 				ARRAY_SIZE(memsw_cgroup_files));
4761 };
4762 #else
4763 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4764 {
4765 	return 0;
4766 }
4767 #endif
4768 
4769 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4770 {
4771 	struct mem_cgroup_per_node *pn;
4772 	struct mem_cgroup_per_zone *mz;
4773 	enum lru_list lru;
4774 	int zone, tmp = node;
4775 	/*
4776 	 * This routine is called against possible nodes.
4777 	 * But it's BUG to call kmalloc() against offline node.
4778 	 *
4779 	 * TODO: this routine can waste much memory for nodes which will
4780 	 *       never be onlined. It's better to use memory hotplug callback
4781 	 *       function.
4782 	 */
4783 	if (!node_state(node, N_NORMAL_MEMORY))
4784 		tmp = -1;
4785 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4786 	if (!pn)
4787 		return 1;
4788 
4789 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4790 		mz = &pn->zoneinfo[zone];
4791 		for_each_lru(lru)
4792 			INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4793 		mz->usage_in_excess = 0;
4794 		mz->on_tree = false;
4795 		mz->memcg = memcg;
4796 	}
4797 	memcg->info.nodeinfo[node] = pn;
4798 	return 0;
4799 }
4800 
4801 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4802 {
4803 	kfree(memcg->info.nodeinfo[node]);
4804 }
4805 
4806 static struct mem_cgroup *mem_cgroup_alloc(void)
4807 {
4808 	struct mem_cgroup *memcg;
4809 	int size = sizeof(struct mem_cgroup);
4810 
4811 	/* Can be very big if MAX_NUMNODES is very big */
4812 	if (size < PAGE_SIZE)
4813 		memcg = kzalloc(size, GFP_KERNEL);
4814 	else
4815 		memcg = vzalloc(size);
4816 
4817 	if (!memcg)
4818 		return NULL;
4819 
4820 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4821 	if (!memcg->stat)
4822 		goto out_free;
4823 	spin_lock_init(&memcg->pcp_counter_lock);
4824 	return memcg;
4825 
4826 out_free:
4827 	if (size < PAGE_SIZE)
4828 		kfree(memcg);
4829 	else
4830 		vfree(memcg);
4831 	return NULL;
4832 }
4833 
4834 /*
4835  * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4836  * but in process context.  The work_freeing structure is overlaid
4837  * on the rcu_freeing structure, which itself is overlaid on memsw.
4838  */
4839 static void vfree_work(struct work_struct *work)
4840 {
4841 	struct mem_cgroup *memcg;
4842 
4843 	memcg = container_of(work, struct mem_cgroup, work_freeing);
4844 	vfree(memcg);
4845 }
4846 static void vfree_rcu(struct rcu_head *rcu_head)
4847 {
4848 	struct mem_cgroup *memcg;
4849 
4850 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4851 	INIT_WORK(&memcg->work_freeing, vfree_work);
4852 	schedule_work(&memcg->work_freeing);
4853 }
4854 
4855 /*
4856  * At destroying mem_cgroup, references from swap_cgroup can remain.
4857  * (scanning all at force_empty is too costly...)
4858  *
4859  * Instead of clearing all references at force_empty, we remember
4860  * the number of reference from swap_cgroup and free mem_cgroup when
4861  * it goes down to 0.
4862  *
4863  * Removal of cgroup itself succeeds regardless of refs from swap.
