xref: /openbmc/linux/mm/memcontrol.c (revision 9c1f8594)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 
77 /*
78  * Statistics for memory cgroup.
79  */
80 enum mem_cgroup_stat_index {
81 	/*
82 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 	 */
84 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 	MEM_CGROUP_STAT_NSTATS,
91 };
92 
93 enum mem_cgroup_events_index {
94 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
95 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
96 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
98 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99 	MEM_CGROUP_EVENTS_NSTATS,
100 };
101 /*
102  * Per memcg event counter is incremented at every pagein/pageout. With THP,
103  * it will be incremated by the number of pages. This counter is used for
104  * for trigger some periodic events. This is straightforward and better
105  * than using jiffies etc. to handle periodic memcg event.
106  */
107 enum mem_cgroup_events_target {
108 	MEM_CGROUP_TARGET_THRESH,
109 	MEM_CGROUP_TARGET_SOFTLIMIT,
110 	MEM_CGROUP_TARGET_NUMAINFO,
111 	MEM_CGROUP_NTARGETS,
112 };
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET	(1024)
116 
117 struct mem_cgroup_stat_cpu {
118 	long count[MEM_CGROUP_STAT_NSTATS];
119 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120 	unsigned long targets[MEM_CGROUP_NTARGETS];
121 };
122 
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_zone {
127 	/*
128 	 * spin_lock to protect the per cgroup LRU
129 	 */
130 	struct list_head	lists[NR_LRU_LISTS];
131 	unsigned long		count[NR_LRU_LISTS];
132 
133 	struct zone_reclaim_stat reclaim_stat;
134 	struct rb_node		tree_node;	/* RB tree node */
135 	unsigned long long	usage_in_excess;/* Set to the value by which */
136 						/* the soft limit is exceeded*/
137 	bool			on_tree;
138 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
139 						/* use container_of	   */
140 };
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
143 
144 struct mem_cgroup_per_node {
145 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146 };
147 
148 struct mem_cgroup_lru_info {
149 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150 };
151 
152 /*
153  * Cgroups above their limits are maintained in a RB-Tree, independent of
154  * their hierarchy representation
155  */
156 
157 struct mem_cgroup_tree_per_zone {
158 	struct rb_root rb_root;
159 	spinlock_t lock;
160 };
161 
162 struct mem_cgroup_tree_per_node {
163 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164 };
165 
166 struct mem_cgroup_tree {
167 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168 };
169 
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171 
172 struct mem_cgroup_threshold {
173 	struct eventfd_ctx *eventfd;
174 	u64 threshold;
175 };
176 
177 /* For threshold */
178 struct mem_cgroup_threshold_ary {
179 	/* An array index points to threshold just below usage. */
180 	int current_threshold;
181 	/* Size of entries[] */
182 	unsigned int size;
183 	/* Array of thresholds */
184 	struct mem_cgroup_threshold entries[0];
185 };
186 
187 struct mem_cgroup_thresholds {
188 	/* Primary thresholds array */
189 	struct mem_cgroup_threshold_ary *primary;
190 	/*
191 	 * Spare threshold array.
192 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 	 * It must be able to store at least primary->size - 1 entries.
194 	 */
195 	struct mem_cgroup_threshold_ary *spare;
196 };
197 
198 /* for OOM */
199 struct mem_cgroup_eventfd_list {
200 	struct list_head list;
201 	struct eventfd_ctx *eventfd;
202 };
203 
204 static void mem_cgroup_threshold(struct mem_cgroup *mem);
205 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206 
207 /*
208  * The memory controller data structure. The memory controller controls both
209  * page cache and RSS per cgroup. We would eventually like to provide
210  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211  * to help the administrator determine what knobs to tune.
212  *
213  * TODO: Add a water mark for the memory controller. Reclaim will begin when
214  * we hit the water mark. May be even add a low water mark, such that
215  * no reclaim occurs from a cgroup at it's low water mark, this is
216  * a feature that will be implemented much later in the future.
217  */
218 struct mem_cgroup {
219 	struct cgroup_subsys_state css;
220 	/*
221 	 * the counter to account for memory usage
222 	 */
223 	struct res_counter res;
224 	/*
225 	 * the counter to account for mem+swap usage.
226 	 */
227 	struct res_counter memsw;
228 	/*
229 	 * Per cgroup active and inactive list, similar to the
230 	 * per zone LRU lists.
231 	 */
232 	struct mem_cgroup_lru_info info;
233 	/*
234 	 * While reclaiming in a hierarchy, we cache the last child we
235 	 * reclaimed from.
236 	 */
237 	int last_scanned_child;
238 	int last_scanned_node;
239 #if MAX_NUMNODES > 1
240 	nodemask_t	scan_nodes;
241 	atomic_t	numainfo_events;
242 	atomic_t	numainfo_updating;
243 #endif
244 	/*
245 	 * Should the accounting and control be hierarchical, per subtree?
246 	 */
247 	bool use_hierarchy;
248 
249 	bool		oom_lock;
250 	atomic_t	under_oom;
251 
252 	atomic_t	refcnt;
253 
254 	int	swappiness;
255 	/* OOM-Killer disable */
256 	int		oom_kill_disable;
257 
258 	/* set when res.limit == memsw.limit */
259 	bool		memsw_is_minimum;
260 
261 	/* protect arrays of thresholds */
262 	struct mutex thresholds_lock;
263 
264 	/* thresholds for memory usage. RCU-protected */
265 	struct mem_cgroup_thresholds thresholds;
266 
267 	/* thresholds for mem+swap usage. RCU-protected */
268 	struct mem_cgroup_thresholds memsw_thresholds;
269 
270 	/* For oom notifier event fd */
271 	struct list_head oom_notify;
272 
273 	/*
274 	 * Should we move charges of a task when a task is moved into this
275 	 * mem_cgroup ? And what type of charges should we move ?
276 	 */
277 	unsigned long 	move_charge_at_immigrate;
278 	/*
279 	 * percpu counter.
280 	 */
281 	struct mem_cgroup_stat_cpu *stat;
282 	/*
283 	 * used when a cpu is offlined or other synchronizations
284 	 * See mem_cgroup_read_stat().
285 	 */
286 	struct mem_cgroup_stat_cpu nocpu_base;
287 	spinlock_t pcp_counter_lock;
288 };
289 
290 /* Stuffs for move charges at task migration. */
291 /*
292  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293  * left-shifted bitmap of these types.
294  */
295 enum move_type {
296 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
297 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
298 	NR_MOVE_TYPE,
299 };
300 
301 /* "mc" and its members are protected by cgroup_mutex */
302 static struct move_charge_struct {
303 	spinlock_t	  lock; /* for from, to */
304 	struct mem_cgroup *from;
305 	struct mem_cgroup *to;
306 	unsigned long precharge;
307 	unsigned long moved_charge;
308 	unsigned long moved_swap;
309 	struct task_struct *moving_task;	/* a task moving charges */
310 	wait_queue_head_t waitq;		/* a waitq for other context */
311 } mc = {
312 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
314 };
315 
316 static bool move_anon(void)
317 {
318 	return test_bit(MOVE_CHARGE_TYPE_ANON,
319 					&mc.to->move_charge_at_immigrate);
320 }
321 
322 static bool move_file(void)
323 {
324 	return test_bit(MOVE_CHARGE_TYPE_FILE,
325 					&mc.to->move_charge_at_immigrate);
326 }
327 
328 /*
329  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330  * limit reclaim to prevent infinite loops, if they ever occur.
331  */
332 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
333 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
334 
335 enum charge_type {
336 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
337 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
338 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
339 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
340 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
341 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
342 	NR_CHARGE_TYPE,
343 };
344 
345 /* for encoding cft->private value on file */
346 #define _MEM			(0)
347 #define _MEMSWAP		(1)
348 #define _OOM_TYPE		(2)
349 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
350 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
351 #define MEMFILE_ATTR(val)	((val) & 0xffff)
352 /* Used for OOM nofiier */
353 #define OOM_CONTROL		(0)
354 
355 /*
356  * Reclaim flags for mem_cgroup_hierarchical_reclaim
357  */
358 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
359 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
361 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
363 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364 
365 static void mem_cgroup_get(struct mem_cgroup *mem);
366 static void mem_cgroup_put(struct mem_cgroup *mem);
367 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
368 static void drain_all_stock_async(struct mem_cgroup *mem);
369 
370 static struct mem_cgroup_per_zone *
371 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
372 {
373 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
374 }
375 
376 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
377 {
378 	return &mem->css;
379 }
380 
381 static struct mem_cgroup_per_zone *
382 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
383 {
384 	int nid = page_to_nid(page);
385 	int zid = page_zonenum(page);
386 
387 	return mem_cgroup_zoneinfo(mem, nid, zid);
388 }
389 
390 static struct mem_cgroup_tree_per_zone *
391 soft_limit_tree_node_zone(int nid, int zid)
392 {
393 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394 }
395 
396 static struct mem_cgroup_tree_per_zone *
397 soft_limit_tree_from_page(struct page *page)
398 {
399 	int nid = page_to_nid(page);
400 	int zid = page_zonenum(page);
401 
402 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
403 }
404 
405 static void
406 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
407 				struct mem_cgroup_per_zone *mz,
408 				struct mem_cgroup_tree_per_zone *mctz,
409 				unsigned long long new_usage_in_excess)
410 {
411 	struct rb_node **p = &mctz->rb_root.rb_node;
412 	struct rb_node *parent = NULL;
413 	struct mem_cgroup_per_zone *mz_node;
414 
415 	if (mz->on_tree)
416 		return;
417 
418 	mz->usage_in_excess = new_usage_in_excess;
419 	if (!mz->usage_in_excess)
420 		return;
421 	while (*p) {
422 		parent = *p;
423 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
424 					tree_node);
425 		if (mz->usage_in_excess < mz_node->usage_in_excess)
426 			p = &(*p)->rb_left;
427 		/*
428 		 * We can't avoid mem cgroups that are over their soft
429 		 * limit by the same amount
430 		 */
431 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
432 			p = &(*p)->rb_right;
433 	}
434 	rb_link_node(&mz->tree_node, parent, p);
435 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 	mz->on_tree = true;
437 }
438 
439 static void
440 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 				struct mem_cgroup_per_zone *mz,
442 				struct mem_cgroup_tree_per_zone *mctz)
443 {
444 	if (!mz->on_tree)
445 		return;
446 	rb_erase(&mz->tree_node, &mctz->rb_root);
447 	mz->on_tree = false;
448 }
449 
450 static void
451 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
452 				struct mem_cgroup_per_zone *mz,
453 				struct mem_cgroup_tree_per_zone *mctz)
454 {
455 	spin_lock(&mctz->lock);
456 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
457 	spin_unlock(&mctz->lock);
458 }
459 
460 
461 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
462 {
463 	unsigned long long excess;
464 	struct mem_cgroup_per_zone *mz;
465 	struct mem_cgroup_tree_per_zone *mctz;
466 	int nid = page_to_nid(page);
467 	int zid = page_zonenum(page);
468 	mctz = soft_limit_tree_from_page(page);
469 
470 	/*
471 	 * Necessary to update all ancestors when hierarchy is used.
472 	 * because their event counter is not touched.
473 	 */
474 	for (; mem; mem = parent_mem_cgroup(mem)) {
475 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
476 		excess = res_counter_soft_limit_excess(&mem->res);
477 		/*
478 		 * We have to update the tree if mz is on RB-tree or
479 		 * mem is over its softlimit.
480 		 */
481 		if (excess || mz->on_tree) {
482 			spin_lock(&mctz->lock);
483 			/* if on-tree, remove it */
484 			if (mz->on_tree)
485 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
486 			/*
487 			 * Insert again. mz->usage_in_excess will be updated.
488 			 * If excess is 0, no tree ops.
489 			 */
490 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
491 			spin_unlock(&mctz->lock);
492 		}
493 	}
494 }
495 
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
497 {
498 	int node, zone;
499 	struct mem_cgroup_per_zone *mz;
500 	struct mem_cgroup_tree_per_zone *mctz;
501 
502 	for_each_node_state(node, N_POSSIBLE) {
503 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504 			mz = mem_cgroup_zoneinfo(mem, node, zone);
505 			mctz = soft_limit_tree_node_zone(node, zone);
506 			mem_cgroup_remove_exceeded(mem, mz, mctz);
507 		}
508 	}
509 }
510 
511 static struct mem_cgroup_per_zone *
512 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
513 {
514 	struct rb_node *rightmost = NULL;
515 	struct mem_cgroup_per_zone *mz;
516 
517 retry:
518 	mz = NULL;
519 	rightmost = rb_last(&mctz->rb_root);
520 	if (!rightmost)
521 		goto done;		/* Nothing to reclaim from */
522 
523 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
524 	/*
525 	 * Remove the node now but someone else can add it back,
526 	 * we will to add it back at the end of reclaim to its correct
527 	 * position in the tree.
528 	 */
529 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
530 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
531 		!css_tryget(&mz->mem->css))
532 		goto retry;
533 done:
534 	return mz;
535 }
536 
537 static struct mem_cgroup_per_zone *
538 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
539 {
540 	struct mem_cgroup_per_zone *mz;
541 
542 	spin_lock(&mctz->lock);
543 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
544 	spin_unlock(&mctz->lock);
545 	return mz;
546 }
547 
548 /*
549  * Implementation Note: reading percpu statistics for memcg.
550  *
551  * Both of vmstat[] and percpu_counter has threshold and do periodic
552  * synchronization to implement "quick" read. There are trade-off between
553  * reading cost and precision of value. Then, we may have a chance to implement
554  * a periodic synchronizion of counter in memcg's counter.
555  *
556  * But this _read() function is used for user interface now. The user accounts
557  * memory usage by memory cgroup and he _always_ requires exact value because
558  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559  * have to visit all online cpus and make sum. So, for now, unnecessary
560  * synchronization is not implemented. (just implemented for cpu hotplug)
561  *
562  * If there are kernel internal actions which can make use of some not-exact
563  * value, and reading all cpu value can be performance bottleneck in some
564  * common workload, threashold and synchonization as vmstat[] should be
565  * implemented.
566  */
567 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
568 				 enum mem_cgroup_stat_index idx)
569 {
570 	long val = 0;
571 	int cpu;
572 
573 	get_online_cpus();
574 	for_each_online_cpu(cpu)
575 		val += per_cpu(mem->stat->count[idx], cpu);
576 #ifdef CONFIG_HOTPLUG_CPU
577 	spin_lock(&mem->pcp_counter_lock);
578 	val += mem->nocpu_base.count[idx];
579 	spin_unlock(&mem->pcp_counter_lock);
580 #endif
581 	put_online_cpus();
582 	return val;
583 }
584 
585 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
586 					 bool charge)
587 {
588 	int val = (charge) ? 1 : -1;
589 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590 }
591 
592 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
593 {
594 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595 }
596 
597 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
598 {
599 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600 }
601 
602 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
603 					    enum mem_cgroup_events_index idx)
604 {
605 	unsigned long val = 0;
606 	int cpu;
607 
608 	for_each_online_cpu(cpu)
609 		val += per_cpu(mem->stat->events[idx], cpu);
610 #ifdef CONFIG_HOTPLUG_CPU
611 	spin_lock(&mem->pcp_counter_lock);
612 	val += mem->nocpu_base.events[idx];
613 	spin_unlock(&mem->pcp_counter_lock);
614 #endif
615 	return val;
616 }
617 
618 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
619 					 bool file, int nr_pages)
620 {
621 	preempt_disable();
622 
623 	if (file)
624 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
625 	else
626 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
627 
628 	/* pagein of a big page is an event. So, ignore page size */
629 	if (nr_pages > 0)
630 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
631 	else {
632 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
633 		nr_pages = -nr_pages; /* for event */
634 	}
635 
636 	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
637 
638 	preempt_enable();
639 }
640 
641 unsigned long
642 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
643 			unsigned int lru_mask)
644 {
645 	struct mem_cgroup_per_zone *mz;
646 	enum lru_list l;
647 	unsigned long ret = 0;
648 
649 	mz = mem_cgroup_zoneinfo(mem, nid, zid);
650 
651 	for_each_lru(l) {
652 		if (BIT(l) & lru_mask)
653 			ret += MEM_CGROUP_ZSTAT(mz, l);
654 	}
655 	return ret;
656 }
657 
658 static unsigned long
659 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
660 			int nid, unsigned int lru_mask)
661 {
662 	u64 total = 0;
663 	int zid;
664 
665 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
666 		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
667 
668 	return total;
669 }
670 
671 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
672 			unsigned int lru_mask)
673 {
674 	int nid;
675 	u64 total = 0;
676 
677 	for_each_node_state(nid, N_HIGH_MEMORY)
678 		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
679 	return total;
680 }
681 
682 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
683 {
684 	unsigned long val, next;
685 
686 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
687 	next = this_cpu_read(mem->stat->targets[target]);
688 	/* from time_after() in jiffies.h */
689 	return ((long)next - (long)val < 0);
690 }
691 
692 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
693 {
694 	unsigned long val, next;
695 
696 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
697 
698 	switch (target) {
699 	case MEM_CGROUP_TARGET_THRESH:
700 		next = val + THRESHOLDS_EVENTS_TARGET;
701 		break;
702 	case MEM_CGROUP_TARGET_SOFTLIMIT:
703 		next = val + SOFTLIMIT_EVENTS_TARGET;
704 		break;
705 	case MEM_CGROUP_TARGET_NUMAINFO:
706 		next = val + NUMAINFO_EVENTS_TARGET;
707 		break;
708 	default:
709 		return;
710 	}
711 
712 	this_cpu_write(mem->stat->targets[target], next);
713 }
714 
715 /*
716  * Check events in order.
717  *
718  */
719 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
720 {
721 	/* threshold event is triggered in finer grain than soft limit */
722 	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
723 		mem_cgroup_threshold(mem);
724 		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
725 		if (unlikely(__memcg_event_check(mem,
726 			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
727 			mem_cgroup_update_tree(mem, page);
728 			__mem_cgroup_target_update(mem,
729 						   MEM_CGROUP_TARGET_SOFTLIMIT);
730 		}
731 #if MAX_NUMNODES > 1
732 		if (unlikely(__memcg_event_check(mem,
733 			MEM_CGROUP_TARGET_NUMAINFO))) {
734 			atomic_inc(&mem->numainfo_events);
735 			__mem_cgroup_target_update(mem,
736 				MEM_CGROUP_TARGET_NUMAINFO);
737 		}
738 #endif
739 	}
740 }
741 
742 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
743 {
744 	return container_of(cgroup_subsys_state(cont,
745 				mem_cgroup_subsys_id), struct mem_cgroup,
746 				css);
747 }
748 
749 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
750 {
751 	/*
752 	 * mm_update_next_owner() may clear mm->owner to NULL
753 	 * if it races with swapoff, page migration, etc.
754 	 * So this can be called with p == NULL.
755 	 */
756 	if (unlikely(!p))
757 		return NULL;
758 
759 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
760 				struct mem_cgroup, css);
761 }
762 
763 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
764 {
765 	struct mem_cgroup *mem = NULL;
766 
767 	if (!mm)
768 		return NULL;
769 	/*
770 	 * Because we have no locks, mm->owner's may be being moved to other
771 	 * cgroup. We use css_tryget() here even if this looks
772 	 * pessimistic (rather than adding locks here).
