xref: /openbmc/linux/mm/memcontrol.c (revision 93d90ad7)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64 
65 #include <asm/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71 
72 #define MEM_CGROUP_RECLAIM_RETRIES	5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78 
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85 
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 
91 static const char * const mem_cgroup_stat_names[] = {
92 	"cache",
93 	"rss",
94 	"rss_huge",
95 	"mapped_file",
96 	"writeback",
97 	"swap",
98 };
99 
100 enum mem_cgroup_events_index {
101 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
102 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
104 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 	MEM_CGROUP_EVENTS_NSTATS,
106 };
107 
108 static const char * const mem_cgroup_events_names[] = {
109 	"pgpgin",
110 	"pgpgout",
111 	"pgfault",
112 	"pgmajfault",
113 };
114 
115 static const char * const mem_cgroup_lru_names[] = {
116 	"inactive_anon",
117 	"active_anon",
118 	"inactive_file",
119 	"active_file",
120 	"unevictable",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct reclaim_iter {
147 	struct mem_cgroup *position;
148 	/* scan generation, increased every round-trip */
149 	unsigned int generation;
150 };
151 
152 /*
153  * per-zone information in memory controller.
154  */
155 struct mem_cgroup_per_zone {
156 	struct lruvec		lruvec;
157 	unsigned long		lru_size[NR_LRU_LISTS];
158 
159 	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160 
161 	struct rb_node		tree_node;	/* RB tree node */
162 	unsigned long		usage_in_excess;/* Set to the value by which */
163 						/* the soft limit is exceeded*/
164 	bool			on_tree;
165 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166 						/* use container_of	   */
167 };
168 
169 struct mem_cgroup_per_node {
170 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 };
172 
173 /*
174  * Cgroups above their limits are maintained in a RB-Tree, independent of
175  * their hierarchy representation
176  */
177 
178 struct mem_cgroup_tree_per_zone {
179 	struct rb_root rb_root;
180 	spinlock_t lock;
181 };
182 
183 struct mem_cgroup_tree_per_node {
184 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 };
186 
187 struct mem_cgroup_tree {
188 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 };
190 
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192 
193 struct mem_cgroup_threshold {
194 	struct eventfd_ctx *eventfd;
195 	unsigned long threshold;
196 };
197 
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 	/* An array index points to threshold just below or equal to usage. */
201 	int current_threshold;
202 	/* Size of entries[] */
203 	unsigned int size;
204 	/* Array of thresholds */
205 	struct mem_cgroup_threshold entries[0];
206 };
207 
208 struct mem_cgroup_thresholds {
209 	/* Primary thresholds array */
210 	struct mem_cgroup_threshold_ary *primary;
211 	/*
212 	 * Spare threshold array.
213 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 	 * It must be able to store at least primary->size - 1 entries.
215 	 */
216 	struct mem_cgroup_threshold_ary *spare;
217 };
218 
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 	struct list_head list;
222 	struct eventfd_ctx *eventfd;
223 };
224 
225 /*
226  * cgroup_event represents events which userspace want to receive.
227  */
228 struct mem_cgroup_event {
229 	/*
230 	 * memcg which the event belongs to.
231 	 */
232 	struct mem_cgroup *memcg;
233 	/*
234 	 * eventfd to signal userspace about the event.
235 	 */
236 	struct eventfd_ctx *eventfd;
237 	/*
238 	 * Each of these stored in a list by the cgroup.
239 	 */
240 	struct list_head list;
241 	/*
242 	 * register_event() callback will be used to add new userspace
243 	 * waiter for changes related to this event.  Use eventfd_signal()
244 	 * on eventfd to send notification to userspace.
245 	 */
246 	int (*register_event)(struct mem_cgroup *memcg,
247 			      struct eventfd_ctx *eventfd, const char *args);
248 	/*
249 	 * unregister_event() callback will be called when userspace closes
250 	 * the eventfd or on cgroup removing.  This callback must be set,
251 	 * if you want provide notification functionality.
252 	 */
253 	void (*unregister_event)(struct mem_cgroup *memcg,
254 				 struct eventfd_ctx *eventfd);
255 	/*
256 	 * All fields below needed to unregister event when
257 	 * userspace closes eventfd.
258 	 */
259 	poll_table pt;
260 	wait_queue_head_t *wqh;
261 	wait_queue_t wait;
262 	struct work_struct remove;
263 };
264 
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267 
268 /*
269  * The memory controller data structure. The memory controller controls both
270  * page cache and RSS per cgroup. We would eventually like to provide
271  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272  * to help the administrator determine what knobs to tune.
273  *
274  * TODO: Add a water mark for the memory controller. Reclaim will begin when
275  * we hit the water mark. May be even add a low water mark, such that
276  * no reclaim occurs from a cgroup at it's low water mark, this is
277  * a feature that will be implemented much later in the future.
278  */
279 struct mem_cgroup {
280 	struct cgroup_subsys_state css;
281 
282 	/* Accounted resources */
283 	struct page_counter memory;
284 	struct page_counter memsw;
285 	struct page_counter kmem;
286 
287 	unsigned long soft_limit;
288 
289 	/* vmpressure notifications */
290 	struct vmpressure vmpressure;
291 
292 	/* css_online() has been completed */
293 	int initialized;
294 
295 	/*
296 	 * Should the accounting and control be hierarchical, per subtree?
297 	 */
298 	bool use_hierarchy;
299 
300 	bool		oom_lock;
301 	atomic_t	under_oom;
302 	atomic_t	oom_wakeups;
303 
304 	int	swappiness;
305 	/* OOM-Killer disable */
306 	int		oom_kill_disable;
307 
308 	/* protect arrays of thresholds */
309 	struct mutex thresholds_lock;
310 
311 	/* thresholds for memory usage. RCU-protected */
312 	struct mem_cgroup_thresholds thresholds;
313 
314 	/* thresholds for mem+swap usage. RCU-protected */
315 	struct mem_cgroup_thresholds memsw_thresholds;
316 
317 	/* For oom notifier event fd */
318 	struct list_head oom_notify;
319 
320 	/*
321 	 * Should we move charges of a task when a task is moved into this
322 	 * mem_cgroup ? And what type of charges should we move ?
323 	 */
324 	unsigned long move_charge_at_immigrate;
325 	/*
326 	 * set > 0 if pages under this cgroup are moving to other cgroup.
327 	 */
328 	atomic_t	moving_account;
329 	/* taken only while moving_account > 0 */
330 	spinlock_t	move_lock;
331 	/*
332 	 * percpu counter.
333 	 */
334 	struct mem_cgroup_stat_cpu __percpu *stat;
335 	/*
336 	 * used when a cpu is offlined or other synchronizations
337 	 * See mem_cgroup_read_stat().
338 	 */
339 	struct mem_cgroup_stat_cpu nocpu_base;
340 	spinlock_t pcp_counter_lock;
341 
342 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
343 	struct cg_proto tcp_mem;
344 #endif
345 #if defined(CONFIG_MEMCG_KMEM)
346 	/* analogous to slab_common's slab_caches list, but per-memcg;
347 	 * protected by memcg_slab_mutex */
348 	struct list_head memcg_slab_caches;
349         /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 	int kmemcg_id;
351 #endif
352 
353 	int last_scanned_node;
354 #if MAX_NUMNODES > 1
355 	nodemask_t	scan_nodes;
356 	atomic_t	numainfo_events;
357 	atomic_t	numainfo_updating;
358 #endif
359 
360 	/* List of events which userspace want to receive */
361 	struct list_head event_list;
362 	spinlock_t event_list_lock;
363 
364 	struct mem_cgroup_per_node *nodeinfo[0];
365 	/* WARNING: nodeinfo must be the last member here */
366 };
367 
368 #ifdef CONFIG_MEMCG_KMEM
369 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
370 {
371 	return memcg->kmemcg_id >= 0;
372 }
373 #endif
374 
375 /* Stuffs for move charges at task migration. */
376 /*
377  * Types of charges to be moved. "move_charge_at_immitgrate" and
378  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
379  */
380 enum move_type {
381 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
382 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
383 	NR_MOVE_TYPE,
384 };
385 
386 /* "mc" and its members are protected by cgroup_mutex */
387 static struct move_charge_struct {
388 	spinlock_t	  lock; /* for from, to */
389 	struct mem_cgroup *from;
390 	struct mem_cgroup *to;
391 	unsigned long immigrate_flags;
392 	unsigned long precharge;
393 	unsigned long moved_charge;
394 	unsigned long moved_swap;
395 	struct task_struct *moving_task;	/* a task moving charges */
396 	wait_queue_head_t waitq;		/* a waitq for other context */
397 } mc = {
398 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
399 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
400 };
401 
402 static bool move_anon(void)
403 {
404 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
405 }
406 
407 static bool move_file(void)
408 {
409 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
410 }
411 
412 /*
413  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
414  * limit reclaim to prevent infinite loops, if they ever occur.
415  */
416 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
417 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
418 
419 enum charge_type {
420 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
421 	MEM_CGROUP_CHARGE_TYPE_ANON,
422 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
423 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
424 	NR_CHARGE_TYPE,
425 };
426 
427 /* for encoding cft->private value on file */
428 enum res_type {
429 	_MEM,
430 	_MEMSWAP,
431 	_OOM_TYPE,
432 	_KMEM,
433 };
434 
435 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
436 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
437 #define MEMFILE_ATTR(val)	((val) & 0xffff)
438 /* Used for OOM nofiier */
439 #define OOM_CONTROL		(0)
440 
441 /*
442  * The memcg_create_mutex will be held whenever a new cgroup is created.
443  * As a consequence, any change that needs to protect against new child cgroups
444  * appearing has to hold it as well.
445  */
446 static DEFINE_MUTEX(memcg_create_mutex);
447 
448 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
449 {
450 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
451 }
452 
453 /* Some nice accessors for the vmpressure. */
454 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
455 {
456 	if (!memcg)
457 		memcg = root_mem_cgroup;
458 	return &memcg->vmpressure;
459 }
460 
461 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
462 {
463 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
464 }
465 
466 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
467 {
468 	return (memcg == root_mem_cgroup);
469 }
470 
471 /*
472  * We restrict the id in the range of [1, 65535], so it can fit into
473  * an unsigned short.
474  */
475 #define MEM_CGROUP_ID_MAX	USHRT_MAX
476 
477 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
478 {
479 	return memcg->css.id;
480 }
481 
482 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
483 {
484 	struct cgroup_subsys_state *css;
485 
486 	css = css_from_id(id, &memory_cgrp_subsys);
487 	return mem_cgroup_from_css(css);
488 }
489 
490 /* Writing them here to avoid exposing memcg's inner layout */
491 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
492 
493 void sock_update_memcg(struct sock *sk)
494 {
495 	if (mem_cgroup_sockets_enabled) {
496 		struct mem_cgroup *memcg;
497 		struct cg_proto *cg_proto;
498 
499 		BUG_ON(!sk->sk_prot->proto_cgroup);
500 
501 		/* Socket cloning can throw us here with sk_cgrp already
502 		 * filled. It won't however, necessarily happen from
503 		 * process context. So the test for root memcg given
504 		 * the current task's memcg won't help us in this case.
505 		 *
506 		 * Respecting the original socket's memcg is a better
507 		 * decision in this case.
508 		 */
509 		if (sk->sk_cgrp) {
510 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
511 			css_get(&sk->sk_cgrp->memcg->css);
512 			return;
513 		}
514 
515 		rcu_read_lock();
516 		memcg = mem_cgroup_from_task(current);
517 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
518 		if (!mem_cgroup_is_root(memcg) &&
519 		    memcg_proto_active(cg_proto) &&
520 		    css_tryget_online(&memcg->css)) {
521 			sk->sk_cgrp = cg_proto;
522 		}
523 		rcu_read_unlock();
524 	}
525 }
526 EXPORT_SYMBOL(sock_update_memcg);
527 
528 void sock_release_memcg(struct sock *sk)
529 {
530 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
531 		struct mem_cgroup *memcg;
532 		WARN_ON(!sk->sk_cgrp->memcg);
533 		memcg = sk->sk_cgrp->memcg;
534 		css_put(&sk->sk_cgrp->memcg->css);
535 	}
536 }
537 
538 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
539 {
540 	if (!memcg || mem_cgroup_is_root(memcg))
541 		return NULL;
542 
543 	return &memcg->tcp_mem;
544 }
545 EXPORT_SYMBOL(tcp_proto_cgroup);
546 
547 static void disarm_sock_keys(struct mem_cgroup *memcg)
548 {
549 	if (!memcg_proto_activated(&memcg->tcp_mem))
550 		return;
551 	static_key_slow_dec(&memcg_socket_limit_enabled);
552 }
553 #else
554 static void disarm_sock_keys(struct mem_cgroup *memcg)
555 {
556 }
557 #endif
558 
559 #ifdef CONFIG_MEMCG_KMEM
560 /*
561  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
562  * The main reason for not using cgroup id for this:
563  *  this works better in sparse environments, where we have a lot of memcgs,
564  *  but only a few kmem-limited. Or also, if we have, for instance, 200
565  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
566  *  200 entry array for that.
567  *
568  * The current size of the caches array is stored in
569  * memcg_limited_groups_array_size.  It will double each time we have to
570  * increase it.
571  */
572 static DEFINE_IDA(kmem_limited_groups);
573 int memcg_limited_groups_array_size;
574 
575 /*
576  * MIN_SIZE is different than 1, because we would like to avoid going through
577  * the alloc/free process all the time. In a small machine, 4 kmem-limited
578  * cgroups is a reasonable guess. In the future, it could be a parameter or
579  * tunable, but that is strictly not necessary.
580  *
581  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
582  * this constant directly from cgroup, but it is understandable that this is
583  * better kept as an internal representation in cgroup.c. In any case, the
584  * cgrp_id space is not getting any smaller, and we don't have to necessarily
585  * increase ours as well if it increases.
586  */
587 #define MEMCG_CACHES_MIN_SIZE 4
588 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
589 
590 /*
591  * A lot of the calls to the cache allocation functions are expected to be
592  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
593  * conditional to this static branch, we'll have to allow modules that does
594  * kmem_cache_alloc and the such to see this symbol as well
595  */
596 struct static_key memcg_kmem_enabled_key;
597 EXPORT_SYMBOL(memcg_kmem_enabled_key);
598 
599 static void memcg_free_cache_id(int id);
600 
601 static void disarm_kmem_keys(struct mem_cgroup *memcg)
602 {
603 	if (memcg_kmem_is_active(memcg)) {
604 		static_key_slow_dec(&memcg_kmem_enabled_key);
605 		memcg_free_cache_id(memcg->kmemcg_id);
606 	}
607 	/*
608 	 * This check can't live in kmem destruction function,
609 	 * since the charges will outlive the cgroup
610 	 */
611 	WARN_ON(page_counter_read(&memcg->kmem));
612 }
613 #else
614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
615 {
616 }
617 #endif /* CONFIG_MEMCG_KMEM */
618 
619 static void disarm_static_keys(struct mem_cgroup *memcg)
620 {
621 	disarm_sock_keys(memcg);
622 	disarm_kmem_keys(memcg);
623 }
624 
625 static struct mem_cgroup_per_zone *
626 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
627 {
628 	int nid = zone_to_nid(zone);
629 	int zid = zone_idx(zone);
630 
631 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
632 }
633 
634 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
635 {
636 	return &memcg->css;
637 }
638 
639 static struct mem_cgroup_per_zone *
640 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
641 {
642 	int nid = page_to_nid(page);
643 	int zid = page_zonenum(page);
644 
645 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 }
647 
648 static struct mem_cgroup_tree_per_zone *
649 soft_limit_tree_node_zone(int nid, int zid)
650 {
651 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
652 }
653 
654 static struct mem_cgroup_tree_per_zone *
655 soft_limit_tree_from_page(struct page *page)
656 {
657 	int nid = page_to_nid(page);
658 	int zid = page_zonenum(page);
659 
660 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
661 }
662 
663 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
664 					 struct mem_cgroup_tree_per_zone *mctz,
665 					 unsigned long new_usage_in_excess)
666 {
667 	struct rb_node **p = &mctz->rb_root.rb_node;
668 	struct rb_node *parent = NULL;
669 	struct mem_cgroup_per_zone *mz_node;
670 
671 	if (mz->on_tree)
672 		return;
673 
674 	mz->usage_in_excess = new_usage_in_excess;
675 	if (!mz->usage_in_excess)
676 		return;
677 	while (*p) {
678 		parent = *p;
679 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
680 					tree_node);
681 		if (mz->usage_in_excess < mz_node->usage_in_excess)
682 			p = &(*p)->rb_left;
683 		/*
684 		 * We can't avoid mem cgroups that are over their soft
685 		 * limit by the same amount
686 		 */
687 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
688 			p = &(*p)->rb_right;
689 	}
690 	rb_link_node(&mz->tree_node, parent, p);
691 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
692 	mz->on_tree = true;
693 }
694 
695 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
696 					 struct mem_cgroup_tree_per_zone *mctz)
697 {
698 	if (!mz->on_tree)
699 		return;
700 	rb_erase(&mz->tree_node, &mctz->rb_root);
701 	mz->on_tree = false;
702 }
703 
704 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
705 				       struct mem_cgroup_tree_per_zone *mctz)
706 {
707 	unsigned long flags;
708 
709 	spin_lock_irqsave(&mctz->lock, flags);
710 	__mem_cgroup_remove_exceeded(mz, mctz);
711 	spin_unlock_irqrestore(&mctz->lock, flags);
712 }
713 
714 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
715 {
716 	unsigned long nr_pages = page_counter_read(&memcg->memory);
717 	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
718 	unsigned long excess = 0;
719 
720 	if (nr_pages > soft_limit)
721 		excess = nr_pages - soft_limit;
722 
723 	return excess;
724 }
725 
726 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
727 {
728 	unsigned long excess;
729 	struct mem_cgroup_per_zone *mz;
730 	struct mem_cgroup_tree_per_zone *mctz;
731 
732 	mctz = soft_limit_tree_from_page(page);
733 	/*
734 	 * Necessary to update all ancestors when hierarchy is used.
735 	 * because their event counter is not touched.
736 	 */
737 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
738 		mz = mem_cgroup_page_zoneinfo(memcg, page);
739 		excess = soft_limit_excess(memcg);
740 		/*
741 		 * We have to update the tree if mz is on RB-tree or
742 		 * mem is over its softlimit.
743 		 */
744 		if (excess || mz->on_tree) {
745 			unsigned long flags;
746 
747 			spin_lock_irqsave(&mctz->lock, flags);
748 			/* if on-tree, remove it */
749 			if (mz->on_tree)
750 				__mem_cgroup_remove_exceeded(mz, mctz);
751 			/*
752 			 * Insert again. mz->usage_in_excess will be updated.
753 			 * If excess is 0, no tree ops.
754 			 */
755 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
756 			spin_unlock_irqrestore(&mctz->lock, flags);
757 		}
758 	}
759 }
760 
761 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
762 {
763 	struct mem_cgroup_tree_per_zone *mctz;
764 	struct mem_cgroup_per_zone *mz;
765 	int nid, zid;
766 
767 	for_each_node(nid) {
768 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
769 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
770 			mctz = soft_limit_tree_node_zone(nid, zid);
771 			mem_cgroup_remove_exceeded(mz, mctz);
772 		}
773 	}
774 }
775 
776 static struct mem_cgroup_per_zone *
777 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
778 {
779 	struct rb_node *rightmost = NULL;
780 	struct mem_cgroup_per_zone *mz;
781 
782 retry:
783 	mz = NULL;
784 	rightmost = rb_last(&mctz->rb_root);
785 	if (!rightmost)
786 		goto done;		/* Nothing to reclaim from */
787 
788 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
789 	/*
790 	 * Remove the node now but someone else can add it back,
791 	 * we will to add it back at the end of reclaim to its correct
792 	 * position in the tree.
793 	 */
794 	__mem_cgroup_remove_exceeded(mz, mctz);
795 	if (!soft_limit_excess(mz->memcg) ||
796 	    !css_tryget_online(&mz->memcg->css))
797 		goto retry;
798 done:
799 	return mz;
800 }
801 
802 static struct mem_cgroup_per_zone *
803 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804 {
805 	struct mem_cgroup_per_zone *mz;
806 
807 	spin_lock_irq(&mctz->lock);
808 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
809 	spin_unlock_irq(&mctz->lock);
810 	return mz;
811 }
812 
813 /*
814  * Implementation Note: reading percpu statistics for memcg.
815  *
816  * Both of vmstat[] and percpu_counter has threshold and do periodic
817  * synchronization to implement "quick" read. There are trade-off between
818  * reading cost and precision of value. Then, we may have a chance to implement
819  * a periodic synchronizion of counter in memcg's counter.
820  *
821  * But this _read() function is used for user interface now. The user accounts
822  * memory usage by memory cgroup and he _always_ requires exact value because
823  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
824  * have to visit all online cpus and make sum. So, for now, unnecessary
825  * synchronization is not implemented. (just implemented for cpu hotplug)
826  *
827  * If there are kernel internal actions which can make use of some not-exact
828  * value, and reading all cpu value can be performance bottleneck in some
829  * common workload, threashold and synchonization as vmstat[] should be
830  * implemented.