4864  */
4865 
4866 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4867 {
4868 	int node;
4869 
4870 	mem_cgroup_remove_from_trees(memcg);
4871 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4872 
4873 	for_each_node(node)
4874 		free_mem_cgroup_per_zone_info(memcg, node);
4875 
4876 	free_percpu(memcg->stat);
4877 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4878 		kfree_rcu(memcg, rcu_freeing);
4879 	else
4880 		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4881 }
4882 
4883 static void mem_cgroup_get(struct mem_cgroup *memcg)
4884 {
4885 	atomic_inc(&memcg->refcnt);
4886 }
4887 
4888 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4889 {
4890 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4891 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4892 		__mem_cgroup_free(memcg);
4893 		if (parent)
4894 			mem_cgroup_put(parent);
4895 	}
4896 }
4897 
4898 static void mem_cgroup_put(struct mem_cgroup *memcg)
4899 {
4900 	__mem_cgroup_put(memcg, 1);
4901 }
4902 
4903 /*
4904  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4905  */
4906 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4907 {
4908 	if (!memcg->res.parent)
4909 		return NULL;
4910 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4911 }
4912 EXPORT_SYMBOL(parent_mem_cgroup);
4913 
4914 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4915 static void __init enable_swap_cgroup(void)
4916 {
4917 	if (!mem_cgroup_disabled() && really_do_swap_account)
4918 		do_swap_account = 1;
4919 }
4920 #else
4921 static void __init enable_swap_cgroup(void)
4922 {
4923 }
4924 #endif
4925 
4926 static int mem_cgroup_soft_limit_tree_init(void)
4927 {
4928 	struct mem_cgroup_tree_per_node *rtpn;
4929 	struct mem_cgroup_tree_per_zone *rtpz;
4930 	int tmp, node, zone;
4931 
4932 	for_each_node(node) {
4933 		tmp = node;
4934 		if (!node_state(node, N_NORMAL_MEMORY))
4935 			tmp = -1;
4936 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4937 		if (!rtpn)
4938 			goto err_cleanup;
4939 
4940 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4941 
4942 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4943 			rtpz = &rtpn->rb_tree_per_zone[zone];
4944 			rtpz->rb_root = RB_ROOT;
4945 			spin_lock_init(&rtpz->lock);
4946 		}
4947 	}
4948 	return 0;
4949 
4950 err_cleanup:
4951 	for_each_node(node) {
4952 		if (!soft_limit_tree.rb_tree_per_node[node])
4953 			break;
4954 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4955 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4956 	}
4957 	return 1;
4958 
4959 }
4960 
4961 static struct cgroup_subsys_state * __ref
4962 mem_cgroup_create(struct cgroup *cont)
4963 {
4964 	struct mem_cgroup *memcg, *parent;
4965 	long error = -ENOMEM;
4966 	int node;
4967 
4968 	memcg = mem_cgroup_alloc();
4969 	if (!memcg)
4970 		return ERR_PTR(error);
4971 
4972 	for_each_node(node)
4973 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4974 			goto free_out;
4975 
4976 	/* root ? */
4977 	if (cont->parent == NULL) {
4978 		int cpu;
4979 		enable_swap_cgroup();
4980 		parent = NULL;
4981 		if (mem_cgroup_soft_limit_tree_init())
4982 			goto free_out;
4983 		root_mem_cgroup = memcg;
4984 		for_each_possible_cpu(cpu) {
4985 			struct memcg_stock_pcp *stock =
4986 						&per_cpu(memcg_stock, cpu);
4987 			INIT_WORK(&stock->work, drain_local_stock);
4988 		}
4989 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4990 	} else {
4991 		parent = mem_cgroup_from_cont(cont->parent);
4992 		memcg->use_hierarchy = parent->use_hierarchy;
4993 		memcg->oom_kill_disable = parent->oom_kill_disable;
4994 	}
4995 
4996 	if (parent && parent->use_hierarchy) {
4997 		res_counter_init(&memcg->res, &parent->res);
4998 		res_counter_init(&memcg->memsw, &parent->memsw);
4999 		/*
5000 		 * We increment refcnt of the parent to ensure that we can
5001 		 * safely access it on res_counter_charge/uncharge.
5002 		 * This refcnt will be decremented when freeing this
5003 		 * mem_cgroup(see mem_cgroup_put).