773 	 */
774 	rcu_read_lock();
775 	do {
776 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
777 		if (unlikely(!mem))
778 			break;
779 	} while (!css_tryget(&mem->css));
780 	rcu_read_unlock();
781 	return mem;
782 }
783 
784 /* The caller has to guarantee "mem" exists before calling this */
785 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
786 {
787 	struct cgroup_subsys_state *css;
788 	int found;
789 
790 	if (!mem) /* ROOT cgroup has the smallest ID */
791 		return root_mem_cgroup; /*css_put/get against root is ignored*/
792 	if (!mem->use_hierarchy) {
793 		if (css_tryget(&mem->css))
794 			return mem;
795 		return NULL;
796 	}
797 	rcu_read_lock();
798 	/*
799 	 * searching a memory cgroup which has the smallest ID under given
800 	 * ROOT cgroup. (ID >= 1)
801 	 */
802 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
803 	if (css && css_tryget(css))
804 		mem = container_of(css, struct mem_cgroup, css);
805 	else
806 		mem = NULL;
807 	rcu_read_unlock();
808 	return mem;
809 }
810 
811 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
812 					struct mem_cgroup *root,
813 					bool cond)
814 {
815 	int nextid = css_id(&iter->css) + 1;
816 	int found;
817 	int hierarchy_used;
818 	struct cgroup_subsys_state *css;
819 
820 	hierarchy_used = iter->use_hierarchy;
821 
822 	css_put(&iter->css);
823 	/* If no ROOT, walk all, ignore hierarchy */
824 	if (!cond || (root && !hierarchy_used))
825 		return NULL;
826 
827 	if (!root)
828 		root = root_mem_cgroup;
829 
830 	do {
831 		iter = NULL;
832 		rcu_read_lock();
833 
834 		css = css_get_next(&mem_cgroup_subsys, nextid,
835 				&root->css, &found);
836 		if (css && css_tryget(css))
837 			iter = container_of(css, struct mem_cgroup, css);
838 		rcu_read_unlock();
839 		/* If css is NULL, no more cgroups will be found */
840 		nextid = found + 1;
841 	} while (css && !iter);
842 
843 	return iter;
844 }
845 /*
846  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
847  * be careful that "break" loop is not allowed. We have reference count.
848  * Instead of that modify "cond" to be false and "continue" to exit the loop.
849  */
850 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
851 	for (iter = mem_cgroup_start_loop(root);\
852 	     iter != NULL;\
853 	     iter = mem_cgroup_get_next(iter, root, cond))
854 
855 #define for_each_mem_cgroup_tree(iter, root) \
856 	for_each_mem_cgroup_tree_cond(iter, root, true)
857 
858 #define for_each_mem_cgroup_all(iter) \
859 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
860 
861 
862 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
863 {
864 	return (mem == root_mem_cgroup);
865 }
866 
867 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
868 {
869 	struct mem_cgroup *mem;
870 
871 	if (!mm)
872 		return;
873 
874 	rcu_read_lock();
875 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
876 	if (unlikely(!mem))
877 		goto out;
878 
879 	switch (idx) {
880 	case PGMAJFAULT:
881 		mem_cgroup_pgmajfault(mem, 1);
882 		break;
883 	case PGFAULT:
884 		mem_cgroup_pgfault(mem, 1);
885 		break;
886 	default:
887 		BUG();
888 	}
889 out:
890 	rcu_read_unlock();
891 }
892 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
893 
894 /*
895  * Following LRU functions are allowed to be used without PCG_LOCK.
896  * Operations are called by routine of global LRU independently from memcg.
897  * What we have to take care of here is validness of pc->mem_cgroup.
898  *
899  * Changes to pc->mem_cgroup happens when
900  * 1. charge
901  * 2. moving account
902  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
903  * It is added to LRU before charge.
904  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
905  * When moving account, the page is not on LRU. It's isolated.
906  */
907 
908 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
909 {
910 	struct page_cgroup *pc;
911 	struct mem_cgroup_per_zone *mz;
912 
913 	if (mem_cgroup_disabled())
914 		return;
915 	pc = lookup_page_cgroup(page);
916 	/* can happen while we handle swapcache. */
917 	if (!TestClearPageCgroupAcctLRU(pc))
918 		return;
919 	VM_BUG_ON(!pc->mem_cgroup);
920 	/*
921 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
922 	 * removed from global LRU.
923 	 */
924 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
925 	/* huge page split is done under lru_lock. so, we have no races. */
926 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
927 	if (mem_cgroup_is_root(pc->mem_cgroup))
928 		return;
929 	VM_BUG_ON(list_empty(&pc->lru));
930 	list_del_init(&pc->lru);
931 }
932 
933 void mem_cgroup_del_lru(struct page *page)
934 {
935 	mem_cgroup_del_lru_list(page, page_lru(page));
936 }
937 
938 /*
939  * Writeback is about to end against a page which has been marked for immediate
940  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
941  * inactive list.
942  */
943 void mem_cgroup_rotate_reclaimable_page(struct page *page)
944 {
945 	struct mem_cgroup_per_zone *mz;
946 	struct page_cgroup *pc;
947 	enum lru_list lru = page_lru(page);
948 
949 	if (mem_cgroup_disabled())
950 		return;
951 
952 	pc = lookup_page_cgroup(page);
953 	/* unused or root page is not rotated. */
954 	if (!PageCgroupUsed(pc))
955 		return;
956 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
957 	smp_rmb();
958 	if (mem_cgroup_is_root(pc->mem_cgroup))
959 		return;
960 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
961 	list_move_tail(&pc->lru, &mz->lists[lru]);
962 }
963 
964 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
965 {
966 	struct mem_cgroup_per_zone *mz;
967 	struct page_cgroup *pc;
968 
969 	if (mem_cgroup_disabled())
970 		return;
971 
972 	pc = lookup_page_cgroup(page);
973 	/* unused or root page is not rotated. */
974 	if (!PageCgroupUsed(pc))
975 		return;
976 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
977 	smp_rmb();
978 	if (mem_cgroup_is_root(pc->mem_cgroup))
979 		return;
980 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
981 	list_move(&pc->lru, &mz->lists[lru]);
982 }
983 
984 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
985 {
986 	struct page_cgroup *pc;
987 	struct mem_cgroup_per_zone *mz;
988 
989 	if (mem_cgroup_disabled())
990 		return;
991 	pc = lookup_page_cgroup(page);
992 	VM_BUG_ON(PageCgroupAcctLRU(pc));
993 	if (!PageCgroupUsed(pc))
994 		return;
995 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
996 	smp_rmb();
997 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
998 	/* huge page split is done under lru_lock. so, we have no races. */
999 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000 	SetPageCgroupAcctLRU(pc);
1001 	if (mem_cgroup_is_root(pc->mem_cgroup))
1002 		return;
1003 	list_add(&pc->lru, &mz->lists[lru]);
1004 }
1005 
1006 /*
1007  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008  * while it's linked to lru because the page may be reused after it's fully
1009  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010  * It's done under lock_page and expected that zone->lru_lock isnever held.
1011  */
1012 static void mem_cgroup_lru_del_before_commit(struct page *page)
1013 {
1014 	unsigned long flags;
1015 	struct zone *zone = page_zone(page);
1016 	struct page_cgroup *pc = lookup_page_cgroup(page);
1017 
1018 	/*
1019 	 * Doing this check without taking ->lru_lock seems wrong but this
1020 	 * is safe. Because if page_cgroup's USED bit is unset, the page
1021 	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022 	 * set, the commit after this will fail, anyway.
1023 	 * This all charge/uncharge is done under some mutual execustion.
1024 	 * So, we don't need to taking care of changes in USED bit.
1025 	 */
1026 	if (likely(!PageLRU(page)))
1027 		return;
1028 
1029 	spin_lock_irqsave(&zone->lru_lock, flags);
1030 	/*
1031 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032 	 * is guarded by lock_page() because the page is SwapCache.
1033 	 */
1034 	if (!PageCgroupUsed(pc))
1035 		mem_cgroup_del_lru_list(page, page_lru(page));
1036 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1037 }
1038 
1039 static void mem_cgroup_lru_add_after_commit(struct page *page)
1040 {
1041 	unsigned long flags;
1042 	struct zone *zone = page_zone(page);
1043 	struct page_cgroup *pc = lookup_page_cgroup(page);
1044 
1045 	/* taking care of that the page is added to LRU while we commit it */
1046 	if (likely(!PageLRU(page)))
1047 		return;
1048 	spin_lock_irqsave(&zone->lru_lock, flags);
1049 	/* link when the page is linked to LRU but page_cgroup isn't */
1050 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051 		mem_cgroup_add_lru_list(page, page_lru(page));
1052 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1053 }
1054 
1055 
1056 void mem_cgroup_move_lists(struct page *page,
1057 			   enum lru_list from, enum lru_list to)
1058 {
1059 	if (mem_cgroup_disabled())
1060 		return;
1061 	mem_cgroup_del_lru_list(page, from);
1062 	mem_cgroup_add_lru_list(page, to);
1063 }
1064 
1065 /*
1066  * Checks whether given mem is same or in the root_mem's
1067  * hierarchy subtree
1068  */
1069 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070 		struct mem_cgroup *mem)
1071 {
1072 	if (root_mem != mem) {
1073 		return (root_mem->use_hierarchy &&
1074 			css_is_ancestor(&mem->css, &root_mem->css));
1075 	}
1076 
1077 	return true;
1078 }
1079 
1080 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1081 {
1082 	int ret;
1083 	struct mem_cgroup *curr = NULL;
1084 	struct task_struct *p;
1085 
1086 	p = find_lock_task_mm(task);
1087 	if (!p)
1088 		return 0;
1089 	curr = try_get_mem_cgroup_from_mm(p->mm);
1090 	task_unlock(p);
1091 	if (!curr)
1092 		return 0;
1093 	/*
1094 	 * We should check use_hierarchy of "mem" not "curr". Because checking
1095 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1096 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097 	 * hierarchy(even if use_hierarchy is disabled in "mem").
1098 	 */
1099 	ret = mem_cgroup_same_or_subtree(mem, curr);
1100 	css_put(&curr->css);
1101 	return ret;
1102 }
1103 
1104 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1105 {
1106 	unsigned long active;
1107 	unsigned long inactive;
1108 	unsigned long gb;
1109 	unsigned long inactive_ratio;
1110 
1111 	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112 	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113 
1114 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115 	if (gb)
1116 		inactive_ratio = int_sqrt(10 * gb);
1117 	else
1118 		inactive_ratio = 1;
1119 
1120 	if (present_pages) {
1121 		present_pages[0] = inactive;
1122 		present_pages[1] = active;
1123 	}
1124 
1125 	return inactive_ratio;
1126 }
1127 
1128 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1129 {
1130 	unsigned long active;
1131 	unsigned long inactive;
1132 	unsigned long present_pages[2];
1133 	unsigned long inactive_ratio;
1134 
1135 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1136 
1137 	inactive = present_pages[0];
1138 	active = present_pages[1];
1139 
1140 	if (inactive * inactive_ratio < active)
1141 		return 1;
1142 
1143 	return 0;
1144 }
1145 
1146 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1147 {
1148 	unsigned long active;
1149 	unsigned long inactive;
1150 
1151 	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152 	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153 
1154 	return (active > inactive);
1155 }
1156 
1157 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158 						      struct zone *zone)
1159 {
1160 	int nid = zone_to_nid(zone);
1161 	int zid = zone_idx(zone);
1162 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1163 
1164 	return &mz->reclaim_stat;
1165 }
1166 
1167 struct zone_reclaim_stat *
1168 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1169 {
1170 	struct page_cgroup *pc;
1171 	struct mem_cgroup_per_zone *mz;
1172 
1173 	if (mem_cgroup_disabled())
1174 		return NULL;
1175 
1176 	pc = lookup_page_cgroup(page);
1177 	if (!PageCgroupUsed(pc))
1178 		return NULL;
1179 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180 	smp_rmb();
1181 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1182 	return &mz->reclaim_stat;
1183 }
1184 
1185 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186 					struct list_head *dst,
1187 					unsigned long *scanned, int order,
1188 					int mode, struct zone *z,
1189 					struct mem_cgroup *mem_cont,
1190 					int active, int file)
1191 {
1192 	unsigned long nr_taken = 0;
1193 	struct page *page;
1194 	unsigned long scan;
1195 	LIST_HEAD(pc_list);
1196 	struct list_head *src;
1197 	struct page_cgroup *pc, *tmp;
1198 	int nid = zone_to_nid(z);
1199 	int zid = zone_idx(z);
1200 	struct mem_cgroup_per_zone *mz;
1201 	int lru = LRU_FILE * file + active;
1202 	int ret;
1203 
1204 	BUG_ON(!mem_cont);
1205 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1206 	src = &mz->lists[lru];
1207 
1208 	scan = 0;
1209 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1210 		if (scan >= nr_to_scan)
1211 			break;
1212 
1213 		if (unlikely(!PageCgroupUsed(pc)))
1214 			continue;
1215 
1216 		page = lookup_cgroup_page(pc);
1217 
1218 		if (unlikely(!PageLRU(page)))
1219 			continue;
1220 
1221 		scan++;
1222 		ret = __isolate_lru_page(page, mode, file);
1223 		switch (ret) {
1224 		case 0:
1225 			list_move(&page->lru, dst);
1226 			mem_cgroup_del_lru(page);
1227 			nr_taken += hpage_nr_pages(page);
1228 			break;
1229 		case -EBUSY:
1230 			/* we don't affect global LRU but rotate in our LRU */
1231 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1232 			break;
1233 		default:
1234 			break;
1235 		}
1236 	}
1237 
1238 	*scanned = scan;
1239 
1240 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1241 				      0, 0, 0, mode);
1242 
1243 	return nr_taken;
1244 }
1245 
1246 #define mem_cgroup_from_res_counter(counter, member)	\
1247 	container_of(counter, struct mem_cgroup, member)
1248 
1249 /**
1250  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251  * @mem: the memory cgroup
1252  *
1253  * Returns the maximum amount of memory @mem can be charged with, in
1254  * pages.
1255  */
1256 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1257 {
1258 	unsigned long long margin;
1259 
1260 	margin = res_counter_margin(&mem->res);
1261 	if (do_swap_account)
1262 		margin = min(margin, res_counter_margin(&mem->memsw));
1263 	return margin >> PAGE_SHIFT;
1264 }
1265 
1266 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1267 {
1268 	struct cgroup *cgrp = memcg->css.cgroup;
1269 
1270 	/* root ? */
1271 	if (cgrp->parent == NULL)
1272 		return vm_swappiness;
1273 
1274 	return memcg->swappiness;
1275 }
1276 
1277 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1278 {
1279 	int cpu;
1280 
1281 	get_online_cpus();
1282 	spin_lock(&mem->pcp_counter_lock);
1283 	for_each_online_cpu(cpu)
1284 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1285 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1286 	spin_unlock(&mem->pcp_counter_lock);
1287 	put_online_cpus();
1288 
1289 	synchronize_rcu();
1290 }
1291 
1292 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1293 {
1294 	int cpu;
1295 
1296 	if (!mem)
1297 		return;
1298 	get_online_cpus();
1299 	spin_lock(&mem->pcp_counter_lock);
1300 	for_each_online_cpu(cpu)
1301 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1302 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1303 	spin_unlock(&mem->pcp_counter_lock);
1304 	put_online_cpus();
1305 }
1306 /*
1307  * 2 routines for checking "mem" is under move_account() or not.
1308  *
1309  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310  *			  for avoiding race in accounting. If true,
1311  *			  pc->mem_cgroup may be overwritten.
1312  *
1313  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314  *			  under hierarchy of moving cgroups. This is for
1315  *			  waiting at hith-memory prressure caused by "move".
1316  */
1317 
1318 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1319 {
1320 	VM_BUG_ON(!rcu_read_lock_held());
1321 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1322 }
1323 
1324 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1325 {
1326 	struct mem_cgroup *from;
1327 	struct mem_cgroup *to;
1328 	bool ret = false;
1329 	/*
1330 	 * Unlike task_move routines, we access mc.to, mc.from not under
1331 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1332 	 */
1333 	spin_lock(&mc.lock);
1334 	from = mc.from;
1335 	to = mc.to;
1336 	if (!from)
1337 		goto unlock;
1338 
1339 	ret = mem_cgroup_same_or_subtree(mem, from)
1340 		|| mem_cgroup_same_or_subtree(mem, to);
1341 unlock:
1342 	spin_unlock(&mc.lock);
1343 	return ret;
1344 }
1345 
1346 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1347 {
1348 	if (mc.moving_task && current != mc.moving_task) {
1349 		if (mem_cgroup_under_move(mem)) {
1350 			DEFINE_WAIT(wait);
1351 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1352 			/* moving charge context might have finished. */
1353 			if (mc.moving_task)
1354 				schedule();
1355 			finish_wait(&mc.waitq, &wait);
1356 			return true;
1357 		}
1358 	}
1359 	return false;
1360 }
1361 
1362 /**
1363  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1364  * @memcg: The memory cgroup that went over limit
1365  * @p: Task that is going to be killed
1366  *
1367  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1368  * enabled
1369  */
1370 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1371 {
1372 	struct cgroup *task_cgrp;
1373 	struct cgroup *mem_cgrp;
1374 	/*
1375 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1376 	 * on the assumption that OOM is serialized for memory controller.
1377 	 * If this assumption is broken, revisit this code.
1378 	 */
1379 	static char memcg_name[PATH_MAX];
1380 	int ret;
1381 
1382 	if (!memcg || !p)
1383 		return;
1384 
1385 
1386 	rcu_read_lock();
1387 
1388 	mem_cgrp = memcg->css.cgroup;
1389 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1390 
1391 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1392 	if (ret < 0) {
1393 		/*
1394 		 * Unfortunately, we are unable to convert to a useful name
1395 		 * But we'll still print out the usage information
1396 		 */
1397 		rcu_read_unlock();
1398 		goto done;
1399 	}
1400 	rcu_read_unlock();
1401 
1402 	printk(KERN_INFO "Task in %s killed", memcg_name);
1403 
1404 	rcu_read_lock();
1405 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1406 	if (ret < 0) {
1407 		rcu_read_unlock();
1408 		goto done;
1409 	}
1410 	rcu_read_unlock();
1411 
1412 	/*
1413 	 * Continues from above, so we don't need an KERN_ level
1414 	 */
1415 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1416 done:
1417 
1418 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1420 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1421 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1422 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1423 		"failcnt %llu\n",
1424 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1425 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1426 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1427 }
1428 
1429 /*
1430  * This function returns the number of memcg under hierarchy tree. Returns
1431  * 1(self count) if no children.
1432  */
1433 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1434 {
1435 	int num = 0;
1436 	struct mem_cgroup *iter;
1437 
1438 	for_each_mem_cgroup_tree(iter, mem)
1439 		num++;
1440 	return num;
1441 }
1442 
1443 /*
1444  * Return the memory (and swap, if configured) limit for a memcg.
1445  */
1446 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1447 {
1448 	u64 limit;
1449 	u64 memsw;
1450 
1451 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1452 	limit += total_swap_pages << PAGE_SHIFT;
1453 
1454 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1455 	/*
1456 	 * If memsw is finite and limits the amount of swap space available
1457 	 * to this memcg, return that limit.
1458 	 */
1459 	return min(limit, memsw);
1460 }
1461 
1462 /*
1463  * Visit the first child (need not be the first child as per the ordering
1464  * of the cgroup list, since we track last_scanned_child) of @mem and use
1465  * that to reclaim free pages from.
1466  */
1467 static struct mem_cgroup *
1468 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1469 {
1470 	struct mem_cgroup *ret = NULL;
1471 	struct cgroup_subsys_state *css;
1472 	int nextid, found;
1473 
1474 	if (!root_mem->use_hierarchy) {
1475 		css_get(&root_mem->css);
1476 		ret = root_mem;
1477 	}
1478 
1479 	while (!ret) {
1480 		rcu_read_lock();
1481 		nextid = root_mem->last_scanned_child + 1;
1482 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1483 				   &found);
1484 		if (css && css_tryget(css))
1485 			ret = container_of(css, struct mem_cgroup, css);
1486 
1487 		rcu_read_unlock();
1488 		/* Updates scanning parameter */
1489 		if (!css) {
1490 			/* this means start scan from ID:1 */
1491 			root_mem->last_scanned_child = 0;
1492 		} else
1493 			root_mem->last_scanned_child = found;
1494 	}
1495 
1496 	return ret;
1497 }
1498 
1499 /**
1500  * test_mem_cgroup_node_reclaimable
1501  * @mem: the target memcg
1502  * @nid: the node ID to be checked.
1503  * @noswap : specify true here if the user wants flle only information.
1504  *
1505  * This function returns whether the specified memcg contains any
1506  * reclaimable pages on a node. Returns true if there are any reclaimable
1507  * pages in the node.
1508  */
1509 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1510 		int nid, bool noswap)
1511 {
1512 	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1513 		return true;
1514 	if (noswap || !total_swap_pages)
1515 		return false;
1516 	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1517 		return true;
1518 	return false;
1519 
1520 }
1521 #if MAX_NUMNODES > 1
1522 
1523 /*
1524  * Always updating the nodemask is not very good - even if we have an empty
1525  * list or the wrong list here, we can start from some node and traverse all
1526  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1527  *
1528  */
1529 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1530 {
1531 	int nid;
1532 	/*
1533 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534 	 * pagein/pageout changes since the last update.