831  */
832 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
833 				 enum mem_cgroup_stat_index idx)
834 {
835 	long val = 0;
836 	int cpu;
837 
838 	get_online_cpus();
839 	for_each_online_cpu(cpu)
840 		val += per_cpu(memcg->stat->count[idx], cpu);
841 #ifdef CONFIG_HOTPLUG_CPU
842 	spin_lock(&memcg->pcp_counter_lock);
843 	val += memcg->nocpu_base.count[idx];
844 	spin_unlock(&memcg->pcp_counter_lock);
845 #endif
846 	put_online_cpus();
847 	return val;
848 }
849 
850 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
851 					    enum mem_cgroup_events_index idx)
852 {
853 	unsigned long val = 0;
854 	int cpu;
855 
856 	get_online_cpus();
857 	for_each_online_cpu(cpu)
858 		val += per_cpu(memcg->stat->events[idx], cpu);
859 #ifdef CONFIG_HOTPLUG_CPU
860 	spin_lock(&memcg->pcp_counter_lock);
861 	val += memcg->nocpu_base.events[idx];
862 	spin_unlock(&memcg->pcp_counter_lock);
863 #endif
864 	put_online_cpus();
865 	return val;
866 }
867 
868 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
869 					 struct page *page,
870 					 int nr_pages)
871 {
872 	/*
873 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
874 	 * counted as CACHE even if it's on ANON LRU.
875 	 */
876 	if (PageAnon(page))
877 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
878 				nr_pages);
879 	else
880 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
881 				nr_pages);
882 
883 	if (PageTransHuge(page))
884 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
885 				nr_pages);
886 
887 	/* pagein of a big page is an event. So, ignore page size */
888 	if (nr_pages > 0)
889 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
890 	else {
891 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
892 		nr_pages = -nr_pages; /* for event */
893 	}
894 
895 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
896 }
897 
898 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
899 {
900 	struct mem_cgroup_per_zone *mz;
901 
902 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
903 	return mz->lru_size[lru];
904 }
905 
906 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
907 						  int nid,
908 						  unsigned int lru_mask)
909 {
910 	unsigned long nr = 0;
911 	int zid;
912 
913 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
914 
915 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
916 		struct mem_cgroup_per_zone *mz;
917 		enum lru_list lru;
918 
919 		for_each_lru(lru) {
920 			if (!(BIT(lru) & lru_mask))
921 				continue;
922 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
923 			nr += mz->lru_size[lru];
924 		}
925 	}
926 	return nr;
927 }
928 
929 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
930 			unsigned int lru_mask)
931 {
932 	unsigned long nr = 0;
933 	int nid;
934 
935 	for_each_node_state(nid, N_MEMORY)
936 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
937 	return nr;
938 }
939 
940 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941 				       enum mem_cgroup_events_target target)
942 {
943 	unsigned long val, next;
944 
945 	val = __this_cpu_read(memcg->stat->nr_page_events);
946 	next = __this_cpu_read(memcg->stat->targets[target]);
947 	/* from time_after() in jiffies.h */
948 	if ((long)next - (long)val < 0) {
949 		switch (target) {
950 		case MEM_CGROUP_TARGET_THRESH:
951 			next = val + THRESHOLDS_EVENTS_TARGET;
952 			break;
953 		case MEM_CGROUP_TARGET_SOFTLIMIT:
954 			next = val + SOFTLIMIT_EVENTS_TARGET;
955 			break;
956 		case MEM_CGROUP_TARGET_NUMAINFO:
957 			next = val + NUMAINFO_EVENTS_TARGET;
958 			break;
959 		default:
960 			break;
961 		}
962 		__this_cpu_write(memcg->stat->targets[target], next);
963 		return true;
964 	}
965 	return false;
966 }
967 
968 /*
969  * Check events in order.
970  *
971  */
972 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
973 {
974 	/* threshold event is triggered in finer grain than soft limit */
975 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
976 						MEM_CGROUP_TARGET_THRESH))) {
977 		bool do_softlimit;
978 		bool do_numainfo __maybe_unused;
979 
980 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
981 						MEM_CGROUP_TARGET_SOFTLIMIT);
982 #if MAX_NUMNODES > 1
983 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
984 						MEM_CGROUP_TARGET_NUMAINFO);
985 #endif
986 		mem_cgroup_threshold(memcg);
987 		if (unlikely(do_softlimit))
988 			mem_cgroup_update_tree(memcg, page);
989 #if MAX_NUMNODES > 1
990 		if (unlikely(do_numainfo))
991 			atomic_inc(&memcg->numainfo_events);
992 #endif
993 	}
994 }
995 
996 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
997 {
998 	/*
999 	 * mm_update_next_owner() may clear mm->owner to NULL
1000 	 * if it races with swapoff, page migration, etc.
1001 	 * So this can be called with p == NULL.
1002 	 */
1003 	if (unlikely(!p))
1004 		return NULL;
1005 
1006 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1007 }
1008 
1009 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1010 {
1011 	struct mem_cgroup *memcg = NULL;
1012 
1013 	rcu_read_lock();
1014 	do {
1015 		/*
1016 		 * Page cache insertions can happen withou an
1017 		 * actual mm context, e.g. during disk probing
1018 		 * on boot, loopback IO, acct() writes etc.
1019 		 */
1020 		if (unlikely(!mm))
1021 			memcg = root_mem_cgroup;
1022 		else {
1023 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1024 			if (unlikely(!memcg))
1025 				memcg = root_mem_cgroup;
1026 		}
1027 	} while (!css_tryget_online(&memcg->css));
1028 	rcu_read_unlock();
1029 	return memcg;
1030 }
1031 
1032 /**
1033  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1034  * @root: hierarchy root
1035  * @prev: previously returned memcg, NULL on first invocation
1036  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1037  *
1038  * Returns references to children of the hierarchy below @root, or
1039  * @root itself, or %NULL after a full round-trip.
1040  *
1041  * Caller must pass the return value in @prev on subsequent
1042  * invocations for reference counting, or use mem_cgroup_iter_break()
1043  * to cancel a hierarchy walk before the round-trip is complete.
1044  *
1045  * Reclaimers can specify a zone and a priority level in @reclaim to
1046  * divide up the memcgs in the hierarchy among all concurrent
1047  * reclaimers operating on the same zone and priority.
1048  */
1049 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1050 				   struct mem_cgroup *prev,
1051 				   struct mem_cgroup_reclaim_cookie *reclaim)
1052 {
1053 	struct reclaim_iter *uninitialized_var(iter);
1054 	struct cgroup_subsys_state *css = NULL;
1055 	struct mem_cgroup *memcg = NULL;
1056 	struct mem_cgroup *pos = NULL;
1057 
1058 	if (mem_cgroup_disabled())
1059 		return NULL;
1060 
1061 	if (!root)
1062 		root = root_mem_cgroup;
1063 
1064 	if (prev && !reclaim)
1065 		pos = prev;
1066 
1067 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1068 		if (prev)
1069 			goto out;
1070 		return root;
1071 	}
1072 
1073 	rcu_read_lock();
1074 
1075 	if (reclaim) {
1076 		struct mem_cgroup_per_zone *mz;
1077 
1078 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1079 		iter = &mz->iter[reclaim->priority];
1080 
1081 		if (prev && reclaim->generation != iter->generation)
1082 			goto out_unlock;
1083 
1084 		do {
1085 			pos = ACCESS_ONCE(iter->position);
1086 			/*
1087 			 * A racing update may change the position and
1088 			 * put the last reference, hence css_tryget(),
1089 			 * or retry to see the updated position.
1090 			 */
1091 		} while (pos && !css_tryget(&pos->css));
1092 	}
1093 
1094 	if (pos)
1095 		css = &pos->css;
1096 
1097 	for (;;) {
1098 		css = css_next_descendant_pre(css, &root->css);
1099 		if (!css) {
1100 			/*
1101 			 * Reclaimers share the hierarchy walk, and a
1102 			 * new one might jump in right at the end of
1103 			 * the hierarchy - make sure they see at least
1104 			 * one group and restart from the beginning.
1105 			 */
1106 			if (!prev)
1107 				continue;
1108 			break;
1109 		}
1110 
1111 		/*
1112 		 * Verify the css and acquire a reference.  The root
1113 		 * is provided by the caller, so we know it's alive
1114 		 * and kicking, and don't take an extra reference.
1115 		 */
1116 		memcg = mem_cgroup_from_css(css);
1117 
1118 		if (css == &root->css)
1119 			break;
1120 
1121 		if (css_tryget(css)) {
1122 			/*
1123 			 * Make sure the memcg is initialized:
1124 			 * mem_cgroup_css_online() orders the the
1125 			 * initialization against setting the flag.
1126 			 */
1127 			if (smp_load_acquire(&memcg->initialized))
1128 				break;
1129 
1130 			css_put(css);
1131 		}
1132 
1133 		memcg = NULL;
1134 	}
1135 
1136 	if (reclaim) {
1137 		if (cmpxchg(&iter->position, pos, memcg) == pos) {
1138 			if (memcg)
1139 				css_get(&memcg->css);
1140 			if (pos)
1141 				css_put(&pos->css);
1142 		}
1143 
1144 		/*
1145 		 * pairs with css_tryget when dereferencing iter->position
1146 		 * above.
1147 		 */
1148 		if (pos)
1149 			css_put(&pos->css);
1150 
1151 		if (!memcg)
1152 			iter->generation++;
1153 		else if (!prev)
1154 			reclaim->generation = iter->generation;
1155 	}
1156 
1157 out_unlock:
1158 	rcu_read_unlock();
1159 out:
1160 	if (prev && prev != root)
1161 		css_put(&prev->css);
1162 
1163 	return memcg;
1164 }
1165 
1166 /**
1167  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1168  * @root: hierarchy root
1169  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1170  */
1171 void mem_cgroup_iter_break(struct mem_cgroup *root,
1172 			   struct mem_cgroup *prev)
1173 {
1174 	if (!root)
1175 		root = root_mem_cgroup;
1176 	if (prev && prev != root)
1177 		css_put(&prev->css);
1178 }
1179 
1180 /*
1181  * Iteration constructs for visiting all cgroups (under a tree).  If
1182  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1183  * be used for reference counting.
1184  */
1185 #define for_each_mem_cgroup_tree(iter, root)		\
1186 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1187 	     iter != NULL;				\
1188 	     iter = mem_cgroup_iter(root, iter, NULL))
1189 
1190 #define for_each_mem_cgroup(iter)			\
1191 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1192 	     iter != NULL;				\
1193 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1194 
1195 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1196 {
1197 	struct mem_cgroup *memcg;
1198 
1199 	rcu_read_lock();
1200 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1201 	if (unlikely(!memcg))
1202 		goto out;
1203 
1204 	switch (idx) {
1205 	case PGFAULT:
1206 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1207 		break;
1208 	case PGMAJFAULT:
1209 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1210 		break;
1211 	default:
1212 		BUG();
1213 	}
1214 out:
1215 	rcu_read_unlock();
1216 }
1217 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1218 
1219 /**
1220  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1221  * @zone: zone of the wanted lruvec
1222  * @memcg: memcg of the wanted lruvec
1223  *
1224  * Returns the lru list vector holding pages for the given @zone and
1225  * @mem.  This can be the global zone lruvec, if the memory controller
1226  * is disabled.
1227  */
1228 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1229 				      struct mem_cgroup *memcg)
1230 {
1231 	struct mem_cgroup_per_zone *mz;
1232 	struct lruvec *lruvec;
1233 
1234 	if (mem_cgroup_disabled()) {
1235 		lruvec = &zone->lruvec;
1236 		goto out;
1237 	}
1238 
1239 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1240 	lruvec = &mz->lruvec;
1241 out:
1242 	/*
1243 	 * Since a node can be onlined after the mem_cgroup was created,
1244 	 * we have to be prepared to initialize lruvec->zone here;
1245 	 * and if offlined then reonlined, we need to reinitialize it.
1246 	 */
1247 	if (unlikely(lruvec->zone != zone))
1248 		lruvec->zone = zone;
1249 	return lruvec;
1250 }
1251 
1252 /**
1253  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1254  * @page: the page
1255  * @zone: zone of the page
1256  *
1257  * This function is only safe when following the LRU page isolation
1258  * and putback protocol: the LRU lock must be held, and the page must
1259  * either be PageLRU() or the caller must have isolated/allocated it.
1260  */
1261 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1262 {
1263 	struct mem_cgroup_per_zone *mz;
1264 	struct mem_cgroup *memcg;
1265 	struct lruvec *lruvec;
1266 
1267 	if (mem_cgroup_disabled()) {
1268 		lruvec = &zone->lruvec;
1269 		goto out;
1270 	}
1271 
1272 	memcg = page->mem_cgroup;
1273 	/*
1274 	 * Swapcache readahead pages are added to the LRU - and
1275 	 * possibly migrated - before they are charged.
1276 	 */
1277 	if (!memcg)
1278 		memcg = root_mem_cgroup;
1279 
1280 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1281 	lruvec = &mz->lruvec;
1282 out:
1283 	/*
1284 	 * Since a node can be onlined after the mem_cgroup was created,
1285 	 * we have to be prepared to initialize lruvec->zone here;
1286 	 * and if offlined then reonlined, we need to reinitialize it.
1287 	 */
1288 	if (unlikely(lruvec->zone != zone))
1289 		lruvec->zone = zone;
1290 	return lruvec;
1291 }
1292 
1293 /**
1294  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1295  * @lruvec: mem_cgroup per zone lru vector
1296  * @lru: index of lru list the page is sitting on
1297  * @nr_pages: positive when adding or negative when removing
1298  *
1299  * This function must be called when a page is added to or removed from an
1300  * lru list.
1301  */
1302 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1303 				int nr_pages)
1304 {
1305 	struct mem_cgroup_per_zone *mz;
1306 	unsigned long *lru_size;
1307 
1308 	if (mem_cgroup_disabled())
1309 		return;
1310 
1311 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1312 	lru_size = mz->lru_size + lru;
1313 	*lru_size += nr_pages;
1314 	VM_BUG_ON((long)(*lru_size) < 0);
1315 }
1316 
1317 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1318 {
1319 	if (root == memcg)
1320 		return true;
1321 	if (!root->use_hierarchy)
1322 		return false;
1323 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1324 }
1325 
1326 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1327 {
1328 	struct mem_cgroup *task_memcg;
1329 	struct task_struct *p;
1330 	bool ret;
1331 
1332 	p = find_lock_task_mm(task);
1333 	if (p) {
1334 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1335 		task_unlock(p);
1336 	} else {
1337 		/*
1338 		 * All threads may have already detached their mm's, but the oom
1339 		 * killer still needs to detect if they have already been oom
1340 		 * killed to prevent needlessly killing additional tasks.
1341 		 */
1342 		rcu_read_lock();
1343 		task_memcg = mem_cgroup_from_task(task);
1344 		css_get(&task_memcg->css);
1345 		rcu_read_unlock();
1346 	}
1347 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1348 	css_put(&task_memcg->css);
1349 	return ret;
1350 }
1351 
1352 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1353 {
1354 	unsigned long inactive_ratio;
1355 	unsigned long inactive;
1356 	unsigned long active;
1357 	unsigned long gb;
1358 
1359 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1360 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1361 
1362 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1363 	if (gb)
1364 		inactive_ratio = int_sqrt(10 * gb);
1365 	else
1366 		inactive_ratio = 1;
1367 
1368 	return inactive * inactive_ratio < active;
1369 }
1370 
1371 #define mem_cgroup_from_counter(counter, member)	\
1372 	container_of(counter, struct mem_cgroup, member)
1373 
1374 /**
1375  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1376  * @memcg: the memory cgroup
1377  *
1378  * Returns the maximum amount of memory @mem can be charged with, in
1379  * pages.
1380  */
1381 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1382 {
1383 	unsigned long margin = 0;
1384 	unsigned long count;
1385 	unsigned long limit;
1386 
1387 	count = page_counter_read(&memcg->memory);
1388 	limit = ACCESS_ONCE(memcg->memory.limit);
1389 	if (count < limit)
1390 		margin = limit - count;
1391 
1392 	if (do_swap_account) {
1393 		count = page_counter_read(&memcg->memsw);
1394 		limit = ACCESS_ONCE(memcg->memsw.limit);
1395 		if (count <= limit)
1396 			margin = min(margin, limit - count);
1397 	}
1398 
1399 	return margin;
1400 }
1401 
1402 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1403 {
1404 	/* root ? */
1405 	if (mem_cgroup_disabled() || !memcg->css.parent)
1406 		return vm_swappiness;
1407 
1408 	return memcg->swappiness;
1409 }
1410 
1411 /*
1412  * A routine for checking "mem" is under move_account() or not.
1413  *
1414  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1415  * moving cgroups. This is for waiting at high-memory pressure
1416  * caused by "move".
1417  */
1418 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1419 {
1420 	struct mem_cgroup *from;
1421 	struct mem_cgroup *to;
1422 	bool ret = false;
1423 	/*
1424 	 * Unlike task_move routines, we access mc.to, mc.from not under
1425 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1426 	 */
1427 	spin_lock(&mc.lock);
1428 	from = mc.from;
1429 	to = mc.to;
1430 	if (!from)
1431 		goto unlock;
1432 
1433 	ret = mem_cgroup_is_descendant(from, memcg) ||
1434 		mem_cgroup_is_descendant(to, memcg);
1435 unlock:
1436 	spin_unlock(&mc.lock);
1437 	return ret;
1438 }
1439 
1440 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1441 {
1442 	if (mc.moving_task && current != mc.moving_task) {
1443 		if (mem_cgroup_under_move(memcg)) {
1444 			DEFINE_WAIT(wait);
1445 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1446 			/* moving charge context might have finished. */
1447 			if (mc.moving_task)
1448 				schedule();
1449 			finish_wait(&mc.waitq, &wait);
1450 			return true;
1451 		}
1452 	}
1453 	return false;
1454 }
1455 
1456 #define K(x) ((x) << (PAGE_SHIFT-10))
1457 /**
1458  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1459  * @memcg: The memory cgroup that went over limit
1460  * @p: Task that is going to be killed
1461  *
1462  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1463  * enabled
1464  */
1465 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1466 {
1467 	/* oom_info_lock ensures that parallel ooms do not interleave */
1468 	static DEFINE_MUTEX(oom_info_lock);
1469 	struct mem_cgroup *iter;
1470 	unsigned int i;
1471 
1472 	if (!p)
1473 		return;
1474 
1475 	mutex_lock(&oom_info_lock);
1476 	rcu_read_lock();
1477 
1478 	pr_info("Task in ");
1479 	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1480 	pr_info(" killed as a result of limit of ");
1481 	pr_cont_cgroup_path(memcg->css.cgroup);
1482 	pr_info("\n");
1483 
1484 	rcu_read_unlock();
1485 
1486 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1487 		K((u64)page_counter_read(&memcg->memory)),
1488 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1489 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1490 		K((u64)page_counter_read(&memcg->memsw)),
1491 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1492 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1493 		K((u64)page_counter_read(&memcg->kmem)),
1494 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1495 
1496 	for_each_mem_cgroup_tree(iter, memcg) {
1497 		pr_info("Memory cgroup stats for ");
1498 		pr_cont_cgroup_path(iter->css.cgroup);
1499 		pr_cont(":");
1500 
1501 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1502 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1503 				continue;
1504 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1505 				K(mem_cgroup_read_stat(iter, i)));
1506 		}
1507 
1508 		for (i = 0; i < NR_LRU_LISTS; i++)
1509 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1510 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1511 
1512 		pr_cont("\n");
1513 	}
1514 	mutex_unlock(&oom_info_lock);
1515 }
1516 
1517 /*
1518  * This function returns the number of memcg under hierarchy tree. Returns
1519  * 1(self count) if no children.
1520  */
1521 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1522 {
1523 	int num = 0;
1524 	struct mem_cgroup *iter;
1525 
1526 	for_each_mem_cgroup_tree(iter, memcg)
1527 		num++;
1528 	return num;
1529 }
1530 
1531 /*
1532  * Return the memory (and swap, if configured) limit for a memcg.
1533  */
1534 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1535 {
1536 	unsigned long limit;
1537 
1538 	limit = memcg->memory.limit;
1539 	if (mem_cgroup_swappiness(memcg)) {
1540 		unsigned long memsw_limit;
1541 
1542 		memsw_limit = memcg->memsw.limit;
1543 		limit = min(limit + total_swap_pages, memsw_limit);
1544 	}
1545 	return limit;
1546 }
1547 
1548 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1549 				     int order)
1550 {
1551 	struct mem_cgroup *iter;
1552 	unsigned long chosen_points = 0;
1553 	unsigned long totalpages;
1554 	unsigned int points = 0;
1555 	struct task_struct *chosen = NULL;
1556 
1557 	/*
1558 	 * If current has a pending SIGKILL or is exiting, then automatically
1559 	 * select it.  The goal is to allow it to allocate so that it may
1560 	 * quickly exit and free its memory.
1561 	 */
1562 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1563 		set_thread_flag(TIF_MEMDIE);
1564 		return;
1565 	}
1566 
1567 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1568 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1569 	for_each_mem_cgroup_tree(iter, memcg) {
1570 		struct css_task_iter it;
1571 		struct task_struct *task;
1572 
1573 		css_task_iter_start(&iter->css, &it);
1574 		while ((task = css_task_iter_next(&it))) {
1575 			switch (oom_scan_process_thread(task, totalpages, NULL,
1576 							false)) {
1577 			case OOM_SCAN_SELECT:
1578 				if (chosen)
1579 					put_task_struct(chosen);
1580 				chosen = task;
1581 				chosen_points = ULONG_MAX;
1582 				get_task_struct(chosen);
1583 				/* fall through */
1584 			case OOM_SCAN_CONTINUE:
1585 				continue;
1586 			case OOM_SCAN_ABORT:
1587 				css_task_iter_end(&it);
1588 				mem_cgroup_iter_break(memcg, iter);
1589 				if (chosen)
1590 					put_task_struct(chosen);
1591 				return;
1592 			case OOM_SCAN_OK:
1593 				break;
1594 			};
1595 			points = oom_badness(task, memcg, NULL, totalpages);
1596 			if (!points || points < chosen_points)
1597 				continue;
1598 			/* Prefer thread group leaders for display purposes */
1599 			if (points == chosen_points &&
1600 			    thread_group_leader(chosen))
1601 				continue;
1602 
1603 			if (chosen)
1604 				put_task_struct(chosen);
1605 			chosen = task;
1606 			chosen_points = points;
1607 			get_task_struct(chosen);
1608 		}
1609 		css_task_iter_end(&it);
1610 	}
1611 
1612 	if (!chosen)
1613 		return;
1614 	points = chosen_points * 1000 / totalpages;
1615 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1616 			 NULL, "Memory cgroup out of memory");
1617 }
1618 
1619 #if MAX_NUMNODES > 1
1620 
1621 /**
1622  * test_mem_cgroup_node_reclaimable
1623  * @memcg: the target memcg
1624  * @nid: the node ID to be checked.