5004 		 */
5005 		mem_cgroup_get(parent);
5006 	} else {
5007 		res_counter_init(&memcg->res, NULL);
5008 		res_counter_init(&memcg->memsw, NULL);
5009 	}
5010 	memcg->last_scanned_node = MAX_NUMNODES;
5011 	INIT_LIST_HEAD(&memcg->oom_notify);
5012 
5013 	if (parent)
5014 		memcg->swappiness = mem_cgroup_swappiness(parent);
5015 	atomic_set(&memcg->refcnt, 1);
5016 	memcg->move_charge_at_immigrate = 0;
5017 	mutex_init(&memcg->thresholds_lock);
5018 	spin_lock_init(&memcg->move_lock);
5019 	return &memcg->css;
5020 free_out:
5021 	__mem_cgroup_free(memcg);
5022 	return ERR_PTR(error);
5023 }
5024 
5025 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5026 {
5027 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5028 
5029 	return mem_cgroup_force_empty(memcg, false);
5030 }
5031 
5032 static void mem_cgroup_destroy(struct cgroup *cont)
5033 {
5034 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5035 
5036 	kmem_cgroup_destroy(cont);
5037 
5038 	mem_cgroup_put(memcg);
5039 }
5040 
5041 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5042 				struct cgroup *cont)
5043 {
5044 	int ret;
5045 
5046 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5047 				ARRAY_SIZE(mem_cgroup_files));
5048 
5049 	if (!ret)
5050 		ret = register_memsw_files(cont, ss);
5051 
5052 	if (!ret)
5053 		ret = register_kmem_files(cont, ss);
5054 
5055 	return ret;
5056 }
5057 
5058 #ifdef CONFIG_MMU
5059 /* Handlers for move charge at task migration. */
5060 #define PRECHARGE_COUNT_AT_ONCE	256
5061 static int mem_cgroup_do_precharge(unsigned long count)
5062 {
5063 	int ret = 0;
5064 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5065 	struct mem_cgroup *memcg = mc.to;
5066 
5067 	if (mem_cgroup_is_root(memcg)) {
5068 		mc.precharge += count;
5069 		/* we don't need css_get for root */
5070 		return ret;
5071 	}
5072 	/* try to charge at once */
5073 	if (count > 1) {
5074 		struct res_counter *dummy;
5075 		/*
5076 		 * "memcg" cannot be under rmdir() because we've already checked
5077 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5078 		 * are still under the same cgroup_mutex. So we can postpone
5079 		 * css_get().
5080 		 */
5081 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5082 			goto one_by_one;
5083 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5084 						PAGE_SIZE * count, &dummy)) {
5085 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5086 			goto one_by_one;
5087 		}
5088 		mc.precharge += count;
5089 		return ret;
5090 	}
5091 one_by_one:
5092 	/* fall back to one by one charge */
5093 	while (count--) {
5094 		if (signal_pending(current)) {
5095 			ret = -EINTR;
5096 			break;
5097 		}
5098 		if (!batch_count--) {
5099 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5100 			cond_resched();
5101 		}
5102 		ret = __mem_cgroup_try_charge(NULL,
5103 					GFP_KERNEL, 1, &memcg, false);
5104 		if (ret)
5105 			/* mem_cgroup_clear_mc() will do uncharge later */
5106 			return ret;
5107 		mc.precharge++;
5108 	}
5109 	return ret;
5110 }
5111 
5112 /**
5113  * get_mctgt_type - get target type of moving charge
5114  * @vma: the vma the pte to be checked belongs
5115  * @addr: the address corresponding to the pte to be checked
5116  * @ptent: the pte to be checked
5117  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5118  *
5119  * Returns
5120  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5121  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5122  *     move charge. if @target is not NULL, the page is stored in target->page
5123  *     with extra refcnt got(Callers should handle it).
5124  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5125  *     target for charge migration. if @target is not NULL, the entry is stored
5126  *     in target->ent.
5127  *
5128  * Called with pte lock held.