1535 	 */
1536 	if (!atomic_read(&mem->numainfo_events))
1537 		return;
1538 	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1539 		return;
1540 
1541 	/* make a nodemask where this memcg uses memory from */
1542 	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1543 
1544 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1545 
1546 		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1547 			node_clear(nid, mem->scan_nodes);
1548 	}
1549 
1550 	atomic_set(&mem->numainfo_events, 0);
1551 	atomic_set(&mem->numainfo_updating, 0);
1552 }
1553 
1554 /*
1555  * Selecting a node where we start reclaim from. Because what we need is just
1556  * reducing usage counter, start from anywhere is O,K. Considering
1557  * memory reclaim from current node, there are pros. and cons.
1558  *
1559  * Freeing memory from current node means freeing memory from a node which
1560  * we'll use or we've used. So, it may make LRU bad. And if several threads
1561  * hit limits, it will see a contention on a node. But freeing from remote
1562  * node means more costs for memory reclaim because of memory latency.
1563  *
1564  * Now, we use round-robin. Better algorithm is welcomed.
1565  */
1566 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1567 {
1568 	int node;
1569 
1570 	mem_cgroup_may_update_nodemask(mem);
1571 	node = mem->last_scanned_node;
1572 
1573 	node = next_node(node, mem->scan_nodes);
1574 	if (node == MAX_NUMNODES)
1575 		node = first_node(mem->scan_nodes);
1576 	/*
1577 	 * We call this when we hit limit, not when pages are added to LRU.
1578 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1579 	 * memcg is too small and all pages are not on LRU. In that case,
1580 	 * we use curret node.
1581 	 */
1582 	if (unlikely(node == MAX_NUMNODES))
1583 		node = numa_node_id();
1584 
1585 	mem->last_scanned_node = node;
1586 	return node;
1587 }
1588 
1589 /*
1590  * Check all nodes whether it contains reclaimable pages or not.
1591  * For quick scan, we make use of scan_nodes. This will allow us to skip
1592  * unused nodes. But scan_nodes is lazily updated and may not cotain
1593  * enough new information. We need to do double check.
1594  */
1595 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1596 {
1597 	int nid;
1598 
1599 	/*
1600 	 * quick check...making use of scan_node.
1601 	 * We can skip unused nodes.
1602 	 */
1603 	if (!nodes_empty(mem->scan_nodes)) {
1604 		for (nid = first_node(mem->scan_nodes);
1605 		     nid < MAX_NUMNODES;
1606 		     nid = next_node(nid, mem->scan_nodes)) {
1607 
1608 			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609 				return true;
1610 		}
1611 	}
1612 	/*
1613 	 * Check rest of nodes.
1614 	 */
1615 	for_each_node_state(nid, N_HIGH_MEMORY) {
1616 		if (node_isset(nid, mem->scan_nodes))
1617 			continue;
1618 		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1619 			return true;
1620 	}
1621 	return false;
1622 }
1623 
1624 #else
1625 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1626 {
1627 	return 0;
1628 }
1629 
1630 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1631 {
1632 	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1633 }
1634 #endif
1635 
1636 /*
1637  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638  * we reclaimed from, so that we don't end up penalizing one child extensively
1639  * based on its position in the children list.
1640  *
1641  * root_mem is the original ancestor that we've been reclaim from.
1642  *
1643  * We give up and return to the caller when we visit root_mem twice.
1644  * (other groups can be removed while we're walking....)
1645  *
1646  * If shrink==true, for avoiding to free too much, this returns immedieately.
1647  */
1648 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649 						struct zone *zone,
1650 						gfp_t gfp_mask,
1651 						unsigned long reclaim_options,
1652 						unsigned long *total_scanned)
1653 {
1654 	struct mem_cgroup *victim;
1655 	int ret, total = 0;
1656 	int loop = 0;
1657 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660 	unsigned long excess;
1661 	unsigned long nr_scanned;
1662 
1663 	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664 
1665 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1667 		noswap = true;
1668 
1669 	while (1) {
1670 		victim = mem_cgroup_select_victim(root_mem);
1671 		if (victim == root_mem) {
1672 			loop++;
1673 			/*
1674 			 * We are not draining per cpu cached charges during
1675 			 * soft limit reclaim  because global reclaim doesn't
1676 			 * care about charges. It tries to free some memory and
1677 			 * charges will not give any.
1678 			 */
1679 			if (!check_soft && loop >= 1)
1680 				drain_all_stock_async(root_mem);
1681 			if (loop >= 2) {
1682 				/*
1683 				 * If we have not been able to reclaim
1684 				 * anything, it might because there are
1685 				 * no reclaimable pages under this hierarchy
1686 				 */
1687 				if (!check_soft || !total) {
1688 					css_put(&victim->css);
1689 					break;
1690 				}
1691 				/*
1692 				 * We want to do more targeted reclaim.
1693 				 * excess >> 2 is not to excessive so as to
1694 				 * reclaim too much, nor too less that we keep
1695 				 * coming back to reclaim from this cgroup
1696 				 */
1697 				if (total >= (excess >> 2) ||
1698 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699 					css_put(&victim->css);
1700 					break;
1701 				}
1702 			}
1703 		}
1704 		if (!mem_cgroup_reclaimable(victim, noswap)) {
1705 			/* this cgroup's local usage == 0 */
1706 			css_put(&victim->css);
1707 			continue;
1708 		}
1709 		/* we use swappiness of local cgroup */
1710 		if (check_soft) {
1711 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712 				noswap, zone, &nr_scanned);
1713 			*total_scanned += nr_scanned;
1714 		} else
1715 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1716 						noswap);
1717 		css_put(&victim->css);
1718 		/*
1719 		 * At shrinking usage, we can't check we should stop here or
1720 		 * reclaim more. It's depends on callers. last_scanned_child
1721 		 * will work enough for keeping fairness under tree.
1722 		 */
1723 		if (shrink)
1724 			return ret;
1725 		total += ret;
1726 		if (check_soft) {
1727 			if (!res_counter_soft_limit_excess(&root_mem->res))
1728 				return total;
1729 		} else if (mem_cgroup_margin(root_mem))
1730 			return total;
1731 	}
1732 	return total;
1733 }
1734 
1735 /*
1736  * Check OOM-Killer is already running under our hierarchy.
1737  * If someone is running, return false.
1738  * Has to be called with memcg_oom_lock
1739  */
1740 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1741 {
1742 	struct mem_cgroup *iter, *failed = NULL;
1743 	bool cond = true;
1744 
1745 	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1746 		if (iter->oom_lock) {
1747 			/*
1748 			 * this subtree of our hierarchy is already locked
1749 			 * so we cannot give a lock.
1750 			 */
1751 			failed = iter;
1752 			cond = false;
1753 		} else
1754 			iter->oom_lock = true;
1755 	}
1756 
1757 	if (!failed)
1758 		return true;
1759 
1760 	/*
1761 	 * OK, we failed to lock the whole subtree so we have to clean up
1762 	 * what we set up to the failing subtree
1763 	 */
1764 	cond = true;
1765 	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1766 		if (iter == failed) {
1767 			cond = false;
1768 			continue;
1769 		}
1770 		iter->oom_lock = false;
1771 	}
1772 	return false;
1773 }
1774 
1775 /*
1776  * Has to be called with memcg_oom_lock
1777  */
1778 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1779 {
1780 	struct mem_cgroup *iter;
1781 
1782 	for_each_mem_cgroup_tree(iter, mem)
1783 		iter->oom_lock = false;
1784 	return 0;
1785 }
1786 
1787 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1788 {
1789 	struct mem_cgroup *iter;
1790 
1791 	for_each_mem_cgroup_tree(iter, mem)
1792 		atomic_inc(&iter->under_oom);
1793 }
1794 
1795 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1796 {
1797 	struct mem_cgroup *iter;
1798 
1799 	/*
1800 	 * When a new child is created while the hierarchy is under oom,
1801 	 * mem_cgroup_oom_lock() may not be called. We have to use
1802 	 * atomic_add_unless() here.
1803 	 */
1804 	for_each_mem_cgroup_tree(iter, mem)
1805 		atomic_add_unless(&iter->under_oom, -1, 0);
1806 }
1807 
1808 static DEFINE_SPINLOCK(memcg_oom_lock);
1809 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1810 
1811 struct oom_wait_info {
1812 	struct mem_cgroup *mem;
1813 	wait_queue_t	wait;
1814 };
1815 
1816 static int memcg_oom_wake_function(wait_queue_t *wait,
1817 	unsigned mode, int sync, void *arg)
1818 {
1819 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1820 			  *oom_wait_mem;
1821 	struct oom_wait_info *oom_wait_info;
1822 
1823 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1824 	oom_wait_mem = oom_wait_info->mem;
1825 
1826 	/*
1827 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828 	 * Then we can use css_is_ancestor without taking care of RCU.
1829 	 */
1830 	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1831 			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1832 		return 0;
1833 	return autoremove_wake_function(wait, mode, sync, arg);
1834 }
1835 
1836 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1837 {
1838 	/* for filtering, pass "mem" as argument. */
1839 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1840 }
1841 
1842 static void memcg_oom_recover(struct mem_cgroup *mem)
1843 {
1844 	if (mem && atomic_read(&mem->under_oom))
1845 		memcg_wakeup_oom(mem);
1846 }
1847 
1848 /*
1849  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1850  */
1851 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1852 {
1853 	struct oom_wait_info owait;
1854 	bool locked, need_to_kill;
1855 
1856 	owait.mem = mem;
1857 	owait.wait.flags = 0;
1858 	owait.wait.func = memcg_oom_wake_function;
1859 	owait.wait.private = current;
1860 	INIT_LIST_HEAD(&owait.wait.task_list);
1861 	need_to_kill = true;
1862 	mem_cgroup_mark_under_oom(mem);
1863 
1864 	/* At first, try to OOM lock hierarchy under mem.*/
1865 	spin_lock(&memcg_oom_lock);
1866 	locked = mem_cgroup_oom_lock(mem);
1867 	/*
1868 	 * Even if signal_pending(), we can't quit charge() loop without
1869 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1871 	 */
1872 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1873 	if (!locked || mem->oom_kill_disable)
1874 		need_to_kill = false;
1875 	if (locked)
1876 		mem_cgroup_oom_notify(mem);
1877 	spin_unlock(&memcg_oom_lock);
1878 
1879 	if (need_to_kill) {
1880 		finish_wait(&memcg_oom_waitq, &owait.wait);
1881 		mem_cgroup_out_of_memory(mem, mask);
1882 	} else {
1883 		schedule();
1884 		finish_wait(&memcg_oom_waitq, &owait.wait);
1885 	}
1886 	spin_lock(&memcg_oom_lock);
1887 	if (locked)
1888 		mem_cgroup_oom_unlock(mem);
1889 	memcg_wakeup_oom(mem);
1890 	spin_unlock(&memcg_oom_lock);
1891 
1892 	mem_cgroup_unmark_under_oom(mem);
1893 
1894 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1895 		return false;
1896 	/* Give chance to dying process */
1897 	schedule_timeout(1);
1898 	return true;
1899 }
1900 
1901 /*
1902  * Currently used to update mapped file statistics, but the routine can be
1903  * generalized to update other statistics as well.
1904  *
1905  * Notes: Race condition
1906  *
1907  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908  * it tends to be costly. But considering some conditions, we doesn't need
1909  * to do so _always_.
1910  *
1911  * Considering "charge", lock_page_cgroup() is not required because all
1912  * file-stat operations happen after a page is attached to radix-tree. There
1913  * are no race with "charge".
1914  *
1915  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917  * if there are race with "uncharge". Statistics itself is properly handled
1918  * by flags.
1919  *
1920  * Considering "move", this is an only case we see a race. To make the race
1921  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922  * possibility of race condition. If there is, we take a lock.
1923  */
1924 
1925 void mem_cgroup_update_page_stat(struct page *page,
1926 				 enum mem_cgroup_page_stat_item idx, int val)
1927 {
1928 	struct mem_cgroup *mem;
1929 	struct page_cgroup *pc = lookup_page_cgroup(page);
1930 	bool need_unlock = false;
1931 	unsigned long uninitialized_var(flags);
1932 
1933 	if (unlikely(!pc))
1934 		return;
1935 
1936 	rcu_read_lock();
1937 	mem = pc->mem_cgroup;
1938 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1939 		goto out;
1940 	/* pc->mem_cgroup is unstable ? */
1941 	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1942 		/* take a lock against to access pc->mem_cgroup */
1943 		move_lock_page_cgroup(pc, &flags);
1944 		need_unlock = true;
1945 		mem = pc->mem_cgroup;
1946 		if (!mem || !PageCgroupUsed(pc))
1947 			goto out;
1948 	}
1949 
1950 	switch (idx) {
1951 	case MEMCG_NR_FILE_MAPPED:
1952 		if (val > 0)
1953 			SetPageCgroupFileMapped(pc);
1954 		else if (!page_mapped(page))
1955 			ClearPageCgroupFileMapped(pc);
1956 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1957 		break;
1958 	default:
1959 		BUG();
1960 	}
1961 
1962 	this_cpu_add(mem->stat->count[idx], val);
1963 
1964 out:
1965 	if (unlikely(need_unlock))
1966 		move_unlock_page_cgroup(pc, &flags);
1967 	rcu_read_unlock();
1968 	return;
1969 }
1970 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1971 
1972 /*
1973  * size of first charge trial. "32" comes from vmscan.c's magic value.
1974  * TODO: maybe necessary to use big numbers in big irons.
1975  */
1976 #define CHARGE_BATCH	32U
1977 struct memcg_stock_pcp {
1978 	struct mem_cgroup *cached; /* this never be root cgroup */
1979 	unsigned int nr_pages;
1980 	struct work_struct work;
1981 	unsigned long flags;
1982 #define FLUSHING_CACHED_CHARGE	(0)
1983 };
1984 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1985 static DEFINE_MUTEX(percpu_charge_mutex);
1986 
1987 /*
1988  * Try to consume stocked charge on this cpu. If success, one page is consumed
1989  * from local stock and true is returned. If the stock is 0 or charges from a
1990  * cgroup which is not current target, returns false. This stock will be
1991  * refilled.
1992  */
1993 static bool consume_stock(struct mem_cgroup *mem)
1994 {
1995 	struct memcg_stock_pcp *stock;
1996 	bool ret = true;
1997 
1998 	stock = &get_cpu_var(memcg_stock);
1999 	if (mem == stock->cached && stock->nr_pages)
2000 		stock->nr_pages--;
2001 	else /* need to call res_counter_charge */
2002 		ret = false;
2003 	put_cpu_var(memcg_stock);
2004 	return ret;
2005 }
2006 
2007 /*
2008  * Returns stocks cached in percpu to res_counter and reset cached information.
2009  */
2010 static void drain_stock(struct memcg_stock_pcp *stock)
2011 {
2012 	struct mem_cgroup *old = stock->cached;
2013 
2014 	if (stock->nr_pages) {
2015 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2016 
2017 		res_counter_uncharge(&old->res, bytes);
2018 		if (do_swap_account)
2019 			res_counter_uncharge(&old->memsw, bytes);
2020 		stock->nr_pages = 0;
2021 	}
2022 	stock->cached = NULL;
2023 }
2024 
2025 /*
2026  * This must be called under preempt disabled or must be called by
2027  * a thread which is pinned to local cpu.
2028  */
2029 static void drain_local_stock(struct work_struct *dummy)
2030 {
2031 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2032 	drain_stock(stock);
2033 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2034 }
2035 
2036 /*
2037  * Cache charges(val) which is from res_counter, to local per_cpu area.
2038  * This will be consumed by consume_stock() function, later.
2039  */
2040 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2041 {
2042 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2043 
2044 	if (stock->cached != mem) { /* reset if necessary */
2045 		drain_stock(stock);
2046 		stock->cached = mem;
2047 	}
2048 	stock->nr_pages += nr_pages;
2049 	put_cpu_var(memcg_stock);
2050 }
2051 
2052 /*
2053  * Drains all per-CPU charge caches for given root_mem resp. subtree
2054  * of the hierarchy under it. sync flag says whether we should block
2055  * until the work is done.
2056  */
2057 static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2058 {
2059 	int cpu, curcpu;
2060 
2061 	/* Notify other cpus that system-wide "drain" is running */
2062 	get_online_cpus();
2063 	curcpu = get_cpu();
2064 	for_each_online_cpu(cpu) {
2065 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2066 		struct mem_cgroup *mem;
2067 
2068 		mem = stock->cached;
2069 		if (!mem || !stock->nr_pages)
2070 			continue;
2071 		if (!mem_cgroup_same_or_subtree(root_mem, mem))
2072 			continue;
2073 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2074 			if (cpu == curcpu)
2075 				drain_local_stock(&stock->work);
2076 			else
2077 				schedule_work_on(cpu, &stock->work);
2078 		}
2079 	}
2080 	put_cpu();
2081 
2082 	if (!sync)
2083 		goto out;
2084 
2085 	for_each_online_cpu(cpu) {
2086 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2087 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2088 			flush_work(&stock->work);
2089 	}
2090 out:
2091  	put_online_cpus();
2092 }
2093 
2094 /*
2095  * Tries to drain stocked charges in other cpus. This function is asynchronous
2096  * and just put a work per cpu for draining localy on each cpu. Caller can
2097  * expects some charges will be back to res_counter later but cannot wait for
2098  * it.
2099  */
2100 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2101 {
2102 	/*
2103 	 * If someone calls draining, avoid adding more kworker runs.
2104 	 */
2105 	if (!mutex_trylock(&percpu_charge_mutex))
2106 		return;
2107 	drain_all_stock(root_mem, false);
2108 	mutex_unlock(&percpu_charge_mutex);
2109 }
2110 
2111 /* This is a synchronous drain interface. */
2112 static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2113 {
2114 	/* called when force_empty is called */
2115 	mutex_lock(&percpu_charge_mutex);
2116 	drain_all_stock(root_mem, true);
2117 	mutex_unlock(&percpu_charge_mutex);
2118 }
2119 
2120 /*
2121  * This function drains percpu counter value from DEAD cpu and
2122  * move it to local cpu. Note that this function can be preempted.
2123  */
2124 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2125 {
2126 	int i;
2127 
2128 	spin_lock(&mem->pcp_counter_lock);
2129 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2130 		long x = per_cpu(mem->stat->count[i], cpu);
2131 
2132 		per_cpu(mem->stat->count[i], cpu) = 0;
2133 		mem->nocpu_base.count[i] += x;
2134 	}
2135 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2136 		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2137 
2138 		per_cpu(mem->stat->events[i], cpu) = 0;
2139 		mem->nocpu_base.events[i] += x;
2140 	}
2141 	/* need to clear ON_MOVE value, works as a kind of lock. */
2142 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2143 	spin_unlock(&mem->pcp_counter_lock);
2144 }
2145 
2146 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2147 {
2148 	int idx = MEM_CGROUP_ON_MOVE;
2149 
2150 	spin_lock(&mem->pcp_counter_lock);
2151 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2152 	spin_unlock(&mem->pcp_counter_lock);
2153 }
2154 
2155 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2156 					unsigned long action,
2157 					void *hcpu)
2158 {
2159 	int cpu = (unsigned long)hcpu;
2160 	struct memcg_stock_pcp *stock;
2161 	struct mem_cgroup *iter;
2162 
2163 	if ((action == CPU_ONLINE)) {
2164 		for_each_mem_cgroup_all(iter)
2165 			synchronize_mem_cgroup_on_move(iter, cpu);
2166 		return NOTIFY_OK;
2167 	}
2168 
2169 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2170 		return NOTIFY_OK;
2171 
2172 	for_each_mem_cgroup_all(iter)
2173 		mem_cgroup_drain_pcp_counter(iter, cpu);
2174 
2175 	stock = &per_cpu(memcg_stock, cpu);
2176 	drain_stock(stock);
2177 	return NOTIFY_OK;
2178 }
2179 
2180 
2181 /* See __mem_cgroup_try_charge() for details */
2182 enum {
2183 	CHARGE_OK,		/* success */
2184 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2185 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2186 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2187 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2188 };
2189 
2190 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2191 				unsigned int nr_pages, bool oom_check)
2192 {
2193 	unsigned long csize = nr_pages * PAGE_SIZE;
2194 	struct mem_cgroup *mem_over_limit;
2195 	struct res_counter *fail_res;
2196 	unsigned long flags = 0;
2197 	int ret;
2198 
2199 	ret = res_counter_charge(&mem->res, csize, &fail_res);
2200 
2201 	if (likely(!ret)) {
2202 		if (!do_swap_account)
2203 			return CHARGE_OK;
2204 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2205 		if (likely(!ret))
2206 			return CHARGE_OK;
2207 
2208 		res_counter_uncharge(&mem->res, csize);
2209 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2210 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2211 	} else
2212 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2213 	/*
2214 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2216 	 *
2217 	 * Never reclaim on behalf of optional batching, retry with a
2218 	 * single page instead.