1625  * @noswap : specify true here if the user wants flle only information.
1626  *
1627  * This function returns whether the specified memcg contains any
1628  * reclaimable pages on a node. Returns true if there are any reclaimable
1629  * pages in the node.
1630  */
1631 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1632 		int nid, bool noswap)
1633 {
1634 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1635 		return true;
1636 	if (noswap || !total_swap_pages)
1637 		return false;
1638 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1639 		return true;
1640 	return false;
1641 
1642 }
1643 
1644 /*
1645  * Always updating the nodemask is not very good - even if we have an empty
1646  * list or the wrong list here, we can start from some node and traverse all
1647  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1648  *
1649  */
1650 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1651 {
1652 	int nid;
1653 	/*
1654 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1655 	 * pagein/pageout changes since the last update.
1656 	 */
1657 	if (!atomic_read(&memcg->numainfo_events))
1658 		return;
1659 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1660 		return;
1661 
1662 	/* make a nodemask where this memcg uses memory from */
1663 	memcg->scan_nodes = node_states[N_MEMORY];
1664 
1665 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1666 
1667 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1668 			node_clear(nid, memcg->scan_nodes);
1669 	}
1670 
1671 	atomic_set(&memcg->numainfo_events, 0);
1672 	atomic_set(&memcg->numainfo_updating, 0);
1673 }
1674 
1675 /*
1676  * Selecting a node where we start reclaim from. Because what we need is just
1677  * reducing usage counter, start from anywhere is O,K. Considering
1678  * memory reclaim from current node, there are pros. and cons.
1679  *
1680  * Freeing memory from current node means freeing memory from a node which
1681  * we'll use or we've used. So, it may make LRU bad. And if several threads
1682  * hit limits, it will see a contention on a node. But freeing from remote
1683  * node means more costs for memory reclaim because of memory latency.
1684  *
1685  * Now, we use round-robin. Better algorithm is welcomed.
1686  */
1687 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1688 {
1689 	int node;
1690 
1691 	mem_cgroup_may_update_nodemask(memcg);
1692 	node = memcg->last_scanned_node;
1693 
1694 	node = next_node(node, memcg->scan_nodes);
1695 	if (node == MAX_NUMNODES)
1696 		node = first_node(memcg->scan_nodes);
1697 	/*
1698 	 * We call this when we hit limit, not when pages are added to LRU.
1699 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1700 	 * memcg is too small and all pages are not on LRU. In that case,
1701 	 * we use curret node.
1702 	 */
1703 	if (unlikely(node == MAX_NUMNODES))
1704 		node = numa_node_id();
1705 
1706 	memcg->last_scanned_node = node;
1707 	return node;
1708 }
1709 #else
1710 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1711 {
1712 	return 0;
1713 }
1714 #endif
1715 
1716 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1717 				   struct zone *zone,
1718 				   gfp_t gfp_mask,
1719 				   unsigned long *total_scanned)
1720 {
1721 	struct mem_cgroup *victim = NULL;
1722 	int total = 0;
1723 	int loop = 0;
1724 	unsigned long excess;
1725 	unsigned long nr_scanned;
1726 	struct mem_cgroup_reclaim_cookie reclaim = {
1727 		.zone = zone,
1728 		.priority = 0,
1729 	};
1730 
1731 	excess = soft_limit_excess(root_memcg);
1732 
1733 	while (1) {
1734 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735 		if (!victim) {
1736 			loop++;
1737 			if (loop >= 2) {
1738 				/*
1739 				 * If we have not been able to reclaim
1740 				 * anything, it might because there are
1741 				 * no reclaimable pages under this hierarchy
1742 				 */
1743 				if (!total)
1744 					break;
1745 				/*
1746 				 * We want to do more targeted reclaim.
1747 				 * excess >> 2 is not to excessive so as to
1748 				 * reclaim too much, nor too less that we keep
1749 				 * coming back to reclaim from this cgroup
1750 				 */
1751 				if (total >= (excess >> 2) ||
1752 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753 					break;
1754 			}
1755 			continue;
1756 		}
1757 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1758 						     zone, &nr_scanned);
1759 		*total_scanned += nr_scanned;
1760 		if (!soft_limit_excess(root_memcg))
1761 			break;
1762 	}
1763 	mem_cgroup_iter_break(root_memcg, victim);
1764 	return total;
1765 }
1766 
1767 #ifdef CONFIG_LOCKDEP
1768 static struct lockdep_map memcg_oom_lock_dep_map = {
1769 	.name = "memcg_oom_lock",
1770 };
1771 #endif
1772 
1773 static DEFINE_SPINLOCK(memcg_oom_lock);
1774 
1775 /*
1776  * Check OOM-Killer is already running under our hierarchy.
1777  * If someone is running, return false.
1778  */
1779 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1780 {
1781 	struct mem_cgroup *iter, *failed = NULL;
1782 
1783 	spin_lock(&memcg_oom_lock);
1784 
1785 	for_each_mem_cgroup_tree(iter, memcg) {
1786 		if (iter->oom_lock) {
1787 			/*
1788 			 * this subtree of our hierarchy is already locked
1789 			 * so we cannot give a lock.
1790 			 */
1791 			failed = iter;
1792 			mem_cgroup_iter_break(memcg, iter);
1793 			break;
1794 		} else
1795 			iter->oom_lock = true;
1796 	}
1797 
1798 	if (failed) {
1799 		/*
1800 		 * OK, we failed to lock the whole subtree so we have
1801 		 * to clean up what we set up to the failing subtree
1802 		 */
1803 		for_each_mem_cgroup_tree(iter, memcg) {
1804 			if (iter == failed) {
1805 				mem_cgroup_iter_break(memcg, iter);
1806 				break;
1807 			}
1808 			iter->oom_lock = false;
1809 		}
1810 	} else
1811 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1812 
1813 	spin_unlock(&memcg_oom_lock);
1814 
1815 	return !failed;
1816 }
1817 
1818 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819 {
1820 	struct mem_cgroup *iter;
1821 
1822 	spin_lock(&memcg_oom_lock);
1823 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1824 	for_each_mem_cgroup_tree(iter, memcg)
1825 		iter->oom_lock = false;
1826 	spin_unlock(&memcg_oom_lock);
1827 }
1828 
1829 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1830 {
1831 	struct mem_cgroup *iter;
1832 
1833 	for_each_mem_cgroup_tree(iter, memcg)
1834 		atomic_inc(&iter->under_oom);
1835 }
1836 
1837 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1838 {
1839 	struct mem_cgroup *iter;
1840 
1841 	/*
1842 	 * When a new child is created while the hierarchy is under oom,
1843 	 * mem_cgroup_oom_lock() may not be called. We have to use
1844 	 * atomic_add_unless() here.
1845 	 */
1846 	for_each_mem_cgroup_tree(iter, memcg)
1847 		atomic_add_unless(&iter->under_oom, -1, 0);
1848 }
1849 
1850 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851 
1852 struct oom_wait_info {
1853 	struct mem_cgroup *memcg;
1854 	wait_queue_t	wait;
1855 };
1856 
1857 static int memcg_oom_wake_function(wait_queue_t *wait,
1858 	unsigned mode, int sync, void *arg)
1859 {
1860 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1861 	struct mem_cgroup *oom_wait_memcg;
1862 	struct oom_wait_info *oom_wait_info;
1863 
1864 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1865 	oom_wait_memcg = oom_wait_info->memcg;
1866 
1867 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1868 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1869 		return 0;
1870 	return autoremove_wake_function(wait, mode, sync, arg);
1871 }
1872 
1873 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1874 {
1875 	atomic_inc(&memcg->oom_wakeups);
1876 	/* for filtering, pass "memcg" as argument. */
1877 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1878 }
1879 
1880 static void memcg_oom_recover(struct mem_cgroup *memcg)
1881 {
1882 	if (memcg && atomic_read(&memcg->under_oom))
1883 		memcg_wakeup_oom(memcg);
1884 }
1885 
1886 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1887 {
1888 	if (!current->memcg_oom.may_oom)
1889 		return;
1890 	/*
1891 	 * We are in the middle of the charge context here, so we
1892 	 * don't want to block when potentially sitting on a callstack
1893 	 * that holds all kinds of filesystem and mm locks.
1894 	 *
1895 	 * Also, the caller may handle a failed allocation gracefully
1896 	 * (like optional page cache readahead) and so an OOM killer
1897 	 * invocation might not even be necessary.
1898 	 *
1899 	 * That's why we don't do anything here except remember the
1900 	 * OOM context and then deal with it at the end of the page
1901 	 * fault when the stack is unwound, the locks are released,
1902 	 * and when we know whether the fault was overall successful.
1903 	 */
1904 	css_get(&memcg->css);
1905 	current->memcg_oom.memcg = memcg;
1906 	current->memcg_oom.gfp_mask = mask;
1907 	current->memcg_oom.order = order;
1908 }
1909 
1910 /**
1911  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1912  * @handle: actually kill/wait or just clean up the OOM state
1913  *
1914  * This has to be called at the end of a page fault if the memcg OOM
1915  * handler was enabled.
1916  *
1917  * Memcg supports userspace OOM handling where failed allocations must
1918  * sleep on a waitqueue until the userspace task resolves the
1919  * situation.  Sleeping directly in the charge context with all kinds
1920  * of locks held is not a good idea, instead we remember an OOM state
1921  * in the task and mem_cgroup_oom_synchronize() has to be called at
1922  * the end of the page fault to complete the OOM handling.
1923  *
1924  * Returns %true if an ongoing memcg OOM situation was detected and
1925  * completed, %false otherwise.
1926  */
1927 bool mem_cgroup_oom_synchronize(bool handle)
1928 {
1929 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1930 	struct oom_wait_info owait;
1931 	bool locked;
1932 
1933 	/* OOM is global, do not handle */
1934 	if (!memcg)
1935 		return false;
1936 
1937 	if (!handle)
1938 		goto cleanup;
1939 
1940 	owait.memcg = memcg;
1941 	owait.wait.flags = 0;
1942 	owait.wait.func = memcg_oom_wake_function;
1943 	owait.wait.private = current;
1944 	INIT_LIST_HEAD(&owait.wait.task_list);
1945 
1946 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1947 	mem_cgroup_mark_under_oom(memcg);
1948 
1949 	locked = mem_cgroup_oom_trylock(memcg);
1950 
1951 	if (locked)
1952 		mem_cgroup_oom_notify(memcg);
1953 
1954 	if (locked && !memcg->oom_kill_disable) {
1955 		mem_cgroup_unmark_under_oom(memcg);
1956 		finish_wait(&memcg_oom_waitq, &owait.wait);
1957 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1958 					 current->memcg_oom.order);
1959 	} else {
1960 		schedule();
1961 		mem_cgroup_unmark_under_oom(memcg);
1962 		finish_wait(&memcg_oom_waitq, &owait.wait);
1963 	}
1964 
1965 	if (locked) {
1966 		mem_cgroup_oom_unlock(memcg);
1967 		/*
1968 		 * There is no guarantee that an OOM-lock contender
1969 		 * sees the wakeups triggered by the OOM kill
1970 		 * uncharges.  Wake any sleepers explicitely.
1971 		 */
1972 		memcg_oom_recover(memcg);
1973 	}
1974 cleanup:
1975 	current->memcg_oom.memcg = NULL;
1976 	css_put(&memcg->css);
1977 	return true;
1978 }
1979 
1980 /**
1981  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1982  * @page: page that is going to change accounted state
1983  * @locked: &memcg->move_lock slowpath was taken
1984  * @flags: IRQ-state flags for &memcg->move_lock
1985  *
1986  * This function must mark the beginning of an accounted page state
1987  * change to prevent double accounting when the page is concurrently
1988  * being moved to another memcg:
1989  *
1990  *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1991  *   if (TestClearPageState(page))
1992  *     mem_cgroup_update_page_stat(memcg, state, -1);
1993  *   mem_cgroup_end_page_stat(memcg, locked, flags);
1994  *
1995  * The RCU lock is held throughout the transaction.  The fast path can
1996  * get away without acquiring the memcg->move_lock (@locked is false)
1997  * because page moving starts with an RCU grace period.
1998  *
1999  * The RCU lock also protects the memcg from being freed when the page
2000  * state that is going to change is the only thing preventing the page
2001  * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
2002  * which allows migration to go ahead and uncharge the page before the
2003  * account transaction might be complete.
2004  */
2005 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2006 					      bool *locked,
2007 					      unsigned long *flags)
2008 {
2009 	struct mem_cgroup *memcg;
2010 
2011 	rcu_read_lock();
2012 
2013 	if (mem_cgroup_disabled())
2014 		return NULL;
2015 again:
2016 	memcg = page->mem_cgroup;
2017 	if (unlikely(!memcg))
2018 		return NULL;
2019 
2020 	*locked = false;
2021 	if (atomic_read(&memcg->moving_account) <= 0)
2022 		return memcg;
2023 
2024 	spin_lock_irqsave(&memcg->move_lock, *flags);
2025 	if (memcg != page->mem_cgroup) {
2026 		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2027 		goto again;
2028 	}
2029 	*locked = true;
2030 
2031 	return memcg;
2032 }
2033 
2034 /**
2035  * mem_cgroup_end_page_stat - finish a page state statistics transaction
2036  * @memcg: the memcg that was accounted against
2037  * @locked: value received from mem_cgroup_begin_page_stat()
2038  * @flags: value received from mem_cgroup_begin_page_stat()
2039  */
2040 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2041 			      unsigned long *flags)
2042 {
2043 	if (memcg && *locked)
2044 		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2045 
2046 	rcu_read_unlock();
2047 }
2048 
2049 /**
2050  * mem_cgroup_update_page_stat - update page state statistics
2051  * @memcg: memcg to account against
2052  * @idx: page state item to account
2053  * @val: number of pages (positive or negative)
2054  *
2055  * See mem_cgroup_begin_page_stat() for locking requirements.
2056  */
2057 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2058 				 enum mem_cgroup_stat_index idx, int val)
2059 {
2060 	VM_BUG_ON(!rcu_read_lock_held());
2061 
2062 	if (memcg)
2063 		this_cpu_add(memcg->stat->count[idx], val);
2064 }
2065 
2066 /*
2067  * size of first charge trial. "32" comes from vmscan.c's magic value.
2068  * TODO: maybe necessary to use big numbers in big irons.
2069  */
2070 #define CHARGE_BATCH	32U
2071 struct memcg_stock_pcp {
2072 	struct mem_cgroup *cached; /* this never be root cgroup */
2073 	unsigned int nr_pages;
2074 	struct work_struct work;
2075 	unsigned long flags;
2076 #define FLUSHING_CACHED_CHARGE	0
2077 };
2078 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2079 static DEFINE_MUTEX(percpu_charge_mutex);
2080 
2081 /**
2082  * consume_stock: Try to consume stocked charge on this cpu.
2083  * @memcg: memcg to consume from.
2084  * @nr_pages: how many pages to charge.
2085  *
2086  * The charges will only happen if @memcg matches the current cpu's memcg
2087  * stock, and at least @nr_pages are available in that stock.  Failure to
2088  * service an allocation will refill the stock.
2089  *
2090  * returns true if successful, false otherwise.
2091  */
2092 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2093 {
2094 	struct memcg_stock_pcp *stock;
2095 	bool ret = false;
2096 
2097 	if (nr_pages > CHARGE_BATCH)
2098 		return ret;
2099 
2100 	stock = &get_cpu_var(memcg_stock);
2101 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2102 		stock->nr_pages -= nr_pages;
2103 		ret = true;
2104 	}
2105 	put_cpu_var(memcg_stock);
2106 	return ret;
2107 }
2108 
2109 /*
2110  * Returns stocks cached in percpu and reset cached information.
2111  */
2112 static void drain_stock(struct memcg_stock_pcp *stock)
2113 {
2114 	struct mem_cgroup *old = stock->cached;
2115 
2116 	if (stock->nr_pages) {
2117 		page_counter_uncharge(&old->memory, stock->nr_pages);
2118 		if (do_swap_account)
2119 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2120 		css_put_many(&old->css, stock->nr_pages);
2121 		stock->nr_pages = 0;
2122 	}
2123 	stock->cached = NULL;
2124 }
2125 
2126 /*
2127  * This must be called under preempt disabled or must be called by
2128  * a thread which is pinned to local cpu.
2129  */
2130 static void drain_local_stock(struct work_struct *dummy)
2131 {
2132 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2133 	drain_stock(stock);
2134 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2135 }
2136 
2137 static void __init memcg_stock_init(void)
2138 {
2139 	int cpu;
2140 
2141 	for_each_possible_cpu(cpu) {
2142 		struct memcg_stock_pcp *stock =
2143 					&per_cpu(memcg_stock, cpu);
2144 		INIT_WORK(&stock->work, drain_local_stock);
2145 	}
2146 }
2147 
2148 /*
2149  * Cache charges(val) to local per_cpu area.
2150  * This will be consumed by consume_stock() function, later.
2151  */
2152 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2153 {
2154 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2155 
2156 	if (stock->cached != memcg) { /* reset if necessary */
2157 		drain_stock(stock);
2158 		stock->cached = memcg;
2159 	}
2160 	stock->nr_pages += nr_pages;
2161 	put_cpu_var(memcg_stock);
2162 }
2163 
2164 /*
2165  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2166  * of the hierarchy under it.
2167  */
2168 static void drain_all_stock(struct mem_cgroup *root_memcg)
2169 {
2170 	int cpu, curcpu;
2171 
2172 	/* If someone's already draining, avoid adding running more workers. */
2173 	if (!mutex_trylock(&percpu_charge_mutex))
2174 		return;
2175 	/* Notify other cpus that system-wide "drain" is running */
2176 	get_online_cpus();
2177 	curcpu = get_cpu();
2178 	for_each_online_cpu(cpu) {
2179 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2180 		struct mem_cgroup *memcg;
2181 
2182 		memcg = stock->cached;
2183 		if (!memcg || !stock->nr_pages)
2184 			continue;
2185 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2186 			continue;
2187 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2188 			if (cpu == curcpu)
2189 				drain_local_stock(&stock->work);
2190 			else
2191 				schedule_work_on(cpu, &stock->work);
2192 		}
2193 	}
2194 	put_cpu();
2195 	put_online_cpus();
2196 	mutex_unlock(&percpu_charge_mutex);
2197 }
2198 
2199 /*
2200  * This function drains percpu counter value from DEAD cpu and
2201  * move it to local cpu. Note that this function can be preempted.
2202  */
2203 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2204 {
2205 	int i;
2206 
2207 	spin_lock(&memcg->pcp_counter_lock);
2208 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2209 		long x = per_cpu(memcg->stat->count[i], cpu);
2210 
2211 		per_cpu(memcg->stat->count[i], cpu) = 0;
2212 		memcg->nocpu_base.count[i] += x;
2213 	}
2214 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2215 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2216 
2217 		per_cpu(memcg->stat->events[i], cpu) = 0;
2218 		memcg->nocpu_base.events[i] += x;
2219 	}
2220 	spin_unlock(&memcg->pcp_counter_lock);
2221 }
2222 
2223 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2224 					unsigned long action,
2225 					void *hcpu)
2226 {
2227 	int cpu = (unsigned long)hcpu;
2228 	struct memcg_stock_pcp *stock;
2229 	struct mem_cgroup *iter;
2230 
2231 	if (action == CPU_ONLINE)
2232 		return NOTIFY_OK;
2233 
2234 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2235 		return NOTIFY_OK;
2236 
2237 	for_each_mem_cgroup(iter)
2238 		mem_cgroup_drain_pcp_counter(iter, cpu);
2239 
2240 	stock = &per_cpu(memcg_stock, cpu);
2241 	drain_stock(stock);
2242 	return NOTIFY_OK;
2243 }
2244 
2245 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2246 		      unsigned int nr_pages)
2247 {
2248 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2249 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2250 	struct mem_cgroup *mem_over_limit;
2251 	struct page_counter *counter;
2252 	unsigned long nr_reclaimed;
2253 	bool may_swap = true;
2254 	bool drained = false;
2255 	int ret = 0;
2256 
2257 	if (mem_cgroup_is_root(memcg))
2258 		goto done;
2259 retry:
2260 	if (consume_stock(memcg, nr_pages))
2261 		goto done;
2262 
2263 	if (!do_swap_account ||
2264 	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2265 		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2266 			goto done_restock;
2267 		if (do_swap_account)
2268 			page_counter_uncharge(&memcg->memsw, batch);
2269 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2270 	} else {
2271 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2272 		may_swap = false;
2273 	}
2274 
2275 	if (batch > nr_pages) {
2276 		batch = nr_pages;
2277 		goto retry;
2278 	}
2279 
2280 	/*
2281 	 * Unlike in global OOM situations, memcg is not in a physical
2282 	 * memory shortage.  Allow dying and OOM-killed tasks to
2283 	 * bypass the last charges so that they can exit quickly and
2284 	 * free their memory.
2285 	 */
2286 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2287 		     fatal_signal_pending(current) ||
2288 		     current->flags & PF_EXITING))
2289 		goto bypass;
2290 
2291 	if (unlikely(task_in_memcg_oom(current)))
2292 		goto nomem;
2293 
2294 	if (!(gfp_mask & __GFP_WAIT))
2295 		goto nomem;
2296 
2297 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2298 						    gfp_mask, may_swap);
2299 
2300 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2301 		goto retry;
2302 
2303 	if (!drained) {
2304 		drain_all_stock(mem_over_limit);
2305 		drained = true;
2306 		goto retry;
2307 	}
2308 
2309 	if (gfp_mask & __GFP_NORETRY)
2310 		goto nomem;
2311 	/*
2312 	 * Even though the limit is exceeded at this point, reclaim
2313 	 * may have been able to free some pages.  Retry the charge
2314 	 * before killing the task.