5129  */
5130 union mc_target {
5131 	struct page	*page;
5132 	swp_entry_t	ent;
5133 };
5134 
5135 enum mc_target_type {
5136 	MC_TARGET_NONE = 0,
5137 	MC_TARGET_PAGE,
5138 	MC_TARGET_SWAP,
5139 };
5140 
5141 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5142 						unsigned long addr, pte_t ptent)
5143 {
5144 	struct page *page = vm_normal_page(vma, addr, ptent);
5145 
5146 	if (!page || !page_mapped(page))
5147 		return NULL;
5148 	if (PageAnon(page)) {
5149 		/* we don't move shared anon */
5150 		if (!move_anon() || page_mapcount(page) > 2)
5151 			return NULL;
5152 	} else if (!move_file())
5153 		/* we ignore mapcount for file pages */
5154 		return NULL;
5155 	if (!get_page_unless_zero(page))
5156 		return NULL;
5157 
5158 	return page;
5159 }
5160 
5161 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5162 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5163 {
5164 	int usage_count;
5165 	struct page *page = NULL;
5166 	swp_entry_t ent = pte_to_swp_entry(ptent);
5167 
5168 	if (!move_anon() || non_swap_entry(ent))
5169 		return NULL;
5170 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5171 	if (usage_count > 1) { /* we don't move shared anon */
5172 		if (page)
5173 			put_page(page);
5174 		return NULL;
5175 	}
5176 	if (do_swap_account)
5177 		entry->val = ent.val;
5178 
5179 	return page;
5180 }
5181 
5182 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5183 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5184 {
5185 	struct page *page = NULL;
5186 	struct inode *inode;
5187 	struct address_space *mapping;
5188 	pgoff_t pgoff;
5189 
5190 	if (!vma->vm_file) /* anonymous vma */
5191 		return NULL;
5192 	if (!move_file())
5193 		return NULL;
5194 
5195 	inode = vma->vm_file->f_path.dentry->d_inode;
5196 	mapping = vma->vm_file->f_mapping;
5197 	if (pte_none(ptent))
5198 		pgoff = linear_page_index(vma, addr);
5199 	else /* pte_file(ptent) is true */
5200 		pgoff = pte_to_pgoff(ptent);
5201 
5202 	/* page is moved even if it's not RSS of this task(page-faulted). */
5203 	page = find_get_page(mapping, pgoff);
5204 
5205 #ifdef CONFIG_SWAP
5206 	/* shmem/tmpfs may report page out on swap: account for that too. */
5207 	if (radix_tree_exceptional_entry(page)) {
5208 		swp_entry_t swap = radix_to_swp_entry(page);
5209 		if (do_swap_account)
5210 			*entry = swap;
5211 		page = find_get_page(&swapper_space, swap.val);
5212 	}
5213 #endif
5214 	return page;
5215 }
5216 
5217 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5218 		unsigned long addr, pte_t ptent, union mc_target *target)
5219 {
5220 	struct page *page = NULL;
5221 	struct page_cgroup *pc;
5222 	enum mc_target_type ret = MC_TARGET_NONE;
5223 	swp_entry_t ent = { .val = 0 };
5224 
5225 	if (pte_present(ptent))
5226 		page = mc_handle_present_pte(vma, addr, ptent);
5227 	else if (is_swap_pte(ptent))
5228 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5229 	else if (pte_none(ptent) || pte_file(ptent))
5230 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5231 
5232 	if (!page && !ent.val)
5233 		return ret;
5234 	if (page) {
5235 		pc = lookup_page_cgroup(page);
5236 		/*
5237 		 * Do only loose check w/o page_cgroup lock.
5238 		 * mem_cgroup_move_account() checks the pc is valid or not under
5239 		 * the lock.
5240 		 */
5241 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5242 			ret = MC_TARGET_PAGE;
5243 			if (target)
5244 				target->page = page;
5245 		}
5246 		if (!ret || !target)
5247 			put_page(page);
5248 	}
5249 	/* There is a swap entry and a page doesn't exist or isn't charged */
5250 	if (ent.val && !ret &&
5251 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5252 		ret = MC_TARGET_SWAP;
5253 		if (target)
5254 			target->ent = ent;
5255 	}
5256 	return ret;
5257 }
5258 
5259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5260 /*
5261  * We don't consider swapping or file mapped pages because THP does not
5262  * support them for now.
5263  * Caller should make sure that pmd_trans_huge(pmd) is true.