2219 	 */
2220 	if (nr_pages == CHARGE_BATCH)
2221 		return CHARGE_RETRY;
2222 
2223 	if (!(gfp_mask & __GFP_WAIT))
2224 		return CHARGE_WOULDBLOCK;
2225 
2226 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2227 					      gfp_mask, flags, NULL);
2228 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229 		return CHARGE_RETRY;
2230 	/*
2231 	 * Even though the limit is exceeded at this point, reclaim
2232 	 * may have been able to free some pages.  Retry the charge
2233 	 * before killing the task.
2234 	 *
2235 	 * Only for regular pages, though: huge pages are rather
2236 	 * unlikely to succeed so close to the limit, and we fall back
2237 	 * to regular pages anyway in case of failure.
2238 	 */
2239 	if (nr_pages == 1 && ret)
2240 		return CHARGE_RETRY;
2241 
2242 	/*
2243 	 * At task move, charge accounts can be doubly counted. So, it's
2244 	 * better to wait until the end of task_move if something is going on.
2245 	 */
2246 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2247 		return CHARGE_RETRY;
2248 
2249 	/* If we don't need to call oom-killer at el, return immediately */
2250 	if (!oom_check)
2251 		return CHARGE_NOMEM;
2252 	/* check OOM */
2253 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2254 		return CHARGE_OOM_DIE;
2255 
2256 	return CHARGE_RETRY;
2257 }
2258 
2259 /*
2260  * Unlike exported interface, "oom" parameter is added. if oom==true,
2261  * oom-killer can be invoked.
2262  */
2263 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2264 				   gfp_t gfp_mask,
2265 				   unsigned int nr_pages,
2266 				   struct mem_cgroup **memcg,
2267 				   bool oom)
2268 {
2269 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271 	struct mem_cgroup *mem = NULL;
2272 	int ret;
2273 
2274 	/*
2275 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276 	 * in system level. So, allow to go ahead dying process in addition to
2277 	 * MEMDIE process.
2278 	 */
2279 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2280 		     || fatal_signal_pending(current)))
2281 		goto bypass;
2282 
2283 	/*
2284 	 * We always charge the cgroup the mm_struct belongs to.
2285 	 * The mm_struct's mem_cgroup changes on task migration if the
2286 	 * thread group leader migrates. It's possible that mm is not
2287 	 * set, if so charge the init_mm (happens for pagecache usage).
2288 	 */
2289 	if (!*memcg && !mm)
2290 		goto bypass;
2291 again:
2292 	if (*memcg) { /* css should be a valid one */
2293 		mem = *memcg;
2294 		VM_BUG_ON(css_is_removed(&mem->css));
2295 		if (mem_cgroup_is_root(mem))
2296 			goto done;
2297 		if (nr_pages == 1 && consume_stock(mem))
2298 			goto done;
2299 		css_get(&mem->css);
2300 	} else {
2301 		struct task_struct *p;
2302 
2303 		rcu_read_lock();
2304 		p = rcu_dereference(mm->owner);
2305 		/*
2306 		 * Because we don't have task_lock(), "p" can exit.
2307 		 * In that case, "mem" can point to root or p can be NULL with
2308 		 * race with swapoff. Then, we have small risk of mis-accouning.
2309 		 * But such kind of mis-account by race always happens because
2310 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2311 		 * small race, here.
2312 		 * (*) swapoff at el will charge against mm-struct not against
2313 		 * task-struct. So, mm->owner can be NULL.
2314 		 */
2315 		mem = mem_cgroup_from_task(p);
2316 		if (!mem || mem_cgroup_is_root(mem)) {
2317 			rcu_read_unlock();
2318 			goto done;
2319 		}
2320 		if (nr_pages == 1 && consume_stock(mem)) {
2321 			/*
2322 			 * It seems dagerous to access memcg without css_get().
2323 			 * But considering how consume_stok works, it's not
2324 			 * necessary. If consume_stock success, some charges
2325 			 * from this memcg are cached on this cpu. So, we
2326 			 * don't need to call css_get()/css_tryget() before
2327 			 * calling consume_stock().
2328 			 */
2329 			rcu_read_unlock();
2330 			goto done;
2331 		}
2332 		/* after here, we may be blocked. we need to get refcnt */
2333 		if (!css_tryget(&mem->css)) {
2334 			rcu_read_unlock();
2335 			goto again;
2336 		}
2337 		rcu_read_unlock();
2338 	}
2339 
2340 	do {
2341 		bool oom_check;
2342 
2343 		/* If killed, bypass charge */
2344 		if (fatal_signal_pending(current)) {
2345 			css_put(&mem->css);
2346 			goto bypass;
2347 		}
2348 
2349 		oom_check = false;
2350 		if (oom && !nr_oom_retries) {
2351 			oom_check = true;
2352 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2353 		}
2354 
2355 		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2356 		switch (ret) {
2357 		case CHARGE_OK:
2358 			break;
2359 		case CHARGE_RETRY: /* not in OOM situation but retry */
2360 			batch = nr_pages;
2361 			css_put(&mem->css);
2362 			mem = NULL;
2363 			goto again;
2364 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2365 			css_put(&mem->css);
2366 			goto nomem;
2367 		case CHARGE_NOMEM: /* OOM routine works */
2368 			if (!oom) {
2369 				css_put(&mem->css);
2370 				goto nomem;
2371 			}
2372 			/* If oom, we never return -ENOMEM */
2373 			nr_oom_retries--;
2374 			break;
2375 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2376 			css_put(&mem->css);
2377 			goto bypass;
2378 		}
2379 	} while (ret != CHARGE_OK);
2380 
2381 	if (batch > nr_pages)
2382 		refill_stock(mem, batch - nr_pages);
2383 	css_put(&mem->css);
2384 done:
2385 	*memcg = mem;
2386 	return 0;
2387 nomem:
2388 	*memcg = NULL;
2389 	return -ENOMEM;
2390 bypass:
2391 	*memcg = NULL;
2392 	return 0;
2393 }
2394 
2395 /*
2396  * Somemtimes we have to undo a charge we got by try_charge().
2397  * This function is for that and do uncharge, put css's refcnt.
2398  * gotten by try_charge().
2399  */
2400 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2401 				       unsigned int nr_pages)
2402 {
2403 	if (!mem_cgroup_is_root(mem)) {
2404 		unsigned long bytes = nr_pages * PAGE_SIZE;
2405 
2406 		res_counter_uncharge(&mem->res, bytes);
2407 		if (do_swap_account)
2408 			res_counter_uncharge(&mem->memsw, bytes);
2409 	}
2410 }
2411 
2412 /*
2413  * A helper function to get mem_cgroup from ID. must be called under
2414  * rcu_read_lock(). The caller must check css_is_removed() or some if
2415  * it's concern. (dropping refcnt from swap can be called against removed
2416  * memcg.)
2417  */
2418 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2419 {
2420 	struct cgroup_subsys_state *css;
2421 
2422 	/* ID 0 is unused ID */
2423 	if (!id)
2424 		return NULL;
2425 	css = css_lookup(&mem_cgroup_subsys, id);
2426 	if (!css)
2427 		return NULL;
2428 	return container_of(css, struct mem_cgroup, css);
2429 }
2430 
2431 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2432 {
2433 	struct mem_cgroup *mem = NULL;
2434 	struct page_cgroup *pc;
2435 	unsigned short id;
2436 	swp_entry_t ent;
2437 
2438 	VM_BUG_ON(!PageLocked(page));
2439 
2440 	pc = lookup_page_cgroup(page);
2441 	lock_page_cgroup(pc);
2442 	if (PageCgroupUsed(pc)) {
2443 		mem = pc->mem_cgroup;
2444 		if (mem && !css_tryget(&mem->css))
2445 			mem = NULL;
2446 	} else if (PageSwapCache(page)) {
2447 		ent.val = page_private(page);
2448 		id = lookup_swap_cgroup(ent);
2449 		rcu_read_lock();
2450 		mem = mem_cgroup_lookup(id);
2451 		if (mem && !css_tryget(&mem->css))
2452 			mem = NULL;
2453 		rcu_read_unlock();
2454 	}
2455 	unlock_page_cgroup(pc);
2456 	return mem;
2457 }
2458 
2459 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2460 				       struct page *page,
2461 				       unsigned int nr_pages,
2462 				       struct page_cgroup *pc,
2463 				       enum charge_type ctype)
2464 {
2465 	lock_page_cgroup(pc);
2466 	if (unlikely(PageCgroupUsed(pc))) {
2467 		unlock_page_cgroup(pc);
2468 		__mem_cgroup_cancel_charge(mem, nr_pages);
2469 		return;
2470 	}
2471 	/*
2472 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2473 	 * accessed by any other context at this point.
2474 	 */
2475 	pc->mem_cgroup = mem;
2476 	/*
2477 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 	 * before USED bit, we need memory barrier here.
2481 	 * See mem_cgroup_add_lru_list(), etc.
2482  	 */
2483 	smp_wmb();
2484 	switch (ctype) {
2485 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487 		SetPageCgroupCache(pc);
2488 		SetPageCgroupUsed(pc);
2489 		break;
2490 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491 		ClearPageCgroupCache(pc);
2492 		SetPageCgroupUsed(pc);
2493 		break;
2494 	default:
2495 		break;
2496 	}
2497 
2498 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2499 	unlock_page_cgroup(pc);
2500 	/*
2501 	 * "charge_statistics" updated event counter. Then, check it.
2502 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503 	 * if they exceeds softlimit.
2504 	 */
2505 	memcg_check_events(mem, page);
2506 }
2507 
2508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2509 
2510 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2512 /*
2513  * Because tail pages are not marked as "used", set it. We're under
2514  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2515  */
2516 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2517 {
2518 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2519 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2520 	unsigned long flags;
2521 
2522 	if (mem_cgroup_disabled())
2523 		return;
2524 	/*
2525 	 * We have no races with charge/uncharge but will have races with
2526 	 * page state accounting.
2527 	 */
2528 	move_lock_page_cgroup(head_pc, &flags);
2529 
2530 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2531 	smp_wmb(); /* see __commit_charge() */
2532 	if (PageCgroupAcctLRU(head_pc)) {
2533 		enum lru_list lru;
2534 		struct mem_cgroup_per_zone *mz;
2535 
2536 		/*
2537 		 * LRU flags cannot be copied because we need to add tail
2538 		 *.page to LRU by generic call and our hook will be called.
2539 		 * We hold lru_lock, then, reduce counter directly.
2540 		 */
2541 		lru = page_lru(head);
2542 		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2543 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2544 	}
2545 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2546 	move_unlock_page_cgroup(head_pc, &flags);
2547 }
2548 #endif
2549 
2550 /**
2551  * mem_cgroup_move_account - move account of the page
2552  * @page: the page
2553  * @nr_pages: number of regular pages (>1 for huge pages)
2554  * @pc:	page_cgroup of the page.
2555  * @from: mem_cgroup which the page is moved from.
2556  * @to:	mem_cgroup which the page is moved to. @from != @to.
2557  * @uncharge: whether we should call uncharge and css_put against @from.
2558  *
2559  * The caller must confirm following.
2560  * - page is not on LRU (isolate_page() is useful.)
2561  * - compound_lock is held when nr_pages > 1
2562  *
2563  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2564  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565  * true, this function does "uncharge" from old cgroup, but it doesn't if
2566  * @uncharge is false, so a caller should do "uncharge".
2567  */
2568 static int mem_cgroup_move_account(struct page *page,
2569 				   unsigned int nr_pages,
2570 				   struct page_cgroup *pc,
2571 				   struct mem_cgroup *from,
2572 				   struct mem_cgroup *to,
2573 				   bool uncharge)
2574 {
2575 	unsigned long flags;
2576 	int ret;
2577 
2578 	VM_BUG_ON(from == to);
2579 	VM_BUG_ON(PageLRU(page));
2580 	/*
2581 	 * The page is isolated from LRU. So, collapse function
2582 	 * will not handle this page. But page splitting can happen.
2583 	 * Do this check under compound_page_lock(). The caller should
2584 	 * hold it.
2585 	 */
2586 	ret = -EBUSY;
2587 	if (nr_pages > 1 && !PageTransHuge(page))
2588 		goto out;
2589 
2590 	lock_page_cgroup(pc);
2591 
2592 	ret = -EINVAL;
2593 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594 		goto unlock;
2595 
2596 	move_lock_page_cgroup(pc, &flags);
2597 
2598 	if (PageCgroupFileMapped(pc)) {
2599 		/* Update mapped_file data for mem_cgroup */
2600 		preempt_disable();
2601 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603 		preempt_enable();
2604 	}
2605 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2606 	if (uncharge)
2607 		/* This is not "cancel", but cancel_charge does all we need. */
2608 		__mem_cgroup_cancel_charge(from, nr_pages);
2609 
2610 	/* caller should have done css_get */
2611 	pc->mem_cgroup = to;
2612 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2613 	/*
2614 	 * We charges against "to" which may not have any tasks. Then, "to"
2615 	 * can be under rmdir(). But in current implementation, caller of
2616 	 * this function is just force_empty() and move charge, so it's
2617 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2618 	 * status here.
2619 	 */
2620 	move_unlock_page_cgroup(pc, &flags);
2621 	ret = 0;
2622 unlock:
2623 	unlock_page_cgroup(pc);
2624 	/*
2625 	 * check events
2626 	 */
2627 	memcg_check_events(to, page);
2628 	memcg_check_events(from, page);
2629 out:
2630 	return ret;
2631 }
2632 
2633 /*
2634  * move charges to its parent.
2635  */
2636 
2637 static int mem_cgroup_move_parent(struct page *page,
2638 				  struct page_cgroup *pc,
2639 				  struct mem_cgroup *child,
2640 				  gfp_t gfp_mask)
2641 {
2642 	struct cgroup *cg = child->css.cgroup;
2643 	struct cgroup *pcg = cg->parent;
2644 	struct mem_cgroup *parent;
2645 	unsigned int nr_pages;
2646 	unsigned long uninitialized_var(flags);
2647 	int ret;
2648 
2649 	/* Is ROOT ? */
2650 	if (!pcg)
2651 		return -EINVAL;
2652 
2653 	ret = -EBUSY;
2654 	if (!get_page_unless_zero(page))
2655 		goto out;
2656 	if (isolate_lru_page(page))
2657 		goto put;
2658 
2659 	nr_pages = hpage_nr_pages(page);
2660 
2661 	parent = mem_cgroup_from_cont(pcg);
2662 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663 	if (ret || !parent)
2664 		goto put_back;
2665 
2666 	if (nr_pages > 1)
2667 		flags = compound_lock_irqsave(page);
2668 
2669 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670 	if (ret)
2671 		__mem_cgroup_cancel_charge(parent, nr_pages);
2672 
2673 	if (nr_pages > 1)
2674 		compound_unlock_irqrestore(page, flags);
2675 put_back:
2676 	putback_lru_page(page);
2677 put:
2678 	put_page(page);
2679 out:
2680 	return ret;
2681 }
2682 
2683 /*
2684  * Charge the memory controller for page usage.
2685  * Return
2686  * 0 if the charge was successful
2687  * < 0 if the cgroup is over its limit
2688  */
2689 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690 				gfp_t gfp_mask, enum charge_type ctype)
2691 {
2692 	struct mem_cgroup *mem = NULL;
2693 	unsigned int nr_pages = 1;
2694 	struct page_cgroup *pc;
2695 	bool oom = true;
2696 	int ret;
2697 
2698 	if (PageTransHuge(page)) {
2699 		nr_pages <<= compound_order(page);
2700 		VM_BUG_ON(!PageTransHuge(page));
2701 		/*
2702 		 * Never OOM-kill a process for a huge page.  The
2703 		 * fault handler will fall back to regular pages.
2704 		 */
2705 		oom = false;
2706 	}
2707 
2708 	pc = lookup_page_cgroup(page);
2709 	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2710 
2711 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2712 	if (ret || !mem)
2713 		return ret;
2714 
2715 	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2716 	return 0;
2717 }
2718 
2719 int mem_cgroup_newpage_charge(struct page *page,
2720 			      struct mm_struct *mm, gfp_t gfp_mask)
2721 {
2722 	if (mem_cgroup_disabled())
2723 		return 0;
2724 	/*
2725 	 * If already mapped, we don't have to account.
2726 	 * If page cache, page->mapping has address_space.
2727 	 * But page->mapping may have out-of-use anon_vma pointer,
2728 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2729 	 * is NULL.
2730   	 */
2731 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2732 		return 0;
2733 	if (unlikely(!mm))
2734 		mm = &init_mm;
2735 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2736 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2737 }
2738 
2739 static void
2740 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2741 					enum charge_type ctype);
2742 
2743 static void
2744 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2745 					enum charge_type ctype)
2746 {
2747 	struct page_cgroup *pc = lookup_page_cgroup(page);
2748 	/*
2749 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750 	 * is already on LRU. It means the page may on some other page_cgroup's
2751 	 * LRU. Take care of it.
2752 	 */
2753 	mem_cgroup_lru_del_before_commit(page);
2754 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2755 	mem_cgroup_lru_add_after_commit(page);
2756 	return;
2757 }
2758 
2759 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760 				gfp_t gfp_mask)
2761 {
2762 	struct mem_cgroup *mem = NULL;
2763 	int ret;
2764 
2765 	if (mem_cgroup_disabled())
2766 		return 0;
2767 	if (PageCompound(page))
2768 		return 0;
2769 
2770 	if (unlikely(!mm))
2771 		mm = &init_mm;
2772 
2773 	if (page_is_file_cache(page)) {
2774 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2775 		if (ret || !mem)
2776 			return ret;
2777 
2778 		/*
2779 		 * FUSE reuses pages without going through the final
2780 		 * put that would remove them from the LRU list, make
2781 		 * sure that they get relinked properly.
2782 		 */
2783 		__mem_cgroup_commit_charge_lrucare(page, mem,
2784 					MEM_CGROUP_CHARGE_TYPE_CACHE);
2785 		return ret;
2786 	}
2787 	/* shmem */
2788 	if (PageSwapCache(page)) {
2789 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2790 		if (!ret)
2791 			__mem_cgroup_commit_charge_swapin(page, mem,
2792 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2793 	} else
2794 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2795 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2796 
2797 	return ret;
2798 }
2799 
2800 /*
2801  * While swap-in, try_charge -> commit or cancel, the page is locked.
2802  * And when try_charge() successfully returns, one refcnt to memcg without
2803  * struct page_cgroup is acquired. This refcnt will be consumed by
2804  * "commit()" or removed by "cancel()"
2805  */
2806 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807 				 struct page *page,
2808 				 gfp_t mask, struct mem_cgroup **ptr)
2809 {
2810 	struct mem_cgroup *mem;
2811 	int ret;
2812 
2813 	*ptr = NULL;
2814 
2815 	if (mem_cgroup_disabled())
2816 		return 0;
2817 
2818 	if (!do_swap_account)
2819 		goto charge_cur_mm;
2820 	/*
2821 	 * A racing thread's fault, or swapoff, may have already updated
2822 	 * the pte, and even removed page from swap cache: in those cases
2823 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2824 	 * KSM case which does need to charge the page.
2825 	 */
2826 	if (!PageSwapCache(page))
2827 		goto charge_cur_mm;
2828 	mem = try_get_mem_cgroup_from_page(page);
2829 	if (!mem)
2830 		goto charge_cur_mm;
2831 	*ptr = mem;
2832 	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2833 	css_put(&mem->css);
2834 	return ret;
2835 charge_cur_mm:
2836 	if (unlikely(!mm))
2837 		mm = &init_mm;
2838 	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2839 }
2840 
2841 static void
2842 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843 					enum charge_type ctype)
2844 {
2845 	if (mem_cgroup_disabled())
2846 		return;
2847 	if (!ptr)
2848 		return;
2849 	cgroup_exclude_rmdir(&ptr->css);
2850 
2851 	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2852 	/*
2853 	 * Now swap is on-memory. This means this page may be
2854 	 * counted both as mem and swap....double count.