2315 	 *
2316 	 * Only for regular pages, though: huge pages are rather
2317 	 * unlikely to succeed so close to the limit, and we fall back
2318 	 * to regular pages anyway in case of failure.
2319 	 */
2320 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2321 		goto retry;
2322 	/*
2323 	 * At task move, charge accounts can be doubly counted. So, it's
2324 	 * better to wait until the end of task_move if something is going on.
2325 	 */
2326 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2327 		goto retry;
2328 
2329 	if (nr_retries--)
2330 		goto retry;
2331 
2332 	if (gfp_mask & __GFP_NOFAIL)
2333 		goto bypass;
2334 
2335 	if (fatal_signal_pending(current))
2336 		goto bypass;
2337 
2338 	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2339 nomem:
2340 	if (!(gfp_mask & __GFP_NOFAIL))
2341 		return -ENOMEM;
2342 bypass:
2343 	return -EINTR;
2344 
2345 done_restock:
2346 	css_get_many(&memcg->css, batch);
2347 	if (batch > nr_pages)
2348 		refill_stock(memcg, batch - nr_pages);
2349 done:
2350 	return ret;
2351 }
2352 
2353 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2354 {
2355 	if (mem_cgroup_is_root(memcg))
2356 		return;
2357 
2358 	page_counter_uncharge(&memcg->memory, nr_pages);
2359 	if (do_swap_account)
2360 		page_counter_uncharge(&memcg->memsw, nr_pages);
2361 
2362 	css_put_many(&memcg->css, nr_pages);
2363 }
2364 
2365 /*
2366  * A helper function to get mem_cgroup from ID. must be called under
2367  * rcu_read_lock().  The caller is responsible for calling
2368  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2369  * refcnt from swap can be called against removed memcg.)
2370  */
2371 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2372 {
2373 	/* ID 0 is unused ID */
2374 	if (!id)
2375 		return NULL;
2376 	return mem_cgroup_from_id(id);
2377 }
2378 
2379 /*
2380  * try_get_mem_cgroup_from_page - look up page's memcg association
2381  * @page: the page
2382  *
2383  * Look up, get a css reference, and return the memcg that owns @page.
2384  *
2385  * The page must be locked to prevent racing with swap-in and page
2386  * cache charges.  If coming from an unlocked page table, the caller
2387  * must ensure the page is on the LRU or this can race with charging.
2388  */
2389 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2390 {
2391 	struct mem_cgroup *memcg;
2392 	unsigned short id;
2393 	swp_entry_t ent;
2394 
2395 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2396 
2397 	memcg = page->mem_cgroup;
2398 	if (memcg) {
2399 		if (!css_tryget_online(&memcg->css))
2400 			memcg = NULL;
2401 	} else if (PageSwapCache(page)) {
2402 		ent.val = page_private(page);
2403 		id = lookup_swap_cgroup_id(ent);
2404 		rcu_read_lock();
2405 		memcg = mem_cgroup_lookup(id);
2406 		if (memcg && !css_tryget_online(&memcg->css))
2407 			memcg = NULL;
2408 		rcu_read_unlock();
2409 	}
2410 	return memcg;
2411 }
2412 
2413 static void lock_page_lru(struct page *page, int *isolated)
2414 {
2415 	struct zone *zone = page_zone(page);
2416 
2417 	spin_lock_irq(&zone->lru_lock);
2418 	if (PageLRU(page)) {
2419 		struct lruvec *lruvec;
2420 
2421 		lruvec = mem_cgroup_page_lruvec(page, zone);
2422 		ClearPageLRU(page);
2423 		del_page_from_lru_list(page, lruvec, page_lru(page));
2424 		*isolated = 1;
2425 	} else
2426 		*isolated = 0;
2427 }
2428 
2429 static void unlock_page_lru(struct page *page, int isolated)
2430 {
2431 	struct zone *zone = page_zone(page);
2432 
2433 	if (isolated) {
2434 		struct lruvec *lruvec;
2435 
2436 		lruvec = mem_cgroup_page_lruvec(page, zone);
2437 		VM_BUG_ON_PAGE(PageLRU(page), page);
2438 		SetPageLRU(page);
2439 		add_page_to_lru_list(page, lruvec, page_lru(page));
2440 	}
2441 	spin_unlock_irq(&zone->lru_lock);
2442 }
2443 
2444 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2445 			  bool lrucare)
2446 {
2447 	int isolated;
2448 
2449 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2450 
2451 	/*
2452 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2453 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2454 	 */
2455 	if (lrucare)
2456 		lock_page_lru(page, &isolated);
2457 
2458 	/*
2459 	 * Nobody should be changing or seriously looking at
2460 	 * page->mem_cgroup at this point:
2461 	 *
2462 	 * - the page is uncharged
2463 	 *
2464 	 * - the page is off-LRU
2465 	 *
2466 	 * - an anonymous fault has exclusive page access, except for
2467 	 *   a locked page table
2468 	 *
2469 	 * - a page cache insertion, a swapin fault, or a migration
2470 	 *   have the page locked
2471 	 */
2472 	page->mem_cgroup = memcg;
2473 
2474 	if (lrucare)
2475 		unlock_page_lru(page, isolated);
2476 }
2477 
2478 #ifdef CONFIG_MEMCG_KMEM
2479 /*
2480  * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2481  * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2482  */
2483 static DEFINE_MUTEX(memcg_slab_mutex);
2484 
2485 /*
2486  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2487  * in the memcg_cache_params struct.
2488  */
2489 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2490 {
2491 	struct kmem_cache *cachep;
2492 
2493 	VM_BUG_ON(p->is_root_cache);
2494 	cachep = p->root_cache;
2495 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2496 }
2497 
2498 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2499 			     unsigned long nr_pages)
2500 {
2501 	struct page_counter *counter;
2502 	int ret = 0;
2503 
2504 	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2505 	if (ret < 0)
2506 		return ret;
2507 
2508 	ret = try_charge(memcg, gfp, nr_pages);
2509 	if (ret == -EINTR)  {
2510 		/*
2511 		 * try_charge() chose to bypass to root due to OOM kill or
2512 		 * fatal signal.  Since our only options are to either fail
2513 		 * the allocation or charge it to this cgroup, do it as a
2514 		 * temporary condition. But we can't fail. From a kmem/slab
2515 		 * perspective, the cache has already been selected, by
2516 		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2517 		 * our minds.
2518 		 *
2519 		 * This condition will only trigger if the task entered
2520 		 * memcg_charge_kmem in a sane state, but was OOM-killed
2521 		 * during try_charge() above. Tasks that were already dying
2522 		 * when the allocation triggers should have been already
2523 		 * directed to the root cgroup in memcontrol.h
2524 		 */
2525 		page_counter_charge(&memcg->memory, nr_pages);
2526 		if (do_swap_account)
2527 			page_counter_charge(&memcg->memsw, nr_pages);
2528 		css_get_many(&memcg->css, nr_pages);
2529 		ret = 0;
2530 	} else if (ret)
2531 		page_counter_uncharge(&memcg->kmem, nr_pages);
2532 
2533 	return ret;
2534 }
2535 
2536 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2537 				unsigned long nr_pages)
2538 {
2539 	page_counter_uncharge(&memcg->memory, nr_pages);
2540 	if (do_swap_account)
2541 		page_counter_uncharge(&memcg->memsw, nr_pages);
2542 
2543 	page_counter_uncharge(&memcg->kmem, nr_pages);
2544 
2545 	css_put_many(&memcg->css, nr_pages);
2546 }
2547 
2548 /*
2549  * helper for acessing a memcg's index. It will be used as an index in the
2550  * child cache array in kmem_cache, and also to derive its name. This function
2551  * will return -1 when this is not a kmem-limited memcg.
2552  */
2553 int memcg_cache_id(struct mem_cgroup *memcg)
2554 {
2555 	return memcg ? memcg->kmemcg_id : -1;
2556 }
2557 
2558 static int memcg_alloc_cache_id(void)
2559 {
2560 	int id, size;
2561 	int err;
2562 
2563 	id = ida_simple_get(&kmem_limited_groups,
2564 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2565 	if (id < 0)
2566 		return id;
2567 
2568 	if (id < memcg_limited_groups_array_size)
2569 		return id;
2570 
2571 	/*
2572 	 * There's no space for the new id in memcg_caches arrays,
2573 	 * so we have to grow them.
2574 	 */
2575 
2576 	size = 2 * (id + 1);
2577 	if (size < MEMCG_CACHES_MIN_SIZE)
2578 		size = MEMCG_CACHES_MIN_SIZE;
2579 	else if (size > MEMCG_CACHES_MAX_SIZE)
2580 		size = MEMCG_CACHES_MAX_SIZE;
2581 
2582 	mutex_lock(&memcg_slab_mutex);
2583 	err = memcg_update_all_caches(size);
2584 	mutex_unlock(&memcg_slab_mutex);
2585 
2586 	if (err) {
2587 		ida_simple_remove(&kmem_limited_groups, id);
2588 		return err;
2589 	}
2590 	return id;
2591 }
2592 
2593 static void memcg_free_cache_id(int id)
2594 {
2595 	ida_simple_remove(&kmem_limited_groups, id);
2596 }
2597 
2598 /*
2599  * We should update the current array size iff all caches updates succeed. This
2600  * can only be done from the slab side. The slab mutex needs to be held when
2601  * calling this.
2602  */
2603 void memcg_update_array_size(int num)
2604 {
2605 	memcg_limited_groups_array_size = num;
2606 }
2607 
2608 static void memcg_register_cache(struct mem_cgroup *memcg,
2609 				 struct kmem_cache *root_cache)
2610 {
2611 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2612 						     memcg_slab_mutex */
2613 	struct kmem_cache *cachep;
2614 	int id;
2615 
2616 	lockdep_assert_held(&memcg_slab_mutex);
2617 
2618 	id = memcg_cache_id(memcg);
2619 
2620 	/*
2621 	 * Since per-memcg caches are created asynchronously on first
2622 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
2623 	 * create the same cache, but only one of them may succeed.
2624 	 */
2625 	if (cache_from_memcg_idx(root_cache, id))
2626 		return;
2627 
2628 	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2629 	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2630 	/*
2631 	 * If we could not create a memcg cache, do not complain, because
2632 	 * that's not critical at all as we can always proceed with the root
2633 	 * cache.
2634 	 */
2635 	if (!cachep)
2636 		return;
2637 
2638 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2639 
2640 	/*
2641 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2642 	 * barrier here to ensure nobody will see the kmem_cache partially
2643 	 * initialized.
2644 	 */
2645 	smp_wmb();
2646 
2647 	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2648 	root_cache->memcg_params->memcg_caches[id] = cachep;
2649 }
2650 
2651 static void memcg_unregister_cache(struct kmem_cache *cachep)
2652 {
2653 	struct kmem_cache *root_cache;
2654 	struct mem_cgroup *memcg;
2655 	int id;
2656 
2657 	lockdep_assert_held(&memcg_slab_mutex);
2658 
2659 	BUG_ON(is_root_cache(cachep));
2660 
2661 	root_cache = cachep->memcg_params->root_cache;
2662 	memcg = cachep->memcg_params->memcg;
2663 	id = memcg_cache_id(memcg);
2664 
2665 	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2666 	root_cache->memcg_params->memcg_caches[id] = NULL;
2667 
2668 	list_del(&cachep->memcg_params->list);
2669 
2670 	kmem_cache_destroy(cachep);
2671 }
2672 
2673 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2674 {
2675 	struct kmem_cache *c;
2676 	int i, failed = 0;
2677 
2678 	mutex_lock(&memcg_slab_mutex);
2679 	for_each_memcg_cache_index(i) {
2680 		c = cache_from_memcg_idx(s, i);
2681 		if (!c)
2682 			continue;
2683 
2684 		memcg_unregister_cache(c);
2685 
2686 		if (cache_from_memcg_idx(s, i))
2687 			failed++;
2688 	}
2689 	mutex_unlock(&memcg_slab_mutex);
2690 	return failed;
2691 }
2692 
2693 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2694 {
2695 	struct kmem_cache *cachep;
2696 	struct memcg_cache_params *params, *tmp;
2697 
2698 	if (!memcg_kmem_is_active(memcg))
2699 		return;
2700 
2701 	mutex_lock(&memcg_slab_mutex);
2702 	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2703 		cachep = memcg_params_to_cache(params);
2704 		memcg_unregister_cache(cachep);
2705 	}
2706 	mutex_unlock(&memcg_slab_mutex);
2707 }
2708 
2709 struct memcg_register_cache_work {
2710 	struct mem_cgroup *memcg;
2711 	struct kmem_cache *cachep;
2712 	struct work_struct work;
2713 };
2714 
2715 static void memcg_register_cache_func(struct work_struct *w)
2716 {
2717 	struct memcg_register_cache_work *cw =
2718 		container_of(w, struct memcg_register_cache_work, work);
2719 	struct mem_cgroup *memcg = cw->memcg;
2720 	struct kmem_cache *cachep = cw->cachep;
2721 
2722 	mutex_lock(&memcg_slab_mutex);
2723 	memcg_register_cache(memcg, cachep);
2724 	mutex_unlock(&memcg_slab_mutex);
2725 
2726 	css_put(&memcg->css);
2727 	kfree(cw);
2728 }
2729 
2730 /*
2731  * Enqueue the creation of a per-memcg kmem_cache.
2732  */
2733 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2734 					    struct kmem_cache *cachep)
2735 {
2736 	struct memcg_register_cache_work *cw;
2737 
2738 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2739 	if (!cw)
2740 		return;
2741 
2742 	css_get(&memcg->css);
2743 
2744 	cw->memcg = memcg;
2745 	cw->cachep = cachep;
2746 
2747 	INIT_WORK(&cw->work, memcg_register_cache_func);
2748 	schedule_work(&cw->work);
2749 }
2750 
2751 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2752 					  struct kmem_cache *cachep)
2753 {
2754 	/*
2755 	 * We need to stop accounting when we kmalloc, because if the
2756 	 * corresponding kmalloc cache is not yet created, the first allocation
2757 	 * in __memcg_schedule_register_cache will recurse.
2758 	 *
2759 	 * However, it is better to enclose the whole function. Depending on
2760 	 * the debugging options enabled, INIT_WORK(), for instance, can
2761 	 * trigger an allocation. This too, will make us recurse. Because at
2762 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2763 	 * the safest choice is to do it like this, wrapping the whole function.
2764 	 */
2765 	current->memcg_kmem_skip_account = 1;
2766 	__memcg_schedule_register_cache(memcg, cachep);
2767 	current->memcg_kmem_skip_account = 0;
2768 }
2769 
2770 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2771 {
2772 	unsigned int nr_pages = 1 << order;
2773 
2774 	return memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2775 }
2776 
2777 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2778 {
2779 	unsigned int nr_pages = 1 << order;
2780 
2781 	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2782 }
2783 
2784 /*
2785  * Return the kmem_cache we're supposed to use for a slab allocation.
2786  * We try to use the current memcg's version of the cache.
2787  *
2788  * If the cache does not exist yet, if we are the first user of it,
2789  * we either create it immediately, if possible, or create it asynchronously
2790  * in a workqueue.
2791  * In the latter case, we will let the current allocation go through with
2792  * the original cache.
2793  *
2794  * Can't be called in interrupt context or from kernel threads.
2795  * This function needs to be called with rcu_read_lock() held.
2796  */
2797 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2798 {
2799 	struct mem_cgroup *memcg;
2800 	struct kmem_cache *memcg_cachep;
2801 
2802 	VM_BUG_ON(!cachep->memcg_params);
2803 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2804 
2805 	if (current->memcg_kmem_skip_account)
2806 		return cachep;
2807 
2808 	memcg = get_mem_cgroup_from_mm(current->mm);
2809 	if (!memcg_kmem_is_active(memcg))
2810 		goto out;
2811 
2812 	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2813 	if (likely(memcg_cachep))
2814 		return memcg_cachep;
2815 
2816 	/*
2817 	 * If we are in a safe context (can wait, and not in interrupt
2818 	 * context), we could be be predictable and return right away.
2819 	 * This would guarantee that the allocation being performed
2820 	 * already belongs in the new cache.
2821 	 *
2822 	 * However, there are some clashes that can arrive from locking.
2823 	 * For instance, because we acquire the slab_mutex while doing
2824 	 * memcg_create_kmem_cache, this means no further allocation
2825 	 * could happen with the slab_mutex held. So it's better to
2826 	 * defer everything.
2827 	 */
2828 	memcg_schedule_register_cache(memcg, cachep);
2829 out:
2830 	css_put(&memcg->css);
2831 	return cachep;
2832 }
2833 
2834 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2835 {
2836 	if (!is_root_cache(cachep))
2837 		css_put(&cachep->memcg_params->memcg->css);
2838 }
2839 
2840 /*
2841  * We need to verify if the allocation against current->mm->owner's memcg is
2842  * possible for the given order. But the page is not allocated yet, so we'll
2843  * need a further commit step to do the final arrangements.
2844  *
2845  * It is possible for the task to switch cgroups in this mean time, so at
2846  * commit time, we can't rely on task conversion any longer.  We'll then use
2847  * the handle argument to return to the caller which cgroup we should commit
2848  * against. We could also return the memcg directly and avoid the pointer
2849  * passing, but a boolean return value gives better semantics considering
2850  * the compiled-out case as well.
2851  *
2852  * Returning true means the allocation is possible.
2853  */
2854 bool
2855 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2856 {
2857 	struct mem_cgroup *memcg;
2858 	int ret;
2859 
2860 	*_memcg = NULL;
2861 
2862 	memcg = get_mem_cgroup_from_mm(current->mm);
2863 
2864 	if (!memcg_kmem_is_active(memcg)) {
2865 		css_put(&memcg->css);
2866 		return true;
2867 	}
2868 
2869 	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2870 	if (!ret)
2871 		*_memcg = memcg;
2872 
2873 	css_put(&memcg->css);
2874 	return (ret == 0);
2875 }
2876 
2877 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2878 			      int order)
2879 {
2880 	VM_BUG_ON(mem_cgroup_is_root(memcg));
2881 
2882 	/* The page allocation failed. Revert */
2883 	if (!page) {
2884 		memcg_uncharge_kmem(memcg, 1 << order);
2885 		return;
2886 	}
2887 	page->mem_cgroup = memcg;
2888 }
2889 
2890 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2891 {
2892 	struct mem_cgroup *memcg = page->mem_cgroup;
2893 
2894 	if (!memcg)
2895 		return;
2896 
2897 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2898 
2899 	memcg_uncharge_kmem(memcg, 1 << order);
2900 	page->mem_cgroup = NULL;
2901 }
2902 #endif /* CONFIG_MEMCG_KMEM */
2903 
2904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2905 
2906 /*
2907  * Because tail pages are not marked as "used", set it. We're under
2908  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2909  * charge/uncharge will be never happen and move_account() is done under
2910  * compound_lock(), so we don't have to take care of races.
2911  */
2912 void mem_cgroup_split_huge_fixup(struct page *head)
2913 {
2914 	int i;
2915 
2916 	if (mem_cgroup_disabled())
2917 		return;
2918 
2919 	for (i = 1; i < HPAGE_PMD_NR; i++)
2920 		head[i].mem_cgroup = head->mem_cgroup;
2921 
2922 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2923 		       HPAGE_PMD_NR);
2924 }
2925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2926 
2927 /**
2928  * mem_cgroup_move_account - move account of the page
2929  * @page: the page
2930  * @nr_pages: number of regular pages (>1 for huge pages)
2931  * @from: mem_cgroup which the page is moved from.
2932  * @to:	mem_cgroup which the page is moved to. @from != @to.
2933  *
2934  * The caller must confirm following.
2935  * - page is not on LRU (isolate_page() is useful.)
2936  * - compound_lock is held when nr_pages > 1
2937  *
2938  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2939  * from old cgroup.
2940  */
2941 static int mem_cgroup_move_account(struct page *page,
2942 				   unsigned int nr_pages,
2943 				   struct mem_cgroup *from,
2944 				   struct mem_cgroup *to)
2945 {
2946 	unsigned long flags;
2947 	int ret;
2948 
2949 	VM_BUG_ON(from == to);
2950 	VM_BUG_ON_PAGE(PageLRU(page), page);
2951 	/*
2952 	 * The page is isolated from LRU. So, collapse function
2953 	 * will not handle this page. But page splitting can happen.
2954 	 * Do this check under compound_page_lock(). The caller should
2955 	 * hold it.
2956 	 */
2957 	ret = -EBUSY;
2958 	if (nr_pages > 1 && !PageTransHuge(page))
2959 		goto out;
2960 
2961 	/*
2962 	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2963 	 * of its source page while we change it: page migration takes
2964 	 * both pages off the LRU, but page cache replacement doesn't.
2965 	 */
2966 	if (!trylock_page(page))
2967 		goto out;
2968 
2969 	ret = -EINVAL;
2970 	if (page->mem_cgroup != from)
2971 		goto out_unlock;
2972 
2973 	spin_lock_irqsave(&from->move_lock, flags);
2974 
2975 	if (!PageAnon(page) && page_mapped(page)) {
2976 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2977 			       nr_pages);
2978 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2979 			       nr_pages);
2980 	}
2981 
2982 	if (PageWriteback(page)) {
2983 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2984 			       nr_pages);
2985 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2986 			       nr_pages);
2987 	}
2988 
2989 	/*
2990 	 * It is safe to change page->mem_cgroup here because the page
2991 	 * is referenced, charged, and isolated - we can't race with
2992 	 * uncharging, charging, migration, or LRU putback.