5264  */
5265 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5266 		unsigned long addr, pmd_t pmd, union mc_target *target)
5267 {
5268 	struct page *page = NULL;
5269 	struct page_cgroup *pc;
5270 	enum mc_target_type ret = MC_TARGET_NONE;
5271 
5272 	page = pmd_page(pmd);
5273 	VM_BUG_ON(!page || !PageHead(page));
5274 	if (!move_anon())
5275 		return ret;
5276 	pc = lookup_page_cgroup(page);
5277 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5278 		ret = MC_TARGET_PAGE;
5279 		if (target) {
5280 			get_page(page);
5281 			target->page = page;
5282 		}
5283 	}
5284 	return ret;
5285 }
5286 #else
5287 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5288 		unsigned long addr, pmd_t pmd, union mc_target *target)
5289 {
5290 	return MC_TARGET_NONE;
5291 }
5292 #endif
5293 
5294 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5295 					unsigned long addr, unsigned long end,
5296 					struct mm_walk *walk)
5297 {
5298 	struct vm_area_struct *vma = walk->private;
5299 	pte_t *pte;
5300 	spinlock_t *ptl;
5301 
5302 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5303 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5304 			mc.precharge += HPAGE_PMD_NR;
5305 		spin_unlock(&vma->vm_mm->page_table_lock);
5306 		return 0;
5307 	}
5308 
5309 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5310 	for (; addr != end; pte++, addr += PAGE_SIZE)
5311 		if (get_mctgt_type(vma, addr, *pte, NULL))
5312 			mc.precharge++;	/* increment precharge temporarily */
5313 	pte_unmap_unlock(pte - 1, ptl);
5314 	cond_resched();
5315 
5316 	return 0;
5317 }
5318 
5319 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5320 {
5321 	unsigned long precharge;
5322 	struct vm_area_struct *vma;
5323 
5324 	down_read(&mm->mmap_sem);
5325 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5326 		struct mm_walk mem_cgroup_count_precharge_walk = {
5327 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5328 			.mm = mm,
5329 			.private = vma,
5330 		};
5331 		if (is_vm_hugetlb_page(vma))
5332 			continue;
5333 		walk_page_range(vma->vm_start, vma->vm_end,
5334 					&mem_cgroup_count_precharge_walk);
5335 	}
5336 	up_read(&mm->mmap_sem);
5337 
5338 	precharge = mc.precharge;
5339 	mc.precharge = 0;
5340 
5341 	return precharge;
5342 }
5343 
5344 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5345 {
5346 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5347 
5348 	VM_BUG_ON(mc.moving_task);
5349 	mc.moving_task = current;
5350 	return mem_cgroup_do_precharge(precharge);
5351 }
5352 
5353 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5354 static void __mem_cgroup_clear_mc(void)
5355 {
5356 	struct mem_cgroup *from = mc.from;
5357 	struct mem_cgroup *to = mc.to;
5358 
5359 	/* we must uncharge all the leftover precharges from mc.to */
5360 	if (mc.precharge) {
5361 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5362 		mc.precharge = 0;
5363 	}
5364 	/*
5365 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5366 	 * we must uncharge here.
5367 	 */
5368 	if (mc.moved_charge) {
5369 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5370 		mc.moved_charge = 0;
5371 	}
5372 	/* we must fixup refcnts and charges */
5373 	if (mc.moved_swap) {
5374 		/* uncharge swap account from the old cgroup */
5375 		if (!mem_cgroup_is_root(mc.from))
5376 			res_counter_uncharge(&mc.from->memsw,
5377 						PAGE_SIZE * mc.moved_swap);
5378 		__mem_cgroup_put(mc.from, mc.moved_swap);
5379 
5380 		if (!mem_cgroup_is_root(mc.to)) {
5381 			/*
5382 			 * we charged both to->res and to->memsw, so we should
5383 			 * uncharge to->res.
5384 			 */
5385 			res_counter_uncharge(&mc.to->res,
5386 						PAGE_SIZE * mc.moved_swap);
5387 		}
5388 		/* we've already done mem_cgroup_get(mc.to) */
5389 		mc.moved_swap = 0;
5390 	}
5391 	memcg_oom_recover(from);
5392 	memcg_oom_recover(to);
5393 	wake_up_all(&mc.waitq);
5394 }
5395 
5396 static void mem_cgroup_clear_mc(void)
5397 {
5398 	struct mem_cgroup *from = mc.from;
5399 
5400 	/*
5401 	 * we must clear moving_task before waking up waiters at the end of
5402 	 * task migration.