2855 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857 	 * may call delete_from_swap_cache() before reach here.
2858 	 */
2859 	if (do_swap_account && PageSwapCache(page)) {
2860 		swp_entry_t ent = {.val = page_private(page)};
2861 		unsigned short id;
2862 		struct mem_cgroup *memcg;
2863 
2864 		id = swap_cgroup_record(ent, 0);
2865 		rcu_read_lock();
2866 		memcg = mem_cgroup_lookup(id);
2867 		if (memcg) {
2868 			/*
2869 			 * This recorded memcg can be obsolete one. So, avoid
2870 			 * calling css_tryget
2871 			 */
2872 			if (!mem_cgroup_is_root(memcg))
2873 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2874 			mem_cgroup_swap_statistics(memcg, false);
2875 			mem_cgroup_put(memcg);
2876 		}
2877 		rcu_read_unlock();
2878 	}
2879 	/*
2880 	 * At swapin, we may charge account against cgroup which has no tasks.
2881 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882 	 * In that case, we need to call pre_destroy() again. check it here.
2883 	 */
2884 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2885 }
2886 
2887 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2888 {
2889 	__mem_cgroup_commit_charge_swapin(page, ptr,
2890 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2891 }
2892 
2893 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2894 {
2895 	if (mem_cgroup_disabled())
2896 		return;
2897 	if (!mem)
2898 		return;
2899 	__mem_cgroup_cancel_charge(mem, 1);
2900 }
2901 
2902 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2903 				   unsigned int nr_pages,
2904 				   const enum charge_type ctype)
2905 {
2906 	struct memcg_batch_info *batch = NULL;
2907 	bool uncharge_memsw = true;
2908 
2909 	/* If swapout, usage of swap doesn't decrease */
2910 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2911 		uncharge_memsw = false;
2912 
2913 	batch = &current->memcg_batch;
2914 	/*
2915 	 * In usual, we do css_get() when we remember memcg pointer.
2916 	 * But in this case, we keep res->usage until end of a series of
2917 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2918 	 */
2919 	if (!batch->memcg)
2920 		batch->memcg = mem;
2921 	/*
2922 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2923 	 * In those cases, all pages freed continuously can be expected to be in
2924 	 * the same cgroup and we have chance to coalesce uncharges.
2925 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926 	 * because we want to do uncharge as soon as possible.
2927 	 */
2928 
2929 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2930 		goto direct_uncharge;
2931 
2932 	if (nr_pages > 1)
2933 		goto direct_uncharge;
2934 
2935 	/*
2936 	 * In typical case, batch->memcg == mem. This means we can
2937 	 * merge a series of uncharges to an uncharge of res_counter.
2938 	 * If not, we uncharge res_counter ony by one.
2939 	 */
2940 	if (batch->memcg != mem)
2941 		goto direct_uncharge;
2942 	/* remember freed charge and uncharge it later */
2943 	batch->nr_pages++;
2944 	if (uncharge_memsw)
2945 		batch->memsw_nr_pages++;
2946 	return;
2947 direct_uncharge:
2948 	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2949 	if (uncharge_memsw)
2950 		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2951 	if (unlikely(batch->memcg != mem))
2952 		memcg_oom_recover(mem);
2953 	return;
2954 }
2955 
2956 /*
2957  * uncharge if !page_mapped(page)
2958  */
2959 static struct mem_cgroup *
2960 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2961 {
2962 	struct mem_cgroup *mem = NULL;
2963 	unsigned int nr_pages = 1;
2964 	struct page_cgroup *pc;
2965 
2966 	if (mem_cgroup_disabled())
2967 		return NULL;
2968 
2969 	if (PageSwapCache(page))
2970 		return NULL;
2971 
2972 	if (PageTransHuge(page)) {
2973 		nr_pages <<= compound_order(page);
2974 		VM_BUG_ON(!PageTransHuge(page));
2975 	}
2976 	/*
2977 	 * Check if our page_cgroup is valid
2978 	 */
2979 	pc = lookup_page_cgroup(page);
2980 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2981 		return NULL;
2982 
2983 	lock_page_cgroup(pc);
2984 
2985 	mem = pc->mem_cgroup;
2986 
2987 	if (!PageCgroupUsed(pc))
2988 		goto unlock_out;
2989 
2990 	switch (ctype) {
2991 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2993 		/* See mem_cgroup_prepare_migration() */
2994 		if (page_mapped(page) || PageCgroupMigration(pc))
2995 			goto unlock_out;
2996 		break;
2997 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2998 		if (!PageAnon(page)) {	/* Shared memory */
2999 			if (page->mapping && !page_is_file_cache(page))
3000 				goto unlock_out;
3001 		} else if (page_mapped(page)) /* Anon */
3002 				goto unlock_out;
3003 		break;
3004 	default:
3005 		break;
3006 	}
3007 
3008 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3009 
3010 	ClearPageCgroupUsed(pc);
3011 	/*
3012 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013 	 * freed from LRU. This is safe because uncharged page is expected not
3014 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015 	 * special functions.
3016 	 */
3017 
3018 	unlock_page_cgroup(pc);
3019 	/*
3020 	 * even after unlock, we have mem->res.usage here and this memcg
3021 	 * will never be freed.
3022 	 */
3023 	memcg_check_events(mem, page);
3024 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3025 		mem_cgroup_swap_statistics(mem, true);
3026 		mem_cgroup_get(mem);
3027 	}
3028 	if (!mem_cgroup_is_root(mem))
3029 		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3030 
3031 	return mem;
3032 
3033 unlock_out:
3034 	unlock_page_cgroup(pc);
3035 	return NULL;
3036 }
3037 
3038 void mem_cgroup_uncharge_page(struct page *page)
3039 {
3040 	/* early check. */
3041 	if (page_mapped(page))
3042 		return;
3043 	if (page->mapping && !PageAnon(page))
3044 		return;
3045 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3046 }
3047 
3048 void mem_cgroup_uncharge_cache_page(struct page *page)
3049 {
3050 	VM_BUG_ON(page_mapped(page));
3051 	VM_BUG_ON(page->mapping);
3052 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3053 }
3054 
3055 /*
3056  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057  * In that cases, pages are freed continuously and we can expect pages
3058  * are in the same memcg. All these calls itself limits the number of
3059  * pages freed at once, then uncharge_start/end() is called properly.
3060  * This may be called prural(2) times in a context,
3061  */
3062 
3063 void mem_cgroup_uncharge_start(void)
3064 {
3065 	current->memcg_batch.do_batch++;
3066 	/* We can do nest. */
3067 	if (current->memcg_batch.do_batch == 1) {
3068 		current->memcg_batch.memcg = NULL;
3069 		current->memcg_batch.nr_pages = 0;
3070 		current->memcg_batch.memsw_nr_pages = 0;
3071 	}
3072 }
3073 
3074 void mem_cgroup_uncharge_end(void)
3075 {
3076 	struct memcg_batch_info *batch = &current->memcg_batch;
3077 
3078 	if (!batch->do_batch)
3079 		return;
3080 
3081 	batch->do_batch--;
3082 	if (batch->do_batch) /* If stacked, do nothing. */
3083 		return;
3084 
3085 	if (!batch->memcg)
3086 		return;
3087 	/*
3088 	 * This "batch->memcg" is valid without any css_get/put etc...
3089 	 * bacause we hide charges behind us.
3090 	 */
3091 	if (batch->nr_pages)
3092 		res_counter_uncharge(&batch->memcg->res,
3093 				     batch->nr_pages * PAGE_SIZE);
3094 	if (batch->memsw_nr_pages)
3095 		res_counter_uncharge(&batch->memcg->memsw,
3096 				     batch->memsw_nr_pages * PAGE_SIZE);
3097 	memcg_oom_recover(batch->memcg);
3098 	/* forget this pointer (for sanity check) */
3099 	batch->memcg = NULL;
3100 }
3101 
3102 #ifdef CONFIG_SWAP
3103 /*
3104  * called after __delete_from_swap_cache() and drop "page" account.
3105  * memcg information is recorded to swap_cgroup of "ent"
3106  */
3107 void
3108 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3109 {
3110 	struct mem_cgroup *memcg;
3111 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3112 
3113 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3114 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3115 
3116 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3117 
3118 	/*
3119 	 * record memcg information,  if swapout && memcg != NULL,
3120 	 * mem_cgroup_get() was called in uncharge().
3121 	 */
3122 	if (do_swap_account && swapout && memcg)
3123 		swap_cgroup_record(ent, css_id(&memcg->css));
3124 }
3125 #endif
3126 
3127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3128 /*
3129  * called from swap_entry_free(). remove record in swap_cgroup and
3130  * uncharge "memsw" account.
3131  */
3132 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3133 {
3134 	struct mem_cgroup *memcg;
3135 	unsigned short id;
3136 
3137 	if (!do_swap_account)
3138 		return;
3139 
3140 	id = swap_cgroup_record(ent, 0);
3141 	rcu_read_lock();
3142 	memcg = mem_cgroup_lookup(id);
3143 	if (memcg) {
3144 		/*
3145 		 * We uncharge this because swap is freed.
3146 		 * This memcg can be obsolete one. We avoid calling css_tryget
3147 		 */
3148 		if (!mem_cgroup_is_root(memcg))
3149 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3150 		mem_cgroup_swap_statistics(memcg, false);
3151 		mem_cgroup_put(memcg);
3152 	}
3153 	rcu_read_unlock();
3154 }
3155 
3156 /**
3157  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158  * @entry: swap entry to be moved
3159  * @from:  mem_cgroup which the entry is moved from
3160  * @to:  mem_cgroup which the entry is moved to
3161  * @need_fixup: whether we should fixup res_counters and refcounts.
3162  *
3163  * It succeeds only when the swap_cgroup's record for this entry is the same
3164  * as the mem_cgroup's id of @from.
3165  *
3166  * Returns 0 on success, -EINVAL on failure.
3167  *
3168  * The caller must have charged to @to, IOW, called res_counter_charge() about
3169  * both res and memsw, and called css_get().
3170  */
3171 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3173 {
3174 	unsigned short old_id, new_id;
3175 
3176 	old_id = css_id(&from->css);
3177 	new_id = css_id(&to->css);
3178 
3179 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3180 		mem_cgroup_swap_statistics(from, false);
3181 		mem_cgroup_swap_statistics(to, true);
3182 		/*
3183 		 * This function is only called from task migration context now.
3184 		 * It postpones res_counter and refcount handling till the end
3185 		 * of task migration(mem_cgroup_clear_mc()) for performance
3186 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3187 		 * because if the process that has been moved to @to does
3188 		 * swap-in, the refcount of @to might be decreased to 0.
3189 		 */
3190 		mem_cgroup_get(to);
3191 		if (need_fixup) {
3192 			if (!mem_cgroup_is_root(from))
3193 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3194 			mem_cgroup_put(from);
3195 			/*
3196 			 * we charged both to->res and to->memsw, so we should
3197 			 * uncharge to->res.
3198 			 */
3199 			if (!mem_cgroup_is_root(to))
3200 				res_counter_uncharge(&to->res, PAGE_SIZE);
3201 		}
3202 		return 0;
3203 	}
3204 	return -EINVAL;
3205 }
3206 #else
3207 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3208 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3209 {
3210 	return -EINVAL;
3211 }
3212 #endif
3213 
3214 /*
3215  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3216  * page belongs to.
3217  */
3218 int mem_cgroup_prepare_migration(struct page *page,
3219 	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3220 {
3221 	struct mem_cgroup *mem = NULL;
3222 	struct page_cgroup *pc;
3223 	enum charge_type ctype;
3224 	int ret = 0;
3225 
3226 	*ptr = NULL;
3227 
3228 	VM_BUG_ON(PageTransHuge(page));
3229 	if (mem_cgroup_disabled())
3230 		return 0;
3231 
3232 	pc = lookup_page_cgroup(page);
3233 	lock_page_cgroup(pc);
3234 	if (PageCgroupUsed(pc)) {
3235 		mem = pc->mem_cgroup;
3236 		css_get(&mem->css);
3237 		/*
3238 		 * At migrating an anonymous page, its mapcount goes down
3239 		 * to 0 and uncharge() will be called. But, even if it's fully
3240 		 * unmapped, migration may fail and this page has to be
3241 		 * charged again. We set MIGRATION flag here and delay uncharge
3242 		 * until end_migration() is called
3243 		 *
3244 		 * Corner Case Thinking
3245 		 * A)
3246 		 * When the old page was mapped as Anon and it's unmap-and-freed
3247 		 * while migration was ongoing.
3248 		 * If unmap finds the old page, uncharge() of it will be delayed
3249 		 * until end_migration(). If unmap finds a new page, it's
3250 		 * uncharged when it make mapcount to be 1->0. If unmap code
3251 		 * finds swap_migration_entry, the new page will not be mapped
3252 		 * and end_migration() will find it(mapcount==0).
3253 		 *
3254 		 * B)
3255 		 * When the old page was mapped but migraion fails, the kernel
3256 		 * remaps it. A charge for it is kept by MIGRATION flag even
3257 		 * if mapcount goes down to 0. We can do remap successfully
3258 		 * without charging it again.
3259 		 *
3260 		 * C)
3261 		 * The "old" page is under lock_page() until the end of
3262 		 * migration, so, the old page itself will not be swapped-out.
3263 		 * If the new page is swapped out before end_migraton, our
3264 		 * hook to usual swap-out path will catch the event.
3265 		 */
3266 		if (PageAnon(page))
3267 			SetPageCgroupMigration(pc);
3268 	}
3269 	unlock_page_cgroup(pc);
3270 	/*
3271 	 * If the page is not charged at this point,
3272 	 * we return here.
3273 	 */
3274 	if (!mem)
3275 		return 0;
3276 
3277 	*ptr = mem;
3278 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3279 	css_put(&mem->css);/* drop extra refcnt */
3280 	if (ret || *ptr == NULL) {
3281 		if (PageAnon(page)) {
3282 			lock_page_cgroup(pc);
3283 			ClearPageCgroupMigration(pc);
3284 			unlock_page_cgroup(pc);
3285 			/*
3286 			 * The old page may be fully unmapped while we kept it.
3287 			 */
3288 			mem_cgroup_uncharge_page(page);
3289 		}
3290 		return -ENOMEM;
3291 	}
3292 	/*
3293 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3294 	 * is called before end_migration, we can catch all events on this new
3295 	 * page. In the case new page is migrated but not remapped, new page's
3296 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3297 	 */
3298 	pc = lookup_page_cgroup(newpage);
3299 	if (PageAnon(page))
3300 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3301 	else if (page_is_file_cache(page))
3302 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3303 	else
3304 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3305 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3306 	return ret;
3307 }
3308 
3309 /* remove redundant charge if migration failed*/
3310 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3311 	struct page *oldpage, struct page *newpage, bool migration_ok)
3312 {
3313 	struct page *used, *unused;
3314 	struct page_cgroup *pc;
3315 
3316 	if (!mem)
3317 		return;
3318 	/* blocks rmdir() */
3319 	cgroup_exclude_rmdir(&mem->css);
3320 	if (!migration_ok) {
3321 		used = oldpage;
3322 		unused = newpage;
3323 	} else {
3324 		used = newpage;
3325 		unused = oldpage;
3326 	}
3327 	/*
3328 	 * We disallowed uncharge of pages under migration because mapcount
3329 	 * of the page goes down to zero, temporarly.
3330 	 * Clear the flag and check the page should be charged.
3331 	 */
3332 	pc = lookup_page_cgroup(oldpage);
3333 	lock_page_cgroup(pc);
3334 	ClearPageCgroupMigration(pc);
3335 	unlock_page_cgroup(pc);
3336 
3337 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3338 
3339 	/*
3340 	 * If a page is a file cache, radix-tree replacement is very atomic
3341 	 * and we can skip this check. When it was an Anon page, its mapcount
3342 	 * goes down to 0. But because we added MIGRATION flage, it's not
3343 	 * uncharged yet. There are several case but page->mapcount check
3344 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345 	 * check. (see prepare_charge() also)
3346 	 */
3347 	if (PageAnon(used))
3348 		mem_cgroup_uncharge_page(used);
3349 	/*
3350 	 * At migration, we may charge account against cgroup which has no
3351 	 * tasks.
3352 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353 	 * In that case, we need to call pre_destroy() again. check it here.
3354 	 */
3355 	cgroup_release_and_wakeup_rmdir(&mem->css);
3356 }
3357 
3358 #ifdef CONFIG_DEBUG_VM
3359 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3360 {
3361 	struct page_cgroup *pc;
3362 
3363 	pc = lookup_page_cgroup(page);
3364 	if (likely(pc) && PageCgroupUsed(pc))
3365 		return pc;
3366 	return NULL;
3367 }
3368 
3369 bool mem_cgroup_bad_page_check(struct page *page)
3370 {
3371 	if (mem_cgroup_disabled())
3372 		return false;
3373 
3374 	return lookup_page_cgroup_used(page) != NULL;
3375 }
3376 
3377 void mem_cgroup_print_bad_page(struct page *page)
3378 {
3379 	struct page_cgroup *pc;
3380 
3381 	pc = lookup_page_cgroup_used(page);
3382 	if (pc) {
3383 		int ret = -1;
3384 		char *path;
3385 
3386 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387 		       pc, pc->flags, pc->mem_cgroup);
3388 
3389 		path = kmalloc(PATH_MAX, GFP_KERNEL);
3390 		if (path) {
3391 			rcu_read_lock();
3392 			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393 							path, PATH_MAX);
3394 			rcu_read_unlock();
3395 		}
3396 
3397 		printk(KERN_CONT "(%s)\n",
3398 				(ret < 0) ? "cannot get the path" : path);
3399 		kfree(path);
3400 	}
3401 }
3402 #endif
3403 
3404 static DEFINE_MUTEX(set_limit_mutex);
3405 
3406 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407 				unsigned long long val)
3408 {
3409 	int retry_count;
3410 	u64 memswlimit, memlimit;
3411 	int ret = 0;
3412 	int children = mem_cgroup_count_children(memcg);
3413 	u64 curusage, oldusage;
3414 	int enlarge;
3415 
3416 	/*
3417 	 * For keeping hierarchical_reclaim simple, how long we should retry
3418 	 * is depends on callers. We set our retry-count to be function
3419 	 * of # of children which we should visit in this loop.
3420 	 */
3421 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3422 
3423 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424 
3425 	enlarge = 0;
3426 	while (retry_count) {
3427 		if (signal_pending(current)) {
3428 			ret = -EINTR;
3429 			break;
3430 		}
3431 		/*
3432 		 * Rather than hide all in some function, I do this in
3433 		 * open coded manner. You see what this really does.
3434 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3435 		 */
3436 		mutex_lock(&set_limit_mutex);
3437 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438 		if (memswlimit < val) {
3439 			ret = -EINVAL;
3440 			mutex_unlock(&set_limit_mutex);
3441 			break;
3442 		}
3443 
3444 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445 		if (memlimit < val)
3446 			enlarge = 1;
3447 
3448 		ret = res_counter_set_limit(&memcg->res, val);
3449 		if (!ret) {
3450 			if (memswlimit == val)
3451 				memcg->memsw_is_minimum = true;
3452 			else
3453 				memcg->memsw_is_minimum = false;
3454 		}
3455 		mutex_unlock(&set_limit_mutex);
3456 
3457 		if (!ret)
3458 			break;
3459 
3460 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461 						MEM_CGROUP_RECLAIM_SHRINK,
3462 						NULL);
3463 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464 		/* Usage is reduced ? */
3465   		if (curusage >= oldusage)
3466 			retry_count--;
3467 		else
3468 			oldusage = curusage;
3469 	}
3470 	if (!ret && enlarge)
3471 		memcg_oom_recover(memcg);
3472 
3473 	return ret;
3474 }
3475 
3476 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477 					unsigned long long val)
3478 {
3479 	int retry_count;
3480 	u64 memlimit, memswlimit, oldusage, curusage;
3481 	int children = mem_cgroup_count_children(memcg);
3482 	int ret = -EBUSY;
3483 	int enlarge = 0;
3484 
3485 	/* see mem_cgroup_resize_res_limit */
3486  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488 	while (retry_count) {
3489 		if (signal_pending(current)) {
3490 			ret = -EINTR;
3491 			break;
3492 		}
3493 		/*
3494 		 * Rather than hide all in some function, I do this in
3495 		 * open coded manner. You see what this really does.