2993 	 */
2994 
2995 	/* caller should have done css_get */
2996 	page->mem_cgroup = to;
2997 	spin_unlock_irqrestore(&from->move_lock, flags);
2998 
2999 	ret = 0;
3000 
3001 	local_irq_disable();
3002 	mem_cgroup_charge_statistics(to, page, nr_pages);
3003 	memcg_check_events(to, page);
3004 	mem_cgroup_charge_statistics(from, page, -nr_pages);
3005 	memcg_check_events(from, page);
3006 	local_irq_enable();
3007 out_unlock:
3008 	unlock_page(page);
3009 out:
3010 	return ret;
3011 }
3012 
3013 #ifdef CONFIG_MEMCG_SWAP
3014 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3015 					 bool charge)
3016 {
3017 	int val = (charge) ? 1 : -1;
3018 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3019 }
3020 
3021 /**
3022  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3023  * @entry: swap entry to be moved
3024  * @from:  mem_cgroup which the entry is moved from
3025  * @to:  mem_cgroup which the entry is moved to
3026  *
3027  * It succeeds only when the swap_cgroup's record for this entry is the same
3028  * as the mem_cgroup's id of @from.
3029  *
3030  * Returns 0 on success, -EINVAL on failure.
3031  *
3032  * The caller must have charged to @to, IOW, called page_counter_charge() about
3033  * both res and memsw, and called css_get().
3034  */
3035 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3036 				struct mem_cgroup *from, struct mem_cgroup *to)
3037 {
3038 	unsigned short old_id, new_id;
3039 
3040 	old_id = mem_cgroup_id(from);
3041 	new_id = mem_cgroup_id(to);
3042 
3043 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3044 		mem_cgroup_swap_statistics(from, false);
3045 		mem_cgroup_swap_statistics(to, true);
3046 		return 0;
3047 	}
3048 	return -EINVAL;
3049 }
3050 #else
3051 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3052 				struct mem_cgroup *from, struct mem_cgroup *to)
3053 {
3054 	return -EINVAL;
3055 }
3056 #endif
3057 
3058 static DEFINE_MUTEX(memcg_limit_mutex);
3059 
3060 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3061 				   unsigned long limit)
3062 {
3063 	unsigned long curusage;
3064 	unsigned long oldusage;
3065 	bool enlarge = false;
3066 	int retry_count;
3067 	int ret;
3068 
3069 	/*
3070 	 * For keeping hierarchical_reclaim simple, how long we should retry
3071 	 * is depends on callers. We set our retry-count to be function
3072 	 * of # of children which we should visit in this loop.
3073 	 */
3074 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3075 		      mem_cgroup_count_children(memcg);
3076 
3077 	oldusage = page_counter_read(&memcg->memory);
3078 
3079 	do {
3080 		if (signal_pending(current)) {
3081 			ret = -EINTR;
3082 			break;
3083 		}
3084 
3085 		mutex_lock(&memcg_limit_mutex);
3086 		if (limit > memcg->memsw.limit) {
3087 			mutex_unlock(&memcg_limit_mutex);
3088 			ret = -EINVAL;
3089 			break;
3090 		}
3091 		if (limit > memcg->memory.limit)
3092 			enlarge = true;
3093 		ret = page_counter_limit(&memcg->memory, limit);
3094 		mutex_unlock(&memcg_limit_mutex);
3095 
3096 		if (!ret)
3097 			break;
3098 
3099 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3100 
3101 		curusage = page_counter_read(&memcg->memory);
3102 		/* Usage is reduced ? */
3103 		if (curusage >= oldusage)
3104 			retry_count--;
3105 		else
3106 			oldusage = curusage;
3107 	} while (retry_count);
3108 
3109 	if (!ret && enlarge)
3110 		memcg_oom_recover(memcg);
3111 
3112 	return ret;
3113 }
3114 
3115 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3116 					 unsigned long limit)
3117 {
3118 	unsigned long curusage;
3119 	unsigned long oldusage;
3120 	bool enlarge = false;
3121 	int retry_count;
3122 	int ret;
3123 
3124 	/* see mem_cgroup_resize_res_limit */
3125 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3126 		      mem_cgroup_count_children(memcg);
3127 
3128 	oldusage = page_counter_read(&memcg->memsw);
3129 
3130 	do {
3131 		if (signal_pending(current)) {
3132 			ret = -EINTR;
3133 			break;
3134 		}
3135 
3136 		mutex_lock(&memcg_limit_mutex);
3137 		if (limit < memcg->memory.limit) {
3138 			mutex_unlock(&memcg_limit_mutex);
3139 			ret = -EINVAL;
3140 			break;
3141 		}
3142 		if (limit > memcg->memsw.limit)
3143 			enlarge = true;
3144 		ret = page_counter_limit(&memcg->memsw, limit);
3145 		mutex_unlock(&memcg_limit_mutex);
3146 
3147 		if (!ret)
3148 			break;
3149 
3150 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3151 
3152 		curusage = page_counter_read(&memcg->memsw);
3153 		/* Usage is reduced ? */
3154 		if (curusage >= oldusage)
3155 			retry_count--;
3156 		else
3157 			oldusage = curusage;
3158 	} while (retry_count);
3159 
3160 	if (!ret && enlarge)
3161 		memcg_oom_recover(memcg);
3162 
3163 	return ret;
3164 }
3165 
3166 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3167 					    gfp_t gfp_mask,
3168 					    unsigned long *total_scanned)
3169 {
3170 	unsigned long nr_reclaimed = 0;
3171 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3172 	unsigned long reclaimed;
3173 	int loop = 0;
3174 	struct mem_cgroup_tree_per_zone *mctz;
3175 	unsigned long excess;
3176 	unsigned long nr_scanned;
3177 
3178 	if (order > 0)
3179 		return 0;
3180 
3181 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3182 	/*
3183 	 * This loop can run a while, specially if mem_cgroup's continuously
3184 	 * keep exceeding their soft limit and putting the system under
3185 	 * pressure
3186 	 */
3187 	do {
3188 		if (next_mz)
3189 			mz = next_mz;
3190 		else
3191 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3192 		if (!mz)
3193 			break;
3194 
3195 		nr_scanned = 0;
3196 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3197 						    gfp_mask, &nr_scanned);
3198 		nr_reclaimed += reclaimed;
3199 		*total_scanned += nr_scanned;
3200 		spin_lock_irq(&mctz->lock);
3201 		__mem_cgroup_remove_exceeded(mz, mctz);
3202 
3203 		/*
3204 		 * If we failed to reclaim anything from this memory cgroup
3205 		 * it is time to move on to the next cgroup
3206 		 */
3207 		next_mz = NULL;
3208 		if (!reclaimed)
3209 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3210 
3211 		excess = soft_limit_excess(mz->memcg);
3212 		/*
3213 		 * One school of thought says that we should not add
3214 		 * back the node to the tree if reclaim returns 0.
3215 		 * But our reclaim could return 0, simply because due
3216 		 * to priority we are exposing a smaller subset of
3217 		 * memory to reclaim from. Consider this as a longer
3218 		 * term TODO.
3219 		 */
3220 		/* If excess == 0, no tree ops */
3221 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3222 		spin_unlock_irq(&mctz->lock);
3223 		css_put(&mz->memcg->css);
3224 		loop++;
3225 		/*
3226 		 * Could not reclaim anything and there are no more
3227 		 * mem cgroups to try or we seem to be looping without
3228 		 * reclaiming anything.
3229 		 */
3230 		if (!nr_reclaimed &&
3231 			(next_mz == NULL ||
3232 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3233 			break;
3234 	} while (!nr_reclaimed);
3235 	if (next_mz)
3236 		css_put(&next_mz->memcg->css);
3237 	return nr_reclaimed;
3238 }
3239 
3240 /*
3241  * Test whether @memcg has children, dead or alive.  Note that this
3242  * function doesn't care whether @memcg has use_hierarchy enabled and
3243  * returns %true if there are child csses according to the cgroup
3244  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3245  */
3246 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3247 {
3248 	bool ret;
3249 
3250 	/*
3251 	 * The lock does not prevent addition or deletion of children, but
3252 	 * it prevents a new child from being initialized based on this
3253 	 * parent in css_online(), so it's enough to decide whether
3254 	 * hierarchically inherited attributes can still be changed or not.
3255 	 */
3256 	lockdep_assert_held(&memcg_create_mutex);
3257 
3258 	rcu_read_lock();
3259 	ret = css_next_child(NULL, &memcg->css);
3260 	rcu_read_unlock();
3261 	return ret;
3262 }
3263 
3264 /*
3265  * Reclaims as many pages from the given memcg as possible and moves
3266  * the rest to the parent.
3267  *
3268  * Caller is responsible for holding css reference for memcg.
3269  */
3270 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3271 {
3272 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3273 
3274 	/* we call try-to-free pages for make this cgroup empty */
3275 	lru_add_drain_all();
3276 	/* try to free all pages in this cgroup */
3277 	while (nr_retries && page_counter_read(&memcg->memory)) {
3278 		int progress;
3279 
3280 		if (signal_pending(current))
3281 			return -EINTR;
3282 
3283 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3284 							GFP_KERNEL, true);
3285 		if (!progress) {
3286 			nr_retries--;
3287 			/* maybe some writeback is necessary */
3288 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3289 		}
3290 
3291 	}
3292 
3293 	return 0;
3294 }
3295 
3296 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3297 					    char *buf, size_t nbytes,
3298 					    loff_t off)
3299 {
3300 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3301 
3302 	if (mem_cgroup_is_root(memcg))
3303 		return -EINVAL;
3304 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3305 }
3306 
3307 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3308 				     struct cftype *cft)
3309 {
3310 	return mem_cgroup_from_css(css)->use_hierarchy;
3311 }
3312 
3313 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3314 				      struct cftype *cft, u64 val)
3315 {
3316 	int retval = 0;
3317 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3318 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3319 
3320 	mutex_lock(&memcg_create_mutex);
3321 
3322 	if (memcg->use_hierarchy == val)
3323 		goto out;
3324 
3325 	/*
3326 	 * If parent's use_hierarchy is set, we can't make any modifications
3327 	 * in the child subtrees. If it is unset, then the change can
3328 	 * occur, provided the current cgroup has no children.
3329 	 *
3330 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3331 	 * set if there are no children.
3332 	 */
3333 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3334 				(val == 1 || val == 0)) {
3335 		if (!memcg_has_children(memcg))
3336 			memcg->use_hierarchy = val;
3337 		else
3338 			retval = -EBUSY;
3339 	} else
3340 		retval = -EINVAL;
3341 
3342 out:
3343 	mutex_unlock(&memcg_create_mutex);
3344 
3345 	return retval;
3346 }
3347 
3348 static unsigned long tree_stat(struct mem_cgroup *memcg,
3349 			       enum mem_cgroup_stat_index idx)
3350 {
3351 	struct mem_cgroup *iter;
3352 	long val = 0;
3353 
3354 	/* Per-cpu values can be negative, use a signed accumulator */
3355 	for_each_mem_cgroup_tree(iter, memcg)
3356 		val += mem_cgroup_read_stat(iter, idx);
3357 
3358 	if (val < 0) /* race ? */
3359 		val = 0;
3360 	return val;
3361 }
3362 
3363 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3364 {
3365 	u64 val;
3366 
3367 	if (mem_cgroup_is_root(memcg)) {
3368 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3369 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3370 		if (swap)
3371 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3372 	} else {
3373 		if (!swap)
3374 			val = page_counter_read(&memcg->memory);
3375 		else
3376 			val = page_counter_read(&memcg->memsw);
3377 	}
3378 	return val << PAGE_SHIFT;
3379 }
3380 
3381 enum {
3382 	RES_USAGE,
3383 	RES_LIMIT,
3384 	RES_MAX_USAGE,
3385 	RES_FAILCNT,
3386 	RES_SOFT_LIMIT,
3387 };
3388 
3389 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3390 			       struct cftype *cft)
3391 {
3392 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3393 	struct page_counter *counter;
3394 
3395 	switch (MEMFILE_TYPE(cft->private)) {
3396 	case _MEM:
3397 		counter = &memcg->memory;
3398 		break;
3399 	case _MEMSWAP:
3400 		counter = &memcg->memsw;
3401 		break;
3402 	case _KMEM:
3403 		counter = &memcg->kmem;
3404 		break;
3405 	default:
3406 		BUG();
3407 	}
3408 
3409 	switch (MEMFILE_ATTR(cft->private)) {
3410 	case RES_USAGE:
3411 		if (counter == &memcg->memory)
3412 			return mem_cgroup_usage(memcg, false);
3413 		if (counter == &memcg->memsw)
3414 			return mem_cgroup_usage(memcg, true);
3415 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3416 	case RES_LIMIT:
3417 		return (u64)counter->limit * PAGE_SIZE;
3418 	case RES_MAX_USAGE:
3419 		return (u64)counter->watermark * PAGE_SIZE;
3420 	case RES_FAILCNT:
3421 		return counter->failcnt;
3422 	case RES_SOFT_LIMIT:
3423 		return (u64)memcg->soft_limit * PAGE_SIZE;
3424 	default:
3425 		BUG();
3426 	}
3427 }
3428 
3429 #ifdef CONFIG_MEMCG_KMEM
3430 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3431 			       unsigned long nr_pages)
3432 {
3433 	int err = 0;
3434 	int memcg_id;
3435 
3436 	if (memcg_kmem_is_active(memcg))
3437 		return 0;
3438 
3439 	/*
3440 	 * For simplicity, we won't allow this to be disabled.  It also can't
3441 	 * be changed if the cgroup has children already, or if tasks had
3442 	 * already joined.
3443 	 *
3444 	 * If tasks join before we set the limit, a person looking at
3445 	 * kmem.usage_in_bytes will have no way to determine when it took
3446 	 * place, which makes the value quite meaningless.
3447 	 *
3448 	 * After it first became limited, changes in the value of the limit are
3449 	 * of course permitted.
3450 	 */
3451 	mutex_lock(&memcg_create_mutex);
3452 	if (cgroup_has_tasks(memcg->css.cgroup) ||
3453 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3454 		err = -EBUSY;
3455 	mutex_unlock(&memcg_create_mutex);
3456 	if (err)
3457 		goto out;
3458 
3459 	memcg_id = memcg_alloc_cache_id();
3460 	if (memcg_id < 0) {
3461 		err = memcg_id;
3462 		goto out;
3463 	}
3464 
3465 	/*
3466 	 * We couldn't have accounted to this cgroup, because it hasn't got
3467 	 * activated yet, so this should succeed.
3468 	 */
3469 	err = page_counter_limit(&memcg->kmem, nr_pages);
3470 	VM_BUG_ON(err);
3471 
3472 	static_key_slow_inc(&memcg_kmem_enabled_key);
3473 	/*
3474 	 * A memory cgroup is considered kmem-active as soon as it gets
3475 	 * kmemcg_id. Setting the id after enabling static branching will
3476 	 * guarantee no one starts accounting before all call sites are
3477 	 * patched.
3478 	 */
3479 	memcg->kmemcg_id = memcg_id;
3480 out:
3481 	return err;
3482 }
3483 
3484 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3485 				   unsigned long limit)
3486 {
3487 	int ret;
3488 
3489 	mutex_lock(&memcg_limit_mutex);
3490 	if (!memcg_kmem_is_active(memcg))
3491 		ret = memcg_activate_kmem(memcg, limit);
3492 	else
3493 		ret = page_counter_limit(&memcg->kmem, limit);
3494 	mutex_unlock(&memcg_limit_mutex);
3495 	return ret;
3496 }
3497 
3498 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3499 {
3500 	int ret = 0;
3501 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3502 
3503 	if (!parent)
3504 		return 0;
3505 
3506 	mutex_lock(&memcg_limit_mutex);
3507 	/*
3508 	 * If the parent cgroup is not kmem-active now, it cannot be activated
3509 	 * after this point, because it has at least one child already.
3510 	 */
3511 	if (memcg_kmem_is_active(parent))
3512 		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3513 	mutex_unlock(&memcg_limit_mutex);
3514 	return ret;
3515 }
3516 #else
3517 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3518 				   unsigned long limit)
3519 {
3520 	return -EINVAL;
3521 }
3522 #endif /* CONFIG_MEMCG_KMEM */
3523 
3524 /*
3525  * The user of this function is...
3526  * RES_LIMIT.
3527  */
3528 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3529 				char *buf, size_t nbytes, loff_t off)
3530 {
3531 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3532 	unsigned long nr_pages;
3533 	int ret;
3534 
3535 	buf = strstrip(buf);
3536 	ret = page_counter_memparse(buf, &nr_pages);
3537 	if (ret)
3538 		return ret;
3539 
3540 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3541 	case RES_LIMIT:
3542 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3543 			ret = -EINVAL;
3544 			break;
3545 		}
3546 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3547 		case _MEM:
3548 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3549 			break;
3550 		case _MEMSWAP:
3551 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3552 			break;
3553 		case _KMEM:
3554 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3555 			break;
3556 		}
3557 		break;
3558 	case RES_SOFT_LIMIT:
3559 		memcg->soft_limit = nr_pages;
3560 		ret = 0;
3561 		break;
3562 	}
3563 	return ret ?: nbytes;
3564 }
3565 
3566 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3567 				size_t nbytes, loff_t off)
3568 {
3569 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3570 	struct page_counter *counter;
3571 
3572 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3573 	case _MEM:
3574 		counter = &memcg->memory;
3575 		break;
3576 	case _MEMSWAP:
3577 		counter = &memcg->memsw;
3578 		break;
3579 	case _KMEM:
3580 		counter = &memcg->kmem;
3581 		break;
3582 	default:
3583 		BUG();
3584 	}
3585 
3586 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3587 	case RES_MAX_USAGE:
3588 		page_counter_reset_watermark(counter);
3589 		break;
3590 	case RES_FAILCNT:
3591 		counter->failcnt = 0;
3592 		break;
3593 	default:
3594 		BUG();
3595 	}
3596 
3597 	return nbytes;
3598 }
3599 
3600 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3601 					struct cftype *cft)
3602 {
3603 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3604 }
3605 
3606 #ifdef CONFIG_MMU
3607 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3608 					struct cftype *cft, u64 val)
3609 {
3610 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3611 
3612 	if (val >= (1 << NR_MOVE_TYPE))
3613 		return -EINVAL;
3614 
3615 	/*
3616 	 * No kind of locking is needed in here, because ->can_attach() will
3617 	 * check this value once in the beginning of the process, and then carry
3618 	 * on with stale data. This means that changes to this value will only
3619 	 * affect task migrations starting after the change.
3620 	 */
3621 	memcg->move_charge_at_immigrate = val;
3622 	return 0;
3623 }
3624 #else
3625 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3626 					struct cftype *cft, u64 val)
3627 {
3628 	return -ENOSYS;
3629 }
3630 #endif
3631 
3632 #ifdef CONFIG_NUMA
3633 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3634 {
3635 	struct numa_stat {
3636 		const char *name;
3637 		unsigned int lru_mask;
3638 	};
3639 
3640 	static const struct numa_stat stats[] = {
3641 		{ "total", LRU_ALL },
3642 		{ "file", LRU_ALL_FILE },
3643 		{ "anon", LRU_ALL_ANON },
3644 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3645 	};
3646 	const struct numa_stat *stat;
3647 	int nid;
3648 	unsigned long nr;
3649 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3650 
3651 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3652 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3653 		seq_printf(m, "%s=%lu", stat->name, nr);
3654 		for_each_node_state(nid, N_MEMORY) {
3655 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3656 							  stat->lru_mask);
3657 			seq_printf(m, " N%d=%lu", nid, nr);
3658 		}
3659 		seq_putc(m, '\n');
3660 	}
3661 
3662 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3663 		struct mem_cgroup *iter;
3664 
3665 		nr = 0;
3666 		for_each_mem_cgroup_tree(iter, memcg)
3667 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3668 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3669 		for_each_node_state(nid, N_MEMORY) {
3670 			nr = 0;
3671 			for_each_mem_cgroup_tree(iter, memcg)
3672 				nr += mem_cgroup_node_nr_lru_pages(
3673 					iter, nid, stat->lru_mask);
3674 			seq_printf(m, " N%d=%lu", nid, nr);
3675 		}
3676 		seq_putc(m, '\n');
3677 	}
3678 
3679 	return 0;
3680 }
3681 #endif /* CONFIG_NUMA */
3682 
3683 static int memcg_stat_show(struct seq_file *m, void *v)
3684 {
3685 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3686 	unsigned long memory, memsw;
3687 	struct mem_cgroup *mi;
3688 	unsigned int i;
3689 
3690 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3691 
3692 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3693 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3694 			continue;
3695 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3696 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3697 	}
3698 
3699 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3700 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3701 			   mem_cgroup_read_events(memcg, i));
3702 
3703 	for (i = 0; i < NR_LRU_LISTS; i++)
3704 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3705 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3706 
3707 	/* Hierarchical information */
3708 	memory = memsw = PAGE_COUNTER_MAX;
3709 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3710 		memory = min(memory, mi->memory.limit);
3711 		memsw = min(memsw, mi->memsw.limit);
3712 	}
3713 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3714 		   (u64)memory * PAGE_SIZE);
3715 	if (do_swap_account)
3716 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3717 			   (u64)memsw * PAGE_SIZE);
3718 
3719 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3720 		long long val = 0;
3721 
3722 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3723 			continue;
3724 		for_each_mem_cgroup_tree(mi, memcg)
3725 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3726 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3727 	}
3728 
3729 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3730 		unsigned long long val = 0;
3731 
3732 		for_each_mem_cgroup_tree(mi, memcg)
3733 			val += mem_cgroup_read_events(mi, i);
3734 		seq_printf(m, "total_%s %llu\n",
3735 			   mem_cgroup_events_names[i], val);
3736 	}
3737 
3738 	for (i = 0; i < NR_LRU_LISTS; i++) {
3739 		unsigned long long val = 0;
3740 
3741 		for_each_mem_cgroup_tree(mi, memcg)
3742 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3743 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3744 	}
3745 
3746 #ifdef CONFIG_DEBUG_VM
3747 	{
3748 		int nid, zid;
3749 		struct mem_cgroup_per_zone *mz;
3750 		struct zone_reclaim_stat *rstat;
3751 		unsigned long recent_rotated[2] = {0, 0};
3752 		unsigned long recent_scanned[2] = {0, 0};
3753 
3754 		for_each_online_node(nid)
3755 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3756 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3757 				rstat = &mz->lruvec.reclaim_stat;
3758 
3759 				recent_rotated[0] += rstat->recent_rotated[0];
3760 				recent_rotated[1] += rstat->recent_rotated[1];
3761 				recent_scanned[0] += rstat->recent_scanned[0];
3762 				recent_scanned[1] += rstat->recent_scanned[1];
3763 			}
3764 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3765 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3766 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3767 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3768 	}
3769 #endif
3770 
3771 	return 0;
3772 }
3773 
3774 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3775 				      struct cftype *cft)
3776 {
3777 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3778 
3779 	return mem_cgroup_swappiness(memcg);
3780 }
3781 
3782 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3783 				       struct cftype *cft, u64 val)
3784 {
3785 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3786 
3787 	if (val > 100)
3788 		return -EINVAL;
3789 
3790 	if (css->parent)
3791 		memcg->swappiness = val;
3792 	else
3793 		vm_swappiness = val;
3794 
3795 	return 0;
3796 }
3797 
3798 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3799 {
3800 	struct mem_cgroup_threshold_ary *t;
3801 	unsigned long usage;
3802 	int i;
3803 
3804 	rcu_read_lock();
3805 	if (!swap)
3806 		t = rcu_dereference(memcg->thresholds.primary);
3807 	else
3808 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3809 
3810 	if (!t)
3811 		goto unlock;
3812 
3813 	usage = mem_cgroup_usage(memcg, swap);
3814 
3815 	/*
3816 	 * current_threshold points to threshold just below or equal to usage.