5403 	 */
5404 	mc.moving_task = NULL;
5405 	__mem_cgroup_clear_mc();
5406 	spin_lock(&mc.lock);
5407 	mc.from = NULL;
5408 	mc.to = NULL;
5409 	spin_unlock(&mc.lock);
5410 	mem_cgroup_end_move(from);
5411 }
5412 
5413 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5414 				 struct cgroup_taskset *tset)
5415 {
5416 	struct task_struct *p = cgroup_taskset_first(tset);
5417 	int ret = 0;
5418 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5419 
5420 	if (memcg->move_charge_at_immigrate) {
5421 		struct mm_struct *mm;
5422 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5423 
5424 		VM_BUG_ON(from == memcg);
5425 
5426 		mm = get_task_mm(p);
5427 		if (!mm)
5428 			return 0;
5429 		/* We move charges only when we move a owner of the mm */
5430 		if (mm->owner == p) {
5431 			VM_BUG_ON(mc.from);
5432 			VM_BUG_ON(mc.to);
5433 			VM_BUG_ON(mc.precharge);
5434 			VM_BUG_ON(mc.moved_charge);
5435 			VM_BUG_ON(mc.moved_swap);
5436 			mem_cgroup_start_move(from);
5437 			spin_lock(&mc.lock);
5438 			mc.from = from;
5439 			mc.to = memcg;
5440 			spin_unlock(&mc.lock);
5441 			/* We set mc.moving_task later */
5442 
5443 			ret = mem_cgroup_precharge_mc(mm);
5444 			if (ret)
5445 				mem_cgroup_clear_mc();
5446 		}
5447 		mmput(mm);
5448 	}
5449 	return ret;
5450 }
5451 
5452 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5453 				     struct cgroup_taskset *tset)
5454 {
5455 	mem_cgroup_clear_mc();
5456 }
5457 
5458 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5459 				unsigned long addr, unsigned long end,
5460 				struct mm_walk *walk)
5461 {
5462 	int ret = 0;
5463 	struct vm_area_struct *vma = walk->private;
5464 	pte_t *pte;
5465 	spinlock_t *ptl;
5466 	enum mc_target_type target_type;
5467 	union mc_target target;
5468 	struct page *page;
5469 	struct page_cgroup *pc;
5470 
5471 	/*
5472 	 * We don't take compound_lock() here but no race with splitting thp
5473 	 * happens because:
5474 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5475 	 *    under splitting, which means there's no concurrent thp split,
5476 	 *  - if another thread runs into split_huge_page() just after we
5477 	 *    entered this if-block, the thread must wait for page table lock
5478 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5479 	 *    part of thp split is not executed yet.
5480 	 */
5481 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5482 		if (!mc.precharge) {
5483 			spin_unlock(&vma->vm_mm->page_table_lock);
5484 			return 0;
5485 		}
5486 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5487 		if (target_type == MC_TARGET_PAGE) {
5488 			page = target.page;
5489 			if (!isolate_lru_page(page)) {
5490 				pc = lookup_page_cgroup(page);
5491 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5492 							     pc, mc.from, mc.to,
5493 							     false)) {
5494 					mc.precharge -= HPAGE_PMD_NR;
5495 					mc.moved_charge += HPAGE_PMD_NR;
5496 				}
5497 				putback_lru_page(page);
5498 			}
5499 			put_page(page);
5500 		}
5501 		spin_unlock(&vma->vm_mm->page_table_lock);
5502 		return 0;
5503 	}
5504 
5505 retry:
5506 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5507 	for (; addr != end; addr += PAGE_SIZE) {
5508 		pte_t ptent = *(pte++);
5509 		swp_entry_t ent;
5510 
5511 		if (!mc.precharge)
5512 			break;
5513 
5514 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5515 		case MC_TARGET_PAGE:
5516 			page = target.page;
5517 			if (isolate_lru_page(page))
5518 				goto put;
5519 			pc = lookup_page_cgroup(page);
5520 			if (!mem_cgroup_move_account(page, 1, pc,
5521 						     mc.from, mc.to, false)) {
5522 				mc.precharge--;
5523 				/* we uncharge from mc.from later. */
5524 				mc.moved_charge++;
5525 			}
5526 			putback_lru_page(page);
5527 put:			/* get_mctgt_type() gets the page */
5528 			put_page(page);
5529 			break;
5530 		case MC_TARGET_SWAP:
5531 			ent = target.ent;
5532 			if (!mem_cgroup_move_swap_account(ent,
5533 						mc.from, mc.to, false)) {
5534 				mc.precharge--;
5535 				/* we fixup refcnts and charges later. */
5536 				mc.moved_swap++;
5537 			}
5538 			break;
5539 		default:
5540 			break;
5541 		}
5542 	}
5543 	pte_unmap_unlock(pte - 1, ptl);
5544 	cond_resched();
5545 
5546 	if (addr != end) {
5547 		/*
5548 		 * We have consumed all precharges we got in can_attach().