3496 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3497 		 */
3498 		mutex_lock(&set_limit_mutex);
3499 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500 		if (memlimit > val) {
3501 			ret = -EINVAL;
3502 			mutex_unlock(&set_limit_mutex);
3503 			break;
3504 		}
3505 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506 		if (memswlimit < val)
3507 			enlarge = 1;
3508 		ret = res_counter_set_limit(&memcg->memsw, val);
3509 		if (!ret) {
3510 			if (memlimit == val)
3511 				memcg->memsw_is_minimum = true;
3512 			else
3513 				memcg->memsw_is_minimum = false;
3514 		}
3515 		mutex_unlock(&set_limit_mutex);
3516 
3517 		if (!ret)
3518 			break;
3519 
3520 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521 						MEM_CGROUP_RECLAIM_NOSWAP |
3522 						MEM_CGROUP_RECLAIM_SHRINK,
3523 						NULL);
3524 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525 		/* Usage is reduced ? */
3526 		if (curusage >= oldusage)
3527 			retry_count--;
3528 		else
3529 			oldusage = curusage;
3530 	}
3531 	if (!ret && enlarge)
3532 		memcg_oom_recover(memcg);
3533 	return ret;
3534 }
3535 
3536 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537 					    gfp_t gfp_mask,
3538 					    unsigned long *total_scanned)
3539 {
3540 	unsigned long nr_reclaimed = 0;
3541 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542 	unsigned long reclaimed;
3543 	int loop = 0;
3544 	struct mem_cgroup_tree_per_zone *mctz;
3545 	unsigned long long excess;
3546 	unsigned long nr_scanned;
3547 
3548 	if (order > 0)
3549 		return 0;
3550 
3551 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3552 	/*
3553 	 * This loop can run a while, specially if mem_cgroup's continuously
3554 	 * keep exceeding their soft limit and putting the system under
3555 	 * pressure
3556 	 */
3557 	do {
3558 		if (next_mz)
3559 			mz = next_mz;
3560 		else
3561 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 		if (!mz)
3563 			break;
3564 
3565 		nr_scanned = 0;
3566 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567 						gfp_mask,
3568 						MEM_CGROUP_RECLAIM_SOFT,
3569 						&nr_scanned);
3570 		nr_reclaimed += reclaimed;
3571 		*total_scanned += nr_scanned;
3572 		spin_lock(&mctz->lock);
3573 
3574 		/*
3575 		 * If we failed to reclaim anything from this memory cgroup
3576 		 * it is time to move on to the next cgroup
3577 		 */
3578 		next_mz = NULL;
3579 		if (!reclaimed) {
3580 			do {
3581 				/*
3582 				 * Loop until we find yet another one.
3583 				 *
3584 				 * By the time we get the soft_limit lock
3585 				 * again, someone might have aded the
3586 				 * group back on the RB tree. Iterate to
3587 				 * make sure we get a different mem.
3588 				 * mem_cgroup_largest_soft_limit_node returns
3589 				 * NULL if no other cgroup is present on
3590 				 * the tree
3591 				 */
3592 				next_mz =
3593 				__mem_cgroup_largest_soft_limit_node(mctz);
3594 				if (next_mz == mz)
3595 					css_put(&next_mz->mem->css);
3596 				else /* next_mz == NULL or other memcg */
3597 					break;
3598 			} while (1);
3599 		}
3600 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3602 		/*
3603 		 * One school of thought says that we should not add
3604 		 * back the node to the tree if reclaim returns 0.
3605 		 * But our reclaim could return 0, simply because due
3606 		 * to priority we are exposing a smaller subset of
3607 		 * memory to reclaim from. Consider this as a longer
3608 		 * term TODO.
3609 		 */
3610 		/* If excess == 0, no tree ops */
3611 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612 		spin_unlock(&mctz->lock);
3613 		css_put(&mz->mem->css);
3614 		loop++;
3615 		/*
3616 		 * Could not reclaim anything and there are no more
3617 		 * mem cgroups to try or we seem to be looping without
3618 		 * reclaiming anything.
3619 		 */
3620 		if (!nr_reclaimed &&
3621 			(next_mz == NULL ||
3622 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623 			break;
3624 	} while (!nr_reclaimed);
3625 	if (next_mz)
3626 		css_put(&next_mz->mem->css);
3627 	return nr_reclaimed;
3628 }
3629 
3630 /*
3631  * This routine traverse page_cgroup in given list and drop them all.
3632  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3633  */
3634 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3635 				int node, int zid, enum lru_list lru)
3636 {
3637 	struct zone *zone;
3638 	struct mem_cgroup_per_zone *mz;
3639 	struct page_cgroup *pc, *busy;
3640 	unsigned long flags, loop;
3641 	struct list_head *list;
3642 	int ret = 0;
3643 
3644 	zone = &NODE_DATA(node)->node_zones[zid];
3645 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3646 	list = &mz->lists[lru];
3647 
3648 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3649 	/* give some margin against EBUSY etc...*/
3650 	loop += 256;
3651 	busy = NULL;
3652 	while (loop--) {
3653 		struct page *page;
3654 
3655 		ret = 0;
3656 		spin_lock_irqsave(&zone->lru_lock, flags);
3657 		if (list_empty(list)) {
3658 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3659 			break;
3660 		}
3661 		pc = list_entry(list->prev, struct page_cgroup, lru);
3662 		if (busy == pc) {
3663 			list_move(&pc->lru, list);
3664 			busy = NULL;
3665 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 			continue;
3667 		}
3668 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3669 
3670 		page = lookup_cgroup_page(pc);
3671 
3672 		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673 		if (ret == -ENOMEM)
3674 			break;
3675 
3676 		if (ret == -EBUSY || ret == -EINVAL) {
3677 			/* found lock contention or "pc" is obsolete. */
3678 			busy = pc;
3679 			cond_resched();
3680 		} else
3681 			busy = NULL;
3682 	}
3683 
3684 	if (!ret && !list_empty(list))
3685 		return -EBUSY;
3686 	return ret;
3687 }
3688 
3689 /*
3690  * make mem_cgroup's charge to be 0 if there is no task.
3691  * This enables deleting this mem_cgroup.
3692  */
3693 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3694 {
3695 	int ret;
3696 	int node, zid, shrink;
3697 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698 	struct cgroup *cgrp = mem->css.cgroup;
3699 
3700 	css_get(&mem->css);
3701 
3702 	shrink = 0;
3703 	/* should free all ? */
3704 	if (free_all)
3705 		goto try_to_free;
3706 move_account:
3707 	do {
3708 		ret = -EBUSY;
3709 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710 			goto out;
3711 		ret = -EINTR;
3712 		if (signal_pending(current))
3713 			goto out;
3714 		/* This is for making all *used* pages to be on LRU. */
3715 		lru_add_drain_all();
3716 		drain_all_stock_sync(mem);
3717 		ret = 0;
3718 		mem_cgroup_start_move(mem);
3719 		for_each_node_state(node, N_HIGH_MEMORY) {
3720 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721 				enum lru_list l;
3722 				for_each_lru(l) {
3723 					ret = mem_cgroup_force_empty_list(mem,
3724 							node, zid, l);
3725 					if (ret)
3726 						break;
3727 				}
3728 			}
3729 			if (ret)
3730 				break;
3731 		}
3732 		mem_cgroup_end_move(mem);
3733 		memcg_oom_recover(mem);
3734 		/* it seems parent cgroup doesn't have enough mem */
3735 		if (ret == -ENOMEM)
3736 			goto try_to_free;
3737 		cond_resched();
3738 	/* "ret" should also be checked to ensure all lists are empty. */
3739 	} while (mem->res.usage > 0 || ret);
3740 out:
3741 	css_put(&mem->css);
3742 	return ret;
3743 
3744 try_to_free:
3745 	/* returns EBUSY if there is a task or if we come here twice. */
3746 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747 		ret = -EBUSY;
3748 		goto out;
3749 	}
3750 	/* we call try-to-free pages for make this cgroup empty */
3751 	lru_add_drain_all();
3752 	/* try to free all pages in this cgroup */
3753 	shrink = 1;
3754 	while (nr_retries && mem->res.usage > 0) {
3755 		int progress;
3756 
3757 		if (signal_pending(current)) {
3758 			ret = -EINTR;
3759 			goto out;
3760 		}
3761 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762 						false);
3763 		if (!progress) {
3764 			nr_retries--;
3765 			/* maybe some writeback is necessary */
3766 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3767 		}
3768 
3769 	}
3770 	lru_add_drain();
3771 	/* try move_account...there may be some *locked* pages. */
3772 	goto move_account;
3773 }
3774 
3775 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3776 {
3777 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778 }
3779 
3780 
3781 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3782 {
3783 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3784 }
3785 
3786 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787 					u64 val)
3788 {
3789 	int retval = 0;
3790 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791 	struct cgroup *parent = cont->parent;
3792 	struct mem_cgroup *parent_mem = NULL;
3793 
3794 	if (parent)
3795 		parent_mem = mem_cgroup_from_cont(parent);
3796 
3797 	cgroup_lock();
3798 	/*
3799 	 * If parent's use_hierarchy is set, we can't make any modifications
3800 	 * in the child subtrees. If it is unset, then the change can
3801 	 * occur, provided the current cgroup has no children.
3802 	 *
3803 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 	 * set if there are no children.
3805 	 */
3806 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807 				(val == 1 || val == 0)) {
3808 		if (list_empty(&cont->children))
3809 			mem->use_hierarchy = val;
3810 		else
3811 			retval = -EBUSY;
3812 	} else
3813 		retval = -EINVAL;
3814 	cgroup_unlock();
3815 
3816 	return retval;
3817 }
3818 
3819 
3820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821 					       enum mem_cgroup_stat_index idx)
3822 {
3823 	struct mem_cgroup *iter;
3824 	long val = 0;
3825 
3826 	/* Per-cpu values can be negative, use a signed accumulator */
3827 	for_each_mem_cgroup_tree(iter, mem)
3828 		val += mem_cgroup_read_stat(iter, idx);
3829 
3830 	if (val < 0) /* race ? */
3831 		val = 0;
3832 	return val;
3833 }
3834 
3835 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3836 {
3837 	u64 val;
3838 
3839 	if (!mem_cgroup_is_root(mem)) {
3840 		if (!swap)
3841 			return res_counter_read_u64(&mem->res, RES_USAGE);
3842 		else
3843 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3844 	}
3845 
3846 	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847 	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3848 
3849 	if (swap)
3850 		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3851 
3852 	return val << PAGE_SHIFT;
3853 }
3854 
3855 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3856 {
3857 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858 	u64 val;
3859 	int type, name;
3860 
3861 	type = MEMFILE_TYPE(cft->private);
3862 	name = MEMFILE_ATTR(cft->private);
3863 	switch (type) {
3864 	case _MEM:
3865 		if (name == RES_USAGE)
3866 			val = mem_cgroup_usage(mem, false);
3867 		else
3868 			val = res_counter_read_u64(&mem->res, name);
3869 		break;
3870 	case _MEMSWAP:
3871 		if (name == RES_USAGE)
3872 			val = mem_cgroup_usage(mem, true);
3873 		else
3874 			val = res_counter_read_u64(&mem->memsw, name);
3875 		break;
3876 	default:
3877 		BUG();
3878 		break;
3879 	}
3880 	return val;
3881 }
3882 /*
3883  * The user of this function is...
3884  * RES_LIMIT.
3885  */
3886 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887 			    const char *buffer)
3888 {
3889 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890 	int type, name;
3891 	unsigned long long val;
3892 	int ret;
3893 
3894 	type = MEMFILE_TYPE(cft->private);
3895 	name = MEMFILE_ATTR(cft->private);
3896 	switch (name) {
3897 	case RES_LIMIT:
3898 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899 			ret = -EINVAL;
3900 			break;
3901 		}
3902 		/* This function does all necessary parse...reuse it */
3903 		ret = res_counter_memparse_write_strategy(buffer, &val);
3904 		if (ret)
3905 			break;
3906 		if (type == _MEM)
3907 			ret = mem_cgroup_resize_limit(memcg, val);
3908 		else
3909 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910 		break;
3911 	case RES_SOFT_LIMIT:
3912 		ret = res_counter_memparse_write_strategy(buffer, &val);
3913 		if (ret)
3914 			break;
3915 		/*
3916 		 * For memsw, soft limits are hard to implement in terms
3917 		 * of semantics, for now, we support soft limits for
3918 		 * control without swap
3919 		 */
3920 		if (type == _MEM)
3921 			ret = res_counter_set_soft_limit(&memcg->res, val);
3922 		else
3923 			ret = -EINVAL;
3924 		break;
3925 	default:
3926 		ret = -EINVAL; /* should be BUG() ? */
3927 		break;
3928 	}
3929 	return ret;
3930 }
3931 
3932 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3934 {
3935 	struct cgroup *cgroup;
3936 	unsigned long long min_limit, min_memsw_limit, tmp;
3937 
3938 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940 	cgroup = memcg->css.cgroup;
3941 	if (!memcg->use_hierarchy)
3942 		goto out;
3943 
3944 	while (cgroup->parent) {
3945 		cgroup = cgroup->parent;
3946 		memcg = mem_cgroup_from_cont(cgroup);
3947 		if (!memcg->use_hierarchy)
3948 			break;
3949 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950 		min_limit = min(min_limit, tmp);
3951 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952 		min_memsw_limit = min(min_memsw_limit, tmp);
3953 	}
3954 out:
3955 	*mem_limit = min_limit;
3956 	*memsw_limit = min_memsw_limit;
3957 	return;
3958 }
3959 
3960 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3961 {
3962 	struct mem_cgroup *mem;
3963 	int type, name;
3964 
3965 	mem = mem_cgroup_from_cont(cont);
3966 	type = MEMFILE_TYPE(event);
3967 	name = MEMFILE_ATTR(event);
3968 	switch (name) {
3969 	case RES_MAX_USAGE:
3970 		if (type == _MEM)
3971 			res_counter_reset_max(&mem->res);
3972 		else
3973 			res_counter_reset_max(&mem->memsw);
3974 		break;
3975 	case RES_FAILCNT:
3976 		if (type == _MEM)
3977 			res_counter_reset_failcnt(&mem->res);
3978 		else
3979 			res_counter_reset_failcnt(&mem->memsw);
3980 		break;
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987 					struct cftype *cft)
3988 {
3989 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3990 }
3991 
3992 #ifdef CONFIG_MMU
3993 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994 					struct cftype *cft, u64 val)
3995 {
3996 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3997 
3998 	if (val >= (1 << NR_MOVE_TYPE))
3999 		return -EINVAL;
4000 	/*
4001 	 * We check this value several times in both in can_attach() and
4002 	 * attach(), so we need cgroup lock to prevent this value from being
4003 	 * inconsistent.
4004 	 */
4005 	cgroup_lock();
4006 	mem->move_charge_at_immigrate = val;
4007 	cgroup_unlock();
4008 
4009 	return 0;
4010 }
4011 #else
4012 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013 					struct cftype *cft, u64 val)
4014 {
4015 	return -ENOSYS;
4016 }
4017 #endif
4018 
4019 
4020 /* For read statistics */
4021 enum {
4022 	MCS_CACHE,
4023 	MCS_RSS,
4024 	MCS_FILE_MAPPED,
4025 	MCS_PGPGIN,
4026 	MCS_PGPGOUT,
4027 	MCS_SWAP,
4028 	MCS_PGFAULT,
4029 	MCS_PGMAJFAULT,
4030 	MCS_INACTIVE_ANON,
4031 	MCS_ACTIVE_ANON,
4032 	MCS_INACTIVE_FILE,
4033 	MCS_ACTIVE_FILE,
4034 	MCS_UNEVICTABLE,
4035 	NR_MCS_STAT,
4036 };
4037 
4038 struct mcs_total_stat {
4039 	s64 stat[NR_MCS_STAT];
4040 };
4041 
4042 struct {
4043 	char *local_name;
4044 	char *total_name;
4045 } memcg_stat_strings[NR_MCS_STAT] = {
4046 	{"cache", "total_cache"},
4047 	{"rss", "total_rss"},
4048 	{"mapped_file", "total_mapped_file"},
4049 	{"pgpgin", "total_pgpgin"},
4050 	{"pgpgout", "total_pgpgout"},
4051 	{"swap", "total_swap"},
4052 	{"pgfault", "total_pgfault"},
4053 	{"pgmajfault", "total_pgmajfault"},
4054 	{"inactive_anon", "total_inactive_anon"},
4055 	{"active_anon", "total_active_anon"},
4056 	{"inactive_file", "total_inactive_file"},
4057 	{"active_file", "total_active_file"},
4058 	{"unevictable", "total_unevictable"}
4059 };
4060 
4061 
4062 static void
4063 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4064 {
4065 	s64 val;
4066 
4067 	/* per cpu stat */
4068 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4069 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4071 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4072 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4075 	s->stat[MCS_PGPGIN] += val;
4076 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4077 	s->stat[MCS_PGPGOUT] += val;
4078 	if (do_swap_account) {
4079 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4081 	}
4082 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083 	s->stat[MCS_PGFAULT] += val;
4084 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085 	s->stat[MCS_PGMAJFAULT] += val;
4086 
4087 	/* per zone stat */
4088 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4089 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4091 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4093 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4095 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4097 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4098 }
4099 
4100 static void
4101 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4102 {
4103 	struct mem_cgroup *iter;
4104 
4105 	for_each_mem_cgroup_tree(iter, mem)
4106 		mem_cgroup_get_local_stat(iter, s);
4107 }
4108 
4109 #ifdef CONFIG_NUMA
4110 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4111 {
4112 	int nid;
4113 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114 	unsigned long node_nr;
4115 	struct cgroup *cont = m->private;
4116 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4117 
4118 	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4119 	seq_printf(m, "total=%lu", total_nr);
4120 	for_each_node_state(nid, N_HIGH_MEMORY) {
4121 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4122 		seq_printf(m, " N%d=%lu", nid, node_nr);
4123 	}
4124 	seq_putc(m, '\n');
4125 
4126 	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4127 	seq_printf(m, "file=%lu", file_nr);
4128 	for_each_node_state(nid, N_HIGH_MEMORY) {
4129 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4130 				LRU_ALL_FILE);
4131 		seq_printf(m, " N%d=%lu", nid, node_nr);
4132 	}
4133 	seq_putc(m, '\n');
4134 
4135 	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4136 	seq_printf(m, "anon=%lu", anon_nr);
4137 	for_each_node_state(nid, N_HIGH_MEMORY) {
4138 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4139 				LRU_ALL_ANON);
4140 		seq_printf(m, " N%d=%lu", nid, node_nr);
4141 	}
4142 	seq_putc(m, '\n');
4143 
4144 	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4145 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4146 	for_each_node_state(nid, N_HIGH_MEMORY) {
4147 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4148 				BIT(LRU_UNEVICTABLE));
4149 		seq_printf(m, " N%d=%lu", nid, node_nr);
4150 	}
4151 	seq_putc(m, '\n');
4152 	return 0;
4153 }
4154 #endif /* CONFIG_NUMA */
4155 
4156 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4157 				 struct cgroup_map_cb *cb)
4158 {
4159 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4160 	struct mcs_total_stat mystat;
4161 	int i;
4162 
4163 	memset(&mystat, 0, sizeof(mystat));
4164 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4165 
4166 
4167 	for (i = 0; i < NR_MCS_STAT; i++) {
4168 		if (i == MCS_SWAP && !do_swap_account)
4169 			continue;
4170 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4171 	}
4172 
4173 	/* Hierarchical information */
4174 	{
4175 		unsigned long long limit, memsw_limit;
4176 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4177 		cb->fill(cb, "hierarchical_memory_limit", limit);
4178 		if (do_swap_account)
4179 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4180 	}
4181 
4182 	memset(&mystat, 0, sizeof(mystat));
4183 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4184 	for (i = 0; i < NR_MCS_STAT; i++) {
4185 		if (i == MCS_SWAP && !do_swap_account)
4186 			continue;
4187 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4188 	}
4189 
4190 #ifdef CONFIG_DEBUG_VM
4191 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4192 
4193 	{
4194 		int nid, zid;
4195 		struct mem_cgroup_per_zone *mz;
4196 		unsigned long recent_rotated[2] = {0, 0};
4197 		unsigned long recent_scanned[2] = {0, 0};
4198 
4199 		for_each_online_node(nid)
4200 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4201 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4202 
4203 				recent_rotated[0] +=
4204 					mz->reclaim_stat.recent_rotated[0];
4205 				recent_rotated[1] +=
4206 					mz->reclaim_stat.recent_rotated[1];
4207 				recent_scanned[0] +=
4208 					mz->reclaim_stat.recent_scanned[0];
4209 				recent_scanned[1] +=
4210 					mz->reclaim_stat.recent_scanned[1];
4211 			}
4212 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4213 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4214 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4215 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4216 	}
4217 #endif
4218 
4219 	return 0;
4220 }
4221 
4222 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4223 {
4224 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4225 
4226 	return mem_cgroup_swappiness(memcg);
4227 }
4228 
4229 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4230 				       u64 val)
4231 {
4232 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233 	struct mem_cgroup *parent;
4234 
4235 	if (val > 100)
4236 		return -EINVAL;
4237 
4238 	if (cgrp->parent == NULL)
4239 		return -EINVAL;
4240 
4241 	parent = mem_cgroup_from_cont(cgrp->parent);
4242 
4243 	cgroup_lock();
4244 
4245 	/* If under hierarchy, only empty-root can set this value */
4246 	if ((parent->use_hierarchy) ||
4247 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4248 		cgroup_unlock();
4249 		return -EINVAL;
4250 	}
4251 
4252 	memcg->swappiness = val;
4253 
4254 	cgroup_unlock();
4255 
4256 	return 0;
4257 }
4258 
4259 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4260 {
4261 	struct mem_cgroup_threshold_ary *t;
4262 	u64 usage;
4263 	int i;
4264 
4265 	rcu_read_lock();
4266 	if (!swap)
4267 		t = rcu_dereference(memcg->thresholds.primary);
4268 	else
4269 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4270 
4271 	if (!t)
4272 		goto unlock;
4273 
4274 	usage = mem_cgroup_usage(memcg, swap);
4275 
4276 	/*
4277 	 * current_threshold points to threshold just below usage.