3817 	 * If it's not true, a threshold was crossed after last
3818 	 * call of __mem_cgroup_threshold().
3819 	 */
3820 	i = t->current_threshold;
3821 
3822 	/*
3823 	 * Iterate backward over array of thresholds starting from
3824 	 * current_threshold and check if a threshold is crossed.
3825 	 * If none of thresholds below usage is crossed, we read
3826 	 * only one element of the array here.
3827 	 */
3828 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3829 		eventfd_signal(t->entries[i].eventfd, 1);
3830 
3831 	/* i = current_threshold + 1 */
3832 	i++;
3833 
3834 	/*
3835 	 * Iterate forward over array of thresholds starting from
3836 	 * current_threshold+1 and check if a threshold is crossed.
3837 	 * If none of thresholds above usage is crossed, we read
3838 	 * only one element of the array here.
3839 	 */
3840 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3841 		eventfd_signal(t->entries[i].eventfd, 1);
3842 
3843 	/* Update current_threshold */
3844 	t->current_threshold = i - 1;
3845 unlock:
3846 	rcu_read_unlock();
3847 }
3848 
3849 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3850 {
3851 	while (memcg) {
3852 		__mem_cgroup_threshold(memcg, false);
3853 		if (do_swap_account)
3854 			__mem_cgroup_threshold(memcg, true);
3855 
3856 		memcg = parent_mem_cgroup(memcg);
3857 	}
3858 }
3859 
3860 static int compare_thresholds(const void *a, const void *b)
3861 {
3862 	const struct mem_cgroup_threshold *_a = a;
3863 	const struct mem_cgroup_threshold *_b = b;
3864 
3865 	if (_a->threshold > _b->threshold)
3866 		return 1;
3867 
3868 	if (_a->threshold < _b->threshold)
3869 		return -1;
3870 
3871 	return 0;
3872 }
3873 
3874 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3875 {
3876 	struct mem_cgroup_eventfd_list *ev;
3877 
3878 	spin_lock(&memcg_oom_lock);
3879 
3880 	list_for_each_entry(ev, &memcg->oom_notify, list)
3881 		eventfd_signal(ev->eventfd, 1);
3882 
3883 	spin_unlock(&memcg_oom_lock);
3884 	return 0;
3885 }
3886 
3887 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3888 {
3889 	struct mem_cgroup *iter;
3890 
3891 	for_each_mem_cgroup_tree(iter, memcg)
3892 		mem_cgroup_oom_notify_cb(iter);
3893 }
3894 
3895 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3896 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3897 {
3898 	struct mem_cgroup_thresholds *thresholds;
3899 	struct mem_cgroup_threshold_ary *new;
3900 	unsigned long threshold;
3901 	unsigned long usage;
3902 	int i, size, ret;
3903 
3904 	ret = page_counter_memparse(args, &threshold);
3905 	if (ret)
3906 		return ret;
3907 
3908 	mutex_lock(&memcg->thresholds_lock);
3909 
3910 	if (type == _MEM) {
3911 		thresholds = &memcg->thresholds;
3912 		usage = mem_cgroup_usage(memcg, false);
3913 	} else if (type == _MEMSWAP) {
3914 		thresholds = &memcg->memsw_thresholds;
3915 		usage = mem_cgroup_usage(memcg, true);
3916 	} else
3917 		BUG();
3918 
3919 	/* Check if a threshold crossed before adding a new one */
3920 	if (thresholds->primary)
3921 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3922 
3923 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3924 
3925 	/* Allocate memory for new array of thresholds */
3926 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3927 			GFP_KERNEL);
3928 	if (!new) {
3929 		ret = -ENOMEM;
3930 		goto unlock;
3931 	}
3932 	new->size = size;
3933 
3934 	/* Copy thresholds (if any) to new array */
3935 	if (thresholds->primary) {
3936 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3937 				sizeof(struct mem_cgroup_threshold));
3938 	}
3939 
3940 	/* Add new threshold */
3941 	new->entries[size - 1].eventfd = eventfd;
3942 	new->entries[size - 1].threshold = threshold;
3943 
3944 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3945 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3946 			compare_thresholds, NULL);
3947 
3948 	/* Find current threshold */
3949 	new->current_threshold = -1;
3950 	for (i = 0; i < size; i++) {
3951 		if (new->entries[i].threshold <= usage) {
3952 			/*
3953 			 * new->current_threshold will not be used until
3954 			 * rcu_assign_pointer(), so it's safe to increment
3955 			 * it here.
3956 			 */
3957 			++new->current_threshold;
3958 		} else
3959 			break;
3960 	}
3961 
3962 	/* Free old spare buffer and save old primary buffer as spare */
3963 	kfree(thresholds->spare);
3964 	thresholds->spare = thresholds->primary;
3965 
3966 	rcu_assign_pointer(thresholds->primary, new);
3967 
3968 	/* To be sure that nobody uses thresholds */
3969 	synchronize_rcu();
3970 
3971 unlock:
3972 	mutex_unlock(&memcg->thresholds_lock);
3973 
3974 	return ret;
3975 }
3976 
3977 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3978 	struct eventfd_ctx *eventfd, const char *args)
3979 {
3980 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3981 }
3982 
3983 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3984 	struct eventfd_ctx *eventfd, const char *args)
3985 {
3986 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3987 }
3988 
3989 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3990 	struct eventfd_ctx *eventfd, enum res_type type)
3991 {
3992 	struct mem_cgroup_thresholds *thresholds;
3993 	struct mem_cgroup_threshold_ary *new;
3994 	unsigned long usage;
3995 	int i, j, size;
3996 
3997 	mutex_lock(&memcg->thresholds_lock);
3998 
3999 	if (type == _MEM) {
4000 		thresholds = &memcg->thresholds;
4001 		usage = mem_cgroup_usage(memcg, false);
4002 	} else if (type == _MEMSWAP) {
4003 		thresholds = &memcg->memsw_thresholds;
4004 		usage = mem_cgroup_usage(memcg, true);
4005 	} else
4006 		BUG();
4007 
4008 	if (!thresholds->primary)
4009 		goto unlock;
4010 
4011 	/* Check if a threshold crossed before removing */
4012 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4013 
4014 	/* Calculate new number of threshold */
4015 	size = 0;
4016 	for (i = 0; i < thresholds->primary->size; i++) {
4017 		if (thresholds->primary->entries[i].eventfd != eventfd)
4018 			size++;
4019 	}
4020 
4021 	new = thresholds->spare;
4022 
4023 	/* Set thresholds array to NULL if we don't have thresholds */
4024 	if (!size) {
4025 		kfree(new);
4026 		new = NULL;
4027 		goto swap_buffers;
4028 	}
4029 
4030 	new->size = size;
4031 
4032 	/* Copy thresholds and find current threshold */
4033 	new->current_threshold = -1;
4034 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4035 		if (thresholds->primary->entries[i].eventfd == eventfd)
4036 			continue;
4037 
4038 		new->entries[j] = thresholds->primary->entries[i];
4039 		if (new->entries[j].threshold <= usage) {
4040 			/*
4041 			 * new->current_threshold will not be used
4042 			 * until rcu_assign_pointer(), so it's safe to increment
4043 			 * it here.
4044 			 */
4045 			++new->current_threshold;
4046 		}
4047 		j++;
4048 	}
4049 
4050 swap_buffers:
4051 	/* Swap primary and spare array */
4052 	thresholds->spare = thresholds->primary;
4053 	/* If all events are unregistered, free the spare array */
4054 	if (!new) {
4055 		kfree(thresholds->spare);
4056 		thresholds->spare = NULL;
4057 	}
4058 
4059 	rcu_assign_pointer(thresholds->primary, new);
4060 
4061 	/* To be sure that nobody uses thresholds */
4062 	synchronize_rcu();
4063 unlock:
4064 	mutex_unlock(&memcg->thresholds_lock);
4065 }
4066 
4067 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4068 	struct eventfd_ctx *eventfd)
4069 {
4070 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4071 }
4072 
4073 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4074 	struct eventfd_ctx *eventfd)
4075 {
4076 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4077 }
4078 
4079 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4080 	struct eventfd_ctx *eventfd, const char *args)
4081 {
4082 	struct mem_cgroup_eventfd_list *event;
4083 
4084 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4085 	if (!event)
4086 		return -ENOMEM;
4087 
4088 	spin_lock(&memcg_oom_lock);
4089 
4090 	event->eventfd = eventfd;
4091 	list_add(&event->list, &memcg->oom_notify);
4092 
4093 	/* already in OOM ? */
4094 	if (atomic_read(&memcg->under_oom))
4095 		eventfd_signal(eventfd, 1);
4096 	spin_unlock(&memcg_oom_lock);
4097 
4098 	return 0;
4099 }
4100 
4101 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4102 	struct eventfd_ctx *eventfd)
4103 {
4104 	struct mem_cgroup_eventfd_list *ev, *tmp;
4105 
4106 	spin_lock(&memcg_oom_lock);
4107 
4108 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4109 		if (ev->eventfd == eventfd) {
4110 			list_del(&ev->list);
4111 			kfree(ev);
4112 		}
4113 	}
4114 
4115 	spin_unlock(&memcg_oom_lock);
4116 }
4117 
4118 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4119 {
4120 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4121 
4122 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4123 	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4124 	return 0;
4125 }
4126 
4127 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4128 	struct cftype *cft, u64 val)
4129 {
4130 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4131 
4132 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4133 	if (!css->parent || !((val == 0) || (val == 1)))
4134 		return -EINVAL;
4135 
4136 	memcg->oom_kill_disable = val;
4137 	if (!val)
4138 		memcg_oom_recover(memcg);
4139 
4140 	return 0;
4141 }
4142 
4143 #ifdef CONFIG_MEMCG_KMEM
4144 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4145 {
4146 	int ret;
4147 
4148 	ret = memcg_propagate_kmem(memcg);
4149 	if (ret)
4150 		return ret;
4151 
4152 	return mem_cgroup_sockets_init(memcg, ss);
4153 }
4154 
4155 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4156 {
4157 	memcg_unregister_all_caches(memcg);
4158 	mem_cgroup_sockets_destroy(memcg);
4159 }
4160 #else
4161 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4162 {
4163 	return 0;
4164 }
4165 
4166 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4167 {
4168 }
4169 #endif
4170 
4171 /*
4172  * DO NOT USE IN NEW FILES.
4173  *
4174  * "cgroup.event_control" implementation.
4175  *
4176  * This is way over-engineered.  It tries to support fully configurable
4177  * events for each user.  Such level of flexibility is completely
4178  * unnecessary especially in the light of the planned unified hierarchy.
4179  *
4180  * Please deprecate this and replace with something simpler if at all
4181  * possible.
4182  */
4183 
4184 /*
4185  * Unregister event and free resources.
4186  *
4187  * Gets called from workqueue.
4188  */
4189 static void memcg_event_remove(struct work_struct *work)
4190 {
4191 	struct mem_cgroup_event *event =
4192 		container_of(work, struct mem_cgroup_event, remove);
4193 	struct mem_cgroup *memcg = event->memcg;
4194 
4195 	remove_wait_queue(event->wqh, &event->wait);
4196 
4197 	event->unregister_event(memcg, event->eventfd);
4198 
4199 	/* Notify userspace the event is going away. */
4200 	eventfd_signal(event->eventfd, 1);
4201 
4202 	eventfd_ctx_put(event->eventfd);
4203 	kfree(event);
4204 	css_put(&memcg->css);
4205 }
4206 
4207 /*
4208  * Gets called on POLLHUP on eventfd when user closes it.
4209  *
4210  * Called with wqh->lock held and interrupts disabled.
4211  */
4212 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4213 			    int sync, void *key)
4214 {
4215 	struct mem_cgroup_event *event =
4216 		container_of(wait, struct mem_cgroup_event, wait);
4217 	struct mem_cgroup *memcg = event->memcg;
4218 	unsigned long flags = (unsigned long)key;
4219 
4220 	if (flags & POLLHUP) {
4221 		/*
4222 		 * If the event has been detached at cgroup removal, we
4223 		 * can simply return knowing the other side will cleanup
4224 		 * for us.
4225 		 *
4226 		 * We can't race against event freeing since the other
4227 		 * side will require wqh->lock via remove_wait_queue(),
4228 		 * which we hold.
4229 		 */
4230 		spin_lock(&memcg->event_list_lock);
4231 		if (!list_empty(&event->list)) {
4232 			list_del_init(&event->list);
4233 			/*
4234 			 * We are in atomic context, but cgroup_event_remove()
4235 			 * may sleep, so we have to call it in workqueue.
4236 			 */
4237 			schedule_work(&event->remove);
4238 		}
4239 		spin_unlock(&memcg->event_list_lock);
4240 	}
4241 
4242 	return 0;
4243 }
4244 
4245 static void memcg_event_ptable_queue_proc(struct file *file,
4246 		wait_queue_head_t *wqh, poll_table *pt)
4247 {
4248 	struct mem_cgroup_event *event =
4249 		container_of(pt, struct mem_cgroup_event, pt);
4250 
4251 	event->wqh = wqh;
4252 	add_wait_queue(wqh, &event->wait);
4253 }
4254 
4255 /*
4256  * DO NOT USE IN NEW FILES.
4257  *
4258  * Parse input and register new cgroup event handler.
4259  *
4260  * Input must be in format '<event_fd> <control_fd> <args>'.
4261  * Interpretation of args is defined by control file implementation.
4262  */
4263 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4264 					 char *buf, size_t nbytes, loff_t off)
4265 {
4266 	struct cgroup_subsys_state *css = of_css(of);
4267 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4268 	struct mem_cgroup_event *event;
4269 	struct cgroup_subsys_state *cfile_css;
4270 	unsigned int efd, cfd;
4271 	struct fd efile;
4272 	struct fd cfile;
4273 	const char *name;
4274 	char *endp;
4275 	int ret;
4276 
4277 	buf = strstrip(buf);
4278 
4279 	efd = simple_strtoul(buf, &endp, 10);
4280 	if (*endp != ' ')
4281 		return -EINVAL;
4282 	buf = endp + 1;
4283 
4284 	cfd = simple_strtoul(buf, &endp, 10);
4285 	if ((*endp != ' ') && (*endp != '\0'))
4286 		return -EINVAL;
4287 	buf = endp + 1;
4288 
4289 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4290 	if (!event)
4291 		return -ENOMEM;
4292 
4293 	event->memcg = memcg;
4294 	INIT_LIST_HEAD(&event->list);
4295 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4296 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4297 	INIT_WORK(&event->remove, memcg_event_remove);
4298 
4299 	efile = fdget(efd);
4300 	if (!efile.file) {
4301 		ret = -EBADF;
4302 		goto out_kfree;
4303 	}
4304 
4305 	event->eventfd = eventfd_ctx_fileget(efile.file);
4306 	if (IS_ERR(event->eventfd)) {
4307 		ret = PTR_ERR(event->eventfd);
4308 		goto out_put_efile;
4309 	}
4310 
4311 	cfile = fdget(cfd);
4312 	if (!cfile.file) {
4313 		ret = -EBADF;
4314 		goto out_put_eventfd;
4315 	}
4316 
4317 	/* the process need read permission on control file */
4318 	/* AV: shouldn't we check that it's been opened for read instead? */
4319 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4320 	if (ret < 0)
4321 		goto out_put_cfile;
4322 
4323 	/*
4324 	 * Determine the event callbacks and set them in @event.  This used
4325 	 * to be done via struct cftype but cgroup core no longer knows
4326 	 * about these events.  The following is crude but the whole thing
4327 	 * is for compatibility anyway.
4328 	 *
4329 	 * DO NOT ADD NEW FILES.
4330 	 */
4331 	name = cfile.file->f_path.dentry->d_name.name;
4332 
4333 	if (!strcmp(name, "memory.usage_in_bytes")) {
4334 		event->register_event = mem_cgroup_usage_register_event;
4335 		event->unregister_event = mem_cgroup_usage_unregister_event;
4336 	} else if (!strcmp(name, "memory.oom_control")) {
4337 		event->register_event = mem_cgroup_oom_register_event;
4338 		event->unregister_event = mem_cgroup_oom_unregister_event;
4339 	} else if (!strcmp(name, "memory.pressure_level")) {
4340 		event->register_event = vmpressure_register_event;
4341 		event->unregister_event = vmpressure_unregister_event;
4342 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4343 		event->register_event = memsw_cgroup_usage_register_event;
4344 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4345 	} else {
4346 		ret = -EINVAL;
4347 		goto out_put_cfile;
4348 	}
4349 
4350 	/*
4351 	 * Verify @cfile should belong to @css.  Also, remaining events are
4352 	 * automatically removed on cgroup destruction but the removal is
4353 	 * asynchronous, so take an extra ref on @css.
4354 	 */
4355 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4356 					       &memory_cgrp_subsys);
4357 	ret = -EINVAL;
4358 	if (IS_ERR(cfile_css))
4359 		goto out_put_cfile;
4360 	if (cfile_css != css) {
4361 		css_put(cfile_css);
4362 		goto out_put_cfile;
4363 	}
4364 
4365 	ret = event->register_event(memcg, event->eventfd, buf);
4366 	if (ret)
4367 		goto out_put_css;
4368 
4369 	efile.file->f_op->poll(efile.file, &event->pt);
4370 
4371 	spin_lock(&memcg->event_list_lock);
4372 	list_add(&event->list, &memcg->event_list);
4373 	spin_unlock(&memcg->event_list_lock);
4374 
4375 	fdput(cfile);
4376 	fdput(efile);
4377 
4378 	return nbytes;
4379 
4380 out_put_css:
4381 	css_put(css);
4382 out_put_cfile:
4383 	fdput(cfile);
4384 out_put_eventfd:
4385 	eventfd_ctx_put(event->eventfd);
4386 out_put_efile:
4387 	fdput(efile);
4388 out_kfree:
4389 	kfree(event);
4390 
4391 	return ret;
4392 }
4393 
4394 static struct cftype mem_cgroup_files[] = {
4395 	{
4396 		.name = "usage_in_bytes",
4397 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4398 		.read_u64 = mem_cgroup_read_u64,
4399 	},
4400 	{
4401 		.name = "max_usage_in_bytes",
4402 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4403 		.write = mem_cgroup_reset,
4404 		.read_u64 = mem_cgroup_read_u64,
4405 	},
4406 	{
4407 		.name = "limit_in_bytes",
4408 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4409 		.write = mem_cgroup_write,
4410 		.read_u64 = mem_cgroup_read_u64,
4411 	},
4412 	{
4413 		.name = "soft_limit_in_bytes",
4414 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4415 		.write = mem_cgroup_write,
4416 		.read_u64 = mem_cgroup_read_u64,
4417 	},
4418 	{
4419 		.name = "failcnt",
4420 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4421 		.write = mem_cgroup_reset,
4422 		.read_u64 = mem_cgroup_read_u64,
4423 	},
4424 	{
4425 		.name = "stat",
4426 		.seq_show = memcg_stat_show,
4427 	},
4428 	{
4429 		.name = "force_empty",
4430 		.write = mem_cgroup_force_empty_write,
4431 	},
4432 	{
4433 		.name = "use_hierarchy",
4434 		.write_u64 = mem_cgroup_hierarchy_write,
4435 		.read_u64 = mem_cgroup_hierarchy_read,
4436 	},
4437 	{
4438 		.name = "cgroup.event_control",		/* XXX: for compat */
4439 		.write = memcg_write_event_control,
4440 		.flags = CFTYPE_NO_PREFIX,
4441 		.mode = S_IWUGO,
4442 	},
4443 	{
4444 		.name = "swappiness",
4445 		.read_u64 = mem_cgroup_swappiness_read,
4446 		.write_u64 = mem_cgroup_swappiness_write,
4447 	},
4448 	{
4449 		.name = "move_charge_at_immigrate",
4450 		.read_u64 = mem_cgroup_move_charge_read,
4451 		.write_u64 = mem_cgroup_move_charge_write,
4452 	},
4453 	{
4454 		.name = "oom_control",
4455 		.seq_show = mem_cgroup_oom_control_read,
4456 		.write_u64 = mem_cgroup_oom_control_write,
4457 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4458 	},
4459 	{
4460 		.name = "pressure_level",
4461 	},
4462 #ifdef CONFIG_NUMA
4463 	{
4464 		.name = "numa_stat",
4465 		.seq_show = memcg_numa_stat_show,
4466 	},
4467 #endif
4468 #ifdef CONFIG_MEMCG_KMEM
4469 	{
4470 		.name = "kmem.limit_in_bytes",
4471 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4472 		.write = mem_cgroup_write,
4473 		.read_u64 = mem_cgroup_read_u64,
4474 	},
4475 	{
4476 		.name = "kmem.usage_in_bytes",
4477 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4478 		.read_u64 = mem_cgroup_read_u64,
4479 	},
4480 	{
4481 		.name = "kmem.failcnt",
4482 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4483 		.write = mem_cgroup_reset,
4484 		.read_u64 = mem_cgroup_read_u64,
4485 	},
4486 	{
4487 		.name = "kmem.max_usage_in_bytes",
4488 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4489 		.write = mem_cgroup_reset,
4490 		.read_u64 = mem_cgroup_read_u64,
4491 	},
4492 #ifdef CONFIG_SLABINFO
4493 	{
4494 		.name = "kmem.slabinfo",
4495 		.seq_start = slab_start,
4496 		.seq_next = slab_next,
4497 		.seq_stop = slab_stop,
4498 		.seq_show = memcg_slab_show,
4499 	},
4500 #endif
4501 #endif
4502 	{ },	/* terminate */
4503 };
4504 
4505 #ifdef CONFIG_MEMCG_SWAP
4506 static struct cftype memsw_cgroup_files[] = {
4507 	{
4508 		.name = "memsw.usage_in_bytes",
4509 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4510 		.read_u64 = mem_cgroup_read_u64,
4511 	},
4512 	{
4513 		.name = "memsw.max_usage_in_bytes",
4514 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4515 		.write = mem_cgroup_reset,
4516 		.read_u64 = mem_cgroup_read_u64,
4517 	},
4518 	{
4519 		.name = "memsw.limit_in_bytes",
4520 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4521 		.write = mem_cgroup_write,
4522 		.read_u64 = mem_cgroup_read_u64,
4523 	},
4524 	{
4525 		.name = "memsw.failcnt",
4526 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4527 		.write = mem_cgroup_reset,
4528 		.read_u64 = mem_cgroup_read_u64,
4529 	},
4530 	{ },	/* terminate */
4531 };
4532 #endif
4533 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4534 {
4535 	struct mem_cgroup_per_node *pn;
4536 	struct mem_cgroup_per_zone *mz;
4537 	int zone, tmp = node;
4538 	/*
4539 	 * This routine is called against possible nodes.