5549 		 * We try charge one by one, but don't do any additional
5550 		 * charges to mc.to if we have failed in charge once in attach()
5551 		 * phase.
5552 		 */
5553 		ret = mem_cgroup_do_precharge(1);
5554 		if (!ret)
5555 			goto retry;
5556 	}
5557 
5558 	return ret;
5559 }
5560 
5561 static void mem_cgroup_move_charge(struct mm_struct *mm)
5562 {
5563 	struct vm_area_struct *vma;
5564 
5565 	lru_add_drain_all();
5566 retry:
5567 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5568 		/*
5569 		 * Someone who are holding the mmap_sem might be waiting in
5570 		 * waitq. So we cancel all extra charges, wake up all waiters,
5571 		 * and retry. Because we cancel precharges, we might not be able
5572 		 * to move enough charges, but moving charge is a best-effort
5573 		 * feature anyway, so it wouldn't be a big problem.
5574 		 */
5575 		__mem_cgroup_clear_mc();
5576 		cond_resched();
5577 		goto retry;
5578 	}
5579 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5580 		int ret;
5581 		struct mm_walk mem_cgroup_move_charge_walk = {
5582 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5583 			.mm = mm,
5584 			.private = vma,
5585 		};
5586 		if (is_vm_hugetlb_page(vma))
5587 			continue;
5588 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5589 						&mem_cgroup_move_charge_walk);
5590 		if (ret)
5591 			/*
5592 			 * means we have consumed all precharges and failed in
5593 			 * doing additional charge. Just abandon here.
5594 			 */
5595 			break;
5596 	}
5597 	up_read(&mm->mmap_sem);
5598 }
5599 
5600 static void mem_cgroup_move_task(struct cgroup *cont,
5601 				 struct cgroup_taskset *tset)
5602 {
5603 	struct task_struct *p = cgroup_taskset_first(tset);
5604 	struct mm_struct *mm = get_task_mm(p);
5605 
5606 	if (mm) {
5607 		if (mc.to)
5608 			mem_cgroup_move_charge(mm);
5609 		put_swap_token(mm);
5610 		mmput(mm);
5611 	}
5612 	if (mc.to)
5613 		mem_cgroup_clear_mc();
5614 }
5615 #else	/* !CONFIG_MMU */
5616 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5617 				 struct cgroup_taskset *tset)
5618 {
5619 	return 0;
5620 }
5621 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5622 				     struct cgroup_taskset *tset)
5623 {
5624 }
5625 static void mem_cgroup_move_task(struct cgroup *cont,
5626 				 struct cgroup_taskset *tset)
5627 {
5628 }
5629 #endif
5630 
5631 struct cgroup_subsys mem_cgroup_subsys = {
5632 	.name = "memory",
5633 	.subsys_id = mem_cgroup_subsys_id,
5634 	.create = mem_cgroup_create,
5635 	.pre_destroy = mem_cgroup_pre_destroy,
5636 	.destroy = mem_cgroup_destroy,
5637 	.populate = mem_cgroup_populate,
5638 	.can_attach = mem_cgroup_can_attach,
5639 	.cancel_attach = mem_cgroup_cancel_attach,
5640 	.attach = mem_cgroup_move_task,
5641 	.early_init = 0,
5642 	.use_id = 1,
5643 };
5644 
5645 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5646 static int __init enable_swap_account(char *s)
5647 {
5648 	/* consider enabled if no parameter or 1 is given */
5649 	if (!strcmp(s, "1"))
5650 		really_do_swap_account = 1;
5651 	else if (!strcmp(s, "0"))
5652 		really_do_swap_account = 0;
5653 	return 1;
5654 }
5655 __setup("swapaccount=", enable_swap_account);
5656 
5657 #endif
5658