4278 	 * If it's not true, a threshold was crossed after last
4279 	 * call of __mem_cgroup_threshold().
4280 	 */
4281 	i = t->current_threshold;
4282 
4283 	/*
4284 	 * Iterate backward over array of thresholds starting from
4285 	 * current_threshold and check if a threshold is crossed.
4286 	 * If none of thresholds below usage is crossed, we read
4287 	 * only one element of the array here.
4288 	 */
4289 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4290 		eventfd_signal(t->entries[i].eventfd, 1);
4291 
4292 	/* i = current_threshold + 1 */
4293 	i++;
4294 
4295 	/*
4296 	 * Iterate forward over array of thresholds starting from
4297 	 * current_threshold+1 and check if a threshold is crossed.
4298 	 * If none of thresholds above usage is crossed, we read
4299 	 * only one element of the array here.
4300 	 */
4301 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4302 		eventfd_signal(t->entries[i].eventfd, 1);
4303 
4304 	/* Update current_threshold */
4305 	t->current_threshold = i - 1;
4306 unlock:
4307 	rcu_read_unlock();
4308 }
4309 
4310 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4311 {
4312 	while (memcg) {
4313 		__mem_cgroup_threshold(memcg, false);
4314 		if (do_swap_account)
4315 			__mem_cgroup_threshold(memcg, true);
4316 
4317 		memcg = parent_mem_cgroup(memcg);
4318 	}
4319 }
4320 
4321 static int compare_thresholds(const void *a, const void *b)
4322 {
4323 	const struct mem_cgroup_threshold *_a = a;
4324 	const struct mem_cgroup_threshold *_b = b;
4325 
4326 	return _a->threshold - _b->threshold;
4327 }
4328 
4329 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4330 {
4331 	struct mem_cgroup_eventfd_list *ev;
4332 
4333 	list_for_each_entry(ev, &mem->oom_notify, list)
4334 		eventfd_signal(ev->eventfd, 1);
4335 	return 0;
4336 }
4337 
4338 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4339 {
4340 	struct mem_cgroup *iter;
4341 
4342 	for_each_mem_cgroup_tree(iter, mem)
4343 		mem_cgroup_oom_notify_cb(iter);
4344 }
4345 
4346 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4347 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4348 {
4349 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4350 	struct mem_cgroup_thresholds *thresholds;
4351 	struct mem_cgroup_threshold_ary *new;
4352 	int type = MEMFILE_TYPE(cft->private);
4353 	u64 threshold, usage;
4354 	int i, size, ret;
4355 
4356 	ret = res_counter_memparse_write_strategy(args, &threshold);
4357 	if (ret)
4358 		return ret;
4359 
4360 	mutex_lock(&memcg->thresholds_lock);
4361 
4362 	if (type == _MEM)
4363 		thresholds = &memcg->thresholds;
4364 	else if (type == _MEMSWAP)
4365 		thresholds = &memcg->memsw_thresholds;
4366 	else
4367 		BUG();
4368 
4369 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4370 
4371 	/* Check if a threshold crossed before adding a new one */
4372 	if (thresholds->primary)
4373 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4374 
4375 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4376 
4377 	/* Allocate memory for new array of thresholds */
4378 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4379 			GFP_KERNEL);
4380 	if (!new) {
4381 		ret = -ENOMEM;
4382 		goto unlock;
4383 	}
4384 	new->size = size;
4385 
4386 	/* Copy thresholds (if any) to new array */
4387 	if (thresholds->primary) {
4388 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4389 				sizeof(struct mem_cgroup_threshold));
4390 	}
4391 
4392 	/* Add new threshold */
4393 	new->entries[size - 1].eventfd = eventfd;
4394 	new->entries[size - 1].threshold = threshold;
4395 
4396 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4397 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4398 			compare_thresholds, NULL);
4399 
4400 	/* Find current threshold */
4401 	new->current_threshold = -1;
4402 	for (i = 0; i < size; i++) {
4403 		if (new->entries[i].threshold < usage) {
4404 			/*
4405 			 * new->current_threshold will not be used until
4406 			 * rcu_assign_pointer(), so it's safe to increment
4407 			 * it here.
4408 			 */
4409 			++new->current_threshold;
4410 		}
4411 	}
4412 
4413 	/* Free old spare buffer and save old primary buffer as spare */
4414 	kfree(thresholds->spare);
4415 	thresholds->spare = thresholds->primary;
4416 
4417 	rcu_assign_pointer(thresholds->primary, new);
4418 
4419 	/* To be sure that nobody uses thresholds */
4420 	synchronize_rcu();
4421 
4422 unlock:
4423 	mutex_unlock(&memcg->thresholds_lock);
4424 
4425 	return ret;
4426 }
4427 
4428 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4429 	struct cftype *cft, struct eventfd_ctx *eventfd)
4430 {
4431 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4432 	struct mem_cgroup_thresholds *thresholds;
4433 	struct mem_cgroup_threshold_ary *new;
4434 	int type = MEMFILE_TYPE(cft->private);
4435 	u64 usage;
4436 	int i, j, size;
4437 
4438 	mutex_lock(&memcg->thresholds_lock);
4439 	if (type == _MEM)
4440 		thresholds = &memcg->thresholds;
4441 	else if (type == _MEMSWAP)
4442 		thresholds = &memcg->memsw_thresholds;
4443 	else
4444 		BUG();
4445 
4446 	/*
4447 	 * Something went wrong if we trying to unregister a threshold
4448 	 * if we don't have thresholds
4449 	 */
4450 	BUG_ON(!thresholds);
4451 
4452 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453 
4454 	/* Check if a threshold crossed before removing */
4455 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456 
4457 	/* Calculate new number of threshold */
4458 	size = 0;
4459 	for (i = 0; i < thresholds->primary->size; i++) {
4460 		if (thresholds->primary->entries[i].eventfd != eventfd)
4461 			size++;
4462 	}
4463 
4464 	new = thresholds->spare;
4465 
4466 	/* Set thresholds array to NULL if we don't have thresholds */
4467 	if (!size) {
4468 		kfree(new);
4469 		new = NULL;
4470 		goto swap_buffers;
4471 	}
4472 
4473 	new->size = size;
4474 
4475 	/* Copy thresholds and find current threshold */
4476 	new->current_threshold = -1;
4477 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478 		if (thresholds->primary->entries[i].eventfd == eventfd)
4479 			continue;
4480 
4481 		new->entries[j] = thresholds->primary->entries[i];
4482 		if (new->entries[j].threshold < usage) {
4483 			/*
4484 			 * new->current_threshold will not be used
4485 			 * until rcu_assign_pointer(), so it's safe to increment
4486 			 * it here.
4487 			 */
4488 			++new->current_threshold;
4489 		}
4490 		j++;
4491 	}
4492 
4493 swap_buffers:
4494 	/* Swap primary and spare array */
4495 	thresholds->spare = thresholds->primary;
4496 	rcu_assign_pointer(thresholds->primary, new);
4497 
4498 	/* To be sure that nobody uses thresholds */
4499 	synchronize_rcu();
4500 
4501 	mutex_unlock(&memcg->thresholds_lock);
4502 }
4503 
4504 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4505 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4506 {
4507 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508 	struct mem_cgroup_eventfd_list *event;
4509 	int type = MEMFILE_TYPE(cft->private);
4510 
4511 	BUG_ON(type != _OOM_TYPE);
4512 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4513 	if (!event)
4514 		return -ENOMEM;
4515 
4516 	spin_lock(&memcg_oom_lock);
4517 
4518 	event->eventfd = eventfd;
4519 	list_add(&event->list, &memcg->oom_notify);
4520 
4521 	/* already in OOM ? */
4522 	if (atomic_read(&memcg->under_oom))
4523 		eventfd_signal(eventfd, 1);
4524 	spin_unlock(&memcg_oom_lock);
4525 
4526 	return 0;
4527 }
4528 
4529 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4530 	struct cftype *cft, struct eventfd_ctx *eventfd)
4531 {
4532 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4533 	struct mem_cgroup_eventfd_list *ev, *tmp;
4534 	int type = MEMFILE_TYPE(cft->private);
4535 
4536 	BUG_ON(type != _OOM_TYPE);
4537 
4538 	spin_lock(&memcg_oom_lock);
4539 
4540 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4541 		if (ev->eventfd == eventfd) {
4542 			list_del(&ev->list);
4543 			kfree(ev);
4544 		}
4545 	}
4546 
4547 	spin_unlock(&memcg_oom_lock);
4548 }
4549 
4550 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4551 	struct cftype *cft,  struct cgroup_map_cb *cb)
4552 {
4553 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554 
4555 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4556 
4557 	if (atomic_read(&mem->under_oom))
4558 		cb->fill(cb, "under_oom", 1);
4559 	else
4560 		cb->fill(cb, "under_oom", 0);
4561 	return 0;
4562 }
4563 
4564 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4565 	struct cftype *cft, u64 val)
4566 {
4567 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4568 	struct mem_cgroup *parent;
4569 
4570 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4571 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4572 		return -EINVAL;
4573 
4574 	parent = mem_cgroup_from_cont(cgrp->parent);
4575 
4576 	cgroup_lock();
4577 	/* oom-kill-disable is a flag for subhierarchy. */
4578 	if ((parent->use_hierarchy) ||
4579 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4580 		cgroup_unlock();
4581 		return -EINVAL;
4582 	}
4583 	mem->oom_kill_disable = val;
4584 	if (!val)
4585 		memcg_oom_recover(mem);
4586 	cgroup_unlock();
4587 	return 0;
4588 }
4589 
4590 #ifdef CONFIG_NUMA
4591 static const struct file_operations mem_control_numa_stat_file_operations = {
4592 	.read = seq_read,
4593 	.llseek = seq_lseek,
4594 	.release = single_release,
4595 };
4596 
4597 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4598 {
4599 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4600 
4601 	file->f_op = &mem_control_numa_stat_file_operations;
4602 	return single_open(file, mem_control_numa_stat_show, cont);
4603 }
4604 #endif /* CONFIG_NUMA */
4605 
4606 static struct cftype mem_cgroup_files[] = {
4607 	{
4608 		.name = "usage_in_bytes",
4609 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610 		.read_u64 = mem_cgroup_read,
4611 		.register_event = mem_cgroup_usage_register_event,
4612 		.unregister_event = mem_cgroup_usage_unregister_event,
4613 	},
4614 	{
4615 		.name = "max_usage_in_bytes",
4616 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617 		.trigger = mem_cgroup_reset,
4618 		.read_u64 = mem_cgroup_read,
4619 	},
4620 	{
4621 		.name = "limit_in_bytes",
4622 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623 		.write_string = mem_cgroup_write,
4624 		.read_u64 = mem_cgroup_read,
4625 	},
4626 	{
4627 		.name = "soft_limit_in_bytes",
4628 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4629 		.write_string = mem_cgroup_write,
4630 		.read_u64 = mem_cgroup_read,
4631 	},
4632 	{
4633 		.name = "failcnt",
4634 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635 		.trigger = mem_cgroup_reset,
4636 		.read_u64 = mem_cgroup_read,
4637 	},
4638 	{
4639 		.name = "stat",
4640 		.read_map = mem_control_stat_show,
4641 	},
4642 	{
4643 		.name = "force_empty",
4644 		.trigger = mem_cgroup_force_empty_write,
4645 	},
4646 	{
4647 		.name = "use_hierarchy",
4648 		.write_u64 = mem_cgroup_hierarchy_write,
4649 		.read_u64 = mem_cgroup_hierarchy_read,
4650 	},
4651 	{
4652 		.name = "swappiness",
4653 		.read_u64 = mem_cgroup_swappiness_read,
4654 		.write_u64 = mem_cgroup_swappiness_write,
4655 	},
4656 	{
4657 		.name = "move_charge_at_immigrate",
4658 		.read_u64 = mem_cgroup_move_charge_read,
4659 		.write_u64 = mem_cgroup_move_charge_write,
4660 	},
4661 	{
4662 		.name = "oom_control",
4663 		.read_map = mem_cgroup_oom_control_read,
4664 		.write_u64 = mem_cgroup_oom_control_write,
4665 		.register_event = mem_cgroup_oom_register_event,
4666 		.unregister_event = mem_cgroup_oom_unregister_event,
4667 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4668 	},
4669 #ifdef CONFIG_NUMA
4670 	{
4671 		.name = "numa_stat",
4672 		.open = mem_control_numa_stat_open,
4673 		.mode = S_IRUGO,
4674 	},
4675 #endif
4676 };
4677 
4678 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679 static struct cftype memsw_cgroup_files[] = {
4680 	{
4681 		.name = "memsw.usage_in_bytes",
4682 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4683 		.read_u64 = mem_cgroup_read,
4684 		.register_event = mem_cgroup_usage_register_event,
4685 		.unregister_event = mem_cgroup_usage_unregister_event,
4686 	},
4687 	{
4688 		.name = "memsw.max_usage_in_bytes",
4689 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4690 		.trigger = mem_cgroup_reset,
4691 		.read_u64 = mem_cgroup_read,
4692 	},
4693 	{
4694 		.name = "memsw.limit_in_bytes",
4695 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4696 		.write_string = mem_cgroup_write,
4697 		.read_u64 = mem_cgroup_read,
4698 	},
4699 	{
4700 		.name = "memsw.failcnt",
4701 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4702 		.trigger = mem_cgroup_reset,
4703 		.read_u64 = mem_cgroup_read,
4704 	},
4705 };
4706 
4707 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4708 {
4709 	if (!do_swap_account)
4710 		return 0;
4711 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4712 				ARRAY_SIZE(memsw_cgroup_files));
4713 };
4714 #else
4715 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716 {
4717 	return 0;
4718 }
4719 #endif
4720 
4721 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4722 {
4723 	struct mem_cgroup_per_node *pn;
4724 	struct mem_cgroup_per_zone *mz;
4725 	enum lru_list l;
4726 	int zone, tmp = node;
4727 	/*
4728 	 * This routine is called against possible nodes.
4729 	 * But it's BUG to call kmalloc() against offline node.
4730 	 *
4731 	 * TODO: this routine can waste much memory for nodes which will
4732 	 *       never be onlined. It's better to use memory hotplug callback
4733 	 *       function.
4734 	 */
4735 	if (!node_state(node, N_NORMAL_MEMORY))
4736 		tmp = -1;
4737 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738 	if (!pn)
4739 		return 1;
4740 
4741 	mem->info.nodeinfo[node] = pn;
4742 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4743 		mz = &pn->zoneinfo[zone];
4744 		for_each_lru(l)
4745 			INIT_LIST_HEAD(&mz->lists[l]);
4746 		mz->usage_in_excess = 0;
4747 		mz->on_tree = false;
4748 		mz->mem = mem;
4749 	}
4750 	return 0;
4751 }
4752 
4753 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4754 {
4755 	kfree(mem->info.nodeinfo[node]);
4756 }
4757 
4758 static struct mem_cgroup *mem_cgroup_alloc(void)
4759 {
4760 	struct mem_cgroup *mem;
4761 	int size = sizeof(struct mem_cgroup);
4762 
4763 	/* Can be very big if MAX_NUMNODES is very big */
4764 	if (size < PAGE_SIZE)
4765 		mem = kzalloc(size, GFP_KERNEL);
4766 	else
4767 		mem = vzalloc(size);
4768 
4769 	if (!mem)
4770 		return NULL;
4771 
4772 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773 	if (!mem->stat)
4774 		goto out_free;
4775 	spin_lock_init(&mem->pcp_counter_lock);
4776 	return mem;
4777 
4778 out_free:
4779 	if (size < PAGE_SIZE)
4780 		kfree(mem);
4781 	else
4782 		vfree(mem);
4783 	return NULL;
4784 }
4785 
4786 /*
4787  * At destroying mem_cgroup, references from swap_cgroup can remain.
4788  * (scanning all at force_empty is too costly...)
4789  *
4790  * Instead of clearing all references at force_empty, we remember
4791  * the number of reference from swap_cgroup and free mem_cgroup when
4792  * it goes down to 0.
4793  *
4794  * Removal of cgroup itself succeeds regardless of refs from swap.
4795  */
4796 
4797 static void __mem_cgroup_free(struct mem_cgroup *mem)
4798 {
4799 	int node;
4800 
4801 	mem_cgroup_remove_from_trees(mem);
4802 	free_css_id(&mem_cgroup_subsys, &mem->css);
4803 
4804 	for_each_node_state(node, N_POSSIBLE)
4805 		free_mem_cgroup_per_zone_info(mem, node);
4806 
4807 	free_percpu(mem->stat);
4808 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809 		kfree(mem);
4810 	else
4811 		vfree(mem);
4812 }
4813 
4814 static void mem_cgroup_get(struct mem_cgroup *mem)
4815 {
4816 	atomic_inc(&mem->refcnt);
4817 }
4818 
4819 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4820 {
4821 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4822 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4823 		__mem_cgroup_free(mem);
4824 		if (parent)
4825 			mem_cgroup_put(parent);
4826 	}
4827 }
4828 
4829 static void mem_cgroup_put(struct mem_cgroup *mem)
4830 {
4831 	__mem_cgroup_put(mem, 1);
4832 }
4833 
4834 /*
4835  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836  */
4837 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4838 {
4839 	if (!mem->res.parent)
4840 		return NULL;
4841 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4842 }
4843 
4844 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845 static void __init enable_swap_cgroup(void)
4846 {
4847 	if (!mem_cgroup_disabled() && really_do_swap_account)
4848 		do_swap_account = 1;
4849 }
4850 #else
4851 static void __init enable_swap_cgroup(void)
4852 {
4853 }
4854 #endif
4855 
4856 static int mem_cgroup_soft_limit_tree_init(void)
4857 {
4858 	struct mem_cgroup_tree_per_node *rtpn;
4859 	struct mem_cgroup_tree_per_zone *rtpz;
4860 	int tmp, node, zone;
4861 
4862 	for_each_node_state(node, N_POSSIBLE) {
4863 		tmp = node;
4864 		if (!node_state(node, N_NORMAL_MEMORY))
4865 			tmp = -1;
4866 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867 		if (!rtpn)
4868 			return 1;
4869 
4870 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4871 
4872 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873 			rtpz = &rtpn->rb_tree_per_zone[zone];
4874 			rtpz->rb_root = RB_ROOT;
4875 			spin_lock_init(&rtpz->lock);
4876 		}
4877 	}
4878 	return 0;
4879 }
4880 
4881 static struct cgroup_subsys_state * __ref
4882 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4883 {
4884 	struct mem_cgroup *mem, *parent;
4885 	long error = -ENOMEM;
4886 	int node;
4887 
4888 	mem = mem_cgroup_alloc();
4889 	if (!mem)
4890 		return ERR_PTR(error);
4891 
4892 	for_each_node_state(node, N_POSSIBLE)
4893 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4894 			goto free_out;
4895 
4896 	/* root ? */
4897 	if (cont->parent == NULL) {
4898 		int cpu;
4899 		enable_swap_cgroup();
4900 		parent = NULL;
4901 		root_mem_cgroup = mem;
4902 		if (mem_cgroup_soft_limit_tree_init())
4903 			goto free_out;
4904 		for_each_possible_cpu(cpu) {
4905 			struct memcg_stock_pcp *stock =
4906 						&per_cpu(memcg_stock, cpu);
4907 			INIT_WORK(&stock->work, drain_local_stock);
4908 		}
4909 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4910 	} else {
4911 		parent = mem_cgroup_from_cont(cont->parent);
4912 		mem->use_hierarchy = parent->use_hierarchy;
4913 		mem->oom_kill_disable = parent->oom_kill_disable;
4914 	}
4915 
4916 	if (parent && parent->use_hierarchy) {
4917 		res_counter_init(&mem->res, &parent->res);
4918 		res_counter_init(&mem->memsw, &parent->memsw);
4919 		/*
4920 		 * We increment refcnt of the parent to ensure that we can
4921 		 * safely access it on res_counter_charge/uncharge.