4540 	 * But it's BUG to call kmalloc() against offline node.
4541 	 *
4542 	 * TODO: this routine can waste much memory for nodes which will
4543 	 *       never be onlined. It's better to use memory hotplug callback
4544 	 *       function.
4545 	 */
4546 	if (!node_state(node, N_NORMAL_MEMORY))
4547 		tmp = -1;
4548 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4549 	if (!pn)
4550 		return 1;
4551 
4552 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4553 		mz = &pn->zoneinfo[zone];
4554 		lruvec_init(&mz->lruvec);
4555 		mz->usage_in_excess = 0;
4556 		mz->on_tree = false;
4557 		mz->memcg = memcg;
4558 	}
4559 	memcg->nodeinfo[node] = pn;
4560 	return 0;
4561 }
4562 
4563 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4564 {
4565 	kfree(memcg->nodeinfo[node]);
4566 }
4567 
4568 static struct mem_cgroup *mem_cgroup_alloc(void)
4569 {
4570 	struct mem_cgroup *memcg;
4571 	size_t size;
4572 
4573 	size = sizeof(struct mem_cgroup);
4574 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4575 
4576 	memcg = kzalloc(size, GFP_KERNEL);
4577 	if (!memcg)
4578 		return NULL;
4579 
4580 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4581 	if (!memcg->stat)
4582 		goto out_free;
4583 	spin_lock_init(&memcg->pcp_counter_lock);
4584 	return memcg;
4585 
4586 out_free:
4587 	kfree(memcg);
4588 	return NULL;
4589 }
4590 
4591 /*
4592  * At destroying mem_cgroup, references from swap_cgroup can remain.
4593  * (scanning all at force_empty is too costly...)
4594  *
4595  * Instead of clearing all references at force_empty, we remember
4596  * the number of reference from swap_cgroup and free mem_cgroup when
4597  * it goes down to 0.
4598  *
4599  * Removal of cgroup itself succeeds regardless of refs from swap.
4600  */
4601 
4602 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4603 {
4604 	int node;
4605 
4606 	mem_cgroup_remove_from_trees(memcg);
4607 
4608 	for_each_node(node)
4609 		free_mem_cgroup_per_zone_info(memcg, node);
4610 
4611 	free_percpu(memcg->stat);
4612 
4613 	disarm_static_keys(memcg);
4614 	kfree(memcg);
4615 }
4616 
4617 /*
4618  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4619  */
4620 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4621 {
4622 	if (!memcg->memory.parent)
4623 		return NULL;
4624 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4625 }
4626 EXPORT_SYMBOL(parent_mem_cgroup);
4627 
4628 static void __init mem_cgroup_soft_limit_tree_init(void)
4629 {
4630 	struct mem_cgroup_tree_per_node *rtpn;
4631 	struct mem_cgroup_tree_per_zone *rtpz;
4632 	int tmp, node, zone;
4633 
4634 	for_each_node(node) {
4635 		tmp = node;
4636 		if (!node_state(node, N_NORMAL_MEMORY))
4637 			tmp = -1;
4638 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4639 		BUG_ON(!rtpn);
4640 
4641 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4642 
4643 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4644 			rtpz = &rtpn->rb_tree_per_zone[zone];
4645 			rtpz->rb_root = RB_ROOT;
4646 			spin_lock_init(&rtpz->lock);
4647 		}
4648 	}
4649 }
4650 
4651 static struct cgroup_subsys_state * __ref
4652 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4653 {
4654 	struct mem_cgroup *memcg;
4655 	long error = -ENOMEM;
4656 	int node;
4657 
4658 	memcg = mem_cgroup_alloc();
4659 	if (!memcg)
4660 		return ERR_PTR(error);
4661 
4662 	for_each_node(node)
4663 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4664 			goto free_out;
4665 
4666 	/* root ? */
4667 	if (parent_css == NULL) {
4668 		root_mem_cgroup = memcg;
4669 		page_counter_init(&memcg->memory, NULL);
4670 		memcg->soft_limit = PAGE_COUNTER_MAX;
4671 		page_counter_init(&memcg->memsw, NULL);
4672 		page_counter_init(&memcg->kmem, NULL);
4673 	}
4674 
4675 	memcg->last_scanned_node = MAX_NUMNODES;
4676 	INIT_LIST_HEAD(&memcg->oom_notify);
4677 	memcg->move_charge_at_immigrate = 0;
4678 	mutex_init(&memcg->thresholds_lock);
4679 	spin_lock_init(&memcg->move_lock);
4680 	vmpressure_init(&memcg->vmpressure);
4681 	INIT_LIST_HEAD(&memcg->event_list);
4682 	spin_lock_init(&memcg->event_list_lock);
4683 #ifdef CONFIG_MEMCG_KMEM
4684 	memcg->kmemcg_id = -1;
4685 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4686 #endif
4687 
4688 	return &memcg->css;
4689 
4690 free_out:
4691 	__mem_cgroup_free(memcg);
4692 	return ERR_PTR(error);
4693 }
4694 
4695 static int
4696 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4697 {
4698 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4699 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4700 	int ret;
4701 
4702 	if (css->id > MEM_CGROUP_ID_MAX)
4703 		return -ENOSPC;
4704 
4705 	if (!parent)
4706 		return 0;
4707 
4708 	mutex_lock(&memcg_create_mutex);
4709 
4710 	memcg->use_hierarchy = parent->use_hierarchy;
4711 	memcg->oom_kill_disable = parent->oom_kill_disable;
4712 	memcg->swappiness = mem_cgroup_swappiness(parent);
4713 
4714 	if (parent->use_hierarchy) {
4715 		page_counter_init(&memcg->memory, &parent->memory);
4716 		memcg->soft_limit = PAGE_COUNTER_MAX;
4717 		page_counter_init(&memcg->memsw, &parent->memsw);
4718 		page_counter_init(&memcg->kmem, &parent->kmem);
4719 
4720 		/*
4721 		 * No need to take a reference to the parent because cgroup
4722 		 * core guarantees its existence.
4723 		 */
4724 	} else {
4725 		page_counter_init(&memcg->memory, NULL);
4726 		memcg->soft_limit = PAGE_COUNTER_MAX;
4727 		page_counter_init(&memcg->memsw, NULL);
4728 		page_counter_init(&memcg->kmem, NULL);
4729 		/*
4730 		 * Deeper hierachy with use_hierarchy == false doesn't make
4731 		 * much sense so let cgroup subsystem know about this
4732 		 * unfortunate state in our controller.
4733 		 */
4734 		if (parent != root_mem_cgroup)
4735 			memory_cgrp_subsys.broken_hierarchy = true;
4736 	}
4737 	mutex_unlock(&memcg_create_mutex);
4738 
4739 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4740 	if (ret)
4741 		return ret;
4742 
4743 	/*
4744 	 * Make sure the memcg is initialized: mem_cgroup_iter()
4745 	 * orders reading memcg->initialized against its callers
4746 	 * reading the memcg members.
4747 	 */
4748 	smp_store_release(&memcg->initialized, 1);
4749 
4750 	return 0;
4751 }
4752 
4753 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4754 {
4755 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4756 	struct mem_cgroup_event *event, *tmp;
4757 
4758 	/*
4759 	 * Unregister events and notify userspace.
4760 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4761 	 * directory to avoid race between userspace and kernelspace.
4762 	 */
4763 	spin_lock(&memcg->event_list_lock);
4764 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4765 		list_del_init(&event->list);
4766 		schedule_work(&event->remove);
4767 	}
4768 	spin_unlock(&memcg->event_list_lock);
4769 
4770 	vmpressure_cleanup(&memcg->vmpressure);
4771 }
4772 
4773 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4774 {
4775 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4776 
4777 	memcg_destroy_kmem(memcg);
4778 	__mem_cgroup_free(memcg);
4779 }
4780 
4781 /**
4782  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4783  * @css: the target css
4784  *
4785  * Reset the states of the mem_cgroup associated with @css.  This is
4786  * invoked when the userland requests disabling on the default hierarchy
4787  * but the memcg is pinned through dependency.  The memcg should stop
4788  * applying policies and should revert to the vanilla state as it may be
4789  * made visible again.
4790  *
4791  * The current implementation only resets the essential configurations.
4792  * This needs to be expanded to cover all the visible parts.
4793  */
4794 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4795 {
4796 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4797 
4798 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4799 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4800 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4801 	memcg->soft_limit = PAGE_COUNTER_MAX;
4802 }
4803 
4804 #ifdef CONFIG_MMU
4805 /* Handlers for move charge at task migration. */
4806 static int mem_cgroup_do_precharge(unsigned long count)
4807 {
4808 	int ret;
4809 
4810 	/* Try a single bulk charge without reclaim first */
4811 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4812 	if (!ret) {
4813 		mc.precharge += count;
4814 		return ret;
4815 	}
4816 	if (ret == -EINTR) {
4817 		cancel_charge(root_mem_cgroup, count);
4818 		return ret;
4819 	}
4820 
4821 	/* Try charges one by one with reclaim */
4822 	while (count--) {
4823 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4824 		/*
4825 		 * In case of failure, any residual charges against
4826 		 * mc.to will be dropped by mem_cgroup_clear_mc()
4827 		 * later on.  However, cancel any charges that are
4828 		 * bypassed to root right away or they'll be lost.
4829 		 */
4830 		if (ret == -EINTR)
4831 			cancel_charge(root_mem_cgroup, 1);
4832 		if (ret)
4833 			return ret;
4834 		mc.precharge++;
4835 		cond_resched();
4836 	}
4837 	return 0;
4838 }
4839 
4840 /**
4841  * get_mctgt_type - get target type of moving charge
4842  * @vma: the vma the pte to be checked belongs
4843  * @addr: the address corresponding to the pte to be checked
4844  * @ptent: the pte to be checked
4845  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4846  *
4847  * Returns
4848  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4849  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4850  *     move charge. if @target is not NULL, the page is stored in target->page
4851  *     with extra refcnt got(Callers should handle it).
4852  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4853  *     target for charge migration. if @target is not NULL, the entry is stored
4854  *     in target->ent.
4855  *
4856  * Called with pte lock held.
4857  */
4858 union mc_target {
4859 	struct page	*page;
4860 	swp_entry_t	ent;
4861 };
4862 
4863 enum mc_target_type {
4864 	MC_TARGET_NONE = 0,
4865 	MC_TARGET_PAGE,
4866 	MC_TARGET_SWAP,
4867 };
4868 
4869 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4870 						unsigned long addr, pte_t ptent)
4871 {
4872 	struct page *page = vm_normal_page(vma, addr, ptent);
4873 
4874 	if (!page || !page_mapped(page))
4875 		return NULL;
4876 	if (PageAnon(page)) {
4877 		/* we don't move shared anon */
4878 		if (!move_anon())
4879 			return NULL;
4880 	} else if (!move_file())
4881 		/* we ignore mapcount for file pages */
4882 		return NULL;
4883 	if (!get_page_unless_zero(page))
4884 		return NULL;
4885 
4886 	return page;
4887 }
4888 
4889 #ifdef CONFIG_SWAP
4890 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4891 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4892 {
4893 	struct page *page = NULL;
4894 	swp_entry_t ent = pte_to_swp_entry(ptent);
4895 
4896 	if (!move_anon() || non_swap_entry(ent))
4897 		return NULL;
4898 	/*
4899 	 * Because lookup_swap_cache() updates some statistics counter,
4900 	 * we call find_get_page() with swapper_space directly.
4901 	 */
4902 	page = find_get_page(swap_address_space(ent), ent.val);
4903 	if (do_swap_account)
4904 		entry->val = ent.val;
4905 
4906 	return page;
4907 }
4908 #else
4909 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4910 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4911 {
4912 	return NULL;
4913 }
4914 #endif
4915 
4916 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4917 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4918 {
4919 	struct page *page = NULL;
4920 	struct address_space *mapping;
4921 	pgoff_t pgoff;
4922 
4923 	if (!vma->vm_file) /* anonymous vma */
4924 		return NULL;
4925 	if (!move_file())
4926 		return NULL;
4927 
4928 	mapping = vma->vm_file->f_mapping;
4929 	if (pte_none(ptent))
4930 		pgoff = linear_page_index(vma, addr);
4931 	else /* pte_file(ptent) is true */
4932 		pgoff = pte_to_pgoff(ptent);
4933 
4934 	/* page is moved even if it's not RSS of this task(page-faulted). */
4935 #ifdef CONFIG_SWAP
4936 	/* shmem/tmpfs may report page out on swap: account for that too. */
4937 	if (shmem_mapping(mapping)) {
4938 		page = find_get_entry(mapping, pgoff);
4939 		if (radix_tree_exceptional_entry(page)) {
4940 			swp_entry_t swp = radix_to_swp_entry(page);
4941 			if (do_swap_account)
4942 				*entry = swp;
4943 			page = find_get_page(swap_address_space(swp), swp.val);
4944 		}
4945 	} else
4946 		page = find_get_page(mapping, pgoff);
4947 #else
4948 	page = find_get_page(mapping, pgoff);
4949 #endif
4950 	return page;
4951 }
4952 
4953 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4954 		unsigned long addr, pte_t ptent, union mc_target *target)
4955 {
4956 	struct page *page = NULL;
4957 	enum mc_target_type ret = MC_TARGET_NONE;
4958 	swp_entry_t ent = { .val = 0 };
4959 
4960 	if (pte_present(ptent))
4961 		page = mc_handle_present_pte(vma, addr, ptent);
4962 	else if (is_swap_pte(ptent))
4963 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4964 	else if (pte_none(ptent) || pte_file(ptent))
4965 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4966 
4967 	if (!page && !ent.val)
4968 		return ret;
4969 	if (page) {
4970 		/*
4971 		 * Do only loose check w/o serialization.
4972 		 * mem_cgroup_move_account() checks the page is valid or
4973 		 * not under LRU exclusion.
4974 		 */
4975 		if (page->mem_cgroup == mc.from) {
4976 			ret = MC_TARGET_PAGE;
4977 			if (target)
4978 				target->page = page;
4979 		}
4980 		if (!ret || !target)
4981 			put_page(page);
4982 	}
4983 	/* There is a swap entry and a page doesn't exist or isn't charged */
4984 	if (ent.val && !ret &&
4985 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4986 		ret = MC_TARGET_SWAP;
4987 		if (target)
4988 			target->ent = ent;
4989 	}
4990 	return ret;
4991 }
4992 
4993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4994 /*
4995  * We don't consider swapping or file mapped pages because THP does not
4996  * support them for now.
4997  * Caller should make sure that pmd_trans_huge(pmd) is true.
4998  */
4999 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5000 		unsigned long addr, pmd_t pmd, union mc_target *target)
5001 {
5002 	struct page *page = NULL;
5003 	enum mc_target_type ret = MC_TARGET_NONE;
5004 
5005 	page = pmd_page(pmd);
5006 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5007 	if (!move_anon())
5008 		return ret;
5009 	if (page->mem_cgroup == mc.from) {
5010 		ret = MC_TARGET_PAGE;
5011 		if (target) {
5012 			get_page(page);
5013 			target->page = page;
5014 		}
5015 	}
5016 	return ret;
5017 }
5018 #else
5019 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5020 		unsigned long addr, pmd_t pmd, union mc_target *target)
5021 {
5022 	return MC_TARGET_NONE;
5023 }
5024 #endif
5025 
5026 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5027 					unsigned long addr, unsigned long end,
5028 					struct mm_walk *walk)
5029 {
5030 	struct vm_area_struct *vma = walk->private;
5031 	pte_t *pte;
5032 	spinlock_t *ptl;
5033 
5034 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5035 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5036 			mc.precharge += HPAGE_PMD_NR;
5037 		spin_unlock(ptl);
5038 		return 0;
5039 	}
5040 
5041 	if (pmd_trans_unstable(pmd))
5042 		return 0;
5043 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5044 	for (; addr != end; pte++, addr += PAGE_SIZE)
5045 		if (get_mctgt_type(vma, addr, *pte, NULL))
5046 			mc.precharge++;	/* increment precharge temporarily */
5047 	pte_unmap_unlock(pte - 1, ptl);
5048 	cond_resched();
5049 
5050 	return 0;
5051 }
5052 
5053 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5054 {
5055 	unsigned long precharge;
5056 	struct vm_area_struct *vma;
5057 
5058 	down_read(&mm->mmap_sem);
5059 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5060 		struct mm_walk mem_cgroup_count_precharge_walk = {
5061 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5062 			.mm = mm,
5063 			.private = vma,
5064 		};
5065 		if (is_vm_hugetlb_page(vma))
5066 			continue;
5067 		walk_page_range(vma->vm_start, vma->vm_end,
5068 					&mem_cgroup_count_precharge_walk);
5069 	}
5070 	up_read(&mm->mmap_sem);
5071 
5072 	precharge = mc.precharge;
5073 	mc.precharge = 0;
5074 
5075 	return precharge;
5076 }
5077 
5078 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5079 {
5080 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5081 
5082 	VM_BUG_ON(mc.moving_task);
5083 	mc.moving_task = current;
5084 	return mem_cgroup_do_precharge(precharge);
5085 }
5086 
5087 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5088 static void __mem_cgroup_clear_mc(void)
5089 {
5090 	struct mem_cgroup *from = mc.from;
5091 	struct mem_cgroup *to = mc.to;
5092 
5093 	/* we must uncharge all the leftover precharges from mc.to */
5094 	if (mc.precharge) {
5095 		cancel_charge(mc.to, mc.precharge);
5096 		mc.precharge = 0;
5097 	}
5098 	/*
5099 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5100 	 * we must uncharge here.
5101 	 */
5102 	if (mc.moved_charge) {
5103 		cancel_charge(mc.from, mc.moved_charge);
5104 		mc.moved_charge = 0;
5105 	}
5106 	/* we must fixup refcnts and charges */
5107 	if (mc.moved_swap) {
5108 		/* uncharge swap account from the old cgroup */
5109 		if (!mem_cgroup_is_root(mc.from))
5110 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5111 
5112 		/*
5113 		 * we charged both to->memory and to->memsw, so we
5114 		 * should uncharge to->memory.
5115 		 */
5116 		if (!mem_cgroup_is_root(mc.to))
5117 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5118 
5119 		css_put_many(&mc.from->css, mc.moved_swap);
5120 
5121 		/* we've already done css_get(mc.to) */
5122 		mc.moved_swap = 0;
5123 	}
5124 	memcg_oom_recover(from);
5125 	memcg_oom_recover(to);
5126 	wake_up_all(&mc.waitq);
5127 }
5128 
5129 static void mem_cgroup_clear_mc(void)
5130 {
5131 	/*
5132 	 * we must clear moving_task before waking up waiters at the end of
5133 	 * task migration.
5134 	 */
5135 	mc.moving_task = NULL;
5136 	__mem_cgroup_clear_mc();
5137 	spin_lock(&mc.lock);
5138 	mc.from = NULL;
5139 	mc.to = NULL;
5140 	spin_unlock(&mc.lock);
5141 }
5142 
5143 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5144 				 struct cgroup_taskset *tset)
5145 {
5146 	struct task_struct *p = cgroup_taskset_first(tset);
5147 	int ret = 0;
5148 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5149 	unsigned long move_charge_at_immigrate;
5150 
5151 	/*
5152 	 * We are now commited to this value whatever it is. Changes in this
5153 	 * tunable will only affect upcoming migrations, not the current one.
5154 	 * So we need to save it, and keep it going.
5155 	 */
5156 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
5157 	if (move_charge_at_immigrate) {
5158 		struct mm_struct *mm;
5159 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5160 
5161 		VM_BUG_ON(from == memcg);
5162 
5163 		mm = get_task_mm(p);
5164 		if (!mm)
5165 			return 0;
5166 		/* We move charges only when we move a owner of the mm */
5167 		if (mm->owner == p) {
5168 			VM_BUG_ON(mc.from);
5169 			VM_BUG_ON(mc.to);
5170 			VM_BUG_ON(mc.precharge);
5171 			VM_BUG_ON(mc.moved_charge);
5172 			VM_BUG_ON(mc.moved_swap);
5173 
5174 			spin_lock(&mc.lock);
5175 			mc.from = from;
5176 			mc.to = memcg;
5177 			mc.immigrate_flags = move_charge_at_immigrate;
5178 			spin_unlock(&mc.lock);
5179 			/* We set mc.moving_task later */
5180 
5181 			ret = mem_cgroup_precharge_mc(mm);
5182 			if (ret)
5183 				mem_cgroup_clear_mc();
5184 		}
5185 		mmput(mm);
5186 	}
5187 	return ret;
5188 }
5189 
5190 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5191 				     struct cgroup_taskset *tset)
5192 {
5193 	if (mc.to)
5194 		mem_cgroup_clear_mc();
5195 }
5196 
5197 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5198 				unsigned long addr, unsigned long end,
5199 				struct mm_walk *walk)
5200 {
5201 	int ret = 0;
5202 	struct vm_area_struct *vma = walk->private;
5203 	pte_t *pte;
5204 	spinlock_t *ptl;
5205 	enum mc_target_type target_type;
5206 	union mc_target target;
5207 	struct page *page;
5208 
5209 	/*
5210 	 * We don't take compound_lock() here but no race with splitting thp
5211 	 * happens because:
5212 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5213 	 *    under splitting, which means there's no concurrent thp split,
5214 	 *  - if another thread runs into split_huge_page() just after we
5215 	 *    entered this if-block, the thread must wait for page table lock
5216 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5217 	 *    part of thp split is not executed yet.
5218 	 */
5219 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5220 		if (mc.precharge < HPAGE_PMD_NR) {
5221 			spin_unlock(ptl);
5222 			return 0;
5223 		}
5224 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5225 		if (target_type == MC_TARGET_PAGE) {
5226 			page = target.page;
5227 			if (!isolate_lru_page(page)) {
5228 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5229 							     mc.from, mc.to)) {
5230 					mc.precharge -= HPAGE_PMD_NR;
5231 					mc.moved_charge += HPAGE_PMD_NR;
5232 				}
5233 				putback_lru_page(page);
5234 			}
5235 			put_page(page);
5236 		}
5237 		spin_unlock(ptl);
5238 		return 0;
5239 	}
5240 
5241 	if (pmd_trans_unstable(pmd))
5242 		return 0;
5243 retry:
5244 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5245 	for (; addr != end; addr += PAGE_SIZE) {
5246 		pte_t ptent = *(pte++);
5247 		swp_entry_t ent;
5248 
5249 		if (!mc.precharge)
5250 			break;
5251 
5252 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5253 		case MC_TARGET_PAGE:
5254 			page = target.page;
5255 			if (isolate_lru_page(page))
5256 				goto put;
5257 			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5258 				mc.precharge--;
5259 				/* we uncharge from mc.from later. */
5260 				mc.moved_charge++;
5261 			}
5262 			putback_lru_page(page);
5263 put:			/* get_mctgt_type() gets the page */
5264 			put_page(page);
5265 			break;
5266 		case MC_TARGET_SWAP:
5267 			ent = target.ent;
5268 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5269 				mc.precharge--;
5270 				/* we fixup refcnts and charges later. */
5271 				mc.moved_swap++;
5272 			}
5273 			break;
5274 		default:
5275 			break;
5276 		}
5277 	}
5278 	pte_unmap_unlock(pte - 1, ptl);
5279 	cond_resched();
5280 
5281 	if (addr != end) {
5282 		/*
5283 		 * We have consumed all precharges we got in can_attach().
5284 		 * We try charge one by one, but don't do any additional
5285 		 * charges to mc.to if we have failed in charge once in attach()
5286 		 * phase.
5287 		 */
5288 		ret = mem_cgroup_do_precharge(1);
5289 		if (!ret)
5290 			goto retry;
5291 	}
5292 
5293 	return ret;
5294 }
5295 
5296 static void mem_cgroup_move_charge(struct mm_struct *mm)
5297 {
5298 	struct vm_area_struct *vma;
5299 
5300 	lru_add_drain_all();
5301 	/*
5302 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5303 	 * move_lock while we're moving its pages to another memcg.
5304 	 * Then wait for already started RCU-only updates to finish.
5305 	 */
5306 	atomic_inc(&mc.from->moving_account);
5307 	synchronize_rcu();
5308 retry:
5309 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5310 		/*
5311 		 * Someone who are holding the mmap_sem might be waiting in
5312 		 * waitq. So we cancel all extra charges, wake up all waiters,
5313 		 * and retry. Because we cancel precharges, we might not be able
5314 		 * to move enough charges, but moving charge is a best-effort
5315 		 * feature anyway, so it wouldn't be a big problem.
5316 		 */
5317 		__mem_cgroup_clear_mc();
5318 		cond_resched();
5319 		goto retry;
5320 	}
5321 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5322 		int ret;
5323 		struct mm_walk mem_cgroup_move_charge_walk = {
5324 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5325 			.mm = mm,
5326 			.private = vma,
5327 		};
5328 		if (is_vm_hugetlb_page(vma))
5329 			continue;
5330 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5331 						&mem_cgroup_move_charge_walk);
5332 		if (ret)
5333 			/*
5334 			 * means we have consumed all precharges and failed in
5335 			 * doing additional charge. Just abandon here.
5336 			 */
5337 			break;
5338 	}
5339 	up_read(&mm->mmap_sem);
5340 	atomic_dec(&mc.from->moving_account);
5341 }
5342 
5343 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5344 				 struct cgroup_taskset *tset)
5345 {
5346 	struct task_struct *p = cgroup_taskset_first(tset);
5347 	struct mm_struct *mm = get_task_mm(p);
5348 
5349 	if (mm) {
5350 		if (mc.to)
5351 			mem_cgroup_move_charge(mm);
5352 		mmput(mm);
5353 	}
5354 	if (mc.to)
5355 		mem_cgroup_clear_mc();
5356 }
5357 #else	/* !CONFIG_MMU */
5358 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5359 				 struct cgroup_taskset *tset)
5360 {
5361 	return 0;
5362 }
5363 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5364 				     struct cgroup_taskset *tset)
5365 {
5366 }
5367 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5368 				 struct cgroup_taskset *tset)
5369 {
5370 }
5371 #endif
5372 
5373 /*
5374  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5375  * to verify whether we're attached to the default hierarchy on each mount
5376  * attempt.
5377  */
5378 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5379 {
5380 	/*
5381 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5382 	 * guarantees that @root doesn't have any children, so turning it
5383 	 * on for the root memcg is enough.
5384 	 */
5385 	if (cgroup_on_dfl(root_css->cgroup))
5386 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5387 }
5388 
5389 struct cgroup_subsys memory_cgrp_subsys = {
5390 	.css_alloc = mem_cgroup_css_alloc,
5391 	.css_online = mem_cgroup_css_online,
5392 	.css_offline = mem_cgroup_css_offline,
5393 	.css_free = mem_cgroup_css_free,
5394 	.css_reset = mem_cgroup_css_reset,
5395 	.can_attach = mem_cgroup_can_attach,
5396 	.cancel_attach = mem_cgroup_cancel_attach,
5397 	.attach = mem_cgroup_move_task,
5398 	.bind = mem_cgroup_bind,
5399 	.legacy_cftypes = mem_cgroup_files,
5400 	.early_init = 0,
5401 };
5402 
5403 #ifdef CONFIG_MEMCG_SWAP
5404 static int __init enable_swap_account(char *s)
5405 {
5406 	if (!strcmp(s, "1"))
5407 		really_do_swap_account = 1;
5408 	else if (!strcmp(s, "0"))
5409 		really_do_swap_account = 0;
5410 	return 1;
5411 }
5412 __setup("swapaccount=", enable_swap_account);
5413 
5414 static void __init memsw_file_init(void)
5415 {
5416 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5417 					  memsw_cgroup_files));
5418 }
5419 
5420 static void __init enable_swap_cgroup(void)
5421 {
5422 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5423 		do_swap_account = 1;
5424 		memsw_file_init();
5425 	}
5426 }
5427 
5428 #else
5429 static void __init enable_swap_cgroup(void)
5430 {
5431 }
5432 #endif
5433 
5434 #ifdef CONFIG_MEMCG_SWAP
5435 /**
5436  * mem_cgroup_swapout - transfer a memsw charge to swap
5437  * @page: page whose memsw charge to transfer
5438  * @entry: swap entry to move the charge to
5439  *
5440  * Transfer the memsw charge of @page to @entry.
5441  */
5442 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5443 {
5444 	struct mem_cgroup *memcg;
5445 	unsigned short oldid;
5446 
5447 	VM_BUG_ON_PAGE(PageLRU(page), page);
5448 	VM_BUG_ON_PAGE(page_count(page), page);
5449 
5450 	if (!do_swap_account)
5451 		return;
5452 
5453 	memcg = page->mem_cgroup;
5454 
5455 	/* Readahead page, never charged */
5456 	if (!memcg)
5457 		return;
5458 
5459 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5460 	VM_BUG_ON_PAGE(oldid, page);
5461 	mem_cgroup_swap_statistics(memcg, true);
5462 
5463 	page->mem_cgroup = NULL;
5464 
5465 	if (!mem_cgroup_is_root(memcg))
5466 		page_counter_uncharge(&memcg->memory, 1);
5467 
5468 	/* XXX: caller holds IRQ-safe mapping->tree_lock */
5469 	VM_BUG_ON(!irqs_disabled());
5470 
5471 	mem_cgroup_charge_statistics(memcg, page, -1);
5472 	memcg_check_events(memcg, page);
5473 }
5474 
5475 /**
5476  * mem_cgroup_uncharge_swap - uncharge a swap entry
5477  * @entry: swap entry to uncharge
5478  *
5479  * Drop the memsw charge associated with @entry.
5480  */
5481 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5482 {
5483 	struct mem_cgroup *memcg;
5484 	unsigned short id;
5485 
5486 	if (!do_swap_account)
5487 		return;
5488 
5489 	id = swap_cgroup_record(entry, 0);
5490 	rcu_read_lock();
5491 	memcg = mem_cgroup_lookup(id);
5492 	if (memcg) {
5493 		if (!mem_cgroup_is_root(memcg))
5494 			page_counter_uncharge(&memcg->memsw, 1);
5495 		mem_cgroup_swap_statistics(memcg, false);
5496 		css_put(&memcg->css);
5497 	}
5498 	rcu_read_unlock();
5499 }
5500 #endif
5501 
5502 /**
5503  * mem_cgroup_try_charge - try charging a page
5504  * @page: page to charge
5505  * @mm: mm context of the victim
5506  * @gfp_mask: reclaim mode
5507  * @memcgp: charged memcg return
5508  *
5509  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5510  * pages according to @gfp_mask if necessary.
5511  *
5512  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5513  * Otherwise, an error code is returned.
5514  *
5515  * After page->mapping has been set up, the caller must finalize the
5516  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5517  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5518  */
5519 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5520 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5521 {
5522 	struct mem_cgroup *memcg = NULL;
5523 	unsigned int nr_pages = 1;
5524 	int ret = 0;
5525 
5526 	if (mem_cgroup_disabled())
5527 		goto out;
5528 
5529 	if (PageSwapCache(page)) {
5530 		/*
5531 		 * Every swap fault against a single page tries to charge the
5532 		 * page, bail as early as possible.  shmem_unuse() encounters
5533 		 * already charged pages, too.  The USED bit is protected by
5534 		 * the page lock, which serializes swap cache removal, which
5535 		 * in turn serializes uncharging.
5536 		 */
5537 		if (page->mem_cgroup)
5538 			goto out;
5539 	}
5540 
5541 	if (PageTransHuge(page)) {
5542 		nr_pages <<= compound_order(page);
5543 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5544 	}
5545 
5546 	if (do_swap_account && PageSwapCache(page))
5547 		memcg = try_get_mem_cgroup_from_page(page);
5548 	if (!memcg)
5549 		memcg = get_mem_cgroup_from_mm(mm);
5550 
5551 	ret = try_charge(memcg, gfp_mask, nr_pages);
5552 
5553 	css_put(&memcg->css);
5554 
5555 	if (ret == -EINTR) {
5556 		memcg = root_mem_cgroup;
5557 		ret = 0;
5558 	}
5559 out:
5560 	*memcgp = memcg;
5561 	return ret;
5562 }
5563 
5564 /**
5565  * mem_cgroup_commit_charge - commit a page charge
5566  * @page: page to charge
5567  * @memcg: memcg to charge the page to
5568  * @lrucare: page might be on LRU already
5569  *
5570  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5571  * after page->mapping has been set up.  This must happen atomically
5572  * as part of the page instantiation, i.e. under the page table lock
5573  * for anonymous pages, under the page lock for page and swap cache.
5574  *
5575  * In addition, the page must not be on the LRU during the commit, to
5576  * prevent racing with task migration.  If it might be, use @lrucare.
5577  *
5578  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5579  */
5580 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5581 			      bool lrucare)
5582 {
5583 	unsigned int nr_pages = 1;
5584 
5585 	VM_BUG_ON_PAGE(!page->mapping, page);
5586 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5587 
5588 	if (mem_cgroup_disabled())
5589 		return;
5590 	/*
5591 	 * Swap faults will attempt to charge the same page multiple
5592 	 * times.  But reuse_swap_page() might have removed the page
5593 	 * from swapcache already, so we can't check PageSwapCache().
5594 	 */
5595 	if (!memcg)
5596 		return;
5597 
5598 	commit_charge(page, memcg, lrucare);
5599 
5600 	if (PageTransHuge(page)) {
5601 		nr_pages <<= compound_order(page);
5602 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5603 	}
5604 
5605 	local_irq_disable();
5606 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5607 	memcg_check_events(memcg, page);
5608 	local_irq_enable();
5609 
5610 	if (do_swap_account && PageSwapCache(page)) {
5611 		swp_entry_t entry = { .val = page_private(page) };
5612 		/*
5613 		 * The swap entry might not get freed for a long time,
5614 		 * let's not wait for it.  The page already received a
5615 		 * memory+swap charge, drop the swap entry duplicate.
5616 		 */
5617 		mem_cgroup_uncharge_swap(entry);
5618 	}
5619 }
5620 
5621 /**
5622  * mem_cgroup_cancel_charge - cancel a page charge
5623  * @page: page to charge
5624  * @memcg: memcg to charge the page to
5625  *
5626  * Cancel a charge transaction started by mem_cgroup_try_charge().
5627  */
5628 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5629 {
5630 	unsigned int nr_pages = 1;
5631 
5632 	if (mem_cgroup_disabled())
5633 		return;
5634 	/*
5635 	 * Swap faults will attempt to charge the same page multiple
5636 	 * times.  But reuse_swap_page() might have removed the page
5637 	 * from swapcache already, so we can't check PageSwapCache().
5638 	 */
5639 	if (!memcg)
5640 		return;
5641 
5642 	if (PageTransHuge(page)) {
5643 		nr_pages <<= compound_order(page);
5644 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5645 	}
5646 
5647 	cancel_charge(memcg, nr_pages);
5648 }
5649 
5650 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5651 			   unsigned long nr_anon, unsigned long nr_file,
5652 			   unsigned long nr_huge, struct page *dummy_page)
5653 {
5654 	unsigned long nr_pages = nr_anon + nr_file;
5655 	unsigned long flags;
5656 
5657 	if (!mem_cgroup_is_root(memcg)) {
5658 		page_counter_uncharge(&memcg->memory, nr_pages);
5659 		if (do_swap_account)
5660 			page_counter_uncharge(&memcg->memsw, nr_pages);
5661 		memcg_oom_recover(memcg);
5662 	}
5663 
5664 	local_irq_save(flags);
5665 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5666 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5667 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5668 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5669 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5670 	memcg_check_events(memcg, dummy_page);
5671 	local_irq_restore(flags);
5672 
5673 	if (!mem_cgroup_is_root(memcg))
5674 		css_put_many(&memcg->css, nr_pages);
5675 }
5676 
5677 static void uncharge_list(struct list_head *page_list)
5678 {
5679 	struct mem_cgroup *memcg = NULL;
5680 	unsigned long nr_anon = 0;
5681 	unsigned long nr_file = 0;
5682 	unsigned long nr_huge = 0;
5683 	unsigned long pgpgout = 0;
5684 	struct list_head *next;
5685 	struct page *page;
5686 
5687 	next = page_list->next;
5688 	do {
5689 		unsigned int nr_pages = 1;
5690 
5691 		page = list_entry(next, struct page, lru);
5692 		next = page->lru.next;
5693 
5694 		VM_BUG_ON_PAGE(PageLRU(page), page);
5695 		VM_BUG_ON_PAGE(page_count(page), page);
5696 
5697 		if (!page->mem_cgroup)
5698 			continue;
5699 
5700 		/*
5701 		 * Nobody should be changing or seriously looking at
5702 		 * page->mem_cgroup at this point, we have fully
5703 		 * exclusive access to the page.
5704 		 */
5705 
5706 		if (memcg != page->mem_cgroup) {
5707 			if (memcg) {
5708 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5709 					       nr_huge, page);
5710 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5711 			}
5712 			memcg = page->mem_cgroup;
5713 		}
5714 
5715 		if (PageTransHuge(page)) {
5716 			nr_pages <<= compound_order(page);
5717 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5718 			nr_huge += nr_pages;
5719 		}
5720 
5721 		if (PageAnon(page))
5722 			nr_anon += nr_pages;
5723 		else
5724 			nr_file += nr_pages;
5725 
5726 		page->mem_cgroup = NULL;
5727 
5728 		pgpgout++;
5729 	} while (next != page_list);
5730 
5731 	if (memcg)
5732 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5733 			       nr_huge, page);
5734 }
5735 
5736 /**
5737  * mem_cgroup_uncharge - uncharge a page
5738  * @page: page to uncharge
5739  *
5740  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5741  * mem_cgroup_commit_charge().
5742  */
5743 void mem_cgroup_uncharge(struct page *page)
5744 {
5745 	if (mem_cgroup_disabled())
5746 		return;
5747 
5748 	/* Don't touch page->lru of any random page, pre-check: */
5749 	if (!page->mem_cgroup)
5750 		return;
5751 
5752 	INIT_LIST_HEAD(&page->lru);
5753 	uncharge_list(&page->lru);
5754 }
5755 
5756 /**
5757  * mem_cgroup_uncharge_list - uncharge a list of page
5758  * @page_list: list of pages to uncharge
5759  *
5760  * Uncharge a list of pages previously charged with
5761  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5762  */
5763 void mem_cgroup_uncharge_list(struct list_head *page_list)
5764 {
5765 	if (mem_cgroup_disabled())
5766 		return;
5767 
5768 	if (!list_empty(page_list))
5769 		uncharge_list(page_list);
5770 }
5771 
5772 /**
5773  * mem_cgroup_migrate - migrate a charge to another page
5774  * @oldpage: currently charged page
5775  * @newpage: page to transfer the charge to
5776  * @lrucare: both pages might be on the LRU already
5777  *
5778  * Migrate the charge from @oldpage to @newpage.
5779  *
5780  * Both pages must be locked, @newpage->mapping must be set up.
5781  */
5782 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5783 			bool lrucare)
5784 {
5785 	struct mem_cgroup *memcg;
5786 	int isolated;
5787 
5788 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5789 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5790 	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5791 	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5792 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5793 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5794 		       newpage);
5795 
5796 	if (mem_cgroup_disabled())
5797 		return;
5798 
5799 	/* Page cache replacement: new page already charged? */
5800 	if (newpage->mem_cgroup)
5801 		return;
5802 
5803 	/*
5804 	 * Swapcache readahead pages can get migrated before being
5805 	 * charged, and migration from compaction can happen to an
5806 	 * uncharged page when the PFN walker finds a page that
5807 	 * reclaim just put back on the LRU but has not released yet.
5808 	 */
5809 	memcg = oldpage->mem_cgroup;
5810 	if (!memcg)
5811 		return;
5812 
5813 	if (lrucare)
5814 		lock_page_lru(oldpage, &isolated);
5815 
5816 	oldpage->mem_cgroup = NULL;
5817 
5818 	if (lrucare)
5819 		unlock_page_lru(oldpage, isolated);
5820 
5821 	commit_charge(newpage, memcg, lrucare);
5822 }
5823 
5824 /*
5825  * subsys_initcall() for memory controller.
5826  *
5827  * Some parts like hotcpu_notifier() have to be initialized from this context
5828  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5829  * everything that doesn't depend on a specific mem_cgroup structure should
5830  * be initialized from here.
5831  */
5832 static int __init mem_cgroup_init(void)
5833 {
5834 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5835 	enable_swap_cgroup();
5836 	mem_cgroup_soft_limit_tree_init();
5837 	memcg_stock_init();
5838 	return 0;
5839 }
5840 subsys_initcall(mem_cgroup_init);
5841