4922 		 * This refcnt will be decremented when freeing this
4923 		 * mem_cgroup(see mem_cgroup_put).
4924 		 */
4925 		mem_cgroup_get(parent);
4926 	} else {
4927 		res_counter_init(&mem->res, NULL);
4928 		res_counter_init(&mem->memsw, NULL);
4929 	}
4930 	mem->last_scanned_child = 0;
4931 	mem->last_scanned_node = MAX_NUMNODES;
4932 	INIT_LIST_HEAD(&mem->oom_notify);
4933 
4934 	if (parent)
4935 		mem->swappiness = mem_cgroup_swappiness(parent);
4936 	atomic_set(&mem->refcnt, 1);
4937 	mem->move_charge_at_immigrate = 0;
4938 	mutex_init(&mem->thresholds_lock);
4939 	return &mem->css;
4940 free_out:
4941 	__mem_cgroup_free(mem);
4942 	root_mem_cgroup = NULL;
4943 	return ERR_PTR(error);
4944 }
4945 
4946 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4947 					struct cgroup *cont)
4948 {
4949 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4950 
4951 	return mem_cgroup_force_empty(mem, false);
4952 }
4953 
4954 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4955 				struct cgroup *cont)
4956 {
4957 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4958 
4959 	mem_cgroup_put(mem);
4960 }
4961 
4962 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4963 				struct cgroup *cont)
4964 {
4965 	int ret;
4966 
4967 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4968 				ARRAY_SIZE(mem_cgroup_files));
4969 
4970 	if (!ret)
4971 		ret = register_memsw_files(cont, ss);
4972 	return ret;
4973 }
4974 
4975 #ifdef CONFIG_MMU
4976 /* Handlers for move charge at task migration. */
4977 #define PRECHARGE_COUNT_AT_ONCE	256
4978 static int mem_cgroup_do_precharge(unsigned long count)
4979 {
4980 	int ret = 0;
4981 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982 	struct mem_cgroup *mem = mc.to;
4983 
4984 	if (mem_cgroup_is_root(mem)) {
4985 		mc.precharge += count;
4986 		/* we don't need css_get for root */
4987 		return ret;
4988 	}
4989 	/* try to charge at once */
4990 	if (count > 1) {
4991 		struct res_counter *dummy;
4992 		/*
4993 		 * "mem" cannot be under rmdir() because we've already checked
4994 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4995 		 * are still under the same cgroup_mutex. So we can postpone
4996 		 * css_get().
4997 		 */
4998 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4999 			goto one_by_one;
5000 		if (do_swap_account && res_counter_charge(&mem->memsw,
5001 						PAGE_SIZE * count, &dummy)) {
5002 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5003 			goto one_by_one;
5004 		}
5005 		mc.precharge += count;
5006 		return ret;
5007 	}
5008 one_by_one:
5009 	/* fall back to one by one charge */
5010 	while (count--) {
5011 		if (signal_pending(current)) {
5012 			ret = -EINTR;
5013 			break;
5014 		}
5015 		if (!batch_count--) {
5016 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5017 			cond_resched();
5018 		}
5019 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5020 		if (ret || !mem)
5021 			/* mem_cgroup_clear_mc() will do uncharge later */
5022 			return -ENOMEM;
5023 		mc.precharge++;
5024 	}
5025 	return ret;
5026 }
5027 
5028 /**
5029  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030  * @vma: the vma the pte to be checked belongs
5031  * @addr: the address corresponding to the pte to be checked
5032  * @ptent: the pte to be checked
5033  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034  *
5035  * Returns
5036  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038  *     move charge. if @target is not NULL, the page is stored in target->page
5039  *     with extra refcnt got(Callers should handle it).
5040  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041  *     target for charge migration. if @target is not NULL, the entry is stored
5042  *     in target->ent.
5043  *
5044  * Called with pte lock held.
5045  */
5046 union mc_target {
5047 	struct page	*page;
5048 	swp_entry_t	ent;
5049 };
5050 
5051 enum mc_target_type {
5052 	MC_TARGET_NONE,	/* not used */
5053 	MC_TARGET_PAGE,
5054 	MC_TARGET_SWAP,
5055 };
5056 
5057 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5058 						unsigned long addr, pte_t ptent)
5059 {
5060 	struct page *page = vm_normal_page(vma, addr, ptent);
5061 
5062 	if (!page || !page_mapped(page))
5063 		return NULL;
5064 	if (PageAnon(page)) {
5065 		/* we don't move shared anon */
5066 		if (!move_anon() || page_mapcount(page) > 2)
5067 			return NULL;
5068 	} else if (!move_file())
5069 		/* we ignore mapcount for file pages */
5070 		return NULL;
5071 	if (!get_page_unless_zero(page))
5072 		return NULL;
5073 
5074 	return page;
5075 }
5076 
5077 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5078 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079 {
5080 	int usage_count;
5081 	struct page *page = NULL;
5082 	swp_entry_t ent = pte_to_swp_entry(ptent);
5083 
5084 	if (!move_anon() || non_swap_entry(ent))
5085 		return NULL;
5086 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5087 	if (usage_count > 1) { /* we don't move shared anon */
5088 		if (page)
5089 			put_page(page);
5090 		return NULL;
5091 	}
5092 	if (do_swap_account)
5093 		entry->val = ent.val;
5094 
5095 	return page;
5096 }
5097 
5098 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100 {
5101 	struct page *page = NULL;
5102 	struct inode *inode;
5103 	struct address_space *mapping;
5104 	pgoff_t pgoff;
5105 
5106 	if (!vma->vm_file) /* anonymous vma */
5107 		return NULL;
5108 	if (!move_file())
5109 		return NULL;
5110 
5111 	inode = vma->vm_file->f_path.dentry->d_inode;
5112 	mapping = vma->vm_file->f_mapping;
5113 	if (pte_none(ptent))
5114 		pgoff = linear_page_index(vma, addr);
5115 	else /* pte_file(ptent) is true */
5116 		pgoff = pte_to_pgoff(ptent);
5117 
5118 	/* page is moved even if it's not RSS of this task(page-faulted). */
5119 	page = find_get_page(mapping, pgoff);
5120 
5121 #ifdef CONFIG_SWAP
5122 	/* shmem/tmpfs may report page out on swap: account for that too. */
5123 	if (radix_tree_exceptional_entry(page)) {
5124 		swp_entry_t swap = radix_to_swp_entry(page);
5125 		if (do_swap_account)
5126 			*entry = swap;
5127 		page = find_get_page(&swapper_space, swap.val);
5128 	}
5129 #endif
5130 	return page;
5131 }
5132 
5133 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5134 		unsigned long addr, pte_t ptent, union mc_target *target)
5135 {
5136 	struct page *page = NULL;
5137 	struct page_cgroup *pc;
5138 	int ret = 0;
5139 	swp_entry_t ent = { .val = 0 };
5140 
5141 	if (pte_present(ptent))
5142 		page = mc_handle_present_pte(vma, addr, ptent);
5143 	else if (is_swap_pte(ptent))
5144 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5145 	else if (pte_none(ptent) || pte_file(ptent))
5146 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5147 
5148 	if (!page && !ent.val)
5149 		return 0;
5150 	if (page) {
5151 		pc = lookup_page_cgroup(page);
5152 		/*
5153 		 * Do only loose check w/o page_cgroup lock.
5154 		 * mem_cgroup_move_account() checks the pc is valid or not under
5155 		 * the lock.
5156 		 */
5157 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5158 			ret = MC_TARGET_PAGE;
5159 			if (target)
5160 				target->page = page;
5161 		}
5162 		if (!ret || !target)
5163 			put_page(page);
5164 	}
5165 	/* There is a swap entry and a page doesn't exist or isn't charged */
5166 	if (ent.val && !ret &&
5167 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5168 		ret = MC_TARGET_SWAP;
5169 		if (target)
5170 			target->ent = ent;
5171 	}
5172 	return ret;
5173 }
5174 
5175 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5176 					unsigned long addr, unsigned long end,
5177 					struct mm_walk *walk)
5178 {
5179 	struct vm_area_struct *vma = walk->private;
5180 	pte_t *pte;
5181 	spinlock_t *ptl;
5182 
5183 	split_huge_page_pmd(walk->mm, pmd);
5184 
5185 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5186 	for (; addr != end; pte++, addr += PAGE_SIZE)
5187 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5188 			mc.precharge++;	/* increment precharge temporarily */
5189 	pte_unmap_unlock(pte - 1, ptl);
5190 	cond_resched();
5191 
5192 	return 0;
5193 }
5194 
5195 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5196 {
5197 	unsigned long precharge;
5198 	struct vm_area_struct *vma;
5199 
5200 	down_read(&mm->mmap_sem);
5201 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5202 		struct mm_walk mem_cgroup_count_precharge_walk = {
5203 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5204 			.mm = mm,
5205 			.private = vma,
5206 		};
5207 		if (is_vm_hugetlb_page(vma))
5208 			continue;
5209 		walk_page_range(vma->vm_start, vma->vm_end,
5210 					&mem_cgroup_count_precharge_walk);
5211 	}
5212 	up_read(&mm->mmap_sem);
5213 
5214 	precharge = mc.precharge;
5215 	mc.precharge = 0;
5216 
5217 	return precharge;
5218 }
5219 
5220 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5221 {
5222 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5223 
5224 	VM_BUG_ON(mc.moving_task);
5225 	mc.moving_task = current;
5226 	return mem_cgroup_do_precharge(precharge);
5227 }
5228 
5229 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230 static void __mem_cgroup_clear_mc(void)
5231 {
5232 	struct mem_cgroup *from = mc.from;
5233 	struct mem_cgroup *to = mc.to;
5234 
5235 	/* we must uncharge all the leftover precharges from mc.to */
5236 	if (mc.precharge) {
5237 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5238 		mc.precharge = 0;
5239 	}
5240 	/*
5241 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242 	 * we must uncharge here.
5243 	 */
5244 	if (mc.moved_charge) {
5245 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5246 		mc.moved_charge = 0;
5247 	}
5248 	/* we must fixup refcnts and charges */
5249 	if (mc.moved_swap) {
5250 		/* uncharge swap account from the old cgroup */
5251 		if (!mem_cgroup_is_root(mc.from))
5252 			res_counter_uncharge(&mc.from->memsw,
5253 						PAGE_SIZE * mc.moved_swap);
5254 		__mem_cgroup_put(mc.from, mc.moved_swap);
5255 
5256 		if (!mem_cgroup_is_root(mc.to)) {
5257 			/*
5258 			 * we charged both to->res and to->memsw, so we should
5259 			 * uncharge to->res.
5260 			 */
5261 			res_counter_uncharge(&mc.to->res,
5262 						PAGE_SIZE * mc.moved_swap);
5263 		}
5264 		/* we've already done mem_cgroup_get(mc.to) */
5265 		mc.moved_swap = 0;
5266 	}
5267 	memcg_oom_recover(from);
5268 	memcg_oom_recover(to);
5269 	wake_up_all(&mc.waitq);
5270 }
5271 
5272 static void mem_cgroup_clear_mc(void)
5273 {
5274 	struct mem_cgroup *from = mc.from;
5275 
5276 	/*
5277 	 * we must clear moving_task before waking up waiters at the end of
5278 	 * task migration.
5279 	 */
5280 	mc.moving_task = NULL;
5281 	__mem_cgroup_clear_mc();
5282 	spin_lock(&mc.lock);
5283 	mc.from = NULL;
5284 	mc.to = NULL;
5285 	spin_unlock(&mc.lock);
5286 	mem_cgroup_end_move(from);
5287 }
5288 
5289 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5290 				struct cgroup *cgroup,
5291 				struct task_struct *p)
5292 {
5293 	int ret = 0;
5294 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5295 
5296 	if (mem->move_charge_at_immigrate) {
5297 		struct mm_struct *mm;
5298 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5299 
5300 		VM_BUG_ON(from == mem);
5301 
5302 		mm = get_task_mm(p);
5303 		if (!mm)
5304 			return 0;
5305 		/* We move charges only when we move a owner of the mm */
5306 		if (mm->owner == p) {
5307 			VM_BUG_ON(mc.from);
5308 			VM_BUG_ON(mc.to);
5309 			VM_BUG_ON(mc.precharge);
5310 			VM_BUG_ON(mc.moved_charge);
5311 			VM_BUG_ON(mc.moved_swap);
5312 			mem_cgroup_start_move(from);
5313 			spin_lock(&mc.lock);
5314 			mc.from = from;
5315 			mc.to = mem;
5316 			spin_unlock(&mc.lock);
5317 			/* We set mc.moving_task later */
5318 
5319 			ret = mem_cgroup_precharge_mc(mm);
5320 			if (ret)
5321 				mem_cgroup_clear_mc();
5322 		}
5323 		mmput(mm);
5324 	}
5325 	return ret;
5326 }
5327 
5328 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5329 				struct cgroup *cgroup,
5330 				struct task_struct *p)
5331 {
5332 	mem_cgroup_clear_mc();
5333 }
5334 
5335 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5336 				unsigned long addr, unsigned long end,
5337 				struct mm_walk *walk)
5338 {
5339 	int ret = 0;
5340 	struct vm_area_struct *vma = walk->private;
5341 	pte_t *pte;
5342 	spinlock_t *ptl;
5343 
5344 	split_huge_page_pmd(walk->mm, pmd);
5345 retry:
5346 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347 	for (; addr != end; addr += PAGE_SIZE) {
5348 		pte_t ptent = *(pte++);
5349 		union mc_target target;
5350 		int type;
5351 		struct page *page;
5352 		struct page_cgroup *pc;
5353 		swp_entry_t ent;
5354 
5355 		if (!mc.precharge)
5356 			break;
5357 
5358 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5359 		switch (type) {
5360 		case MC_TARGET_PAGE:
5361 			page = target.page;
5362 			if (isolate_lru_page(page))
5363 				goto put;
5364 			pc = lookup_page_cgroup(page);
5365 			if (!mem_cgroup_move_account(page, 1, pc,
5366 						     mc.from, mc.to, false)) {
5367 				mc.precharge--;
5368 				/* we uncharge from mc.from later. */
5369 				mc.moved_charge++;
5370 			}
5371 			putback_lru_page(page);
5372 put:			/* is_target_pte_for_mc() gets the page */
5373 			put_page(page);
5374 			break;
5375 		case MC_TARGET_SWAP:
5376 			ent = target.ent;
5377 			if (!mem_cgroup_move_swap_account(ent,
5378 						mc.from, mc.to, false)) {
5379 				mc.precharge--;
5380 				/* we fixup refcnts and charges later. */
5381 				mc.moved_swap++;
5382 			}
5383 			break;
5384 		default:
5385 			break;
5386 		}
5387 	}
5388 	pte_unmap_unlock(pte - 1, ptl);
5389 	cond_resched();
5390 
5391 	if (addr != end) {
5392 		/*
5393 		 * We have consumed all precharges we got in can_attach().
5394 		 * We try charge one by one, but don't do any additional
5395 		 * charges to mc.to if we have failed in charge once in attach()
5396 		 * phase.
5397 		 */
5398 		ret = mem_cgroup_do_precharge(1);
5399 		if (!ret)
5400 			goto retry;
5401 	}
5402 
5403 	return ret;
5404 }
5405 
5406 static void mem_cgroup_move_charge(struct mm_struct *mm)
5407 {
5408 	struct vm_area_struct *vma;
5409 
5410 	lru_add_drain_all();
5411 retry:
5412 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5413 		/*
5414 		 * Someone who are holding the mmap_sem might be waiting in
5415 		 * waitq. So we cancel all extra charges, wake up all waiters,
5416 		 * and retry. Because we cancel precharges, we might not be able
5417 		 * to move enough charges, but moving charge is a best-effort
5418 		 * feature anyway, so it wouldn't be a big problem.
5419 		 */
5420 		__mem_cgroup_clear_mc();
5421 		cond_resched();
5422 		goto retry;
5423 	}
5424 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5425 		int ret;
5426 		struct mm_walk mem_cgroup_move_charge_walk = {
5427 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5428 			.mm = mm,
5429 			.private = vma,
5430 		};
5431 		if (is_vm_hugetlb_page(vma))
5432 			continue;
5433 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5434 						&mem_cgroup_move_charge_walk);
5435 		if (ret)
5436 			/*
5437 			 * means we have consumed all precharges and failed in
5438 			 * doing additional charge. Just abandon here.
5439 			 */
5440 			break;
5441 	}
5442 	up_read(&mm->mmap_sem);
5443 }
5444 
5445 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5446 				struct cgroup *cont,
5447 				struct cgroup *old_cont,
5448 				struct task_struct *p)
5449 {
5450 	struct mm_struct *mm = get_task_mm(p);
5451 
5452 	if (mm) {
5453 		if (mc.to)
5454 			mem_cgroup_move_charge(mm);
5455 		put_swap_token(mm);
5456 		mmput(mm);
5457 	}
5458 	if (mc.to)
5459 		mem_cgroup_clear_mc();
5460 }
5461 #else	/* !CONFIG_MMU */
5462 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5463 				struct cgroup *cgroup,
5464 				struct task_struct *p)
5465 {
5466 	return 0;
5467 }
5468 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5469 				struct cgroup *cgroup,
5470 				struct task_struct *p)
5471 {
5472 }
5473 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5474 				struct cgroup *cont,
5475 				struct cgroup *old_cont,
5476 				struct task_struct *p)
5477 {
5478 }
5479 #endif
5480 
5481 struct cgroup_subsys mem_cgroup_subsys = {
5482 	.name = "memory",
5483 	.subsys_id = mem_cgroup_subsys_id,
5484 	.create = mem_cgroup_create,
5485 	.pre_destroy = mem_cgroup_pre_destroy,
5486 	.destroy = mem_cgroup_destroy,
5487 	.populate = mem_cgroup_populate,
5488 	.can_attach = mem_cgroup_can_attach,
5489 	.cancel_attach = mem_cgroup_cancel_attach,
5490 	.attach = mem_cgroup_move_task,
5491 	.early_init = 0,
5492 	.use_id = 1,
5493 };
5494 
5495 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5496 static int __init enable_swap_account(char *s)
5497 {
5498 	/* consider enabled if no parameter or 1 is given */
5499 	if (!strcmp(s, "1"))
5500 		really_do_swap_account = 1;
5501 	else if (!strcmp(s, "0"))
5502 		really_do_swap_account = 0;
5503 	return 1;
5504 }
5505 __setup("swapaccount=", enable_swap_account);
5506 
5507 #endif
5508